The XENIX"

'Development System

Programmer’s Reference

for the Apple Lisa 2"

The Santa Cruz Operation, Inc.

Contents

L
W e

BRNNNN N
AWV WA

POWWWWW W
SNANE WN -

Introduction

Overview 1-1
UsingtheCLibrary Functions 1—1
‘UsingThisManual 1-1
NotationalConventions 12

Using The Standard1/0 Functions

Introduction 2-1
UsingCommandLine Arguments 2-2
UsingtheStandardFiles 2-4
Usingthe Stream Functions 2—12
UsingMore StreamFunctions 2-24
UsingtheLow—Level Functions 2—-28

ScreenProcessing

Introduction 3-1
Preparing forthe ScreenFunctions 3-—3
UsingtheStandardScreen 3-6
Creatingand Using Windows 3—-13
Using Other Window Functions 3—24
CombiningMovement with Action 3-—-28
Controllingthe Terminal 3-—-29

Character and StringProcessing

Introduction 4-1
Usingthe Character Functions 4—1
Usingthe String Functions 4-7

UsingProcess Contral

Introduction 5-1

UsingProcesses 5—1
CallingaProgram 5~1
StoppingaProgram 5—-2
OverlayingaProgram 5—3
ExecutingaProgram Through aShell 5—5
DuplicatingaProcess 5—S5

AppendixB XENIXSystemCalls

B.1
B.2
B.3
B.3
B4
B:S
B.6

Introduction B-—1

RevisedSystemCalls B-—1

Version7 Additions B-1
Changestotheioctl Function B-2
Usingthemount andchown Functions B—2
Super—BlockFormat B-2

Separate VersionLibraries B—3

Chapter 1
Introduction

1.1 Overview 1-1
1.2 Using the C Library Functions 1-1
1.3 Using This Manual 1-1

1.4 Notational Conventions 1-2

Introduction

1.1 Overview

This manual explains how to use the functions given in the C language libraries

of the XENIX system. In particular, it describes the functions of two Clanguage

libraries: the standard C library, and the screen updating and cursor
“movement library curses.

The Clibrary functions may be called by any program that needs the resources
of the XENIX system to perform a task. The functions let programs read and
write to files in the XENIX file system, read and write to devices such as
terminals and lineprinters, load and execute other programs, receive and
process signals, communicate with other programs through pipes, share system
resour ces, and process errors.

1.2 Using the C Library Functions

To use the C library functions you must include the proper function call and
definitions in the program and specify the corresponding library is given when
the program is compiled. The standard C library, contained in the file libc.q, is
automatically specified when you compile a C language program. Other
libraries, including the screen updating and cursor movement library
contained in the file libc urses. a, must be explicitly specified when you compile a
program with the —1 option of the cc command (see Chapter 2, “Ce: a2 C
Compiler” in the XENIX Programmer’s Guide).

1.3 Using This Manual

This manual is intended to be used in conjunction with section S of the XENIX
Reference Manual. If you have never used the C library functions before, read
this manual first, then refer to the Reference Manual to learn about other
functions. If you are familiar with the library functions, turn to the Reference
Manual to see how these functions may differ from the ones you already know,
thenreturn to this manual for examples of the functions.

Chapter 1introduces the C language libraries.

Chapter 2 describes the standard input and output functions. These function
let a program read and write to the files of 2 XENIX file system.

Chapter 3 describes the screen processing functions. These functions let a
program use the screen processing facilities of a user’s terminal.

Chapter 4 describes the character and string processing functions. These
functions let a program assign, manipulate, and compare characters and
strings.

Chapter 2
Using the Standard I/O Functions

2.1 Introduction 2-1
2.1.1 Preparing for thel/OFunctions 2-1
2.1.2 Special Names 2-1
2.1.3 Special Macros 2-2

.

2.2 Using Command Line Arguments 2-2

2.3 Using the Standard Files 2-4
2.3.1 ReadingFromthe Standard Input 2-4
2.3.2 Writing tothe Standard Output 2-7
2.3.3 Redirecting the Standard Input 2-9
2.3.4 Redirecting the Standard Output 2-9
2.3.5 Pipingthe Standard Input and Output 2-9
2.3.6 Program Example 2-10 ’

2.4 Using the Stream Functions 2-11
2.4.1 UsingFilePointers 2-11
2.4.2 OpeningaFile 2-12
2.4.3 Reading a Single Character 2-13
2.4.4 Readinga String from aFile 2-13
2.4.5 ReadingRecordsfromaFile 2-14
2.4.6 ReadingFormatted DataFromaFile 2-14
2.4.7 Writing a Single Character 2-15
2.4.8 WritingaStringtoaFile 2-16
2.4.9 Writing Formatted Output 2-17
2.4.10 Writing RecordstoaFile 2-17
2.4.11 Testing for the End of aFile 2-18
2.4.12 TestingForFile Errors 2-18
2.4.13 Closing aFile 2-19
2.4.14 Program Example 2-19

2.5 Using More Stream Functions 2-22
2.5.1 Using Buffered Input and Output 2-22
2.5.2 ReopeningaFile 2-23

Using the Standard 1/O Functions

2.1 Introduction

Nearly all programs use some form of input and output. Some programs read from or
write to files stored on disk. Others write to devices such as line printers. Many
programs read from and write to the user’s terminal. For this reason, the standard C
library provides several predefined input and output functions that a programmer can
useinprograms.

This chapter explains how to use the YO functions in the standard C library. In
particular, itdescribes:

— Commandlinearguments

— Standardinput and output files

.— Stream functionsforordinary files

— Low—levelfunctions forordinary files

— Randomaccess functions
2.1.1 Preparing for the I/O Functions

To use the standard YO functions a program must include the file stdio.h, which
defines the needed macros and variables. To include this file, place the following line
atthebeginning of the program.

#include <stdio.h>

The actual functions are contained in the library file libc.a. This file is automaticalty
read whenever you compile a program, so no special argument is needed when you
invoke the compiler.

2.1.2 Special Names

The standard /O library uses many names for special purposes. In general, these
namescanbeusedinany programthat hasincludedthe stdio. A file.

Using the Standard I/O Functions

main (arge, argv)
int argc;
char sargv{];

at the beginning of the main program function. When a program begins
execution, “arge’ contains the count, and each element in “argv”’ contains a
pointer to one argument.

An argument is stored as a null-terminated string (i.e., a string ending with a
null character, \0). The first string (at “argv|[0]”) is the program name. The
argument count is never less than 1, since the program name is always
considered the first argument.

In the following example, command line arguments are read and then echoed on
the terminal screen. Thisprogram is similar to the XENIX echo command.

main(arge, argv) /#* echo arguments ¢/
int argc;
char *argv];

int i

for (i=1;i < arge; i++)
printf(" %s%c", argvli], (i<arge-1) ?’’:’\n’);
}

In the example above, an extra space character is added at the end of each
argument to separate it from the next argument. This is required, since the
system automatically removes leading and trailing whitespace characters (i.e.,
spaces and tabs) when it readsthe arguments from the command line. Addinga
newline character to the last argument is for convenience only; it causes the
shell prompt to appear on the next line after the program terminates.

When typing arguments on a command line, make sure each argument is
separated from the others by one or more whitespace characters. If an
argument must contain whitespace characters, enclose that argument in
double quotation marks. For example, in the command line

display 3 4 "echo hello”
the string “‘echo hello” is treated as a single argument Also enclose in double
quotation marks any argument that contains charactersrecognized by the shell
(e.8, <, >,},and").

You should not change the values of the “argc’” and “argv” variables. If
necessary, assign the argument value to another variable and change that
variable instead. You can give other functions in the program access to the
arguments by assigning their values to external variables.

Using the Standard I/O Functions

readn (p, cnt)
char pfj;
int cnt;

{

int i,c;

i=0;
while (i<ent)
if (pli++] = getchar()) != EOF) {
plij =6;
return(EOF);

return(0);

}

Note that if getchar is reading from the keyboard, it waits for characters to be
typed before returning.

The gets function reads a string of characters from the standard input and
copiesthe string to a given memory location. The function call hasthe form:

gets(s)

where & is a pointer to the location to receive the string. The function reads
characters until it finds a newline character, then replaces the newline
character with a null character (\0) and copies the resulting string to memory.
The function returns the null pointer value NULL if the end of the file or an
error is encountered. Otherwise, itreturns the value of .

The function is typically used to read a full line from the standard input. For
example, the following program fragment reads aline from the standard input,
stores it in the character array “cmdln” and calls a function {called parse) if no
error occurs.

char cmdIn[SIZE];
if (gets(cmdin) !== NULL)

parsel);
In this case, the length of the string is assumed to be lessthan ¢‘SIZE”.

Note that gets cannot check the length of the string it reads, so overflow can
occur.

The scanf function reads one or more values from the standard input where a
value may be a character string or a decimal, octal, or hexadecimal number.
The function call hasthe form: '

scanf (format, argptr ...)

Using the Standard I/O Functions

You may use the getchar, gets, and scanf functions in a single program. Just
remember that each function reads the next available character, making that
character unavailable to the other functions.

Note that when the standard input is the terminal keyboard, the getchar, gets,
and ecanf functions usually do not.return a value until at least one newline
character has been typed. This is true even if only one character is desired. If
you wish to have immediate input on a single keystroke, see the example in the
section “Using the system Call” in Chapter 3.

2.3.2 Writing to the Standard Output

You can write to the standard output with the putchar, puts, and printf
functions.

The putchar function writes a single character to the output buffer. The
function call has the form:

putchar (¢)

where c is the character to be written. The function normally returns the same
character it wrote, but will return the value EOF if anerror is encountered.

The function is typically used in a conditional loop to write a string of
charactersto the standard output. For example, the function

writen (p,cnt)
char plJ;
int cnt;

{

int i;

for {i=0; i<==cnt; i++)
putchar((i !=cnt) ? p[i] : "\n’);

}

writes ‘‘cnt” number of characters plus a newline character to the standard
output.

The pute function copies the string found at a given memory location to the
standard output. The function call has the form:

puts(e)

where #is a pointer to the location containing the string. The string may be any
number of characters, but must end with a null character (\0). The function
writes each character in the string to the standard output and replacesthe null
character at the end of the string with a newline character.

Using the Standard I1/O Functions

You may use the putchar, puts, and printf functions in a single program. Just
remember that the output appears in the same order as it is written to the
standard output.

2.3.3 Redirecting the Standard Input

You can change the standard input from the terminal keyboard to an ordinary
file by using the normal shell redirection symbol, <. This symbol directs the
shell to open for reading the file whose name immediately follows the symbol.
For example, the following command line opens the file phonelist as the
standard input to the program dial.

dial <phonelist

The dial program may then use the getchar, gets, and scanf functions to read
characters and values from this file. Note that if the file does not exist, the shell
displaysan error message and stops the program.

Whenever getchar, gets, or scanf are used to read from an ordinary file, they
return the value EOF if the end of the file or an error isencountered. It isuseful
to check for this value to make sure you do not continue to read characters after
an error hasoccurred.

2.3.4 Redirecting the Standard Output

You can change the standard output of a program from the terminal screen to
an ordinary file by using the shell redirection symbol, >. The symbol directs
the shell to open for writing the file whose name immediately follows the
symbol. For example, the command line

dial >savephone

opens the file savephone as the standard output of the program dial and not the
*terminal screen. You may use the putchar, puts, and prentf functions to write
to the file.

If the file does not exist, the shell automatically creates it. If the file exists, but
the program does not have permission to change or alter the file, the shell
displaysan error message and does not execute the program.

2.3.5 Piping the Standard Input and Output

Another way to redefine the standard input and output is to create a pipe. A
pipe simply connects the standard output of one program to the standard input
of another. The programs may then use the standard input and output to pass
information from one to the other. You can create a pipe by using the standard
shell pipe symbol, |.

Using the Standard I1/O Functions

cat filel file2 file3 | cestrip

If you wish to save the stripped files, you can redirect the standard output of
ccetrip. For example, this command line writes the stripped files to the file
clean.

cat filel file2 file3 | cestrip >clean

Note that the ezt function is used at the end of the program to ensure that any
program which executes the ccstrip program will receive a normal termination
status (typically 0) from the program when it completes. An explanation of the
ezit function and how to execute one program under control of another is given
in Chapter 5.

2.4 Using the Stream Functions

The functions described so far have all read from the standard input and
written to the standard output. The next step is to show functions that access
files not already connected to the program. One set of standard 1/O functions
allows a program to open and access ordinary files asif they were a “‘stream” of
characters. For thisreason, the functions are called the stream functions.

Unlike the standard input and output files, a file to be accessed by a stream
function must be explicitly opened with the fopen function. The function can
open a file for reading, writing, or appending. A program can read from a file
with the gete, fgete, fgets, fgetw, fread, and fscanffunctions. It can write to a
file with the putc, fpute, fputs, fputw, fwrite, and fprintffunctions. A program
can test for the end of the file or for an error with the feof and ferror functions.
A program can close a file with the felose function.

2.4.1 Using File Pointers

Every file opened for access by the stream functions has a unique pointer
associated with it called a file pointer. This pointer, defined with the predefined
type FILE found in the stdio.h file, points to a structure that contains
information about the file, such as the location of the buffer (the intermediate
storage area between the actual file and the program), the current character
position in the buffer, and whether the file isbeing read or written. The pointer
can be given a valid pointer value with the fopen function as described in the
next section. (The NULL value, like FILE, is defined in the stdio.4 file.)
Thereafter, the file pointer may be used to refer to that file until the file is
explicitly closed with the felose function.

Typically, afile pointer is defined with the statement:

FILE =infile;

2-11

Using the Standard I/O Functions

2.4.3 Reading a Single Character

The gete and fgete functions return a single character read from a given file,
and return the value EOF if the end of the file or an error is encountered. The
function callshave the form:

¢ = getc (stream)
and
¢ == fgetc (stream)

where stream is the file pointer to the file to be read and ¢ is the variable to
receive the character. The return value is always an integer.

The functions are typically used in conditional loops to read a string of
characters from a file. For example, the following program fragment continues
to read characters from the file given to it by “infile” until the end of the file or
an error isencountered.

int i;
char buf{MAX];
FILE sinfile;

while ((c=getc(infile)} = EOF)
bufi++]=c;

The only difference between the functionsis that getc is defined asa macro, and
Jgetc as a true function. This means that, unlike getc, fgetc may be passed as
an argument in another function, used as a target for a breakpoint when
debugging, or used to avoid any side effectsof macro processing.

2.4.4 Reading a String from a File

The fgets function reads a string of characters a file and copies the string to a
given memory location. The function call has the form:

fgets (s,n, stre am)

where s is be a pointer to the location to receive the string, = is a count of the
maximum number of characters to be in the string, and stream is the file
pointer of the file to be read. The function reads n-1I characters or upto to the
first newline character, whichever occurs first. The function appends a null
character (\0) to the last character read and then stores the string at the
specified location. The function returns the null pointer value NULL if the end
of the fileor anerror is encountered. Otherwise, it returnsthe pointer s.

2-13

Using the Standard I/O Functions

function reads from the standard input. The function call has the form:
fscanf (stream, format, argptr ...)

where stream is the file pointer of the file to be read, format is a pointer to the
string that defines the format of the input to be read, and argptris one or more
pointers to the variables that are to receive the formatted input. There must be
one argptr for each format given in the format string. The format may be “%%s”
for a string, “%c” for a character, and “%4d”, “%o”, or “%x" for a decimal,
octal, or hexadecimal number, respectively. (Other formats are described in
scanf(S) in the XENIX Reference Manual.) The function normally returns the
number of arguments it read, but will return the value EOF if the end of the file
or anerror isencountered.

The function is typically used to read files that contain both numbers and text.
For example, this program fragment reads a name and a decimal number from
the file given by “file”.

FILE file;

int pay;

char name[20};

fscanf(file,” %s %d\n", name, &pay);
This program fragment copies the name to the character array “name’ and the

‘number to the integer variable “pay’’.

2.4.7 Writing a Single Character

The pute and fpute functions write single characters to a given file. The
function calls have the forms:

putc (¢,stream)
and

fputc (c,atream)
where c is the character to be written and stream is the file pointer to the file to
receive the character. The function normally returns the character written,
but will return the value EOF if an error isencountered.
The function is defined as a macro and may have undesirable side effects
resulting from argument processing. In such cases, the equivalent function
fpute should be used. : ’
These functions are typically used in conditional loops to write a string of

characters to a file. For example, this following program fragment writes
charactersfrom the array “name” to the file given by “out”.

2-15

Using the Standard 1/O Functions

2.4.9 Writing Formatted Output

The fprintf function writes formatted output to a given file, just as the printf
function writes to the standard output. The function call has the form:

fprintf (stream, format |, arg]...)

where stre am is the file pointer of the file to be written to, format is a pointer to
a string which defines the format of the output, and arg is one or more
arguments to be written. There must be one arg for each format in the format
string. The formats may be “%s’ for a string, “%c”’ for a character, and
“%d”, “%o”, or “%x” for a decimal, octal, or hexadecimal number,
respectively. (Other formats are described in printf(S) in the XENIX Reference
Manual.) If a string is requested, the corresponding arg must be a pointer,
otherwise, the actual variable must be used. The function normally returns
zero, but willreturn a nonzero number if an error is encountered.

The function is typically used to write output that contains both numbers and
text. For example, to write a name and a decimal number to the file given by
“outfile” use the following program fragment.

FILE *outfile;
int pay;
char name[20};

fprintf(outfile,” %s %d\n”, name, pay);

The name is copied from the character array “‘name” and the number from the
integer variable “pay”.

2.4.10 Writing Records to a File

The fwrite function writes one or more records to a given file. The function call
has the form:

fwrite (ptr, size, nitems, stream)

where ptrisa pointer to the first record to be written, sizeis the size (in bytes) of
eachrecord, nitemsis the number of records to be written, and stream is the file
pointer of the file. The ptr may point to a variable of any type (from a single
character to astructure). The size should give the number of bytesineach item
to be written. One way to ensure this is to use the eizeof function (see the
example below). The function always returns the number of items actually
written to the file whether or not the end of the file or an error isencountered.

The function is typically used to write binary data to a file. For example, the
following program fragment writes two records to the file given by “database”.

2-17

Using the Standard 1/O'Functions

The function is typically used to test for errors before perform a subsequent
read or write to the file. For example, in the following program fragment ferror
tests the file given by “stream”.

char sbuf;
char x[5};

while (!ferror(stream))
fread(buf, sizeof(x), 10, stream);

If it returns zero, the next item in the file given by “stream” is copied to “buf”.
Otherwise, execution passes to the next statement.

Further use of a file after a error is detected may cause undesirable results.

2.4.13 Closing a File

The fclose function closes a file by breaking the connection between the file
pointer and the structure created by fopen. Closing a file empties the contents
of the corresponding buffer and frees the file pointer for use by another file. The
function call has the form:

fclose (stream)

where etream is the file pointer of the file to close. The function normally
returns0, but willreturn-1if anerror isencountered.

The felose function is typically used tofree file pointers when they are nolonger
needed. Thisis important because usually no more than 20 files can be open at
the same time. For example, the following program fragment closes the file
given by “infile’” when the file hasreached itsend.

FILE sinfile;

“if (feof(infile))
fclose(infile);

Note that whenever a program terminates normally, the felose function is
automatically called for each open file, so no explicit call is required unless the
program must close a file before its end. Also, the function automatically calls
fllush to ensure that everything written to the file’s buffer actually gets to the
file.

2.4.14 Program Example
This section shows how you may use the stream functions you have seen so far

to perform useful tasks. The following program, which counts the characters,
words, and lines found in one or more files, uses the fopen, fprintf, getc, and

2-19

Using the Standard 1/O Functions

#include <stdio.h>

main(argc, argv) [+ wec: count lines, words, chars */

int argc;

char sargv[];

int ¢, i, inword;

FILE #fp, *fopen();

long linect, wordct, charct;

long tlinect = 0, twordct = 0, tcharct = 0;

i=1;
fp = stdin;
do

{

if (arge > 1 &&
(fp=fopen(argvi], "r")) == NULL) {
fprintf (stderr, "wc: can’t open %s\n”,
~argvli]);
continue;

linect = wordct = charct = inword = 0;
while ((c = getc(fp)) !== EOF) {

charct++;
if (¢ =="\n)
linect++;

if (c==""]lc=="\t [c =="\n)
inword = 0;

else if (inword === 0) {
inword = 1I;
wordct++;

}

printf(” %71d %71d %71d”, linect, wordct, charct);
printf(arge > 17" %s\n” : "\n", argvli]);
fclose(fp);

tlinect += linect;

twordct += wordct;

tcharct 4+= charct;

} while (++i < arge);
if (arge > 2)

printf(" %714 %71d %71d total\n”, tlinect,
twordct, tcharct);

exit(0};

}

The program uses “fp” as the pointer to receive the current file pointer.
Initially this is set to ‘‘stdin” in case no filenames are present in the command
line. If a filename is present, the program calls fopen and assigns the file pointer
to “fp”. If the file cannot be opened (in which case fopen returns NULL), the

Using the Standard I/O Functions
and the fllusk function letsa program flush the buffer before it is full.

2.5.2 Reopening a File

The freopen closes the file associated with a given file pointer, thenopensanew
file and gives it the same file pointer as the old file. The function call has the
form:

freopen (newfile, type, stream)

where newfile is a pointer to the name of the new file, type is a pointer to the
string that defines how the file is to be opened (‘‘r” for read, “w” for writing,
and “a” for appending), and stream is the file pointer of the old file. The
function returns the file pointer stream if the new file is opened. Otherwise, it
returns the null pointer value NULL.

The freopen function is used chiefly to attach the predefined file pointers
“stdin”, “stdout’’, and ‘‘stderr” to other files. For example, the following
program fragment opens the file named by “newfile” as the new standard
output file.

char snewfile;

FILE s#nfile;
nfile = freopen(newfile,”r” stdout);

This has the same effect as using the redirection symbols in the command line of
the program.

2.5.3 Setting the Buffer

The setbuf function changes the buffer associated with a given file to the
program’s own buffer. It can also change the access to the file to no buffering.
The function callhasthe form:

setbuf (stream, buf)

where stream is a file descriptor and bufis a pointer to the new buffer, or is the
null pointer value NULL if no buffering is desired. If a buffer is given, it must be
BSIZE bytesin length, where BSIZE is a manifest constant found in stdio. k.

The function is ty pically used to to create a buffer for the standard output when
it is assigned to the user’s terminal, improving execution time by eliminating
the need to write one character to the screen at a time. For example, the
following program fragment changes the buffer of the standard output the
location pointed at by “p”’.

2-23

Using the Standard 1/O Funections
Note that the value EOF must never be put back in the buffer.

2.5.5 Flushing a File Buffer

The flush function empties the buffer of a give file by immediately writing the
buffer contents to the file. The function callhasthe form:

fllush (stream)

where streem is the file pointer of the file. The function normally returns zero,
but will return the value EOF if an error isencountered.

The function is typically used to guarantee that the contentsof a partially filled
buffer are written to the file. For example, the following program fragment
empties the buffer for the file given by “‘outtty’ if the error condition given by
“errflag” is0.

FILE souttty;
int errflag;

if (errflag === 0)
fllush(outtty);

Note that fllush is automatically called by the felose function to empty the
buffer before closing the file. This means that no explicit call to flusk is
required if the file is also being closed.

The function ignores any attempt to empty the buffer of a file opened for
reading.

2.8 Using the Low-Level Functions

The low-level functions provide direct access to files and peripheral devices.
They are actually direct calls to the routines used in the XENIX operating
system to read from and write to files and peripheral devices. The low-level
functions give a program the same control over a file or device as the system,
letting it access the file or device in ways that the stream functions do not.
However, low-level functions, unlike stream functions, do not provide buflering
or any other useful services of the stream functions. This means that any
program that uses the low-level functions has the complete burden of handling
input and output.

The low-level functions, like the stream functions, cannot be used to read from
or write to a file until the file has been opened. A program may use the open
function to open an existing or a new file. A file can be opened for reading,
writing, or appending. ’

2-25

Using the Standard I/O Functions

int in, out;

in = open(” fusr/accounts”, O_RDONLY });
out = open(" fusr/tmp/scratch”, O_WRONLY | O_CREAT, 0754);

In the XENIX system, each file has 9 bits of protection information which
control read, write, and execute permission for the owner of the file, for the
owner’s group, and for all others. A three-digit octal number is the most
convenient way to specify the permissions. For example, in the example above
the octal number “0755” specifies read, write, and execute permission for the
owner, read and execute permission for the group, and read everyone else.

Note that if O_CREAT is given and the file already exists, the function destroys
the file’s old contents.

2.6.3 Reading Bytes From a File

The read function reads one or more bytes of data from a given file and copies
them to a given memory location. The function call has the form:

n_read = read(fd, buf, n);

where n_readis the variable to receive the count of bytes actually read, fdisthe
file descriptor of the file, bufis a pointer to the memory location to receive the
.bytes read, and n is a count of the desired number of bytes to be read. The
function normally returns the same number of bytes as requested, but will
return fewer if the file does not have that many bytes left to be read. The
functionreturns0if the file hasreached itsend, or ~1if an error isencountered.

When the file is a terminal, read normally reads only up to the next newline.
The number of bytes to be read is arbitrary. The two most common values are
1, which means one character at a time, and 1024, which corresponds to the
physical block size on many peripheral devices.

2.8.4 Writing Bytes to a File

The write function writes one or more bytes from a given memory location toa
givenfile. The function call hasthe form:

n_uwritten = write(fd, buf, n);
where n_urittenisthe variable to receive a count of bytes actually written, fdis
the file descriptor of the file, bufis the name of the buffer containing the bytesto

be written, and nisthe number of bytes to be written.

The function always returns the number of bytes actually written. It is
considered an error if the return value is not equal to the number of bytes

2-27

Using the Standard I/O Functions

#define BUFSIZE BSIZE
main() /# copy input to output */

char buf| BUFSIZE J;
int n;

while ((n = read(0, buf, BUFSIZE)) > 0}
write(1, buf, n);
exit(0);

}

The program uses the read function to read BUFSIZE bytes from the standard
input (file descriptor 0). It then uses write to write the same number of bytesit
read to the standard output (file descriptor 1). If the standard input file size is
not a multiple of BUFSIZE, the last read returns asmaller number of bytesto be
written by write, and the next call to readreturns zero.

This program can be used like a copy command to copy the content of one file to
another. You can do this by redirecting the standard input and output files.

The second example shows how the read and write functions can be used to
construct higher level functions like getchar and putchar. For example, the
following is a version of getchar which performs unbuffered input:

#define CMASK 0377 = /#+ for making chars > 0 +/

getchar()/+ unbuflered single character input */

char ¢;
return((read(0, &c, 1) > 0) ? ¢ & CMASK : EOF);

The variable “‘c”” must be declared char, because read accepts a character
pointer. In this case, the character being returned must be masked with octal
0377 to ensure that it is positive; otherwise sign extension may make it
negative.

The second version of getchar reads input in large blocks, but hands out the
charactersone at a time:

2-29

Using the Standard I/O Functions

error(sl, s2) /* print error message and die */
char ssl, #s2;

printf(sl, s2);
printf("\n”);
exit(1);

There is a limit {usually 20) to the number of files that a program may have
open simultaneously. Therefore, any program which intends to process many
files must be prepared to reuse file descriptors by closing unneeded files.

2.6.7 Using Random Access I/O

Input and output operations on any file are normally sequential. This means
each read or write takes place at the character position immediately after the
last character read or written. The standard library, however, provides a
number of stream and low-level functions that allow a program to access a file
randomly, that is, to exactly specify the position it wishes to read from or write
to next.

The functions that provide random access operate on a file’s ““character
pointer’’. Every open file has a character pointer that points to the next
character to be read from that file, or the next place in the file to receive a
character. Normally, the character pointer ismaintained and controlled by the
system, but the random access functionslet a program move the pointer to any
position in the file.

2.86.8 Moving the Character Pointer

The lseek function, a low-level function, moves the character pointer in a file
opened for low-level access toa given position. The function call hasthe form:

Iseek(fd, offset, origin);
where fdis the file descriptor of the file, offsetis the number of bytes to move the
character pointer, and originis the number that gives the starting point for the
move. It may be 0 for the beginning of the file, 1 for the current position, and 2
for theend.

For example, this call forces the current position in the file whose descriptor is 3
to move to the 512th byte from the beginning of the file.

Iseek(3, (long)512, 0)

Subsequent reading or writing will begin at that position. Note that offset must
be alonginteger and fdand or¢gin must be integers.

2-31

Using the Standard I/O Functions
The function may be used on either buffered or unbuflfered files.

2.6.10 Rewinding a File

The rewind function, a stream function, moves the character pointer to the
beginning of a given file. The function call has the form:

rewird (stream)

where stream is the file pointer of the file. The function is equivalent to the
following function call

fseek (stream,0L,0);

Itis chiefly used as a more readable version of the call.

2.6.11 Getting the Current Character Position
The ftell function, a stream function, returns the current position of the
character pointer in the given file. The returned position is always relative to
the beginning of the file. The function call has the form:

p = ftell (stream)
where stream is the file pointer of the file and p is the variable to receive the
position. The return value is always a long integer. The function returns the
value-1if anerror is encountered.
The function is typically used to save the current location in the file so that the
program can later return to that position. For example, the following program
fragment first saves the current character position in “oldp”, then restores the
file to this position if the current character position is greater than ‘800",

FILE soutfile;
long oldp;

oldp == ftell(outfile);

if ((ftel}(outfile)) > 800)
fseek(outfile, oldp, 0};

The ftellis identical to the function call
lseek(fd, (long)o, 1)

where fdis the file descriptor of the given stream file.

2-33

Chapter 3
Screen Processing

3.1 Introduction 3-1
3.1.1 ScreenProcessing Overview 3-1
3.1.2 UsingtheLibrary 3-2

3.2 Preparing the Screen 3-4
3.2.1 Initializing the Screen 3-4
3.2.2 Using Terminal Capability and Type 3-5
3.2.3 UsingDefault Terminal Modes 3-5
3.2.4 UsingDefault WindowFlags 3-6
3.2.5 Usingthe Default Terminal Size 3-6
3.2.6 Terminating Screen Processing 3-6

3.3 Using the Standard Screen 3-7
3.3.1 AddingaCharacter 3-7
3.3.2 AddingaString 3-8
3.3.3 Printing Strings, Characters, and Numbers 3-8
3.3.4 Readinga Character Fromthe Keyboard 3-9
3.3.5 ReadingaString Fromthe Keyboard 3-9
3.3.6 Reading Strings, Characters, and Numbers 3-10
3.3.7 Movingthe Current Position 3-11
3.3.8 Insertinga Character 3-11
3.3.9 InsertingaLine 3-11
3.3.10 Deleting a Character 3-12
3.3.11 Deleting aLine 3-12
3.3.12 Clearing the Screen 3-13
3.3.13 Clearing a Part of the Screen 3-13
3.3.14 Refreshing From the Standard Screen 3-14

3.4 Creating and Using Windows 3-14
3.4.1 CreatingaWindow 3-14
3.4.2 Creating aSubwindow 3-15
3.4.3 Addingand Printing toa Window 3-16
3.4.4 Readingand Scanning for Input 3-17
3.4.5 Movingathe CurrentPositionin a Window 3-19

Screen Processing

3.1 Introduction

This chapter explains how to use the screen updating and cursor movement
library named curses. The library provides functions to create and update
screen windows, get input from the terminal in a screen-oriented way, and
optimize the motion of the cursor on the screen.

3.1.1 Screen Processing Overview

Screen processing gives a program a simple and efficient way to use the
capabilities of the terminal attached to the program’s standard input and
output files. Screen processing does not rely on the terminal’s type. Instead the
screen processing functions use the XENIX terminal capability file
[ete/termeap to tailor their actions for any given terminal. This makes a
screen processing program terminal-independent. The program can be run
with any terminal aslong asthat terminal is described in the /etc/termcapfile.

The screen processing functions access a terminal screen by working through
intermediate “screens” and ‘‘windows” in memory. A screen is a
representation of what the entire terminal screen should look like. A window is
a representation of what some portion of the terminal screen should look like.
Ascreen can be made up of one or more windows. A window canbeassmallasa
single character or aslarge asan entire screen.

Before a screen or window can be used, it must be created by using the ne wwin
or subwin functions. These functions define the size of the screen or window in
terms of lines and columns. Each position in a screen or window represents a
place for a single character and corresponds to a similar place on the terminal
screen. Positions are numbered according to line and column. For example, the
position in the upper left corner of a screen or window isnumbered (0,0) and the
position immediately to its right is (0,1). A typical screen has 24 lines and 80
columns. Its upper left corner corresponds to the upper left corner of the
terminal screen. A window, on the other hand, may be any size (within the
limits of the actual screen). Its upper left corner can correspond to any position
on the terminal screen. For convenience, the snitscrfunction which initializes a
program for screen processing also creates a default screen , stdscr (for
“standard screen”). The stdscr may be used without first creating it. The
function also creates curscr (for “current screen”) which contains a copy of
what is currently on the terminal screen.

To display characters at the terminal screen, a program must write these -
characters to a screen or window using screen processing functions such as
addch and waddch. If necessary, a program can move to the desired position in
the screen or window by using the move and wmove functions. Once characters
are added to a screen or window, the program can copy the characters to the
terminal screen by using the refresk or wrefresh function. These functions
update the terminal screen according to what has changed in the given screen
or window. Since the terminal screen is not changed until a program calls

31

Screen Processing

Variables
Type Name Description
WINDOW#* curscr A pointer to the current version of the
: terminal screen.

WINDOWs stdscr A pointer to the default screen used
for updating when no explicit screen
is defined.

char Def_term A pointer to the default terminal type
if the type cannot be determined.

bool My_term The terminal type flag. If set, it
causes the terminal specification in
“Def_term” to be used, regardless of
the real terminal type.

char ttytype A pointer to the full name of the

) current terminal.

int LINES The number of lines on the terminal.

int COLS The number of columns on the
terminal.

int ERR The error flag. Returned by functions
onanerror.

int OK The okay flag. Returned by functions

on successful operation.

33

Screen Processing

3.2.2 Using Terminal Capability and Type

The tnitscr function uses the terminal capability descriptions given in the
XENIX system’s [etc/termcap file to prepare the screen processing functions
for creating and updating terminal screens. The descriptions define the
character sequences required to perform a given operation on a given terminal.
These sequences are used by the screen processing functions to add, insert,
delete, and move characters on the screen. The descriptions are automatically
read from the file when screen processing is initialized, so direct access by a
program isnot required.

The snitscr function uses the shell’s “TERM” variable to determine which
terminal capability description to use. The “TERM’ variable is usually
assigned an identifier when a user logs in. This identifier defines the terminal
type and is associated with a terminal capability description in the
[eteftermeapfile.

If the “TERM?” variable has no value, the functions use the default terminal
type in the library’s predefined variable ‘“Def_term”’. This variable initially
hasthe value ‘“dumb” (for ‘‘dumb terminal’’), but the user may change it to any
desired value. This must be done before calling the initscr function.

In some cases, it is desirable to force the screen processing functions to use the
default terminal type. This can be done by setting the library’s predefined
variable “My_term" to the value 1. The full name of the current terminal is
stored in the predefined variable “‘ttytype”.

Terminal capabilities, types, and identifiers are described in detail in
termcap(F)in the XENIX Reference Manual.

3.2.3 Using Default Terminal Modes

The initscr function automatically sets a terminal to default operation modes.
These modes define how the terminal displays characters sent to the screen and
how it responds to characters typed at the keyboard. The instecr function sets
the terminal to ECHO mode which causes characters typed at the keyboard to
be displayed at the screen, and RAW mode which causes charactersto be used as
direct input (no editing or signal processing is done).

The default terminal modes can be changed by using the appropriate functions
described in the section ‘“Setting a Terminal Mode” in this chapter. If the
modes are changed, they must be changed immediately after calling initscr.
Terminal modes are described in detail in tty(M}) in the XENIX Reference
Menual.

3-5

Screen Processing

ffinclude <curses.h>

main ()

initscr();
- /* Program body. #/
endwin();

Note that endwin must not be called if snstscr has not been called. Also, endwin
should be called before any call to the ezit function. The endwin function must
also be called if the gettmode and setterm functions have been called even if
tnitscrhas not.

3.3 Using the Standard Screen

The following sections explain how to use the sta.ndard screen to display and
edit characterson the terminal screen.

3.3.1 Adding a Character

The addch function adds a given character to the standard screenand moves
the character pointer one position to the right. The function call has the form:

addch(¢k)

where ch gives the character to be added and must have char type. For
example, if the current position is (0, 0), the function call

addch(’A’)
placesthe letter ““A” at this position and moves the pointer to (0, 1).

If a newline (’\n’) character is given, the function deletesall characters from the
current position to the end of the line and moves the pointer one line down. If
the newline flag is set, the function deletes the characters and moves the
pointer to the beginning of the next line. If a return (*\1’) is given, the function
moves the pointer to the beginning of the current line. If atab (*\t’) isgiven, the
function moves the pointer to the next tab stop, adding enough spaces to fill the
gap between the current position and the stop. Tab stops are placed at every
eight character positions.

The function returnsERR if it encounters an error, such asillegal scrolling.

37

Screen Processing

prints the number “‘15” immediately after the name.

The function returnsERR if it encounters an error such asillegal scrolling.

3.3.4 Reading a Character From the Keyboard

The getch function reads a single character from the terminal keyboard and
returnsthe character as a value. The function call has the form:

¢ = getch()
where cis the variable to receive the character.

The function is typically used to read a series of individual characters. For
example, in the following program fragment, characters are read and stored
until a newline or the end of the file is encountered, or until the buffer size has
been reached.

char ¢, p[MAX];

int 1;

i=0;
while ((c==getch()) !="\n' && ¢ != EOF && i <MAX)
pli++] = ¢;

If the terminal is set to ECHO mode, getch copies the character to the standard
screen; otherwise, the screen remains unchanged. If the terminal is not set to
RAW or NOECHO mode, getch automatically sets the terminal to CBREAK
mode, then restores the previous mode after reading the character. Terminal
modes are described later in the chapter.

The function returns ERR if it encounters an error such asillegal scrolling.

3.3.5 Reading a String From the Keyboard

The getstr function reads a string of characters from the terminal keyboard
and copiesthe string to a given location. The function call has the form: -

getstr(str)

where stris a character pointer to the variable or location to receive the string.
When typed at the keyboard, the string must end with a newline character or
with the end-of-file character. The extra character is replaced by a null
character when the string is stored. It is the programmer’s responsibility to
ensure that str hasadequate space to store the typed string.

The function is typically used to read names and other text from the keyboard.
For example, in the following program fragment, reads a filename from the

3-9

Screen Processing

3.3.7 Moving the Current Position

The move function moves the pointer to the given position. The function call
hasthe form:

move (y, z)
where yis an integer value giving the new row position, and zis aninteger value
giving the new column position. For example, if the current position is (0,0},
the function call

move(5,4)

moves the pointer toline 5, column 4.

The function returnsERR if it encounters anerror such asillegal scrolling.

3.3.8 Inserting a Character

The ineck function inserts a character at the current position and shifts the
existing character {and all characters to its right) one position to the right. The
function call has the form:

insch { ¢)
where ¢is the character to be inserted.
The function is typically used to insert a series of characters into an existing
line. For example, in the following program fragment snschis used to insert the
number of characters given by “cnt” into the standard screen a the current

position.

int cnt;
char #string;

while (ent 1= 0) {

insch(string[ent]);
ent--;

The function returnsERR if it encounters an error such as illegal scrolling.
3.3.9 Inserting a Line
The tnsertinfunction inserts a blank line at the current position and moves the

existing line (and all lines below it) down one line, causing the last line to move
fI the bottom of the screen. The function call has the form:

31

Screen Processing

The deleteln function is used to delete existing lines from the standard screen.
For example, in the following program fragment deleteln is used to delete aline
from the standard screen if the count in “cnt” is 79.

int cnt;
if{(ent ==179)
deleteln();
3.3.12 Clearing the Screen
The clear and erase functions clear all characters from the standard screen by
replacing them with spaces. The functions are typically used to prepare the
screen for new text.
The clear function clears all characters from the standard screen, moves the
pointer to (0,0}, and sets the standard screen’s clear flag. The flag causes the
next call to the refreshfunction to clear all characters from the terminal screen.
The erase function clears the standard screen, but does not set the clear flag.
For example, in the following program fragment clear clears the screen if the
input valueis 12. :
char ¢;
if ((c=getch()) == 12)
clear();
3.3.13 Clearing a Part of the Screen
The clrtobot and clrtoeol functions clear one or more characters from the
standard screen by replacing the characters with spaces. The functions are

typically used to prepare a part of the standard screen for new characters.

The clrtobot function clears the screen from the current position to the bottom
of the screen. For example, if the current position is (10,0}, the function call

clrtobot();
clearsall characters from line 10 and all linesbelow line 10.
The clrtoeol function clears the standard screen from the current position to
the end of the current line. For example, if the current position is (10,10), the

function call

clrtoeol();

3-13

Screen Processing

where win is the pointer variable to receive the return value, linesand cols are
integer values that give the total number of lines and columns, respectively, in
the window, and begin_y and begin_z are integer values that give the line and
column positions, respectively, of the upper left corner of the window when
displayed on the terminal screen. The win variable must have type
WINDOW =,

The function is typically used in programs that maintain a set of windows,
displaying different windows at different times or alternating between window
as needed. For example, in the following program fragment newwin creates a
new window and assigns the pointer to this window to the variable midscreen.

WINDOW #midscreen;
midscreen = newwin(5, 10, 9, 35);

The window has 5 lines and 10 columns. The upper left corner of the window is
placed at the position (9,35) on the terminal screen.

If either lines or cols is zero, the function automatically creates a window that
has “LINES - begin_y” lines or “COLS - begin_2" columns, where “LINES”
and ““COLS” are the predefined constants giving the total number of lines and
columnson the terminal screen. For example, the function call

newwin(0, 0, 0, 0)

creates a new window whose upper left corner is at position {0,0) and that has
“LINES"” lines and ‘‘COLS” columns.

Note

You must not create windows that exceed the dimensions of the actual
screen.

The newwin function returns the value (WINDOWe) ERR on an error, such as
insufficient memory for the new window.

3.4.2 Creating a Subwindow

The subwin function creates a subwindow and returns a pointer to the new
window. A subwindow is a window which shares all or part of the character
space of another window and providesan alternate way to access the characters
in that space. The function call has the form:

315

Screen Processing

pointer to the given string. For example, if the current position is (0,0), the
function call

waddstr(midscreen, "line”),

places the beginning of the string ‘‘line” at this position and moves the pointer
to0(0,4).

The wprintw function prints one or more values on the given window, where a
value may be a string, a character, or a decimal, octal, or hexadecimal number.
The function call has the form:

wprintw(win, fmt [, arg]...)

where win is a pointer to the window to receive the values, fmt is a pointer to a
string that defines the format of the values, and argis a value to be printed. If
more than one erg is given, each must be separated from the preceding with a
comma (,). For each arg given, there must be a corresponding format given in
fmt. A format may be *“%s” {or string, ‘“%c” for character, and “%d”, “%o”,
or “%x” for a decimal, octal, or hexadecimal number, respectively. (Other
formats are described in printf(S) in the XENIX Reference Manual.) If “%s" is
given, the corresponding arg must be a character pointer. For other formats,
the actual value or avariable containing the value may be given.

The function is typically used to copy both numbersand strings to the standard
screen at the same time. For example, in the following program fragment
wprintw prints a name and then the number “15” at the current position in the
window “midscreen”. :

char *name;

wprintw(midscreen, " %s %d”, name, 15);
Note that when a newline, return, or tab character is given to a waddch,
waddstr, or wprintw function, the functions perform the same actions as
described for the addch function. The functions return ERR if they encounter
errorssuch asillegal scrolling. :
3.4.4 Reading and Scanning for Input
The wgetch, wgetstr, and wscanw functions read characters, strings, and
numbers from the standard input file and usually echo the values by copying

them to the given window.

The wgetch function reads a single character from the standard input file and
returnsthe character asavalue. The function call has the form:

¢ = wgetch(win)

3-17

Screen Processing

The function is typically used to read a combination of strings and numbers
from the keyboard. For example, in the following program fragment wecanw
readsaname and anumber from the keyboard.

char name{20};
int id;

wscanw{midscreen, " %s %d”, name, &id);

In this example, the name is stored in the character array ‘“name’ and the
number in the integer variableid”. .

If the terminal is set to ECHO mode, the function copies the string to the given
window. If the terminal is not set.to RAW or NOECHO mode, the function
automatically sets the terminal to CBREAK mode, then restores the prevxous
mode after reading the character

The functions return ERR if they encounter errors such asillegal scrolling.

3.4.5 Moving a the Current Position in a Window

The wmove function moves the current position in a given window. The
function call has the form:

wmove (win, ¥, z)
where win is a pointer to a window, y is an integer value giving the new line
position, and zis an integer value giving the new column position. For example,
the function call

wmove(midscreen, 4, 4}

moves the current position in the window “midscreen” to (4,4).

The function returnsERR if it encounters an error such asillegal serolling.

3.4.6 Inserting Characters

The winsch and winsertln functions insert characters and lines into a given
window.

The winsch function inserts a character at the current position and shifts the
existing character (and all characters to itsright) one position to the right. The
function call has the form:

winsch (win, ¢)

where winisa pointer to a window, and ¢is the character to beinserted.

3-19

Screen Processing

The wdeleteln function deletes the current line and shifts the line below the
deleted line (and all lines below it) one line up, leaving the last line in the screen
blank. The function call has the form:

wdeleteln(win)
where winis a pointer to a window.
The function is typically used to delete existing lines from a gi\}en window. For
example, in the following program fragment wdeleteln deletes the lines in
““midscreen” until “cnt” isequal to zero.

int ent;

while (cnt 1= 0) {

wdeleteln(midscreen);
cnt--;

3.4.8 Clearing the Screen
The wclear, werase, welrtobot, and welrtoeol functions clear all or part of the
characters from the given window by replacing them with spaces. The
functions are typically used to prepare the window for new text.
The welear function clears all characters from the window, moves the pointer
to {0,0), and sets the standard screen’s clear flag. The flag causes the next
refresh function call to clear all characters from the terminal screen. The
function call has the form:

welear(win)
.where winisthe window to be cleared.
The werase function clears the given window, moves the pointer to (0,0), but
does not set the clear flag. It is used whenever the contents of the terminal
screen must be preserved. The function call hasthe form:

werase(win)

where winis a pointer to the window to be cleared.

The welrtobot function clears the window from the current position to the
bottom of the screen. The function callhasthe form:

welrtobot{ win)

where win is a pointer to the window to be cleared. For example, if the current

3-21

Screen Processing

Note

If curscr is given with wrefresh, the function restores the actual screen
to its most recent contents. This is useful for implementing a
“redraw” feature for screens that become cluttered with unwanted
output.

The function returns ERR if it encounters an error such asillegal scrolling. If an
error is encountered, the function attempts to update as much of the screen as
possible without causing the scroll.

3.4.10 Overlaying Windows

The overlayfunction copies all characters, except spaces, from one window to
another, moving characters from their original positions in the first window to
identical positions in the second. The function effectively lays the first window
over the second, letting characters in the second window that would otherwise
be covered by spaces remain unchanged. The function call has the form:

overlay(winl, winf)

where winlis a pointer to the window to be copied, and win2is a pointer to the
window to receive the copied text. The starting positions of winl and win?
must match, otherwise an error occurs. If winlislarger than win2, the function
copiesonly those lines and columnsin win that fitin win2,

The function is typically used to build a composite screen from overlapping
windows. For example, in the following program fragment overlay is used to
build the standard screen from two different windows.

WINDOW s=info, scmdmenu;

overlay (info, stdscr);
overlay(cmdmenu, stdscr);
refresh();

3.4.11 Overwriting a Screen

The overwrite function copies all characters, including spaces, from one
window to another, moving characters from their positions in the first window
toidentical positionsin the second. The functioneflectively writesthe contents
of the first window over the second, destroying the previous contents of the
second window. The function call hasthe form:

3-23

Screen Processing

¢ = inch()
where cis the character variable to receive the character read.

The winck function reads a character from a given window or screen. The
function call has the form:

¢ == winch(win)
where win is the pointer to the window containing the character to be read.
The functions are typically used to compare the actual contents of a window
with what is assumed to be there. For example, in the following program
fragment tnch and winch are used to compare the characters at position (0,0) in
the standard screen and in the window named “‘altscreen’.

char cl, ¢2;

¢l = inch();

¢2 = winch(altscreen);

if (c11=¢2)

error();

Note that reading a character from a window does not alter the contentsof the
window.
3.4.14 Touching a Window
The touchwin function makes the entire contents of a given window appear to
be modified, causing a subsequent refresk call to copy all characters in the
window to the terminalscreen. The function call has the form:

touchwin(win)

where winis a pointer to the window to be touched.

The function is typically used when two or more overlapping windows make up
the terminal screen. For example, the function call

touchwin(leftscreen);

is used to touch the window named “leftscreen”. A subsequent refresh copies
all characters in “leftscreen’’ to the terminal screen.

3.4.15 Deleting a Window

The delwin function deletes a given window from memory, freéing the ‘sbace
previously occupied by the window for other windows or for dynamically

3-25

Screen Processing
The standout function sets the standout attribute for characters added to the
standard screen. The function call has the form:
standout()
No arguments are required.

The wstandout function sets the standout attribute of characters added to the
given window or screen. The function call has the form:

wstandout(win)
where win is a pointer to a window.
The functions are typically used to make error messages or instructions clearly
visible when displayed at the terminal screen. For example, in the following
program fragment standout sets the standout character attribute before
adding an error message to the standard screen.

if (code = 5) {

standout();
addstr("Illegal character.\n");

Note that the actual appearence of characters with the standout attribute
depends on the given terminal. This attribute is defined by the SO and SE (or
US and UE) sequences given in the terminal’s termeapentry (see termcap(M) in
the XENIX Reference Manual).

3.5.3 Restoring Normal Characters

The standend and wstandend functions restore the normal character aﬁtribut.e,
causing characters subsequently added to a given window or screen to be

displayed asnormal characters.

The etandend function restores the norma.l a.ttnbute for the standard screen.
The function call hasthe form: ,

standend()
No arguments are required.

The ‘wstandend function restores the normal attribute for a given window or
screen. The function call has the form:

wstandend(win)

where win is a pointer to a window.

. 8-27

Screen Processing

leaveok(win, state)
where win is a pointer to the window containing the flag to be set, and state isa
Boolean value defining the state of the flag. If state is TRUE the flag is set; if
FALSE, the flag is cleared. For example, the function call

leaveok(stdscr, TRUE);
setsthe cursor flag.
The scrollok function sets or clears the scroll flag for the given window. If the
flag is set, scrolling through the window is allowed. If the flag is clear, then no
scrolling is allowed. The function call hasthe form:

scrollok(win, state)
where win is a pointer to a window, and state is a Boolean value defininghow the
flag is to be set. If state is TRUE, the flagis set; if FALSE, the flag is cleared. The

flag isinitially clear, making scrolling illegal.

The clearok function sets and clears the clear flag for a given screen. The
function call has the form: '

clearok(win, state)
where win is a pointer to the desired screen, and state is a Boolean value. The
function sets the flag if state is TRUE, and clears the flag if FALSE. For example,
the function call

clearok(stdscr, TRUE)
setsthe clear flag for the standard screen.
When the clear flag is set, each refresh call to the given screen automatically
clears the screen by passing a clear-screen sequence to the terminal. This
sequence affects the terminal only; it does not change the contents of the screen.
If clearokis used to set the clear flag for the current screen “curscr”, each call to
refresh automatically clears the screen, regardless of which window is given in
the call.
3.5.68 Scrolling a Window

“The seroll function scrolls the contents of a given window upward by one line.
The function call hasthe form:

scroll{ win)

where winis a pointer to the window to be scrolled. The function should be used

3-29

Screen Processing

The echo function sets the ECHO mode for the terminal, causing each character
typed at the keyboard to be displayed at the terminal screen. The function call
has the form:

echof)
No arguments are required.
The nl function sets a terminal to NEWLINE mode, causing all newline

characters to be mapped to a corresponding newline and return character
combination. The function call has the form:

nl()
No arguments are required.
The rew function sets the RAW mode for the terminal, causing each character
typed at the keyboard to be sent as direct input. The RAW mode disables the
function of the editing and signal keys and disables the mapping of newline
characters into newline and return combinations. The function call has the
form: :

raw()

No arguments are required.

3.7.2 Clearing a Terminal Mode

The nocrmode, noecho, nonl, and norew functions clear the current terminal
mode, allowing input to be processed according to a previous mode.

The nocrmode function clears a terminal from the CBREAK mode. The
function call has the form:

nocrmode()
No arguments are required.
The noecho function clears a terminal from the ECHO mode. This mode
prevents characters typed at the keyboard from being displayed on the
terminalscreen. The function call has the form:

noecho()
No arguments are required.
The nonl function clears a terminal from NEWLINE mode, causing newline

characters to be mapped into themselves. This allows the screen processing
functions to perform better optimization. The function call hasthe form:

3-31

Screen Processing
The function is normally called by the snitscrfunction.

3.7.5 Saving and Restoring the Terminal Flags

The savetty function saves the current terminal flags, and the resetty function
restores the flags previously saved by the savettyfunction. These functionsare
performed automatically by snitscr and endwsin functions. They are not
required when performing ordinary screen processing.

3.7.6 Setting a Terminal Type

The stterm function sets the terminal type to the given type. The function call
hasthe form:

setterm(name)
where name is a pointer to a string containing the terminal type identifier. The
function is normally called by the snitscr function, but may be used in special
cases.

3.7.7 Reading the Terminal Name

The longname function converts a given termcapidentifier into the full name of
the corresponding terminal. The function call hasthe form:

longname(termbuf, name)
where termbufis a pointer to the string containing the terminal type identifier,
and name is a character pointer to the location to receive the long name. The
terminal type identifier must exist in the /etc/termcapfile.
The function is typically used to get the full name of the terminal currently

being used. Note that the current terminal’s identifier is stored in the variable
“ttytype’’, which may be used toreceive a new name.

3-33

Chapter 4
Character and String Processing

4.1 Introduction 4-1

4.2 Using the Character Functions 4-1
4.2.1 Testing for an ASCII Character 4-1
4.2.2 Converting toASCII Characters 4-2
4.2.3 Testing for Alphanumerics 4-2
4.2.4 TestingforaLetter 4-3
4.2.5 Testingfor Control Characters 4-3
4.2.6 TestingforaDecimalDigit 4-3
4.2.7 Testingfor aHexadecimalDigit 4-4
4.2.8 Testing for Printable Characters 4-4
4.2.9 Testing for Punctuation 4-4
4.2.10 Testing for Whitespace 4-5
4.2.11 Testing for Case in Letters 4-5
4.2.12 Converting the Caseof aLetter 4-5

4.3 Using the String Functions 4-6
4.3.1 Concatenating Strings 4-6
4.3.2 Comparing Strings 4-7
4.3.3 CopyingaString 4-8
4.3.4 GettingaString’sLength 4-8
4.3.5 Concatenating CharacterstoaString 4-8
4.3.6 Comparing Charactersin Strings 4-9
4.3.7 Copying Characters toaString 4-10
4.3.8 Reading ValuesfromaString 4-10
4.3.9 Writing Values to a String 4-11

Character and String Processing

4.1 Introduction

Character and string processing is an important part of many programs.
Programs regularly assign, manipulate, and compare characters and stringsin
order to complete their tasks. For thisreason, the standard library providesa
variety of character and string processing functions. These functions give a
convenient way to test, translate, assign, and compare charactersand strings.

To use the character functions in a program the file, ctype.h, which provides
the definitions for special character macros, must be included in the program.
The line

#include <ctype.h>
must appear at the beginning of the program.
To use the string functions, no special action is required. These functions are
defined in the standard C library and are read whenever you compile a C
program.
4.2 Using the Character Functions
The character functions test and convert characters. Many character
functions are defined as macros, and as such cannot be redefined or used asa
target for a breakpoint when debugging.

4.2.1 Testing for an ASCII Character

The tsasesi function tests for characters in the ASCI character set, i.e.,
characters whose valuesrange from 0 to 127. The function call has the form:

isascii {¢)

where ¢ is the character to be tested. The function returns a nonzero (true)
valueif the character is ASCII, otherwise it returns zero (false). For example, in
the following program fragment ssascii determines whether or not the value in
‘““¢” read from the file given by ‘‘data’ isin the acceptable ASClIrange.

FILE #data;

int c;

¢ = fgetc(data);

if (lisascii(c))
notext();

In this example, a function named notezt is called if the character is not in
range.

41

Character and String Processing

4.2.4 Testing for a Letter

The ssalphe function tests for uppercase or lowercase letters, i.e., alphabetic
characters. The function call has the form:

isalpha (¢)
where ¢ is the character to be tested. The function returns a nonzero (true)
value if the character is a letter, otherwise it returns zero. For example, the
function call

isalpha(’a’)
returnsanonzero value, but the call

isalpha(’1’)

returnszero.

4.2.5 Testing for Control Characters

The sscntrl function test for control characters, i.e., characters whose ASCII
values arein the range 0 to 31 or is 127. The function call has the form:

iscntrl (¢)
where ¢ is the character to be tested. The function returns a nonsero (true)
value if the character is a control character, otherwise it returns zero (false).
For example, in the program following fragment tscntrl determines whether or
not the character in *“c’”’ read from the file given by “infile’’ is a control
character. :

FILE =infile, *outfile;

int c;
¢ = fgetc(infile);
if (lisentrl(c))
fputc(¢, outfile);

The fputc function is ignored if the character is a control character.

4.2.6 Testing for a Decimal Digit
The 1sdigit function tests for decimal digits. The function call has the form:

isdigit (¢)

43

Character and String Processing
neither control characters nor alphanumeric characters. The function call has
the form:

ispunct (c)
where ¢ is the character to be tested. The function returnsanonzero function if
the character isa punctuation character, otherwise it returns zero.
4.2.10 Testing for Whitespace
The ssspace function tests for whitespace characters, i.e, the space, horizontal
tab, vertical tab, carriage return, formfeed, and newline characters. The
function call has the form:

isspace (¢)
where ¢ is the character to be tested. The function returns a nonzero value if
the character isa whitespace character, otherwise it returnszero.

4.2.11 Testing for Case in Letters

The seupper and sslower functions test for uppercase and lowercase letters,
respectively. The function callshave the form:

_ isupper (¢)

‘and

islower (c)
where ¢ is the character to be tested. The function returns a nonzero value if
the character is the proper case, otherwise it returns zero. For example, the
function call

isupper(’b’)
returns zero (false}, but the call

islower(’b’)

returnsanonzero (true) value.
4.2.12 Converting the Case of a Letter

The tolower and toupper functions convert the case of a given letter. The
function calls have the form:

45

Character and String Processing

streat (dst, src)

where dst is a pointer to the string to receive the new characters, and srcisa
pointer to the string containing the new characters. The function appends the
new characters in the same order as they appear in src, then appends a null
character (\0) to the last character in the new string. The function always
returns the pointer dst.

The function is typically used to build astring such asa full pathname from two.

smaller strings. For example, in the following program fragment strcat
concatenates the string ‘‘temp” to the contents of the character array “dir”.

char dirf[MAX] = " fusr/";

streat(dir, "temp”);

4.3.2 Comparing Strings
The stremp function compares the characters in one string to those in another
and returns an integer value showing the result of the comparison. The
function call has the form:
stremp (e1, 82)
where #1 and 82 are the pointers to the strings to be compared. The function
returns zero if the strings are equal (i.e., have the same characters in the same
order). If the strings are not equal, the function returns the difference between
the ASCII values of the first unequal pair of characters. The value of the second
string character is always subtracted from the first. For example, the function
call
stremp(” Character A”, ” Character A”);
returnszerosince the strings are identical inevery way, but the function call
stremp(” Character A”, " Character B”});
returns-1 since the ASCII value of “B” isone greater than “A”.
Note that the stremp function continues to compare characters until a
mismatch is found. If one string is shorter than the other, the function usually
stops at the end of the shorter string. For example, the function call

stremp(” Character A”, "Character ")

returns 65, that is, the difference between the null character at the end of the
second string and the “A” in the first string. -

47

Character and String Processing

strncat (dst, src, n)

where dst is a pointer to the string to receive the new characters, src isa pointer
to the string containing the new characters, and nis an integer value giving the
number of characters to be concatenated. The function appends the given
number of characters to the end of the dst string, then returnsthe pointer dst.

In the following program fragment, strncat copies the first three charactersin
“letter” to the end of ‘“cover”.

= "cover”;

char cover
= "letter”;

char letter

strncat(cover, letter, 3);

Thisexample creates the newstring ‘‘coverlet” in “cover”.

4.3.6 Comparing Characters in Strings
The strnemp function compares one or more pairs of characters in two given
strings and returns an integer value which gives the result of the comparison.
The function call has the form:
strnemp (81, 82, n)
where #1and &2 are pointers to the strings to be compared, and n is an integer
value giving the number of charactersto compare. The function returns zero if
the first n characters are identical. Otherwise, the function returns the
difference between the ASCII values of the first unequal pair of characters. The
function generates the difference by subtracting the second string character
from the first.
For example, the function call
strncmp{” Character A”, " Character B”, 5)
returns zero because the first five characters are identical, but the function call
strnemp(” Character A”, " Character B”, 11)

returns-1 because the value of “B” is one greater than “A”.

Note that the function continues to compare characters until a mismatch or the
end of a string is found.

49

Character and String Processing

char datestr|] = {" THU MAR 29 11:04:40 EST 1983"};
char month[4];
char year[5};

sscanf(datestr,” %#3s%35%+25%*85%+35%4s” ,month,year);
printf(" %s, %s\n” month,year);

The first value (a three-character string) is stored at the location pointed to by
“month”, the second value (2 four-character string) is stored at the location
pointed to by “year”.

4.3.9 Writing Values to a String

The sprintf function writes one or more values to a given string. The function
callhasthe form:

sprintf (s, format [, arg] ...)

where ¢ is a pointer to the string to receive the value, format is a pointer to a
string which defines the format of the values to be written, and arg is the
variable or value to be written. If more than one arg is given, they must be
separated by commas (,). The format string may contain the same formats as
given for printf (see printf(S)in the XENIX Reference Manual). After all values
are written to the string, the function adds a null character (\0) to the end of
the string. The function normally returns zero, but will return a nonzero value
if an error isencountered.

The function is typically used to build a large string from several values of
different format. For example,; in the following program fragment sprintf
writes three valuesto the string pointed to by “cmd”.

char ¢cmd[100];

char *doc = " fusr/src/emd/cp.c”
int width = 50;

int length = 60;

sprintf(cmd,” pr -w%d -1%d %s\n" ,width,length,doc);
system(cmd);

In this example, the string created by sprintf is used in a call to the system
function. The first two values are the decimal numbers given by “width” and
“length”. The last value is a string (a filename) and is pointed to by doc. The
final string has the form:

pr -w50 -160 /usr/src/cmd/cp.c

Note that the string to receive the values must have sufficient length to store
those values. The function cannot check for overflow.

4-11

Chapter b
Using Process Control

5.1 Introduction 5-1

5.2 UsingProcesses 5-1

5.3 CallingaProgram 5-1

5.4 StoppingaProgram 5-2

5.5 Startinga NewProgram 5-3

5.6 ExecutingaProgram Through aShell 5-5
5.7 DuplicatingaProcess 5-5

5.8 Waiting for aProcess 5-6

5.9 Inheriting OpenFiles 5-7

5.10 Program Example 5-7

Using Process Control

5.1 Introduction

This chapter describes the process control functions of the standard C library.
The functions let a program call other programs, using a method similar to
calling functions.

There are a variety of process control functions. The system and ezt functions
provide the highest level of execution control and are used by most programs
that need a straightforward way to call another program or terminate the
current one. .The ezecl, ezecv, fork, and wast functions provide low-level
control of execution and are for those programs which must have very fine
control over their own execution and the execution of other programs. Other
process control functions such as abort and ezec are described in detail in
section S of the XENIX Reference Manual.

The process control functions are a part of the standard C library. Since this
library is automatically read when compiling a C program, no special library
argument isrequired wheninvoking the compiler.

6.2 Using Processes

“Process” is the term used to describe a program executed by the XENIX
system. A process consists of instructions and data, and a table of information
about the program, such as its allocated memory, open files, and current
execution status.

You create a process whenever you invoke a program through a shell. The
system assigns a unique process ID to a program when it is invoked, and uses
this ID to control and manage the program. The unique IDs are needed in a
system running several processes at the same time.

You can also create a process by directing a program to call another program.
This causes the system to perform the same functions as when it invokes a
program through a shell. In fact, these two methods are actually the same
method; invoking a program through a shell is nothing more than directing a
program (the shell) to call another program.

The system handles all processes in essentially the same way, so the sections
that follow should give you valuable information for writing your own
programs and an insight into the XENIX system itself.

5.3 Calling a Program

The syetem function calls the given program, executes it, and then returns
control to the original program. The function call has the form:

§-1

Using Process Control

exit (status)

where statue is the integer value to be sent to the system as the termination
status.

The function is typically used to terminate a program before its normal end,
such as after a serious error. For example, in the following program fragment
ezit stops the program and sends the integer value “2” to the system if the
Jopenfunction returns the null pointer value NULL.

FILE #ttyout;

if (fopen(ttyout,”r”) === NULL)
exit(2);

Note that the ezit function automatically closes each open file in the program

before returning to the system. This means no explicit calls to the felose or
close functionsare required before an exit.

6.6 Starting a New Program
The execland ezecvfunctions cause the system to overlay the calling program
with the given one, allowing the calling program to terminate while the new
program continuesexecution.
The ezeclfunction call has the form:

execl (pathname, command-name, argptr ...}
where pathname is a pointer to a string containing the full pathname of the
command you want to execute, command-name is a pointer to a string
containing the name of the program you want to execute, and argptr is one or
more pointers to strings which contain the program arguments. Each argptr
must be separated from any other argument by a comma. The last argptrin the
list must be the null pointer value NULL. For example, in the call

execl(” /bin/date”, "date”, NULL);

the date command, whose full pathname is *“/bin/date”, takes no arguments,
andin the call

execl(”‘/bin/cat”, "cat”, filel, file2, NULL);

the cat command, whose full pathname is “/bin/cat”, takes the pointers
“file]” and “file2” asarguments.

The ezecvfunction call hasthe form:

5-3

Using Process Control

If the program display is not found or lacks the necessary permissions, the
original program resumes control and displays an error message.
Note that the ezecl and ezecv functions will not expand metacharacters (e.g.,
<, >,*? and[]) givenin the argument list. If a program needsthese features,
it can use ezeclor ezecvto call ashell as described in the next section.
5.6 Executing a Program Through a Shell
One drawback of the ezecl and ezeco functions is that they do not provide the
metacharacter features of a shell. One way to overcome this problem is to use
ezecltoexecute ashell and let the shell execute the command you want.
The function call has the form:

execl (" /bin/sh”,"sh”,”-¢", command-line, NULL);
where command-line is a pointer to the string containing the command line
needed to execute the program. The string must be exactly asit would appear if
typed at the terminal.
For example, a program can execute the command

cat s.c
(which contains the metacharacter ¢) with the call

execl(” /bin/sh”, "sh”, "~¢”, "cat *.c”, NULL);
In this example, the full pathname /bin/sk and command name sk start the
shell. The argument “—¢” causes the shell to treat the argument “cat +.c” asa
whole command line. The shell expands the metacharacter and displaysall files
which end with .¢, something that the cat command cannot do by itself.

5.7 Duplicating a Process

The fork function splits an executing program into two independent and fully-
functioning processes. The function call hasthe form:

fork ()

Noarguments arerequired.

The function is typically used to make multiple copies of any program that
must take divergent actions as a part of its normal operation, e.g., a program
that must use the ezecl function yet still continue to execute. The original
program, called the “parent” process, continues to execute normally, just as it
would after any other function call. The new process, called the ‘“child”

55

Using Process Control

int status;
char spathname;
char ¢cmd][J;

if (fork{) == 0)
execv(pathname, cmd};
wait(&status);

The wast function always copies a status value to its argument. The status
value is actually two 8-bit values combined into one. The low-order 8 bits is the
termination status of the child as defined by the system. This statusis zero for
normal termination and nonzero for other kinds of termination, such as
termination by an interrupt, quit, or hangup signal (see signal(S) in the XENIX
Reference Manual for a description of the various kinds of termination). The
next 8 bits is the termination status of the child as defined by itsown call to ezst.
If the child did not explicitly call the function, the statusis zero.

6.9 Inheriting Open Files

Any program called by another program or created as a child process to
aprogram automatically inherits the original program’s open files and
standard input, output, and error files. This means if the file was openin the
original program, it will be open in the new program or process.

A new program also inherits the contents of the input and output buffers used
by the open files of the original program. To prevent a new program or process
from reading or writing data that is not intended for its use, these buffers
should be flushed before calling the program or creating the new process. A
program can flush an output buffer with the flush function, and aninput buffer
with setbuf.

5.10 Program Example

This section shows how to use the process control functions to control a simple
process. The following program starts a shell on the terminal given in the
command line. The terminal is assumed to be connected to the system through
aline that has not been enabled for multiuser operation. .

57

Chapter 6
Creatmg and Using Plpes

6.1 Introduction 6-1

6.2 Opening a Pipe toa NewProcess 6-1

6.3 Reading and Writing toaProcess 6-2

6.4 Closing aPipe 6-2

6.5 Opening a Low-Level Pipe 6-3

6.6 Reading and Writing to a Low-Level Pipe 6-4
6.7 Closing aLow-Level Pipe 6-4

6.8 Program Examples 6-5

Creating and Using Pipes

6.1 Introduction

A pipe is an artifical file that a program may create and use to passinformation
to other programs. A pipe is similar to a file in that it hasa file pointer and/or a
file descriptor and can be read from or written to using the input and output
functions of the standard library. Unlike a file, a pipe does not represent a
specific file or device. Instead a pipe represents temporary storage in memory
that is independent of the program’s own memory and is controlled entirely by
the system.

Pipes are chiefly used to pass information between programs, just as the shell
pipe symbol (|), is used to pass the output of one program to the input of
another. This eliminates the need to create temporary files to pass information
to other programs. A pipe can also be used as a temporary storage place for a
single program. A program can write to the pipe, then read that information
back at alater time.

The standard library provides several pipe functions. The popen and pclose
functions control both a pipe and a process. The popen function opens a pipe
and creates a new process at the same time, making the new pipe the standard
input or output of the new process. The pelose function closes the pipe and
waits for termination of the corresponding process. The pipe function, on the
other hand, gives low-level access to a pipe. The function is similar to the open
function, but opens the pipe for both reading and writing, returning two file
descriptors instead of one. The program can either use both sidesof the pipe or
close the one it does not need. The low-level input and output functions read
and write can be used to read from and write to a pipe. Pipe file descriptors are
used in the same way asother file descriptors.

8.2 Opening a Pipe to a New Process

The popen function creates a new process and then opens a pipe to the standard
input or output file of that new process. The function call has the form:

popen (command, type)

where commandis a pointer to a string that contains a shell command line, and
type is a pointer to the string which defines whether the pipe is to be opened for
reading or writing by the original process. It may be “r’’ for readingor “w” for
writing. The function normally returns the file pointer to the open pipe, but
will return the null pointer value NULL if an error isencountered.

The function is typically used in programs that need to call another program
and pass substantial amounts of data to that program. For example, in the
following program fragment popen creates a new process for the cat command
and opens a pipe for writing.

6-1

Creating and Using Pipes

where stream is the file pointer of the pipe to be closed. The function normally
returns the exit status of the command that was issued as the first argument of
its corresponding popen, but will return the value -1 if the pipe was notopened
by popen.

For example, in the following program fragment pelose closes the pipe given by
“pstrm”’ if the end-of-file value EOF has been found in the pipe.

FILE spstrm;

if (feof(pstrm))
pclose (pstrm);

8.5 Opening a Low-Level Pipe

The pipe function opens a pipe for both reading and writing. The function call
hasthe form:

pipe (fd)

where fd is a pointer to a two-element array. It must have int type. Each
element receives one file descriptor. The first element receives the file
descriptor for the reading side of the pipe, and the other element receives the
file descriptor for the writing side. The function normally returns 0, but will
return the value -1 if an error is encountered. For example, in the following
program fragment pipe creates two file descriptorsif no error isencountered.

int chan[2};

if (pipe(chan) == -1)
exit(2);

The array element ‘““chan[0]” receives the file descriptor for the readingside of
the pipe, and “‘chan[1]”’ receives it for the writing side.

The function is typically used to open a pipe in preparation for linking it to a
child process. For example, in the following program fragment pipe causes the
program to create a child processif it successfully creates a pipe.

int fd[2];
if (pipe(fd) 1= -1)
if (fork(}) ==10)
close{fd[1]);
Note that the child process closes the writing side of the pipe. The parent can

now pass data to the child by writing to the pipe; the child canretrieve the data
by reading the pipe.

6-3

Creating and Using Pipes

The system copies the end-of-file value EOF to a pipe when the process that
made the original pipe and every process created or called by that process has
closed the writing side of the pipe. This means, for example, that if a parent
process is sending data to a child process through a pipe and closes the pipe to
signal the end of the file, the child process will not receive the end-of-file value
unlessit has already closed its own write side of the pipe.

8.8 Program Examples

This section shows how to use the process control functions with the low-level
pipe function to create functionssimilar to the popen and pclose functions.

The first example is a modified version of the popen function. The modified
function identifies the new pipe with a file descriptor rather than a file pointer.
It also requires a ““mode” argument rather than a “type” argument, where the
mode is 0 for reading or 1 for writing.

#finclude <stdio.h>

#define READ 0
##define WRITE 1
#define tst(a, b) (mode == READ ? (b) : (a))

static int popen_pid;
popen{cmd, mode)
char scmd;
int mode;
{ :
int p[2};
if (pipe(p) < 0)

return(NULL);

if ((popen_pid = fork()) === 0) {
close(tst(p| WRITE], p|READ}));
close(tst(0, 1));
dup(tst(p[READ], p[WRITE}));
close(tst(p[READ], p[WRITE]));
execl(” /bin/sh”, "sh”, "-¢”, emd, 0);
exit(1); /= sh cannot be found */

if (popen_pid == -1)
return(NULL);

close(tst(p[READ], p[WRITE)));
) return(tst{p[WRITE], p[READ}));

The function creates a pipe with the pipe function first. It then uses the fork

6-5

Creating and Using Pipes

#include <signalh>

peclose(fd) /# close pipe fd =/

int fd;

{ :
int r, status;
int (¢hstat)(), (sistat)(), (*qstat)();
extern int popen_pid;

close(fd);

istat = signal(SIGINT, SIG_IGN);
gstat = signal(SIGQUIT, SIG_IGN);
hstat = signal(SIGHUP, SIG_IGN);

while ((r = wait(&status)) != popen_pid && r l= -1)

if (r == -1)
status = -1;

signal(SIGINT, istat);
signal(SIGQUIT, gstat);
signal(SIGHUP, hstat);

return(status);

}

The function closes the pipe first. It then uses a while statement to wait for the
child process given by “popen_pid”. If other child processes terminate while it
waits, it ignores them and continues to wait for the given process. It stops
waiting as soon as the given process terminates or if no child processexists. The
function returns the termination status of the child, or the value -1 if there was
anerror.

The signal function calls used in this example ensure that no interrupts
interfere with the waiting process. The first set of functions causes the process
to ignore the interrupt, quit, and hang up signals. The last set restores the
signals to their original status. The signal function is described in detail in
Chapter 7, “Using Signals”.

Note that both example functions use the external variable “popen_pid” to
store the process ID of the child process. If more than one pipe is to be opened,
the “popen_pid” value must be saved in another variable before each call to
popen, and this value must be restored before calling pelose to close the pipe.
The functions can be modified to support more than one pipe by changing the
“popen_pid” variable to an array indexed by file descriptor.

6-7

Chapter 7
Using Signals

7.1 Introduction 7-1

7.2 Using the signalFunction 7-1
7.2.1 Disabling a Signal ~ 7-2
7.2.2 Restoring a Signal's Default Action 7-3
7.2.3 Catchinga Signal 7-4
7.2.4 Restoring aSignal 7-6
7.2.5 ProgramExample 7-6

7.3 Controlling Execution With Signals 7-7
7.3.1 Delaying a Signal’s Action 7-7
7.3.2 Using Delayed Signals With System Functions
7.3.3 Using Signalsin Interactive Programs 7-9

7.4 Using Signals in Multiple Processes 7-10
7.4.1 Protecting Background Processes 7-11
7.4.2 Protecting Parent Processes 7-12

7-8

Using Signals

7.1 Introduction

This chapter explains how to use C library functions to process signalssent to a
program by the XENIX system. A signal is the system’s response to an unusual
condition that occurs during execution of a program such as a user pressing the
INTERRUPT key or the system detecting an illegal operation. A signal
interrupts normal execution of the program and initiates an action such as
terminating the program or displaying an error message.

The signalfunction of the standard Clibrary letsa program define the action of
asignal. The function can be used to disable a signal to prevent it from affecting
the program. It can also be used to give a signal a user-defined action.

The signal function is often used with the setymp and longsmp functions to
redefine and reshape the action of a signal. These functions allow programs to
save and restore the execution state of a program, giving a program a means to
jump from one state of execution to another without a complex assembly
language interface.

To use the signal function, you must add the line

#include <signal.h>
to the beginning of the program. The signal k file defines the various manifest
constants used as arguments by the function. To use the setymp and longimp
functions you must add the line

#include <setjmp.h>
to the beginning of the program. The setymp.k file contains the declaration for
the type jmp_buf, a template for saving a program’s current execution state.

7.2 Using the signal Function

The signel function changes the action of a signal from its current action to a
givenaction. The function has the form

signal (sigtype, ptr)

where sigtype is an integer or a mainfest constant that defines the signal to be
changed, and ptr is a pointer to the function defining the new action or a
manifest constant giving a predefined action. The function always returns a
pointer value. This pointer defines the signal’s previous action and may be used
in subsequent calls to restore the signal to its previous value.

The ptr may be “SIG_IGN” to indicate no action (ignore the signal) or

“SIG_DFL” to indicate the default action. The sigtype may be “SIGINT” for
interrupt signal, caused by pressing the INTERRUPT key, “‘SIGQUIT” for quit

7-1

Using Signals

finclude <signal.h>

main {)
{
if (fork() ===

{
signal(SIGINT, SIG_IGN);
/* Child process. =/

}

/#+ Parent process. s/

}

This call does not affect the parent process which continues to receive
interrupts as before. Note that if the parent process is interrupted, the child
process continues to execute until it reachesitsnormal end.

7.2.2 Restoring a Signal’s Default Action

You can restore a signal to its default action by using the “SIG_DFL” constant
with eignal. The function call has the form

signal {sigtype, SIGDFL)

where stgtype is the manifest constant defining the signal you wish to restore.
For example, the function call

signal (SIGINT, SIG_DFL}
restores the interrupt signal to its default action.
The function call is typically used to restore a signal after it has been
temporarily disabled to keep it from interrupting critical operations. For

example, in the following program fragment the second call 40 signal restores
the signal toits default action.

7-3

Using Signals

#include <signal.h>
main ()
int catch ();

printf(”Press INTERRUPT key to stop.0);
signal (SIGINT, catch);
while () {

/* Body */

catch ()
{

printf("Program terminated.\n");
exit(1);

}

The catek function prints the message “Program terminated” before stopping
the program with the ezit function.

A program may redefine the action of a signal at any time. Thus, many
programs define different actions for different conditions. For example, in the
following program fragment the action of the interrupt signal depends on the
return value of a function named keytest.

#include <signal.h>
main ()
int catchl (), catch?2 ();
if (keytest() ==
signal(SIGINT, catchl);

else

signal(SIGINT, catch2);
}

Later the program may change the signal to the other action or even 2 third
action.

When using a function pointer in the stgnal call, you must make sure that the
function name is defined before the call. Inthe program fragment shownabove,
catchland catch?are explicitly declared at the beginning of the main program
function. Their formal definitionsare assumed to appear after the signalcall.

7-5

Using Signals

ftinclude <stdio.h>
#include <signal.h>

system(s) /* run command string s */
char #s;
{

int status, pid, w;

register int (*istat)(), (*qstat)();

if ((pid = fork()) == 0) {
execl(” /bin/sh”, "sh", "—c”, s, NULL});
exit(127);

istat = signal(SIGINT, SIG_IGN};
gstat = signal(SIGQUIT, SIG_IGN);
while ((w = wait(&status)) = pid &£& w I= -1)

if (w == -1)

status = -1;
signal(SIGINT, istat);
signal(SIGQUIT, gstat);
return(status);

}

Note that the parent uses the while statement to wait until the child’s process
ID “pid” is returned by wast. If wait returns the error code “*~1” no more child
processes are left, so the parent returns the error code asits ownstatus.

.7.3 Controlling Execution With Signals

Signals do not need to be used solely as a means of immediately terminating a
program. Many signals can be redefined to delay their actions or even cause
actions that terminate a portion of a program without terminating the entire
program. The following sections describe ways that signals can be caught and
used to provide control of a program.

7.3.1 Delaying a Signal’s Action

You can delay the action of a signal by catching the signal and redefining its
action to be nothing more than setting a globally-defined flag. Such a signal
does nothing to the current execution of the program. Instead, the program
continues uninterrupted until it can test the flag to see if a signal has been
received. It can thenrespond according to the value of the flag.

The key to a delayed signal is that all functions return execution the exact point
at which the program was interrupted. If the function returns normally the
program continuesexecution just asif nosignal occurred.

Using Signals

receives a signal when reading the terminal, all characters read before the
interruption are lost, making it appear as though no characters were typed.

Whenever a program intends to use delayed signals during calls to system
functions, the program should include a check of the function return values to
ensure that an error was not caused by an interruption. In the following
program fragment, the program checks the current value of the interrupt flag
“intflag” to make sure that the value EOF returned by geichar actually
indicates the end of the file.

if (getchar() == EOF)
if (intflag)
/* EOF caused by interrupt +/
else
/* true end-of-file */

7.3.3 Using Signals in Interactive Programs

Signals can be used in interactive programs to control the execution of the
program’s various commands and operations. For example, a signal may be
used in a text editor to interrupt the current operation (e.g., displaying a file)
and return the program to a previous operation (e.g., waiting for a command).

To provide this control, the function that redefines the signal’s action must be
able to return execution of the program to a meaningful location, not just the
point of interruption. The standard C library provides two functions to do
this: setymp and longfmp. The setymp function saves a copy of a program’s
execution state. The longjmp function changes the current execution state to a
previously saved state. The functions cause a program to continue execution at
an old location with old register values and status as if no operations had been
performed between the time the state was saved and the time it was restored.

The setympfunction has the form

setjmp (buffer)
where bufferis the variable to receive the execution state. It must be explicitly
declared with type jmpbuf before it is used in the call. For example, in the
following program fragment setbuf copies the execution of the program to the
variable “oldstate’’ defined with ty pe jmpbuf.

jmpbuf oldstate;

setbuf{oldstate);
Note that after a setbuf call, the buffer variable contains valuesfor the program

counter, the data and address registers, and the process status. These values
must not be modified in any way.

Using Signals

.7.4.1 Protecting Background Processes

Any program that has been invoked using the shell’s background symbol (&) is
executed as a background process. Such programs usually do not use the
terminal for input or output, and complete their tasks silently. Since these
programs do not need additional input, the shell automatically disables the
signals before executing the program. This means signals generated at the
terminal do not affect execution of the program. This is how the shell protects
the program from signals intended for other programs invoked from the same
terminal.

In some cases, a program that has been invoked as a background process may
also attempt to catch its own signals. If it succeeds, the protection from
interruption given to it by the shell is defeated, and signals intended for other
programs will interrupt the program. To prevent this, any program which is
intended to be executed as a background process, should test the current state
of a signal before redefining its action. A program should redefine a signal only
if the signal has not been disabled. For example, in the following program
fragment the action of the interrupt signal is changed only if the signal is not
currently beingignored.

#include <signalh>
main()
int catch();

if {signal(SIGINT, SIG_IGN) != SIG_IGN)
signal(SIGINT, catch};

/* Program body. */
}

This step lets a program continue to ignore signalsif it is already doing so, and
change the signal if it is not.

7-11

Chapter 8
Using System Resources

8.1 Introduction 8-1

8.2 Allocating Space 8-1
8.2.1 Allocating Space for aVariable 81
8.2.2 Allocating Space for an Array 8-2
8.2.3 Reallocating Space 8-3
8.2.4 Freeing Unused Space 8-3

8.3 LockingFiles 8-4
8.3.1 Preparing aFile for Locking 84
8.3.2 LockingaFile 85
8.3.3 ProgramExample 8-5

8.4 Using Semaphores 8-6
8.4.1 CreatingaSemaphore 8-7
8.4.2 Opening aSemaphore 8-8
8.4.3 Requesting Control of a Semaphore 8-8
8.4.4 Checking the Status of aSemaphore 8-9
8.4.5 Relinquishing Control of a Semaphore 8-9
8.4.6 Program Example 8-10

8.5 Using Shared Data 8-12
8.5.1 Creating a Shared Data Segment 8-13
8.5.2 Entering aShared Data Segment 8-14
8.5.3 Leaving aShared Data Segment 8-14
8.5.4 Getting the Current Version Number 8-15
8.5.5 Waiting for a Version Number 8-15
8.5.6 Freeing a Shared Data Segment 8-16

Using System Resources

8.1 Introduction

This chapter describes the standard C library functions that let programs
share the resources of the XENIX system. The functions give a program the
means to queue for the use and control of a given resource and to synchronize its
use with use by other programs.

In particular, this chapter explainshow to
— Allocate memory for dynamically required storage
— Lockafile to ensure exclusive use by a program
— Use semaphores to control access to a resource

— Share dataspace to allow interaction between programs

8.2 Allocating Space

Some programs require significant changes to the size of their allocated
memory space during different phases of their execution. The memory
allocation functions of the standard C library let programs allocate space
dynamically. This means a program can request a given number of bytes of
storage for its exclusive use at the moment it needs the space, then free this
space after it has finished using it.

There are four memory allocation functions: malloc, calloc, ralloc, and free.
The malloc and calloc functions are used to allocate space for the first time.
The functions allocate a given number of bytes and return a pointer to the new
space. The realloc function reallocates an existing space, allowing it to be used
in a different way. The freefunction returnsallocated space to the system.

8.2.1 Allocating Space for a Variable

The malloc function allocates space for a variable containing a given number of
bytes. The function call has the form:

malloc (size)

where size is an unsigned number which gives the number of bytes to be
allocated. For example, the function call

table = malloc (4}
allocates four bytes or storage. The function normally returns a pointer to the

starting address of the allocated space, but will return the null pointer value if
there is not enough space to allocate.)

Using System Resources

8.2.3 Reallocating Space

The realloc function reallocates the space at a given address without changing
the contents of the memory space. The function call has the form:

realloc (ptr, size)

where ptris a pointer to the starting address of the space to be reallocated, and
size is an unsigned number giving the new size in bytes of the reallocated space.
The function normally returnsa pointer to the starting address of the allocated
space, but will return a null pointer value if there is not enough space to
allocate.

This function is typically used to keep storage as compact as possible. For
example, in the following program fragment realloc is used to remove table
entries.

main ()

char *table;
int i;
unsigned inum;

for (i=inum; i>-1; i--) {
printf(” %d0, stringsli]);
strings = realloc(strings, i*4);

In this example, an entry is removed after it has been printed at the standard
output, by reducing the size of the allocated space from its current length to the
length given by “‘i#4”.

8.2.4 Freeing Unused Space

The free function frees unused memory space that had been previously
allocated by a malloc, calloc, or realloc function call. The function call has the
form:

free (ptr)

where ptr is the pointer to the starting address of the space to be freed. This
pointer must be the return value of a malloc, calloc, or realloc function.

The function is used exclusively to free space which is no longer used or to free
space to be used for other purposes. For example, in the following program
fragment free frees the allocated space pointed to by ‘“‘strings” if the first
element is equal to zero.

8-3

Using System Resources

8.3.2 Locking a File

The locking function locks one or more bytes of a given file. The function call
hasthe form:

locking (filedes, mode, #ize)

where filedes is the file descriptor of the file to be locked, mode is an integer
value which defines the type of lock to be applied to the file, s5ze isalong integer
value giving the size in bytes of the portion of the file section to be locked or
unlocked. The mode may be “LOCK” for locking the given bytes, or
“UNLOCK?” for unlocking them. For example, in the following program
fragment locking locks 100 bytes at the current character pointer position in
the file given by “fd’".

#include <sys/locking.h>
main ()

{

int fd,

fd = open("data”, 2);
locking(fd, LOCK, 100);

The function normally returns the number of bytes locked, but will return -1 if
it encounters an error.

8.3.3 Program Example

This section shows how to lock and unlock a small section in a file using the
locking function. In the following program, the function locks 100 bytes in the

file data which is opened for reading and writing. The locked portion of the file
is accessed, then lockingis used again to unlock the file.

8-5

Using System Resources

8.4.1 Creating a Semaphore

The creatsem function creates a semaphore, returning a semaphore number
which may be used in subsequent semaphore functions. The function call has
the form:

creatsem (sem_name, mode)

where sem_name is a character pointer to the name of the semaphore, and
mode is an integer value which defines the access mode of the semaphore.
Semaphore names have the same syntax as regular file names. The names must
be unique. The function normally returns an integer semaphore number which
may be used in subsequent semaphore functions to refer to the semaphore. The
function returns -1 if it encounters an error, such as creating a semaphore that
already exists, or using the name of an existing regular file.

The function is typically used at the beginning of one process to clearly define
the semaphores it intends to share with other processes. For example, in the
following program fragment creatsem creates a semaphore named “ttyl”
before preceding with its tasks.

main ()

int ttyl;
FILE fttyl;

ttyl = creatsem("ttyl”, 0777);

fttyl = fopen(” /dev/tty01”, "w");
/* Program body. s/

}

Note that fopen is used immediately after creatsem to open the file /dev/tty01
for writing. Thisisone way to make the association between asemaphoreand a
device clear.

The mode ‘0777’ defines the semaphore’s access permissions. The permissions
are similar to the permissions of a regular file. A semaphore may have read
permission for the owner, for users in the same group as the owner, and for all
other users. The write and execution permissions have no meaning. Thus,
“0777” means read permission for all users.

No more than one process ever need create a given semaphore; all other
processes simply open the semaphore with the opensem function. Once created
or opened, a semaphore may be accessed only by using the waitsem,
nbwaitsem, or sigsem functions. The ¢reatsem function may be used more
than once during execution of a process. In particular, it can be used to reset a
semaphore if a process fails to relinquish control before terminating.

8-7

Using System Resources

semaphore that does not exist or requesting a semaphore that is locked to a
dead process.

The function is used whenever a given process wishes to access the device or
system resource associated with the semaphore. For example, in the following
program fragment waitsem signals the intention to write to the file given by
“ttyl”.

main ()

int ttyl;
FILE fttyl;

waitsem(ttyl);
fprintf(fttyl, "Changing tty driver\n”);

The function waits until current controlling process relinquishes controlof the
semaphore before returning to the next statement.

8.4.4 Checking the Status of a Semaphoré

The nbwaitsem function checks the current status of a semaphore. If the
semaphore is not available, the function returns an error value. Otherwise, it
gives immediate control of the semaphore to the calling process. The function
call hasthe form:

nbwaitsem (sem_num)

where sem_num is the semaphore number of the semaphore to be checked. The
function returns -1 if it encounters an error such as requesting a semaphore
that does not exist. The function also returns -1 if the process controlling the
requested semaphore terminates without relinquishing control of the
semaphore.

The function is typically used in place of waiteem to take control of a
semaphore.
8.4.5 Relinquishing Control of a Semaphore
The sigsem function causes a process to relinquish control of a given semaphore
and to signal this fact to all processes waiting for the semaphore. The function
call hasthe form:

sigsem (sem_num)
where sem_num is the semaphore number of the semaphore to relinquish. The

semaphore must have been previously created or opened by the process.
Furthermore, the process must have been previously taken control of the

8-9

ftdefine
char

int

int

main()

}

doit(id)
{

}

err(s)
char ss;

Using System Resources

NPROC 5
semf]] = "_kesemZXOXXXX";

sem_num;
holdsem == 5;

register i, chid;

mktemp(semf); .
if ((sem_num == creatsem(semf, 0777)) < 0)
err(" creatsem”);
for (i = 1;i < NPROC; ++i) {
if((chid = fork()) < 0)
err(”No fork”);
else if(chid === 0) {
if((sem_num == opensem(semf})) < 0)
err("opensem”);
doit(i);
exit(0);

}

doit(0);

for (i = 1; i < NPROC; ++i)
while(wait((int *)0) < 0)

unlink(semf);

while(holdsem—) {
if(waitsem(sem_num) < 0)

err(” waitsem”);
printf(” %d\n”, id);
sleep(1);
if(sigsem(sem_num) < 0)
err("sigsem”);
}
perror(s);

exit(1);

8-11

Using System Resources

8.5.1 Creating a Shared Data Segment

The sdget function creates a shared data segment for the current process, or if
the segment already exists, attaches the segment to the data space of the
current process. The function call has the form:

sdget (path, flag |, size, mode |)

where path is a character pointer to a valid pathname, fleg is an integer value
which defines how the segment should be created or attached, size is an integer
value which defines the size in bytes of the segment to be created, and mode is
aninteger value which defines the access permissions to be given to the segment
if created. The size and mode values are used only when creating a segment.
The flag may be SD_RDONLY for attaching the segment for reading only,
SD_WRITE for attaching the segment for reading and writing, SD_CREAT for
creating the segment given by path if it does not already exist, or SD_UNLOCK
for allowing simultaneous access by multiple processes. The values can be
combined by logically ORing them. The SD_UNLOCK value is used only if the
segment is created. The function returns the address of the segment if it has
been successfully created or attached. Otherwise, the function returns -1 if it
encountersan error.

The function is most often used to create a segment to be shared by another
process. The function may then be used in the other process to attach the
segment to its data space. For example, in the following program fragment
sdget creates asegment and assigns the address of the segment to “shared”.

#include <sd.h>
main ()
char #shared, *spath;

shared = sdget(spath, SD_CREAT, 512, 0777);
}

When the segment is created, the size “512” and the mode 0777 are used to
define the segment’s size in bytes and access permissions. Access permissions
are similar to permissions given to regular files. A segment may have read or
write permission for the owner of the process, for users belonging to the same
group as the owner, and for all other users. Execute permission for a segment
has no meaning. For example, the mode “0777" means read and write
permission for everyone, but “0660”’ means read and write permissions for the
owner and group processes only. When first created, a segment is filled with
zeroes.

Note that the SD_UNLOCK flag used on systems without hardware support for
shared data may severely degrade the execution performance of the program.

813

Using System Resources

#include <sd.h>

main ()

char sshared;

while (#x++ 1= 10) {
sdenter(shared);

[+ write to segment */
sdleave(shared);

8.5.4 Getting the Current Version Number

The sdgetv function returns the current version number of the given data
segment. The function call hasthe form:

sdgetv (addr)
where addr is a character pointer to the desired segment. A segment’s version
number is initially zero, but it is incremented by one whenever a processleaves
the segment using the sdleave function. Thus, the version numberisarecord of
the number of times the segment has been accessed. The function’s return
valueisalways an integer. It returns-1ifit encounters an error.
The function is typically used to choose an action based on the current version
number of the segment. For example, in the following program fragment
sdgetv determines whether or not sdenter should be used to enter the segment
givenby “shared”.

#8%include <sd.h>

main ()

char #*shared;

if (sdgetv(shared) > 10)
sdenter(shared);

In this example, the segment is entered if the current version number of the
segment is greater than ‘10",

8.5.5 Waiting for a Version Number

The sdwaitv function causes a process to wait until the version number for the
given segment is no longer equal to a given version number. The function call

815

Chapter 9
Error Processing

9.1 Introduction 9-1

9.2 Using the Standard Error File 9-1
9.3 Using theerrno Variable 9-1

9.4 Printing Error Messages 9-2

9.5 Using Error Signals 9-3

9.6 Encountering System Errors 9-3

Error Processing

9.1 Introduction

The XENIX system automatically detects and reports errors that occur when
using standard C library functions. Errors range from problems with accessing
files to allocating memory. In most cases, the system simply reports the error
and lets the program decide how to respond. The XENIX system terminates a
program only if a serious error has occurred, such as a violation of memory
space.

This chapter explains how to process errors, and describes the functions and
variables a program may use respond to errors.

9.2 Using the Standard Error File

The standard error file is a special output file that can be used by a program to
display error messages. -The standard error file is one of three standard files
(standard input, output, and error) automatically created for the program
whenitisinvoked.

The standard error file, like the standard output, is normally assigned to the
user’s terminal screen. Thus, error messages written to the file are displayed at
the screen. The file can also be redirected by using the shell's redirection
symbol (>) For example, the following command redirects the standard error
file to the file errorlist.

dial 2>errorlist
In this case, subsequent error messages are written to the given file.

The standard error file, like the standard input and standard output, has
predefined file pointer and file descriptor values. The file pointer stderr may
be used in stream functions to copy data to the error file. The file descriptor 2
may be used in low-level functions to copy data to the file. For example, in the
following program fragment stderr is used to write the message “Unexpected
end of file” to the standard error file.

if ((c=ge:cn2r()) === EOF) »
fprintf(stderr, "Unexpected end of file.\n");

The standard error file is not affected by the shell’s pipe symbol (]). This means
that even if the standard output of a program is piped to another program,
errors generated by the program will still appear at the terminal screen {or in
the appropriate file if the standard error isredirected).

9.3 Using the errno Variable

The errno variable is a predefined external variable which contains the error

$-1

Error Processing

accounts: Permission denied.
iferrnoisequal to the constant EACCES.

if (errno === EACCES) {

perror(”accounts”);

fd = open (" fusr/tmp/accounts”, O_RDONLY);
}

All error messages displayed by perror are stored in an array named
sys_errno, an external array of character strings. The perror function uses
the variable errno as the index to the array element containing the desired
message.

9.5 Using Error Signals

Some program errors cause the XENIX system to generate error signals. These
signals are passed back to the program that caused the error and normally
terminate the program. The most common error signals are SIGBUS, the bus
error signal, SIGFPE, the floating point exception signal, SIGSEGV, the segment
violation signal, SIGSYS, the system call error signal, and SIGPIPE, the pipe
error signal. Other signals are described in #ignal(S) in the XENIX Reference
Manual.

A program can, if necessary, catch an error signal and perform its own error
processing by using the signal function. This function, as described in Chapter
7, “Using Signals” can set the action of a signal to a user-defined action. For
example, the function call

signal(SIGBUS, fixbus);

sets the action of the buserror signal to the action defined by the user-supplied
function fizbus. Such a function usually attempts to remedy the problem, or at
least display detailed information about the problem before terminating the
program.

For details about how to catch, redefine, and restore these signals, see Chapter
7.)

9.6 Encountering System Errors

Programs that encounter serious errors, such as hardware failures or internal
errors, generally do not receive detailed reports on the cause of the errors.
Instead, the XENIX system treats these errors as ‘‘system errors”, and reports
them by displaying a system error message on the system console. This section
briefly describes sume aspects of XENIX system <rrors and how they relate to
user programs. For a complete list and description of XENIX system errors, see
messages(M)inthe XENIX Reference Manual.

Appendix A
Assembly Language Interface

Al E‘T}g“ mﬁﬁé istelésandRenirnValuesl
A3 GelligSequsoce

Assembly Language Interface

Al Introduction

When mixing MC68000 assembly language routines and compiled C routines, there
areseveralthingstobe aware of:

e RegistersandReturn Values
e CallingSequence

e Stack Probes

With an understanding of these three topics, you should be able to write both C
programs that call MC68000 assembly language routines and assembly language
routinesthatcall compiled Croutines.

A.l.1 Registers and Return Velues

Function return values are passed inregisters if possible. The set of machine registers
used is called the save set, and includes the registers from d2 —d7 and a2 —a7that are
modified by aroutine. The compiler assumesthat these registers are preserved by the
callee, and saves them itself when it is generating code for the callee (whena C
compatible routine is called by another routine, we refer to the czlling routine as the
caller. We refer to the called routine as the callee.) Note that a6 and a7 are in effect
savedbyalink instructionat procedure entry.

The function return value is ind). The current floating point implementation returns
the high order 32 bits of doubles in d!, and the low order 32 bits ind0. Functions that
returnstructure values (not pointerstothe values)do soby loading 40 withapointertoa
static buffercontaining the structure value.

Thismakesthe following twofunctionsequivalent:

struct foo proc ()i
struct foo this;

return (this);
}

struct foo *proc ()!
struct foo this;
static struct foo temp;

temp = this;
return (&temp);

This implementation allows recursive reentrancy (as long as the explicit form is not
used, since the first sequence is indivisible but not the second). However, this
implementation does not permit multitasking reentrancy. Note that the latterincludes
the XENIX signal(3)call.

Setjmp(3) and longjmp(3) can not be implemented as they are on the PDP-11,
because each procedure saves only the registers from the save set that it willmodify.
This makes it difficult to get back the current values of the register variables of the

A-1

Assembly Language Interface

bytes pushed as temporaries, save areas, and arguments by the whole procedure. The

8 bytes are the space for the return address and frame pointer save (by the link
instruction) of a nested call. The slop istolerance so that extremely short runtimes that
use little stack do not need to perform a stack probe. Thetolerance is intentionally kept
small to conserve memory, so make sure you understand what you are doing before

youconsiderleaving outa stack probe in your assembly procedures.

in most cases, unless you are pushing hugé structures or doing tricks with the stack
withinyour procedure, you can use the following instruction foryour stack probe:

tstb —100(sp)

Thismakes sure that enough space has been allocated for most of the usual things you
might do with the stack andis enough forthe XENIX runtimes that donot perform stack
probes. Note that you do not need to consider space allocated by the link instructionin
this stack probe, since itisalready addedby indexing offthe stack pointer.

Appendix B
XENIX System Calls

B.1 Introduction B-1

B.2 ExecutableFile Format B-1

B.3 Revised System Calls B-1

B.4 Version 7 Additions B-1

B.5 Changes to theioctl Function B-2

B.6 Pathname Resolution B-2:

B.7 Using the mount and chownFunctions B-2
B.8 Super-Block Format B-2

B.9 Separate Version Libraries B-3

XENIX System Calls

B.1 Introduction

This appendix lists some of the differences between XENIX 2.3, XENIX 3.0, UNIX
V7,and UNIX System 3.0. It isintended to aid users who wish to convert system
callsin existing application programs for use on other systems.

B.2 Executablg File Format

Both XENIX 3.0 and UNIX System 3.0 execute only those programs with the
z.0ut executable file format. The format is similar to the old a. out format, but
contains additional information about the executable file, such as text and data
relocation bases, target machine identification, word and byte ordering, and
symbol table and relocation table format. The z.out file also contains the
revision number of the kernel which is used during execution to control access
to system functions. To execute existing programs in a.out format, you must
first convert to the z.out format. The format is described in detailin a.out(F) in
the XENIX Reference Manual.

B.3 Revised System Calls

Some system calls in XENIX 3.0 and UNIX System 3.0 have been revised and do
not perform the same tasks as the corresponding calls in previous systems. To
provide compatibilty for old programs, XENIX 3.0 and UNIX System 3.0
maintain both the new and the old system calls and automatically check the
revision information in the 2. out header to determine which version of a system
call should be made. The following table lists the revised system calls and their
previous versions.

System Call# XENIX2.3function System 3function

35 ftime unused
38 unused clocal
39 unused setpgrp
40 unused cxenix
57 _unused utssys
62 clocal fentl

63 cxenix ulimit

The czentz function provides access to system calls unique to XENIX System
3.0. The clocalfunction provides access to all calls unique to an OEM.

B.4 Version 7 Additions

XENIX 3.0 maintains 2 number of UNIX V7 features that were dropped from
UNIX System 3.0. In particular, XENIX 3.0 continues to support the dup2 and

B-1

XENIX System Calls

B.9 Separate Version Libraries

XENIX 3.0 and UNIX System 3.0 support the construction of XENIX 2.3
executable files. These systems maintain both the new and old versions of
system callsin separate librariesand include files.

B-3

Index

/etc/termcap file 3-1
addch function 3-T
addstr function 3-8
argc,argument count variable
defining 2-2
described 22
argv,argument value array
defining 2-2
described 2-2
Assembly language interface,
described A-1
box function 3-26
BSIZE, buffer size
value 2«2
Buffered 1/0
character pointer 2-30
creating 2-22
described 2-22
flushing a buffer 2-24
returning a character 2-24

Bytes
reading from a file 2-27
reading from a pipe 6-U4
writing to a file 2-26
writing to a pipe 6-U

C calling conventions
described A-1

C language libraries
described 1-1
use in program 1-1

Call sequence A-1

calloc function 8-2

CBREAK mode 3-30
Character functions,
described A4-1
Character pointer
described 2-31
moving 2-31
moving 2-31
moving to start 2-33
reporting position 2-33
Characters
alphabetic #4-3
alphanumeric 4-2
ASCII 4.1
control 4-3
converting to ASCII 4.2
converting to
lowercase 4-5
converting to
uppercase 45
decimal digits 4-3
hexadecimal digit 44
lowercase 4-5
printable 4-4
printable 4-5 .
processing, described 4-1
punctuation 4-4
reading from a file 2-13
reading from standard
input 2-4
uppercase 4-5
writing to a file 2-15
writing to standard
output 2-7

1-1

NULL value 2-11
pipes 6-1

predefined 2-12
recreating 2-23

FILE, file pointer type 2-2
Files

buffers 2-21

buffers 2-22

buffers 2-23

buffers 2-24

closing 2-19

closing low-level

access 2-28

inherited by processes 5-7

locking 8-4

opening 2-12

opening for low-level
access 2-26

random access 2-31
reading bytes 2-27
reading characters 2-13
reading formatted data 2-
14

reading records 2-14
reading strings 2-13
reopening 2-23

testing end-of-file
condition 2-18

testing for errors 2-18
writing bytes 2-27
writing characters 2-15
writing formatted
output 2-17

writing records 2-17
writing strings 2-16

fopen function 2-12

fork function 55
Formatted input
reading from a file 2-14
reading from a pipe 6-2
reading from standard
input 2-4
Formatted output
writing to a file 2-17
writing to a pipe 6-2
writing to standard
output 2-T
fprintf function 2-17
fputc function 2-15
fputs function 2-16
fread function 2-14
free function 8-3
freopen function 2-23
fscanf function 2-14
fseek function 2-32
ftell function 2-33
fwrite function 2-17
gete function 2-13
getch function 3-9
getchar function 2-4
gets function 2-5
getstr function 3-9
gettmode function 3-32
getyx function 3-28
inch function 3-24
initser function 3-U
insch function 3-11
insertln function 3-11
isalnum function 4<2
isaplha function 4.3
isascii function U4-1
iscntrl function 4-3
isdigit function 4-3

low-level between
processes 6-6
opening for low-level
access 6-3
opening to a new
process 6-1
process ID 6-1
reading bytes 6-4
reading from 6-2
shell pipe symbol 6-1
writing bytes 6-4
writing to 6-2
popen function 6-1
printf function 2-8
printw function 3-8
Process control functions,
described 5-1
Process ID
described 5-1
Process
termination status 5-2
Processes
background 7-11
calling a system
program 5-1
child 5-5
communication by pipe 6-1
described 5-1
ID 5«1
multiple copies 5-5
overlaying 5-3
parent 5-5
restoring an execution
state 7-10
saving the execution
state 7-9
splitting 5-5

terminating 5-2
termination status 5-7
under shell control 5-5
waiting 5-6

Programs, invoking 2-2

pute function 2-15

putchar function 2-7

puts function 2-7

Random access functions
character pointer 2-31
described 2-31

raw function 3-30

RAW mode 3-31

" RAW mode 3-5

read function 2-27
realloc function 8-3
Records
reading from a file 2-14
writing to a file 2-17
Redirection symbol
input 2-9
output 2-9
pipe 2-9
refresh function 3-1i
restty function 3=33
Return values A-2
rewind function 2-33
Routine entry sequence A-1
Routine exit sequence A-2
savetty function 3-33
scanf function 2-U4
scanw function 3-10
Screen processing functions,
described 3-1
Screen processing library,
described 1-1
Screen processing
/etc/termcap file 3-1

creating 8-T7
described 8-6
opening 8-8
relinquishing control 8-9
requesting control 8-8
setbuf function 2-23
set jmp function 7-9
set jmp.h file,
described T7-1
sgtty.h file 3-2
Shared data
attaching segments 8-13
creating segments 8-13
described 8-12
entering segments 8-14
freeing segments 8-16
leaving segments 8-14
version number 8-15
waiting for segments 8-15
Shell
called as a separate
process 5-5
signal function 7-1
signal.h file,
described T7-1
Signals
catching 74
catching 9-3
default action 7-3
delaying an action T-7
described 7-1
disabling 7-2
on program errors 9-3
redefining T-4
restoring 7-3
restoring 7-6
SIGINT constant 7-1

SIGQUIT constant T-1
SIG_DFL constant 7-1
SIG_IGN constant 7-1
to a child process 7-12
to background
processes T-11
with interactive
programs 7-9
with multiple
processes T7-10
with system functions 7-8
sigsem function 8-9
sprintf function #-11
sscanf function 4-10
Stack order A-1
Standard C library,
described 1-1
Standard error
described 2-U4
Standard files
described 2-4
predefined file
descriptors 2-26
predefined file
pointers 2-11
reading and writing 2-U
redirecting 2-4
redirecting 9-1
Standard I/0 file 2-1
Standard I/0 functions 2-1
Standard input
described 2-4
reading 2-U4
reading characters 2-lU
reading formatted
input 2-4
reading strings 2-5

System resource functions,
described 8-1
System
resources 8-1
sys_errno array,
described 9-3
TERM variable 3-5
Terminal screen 3-1
Terminal
capabilities 3-1
capability description 3-5

cur sor 3-32

modes 3-30

modes 3-31

modes 3-5

type 3-5
termination status,

described 5-7
termination status

processes 5-=2
toascii function 42
tolower function 4<5
touchwin function 3-25
toupper function U5
Unbuffered 1I/0

creating 2-22

described 2-22

low-level functions 2-25
ungete function 2-24
Variables

allocating for arrays 8-2

memory allocation 8-1
waddch function 3-16
waddstr function 3-16
wait function 5-6
waitsem function 8-8

weclear function 3-21
welrtobot function 3-21
welrtoeol function 3-21
wdelch function 3-20
wdeleteln function 3-20
werase function 3=21
wgetch function 3-17
wgetstr function 3-18
wineh function 3-24
Window

border 3-26

deleting 3-25

described 3-1

flags 3-6

position 3-1
Windows

creating 3-14

flags 3-28

moving 3-24

overlaying 3-23

overwriting 3-23

reading a character 3-24

updating 3-25
winsch function 3-19
winsertln function 3-19
wmove function 3-19
wprintw function 3-17
wrefresh function 3-22
write function 2227
wscanw function 3-18
wstandend function 3-27
wstandout function 3-26

CONTENTS

Programming Commands (CP)

intro introduces programming commands

adb Invokesageneral—purpose debugger

admin Creates and administers SCCS files

ar Maintainsarchivesand libraries

as Invokesthe XENIX assembler

cb BeautifiesCprograms

cc Invokesthe Ccompiler

cdc Changesthedeltacommentary of
anSCCSdelta

comb CombinesSCCS deltas

config Configurca XENIX system

cref Makesacross—reference listing

ctags Creates atagsfile

delta Makesadelta(change)toan
SCCsfile

get Getsa versionof anSCCS file

gets Getsastring fromthe standard
input

hdr Displaysselected partsof
object files

help Asks forhelpabout SCCS commands

id Invokesthe link editor

lex Generates programs forlexical
analysis

lim ChecksClanguageusage and syntax

lorder Finds orderingrelation foran
object :

m4 Invokes amacro processor

make Maintains, updates, and
regenerates programs

mkstr Createsanerrormessage file
from Csource

nm Prints name list

prof Displaysprofile data

prs PrintsanSCCS file

ranlib Convertsarchivestorandom
libraries »

ratfor Invokes RATFOR preprocessor

regcmp Compilesregular expressions

rmdel Removesadelta from an SCCS
file

sact Printscurrent SCCS file
editing

scesdiff Comparestwo versionsofan
SCCsfile

size Printsthe sizeofanobjectfile

spline Interpolates smooth curve

Index

Archivesand libraries ar
Assembler as
Ccompiler cc
Clanguageusage andsyntax lint
Cprogram, formatting cb
Compilercompiler yace
Debugger adb
Errormessagefile mkstr
Execution, time time
Graphics, interpolating curves spline
Lexical analyzers Jex
Linkeditor]
Macroprocessor m4
Object file, printable strings strings
Objectfile, size size
Object file, displaying hdr
Object file, symbolsandrelocation strip
Ordering relations lorder
Program listing, cross—reference xref
Program listing, cross—reference cref
Program maintenance make
Rational FORTRAN ratfor
Regularexpressions regemp
SCCsfiles, combining comb
SCCsfiles, comments cde
SCCs files, comparing scesdifl
SCCsfiles, creating new versions delta
SCCsfiles, editing sact
SCCs files, printing prs
SCCsfiles, removing rmdel
SCCs files, restoring unget
SCCsfiles, retrieving versions get
SCCsfiles, creatingand maintaining admin
SCCsfiles, validating val
SCCS, commandhelp help
Sorting topologically tsort
Standard input, reading strings gets
Strings, extracting xstr
System, XENIX configuration config

Tagsfile

INTRO (CP)

Name

INTRO (CP)

intro — Introduces XENIX Software Development commands.

Description

This section describes use of the individual commands available in
the XENIX Software Development System. Each individual com-
mand is labeled with the letters CP to distinguish it from commands
available in the XENIX Timesharing and Text Processing Systems.
These letters are used for easy reference from other documentation.
For example, the reference cc(CP) indicates a reference to a discus-
sion of the cc command in this section, where the letter *‘C’’ stands
for ‘‘command’’ and the letter ‘‘P’’ stands for ‘‘Programming’’.

Syntax

Unless otherwise noted, commands described in this section accept
options and other arguments according to the following syntax:

where:
name

option

emdarg

See Also

name [options] [cmdaryg]

The filename or pathname of an executable file

A single letter representing a command option By con-
vention, most options are preceded with a dash.
Option letters can sometimes be grouped together as
in — abcd or alternatively they are specified individu-
ally as in - a — b~ ¢ ~ d . The method of specifying
options depends on the syntax of the individual com-
mand. .In the latter method of specifying options,
arguments can be given to the options. For example,
the — f option for many commands often takes a fol-
lowing filename argument.

A pathname or other command argument not begin-
ning with a dash. It may also be a dash alone by itself
indicating the standard input.

getopt(C), getopt(S)

Diagnostics

Upon termination, each command returns 2 bytes of status, one sup-
plied by the system and giving the cause for termination, and (in the

Marck 24, 1984

Page 1

ADB(CP) ADB(CP)

Name
adb — debugger

ym::lb [—w] | objfil [corfil | |

Description
Adb is a general purpose debugging program. It may be used to
examine files and to provide a controlled environment for the exe—
cution of XENIX programs.

Cbjfil is normally an executable program file, preferably containing
a symbol table; if not then the symbolic features of adb cannot be
used although the file can still be examined. The default for objfil
is a.cut. Corfil is assumed to be a core image file produced after
executing objfil; the default for corfil is core.

Requests to adb are read from the standard input and responses are
to the standard output. If the —w flag is present then both objfil
and corfil are created if necessary and opened for reading and
writing so that files can be modified using adb. Adb ignores
QUIT; INTERRUPT causes return to the next adb command.

In general requests to adb are of the form:
{address] [,count”command”;]

If address is present then dot is set to address. Initially dot is set
to 0. For most commands count specifies how many times the
command will be executed. The default count is 1. Address and
count are expressions.

The interpretation of an address depends on the context it is used
in. If a subprocess is being debugged then addresses are inter—
preted in the usual .way in the address space of the subprocess.
For further details of address mapping see ADDRESSES.

EXPRESSIONS
. The value of dot.
+ The value of dot incremented by the current increment.

a

The value of dot decremented by the current increment.
" The last address typed.

integer 1f the integer begins with O it is an an octal number. It is
a hexadecimal number if preceded by Ox or 0X. It is a
decimal number when preceded by 0d, 0D, Ot, or OT;
otherwise the current input radix (default decimal).

ccec’ The ASCH value of up to 4 characters. \ may be used to

May 10, 1984 Page 1

ADB(CP)

ADB(CP)

to the format f.

if Locations starting at address in corfil are printed according
to the format f.

=f The value of address itself is printed in the styles indi—
cated by the format f.

A format consists of one or more characters that specify a style of
printing. Each format character may be preceded by a decimal
integer that is a repeat count for the format character. While step—
ping through a format dor is incremented temporarily by the
amount given for each format letter. If no format is given then the
last format is used. The format letters available are as follows.

o 2

04
q

"noad
DA S

e oTae M
el e XS

May 10, 1984

Print 2 bytes in octal. All octal numbers cutput
by adb are preceded by 0.

Print 4 bytes in octal.

Print in signed octal.

Print long signed octal.

Print in decimal.

Print long decimal.

Print 2 bytes in hexadecimal. All hexadecimal
numbers output by adb are preceded by Ox.

Print 4 bytes in hexadecimal.

Print as an unsigned decimal number.

Print long unsigned decimal.

Print the addressed byte in octal.

Print the addressed character.

Print the addressed character using the following
escape convention. Character values 000 to 040
are printed as @ followed by the corresponding
character in the range 0100 to 0140. The char—
acter @ is printed as @@.

Print the addressed characters until a zero char—
acter is reached.

Print a string using the @ escape convention. n
is the length of the string including its zero ter—
minator.

Print 4 bytes in date format (see ctime(S)).

Print as MC68000 instructions. n is the number
of bytes occupied by the instruction. This style
of printing causes variables 1 and 2 to be set to
the offset parts of the source and destination
respectively.

Print the value of dot in symbolic form. Symbols

Page 3

ADB(CP) ADB (CP)

! A shell is called to read the rest of the line following ‘1"

$modifier
Miscellaneous commands. The available modifiers are:

<f Read commands from the file f and return.
>f Send output to the file f, which is created if it
does not exist; > ends the output diversion.

r Print the general registers and the instruction
addressed by pe. Dot is set to pe. :

b Print all breakpoints and their associated counts
and commands.

c C stack backtrace. If address is given then it is

taken as the address of the current frame.
(instead of a6). If count is given then only the
first count frames are printed.

e The names and values of external variables are
printed.

w Set the page width for output to address (default
80).

s Set the limit for symbol matches to address

(default 255).

Set the current input radix to octal.

Set the current input radix to decimal. EXPRES—

SIONS.

Set the current input radix to hexadecimal.

Exit from adb.

Print all non zero variables in hexadecimal.

Print the address map.

[

E<.ﬂ%

smodifier
Manage a subprocess. Available modifiers are:

be Set breakpoint at address. The breakpoint is
executed count—1 times before causing a stop.
Each time the breakpoint is encountered the
command ¢ is executed. If this command sets
dot to zero then the breakpoint causes a stop.

d Delete breakpoint at address.

r Run objfil as a subprocess. If address is given
. explicitly then the program is entered at this
point; otherwise the program is entered at its
standard entry point. count specifies how many
breakpoints are to be ignored before stopping.
Arguments to the subprocess may be supplied on

May 10, 1984 Page 5

ADB (CP) ADB(CP)

b2=address<e2 => file
address =address +f2—b2,

otherwise, the requested address is not legal. In some cases (e.g.,
for programs with separated 1 and D space) the two segments for a
file may overlap. If a ? or / is followed by an « then only the
second triple is used.

The initial setting of both mappings is suitable for normal a.out
and core files. If either file is not of the kind expected then, for
that file, bl is set to O, el is set to the maximum file size and f7 is
set to 0; in this way the whole file can be examined with no
address translation.

So that adb may be used on large files all appropriate values are
kept as signed 32 bit integers.

Files

/dev/imem
/deviswap
a.out
core

See Also

ptrace(S), a.out(F), core(F)

DIAGNOSTICS

The message ‘adb’ when there is no current command or format.
Comments about inaccessible files, syntax errors, abnormal termi—
nation of commands, etc.

Exit status is O, unless last command failed or returned nonzero
status.

Notes .

May

A breakpoint set at the entry point is not effective on initial entry to
the program.

When single stepping, system calls do not count as an executed
instruction.

Local variables whose names are the same as an external variable
may foul up the accessing of the external.

10, 1984 Page 7

ADMIN (CP)

— rrel

— t|{name]

— fflag

March 24, 1984

ADMIN (CP)

The release into which the initial delta is inserted.
This option may be used only if the — i option is
also used. If the - r option is not used, the initial
delta is inserted into release 1. The level of the ini-
tial delta is always 1 (by default initial deltas are
named 1.1).

The name of a file from which descriptive text for
the SCCS file is to be taken. If the — t option is
used and admin is creating a new SCCS file (the — n
and/or - i options also used), the descriptive text
filename must also be supplied. In the case of exist-
ing SCCS files: a — t option without a filename
causes removal of descriptive text (if any) currently

‘in the SCCS file, and a — t option with a filkname

causes text (if any) in the named file to replace the
descriptive text (if any) currently in the SCCS file.

This option specifies a flag, and possibly a value for
the flag, to be placed in the SCCS file. Several f
options may be supplied on a single admin com-
mand line. The allowable flags and their values are:

Allows use of the — b option on a get(CP)
command to create branch deltas.

cceil The highest release (i.e., “ceiling’’), a number

less than or equal to 9999, which may be
retrieved by a get(CP) command for editing.
The default value for an unspecified ¢ flag is
9999.

ffloor The lowest release (i.e., ‘‘floor’’), a number

greater than 0 but less than 9999, which may
be retrieved by a get(CP) command for edit-
ing. The default value for an unspecified f flag
is L.

dSID The default delta number (SID) to be used by

a get(CP) command.

Causes the ‘““No id keywords (ge6)’” message
issued by get(CP) or delta(CP) to be treated as
a fatal error. In the absence of this flag, the
message is only a warning. The message is
issued if no SCCS identification keywords (see
get{CP)) are found in the text retrieved or
stored in the SCCS file.

Allows concurrent get(CP) commands for edit-
ing on the same SID of an SCCS file. This
allows multiple concurrent updates to the same
version of the SCCS file.

Page 2

ADMIN (CP)

~ alogtn

— elogin

- y|commend

— m|mrlief

March 24, 1984

ADMIN (CP)

it A list of releases to be ‘‘unlocked’’. See the

- f option for a description of the 1 flag and
the syntax of a list.

A login name, or.numerical XENIX group ID, to be
added to the list of users which may make deltas
(changes) to the SCCS file. A group ID is equivalent
to specifying all login names common to that group
ID. Several a options may be used on a single
admin command line. As many logins, or numerical
group IDs, as desired may be on the list simultane-
ously. If the list of users is empty, then anyone
may add deltas.

A login name, or numerical group ID, to be erased
from the list of users allowed to make deltas
(changes) to the SCCS file. Specifying a group ID is
equivalent to specifying all login names common to
that group ID. Several e options may be used on a
single admin command line.

The comment text is inserted into the SCCS file as a
comment for the initial delta in a manner identical
to that of delta(CP). Omission of the — y option
results in a default comment line being inserted in
the form:

YY/MM /DD HH:MM:SS by login

The — y option is valid only if the — i and/or - n
options are specified (i.e., a new SCCS file is being
created).

The list of Modification Requests (MR) numbers is
inserted into the SCCS file as the reason for creating
the initial delta in a manner identical to delta(CP).
The v flag must be set and the MR numbers are
validated if the v flag has a value (the name of an
MR number validation program). Diagnostics will
occur if the v flag is not set or MR validation fails.

Causes admin to check the structure of the SCCS file
(see eccafile(F)), and to compare a newly computed
checksum (the sum of all the characters in the SCCS
file except those in the first line) with the checksum
that is stored in the first line of the SCCS file.
Appropriate error diagnostics are produced.

This option inhibits writing on the file, nullifying
the effect of any other options supplied, and is
therefore only meaningful when processing existing
files.

Page 4

AR (CP) AR (CP)

Name

ar —

Syntax

Maintains archives and libraries.

ar key [posname | afile name ...

Description

ar maintains groups of files combined into a single archive file. Its
main use is to create and update library files as used by the link edi-
tor, though it can be used for any similar purpose.

When ar creates an archive, it always creates the header in the for-
mat of the local system.

Key is one character from the set drqtpmx, optionally concatenated
with one or more of vuaibcl. afile is the archive file. The names are
constituent files in the archive file. The meanings of the key charac-
ters are:

d

r

Deletes the named files from the archive file.

Replaces the named files in the archive file. If the optional
character u is used with r, then only those files with modified
dates later than the archive files are replaced. If an optional
positioning character from the set abi is used, then the poename
argument must be present and specifies that new files are to be
placed after (a) or before (b or i) posname. Otherwise new files
are placed at the end.

Quickly appends the named files to the end of the archive file.
Optional positioning characters are invalid. The command does
not check whether the added members are already in the
archive. Useful only to avoid quadratic behavior when creating
a large archive piece by piece.

Prints a table of contents of the archive file. If no names are
given, all files in the archive are tabled. If names are given,
only those files are tabled.

Prints the named files in the archive.
Moves the named files to the end of the archive. If a position-
ing character is present, then the posname argument must be

present and, as in r, specifies where the files are to be moved.

Extracts the named files. If no names are given, all files in the
archive are extracted. In neither case does x alter the archive

March 20, 1984 Page 1

AS(CP) AS(CP)

Name
as — assembler

Syntax

as| —1][—o objfile |[—g | file.s

Description
As assembles the named file. If the argument —1 is used, an
assembly listing is produced and written to file.L. This includes the
source, the assembled code, and any assembly errors.

The output of the assembly is left on the file objfile; if that is
omitted, file.o is used. If the optional —g flag is given, undefined
symbols will be treated as externals. Arguments may appear in
any order, except that —o must immediatly precede objfile. The
optional flag —e (externals only) prevents local symbols from being
extended into objfile’s symbol table.

Files
/tmp/A68tmpr* temporary

See Also)
1d(CP), nm(CP), adb(CP), a.out(F)

May 10, 1984 : Page 1

CC(CP) CC(CP)

Name

cc — C compiler

Syntax

cc [option] ... file ...

Description

‘May

Cc is the XENIX M68000 C compiler. Arguments whose names
end with ‘.c’ are taken to be C source programs; they are com—
piled, and each object program is left on the file whose name is
that of the source with ‘.0’ substituted for ‘.c’. The ‘.0’ file is
normally deleted, however, if a single C program is compiled and
loaded all at one go.

In the same way, arguments whose names end with ‘.s’ are taken
to be assembly source programs and are assembled, producing a
‘.0’ file.

The following options are interpreted by cc. See I/d(CP) for

load—time options.

-C Suppress the loading phase of the compilation, and force
an object file to be produced even if only one program is
compiled.

-0 Invoke an object—code optimizer.

-S Compile the named C programs, and leave the
assembler—language output on corresponding files
suffixed *.s’.

~—0 output ‘
Name the final output file outpusr. If this option is used
the file ‘a.out’ will be left undisturbed.

—Dname=def

—Dname Define the name to the preprocessor, as if by ‘#define’.
If no definition is given, the name is defined as 1.

—Uname Remove any initial definition of name.

~Idir ‘#include’ files whose names do not begin with ‘/’ are
always sought first in the directory of the file argument,
then in directories named in —I options, then in direc—
tories on a standard list.

-t1 replace the compiler phase with a program called ¢68
from the current directory.

—-12 replace the object code optimizer phase with a program
called c680 from the current directory.

10, 1984 Page 1

CDC (CP) CDC (CP)

Name

cdec -~ Changes the delta commentary of an SCCS delta.

Syntax

ede - rSID [- m{mi1list}] [~ y]comment]] files

Description

Cde changes the delta commentary for the SID specified by the — r
option, of each named SCCS file.

Delta commentary is defined to be the Modification Request (MR)
and comment information normally specified via the delta(CP) com-
mand (- mand - y options).

If a directory is named, e¢dec behaves as though each file in the direc-
tory were specified as a named file, except that nonSCCS files (last
component of the pathname does not begin with s.) and unreadable
files are silently ignored. If a name of — is given, the standard input
is read (see Warning); each line of the standard input is taken to be
the name of an SCCS file to be processed.

Arguments to cde, which may appear in any order, consist of options
and file names.

All the described options apply independently to each named file:

— rSID Used to specify the SCCS IDentification {siD)
string of a delta for which the delta commen-
tary is to be changed.

— m|mrlist] If the SCCS file has the v flag set (see
admin(CP)) then a list of MR numbers to be
added and/or deleted in the delta commentary
of the SID specified by the — r option may be
supplied. A null MR list has no effect.

MR entries are added to the list of MRs in the
same manner as that of delta(CP). In order to
delete an MR, precede the MR number with
the character ! (see Examples). If the MR to
be deleted is currently in the list of MRs, it is
removed and changed into a ‘““comment’’ line.
A list of all deleted MRs is placed in the com-
ment section of the delta commentary and pre-
ceded by a comment line stating that they were
deleted.

March 24, 1984 Page 1

CDC (CP) CDC (CP)

The following interactive sequence does the same thing.
ede - r1.6 s.file
MRs? 1bl77-54321 bl78-12345 b179-00001
comments? trouble
Warning
If sCCS file names are supplied to the ¢dz command via the standard
input (- on the command line), then the — m and - y options must
also be used.
Files
x-file See delta(CP)

z-file See delta(CP)

See Also
admin(CP), delta{CP), get{ CP), help(CP), prs(CP), sccsfile(F)

Divagnostics

Use hkelp(CP) for explanations.

March 24, 1984 ’ Page 3

COMB (CP) COME (CP)

-8 This argument causes comb to generate a shell procedure
that will produce a report for each file giving the filename,
size (in blocks) after combining, original size (also in
blocks), and percentage change computed by:

100 * (original - combined) / original

Before any SCCS files are actually combined, you should use this

option to determine exactly how much space is saved by the combin-

ing process. ‘

If no options are specified, comb will preserve only leaf deltas and
the minimal number of ancestors needed to preserve the tree.

Files

comb????¢ Temporary files

See Also

admin(CP), delta(CP), get{CP), help(CP), prs(CP), sccsfile(F)

Diagnostics

Use help(CP) for explanations.

Notes

Comb may rearrange the shape of the tree of deltas. It may not save
any space; in fact, it is possible for the reconstructed file to be larger
than the original.

March 24, 1984 Page 2

CONFIG (CP) CONFIG (CP)

There are certain drivers that may be provided with the system, that
are actually pseudo-device drivers; that is, there is no real hardware
associated with the driver. Drivers of this type are identified on
their respective manual entries.

Second Part of dfile
The second part contains three different types of lines. Note that all
specifications of this part are required, although their order is arbi-
trary.

1. Root/pipe device specification

Each line has three fields:

root devname minor
pipe devname minor

where minor is the minor device number (in octal).
2. Swap device specification
One line that contains five fields as follows:
swap devname minor swplo nswap

where swplo is the lowest disk block (decimal) in the swap area and
nswap is the number of disk blocks (decimal) in the swap area.

3. Parameter specification

A number of lines of two fields each as follows (number is decimal):

buffers number
inodes number
files - number
mounts number
swapmap number
pages number
calls number
procs number
maxproc number
texts number
clists number
locks number
timezone number
daylight Oorl
Example

Suppose we wish to configure a system with the following devices:
one HD disk drive controller with 1 drive
one FD floppy disk drive controller with 1 driver

"March 24, 1984 Page 2

CONFIG (CP) CONFIG(CP)

Diagnostics
Diagnostics are routed to the standard - output and are self-
explanatory. v

Notes

The — t option does not know about devices that have aliases. How-
ever, the major device numbers are always correct.

March 24, 1984 Page 4

CREF (CP) CREF (CP)

n Omits column 4 (no context)

o Uses an only file (see above)

s Current symbol in column 3 (default)

t User-supplied temporary file

u Prints only symbols that occur exactly once
x Prints only C external symbols

1 Sorts output on column 1 (default)

2 Sorts output on column 2

3 Sorts output on column 3

Files
Just/lib/eref/s Assembler specific files

See Also
as(CP), cc(CP), sort{C), xref(CP)

Notes

Cref inserts an ASCH DEL character into the intermediate file after
the eighth character of each name that is eight or more characters
long in the source file.

March 24, 1984 Page 2

CTAGS (CP) : CTAGS (CP)
Credit

This utility was developed at the University of California at Berkeley
and is used with permission.

March 24, 1984 ’ Page 2

DELTA (CP) DELTA (CP)

~ glist Specifies a list (see get(CP) for the definition of list)
of deltas which are to be sgnored when the file is
accessed at the change level (SID) created by this
delta.

~ m[mrlisf If the SCCs file has the v flag set (see admin(CP))
then a Modification Request (MR) number must be
supplied as the reason for creating the new delta.

If — mis not used and the standard input is a termi-
nal, the prompt MRs? is issued on the standard out-
put before the standard input is read; if the standard
input is not a terminal, no prompt is issued. The
MRs? prompt always precedes the comments?
prompt (see — y keyletter).

MRs in a list are separated by blanks and/or tab
characters. An unescaped newline character ter-
minates the MR list.

Note that if the v flag has a value (see admin(CP)),
it is taken to be the name of a program (or shell
procedure) which will validate the correctness of the
MR numbers. If a nonzero exit status is returned
from MR number validation program, delta ter-

‘minates (it is assumed that the MR numbers were
not all valid).

— y|comment] Arbitrary text used to descnbe the reason for mak-
ing the delta. A null string is con51dered a valid
comment. .

If — y is not specified and the standard input is a
terminal, the prompt comments? is issued on the
standard output before the standard input is read; if
the standard input is not a terminal, no prompt is
issued. An unescaped newline character terminates
the comment text.

-p Causes delta to print (on the standard output) the
sccs file differences before and after the delta is
applied. Differences are displayed in a dzﬂ'(C) for-
mat.

Files
All files of the form ¢-file are explained in Chapter 5, “SCCS: A
Source Code Control System” in the XENIX Programmer’s Guide. The

naming convention for these files is also described there.

g-file Existed before the execution of delta; removed after
completion of delta.

March 24, 1984 Page 2

GET (CP) GET (CP)

Name

get - Gets a version of an SCCS file.
Syntax

get [- rSID] [- ccutoff] [- ilist] [~ xlist] -no.] {- k] [~ ¢
it Y i ey vy Yy

Description

Get generates an ASCII text file from each named SCCS file according
to the specifications given by its options, which begin with — . The
arguments may be specified in any order, but all options apply to all
named SCCS files. If a directory is named, get behaves as though
each file in the directory were specified as a named file, except that
nonSCCS files (last component of the pathname does not begin with
s.) and unreadable files are silently ignored. If a name of - is
given, the standard input is read; each line of the standard input is
taken to be the name of an SCCS file to be processed. Again,
nonSCCS files and unreadable files are silently ignored.

The generated text is normally written into a file called the g-file

whose name is derived from the SCCS filename by simply removing
the leading s.; (see also FILES, below).

Each of the options is explained below as though only one SCCS file
is to be processed, but the effects of any option apply independently
to each named file.

- rSID The SCCS [Dentification string (SID) of the version
(delta) of an SCCS file to be retrieved.

—~ ceutoff Cutoff date-time, in the form:
YY[MM|DD[HH|MM][sS|]]]]

No changes (deltas) to the SCCS file that were created
after the specified cutoff date-time are included in the
generated ASCII text file. Units omitted from the date-
time default to their maximum possible values; that is,
— €7502 is equivalent to — c¢750228235959. Any number
of nonnumeric characters may separate the various 2
digit pieces of the cutoff date-time. This feature allows
you to specify a cutoff date in the form: *- ¢77/2/2
9:22:25",

-e Indicates that the get is for the purpose of editing or
making a change (delta) to the SCCS file via a subsequent
use of delta(CP). The — e option used in a get for a par-
ticular version (SID) of the SCCS file prevents further

March 24, 1984 . Page 1

GET(CP) GET (CP)

-8 Suppresses all output normally written on the standard
output. However, fatal error messages (which always go
to file descriptor 2) remain unaffected.

- m Causes each text line retrieved from the SCCS file to be
preceded by the SID of the delta that inserted the text
line in the SCCS file. The format is: SID, followed by a
horizontal tab, followed by the text line.

-n Causes each generated text line to be preceded with the
98 % identification keyword value (see below). The for-
mat is: 99M% value, followed by a horizontal tab, fol-
lowed by the text line. When both the — m and - n
options are used, the format is: %M % value, followed by
a horizontal tab, followed by the — m option generated
format.

- g Suppresses the actual retrieval of text from the SCCS file.
It is primarily used to generate an I-file, or to verify the
existence of a particular SID.

-t Used to access the most recently created (top) delta in a
given release (e.g., — rl), or release and level (e.g.,
- rl.2).

|

aseq-no. The delta sequence number of the SCCS file delta (ver-
sion) to be retrieved (see sccsfile(F)). This option is
used by the comb(CP) command; it is not particularly
useful should be avoided. If both the —r and - a
options are specified, the — a option is used. Care
should be taken when using the — a option in conjunc-
tion with the — e option, as the SID of the delta to be
created may not be what you expect. The — r option can
be used with the — a and — e options to control the nam-
ing of the SID of the delta to be created.

For each file processed, get responds (on the standard output} with
the SID being accessed and with the number of lines retrieved from
the SCCS file.

If the — e option is used, the SID of the delta to be made appears
after the SID accessed and before the number of lines generated. If
there is more than one named file or if a directory or standard input
is named, each filename is printed (preceded by a newline) before it
is processed. If the — i option is used included deltas are listed fol-
lowing the notation ‘‘Included’’; if the — x option is used, excluded
deltas are listed following the notation ‘““Excluded’’.

Identification Keywords

Identifying information is inserted into the text retrieved from the
sccs file by replacing identification keywords with their value

March 24, 1984 Page 3

GET (CP) GET (CP)

implied, the g-file’s mode is 644; otherwise the mode is 444. Only
the real user need have write permission in the current directory.

" The I-file contains a table showing which deltas were applied in gen-
erating the retrieved text. The I-file is created in the current direc-
tory if the —-1 option is used; its mode is 444 and it is owned by the
real user. Only the real user need have write permission in the
current directory.

Lines in the I-file have the following format:

a. A blank character if the delta was applied;
* otherwise
b. A blank character if the delta was applied or wasn’t applied
and ignored;
* if the delta wasn’t applied and wasn’t ignored
¢. A code indicating a ‘‘special’’ reason why the delta was or
was not applied:
“I”’: Included
“X"’: Excluded
““C”’: Cut off (by a — c option)
Blank
SCCS identification (SID)
Tab character
Date and time (in the form YY/MM/DD HH:MM:SS) of crea-
tion
Blank
Login name of person who created delta

S R

The comments and MR data follow on subsequent lines, indented
one horizontal tab character. A blank line terminates each entry.

The p-file is used to pass information resulting from a get with an
— e option along to delta. Its contents are also used to prevent a
subsequent execution of get with an — e option for the same SID
until delte is executed or the joint edit flag, j, (see admin(CP)) is set
in the SCCS file. The p-file is created in the directory containing the
Sccs file and the effective user must have write permission in that
directory. Its mode is 644 and it is owned by the effective user. The
format of the p-file is: the gotten SID, followed by a blank, followed
by the SID that the new delta will have when it is made, followed by
a blank, followed by the login name of the real user, followed by a
blank, followed by the date-time the get was executed, followed by a
blank and the — i option if it was present, followed by a blank and
the — x option if it was present, followed by a newline. There can
be an arbitrary number of lines in the p-file at any time; no two lines
can have the same new delta SID.

The z-file serves as a lock-out mechanism against simultaneous
updates. Its contents are the binary (2 bytes) process ID of the com-
mand (i.e., get) that created it. The 2-file is created in the directory
containing the SCCS file for the duration of get. The same protection
restrictions as those for the p-file apply for the z-file. The 2-file is

March 24, 1984 Page 5

GETS (CP) GETS (CP)

Name

gets — Gets a string from the standard input.

Syntax

gets | string |

Description
Gets can be used with csh(CP) to read a string from the standard
input. If etring is given it is used as a default value if an error
occurs. The resulting string (either string or as read from the stan-

dard ‘input) is written to the standard output. If no etrng is given
and an error occurs, gets exits with exit status 1.

See Also
line{C), csh(CP)

March 24, 1984 Page 1

HDR (CP) HDR (CP)

— d Causes the data relocation records to be printed out.
— t Causes the text relocation records to be printed out.
— r Causes both text and data relocation to be printed.

— p Causes seek positions to be printed out as defined by macros in
the include file, <a.out.h>.

— 8 Prints the symbol table.

— S Prints the file segment table with a header. (Only applicable to
x.out segmented executable files.)

See Also
a.out(F), nm(CP)

March 24, 1984 : - Page 2

LD(CP) LD(CP)

Name

Id — link editor
Syntax

d [option | file ...

Description

Ld combines several object programs into one, resolves external
references, and searches libraries. Ld combines the given object
files, producing an object module which can be either executed or
become the input for a further /4 run (in the latter case, the —r
option must be given to preserve the relocation records). The
output of Id is left by default in the file x.out. This file is made
exccutable only if no errors occurred.

The files given as arguments are concatenated in the order
specified. The default entry point of the output is the beginning of
the first routine in the first file. The C compiler, cc , calls Id
automatically unless given the —c option. The command line that
cc passes to Id is

1d Nlib/crt0.0 files cc—options —lc

If any argument is a library, it is searched exactly once at the point
it is encountered in the argument list. Only those routines defining
an unresolved external reference are loaded. If a routine from a
library references another routine in the library, and the library has
not been processed by ranlib(CP), the referenced routine must
appear after the referencing routine in the library. Thus the order
of programs within libraries may be important. ' If the first member
of a library is named ‘__.SYMDEF’, then it is understood to be a
dictionary for the library

as produced by ranlib; the dictionary is searched iteratively to
satisfy as many references as possible.

The symbols ‘_etext’, ‘_edata’ and ‘_end’ (‘etext’, ‘edata’ and ‘end’
in C) are reserved, and if referred to, are set to. the first location
above the program, the first location above initialized data, and the

first location above all data, respectively. It is erroneous to define
these symbols.

If no errors occur and there are no unresolved external references,
then short form relocation information is attached and the file is
made executable. This short form relocation information is
sufficient to allow the file to be used for another pass of Id , to
change the text and data base addresses. At the same time, the —n

May 10, 1984 Page 1

LD (CP)

-r

-nr

-0

t

May 10,

LD(CP)

symbol table; only enter external symbols. This option
saves some space in the output file.

Save local symbols except for those whose names begin
with ‘L’. This option is used by cc(CP) to discard inter—
nally generated labels -while retaining symbols local to
routines.

Generate (long form) relocation records in the output file
so that the output file can be the subject of ancther /d run.
This flag also prevents final definitions from being given
to common symbols and suppresses the ‘undefined sym—
bol’ diagnostics.

Force definition of common storage even if the —r flag is
present.

Arrange that when the output file is executed, the text
portion will be read—only and shared among all users
executing the file. This involves moving the data areas up
to the first possible page boundary following the end of
the text. A warning is issued if the current machine does
not support this option.

identical to —nn except that the text and data positions are
reversed.

Identical to whichever of —nn and —nr is the default for
the current machine.

When the output file is executed, the program text and
data areas are given separate address spaces. The only
difference between this option and —n is that with —1i the
data may start at a boundary unrelated to the position of
the text. A warning is issued if the current machine does
not support this option.

The name argument after —o is used as the name of the /d
output file, instead of x.out.

The following argument is taken to be the name of the
entry point of the loaded program. The base of the text
segment is the default.

The next argument is a decimal number that sets the size
of the data segment.

The next argument is taken to be a hexadecimal number
that sets the pagesize, or rounding size, for use with the
—n option. With —i, it specifies the base of the data

1984 Page 3

LEX(CP) LEX(CP)

Name

lex - Generates programs for lexical analysis.

Syntax

lex [- ctvn] [file] ...

Description
Lez generates programs to be used in simple lexical analysis of text.

The input files (standard input default) contain strings and expres-
sions to be searched for, and C text to be executed when strings are
found.

A file lex.yy.c is generated which, when loaded with the library,
copies the input to the output except when a string specified in the
file is found; then the corresponding program text is executed. The
actual string matched is left in yytezt, an external character array.
Matching is done in order of the strings in the file. The strings may
contain square brackets to indicate character classes, as in [abx— 2]
to indicate a, b, x, y, and z; and the operators ¢, 4, and ! mean
respectively any nonnegative number of, any positive number of,
and either zero or one occurrences of, the previous character or
character class. The character . is the class of all ASCII characters
except newline. Parentheses for grouping and vertical bar for alter-
nation are also supported. The notation r{d,e} in a rule indicates
between 4 and e instances of regular expression r. It has higher pre-
cedence than | but lower than *, ?, +, and concatenation. The
character * at the beginning of an expression permits a successful
match only immediately after a newline, and the character $§ at the
end of an expression requires a trailing newline. The character / in
an expression indicates trailing context; only the part of the expres-
sion up to the slash is returned in gytezt, but the remainder of the
expression must follow in the input stream. An operator character
may be used as an ordinary symbol if it is within ® symbols or pre-
ceded by \. Thus [a~ zA— Z]+ matches a string of letters.

Three subroutines defined as macros are expected: input() to read a
character; unput(c) to replace a character read; and output(c) to
place an output character. They are defined in terms of the standard
streams, but you can override them. The program generated is
named yylex(), and the library contains a main() which calls it. The
action REJECT on the right side of the rule causes this match to be
rejected and the next suitable match executed; the function
yymore() accumulates additional characters into the same yytezt; and
the function yyless(p) pushes back the portion of the string matched
beginning at p, which should be between yytezt and gytezt+ yleng.
The macros tnput and output use files yyin and yyout to read from

March 26, 1984 Page 1

LEX(CP) LEX(CP)

an

number of transitions is » (3000)
The use of one or more of the above automatically implies the — v
option, unless the — n option is used.
See Also

yacc{CP)
Xenix Software Development Guide

March 26, 1984 Page 3

LINT (CP) LINT(CP)

The following arguments alter lint’s behavior:

— n Does not check compatibility against either the standard or the
portable lint library.

— p Attempts to check portability to other dialects of C.

— llibname ‘
Checks functions definitions in the specified lint library. For
example, — Im causes the library llibm.in to be checked.

The - D, - U, and - I options of cc(CP) are also recognized as
separate arguments.

Certain conventional comments in the C source will change the
behavior of lint:

/*NOTREACHED*/
At appropriate points stops comments about unreachable
code.

J*VARARGSn*/
Suppresses the usual checking for variable numbers of argu-
ments in the following function declaration. The data types
of the first n arguments are checked; a missing » is taken to
be 0.

/*ARGSUSED*/
Turns on the — v option for the next function.

J*LINTLIBRARY*/
Shuts off complaints about unused functions in this file.

Lint produces its first output on a per source file basis. Complaints
regarding included files are collected and printed after all source files
have been processed. Finally, information gathered from all input
files is collected and checked for consistency. At this poin, if it is
not clear whether a complaint stems from a given source file or from
one of its included files, the source filename will be printed followed
by a question mark.

Files
Just/lib/lint[12] Program files
Jusr/lib/llibe.In, Just/lib/llibport.In, fust/lib/llibm.In,

Just/lib/llibdbm.In, fusr/lib/llibtermlib.ln
Standard lint libraries (binary format)

March 24, 1984 Page 2

LORDER (CP) LORDER (CP)

Name

lorder - Finds ordering relation for an object library.

Syntax
lorder file ...

Description
Lorder creates an ordered listing of object filenames, showing which
files depend on variables declared in other files. The file is one or
more object or library archive files (see ar(CP)}. The standard out-
put is a list of pairs of object filenames. The first file of the pair
refers to external identifiers defined in the second. The output may
be processed by teort(CP) to find an ordering of a library suitable for
one-pass access by ld{ CP). .

Example
The following command builds a new library from existing .o files:

ar cr library ‘lorder *.0 |tsort®

Files

*symref, *symdefl Texﬁp’ files

See Also
ar(CP), 1d(CP), tsort(CP)

Notes
Object files whose names do not end with .0, even when contained

in library archives, are overlooked. Their global symbols and refer-
ences are attributed to some other file.

March 24, 1984 » Page 1

.

M4 (CP) ' ' M4 (CP)

Macro Calls

Macro calls have the form:
name(argl,arg2, ..., argn)

The (must immediately follow the name of the macro. If a defined
macro name is not followed by a (, it is deemed to have no argu-
ments. Leading unquoted blanks, tabs, and mewlines are ignored
while collecting arguments. Potential macro names consist of alpha-
betic letters, digits, and underscore _, where the first character is not
a digit.

"Left and right single quotation marks are used to quote strings. The

value of a quoted string is the string stripped of the quotation marks.

When a macro name is recognized, its arguments are collected by
searching for a matching right parenthesis. Macro evaluation
proceeds normally during the collection of the arguments, and any
commas or right parentheses which happen to turn up within the
value of a nested call are as effective as those in the original input
text. After argument collection, the value of the macro is pushed
back onto the input stream and rescanned.

M4 makes available the following built-in macros. They may be
redefined, but once this is done the original meaning is lost. Their
values are null unless otherwise stated.

define The second argument is installed as the value of the
macro whose name is the first argument. Each
occurrence of $n in the replacement text, where nis a
digit, is replaced by the n-th argument. ArgumentO is
the name of the macro; missing arguments are replaced
by the null string; $# is replaced by the number of
arguments; $* is replaced by a list of all the arguments
separated by commas; $@ is like $*, but each argument
is quoted (with the current quotation marks).

undefine Removes the definition of the macro named in its argu-

ment.
defn Returns the quoted definition of its argument(s). It
useful for renaming macros, especially built-ins.
pushdef Like define, but saves any previous definition.
popdef Removes current definition of its a.rgument(s) expos-

ing the previous one if any.

ifdef If the first argument is defined, the value is the second

‘ argument, otherwise the third. If there is no third
argument, the value is null. The word XENIX is
predefined in M{.

March 24, 1984 : Page 2°

My (CP)

len

index

substr

translit

include

sinclude |

sysemd

sysval

maketemp

m4exit

m4wrap

errprint

dumpdef

traceon

traceoff

March 24, 1984

Mj (CP)

radix for the result; the default is 10. The third argu-
ment may be used to specify the minimum number of
digits in the result.

Returns the number of characters in its argument.

Returns the position in its first argument where the
second argument begins (zero origin), or - 1 if the
second argument does not occur.

Returns a substring of its first argument. The second
argument is a zero origin number selecting the first
character; the third argument indicates the length of
the substring. A missing third argument is taken to be
large enough to extend to the end of the first string.

Transliterates the characters in its first argument from
the set given by the second argument to the set given
by the third. No abbreviations are permitted.

Returns the contents of the file named in the argu-
ment.

Identical to include, except that it says nothing if the
file is inaccessible.

Executes the XENIX command given in the first argu-
ment. No value is returned.

Is the return code from the last call to syecmd.

Fills in a string of XXXXX in its argument with the
current process ID.

Causes immediate exit from m{. Argument 1, if given,
is the exit code; the defaultis 0.

Arguhent 1 will be pushed back at final EOF; example:
m4wrap(‘cleanup() 9

Prints its argument on the diagnostic output file.

Prints current names and definitions, for the named
items, or for all if no arguments are given.

With no arguments, turns on tracing for all macros
(including built-ins). Otherwise, turns on tracing for
named macros.

Turns off trace globally and for any macros specified.

Macros specifically traced by traceon can be untraced
only by specific calls to traceoff.

Page 4

MAKE (CP) . MAKE (CP)

-q Question. The make command returns a zero or
nonzero status code depending on whether the target
file is or is not up-to-date.

DEFAULT If a file must be made but there are no explicit com-
mands or relevant built-in rules, the commands associ-
ated with the name .DEFAULT are used if it exists.

PRECIOUS Dependents of this target will not be removed when
quit or interrupt are hit.

SILENT Same effect as the — s option.
.IGNORE Same effect as the — i option.

Make executes commands in makefile to update one or more target
names. Name is typically a program. If no - f option is present,
makefile, Makefile, s.makefile, and s.Makefile are tried in order.
If makefile is — , the standard input is taken. More than one — f
makefile argument pair may appear.

Make updates a target only if it depends on files that are newer than
the target. All prerequisite files of a target are added recursively to
the list of targets. Missing files are deemed to be out of date.

Makefile contains a sequence of entries that specify dependencies.
The first line of an entry is a blank-separated, nonnull list of targets,
then a :, then a (possibly null) list of prerequisite files or dependen-
cies. Text following a ; and all following lines that begin with a tab
are shell commands to be executed to update the target. The first
line that does not begin with a tab or # begins a new dependency or
macro definition. Shell commands may be continued across lines
with the <backslash> <newline> sequence. (#) and newline sur-
round comments.

The following makefile says that pgm depends on two files a.o and
b.o, and that they in turn depend on their corresponding source files
(a.c and b.c) and a common file incl.h:

pgm: a.0 b.o
cc 2.0 b.o - o pgm
a.0: incl.h a.c

cC - ¢ a.c
b.o: incl.h b.c
cc - ¢ b.c

Command lines are executed one at a time, each by its own shell. A
line is printed when it is executed unless the — s option is present,
or the entry .SILENT: is in makefile, or unless the first character of
the command is @. The — n option specifies printing without execu-
tion; however, if the command line has the string $(MAKE) in i, the

March 24, 1984 Page 2

MAKE (CP) MAKE (CP)

subst2. Strings (for the purposes of this type of substitution) are
delimited by blanks, tabs, newline characters, and beginnings of
lines. An example of the use of the substitute sequence is shown
under Librares.

Internal Macros

There are five internally maintained macros which are useful for
writing rules for building targets:

$* The macro $* stands for the filename part of the current
dependent with the suffix deleted. It is evaluated only for
inference rules.

$8 The $@ macro stands for the full target name of the current
target. It is evaluated only for explicitly named dependencies.

$< The $< macro is only evaluated for inference rules or the
.DEFAULT rule. It is the module which is out of date with
respect to the target (i.e., the ‘“‘manufactured’’ dependent
filename). Thus, in the .c.o rule, the $< macro would evalu-
ate to the .c file. An example for making optimized .o files
from .c files is:

.€.0
cc-c- 0 $*¢c

or:

.c.0:
cc-c¢c-0 $<

$? The $? macro is evaluated when explicit rules from the
makefile are evaluated. It is the list of prerequisites that are
out of date with respect to the target; essentially, those
modules which must be rebuilt.

$9% The $% macro is only evaluated when the target is an archive
library member of the form lib{file.o). In this case, $@ evalu-
ates to lib and $%%evaluates to the library member, file.o.

Four of the five macros can have alternative forms.- When an upper
case D or F is appended to any of the four macros the meaning is
changed to ‘‘directory part’” for D and ‘‘file part’” for F. Thus,
$(@ D) refers to the directory part of the string $@. If there is no
directory part ./ is generated. The only macro excluded from this
alternative form is $?.

Suffizes

Certain names (for instance, those ending with .0) have default

March 24, 1984 Page 4

MAKE (CP) MAKE (CP)

This is because make has a set of internal rules for building files.
The user may add rules to this list by simply putting them in the
makefile.

Certain macros are used by the default inference rules to permit the
inclusion of optional matter in any resuiting commands. For exam-
ple, CFLAGS, LFLAGS, and YFLAGS are used for compiler options to
¢¢(CP), lez(CP), and yaec(CP) respectively. Again, the previous
method for examining the current rules is recommended.

The inference of prerequisites can be controlled. The rule to create
a file with suffix .0 from a file with suffix .c is specified as an entry
with .c.0: as the target and no dependents. Shell commands associ-
ated with the target define the rule for making a .o file from 2 .c file.
Any target that has no slashes in it and starts with a dot is identified
as a rule and not as a true target.

Libraries

If a target or dependency name contains parentheses, it is assumed
to be an archive library, the string within parentheses referring to a
member within the library. Thus lib{file.o) and $(LIB)(file.o) both
refer to an archive library which contains file.o. (This assumes the
LIB macro has been previously defined) The expression
$(LIB)(filel.o file2.0) is not legal. Rules pertaining to archive
libraries have the form .XX.a where the XX is the suffix from which
the archive member is to be made. An unfortunate byproduct of the
current implementation requires the XX to be different from the
suffix of the archive member. Thus, one cannot have lib{file.o)
depend upon file.o explicitly. The most common use of the archive
interface follows. Here, we assume the source files are all C type
source:

lib: lib(filel.0) lib(file2.0) lib(file3.0)
@echo lib is now up to date
.c.a
$(cC) - ¢ $(CFLAGS) $<
ar rv $@ $*0
m -f $%0

In fact, the .c.a rule listed above is built into make and is unneces-
sary in this example. A more interesting, but more limited example
of an archive library maintenance construction follows:

lib: lib(filel.0) lib(file2.0) lib(file3.0)
$(CC) - ¢ $(CFLAGS) $(?:.0=.c)
ar rv lib $?
rm $? @echo lib is now up to date
.c.ai

Here the substitution mode of the macro expansions is used. The
$? list is defined to be the set of object filenames (inside lib) whose

March 24, 1984 - Page 8

MKSTR (CP) MKSTR (CP)

Name

mkstr - Creates an error message file from C source.

Syntax

mkstr [~ | messagefile prefix file ...

Description

MkEstr is used to create files of error messages. Its use can make pro-
grams with large numbers of error diagnostics much smaller, and
reduce system overhead in running the program as the error mes-
sages do not have to be constantly swapped in and out.

Mkstr will process each specified file, placing a massaged version of
the input file in a file whose name consists of the specified prefiz and
the original name. The optional dash (-) causes the error messages
to be placed at the end of the specified message file for recompiling
.part of a large mkstred program.

A typical mketr command line is
mkstr pistrings xx *.c

This command causes all the error messages from the C source files
in the current directory to be placed in the file ptstrings and processed
copies of the source for these files to be placed in files whose names
are prefixed with zz.

To process the error messages in the source to the message file,
mkstr keys on the string ‘error(” in the input stream. Each time it
occurs, the C string starting at the ‘™ is placed in the message file
followed by a null character and a newline character; the null charac-
ter terminates the message so it can be easily used when retrieved,
the newline character makes it possible to sensibly cat the error mes-
sage file to see its contents. The massaged copy of the input file
then contains a lseck pointer into the file which can be used to
retrieve the message. For example, the command changes

error("Error on reading”, a2, a3, a4);
into

error(m, a2, a3, a4);
where m is the seek position of the string in the resulting error mes-
sage file. The programmer must create a routine error which opens

the message file, reads the string, and prints it out. The following
example illustrates such a routine.

March 24, 1984 Page 1

NM(CP) M (CP)

Name

nm — Prints name list.
Syntax

nm | —gnoOprucv || file ... |
Description

nm prints the pame list (symbol table) of each object file in the
argument list. If an argument is an archive, a listing for each
object file in the archive will be produced. If no file is given, the
symbols in x.out are listed. '

Each symbol name is preceded by its value in hexadecimal (blanks
if undefined) and one of the letters U (undefined), A (absolute), T
(text segment symbo]), D (data segment symbol), B (bss segment
symbol), or C (common symbol). If the symbol is local (non—
external) the type letter is in lowercase. The output is sorted
alphabetically.

Options are:
-g Print only global (external) symbols.
-n Sort numerically rather than alphabetically.

-0 Prepend file or archive element name to each output line
rather than only once.

-0 Print symbol values in octal.

-p Don'’t sort; print in symbol—table order.

-r Sort in reverse order.

-u Print only undefined symbols.

-C Print only C program symbols (symbols which begin with
‘') as they appeared in the C program.

-V Also describe the object file and symbol table format.

Files
x.out Default input file

See Also
ar(CP), ar(F), x.out(F)

May 10, 1984 Page 1

PRS (CP) PRS (CP)

Nzame

prs - Prints an SCCS file.

Syntax

prs [- dfdataspec]] [~ r[SID]] [~ e] [~ 1] [~ a] files

Description

Pre prints, on the standard output, all or part of an SCCS file (see
sccefile(F)) in a user supplied format. If a directory is named, pre
behaves as though each file in the directory were specified as a
named file, except that nonSCCS files (last component of the path-
name does not begin with 8.), and unreadable files are silently
ignored. If a name of ~ is given, the standard input is read; each
line of the standard input is taken to be the name of an SCCS file or
directory to be processed; nonSCCS files and unreadable files are
silently ignored.

Arguments to prs, which may appear in any order, consist of
options, and filenames.)

All the described options apply independently to each named file:

— d[dataspec] Used to specify the output data specification. The
dataspec is a string consisting of SCCS file data key-
vords (see Dats Keywords) interspersed with optional
user-supplied text.

- r{sID] Used to specify the SCCS IDentification (SID) string
of a delta for which information is desired. If no
SID is specified, the SID of the most recently created
delta is assumed.

-e Requests information for all deltas created earlier
than and including the delta designated via the — r
option.

-1 Requests information for all deltas created later than
and including the delta designated via the —r
option.

-a Requests printing of information for both removed,

i.e., delta type = R, (see rmdel(CP)) and existing,
ie., delta type = D, deltas. If the — a option is not
specified, information for existing deltas only is pro-
vided. '

March 24, 1984 - Page'1

PRS (CP)

PRS (CP)

TABLE 1. SCCS Files Data Keywords

KeywordData Item

:Dt:
:DL:
:Li:
:Ld:
:Lu:
:DT:
HH
:R:
:L:
:B:
:S:
:D:
:Dy:
:Dm:
:Dd:
: T
+Th:
:Tm:
:Ts:
:P:
sDS:
:DP:
DIt
:Dn:
:Dx:
:Dg:
:MR:
sUN:
:FL:
BE
:MF:
:MP:
:KF:
:BF:
2k
:LK:
:Q:
M:
:FB:
:CB:
:Ds:
:ND:
:FD:
:BD:
:GB:
W:
tA:

:Z:
:F:
+PN:

Delta information

Delta line statistics

Lines inserted by Delta
Lines deleted by Delta
Lines unchanged by Delta
Delta type

SCCS ID string (SID)
Release number

Level number

Branch number

Sequence number

Date Delta created

Year Delta created

Montb Delta created

Day Delta created

Time Delta created

Hour Delta created
Mincttes Delta created
Seconds Delta created
Programmer who created Delta
Delta sequence number
Predecessor Delta seq-no.
Seq-no. of deltas incl., excl., ignored
Deltas included (seq #)
Deltzs excluded (seq #)
Deltas ignored (seq #)
MR numbers for delta
Comments for delta.
User names

Flag list

Module type flag

MR validation flag

MR validation pgm name
Keyword error/waming flag
Branch flag

- Joint edit flag

Locked releases

User defined keyword
Module name

Floor boundary

Ceiling boundary

Default SID

Null delta flag

File descriptive text
Body

Gotten body

A form of whaf{C) string
A form of wha{{C) string
what{C) string delimiter
SCCS filename

SCCS file pathname

¢ :Dt: = :DT: :I: :D: :T: :P: :DS: :DP:

March 24, 1984

Fde Section
Delta Table

¥ ¥ W ¥ ¥ ¥ W W W ®R N Y S Y YW S Y Y Y SN IS VN

User Names
Flags

¥ ¥ ¥ ¥ ¥ S MW I oW

Comments
Body
»

N/A
N/A
N/A
N/A
N/A

Value Forma

See belows
sLiz/:Ld:/:Lu:
nennn
nnnon
nnnnn
DorR
:R::L:.:B:.:S:
1113
annn
nnnn
nonn
:Dy:/:Dm:/:Dd:
nn
nn

nn
+Th:::Tm:::Ts:
nn
nn
nn
logname
noRn
neDD
:Dn:/:Dx:/:Dg:
:DS: :DS:...
:DS: :DS:...
:DS: :DS:...
text
text
text
text
text
yes or no
text
yes or no
yes or no
yes or no
:R:...
text
text
:R:
:R:
BY
yes or no
text
text
text
:ZeM:\tI:
:Z:Y: M 21 Z:
Q@(#)
text
text

Page 3

nnrtnnIlZunoununnnnnnlZZZuunnnunntnnnnnnNRNNNN NN

¢

RANLIB (CP) RANLIB(CP)

Name

~ ranlib — Converts archives to random libraries.

Syntax
ranlib archive ...

Description
Ranlib converts each archive to a form that can be loaded more
rapidly by the loader, by adding a table of contents named
—SYMDEF to the beginning of the archive. It uses ar(CP) to
reconstruct the archive, so sufficient temporary file space must be
available in the file system containing the current directory.

See Also
1d(CP), ar(CP), copy(C), settime(C)

Notes
Because generation of a library by ar and rapdomization by ranlib
are separate, phase errors are possible. The loader /d warns when
the modification date of a library is more recent than the creation
of its dictionary; but this means you get the warning even if you
only copy the Library. On XENIX 68K use of ranlib is optional.

May 10, 1984 _ Page 1

RATFOR (CP) RATFOR (CP)

Include:
include filename

The option — h causes quoted strings to be turned into 27H con-
structs. — C copies comments to the output, and attempts to format
it neatly. Normally, continuation lines are marked with an & in
column 1; the option — 6x makes the continuation character x and
places it in column 6.

March 26, 1984 Page 2

RMDEL (CP) RMDEL (CP)

Name

rmdel - Removes a delta from an SCCS file.

Syntax

rmdel — rSID files

Description

Rmdel removes the delta specified by the SID from each named SCCS
file. The delta to be removed must be the newest (most recent)
delta in its branch in the delta chain of each named SCCS file. In
addition, the SID specified must not be that of a vérsion being edited
for the purpose of making a delta. That is, if a p-file exists for the
named SCCS file, the SID specified must not appear in any entry of
the p-file(see get{CP)).

If a directory is named, rmdel behaves as though each file in the
directory were specified as a named file, except that nonSCCS files
(last component of the pathname does not begin with s.) and
unreadable files are silently ignored. If a name of — is given, the
standard input is read; each line of the standard input is taken to be
the name of an SCCS file to be processed; nonSCCS files and unread-
able files are silently ignored.
Files
x-file See delta(CP)

z-file See delta(CP)

See Also
‘delta(CP), get{ CP), help(CP), prs(CP), scesfile(F)

Diagnostics

Use help(CP) for explanations.

March 24, 1984 " Page 1

SCCSDIFF (CP) SCCSDIFF (CP)

Name

scesdiff - Compares two versions of an SCCS file.

Synt,a.x‘

scesdiff — rSID1 - rSID2 [~ p| |- sn] files

Description

Secediff compares two versions of an SCCS file and generates the

differences between the two versions. Any number of SCCS files

may be specified, but arguments apply to all files.

- rSID? SID1 and SID? specify the deltas of an SCCS file that are
to be compared. Versions are passed to bdiff{C) in the
order given.

-p Pipe output for each file through pr(C]).

~sn n is the file segment size that bdiff will pass to diff{ C).

This is useful when diff fails due to a high system load.

Files

See Also
bdiff (C), get(CP), help(CP), pr{C)

Diagnostics
file: No differences If the two versions are the same.

Use help(CP) for explanations.

March 24, 1984 Page 1

SPLINE (CP) SPLINE (CP)

Name

spline - Interpolates smooth curve.

Syntax

spline | option] ...

Description

Spline takes pairs of numbers from the standard input as abcissas and

ordinates of a function. It produces a similar set, which is approxi-

mately equally spaced and includes the input set, on the standard
output. The cubic spline output has two continuous derivatives, and
enough points to look smooth when plotted.

The following options are recognized, each as a separate argument.

—~ a Supplies abscissas automatically (they are missing from the
input); spacing is given by the next argument, or is assumed to
be 1if next argument is not a number.

— k The constant k used in the boundary value computation
n ’ n 14 ‘

Yo =ky1 yees Yn =kyn—l
is set by the next argument. By default ¥ = 0.

— n Spaces output points so that approximately n intervals occur
between the lower and upper z limits. (Default n == 100.)

— p Makes output periodic, i.e. matches derivatives at ends. First
and last input values should normally agree.

— x Next 1 (or 2) arguments are lower (and upper) z limits. Nor-
mally these limits are calculated from the data. Automatic
abcissas start at lower limit (default 0).
Diagnostics
When data is not strictly monotone in z, spline reproduces the input
without interpolating extra points.
Notes

A limit of 1000 input points is silently enforced.

March 26, 1984 Page 1

STRIP (CP) STRIP (CP)

Name

strip - Removes symbols and relocation bits.

Syntax

strip name ...

Description
Strip removes the symbol table and relocation bits ordinarily attached
to the output of the assembler and link editor. This is useful for
saving space after a program has been debugged.
The effect of strip is the same as use of the — s option of ld.
If name is an archive file, stnp will remove the local symbols from
any a.out format files it finds in the archive. Certain libraries, such
as those residing in /lib, have no need for local symbols. By delet-
ing them, the size of the archive is decreased and link editing perfor-
mance is increased. '

Files

[tmp/stm* Temporary file

See Also
1d(CP)

March 26, 1984 Page 1

TSORT(CP) TSORT (CP)

Name

tsort - Sorts a file topologically.

Syntax

tsort | file |

Description

Teort produces on the standard output a totally ordered list of items
consistent with a partial ordering of items mentioned in the input
file. 1f no file is specified, the standard input is understood.

The input consists of pairs of items (nonempty strings) separated by

blanks. Pairs of different items indicate ordering. Pairs of ldentxca.l
items indicate presence, but not ordering.

See Also
lorder(CP)

Diagnostics
Odd data: There is an odd number of fields in the input file.

Notes

The eort algorithm is quadratic, which can be slow if you have a large
input list.

March 24, 1984 Page 1

VAL (CP) ’ VAL (CP)

Name

val - Validates an SCCS file.

Syntax
val -
val - s] [~ rSID] [~ mname] [- ytype] files

Description

Val determines if the specified file is an SCCS file meeting the
characteristics specified by the optional argument list. Arguments to
val may appear in any order. The arguments consist of options,
which begin with a — |, and named files.

Val has a special argument, — , which causes reading of the standard
input until an end-of-file condition is detected. Each line read is
independently processed as if it were a command line argument list.

Val generates diagnostic messages on the standard output for each
command line and file processed and also returns a single 8-bit code
upon exit as described below.

The options are defined as follows. The effects of any option apply
independently to each named file on the command line:

-8 The presence of this argument silences the diagnos-
tic message normally generated on the standard out-
put for any error that is detected while processing
each named file on a given command line.

- rSID The argument value SID (SCCS [Dentification
String) is an SCCS delta number. A check is made
to detetmine if the SID is ambiguous (e. g., rl is
ambiguous because it physically does not exist but
implies 1.1, 1.2, etc. which may exist) or invalid (e.
g, rl.0 or r1.1.0 are invalid because neither case
can exist as a valid delta number). If the SID is
valid and not ambiguous, a check is made to deter-
mine if it actually exists.

- mname The argument value name is compared with the
SCCS %M % keyword in file.

— ytype The argument value type is compared with the SCCS
%Y % keyword in file. .

March 24, 1984 Page 1

XREF (CP) XREF (CP)

Name

xref - Cross-references C programs.

Syntax
xref [file ... |

Description

Xref reads the named files or the standard input if no file is specified
and prints a cross reference consisting of lines of the form

identifier filename line numbers ...

Function definition is indicated by a plus sign (+) preceding the line
number.

See Also
cref(CP)

March 24, 1984 Page 1

XSTR (CP) XSTR (CP)

¢c - E name.c |xstr - ¢ -
cc - ¢ Xx.c
mv X.0 name.o
Xstr does not touch the file strings unless new items are added, thus
make can avoid remaking zs.0 unless truly necessary.
Files
strings Data base of strings
x.c Massaged C source

xs.¢ C source for definition of array “‘xstr”

Jtmp/xs* Temp file when ‘‘xstr name’’ doesn’t touch stringe
See Also
mkstr(CP)

Credit
This utility was developed at the University of California at Berkeley
. and is used with permission.
Notes
If a string is a suffix of another string in the data base, but the

shorter string is seen first by zstr , both strings will be placed in the
data base when just placing the longer one there will do.

March 24, 1984 Page 2

YACC(CP) YACC (CP)

Diagnostics
The number of reduce-reduce and shift-reduce conflicts is reported
on the standard output; a more detailed report is found in the
y.output file. Similarly, if some rules are not reachable from the
start symbol, this is also reported.

Notes

Because filenames are fixed, at most one yacc process can be active
in a given directory at a time.

March 26, 1984 Page 2

CONTENTS

intro
a64l,164a

abort
abs
access
acct

alarm

assert

atof, atoi, atol
bessel, jO,j1, jn,
y0.yl,yn
bsearch

chdir
chmod
chown

chroot

chsize

close

conv, toupper,
tolower, toascii
creat

creatsem

crypt, setkey, encrypt

ctermid

ctime, localtime,
gmtime, asctime,
tzset

ctype, isalpha,
isupper, islower,
~isdigit, isxdigit,
isalnum, isspace,
ispunct, isprint,
isgraph, iscntrl,
isascii

curses

cuserid

dbm, dbminit, fetch,

store, delete,
firstkey, nextkey

SystemServices(S)

Introduces system services and
error numbers
Convertsbetweenlong integerand
base 64 ASCLL

GeneratesanlOT fault
Returnsaninteger absolute value
Determinesaccessibility ofafile
Enablesordisablesprocess
accounting

Setsaprocess’ alanmclock
Helps verify validity of programs
Converts ASCli tonumbers

Performs Bessel functions
Performsabinary search
Changesthe working directory
Changesmodeof a file
Changesthe ownerand group
ofafile
Changestherootdirectory
Changesthe size of afile
Closesafiledescriptor

Translatescharacters
Createsanew file orrewritesan
existingone
Createsaninstanceofa

binary semaphore

Performs encryption functions
Generatesa filename for
aterminal

Convertsdate andtimeto ASCL

Classifiescharacters
Performs screenand cursor
functions
Readsdefaultentries

Performsdatabase functions

1-i

i3tol, ltol3

link
lock
locking

logname
Isearch

Iseck

malloc, free,
realloc, calloc
mknod

mktemp
monitor
mount
nap

nice
nlist
open
opensem
pause

perror, sys.errlist,

SYS_IeIT, ermo

pipe

popen, pclose

printf, fprintf, sprintf Formats output
profil

ptrace

putc, putchar,

fputc, putw

putpwent
puts, fputs
gsort
rand, srand
rdchk

read
regex, regcmp

regexp
sbrk

scanf, fscanf, sscanf
sdenter, sdleave

sdget

Convertsbetween3—byteintegersand
longintegers
Linksafiletoanexistingfile
Locksaprocess in primary memory
Locksafileregion for

readingor writing

Findsloginname ofuser
Performslinear searchandupdate
Movesread/write file pointer

Allocatesmainmemory
Makesadirectory, oraspecial
orordinary file

Makesaunique filename
Preparesexecution profile
Mountsafile system }
Suspends execution fora short
interval

Changespriority ofaprocess
Getsentries from name list
Opens file forreading or writing
Opens asemaphore
Suspendsaprocessuntilasignal
occurs

Sends system errormessages
Createsaninterprocesschannel
Initiates1/Otoor froma process

Createsanexecutiontime profile
Tracesaprocess

Putsacharacterorwordona
stream

Writesafile password entry
Putsastringona stream
Performsasort

Generates arandom number
Checkstoseeifthereis
datatoberead

Readsfromafile

Compiles andexecutes regular
expressions

Performsregular expressioncompile
andmatch functions
Changesdatasegment space
allocation

Convertsand formats input
Synchronizesaccessto ashared
datasegment

Attachesand detachesa shared
datasegment

1-iii

wait

waitsem, nbwaitsem

write
xlist, fxlist

modificationtimes

Waits forachildprocessto
stoporterminate

Awaitsand checksaccessto
aresource goverenedby
asemaphore

Wiritestoafile

Getsname listentries from files

Index

Absolute value, integer abs
Absolute value, real floor
Accounting acct
acos function trig
Alarmclock alarm
asctime function ctime
asin function trig
atan function trig
atan2 function trig

atoi function atof
atol function atof
Binary search bsearch
brk function sbrk
cabs function hypot
calloc function malloc
ceil function floor
Characters, classification ctype
clearerr function ferror
Conversion, 3—byteintegersand longintegers 13tal
Conversion, byte swapping swab
Conversion, date andtime to ASCIl ctime
Conversion, integer andbase 64 ASCII a64l
Conversion, ASCIItonumbers. atof
Conversions, output ecvt
Conversions, realto mantissaandexponent frexp
Conversions, toASCl characters conv
cos function ' i
cosh function sinh
Database, functions dbm
dbminit function dbm
Default entries defopen
defread function defopen
delete function dbm
Devices, controls joctl
dup2 function dup
encrypt function crypt
Encryption crypt
endgrentfunction getgrent
endpwent function getpwent
Environment, value getenv
ermo variable perror
Emrormessages perror
Error numbers intro
execl function exec
execle function exec
execlpfunction exec

fputc function putc
fputs function puts
free function malloc
freopenfunction fopen
fscanffunction scanf
fstatfunction stat
fiell function fseek
ftime function time
fwrite function fread
fxlist function xlist
gevtfunction ecvt
getchar function getc
getegid getuid
geteuid getuid
getgid getuid
getgrgid function getgrent
getgrnam function getgrent
getpgrp function getpid
getppid function getpid
getpwnam function getpwent
getpwuid function getpwent
getw function getc
gmtime function ctime
Group, file entries getgrent
gsignal function ssignal
isalnum function ctype
isalpha function ctype
isascii function ctype
isatty function ttyname
iscntrl function ctype
isdigit function ctype
isgraph function ctype
islower function ctype
isprint function ctype
ispunct function ctype
isspacefunction ctype
isupper function ctype
isxdigit function ctype
jOfunction bessel
j1 function bessel
jnfunction bessel
164a function 264l
Idexp function frexp
Library names intro
Library, screenandcursor functions curses
Library, standard input andoutput stdio
Linearsearch Isearch
localtime function ctime

putchar function putc
putw function putc
Random numbers rand
realloc function malloc
regemp function regex
Regularexpressions regex
rewind function fseek
Rootdirectory chroot
sdfree function sdget
sdleave function sdenter
sdwaitv function sdgetv
Semaphore, creation creatsem
Semaphore, opening opensem
Semaphore, signaling sigsem
Semaphore, waiting forresource waitsem
setgid function setuid
setgrent function getgrent
setkey function crypt
setpwent function getpwent
Shared data, attaching and detaching sdget
Shared data, entering and leaving sdenter
Shared data, sychronized access sdgetv
Signal, processing signal
Signal, software ssignal
sinfunction trig
Sorting qsort
sprintf function _printf
sqrtfunction exp
srand function rand
sscanf function scanf
store function dbm
strcat function string
strchrfunction string
stremp function string
strepy function string
strespn function string
strdup function string
Stream, buffered input and output fread
Stream, buffers setbuf
Stream, character input getc
Stream, character output putc
Stream, closing and flushing fclose
Stream, formattedinput scanf
Stream, formatted output printf
Stream, opening fopen
Stream, repositioning fseek
Stream, returning characterto ungetc
Stream, string input gets

INTRO(S) INTRO(S)

Name

intro - Introduces system services, library routines and error
numbers.

Syntax
#include <errno.h>

Description

This section describes all system services. System services include
all routines or system calls that are available in the operating system
kernel. These routines are available to a C program automatically as
part of the standard library libc. Other routines are available in a
variety of libraries. On 8086/88 and 286 systems, versions for
Small, Middle, and Large mode! programs are provided (that is,
three of each library).

To use routines in a program that are not part of the standard library
libe, the appropriate library must be linked. This is done by specify-
ing — lname to the compiler or linker, where name is the name listed
below. For example — Im, and - ltermcap are specifications to the
linker to search the named libraries for routines to be linked to the
object module. The names of the available libraries are:

c The standard library containing all system call interfaces,
Standard 1/0 routines, and other general purpose services.

m The standard math library.

termcap Routines for accessing the termecap data base describing ter-
minal characteristics.

curses Screen and cursor manipulation routines.
dbm . Data base management routines.

Most services that are part of the operating system kernel have one
or more error returns. An error condition is indicated by an other-
wise impossible returned value. This is almost always ~ 1; the indi-
vidual descriptions specify the details. An error number is also
made available in the external variable ermo. Errne is not cleared
on successful calls, so it should be tested only after an error has
been indicated.

All of the possible error numbers are not listed in each system call
description because many errors are possible for most of the calls.
The following is a complete list of the error numbers and their
names as defined in <error.h>.

March 24, 1984 Page 1

INTRO(S) INTRO(S)

12 ENOMEM Not enough space

13

14

15

16

17

18

19

20

21

22

During an ezec, or ebrk, a program asks for more space than the
system is able to supply. This is not a temporary condition; the
maximum space size is a system parameter. The error may also
occur if the arrangement of text, data, and stack segments
requires too many segmentation registers, or if there is not
enough swap space during a fork.

EACCES Permission denied
An attempt was made to access a file in a way forbidden by the
protection system.

EFAULT Bad address
The system encountered a hardware fault in attempting to use
an argument of a system call.

ENOTBLK Block device required
A nonblock file was mentioned where a block device was
required, e.g., in mount.

EBUSY Device busy

An attempt to mount a device that was already mounted or an
attempt was made to dismount a device on which there is an
active file (open file, current directory, mounted-on file, active
text segment). It will also occur if an attempt is made to enable
accounting when it is already enabled.

EEXIST File exists

An existing file was mentioned in an inappropriate context, e.g.,
link.

EXDEV Cross-device link
A link to a file on another device was attempted.

ENODEV No such device
An attempt was made to apply an inappropriate system call to a
device; e.g., read a write-only device.

ENOTDIR Not a directory
A nondirectory was specified where a directory is required, for
example in a path prefix or as an argument to ckdir(S).

EISDIR Is a directory
An attempt to write on a directory.

EINVAL Invalid argument

Some invalid argument (e.g., dismounting 2 nonmounted dev-
ice; mentioning an undefined signal in eignal, or kil; reading or
writing a file for which leeek has generated a negative pointer).
Also set by the math functions described in the (S} entries of
this manual.

March 24, 1984 Page 3

INTRO(S) INTRO (S)

between processes vying for control of that region.

37 ENOTNAM Not a name file
A creatsem(S), opensem(S), waitsem(S), or sigeem(S) was issued
using an invalid semaphore identifier.

38 ENAVAIL Not available

An opensem(S), waitsem(S) or sigeem(S) was issued to a sema-
phore that has not been initialized by a call to creatsem(S). A
sigeem was issued to a semaphore out of sequence; i.e., before
the process has issued the corresponding waitsem to the sema-
phore. An nbwaiteem was issued to a semaphore guarding a
resource that is currently in use by another process. The sema-
phore on which a process was waiting has been left in an incon-
sistent state when the process controlling the semaphore exits
without relinquishing control properly; i.e., without issuing a
waistsem on the semaphore.

39 EISNAM A name file

A name file (semaphore, shared data, etc.) was specified when
not expected.

Definitions
Process ID
Each active process in the system is uniquely identified by a positive
integer called a process ID. The range of this ID is from 0 to 30,000.
Parent Process ID
A new process is created by a currently active process; see fork(S).
The parent process ID of a process is the process ID of its creator.
Procese Group ID
Each active process is a member of a process group that is identified
by a positive integer called the process group ID. This ID is the pro-
cess ID of the group leader. This grouping permits the signaling of
related processes; see kdl(S).
Tty Group ID
Each active process can be a member of a terminal group that is
identified by a positive integer called the tty group ID. This grouping

is used to terminate a group of related process upon termination of
one of the processes in the group; see ezst(S) and signal(S).

March 24, 1984 Page 5

-INTRO(S) INTRO ()

Pathname and Path Prefiz

A pathname is a null-terminated character string starting with an
optional slash (/), followed by zero or more directory names
separated by slashes, optionally followed by a filename. A filename
is a string of 1 to 14 characters other than the ASCII slash and null,
and a directory name is a string of 1 to 14 characters (other than the
ASCII slash and null) naming a directory.

If a pathname begins with a slash, the path search begins at the root
directory. Otherwise, the search begins from the current working
directory.

A slash by itself names the root directory.

Unless specifically stated otherwise, the null pathname is treated as if
it named a nonexistent file.

Directory

Directory entries are called links. By convention, a directory con-
tains at least two links, . and .., referred to as dot and dot-dot respec-
tively. Dot refers to the directory itself and dot-dot refers to its
parent directory.

Root Directory and Current Working Directory

Each process has associated with it a concept of a root directory and
a current working directory for the purpose of resolving pathname
searches. A process’ root directory need not be the root directory of
the root file system. See chroot(C) and chroot(S).

File Access Permissions

Read, write, and execute/search permissions on a file are granted to
a process if one or more of the following are true:

The process’ effective user ID is super-user.

The process’ effective user ID matches the user ID of the owner
of the file and the appropriate access bit of the ‘“owner’’ portion
(0700) of the file mode is set.

The process’ effective user ID does not match the user ID of the
owner of the file, and the process’ group ID matches the group
of the file and the appropriate access bit of the ‘‘group’’ portion
(070) of the file mode is set.

The process’ effective user ID does not match the user ID of the
owner of the file, and the process’ effective group ID does not

March 24, 1984 Page 7

A64L (S) A64L (S)

Name

ab4), 164a - Converts between long integer and base 64 ASCII.

Syntax

long a64! (s)
char *s;

char *164a (1)
long 1;

Description

These routines are used to maintain numbers stored in base 64
ASCIL. This is a notation by which long integers can be represented
by up to six characters; each character represents a ‘‘digit’’ in a radix
64 notation.

The characters used to represent ‘‘digits’’ are . for 0, / for 1, 0
through 9 for 2 through 11, A through Z for 12 through 37, and a
through z for 38 through 63.

A64l takes a pointer to a null-terminated base 64 representation and
returns a corresponding long value. L6§a takes a long argument and
returns a pointer to the corresponding base 64 representation.

Notes

The value returned by l64a is a pointer into a static buffer, the con-
tents of which are overwritten by each call.

March 24, 1984 Page 1

ABS (8) ABS(S)

Name

abs - Returns an integer absolute value.

Syntax
int abs (i)
int i;
Description

Abe returns the absolute value of its integer operand.

See Also
fabe in floor(S)

Notes

If the largest negative integer supported by the hardware is given,
the function returns it unchanged.

March 24, 1984 Page 1

ACCESS (8) ACCESS (8)

Return Value

If the requested access is permitted, a value of 0 is returned. Other-
wise, a value of — 1 is returned and errno is set to indicate the error.

See Also
chmod(S), stat(S)

Notes

The super-user (root) may access any file, regardless of permission
settings.

March 24, 1984 Page 2 '

ACCT(S) ACCT(S)

Path points to an illegal address. [EFAULT)]

Return Value

Upon successful completion, a value of 0 is returned. Otherwise, a
value of - 1 is returned and errno is set to indicate the error.

See Also

accton(C), acctcom(C), acct{F)

March 24, 1984 ~Page 2

ASSERT(S) ASSERT(S)

Name

assert — Helps verify validity of program.

Syntax
#include <assert.h>

assert (expression);

Description

This macro is useful for putting diagnostics into programs under
development. When it is executed, if ezpression is false, it prints

Assertion failed: file name, line nan

on the standard error file and exits. Name is the source filename
and nnn the source line number of the gesert statement.

Notes

To suppress calls to assert, use the option ‘‘~- DNDEBUG' when
compiling the program; see cc(CP)).

March 24, 1984 S Page 1

BESSEL (S) BESSEL (S)

Name

bessel, j0, j1, jn, ¥0, y1, yn - Performs Bessel functions.

Syntax
#include <math.h>

double jO (x)
double x;

double j1 (x)
double x;

double jn (n, x);
double x;

double y0 (x)
double x;

double y1 (x) '
double x;

. double yn (n, x)
int n;
double x;
Description
These functions calculate Bessel functions of the first and second
kinds for real arguments and integer orders.

Notes

Negative arguments cause y0, yI, and yn to return a huge negative
value.

March 24, 1984 Page 1

CHDIR (8) CHDIR (S)

Name

chdir - Changes the working directory.

Syntax

int chdir (path)
char *path;

Description
Path points to the pathname of a directory. Chdir causes the named
directory to become the current working directory, the starting point

for path searches for pathnames not beginning with /.

Chdir will fail and the current working directory will be unchanged if
one or more of the following are true:

A component of the pathname is not a directory. [ENOTDIR]
The named directory does not exist. [ENOENT)

Search permission is denied for any component of the path-
name. [EACCES]

Path points outside the process’ allocated address space.
[EFAULT] ,

Return Value

Upon successful completion, a value of 0 is returned. Otherwise, a
value of - 1 is returned and errno is set to indicate the error.

See Also
chroot(S)

March 24, 1984 Page 1

CHMOD (S) CHMOD (S)

Chmod will fail and the file mode will be unchanged if one or more
of the following are true:

A component of the path prefix is not a directory. [ENOTDIR]
The named file does not exist. [ENOENT]

Search permission is denied on a component of the path prefix.
[EACCES]

The effective user ID does not match the owner of the file and
the effective user ID is not super-user. |[EPERM]

The named file resides on a read-only file system. [EROFS]

Path points outside the process’ allocated” address space.
[EFAULT]

Return Value

Upon successful completion, a value of 0 is returned. Otherwise, a
value of - 1 is returned and ermo is set to indicate the error.

See Also

chown(S), mknod(S)

March 24, 1984 » Page 2

CHROOT(S) CHROOT(S)

0y

Name

chroot - Changes the root directory.

Syntax

int chroot (path)
char *path;

Description
Path points to a pathname naming a directory. Chkroot causes the
named directory to become the root directory, the starting point for
path searches for pathnames beginning with /.

To change the root directory, the effective user ID of the process
must be super-user.

The ‘*..”" entry in the root directory is interpreted to mean the root
directory itself. Thus, ‘‘..”’ cannot be used to access files outside the
root directory.

Chroot will fail and the root directory will remain unchanged if one
or more of the following are true:

Any component of the pathname is not a directory. [ENOTDIR]}
The named directory does not exist. |[ENOENT)
The effective user ID is not super-user. |EPERM]
Patk points outside the process’ allocated address space.
[EFAULT)
Return Value
Upon successful completion, a value of 0 is returned. Otherwise, a
value of - 1 is returned and errno is set to indicate the error.
See Also
chdir(S), chroot{C)

Match 24, 1984 Page 1

CLOSE (S) CLOSE (S)

Name

close ~ Closes a file descriptor.

Syntax
int close (fildes)
int fildes;
Description

Fildee is a file descriptor obtained from a creat, open, dup, fert, or
pipe system call. Close closes the file descriptor indicated by fildes.

Close will fail if fildes is not a valid open file descriptor. [EBADF]
Return Value
Upon successful completion, a value of 0 is returned. Otherwise, a

value of - 1 is returned and errno is set to indicate the error.

See Also
creat(S), dup(S), exec(S), fentl(S), open(S), pipe(S)

March 24, 1984 Page 1

CONV (S) , CONV (S)

Notes

Because _toupper and _tolower are implemented as macros, they
should not be used where unwanted side effects may occur. Remov-
ing the _toupper and _tolower macros with the gfundef directive
causes the corresponding library functions to be linked instead. This
allows any arguments to be used without worry about side effects.

March 24, 1984 Page 2

CREAT(S) CREAT(S)

The named file resides or would reside on a read-only file sys-
tem. |EROFS]

The file is a pure procedure (shared text) file that is being exe-
cuted. |[ETXTBSY)

The file exists and write permission is denied. [EACCES]
The named file is an existing directory. |EISDIR]
Twenty file descriptors are currently open. |[EMFILE]
Path points outside the process’ allocated address space.
[EFAULT]
Return Value
Upon successful completion, a nonnegative integ;r, namely the file

descriptor, is returned. Otherwise, a value of - 1 is returned and
errno is set to indicate the error.

See Also

close(S), dup(S), lseek(S), open(S), read(S), umask(S), write(S)

Notes

Open(9) is preferred to creat.

March 24, 1984 Page 2

CREATSEM (8S) ‘ CREATSEM (8)

Diagnostics

Creatsem returns the value - 1 if an error occurs. If the semaphore
named by sem_name is already open for use by other processes,
ermo is set to EEXIST. If the file specified exists but is not a sema-
phore type, errmo is set to ENOTNAM. If the semaphore has not
been initialized by a call to creatsem, errno is set to ENAVAIL.

Notes

After a creatsem you must do a weitsem to gain control of a given
resource. '

March 24, 1984 Page 2

“CRYPT(S) CRYPT(S)

Notes

The return value from crypt points to static data that is overwritten
by each call.

March 24, 1984 Page 2

CTIME (S) CTIME(S)

Name

ctime, localtime, gmtime, asctime, tzset - Converts date and time
to ASCIL

Syntax

char *ctime (clock)
long *clock;

#include <time.h>

struct tm *localtime (clock)
long *clock;

struct tm *gmtime (clock)
long *clock;

char *asctime (tm)
struct tm *tm;

tzset ()

extern long timezone;
extern int daylight;
extern char tzname;

Description

Ctime converts a time pointed to by clock (such as returned by
time(S)) into ASCII and returns a pointer to-a 26-character string in
the following form:

Sun Sep 16 01:03:52 1973\n\0

If necessary, fields in this string are padded with spaces to keep the
string a constant length.

Localtime and gmtime return pointers to structures containing the
time as a variety of individual quantities. These quantities give the
time on a 24-hour clock, day of month (1-31), month of year (0-
11), day of week (Sunday == 0), year (since 1900), day of year (0-
365), and a flag that is nonzero if daylight saving time is in effect.
Localtime corrects for the time zone and possible daylight savings
time. Gmtime converts directly to Greenwich time (GMT), which is
the time the XENIX system uses.

Asctime converts the times returned by localtime and gmtime to a
26-character ASCHI string and returns a pointer to this string.

March 24, 1984 Page 1

CTYPE(S)

Name

CTYPE(S)

ctype, isalpha, isupper, islower, isdigit, isxdigit, isalnum, isspace,
ispunct, isprint, isgraph, iscntrl, isascii - Classifies characters.

Syntax

#include <ctype.h>

int isalpha (c)

int c;

Description

These macros classify ASCIl-coded integer values by table lookup.
Each returns nonzero for true, zero for false. Jeascst is defined on
all integer values; the rest are defined only where fsascii is true and
on the single non-ASCII value EOF (see stdio S)).

sealpha
isupper
1dlower
sedigit
tezdigit
tealnum

tespace

tspunct

teprint

segraph

tscntrl

12aecit

‘March 24, 1984

¢ is aletter

¢ is an uppercase lettgr

¢ is a lowercase letter

¢ is a digit [0-9]

¢ is a hexidecimal digit [0-9], [A-F] or [a-f]
¢ is an alphanumeric

¢ is a space, tab, carriage return, newline, vertical
tab, or form feed

¢ is a punctuation character (neither control nor
alphanumeric)

¢ is a printing character, octal 40 (space) through
octal 176 (tilde)

¢ is a printing character, like ieprint except false for
space

¢ is a delete character (octal 177) or ordinary con-
trol character (less than octal 40).

¢ is an ASCII character, code less than 0200

Page 1

CURSES (S) CURSES (8)

Name

curses — Performs screen and cursor functions.

Syntax

cc [flags | files — lcurses —~ ltermlib | libraries |

Description

These routines give the user a method of updating screens with rea-
sonable optimization. They keep an image of the current screen,
and the user sets up an image of a new one. Then the refresk() tells
the routines to make the current screen look like the new one. In
order to initialize the routines, the routine ¢nitscr{) must be called
before any of the other routines that deal with windows and screens

are used.

The routines are linked with the loader option -lcurses.

See Also

termcap(F), stty(S), setenv(S)

getyx(win,y,x)
inch(}

initser()

leaveok(win,boolf)

Functions
addch(ch) Adds a character to stdscr
addstr(str) Adds a string to stdscr
box(win,vert,hor) Draws a box around a window
crmode() Sets cbreak mode
clear() Clears stdscr
clearok(secr,boolf) Sets clear flag for scr
clrtobot{) Clears to bottom on stdscr
clrtoeol() Clears to end of line on stdscr
delwin(win) Delete win
echo() Sets echo mode
erase() Erase stdscr
getch() Gets a char through stdecr
getstr(str) Gets a string through stdscr
gettmode() Gets tty modes

Gets (y,x) coordinates

Gets char at current (y,x) co-ordinates
Initializes screens

Sets leave flag for win

longname(termbuf,name) Gets long name from termbuf

move(y,x)

Moves to (y,x) on stdser

mvcur(lasty,lastx,ne wy,newx) Actually moves cursor
newwin{lines, cols,begin_y,begin_x)Creates a new window

March 27, 1984

Page 1

CUSERID (S) CUSERID ()

Name

cuserid - Gets the login name of the user.

Syntax
#include <stdio.h>
char *cuserid (s)
char *s;

Description
Cusend returns a pointer to string which represents the login name
of the owner of the current process. If (int)s is zero, this represen-
tation is generated in an internal static area, the address of which is
returned. If (int)s is nonzero, ¢ is assumed to point to an array of at

least L_cuserid characters; the representation is left in this array.
The manifest constant L_cuserid is defined in <stdio.h>.

Diagnostics
It the login name cannot be found, cuserd returns NULL; if ¢ is
nonzero in this case, \0 will be placed at *s.

See Also

getlogin($S), getpwent in getpwent(S)

Notes
Cusenid uses getpunam (see getpwent(S)); thus the results of a user’s

call to the latter will be obliterated by a subsequent call to the
former.

March 24, 1984 . Page 1

DBM (S) DBM (S)

traverse the database:

for(key=="firstkey(); key.dptr!=NULL; key=nextkey(key))

Diagnostics

All functions that return an snt indicate errors with negative values.
A zero return indicates ok. Routines that return a datum indicate
errors with a null (0) dptr.

Notes

The ‘‘.pag’’ file will contain holes so that its apparent size is about
four times its actual content. Older XENIX systems may create real
file blocks for these holes when touched. These files cannot be
copied by normal means (cp, cat, tp, tar, ar) without filling in the
holes.

Dptr pointers returned by these subroutines point into static storage
that is changed by subsequent calls.

The sum of the sizes of a key/content pair must not exceed the
internal block size (currently 512 bytes). Moreover all key/content
pairs that hash together must fit on a single block. Store will return
an error in the event that a disk block fills with inseparable data.

Delete does not rhysically reclaim file space, although it does make it
available for reuse.

The order of keys presented by firstkey and neztkey depends on a
hashing function.

These routines are not reentrant, so they should not be used on
more than one database at a time.

Credit

This utility was developed at the University of California at Berkeley
and is used with permission.

March 24, 1984 ~ Page 2

DUP(S) DUP(S)

Name

dup, dup2 - Duplicates an open file deyscriptor.

Syntax

int dup (fildes)
int fildes;

dup?2(fildes, fildes2)
int fildes, fildes2;
Description
Fides is a file descriptor obtained from a creat, open, dup, fentl, or
pipe system call. - Dup returns a new file descriptor having the follow-
ing in common with the original:
Same open file (or pipe).

Same file pointer {i.e., both file descriptors share one file
pointer).

Same access mode (read, write or read/write).

The new file descriptor is set to remain open across ezec system
calls. See fentl(S).

Dup returns the lowest available file descriptor. Dup? causes fildes?
to refer to the same file as fildeo. If fildes? already referred to an
open file, it is closed first.

Dup will fail if one or more of the following are true:

Fildes is not a valid open file descriptor. {EBADF]

Twenty file descriptors-are currently open. [EMFILE]

Return Value

Upon successful completion a nonnegative integer, namely the file
descriptor, is returned. Otherwise, a value of - 1 is returned and
errno is set to indicate the error.

See Also
creat(S}, close(S), exec(S), fent)(S), open(S), pipe(S)

March 24, 1984 Page 1

EXEC(S) EXEC (8)

Name

execl, execv, execle, execve, execlp, execvp - Executes a file.

Syntax

int execl (path, arg0, argl, ..., argn, 0)
char ®*path, *arg0, *argl, ..., *argn;

int execv (path, argv)
char *path, *argv| |;

int execle (path, arg0, argl, ..., argn, 0, envp)
char *path, *arg0, *argl, ..., *argn, *envp| |;

int execve (path, argv, envp);
char *path, *argv{], *envp| |;

int execlp (file, arg0, argl, ..., argn, 0)
char *file, *arg0, *argl, ..., *argn;

int execvp (file, argv)
char *file, *argv| |;
Description

Ezee in all its forms transforms the calling process into a new pro-
cess. The new process is constructed from an ordinary, executable

file called the ‘““new process file’”” . There can be no return from a
successful ezec because the calling process is overlaid by the new
process.

Path points to a pathname that identifies the new process file.

Fie points to the new process file. The path prefix for this file is
obtained by a search of the directories passed as the environment line
““PATH ="' (see environ(M)). The environment is supplied by the
shell (see sh(C)).

Arg0, argl, ..., argn are pointers to null-terminated character
strings. These strings constitute the argument list available to the
new process. By convention, at least arg0 must be present, and it
must point to a string that is the same as path (or its last com-
ponent).

‘Argv is an array of character pointers to null-terminated strings.
These strings constitute the argument list available to the new pro-
cess. By convention, arge must have at least one member, and it
must point to a string that is the same as path (or its last com-
ponent). Arge is terminated by a null pointer.

March 24, 1984 Page 1

EXEC(S) EXEC (S)

‘From C, two interfaces are available. Ezecl is useful when a known
file with known arguments is being called; the arguments to ezecl are
the character strings constituting the file and the arguments. The
first argument is conventionally the same as the filename (or its last
component). A 0 argument must end the argument list.

The ezecr version is useful when the number of arguments is unk-
nown in advance. The arguments to ezeco are the name of the file
to be executed and a vector of strings containing the arguments.
The last argument string must be followed by a 0 pointer.

When a C program is executed, it is called as follows:

main(arge, argv, envp)
int arge;
char ssargv, ssenvp;

where arge is the argument count and args is an array of character
pointers to the arguments themselves. As indicated, arge is conven-
tionally at least one and the first member of the array points to a
string containing the name of the file.

Argu is directly usable in another ezecv because argy|arge] is 0.

Envp is a pointer to an array of strings that constitute the environment
of the process. -Each string consists of a name, an ‘“‘=="’, and a null-
terminated value. The array of pointers is terminated by a null
pointer. The shell sh(C) passes an environment entry for each glo-
bal shell variable defined when the program is called. See
environ(M) for some conventionally used names. The C run-time
start-off routine places a-copy of envp in the global cell environ,
which is used by ezecv and ezecl to pass the environment to any sub-
programs executed by the current program. The ezec¢ routines use
lower-level routines as follows to pass an environment explicitly:

execle(file, arg0, argl, ..., argn, 0, environ);
execve(file, argv, environ);

Ezeclp and ezecvp are called with the same arguments as ezecl and
ezeev, but duplicate the shell’s actions in searching for an executable
file in a list of directories. The directory list is obtained from the
environment.

Ezec will fail and return to the calling process if one or more of the
following are true:

One or more components of the new process file’'s pathname do
not exist. [ENOENT]

A component of the new process file’s path prefix is not a direc-
tory. (ENOTDIR]

March 24, 1984 Page 3

EXIT(S) EXIT(S)

Name

exit - Terminates a process.

Syntax

exit (status)
int status;

Description

Ezit terminates the calling process. All of the file descriptors open in
the calling process are closed.

If the parent process of the calling process is executing a wait, it is
notified of the calling process’ termination and the low-order 8 bits
(i.e., bits 0377) of etatus are made available to it; see wast(S).

If the parent process of the calling process is not executing a watt,
the calling process is transformed into a ‘‘zombie process.”” A zom-
bie process is a process that only occupies a slot in the process table,
it has no other space allocated either in user or kernel space. The
process table slot that it occupies is partially overlaid with time
accounting information (see <sys/proc.h>) to be used by times(S).

The parent process ID of all of the calling process’ existing child
processes and zombie processes is set to 1. This means the initiali-
zation process (see sntro(S)) inherits each of these processes.

An accounting record is written on the accounting file if the system’s
accounting routine is enabled; see acct(S).

If the process ID, tty group ID, and process group ID of the calling
process are equal, the SIGHUP signal is sent to each processes that
has a process group ID equal to that of the calling process.

See Also

signal(S), wait(S)

Warning

See Warning in signal(S)

March 24, 1984 Page 1

FCLOSE (8) FCLOSE (8S)

Name

fclose, flush - Closes or flushes a stream.

Syntax
#include <stdio.h>

int fclose (stream)
FILE *stream;

int flush (stream)
FILE ®stream;

Description
Felose causes any buffers for the named stream to be emptied, and
the file to be closed. Buffers allocated by the standard input/output
system are freed.

Felose is performed automatically upon calling ez:t(S).

Fﬂuah causes any buffered data for the named output stream to be
written to that file. The stream remains open.

These functions return 0 for success, and EOF if any errors were
detected.

See Also
close(S), fopen(S), setbuf(S)

March 24, 1984 Page 1

FCNTL (S) FCNTL (S)

Fentl fails if one or more of t.hevfollowing is true:
Fides is not a valid open file descriptor. [EBADF}

Cmd is F_DUPFD and 20 file descriptors are currently open.
[EMFILE]

Cmd is F_DUPFD and arg is negative or greater than 20.
[EINVAL]

Return Value

Upon successful completion, the value returned depends on emd as
follows:

F_DUPFD A new file descriptor

F_GETFD Value of flag (only the low-order bit is defined)
F_SETFD Value other than - 1

F_GETFL Value of file flags

F_SETFL Value other than - 1

Otherwise, a value of — 1 is returned and errno is set to indicate the
error.

See Also
close(S), exec(S), open(S)

March 24, 1984 Page 2

FLOOR (S) FLOOR (S)

Name
floor, fabs, ceil, fmod - Performs absolute value, floor, ceiling and
remainder functions.

Syntax
#include <math.h>

double floor (x)
double x;

double ceil (x)
double x;

double fmod (x, y)
double x, y;

double fabs (x)

double x;
Description

Fabe returns |z |.

Floor returns the largest integer (as a double precision number) not
greater than z.

Ceil returns the smallest integer not less than z.
Fmod returns the number f such that z = iy + /, for some integer t,
and 0 < /<y.
See Also
abs(S)

March 24, 1984 Page 1

FOPEN (S) FOPEN (S)

When a file is opened for update, both input and output may be
done on the resulting stream. However, output may not be directly
followed by input without an intervening feeek or rewind, and input
may not be directly followed by output without an intervening fecek,
rewind, or an input operation which encounters the end of the file.

See Also

open(S), fclose(S)
Diagnostics

Fopen and freopen return the pointer NULL if filename canrot be
accessed.

March 24, 1984 ' Page 2

FORK (S) FORK (8)

process. Otherwise, a value of — 1 is returned to the parent process,
no child process is created, and errno is set to indicate the error.

See Also
exec(S), wait{S)

‘March 24, 1984 Page 2

FREXP(S) FREXP(S)

Name
frexp, ldexp, modf - Splits floating-point number into a mantissa
and an exponent.
Syntax
double frexp (value, eptr)
double value;
int *eptr;

double ldexp (value, exp)
double value;

double modf (value, iptr)
double value, *iptr;

Description
'Frezp returns the mantissa of a double value as a double quantity, .z,
of magnitude less than 1, and stores an integer n such that value =
2*2%*n indirectly through eptr.
Ldezp returns the quantity value*(2**ezp).

Modf returns the positive fractional part of value and stores the
integer part indirectly through ¢ptr.

March 24, 1984 Page 1

GAMMA (S) GAMMA (8)

Name

gamma - Performs log gamma function.

Syntax

#include <math.h>
extern int signgam;

double gamma (x)
double x;

Description

Gamma returns In[[(|2]}]. The sign of I'(|z]) is returned in the
external integer signgam. The followmg C program fragment might
be used to calculate I':

y = gamma (x);
if (y > 88.0)
error (); v
y = exp (y)} * signgam;
Diagnostics

For negative integer arguments, a huge value is returned, and errno
is set to EDOM. :

March 24, 1984 ' Page 1

GETCWD (S) GETCWD ()

Name

getewd — Gets pathname of current working directory.

Syntax
len == getcwd (pnbuf, maxlen);
int len;

char *pnbuf;
int maxlen;

Description
Getewd determines the pathname of the current working directory
and places it in pnbuf. The length excluding the terminating NULL is
returned. Mazlen is the length of pabuf. If the length of the (null-
terminated) pathname exceeds mazlen, it is treated as an error.
Diagnostics

A length <== 0 is returned on error.
Notes

mazlen (and prbuf) must be 1 more than the true maximum length
of the pathname.

March 24, 1984 Page 1

GETGRENT (S) : GETGRENT(S)

Name
getgrent, getgrgid, getgrnam, setgrent, endgrent ~ Get group file
entry.
Syntax
#include <grp.h>
struct group *getgrent {);

struct gloup *getgrgid (gid)
int gid;

struct group *getgrnam (name)
char *name;

int setgrent {);
int endgrent {);

Description

Getgrent, getgrgid and getgrnam each return pointers. The format of
the structure is defined in fusr/finclude/grp.h.

The members of this structure are:
gr_name The name of the group.
gr_passwd The encrypted password of the group.
gr_gid The numerical group ID.

gr_mem Null-terminated vector of pointers to the indivi-
dual member names.

Getgrent reads the next line of the file, so successive calls may be
used to search the entire file. Getgrgid and getgrnam search from the
beginning of the file until a matching gid or name is found, or end-
of-file is encountered.

A call to setgrent has the effect of rewinding the group file to allow

repeated searches, Endgrent may be called to close the group file
when processing is complete.

Files

[etc/group

March 24, 1984 Page 1

GETLOGIN (S) GETLOGIN(S)

Name

getlogin - Gets login name.

Syntax

char *getlogin ();

Description
Getlogin returns a pointer to the login name.as found in /etc/utmp.
It may be used in conjunction with getpunam to locate the correct
password file entry when the same user ID is shared by several login
names.
If getlogin is called within a process that is not attached to a terminal
device, it returns NULL. The correct procedure for determining the
login name is to call cuserid, or to call getlogin and if it fails, to call
getpwuid.

Files

[etc/utmp

See Also

cuserid(S), getgrent(S), getpwent(S), utmp(M)

Diagnostics

Returns NULL if name not found.
Notes

The return values point to static data whose content is overwritten
by each call.

March 24, 1984 Page 1

GETOPT(S) GETOPT(S)

main (arge, argv)

int argc;

c{:ha.r *argv;
int ¢;
extern int optind;
extern char *optarg;

while ((¢ == getopt (argc, argv, "abf:o:”)) == EOF)
switch (c) {
case '3’
if (bfig)
errffig+ +;
else i
afig+ +;
break;
case 'b":
if (aflg)
errfig+ +;
else
bproc();
break;
case 'f’:
ifile == optarg;
break;
case 'o”:

_ ofile == optarg;
bufsiza == 512;
break;

case 7"
errfig+ +;

if (errflg) {
fprintf (stderr, "usage: . . . ");
exit (S);

for(; optind < arge; optind+ +) {
if (access (argv|optind], 4)) {

March 24, 1984 Page 2

GETPID (8) GETPID (S)

Name

getpid, getpgrp, getppid - Gets process, process group, and parent

process IDs.

Syntax
int getpid ()
int getpgrp ()
int getppid ()

Description

Getpid returns the process ID of the calling process.

Getpgrp returns the process group ID of the calling process.

Getppid returns the parent process ID of the calling process.

See Also
exec(S), fork(S), intro(S), setpgrp(S), signal(S)

March 24, 1984

~ Page 1

GETPWENT(S) GETPWENT(S)

Name
getpwent, getpwuid, getpwnam, setpwent, endpwent - Gets pass-
word file entry.
Syntax
#include <pwd.h>
struct passwd *getpwent ();

struct passwd *getpwuid (uid)
int uid;

struct passwd *getpwnam (name)
char *name;

int setpwent ();

int endpwent ();

Description
Getpuwent, getpwuid and getpwnem each returns a pointer to a struc-
ture containing the fields of an entry line in the password file. The
structure of a password entry is defined in fusr/include/pwd.h.

The fields have meanings described in passwd(M). (The
pu_comment field is unused.)

Getpwent reads the next line in the file, so successive calls can be
used to search the entire file. Getpwuid and getpwnam search from
the beginning of the file until a matching uid or name is found, or
EOF is encountered.

A call to setpwent has the effect of rewinding the password file to
allow repeated searches. Endpwent may be called to close the pass-
word file when processing is complete.

Files

[etc/passwd

See Also

getlogin(S), getgrent(S), passwd(M)

March 24, 1984 Page 1

GETS(S) GETS ()

Name

gets, fgets - Gets a string from a stream.

Syntax
#include <stdio.h>

char *gets (s)
char *s;

char *fgets (s, n, stream)
char *s;
int n;
FILE *stream;

Description
Gete reads a string into s from the standard input stream stdin. The
function replaces the newline character at the end of the string with
a null character before copying to 8. Gets returns a pointer to .
Fgets reads characters from the etream until a newline character is
encountered or until n— 1 characters have been read. The characters
are then copied to the string s. A null character is automatically

appended to the end of the string before copying. Fgets returns a
pointer to s.

See Also
ferror(S), fopen(S), fread(S), gete(S), puts(S), scanf(S)
Diagnostics
Gets and fgete return the constant pointer NULL upon end-of-file or

error.

Notes

Getes deletes the newline ending its input, but fgets keeps it.

March 24, 1984 Page 1

HYPOT (S)

Name

hypot, cabs - Determines Euclidean distance.

Syntax
#include <math.h>

double hypot (x, y)
double x, y;

double cabs (z)

struct {double x, y;} z;
Description

Hypot and cabe return

sqrt{ x*x + y*y)

Both take precautions against unwarranted overflows.

See Also

sqrtin exp(S)

March 24, 1984

HYPOT(S)

Page 1

KILL (S) KILL (S)

Name

kill - Sends a signal to a process or a group of processes.

Syntax

int kill (pid, sig)
int pid, sig;

Description

Kill sends a signal to a process or a group of processes. The process
or group of processes to which the signal is to be sent is specified by
pid. The signal that is to be sent is specified by #ig and is either one
from the list given in signal(S), or 0. If sig is 0 (the null signal),
error checking is performed but no signal is actually sent. This can
be used to check the validity of pid.

The effective user ID of the sending process must match the
effective user ID of the recelving process unless, the effective user ID
of the sending process is super-user, or the process is sending to
itself.

The processes with a process ID of 0 and a process ID of 1 are special
processes {see intro(S)) and will be referred to below as proc0 and
proel respectively.

If pid is greater than zero, eig will be sent to the process whose pro-
cess ID is equal to pid. Pid may equal 1.

If pid is 0, sig will be sent to all processes excluding proc0 and procl
whose process group ID is equal to the process group ID of the
sender.

If pidis - 1 and the effective user ID of the sender is not super-user,
sig will be sent to all processes excluding proc0 and proc! whose real
user ID is equal to the effective user ID of the sender.

If pid'is - 1 and the effective user ID of the sender is super-user, sig
will be sent to all processes excluding proc0 and proc1.

If pid is negative but not - 1, eig will be sent to all processes whose
process group ID is equal to the absolute value of pid.

Kill will fail and no signal will be sent if one or more of the follow-
ing are true:

Sig is not a valid signal number. |EINVAL]

No process can be found corresponding to that specified by pid.
[ESRCH|

March 24, 1984 Page 1

LSTOL (S) LSTOL (S)

Name

13tol, 1tol3 - Converts between 3-byte integers and long integers.

Syntax
13tol (lp, cp, n)
long *lp;
char *cp;
int n;
1tol3 (cp, Ip, n)
char *cp;
long *1p;
int n;
Description

L8tol converts a. list of n 3-byte integers packed into a character
string pointed to by ¢p into a list of long integers pointzd to by Ip.

Ltol$ performs the reverse conversion from long integers (Ip) to 3-
byte integers (¢p).

These functions are useful for file system maintenance where the
block numbers are 3 bytes long.

See Also

filesystem(F)

March 24, 1984 Page 1

LINK (S) LINK (S)

Return »Value

Upon successful completion, a value of 0 is returned. Otherwise, 2
value of - 1 is returned and errno is set to indicate the error.

See Also
In(C)

March 24, 1984 " Page 2

LOCKING (8) LOCKING (S)

Name

locking - Locks or unlocks a file region for reading or writing. -

Syntax

locking(fildes, mode, size);
int fildes, mode;

long size;

Description

Locking allows a specified number of bytes in a file to be controlled
by the locking process. Other processes which attempt to read or
write a portion of the file containing the locked region may sleep
until the area becomes unlocked depending upon the mode in which
the file region was locked. A process that attempts to write to or
read a file region that has been locked against reading and writing by
another process {(using the LK_LOCK or LK_NBLCK mode) will sleep
until the region of the file has been released by the locking process.
A process that attempts to write to a file region that has been locked
against writing by another process (using the LK_RLCK or
LK_NBRLCK mode) will sleep until the region of the file has been
released by the locking process, but a read request for that file region
will proceed normally.

A process that attempts to lock a region of a file that contains areas
that have been locked by other processes will sleep if it has specified
the LK_LOCK or LK_RLCK mode in its lock request, but will return with
the error EACCES if it specified LK_NBLCK or LK_NBRLCK.

Fildes is the value returned from a successful creat, open, dup, or pipe
system call.

Mode specifies the type of lock operation to be performed on the file
region. The available values for mode are:

LK_UNLCK 0
Unlocks the specified region. The calling process releases a
region of the file it had previously locked.

LK_LOCK 1
Locks the specified region. The calling process will sleep until
the entire region is available if any part of it has been locked by
a different process. The region is then locked for the calling
process and no other process may read or write in any part of
the locked region. (lock against read and write).

March 24, 1984 Page 1

LOCKING (S) LOCKING (S)

If a process has done more than one open on a file, all locks put on
the file by that process will be released on the first close of the file.

Although no error is returned if locks are applied to special files or
pipes, read/write operations on these types of files will ignore the
locks. Locks may not be applied to a directory.

See Also
creat{ S), open(S), read(S), write(S}, dup(S), close(S), lseek(S)

Diagnostics

Locking returns the value (int) -1 if an error occurs. If any portion
of the region has been locked by another process for the LK_LOCK
and LK_RLCK actions and the lock request is to test only, ermo is set
to EACCES. If the file specified is a directory, errno is set to
EACCES. If locking the region would cause a deadlock, ermo is set
to EDEADLOCK. If there are no more free internal locks, errmo is set
to EDEADLOCK. .

March 24, 1984 Page 3

LSEARCH (8S) LSEARCH (8)

Name

Isearch - Performs linear search and update.

Syntax

char #*lsearch (key, base, nelp, width, compar)
char *key;

char *base;

int *nelp;

int width;

int (*compar)();

Description

Leearch is a linear search routine generalized from Knuth (6.1)
Algorithm Q. It returns a pointer into a table indicating the location
at which a datum may be found. If the item does not occur, it is
added at the end-of the table. The first argument is a pointer to the
datum to be located in the table. The second argument is a pointer
to the base of the table. The third argument is the address of an
integer containing the number of items in the table. It is incre-
mented if the item is added to the table. The fourth argument is the
width of an element in bytes. The last argument is the name of the
comparison routine. It is called with two arguments which are
pointers to the elements being compared. The routine must return
zero if the items are equal, and nonzero otherwise.

Notes
Unpredictable events can occur if there is not enough room in the

table to add a new item.

See Also
bsearch(S), gqsort(S)

March 24, 1984 "~ Pagel

«LSEEK (S) LSEEK (S)

See Also
creat(S), dup(S), fentl(S), open(S)

March 24, 1984 Page 2

MALLOC (S) MALLOC (8)

object.

Diagnostics

Malloe, realloc and calloc return a null pointer (0) if there is no
available memory or if the area has been detectably corrupted by
storing outside the bounds of a block. When realloc returns 0, the
block pointed to by ptr may be destroyed.

March 24, 1984 Page 2

MKNOD (S) MKNOD (S)

shared memory file or a semaphore.

Mknod may be invoked only by the super-user for file types other
than named pipe special.

Mknod will fail and the new file will not be created if one or more of
the following are true:

The process’ effective user ID is not super-user. [EPERM]
A component of the path prefix is not a directory. [ENOTDIR|
A component of the path prefix does not exist. [ENOENT]

The directory in which the file is to be created is located on a
read-only file system. |EROFS]

The named file exists. [EEXIST}

Patk points outside the process’ allocated address space.
[EFAULT]

Return Value

Upon successful completion a value of 0 is returned. Otherwise, a
value of - 1 is returned and errno is set to indicate the error.

See Also

mkdir(C), mknod(C), chmod(S), creatsem(S), exec(S), sdget(S),
umask(S), filesystem(F)

Notes
Semaphore files should be created with the creatsem(S) system call.

Share data files should be created with the sdget(S) system call.

March 24, 1684 Page 2

MONITOR (S) MONITOR (S)

Name

monitor - Prepares execution profile.

Syntax
monitor (lowpe, highpe, buffer, bufsize, nfunc)
int (*lowpc)(), (*highpe)();

short buffer|];
int bufsize, nfunc;

Description

Monitor is an interface to profil(S). Lowpc and highpe are the
addresses of two functions; buffer is the address of a user-supplied
array of bufeize short integers. Monitor arranges to record a histo-
gram of periodically sampled values of the program counter, and of
counts of calls of certain functions, in the buffer. The lowest
address sampled is that of lowpe and the highest is just below hsghpc.
At most nfunc call counts can be kept; only calls of functions com-
piled with the profiling option — p of ¢¢(CP) are recorded. For the
results to be significant, especially where there are small, heavily
used routines, it is suggested that the buffer be no more than a few
times smaller than the range of locations sampled.
To profile the entire program, it is sufficient to use

extern etext();

monitor(2, etext, buf, bufsize, nfunc);
Etezt lies just above all the program text.

To stop execution monitoring and write the results on the file
mon.out, use

monitor(0);

prof(CP) can then be used to examine the results.

Files

mon.out

See Also
cc(CP), prof(CP}, profil(S)

March 24, 1984 * Page 1

MOUNT (8) MOUNT(S)

- Name

mount - Mounts a file system.

Syntax
int mount (spec, dir, rwflag)
char *spec, *dir;
int rwflag;

Description
Mount requests that a removable file system contained on the block
special file identified by spec be mounted on the directory identified
by dir. Spec and dir are pointers to pathnames.

Upon successful completion, references to the file dir will refer to
the root directory on the mounted file system.

The low-order bit of ruflag is used to control write permission on
the mounted file system; if 1, writing is forbidden, otherwise writing
is permitted according to individual file accessibility.
Mount may be invoked only by the super-user.
Mount will fail if one or more of the following are true:
The effective user ID is not super-user. |EPERM]
Any of the named files does not exist. [ENOENT)
A component of a path prefix is not a directory. [ENOTDIR]
Spee is not a block special device. |[ENOTBLK]
The device associated with spec does not exist. |[ENXIO]
Dir is not a directory. [ENOTDIR)

Spec or dir points outside the process’ allocated address space.
[EFAULT]

Dir is currently mounted on, is someone’s current working
directory or is otherwise busy. [EBUSY]

The device associated with spec is currently mounted. [EBUSY]

March 24, 1984 Page 1

NAP(S) NAP (S)

Name

nap ~ Suspends execution for a short interval.

Syntax
long nap(period)
long period;

Description
The current process is suspended from execution for at least the
number of milliseconds specified by period, or until a signal is
received.

Return Value
On successful completion, a long integer indicating the number of
milliseconds actually slept is returned. If the process recieved a signal
while napping, the return value will be -1, and errno will be set to
EINTR.

Notes
This function is driven by the system clock, which in most cases has
a granularity of tens of milliseconds.

See Also
sleep(S)

March 24, 1984 Page 1

NLIST(S) NLIST(S)

Name

nlist - Gets entries from name list.

Syntax

#include <a.out.h>
nlist (filename, nl)
char *filename;
struct nlist nl[];

Description

Nlist examines the name list in the given executable output file and
selectively extracts a list of values. The name list consists of an
array of structures containing names, types and values. The list is
terminated with a null name. Each name is looked up in the name
list of the file. If the name is found, the type and value of the name
are inserted in the next two fields. If the name is not found, both
entries are set to 0. See a.out(F) for a discussion of the symbol
table structure.

See Also
a.out(F), xlis(S)

Diagnostics

Nlist return - 1 and sets all type entries to 0 if the file cannot be
read, is not an object file, or contains an invalid name list. Other-
wise, nlist returns 0. A return value of 0 does not indicate that any
or all symbols were found. ’

March 24, 1984 Page 1

OPEN (8) OPEN (S)

If ONDELAY is clear:
The open will block until carrier is present.

O_APPEND If set, the file pointer will be set to the end of the file
prior to each write.

O_CREAT If the file exists, this flag has no effect. Otherwise,
the file’s owner ID is set to the process’ effective user
ID, the file’s group ID is set to the process’ effective
group ID, and the low-order 12 bits of the file mode

are set to the value of mode modified as follows (see
creat(S)):

All bits set in the process’ file mode creation
mask are cleared. See umask(S).

The “‘save text image after execution bit’’ of the
mode is cleared. See chmod(S).

O_TRUNC If- the file exists, its length is truncated to 0 and the
mode and owner are unchanged.

O_EXCL " If O_EXCL and O_CREAT are set, open will fail if the
file exists.

O_SYNCW Every write to this file descriptor will be synchro-
nous, that is, when the write system call completes
data is guaranteed to have been written to disk.

Upon successful completion a nonnegative integer, the file descrip-
tor, is returned.

The file pointer used to mark the current position within the file is
set to the beginning of the file.

The new file descriptor is set to remain open across ezec system
calls. See fentl(S).

No process may have more than 20 file descriptors open simultane-
ously.

The named file is opened unless one or more of the following are
true:

A component of the path prefix is not a directory. [ENOTDIR]

O_CREAT is not set and the named file does not exist.
[ENOENT]

A component of the path prefix denies search permission.
[EACCES)

March 24, 1984 Page 2

OPENSEM (S) OPENSEM (S)

Name

opensem - Opens a semaphore.

Syntax

sem_num = opensem(sem_name);
int sem_num;
char *sem_name;

Description

Opensem opens a semaphore named by sem_name and returns the
unique semaphore identification number sem_num used by waitsem
and sigsem. Creatsem should always be called to initialize the sema-
phore before the first attempt to open it, or to reset the semaphore if
it has become inconsistent due to an exiting process neglecting to do
a sigsem after issuing a waitsem.

See Also

creatsem(S), waitsem(S), sigsem(S)

Diagnostics

Opensem returns the value — 1 if an error occurs. If the semaphore
named does not exist, errno is set to ENOENT. If the file specified is
not a semaphore file (i.e., a file previously created by a process using
a call to creatsem), errno is set to ENOTNAM. If the semaphore has
become invalid due to inappropriate use, errno is set to ENOTAVAIL.

March 24, 1984 Page 1

PERROR (S) PERROR(S)

Name
perror, sys errlist, sys_nerr, errno — Sends system error messages.

Syntax
perror (s)
char *s;

int sys_nerr;
char “sys.errlisl{ l;

int errno;

Description
Perror produces a short error message on the standard error,
describing the last error encountered during a system call from a C
program. First the argument string s is printed, then a colon, then
the message and a newline. To be of most use, the argument
string should be the name of the program that incurred the error.
The error number is taken from the external variable errno, which
is set when errors occur but not cleared when correct calls are
made.

To simplify variant formatting of messages, the vector of message
strings sys_errlist is provided; errno can be used as an index in this
table to get the message string without the newline. Sys_nerr is the
number of entrics provided for in the table; it should be checked
because new error codes may be added to the system before they
are added to the table.

See Also
intro(S)

May 10, 1984 Page 1

POPEN (S) POPEN ()

Name

popen, pelose — Initiates I/O to or from a process.

.Syntax
#include <stdio.h>

FILE *popen {command, type)
char *command, *type;

int pclose (stream)
FILE *stream;

Description

The arguments to popen are pointers to null-terminated strings con-
taining, respectively, a shell command line and an I/O mode, either
“r” for reading or ‘‘w’’ for writing. Popen creates a pipe between
the calling process and the command to be executed. The value
returned is a stream pointer that can be used (as appropriste) to
write to the standard input of the command or read from its stan-
dard output.

A stream opened by popen should be closed by peloee, which waits
for the associated process to terminate and returns the exit status of
the command. Because open files are shared between processes, a
type ‘‘r”’ command may be used as an input filter, and a type ‘‘w"
as an output filter.

See Also

bipe(S), wait(8), fclose(S), fopen(S), system(S)

Diagnostics .

Popen returns a null pointer if files or processes cannot be created,
or if the shell cannot be accessed.

Pelose teturns — 1 if etream is not associated with a popened com-
mand.

Notes
Only one stream opened by popen can be in use at once. Buffered
reading before opening an input filter may leave the standard input

of that filter mispositioned. Similar problems with an output filter
may be forestalled by careful buffer flushing; see fclose(S).

March 24, 1984 Page 1

PRINTF(S) PRINTF (S)

maximum number of significant digits for the g conversion, or
the maximum number of characters to be printed from a string
in 8 conversion. The precision takes the form of a period (.)
followed by a decimal digit string: a null digit string is treated as
zero.

An optional | specifying that a following d, o, u, x, or X conver-
sion character applies to a long integer arg.

A character that indicates the type of conversion to be applied.

A field width or precision may be indicated by an asterisk (*) instead
of a digit string. In this case, an integer arg supplies the field width
or precision. The arg that is actually converted is not fetched until
the conversion letter is seen, so the args specifying field width or
precision must appear before the arg (if any) to be converted.

The flag characters and their meanings are:

- The result of the conversion will be left-justified within
the field.
+ The result of a signed conversion will always begin with a

sign (4 or-).

blank If the first character of a signed conversion is not a sign,
a blank will be prepended to the result. This implies that
if the blank and + flags both appear, the blank flag will
be ignored. -

This flag specifies that the value is to be converted to an
‘‘alternate form.” For ¢, d, 8, and u conversions, the flag
has no effect. For o conversion, it increases the precision
to force the first digit of the result to be a zero. For x
(X) conversion, a nonzero result will have Ox (0X)
prepended to it. For e, E, f, g and G conversions, the
result will always contain a decimal point, even if no
digits follow the point {normally, a decimal point appears
in the result of these conversions only if a-digit follows
it}). For g and G conversions, trailing zeroes will not be
removed from the result (which they normally are).

The conversion characters and their meanings are:

d,0,u,x,X The integer arg is converted to signed decimal, unsigned
octal, decimal, or hexadecimal notation (x and X),
respectively; the letters abedef are used for x conversion
and the letters ABCDEF for X conversion. The precision
specifies the minimum number of digits to appear; if the
value being converted can be represented in fewer digits,
it will be expanded with leading zeroes. The default pre-
cision is 1. The result of converting a zero value with a
precision of zero is a null string (unless the conversion is

March 24, 1984 Page 2

PRINTF (S) PRINTF (8)

Examples

To print a date and time in the form ‘‘Sunday, July 3, 10:02"’, where
weekday and month are pointers to null-terminated strings:

printf("%s, % %d, %.2d:%.2d", weekday, month, day, hour,
min);

To print 7 to five decimal places:

printf("pi = 95", 4*atan(1.0));

*See Also
ecvi(S), pute(S), scanf(S)

March 24, 1984 Page 4

PTRACE (S) PTRACE (S)

Name

ptrace - Traces a process.

Syntax

int ptrace (request, pid, addr, data};
int request, pid, data;

Description

Ptrace provides a means by which a parent process may control the
execution of 2 child process. Its primary use is in the implementa-
tion of breakpoint debugging; see adb(CP). The child process
behaves normally until it encounters a signal (see eignal(S) for the
list}, at which time it enters a stopped state and its parent is notified
via wait(S). When the child is in the stopped state, its parent can
examine and modify its ‘“memory image’’ using ptrace. Also, the
parent can cause the child either to terminate or continue, with the
possibility of ignoring the signal that caused it to stop.

The addr argument is dependant on the underlying machine type,
specifically the process memory model. On systems where the
memory management mechanism provides a uniform and linear
address space to user processes, the argument is declared as:

int saddr;

which is sufficient to address any location in the process’ memory.
On machines where the user address space is segmented (even if the
particular program being traced has only one segment allocated), the
form of the addr argument is:

struct {
int offset;
int segment;
} *addr;

which allows the caller to specify segment and offset in the process
address space.

The request argument determines the precise action to be taken by
ptrace and is one of the following:

0 This request must be issued by the child process if it
is to be traced by its parent. It turns on the child’s
trace flag that stipulates that the child should be left in
a stopped state upon receipt of a signal rather than the
state specified by fune; see signal(S). The pid, addr,
and dats arguments are ignored, and a return value is

March 27, 1984 Page 1

PTRACE (S)

Errors

PTRACE(S)

This request causes the child to resume execution. If
the data argument is 0, all pending signals including
the one that caused the child to stop are canceled
before it.resumes execution. If the data argumentis a
valid signal number, the child resumes execution as if
it had incurred that signal and any other pending sig-
nals are canceled. In a linear address space memory
model, the value of addr must be (int #)1, or in aseg-
mented address space the segment part of addr must
be zero and the offset part of addr must be (int #)1.
Upon successful completion, the value of date is
returned to the parent. This request will fail if data is
not 0 or a valid signal number, in which case a value
of - 1 is returned to the parent process and the
parent’s errmo is set to EIO.

This request causes the child to terminate with the
same consequences as ezé(S).

Execution continues as in request 7; however, as soon
as possible after execution of at least one instruction,
execution stops again. The signal number from the
stop is SIGTRAP. This is part of the mechanism for
implementing breakpoints. The exact implementation
and behaviour is somewhat CPU dependant.

As indicated, these calls (except for request 0) can be used
only when the subject process has stopped. The wait system
call is used to determine when a process stops; in such a
case the termination status returned by wait has the value
0177 to indicate stoppage rather than genuine termination.

To prevent security violations, ptrace inhibits the set-user-id
facility on subsequent ezee(S) calls. If a traced process calls
ezec, it will stop before executing the first instruction of the
new image showing signal SIGTRAP.

Ptrace will in general fail if one or more of the following are true:

Regquest is an illegal number. [EIO|

Pid identifies a child that does not exist or has not executed a
ptrace with request 0. [ESRCH]

Notes

The implementation and precise behaviour of this system call is
inherently tied to the specific CPU and process memory model in
use on a particular machine. Code using this call is likely to not be

March 27, 1984

Page 3

PUTC(S) | PUTC(S)

Name

pute, putchar, fpute, putw —~ Puts a character or word on a stream.

Syntax
#include <stdio.h>

int putc (¢, stream)
charc;
FILE *stream;

putchar (c¢)

int fputc (¢, stream)
FILE ®*stream;

int putw (w, stream)
int w;
FILE ®*stream;

Description

Putc appends the character ¢ to the named output stream. It returns
the character written.

Putchar(¢) is defined as pute(¢, stdout).

Fpute behaves like pute, but is a genuine function rather than a
macro; it may therefore be used as an argument. Fputc runs more
slowly than pute, but takes less space per invocation.

Putw appends the word (i.e., integer) w to the output stream. Putw
neither assumes nor causes special alignment in the file.

The standard stream stdout is normally buffered if and only if the
output does not refer to a terminal; this default may be changed by
setbuf(S). The standard stream stderr is by default unbuffered
unconditionally, but use of freopen (see fopen(S)) will cause it to
become unbuffered; setbuf, again, will set the state to whatever is
desired. When an output stream is unbuffered information appears
on the destination file or terminal as soon as written; when it is
buffered many characters are saved up and written as a block. See

[ueh is feloee(S).

See Also
fclose(S), ferror(S), fopen(S), fread{S), getc(S), printf(S}, puts(S)

March 24, 1984 Page 1

PUTPWENT(S) PUTPWENT(S)

Name

putpwent — Writes a password file entry.

Syntax
#include <pwd.h>
int putpwent (p, f)
struct passwd *p;
FILE *f;

Description
Putpwent is the inverse of getpwent(S). Given a pointer to a pesswd
structure created by getpwent (or getpwuid or getpwnam), putpwent
writes a line on the stream f. The line matches the format of
[etc/passwd.

See Also

passwd(M), getpwent(S)
Diagnostics

Putpwent returns nonzero if an error was detected during its opera-
tion, otherwise zero.

March 24, 1984 Page 1

QSORT(S) » QSORT(S)

Name

gsort — Performs a sort.

Syntax

gsort { base, nel, width, compar)
char *base; ‘

int nel, width;

int (*compar)(};

Description

Qeort is an implementation of the quicker-sort algorithm. The first
argument is a pointer to the base of the data; the second is the
number of elements; the third is the width of an element in bytes;
the last is the name of the comparison routine. It is called with two
arguments which are pointers to the elements being compared. The
routine must return an integer less than, equal to, or greater than 0
according to how much the first argument is to be considered less
than, equal to, or greater than the second.

See Also
sort{C), bsearch(S), Isearch(S), string(S)

March 24, 1984 Page 1

RDCHK (S) RDCHK (S)

Name

rdchk - Checks to see if there is data to be read.

Syntax

rdchk(fdes);
int fdes;

Description

Rdchk checks to see if a process will block if it attempts to read the
file designated by fdes. Rdchk returns 1 if there is data to be read or
if it is the end of the file (EOF). In this context, the proper
sequence of calls using rdchk is:

if(rdchk(fildes) > 0)
read(fildes, buffer, nbytes);
See Also
read(S)

Diagnostics

Rdchk returns -1 if an error occurs (e.g., EBADF), 0 if the process
will block if it issues a read and 1 if it is okay to read. EBADF is
returned if a rdchk is done on a semaphore file or if the file specified
doesn’t exist.

March 24, 1984 Page 1

READ (S) READ(S)

Read will fail if one or more of the following are true:
Fildes is not a valid file descriptor open for reading. [EBADF|

Buf points outside the allocated address space. |[EFAULT]

Return Value
Upon successful completion a nonnegative integer is returned indi-

cating the number of bytes actually read. Otherwise, 2 -1 is
returned and errmno is set to indicate the error.

See Also
creat{ S), dup(S), fentl(S), ioctl(S), open(S), pipe(S), tty(M)

Notes

Reading a region of a file locked with locking causes read to hang
indefinitely until the locked region is unlocked.

March 24, 1984 ‘ Page 2

REGEX(S) REGEX(S)

to be applied. {m,} is analogous to {m,infinity}. The plus
(+) and star (*) operations are equivalent to {1,} and {0,}
respectively. :

(...)8n The value of the enclosed regular expression is to be
returned. The value will be stored in the (n+ I)th argu-
ment following the subject argument. At present, at most
ten enclosed regular expressions are allowed: Regez makes
its assignments unconditionally.’ ‘

(...) [Parentheses are used for grouping. An operator, e.g. *,
+, {}, can work on a single character or a regular expres-
sion enclosed in parenthesis. For example, (a*(cb+)*)$0.

By necessity, all the above defined symbols are special. They must,
therefore, be escaped to be used as themselves.

Examples
Ezample 1
char *cursor, *newcursor, *ptr;

newcursor = regex{(ptr=regemp(”"\n”,0)),cursor);
free(ptr);

This example will match a leading newline in the subject string
pointed at by cursor.

Ezample 2:

char ret0[9];
char *newcursor, *name;

name =“r.egcmp(”([A- Za- z]|A- za- 20- 9_]{0,7})$0",0);
newcursor == regex(name,”123Testing321",ret0);

This example will match through the string ‘“Testing3” and will
return the address of the character after the last matched character
(cursor+ 11). The string *‘Testing3”’ will be copied to the character
array ret0.

Ezaemple $:
#include "file.i”
char *string, *newcursor;

newcursor = regex(name,string);

This example applies a precompiled regular expression in file.i (see
regemp(CP)) against string.

March 24, 1984 : Page 2

REGEXP (S)

Name

REGEXP(S)

regexp — Performs regular expression compile and match functions.

* Syntax

#define INIT <declarations>

#define GETC() <getc code>

#define PEEKC() <peeke code>

#define UNGETC(¢) <ungetc code>

#define RETURN(pointer) <return code>

#define ERROR(val) <error code>

#include

<regexp.h>

char *compile(instring, expbuf, endbuf, eof)
char ®*instring, *expbuf, *endbuf;

int step(string, expbuf)
char ®string, *expbuf;

Description

This entry describes general purpose regular expression matching
routines in the form of ed(C), defined in fusr/include/regexp.h.
Programs such as ed(C), eed(C), grep(C), bs(C), ezpr{C), etc.,
which perform regular expression matching use this source file. In
this way, only this file need be changed to maintain regular expres-

sion compatibility.

The interface to this file is unpleasantly complex. Programs that
include this file must have the following five macros declared before
the ‘‘#include <regexp.h>'’ statement. ' These macros are used by

the compile routine.

GETC()

PEEKC()

March 27, 1984

Returns the value of the next character in the
regular expression pattern. Successive calls to
GETC() should return successive characters of
the regular expression.

Returns the next character in the regular
expression. Successive calls' to PEEKC()
should return the same character (which
should also be the next character returned by
GETC()).

Page 1

REGEXP () REGEXP (S)

The parameter eof is the character which marks the end of the regu-
lar expression. For example, in ¢d(C), this character is usually a /.

Each programs thzt includes this file must have a f#define statement
for INIT. This definition will be placed right after the declaration for
the function compde and the opening curly brace ({). It is used for
dependent declarations and initializations. It is most often used to
set a register variable to point the beginning of the regular expres-
sion so that this register variable can be used in the declarations for
GETC(), PEEKC() and UNGETC(). Otherwise it can be used to
declare external variables that might be used by GETC(), PEEKC()
and UNGETC(). See the example below of the declarations taken
from grep(C). .

There are other functions in this file which perform actual regular
expression matching, one of which is the function step. The call to
step is as follows:

step(string, expbuf)

The first parameter to step is a pointer to a string of characters to be
checked for a match. This string should be null terminated.

The second parameter ezpbuf is the compiled regular expression
which was obtained by a call of the function compile.

The function step returns one, if the given string matches the regular
expression, and zero if the expressions do not match. If there is a
match, two external character pointers are set as a side effect to the
call to step. The variable set in etep is locl. This is a pointer to the
first character that matched the regular expression. The variable
loc2, which is set by the function advance, points the character after
the last character that matches the regular expression. Thus if the
regular expression matches the entire line, locl will point to the first
character of stning and loc2 will point to the null at the end of etnng.

Step uses the external variable eiref which is set by compile if the reg-
ular expression begins with *. If this is set then etep will only try to
match the regular expression to the beginning of the string. If more
than one regular expression is to be compiled before the the first is
executed the value of eiref should be saved for each compiled
expression and ciref should be set to that saved value before each
call to step.

The function advance is called from step with the same arguments as
step. The purpose of step is to step through the etring argument and
call advance until advance returns a one indicating a match or until
the end of stnng is reached. If one wants to constrain etring to the
beginning of the line in all cases, step need not be called, simply call
advance.

When edvance encounters a * or \{ \} sequence in the regular
expression it will advance its pointer to the string to-be matched as

March 27, 1984 Page 3

SBRK (S) . SBRK(S)

Name

sbrk, brk - Changes data segment space allocation.

Syntax

char #sbrk (incr)
int incr;

Description

Sbrk is used to dynamically change the amount of space allocated for
the calling process’ data segment; see ezec(S). The change is made
by resetting the process’ break value. The break value is the address
of the first location beyond the end of the data segment. The
“amount of allocated space increases as the break value increases.

Sbrk adds sncr bytes to the break value and changes the allocated

space accordingly. Incr can be negative, in which case the amount of

allocated space is decreased.

Sbrk will fail without making any change in the allocated space if
~such a change would result in more space being allocated than is

allowed by a system-imposed maximum (see ulimit(S)). [ENOMEM]

Return Value
Upon successful completion, sbrk and brk return pointers to the

beginning of the allocated space. Otherwise, a value of -1 is
returned and errno is set to indicate the error.

See Also
exec(S)

March 27, 1984 Page 1

SCANF (S) SCANF (S)

%% A single %is expected in thé input at this point; no assignment
is done.)

Q

A decimal integer is expected; the corresponding argument
" should be an integer pointer. '

o An octal integer is expected; the corresponding argument should
be an integer pointer.

x A hexadecimal integer is expected; the corresponding argument
should be an integer pointer.

s A character string is expected; the corresponding argument
should be a character pointer pointing to an array of characters
large enough to accept the string and a terminating \0, which
will be added automatically. The input field is terminated by a
space character or a newline.

¢ A character is expected; the corresponding argument should be
a character pointer. The normal skip over space characters is
suppressed in this case; to read the next nonspace character, use
%ds. If a field width is given, the corresponding argument
should refer to a character array; the indicated number of char-
acters is read.

e,f A floating-point number is expected; the next field is converted
accordingly and stored through the corresponding argument,
which should be a pointer to a float. The input format for
floating-point numbers is an optionally signed string of digits,
possibly containing a decimal point, followed by an optional
exponent field consisting of an E or an e, followed by an option-
ally signed integer. ’)

[Indicates a string that is not to be delimited by space characters.
The left bracket is followed by a set of characters and a right
bracket; the characters between the brackets define a set of char-
acters making up the string. If the first character is not a caret
("), the input field consists of all characters up to the first char-
acter that is not in the set between the brackets; if the first char-
acter after the left bracket is a “, the input field consists of all
characters up to the first character that is in the set of the
remaining characters between the brackets. The corresponding
argument must point to a character array.

The conversion characters d, o, and x may be capitalized and/or pre-
ceded by 1 to indicate that a pointer to long rather than to int is in
the argument list. Similarly, the conversion characters e and f may
be capitalized and/or preceded by 1 to indicate that a pointer to dou-
"ble rather than to float is in the argument list. The character h will,
some time in the future, indicate short data items.

Scanf conversion terminates at EOF, at the end of the control string,
or when an input character conflicts with the control string. - In the

March 24, 1984 Page 2

SDENTER(S) SDENTER(S)

Name
" sdenter, sdleavé — Synchronizes access to a shared data segment.

Syntax
#include <sd.h>

int sdenter(addr,fiags)
char *addr;
int flags;

int sdleave(addr)
char *addr;

Description
Sdenter is used to indicate that the current process is about to
access the contents of a shared data segment. The actions per—
formed depend on the value of flags. Flags values are formed by
OR —ing together entries from the following list:

SDNOWAIT If another process has called sdenter but not
sdleave for the indicated segment, and the seg—
ment was not created with the SD_.UNLOCK flag
set, return an error instead of waiting for the
segment to become free.

SD.WRITE Indicates that the process intends to modify the
data. If SD_WRITE isn’t specified changes made
to data are not guarenteed to be reflected in other
proceses.

Sdleave is used to indicate that the current process is done modi—
fying the contents of a shared data segment.

Only changes made between invocatations of sdenter and sdleave
are guaranteed to be reflected in other processes. Sdenter and
sdleave are very fast; consequently, it is recommended that they be
called frequently rather than leave sdenter in effect for any period
of time. In particular, system calls should be avoided between
sdenter and sdleave calls.

The fork system call is forbidden between calls to sdenter and
sdleave if the segment was created without the SD_UNLOCK flag.

May 10, 1984 o - Page 1

SDGET(S) SDGET(S)

Name

" sdget - Attachs and detachs a shared data segment.

Syntax
#include <sd.h>

char #sdget(path, flags, {size, mode})
char *path; ‘
int flags, mode;

long size;

int sdfree(addr);
char *addr;

Description

Sdget attachs a shared data segment to the data space of the current
process. The actions performed are controlled by the value of flags.
Flags values are constructed by OR-ing flags from the following list:

SD_RDONLY
Attach the segment for reading only.

SD_WRITE Attach the segment for both reading and writing.

SD_CREAT If the segment named by path exists, this flag has no
. effect. Otherwise, the segment is created according to
the values of #&ze and mode. Read and write access to
the segment is granted to other processes based on the
permissions passed.in mode, and functions the same as
those for regular files. Execute permission is meaning-

less. The segment is initialized to contain all zeroes.

SD_UNLOCK
If the segment is created because of this call, the seg-
ment will be made so that more than one process can
be between sdenter and sdleave calls.

Sdfree detachs the current process from the shared data segment that
is attached at the specified address. If the current process has done
an edenter but not a edleave for the specified segment, an sdleave will
be done before detaching the segment.

When no process remains attached to the segment, the contents of

that segment disappear, and no process can attach to the segment
without creating it by using the SD_CREAT flag in edget.

March 24, 1984 g Page 1

SDGETV(S) SDGETV(S)

Name

sdgetv, sdwaitv — Synchronizes shared data access.

Syntax
#include <sd.h>

int sdgetv(addr)

int sdwaitv(addr, vnum)
char *addr;

int vonum;

Description
Sdgetv and sdwaity may be used to synchronize cooperating processes
that are using shared data segments. The return value of both rou-
tines is the version number of the shared data segment attached to
the process at address addr. The version number of a segment
changes whenever some process does an sdleave for that segment.
Sdgetv simply returns the version number of the indicated segment.
Sdwaitv forces the current process to sleep until the version number
for the indicated segment is no longer equal to onum.

Retun Value
Upon successful completion, both edgetv and edwasty return a positive
integer that is the current version number for the indicated shared
data segment. Otherwise, a valye of -1 is returned, and errno is set .
to indicate the error.

See Also
sdenter(S), sdge(S)

March 24, 1984 Page 1

SETIMP(S) SETIMP (S)

Name

iR}

setjmp, longjmp - Performs a nonlocal “‘goto’’.

Syntax
#include <setjmp.h>

int setjmp (env)
jmp_buf env;

int longjmp (env, va])
jmp_buf env;

Description

These routines are useful for dealing with errors and interrupts
encountered in a low-level subroutine of a program.

Setymp saves its stack environment in env for later use by longimp. It
returns value 0.

Longymp restores the environment saved by the last call of setymp. It
then returns in such a2 way that execution continues as if the call of
seymp had just returned the value val to the corresponding call to
setymp. The routine which calls setymp must not itself have returned
in the interim. Longjmp cannot return the value 0. If longjmp is
invoked with a second argument of 0, it will return 1. All accessible
data have values as of the time longjmp was called. The only excep-
tion to this are register variables. The value of register variables are
undefined in the routine that called setymp when the corresponding
longjmp is invoked.

‘See Also
signal(S)

March 24, 1984 ' Page 1

SETUID (S) SETUID (S)
Name

setuid, setgid - Sets user and group IDs.

. Syntax

int setuid (uid)
int uid;

int setgid (gid)
int gid;
Description

Setuid is used to set the real user ID and effective user ID of the cal-
ling process.

Setﬁd is used to set the real group ID and eflective group ID of the
calling process.

If the effective user ID of the calling process is super-user, the real
user (group) 1D and effective user (group) ID are set to uid (gid).

If the effective user ID of the calling process is not super-user, but
its real user (group) ID is equal to uid (gid), the effective user
(group) ID is set to uid (gid).
Setuid will fail if the real user (group) ID of the ca.llmg process is not
equal to uid {gid) and its effective user ID is not super-user.
[EPERM]

Retumn Value
Upon successful completion, a value of 0 is returned. Otherwise, a
value of - 1 is returned and erro is set to indicate the error.

See Also
getuid($S), intro(S)

March 24, 1984 " Pagel

SIGNAL (S)

Name

SIGNAL ()

signal - Specifies what to do upon receipt of a signal.

Syntax

#include <signal h>

int (*signal (sig, func))()

int sig;
int (*func)();

Description

Signal allows the calling process to choose one of three ways in
which it is possible to handle the receipt of a specific signal. Sig
specifies the signal and func specifies the choice.

Sig can be assigned any one of the following except SIGKILL:

SIGHUP 01
SIGINT 02
SIGQUIT 03+
SIGLL 04+
SIGTRAP 05+
siGoT 06+
SIGEMT 07+
SIGFPE 08+
SIGKILL 09
SIGBUS 10»
SIGSEGV 11+
SIGSYS 122
SIGPIPE 13

SIGALRM 14
SIGTERM 15

SIGUSR1 16
SIGUSR2 17
SIGCLD 18
SIGPWR 19

Hangup

Interrupt

Quit

Illegal instruction (not reset when caught)
Trace trap (not reset when caught)
1/0 trap instruction

Emulator trap instruction
Floating-point exception

Kill (cannot be caught or ignored)
Bus error

Segmentation violation

Bad argument to system call

Write on a pipe with no one to read it
Alarm clock

Software termination signal
User-defined signal 1

User-defined signal 2

Death of a child (see Warning below)
Power fail (see Warning below)

See below for the significance of the asterisk in the above list.

Fune is assigned one of three values: SIG_DFL, SIG_IGN, or a func-
tion address. The actions prescribed by these values of are described

below.

The SIG_DFL value causes termination of the process upon receipt
of a signal. Upon receipt of the signal eig, the receiving process is to
be terminated with the following consequences:

March 24, 1984

Page 1

SIGNAL (S) SIGNAL ()

2. When asignal that is to be caught occurs during a read, a wnte,
an open, or an toc system call on a slow device (like a termi-
nal; but not a file), during a pause system call, or during a wait
system call that does not return immediately due to the
existence of a previously stopped or zombie process, the signal
catching function will be executed and then the interrupted sys-
temn call will return a - 1 to the calling process with ermo set to
EINTR.

3. Note that the signal SIGKILL cannot be caught.

A call to signal cancels a pending signal efg except for a pending SIG-
KILL signal.

Signal will fail if one or more of the following are true:
Sig is an illegal signal number, including SIGKILL. [EINVAL|

Func points to an illegal address. [EFAULT)

Return Value

Upon successful completion, signal returns the previous value of
func for the specified signal sig. Otherwise, a value of -1 is
returned and errno is set to indicate the error.

See Also
kill(C), kill(S), pause(S), ptrace(S), wait(S), setjmp(S).

Warning

Two other signals that behave differently than the signals described
above exist in this release of the system; they are:

SIGCLD 18 Death of a child (not reset when caught)
SIGPWR 19 Power fail (not reset when caught)

There is no guarantee that, in future releases of XENIX, these signals
will continue to behave as described below; they are included only
for compatibility with other versions of XENIX. Their use in new
programs is strongly discouraged.

For these signals, func is assigned one of three values: SIG_DFL,
SIG_IGN, or a function addrese. The actions prescribed by these
values of are as follows:

SIG_DFL - ignore signal
The signal is to be ignored.

March 24, 1984 Page 3

SIGSEM (S) _ SIGSEM (S)

Name

sigsem - Signals a process waiting on a semaphore.

Syntax

sigsem(sem_num);
int sem_num;

Description

Sigsem signals a process that is waiting on the semaphore sem_num
that it may proceed and use the resource governed by the sema-
phore. Sigeem is used in conjunction with waitsem(S) to allow syn-
chronization of processes wishing to access a resource. One or more
processes may wastsem on the given semaphore and will be put to
sleep until the process which currently has access to the resource
issues a #igsem call. If there are any waiting processes, eigsem causes
the process which is next in line on the semaphore’s queue to be
rescheduled for execution. The semaphore’s queue is organized in
first in first out (FIFO) order.

See Also

.

creatsem(S), opensem(S), waitsem(S)

Diagnostics

Sigsem returns the value (int) -1 if an error occurs. If sem_num does
not refer to a semaphore type file, errno is set to ENOTNAM. If
sem_num has not been previously opened by openeem, errno is set to
EBADF. If the process issuing a sigsem call is not the current
‘“‘owner’’ of the semaphore (i.e., if the process has not issued a
waitsem call before the sigsem), errno is set to ENAVAIL.

March 24, 1984 Page’l

SLEEP () SLEEP(S)

Name

sleep - Suspends execution for an interval.

Syntax

unsigned sleep (seconds)
unsigned seconds;

Description

The current process is suspended from execution for the number of
scconds specified by the argument. The actual suspension time may
be less than that requested for because scheduled wakeups occur at
fixed 1-second intervals, and any caught signal will terminate the
eleep following execution of that signal’s catching routine. Also, the
suspension time may be longer than requested by an arbitrary
amount due to the scheduling of other activity in the system. The
value returned by sleep will be the ‘‘unslept’’ amount (the requested
time minus the time actually slept) in case the caller had an alarm
set to go off earlier than the end of the requested sleep time, or
premature arousal due to another caught signal.

The routine is implemented by setting an alarm signal and pausing
until it (or some other signal) occurs. The previous state of the
alarm signal is saved and restored. The calling program may have
set up an alarm signal before calling eleep; if the eleep time exceeds
the time till such alarm signal, the process sleeps only until the
alarm signal would have occurred, and the caller’s alarm catch rou-
tine is executed just before the sleep routine returns, but if the deep
time is less than the time till such alarm, the prior alarm time is
reset to go-off at the same time it would have gone off without the
intervening sleep.

See Also
alarm(S), nap(S), pause(S), signal(S)

March 24, 1984 Page 1

SSIGNAL (S) SSIGNAL (S)
Notes

There are some additional signals with numbers outside the range 1
through 15 that are used by the standard C library to indicate error
conditions. Thus, some signal numbers outside the range 1 through
15 are legal, although their use may interfere with the operation of
the standard C library.

March 24, 1984 Page 2

STAT(S) DUAL (D)

st_atime Time when file data was last accessed. Changed by the
following system calls: creat(S), mknod(S), pipe(S),
utime(S), and read(S). ‘

st_mtime Time when data was last modified. Changed by the fol-
lowing system calls: ereat(S), mknod(S), pipe(S),
utime(S), and wnite(S).
st_ctime Time when file status was last changed. Changed by the
following system calls: chmod(S), chown(S), ecrest(S),
link(S), mknod(S), pipe{(S), utime(S), and write(S).
st_rdev Device indentification. In the case of block and character
special files this contains the device major and minor
numbers; in the case of shared memory and semaphores,
it contains the type code. The file
Jusr/include/sys /types.h contains the macros major()
and minor(} for extracting major and minor numbers
from st_rdes. See [usrfinclude/sys/stat.h for the sema-
phore and shared memory type code values S_INSEM and
S_INSHD.
Stat will fail if one or more of the following are true:
A component of the path prefix is not a directory. [ENOTDIR]
The named file does not exist. [ENOENT]

Search permission is denied for a component of the path prefix.
|[EACCES] '

Buf or path points to an invalid address. [EFAULT]
Fstat will fail if one or more of the following are true:
Fildes is not a valid open file descriptor. [EBADF)

Buf points to an invalid address. [EFAULT)

Return Value

Upon successful completion a value of 0 is returned. Otherwise, a
value of — 1 is returned and ermo is set to indicate the error.

See Also

chmod(S), chown(S), creat(S), link(S), mknod(S), time(S),
unlink(S)

March 24, 1984 Page 2

STDIO(S) STDIO(S)

See Also

open(S), close(S), read(S), write(S), ctermid(S), cuserid(S},
fclose(S), ferror(S), fopen(S), fread(S), fseek(S), getc(S), gets(S),
popen(S), printf(S), pute(S), puts(S), scanf(S), setbuf(S),
system(S), tmpnam(S)

Diagnostics
Invalid stream pointers can cause grave disorder, possibly including

program termination. Individual function descriptions describe the
possible error conditions.

March 24, 1684 / Page 2

STRING (S) STRING (S)

Name

string, strcat, strncat, stremp, strnemp, strepy, strnepy, strlen, strchr,
strrchr, strpbrk, strspn, strespn, strtok, strdup - Perform string
operations.

Syntax

char *streat (sl, s2)
char ®s1, *s2;

char *strncat (s1, 52, n)
char *sl, *s2;
int n;

int stremp (s1, 82)
char ®sl, *s2;

int strncmp {s1, s2, n)
char *sl, *s2;
int n;

char *strcpy (s1, 82)
char *s1, *s2;

char *strncpy (sl, s2, n)
char *sl, *s2;
int n;

int strlen (s)
char ®s;

char *strchr (s, ¢)
char *s, c;

char *strrchr (s, ¢)
char s, c;

char *strpbrk (s1, 82)
char *sl, *s2;

" int strspn (s1, s2)
char *sl, *s2;

int strespn (s1, s2)
char *sl, *s52; :

char *strtok (s1, s2)
char *sl, *s2;

char *strdup (s)
char *s;

March 24, 1984 Page'1

' STRING (8) STRING (S)

Notes

Stremp uses native character comparison, which is signed on some
machines, unsigned on others.

All string movement is performed character by character sté.rting at
the left. Thus overlapping moves toward the left will work as
expected, but overlapping moves to the right may yield surprises.

-March 24, 1984 : - Page 3

SYNC(S) SYNC (S)

Name

sync - Updates the super-block.

Syntax

syne ()

Description
Syne czuses all information in memory that should be on disk to be
written out. This includes modified super-blocks, modified inodes,
and delayed block I/O.

It should be used by programs which examine a file system, for
example fsck(C), df(C}, ete.

The writing, although scheduled, is not necessarily complete upon
-return from eynec.

See Also
sync(C})

March 24, 1984 Page 1

TERMCAP (S) TERMCAP(S)

Name

tgetent, tgetnum, tgetflag, tgetstr, tgoto, tputs - Performs terminal
functions.

Syntax

char PC;
char *BC;
char *UP;
short ospeed;

tgetent(bp, name)
char *bp, *name;

tgetnum(id)

char *id;

tgetflag(id)
char *id;

char *tgetstr (id, area)
char *id, **area;

char *tgoto (cm, destcol, destline)
char *cm;

tputs(cp, affent, outc)
register char *cp;

int affent;

int (*outc)();

Description

These functions extract and use capabilities from the terminal capa-
bility data base termcap(M). These are low level routines; see
curses(S) for a higher level package.

Tgetent extracts the entry for terminal name into the buffer at bp. Bp
should be a character buffer of size 1024 and must be retained
through all subsequent calls to tgetnum, tgetflag, and tgetstr. Tgetent
returns - 1 if it cannot open the termeap file, 0 if the terminal name
given does not have an entry, and 1 if all goes well. It will look in
the environment for a TERMCAP variable. If found, and the value
does not begin with a slash, and the terminal type name is the same
as the environment string TERM, the TERMCAP string is used
instead of reading the termcap file. If it does begin with a slash, the
string is used as a pathname rather than ftcftermcap. This can speed
up entry into programs that call tgetent, as well as to help debug new
terminal descriptions or to make one for your terminal if you can’t

March 24, 1984 -~ o Page 1

TIME (S) TIME(S)

Name

" time, ftime — "Gets time and"date.

Syntax
time_t time ((long *) 0)

time_t time (tloc)
time_t *tloc;

#include <sys/types.h>
#include <sys/timeb.h>

ftime(tp)
struct timeb *tp;

Description

Time returns the current system time in seconds since 00:00:00
GMT, January 1, 1970.

If tloc (taken as an integer) is nonzero, the return value is also
stored in the location to which #o¢ points.

Ftime returns the time in a structure (see below under Return
Value.)

Time will fail if tloe points to an illegal address. [EFAULT] Likewise,
Jtime will fail if tp points to an illegal address. {EFAULT]

Return Value

Upon successful completion, time returns the value of time. Other-
wise, a value of — 1 is returned and errno is set to indicate the error.

The ftime entry fills in a structure pointed to by its argument, as
defined by <sys/timeb.h>:

+ Structure returned by ftime system call
*
struct timeb {

time_t time;

unsigned short millitm;

short timezone;

short dstflag;

March 24, 1984 S : Pagell

TIMES (S) TIMES (S)

Name

times — Gets process and child process times.

Syntax
#include <times.h>

long times (buffer)
struct tmbuf {
long utime;
long stime;
long cutime;
long cstime;
} buffer;

Description
Timee fills the structure pointed to by buffer with time-accounting
information. This information comes from the calling process and
each of its terminated child processes for which it has executed a

wait(S).

All times are in clock ticks where a tick is some fraction of a second
defined in machine (M).

Utime is the CPU time used while executing instructions in the user
space of the calling process.

Stime is the CPU time used by the system on behalf of the calling
process.

Cutime is the sum of the utimes and cutimes of the child processes.
Cstime is the sum of the stimes and cstimes of the child processes.

Times will fail if buffer points to an illegal address. [EFAULT]

Return Value
Upon successful completion, times returns the elapsed real time, in
clock ticks, since an arbitrary point in the past, such as the system
start-up time. This point does not change from one invocation of
times to another. If times fails, a —~ 1 is returned and ermo is set to
indicate the error.

See Also
exec(S), fork(S), time(S), wait(S), machine(M)

March 24, 1984 Page 1

TMPNAM (S) TMPNAM (8)

Name

tmpnam - Creates a name for a temporary file.

Syntax
#include <stdio.h>

char *tmpnam (s)
char *s;

Description

Tmpnam generates a filename that can safely be used for a tem-
porary file. If (int)e is zero, tmpnam leaves its result in an internal
static area and returns a pointer to that area. The next call to
tmpnam will destroy the contents of the area. If (int)e is nonzero, ¢
is assumed to be the address of an array of at least L_tmpnam
bytes; tmpnam places its result in that array and returns e as its
value.

Tmpnam generates a different filename each time it is called.
Files created using tmpnam and either fopen or creat are only tem-
porary in the sense that they reside in a directory intended for tem-
porary use, and their names are unique. It is the user’s responsibil-
ity to use unlink (S) to remove the file when its use is ended.

See Also
creat(S}, unlink(S), fo‘pen(S), mktemp(S)

Notes

If called more than 17,576 times in a single process, tmpnam will
start recycling previously used names.

Between the time a filename is created and the file is opened, it is
possible for some other process to create a file with the same name.
This can never happen if that other process is using tmpnam or
mktemp, and the filenames are chosen so as to render duplication by
other means unlikely.

March 24, 1984 Page 1

TTYNAME (8) TTYNAME (S)

Name

ttyname, isatty - Finds the name of a terminal.

Syntax
char *ttyname (fildes)
int isatty (fildes)

Description

Ttyname returns a pointer to the null-terminated pathname of the
terminal device associated with file descriptor fildes.

Jeatty returns 1 if fildes is associated with a terminal device, 0 other-
wise.)

Files
[dev/*

Diagnostics

Ttyname returns a null pointer (0) if fildes does not describe a termi-
nal device in directory /dev.

Notes

The return value points to static data whose content is overwritten
by each call. :

March 24, 1984 Page 1

UMASK (S) UMASK (S)

Name

umask - Sets and gets file creation mask.

Syntax
int umask (cmask)
int cmask;
Description
Umask sets the process’ file mode creation mask to ¢maek and

returns the previous value of the mask. Only the low-order 9 bits of
emask and the file mode creation mask are used.

Return Value

The previous value of the file mode creation mask is returned.

See Also
mkdir(C), mknod(C), sh(C), chmod(S), mknod(S), open(S)

March 24, 1984 Page 1

UNAME (S) UNAME (8)

Name

uname - Gets name of current XENIX system.

Syntax
#include <sys/utsname.h>

int uname (name)
struct utsname *name;

Description

Uname stores information identifying the current XENIX system in
the structure pointed to by name.

Uname uses the structure defined in <sys/utsname.h>:

struct utsname {
char sysname[9];
char nodename[8];
char release[9];
char version|9};
unsigned short sysorigin;
unsigned short sysoem;
long sysserial;

b

Uname returns a null-terminated character string naming the current
XENIX system in the character array sysname. Similarly, nodename
contains the name that the system is known by on a communications
network. Release and version further identify the operating system.
Sysorigin and syseom identify the source of the XENIX version. Sys-
senal is a software serial number which may be zero if unused.

Uname will fail if name points to an invalid address. [EFAULT]

Return Value

Upon successful completion, a nonnegative value is returned. Oth-
erwise, — 1 is returned and errno is set to indicate the error.

March 24, 1984 Page 1

UNGETC (S) UNGETC (S)

Name

ungetc - Pushes character back into input stream.

Syntax
#include <stdio.h>

int ungetc (c, stream)
char c;
FILE *stream;

Description

Ungete pushes the character ¢ back on an input stream. The charac-
ter will be returned by the next getc call on that stream. Ungete

returns c.

One character of pushback is guaranteed provided something has
been read from the stream and the stream is actually buffered.

Attempts to push EOF are rejected.

Feeek(S) erases all memory of pushed back characters.

See Also
fseek(S), getc(S), setbuf(S)

Diagnostics

Ungete returns EOF if it can’t push a character back.

March 24, 1984 Page 1

UNLINK (S) UNLINK (S)

Returmn Value

Upon successful completion, a value of 0 is returned. Otherwise, a
value of - 1 is returned and ermo is set to indicate the error.

See Also
rm(C), close(S), link(S), open(S)

March 24, 1984 Page 2

UTIME (S) UTIME (S)

Name

utime — Sets file access and modification times.

Syntax

#include <sys/types.h>
int utime (path, times)
char *path;

struct utimbuf *times;

Description

Path points to a pathname naming a file. Utime sets the access and
modification times of the named file.

If times is NULL, the access and modification times of the file are set
to the current time. A process must be the owner of the file or have
write permission to use utime ir this manner.

If times is not NULL, timee is interpreted as a pointer to a utimbuf
structure and the access and modification times are set to the values
contained in the designated structure. Only the owner of the file or
the super-user may use utime this way.

The times in the following structure are measured in seconds since
00:00:00 GMT, Jan. 1, 1970.

struet utimbuf {

time_t actime; /* access time */
ime_t modtime; /* modification time */

3
Utime will fail if one or more of the following are true:
The named file does not exist. |ENOENT]
A component of the path prefix is not a directory. [ENOTDIR]

Search permission is denied by a component of the path prefix.
|[EACCES)

The effective user ID is not super-user and not the owner of the
file and times is not NULL. |EPERM]

The effective user ID is not super-user and not the owner of the
file and times is NULL and write access is denied. [EACCES]

The file system containing the file is mounted read-only.
|[EROFS]

March 24, 1984 Page 1

WAIT(S) WAIT(S)

Name

wait - Waits for a child process to stop or terminate.

Syntax

int wait (stat_loc)
int *stat_loc;

int wait ((int *)0)

Description

Wait suspends the calling process until it receives a signal that is to
be caught (see #ignal(S)), or until any one of the calling process’
child processes stops in a trace mode {see ptrace(S)) or terminates.
If a child process stopped or terminated prior to the call on wait,
return is immediate.

If etat_loc (taken as an integer) is nonzero, 16 bits of information
called ‘‘status’’ are stored in the low-order 16 bits of the location
pointed to by etat_loc. Status can be used to differentiate between
stopped and terminated child processes and if the child process ter-
minated, status identifies the cause of termination and passes useful
information to the parent. This is accomplished in the following
manner:

If the child process stopped, the high-order 8 bits of status will
be zero and the low-order 8 bits will be set equal to 0177.

If the child process terminated due to an ezt call, the low-order
8 bits of status will be zero and the high-order 8 bits will contain
the low-order 8 bits of the argument that the child process
passed to ezit; see ezit(S). '

If the child process terminated due to a signal, the high-order 8
bits of status will be zero and the low-order 8 bits will contain
the number of the signal that caused the termination. In addi-
tion, if the low-order seventh bit (i.e., bit 200) is set, a ‘‘core
image’’ will have been produced; see signal(S).

If a parent process terminates without waiting for its child processes
to terminate, the parent process ID of each child process is set to 1.
This means the initialization process inherits the child processes; see
intro(S).

March 24, 1984 Page 1

WAITSEM (S) WAITSEM (S)

Name

waitsem, nbwaitsem - Awaits and checks access to a resource
governed by a semaphore.

Syntax

waitsem(sem_num);
int semn_num;

nbwaitsem(sem_num);
int sem_num;

Description

Wastsem gives the calling process access to the resource governed by
the semaphore sem_num. If the resource is in use by another pro-
cess, wasteem will put the process to sleep until the resource becomes
available; nbwaitsem will return the error ENAVAIL. Wasteem and
nbwaitsem are used in conjunction with sigeem to allow synchroniza-
tion of processes wishing to access a resource. One or more
processes may waitsem on the given semaphore and will be put to
sleep until the process which currently has access to the resource
issues sigeem. Sigsem causes the process which is next in line on the
semaphore’s queue to be rescheduled for execution. The
semaphore’s queue is organized in first in first out (FIFO) order.

See Also

creatsem(S), opensem(S), sigsem(S)

Diagnostics

-Waitsem returns the value (int) -1 if an error occurs. If sem_num
has not been previously opened by a call to opensem or creatsem,
errno is set to EBADF. If sem_num does not refer to a semaphore
type file, errno is set to ENOTNAM. All processes waiting (or
attempting to wait) on the semaphore when the process controlling
the semaphore exits without relinquishing control (thereby leaving
the resource in an undeterminate state) return with ermo set to ENA-

VAIL.

March 24, 1984 Page 1

WRITE (S) WRITE (S)

below).
If the file being written is a pipe {or FIFO), no partial writes will be
permitted. Thus, the write will fail if a write of nbyte bytes would
exceed a limit.
If the file being written is a pipe (or FIFO) and the O_NDELAY flag
of the file flag word is set, then write to a full pipe (or FIFO) will
return a count of 0. Otherwise (O_NDELAY clear), writes to a full
pipe (or FIFO) will block until space becomes available.

Return Value
Upon successful completion the number of bytes actually written is
returned. Otherwise, ~ 1 is returned and errno is set to indicate the
error.

See Also

creat(S), dup(S), lseek(S), open(S), pipe(S), ulimit(S)
Notes

Writing a region of a file locked with locking causes wnite to hang
indefinitely until the locked region is unlocked.

March 24, 1984 ' Page 2

XLIST(S) XLIST(S)

Diagnostics

Xlist returns -1 and sets all type entries to zero if the file cannot be
read, is not an object file, or contains an invalid name list. Other-
wise, zlist returns zero. A return value of zero does not indicate that
any or all of the given symbols were found.

March 24, 1984 - Page 2

CONTENTS

a.out
acct

checklist
core
cpio

file system

master
mnttab
sccsfile
types
X.out

FileFormars(F)

Introductiontofile formats

Format of assemblerand link editoroutput
Format of per—processaccourtingfile
Archive file format

Listof file systems processed by fsck
Formatof corcimage file

Format of cpioarchive

Format of adirectory

Incremental dumptape format

Format of a system volume

Format of aninode

Formatof masterdeviceinformationtable
Formatof mounted file systemtable
Formatof anSCCSfile)

Primitive systemdatatypes
Loaderoutput

Index

Accountingfile acct
Assemblerand link editoroutput a.out
Archivefile ar
Archive file cpio
Corcimage file core
Datatypes, system types
Directory dir
Dumptape dump
File formats, introduction intro
File systemlist checklist
File system volume filesystem
Inode inode
loaderoutput____ x.out
Mountedfile systemtable mattab
sccsfile sccsfile

INTRO (F) ' INTRO(F)

Name

intro - Introduction to file formats.

Description
This section outlines the formats of various files. Usually, these

structures can be found in the directories fusrfinclude or
Jusrfinclude /sys.

March 24, 1984 Page 1

ACCT(F) | ACCT(F)

Name

acct - Format of per-process accounting file.

Description

Files produced as a result of calling acct(S) have records in the form
defined by <sys/acct.h>.

In ec_flag, the AFORK flag is turned on by each fork(S) and turned
off by an ezec(S). The ac_comm field is inherited from the parent
process and is reset by any ezec. Each time the system charges the
process ‘with a clock ‘tick, it also adds the current process size to
ac_mem computed as follows:

(data size) + (text size) / (number of in-core processes using
text) ‘

The value of ac_memfac_stime can be viewed as an approximation to
the mean process size, as modified by text-sharing.

See Also
acct{ C), acctcom(C), acc(S)

Notes

The ac_mem value for a short-lived command gives little information
about the actual size of the command, because ac_mem may be
incremented while a different command (e.g., the shell) is being exe-
cuted by the process.

March 24, 1984 Page 1

CHECKLIST(F) ; CHECKLIST (F)

Name

checklist — List of file systems processed by fack.

Description
The fetcfehecklist file contains a list of the file systems to be checked
when fock(C) is invoked without arguments. The list contains at
most 15 special file names. Each spectal file name must be on a
separate line and must correspond to a file system.

See Also
fsck(C)

March 24, 1984 ' Page 1

CPIO(F) CPIO(F)

Name

cpio ~ Format of cpio archive.

Description
The header structure, when the c option is not used, is:

struct {
short h_magic,
h_dev,
h_ino, .
h_mode,
h_uid,
h_gid,
h_nlink,
h_rdev,
h_mtime[2],
h_namesize,
h_filesize[2];
char h_name|h_namesize rounded to word};
} Hdr;

When the ¢ option is used, the header information is described by
the statement below:

sscanf(Chdr,"%80 %60 %6 0 946 0 %660 96 0 %0 % 0 %1 110 Y60 I8 0 %5,
&Hdr.h_magic,&Hdr.h_dev,&Hdr.h_ino,&Hdr.h_mode,
&Hdr.h_uid, &Hdr.h_gid, &H dr.h_nlink, &Hdr.h_rdev,
&Longtime,&Hdr.h_namesize,&Longfile, Hdr.h_name);

Longtime and Longfile are equivalent to Hdr.h_m#ime and
Hdr.h_filesize, respectively. The contents of each file is recorded in
an element of the array of varying length structures, archive,
together with other items describing the file. Every instance of
h_magic contains the constant 070707 (octal). The items &_deo
through A_mtime have meanings explained in etat(S). The length of
the null-terminated pathname k_name, including the null byte, is
given by h_namesize.

The last record of the archive always contains the name TRAILER!!!.

Special files, directories, and the trailer are recorded with h_filessze
equal to zero.

See Also
cpio(C), find(C), stat{S)

March 24, 1984 Page 1

DUMP (F) DUMP(F)

Name

dump - Incremental dump tape format.

Description

The dump and restor commands are used to write and read incre-
mental dump magnetic tapes.

The dump tape consists of a header record, some bit mask records, a
group of records describing file system directories, a group of records
describing file system files, and some records describing a second bit
mask.

The header record and the first record of each description have the
format described by the structure included by:

#tinclude <dumprestor.h>
Fields in the dumprestor structure are described below.
NTREC is the number of 512 byte blocks in a physical tape record.
MLEN is the number of bits in a bit map word. MSIZ is the number

of bit map words.

The TS_ entries are used in the c_type field to indicate what sort of
header this is. The types and their meanings are as follows:

TS_TYPE Tape volume label

TS_INODE A file or directory follows. The ¢_dinode field is a copy
of the disk inode and contains bits telling what sort of
file this is.)

TS_BITS A bit mask follows. This bit mask has a one bit for
each inode that was dumped.

TS_ADDR A subblock to a file (7S_INODE). See the description
of ¢_count below,

TS_END End of tape record.

TS_CLRI A bit mask follows. This bit mask contains a one bit
for all inodes that were empty on the file system when
dumped.

MAGIC All header blocks have this number in ¢_magie.

CHECKSUM Header blocks checksum to this value.

March 24, 1984 Page 1

FILESYSTEM (F) FILESYSTEM (F)

Name

file system ~ Format of a system volume.

Syntax

#include <sys /filsys.h>
#include <sys /types.h>
#include <sys/param.h>

Description

Every file system storage volume (e.g., a hard disk) has 2 common
format for certain vital information. Every such volume is divided
into a certain number of 256 word (512 byte) blocks. Block 0 is
unused and is available to contain a bootstrap program or other
information.

Block 1 is the euper-block. The format of a super-block is described
in Jusrfinclude/sys/filesys.h. In that include file, S_ssize is the
address of the first data block after the i-list. The i-list starts just
after the super-block in block 2; thus the i-list is s_ssize— 2 blocks
long. S_fsize is the first block not potentially available for allocation
to a file. These numbers are used by the system to check for bad
block numbers. If an “‘impossible’’ block number is allocated from
the free list or is freed, a diagnostic is written on the console. More-
over, the free array is cleared so as to prevent further allocation
from a presumably corrupted free list.

The free list for each volume is maintained as follows. The e_free
array contains, in s_free 1] , 8_free{a_nfree- 1], up to 49 numbers
of free blocks. S_frcc[O is the block number of the head of a chain
of blocks constituting the free list. The first long in each free-chain
block is the number (up to 50) of free-block numbers listed in the
next 50 longs of this chain member. The first of these 50 blocks is
the link to the next member of the chain. To allocate a block: decre-
ment » nfrec, and the new block is o_free[s_ nfrec] If the new block
number is 0, there are no blocks left, so give an error. If s_nfree
becomes 0, read in the block named by the new block number,
replace a_ufrce by its first word, and copy the block numbers in the
next 50 longs into the o_free array. To free a block, check if s_nfree
is 50; if so, copy &_nfree and the s free array into it, write it out, and
set #_nfree to 0. In any event set s_free|s_nfree| to the freed block’s
number and increment s_nfree.

S_tfree is the total free blocks available in the file system.
S_ninode is the number of free i-numbers in the ¢_inode array. To
allocate an inode: if o_ninode is greater than 0, decrement it and

return s_snode[s_ninode]. If it was 0, read the i-list and place the
numbers of all free inodes (up to 100} into the s_inode array, then

March 24, 1984 " Page 1

INODE (F) INODE (F)

Name

inode - Format of an inode.

Syntax

#include <sys/types.h>
#include <sys/fino.h>

* Description

An inode for a plain file or directory in a file system has the strue-
ture defined by <sys/ino.h>. For the meaning of the defined
types off_t and time_t see types(F).

Files

~ Jusrfinclude/sys/ino.h

See Also
stat(S), filesystem(F), types(F)

March 24, 1984 ’ Page 1

MASTER (F) MASTER (F)

Part 2 contains lines with 11 fields each. Each field is a maximum of
8 characters delimited by a blank if less than 8:

Field 1:

Device associated with this line
Field 2:

open routine
Field 3:

close routine
Field 4:

read routine
Field 5:

write routine
Field 8:

ioctl routine
Field 7:

receiver interupt routine
Field 8:

unused- should be nulldev
Field 9: ‘

unused- should be nulldev
Field 10:

output start routine
Field 11:

unused- should be nulldev
Part 3 contains lines with 2 fields each:
Field 1: alias name of device (8 chars. maximum).
Field 2: reference name of device (8 chars. maximum;

specified in part 1).

Part 4 contains lines with 2 or 3 fields each:

Field 1: parameter name (as it appears in description file;
20 chars. maximum)

Field 2: parameter name (as it appears in the c.c file; 20
chars. maximum)

Field 3: default parameter value (20 chars. maximum;
parameter specification is required if this field is
omitted)

Devices that are not interrupt-driven have an interrupt vector size of
zero. Devices which generate interupts but are not of the standard
character or block device mold, should be specified with a type (field
4 in part 1) which has neither the block nor char bits set.

See Also

config(CP)

March 24, 1984 , Page 2

SCCSFILE (F) SCCSFILE(F)

Name

scesfile - Format of an SCCS file.

Description

An SCCS file is an ASCII file. It consists of six logical parts: the
checksum, the delta table (contains information about each delta),
user names (contains login names and/or numerical group IDs of
users who may add deltas), flage (contains definitions of internal
keywords), comments (contains arbitrary descriptive information
about the filc), and the body (contains the actual text lines inter-
mixed with control lines). Each logical part of an SCCS file is
described in detail below.

Throughout an SCCS file there are lines which begin with the ASCII
SOH (start of heading) character (octal 001). This character is
hereafter referred to as the control character and will be represented
graphically as @. Any line described below which is not depicted as
beginning with the control character is prevented from beginning
with the control character. Entries of the form DDDDD represent a
five digit string (a number between 00000 and 99999).

Checksum

The checksum is the first line of an SCCS file. The form of the line
is:

@ hDDDDD

The value of the checksum is the sum of all characters, except those
of the first line. The @ hR provides a magic number of (octal)
064001.

*Delta Table”
The delta table consists of a variable number of entries of the form:

@s DDDDD/DDDDD/DDDDD

@d <type> <SOCS ID> yr/mo/da hrmizse <pgmr> DDDDD DDDDD
@i DDDDD ...

@x DDDDD ...

@gDDDDD ...

@m <MR number>

.

@c <comments> ...

.

Qe

March 24, 1984 Page 1

SCCSFILE (F) SCCSFILE (F)

validity checking program. The i flag controls the warning/error
aspect of the ‘“No id keywords'’ message. When the i flag is not
present, this message is only a warning; when the i flag is present,
this message will cause a‘‘fatal’’ error (the file will not be gotten, or
the delta will not be made). When the b flag is present the — b
option may be used with the get command to cause a branch in the

"delta tree. The m flag defines the first choice for the replacement

text of the scczhile.F identification keyword. The f flag defines the
“floor’’ release; the release below which no deltas may be added.
The ¢ flag defines the ‘‘ceiling’ release; the release above which no
deltas may be added. The d flag defines the default SID to be used
when none is specified on a get command. The n flag causes delta to
insert a ‘‘nuil’” delta (a delta that applies no changes) in those
releases that are skipped when a delta is made in a new release (e.g.,
when delta 5.1 is made after delta 2.7, releases 3 and 4 are skipped).
The absence of the n flag causes skipped releases to be completely

.empty. The j flag causes get to allow concurrent edits of the same

Sce

base SID. The 1 flag defines a list of releases that are locked against
editing (get(CP) with the — e option). The q flag defines the
replacement for the identification keyword. :

Comments

Arbitrary text surrounded by the bracketing lines @t and @ T. The
comments section typically contains a description of the file’s pur-
pose.
Body
The body consists of text lines and control lines. Text lines don’t
begin with the control character, control lines do. There are three
kinds of control lines: insert, delete, and end, as follows:
@IDDDDD
@D DDDDD
@EDDDDD

The digit string (DDDDD) is the serial number corresponding to the
delta for the control line.

Also
admin(CP), delta(CP), get{CP), prs(CP)

Xenix Programmer’s Guide

March 24, 1984 Page 3

X.OUT (F) X.OUT(F)

Name
x.out — loader output

Synopsis
#include [a.out.h|

Description :
x.out is the output file of the loader d(CP). Id(CP) makes x.out
executable if there are no errors and no unresolved external refer—
ences. The following layout information is given in the include file
for the 68000:

struct xexec | I* x.out header */
unsigned short X_magic; /* magic number */
unsigned short x.ext; /* size of header extension */

long xdtext; /* size of text segment */

long x_data; * size of initialized data */

long xbss; * size of uninitialized data */
long X_Syms; 7* size of symbol table */

long x_reloc; * relocation table length */

long xentry; /* entry point */

char xcpu; * cpu type & byte/word order */

char xrelsym; /* relocation & symbol format */

unsigned short x.renv; /* run—time environmens */
Is
struct xext { /* x.out header extension */

long xe.trsize; /* size of text relocation */

long xedrsize; /* size of data relocation */

long xetbase; /* text relocation base */

long xe.dbase; /* data relocation base */

long xestksize; /* stack size (if XE_FS set) ¥/
i» .
The file has four sections: a header, the program’s text and data,
relocation information, and a symbol table, in that order. The
header optionally has a header extension as shown above. The
relocation and symbol section will be empty if the program was
loaded with the —s option of ld, or if the symbols and relocation -
have been removed by strip(CP). The sizes of each section in the
header are given as longs, but have even alignment. The size of
the header is not included in any of the other sizes. When an
x.out file is loaded into core for execution, three logical segments
are set up: the text scgment, the data segment (with uninitialized
data, which starts off as all 0, following initialized data), and a
stack. The text segment begins at 0 in the core image; the header

May 10, 1984 Page 1

