68—5—24—84-1.0/1.0 Development System

IMPORTANT NOTE ABOUT INSTALLATION

DEVELOPMENT SYSTEM
XENIX 3.0forthe Apple™ Lisa2™
May24, 1984

These notes contain information about installing the optional XENIX Development
System. If you wish to install the Development System at the same time as installing
the XENIX Operating System, please refer to the Installation Guide in the binder
marked Installation Guide/Operations Guide/User’s Guide. When installing the
XENIX Development System after you’ve already installed the XENIX Operating
System, refertothese notes.

READ THE INSTALLATION NOTES INTHEIR ENTIRETY AND MARK SURE
YOU COMPLETELY UNDERSTAND THE INSTALLATION PROCESS
BEFORE INSTALLING THE PRODUCT. Note that you need the XENIX Operating
System in order to use the Development System, so you must install the XENIX
Operating System first.

If you have already installed the XENIX Operating System, and wish to install the
Development System Package separately, follow this procedure:
1. Loginasroot(super—user).

2. The floppies are numbered (beginning with 1) and must be installed in
sequential numeric order. Insert the first Development System floppy into
the floppy drive andenter the command:

fetc/install

3. Theinstallutility willprompt:
First floppy (y/n)
Enter ‘y’ and pressRETURN.

4. Theprogram will prompt you for each floppy. Remove the previous floppy
from the floppy drive and insert the rext Development Sytem floppy. Enter
‘y’ inresponsetothe prompt (#).

S. Whenyouhaveinstalled the final Development System floppy, enter ‘n’ in

responsetothe prompt. ,
Note that some files may extend from one floppy tothe next. Inthiscase, the tar utility

next floppy and press RETURN whenthe floppy is properly inserted and the floppy door
latchisclosed.

The Santa Cruz Operation XENIX for the Apple Lisa 2

The X

ENIX™

Development System

Programmer’s Guide

for the Apple Lisa 2"

The Santa Cruz Cperation, Inc.

Information in this document is subject to change without notice and
does not represent a commitment on the part of The Santa Cruz
Operation, Inc. and Microsoft Corporation. The software described in
this document is furnished under a license agreement or nondisclosure
agreement. The software may be used or copxed only in accordance
with the terms of the agreement.

©The Santa Ctuz Operation, Inc., 1984
©Microsoft Corporation, 1983

The Santa Cruz Operation, Inc.
500 Chestnut Street E

P.O. Box 1900

Santa Cruz, California 95061

(408) 425-7222 - TWX: 310-598-4510 SCO SACZ

UNIX is a trademark of Bell Laboratories
XENIX is a trademark of Microsoft Corporation
Apple, Lisa 2, and ProF'ile are trademarks of Apple Computer Inc.

Release: 68-5-24-84-1.0/1.0

Contents

b

Introduction

Overview 1
Creating C Language Programs 1
Creating Other Programs 2
Creating and Maintaining

- Libraries 2
Maintaining Program Source
Files 3
Creating Programs With Shell
Commands 3
Using This Guide 4
Notational Conventions $§

[Y

— ot
[- 3O] = wn WN -

b jumy

Cc: A Compiler

Introduction 1

Invoking the C Compiler 2
Compiling a Source File 3
Compiling Several Source
Files 4

Using Object Files S
Naming the Output File 6
Compiling Without Linking 6
Linking to Library

Functions 7

Optimizing a Source File 8
Producing an Assembly Source
File 9

Stripping the Symbol Table 9
Profiling a Program 10
Saving a Preprocessed Source
File 10

Defining a2 Macro 10
Defining the Include
Directories 11

Efror Messages 12

NN RN NN NRNN NN ©
e e s O RN AN
NE W= O

—
=)

Lint: A C Program Checker

Introduction 1

Invoking lir 1

Checking for Unused Variables
and Functions 2

Checking Local Variables 3
Checking for Unreachable

W WL W
W & W R =

311

&

NN D W -

SRR RR AAARAS

e \D 00 ~J

0 .
1

(7]

L wnan
[= 3R} S W R =

v
&K ~3

Statements 4
Checking for Infinite Loops S
Checking Function Return

Values 5§
Checking for Unused Return
Values 6

Checking Types 6

Checking Type Casts 7
Checking for Nonportable
Character Use 8

Checking for Assignment of
longs to ints 8

Checking for Strange
Constructions 9

Checking for Use of Older C
Syntax 10

Checking Pointer Alignment 11
Checking Expression Evaluation
Order 11

Embedding Directives 12
Checking For Library
Compatibility 13

Make: A Program Maintainer

Introduction 1

Creating a Makefile 1
Invoking Make 3

Using Pseudo—Target Names S
Using Macros 6

Using Shell Environment
Variables 8

Using the Built—In Rules 9
Changing the Built—in Rules 11
Using Libraries 13
Troubleshooting 14

Using Make: An Example 15

SCCS: A Source Code Control System

Introduction 1

Basic Information 1

Creating and Using S—files S
Using ldentification

Keywords 14

Using S—file Flags 17
Modifying S~—file

Information 19

Printing from an S—file 22
Editing by Several Users 24

Protecting S—files 25
Repairing SCCS Files 28
Using Other Command Options 30

T
D
—_—0

Adb: A Program Debugger

Introduction 1
Invocation 1

The Cumrent Address — Dot |
Formats 2

Debugging C Programs 3
Maps 7

Advanced Usage 8
Patching 11

Notes 12

Figures 13

Adb Summary 26

pocoaaacnans &
b b D OO NI\ S WD e

-o

7 As: An Assembler

7.1 Introduction 1

7.2 Command Usage 1

7.3 Invocation Options 1

7.4 Source Program Format 2

7.5 Symbols and Expressions 4

7.6 Instructions and Addressing
Modes 10

7.7 Assembler Directives 13

7.8 Operation Codes 17

7.9 Error Messages = 18

Lex: A Lexical Analyzer

Introduction 1

Lex Source Format 3

Lex Regular Expressions 4

Invoking lex S

Specifying Character

Classes §

8.6 Specifying an Arbitrary
Character 6

8.7 Specifying Optional
Expressions 7

8.8 Specifying Repeated
. Expressions 7

8.9 Specifying Alternation and
Grouping 7 :

8.10 Specifying Context

Sensiti ity 8

90 90 90 00 %O
(7R Ry C

1-iii

1=iv

8.11
8.12

9.15
9.16
9.17
9.18
9.19

9.20
9.21

Specifying Expression
Repetition 9

Specifying Definitions 9
Specifying Actions 9
Handling Ambiguous Source
Rules 13 '
Specifying Left Comtext
Sensitivity 16

Specifying Source

Definitions 18

Lex and Yacc 20
Specifying Character Sets' 24
Source Format 25

Yacc: A Compiler—Compiler

Introduction 1

Specifications 4

Actions 7

Lexical Analysis 9

How the Parser Works 11
Ambiguity and Conflicts 16
Precedence 21

Error Handling 24

The Yacc Environment 26 -
Preparing Specifications 27
Input Style 27

Left Recursion 28

Lexical Tie—ins 29
Handling Reserved Words 30
Simulating Error and Accept in
Actions 31

Accessing Values in Enclosing
Rules 31

Supporting Arbitrary Value
Types 32

A Small Desk Calculator 33
Yacc Input Syntax 36

An Advanced Example 38
Old Features 44 >

Appendix A C Larguage Portability

Introduction 1

Program Portability 2

Machine Hardware 2

Compiler Differences 7

Program Environment Differences 11
Portability of Data 12

Lint 12

A.8 Byte Ordering Summary 13

Appendix B M4: A Macro Processor

W
—

Introduction 1

Invoking m4]

Defining Macros 2
Quoting 3

Using Arguments 5

Using Arithmetic Built—ins 6
Manipulating Files 7

Using System Commnands 7
Using Conditionals 8

0 Manipulating Strings 8

i Printing 10

VeueE W

PEPEEEEEE R

b

Chapter 1
Introduction

1.1 Overview 1-1

1.2 Creating CLanguage Programs 1-1

1.3 Creating Other Programs 1-1

1.4 Creating and Maintaining Libraries 1-2

1.5 Maintaining Program Source Files 1-2

1.6 Creating Programs With Shell Commands 1-3
1.7 Using This Guide 1-3

1.8 Notational Conventions 1-4

Introduction

1.1 Overview

This guide explains how to use the XENIX Software Development system to
create and maintain C and assembly language programs. The system provides
a broad spectrum of programs and commands to help you design and develop
applications and system software. These programs and commands let you
create C and assembly language programs for execution on the XENIX system.
They also let you debug these programs, automate their creation, and maintain
versionsof the programs you develop.

The following sections introduce the programs and commands of the XENIX
Software Development System and explain the steps you can take to develop
programs for the XENIX system. Most of the programs and commandsin these
introductory sections are fully explained later in this guide. Some commands
mentioned here are part of the XENIX Timesharing System and are explained in
the XENIX User’s Guide and XENIX Operatione Guide.

1.2 Creating C Language Programs

All C language programs start as a collection of C program statementson files.
The XENIX system provides a number of text editors that let you create source
files easily and efficiently. The most convenient editor is the screen-oriented
editor vi. Vi provides many editing commands that let you easily insert,
replace, move, and search for text. All commands can be invoked from
command keys or from a command line. The program has also hasa variety of
options that let you modify its operation.

Once a C language program has been written to a source file, you can create an
executable program using the cc command. The cc command invokes the
XENIX C compiler which compiles the source file. This command alsoinvokes
other XENIX programs to prepare the compiled program for execution.

You can debug an executable C program with the XENIX debugger adb. Adb
provides a direct interface to the machine instructions that make up an
executable program.

If you wish to check a program before compilation, you can use lint, the XENIX
C program checker. Lint checks the content and construction of C language
programs for syntactical and logical errors. It also enforces a strict set of
guidelines for proper C programming style. Lintis normally used in the early
stages of program development to check for illegal and improper usageof the C
language.

‘1.3 Creating Other Programs

The C programming language can meet the needs of most programming
projects. In cases where finer control of execution is required, you may create

1-1

XENIX Programmers Guide

assembly language programs using the XENIX assembler as. Ae assembles
source files and produces relocatable object files that can be linked to your C
language programs with ld. The Id program is the XENIX linker. It links
relocatable object files created by the C compiler or assembler and produces
executable programs. Note that the cc command automatically invokes the
linker and the assembler so use of either isoptionzal.

You can create source files for lexical analyzers and parsers using the program
generators lez and yace. The lez program is the XENIX lexical analyzer
generator. It generates lexical analyzers, written in C program statements,
from given specification files. Lexical analyzers are used in programs to pick
patterns out of complex input and convert these patterns into meaningful
values or tokens. The yecc program is the XENIX parser generator. It
generates parsers, written in C program statements, from given specification
files. Parsers are used in programs to convert meaningful sequences of tokens
and values into actions. Lez and yacc are often used together to make complete
programs.

You can preprocess C and assemb!ly language source files, or even lez and yacc
source files using the m4 macro processor. The m4 program performs several
preprocessing functions, such as converting macros to their defined values and
including the contents of files into ascurce file.

1.4 Creating and Maintaining Libraries

You can create libraries of useful C and assembly language functions and
programs using the ar and ranlid programs. Ar, the XENIX archiver, can be
used to create libraries of relocatable object files. Ranlib, the XENIX random
library generator, converts archive libraries to random libraries and places a
table of contents at the front of each library.

The lorder command finds the ordering relation in an object library. The
tsort command topologically sorts name lists so that forward dependencies are
apparent.

1.5 Maintaining Program Source Files

You can automate the creation of executable programs from C and assembly
language source files and maintain your source files using the make program
and the SCCS commands.

The make program is the XENIX program maintainer. It automates the steps
required to create executable programs and provides a mechanism for ensuring
up to date programs. It is used with small, large, and medium-scale
programming projects.

The Source Code Control (SCCS) commandslet you maintain different versions
of asingle program. The commands compress all versions of a source file into a

1-2

Introduction

single file containing a list of differences. These commands also restore
compressed files to their original size and content.

Many XENIX commandslet you carefully examine a program’s source files. The
ctags command creates a tags file so that C functions can be quickly found ina
set of related C source files. The mkstr command creates an error message file
by examining a C source file.

Other commands let you examine object and executable binary files. The nm
command prints the list of symbol names in a program. The hd command
performs a hexadecimal dump of given files, printing files in a variety of
formats, one of which is hexadecimal. The od command performs an octal
dump of given files. adb (see chapter 6), allows disassembly of your program.
The size command reports the size of an object file. The strings command
finds and prints readable text (strings) in an object or other binary file. The
strip command removes symbolsand relocation bitsfrom executable files. The
sum command computes check sum for a file and counts blocks. It is used in
looking for bad spots in a file and for verifying transmission of data between
systems. The xstr command extracts strings from C programs to implement
shared strings.

1.8 Creating Programs With Shell Commands

In some cases, it is easier to write 2 program as a series of XENIX shell
commands than it is to create a C language program. Shell commandsprovide
much of the same control capability as the C language and give direct access to
all the commands and programs normally available to the XENIX user.

The csh command invokes the C-shell, a XENIX command interpreter. The C-
shell interprets and executes commands taken from the keyboard or from a
command file. It has a C-like syntax which makes programming in this
command language easy. It also has an aliasing facility, and a command history
mechanism.

1.7 Using This Guide

This guide is intended for programmers who are familiar with the C
programming language and with the XENIX system.

Clanguage programmers should read Chapters 2, 3, and 6 for an explanation of
how to compile and debug C language programs.

Assembly language programmers should read Chapter 7 for an explanation of
the XENIX assembler and Chapter 6 for an explanation of how to debug
programs.

Programmers who wish to automate the compilation process of their programs
should read Chapter 4 for an explanation of the make program. Programmers

1-3

XENIX Programmers Guide

who wish to organize and maintain multiple versions of their programs should
read Chapter 5 for an explanation of the Source Code Control System (SCCS)
commands. :

Special project programmers who need a convenient way to produce lexical
analyzers and parsers should read Chapters 8 and 9 for explanations of the lez
and yace program generators.

Chapter 1 introduces the XENIX software development programs provided
with this package.

Chapter 2 explains how to compile C language programs using the cc
command.

Chapter 3 explains how to check C language programs for syntactic and
semantic correctness using the C program checker lint.

Chapter 4 explains how to automate the development of a program or other
project using the make program.

Chapter 5 explains how to control and maintain all versions of a project’s
source files using the SCCS commands.

Chapter 6 explains how to debug C and assembly language programs using the
XENIX debugger adb.

Chapter 7 explains how to assemble assembly language programs using the
XENIX assembler as.

Chapter 8 explains how to create lexical analyzers using the program generator
lez.)

Chapter 9 explains how to create parsers using the program generator yace.

Appendix A explains how to write C langugae programs that can be compiled
on other XENIX systems.

Appendix B explains how to use to create and process macros using the m4
macro processor.
1.8 Notational Conventions

This guide uses a number of special symbols to describe the syntax of XENIX
commands. The following is a list of these symbols and their meaning.

[} Bracketsindicate an optional command argument.

Ellipses (three dots) indicate that the preceding
argument may be repeated one or more times.

1-4

Introduction

SMALL Small capitalsindicate a key to be pressed.
bold Boldface charactersindicate a command name.
stalics Italic characters indicate a placeholder for a command

argument. When typing a command, a placeholder
must be replaced with an appropriate filename,
number, or option.

1-5

Chapter 2
Cc: A C Compiler

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

Introduction 2-1

Invoking the C Compiler 2-2
Compiling a SourceFile 2-2
Compiling Several SourceFiles 2-3
Using ObjectFiles 2-4

Naming the OutputFile 2-5
Compiling Without Linking 2-6
Linking toLibrary Functions 2-6

Optimizing a SourceFile 2-7

2.10 Producing an Assembly SourceFile 2-8

2.11 Stripping the Symbol Table 2-8

2.12 Profiling aProgram 2-9

2.13 Saving aPreprocessed SourceFile 2-9

2.14 DefiningaMacro 2-10

2.15 Defining the Include Directories 2-10

2.16 Error Messages 2-11

Cc: A C Compiler

2.1 Introduction

This chapter explains how to use the cc command to create executable
programs from C language source files. The command compiles C source files
by invoking the XENIX C compiler, the C preprocessor, and in some cases the C
optimizer. It then invokes other programs, such as the XENIX assembler a2 and
linker ld, to complete the creation of the executable program.

The cc command accepts as C source files any file containing a complete C
program or one or more complete C functions. The command processes the
source files in five phases: preprocessing, assembly source generation,
optimization (if necessary), machine code generation, and linking.

In the preprocessing phase, the cc command invokes the C preprocessor, which
searches the source file for C directives. The preprocessor replaces each
directive with a corresponding value or meaning. For example, it replaces each
occurrence of a macro name with its defined value and each include directive
with the contents of its corresponding include file. It then copies the expanded
version of the source file to a temporary file. The preprocessor also allows
conditional compilation.

In the assembly source generation phase, the cc command invokes the C
compiler which translates the C program statementsin the temporary file into
equivalent assembly language instructions. These instructions form a
complete assembly language source file that performs the same tasks as the
statements in the C source file. The compiler copies the assembly instructions
to a temporary file.

In the optional optimization phase, the cc-O command invokes the C optimizer
which modifies the temporary assembly language file, making it smaller and
faster without altering the tasks its performs. Programs of all sizes benefit
from optimization.

In the machine code generation phase, the command invokes the XENIX
assembler ae which assembles the temporary assembly language file. The
assembler creates an “object file”’ containing relocatable machine instructions
that can be prepared for execution. If more than one source file is processed, a
permanent object file is created for each source file.

In the linking phase, the command invokes the XENIX linker {d, which resolves
all unresolved references to variables and functions in the object file. If
necessary, ldsearches the appropriate program libraries to link the contents of
other object files to the given file. The linker then writes the linked instructions
to a file. This file, called an "executable binary” file, contains the program’s
machine instructions in executable binary form. The file z.o0ut is used by
default.

This chapter assumes that you are familiar with the C programming language
and that you can create C program source files using a XENIX text editor.

2-1

XENIX Programmer’s Guide

2.2 Invoking the C Compiler

You can invoke the C compiler with the cc command. The command has the
form

cc [option] ... filename ...

where option is a command option, and filename is the name of a C language

*source file, an assembly language source file, or an object file. You may give
more than one option or filename, if desired, but you must separate each item
with one or more whitespace characters. '

The ce command options let you control and modify command operation. For
example,you candirect the command to skip the optimization phase or createa
permanent copy of the file created during the assembly source generation
phase. The options also let you specify additional information about the -
compilation, such as which program libraries to examine and what the name of
the executable file should be. The options are described in detail in the
following sections. ’

The cc command lets you name three different kinds of files: C source, assembly
language source, and object files. A file’s contents are identified by the filename
extension. Csource files have the extension .c. Assembly language source files
have the extension .e. Object files have the extension .o. The command delays
processing of each type of file until the appropriate phase. Thus C source files
are processed immediately, assembly language files are processed in the
machine code generation phase, and object files are processed in the linking
phase. An assembly language source file may be created by hand using a XENIX
text editor, or created using the cc command’s assembly source generation
phase (see the —S option later in this chapter). An object file must be the output
of the XENIX assembler or the cc command’s machine code generation phase
(see the ~c option).

2.3 Compiling a Source File

You can compile a source file containing a complete C program by giving the
name of the file when you invoke the cc command. The command reads and
compiles the statements in the file, links the compiled program with the
standard C library, then copies the program to the default output file z.out

To compile asource program, type:

cc filename
where filename is the name of the file containing the program. The program
must be complete, that is, it must contain a main program function. It may
contain calls to functions explicitly defined by the program or by the standard
C library. For example, assume the the following program is stored in the file
named main.c.

Cc: A C Compiler

#include <stdio.h>

main (}

{

int x,y;

scanf("%d + %d”, &x, &y);
printf(” %d\n", x+y);

To compile this program, type
c¢ main.c

The command first invokes the C preprocessor which adds the statements in
the file fusr/include/stdio.h to the beginning of the program. It then compiles
these statements and the rest of the program statements. Next, the command
links the program with the standard C library which contains the binary code
for the scanf and printf functions. Finally, it copies the program to the file
z.out. i

You canexecute the new program by typing the command
x.out

The program waits until you enter a sum, then prints the value of that sum.
For example, if youtype *“3 + 5" the program displays ““8”.

Note that when the command creates the z.out file, it gives the file the
" permissions defined by your current file creation mask.

2.4 Compiling Several Source Files

Large source programs are often split into several files to make it easier to
update and edit. You can compile such a program by giving the names of all the
files belonging to the program when you invoke the cc command. The
command reads and compiles each file in turn, then links all object files together
and copies the new program to the file z. out.

To compile several source files, type

cc filename ...
where each filename is separated from the next by whitespace. One of these
files (and no more than one) must contain a program function named "main”.

The others may contain functions that are called by this main function or by
other functionsin the program.

2-3

XENIX Programmer’s Guide

For example, suppose the following main program function is stored in the file
main.

#include <stdio.h>
extern int add();

main ()
int x,y,z;
scanf ("%d + %d", &x, &y);
z = add (x, y);

printf (" %d \n”, z);
}

Assume that the following functionisstoredin the file add.c:

add (a, b)
int a, b;

{
}

Youcan compile these files and create an executable program by typing

return (a + b);

cc main.c add.c

The command compiles the statements in main.c, then compiles the
statements in add.c. Finally, it links the two together (along with the standard
C library) and copies the program to z.out. This program, like the program in
the previous section, waits for a sum, then prints the value of the sum.

Compiling several source files at a time causes the command to create object
files to hold the binary code generated for each source file. These object files are
then used in the linking phase to create an executable program. The object files
have the same basename as the source file, but are given the .o file extension.
For example, when you compile the two source files above, the compiler
produces the object files main.o and add.o. These files are permanent files, i.e.,
the command does not delete them after completing its operation. The
command deletes the object. file only if you compile asingle source file.

2.5 Using Object Files

_You can use an object file created by the cc command in any later invocation of
the command. When you specify an object file, the command does nothing with
it until the linking phase, that is, the command does not compile or assemble
the file.

2-4

Cc: A C Compiler

Source files containing functions do not need to be recompiled each time they
are linked to a new program. The generated object files can be used instead,
saving the programmer the time it takes to compile each source file. This is
another reason large programs are often splitinto several modules.

To create a program from both source files and object files, give the object
filenames along with the source filenames in the command invocation. Make
sure the filenames are separated by whitespace characters. For example,
assume that the following main program function is stored in the file mult.c:

#include <stdio.h>

main ()

{

int x,y,2,1;

scanf(”%d *» %d”, &x, &y);
for (i==0; i<y; i++)

z == add (z,x) ;
printf("%d \n”, z);

}

This program uses the add function compiled in the previoussection. Since the
object file containing this function is named add.o, you can compile this
program and link the object file to it by typing

cc mult.c add.o
The compiler compiles the statements in mult.c and produces an object file for
it, then the compiler links the add.o file to the new file and stores the executable

program in z.out. This program waits for you to enter the values to be
multiplied, multiplies the values, then displays the result.

2.6 Naming the Output File

You can change the name of the executable program file from z.out to any valid
filename by using the —o (for “output’’) option. The option has the form:

—o filename
where filename is a valid filename or a full pathname. If a filename is given, the
program file is stored in the current directory. If a full pathname is given, the
file is stored in the given directory. If a file with that name already exists, the
compiler removes the old file before creating the new one.

For example, the command

c¢ main.c add.o -o addem

XENIX Programmer’s Guide

causes the compiler to create an executable program file eddem from the source

file main.c and object file add.o. You can execute thisprogram by typing
addem

The permissions defined by the file creation mask apply to this file just as they
doto z.out.

Note that the —o option does not affect the z.out file. This means that the cc
command does not change the current contents of this file if the —o option has
been given.

2.7 Compiling Without Linking
You can compile a source file without linking it by using the —c {fcr “compile’)
option. This option is useful if you wish to have an object file available for later
programs but have no current program that usesit. The option has the form:

—c filename
where filename is the name of the source file. You may give more than one
filename if you wish. Make sure each name is separated from the next by a

space.

For example, to make object files for the source files matn.c, add. ¢, and mult.c,
type

cc —¢ main.c add.c mult.c
The command compiles each file in turn and copies the compiled source to the
files main.o, add.o, and mult.o.
2.8 Linking to Library Functions
A library is a file that contains useful functions in object file format. You can
link a source file to these functions by linking it to the library with the -1 (for
“library”} option. The option, used by the linker during the linking phase,
causes the linker to search the given library for the functions called in the
source file. If the functions are found, the linker links them to the source file.
The option hasthe form

cc -lname

where name is a shortened version of the library’s actual filename. The actual
filename has the form

Cc: A C Compiler

libname.a

Spaces between the name and option are not permitted. The linker builds the
library’s filename from the given name, then searches the /Isb directory for the
library. If not found, it searches the /usr/iib directory.

For example, the command
¢c main.c -lcurses
links the library ltbcurses. ato the source file masn.c.

A library is a convenient way to store a large collection of object files. The
XENIX system provides several libraries. The most common is the standard C
library. This library is automatically linked to your program whenever you
invoke the compiler. Otker libraries, such as libcurses.a, must be explicitly
linked using the —-1<libname>> option. Without the -1 flag, cc and 1d would
identify a library by inspecting its first byte. The XENIX libraries and their
functions are described in detail in the XENIX Programmer’s Reference Guide.

Note that you can create your own libraries with the XENIX ar and ranlib
programs. These commands let you copy object files to a library file and then
prepare the library for searching by the linker. These commands are described
in the XENIX Reference Manual.

In general, the linker does not search a library until the -1 option is

encountered, so the placement of the option is important. The option must
.follow the names of source files containing calls to functionsin the given library.

2.9 Optimizing a Source File

You can optimize a source file, that is, make its corresponding assembly source

file more efficient, by using the —O (for “optimize”) option. For example, the

command

cc -0 main.c

optimizes the source file main.c.

Optimization only applies to compiled files; the compiler cannot optimize

assembly source or object files. Furthermore, the —~O option must appear

before the names of the files you wish to optimize. Files preceding the option

arenotoptimized. For example, the command

cc add.c -O main.c

optimizes masn.¢ but not add.c.

XENIX Programmer’s Guide

You may combine the —-O and —c options to compile and optimize source files
without linking the resulting object files. For example, the command

c¢ —O ~¢ main.c add.c
creates optimized object filesfrom thesource files main.c and add.c.
Although optimization is very useful for large programs, it takes more time

than regular compilation. In general, it should be used in the last stage of
program development, after the program has been debugged.

2.10 Producing an Assembly Source File

You can direct the compiler to save a copy of the temporary assembly source
file by using the ~S (for *“source”) option. The option causes the command to
copy the temporary assembly source file to a permanent file. This permanent
file has the same basename as the source file, but is given the file extension .s.

For example, the command
cc -S add.c

compiles the source file add.c and creates an assembly language instruction file

add.s.

The —S option applies to source files only; the compiler cannot create a source
file from an existing object file. Furthermore, the option must appear before
the namesof the files for which the assembly source is to be saved.

2.11 Stripping the Symbol Table

You can reduce the size of a program by using the —s, option. This option
causes the cc command to strip the symbol table. The symbol table contains
‘information about code relocation and program symbols and is used by the
XENIX debugger adb to allow symbolic references to variables and functions
when debugging. The information in this table is not required for normal
execution and can be stripped when the program has been completely
debugged.

The —s option strips the entire table, leaving machine instructionsonly.
For example, the command
cc —s main.c add.c

creates a executable program that contains no symbol table. It also creates the
object files masn.oand add. o which contain no symbol tables.

Cc: A C Compiler

The -8 option may be combined with the —O option to create an optimized and
stripped program. An optimized and stripped program has the smallest size
possible.

Note that you can also strip a program with the XENIX command strip. See
the XENIX Reference Manual for details.

2.12 Profiling a Program

You can examine the flow of execution of a program by adding *‘profiling’’ code
to the program with the —p option. The profiling code automatically keeps a
record of the number of times program functions are called during execution of
the program. This record is written to the mon.out file and can be examined
with the prof command.

For example, the command
¢¢ -p main.c

adds profiling code to the program created from the source file matn.c. The
profiling code automatically calls the monitor function which creates the
mon.out file at normal termination of the program. The prof command and
monitor function are described in detail in prof(CP) and monitor(S) in the
XENIX Reference Manual.

2.13 Saving a Preprocessed Source File
You can save a copy of the temporary file created by the C preprocessor by
using the —P (for ““preprocessing’’) option. The temporary file is identical to
the source file except that all macro names have been expanded and all include
directives have been replaced by the specified files. The command copies this
temporary file to a permanent file which has the same basename as the source
file and the filename extension .1.
For example, the command

cc =P main.c
creates a preprocessed file for the source file main.c.
You may also display a copy of the preprocessed source file by using the ~E

option. This option invokes the C preprocessor only and directs the
preprocessor tosend the preprocessed file to the standard output.

2.9

XENIX Programmer’s Guide

2.14 Defining a Macro

You can define the value or meaning of a macro used in asource file by using the
. =D (for “define’’) option. The option lets you assign a value to a macro when
you invoke the compiler and is useful if you have used if directives in your
source files. :
The option hasthe form
-Dname=def

where name is the name of the macro and def is its value or meaning. For
example, the command

cc -DNEED=2 main.c
sets the macro “NEED” to the value “2”. The command compiles the source
file main.c, replacing every occurrence of “NEED”’ with “‘2”. If a nameisgiven
but no definition, the compiler assigns the value 1 by default.
You can also remove the initial definition of a macro by using the —U (for
“undefine”) option. Removing the initial definition is required if you wish to
use the-D optiontwice in the same command line. The option hasthe form

cc -Uname
where name isthe macro name. For example, in the command

cc -DNEED=2 main.c -UNEED -DNEED=23 add.c

the -U options removes the previous definition of “NEED"” and allows a new

. one.

2.15 Defining the Include Directories
You can explicitly define the directories containing include files by using the -1
(for ““include’) option. This option adds the given directory to the list of
directories containing include files. These directories are automatically
searched whenever you give an include directive in which the filename is
enclosed in angle brackets. The option hasthe form

~ldirectoryname

where directoryname is a valid pathname to a directory containing include
files. For example, the command

c¢ -Imyinclude main.c

2-10

Cc: A C Compiler

causes the compiler to search the directory myinclude for include files
requested by the source file main.c.

- The directoriesare searched in the order they arc given and only until the given
include file is found. The Jusr/include directory is the default include directory
andisalwayssearched first.

2.16 Error Messages

The cc command itself produces error messages. Ii also lets the XENIX C
compiler, C preprocessor, C optimizer, assembler, and linker programs detect
and announce any errors found in the source files or command options. The
error messages are usvally preceded by the name of the program which
detected the error. If the error issevere, the cc commandterminates and leaves
all files unchanged. Otherwise, it proceeds with the compilation and linking of
the given source files if you have given the appropriate commands.

Most error messages are generated by the C compiler. This displays messages
about errors found during compilation such as incorrect syntax, undefined
variables, and illegal use of operators. Error messages from the compiler begin
with the name of the source file and list the numker of the line containing the
error.

The XENIX linker also generates many error messages. It displays messages
about errors found during linking such as undefined symbols and misnamed
libraries. The preprocessor, optimizer, and assembler also display messages if
errors are found. For example, the preprocessor displays an error message if it
cannot find an include file.

For convenience, you should use the XENIX C program checker lint before
compiling your C source files. Lint perforins detailed error checking on asource
file and provide a list of actual errors and possible problems which may affect
execution of the program. See Chapter 3, “‘Lint: A C Program Checker” for a
description of lint.

Chapter 3
Lint: A C Program Checker

3.1 Introduction 3-1

3.2 Invoking lint 3-1

3.3 Checkingfor Unused Variablesand Functions 3-2
3.4 CheckingLocal Variables 3-3

3.5 Checkingfor Unreachable Statements 3-4
3.6 Checkingfor InfiniteLoops 3-4

3.7 CheckingFunction Return Values 3-5

3.8 Checking for Unused Return Values 3-6

3.9 Checking Types 3-6

3.10 Checking Type Casts 3-7

3.11 Checking for Nonportable Character Use 3-7
3.12 Checking for Assignment of longs toints ~ 3-7
3.13 Checking for Strange Constructions 3-8

3.14 Checking for Use of Older C Syntax 3-9

3.15 Checking Pointer Alignment 3-10

3.16 Checking Expression Evaluation Order 3-10

3.17 Embedding Directives 3-11

3.18 Checking For Library Compatibility 3-12

Lint: A C Program Checker

3.1 Introduction
This chapter explains how to use the C program checker lint. The program
examines C source files and warns of errors or misconstructions that may cause
errors during compilation of the file or during execution of the compiled file.
In particular, lint checksfor:

Unused functions and variables

Unknown values in local variables

Unreachable statements and infinite loops

Unused and misused return values

Inconsistent types and type casts

Mismatched types in assignments

Nonportable and old fashioned syntax

Strange constructions

Inconsistent pointer alignment and expression evaluation order
The lint program and the C compiler are generally used together to check and
compile C language programs. Although the C compiler compiles C languzge
source files, it does not perform the sophisticated type and error checking
required by many programs, though syntax is gone over. The lint program,
provides additional checking of source files without compiling.
3.2 Invoking lint
Youcaninvoke lintprogram by typing

lint { option] ... filename ... lib ...
where option is a command option that defines how the checker should operate,
filename is the name of the C language source file to be checked, and lib is the
name of a library to check. You can give more than one option, filename, or
library name in the command. If you give two or more filenames, lint assumes
that the files belong to the same program and checks the files accordingly. For
example, the command

lint main.c add.c

treats main.cand add.c astwo partsof a complete program.

3-1

XENIX Programmer'’s Guide

If lint discovers errors or inconsistencies in a source file, it produces messages
describing the problem. The message hasthe form

filename { num): description

where filename is the name of the source file containing the problem, numisthe
number of the line in the source containing the problem, and deecriptionisa
descriptionof the problem. For example, the message

main.c (3): warning: x unused in function main

shows that the variable "x”, defined in line three of the source file main.¢, is not
used anywhere in the file.

3.3 Checking for Unused Variables and Functions

The lint program checks for unused variables and functions by seeing if each
declared variable and function is used in at least once in the source file. The
program considers a variable or function used if the name appears in at least
one statement. It is not considered used if it only appears on the left side of on
assignment. For example, in the following program fragment -

main ()

{

int x,y,2;
x=1; y=2; z=x+y;
the variables “x”’ and *‘y”’ are considered used, but variable ““z” isnot.

Unused variables and functions often occur during the development of large
programs. It is not uncommon for a programmer to remove all references to a
variable or function from a source file but forget to remove its declaration.
Such unused variablesand functions rarely cause working programsto fail, but
do make programs larger, harder to understand and change. Checking for
unused variables and functions can also help you find variables or functions
that you intended to used but accidentally have left out of the program.

Note that the lint program does not report a variable or function unusedif it is
explicitly declared with the extern storage class. Such a variable or function is
assumed to be used in another source file.

You can direct lint to ignore all the external declarations in a source file by
using the —x (for “‘external’’) option. The option causes the program checker to
skip any declaration that begins with the extern storage class.

The option is typically used to save time when checking a program, especially if
all external declarationsare knowntobe valid.

3-2

Lint: A C ‘Program Checker

Some programming styles require functions that perform closely related tasks
to have the same number and type of arguments regardless of whether or not
these arguments are used. Under normal operation, lint reports any argument
not used as an unused variable, but you can direct lint to ignore unused
arguments by using the —v option. The —v option causes lint to ignore all
unused function arguments except for those declared with register storage
class. The program considers unused arguments of this class to be a
preventable waste of the register resourcesof the computer.

You can direct l{nt to ignore all unused variables and functions by using the —u
(for *“unused’’) option. This option prevents lint from reporting variables and
functions it considersunused.

This option is typically used when checking a source file that contains just a
portion of a large program. Such source files usually contain declarations of
variables and functions that are intended to be used in other source filesand are
not explicitly used within the file. Since lint can only check the given file, it
assumes that such variablesor functionsare unused and reportsthem assuch.

3.4 Checking Local Variables

The lint program checks all local variables to see that they are set to a value
before being used. Since local variables have either automatic or register
storage class, their values at the start of the program or function cannot be
.known. Usingsuch a variable before assigning a value toitisanerror.

The program checks the local variables by searching for the first assignment in
which the variable receives a value and the first statement or expression in
which the variable is used. If the first assignment appears later than the first
use, lint considers the variable inappropriately used. For example, in the
program fragment

char ¢;

if (¢!=EFEOT)
¢ = getchar();

lint warns that the the variable ‘‘c” is used before it is assigned.

If the variable is used in the same statement in which it is assigned for the first
time, lint determines the order of evaluation of the statement and displays an
appropriate message. For example, in the program fragment

int i,total;

scanf(” %d", &i);
total = total + j;

lint warns that the variable “total” is used before it is set since it appearsonthe

3-3

XENIX Programmer's Guide
rightside of the same statement that assigns its first value.

3.5 Checking for Unreachable Statements

The lint program checks for unreachable statements, that is, for unlabeled
statements that immediately follow 2 goto, break, continue, or return
statement. During execution of a program, the unreachable statements never
receive execution control and are therefore considered wasteful. For example,
in the program fragment

int x,y;

return (x+y);
exit (1);

the function call ezit after the return statement is unreachable.

Unreachable statements are common when developing programs containing
large case constructions or loops containing break and continue statements.

During normal operation, lint reports all unreachable break statements.
Unreachable break statements are relatively common (some programs created
by the yace and lez programs contain hundreds), so it may be desirable to
suppress these reports. You can direct lint to suppress the reports by using the
~boption.

Note that lint assumes that all functions eventually return control, so it does
not report as unreachable any statement that follows a function that takes.

. control and never returnsit. For example:

exit (1);
return;

the call to ezit causes the return statement to become an unreachable
statement, but lint does not report it as such.

3.8 Checking for Infinite Loops

The lint program checks for infinite loops and for loops which are never
executed. Forexample, the statement

while (1) { }
and

for (;;) {}

are both considered infinite loops. While the statements

3-4

Lint: A C Program Checker

while (0) { }
or

for (0;0;) { }
are never executed.
It is relatively common for valid programs to have such loops, but they are
generally considered errors.
3.7 Checking Function Return Values
The lint program checks that a function returns a meaningful value if
necessary. Some functions return values which are never used; some programs
incorrectly use function values that have never been returned. Lint addresses
these problems in a number of ways.
Within a function definition, the appearance of both

return (expr);
and

return ;

statements is cause for alarm. In this case, lint produces the following error
message:

function name contains return(e) and return

It is difficult to detect when a function return is implied by the fiow of control
reaching the end of the given function. This is demonstrated with a simple
example:

f(a)
{ ,
if (a)

g ()

return (3);

Note that if the variable “a” tests false, then f will call the function g and then
return with no defined return value. This will trigger a report from {iat. If g,
like ezit, never returns, the message will still be produced when in fact nothing
is wrong. In practice, potentially serious bugs can be discovered with this
feature. It also accounts for a some of the noise messages produced by lint.

3-5

XENIX Programmer’s Guide

3.8 Checking for Unused Return Values

The lint program checks for cases where a function returns a value, but the
value is usually ignored. Lint considers functions that return unused values to
be inefficient, and functions that return rarely used values to be a result of bad
programming style.

Lint also checks for cases where a function does not return a value but the value
isused anyway. Thisisconsidered aseriouserror.

3.9 Checking Types

Lint enforces the type checking rules of C more strictly than the C compiler.
The additional checking occursin four major areas:

1. Acrosscertain binary operators and implied assignments
2. Atthestructureselection operators

3. Betweenthe definition and uses of functions

4. Intheuseofenumerations

There are a number of operatorsthat have animplied balancing between types.
of operands. The assignment, conditional, and relational operators have this

property. The argument of a return statement, and expressions used in

initialization also suffer similar conversions. In these operations, char, short,

int, long, unsigned, float, and double types may be freely intermixed. The

types of pointers must agree exactly, except that arraysof x’s can be intermixed

with pointersto x’s.

The type checking rules also require that, in structure references, the left
operand of a pointer arrow symbol (->) be a pointer to a structure, the left
operand of a period (.) be astructure, and the right operand of these operators
be a member of the structure implied by the left operand. Similar checking is
done for references to unions.

Strict rules apply to function argument and return value matching. The types
float and double may be freely matched, as may the types char, short, int,
and unsigned. Pointers can also be matched with the associated arrays. Aside
from these relaxations in type checking, all actual arguments must agree in
type with their declared counterparts.

For enumerations, checks are made that enumeration variables or members
are not mixed with other types or other enumerations, and that the only
operations applied are assignment (=), initialization, equals (==); and not-
equals (!==). Enumerationsmay also be function arguments and return values.

Lint: ' A C Program Checker

3.10 Checking Type Casts

The type cast feature in C was introduced largely as an aid to producing more
portable programs. Consider the assignment

p=1;

where “‘p” is a character pointer. Lint reports this assuspect. But consider the
assignment

p = (char #)1;

in which a cast has been used to convert the integer to a character pointer. The
programmer obviously had a strong motivation for doing this, and has clearly
signaled his intentions. On the other hand, if this code is moved to another
machine, it should be looked at carefully. The —c option controls the printing
of comments about casts. When —c is in effect, casts are not checked and all
legal casts are passed without comment, no matter how strange the ty pe mixing
seems to be.

3.11 Checking for Nonportable Character Use

Lint flags certain comparisons and assignments as illegal or nonportable. For
example, the fragment

char ¢;

lf((c = getchar()) < 0) ...

works on some machines, but fails on machines where characters always take
on positive values. The solution is to declare *“c” an integer, since getchar is
actually returning integer values. Inany case, itntissues the message:

nonportable character comparison
A similar issue arises with bitfields. When assignments of constant values are
made to bitfields, the field may be too small to hold the value. Thisisespecially
true where on some machines bitfields are considered as signed quantities.
While it may seem counter-intuitive to consider that a 2-bit field declared of
type int cannot hold the value 3, the problem disappears if the bitfield is
declared to have type unsigned.

3.12 Checking for Assignment of longs to ints

Bugs may arise from the assignment of a long to an int, because of a loss in

3-7

XENIX Programmer'’s Guide

accuracy in the process. This may happen in programs that have been
incompletely converted by changing type definitions with typedef. When a
ty pedef variable is changed from int to long, the program can stop working
because some intermediate results may be assigned to integer values, losing
accuracy. Since there are a number of legitimate reasons for assigning longs to
integers, you may wish to suppress detection of these assignments by using the
—aoption.
3.13 Checking for Strange Constructions
Several perfectly legal, but somewhat strange, constructions are flagged by
lint. The generated messages encourage better code quality, clearer style, and
may even point out bugs. For example, in the statement

sp++;
the star (*) doesnothing and lint prints:

null effect

The program fragment

unsigned x ;
if (x <0) ...

is also strange since the test will never succeed. Similarly, the test
if (x > 0)...

is equiv}alent to
if(x!=0)

which may not be the intended action. In these cases, lint prints the message:
degenerate unsigned comparison

If you use
if(1t=0)..

then lintreports
constant in conditional context

since the comparison of 1 with O gives a constant result.

Another construction detected by lintinvolves operator precedence. Bugs that
arise from misunderstandings about the precedence of operators can be

3-8

Lint: A C Program Checker
accentuated by spacing and formatting, making such bugs extremely hard to
find. For example, the statements

if(x&077 ==0) ...
or
x<<2 + 40

probably do not do what is intended. The best solution is to parenthesize such
expressions. Lintencourages this by printing an appropriate message.

Finally, lint checks variables that are redeclared in inner blocks in a way that
conflicts with their use in outer blocks. This is legal, butisconsidered bad style,
usually unnecessary, and frequently abug.

If you do not wish these heuristic checks, you can suppress them by using the ~h

option.

3.14 Checking for Use of Older C Syntax

Lint checks for older C constructions. These fall into two classes: assignment
operators and initialization.

The older forms of assignment operators (e.g., =+, ==, ...) can cause
ambiguous expressions, such as

a=-1;

which could be taken aseither

or

The situation is especially perplexing if this kind of ambiguity arises as the
result of a macro substitution. The newer, and preferred operators (e.g., +=,
—-==) have no such ambiguities. To encourage the abandonment of the older
forms, lint checks for occurrences of these old-fashioned operators.

A similar issue arises with initialization. The older language allowed

int x 1;

toinitialize “x” to 1. This causes syntactic difficulties. For example

XENIX Programmer's Guide

int x (-1);
looks somewhat like the beginning of a function declaration

int x (y){...

and the compiler must read past “x’’ to determine what the declaration really
is. The problem is even more perplexing when the initializer involves a macro.
The current C syntax places an equal sign between the variable and the
initializer:

intx = -1;

Thisform is free of any possible syntactic ambiguity.

3.15 Checking Pointer Alignment

Certain pointer assignments may be reasonable on some machines, and illegal
on others, due to alignment restrictions. For example, on some machines it is
reasonable to assign integer pointers to double pointers, since double precision
values may begin on any integer boundary. On other machines, however,
double precision values must begin on even word boundaries; thus, not all such
assignments make sense. Lint tries to detect cases where pointers are assigned
to other pointers, and such alignment problems might arise. The message

possible pointer alignment problem

results from this situation.

3.18 Checking Expression Evaluation Order

In complicated expressions, the best order in which to evaluate subexpressions
may be highly machine-dependent. For example, on machines in which the
stack runs up, function arguments will probably be best evaluated from right
to left; on machines with a stack running down, left to right is probably best.
Function calls embedded as arguments of other functions may or may not be
treated in the same way as ordinary arguments. Similar issues arise with other
operators that have side eflects, such as the assignment operators and the
increment and decrement operators.

In order that the efficiency of C on a particular machine not be unduly
compromised, the C language leaves the order of evaluation of complicated
expressions up to the compiler, and various C compilers have considerable
differences in the order in which they will evaluate complicated expressions. In
particular, if any variable is changed by a side effect, and also used elsewhere in
the same expression, the result isexplicitly undefined.

3-10

Lint: A C Program Checker

Lint checks for the important special case where a simple scalar variable is
affected. For example, the statement

ali] = bli++];
will draw the comment:

warning: 1 evaluation order undefined

3.17 Embedding Directives

There are occasions when the programmer is smarter than lint. There may be
valid reasons for illegal type casts, functions with a variable number of
arguments, and other constructions that lint flags. Moreover, as specified in
the above sections, the flow of control information produced by lint often has
blind spots, causing occasional spurious messages about perfectly reasonable
programs. Some way of communicating with lint, typically to turn off its
output, is desirable. Therefore, a number of words are recognized by lint when
they are embedded in comments in a C source file. These words are called
directives. Lint directives areinvisible to the compiler.

The first directive discussed concerns flow of control information. If a
particular place in the program cannot be reached, this can be asserted at the
appropriate spot in the program with the directive:

/* NOTREACHED #/

Similarly, if you desire to turn off strict type checking for the next expression,
use the directive:

/+* NOSTRICT +/

The situation reverts to the previous default after the next expression. The —v
option canbe turned on for one function with the directive:

/+ ARGSUSED #/

Comments about a variable number of arguments in calls to a function can be
turned off by preceding the function definition with the directive:

/+ VARARGS ¢/

In some cases, it is desirable to check the first several arguments, and leave the
later arguments unchecked. Do this by following the VARARGS keyword
immediately with a digit g'ving the number of arguments that should be
checked. Thus:

-1

XENIX Programmer’s Guide

/* VARARGS2 &/
causes only thefirst two argumentsto be checked. Finally, the directive v
/* LINTLIBRARY ¢/

at the head of a file identifies this file as a library declaration file, discussed in
the next section.

3.18 Checking For Library Compatibility

Lintacceptscertainlibrary directives, such as

_ly

and tests the source files for compatibility with these libraries. This testing is
done by accessing library description files whose names are constructed from
the library directives. These files all begin with the directive

/+ LINTLIBRARY ¢/

which is followed by a series of dummy function definitions. The critical parts
of these definitions are the declaration of the function return type, whether the
dummy function returns a value, and the number 2nd types of arguments to

the function. The “VARARGS” and “ARGSUSED” directives can be used to
specify featuresof thelibrary functions.

Lint library files are processed like ordinary source files. The only difference is
that functions that are defined in a library file, but are not used in a source file,
draw no comments. Lint does not simulate a full library search algorithm, and
checkstoseeif the source files contain redefinitions of library routines.

By default, lint checks the programs it is given against a standard library file,
which contains descriptions of the programs that are normally loaded whena C
program is run. When the —p option is in eflect, the portable library file is
checked containing descriptions of the standard I/O library routines which are
expected to be portable across various machines. The --n option can be used to
suppress all library checking.

Lint library files are named " fusr/lib/ll+”. The programmer may wish to
examine the lint libraries directly to see what lint thinks a function should
passed and return. Printed out, lint libraries also make satisfactory skeleton
quick-reference cards.

3-12

Chapter ‘4
Make: A Program Maintainer

4.1 Introduction 4-1

4.2 Creating aMakefile 4-1

4.3 Invoking Make 4-3

4.4 UsingPseudo-Target Names 4-4

4.5 UsingMacros 4-5

4.6 Using ShellEnvironment Variables 4-8
4.7 Usingthe Built-In Rules 4-9

4.8 Changingthe Built-in Rules 4-10

4.9 UsingLibraries 4-12

4.10 Troubleshooting 4-13

4.11 Using Mal;e: AnExample 4-13

Make: A Program Maintainer

4.1 Introduction

The make program provides an easy way to automate the creation of large
programs. Make reads commands from a user-defined ‘“makefile” that lists
the files to be created, the commands that create them, and the files from which
they are created. When you direct make to create a program, it verifies that
each file on which the program depends is up to date, then creates the program
by executing the given commands. If a file is not up to date, make updates it
before creating the program. Make updates a program by executing explicitly
given commands, or one of the many built-in commands.

This chapter explains how to use make to automate medium-sized
programming projects. It explains how to create makefilesfor each project, and
how to invoke make for creating programs and updating files. For more
details about the program, see make (CP) in the XENIX Reference Manual.

4.2 Creating a Makefile

A makefile contains one or more lines of text called dependency lines. A
dependency line shows how a given file depends on other files and what
commands are required to bring a file up to date. A dependency line has the
form

target ... : | dependent ...] | ; command ... |

where target is the filename of the file to be updated, dependent is the filename
of the file on which the target depends, and command is the XENIX command
needed to create the target file. Each dependency line must have at least one
command associated with it, evenif it is only the null command (;).

You may give more than one target filename or dependent filename if desired.
Each filename must be separated from the next by at least one space. The
target filenames must be separated from the dependent filenames by a colon (:).
Filenames must be spelled as defined by the XENIX system. Shell
metacharacters, such asstar (*) and questionmark (?), can also be used.

You may give a sequence of commands on the same line as the target and
dependent filenames, if you precede each command with a semicolon (;). You
can give additional commands on following lines by beginning each line with a
tab character. Commands must be given exactly as they would appear on a
shell command line. The at sign (@) may be placed in front of a command to
prevent make from displaying the command before executing it. Shell
commands, such as ¢d(C), must appear on single lines; they must not contain
the backslash {\) and newline character combination.

Youmay add a comment to a makefile by starting the comment with a number

sign (#) and ending it with a newline character. All characters after the
number sign are ignored. Comments may be place at the end of a dependency

41

XENIX Programmer's. Guide

line if desired. If a command contains a number sign, it must be enclosed in
double quotation marks (").

If a dependency line is too long, you can continue it by typing a backslash (\)
and anewline character.

The makefile should be kept in the same directory as the given source files. For
convenience, the filenames makefile, Makefile, e.makefile, and s. Makefile
are provided as default filenames. These names are used by make if no explicit
name is given at invocation. You may use one of these names for your makefile,
or choose onie of your own. If the filename begins with the s. prefix, make
assumes that it is an SCCS file and invokes the appropriate SCCS command to
retrieve the lastest version of the file.

To illustrate dependency lines, consider the following example. A program
named prog is made by linking three object files, 2.0, y.0, and z.0. These object
files are created by compiling the C language source files z.¢, y.c, and z.c.
Furthermore, the filesz.c and y.¢ contain the line

#include " defs”

This means that prog depends on the three object files, the object files depend
on the C source files, and two of the source files depend on the include file defs.
Youcanrepresent these relationshipsin a makefile with the following lines.

prog: x.0 y.o z.0
¢¢ X.0 y.0 3.0 -0 prog .
x.0: x.c defs

cc - X.c
y.o: y.c defs
: cc - y.c
2.0: 2.¢

cc -C z.c

In the first dependency line, prog is the target file and 2.9, y.0, and 2.0 are its
dependents. The command sequence

CC X.0 ¥.0 Z.0 ~O prog

on the next line tells how to create progif it is out of date. The program isout of
date if any one of itsdependents has been modified since prog waslast created.

The second, third, and fourth dependency lines have the same form, with the
z.0, y.0, and z.o files as targets and z.c, y.¢, z.c, and defs files as dependents.
Each dependency line has one command sequence which defines how to update
the given target file.

42

Make: A Program Maintainer

4.3 Invoking Make

Once you have a makefile and wish to update and modify one or more target
files in the file, you can invoke make by typing its name and optional
arguments. The invocation has the form

make [option] ... | macdef] ... [target] ...

where option is a program option used to modify program operation, maecdefis
a macro definition used to give a macro a value or meaning, and target is the
filename of the file to be updated. It must correspond to one of the targetnames
in the makefile. All arguments are optional. If you give more than one
argument, you must separate them with spaces.

You can direct make to update the first target file in the makefile by typing
just the program name. In this case, make searches for the files makefile,
Makefile, e.makefile, and s.Makefile in the current directory, and uses the
first one it finds as the makefile. For example, assume that the current makefile
contains the dependency lines givenin the last section. Then the command

make

compares the current date of the prog program with the current date each of
the object files 2.0, y.0, and z.0. It recreates prog if any changes have been
made to any object file since prog was last created. It also compares the current
dates of the object files with the dates of the four source files z.¢, y.c, z.¢, or
defe, and recreates the object files if the source files have changed. It does this
before recreating prog so that the recreated object files can be used to recreate
prog. If none of the source or object files have been altered since the last time
progwas created, make announces this fact and stops. No files are changed.

You can direct make to update a given target file by giving the filename of the
target. For example,

make x.0

causes make to recompile the z.o0 file, if the z.c or defsfiles have changed since
the object file waslast created. Similarly, the command

make x.0 2.0
causes make to recompile z.¢ and z.0 if the corresponding dependents have

been modified. Make processes target names from the command linein aleft to
rightorder.

43

XENIX Programmer’s Guide
You can specify the name of the makefile you wish make to use by giving the -f
optionintheinvocation. The option has the form

~f filename

where filename is the name of the makefile. You must supply afull pathname if
the fileisnotin the current directory. Feor example, the command

make -f makeprog
reads the dependency lines of the makefile named makeprog found in the
current directory. You can direct make to read dependency lines from the
standard input by giving *-" as the filename. Make reads the standard input
until the end-of-file character is encountered.

You may use the program options to modify the operation of the make
program. The following list describes some of the options.

-p Prints the complete set of macro definitions and dependency lines
in amakefile.

-i Ignoreserrors returned by XENIX commands.

-k Abandons work on the current entry, but continues on.other
branches that do not depend on that entry.

-s Executes commands without displaying them.
-r Ignoresthe built-in rules.
-n Displays commands but does not execute them. Make even

displayslines beginning with the at sign (@).

- Ignores any macro definitions that attempt to assign new values to
the shell’senvironment variables.

-t Changes the modification date of each target file without recreating
the files. '

Note that make executes each command in the makefile by passing it to a
separate invocation of a shell. Because of this, care must be taken with certain
commands (e.g., ¢d and shell control commands) that have meaning only
within a single shell process; the results are forgotten before the next line is
executed. If anerror occurs, make normally stops the command.

4.4 Using Pseudo-Target Names

It is often usefu! to include dependency lines that have pseudo-target names,
i.e., names for which no files actually exist or are produced. Pseudo-target

44

Make: A Program Maintainer

names allow make to perform tasks not directly connected with the creation of
a program, such as deleting old files or printing copies of source files. For
example, the following dependency line removes old copies of the given object
files when the pseudo-target name ‘‘cleanup” is given in the invocation of
make.

cleanup :
rm X.0Y.0Zz.0

Since no file exists for a given pseudo-target name, the target is always assumed
to be out of date. Thus the associated command is alwaysexecuted.

Make also has built-in pseudo-target names that modify its operation. The
pseudo-target name “.JGNORE" causes make to ignore errors during
execution of commands, allowing make to continue after an error. Thisisthe
same as the —i option. (Make also ignores errors for a given command if the
command string begins with a hyphen (-).)

The pseudo-target name “.DEFAULT”’ defines the commands to be executed
either when no built-in rule or user-defined dependency line exists for the given
target. You may give any number of commands with this name. If
“.DEFAULT” is not used and an undefined target is given, make prints a
message and stops. .

The pseudo-target name “.PRECIOUS” prevents dependents of the current
target from being deleted when make is terminated using the INTERRUPT or
QUIT key, and the pseudo-target name ““.SILENT" hasthe same effect as the —s
option.

4.5 Using Macros

An important feature of a makefile is that it can contain macros. A macroisa
short name that represents a filename or command option. The macros can be
defined when youinvoke make, or in the makefile itself.

A macro definition is a line containing a name, an equal sign (==), and a value.
The equal sign must not be preceded by a colon or a tab. The name (string of
letters and digits) to the left of the equal sign (trailing blanks and tabs are
stripped) is assigned the string of characters following the equal sign (leading
blanks and tabsare stripped.) The following are valid macro definitions:

2 == xyz
abc = -1l -ly
LIBES =

The last definition assigns ‘‘LIBES” the null string. A macro that is never
explicitly defined has the null string asits value.

45

XENIX Programmer's Guide

A macro is invoked by preceding the macro name with a dollar sign; macro
names longer than one character must be placed in parentheses. The name of
the macro is either the single character after the dollar sign or a name inside
parentheses. The following are valid macro invocations.

$(CFLAGS)
$2

$(xy)

$Z

$(2)
The last two invocationsareidentical.

Macros are typically used as placeholders for values that may change from time.
to time. For example, the following makefile uses a macro for the names of
object files to be link and one for the names of the library.

OBJECTS = x.0 y.0 2.0
LIBES = -lIn
prog: $(OBJECTS)
cc $(OBJECTS) $(LIBES) -o prog

If thismakefile is iﬁvoked with the command
make

it will load the three object files with the lez library specified with the -lln
option.

Youmay include a macro definition in a command line. A macro definitionina
command line has the same form as a macro definition in a makefile. If spaces
are to be used in the definition, double quotation marks must be used toenclose
the definition. Macros in a command line override corresponding definitions
found in the makefile. For example, the command

make "LIBES==-lin -lm”
loads assigns the library options-1ln and -Im to “LIBES”.
You can modify all or part of the value generated from a macro invocation
without changing the macro itself by using the “substitution sequence’. The
sequence has the form

name : st1 =| st2]
where name is the name of the macro whose value is to be modified, st1is the
character or characters to be modified, and st2is the character or charactersto

replace the modified characters. If t2is not given, st! is replaced by a null
character.

4-6

Make: A Program Maintainer

The substitution sequence is typically used to allow user-defined
metacharacters in a makefile. For example, suppose that **.x’’ is to be used as a
metacharacter for a prefix and suppose that a makefile contains the definition
FILES = progl.x prog2.x prog3.x
Then the macro invocation
$(FILES : .x=.0)
generates the value
progl.o prog2.o prog3.o
The actual value of “FILES” remainsunchanged.

Make has five built-in macros that can be used when writing dependency lines.
The following is a list of these macros.

$s Contains the name of the current target with the suffix removed.
Thus if the current target is prog.o, $* contains prog. It may be
usedin dependency lines that redefine the built-in rules.

$a Contains the full pathname of the current target. It may be used in
dependency lines with user-defined target names.

$< Contains the filename of the dependent that is morerecent than the
given target. It may be used in dependency lines with built-in target
namesor the DEFAULT pseudo-target name.

$? Contains the filenames of the dependents that are more recent than
the given target. It may be used in dependency lines with user-
defined target names.

$% Contains the filename of a library member. It may be used with

target library names (see the section ‘“Using Libraries” later in this
chapter). In this case, $@ contains the name of the library and $%
containsthe name of the library member.

You can change the meaning of a built-in macro by appending the D or F
descriptor to its name. A built-in macro with the D descriptor contains the
name of the directory containing the given file. If the file is in the current
directory, the macro contains “.”. A macro with the F descriptor contains the
name of the given file with the directory name part removed. The D and F
descriptor must not be used with the $? macro.

47

XENIX Programmer’s Guide

4.6 Using Shell Environment Variables

Make provides access to current values of the shell’s environment variables
such as “HOME", “PATH", and “LOGIN”. Make automaticaily assigns the
value of each shell variable in your environment to a macro of the same name.
You can access a variable’s value in the same way that you access the value of
explicitly defined macros. For example, in the following dependency line,
“$(HOME)"' hasthe same value as the user’'s “HOME"' variable.

prog '
cc $(HOME)/x.0 $(HOME)/y.o Jusr/pub/z.0

Make assigns the shell variable values after it assigns values to the built-in
macros, but before it assigns values to user-specified macros. Thus, you can
override the value of a shell variable by explicitly assigning a value to the
corresponding macro. For example, the following macro definition causes
make to ignore the current value of the “HOME" variable and use fusr/pub
instead.

HOME = /usr/pub

If a makefile contains macro definitions that override the current values of the
shell variables, you can direct make to ignore these definitions by using the —e
option.

Make has two shell variables, “MAKE” and ‘“MAKEFLAGS”, that

correspond to two special-purpose macros.

The “MAKE” macro provides a way to override the —n option and execute
selected commandsin a makefile. When “MAKE” isusedina command, make
will always execute that command, even if —n has been given in the invocation.
The variable may be set to any value or command sequence.

The “MAKEFLAGS” macro contains one or more make options, and can be
used in invocations of make from within a makefile. You may assign any
make options to “MAKEFLAGS” except —f, —~p,and -d. If you donot assign a
value to the macro, make automatically assigns the current options to it, i.e.,
the options given in the current invocation.

The “MAKE” and “MAKEFLAGS” variables, together with the —n option,
are typically used to debug makefiles that generate entire software systems.
For example, in the following makefile, setting ‘‘MAKE” to “make” and
invoking this file with the —n options displays all the commands used to
generate the programs progl, prog2, and prog$ without actually executing
them.

4-8

Make: A Program Maintainer

system : progl prog2 prog3
@echo System complete.

progl : progl.c
$(MAKE) $(MAKEFLAGS) progl

prog2 : prog2.c
$(MAKE) $(MAKEFLAGS) prog2

prog3 : prog3.c
$(MAKE) ${MAKEFLAGS) prog3

4.7 Using the Built-In Rules

Make provides a set of built-in dependency lines, called built-in rules, that
automatically check the targets and dependents given in a makefile, and create
up-to-date versions of these filesif necessary. The built-in rules are identical to
user-defined dependency lines except that they use the suffix of the filename as
the target or dependent instead of the filename itself. For example, make
automatically assumes that all files with the suffix . 0 have dependent files with
the suffixes .c and ..

When no explicit dependency line for a given file is given in a makefile, make
automatically checks the default dependents of the file. It then forms the name
of the dependents by removing the suffix of the given file and appending the
predefined dependent suffixes. If the given file is out of date with respect to
these default dependents, make searches for a built-in rule that defines how to
create an up-to-date version of the file, then executesit. There are built-in rules
for the following files.

Object file
C source file
Ratfor source file
Fortran source file
Assembler source file
Yacc-C source grammar
r Yacc-Ratfor source grammar
Lex source grammar

N N NN

For example, if the file 2.0 is needed and there is an z.¢ in the description or
directory, it is compiled. If there is also an z.l, that grammar would be run
through lezbefore compiling the result.

The built-in rules are designed to reduce the size of your makefiles. They
provide the rules for creating common files from typical dependents.
Reconsider the example given in the section “Creating a Makefile”. In this
example, the program prog depended on three object files 2.0, y.0, and z.0.
These files in tur: depended on the C language source files z.¢, y.¢, and z.c.

49

XENIX Programmer’'s Guide

The files z.¢ and y.¢ also depended on the include file defs. In the original
example each dependency and corresponding command sequence wasexplicitly
given. Many of these dependency lines were unnecessary, since the built-in
rules could have been used instead. The following is all that is needed to show
the relationships between these files.

prog: x.0 y.o z.0
¢C X.0 y.0 2.0 —O prog

x.0 y.o: defs

In this makefile, prog depends on three object files, and an explicit command is
given showing how to update prog. However, the second line merely shows that
two objects files depend on the include file defs. No explicit command sequence
is given on how to update these files if necessary. Instead, make uses the built-
in rules to locate the desired C source files, compile these files, and create the
necessary object files.

4.8 Changing the Built-in Rules

You can change the built-in rules by redefining the macros used in these lines or
by redefining the commands associated with the rules. You can display a
complete list of the built-in rules and the macros used in the rules by typing

make -fp - 2> /dev/null </dev/null
The rulesand macros are displayed at the standard output.

The macros of the built-in dependency lines define the names and optionsof the
compilers, program generators, and other programs invoked by the built-in
commands. Make automatically assigns a default value to these macros when
you start the program. You can change the values by redefining the macro in
your makefile. For example, the following built-in rule contains three macros,

“CC”,“CFLAGS”, and “*LOADLIBES”.

.C:

$(CC) $(CFLAGS) $< $(LOADLIBES) -0 $@

You can redefine any of these macros by placing the appropriate macro
definition at the beginning of the makefile.

You can redefine the action of a built-in rule by giving a new rule in your
makefile. A built-in rule hasthe form

euffiz-rule :
command

where suffiz-rule is a combination of suffixes showing the reiationship of the
implied target and dependent, and command is the XENIX command required

410

Make: A Program Maintainer
to carry out the rule. If more than one command is needed, they are glven on
separate lines.

The new rule must begin with an appropriate suffiz-rule. The available suffiz-
rulesare

.c €
.sh .sh
.c.o .€.0
.c.c 5.0
5.0 .y.o
.y.o Lo
Jd.o y.c
y.c de
.c.a .c.a
5.3 .hh

A tilde () indicates an SCCS file. A single suffix indicates a rule that makes an
executable file from the given file. For éxample, the suffix rule ‘“.c” is for the
built-in rule that creates an executable file from a C source ﬁle. A pair of
suffixes indicates a rule that makes one file from the other. For example, “.c.0”
is for the rule that creates an object file (.0) file from a corresponding C source
file (.c).

Any commands in the rule may use the built-in macros provided by make. For
example, the following dependency line redefines the actionof the .c.orule.

€0
cc68 $< —¢ $%.0

If necessary, you can also create new suffiz-rules by adding a list of new suffixes
to a makefile with “.SUFFIXES”. This pseudo-target name defines the suffixes
that may be used to make suffiz-rulee for the built-in rules. The line has the
form

SUFFIXES: suffiz ...

where suffizis usually a lowercase letter preceded by a dot (.). If more than one
suffix is given, you must use spaces to separate them.

The order of the suffixes is significant. Each suffix isa dependent of the suffixes
precedingit. For example, the suffix list

SUFFIXES: 0.c.y .l.s

causes prog.c to be a dependent of prog.o, and prog.y to be a dependent of
prog.c.

You can create new suffiz-rules by combining dependent suffixes with the suffix
of the intended target. The dependent suffix must appear first.

4-11

XENIX Programmer’s Guide

If a “.SUFFIXES" list appears more than once in a makefile, the suffixes are
combined into a single list. If a *“.SUFFIXES” is given that has no list, all
suffixes areignored.

4.9 Using Libraries

You can direct make to use a file contained in an archive library asa target or
dependent. To do this you must explicitly name the file you wish to access by
using alibrary name. Alibrary name has the form

lib(member-name)

where lib is the name of the library containing the file, and member-name isthe
name of the file. For example, the library name

libtemp.a(print.o)
refers to the object file print. oin the archive library libtemp.a.

You can create your own built-in rules for archive libraries by adding the .a
suffix to the suffix list, and creating new suffix combinations. For example, the
combination ‘‘.c.a” may be used for a rule that defines how to create a library
member from a C source file. Note that the dependent suffix in the new
combination must be different than the suffix of the ultimate file. For example,
the combination ‘“.c.a” can be used for arule that creates.ofiles, but not for one
that creates .¢ files.

The most common use of the library naming convention is to create a makefile
that automatically maintains an archive library. For example, the following
dependency lines define the commandsrequired to create a library, named &ib,
containing up to date versions of the files file 1.0, file2.0, and file$.0.

lib:
lib(file1.0) lib(file2.0) lib(file3.0)
@echo lib is now up to date
.c.a:
$(CC) -c $(CFLAGS) $<
ar rv $@ $+.0
rm -f $+.0

The .c.arule shows how to redefine a built-in rule for alibrary. In the following
example, the built-in rule is disabled, allowing the first dependency to create
the library.

412

Make: A Program Maintainer

lib:
lib(file1.0) lib(file2.0}) lib(file3.0)
$(CC) —c $(CFLAGS) $(?:.0=.¢)
ar rv lib §?
rm §?
@echo lib is now up to date
.c.a

In this example, a substitution sequence isused to change the value of the “$?"
macro from the names of the object files ‘‘filel.0”, ‘‘file2.0”, and “file3.0” to
“filel.c”, “file2.c”, and “file3.c”".

4.10 Troubleshooting

Most difficulties in using make arise from make’s specific meaning of
dependency. If the file z.c has the line

#include " defs”
then the object file 2.0 depends on defs; the source file z.c does not. (If defsis
changed, it is not necessary to do anything to the file z.c, while it isnecessary to

recreate z.0.)

To determine which commands make will execute, without actually executing
them, use the ~n option. For example, the command

make -n

prints out the commands make would normally execute without actually
executing them.

The debugging option —d causes make to print out a very detailed description
of what it is doing, including the file times. The output is verbose, and
recommended only as a last resort.

If a change to a file is absolutely certain to be benign (e.g., adding a new
definition to an include file}, the —t (touch) option can save alot of time. Instead
of issuing a large number of superfluous recompilations, make updates the
modification times on the affected file. Thus, the command

make -ts

which stands for touch silently, causes the relevant files to appear up todate.

4.11 Using Make: An Example

As an example of the use of make, examine the mak-fie, given in Figure 4-1,
used to maintair the make itself. The code for mak - is spread over a number

413

XENIX Programmer’s Guide

of Csourcefilesand a yace grammar.

Make usually printsout each command before issuing it. The following output
results from typing the simple command -

make
in adirectory containing only the source and makefile:

cc —cvers.c
¢c -c main.c

cc —c doname.c

c¢ ~—¢ misc.c

cc —c files.c

cc -¢ dosys.c

yacc gram.y

mv y.tab.c gram.c

cc -c gram.c

¢¢ vers.o main.o ... dosys.o gram.o -o make
13188+3348+3044 = 19580b = 046174b

Although none of the source files or grammars were mentioned by name in the -
makefile, make found them by using its suffix rules and issued the needed
commands. The string of digits results from the size make command.

The last few targets in the makefile are useful maintenance sequences. The
print target prints only the files that have been changed since the last make
print command. ‘A zero-length file, print, is maintained to keep track of the
time of the printing; the $? macro in the command line then picks up only the
names of the files changed since print was touched. The printed output can be
sentto a different printer or to a file by changing the definition of the P macro.

414

Make: A Program Maintainer

Figure 4-1. Makeflle Contents
Description file for the make command

Macro definitions below

P=lpr

FILES = Makefile vers.c defs main.c doname.c misc.c files.c dosys.c\
gram.y lex.c

OBJECTS = vers.o main.o ... dosys.o gram.o

LIBES=
LINT = lint -p
CFLAGS = -0

##targets: dependents
<TAB>actions

make: $(OBJECTS)
cc $(CFLAGS) $(OBJECTS) $(LIBES) —o make
size make

$(OBJECTS): defs

gram.o: lex.c

cleanup:
-rm #%.0 gram.c
-du

install:
@size make fusr/bin/make
¢p make fusr/bin/make ; rm make

print: $(FILES) # print recently changed files
pr 87 | $P
touch print

test:
make -dp | grep -v TIME > 1zap
Just /bin/make ~dp | grep -v TIME >2zap
diff 1zap 2zap
rm 1zap 2z2ap

lint : dosys.c doname.c files.c main.c misc.c vers.c gram.c
$(LINT) dosys.c doname.c files.c main.c misc.c vers.c gram.c
rm gram.c

arch:

ar uv [sys/source/s2/make.a $(FILES)

£15

Chapter 5
SCCS: A Source

Code Control System

5.1 Introduction 5-1

5.2 BasicInformation 5-1
5.2.1 Filesand Directories 51
5.2.2 DeltasandSIDs 5-2
5.2.3 SCCSWorkingFiles 5-3
5.2.4 SCCSCommand Arguments 5-4
5.2.5 File Administrator 5-4

5.3 Creating and Using S-files 5-5
5.3.1 CreatinganS-file 55
5.3.2 Retrieving aFilefor Reading 5-6
5.3.3 Retrieving aFilefor Editing 5-7
5.3.4 SavingaNew VersionofaFile 5-8
5.3.5 Retrieving a Specific Version 5-9
5.3.6 Changing the Release Numberof aFile 5-9
5.3.7 Creating aBranch Version 5-10
5.3.8 Retrieving aBranch Version 5-10
5.3.9 Retrieving the Most Recent Version 5-11
5.3.10 DisplayingaVersion 5-11
5.3.11 Savinga Copy of a New Version 5-12
5.3.12 Displaying Helpful Information 5-12

5.4 Usingldentification Keywords 513
5.4.1 Inserting aKeywordintoaFile 5-13
5.4.2 Assigning ValuestoKeywords 5-14
5.4.3 ForcingKeywords 5-14

5.5 Using S-fileFlags 5-15
5.5.1 Setting S-fileFlags 5-15
5.5.2 UsingtheiFlag 5-15
5.5.3 UsingthedFlag 5-16

5.5.4 UsingthevFlag 5-16
5.5.5 RemovinganS-fileFlag 5-16

5.6 Modifying S-file Information 5-16
5.6.1 Adding Comments 5-17
5.6.2 Changing Comments 5-17
5.6.3 AddingModification Requests 5-18
5.6.4 Changing Modification Requests 5-18
5.6.5 AddingDescriptive Text 5-19

5.7 Printing from an S-file 5-20
5.7.1 UsingaDataSpecification 5-20
5.7.2 Printing a Specific Version 5-20
5.7.3 Printing Later and Earlier Versions 5-21

5.8 Editing by Several Users 5-21
5.8.1 Editing Diflerent Versions 5-21
5.8.2 Editing a Single Version 5-22
5.8.3 Saving aSpecific Version 5-22

5.9 Protecting S-files 5-23
5.9.1 AddingaUser totheUserList 5-23
5.9.2 RemovingaUserfromaUserList 5-23
5.9.3 Setting theFloorFlag 5-24
5.9.4 Setting the CeilingFlag 5-24
5.9.5 Lockinga Version 5-24

5.10 Repairing SCCSFiles 5-25
5.10.1 CheckinganS-file 5-25
5.10.2 Editing an S-file 5-25
5.10.3 Changing an S-file’s Checksum 5-26
5.10.4 Regenerating a G-file for Editing 5-26
5.10.5 RestoringaDamaged P-file 5-26

5.11 Using Other Command Options 5-26
5.11.1 Getting Help With SCCS Commands 5-26
5.11.2 Creating aFile With the Standard Input 5-27
5.11.3 Starting At a Specific Release 527
5.11.4 Addinga Commenttothe First Version 5-27
5.11.5 Suppressing Normal Output 5-28
5.11.6 Includingand Excluding Deltas 5-28

5.11.7 Listing the Deltasofa Version 5-29
5.11.8 Mapping LinestoDeltas 5-30
5.11.9 NamingLines 5-30

5.11.10 Displaying a List of Differences 5-30
5.11.11 Displaying File Information 5-30
5.11.12 RemovingaDelta 5-31

5.11.13 Searching for Strings 5-31

5.11.14 Comparing SCCSFiles 5-32

SCCS: A Source Code Control System

5.1 Introduction

The Source Code Control System (SCCS) is a collection of XENIX commands
that create, maintain, and control special files called SCCS files. The SCCS
commands let you create and store multiple versions of a program or document
in a single file, instead of one file for each version. The commands let you
retrieve any version you wish at any time, make changes to this version, and
save the changes as a new version of the file in the SCCS file.

The SCCS system is useful wherever you require a compact way to store
multiple versions of the same file. The SCCS system provides an easy way to
update any given version of a file and explicitly record the changes made. The
commands are typically used to control changes to multiple versions of source
programs, but may also be used to control multiple versions of manuals,
specifications, and other documentation.

This chapter explains how to make SCCS files, how to update the files contained
in SCCS files, and hew to maintain the SCCS files once they are created. The
following sections describe the basic information you need to start using the
SCCS commands. Later sections describe the commandsin detail.

5.2 Basic Information

This section provides some basic information about the SCCS system. In
particular, it describes ’

— Filesand directories

— Deltasand SIDs

— sccCsworking files

— SCCScommand arguments

— Fileadministration

5.2.1 Files and Directories

All SCCs files (also called s-files) are originally created from text files containing
documents or programs created by a user. The text files must have been created
using a XENIX text editor such as vi. Special characters in the files are allowed
only if they are also allowed by the given editor. '

To simplify s-file storage, all logically related files (e.g., files belonging to the
same project) should be kept in the same directory. Such directories should
contain s-filesonly, and should have read and examine permission for everyone,
and write permission for the user only.

51

XENIX Programmer's Guide

Note that you must not use the XENIX link command to create multiple copies
of an s-file.

5.2.2 Deltas and SIDs

Unlike an ordinary text file, an SCCS file (or s-file for short) contains nothing
more than lists of changes. Each list corresponds to the changes needed to
construct exactly one version of the file. The lists can then be combined to
create the desired version from the original.

Each list of changes is called a “delta”. Each delta has an identification string
called an “SID”. The SID is a string of at least two, and at most four, numbers
separated by periods. The numbers name the version and define how it is
related to other versions. For example, the first delta is usually numbered 1.1
and thesecond 1.2.

The first number in any SID is called the “release number”. The release number
usually indicates a group of versions that are similar and generally compatible.
The second number in the SID is the “level number”. It indicates major
differences between files in the same release. o

An SID may also have two optional numbers. The “branch number”, the
optional third number, indicates changes at a particular level, and the
‘“sequence number”, the fourth number, indicates changes at a particular
branch. For example, the SIDs 1.1.1.1 and 1.1.1.2 indicate two new versions
that contain slight changes to the original delta 1.1.

An s-file may at any time contain several different releases, levels, branches,
and sequences of the same file. In general, the maximum number of releases an
s-file may contain is 9999, that is, release numbers may range from 1 to 9999.
The same limit appliestolevel, branch, and sequence numbers.

When you create a new version, the SCCS system usually creates a new SID by
incrementing the level number of the original version. If you wish to create a
new release, you must explicitly instruct the system to do so. A change to a
release number indicates a major new version of the file. How to create a new
version of a file and change release numbers is described later.

The SCCS system creates a branch and sequence number for the SID of a new
version, if the next higher level number already exists. For example, if you
change version 1.3 to create a version 1.4 and then change 1.3 again, the SCCS
system createsanew version named 1.3.1.1.

Version numbers can become quite complicated. In general, it is wise to keep

the numbers as simple as possible by carefully planning the creat:on of each
new version.

5-2

SCCS: A Source Code Control System

5.2.3 SCCS Working Files

The SCCS system uses several different kinds of files to complete its tasks. In
general, these files contain either actual text, or information about the
commands in progress. For convenience, the SCCS system names these files by
placing a prefix before the name of the original file from which all versions were
made. The following isa list of the working files.

s-file

x-file

g-file

p-file

z-file

l-file

A permanent file that contains all versions of the given text file.
The versions are stored as deltas, that is, lists of changes to be
applied to the original file to create the given version. The name of
an s-file is formed by placing the file prefix e. at the beginning of the
original filename.

A temporary copy of the s-file. It is created by SCCS commands
which change the s-file. It is used instead of the s-file to carry out the
changes. When all changes are complete, the SCCS system removes
the original s-file and gives the x-file the name of the original s-file.
The name of the x-file is formed by placing the prefix z. at the
beginning of the original file.

An ordinary text file created by applying the deltas in a given s-file
to the original file. The g-file represents a copy of the given version
of the original file, and as such receives the same filename as the
original. When created, a g-file is placed in the current working
directory of the user whorequested the file.

A special file containing information about the versions of an s-file
currently being edited. The p-file is created when a g-file is
retrieved from the s-file. The p-file exists until all currently
retrieved files have been saved in the s-file; it is then deleted. The
p-file contains one or more entries describing the SID of the
retrieved g-file, the proposed SID of the new, edited g-file, and the
login name of the user who retrieved the g-file. The p-file name is
formed by placing the prefix p. at the beginning of the original
filename.

A lock file used by SCCS commands to prevent two users from
updating a single SCCS file at the same time. Before a command
modifes an SCCS file, it creates a z-file and copies its own process ID
to it. Any other command which attempts to access the file while
the z-file is present displays an error message and stops. When the
original command has finished its tasks, it deletes the z-file before
stopping. The z-file name is formed by placing the prefix 2. at the
beginning of the original filename.

Aspecial file containing alist of the deltasrequired to create a given
version of a file. The l-file name is formed by placing the prefix L. at
the beginning of the original filename.

XENIX Programmer’s Guide

d-file A temporary copy of the g-file used to generate a new delta.

q-file A temporary file used by the delta command when updating the p-
file. The file is not directly accessible.

In general, a user never directly accesses x-files, z-files, d-files, or g-files. If 2
system crash or similar situation abnormally terminates a command, the user
may wish delete these files to ensure proper operation of subsequent SCCS
commands.

5.2.4 SCCS Command Arguments

Almost all SCCS commands accept two types of arguments: options and
filenames. These appear in the SCCS command line immediately after the
command name.

An option indicates a special action to be taken by the given SCCS command.
An option is usually a lowercase letter preceded by a minus sign {(-). Some
options require an additional name or value.

A filename indicates the file to be acted on. The syntax for SCCS filenamesislike
other XENIX filename syntax. Appropriate pathnames must be given if
required. Some commands also allow directory names. In this case, all files in
the directory are acted on. If the directory contains non-SCCS and unreadable
files, these are ignored. A filename must not begin with a minussign (-).

The special symbol — may be used to cause the given command to read a list of
filenames from the standard input. These filenames are then used as names for
the files to be processed. The list must terminate with an end-of-file character.

Any options given with a command apply to all files. The SCCS commands
process the options before any filenames, so the options may appear anywhere
on the command line.

Filenames are processed left to right. If a command encounters a fatal error, it
stops processing the current file and, if any other files have been given, begins
processing the next.

5.2.5 File Administrator

Every SCCS file requires an administrator to maintain and keep the file in
order. The administrator is usually the user who created the file and therefore
owns it. Before other users can access the file, the administrator must ensure
that they have adequate access. Several SCCS commandslet the administrator
define who hasaccess to the versionsina given s-file. These are described later.

5-4

SCCS: A Source Code Control System

5.3 Creating and Using S-files

The s-file is the key element in the SCCS system. It provides compact storage
for all versions of a given file and automatic maintenance of the relationships
between the versions.

This section explains how to use the admin, get, and delta commands to
create and use s-files. In particular, it describes how to create the first version

of a file, how to retrieve versions for reading and editing, and how to save new
versions,

5.3.1 Creating an S-file

You can create an s-file from an existing text file using the —i (for “initialize’’)
option of the admin command. The command has the form

admin -ifilename eo.filename
where -ifilename gives the name of the text file from which the s-file is to be
created, and s.filename is the name of the new s-file. The name must begin with
¢. and must be unique; no other s-file in the same directory may have the same
‘name. For example, suppose the file named demo.c contains the short C
language program
#include <stdio.h>

main ()

printf(” This is version 1.1 \n");

To create an s-file, type
admin -idemo.c s.demo.c

This command creates the s-file 8.demo.c, and copies the first delta describing
the contents of demo.c to thisnew file. The first deltaisnumbered1.1.

After creating an s-file, the original text file should be removed using the rm
command, since it is no longer needed. If you wish to view the text file or make

changes to it, you can retrieve the file using the get command described in the
next section.

When first creating an s-file, the admin command may display the warning
message

No id keywords (cm7)

5-5

" XENIX Programmer’s Guide

In general, this message can be ignored unless you have specifically included
keywords in your file (see the section, “Using Identification Keywords” later in
this chapter).

Note that ohly auser with write permission in the directory containing the s-file
may use the admin command on that file. This protects the file from
administration by unauthorized users.

5.3.2 Retrieving a File for Reading

You canretrieve afile for reading from a given s-file by using the get command.
The command has the form

get a.ﬁle name ..

where s.filename is the name of the s-file containing the text file. The command
retrieves the lastest version of the text file and copiesit to a regular file. The file
has the same name as the s-file but with the s. removed. It also has read-only
file permissions. For example, suppose the s-file s.demo.c contains the first
version of the short C program shown in the previous section. To retrieve this
program, type

get s.demo.c

The command retrieves the program and copies it to the file named demo.c.
Youmay then display the file just asyou do any other text file.

The command also displays a message which describes the SID of the retrieved
file and itssize in lines. For example, after retrieving the short C program from
s.demo.c, the command displays the message

1.
6 lines

~You may also retrieve more than one file at a time by giving multiple s-file
names in the command line. For example, the command

get s.demo.c s.defh

retrieves the contents of the s-files s.demo.c and s.def.h and copies them to the
text files demo.c and def.h. When giving multiple s-file names in a command,
you must separate each with at least one space. When the get command
displays information about the files, it places the corresponding filename before
the relevent information.

5-6

SCCS: A Source Code Control System

5.3.3 Retrieving a File for Editing

You can retrieve a file for editing from a given s-file by using the —e (for
“editing”) option of the get command. The command has the form

get —e s.filename ...

where ¢. filename is the name of the s-file containing the text file. You may give
more than one filename if you wish. If you do, you must separate each name
withaspace.

The command retrieves the lastest version of the text file and copies it to an
ordinary text file. The file has the same name as the s-file but with the a.
removed. It hasread and write file permissions. For example, suppose the s-file
s.demo.c contains the first version of a C program. To retrieve this program,

type
get —e s.demo.c

The command retrieves the program and copies it to the file named demo.c.
You may edit the file just asyou do any other text file.

If you give more than one filename, the command creates files for each
corresponding s-file. Since the —e option applies to all the files, you may edit
eachone.

After retrieving a text file, the command displays a message giving the SID of
the file and its size in lines. The message also displays a proposed SID, that is,
the SID for the new version after editing. For example, after retrieving the six-
line Cprogramin s.demo.c, the command displaysthe message

1.1
new delta 1.2
6 lines

The proposed SID is 1.2. If more than one file is retrieved, the corresponding
lename precedes therelevantinformation.

Note that any changes made to the text file are not immediately copied to the
corresponding s-file. To save these changes you must use the delta command
described in the next section. To help keep track of the current file version, the
get command creates another file, called a p-file, that contains information
about the text file. This file is used by a subsequent delta command when
saving the new version. The p-file has the same name as the s-file but begins
witha p.. The user must not access the p-file directly.

87

XENIX Programmer’s Guide

5.3.4 Saving a New Version of a File .

You can save a new version of a text file by using the delta command. The
command hasthe form -

delta . filename
where e.filename is the name of the s-file from which the modified text file was
retrieved. For example, tosave changes made to a C program in the file demo.c
(which wasretrieved from the file s.demo.c¢), type

delta s.demo.c

Before saving the new version, the delta command asks for comments
explaining the nature of the changes. It displays the prompt

comments?
You may type any text you think appropriate, up to 512 characters. The
comment must end with a newline character. If necessary, you can start a new

"line by typing a backslash (\) followed by a newline character. If you do not
wish toinclude a comment, just type anewline character.

Once you have given a comment, the command uses the information in the
corresponding p-file to compare the original version with the new version. A
list of all the changesis copied to the s-file. Thisisthe new delta.
After a command has copied the new delta to the s-file, it displays a message
showing the new SID and the number of lines inserted, deleted, or left
unchanged in the new version. For example, if the C program hasbeen changed
to

#include <stdio.h>

main ()

inti=2;

printf(" This is version 1.%d 0, i);

the command displays the message
1.2
3 inserted
1 deleted
5 unchanged

Once a new version is saved, the next get command retrieves the new version.

5-8

SCCS: A Source Code Control System

The command ignores previous versions. If you wish to retrieve a previous
version, you must use the —r option of the get command as described in the
next section.

5.3.5 Retrieving a Specific Version

You can retrieve any version you wish from an s-file by using the —r (for
“retrieve”’) of the get command. The command hasthe form

get [-e]| -rSID s filename ...
where —e is the edit option, -rSID gives the SID of the version to be retrieved,
and e.filename is the name of the s-file containing the file to be retrieved. You
may give more than one filename. The names must be separated with spaces.
The command retrieves the given version and copies it to the file having the
same name as s-file but with the s. removed. The file hasread-only permission
unless you also give the —e option. If multiple filenames are given, one text file
of the given version isretrieved from each. For example, the command

get -rl.1 s.demo.c
retrievesversion 1.1 from the s-file 8. demo.¢, but the command

get —e -rl.1 s.demo.c s.def.h
retrieves for editing a version 1.1 from both s.demo.c and s.def.A. If you give
the number of a version that does not exist, the command displays an error
message.
You may omit the level number of a version number if you wish, that is, just
give a release number. If you do, the command automatically retrieves the
most recent version having the same release number. For example, if the most
recent version in the file s.demo.c is numbered 1.4, the command

get -rl s.demo.c
retrieves the version 1.4. If there is no version with the given release number,
the commandretrieves the most recent version in the previousrelease.
5.3.6 Changing the Release Number of a File
You can direct the delta command toc change the release number of a new
version of a file by using the ~r option of the get command. In this case, the get

command has the form

get —e —rrel-num s.filename ...

59

XENIX Programmer's Guide

where ~e is the required edit option, -r rel-num gives the new release number of
the file, and s.filename gives the name of the s-file containing the file to be
retrieved. The new release number must be an entirely new number, thatis, no
existing version may have thisnumber. You may give more than one filename.

The command retrieves the most recent version from the s-file, then copies the
new release number to the p-file. On the subsequent delta command, the new
version issaved using the new release number and level number 1. For example,
if the most recent versionin the s-file s.demo.c is 1.4, the command

get -e -r2 s.demo.c

causes the subsequent delta to save a new version 2.1, not 1.5. The new release
number applies to the new version only; the release numbers of previous
versions are not affected. Therefore, if you edit version 1.4 (from which 2.1 was
derived) and save the changes, you create a new version 1.5. Similarly, if you
edit version 2.1, you create a new version 2.2.

As before, the get command also displays a message showing the current
version number, the proposed version number, and the size of the file in lines.
Similarly, the subsequent delta command displays the new version number
andthe number of linesinserted, deleted, and unchanged in the new file.
5.3.7 Creating a Branch Version
You can create a branch version of a file by editing a version that has been
previously edited. A branch version is simply a version whose SID contains a
branch and sequence number.
For example, if version 1.4 already exists, the command

get —e -r1.3 s.demo.c
retrievesversion 1.3 for editing and gives 1.3.1.1 as the proposed SID.
In general, whenever get discovers that you wish to edit a version that already
has a succeeding version, it uses the first available branch and sequence
numbers for the proposed SID. For example, if you edit version 1.3 athu’d tlme,
get gives 1.3.2.1 as the proposed SID.
You can save a branch version just like any other version by using the delta
command.

5.3.8 Retrieving a Branch Version

You can retrieve a branch version of a file by using the —r option of the get
command. For example, the command

5-10

SCCS: A Source Code Control System

get -r1.3.1.1 s.demo.c
retrieves branchversion1.3.1.1.
You may retrieve a branch version for editing by using the —e option of the get
command. When retrieving for editing, get creates the proposed SID by
incrementing the sequence number by one. For example, if you retrieve

branch version 1.3.1.1 for editing, get gives 1.3.1.2 asthe proposed SID.

As always, the command displays the version number and file size. If the given
branch version does not exist, the command displays an error message.

You may omit the sequence number if you wish. In this case, the command
retrieves the most recent branch version with the given branch number. For
example, if the most recent branch version in the s-file s.def.k is 1.3.1.4, the
command

get -r1.3.1 s.def.h

retrievesversion 1.3.1.4.

5.3.9 Retrieving the Most Recent Version

You can always retrieve the most recent version of a file by using the —t option
with the get command. For example, the command

get -t s.demo.c
retrieves the most recent version from the file s.demo.c. You may combine the
~rand -t options to retrieve the most recent version of a given release number.
For example, if the most recent version with release number 3 is 3.5, then the
‘command

get -r3 -t s.demo.c
retrieves version 3.5. If a branch version exists that is more recent than version
3.5 (e.g., 3.2.1.5), then the above command retrieves the branch version and
ignores version 3.5.

5.3.10 Displaying a Version

You can display the contents of a version at the standard output by using the
—p optionof the get command. For example, the command

get -p s.demo.c

displays the most recent version in the s-file s.demo.c at the standard butput.
Similarly, the command

5-11

XENIX Programmer’'s Guide

get -p -r2.1 s.demo.c
displaysversion 2.1 at the standard output.
The -~p option is useful for creating g-files with user-supplied names. This
option also directs all output normally sent to the standard output, such as the
SID of the retrieved file, to the standard error file. Thus, the resulting file
containsonly the contents of the given version. For example, the command
get -p s.demo.c >version.c
copies the most recent version in the s-file s.demo.c to the file vereion.c. The
SIDof the file and itssize is copied to the standard error file.
5.3.11 Saving a Copy of a New Version
The delta command normally removes the edited file after saving it in the
s-file. You can save a copy of this file by using the —n option of the delta
command. For example, the command
delta -n s.demo.c
first saves a new version in the s-file s.demo.c, then saves a copy of this version
‘in the file demo.c. You may display the file as desired, but you cannot edit the
file.
5.3.12 Displaying Helpful Information

An SCCS command displays an error message whenever it encounters an error
inafile. Anerror message hasthe form

ERROR | filename |: message (code)

where filename is the name of the file being processed, message is a short
description of the error, and codeistheerror code.

You may use the error code as an argument to the help command to display
. additional information about the error. The command hasthe form

help code
where codeis the error code given in an error message. The command displays
one or more lines of text that explain the error and suggest a possible remedy.
For example, the command

help col

displays the message

5-12

SCCS: A Source Code Control System

col:
"not an SCCS file”
A file that you think is an SCCS file

does not begin with the characters "s.”.

The help command can be used at any time.

5.4 Using Identification Keywords

The SCCS system provides several special symbols, called identification
keywords, which may be used in the text of a program or document to represent
a predefined value. Keywords represent a wide range of values, from the
creation date and time of a given file, to the name of the module containing the
keyword. When a user retrieves the file for reading, the SCCS system
automatically replaces any keywords it finds in a given version of a file with the
keyword’s value.

This section explains how keywords are treated by the various SCCS
commands, and how you may use the keywords in your own files. Only a few
keywords are described in this section. For a complete list of the keywords, see
the section get(CP)in the XENIX Reference Manual.

5.4.1 Inserting a Keyword into a File

You may insert a keyword into any text file. A keyword issimply an uppercase
letter enclosed in percent signs (%). No special characters are required. For
example, 919" is the keyword representing the SID of the current version,
and “‘%H%"’ is the keyword representing the current date.

When the program is retrieved for reading using the get command, the
keywords are replaced by their current values. For example, if the “%M%”,
“01%"", and “9%H” keywords are used in place of the module name, the SID,
and the current dataina program statement

char header(100) = {" %M% %1% %H% "};
then these keywords are expandedin the retrieved version of the program

char header(100) = {" MODNAME 2.3 07/07/77"};

The get command does not replace keywords when retrieving a version for
editing. The system assumes that you wish keep the keywords (and not their
values) whenyou save the new version of the file.

Toindicate that a file has no keywords, the get, delta, and admin commands
display the message

5-13

XENIX Programmer’s Guide

No id keywords (¢m7)

This message is normally treated as a warning, letting you know that no
keywords are present. However, you may change the operation of the system to
make thisafatalerror, asexplained later in this chapter.

5.4.2 Assigning Values to Keywords

The values of most keywords are predefined by the system, but some, such as
the value for the “%M%” keyword can be explicitly defined by the user. To
assign a value to a keyword, you must set the corresponding s-file flag to the
desired value. You can do this by using the —f option of the admin command.

For example, toset the %9 M% keyword to *“cdemo”’, you must set the m flag as
in the command

admin -fmcdemo s.demo.c

This command records “cdemo’’ as the current value of the %M % keyword.
Note that if you do not set the m flag, the SCCS system uses the name of the
original text file for M % by default.

The t and q flags are also associated with keywords. A description of these flags
and the corresponding keywords can be found in the section get(CP) in the
XENIX Reference Manual. You can change keyword valuesat any time.

5.4.3 Forcing Keywords

If a version is found to contain no keywords, you can force a fatal error by
setting the i flag in the given s-file. The flag causes the delta and admin
commands to stop processing of the given version and report an error. The flag
is useful for ensuring that key wordsare used properly in a given file.

To set the i flag, you must use the —f option of the admin command. For
example, the command

admin -fi s.demo.c
sets the i flag in the s-file s.demo.c. If the given version does not contain
keywords, subsequent delta or admin commands that access this file print an
error message.
Note that if you attempt to set the i flag at the same time asyou create an s-file,

and if the initial text file containsno keywords, the admin command displaysa
fatalerror message and stops without creating the s-file.

514

SCCS: A Source Code Control System

5.5 Using S-file Flags

An s-file flag is a special value that defines how a given SCCS command will
operate on the corresponding s-file. The s-file flags are stored in the s-file and
areread by each SCCS command before it operates on the file. S-file flags affect
operations such as keyword checking, keyword replacement values, and
default values for commands.

This section explains how to set and use s-file flags. It also describes the action
of commonly-used flags. For a complete description of all flags, see the section
admin(CP}in the XENIX Reference Manual.

5.5.1 Setting S-file Flags

You can set the flags in a given s-file by using the —f option of the admin
command. The command has the form

admin -fflag s.filename

where ~-fflag gives the flag to be set, and s.filename givesthe name of the s-filein
which the flag is to be set. For example, the command

admin -fi s.demo.c
setstheiflagin the s-file s.demo.c.
Note that some s-file flags take values when they are set. For example, the m
flag requires that a module name be given. When a value is required, it must
immediately follow the flag name, as in the command

admin -fmdmod s.demo.c

which sets the m flag to the module name “dmod”.

5.5.2 Using the i Flag

The i flag causesthe admin and delta commandsto print a fatal error message
and stop, if no keywords are found in the given text file. The flag is used to
prevent a version of a file, which contains expanded keywords, from being
saved as anew version. (Saving an expanded version destroys the keywords for
all subsequent versions).

When the i flag is set, each new version of a file must contain at least one
keyword. Otherwise, the version cannot be saved.

5-15

XENIX Programmer’s Guide

5.5.3 Using thed Flag

The d flag gives the default SID for versions retrieved by the get command
The flag takes an SID asits value. For example,the command

admin —fdl.l s.demo.c
sets the default SID to 1.1, A subsequent get command which does not use the
~r option will retrieve version 1.1.
5.5.4 Using the v Flag
The v flag allows you to include modification requests in an s-file. Modification
requests are names or numbers that may be used as a shorthand means of
indicating the reason for each new version.
When the v flag is set, the delta command asks for the modification requests
just before asking for comments. The v flag also allows the =m option to be
used in the delta and admin commands.

5.5.5 Removing an S-file Flag

You can remove an s-file flag from an s-file by usmg the —d option of the admin
command. The command has the form

admin -dflag e.filename
where -dflag gives the name of the flag to be removed and &.filename is the
name of the s-file from which the flag is to be removed. For example, the
command

admin -di s.demo.c

removes the i flag from the s-file s.demo.c. When removing a flag which takesa
value, only the flag name isrequired. For example, the command

admin -dm s.demo.c
removes the m flag from the s-file.

The ~d and —i options must not be used at the same time.

5.8 Modifying S-file Information

Every s-file contains information about the deltas it contains. Normally, this
information is maintained by the SCCS commands and is not directly accessible

5-16

SCCS: A Source Code Control System

by the user. Some information, however, is specific to the user who creates the
s-file, and may be changed as desired to meet the user’s requirements. This
informationiskept in two special partsof the s-file called the “‘delta table’

and the “description field”.

The delta table contains information about each delta, such as the SID and the
date and time of creation. It also contains user-supplied information, such as
comments and modification requests. The description field contains a user-
supplied description of the s-file and its contents. Both partscanbe changed or
deleted at any time toreflect changesto the s-file contents.

5.6.1 Adding Comments

You can add comments to an s-file by using the —y option of the delta and
admin commands. This option causes the given text to be copied to the s-file as
the comment for the new version. The comment may be any combination of
letters, digits, and punctuation symbols. No embedded newline characters are
allowed. If spaces are used, the comment must be enclosed in double quotes.
The complete command must fit on one line. For example, the command

delta —y" George Wheeler” s.demo.c
saves the comment *‘George Wheeler” in the s-file s.demo.c.
The ~y option is typically used in shell procedures as part of an automated
approach to maintaining files. When the option is used, the delta command
does not print the corresponding comment prompt, so no interaction is

required. If more than one s-file is given in the command line, the given
comment applies to them all.

5.6.2 Changing Comments

You can change the comments in a given s-file by using the cdc command. The
command has the form

cdc -rSID s.filename
where ~rSID gives the SID of the version whose comment is to be changed, and
s.filename is the name of the s-file containing the version. The command asks
for a new comment by displaying the prompt

comments?
You may type any sequence of characters up to 512 characters long. The
sequence may contain embedded newline characters if they are preceded by a

backslash (\). The sequence must be terminated with a newline character. For
example, the command

5-17

XENIX Programmer's Guide

cdec -r3.4 s.demo.c
promptsfor anew comment for version 3.4.

Although the command does not delete the old comment, it is no longer directly
accessible by the user. The new comment contains the login name of the user
who invoked the cdc command and the time the comment was changed.

5.6.3 Adding Modification Requests

You can add modification requests to an s-file, when the v flag is set, by using
the —m option of the delta and ad min commands. A modificationrequestisa
shorthand method of describing the reason for a particular version.
Modification requests are usually names or numbers which the user has chosen
torepresent aspecific request.

The —m option causes the given command to save the requests following the
option. A request may be any combination of letters, digits, and punctuation
symbols. If you give more than one request, you must separate them with
spaces and enclose the request in double quotes. For example, the command

delta -m”error35 optimizel0™ s.demo.c

copies the requests ‘‘error35” and "‘optimizel0” to s.demo.c, while saving the
new version.

The ~m option, when used with the admin command, must be combined with
the —i option. Furthermore, the v flag must be explicitly set with the —f option.
For example, the command

admin -idef.h -m"error0” -fv s.def.h
inserts the modification request “error0” in the new file s. def. k.
The delta command does not prompt for modification requests if you use the
~moption.
5.6.4 Changing Modification Requests
You can change modification requests, when the v flag is set, by using the edc
command. The command asks for a list of modification requests by displaying
the prompt

MRs?
You may type any number of requests. Each request may have any

combination of letters, digits, or punctuation symbols. No more than 512
characters are allowed, and the last request must be terminated with a newline

5-18

SCCS: A Source Code Control System
character. If you wish to remove a request, you must precede the request with
an exclamation mark (!). For example, the command

c¢de -r1.4 s.demo.c
asks for changes to the modification requests. The response
MRs? error36 lerror35

adds the request “error36’ and removes “‘error35".

5.8.5 Adding Descriptive Text

You can add descriptive text to an s-file by using the —t option of the admin
command. Descriptive text is any text that describes the purpose and reason
for the given s-file. Descriptive text is independent of the contents of the s-file
and canonly be displayed using the prs command.

The —t option directs the admin to copy the contents of a given file into the
description field of the s-file. The command has the form

admin -tfilename e.filename
where -t filename gives the name of the file containing the descriptive text, and
s.filename is the name of the s-file to receive the descriptive text. The file to be
inserted may contain any amount of text. For example, the command

admin -tcdemo s.demo.c

inserts the contents of the file cdemo into the description field of the s-file
s.demo.c.

The —t option may also be used to initialize the description field when creating
the s-file. For example, the command

admin -idemo.c -tcdemo s.demo.c

inserts the contents of the file cdemo into the new s-file e.demo.c. If —t is not
used, the description field of the new s-fileis left empty.

You can remove the current descriptive text in an s-file by using the —t option
without a filename. Forexample, the command

admin -t s.demo.c

removes the descriptive text from the s-file s.demo.c.

5-19

XENIX Programmer’s Guide

5.7 Printing from an S-file

This section explains how to use the prs command to display information
contained in an s-file. The prs command has a variety of options which control
the display format and content. '

5.7.1 Using a Data Specification

You can explicitly define the information to be printed from an s-file by using
the —d option of the prs command. The command copies user-specified
information to the standard output. The command has the form

prs ~depec e.filename

where ~depec is the data specification, and s.filename is the name of the s-file
from which the informationistobe taken.

The data specification is a string of data keywords and text. A data keyword is
an uppercase letter, enclosed in colons (:). It represents avalue containedin the
givens-file. For example, the keyword :I: represents the SID of a given version,
:F: represent the filename of the given s-file, :C: represents the comment line
associated with a given version. Data keywords are replaced by these values
whenthe informationisprinted.
For example, the command

prs -d” version: :I: filename: :F:” s.demo.c
may produce theline

version: 2.1 filename: s.demo.c
A complete list of the data keywords is given in the section prs(CP) in the
XENIX Reference Manual.

5.7.2 Printing a Specific Version

You can print information about a specific version in a given s-file by using the
~r option of the prs command. The command has the form

prs -rSID e.filename

where -rSID gives the SID of the desired version, and s.filename is the name of
the s-file containing the version. For example, the command

prs -12.1 s.demo.c

5-20

SCCS: A Source Code Control System

printsinformation about version 2.1 in the s-file s.demo.c.

If the -r optiobn is not specified, the command prints information about the
most recently created delta.

5.7.3 Printing Later and Earlier Versions

You can print information about a group of versions by using the -1 and —e
options of the prs command. The -1 option causes the command to print
information about all versions immediately succeeding the given version. The
—e option causes the command to print information about all versions
immediately preceding the given version. For example, the command

prs -rl.4 -e s.demo.c

prints all information about versions which precede version 1.4 (e.g., 1.3, 1.2,
and 1.1). The command

prs -rl.4 -l s.abc

prints information about versions which succeed version 1.4 (e.g., 1.5, 1.6, and
2.1).

If both options are given, information about all versionsis printed.

5.8 Editing by Several Users

The SCCS system allows any number users to access and edit versions of agiven
s-file. Since users are likely to access different versions of the s-file at the same
time, the system is designed to allow concurrent editing of different versions.
Normally, the system allows only one user at a time to edit a given version, but
you can allow concurrent editing of the same versicn by setting the j flagin the
givens-file.

The following sections explain how to perform concurrent editing and how to
save edited versions when you have retrieved more than one version for editing.

5.8.1 Editing Diflferent Versions

The SCCS system allows several different versions of a file to be edited at the
same time. This means a user can edit version 2.1 while another user edit
version 1.1. There is no limit to the number of versions which may be edited at
any given time.

When several users edits different versions concurrently, each user must begin

work in his own directory. If users attempt to share a directory and work on
versions from the same s-file at the same time, the get command will refuse to

5-21

XENKX Programmer’s Guide
retrieve a version.

5.8.2 Editing a Single Version

You can let a single version of a file be edited by more than one user by setting
the j flagin the given s-file. The flag causes the get command to check the p-file
and create a new proposed SIDif the given version is already beingedited.

You can set the flag by using the —f option of the admin command. For
example, the command

admin -fj s.demo.c
setsthe flag for the s-file s.demo.c.

When the flag is set, the get command uses the next available branch SID for
each new proposed SID. For example, suppose a user retrieves for editing
version 1.4 in the file s.demo.c, and that the proposed version is 1.5. If another
user retrieves version 1.4 for editing before the first user has saved his changes,
the the proposed version for the new user will be 1.4.1.1, since version 1.5 is
already proposed and likely to be taken. In no case will a version edited by two
separate usersresult in a single new version.

5.8.3 Saving a Specific Version
When editing two or more versions of a file, you can direct the delta command
to save a specific version by using the —r option to give the SID of that version.
The command has the form

delta -rSID . filename

-where -rSIDgives the SID of the version being saved, and ¢.filenameisthe name

of the s-file to receive the new version. The SID may be the SID of the version
you have just edited, or the proposed SID for the new version. For example, if
you have retrieved version 1.4 for editing (and no version 1.5 exists), both
commands

delta -r1.5 s.demo.c
and

delta -r1.4 s.demo.c

save version 1.5.

SCCS: A Source Code Control System

5.9 Protecting S-files

The SCCS system uses the normal XENIX system file permissions to protect
s-files from changes by unauthorized users. In addition to the XENIX system
protections, the SCCS system provides two ways to protect the s-files: the ‘‘user
list” and the “protection flags”. The user list is a list of login names and group
IDs of users who are allowed to access the s-file and create new versions of the
file. The protection flags are three special s-file flags that define which versions
are currently accessible to otherwise authorized users. The following sections
explain how to set and use the user list and protection flags.

5.9.1 Adding a User to the User List

You can add a user or a group of users to the user list of a given s-file by using
the —a option of the admin command. The option causes the given name to be
added to the user list. The user list defines who may accessand edit the versions
in the s-file. The command has the form

admin -aname s.filename
where —aname gives the login name of the user or the group name of a group of
users to be added to the list, and s. filename gives the name of the s-file toreceive
. the new users. For example, the command

admin —-ajohnd —asuex ~amarketing s.demo.c

adds the users ‘‘johnd” and “suex’’ and the group “marketing” to the user list
of the s-file 8. demo.c.

If you create an s-file without giving the —a option, the user list is left empty,
and all users may access and edit the files. When you explicitly give a user name
or names, only those users can access the files.
5.9.2 Removing a User from a User List
You can remove a user or a group of users from the user list of a given s-file by
using the —e option of the admin command. The option is similar to the —a
option but performs the opposite operation. The command has the form

admin ~ename & filename
where —ename gives the login name of a user or the group name of a group of
users to be removed from the list, and s.filename is the name of the s-file from

which the names are to be removed. For example, the command

admin —ejohnd —emarketing s.demo.c

5-23

XEN[X Programmer's Guide

removes the user “johnd” and the group “marketing” from the user list of the
s-file s.demo.c.
5.9.3 Setting the Floor Flag
The floor flag, f, defines the release number of the lowest version a user may edit
~ in a given s-file. You can set the flag by using the —f option of the admin
command. For example, the command
“admin -ff2 s.demo.c
sets the floor to release number 2. If you attempt to retrieve any versions with a
release number lessthan 2, an error will result.
5.9.4 Setting the Ceiling Flag
"The ceiling flag, c, defines the release number of the highest version a user may
edit in a given s-file. You can set the flag by using the —f option of the admin
command. For example, the command
admin -fcb s.demo.c
setsthe ceiling to release number 5. If you attempt toretrieve any versions with
arelease number greater than 5,an error will result.
5.9.5 Locking a Version
The lock flag, 1, lists by release number all versions in a given s-file which are
locked against further editing. You can set the flag by using the —f flag of the
admin command. The flag must be followed by one or more release numbers.
Multiple release numbers must be separated by commas (,). For example, the
command
admin -3 s.demo.c
locks all versions with release number 3 against further editing. The command
admin -fl4,5,9 s.def.h

locks all versions with release numbers 4,5, and 9.

Note that the special symbol “a’ may be used to specify all release numbers.
The command

admin -fla s.demo.c

locks all versionsin the file s.demo.c.

5-24

SCCS: A Source Code Control System

5.10 Repairing SCCS Files

The SCCS system carefully maintains all SCCS files, making damage to the files
very rare. However, damage can result from hardware malfunctions, which
cause incorrect information to be copied to the file. The following sections
explain how to check for damage to SCCS files, and how to repair the damage or
regenerate the file.

.

5.10.1 Checking an S-file

You can check a file for damage by using the —h option of the admin command.
This option causes the checksum of the given s-file to be computed and
compared with the existing sum. An s-file's checksum is an internal value
computed from the sum of all bytes in the file. If the new and existing
checksums are not equal, the command displays the message

corrupted file {co6)
indicating damage to thefile. For example, the command
admin -h s.demo.c

checks the s-file s.demo. ¢ for damage by generating a new checksum for the file,
and comparing the new sum with the existing sum.

You may give more than one filename. If you do, the command checks each file
in turn. Youmay also give the name of a directory, in which case, the command
checks all filesin the directory.

Since failure to repair a damaged s-file can destroy the file’s contents or make
the file inaccessible, itisa good idea to regularly check all s-files for damage.

5.10.2 Editing an S-file

When an s-file is discovered to be damaged, it is a good idea to restore a backup
copy of the file from a backup disk rather than attempting to repair the file.
(Restoring a backup copy of a file is described in the XENIX Operations Guide .)
If thisis not possible, the file may be edited using a XENIX text editor.

To repair a damaged s-file, use the description of an s-file given in the section
sccsfile(F) in the XENIX Reference Manual, to locate the part of the file which
is damaged. Use extreme care when making changes; small errors can cause
unwanted results.

§-25

XENIX Programmer's Guide

5.10.3 Changing an S-file's Checksum

. After repairing a damaged s-file, you must change the file’s checksum by using
the —z option of the admin command. For example, to restore the checksum of
the repairedfile s.demo.c, type

admin -z s.demo.c

The command computes and saves the new checksum, replacing the-old sum.

5.10.4 Regenerating a G-file for Editing

You can create a g-file for editing without affecting the current contents of the
p-file by using the ~k option of the get command. The option has the same
aflect as the —e option, except that the current contents of the p-file remain
unchanged. The cption is typically used to regenerate a g-file that has been
accidentally removed or destroyed before it has been saved using the delta
command.

5.10.5 Restoring a Damaged P-file

The ~g option of the get command may be used to generateanew copy ofa
p-filethat hasbeen accidentally removed. For example, the command

get —e -g s.demo.c

creates a new p-file entry for the most recent version in e.demo.c. If the file
demo.c already exists, it will not be changed by this command.

5.11 Using Other Command Options

Many of the SCCS commands provide options that control their operztion in
useful ways. Thissection describes these options and explains how you may use
them to perform useful work.

6.11.1 Getting Help With SCCS Commands

You can display helpful information about an SCCS command by giving the
name of the command as an argument to the help command. The help
command displays a short explanation of the command and command syntax.
For example, the command

help rmdel

displaysthe message

5-26

SCCS: A Source Code Control System

rmdel:
rmdel -rSID name .
5.11.2 Creating a File With the Standard Input

You can direct admin to use the standard input as the source for anew s-file by
using the —i option without afilename. For example, the command

admin -i s.demo.c <demo.c

causes admin to create a new s-file named e.demo.c which uses the text file
demo.c asits first version.

This method of creating a new s-file is typically used to connect admin to a
pipe. For example, the command

cat modl.c mod2.c | admin -i s.mod.c
creates a new s-file &.mod.c which contains the first version of the concatenated
files modl.c and mod2.c.
5.11.3 Starting At a Specific Release
The admin command normally starts numbering versions with release
number 1. You can direct the command to start with any given release number
by using the -r option. The command has the form

admin -rrel-num s.filename

where -rrel-num gives the value of the starting release number, and e. filename
is the name of the s-file to be created. For example, the command

admin -ldemo.c -r3 s.demo.c

starts with release number 3. The first versionis3.1.

5.11.4 Adding a Comment to the First Version

You can add a comment to the first version of file by using the —y option of the
admin command when creating the s-file. For example, the command

admin -idemo.c -y” George Wheeler” s.demo.c

. inserts the comment ‘‘George Wheeler” in the new s-file s.demo.c.

5-27

XENIX Programmer’s Guide

The comment may be any combination of letters, digits, and punctuation
symbols. If spaces are used, the comment must be enclosed in double quotes.
The complete command must fit on one line.

If the -y option is not used when creating an s-file, a comment of the form

date and time created YY/MM/DD HH:MMSS by logname

is automatically inserted.

5.11.5 Suppressing Normal Output

You can suppress the normal display of messages created by the get command
by using the —s option. The option prevents information, such as the SID of the
retrieved file, from being copied to the standard output. The option does not
suppress error messages.

The ~s option is often used with the —p option to pipe the output of the get
command to other commands. For example, the command

get -p -s s.demo.c |lpr
copiesthe most recent version in the s-file s.de mo.c to the line printer.
You can also suppress the normal output of the delta command by using the ~s
option. This option suppresses all output normally directed to the standard
output, except for the normal comment prompt.
5.11.6 Including and Excluding Deltas
You can explicitly define which deltas you wish to include and which you wish
to exclude when creating a g-file, by using the —i and —x options of the get
command.
The —1 option causes the command to apply the given deltas when constructing

*a version. The —x option causes the command to ignore the given deltas when

constructing a version. Both options must be followed by one or more SIDs. If
multiple SIDs are given they must be separated by commas (,). A range of SIDs
may be given by separating two SIDs with a hyphen (-). For example, the
command ’

get ~i1.2,1.3 s.demo.c
causes deltas 1.2 and 1.3 to be used to consiruct the g-file. The command

get -x1.2-1.4 s.demo.c

causes deltas 1.2 through 1.4 to beignored wihen constructing the file.

5-28

SCCS: A Source Code Control System

The —i option is useful if you wish to automatically apply changes to a version
while retrieving it for editing. For example, the command

get —e -i4.1 -r3.3 s.demo.c

retrieves version 3.3 for editing. When the file isretrieved, the changesin delta
4.1 are automatically applied to it, making the g-file the same as if version 3.3
had been edited by hand using the changes in delta 4.1. These changes can be
saved immediately by issuing adelta command. No editingis required.

The —x option is useful if you wish to remove changes performed on a given
version. Forexample, the command

get —e -x1.5 -r1.6 s.demo.c

retrieves version 1.6 for editing. When the file is retrieved, the changesin delta
1.5 are automatically left out of it, making the g-file the same as if version 1.4
had been changed according to delta 1.6 (with no intervening delta 1.5). These -
changes can be saved immediately by issuing a delta command. No editing is
required.

When deltas are included or excluded using the —i and —x options, get
compares them with the deltas that are normally used in constructing the given
version. If two deltas attempt to change the same line of the retrieved file, the
command displays a warning message. The message shows the range of lines in
which the problem may exist. Corrective action, if required, is the
responsibility of the user. :

5.11.7 Listing the Deltas of a Version _
You can create a table showing the deltas required to create a given version by
using the -1 option. This option causes the get command to create an l-file

- which contains the SIDs of all deltas used to create the given version.

The option is typically used to create a history of a glven version’s
development, For example, the command

get -1 s.demo.c

creates a file named l.demo.c containing the deltas required to create the most
recent version of demo.c.

You can display the list of deltas required to create a version by using the ~Ip
option. The option performs the same function as the ~I options except it
copies the list to the standard output file. For example, the command

get -lp -12.3 s.demo.c

copies the list of deltas required to create version 2.3 of demo.c to the standard

5-29

XENIX Programmer’s Guide

output.

Note that the -] option may be combined with the —g option to create a list of
deltas withoutretrieving the actual version.

5.11.8 Mapping Lines to Deltas

You can map each line in a given version to its corresponding delta by using the
—m option of the get command. This option causes each line in a g-file to be
preceded by the SID of the delta that caused that line to be inserted. The SID is
separated from the beginning of the line by a tab character. The —m optionis
typically used toreview the history of each line in a given version.

5.11.9 Naming Lines

You can name each line in a given version with the current module name (i.e.,
the value of the %9M% keyword) by using the —n option of the get command.
This option causes each line of the retrieved file to be preceded by the value of
the %M % keyword and a tab character.

The -n option is typically used to indicate that a given line is from the given
file. When both the —m and —n options are specxﬁed each line begins with the
%M % keyword. ,

5.11.10 Displaying a List of Differences

You can display a detailed list of the differences between a new versjon of a file
and the previous version by using the —p option of the delta command. This
option causes the command to display the differences, in a format similar to the
output of the XENIX diff command.

5.11.11 Displaying File Information

You can display information about a given version by using the —g optionof the
get command. This option suppresses the actual retrieval of a version and
causes only the information about the version, such as the SID and size, to be

displayed.

The -g option is often used with the —r option to check for the existence of a
givenversion. For example, the command

get —-g -r4.3 s.demo.c

displaysinformation about version 4.3 in the s-file 6. demo.c. If the version does
not exist, the command displays an error message.

5-30

SCCS: A Source Code Control System

5.11.12 Removing a Delta

You can remove a delta from an s-file by using the rmdel command. The
command has the form

rmdel -rSID s.filename

where -rSID gives the SID of the delta to be removed, and s.filename isthe name
of the s-file from which the delta is to be removed. The delta must be the most
recently created delta in the s-file. Furthermore, the user must have write
permission in the directory containing the s-file, and must either own the s-file
or be the user who created the delta.

For example, the command

rmdel -r2.3 s.demo.c
removes delta 2.3 from the s-file s.demo.c.
The rmdel command will refuse to remove a protected delta, that is, a delta
whose release number is below the current floor value, above the current ceiling
value, or equal to a current locked value (see the section *““Protecting S-files”
given earlier in this chapter). The command will also refuse to remove a delta

which is currently being edited.

The rmdel command should be reserved for those cases in which incorrect,
- global changes were made to ans-file.

Note that rmdel changes the type indicator of the given delta from “D” to
“R". A type indicator defines the type of delta. Type indicators are described
in fullin the section delta{CP)in the XENIX Reference Manual.
5.11.13 Searching for Strings
You can search for strings in files created from an s-file by using the what
command. This command searches for the symbol #(@) (the current value of
the %6 Z % keyword) in the given file. It then prints, on the standard output, all
text immediately following the symbol, up to the next double quote (”), greater
than {>), backslash (\}, newline, or (non-printing) NULL character. For
example, if the s-file 8.demo.c containsthe following line

char id[] = "%Z%%M%:%1%";
and the command

get -r3.4 s.prog.c

_isexecuted, then the command

5-31

XENIX Programmer’s Guide

what prog.c
displays
prog.c:
prog.c:3.4

You may also use what to search files that have not been created by SCCS
.commands,

5.11.14 Comparing SCCS Files
You can compare two versions from a given s-file by using the scesdiff
command. This command prints on the standard output the differences
between two versions of the s-file. The command has the form

scesdiff -rSID1 -rSID2 's.filename
where -rSID! and -rSID2 give the SIDs of the versions to be compared, and
s.filename is the name of the s-file containing the versions. The version SIDs
must be given in the order in which they were created. For example, the
command

scesdiff -r3.4 -r5.6 s.demo.c

displays the differences between versions 3.4 and 5.6. The differences are
displayed in a form similar to the XENIX diff command.

5-32

Chapter 6
Adb: A Program Debugger

6.1 Introduction 1

6.2 Invocation 1

6.3 TheCurrent Address — Dot 1
6.4 Formats 2

6.5 DebuggingCPrograms 3
6.5.1 DebuggingaCorelmage 3
6.5.2 MultipleFunctions 4
6.5.3 Setting Breakpoints S
6.54 Other BreakpointFacilities 7

6.6 Maps 7

6.7 AdvancedUsage 8
6.7.1 FormattedDump 9
6.7.2 Directory Dump 10
6.7.3 HistDump 11
6.74 Converting Values 11

6.8 Patching 11
6.9 Notes 12
6.10 Figures 13
6.11 AdbSummary 26
6.11.1 Command Summary 26

6.11.2 Incomplete FormatSummary 27
6.11.3 ExpressionSummary 27

Adb: A Program Debugger

6.1 Intreduction

Adbis anindispensabletool for debugging programs or crashed systems. ltallows you
to look at core files resulting from aborted programs, print output in a variety of
formats, patch files, and run programs with embedded breakpoints. This chapterisan
introductiontoadbwithexamplesofitsuse. Itexplainsthe various formattingoptions,
techniques for debugging C programs, and gives examples of printing file system
information, and of patching.

6.2 Invecation

Theadbinvocationsyntaxis as follows:
adb objectfile corefile

where objectfile is an executable XENIX file and corefileis a core image file. Oftenthis
will look like:

adb a.out core
ormoresimply:
adb

where the defaults are a.our and core, respectively. The filename minus (—) means
ignorethisargumentasin:

adb — core
Adb has requests for examining locations in either file. A question mark (?) request

examines the contents of objectfile; a slash (/) request examines the corefile. The
gencral form of these requestsis:

address ? format
or
address | format

6.3 The Current Address — Dot

Adb maintains a pointer to the current address, called dot, similar in function to the
current pointer inthe editor, ed(C). When anaddressis entered, the current addressis
settothat location, sothat:

0126?i
setsdattooctal 126 and printsthe instruction at that address. Therequest
.,10/d

prints 10 decimal numbers starting at dot. Dot ends up referring to the address of the

lastitem printed. Whenused with the questionmark (?) or slash (/) request, the current

address can be advanced by typing a newline; it can be decremented by typing a caret

-

Addressesarerepresented by expressions. Expressions aremade up of decimal, octal,

and hexadecimal integers, and symbols from the program under test. These may be
6—-1

XENIX Programmer’s Guide
combined with the following operators:
+ Addition

- Subtraction

*

Mutltiplication

Integer division

e 8

Bitwise AND
| Bitwise inclusive OR
Rounduptothe nextmultiple

- Not

Note that all arithmetic within adb is 32—bit arithmetic. When typing a symbolic
address for a C program, type either ‘‘name’’ or *‘_name’’; adb recognizes both
forms. Because adb will find only one instance of ‘‘name’’ and ‘‘_name’’ (generally
the first to appear inthe source) one will mask the other if they both appear inthe same
source file.

6.4 Formats

To print data, you can specify a collection of letters and characters that describe the
format of the printout. Formats are remembered in the sense that typing a request
without one will cause the new printout to appear in the previous format. The
following are the most commonly used format letters; foracompletelist see adb(CP)

b 1 byte in octal

c 1 byte as a character

o 1 word in octal

d 1 word in decimal

X 1 word in hexadecimal

D 2 words (1 longword) in decimal
X 2 words (1 longword) in hexadecimal

i machine instruction

s a null terminated character string

a the value of dot

u 1 word in unsigned decimal ,
n print a newline |
r print a blank space

. -backup dot

~equestisc
address | ,count] command [modiﬁcr]

which setsthecurrent address (dot)toaddress and cxecutcsthcéommand counttimes.
6—-2

Adb: A Program Debugger

The following table illusirates some general adbcommand meanings:
Command Meaning

Print contents from a.out file
Print contents from core file
Print value of "dot”
Breakpoint control

$ Miscellaneous requests
Request separator

! Escape to shell

.o i ~ .9

Adb catches signals, so a user cannot use a quit signalto exit from adb. Therequest $q
or$Q (or <CONTROL~D>)must be usedto exit fromadb .

6.5 Debugging C Programs

The following subsections describe use of adb in debugging the C programs given in
the numbered figures at the end of thischapter. Refertothese figures as you work your
way through the examples.

6.5.1 Debugging a Core Image

Considerthe Cprogram in Figure 1. Thisprogramillustrates acommon errormade by
C programmers. The object of the program is to change the lowercase ‘‘t”* to
uppercase ‘‘T"’ inthe string pointed to by ‘‘charp’’ and then write the character string
tothe file indicated by argument 1. Thebugshownisthatthe character *‘T*’isstoredin
the pointer ‘‘charp’® instead of the string pointed to by ‘‘charp.”” Executing the
program produces a core file because of an out—of—bounds memory reference.

(Notethat acore filemay notbe producedonall systems.)

Adbisinvokedby typing:
adb a.out core

The firstdebugging request
$c

is used to give a C backtrace through the subroutines called. As shown in Figure 2,
only one function, main, was called and the arguments *‘argc”” and ‘“‘argv’” have hex
values 0x2 and 0x1{f190 respectively. Both of these values look reasonable; 0x2 =
two arguments, Ox1fff90 = address on stack of parameter vector. These values may
bedifferent onyour system duetoadifferent mapping of memory.

The nextrequest
$r

prints out the registers including the program counter and an interpretation of the
instructionat that location.

Therequest:

XENIX Programmer’s Guide

e
printsoutthe values of allexternal variables.

A map exists foreach filehandled by adb . Themap forthea.ourfile 1srcferenced with
a question mark (?), whereas the map for the core file is referenced with a slash (/).
Furthermore, a good rule of thumb istouse question mark for instructions and slash for
data when looking atprograms. Toprint outinformationaboutthemaps, type:

$m '
Thisproducesareport ofthe contentsofthe maps.

Inourexample, it is useful to see the contents of the string pointedtoby ‘‘charp.”” This
isdonebytyping

*charp/s
which means use ‘‘charp’’ as a pointer in the core file and print the information as a
character string. This printout shows that the character buffer was incorrectly
overwritten and helps identify the error. Printing the locations around ‘“charp’’ shows

thatthe bufferisunchanged but that the pointer is destroyed. Similarly, we could print
informationabout the argumentstoa function. Forexample

Ox1£ff90,3/X

printsthehex valuesof thethree consecutive cellspointedtoby *“argv’’ inthe function
main. Notethatthese valuesarethe addresses of the argumentstomain. Therefore:

Ox1£ffb6/s

prints the ASCII value of the first argument. Another way to print this value would
havebeen

*/s

The quotation mark (") means ditto, i.c., the last address typed, in this case ““‘Ox1£ff90
;' the star (*)instructsadbtousethe address field of the corefile asapointer.

Therequest
=x

printsthe current address in hex (and not its contents). This hasbeensettothe address
of the first argument. The current address, dot, isused by adb to remember its current
location. Dot allows the userto reference locations relative to the current address, for

example:
.—10d

6.5.2 Multiple Functions

Consider the C programillustrated mFxgure 3. Thisprogramcalls functionsf, g, and h
untilthe stack is exhausted and a core image is produced.

Again, enteradbbytyping
adb

which assumes the names a.out and core for the executable file and core image file,
respectively. Therequest
6—4

Adb: A Program Dcbugger

$c

fills a page of backtrace referencestof, g, and k. Figure 4 shows an abbreviated list.
Pressing the INTERRUPT key terminates the output and brings you back to the adb
request level. Additionally, some versions of adb will automatically quit after fifteen
levelsunlesstoldotherwise withthe command:

Jevelcount$c
- Therequest
,5%¢
printsthe fivemost recent activations.

Notice that each function (f, g, and A) has a counter that counts the number of times
eachhasbeencalled.

Therequest
fent/D

prints the decimal value of the counter for the function f. Similarly, ‘‘gent’” and
‘‘hent’” could be printed. Notice that because ““fent’’, ““gent”’, and ““hent”” are int
variables, and on the MC68000 int is implemented as long, toprint its value you must
usethe Dtwo—word format.

6.5.3 Setting Breakpoints

Consider the C program in Figure S. This program changes tabs into blanks. We will
runthisprogramunder the control of adb (see Figure 6) by typing:

adb a.out —
Breakpointsare setinthe programas:
address:b [request|
Therequests

settab+8:b

fopen+8:b

tabpos+8:b
set breakpoints at the start of these functions. C does not generate statement labels.
Therefore, it is currently not possible to plant breakpoints at locations other than

function entry points withoutknowledge of the code generated by the Ccompiler. The
aboveaddressesare enteredas

symbol+8

so that they will appear in any C backtrace, because the first two instructions of each
function are used to set up the local stack frame. Note that some of the functions are
fromthe Clibrary.

Toprintthe location ofbreakpoints, type:
$b

The display indicates a count field. A breakpoint is bypassed count —1 times before -

causinga stop. The command field indicates the adbrequests tobe executed each time
‘ 6—5

XENIX Programmer’s Guide

mébrcakpoirnisemountered. Inourexample no commandfieldsare present.

By displaying the original instructions at the function serrab we seethatthe breakpoint
is set after the tstb instruction, which is the stack probe. We can display the
instructions using theadbrequest:

settab,5%ai

This request displays five instructions starting at serzab with the addresses of each
locationdisplayed. Another variationis

settab, 5%
which displaystheinstructions with only the starting address.

Notethat we accessed the addresses fromthe a. out file withthe question (?) command.
In general, when asking for a printout of multiple items adb advances the current
address the number of bytes necessary to satisfy the request. In the above example,
five instructions were displayed and the current address was advanced 18 (decimal)

bytes.
Torun the programtype:
I » »
Todelete abreakpoint, for instance the entry tothe function setrab, type:
settab+8:d
Tocontinue executionofthepr;)gmmfrom thebreakpoint type:
i
Once the program has stopped (in this case at the breakpoint for foper), adb requests
canbeusedtodisplay the contentsof memory. Forexample
$c
displaysastacktrace or
tabs,6/4X

prints six lines of four locations each from the array called *‘tabs’’. By this time (at
location fopen) in the C program, sertab has been called and should have set a one in
every eighth locationof ‘ ‘tabs’’.

The XENIX quit and interrupt signals act onadb itselfratherthanonthe program being
debugged If such a signal occurs then the program being debugged is stopped and
control is returned to adb. The signal is saved by adb and is passed on to the test

program if
HY

istyped. Thiscanbeuseful when testmg interrupthandling routines. The signalis not
passed ontothetest program if

c 0
istyped.

Adb: A Program Debugger

6.5.4 Other Breakpoint Facilities

Arguments andchangesof standard input andoutput are passed toa program as:
ir argl arg2 ...<infile >outfle
Thisrequestkills any existing program undertest and starts the a. our afresh.
The program being debugged canbe single — stepped by typing:
s

If necessary, this request starts up the program being debugged and stops after
executingthe first instruction.

Adballows a program to be executedbeginningat a specific addressby typing:
address:t

The count field canbe used to skipthe first nbreakpoints with:
Jur

Therequest
JC

may alsobeused for skipping the first nbreakpoints whencontinuing a program.

Aprogram canbe continued atanaddress different from the breakpoint by typing:
address:c

The program being debuggedrunsasaseparate processand canbe killed by typing:
'k

6.6 Maps

XENIX supports several executable file formats. These are used totell the loader how
to Joad the program file. Nonshared program files are the most common and are
generatedby aC compiler invocationsuchas:

cc pgm.c
Assharedfile isproducedby a C compiler command line of the form
cc —n pgm.c
Note that separate instruction/data files are not supported on the MC68000.

Adbinterpretsthese different file formats and provides accessto the differert segments
througha set of maps. Toprint the mapstype:

$m

In nonshared files, both text (instructions) and data are intermixed. This makes it
impossible for adb to differentiate data from instructions and some of the printed
symbolic addresses look incorrect; for example, printing data addresses as offsets
fromroutines.

Insharedtext, the instructions are separated from data and the

XENIX Programmer’s Guide

%

accessesthedatapart of thea.outfile. Thisrequest tellsadbtousethe second partof the
mapinthea.outfile. Accessingdata inthe core file showsthedataafter it wasmodified
by the execution of the program. Notice also that the data segment may have grown
during program execution. Inshared files the corresponding core file does not contain
the program text.

Figure 7 shows the display of three maps for the same program linked as a nonshared
and sharedrespectively. Theb, e, andfficldsare usedby adbtomap addressesintofile
addresses. Thef field isthe length of the header at the beginning of the file (Ox34 bytes
for an a.out file and 0x800 bytes for a core file). The /2 field is the displacement from
the beginning of the file to the data. For unshared files with mixed text and datathis is
the same asthe length of the header; for shared files this is the length of the header plus
the size of thetext portion.

The b and e fields are the starting and ending locations for a segment. Given an
address, A, the locationinthe file (eithera.outor core }iscalculatedas:

bl<As<el = file address = (A—bl)+fl
b2<A=<e2 > file address = (A—-b2)+f2

Ausercanaccess locationsby usingtheadbdefined variables. The
$v
request printsthe variablesinitialized by adb:

b Base address of data segment
d Length of the data segment

s Length of the stack

t Length of the text

m Execution type

In Figure 7 those variables not present are zero. These variables can be used in
expressions such as

<b

in the address field. Similarly, the value of the variable can be changed by an
assignmentrequest suchas

02000>b

which sets ‘‘b’* to octal 2000. These variables are useful to know if the file under
examinationisanexecutable orcore imagefile.

Adbreads the header of the core image file tofind the values for these variables. Ifthe
second file specified does not seem tobe acorefile, orifitismissing, thenthe hcaderof
theexecutable fileisused instead.

6.7 Advanced Usage

With adb it is possibie to combine formatting requests to provide elaborate displays.
Beloware several examples.

Adb: A Program Debugger

6.7.1 Formatted Dump

Theline

<b,—1/404°8Cn
prints four octal words followed by their ASCII interpretation from the data space of
the core image file. Brokendown, therequest piecesmean:

<b Thebase address of the datasegment.

<b,—1 Print fromthe base addresstothe end—of—file. A negative count isused
here and elsewhere to loop indefinitely or until some error condition (like
end—of—filc)isdetected.

The format ‘‘404°8Cn"’ isinterpreted as follows:
40 Print four octal locations.

4" Backup the current address four locations (to the original start of the
field).
8C Print eight consecutive characters using an escape convention; each

character inthe range octal0t0 037 is printed as an at—sign (@) followed
by the corresponding character inthe range octal 0140t00177. Anat—
signisprintedas*‘@@"".
n Printanewline.
Therequest:
<b,<d/404°8Cn

could have been used instead to allow printing to stop at the end of the data segment
(<dprovidesthe datasegment size inbytes).

The formatting requests can be combined with adb’s ability to read in a script to
produce acore imagedump script. Adbisinvoked withthe commandline

adb a.out core < dump
toreadina script filecontaining requestsnameddump . Anexample of suchascript is:

XENIX Programmer’s Guide

1208w

4095%s

$v

=3n

$m

=3n"C Stack Backtrace”

$C

=3n"C External Variables”
Se

=3n"Registers”

$r

03s

=3n"Data Segment”
<b,—1/80na i

Therequest
1208w

sets the width of the output to 120 characters (normally, the width is 80 characters).
Adbattemptstoprintaddressesas:

symbol + offset
Therequest
4095%s

increases the maximum pexmissiblc offset to the nearest symbolic address from 255
(default)t04095. The equal signrequest (=) canbe usedtoprint literal strings. Thus,
headings are providedin this dump program withrequests suchas:

=3n"C Stack Backtrace”

Thisspacesthree lines and printsthe literal string. Therequest
Sv

printsallnonzeroadb variables. Therequest
08s

sets the maximum offset for symbol matches to zero, thus suppressing the printing of
symbolic labels in favor of hexadecimal values. Note that this is only done for the
printing of the data segment. Therequest

<b,—1/80na

prints a dump from the base of the data segment to the end—of—file with an octal
address ficld and eight octal numbers per line.

Figure 9 showsthe results of some formatting requestsonthe Cprogram of Figure 8.

6.7.2 Directory Dump

Figure 10 illustrates another set of requests to dump the contents of a directory (which
ismadeupofaninteger ‘‘inumber’’ followed by a 14—charactername):

6-10

‘Adb: A Program Debugger

adb dir —
=n8t"Inum”"8t"Name”
0,—17 ustl4cn

Inthis example, ‘“u”’ prints the inumber as an unsigned decimal integer, ‘‘8t”’ means
that adb will space to the next multiple of 8 on the output line, and ‘‘14c”’ prints the
14—characterfilename.

6.7.3 1list Dump

Similarly the contents of the i/ist of a file system (e.g. , /dev/root) can be dumped with
the following set of requests:

adb /dev/root —

02000>b

m <b

<b,—1?flags"8ton"links,uid,gid"8t3bn",size"8tbrdn"addr" 8t8un"times”8t2Y2na
Inthisexamplethe value of the base forthe map was changedto 02000 by typing

Mm<b
since that isthe start of an ilisz within a file system. Therequest ‘‘brd’* above was used
to print the 24—bit size field as a byte, a space, and a decimal integer. The last access

time and last modify time are printed with the ‘2Y"’ operator. Figure 10 shows
portions of these requestsasappliedtoadirectory andfile system.

6.7.4 Converting Values

Adbmay be usedtoconvert values fromonerepresentationtoanother. Forexample
072 = odx

prints
072 58 0x3a

which are the octal, decimal and hexadecimal representations of 072 (octal). The
fonmat is remembered so that typing subsequent numbers prints them in the given
formats. Charactervaluescanbe convertedina similar way; forexample

‘a’ = co
prints
a 0141

It may also be used to evaluate expressions. However, be forewarned that all binary
operators have the same precedence, a precedence that is lower than that for unary

operators.

6.8 Patching

Patching files with adb is accomplished with the write (w or W) request. This is often
used in conjunction with the locate , (1 or L) request. Therequest syntax for 1 and w are
similar | 6-11

. XENIX.- Programmer’s Guide

N value

The requestlisusedto match on 2 bytes; L isused for4 bytes. Therequest wisusedto
write 2 bytes, whereas W writes 4 bytes. The value field in either locate or write
requests is anexpression. Therefore, decimal and octal numbcrs or character strings

aresupported.
Inordertomodify afile, adbmust becalled withthe —w switch:
adb —w filel file2
'When called with this option, file! and file2 are created if necessary and opened for
bothreadingand writing.

For example, consider the C program shown in Figure 8. We can change the word
"This” to "The " in the executable file for this program, ex7, by using the following
requests:

adb —w ex7 —

N °"Th*
W 'The’
Therequest
|
starts at dot and stops at the first match of *“Th’” having set dot to the address of the
locationfound. Note the use ofthe questionmark (?)to write tothe x.our file. The form
?*
wouldhave beenusedforasharedfile.
More frequently therequestistypedas:
N °'Th’; ?s

This locates the first occurrence of *“Th’” and prints the entire string. Execution ofthis
request sets dottothe addressofthe characters ““Th’’.

Asanother example of the utility of the patching facility, consider a Cprogramthat has
an internal logic flag. The flag could be set by the user through adb and the program
run. Forexample:

adb x.out —

:s argl arg2

flag/w 1

c
The :srequest is normally used to single—step through a process or start a process in
single—stepmode. Inthis case it starts x.ous as a subprocess with arguments ‘‘argl”’
and ‘‘arg2’’. If there is a subprocess running, adb writes to it rather than to the file so
the wrequestcauses ‘‘flag2’’ tobe changed inthe memory of the subprocess.

6.9 Notes

Belowisalist of somethingsthatusers shouldbeaware of:
The stack frame is allocated by teh first two instructions at the beginning of
- every C routine. Thus, putting breakpoints at the entry point of routines
6—12 means that the function appears not tohave beencalled whenthe breakpoint

Adb: A Program Debugger

occurs. Tryplacing the breakpoint at ‘routine’’ + instead.

1. When printing addresses, ADB uses ither text or data symbols from the
x.out file. This sometimes causes unexpected symbol names to be printed
withdata (e.g., ‘‘sawr5+022""). This does not happen if question mark (?)

is used fortext (instructions) and slash (/) for data.

2. Localvariablescannotbe addressed.

6.10 Figures

Figure1: C program with pointer bug

#include <stdio.h>
struct buf !
int fildes;
int nleft;
char *nextp;
char buft{512};
ibb;
struct buf *obuf;

char *charp = "this is a sentence.”;

main(arge,argv)
int argc;

char **argv,

1

char cc;
FILE *file;

if(argec < 2) !
printf("Input file missing\n");
exit(8);

|
1

if((file = fopen(argv1],"w")) == NULL)!
printf("%s : can’t open\n”, argv{1]);
exit(8);

t

charp = 'T";

printf("debug 1 %s\n",charp);

while(cc= *charp++)
putc(cc, file);

fllush(file);

6-13

XENIX Programmer’s Guide

Figure2: Adboutputfor C programof figorel

adb
$c .
start+44: .main (0x2, Ox1FFF90)

do 0x0 a0 0x54

dl 0x8 al Ox1FFF%0

(7] 0x0
d3 0x0
a4 0x0
ds 0x0
dé 0x0
d7 0x0

4 ELRLY

ps 0x0

- 0x0
0x0
0x0
0x0
Ox1FFF7IC
Ox1FFF74

pc 0x80E4 _main+160: movb (a0),—1.(a6)

-environ: O0x1FFF9C
—ermmno: Ox19
_bb: 0x0
obuf: 0x0

~ charp: Ox55
_iob: 0x9BIC
—sobuf: 0x64656275
Jastbu: Ox96F8
—sibuf: Ox0
.allocs: 0x0
aallocp: 0x0
-alloct: Ox0
allocx: 0x0
-end: 0x0
-edata: OxO
$m
?7map ‘x.out’
bl = 0x8000 el = 0x970C fl =
b2 = 0x8000 e2 = 0x970C 2=
/ map ‘_’
bl = 0x0el = 0x1000000 f1 = 0x0
b2 = 0x0e2 = 0x0f2 = 0x0
*charp/s
0xS55:
data address not found
Ox111190,3/X
Ox1FFF90: Ox1FFFBO Ox1FFFB6
Ox1{1Ib0/s
Ox1FFFBO: x.out
Is
Ox1FFFBO: x.out
=X

Ox1FFFBO

—10/d
O0x1FFFA6: 65497

6—14

0x0

Adb: A Program Debugger

6-15

XENIX Programmer’s Guide

'Figure3: MultiplefunctionC program

int fent,gent,hent;
h(x,y)
1

int hi; register int hr;
hi = x+1;

hr = x-y+1;
hent++;

hj:

f(hr,hi);

int gi; register int gr;
gl =q-p;

g =q-ptl;
gem++

&
h(gr,gi);

int fi; register int fr;
fi = a+2*b;

fr = atb;

fert++

f:
g(fr.fi);

f(1,1);

6-16

Figure4: Adboutputfor C programof Figure3

adb

$c
h+46:
g+48:
£+70:
_h+46:
g +48:
£+70:
_h+46:
gt+48:
<INTERRUPT>
adb
+5%¢
h+46:
£+48:
£+70:
h+46:
£+48:
fent/D
font:
gent/D
-gent:
hent/D
Jhent:

$q

£
h
2
f
4
2
f
h

(0x2, 0x92D)
(0x92C, 0x92B)
(0x92D, 0x1258)
(0x2, 0x92B)
(0x92A, 0x929)
(0x92B, 0x1254)
(0x2, 0x929)
(0x928, 0x927)

(0x2, 0x92D)
(0x92C, 0x92B)
(0x92D, 0x1258)
(0x2, 0x92B)
(0x92A, 0x929)

Adb: A Program Debugger

6-17

XENIX Programmer’s Guide

FigureS: C programtodecodetabs
#include <stdio.h>
#define MAXLINE 80

- #define YES 1
#define NO 0
#define TABSP 8

char input| = "data”;
char ibuf{518];
int tabs MAXLINE};

main()
I}

int col, *ptab;
charc;

ptab = tabs;
settab(ptab); /*Set initial tab stops */
col =1, ,
if(fopen(input,ibuf) < 0) !
printf("%s : not found\n”,input);
exit(8);

t
while((c = getch(ibuf)) != —1) !
switch(c) !
case 't": /* TAB ¥/
while(tabpos(col) != YES) !

/* put BLANK */
putchar(’ °);
col++;

break;

case "\n': /*NEWLINE */
putchar("\n’);
col = 1;
break;

default:
putchar(c);
col++ ;

1

1
i

)
/* Tabpos return YES if col is a tab stop ¥/

tabpos(col)
int col;
if(col > MAXLINE)
return(YES);
else
return(tabgcol]);

6-18

Adb: A Program Debugger

/* Settab — Set initial tab stops ¥/
settab(tabp)

int *tabp;

{

int i;

for(i = 0; i<= MAXLINE; i++)
(i%TABSP) ? (tabsfi] = NO) : (tabdi] = YES);

1
1

/* getch(ibuf) — Just do a getc call, but not a macro ¥
getch(ibuf)
FILE *ibuf;
!
return(getc(ibuf));

1
|

6—19

XENIX Programmer’s Guide

Figure6: AdboutputforC programofFigure S

adb x.out

settab+8:b

fopen+8:b

getch+8:b

tabpos-+8:b

$b

breakpoints ‘

count bkpt command

1 Jtabpos+8

1 -getch+8

1 fopen+8

1 -settab+8

settab,52ia

settab: link a6, #0xFFFFFFFC

settab+4: tstb ~132.(a7)

_settab+8: moveml #<>,~(a7)

-settab+12; clrl —4.(a6)

settab+16: cmpl #0x50,—4.(ab)

-settab+24: ,

settab, 52§

—settab: link a6, #0xFFFFFFFC
tstb —-132.(a7)
moveml #<>,—(a7)
cirl —4.(a6)
cmpl #0x50,—4.(a6)

ir

x.out:running

breakpoint settab+8: moveml #<>,—(a7)

settab+8:d

H

X.out:running

breakpoint fopen+8: jsr —findio

$c

main+52: Sopen (0x9750, 0x9958)

start+44: .main (Ox1, Ox1FFF98)

tabs,6/4X

tabs: Oxl 0x0 0x0 0x0

0x0 0x0 0x0 0x0
0x1 0x0 0x0 0x0
0x0 0x0 0x0 0x0
Ox1 0x0 0x0 0x0
0x0 0x0 0x0 0x0

Adb: A Program Debugger

Figure7: Adboutputfor maps

adb x.out.unshared core.unshared

$m

?map ‘x.out.unshared’

bl = 0x8000 cl = 0x83E4 fl = 0x34
b2 = 0x8000 e2 = O0x83E4 2 = 0x34
/map ‘core.unshared’

bl = 0x8000 el = 0x8800 fl = 0x800
b2 = OxIEBOOO €2 = 0x200000 f2 = 0x1000
$v

variables

b = 0x8000

d = 0x800

¢ = 0x8000

m = 0x107

s = 0x15000

$q

adb x.out.shared core.shared

$m

?map ‘x.out.shared’

bl = 0x8000 el = 0x8390 fl = 0x34
b2 = 0x10000 €2 = 0x10054 f2 = 0x3B0
/map ‘core.shared’

bl = 0x10000 el = 0x10108 fl = 0x800
b2 = Ox1EB0O00 €2 = 0x200000 f2 = 0x1000
$v

variables

b = 0x10390

d = 0x800

e = 0x8000

m = 0x108

s = 0x15000

6-21

XENIX Programmer’s Guide

Figure8: Simple C programillustratingformatting and patching

char strlf] = "This is a character siring”;
int one I;

int number = 456;
long Inum = 1234;
float fpt = 1.25; ' ‘
char str2[] = "This is the second character string”;
main()
|

one = 2;

6—-22

Adb: A Program Debugger

Figure9: Adboutput illustratingfancy formats

adb x.out.shared core.shared

<b,—1/8ona

strl: 052150 064563 020151 071440 060440 061550 060562 060543
strl+16: 072145 071040 071564 071151 067147 0 0 01

number:
Jnumber: 0 0710 0 02322 0376400 052150 064563

str2+4: 020151 071440 072150 062440 071545 061557 067144 020143
Str2+20: 064141 071141 061564 062562 020163 072162 064556 063400

$nd:
$nd: 01 0140
<b,20/404'8Cn

strl: 052150 064563 020151 071440 This is
060440 061550 060562 060543 a charac
072145 071040 071564 071151 ter stri

0671470 0 01 nEER'E‘EC'E@C'@'@a
number: 0 0710 0 02322 @‘@‘@aH@‘@'@dR

Spt: 0376400 052150 064563 ? @‘@‘This
020151 071440 072150 062440 is the
071545 061557 067144 020143 second ¢
064141 071141 061564 062562 haracter
020163 072162 064556 063400 string@*

$nd: 01 0140
data address not found

<b,20/404'8t8Cna

strl: 052150 064563 020151 071440 This is

_strl1 +8: 060440 061550 060562 060543 a charac
strl+16: 072145 071040 071564 071151 ter stri
surl+24: 0671470 O o1 nE‘@‘@'@‘'@‘@a
-number:

number: O 0710 O 02322 @'@‘@aH@‘@‘@dR
fpt:

fpt: 037640 0 052150 064563 ? @‘@°This
str2+4: 020151 071440 072150 062440 is the

str2+12: 071545 061557 067144 020143 second ¢
str2+20: 064141 071141 061564 062562 haracter
sr2+28: 020163 072162 064556 063400 string@*

$nd:

$nd: 01 0140
data address not found

<b,10/2b8¢"2cn

strl: 0124 0150 Th
0151 0163 is
040 0151 i

XENIX Programmer’s Guide .

6—24

0163 040
0141 040
0143 0150
0141 0162
0141 0143
0164 0145
0162 040

ch

r

Adb: A Program Debugger

Figure10: Directory andinodedumps

adb dir —
=nt"Inode”"t'Name"; 0,—12utl4dcn

Inode Name
0x0: 652

82 ..
5971 cap.c
5323 cap
0 pp

adb /dev/root —
/dev/root — pot in a.out format
02000>b
m<b
$v
variables
b = 0x400
<b,—1?"flags"8ton"links,nid,gid"8t3bn"size"8tbrdn"addr"8t8un"times"812Y 2na
0x400: flags 073145
lmks,und,gxd 0163 0164 0141
size 0162 10356
addr 28770 8236 25956 27766 25455 8236 25956 25206
times 1976 Feb 5 08:34:56 1975 Dec 28 10:55:15

0x420: flags 024555
links,uid,gid 012 0163 0164
size 0162 25461
addr 8308 30050 8294 25130 15216 26890 29806 10784
times 1976 Aug 17 12:16:51 1976 Aug 17 12:16:51

0x440: flags 05173
links,uid,gid 011 0162 0145
size 0147 29545
addr 25972 8306 28265 8308 25642 15216 2314 25970
times 1977 Apr 2 08:58:01 1977 Feb 5 10:21:44

6—-25

~ XENIX Programmer’s Guide

Adb Summary

6.11
6.11.1 Command Summary
Formatted printing
?format print fromx. outfile according toformar
I formatr print from core file according toformar
= format print the value of dot
wexpr write expressionintox.outfile
Iwexpr writeexpressionintocore file
Yexpr locateexpressioninx. outfile
Breakpoint and program control
b set breakpoint at dot
H continue running program
d delete breakpoint '
k kill the program being debugged
rr run x.out file under adb control
s single step
Miscellaneousprinting
$b print current breakpoints
$c C stack trace
Se external variables
$m print adb segment maps
$q exit from adb
$r general registers
$s set offset for symbol match
$v print adb variables
$w set output line width
Callingthe shell
1 call sk (shell) to read rest of line
Assignmentto variables

>name assign dot to variable or register name

6—-26

Adb: A Program Debugger

6.11.2 Incomplete Format Summary

date

G HEOMRE I IE 0 —An T

the value of dot

1 byte in octal

1 byte as a character

1 word in decimal

machine instruction

1 word in octal

print a newline

print a blank space

a null terminated character string
move to next n space tab

1 word as unsigned integer

1 word in hexadecimal

2 words (1 longword) in hexadecimal
2 words (1 longword) in decimal

backup dot
o print siring

6.11.3 Expression Summary

Expression components

decimal integer
octal integer
hexadecimal
symbols
variablese.g., <b

e.g., 256

e.g., 0277

e.g., Oxff

e.g., flag _main main.argc

registers e.g., <pc <d0 <a0

(expression) expression grouping
Dyadic operators

+ add

- subtract

. multiply

% integer division

& bitwise and

| bitwise or

round up to the next multiple
Monadic operators

- not

* contents of Jocation

- integer negation

6—27

Chapter 7
As: An Assembler

7.1

7.2

7.3

7.4

7.5

7.6

7.7

Introduction 1
CommandUsage 1
InvocationOptions 1

SourceProgramFormat 2
74.1 LabelField 3
742 OpcodeField 3
74.3 Operand—Field 3
7.44 CommentField 4

SymbolsandExpressions 4

7.5.1 Symbols 4

7.5.2 Assembly LocationCounter 6
7.5.3 ProgramSections 7

754 Constants 7

7.5.5 Operators 8

756 Terms 9

7.5.7 Expressions 9

Instructionsand AddressingModes 10
7.6.1 InstructionMnemonics 10
7.6.2 Operand AddressingModes 11

AssemblerDirectives 13
7.7.1 .ascii.asciz 14
7.7.2 .blkb .blkw .blkl 15
7.7.3 .byte .word .long 15
174 .end 15

7.7.5 .text .data .bss 16

~1.7.6 .globl.comm 16
7117 .even 16

7.8 OperationCodes 17

7.9 ErrorMessages 18

As: An Assembler

71 Intreduction

This chapter describes the use of the XENIX assembler, named as, for the Motorola
MC68000 microprocessor. It is beyond the scope of this chapter to describe the
instruction set of the MC68000 or to discuss assembly language programming in
general. For information on these topics, refer to the ‘‘MC68000 16—Bit
Microprocessor User’'s Mamal”’, 3rd Edition, Englewood Cliffs: Prentice—Hall,
1932.

Thischapter describesthe following:

— Command Usage

— Source Program Format

— SymbolsandExpressions

— Instructionsand Addressing Modes
— AssemblerDirectives

— OperationCodes

— . ErrorMessages

7.2 Command Usage

As canbe invoked with one or more arguments. Except for option arguments, which
must appear first on the command line, arguments may appear in any order on the
command line. The source filename argument is traditionally named with an ".s"
extension. Exceptas specifiedbelow, flagsmay be grouped. Forexample

as —glo that.o this.s
willhavethe same effect as
as —g —1 —o that.o this.s

7.3 Invocation Options

The various options and their functions aredescribed below:

—o relname The default output name is filerame .o. This can be overridden by
giving as the —o flag and giving the new filename in the argument
followingthe —o. Forexample

as —o that.o this.s
assemblesthe sourcehis.sand putsthe output inthefile that.o.
-1 Bydefault, no outputlisting isproduced. Alistingmaybeproducedby
giving the —1 flag. The listing filename extension is ‘“.L”’. The

filename forthe list fileisbased onthe output file. Sothe command line
7-1

XENIX 'Programmer’s Guide

as —1 —o output.x input.s
produces alisting namedousput. L.
—e By defauk, all symbols gointothe symboltable of the a. out (F) file that

is produced by the assembler, including locals. If you want only
symbolsthatarcdefined as. giobl or.commtobeincluded, usethe ~e

(externalsonly)flag.

-g By default, if a symbolisundefined inanassembly, an erroris flagged.
This may be changed with the —g flag. If this is done, undefined
symbols willbe interpreted asexternal.

-V By default, the a.out file is for XENIX version 3.0 systems; the

number 2or 3specifies which version the cutputisintendedfor.
7.4 Source Program Format

Anas program consists of a series of statements, each of which occupies exactly one
line, i.c., a sequence of characters followed by the newline character. Form feed,
ASCl] <OONTROL—-L>, also serves as a line terminator. Continuation lines are not
allowed, and the maximum line lengthis 132 characters. However, several statements
may be on a single line, scparated by semicolons. Remember though, that anything
after a comment character is considered a comment. The format of an as assembly
language statementis:

[label—field) |opcode [operands) [I comment]
Most ofthefields may beomitted undercertaincircumstances. Inparticular:

1. Blanklinesarepermitted.

2. Astatementmay containonly alabel ficld. The label defined inthis field has
the same value as if it were defined in the label field of the next statement in
the program. As anexample, thetwostatements

name:
addl do,d!

arecquivalenttothesingle statement
name: addl do,d1

3. Alinemay consistof only the comment field. Thetwo statements below are
allowed ascommentsoccupying fun lines:

| This is a comment ﬁcld
| So is this.

4. Mukiple statements may be put on a line by separating them with a
semicolon (;). Remember, however, that anything after a comment
character (including statement separators)isa commert.

In general, blanks or tabsare allowed anywhere ina statement; thatis, multiple blanks
are allowed in the operand field to separate symbols from operators. Blanks are

7-2

As: An Assembler

significant only when they occur ina character string (€. g. , as the operand of an . ascii
pseudo—op) or in a character constant. At least one blank or tab must appearbetween
the opcode andtheoperand fieldof a statement.

7.4.1 Label Field

A label is a user—defined symbol that is assigned the value of the current location
counter, both of which are entered into the assembler’s symbol table. The valueof the
labelisrelocatable.

A label is a symbolic means of referring to a specific location within a program. 1f
present, a label always occurs first in a statement and must be terminated by acolon. A
maximum of ten labels may be defined by a single source statement. The collection of
label definitionsina statement is called the * ‘label - field.””

The formatof alabel—field is:

symbol: [symbol:| ...
Examples:
start:
name: name2: | Multiple symbols
7$: | A local symbol (see below)

7.42 OpcodeField

The opcode ficld of an assembly language statement identifies the statement as eithera
machine instruction, or an assembler directive (pseudo—op). One ormore blanks (or
tabs) must separate the opcode field from the operand field in a statement. No blanks
are necessary between the label and opcode fields, but they are recommended to
improve readability of programs.

A machine instruction is indicated by an instruction mnemonic. Conventions used in
as for instructionmnemonics are described ina later section, along with a complete list
ofopcodes.

An assembler directive, or pseudo—op, performs some function during the assembly

process. It does not produce any executable code, but it may assign space inaprogram
fordata.

Asiscase—sensitive. Operatorsand opcrands may only belowercase.
7.43 Operand—Field

As makes a distinction between operand—field and operand. Several machine
instructions and assemblerdirectivesrequire one ormore arguments, and cach ofthese
is referred to as an ‘‘operand’’. In general, an operand field consists of zero, one, or
two-operands, and in all cases, operands are separated by a comma. Inother words,
the format foran operand—fieldis:

[operand [, operand]. .]

The format of the operand field for machine instruction statements is the same for all
7-3

XENIX Programmer’s Guide

instructions. The format of the operand field for assembler directives depends on the
directive itself.

7.4.4 Comment Field

The comment delimiter is the verticalbar, { | }, notthe semicolon, (;). The semicolonis
the statement separator. The comment field consists of all characters.on a source line
following and including the comment character. These characters are ignored by the
assembler. Any character may appear in the comment field, with the exception of the
new linecharacter, which startsanewline.

7.5 Symbols and Expressions

This section describes the various components of as expressions: symbois, numbers,
terms, and expressions.

7.51 Symbols

A symbolconsistsof 1 to32 characters, withthe following restrictions:

1. Valid characters include A—Z, a—z, 09, period (.), underscore {_), and
dollarsign($).

2. Thefirstcharactermust not be numeric, unless the symbolis alocalsymbol.

There is no limit to the size of symbols, except the practical issue of running out of
symbol memory inthe assembler. However, be aware that the current C compiler only
generates eight—character symbol names, so a symbol greaterthan eight~characters
inlength that you think is the same in both C and assembly may notmatch. Uppercase
and lowercase are distinct (e.g., ‘‘Name’’ and ‘‘name’’ are separate symbols). The
period (.) and dollar sign ($) characters are valid symbol characters, but they are
reserved for system software symbols such as system calls and should not appear in
user—defined symbols.

A symbolissaid tobe ‘‘declared’’ whenthe assemblerrecognizes it as a symbol of the
program. A symbolissaidtobe ‘‘defined’’ whena value is associated with it. With the
exception of symbolsdeclared by a.globl directive, all symbolsare defined whenthey
aredeclared. A label symbol (which represents an address inthe program) may notbe
redefined; other symbols are allowedtoreceivea new value.

There are several waystodeclare a symbol:
1. Asthelabelofastatement
2. Inadirectassignment statement
3. Asanexternal symbol viathe .globl directive
4

Asacommonsymbol viathe.commdirective

7-4

As: An Assembler

5. Asalocalsymbol

7.5.1.1 Direct Assignment Statements
A direct assignment statement assigns the value of an arbitrary expression to a
specified symbol. The formatofadirect assignment statement is:
symbol = [symbol =] ... expression
Examplesofvalid directassignments are:

vectsize = 4

vectora = /fife

vectorb = vectora—vect_size
CRLF = /0DOA

Any symbol defined by direct assignment may be redefined later in the program, in
which case its value is the result of the last such statement. A local symbol may be
definedby direct assignment; alabel orregister symbol may notbe redefined.

If the expression is absolute, then the symbol is also absolute, and may be treatedas a
constant in subsequent expressions. I the expression is relocatable, however, then
symbol is also relocatable, and is considered to be declared in the same program
section as the expression. See the discussion in a later section of absolute and
relocatable expressions. i

7.51.2 Register Symbols

Register symbols are symbols uscd to represent machine registers. Register symbols
are usually used to indicate the register in the register field of a machine instruction.
Theregister symbolsknowntothe assembler are givenattheend ofthischapter.

7.5.1.3 External Symbois

A program may be assembled in separate modules, and then linked togetherto forma
single program (see /d(CP)). External symbols may be defined in each of these
separate modules. A symbol that is declared (given a value) in one module may be
referenced inanother module by declaring the symbol tobe external in both modules.
There are two forms of external symbols: those defined with the .globl directive and
those defined with the .comm directive. See Section 8.7.6 for more information on
these directives.

7.5.1.4 Laocal Symbols

Local symbols provide a convenient means of generating labels for branch -
instructions. Use of local symbols reduces the possibility of multiply—defined

7-5

XENIX Programmer’s Guide

symbols in a program, and separates entry point symbols from local references, such
asthetopofaloop. Local symbolscannot be referenced by otherobject modules.

Local symbolsare of the formn $ where nisanyinteger. Validlocal symbolsinclude:

27%
394$

Alocal symbol is defined and referenced only within a single local symbol block (Isb).
A newlocal symbolblock isentered when either:

1. Alabelisdeclared, or

2. Anewprogramsectionisentered.

There is no conflict bet ween local symbols with the same name that appear indifferent
local symbolblocks.

7.5.2 Assembly Location Counter

The assembly location counteristhe periodcharacter (.); henceitsname ‘‘dot’*. When
used inthe operand field of any statement, dot represents the address of the first byte of
the statement. Evenin assembly directives, itrepresents the address of the start of the
directive. A dot appearing as the third argument in a .byte directive would have the
value of the address where the first byte was loaded; it is not updated *‘during”” the
directive.

For example:
movl .,dl 1 load value of program counter into d!

At the beginning of each assembly pass, the assembler clears the location counter.
Normally, consecutive memory locations are assigned toeach byte of generated code.
However, the location wherethe code is stored may be changed by adirect assignment
alteringthelocationcounter:

. = expression

This expression must not contain any forward references, must not change from one
pass to another, and must not have the effect of reducing the value of dot. Note that
setting dot to an absolute position may not have quite the effect you expect if you are
linking anas output file with other files, since dot ismaintained relative to the origin of
the output file and not the resolved position in memory. Storage area may also be
reserved by advancing dot. For example, if the current value of dot is 1000, the direct
assignment statement:

TABLE: .=. + /100

wouldreserve 100 (hex) bytes of storage, with the address of the first byte asthe value
of TABLE. Thenextinstruction would be stored at address 1100. Notethat

.blkb 100
isasubstantially morereadable way of doing the same thing.

The :p operator, discussed in a later section, allows you to assemble values that are
location—relative, both locally (within a module) and across module boundaries,
without explicitaddressarithmetic.

7-6

As: An Assembler

7.53 Program Sections

As in XENIX, programs to as are divided into two sections: text and data. These
sectionsare interpreted asinstruction space and initialized data space, respectively.

In the first pass of the assembly, as maintains a separate location counter for each
section. Thus, forcodelike the following:

text
LABELI: movw dl,d2
.data
LABEL2: .word 27
text
LABEL3: addl d2,d1
.data
LABELA: .byte 4

LABELI1 willimmediately precede LABEL3, and LABEL?2 willimmediately precede
LABELA inthe output. At the end of the first pass, as rearranges all the addresses so
that the sections will be output in the following order: text, then data.- The resulting
output file is an executable image with all addresses correctly resolved, with the
exception of .comm variables and undefined .globl variables. For more information
onthe format of the output file, consulta. out (F).

7.54 Constants

All constants are considered absolute quantities when appearing inan expression.

7.5.4.1 Numeric Constants

Any symbol beginning with a digit is assumedtobe a number, and willbe interpretedin
the default decimalradix. Individual numbers may be evaluated inany ofthe five valid
radices: decimal, octal, hexadecimal, character, and binary. The default decimal
radix is only used on “‘bare’’ numbers, i.e., sequences of digits. Numbers may be
represented in other radices as defined by the following table. The other three radices

ALENIX Frogrammer’s (uide

require aprefix:

Radix Prefix Example | .
octal “(up—arrow) | 17 equals 15base 10.
octal 0 017 equals 15base 10.
hex / (stash) /A1 equals 161 base 10.
hex 0x 0xAl equals 161 base 10. -
char ? (quote) ’a equals97base 10.

“{ char ? (quote) \n equals 10base 10.
binary | % (percent) %11011 | equals27base 10.

Letters in hex constants may be uppercase or lowercase; ¢.g., /aa=/Aa=/AA=170.
Illegal digits for a particular radix generate an error (e. g., "018). While the C character
constantsyntax is supported,

you cannot define character constants with a number (e.g., "\27)asthis is more easily
represented inone of the other formats.

7.5.8 Operators -
An operator is either a unary operator requiring a single operand, or a binary operator

requiringtwo operands. Operators of eachtype are describedbelow.

7.5.5.1 Unary Operators

Therearethreeunary operatorsinas:
Operator Function
+ unary plus, hasnoeifect.
- unary minus. .

p program displacement

The ‘“:p”’ operatoris a suffix that can be applied toarelocatable expression. ltreplaces
the value of the expression withthe displacement ofthat value from the current location
(not dot). This is implemented with displacement relocation, so that it also works

As: An Assembier

acrossmodules.

7.5.5.2 Binary Operators

Binary operatorsinclude:
Operator Description Example Value
+ Addition 3+4 7.
- Subtraction 3-4 —1.,or/FFFF
* Multiplication 4*3 12.
/ Division 12/4 3.
I Logical OR %01101 | %00011 01111
& Logical AND %01101&%00011 % 00001
) Remainder 53 2.

Each operator isassumed to work on a 32—bit number. Ifthe value of a particular term
occupiesonly 8or 16 bits, the signbitisextendedintothe highbyte.

Sometimeserrors inexpressions can be fixed by breaking the expressionsintomulktiple
statements using direct assignment statements.

7.5.6 Terms

Atermisacomponent of anexpression. Atermmay be one of the following:
1. Anumberwhose 32—bit valueisused
2. Asymbol

3. A term preceded by a unary operator. For example, both “‘term’” and
‘““term'” may be considered terms. Multiple unary operators are allowed;
e.g. “‘+— —+ A’ hasthesamevalueas ““A"".

7.5.7 Expressions

Expressions are combinations of terms joined together by binary operators. An
expressionis always evaluated toa 32 —bit value. Ifthe instruction calls for only 1 byte
(e.g.,.byte), thenthelow—order8bitsareused.

Expressions are evaluated left to right with no operator precedence. Thus
“l + 2 * 3" evaluatesto 9, not 7. Unary operators have precedence over binary
operators since they are considered part of a term, and both terms of a binary operator
must beevaluated before the binary operator canbe applied.

A missing expression or term is interpret>d as having a value of zero. Inthis case, the
following error message is generated:

invalid Expression

XENIX Programmer’s Guide

An “‘Invalid Operator’* error means that a valid end—of—line character or binary
operator was not detected after the assembler processedaterm. Inparticular, thiserror
will be generated if an expression contains a symbol with an illegal character, orif an
incorrectcomment character was used.

- Any expression, when evaluated, iseither absolute, relocatable, orexternalk:

1. Anexpressionisabsoluteifits valueisfixed. Absolute expressionsarethose
whose terms are constants, or symbols assigned constants with an
assignment statement. Also absolute is a relocatable expression minus a
relocatable term, where bothitemsbelong tothe same program section.

2. Anexpression is relocatable if its value is fixed relative to a base address,
but will have an offset value when it is linked, or loaded into core. Alllabels
of a program defined in relocatable sections are relocatable terms, and any
expression that contains them must only add or subtract constants to their
value. For example, assume the symbol ‘‘sym’’ was defined in a
relocatable section of the program. Then the following demonstratestheuse
ofrelocatable expressions:

sym Relocatable
sym+S5 Relocatable
sym—'A Relocatable
sym*2 Notrelocatable

2—sym Not relocatable, since the expression cannot be linked by
adding sym’soffsettoit.

sym—sym?2 Absolute, since the offsetsadded to sym and sym2 cancel each
otherout.

3. An expression is ‘“‘external’ (i.e., or global) if it contains an external
symbol not definred in the current program. The same restrictions on
expressions containing relocatable symbols apply to expressions
containing external symbols.

An important exception is the expression sym—sym2 where both sym and
sym2 areexternal symbols. Expressionsofthiskindaredisallowed.
7.6 Instructions and Addressing Modes

Thissection describesthe conventions used inasto specify instructionmnemonics and
addressingmodes.

7.6.1 Instruction Mnemonics

The instructionmnemonicsused by as are described inthe Motorola MC68C00 User’s
Manual with a few variations. Most of the MC68000 instructions can apply to byte,

7-10

As: An Assembier

word or to long operands, thus in as the normal instruction mnemonic is suffixed with
b, w, or | to indicate which length of operand was intended. For example, there are
three mnemonics for the add instruction: addb, addw, and addl.

Branch and call instructions come in 3 forms: the bra, jra, bsr and jbsr forms may
only take a label as argument. For the bra and bsr forms, the assembler will always
produce a long (16—bit) pcrelative address. For the jraand jbsr forms, the assembler
will produce the shortest form of binary it can. This may be 8—bit or 16—bit pc
relative, or 32—bit absolute. The 32—bit absolute is implemented for conditional
branches by inverting the sense of the condition and branching around a 32—bit jmp
instruction. The 32—bit form will be gencrated whenever the assembler can't figure
out how far away the addressed location is; for example, branching to an undefined
symbol or a calculated value such asbranchingto a constant location.

7.6.2 Operand Addressing Modes

These effective addressing modes specify the operand(s) of an instruction. For details
of the effective addressing medes, seethe ‘““MC68000User’sManual. ** Note alsothat
not all instructions allow all addressing modes. Details are given in the *‘MC68000
User’sManual’’ in Appendix B under the specificinstruction.

In the examples that follow, when two examples are given, the first example is based
on the assembly format suggested by Motorola. The second example is in what is
called ‘‘Register Transfer Language’” or RTL and is used to describe the register
transfersthat are occurring withinthe machine. It is provided for compatibility. Either
syntax is accepted, and it is permissible to mix the two types of syntax withinamodule
or even within a line whentwo effective address fields are allowed. Beware, however,
thata warning message willbe generated whentheassembler notices suchamix.

Many of the effective address modes have other names, by which they may be more
commonly known. In the following descriptions, this name appears to the right of the
Motorola nameinparentheses.

DataRegister Direct

addl do,d1
AddressRegister Direct

addl a0,a0
AddressRegister Indirect (indirect)

addl (a0),d1

addl a0@,dl

AddressRegister Indirect WithPostincrement (autoinc)

movl (a7)+,dl
movl a7@+,d1

AddressRegister Indirect WithPredecrement(autodec)

7-11

XENIX Programmer’s Guide

movl di, —(a7)
movl . di,a7@-
AddressRegister Indirect With Displacement(indexed)

This form includes asigned 16—bit displacement. These displacements may be
symbolic.

movl 12(a6),d1
movl a6@(12),d!
AddressRegister Indirect WithIndex (double—indexed)

This form includes a signed 8—bit displacement and an indexregister. The size
ofthe indexregister is given by following its specificationwitha *“:w’"ora ‘“:I'".
Ifneitherisspecified, ““:1"’ isassumed.
movl 12(a6,d0:w),d1
movl a6@(12,d0:w),dl
Absolute Short Address

movl xx:w,dl

Absolute Long Address (absolute)

This isthe assumed addressing mode should the given value be aconstant. This
is not true of branch and call instructions. Note also that the second example
here is not RTL syntax, butis provided only becauseitis alsoallowed.

movl xx,d1
movl xx:1,d1
Program Counter WithDisplacement(pcrelative)
Whenpcrelative addressing isused, suchas
pea name(pc)

the assembler will assemble a value that isequal to *‘name—."", where dot (.)is
the position of the value, whether *‘name’”’ isinthe current module or not. You
may also cause anexpressiontobe perelative by suffixing it witha““:p”*.

movl 10(pc),d1
movl pc@(10),d1

Note that if a symbol appears in the above addressing mode (where the 10 is in
the example), the symbol’s displacement from the extension word will be used
intheinstruction.

Program Counter WithIndex

jmp switchtab(pc,d0:1)
jmp pc@(switchtab,dC:I)
switchtab:

ImmediateData

7-12

7.7

As: An Assembler

Note that this is the way to get immediate data. If 2 number is given with no
number sign (#), you get absolute addressing. This does not hold for jsr and
jmpinstructions.

movl #47,d1
jmp somewhere
moveq #7,d1

in the movem instruction’s register mask field, a special kind of immediate is
allowed: the register list. Its syntax is as follows:

<reg |,regl>

Here, regis any register name. Register names may be given in any order. The
assembler automatically takes care of reversing the mask for the auto—
decrement addressing mode. Normal immediates are alsoallowed.

Assembler Directives

7-13

XENIX Programmer’s Guide

The following assembler directivesareavailableinas:

.ascii storescharacter strings

.asciz stores null —appendedcharacter strings
.blkb

.blkw savesblocksofbytes/words/longs

.blkl

.byte

.word | storesbytes/words/longs

.dong

.end terminates programand identifiesexecutionaddress
.text Text program section

.data Data program section

.bss Bssprogram section

.globl declares external symbols

.comm | declarescommunalsymbols

.even forces location counter tonext word boundary

7.7.1 .ascii .asciz

The .ascii directive translates character strings into their 7—bit ASCLI (represented as
8—Dbit bytes) equivalents for use in the source program. The format of the .ascii
directive isasfollows:

.ascii "character—string”

where character—string contains any character valid in a character constant.
Obviously, a newline must not appear within the character string. (It can be
represented by the escape sequence ‘“\n’’ asdescribed below). The quotation mark (')
is the delimiter character, which must not appear in the string unless preceded by a

backslash(\).
The following escape sequences are atso valid as single characters:
X Value of X
\b <backspace>, hex /08
\t <tab>, hex /09
\n <newline>, hex /0A
\§ <form—feed>, hex /0C
\r <return>, hex /0D
\nnn | hex value of nnn
Several examples follow:
HexCode Generated: Statemen::
2268656C6C6F2074 .ascii "hellothere”
6865726522
7761 726E696E6720 .ascii “Warning—\007\007\n"
2D0707200A

As: An Assembler

The .asciz directive is equivalent to the .ascii directive with a zero (null) byte
automatically inserted asthe final characterofthe string. Thus, whenalistortext string
istobe printed, a search for the null character canterminate the string. Nullterminated
strings are oftenused as argumentstoX ENIX systemcalls.

7.7.2 -blkb .blk w .blk}

The .blkb, .blkw, and .bkkl directives are used to reserve blocks of storage: .blkb
reservesbytes, .blk wreserves words and . blklreserves longs.

The formatis:
label: .blkb expression
lakel: blkw expression
1abel:1 .bikl expression

where expression is the number of bytes or wordstoreserve. If noargument is givena
value of 1 isassumed. The expressionmust be absolute, and defined during pass 1 (i.e.
no forward references).

This is equivalent to the statement *‘. = . +expression’’, but has a much more
transparent meaning.

7.1.3 .byte .word .long

The .byte, .word, and .long directives are used to reserve bytes and words and to
initialize them with values.

The formatis:
label: .byte expression||, expression)|. ..
label: word expression||, expression|. ..
label: Jong expression||, expression,. ..

The .byte directive reserves 1 byte for each expression in the operand field and
initializes the value of the byte to be the low—order byte of the comesponding
expression. Note that mukiple expressions must be separated by commas. A blank
expressionis interpretedas zero, and noerrorisgenerated.

Forexample,

.bytea,b,c,s reservesdbytes.

.byte,,,, reserves Sbytes, each with a value of zero.
.byte reserves 1 byte, witha value of zero.

The semantics for .word and .long are identical, except that 16—bit or 32—bit words
arereservedand initialized. Be forewarned that the value of dot withinan expressionis
thatof the beginning of the statement, not of the valuebeing calculated.

7.7.4 end

The .end directive indicatesthe physical end of the sourceprogram. The format is:

7-15

XENIX Programmer’s Guide

.end
The .end isnot required; reaching the end of filehasthe same effect.

1.7.5 .text .data .bss

These statements change the *‘program section’” where assembled code will be
loaded.

7.7.6 .globl .comm

Two forms of external symbols are defined withthe .globland .comm directives.
External symbols are declared with the . glabl assemblerdirective. The format is:
.globl symbol | , symbol ...]

For example, the following statements declare the array TABLE and the routine
SRCH tobeexternal symbols:

.globl TABLE, SRCH
TABLE: .blkw 10,
SRCH: movw TABLE,a0

External symbols are only declared to the assembler. They must be defined (i.e., given
a value) in some other statement by one of the methods mentioned above. They need
not be defined in the current program; in this case they are flagged as *‘undefined”” in
the symbol table. If they are undefined, they are considered to have a value of zero in
expressions.

Itis generally a good idea to declare a symbol as .globl before using it in any way. This
is particularly important whendefining absolutes.

The other form of external symbol is defined with the .comm directive. The .comm
directive reserves storage that may be communally defined, i.e., defined mutually by
several modules. The link editor, /d (CP) resolves allocation of .comm regions. The
syntax of the .commdirective is:

.COIM narme constant—expression

which causes as to declare the name as a common symbol with a value equal to the
expression. For the rest of the assembly this symbol will be treated as though it were an
undefined global. As does not allocate storage for common symbols; thistask is left to
the loader. The loader computes the maximum size of each common symbol that may
appear in several load modules, allocates storage for it inthe bss section, andresolves
linkages.

1.7.7 .even

Thisdirective advances the locationcounterifits current valueis odd. Thisisuseful for
forcing storage allocation on a word boundary after a .byte or .ascii directive. Note
that many things may not be on an odd boundary in as, including instructions, and

wordandlong data.

7.8

Operation Codes

Beloware ali opcodesrecognizedbyas:

abed
addb
addw
addi
addgb
addqw
addqgl
addxb
addxw
addxi
andb
andw
andl
asb
aslw
asll
astb
asrw
asrl
bee
bees

blt
blts

bmi
bmis
bne
bnes
bpl
bpls
bra
bras
bset
bsr
bsrs
btst
bw
bvcs
bvs
bvss
chk
cktb
clrw
chl
cmpb
cmpw
cmpl
cmpmb
cmpmw
cmpml
dbec
dbcs
dbegq
dbf
dbge
dbgt
dbhi
dble
dbls
dblt
dbmi
dbne
dbpl

dbra
dbt
dbvc
dbvs
divs
divu
eorb
eorw
eorl
exg
extw
extl
jbsr
jee
jcs
jeq
Jge
gt
jhi
jle
ils -
jit
jmi
Jmp
jne
jpl
jra
jsr
jve
jvs
lea
link
Islb
Islw
Isli
Isrb
Isrw
1st]

movb
movw
movi
movemw
moveml
movepw
movepl
moveq
muls
mulu
nbcd
negb
negw
negl
negxb
negxw
negxl

notb
notw
notl
orb
orw
orl
pea
reset
rolb
rolw
roll
rorb
rorw
rorl
roxlb
roxlw
roxll
roxrb
roxrw
roxrl

The following pseudooperations arerecognized:

As: An Assembler

e

s
sbcd
scc
sCs
seq
sf
sge
sgt

sle
sls
sit
smi
sne

spl

stop
subb
subw
subl
subgb
subgqw
subgl
subxb
subxw
subxl
svC
svs

swap

trap
wapv
tstb
tstw
tstl
unlk

7-17

XENIX Programmer’s Guide

.ascii
.asciz
.blkb
.blkl
blkw
bss
byte
comm
.data
.end
.even
.globl
.Jong
text
.word

The following registersarerecognized:

d0d1d2d3d4d5d6d7
a0 al a2 a3 a4 a5 a6 a7
Sp pc cc st

7.9 Error Messages

Ifthere areerrorsinanassembly, anerrormessage appearsonthe standard erroroutput
(usually the terminal) giving the type of error and the source line number. If an
assembly listing is requested, and there are errors, the error message appears before
the offending statement. Ifthere were no assembly errors, then there are nomessages,
thus indicating a successful assembly. Some diagnostics are only warnings and the
assembly is successful despitethe warnings.

The common error codes and their probable causes, appear below:

Invalid character
An invalid character for a character constant or character string was
encourtered.

Multiply definedsymbal
A symbol has appeared twice as a label, or an attempt has been made to
redefine alabel using an = statement. Thiserror message may alsooccur
ifthe value of asymbolchangesbetweenpasses.

Offsettoolarge
Adisplacement cannot fit inthe space provided for by the instruction.

Invalid constant
Aninvaliddigit was encounteredinanumber.

Invalid term
The expression evaluator could not find a valid term that was either-a
symbeol, constant or expression. An invalid prefix to a number or a bad
symbolname inanoperand will generate this.

718

As: An Assembler

Nonrelocatable expression
A required relocatable expression was not found as an operand. It was
not provided.

Invalid operand
Anillegaladdressingmode wasgiven for the instruction.

Invalid symbol
A symbol was given that does not conform to the rules for symbol
formation.

Invalid assignment
Anattempt was madetoredefine alabel withan = statement.

Invalid cpcode
A symbol in the opcode field was not recognized as an instruction
mnemonic ordirective.

Bad filename
Aninvalidfilename was given.

Wrong number of operands
Aninstruction has either too few ortoo many operands as required by the
syntax of the instruction.

Invalid register expression
Anoperand or operand element that must be aregisteris not, or aregister
name is used where it may not be used. For example, using an address
register in a moveq instruction, which only allows data registers will
produce this error message; as will using aregister name as a Jabel with a
brainstruction. '

Oddaddress
Aninstruction or dataitemthat must start at anevenaddress doesnot.

Inconsistent effective addresssyntax
Bothassembly andRTL syntax appear withina single module.

Nonword memory shift
Anin—memory shift instruction was givenasize otherthan 16 bits.

7-19

Chapter 8
Lex: A Lexical Analyzer

8.1 Introduction 8&-1

8.2 LexSourceFormat 8-2

8.3 LexRegular Expressions 83

8.4 Invokinglez 8-4

8.5 Specifying Character Classes 8-5

8.6 Specifying an Arbitrary Character 8-6
8.7 Specifying Optional Expressions 8-6
8.8 Specifying Repeated Expressions 8-6
8.9 Specifying Alternation and Grouping 8-7
8.10 Specifying Context Sensitivity 8-7
8.11 Specifying Expression Repetition 8-8
8.12 Specifying Definitions 8-8

8.13 Specifying Actions 8-8

8.14 Handling Ambiguous Source Rules 8-12
8.15 Specifying Left Context Sensitivity 8-15
8.16 Specifying Source Definitions 8-17

8.17 Lexand Yacc 8-18

8.18 Specifying Character Sets 8-22

8.19 SourceFormat 8-23

Lex: A Lexical Analyzer

8.1 Introduction

Lex is a program generator designed for lexical processing of character input
streams. It accepts a high-level, problem-oriented specification for character
string matching, and produces a C program that recognizes regular
expressions. The regular expressions are specified by the user in the source
specifications given to lex. The lex code recognizes these expressions in an
input stream and partitions the input stream into strings matching the
expressions. At the boundaries between strings, program sections provided by
the user are executed. The lex source file associates the regular expressions and
the program fragments. As each expression appears in the input to the
program writtenby lex, the corresponding fragment is executed.

The user supplies the additional code needed to complete his tasks, including
code written by other generators. The program thatrecognizes the expressions
is generated in the from the user’s C program fragments. Lex isnot a complete
language, but rather a generator representing a new language feature added on
top of the C programming language.

Lex turnsthe user’s expressions and actions (called source in this chapter) into
a C program named yylez. The yylez program recognizes expressions in a
stream (called input in this chapter) and performs the specified actions for each
expression asit isdetected.

Consider a program to delete from the input all blanks or tabs at the ends of
lines. The followinglines

%%
(\t]+$

are all that is required. The program contains 2 %% delimiter to mark the
beginning of the rules, and one rule. This rule contains a regular expression
that matches one or more instances of the characters blank or tab (written \t
for visibility, in accordance with the C language convention) just prior to the
end of a line. The bracketsindicate the character class made of blank and tab;
the + indicates one or more of the previous item; and the dollar sign ($)
indicates the end of the line. No action is specified, so the program generated by
lex will ignore these characters. Everything else will be copied. To change any
remaining string of blanks or tabs to a single blank, add another rule:

%%
[\t +$
\tl+

printf(” ");
The finite automaton generated for this source scans for both rules at once,
observes at the termination of the string of blanks or tabs whether or not there
isanewline character, and then executesthe desired rule’saction. Thefirst rule
matches all strings of blanks or tabs at the end of lines, and the second rule
matches all remaining strings of blanks or tabs.

81

XENIX Programmer’s Guide

Lex can be used alone for simple transformations, or for analysis and statistics
gathering on a lexical level. Lex can also be used with a parser generator to
perform the lexical analysis phase; it is especially easy to interface lex and
yacc. Lex programs recognize only regular expressions; yacc writes parsers
that accept a large class of context-free grammars, but that require a lower
level analyzer to recognize input tokens. Thus, a combination of lex and yacc
is often appropriate. When used as a preprocessor for a later parser generator,
lex is used to partition the input stream, and the parser generator assigns
structure to the resulting pieces. Additional programs, written by other
generators or by hand, can be added easily to programs written by lex. Yacc
users will realize that the name yylezis whatyacc expectsitslexical analyzer to
be named, so that the use of thisname by lex simplifiesinterfacing.

Lex generates a deterministic finite automaton from the regular expressions in
the source. The automaton is interpreted, rather than compiled, in order to
save space. The result isstill a fast analyzer. In particular, the time takenby a
lex program to récognize and partition an input stream is proportional to the
length of the input. The number of lex rules or the complexity of the rulesis not
important in determining speed, unless rules which include forward context
require a significant amount of rescanning. What does increase with the
number and complexity of rules is the size of the finite automaton, and
therefore the size of the program generated by lex.

In the program written by lex, the user’s fragments (representing the actions to
be performed as each regular expression is found) are gathered as cases of a
switch. The automaton interpreter directs the control flow. Opportunity is
provided for the user to insert either declarations or additional statements in
the routine containing the actions, or to add subroutines outside this action
routine.

Lex is not limited to source that can be interpreted on the basis of one
character lookahead. For example, if there are two rules, one looking for ab and
another for abedefg, and the input stream is abe defk, lex will recognize ab and
leave the input pointer just before c¢d. Such backup is more costly than the
processing of simpler languages.

8.2 Lex Source Format

The general format of lex source is:

{definitions}
%%

{rules}

%%

{user subroutines}
where the definitions and the user subroutines are often omitted. The second

%% is optional, but the first is required to mark the beginning of the rules. The
absolute minimum lex programisthus

8-2

Lex: A Lexical Analyzer

%%

{no definitions, no rules) which translates into a program that copies the input
to the output unchanged.

In the lex program format shown above, the rules represent the user’s control
decisions. They make up a table in which the left column contains regular
expressions and the right column contains actions, program fragments to be
executed when the expressions are recognized. Thus the following individual
rule might appear:

integer printf("found keyword INT");
Thislooks for the string sntegerin theinput stream and prints the message
found keyword INT

whenever it appears in the input text. In this example the C library function
printf() is used to print the string. The end of the lex regular expression is
indicated by the first blank or tab character. If the action is merely a single C
expression, it can be given on the right side of the line; if it is compound, or takes
more than a line, it should be enclosed in braces. As a slightly more useful
example, suppose it is desired to change a number of words from British to
American spelling. Lex rulessuch as

colour printf(” color™);
mechanise printf(” mechanize”);
petrol printf(”gas”);

would be a start. These rules are not quite enough, since the word petroleum
would become gaseum; a way of dealing with such problems is described in a
later section.

8.3 Lex Regular Expressions
A regular expression specifies a set of strings to be matched. It contains text
characters (that match the corresponding characters in the strings being
compared) and operator characters (these specify repetitions, choices, and
other features). The letters of the alphabet and the digits are always text
characters. Thus, the regular expression

integer
matches the string integer wherever it appears and the expression

ad7D

looks for the string a57D.

83 .

XENIX Programmer’s Guide

The operator charactersare
"N[]T-te+[(O)8/{}B <>

If any of these characters are to be used literally, they needed to be quoted
individually with a backslash (\) or as a group within quotation marks (").
The quotation mark operator () indicates that whatever is contained between
apair of quotation marks is to be taken as text characters. Thus

xyz"++"
matches the string zyz++ when it appears. Note that a part of a string may be
quoted. It is harmless but unnecessary to quote an ordinary text character; the
expression

"xyz++"
is the same as the one above. Thus by quoting every nonalphanumeric
character being used as a text character, you need not memorize the above list

of current operator characters.

An operator character may also be turned into a text character by preceding it
withabackslash (\)asin

xyz\+\+
which is another, less readable, equivalent of the above expressions. The
quoting mechanism can also be used to get a blank into an expression; normally,
as explained above, blanks or tabs end a rule. Any blank character not
contained within brackets must be quoted.. Several normal C escapes with the
backslash (\) arerecognized:
\n newline
\t tab
\b backspace
\\ backslash
Since newline is illegal in an expression, a \n must be used; it is not required to
escape tab and backspace. Every character but blank, tab, newline and the list
aboveis always a text character.
8.4 Invoking lez
There are two steps in compiling a lex source program. First, the lex source

must be turned into a generated program in the host general purpose language.
Then this program must be compiled and loaded, usually with a library of lex

8-4

Lex: A Lexical Analyzer

subroutines. The generated program is in a file named lex.yy.c. The I/O
library is defined in terms of the C standard library.

The library is accessed by the loader flag —ll. So an appropriate set of
commandsis .

lex source
ce lex.yy.c -l

The resulting program is placed on the usual file a.out for later execution. To
use lex with yacc see the section “Lex and Yacc” in this chapter and Chapter 9,
“Yacc: A Compiler-Compiler””’. Although the default lex I/O routines use the
C standard library, the lex automata themselves do not do so. If private
versions of input, output,and unput are given, thelibrary can be avoided.

8.5 Specifying Character Classes
Classesof characters can be specified using brackets: [and]. The construction
[abe]

matches a single character, which may be @, b, or ¢. Within square brackets,
most operator meanings are ignored. Only three characters are special: these
are the backslash (\), the dash (-), and the caret (*). The dash character
indicates ranges. For example

[2-20-9<>]

indicates the character class containing all the lowercase letters, the digits, the
angle brackets, and underline. Ranges may be given in either order. Using the
dash between any pair of characters that are not both uppercase letters, both
lowercase letters, or both digits is implementation dependent and causes a
warning message. If it is desired to include the dash in a character class, it
should be first or last; thus

[-+0-9]
matches all the digits and the plus and minus signs.
In character classes, the caret ("} operator must appear as the first character
after the left bracket; it indicates that the resulting string is to be
complemented with respect to the computer character set. Thus

[“abc]

matches all characters except a, b, or ¢, including all special or control
characters; or

XENIX Programmer’s Guide

| a-2A-Z)
is any character which is not a letter. The backslash (\) provides an escape
mechanism within character class brackets, so that characters can be entered
literally by preceding them with this character.
8.6 Specifying an Arbitrary Character
* To match almost imy character, the period {.) designates the class of all

characters except a newline. Escaping into octal is possible although
nonportable. For example

[\40-\176]
matches all printable characters in the ASCII character set, from octal 40
(blank) to octal 176 (tilde).
8.7 Specifying Optional Expressions

The question mark (?) operator indicates an optional element of an expression.
Thus

ab’c
matches either ac or abc. Note that the meaning of the question mark here
differsfrom its meaning in the shell.
8.8 Specifying Repeated Expressions

Repetitions of classes are indicated by the asterisk (*) and plus (+) operators.
For example

ar

matches any number of consecutive a characters, including zero; while a+
matches one or more instances of a. For example,

[a-2]+
matches all strings of lowercase letters, and
[A-Za-z][A-Za-20-9]+

matches all alphanumeric strings with a leading alphabetic character; thisis a
typical expression for recognizing identifiers in computer languages.

8-6

Lex: A Lexical Analyzer

8.9 Specifying Alternation and Grouping
The vertical bar (|) operator indicates alternation. For example
{abcd)

matcheseither abor ¢d. Note that parentheses are used for grouping, although
they are not necessary at the outside level. For example

ab|cd

would have sufficed in the preceding example. Parentheses should be used for
more complex expressions, such as

(abjed+)?(ef)*

which matchessuch strings as abefef, efefef, cdef, and cddd, but not abe, abed,
or abcdef.

8.10 Specifying Context Sensitivity

Lex recognizes a small amount of surrounding context. The two simplest
operators for this are the caret (*) and the dollar sign (8). If the first character
of an expression is a caret, then the expression is only matched at the beginning
of a line (after a newline character, or at the beginning of the input stream).
This can never conflict with the other meaning of the caret, complementation
of character classes, since complementation only applies within brackets. If the
very last character is dollar sign, the expression only matched at the end of a
line {(when immediately followed by newline). The latter operator is a special
case of the slash (/) operator, whichindicates trailing context. The expression

ab/cd

matches the string ab, but only if followed by ¢d. Thus
ab$

is the same as

ab/\n

Left context is handled in lex by specifying start conditions as explained in the
section ‘‘Specifying Left Context Sensitivity”. If a rule is only to be executed
when the lex automaton interpreter is in start condition z, the rule should be
enclosed inangle brackets:

<x>

8-7

XENIX Programmer's Guide

If we considered being at the beginning of a line to be start condition ONE, then
the caret { ") operator would be equivalent to

<ONE>

Start conditions are explained more fully later.

8.11 Specifying Expression Repetition

The curly braces ({ and }) specify either repetitions (if they enclose numbers) or
definition expansion (if they enclose aname). For example

{digit}

looks for a predefined string named digit and inserts it at that point in the
expression.

8.12 Specifying Definitions

The definitions are given in the first part of the lex input, before the rules. In
contrast,

a{1,5}
looks for 1 to 5 occurrencesof the character a.

Finally, an initial percent sign (%) is special, since it is the separator for lex
source segments.

8.13 Specifying Actions

When an expression is matched by a pattern of text in the input, lex executes
the corresponding action. This section describes some features of lex which aid
in writing actions. Note that there is a default action, which consists of copying
the input te the output. Thisis performed on all strings not otherwise matched.
Thus the lex user who wishes to absorb the entire input, without producing any
output, must provide rules to match everything. When lex is being used with
yacc, this is the normal situation. You may consider that actions are what is
done instead of copying the input to the output; thus, in general, a rule which
merely copies can be omitted.

One of the simplest things that can be done is to ignore the input. Specifying a C
nullstatement ; as an action causes thisresult. A frequent rule is

[\e\n] ;

which causes the three spacing characters (blank, tab, and newline) to be

8-8

Lex: A Lexical Analyzer

ignored.

Another easy way to avoid writing actions is to use the repeat action character,
|, which indicates that the action for thisrule is the action for the next rule. The
previousexample could also have been written

nn
n\tw. I
”\nn) ;

with the same result, although in a different style. The quotesaround \nand \¢
arenotrequired.

In more complex actions, you often want to know the actual text that matched
some expression like:

[a-z]+

Lex leaves this text in an external character array named yytezt. Thus, to
print the name found, a rule like

[a-z]+ printf{” %s”, yytext);

prints the string in yytezt. The C function printf accepts a format argument
and data to be printed; in this case, the format is print string where the percent
sign (%) indicates data conversion, and the sindicate string type, and the data
are the characters in yytezt. So this just places the matched string on the
output. This action isso common that it may be written as ECHO. For example

|a-z]+ ECHO;
is the same as the preceding example. Since the default action is just to print
the charactersfound, one might ask why give a rule, like this one, which merely
specifies the default action? Such rules are often required to avoid matching
some other rule that is not desired. For example, if there is a rule that matches

readit will normally match the instances of read contained in breador readjust;
to avoid this, arule of the form

[a-z)+
isneeded. Thisisexplained further below.
Sometimes it is more convenient to know the end of what hasbeen found; hence
lex also provides a count of the number of characters matched in the variable,
yyleng. To count both the number of words and the number of characters in
wordsin the input, you might write

la-2A-Z}+ {words++; chars += yyleng;}

which accumulates in the variables chars the number of charactersin the words

8-9

XENIX Programmer’s Guide

recognized. The last character in the string matched can be accessed with:

yytext[yyleng-1]

Occasionally, a lex action may decide that a rule has not recognized the correct
span of characters. Two routines are provided to aid with this situation. First,
yymore() can be called to indicate that the next input expression recognized is
to be tacked on to the end of this input. Normally, the next input string will
overwrite the current entry in yytezt. Second, yyless(n) may be called to
indicate that not all the characters matched by the currently successful
expression are wanted right now. The argument n indicates the number of
characters in yytezt to be retained. Further characters previously matched are
returned to the input. This provides the same sort of lookahead offered by the
slash{/) operator, but in a different form.

For example, consider a language that defines a string as a set of characters
between quotation marks (), and provides that to include a quotation mark in
a string, it must be preceded by a backslash (\). The regular expression that
matches this is somewhat confusing, so that it might be preferable to write

V[
if (yytext[yyleng-1] == "\\’)
yymore();
else
... normal user processing

b
which, when faced with astringsuch as
”abc\” def”
will first match the five characters
"abc\
and then the call to yymore() will cause the next part of thestring,
" def

to be tacked on the end. Note that the final quotation mark terminating the
string should be picked up in the code labeled normal processing.

The function yyless() might be used to reprocess text in various circumstances.
Consider the problem in the older C syntax of distinguishing the ambiguity of
=-a. Suppose it is desired to treat this as =~ aand to print a message. A rule
might be

8-10

Lex: A Lexical Analyzer

=-[a-2A-Z]
printf("Operator (=-) ambiguous\n”);
yyless(yyleng-1); :
... action for =- ...

}

which prints a message, returns the letter after the operator to the input
stream, and treats the operator as =—.

Alternatively it might be desired to treat this as = —a. To do this, just return
the minus sign as well as the letter to the input. The following performs the
interpretation:

=-[a-2A-Z]
printf(” Operator (=-) ambiguous\n”);

yyless(yyleng-2);
... action for = ...

}

Note that the expressions for the two cases might more easily be written
=-/[A-Za-2]
in the first case and
=/-|A-Za-z]
in the second: no backup would be required in the rule action. It is not
necessary to recognize the whole identifier to observe the ambiguity. The
possibility of =-8, however, makes
=-/[" \t\n]
astill better rule.
In addition to these routines, lex also permits access to the I/O routines it uses.
They include:
1. input() which returns the nextinput character;

2. output(c) which writesthe character ¢ on the output; and

3. unput(c) which pushes the character ¢ back onto the input stream to
be read later by input().

By default these routines are provided as macro definitions, but the user can
override them and supply private versions. These routines define the
relationship between external files and internal characters, and must all be
retained or modified consistently. They may be redefined, to cause input or

8-11

XENIX Programmer’s Guide

output to be transmitted to or from strange places, including other programs
or internal memory; but the character set used must be consistent in all
routines; a value of zero returned by snput must mean end-of-file; and the
relationship between unput and input must be retained or the lookahead will
not work. Lex does not look ahead at all if it does not have to, but every rule
“containing a slash (/) or ending in one of the following characters implies
lookahead:

+*?$

Lookahead is also necessary to match an expression that is a prefix of another
expression. See below for a discussion of the character set used by lex. The
standard lex library imposesa 100 character limit on backup.

Another lex library routine that you sometimes want to redefine is yywrap()
which is called whenever lex reaches an end-of-file. If yywrap returnsa 1, lex
continues with the normal wrapup on end of input. Sometimes, however, it is
convenient to arrange for more input to arrive from a new source. In this case,
the user should provide a yywrap that arranges for new input and returns 0.
Thisinstructs lex to continue processing. The default yywrapalwaysreturns1.
This routine is also a convenient place to print tables, summaries, etc. at the
end of a program. Note that it is not possible to write a normal rule that
recognizes end-of-file; the only access to this condition is through yywrap(). In
fact, unless a private version of input() is supplied a file containing nulls cannot
be handled, since avalue of O returned by snputistaker to be end-of-file.

8.14 Handling Ambiguous Source Rules

Lex can handle ambiguous specifications. When more than one expression can
match the current input, lex chooses as follows:

e Thelongest matchispreferred.

e Among rules that match the same number of characters, the first
givenruleispreferred.

For example, suppose the following rules are given:

integer keyword action ...;
[a-z]+ identifier action ...;

If the input is integers, it is taken as anidentifier, because
[a-z)+

matches 8 characters while

812

Lex: A Lexical Analyzer

integer

matches only 7. If the input is tnteger, both rules match 7 characters, and the
keyword rule is selected because it was given first. Anything shorter (e.g., int)
does not match the expression integer, so theidentifier interpretation is used.

The principle of preferring the longest match makes certain constructions
dangerous, such as the following:

K

For example
) "

might seem a good way of recognizing a string in single quotes. But it is an
invitation for the program to read far ahead, looking for a distant single quote.
Presented with the input

first * quoted string here, second’ here
the above expression matches
‘first” quoted string here, second”

which is probably not what was wanted. A better ruleis of the form
" \n]»’

which, on the above input, stops after first’. The consequences of errors like
this are mitigated by the fact that the dot (.) operator does not match a
newline. Therefore, no more than one line isever matched by such expressions.
Don’t try to defeat this with expressionslike

[\n]+

or their equivalents: the lex generated program will try to read the entire input
file, causing internal buffer overflows.

Note that lex is normally partitioning the input stream, not searching for all
possible matches of each expression. This means that each character is
accounted for once and only once. For example, suppose it is desired to count
occurrences of both she and ke in an input text. Some lex rules to do this might
be

she s++;
he h++;

\n I

813

XENIX Programmer’'s Guide

where the last two rules ignore everything besides he and ske. Remember that
the period (.) does not include the newline. Since she includes ke, lex will
normally not recognize the instances of ke included in she, since once it has
passed a she those charactersare gone. :

Sometimes the user would like to override this choice. The action REJECT
means go do the next alternative. It causes whatever rule was second choice
after the current rule to be executed. The position of the input pointer is
adjusted accordingly. Suppose the user really wants to count the included
instancesof he:

she {s++; REJECT;}
he {h++; REJECT;}
W

. ;
These rules are one way of changing the previous example to do just that. After
counting each expression, it is rejected; whenever appropriate, the other
expression will then be counted. In this example, of course, the user could note
that she includes ke, but not vice versa, and omit the REJECT action on &e; in
other cases, however, it would not be possible to tell which input characters
were in both classes.

Consider the two rules

be
cd

a
a

+ {..;REJECT;}
+ {..; REJECT;}

If the input is b, only the first rule matches, and on adonly the second matches.
The input string accb matches the first rule for four characters and then the
second rule for three characters. In contrast, the input aced agrees with the
second rule for four charactersand then the first rule for three.

In general, REJECT is useful whenever the purpose of lex isnot to partition the
input stream but to detect all examples of some items in the input, and the
instances of these items may overlap or include each other. Suppose a digram
table of the input is desired; normally the digrams overlap, that is the word the
is considered to contain both th and ke. Assuming a two-dimensional array
named digram to be incremented, the appropriate sourceis

%%
[a-2][a-2] .{digram[yytext[O]][yytext[l]]++; REJECT;}

\n ;

where the REJECT is necessary to pick up a letter pair beginning at every
character, rather than at every other character.

Remember that REJECT does not rescan the input. Instead it remembers the
results of the previous scan. This means that if a rule with trailing context is

8-14

Lex: A Lexical Analyzer

found, and REJECT executed, you must not have used unput to change the
characters forthcoming from the input stream. This is the only restriction to
ability to manipulate the not-yet-processed input.

8.15 Specifying Left Context Sensitivity

Sometimes it is desirable to have several sets of lexical rules to be applied at
different times in the input. For example, a compiler preprocessor might
distinguish preprocessor statements and analyze them differently from
ordinary statements. This requires sensitivity to prior context, and there are
several ways of handling such problems. The caret (") operator, for example, is
aprior context operator, recognizing immediately preceding left contextjust as
the dollar sign ($) recognizes immediately following right context. Adjacent
left context could be extended, to produce a facility similar to that for adjacent
right context, but it is unlikely to be as useful, since often the relevant left
context appeared some time earlier, such as at the beginning of a line.

Thissection describes three means of dealing with different environments:

1. The use of flags, when only a few rules change from one environment
to another

2. The use of start conditions with rules
3. The use multiple lexical analyzersrunning together.

In each case, there are rules that recognize the need to change the environment
in which the following input text is analyzed, and set some parameter toreflect
the change. This may be a flag explicitly tested by the user’saction code;sucha
flag is the simplest way of dealing with the problem, since lex is not involved at
all. It may be more convenient, however, to have lex remember the flags as
initial conditions on the rules. Any rule may be associated with a start
condition. It will only be recognized when lex is in that start condition. The
current start condition may be changed at any time. Finally, if the sets of rules
for the different environmentsare very dissimilar, clarity may be best achieved
by writing several distinct lexical analyzers, and switching from one to another
as desired.

Consider the following problem: copy the input to the output, changing the
word magic to firston every line that began with the letter a, changing magic to
second on every line that began with the letter b, and changing magsc to third
onevery line that began with the letter ¢. All other words and all other linesare
left unchanged.

These rulesare so simple that the easiest way to do this job is with a flag:

8-15

XENIX Programmer’s Guide

int flag;
%%
“a {flag = ‘a; ECHO;}
“b {flag = b% ECHO;}

"¢ {flag = ‘¢’; ECHO;}

\n {flag = 0; ECHO;}

magic {
switch (flag)
case " printf(”first”); break;
case b printf("second”); break;
case ‘¢ printf{”third”}); break;
default: ECHO; break;

}
}

should be adequate.

Tohandle the same problem with start conditions, each start condition must be
introduced to lex in the definitions section with aline reading

%Start namel name?2 ...
where the conditions may be named in any order. The word Start may be
abbreviated to sor S. The conditions may be referenced at the head of a rule
with angle brackets. For example

<namel >expression

is a rule that is only recognized when lex is in the start condition name!. To
enter astart condition, execute the action statement

BEGIN namel;
which changesthe start conditionto name 1. Toreturn tothe initial state

BEGIN 0;

resets the initial condition of the lex automaton interpreter. A rule may be
active in severalstart conditions; for example:

<namel,name2,name3>

is a legal prefix. Any rule not beginning with the <> prefix operator is always
active.

The same example as before can be written:

8-16

—

Lex: A Lexical Analyzer

%START AA BB CC

%%

a
‘b
‘¢

\n

{ECHO; BEGIN AA;}
{ECHO; BEGIN BB;}
{ECHO; BEGIN CC;}
{ECHO; BEGIN 0;}

<AA>magic printf("first”);
<BB > magic printf("second”);
< CC>magic printf("third");

where the logic is exactly the same as in the previous method of handling the

problem,

but lex doesthe work rather thanthe user’s code.

8.18 Specifying Source Definitions

Remember the format of the lex source:

{definitions}

%%

{rules}

%%

{use

r routines}

So far only the rules have been described. You will need additional options,
though, to define variables for use in your program and for use by lex. These
can go either in the definitions section or in the rules section.

Remember that lex is turning the rules into a program. Any source not
intercepted by lex is copied into the generated program. There are three classes
of such things:

Any line that is not part of a lex rule or action which begins with a
blank or tab is copied into the lex generated program. Such source
input prior to the first %% delimiter will be external to any function
in the code; if it appearsimmediately after the first %%, it appearsin
an appropriate place for declarations in the function written by lex
which contains the actions. This material must look like program
fragments, and should precede the first lex rule.

As a side effect of the above, lines that begin with a blank or tab, and
which contain a comment, are passed through to the generated
program. This can be used to include comments in either the lex
source or the generated code. The comments should follow the
conventionsof the C language.

Anythingincluded between lines containing only %{ and %} is copied

out as above. The delimiters are discarded. This format permits
entering text like preprocessor statements that must begin in'column

817

XENIX Programmer’s Guide

1, or copying linesthat do not look like programs.

3. Anything after the third %% delimiter, regardless of formats, is
copied out after the lex output.

Definitions intended for lex are given before the first %% delimiter. Any line in
this section not contained between %{ and %}, and beginning in column 1, is
assumed to define lex substitution strings. The format of such lines is

name translation

and it causes the string given as a translation to be associated with the name.
The name and translation must be separated by at least one blank or tab, and
the name must begin with aletter. The translation can then be called out by the
{name} syntax in arule. Using {D} for the digits and {E} for an exponent field,
for example, might abbreviate rules to recognize numbers:

D 0-9]

E . Ede]|-+]"{D}+
%%

{D}+ printf(”integer”);

{D}+".7{D}+({E})? |
{D}s”.” (D}+({E})? | .
{D}+{E} | printf("real”);

Note the first two rules for real numbers; both require a decimal point and
contain an optional exponent field, but the first requires-at least one digit before
the decimal point and the second requires at least one digit after the decimal
point. To correctly handle the problem posed by a FORTRAN expression such
as 85.£Q.1, which does not contain a real number, a context-sensitive rule such
as

[0-9]+/"."EQ printf("integer”);
could be used in addition to the normal rule for integers.

The ‘definitions section may also contain other commands, including a
character set table, a list of start conditions, or adjustments to the default size
of arrays within lex itself for larger source programs. These possibilities are
discussed in the section ““Source Format™'.

8.17 Lex and Yacc

If you want to use Jex with yacc, note that what lex writes is a program named
yylez(), the name required by yacc for itsanalyzer. Normally, the default main
program on the lex library calls thisroutir:~, but if yacc is loaded, and its main
program is used, yacc will call gylez(). In this case, each lex rule should end
with

8-18

Lex: A Lexical Analyzer

return(token);

where the appropriate token value is returned. An easy way to get access to
yacc’s names for tokens is to compile the lex output file as part of the yacc
output file by placing the line

include "lex.yy.c”

in the last section of yacc input. Supposing the grammar to be named goodand
the lexical rules to be named betterthe XENIX command sequence can just be:

yace good
lex better
cc y.tab.c -ly -1l

The yacc library (-ly) should be loaded before the lex library, to obtain a main
program which invokes the yacc parser. The generation of lex and yacc
programs can be donein either order.

As a trivial problem, consider copying an input file while adding 3 to every
positive number divisible by 7. Here is a suitable lex source program to do just
that:

%%
int k;
[0-9]+ {
k = atoi(yytext);
if (k%7 == 0)
printf(" %d”, k+3);
else

printf{” %d” k);

The rule [0-9]+ recognizes strings of digits; atoi() converts the digits tobinary
and stores the result in k. The remainder operator (%) is used to check whether
k is divisible by 7; if it is, it is incremented by 3 as it is written out. It may be
objected that this program will alter such input items as 49.63 or X7.
Furthermore, it increments the absolute value of all negative numbers divisible
by 7. To avoid this, just add a few more rules after the active one, as here:

%%
int k;
2o-9]+ {
= atoi(yytext);
printf("%d”, k%7 == 0? k+3 : k);

-70-9.)+ ECHO;
[A-Za-2][A-Za-20-9)+ ECHO;

Numerical strings containing a decimal point or preceded by a letter will be

8-19

XENIX Programmer’s Guide

picked up by one of the last two rules, and not changed. The if—else has been
replaced by a C conditional expression to save space; the form a?b:c means: if a
then belse c.

For an example of statistics gathering, here is a program which makes
histogramsof word lengths, where a word isdefined as a string of letters.

int lengs[100};
%%
[a-z]+ lengslyyleng]++;

\n
%%
){’ywrap()

int i; .
printf("Length No. words\n");
for(i==0; i<100; i++)
if (lengs|i] > 0)
printf(” %5d%10d\n" i, lengs]i]);
return(1);

This program accumulates the histogram, while producing no output. At the
end of the input it prints the table. The final statement return(1); indicates
that lex is to perform wrapup. If yywrap() returns zero (false} it implies that
further input is available and the program is to continue reading and
processing. To provide a yywrap() that never returns true causes an infinite
loop. g

As a larger example, here are some parts of a program written to convert
double precision FORTRAN to single precision FORTRAN. Because FORTRAN
does not distinguish between upper- and lowercase letters, this routine begins
by defining a set of classes including both cases of each letter:

a aA
b bB
¢ [cC]
2 izZ]

An additional class recognizes white space:
w [\t]*

The first rule changes double precision to real, or DOUBLE PRECISION to
REAL.

8-20

e

Lex: A Lexical Analyzer

{d}{o}{u}{b}{l}{e}{W}{p}{r}{e}‘{ %{{ }{S}{ Ho}{n} {

printf(yytext[0]==="d"? "real

Care is taken throughout this program to preserve the case of the original
program. The conditional operator is used to select the proper form of the
keyword. The next rule copies continuation card indications to avoid confusing
them with constants:

o) ECHO;

In the regular expression, the quotes surround the blanks. It is interpreted as
beginning of line, then five blanks, then anything but blank or zero.” Note the
two different meanings of the caret (") here. There follow some rules to.change
double precision constants to ordinary floating constants.

[0-9]+{WHd}{W}[+-]2{W}[0-9]+

[0-9]+ {W}" " (W} {d}{W} []? (W}[0-9]+

? "{;V}[(*gli*iw}{g}{:’\/} r{wio9l+ {
for(;{:.—yyt,ext *p != 0; p++)

if (sp ==d" || #p =="D)
‘p+=)e'_ ’d’;
ECHO;
}

After the floating point constant is recognized, it is scanned by the for loop to
findthe letter “d” or “D”. The program then adds ‘"' ¢’ -’ d’ "’ which converts it
to the next letter of the alphabet. The modified constant, now single precision,
is written out again. There follow a series of names which must be respelled to
remove their initial ““‘d”. By using the array yyteazt the same action suffices for
all the names (only asample of a rather long list is given here).

(dMs}{iyn} |
{d{cHoMs} |
{dHsH{aH) |
{dH{a}{tHa}{n} |
{dHH{IHoHa}{t) printf(" %s" yytext+1);

Another list of namesmust have initial d changed to initial a:

8-21

"XENIX Programmer’s Guide

{d}{IH{o}{e} |
{d}{1}{o}{g}10

{dH{m}i}{n}1 |
{dH{m}{a}{x}1 {

yytext{0] += "a’- d5
ECHO;
}

And oneroutine must have initial dchanged to initial r:

@mdatey (.
© o yytext]o] += T° - d%
ECHO;

}

To avoid such names as deinz being detected as instances of dsin, some final
rules pick up longer words as identifiers and copy some surviving characters:

[A-Za-3][A-Za-20-9)« |
jo-9]+
\n

ECHO;

Note that this program is not complete; it does not deal with the spa.cmg
problemsin FORTRAN or with the use of keywords asidentifiers.

8.18 Specifying Character Sets

The programs generated by lex handle character 1/O only through the
routines input, output, and unput. Thus the character representation provided
in these routines is accepted by lex and employed to return values in yytezt.
For internal use a character is represented as a small integer which, if the
standard library is used, has a value equal to the integer value of the bit pattern
representing the character on the host computer. Normally, the letter a is
represented as the same form as the character constant:

o

a
If this interpretation is changed, by providing I/O routines which translate the
characters, lex must be told about it, by giving a translation table. This table
must be in the definitions section, and must be bracketed by lines containing
only %T. The table contains lines of the form

{integer} {character string}

which indicate the value associated with each character. For example:

8-22

Lex: A Lexical Analyzer

%T

1 Aa

2 Bb
26 Zz
27 \n
28 +
29 -
30 0
31 1
39 9
%T

This table maps the lowercase and uppercase letterstogether into the integers 1
through 26, newline into 27, plus (+) and minus (-) into 28 and 29, and the digits
into 30 through 39. Note the escape for newline. If a table is supplied, every
character that is to appear either in the rules or in any valid input must be
included in the table. No character may be assigned the number 0, and no
character may be assigned a larger number than the size of the hardware
character set.

8.19 Source Format

The general form of a lex source file is:

{definitions}

{rules}

%%

{user subroutines}

The definitions section contains a combination of

1. Definitions, in the form “name space translation”

2. Included code, in theform “space code”

3. Included code,intheform

%{
code
%}

4. Start conditions, given in the form

%S namel name2 ...

8-23

XENIX Programmer’s Guide

5. - Characterset tables, in the form

%T
number space character-string
%T

6. Changestointernal array sizes, in the form
%x nnn

where nnnisa decimal integer representing an array size and zselects
the parameter as follows:

Letter Parameter
" positions
states
tree nodes
transitions
packed character classes
‘output array size

o X o oT

Linesin the rules section have the form:
ezpression aclion

where the action may be continued on succeeding lines by using braces to.
delimit it.

Regular expressionsin lex use the following operators:
X The character ”x”
An"x",evenif xisan operator.
\x An"x",evenif xisan operator.
[xy] The characterxory.
[x-z] The charactersx,y orz.
[’x] . Any character butx.
Any character but newline.
x Anx at the beginningof aline.
<y>x Anxwhenlexisinstart conditiony.

x$ Anx atthe end of aline.

Lex: A Lexical Analyzer

x? Anoptional x.

X‘

0,1,2,...instancesof x.

x+ ‘ 1,2,3,...instancesof x.

x|y Anxoray.

(x) Anx.

x[y Anx butonly if followed by y.

{xx} The translation of xx from the definitions section.

x{m,n} mthrough noccurrencesof x.

8-25

Chapter 9
Yacc: A Compller-Compller

9.1 Introduction 9-1

9.2 Specifications 9-4

9.3 Actions 9-6

9.4 Lexical Analysis 9-8

9.5 HowtheParser Works 9-10

9.6 Ambiguity and Conflicts 9-14

9.7 Precedence 9-19

9.8 Error Handling 9-22

9.9 TheYaccEnvironment 9-24

9.10 Preparing Specifications 9-25

9.11 Input Style 9-25

9.12 Left Recursion 9-26

9.13 Lexical Tie-ins 9-27

9.14 Handling Reserved Words 9-27

9.15 Simulating Error and Accept in Actions 9-28
'9.16 Accessing Valuesin Enclosing Rules 9-28

9.17 Supporting Arbitrar Value Types 9-29

9.18 A Small Desk Calculator 9-30
'9.19 Yacc InputSyntax 9-32
9.20 An Advanced Example 9-34

9.21 Old Features 9-40

Yacc: A Compiler-Compiler

8.1 Introduction

Computer program input generally has some structure; every computer
program that doesinput can be thought of as defining an input language which
it accepts. An inputlanguage may be as complex as a programming language,
or as simple as a sequence of numbers. Unfortunately, usual input facilities are
limited, difficult to use, and often lax about checking their inputs for validity.

Yacc provides a general tool for describing the input to a computer program.
The name yacc itself stands for ‘‘yet another compiler-compiler’’. The yace
user specifies the structures of his input, together with code to be invoked as
each such structure is recognized. Yacc turns such a specification into a
subroutine that handles the input process; frequently, it is convenient and
appropriate to have most of the flow of controlin the user’s application handled
by this subroutine.

The input subroutine produced by yace calls a user-supplied routine toreturn
the next basic input item. Thus, the user can specify his input in terms of
individual input characters, or in terms of higher level constructs such as
names and numbers. The user-supplied routine may also handle idiomatic
features such as comment and continuation conventions, which typically defy
easy grammatical specification. The class of specifications accepted is a very
generalone: LALR grammars with disambiguating rules.

In addition to compilers for C, APL, Pascal, RATFOR, etc., yacc has also been
used for less conventional languages, including a phototypesetter language,
several desk calculator languages, a document retrieval system, and a
FORTRAN debugging system.

Yacc provides a general tool for imposing structure on the input to a computer
program. The yacc user prepares a specification of the input process; this
includes rules describing the input structure, code to be invoked when these
rules are recognized, and a low-level routine to do the basic input. Yacc then
generates a function to control the input process. This function, called a
parser, calls the user-supplied low-level input routine {called the lexical
analyzer) to pick up the basic items (called tokens) from the input stream.
These tokens are organized according to the input structure rules, called
grammar rules; when one of these rules has been recognized, then user code
supplied for this rule, an action, is invoked; actions have the ability to return
values and make use of the values of other actions.

Yacc is written in a portable dialect of C and the actions, and output
subroutine, are in C as well. Moreover, many of the syntactic conventions of
yacc follow C.

The heart of the input specification is a collection of grammar rules. Each rule

describes an allowable structure and gives it a name. For example, one
grammar rule might be:

9-1

XENIX Programmer’s Guide

date : month_name day ’, year ;

Here, date, month_name, day, and year represent structures of interest in the
input process; presumably, month_name, day, and year are defined elsewhere.
The comma (,) .is enclosed in single quotation marks; this implies that the
comma is to appear literally in the input. The colon and semicolon merely serve
as punctuation in the rule, and have no significance in controlling the input.
Thus, with proper definitions, the input:

July 4, 1776
might be matched by the above rule.

An important part of the input process is carried out by the lexical analyzer.
This user routine reads the input stream, recognizing the lower level
structures, and communicates these tokens to the parser. A structure
recognized by the lexical analyzer is called a terminal symbol, while the
structure recognized by the parser is called a nonterminal symbol. To avoid
confusion, terminal symbols will usually be referred to as tokens.

There is considerable leeway in deciding whether to recognize structures using
the lexical analyzer or grammar rules. For example, the rules

LI I |

month_name :’J’ ’a’ 'n’;
month_name : 'F’ ’¢’ b’ ;

month_name : ’D’ ’¢’ ’¢’ ;
might be used in the above example. The lexical analyzer would only need to
recognize individual letters, and month_name would be a nonterminal symbol.
Such low-level rules tend to waste time and space, and may complicate the
specification beyond yacc’s ability to deal with it. Usually, the lexical analyzer
would recognize the month names, and return an indication that a
month_name was seen; in this case, month_neme would be a token.

Literal characters, such as the comma, must also be passed through the lexical
analyzer and are considered tokens.

Specification files are very flexible. It is relatively easy to add to the above
example the rule

“date : month '/’ day '/’ year ;
allowing
7/4/1776

asasynonym for

9-2

Yacc: A Compiler-Compiler

July 4, 1776

In most cases, this new rule could be slipped in to a working system with
minimal effort, and little danger of disrupting existing input.

The input being read may not.conform to the specifications. These input errors
are detected as early as is theoretically possible with a left-to-right scan; thus,
not only is the chance of reading and computing with bad input data
substantially reduced, but the bad data can usually be quickly found. Error
handling, provided as part of the input specifications, permits the reentry of
bad data, or the continuation of the input process after skipping over the bad
data.

In some cases, yacc fails to produce a parser when given a set of specifications.
For example, the specifications may be self contradictory, or they may require
a more powerful recognition mechanism than that available to yacc. The
former cases represent design errors; the latter cases can often be corrected by
making the lexical analyzer more powerful, or by rewriting some of the
grammar rules. While yacc cannot handle all possible specifications, its power
compares favorably with similar systems; moreover, the constructions which
are difficult for yacc to handle are also frequently difficult for human beings to
handle. Some usershavereported that the discipline of formulating valid yacc
specifications for their input revealed errors of conception or design early in the
program development.

The nextseveral sections describe:
e The preparationof grammar rules

e The preparation of the user supplied actions associated with the
grammar rules

e Thepreparationoflexicalanalyzers
e Theoperation of the parser

e Various reasons why yacc may be unable to produce a parser from a
specification, and what to do about it.

e Asimple mechanism for handling operator precedencesin arithmetic
expressions.

o Error detectionand recovery.

e The operating environment and special features of the parsers yacc
produces.

e Some suggestions which should improve the style and efficiency of the
specifications.

9-3

XENIX Programmer’s Guide

8.2 Specifications

Names refer to either tokens or nonterminal symbols. yacc requires token
names to be declared as such. In addition, for reasons discussed later, it is often
desirable to include the lexical analyzer as part of the specification file. It may
be useful to include other programs as well. Thus, every specification file
consists of three sections: the declarations, (grammar) rules, and programs.
The sections are separated by double percent %% marks. (The percent sign
(%) isgenerally usediny ace specifications as an escape character.)

In other words, a full specification file looks like

declarations
%%

rules

%%
programs

The declaration section may be empty. Moreover, if the programs section is
omitted, the second %% mark may be omitted also; thus, the smallest legal
yacc specification is :

%%

rules

Blanks, tabs, and newlines are ignored except that they may not appear in
names or multicharacter reserved symbols. Comments may appear wherevera
name s legal; they areenclosedin /#...#/, asin C.

The rulessectionismade up of one or more grammar rules. A grammar rule has
the form:

A : BODY ;

A represents a nonterminal name, and BODY represents a sequence of zero or
more names and literals. The colon and the semicolon are yace punctuation.

Names may be of arbitrary length, and may be made up of letters, dot (.}, the
underscore (_), and noninitial digits. Uppercase and lowercase letters are

distinct. The names used in the body of a grammar rule may represent tokens
or nonterminal symbols.

Aliteral consists of a character enclosed in single quotation marks(’). AsinC,

the backslash (\) isan escape character within literals, and all the C escapes are
recognized. Thus

9-4

Yacc: A Compiler-Compiler

An' Newline

Ar’ = Return

'\ . Single quotation mark
A\ Backslash

\t' Tab

\b’ Backspace

AP Form feed

Axxx’ "xxx” in octal

For a number of technical reasons, the ASCII NUL character (40" or 0) should
never be usedin grammar rules.

If there are several grammar rules with the same left hand side, then the
vertical bar (|) can be used to avoid rewriting the left hand side. In addition,
the semicolon at theend of arule can be dropped before a vertical bar. Thusthe
grammar rules

A:BCD;
A:EF ;
A:G ;

canbegiventoyaccas

A:BCD
|E F
|G

It is not necessary that all grammar rules with the same left side appear
together in the grammar rules section, although it makes the input much more
readable, and easier to change.

If a nonterminal symbol matches the empty string, this can be indicated in the
obvious way:

empty . ;

Names representing tokens must be declared; this is most simply done by
writing

Cztoken namel name2 ...

in the declarations section. (See Sections 3, 5, and 6 for much more discussion).
Every nonterminal symbol must appear on the left side of at least one rule.

Of all the nonterminal symbols, one, called the start symbol, has particular
importance. The parser is designed to recognize the start symbol; thus, this
symbol represents the largest, most general structure described by the
grammar rules. By default, the start symbol is taken to be the left hand side of
the first grammar rule in the rulessection. Itispossible, and in fact desirable, to

9-5

XENIX Programmer’s Guide

declare the start symbol explicitly in the declarations section using the %start
keyword: '

%start symbol

The end of the input to the parser is signaled by a special token, called the
endmarker. If the tokens up to, but not including, the endmarker form a
structure which matches the start symbol, the parser function returns to its
caller after the endmarker is seen; it accepts the input. If the endmarker isseen
in any other context, it isan error.

It is the job of the user-supplied lexical analyzer to return the endmarker when
appropriate; see section 3, below. Usually the endmarker represents some
reasonably obviousI/O status, such as the end of the file or end of the record.

9.3 Actions

With each grammar rule, the user may associate actions to be performed each
‘time the rule is recognized in the input process. These actions may return
values, and may obtain the values returned by previous actions. Moreover, the
lexical analyzer can return values for tokens, if desired.

Anactionisan arbitrary C statement, and assuch can do input and output, call
subprograms, and alter external vectors and variables. An action is specified
by one or more statements, enclosed in curly braces { and }. For example

A . 7(1 B l)’

' { hello(1,7abe”); }

and
XXX YYY Z2Z : :
{ printf("a message\n");
flag = 25;}

are grarnmar rules with actions.

To facilitate easy communication between the actions and the parser, the
action statements are altered slightly. The dollar sign ($) is used as a signal to
yacc in thiscontext. ' .

To return a value, the action normally sets the pseudo-variable $$ to some
value. For example, an action that doesnothing but return the value 1is

{88 =1;}
To obtain the values returned by previousactions and the lexical analyzer, the

action may use the pseudo-variables $1, $2, ..., which refer to the values
returned by the components of the right side of a rule,; reading from left to

9-6

Yace: A Compiler-Compiler

right. Thus, if the rule is
A:BCD;

for example, then $2 has the value returned by C, and $3 the value returned by
D.

Asamore concrete example, consider the rule
expr : '(* expr ')’ ;

The value returned by this rule is usually the value of the ezprin parentheses.
Thiscan be indicated by

expr:'(expr’) {$$ =$2;}

By default, the value of a rule is the value of the first element in it ($1). Thus,
grammar rulesof the form

A:B;
frequently need not have an explicit action.

In the examples above, all the actions came at the end of their rules. Sometimes,
it is desirable to get control before a rule is fully parsed. Yacc permits an
action to be written in the middle of a rule as well as at the end. Thisrule is
assumed to return a value, accessible through the usual mechanism by the
actions to the right of it. In turn, it may access the values returned by the
symbolstoitsleft. Thus,intherule

A:B
$$=1; }

x=82; y=283 }

R Ve T

the effectistoset zto 1, and yto the valuereturned by C.

Actions that do not terminate a rule are actually handled by yacc by
manufacturing a new nonterminal symbol name, and a new rule matching this
name to the empty string. The interior action is the action triggered off by
recognizing this added rule. Yacc actually treatsthe above example asif it had
been written:

XENIX Programmer’s Guide

$ACT : /+ empty */
$$=1;)

’

A :B $ACT C
{ x=82; y=283; }

,

In many applications, output is not done directly by the actions; rather, a data
structure, such as a parse tree, is constructed in memory, and transformations
are applied toit before output is generated. Parse trees are particularly easy to
construct, given routines to build and maintain the tree structure desired. For
example, suppose there isa C function node, written so that the call

node(L, nl, n2)

creates a node with labelL, and descendants nl and n2, and returnsthe index of
the newly created node. Then parse tree can be built by supplying actions such
as:

expr : expr '+’ expr

{ 8 = node('+, $1,$3); }
in the specification.

The user may define other variables to be used by the actions. Declarations and
definitions can appear in the declarationssection, enclosed in the marks %{ and
%}. These declarations and definitions have global scope, so they are known to
the action statementsand the lexical analyzer. For example,

%{ int variable == 0; %)}

could be placed in the declarations section, making variable accessible to all of
the actions. The yacc parser uses only names beginning in yy; the user should
avoid such names.

In these examples, all the values are integers: a discussion of values of other
types will be found in a later section.

8.4 Lexical Analysis

The user must supply a lexical analyzer to read the input stream and
communicate tokens (with values, if desired) to the parser. The lexical analyzer
is an integer-valued function called yylez. The function returns an integer,
called the token number, representing the kind of token read. If thereisavalue
associated with that token, it should be assigned to the external variable yylval.

The parser and the lexical analyzer must agree on these token numbersin order
for communication between them to take place. The numbers may be chosen

9-8

Yacc: A Compiler-Compiler

by yacc, or chosen by the user. In either case, the # define mechanismof C is
used to allow the lexical analyzer to return these numbers symbolically. For
example, suppose that the token name D/GIT has been defined in the
declarations section of the yacc specification file. The relevant portion of the
lexical analyzer might look like:

yylex(){
extern int yylval;
int c;

;:“= getchar();
switch(¢) {

case '0":
case '1’:

ca"s‘e 'g":
yylval = ¢-’0’;
return(DIGIT);

}

The intent is to return a token number of DIGIT, and a value equal to the
numerical value of the digit. Provided that the lexical analyzer codeisplaced in
the programs section of the specification file, the identifier DIGIT will be
defined as the token number associated with the token DIGIT.

This mechanism leads to clear, easily modified lexical analyzers; the only pitfall
is the need to avoid using any token namesin the grammar that are reserved.or
significant in C or the parser; for example, the use of token names ¢for while will
almost certainly cause severe difficulties when the lexical analyzer is compiled.
The token name error is reserved for error handling, and should not be used
naively.

Asmentioned above, the token numbers may be chosen by yacc or by the user.
In the default situation, the numbers are chosen by yacc. The default token
number for a literal character is the numerical value of the character in the
local character set. Other namesare assigned token numbersstarting at257.

To assign a token number to a token (including literals), the first appearance of
the token name or literal in the declarations section can be immediately
followed by a nonnegative integer. This integer is taken to be the token number
of the name or literal. Names and literals not defined by this mechanism retain
their default definition. Itisimportant that all token numbersbe distinct.

For historical reasons, the endmarker must have token number 0 or negative.

This token number cannot be redefined by the user. Hence, alllexical analyzers
should be prepared to return 0 or negative as a token number upon reaching the

8-9

XENIX Programmer’s Guide

end of theirinput.

A very useful tool for constructing lexical analyzers is lex, discussed in a
previoussection. These lexical analyzersare designed to work in close harmony
with yacc parsers. The specifications for these lexical analyzers use regular
expressions instead of grammar rules. Lex can be easily used to produce quite
complicated lexical analyzers, but there remain some languages (such as
FORTRAN) which do not fit any theoretical framework, and whose lexical
analyzers must be crafted by hand.

9.5 How the Parser Works

Yacc turns the specification file into a C program, which parses the input
according to the specification given. The algorithm used to go from the
specification to the parser is complex, and will not be discussed here (see the
references for more information). The parser itself, however, is relatively
simple, and understanding how it works, while not strictly necessary, will
nevertheless make treatment of error recovery and ambiguities much more
comprehensible.

The parser produced by yacc consists of a finite state machine with a stack.
The parser is also capable of reading and remembering the next input token
(called the lookahead token). The current state is always the one on the top of
the stack. The states of the finite state machine are given small integer labels;
initially, the machine is in state 0, the stack contains only state 0, and no
lookahead token hasbeenread.

The machine has only four actions available to it, called shift, reduce, accept,
and error. Amove of the parser is done asfollows:

1. . Based on its current state, the paréer decides whéther it needs a
look ahead token to decide what action should be done; if it needs one,
and does not have one, it calls yylez to obtain the next token.

2. Usingthe current state, and the lookahead token if needed, the parser
decideson its next action, and carries it out. This may result in states
being pushed onto the stack, or popped off of the stack, and in the
lookahead token being processed or left alone.

The shift action is the most common action the parser takes. Whenever a shift
action is taken, there is always a lookahead token. For example, in state 56
there may be an action:

IF shift 34

which says, in state 56, if the lookahead token is IF, the current state (56) is
pushed down on the stack, and state 34 becomes the current state (on the top of
-the stack). Thelookahead token is cleared.,

9-10

P

Yacc: A Compiler-Compiler

The reduce action keeps the stack from growing without bounds. Reduce
actions are appropriate when the parser has seen the right hand side of a
grammar rule. and is prepared to announce that it has seen an instance of the
rule, replacing the right hand side by the left hand side. It may be necessary to
consult the lookahead token to decide whether to reduce, but usually it isnot; in
fact, the default action (represented by a.) is often areduce action.

Reduce actions are associated with individual grammar rules. Grammar rules
are also given small integer numbers, leading to some confusion. The action

reduce 18
refersto grammar rule 18, while the action
IF shift 34
referstostate 34.
Suppose therule being reduced is
A:xyz;

The reduce action depends on the left hand symbol (A in this case), and the
number of symbols on the right hand side (three in this case). To reduce, first
pop off the top three states from the stack (In general, the number of states
popped equals the number of symbols on the right side of the rule). In eflect,
these states were the ones put on the stack while recognizing z, y, and z, and no
longer serve any useful purpose. After popping these states, a state is
uncovered which was the state the parser wasin before beginningto processthe
rule. Using this uncovered state, and the symbol on the left side of the rule,
perform what is in effect a shift of A. A new state is obtained, pushed onto the
stack, and parsing continues. There are significant diflerences between the
processing of the left hand symbol and an ordinary shift of atoken, however, so
this action is called a goto acticn. In particular, the lcokahead token is cleared
by a shift, and is not affected by a goto. In any case, the uncovered state
containsan entry such as:

A goto 20
causing state 20 to be pushed onto the stack, and become the current state.

In effect, the reduce action turns back the clock in the parse, popping the states
off the stack to go back to the state where the right hand side of the rule was first
seen. The parser then behaves as if it had seen the left side at that time. If the
right hand side of the rule is empty, no states are popped off of the stack: the
uncovered state isinfact the current state.

The reduce action is also important in the treatment of user-supplied actions

and values. When a rule is reduced, the sode supplied with the rule is executed
before the stack is adjusted. In addition to the stack holding the states, another

9-11

XENIX Programmer’s Guide

stack, running in parallel with it, holds the values returned from the lexical
analyzer and the actions. When a shift takes place, the external variable yylval
is copied onto the value stack. After the return {from the user code, the
reduction is carried out. When the goto action is done, the external variable
yyval is copied onto the value stack. The pseudo-variables $1, $2, etc., refer to
the value stack.

The other two parser actions are conceptually muchsimpler. The accept action
indicates that the. entire input has been seen and that it matches the

" specification. This action appears only when the lookahead token is the
endmarker, and indicates that the parser has successfully done its job. The
error action, on the other hand, represents a place where the parser can no
longer continue parsing according to the specification. The input tokens it -has
seen, together with the lookahead token, cannot be followed by anything that
would result in a legal input. The parser reports an error, and attempts to
recover the situation and resume parsing: the error recovery (asopposed to the
detecticn of error) will be in a later section.

Consider the following example:

%token DING DONG DELL
%%
rhyme : sound place

sound : DING DONG
place, : DELL

7

When yacc is invoked with the —v option, a file called y.output is produced,
with a human-readable description of the parser. The y.output file
corresponding to the above grammar (with some statisticsstripped off the end)
is: '

9-12

state 0
$accept : _rhyme $end

DING shift 3
. error

rhyme goto 1
sound goto 2

state 1
$accept : thyme_$end

$end accept
. error

state 2
rhyme : sound_place

DELL shift 5

. error
place goto 4

state 3
sound : DING_DONG
DONG shift 8

. error

state 4
rhyme : sound place_ (1)

. reduce 1

state 5
place : DELL_ (3)

. reduce 3

state 6
sound : DING DONG_ (2)

. reduce 2

Yace: A Compiler-Compiler

Notice that, in additionto the actionsfor eachstate, there is adescriptionof the
parsing rulesbeing processed in each state. The underscore character (_)is used
to indicate what has been seen, and what is yet to come, in each rule. Suppose
the input is :

9-13

XENIX Programmer’s Guide

DING DONG DELL
It isinstructive to follow the steps of the parser while processing thisinput.

Initizlly, the current state is state 0. The parser needs to refer to'the input in
order to decide between the actions available in state 0, so the first token,
DING, isread, becoming the lookahead token. The actioninstate 0 on DINGis
ehift 8, so state 3 is pushed onto the stack, and the lookahead token is cleared.
State 3 becomes the current state. The next token, DONG, is read, becoming
the lookahead token. The action in state 3 on the token DONG is shift 6, so
state 6 is pushed onto the stack, and the lookahead is cleared. The stack now
contains 0, 3, and 6. In state 6, without even consulting the lookahead, the
parser reduces by rule 2.

sound : DING DONG

This rule has two symbols on the right hand side, so two states, 6 and 3, are
popped off of the stack, uncovering state 0. Consulting the description of state
0, looking for a goto on gound,

sound goto 2
is obtained; thusstate 2is pushed onto the stack, becoming the current state.

Instate 2, the next token, DELL, must be read. The action is #hift 5, so state 5is
pushed onto the stack, which now has0, 2, and 5on it, and the lookahead token
is cleared. In state 5, the only action istoreduce by rule 3. This has one symbol
on the right hand side, so one state, 5, is popped off, and state 2 is uncovered.
The goto in state 2 on place, the left side of rule 3, is state 4. Now, the stack
contains 0, 2, and 4. In state 4, the only actionistoreduce by rule 1. There are
two symbols on the right, so the top two states are popped off, uncovering state

-0 again. Instate 0, there is a goto on rhyme causing the parser to enter state 1.
Instate 1, the input isread; the endmarker isobtained, indicated by $endin the
y.output file. The action in state 1 when the endmarker is seen is to accept,
successfully ending the parse.

The reader is urged to consider how the parser works when confronted with
such incorrect strings as DING DONG DONG, DING DONG, DING DONG
DELL DELL, etc. A few minutes spend with this and other simple examples
will probably be repaid when problems arise in more complicated contexts.

9.6 Ambiguity and Conflicts

A set of grammar rules is ambiguous if there is some input string that can be
structured in two or more different ways. For example, the grammar rule

expr : expr -’ expr

is a natural way of expressing the fact that one way of forming an arithmetic

9-14

Yacc: A Compiler-Compiler

expression is to put two other expressions together with a minus sign between
them. Unfortunately, this grammar rule does not completely specify the way
that all complex inputs should be structured. For example, if the input is

expr - expr - expr
the rule allows thisinput to be structured as either

(expr - expr) - expr
or as

expr - (expr - expr)
(The firstis called ieft association, the second right association).
Yacc detects such ambiguities when it is attempting to build the parser. It is
instructive to consider the problem that confronts the parser when it is-given
aninputsuch as

eXpr - expr - expr
When the parser hasread the second expr, the input that it has seen:

expr - expr
matches the right side of the grammar rule above. The parser could reduce the
input by applying this rule; after applying the rule; the input is reduced to ezpr
(the left side of the rule). The parser would thenread the final part of the input:

- expr
and againreduce. Theeflect of thisis totake theleft associative interpretation.
Alternatively, when the parser hasseen

expr - expr

it could defer the immediate application of the rule, and continue reading the
input until it had seen

eXpr - expr - expr

It could then apply the rule to the rightmost three symbols, reducing them to
ezprand leaving

expr - expr

Now the rule can be reduced once more; the effect is to take the right associative
interpretation. Thus, having read

8-15

XENIX Programmer’s Guide

expr - expr

the parser can do two legal things, a shift or a reduction, and has no way of
deciding between them. This is called a shift/reduce conflict. It may also
happen that the parser has a choice of two legal reductions; this is called a
reduce/reduce conflict. Note that there are never any shift /shift conflicts.

When there are shift/reduce or reduce/reduce conflicts, yacc still produces a
parser. It does this by selecting one of the valid steps wherever it has a choice.
A rule describing which choice to make in a given situation is called a
disambiguating rule.

Yacc invokestwo disambiguating rules by default:

1. Inashift/reduce conflict, the default is to do the shift.

2. In a reduce/reduce conflict, the default is to reduce by the earlier
grammar rule (in the input sequence).

"Rule 1implies that reductions are deferred whenever there is a choice, in favor
of shifts. Rule 2 gives the user rather crude control over the behavior of the
parser in this situation, but reduce/reduce conflicts should be avoided
whenever possible.

Conflicts may arise because of mistakes in input or logic, or because the
grammar rules, while consistent, require a more complex parser than yacc can
construct. The use of actions within rules can also cause conflicts, if the action
must be done before the parser can be sure which rule is being recognized. In
these cases, the application of disambiguating rules is inappropriate, and leads
to an incorrect parser. For this reason, yacc always reports the number of
shift/reduce and reduce/reduce conflicts resolved by Rule 1 and Rule 2.

In general, whenever it is possible to apply disambiguating rules to produce a
correct parser, it is also possible to rewrite the grammar rules so that the same
inputsare read but there are no conflicts. For thisreason, most previous parser
generators have considered conflicts to be fatal errors. Our experience has
suggested that this rewriting is somewhat unnatural, and produces slower
parsers; thus, yacc will produce parserseven in the presence of conflicts.

As an example of the power of disambiguating rules, consider a fragment from a
programming language involving an if-then-else construction:

stat : IF °(’ cond °})’ stat
| IF °(" cond ’)’ stat ELSE stat

]

In these rules, /FFand ELSE are tokens, condis a nonterminal symbol describing
conditional (logical) expressions, and stat is 2 nonterminal symbol describing
statements. The first rule will be called the simple-if rule, and the second the

9-16

Yacc: A Compiler-Compiler

if-else rule.

These two rules form an ambiguous construction, since input of the form
IF (C1)IF (C2)S1ELSE S2

can be structured according to these rulesin two ways:

IF (C1){
IF(C2)s1

ELSE S2
or
IF (C1) {
IF (C2) S1

ELSE S2
}

The second interpretation is the one given in most programming languages
having this construct. Each ELSE is associated with the last /F immediately
preceding the ELSE. In this example, consider the situation where the parser
hasseen

IF (C1)IF (C2)SI

and is looking at the ELSE. It can immediately reduce by the simple-if rule to
get

IF (C1) stat
and then read the remaininginput,
ELSE S2
andreduce
IF (C1) stat ELSE S2
by the if-else rule. Thisleads to the first of the above groupings of the input.

On the other hand, the ELSE may be shifted, S2read, and then the right hand
portion of

IF (C1)IF (C2) S1 ELSE 52

can bereduced by theif-else rule to get

9-17

XENIX Programmer's Guide

IF (C1) stat

which can be reduced by the simple-if rule. This leads to the second of the
above groupings of the input, which isusually desired.

"Once again the parser ¢an do two valid things - there is a shift/reduce conflict.
The application of disambiguating rule 1 tells the parser to shift in this case,
which leads to the desired grouping.

This shift/reduce conflict arises only when there is a particular current input
symbol, ELSE, and particular inputs already seen, such as

IF (C1)IF (C2) S1

In general, there may be many conflicts, and each one will be associated with an
input symbol and a set of previously read inputs. The previously read inputs
are characterized by the state of the parser.

The conflict messages of yacc are best understood by examining the verbose
(—v) option output file. For example, the output corresponding to the above
conflict state might be: -

23: shift/reduce conflict (shift 45, reduce 18) on ELSE
state 23

stat : IF (cond) stat_ (18)
stat : IF (cond) stat_ELSE stat

ELSE shift 45
reduce 18

The first line describes the conflict, giving the state and the input symbol. The
ordinary state description follows, giving the grammar rulesactive in the state,
and the parser actions. Recall that the underline marks the portion of the
grammar rules'which has been seen. Thusin the example, in state 23 the parser
hasseen input corresponding to

IF (cond) stat

and the two grammar rules shown are active at this time. The parser can do
two possible things. If the inputsymbolis ELSE, it is possible to shift into state
45. State 45 will have, aspart of its description, the line

stat : IF (cond) stat ELSE_stat
since the ELSE will have been shifted in this state. Back in state 23, the

alternative action, described by “.” , is to be done if the input symbol is not
mentioned explicitly in the above actions; thus, in this case, if the input symbol

9-18

Yacc: A Compiler-Compiler

isnot ELSE, the parser reduces by grammarrule 18:
stat : IF ’(’ cond ’)’ stat

Once again, notice that the numbers following shift commands refer to other
states, while the numbers following reduce commands refer to grammar rule
numbers. In the y.output file, the rule numbers are printed after those rules
which can be reduced. In most one states, there will be at most reduce action
possible in the state, and this will be the defauit command. The user who
encounters unexpected shift/reduce conflicts will probably want to look at the
verbose output to decide whether the default actions are appropriate. Inreally
tough cases, the user might need to know more about the behavior and
construction of the parser than can be covered here. In this case, one of the
theoretical references might be consulted; the services of a local guru might also
be appropriate.

9.7 Precedence

There is one common situation where the rules given above for resolving
conflicts are not sufficient; this is in the parsing of arithmetic expressions. Most
of the commonly used constructions for arithmetic expressions can be naturally
described by the notion of precedence levels for operators, together with
information about left or right associativity. It turns out that ambiguous
grammars with appropriate disambiguating rules can be used to create parsers
that are faster and easier to write than parsers constructed from unambiguous
grammars. The basic notionisto write grammar rules of the form

expr : expr OP expr
and
expr : UNARY expr

for all binary and unary operators desired. This creates a very ambiguous
grammar, with many parsing conflicts. As disambiguating rules, the user
specifies the precedence, or binding strength, of all the operators, and the
associativity of the binary operators. This information is sufficient to z2llow
yacc to resolve the parsing conflicts in accordance with these rules, and
construct a parser that realizes the desired precedences and associativities.

The precedences and associativities are attached to tokens in the declarations
section. This is done by a series of lines beginning with a yacc keyword: Sgleft,
Fright, or % nonassoc, followed by a list of tokens. All of the tokens on the
same line are assumed to have the same precedence level and associativity; the
linesarelisted in order of increasing precedence or binding strength. Thus,

Geleft '+ 1
Glefs ®)

9-19

'XENIX Programmer’s Guide

describes the precedence and associativity of the four arithmetic operators.
Plus and minus are left associative, and have lower precedence than star and
slash, which are also left associative. The keyword %right is used to describe
right associative operators, and the keyword %nonassoc is used to describe
operators, like the operator .LT. in FORTRAN, that may not associate with
themselves; thus, :

ALT.B.LT.C

is illegal in FORTRAN, and such an operator would be described with the
keyword %nonassoc in yacc. As an example of the behavior of these
declarations, the description

G%right '=’
Toleft '+ -
Toleft s)

%%

expr :expr '='expr
% Z;pr :-i;— expr
pr -’ expr
| expr '*’ expr
I ;;(pr ‘[expr

b

might be used tostructure the input
a=Db=csd-e- fsg

as follows:
a={b={(((crd)-¢e) - (f+g)))

When this mechanism is used, unary operators must, in general, be given a
precedence. Sometimes a unary operator and a binary operator have the same
symbolic representation, but different precedences. An example is unary and
binary - unary minus may be given the same strength as multiplication, or
even higher, while binary minus has a lower strength than multiplication. The
keyword, %prec, changes the precedence level associated with a particular
grammar rule. The %Gprec appearsimmediately after the body of the grammar
rule, before the action or closing semicolon, and is followed by a token name or
literal. It causes the precedence of the grammar rule to become that of the
following token name or literal. For example, to make unary minus have the
same precedence asmultiplication the rules might resemble:

9-20

o

Yacc: A Compiler-Compiler

%left '+ -’
%!ert 1e? ,/,
%%

expr :expr '+’ expr
| expr -’ expr
| expr ¢’ expr
| expr ’/ expr
| -> expr Soprec’s

| NAME

b

Y

A token declared by %left, 5right, and %nonassoc need not be, but may be,
declared by Ttoken as well.

The precedences and associativities are used by yacc to resolve parsing
conflicts; they give rise to disambiguating rules. Formally, the rules work as
follows:

1. The precedences and associativities are recorded for those tokens and
literals that have them.

2. Aprecedence and associativity is associated with each grammar rule;
it is the precedence and associativity of the last token or literal in the
body of the rule. If the %prec construction is used, it overrides this
default. Some grammar rules may have no precedence and
associativity associated with them.

3. When there is a reduce/reduce conflict, or there is a shift/reduce
conflict and either the input symbol or the grammar rule has no
precedence and associativity, then the two disambiguating rules
given at the beginning of the section are used, and the conflicts are
reported.

4. If there is a shift /reduce conflict, and both the grammar rule and the
input character have precedence and associativity associated with
them, then the conflict is resolved in favor of the action (shift or
reduce) associated with the higher precedence. If the precedences are
the same, then the associativity is used; left associative implies
reduce, right associative implies shift, and nonassociating implies
error.

Conflicts resolved by precedence are not counted in the number of shift/reduce
and reduce/reduce conflictsreported by yacc. This means that mistakesin the
specification of precedences may disguise errors in the input grammar;itisa
good idea to be sparing with precedences, and use them in an essentially
cookbook fashion, until some experience has been gained. The y.output file is
very usefulin deciding whether the parser is actually doing what was intended.

9-21

XENIX Programmer’s Guide

9.8 Error Handling

Error handling is an extremely difficult area, and many of the problems are
semantic ones. When an error is found, for example, it may be necessary to
reclaim parse tree storage, delete or alter symbol table entries, and, typically,
set switches to avoid generating any further output.

It is seldom acceptable to stop all processing when an error is found. It is more
useful to continue scanning the input to find further syntax errors. This leads
to the problem of getting the parser restarted after an error. A general class of
algorithms to perform this involves discarding a number of tokens from the
input string, and attempting to adjust the parser so that input can continue.

To allow the user some control over this process, yacc provides a simple, but
reasonably general feature. . The token name error is reserved for error
handling. This name can be used in grammar rules; in effect, it suggests places
where errors are expected, and recovery might take place. The parser popsits
stack until it enters a state where the token errorislegal. It then behavesas if
the token error were the current lookahead token, and performs the action
encountered. The lookahead token is then reset to the token that caused the
error. If nospecial error rules have been specified, the processing halts when an
error isdetected.

In order to prevent a cascade of error messages, the parser, after detecting an
error, remains in error state until three tokens have been successfully read and
shifted. If an error is detected when the parser is already in error state, no
message is given, and the input token is quietly deleted.

Asan example, arule of the form

stat : error
would, in effect, mean that on a syntax error the parser would attempt to skip
over the statement in which the error was seen. More precisely, the parser will
scan ahead, looking for three tokens that might legally follow a statément, and
start processing at the first of these; if the beginnings of statements are not
sufficiently distinctive, it may make a false start in the middle of a statement,

andend up reporting asecond error where thereisinfactnoerror.

Actions may be used with these special error rules. These actions might
attempt to reinitialize tables, reclaim symbol table space, etc.

Error rules such as the above are very general, but difficult to control.
Somewhat easier arerulessuch as

stat : error

Here, when there is an error, the parser attempts to skip over the statement,
but will do so by skippirg to the next %’. Alltokens after the error and before

9-22

TN

Yacc: A Compiler-Compiler

the next “cannot be shifted, and are discarded. When the % "is seen, this rule
will be reduced, and any cleanup action associated with it performed.

Another form of error rule arises in interactive applications, where it may be
desirable to permit a line to be reentered after an error. A possible error rule
might be

input : error '\n’ { printf("Reenter line: "); } input

{ 88 = $4;}

There is one potential difficulty with this approach; the parser must correctly
process three input tokens before it admits that it has correctly resynchronized
after the error. If the reentered line contains an error in the first two tokens,
the parser deletes the offending tokens, and gives no message; this is clearly
unacceptable. For this reason, there is a mechanism that can be used to force
the parser to believe that an error has been fully recovered from. The
statement

yyerrok ;

in an action resets the parser to its normal mode. The last example is better
written

input : error "\n’
{ yyerrok;
printf("Reenter last line: ”); }
input

{88 =94, }

As mentioned above, the token seen immediately after the errorsymbolis the
input token at which the error was discovered. Sometimes, this is
inappropriate; for example, an error recovery action might take upon itself the
job of finding the correct place to resume input. In this case, the previous
lookahead token must be cleared. The statement

yyclearin ;

in an action will have this effect. For example, suppose the action after error
were to call some sophisticated resynchronization routine, supplied by the user,
that attempted to advance the input to the begirning of the next valid
statement. After this routine was called, the next token returned by yylex
would presumably be the first token in a legal statement; the old, illegal token
must be discarded, and the error state reset. This could be done by a rule like

XENIX Programmer's Guide

stat : error
{ resynch();
yyerrok ;
yyclearin ; }

These mechanisms are admittedly crude, but do allow for a simple, fairly
effective recovery of the parser from many errors. Moreover, the user can get
control to deal with the error actions required by other portions of the
program.

9.9 The Yacc Environment

When the user inputs a specification to yacc, the output isa file of C programs,
called y.tab.c on most systems. The function produced by yacc is called
yyparse ;itis an integer valued function. When it is called, it in turn repeatedly
calls yylez, the lexical analyzer supplied by the user to obtain input tokens.
Eventually, either an error is detected, in which case (if no error recovery is
possible) yyparse returns the value 1, or the lexical analyzer returns the
endmarker token and the parser accepts. In this case, yyparse returns the value
0.

The user must provide a certain amount of environment for thisparserin order
to obtain a working program. For example, as with every C program, a
program called main must be defined, that eventually calls yyparse. In
addition, a routine called yyerror prints a message when a syntax error is
detected. '

These two routines must be supplied in one form or another by the user. To
ease the initial effort of using yacc, a library has been provided with default
versions of main and yyerror. The name of thislibrary issystem dependent; on
many systems the library is accessed by a—ly argument to the loader. Toshow
the triviality of these default programs, the source isgiven below:

main{){
return(yyparse());
and
include <stdio.h>
yyerror(s) char #s; {

fprintf(stderr, "%s\n", s);

The argument to yyerroris a string containing ar. error message, usually the
string syntaz error. The average application viil wint to do better than this.
Ordinarily, the program should keep track of the ir at line number, and print

9-24

Yacc: A Compiler-Compiler

it along with the message when a syntax error isdetected. The externalinteger
variable yychar contains the lookahead token number at the time the error was
detected; this may be of some interest in giving better diagnostics. Since the
main program is probably supplied by the user (to read arguments, etc.) the
yacc library is useful only in small projects, or in the earliest stages of larger
ones.

The external integer variable yydebug is normally set to 0. If it is set to a
nonzero value, the parser will output a verbose description of its actions,
including a discussion of which input symbols have been read, and what the
parser actions are. Depending on the operating environment, it may be
possible to set this variable by using a debugging system.

8.10 Preparing Specifications

This section contains miscellaneous hints on preparing efficient, easy to change,
and clear specifications. The individual subsections are more or less
independent.

9.11 Input Style

It is difficult to provide rules with substantial actions and still have a readable
specification file.

1. Use uppercase letters for token names, lowercase letters for
nonterminal names. This rule helps you to know who tc blame when
things go wrong.

2. Put grammar rules and actions on separate lines. This allowseither
to be changed without an automatic need to change the other.

3. Put all rules with the same left hand side together. Put the left hand
side in only once, and let all following rules begin with a verticalbar.

4. Putasemicolon only after the last rule witha given left hand side, and
put the sernicolon on a separate line. This allows new rulesto beeasily
added.

5. Indent rule bodies by two tab Stops, and action bodies by three tab
stops.

The examples in the text of this section follow this style (where space permits).
The user must make up hisown mind about these stylistic questions; the central
problem, however, is to make the rules visible through the morass of action
code.

9-25

XENIX Programmer’s Guide

9.12 Left Recursion

The algorithm used by the yace parser encourages so-called left recursive
grammar rules: rulesof the form

name : name rest_of_rule ;
These rulesfrequently arise when writing specifications of sequences and lists:
list : item
| list °," item
H
and
seq : item
| seq item
H
In each of these cases, the first rule will be reduced for the first item only, and
the second rule will be reduced for the second and all succeeding items.

With right recursive rules, such as

seq : item
| item seq

v

the parser would be a bit bigger, and the items would be seen, and reduced,
from right to left. More seriously, an internal stack in the parser would be in
danger of overflowing if a very long sequence were read. Thus, the user should
use left recursion wherever reasonable.

It is worth considering whether a sequence with zero elements has any meaning,
andif so, consider writing the sequence specification with an empty rule:

seq : [+ empty */
| seq item

Once again, the first rule would always be reduced exactly once, before the first
item was read, and then the second rule would be reduced once for each item
read. Permitting empty sequences often leads to increased generality.
However, conflicts might arise if yacc is asked to decide which empty sequence
it hasseen, whenit hasn’t seen enough to know!

9-26

Yace: A Compiler-Compiler

9.13 Lexical Tie-ins

Some lexical decisions depend on context. For example, the lexical analyzer
might want to delete blanks normally, but not within quoted strings. Or names
might be entered into asymbol table in declarations, but notin expressions.

One wzy of handling this situation is to create a global flag that is examined by
the lexical analyzer, and set by actions. For example, suppose a program
consists of 0 or more declarations, followed by 0 or more statements. Consider:

%{
int dflag;
%}

. other declarations ...
%%

prog : decls stats

1

decls : [+ empty s/
dflag=1; }
| decls declaration

1

stats : [+ empty */
{ dflag=0; }
| stats statement

b

. other rules ...

The flag dflag is now 0 when reading statements, and 1 when reading
declarations, except for the first token in the first statement. This token must
be seen by the parser before it can tell that the declaration section has ended
and the statements have begun. In many cases, this single token exception does
not affect the lexical scan.

This kind of back door approach can beover done. Nevertheless, it representsa
way of doing some things that are difficult to do otherwise.

9.14 Handling Reserved Words

Some programming languages permit the user to use words like ¢f, which are
normally reserved, as label or variable names, provided that such use does not
conflict with the legal use of these names in‘the programming language. Thisis
extremely hard to do in the framework of yacc; it is difficult to pass
information to the lexical analyzer telling it “‘this instance of ‘if’ is a keyword,

9-27

XENIX Programmer's. Guide

and that instance is a variable’”., The user can make a stab at it, but it is
difficult. It is best that keywords be reserved; that is, be forbidden for use as
variable names.

9.15 Simulating Error and Accept in Actions

The parsing actions of error and accept can be simulated in an action by use of
macros YYACCEPT and YYERROR. YYACCEPT causes yyparee to return
the value 0; YYERROR causes the parser to behave as if the current input
symbol had been a syntax error; yyerror is called, and error recovery takes
place. These mechanisms can be used to simulate parsers with multiple
endmarkers or context-sensitive syntax checking.

9.18 Accessing Values in Enclosing Rules

An action may refer to values returned by actions to the left of the currentrule.
The mechanism is simply the same as with ordinary actions, a dollar sign
followed by a digit, butin this case the digit may be 0 or negative. Consider

sent :adj noun verb adj noun
{ look at the sentence ... }

1

adj :THE {$$= THE;)}
| YOUNG { $8 = YOUNG; }

noun :DOG {$$=DOG;} .
| CRONE { if($0 === YOUNG }{
printf("what?\n");

$$ = CRONE;

In the action following the word CRONE, acheckiemade preceding token
shifted was not YOUNG. Obviously, this is only possible when a great deal is
known about what might precede the symbol nounin the input. Thereisalsoa
distinctly unstructured flavor about this. Nevertheless, at times this
mechanism will save a great deal of trouble, especially when a few combinations
are to be excluded from an otherwise regular structure.

9-28

Yacc: A Compiler-Compiler

9.17 Supporting Arbitrary Value Types

By default, the vzlues returned by actions and the lexical analyzer are integers.
Yacc can also support values of other types, including structures. In addition,
yacc keeps track of the types, and inserts appropriate union member namesso
that the resulting parser will be strictly type checked. The yacc valuestack is
declared to be a union of the various types of values desired. The user declares
the union, and associates union member names to each token and nonterminal
symbol having a value. When the value is referenced through a $3 or $n
construction, yace will automatically insert the appropriate union name, so
that no unwanted conversions will take place. In addition, type checking
commandssuch aslint(C) will be far more silent.

There are three mechanisms used to provide for this typing. First, thereisa
way of defining the union; this must be done by the user since other programs,
notably the lexical analyzer, must know about the union member names.
Second, there is a way of associating a union member name with tokens and
nonterminals. Finally, there is a mechanism for describing the type of those
few values where yacc cannot easily determine the type.

To declare the union, the user includes in the declaration section:

%%union {
body of union ...

This declares the yacc value stack, and the external variables yylval and yyval,
to have type equal to this union. If yacc was invoked with the —d option, the
union declaration is copied onto the y.teb.k file. Alternatively, the union may
be declared in a header file, and a typedef used to define the variable YYSTYPE

torepresent this union. Thus, the header file might also have said:
typedef union {
body of union ...
} YYSTYPE;

The header file must be included in the declarations section, by use of %{ and
%}.

Once YYSTYPE is defined, the union member names must be associated with
the various terminal and nonterminal names. The construction

< name >
is used to indicate 2 union member name. If this follows one of the keywords

%%token, %left, Soright, and Sononassoc, the union member name is associated
with the tokens listed. Thus, saying

9-29

XENIX Programmer’s Guide

%left <optype> '+’ -

will cause any reference to values returned by these two tokens to be tagged
with the union member name optype. Another keyword, %type, is used
similarly to associate union member names with nonterminals. Thus, one
might say

%type <nodetype> expr stat

There remain a couple of cases where these mechanisms are insufficient. If
there is an action within a rule, the value returned by this action has no
predefined type. Similarly, reference to left context values (such as $0 - see the
previous subsection) leaves yacc with no easy way of knowing the type. In this
case, a type can be imposed on the reference by inserting a union member name,
between < and >, immediately after the first §. Anexample of thisusageis

rule : aaa { $<intval>$ == 3; } bbb
{ fun($<intval>2, $<other>0}); }

H
Thissyntax haslittle torecommend it, but the situation arises rarely.

A sample specification is given in a later section. The facilities in this subsection
are not triggered until they are used: in particular, the use of %type will turnon
these mechanisms. When they are used, thereis a fairly strict level of checking.
For example, use of $n or $$ to refer to something with no defined type is
diagnosed. If these facilities are not triggered, the yacc value stack is used to
hold ¢nt’s, as was true historically.

9.18 A Small Desk Calculator

This example gives the complete yacc specification for a small desk calculator:
the desk calculator has 26 registers, labeled athrough z,and accepts arithmetic
expressions made up of the operators +, -, *, /, % (mod operator), & (bitwise
and), | (bitwise or}, and assignment. If an expression at the top level is an
assignment, the value is not printed; otherwise it is. Asin C, an integer that
begins with 0 (zero) is assumed to be octal; otherwise, it is assumed to be
decimal.

As an example of a yacc specification, the desk calculator doesa reasonable job
of showing how precedences and ambiguities are used, and demonstrating
simple error recovery. The major oversimplifications are that the lexical
analysis phase is much simpler than for most applications, and the output is
produced immediately, line by line. Note the way that decimal and octal
integers are read in by the grammar rules; This job is probably better done by
the lexical analyzer.

.8-30

—

Yacc: A Compiler-Compiler

%{
include <stdio.h>
include <ctype.h>

int regs|26};
int base;

%}
O%start list
%token DIGIT LETTER

%oleft °

Goleft '&°

Toleft +° ~*

Tolefr s °f" %’

C%left UMINUS /# precedence for unary minus */

%% [+ beginning of rules section +/

list : /* empty =/
| st stat A\n’

| list error An’

{ yyerrok; }

1

stat . expr
{ printf("%d\n", $1); }
| LETTER ‘=" expr
{ regs[$1] = $3; }

1

expr : {“expr)’
{$8 =92}
| expr + expr
{88 =8$1+83}
| expr - expr
{88 =81-83)
| expr "*“expr
{88 =291+83}
| expr °/ " expr
{$8=81/$3;}
| expr %" expr
{$8=$1%8¢3;)
| expr ‘&’ expr
{88 =91&83}
| expr 1 expr

{88 =$1]$3;}

9-31

XENIX Programmer’s Guide

| = expr Z%oprec UMINUS

{88 =-82;})
| LETTER

{ $8 == regs($1]; }
| number

number : DIGIT
{ $8 == $1; base = ($1==ux0) ? 8 : 10; }
| number DIGIT
{ 88 = base * $1 + $2; }

%% [+ start of programs s/
yylex{) { /t lexical analysis routine */
returns LETTER for a lowercase letter, */
/t yylval = 0 through 25 +/
[* return DIGIT for a digit, */
/* yylval =0 through 9 s/

/* all other characters */
/* are returned immediately */

int ¢

while((c=getchar()) == ‘) { [+ skip blanks #/ }
/* ¢ is now nonblank ¢/

if{ islower(¢)) {

yylval = ¢ - 2%
return (LETTER);

}

if(isdigit(¢)) {
yylval = ¢ - 0%
return({ DIGIT);

return{ ¢);

8.19 Yacc Input Syntax

This section has a description of the yacc input syntax, as a yace specification.
Context. dependencies, etc., are not considered. Ironically, the yacc input
specification language is most naturally specified as an LR(2) grammar; the
sticky part comes when an identifier is seen in a rule, immediately following an
action. If this identifier is followed by a colon, it is the start of the next rule;
otherwise it is-a continuation of the current rule, which just happens to have an

9-32

Yace: A Compiler-Compiler

action embedded in it. Asimplemented, the lexical analyzer looks ahead after
seeing an identifier, and decide whether the next token (skipping blanks,
newlines, comments, etc.) is a colon. If o, it returns the token
C_IDENTIFIER. Otherwise, it returns IDENTIFIER. Literals (quoted
strings) are also returned as [DENTIFIER, but never as part of
C_IDENTIFIER.

/* grammar for the input to Yacc ¢/

/+ basic entities */
%token IDENTIFIER /* includes identifiers and literals ¢/
%token C_IDENTIFIER /s identifier followed by colon s/
%token NUMBER [[0-9]+ ¢/

/* reserved words: %type => TYPE, %left => LEFT, etc. */
%token LEFT RIGHT NONASSOC TOKEN PREC TYPE START UNION

 Gtoken MARK /* the %% mark */
%token LCURL [+ the %{ mark */
%token RCURL [+ the %} mark */

/* ascii character literals stand for themselves */

Tostart spec

%%

spec : defs MARK rules tail

?

tail : MARK { Eat up the rest of the file }
| /* empty: the second MARK is optional %/

’

defs : [+ empty =/
| defs def

b

def :START IDENTIFIER

UNION { Copy union definition to output }
LCURL { Copy C code to output file } RCURL
ndefs rword tag nlist

’

rword : TOKEN
LEFT
RIGHT
NONASSOC

9-33

XENIX Programmer’s Guide

| TYPE

‘tag : /+ empty: union tag is optional s/
| ‘<’ IDENTIFIER ">’

’

nlist : nmno
nlist nmno

d

nlist " nmno

1]

nmno : IDENTIFIER . /* Literal illegal with %type #/
| IDENTIFIER NUMBER /+ lllegal with %type s/

1]
/* rules section ¢/

rules : C_DENTIFIER rbody prec
| rules rule

+

rule : C_IDENTIFIER rbody prec
{' rbody prec

rbody : /* empty s/
’ | rbody IDENTIFIER
| rtbody act

3

act : {’ { Copy action, translate $$, etc. } }’

prec - : [+ empty */
.| PREC IDENTIFIER
PREC IDENTIFIER act
| prec 5°

¥

'9.20 An Advanced Example

This section gives an example of a grammar using some of the advanced
features discussed in earlier sections. The desk calculator example is modified
to provide a desk calculator that does floating point interval arithmetic. The
calculator understands floating point constants, the arithmetic operations +, -
-, %, /, unary -, and = (assignment), and has 26 floating point variables, a
through z. Moreover, it also understandsintervals, written

9-34

Yacc: A Compiler-Compiler

(x,y)

where z is less than or equal to y. There are 26 interval valued variables A
through Z that may also be used. Assignments return no value, and print
nothing, while expressions print the (floating or interval) value,

This example explores a number of interesting features of yacc and C.
Intervals are represented by a structure, consisting of the left and right
endpoint values, stored as a double precision values. This structure is given a
type name, INTERVAL, by using typedef. The yacc value stack can also
contain floating point scalars, and integers (used to index into the arrays
holding the variable values). Notice that this entire strategy depends strongly
on being able to assign structures and unions in C. In fact, many of the actions
callfunctions that return structures as well.

It is also worth noting the use of YYERROR to handle error conditions:
division by an interval containing 0, 2nd an interval preseated in the wrong
order. In effect, the error recovery mechanism of yacc is used to throw away
the rest of the offending line.

In addition to the mixing of types on the value stack, this grammar also
demonstrates an interesting use of syntax to keep track of the type (e.g., scalar
or interval) of intermediate expressions. Note that a scalar can be
automatically promoted to an interval if the context demands an interval
value. This causes a large number of conflicts when the grammar is run
through yacc: 18 Shift/Reduce and 26 Reduce/Reduce. The problem can be
seen by looking at the twoinput lines:

25+ (35-4.)
and
25+ (35,4.)

Notice that the 2.5 is to be used in an interval valued expression in the second
example, but this fact is not known until the comma (,) isread; by this time, 2.5
is finished, and the parser cannot go back and change its mind. More generally,
it might be necessary to look ahead an arbitrary number of tokens to decide
whether to convert a scalar to an interval. This problem is circumvented by
having two rules for each binary interval valued operator: one when the left
operand is a scalar, and one when the left operand is an interval. In the second
case, the right operand must be an interval, so the conversion will be applied
automatically. However, there are still many cases where the conversion may
be applied or not, leading to the above conflicts. They are resolved by listing
the rules that yield scalars first in the specification file; in this way, the conflicts
will be resolved in the direction of keeping scalar valued expressions scalar
valued until they are forced to become intervals.

This way of handling multiple typesis very instructive, but not very general. If
there were many kinds of expression types, instead of just two, the number of

9-35

XENIX Programmer’s Guide

rules needed would increase dramatically, and the conflicts even more
dramatically. Thus, while this example is instructive, it is better practice in a
more normal programming language environment to keep the type
information as part of the value, and not as part of the grammar.

Finally, a word about the lexical analysis. The only unusual feature is the
treatment of floating point constants. The C library routine atofis used to do
the actual conversion from a character string to a double precision value. If the
lexical analyzer detects an error, it responds by returning a token that isillegal
in the grammar, provoking a syntax error in the parser, and thence error
recovery.

%{

include <stdio.h>
include <ctype.h>

typedef struct interval {
double lo, hi;
} INTERVAL;
INTERVAL vmul(), vdiv();
double atof();

double dreg| 26)
INTERVAL vreg| 26 J;

%}

Tostart lines

%%union {
int ival;

double dval;
INTERVAL vval;

}
%token <ival> DREG VREG /s indices into dreg, vreg arrays s/

Totoken <dval> CONST /* floating point constant ¢/

Totype <dval> dexp /* expression */
Totype <vval> vexp /#* interval expression ¢/

/* precedence information about the operators s/

%left' §+9 ’_’

9-36

Yacc: A Compiler-Compiler

Tleft 8 [
%left UMINUS [+ precedence for unary minus ¢/

%%

lines : /* empty ¢/
| lines line

’

line : dexp '\n’
{ printf("%15.8M\n", $1); }
| vexp '\n’
{ printf{ "(%15.8f, %15.8f)\n", $1.lo, $1.hi); }
| DREG ’=' dexp '\n'
{ dreg[$1] = $3; }
EG '=’ vexp '\n’
{ vreg[$1] = $3; }

| error '\n'
{ yyerrok; }

1

dexp : CONST
| DREG
{ 88 = dreg[$1]; }
| dexp '+’ dexp
{88 =81+83}
| dexp ’-’ dexp
{88 =¢81-83;}
| dexp ’+’ dexp
{88 =181+83}
| dexp */’ dexp
{88 =$1/83;)
| -’ dexp %prec UMINUS
{88 =-82;}
I ’(7 dexp ’)9
{$8 =192}
vexp :de

Xp

{$$.hi = $8.1o = $1; }
|’(’ dexp ’,’ dexp ')’

$$.lo = $2;

$$.hi = $4;

if($%.10 > $$.hi){

printf(”interval out of order\n”);
YYERROR,;

}
}
| VREG

9-37

XENIX Programmer’s Guide

{ $8 = vregl$1}; }
| vexp *+' vexp
{ $8.hi == $1.hi + $3.hi;
$8.1o = $L.1o + $3.lo; }
| dexp '+’ vexp
{ $8.hi == $1 + $3.hi;
$8.1o = $1 + $3.10; }
| vexp >’ vex
{ $8.hi = $1.hi - $3.lo;
$8.1o = $1.1o - $3.hi; }
| dexp *-' vexp
{ $8.hi = $1 - $3.lo;
$8.1o == $1 - $3.hi;}
| vexp '+’ vexp
{ 8 = vmul($1.lo, $Lhi, $3); }
| dexp '+’ vexp
{ $$ = vmul($1, 81, $3); }
| vexp /" vexp
{if (dcheck($3)) YYERROR;
$$ = vdiv($1.1o, $1.hi, $3); }
| dexp °/’ vexp
{if (dcheck($3)) YYERROR;
$$ = vdiv(81, 81, 83); }
| -’ vexp P%prec UMINUS :
{ $8.hi = -$2.1o; $8.1o = -$2.hi; }
I ’() vexp !),)
{ $ = 82;)

%%
define BSZ 50 [+ buffer size for fp numbers =/

/* lexical analysis */

yylex(){
register c;
{ /* skip over blanks +/}
while((¢ = getchar()) =="")

(if (isupper(c)){
yylvalival = ¢ - 'A’;
return{ VREG);

}
if (islower{c)){
Y)'lval.iva.l =c-"a"
return{ DREG);
}

if(isdigit(») || e=="" }{

9-38

Yacc: A Compiler-Compiler

/* gobble up digits, points, exponents s/

char buf[BSZ+1], #cp = buf;
int dot = 0, exp = 0;

for(; (cp-buf)<BSZ ; ++cp,c=getchar()){

scp = ¢;
if (isdigit(c)) continue;
if(c==""
if (dot++ || exp) return(.’);
/* above causes syntax error */
continue;

}

if (c =="'¢e){
if (exp++) return(’e’);
/* above causes syntax error */
continue;

}

/* end of number */
break;

scp = '\0';
if((cp-buf) >=BSZ)
printf(" constant too long: truncated\n");
else ungete(¢, stdin);
/* above pushes back last char read */
yylval.dval = atof (buf);
return(CONST);

return(¢);

INTERVAL hilo(a, b, ¢, d) double a, b, ¢, d; {
/* returns the smallest interval containing a, b, ¢, and d %/
[+ used by *, / routines +/
INTERVAL v;

if{ a>b) { v.hi =a; vlo = b; }
else { v.hi = b; v.lo = a;

if(c>d) {
if {¢>v.hi) v.hi=g¢;
if (d<v.lo)v.lo =d;

else {

if (d>v.hi) v.hi=d;
if (c<v.lo) v.lo =c¢;

9-39

XENIX Programmer’'s Guide

return{ v);

INTERVAL vmul(a, b, v) double a, b; INTERVAL v; {
return{ hilo(a*v.hi, asv.lo, bsv.hi, bev.lo));

dcheck(v) INTERVAL v; {
if(v.hi >=0. && v.lo <= 0. }{
printf("divisor interval contains 0.\n");
return(1);

return(0);

INTERVAL vdiv(2, b, v} double a, b; INTERVAL v; {
;eturn(hilo(a/v.hi, afv.o, b/v.hi, bfv.lo));

9.21 Old Features

This section mentions synonyms and features which are supported for
historical continuity, but, for variousreasons, are not encouraged.

1. Literalsmay also be delimited by double quotation marks (”).

2. Literals may be more than one character long. If all the charactersare
alphabetic, numeric, or underscore, the type number of the literal is
defined, just as if the literal did not have the quotation marks around
it. Otherwise, it is difficult to find the value for such literals. The use
of multicharacter literals is likely to mislead those unfamiliar with
yacc, since it suggests that yacc is doing a job that must be actually
done by the lexical analyzer.

3. Most places where ‘%’ is legal, backslash (\) may be used. In
particular, the double backslash (\\) is the same as %%, \left the
sameas Pleft, etc. '

4. There are 2 number of other synonyms:

%% < is the same -as %left

%> is the same as %right

Tobinary and %2 are the same as %nonassoc
%0 and %term are the same as %token
%= is the same as %prec

9-40

Yacc: A Compiler-Compiler

Actionsmay also have the form

={..}

and the curly braces can be dropped if the action is a single C
statement.

C code between %{ and %} used to be permitted at the head of the
rulessection, as well asin the declaration section.

9-41

Appendix A

C Language Portability

A2

A.3

A. 4

Introduction 1
Program Portability 2

Machine Hardware 2
3.1 Byte Length 2

3.2 Word Length 2

3.3 Storage Alignment 2
3.4 Byte Order in a Word 4
.3.5 Bitfields 5

3.6 Pointers 5

3.7 Address Space 6

3.8 Character Set 6

ler Differences 7
Signed/Unsigned char, Sign Extension 7
Shift Operations 7
Identifier Length 7
Register Variables 8
Type Conversion 8
Functions With Variable Number of Arguments 9
Side Effects, Evaluation Order 11

:>>>ib:>>>o
FEEEEEE s
NV EWN - e

1-ii

A.5

A.6

A7

A.8

Program Environment Differences

Portability of Data
Lint 12

Byte Ordering Summary

12

13

1

C Language Portability

A.1 Introduction

The standard definition of the C programming language leaves many details to
be decided by individual implementations of the language. These unspecified
features of the language detract from its portability and must be studied when
attempting to write portable C code.

Most of the issues affecting C portability arise from differences in either target
machine hardware or compilers. C was designed to compile to efficient code for
the target machine (initially a PDP-11) and so many of the language features
not precisely defined are those that reflect a particular machine’s hardware
characteristics.

This appendix highlights the various aspects of C that may not be portable
across different machines and compilers. It also briefly discusses the portability
of a C program in terms of its environment, which is determined by the system
calls and library routines it uses during execution, file pathnames it requires,
and other items not guaranteed to be constant across different systems.

The C language has been implemented on many diflferent computers with
widely different hardware characteristics, from small 8-bit microprocessors to
large mainframes. This appendix is concerned with the portability of C code in
the XENIX programming environment. This is a more restricted problem to
consider since all XENIX systems to date run on hardware with the following
basic characteristics:

— ASCI character set

— 8-bitbytes

— 2-byteor 4-byteintegers

— Two’scomplement arithmetic

These features are not formally defined for the language and may not be found
in all implementations of C. However, the remainder of this appendix is
devoted to those systems where these basic assumptions hold.

The C language definition contains no specification of how input and output is
performed. This is left to system calls and library routines on individual
systems. Within XENIX systems there are system callsand library routines that
can be considered portable. These are described briefly in a later section.

This appendix is not intended as a C language primer. It is assumed that the
reader is familiar with C, and with the basic architecture of common
microprocessors.

XENIX Programmer’s Guide

A.2 Program Portability

A program is portable if it can be compiled and run successfully on different
machines without alteration. There are many ways to write portable :
programs. The first is to avoid using inherently nonportable language features.
The second is to isolate any nonportable interactions with the environment,
such asI/O to nonstandard devices. For example programsshould avoid hard-
coding pathnames unless a pathname is common to all systems (e.g.,

[ete/passwd).

Files required at compiletime (i.e., include files) may also introduce
nonportability if the pathnamesare not the same on all machines. In some cases
include files containing machine parameters can be used to make the source
code itself portable.

A3 Machiné Hardware

Differences in the hardware of the various target machines and differences in
the corresponding. C compilers cause the greatest number of portability-
problems. This section lists problems commonly encountered on XENIX
systems.

A.3.1 Byte Length

By definition, the char data type in C must be large enough to hold as positive
integers all members of a machine’s character set. For the machines described
in thisappendix, the char size isexactly an 8 bit byte.

A.3.2 Word Length

In C, the size of the basic data types for a given implementation are not
formally defined. Thus they often follow the most natural size for the
underlying machine. It is safe to assume that short is no longer than long.
Beyond that no assumptions are portable. For example on some machines
short is the same length as int, whereas on others long is the same length as
int. :

Programs that need to know the size of a particular data type should avoid
hard-coded constants where possible. Such information can usually be written
in a fairly portable way. For example the maximum positive integer (on a two’s
complement machine) can be obtained with:

#define MAXPOS ((int)(((unsigned) 0) >> 1))

Thisis preferable to something like:

C Language Portability

#ifdef PDP11
#define MAXPOS 32767
felse

#endif

To find the number of bytesin an int use ‘‘sizeof (int)”’ rather than 2, 4, or some
other nonportable constant.

A.3.3 Storage Alignment

The C language defines no particular layout for storage of dataitemsrelative to
each other, or for storage of elements of structures or unions within the
structure or union.

Some CPU’s, such as the PDP-11 and M68000 require that data types longer
than one byte be aligned on even byte address boundaries. Others, such as the
8086.and VAX-11 have no such hardware restriction. However, even with these
machines, most compilers generate code that aligns words, structures, arrays,
and long words on even addresses, or even long word addresses. Thus, on the
VAX-11, the following code sequence gives ‘8", even though the VAX
hardware can access an int (2 4-byte word) on any physical starting address: -

struct s_tag {
char ¢;
int i

p’rintf (" %d\n" sizeof(struct s_tag)};

The principal implications of this variation in data storage are that data
. accessed as nonprimitive data typesis not portable, and code that makes use of
knowledge of the layout on a particular machine is not portable.

Thus unions containing structures are nonportable if the union is used toaccess
the same datain different ways. Unions are only likely to be portable if they are
used simply to have different data in the same space at different times. For
example, if the following union were used to obtain 4 bytes from a long word,
the code would not be portable:

union {
char c[4];
long lw;

}u

The e1zeof operator should always be used when reading and writing
structures: :

XENIX Programmer's Guide

struct s_tag st;

write(fd, &st, sizeof(st));

This ensures portability of the source code. It does not produce a portable data
file. Portability of data is discussed in a later section.

Note that the sizeof operator returns the number of bytes an object would
occupy in an array. Thus on machines where structures are always aligned to
begin on a2 word boundary in memory, the sizeof operator will include any
necessary padding for this in the return value, even if the padding occurs after
all useful data in the structure. This occurs whether or not the argument is
actually an array element.

A.3.4 Byte Order in 2 Word

The variation in byte order in a word affects the portability of data more than
the portability of source code. However any program that makes use of
knowledge of the internal byte order in a wordis not portable. For example, on
some systems there is an include file mésc.h that contains the following
structure declaration:

/t
* structure to access an
* integer in bytes
+/
struct {
char lobyte;
char hibyte;

&

With certain less restrictive compilers this could be used to access the high and
low order bytes of an integer separately, and in a completely nonportable way.
The correct way to do this is to use mask and shift operations to extract the
required byte:

#define LOBYTE() (i & 0xf)
#define HIBYTE() ((i >> 8) & 0xf])

Note that even this operation is only applicable to machines with two bytes in
anint.

One result of the byte ordering problem is that the following code sequence will
not always perform asintended:

C Language Portability

int ¢ = 0;
read(fd, &c, 1);

On machines where the low order byte isstored first, the value of ““c”” willbe the
byte value read. On other machines the byte is read into some byte other than
the low order one, and the value of “c"" is different.

A.3.5 Bitfields

Bitfields are not implemented in all C compilers. When they are, no field may
be larger than an int, and no field can overlap anint boundary. If necessary the
compiler willleave gaps and move to the next int boundary.

The C language makes no guarantees about whether fields are assigned left to

‘right, or right to left in an int. Thus, while bitfields may be useful for storing
flags and other small data items, their use in unions to dissect bits from other
dataisdefinitely nonportable.

Toensure portability no individual field should exceed 16 bits.

A.3.6 Pointers

The C language is fairly generous in allowing manipulation of pointers, to the
extent that most compilers will not object to nonportable pointer operations.
The lint program is partxcularly useful for detecting questionable pointer
assignments and comparisons.

The common nonportable use of pointers is the use of casts to assign one pointer
to another pointer of a different data type. This almost always makes some
assumption about the internal byte ordering and layout of the data type, and is
therefore nonportable. In the following code, the byte order in the given array
is not portable:

char c[4];
long *lp;

= (long *)&clo};
s]p = 0x12345678L;

The lint program will issue warning messages about such uses of pointers. Code
like thisis very rarely necessary or valid. It is acceptable, however, when using
the malloc function to allocate space for variables that do not have char type.
The routine is declared as type char # and the return value is cast to the type
to be stored in the allocated memory. If this type is not char. * then lint will
issue a warning concerning illegal type conversion. In addition, the malloc
function is written to always return a starting address suitable for storing all
types of data. Lint does not know this, so it gives a warning about possible data

A-d

XENIKX 'Programn;er‘s Guide

alignment problems too. In the following example, malloc is used to obtain
memory for an array of 50 integers.

extern char *malloc(};
int *ip;

ip = (int *)malloc(50);

Thisexample will attract a warning message from lint.

A.3.7 Address Space

The address space available to a program running under XENIX varies
considerably from system to system. On a small PDP-11 there may be only 64K
bytes available for program and data combined. Larger PDP-11’s, and some 16
bit microprocessors allow 64K bytes of data, and 64K bytes of program text.
Other machines may allow considerably more text, and possibly more data as
well.

Large programs, or programs that require large data areas may have
portability problems on small machines.

A.3.8 Character Set

The C language does not require the use of the ASCII character set. Infact, the
only character set requirements are all characters must fit in the char data
type, and all characters must have positive values.

In the ASCII character set, all characters have values between zero and 127.
« Thus they can all be represented in 7 bits, and on an 8-bits-per-byte machine
are all positive, whether char istreated as signed or unsigned.

There is a set of macros defined under XENIX in the header file
[usrfinclude/ctype.h that should be used for most tests on character
quantities, They provide insulation from the internal structure of the
character set and, in most cases, their names are more meaningful than the
equivalent line of code. Compare

if(isupper(c))
to
if((c >="A") && (¢ <=2"))
With some of the other macros, such as fsdigit to test for a hex digit, the

advantage is even greater. Also, the internal implementation of the macros
makes them more efficient than an explicit test with an ‘if’ statement

C Language Portability

A.4 Compiler Differences
There are a number of C compilers running under XENIX. On PDP-11 systems

there is the so-called “Ritchie” compiler. Also on the 11, and on most other
systems, there is the Portable C Compiler.

A.4.1 Signed/Unsigned char, Sign Extension

The current state of the signed versus unsigned char problem is best described
as unsatisfactory.

The sign extension problem is a serious barrier to writing portable C, and the

best solution at present is to write defensive code that does not rely on
particular implementation features.

A.4.2 Shift Operations

The left shift operator, ‘' < <" shifts its operand a number of bits left, filling
vacated bits with zero. This is a so-called logical shift. The right shift operator,
“>>" when applied to an unsigned quantity, performs a logical shift
operation. When applied to a signed quantity, the vacated bits may be filled
with zero (logical shift) or with sign bits (arithmetic shift). The decision is
implementation dependent, and code that uses knowledge of a particular

implementation is nonportable.

The PDP-11 compilers use arithmetic right shift. To avoid sign extension it is
necessary to shift and mask out the appropriate number of high order bits:

char ¢;
¢ = (c >> 3) & Ox1f;

You can also avoid sign extension by using using the divide operator:
char ¢;

c=c¢c /8§

A.4.3 Identifier Length

The use of long symbols and identifier names will cause portability problems
with some compilers. To avoid these problems, a program should keep the
following symbols asshort as possible:

— CPreprocessor Symbols

XENIX Programmer's Guide

— CLocal Symbols
— CExternal Symbols

The loader used may also place a restriction on the number of unique
charactersin C external symbols.

Symbols unique in the first six characters are unique to most C language
processors.

On some non-XENIX C implementations, uppercase and lowercase letters are
not distinct in identifiers.
A.4.4 Register Variables
The number and type of register variables in afunction dependson the machine
hardware and the compiler. Excess and invalid register declarationsare treated
as nonregister declarations and should not cause a portability problem. On a
PDP-11, up to three register declarations are significant, and they must be of
type int, char, or pointer. While other machines and compilers may support
declarationssuch as)
register unsigned short
thisshould not be relied upon.
Since the compiler ignores excess variables of register type, the most important
register type variables should be declared first. Thus, if any are ignored, they
will be the least important ones.
A.4.5 Type Conversion
The C language has some rules for implicit type conversion; it also allows
explicit type conversions by type casting. The most common portability
problem in implicit type conversion is unexpected sign extension. This is a
potential problem whenever something of type char is compared withanint.
For example
char ¢;
if(c == 0x80)

will never evaluate true on a machine which sign extends since ‘‘¢”’ is sign
extended before the comparison with 0x80, an int.

A-8

C Language Portability

The only safe comparison between char type and anint is the following:

char c;

if(c =="x")
This is reliable because C guarantees all characters to be positive. The use of
hard-coded octal constants is subject to sign extension. For example the

following program prints*‘ff80" on a PDP-11:

main()

{
}

Type conversion also takes place when arguments are passed to functions.
Typeschar and short become int. Machines that sign extend char can give
surprises. For example the following program gives—128 on some machines:

printf(” %x\n",’\200’);

char ¢ = 128;
printf(” %d\n" ,c);

This is because “c” is converted to int before passing o the function. The
function itself has no knowledge of the original type of the argument, and is
expecting an int. The correct way to handle this is to code defensively and
allow for the possibility of sign extension:

char ¢ = 128;
printf(" %d\n", ¢ & Oxfl);

A.4.8 Functions With Variable Number of Arguments

Functions with a variable number of arguments present a particular
portability problem if the type of the arguments is variable too. In such cases
the code is dependent upon the size of various data types.

In XENIX there is an include file, /usr/include/varargs.h, that contains macros
for use in variable argument functions to access the arguments in a portable
way:

typedef char *#va_list;

#define va_dcl int va_alist;

#tdefine va_start(list) list = (char *) &va_alist

#define va_end(list)

#define va_arg(list,mode) ((mode #)(list += sizeof(mode)))[-1]

The va_end() macro is not currently required. Use of the other macros will be

A-9

XENIX Programmer’s Guide

demonstrated by an example of the fprintf library routine. This has a first
argument of type FILE *, and a second argument of type char *. Subsequent
arguments are of unknown type and number at compilation time. They are
determined at run time by the contentsof the control string, argument 2.

The first few lines of fprintf to declare the arguments and find the output file
and control string address could be:

ffinclude <varargs.h>
#include <stdio.h>

int
fprintf(va_alist)
va_dcl;
va_list ap; /* pointer to arg list +/
char *format;
FILE =fp;
va_start(ap); /* initialize arg pointer */

fp = va_arg(ap, (FILE));
format == va_arg(ap, (char));

}

Note that there is just one argument declared to fprintf. This argument is
declared by the va_dcl macro to be type int, although its actual type is
unknown at compile time. The argument pointer “ap’ isinitialized by va_start
to the address of the first argument. Successive arguments can be picked from
the stack so long as their type is known using the va_arg macro. This has a type
as its second argument, and this controls what data is removed from the stack,
and how far the argument pointer “ap” is incremented. In fprintf, once the
control string is found, the type of subsequent arguments is known and they
can be accessed sequentially by repeated calls to va_arg(). For example,
arguments of type double, int #, and short, could be retrieved asfollows:

double dint;
int #ip;
short s;

dint = va_arg(ap, double);
ip = va_arg(ap, (int *));
s == va_arg(ap, short);

The use of these macros makes the code more portable, although it does assume
a certain standard method of passing arguments on the stack. In particular no
holes must be left by the compiler, and types smaller than int (e.g., char, and
short onlong werd machines) must be declared asint.

A-10

C Language Portability

A.4.7 Side Effects, Evaluation Order

The C language makes few guarantees about the order of evaluation of
operands in an expression, or arguments to a function call. Thus

func(i++, i++);
isextremely nonportable, and even
func(i++);

is unwise if func is ever likely to be replaced by a macro, since the macro may
use “i”’ more than once. There are certain XENIX macros commonly used in
user programs; these are all guaranteed to use their argument once, and so can
safely be called with a side-effect argument. The most common examples are

gete, putc, getchar, and putchar.

Operands to the following operators are guaranteed to be evaluated left to
right: :

Y && || ?

Note that the comma operator here is a separator for two C statements. A list
of items separated by commas in a declaration list is not guaranteed to be
processed left to right. Thus the declaration

register int a, b, ¢, d;

on a PDP-11 where only three register variables may be declared could make
any three of the four variables register type, depending on the compiler. The
correct declaration is to decide the order of importance of the variables being
register type, and then use separate declaration statements, since the order of
processing of individual declaration statementsis guaranteed to be sequential:

register int a;
register int b;
register int c;
register int d;

A.5 Program Environment Differences

Most programs make system calls and use library routines for various services.
This section indicates some of those routines that are not always portable, and
those that particularly aid portability.

We are concerned here primarily with portability under the XENIX operating

system. Many of the XENIX system calls are specific to that particular
operating system environment and are not present on all other operating

A-11

XENIX Programmer's Guide

system implementations of C. Examples of this are getpwent for accessing
entries in the XENIX password file, and getenv which is specific to the XENIX
concept of a process’ environment.

Any program containing hard-coded pathnames to files or directories, or user
IDs, login names, terminal lines or other system dependent parameters is
nonportable. These types of constant should be in header files, passed as
command line arguments, cbtained from the environment, or obtained by
using the XENIX default parameter library routines dfopen, and dfread.

Within XENIX, most system calls and library routines are portable across
different implementations and XENIX releases. However, a few routines have
changed in their user interface. The XENIX library routines are usually
portable among XENIX systems.

Note that the members of the printf family, préntf, fprintf, sprintf, sscanf, and
scanf have changed in several ways during the evolution of XENIX, and some
features are not completely portable. The return values of these routines
cannot be relied upon to have the same meaning on all systems. Some of the
format conversion characters have changed their meanings, in particular those
relating to uppercase and lowercase in the output of hexadecimal numbers, and
the specification of long integers on 18-bit word machines. The reference
manual page for printf contains the correct specification for these routines.

A.8 Portability of Data

Data files are almost always nonportable across different machine CPU
architectures. As mentioned above, structures, unions, and arrays have
varying internal layout and padding requirements on different machines. In
addition, byte ordering within words and actual word length may differ.

The only way achieve data file portability is to write and read data files asone
dimensional character arrays. This avoids alignment and padding problems if
the data is written and read as characters, and interpreted that way. Thus
ASCII text files can usually be moved between different machine types without
too many problems. ‘

A.7 Lint

. Lintis a C program checker which attempts to detect featuresof a collection of

C source files that are nonportable or even incorrect C. One particular
advantage of lint over any compiler checking is that lint checks function
declaration and usage acrosssource files. Neither compiler nor loader do this.

Lint will generate warning messages about nonportable pointer arithmetic,

assignments, and type conversions. Passage unscathed through lint is not a
guarantee that a program is completely portable. ~

A-12

C Language Portability

A.8 Byte Ordering Summary

The following conventions are used in the tables below:

a0 Thelowest physically addressed byte of the dataitem. a0 + 1, andso on.

b0 The least significant byte of the data item, 'b1’ being the next least
significant, and so on.

Note that any program that actually makes use of the following information is
guaranteed to be nonportable!

Byte Ordering for Short Types

CPU Byte Order
20 _al
PDP-11 b0 bl
VAX-11 b0 bl
8086 b0 bl
286 b0 bl
M68000 bl bo
78000 bl b0

Byte Ordering for Long Types

CPU Byte Order

a0 al a2 a3
PDP-11 b2 b3 b0 bl
VAX-11 bo bl b2 b3
8086 b2 b3 b0 bl
286 b2 b3 b0 ‘bl
M68000 b3 b2 bl b0
28000 b3 b2 bl b0

A-13

Appendix B

M4: A Macro Processor

B.1 Introduction 1

B.2 Invoking mi 1

B.3 Defining Macros 2

B.4 Quoting 3

B.5 Using Arguments 5

B.6 Using Arithmetic Built-ins
B.7 Manipulating Files 7

B.8 Using System Commnands 7
B.9 Using Conditionals 8
B.10 Manipulating Strings 8

B.11 Printing 10

6

M4: A Macro Processor

B.1 Introduction
The m4 macro processor defines and processes specially defined strings of
characters called macros. By defining a set of macros to be processed by m4, a
programming language can be enhanced to make it:

— Morestructured

— Morereadable

— More appropriate for a particular application
The #define statement in C and the analogous define in Ratfor are examples
of the basic facility provided by any macro processor—replacement of text by

other text.

Besides the straightforward replacement of one string of text by another, m4
provides:

— Macros with arguments
~— Conditional macro expansions
— Arithmetic expressions
— Filemanipulation facilities
"~ String processing functions
The basic operation of m{is copying itsinput to its output. Asthe inputisread,
each alphanumeric token (that is, string of letters and digits) is checked. If the
token is the name of a macro, then the name of the macro is replaced by its
defining text. The resulting string is reread by m4. Macros may also be called
with arguments, in which case the arguments are collected and substituted in
the right placesin the defining text before m{rescans the text.
M{ provides a collection of about twenty built-in macros. In addition, the user
can define new macros. Built-ins and user-defined macros work in exactly the
same way, except that some of the built-in macros have side effects on the state
of the process.
B.2 Invoking m4
The invocation syntax for m4is:

m4 [files]

Each file name argument is processed in order. If there are no arguments, or if

B-1

XENIX ‘Programmer’s Guide

an argumeht is a dash (-), then the standard is read. The processed text is
written to the standard output, and can be redirected as in the followmg
example: :

m4 filel file2 - > outputfile
Note the use of the dash in the above example to indicate processing of the
standard input, afterthe files file1and file2have been processed by mJ4.

B.3 Deﬁning Macros

The prlmary built-in function of m4 is deﬁne, which is used to define new
macros. The input

define(name, stuff)
causes the string neme to be defined as stuff. All subsequent occurrences of
name will be replaced by stuff. Name must be alphanumeric and must begin
with a letter (the underscore (_) counts as a letter). Stuffis any text, including
text that contains balanced parentheses; it may stretch over multiple lines.

Thus, as a typical example

define(N, 100)

if (i > N)
defines“*N” to be 100, and uses this symbolic constant in alater if statement.
The left parenthesis must immediately follow the word define, to signal that
define hasarguments. If a macro or built-in name is not followed immediately
by a left parenthesis, “(", it is assumed to have no arguments. This is the
situation for “N” above; it is actually a macro with no arguments. Thus, when
itisused, no parentheses are needed following its name.

You should also notice that a macro name is only recognized as such if it
appearssurrounded by nonalphanumerics. For example, in

define(N, 100)
if (NNN > 100)

the variable ““NNN" is absolutely unrelated to the defined macro “N”, even
though it contains three N’s.

Things may be defined in terms of other things. For example

B-2

M4: A Macro Processor

define(N, 100)
define(M, N)

definesbothM and N to be 100.

What happensif “N” isredefined? Or, to say it another way, is “M” defined as
“N” or as 100? In m4, the latter is true, “M"” is 100, so even if “N’’ subsequently
changes, “M” does not.

This behavior arises because m4 expands macro names into their defining text
as soon as it possibly can. Here, that means that when the string *“N”’ isseen as
the arguments of define are being collected, it isimmediately replaced by 100;
it's just as if you had said

define(M, 100)
in the first place.

If this isn’t what you really want, there are two ways out of it. The first, which
is specific to thissituation, is to interchange the order of the definitions:

' define(M, N)
define(N, 100)

Now “M" is defined to be the string “N”, so when you ask for “M" later, you
will always get the value of *“N”’ at that time (because the ‘“M’* will be replaced
by “N” which, inturn, will be replaced by 100).

B.4 Quoting

The more general solution is to delay the expansion of the argumentsof define
by quoting them. Any text surrounded by single quotation marks *and “is not
expanded immediately, but has the quotation marksstripped off. If yousay

define(N, 100)
define(M, ‘N’)

the quotation marks around the ‘N’ are stripped off as the argument is being
collected, but they have served their purpose, and “M” is defined as the string
“N”, not 100. The general rule is that m4 always strips off one level of single
quotation marks whenever it evaluates something. This is true even outside of
macros. If you want the word ““define” to appear in the output, you have to
quote it in the input, asin

‘define’ = 1I;

As another instance of the same thing, which is a bit more surprising, consider
redefining “N’*:

XENIX Programmer's Guide

define(N, 100)
define(N, 200)

Perhaps regrettably, the “N” in the second definition isevaluated assoon as it’s
seen; thatis, it isreplaced by 100, so it’s asif you had written

define(100, 200)
This statement is ignored by m4, since you can only define things that look like
names, but it obviously doesn’t have the effect you wanted. To really redefine
“N”, you must delay the evaluation by quoting:

define(N, 100)

define(*N’, 200)
In m4, it is often wise to quote the first argument of a macro.
If the forward and backward quotation marks (" and) are not convenient for
some reason, the quotation marks can be changed with the built-in
changequote. For example:

changequote(],])

makes the new quotation marks the left and right brackets. You can restore the
original characters with just

changequote

There are two additional built-ins related to define. The built-in undefine
removes the definition of some macro or built-in:

undefine(*N’)
removes the definition of “N”’. Built-ins can be removed withundefine, asin
undefine(‘define’)
but once you remove one, you can never get it back.
The built-in ifdef provides a way to determine if a macro is currently defined.
For instance, pretend that either the word “xenix” or “unix” is defined
according to a particular implementation of a program. To perform operations

according to which system you have you might say:

. ifdef(‘xenix’, ‘define(system,1)’)
ifdef(‘unix’, ‘define(system,2)’)

Don’t forget the quotation marks in the above example.

B-4

M4: A Macro Processor
Ifdef actually permits three arguments: if the name is undefined, the value of

ifdef is then the third argument, asin

ifdef(‘xenix’, on XENIX, not on XENIX)

B.5 Using Arguments
So far we have discussed the simplest form of macro processing — replacing one
string by another (fixed) string. User-defined macros may also have arguments,
so different invocations can have different results. Within the replacement text
for a macro (the second argument of its define) any occurrence of $n will be
replaced by the nth argument when the macro is actually used. Thus, the
macro bump, defined as

define(bump, $1 = $1 + 1)
generates code to increment itsargument by 1:

bump(x)
is

x=x+1
A macro can have as many arguments as you want, but only the first nine are
accessible, through $1 to $9. (The macro name itself is $0.) Arguments that are
not supplied are replaced by null strings, so we can define a macro cat which
simply concatenates its arguments, like this:

define(cat, $1$2$3$4$58637$8$9)
Thus

cat(x, y, 2)
isequivalent to

Xyz

The arguments $4 through $9 are null, since no corresponding arguments were
provided.

Leading unquoted blanks, tabs, or newlines that occur during argument
collection are discarded. All other white space isretained. Thus:

define(a, b «¢)

defines‘‘a” tobe“b ¢”.

B-5

XENIX Programmer's Guide

Arguments are separated by commas, but parentheses are counted properly, so
acomma protected by parentheses does not terminate an argument. Thatis, in

define(a, (b,c))

there are only two arguments; the second is literally “(b ¢)”. And of course a
bare comma or parenthesis can be inserted by quotingit. -

B.8 Using Arithmetic Built-ins

M4 provides two built-in functions for doing arithmetic on integers. The
simplest is incr, which incrementsits numeric argument by 1. Thus, to handle
the common programming situation where you want a variable to be.defined as
one more than N, write

define(N, 100)
define(N1, ‘incr(N)’)

Then ‘N1 is defined as one more than the current value of “N”'. .

The more general mechanism for arithmetic is a built-in called eval, which is
capable of arbitrary arithmetic on integers. It provides the following operators
{in decreasing order of precedence):

unary + and -

#s or " *(exponentiation)
+ /| % (modulus)

+ -

! (not)

& or &&(logical and)
[or]| (logical or)

Parentheses may be used to group operations where needed. All the operands
of an expression given to eval must ultimately be numeric. The numeric value
of a true relation (like 1>0) is 1, and false is 0. The precision-in eval is
implementation dependent.

Asasimple example, suppose we want “M” tobe “2+##+N+1", Then

define(N, 3)
define(M, ‘eval(2¢*N+1)')

As a matter of principle, it is advisable to quote the defining text for a macro
unless it is very simple indeed (say just a number); it usually gives the result you
want, and is a good habit to get into.

M4: A Macro Processor

B.7 Manipulating Files

You can include a new file in the input at any time by the built-in function
include:

include(filename)

inserts the contents of filename in place of the include command. The
contents of the file is often a set of definitions. The value of include (that is, its
replacement text) is the contents of the file; this can be captured in definitions,
etc.

It is a fatal error if the file named in include cannot be accessed. To get some
control over this situation, the alternate form sinclude can be used; sinclude
(for “silent include”) says nothing and continuesif it can’t access the file.

It is also possible to divert the output of m4 to temporary files during
processing, and output the collected material upon command. M4 maintains
nine of these diversions, numbered 1 through 9. If you say

divert(n)
all subsequent output is put onto the end of a temporary file referred to as “n”.
Diverting to this file is stopped by another divert command; in particular,
divertor divert(0) resumes the normal output process.
Diverted text is normally output all at once at the end of processing, with the
diversions output in numeric order. It is possible, however, to bring back
diversionsat any time, that is, to append them to the current diversion.
undivert
brings back all diversions in numeric order, and undivert with arguments
brings back the selected diversions in the order given. The act of undiverting
discards the diverted stufl, as does diverting into a diversion whose number is
‘not between 0 and 9inclusive.

The value of undivert is not the diverted stuff. Furthermore, the diverted
material is not rescanned for macros.

The built-in divnum returns the number of the currently active diversion.
Thisiszero during normal processing.

B.8 Using System Commands

You can run any program in the local operating system with the syscmd
built-in. For example,

B-7

XENIX Pfogramme_r's Guide

syscmd(date)

runs the date command. Normally, syscmd would be used to create afilefor a
subsequentinclude.

To facilitate making unique file names, the built-in maketemp is provided,

with specifications identical to the system function mktemp: a string of
“XXXXX" in the argument isreplaced by the processid of the current process.

B.9 Using Conditionals

There is a built-in called ifelse which enables you to perform arbitrary
conditional testing. In the simplest form,

ifelse(a, b, ¢, d)
compares the two strmgs a and b. If these are identical, ifelse returns the
string ¢; otherwise it returns d. Thus, we mxght deﬁne a macro called
compare which compares two strings and returns ““‘yes” or “no’’ if they are the
same or different.

define{compare, ‘ifelse($1, $2, yes, no)’)
Note the quotation marks, which prevent too-early evaluation of ifelse.

If the fourth argument is missing, it istreated as empty.

ifelse can actually have any number of arguments, and thus provxdes alimited
form of multi-way decision capability. Inthe input

ifelse(a, b, ¢, d, ¢, [, g)
if the string a matches the string b, the result is ¢c. Otherwise, if disthe same as
e, theresultis f. Otherwise the resultis g. If the final argument is omitted, the
resultisnull, so

ifelse(a, b, ¢)

is cif amatches b, and null otherwise.

B.10 Manipulating Strings

The built-in len returns the length of the string that makes up its argument.
Thus

len(abcdef)

is6,and

B-8

M4: A Macro Processor

len((a,b))

is 5.

The built-insubstr can be used to produce substringsof strings. For example
substr(e,,n)

returns the substring of s that starts at position ¢ (origin zero), and is n
characterslong. If nisomitted, the rest of the stringisreturned, so

substr(‘now is the time’, 1)
is

ow is the time
If sor nareoutof range, various sensible things happen.
The command

index(e1,82)

returns the index (position) in &1 where the string s2occurs, or -1if it doesn’t
occur. As with substr, the origin for stringsis0.

The built-in translit performs character transliteration.
translit(s, f, t)

modifies s by replacing any character found in fby the corresponding character
oft. Thatis

translit(s, aeiou, 12345)
replaces the vowels by the corresponding digits. If ¢ is shorter than f,
characters that don’t have an entry in ¢ are deleted; as a limiting case, if tis not
present at all, charactersfrom fare deleted from 8. So

translit(s, aeiou)
deletesvowelsfrom *‘s”.
There is also a built-in called dnl which deletes all characters that follow it up

to and including the next newline. It is useful mainly for throwing away empty
lines that otherwise tend to clutter up m4output. For example, if yousay

B-9

XENIX Programmer’s Guide

define(N, 100)

define(M, 200)

define(L, 300)
the newline at the end of each line is not part of the definition, so it is copied into
the output, where it may not be wanted. If you add dnl to each of these lines,
the newlines will disappear.
Another way to achieve this, is

divert(-1)
define(...)

divert

B.11 Printing

The built-in errprint writes its arguments out on the standard. error file.
Thus, you can say

errprint(‘fatal error’)
Dumpdef is a debugging aid that dumps the current definitions of defined

terms. If there are no arguments, you get everything; otherwise you get the
ones you name as arguments. Don’t forget the quotation marks.

B-10

Index

-¢c option

C compiler
=D option

C compiler
-E option

C compiler
-h option

lint 3-9
-1 option

C compiler
-1 option

C compiler
-0 option

C compiler
-0 option

C compiler
-p option

C compiler
-P option

C compiler
-5 option

C compiler
=X option

C compiler
-a option

lint 3-8
<b option

lint 3-4
-c option

lint 3-7
-n option

lint 3-12
-p option

lint 3-12

2-13

2-15

2-14

2-10"
2-12
2-15

2-10"

2-10"

-u option
lint 3-3
-v option
lint 3-11
lint 3-3
=X option
lint 3-2
Adb
basic tool 1-1
ar
description 1-2
As
basic tool 1-2
Assembler See As
assembler
error messages 2-15
C compiler
-1 option, include file
search 2-14
-1 option
library linking 2-9
-0 option
a.,out file naming 2-5
-0 option
output optimization
2-10"
-P option, preprocessor
invocation 2-15
-p option, profiling
code 2-12
-s option, output
stripping 2-10"
-S option
assembly language

1-1

XENIX Programmers Guide

output 2-12
-Xx option, external symbol
entry 2-10"
-X option, symbol saving
2-10" :
.s file 2-12
a.out file

default output file 2-3

naming 2-4
assembly language
output 2-12
creating
object files 2-8
D option
macro definition 2-13
error messages 2-15
expression ‘
evaluation order 3-11
function calls
counting 2-12
include file
search 2-14
label discard 2-10"
library
linking 2-9
linking
library 2-9
lint directives,
effect 3-11
macro)
definition 2-13
preprocessor 2-15
mon.out file write out 2-
12
multiple source files 2-3
object file
creation 2-4

1-2

optimization 2-10"
output file See a.out
file
output
. assembly language
output 2-12
stripping 2-10"
preprocessing 2-13"
preprocessing 2-15
profiling code 2-12
source file
linking 2-U
multiple 2-4
single 22
strip command, output
stripping 2-10"
symbol table 2-10"
language
compiler See cc
usage check 1-1
yace 9-1
program
string extraction 1-3
programming language 1-1
programs
creating 1-1
source file
compilation See C
compiler 2-2

C-shell

command history
mechanism 1-3
command language 1-3

cc command

error messages 2-15
source file
compiling 2-3

- Command
execution 1-3
interpretation 1-3
SCCS commands See SCCS
SCCS See SCCS
ecsh
description 1-3
Debugger See Adb
Delta See SCCS
Desk calculator
specifications 9-31
Error message file
creation 1-3
execution profile
prof 2-12
File
archives 1-2
block counting 1-3
check sum computation 1-3
error message file See
Error message file-
octal dump 1-3
relocation bits
removal 1-3
removal
SCCS use See SCCS
Source Code Control System
See SCCS
symbol removal 1-3
text search, print 1-3
FORTRAN
conversion program 8-20"
Hexadecimal dump 1-3
1d
basic tool 1-2
Lex
-11 flag
library access 8-5

0, end of file

notation 8-12

a.,out file
contents 8-5

action
default 8-8
description 8-3
repetition 8-9
specification 8-8

alternation 8-7

ambiguous source rules 8-

12

angle brackets (<>)
operator character 8-2U4

operator character 8-U
start condition
referencing 8-16
arbitrary character
match 8-6
array size change 8-24
asterisk (%)
operator character 8-25

operator character 8-U4
repeated expression
specification 8-6
automaton interpreter
initial condition
resetting 8-16
backslash (\)
C escapes 8-l
backslash (\)
operator character 8-24

backslash (\)
operator character 8-4

XENIX Programmers Guide

backslash (\)
operator character
escape 8-l

backslash (\)
operator character
escape 8<6

BEGIN
start condition
entry 8-16

blank character
quoting 8-4
rule ending 8-4
blank, tab line
beginning 8-17
braces ({})
expression
repetition 8-8
operator character

operator character
brackets ([1)
character class
specification 8-5
character class use

operator character

operator character
operator character
escape 8-5
buffer overflow 8-13
C escapes 8-4
caret (") operator
left context
recognizing 8«15
caret (%)
‘character class
inclusion 8-5

8-25

8-1
8-24

8-4

context sensitivity 8=-7

operator character 8-24
operator character 8-l
string complement 8§-5

character class
notation 8-1
specification 8-5

character set
specification 8«22
character
internal use 8-22
set table 8-22
set table 8-24
translation table See
set table

context sensitivity 8-7

copy classes 8-17

dash (-)
operator character 8-2U4
character class
inclusion 8-5
operator character 84
range indicator 8-5

definition
expansion 8-8
format 8-18
placement 8-8
definitions
character set table 8-
22

contents 8-18
contents 8-23
format 8-23

location 8-18

specification 8-17
delimiter

discard 8-~18

rule beginning

marking 8-1

source format 8-2

third delimiter,

copy 8-18
description 1-2
description 8-1
dollar sign ($) operator

right context

recognizing 8-15
dollar sign ($)

context sensitivity 8-7

end of line
notation 81
operator character 8-24

operator character 8-4
dot (.) operator See
period (.)
double precision constant
change 8-21
ECHO

format argument, data

printing 8-9
end-of-file

0 handling 8-12

yywrap routine 8-12
environment

change 8-15
expression

new line illegal 8-l

repetition 8-8
external character
array 8-9

flag '
environment change 8-15

FORTRAN conversion program
g§-20"
grouping 8-7
I/0 library See library
I/0 routine

access 8-11

consistency 8-11
input () routine 8-11
input routine

character 1/0

handling 8-22
input

description 8-1

end-of-file, 0

ignoring 8-8

manipulation

restriction 8-15
invocation 8-4
left context 8-T7

caret (°) operator 8-15

sensitivity B8-15
lex.yy.c file 8-5
lexical analyzer
environment change 8-15

library
access 8-5
avoidance 8-5
backup limitation 8-12
loading 8-19
line beginning match 8-7
line end match 8-7
loader flag See -11 flag

XENIX Programmers Guide

lookahead
. characteristic 8-12
lookahead characteristic
8_1 o"
match count 8-9
matching
occurrence counting 8-
13
preferences 8-12
new line
illegality 8-4
newline
escape 8-23
matching 8-13
octal escape 8-6
operator character
escape 8-4
quoting 8-4
operator characters
aaSee also Specific
Operator Character
designated 8-24
escape 8-5
escape 8-6
listing 8-4
literal meaning 8-4
optional expression
specification 8-6
output (e¢) routine 8-11
output routine
character 1/0
handling 8-22
parentheses (())
grouping 8-7
operator character. 8-4
parenthesis (())

operator character 8-25

parser generator
analysis phase 8-=2
percentage sign (%)
delimiter notation
(%%) 8-1
operator character 8-4
remainder operator 8-19

source segment
separator 8-8
period (.) operator
designted 8-24
period (.)
arbitrary character
match 8-6
newline no mateh 8-13
operator character 8-4
plus sign (+)
operator character 8-25

operator character 8-4
repeated expression
specification 8«6
preprocessor statement
entry 8-18
question mark (?)
operator character 8-25

operator character 8-4
optional expression
specification 8-6
quotation marks, double
(\O
real numbers rule 8-18
regular expression
description 8-3°
end indication 8-3

operators See operator

characters

rule component 8§-3
REJECT 8-14
repeated expression

specification 8-6
right context

dollar sign ($)

operator §8-15
rule

active 8-16

real number 8-18
rules

components 8-3

format 8-24
semicolon (3)

null statement 8-8
slash (/)

operator character 8-25

operator character 8-4
trailing text 8-7
source definitions
specification 8-17
source file
format 823
source program
compilation 8-4
source
copy into generated
program 8-17
description 8-1

format 8-17
format 8-2
interception

failure 8-17
segment separator 8-8

spacing character
ignoring 8-9
start condition 8-T7
entry 8-16
environment change 8-15

start conditions

format 8-23
location 8-23
start

abbreviation 8«16
statistics gathering 8-
20"
string

printing 8-3
substitution string

definition See

definition
tab line beginning See
blank, tab line beginning

text character
quoting 8-4
trailing text B8-7
unput (¢) routine 8-11
unput routine
character 1I/0
handling 8-22
unput
REJECT
noncompatible B8-15

lex

unreachable statement 3-4

Lex

vertical bar (})
action repetition 8-9
alternation 8-7

XENIX Programmers Guide

operator character 8-25

operator character 8-4
wrapup See yywrap routine

Yace interface

tokens 8-19

yylex () 8-18
Yace

interface 8-2

library loading 8-19
yyleng variable 8-9
yyless ()

text reprocessing 8-10

yyless (n) 8-10
yylex () program
Yace interface 8-18
yylex program
contents 8-1
yymore () 8-10

yytext
external character
array 8-9

yywrap () 8«20

yywrap () routine 8-12
Library

conversion 1-2

maintenance 1-2

ordering relation 1-2

sort 1=-2 :
linker
- error messages 2-15
Lint

«h option 3-9

-a option 3-8

-b option 3-4

-c option 3-7 ,
«ly directive 3-12
-n option 3-12
-p option 3-12
-u option 3-3
-v option
turnon 3-11
unused variable report
suppression 3-3
-x option 3-2
ARGSUSED directive 3-11
ARGSUSED directive 3-12
argument number comments
turnoff 3-11
assignment of long to int
check 3-8
assignment operator
new form 3-10"
old form, check 3-9
operand type
balancing 3-6
assignment, implied See
implied assignment
binary operator, type
check 3-6
break statement
unreachable See
unreachable break
statement
C language check 1-1
C program check 3-1
C syntax, old form,
check 3-9 _
cast See type cast
conditional operator,
operand type balancing 3-£

constant in conditional
context 3-9
construction check 3-1
construction check 3-8
control information
flow 3-11
degenerate unsigned
comparison 3-8
description 3-1
directive
defined 3-11
embedding 3-11
enumeration, type
check 3«6
error message, function
name 3-5
expression, order 3-10%
extern statement 3-2
external declaration,
report suppression 3-2
file
library declaration file
identification 3-12
function
error message 3-5
return value check 3-5
type check 3«6
unused See unused
function
implied assignment, type
check 3-6
initialization, old style
check 3-10"
library
compatibility check 3-
12
compatibility check
suppression 3-12

directive

acceptance 3-12

file processing 3-12
LINTLIBRARY directive 3-12

loop check 3-U
nonportable character
check 3-7
nonportable expression
evaluation order check
3-10"
NOSTRICT directive 3-11
NOTREACHED directive 3-11
operator
operand types
balancing 3-6
precedence 3-9
output turnoff 3-11
pointer
agreement 3-6
alignment check 3-10"
relational operator,
operand type balancing 3-6

scalar variable check 3-11

source file, library
compatibility check 3-12

‘statement, unlabeled

report 3-4
structure selection
operator, type check 3-6
syntax 3-1
type cast
check 3-7
comment printing
control 3-7

XENIX Programmers Guide

type check
description 3-6
turnoff 3-11
unreachable break
statement, report
suppression 3«4
unused argument
report suppression 3-3

unused function, check 3-2
unused variable, check 3=2

VARARGS directive 3-12
variable
external variable
initialization 34
inner/outer block
conflict 3=9
set/used
information 3-3
static variable
" initialization 3-4
unused See unused
variable
Loader See 1ld
Loop
lint use See Lint
lorder
description 1-2
m
Yn deseription
Macros
preprocessing 1-2
Maintainer See Make
make command
arguments 4-4

1=10

syntax 4-4
Make

-d option 4+13

-n option 4-13

-t option 4-13

.¢ suffix 4-9

+DEFAULT 45

.f suffix U4=9

«IGNORE 45

1 suffix 4-9

.0 suffix 4-9

+«PRECIOUS 45

.r suffix 49

.8 suffix 4-9

«SILENT 4-5

.y suffix 4-9

.¥r suffix 4-9

argument quoting 4-6

backslash (\)
description file
continuation U4-2

-basic tool 1=2

command argument
macro definition 4-6

~command string

substitution 4-5

command -string
hyphen (=) start 4-5

command
form U4-1
location 4-1
print without
execution 4-13

dependency line

substitution 4-5

dependency line
form 41

description file
comment convention 4-1

macro definition 4-6
description filename
argument 4=l
dollar sign ($)
macro invocation U4-6
equal sign (=)
macro definition 4-5
file generation 4-5
file update 4-1
file
time, date printing Uu-
13
updating U4-13
hyphen (=)
command string
start 4-5
macro definition
analysis U4-6
argument U-4
description 45
macro
definition U-6
definition override 4-6

invocation u4-6
substitution 4-5
value assignment 4-6
medium sized projects U-1
metacharacter
expansion 4-1
number sign (#)
description file
comment 4-1
object file
suffix 4-9

option argument

use 4-4
parentheses (())

macro enclosure 46
program maintenance 4-1
semicolon (;)

command

introduction #4-1
source file

suffixes U-9
source grammar

suffixes U-9

suffixes
list 4-9
table 4-9

target file
pseudo-target files 4-5

update 4-13
target filename

argument 44 ;
target name omission 4-3
touch option See -t

option
transformation rules
table U4-9

troubleshooting' 4-13
Notational conventions 1-5
Object files

creating 2-8
Pipe

SCCS use See SCCS
prof command 2-12
Program development 1-1
Program

maintainer See Make
ps command

C-shell use See C-shell

1-11

XENIX Programmers Guide-

Quotation marks, single ('')
C=shell use See C=shell
ranlib
description 1-2
rm command
SCCS use See SCCS
SCCS, source code
control 1-3
SCCS
IM% keyword
g=file line
precedence 5=30
-a option
login name addition
use 5-23
«d flag :
flags deletion 5-16
-d option
.data specification
provision 5-20"
flag removal 5-16
-e option
delta range
printing 5-21
file editing use 5<T7
login name removal 5-24

-f option
flag -initialization,
modification 5-15
flag, value setting 65-
16

-g option
output suppression 5=
30" v
p~file regeneration 65-
26

1-12

-h option
file audit use 5-25
-1 flag
keyword message, error
treatment 65-15
-1 option
delta inclusion list
use 5-28
-k option
g-file regeneration 5-
26
<1l option
delta range
printing = 5-21
l-file creation 5-29
-m option
effective when 5-18
file change
identification 5-30"
new file creation 527 -
-n option
¥M% keyword value use
5-30"
g-file preservation 65~
12
pipeline use 5-30¢
=-p option
delta printing 5-30"
output effect 5-11
-r option
delta creation use 5=22

delta printing use 5=21
file retrieval 5-9

release number
specification 5-27

-s option
output suppression 65-28

-t option
delta retrieval 5-11
file initialization 6&-
19
file modification 5-19
-x option
delta exclusion list
use 5-28
-y option
comments prompt
response 5-17
new file creation 5-27
-2 Kkey
file audit use 5-26
e(#) string
file information,
search 5-31
admin command
file administration 5-
25
file checking use 5-25
file creation 65<5
use authorization 6-6
administrator
description 5<4
argument
minus sign(-) use
types designated 5-4
branch delta
retrieval 5-10"
branch number
description 5«2
cde command
commentary change 65-17

ceiling flag

protection 5-24
checksum

file corruption

determination 5-25
command

argument See argument

execution control 5-lU

explanation 5-26
comments

change procedure 5-17

omission, effect 65-28
corrupted file

determination 5-25

processing

restrictions 5-25

restoration 5-26
d flag

default

specification 516
d-file

temporary g-file 5l
data keyword

data specification

component 5-20"

replacement 5=20"
data specification

description 5-20"
delta command

comments prompt 5-8

file change

procedure 5-8

g-file removal 5-12

p-file reading 5-7

p-file reading 5-8

“delta table

delta removal,

1-13

XENIX Programmers Guide

effect 5«31
description 5-17
delta ,
branch delta See branch
delta
defined 5-1
defined 65-2
exclusion 5-28
inclusion 5-28
interference 5-29
latest release
retrieval 5-11
level number See level
number
name See 1SID"
printing 5-21
printing S5-30"
range printing 5-21
release number See
release number
removal 5«31
descriptive text
initialization 5-19
modification 5-19
removal 5-19
diagnostic output
-p option effect 5-12
diagnostics
code as help
argument 5-12
form 65-12
directory use 5-1
directory
file argument
application 5-4
x=-file location 5=3
error message
code use 5-12

1=-14

form 5-12
exclamation point (1!)
MR deletion use 5-19
file argument
description 54
processing 5-lU
file creation
comment line
generation 5-28
commentary 5<27
comments omission,
effect 5-28
level number 5-27
release number 5-27
file protection 5-23
file
administration 5-25
change identification
5-30"
change procedure 5-8
change, major 5«9
changes See delta

checking procedure 5-25

comparison 5-32
composition 5-16
composition 5«2
corrupted file See
corrupted file
creation 5-5

data keyword See data
keyword

descriptive text
description 5-17
descriptive text See .
descriptive text
editing, =€ option
use 5=7

grouping 5-1 ownership 5-3

identifying regeneration 526
information 5-31 removal, delta command
link See link use 5-12
multiple concurrent temporary See d-file
edits 5-=22 get command
name arbitrary 65-12 -e option use 5«7
name See link concurrent editing,
name, s use 55 directory use 5-21
parameter delta inclusion,
initialization, ~ exclusion check 5-29
modification 5-19 file retrieval 5-6
printing = 5-20" filename creation 5-6
protection methods 5-23 g-file creation 5-3
message 5-6
removal 5<5 release number
retrieval See get change 5<9
command help command
x-file See x-file argument 5-12
flags code use 5-12
deletion 5-16 use 5-26
initialization ©5-15 i flag
modification 5-15 file creation,
setting, value effect 5-14
setting 5-16 ID keyword See keyword
use 5-16 identification string See
floor flag _ 1SID"
protection 5-24 j flag
g-file multiple concurrent
creation 5-3 edits specification 65-
creation date, time 22
recordation 5-13 keyword
description 5-3 data See data keyword
line identification
5-30" format 5-13
line, ¥M% keyword value lack, error
5-30" treatment 5-15

1-15

XENIX Programmers Guide

use 5-13
l-file
contents 5=3
creation 5-29
level number
delta component 5«2
new file 5«27
omission, file
retrieval, effect 5-9
link
number restriction 5-2

lock file See z-file
lock flag

R protection 5-24
minus sign (=)

option argument use 5-i

minus sign(-)
argument use 5-4
mode
g-file 5-3
MR
commentary supply 65-17

deletion 5-18
new file creation 5-27

multiple users 5-4

option argument
description 654
processing order 54

output .

- data specification See
data specification
suppression, =g option

5-30" .
suppression, =3
option 5-28

1-16

- Write to standard
output 5-11

p-file
contents 5-3
contents 5-7
creation 5-3
delta command
reading 65-8
naming 5<3
ownership 5-3
permissions 5«3
regeneration 5-26
update 5=3
updating S-l

percentage sign (%)

keyword enclosure 5-13

piping 5-28
-n option use
prs command
file printing
purpose 5«1
q file
use 5-4
R
delta removal check
3 ,
release number
-r option,
specification 5-27
change 65-2
change procedure 5«9
delta component 65-2
new file 5«27
release
protection 5<24
rm command
file removal 5-5

5<20"

5-30"

S=

rmdel command
delta removal 5-31
scesdiff command
file comparison 5<32
sequence number
description 5-2
tab character
-n option, designation
5_30"
user list
empty by default 5-23
login name addition 5=
23
login name removal 5-24

protection feature 5-23

user name
list 5-23
v flag

new file use 5-16
what command

file information 65-31
write permission ‘

delta removal 5-31
x=-file

directory, location 5-3

naming procedure 53
permissions 5-3
temporary file copy 5-3

use 5<3
XENIX command

use precaution 5-25
z-file

lock file use 65-3

ownership 5-3
permissions 5-3

1SID" components
1SID" delta printing
use
SCS
output

piping 5-28
Semicolon ()
C-shell use See C-shell
Software development
described 1-1
Source Code Control System
See SCCS
Source files 1-1
strip
description 1-3
sum
description 1-3
Symbol
name list 1-3
removal 1-3
sync
description 1-3
Tags file
creation 1-3
Text editor
creating programs 1-1
tsort
description 1-2
vi, the screen-oriented text
editor 1-1
XENIX file-
identifying
information 5-31
Yace
% token keyword

1=-17

XENIX Programmers Guide

union membher name
association 9-30"
%left keyword 9-20"
%left keyword
union member name
association . 9-30"
%left token
synonym 9-42
¥nonassoc keyword 9-21
union member name
association 9-30"
¥nonassoc token
synonyms 9-42
%prec keyword 9-21
fprec
synonym 9-U2
%right keyword 9-21
union member name
association 9-30"
fright token
synonym 9-42
%token :
synonym 9-42
%type keyword 9-31
)
0 key"
«~ly argument, library
access 9-25
-v option
y.output file 9-13
0 character
grammar rules,
.avoidance 9«5
accept action See parser
accept simulation 9-29
action
0, negative number 9-
29

conflict source 9-17
defined 9-7
error rules 9-23
form 9-42
global flag setting 9-
28
input style 9-26
invocation 9-1
location 9-8
nonterminating 9-8
parser See parser
return value 9-30"
statement 9-7
statement 9-8
value in enclosing
rules, access 9-29
ampersand (&) '
bitwise AND
operator 9-31
desk calculator
.operator 9-31
arithmetic expression
desk calculator 9-31
parsing 9-20%
precedence See
precedence
associativity
arithmetic expression
parsing 9-20"
grammar rule
association 9-22
recordation 9-22
token attachment 9-20"

asterisk (¥%)
desk calculator
operator 9-31

-backslash (\)
escape character 9-5
percentage sign (%)
substitution 9-i1
binary operator
precedence 9-21
blank character
restrictions 9<5
braces ({})
action 9-8
action statement
enclosure 9-7
action, dropping 9-42
header file enclosure
9-3 0"
colon (:)
identifier, effect 9-33

punctuation 9-5
comments
location 9-5
conflict
associativity See
associativity
disambiguating
rules 9-17
message 9-19
precedence See
precedence
reduce/reduce
conflict 9-17
reduce/reduce
conflict 9-22
resolution, not
counted 9-22
shift/reduce
conflict 9-17

shift/reduce
conflict 9-19
shift/reduce
confliect 9-22
source 9-17
declaration section
header file 9-30"
declaration
specification file
component Q-
description 1-2
desk calculator
specifications 9-31
desk calculator
advanced features 9-35

error recovery 9-36

floating point

interval 9-=35

scalar conversion 9-36
dflag 9-28
disambiguating rule 9-17
disambiguating rules 9-17
dollar sign (%)

action significance 9-7

empty rule 9-27
enclosing rules,
access 9-29
endmarker
lookahead token §-12
parser input end 9-6
representation 9-6
token number 9-10"
environment 9-25
error action See parser
error token
parser restart 9-23

1-19

XENIX Programmers Guide

error
handling 9-23
nonassociating

implication 9-22
parser restart 9-23
simulation 9-29
yyerrok statement 9-24
escape characters 9-5 ‘
external interger
variable 9-26
flag
global flag See global
flag
floating point intervals
See desk calculator
global flag
lexical analysis 9-28
grammar rules 9-1
0 character avoidance
9-5
advanced features 9-35
ambiguity 9-15
associativity
association 9-22
C code location 9-U2
empty rule 9-=27
error token 9-23
format 9«5
input style 9-26
left recursion 9-27

left side :
repetition 9<5
names 9-5
numbers 9--20"
precedence

association 9-22
reduce action 9-11

1-20

‘reduction 9-12

rewrite 9-17

right recursion 9-27

specification file

component Q-4

value 9«7
header file, union
declaration 9-30"
historical features 9-U1
identifier

input syntax 9-33
if-else rule 9-18
if-then-else
construction 9-17
input error detection 9-3
input language 9-1

input
style 9-26
syntax 9-33
keyword 9-20"
keyword

reservation 9-29
union member name
association 9-30"
left association 9-16
left associative
reduce implication 9-22

left recursion 9-27
value type 9-31
lex
interface 8-2
lexical analyzer
construction 9-10"
lexical analyzer
context dependency 9-28

defined 9-1

defined 9-9
endmarker return 9<§6
floating point
constants 9-37
function 92

global flag
examination 9-28
identifier analysis

lex 9-10"
return value 9-30"
scope 9-8

specification file
component Q-4
terminal symbol See
terminal symbol
token number
agreement 9-9
lexical tie-in 9-28
library 9-25
library 9-26
literal
defined 9-5
delimiting 9-U1
length 9-41
lookahead token 9-10"
lookahead token
clearing 9-24
error rules 9-23
LR(2)
main program
minus sign (=)
desk calculator
operator 9-31

names
composition 9-5
length 9-5

reference 9-U
token name See token
name
newline character
restrictions 9-5
nonassociating
error implication 9-22

nonterminal name
input style 9-26
representation 9-5
nonterminal symbol 9-2
empty string match 9-6
location 9-6
name See nonterminal
name
start symbol See start
symbol
nonterminal
union member name
association 9-31
octal interger
0 beginning 9-31
parser
accept action 9-12
accept simulation 9-29
actions 9-11
arithmetic expression
9_2011
conflict See conflict
creation g-20"
defined 9-1
description 9-10"
error action 9-12
error handling See
error
goto action 9-12

1=21

XENIX Programmers Guide

initial state 9-15
input end 9-6
lookahead token 9=11
movement 9«11
names, yy prefix 99
nonterminal symbol See
. nonterminal
. production failure 9-3
reduce action 9-11
restart 9-23
shift action 9-11
start symbol
recognition 9-6
token number
agreement 9-9
percentage sign (%)
action 9-8
desk calculator mod
operator 9-31
header file enclosure
9_30"
precedence keyword 9-
20"
specification file
section separator 9-4
substitution 9-41
plus sign (+)
desk calculator
operator 9-31
precedence
binary operator 9-21
change 9-21
grammar rule
association 9-22
keyword 9-20"
parsing function 9-20"

1=-22

recordation 9-22
token attachment 9-20"

unary operator 9«21
program

specification file

component 9l
punctuation 9«5
quotation marks, double
(9-41
quotation marks, single

(')

literal enclosure 9«5
reduce action See parser
reduce command

number reference 9-20"

reduce/reduce conflict 9-
17
reduce/reduce conflict Q-
22
reduction conflict See
reduce/reduce conflict
reduction conflict See
shift/reduce conflict
reserved words 9-28
right association 9-16
right associative

shift implication 9-22

right recursion 9-27
semicolon (3)
input style 9-26
punctuation 9-5
shift action See parser
shift command
number reference 9-20"

shift/reduce conflict 9-17
shift/reduce conflict 9-19
shift/reduce conflict 9-22

simple-if rule 9-18
slash (/)
desk calculator
operator 9-31
specification file
contents 9-U
lexical analyzer
inclusion 9-i4
sections separator 9-U
specification files 9-2
start symbol
description 9-6
location 9-6
symbol synonyms 9-U41
tab character
restrictions 9<5
terminal symbol 9-2
token name
declaration 9-6
input style 9-26
token names 9-10"
token number 9-9
agreement 9-9

assignment 9-10"

endmarker 9-10"
token

associativity 9-20"

defined 9-1

error token See error
token

names 9-4

organization 9-1
precedence 9-20"
unary operator
precedence 9-21
underscore sign (_)
parser 9-14

union .
copy 9-30"
declaration 9-30"
header file 9-30"

name association 9-30"
yace
unreachable statement 3-U
Yace
value stack 9-30"
value stack
declaration 9-30"
floating point scalars,
intergers 9-36
value
typing 9-30"
union See union
vertical bar (})
bitwise OR operator G-
31
desk calculator
operator 9-31
grammar rule
repetition 9-5
input style 9-26
y.output file 9-13
par ser checkup 9-22
y.tab.c file 9-25
y.tab.h file g-30"
YYACCEPT 9-29
yychar 9=26

1-23

XENIX Programmers Guide

‘yyclearin statement 9-24
yydebug 9-26 .
yyerrok statement 9-24
yyerror 9<25
YYERROR 9-36
yylex 9-25
yyparse 9-25
YYACCEPT effect 9-29

‘YYSTYPE 9-30"

XENIX Timesharing
system 11

1-24

Information in this document is subject to change without notice and
. does. not represent a commitment on the part of The Santa Cruz
Operation, Inc. and Microsoft Corporation. The software described in
this document is furnished under a license agreement or nondisclosure
agreement. The software may be used or copied only in accordance
with the terms of the agreement.

©The Santa Cruz Operation, Inc., 1984
©Microsoft Corporation, 1983

The Santa Crus Operation, Inc.

500 Chestnut Street

P.O. Box 1900

Santa Cruz, California 95061

{408) 425-7222 - TWX: 910-598-4510 SCO SACZ

UNIX is a trademark of Bell Laboratories
XENIX is a trademark of Microsoft Corporation :
Apple, Lisa 2, and ProFile are trademarks of Apple Computer Inc.

Release: 68-5-24-84-1.0/1.0

58
5.9
5.10 . ProgramExample 5-7

-3 QAR &
PUARA N B W -

NN
W -

00 0000 00 00 0
WA & W R =

Waiting foraProcess 5-6
inheritingOpenFiles - 5—7

Creatingand Using Pipes

Introduction 6-—1

Opening aPipetoaNew Process 6—1
Reading and WritingtoaProcess 62
ClosingaPipe 6~2 '
Openingal.ow—LevelPipe 6—3

Reading and Writingtoa Low—LevelPipe 6—4
ClosingaLow—LevelPipe 6—4
ProgramExamples 6—5

UsingSignals

Introduction 7-1
UsingthesignalFunction 7-1
Controlling Execution withSignals 7—7

~ UsingSignalsinMultipleProcesses 7—11

UsingSystemResources '

Introduction 8-1
AllocatingSpace 8-1
LockingFiles 8—4
UsingSemaphores 8—6
UsingSharedMemory 8-12

ErrorProcessing

Introduction 9—1 ‘
Using Standard Error Handling 9—-1
Usingtheermo Variable 9-2
Printing Error Messages 9-2
UsingErrorSignals 9-3
Encountering System

AppendixA AssemblyLanguageInterface

Al

Introduction A-—1

Chapter 5 describes the process control functions. These functions let a
program execute other programs and create multiple copies of itself. -

Chapter 6 describes the pipe functions. These functions let programs
communicate with one another without resorting to the creation of temporary
files. .

Chapter 7 describes the signal functions. These functions leta program process
signals that are normally processed by the system.

Chapter 8 describes system resource functions. These functionslet a program
dynamically allocate memory, share memory with other programs, lock files
against access by other programs, and use semaphores.

Chapter 9 describes the error processing functions. These functions let a
program process errors encountered while accessing t.he file system or
allocatmg memory.

Appendix A describes the assembly language interface with C programs and
~ explains the calling and return value conventions of Cfunctions. :

AppendixB gxplains how to create and use new XENIX system calls.

This manual assumes that you understand the C programming language and
that you are familiar with the XENIX shell, sh. Nearly all programming
examplesin this gmde are written in C, and all examples showing a shell use the
shshell. .

1.4 Notational Conventions

This manual uses a number of special symbols to describe the form of the
library function calls. The followingis a list of these symbols and their meaning.

'] Bracketsindicate an optional function argument.

Ellipses indicate that the preceding argument may be repeated
one or more times.

SMALL Small capitals indicate manifest constants. These system-
dependent constantsand are defined in a variety of include files.

ttalics Italic characters indicate placeholders for function arguments.

These must be replaced with appropriate values or names of
variables.

~1-2

2.53
2.54
2.5.5

Settlng the Buffer 2-23
Putting a Character Back into aBuffer 2-24
Flushmg aFileBuffer 2-25

2.6 UsnngtheLow-LevelFuncuons 225

2.6.1
2.6.2
2.6.3
2.6.4
2.6.5
2.6.6
2.6.7
2.6.8
2.6.9

Using File Descriptors 2-26

OpeningaFile 2-26

Reading BytesFromaFile 2-27

Writing BytestoaFile 2-27

Closing aFile 2-28 ‘

Program Examples 2-28

Using Random AccessI/O 2-31

Moving the Character Pointer = 2-31

Moving the Character Pointer in a Stream 2-32

2.6.10 RewindingaFile 2-33
2.6.11 Getting the Current Character Position 2-33

XENIX Programmer’s Reference

The follbwing is alist of the special names:
stdin The name of thestandard input file.

stdout The name of thestandard output file.

“stderr The name pf thestandard error file.
EOF The value returned by the read routineson end-of-file or error.
NULL The null pointer, returned by pointer-valued functions, to indicate
anerror.
FILE The name of the file type used to declare pointers to streams.

BSIZE The size in bytes (usually 1024) suitable for an 1/0 buffer supplied
by the user.

2.1.3 Special Macros

The functions gete, getchar, putc, putchar, feof, ferror, and fileno are actually
macros, not functions. This means that you cannot redeclare them or use them
as targets for a breakpoint when debugging.

2.2 Using Command Line Arguménts

The XENIX system lets you pass information to a program at the same time you
invoke it for execution. You can do this with command line arguments.

A XENIX command line is the line you type to invoke a program. A command
line argument is anything you type in a XENIX command line. A command line
argument can be a filename, an option, or a number. The first argument in any
command line must be the filename of the program you wish to execute.

When you type a command line, the system reads the first argument and loads
the corresponding program. It also counts the other arguments, stores them in
memory in the same order in which they appear on the line, and passes the
count and the locations to the main function of the program. The function can
then access the arguments by accessing the memory in which they are stored.

To access the arguments, the main function must have two parameters:
“arge”, an integer variable containing the argument count, and “argv”, an
array of pointers to the argument values. You can define the parameters by
using the lines:

2-2

XENIX Programmer’s Reference

2.3 Using the Standard Files

Whenever you invoke a program for execution, the XENIX system
automatically creates a standard input, a standard output, and a standard
error file to handle a program’sinput and output needs. Since the bulk of input
and output of most programs is through the user’s own terminal, the system
normally assigns the user’s terminal keyboard and screen as the standard input
and output, respectively. The standard error file, which receives any error
messages generated by the program, is also assigned to the terminal’sscreen.

A program can read and write to the standard input and output files with the
getchar, gets, scanf, putchar, pute, and printf functions. The standard error
file can be accessed using the stream functions described in the section ““Using
Stream I/O" later in this chapter.

The XENIX system lets you redirect the standard input and output using the

‘shell’s redirection symbols. This allows a program to use other devices and files
as its chief source of input and output in place of the terminal’s keyboard and
screen.

The following sections explains how to read from and write to the standard
input and output. It also explains how to redirect the standard input and
output.

2.3.1 Reading From the Standard Input

You can read from the standard input with the -getckar, geta, and ecanf
functions.

The getchar function reads one character at a time from the standard input.
The function call hasthe form:

¢ = getchar()
where ¢ is the variable to receive the character. It must have int type. The
function normally returns the character read, but will return the end-of-file
value EOF if the end of the file or anerror isencountered.
The getchar function is typically used in a conditional loop to read a string of

characters from the standard input. For example, the following function reads
“cnt”’ number of characters from the keyboard.

2-4

XENIX Programmer’s Reference

.where format is a pointer to a string that defines the format of the values to be
read and argptr is one or more pointers to the variables that will receive the
values. There must be one argptr for each format given in the format string.
The format may be “%s" for a string, *“%c” for a character, and “%d"’, “ %o0”,
or “%x” for a decimal, octal, or hexadecimal number, respectively. (Other
formats are described inscanf(S) in the XENIX Reference Manual.) The
function normally returns the number of values it read from the standard
input, but it will return the value EOF if the end of the file or an error is
encountered.

Unlike the getchar and gets functions, seanf skips all whitespace characters,
reading only those characters which make up a value. It then converts the
characters, if necessary, into the appropriate string or number.

The scanffunction is typically used whenever formatted input is required, i.e.,
input that must be ty ped in a special way or which has a special meaning. For
example, in-the following program fragment scanf reads both a name and a
number from the same line.

char name[20];
int number;

seanf(”%s %d”, name, &number);

In this example, the string *“%s %d” defines what values are to be read (a
string and a decimal number). The string is copied to the character array
“name’ and the number to the integer variable “number”. Note that pointers
to these variablesare used in the call and not the actual variables themselves.

When reading from the keyboard, ecanf waits for values to be typed before
returning. Each value must be separated from the next by one or more
whitespace characters (such as spaces, tabs, or even newline characters). For
example, for the function:

scanf(”%s %d %c”, name, age, sex);
an acceptable inputis:

John 27
M

If a value is a number, it must have the appropriate digits, that is, a decimal
number must have decimal digits, octal numbers octal digits, and hexadecimal
numbers hexadecimal digits.

If scanfencounters an error, it immediately stops reading the standard input.
Before scanf can be used again, the illegal character that caused the error must
be removed from the input using the getcharfunction.

XENIX Programmer’s Reference

Since the function automatically appends a newline character, it is typically
used when writing full lines to the standard output. For example, the following
program fragment writes one of three strings to the standard output.

char ¢;:

switch(c) {

case('l’):
puts(” Continuing...” };
break;

case(’2’):
puts(”All done.”);
break;

default:
puts(”Sorry, there was an error.”);

}

The string to be written dependson the value of “‘c”.

The printffunction writes one or more values to the standard output where a
value is a character string or a decimal, octal, or hexadecimal number. The
function automatically converts numbers into the proper display format. The
function call has the form:

printf(format|, arg] ...)

where format is a pointer to a string which describes the format of each value to
be written and argisone or more variables containing the values to be written.
There must be one arg for each format in the format string. The formats may
be *“%s" for a string, *“%c’’ for a character, and “%d”, “%o0", or “%x" for a
decimal, octal, or hexadecimal number, respectively. (Other formats are
described in printf(S)in the XENIX Reference Manual.) If a string isrequested,
the corresponding arg must be a pointer. The function normally returns zero,
but will return a nonzero value if an errorisencountered.

The printf function is typically used when formatted output is required, i.e.,
when the output must be displayed in a certain way. For example, you may use
the function to display a name and number on the same line as in the following
example.

char name [J;
int number;

printf(” %s %d”, name, number);
In this example, the string *“%s %d” defines the type of output to be displayed

(a string and a number separated by a space). The output values-are copied
from the character array “name” and the integer variable “number”.

2-8

XENIX Programmer's Reference

For example, the command line
dial | we

connects the standard output of the program dial to the standard input of the
program we. {The standard input of dial and standard output of we are not
affected.) If dial writes to its standard output with the putchar, puts, or printf
functions, we can read this output with the getchar and sc anffunctions.

Note that when the program on the output side of a pipe terminates, the system

automatically places the constant value EOF in the standard input of the

program on the input side. Pipes are described in more detail in Chapter 6,
“Creating and Using Pipes”.

2.3.6 Program Example

This section shows how you may use the standard input and output files to
perform useful tasks. The ccstrip (for “‘control character strip’’) program
defined below strips out all ASCII control characters from its input except for
newline and tab. You may use this program to display text or data files which
contain characters that may disrupt your terminal screen.

#include <stdio.h>

main() /¢ cestrip: strip nth characters &/

{ :
mt c; .
while ((¢ = getchar()) != EOF)
if ((c >=""&& ¢ < 0177) ||
¢ =="\ || ¢ =="\n’)
putchar(c);
exit(0);

}

You can strip and display the contents of a single file by changing the standard
input of the ccstripprogram to the desired file. The command line

cestrip <doc.t

reads the contents of the file doc.t, stripsout control characters, then writes the
stripped file to the standard output.

If you wish to strip several files at the same time, you can create a pipe bet ween
the cat command and ccstrip.

To read énd strip the contents of the files file1, file2, and file3, then display
them on the standard output use the command:

2-10

XENIX Programmer's Reference

The standard input, output, and error files, like other opened files, have
corresponding file pointers. These file pointers are named stdin for standard
input, stdout for standard output, and stderr for standard error. Unlike other
file pointers, the standard file pointers are predefined in the stdio.h file. This
means a program may use these pointers to read and write from the standard
files without first using the fopen function to open them.

The predefined file pointers are typically used when a program needs to
alternate between the standard input or output file and an ordinary file.
Although the predefined file pointers have FILE type, they are constants, not
variables. They must not be assigned values.

2.4.2 Opening a File

The fopen function opensa given file and returns a pointer (called a file pointer)
to a structure containing the data necessary to access the file. The pointer may
then be used in subsequent stream functions to read from or write to the file.

The function call has the form:

fp = fopen(filename, type)

where fp is the pointer to receive the file pointer, filename is a pointer to the
name of the file to be opened and type is a pointer to a string that defines how
the file is to be opened. The type string may be “r” for reading, ‘“‘w” for
writing, and “a” for appending, that is, open for writing at the end of the file.

A file may be opened for different operations at the same time if separate file
pointers are used. For example, the following program fragment opens the file
named fusr/accountefor bothreading and writing.

FILE *rp, #wp;

rp = fopen(” fusr faccounts”,”r");
wp == fopen(” /usr /accounts”,”a”);

Opening an existing file for writing destroys the old contents. Opening an
existing file for appending leaves the old contents unchanged and causes any
data written to the file to be appended to theend.

Trying to open a nonexistent file for reading causes an error. Tryingtoopena
nonexistent file for writing or appending causes a new file to be created. Trying
to open any file for which the program does not have appropriate permission
causesanerror.

The function normally returns a valid file pointer, but will return the value

NULL if an error opening the file isencountered. It is wise to check for the NULL
value after each call to the function to prevent reading or writing after an error.

2-12

XENIX Programmer’s Reference

The function is typically used to read 2 full line from a file. For example, the
following program fragment reads a string of characters from the file given by
“myfile”.

char cmdIn[MAX];
FILE #myfile;

if (fgets(cmdin, MAX, myfile) = NULL)
parse{ cmdln);

In thisexample, fgets copiesthe string to the character array “emdln”.

2.4.5 Reading Records from a File

The fread function reads one or more records from a file and copies them to a
given memory location. The function call has the form:

fread(ptr, eize, nitems, stream)

where ptris a pointer to the location to receive the records, size is the size (in
bytes) of each record to be read, nitems is the number of records to be read, and
stream is the file pointer of the file to be read. The ptr may be a pointer to a
variable of any type (from a single character to a structrure). The size, an
integer, should give the numbers of bytes in each item you wish to read. One
way to ensure this is to use the sizeof function on the pointer ptr (see the
example below). The function always returns the number of records it read,
regardless of whether or not the end of the file or an error isencountered.

The function is ty pically used to read binary data from a file. For example, the
following program fragment reads two records from the file given by
‘‘database” and copies the records into the structure “person”.

FILE *database;

struct record {
char name[20];
int age;

} person;

fread(&person, sizeof(person), 2, database);
Note that since fread does not explicitly indicate errors, the feof and ferror
functions should be used to detect end of the file anderrors. These functionsare
described later in this chapter. ‘

2.4.6 Reading Formatted Data From a File

The fsc anffunction reads formatted input from a given file and copiesit to the
~ memory location given by the respective argument pointers, just as the scanf

2-14

XENIX Programmer's Reference

FILE sout;
char name[MAX];

int i;

for (i=0; i<MAX; i++)
fputc(nameli], out);

The only difference between the putc and fpute functions is that pute is defined
as amacro and fpute as an actual function. This means that fputc, unlike putc,
may be used as an argument to another function, as the target of a breakpoint
when debugging, and to avoid the side eflects of macro processing.

2.4.8 Writing a String to a File
-The fputs function writes a string to a given file. The function call has the form:

fputs(e,stream)

where 8 is a pointer to the string to be written and stream is the file pointer to
the file.

The function is typically used to copy strings from one file to another. For
example, in the following program fragment, gets and fputs are combined to
copy strings from the standardinput to the file given by *‘out’.

FILE sout;

-char cmdin[MAX]};

if (gets(cmdin)} != EOF)
fputs{ cmdln, out);

The function normally returns zero, but will return EOF if an error is
encountered. .

2-16

XENIX Programmer’s Reference

FILE sdatabase;

struct record {
char name|[20];
int age;

} person;

fwrite(&person, sizeof(person), 2, database);
The records are copied from the structure ‘“person’’.
Since the function does not report the end of the file or errors, the feof and
Jerrorfunctionsshould be used to detect these conditions.
2.4.11 Testing for the End of a File

The feof function returns the value -1if a given file has reached its end. The
function-call has the form:

feof (stream)

where streamis the file pointer of the file. The function returns-1only if the file
has reached its end, otherwise it returns 0. The return value is always an
integer.

The feof function is typically used after those functions whose return value is
not a clear indicator of an end-of-file condition. For example, in the following
program fragment the function checks for the end of the file after each
character isread. The readingstops assoon as fe of returns-1.

char name[10);
FILE sstream;

do
fread(name, size(name), 1, stream);
while(!feof(stream));

2.4.12 Testing For File Errors

The ferror function tests a given stream file for an error. The function call has
the form:

ferror (etream)
where stream is the file pointer of the file to be tested. The function returnsa

nonzero (true) value if an error is detected, otherwise it returns zero (false).
The function returnsan integer value.

2-18

XENIX Programmer’s Reference

felose functions to open, close, read, and write to the given files. The program
incorporates a basic design that is common to other XENIX programs, namely it
uses the filenames found in the command line as the files to open and read, or if
nonamesare present, it uses the standard input. Thisallows the program to be
invoked onits own, or be the receiving end of a pipe.

2-20

XENIX Programmer’s Reference

program writes an error message to the standard error file “stderr” with the
forintf function. The function prints the format string “wc: can’t open %s”,
replacing the “ %s” with the name pointed to by “argvl[i]”.

Once a file isopened, the program uses the getc function to read each character
from the file. Asitreadscharacters, the program keeps a count of the number
of characters, words, and lines. The program continues to read until the end of
the file isencountered, that is, when gete returnsthe value EOF.

Once a file has reached its end, the program uses the printffunction to display
the character, word, and line counts at the standard output. The format string
in this function causes the counts to be displayed as long decimal numbers with
no more than 7 digits. The program then closes the current file with the fclose
function and examines the command line arguments to see if there is another
filename.

When all files have been counted, the program uses the printf function to
display a grand total at the standard output, then stops execution with the ezst
function.

2.5 Using More Stream Functions

. The stream functions allow more control over a file than just opening, reading,
. writing, and closing. The functions also let a program take an existing file
pointer and reassign it to another file (similar to redirecting the standard input
and output files) as well as manipulate the buffer that is used for intermediate
storage between the file and the program.

2.5.1 Using Buffered Input and Output

Buflered 1/0 is an input and output technique used by the XENIX system to cut
down the time needed to read from and write to files. Buffered I/O lets the
system collect the characters to be read or written and then transfer them all at
once rather than one character at a time. Thisreduces the number of times the
system must access the I/O devices and consequently provides more time for
running user programs. Not all files have buffers. For example, files associated
with terminals, such as the standard input and output, are not buffered. This
prevents unwanted delays when transferring the input and output. When a file
does have a buffer, the buffer size in bytes is given by the mainfest constant
BSIZE, whichisdefined in the stdio.Afile. »

When a file has a buffer, the stream functions read from and write to the buffer
instead of the file. The system Keeps track of the buffer and when necessary fills
it with new characters (when reading) or flushes (copies) it to the file (when
writing). Normally, a buffer is not directly accessible to a program, however a
program can define its own buffer for a file with the setbuf function. The
function also lets a program change a buffered file to be an unbuffered one, The
ungetc function lets a program put a character it has read back into the buffer,

2-22

XENIX Programmer’s Reference

char *p;

p=malloc(BSIZE };
setbuf ('stdout, p);

The new buffer isBSIZE bytes long.

The function may also be used to change a file from buffered to unbuffered input
or output. Unbuffered input and output generally increase the total time
needed to transfer large numbers of characters to or from a file, but give the
fastest transfer speed for individual characters.

The setbuffunction should be called immediately after opening a file and before
reading or writing to it. Furthermore, the felose or flush function must be used
to flush the buffer before terminating the program. If not used, some data
written to the buffer may not be written to the file.

2.5.4 Putting a Character Back into a Buffer

The ungete function puts a character back into the buffer of a given file. The
function call has the form:

ungetc (¢, stream)

~ where ¢ is the character to put back and streamisthe file pointer of the file. The
function normally returns the same character it put back, but will return the
value EOF if anerror is encountered.

“The function is typically used when scanning a file for the first character of a
string of characters. For example, the following program fragment puts the
first character that is not a whitespace character back into the buffer of the file
given by “‘infile”’, allowing the subsequent call to gets to read that character as
the first character inthe string.

FILE sinfile
char name(20);

while(isspace(c=getc(infile)))

,
ungetc(¢, stdin);
gets(name, stdin);

Putting a character back into the buffer does not change the corresponding file;
it only changes the next character to be read.

Note that the function can put a character back only if one has been previously
read. The function cannot put more than one character back at a time. This
means if three characters are read, then only thelast character can be put back,
never the first two.

2-24

XENIX Programmer’s Reference

Once a file isopened for reading, a program can read bytes from it with the read
function. A program can write to a file opened for writing or appending with
the write function. A program can close a file with the close function.

2.8.1 Using File Descriptors

Each file that hasbeen opened for access by the low-level funetions hasa unique
integer called a “‘file descriptor’ associated with it. A file descriptor is similar
to a file pointer in that it identifies the file. A file descriptor is unlike a file
pointer in that it doesnot point to any specific structure. Instead the descriptor
is used internally by the system to access the necessary information. Since the
system maintains all information about a file, the only access to a file for a
program is through the file descriptor.

There are three predefined file descriptors (just as there are three predefined
file pointers) for the standard input, output, and error files. The descriptors are
0 for the standard input, 1 for the standard output, and 2 for the standard error
file. As with predefined file pointers, a program may use the predefined file
descriptors without explicitly opening the associated files.

Note that if the standard input and output files are redirected, the system
changes the default assignments for the file descriptors 0 and 1 to the named
files. This is also true if the input or output is associated with a pipe. File
descriptor 2 normally remains attached to the terminal.

2.8.2 Opening a File

The open function opens an existing or a new file and returns a file descriptor
for that file. The function call has the form:

fd = open(name, access [,mode});

where fdis the integer variable to receive the file descriptor, name isa pointer to -
a string containing the filename, accessis an integer expression giving the type
of file access, and mode is an integer number giving a new file’s permissions.
The function normally returns a file descriptor (a positive integer), but will
return-1if an errorisencountered.

The acceessexpression is formed by using one or more of the following manifest
constants: O_RDONLY for reading, O_WRONLY for writing, O_RDWR for both
reading and writing, O_APPEND for appending to the end of an existing file, and
O_CREAT for creating s new file. (Other constants are described in open(S)in
the XENIX Reference Manual.) The logical OR operator (|) may be used to
combine the constants. The mode is required only if O_CREAT is given. For
example, in the following program fragment, the functicn is used to open the
existing file named /usr/accounts for reading and open the new file named
[uer/tmp/scratchfor reading and writing.

2-26

XENIX Programmer's Reference

requested to be written.

The number of bytes to be written is arbitrary. The two most common values
are 1, which means one character at a time and 512, which corresponds to the
physical block size on many peripheral devices.

2.8.5 Closing a File

The close function breaks the connection between a file descriptor and an open
file, and frees the file descriptor for use with some other file. The function call
hasthe form:

close (fd)

where fdis the file descriptor of the file to close. The funetion normally returns
0, but willreturn-1if an error isencountered.

The function is typically used to close files that are not longer needed. For
example, the followmg program fragment closes the standard input if the
argument countis greater than 1.

‘ int fd;

if (arge >1)
close(0);

Note that all open files in a program are closed when a program terminates
normally or when the ezit function is called, so no explicit call to close is
required.

2.6.6 Program Examples

This section shows how to use the low-level functions to perform useful tasks. It
presents three examples that incorporate the functions as the sole method of

input and output.

The first program copies its standard input to its standard output.

2-28

XENIX Programmer’s Reference

#deﬁne CMASK 0377 /+ for making char’s > 0%/
fdefine BUFSIZE BSIZE

getchar()/+ buffered version s/

static char buf[BUF SIZE};
static char sbufp == buf;
static intn = 0;’

if (n===0) { /+ buffer is empty =/
n =="read(0, buf, BUFSIZE};
bufp = buf;

} ,
return((--n >==0) ? *bufp++ & CMASK : EOF);
} v

Again, each character must be masked with the octal constant 0377.

The final example is a simplified version of the XENIX utility; ep, a program
that copies one file to another. The main simplification is that this version
copiesonly one file, and does not permit the second argument to be a directory.

#tdefine NULL 0
#define BUFSIZE BSIZE
#:define PMODE 0644 /+* RW for owner, R for group, others ¢/

main(arge, argv) [+ cp: copy {1 to {2 s/
int arge;
char sargv[];

‘int f1, 12, n;
char buf[BUFSIZE };

if (arge 1= 3)
error("Usage: ¢p from to”, NULL);
if ((f1 = open(argv|l]}, O_RDONLY)) == -1)
error("cp: can’t open %s”, argv|l]);
if ((f2 = open(argv[2}, O_CREAT | O_WRONLY,
PMODE)) == -1)
error("cp: can’t create %s”, argv[2]);

while ((n = read(f1, buf, BUFSIZE)) > 0)
if (write(f2, buf, n) !=n)
error(”cp: write error”, NULL});
exit(0);

2-30

XENIX Programmer’s Reference

. The function may be used to move the character pointer to the end of a file to
allow appending, or to the beginning as in arewind function. For example, the
call

Iseek(fd, (long)0, 2);
prepares the file for appending, and
Iseek(fd, (long)o, 0);

rewinds the file (moves the character pointer to the beginning). Notice the
“(long)0” argument; it could also be written as

oL

Using leeek it is possible to treat files more or less like large arrays, at the price
of slower access. For example, the following simple function reads any number
of bytesfrom any arbitrary place in afile:

get(fd, pos, buf, n) /* read n bytes from position pos */
int fd, n; , v

long pos;

char sbuf;

Iseek({fd, pos, 0); /* get to pos ¢/
return(read(fd, buf, n)};

2.6.9 Moving the Character Pointer in.a Stream

The feeek function, a stream function, moves the character pointerinafiletoa
givenlocation. The function call hasthe form: :

fseek (stream, offeet, ptrname)
where stream is the file pointer of the file, offsetis the number of characters to
move to the new position (it must be a long integer), and ptrnameisthe starting
position in the file of the move (it must be “0” for beginning, “1", for current
position, or “2” for end of the file). The function normally returnszero, but will
return the value EOF if an error is encountered.

For example, the following program fragment moves the character pointer to
the end of the file given by ‘‘stream”. v

FILE #stream;

fseek(stream, (long)o, 2);

2-32

3.4.6
3.4.7

348

3.49

3.4.10
3.4.11
3.4.12
3.4.13
3.4.14
3.4.15

Inserting Characters 3-19

Deleting Characters and Lines 3-20
Clearing the Screen 3-21

Refreshing From a Window 3-22
Overlaying Windows 3-23
OverwritingaScreen 3-23

Movinga Window 3-24

Reading a Character From a Window 3-24
Touching 2 Window 3-25

Deleting a Window 3-25

3.5 Using Other Window Functions 3-26

3.56.1
3.5.2
3.5.3
354
3.5.5
3.5.6

DrawingaBox 3-26

Displaying Bold Characters 3-26
Restoring Normal Characters 3-27
Getting the Current Position 3-28
Setting Window Flags 3-28
Scrollinga Window 3-29

3.6 Combining Movement With Action 3-30

3.7 Controlling the Terminal 3-30

3.7.1
3.7.2
3.73
3.74
3.7.5
3.76
3.7.7

Setting a Terminal Mode 3-30

Clearing a Terminal Mode 3-31

Moving the Terminal’s Cursor =~ 3-32

Getting the Terminal Mode 3-32

Saving and Restoring the Terminal Flags 3-33
Setting a Terminal Type 3-33

Reading the Terminal Name 3-33

refresh or wrefresh, a program can maintain several different windows, each

-containing different characters for the same portion of the terminal screen.
The program can choose which window should actually be displayed before
updating.

A program can continue to add new charactersto ascreen or window as needed,
and edit these characters by using functions such as insertin, deleteln, and
clear. A program can also combine windows to make a composite screen using
the overlay and overwrite functions. In each case, the refresh or wrefresh
function isused to copy the changes to the terminal screen.

3.1.2 Using the Library

To use the curseslibrary inaprogram, you must add the line

#include <curses.h>

to the beginning of your program. The curses.k file contains definitions for
typesand variables used by the library.

The actual screen processing functions are in the library files libcurses.a and

libtermcap.a. These files are not automatically read when you compile your
program, so you must include the appropriate library switches in: your
invocation of the compiler. The command line must have the form:

cc file ... -lcurses -ltermcap

where file is the name of the source file you wish to compile. You may given

more than one filename if desired. You may also use other compiler options in

the command line. Forexample, the command
cc main.c intf.c -lcurses -ltermcap -o sample

compiles the files main.c and ntf.c, and copies the executable program to the
file sample after linking the screen processing library files to the program.

Note that the curses.h file automatically includes the file egtty.k in your
program. This file must not be included twice.

The screen processing library has a variety of predeéfined names. These names

refer to variables, manifest constants, and types that can be used with the
library functions. The followingisalist of these names.

3-2

N

Types and Constants

Name Description

reg A storage class. It is the same as
register storage class.
bool Atype. Itisthe same a char type.

TRUE Theboolean true value(1).
FALSE = Theboolean false value (0).

3.2 Preparing the Screen

The ¢nitscr and endwin functions perform the operations required to initialize
and terminate programs that use the screen processing functions. The
following sections describe these functionsand how they affect the terminal.

3.2.1 Initializing the Screen

The initscr function initializes screen processing for a program by allocating
- the required memory space for the screen processing functions and variables,
and by setting the terminal to the proper modes. The function call has the
form: '

initser()
No arguments are required.
The snitscr function must be used to prepare the program for subsequent calls’
to other screen processing functions and for use of the screen processing
variables. For example, in the following program fragment instecr initializes
the screening processing functions.

#tinclude <curses.h>

main ()

{

initser();
if (cmpstr(ttytype,”dumb”))
fprintf(stderr, " Terminal type can’t display screen.”);

In this example, the predefined variable “ttytype” is checked for the current
terminal type .

The function returns(WINDOW?*) ERR if memory allocation causesan overflow.

3-4

Note

The terminal mode functions should only be used in conjunction with
other screen processing functions. They should not be used alone.

3.2.4 Using Default Window Flags

The irstscr function automatically clears the cursor, scroll, and clear flags of
the standard screen to their default values.' These flags, called the window
flags, define how the refresk function affects the terminal screen when
refreshing from the standard screen. When clear, the cursor flag prevents the
terminal’s cursor from moving back to its original location after the screen is
updated, the scroll flag prevents scrolling on the screen, and the clear flag
prevents the characters on the screen from being cleared before being updated.
The flags may ‘be changed by using the functions described in the section
“Setting Window Flags,” in this chapter. ’

3.2.5 Using the Default Terminal Size

The tnitect function sets the terminal screen size to a default number of lines
and columns. The default valuesare giveninthe predefined variables‘LINES”
and “COLS”. You can change the default size of a terminal by setting the

variables to new values. This should be done before the first call to tnstscr. If it
" is-done after the first call, a second call to snitscr must be made to delete the
existing standard screen and create a new one,

3.2.86 Terminating Screen Processing

The endwin function terminates the screen processing in a program by freeing
all memory resources allocated by the screen processing functions and
restoring the terminal to the state before screen processing began. The
function call has theform:

endwin()
No arguments are required.
The endwin function must be used before leaving a program that has called the
snitscr function to restore the terminal to its previous state. The function is
generally the last function call in the program. For example, in the following

program fragment snitecr and endwin form the beginning and end of the
program.

3-6

3.3.2 Adding a String

The addstr function adds a string of characters to the standard screen, placing
the first character of the string at the current position and moving the pointer
one position to the right for each character in the string. The function call has
the form:

addstr(str)

where stris a character pointer to the given string. For example, if the current
~ position is{0,0), the function call

addstr("line”);

places the beginning of the string “‘line” at this position and moves the pointer
to (0,4).

If the string contains newline, return, or tab characters, the function performs
the same actions as described for the addchfunction. If the string does not fit on
the current line, the stringistruncated.

The function returns ERR if it encounters anerror such asillegal scrolling.

3.3.3 Printing Strings, Characters, and Numbers

The printw function prints one or more values on the standard screen, where a
value may be astring, a character, or a decimal, octal, or hexadecimal number.
The function call hasthe form:

printw(.fmt |, arg] ...)

where fmtis a pointer to a string that defines the format of the values, and argis
a value to be printed. If more than one arg is given, each must be separated
from the preceding argument with a comma (,). For each arg given, there must
be a corresponding format given in fmt. A format may be “%s"” for string,
“%c” for character, and “%d”, “%o”, or *%x" for a decimal, octal, or
hexadecimal number, respectively. (Other formatsare described in printf(S)in
the XENIX Reference Manual.)1f “%s" is given, the corresponding arg must be
a character pointer. For other formats, the actual value or a variable
containing the value may be given. ’

The function is typically used to copy both numbers and strings to the standard
screen at the same time. For example, if the current position is (0,0), the
function call

printw(”%s %d”, name, 15);

prints the name given by the variable “name’ starting at position {0,0). It then

3-8

keyboard and stores it in the array ‘“name”.
char name[20};
getstr(name);

If the terminal is set to ECHO mode, getstr copies the string to the standard
screen. If the terminal is not set to RAW or NOECHO mode, the function
automatically sets the terminal to CBREAK mode, then restores the previous
mode after reading the character. Terminal modes are described later in the
chapter. i .

The function returnsERR if it encounters an error such asillegal scrolling.

3.3.8 Reading Strings, Characters, and Numbers

‘The scanw function reads one or more values from the terminal keyboard and -
copies the values to given locations. A value may be a string, character, or
decimal, octal, or hexadecimal number. The function call has the form:

scanw(fmt, argptr ...)

where fmt is a pointer to a string defining the format of the values to be read,
and argptris a pointer to the variable to receive a value. If more than one argptr
is given, each must be separated from the preceding item with a comma(,). For
each argptrgiven, there must be a corresponding format given in fmt. Aformat
may be **%s" for string, “%c” for character, and “%d”, “%o", or “%x" for a
decimal, octal, or hexadecimal number, respectively. (Other formats are
described in scanf(S) in the XENIX Reference Manual.)

The function is typically used to read a combination of strings and numbers
from the keyboard. For example, in the following program fragment scanw
readsaname and anumber from the keyboard.

char name[20];
int id;

scanw(” %s %d”, name, &id);

In this example, the input values are stored in the character array “name” and
the integer variable *‘id”.

If the terminal is set to ECHO mode, the function copies the string to the
standard screen. If the terminal is not set to RAW ‘or NOECHO mode, the
function automatically sets the terminal to CBREAK mode, then restores the
previous mode after reading the character.

The function returns ERR if it encounters an error such asillegal scrolling.

3-10

insertln()
No argumentsare required.
The function is used to insert additional lines of text in the standard screen.
For example, in the following program fragment snsertin is used to insert a
blank line when the countin*“‘ent” isequal to 79.

int ent;

if (ent ==179)
insertIn();

The function returnsERR if it encounters anerror such asillegal scrolling.

3.3.10 Deleting a Character
The delch function deletes the character at the current position and shifts the
character to the right of the deleted character (and all characters to its right)
one position to the left. The last character on the line is replaced by a space.
The function call hasthe form:

delch()
No arguments are required.
The function is typically used to delete a series of charactersfrom the standard
screen. For example, in the following program fragment delch deletes the
character atthe current position aslong asthe count in “ent” isnot 0.

int cnt;

while (ent 1=0) {

delch();
cnt-- ;

3.3.11 Deleting a Line
The deleteln function deletes the current line and shifts the line below the
deleted line (and all lines below it) one line up, leaving the last line on the screen
blank. The function call has the form:

deleteln()

No arguments are required.

3-12

clears ali characters from (10,10) to (10,79). The characters at the beginning of
the line remain unchanged.

Note that both the clrtobot and clrtoeol functions do not change the current
position.

3.3.14 Refreshing From the Standard Screen

The refresh function updates the terminal screen by copying one or more
characters from the standard screen to the terminal. The function effectively
changes the terminal screen to reflect the new contents of the standard screen.
The function callhasthe form:

refresh()
No arguments are required.

The function is used solely to display changes to the standard screen. The
function copies only those characters that have changed since the last call to
refresk and leaves any existing text on the terminal screen. For example, in the
following program fragment refreshis called twice.

addstr(” The first time.\n");

refresh();

addstr(” The second time.\n");

refresh();
In thisexample, the first call to refresh copies the string *The first time.” to the
terminal screen. The second call copies only the string “The second time.” to
the terminal, since the original string has not been changed.

The function returns ERR if it encounters an error such asillegal scrolling. If an
error is encountered, the function attempts to update as much of the screen as
possible without causing the scroll.

3.4 Creating and Using Windows

The following sections explain how to create and use windows to display and
edit text on the terminal screen.

3.4.1 Creating a Window

The newwin function creates a window and returns a pointer that may be used
in subsequent screen processing functions. The function call hasthe form:

win == newwin(lines, cols, begin_y, begin_z)

3-14

swin. == subwin(win, lines, cols, begin_y, begin_2)

where swin is the pointer variable to receive the return value, winis the pointer
to the window to contain the new subwindow, linee and cole are integer values
that give the total number of lines and columns, respectively, in the
subwindow, and begin_y and begin_z are integer values that give the line and
column position, respectively, of the upper left corner of the subwindow when
dislayed on the terminal screen. The swin variable must have type

WINDOW =,
The function is typically used to divide a large window into separate regions.
For example, in the following program fragment subwin creates the subwindow
named “cmdmenu’’ in the lower part of the standard screen.

WINDOW scmdmenu;

emdmenu = subwin(stdscr, 5, 80, 19, 0);
In thisexample, changes to “‘cmdmenu” affect the standard screen as well.
The subwin function returns the value (WINDOW?e) ERR on an error, such as
insufficient memory for the new window.

3.4.3 Adding and Printing to a Window

The waddch, waddstr, and wprintw functions add and print characters, strings,
and numbers to a given window.

The waddeh function adds a given character to the given window and movesthe
character pointer one position to the right. The function call has the form:

waddch(win, ch)
where win is a pointer to the window to receive the character, and ch gives the
character to be added; ch must have char type. For example, if the current
position in the window ‘‘midscreen” is(0,0), the function call
waddch{midscreen, 'A’)
places the letter *A”* at this position and moves the pointer to (0,1).
The waddstr function adds a string of characters to the given window, placing
the first character of the string at the current position and moving the pointer
one position to the right for each character in the string. The function call has
the form:
waddstr(win, str)

where win is a pointer to the window to receive the string, and stris a character.

3-16 -

where winisa pointer to a window, and ¢ is the character variable toreceive the
character.

The function is typically used to read a series of characters from the keyboard.
For example, in the following program fragment wgetchreads characters until
acolon (:)is found.

char ¢, dir[MAX];

int i;

i=0;
while ((c=wgetch(¢cmdmenu)) !="" && i <MAX)
dirfi++] = ¢;

The dgetatr function reads a string of characters from the terminal keyboard
and copies the string to a givenlocation. The function call hasthe form:

wgetstr(win, str)

where winis a pointer to a window, and etris a character pointer to the variable
or location to receive the string. When typed at the keyboard, the string must
end with a newline character or with the end-of-file character. The extra
character is replaced by a null character when the string is stored. It is the
programmer’s responsibility to ensure that str has adequate space for storing
the typed string. '

The function is typically used to read names and other text from the keyboard.
For example, in the following program fragment wgetstrreadsastring from the
keyboard and storesit in the array “filename”.

char filename([20};
wgetstr(cmdmenu, filename);

The wec anw function reads one or more values from the standard input file and
copies the values to given locations. A value may be a string, a character,ora
decimal, octal, or hexadecimal number. The function call has the form:

wscanw{ win, fmt |, argptr]...)

where win is a pointer to a window, fmt is a pointer to a string defining the
format of the values to be read, and argptris a pointer to the variable to receive
a value. If more than one argptr is given, each must be separated from the
preceding by acomma(,). For eachergptrgiven, there must be a corresponding
formatgiven in fmt.- A format may be *%s” for string, *“%¢" for character, and
“%d”, “%o0”, or “%x” for a decimal, octal, or hexadecimal number,
respectiw;ely. (Other formatsare described in s¢ anf(S) in the XENIX Reference
Manual. :

318

The function is typically used to edit the contents of the given window. For
example, the function call

winsch(midscreen, 'X’);
inserts the character “X” at the current position in the window “midscreen”.
The winsertin function inserts a blank line at the current position and moves
the existing line (and all lines below it} down one line, causing the last line to
move off the bottom of the screen. The function call has the form:

winsertln(win)
where win is a pointer to the window to receive the blank line.
The function is used to insert lines into a window. For example, in the following
program fragment winsertln inserts a blank line at the top of the window
“cmdmenu’’ preparing it for anew line.

char line[80};

wmove(cmdmenu, 3, 0);

winsertln(cmdmenu);

waddstr(cmdmenu, line);

Both functionsreturn ERR if they encounter errors such asillegal scrolling.

3.4.7 Deleting Characters and Lines

The wdelch and wdeleteln functions delete characters and lines from the given
window. '

The wdelchfunction deletes the character at the current position and shifts the
character to the right of the deleted character (and all characters to its right)
one position to the left. The last character on the line is replaced with a space.
The function callhas the form:

wdelch(win)

where win is a pointer to a window.

The function is typically used to edit the contents of the standard screen. For
example, the function call

ﬁdelch(midscreen);

deletesthe character at the current position in the window ““midscreen”.

- 3-20

position in the window “midscreen”is (10,0}, the function call
welrtobot(midscreen);
clearsall characters from line 10 and all lines below line 10.

The welrtoeol function clears the standard screen from the current position to
the end of the current line. The function call hasthe form:

welrtoeol(win)

where wsn is a pointer to the window to be cleared. For example, if the current
positionin ‘‘midscreen” is (10,10), the function call

weclrtoeol(midscreen);

clears all characters from (10,10) to the end of the line. The characters at the
beginning of the line remain unchanged.

Note that the welrtobot and welrtoeol functions do not change the current
position. '

3.4.9 Refreshing From a Window

The wrefresh function updates the terminal screen by copying one or more
characters from the given window to the terminal. The function effectively
changes the terminal screen to reflect the new contents of the window. The
function call has the form:

wrefresh(win)
where win is a pointer to a window.

The function is used solely to display changes to the window. The function
copies only those characters that have changed since the last call to wrefresh
and leaves any existing text on the terminal screen. For example, in the
following program fragment wrefreshis called twice.

waddstr(cmdmenu, "Type a command name\n");
wrefresh(cmdmenu);

waddstr{cmdmenu, "Command: ”);
wrefresh{cmdmenu);

In this example, the first call to wrefresh copies the string “Type a command

name” to the terminal screen. The second call copies only the string
“Command:” to the terminal, since the original string hasnot been changed.

3-22

overwrite(winl, win?)
where winlis a pointer to the window to be copied, and win2is a pointer to the
window to receive-the copied text. If winl is larger than win2, the function
copiesonly those linesand columns in winlthat fitin win2,
The function is typically used to display the contentsof a temporary window in

the middle of alarger window. For example, in the following program fragment
overurite is used to copy the contents of a work window to the standard screen.

WINDOW swork;

overwrite(work, stdscr);
refresh();

3.4.12 Moving a Window
The mowin function moves a given window to a new position on the terminal
screen, causing the upper left corner of the window to occupy a given line and
column position. The function call has the form:

mvwin{ win, y, z)
where win is a pointer to the window to be moved, yis an integer value giving
the line to which the corner is to be moved, and z is an integer value giving the
column to whichthe corner is to be moved.
“The function is typically used to move a teniporary window when an existing
window under it contains information to be viewed. For example, in the
following program fragment mywin moves the window named *‘work”’ to the
upper left corner of the terminal screen. :

WINDOW swork;

mvwin(work, 0,0);
The function returns ERR if it encounters a error such as an attempt to move
part of a window off the edge of the screen.

3.4.13 Reading a Character From a Window

The inch and winck functions read asingle character from the current pointer
positionina window or screen.

- The tnck function reads a character from the standard screen. The function
call hasthe form:

3-24

allocated variables. The function call hasthe form:
delwin{ win)
where win is the pointer to the window to be deleted.

The function is typically used to remove temporary windows from a program
or to free memory space for other uses. For example, the function call

delwin(midscreen); ‘ .

removes the window named *‘midscreen’’.

3.5 Using Other Window Functions

The following sections explain how to perform a variety of operations on
existing windows, such as setting window flags and drawing boxes around the-
window.

3.5.1 Drawing a Box

The box function draws a box around a window using the given characters to
form the horizontal and vertical sides. The function call has the form:

box{ win, vert, kor)

where win is the pointer to the desired window, vert is the vertical character,
and horisthe horizontal character. Both verand hormust have char type.

The function is typically used to distinguish one window from another when

combining windows on a single screen. For example, in the following program

fragment boz creates a box around the window in the lower half of the screen.
WINDOW *cmdmenu;

cmdmenu = subwin(stdscr, 5, 80, 19, 0);
box(¢mdmenu, ', *-’);

If necessary, the function will leave the corners of the box blank to prevent
illegal scrolling.

3.56.2 Disblaying Bold Characters

The etandout and wetandout functions set the standout character attribute,

causing characters subsequently added to the given window or screen to be
displayed as bold characters.

3-26

“The functions are typically used after an error message or instructions have
been added to a screen using the standout attribute. For example, in the

" following program fragment standend restores the normal attribute after an
error message has been added to the standard screen.

if (code == 5) {
: standout();
addstr("Illegal character.\n");
standend(); '

3.5.4 Getting the Current Position

The getyz function copies the current line and column position of a given
window pointer to a corresponding pair of variables. The function call has the
form:

getyx(win, 3, z)

where win is a pointer to the window containing the pointer to be examined, yis
the integer variable to receive the line position, and 2 is the integer variable to
receive the column position.

The function is typically used to save the current position so that the program
can return to. the position at a later time. For example, in the following
program fragiment getyz saves the current line and column position in the
variables “line’’ and “‘column”.

int line, column;

getyx(stdscr, line, column);

3.5.5 Setting Window Flags

The leaveok, scrollok, and clearok functions set or clear the cursor, scroll,
and clear-screen flags. The flags control the action of the refresh function
when called for the given window.

The leaveok Tunction sets or clears the cursor flag which defines how the
refresk function places the terminal cursor and the window pointer after
updating the screen. If the flag is set, refresk leaves the cursor after the last
“character to be copied and moves the pointer to the corresponding position in
the window. If the flag is cleared, refresk moves the cursor to the same position
on the screen as the current pointer position in the window. The function call
hasthe form:

3-28

in special cases only.

3.8 Cdmbining Movement With Action

Many screen operations move the current position of a given window before
performing an action on the window. For convenience, you can combine a
number of functions with the movement prefix. This combination has the
form:

mvfunc ([win,] 3 2|, erg]...)

where func is the name of a function, win is a pointer to the window to be
operated on.(stdscr used if none is given), yis an integer value giving the line to
move to, zis an integer value giving the column to move to, and argis a required
argument for the given function. If more than one argument is required they
must be separated with commas(,). For example, the function call

mvaddch(10, 5, X’);
moves the position to (10,5) and adds the character “X’’. The operation is the
same as moving the position with the move function and then adding a
character with addch.
A complete list of the functions which may be used with the movement prefix is
givenin cursee(S)in the XENIX Reference Manual.
3.7 Controlling the Terminal
The following sections explain how to set the terminal modes, how to move the
cursor, and how to access other aspects of the terminal. These functions should
only be used when using other screen processing functions.

3.7.1 Setting a Terminal Mode

The crmode, echo, nl, and raw functions set the terminal mode, causing
subsequent input from the terminal’s keyboard to be processed accordingly.

The crmode function sets the CBREAK mode for the terminal. The mode
preserves the function of the signal keys, allowing allowing signals to be sent to
aprogram from the keyboard, but disables the function of the editing keys. The
function call has the form:

crmode()

No arguments are required.

3-30

nonl()
" Noarguments are required.
The noraw function clears a terminal from RAW mode, restoring normal
editing and signal generating function to the keyboard. The function call has
the form:

noraw()

No arguments are required.

3.7.3 Moving the Terminal's Cursor

The movcur function moves the terminal’s cursor from one position to another
in an optimal fashion. The function call has the form:

mveur (lest_y, last_z, new_y, new_z)
where last_y and last_z are integer values giving the last line and column
position of the cursor, and new_yand new_z are integer values giving the new
line and column position of the cursor. For example, the function call

mvcur(10, 5,.3, 0)

moves the cursor from (10,5) to (3,0) on the terminal screen.

Note

The mocur function should only be used in programs that do not use
other screen processing functions. This means the function can be
used to perform optimal cursor motion without the aid of the other
functions. For programs that ‘do use other functions, the move,
wmove, refresh, and wrefresh functions must be used to move the
cursor. :

3.7.4 Getting the Terminal Mode

The gettmode function returns the current tty mode. The function call has the
form:

s = gettmode()

where sisthe variable to receive the status.

332

4.2.2 Converting to ASCH Characters

" The toaseis function converts non-ASCI! charactersto ASCH. The function call
hasthe form:

¢ == toascii (i}
where ¢ is the variable to receive the character, and ¢is the value to be changed.
The function creates an ASCII character by truncating all but the low order 7
bits of the non-ASCII value. If the ¢ value is already an ASCII character, no
change takesplace. For example, the function call

ascii = toascii(160)
convertsvalue 1 60 to 32, the ASCII value of the space character.
The function is typically used to prepare non-ASCII characters for display at .
the standard output. For example, in the followmg program fragment toaseit

convertseach character read from the file given by “oddstrm”.

'FILE soddstrm;
int ¢;

¢ = toascii(getc(oddstrm));
if (isprint{c) || isspace(c))
putchar(c);
If the resulting character is pnntable or is whitespace, it is written to the
standard output.

4.2.3 Testing for Alphanumerics

The tealnum function tests for letters and decimal digits, i.e., the alphanumeric
characters. The function call has the form:

isalnum (¢}
where c is the character to test. The function returns a nonzero (true) value if
the character is an alphanumeric, otherwise it returns zero (false). For
example, the function call

isalnum('1’)
returnsa nonzero value, but the call

isalnum(’>")

returnszero.

42

where ¢ is the character to be tested. The function returns a nonzero value if
the character is a digit, otherwise it returns zero. For example, in the following
program fragment each-new character in *“c” is added to the runmng total if the
character is a digit.

FILE sinfile;
int ¢, num;

while (isdigit(c==getc(infile)))
num == num=10 + c-48;
4.2.7 Testing for a Hexadecimal Digit
The s1szdigst function tests for a hexadecimal digit, that is, a character that is
either a decimal digit or an uppercase or lowercase letterin the range A to F.
The function call hasthe form:
isxdigit {¢)
where ¢ is the character to be tested. The function returns a nonzero value if
the character is a digit, otherwise it returns zero. For example, in the following
program fragment sezdigst tests whether a hexadecimal digit is read from the
standard input.
int ¢;
¢ = getchar();
if (isxdigit(c))
hexmode();
In this example, a function named hezmode is called if a hexadecimal digit is
read. :

4.2.8 Testing for Printable Characters

The seprint function tests for printable cha.ra.ctérs, L.e., characters whose ASCI!
values range from 32 to 126. The function call has the form:

isprint (¢)
where ¢ is the character to be tested. The function returns a nonzero value if
the character isprintable, otherwise it returnszero.
4.2.9 Testing for Punctuation

The fspunct function tests for punctuation characters, i.e., characters that are

4-4

¢ = tolower (1)
and
¢ = toupper (i)

where ¢ is the variable to receive the converted letter, and ¢ is the letter to be
converted. For example, the function call

lower = tolower('B’)
converts‘‘B” to‘‘b” and assignsit to the variable “lower”’, and the call

upper = toupper('b’}
converts ‘b’ to ““B” and assigns it to the variable “upper”.
The tolower function returns the character unchanged if it is not an uppercase
letter. Similarly, the toupper function returns the character unchanged ifit is
not alowercase letter.
These functions are typically used to make the case of the charactersread from
a file or standard input consistent. For example, in the following statement
tolower changes the character read from the standard input to lowercase before

itis compared.

if { tolower(getchar()) !="y’)
exit(0);

This conversion allows the user to type either “Y’’ or *“y” to prevent the
statement from executing the ezst function.

4.3 Using the String Functions

The string functions concatenate, compare, copy, and count the number of
characters in a string. Two special string functions, sscenfand sprintf, let a
program read from and write to a string in the same way the standard input
and output can be read and written. These functions are convenient when
reading or writing whole lines containing values of several different formats.

Many string functions have two forms: a form that manipulates all characters
in the string and one that manipulates a given number of characters. Thisgives
programs very fine control over all or parts of strings.

4.3.1 Concatenating Strings

The strcat function concatenates two strings by appending the characters of
onestring to the end of another. The function call has the form:

4-6

4.3.3 Copying a String

The strepy function copies a given string to a given location. The function call
hasthe form: :

strepy (dst, src)
where #rc is a pointer to the string to be copied, and dst is a pointer to the
location to receive the string. The function copies all characters in the source
string src to the dst and appends a null character (\0) to the end of the new
string. If dst contained a string before the copy, that string is destroyed. The
function always returns the pointer to the new string.

For example, in the program fragment strepy copies the string “not available’
to the location given by “name”’.

char na[] = "not available”;
char name[20];

strcpy(name, na);
Note that the location to receive a string must be large enough to contain the
string. The function cannot detect overflow.
4.3.4 Getting a String’s Length

The strlen function returns the number of character contained in a given
string. The function call has the form:

strlen (s)

where #is a pointer to a string. The count includes all characters up to, but not
including, the first null character. The returnvalueisalwaysaninteger.

In the following program fragment, strlen is used to determine whether or not
the contents of “inname’’ are short enough to be stored in “name”:

char sinname;

char name[MAX];

if (strlen{inname} < MAX)
strcpy(name, inname);

4.3.5 Concatenating Characters to a String

The strncat function appends one-or more characters to the end of a given
string. Thefunction call hasthe form:

48

4.3.7 Copying Characters to a String

"The strncpyfunction copies a given number of characters toa given string. The
function call has the form:

strncpy (dst, src, n)

where dst is a pointer to the string to receive the characters, rc is a pointer to
the string containing the characters, and n is an integer value giving the
number of characters to be copied. The function copies either the first a
characters in erc to det, or if sr¢ has fewer than n characters, copies all
characters up to the first null character. The function always returns the
pointer dest.

In the following program fragment, strncpy copies the first three charactersin
‘“‘date’ to “‘day”.)

char buf [MAX];
char date [28] = {"Fri Dec 29 09:35:44 EDT 1982 };
char *day = buf;

strncpy(day, date, 3);

In thisexample, ““day’’ receivesthe string “‘Fri”.

4.3.8 Reading Values from a String

The sscanffunction reads one or more values from a given character string and
stores the values at a given memory location. The function is similar to the
ecanf function which reads values from the standard input. The function call
hasthe form:

sscanf (e, format, argptr ...)

where & is a pointer to the string to be read, format is a pointer to the string
defining the format of the values to be read, and argptr is a pointer to the
variable that istoreceive the valuesread. If more than one argptrisgiven, they
must be separated with commas. The format string may contain the same
formats as given for scanf(see ecanf(S) in the XENIX Reference Manual). The
function always returns the number of valuesread.

The function is typically used to read values from a string containing several
values of different formats, or to read values from a program’s own input
buffer. For example, in the following program fragment secanf reads two
valuesTrom the string pointed to by “‘datestr”.

4-10

system (command-line)

where command-line is a pointer to a string containing a shell command line. -
The command line must be exactly as it would be typed at the terminal, that is,
it must begin with the program name followed by any required or optional
arguments. For example, the call

system(” date”);

causes the system to execute the date command, which displays the current
time and date at the standard output. The call

system(”cat >response”);

causes the system to execute the cat command. In this case, the standard
output is redirected to the file response, so the command reads from the
standard input and copies this input to the file response.

The eystem function is typically used in the same way as a function call to
execute a program and return to the original program. For example, in the
following program fragment system calls a program whose name is given in the
string ““cmd”’. :

char *name, *cmd;

printf("Enter filename: ");
scanf(”%s", name);
sprintf(cmd, "cat %s ", name);
system(cmd);

Note that the string in “cmd” is built using the sprintffunction and contains
the program name c at and an argument (the filename read by scanf). The effect
is to execute the cat command with the given filename.

When using the system function, it is important to remember that buffered
input and output functions, such as gete and pute, do not change the contents of
their buffer until it is ready to be read or flushed. If a program usesone of these
functions, then executes a command with the system function, that command
may read or write data not intended for its use. To avoid this problem, the
program should clear all buffered input and output before making a call to the
system function. You can do this for output with the flush function, and for
input with the eetbuf function described in the section *“Using More Stream
Functions’ in Chapter 2.

6.4 Stopping a Program

The ezit function stops the execution of a program by returning control to the
system. The function call hasthe form:

5-2

execv (pathname, ptr);

“ where pathname is the full pathname of the program you want to execute, and
ptris pointer to an array of pointers. Eachelement in the array must point to a
string. The array may have any number of elements, but the first element must
point to a string containing the program name, and the last must be the null
pointer, NULL.

The ezecl and ezecv functions are typically used in programs that execute in
two or more phases and communicate through temporary files (for example a
two-pass compiler). The first part of such a program can call the second part by
giving the name of the second part and the appropriate arguments. For
example, the following program fragment checks the status of “errflag”’, then
either overlays the current program with the program pess?, or displays an
error message and quits.

char stmpfile;
int errflag;

if (errflag == 0)
execl(” Jusr/bin/pass2”, "pass2”, tmpfile, NULL);
else
fprint{(stderr, "Error %d: Quitting”, errflag);
exit(2);

The ezecvfunction is typically used to pass arguments to a program when the
precise number of arguments is not known beforehand. For example, the
following program fragment reads arguments from the command line
{beginning with the third one), copies the pointer of each to an element in
“cmd”, sets the last element in ““emd” to NULL, and executes the cat command.

char scmd| J;

cmd[0] = "cat”;

for (i=3; i<arge; i++)
emd[i} = argv[i};

cmd|arge] = NULL;

execv(” /bin/cat”, cmd);

The ezecl and ezecv functions return control to the original program only if
thereisanerrorin finding the given program (e.g., a misspelled pathname or no
execute permission). This allows the original program to check for errors and
display an error message if necessary. For example, the following program
fragment searches for the program displayin the fusr/bin directory.

exec)(” fusr/bin/display”, " display”, NULL);
fprintf(stderr, "Can’t execute ’display’ \n"};

5-4

process, starts its execution at the same point, that is, just after the fork call.
(The child never goes back to the beginning of the program to start execution.)
The two processes are in effect synchronized, and continue to execute as
independent programs.

The fork function returns a different value to each process. To the parent
process, the function returns the process ID of the child. The process ID is
always a positive integer and is always different than the parent’sID. To the
child, the function returns 0. All other variables and values remain exactly as
they were in the parent.

The return value is typically used to determine which steps the child and
parent should take next. For example, in the program segment

char *emd;

if (fork() == 0)
execl(” /binfsh”, "sh”, ”-¢”, emd, NULL);

The child’s return value, 0, causes the expression “fork() == 0", to be true,
and therefore the ezecl function is called. The parent’s return value, on the
other hand, causes the expression to be false, and the function call is skipped.
Executing the ezeel function causes the child to be overlayed by the program
given by “command’’. This doesnot affect the parent.

If fork encounters an error and cannot create a child, it will return the value -1.
Itis a goodideato check for this value after each call.

5.8 Waiting for a Process

The wast function causes a parent process to wait until its child processes have
completed their execution before continuing its own execution. The function
call hasthe form:

wait {ptr)

where ptris a pointer to an integer variable. It receives the termination status
of the child from both the system and the child itself. The function normally
returns the process ID of the terminated child, so the parent may check it
against the value returned by fork.

The function is typically used to synchronize the execution of a parent and its
child, and is especially useful if the parent and child processes access the same
files. For example, the following program fragment causes the parent to wait
while the program named by ‘“‘pathname” (which has overlaid the child
process) finishesits execution.

5-6

#include <stdio.h>

main(arge, argv)
int arge;
char *argv| ;

int status;

if (arge < 2) {
fprintf(stderr,” No tty given.0);
exit(1);

i}f {fork() == 0} {
if (freopen(argv(1],"r” stdin) == NULL)

exit(2); :
if (freopen(argv(l},” w” stdout) ==== NULL)
exit(2); '
if (freopen(argv(l],” w” stderr) === NULL)
exit(2); :

execl(” /bin/sh”,”sh” ,NULL);

wait(&status);
if (status == 512)

fprintf("Bad tty name: %s0, argv|[l]);
}

In this example, the fork function creates a duplicate copy of the program. The
child changes the standard input, output, and error files to the new terminal by
closing and reopening them with the freopen function. The terminal name
pointed to by ‘““argv’ must be the name of the device special file associated with
the terminal, e.g., *“/dev/tty03”. The ezecl function then calls the shell which
uses the new terminal asits standard input, output,and error files.

The parent process waits for the child to terminate. The ezt function
terminates the process if an error occurs when reopening the standard files.
Otherwise, the process continues until the CNTRL-D key is pressed at the new
terminal.

-5-8

FILE *pstrm;
pstrm = popen(” cat >response”,”w"});

The new pipe given by “pstrm” links the standard input of the command with
the program. Data written to the pipe will be used as input by the cat
command.

6.3 Reading and Writing to a Process

The fscanf, fprintf, and other stream functions may be used to read from or
write to a pipe opened by the popen function. These functions have the same
form as described in Chapter 2.

The fscanf function can be used to read from a pipe opened for reading. For
example, in the following program fragment fsc anf reads from the pipe given
by pstrm.

FILE #*pstrm;
char name(20];
int number;

pstrm = popen(”cat”,”r");
fscanf(pstrm, " %s %d”, name, &number);

This pipe is connected to the standard output of the cat command, so fecanf
readsthe first name and number written by cat toits standard output.

The fprintf function can be used to read from a pipe opened for writing. For
example, in the following program fragment fprintf writes the string pointed to
by “buf” to the pipe given by “pstrm’’.

FILE #pstrm;
char buf{MAX];

pstrm = popen(”wc”,”w");
fprintf(pstrm,” %s” ,buf)

This pipe is connected to the standard input of the wc command, so the
command reads and counts the contentsof “buf”.
8.4 Closing a Pipe

The pclose function closes the pipe opened by the popen function. The function
callhasthe form: :

pclose (stream)

6-2

8.6 Reading and Writing to a Low-Level Pipe

The read and write input and output functions can be used to read and write
characters to a low-level pipe. These functions have the same form and
operation described in Chapter 2.

The read function can be used to read from the read side of an open pipe. For
example, in the following program fragment read reads MAX characters from
the read side of the pipe given by ‘‘chan”.

int chan{2];

char buf{MAX];

int number;

number == read(chan[0], buf, MAX);

In thisexample, readstoresthe charactersin the array “‘buf”.

Note that unless the end-of-file character is encountered, a read call waits for
the given number of characters to be read before returning.

The write function can be used to write to the write side of a pipe. For example,
in the following program fragment write writes MAX characters from the
character array “‘buf’’ to the writing side of the pipe given by ‘‘chan”’.

int chan(2};

char buf{MAX];

int number;

pipe(chan);
number = write(chan[1], input, 512);

If the write function finds that a pipe is too full, it waits until some characters
have been read before completing its operation.

8.7 Closing a Low-Level Pipe
The close function can be used to close the reading or the writing side of a pipe.
The function has the same form and operation as described in Chapter 2. For
example, the function call

close(chan([0})
closesthe reading side of the pipe given by “chan”, and the call

close(chan{1})

closes the writing side.

6-4

function to create two copies cf the original process. Each process has its own
copy of the pipe. The child process decides whether it is supposed to read or
write through the pipe, then closes the other side of the pipe and uses ezeel to
create the new process and execute the desired program. The parent, on the
other hand, closes the side of the pipe it does not use.

The sequence of cloee functions in the child process is a trick used to link the
standard input or output of the child process to the pipe. The first close
determines which side of the pipe should be closed and closes it. If “mode” is
WRITE, the writing side is closed; if READ, the reading side is closed. The
second close closes the standard input or output depending on the mode. If the
mode is WRITE, -the input is closed; if READ, the output is closed. The dup
function creates a duplicate of the side of the pipe still open. Since the standard
input or output was closed immediately before this call, this duplicate receives
the same file descriptor as the standard file. The system always chooses the
lowest available file descriptor for a newly opened file. Since the duplicate pipe
has the same file descriptor as the standard file it becomesthe standard input or
output file for the process. Finally, the last close closes the original pipe, leaving
only the duplicate. '

The following example is a modified version of the pelose function. The

modified version requires a file descriptor as an argument rather than a file
pointer.

6-6

e

T

XENIX Programmer’s Reference

signal, caused by pressing the QUIT key, or “SIGHUP” for hangup signal,
caused by hanging up the line when connected to the system by modem. (Other
constants for other signals are given in #ignal(S) in the XENIX Reference
Manual.)

For example, the function call
signal(SIGINT, SIG_IGN)

changes the action of the interrupt signal to no action. The signal will have no
effect on the program. The default actionisusually to terminate the program.

The following sections show how to use the signal function to disable, change,
and restore signals.

7.2.1 Disabling a Signal

You can disable a signal, i.e., prevent it from affecting a program, by using the
“SIG_IGN” constant with signal. The function call hasthe form

signal (sigtype, SIG_IGN)

where sigtype is the manifest constant of the signal you wish to disable. For
example, the function call

signal(SIGINT, SIG_IGN);
disables the interrupt signal.

The function call is typically used to prevent a signal from terminating a
program executing in the background (e.g., a child process that is not using the
terminal for input or output). The system passes signals generated from
keystrokes at a terminal to all programs that have been invoked from that
terminal. This means that pressing the INTERRUPT key to stop a program
running in the foreground will also stop a program runningin the background if
it has not disabled that signal. For example, in the following program fragment
signalis used to disable the interrupt signal for the child.

7-2

XENIX Programmer’s Reference

#include <signal.h>
#include <stdio.h>

main ()

{
FILE #fp;
char trecord[BUF], ﬁlena.me[MAX]

signal (SIGINT, SIG_IGN);
fp = fopen(filename, "a");
fwrite(fp, BUF, record, 512);
signal (SIGINT, SIG_DFL);

}

In this example, the interrupt signal is ignored while a record isrecord from the
file given by ““Ip”.
7.2.3 Catching a Signal
You can catch asignal and define your own action for it by providing a function
that defines the new action and giving the function as an argument to eignal.
The function call hasthe form

signal (sigtype, newptr)
where sigtype is the manifest constant defining the signal to be caught, and
newptr is a pointer to the function defining the new action. For example, the
function call

signal(SIGINT, catch)

changes the action of the interrupt signal to the action defined by the function
named catch.

The function call is typically used to let a program do additional processing

before terminating. In the following program fragment, the function catch
defines the new action for the interrupt signal.

7-4

XENIX Programmer’s Reference

7.2.4 Restoring a Signal

You can restore a signal to its previous value by saving the return value of a
signal call, then using this value in a subsequent call. The function call hasthe
form: .

signal (esgtype, oldptr)

where sigtype is the manifest const,antvdeﬁning the signal to be restored and
oldptristhe pointer value returned by a previous signalcall.

The function call is typically used to restore a signal when its previous action
may be one of many possible actions. For example, in the following program
fragment the previous action depends solely on the return value of a function
keytest.

#include <signalh>
main () '

int catchl(), catch2();
int (*savesig)();

if (keytest() ==1)
signal(SIGINT, catchl);
else

 signal(SIGINT, catch2);

savesig = signal (SIGINT, SIG_IGN);
compute();
signal(SIGINT, savesig);

}

In thisexample, the old pointer is saved in the variable ‘“‘savesig’’. Thisvalueis
restored after the function compute returns.

7.2.5 Program Example

This section shows how to use the signal function to create a modifed version of
the eystem function. In this version, system disablesallinterruptsin the parent
process until the child process has completed its operation. It then restores the
signals to their previous actions. .

XENIX Programmer’s Reference

Delaying asignal is especially useful in programs that must not be stopped at an
arbitrary point. If, for example, a program updates alinked list, the actionof a
signal can be delayed to prevent the signal from interrupting the update and
destroying the list. For example, in the following program fragment the
function delay used to catch the interrupt signal sets the globally-defined flag
“sigflag’’ and returnsimmediately to the point of interruption.

#include <signalh>
int sigflag;

main ()
int delay ();
int {#savesig)();

extern int sigflag;

signal(SIGINT, delay); /+ Delay the signal. #/

updatelist();
savesig = signal(SIGINT, SIG_IGN); /* Disable the signal. */
if (sigfag)
/* Process delayed signals if any. */
}
delay ()
{

extern int sigflag;

sigflag=1;

}

In this example, if the signal is received while updatelist is executing, it is
delayed until after updatelist returns. Note that the interruptsignalis disabled
before processing the delayed signal to prevent a change to “sigflag’’ when it is
being tested.

Note that the system automatically resets a signal to its default action
immediately after the signal is processed. If your program delays a signal,
make sure that the signal is redefined after each interrupt. Otherwise, the
default action will be taken on the next occurrence of the signal.

7.3.2 Using Delayed Signals With System Functions

When a delayed signal is used-to interrupt the execution of a XENIX system
"function, such as reador wast, the system forces the function to stop and return
an error code. This action, unlike actions taken during execution of other
functions, causes all processing performed by the system function to be
discarded. A serious error can occur if a program interprets a system function
error caused by delayed signals as a normal error. For example, if a program

7-8

XENIX Programmer’s Reference

The longfmpfunction has the form

longjmp (buffer)

where buffer is the variable containing the execution state. It must contain
values previously saved with a setbuf function. The function copies the values
in the buffer variable to the program counter, data and addressregisters, and
the process status table. Execution continues asif it had just returned from the
setbuf function which saved the previous execution state. For example, in the
following program fragment setbufsaves the execution state of the program at
the location just before the main processing loop and longjmp restores it on an
interrupt signal. '

#finclude <signalh>
#include <setjmp.h>

main()

{

int onintr();

setjmp(sjbuf);
signal(SIGINT; onintr);

/* main processing loop */

}

onintr ()

printf("\nInterrupt\n”);
longjmp(sjbuf);

In thisexample, the action of the interrupt signal as defined by onintris to print
the message ‘“‘Interrupt” and restore the old execution state. When an
interrupt signal is received in the main processing loop, execution passes to
onintr which prints the message, then passes execution back to the main
program function, making it appear as though control is returning from the
eetbuffunction.

7.4 Using Signals in Multiple Processes

The XENIX system passes all signals generated at a given terminal to all
programs invoked at that terminal. This means that a program has potential
access to a signal even if that program is executing in the background or as a
child to some other program. The following sections explain how signals may
be used in multiple processes.

7-10

XENIX Programmer’s Reference

7.4.2 Protecting Parent Processes

A program can create and wait for a child processthat catchesits own signals if
and only if the program protectsitself by disabling all signals before calling the
wait function. By disabling the signals, the parent process prevents signals
intended for the child processes from terminatingits call to wast. Thisprevents
serious errors that may result if the parent process continues execution before
the child processes are finished.

For example, in the following program fragment the interrupt signal is disabled
in the parent process immediately after the child is created.

#include <signalh>
main ()
int (*#saveintr)();

if (fork () == 0)
execl(...);

saveintr = signal (SIGINT, SIG_IGN);
wait(&status);
signal (SIGINT, saveintr);

}

The signal’s action is restored after the wast function returns normal control to
the parent.

7-12

The function is typically used to allocate storage for a group of strings that vary
in length. For example, in the following program fragment malloc is used to
allocate space for ten different strings, each of different length.

int i;
char *temp, *strings{10];
unsigned isize;

for (i=0; i<10; i++) {
scan{("%s", temp);
isize = strlen(temp);
stringli] = malloc(isize);

In this example, the strings are read from the standard input. Note that the
strlenfunction is used to get the size in bytesof each string.

8.2.2 Allocating Space for an Array

The calloc function allocates storage for a given array and initializes each
element in the new array to zero. The function call has the form:

calloc (n, size)

where n is the number of elements in the array, and size is the number of bytes
in each element. The function normally returns a pointer to the starting
address of the allocated space, but will return anull pointer value if there is not
enough memory. For example, the function call

table = calloc (10,4)
allocates sufficient space for a 10 element array. Each element has 4 bytes.

The function is typically used in programs which must process large arrays
without knowing thesize of an array in advance. For example, in the following
program fragment calloc is used to allocate storage for an array of values read
from the standard input.

int i
char stable;
unsigned inum;

scanf(” %d”, &inum);

table = calloc (inum, 4);

for (i=0; i<inum; i++)
scanf(” %d”", table[x]

Note that the number of elements is read from the standard input before the
elementsare read.

8-2

main ()
char #table;

if (table]0] == -
free (table);

8.3 Locking Files

Locking a file is a way to synchronize file use when several processes may
require access to a single file. The standard C library provides one file locking
function, the locking function. This function locks any given section of a file,
preventing all other processes which wish to use the section from gaining
access. A process may lock the entire file or only a small portion. In any case,
only the locked section is protected; all other sections may be accessed by other
processes as usual.

File locking protects a file from the damage that may be caused if several
processes try to read or write to the file at the same time. It also provides
unhindered access to any portion of a file for a controlling process. Before a file
can be locked, however, it must be prepared using the open and lseek functions
described in Chapter 2, “Using the Standard I/O Functlons " To use the
lockingfunction, you must add the line

#include <sys/locking.h>

to the beginning of the program. The file sys/locking.k contains definitions for
the modesused with the function.

8.3.1 Preparing a File for Locking

Before a file can be locked, it must first be opened using the open function, then
properly positioned by using the lseek function to move the file’s character
pointer to the first byte to be locked.

The open function is used once at the beginning of the program to open the file.
The lseek function may be used any number of times to move the character
pointer to each new section to be locked. For example, the following statements
prepare the first 100 bytes beginning at the byte position 1024 from the
beginning of the file reservationsfor locking.

fd = open(”reservations”, O_RDONLY)
Iseek(fd, 1024, 0)

8-4

:!include <sysflocking.h>

main().
int {d, err;
char #data;
fd = open{"data”,2); /* Open data for R/W =/
if (fd == 1)
perror(””);
else { . .
Iseek(fd, 100L, 0); - /* Seek to pos 100 ¢/
err = locking(fd, LK_LOCK, 100L); /* Lock bytes 100-200 */
if (err == -1} { :

/* process error return */

/* read or write bytes 100 - 200 in the file */

Iseek(fd, 100L, 0); /* Seek to pos 100 ¢/
locking{fd, LK_UNLCK, 100L}; /* Lock bytes 100-200 «/

}

8.4 Using Semaphores

The standard C library provides a group of functions, called the semaphore
functions, which may be used to control the access to a given system resource.
These functions create, open, and request control of ‘‘semaphores.”
Semaphores are regular files that have names and entries in the file system, but
contain no data. Unlike other files, semaphores cannot be accessed by more
than one process at a time. A process that wishes to take control of a semaphore
away from another process must wait until that process relinquishes control.
Semaphores can be used to control a system resource, such as a data file, by
requiring that a process gain control of the semaphore before attempting to
accessthe resource.

There are five semaphore functions: creatsem, opensem, wastsem, nbwaitsem,
and sigsem. The creatsem function creates a semaphore. The semaphore may
then be opened and used by other processes. A process can open a semaphore
with the opensem function and request control of a semaphore with the
wattsem or nbwaitsem function. Once a process has control of a semaphore it
can carry out tasks using the given resource. All other processes must wait.
When a process has finished accessing the resource, it can relinquish control of
the semaphore with the sigsem function. This lets other processes get control
of the semaphore and use the correspondingresource.

8-6

P

8.4.2 Opening a Semaphore

The opengem function opens an existing semaphore for use by the given
process. The function call has the form:

opensem (sem_name)

where sem_name is a pointer to the name of the semaphore. This must be the
same name used when creating the semaphore. The function returns a
semaphore number that may be used in subsequent semaphore functions to
refer to the secmaphore. The function returns -1 if it encounters an error, such
as trying to open a semaphore that does not exist or using the name of an
existing regular file. ’

The function is typically used by a process just before it requests control of a
given semaphore. A process need not use the function if it also created the
semaphore. For example, in the following program fragment opensem is used
toopen the semaphore named semaphore 1.

main ()
int seml;

if ((sem1 = opensem(”semaphorel”}) |= -1)
waitsem(sem1);

In this example, the semaphore number is assigned to the variable ‘“‘sem1”. If
the number is not -1, then ‘‘sem1” is used in the semaphore function waitsem
which requests control of the semaphore.

A semaphore must not be opened more than once during execution of a process.

8.4.3 Requesting Control of a Semaphore

The waitsem function requests control of a given semaphore for the calling
process. If the semaphore is available, control is given immediately.
Otherwise, the process waits. The function call hasthe form:

waitsem (sem_num)

where sem_numis the semaphore number of the semaphore to be controlled. If
the semaphore is not available (if it is under control of another process), the
function forces the requesting process to wait. If other processes are already
waiting for control, the request is placed next in a queue of requests. When the
semaphore becomes available, the first process to request control receives it.
When thisprocess relinquishes control, the next process receives control, and so
on. The function returns -1 if it encounters an error such as requesting a

8-8

semaphore with the waitsem or nbwaitsem function. The function returns -1 if
it encounters an error such as trying to take control of a semaphore that does
not exist.

The function is typically used after a process has finished accessing the
corresponding device or system resource. This allows waiting processes to take
control. For example, in the following program fragment sigsem signals the
end of control of the semaphore “‘tty1”.

main ()

int ttyl;
FILE temp, fttyl;

waitsem(ttyl); -

while ((c=fgetc(temp)) != EOF)
fpute(c, fttyl);

sigsem(ttyl);

This example also signals the end of the copy operation to the semaphore’s
corresponding device, given by ‘“‘ftty1”.

Note that a semaphore can become locked to a dead process if the process fails
to signal the end of the control before terminating. In such a ‘case, the
semaphore must be reset by using the creatsem function.

8.4.6 Program Example

This section shows how to use the semaphore functions to control the accessof a
system resource. The following program creates five different processes which
vie for control of a semaphore. Each process requests control of the semaphore
five times, holding control for one second, then releasing it. Although, the
program performs no meaningful work, it clearly illustrates the use of
semaphores.

8-10

The program contains a number of global variables. The array ‘“semf”
contains the semaphore name. The name is used by the ¢reatsem and opensem
functions. The variable “sem_num” is the semaphore number. This is the
value returned by creatsem and opensem and eventually used in wastsem and
etgsem. Finally, the variable “holdsem” contains the number of times each
processrequests control of the semaphore.

The main program function uses the mktemp function to create a unique name
for the semaphore and then uses the name with creatsem to create the
semaphore. Once the semaphore is created, it begins to create child processes.
These processes will eventually vie for control of the semaphore. Aseach child
process is created, it opens the semaphore and calls the dost function. When
control returns from dost the child process terminates. The parent process also
calls the doit function, then waits for termination of each child process and
finally deletes the semaphore with the unlink function.

The doit function calls the waitsem function to request control of the
semaphore. The function waits until the semaphore is available, it then prints
the process ID to the standard output, -waits one second, and relinquishes
control using the stgsemfunction.

Each step of the program is checked for possible errors. If an error is
encountered, the program calls the err function. This function printsanerror
message and terminates the program.

8.5 Using Shared Data

Shared memory is a method by which one process shares its allocated data
space with another. Shared memory allows processes to pool information in a
central location and directly access that information without the burden of
creating pipes or temporary files. ‘

The standard C library provides several functions to access and control shared
memory. The sdget function creates and/or adds a shared memory segment to
a given process’s data space. To access a segment, a process must signal its
intention with the sdenter function. Once a segment has completed itsaccess, it
can signal that it is finished using the the segment with the edleave function.
The sdfree function is used to remove a segment from a process’s data space.
The sdgetv and sdwaite functions are used to synchronize processes when
several are accessing the segment at the same time.

To use the shared data functions, you must add the line
#include <sd.h>

at the beginning of the program. The &d.4 file contains definitions for the
mainfest constants and other macros used by the functions.

812

8.5.2 Entering a Shared Data Segment

The sdentersignals a process’sintention to access the contents of a shared data
segment. A process cannot effectively access the contents of the segment unless
it enters the segment. The function call hasthe form:

sdenter. (addr, flag)

where addr is a character pointer to the segment to be accessed, and flag is an
integer value which defines how the segment is to be accessed. The flagmay be
SD_RDONLY for indicating read only access to the segment, or SD_NOWAIT for
returning an error if the segment is locked and another process is currently
accessing it. These values may also be combined by logically ORing them.

The function normally waits for the segment to become available before
allowing access to it. A segment is not available if the segment has been created
without SD_UNLOCK flag and another processis currently accessing it.

In general, it is unwise to stay in a shared data segment any longer than it takes
to examine or modify the desired location. The sdleave function should be used
after each access. When in a shared data segment, a program should avoid
using system functions. System functions can disrupt the normal operations
required to support shared data and may cause some data to be lost. In
particular, if a program creates a shared data segment that cannot be shared
simultaneously, the program must not call the fork function when it is also
accessing that segment.

8.5.3 Leaving a Shared Data Segment

The sdleave function signals a process’s intention to leave a shared data
segment after reading or modifying its contents. The function call has the
form:

sdleave (addr)
where addr is a pointer with type char to the desired segment. The function
returns -1 if it encounters an error, otherwise it returns 0. The return value is
always aninteger.

The function should be used after each access of the shared data to terminate
the access. If the segment’s lock flag is set, the function must be used after each
access to allow other processes to access the segment. For example, in the
following program fragment sdleave terminates each access to the segment
given by *‘shared”.

8-14

has the form:
sdwaitv (addr, vnum)

where addrisa character pointer to the desired segment, and vnumis an integer
value which defines the version number to wait on. The function normally
returns the new version number. It returns-1if it encounbers an error. The
return valueisalways aninteger.

The function is typically used to synchronize the actions of two separate
processes. For example, in the following program fragment the program waits
while the program corresponding to the version number “radical_change”
performsits operations in the segment.

#include <sd.h>

main ()

int radical_change = 3;

if (sdwait (sdseg, radical_change) === -1)
fprintf(stderr, " Cannot find segment\n");

If an error occurs while waiting, an error message is printed.

8.5.6 Freeing a Shared Data Segment

The sdfree function detaches the current process from the given shared data
segment. The function call hasthe form:

sdfree (addr)

where addr is a character pointer to the segment to be set free. The function
returnsthe integer value 0, if the segment isfreed. Otherwise, itreturns-1.

If the process is currently accessing the segment, sdfree automatically calls
edleave to leave the segment before freeing it.

The contents of segments that have been freed by all attached processes are

destroyed. To reaccess the segment, a process must recreate it using the edget
function and SD_CREAT flag.

8-16

number of the most recent XENIX system function error. Errors detected by
system functions, such as access permission errors and lack of space, cause the
system to set the errno variable to a number and return control to the
program. The error number identifies the error condition. The variable may
be used in subsequent statements to processthe error.

The errno variable is typically used immediately after a system function has
returned an error. In the following program fragment, errno is used to
determine the course of action after an unsuccessful call to the openfunction.

if ((f[d=open("accounts”, O_RDONLY)) == -1)
switch (errno) {
case(EACCES):
fd = open(” fusr/tmp/accounts”,0_RDONLY);
break;
- default:
exit(errno);

}

In this example, if errno is equal to EACCES (a manifest constant), permission
to open the file accounts in the current directory is denied, so the file is opened
in the directory [usr/tmp instead. If the variable is any other value, the
program terminates.

To use the errno variable in a program, it must be explicitly defined as an
external variable with int type. Note that the file errno.A contains manifest
constant definitions for each error number. These constants may be used in
any program in which the line

#include <errn_o.h>
is placed at the begiﬂning of the program. The meaning of each manifest
constant is described in Intro(S) in the XENIX Reference Manual.
9.4 Printing Error Messages .

The perror function copies a short error message describing the most recent
system function error to the standard error file. The function call hasthe form:

perror (s)

where ¢ is a pointer to a string containing additional information about the
error.)

The perror function places the given string before the error message and
separates the two with a colon (:). Each error message corresponds to the
current value of the errno variable. For example, in the following program
fragment perror displays the message

Most system errors occur during calls to system functions. If the system error is
recoverable, the system will return an error value to the program and set the
errno variable to an appropriate value. No other information about the error
isavailable.

- Although the system lets two or more programs share a given resource, it does
not keep close track of which program is using the resource at any given time.
When an error occurs, the system returns an error value to all programs
regardless of which caused the error. No information about which program
caused theerror is available.

System errors that occur during routine I/O operations initiated by the XENIX
system itsell generally do not affect user programs. Such errors cause the
system to display appropriate system error messageson the system console.

Some system errors are not detected by the system until after the
corresponding function has returned successfully. Such errorsoccur when data
written to a file by a program has been queued for writing to disk at a more
convenient time, or when a portion of data to be read from disk is found to
already be in memory and the remaining portion is not read until later. In such
cases, the system assumes that the subsequent read or write operation will be
carried out successfully and passes control back to the program along with a
successful return value. If operation is not carried out successfully, it causes a
delayederror.

When a delayed error occurs, the system usually attempts to return an error on
the next call to a system function that accesses the same file or resource. If the
program has already terminated or does not make a suitable call, then the error
isnotreported.

XENIX Programmer’s Reference

procedure that is being setjmpedto. Hence, register variable valuesafteralongjmp are
the same as before a corresponding setjmp is called. 1f you need local variables to
changebetweenthe call of setjmp andlongjmp, they cannot be register variables.

A.1.2 Celling Sequence

The calling sequence is straightforward: arguments are pushed on the stack from the
lasttofirst: i.¢., fromright toleft as you readthem inthe Csource. The push quantumis
4 bytes, so if you are pushing a character, you must extend it appropriately before
pushing. Structures and floating point numbers that are larger than4 bytes are pushed
inincrements of 4 bytes so that they end up in the same order in stack memory as they
areinany othermemory. Thismeans pushing the last word first and longword padding
the last word (the first pushed) if necessary. The caller isresponsible for removing his
ownarguments. Typically, an

addgl #constant,sp

is done. It is not really important whether the caller actually pushes and pops his
arguments or just stores them in a static area at the top of the stack, but the debugger,
adb, examines the addql or addw from the sp to decide how many arguments there
were.

‘A3 ‘Stack Probes

XENIX is designed to dynamically allocate stack for local variables, function
arguments, return addresses, etc. To do this, the XENIX kernel checks the offending
instruction when a memory fault occurs. If it is a stack reference, the kernel maps
enough stack memory for the instructionto complete its execution successfully. Then
the procedure continues execution where it left off. Generally, this means restarting
the offending memory reference instruction (usually a push or store). Unfortunately,
the MC68000doesnot provide a waytorestart instructions.

Therefore, we need to perform a special instruction, which we call a stack probe, that
potentially causesthe memory fault, butthat has no effect other thanthe memory fault
itself. The kernel canthen allocate any needed stack memory, ignore the fact that the
stack probe instruction did not complete, and continue on to the next instruction.
When we perform a stack probe and a memory fault occurs, the kernel allocates
additionalmemory forthe stack. The stack probeinstructionfor 68000 XENIX is

1stb —value(sp)

Value mustbe negative: since anegativeindex from the stack pointer isabove the top of
the stack— an otherwise absurd reference— XENIX knows that this instruction can
onlybeastack probe.

For the general case, use the following procedure entry sequence:

procedure_entry: .
link a6,#—savesize
tstb —pushsize—slop—8(sp)
Any registers among d2—d7 and a2 - a5 that are used in this procedure are saved witha
moveml instruction after this sequence. The number of registers saved in the moveml
needs to be accounted for in the push size. Thus, pushsize is the sum of the number of

A=2

ftime functions. The ftime function, used with the etsme function, provides the

default value for the time zone when the TZ environment variable hasnot been

set. This means a binary configuration program can be used to change the .
" default time zone. No source license is required.

B.5 Changes to the ioctl Function

XENIX 3.0 and UNIX System 3.0 have a full set of XENIX 2.3-compatible soct
calls. Furthermore, XENIX 3.0 has resolved problems that previously hindered
UNIX System 3.0 compatibility. For convenience, XENIX 2.3-compatible foct!
calls can be executed by a UNIX System 3.0 program. The available XENIX 2.3
toetl calls are: TIOCSETP, TIOCSETN, TIOCGETP, TIOCSETC, TIOCGETC,
TIOCEXCL, TIOCNXCL, TIOCHPCL, TIOCFLUSH, TIOCGETD, and TIOCSETD.

B.B Pathname Resolﬁtion

If a null pathname is given, XENIX 2.3 interprets the name to be the current
directory, but UNIX System 3.0 considers the name to be an error. XENIX 3.0
uses the version number in the z.out header to determine what action to take.

“If the symbol ..” is given as a pathname when in a root directory that has been
defined using the chroot function, XENIX 2.3 moves to the next higher
directory. XENIX 3.0 also allows the “..”” symbol, but restricts its use to the
super-user. :

B.7 Using the mount and chown Functions

Both XENIX 3.0 and UNIX System 3.0 restrict the use of the mount system call to
the super-user. Also, both allow the owner of a file to use chown function to
change the file ownership.

B.8 Supér-Block Format

Both UNIX System 3.0 and UNIX System 5.0 have new super-block formats.
XENIX 3.0 uses the System 5.0 format, but uses a different magic number for
each revision. The XENIX 3.0 super-block has an additional field at the end
which can be used to distinguish between XENIX 2.3 and 3.0 super-blocks.
XENIX 3.0 checks this magic number at boot time and during 2 mount. If a
XENIX 2.3 super-block is read, XENIX 3.0 converts it to the new format
internally. Similarly, if a XENIX 2.3 super-block is written, XENIX 3.0 converts
it back to the old format. This permits XENIX 2.3 kernels to be run on file
systems also usable by UNIX System 3.0.

B-2

- XENIX Programmer's Reference

Child process,

described 5-5
clear funetion 3-13
clearok function 3-28
close function 228
clrtobot function 3«13
clrtoeol function 3-13
Command line arguments 2-2
Command line arguments,

storage order 2«2
Command line

described 2-2
Compilation

e¢c program 1e1
creatsem function 8-7
ermode function 3-30
ctype.h file U=1
curses, the screen

processing library 11
curses.h file 3-2
Debugging, restrictions 2«2
delch function 3-12
deleteln function = 3«12
delwin function 3-25
dup function 6-6
echo function 3-30
ECHO mode 3-31
ECHO mode 3-5
End-of-file value, EOF 2-2
End-of-file

testing 2-18
endwin function 36
EOF, end-of=-file value 2-2
erase function 3-13
errno variable

defined 9-2

described 9-1

Errors
catching signals 9=3
delayed 9-4
errno variable 9«1
error constants 9«2
error numbers 9-1
printing error
messages 9-2
processing 91
routine system I/0 9=k
sharing resources 94
signals 9-3 '
standard error file 9-1
system 9-3
testing files 2-18
execl function 5-3
execv function 5-3
exit function 65«2
fclose function 2-19
feof function 2-18
ferror function 2-18
fflush function 2-25
fgetc function 2-13
fgets function 2-13
File descriptors
creating 2-26
described 2-26
freeing 2-28
pipes 6-1
predefined 2-25
File pointers
creating 2-11
defining 2-11
described 2-11
file descriptors 2-25
FILE type 2-11
freeing 2-19

XENIX Programmer's Reference

islower function U=5
isprint function. U-d
ispunct function 44
isspace function 45
isupper function U5
isxdigit function U=l
leaveok function 3-28
libec.a, standard C library
file 1=1
libcurses.a, screen
processing library
file 1-1
libcurses.a, the screen
processing library 3-2
libtermcap.a, the terminal
library 3-2
Locking files
described 8-l
preparation 8-l
sys/locking.h file 8-U
locking function 8«5
longjmp function T7-10
longname function 3-33
Low=level functions
accessing files 2«26
described 2«25
file descriptors 2-26
random access 2-31
lseek function 2-31
Macros, special 1/0
functions - 2«1
malloc function 8-1
Memory allocation functions,
described 8=1
Memory
allocating arrays 8-2
" allocating dynamically 8-1

allocating variables 8-1
freeing allocated
space 8-3
reallocating 8=-3
move function 3=11
mveur function 3-32
mvwin function 3-24
nbwaitsem function B89
NEWLINE mode 3-31
newwin function 3-1i
nl function 3«30
nocrmode function 3«31
noecho function 3«31

“nonl function 3-31

noraw function 3«31

Notational conventions,
described 12

NULL, null pointer
value 2-2

open function 2-26

opensem function 8-8

overlay function 3-23

overwrite function 3-23

Parent process,
described 65-5

pclose function 6-2

‘perror function 9-2

pipe function 6<3
Pipes :
closing 6-2 ‘
closing low-level
access 6-4
described 6-1
file descriptor 6-3
file descriptors 6-1
file pointer 6-1
file pointers 6-1

—

XENIX Programmer's Reference

adding characters 3-16
-adding characters 3-7
adding strings 3-16
adding strings 3-8
adding values 3-16
adding values 3-8

bold characters 3-26
clearing a screen 3-13
clearing a screen 3-21
creating subwindows 3-15
creating windows 3-14
current position 3=1
current position 3-28
~curses.h file 3-2
default terminal 3-5
deleting a window 3-25
deleting characters 3-12
deleting characters 3-20
deleting lines 3=12
deleting lines 3«20
described 3=-1
initializing 3-4
inserting characters 3-11
inserting characters 3-19
inserting lines 3-11

reading characters 3-9
reading strings 3-17
reading strings 3-9
reading values 3-10
reading values 3=17 .
refreshing a screen 3-22

"refreshing the screen 3-14

screen 3-1

scrolling 3-29

sgtty.h file 3-2
standard screen 3=7 ,
terminal capabilities 3-1
terminal cursor 332
terminal modes 3=-30
terminal modes 3=5
terminal size 3-6
terminating 3-6

using 3<4

window 3-1

window flags 3-28

window flags 3-6

Screen

described 3-1
position 3-1

~

scroll function 3-29
scrollok function 3-28
sdenter function 8-14
sdfree function 8-16
sdget function 8-13
sdgetv function 8-15
sdleave function 8-14
sdwaitv function 8-15
Semaphore functions,

described 8-6
Semaphores

checking status 8-9

inserting lines 3-19
libcurses.a file 3«2
libtermcap.a file 3-2
movement prefix 3-30
moving & window 3-24
moving the position 3-11
moving the position 3-19
normal characters 3-27
overlaying a window 3-23
overwriting a window 3=23
predefined names 3-2
reading characters 3-17

XENIX Programmer's Reference

redirecting 2-9
Standard output
described 2-4
redirecting 2«9
Standard Output
writing 2-7
Standard output
writing characters 2-7
writing formatted
output 2-8 ‘
writing strings 2-7
standend function 3-27
standout function 3-26
stderr, standard error file
pointer 2-2
stderr, standard error file
pointer 2-12
stderr, the standard error
file 9-1
stdin, standard input file
pointer 2-2
stdin, standard input file
pointer 2-12
stdio.h file
described 2-1
including 2-1

stdout, standard output file

pointer 2-2

stdout, standard output file

pointer 2-12
strcat function U-6
stremp function 4-7
strepy function U-8
Stream functions,
described 2-11
Stream functions
accessing files 2-12

accessing standard

files 2-11

file pointers 2-11

random access 231
String functions,

described U4-6
Strings

comparing 4«7

comparing 4-9

concatenating U-6

concatenating 4-8

copying 4-10

copying 4-8

length 4-8

printing to U-11

processing, described U-1

reading from a file 2-13

reading from standard

input 245

scanning 4-10.

writing to a file 2-16

writing to standard

output 2-7
strlen function U4-8
strncat function 4-8
strncmp function 4-9
strncpy function U-10
stterm function 333
subwin function 3-15
sys/locking.h file 8-4
System errors

described 9-3

reporting 9-4
system function 5-1
System programs

calling as a separate

process 5«1

TN

1-ii

Findsthe printable stringsinan

. object

Removes symbolsandrelocation bits
Timesacommand

' Sortsafiletopologically

Undoesapreviousgetofan
SCCsfile

ValidatesanSCCS file
Cross—referencesCprograms
Extracts strings from Cprograms
Invokesacompiler—compiler

INTRO (CP) _ : INTRO (CP)

case of ‘‘normal” termination) one supplied by the program (see

wait(S) and ezit(S)). The former byte is 0 for normal termination;

the latter is customarily 0 for successful execution and nonzero to

indicate troubles such as erroneous parameters, or bad or inaccessi-
11 (3]

ble data. It is called variously ‘‘exit code’’, “‘exit status’’, or ‘‘return
code’’, and is described only where special conventions are involved.

Notes

Not-all commands adhere to the above syntax.

‘March 24, 1984) .. Page 2

ADB(CP)

ADB(CP)

escape a °.

< name The value of name, which is either a variable name or a.

register name. Adb maintains a number of variables (see
VARIABLES) named by single letters or digits. If name is
a register name then the value of the register is obtained
from the system header in corfil.

syh:bol A symbol is a sequence of upper or lower case letters,
underscores or digits, not starting with a digit. The value
of the symbol is taken from the symbol table in objfil. An
initial _ or = will be prepended to symbol if needed. '

- symbol : '
In C, the ‘true name’ of an external symbol begins with
an underscore (.). It may be necessary to use this name
to distinguish it from the internal or hidden variables of a
program. ‘ _ C

(exp) The value of the expression exp.

Monadic operators '

#exp The contents of the location addressed by exp in corfil.

@exp The contents of the location addressed by exp in objfil.

"—exp Integer negation.

“exp Bitwise complement.

Dyadic operators are left associative and are less binding than
monadic operators.

el +e2
el —e2
elxe2
el %e2
el&e2
elle2
el #e2

Integer addition.

Integer subtracticn.

Integer multiplication.

Integer division.

Bitwise conjunction.

Bitwise disjunction.

EI rounded up to the next multiple of e2.

COMMANDS
* Most commands consist of a verb followed by a modifier or list of
modifiers. The following verbs are available. (The commands ‘?’

and
details.)

”

May 10,

may be followed by ‘x’; see ADDRESSES for further

Locations starting at address in objfil are printed according

198 Page 2

ADB(CP) ADB(CP)

are checked to .ensm'e that they have an
appropriate type as indicated below.

/ local or global data-symbol
? local or global text symbol
= local or global absolute symbol
p 2 Print the addressed value in symbolic form using
~ the same rules for symbol lookup as a.
t 0 When preceded by an integer tabs to the next

appropriate tab stop. For example, 8t moves to
the next 8—space tab stop.

r 0 Print a space.
n 0 Print a newline.
"..." 0 Print the enclosed string.

Dot is decremented by the current increment.
Nothing is printed. ‘

+ Dot is incremented by 1. Nothing is printed.

- Dot is decremented by 1. Nothing is printed.

newline If the previous command temporarily incremented dot,
make the increment permanent. Repeat the previous
command with a count of 1.

[2/) value mask
Words starting at dof are masked with mask and compared
with value until a match is found. If L is used then the
match is for 4 bytes at a time instead of 2. If no match is
found then dor is unchanged; otherwise dot is set to the
matched location. If mask is omitted then —1 is used.

[2/lw value ...
Write the 2—byte value into the addressed location. If the
command is W, writc 4 bytes. Odd addresses are not
allowed when writing to the subprocess address space.

[2/lm b1 el f1[2/]

New values for (b1, el, f1) are recorded. If less than
three expressions are given then the remaining map
parameters are left unchanged. If the ‘?’ or */° is followed
by ‘%’ then the second segment (b2, 2 ,f2) of the map—
ping is changed. If the list is terminated by *?’ or */’ then
the file (objfil or corfil respectively) is used for subsequent
requests. (So that, for example, ‘‘m?" will cause ‘/’ to
refer to objfil.)

>name Dot is assigned to the variable or register named.

May 10, 1984 Page 4

ADB(CP) ADB (CP)

the same line as the command. An argument
starting with < or > causes the standard input or
output to be established for the command. All
signals are turned on on entry to the subprocess.

cs The subprocess is continued with signal s ¢ s, see
signal(S). If address is given then the subpro—
cess is continued at this address. If no signal is
specified then the signal that caused the subpro—
cess to stop is sent. Breakpoint skipping is the
same as for r.

ss As for ¢ except that the subprocess is single
stepped count times. If there is no current sub—
process then objfil is run as a subprocess as for r.
In this case no signal can be sent; the remainder
of the line is treated as arguments to the subpro—
cess.

k The cuirent subprocess, if any, is terminated.

VARIABLES
Adb provides a number of variables. 'Named variables are set ini—
tially by adb but are not used subsequently. Numbered variables
are reserved for communication as follows.

0 The last value printed.
1 The last offset part of an instruction source.
2 The previous value of variable 1.

On entry the following are set from the system header in the corfil.
If corfil does not appear to be a core file then these values are set
4 from objfil. .

b The base address of the data segment.
d ‘The data segment size.

e The entry point.

s The stack segment size.

t The text segment size.

ADDRESSES
The address in a file associated with a written address is deter—
mined by a mapping associated with that file. Each mapping is
represented by two triples (b1, el, f1) and (b2, €2, f2) and the file
address corresponding to a written address is calculated as follows.

bl <address<el => file
_ address=address +f1—bl, otherwise,

May 10, 1984 Page 6

ADMIN (CP) ADMIN (CP)

Name

admin - Creates and administers SCCS files.

Syntax

admin [n] [~ i[name]] [~ rrel] [~ t{name]] [~ fAag|flag-val
- dﬂag[ﬂag-va.l] [~ alogin] [~ elogin] [~ m|milist]
l— ylcomment]] [~ h] [~ z] files

Description

Admin is used to create new SCCS files and to change parameters of
existing ones. Arguments to adminmay appear in any order. They
consist of options, which begin with — , and named files (note that
SCCS filenames must begin with the characters s.). If a named file
doesn’t exist, it is created, and its parameters are initialized accord-
ing to the specified options. Parameters not initialized by a option
are assigned a default value. If a named file does exist, parameters
corresponding to specified options are changed, and other parameters
are left as is.

If a directory is named, admin behaves as though each file in the
directory were specified as a named file, except that nonSCCS files
(last component of the pathname does not begin with s.) and
unreadable files are silently ignored. If the dash - is given, the
standard input is read; each line of the standard input is taken to be
the name of an SCCS file to be processed. - Again, nonSCCS files and
unreadable files are silently ignored.

The options are as follows. Each is explained as though only one
named file is to be processed since the effects of the arguments apply
independently to each named file.

-n This option indicates that a new SCCS file is to be
created.
- ijname] The name of a file from which the text for a new

SCCS file is to be taken. The text constitutes the
first delta of the file (see —r below for delta
numbering scheme). If the i option is used, but the
filename is omitted, the text is obtained by reading
the standard input until an end-of-file is encoun-
tered. If this option is omitted, then the SCCS file is
created empty. Only one SCCS file may be created
by an admin command on which the i option is sup-
plied. Using a single admin to create two or more
SCCS files require that they be created empty (no
- i option). Note that the — i option implies the
- n option.

March 24, 1984 Page 1

ADMIN (CP)

- d|fleg]

March 24, 1984

Hist -

qtezt

mmod

ttype

ADMIN (CP)

A list of releases to which deltas can no longer
be made (get — e against one of these
“locked’’ releases fails). The list has the fol-
lowing syntax:

<list> ;== <range> | <list> , <range>
<range> :== RELEASE NUMBER |a

The character a in the list is equivalent to
specifying all releasee for the named SCCS file.

Causes delta(CP) to create a ‘‘null” delta in

. each of those releases (if any) being skipped

when a delta is made in a new release {e.g., in
making delta 5.1 after delta 2.7, releases 3 and
4 are -skipped). These null deltas serve as
‘‘anchor points’’ so ‘that branch deltas may
later be created from them. The absence of
this flag causes skipped releases to be nonex-
istent in the SCCS file preventing branch deltas
from being created from them in the future.

User-definable text substituted for all
occurrences of the keyword in SCCS file text
retrieved by get(CP).

Module name of the SCCS file substituted for
all occurrences of the admin.CP keyword in
SCCS file text retrieved by get(CP). If the m
flag is not specified, the value assigned is the
name of the SCCS file with the leading s.
removed.

Type of module in the SCCS file substituted for
all occurrences of
keyword in SCCS . file text retrieved by

" get(CP).

vlpgm]

Causes delta(CP) to prompt for Modification
Request (MR) numbers as the reason for
creating a delta. The optional value specifies
the name of an MR number validity checking
program (see delta(CP)). (If this flag is set
when creating an SCCS file, the m option must
also be used even if its value is null).

Causes removal {deletion) of the specified flag from
an SCCS file. The - d optidn may be specified only
when processing existing SCCS files. Several —d
options may be supplied on a single admin com-
mand. See the ~ foption for allowable flag names.

Page 3

ADMIN (CP) ADMIN (CP)

-2 The SCCS file checksum is recomputed and stored in
the first line of the SCCS file (see — h, above).

Note that use of this option on a truly corrupted file
may prevent future detection of the corruption.

Files

The last component of all SCCS filenames must be of the form
s.file-name. New SCCS files are created read-only (444 modified by
umask) (see chmod(C)). Write permission in the pertinent directory
is, of course, required to create a file. All writing done by admin is
to a temporary x-file, called x.filename, (see get(CP)), created with
read-only permission if the admin command is creating a new SCCS
file, or with the same mode as the SCCS file if it exists. After suc-
cessful execution of admin, the SCCS file is removed (if it exists),
and the x-file is renamed with the name of the SCCS file. This
ensures that changes are made to the SCCS file only if no errors
occurred.

It is recommended that directories containing SCCS files be mode
755 and that SCCS files themselves be read-only. The mode of the
directories allows only the owner to modify SCCS files contained in
the directories. The mode of the SCCS files prevents any
modification at all except by SCCS commands.

If it should be necessary to patch an SCCS file for any reason, the
mode may be changed to 644 by the owner allowing use of a text
editor. Care must be taken! The edited file should always be pro-
cessed by an admin — h to check for corruption followed by an
admin - z to generate a proper checksum. Another admin — h is
recommended to ensure the SCCS file is valid.

Admin also makes use of a transient lock file (called z.fllename),

which is used to prevent simultaneous updates to the SCCS file by
different users. See get{ CP) for further information.

See Also
delta(CP), ed(C), get(CP), help(CP), prs(CP), what{C), sccsfile(F)

Diagnostics -

Use kelp(CP) for explanations.

March 24, 1984 . Page 5

AR (CP) | AR (CP)

file.

v Verbose. Under the verbose option, ar gives a file-by-file
description of the making of a new archive file from the old
archive and the constituent files. When used with t, it gives a
long listing of 2ll information about the files. When used with
x, it precedes each file with a name.

c¢. Create. Normally ar will create afile when it needs to. The
create option suppresses the normal message that is produced
when afile is created.

1 Local. Normally ar places its temporary files in the directory
/tmp. This option causes them to be placed in the local direc-
tory.

Files

Jtmp/v* Temporary files

See Also
1d(CP), lorder(CP), ar(F)

Notes

If the same file is mentioned twice in an argument list, it may be put
in the archive twice.

March 20, 1984 Page 2

CB (CP) CB (CP)

Name

cb - Beautifies C programs.

Syntax

~¢b (file]

Description

Cb places a cobpy of the C program in file (standard input if file is v
not given) on the standard output with spacing and indentation that
displays the structure of the program.

March 24, 1984 Page 1

CC(CP) , CC(CP)

-K Do not generate stack probes. Stack probes are necessary
for XENIX user programs to assure proper stack growth.

Other arguments
are taken to be either loader option arguments, or C—
compatible object programs, typically produced by an
earlier cc run, or perhaps libraries of C—compatible
routines. These programs, together with the results of
any compilations specified, are loaded (in the order
given) to produce an executable program with namie

a.out.

Files

file.c input file

file.o object file

a.out loaded output

file.isx] temporaries for cc

/ib/cpp . preprocessor

/lib/c68 compiler for cc

/lib/c680 optional optimizer

Nib/ert0.0 runtime startoff

/ib/libc.a - standard library, see intro(S)

lusr/include standard directory for ‘#include’ files
See Also

B. W. Kernighan and D. M. Ritchie, The C Programming
Language, Prentice—Hall, 1978

D. M. Ritchie, C Reference Manual

adb(CP), 1d(CP)

DIAGNOSTICS

The diagnostics produced by C .itsclf are intended to be self—
explanatory. Occasional messages may be produced by the
assembler or the loader. Of these, the most mystifying are from
the assembler, as(C), which produces line number reports based on
the generated code, which is only loosely related to the source
linenumber. Running the compiler with the —S option and assem—
bling the result by hand may help you resolve the difficulty.

May 10, 1984 Page 2

CDC (CP) | | CDC (CP)

If -~ mis not used and the standard input is a
terminal, the prompt MRs? is issued on the
standard output before the standard input is
read; il the standard input is not a terminal,
no prompt is issued. The MRs? prompt always
precedes the comments? prompt (see -~y
option).

MRs in a list are separated by blanks and/or
tab characters. An unescaped newline charac-
ter terminates the MR list.

Note that if the v flag has a value (see
admin(CP)), it is taken to be the name of a
program (or shell procedure) which validates
the correctness of the MR numbers. If a
nonzero exit status is returned from the MR
number validation -'program, cd¢ terminates
and the delta commentary remains unchanged.

— y[comment] Arbitrary text used to replace the comment(s)

- already existing for the delta specified by the
- r option. The previous comments are kept
and preceded by a comment line stating that
they were changed. A null ¢omment has no
effect.

If - yis not specified and the standard input is
a terminal, the prompt ‘“comments?”’ is issued
on the standard output before the standard
input is read; if the standard input is not a ter-
minal, no prompt is issued. An unescaped
newline character terminates the comment text.

In general, if you made the delta, you can change its delta
commentary; or if you own the ﬁle ‘and directory you can
modlfy the delta commentary.
Examples
"The following:

ede - r1.6 - m”b178-12345 1b177-54321 bl79-00001” — ytrouble
s.file

adds bl78-12345 and bl79-00001 to the MR list, removes bl77-54321

from the MR list, and adds the comment trouble to delta 16 of
s. ﬁle

March 24, 1084 _ Page 2

COMB (CP) COMB (CP)

Name

comb - Combines SCCS deltas.

Syntax

comb [~ o] [- g] [psid] [~ clist] files

Description

Comb provides the means to combine one or more deltas in an SCCS
file and make a single new delta. The new delta replaces the previous
deltas, making the SCCS file smaller than the original.

Comb does not perform the combination itself. Instead, it generates
a shell procedure that you must save and execute to reconstruct the
given SCCS files. Comb copies the generated shell procedure to the
standard output. To save the procedure, you must redirect the out-
put to a file. The saved file can then be executed like any other shell
procedure (see sk{C)).

When invoking comb, arguments may be specified in any order. All
options apply to all named SCCS files. If a directory is named, comb
behaves as though each file in the directory were specified as a
named file, except that nonSCCS files {last component of the path-
name does not begin with s.) and unreadable files are silently
ignored. If a name of — is given, the standard input is read; each
line of the standard input is taken to be the name of an SCCS file to
be processed; nonSCCS files and unreadable files are silently ignored.

The options are as follows. Each is explained as though only one
named file is to be processed, but the effects of any option apply
independently to each named file. ’

~ pSID The SCCS IDentification string (SID) of the oldest delta to
be preserved. All older deltas are discarded in the recon-
structed file.

— clist A list (see get(CP) for the syntax of a list) of deltas to be
preserved. All other deltas are discarded.

-0 For each get — e generated, this argument causes the recon-
structed file to be accessed at'the release of the delta to be
created, otherwise the reconstructed file would be accessed
at the most recent ancestor. - Use of the — o option may
decrease the size of the reconstructed SCCS file. It may also
alter the shape of the delta tree of the original file.

March 24, 1984 " Pagel

CONFIG (CP) CONFIG (CP)

Name

config - configure a XENIX system

Syntax
- [etc/config [~ t] [~ 1 file] [~ c file] [~ m file] dfile

Description

Config is a program that takes a deséription of a XENIX system and
generates a file which is a C program defining. the configuration
tables for the various devices on the system.

The — ¢ option specifies the name of the configuration table file; c.c
is the default name,

The — m option specifies the name of the file that contains all the
information regarding supported devices; fetc/master is the default
name. This file is supplied with the XENIX system. and should not be
modified unless the user fully understands its construction.

The — t option requests a short table of major device numbers for
character and block type devices. This can facilitate the creation of
special files. : :

The user must supply dfile; it must contain device information for
the user’s system. This file is divided into two parts. The first part
contains physical device specifications. The second part contains
system-dependent information. Any line with an asterisk (*) in
column 1 is a comment. .

All configurations are assumed to have a set of required devices
which must be present to run XENIX such as the system clock.
These devices must not be specified in dfile.

First Part of dfile

Each line contains two fields, delimited by blanks and/or tabs in the
following format:

devname number

where devname is the name of the device (as it appears in the
Jetc/master device table), and number is the number (decimal) of
devices associated with the corresponding controller; number is
optional, and if omitted, a default value which is the maximum
value for that controller is used.

March 24, 1984 ~ Page 1

CONFIG (CP) 'CONFIG (CP)

We must also specify the following parameter information:

Th

Files

(4]

root device is an HD (pseudo disk 3)
pipe device is an HD (pseudo disk 3}
swap device is an HD (pseudo disk 2)
with a swplo of 1 and an nswap of 2300
number of buffers is 50
number of processes is 50
maximum number of processes per user ID is 15
number of mounts is 8
number of inodes is 120
number of files is 120
number of calls is 30
number of texts is 35
number of character buffers is 150
number of swapmap entries is 50
number of memory pages is 512
number of file locks is 100
timezone is pacific time
daylight time is in effect
actual system configuration would be specified as follows:
hd 1

fd 1
root hd 3
pipe hd 3

swap hd 2 0 2300
* Comments may be inserted in this manner

buffers 50

procs 150
maxproc 15
mounts 8
inodes 120
files 120
calls 30
texts 35
clists 150

swapmap 50
pages {1024/2);
locks 100
timezone (8+60)
daylight 1

[etc/master default input master device table

c.C

default output configuration table file

See Also

master(F)

March 24, 1984 "Page 3

CREF(CP) ‘ CREF(CP)

Name

-cref - Makes a cross-reference listing.

Syntax

cref [- acilnostux123] files

Description

Cref makes a cross-reference listing of assembler or C programs. The
program searches the given filee for symbols in the appropriate C or
assembly language syntax.

The output report is in four columns:

Symbol

Filename -

Current symbol or line number
Text as it appears in the file

WD

Cref uses either an ignore file or an only file. If the — i option is
given, the next argument is taken to be an sgnore file; if the — o
option is given, the next argument is taken to be an only file. /gnore
and only files are lists of symbols separated by newlines. All sym-
bols in an ignore file are ignored in columns. 1 and 3 of the output.
If an only file is given, only symbols in that file will appear in
column 1. Only one of these options may be given; the default set-
ting is — i using the default ignore file (see FILES below). Assem-
bler predefined symbols or C keywords are ignored.

The — s option causes current symbols to be put in column 3. In the
assembler, the current symbol is the most recent name symbol; in C,
the current function name. The — 1 option causes the line number
within the file to be put in column 3.

The - t option causes the next available argument to be used as the
name of the intermediate file (instead of the temporary. file
Jtmp/ert??). This file is created and is not removed at the end of
the process.

The cref options are:

a . Uses assembler format (default)

¢ Uses C format

i Uses an ignore file (see above)

I Puts line number in column 3 (instead of current symbol)

March 24, 1984 ' . Pagel

CTAGS (CP) CTAGS (CP)

Name

ctags — Creates a tags file.

Syntax

ctags [-u] [- w] [- x] name ...

Description

Ctags makes 2 tags file for #(C) from the specified C sources. A tags
file gives the locations of specified objects (in this case functions) in
a group of files. Each line of the tags file contains the function
name, the file in which it is defined, and a scanning pattern used to
find the function definition. These are given in separate fields on the
line, separated by blanks or tabs. Using the tags file, vi can quickly
find these function definitions.

If the — x flag is given, ctags produces a list of function names, the
line number and file name on which each is defined, as well as the
text of that line and prints this on the standard output. This is a sim-
ple index which can be printed out as an off-line readable function
index.

Files whose name ends in .c or .h are assumed to be C source files
and are searched for C routine and macro definitions.

Other options are:

— w Suppresses warning diagnostics.

— u Causes the specified files to be updated in tags; that is, all refer-
ences to them are deleted, and the new values are appended to
the file. (Beware: this option is implemented in a way which is
rather slow; it is usually faster to simply rebuild the tags file.)

The tag masn is treated specially in C programs. The tag formed is

created by prepending M to the name of the file, with a trailing .c

removed, if any, and leading pathname components also removed.

This makes use of ctags practical in directories with more than one

program.

Files

tags Output tags file

See Also
ex(C), vi(C)

March 24, 1984 _ Page 1

DELTA(CP) - DELTA (CP)

Name

* delta— Makes a delta (change) to an'SCCS file.

Syntax
delta [- rSID] [~ s] [~ n] [- glist] |~ m[mrlist]] [~ y[comment]]
- p| files

Description

Delta is used to permanently introduce into the named SCCS file
changes that were made to the file retrieved by get(CP) (ca.lled the
g-file, or generated file).

Delta makes a delta to each SCCS file named by filles. If a directory
is named, delts ‘behaves as though each file in the directory were
specified as a named file, except that nonSCCS files (last component
of the pathname does not begin with 8.) and unreadable files are
silently ignored. If a name of — is given, the standard input is read
(see Warning); each line of the standard input is taken to be the
name of an SCCS file to be processed.

Delta may issue prompts on the standard output depending upon
certain options specified and flags {see admin(CP)) that may be
present in the SCCS file (see — m and — y options below).

Options apply independently to each named file.

- rSID Uniquely identifies which delta is to be made to the
8CcCs file. The use of this keyletter is necessary
only if two or more versions of the same SCCS file
have been retrieved for editing (get — e} by the
same person (login name). The SID value specified
with the — r keyletter can be either the SID specified

. on the get command line or the SID to be made as
reported by the get command (see get(CP)). A
diagnostic results if the specified SID is ambiguous,
or if it is necessary and omitted on the command
line.

-8 Suppresses the issue, on the standard output, of the
created delta’s SID, as well as the number of lines
inserted, deleted and unchanged in the SCCS file.

-n Specifies retention of the edited g-file (normally
removed at completion of delta processing).

March 24, 1984 . Page 1

DELTA(CP)

p-file
q-file
x-file
z-file
d-file

[usr/bin/bdiff

Warning

DELTA (CP)

" Existed before the execution of delta; may exist

after completion of delta.

Created during the execution of delta; removed after
completion of delta.

Created during the execution of delta; renamed to
SCCs file after completion of delta.

Created during the execution of delta; removed dur-
ing the execution of delta.

Created during the execution of delta; removed after
completion of delta.

Program to compute differences between the
“retrieved’’ file and the g-file.

Lines beginning with an SOH ASCH character (binary 001) cannot be
placed in the SCCS file unless the SOH is escaped. This character has
special meaning to SCCS (see sccefle(F)) and will cause an error.

A get of many SCCS files, followed by a delta of those files, should
be.avoided when the get generates a large amount of data. Instead,
multiple get/delts sequences should be used.

If the standard input (-) is specified on the delta command line, the
— m (if necessary) and - y options must also be present. Omission
of these options causes an error to occur.

See Also

admin(CP), bdiff(C), get{ CP), help(CP), prs(CP), sccsfile(F)

Diagnaostics

Use help(CP) for explanations.

March 24, 1984

Page 3

GET(CP) GET (CP)

gets for editing on the same SID until delta is executed or
the j (joint edit) flag is set in the SCCS file (see
admin(CP}). Concurrent use of get — e for different
SIDs is always allowed.

If the g-file generated by get with an — e option is
accidentally ruined in the editing process, it may be
regenerated by reexecuting the get command with the
— k option in place of the — e option.

SCCS file protection specified via the ceiling, floor, and
authorized user list stored in the SCCS file (see
admin(CP)) are enforced when the — e option is used.

-b Used with the — e option' to indicate that the new delta
should have an SID in a new branch. This option is
ignored if the b flag is not present in the file (see
admin(CP)) or if the retrieved delte is not a leaf delta.
(A leaf delta is one that has no successors on the SCCS
file tree.)

Note: A branch delta may always be created from a non-
leaf delta. '

~ ilist A list of deltas to be included (forced to be applied) in
the creation of the generated file. The liet has the follow-
ing syntax:

<list> ::== <range> | <list> , <range>
<range> :==SID |SID ~ SID

SID, the SCCS Identification of a delta, may be in any
form described in Chapter 5, ‘“SCCS: A Source Code
Control System,” in the XENIX Programmer’s Guide.

~ xliet A list of deltas to be excluded (forced not to be applied)
in the creation of the generated file. See the — i option
for the list format.

-k Suppresses replacement of identification keywords (see
below) in the retrieved text by their value. The — k
option is implied by the — e option.

- 19 Causes a delta summary to be written into an [-file. If
— lp is used then an [-file is not created; the delta sum-
mary is written on the standard output instead. See
FILES for the format of the [-file.

-p Causes the text retrieved from the SCCS file to be written
on the standard output. No g-file is created. All output
that normally goes to the standard output goes to file
descriptor 2 instead, unless the - s option is used, in
which case it disappears.

March 24, 1984 : ‘Page 2

GET (CP) GET (CP)

wherever they occur. The following keywords may be used in the
text stored in an SCCS file: '

Keyword Value .

M% Module name: either the value of the m flag in the file
(see admin(CP)), or if absent, the name of the SCCS file
with the leading s. removed.

A% SCCS identification (SID) {9R% %A% %B%I%S%) of the

retrieved text.

R% Release.
A% Level
B% Branch.

5% Sequence.

D% Current date (YY/MM/DD).

A% Current date (MM/DD/YY]}.

%X % Current time (HH:MM:SS).

9%E% Date newest applied delta was created (YY/MM/DD).

°GC% Date newest applied delta was created (MM/DD/YY).

A% Time newest applied delta was created (HH:MM:SS).

Y% Module type: value of the t flag in the SCCS file (see

' admin(CP)).

%%% SCCS filename.

% Fully qualified SCCS filename.

Q% The value of the q flag in the file (see admin{CP)).

% Current line number. This keyword is intended for iden-
tifying messages output by the program such as ‘‘this
shouldn’t have happened’’ type errors. It is not intended
to be used on every line to provide sequence numbers.

%L % The 4-character string @ (#) recognizable by whaet(C}).

%W% A shorthand notation for constructing what{C) strings for
XENIX program files. W% = %Z %%aM %< horizontal-

tab> %A%
A% Another shorthand notation for constructing what(C)
strings for nonXENIX program files.

%A% = TLT%6Y %o T % Td %66 %o

Files

Several auxiliary files may be created by get. These files are known
generically as the g-file, l-file, p-file, and 2-file. The letter before the
hyphen is called the tag. An auxiliary filename is formed from the
SCCS filename: the last component of all SCCS filenames must be of
the form s.module-name, the auxiliary files are named by replacing
the leading s with the tag. The g-file is an exception to this scheme:
the g-file is named by removing the s. prefix. For example, s.xyz.c,
the auxiliary filenames would be xyz.c, l.xyz.c, p.xyz.c, and z.xyz.c,
respectively.

The ¢-file, which contains the generated text, is created in the
current directory (unless the — p option is used). A g-file is created
in all cases, whether or not any lines of text were generated by the
get. It is owned by the real user. If the — k option is used or

March 24, 1984 Page 4

GET(CP) . GET (CP)

created mode 444.

See Also
admin(CP), delta(CP), help(CP), prs(CP), what(C), scesfile(F)

Diagnostics

Use help{CP) for explanations.

Notes

If the effective user has write permission (either explicitly or impli-
citly) in the directory containing the SCCS files, but the real user
doesn’t, then only one file may be named when the — e option is
used.

© March 24, 1984 Page 6

HDR (CP) ~ HDR (CP)

Name

hdr - Displays selected parts of object files.

Syntax
hdr | - dhprsSt | file ...

Description

Hdr displays object file headers, symbol tables, and text or data relo-
cation records in human-readable formats. It also prints out seek
positions for the various segments in the object file.

A.out, x.out, and x.out segmented formats and archives are under-
stood. :

The symbol table format consists of six fields. In a.out formats the
third field is missing. The first field is the symbol’s index or position
in the symbol table, printed in decimal. The index of the first entry
is zero. The second field is the type, printed in hexadecimal. The
third field is the s_seg field, printed in hexadecimal. The fourth
field is the symbol’s value in hexadecimal. The fifth field is a single
character which represents the symbol’s type as in nm(CP), except C
common is not recognized as a special case of undefined. The last
field is the symbol name.

If long form relocation is present, the format consists of six fields.
The first is the descriptor, printed in hexadecimal. The second is the
symbol ID, or index, in decimal. This field is used for external relo-
cations as an index into the symbol table. It should reference an
undefined symbol table entry. The third field is the position, or
offset, within the current segment at which relocation is to take
place; it is printed in hexadecimal. The fourth field is the name of
the segment referenced in the relocation: text, data, bss or EXT for
-external. The fifth field is the size of relocation: byte, word (2
bytes), or long. The last field will indicate, if present, that the relo-
cation is relative.

If short form relocation is present, the format consist of three fields.
The first field is the relocation command in hexadecimal. the second
field contains the name of the segment referenced; text or data. The
last field indicates the size of relocation: word or long.

Options and their meanings are:
— h Causes the object file header and extended header to be printed

out. Each field in the header or extended header is labeled.
This is the default option.

March 24,1984 Page 1

HELP(CP) : HELP (CP)

Name

help - Asks for help about SCCS commands.

Syntax

help | args]

Description

Help finds information to explain a message from an SCCS command

or explain the use of 2 command. Zero or more arguments may be

supplied. If no arguments are given, kelp will prompt for one.

The arguments may be either message numbers (which normally

appear in parentheses following messages) or command names.

There are the following types of arguments:

type 1 Begins with nonnumerics, ends in numerics. The non-
numeric prefix is usually an abbreviation for the program
or set of routines which produced the message (e.g., ge8,
for message 6 from the get command).

type 2 Does not contain numerics (as a command, such as get)

type 3 Is all numeric (e.g., 212)

The response of the program will be the explanatory information
related to the argument, if there is any.

When all else fails, try “‘help stuck’.

Files

- Justflib/help Directory containing files of message text

“March 24, 1984 " Page 1

LD (CP)

9'.")

LD{CP)

or —F options can be used to produce different types of

executable files.

Ld understands several options. Except for —I, they should appear
before the names of all object file arguments.

-P

-X

May 10,

‘Strip’ the output to save space by removing the symbol
table and relocation records. Note that stripping impairs
the usefulness of the debugger. This information can also
be removed later with strip(CP).

Do not attach the short form of relocation. This does not
imply removing the symbol table, as with —s .

Take the following argument as a symbol and enter it as
undefined in the symbol table. This is useful for loading
wholly from a library, since initially the symbol table is
empty and an unresolved reference is needed to force the
loading of the first routine.

Discard all symbols except those that are undefined exter—
nal.

The same as —U, except also retain the following list of
global symbols. The list consists of the next command
line arguments and is terminated by the end of the com—
mand line, by — alone, or by any further option beginning
with a —.

The same as —g, except that the list of global symbols is
taken from the file named by the following argument. If
the next argument is — alone, the standard input is read.
The symbols may be separated by any type of whitespace.

This option is an abbreviation for the library name
‘/lib/libx.a’, where x is a string. If the library does not
exist, /d then tries ‘/ust/lib/libx.a’. A library is searched
when its name is encountered, so the placement of a —1 is
significant. Note that —1 with no argument, defaults to
—lc . If the processor on which Id is running is not the
same as the target processor, then it is possible that —p
may be implied. In the case of the MC68000 target, —p
fusr/lib/mlib is implied.

Take the following argument as the directory in which —Ix
libraries will be found. -

Do not preserve local (non.globl) symbols in the output

1984 Page 2

LD (CP) LD(CP)

segment. With —nn, it is used to compute the base of the
data segment. With —nr, it is used to compute the base
of the text segment.

-R The next argument is taken to be a hexadecimal number
that is used as the base address for text relocation. With
—ior —nn , it also specifies the text base address; with
—nr it specifies the data base address. .

-F The next argument is taken to be a hexadecimal number

~'that specifies the size of the stack required by the object

file when executing. This only has meaning on those
processors that cannot expand the stack dynamically.

Files
/lib/lib*.a libraries
fusr/mlib/lib*.a more libraries
x.out ~ output file
See Also

as(CP), ar(CP), cc(CP), ranlib(CP), strip(CP), x.out(F)

May 10, 1984 Page 4

LEX(CP) LEX(CP)

.and write to, defaulted to stdin and stdout, respectively.

- Any line beginning with a blank is assumed to contain only C text
and is copied; if it precedes 9%%it is copied into the external defini-
tion area of the lex.yy.c file. " All rules should follow a %%% as in
YACC. Lines preceding 9% which begin with a nonblank character
define the string on the left to be the remainder of the line; it can be
called out later by surrounding it with {}. Note that curly brackets
do not imply parentheses; only string substitution is done.

Example
D [o0- 9]
. %% , :
if printf("IF statement\n”);

|a~ 2]+ printf("tag, value %s\n",yytext);
O{D} - printf("octal number %s} vytext),
{D}H printf("decimal number %s\n",yytext);
"4+ 4" printf("unary op\n");
S printf{"binary op\n”);
i { loop:

while (input{) l== '¥);

switch (input())

case '/": break;
case '¥: unput(""),
default. go to loop;

b

The external names generiu’d by lez all begin with the prefix yy or

The options must appear before any files. The option - ¢ indicates
C actions and is the default, — t causes the lex.yy.c program to be
written instead to standard output, — v provides a one-line summary
.of statistics of the machine generated, — n will not print out the —
. summary. Multiple files are treated as a single file. If no files are
specified, standard input is used.

Certain table sizes for the resulting finite state machine can be set in
the deﬁnitions section:

%n
number of positions is n (default. 2000)

% n
number of states is n (500)

number of parse tree nodes is n (1000)

.March 26, 1984 Page 2

LINT(CP) LINT(CP)

Name

lint - Checks C language usage and eyniax.

Syntax

lint [~ abchlnpuvx] file ...

Description

Lint attempts to detect features of the C program file that are likely
to be bugs, nonportable, or wasteful. It also checks type usage more
strictly than the C compiler. Among the things which are currently
detected are unreachable statements, loops not entered at the top,
automatic - variables declared and not used, and logical expressions
whose value is constant.. Moreover, the usage of functions is
checked to find functions which return values in some places and
not in others, functions called with varying numbers of arguments,
and functions whose values are not used.

If more than one file is given, it is assumed that all the files are to be
loaded together; they are checked for mutual compatibility. If rou-
tines from the standard library are called from file, lint checks the
function definitions using the standard lint library llibe.ln. If lint is
invoked with the — p option, it checks function definitions from the
portable lint library libport.In.

Any number of lint options may be used, in any order. The follow-
ing options are used to suppress certain kinds of complaints:

— a Suppresses complaints about assignments of long values to vari-
ables that are not long.

—~ b Suppresses complaints about break statements that cannot be
reached. {Programs produced by lez or yace will ofben result in
a large number of such complaints.)

— ¢ Suppresses complaints about casts that have questionable porta-
bility.

~ h Does not apply heuristic tests that attempt to intuit bugs,
improve style, and reduce waste.

— u Suppresses complaints about functions and external variables
used and not defined, or defined and not used. (This option is
suitable for running lint on a subset of files of a larger program.)

- v Suppresses complaints about unused arguments in functions.

—~ x Does not report variables referred to by external decla.ratlons
but never used.

‘March 24,.1984 Page 1

LINT(CP). - LINT(CP)

“Just/flib/llibe, fusr/lib/libport, * fusr/lib/libm, - fusr/lib/llibdbm,
Just/lib/llibtermlib
Standard lint libraries (source format)

[ust/tmp/*lint* Temporaries

See Also -
cc(CP)

Notes

Ezit(S), and other functions which do not return, are not under-
stood. This can cause improper error messages.

March 24, 1984 " Page 3

M (CP) | M4 (CP)

Name

m4 - Invokes a macro processor.

Syntax

m4 | opt;ions] [files]

Description

M} is 3 macro processor intended as a front end for Ratfor, C, and
other languages. Each of the argument ﬁlea is processed in order, if
there are no files, or if a filename is -, the standard input is read.

The processed text is written on the standa.rd output.

The options and their eﬂects are as I‘ollows

-e Operates mteractwely. Interrupts are 1gnored and the output is
unbuffered.

- & Enables line sync output for the C preprocessor (#line ...)

- Bint
Changes the size of the push-back and argument. collection
buffers from the default of 4,096.

-~ Hint
Changes the size of the symbol table hash array from t.he
default of 199. The size should be prime.

— Sint i
Changes the size of the call stack from the default of 100-slots.
Macros take three slots, and nonmacro arguments take one.

- Tint
Changes the size of the token buffer from the default of 512
bytes.

To be effective, these flags must appear before any filenames and
before any — D or - U flags: :

— Dname[==val]
Defines name to val or to null in val’s absence.

- Uname
Undefines name.

March 24, 1984 ~» - Pagel

M4 (CP)

shift

changequote

M4 (CP)

Returns all but its first argument. The other arguments
are quoted and pushed back with commas in between.
The quoting nullifies the effect of the extra scan that
will subsequently be performed.

Changes quotation marks to the first and second argu-
ments. The symbols may be up to five characters long.
Changequote without arguments restores the original

" values (ie., ¥

changecom

divert

undivert

divhum

dnl -

ifelse

iner

decr

eval

March 24, 1984

Changes left and right comment markers. from the
default # and newline. With no arguments, the com-
ment mechanism is effectively disabled. With one
argument, the left marker becomes the argument and
the right marker becomes newline. With two argu-
ments, both markers are affected. Comment markers
may be up to five characters long.

M4 maintains 10 output streams, numbered 0-9. The
final output is the concatenation of the streams in
numerical order; initially stream O is the current
stream. The divert macro changes the current output

stream to its (digit-string) argument. Output diverted

to a stream other than 0 through 9 is discarded.

Causes immediate output of text from diversions

named as arguments, or all diversions if no argument.

Text may be undiverted into another diversion.
Undiverting discards the diverted text.

Returns the value of the current output stream.

Reads and discards characters up to and including the
next newline.

Has three or more arguments. If the first argument is
the same string as the second, then the value is the
third argument. If not, and if there are more than four
arguments, the process is repeated with arguments 4, 5,
6 and 7. Otherwise, the value is either the fourth
string, or if it is not present, null.

‘Returns the value of its argument incremented by 1.

The value of the argument is calculated by interpreting
an initial digit-string as a decimal number.

Returns the value of its argument decremented by 1.

Evaluates its argument as an arithmetic expression,
using 32-bit arithmetic. Operators include +, - , %, /,
% * (exponentiation), bitwise &, |, *, and 7; relation-
als; parentheses. Octal and hex numbers may be
specified as in C. The second argument. specifies the

Page 3

MAKE (CP)

Name

MAKE (CP)

make - Maintains, updates, and regenerates groups of programs.

Syntax

make |- f makefile] |- —il 1= k| |- sl [~ ol - e
["f”lq}[-d][nlmes?][I -k [-s] [-d [-n] [~} [-¢]

Description

The following is a brief description of all options: and some special

names:

— makefile Description filename, Makefile is assumed to be the

March 24, 1984

name of a description file. A filename of — denotes’
the standard input. The contents of makefile override
the built-in rules if they are present.

Prints out the complete set of macro definitions and
target descriptions.

Ignores error codes returned by invoked commands.
This mode is entered if the faké target name .IGNORE
appears in the description file.

Abandons work on the current entry, but continues on
other branches that do not depend on that entry.

Silent mode. Does not print command lines before
executing. This mode is also entered if the fake target
name .SILENT appears in the description file.

Does not use the built-in rules.

No execute mode. Prints commands, but does not
execute them. Even lines beginning with an @ are
printed.

Compatibility mode for old makefiles.

Environment variables override assignments within
makefiles.

Touches the target files (causing them to be up-to-
date) rather than issues the usual commands.

Debug mode. Prints out detailed information on files
and times examined.

Page 1

MAKE (CP) MAKE { CP)

line is always executed (see discussion of the MAKEFLAGS macro
under Environment). The — t (touch) option updates the modified
date of a file without executing any commands.

Commands returning nonzero status normally terminate make. If
the — i option is present, or the entry .IGNORE: appears in makefile,
or if the line specifying the command begins with
<tab> <hyphen>, the error is ignored. If the — k option is
present, work is abandoned on the current entry, but continues on
other branches that do not depend on that entry.

The — b option allows old makefiles (those written for the old ver-
sion of make) to run without errors. The difference between the old
version of make and this version is that this version requires all
dependency lines to have a (possibly null) command associated with
them. The previous version of make assumed if no command was
‘specified explicitly that the command was null.

Interrupt and quit cause the target to be deleted unless the‘ta.rget
depends on the special name .PRECIOUS.

Environment

The environment is read by make. All variables are assumed to be
macro definitions and processed as such. The environment variables
are processed before any makefile and after the internal rules; thus,
macro assignments in a makefile override environment variables.
The — e option causes the environment to override the macro
assignments in a makefile.

The MAKEFLAGS environment variable is processed by make as
containing any legal input option (except — f, — p;, and — d) defined
for the command line. Further, upon invocation, make “‘invents’
the variable if it is not in the environment, puts the current options
into it, and passes it on to invocations of commands. Thus,
MAKEFLAGS always contains the current input options. This proves
.very useful for ‘“‘super-makes’’. In fact, as noted above, when the
- n option is used, the command $(MAKE) is executed anyway;
hence, one can perform a make — n recursively on a whole software
system to see what would have been executed. This is because the
- n is put in MAKEFLAGS and passed to further invocations of
$(MAKE). This is one way of debugging all of the makefiles for a
software project without actually doing anything.

Macros

Entries of the form string! = etring2 are macro definitions. Subse-
quent appearances of $(stringl[:substl=[subst2]]) are replaced by
etring?. The parentheses are optional if a single character macro
name is used and there is no substitute sequence. The optional
:subst] ==subst? is a substitute sequence. If it is specified, all nono-
verlapping occurrences of subet! in the named macro are replaced by

March 24, 1984 : Page 3

MAKE (CP) MAKE (CP) .

dependents such as .c, .8, etc. If no update commands for such a
file appear in makefile, and if a default dependent exists, that prere-
quisite is compiled to make the target. In this case, make has infer-
ence rules which allow building files from other files by examining
the suffixes and determining an appropriate inference rule to use.
The current default inference rules are:

.¢ .¢” .sh ssh™ .c.o .c”.0 .c".c 8.0 57.0 .y.0 .y".0 .Lo 170
Jy.c.y.c lec.ca.c’a .s".a.h"h

The internal rules for make are contained in the source file rules.c
for the make program. These rules can be locally modified. To print
out the rules compiled into the make on any machine in a form suit-
able for recompilation, the following command is used:

make - fp - 2>/dev/null </dev/null

The only peculiarity in this output is the (null) string which printf(S)
prints when handed a null string.

A tilde in the above rules refers to an SCCS file (see sccefile(F)).
Thus, the rule .c”.0 would transform an SCCS C source file into an
object file (.0). Because the s. of the SCCS files is a prefix it is
incompatible with make’s suffix point-of-view. Hence, the tilde is a
way of changing any file reference into an SCCS file reference.

A rule with only one suffix (i.e. .c:) is the definition of how to build
z from z.c. In effect, the other suffix is null. This is useful for
building targets from only one source file (e.g., shell procedures,
simple C programs).

Additional suffixes are given as the dependency list for .SUFFIXES.
Order is significant; the first possible name for which both a file and
a rule exist is inferred as a prerequisite.
The default list is:

SUFFIXES: 0 .c .y . s
Here again, the above command for printing the internal rules will
display the list of suffixes implemented on the current machine.

Multiple suffix lists accumulate; .SUFFIXES: with no dependencies
clears the list of suffixes.

Inference Rules
The first example can be done more briefly:
pgm: a.0 b.o

cc 2.0 b.o - o pgm
a.0 b.o: inclh

March 24, 1984 Page 5

MAKE (CP) ‘ MAKE (CP)

C source files are out of date. The substitution mode translates the
.0 to .c. (Unfortunately, one cannot as yet transform to .c”) Note
also, the disabling of the .c.a: rule, which would have created each
object file, one by one. This particular construct speeds up archive
library maintenance considerably. This type of construct becomes
very cumbersome if the archive library contains a mix of assembly
programs and C programs.

‘Files
[Mm]akefile
s.{Mm]akefile

See Also
sh(C)

Notes

Some commands return nonzero status inappropriately; use — i to
overcome the difficulty. Commands that are directly executed by the
shell, notably ¢d(C), are ineflectual across newlines in make. The
. syntax (lib(filel.o file2.0 file3.0) is illegal. You cannot build
lib{file.o) from file.o. The macro $(a:.0=.c”} is not available.

March 24, 1984 Page 7

MKSTR (CP) ‘ MKSTR (CP)

Example

char efilname|] = "/usr/lib/pi_strings”; '
int efil = -1;

error(al, a2, a3, a4)
| char buf[256);
if (efil < 0) {
efil = open(efilname, 0);
if (efil < 0) {

perror(efilname);

exit{C);

if (Iseek(efil, (long) al, 0) ||read(efil, buf, 256) <= 0)
goto oops; :
printf(buf, a2, a3, ad);
}

See Also
lseek(S), xstr(CP)

Credit

This utility was developed at the University of California at Berkeley
and is used with permission.

Notes

All the arguments except the name of the file to be processed are
unnecessary.) .

March 24, 1984 Page 2

PROF (CP) PROF (CP)

Name
prof — display profile data

Syntax :
prof[—a][=1][~low]| —high |]] file |

Description
Prof interprets the file mon.out produced by the monitor subrou—
tine. Under default modes, the symbol table in the named object
file. (x.out default) is read and correlated with the mon.out profile
file. For each external symbol, the percentage of time spent exe—
cuting between that symbol and the next is printed (in decreasing
order), together with the number of times that routine was called
~ and the number of milliseconds per call.

If the —a option is used, all symbols are reported rather than just
external symbols. If the —1I option is used, the output is hsted by
symbol value rather than decreasing percentage.

If the —v option is used, all printing is suppressed and a graphic
version of the profile is produced on the standard output for display
by the plot(C) filters. The numbers low and high, by default 0 and
100, cause a selected percentage of the profile to be plotted with
accordingly higher resolution.

In order for the number of calls to a routine to be tallied, the —p
option of cc must have been given when the file containing the
routine was compiled. This option also arrangcs for the mon.out
file to be produced automatically.

Files
mon.out for profile
x.out for namelist

See Also
monitor(S), proﬁl(S), cc(CP) , plot(C)

Notes
Beware of quantization errors.

If you use an explicit call to monitor(S) you will need to make sure
that the buffer size is equal to or smaller than the program size.

May 10, 1984 Page 1

P}.?Sv(CP) PRS (CP)

Data Keywords

Data keywords specify which parts of an SCCS file are to be retrieved
and output. All parts of an SCCS file (see sccefile(F)) have an asso-
ciated data keyword. There is no limit on the number of times a
data keyword may appear in a dataspec.

The information printed by prs consists of the user-supplied text and
appropriate values (extracted from the SCCS file) substituted for the
recognized data keywords in the order of appearance in the dataepec.
The format of a data keyword value is either simple, in which key- .
word substitution is direct, or multiline, in which keyword substitu-
tion is followed by a carriage return.

User-supplied text is any text other than reccgnized data keywords.
A tab is specified by \t and carriage return/newline is specified by \n.

March 24, 1984 ; Page 2

PRS (CP) ‘ - PRS(CP)

Examples
The following:
prs - d"Users and/or user IDs for :F: are:\n:UN:" s.file
may produce on the standard output:
Users and/or user IDs for s.file are:
xyz
131

abe

prs — d"Newest delta for pgm :M:: :I: Created :D: By :P:" ~ r
s.file

may produce on the standard output:
Newest delta for pgm main.c: 3.7 Created 77/12/1 By cas
As a special case:
prs s.file
may produce on the standard output:
D 1.1 77/12/1 00:00:00 cas 1 000000/00000/00000
MRs:
bl178-12345
bl78-54321
COMMENTS:

this is the comment line for s.file initial delta

for each delta table entry of the *“D’ type. The only option allowed
to be used with the special case is the — a option.

Files

See Also
admin(CP), delta(CP), get{(CP), help(CP), sccsfile(F)

Diagnostics

Use hkelp(CP) for explanations.

March 24, 1984 Page 4

RATFOR (CP) RATFOR (CP)

Name

ratfor - Converts Rational FORTRAN into standard FORTRAN.

Syntax »

ratfor | option ... | [filename ...]

Description

Ratfor converts a rational dialect of FORTRAN into ordinary irra-
tional FORTRAN. Ratfor provxdes control flow constructs essenually
identical to those in C:

statement grouping:
{statement, statement; statement }

decxsxon-makms
it (condition) statement | else st.a.tement]
switch (xntzger value) {
case integer: statement’

[default:] statement

loops: '

while {condition) statement

for (expression; condition; expression) statement
do limits statement

repeat statement | until (condmon)]

break [n]

next [n]

.and some additional syntax to make programs easier to read and write:

Free form input:
multiple statements/line; automatic continuation

Comments:
this is a comment

Translation of relationals:
>, >==, etc., become .GT., .GE,, ete.

Return (expression)
returns expression to caller from function

Define:
define name replacement

Marc“h'26, 1984 - Page 1

REGCMP (CP) ' REGCMP (CP)

Name

regemp ~ Compiles regular expressions.

Syntax

regemp [~ | files

Description

Regemp, in most cases, precludes the need for calling regemp (see
regez(S)) from C programs. This saves on both execution time and
program size. The command regemp compiles the regular expres-
sions in file and places the output in file .i. If the — option is used,
the output will be placed in file .c. The format of entries in file is a
name (C variable) followed by one or more blanks followed by a
regular expression enclosed in double quotation marks. The output
of regemp is C source code. Compiled regular expressions are
represented as extern char vectors. File.i files may thus be included
into C programs, or fde.c files may be compiled and later loaded. In
the C program which uses the regemp output, regez(abe,line) applies
the regular expression named abec to line. Diagnostics are self-
explanatory.

Examples
name "([A- Za- z][A- Za- 30- 9_]*)$0”
telno "\({0,1)([2- 9][01][1- 9])$0\) {0,1} *

” _ - s - R ”
A glo- slensil - loa)

In the C program that uses the regemp output,
regex(telno, line, area, exch, rest)

will apply the regular expression named teino to line.

See Also

regex(S)

March 26, 1984 " Page 1

- SACT(CP) : SACT(CP)

Name

sact - Prints current SCCS file editing activity.

Syntax

sact files.

Description

Sact informs the user of any impending deltas to a named SCCS file.
This situation occurs when get(CP) with the — e option has been
previously executed without a subsequent execution of delta(CP). If
a directory is named on the command line, sact behaves as though
each file in the directory were specified as a named file, except that
nonSCCS files and unreadable files are silently ignored. If a name of
— is given, the standard input is read with each line being taken as
the name of an SCCS file to be processed.

The output for each named file consists of five fields separated by

spaces. ‘ ‘
Field 1 Specifies the SID of a delta that currently exists in the
. 8CCS file to which changes will be made to make the
new delta
Field 2 Specifies the SID for the new delta to be created
Field 3 Contains the logname of the user who will make the
delta i.e., executed a get for editing
Field 4 Contains the date that get — e was executed
Field 5 Contains the time that get — e was executed
See Also

. delta(CP), ge‘t(CP), unget{CP).

Diagnostics

Use help(CP) for explanations.

March 24, 1984) Page l/

SIZE (OP) | SIZE (CP)

Name

size - Prints the size of an object file,

Syntax

size [object ... }

Descripﬁon
Size prints the (decimal) number of bytes required by the text, data,
and bss portions, and their sum in decimal and hexadecimal, of each
object-file argument. If no file is specified, a.out is used.

See Also
a.out(F)

March 24, 1984 . Pagel

STRINGS (CP) STRINGS (CP)

Name

strings ~ Finds the printable strings in an object file.

Syntax

strings |- l [~ o] [- number] file ...

| Description

Stringe looks for ASCII strings in a binary file. A string is any
sequence of four or more printing characters ending with a newline
or a null character. Unless the — flag is given, stnings only looks in
the initialized data space of object files. If the — o flag is given, then
each string is preceded by its decimal offset in the file. If the
~ number flag is given then number is used as the minimum string
length rather than 4.

Stringe is useful for identifying random object files and many other
things. ‘

See Also
hd(C), 0d(C)
Credit

This utility was developed at the University of California at Berkeley
:and is used with permission.

March 24, 1984 Page 1

TIME (CP) , - TIME (CP)

Name

time - Times a command.

Syntax

time command

DeScﬁption
The given command is executed; after it is complete, time prints the
elapsed time during the command, the time spent in the system, and
the time spent in execution of the command. Times are reported in
seconds. -

The times are printed on the standard error.

See Also

times(S)

March 24, 1984 "Page 1

UNGET(CP) UNGET (CP)
Name '

unget - Undoes a previous get of an SCCS file.

Syntax

unget [~ rSID] [~ 8] [~ n] files

Description

Unget undoes the effect of 2 get — e done prior to creating the
intended new delta. If a directory is named, unget behaves as
though each file in the directory were specified as a named file,
except that nonSCCS files and unreadable files are silently ignored.
If a name of — is given, the standard input is read with each line
being taken as the name of an SCCS file to be processed.

Options apply independently to each named file.
- rSID Uniquely identifies which delta is no longer intended.
(This would have been specified by get as the ““new
- delta”.) The use of this option is necessary only if two
or more versions of the same SCCS file have been
retrieved for editing by the same person (login name).
A diagnostic results if the specified SID is ambiguous,
or if it is necessary and omitted on the command line.

-8 Suppresses the printout, on the standard output, of the
intended delta’s SID.

-n Causes the retention of the file which would normally
be removed from the current directory.

See Also
delta(CP), get(CP), sact{ CP)

Diagnostics

Use kelp(CP) for explanations.

March 24, 1984 Page 1

VAL (CP) ' VAL (CP)

The 8-bit code returned by val is a disjunction of the possible errors,
i. e., can be interpreted as a bit string where (moving from left to
right) set bits are interpreted as follows:
bit 0 = Missing file argument
bit 1 = Unknown or duplicate option
bit 2 == Corrupted SCCS file »

- bit 3 == Can’'t open file or file not SCCS
bit 4 == SID is invalid or ambiguous
bit 5 == SID does not exist
'bit 8 = %Y %, — y mismatch
bit 7 = %M %, — m mismatch
Note that val can process two or more files on a given command line
and in turn can process multiple command line (when reading the
standard input). In these cases an aggregate code is returned; a logi-
cal OR of the codes generated for each command line and file pro-
cessed. ‘

See Also
admin(CP), delta(CP), get{CP}, prs(CP)

Diagnostics

Use help(CP) for explanations.
Notes

Val can process up to 50 files on a single command line.

March 24, 1984 Page 2

XSTR (CP) , ‘ XSTR (CP)

Name

xstr - Extracts strings from C programs.

Syntax
xstr [- ¢} [-]| file]

Description’
g
Xotr maintains a file stnngs into which strings in component parts of
a large program are hashed. These strings are replaced with refer-
ences to this common area. This serves to implement shared con-
stant strings, most useful if they are also read-only.

The command
Xstr ~ ¢ name

will extract the strings from the C source in name, replacing string
references by expressions of the form (&xstr[number]) for some
number. An appropriate declaration of zetr is prepended to the file.
The resulting C text is placed in the file z.¢, to then be compiled.
The strings from this file are placed in the stnngs data base if they
are not there already. Repeated strings and strings which are suffices
of existing strings do not cause changes to the data base.

After all components of a large program have been compiled, a file
zs.c declaring the common zetr space can be created by a command
of the form :

xstr -c namel name2 name3 ...
This zs.¢ file should then be compiled and loaded with the rest of the
program. If possible, the array can be made read-only (shared) sav-
ing space and swap overhead.
Xetr can also be used on a six{gle file. A command

Xstr name

creates files z.c and zs.c as before, without using or affecting any
stnngs file in the same directory.

It may be useful to run zstr after the C preprocessor if any macro
definitions yield strings or if there is conditional code which contains
strings which may not, in fact, be needed. Xstr reads from its stan-
dard input when the argument — is given. An appropriate command
sequence for running zetr after the C preprocessor is:

March 24, 1984 " Pagel

YACC (CP) : YACC(CP)
Name

yacc — Invokes a compiler-compiler.

Syntax

yace [~ vd] grammar

Description
Yace converts a context-free grammar into a set of tables for a sim-
ple automaton which executes an LR(1) parsing algorithm. The
grammar may be ambiguous; specified precedence rules are used to
break ambiguities.
The output file, y.tab.c, must be coinpi]ed by the C compiler to pro-
duce a program yyparse. This program must be loaded with the lexi-
cal analyzer program, yylez, as well as main and yyerror, an error
“handling routine. These routines must be supplied by the user;
lez{CP) is useful for creating lexical analyzers usable by yace.
If the ~ v flag is given, the file y.output is prepared, which contains
a description of the parsing tables and a report on conflicts generated
by ambiguities in the grammar.

If the - d flag is used, the file y.tab.h is generated with the #define
statements that associate the yacc-assigned ‘‘token codes’’ with the
user-declared ‘‘token names’. This allows source files other than
y-tab.c to access the token codes.

Files
y.output
y.tab.c
y.tab.h Defines for token names

yacc.tmp, yacc.acts Temporary files

Just/lib/yaccpar Parser prototype for C programs

See Also
lex(CP)

March 26, 1984 Page 1

o

defopen, defread
dup, dup2

ecvt, fevt

execl, execv, execle,
execve, execlp, execvp
exit

exp, log, pow, sqrt

fclose, fflush
fontl

ferror, feof,
clearerr, fileno,
floor, fabs, ceil,
fimod

fopen, freopen, fdopen
fork

fread, fwrite
frexp,ldexp, modf

fseek, fiell, rewind
gamma

getc, getchar,
fgetc, getw

getewd

getenv

getgrent, getgrgid,
getgrnam, setgrent,
endgrent

getlogin

getopt

getpass
getpid, getpgrp,
getppid

getpw

getpwent, getpwuid,
getpwnam, setpwent,
endpwent

gets, fgets

getuid, geteuid,
getgid, getegid

hypot
joctl
kill

1-ii

Readsdefaultentries
Duplicatesanopenfile
descriptor

Performsoutput conversions

Executesafile
Terminatesaprocess
Performsexponential, logarithm,

" power, square root functions

Closesor flushesa stream
Controlsopenfiles

Determines stream status

Performs absolute value, floor,
ceiling, andremainder functions
Opensastream
Createsanewprocess
Performsbufferedbinary
inputand output
Splitsfloating—point numberinto
amantissaand anexponent
Repositions astream
Performslog gamma functions

Getscharacterorwordfroma
stream

Getspathname of current
workingdirectory

Gets value forenvironment name

Get groupfileentry

- Getslogin name

Getsoptionletter from argument
vector
Readsapassword

Getsprocess, process group, and
parentprocesslDs ’
Getsname from UID

Getspassword fileentry
Getsa string from astream

Getsreal user, effectiveuser, real
groupandeffectivegrouplDs
DeterminesEuclideandistance
Controls character devices
Sendsasignalto aprocessorora
groupofprocesses

P

sdgetv, sdwaitv
setbuf

setjmp, longjmp
setpgrp

setuid, setgid
shutdn

signal
sigsem

sinh, cosh, tanh
sleep

ssignal, gsignal
stat, fstat
stdio

stime

string, strcat,
strncat, strcmp,
sumcmp, strcpy,
strncpy, strien,
strchr, strrchr,
strpbrk, strspn,
strespn, strtok
swab

sync

system

termcap, tgetent,
tgetnum, tgetflag,

tgetstr, tgoto, tputs

time, ftime
times

tmpfile
tmpnam

trig, sin, cos, tan,

asin, acos, atan, atan2

ttyname, isatty
ulimit
umask

umount
uname

ungetc
unlink
ustat
utime

1=iv

Synchronizes shareddataaccess
Assignsbuffering toa stream
Performsa nonlocal"goto”
SetsprocessgrouplD
Setsuserand groupiDs
Flushesblock /O andhatts
the CPU

Specifies whattodoupon
receiptofasignal
Signalsaprocess waitingon
asemaphore :
Peformshyperbolic functions
Suspendsexecutionforan
interval
Implementssoftware signals
Getsfile status

Performs standardbuffered
inputand output

Setsthetime

Performs string operations
Swapsbytes

Updatesthe super—block
Executesashellcommand

Performsterminal functions
Getstimeanddate
Getsprocessand child
processtimes
Createsatemporary file
Createsaname fora

temporary file

Performstrigonometric functions -

. Findsthe name of aterminal
" Getsand setsuserlimits

Setsand getsfilecreation
mask

Unmountsafile system

Gets nameofcurrent XENIX
system
Pushescharacterbackinto
input stream
Removesdirectory entry
Getsfiles system statistics
Setsfileaccessand

Execution, files exec -
Execution, nonlocal* ‘goto’’ setjimp
Execution, profiling monitor
Execution, shell system
execv function exec
execve function exec
execvpfunction exec
fabs function floor
fcvt function ecvt
fdopenfunction fopen
feof function ferror
fetch function dbm
filush function fclose
fgetc function gete
fgetsfunction gets
Filesystem, mounting mount
File system, statistics ustat
File system, ummounting umount
File,accessandmodificationtimes utime
File, accessibility _ access
File, check forreading rdchk
File, closing dose
File, control fentl
File, creation creat
File, creation mknod
File, creationmask umask
Fiie, duplication dup
File, errorand status ferror
File, linking link
File, lockingregions locking
File,mode chmod
File,opening .open
File, ownership chown
File, reading read
File, removal unlink
File, size chsize
File, status stat
File, temporary tmpfile
File, user and groupID setuid
File, writing write
Filename, creation mktemp
Filename, temporary tmpnam
fileno function ferror
Files, repositioning Iseek
firstkey function dbm
Floor, ceiling, andremainder functions floor
fmodfunction fioor

fprintffunction

printf

log function exp
log10function exp
Loginname cuserid
Login name, user logname
Login, name getlogin
longjmp function setimp
Itol3 function 13tol
Mathematics, Bessel functions bessel
Mathematics, Euclideandistance hypot
Mathematics, exponential and logarithm functions exp
Mathematics, hyperbolic functions sinh
Mathematics, log gamma function gamma
Mathematics, trigonometric functions trig
Memory, allocation malloc
Message, errors assert
modffunction frexp
Name list nlist
Name list xlist
nbwaitsem function waitsem'
nextkey function dbm
Option, fromargument vector getopt
Password, fileentries getpwent
Password, fileentries putpwent
Password, foruseriD getpw
Password, input getpass
pclose function popen
Pipe, creating pipe
Pipe, openingandclosing popen
pow function exp
Process, alarmclock alarm
Process, creation fork
Process, executionpriority nice
Process, executiontime profile profil
Process, executiontimes times -
Process, groupID setpgrp
Process, limits ulimit
Process, locking inmemory lock
Process, memory allocation sbrk
Process, real and effectiveIDs getuid
Process, suspensionuntil signal pause
Process, temporary suspension nap
Process, temporary suspension sleep
Process, termination abort
Process, termination exit
Process, termination kill
Process, trace ptrace
Process, waiting for childprocess wait
Process, IDs getpid

Stream, string output puts
Strings, operations string
strlen function string
strmcat function string
strncmp function string
stencpy function string
strpbrk function string
strrchr function string
strspnfunction string
strtok function string
System, currentname uname
System, stopping shutdn
System, super—block sync
System, time stime
sys.errlist variable perror
sys_nerr variable perror
tanfunction trig
tanh functioon___ sinh
Terminal, capability functions termcap
Terminal, filenames ctermid
Terminal, name ttyname
tgetflag function termcap
tgetnum function termcap
tgetstr function termcap
tgotofunction termcap
Timeanddate time
toascii function conv
tolower function conv
toupper function conv
tputs function termcap
tzset function ctime
Working directory chdir
Working directory, pathname getcwd
yOfunction bessel
y1 function bessel
ynfunction ‘bessel

INTRO(S) INTRO (8)

1 EPERM Notowner
Typically this error indicates an attempt to modify a file in some
way forbidden except to its owner or super-user. It is also
returned for attempts by ordinary users to do things allowed
only to the super-user.

o

ENOENT No such file or directory
This error occurs when a filename is specified and the file
should exist but doesn’t, or when one of the directories in a
pathname does not exist.

3 ESRCH No such process
No process can be found corresponding to that specified by pid
in kil or ptrace.

4 EINTR Interrupted system call
An asynchronous signal (such as interrupt or quit), which the
user has elected to catch, occurred during a system call. If exe-
cution is resumed after processing the signal, it will appear as if
the interrupted system call returned this error condition.

5 EIO I/O error
Some physical I/O error. This error may in some cases occur on
“a call following the one to which it actually applies.

6 ENXIO No such device or address
I/O on a special file refers to a subdevice which does not exist,
or beyond the limits of the device. It may also occur when, for
example, a tape drive is not on-line or no disk pack is lcaded on
a drive.

7 E2BIG Arg list too long
An argument list longer than 5,120 bytes is presented to a
member of the ezec family.

8 ENOEXEC Exec format error
A request is made to execute a file which, although it has the
appropriate permissions, does not start with a valid magic
number (see a.out(F)).

9 EBADF Bad file number
Either a file descriptor refers to no open file, or a read (respec-
tively write) request is made to a file which is open only for
writing (respectively reading).

10 ECHILD No child processes
A wait, was executed by a process that had no- existing or
unwaited-for child processes.

11 EAGAIN No more processes

A fork failed because the system s process table is full or the
user is not allowed to create any more processes. ‘

March 24, 1984 Page 2

INTRO(S) INTRO (8)

23

24

25
26

27

28

29

30

31

32

33

34

35

36

ENFILE File table overflow
The system’s table of open files is full, and temporarily no more
opens can be accepted.

EMFILE Too many open files
No process may have more than 20 file descriptors open at a
time.

ENOTTY Not a typewriter

ETXTBSY Text file busy

An. attempt to execute a pure-procedure program which is
currently open for writing (or reading). Also an attempt to open
for writing a pure-procedure program that is being executed.

EFBIG File too large
The size of a file exceeded the maximum file size
(1,082,201,088 bytes) or ULIMIT; see ulimi(S).

ENOSPC No space left on device
During a wnte to an ordinary file, there is no free space left on
the device. -

ESPIPE Illegal seek
An lseck was issued to a pipe.

EROFS Read-only file system
An attempt to modify a file or directory was made on a device
mounted read-only.

EMLINK Too many links
An attempt to make more than the maximum number of links
(1000) to a file.

EPIPE Broken pipe

A write on a pipe for which there is no process to read the data.
This condition normally generates a signal; the error is returned
if the signal is ignored.

EDOM Math arg out of domain of func
‘The argument of a function in the math package is out of the
domain of the function.

ERANGE Math result not representable
The value of a function in the math package is not representable
within machine precision.

EUCLEAN File system needs cleaning
An attempt was made to mount(S) a file system whose super-
block is not flagged clean.

EDEADLOCK Would deadlock '
A process’ attempt to lock a file region would cause a deadlock

March 24, 1984 . Page 4

INTRO(S) INTRO(S)

Real User ID and Real Group ID

Each user allowed on the system is identified by a positive integer
called a real user ID.

Each user is also a member of a group. The group is identified by a
positive integer called the real group ID.

An active process has a real user ID and real group ID that are set to
the real user ID and real group ID, respectively, of the user responsi-
ble for the creation of the process.

Effective User ID and Effective Group ID

An active process has an effective user ID and an effective group ID
that are used to determine file access permissions (see below). The
effective user ID and effective group ID are equal to the process’ real
user ID and real group ID respectively, unless the process or. one of
its ancestors evolved from a file that had the set-user-ID bit or set~
group ID bit set; see ezee(S).

Super-User
A process is recognized as a superuser process and is granted special
privileges if its effective user ID is 0.

Spectal Procesece

The processes with a process ID of 0 and a process ID of 1 are special
processes and are referred to as proc0 and procl.

Proc0 is the scheduler. Procl is the initialization process (snst).
Procl is the ancestor of every other process in the system and is
used to control the process structure.

Filename

Names consisting of up to 14 characters may be used to name an
ordinary file, special file or directory.

These characters may be selected from the set of all character values
excluding 0 (null) and the ASCII code for a / (slash).

Note that it is generally unwise to use %, ?, |, or] as part of
filenames because of the special meaning attached to these characters
by the shell. Likewise, the high order bit of the character should not
be set.

March 24, 1984 Page 6

\INTRO(S) : INTRO (S)

match the group ID of the file, and the appropriate access bit of
the ‘‘other” portion (07) of the file mode is set.

Otherwise, the corresponding permissions are denied. See chmod(C)
and chmod(S). ’

See Also

intro(C)

March 24, 1984 ‘ Page 8

ABORT(S) ABORT(S)

Name

abort - Generates an [OT fault.

Syntax

abort ()

Description

Abort causes an I/O trap signal (SIGIOT) to be sent to the calling
process. This usually results in termination with a core dump.

Abort can return control if the calling process is set to catch or
ignore the SIGIOT signal; see signal(S).

See Also
adb(CP), exit(S), signal(S)

Diagnostics

If an aborted process returns control to the shell (eh(C}), the shell
. usually displays the message ‘‘abort ~ core dumped"’.

March 24, 1984 Page 1

—

ACCESS (S) ' ACCESS (8)

Name

access — Determines accessibility of a file.

Syntax

int access (path, amode)
char *path;
int amode;

Description

Patk points to a pathname naming a file. Access checks the named
file for accessibility according to the bit pattern contained in amode,
using the real user ID in place of the effective user ID and the real
group ID in place of the effective group ID. The bit pattern for
amode can be formed by adding any combination of the following:

04 Read

02 Write

01 Execute (search)

00 Check existence of file

Access to the file is denied if one or more of the following are true:
A component of the path prefix is not a directory. [ENOTDIR]

Read, write, or execute (search) permission is requested for a
null pathname. [ENOENT]

The named file does not exist. |[ENOENT]}

Search permission is denied on a component of the path prefix.
[EACCES)]

Write access is requested for a file on a read-only file system.
|[EROFS]

Write access is requested for a pure procedure {shared tcxt) file
that is being executed. [ETXTBSY]

Permission bits of the file mode do not permit the requested
access. |EACCES]

Path points outside the process’ allocated address space.
[EFAULT]

Access checks the permissions for the owner of a file by checking the
‘“‘owner’’ read, write, and execute mode bits. For members of the
file’s group, the ‘‘group’” mode bits are checked. For all others, the
“‘other’’ mode bits are checked.

March 24, 1984 : i Page 1

—

ACCT(S) ACCT(S)

Name

acct — Enables or disables process accounting.

Syntax
int acct (path)
char *path;

Description
Acet is used to enable or disable the system’s process accounting
routine. If the routine is enabled, an accounting record will be writ-
ten on an accounting file for each process that terminates. A process
can be terminated by a call to ezit or by receipt of a signal which it
does not ignore or catch; see ezi(S) and signel(S). The effective
user ID of the calling process must be super-user to use this call.

Path points to the pathname of the accounting file. The accounting
file format is given in acct(F).

The accounting routine is enabled if path is nonzero and no errors
occur during the system call. It is disabled if path is zero and no
errors occur during the system call.

Acet will fail if one or more of the following are true:

The effective user ID of the calling process is not super-user.
[EPERM]

An attempt is being made to enable accounting when it is
already enabled. |EBUSY]

A component of the path prefix is not a directory. [ENOTDIR]

One or more components of the accounting file’s pathname do
not exist. [ENOENT]

A component of the path prefix denies search permission.
[EACCES]

The file named by path is not an ordinary file. [EACCES]

Mode permission is denied for the named accounting file.
|EACCES]

The named file is a directory. |[EACCES)

The named file resides on a read-only file system. |EROFS]

March 24, 1984 ; - Page 1

ALARM (S) : ALARM (8)

\ Name

alarm - Sets a process’ alarm clock.

Syntax
unsigned alarm (séc)
unsigned sec;

Description
Alarm sets the calling process’ alarm clock to sec seconds. After sec
‘‘real-time’’ seconds have elasped, the alarm clock sends a SIGALRM
signal to the process; see signal(S).

Although alarm does not wait for the signal after setting the alarm
clock, pause(S) may be used to make the calling process wait.

Alarm requests are not stacked; successive calls reset the calling pro-
cess’ alarm clock. :

If sec is 0, any pieviously made alarm request is canceled.

Return Value

Alarm returns the amount of time previously remaining in the cal-
ling process’ alarm clock.

See Also

pause(S), signal(S)

March 24, 1984 ' Page 1

ATOF(S) | | ATOF (S)

Name

atof, atoi, atol — Converts ASCII to niumbers.

Syntax

double atof (nptr)
char *nptr;

int atoi (nptr)
char *nptr;

long atol (nptr)
char *nptr;
Description

These functions convert a string pointed to by nptr to floating,
integer, and long integer numbers respectively. The first unrecog-
nized character ends the string.
Atof recognizes a string of the form:

[+]-] digits[. digits][] E{ + | -] digits]
where the digits are continguous decimal digits. Any number of tabs
and spaces may precede the string. The + and - signs are optional.
Either e or E may be used to mark the beginning of the exponent.
Atos and atol recognize strings of the form:

[+]-] digits
where the digits are contiguous decimal digits. Any number of tﬁbs
and spaces may precede the string. The + and - signs are
optional.

See Also
-scanf(S)

Notes

There are no provisions for overflow.

March 24, 1984 _ _ : Page 1

BSEARCH (8) | . BSEARCH (8)

Name

bsearch — Performs a binary search.

Syntax

char *bsearch (key, base, nel, width, compar)
char *key;

char *base;

int nel, width;

int {*compar)();

Description

Bsearch is a binary search routine generalized from Knuth (6.2.1)
Algorithm B. It returns a pointer into a table indicating the location
at which a datum may be found. The table must be previously
sorted in increasing order. The first argument is a pointer to the
datum to be located in the table. The second argument is a pointer
to the base of the table. The third is the number of elements in the
table. The fourth is the width of an element in bytes. The last argu-
ment is the name of the comparison routine. It is called with two
arguments which are pointers to the elements being compared. The
routine must return an integer less than, equal to, or greater than 0,
depending on whether the first argument is to be considered less
than, equal to, or greater than the second.

Return Value

If the key cannot be found in the table, a value of 0 is returned.

See Also
Isearch(S), qsort(S) -

March 24, 1984 Page 1

CHMOD (S) CHMOD ()

Name

chmod ~ Changes mode of a file.

Syntax ‘

int chmod (path, mode)
char *path;
int mode;

Description

Path points to a pathname naming a file. Chmod sets the access per-
mission portion of the named file’s mode according to the bit pattern
contained in mode.

Access permission bits for mode can be formed by adding any combi-
nation of the following:

04000 Set user ID on execution
02000 Set group ID on execution
01000 Save text image after execution
00400 Read by owner

00200 Write by owner

00100 Execute. (or search if a directory) by owner
00040 Read by group

00020 Write by group

00010 Execute (or search) by group
00004 Read by others

00002 Write by others

00001 Execute (or search) by others

To change the mode of a file, the effective user ID of the process
‘must match the owner of the file or must be super-user.

If the effective user ID of the process is not super-user, mode bit
01000 (save text image on execution) is cleared.

If the effective user ID of the process is not super-user or the
effective group ID of the process does not match the group ID of the
file, mode bit-02000 (set group ID on execution) is cleared.

If an executable file is prepared for sharing, then mode bit 01000
prevents the system from abandoning the swap-space image of the
program-text portion of the file when its last user terminates. Thus,
when the next user executes the file, the text need not be read from
the file system but can simply be swapped in, saving time. Many
systems have relatively small amounts of swap space, and the same-
text bit should be used sparingly, il at all.

March 24, 1984 Page 1

CHOWN (S) CHOWN(S)

Name

chown - Changes the owner and group of a file.

 Syntax
int chown (path, owner, group)
char *path;
int owner, group;
Description
Path points to a pathname naming a file. The owner ID and group
ID of the named file are set to the numeric values contained in

owner and group respectively.

Only processes with an effective user ID equal to the file owner or
super-user may changé the ownership of a file.

If ¢hown is invoked by other than the super-user, the set-user-ID
and set-group-ID bits of the file mode, 04000 and 02000 respectively,
will be cleared.

Chown will fail and the owner and group of the named file will
~ remain unchanged if one or more of the following are true:

A component of the path prefix is not a directory. [ENOTDIR]
The named file does not exist. [ENOENT]

Search permission is denied on a component of the path prefix.
- [EACCES]

The effective user ID does not match the owner of the file, and
the effective user ID is not super-user. [EPERM)]

The named file resides on a read-only file system. [EROFS]

Path points outside the process’ allocated address space.
[EFAULT] . ,

Return Vaiue

Upon successful completion, a value of 0 is returned. Otherwise, a
value of - 1is returned and errno is set to indicate the error.

See Also
chmod(S)

March 24, 1984 . Page 1

CHSIZE (S) _ CHSIZE (8S)

Name

chsize - Changes the size of a file.

- Syntax

int chsize (fildes, size) ‘
int fildes;
long size;

Description

Fildes is a file descriptor obtained from a creat, open, dup, fentl, or
pipe system call. Cheize changes the size of the file associated with
the file descriptor fildes to be exactly sze bytes in length. The rou-
tine either truncates the file, or pads it with an appropriate number
of bytes. If size is less than the initial size of the file, then all allo-
cated disk blocks between size and the initial file size are freed.

The maximum file size as set by ulimit(S) is enforced when chsize is
called, rather than on subsequent writes. Thus cheize fails, and the
“file size remains unchanged if the new changed file size would
exceed the ulimit.

Return Value -
Upon successful completion, a value of 0 is returned. Otherwise,
the value - 1 is returned and ermo is set to indicate the error.

See Also
creat(S), dup(S), lseek(S), open(S), pipe(S), ulimit(S)

Notes

In general if chsaize is used to expand the size of a file, when data is
written to the end of the file, intervening blocks are filled with zeros.
In a few rare cases, reducing the file size may not remove the data
beyond the new end-of-file.

March 24, 1984 Page 1

CONV (S) | CONV (8)

Name

conv, toupper, tolower, toascii - Translates characters.

Syntax

#include <ctype.h>

int toupper (c)
int c;

int tolower (c)
int c;

int _toupper (c)
int c;

int _tolower (c)
int c; g

int toascii (c)
int c;

Description

See

Toupper and tolower convert the argument ¢ to a letter of opposite
case. Arguments may be the integers - 1 through 255 (the same
values returned by getc(S)). If the argument of toupper represents a
lowercase letter, the result is the corresponding uppercase letter. If
the argument of tolower represents an uppercase letter, the result is
the corresponding lowercase letter. All other arguments are returned
unchanged.

_toupper and _tolower are macros that accomplish the same thing as
toupper and tolower but have restricted argument values and are fas-
ter. _toupper requires a lowercase letter as its argument; its result is
the corresponding uppercase letter. _tolower requires an uppercase
letter as its argument; its result is the corresponding lowercase letter.
All other arguments cause unpredictable results.

Toascti converts integer values to ASCII characters. - The function

clears all bits of the integer that are not part of 2 standard ASCII
character; it is intended for compatibility with other systems.

Also

ctype(S)

March 24, 1984 Page'1

CREAT(S) ’ CREAT(S)

Name

creat - Creates a new file or rewrites an existing one.

Syntax

int creat (path, mode)
char *path;
int mode;

Description

Creat creates a new ordinary file or prepares to rewrite an existing
file named by the pathname pointed to by path.

If the file exists, the length is truncated to 0 and the mode and
owner are unchanged. Otherwise, the file's owner ID is set to the
process’ effective user ID, the file’s group ID is set to the process’
effective group ID, and the access permission bits (i.e., the low-order
12 bits of the file mode) are set to the value of moede. Mode may
has the same values as described for chimod(S). Creat will then
modify the access permission bits as follows:

All bits set in the process’ file mode creation mask are cleared.
See umask(S).

The ‘‘save text image after execution bit” is cleared. See
chmod(S).

Upon successful completion, a nonnegative integer, namely the file
descriptor, is returned and the file is open for writing, even if the
mode does not permit writing. The file pointer is set to the begin-
ning of the file. The file descriptor is set to remain open across ezec
system calls. See fentl(S). No process may have more than 20 files
open simultaneously. A new file may be created with a mode that
forbids writing.
Creat will fail if one or more of the following are true:

A component of the path prefix is not a directory. [ENOTDIR]

A component of the path prefix does not exist. [ENOENT)

Search permission is denied on a component of the path prefix.
|EACCES)

The pathname is null. [ENOENT]

The file does rot exist and the directory in which the file i is to
be created does not permit writing. |EACCES]

March 24, 1984 Page 1

CREATSEM (S) CREATSEM (S)

Name

creatsem - Creates an instance of a binary semaphore.

Syntax

sem_num = creatsem(sem_name,mode);
int sem_num,mode
char *sem_name;

Description

Creatsem defines a binary semaphore named by gem_name to be used
by wastsem(S) and sigeem(S) to manage mutually exclusive access to
a resource, shared variable, or critical section of a program.
Creatsem returns a unique semaphore number sem_num which may
then be used as the parameter in wastsem and sigeem calls. Sema-
phores are special files of 0 length. The filename space is used to
provide unique identifiers for semaphores. Mode sets the accessibil-
ity of the semaphore using the same format as file access bits.
Access to a semaphore is granted only on the basis of the read
access bit; the write and execute bits are ignored.

A semaphore can be operated on only by a synchronizing primitive,
such as waitsem or eigeem, by creatsem which initializes it to some
value, or by opensem which opens the semaphore for use by a pro-
cess. Synchronizing primitives are guaranteed to be executed
without interruption once started. These primitives are used by
associating a semaphore with each resource (including critical code
sections) to be protected.

The process controlling the semaphore should issue
sem_num = creatsem("semaphore”, mode);

to create, initialize, and open the semaphore for that process. All
other processes using the semaphore should issue

sem_num = opensem("semaphore”)
to access the semaphore’s identification value. Note that a process
cannot open and use a semaphore that has not been initialized by a
call to creatsem, nor should a process open a semaphore more than

once in one period of execution. Both the creating and opening
processes use wastsem and sigsem to use the semaphore sem_num.

See Also

opensem($S), waitsem(S}), sigsem(S).

March 24, 1984 ~ Page 1

CRYPT(S) CRYPT(S)

Name

crypt, setkey, encrypt — Performs encryption functions.

Syntax

char *crypt (key, salt)
char ®*key, *salt;

setkey (key)
char *key;

encrypt (block, edflag)
char *block;
int edflag;

Description

Crypt is the password encryption routine. It is based on the NBS
Data Encryption Standard (DES), with variations intended (among
other things) to frustrate use of hardware implementations of the
DES for key search.

The first argument to erypt is a user’s typed password. The second is
a 2-character string chosen from the set [a-zA-Z0-9./]; this salt
string is used to perturb the DES algorithm in one of 4096 different
ways, after which the password is used as the key to encrypt repeat-
edly a constant string. The returned value points to the encrypted
password, in the same alphabet as the salt. The first two characters
are the salt itself.

The setkey and encrypt entries provide access to the actual DES algo-
rithm. The argument of setkey is a character array of length 64 con-
taining only the characters with numerical value 0 and 1. If this
string is divided into groups of 8; the low-order bit in each group is
ignored, leading to a 56-bit key which is set into the machine.

The argument to the encrypt entry is likewise a character array of
length 64 containing zeroes and ones. The argument array is
modified in place to a similar array representing the bits of the argu-
ment after having been subjected to the DES algorithm using the key
set by setkey. If edflag is 0, the argument is encrypted; if nonzero, it
is decrypted.

See Also

passwd(C), getpass(S), passwd(M)

March 24, 1984 - Page 1

CTERMID (S) CTERMID (8)

Name

ctermid — Generates a filename for a terminal.

Syntax
#include <stdio.h>

char *ctermid(s)
char *s;

Description

Ctermid returns a pointer to a string that, when used used as a
filename, refers to the controlling terminal of the calling process.

If (int)s is zero, the string is stored in an internal static area, the
contents of which are.overwritten at the next call to ctermid, and the
address of which is returned. If (int)e is nonzero, then ¢ is assumed
to point to a character array of at least L_ctermid elements; the
string is placed in this array and the value of & is returned. The
manifest constant L_ctermid is defined in <stdio.h>.

Notes
The difference between ctermid and ttyname(S) is that ttyname must
be given a file descriptor and it returns the actual name of the termi-
nal associated with that file descriptor, while ctermid returns a magic
string { /dev/tty) that will refer to the terminal if used as a filename.
Thus ttyname is useless unless the process already has at least one
file open to a terminal.

See Also

ttyname(S)

March 24, 1984 ~ Page 1

CTIME () , CTIME (S)

The structure declaration for tmis defined in Jusr/include/time.h.

The external long variable &imezone contains the difference, in
seconds, between GMT and local standard time (e.g., in Eastern
Standard Time (EST), timezone is 5*60*60); the external integer vari-
able daylight is nonzero if and only if the standard U.S.A. Daylight
Savings Time conversion should be applied. The program knows
about the peculiarities of this conversion in 1974 and 1975.

If an environment variable named TZ is present, aectime uses the
contents of the variable to override the default time zone. The
value of TZ must be a three-letter time zone name, followed by a
number representing the difference between local time (with optional
sign) and Greenwich time in hours, followed by an optional three-
letter name for a daylight time zone. For example, the setting for
New Jersey would be ESTSEDT. The effects of setting TZ are thus to
change the values of the external variables timezone and daglight. In
addition, the time zone names contained in the external variable

char *tzname[2] = {"EST”, "EDT"};
are set from the environment variable. The function tzeet sets the
external variables from TZ ; it is called by aectime and may also be
called explicitly by the user.
See Also

time(S), getenv(S), environ(M)
Notes

The return values point to static data those content is overwritten by
each call.

March 24, 1984 Page 2

CTYPE (S) CTYPE (S)
See Also

ascii(M)

 March 24, 1984 Page 2

CURSES (S) CURSES (S)

nl() Sets newline mapping
nocrmode() Unsets cbreak mode

noecho() Unsets echo mode

nonl() Unsets newline mapping
noraw() Unsets raw mode
overlay(winl,win2) Overlays winl on win2
overwrite(winl,win2) Overwrites winl on top of win2'
printw({fmt,argl,arg2,..) Printfs on stdscr

raw() Sets raw mode

refresh() Makes current screen look like stdscr
restty() Resets tty flags to stored value
savetty() Stored current tty flags
scanw(fmt,argl,arg2,...) Scanf through stdscr

scroll(win) Scrolls win one line

scrollok(win,boolf) Sets scroll flag

setterm(name) Sets term variables for name
unctrl(ch) Printable version of ¢k
waddch(win,ch) Adds char to win

waddstr(win,str) Adds string to win

weclear(win) " Clear win

welrtobot{ win) Clears to bottom of win
wclrtoeol(win) Clears to end of line on win
werase(win) Erase win

wgetch(win) Gets a char through win
wgetstr(win,str) Gets a string through win
winch(win) Gets char at current (y,x) in win
wmove(win,y,x) Sets current (y,x) co-ordinates on win
wprintw(win,fmt,argl,arg2,...) Printf on win

wrefresh(win) Makes screen look like win

wscanw(win,fmt,argl,arg2,...)Scanf through win
Credit

This utility was developed at the University of California at Berkeley
and is used with permission.

~ March 27, 1984 Page 2

DBM (S) ~ DBM (8)

Name

dbminit, fetch. store, delete, firstkey, nextkey — Performs database
functions. .

Syntax
typedef struct { char *dptr; int dsize; } datum;

dbminit(file)
char *file;

datum fetch(key)
datum key;

store(key, content)
datum key, content;

delete{ key)
datum key;

datum firstkey();

datum nextkey(key); -
datum key;

Description

These functions maintain key/content pairs in a database. The func-
tions will handle very large (a billion blocks) databases and will
access 3 keyed item in one or two file system accesses. The func-
tions are obtained with the loader option — 1dbm.

Keys and contents are described by the detum typedef. A datum
-specifies a string of desze bytes pointed to by ‘dptr. Arbitrary binary
data, as well as normal ASCII strings, are allowed. The database is
stored in two files. One file is a directory containing a bit map and
has ‘‘.dir” ss its suffix. The second file contains all data and has
. pag’’ as its suffix.

Before a database can be accessed, it must be opened by dbmsnit. At
the time of this call, the files file.dir and file.pag must exist. (An
empty database is created by creating zero-length ‘‘.dir’’ and *‘.pag”’
files.)

Once open, the data stored under a key is accessed by fetch and data
is placed under a key by store. A key (and its associated contents) is
deleted by delete. A linear pass through all keys in a database may
be made, in an (apparently) random order, by use of firstkey and
neztkey. Firstkey will return the first key in the database. With any
key neztkey will return the next key in the database. This code will

March 24, 1984 Page 1

' DEFOPEN (S) DEFOPEN (S)
Name

defopen, defread - Reads default entries.

Syntax

int defopen(filename)
char *filename;

char *defread(pattern)
char *pattern;

Description

Defopen and defread are a pair of routines designed to allow easy
access to default definition files. XENIX is normally distributed in
binary form; the use of default files allows OEMS or site administra-
tors to customize utility defaults without having the source code.

Defopen opens the default file named by the -pathname in filename.
Defopen returns null if it is successful in opening the file, or the
Jopen failure code (erro) if the open fails.

Defread reads the previously opened file from the beginning until it
encounters a line beginning with pattern. Defread then returns a
pointer to the first character in the line after the initial pattern. If a
trailing newline character is read it is replaced by a null byte.

When all items of interest have been extracted from the opened file
the program may call defopen with the name of another file to be
searched, or it may call defopen with NULL, which closes the default
file without opening another.

Files
The XENIX convention is for a system program zyz to store its
defaults (if any) in the file fetc/default/xyz.

‘ Diagnostics

Defopen returns zero on success and nonzero if the open fails. The
return value is the ermo value set by fopen (S).

Defread returns NULL if a default file is not open, if the indicated

pattern could not be found, or if it encounters any line in the file
greater than the maximum length of 128 characters.

March 24, 1984 Page 1

ECVT(S) ECVT(S)

Name

ecvt, fevt, gevt — Performs output conversions.

Syntax

char ®*ecvt (value, ndigit, decpt, sign)
double value; i
int ndigit, *decpt, *sign;

char *fcvt (value, ndigit, decpt, sign)
double value;
int ndigit, *decpt, *sign;

char *gcvt (vaiue, ndigit, buf)
double value;
char *buf;

Description

- Eewt converts the value to a null-terminated string of ndigit ASCII
digits and returns a pointer to the string. The position of the
decimal point relative to the beginning of the string is stored
indirectly through decpt (negative means to the left of the returned
digits}. If the sign of the result is negative, the word pointed to by
- sign is nonzero, otherwise it is zero. The low-order digit is rounded.

Feot is identical to ecof, except that the correct digit has been
-rounded -for FORTRAN F format output of the number of digits
specified by ndigits.

Geut converts the value to a null-terminated ASCII string in buf and
returns a pointer to buf. It attempts to produce ndigit significant
digits in FORTRAN F format if possible, otherwise E format, ready
for printing. Trailing zeros may be suppressed.

See Also

printf(S)
Notes -

The return values point to static data whose content is overwritten
by each call.

March 24, 1984 Page 1

EXEC(S) EXEC(S)

Envp is an array of character pointers to null-terminated strings.
These strings constitute the environment for the new process. Envp
. is terminated by a null pointer.

File descriptors open in the calling process remain open in the new
process, except for those whose close-on-exec flag is set; see
Jentl(S). For those file descriptors that remain open, the file pointer
is unchanged.:

Signals set to terminate the calling process will be set to terminate
the new process. Signals set to be ignored by the calling process will

be set to be ignored by the new process. Signals set to be caught by
the calling process will be set to terminate new process; see

signal(S).

If the set-user-ID mode bit of the new process file is set (see
¢hmod(S)), ezec sets the effective user ID of the new process to the
owner ID of the new process file. Similarly, if the set-group-ID
mode bit of the new process file is set, the effective group ID of the
new process is set to the group ID of the new process file. The real
user ID and real group ID of the new process remain the same as
those of the calling process.

Profiling is disabled for the new process; see profz?(S).

The new process also inherits the following attributes from the cal-
ling process:

Nice value (see nice(S))

Process ID |

Parent process ID

Process group ID

tty group ID (see ezit(S) and signal(S}))
Trace flag (see ptrace(S) request 0)
Time left until an alarm clock signal (see alarm(S))
Curreﬁb working directory

Root difectory

File mode creation mask (see umask(S))
File size limit (see ulimit(S))

. utime, stime, cutime, and cstime (see times(S))

March 24, 1984 Page 2

——

EXEC(S) EXEC(S)

Search permission is denied for a directory hsbed in the new pro-
cess file’s path prefix. |EACCES]

The new process file is not an ordinary file. [EACCES]

The new process file mode demes execution permission.
[EACCES]

The new process file has the appropriate access permission, but
has an invalid magic number in its header. |[ENOEXEC]

" The new process file is a pure procedure (shared text) file that is
currently open for writing by some process. [ETXTBSY]

The new process requires more memory than is allowed by the
system-imposed maximum.. [ENOMEM]|

The number of bytes in the new process’ argument list is greater
than the system-imposed limit of 5120 bytes. [E2BIG]

The new process file is not as long as indicated by the size
values in its header. [EFAULT]

Path, argv, or eavp point to an illegal address. [EFAULT)

Return Value

If ezec returns to the calling process an error has occurred; the
return value will be — 1 and ermo will be set to indicate the error.

See Also
exit(S), fork(S)

March 24, 1984 : Page 4

EXP (8) ‘ EXP(S)

Name
exp, log, pow, sqrt, logl0 .~ Performs exponential, logarithm,
power, square root functions.

Syntax
#include <math.h>

double exp (x)
double x;

double log (x)
double x;

double pow (x, y)
double x, y;

double sqrt (x)
double x;

‘double logl0 (x)
double x;
Description
Ezp returns the exponential function of z.
Log returns the natural logarithm of 2.
y

Pow returns z7,

Sqrt returns the square root of z.

See Also
intro(S), hypot(S), sinh(S)

Diagnostics

Ezp and pow return a huge value when the correct value would
overflow. A truly outrageous argument may also result in ermo
being set to ERANGE . Log returns a huge negative value and sets
errno to EDOM when 2z is nonpositive. Pow returns a huge negative
value and sets errmo to EDOM when z is nonpositive and y is not an
integer, or when z and y are both zero. S¢rt returns 0 and sets errno
to EDOM when z is negative.

" March 24, 1984 - Page 1l

FONTL (8)

Name

FONTL (S)

fentl — Controls open files.

Syntax

#include <fentl.h>

int fentl (fildes, cmd, arg)
int fildes, cmd, arg; '

Description

Fentl provides for control over open files. Fildes is an open file
descriptor obtained from a creat, open, dup, fentl, or pipe system call.

The emds available are:

F_DUPFD

F_GETFD

F_SETFD

F_GETFL

F_SETFL

March 24, 1984

Returns a new file descriptor as follows:

Lowest numbered available file descriptor greater than
or equal to arg.

Same open file {or pipe) as the original file.

Same file pointer as the original file (i.e., both file
descriptors share one file pointer). ‘

Same access mode (read, write or read/write).

Same file status flags (i.e., both. file descriptors share
the same file status flags).

The close-on-exec flag associated with the new file
descriptor is set to remain open across ezec(S) system
calls.

Gets the close-on-exec flag associated with the file
descriptor fildes. If the low-order bit is O the file will
remain open across ezec, otherwise the file will be
closed upon execution of ezec.

Sets the close-on-exec flag associated with fildes to the
low-order bit of arg (0 or 1 as above).

Gets fille status flags.

Sets file status flags to arg. Only certain flags can be
set.

Page 1

—

——

FERROR (S) FERROR (S)
Name

ferror, feof, clearerr, fileno - Determines stream status.
Syntax

#include <stdio.h>

int feof (stream)
FILE ®*stream;

int ferror (stream)
FILE *stream

clearerr (stream)
FILE *stream

int fileno(stream)
FILE ®stream;
Description

Feof returns nonzero when end-of-file is read on the named input
stream, otherwise zero.

Ferror returns nonzero when an error has occurred reading or writ-
ing the named stream, otherwise zero. Unless cleared by eclearerr,
the error indication lasts until the stream is closed.

Clearerr resets the error indication on the named stream.

Fileno returns the integer file descriptor associated with the stream,
see open(S).

Feof, ferror, and ﬁleno are implemented as macros; they cannot be
redeclared.

See Also

open(S); fopen(S)

March 24, 1984 " Page 1

FOPEN (S) FOPEN (8S)
' Name

- fopen, freopen, fdopen - Opens a stream.

Syntax
#include <stdio.h>

FILE *fopen (filename, type)
char *filename, *type;

FILE *freopen (filename, type, stream)
char *filename, *type;
FILE *stream;
FILE *fdopen (fildes, type)
int fildes;
char *type;
Description .
Fopen opens the file named by filename and associates a stream with
it. Fopen returns a pointer to be used to identify the stream in sub-
sequent operations. ‘ '
Type is a character string having one of the following values:
r Open for reading
w Create for writing
a Append; open for writing at end of file, or create for writing
r+ Open for update (reading and writing)
w+ Create for update
a+ Append; open or create for update at end of file
Freopen substitutes the named file in place of the open stream. It
returns the original value of stream. The original stream is closed,

regardless of whether the open call ultimately succeeds.

Freopen is typically used to attach the preopened constant names
stdin, stdout, and stderr to specified files,

Fdopen associates a stream with a file descriptor obtained from open,
dup, creat, or pipe(S). The type of the stream must agree with the
mode of the open file. The type must be provided because the stan-
dard 1/0 library has no way to query the type of an open file descrip-
tor. Fdopen returns the new stream.

March 24, 1984 Page 1

FORK (8) FORK(S)

Name

fork - Creates a new process.

Syntax

int fork ()

Description
Fork causes creation of a new process. The new process (child pro-
cess) is an exact copy of the calling process { parent process) except
for the following:

The child process has a unique process ID.

The child process has a different parent process ID (1e the pro-
cess ID of the parent process).

The child process has its own copy of the parent’s file descrip-
tors. Each of the child’s file descriptors shares a common file
pointer with the corresponding file descriptor of the parent.

The child process’ utime, stime, cutime, and cestime are set to O;
see times(S).

The time left on the parent’s alarm clock is not passed on to the
child.

Fork returns a value of 0 to the child process.

Fork returns the process ID of the child process to the parent pro-
cess.

Fork will fail and no child process will be created if one or more of
the following are true:

The system-imposed limit on the total number of processes
under execution would be exceeded. [EAGAIN]

The system-imposed limit on the total number of processes
under execution by a single user would be exceeded. [EAGAIN]

Not enough memory is available to create the forked image.
[ENOMEM]

Return Value

Upon successful completion, fork returns a value of 0 to the child
process and returns the process ID of the child process to the parent

March 24, 1984 Page 1

FREAD (8) FREAD (S)

Name

fread, fwrite — Performs buffered binary input and output.

Syntax
#include <stdio.h>

int fread ((char *) ptr, sizeof (*ptr), nitems, stream)
FILE *stream;

int fwrite ((char *) ptr, sizeof ("ptr), nitems, stream)
FILE *stream;

Description
Fread reads, into a block beginning at ptr, nitems of data of the type
of *ptr-from the named input stream. It returns the number of items
actually read.
Fuwrite appends at most niteme of data of the type of *ptr beginning at
ptr to the named output stream. It returns the number of items
actually written. ,

See Also

read(S), write(S), fopen(S), gete(S), pute(S), gets(S), puts(S),
printf(S}, scanf(S)

March 24, 1984 Page 1

FSEEK (S) - FSEEK (S)

Name

fseek, ftell, rewind ~ Repositions a stream.

Syntax
#include <stdio.h>
int fseek (stream, offset, ptrname)
FILE *stream;
long offset;

int ptrname;

long ftell (stream)
FILE *stream;

rewind(stream)
FILE *stream;

Description
Faeek sets the position of the next input or output operation on the
stream. The new position is at the signed distance offset bytes from
the beginning, the current position, or the end of the file, according
as ptrname has the value 0, 1, or 2.

Fseek undoes any effects of ungete(S).

After fseek or rewind, the next operation on an update file may be
either input or output.

Ftell returns the current value of the offset relative to the beginning
of the file associated with the named stream. The offset is measured
in bytes. i

Rewind(stream) is equivalent to feeek(stream, OL, 0).

See Also
Iseek(S), fopen(S)

Diagnostics

Feeek returns nonzero for improper seeks, otherwise zero.

March 24, 1884 Page 1

GETC(S) , GETC (8)

Name

- gete, getchar, fgete, getw — Gets character or word from a stream.

. Synta.x
#include <stdio.h>

int getc (stream)
FILE *stream;

L]
int getchar ()

int fgetc (stream)
FILE *stream;

int getw (stream)
FILE *stream;

Description
Gete returns the next character from the named input stream.
Getchar() is identical to gete(stdin).
Fgete behaves like gete, but is a genuine function, not a macro; it
may therefore be used as an argument. Fgetc runs more slowly than
gete, but takes less space per invocation.
Getw returns the next word from the named input stream. It returns
the constant EOF upon end-of-file or error, but since that is a valid

integer value, feof and ferror(S) should be used to check the success
of getw. Getw assumes no special alignment in the file.

See Also
ferror(S), fopen(S), fread(S), gets(S), pute(S), scanf(S)

Diagnostics
These functions return the integer constant EOF at the end-of-file or
upon a read error.

Notes
Because gete is implemented as a macro, stream arguments with side

effects are treated incorrectly. In particular, *“‘getc(*f+ + })** doesn’t
work properly.

March 24, 1984 _ Page 1

GETENV(S) GETENV (S)

Name

getenv — Gets value for environment name.

Syntax
char *getenv (name)
char *name;

Description
Getenv searches the environment list (see environ(M)) for a string of
the form name==value and returns value if such a string is present,
otherwise 0 (NULL). ,

See Also
sh(C), exec(S)

March 24, 1984 Page 1

GETGRENT (S) GETGRENT(8)
See Also

getlogin(S), getpwent(S), group(M)

Diagnostics

A null pointer (0) is returned on end-of-file or error.
Notes

All information is contained in a static area, so it must be copied if it
is to be saved.

March 24, 1984 Page 2

GETOPT(S) GETOPT(S)

Name

getopt — Gets option letter from argument vector.

Syntax
#include <stdio.h>

int getopt (argc, argv, optstring)
int argc; ,

char **argv;

char *optstring;

extern char *optarg;

extern int optind;

Description

Getopt returns the next option letter in argv that matches a letter in
optetring. Optstring is a string of recognized option letters; if a letter
is followed by a colon, the option is expected to have an argument
that may or may not be separated from it by whitespace. Optarg is
set to point to the start of the option argument on return from

getopt.

Getopt places in optind the argv index of the next argument to be
processed. Because optind is external, it is normally initialized to
zero automatically before the first call to getopt.

When - all options have been processed (i.e., 'up to the first nonoption
argument), getopt returns EOF. The special option -- may be used to
delimit the end of the options; EOF will be returned, and -- will be
skipped.
Diagnostics
Getopt prints an error message on stderr and returns a question mark
(?) when it encounters an option letter not included in optstring.
Examples
The following code fragment shows how one might process the argu-

ments for a command that can take the mutually exclusive options a
and b, and the options f and o, both of which require arguments:

March 24, 1984 ~ Pagel

GETPASS (S) . GETPASS (S)

Name

getpass —~ Reads a password.

Syntax

char *getpass (prompt)
char *prompt;

Description
Qetpass reads a password from the file /dev/tty, or if that cannot be
opened, from the standard input, after prompting with the null-

terminated string prompt and disabling echoing. A pointer is
returned to a null-terminated string of at most eight characters.

Files
[dev /ity

See Also

crypt(S)
Notes

The return value points to static data whose content is overwritten
by each call.

March 24, 1984 Page 1

GETPW () | GETPW(S)

Name

getpw — Gets password for a given user ID.

Syntax
getpw (uid, buf)
int uid;
char *buf;
Description
Getpw searches the password file for the uid, and fills in buf with the

- corresponding line; it returns nonzero if uid could not be found.
The line is null-terminated. Uid must be an integer value.

Files

[ete/passwd

See Also

getpwent(S), passwd(M)

Diagnostics

Returns nonzero on error.
Notes

This routine is included only for compatibility with prior systems and
should not be used; see getpwent(S) for routines to use instead.

March 24, 1984 ‘ Page 1

GETPWENT(S) GETPWENT(S)
Diagnostics

Null pointer (0) returned on EOF or error.

Notes

All information is contained in a static area so it must be copied if it
is to be saved.

March 24, 1984 - Page 2

GETUID (S) GETUID (S)

Name

getuid, geteuid, getgid, getegid — Gets real user, effective user, real

group, and effective group IDs,

‘Syntax
int getuid ()
int geteuid ()
int getgid ()

int getegid ()

Description
Getuid returns the real user ID of the calling process.
Geteuid returns the effective user ID of the calling process.

Getgid returns the real group ID of the calling process.

Getegid returns the effective group ID of the calling process.

See Also
intro(S}, setuid(S)

March 24, 1984

Page 1

+IOCTL () I10CTL ()

Name

ioctl - Controls character devices.

“mtax
#include <sys fioctl.h>
ioctl(fildes, request, arg)
int fildes;
Description
loctl performs a variety of functions on character special files (dev-
ices). The writeups of various devices in Section M discuss how soctl
applies to them.
Toctl will fail if one or more of the fol]owing are true:

Fides is not a valid open file descriptor. |[EBADF)]

Fides is not associated with a character special device.
[ENOTTY]

Reguest or arg is not valid. See #y(M). [EINVAL}
Return Value
If an error has occurred, a value of — 1 is returned and errmo is set

to indicate the error.

See Also
tty(M)

March 24, 1984 Page 1

KILL (8) KILL (S)

The sending process is not sending to itself, its effective user ID
is not super-user, and its effective user ID does not match the
real user ID of the receiving process. |EPERM)]

Return Value

Upon successful completion, a value of 0 is returned. Otherwise, a
value of — 1 is returned and errno is set to indicate the error.

See Also

kill(C), getpid(S), setpgrp(S), signal(S)

March 24, 1984 Page 2

LINK (S) LINK (S)

Name

link - Links a new filename to an existing file.

Syntax
int link (pathl, path2)
char *pathl, *path2;

Description
Path! points to a pathname naming an existing file. Path2 points to
a pathname giving the new filename to be linked. Link makes a new
link by creating a new directory entry for the existing file using the
new name. The contents of the existing file can then be accessed

using either name.

Link will fail and no link will be created if one or more of the fol-
lowing are true:

A component of either path prefix is not a directory. [ENOTDIR]
A component of either path prefix does not exist. [ENOENT]

A component of either path prefix denies search permission.
[EACCES)

The file named by patk! does not exist. [ENOENT]
The link named by path2 already exists. |EEXIST)

The file named by patk! is a directory and the effective user ID
is not super-user. [EPERM]

The link named by path2 and the file named by path! are on
different logical devices (file systems). [EXDEV]

- Path2 points to a null pathname. [ENOENT)

The requested link requires writing in a directory with a mode
that denies write permission. [EACCES]

The requested link requires writing in a directory on a read-only
file system. |[EROFS]

Path points outside the process’ allocated address space.
[EFAULT

March 24, 1984 ‘ Page 1

LOCK (S) LOCK (S)

Name

lock - Locks a process in primary memory.

Syntax
lock(flag)

Description

If the flag argument is nonzero, the process executing this call will
not be swapped except if it is required to grow. If the argument is
zero, the process is unlocked. This call may only be executed by the
super-user.

Notes

Locked processes interfere with the compaction of primary memory
and can cause deadlock. Systems with small memory configurations
should avoid using this call. It is best to lock process soon after
booting because that will tend to lock them into one end of memory.

March 24, 1984 Page 1

LOCKING (§) , LOCKING (S)

LK_NBLCK 2
Locks the specified region. If any part of the region is already
locked by a different process, return the error EACCES instead
of waiting for the region to become available for locking (non-
blocking lockrequest).

LK _RLCK 3
Same as LK _LOCK except that the locked region may be read by
other processes (read permitted lock).

LK_NBRLCK 4
Same as LK_NBLCK except that the locked region may be read
by other processes (nonblocking, read permitted lock).

Size is the number of contiguous bytes to be locked or unlocked.
The region to be locked starts at the current offset in the file. If aize
is 0, the entire file (up to a maximum of 2 to the power of 30 bytes)
is locked or unlocked. Size may extend beyond the end of the file,
in which case only the process issuing the lock call may access or add .
information to the file within the boundary defined by size.

The potential for a deadlock occurs when a process controlling a
locked area is put to sleep by accessing another process’ locked area.
Thus calls to locking, read, or wnte scan for a deadlock prior to sleep-
ing on a locked region. An error return is made if sleeping on the
locked region would cause a deadlock.

Lock requests may, in whole or part, contain or be contained by a
previously locked region for the same process. When this occurs, or
when adjacent regions are locked, the regions are combined into a
single area if the mode of the lock is the same (i.e.; either read per-
mitted or regular lock). If the mode of the overlapping locks differ,
the locked areas will be assigned assuming that the most recent
request must be satisfied. Thus if a read only lock is applied to a
region, or part of a region, that had been previously locked by the
same process against both reading and writing, the area of the file
specified by the new lock will be locked for read only, while the
remaining region, if any, will remain locked against reading and writ-
ing. There is no arbitrary limit to the number of regions which may
be locked in a file. There is however a system-wide limit on the
total number of locked regions. This limit is 200 for XENIX systems.

Unlock requests may, in whole or part, release one or more locked
regions controlled by the process. When regions are not fully
released, the remaining areas are still locked by the process. Release
of the center section of a locked area requires an additional locked
element to hold the separated section. If the lock table is full, an
error is returned, and the requested region is not released. Only the
process which locked the file region may unlock it. An unlock
request for a region that the process does not have locked, or that is
already unlocked, has no effect. When a process terminates, all
locked regions controlled by that process are unlocked.

March 24, 1984 » Page 2

LOGNAME(S) . LOGNAME (S)

Name

logname - Finds login name of user.

Syntax

char *logname();

Description
Logname returns a pointer to the null-terminated login name. It

uses the string found in the LOGNAME variable from the user’s
environment.

Files

Jetc/profile

See Also
env(C), login(M), profile(M), environ(M)

March 24, 1984 Page 1

LSEEK (8S) LSEEK (8)
Name

lseek - Moves read/write file pointer.

Syntax
long Iseek (fildes, offset, whence)
int fildes;
long offset;
int whence;
Description -
Fides is a file descriptor returned from a creat, open, dup, or fent
system call. Lseek sets the file pointer associated with fildes as fol-
lows:
If whence is 0, the pointer is set to. offset bytes.
If whence is 1, the pointer is set to its current location plus offeet.

If whence is 2, the pointer is set to the size of the file plus offect.

Upon successful completion, the resulting pointer location as meas-
ured in bytes from the beginning of the file is returned.

Lseek will fail and the file pointer will remain unchanged if one or
more of the following are true:

Fildes is not an open file descriptor. [EBADF]
Fildes is associated with a pipe or fifo. [ESPIPE]
Whence is not 0, 1 or 2. [EINVAL and SIGSYS signal]
The resulting file pointer would be negative. [EINVAL)]
Some devices are incapable of seeking. The value of the file pointer
associated with such a device is undefined.
Return Value
Upon successful completion, a nonnegative integer mdncatmg the file

pointer value is returned. Otherwise, a value of - 1 is returned and
errno is set to indicate the error.

March 24, 1984 Page 1

MALLOC(8) ' MALLOC (S)

Name

malloc, free, realloc, calloc - Allocates main memory.

Syntax
char *malloc (size) unsigned size;

free (ptr)
char *ptr;

char *realloc (ptr, size)
char *ptr;
unsigned size;

char *calloc (nelem, elsize)
unsigned elem, elsize;

Description

Malloc and free provide a simple general-purpose memory allocation
package. Malloc returns a pointer to a block of at least size bytes
beginning on a word boundary.

The argument to free is a pointer to a block previously allocated by
malloc; this space is made available for further allocation, but its
contents are left undisturbed.

Needless to say, grave disorder will result if the space assigned by
malloc is overrun or if some random number is handed to free.

Mealloc allocates the first contiguous reach of free space found in a
circular search from the last block allocated or [reed, coalescing adja-
cent free blocks as it searches. It calls ebrk (see sbrk(S)) to get
more memory from the system when there is no suitable space
already free.

Realloc changes the size of the block pointed to by ptr to size bytes
and returns a pointer to the (possibly moved) block. The contents
will be unchanged up to the lesser of the new and old sizes.

Realloc also works if ptr points to a block freed since the last call of
malloc, realloc, or calloc; thus sequences of free, malloc and realloc
can exploit the search strategy of malloc to do storage compaction.

Calloc allocates space for an array of nelem elements of size elsize.
The space is initialized to zeros.

Each of the allocation routines returns a pointer to space suitably
aligned (after possible pointer coercion) for storage of any type of

March 24, 1984 © - Pagel

MKNOD (8) : MEKNOD (8)
Name

mknod - Makes a directory, or a special or ordinary file.

Syntax

int mknod {path, mode, dev)
char *path;
int mode, dev;

Description

Mknod creates a new file named by the pathname pointed to by path.
The mode of the new file is initialized from mode. Where the value
of mode is interpreted as follows:

0170000 File type; one of the following:
0010000 Named pipe special
0020000 Character special
0040000 Directory
0050000 Name special file
0060000 Block special
0100000 or 0000000 Ordinary file

0004000 Set user ID on execution
0002000 Set group ID on execution
0001000 Save text image after execution

0000777 Access permissions; constructed from the following
0000400 Read by owner
0000200 Write by owner
0000100 Execute (search on directory) by owner
0000070 Read, write, execute (search) by group
0000007 Read, write, execute (search) by others

Values of mode other than those above are undefined and should not
be used.

The file’s owner ID is set to the process’ effective user ID. The file’s
group ID is set to the process’ effective group ID.

The low-order 9 bits of mode are modified by the process’ file mode
creation mask: all bits set in the process’ file mode creation mask are
cleared. See umask(S). If mode indicates a block, character, or
name special file, then dev is a configuration dependent specification
of a character or block I/O device. If mode does not indicate a
block, character, or name special file, then dev is ignored. For block
and character special files, dev is the special file’s device number.
For name special files, dev is the type of the name file, either a

March 24, 1984 v - Page 1

MKTEMP (S) MKTEMP (S)

Name

mktemp -~ Makes a unique filename.

Syntax
char *mktemp(template)
char *template;

Description
Mktemp replaces template with a unique filename, and returns a
pointer to the name. The template should look like a filename with
six trailing Xs, which will be replaced with the current process ID
preceded by a zero.

See Also
getpid(S)

March 24, 1984 Page 1

MONITOR (S) MONITOR (8S)

Notes
An executable program created by cc — p automatically includes calls

for monitor with default parameters; monitor needn’t be called expli-
citly except to gain fine control over profiling.

March ﬁ, 1984 Page 2

MOUNT(S) MOUNT(S)

Return Value

Upon successful completion a value of 0 is returned. Otherwise, a
value of — 1 is returned and errno is set to indicate the error.

See Also
mount{C), umount(S)

March 24, 1984 ' Page 2

NICE (8) ' NICE (8)

Name

nice - Changes priority of a process.

Syntax

int nice (incr)
int incr;

Description

Nice adds the value of iner to the nice value of the calling process.
A process’ nice value is a positive number for which a higher value
results in lower CPU priority.

A maximum nice value of 39 and a minimum nice value of 0 are
imposed by the system. Requests for values above or below these
limits result in the nice value being set to the corresponding limit.

Nice will not change the nice value if incr is negative and the
eflective user ID of the calling process is not super-user. [EPERM]

Return Value

Upon successful completion, nice returns the new nice value minus
20. Note that nice is unusual in the way return codes are handled. It
differs from most other system calls in two ways: the value - 1 is a
valid return code (in the case where the new nice value is 19), and
the system call either works or ignores the request; there is never an
error.

See Also

nice(C), exec(S)

March 24, 1984 : Page 1

OPEN (S)

Name

OPEN (S)

open ~ Opens file for reading or writing.

Syntax

#include <fentl.h>
int open (path, oftag], mode])

char *path;

int oflag, mode;

Description

Path points to a pathname naming a file. Open opens a file descrip-
tor for the named file and sets the file status flags according to the
value of oflag. Oflag values are constructed by or-ing flags from the
following list (only one of the first three flags below may be used):

O_RDONLY
O_WRONLY
O_RDWR

O_NDELAY

March 24, 1984

Open for reading only.

Open for writing only.
Open for reading and writing.

This flag may affect subsequent reads and writes.
See read(S) and wnie(S).

When opening a FIFO with O_RDONLY or
O_WRONLY set:

If O_NDELAY is set:

An open for reading-only will return without
delay. An open for writing-only will return an
error if no process currently has the file open for
reading.

If O NDELAY is clear:

An open for reading-only will block until a pro-
cess opens the file for writing. An open for
writing-only will block until a process opens the
file for reading.

“ When opening a file associated with a communication

line:
If O_NDELAY is set:

The open will return without waiting for carrier.

Page'1

OPEN (S) OPEN(S)

Oflag permission is denied for the named file. [EACCES]}

The named file is a directory and oflag is write or read/write.
[EISDIR]

The named file resides on a read-only file system and oflag is
write or read/write. [EROFS]

Twenty file descriptors are currently open. [EMFILE]
The named file is a character special or block special file, and
the device associated with this special file does not exist.

[ENXIO]

The file is a pure procedure (shared text) file that is being exe-
cuted and oflag is write or read/write. [ETXTBSY]

Path poirits outside the process’ allocated address space.
[EFAULT]

O_CREAT and O_EXCL are set, and the named file exists.
[EEXIST] ,

O_NDELAY is set, the named file is a FIFO, O_WRONLY is set,
and no process has the file open for reading. [ENXIO]
Return Value
Upon successful completion, a nonnegative integer, namely a file

descriptor, is returned. Otherwise, a value of — 1 is returned and
errno is set to indicate the error.

See Also
close(S), creat(S), dup(8), fentl(S), Iseek(S), read(S), write(S)

March 24, 1984 Page 3

PAUSE (8) PAUSE(S)

Name

. pause - Suspends a process until a signal occurs.

Syntax

int pause ();

Description
Pause suspends the calling process until it receives a signal. The sig-
nal must be one that is not currently set to be ignored by the calling
process.

If the signal causes termination of the calling process, pause will not
return.

If the signal is caught by the calling process and control is returned
from the signal catching function (see eignal(S)), the calling process
resumes execution from the point of suspension; with a return value
of - 1 from pauee and errno set to EINTR.

See Also

alarm(S), kill(S), signal(S), wait(S)

March 24, 1984 ~ Page 1

PIPE (S) PIPE (S)

Name

pipe - OCreates an interprocess pipe.

Syntax
int pipe (fildes)
int fildes[2];
Description -
Pipe creates an 1/O mechanism called a pipe and returns two file
descriptors in the array fildes. Fildes[0] is opened for reading and
fildes[1] is opened for writing. The descriptors remain open across
Jork(S) system calls, making communication between parent and
- child possible.
Writes up to 5120 bytes of data are buffered by the pipe before the
writing process is blocked. A read on file descriptor fildes]0)
accesses the data written to fildes[1] on a first-in-first-out basis.

No process may have more than 20 file descriptors open simultane-
ously.

Pipe will fail if 19 or more file descriptors are currently open.
|[EMFILE)

Return Value
Upon successful completion, a value of 0 is returned. Otherwise, a

value of — 1 is returned and errno is set to indicate the error.

See Also
sh(C}), read(S), write(S), fork(S), popen(S)

March 24, 1984 . Page 1

PRINTF (S) PRINTF (S)

Name

printf, fprintf, sprintf - Formats output.

Syntax
#include <stdio.h>

int printf (format [, arg] ...)
char *format;

int fprintf (stream, format | , arg] ...)
FILE ®*stream;
char *format;

int sprintf (s, format | , arg] ...)
char *s, format;

Description

Printf places output on the standard output stream stdout. Fprintf
places output on the named output etream. Sprintf places output,
followed by the null character (\0) in consecutive bytes starting at s;
it is the user’s responsibility to ensure that enough storage is avail-
able. Each function returns the number of characters placed (not
including the \0 in the case of sprintf), or a negative value if an out-
put error was encountered.

Each of these functions converts, formats, and prints its args under
control of the format. The format is a character string that contains
two types of objects: plain characters, which are simply copied to the
output stream, and conversion specifications, each of which results
in fetching of zero or more args. The results are undefined if there
are insufficient args for the format. If the format is exhausted while
args remain, the excess args are simply ignored.

Each conversion specification is introduced by the character %%
After the % the following appear in sequence:

Zero or more flags, which modify the meaning of the conver-
sion specification.

An optional decimal digit string specifying a minimum fleld
width. If the converted value has fewer characters than the field
width, it will be padded on the left (or right, if the left-
adjustment flag described below has been given) to the field
width.

A precision that gives the minimum number of digits to appear

for the d, o, u, x, or X conversions, the number of digits to
appear after the decimal point for the e and f conversions, the

March 24, 1984 Page 1

PRINTF (S)

%

PRINTF(S)

o, x, or X and the # flag is present).

The float or double arg is converted to decimal notation
in the style ‘|-]ddd.ddd’’, where the number of digits
after the decimal point is equal to the precision
specification. If the precision is missing, six digits are
output; if the precision is explicitly 0, no decimal point
appears.

The float or double arg is converted in the style
“|- |d.ddde+ dd”’, where there is one digit before the
decimal point and the number of digits after it is equal to
the precision; when the precision is missing, 6 digits are
produced; if the precision is zero, no decimal point
appears. The E format code will produce a number with
E instead of e introducing the exponent. The exponent
always contains exactly two digits.

The float or double arg is printed in style f or e (or in
style E in the case of a G format code), with the precision
specifying the number of significant digits. The style used
depends on the value converted: style e will be used only
if the exponent resulting from the conversion is less than
—~ 4 or greater than the precision. Trailing zeroes are
removed from the result; a decimal point appears only if
it is followed by a digit.

The character arg is printed.

The arg is taken to be a string (character pointer) and
characters from the string are printed until a null charac-
ter (\0) is encountered or the number of characters indi-
cated by the precision specification is reached. If the pre-
cision is missing, it is taken to be infinite, so all charac-
ters up to the first null character are printed.

Print a % no argument is converted.

In no case does a nonexistent or small field width cause truncation

of a ﬁeld;

if the result of a conversion is wider than the field width,

the field is simply expanded to contain the conversion result. Char-
acters generated by printf and fprinif are printed as if putchar had
been called (see pute(S)).

March 24, 1984 Page 3

PROFIL (8S) PROFIL (8)

Name

profil - Creates an execution time profile.

Syntax

profil (buff, bufsiz, offset, scale)
char *buff;
int bufsiz, offset, scale;

Description

Buff points to an area of core whose length (in bytes) is given by
bufsiz. After this call, the user’s program counter is examined each
clock tick, where a clock tick is some fraction of a second given in
machine(M). Offeet is subtracted from it, and the result multiplied
by ecale. If the resulting number corresponds to a word inside buff,
that word is incremented.

The scale is interpreted as an unsigned, fixed-point fraction with
binary point at the left: 0177777 (octal) gives a 1-1 mapping of pc’s
to words in buff; 077777 (octal) maps each pair of instruction words
together. 02(octal) maps all instructions onto the beginning of buff
(producing a noninterrupting core clock).

Profiling is turned off by giving a scale of 0 or 1. It is rendered
ineflective by giving a bufsiz of 0. Profiling is turned off when an
ezec is executed, but remains on in child and parent both after a
Jork. Profiling will be turned off if an update in buff would cause a
memory fault.

See Also
prof(CP), monitor(S)

March 24, 1984 ‘ Page 1

PTRACE (S)

PTRACE (8)

not defined for this request. Peculiar results will
ensue if the parent does not expect to trace the child.

The remainder of the requests can only be used by the parent pro-
cess. For each, pid is the process ID of the child. The child must be
in a stopped state before these requests are made.

1, 2 The word at location addr in the address space of the

child is returned to the parent process. If I and D
space are separated, request 1 returns a word from I
space, and request 2 returns a word from D space. If
I and D space are not separated, either request 1 or
request 2 may be used with equal results. The data
argument is ignored. These two requests will fail if
addr is not the start address of a word, in which case a
value of - 1 is returned to the parent process and the
parent’s errno is set to EIO.

With this request, the word at location addr in the
child’'s USER area in the system’s address space (see
<sysfuser.h>) is returned to the parent process.
The date argument is ignored. This request will fail if
addr is not the start address of a word or is outside
the USER area, in which case a value of -1 is
returned to the parent process and the parent’s ermo
is set to EIO.

4, 5 ‘With these requests, the value given by the data argu-

March 27, 1984

ment is written into the address space of the child at
location addr. If I and D space are separated, request
4 writes a word into I space, and request 5 writes a
word into D space. If I and D space are not separated,
either request 4 or request 5 may be used with equal
results. Upon successful completion, the value written
into the address space of the child is returned to the
parent. These two requests will fail if addr is a loca-
tion in a pure procedure space and another process is
executing in that space, or addr is not the start address
of a word. Upon failure a value of — 1 is returned to
the parent process and the parent’s errno is set to EIO.

With this request, a few entries in the child’s USER
area can be written. Data gives the value that is to be
written and addr is the location of the entry. The few
entries that can be written follow:

— The general registers

- Any floating-point status registers

~ Certain bits of the processor status

"Pagbe 2

PTRACE (S) PTRACE(S)

portable across all implementations without some change. Please
note that IBM-PC performs no memory mapping.

System calls cannot be single-stepped. 1f a ptrace call requests a sin-
gle step through a system call, the traace bit is cleared, and the user

program will run to completion or until it encounters an explicitly set
breakpoint.

See Also

adb(CP), exec(S), signal{ S}, wait{S), machine(M)

March 27, 1984 Page 4

PUTC(S) PUTC (8)

Diagnostics

These functions return the constant EOF upon error. Since this is a
valid integer, ferror(S) should be used to detect putw errors.

Notes

Because putc is implemented as a macro, the stream argument with
side effects is not treated correctly.

-March 24, 1984 Page 2

PUTS(8) PUTS (8)

Name

puts, fputs - Puts a string on a stream.

Syntax
#include <stdio.h>

int puts (s)
char *s;

int fputs (s, stream)

char *s;

FILE *stream;
Description

Puts copies the null-terminated string e to the standard output
stream stdout and appends a newline character.

Fputs copies the null-terminated string & to the named output stream.

Neither routine copies the terminating null character.

Diagnostics

Both routines return EOF on error.

See Also
ferror(S), fopen(S), fread(S), gets(S), printf(S), putc(S)

.

Notes

Puts appends a newline, fputs does not.

March 24, 1984 Page 1

RAND (S) ; RAND (8)

Name

rand, srand - Generates a random number.

«Syntax

-srand (seed)
unsigned seed;

int rand ()

Description

Rand uses a.srznultiplicative congruential random number generator
with period 2 to return successive pseudo-random numbers in the
range from 0 to 2°°— 1.

The generator is reinitialized by calling srand with 1 as argument. It

can be set to a random starting point by calling erand with an
unsigned integer in argument seed.

March 24, 1984 Page 1

| READ (8) " READ (8)
Name

read - Reads from a file.

Syntax

int read (fildes, buf, nbyte)
int fildes;

char *buf;

unsigned nbyte;

Description

Fildes is a file descriptor obtained from a creat, open, dup, fentl, or
pipe system call.

Read attempts to read nbyte bytes from the file associated with fildes
into the buffer pointed to by buf.

On devices capable of seeking, the read starts at a position in the file
given by the file pointer associated with fildes. Upon return from
read, the file pointer is incremented by the number of bytes actually
read.

Devices that are incapable of seeking always read from the current
position. The value of a file pointer associated with such a file is
undefined.

Upon successful completion, read returns the number of bytes actu-
ally read and placed in the buffer; this number may be less than
nbyte if the file is associated with a communication line (see foctl(S)
and tty(M)), or if the number of bytes left in the file is less than
nbyte bytes. A value of 0 is returned when an end-of-file has been
reached.

When attempting to read from an empty pipe (or FIFO):

If O NDELAY is set, the read will return 2 0.

If O_NDELAY is clear, the read will block until data is written to
the file or the file is no longer open for writing.

When attempting to read a file associated with a tty that has no data
currently available:

If O_NDELAY is set, the read will return a 0.

If O_NDELAY is clear, the read will block until data becomes
available.

March 24, 1984 ' Page 1

REGEX(S) REGEX(S)

Name

regex, regemp ~ Compiles and executes regular expressions.

Syntax

char *regemp(stringl[,string?, . ..],0);
char ®*stringl, ‘gtring?, ven}

char ®*regex(re,subject[,ret0, ...]);
char *re, *subject, *ret0, .. .;

Description

Regemp compiles a regular expression and returns a pointer to the
compiled form. Malloc(S) is used to create space for the compiled
expression. It is the user’s responsibility to free unneeded space so
allocated. " A zero return from regemp indicates an incorrect argu-
ment. Regemp(CP) has been written to generally preclude the need
for this routine at execution time.

Regez executes a compiled pattern against the subject string. Addi-
tional arguments are passed to receive values back. Regez returns
zero on failure or a pointer to the next unmatched character on suc-
cess. A global character pointer _loc! points to where the match
began. Although regemp and regez were derived from the editor,
ed(C), the syntax and semantics have been changed slightly. The
following are the valid symbols and their associated meanings.

[]*. These symbols retain their current meaning.

$ Matches the end of the string, \n matches the newline.

- Within. brackets the minus means through. For example,
[a~ 2] is equivalent to [abed...xyz]. The — can appear as

itself only if used as the last or first character. For exam-
ple, the character class expression []-] matches the char-

acters] and — .

+ A regular expression followed by + means "one or more
times”. For example, [0- 9]+ is equivalent to
[0— 9][0- 9]~

{m} {m,} {m,u}
Integer values enclosed in {} indicate the number of times
the preceding regular expression is to be applied. m is the
minimum number and u is a number, less than 256, which
is the maximum. If only m is present (e.g., {m}), it indi-
cates the exact number of times the regular expression is

March 24, 1984 : Page 1

REGEX (S) REGEX(S)

See Also
ed(C}), regemp(CP), malloc(S)

Notes

The user program may run out of memory if regemp is called itera-
tively without freeing the vectors no longer required. The following
‘user-supplied replacement for malloc(S) reuses the same vector sav-
ing time and space:

/* user’s program */

malloc(n)

{

static int rebuf[256];
return &rebuf;

March 24, 1984 Page 3

REGEXP (S) REGEXP(S)

UNGETC(¢) Cause the argument ¢ to be returned by the
- next call to GETC() (and PEEKC()). No more
that one character of pushback is ever needed
and this character is guaranteed to be the last
character read by GETC(). The value of the
macro UNGETC(¢) is always ignored.

RETURN(pointer) This macro is used on normal exit of the com-
pile routine. The value of the argument
pointer is a pointer to the character after the
last character of the compiled regular expres-

_ sion: This is useful to programs which have
memory allocation to manage.

ERROR(val) This is the abnormal return from the compile
routine. The argument val is an error number
(see table below for meanings). This call
should never return.

Error Meaning

11 Range endpoint too large

16 Bad number

25 *\digit’’ out of range

36 Illegal or missing delimiter

41 . No remembered search string

42 \(\) imbalance

43 Too many \(

44 . More than 2 numbeérs given in \{ \}
45 } expected after \

45 First number exceeds second in \{ \}
49 [] imbalance)

50 Regular expression overflow

The syntax of the compile routine is as follows:
compile(instring, épruf, endbuf, eof)

The first parameter instring is never used explicitly by the compile
routine but is useful for program that pass down different pointers to
input characters. It is sometimes used in the INIT declaration (see
below). Programs which call functions to input characters or have
characters in an external array can pass down a value of ((char *} 0)
for this parameter.

The next parameter ezpbuf is a character pointer. It points to the
place where the compiled regular expression will be placed.

The parameter endbuf is one more that the highest address that the
compiled regular expression may be placed. If the compiled expres-
sion cannot fit in (endbuf- ezpbuf) bytes, a call to ERROR(50) is
made. ‘

March 27, 1984 Page 2

REGEXP (8) REGEXP(S)

far as possible and will recursively call itself trying to match the rest
of the string to the rest of the regular expression. As long as there
is no match, aedvance will back up along the string until it finds a
match or reaches the point in the string that initially matched the ®
or \{ \}. Itis sometimes desirable to stop this backing up before the
initial point in the string is reached. If the external character pointer
locs is equal to the point in the string at sometime during the back-

_ing up process, advance will break out of the loop that backs up and
will return zero. This is used be ¢d(C) and sed(C) for substitutions
done globally (not ;ust. the first occurrence, but the whole line) so,
for example, expressions like s /y*//g do not loop forever.

The routines ecmp and getrange are simple and are called by the rou-
tines previously mentioned.
Examples

The following is an example of how the regular expression macros
and calls look from grep(C):

#tdefine INIT register char *sp == instring;
ftdefine GETC() (*sp+ +)

ftdefine PEEKC() (*sp)

#define UNGETC(¢) (- - sp)

#tdefine RETURN(¢) return;

#tdefine ERROR(¢) regerr()

#include <regexp.h>
compile(*argv, expbuf, &expbuf|ESIZE], '\0);
if(step(linebuf, expbuf})
succeed(};
Files
[usr/include fregexp.h

See Also
ed(C), grep(C), sed(C).

Notes -
The handling of d"rcf is kludgy.

The routine ecmp is equivzalent to the standard I/O routine etrnemp
and should be replaced by that routine.

March 27, 1084 Page 4

SCANF(S) ‘ SCANF(S).

Name

scanf, fscanf, sscanf - Converts and formats input.

Syntax
#include <stdio.h>

int scanf (format [, pointer] ...)
char *format;

int fscanf (stream, format | , pointer] ...)
FILE *stream; .
char *format;

int sscanf (s, format [, pointer] ...)
char ®s, *format;

Description

Secanf reads from the standard input stream stdin. Facanf reads from
the named input stream. Secanf reads from the character string s.
Each function reads characters, interprets them according to a for-
mat, and stores the results in its arguments. Each expects, as argu-
‘ments, a control string format described below, and a set of pointer
arguments indicating where the converted input should be stored.

The control string usually contains conversion specifications, which
are used to direct mterpretatxon of input sequences. The control
string may contain: : :

1. Blanks, tabs, or newlines, which cause input to be read uﬁto the
next nonwhitespace character.

2. An ordinary character (not 9§, which must match the next char-
acter of the input stream.

3. Conversion specifications, consisting of the character % an
optional assignment suppressing character ®, an optional numeri-
cal maximum field width, and a conversion character.

A conversion specification directs the conversion of the next input
field; the result is placed in the variable pointed to by the:
corresponding argument, unless assignment suppression was indi-
cated by *. ‘An input field is defined as a string of nonspace charac-
ters; it extends to the next inappropriate character or until the field
width, if specified, is exhausted.

The conversion character indicates the interpretation of the input

field; the corresponding pointer argument must usually be of a res-
tricted type. The following conversion characters are allowed:

March 24, 1984) Page.1

SCANF (S) , SCANF (S)

latter cave, the offending character is left unread in the input stream.
This is very important to remember, because subtle errors c¢an

occur when not taking this into account.

Seanf returns the number of snccéssf\illy matched and assigned

"input items; this number can be zero in the event of an early confiict

between an input character and the control string. If the input ends

before the first conflict or conversion, EOF is returned.

Examples
The call:

int i; float x; char name[50};
scanf ("9Q%d%s", &i, &x, name);

with the input line:
25 54.32E-1 thompson

will assign to ¢ the value 25, to z the value 5.432, and neme will
contain thompson\0. Or:

int i; float x; char name[50];
scanf ("%2d%%*d%]1234567890]", &i, &x, name);

with input:
56789 0123 56272
will assign 58 to 1, 780.0 to 2, skip 0123, and piace the string 58\0 in
name. The next call to getchar (see gete(S)) will return a.
See Also
atof(S), getc(S), printf(S)

Diagnostics
These functions return EOF on end of input and a short count for
missing or illegal data items.

Notes
The success of literal matches and suppressed assignments is not

directly determinable.

Trailing whm:space (mcludmg a newline) is left unread unless
matched in the control string.

March 74, 1984 Page 3

SDENTER(S) SDENTER(S)

‘Return Value
Successful calls return 0. Unsuccessful calls return —1, and errno
issetto indicate the error.
See Also)
sdget(S), sdgetv(S)

May 10, 1984 Page 2

SDGET(S) SDGET(S)
Return Value

On successful completion, the address at which the segment was
attached is returned. Otherwise, -1 is returned, and errno is set to
indicate the error.

Notes

Use of the SD_UNLOCK fiag on systems without hardware support
for shared data may cause severe performance degradation.

See Also
sdenter(S), sdgetv(S)

March 24, 1984 ' Page 2

SETBUF(S) . o SETBUF (S)

" Name

setbuf = Assigns buflering to a stream.

Syntax
#include <stdio.h>
setbuf (stream, buf)
FILE *stream;
char *buf;
Description
Setbuf is used after a stream has been opened but before it is read or
. written. It causes the character array buf to be used instead of an
automatically allocated buffer. If buf is the constant pomter NULL,
mput,/output will be completcly unbuffered.
A manifest constant BU FSIZ;tells how blg an array is needed:
char buf{BUFSIZ];
A buffer is normally obtained from malloc(S) upon the first gete(S)
or pute(S) on the file, except that output streams directed to termi-
nals, and the standard error stream stderr are normally not buffered.
A common source of error is allocation of buffer space as an
‘‘automatic’’ variable in a code block, and then failing to close the
stream in the same block.

See Also
fopen(S), getc(S), ma]loc(S), pute(S)

March 24, 1984 - Page 1

SETPGRP (S) SETPGRP(S)

Name

setpgrp — Sets process group ID.

Syntax
int setpgrp ()
Description
Setpgrp sets the process group ID of the calling process to the process

ID of the calling process and returns the new process group ID.

Return kValue

Setpgrp returns the value of the new process group ID.

See Also ‘
exec(S), fork(S)‘, getpid(S), intro(S), kill(S), signal(S)

March 24,> 1984 : : Page 1

SHUTDN(S) SHUIDN (8)

Name

shutdn - Flushes block 1/0 and halts the CPU.

Syntax
ginclude <sys /filsys.h>

shutdn (sblk)
struct filsys ssblk;

Description

Shutdn causes all information in core memory that should be on disk
to be written out. This includes modified super-blocks, modified
inodes, and delayed block I/O. The super-blocks of all writable file
systems are flagged ‘clean’, so that they can be remounted without
cleaning when XENIX .is rebooted. Shutdn then prints ‘“Normal Sys-
tem Shutdown’” on the console and halts the CPU,]

If eblk is nonzero, it specifies the address of a super-block which will
be written to the root device as the last I/O before the halt. This
facility is provided to allow file system repair programs to supercede
the system’s copy of the root super-block with one of their own.
Shutdn locks out all other processes while it is doing its work. How-
ever, it is recommended that user processes be killed off (see
kill(S)) before calling shutdn as some types of disk activity could
cause file systems to not be flagged ‘‘clean’.

The caller must be the super-user.

See Also
fsck(C), haltsys(C), shutdown(C), mount(S), kill(S)

March 24, 1984 . Page l

.

SIGNAL (S) SIGNAL (S)

1. All of the receiving process’ open file descriptors will be closed.

2. If the parent process of the receiving process is executing a wait,
it will be notified of the termination of the receiving process and
the terminating signal’s number will be made available to the
parent process; see wast(S).

3. If the parent process of the receiving process is not executing a
wait, the receiving process will be transformed into a zombie
process (see ezit(S) for definition of zombie process).

4. The parent process ID of each of the receiving process’ existing
child processes and zombie processes will be set to 1. This
means the initialization process (see intro(S)) inherits each of
these processes.

5. An accounting record will be written on the accounting file if the
system’s accounting routine is enabled; see acet(S).

6. If the receiving process’ process ID, tty group ID, and process
group ID are equal, the signal SIGHUP will be sent to all of the
processes that have a process group ID equal to the process
group ID of the receiving process.

7. A ‘“‘core image’’ will be made in the current working directory
of the receiving process if sg is one for which an asterisk
appears in the above list and the following conditions are met:

- The effective user ID and the real user ID of the receiving
process are equal.

—~ An ordinary filenamed core exists and is writable or can be
created. If the file must be created, it will have a mode of 0666
modified by the file creation mask (see umask(S)), a file owner
ID that is the same as the effective user ID of the receiving pro-
cess, a file group ID that is the same as the effective group.ID of
the receiving process

The SIG_IGN value causes the process to ignore a signal. The signal
sig is to be ignored. Note that the signal SIGKILL cannot be
ignored.

A function address value causes to process to catch a signal. Upon
receipt of the signal sig, the receiving process is to execute the
signal-catching function pointed to by fune. The signal number sig
will be passed as the only argument to the signal-catching function.
There are the following consequences:

1. Upon return from the signal-catching function, the receiving
process will resume execution at the point it was interrupted and
the value of func for the caught signz! will be set to SIG_DFL
unless the signal is SIGILL, SIGTRAP, SIGCLD, or SIGPWR.

March 24, 1984 Page 2

SIGNAL (S) SIGNAL (S)

SIG_IGN - ignore signal v
The signal is to be ignored. “Also, if sig is SIGCLD, the
calling process’ child processes will not create zombie
processes when they terminate; see ezit(S).

Junction address - catch signal

If the signal is SIGPWR, the action to be taken is the
same as that described above for func equal to function
address. The same is true if the signal is SIGCLD except,
that while the process is executing the signal-catching
function any received SIGCLD signals will be queued and
the signal-catching function will be continually reentered
until the queue is empty.

The SIGCLD affects two other system calls (wast(S), and ezit(S))
in the following ways:

wast If the func value of SIGCLD is set to SIG_IGN and a wait
is executed, the wait will block until all of the calling pro-
cess’ child processes terminate; it will then return a value
of = 1 with errno set to ECHILD.

exit If in the exiting process’ parent process the func value of
SIGCLD 1is set to SIG_IGN, the exiting process will not
create a zombie process.

When processing a pipeline, the shell makes the last process in the
pipeline the parent of the proceeding processes. A process that

may be piped into in this manner (and thus become the parent of
other processes) should take care not to set SIGCLD to be caught.

Notes

The defined constant NSIG in signal.h standing for the number of
signals is always at least one greater than the actual number.

March 24, 1984 Page 4

SINH () SINH (8)

Name

sinh, cosh, tanh - Performs hyperbolic functions.

Syntax
ginclude <math.h>

double sinh (x)
double x;

double cosh (x)
double x;

double tanh (x)
double x; .

Description

These functions compute the designated hyperbolic functions for real
arguments. .

Diagnostics

Sink and cosh return a huge value of appropriate sign when the
correct value would overflow.

March 24, 1984 ~ Page 1

SSIGNAL (S) SSIGNAL (S)

Name

ssignal, gsignal - Tmplements software signals.

Syntax
#include <signal.h>

int (*ssignal (sig, action))()
int sig, (*action)();

int gsignal (sig)
int sig;

Description

Seignal and geignal implement a software facility similar to eignal(S).
This facility is used by the standard C library to enable the user to
indicate the disposition of error conditions, and is also made avail-
able to the user for his own purposes.

Software signals made available to users are associated with integers
in the inclusive range 1 through 15. An action for a software signal
is established by a call to se#ignal, and a software signal is raised by a
call to geignal. Raising a software signal causes the action esta-
blished for that signal to be taken.

The first argument to ssignal is a number identifying the type of sig-
nal for which an action is to be established. The second -argument
defines the action; it is either the name of a (user defined) action
function or one of the manifest constants SIG_DFL (default) or
SIG_IGN (ignore). Ssignal returns the action previously established
for that signal type; if no action has been established or the signal
number is illegal, ssignal returns SIG_DFL.

Geignal raises the signal identified by its argument, sig:
If an action function has been established for eig, then that
action is reset to SIG_DFL and the action function is entered
with argument sfg. Geignal returns the value returned to it by
the action function.

If the action for sig is SIG_IGN , gsignal returns the value 1 and
takes no other action.

If the action for eig is SIG_DFL , gsignal returns the value 0 and
takes no other action.

If sig has an illegal value or no action was ever specified for
8ig, gsignal returns the value 0 and takes no other action.

March 24, 1984 Page 1

STAT(S) STAT(S)

Name

stat, fstat - Gets file status.

Syntax

#include <sys /types.h>
#include <sys/stat.h>

int stat (path, buf)
char *path;
struct stat *buf;

int fstat (fildes, buf)
int fildes;
struct stat *buf;

Description

Path points to a pathname naming a file. Read, write or execute
permission of the named file is not required, but all directories listed
in the pathname leading to the file must be searchable. Stat obtains
information about the named file.

Similarly, fstat obtains information about an open file known by the
file descriptor fildes, obtained from a successful open, creat, dup,
fentl, or pipe system call.

Buf is a pointer to a stat structure into which information is placed
concerning the file.

The contents of the structure pointed to by buf include the following
members:

ushort st_mode; /* File mode; see mknod(S) */

ino_t st_ino; /* Inode number */
dev_t st_dev; /* ID of device containing */

/* a directory entry for this file */
dev_t st_rdev; /* ID of device */

/* This entry is defined only for */
[* special files */
short st_nlink; /* Number of links */

ushort st_uid; /* User ID of the file’s owner */
ushort st_gid; /* Group ID of the file’s group */
off t st_size; /* File size in bytes */

time_t st_atime; /* Time of last access */

time_t st_mtime; /* Time of last data modification */
time_t st_ctime; /* Time of last file status change */

/* Times measured in seconds since *
/* 00:00:00 GMT, Jan. 1, 1970 */

March 24, 1984 Page 1

-~

L L2 v~

Name -

stdio - Performs standard buffered input and output.

Syntax

#include <stdio.h>
FILE *stdin, *stdout, *stderr;

Description

The stdio library contains an efficient, user-level 1/0 buffering
scheme. The in-line macros gete(S) and putc(S) handle characters
quickly. The macros getchar, putchar, and the higher-level routines
faete, fgete, forintf, fputc, fputs, fread, fscanf, funte, gets, getw, printf,
puts, putw, and scanf all use gete and putc; they can be freely inter-
mixed. :

A file with associated buffering is called a ‘““stream’ and is declared
to be a pointer to a defined type FILE . Fopen(S) creates certain
descriptive data for a stream and returns a pointer to designate the
stream in all further transactions. Normally, there are three open
streams with constant pointers declared in the ‘‘include” file and
associated with ‘the standard open files:

stdin Standard input file
stdout Standard output file
stderr Standard error file

A constant ‘‘pointer”” NULL designates the null stream.

An integer constant EOF is returned upon end-of-file or error by
most integer functions that deal with streams (see thé individual
descriptions for details). :

Any program that uses this package must include the header file of
pertinent macro definitions, as follows:

#include <stdio.h>

Most of the functions-and constants mentioned in this section of the
manual are declared in that “‘include’ file and are described else-
where. The constants and the following *“‘functions’ are imple-
mented as macros (redeclaration of these names is perilous): gete,
getchar, pute, putchar, feof, ferror, and fileno.

‘March 24, 1984 . Pagel

P

STIME (S) STIME(S)

Name

stime — Sets the time.

Syntax

#include ésys [types.h>
#include <sys/timeb.h>

time_t stime (tp)
long *tp;

Description
Stime sets the system’s idea of the time and date. Tp points to the
value of time as measured in seconds from 00:00:00 GMT January 1,
1970.
Stime will fail if the effective user ID of the calling process is not

super-user. [EPERM]

Return Value

Upon successful completion, a value of 0 is returned. Otherwise, a \
value of ~ 1 is returned and errno is set to indicate the error.

See Also

time(S)

March 24, 1984 Page 1

STRING (S) STRING (S)

Description

These functions operatz on null-terminated strings. They do not
check for overflow of any receiving string. :

Streat appends a copy of string ¢2 to the end of string e1. Strncat
copies at most n characters. Both return a pointer to the null-
terminated result. :

Stremp compares its arguments and returns an integer greater than,
equal to, or less than 0, according as s is lexicographically greater
than, equa.l to, or less t.han 82. Strncmp makes the same compaﬂson
but looks at at most n characters.

Strepy copies string 62 to sl, stopping after the null character has
been moved. Strncpy copies exactly n characters, truncating or null-
paddmg ¢2; the target may not be null-termmated if the length of 2
is n or more. Both return 1. ‘

Strlen returns the number of 'nonnull characters in .

Strehr (utrrchr) returns a pointer to the first (last) occurrence of
character ¢ in string s, or NULL if ¢ does not occur in the string.
‘The null character terminating a string is considered to be pan of the
string.

Strpbrk returns a pointer to the first occurrence in string o1 of any
character from stnng 62, or NULL if no character from 2 exists in
sl.

Strepn (strcspn) returns the length of the initial segment of string o1
which consists entirely of characters from (not from). string e2.

Strtok considers the string eI to consist of a sequence of zero or
more text tokens separated by spans of one or more characters from
the separator string 82. The first call (with pointer 81 specified)
returns a pointer to the first character of the first token, and will
have written a NULL character into sf immediately following the
returned token. Subsequent calls with zero for the first argument,
will work through the string e in this way until no tokens remain.
The separator string 82 may be different from call to call. When no
token remains in ¢1, a NULL is returned.

Strdup returns a pointer to a duplicate copy of the- string pointed to
by s. The duplicate string is automatically allocated storage using a
malloc(S) system call. This call allocates the exact number of bytes
needed to store the string and its terminating null character.

March 24, 1984 Page 2

SWAB(S) ’ SWAB(S)

Name

swab - Swaps bytes,

‘Syntax

swab (from, to, nbytes)
char *{rom, ®*to;

int nbytes;

Description
Swab copies nbytes pointed to by from to the position pointed to by
to, exchanging adjacent even and odd bytes. It is useful for tran-

. sporting binary data between machines that differ in the ordering of
by_tes. Nbytes should be even.

March 24, 1984 _ Page 1

SYSTEM (S) SYSTEM (S)

Name

* system — Executes a shell command.

Syntax
#include <stdio.h>
int system (string)
char *string;

Description
Syetem passes the etring to a new invocation of a shell (see eh(C)).
The shell reads and executes the etring as if it had been typed as a
command at a terminal, then returns the exit status of the command
to the calling process. The calling process waits until the shell has
returned a status before proceeding with execution.

See Also
sh(C), exec(S)

Diagnostics

System stops if it can’t execute sh(C).

March 24, 1984 Page 1

P

TERMCAP (S) TERMCAP (S)

write the file fetctermeap.

Tgetnum gets the numeric value of capability id, returning - 1 if is
not given for the terminal. Tyetflag returns 1 if the specified capabil-
ity is present in the terminal's entry, 0 if it is not. Tgetstr gets the
string value of capability ¢d, placing it in the buffer at ares, advanc-
ing the area pointer. It decodes the abbreviations for this field
described in termcap(M), except for cursor addressing and padding
information.

Tyoto returns a cursor addressing string decoded from em to go to
column desteol in line destline. It uses the external variables UP (from
the up capability) and BC (if be is given rather than bs) if necessary
to avoid placing \n, CNTRL-D or NULL in the returned string. (Pro-
grams which call tgoto should be sure to turn off the TAB3 bit (see
tty(M)), since fgoto may now output a tab. Note that programs
using termcap should in general turn off TAB3 anyway since some
terminals use CNTRL-I for other functions, such as nondestructive
space.) If a 9%sequence is given which is not understood, then tgoto
returns ““OOPS”’.

Tputs decodes the leading padding information of the string cp; affent
gives the number of lines affected by the operation, or 1 if this is
not applicable, outc is a routine which is called with each character in
turn. The external variable ospeed should contain the output speed
of the terminal as encoded by stty(C). The external variable PC
should contain a pad character to be used (from the pe capability) if
a NULL is inappropriate.

Files
Just/lib/libtermcap.a - ltermcap library
[eteftermcap data base

See Also

curses(S), termcap(M), tty(M)
Credit
This utility was developed at the University of California at Berkeley

and is used with permission.

Notes

These routines can be linked by using the linker option - Itermcap.

March 24, 1984 ‘ Page 2

TIME () TIME (S)

The structure contains the time since the epoch in seconds, up to
1000 milliseconds of more-precise interval, the local time szone
‘(measured in minutes of time westward from Greenwich), and a flag
that, if nonzero, indicates that Daylight Saving time applies locally
during the appropriate part of the year.

See Also
date(C), stime(S), ctime(S)

March 24, 1984 Page 2

TMPFILE (S) ; TMPFILE (S)

Name

tmpfile - Creates a temporary file.

Syntax
#include <stdio.h>
FILE *tmpfile ()

Description
Tmpfde creates a temporary file and returns a corresponding FILE
pointer. Arrangements are made so that the file will automatically
be deleted when the process using it terminates. The file is opened
for update.

See Also

creat(S), unlink(S), fopen(S), mktemp(S), tmpnam(S)

March 24, 1884 ‘Page 1

TRIG (S) TRIG (8)

Name
sin, cos, tan, a.sin, acos, atan, atan2 — Performs trigonometric func-
tions.

Syntax
#include <math.h>

double sin (x)
double x;

double cos (x)
double x;

double asin (x)
double x;

double acos (x)
double x;

double atan (x)
double x;

double atan?2 (y, x)
double x, y;
Description
Sin, cos and tan return trigonometric functions of radian arguments.
The magnitude of the argument should be checked by the caller to
make sure the result is meaningful.
Asin returns the arc sin in the range - 7 /2 to 7 /2.
Acos returns the arc cosine in the range 0 to =.

Atan returns the arc tangent of z in the range - 7 /2 to 7 /2.

Atan? returns the arc tangent of y/z in the range — 7 to 7.

Diagnostics

Arguments of magnitude greater than 1 cause asin and acos to
return value 0.

Notes

These routines can be linked with the linker option — Im.

March 24, 1984 . Page 1

ULIMIT(S) ULIMIT(S)

Name

ulimit - Gets and sets user limits.

Syntax
long ulimit (cmd, newlimit)
int cmd; ;
long newlimit;

Description

This function provides for control over'process limits. The emd
values available are:

1 Gets the process’ file size limit. ‘The limit is in units of disk
blocks and is inherited by child processes. Files of any size can
be read.

2 Sets the process’ file size limit to the value of newlimit. Any
process may decrease this limit, but only a process with an
effective user ID of super-user may increase the limit. Ulsinst
will fail and the limit will be unchanged if a process with an
effective user ID other than super-user attempts to increase its
file size limit. [EPERM]

3+ Gets the maximum possible break value. See sbrk(S).

Return Value
Upon successful completion, a nonnegative value is returned. Oth-
erwise, a value of - 1 is returned and errno is set to indicate the
error.

See Also
sbrk(S), chsize(S), write(S)

Notes

The file limit is only enforced on writes to regular files. Tapes, disks,
and other devices of any size can be written.

March 27, 1984 Page 1

UMOUNT(S) UMOUNT(S)

Name

umount - Unmounts a file system.

Syntax
int umount (spec)
char *spec;
Description
Umount requests that a previously mounted file system contained on
the block special device identified by spec be unmounted. Spec is a
pointer to a pathname. After unmounting the file system, the direc-
tory upon which the file system was mounted reverts to its ordinary
interpretation.
Umount may be invoked only by the super-user.
Umount will fail if one or more of the following are true:
The process’ effective user ID is not super-user. [EPERM]
Spec does not exist. |ENXIO]
Spec is not a block special device. [ENOTBLK]
Spec is not mounted. [EINVAL]|
A file on spec is busy. [EBUSY]
Spec points outside the process’ allocated address space.
[EFAULT]
Return Value
Upon successful completion a value of 0 is returned. Otherwise, a
value of - 1 is returned and errno is set to indicate the error.

See Also
mount(C), mount(S)

March 24, 1984 Page 1

UNAME (S)

See Also

uname{C)

Notes

Not all fields may be set on a particular system.

March 24, 1984

UNAME (8)

Page 2

UNLINK (S) UNLINK (S)

Name

unlink - Removes directory entry.

Syntax
int unlink (path)
char *path;
Description

Unlink removes the directory entry named by the pathname pointed
to by path.

The named file is unlinked unless one or more of the following are
true:

A component of the path prefix is not a directory. [ENOTDIR]
The named file does not exist. [ENOENT)

Search permission is-denied for a component of the path prefix.
[EACCES]

Write permission is denied on the directory containing the link
to be removed. [EACCES}

The named file is a directory and the effective user ID of the
process is not super-user. [EACCES]

The entry to be unlinked is the mount point for a mounted file
system. [EBUSY]

The entry to be unlinked is *‘.”” or *‘..”” in the root directory of a
mounted filesystem. [EBUSY]

The entry to be unlinked is the last link to a pure procedure
(shared text) file that is being executed. {ETXTBSY]

The directory entry to be unlinked is part of a read-only file sys-
tem. [EROFS]

Path points outside the process’ allocated address space.
([EFAULT]

When all links to a file have been removed and no process has the
file open, the space occupied by the file is freed and the file ceases to
exist. If one or more processes have the file open when the last link
is removed, the removal is postponed until all references to the file
have been closed. :

March 24, 1984 Page 1

USTAT(S) USTAT(S)

Name

ustat -~ Gets file system statistics.

Syntax

#include <sys/types.h>
#include <ustat.h>

int ustat (dev, buf)
int dev;
struct ustat *buf;

Description
Ustat returns information about a mounted file system. Dev is a

device number identifying a device containing a mounted file system.
Buf is a pointer to a ustat structure that includes the following ele-

ments:
daddr_t f_tfree; /* Total free blocks */
ino_t f_tinode; /* Number of free inodes */
char f_fname[6); /* Filsys name */
char f_fpack[6]; /* Filsys pack name */ (

Ustat will fail if one or more of the following are true:

Dev is not the device number of a device containing a mounted
file system. |EINVAL]|

Buf points outside the process’ allocated address space.
[EFAULT]
Return Value
Upon successful completion, a value of 0 is returned. Otherwise, a
value of - 1 is returned and errno is set to indicate the error.
See Also

stat(S), filesystem(F)

Notes
When using file systems from previous versions of XENIX, fsck(C)

must be run on the file system before mounting. Otherwise the ustat
system call will not work correctly. This only needs to be done once.

March 24, 1984 Page 1

UTIME () UTIME (S)

Times is not NULL and points outside the process’ allocated
address space. [EFAULT}

Path points outside the process’ allocated address space.
[EFAULT]

Return Value

Upon successful completion, a value of 0 is returned. Otherwise, a
value of -~ 1 is returned and errno is set to indicate the error.

See Also
stat(S)

March 24, 1984 Page 2

WAIT(S) WAIT(S)

Wait will fail and return immediately if one or more of the following
are true:

The calling process has no existing unwaited-for child processes.
[ECHILD)

Stat_loc points to an illegal address. [EFAULT)

Return Value
If wast returns due to the receipt of a signal, a value of - 1 is
returned to the calling process and errno is set to EINTR. If wast
returns due to a stopped or terminated child process, the process ID

of the child is returned to the calling process. Otherwise, a value of
- 1 is returned and errno is set to indicate the error.

See Also

exec(S), exit(S), fork(S), pause(S), signal(S)

Warning

See Warning in eignal(S).

March 24, 1984 Page 2

WRITE (S) : WRITE(S)

Name

write - Writes to a file.

Syntax

int write (fildes, buf, nbyte)
int fildes;

char *buf;

unsigned nbyte;

Description

Fides is a file descriptor obtained from a creat, open, dup, fentl, or
pipe system call.

Whrite attempts to write nGyte bytes from the buffer pointed to by buf
to the file associated with the fildes.

On devices capable of seeking, the actual writing of data proceeds
from the position in the file indicated by the file pointer. Upon
return from wnte, the file pointer is incremented by the number of
bytes actually written. '

On devices incapable of seeking, writing always takes place starting
at the current position. The value of a file pointer associated with
such a device is undefined.

If the O_APPEND flag of the file status flags is set, the file pointer
will be set to the end of the file prior to each write.

Write will fail and the file pointer will remain unchanged if one or
more of the following are true:

Fildees is not a valid file descriptor open for writing. [EBADF)

An attempt is made to write to a pipe that is not open for read-
ing by any process. [EPIPE and SIGFIPE signal]

An attempt was made to write a file that exceeds the process’
file size limit or the maximum file size. See ulimst(S). |EFBIG]

Buf points outside the process’ allocated address space.
[EFAULT)

If a wnte requests that more bytes be written than there is room for
{e.g., the ulimit (see ulimit(S)) or the physical end of a medium),
only as many bytes as there is room for will be written. For exam-
ple, suppose there is space for 20 bytes more in a file before reach-
ing a limit. A write of 512 bytes will return 20. The next write of a
nonzero number of bytes will give a failure return (except as noted

"March 24, 1984 - Page'1

XLIST(S) XLIST(S)

Name

xlist, fxlist - Gets name list entries from files.

Syntax

#include <a.out.h>
xlist{filename, x1)
char *filename;
struct xlist x1] J;

#include <a.out.h>
#include <stdio.h>
fxlist(fp, x1)

FILE »fp;

struct xlist x1[};

Description

Fzlist performs the same function as zlist, except that fzlist accepts a
pointer to a previously opened file intead of 2 filename.

Xlist examines the name list in the given executable output file and
selectively extracts a list of values. The name list structure 2! con-
sists of an array of zlist structures containing names, types, values,
and segment values (if applicable). The list is terminated by -either a
pointer to a null name or a null pointer. Each name is looked up in
the name list of the file. If the name is found, the type and value of
the name are inserted into the next two fields. The segment value (if
it exists) is inserted in the third field. If the name is not found,
both entries are set to zero. See a.out(F) for a discussion of the xlist
structure. ‘

X.out and a.out formats are understood, as well as 8086 relocatable
and x.out segmented formats.

If the symbol table is in a.out format, and if the symbol name given

to zlist is longer than eight characters, only the first eight characters

are used for comparison. In all other cases, the name given to zlist

must be the same length as a name list entry in order to match.

If two or more symbols happen to match the name given to 2list,

then the type and value used will be those of the last symbol found.
See Also

a.out{F)

March 24, 1984 Pagel

 A.OUT(F) | A.OUT(F)

Name

a.out - Format of assembler and link editor output.

Description

. A.out is the output file of the assembler as and the link editor 4.
Both programs will make a.out executable if there were no errors in
assembling or linking, and no unresolved external references.

The format of a.out, called the x.out or segmented x.out format, is
. defined by the files jusrfincludefs.out.h and fuerfincludefsysfreloym.A.
The a.out file has the following general layout:

1.
2.
3.
4.

Header.
Extended header.
File segment table (for segmented formats).

Segments (Text, Data, Symbol, and Relocation).

In the segmented format, there may be several text and data seg-
ments, depending on the memory model of the program. Segments
within the file begin on boundaries which are multiplies of 512 bytes
as defined by the file’s pagesize. '

See Also

as(CP), 1d(CP), nm(CP), strip(CP).

March 24, 1984 Page 1.

AR (F) AR (F)

Name

ar - Archive file format.

Description

The archive command ar is used to combine several files into one.
Archives are used mainly as libraries to be searched by the link edi-
tor 1d{C).

A file produced by ar has a magic number at the start, followed by
the constituent files, each preceded by a file header. The magic
number is 0177545 octal (or 0xfI65 hexadecimal). The header of
each file is declared in fusr/include/ar.h.

Each file begins on a word boundary; a null byte is inserted between
files if necessary. Nevertheless the size given reflects the actual size
of the file exclusive of padding.

Notice there is no provision for empty areas in an archive file.

See Also
ar(CP), 1d(CP)

March 24, 1984 Page 1

CORE (F) CORE (F)

Name

core — Format of core image file.

Description

XENIX writes out a core image of a terminated process when any of
various errors occur. See eignal(S) for the list of reasons; the most
common are memory violations, illegal instructions, bus érrors, and
user-generated quit signals. The core image is called core and is
‘written in the process’ working directory (provided it can be; normal
access controls apply). A process with an effective user ID different
from the real user ID will not produce a core image.

The first section of the core image is a copy of the system’s per-user
data for the process, including the registers as they were at the time
of the fault. The size of this section depends on the parameter uaze,
which is defined in /usr/include/sys/param.h. The remainder
represents the actual contents of the user’s core area when the core
image was written. If the text segment is read-only and shared, or
separated from data space, it is not dumped.

The format of the information in the first section is described by the

user structure of the system, defined in /usr/include/sys/user.h.

The locations of registers, are outlined in fusr/include/sys /reg.h.
See Also

adb{CP), setuid(S), signal(S)

“March 24, 1984 Page 1

DIR (F) DIR (F)

Name

dir - Format of a directory.

Syntax
#include <sys/dir.h>

Description

A directory behaves exactly like an ordinary file, except that no user
may write into a directory. The fact that a file is a directory is indi-
cated by a bit in the flag word of its inode entry (see filesyetem(F)).
The structure of a directory is given in the include file
Jusr/include/sys /dir.h. :

By convention, the first two entries in each directory are*‘dot” (.)
and ‘“‘dotdot” (..). The first is an entry for the directory itself. The
second is for the parent directory. The meaning of dotdot is
modified for the root directory of the master file system; there is no
parent, so dotdot has the same meaning as dot.

See Also

filesystem(F)

March 24, 1984 Page 1

DUMP (F)

DUMP (F)

The fields of the header structure are as follows: "

c._type
c_date
c__ddﬁte

k c_vblume

c_tapea
c_inumber
c_magic
c_checksum
c_dinode

c_count

c_addr

The type of the header.

The date the dump was taken.

The date the file system wes dumped from.
The current volume number of the dump.

The current block number of this record. This s
counting 512 byte blocks.

The number of the inode being dumped if ihis is of
type TS_INODE.

This contains the value MAGIC above, truncated as
needed.

This contains whatever value is needed to make the
block sum to CHECKSUM.

This is a copy of the inode as it appears on the file
system..

This is the count of characters following that describe
the file. A character is zero if the block associated
with that character was not present on the file system,
otherwise the character is nonzero. If the block was
not present on the file system no block was dumped
and it is replaced 2s a hole in the file. If there is not
sufficient space in this block to describe all of the
blocks in a file, TS_ADDR blocks will be scattered
through the file, each one picking up where the last
left off.

This is the array of characters that is used as described
above.

Each volume except the last ends with a tapemark (read as an end of
file). The last volume ends with a TS_END block and then the tape-

mark.

The structure idates describes an entry of the file where dump his-

tory is kept.

See Also

dump(C), restor(C}, filesystem(F)

March 24, 1984

Page 2

FILESYSTEM (F) FILESYSTEM (F)

try again. To free an inode, provided e_ninode is less than 100, place -
its number into e_inode[s_ninode] and increment s_ninode. If
e_ninode is already 100, do not bother to enter the freed inode into
any table. This list of inodes only speeds up the allocation process.
The information about whether the inode is really free is maintained
in the inode itself.

S_tinode is the total free inodes ‘availa.ble in the file system.

.S_flock and &_slock are flags maintained in the core copy of the file
system while it is mounted and their values on disk are immaterial.
The value of ¢ fmod on disk is also immaterial, and is used as a flag
to indicate that the super-block has changed and should be copied to
the disk during the next periodic update of file system information.

S_ronly is a read-only flag to indicate write-protection.

S_time is the last time the super-block of the file system was
changed, and is a double-precision representation of the number of
seconds that have elapsed since 00:00 Jan. 1, 1870 (GMT). During a
reboot, the ¢_time of the super-block for the root file system is used
“to set the system’s idea of the time.

I-numbers begin at 1, and the storage for inodes begins in block 2.
Also, inodes are 64 bytes long, so 8 of them fit into a block. There-
fore, inode i is located in block (f+15)/8, and begins
64X((s+ 15) (mod 8)) bytes from its start. Inode 1 is reserved for
future use. Inode 2 is reserved for the root directory of the file sys-
tem, but no other i-number has a built-in meaning. Each inode
represents one file. For the format of an inode and its flags, see
inode(F).
Files
[usr/include /sys/filsys.h

Jusr/include /sys/stat.h

See Also
fsck(C), mkfs(C), inode(F)

Marcl‘; 24, 1984 . -Page 2

MASTER (F) MASTER (F)

Name

master — master device information table

Description

This file is used by the config(CP) program to obtain device informa-
tion that enables it to generate the configuration files. The file con-
sists of 4 parts, each separated by a line with a dollar sign ($) in
column 1. Part 1 contains device information; part 2 contains the
line discipline table; part 3 contains names of devices that have
aliases; part 4 contains tunable parameter information. Any line
with an asterisk (*) in column 1 is treated as a comment.

Part 1 contains lines consisting of 14 fields with the fields delimited
by tabs and/or blanks:

Field 1: device name (8 chars. maximum).

Field 2: interrupt vector size (decimal, in bytes).

Field 3: device mask (octal)- each “‘on” bit indicates that
the driver has the corresponding handler or strue-
ture:

000400 tty structure
000200 stop handler
000100 not used
000040 not used
000020 open handler
000010 close handler
000004 read handler
000002 write handler
000001 ioctl handler.
Field 4: device type indicator (octal):
000200 allow only one of these devices
000100 not used
000040 not used
000020 required device
000010 block device
000004 character device
000002 not used
000001 ‘not used.

Field 5: handler prefix (4 chars. maximum).

Field 6: not used.

Field 7: major device number for block-type device.

Field 8: major device number for character-type device.

Field 9: maximum number of devices per controller
(decimal).

Field 10: not used.
Fields 11-14: maximum of four interrupt vector addresses.

Each address is followed by a unique letter or a
blank.

March 24, 1984 Page 1

MNTTAB (F) ' MNTTAB (F)

Name

mnttab - Format of mounted file system table.

Syntax
#include <stdio.h>
“#include <mnttab.h>
Description

The ftefmntteb file contains a table of devices mounted by the
mount(C) command.

Each table entry contains the pathname of the directory on which
the device is mounted, the name of the device special file, the
read/write permissions of the special file, and the date on which the
device was mounted.

The maximum number of entries in mnttab is based on the system
parameter NMOUNT located in fusr/sys/conf/c.c, which defines the
number of allowable mounted special files.

See Also
mount{C)

March 24, 1984 Page 1

SCCSFILE (F) ‘ ‘ SCCSFILE (F)

The first line (@s) contains the number of lines
inserted/deleted/unchanged respectively. The second line (@d)
contains the type of the delta (currently, normal: D, and removed:
R), the SCCS ID of the delta, the date and time of creation of the
delta, the login name corresponding to the real user ID at the time
the delta was created, and the serial numbers of the delta and its
predecessor, respectively. .

The @i, @x, and @g lines contain' the serial numbers of deltas
included, excluded, and ignored, respectively. These lines are
optional.

The @ m lines (optional) each contain one MR number associated
with the delta; the @ ¢ lines contain comments associated with the
delta.

The @ e line ends the delta table entry.

User Namees

The list of login names and/or numerical group IDs of users who
may add deltas to the file, separated by new-lines. The lines contain-
ing these login names and/or numerical group IDs are surrounded by
the bracketing lines @ u and @ U. An empty list allows anyone to
make a delta.

Flage

Keywords used internally (see admin(CP) for‘more information on
their use). Each flag line takes the form:

@f <flag> <optional text>
The following flags are defined:

@ft <type of program>
@fv <program name>

afi

@fb

@fm <module name>
a@ff <floor>

@fc <ceiling>

@fd <default-sid>
@fn

ar;j ,

@f1 <lock-releases>
@fq <user defined>

The t flag defines the replacement for the identification keyword.

The v flag controls prompting for MR numbers in addition to com-
ments; if the optional text is present it defines an MR number

March 24, 1984 Page 2

TYPES (F) E TYFPES (F)

Name

. types - Primitive system data types.

~ Syntax ’
. {inﬁlude <sys [types.h>

Descﬁption k ,
“The data types defined in the include file <sys [types.h> are used

in XENIX system code; some data of these types are accessible to
user code. .

‘The form daddr_t is used for disk addresses except in an inode on
disk, see filesystem(F). Times are encoded in seconds since 00:00:00

- GMT, January 1, 1970. The major and minor parts of a device code
specify kind and unit- number of a device and are installation.
dependent. - Offsets are measured in bytes from the beginning of a
file. The label_t variables are used to save the processor state while
another process is running.

~ See Also
filesystem(F)

‘March 24, 1984 ‘ Page 1

P

X.OUT(F) ' : X.OUT(F)

is not loaded.

The layout of a symbol table entry, and the principal flag values
that distinguish symbol types, are given in the include file. If a
symbol’s type is undefined external, and the value field is non—
zero, the symbol is interpreted by the loader, ld, as the name of a
common region whose size is indicated by the value of the symbol.
The value of a word in the text or data portions, which is not a
reference to an undefined external symbol, is exactly the value that
will appear in core when the file is executed. If a word in the text
or data portion involves a reference to an undefined external sym—
bol, as indicated by the relocation information for that word, then
the value of the word as stored in the file is an offset from the
associated external symbol.

When the file is processed by the loader and the external symbol
becomes defined, the value of the symbol will be added into the
word in the file. If relocation information is present, it amounts to
one word per word of program text or initialized data.

Files
lust/include/a.out.h

Notes S
See also as(CP), ld(CP), nm(CP), /usr/include/a.out.h.

May 10, 1984 Page 2

