
The XENIX™

Development System

Programmer's Reference

TM

for the Apple Lisa 2

The Santa Cruz Operation, Inc.

Contents

1 Introduction

1.1 Overview I-I
1.2 UsingtheCLibraryFunctions 1-1
1.3 UsingThisManual I-I
1.4 NotationalConventions 1-2

2 UsingTheStandanlVO Fuuctious

2.1 Introduction 2-1
2.2 UsingCommandLineArguments 2-2
2.3 UsingtheStandardFiles 2-4
2.4 UsingtheStreamFunctions 2-12
2.5 UsingMoreStreamFunctions 2-24
2.6 UsingtheLow-LevelFunctions 2-28

3 SaeenProcessing

3.1 Introduction 3-1
3.2 Preparingfortbe ScreenFunctions 3-3
3.3 UsingtheStandardScreen 3-6
3.4 Creating and Using Windows 3-13
3.5 UsingOtherWindowFunctions 3-24
3.6 CombiningMovem.entwithAction 3-28
3.7 Controlling the Terminal 3-29

4 CharaderandStringProcessing

4.1 Introduction 4-1
4.2 UsingtheCharacterFunctions 4-1
4.3 UsingtheStringFunctions 4-7

5 UsingProcessControl

5.1 Introduction 5-1
5.2 UsingProcesses 5-1
5.3 CallingaProgram 5-1
5.4 StoppingaProgram 5-2

. 5.5 OverlayingaProgram 5-3
5.6 ExecutingaProgramThroughaSheU 5-5
5.7 DuplicatingaProcess 5-5

AppeDdixB XENIXSystemCaDs

B.l Introduction B-1
B.2 RevisedSystemCaUs B-1
B.3 Version 7 Additions B-1
B.3 OlangestotheioctlFunction B-2
B.4 UsingthemountandchownFunctions B-2
B.S Super-BlockFormat B-2
B.6 SepameVersionLibraries B-3

Chapter 1
Introd uction

1.1 Overview 1-1

1.2 Using the C Library Functions 1-1

1.3 Using Tbis Manual 1-1

1.4 Notational Conventions 1-2

Introd uction

1.1 Overview

This manual explains how to use the functions given in the C language libraries
of the XENIX system. In particular, it describes the functions of two C language
libraries: the standard C library, and the screen updating and cursor
movement library cur'eI.

The C library functions may be called by any program that needs the resources
of the XENIX system to perform a task. The functions let programs read and
write to files in the XENIX file system, read and write to devices such as
terminals and lineprinters, load and execute other programs, receive a.nd
process signals, communicate with other programs through pipes, share system
resources, a.nd process errors.

1.2 Using the C Library Functions

To use the C library functions you must include the proper function call and
definitions in the program and specify the corresponding library is given when
the program is compiled. The standard C libra.ry, contained in the file libe./I, is
automatically specified when you compile a C language program. Other
libraries, including the screen updating and cursor movement library
contained in the file libcur,e •. a, must be explicitly specified when you compile a
program with the -I option of the cc command (see Chapter 2, "Cc: a. C
Compiler" in theXENIX Programmer" Guide).

1.3 Using This Manual

This manual is intended to be used in conjunction with section S of the XENIX
Reference Manual. If you have never used the C library functions before, read
this manual first, then refer to the Reference Manual to learn about other
functions. If you are familiar with the library functions, turn to the Reference
Manual to see how these functions may differ from the ones you already know,
then return to this manual for examples ofthe functions.

Chapter 1 introduces the C language libraries.

Chapter 2 describes the standard input and output functions. These function
let a program read and write to the files ofaXENIX file system.

Chapter 3 describes the screen processing functions. These functions let a
program use the screen processing facilities of a user's terminal.

Chap~er 4 describes the character and string processing functions. These
functions let a program assign, manipulate, and compare characters and
strings.

1-1

Chapter 2
Using the Standard I/O Functions

2.1 Introduction 2-1
2.1.1 PreparingfortheI/OFunctions 2-1
2.1.2 Special Names 2-1
2.1.3 SpecialMacros 2-2.

2.2 Using Command Line ~guments 2-2

2.3 Using the Standard Files 2-4
2.3.1 Reading From the Standard Input 2-4
2.3.2 Writing to the Standard Output 2-7
2.3.3 Redirecting the Standard Input 2-9
2.3.4 Redirecting the Standard Output ~9

2.3.5 Piping the Standard Input and Output 2-9
2.3.6 Program Example 2-10

2.4 Using the Stream Functions 2-11
2.4.1 Using File Pointers 2-11
2.4.2 Opening a File 2-12
2.4.3 Reading a Single Character 2-13
2.4.4 Reading a String from a File 2-13
2.4.5 Reading Records from a File 2-14
2.4.6 Reading Formatted Data From a File 2-14
2.4.7 \Vriting a Single Character 2-15
2.4.8 Writing a String to a File 2-16
2.4.9 Writing Formatted Output 2-17
2.4.10 Writing Records to a File 2-17
2.4.11 TestingfortheEndoraFile 2-18
2.4.12 Testing For File Errors 2-18
2.4.13 Closing a File 2-19
2.4.14 Program Example 2-19

2.5 Using More Stream Functions 2-22
2.5.1 Using Buffered Input and Output 2-22
2.5.2 Reopening a File 2-23

Using the Standard 110 Functions

2.1 Introduction

Nearly all programs use some form of input and output. Some programs read from or
write to files stored on disk. Others write to devices such as line printers. Many
programs read from and write to the user's terminal. For this reason, the standard C
library provides several predefined input and output functions that a programmer can
use in programs.

This chapter explains how to use the 110 functions in the standard C library. In
particular, it describes:

Command line arguments

Standard input and output files

Stream functions forordinary files

Low-level functions forordinary files

Random access functions

2.1.1 Preparing for the 110 FunelioDS

To use the standard 110 functions a program must include the file stdio.h, which
defines the needed macros and variables. To include this file, place the following line
at the beginning of the program.

#include <stdio.h>

The actual functions are contained in the library file libc.a. This file is automatically
read whenever you compile a program. so no special argument is needed when you
invoke the compiler.

2.1.2 Special Names

The standard 110 library uSes many names for special purposes. In general, these
names can be used in any program that has included the stdio. h file.

2-]

Using the Standard I/O Functions

main (argc, argYl
int argCj
char *argv[];

at the beginning of the main program function. When a program begins
execution, "argc" contains the coun.t, and each element in "argv" contains a
pointer to one argument.

An argument is stored as a null-terminated string (i.e., a string ending with a
null character, \0). The first string (at "argv[O)") is the program name. The
argument count is never less than 1, since the program name is always
considered the first argument.

In the following example, command line arguments are read and then echoed on
the terminal screen. This program is similar to the XENIX echo command.

main(argc, a.rgv) /* echo a.rguments */
int a.rgCj
char *argvD;
{

int i;

for (i == 1; i < argcj i++)
printC("%s%c", argv[i], (i<argc-l) ? ' , : '\n');

}

In the example a.bove, an extra. space cha.racter is added at the end or each
argument to separate it trom the next a.rgument. This is required, since the
system automatica.lly removes leading and trailing whitespace characters (i.e.,
spaces and ta.bs) when it reads the arguments from the comma.nd line. Adding a
newline cha.ra.cter to the last argument is for convenience only; it ca.uses the
shell prompt to appear on the next line after the progra.m terminates.

When typing arguments on a command line, make sure each a.rgument is
separated from the others by one or more whitespace characters. If an
argument must contain whitespace characters, enclose that argument in
double quotation marks. For example, in the command line

display 3 4 "echo hello"

the string "echo hello" is treated as a single argument Also enclose in double
quotation mar ks any argument that contains characters recognized by the shell
(e.g., <, >, I, and A).

You should not cha.nge the values of the "arge" and "argv" va.ria.bles. If
neeessa.ry, a.ssign the argument value to another va.ria.ble a.nd change tha.t
variable instead. You can give other functions in the progra.m access to the
a.rguments by assigning their va.lues to externa.l variables.

2-3

Using the Standard I/O Functions

readn (p, cnt)
char p[];
int cnt;
{

int i,cj

i=Oj
while (i<cnt)

}

if (p[i++] = getchar()) != EOF) {
p[i] =0;
return(EOF}j

}
return(O};

Note that if getchar is reading from the keyboard, it waits for characters to be
typed before returning.

The ge t, function reads a string of characters from the standard input and
copies the string to a given memory location. The function call has the form:

gets(l)

where I is a pointer to the location to receive the string. The function reads
characters until it finds a newline character, then replaces the newline
character with a null character (\0) and copies the resulting string to memory.
The function returns the null pointer value NULL if the end of the file or an
error is encountered. Otherwise, it returns the value of I.

The tunction is typically used to read a full line from the standard input. For
example, the following program fragment reads aline from the standard input,
stores it in the character array "cmdln" and calls a function (called ptJf',e) ifno
error occurs.

char cmdln[SIZE);

if (gets(cmdln) != NULL)
parseO;

In this case, the length of the string is assumed to be less than "SIZE".

Note that getl cannot check the length ot the string it reads, so overflow can
occur.

The Ican/tunction reads one or more values trom the standard input where a
value may be a character string or a decimal, octal, or hexadecimal number.
The function call has the form:

scant (/ormat, argptr ...)

2-5

Using the Standard I/O Functions

You may use the getckar, getB, and Bcan/functions in a single program. Just
remember that each function reads the next available character, making that
character unavailable to the other functions.

Note that when the standard input is the terminal keyboard, the getcha.r, getB,
and uan/ functions usually do not return a value until at least one newline
character has been typed. This is true even if only one character is desired. If
you wish to have immediate input on a single keystroke, see the example in the
section "Using the BlIiJtem Call" in Chapter 3.

2.3.2 Writing to the Standard Output

You can write to the standard output with the putchar, putB, and print/
functions.

The putckar function writes a single character to the output buffer. The
function call has the form:

putchar (c)

where c is the character to be written. The function normally returns the same
character it wrote, but will return the value EOF if an error is encountered.

The function is typically used in a conditional loop to write a string of
characters to the standard output. For example, the function

writen (p,cnt)
char p[J;
int cnt;
{

int i;

for (i=O; i < =cnt; i++)
putchar((i != cnt) ? p[i] : '\n');

}

writes "cnt" number of characters plus a newline character to the standard
output.

The putB function copies the string found at a given memory location to the
standard output. The function call has the form:

puts(B)

where B is a pointer to the location containing the string. The string may be any
number of characters, but must end with a null character (\0). The Cunction
writes each character in the string to the standard output and replaces the null
character at the end of the string with a newline character.

2-7

Using the Standard I/O Functions

You may use the putchar, put~, and print/functions in a single program. Just
remember that the output appears in the same order as it is written to the
standard output.

2.3.3 Redirecting the Standard Input

You can change the standard input from the terminal keyboard to an ordinary
file by using the normal shell redirection symbol, <. This symbol directs the
shell to open for reading the file whose name immediately follows the symbol.
For example, the following command line opens the file phonelilt as the
standard input to the program dial.

dial <phonelist

The dial program may then use the getchar, get" and ,can/functions to read
characters and values from this file. Note that ifthe file does not exist, the shell
displays an error message and stops the program.

Whenever getchar, getl, or ,can/are used to read from an ordinary file, they
return the value EOF if the end of the file or an error is encountered. It is useful
to check for this value to make sure you do not continue to read characters after
an error has occurred.

2.3.4 Redirecting the Standard Output

You can change the standard output of a program from the terminal screen to
an ordinary file by using the shell redirection symbol, >. The symbol directs
the shell to open for writing the file whose name immediately follows the
s):'mbol. For example, the command line

dial >savephone

opens the file '411ephone as the standard output of the program dial a.nd not the
. terminal screen. You may use the putchar, put" and print/functions to write
to the file.

If the file does not exist, the shell automatically creates it. If the file exists, but
the program does not have permission to change or alter the file, the shell
displays an error message and does not execute the program.

2.3.5 Piping the Standard Input and Output

Another way to redefine the standard input and output is to create a pipe. A
pipe simply connects the standard output of one program to the standard input
of another. The programs may then use the standard input and output to pass
information from one to the other. You can create a. pipe by using the standard
shell pipe symbol, ,.

2-9

Using the Standard I/0 Functions

cat filel file2 file3 I ccstrip

If you wish to save the stripped files, you can redirect the standard output oC
CCltrip. For example, this command line writes the stripped files to the file
clean.

cat file I file2 file3 I ccstrip > clean

Note that the ezit Cunction is used at the end oC the program to ensure that any
program which executes the cCltripprogram will receive a normal termination
status (typically 0) from the program when it completes. An explanation of the
ezit function and how to execute one program under control oC another is given
in Chapter 5.

2.4 Using the Stream Functions

The functions described so far have all read from the standard input and
written to the standard output. The next step is to show Cunctions that access
files not already connected to the program. One set of standard I/O functions
allows a program to open and access ordinary files as if they were a "stream" of
characters. For this reason, the functions are called the stream functions.

Unlike the standard input and output files, a file to be accessed by a stream
function must be explicitly opened with the /open function. The function can
open a Sle for reading, writing, or appending. A program can read from a file
with the getc, fgetc, /getl, /getw, Ire ad, a.nd /Iclln/functions. It ca.n write to a.
file with the putt, /putt, Iputl, /putw, /write, a.nd /print/functions. A progra.m
can test for the end of the file or for an error with the /e 0/ a.nd lerror functions.
A program can close a. file with the /dole function.

2.4.1 Using File Pointers

Every file opened for access by the stream functions has a unique pointer
associated with it called a. file pointer. This pointer, defined with the predefined
type FILE found in the Itdio.h file, points to a structure that contains
information about the file, such as the loca.tion of the buffer (the intermediate
storage area between the actual file and the program), the current character
position in the buffer, and whether the file is being read or written. The pointer
can be given a valid pointer value with the /open function as described in the
next section. (The NULL value, like FILE, is defined in the Itdio.A file.)
Thereafter, the file pointer may be used to refer to that file until the file is
explicitly closed with the/dOle function.

Typically, a file pointer is defined with the statement:

FILE *infile;

2-11

Using the Standard 1/0 Functions

2.4.3 Reading a Single Character

The gete and /gete functions return a single character read rrom a given file,
and return the value EOF i(the end o(the file or an error is encountered. The
runction calls have the rorm:

e == getc (Btre am)

and

e = fgetc (dream)

where Btream is the file pointer to the file to be read and e is the variable to
receive the character. The return value is always an integer.

The runctions are typically used in conditional loops to read a string or
characters rrom a file. For example, the following program fragment continues
to read characters from the file given to it by "infile" until the end of the file or
an error is encountered.

int ij
char bur(MAX]j
FILE *infilej

while ((c=getc(infile)) != EOF)
bur[i++]=Cj

The only difference between the functions is that gete is defined as a macro, and
/getc as a true function. 'l'his means that, unlike getc, /getc may be passed as
an argument in another runction, used as a target for a breakpoint when
debugging, or used to avoid any side effects or macro processing.

2.4.4 Reading a String from a File

The /getB function reads a string of characters a file and copies the string to a
given memory location. The runction call has the (orm:

rgets (B,n,Btream)

where B is be a pointer to the location to receive the string, n is a count of the
maximum number or characters to be in the string, and stream is the file
pointer or the file to be read. The (unction reads n-J characters or upto to the
first newline character, whichever occurs first. The (unction appends a null
character (\0) to the last character read and then stores the string at the
specified location. The function returns the null pointer value NULL if the end
orthe file or an error is encountered. Otherwise, it returns the pointer I.

2-13

Using the Standard I/O Functions

function reads from the standard input. The function call has the Corm:

fscanf (,tre am, format, argptr •..)

where ,tream is the file pointer ofthe file to be read, format is a pointer to the
string that defines the format of the input to be read, and argptr is one or more
pointers to the variables that are to receive the formatted input. There must be
one argptr for each format given in the format string. The format may be "%s"
Cor a string, "%c" Cor a character, and "%d", "%0", or "%x" for a decimal,
octal, or hexadecimal number, respectively. (Other formats are described in
,canf(S) in the XENIX Reference Manual.) The function normally returns the
number of arguments it read, but will return the value EOF if the end of the file
or an error is encountered.

The function is typically used to read files that contain both numbers and text.
For example, this program fragment reads a name and a decimal number from
the file given by "file".

FILE -file;
int paYi
char name[20}j

fscanf(file,"%s %d\n", name, &pay)j

This program fragment copies the name to the character array "name" and the
. number to the integer variable "pay".

2.4.7 Writing a Single Character

The putc and fputc functions write single characters to a given file. The
function calls have the forms:

putc (c,Itream)

and

fputc (c,Itream)

where c is the character to be written and Itre am is the file pointer to the file to
receive the character. The Cunction normally returns the character written,
but will return the value EOF if' an error is encountered.

The function is defined as a macro and may have undesirable side effects
resulting from argument processing. In such cases, the equivalent function
fputc should be used. .

These functions are typically used in conditional loops to write a string of
characters to a file. For example, this following program fragment writes
characters from the array "name" to the file given by "out".

2-15

Using the Standard I/O Functions

2.4.0 Writing Formatted Output

The !print! function writes rormatted output to a given file, just as the printf
function writes to the standard output. The function call has the form:

fprintf (,tream, format (, ar9] ...)

where ,tre am is the file pointer of the file to be written to, format is a pointer to
a string which defines the format of the output, and ar9 is one or more
arguments to be written. There must be one ar9 for each format in the format
string. The formats may be "%s" ror a string, "%c" ror a character, and
"%d", "%0", or "%x" for a decimal, octal, or hexadecimal number,
respectively. (Other formats are described in printf(S) in the XENIX Referenu
Manual.) If a string is requested, the corresponding arg must be a pointer,
otherwise, the actual variable must be used. The runction normally returns
zero, but will return a nonzero number if an error is encountered.

The function is typically used to write output that contains both numbers and
text. For example, to write a name and a decimal number to the file given by
"outfile" use th~followingprogram fragment.

FILE *outfilej
int paYi
char name(20]j

fprintf(outfile,"%s %d\n", name, pay);

The name is copied from the character array "name" and the number from the
integer variable "pay".

2.4.10 Writing Records to a File

The fwrite function writes one or more records to a given file. The runction call
has the form:

fwrite (ptr, ,ize, nitem" ,tre am)

where ptr is a pointer to the first record to be written, ,ize is the size (in bytes) of
each record, nitem, is the number of records to be written, and ,tream is the file
pointer or the file. The ptr may point to a variable or any type (from a single
character to a structure). The ,ize should give the num ber of bytes in each item
to be written. One way to ensure this is to use the ,izeo! function (see the
example below). The function always returns the number of items actually
written to the file whether or not the end of the file or an error is encountered.

The runction is typically used to write binary data to a file. For example, the
following program fragment writes two records to the file given by "database".

2-17

Using the Standard I/0 Functions

The function is typically used to test for errors before perform a subsequent
read or write to the file. For example, in the following program fragment lerrDr
tests the file given by "stream".

char *bufj
char x[5);

while (Irerror(stream))
fread(bur, sizeor(x), 10, stream};

If it returns zero, the next item in the file given by "stream" is copied to "bur'.
Otherwise, execution passes to the next statement.

Further use or a file arter a error is detected may cause undesirable results.

2.4.13 Closing a File

The Idole runction closes a file by breaking the connection between the file
pointer and the structure created by lopen. Closing a file empties the contents
or the corresponding buffer and frees the file pointer ror use by another file. The
function call has the form:

fclose (Itream)

where dream is the file pointer of the file to close. The runction normally
returns 0, but will return -1 if an error is encountered.

The fclole runction is typically used to free file pointers when they are no longer
needed. This is important because usually no more than 20 files can be open at
the same time. For example, the rollowing program rragment closes the file
given by "infile" when the file has reached its end.

Fll..E *infilej

. if (reof(infile) }
rclose(infile);

Note that whenever a program terminates normally, the Iclole function is
automatically called ror each open file, 50 no explicit call is required unless the
program must close a file berore its end. Also, the function automatically calls
BluI'" to ensure that everything written to the file's buffer actually gets to the
file.

2.4.14 Program Example

This section shows how you may use the strea.m functions you have seen so tar
to perrorm useful tasks. The rollowing program, which counts the characters,
words, and lines found in one or more files, uses the lopen,/pnfttl, getc, and

2-19

Using the Standard I/0 Functions

#include <stdio.h>

main(argc, argv) /* wc: count lines, words, chars */
int argc;
char *argvD;
{

int c, i, inword;
FILE *Cp, *CopenO;
long linect, wordct, charet;
long tlinect = 0, twordct = 0, tcharct = 0;

i = 1;
fp = stdinj
do
{

ir(argc > 1 &&

}

(fp=fopen(argv[i), "r")) == NULL) {
fprintf (stderr, "wc: can't open %s\n",

argv[i));
continuej

linect == wordct == charet == inword == OJ
while ((c == getc(fp)) f== EOF} {

}

charct++;
if (c ==== '\n')

linect++;
if (c ==== ' , II c ==== '\t' II e ==== '\n')

inword == OJ
else if (in word ==== 0) {

inword == 1;
wordct++j

}

printf("%7Id %71d %7Id", linect, wordct, charct}j
printf(argc > 1 ! " %s\n" : "\n", argv[i})j
fclose(fp);
tlinect + == linectj
twordct +== wordct;
tcharet +== eharctj

} while (++i < argc)j
if (arge > 2)

exit(O)j

printf(" %71d %71d %71d total\n" , tlinect,
twordet, tcharet};

The program uses "fp" as the pointer to receive the current file pointer.
Initially this is set to "stdin" in case no filenames are present in the command
line. If a filename is present, the program calls lope n and assigns the file pointer
to "fp". If the file cannot be opened (in which case lopen returns NULL), the

2-21

Using the Standard I/O Functions

and the iJluBk function lets a program flush the buffer before it is full.

2.5.2 Reopening a File

The Ire ope n closes the file associated with a given file pointer, then opens a new
file and gives it the same file pointer as the old file. The function call has the
form:

freopen (newfile, type, ,tream)

where newfile is a pointer to the name of the new file, type is a pointer to the
string that defines how the file is to be opened ("r" for read, "w" for writing,
and "a" for appending), and ,tream is the file pointer of the old file. The
function returns the file pointer ,tream ifthe new file is opened. Otherwise, it
returns the null pointer value NULL.

The Ireopen function is used chiefly to attach the predefined file pointers
"stdin", "stdout", and "stderr" to other files. For example, the following
program fragment opens the file named by "newfile" as the new standard
output file.

char *newfile;
FILE *nfilej

nfile = freopen{newfile,"r" ,stdout);

This has the same effect as using the redirection symbols in the command line of
the program.

2.5.3 Setting the Buffer

The ,etbu/ function changes the buffer associated with a given file to the
program's own buffer. It can also change the access to the file to no buffering.
The function call has the form:

setbuf (stre am, bun

where stre am is a file descriptor and bu/is a pointer to the new buffer, or is the
null pointer value NULL if no buffering is desired. If a buffer is given, it must be
BSIZE bytes in length, where BSIZE is a manifest constant found in ,tdio. h.

The function is typically used to to create a buffer for the standard output when
it is assigned to the user's terminal, improving execution time by eliminating
the need to write one character to the screen at a time. For example, the
following program fragment changes the buffer of the standard output the
location pointed at by "p".

2-23

Using the Stan'dard I/O Functions

Note that the value EOF must never be put back in the buffer.

2.5.5 Flushing a File Buffer

The JTlurk runction empties the buffer of a give file by immediately writing the
buffer contents to the file. The runction call has the rorm:

mush (,tre cam)

where ,tream is the file pointer or the file. The runction normally returns zero,
but will return the value EOF iran error is encountered.

The function is typically used to guarantee tha.t the contents or a partially filled
buffer are written to the file. For example, the rollowing program fragment
empties the buffer ror the file given by "outtty" ir the error condition given by
"errHag" isO.

FILE *outttYi
int errBag;

if (errflag =- 0)
mush(outtty);

Note that ffiu,h is automatically called by the Ido,e function to empty the
buffer before closing the file. This means that no explicit call to JIlud is
required irthe file is also being closed.

The function ignores any attempt to empty the buffer of a file opened for
reading.

2.6 Using the Low-Level Functions

The low-level functions provide direct access to files and peripheral devices.
They are act.ually direct calls to the routines used in the XENIX operating
system to read from and write to files and peripheral devices. The low-level
runctions give a program the same control over a file or device as the system,
letting it access the file or device in ways that the stream runctions do not;
However, low-level functions, unlike stream functions, do not provide buffering
or any other userul services of the stream runctions. This means that any
program that uses the low-level functions has the complete burden or handling
input and output.

The low-level functions, like the stream functions, cannot be used to read from
or write to a file until the file has been opened. A program mayuse the opera
runction to open an existing or a new file. A file can be opened ror reading,
writing, or appending.

2-25

Using the Standard I/0 Functions

int in, out;

in == open("/usr/accounts", OJIDONLY);
out == open("/usr/tmp/scratch", O_WRONLY I O_CREAT, 0754);

In the XENIX system, each file has 9 bits of protection intormation which
control read, write, and execute permission for the owner ot the file, for the
owner's group, and for all others. A three-digit octal number is the most
convenient way to specify the permissions. For example, in the example above
the octal number "0755" specifies read, write, and eXt.cute permission for the
owner, read and execute permission for the group, and read everyone else.

Note that ifO_CREAT is given and the file already exists, the tunction destroys
the file's old contents.

2.6.3 Reading Bytes From a File

The re ad function reads one or more bytes of data from a given file and copies
them to a given memory location. The function call has the form:

n_re ad == read(fd, btl/, n);

where n_read is the variable to receive the count of bytes actually read, Idis the
file descriptor of the file, bu/is a pointer to the memory location to receive the

, bytes read, and n is a count of the desired number of bytes to be read. The
function normally returns the same number of bytes as requested, but will
return fewer if the file does not have that many bytes left to be read. The
Cunction returns 0 if the file has reached its end, or -1 if an error is encountered.

When the file is a terminal, re ad normally reads only up to the next newline.

The number or bytes to be read is arbitrary. The two most common values are
1, which means one character at a time, and 1024, which corresponds to the
physical block size on many peripheral devices.

2.6.4 \Vriting Bytes to a File

The write Cunction writes one or more bytes from a given memory location to a
given file. The function call has the form:

n_wn'tten == write(fd, bu/, n);

where n_ writte n is the variable to receive a count or bytes actually written, I dis
the file descriptor ofthe file, bu/is the name oC the buffer containing the bytes to
be written, and n is the number or bytes to be written.

The function always returns the number of bytes actually written. It is
considered an error iC the return value is not equal to the number of bytes

2-27

Using the Standard I/O Functions

'define BUFSIZE BSlZE

mainO
{

}

/* copy input to output */

char burl BlJFSIZE Ij
int nj

while ((n = read(0, bur, BUFSIZE)) > 0)
write(l, bur, n}j

exit(O)j

The program uses the re4d runction to read BUFSIZE bytes rrom the standard
input (file descriptor 0). It then uses write to write the same number or bytes it
read to the standard output (file descriptor I}. If the standard input file size is
not a multiple oCBUFSIZE, the last re4dreturns asma))er number or bytes to be
written by write, and the next call to re4dreturns zero.

This program can be used like a copy command to copy the content of one file to
another . You can do this by redirecting the standard input and output files.

The second example shows how the re 4d and write runctions can be used to
construct higher level runctions like getck4r and putch4r. For example, the
rollowing is a version or getch4r which performs unbuffered input:

#define CMASK 0377 /* for making chars > 0 *,
getcharO /* unbuffered single character input */
{

char Cj
return((read(O, &c, I} > 0) ! c & CMASK : EOF)j

}

The variable "c" must be declared char, because re4d accepts a chancter
pointer. In this case, the character being returned must be masked with octal
0377 to ensure that it is positivej otherwise sign extension may make it
negative.

The second version or getch4r reads input in large blocks, but hands out the
characters one at a time:

2 .. 29

Using the Standard 1/0 Functions

error(sl, 52)
char *51, *52;

1* print error message and die *1

{

}

printf(s!, s2);
printf(" \n");
exit(I);

There is a limit (usually 20) to the number ot files that a program may have
open simultaneously. Thererore, any program which intends to process many
files must be prepared to reuse file descriptors by closing unneeded files.

2.6.7 Using Random Access 1/0

Input and output operations on any file are normally sequential. This means
each read or write takes place at the character position immediately atter the
last character read or written. The standard library, however, provides a
number or stream and low-level functions that allow a program to access a file
randomly, that is, to exactly specify the position it wishes to read trom or write
to next.

The tunctions that provide random access operate on a file's "character
pointer". Every open file has a character pointer that points to the next
character to be read from that file, or the next place in the file to receive a
character. Normally, the character pointer is maintained and controlled by the
system, but the random access tunctions let a program move the pointer to any
position in the file.

2.6.8 Moving the Character Pointer

The l,eek function, a low-level function, moves the character pointer in a file
opened for low-level access to a given position. The function call has the form:

Iseek(1 d, off,et, origin);

where Idis the file descriptor ofthe file, off,et is the number of bytes to move the
character pointer, and origin is the number that gives the starting point for the
move. It may be 0 ror the beginning of the file, 1 for the current position, and 2
for the end.

For example, this call forces the current position in the file whose descriptor is 3
to move to the 512th byte from the beginning of the file.

lseek(3, (long)512, 0)

Subsequent reading or writing will begin at that position. Note that off Bet must
be a long integer andld and origin must be integers.

2-31

Using the Standard I/0 Functions

The Cunction may be used on either buffered or unbuffered files.

2.6.10 Rewinding a File

The rewind function, a stream function, moves the character pointer to the
beginning or a given file. The Cunction call has the rorm:

rewind (,treClm)

where ,tream is the file pointer oC the file. The Cunction is equivalent to the
rollowing Cunction call

fseek (stream,OL,O);

It is_ chiefly used as amore readable version of the call.

2.6.11 Getting the Current Character Position

The /tell function, a stream function, returns the current position of the
character pointer in the given file. The returned position is always rela.tive to
the beginning orthe file. The runction call has the Corm:

p = ftell (,tre am)

where ,tream is the file pointer of the file and p is the variable to receive the
position. The return value is always a long integer. The function returns the
value -1 if an error is encountered.

The function is typically used to save the current location in the file so that the
program can later return to that position. For example, the following program
fragment first saves the current character position in "oldp", then restores the
file to this position irthe current chara.cter position is greater than "800".

FILE .outfile;
long oldp;

oldp = rtell(outfile);

ir ((ftell(outfile)) > 800)
Cseek(outfile, oldp, 0);

The /tell is identical to the function call

lseek(Cd, (long)O, 1)

where /dis the file descriptor or the given stream file.

2-33

Chapter 3
Screen Processing

3.1 Introduction 3-1
3.1.1 Screen Processing Overview 3-1
3.1.2 Using the Library 3-2

3.2 Preparing the Screen 3-4
3.2.1 Initializing the Screen 3-4
3.2.2 Using Terminal Capability and Type 3-5
3.2.3 Using Default Terminal Modes 3-5
3.2.4 Using Default Window Flags 3-6
3.2.5 Using the Default Terminal Size 3-6
3.2.6 Terminating Screen Processing 3-6

3.3 Using the Standard Screen 3-7
3.3.1 Adding a Character 3-7
3.3.2 Adding a String 3-8
3.3.3 Printing Strings, Characters, and Numbers 3-8
3.3.4 Reading a Character From the Keyboard 3-9
3.3.5 Reading a String From the Key board 3-9
3.3.6 Reading Strings, Characters, and Numbers 3-10
3.3.7 Moving the Current Position 3-11
3.3.8 Inserting a Character 3-11
3.3.9 InsertingaLine 3-11
3.3.10 Deleting a Character 3-12
3.3.11 Deleting aLine 3-12
3.3.12 Clearing the Screen 3-13
3.3.13 Clearing aPart of the Screen 3-13
3.3.14 Refreshing From the Standard Screen 3-14

3.4 Creating and Using Windows 3-14
3.4.1 Creating a Window 3-14
3.4.2 Creating aSubwindow 3-15
3.4.3 Adding and Printing to a Window 3-16
3.4.4 Reading and Scanning for Input 3-17
3.4.5 Moving a the Current Position in a Window 3-19

Screen Processing

3.1 Introduction

This chapter explains how to use the screen updating and cursor movement
library named cur.e •. The library provides functions to create and update
screen windows, get input from the terminal in a screen-oriented way, and
optimize the motion of the cursor on the screen.

3.1.1 Screen Processing Overview

Screen processing gives a program a simple and efficient way to use the
capabilities of the terminal attached to the program's standard input and
output files. Screen processing does not rely on the terminal's type. Instead the
screen processing functions use the XENIX terminal capability file
/etc/termcap to tailor their actions for any given terminal. This makes a
screen processing program terminal-independent. The program can be run
with any terminal as long as that terminal is described in the / etc/termcapfile.

The screen processing functions access a terminal screen by working through
intermediate "screens" and "windows" in memory. A screen is a
representation of what the entire terminal screen should look like. A window is
a representation of what some portion of the terminal screen should look like.
A screen. can be made up of one or more windows. A window can be as small as a
single character or as large as an entire screen.

Before a screen or window can be used, it must be created by using the ne wwin
or IUbwin functions. These functions define the size of the screen or window in
terms of lines and columns. Each position in a screen or window represents a
place Cor a single character and corresponds to a similar place on the terminal
screen. Positions are numbered according to line and column. For example, the
position in the upper left corner of a screen or window is numbered (0,0) and the
position immediately to its right is (0,1). A typical screen has 24 lines and 80
columns. Its upper left corner corresponds to the upper left corner of the
terminal screen. A window, on the other hand, may be any size (within the
limits oC the actual screen). Its upper left corner can correspond to any position
on the terminal screen. For convenience, the init.crCunction which initializes a
program for screen processing also creates a default screen , ,td,er (for
"standard screen"). The ,td.er may be used without first creating it. The
function also creates eur,cr (for "current screen") which contains a copy of
what is currently on the terminal screen.

To display characters at the terminal screen, a program must write these
characters to a screen or window using screen processing functions such as
atldch and watldeh. If necessary, a program can move to the desired position in
the screen or window by using the move and wmove functions. Once characters
are added to a screen or window, the program can copy the characters to the
terminal screen by using the re/re,h or wre/relh function. These functions
update the terminal screen according to what has changed in the given screen
or window. Since the terminal screen is not changed until a program calls

3-1

Type Name
WINDOW. curscr

WINDOW. stdscr

char DeCterm

bool My_term

char ttytype

int LINES
int COLS

int ERR

int OK

Screen Processing

Variables

Description
A pointer to the current version orthe
terminal screen.
A pointer to the default screen used
for updating when no explicit screen
is defined.
A pointer to the default terminal type
if the type cannot be determined.
The terminal type flag. If set, it
causes the terminal specification in
"DeCterm" to be used, regardless or
the real terminal type.
A pointer to the full name of the
current terminal.
The n um ber or lines on the terminal.
The number or columns on the
terminal.
The error flag. Returned by runctions
on an error.
The okay flag. Returned by runctions
on successrul operation.

3-3

Screen Processing

3.2.2 Using Terminal Capability and Type

The tnitler runction uses the terminal capability descriptions given in the
XENIX system's / etc/termcap file to prepare the screen processing runctions
ror creating and updating terminal screens. The descriptions define the
character sequences required to perrorm a given operation on a given terminal.
These sequences are used by the screen processing runctions to add, insert,
delete, and move characters on the screen. The descriptions are automatically
read rrom the file when screen processing is initialized, so direct access by a
program is not required.

The tnifler runction uses the shell's "TERM" variable to determine which
terminal capability description to use. The "TERM" variable is usually
assigned an identifier when a user logs in. This identifier defines the terminal
type and is associated with a terminal capability description in the
/etc/termeapfile.

If the "TERM" variable has no value, the runctions use the derault terminal
type in the library's predefined variable "DeCterm". This variable initially
has the value "dumb" (ror "dumb terminal"), b~t the user may change it to any
desired value. This must be done berore calling the tntt,er runction.

In some cases, it is desirable to rorce the screen processing functions to use the
derault terminal type. This can be done by setting the library's predefined
variable "My_term" to the value 1. The rull name or the current terminal is
stored in the predefined variable "ttytype".

Terminal capabilities, types, and identifiers are described in detail in
termeap(F) in theXENIX Reference Manual.

3.2.3 Using Detault Terminal Modes

The intt,cr runction automatically sets a terminal to derault operation modes.
These modes define how the terminal displays characters sent to the screen and
how it responds to characters typed at the keyboard. The tntt,erfunction sets
the terminal to ECHO mode which causes characters typed at the keyboa.rd to
be displayed at the screen, and RAW mode which causes characters to be used as
direct input (no editing or signal processing is done).

The default terminal modes can be changed by using the appropriate functions
described in the section "Setting a Terminal Mode" in this chapter. It the
modes are changed, they must be changed immediately after calling init,er.
Terminal modes are described in detail in tty(M) in the XENIX Reference
Manual.

3-5

Screen Processing

,include <curses.h>

main 0
{

initscrOi / * Program body. *,
endwinOi
}

Note that enrlwin must not be called if init.er has not been called. Also, enrlwin
should be called before any call to the ezit function. The enrlwin function must
also be called if the gettmorle and .etterm functions have been called even if
init.c r has not.

3.3 Using the Stan'CIard Screen

The following sections explain how to use the standard screen to display and
edit characters on the terminal screen.

3.3.1 Adding a Character

The 4drlch function adds a given character to the standard screen and moves
the character pointer one position to the right. The function call has the form:

addch(ch)

where ch gives the character to be added and must have char type. For
example, irthe current position is (0,0), the function call

addch('A')

places the letter "A" at this position and moves the pointer to (0,1).

If a newline ('\n') character is given, the function deletes allcharacters from the
current position to the end of the line and moves the pointer one line down. Ir
the newline flag is set, the function deletes the characters and moves the
pointer to the beginning or the next line. If a return (,\r') is given, the function
moves the pointer to the beginning orthe current line. Ira tab ('\t') is given, the
function moves the pointer to the next- tab stop, adding enough spaces to fill the
gap between the current position and the stop. Tab stops are placed at every
eight character positions.

The function returns ERR ir it encounters an error, such as illegal scrolling.

3-7

Screen Processing

prints the number "15" immediately after the name.

The function returns ERR if it encounters an error such as illegal scrolling.

3.3.4 Reading a Character From the Keyboard

The geteh. function reads a single character from the terminal keyboard and
returns the character as a value. The function call has the form:

c == getchO

where e is the variable to receive the character.

The function is typically used to read a series of individual characters. For
example, in the following program fragment, characters are read and stored
until a newline or the end or the file is encountered, or until the buffer size has
been reached.

char c, p[MAX]j
int i;

i == 0;
while ((c==getch())!= '\n' && c!= EOF && i <MAX)

p[i++J -= Cj

If the terminal is set to ECHO mode, getd copies the character to the standard
screenj otherwise, the screen remains unchanged. It the terminal is not set to
RAW or NOECHO mode, geteh. automatically sets the terminal to CBREAK
mode, then restores the previous mode after reading the character. Terminal
modes are described later in the chapter.

The function returns ERR if it encounters an error such as illegal scrolling.

3.3.5 Reading a String From the Keyboard

The getstr function reads a string of characters from the terminal keyboard
and copiesthe string to a given location. The function call has the form:

getstr(8tr)

where str is a character pointer to the variable or location to receive the string.
When typed at the keyboard, the string must end with a newline character or
with the end-of-file character. The extra character is replaced by a null
character when the string is stored. It is the programmer's responsibility to
ensure that str has adequate space to store the typed string.

The function is typically used to read names and other text from the keyboa.rd.
For example, in the following program fragment, reads a filename from the

3-9

Screen Processing

3.3.7 Moving the Current Position

The move function moves the pointer to the given position. The function call
has the form:

move (y, z)

where y is an integer value giving the new row position, and z is an integer value
giving the new column position. For example, if the current position is (0,0),
the function ca.ll

move(5,4}

moves the pointer to line 5, column 4.

The function returns ERR i~.it encounters an error such as illegal scrolling.

3.3.8 Inserting a Character

The i",ch function inserts a character at the current position and shilts the
existing character (and all characters to its right) one position to the right. The
function ca.ll has the form:

insch (c)

where c is the character to be inserted.

The function is typically used to insert a series of characters into an existing
line. For example, in the following program fragment i",chis used to' insert the
number of characters given by "cnt" into the standard screen a the current
position.

int cnt;
char *string;

while (cnt !== 0) {
insch(string[cnt]);
cnt--;
}

The function returns. ERR if it encounters an error such as illegal scrolling.

3.3.0 Inserting a Line

The i",ertl" function inserts a blank line at the current position and moves the
existing line (and all lines below it) down one line, causing the last line to ~ove

tJ the bottom of the screen .. The function call has the lorm:

3-11

Screen Processing

The deleteln function is used to delete existing lines from the standard screen.
For example, in the following program fragment deleteln is used to delete aline
from the standard screen if the count in "cnt" is 79.

int cnt;

if (cnt == 79)
deletelnO;

3.3.12 Clearing the Screen

The clear and era,e functions clear all characters from the standard screen by
replacing them with spaces. The functions are typically used to prepare the
screen for new text.

The de ar function clears all characters from the standard screen, moves the
pointer to (0,0), and sets the standard screen's clear flag. The flag causes the
next call to the re/re d, function to clear all characters from the terminal screen.

The era,e function clears the standard screen, but does not set the clear flag.
For example, in the following program fragment clear clears the screen if the
input value is 12.

char c;

if ((c=getch()) == 12)
clearO;

3.3.13 Clearing a Part or the Screen

The clrtobot and clrtoeol functions clear one or more characters from the
standard screen by replacing the characters with spaces. The functions are
typically used to prepare a partofthe standard screen for new characters.

The clrtobot function clears the screen from the current position to the bottom
of the screen. For example, ifthe current position is (10,0), the function call

clrtobotO;

clears all characters from line 10 and all lines below line 10.

The clrloe 01 function clears the standard screen from the current position to
the end of the current line. For example, if the current position is (10,10), the
function call

clrtoeolOi

3-13

Screen Processing

where win is the pointer variable to receive the return value, linee and eol. are
integer values that give the total number or lines and columns, respectively, in
the window, and begin-1J and begin_z are integer values that give the line and
column positions, respectively, of the upper left corner of the window when
displayed on the terminal screen. The win variable must have type
WINDOW·.

The function is typically used in programs that maintain a set of windows,
displaying different windows at different times or alternating between window
as needed. For example, in the following program fragment "ewwi" creates a
new window and assigns the pointer to this window to the variable mid,tree".

WINDOW *midscreen;

midscreen = newwin(5, 10, g, 35);

The window has 5 lines and 10 columns. The upper left corner of the window is
placed at the position (9,35) on the terminal screen.

If either line, or eol, is zero, the function automatically creates a window that
has "LINES - begin-1l" lines or "COLS - begin_z" columns, where "LINES"
and "COLS" are the predefined constants giving the total number of lines and
columns on the terminal screen. For example, the function call

newwin(O, 0, 0, 0)

creates a new window whose upper left corner is at position (0,0) and that has
"LINES" lines and "COLS" columns.

Note

You must not crea.te windows that exceed the dimensions of the actual
screen.

The newwin function returns the value (WINDOW-) ERR on an error, such as
insufficient memory for the new window.

3.4.2 Creating a Subwindow

The Bubwin function creates a subwindow and returns a pointer to the new
window. A subwindow is a window which shares all or part or the character
space of another window and provides an a.lternate way to access the characters
in that space. The function call has the form:

3-15

Screen Processing

pointer to the given string. For example, if the current position is (0,0), the
function call

waddstr(midscreen, "line")j

places the beginning of the string "line" at this position and moves the pointer
to (0,4).

The wprintw runction prints one or more values on the given window, where a
value may be a string, a character, or a decimal, octal, or hexadecimal number.
The runction call has the rorm:

wprintw(win, 'mt [, 4rg] ..•)

where win is a pointer to the window to receive the values, 'mt is a pointer to a
string that defines the format or the values, and 4rg is a value to be printed. If
more than one 4rg is given(each must be separated from the preceding with a
comma (,). For each 4rg given, there must be a corresponding rormat given in
'mt. A format may be "%s" for string,"%c" ror character, and "%d", "%0",
or "%x" for a decimal, octal, or hexadecimal number, respectively. (Other
rormats are described in print,(S) in the XENIX Reference M4nu4l;) If "%s" is
given, the corresponding 4rg must be a character pointer. For other formats,
the actual value or a variable containing the value may be given.

The runction is typically used to copy both numbers and strings to the standard
screen at the same time. For example, in the following program fragment
wprintw prints a name and then the number "15" at the current position in the
window "midscreen".

char *namej

wprintw(midscreen, "%s %d", name, 15);

Note that when a newline, return, or tab character is given to a w4ddcA,
waddstr, or wprintw function, the functions perform the same actions as
described for the addcA runction. The runctions return ERR ir they encounter
errors such as illegal scrolling.

3.4.4 Reading and Scanning tor Input

The wgetcA, wgettrtr, and WtrC4nw functions read characters, strings, and
numbers rrom the standard input file and usually echo the values by copying
them to the given window.

The wgetch function reads a single character rrom the standard input file and
returns the character as avalue. The function call has the form:

c = wgetch(win)

3-17

Screen Processing

The function is typically used to read a combination of strings and numbers
from the keyboard. For example, in the following program rragment ".e"fUD
reads a name and a number from the keyboard.

char name[20)j
int idi

wscanw(midscreen, "%s %d" , name, &id);

In this example, the name is stored in the character array "name" and the
number in the integer variable "id" ..

Ir the terminal is set to ECHO mode, the runction copies the string to the given
window. Ir the terminal is not set to RAW or NOECHO mode, the runction
automatically sets the terminal to CBREAK mode, then restores the previous
mode after reading the character.

The functions return ERR if they encounter errors such as illegal scrolling.

3.4.5 Moving a the Current Position in a Window

The wmot1e function moves the current position in a given window. The
function call has the form:

wmove (win, 1/, z)

where win is a pointer to a window, 1/ is an integer value giving the new line
position, and z is an integer value giving the new column position. For example,
the function call

wmove(midscreen, 4, 4)

moves the current position in the window "midscreen" to (4,4).

The function returns ERR if it encounters an error such as illegal scrolling.

3.4.6 Inserting Characters

The winIck and winlertln runctions insert characters and lines into a given
window.

The winsck function inserts a character at the current position and shifts the
existing character (and all characters to its right) one position to the right. The
function call has the form:

winsch (win, c)

where win is a pointer to a window, and c is the character to be inserted.

3-19

Screen Processing

The wdeleteln function deletes the current line and shifts the line below the
deleted line (and all lines below it) one line up, leaving the last line in the screen
blank. The function call has the form:

wdeleteln(win)

where win is a pointer to a window.

The function is typically used to delete existing lines from a given window, For
example, in the following program fragment wdeleteln deletes the lines in
"midscreen" until "cnt" is equal to zero.

int cnt;

while (cnt != °) {
wdeleteln(midscreen);
cnt--' } ,

3.4.8 Clearing the Screen

The wclear, werase, welrtobot, and wclrtoeolrunctions clear all or part of the
characters from the given window by replacing them with spaces. The
functions are typically used to prepare the window for new text.

The wclear function clears all characters from the window, moves the poinier
to (0,0), and sets the standard screen's clear flag. The flag causes the next
re/reeh function call to clear all characters from the terminal screen. The
function call has the form:

wclear(win)

where win is the window to be cleared.

The werase function clears the given window, moves the pointer to (0,0), but
does not set the clear flag. It is used whenever the contents of the terminal
screen must be preserved. The function call has the form:

werase(win)

where win is a pointer to the window to be cleared.

The wclrtobot function clears the window from the current position to the
bottom of the screen. The function call has the form:

wclrtobot(win)

where win is a pointer to the window to be cleared. For example, if the current

3-21

Screen Processing

Note

IC cUrler is given with wre/relh, the runction restores the actual screen
to its most recent contents. This is useful ror implementing a
"redraw" reature for screens that become cluttered with unwanted
output.

The function returns ERR ifit encounters an error such as illegal scrolling. Iran
error is encountered, the function attempts to update as much of the screen as
possible without causing the scroll.

3.4.10 Overla.ying Win~ows

The otlerl411function copies all characters, except spaces, rrom one window to
another, moving characters rrom their original positions in the first window to
identical positions in the second. The runction effectively lays the first window
over the second, letting characters in the second window that would otherwise
be covered by spaces remain unchanged. The runction call has the form:

overlay{ winl, win f)

where winl is a pointer to the window to be copied, and winfis a pointer to the
window to receive the copied text. The starting positions of winl and winf
must match, otherwise an error occurs. Ir wi nl is larger than. winf, the runction
copies only those lines and columns in winl that fitin win2.

The function is typically used to build a composite screen rrom overlapping
windows. For example, in the following program rragment ofJerl411 is used to
build the standard screen from two different windows.

WINDOW .info, .cmdmenu;

overlay(info, stdscr);
overlay(cmdmenu, stdscr)j
refreshOi

3.4.11 Overwriting a. Screen

The otlerwrite function copies all characters, including spaces, from one
window to another, moving characters from their positions in the first window
to identical positions in the second. The function effectively writes ~he contents
of the first window over the second, destroying the previous contents or the
second window. The function call has the form:

3--23

Screen Processing

c = inchO

where c is the character variable to receive the character read.

The winch tunction reads a character trom a given window or screen. The
tunction call has the rorm:

c - winch(win)

where win is the pointer to the window containing the character to be read.

The runctions are typically used to compare the actual contents ot a window
with what is assumed to be there. For example, in the rollowing program
tragment inch and winch are used to compare the characters at position (0,0) in
the standard screen and in the window named "altscreen".

char cl, c2j

cl = inchOj
c2 = winch(altscreen)j
it (cl }= c2)

errorOj

Note that reading a character from a window does not alter the contents of the
window.

3.4.14 Touching a Window

The touc hwin runction makes the entire contents or a given window appear to
be modified, causing a subsequent re/re,h call to copy all characters in the
window to the terminal screen. The function call has the form:

touchwin(win)

where win is a pointer to the window to be touched.

The runction is typically used when two or more overlapping windows make up
the terminal screen. For example, the function call

touchwin(lertscreen)j

is used to touch the window named "leCtscreen". A subsequent relred copies
all characters in "leCtscreen" to the terminal screen.

3.4.16 Deleting a Window

The delwin Cunction deletes a given window Crom memory, treeing the space
previously occupied by the window for other windows or Cor dynamically

3-25

Screen Processing

The ,tandout runction sets the standout attribute ror characters added to the
standard screen. The runction call has the form:

standoutO

No arguments are required.

The w,tandout function sets the standout attribute or characters added to the
given window or screen. The function call has the rorm:

wstandout(win)

where win is a pointer to a window.

The functions are typically used to make error messages or instructions cle·arly
visible when displayed at the terminal screen. For example, in the rollowing
program rragment ,tandout sets the standout character attribute berore
adding an error message to the standard screen.

if(code = 5) {
standoutOj
addstr("Illegal character.\n"}j
} ,

Note that the actual appearence or characters with the stando,ut attribute
depends on the given terminal. This attribute is defined by the SO and SE (or
US and VE) sequences given in the terminal's termcapentry (see termcap(M) in
the XENIX Reference Manual).

3.5.3 Restoring Normal Characters

The ,tandend and w,tandendfunctions restore the normal character attribute,
causing characters subsequently added to a given window or screen to be
displayed as normal characters.

The ,tandend runction restores the normal attribute ror the standard screen.
The function call has the rorm:

standendO

No arguments are required.

The w,tandend function restores the normal attribute ror a given window or
screen. The function call has the form:

wstandend(win)

where win is a pointer to a window.

3-27

Screen Processing

leaveok(toi", .tde)

where toi" is a pointer to the window containing the ftag to be set, and ,ttlte is a
Boolean value defining the state of the ftag. Ir .ttlte is TRUE the ftag is set; if
FALSE, the ftag is cleared. For exam pie, the function call

leaveok(stdscr, TRUE);

sets the cursor ftag.

The .erollok function sets or clears the scroll ftag for the given window. If the
ftag is set, scrolling through the window is allowed. Ir the ftag is clear, then no
scrolling is allowed. The function call has the form:

scrollok(toi", .ttlte)

where toi"is a pointer to a window, and .ttlte is a Boolean value defining how the
ftag is to be set. Ir .tIde is TRUE, the ftag is set; if FALSE, the ftag is cleared. The
ftag is initially clear, making scrolling illegal. -

The de tlrok function sets and clears the clear ftag fora given screen. The
function call has the form:

clearok(toin, .tate)

where toi" is a pointer to the desired screen, and .tate is a Boolean value. The
function sets the ftag if ,ttlte is TRUE, and clears the ftag if FALSE. For example,
the function call

clearok(stdscr, ~RUE)

sets the clear ftag for the standard screen.

When the clear ftag is set, each re/re'" call to the given screen automatically
clears the screen by passing a clear-screen sequence to the terminal. This
sequence affects the terminal only; it does not change the contents ofthe screen.

If eiecrok is used to set the clear ftag for the current screen "curser", each call to
re/re'" automatically clears the screen, regardless of which window is given in
the call.

3.5.6 Scrolling a Window

The ,eroll function scrolls the contents of a given window upward by one line.
The function call has the rorm:

scroll(toi")

where toi" is a pointer to the window to be scrolled. The function should be used

3-29

Screen Processing

The echo function sets the ECHO mode for the terminal, causing each character
typed at the keyboard to be displayed at the terminal screen. The runction call
has the form:

echoO

No arguments are required.

The nl function sets a terminal to NEWLINE mode, causing all newline
characters to be mapped to a corresponding newline and return character
combination. The function call has the form:

nlO

No arguments are required.

The raw function sets the RAW mode tor the terminal, causing each character
typed at the keyboard to be sent as direct input. The RAW mode disables the
runction or the editing and signal keys and disables the mapping or newline
characters into newline and return combinations. The runction call has the
rorm:

rawO

No arguments are required.

3.7.2 Clearing a Terminal Mode

The nocrmode, noecho, nom, and nor41O functions clear the current terminal
mode, allowing input to be processed according to a previous mode.

The nocrmode function clears a terminal rrom the CBREAK mode. The
function call has the form:

nocrmodeO

No arguments are required.

The noecho function clears a terminal from the ECHO mode. This mode
prevents characters typed at the keyboard from being displayed on the
terminal screen. The function call has the form:

noechoO

No arguments are required.

The nonl function clears a terminal rrom NEWLINE mode, causing newline
characters to be mapped into themselves. This allows the screen proceSsing
functions to perform better optimization. The function call has the rorm:

3-31

Screen Processing

The runction is normally called by the init,cr runction.

3.7.5 Saving and Restoring the Terminal Flags

The I4vetty runction saves the current terminal flags, and the rudt, runction
restores the flags previously saved by the l4t1ett,runction. These functions are
perrormed automatically by init,cr and entlwin runctions. They are not
required when perrorming ordinary screen processing.

3.7.6 Setting a Terminal Type

The ,tterm runction sets the terminal type to the given type. The function call
has the form:

setterm(ntlme)

where ntlme is a pointer to a string containing the terminal type identifier. The
runction is normally called by the init.crfunction, but may be used in special
cases.

3.7.7 Reading the Terminal Name

The longntlme function converts a given termc tip identifier into the full name of
the corresponding terminal. The runction call has the form:

longname(termbu/, name)

where termbu/is a pointer to the string containing the terminal type identifier,
and ntlme is a character pointer to the location to receive the long name. The
terminal type identifier must exist in the / etc/termctlpfile.

The runction is typically used to get the rull name or the terminal currently
being used. Note that the current terminal's identifier is stored in the variable
"ttytype", which may be used to receive a new name.

3-33

Chapter 4
'Character and String Processing'

4.1 Introduction 4-1

4.2 Using the Character Functions 4-1
4.2.1 Testing for anASeD Character 4-1
4.2.2 Converting toAScn Characters 4-2
4.2.3 Testing for Alphanumerics 4-2
4.2.4 Testing for a Letter 4-3
4.2.5 Testing for Control Characters 4-3
4.2.6 Testing for a Decimal Digit 4-3
4.2.7 Testing for a Hexadecimal Digit 4-4
4.2.8 Testing for Printable Characters 4-4
4.2.9 Testing for Punctuation 4-4
4.2.10 Testing for Whitespace 4-5
4.2.11 Testing for Case in Letters 4-5
4.2.12 Converting the Case of a Letter 4-5

4.3 Using the String Functions 4-6
4.3.1 Concatenating Strings 4-6
4.3.2 Comparing Strings 4-7
4.3.3 Copying a String 4-8
4.3.4 Getting a String's Length 4-8
4.3.5 Concatenating Ch aracters to a String 4-8
4.3.6 Comparing Characters in Strings 4-9
4.3.7 Copying Characters to a String 4-10
4.3.8 Reading Values from a String 4-10
4.3.9 Writing Values to a String 4-11

Character and String Processing

4.1 In.troduction

Character and string processing is an important part or many programs.
Programs regularly assign, manipulate, and compare characters and strings in
order to complete their tasks. For this reason, the standard library provides a
variety or character and string processing functions. These runctions give a
convenient way to test, translate, assign, and compare characters and strings.

To use the character Cunctions in a program the file, etgpe.A, which provides
the definitions ror special character macros, must be included in the program.
The line

linclude <ctype.h>

must appear at the beginning or the program.

To use the string functions, no special action is required. These runctions are
defined in the standard C library and are read whenever you compile a C
program.

4.2 Using the Character Functions

The character Cunctions test and convert characters. Many character
Cunctions are defined as macros, and as such cannot be redefined or used as a
target Cor a breakpoint when debugging.

4.2.1 Testing for an ASCII Character

The il41di Cunction tests ror characters in the ASCII character set, i.e.,
characters whose values range Crom 0 to 127. The Cunction call has the Corm:

isascii (c)

where c is the character to be tested. The runction returns a nonzero (true)
value if the character is ASCII, otherwise it returns zero (raise). For example, in
the Collowing program rragment iUlcii determines whether or not the value in
"c" read rrom the file given by "data" is in the acceptable ASCII range.

Fll..E *dataj
int Cj

c = Cgetc(data)j
iC (!isascii(c))

notextOj

In this example, a runction named notezt is called ir the character is not in
range.

4-1

Character and String Processing

4.2.4 Testing tor a Letter

The iltJlpktJ runction tests ror uppercase or lowercase letters, i.e., alphabetic
characters. The function call has the form:

isalpha (e)

where e is the character to be tested. The runction returns a nonzero (true)
value if the character is a letter, otherwise it returns zero. For example, the
runction call

isalpha('a')

returns a nonzero value, but the call

isalpha(' 1 ')

returns zero.

4.2.6 Testing tor Control Characters

The ilCntrl (unction test rorcontrol characters, i.e., characters whose ASCII
values are in the range 0 to 31 or is 127. The (unction call has the form:

iscntrl (c)

where e is the character to be tested. The function returns a nonzero (true)
value i(the character is a control character, otherwise it returns zero (false).
For example, in the program following fragment i8cntrl determines whether or
not the character in "c" read from the file given by "infile" is a control
character.

FILE *infile, *outfile;
int c;

c = rgetc(infile);
iC (!iscntrl(c))

fputc(c, outfile);

The /putc Cunction is ignored ir the character is a control character.

4.2.6 Testing tor a Decimal Digit

The i8digit runction tests Cor decimal digits. The Cunction call has the rorm:

isdigit (c)

4-3

Character and String Processing

neither control characters nor alphanumeric characters. The function call has
the form:

ispunct (e)

where e is the cha.racter to be tested. The function returns a nonzero function if
the character is a punctuation character, otherwise it returns zero~

4.2.10 Testing ror Whitespace

The il6paCf runction tests for whitespace characters, i.e, the space, horizontal
tab, vertical tab, carriage return, formfeed, and newline characters. The
function call has the form:

isspace (e)

where e is the character to be tested. The function returns a nonzero value if
the character is a whitespace character, otherwise it returns zero.

4.2.11 Testing ror Case in Letters

The i,uppe,. and i8lowe,. functions test for uppercase and lowercase letters,
respectively. The function calls have the form:

isupper (e)

and

islower (c)

where c is the character to be tested. The function returns a nonzero value if
the character is the proper case, otherwise it returns zero. For example, the
function call

isupper('b')

returns zero (false), but the call

islower('b')

returns a nonzero (true) value.

4.2.12 Converting the Case or a Letter

The tolower a.nd toupper functions convert the case or a given letter. The
function caUs ha.vethe form:

4-5

Character and String Processing

strcat (J.t, .re)

where JIt is a pointer to the string to receive the new characters, and Ire is a
pointer to the string containing the new characters. The function appends the
new characters in the same order as they appear in .re, then appends a. null
character (\0) to the last character in the new string. The function a.lways
returns the pointer J.t.

The function is typically used to build a string such as a full pathname from two
smaller strings. For example, in the following program fragment .treat
concatenates the string' 'temp" to the contents of the character array "dir".

char dir[MAX] == "/usrfi

strcat(dir, "temp"};

4.3.2 Comparing Strings

The ,tremp function compares the characters in one string to those in another
and returns an integer value showing the result or the comparison. The
function call has the form:

strcmp (11, .e)

where 11 and .e are the pointers to the strings to be compared. The function
returns zero if the strings are equal (i.e., have the same characters in the same
order). Ir the strings are not equal, the function returns the difference between
the ASCII values of the first unequal pair of characters. The value of the second
string character is always subtracted from the first. For example, the function
call

strcmp(" Character A", "Character A")i

returns zero since the strings are identical in every way, but the function call

strcmp(" Character A" , "Character B")i

returns-l since the ASCII value of liB" isonegreater than "A".

Note that the ,tremp function continues to compare characters until a
mismatch is found. If one string is shorter than the other, the function usually
stops at the end of the shorter string. For example, the Cunction call

strcmp(" Character A", "Character")

returns 65, that is, the difference between the null character at the end of the
second string and the "A" in the first string.

4-7

Character and String Processing

strncat (d,t, ,rc, ft)

where dlt is a pointer to the string to receive the new characters, IrC is a pointer
to the string containing the new characters, and ft is an integer value giving the
number or characters to be concatenated. The runction appends the given
number or characters to the end or the dlt string, then returns the pointer d,t.

In the rollowing program rragment, ,tmctlt copies the first three characters in
"letter" to the end or "cover".

char coverll == "cover";
char letter ==" letter" j

strncat(cover, letter, 3);

This example creates the new string "cover let" in "cover".

4.3.6 Comparing Characters in Strings

The ,trftcmp runction compares one or more pairs or characters in two given
strings and returns an integer value which gives the result of the comparison.
The runction call has the rorm:

strncmp (11, ,e, ft)

where 11 and ,e are pointers to the strings to be compared, and ft is an integer
value giving the number of characters to compare. The function returns zero if
the first ft characters are identical. Otherwise, the runction returns the
difference between the ASCII values or the first unequal pair of characters. The
function generates the difference by subtracting the second string character
rrom the first.

For example, the function call

strncmp(" Character A", "Character B" , 5)

returns zero because the first five characters are identical, but the function call

strncmp(" Character A", "Character B", 11)

returns-l becausetheva.lue or"B" is one greater than "A".

Note that the runction continues to compare characters until a mismatch or the
end or a string is found.

4-9

Character and String Processing

char datestr[) == {"THU MAR 29 11:04:40 EST 19S3"};
char monthl4];
char yearl5];

sscanf(datestr ," %*3s%3s%*2s%-8s%*3s%48" ,month,year);
printf("%s, %s\n" ,month,year);

The first value (a three-character string) is stored at the location pointed to by
"month", the second value (a four·character string) is stored at the location
pointed to by "year".

4.3.0 Writing Values to a String

The .print/function writes one or more values to a given string. The function
call has the form:

sprintf (" format I, ar,,] ...)

where, is a pointer to the string to receive the value, format is a pointer to a
string which defines the format of the values to be written, and org is the
variable or value to be written. If more than one ar" is given, they must be
separated by commas (,). The format string may contain the same formats as
given for print/(see print/(S) in theXENIX Re/erence Manual). Arter all values
are written to the string, the function adds a null character (\O) to the end of
the string. The function normally returns zero, but will return a nonzero value
if an error is encountered.

The function is typically used to build a large string from several values of
different format. For example, in the following program fragment 'print/
writes three values to the string pointed to by "cmd".

char cmdllOO);
char *doc == "/usr/src/cmd/cp.c"
int width == 50;
int length == 60;

sprintf(cmd,"pr ·w%d ·I%d %s\n" ,width,length,doc);
system (cmd);

In this example, the string created by ,print! is used in a call to the ",tern
function. The first two values are the decimal numbers given by "width" and
"length". The last value is a string (a filename) and is pointed to by doc. The
final string has the form:

pr ·w50 ·160 /usr/src/cmd/cp.c

Note that the string to receive the values must have sufficient length to store
those values. The runction cannot check for overflow.

.f.ll

Chapter 6
Using Process Control

5.1 Introduction 5-1

5.2 Using Processes 5-1

5.3 Calling aProgram 5-1

5.4 Stopping a Program 5-2

5.5 Starting aNew Program 5-3

5.6 Executing a Program Through a Shell 5-5

5.7 Du plicating a Process 5-5

5.8 Waiting (or a Process 5-6

5.9 Inheriting Open Files 5-7

5.10 Program Example 5-7

Using Process Control

5.1 Introduction

This chapter describes the process control functions of the standard C library.
The runctions let a program call other programs, using a method similar to
calling runctions.

There are a variety of process control functions. The .,.tem and ez."t functions
provide the highest level of execution control and are used by most programs
that need a straightforward way to call another program or terminate the
current one. The ezecl, ezeCtI, fork, and w4it functions provide low-level
control of execution and are for those programs which must have very fine
control over their own execution and the execution of other programs. Other
process control runctions such as abort and ezee are described in detail in
section SoftheXENIX Reference Manual.

The process control functions are a part or the standard C library. Since this
library is automatically read when compiling a C program, no special library
argument is required when invoking the compiler.

5.2 UsingProcesses

"Process" is the term used to describe a program executed by the XENIX
system. A process consists or instructions and data, and a table of information
about the program, such as its allocated memory, open files, and current
execution status.

You· create a process whenever you invoke a program through a shell. The
system assigns a unique process ID to a program when it is invoked, and uses
this ID to control and manage the program. The unique IDs are needed in a
system running several processes at the same time.

You can also create a. process by directing a program to call another program.
This causes the system to perrorm the sa.me runctions as when it invokes a
program through a shell. In fact, these two methods are actually the same
method; invoking a program through a shell is nothing more than directing a
program (the shell) to call another program.

The system handles all processes in essentially the same way, so the sections
that follow should give you valuable informa.tion for writing your own
programs and an insight into the XENIX system itself.

6.3 Calling a Program

The 'lI,tem runction calls the given program, executes it, and then returns
control to the original program. The function call has the form:

5-1

Using Process Con trol

where Itatt", is the integer value to be sent to the system as the termination
status.

The function is typically used to terminate a program before its normal end,
such as after a. serious error. For example, in the following program rragment
ezit stops the program and sends the integer value "2" to the system if the
lope n function returns the null pointer valueNULL.

FILE *ttyout;

if (fopen(ttyout," r") ==.== NULL)
exit(2);

Note that the ezit runction automatically closes each open file in the program
before returning to the system. This mea.ns no explicit calls to the /clue or
dOle runctions are required berore an exit.

5.5 Starting a New Program

The eze cl and eze cv functions cause the system to overlay the calling program
with the given one, allowing the calling program to terminate while the new
program continues execution.

The ezecl runction call has the form:

exed (patkname, command-name, argptr .•.)

where patkname is a pointer to a string containing the full pathname of the
command you want to execute, command-name is a pointer to a string
containing the name of the program you want to execute, and argptr is one or
more pointers to strings which contain the program arguments. Each 4rgptr
must be separated (rom any other argument by a comma. The last argptrin the
list must be the null pointer value NULL. For example, in the call

exed(" /bin/date", "date", NULL);

the date command, whose full pathname is "/bin/date", takes no arguments,
and in the call

exed(" /bin/cat", " cat" , filel, file2, NULL);

the cat command, whose full pathname is "/bin/cat", takes the pointers
"filel" and "file2" as arguments.

The eZUfJ function call has the form:

5-3

Using Process Control

If the program di,pla1l is not found or lacks the necessary permissions, the
original program resumes control and displays an error message.

Note that the ezeel and eZUf1 functions will not expand metacharacters (e.g.,
<, >, *,1, and IJ) given in the argument list. Uaprogram needs these features,
it can use eze cl or ezee f1 to call a shell as described in the next section.

5.6 Executing a Program Through a Shell

One drawback of the ezed and ezeefl functions is that they do not provide the
metacharacter features of a shell. One way to overcome this problem is to use
ezeclto execute a shell and let the shell execute the command you want.

The function call has the form:

execl (" /bin/sh" ,"sh" ,"-e", command-line, NULL);

where command-line is a pointer to the string containing the command line
needed to execute the program. The string must be exactly as it would appear if
typed at the terminal.

For example, a program can execute the command

cat *.c

(which contains the metacharacter *) with the call

execl(" /bin/sh", "sh", "-c", "cat -.c", NULL);

In this example, the full pathname /bin/eh and command name ,A start the
shell. The argument "-c" causes the shell to treat the argument "cat *.c" as a
whole command line. The shell expands the metacharacter and displays all files
which end with .c, something that the cat command cannot do by itself.

5.7 Duplicating a Process

The fork function splits an executing program into two independent and fully­
runctioning processes. The function call has the form:

fork 0

No arguments are required.

The funetion is typically used to make multiple copies of any program that
must take divergent actions as a part of its normal operation, e.g., a program
that must use the ezeel function yet still continue to execute. The original
program, called the "parent" process, continues to execute normally, just as it
would arter any other runetion call. The new process, called the "child"

5-5

int status;
char .pathnamej
char .cmd[J;

if (forkO ==== 0)
execv(pathna.me, cmd)j

waitt &status)j

Using Process Control

The wait function always copies a status value to its argument. The status
value is actually two 8-bit values combined into one. The low-order 8 bits is the
termination status of the child as defined by the system. This status is zero for
normal termination and nonzero for other kinds or termination, such as
termination by an interrupt, quit, or hangup signal (see .ignal(S) in the XENIX
Reference Manual ror a description of the various kinds or termination). The
next 8 bits is the termination status otthe child as defined by its own call to ezit.
If the child did not explicitly call the function, the status is zero.

5.9 Inheriting Open Files

Any program called by another program or created as a child process to
aprogram automatically inherits the original program's open files and
standard input, output, and error files. This means if the file was open in the
original program, it will be open in the new program or process.

A new program also inherits the contents or the input and output buffers used
by the open files or the origina.l program. To prevent a new program or process
trom reading or writing data that is not intended tor its use, these buffers
should be flushed before calling the program or creating the new process. A
program can flush an output buffer with the lflu,h function, and an input buffer
with ,etbuf.

5.10 Program Example

This section shows how to use the process control functions to control a simple
process. The following program starts a shell on the terminal given in the
command line. The terminal is assumed to be connected to the system through
a line that has not been enabled for multiuser operation.

5-7

Chapter 6
Creating and Using Pipes

6.1 Introduction &1

6.2 Opening a Pipe to a New Process & 1

6.3 Reading and Writing to a Process &2

6.4 Closing aPipe &2

6.5 Opening a Low-Level Pipe &3

6.6 Reading and Writing to a Low-Level Pipe &4

6.7 Closing a Low-Level Pipe &4

6.8 Program Examples &5

Creating and Using Pipes

6.1 Introduction

A pipe is an artifical file that a program may create and use to pass information
to other programs. A pipe is similar to a file in that it has a file pointer and/or a
file descriptor and can be read from or written to using the input and output
functions of the standard library. Unlike a file, a pipe does not represent a
specific file or device. Instead a pipe represents temporary storage in memory
that is independent of the program's own memory and is controlled entirely by
the system.

Pipes are chiefly used to pass information between programs, just as the shell
pipe symbol (I), is used to pass the output of one program to the input of
another. This eliminates the need to create temporary files to pass information
to other programs. A pipe can also be used as a temporary storage place ror a
single program. A program can write to the pipe, then read that information
back at a later time.

The standard library provides several pipe functions. The popen and pcloee
functions control both a pipe and a process. The popen function opens a pipe
and creates a new process at the same time, making the new pipe the standard
input or output of the new process. The pc/ole function closes the pipe and
waits for termination of the corresponding process. The pipe function, on the
other hand, gives low-level access to a pipe. The function is similar to the open
function, but opens the pipe for both reading and writing, returning two file
descriptors instead of one. The progra.m can either use both sidesoCthe pipe or
close the one it does not need. The low-level input and output functions read
and write can be used to read from and write to a pipe. Pipe file descriptors are
used in the same way as other file descriptors.

6.2 Opening a Pipe to a New Process

The pope n function creates a new process and then opens a. pipe to the standard
input or output file oCthat new process. The function call has the form:

popen (command, type)

where commandis a pointer to a string that contains a shell command line, and
type is a pointer to the string which defines whether the pipe is to be opened tor
reading or writing by the original process. It may be "r" for reading or "w" Cor
writing. The function normally returns the file pointer to the open pipe, but
will return the null pointer value NULL if an error is encountered.

The function is typically used in programs that need to call another program
and pass substantial amounts of data to that program. For example, in the
following program fragment popen creates a new process ror the cat comma.nd
and opens a pipe for writing.

6-1

Creating and Using Pipes

where Itream is the file pointer of the pipe to be closed. The function normally
returns the exit status of the command that was issued as the first argument of
i~s corresponding p9pen, but will return the value -I irthe pipe was not opened
by popen.

For example, in the following program fragment pdole closes the pipe given by
"pstrm" if the end-of-file value EOF has been found in the pipe.

FaE .pstrmj

if (feof{pstrm))
pd.>se (pstrm);

6.5 Openin& a Low-Level Pipe

The pipe function opens a pipe for both reading and writing. The function call
has the form:

pipe (It!)

where Id is a pointer to a two-element array. It must have int type. Each
element receives one file descriptor. The first element receives the file
descriptor for the reading side of the pipe, and the other element receives the
file descriptor for the writing side. The function normally returns 0, but will
return the value -1 if an error is encountered. For example, in the following
program fragment pipe creates two file descriptors if no error is encountered.

int chan[2];

if (pipe(chan) == -I)
exit(2);

The array element "chan[O)" receives the file descriptor for the reading side of
the pipe, and "chan(I]" receives it for the writing side.

The function is typically used to open a pipe in preparation for linking it to a
child process. For example, in the following program fragment pipe causes the
program to create a child process if it successfully creates a pipe.

int fd[2J;

if (pipe(fd) != -1)
if (forkO == 0)

close(fd(I]);

Note that the child process closes the writing side of the pipe. The parent can
now pass data to the child by writing to the pipe; the child can retrieve the data
by reading the pipe.

6-3

Creating and Using Pipes

The system copies the end-of-file value EOF to a pipe when the process that
made the original pipe and every process created or called by that process has
closed the writing side of the pipe. This means, ror example, that if a parent
process is sending data to a child process through a pipe and closes the pipe to
signal the end or the file, the child process will not receive the end-or-file value
unless it has already closed its own write side or the pipe.

6.8 Program Examples

This section shows how to use the process control Cunctions with the low-level
pipe function to create runctions similar to the pope" and pclo,e runctions.

The first example is a modified version or the pope" runction. The modified
runction identifies the new pipe with a file descriptor rather than a file pointer.
It also requires a "mode" argument rather than a "type" argument, where the
mode is 0 Cor reading or 1 Cor writing.

,include <stdio.h>

,define READ 0
,define WRITE 1
,define tst(a, b) (mode == READ ! (b) : (a))
static int popen-pid;

popen(cmd, mode)
char *cmdj
int mode;
{

}

int p[2);

ir (pipe(p) < 0)
return (NULL);

iC ((popen-pid = Cork()) == 0) {
close(tst(pIWRITE), p[READ)));
close(tst(O, 1));

}

dup(tst(p[READ), p[VIRITE)));
close(tst(pIREADJ, p[WRITE)));
exed(" /bin/sh"', "sh", ." -c.", cmd, 0);
exit(l}; /* sh cannot be Cound */

ir (popen-pid == -1)
return(NULL);

dose(tst(p[READ), p[WRITE)));
return(tst(p[WRITE), p[READ]));

The Cunction creates a pipe with the pipe function first. It then uses the fork

6-5

Creating and Using Pipes

*include <signal.h>

pclose(fd)
int fdj

/* close pipe Cd * /

{

}

int r, statusj
int (*hstat)O, (*istat}O, (*qstat}Oi
extern int popen-pidj

close(fd}j

istat == signal(SIGINT, SIG_IGN}j
qstat == signal(SIGQUIT, SIGJGN)j
hstat == signal(SIGHUP, SIGJGN)j

while ((r == wait(&status)) 1= popen-pid && r 1- -I}

ir(r =='-1)
status = -lj

signal(SIGINT, istat);
signal(SIGQUIT, qstat}j
signal(SIGHUP, hstat)j

return(status)j

The function closes the pipe first. It then uses a while statement to wait ror the
child process given by "popen-pid". If other child processes terminate while it
waits, it ignores them and continues to wait for the given process. It stops
waiting as soon as the given process terminates or if no child process exists. The
function returns the termination status of the child, or the value -1 if there was
an error.

The lignal function calls used in this example ensure that no interrupts
interfere with the waiting process. The first set of functions causes the process
to ignore the interrupt, quit, and hang up signals. The last set restores the
signals to their original status. The lignal function is described in detail in
Chapter 7, "Using Signals".

Note that both example runctions use the external variable "popen..,pid" to
store the process ID of the child process. If more than one pipe is to be opened,
the "popen-pid" value must be saved in another variable before each ca.ll to
popen, and this value must be restored before calling pclole to close the pipe.
The functions can be modified to support more than one pipe by changing the
"popen-pid" variable to an array indexed by file descriptor.

6-7

Chapter 7
Using Signals

7.1 Introduction 7-1

7.2 Using the signalFunction 7-1
7.2.1 Disabling a Signal 7-2
7.2.2 Restoring a Signal's Default Action 7-3
7.2.3 Catching a Signal 7-4
7.2.4 Restoring a Signal 7-6
7.2.5 ProgramExample 7-6

7.3 Controlling Execution With Signals 7-7
7.3.1 Delaying a Signal's Action 7-7
7.3.2 Using Delayed Signals With System Functions 7-8
7.3.3 Using Signals in Interactive Programs 7-9

7.4 Using Signals in MUltiple Processes 7-10
7.4.1 Protecting Background Processes 7-11
7.4.2 Protecting Parent Processes 7-12

Using Signals

7.1 Introduction

This chapter explains how to use C library functions to process signals sent to a
program by the XENIX system. A signal is the system's response to an unusual
condition that occurs during execution of a program such as a user pressing the
INTERRUPT key or the system detecting an illegal operation. A signal
interrupts normal execution or the program and initiates an action such as
terminating the program or displaying an error message.

The eignrd function or the standard C library lets a program define the action of
a signal. The function can be used to disable a signal to prevent it rrom affecting
the program. It can also be used to give a signal a user-defined action.

The eignrd function is often used with the eetjmp and longjmp functions to
redefine and reshape the action of a signal. These functions allow programs to
save and restore th~ execution state of a program, giving a program a means to
jump from one state of execution to another without a complex assembly
language interface.

To use the eignal function, you must add the line

#include <signal.h>

to the beginning of the program. The eignat.h file defines the various manifest
constants used as arguments by the function. To use the eetjmp and longimp
functions you must add the line

#include <setjmp.h>

to the beginning of the program. The eetjmp. h file contains the declaration for
the typej mp_huf, a template for saving a program's current execution state.

7.2 Using the signal Function

The eignal function changes the action of a signal from its current action to a
given action. The Cunction has the form

signal (Bigtllpe, ptr)

where eigtllpe is an integer or a mainfest constant that defines the signal to be
changed, and ptr is a pointer to the function defining the new action or a
manifest constant giving a predefined action. The function always returns a
pointer value. This pointer defines the signal's previous action and may be used
in subsequent calls to restore the signal to its previous value.

The ptr may be "SIG_IGN" to indicate no action (ignore the signal) or
"SIG_DFL" to indicate the default action. The Bigtype may be "SIGINT" Cor
interrupt signal, caused by pressing the INTERRUPT key, "SIGQUIT" for quit

7-1

Using Signals

f/:include <signal.h>

main 0
{

iC (CorkO == 0) {
signal(SIGINT, SIG_IGN);
/* Child process. */

}

/* Parent process. */

}

This call does not affect the parent pro{"ess which continues to receive
interrupts as before. Note that if the parent process is interrupted, the child
process continues to execute until it reaches its normal end.

7.2.2 Restoring a Signal's Default Action

You can restore a signal to its deCault action by using the "SIG_DFL" constant
with signal. The function call has the form

signal (sigtllpe, SIGDFL)

where sigtype is the manifest constant defining the signal you wish to restore.
For example, the function call

signal (SIGINT, SIG_DFL)

restores the interrupt signal to its default action.

The function call is typically used to restore a signal after it has been
temporarily disabled to keep it from interrupting critical operations. For
example, in the following program rragment the second call to signal restores
the signal to its default action.

7-3

#include < sign al. h >

main 0
{

}

catch 0
{

}

int catch 0;

printf("Press INTERRUPT key to stop.O);
signal (SIGINT, catch);
while 0 { ,* Body *,
}

printf(" Program terminated. \n");
exit(l);

Using Signals

The eatchfunction prints the message "Program terminated" berore stopping
the program with the ezit function.

A program may redefine the action of a signal at any time. Thus, many
programs define different actions for different conditions. For example, in the
following program fragment the action or the interrupt signal depends on the
return value ofafunction named ke1ltest.

#include <signal.h>

main 0
{

}

int catchl 0, catch2 0;

if (keytestO == 1)
signal(SIGINT, catchl);

else
signal(SIGINT, catch2);

Later the program may change the signal to the other action or even a. third
action.

When using a function pointer in the signal call, you must make sure that the
function name is defined berore the call. In the program fragment shown a.bove,
catc h1 and c ateh2 are explicitly declared at the beginning orthe main program
function. Their formal definitions are assumed to appear after the signal call.

7-5

Using Signals

*include <stdio.h>
#include <signal.h>

system(s)
char *s;
{

}

1* run command string s *1

int status, pid, w;
register int (*istat)O, (*qsht)O;

if ((pid = forkOl == 0) {

}

execl(" Ibinlsh" "!';h" "-c" s NULL)'
exit(127); ,~, " ,

istat = signal(SIGINT, SIG_IGN);
qstat = signal(SIGQUIT, SIG_IGN);
while ((w = wait(&status)) != pid && w != -1)

il (w =::: -1)
status = -1;

signal(SIGINT, istat);
signal(SIGQUIT, qstat};
return(status);

Note that the parent uses the while statement to wait until the child's process
ID "pid" is returned by wait. If wait returns the error code "-1" no more child
processes are left, so the parent returns the error code as its own status.

, 7.3 Controlling Execution With Signals

Signals do not need to be used solely as a means of immediately termina.ting a
program. Many signals can be redefined to delay their actions or even cause
actions that terminate a portion ol a program without terminating the entire
program. The following sections describe ways that signals can be caught and
used to provide control oC a program.

1.3.1 Delaying a Signal's Action

You can delay the action of a signal by catching the signal and redefining its
action to be nothing more than setting a. globally-defined flag. Such a signal
does nothing to the current execution of the program. Instead, the program
continues uninterrupted until it can test the flag to see if a signal has been
received. It can then respond according to the value orthe flag.

The key to a delayed signal is that all Cunctions return execution the exact point
at which the program was interrupted. If the lunction returns normally the
program continues execution just as if no signal occurred.

1-1

Using Signals

receives a signal when reading the terminal, all characters read before the
interruption are lost, making it appear as though no characters were typed.

Whenever a program intends to use dela.yed signals during calls to system
runctions, the program should include a check or the runction return values to
ensure that an error was not caused by an interruption. In the following
program fragment, the program checks the current value of the interrupt flag
"intflag" to make sure that the value EOF returned by getchar actually
indicates the end orthe file.

if (getcharO == EOF)
if (intflag)

/* EOF caused by interrupt * /
else

/* true end-of-file */

7.3.3 Using Signals in Interactive Programs

Signals can be used in interactive programs to control the execution of the
program's various comma.nds and operations. For example, a signal may be
used in a text editor to interrupt the current operation (e.g., displaying a file)
and return the program to a previous operation (e.g., waiting for a comma.nd).

To provide this control, the function that redefines the signal's action must be
able to return execution of the program to a meaningful location, not just the
point of interruption. The standard C library provides two functions to do
this: letimp and loftgimp. The ,etimp function saves a copy of a program's
execution state. The IOftgimpfunction changes the current execution state to a
previously saved state. The functions cause a program to continue execution at
an old location with old register values and status as if no operations had been
performed between the time the state was saved and the time it was restored.

The Betimp function has the form

setjrnp (buffer)

where buffe r is the variable to receive the execution state. It must be explicitly
declared with type jmpbuf before it is used in the call. For example, in the
following program fragment Betbu/ copies the execution of the program to the
variable "oldstate" defined with typejmpbuf.

jmpbur oldstate;

set buC(oldstate);

Note that after a Betbuf call, the buffer variable contains values for the program
counter, the data and address registers, and the process status. These values
must not be modified in any way.

7-9

Using Signals

.7.4.1 Protecting Background Processes

Any program that has been invoked using the shell's background symbol (&) is
executed as a background process. Such programs usually do not use the
terminal for input or output, and complete their tasks silently. Since these
programs do not need additional input, the shell automatically disables the
signals before executing the program. This means signals genera.ted at the
terminal do not affect execution or the program. This is how the shell protects
the program from signals intended for other programs invoked (rom the same
terminal.

In some cases, a program that has been invoked as a background process may
also attempt to catch its own signals. Ir it succeeds, the protection (rom
interruption given to it by the shell is defeated, and signals intended ror other
programs will interrupt the program. To prevent this, any program which is
intended to be executed as a background process, should test the current state
of a signal before redefining its action. A program should redefine a signal only
ir the signal has not been disabled. For example, in the rollowing program
rragment the action or the interrupt signal is changed only if the signal is not
currently being ignored.

#include <signal.h>

mainO
{

}

int catchO;

ir (signal(SIGINT, SIG_IGN) !== SIG_IGN)
signal(SIGINT, catch);

/* Program body. */

This step lets a program con tin ue to ignore signals if it is already doing so, and
change the signal if it is not.

7-11

Chapter 8
Using System. Resources

8.1 Introduction 8-1

8.2 Allocating Space 8-1
8.2.1 Allocating Space Cor a Variable
8.2.2 Allocating Space Cor an Array
8.2.3 Reallocating Space 8-3
8.2.4 Freeing Unused Space 8-3

8.3 Locking Files 8-4
8.3.1 Preparing aFile Cor Locking
8.3.2 Locking a File 8-5
8.3.3 Program Example 8-5

8.4 Using Semaphores 8-6
8.4.1 Creating a Semaphore 8-7
8.4.2 Opening a Semaphore 8-8

8-1
8-2

8-4

8.4.3 Requesting Control oC a Semaphore
8.4.4 Checking the Status oC a Semaphore
8.4.5 Relinquishing Control or a Semaphore
8.4.6 Program Example 8-10

8.5 Using Shared Data 8-12

8-8
8-9

8-9

8.5.1 Creating a Shared Data Segment 8-13
8.5.2Entering a Shared Data Segment 8-14
8.5.3 Leaving a Shared Data Segment 8-14
8.5.4 Getting the Current Version Number 8-15
8.5.5 \VaitingCor aVersion Number 8-15
8.5.6 Freeing a Shared Data Segment 8-16

Using System Resources

8.1 Introduction

This chapter describes the standard C library functions that let programs
share the resources of the XENIX system. The functions give a program the
means to queue for the use and control of a given resource and to synchronize its
use with use by other programs.

In particular, this chapter explains how to

Allocate memory for dynamically required storage

Lock a file to ensure exclusive use by a program

Use semaphores to control access to a resource

Share data space to allow interaction between programs

8.2 Allocating Space

Some programs require significant changes to the size of their allocated
memory space during different phases of their execution. The memory
allocation functions of the standard C library let programs allocate space
dynamically. This means a program can request a given number of bytes of
storage for its exclusive use at the moment it needs the space, then free this
space after it has finished using it.

There are four memory allocation functions: maUoe, ealloc, ralloc, and/ree.
The maUoe and e alloe functions are used to allocate space for the first time.
The functions allocate a given number of bytes and return a pointer to the new
space. The reaUoe function reallocates an existing space,allowing it to be used
in a different way. The Ire e function returns allocated space to the system.

8.2.1 Allocating Space (or a Variable

The maUoe function allocates space for a variable containing a given number of
bytes. The function call has the form:

malloe (Bize)

where Bize is an unsigned number which gives the number of bytes to be
allocated. For example, the function call

table = malloe (4)

allocates four bytes or storage. The function normally returns a pointer to the
starting address of the allocated space, but will return the null pointer value if
there is not enough space to allocate.

8-1

Using System Resources

8.2.3 Reallocating Space

The realloc function reallocates the space at a given address without cha.nging
the contents of the memory space. The function call has the form:

realloc (ptr, 'ize)

where ptr is a pointer to the starting address of the space to be reallocated, and
eize is an unsigned n um ber giving the new size in bytes of the reallocated space.
The function normally returns a pointer to the starting address orthe allocated
space, but will return a null pointer value if there is not enough space to
allocate.

This function is typically used to keep storage as compact as possible. For
example, in the following program fragment reo.lloc is used to remove table
entries.

main 0
{
char .table;
int i;
unsigned inurn;

for (i=inum; i>-l; i--) {
printf(" %dO, strings Ii));
strings = realloc(strings, i.4);
}

In this example, an entry is removed after it has been printed at the standard
output, by reducing the size of the allocated space from its current length to the
length given by "i.4".

8.2.4 Freeing Unused Space

The free function frees unused memory space that had been previously
allocated by a maUoc, calloc, or realloc function call. The runction call has the
rorm:

free (ptr)

where ptr is the pointer to the starting address or the space to be rreed. This
pointer must be the return value ofa malloc, calloc, or reallodunction.

The runction is used exclusively to free space which is no longer used or to rree
space to be used for other purposes. For example, in the following program
rragment free frees the allocated space pointed to by "strings" ir the first
element is equal to zero.

8-3

Using System Resources

8.3.2 Locking a File

The locking Cunction locks one or more bytes oC a given file. The Cunction call
has the Corm:

locking (file del, mode, liz e)

where file del is the file descriptor oC the file to be locked, mode is an integer
value which defines the type oC lock to be applied to the file, lize is a long integer
value giving the size in bytes oC the portion oC the file section to be locked or
unlocked. The mode may be "LOCK" Cor locking the given bytes, or
"UNLOCK" Cor unlocking them. For example, in the ColI owing program
Cragment locking locks 100 bytes at the current character pointer position in
the file given by "Cd".

#include <sys/locking.h>

main 0
{
int Cd,

Cd = open(" data" , 2);
locking(Cd, LOCK, 100);

The Cunction normally returns the number oC bytes locked, but will return -1 if
it encounters an error.

8.3.3 Program Example

This section shows how to lock and unlock a small section in a file using the
locking Cunction. In the following program, the function locks 100 bytes in the
file data which is opened Cor reading and writing. The locked portion oC the file
is accessed, then locking is used again to unlock the file.

8-5

Using System Resources

8.4.1 Creating a Semaphore

The creatsem function creates a semaphore, returning a semaphore number
which may be used in subsequent semaphore functions. The function call has
the Corm:

creatsem (sem_name, mode)

where sem_name is a character pointer to the name of the semaphore, and
mode is an integer value which defines the access mode or the semaphore.
Semaphore names have the same syntax as regular file names. The names must
be unique. The function normally returns an integer semaphore number which
may be used in subsequent semaphore functions to rerer to the semaphore. The
function returns -1 if it encounters an error, such as creating a semaphore that
already exists, or using the name or an existing regular file.

The function is typically used at the beginning of one process to clearly define
the semaphores it intends to share with other processes. For example, in the
following program fragment creat,em creates a semaphore named "ttyl"
berore preceding with its tasks.

main 0
{
int ttyl;
FILE fttyl;

ttyl = creatsem("ttyl", 0777);
fttyl = fopen(" Idev/ttyOl", "w");

1* Program body. *1
}

Note that /open is used immediately after creat,em to open the file I dev/tt1l01
ror writing. This is one way to make the association between a semaphore and a
device clear.

The mode "0777" defines the semaphore's access permissions. The permissions
are simila.r to the permissions or a regular file. A semaphore may have read
permission Cor the owner, for users in the same group as the owner, and for all
other users. The write and execution permissions have no meaning. Thus,
"0777" means read permission ror all users.

No more than one process ever need create a given semaphore; all other
processes simply open the semaphore with the open,em Cunction. Once created
or opened, a semaphore may be accessed only by using the wait,em,
nbwait8em, or sig8em functions. The creat8em runction may be used more
than once during execution or a process. In particular, it can be used to reset a
semaphore if a process fails to relinquish control berore terminating.

8-7

Using System Resources

semaphore that does not exist or requesting a semaphore that is locked to a
dead process.

The runction is used whenever a given process wishes to access the device or
system resource associated with the semaphore. For example, in the rollowing
program rragment wait,em signals the intention to write to the file given by
"ttyl".

main 0
{
int ttyl;
FILE rttyl;

waitsem(ttyl);
rprintr(rttyl, "Changing tty driver\n"};

The function waits until current controlling process relinquishes control 01 the
semaphore before returning to the next statement.

8.4.4 Checking the Status of a Semaphore

The nbwaitlem function checks the current status 01 a semaphore. Ir the
semaphore is not available, the runction returns an error value. Otherwise, it
gives immediate control or the semaphore to the calling process. The lunction
call has the rorm:

nbwaitsem (Iem_num)

where ,em...;,num is the semaphore num ber or the semaphore to be checked. The
lunction returns -I if it encounters an error such as requesting a semaphore
that does not exist. The lunction also returns -I if the process controlling the
requested semaphore terminates without relinquishing control or the
semaphore.

The function is typically used in place of wait,em to take control of a
semaphore.

8.4.5 Relinquishing Control or a Semaphore

The ligle m function causes a process to relinquish control of a given semaphore
and to signal this fact to all processes waiting for the semaphore. The runction
call has the form:

where ,em_num is the semaphore number ofthe semaphore to relinquish. The
semaphore must have been previously created or opened by the process.
Furthermore, the process must have been previously taken control or the

8-9

Using System Resources

,define NPROC 5

char semfll - "_kesemrx:x::xx:xx" j
int sem_num;
int holdsem == 5j

mainO
{

}

doit(id}
{

}

err(s)
char *Sj
{

}

register i, chidj

mktemp(semf)j
if ((sem_num -= creatsem(semt, 0777)) < 0)

err(" creatsem"}j
tor (i == Ij i < NPROCj ++i) {

it((chid - fork()) < 0)
err(" No tork")j

else if(chid == O} {

}
doit(O}j

}

if((sem_num - opensem(semr)) < 0)
err(" opensem")j

doit(i}j
exit(O);

for (i - 1; i < NPROCj ++i)
while(wait((int *}O} < 0)

unlink(semt)j

while(holdsem-) {
if(waitsem(sem_num) < 0)

}

err("waitsem");
printf(,,%d\n", id}j
sleep(I);
if(sigsem(sem_num) < O}

err(" sigsem")j

perror(s);
exit(l};

8-11

Using System Resources

8.5.1 Creating a Shared Data Segment

The ,dget Cunction creates a shared data segment Cor the current process, or if
the segment already exists, attaches the segment to the data space oC the
current process. The Cunction call has the form:

sdget (p4th, /f4g [, ,ize, mode])

where path is a character pointer to a valid pathname, /fag is an integer value
which defines how the segment should be created or attached, ,in is an integer
value which defines the size in bytes of the segment to be created, and mode is
an integer value which defines the access permissions to be given to the segment
iC created. The lize and mode values are used only when creating a segment.
The flag may be SO_ROONL Y Cor attaching the segment for reading only,
SO_WRITE for attaching the segment Cor reading and writing, SO_CREA T for
creating the segment given by path iC it does not already exist, or SO_UNLOCK
Cor allowing simultaneous access by multiple processes. The values can be
combined by logically ORing them. The SO_UNLOCK value is used only if the
segment is created. The Cunction returns the address of the segment iCit has
been successCully created or attached. Otherwise, the function returns -1 if it
encounters an error.

The Cunction is most otten used to create a segment to be shared by another
process. The Cunction may then be used in the other process to attach the
segment to its data space. For example, in the Collowing program fragment
,dge t creates a segmen t and assigns the address ot the segment to "shared" .

#include <sd.h>

main 0
{
char .shared, .spath;

shared = sdget(spath, SD_CREAT, 512,0777);
}

When the segment is created, the size "512" and the mode "0777" are used to
define the segment's size in bytes and access permissions. Access permissions
are similar to permissions given to regular files. A segment may have read or
write permission for the owner of the process, for users belonging to the same
group as the owner, and for all other users. Execute permission tor a segment
has no meaning. For example, the mode "0777" means read and write
permission for everyone, but "0660" means read and write permissions for the
owner and group processes only. When first created, a segment is filled with
zeroes.

Note that the SD_UNLOCK flag used on systems without hardware support for
shared data may severely degrade the execution performance ofthe program.

8-13

,include <sd.h>

main 0
{
char *shared;

while (*x++ !- 0) {
sdenter(shared);

}

,* write to segment *,
sdleave(shared)j
}

Using System Resources

8.5.4 Getting the Current Version Number

The ,dgetfJ runction returns the current version number or the given data
segment. The function call has the form:

sdgetv (addr)

where addr is a character pointer to the desired segment. A segment's version
number is initially zero, but it is incremented by one whenever a process leaves
the segment using the ,die ave function. Thus, the version number is a record or
the number or times the segment has been accessed. The function's return
value is always an integer. It returns -1 ifit encounters an error.

The function is typically used to choose an action based on the current version
number of the segment. For example, in the rollowing program fragment
,dgetfJ determines whether or not ,denter should be used to enter the segment
given by "shared".

,.include <sd.h>

main 0
{
char *sharedj

if (sdgetv(shared) > 10)
sdenter(shared};

In this example, the segment is entered if the current version number of the
segment is greater than" 10".

8.5.5 Waiting ror a Version Number

The ,dwaitv function causes a process to wait until the version number for the
given segment is no longer equal to a given version number. The runction call

8-15

Chapter 9
Error Processing

9.1 Introduction 9-1

9.2 Using the Standard Error File 9-1

9.3 Using the err no Variable 9-1

9.4 Printing Error Messages 9-2

9.5 Using Error Signals 9-3

9.6 Encountering System Errors 9-3

Error Processing

9.1 Introduction

The XENIX system automatically detects and reports errors that occur when
using standard C library runctions. Errors range rrom problems with accessing
files to a.llocating memory. In most eases, the system simply reports the error
and lets the program decide how to respond. The XENIX system terminates a
program only ir a serious error has occurred, such as a violation or memory
space.

This chapter explains how to process errors, and describes the Cunctions and
variables a program may use respond to errors.

9.2 Using the Standard Error File

The standard error file is a special output file that can be used by a program to
display error messages. The standard error file is one or three standard files
(standard input, output, and error) automatically created Cor the program
when it is invoked.

The standard error file, like the standard output, is normally assigned to the
user's terminal screen. Thus, error messages written to the file are displayed at
the screen. The file can also be redirected by using the shell's redirection
symbol (» For example, the rollowing command redirects the standard error
file to the file errorli,t.

dial 2>errorlist

In this case, subsequent error messages are written to the given file.

The standard error file, like the standard input and standard output, has
predefined file pointer and file descriptor values. The file pointer stderr may
be used in stream runctions to copy data to the error file. The file descriptor 2
may be used in low-level runctions to copy data to the file. For example, in the
following program rragment stderr is used to write the message "Unexpected
end offile" to the standard error file.

ir ((c=ge~-::~12r()) == EOF)
rprintr(stderr, "Unexpected end or file.\n")j

The standard error file is not affected by the shell's pipe symbol (I). This means
that even ir the standard output or a program is piped to another program,
errors generated by the program will still appear at the terminal screen (or in
the appropriate file irthe standard error is redirected).

9.3 Using the errno Variable

The errno variable is a predefined external variable which contains the error

tJ-l

accounts: Permission denied.

ir errno is equal to the constant EACCES.

ir (errno -- EACCES) {
perror(" accounts");

Error Processing

rd .. open (" /usr/tmp/accounts", O_RDONLY);
}

All error messages displayed by perror are stored in an array named
sys_errno, an external array or character strings. The perro, runction uses
the variable errno as the index to the array element containing the desired
message.

9.5 Using Error Signals

Some program errors cause the XENIX system to generate error signals. These
signals are passed back to the program that caused the error and normally
terminate the program. The most common error signals are SIGBUS, the bus
error signal, SIGFPE, the floating point exception signal, SIGSEGV, the segment
violation signal, SIGSYS, the system call error signal, and SIGPIPE, the pipe
error signal. Other signals are described in ,ignal(S) in the XENIX Reference
Manual.

A program can, ir necessary, catch an error signal and perrorm its own error
processing by using the ,igntd runction. This runction, as described in Chapter
7, "Using Signals" can set the action or a signal to a user-defined action. For
example, the runction call

signal(SIGBUS, fixbus);

sets the action or the bus error signal to the action defined by the user-supplied
runction fizbu,.Such a runction usually attempts to remedy the problem, or at
least display detailed inrormation about the problem berore terminating the
program.

For details about how to catch, redefine, and restore these signals, see Chapter
7.

9.6 Encountering System Errors

Programs that encounter serious errors, such as hardware railures or internal
errors, generally do not receive detailed reports on the cause or the errors.
Instead, the XENIX system treats these errors as "system errors", and reports
them by displaying a system error message on the system console. This section
briefly describes some aspects or XENIX system ",rrors and how they relate to
user programs. For a complete list and description orXENIX system errors, see
me88age,(M) in the XENlX Reference Manual.

9·3

Appendix A
Assembly Language Interface

A.I ~.rrCti<fJ~' sters and Retum Values I A.I. Ca Qg S~quc;nce2
A. . Stac (Probes2

Assembly Language Interface

A.I Introduction

When mixing MC68000 assembly language routines and compiled C routines. there
are several things to be aware of:

• Registers and Return Values

• Calling Sequence

• Stack Probes

With an understanding of these three topics. you should be able to write both C
programs that call MC68000· assembly language routines and assembly language
routines that call compiled Croutines.

A.I.1 RegistenandRetumValues

Function return values are passed in registers if possible. The set of machine registers
used is called the save set. and includes the registers fromd2 -d7anda2 -a7thatare
modified by a routine. The compiler assumes that these registers are preserved by the
callee. and saves them itself when it is generating code for the callee (when a C
compatible routine is called by another routine. we refer to the calling routine as the
caller. We refer to the called routine as the callee.) Note that 00 anda7 are in effect
saved by a link instruction at procedure entry.

The function return value is in tD. The currentftoating point implementation returns
the high order 32 bits of doubles in dl. and the low order 32 bits in dO. Functions that
return structure values (not pointers to the values)do soby loading dO with a pointer to a
static buffer containing the structure value.

Thismakes the following two functions equivalent:

struct foo proc O!
struct foo this;

return (this);

struct foo *proc O!
struct foo this;
static struct foo temp;

temp = this;
return (&temp);

This implementation allows recursive reentrancy (as long as the explicit form is not
used. since the first sequence is indivisible but not the second). However. this
implementation does not permit multitasking reentrancy. Note that the latter includes
the XENlX signal (3)call.

Setjmp(3) and longjmp(3) can not be implemented as they are on the PDP-II,
because each procedure saves only the registers from the save set that it will modify .
This makes it difficult to get back the current values of the register variables of the

A-I

Assembly Language Interface

bytes pushed as temporaries, save areas, and argumems by the whole procedure. The
8 bytes are the space for the return address and frame pointer save (by the link
instruction) of a nested caU. The slop is tolerance so that extremely short runtimes that
use little stack do not need to perform a stack probe. The tolerance is intentionally kept
small to conserve memory. so make sure you understand what you are doing before
you consider leaving out a stack probe in your assembly procedures.

In most cases, unless you are pushing huge structures or doing tricks with the stack
withinyourprocedure, you can use the foUowinginstruction foryour stack probe:

tstb -l00(sp)

This makes sure that enough space has been allocated f« most of the usual things you
might do with the stack and is enough for the XENlX runtimes that do not perform stack
probes. N<xe that you do not need to consider space aUocated by the link instruction in
this stack probe, since it is already added by indexing off the stack pointer.

A-3

Appendix B
XENIX System Calls

B.I Introduction B-1

B.2 Executable File Format B-1

B.3 Revised System Calls B-1

BA Version 7 Additions B-1

B.5 Changes to the ioctlFunction B-2

B.6 Pathname Resolution B-2

B.7 Using the mount and chownFunctions B-2

B.8 Super-Block Format B-2

B.9 Separate Version Libraries B-3

XENIX System Calls

B.I Introduction

This appendix lists some of the differences between XENIX 2.3, XENIX 3.0, UNIX
V7, and UNIX System 3.0. It is intended to aid users who wish to convert system
calls in existing applica.tion programs for use on other systems.

B.2 Executable File Format

Both XENIX 3.0 and UNIX System 3.0 execute only those programs with the
z. out executable file format. The format is similar to the old a. out format, but
contains additional information about the executable file, such as text and data
relocation bases, target machine identification, word and byte ordering, and
symbol table and relocation table format. The z.out file also contains the
revision number of the kernel which is used during execution to control access
to system functions. To execute existing programs in a.out format, you must
first convert to the z. out format. The format is described in detail in s. out(F) in
the XENIX Reference Manual.

B.3 Revised System Calls

Some system calls in XENIX 3.0 and UNIX System 3.0 have been revised a.nd do
not perform the same tasks as the corresponding calls in previous systems. To
provide compatibilty for old programs, XENIX 3.0 and. UNIX System 3.0
maintain both the new and the old system calls and automatically cheek the
revision information in the z. out header to determine which version of a system
call should be made. The following table lists the revised system calls and their
previous versions.

System Call '* XENIX2.3 runction

35 Ctime
38 unused
39 unused
40 unused
57 unused
62 docal
63 cxenix

System 3 runction

unused
docal

setpgrp
cxenix
utssys
fcntl

ulimit

The czeniz function provides access to system calls unique to XENIX System
3.0. The cloc al function provides access to a.ll calls unique to an OEM.

B.4 Version 7 Additions

XENIX 3.0 maintains a. number of UNIX V7 features that were dropped from
UNIX System 3.0. In particula.r, XENIX 3.0 continues to support the dupe a.nd

8-1

XENIX System Calls

B.9 Separate Version Libraries

XENIX 3.0 and UNIX System 3.0 support the construction or XENIX 2.3
executable files. These systems maintain both the new and old versions or
system calls in sepa.ra.te libra.ries a.nd include files.

B-3

Index

letcltermcap file 3-1
addch function 3-7
addstr function 3-8
argc,argument count variable

defining 2-2
described 2-2

argv,argument value array
defining 2-2
descr ibed 2-2

Assembly language interface,
descr ibed A-1

box function 3-26
BSIZE, buffer size

value 2-2
Buffered 1/0

character pointer 2-30
creating 2-22
described 2-22
flushing a buffer 2-24
returning a character 2-24

Bytes
reading from a file 2-27
reading from a pipe 6-4
writing to a file 2-26
writing to a pipe 6-4

C calling conventions
described A-1

C language libraries
described 1-1
use in program 1-1

Call sequence A-1
calloc function 8-2

CBREAK mode 3-30
Character functions,

described 4-1
Character pointer

descr ibed 2-31
moving 2-31
moving 2-31
moving to start 2-33
reporting position 2-33

Characters
alphabetic 4-3
alphanumeric 4-2
ASCII 4-1
control 4-3
converting to ASCII 4-2
converting to
lowercase 4-5
converting to
uppercase 4-5
decimal digits 4-3
hexadecimal digit 4-4
lowercase 4-5
pr intable 4-4
pr intable 4-5
processing, described 4-1
punctuation 4-4
reading from a file 2-13
reading from standard
input 2-4
uppercase 4-5
writing to a file 2-15
writing to standard
output 2-7

1-1

NULL value 2-11
pipes 6-1
predefined 2-12
recreating 2-23

FILE, file pointer type 2-2
Files

buffers 2-21
buffers 2-22
buffers 2-23
buffers 2-24
closing 2-19
closing low-level
access 2-28
inherited by processes 5-7

locking 8-4
opening 2-12
opening for low-level
access 2-26
random access 2-31
reading bytes 2-27
reading characters 2-13
reading formatted data 2-
14
reading records 2-14
reading strings 2-13
reopening 2-23
testing end-of-file
condition 2-18
testing for errors 2-18
writing bytes 2-27
writing characters 2-15
writing formatted
output 2-17
writing records 2-17
writing strings 2-16

fopen function 2-12

fork function 5-5
Formatted input

reading from a file 2-14
reading from a pipe 6-2
reading from standard
input 2-4

Formatted output
writing to· a file 2-17
writing to a pipe 6-2
writing to standard
output 2-7

fprintf function 2-17
fputc function 2-15
fputs function 2-16
fread function 2-14
free function 8-3
freopen function 2-23
fscanf function 2-1,4
fseek function 2-32
ftell function 2-33
fwrite function 2-17
getc function 2-13
getch function 3-9
getchar function 2-4
gets function 2-5
getstr function 3-9
gettmode function 3-32
getyx function 3-28
inch function 3-24
initscr function 3-4
insch function 3-11
insertln function 3-11
isalnum function 4-2
isaplha function 4-3
isascii function 4-1
iscntrl function 4-3
isdigit function 4-3

1-3

low-level between
processes 6-6
opening for low-level
access 6-3
opening to a new
process 6-1
process ID 6-1
reading bytes 6-4
read ing from 6-2
shell pipe symbol 6-1
writing bytes 6-4
wr i ting to 6-2

popen function 6-1
printf function 2-8
printw function 3-8
Process control functions,

described 5-1
Process ID

described 5-1
Process

termination status 5-2
Processes

background 7-11
calling a system
program 5-1
child 5-5
communication by pipe 6-1
described 5-1
ID 5-1
multiple copies 5-5
overlaying 5-3
parent 5-5
restoring an execution
state 7-10
saving the execution
state 7-9
splitting 5-5

terminating 5-2
termination status 5-7
under shell control 5-5
waiting 5-6

Programs, invoking 2-2
putc function 2-15
putchar function 2-7
puts function 2-7
Random access functions

character pointer 2-31
described 2-31

raw function 3-30
RAW mode 3-31
RAW mode 3-5
read function 2-27
realloc function 8-3
Records

reading from a file 2-14
writing to a file 2-17

Redirection symbol
input 2-9
output 2-9
pipe 2-9

refresh function 3-14
restty function 3-33
Return values A-2
rewind function 2-33
Routine entry sequence A-1
Routine exit sequence A-2
savetty function 3-33
scanf function 2-4
scanw function 3-10
Screen processing functions,

described 3-1
Screen processing library,

described 1-1
Screen processing

/etc/termcap file 3-1

i-5

creating 8-7
described 8-6
opening 8-8
relinquishing control 8-9
requesting control 8-8

setbuf function 2-23
setjmp function 7-9
setjmp.h file,

described 7-1
sgtty.h file 3-2
Shared data

attaching segments 8-13
creating segments 8-13
described 8-12
entering segments 8-14
freeing segments 8-16
leaving segments 8-14
version number 8-15
waiting for segments 8-15

Shell
called as a separate
process 5-5

signal function 7-1
signal.h file,

described 7-1
Signals

catching 7-4
catching 9-3
default action 7-3
delaying an action 7-7
described 7-1
disabling 7-2
on program errors 9-3
redefining 7-4
restoring 7-3
restoring 7-6
SIGINT constant 7-1

SIGQUIT constant 7-1
SIG DFL constant 7-1
SIG-IGN constant 7-1
to a child process 7-12
to background
processes 7-11
with interactive
programs 7-9
with multiple
processes 7-10
with system functions 7-8

sigsem function 8-9
sprintf function 4-11
sscanf function 4-10
Stack order A-1
Standard C library,

described 1-1
Standard error

described 2-4
Standard files

described 2-4
predefined file
descriptors 2-26
pr ede fined file
pointers 2-11
reading and writing 2-4
red irecting 2-4
redirecting 9-1

Standard I/O file 2-1
Standard I/O functions 2-1
Standard input

described 2-4
reading 2-4
reading characters 2-4
reading formatted
input 2-4
reading strings 2-5

1-7

System resource functions,
described 8-1

System
resources 8-1

sys errno array,
descr ibed 9-3

TERM variable 3-5
Terminal screen 3-1
Terminal

capabilities 3-1
capability description 3-5

cursor 3-32
modes 3-30
modes 3-31
modes 3-5
type 3-5

termination status,
descr ibed 5-7

termination status
processes 5-2

toascii function
tolower function
touchwin function
toupper function
Unbuffered 1/0

creating 2-22
described 2-22

4-2
4-5

3-25
4-5

low-level functions 2-25
ungetc function 2-24
Variables

allocating for arrays 8-2
memory allocation 8-1

waddch function 3-16
waddstr function 3-16
wait function 5-6
waitsem function 8-8

wclear function 3-21
wclrtobot function 3-21
wclrtoeol function 3-21
wdelch function 3-20
wdeleteln function 3-20
werase function 3-21
wgetch function 3-17
wgetstr function 3-18
winch function 3-24
Window

border 3-26
deleting 3-25
described 3-1
flags 3-6
position 3-1

Windows
creating 3-14
flags 3-28
moving 3-24
overlaying 3-23
overwriting 3-23
reading a character 3-24
updating 3-25

winsch function 3-19
winsertln function 3-19
wmove function 3-19
wprintw function 3-17
wrefresh function 3-22
write function 2-27
wscanw function 3-18
wstandend function 3-27
wstandout function 3-26

1-9

CONTENTS

ProgrammingComnuznds (CP)

intro lmroducesprogrammingcommands
adb Invokes a general-purpose debugger
admin Creates and administersSCCS files
ar Maintains archives and libraries
as [nvokestheXENIXassembler
cb Beautifies C programs
cc Inv<*es the Ccompiler
cdc Changesthedehacommemary of

anSCCSdelta
comb CombinesSCCS dehas
config Configure a XENlX system
eref Makes a cross-reference listing
etags Creates atagsfile
deha Makes a deha (change) to an

SCCSfile
get Getsa 'm'sionof anSCCS file
gets Gets a string from the standard

input
hdr Displays selected parts of

object files
help Asb forhelp about SCCS canmands
ld Invokes the link editor
lex Generates programs for lexical

analysis
lint ChecksClanguageusage and syntax
lorder Finds ordering relation for an

object
m4 Invokes a macro processor
make Maintains, updates, and

regenerates programs
mkstr Creates an error message file

fromC source
nm Prints name list
prof Displaysprofile data
prs PrintsanSCCS file
ranlib Converts archives to random

libraries
ratfor InvokesRATFOR preprocessor
regcmp CompUesreguJar expressions
rmdel Removes a deha from an sees

file
sact Prints current SCCS file

editing
sccsdiff Compares two versions of an

SCCSfile
size Prints the siz.e of an object file
spline Interpolates smooth curve

l-i

Index

Archivcsand hbraries ar
Assembler ------------81
Ccompiler cc
Clanguage usage and syntax liDt
Cprogram, formatting cb
Compilercompiler yace
Drou"er _b
Error message file mkstr
Execution, time time
Graphics, interpolating curves spiiDe
Lexical analyzers Ia
Link editor lei
Macroprocessor m4
Object file, printable strings strings
Object file, size size
Object file. displaying hdr
Object file, symbols and relocation strip
Ordering relations lorder
Program listing, cross-reference uer
Program listing, cross-reference cref
Program maintenance make
Rational FORTRAN raU'or
Regular expressions regcmp
sees files, combining comb
sees files, comments cdc
sees files, comparing sccsdUl
sees files, creatingnewversioDS delta
sees files, editing sad
sees files. printing pn
sees files. removing rmdeI
sees files, restoring unget
sees files. retrieving versions get
sees files. creating and maintaining admiD
sees files, validating val
sees. command help help
Sorting topologically tsort
Standard input, reading strings gets
Strings, extracting uti'
System. XENlX configuration coDflg
Tags file dags

INTRO(CP) INTRO(CP)

Name

intro - Introduces XENIX Software Development commands.

Description

This section describes use of the individual commands available in
the XENIX Software. Development System. Each individual com­
mand is labeled with the letters CP to distinguish it from commands
available in the XENIX Timesharing and Text Processing Systems.
These letters are used for easy reference from other documentation.
For example, the reference ee(CP) indicates a reference u> a discus­
sion of the cc command in this section, where the letter "c" stands
for "command" and the letter "P" stands for "Programming".

Syntax

Unless otherwise noted, commands described in this section accept
options and other arguments according to the following syntax:

where:

name

option

emtlarg

See Also

name I option,] (emtlarg]

The filename or pathname of an executable file

A single letter representing a command option By con­
vention, most options are preceded with a dash.
Option letters can sometimes be grouped together as
in - abed or alternatively they are specified individu­
ally as in - a - b ~ c - d . The method of specifying
options depends on the syntax of the individual com­
mand . .In the latter method of specifying options,
arguments can be given to the options. For example,
the - r option for many commands often takes a fol­
lowing filename argument.

A pathname or other command argument not begin­
ning with a dash. It may also be a dash alone by itselC
indicating the standard input.

getopt(C), getopt(S)

Diagnostics

Upon termination, each comm and returns 2 bytes of status, one sup­
plied by the system and giving the cause for termination, and (in the

March 24, 1984 Page 1

ADB(CP) ADB(CP)

Name
adb - debugger

Syntax

adb r -wl r objfil r corfiI 11
Description

Adb is a general purpose debugging program. It may be used to
examine files and to provide a controlled environment for the exe­
cution of XENIX programs.

Obifil is normally an executable program file, preferably containing
a symbol table; if not then the symbolic features of adb cannot be
used although the file can still be examined. The default for obifil
is a.out. Corfil is assumed to be a core image file produced after
executing obifil ; the default for corfi/ is core.

Requests to adb ace read from the standard input and responses are
to the standard output. If the -w flag is present then both obifil
and corfil· ace created if necessary and opened for reading and
writing so that files can be modified using adb. Adb ignores
QUIT; IN1ERRUPT causes return to the next adb command.

In general requests to adb are of the form:

r address 1 r, count 1 r command 1 r ; 1
If address is present then dot is set to address. Initially dot is set
to O. For most commands count specifies how many times the
command will be executed. The default count is 1. Address and
count ace expressions.

The interpretation of an address depends on the context it is used
in. If a subprocess is being debuggedtben addresses ace inter­
preted in the usual. way in the address space of the subprocess.
For further details of address mapping see ADDRESSES.

EXPRESSIONS

+

"
integer

'cccc'

The value of dot.

The value of dot incremented by the current increment.

The value of dot decremented by the current increment.

The last address typed.

If the integer begins with 0 it is an an octal number. It is
a hexadecimal number if preceded by Ox or OX. It is a
decilnal number when preceded by Od, OD, Ot, or OT;
otherwise the current input radix (default decimal).

The ASCll value· of up to 4 characters. \ may be used to

May 10, 1984 Page 1

ADB(CP) AD8(CP)

to the format f.
If Locations starting at address in corJi! are printed according

to the format f.
=f The value of address itself is printed in the styles indi-

cated by the format f.
A format consists of one or more characters that specify a style of
printing. Each format character may be preceded by a decimal
integer that is a repeat count for the format character. While step­
ping through a format dot is incremented temporarily by the
amount given for each format letter. If no format is given then the
last format is used. The format letters available are as follows.

o 2 Print 2 bytes in octal. All octal numbers output
by adb are preceded by O.

o 4 Print 4 bytes in octal.
q 2 Print in signed octal.
Q4 Print long signed octal.
d 2 Print in decimal.
D 4 Print long decimal.
x 2 Print 2 bytes in hexadecimal. All hexadecimal

numbers output by adb are preceded by Ox.
X 4 Print 4 bytes in hexadecimal.
u 2 Print as an unsigned decimal number.
U 4 Print long unsigned decimal.
b 1 Print the addressed byte in octal.
c 1 Print the addressed character.
C 1 Print the addressed character using the following

escape convention. Olaracter values 000 to 040
are printed as @ followed by the corresponding
character in the range 0100 to 0140. The char­
acter @ is printed as @@.

s n Print the addressed characters until a zero char­
acter is reached.

S n Print a string using the @ escape conveniion. n
is the length of the string including its zero ter­
minator.

Y 4 Print 4 bytes in date format (see ctime(S».
i n Print as MC68000 instructions. n is the number

of bytes occupied by the instruction. This style
of printing causes variables 1 and 2 to be set to
the offset parts of the source and destination
respectively.

a 0 Print the value of dot in symbolic fonn. Symbols

May 10, 1984 Page 3

AD8(CP) AD8(CP)

A shell is called to read the rest of the line following '!' .

$modifier
Miscellaneous commands. The available modifiers are:

<f Read commands from the file / and return.
>/ Send output to the file f, which is created if it

does not exist; > ends the output diversion.
r Print the general registers and the instruction

addressed by pc. Dot is set to pc.
b Print all breakpoints and their associated counts

and commands.
c C stack backtrace. If address is given then it is

taken as the address of the current frame.
(instead of a6). If count is given then only the
fica count frames are printed.

e 1be names and values of external variables are
printed.

w Set the page width for output to address (default
80).

s Set the limit for symbol matches to address
(default 255).

o Set the current input radix to octal.
d Set the current input radix to decimal. EXPRES-

SIONS.
x Set the current input radix to hexadecimal.
q Exit from adb.
v Print all non zero variables in hexadecimal.
m Print the address map.

:modifier
Manage a subprocess. Available modifiers are:

be Set breakpoint at address. The breakpoint is
executed count -1 times before causing a stop.
Each time the breakpoint is encountered the
command c is executed . If this command sets
dot to zero then the breakpoint causes a stop.

d Delete breakpoint at address.

r Run obifil as a subprocess. If address is given
explicitly then the program is entered at this
point; otherwise the program is entered at its
standard entry point. count specifies how many
breakpoints are to be ignored before stopping.
Arguments to the subprocess may be supplied on

May 10, 1984 Page 5

ADB(CP)

b2 ff!i":.address <e2
address=address+J2-b2,

=>

ADB(CP)

file

otherwise. the requested address is not legal. In some cases (e.g .•
for programs with separated 1 and D space) the two segments for a
file may overlap.' If a ? or I is followed by an • then only the
second triple is used.

The initial setting of both mappings is suitable for normal a.out
and core files. If either file is not of the kind expected then, for
that file. bl is set to 0, el is set to the maximum file size andP is
set to 0; in this way the whole file can be examined with no
address translation.

So that adb may be used on large files all· appropriate values are
kept as signed 32 bit imegers.

FOes
/dev/mem
/dev/swap
a.out
core

See Also
ptrace(S). a.out(F). core(F)

DIAGNOSTICS
The message 'adb' when there is no current command or format.
Comments about inaccessible files, syntax errors, abnormal tenni­
nation of commands. etc.
Exit status is 0, unless last command failed or returned nonzero
status.

Notes
A breakpoint set at the entry point is not effective on initial entry to
the program.
When single stepping, system calls do not count as an executed
instruction.
Local variables whose names are the same as an external variable
may foul up the accessing of the external.

May 10. 1984 Page 7

ADMIN (OP) AD)"fIN (OP)

- rrel The release inoo which the initial delta. is inserted.
This option may be used only ir the - i option is
also used. If the - r option is not used, the initial
delta. is inserted inoo release 1. The level or tile ini­
tial delta is always 1 (by derault initial deltas are
named 1.1).

- t['&tIme) The name or a file rrom which descriptive text ror
the sees file is 00 be taken. If the - t option is
used and atim'n is creating a new sees file (the - n
and/or - i options also used), the descriptive text
filename must also be supplied. In the case of exis~
ing sees files: a - t option without a filename
causes removal or descriptive text (ir any) currently

. in the sees file, and a - t option with a filename
causes text (ir any) in the named file to replace the
descriptive text (ir any) currently in the sees file.

- Cflag This option specifies a /fag, and possibly a value ror
the /fo,g, to be placed in the sees file. Several t
options may be supplied on a single atim'n com­
mand line. The allowable /fags and their values are:

March 24, U)84

b Allows use or the - b option on a get(CP)
command to create branch deltas.

ceeil The highest release (i.e., "ceiling"), a number
less than or equal to 9999, which may be
retrieved by a get(OP) command ror editing.
The default value for an unspecified c flag is
9999.

(floor The lowest release (i.e., "floor"), anum ber
greater than 0 but less than 9999, which may
be retrieved by a get (OP) command ror edi~
ing. The derault value ror an unspecified t flag

. is 1.

dSlD The derault delta. number (SID) to be used by
a get(OP) command.

j

Oauses the "No id keywords (ge6)" message
issued by get(OP) or tielto,{ OP) to he treated as
a ratal error. In the a.bsence or this flag, the
message is only a warning. The message is
issued ir no sees identification keywords (see
get(OP)) are round in the text retrieved or
soored in the sees file.

Allows concurrent get(OP) commands ror edi~
ing on the same· SID or an sees file. This
allows multiple concurrent updates to the same
version or the sees file.

Page 2

ADMIN(CP} ADMIN(CP}

A li,t or releases to be "unlocked". See the
- r option ror a description or the I ftag and
the syntax or a lilt.

- alogin A login name, or numerical XENIX group 10, to be
added to the list or users which may make deltas
(changes) to the sees file. A group ID is equivalent
to specirying a.ll login names common to tha.t group
ID. Several a options may be used on a single
tldmin command line. As many logins, or numerical
group IDs, as desired may be on the list simultane­
ously. Ir the list or users is empty, then anyone
may add deltas.

- elogin A login name, or numerical group 10, to be erased
rrom the list or users allowed to make deltas
(changes) to the sees file. Specirying a group ID is
equivalent to specirying all login names common to
that group 10. Several e options may be used on a
single tldmin command line.

- y[commen4 The comment ~xt is inser~d into the sees file as a
comment ror the initial delta in a manner identical
to that or delttl(CP). Omission or the - y option
results in a derault comment line being inserred in
the rorm:

-h

March 24, 1984

YY/MM/DD HH:MM:SS by login

The - y option is valid only ir the - i and/or - n
options are specified (i.e., a new sees file is being
cre are d) .

The list or Modification Requests (MR) numbers is
inser~d into the sees file as the reason ror creating
the initial delta in a manner identical to delttl(CP).
The vftag must be set and the MR numbers are
validared ir the v ftag has a value (the name or an
MR number validation program). Diagnostics will
occur ir the v ftag is not set or MR validation rails.

Causes admin to check the structure or the sees file
(see Icclfile(F)), and to compare a newly compured
checksum (the sum or all the characrers in the sees
file except those in the first line) with the checksum
that is stored in the first line or the sees file.
Appropriare error diagnostics are produced.

This option inhibits writing on the file, nullifying
the effect or any other options supplied, and is
thererore only meaningful when processing existing
files.

Page 4

AR (CP) AR (CP)

Name

ar - Maintains a.rchives and libraries.

Syntax

ar key I posname] arile name ...

Description

41 maintains groups of files combined into a single archive rile. Its
main use is to create and upda.te library files as used by the link edi­
tor, though it can be used for any similar purpose.

When 6r creates an archive, it always creates the header in the for­
mat of the local system.

Keg is one character from the set drqtpmx, optionally concatena.ted
with one or more of vuaibcl. a/ile is the archive rile. The name. are
constituent riles in the archive file. The meanings of the key charac­
ters are:

d Deletes the named files from the archive file.

r Replaces the named files in the archive file. It the optional
character u is used with r, then only those files with modified
dates later than the archive files are replaced. If an optional
positioning character from the set abi is used, then the p0lft4me
argument must be present and specifies that new files are to be
placed after (a) or before (b or i) po.n4me. Otherwise new files
are placed at the end.

q Quickly appends t.he named files to the end of the archive file.
Optional positioning characters are invalid. The command does
not check whether the added mem bers are already in the
archive. Useful only to avoid quadratic behavior when creating
a large archive piece by piece.

t Prints a table of contents of the archive file. It no names are
given, all files in the archive are tabled. If names are given,
only those files are tabled.

p Prints the named files in the archive.

m Moves the named files to the end or the archive. If a position­
ing character is present, then the posn4me argument must be
present and, as in r, specifies where the files are to be moved.

x Extracts the named files. If no names are given, all files in the
archive are extracted. In neither case does x alter the archive

March 20, lQ84 Page .•

AS(CP) AS(CP)

Name
as - assembler

Syntax

as r -11 r -0 objfile 1 r -11 file.s

DescriptioD
As assembles the named file. If the argument -I is used, an
assembly listing is produced and written to file.L. This includes the
source, the assembled code, and any assembly errors.

The output of the assembly is left on the file obifile; if that is
omitted, file.o is used. If the optional -I flag is given, umefined
symbols will be treated as externals. Arguments may appear in
any order, except that -0 must immediatly precede obifile. The
optional flag -e (externals only) prevents local symbols from being
extended into objfile's symbol table.

Files
Itmpl A68tmpc* temporary

See Also
Id(CP), nm(CP) , adb(CP), a.out(F)

May 10, 1984 Page 1

CC(CP) CC(CP)

Name
cc - C compiler

Syntax
cc r option 1 .. · file ...

Description
Cc is the XENlX M68000 C compiler. Arguments whose names
end with' .c' are taken to be C source programs; they are com­
piled. and each object program is left on the file whose name is
that of the source with' .0' substituted for' .c'. The' .0' file is
normally deleted, however, if a single C program is compiled and
loaded all at one go.

In the same way, arguments whose names end with • .s· are taken
to be assembly source programs and are assembled. producing a
'.0' file.

The following options are interpreted by cc. See Id(CP) for
load-time options.

-c Suppress the loading phase of the compilation, and force
an object file to be produced even if only one program is
compiled.

-0 Invoke an object-code optimizer.

-S Compile the named C programs. and leave the
assembler-language output on corresponding files
suffixed '. s' .

-0 output
Name the final output file output. If this option is used
the file 'a.out' will be left undisturbed.

-Dname=def
-Dname Define the name to the preprocessor. as if by '#define'.

If no definition is given. the name is defined as 1.

- Uname Remove any initial definition of name.

-Idir '#inc1ude' files whose names do not begin with '/' are
always sought first in the directory of the file argument.
then in directories named in -I options, then in direc­
tories on a standard list.

-tl replace the compiler phase with a program called ~8
from the current directory.

-12 replace the object code optimizer phase with a program
called c680 from the current directory.

May 10. 1984 Page 1

CDC (CP) CDC(CP)

Name

cdc - Changes the delta commentary or an sees delta.

Syntax

edc: - rSID [- m[m rlist)) [- yl commen t)) files

Deseri pti on

Cdc changes the delta commentary ror the SID specified by the - r
option, of each named sees file.

Delta commentary is defined to be the Modification Request (MR)
and comment inrormation normally specified via the delta (CP) com­
mand (- m and - yoptions).

If a directory is named, cdc behaves as though each file in the direc­
tory were specified as a named file, except that nonSeeS files (last
component or the pathname does not begin with s.) and unreadable
files are silently ignored. U a name or - is given,the standard input
is read (see Warning); each line or the standard input is taken to be
the name or an sees file to be processed.

Arguments to cdc, which may appear in any order, consist of options
and file names.

All the described options apply independently to each named file:

- rSID

- m(mrliBt]

March 24, 1984

Used to specify the Sees IDentification (SID)
string or a delta ror which the delta commen­
tary is 00 be changed.

If the sees file has the v flag set (see
admin(CP)) then a list or MR numbers 00 be
added and/or deleted in the delta commentary
or the SID specified by the - r option m611 be
supplied. A null MR list has no effect.

MR entries are added to the list or MRs in the
same manner as that of delta(CP). In order to
delete an MR, precede the MR number with
the character! (see Examples). If the MR 00
be deleted is currently in the list or MRs, it is
removed and changed into a "comment" line.
A list of all deleted MRs is placed in the com­
ment section or the delta commentary and pre­
ceded by a comment line stating that they were
deleted.

Page 1

CDC(OP)

The following inreractiYe sequence does the same thing.
cdc - r1.6 s.file

Warning

MRs! !bI77-54321 b178-12345 b179-00001
comments! trouble

CDC(CP)

If sees file names are supplied to the cdc command via the standard
input (- on the command line), then the - m and - y options must
also be used.

Files

x·fiie See delta (CP)

z·rile See delta (CP)

See Also

admin(CP), delta.(CP}, get(CP}, help(CP), prs(CP), sccsfile(F)

Diagnostics

Use help(OP) for explanations.

March 24, 1984 Page 3

COMB (CP) COMB (CP)

- s This argument causes comb to generate a shell procedure
that will produce a report for each file giving the filename,
size (in blocks) after combining, original size (also in
blocks), and percentage cha.nge computed by:

100 • (original- combined) I original

Before any sees files are actually combined, you should use this
option to determine exactly how much space is saved by the combin­
ing process.

If no options are specified, comb will preserve only leaf deltas and
the minimal number of ancestors needed to preserve the tree.

Files

comb!!!! ! Temporary files

See Also

admin(CP), delta(CP), get(CP), help(CP), prs(CP), sccsfile(F)

Diagnostics

Use help (CP) for explanations.

Notes

Comb may rearrange the shape of the tree of deltas. It may not save
any space; in ract, it is possible ror the reconstructed file to be larger
than the original.

March 24, 1 Q84 Page 2

GONFIG(CP} GONFIG(CP)

There are certain drivers that may be provided with the system, that
are actually p,eudo-device drivers; that is, there is no real hardware
associated with the driver. Drivers ot this type are identified on
their respective manual entries.

Second Part or dfile

The second part contains three different types ot lines. Note that aU
specifications or this part are required, although their order is arbi­
trary.

1. Root/pipe device ,pecification

Each line has three fields:

root
pipe

devname
devname

minor
minor

where minor is the minor device number (in octal).

2. Swap device ,pecification

One line that contains five fields as follows:

swap devname minor swplo nswap

where BWplO is the lowest disk block (decimal) in the swap area and
n,wap is the num ber or disk blocks (decimal) in the swap area.

3. Parameter ,pecification

A number or lines or two fields each as rollows (number is decimal):

buffers number
inodes number
riles number
mounts number
swapmap number
pages number
calls number
procs number
maxproc number
texts number
dists number
locks number
timezone number
daylight o or 1

Example

Suppose we wish to configure a system with the rollowing devices:
one HD disk drive controller with 1 drive
one FD floppy disk drive controller with 1 driver

March 24, 1984 Page 2

CONFIG(CP) CONFIG(CP)

Diagnostics

Diagnostics are rou~d to the standard output and are self­
explanatory.

Notes

The - t option does not know about.devices that have aliases. How­
ever, the major device numbers are always correct.

March 24, 1984 Pa.ge 4

CREF(CP) CREF(CP)

n Omits column 4 (no conrext)

0 Uses an only file (see above)

8 Current sym bol in column 3 (deCault)

t User-supplied remporary file

u Prints only symbols that occur exactly once

x Prints only C exrernal sym bois

1 Sorts output on column 1 (default)

2 Sorts output on column 2

3 Sorts output on column 3

Files

/usr /lib/ creC /* Assem bier specific riles

See Also

a.s(CP) I cc(CP), sort(C), xreC(CP)

Nores

Cre! inserts an ASCII DEL characrer into the in~rmedia~ file a.r~r
the eighth charac~r oC each name that is eight or more characters
long in the source file.

March 24, 1984 Page 2

CTAGS(CP) CTAGS(CP)

Credit

This utility was developed at the University or California at Berkeley
and is used with permission.

March 24, 1984 Page 2

DELTA (CP)

- gli6t

- m[mrliB~

DELTA (CP)

Specifies a lilt (see get(CP)for the definition of lilt)
of deltas which are to be ignored when the file is
accessed at the change level (SID) creared by this
delta.

If the sees file has the v flag set (see admin(OP))
then a Modification Request (MR) number ma" be
supplied as the reason for creating the new delta.

If - m is not used and the standard input is a rermi­
nal, the prompt MRs! is issued on the standardoutr­
put before the standard input is read; if the. standard
input is not a rerminal, no prompt is issued. The
MRs! prompt always precedes the comments!
prompt (see - y keyletrer).

MRs in a list are separared by blanks and/or tab
characrers. An unescaped newline character rer­
minates the MR list.

Note that if the v flag has a value (see a dmin (CP)),
it is taken to be the name of a program (or shell
procedure) which will validare the correctness of the
MR numbers. If a nonzero exit status is returned
from MR number validation program, delt4 ter­
"minates (it is assumed that the MR numberS were
not all valid).

- y[commen4 Arbitrary rext used to describe the reason for m"ak­
ing the delta. A null string is considered a "valid
comment.

-p

Files

If - y is not specified and the standard input is a
terminal, the prompt comments! is issued on the
standard output before the standard input is read; if
the standard input is not a terminal, no prompt is
issued. An unescaped newline character rerminates
the comment text.

Causes delta to print (on the standard output) the
sees file differences before and after. the delta is
applied. Differences are displayed' in a diD(C) for­
mat.

All files of the form f-file are explained in Cha.pter 5, "SCCS: A
Source Code Control System" in the XENIX Programmer'. Guide. The
naming convention for these files is also described there.

g-file

March 24, 1984

Existed before the execution of delta; removed aiter
completion of delt4.

Page 2

GET (CP) GET(CP}

Name

get - Gets a version of an sees file.

Syntax

get [- rSID] (- ccutoff] [- ilist] [~xlist] 1- aseq-no.] [- k) [- e)
[- l[p)) [- pI - m] [- n] [- 8] [- hi [- gJ - t.] file .••

Description

Get generares an AseII rext file from each named sees file according
to the specifications given by its options, which begin with -. The
arguments may be specified in any order, but all options apply to all
named sees files. If a directory is named, get behaves as though
each file in the directory were specified as a named file, except that
nonsees files (last component or the pathname does not begin with
s.) and unreadable files are silently ignored. It a name of - is
given, the standard input is read; each line of the standard input is
taken to be the name of an sees file to be processed. Again,
nonsees files and unreadable files are silently ignored.

The generared rext is normally writren into a file called the g-file
whose name is derived Crom the sees filename by simply removing
the leading s.; (see also FILES, below).

Each of the options is explained below as though only one sees file
is to be processed, but the effects of any option apply independently
to each named file.

- rSI D The Sees I Den tificatio n string (SID) of the version
(delta) of an sees file to be retrieved.

- ccut(lll Outoff dare-time, in the form:

YY[MM[OD IHH IMMlsSllIl1

No changes (deltas) to the sees file that were created
arrer the specified cutoff dare-time are included in the
generared Asell rext file. Units omitred from the date­
time derault to their maximum possible values; that is,
- c7502 is equivalent to - c750228235050. Any number
or nonnumeric characrers may separare the various 2
digit pieces of the cutoff dare-time. This feature allows
you to specify a cutoff dare in the form: "- c77/2/2
9:22:25" .

- e Indicares that the get is ror the purpose or editing or
making a cha.nge (delta) to the sees file via a subsequent
use of delta(CP). The - e option used in a get ror a par­
ticular version (SID) oC the sees file prevents Curther

March 24, 1984 Pa.ge 1

GET(CP) GET(CP)

- 8 Suppresses all output normally writ~n on the standa.rd
output. However, Catal error messages (which always go
to file descriptor 2) remain unaffec~d.

- m Causes each ~xt line retrieved Crom the sees file to be
preceded by the SID of the delta that inser~d the text
line in the sees file. The format is: SID, Collowed by a
horizontal tab, followed by the ~xt line.

- n Causes each genera~d ~xt line to be preceded with the
~% identification keyword value (see below). The for­
mat is: ~% value, followed by a horizontal tab, fol­
lowed by the ~xt line. When both the - m and - n
options are used, the Cormat is: ~% value, followed by
a horizontal tab, followed by the - m option generated
format.

- g Suppresses the actual retrieval of ~xt from the sees file.
It is primarily used to genera~ an I-file, or to verify the
exis~nce of a particular SID.

- t Used to access the most recently crea~d (top) delta in a
given release (e.g., - rl), or release and level (e.g.,
- rl.2).

- aeeq-no. The delta sequence number of the sees file delta (ver­
sion) to be retrieved (see ICcefile(F)). This option is
used by the comb(CP) command; it is not particularly
useCul should be avoided. If both the - r and - a
options are specified, the - a option is used. Ca.re
should be taken when using the - a option in conjunc­
tion with the - e option, as the SID oC the delta to be
crea~d may not be wha.t you expect. The - r option can
be used with the - a and - e options to control the narn­
ing of the SID of the delta. to be crea~d.

For each file processed, get responds (on the standard output) with
the SID being accessed and with the number of lines retrieved from
the sees file.

If the - e option is used, the SID of the delta to be made appears
ar~r the SID accessed and before the number of lines genera~d. If
there is more than one named file or iC a directory or standard input
is named, each filename is prin~d (preceded by a newline) before it
is processed. If the - i option is used included deltas are lis~d fol­
lowing the notation "Included"; if the - x option is used, excluded
deltas are lis~d following the notation "Excluded".

Identification Keywords

IdentiCying inCormation is inser~d into the ~xt retrieved Crom the
sees file by replacing identification keywords with their value

March 24, 1984 Page 3

GET (CP) GET (OF)

implied, the g-file's mode is 644; otherwise the mode is 444. Only
the real user need have write permission in the current directory.

The I-file contains a table showing which delta.'.! were applied in gen­
erating the retrieved text. The l-Jile is created in the current direc­
tory iC the -·1 option is used; its mode is 444 and it is owned by the
real user. Only the real user need have write permission in the
current directory.

Lines in the I-file have the following format:

a. A blank character if the delta was applied;
• otherwise

b. A blank character if the delta was applied or wasn't applied
and ignored;
• iC the delta wasn't applied and wasn't ignored

c. A code indica.ting a "special" reason why the delta was or
was not applied:

d. Blank

"I": Included
"X": Excluded
"0": Out off (by a - c option)

e. sees identification (SID)
f. Tab ch aracte r
g. Date and time (in the form YY/MM/DD HH:MM:SS) of erea­

tion
h. Blank
i. Login name of person who created delta

The comments and MR data Collow on subsequent lines, indented
one horizontal tab character. A blank line terminates each entry.

The p-file is used to pass information resulting from a get with an
- e option along to delta. Its contents are also used to prevent a
subsequent execution oC get with an - e option for the same SID
until delta is executed or the joint edit flag, j, (see a dmin (OP)) is set
in the sees file. The p-file is created in the directory containing the
sees file and the effective user must have write permission in that
directory. Its mode is 644 and it is owned by the effective user. The
format of the p-file is: the gotten SID, followed by a blank, followed
by the SID that the new delta will have when it is made, followed by
a blank, followed by the login name of the real user, follow·ed by a
blank, Collowed by the date-time the get was executed, followed by a
blank and the - i option if it was present, Collowed by a bJank and
the - x· option iC it was present, followed by a newline. There can
be an arbitrary number of lines in the p-file at any time; no two lines
can have the same new delta SID.

The z-fiJe serves as a lock-out mechanism against simultaneous
upda.tes. Its contents are the binary (2 bytes) process ID or the com­
mand (Le., get) that created it. The z-Jile is created in the directory
containing the sees file Cor the duration of get. The same protection
restrictions as those for the p-file apply for the z-Jile. The z-JUe is

March 24, 1984 Page 5

GETS (CP) GETS (CP)

Name

gets - Gets a string trom the standard input.

Syntax

gets (string]

Description

Get, can be used with ed(CP) to read a string rrom the standard
input. Ir 'tring is given it is used as a dera.ult value ir an error
occurs. The resulting string (either ,tring or as read rrom the stan­
dard input) is written to the standard output. Ir no «ring is given
and an error occurs, get. exits with exit status L

See Also

line(C), csh(CP)

March 24, 1984 Page 1

HDR (CP) HDR (CP)

- d Causes the data relocation records to be printed out.

- t Causes the text relocation records to be printed out.

- r Causes both text and data relocation to be printed.

- p Causes seek positions to be printed out as defined by macros in
the include file, <a.out.h>.

- s Prints the symbol table.

- SPrints t.he file segment table with a header. (Only applicable to
x.out segmented executable files.)

See Also

a.out(F), nm(CP)

March 24, 1984 Page 2

W(CP) W(CP)

Name
ld - link. editor

Syntax
Id r option 1 file ...

Desaiption
Ld combines several object programs into one, resolves external
references, and searches libraries. Ld combines the given object
files, producing an object module which can be either executed or
become the input for a further Id run (in the latter case, the -r
option must be given to preserve the relocation records). The
output of Id is left by default in the file x.out. This file is made
executable only if no errors occurred.

The files given as arguments are concatenated in the order
specified. The default entry poUt of the output is the beginning of
the first routine in the first file. The C compiler, cc , calls Id
automatically unless given the -c option. The command line that
cc passes to Id is

Id IIiblcrtO.o files cc-options -Ie

If any argument is a library, it is searched exactly once at the point
it is encountered in the argument list. Only those routines defining
an unresolved external reference are loaded. If a routine from a
library references another routine in the library, and the library has
not been processed by raniib (CP), the referenced routine must
appear after the referencing routine in the library. Thus the order
of programs within libraries may be important. If the first member
of a library is named '_.SYMDEF', then it is understood to be a
dictionary for the library

as produced by ranlib; the dictionary is searched iteratively to
satisfy as many references as possible.

The symbols '..etext', '..edata' and '_end' ('etext" 'edata' and 'end'
in C) are reserved, and if referred to, are set to the first location
above the program, the first location above initialized data, and the
first location above all data, respectively. It is erroneous to define
these symbols.

If no errors occur and there are no unresolved external references,
then short form relocation information is attached and the file is
made executable. This short form relocation information is
sufficient to allow the file to· be used for another pass of Id , to
change the text and data base addresses. At the same time, the -D

May 10, 1984 Page 1

W(CP) W(CP)

symbol table; only enter external symbols. This option
saves some space in the output file.

- X Save local symbols except for those whose names begin
with 'L'. This option is used by cc(CP) to discard inter­
nally generated labels while retaining symbols local to
routines.

-r Generate (long form) relocation records in the output file
so that the output file can be the subject of another Id run.
This flag also prevents final definitions from being given
to common symbols and suppresses the 'undefined sym­
bol' diagnostics.

-d Force definition of common storage even if the -r flag is
present.

- DB Arrange that when the output file is executed, the text
portion will be read-only and shared among all users
executing the file. This involves moving the data areas up
to the first possible page boundary following the end of
the text. A warning is issued if the current machine does
not support this option.

-Dr Identical to -nn except that the text and data positions are
reversed.

-D Identical to whichever of -DB and -or is the default for
the current machine.

-i When the output file is executed, the program text and
data areas are given separate address spaces. The only
difference between this option and -D is that with -I the
data may start at a boundary unrelated to the position of
the text. A warning is issued if the current machine does
not support this option.

-0 The name argument after -0 is used as the name of the Id
output file, instead of x.out.

-e The following argument is taken to be the name of the
entry point of the loaded program. The base of the text
segment is the default.

- D The next argument is a decimal number that sets the size
of the data segment.

- N The next argument is taken to be a hexadecimal number
that sets the pagesize, or rounding size, for use with the
-n option. With -i, it specifies the base of the data

May 10~ 1984 Page 3

LEX(CP) LEX(CP)

Name

lex - Generates programs ror lexical analysis.

Syntax

lex [- ctvn] (rile) ...

Description

Lez generates programs to be used in simple lexical analysis of text.

The input lile, (standard input default) contain strings and expres­
sions to be ~earched for, and C text to be executed when strings are
found.

A rile lex.yy.c is generated which, when loaded with the library,
copies the input to the output except when a string specified in the
file is round; then the corresponding program text is executed. The
actual string matched is left in Wlezt, an external character array.
Matching is done in order or the strings in the file. The strings may
contain square brackets to indica~ character classes, as in [am:- z]
to indicate a, b, x, y, and z; and the operators ., +, and! mean
respectively any nonnegative number or, any positive number or,
and either zero or one occurrences of, the previous character or
character class. The character • is the class of all ASCII characters
except newline. Parentheses ror grouping and vertical bar ror alter­
nation are also supported. The notation r{d,e} in a rule indicates
between d and e instances or regular expression r. It has higher pre­
cedence than , but lower than ., f, +, and concatenation. The
character A a.t the beginning or an expression permits a successful
match only immediately after a newline, and the character S at the
end of an expression requires a trailing newline. The character / in
an expression indicates trailing context; only the part or the expres­
sion up to the slash is returned in ,gtezt, but the remainder of the
expression must rollow in the input stream. An operator character
may be used as a.n ordinary symbol ir it is within • symbols or pre­
ceded by,. Thus [a- zA- Zl+ matches a string or letters.

Three subroutines defined as macros are expected: input() to read a
character; unput(c) to replace a character read; and output(c) to
place an output character. They are deCined in terms or the standard
streams, but you can override them. The program generated is
named yylex(), and the library contains a mainO which calls it. The
action REJECT on the right side of the rule causes this match to be
rejected and the next suitable match executed; the function
yymoreO accumulates additional characters into the same yytezt; and
the function yyless(p) pushes back the portion of the string matched
beginning at p, which should be between yytezt and wtezt+ g~eng.
The macros input and output use files yyin and yyout to read from

March 26, lQS4 Page 1

LEX(OP) LEX(CP)

0/ ...
number of transitions is • (3000)

The use of one or more of the .hove automatically implies the - v
option, unless the - n option is used.

See Also

ya.cc(OP)
Xenix SD/tucre Detelopme .. t Gui4e

March 26, 1084 Page 3

LINT(CP) LINT(CP)

The rollowing ar~ments alter lirat', behavior:

- n Does not cheek compatibility against either the standard or the
portable lint library.

- p Attempts to check portability u> other dialects of C.

- llibname
Checks runctions definitions in the 8pecified lint library. For
example, - 1m causes the library llibm.l. to be cheeked.

The - D, - V, and - I options or ee{ CP) are also recopized as
separate arguments.

Certain conventional comments in the C source will change the
beha:vior or la".t:

I*NOTREACHED ·1
At appropriate points stops comments about unreachable
code.

!*VARARGS··I
Suppresses the usual checking Cor variable numbers or argu­
ments in the rollowing function declaration. The data types
or the first. arguments are checked; a missing. is taken u>
be o.

I·ARGSUSED·I
Turns on the - v option for the next function.

!*LINTLIBRARY*I
Shuts oft complaints about unused Cunctions in this file.

Lirat produces its first output on a per source file basis. Complaints
regarding included files are collected and printed after all source files
have been processed. Finally, inrorma.tion gathered from all input
files is collected and cheeked for consistency. At this point, ir it is
not dear whether a complaint stems rrom a given source file or trom
one of its included files, the source filename will be printed followed
by a question mark.

Files

lusr /lib/lint(12] Program files

lusr /lib/llibc.ln, lusr/lib/llibport.ln,
lusr llib/llibdbm.ln, lusr llib/llibtermlib.ln

Standard lint libraries (binary format)

March 24, 1 gS4

lusr /lib/llibm.ln,

Page 2

LORDER (OP) LORDER (CP)

Name

lorder - Finds ordering relation for an object library.

Syntax

lorder file ...

Description

Lortler creates an ordered listing of object filenames, showing which
files depend on variables declared in other files. The file is one or
more object or library archive files (see .r(OP)). The standard out­
put is a list of pairs or object filenames. The first file or the pair
refers to external identifiers defined in the second. The output may
be processed by uort(CP) to find an ordering or a library suitable ror
one-pass access by ltl(OP).

Example

The following command builds a new library from existing .0 files:

ar cr library 'lorder ·.0 I tsort'

Files

·symref, ·symdef Temp files

See Also

ar(OP), Id(OP), tsort(CP)

Notes

Object files whose names do not end with .0, even when contained
in library archives, are overlooked. Their global symbols and refer­
ences are attributed to some other file.

March 24, 1984 Page 1

M-I (CP) Mol (CP)

Macro Calls

Macro calls have the rorm:

name(argl,arg2, ... , argn)

The (must immediately rollow the name or the macro. It a defined
macro name is not followed by a (, it is deemed to have no argu­
ments. Leading unquoted blanks, tabs, and newlines are ignored
while collecting arguments. Potential macro names consist or alpha­
betic letters, digits, and underscore _ where the first character is not
a digit.

. Left and right single· quotation marks are used to quote st.rings. The
value or a quoted string is the string stripped of the quotation marks.

When a macro name is recognized, its arguments are collected by
searching ror a matching right parenthesis. Macro evaluation
proceeds normally during the collection or the arguments, and any
commas or right parentheses which happen to turn up within the
value or a nested call are as effective as those in the original input
~xt. After argument collection, the value or the macro is pushed
back onto the input stream and rescanned.

M-I makes available the following built-in macros. They may be
redefined, but once this is done the original meaning is lost. Their
values are null unless otherwise stated.

define The second argument is installed as the value of the
macro whose name is the first argument. Each
occurrence or S" in the replacement text, where • is a
digit, is replaced by the .-th argument. Argument 0 is
the name or the macro; missing arguments are repla.ced
by the null string; S# is replaced by the number of
arguments; S· is replaced by a list of all the arguments
separated by commas; SO is like S·, but each argument
is quoted (with the current quotation marks).

undeCine Removes the definition or the macro named in its argu­
ment.

defn Returns the quoted definition or its argument(s). It is
useful ror renaming macros, especially built-ins.

pushdef Like define, but saves any previous definition.

popder Removes current definition of its argument(s), expos­
ing the previous one ir any.

irdef If the first argument is defined, the value is the second
argument, otherwise the third. It there is no third
argument, the value is null. The word XENIX· is
predefined in M-I.

March 24, 1984 Page 2·

M4 (CP)

len

index

substr

translit

include

M4 (CP)

radix for the resultj the default is 10. The third argu­
ment may be used 00 specify the minimum number of
digits in the result.

Returns the num ber of characters in its argument.

Returns the position in its first argument where the
second argument begins (zero origin), or - 1 if the
second argument does not occur.

Returns a substring of its first argument. The second
argument is a zero origin number selecting the first
characterj the third argument indicates the length of
the substring. A missing third argument is taken to be
large enough 00 extend to the end of the first string.

Transliterates the characters in its first argument rrom
the set given by the second argument to the set given
by the third. No abbreviations are permitted.

Returns the contents of the file named in the argu­
ment.

sinclude Identical to include, except that it says nothing if the
file is in accessible.

syscmd Executes the XENIX command given in the first argu­
ment. No value is returned.

sysval Is the return code from the last call to 'YlCmd.

maketemp Fills in a string of XXXXX in its argument with the
current process 10.

m4exit Causes immediate exit from mi. Argument 1, if given,
is the exit codej the default is O.

m4wrap Argument 1 will be pushed back at final EOFj example:
m4wrap('cleanup() 1

errprint Prints its argument on the diagnostic output file.

dumpdef Prints current names and definitions, for the named
items, or for all if no arguments are given.

traceon With no arguments, turns on tracing for all macros
(including built-ins). Otherwise, turns on tracing for
named macros.

traceoff Turns off trace globally and for any macros specified.
Macros specifically traced by traceon can be untraced
only by specific calls to trace oJ!.

March 24, 1984 Page 4

AfAXE (CP) MAKE (CP)

- q Question. The make command returns a zero or
nonzero status code depending on whether the target
file is or is not up-to-date .

• DEFAULT If a file must be made but there are no explicit com­
mands or relevant built-in rules, the commands associ­
ated with the name .DEFAULT are used iC it exists .

• PRECIOUS Dependents oC this target will not be removed when
quit or interrupt are hit.

• SILENT Same effect as the - 8 option .

. IGNORE Same effect as the - i option .

Make executes commands in makefile to update one or more target
name,. Name is typically a program. IC no - r option is present,
makefile, Makeflle, s.makefile, and s.Makefile are tried in order.
If makefile is - , the standard input is taken. More than one - r
makefile argument pair may appear.

Make updates a target only if it depends on files that are newer than
the target. All prerequisite files of a target are added recursively to
the list of targets. Missing files are deemed to be out of date.

Makefile contains a sequence of entries that specify dependencies.
The first line of an entry is a blank-separated, nonnulllist of targets,
then a :, then a (possibly null) list of prerequisite files or dependen­
cies. Text following a ; and all following lines that begin with a tab
are shell commands to be executed to update the target. The first
line that does not begin with a tab or # begins a new dependency or
macro definition. Shell commands may be continued across lines
wit.h the <backslash><newline> sequence. (#) and newline sur­
round comments.

The following makefile says that pgm depends on two files a.o and
b.o, and that they in turn depend on their corresponding source files
(a.c and b.c) and a common file incl.h:

pgm: a.o b.o
cc 30.0 b.o - 0 pgm

a.o: incl.h a.c
cc - c a.c

h.o: incl.h h.c
cc - c b.c

Command lines are executed one at a time, each by its own shell. A
line is printed when it is executed unless the - s option is present,
or the entry . SILENT: is in makefile, or unless the first character of
the command is @. The - n option specifies printing without execu­
tion; however, if the command line has the string $(MAKE) in it, the

March 24, 1984 Page 2

MAKE (CP) A/AKE (CP)

.ub6tf. Strings (for the purposes of this type of substitution) are
delimited by blanks, tabs, newline characters, and beginnings of
lines. An example of the use of the substitute sequence is shown
under Libro.rie,.

Intemo.l M o.cro,

There are five internally maintained macros which are useful for
writing rules for building targets:

S· The macro S· stands for the filename part or the current
dependent with the suffix deleted. It is evaluated only for
inrerence rules.

SO The $0 macro stands ror the rull target name of the current
target. It is evaluated only ror explicitly named dependencies.

$< The $< macro is only evaluated for inference rules or the
.DEFAULT rule. It is the module which is out of date with
respect to the target (i.e., the "manufactured" dependent
filename). Thus, in the .c.o rule, the $< macro would evalu­
ate to the .c file. An example for making optimized .0 files
from .c files is:

.c.o:
cc - c - 0 $*.c

or:

.c.o:
cc - c - 0 $<

$! The $! macro is evaluated when explicit rules from the
makefile are evaluated. It is the list of prerequisites that are
out of date with respect to the target; essentially, those
modules which must be rebuilt.

$% The $% macro is only evaluated when the target is an archive
library member or the form lib{file.o). In this case, $0 evalu­
ates to lib and $%evaluates to the library member, file.o.

Four ot the five macros can have alternative forms. When an upper
case D or F is appended to any of the four macros the meaning is
changed to "directory part" for D and "file part" for F. Thus,
$(@ D) refers to the directory part of the string $@. If there is no
directory part .f is generated. The only macro excluded from this
alternative form is $! .

Sulfize3

Certain names (for instance, those ending with .0) have derault

March 24, 1984 Page 4

MAKE (CP) MAKE(CP)

This is beca.use ma.ke has a set of in~mal rules Cor building files.
The user may add rules to this list by simply putting them in the
mdefile.

Certain macros are used by the default inference rules to permit the
inclusion of optional matter in any resulting commands. For exam­
ple, CFLAGS, LFLAGS, and YFLAGS are used tor compiler options to
ee(CP) , lez(CP) , and '4CC(CP) respectively. Again, the previous
method Cor examining the current rules is recommended.

The inference of prerequisi~s can be controlled. The rule to create
a file with suffix .0 from a file with suffix .c is specified as an entry
with .c.o: as the target and no dependents. Shell commands associ­
a~d with the target define the rule for making a .0 file from a.c file.
Any target that has no slashes in it and starts with a dot is identified
as a rule and not as a true target.

Librtlf;e,

If a target or dependency name contains parentheses, it is assumed
to be an archive library, the string within parentheses referring to a
member within the library. Thus lib(fUe.o) and $(LlB)(flle.o) both
refer to an archive library which contains flle.o. (This assumes the
LIB macro has been previously defined.) The expression
$(LIB)(fllel.o flle2.0) is not legal. Rules pertaining to archive
libraries have the form .XX.a where the XX is the suffix Crom which
the archive member is to be made. An unfortunate byproduct or the
current implementation requires the XX to be different from the
suffix of the archive member. Thus, one cannot have lib(file.o)
depend upon flle.o explicitly. The most common use of the arehive
interface follows. Here, we assume the source files are all C type
source:

lib: lib(file 1.0) lib(file2.0) lib (file3.0)
@ echo lib is now up to date

.C.a:
$(CC) - c $(CFLAGS) $_<
ar rv $@ $*.0
rm -f $*.0

In fact, the .c.a rule listed above is built into ma.ke and is unneces­
sary in this example. A more interesting, but more limited exa.mple
of an archive library maintenance construction follows:

lib: lib(file1.o) lib(file2.o) lib(file3.0)
$(CC) - c $(CFLAGS) $(1 :.o=.c)
ar rv lib $1
rm $1 @ echo lib is now up to date

.c.a:j

Here the substitution mode of the macro expansions is used. The
$! list is defined to be the set of object filenames (inside lib) whose

March 24, 1984 Page 6

AfKSTR (CP) MKSTR (CP)

Name

mkstr - Creates an error message file from C source.

Syntax

mkstr [-] message file prefix file .. ,

Description

Mk,tr is used to create files of error messages. Its use can make pro­
grams with large numbers of error diagnostics much smaller, and
reduce system overhead in running the program as the error mes­
sages do not have to be constantly swapped in and out.

Mk,tr will process each specified file, placing a massaged version of
the input file in a file whose name consists of the specified prefiz and
the original name. The optional dash (-) causes the error messages
to be placed at the end of the specified message file for recompiling
.part of a large mk,tred program.

A typical mk,tr command line is

mkst.r pistrings xx *.c

This command causes a.ll the error messages from the C source files
in the current directory to be placed in the file pi,tring, and processed
copies of the source for these files to be placed in files whose names
are prefixed with zz.

To process the error messages in the source to the message file,
mk,tr keys on the string 'error('" in the input stream. Each time it
occurs, the C string starting at the ,II' is placed in the message file
followed by a null character and a newline character; the null cha.rac­
ter terminates the message so it can be easily used when retrieved,
the newline character makes it possible to sensibly cat the error mes­
sage file to see its contents. The massaged copy of the input file
then contains a l,eek pointer into the file which can be used to
retrieve the message. For example, the command changes

error{"Error on reading", 302, 3.3, 304);

into

error(m, 302, 3.3, 304) j

where m is the seek position of the string in the resulting error mes­
sage file. The programmer must create a. routine error which opens
the message file, reads the string, and prints it out. The following
example illustrates such a routine.

March 24, 1984 Pa.ge 1

Nlrl(CP) NM(CP)

Name
nm - Prints name list.

Syntax
om r -gnoOprucv 1 r file ... 1

Description
nm prints the name list (symbol table) of each object file in the
argument list. If an argument is an archive, a listing for each
object file in the archive will be produced. If no file is given, the
symbols in x.out are listed.

Each symbol name is preceded by its value in hexadecimal (blanks
if undefined) and one of the letters U (undefined), A (absolute), T
(text segment symbol), D (data segment symbol), B (bss segment
symbol), or C (common symbol). If the symbol is local (non­
external) the type letter is in lowercase. The output is sorted
alphabetically.

Options are:

-g Print only global (external) symbols.

-D

-0

-0

-p

-r

-u

-c

-v

Files
x.out

See Also

Sort numerically rather than alphabetically.

Prepend file or archive element name to each output line
rather than only once.

Print symbol values in octal.

Don't sort; print in symbol-table order.

Sort in reverse order.

Print only undefined symbols.

Print only C program symbols (symbols which begin with
'_') as they appeared in the C program.

Also describe the object file and symbol table format.

Default input file

ar(CP), ar(F), x.out(F)

May 10, 1984 Page 1

PRS (CP) PRS (OP)

Name

prs - Prin ts an sees tile.

Syntax

pI'S [- d[dataspec]J [- r[SID]] [- eJ [- 1] [- a] riles

Description

P,., prints, on the standard output, all or part of an sees tile (see
.cc./ile(F)) in a user supplied format. Ir a directory is named, ",.,
behaves as though each file in the directory were specified as a
named rile, except that nonSeeS files (last component of the path­
name does not begin with s.), and unreadable files are silently
ignored. Ir a name of - is given, t.he standard input is read; each
line oC the standard input is taken to be the name or an sees file or
directory to be processed; nonSeeS tiles and unreadable riles are
silently ignored.

Arguments to pr', which may appear in any order, consist of
options, and tilenames.

All the described options apply independently to each named tile:

- d(data,pte] Used to specify the output data specification. The
dattJIpec is a string consisting of sees file tlata key­
word, (see Dots Keytl1ord,) interspersed with optional
user-supplied text.

- r[SID] Used to specify the Sees IDentification (SID) string
of a delta for which information is desired. It no
SID is specified, the SID of the most recently created
delta is assumed.

- e Requests information for all deltas created urlier
than and including the delta designa.ted via the - r
option.

- I Requests information for all·deltas created later than
and including the delta designated via the - r
option.

- a Requests printing of inCormation for both removed,
i.e., delta type == R, (see rmdel(CP)) and existing,
i.e., delta type == D, deltas. It the - a option is not
specified, information for existing deltas only is pro­
vided.

March 24, 1984 Page 1

PRS (CP) PRS(CP)

TABLE 1. sees Files Data Keywords
Ke!/fDoriData Item Fie Sectiofl Value Formal

:Dt: Delta information Delta Table 8ee below. 8
:DL: Delta line statistics :Li:/:Ld:/:Lu: 8
:Li: Linea inserted by Delta Dnnnn 8
:Ld: Lines deleted by Delta DnnnD 8
:Lu: Lines unchanged by Delta DnnnD 8
:DT: Delta type DorR 8

:1: SCCS ID string (SID) :R:.:L:.:B:.:S: 8
:R: Releasenum ber nnDn 8
:L: Level number DDnn 8
:B: Branch number DnDn 8
:S: 8equence number nDnn 8
:D: Date Delta created :Dy:/:Dm:/:Dd: 8
:Dy: Year Delta created DD 8
:Dm: MODth Delta created DD 8
:Dd: Day Delt.a created DD 8
:T: TIme Delta created :Th:::Tm:::Ts: 8
:Th: Hour Delta created DD 8
:Tm: Minutes Delta created DD 8
:Ts: 8econds Delta crea.ted DD 8
:P: Programmer who crea.ted Delta lopame 8

:D8: Delta sequence number DDDD S
:DP: Predecessor Delta seq-DO. DnDn S
:DI: Seq-no. of deltas incl., ucl., ipored :DD:/:Dx:/:Dg: S
:Dn: Deltas included (seq #) :D8: :D8: ••• 8
:Dx: Deltl.s excluded (seq #) :D8: :D8: ••• 8
:Dg: Delta.s ignored (seq #) :D8: :D8: ••• 8
:MR: MR numbers for delta text hi
:C: Comments for delta text M

:UN: User names User Names text M
:FL: Flag list Flap text M
:Y: Module type flag » text 8

:MF: MR validation flag ge. or flO 8
:MP: MR validation pgm name text 8
:KF: Keyword error/wal1ling flag gel or no 8
:BF: Branch flag gel or flO 8
:J: Joint edit flag gel or no 8

:LK: Locked releases :R: ••• 8
:Q: User defined keyword text 8
:M: Module name text 8
:FB: Floor boundary :R: 8
:CB: Ceiling boundary :R: 8
:Ds: Default 8ID :1: S
:ND: Null delta flag ge. or no 8
:FD: File descriptive text Comments text M
:BD: Body Body text M
:GB: Gotten body " text M
:W: A form of tIIhat(C) string N/A :Z::M:\t:l: 8
:A: A form of tl/hot(C) string N/A :Z::Y: :M: :I::Z: 8
:Z: what(e) st.ring delimiter N/A @(#) ·8
:F: SCCS filename N/A text 8

:PN: sees file pathname N/A text 8

• :Dt: = :DT: :1: :D: :T: :P: :DS: :DP:

Page 3

RANU8(CP) RANU8(CP)

Name
ranlib - Converts archives to random libraries.

Syntu
ranUb archive ...

Description
Ranlib converts each archive to a form that can be loaded more
rapidly by the loader, by adding a table of contents named
_SYMDEF to the beginning of the archive. It uses ar(CP) to
reconstruct the archive, so sufficiem temporary file space must be
available in the file system containing the current directory.

See Also
Id(CP), ar(CP), copy(C), seUime(C)

Notes
Because generation of a library by or and randomization by ran/ib
are separate, phase errors are possible. The loader Id warns when
the modification date of a library is more rec:ent than the creation
of its dictionary; but this means you get the warning even if you
only copy the library. On XENlX 68K use of ranlib is optional.

May 10, 1984 Page 1

RATFOR (CP) RATFOR (CP)

Include:
include filename

The option - h causes quo~d strings to be turned into 27H con­
structs. - C copies comments to the output, and attempts to format
it neatly. Normally, continuation lines are marked with an t in
column 1; the option - 6x makes the continuation charac~r x and
places it in column 6.

March 26, U.l84 Page 2

RAIDEL (CP) RMDEL (CP)

Name

rmdel - Removes a. delta. from an sees file.

Syntax

rmdel - rSID fi Ie s

Description

Rmdel removes the delta specified by the SID from each named sees
file. The delta to be removed must be the newest (most recent)
delta in its branch in the delta chain of each named sees file. In
addition, the SID specified must Rot be that of a version being edited
for the purpose of making a delta. That is, if a p-file exists for the
named sees file, the SID specified must Rot appear in any entry of
the p-filet see get(CP)).

It a directory is named, rmdel behaves as though each file in the
directory were specified as a named file, except that nonSeeS files
(last component of the pathname does not begin with s.) and
unreadable files are silently ignored. If a name of - is given, the
standard input is read; each line of the standard input is taken to be
the name of an sees file to be processed; nonSeeS files and unread·
able files are silently ignored.

Files

x-file See delta { CP)

z·file See delta (CP)

See Also

delta(CP), get(CP), help(CP), prs(CP), sccsfile(F)

Diagnostics

Use help(CP) for explanations.

Ma.rch 24, 1984 Page 1

SCCSDIFF (CP) SCCSDIFF (CP)

Name

sccsdifT - Compares two versions of an sees file.

Syntax

sccsdiff- rSlDl- rSlD2 (- p) (- sn) files

Description

Sccldiif compares two versions of an sees file and generates the
differences between the two versions. Any number of sees files
may be specified, but arguments apply to all files.

- rSID'l S1D1 and SIDe specify the deltas of an sees file that are
to be compared. Versions are passed to bdiif(C) in the
order given.

- p Pipe output ror each file through pr{C).

- 8ft n. is the file segment size that bdiif will pass to Iliff(C).
This is useful when diif fails due to a high system load.

Files

/tmp/get!!?!! Temporary files

See Also

bdiff(C), get(CP), help{ CP), pr(C)

Di a,gn os tics

rile: No differen.ce, If the two versions are the same.

Use help(CP) for explanations.

March 24, 1984 Page 1

SPLINE (CP) SPLINE(CP)

Name

spline - Interpolates smooth curve.

Syntax

spline [option] ...

Description

Spline takes pairs or num bers rrom the standard input as abcissas a.nd
ordinates or a runction. It produces a similar set, which is approxi­
mately equally spaced a.nd includes the input set, on the standard
output. The cubic spline output has two continuous derivatives, a.nd
enough points to look smooth when plotted.

The rollowing options are recognized, each asa separate argument.

- a Supplies abscissas automatically (they are missing Crom the
input); spacing is given by the next argument, or is assumed to
be 1 ir next argument is not a number.

- k The constant It used in the boundary value computation

y; =ky~, ... , y;=kY;_l

is set by the next argument. By derault It == o.

- n Spaces output points so that approximately n intervals occur
between the lower and upper %limits. (DeCault n == 100.)

- p Makes output periodic, i.e. matches derivatives at ends. First
a.nd last input values should normally agree.

- x Next 1 (or 2) arguments are lower (a.nd upper) % limits. Nor­
mally these limits are calculated rrom the data. Automatic
abcissas start at lower limit (de Ca.u It 0).

Diagnosties

When data is not strictly monotone in z, Ipline reproduces the input
without interpolating extra points.

Notes

A limit or 1000 input points is silently enrorced.

March 26, 1984 Page 1

STRIP { CP) STRIP (CP)

Name

strip - Removes symbols and relocation bits.

Syntax

strip name ...

Description

Stnp removes the symbol table and relocation bits ordinarily attached
00 the output of the assembler and link edioor. This is useful ror
saving space after a program has been debugged.

The effect or 'tnp is the same as use of the - 8 option of Id.

If name is an archive rile, ,tn·p will remove the 10caJ symbols trom
any a. out format riles it rinds in the archive. Certain libraries, such
as those residing in /lib, have no need for 10caJ symbols. By delet­
ing them, the size or the archive is decreased and link editing perfor­
mance is increased.

Files

/tmp/stm* Temporary rile

See Also

Id(CP)

March 26, 1984 Page 1

TSORT(CP) TSORT(CP)

Name

tsort - Sorts a file topologically.

Syntax

taort (file 1

Description

T,ort produces on the standard output a totally ordered list of items
consistent with a partial ordering of items mentioned in the input
file. If no file is specified, the standard input is understood.

The input consists of pairs of items (nonempty strings) separa~d by
blanks. Pairs of different items indicate ordering. Pairs of identical
items indicate presence, but not ordering.

See Also

lorder(CP)

Diagnostics

Odd data: There is an odd number of fields in the input file.

Notes

The ,ort algorithm is quadratic, which can be slow if you have a large
input list.

March 24, 1984 Page 1

VAL (CP) VAL (CP)

Name

val - Valida.tes an sees file.

Syntax

val-

val [- s] [- rSID] [- mname] (- ytype] files

Description

v'td determines if the specified file is an sees file meeting the
chara.cteristics specified by the optional argument list. Arguments to
flal may appear in any order. The arguments consist of options,
which begin with a - , and named files.

Ved has a special argument, - , which causes reading of the standard
input until an end-or-file condition is detected. Each line read is
independently processed as if it were a command line argument list.

Val generates diagnostic messages on the standard output for each
command line and file processed and also returns a single 8-bit code
upon exit as described below.

The options are defined as follows. The effects of any option apply
independently to each named file on the command line:

-8

- rSID

- mn4me

- yt1lpe

March 24, 1984

The presence of this argument silences the diagnos­
tic message normally generated on the standard out­
put ror any error that is detected while processing
each named file on a given command line.

The argument value SID (Sees IDentification
String) is an sees delta number. A check is made
to determine if the SID is ambiguous (e. g., rl is
ambiguous because it physically does not exist but
implies 1.1, 1.2, etc. which may exist) or invalid (e.
g., rI.O or rl.l.O are invalid because neither case
can exist as a valid delta. number). If the SID is
valid and not ambiguous, a check is made to deter­
mine if it actually exists.

The argument value n4me is compared with the
sees ~f% keyword in file.

The argument va.lue t,lpe is compared with the sees
%Y% keyword in file.

Page 1

XREF(CP) XREF(CP)

Name

xref - Cross-references C programs.

Syntax

xrel (file ...]

Description

Xre! reads the named filet or the standard input if no file is specified
and prints a cross reference consisting of lines of the form

identifier filename line numbers ...

Function definition is indicated by a plus sign (+) preceding the line
number.

See Also

cref(CP)

March 24, 1984 Page 1

XSTR (CP) XSTR (CP)

ec - E name.c Ixstr - c-
cc - e x.c
mv x.o name.o

X.tr does not touch the file ,tn·ng. unless new items are added, thus
m4ke can avoid remaking ZI.O unless truly necessary.

Files

strings Data. base of strings

x.c Massaged C source

xS.c C source for definition of array "xstr"

/tmp/xs· Temp file when "xstr name" doesn't touch ,tring'

See Also

mkstr(CP)

Credit

This utility was developed at the University of California at Berkeley
and is used with permission. .

Notes

If a string is a suffix of another string in the data base, but the
shorter string is seen first by ·zItr 1 both strings will be placed in the
data base when just placing the longer one there will do.

March 24, 1984 Page 2

YACC(CP) YACC(CP)

Diagnostics

The number or reduce-reduce and shirtrreduce conrIicts is reported
on the standard output; a more detailed report is round in the
y.output file. Similarly, ir some rules are not reachable rrom the
start symbol, this is also reported.

Notes

Because filenames are rixed, at most one 1I4tc process can be active
in a given directDry at a time.

March 26, 1984 Page 2

CONTENTS

intro

a64I,I64a

abort
abs
access
acct

alarm
assert
atof, atoi, atol
be ssel,jO,jI ,jn,
yO,yl,yn
bsearch
chdir
chmod
chown

chroot
chsize
close
conv, toupper,
tolower, toascii
creat

creatsem

crypt, setkey, encrypt
ctermid

ctime,locahime,
gmtime, asctime.
tzset
ctype, isaJpha,
isupper, islower.
isdigit, isxdigit.
isalnum, isspace,
ispunct, isprint.
isgraph. iscntrl.
isascii
curses

cuserid
dbm, dbminit, fetch.
store. delete.
firstkey, nextlcey

System Services (S)

Introduces system services and
errer numbers
Converts between long integer and
base 64 ASCll
GeneratesanlOT fauk

Returns an integer absolute value
Determines accessibility of a file
Enablesordisablesprocess
accounting
Sets a process' alarm clock
Helps verify validity ofprograms
Converts ASCll to numbers

Perfcrms Bessel functions
Performs a biruuy search
Changes the working directory
Changesmodeof a file
Changes the owner and grwp
ofafile
Changestherootdirectory
Changes the sizeofa file
Closes a file descriptor

Translates characters
Creates a new file or rewrites an
existing one
Creates an instance of a
binary semaphore
Performs encryption functions
Generates a filename fer
a terminal

Converts date and time to ASCll

Classifies characters
Performs screenand cursor
functions
Reads default entries

Performs database functions

l-i

i3tol.ltot3

link
lock
locking

logname
lsearch
lseek
malloc. free.
realloc. calloc
mknod

mktemp
monitor
mount
nap

nice
nlist
open
opensem
pause

perror. sys..errlist.
sys..nerr. ermo
pipe
popen. pelose
printf. fprintf. sprintfFormatsoutput
profil
ptrace
putc. putchar.
fputc.putw

putpwent
puts.fputs
qsort
rand.srand
rdchk

read
regex. regcmp

regexp

sbrk

scanf. fscanf. sscanf
sdenter. sdleave

sdget

Converts between 3-byte integers and
long integers
Links a file to an existing file
Locks a process in primary memory
Locks a file region for
reading or writing
Finds login name of user
Pedorms linear search and update
Movesreadlwritefilepointer

Allocates main memory
Makes a directory. or a special
orordinary file
Makes a unique filename
Prepares execution profile
Mounts a file system
Suspends execution fora short
interval
Otanges priority of a process
Gets entries from name list
Opens file forreading or writing
~nsasentaphore
Suspends a process until a signal
occurs

Sends system errormessages
Creates an interprocess channel
Initiates 110 to or from a process

Createsan execution time profile
Traces a process

Putsacharacterorwordona
stream
Writes a file password entry
Puts a stringona stream
Performs a sort
Generates a random number
Checks to see if there is
datato be read
Reads fran a file
Cmlpiles and executes regular
expressions
Pedormsregular expression compile
and match functions
Changesdatasegnnentspace
allocation
Converts and formats input
Synchronizes access to a shared
data segnnent
Attaches and detaches a shared
datasegnnent

I-iii

wait

waitsem. nbwaitsem

write
xliSl. fxlist

modification times
Waits for a child process to
stop or terminate
Awaits and checksaccessto
a resource goverened by
a semaphore
Writes toa file
Getsoame listentries from files

I-v

Index

Absolute value, integer _____________ ftbs
Absolute value, real floor
Accrunting acet
acos function trig
Alarm clock alarm
asctime function dime
asin function trig
atan function trig
atan2 function trig
atoi function atol
atol function ator
Binary search bsearcb
brkfunction sbrk
cabs function bypot
calloc function maDoc
ceil function Boor
Characters. classification ctype
clearerr function ferror
Conversion, 3-byteintegersand long integers 13to1
Conversion, byte swapping swab
Conversion, date aJKI time toASrn etime
Conversion, integer and base 64 ASCII a641
Conversion, ASCll to numbers. atol
Conversions, output eevt
Conversions, real to mantissa and exponent frexp
Conversions, toASCll characters eonv
cos function trig
cosh function sinb
Database, functions dbm
dbminit function dbm
Defauh entries defopen
defread function defopen
delete function dbm
Devices, controls ioefl
dup2function dup
encrypt function erypt
Encryption erypt
endgrentfunction getgrent
endpwent function getpwent
Environment, value getenv
errnovariable perror
Error messages perror
Error numbers intro
exeel function exec:
execle function exec:
execlp function exec:

fputcfunction _______________ puk

fputs function puts
free function malloc
freopen function ropen
fscanffunction scani'
fstatfunction stat
ftellfunction rseek
ftime function time
~efunction rread
fxlistfunction sl6t
gcvt function ecvt
getchar function gek
getegid getuid
geteuid getuid
getgid getuid
getgrgid function getgrent
getgrnam fuIrtion getgrent
getpgrp function getpid
getppid function getpid
getpwnamfunction getpwent
getpwuid function getpwent
getw function gek
gmtime function ctime
Group, file entries getgrent
gsignal function ssignal
isalnum function dype
isalpha fuIrtion dype
isascii function dype
isatty function ttyname
iscntrl function dype
isdigitfunction dype
isgraph function ctype
islower function dype
isprint function dype
ispunct function dype
isspacefunction dype
isupper function ctype
isxdigitfunction dype
jO fuIrtion bessel
jl fum:tion bessel
jn fum:tion bessel
164a function a64I
Idexp function rrexp
Library names intro
Library. screen and curS<X' functions curses
Library, standard input and output stdio
Linear search lsearcb
localtimefunction dime

putcharfunction ______________ putc
putw function pute
Random numbers rand
reallocfunction maDoc
regcmp function regex
Regularexpressions regex
rewind function fseek
Root directory chroot
sdfree function selget
sdleave function scienter
sdwaitv function sdgetv
Semaphore, creation creatsem
Semaphore, opening opensem
Semaphore, signaling sigsem
Semaphore, waiting forresource waitsem
setgid function setuid
setgrent function getgrent
setkey function crypt
setpwenl function getpwent
Shared data, attaching and detaching sdget
Shareddata,enteringandleaving sdenter
Shared data, sychronized access sdgetv
Signal, processing signal
Signal, software ssignaJ
sin function trig
Sorting qsort
sprintffunction prinU'
~function 8p
srand function raDCl
s~mUfunction ~~
store function dbm
strcatfunction string
strchrfunction string
strcmp function string
strcpy function string
strcspn function string
strdup function string
Stream, buffered input and output fread
Stream. buffers setbuC
Stream. character input gete
Stream, character output pule
Stream. closing and flushing rclose
Stream, formatted input sca~
Stream, formatted output prinU'
Stream. opening ropen
Stream, repositioning rseek
Stream, returning character to ungetc
Stream, string input gets

INTRO (S) INTRO(S)

Name

intro - Introduces system services, library routines and error
numbers.

Syntax

finclude <ermo.h>

Description

This section describes all system services. System services include
all routines or system calls that are available in the operating system
kernel. These routines are available to a C program automatically as
part or the standa.rd library libc. Other routines are available in a
variety or libraries. On 8086/88 and 286 systems, versions for
Small, Middle, and Large model programs are provided (that is,
three or each library).

To use routines in a program that are not part of the standard library
libc, the appropriate library must be linked. This is done by specify­
ing - IntJme to the compiler or linker, where nam.e is the name listed
below. For example - 1m, and - ltermcap are specifications to the
linker to search the named libraries for routines to be linked to the
object module. The names or the available libraries are:

c The standard library containing all system call interraces,
Standard I/O routines, and other general purpose services.

m The standard math library.

termcap Routines ror accessing the termcap data base describing ter­
minal characteristics.

curses Screen and cursor manipulation routines.

dbm Data base management routines.

Most services that are part or the operating system kernel have one
or more error returns. An error condition is indicated by an other­
wise impossible returned value. This is almost always - 1; the indi­
vidual descriptions speciry the details. An error number is also
made available in the external variable ermo. Ermo is not cleared
on successful calls, so it should be tested only after an error has
been indicated.

All or the possible error numbers are not listed in each system call
description because many errors are possible ror most or the calls.
The following is a complete list or the error numbers and their
names as defined in <error.h>.

Ma.rch 24, 1984 Page 1

INTRO(S) INTRO (S)

12 ENOMEM Not enough space
During an tZU, or ebrk, a program asks tor more space than the
system is able to supply. This is not a temporary condition; the
maximum space size is a system parameter. The error ma.y also
occur if the arrangement of text, data., and stack segments
requires too many segmentation registers, or if there is not
enough swap space during a /ork.

13 EACCES Permission denied
An attempt was made to access a file in a way forbidden by the
protection system.

14 EFAULT Bad address
The system encountered a ha.rdware fault in attempting to use
an argument of a system call.

15 ENOTBLK Block device required
A non block file was mentioned where a block device was
required, e.g., in mount.

16 EBUSY Device busy
An attempt to mount a device that was already mounted or an
attempt was made to dismount a device on which there is an
active file (open file, current directory, mounted-on file, active
text segment). It will also occur it an a.ttempt is made to enable
accounting when it is already enabled.

17 EEXIST File exists
An existing file was mentioned in an inappropriate context, e.g.,
link.

18 EXDEV Cross-device link
A link to a file on another device was attempted.

lQ ENODEV No such device
An attempt was made to apply an inappropriate system call to a
device; e.g., read a write-only device.

20 ENOTDIR Not a directory
A nondirectory was specified where a directory is required, ror
example in a path prefix or as an argument to chdir(S).

21 EISDIR Is a directory
An attempt to write on a directory.

22 EINVAL Invalid argument
Some invalid argument (e.g., dismounting a nonmounted dev­
ice; mentioning an undefined signal in eign41, or kill; reading or
writing a file for which leeek has generated a negative pointer).
Also set by the math functions described in the (S) entries or
this manual.

March 24, lQ84 Page 3

INTRO(S) INTRO (S)

between processes vying for control of that region.

37 ENOTNAM Not a name file
A creat"em(S), open"em(S), wait6em(S), or ,i",em(S) was issued
using an invalid semaphore identifier.

38 ENA VAIL Not available
An open6em(S), wait"em(S) or ,ig,em(S) was issued to a sema­
phore that has not been initialized by a call to cre4teem(S). A
,i""em was issued to a semaphore out of sequence; i.e., berore
the process has issued the corresponding w4iteem to the sema­
phore. An nbw4it,em was issued to a semaphore guarding a
resource that is currently in use by another process. The sema­
phore on which a process was waiting has been lert in an incon­
sistent state when the process controlling the semaphore exits
without relinquishing control properly; i.e., without issuing a
w4iteem on the semaphore.

aQ EISNAM A name file
A name file (semaphore, shared data, etc.) was specified when
not expected.

Definitions

PrOte6' /D

Each active process in the system is uniquely identified by a positive
integer called a process ID. The range or this ID is rrom 0 to 30,000.

Parent Prote'" ID

A new process is created by a currently active process; see fork (S).
The parent process ID of a process is the process 10 of its creator.

PrOte6' Group ID

Each active process is a mem ber or a process group that is identified
by a positive integer called the process group 10. This 10 is the pro­
cess ID or the group leader. This grouping permits the signaling or
related processes; see kill(S).

TIy GrouplD

Each active process can be a member of a. terminal group that is
identified by a positive integer called the tty group ID. This grouping
is used to terminate a group of related process upon termination of
one of the processes in the group; see ezit(S) and 'ign41(S).

March 24, lQ84 Page 5

· INTRO(5) INTRO(S)

Pathname anti Path Prefiz

A pathname is a null-terminated character string starting with an
optional slash (/), followed by lero or more directory names
separated by slashes, optionally followed by a filename. A filename
is a string of 1 to 14 characters other than the ASCII slash and null,
and a directory name is a string of 1 to 14 characters (other than the
ASCII slash and null) naming a directory.

If a pathname begins with a slash, the path search begins at the root
directory. Otherwise, the search begins trom the current working
directory.

A slash by itself names the root directory.

Unless specifically stated otherwise, the null pathname is treated as if
it named a nonexistent file.

Diretto",

Directory entries a.re called links. By convention, a directory con­
tains at least two links, • and •• , rererred to as tlot and tlot-dot respec­
tively. Dot refers to the directory itseIr and do~dot refers to its
parent directory.

Root Directo", tlntl Current Work in, Directo,.,

Each process has associated with it a concept ot a root directory and
a current working directory for the purpose ot resolving pathname
searches. A process' root directory need not be the root directory ot
the root file system. See droot(C) and ehroot(S).

Rea.d, write, and execute/search permissions on a fiJe are granted to
a process if one or more of the following are true:

The process' effective user 1D is super-user.

The process' effective user 10 matches the user 10 of the owner
of the file and the appropriate access bit of the "owner" portion
(0700) of the file mode is set.

The process' effective user 10 does not match the user 10 of the
owner of the file, and the process' group 10 matches the group
of the file and the appropriate access bit of the "group" portion
(070) of the file mode is set.

The process' effective user 10 does not match the user ID of the
owner of the file, and the process' effective· group 10 does not

March 24, 1984 Page 7

A64L (S) A64L (S)

Name

&641, 16430 - Converts between long integer and base 64 ASCII.

Syntax

long a641 (s)
char ·8;

char ·164a (I)
long 1;

Description

These routines are used to maintain numbers stored in base 64
ASCII. This is a notation by which long integers can be represented
by up to six chara.cters; each character represents a "digit" in a radix
64 notation.

The characters used to represent "digits" are . for 0, / for 1, 0
through g for 2 through 11, A through Z for 12 through 37, and a
through z for 38 through 63.

A641 takes a pointer to a null-terminated base 64 representation and
returns a corresponding long value. L644 takes along argument and
return,s a pointer to the corresponding base 64 representation.

Notes

The value returned by 1644 is a pointer into a static buffer, the con­
tents of which are overwritten by each call.

March 24, 1 984 Page 1

ABS (S)

Name

abs - Returns an inreger absolure value.

Syntax

int a.be (i)
int i;

Description

AbI returns the absolure value or its inreger operand.

See Also

labe in floor(S)

Notes

ABS(S)

If the largest negative integer supported by the hardware is given,
the runction returns it unchanged.

March 24, 1984 Page 1

ACCESS(S) ACCESS (S)

Return Value

Ir the requested access is permitted, a value or 0 is returned. Other­
wise, a value or - 1 is returned and tfTftO is set to indica.te the error.

See Also

chmod(S), stat(S)

No~

The super-user (root) ma.y access any file, regardless or permission
settings.

March 24, 1984 Pa.ge 2

AGGT(S} AGOT(S)

PotA points to an illegal address. !EFAULT!

Retum Value

Upon successrul completion, a value or 0 is returned. Otherwise, a
value or - 1 is returned and ermo is set to indicate the error.

See Also

accton(C), accteom(C), acct(F)

March 24, 1084 Page 2

ASSERT(S) ASSERT(S)

Name

assert - Helps verify validity or program.

Syntax

,include <assert.h>

assert (expression);

Description

This macro is useful for putting dia.gnostics into programs under
development. When it is executed, if ezpre",on is false, it prints

Assertion failed: file "ame, line nn"

on the standard error file and exits. Name is the source filename
and n"" the source line number of the .IIert statement.

Nota

To suppress calls to allert, use the option "- DNDEBUG" when
compiling the program; see ee(CP)).

March 24, 1984 Page 1

BESSEL (8) BESSEL (8)

Name

bessel, jO, jl, jn, yO, yl, yn - Performs Bessel functions.

Syntax

,include < math.h>

doublejO (x)
double X;

doublejl (x)
double X;

double jn (n, x);
double X;

double yO (x)
double x;

double yl (x)
double x;

double yn (0, x)
iot 0;
double x;

Description

These functions calculate Bessel functions of the first and second
kinds for real arguments and integer orders.

Notes

Negative arguments cause ,0, ,1, and ,,, to return a huge negative
value.

Ma.rch 24, 1984 Page I

OHDIR (S)

Name

chdir - Changes the working directory.

Syntax

int ehdir (path)
char ·path;

Description

OHDIR (S)

PatA points to the pathname of a directory. OAdi, causes the named
directory to become the current working directory, the startins point
for path searches ror pathnames not beginning with I.

OAdi, will fail and the current working directory will be unchansed if
one or more of the following are true:

A component or the pathname is not a directory. IENOTDIRI

The named directory does not exist. IENOENTI

Search permission is denied for any component of the path­
name. IEACCESj

PatA . points outside the process' allocated address space.
IEFAULT]

Return Value

Upon successful completion, a value of 0 is returned. Otherwise, a
value of - 1 is returned and ermo is set to indicate the error.

See Also

chroot(S)

March 24, 1984 Page 1

CHMOD (S) OHMOD(S)

Chmo4 will rail and the file mode will be unchanged if one or more
or the following are true:

A component or the path prefix is not a directory. IENOTDIRI

The named file does not exist. IENOENTI

Search permission is denied on a component of the path prefix.
!EACCESj

The effective user ID does not match the owner of the file and
the effective user ID is not super-user. I EPERMj

The named file resides on a read-only file system. IEROFSI

Path points outside the process' allocated address space.
IEFAULTj

Retum Value

Upon successful completion, a value or 0 is returned. Otherwise, a
value or- 1 is returned and ermo is set to indicate the error.

See Also

chown(S), mknod(S)

March 24, 1984 Pa.ge 2

CHROOT(S)

Name

chroot - Changes the root directory.

Syntax

int chroot (pa.th)
char -path;

Description

CHROOT(S)

Peth points to a pathname naming a directory. Chroot causes the
named directory to become the root directory, the starting point for
path searches ror pathnames beginning with /.

To change the root directory, the effective user ID or the process
must be super-user.

The " .. " entry in the root directory is inurpreud to mean the root
directory itself. Thus," .. " cannot be used to access files outside the
root directory.

Chroot will fail and the root directory will remain unchanged if one
or more of the following are true:

Any component of the pathname is not a directory. IENOTDIR]

The named directory does not exist. !ENOENT]

The effective user ID is not super-user. I EPERM!

Peth points outside the process' allocaud address space.
!EFAULT!

Return Va.lue

Upon successful completion, a value of 0 is returned. Otherwise, a
value of - 1 is returned and em&o is set to indicau the error.

See Also

chdir(S), chroot(C)

March 24, 1984 Page 1

OLOSE(S)

Name

close - Closes a file descripu)f.

Syntax

int close (flldes)
int SIdes;

Description

OL08E(S)

FJdel is a file descriptor obtained from a creat, open, dup, lentI, or
pipe system call. Clo,e closes the file descriptor indicated by Jilin.

Clo,e will fail ir /ildu is not a valid open file descriptor. IEBADF]

Retum Value

Upon successrul completion, a value or 0 is returned. Otherwise, a
value or - 1 is returned and ermo is set to indicate the error.

See Also

creat(S), dup(S), exec(S), fcntl(S), open(S), pipe(S)

March 24, Ig84 Page 1

OONV(S) OONV(S)

Notes

Because _tDupper and _tDIDtDer are implemen~d as macros, they
should not be used where unwan~d side effects may occur. Remov­
ing the _tDupper and _tolotDer macros with the 'under directive
causes the corresponding library functions to be linked ins~ad. This
allows any arguments to be used without worry about side effects.

March 24, 1984 Page 2

CREAT(S) CREAT(S)

The named file resides or would reside on a read-only file sys­
~m. IEROFSj

The file is a pure procedure (shared ~xt) file that is being exe­
cuted. IETXTBSYj

The file exists and wri~ permission is denied. IEACC&Sj

The named file is an existing directory. IElSDIRj

Twenty file descriptors are currently open. IEMFILEj

Path points outside the process' allocated address space.
IEFAULTj·

Retum Value
,

Upon successrul completion, a nonnegative integer, namely the file
descriptor, is returned. Otherwise, a value of - 1 is returned and
ermo is set to indicate the error.

See Also

close(S), dup(S), Iseek(S), open(S), read(S), umask(S), wri~(S)

Notes

Open(S) is prererred to creat.

March 24, 1084 Page· 2

OREATSEM (S) OREATSEM(S)

Diagnostics

O,.ectlem returns the value - 1 ir an error occurs. Ir the semaphore
named by sem_name is already open ror use by other processes,
ermo is set to EEXIST. Ir the file specified exists but is not a sema.­
phore type, ermo is set to ENOTNAM. Ir the semaphore has not
been initialized by a call to t,.etJuen" ermo is set to ENA VAIL.

Notes

Arter a c,.etJUem you must do a wtJiuem to gain control or a given
resource.

March 24, 1984 Page 2

· CRYPT(S) CRYPT(S)

Notes

The return value from crypt points to static data that is overwritten
by each call.

March 24, lQS4 Pa.ge 2

CT/lIfE (S) CTIME(S)

Name

ctime, localtime, gmtime, asctime, tzset - Converts date and time
to ASCII.

Syntax

char ·ctime (clock)
long -clock;

,include <time.h>

struct tm -localtime (clock)
long -clock;

struct tm ·gmtime (clock)
long -clock;

char ·asctime (tm)
s truct tm ·tm;

tzset ()

extern long timezone;
extern int daylight;
extern char tzname;

Description

Ctime converts a time pointed to by clock (such as returned by
t"me(S») into ASCII and returns a pointer to a 26-character string in
the Collowing Corm:

Sun Sep 16 01:03:52 1973\n\0

Ir necessary, fields in this string are padded with spaces to keep the
string a constant length.

LocaltJ'me and gmtime return pointers to structures containing the
time as a variety of individual quantities. These quantities give the
time on a 24-hour clock, day oC month (1-31), month oC year (0-
11), day oC week (Sunday - 0), year (since 1900), day of year (0-
365), and a flag that is nonzero iC daylight saving time is in effect.
Localtime corrects Cor the time zone and possible daylight savings
time. Gmtime converts directly to Greenwich time (GMT), which is
the time the XENIX system uses.

A,ctime converts the times returned by localtime and gmtime to a
26-character ASCII string and returns a pointer to this string.

Ma.rch 24, 1984 Page 1

cnTE (S) Cn1'E(S)

Name

ctype, isalpha., isupper, islower, isdigit, isxdigit, isalnum, iss pace ,
ispun ct, isprin t, isgraph, iscntrl, isascii - Classifies characters.

Syntax

,include <ctype.h>

int isalpha (c)
int Cj

Description

These macros classify ASCII-coded integer values by table lookup.
Each returns nonzero for true, zero for false. [,(ucii is defined on
all integer values; the rest are defined only where ',a,eii is true and
on the single non-ASCII value EOF (see ,tdio{ S)).

iflower

',digit

"punet

"print

',grapl&

',entn

March 24, 1984

c is a letter

c is an uppercase letter

c is a lowercase letter

c is a digit [0-9]

c is a hexidecima.l digit (0-9]' [A-F] or (a-f]

c is an alphanumeric

c is a space, tab, carriage return, newline, vertical
tab, or form feed

c is a punctuation character (neither control nor
alphanumeric)

e is a printing character, octal 40 (space) through
octaI176 (tilde)

e is a printing character, like ',print except false for
space

e is a delete character (octal 117) or ordinary con­
trol character (less tha.n octal 40).

e is an ASCII character, code less than 0200

Page 1

CURSES (S) CURSES (S)

Name

curses - Performs screen and cursor functions.

Syntax

cc [flags] files - lcurses - ltermlib [libraries]

Description

These routines give the user a method of updating screens with rea­
sonable optimization. They keep an image of the current screen,
and the user sets up an image of a new one. Then the re!re,k() Ullls
the routines to make the current screen look like the new one. In
order to initialize the routines, the routine iniucr{) must be ca.lled
before any of the other routines that deal with windows and screens
are used.

The routines are linked with the loader option -lcurses.

See Also

termcap(F), stty(S), setenv(S)

Functions

addch(ch) Adds a character to ,tdeer
addstr(str) Adds a string to ,td,er
box(win,vert,hor) Draws a box around a window
crmode() Sets cbreak mode
de arO Cle ars Itd,er
dearok(scr, boolf) Sets clear flag for Bcr
clrtobot() Clears to bottom on Itd,er
clrtoeol() Clears to end of line on Itd,er
delwin(win) Delete win
echoO Sets echo mode
erase() Erase Itd,er
getch{) Gets a char through ,td,er
getstr(st.r) Gets a string through ,td,er
gettmode() Gets tty modes
getyx(win,y,x) Gets (y,x) coordinates
inchO Gets char at current (y,x) co-ordinates
initscrO Initializes screens
leaveok(win,booU) Sets leave flag for win
longname(termbuf,name) Gets long name from termbu!
move(y,x) Moves to (y,x) on ,td,cr
mvcur(lasty,la.stx,newy,newx)Aetually moves cursor
newwin(lines, cols, beginJ', begin_x) Creates a new window

March 21, 1984 Page 1

CUSERID (8)

Name

cuserid - Gets the login name or the user.

Syntax

,include <stdio.h>

char ·cuserid (s)
char ·s;

Description

CUSERID (8)

Cu.erid returns a pointer to string which represents the login name
or the owner or the current process. Ir (int), is zero, this represen­
tation is generated in an internal static area, the address or which is
returned. Ir (int), is nonzero, , is assumed to point to an array or at
least L_cuserid characters; the representation is left in this a.rray.
The manirest constant L_cuserid is defined in <stdio.h>.

Diagnostics

It the login name cannot be round, cu.erid returns NULL; if , is
nonzero in this case, \0 will be placed at *,.

See Also

getlogin(S), getpwent in getpwent(S)

Notes

Cu.erid uses getpwntJm (see getpwent(S)) j thus the results of a user's
call to the latter will be obliterated by a subsequent call to the
rormer.

March 24, 1984 Pa.ge 1

DBM (S) DBM(S)

traverse the database:

ror(key==firstkey(); key .dptr! ==NULL; key==nextkey(key))

Diagnostics

All runctions that return an int indicate errors with negative values.
A zero return indicates ok. Routines that return a datum indicate
errors with a null (0) dptr.

Notes

The ".pag" file will contain holes so that its apparent size is about
rour times its actual content. Older XENIX systems may create real
file blocks (or these holes when rouched. These files cannot be
copied by normal means (cp, cat, tp, tar, ar) without filling in the
holes.

Dptr pointers returned by these subroutines point into static storage
that is changed by subsequent calls.

The sum oC the sizes oC a key/content pair must not exceed the
in ternal block size (currently S 12 bytes). Moreover all key/con ten t
pairs that hash together must fit on a single block. Store will return
an error in the event that a disk block fills with inseparable data.

Delete does not physically reclaim file space, although it does make it
available (or reuse.

The order of keys presented by ji,.,tlceg and neztkeg depends on a
hashing Cunction.

These routines are not reentrant, so they should not be used on
more than one database at a time.

Credit

This utility was developed at the University oC CaliCornia at Berkeley
and is used with permission.

March 24, 1084 Page 2

DUP(S)

Name

dup, dup2 - D uplica~s an open file descriptor.

Syntax

int dup (SIdes)
int fildes;

dup2(fildes, fildes2)
int fildes, flldes2;

Description

DUP(S)

FJtlu is a file descriptor obtained trom a erut, opeA, ~.p, le"fl, or
pipe sys~m call. Dup returns a new file descriptor havins the tollow­
inS in common with the original:

Same open file (or pipe).

Same file pointer (i.e., both file descriptors share one file
pointer).

Same access mode (read, write or read/write).

The new file descriptor is set to remain open across eaee I)'s~m
calls. See It"tl(S).

Dup returns the lowest available file descriptor. Dupl eauses jiltle.1
to refer to the same file as JU.i.e •. Ir Jili.ul already referred to an
open file, it is closed first..

Dup will tail if one or more of the followins are true:

FJtlu is not a valid open file descriptor. (EBADF)

Twenty file descriptors are currently open. IEMFILE)

~tum Value

Upon successful completion a nonnesative integer, namely the file
descriptor, is returned. Otherwise, a value of -' 1 is returned and
ermD is set to indicate the error.

See Also

crea~S), close(S), exec(S), lcntJ(S), open(S),pipe(S)

March 24, 1984 Page 1

EXEC (S) EXEC(S)

Name

execl, execv, exede, execve, exedp, execvp - Executes a file.

Syntax

int execl (path, argO, argt, ___ , argn, 0)
char ·path, -argO, ·argt, ___ , ·argn;

int execv (path, argv)
char ·path, -argv[];

int exede (path, argO, argt, ___ , argn, 0, envp)
char ·path, -argO, *argl, ___ , ·argn, *envp[];

int execve (path, argv, envp);
char ·path, .argv[], ·envp[];

int exedp (tile, argO, argt, ___ , argn, 0)
char ·tile, .argO, *argl, ___ , -argn; ,

int execvp (file, argv)
char ·tile, ·argv[);

Deseri ption

Ezu in all its rorms transforms the calling process into a new pro­
cess. The new process is constructed from an ordinary, executable
rile called the "new process rile" . There can be no return from a
successful ezu because the calling process is overlaid by the new
process.

Path points to a pathname that identifies the new process rile.

File points to the new process file. The path prefix for this rile is
obtained by a search of the directories passed as the efttliroftmetlt line
"PA TIi -" (see enl1iroft(M)). The environment is supplied by the
shell (see ,h(C))_

ArgO, 4r91 , ... , "r9ft are pointers to null-terminated character
strings. These strings constitute the argument list available to the
new process. By convention, at least 4r90 must be present, and it
must point to a string that is the same as p4th (or its last com­
ponent) .

Ar9t1 is an array or character pointers to null-terminated strings.
These strings constitute the argument list available to the new pro­
cess. By convention, 4rgl1 must have at least one member, a.nd it
must point to a string that is the same as p4th (or its last com­
ponent). Ar9t1 is terminated by a null pointer.

March 24, 1984 Page 1

EXEC (S) EXEC(S)

. From C, two interCaces are available. Ezecl is useful when a known
Cile with known arguments is being called; the arguments to ezecl are
the character strings constituting the file and the arguments. The
rirst argument is conventionally the same a.s the filename (or its last
component). A 0 argument must end the argument list.

The ezectl version is userul when the number oC arguments is unk­
nown in advance. The arguments to ezectl are the name of the file
to be executed and a vector or strings containing the arguments.
The last argument string must be rollowed by a 0 pointer.

When a C program is executed, it is called as rollows:

main(argc, argv, envp)
int argc;
char •• argv, **envp;

where crgc is the argument count and crgfJ is an array or character
pointers to the arguments themselves. As indicated, crgc is conven­
tionally at least one and the first member or the array points to a
string containing the name or the file.

Argtl is directly usable in a.nother eZUfJ because crgfJ[crgc) is O.

EftfJp is a pointer to an array or strings that constitute the eftfJiroftment
or the process. Each string consists or a name, an "-", and a null­
terminated value. The array or pointers is terminated by a null
pointer. The shell ,h(C) passes an environment entry for each glo­
bal shell variable derined when the program is called. See
eftfJiroft(M) ror some conventionally used names. The. C run-time
startroCr routine places a· copy or eftfJp in the global cell eftwroft,
which is used by ezecfJ and ezecl to pass the environment to any sub­
programs executed by the current program. The ezec routines use
lower-level routines as rollows to pass an environment explicitly:

execle(file, argO, argl, ... , argn, 0, environ);
execve(file, argv, environ);

Ezeclp and eZUfJp are called with the same arguments as ezecl and
ezecfJ, but duplicate the shell's actions in sea.rching for an executable
rile in a list or directories. The directory list is obtained from the
environment.

Ezec will fail and return to the calling process if one or more of the
rollowing are true:

One or more components of the new process file's pathname do
not exist. [ENOENTj

A component oC the new process file's path prefix is not a direc­
tory. IENOTDIRj

March 24, 1984 Page 3

EXIT (S)

Name

exit - Terminares a process.

Syntax

exit (status)
int status;

Description

EXIT (S)

Ezit t.erminares the calling process. All of the file descriptors open in
the calling process are closed.

Ir the parent process of the calling process is executing a V/ait, it is
notified of the calling process' termination and the low-order 8 bits
(i.e., bits 0377) of .tatul are made available to it; see V/ait(S).

Ir the parent process of the calling process is not executing a V1ait,
the calling process is transformed into a "zombie process." A zom­
bie process is a process that only occupies a slot in the process table,
it has no other space allocated either in user or kernel space. The
process table slot that it occupies is partially overlaid with time
accounting information (see < sys/proc.h >) to be used by time,(S).

The parent process ID of all of the calling process' existing child
processes and zorn bie processes is set to 1. This means the initiali­
zation process (see intro(S)) inherits eachof these processes.

An accounting record is written on the accounting file if the system's
accounting routine is enabled; see acet(S).

Ir the process ID, tty group ID, and process group IDof the calling
process are equal, the SIGIIUP signal is sent to each processes that
has a process group ID equal to that of the calling process.

See Also

sign al(S), wait(S)

Warning

See Warning in lignal(S)

March 24, 1984 P&ge 1

FCLOSE(S)

Name

fclose, mush - Closes or flushes a stream.

Syntax

'include <stdio.h>

int rdose (stream)
HLE ·stream;

int mush (stream)
HLE ·stream;

Description

FCLOSE(S)

Felo,e causes any buffers for the named ,tre4m fA> be emptied, and
the file ro be closed. Buffers allocated by the standard input/output
system are rreed.

Felo,e is performed auromatically upon calling ezal(S).

Fjfu,h causes any buffered data for the named output ,erum fA> be
written ro that file. The stream remains open.

These functions return 0 for success, and EOF if any errors were
detected.

See Also

close(S), fopen(S), setbuf(S)

March 24, 1984 Page 1

FCNTL (S) FCNTL (S)

Fcntl fails if one or more of the following is true:

F~dtl is not a valid open file descriptor. IEBADFJ

Cmil is F _DUPFD and 20 file descriptors are currently open.
IEMFILEJ

Cmil is F_DUPFD a.nd 4rg is negative or greater tha.n 20.
IEINVALJ

Return Value

Upon successful completion, the value returned depends on emd as
follows:

F_DUPFD A new file descriptor

F _GETFD Value of flag (only the low-order bit is defined)

F_SETFD Value other than - 1

F _GETFL Value of file flags

F_SETFL Value other than - 1

Otherwise, a value of - 1 is returned and ermo is set to indicate the
error.

See Also

c1ose(S), exec(S), open(S)

March 24, 1984 Pa.ge2

FLOOR (8) FLOOR (S)

Name

floor, rabs, ceil, rmod - Perrorms absolute value, floor, ceiling and
remainder runctions.

Syntax

findude <math.h>

double floor (x)
double x;

double ceil (x)
double x;

double tmod (x, y)
double x, y;

double tabs (x)
double x;

Description

Fd, returns Iz I.

Floor returns the largest integer (as a double precision number) not
greater than z.

Oeil returns the smallest integer not less thanz.

Fmotl. returns the number / such that z II: i,l + /, ror some integer i,
and 0 S /<1/.

See Also

abs(S)

March 24, 1084 Page 1

FOPEN(S) FOPEN(S)

When a file is opened ror updare, both input and output. may be
done on the resulting stream. However, output. may not be directly
rollowed by input without an inrervening feeele or rewind, and input
may not be directly rollowed by output without. an inrervening feeele,
refllind, or an input operation which encounrers the end or the file.

See Also

open(S), tclose(S)

Diagnostics

Fopen and /reopen ret.urn the poinrer NULL it filentune cannot be
accessed.

March 24, 1984 Page 2

FORK (S) FORK(S)

process. Otherwise, a value or - 1 is returned to the parent process,
no child process is creaUld, and ef"rllO is set 00 indicaUl the error.

See Also

exec(S), wait(S)

M a.rch 24, 1984 Pa.ge 2

•

FREXP(S) FREXP(S)

Name

Crexp, ldexp, modC - Splits floating-point number into a mantissa
and an exponent.

Syntax

double (rexp (value, eptr)
double value;
int *eptr;

double ldexp (value, exp)
double value;

double mocJr (value, iptr)
double value, *iptr;

Description

Frezp returns the mantissa oC a double fJ4lue as a double quantity, .z,
of magnitude less than 1, and stores an integer n such that fJtllue ==
z*2**n indirectly through eptr.

Ldezp returns the quantity fJtllue*(2**ezp).

Mod/ returns the positive Cractional part oC fJclue and stores the
integer part indirectly through iptr.

March 24, 1984 Page 1

G.AJ..fMA (S)

Name

gamma - Performs log gamma function.

Syntax

,include <math.h>
extern int signgam;

double gamma (x)
double x;

Description

G.AJ..f MA (S)

Gtlmmtl returns I" r(Iz I) I. The sign or r(Iz I) is returned in the
ex~rnal in~ger .ig"gtlm. 'The following C program fragment might
be used to calcula~ r:

y .. gamma (x)j
if (y > 88.0)

error ()j
y - exp (y) • signgamj

Diagnostics

For negative integer arguments, a huge value is returned, and ermo
is set to EDOM.

March 24, 1984 Page 1

GETCWD (8)

Name

getcwd - Gets pathname or current working directory.

Syntax

len === getcwd (pnbur, maxlen);
int len;
char *pnbuf';
int maxlen;

Description

GErCWD (8)

Getcw4 determines the pathname or the current working directory
and places it in p"buf. The length excluding the terminating NULL is
returned. M tlzle" is the length or ""bu!. Ir the length or the (null­
terminated) pathname exceeds mtlzle", it is treated as an error.

Diagnostics

A length <== 0 is returned on error.

Notes

mule" (and pnbu!) must be 1 more than the true maximum length
or thepathname.

March 24, 1984 Page 1

GETGRENT(S) GETGRENT (S)

Name

ge tgre nt, getgrgid, getgrnam, setgrent, endgrent - Get group file
entry.

Syntax

finclude <grp.h>

struct group *getgrent ();

struct group *getgrgid (gid)
int gid;

struct group *getgrnam (name)
char*name;

int setgrent ();

int endgrent ();

Description

Getgrent, getgrgid and getgm4m each return pointers. The rormat or
the structure is defined in /usr/indude/grp.h.

The members of this structure are:

gr~asswd

The name of the group.

The encrypted password of the group.

The numerical group ID.

Nun~terminated vector of pointers to the indivi­
dual member names.

Getgrent reads th~ next line of the file, so successive calls may be
used to search the entire file. Getgrgid and getgm4m search from the
beginning of the file until a matching gil. or n4me is found, or end­
of-file is encQuntered.

A call to ,etgrent has the effect of rewinding the group file to allow
repeated searches, Endgrent may be called to close the group file
when processing is complete.

Files

/et<;/group

March 24, 1984 Page 1

GETLOGIN(S) GEnOGIN(S)

Name

getlogin - Gets login name.

Syntax

char *getlogin ();

Description

Getlogin returns a pointer to the login name as found in /ek/utmp.
It may be used in conjunction with gdpwntJm to locate the correct
password file entry when the same user lD is shared by several login
names.

If getlogin is called within a process that is not a.ttached to a terminal
device, it returns NULL. The correct procedure for determining the
login name is. to call eu,eritl, or to call getlogin and if it fails, to call
getpwuitl.

Files

/etc/utmp

See Also

cuserid(S), getgrent(S), getpwent(S), utmp(M)

Diagnostics

Returns NULL if name not found.

Notes

The return values point to static da.ta whose content is overwritten
by each call.

March 24, 1984 Page 1

GETOPT(S)

main (argc, argv)
int argc;
char ·*argv;
{

int c;
extern int optind;
extern char ·optarg;

GETOPT(S)

while ((c - getopt (ugc, argv, "abf:o:")) !- EOF}
switch (c) {

}

March 24, 1 gS4

case '"4!:
if (bftg)

errflg+ +;
else

aflg+ +;
break;

case 'b':
if (aftg)

errflg+ +;
else

bproc() ;
break;

case 'I':

case '0':

case '1':

}

ifile -= optarg;
break;

ofile - optarg;
bufsiza - 512;
break;

errflg+ +;

if (errflg) {
(print! (stderr, "usage: ... ");
exit (S);

}
(or(; optind < ugc; optind+ +) {

if (access (argv(optindJ, 4)) {

Page 2

GETPID (S) GETPID (S)

Name

getpid, getpgrp, getppid - Gets process, process group, and parent
process IDs.

Syntax

int getpid ()

int getpgrp ()

int getppid ()

Description

Getpid returns the process 10 of the calling process.

Getpgrp returns the process group ID of the calling process.

Getppid returns the parent process ID of the calling process.

See Also

exec(S), fork(S), intro(S), setpgrp(S), signal(S)

March 24, 1984 Page 1

GETPWENT(S) GETPWENT(S)

Name

getpwent, getpwuid, getpwnam, setpwent, endpwent - Gets pass­
word file entry.

Syntax

,include <pwd.h>

struct passwd *getpwent ();

struct passwd *getpwuid (uid)
int uid;

struct passwd *getpwnam (name)
char -name;

int setpwent ();

int endpwent ();

Description

Getpwent, getpwuid and getpwnam each returns a pointer to a struc­
ture containing the fields of an entry line in the password file. The
structure of a password entry is defined in /usr/indudi.!/pwd.h.

The fields have meanings described in pauwd(M). (The
pw_comment field is unused.)

Getpwent reads the next line in the file, so successive calls can be
used to search the entire file. Getpwuid and getpwnam search from
the beginning of the file until a matching uid or name is found, or
EOF is encountered.

A call to ,etpwent has the effect of rewinding the password file to
allow repeated searches. Endpwent may be called to close the pass­
word file when processing is complete.

Files

/etc/passwd

See Also

getlogin(S), getgrent(S), passwd(M)

March 24, 1984 Page 1

GETS(S)

Name

gets, rgets - Gets a string rrom a stream.

Syntax

,include <stdio.h>

char ·gets (s)
char ·s;

char ·(gets (s, n, stream)
char ·s;
int n;
FlLE ·stream;

Description

GETS (S)

Get, reads a string into , rrom the standard input stream stdin. The
runction replaces the newline character at the end or the string with
a null character berore copying to ,. Get. returns a pointer to B.

Fget, reads characters rrom the «ream until a newline character is
encountered or until ft- 1 characters have been read. The characters
are then copied to the string ,. A null cha.racter is automa.tically
appended to the end or the string berore copying. Fgetl returns a
pointer to ,.

See Also

rerror(S), ropen(S), rread(S), getc(S), puts(S), scanr(S)

Diagnostics

Get. and Iget, return the constant pointer NULL upon end-or-file or
error.

Notes

Get, deletes the newline ending its input, but Iget, keeps it.

Page 1

HYPOT(S)

Name

hypot, cabs - Determines Euclidean distance.

Syntax

,include <math.h>

double bypot (x, y)
double x, y;

double cabs (z)
struct {double x, y;} z;

Description

H,IPot and cab, return

sqrt(x·x + y*y)

Both take precautions against unwarranted overflows.

See Also

'9rt in exp(S)

March 24, lQS4

HYPOT(S)

Page 1

KILL (S)

Name

kill - Sends a signal to a process or a group or processes.

Syntax

int kill (pid, sig)
int pid, sig;

Description

KILL (S)

Kill sends a signal to a process or a group or processes. The process
or group of processes to which the signal is ro be sent is specified by
pid. The signal that is to be sent is specified by tig and is either one
from the list given in tignal(S) , or O. If 'ig is 0 (the null signal),
error checking is perrormed but no signal is actually sent. This can
be used to check the validity of pid.

The effective user ID of the sending process must match the
effective user 10 of the receiving process unless, the effective user ID
of the sending process is super-user, or the process is sending to
itself.

The processes with a process 10 of 0 and a process ID of 1 are special
processes (see intro(S)) and will be referred to below as procO and
prod respectively.

If pit!. is greater than zero, fig will be sent to the process whose pro­
cess ID is equal ro pit!.. Pit!. may equal 1.

If pid is 0, ,;g will be sent to all processes excluding procO and prod
whose process group ID is equal ro the process group ID or the
sender.

If pid is - 1 and the effective user ID of the sender is not super-user,
,;g will be sent ro all processes excluding procO and prod whose real
user ID is equal ro the effective user tD of the sender.

If pit!. is - 1 and the effective user ID of the sender is super-user, ng
will be sent to all processes excluding procO and prod.

If pit!. is nega.tive but not - 1, ng will be sent to all processes whose
process group ID is equal to the absolute value of pit!..

Kill will fail and no signal will be sent if one or more of the follow­
ing are true:

Sig is not a valid signal number. IEINVAL]

No process can be found corresponding ro that specified by pit!..
IESRCHj

March 24, 1984 Page 1

LSTOL (S) LSTOL (S)

Name

13tol, ltol3 - Converts between 3-byte integers and long integers.

Syntax

13tol (Ip, cp, n)
long *Ipj
char ·cp;
int n;

10013 (cp, Ip, n)
char ·cp;
long ·lp;
int nj

Description

LStol converts a· list or " 3-byte integers packed into a character
string pointed to by ep into a list or long integers pointed to by lp.

LtolS perrormsthe reverse conversion from long integers (lp) to 3-
byte integers (ep).

These functions are useful for file system maintenance where the
block numbers are 3 bytes long.

See Also

filesystem(F)

March 24, 1984 Page 1

LI1VK (S) LINK (S)

Return Value

Upon successrul completion, a value or 0 is returned. Otherwise, a
value or - 1 is returned and ermo is set to indicate the error.

See Also

In(e)

March 24, lQ84 Pa.ge 2

LOCKING(S) LOCKING (S)

Name

locking - Locks or unlocks a file region Cor reading or writing ..

Syntax

locking(fildes, mode, size);
int fildes, mode;
long size;

Description

Locking allows a specified num ber or bytes in a file to be controlled
by the locking process. Other processes which attempt to read or
write a portion oC the file containing the locked region may sleep
until the area becomes unlocked depending upon the mode in which
the file region was locked. A process that attempts to write to or
read a file region that has been locked against reading and writing by
another process (using the LK_LOCK or LK_NBLCK mode) will sleep
until the region oC the file has been released by the locking process.
A process that attempts to write to a file region that has been locked
against writing by another process (using the LK_RLCK or
LK_NBRLCK mode) will sleep until the region oC the file has been
released by the locking process, but a read request Cor that file region
will proceed normally.

A process that attempts to lock a region oC a file that contains areas
that have been locked by other processes will sleep iC it has specified
the LK_LOCK or LK_RLCK mode in its lock request, but will return with
the error EACCES iC it specified LK_NBLCK or LK_NBRLCK.

Fildu is the value returned Crom a successrul creat, open, dup, or pipe
system call.

M ode specifies the type or lock operation to be perCormed on the file
region. The available values ror mode are:

LK_UNLCK 0
Unlocks the specified region. The calling process releases a
region or the file it had previously locked.

LK_LOCK 1
Locks the specified region. The calling process will sleep until
the entire region is available ir any part oC it has been locked by
a different process. The region is then locked ror the calling
process and no other process may read or write in any part or
the locked region. (lock against read and write).

March 24, lQ84 Page 1

LOCKING(S) LOCKING(S)

If a process has done more than one open on a file, Gil locks put on
the file by that process will be released on the first close or the file.

Although no error is returned ir locks are applied to special files or
pipes, read/write operations on these types or files will ignore the
locks. Locks may not be applied to a directory.

See Also

creat(S), open(S), read(S), write(S), dup(S), close(S), lseek(S)

Diagnostics

L oeleing returns the value (int) -1 ir an error occurs. If any portion
or the region has been locked by another process ror the LK_LOCK
and LK_RLCK actions and the lock request is to test only, ermo is set
to EACCES. If the file specified is a directory, ermo is set to
EACCES. If locking the region would cause a deadlock, erml) is set
to EDEADLOCK. If there are no more rree internal locks, ermo is set
to ED EA D LOCK. "

March"·24, 1984 Page 3

LSEARGH(S)

Name

lsearch - Performs linear search and update.

Syntax

char -lsearch (key, base, nelp, width, compar)
char -key;
char -base;
int -nelp;
int width;
int (-compar)O;

Description

LSEARCH (S)

L,eareA is a linear search routine generalized from Knuth (6.1)
Algorithm Q. It returns a pointer into a table indicating the location
at which a datum may be found. Ir the item does not occur, it is
added at the end· of the table. The first argument is a pointer to the
datum to be located in the table. The second argument is a pointer
to the base of the table. The third argument is the address or an
integer containing the number of items in the table. It is incre­
mented if the item is added to the table. The fourth argument is the
width of an element in bytes. The last argument is the name of the
comparison routine. It is called with two arguments which are
pointers to the elements being compared. The routine must return
zero ir the items are equal, and nonzero otherwise.

Notes

Unpredictable events can occur if there is not enough room in the
table to add a new item.

See Also

bsearch(S), qsort(S)

March 24, 1984 Pa.ge 1

'LSEEK(S) LSEEK(S)

See Also

ereat(S), dup(S), rentI(S), open(S)

March 24, 1984 Page 2

MALLOC(S) MALLOC(S)

object.

Diagnostics

MaUoe, rtaUoe and ealloe return a null pointer (0) if there is no
available memory or if the area has been detectably corrup~d by
storing outside the bounds of a block. When re,dloc returns 0, the
block poin~d to by ptr may be destroyed.

March 24, 1984 Page 2

MKNOD (S) MKNOD (8)

shared memory file or a semaphore.

Mknot/. may be invoked only by the super-user ror file types other
than named pipe special.

Afknot/. will rail and the new rile will not be created ir one or more or
the rollowing are true:

The process' effective user ID is not super-user. I EPERM]

A component of the path prefix is not a directory. [ENOTDIR!

A component or the path prefix does not exist. [ENOENT]

The directory in which the file is to be created is located on a
read-only file system. IEROFS!

The named file exists. [EEXIST!

Path points outside the process' allocated address space.
[EFAULT]

Return Value

Upon successrul completion a value of 0 is returned. Otherwise, a
value of - 1 is returned and errno is set to indicate the error.

See Also

mkdir(C), mknod(C), chmod(S), creatsem(S), exec{S), sdget(S),
umask(S), filesystem(F)

Notes

Semaphore files should be created with the creo.t,em(S) system call.

Share data files should be created with the 't/.get(S) system call.

March 24, 1984 Page 2

MONITOR (S)

Name

monitor - Prepares execution profile.

Syntax

monitor (lowpc, highpc, buffer, bursize, nrunc)
int (*lowpc)(), (*highpc)();
short buffer[];
int bursize, nrunc;

Description

MONITOR (S)

Monitor is an interrace to profil(S). Lo'Wpc and highpc are the
addresses of two functions; buffer is the address or a user-supplied
array or bulsize short integers. Monitor arra.nges to record a histo­
gram of periodically sampled values of the program counter, and or
counts or ca.lls of certain runctions, in the buffer. The lowest
address sampled is that or lo'Wpe and the highest is just below kighpc.
At most nlune call counts can be kept; only calls or runctions com­
piled with the profiling option - p or ee(CP) are recorded. For the
results to be significant, especially where there are sma.ll, heavily
used routines, it is suggested that the buffer be no more than a rew
times smaller than the range or locations sampled.

To profile the entire program, it is sufficient to use

extern etext();

monitor(2, etext, bur, bufsize, nfunc);

Etezt lies just above all the program text.

To stop execution monitoring and write the results on the file
mon.out, use

monitor(0);

prol(CP) can then be used to examine the results.

Files

mon.out

See Also

cc(CP), prof(CP), profile S)

March 24, 1984 • Page 1

MOUNT(S)

Name

mount - Mounts a file system.

Syntax

jnt mount (spec, dir, ~flag)
char ·spec, ·dir;
jnt rwftag;

Descri ption

MOUNT(S)

Afount requests that a removable file system contained on the block
special file identified by 'pee be mounted on the directory identified
by tli,. Spec and tli, are pointers to pathnames.

Upon successful completion, references to the file tli, will refer to
the root directory on the mounted file system.

The low-order bit of r'JJjfo,g is used to control write permission on
the mounted file system; ir 1, writing is rorbidden, otherwise writing
is permitted according to individual file accessibility.

Mount may be invoked only by the super-user.

Mount will fail ir one or more of the rollowing are true:

The effective user ID is not super-user. [EPERMj

Any of the named files does not exist. [ENOENTJ

A component of a path prefix is not a direcoory. [ENOTDIRj

Spec is not a block special device. [ENOTBLKj

The device associated with 'pee does not exist. [ENXIOj

D,'" is not a directory. [ENOTDIRj

Spec or tli, points outside the process' allocated address space.
[EFAULTj

Di, is currently mounted on, is someone's current working
directory or is otherwise busy. [EBUSYj

The device associated with 'pee is currently mounted. [EBUSY]

March 24, 1984 Page 1

N.4P(S)

Name

nap - Suspends execution for a short interval.

Syntax

long nap(period)
long period;

Description

NAP(S)

The current process is suspended from execution for at least the
number of milliseconds specified by period, or until a signal is
received.

Retum Value

On successful completion, a long integer indicating the number of
milliseconds actually slept is returned. Ir the process recieved a signal
while napping, the return value will be -1, and ermo will be set to
EINTR.

Notes

This function is driven by the system clock, which in most cases has
a granularity of tens of milliseconds.

See Also

sleep(S)

March 24, 1984 Pa.ge 1

NLIST(S)

Name

nlist - Gets entries from na.me list.

Syntax

#include <a.out.h>
nlis t (filename, nl)
char *filename;
struct nlist nl[];

Description

NLIST(S)

Nli,t examines the name list. in the given executable output file and
selectively extracts a list of values. The name list consists of an
array or structures containing names, types and values. The list is
~rmina~d with a null name. Each name is looked up in the name
list or the file. Ir the name is found, the type and value or the name
are inser~d in the next two fields. If the name is not found, both
entries are set to O. See 4.out(F) for a discussion of the symbol
table structure.

See Also

a.out(F), x list(S)

Diagnostics

Nlist return - 1 and sets all type entries to 0 if the file cannot be
read, is not an object file, or contains an invalid name list. Other­
wise, nlin returns O. A return value or 0 does not indica~ that any
or all sym bois were round.

March 24, 1984 Pa.ge'l

OPEN (S)

O.."APPENO

OPEN(S)

Ir 0-.NO ELA Y is clear:

The open will block until carrier is present.

Ir set, the file poinrer will be set to the end of the file
prior to each wrire.

Ir the file exists, this flag has no effect. Otherwise,
the file's owner 10 is set to the process' effective user
10, the file's group 10 is set to the process' effective
group 10, and the low-order 12 bits of the file mode
are set to the value of mode modified as follows (see
creat(S)):

All bits set in the process' file mode cre&tion
mask are cleared. See uma,k(S).

The "save rext image afrer execution bit" of the
mode is cleared. See chmod(S).

Ir· the file exists, its length is truncared to 0 and the
mode and owner are unchanged.

Ir O_EXCL and O_CREA T are set, open will fail if the
file exists.

Every wrire to this file descriptor will be synchro­
nous, that is, when the wriresysrem call completes
data is guaranreed to have been written to disk.

Upon successful completion a. nonnegative integer, the file descrip­
tor, is returned.

The file pointer used to mark the current position within the file is
set to the beginning of the file.

The new file descriptor is set to remain open across ezec system
calls. See /cntl(S).

No process may have more than 20 file descriptors open simultane­
ously.

The named file is opened unless one or more of the following are
true:

A component of the path prefix is not a directory. IENOTDIRJ

O_CREA T is not set and the na.med file does not exist.
IENOENTI

A component of the pa.th prefix denies search permission.
IEACCESJ

March 24, 1984 Page 2

OPENSEM (S)

Name

opensem - Opens a semaphore.

Syntax

sem_num = opensem(sem_name);
int sem_num;
char *sem_name;

Descript.ion

OPENSEM(S)

Ope""em opens a semaphore named by ,em_",lIme and returns the
unique semaphore identification number ,em_",um used by tDGit,em
and ,ig,em. Crellt,em should always be called to initialize the sema­
phore berore the first attempt to open it, or to reset the semaphore ir
it has become inconsisrent due to an exiting process neglecting to do
a sigsem after issuing a waitsem.

See Also

creatsem(S), waitsem(S), sigsem (S)

Diagnostics

Ope""em returns the value - 1 ir an error occurs. Ir the semaphore
named does not exist, ermo is set to ENOENT. Ir the file specified is
not a semaphore file (i.e., a file previously crea.ted by a. process using
a call to erelltlem) , ermo is set to ENOTNAM. If the semaphore has
become invalid due to inappropriate use, errno is set to ENOTA VAIL.

March 24, lQ84 Pa.ge 1

PERROR(S) PERROR(S)

Name
perror, sys...ecrlist, sys...nerr, errno - Sends system error messages.

Syntax
perror (5)
char *s;

int s)'LDerr;
char *sys..errlls~ 1;
lot errno;

Descriptio.
Perror produces a short error message on the standard error,
describing the last error encountered during a system call from a C
program. First the argument string s is printed, then a colon, then
the message and a newline. To be of most use, the argument
string should be the name of the program that incurred the error.
The error number is taken from the external variable en-no, which
is set when errors occur but not cleared when correct calls are
made.

To simplify \'ariant formatting of messages, the \'ector of message
strings sys..errlist is provided; errno can be used as an index in this
table to get the message string without the newline. Sys..nerr is the
number of eltries provided for in the table; it should be checked
because new error codes may be added to the system before they
are added to the table.

See Also
intro(S)

May 10, 1984 Page 1

POPEN(S)

Name

popen, pclose - Initiates I/O ro or from a process .

• Syntax

,include <stdio.h>

FlLE ·popen (command, type)
char ·command, *type;

int pclose (stream)
FlLE ·stream;

Description

POPEN(S)

The arguments to pope" are pointers to null-terminated strings con­
taining, respectively, a shell command line and an I/O mode, either
"r" for reading or "w" for writing. Pope" creates a pipe between
the calling process and the command ro be execu~d. The value
returned is a stream pointer that can be used (as appropria.te) to
write to the standard input of the command or read from its stan­
dard output.

A stream opened by pope" should be closed by pclole, which waits
lor the associated process to terminate and returns the exit status of
the command. Because open files are shared between processes, a
type "r" command may be used as an input filter, and a type "w"
as an output filter.

See Also

pipetS), wait{S), fclose(S), fopen(S), system(S)

Diagnostics

Pope" returns a null pointer if files or processes cannot be created,
or if the shell cannot be accessed.

Pclole returns - 1 if ttreGm is not associated with a pope"ed com­
mand.

Notes

Only one stream opened by pope" can be in use at once. Buffered
reading before opening an input filter may leave the standard input
of that filter mispositioned. Similar problems with an output filter
may be forestalled by careful buffer flushing; see Iclole(S).

March 24, 1984 Page 1

PRINTF(S) PRINTF(S)

maximum number of significant digits for the g conversion, or
the maxim urn number of chara.cters to be printed from a string
in 8 conversion. The precision takes the form of a period (.)
followed by a decimal digit string: a null digit string is treated as
zero.

An optional I specifying that a following d, 0, U, x, or X conver­
sion character applies to a long integer argo

A character that indicates the type of conversion to be applied.

A field width or precision may be indicated by an asterisk (.) instead
of a digit string. In this ease, an integer 4rg supplies the field width
or precision. The 4rg that is actually converted is not fetched until
the conversion letter is seen, so the args specifying field width or
precision must appear be/ore the Grg (if any) to be converted.

The flag characters and their meanings are:

+

blank

,

The result of the conversion will be lef~justified within
the field.

The result of a signed conversion will always begin with a
sign (+ or -).

If the first character of a signed conversion is not a sign,
a blank will be prepended to the result. This implies that
if the blank and + fla.gs both appear, the blank flag will
be ignored.

This flag specifies that the value is to be converted to an
"alternate rorm." For c, d, 8, and U conversions, the flag
has no effect. For 0 conversion, it increases the precision
to force the first digit of the result to be a zero. For x
(X) conversion, a nonzero result will have Ox (OX)
prepended to it. Fqr e, E, (, g, and G conversions, the
result will always contain a decimal point, even if no
digits follow the point (normally, a decimal point appears
in the result of these conversions only if a-digit Collows
it). For g and G conversions, trailing zeroes will not be
removed from the result (which they normally are).

The conversion characters and their meanings are:

d,o,u,x,X The integer 4rg is converted to signed decimal, unsigned
octal, decimal, or hexadecimal notation (x and X),
respectively; the letters abcdcf are used for x conversion
and the letters ABCDEF for X conversion. The precision
specifies the minimum number oC digits to appear; if the
value being converted can be represented in fewer digits,
it will be expanded with leading zeroes. The derault pre­
cision is 1. The result of converting a zero value with a
precision of zero is a null string (unless the conversion is

March 24, 1984 Pa.ge 2

PRINTF(S) PRINTF(S)

Examples

To print a date and time in the form "Sunday, July 3, 10:02", where
weekday and month are pointers to null-terminated strings:

printr("o/cs, %s o/c:d, %.2d:%.2d", weekday, month, day, hour,
min}; .

To print 7!' to five decimal places:

printr("pi %.5f"', "*atan(1.0));

. See Also

ecvt(S), putc(S), scanr(S)

March 24, 1984 Page"

PTRACE(S) PTRACE(S)

Name

ptrace - Traces a process.

Syntax

int ptrace (request, pid, addr, data);
int request, pid, data;

Description

Ptrace provides a means by which a parent process may control the
execution of a child process. Its primary use is in the implementa­
tion of breakpoint debugging; see adb (CPl. The child process
behaves normally until it encounters a signal (see lignal (S) ror the
list), at which time it enters a stopped state and its parent is notified
via wait(S). \Vhen the child is in the stopped sta.te, its parent can
examine and modify its "memory image" using ph·ace. Also, the
parent can cause the child either to terminate or continue, with the
possibility of ignoring the signa.l that caused it to stop.

The addr argument is dependant on the underlying machine type,
specifically the process memory model. On systems where the
memory management mechanism provides a uniform and linear
address space to user processes, the a.rgument is declared as:

in t *a.ddr;

which is sufficient to a.ddress any location in the process' memory.
On machines where the user address space is segmented (even if the
particular program being traced has only one segment allocated), the
form of the addr argument is:

struct {
int ofrset;
int segment;

} *addr;

which allows the caller to specify segment and offset in the process
address space.

The reque,t argument determines the precise action to be taken by
ptrace and is one of the following:

o This request must be issued by the child process if it
is to be traced by its parent. It turns on the child's
trace flag that stipulates that the child should be left in
a stopped st3.~ upon receipt of a signal rather than the
state specified by Junc; see lignal(S). The pid, addr,
and data arguments are ignored, and a return value is

March 27, 1984 Page 1

PTRACE (S) PTRACE(S)

Errors

7

8

9

This request causes the child to resume execution. Ir
the data argument is 0, all pending signals including
the one that caused the child to stop are canceled
berore it resumes execution. If the data argument is a
valid signal number, the child resumes execution as ir
it had incurred that signal and any other pending sig­
nals are canceled. In a linear address space memory
model, the value or aUr must be (int .)1, or in aseg­
mented address space the segment part or addr must
be zero and the offset part or addr must be (int .)1.
Upon surcessful completion, the value of datil is
returned to the parent. This request will rail ir datG is
not 0 or a valid signa.l number, in which case a value
or - 1 is returned to the parent process and the
parent's ermo is set to EIO.

This request causes the child to termina.te with the
same consequences as ezit(S).

Execution continues as in request 7; however, as soon
as possible arter execution or at least one instruction,
execution stops again. The signal number from the
stop is SIGTRAP, This is part or the mechanism for
implementing breakpoints. The exact implementation
and behaviour is somewhat CPU dependant.

As indicated, these calls (except Cor request 0) can be used
only when the subject process has stopped. The wait system
call is used to determine when a process stops; in such a
case the termina.tion status returned by wait has the value
0177 to indicate stoppage ra.ther tha.n genuine termination.

To prevent security violations, ptrace inhibits the set-user-id
facility on subsequent ezec(S) calls. Ir a traced process calls
ezec, it will stop before exeeuting the first instruction of the
new image showing signal SIGTRAP,

Ptrace will in general rail ir one or more or the rollowing are true:

Notes

Re~ue't is an illegal number. IEIOI

Pid identifies a child that does not exist or has not executed a
ptrace with request O. IESRCHI

The implementation and precise behaviour or this system call is
'inherently tied to the specific CPU and process memory model in
use on a particular machine. Code using this call is likely to not be

March 27, 1984 Page 3

PUTC(S) purc (S)

Name

putc, putchar, Cputc, putw - Puts a charac~r or word on a strea.m.

Syntax

,include <stdio.h>

int putc(c, stream)
char c;
FlLE ·stream;

putchar (e)

int rputc (c, stream)
FlLE ·stream;

int putw (w, stream)
int Wi
FlLE ·stream;

Description

Putt appends the character e to the named output ,tream. It returns
the character written.

Putehar(e) is defined as putc(e,stdout).

Fpute behaves like pute, but is a genuine Cunction rather than a
macro; it ma.y therefore be used as an argument. Fputc runs more
slowly than pute, but takes less space per invocation.

Putw appends the word (i.e., in~ger) VI to the output 'trum. Putw
neither assumes nor causes special alignment in the file.

The standard stream stdout is normally buffered ir and only ir the
output does not refer to a terminalj this default may be changed by
Betbu/(S). The standa.rd stream stderr is by deCault unbuffered
unconditionally, but use of /reopen (see /open(S)) will cause it to
become unbuffered; ,eth/, again, will set the sta~ to whatever is
desired. "'hen an output stream is unbuffered information appears
on the destination file or ~rminal as soon aswrit~n; when it is
buffered many characters are saved up and written as a block. See
lJluBh is /do,e(S).

See Also

fclose(S), Cerror(S). fopen(S). frea.d(S), getc(S), printf(SL puUi(S)

March 24, 1984 Page 1

PUTPWENT(S)

Name

putpwent - Writes a password file entry.

Synta.x

,include <pwd.h>

int putpwent (p, C)
struct passwd *Pi
F1LE *Ci

Description

PUTPWENT(S)

Putpwent is the inverse or getpwent(S). Given 3. pointer U> a pallwtl
structure created by getpwent (or getpwuitl or getpwn4m), putpwent
writes a line on the stream /. The line matches the formlt or
/etc/passwd

See Also

passwd(M), getpwent(S)

Diagnostics

Putpwent returns nonzero if an error was detected during its opera­
tion, otherwise zero.

March 24, 1984 Pa.ge 1

QSORT(S)

Name

qsort - Performs a sort.

Syntax

qsort (base, nel, 'width, compar)
char ·base;
int nel, width;
int (·compar)();

Description

QSORT(S)

Q,ort is an implementation 'of the quicker-sort algorithm. The first
argument is a pointer to the base or the data.; the second is the
num ber of elements; t.he third is the width or an element in bytes;
the last is the name of the comparison routine. It is called with two
arguments which are pointers to the elements being compared. The
routine must return an integer less than, equal to, or greater than 0
according to how much the first argument is to be considered less
than, equal to, or greater than the second.

See Also

sort(C), bsearch(S), Isearch(S), string(S)

March 24, 1984 Page 1

RDCHK(S)

Name

rdchk - Checks to see if there is data to be read.

Syntax

r<khk(rdes);
int (des;

Description

RDCHK(S)

Rdchk checks to see ir ~ process will block if it attempts to read the
file designated by Ide,. Rdchk returns 1 if there is data to be read or
if it is the end of the file (EOF). In this context, the proper
sequence or calls using rdchk is:

if(rdchk(fildes) > 0)
read(fildes, buffer, nbytes)j

See Also

read(S)

Diagnostics

Rdchk.returns -1 if an error occurs (e.g., EBADF), 0 if the process
will block it it issues a. read and 1 it it is okay to rea.d. EBAD F is
returned if a. rdchk is done on a. semaphore file or if the file specified
doesn't exist.

March 24, lQ84 Page 1

READ (S) READ(S)

Read will fail if one or more of the Collowing are true:

FJde, is not a valid file descriptor open rorreading. (EBADF]

Bu/ points outside the allocated address space. !EFAULT]

Return Value

Upon successful completion a nonnegative integer is returned indi­
cating the number of bytes actually read. Otherwise,.a - 1 is
returned and ermo is set to indicate the error.

See Also

creat(S), dup(S), fcntl(S), ioctl(S), open(S), pipe(S), tty(M)

Notes

Reading a region of 3. file locked with locking causes read to hang
indefinitely until the locked region is unlocked.

Ma.rch 24, 1984 Page 2

REGEX(S) REGEX(S)

to be applied. {m,} is analogous to {m,infinity}. The plus
(+) and star (*) operations are equivalent to {t,} and {O,}
respectively.

(...)$n The value of the enclosed regular expression is to be
returned. The value will be stored in the (n+ 1) th argu­
ment following the subject argument. At present, at most
ten enclosed regular expressions are allowed. Regez makes
its assignments unconditionally.

(...) Parentheses are used ror grouping. An operator, e.g. .,
+, {}, can work on a single character or a regular expres­
sion enclosed in parenthesis. For example, (80*(cb+)*)$0.

By necessity, all the above defined symbols are special. They must,
therefore, be escaped to be used as themselves.

Examples

Ezample 1:

char *cursor, *newcursor, *ptr;

newcursor = regex((ptr=regcmp("A\n",O)) ,cursor);
free(ptr);

This example will match a. leading newline in the subject string
pointed at by cursor.

Ezample 2:

char retOl9j;
char *newcursor, *name;

name = regcmp("([A- Za.- z][A- za.- zO- 9J{O,7})SO",O);
newcursor = regex(name,"123Testing321",retO);

This example will match through the string "Testing3" and will
return the address or the character arter the last matched character
(cursor+ 11). The string "Testing3" will be copied to the chara.cter
array retO.

Ezample 8:
#include "file.i"
char *string, *newcursor;

newcursor == regex(name,string);

This example applies a precompiled regular expression in flle.i (see
regcmp(CP)) against 'tring.

March 24, 1984 Pa.ge 2

REGEXP(S) REGEXP(S)

Name

regexp - Performs regular expression compile and match functions.

, Syntax

,define INlT <declara.tions>

,define <ETC() <getc code>

,define PEEKC() <peekc code>

,define UNGETC(c) < ungetc code>

,define RE1URN(pointer) <return code>

,define ERROR(val) <error code>

,include <regexp.h>

char *compile(instring, expbur, endbur, eor)
char *instring, *expbur, *endbuf';

int step(string, expbuf)
char *string, *expbur;

Description

This entry describes general purpose regular expression matching
routines in the form of ed(C), defined in /usr/include/regexp.h.
Progra.ms such as ed(C), ,ed(C), grep(C), h,(C). ezpr(C) , etc.,
which perform regular expression matching use this source file. In
this way, only this file need be changed to maintain regular expres­
sion compatibility.

The interCace to this file is unpleasantly complex. Programs that
include this file must have the Collowing rive macros declared before
the "Iinclude <regexp.h>" statement. These macros are used by
the compile routine.

GETC()

PEEKC(}

March 21, lQ84

Returns the value of the next character in the
regular expression pattern. Successive calls to
GETC() should return successive characters oC
the regular expression.

Returns the next character in the regular
expression. Successive calls· to PEEKC()
should return the same character (which
should also be the next character returned by
GETC()).

Page 1

REGEXP(S) REGEXP(S)

The parameter eo! is the character which marks the end or the regu·
lar expression. For example, in ed(C), this character is usually a /.

Each progr3.ms that includes this file must have 3. 'define statement
for INIT. This definition will be placed right alter the declaration for
the runction compile and the opening curly bn.ce (0. It is used ror
dependent declarations and initializations. It is most often used to
set a register variable to point the beginning or the regular expres­
sion so that this register variable can be used in the declarations for
GETC(), PEEKC() and UNGETC(). Otherwise it can be used to
declare external variables that might be used by GETC(), PEEKC()
and UNGETC(). See the example below of the declarat.ions taken
from grtp(C).

There are other runctions in this file which perform actual regular
expression matching, one of which is the function etep. The call to
,tep is as rollows:

step(string, expbuf)

The first parameter to etep is a pointer to a string of characters to be
checked for a match. This string should be null terminated.

The second parameter ezpbu! is the compiled regular expression
which was obtained by a call of the function eompJe.

The function 'tep returns one, if the given string matches the regular
expression, and zero if the expressions do not mat-ch. If there is a
match, two external character pointers are set as a side effect to the
call to ,tep. The variable set in etep is loel. This is a pointer to the
first character that matched the regular expression. The variable
IDee, which is set by the runction adVtlnee, points the character a1ter
the last character that matches the regular expression. Thus if the
regular expression matches the entire line, lod will point to the first
character of etring and IDee will point to the null at the end of Itring.

Step uses the external variable eire! which is set by eompile ir the reg·
ular expression begins with If this is set then etep will only try to
match the regular expression to the beginning of the string. If more
than one regular expression is to be compiled before the the first is
executed the value ot eire! should be saved tor each compiled
expression and eire! should be set to that saved value before each
call to 'tep.

The function advance is called trom Itep with the same arguments as
,tep. The purpose of 'tep is to step through the 'tring argument and
call advance until advance returns a one indicating a match or until
the end or ,tn·ng is reached. Ir one wants to constrain Itring to the
beginning of the line in all cases, 'tep need not be called, simply call
advance.

\Vhen advan,ee encounters a * or \{ \} sequence in the regular
expression it will advance its pointer to the string to· be mat.ched as

March 27, 198<1 Page 3

SBRK (S)

Name

sbrk, brk - Changes data segment space allocation.

Syntax

char *8 brk (incr)
int incr;

Description

SBRK(S)

Sbrk is used to dynamically change the amount of space allocated for
the calling process' data segment; see Ute(S). The change is made
by resetting the process' break value. The break value is the address
of the first location beyond the end or the data segment. The
amount or allocated space increases as the break value increases.

Sbrk adds inc,. bytes to the break value and changes the allocated
space accordingly. Inc, can be negative, in which case the amount or
allocated space is decreased.

Sbrk will rail without making any change in the allocated space ir
such a change would result in more space being allocated than is
allowed by a system-imposed maximum (see ulimit(S)) .. !ENOMEMI

Retum Value

Upon successrul completion, eb,k and brk return pointers to the
beginning of the allocated space. Otherwise, a value or - 1 is
returned and ermo is set to indicate the error.

See Also

exec(S)

March 27, IgS4 Page 1

SC.4NF(S) SCANF(S)

% A single %is expected in the input at this point; no assignment
is done.

d A decimal integer is expected; the corresponding argument
should be an integer pointer.

o An octal integer is expected; the corresponding argument should
be an integer pointer.

x A hexadecimal integer is expected; the corresponding argument
should be an integer pointer.

s A character string is expected; the corresponding argument
should be a character pointer pointing to an array of characters
large enough to accept the string and a terminating \0, which
will be added automatically. The input 6eld is terminated by a
space character or a newline.

c A character is expected; the corresponding argument should be
a character pointer. The normal skip over space characters is
suppressed in this case; to read the next nonspace character, use
o/cls. Ir a. field width is given, the corresponding argument
should refer to a character a.rray; the indicated number of char­
acters is read.

e,f A floating-point 'number is expected; the next 6eld is converted
accordingly and stored through the corresponding argument,
which should be a pointer to a float. The input rorma.t ror
floating-point numbers is an optionally signed string of digits,
possibly containing a decimal point, followed by an optional
exponent field consisting or an E or an e, rollowed by an option­
ally signed integer.

Indicates a string that is not to be delimited by space characters.
The lert bracket is followed by a set of characters and a right
bracket; the characters between the brackets define a set of char­
acters making up the string. Ir the first character is not a caret
(A), the input field consists of all characters up to the first char­
acter that is not in the set between the brackets; if the 6rst char­
acter after the left bracket is a A, the input field consists of all
characters up to the 6rst character that is in the set of the
remaining characters between the brackets. The corresponding
argument must point to a character array.

The conversion characters d, 0, and x may be capitalized and/or pre­
ceded by 1 to indicate that a pointer to long rather than to int is in
the argument list. Similarly, the conversion characters e and r may
be capitalized and/or preceded by 1 to indicate that a pointer to dou­
ble rather than to float is in the argument list. The character h will,
some time in the future, indicate short da.ta items.

Sca.nl conversion terminates at EOF. at the end of the control string,
or when an input character conflietswith the control string. In the

March 24, 1984 Page 2

SDENTER(S) SDENTER(S)

Name
sdenter. 'sdleave· - Synchronizes access to a shared. data segment.

Syutax
#indude <sd.h>

int sdenter{addr ,flags)
char ·addr;
int flap;

Int sdleave(addr)
char ·addr;

Descriptio.
Scienter is used to indicate that the current process is about to
access the contems of a shared data segment. The actions per­
formed depend on the value of flags. Flags values are formed by
OR - ing together entries from the following list: -

SO..NOW AfT If another process bas called sdenler but not
sdJeave for the indicated segment, and the seg­
meD! was not created with the SO_UNLOCK ftag
set, return an error instead of waiting for the
segment to become free.

Indicates that the process intends to modify the
data. If SO_WRITE isn't specified changes made
to data are net guarenteed to be reflected in other
proceses.

Sdleave is used to indicate that the current process is done modi­
fying the contents of a shared data segment.

Only changes made between invocatations of sdenter and sdJeave
are guaranteed to be reflected in other processes. Scienter and
sdleave are very fast; consequently. it is recommended that they be
called frequently rather than leave sdenter in effect for any period
of time. In particular, system calls should be avoided between
sdenter and sdleave calls.

The fork system call is forbidden between calls to scienter and
sdleave if the segment was created without the SO_UNl.OCK flag.

May 10, 1984 Page 1

SDGET(S)

Name

. sdget - Attachs and detachs a shared data segment.

Synt&x

finclude <sd.h>

char *sdget(path, fla&" (size, mode))
char *path;
int flags, mode;
long size;

int sdtrec(addr);
char *addr;

Description

SDGET(S)

Sdget attachs a shared data segment tD the data space of the current
process. The actions performed are controlled by the value of /fag'.
Flag. values are construc~d by OR-ing flags from the following list:

SO_ROONLY
Attach the segment for reading only.

SO_WRITE Attach the segment for both reading and writing.

SO_CREAT It the segment named by path exists, this flag has no
effect. Otherwise, the segment is crea~d according tD
the values of lize and mode. Read and wri~ access tD
the segment is gran~d tD other processes based on the
permissions passedjn mode, and functions the same as
those for regular files. Execu~ permission is meaning­
less. The segment is initialized tD contain all zeroes.

SO_UNLOCK
It the segment is crea~d because of this call, the seg­
ment will be made so that more than one process can
be between sden~r and sdleave calls.

Sd/ree detachs the current process from the shared data segment that
is atta.ched at the specified address. If the current process has done
an ,deAter but not a ,dleat1e for the specified segment, an ,dle4fJe will
be done before detaching the segment.

When no processrema.ins attached tDthe segment, the con~nts of
that segment disappear, and no process can atta.ch tD the segment
without creating it by using the SO _CREA T flag in ,dget.

Pa.ge 1

SDGETV(S)

Name

sdgetv, sdwaitv - Synchronizes shared data access.

Syntax

,include <sd.h>

int sdgetv(addr)
int sdwaitv(addr, vnum)
char *addr;
int vnum;

Description

SDGETV(S)

SdgetfJ and ,dwaitfJ may be used to synchronize cooperating processes
that are using shared data segments. The return value of both rou­
tines is the version number of the shared data segment attached to
the process at address 4ddr. The version num ber of a segment
changes whenever some process does an ,dle4fJe for that segment.

Sdgetv simply returns the version number of the indicated segment.

Sdw4itfJ forces the current process to sleep until the version num ber
for the indicated segment is no longer equal to fJnum.

Return Value.

Upon successful completion, both ,dgetfJ and ,dw4itfJ return a positive
integer that is the current version number for the indicated shared
data segment. Otherwise, a valQe of -1 is returned, and ermo is set.
to indicate the error.

See Also

sdenter(S), sdget(S)

March 24, 1984 Page 1

SETJMP(S)

Name

setjmp, longjmp - Perrorms a nonlocal "goto".

Syntax

,include <setjmp.h>

int setjmp (env)
jmp_but en\';

int longjmp (env, val)
jmp_but env;

Description

SETJMP(S)

These routines are useful ror dealing· with errors ~d interrupts
encountered in a low-level subroutine or a program.

Setimp saves its stack environment in eftfl ror later use by loftgimp. It
returns value o.

Loftgimp restores the environment saved by the last call or .dimp. It
then returns in such a way that execution continues as ir the call or
.etimp had just returned the value filII to the corresponding call to
.etimp. The routine which calls .djmp must not itself have returned
in the interim. LOftgimp cannot return the value o. If loftgimp is
invoked with a second argument of 0, it will return 1. All accessible
data have values as of the time loftgimp was called. The only excep­
tion to this are register variables. The value or register variables are
undefined in the routine that called .dimp when the corresponding
loftgimp is invoked .

• See Also

signal(S)

March 24, 1984 Page 1

SETVID (5)

Name

setuid, setgid - Sets user and group IDs.

, Syntax

int setuid (uid)
int uid;

int setgid (gid)
int gid;

Description

SETUID (5)

Setuid is used 00 set the real user ID and effective user 10 of the cal­
ling process.

Setgid is used 00 set the real group ID and effective group ID of the
calling process.

If the, effective user ID or the calling process is super-user, the real
user (group) 10 and effective user (group) ID are set 00 uid (gid).

If the effective user 10 of the calling process is not super-user, but
its real user (group) ID. is equal 00 uid (gid), the effective user
(tjroup) 10 is set 00 uid (gid) •.

Setuid will rail if the real user (group) 10 or the calling process is not
equal 00 uid (gid) and its effective user 10 is not super-user.
I EPERMj

Return Value

Upon successrul completion, a value of 0 is returned. Otherwise, a
value of - 1 isreturned and emao is set to indicate the error.

See Also

getuid(S), intro(S)

March 24, 1984 Pa.ge 1

SIGNAL (S) SIGNAL (S)

Name

signal - Specifies what to do upon receipt of a signal.

Syntax

,include <signal.h>

int (-signal (sig, func))()
int sig;
int (-runc)();

Description

Signal allows the calling process to choose one of three ways in
which it is possible to handle the receipt of a specific signal. Sig
specifies the signal and June specifies the choice.

Sig can be assigned anyone of the following except SIGKILL:

SIGBUP
SIGI~T

SIGQUIT
SIGILL
SIGlRAP
SIGIOT
SIGEMT
SIGFPE
SIGKlLL
SIGBUS
SI~EGV

SI~YS

SIGPIPE
SIGALRM
SIGTERM
SIGUSRI
SIGUSR2
SIGCLD
SIGPWR

Hangup
Interrupt
Quit
Illegal instruction (not reset when caught)
Trace trap (not reset when caught)
I/O trap instruction
Emulator trap instruction
Floating-point exception
Kill (cannot be caught or ignored)
Bus error
Segmentation violation
Bad argument to system call
Write on a pipe with no one to read it
Alarm clock
Software termination signal
User-defined signal 1
User-defined signal 2
Death of a child (see Warning below)
Power fail (see Warning below)

See below for the significance of the asterisk in the above list.

Func is assigned one of three values: SIG_DFL, SIG_IGN, or a func­
tion addru6. The actions prescribed by these values of are described
below.

The SIG_DFL value causes termination of the process upon receipt
of a signal. Upon receipt of the signal .ig, the receiving process is to
be terminated with the following consequences:

March 24, 1984 Pa.ge 1

SIGNAL (S) SIGNAL (S)

2. When a signal that is to be caught occurs during a read, a write,
an (lpen, or an ioetl system call on a slow device (like a urmi­
nalj but not a file), during a pcuee system call, or during a 'fDcit
system call that does not return immediatdy due to the
existence or a previously stopped or zombie process, the signal
catching runction will be executed and then the interrupted sys­
tem call will return a-I to the calling process with ermo set to
EINTR.

3. Note that the signal SIGKILL cannot be caught.

A call to eignal cancels a pending signal eig except ror a pending SIG­
KILL signal.

Signal will rail ir one or more of the following are true:

Sig is an illegal signal number, including SIGKILL. IEINVAL]

Func points to an illegal address. IEFAULT!

Return Value

Upon successful completion, eignal returns the previous value of
fune ror the specified signal ,ig. Otherwise, a value or - 1 is
returned and ermo is set to indicate the error.

See Also

kill(C), kill(S), pause(S), ptrace(S), wait(S), setjmp(S).

Warning

Two other signals that behave differently than the signals described
above exist in this release of the systemj they are:

SIGCLD
SIGPWR

18 Death of a child (not reset when caught)
1 Q Power Cail (not reset when caught)

There is no guarantee that, in future releases or XENIX, these signals
will continue to behave as described below; they are included only
ror compatibility with other versions or XENIX. Their use in new
programs is strongly discouraged.

For t.hese signals, fune is assigned one oC three values: SIG_DFL,
SIG_IGN, or a fundion 4tltlreu. The actions prescribed by these
values oC are as follows:

SIGJ)FL - ignore signal
The signal is to be ignored.

March 24, lQ84 Pa.ge ~

SIGSEM(8)

Name

sigsem - Signals a process waiting on a semaphore.

Syntax

sipern(sern_num);
int sern_nurn;

Description

SIGSEM (8)

Sig,em signals a process that is waiting on the semaphore ,em_num
that it may proceed and use. the resource governed by the sema­
phore. Sig,em is used in conjunction with vG~,em(S) to allow syn­
chronization or processes wishing to access a resource. One or more
processes may vClluem on the given semaphore and will be put to
sleep until the process which currently has access to the resource
issues a ,ig,em call. If there are any waiting processes, rig,em causes
the process which is next in line on the semaphore's queue to be
rescheduled ror execution. The semaphore's queue is organized in
first in first out (FIFO) order.

See Also

creatsem(S), opensem(S), waitsem(S)

Diagnostics

Sig,em returns the value (int) -1 if an error occurs. Ir ,em_num does
not rerer to a semaphore type file, ermo is set to ENOTNAM. Ir
.em_num has not been previously opened by open,em, ermo is set to
EBADF. Ir the process issuing a sigsem call is not the current
"owner" or the semaphore (i.e., ir the process has not issued a
waitsem call before the sigsem), errfto is set to ENAVAIL.

March 24, 1984 Page '1

SLEEP (S)

Name

sleep - Suspends execution for an interval.

Syntax

unsigned sleep (seconds)
unsigned seconds;

Description

SLEEP (S)

The current process is suspended rrom execution for the number of
eeconde specified by the argument. The actual suspension time may
be less than that requested for because scheduled wakeups occur at
fixed I-second intervals, and any caught signal will terminate the
eleep following execution of that signal's catching routine. Also, the
suspension time may be longer than requested by an arbitrary
amount due to the scheduling of other activity in the system. The
value returned by eleep will be the "unslept" amount (the requested
time minus the time actually slept) in case the caller had an ala.rm
set to go off earlier than the end of the requested ,'up time, or
prema.ture arousal due to another caught signal.

The routine is implemented by setting an alarm signal and pausing
until it (or some other signal) occurs. The previous state or the
alarm signal is saved and restored. The calling program may have
set up an alarm signal before calling .leepi if the eleep time exceeds
the time till such al3.rm signal, the process sleeps only until the
alarm signal would have occurred, and the caller's alarm catch rou­
tine is executed just berore the .leep routine returns, but ir the Ileep
time is less than the time till such alarm, the prior alarm tirne is
reset to go off at the same time it would have gone off without the
intervening 'leep.

See Also

alarm(S), nap(S), pause(S), signal(S)

March 24, 1984 Page 1

SSIGNAL (8) SSIGNAL (8)

Notes

There are some additional signals with numbers outside the range 1
through 15 that are used by the standard C library to indicate error
conditions. Thus, some signal num bers outside the range 1 through
15 are legal, although their use ma.y interrere with the operation or
the standard C library.

March 24, 19S4 Page 2

STAT(S) >Jut! li:)}

st_atime Time when file data was last accessed. Changed by the
following system calls: creat(S), mknod(S), pipetS),
utime(S) ,andread(S).

st_mtime Time when data was last modified. Changed by the fol-
lowing system calls: creat(S), mknod(S), pipe(S) ,
utime(S), and write(S).

st_ctime Time when file status was last changed. Changed by the
following system calls: chmod(S), chown(S), crellt(S),
link(S), mknod(S), pipe(S), utime(S), and wnle(S).

st_rdev Device indentification. In the case of block and character
special files this contains the device major and minor
numbers; in the case of shared memory and semaphores,
it contains the type code. The file
/usr/indude/sys/types.h contains the macros m(ljorO
and minor() for extracting major and minor numbers
from 6LrdefJ. See /usr/include/sys/stat.h for the sema­
phore and shared memory type code values S_INSEM and
S_INSHD.

Stat will fail if one or more of the following are true:

A component oC the path prefix is not a directory. [ENOTDIR!

The named file does not exist. [ENOENT!

Search permission is denied Cor a component oC the path prefix.
[EACCES!

Bu! or path points to an invalid address. [EFAULT]

Flfat will fail if one or more of the following are true:

FJdel is not a valid open file descriptor. [EBADF]

Bu! points to ~ invalid address. [EFAULT!

Return Value

Upon successful completion a value oC 0 is returne& Otherwise, a
value of - 1 is returned and ermo is set to indicate the error.

See Also

chmod(S), chown(S), creat(S), link(S), mknod(S), time(S),
unlink(S)

M arch 24, 1984 Page 2

STDIO (S) STDIO(S)

See Also

open(S), close(S), read(S), write(S), ctermid(S), cuserid(S),
fclose(S), ferror(S), fopen(S), fread(S), rseek(SL getc(S), gets(S),
popen(S), printf(S), putc(S), puts(S), scanf(S), setbuf(S),
system(S), tmpnam(S)

Di agr.·os tics

Invalid strea.m pointers can cause grave disorder, possibly including
program termination. Individual function descriptions describe the
possible error conditions.

:M arch 24, Hl84 Page 2

STRING (S) STRING (8)

Name

string, strcat, strncat, stremp, stmemp, strcpy, strnepy, strlen, strehr,
strrchr, strpbrk, strspn, strcspn, strtok, strdup - Perform string
operations.

Syntax

char ·streat (sl, 82)
char ·sl, ·s2;

char ·stmcat (sl, 82, n)
char ·sI,·52;
int n;

int strcmp (sl, s2)
char .s1, ·s 2;

int stmcmp(sl, s2, n)
char ·sl, ·82;
int n;

char ·strcpy(sI, 82)
char ·sl, ·52;

char ·stmcpy (sI, 52, n)
char ·sl, ·82;
int n;

int strlen (s)
char ·5;

char ·strehr (s, c)
char ·8, c;

char ·strrchr (s, c)
char ·5, c;

char ·8trpbrk (s1, 82)
char ·51, ·82;

int strspn (st, s2)
char ·sI, ·82;

int strcspn (sl, 82)
char .s1, ·82;

char ·strtok (sl, 82)
char ·51, ·52;

char ·strdup (8)
char ·8;

March 24, 1984 Page'l

SrillNG (S) STRING(S)

Notes

Stremp uses native character comparison, which is signed on some
machines, unsigned on others.

All string movement is perrormed character by character starting at
the left. Thus overlapping moves toward the left will work as
expected, but overlapping moves to the right may yield surprises.

March 24, 1084 Page '3

SYNC(S) SYNC (S)

Name

sync - Updates the super-block.

Synta.x

sync ()

Description

Sync causes all inform ation in memory that should be on disk to be
written out. This indudes modified super-blocks, modified inodes,
and delayed block I/O.

It should be used by programs which examine a. file system, for
example IICk(C), dl(C), etc.

The writing, although scheduled, is not necessa.rily complete upon
return from ,ync.

See Also

sync(C)

March 24, 1984 Page '1

TERMCAP(S) TERMCAP(S)

Name

tge te nt, tgetnum, tgetrJag, tgetstr, tgoto, tputs - Perrorms terminal
runctions.

Syntax

char PC;
char *BC;
char *UP;
short ospeed;

tgetent(bp, name)
char *bp, *name;

tgetnum{ id)
char *id;

tgetnag(id)
char *id;

char *tgets tr (id, area)
char *id, **area;

char *tgoto (cm, desteol, destline)
char *em;

tputs(cp, arrent, oute)
register char *cp;
int arrcnt;
int (*Outc)();

Description

These runctions extract and use capabilities rrom the terminal capa­
bility data base termcap(M). These are low level routines; see
cur,e,(S) ror a higher level package.

Tgetent extracts the entry ror terminal name into the burrer at bp. Bp
should be a character burrer or size 1024 and must be retained
through all subsequent calls to tgetnum, tget/lag, and tgtt'tr. Tgetent
returns - 1 ir it cannot open the termcap rile, 0 if the terminal name
given does not have an entry, and 1 ir all goes well. It will look in
the environment ror a TERMCAP variable. Ir round, and the value
does not begin with a slash, and the terminal type name is the same
as the environment string TERM, the TERMCAP string is used
instead or reading the term cap rile. Ir it does begin with a slash, the
string is used as a pathname rather than /etc/termcap. This can speed
up entry into programs that call tgetent, as well as to help debug new
terminal descriptions or to make one ror your terminal ir you can't

March 24, 1984 Page 1

TIME(S)

Name

time,ftim'e - Gets time and'date.

Syntax

time_t time ((long *) 0)

time_t time (tloc)
time_t *tloc;

,include <sys/types.h>
#include <sys/timeb.h>

ftime(tp)
struct timeb *tp;

Description

TIME (S)

Time returns the current system time in seconds since 00:00:00
GMT, Janua.ry I, IQ70.

If tloc (taken as an integer) is nonzero, the return value is also
stored in the location to which floc points.

Ftime returns the time in a structure (see below under Return
Value .)

Time will fail if tloc points to an illegal address. IEFAULT] Likewise,
ftime will fail ir tp points to an illegal address. !EFAULT]

Return Value

Upon successrul completion, time returns the value or time. Other­
wise, a value of - I is returned and errno is set to indicate the error.

The ftime entry rills in a structure pointed to by its argument, as
d~rined by <sys/timeb.h>:

/*
• Structure returned by rtime system call

*1
struct timeb {

};

time_t time;
unsigned short millitmj
short timezonej
short dstrIag;

March 24, lQS4 Page i

TlAfES (S)

Name

times - Gets process and child process times.

Syntax

,include <times.h>

long times (burter)
8 trud tmbuf {

long utime;
long stime;
long cutime;
long cstime;

} burter;

Description

TIMES(S)

Tame, Cills the structure pointed to by buffer with time-accounting
inCormation. This inCormation comes Crom the calling process and
each oC its terminated child processes Cor which it has execuud a
wait(S).

All times are in clock ticks where a tick is some Craction oC a second
derined in machine (M).

Utime is the CPU time used while executing instructions in the user
space oC the calling process.

Stime is the CPU time used by the system on behalf of the calling
process.

Cutime is the sum of the utimes and cutimes oC the child processes.

Cltime is the sum oC the ,times and utimes oC the child processes.

Tame, will Cail if buffer points to an illegal address. IEFAULT]

Return Value

Upon successful completion, time, returns the ela.psed real time, in
clock ticks, since an arbitrary point in the past, such as the system
startrup time. This point does not change Crom one invocation oC
time, to another. If time, Cails, a-I is returned and errno is set to
indicate the error.

See Also

exec(S), Cork(S), time(S), wait(S), machine(M)

March 24, 1984 Page 1

TMPNAM(S)

Name

tmpnam - Creates a name for a temporary file.

Syntax

,include <stdio.b>

char ·tmpnam (s)
char ·5;

Description

1MPNAM(S)

Tmpnam generates a rilename that can s:Jely be used for a tem­
porarJ file. H (int}6 is zero, tmpnam leaves its result in an inurnal
static area and returns a pointer to that area. The next call to
tmpnam will destroy the contents of the area. If (int) 6 is nonzero, _
is assumed to be the address of an array of at least L_tmpnam
bytes; tmpnam places its result in that array and returns _ as its
value.

Tmpnam generates a different filename each time it is called.

Files created using tmpnam and either /open or creat are only tem­
porary in the sense that they reside in a directory intended for tem­
porary use, and their names are unique. It is the user's responsibil­
ity to use unlink (S) to remove the rile when its use is ended.

See Also

creat(S), unlink(S), fopen(S), mktemp(S)

Notes

If called more than 17,576 times in a single process, Jmpnam will
start recycling previously used names.

Between the time a filename is created and the rile is opened, it is
possible for some other process to create a rile with the same na.me.
This can never happen if that other process is using tmpnam or
mktemp, and the filenames are chosen so as to render duplication by
other means unlikely.

March 24, 1984 Page 1

TTYNAME(S)

Name

ttyname, isatty - Finds the name or a terminal.

Syntax

char ·ttyname (tildes)

int isatty (tildes)

Description

TTYNAAf E (S)

nyname returns a pointer to the null-terminated pathname of the
terminal device associated with rile descripror lildu.

[,a tty returns 1 if lilde, is associated with a terminal device, 0 other-
wise. .

Files

/devJ*

Diagnostics

nyname returns a null pointer (0) if lilde, does not describe a termi­
nal device in directory /dev.

Notes

The return value points ro static data whose content is overwritten
by each call.

March 24, 1984 Pa.ge 1

UMASK (S) UMASK(S)

Name

umask - Sets and gets file creation mask.

Syntax

int umask (cmask)
int cmask;

Description

UmlJek sets the process' file mode creation mask to emuk and
returns the previous value or the mask. Only the low-order 9 bits or
emuk and the file mode creation mask are used.

Retum Value

The previous value or the file mode creation mask is returned.

See Also

mkdir(C), mknod(C), sh(C), chmod(S), mknod(S), open(S)

Ma.rch 24, 1984 Pa.ge 1

UNAME(S)

Name

uname - Gets name of current XENIX system.

Syntax:

'include <sys/utsname.h>

int uname (name)
stnlct utsname *name;

Description

UNAME(S)

Uname stores inrormation identifying the current XENIX system in
the structure pointed to by name.

Uname uses the structure defined in <sys/utsname.h>:

struct utsname {

};

char sysname[9];
char nodename(9};
char release(9];
char version[9};
unsigned short sysorigin;
unsigned short sysoem;
long sysserialj

Uname returns a null-terminated character string naming the current
XENIX system in the character array '1I,name. Similarly, noden4me
contains the name that the system is known by on a communications
network. Release and version rurther identify the operating system.
S1l,origin and B1Iseom identiry the source or the XENIX version. 511B­
serial is a software serial number which may be zero if unused.

Uname will fail if name points to an invalid address. IEFAULTj

Return Value

Upon successrul completion, a nonnegative value is returned. Oth­
erwise, - 1 is returned and errno is set to indicate the error.

March 24, 1984 Page 1

UNGETC(S)

Name

ungetc - Pushes character back into input stream.

Syntax

'include <stdio.h>

int ungetc (c, stream)
char c;
FlLE ·stream;

Description

UNGETC(S)

Ungetc pushes the character c back on an input stream. The charac­
ter will be returned by the next getc call on that stream. Ungetc
returns c.

One character of push back is guaranteed provided something has
been read from the stream and the stream is actually buffered.
Attempts to push EOF are rejected.

Fseek(S) erases all memory of pushed back characters.

See Also

fseek(S), getc(S), setbuf(S)

Diagnostics

Ungetc returns EOF if it can't push a character back.

March 24, 1984 Page 1

UNLINK (S) UNLINK (S)

Return Value

Upon successrul completion, a value or 0 is returned. Otherwise, a
value or - 1 is returned and ermo is set to indicare the error.

See Also

rm(C), close(S), link(S), open(S)

March 24, U)84 Page 2

UTIME(S) UTIME(S)

Name

utime - Sets file access and modification times.

Syntax

#include <sys/types.h>
int utime (path, times)
char*path;
struct utimbur *times;

Description

Path points to a pathname naming a file. Utime sets the access and
modification times of the named file.

If timel is NULL, the access and modification times of the file are set
to the current time. A process must be the owner of the file or have
write permission to use utime in this manner.

If timel is not NULL, times is interpreted as a pointer to a utimbul
structure and the access and modification times are set to the vaJues
contained in the designated structure. Only the owner of the file or
the super-user may use utime this way.

The times in the following structure are measured in seconds since
00:00:00 GMT, Jan. 1, lQ70.

struct utimbur {

};

time_t actime;
time_t modtime;

/* access time * /
1* modification time *'

Utime will rail if one or more of the following are true:

The named file does not exist. !ENOENT]

A component of the path prefix is not a direetory. IENOTDIR}

Seareh permission is denied by a component of the path prefix.
!EACCES]

The effective user ID is not super-user and not the owner of the
file and timel is not NUJ.JL. !EPERM]

The effective user ID is not super-user and not the owner of the
file and times is NULL and wri·te access is denied. [EACCES]

The file system containing the file is mounted read-only.
[EROFS!

Ma.rch 24, lQS4 Page 1

WAIT(S) WAIT(S)

Name

wait - Wait.5 for a child process to stop or terminate.

Syntax

int wait (stat_loe)
int ·stat_loe;

int wait « int ·)0)

Description

Wait suspends the calling process until it receives a signal that is to
be caught (see ,;gnat(S)), or until anyone of the calling process'
child processes stops in a trace mode (see ptrace(S)) or termina.tes.
If a child process stopped or terminated prior to the call on wait,
return is immediate.

If BtaCtoc (taken as an integer) is nonzero, 16 bit.5 of information
called "status" are stored in the low-order 16 bit.5 of the location
pointed 00 by ,taCloc. Statu, can be used 00 differentiate between
soopped and terminated child processes and if the child process ter­
minated, status identifies the cause of termination and passes useful
information 00 the parent. This is accomplished in the rollowing
manner:

If the child process soopped, the high-order 8 bit.5 of status will
be zero and the low-order 8 bits will be set equal 00 0177.

If the child process terminated due 00 an ezit call, the low-order
8 bits of status will be zero and the high-order 8 bit.5 will contain
the low-order 8 bit.5 of the argument that the child process
passed 00 ez£t; see ezit(S).

If the child process terminated due 00 a signal, the high-order 8
bits of status will be zero and the low-order 8 bits will contain
the number of the signal that caused the termination. In addi­
tion, if the low-order seventh bit (i.e., bit 200) is set, a "core
image" will have been produced; see ,;gnal(S).

If a parent process terminates without waiting for its child processes
00 terminate, the parent process ID of each child process is set to 1.
This means the initialization process inherits the child processes; see
intro(S).

March 24, 1984 Page 1

WAITSEM (S) WAITSEM (S)

Name'

waitsem, nbwaiwem - Awaits and checks access to a. resource
governed by a semaphore.

Syntax

waitBem(sem_num);
int sem_num;

nbwaitBem(sem_num);
int sem_num;

Description

Wait,em gives the calling process access to the resource governed by
the semaphore ,em_num. If the resource is in use by another pro­
cess, waitBem will put the process to sleep until the resource becomes
available; nbwait,em will return the error ENAVAIL. WaitBem and
nbwaitBem are used in conjunction with Big,em to allow synchroniza­
tion of processes wishing to access a resource. One or more
processes may wait,em on the given semaphore and will be put to
sleep until the process which currently has access to the resource
issues ,ig,em. Sig,em causes the process which is next in line on the
semaphore's queue to be rescheduled for execution. The
semaphore's queue is organized in first in first out (FIFO) order.

See Also

creatsem(S), opensem(S), sigsem(S)

Diagnostics

, Wait,em returns the value (int) -1 if an error occurs. Ir ,em_num
has not been previously opened by a call to open,em or creat,em,
errno is set to EBADF. If lem_num does not refer to a semaphore
type file, ermo is set to ENOTNAM. All processes waiting (or
attempting to wait) on the semaphore when the process controlling
the semaphore exits without relinquishing control (thereby lea.ving
the resource in an undeterminate state) return with ermo set to ENA­
VAIL.

March 24, 1984 Page 1

WRITE(S) WRITE(S)

below).

Ie the file being written is a pipe (or FIFO), no partial writes will be
permitted. Thus, the write will rail ir a write or nbyte bytes would
exceed a limit.

Ie the file being written is a pipe (or FIFO) and the O.,NDELAY flag
or the file flag word is set, then write to a rull pipe (or FIFO) will
return a count or o. Otherwise (O.,NDELA Y clear), writes to a. rull
pipe .(or FIFO) will block until space becomes a.vailable.

Return Value

Upon successful completion the number of bytes actually written is
returned. Otherwise, - 1 is returned and ermo is set to indicate the
error.

See Also

creat(S), dup(S), Iseek(S), open(S), pipe(S), ulimit(S)

Notes

Writing a region or a file locked with loeking causes VlriU to hang
indefinj~ly until the locked region is unlocked.

Ma.rch 24, 1984 Page 2

XL 1ST (5) XLIST(S)

Diagnostics

Xlilt returns ·1 and sets all type en tries to zero if the file cannot be
read, is not an object file, or contains an invalid name list. Other­
wise, ttli« returns zero. A return value of zero does not indica~ that
any or all of the given symbols were found.

March 24, H~84 Page 2

CONTENTS

iIUo
a.out
aeet
ar
checklist
core
cpio
dir
dump
file system
inodc
master
mnttab
sccsfile
types
x.out

FileFonnats(F)

Introductiontofi1e formats
Format of assembler aDd link editor output
Fonnat ofper-processaccOWlingfilc
Archive file format
List oftilc systems processed by fa
fonnatof core image file
fonnatofcpioarchivc
fonnatofadirectory
lnaemcnlaldumptapcformat
Format of a system volume
fcrmatofaninodc
Formatofmasterdcviceinformationtablc
formatofmountc:d file system table
FormatofanSCCSfile
Primitive system data types
Loaderoutput

l-i

Index

Acc<Untingfile~~ _____________ aCd

Assembler and link editor output a.out
Archive file ar
Archive file epio
Core image file core
Datatypes, system types
D~ d~
Dumptape dDDlp
File formats, introduction iotro
File systemlist checklist
File system volume file system
Inode iDode
loader <utput x.out
Moumedfile system table amttab
sees file seesfile

INTRO(F) INTRO(F)

Name

intro - Introduction to rile rormats.

Description

This section outlines the forma.ts or various riles. Usually, these
structures can be found in the directories /usr/include or
/usr/include/sys.

March 24, 1984 Pa.ge 1

ACCT(F) ACCT(F)

Name

acct - Format or per-process accounting file.

Description

Files produced as a result or calling /lut(S) have records in the form
defined by < sys/acct.h > .

In /le.Jl/lg, the AFORK flag is turned on by each /0 ric (S) and turned
off by an ezee(S). The /lc_comm field is inherited rrom the parent
process and is reset by any ezec. Each time the system charges the
process with a clock tick, it also adds the current process size to
tJe_mem computed as rollows:

(data size) + (text size) / (number or in-core processes using
~xt)

The value or ac_mem/ac_Itime can be viewed as an approximation to
the mean process size, as modified by ~xt,.sharing.

See Also

acct(C), acctcom (C), acct(S)

Notes

The tJc_mem value ror a short-lived command gives little inrorma.tion
about the actual size or the command, because ac_mem may be
incremented while a different comm and (e.g., the shell) is being exe­
cu~d by the process.

March 24, 1984 Pa.ge 1

CHECKLIST(F) CHEGKLIST(F)

Na.me

checklist- List or file systems processed by /,ek.

Description

The /etc/cAeckll,t file contains a list or the file systems to be checked
when ',ck(C) is invoked without arguments. The list contains at
most 15 'Peclal file names. Each 'peclal file name must be on a
separate line and must correspond to a file system.

See Also

rsck(C)

March 24, 1984 Page 1

CPIO (F)

Name

cpio - Format of cpio archive.

Description

The 4e4der structure, when the c option is not used, is:

struct {
short

char
} Hdrj

h_magic,
h_dev,
h_ino,
h_mode,
h_uid,
h...,gid,
h_nlink,
h_rdev,
h_mtime[2},
h_na.mesize,
h_filesize(2};
h_na.me[hJlamesize rounded to word];

CPIO(F)

When the c option is used, the he4der information is described by
the statement below:

sscanf(Chdr, "0/060 0/&0 0/c60 0/c6 00/060 o/'c.8o 0/c600/c;60 %1 110 0/&0 0/& 0 o/c.s" ,
&Hdr.h_magic,&Hdr.h_dev,&Hdr.h_ino,&Hdr.h_mode,
&Hdr.h_uid,&Hdr.h...,gid,&Hdr.h_nlink,&Hdr.h_rdev,
&Longtime,&Hdr.h_namesize,&Longfile,Hdr.h_na.me)j

Longtime and Longfile are equivalent tD Hdr.A_mtime and
Hdr.I&Jile,ize, respectively. The contents of each file is recorded in
an element of the arra.y of varying length structures, tlrtkifJe,
tDgether with other items describing the file. Every instance of
A_magic contains the constant 070707 (octal). The items A_defl
through A_mtime have meanings explained in ltat(S). The length of
the null-terminated pathname A_name, including the null byte, is
given by A_ftame,ize.

The last record of the areAifJe always contains the name TRAILER!!!.
Special files, directDries, and the trailer are recorded with A..fluize
equal tD zero.

See Also

cpio(C), find{ C), sta.t{ S)

March 24, 1984 Page 1

DUMP(F) DUAfP(F}

Name

dump - Incremental dump tape rormat.

Description

The tlump and ruto,. commands are used ro write and read incre­
mental dump magnetic tapes.

The dump tape consists or a header record, some bit mask records, a
group of records describing file system direcrories, a group of records
describing file system files, and some records describing a second bit
mask.

The header record and the first record of each description have the
rormat described by the structure included by:

,include <dumpresror.h>

Fields in the tlumprutof'structure are described below.

NTREC is the number of 512 byte blocks in a physical tape record.
MLEN is the number oC bits in a bit map word. MSIZ is the number
of bit map words.

The TS_ entries are used in the c_'1If'(field ro indicate what sort of
header this is. The types and their meanings are as follows:

TS_TYPE Tape volume label.

TS_INODE A file or direcrory (ollows. The t_tliraotle field is a copy
or the disk inode an~ contains bits telling what sort oC
file this is.

TS_BITS A bit mask Collows. This bit mask has a one bit ror
each inode that was dumped.

TS..,.ADDR A subblock ro a file ('l'S_INODE). See the description
or c_count below.

TSJ;ND End or tape record.

TS_CLRI A bit mask rollows. This bit mask contains a one bit
ror all inodes that were empty on the file system when
dumped.

MAGIC All header blocks have this number in c_magie.

CHECKSUM Header blocks checksum ro this value.

March 24, lQS4 Page 1

FILESYSTEM (F)

Name

file system - Format of a system volume.

Syntax

,include <sys/fllsys.h>
,include <sys/types.h>
,include <sys/param.h>

Description

FILESYSTEM (F)

Every file system storage volume (e.g., a hard disk) has a. common
format for certain vital information. Every such volume is divided
into a certain number of 256 word (512 byte) blocks. Block 0 is
unused and is available to contain a bootstrap program or other
in Co rm ation.

Block 1 is the ,uper-block. The format oC a super-block is described
in /usr/include/sys/filesys.h. In that include file, S_,.iu is the
address oC the first data. block arter the i-list. The i-list starts just
after the super-block in block 2; thus the i-list is ,_itJize- 2 blocks
long. SJ.ize is the first block not potentially available for allocation
to a file. These numbers are used by the system to check for bad
block numbers. IC an "impossible" block number is allocated from
the rreelist or is freed, a diagnostic is written on the console. More­
over, the free array is cleared so as to prevent further alloca.tion
Crom a presumably corrupted free list.

The Cree list for each volume is maintained as follows. The 'Jree
array conta.ins, in .• Jree(l], ... , ,Jree[,_"free- 1], up to 49 numbers
of free blocks. SJreelO] is the block number of the head or a chain
of blocks const.ituting the Cree list. The first long in each Cree-chain
block is the number (up to 50) of rree-block numbers listed in the
next 50 longs of this chain member. The first of these 50 blocks is
the link to the next member of the chain. To allocate a block: decre­
ment ,_nfree, and the new block is 'Jree(,_nfree). If the new block
number is 0, there are no blocks left, so give an error. If ,_",Iree
becomes 0, read in the block named by the new block number,
replace ,_nfree by its first word, and copy the block numbers in the
next 50 longs into the 'Jree array. To Cree a block, check ir ,_",Iree
is 50; ir so, copy ,_nfree and the ,Jree array into it, write it out, and
set ,_nfree to O. In any event set 'Jree('_nfree) to the Creed block's
number and increment ,_nfree.

S_t/ree is the total free blocks available in the file system.

S_ninode is the number of rree i-numbers in the ,_inode array. To
allocate an inode: ir ,_ninode is greater than 0, decrement it and
return '_'nodell_ninode). If it was 0, read the i-list and place the
numbers or all Cree inodes (up to 100) into the ,_inode array, then

March 24, 1984 Pa.ge 1

IN ODE (F)

Name

inode - Format or an inode.

Syntax

'include <sys/types.h>
,include <sys/ino.b>

. Description

INODE(F)

An inode ror a plain file or directory in a file sysrem has the struc­
ture defined by <sys/ino.b>. For the meaning or the defined
types o6_t and titM_t see twu(F).

Files

/usr/include/sys/ino.h

See Also

stat(S), filesysrem(F), types(F)

March 24, 1984 Page 1

MASTER (F) MASTER (F)

Part 2 contains lines with 11 fields each. Each field is a ma.ximum of
8 characters delimited by a blank ir less than 8:

Field 1:
Device associated with this line

Field 2:
open routine

Field 3:
close routine

Field 4:
read routine

Field 5:
write routine

Field 6:
ioctl routine

Field 7:
receiver interupt routine

Field 8:
unused- should be nulldev

Field 9:
unused- should be nulldev

Field 10:
output start routine

Field 11:
unused- should be nulldev

Part 3 contains lines. with 2 fields each:

Field 1:
Field 2:

alias name or device (8 chars. maximum).
reference name of device (8 chars. maximum;
specified in part 1).

Part 4 contains lines with 2 or 3 fields each:

Field 1:

Field 2:

Field 3:

parameter name (as it appears in description file;
20 ehars. maximum)
parameter name (as it appears in the c.c file; 20
chars. maximum)
default parameter value (20 chars. maximum;
parameter specifica.tion is required if this field is
omitted)

Deviees that are not interrupt-driven have an interrupt veetor sile of
zero. Devices which generate interupts but are not of the standard
character or block device mold, should be specified with a type (field
4 in part 1) which has neither the bloek nor char bits set.

See Also

eonfig(CP)

March 24, 1984 Pa.ge 2

SCCSFILE (F) SCCSFILE(F)

Name

sccsfile - Format. or an sees file.

Description

An sees file is an ASCII file. It. consists or six logical parts: the
check,um, the delta table (cont.ains inrormation about each delta),
u,ern4mu (contains login names and/or numerical AYoup IDs of
users who may a.dd deltas), /fag. (contains definitions of internal
keywords), commeAt. (contains arbitrary descriptive information
about the file), and the bod, (contains the actual text lines inter­
mixed with control lines). Ea.ch logical part of an sees file is
described in detail below.

Throughout an sees file there are lines which begin with the ASCII
SOH (start or heading) character (octal 001). This character is
herearter referred to as tAe cOAtrol ch4racter and will be represented
graphically as @. Any line described below which is not depicted as
beginning with the control character is prevented from beginning
with the control character. Entries or the form DDDDD represent a
five digit string (a number between 00000 and 99999).

The checksum is the first. line of an sees file. The form of the line
is:

@hDDDDD

The value or the checksum is the sum or all characters, except those
or the first line. The @ hR provides a magic number of (octal)
064001.

"Delta TtJble"

The delta table consists or a variable number or entries of the form:

@ II DDDDD/DDDDD/DDDDD
@d <type> <sen; I.D> yrjmojda. hr:mi:se <pgmr> DDDDD DDDDD
@i 00000 •••
@x DDDDD •••
@gDDDDD •••
@ m <MR Dumber>

«II c <comments> •••

@e

March 24, 1984 Page 1

SCCSFIL'E (F) SCCSFILE (F)

validity checking program. The i flag controls the warning/error
aspect or the "No id keywords" message. When the i flag is not
present, this message is only a warning; when the i flag is present,
this message will ca.use a "ratal" error (the file will not be gotun, or
the delta. will not be made). When the b flag is present the - b
option may be used with the get command to cause a branch in the
delta tree. The m flag defines the first choice ror the replacement
text of the 8ccsfile.F identification keyword. The r flag defines the
"floor" release; the release below which no deltas may be added.
The ·c flag defines the "ceiling" release; the release above which no
deltas may be added. The d flag defines the derault SID to be used
when none is specified on a get command. The n flag causes delt" to
insert a "null" delta (a delta that applies AD changes) in those
releases that are skipped when a delta is made in a Ae", release (e.g.,
when delta 5.1 is made after delta 2.7, releases 3 and 4 are skipped).
1he absence or the n flag causes skipped releases to be completely

. empty. The j flag causes get to allow concurrent edits of the same
base SID. The 1 flag defines a Ii" or releases that are IDtked .gainst
editing (get(CP) with the - e option). The q flag defines the
replacement ror the identification keyword.

Comment.

Arbitrary text surrounded by the bracketing Jines @ t and 0 T. The
comments section typically contains a description or the file's pur­
pose.

Bod,l

The body consists of text lines and control lines. Text lines don't
begin with the control character, control lines do. There are three
kinds of control lines: in.eft, delete, and tAd, as follows:

@JDDDDD
GD DDDDD
@EDDDDD

The digit string (DDDDD) is the serial number corresponding to the
delta. for the control line.

See Also

admin(CP), delta.(CP), get(CP), prs(CP)

XenixProgrammer', Guide

March 24, 1984 Page.3

X.OUI(F) X.OUT(F)

Name
x.out - loader output

Synopsis
#include fa.out.hl

Description
x.out is the output file of the loader ld(CP). Id(CP) makes x.out
executable if there are no errors and 00 unresolved external refer­
ences. The following layout information is given in the include file
for the 68000:

struct xexec { 1* x.out header *'
unsigned short unagic; '* magic DUmber *'
unsigned short x..ext; 1* size of header extension *'
long x.Jext; '* size of text segment *'
long Ldata; 1* size of initialized data *'
long uss; '* . size of uninitialized data *'
long LSyms; '* size of symbol table *'
long x..reloc; 1* relocation table length *'
long x..entry; '* entry poilt *'
char x..cpu; 1* cpu type &. byte/word order *'
char x...relsym; 1* relocation &. symbol format *'
unsigned short x..renv; '* run-time environmelt *' ,;

struct xext {

I;

long xe.Jrsize;
long xe..drsize;
long xe.Jbase;
long xUbase;
long xe..stksize;

'* x.out header extension *'
1* size of text relocation *' '* size of data relocation *' '* text relocation base *' '* data relocation base *'
1* stack size (if XE..FS set) *'

The file has four sections: a header, the program's text aad data,
relocatioD Informadon, and a symbol table, in that order. The
header optionally has a header extension as shown above. The
relocation and symbol section will be empty if the program was
loaded with the -5 option of Id, or if the symbols and relocation
have been removed by strip(Cp). The sizes of each section in the
header are given as longs, but have even alignment. The size of
the header is not included in any of the other sizes. When an
x.out file is loaded into core for execution, three logical segments
arc set up: the text segment, the data segment (with uninitialized
data, which starts off as all 0, following initialized data), and a
.stadt. The text segment begins at 0 in the core image; the header

May 10, 1984 Page 1

