
68-5-24-84- 1.011.0 DevelopmeIt System

IMPORT ANT NOTE ABOUT INSTALLATION

DEVELOPMENT SYSTEM
XENLX3.0 fcrthe AppleJ~ Lisat~

May 24, 1984

These notes contain information about installing the optional XE.~IX Development
System. If you wish to install the Development System at the same time as installing
the XENIX Operating System, please refer to the Installation Guide in the binder
marked I1I.$taUation GuidelOperatio1l.$ GuidelU ser's Guide. When installing the
XENIX Development System after you've already installed the XENIX Operating
System, refertothese notes.

READTHElNST ALLATION NOTES lNTHElRENTlRETY AND MARKSURE
YOU COMPLETELY UNDERSTAND THE INSTALLATION PROCESS
BEFORE INSTALLING THE PRODUcr. Note that you need theXENIX Operating
System in order to use the Developmett System, so you must install the XENIX
Operating System first.

If you have already installed the XENIX Operating System, and wish to install the
Development System Package separately, follow this procedure:

1. Login as root (super-user).

2. The floppies are munbered (beginning with 1) am must be installed in
sequential numeric order. Insert the first Development System floppy into
the floppy drive andemerthe command:

:# letc/install

3. The install utility willprompt:

First floppy (yIn)

Enter'y' and press RETURN.

4. The program will prompt you for each floppy. Remove the previous floppy
from the floppy drive and insert the next Development Sytem floppy. Enter .
'y' in response tothe prompt (#).

5. When you have installed the final Development System floppy, enter 'n' in
response to the prompt.

N<xe that some files may extend from one floppy to the next. In this case. the tar utility
will prompt you in a slightly different fashion than the I etcl{qstiill program. Insert the
next floppy and press RETURN when the floppy is properly inserted and the floppy door
latch is closed.

The Sama Cruz Operation XENLX for the Apple Lisa 2

The XENIX™

Development System

Programmer's Guide

TM

for the Apple Lisa 2

The Santa Cruz Operation, Ine.

Information in this document is subject to change without notice and
does not represent a commitment on the part or The Santa Cruz
Operation, Inc. and Microsoft Corporation. The software described in
this document is furnished under a license agreement or nondisclosure
agreement. The software may be used or copied only in accordance
with the terms of the agreement.

CThe Santa Cruz Operation, Inc., 1984
CMicrosoft Corporation, 19S3

The Santa Cruz Operation, Inc.
500 Chestnut Street
P.O. Box 1900
Santa Cruz, California 95061
(408) 425-7222 • TWX: 910-598-4510 SeQ SACZ

UNIX is a trademark of Bell Laboratories
XENIX is a trademark of Microsoft Corporation
Apple, Lisa 2, and ProFile are trademarks or Apple Computer Inc.

Release: 68-5-24-84-1.0/1.0

Contents

1 In~ucdon

1.1 Overview 1
1.2 Creating C Language Programs
1.3 Creating Other Programs 2
1.4 Creating and Maintaining

Libraries 2
1.5 Maintaining Program Source

Files 3
1.6 Creating Programs With Shell

Commands 3
1.7 Using This Guide 4
1.8 Notational Conventions 5

Z Cc: A CompHer

2.1 Introduction 1
2.2 Invoking the C Cc:mpiler 2
2.3 Cc:mpiling a Source File 3
2.4 Compiling Several Source

Files 4
2.5 Using Object Files 5
2.6 Naming the Output File 6
2.7 Cc:mpiling Without Linking 6
2.8 Linking to Library

Functions 7
2.9 Optimizing a Source File 8
2.10 Producing an Assembly Source

File 9
2.11 Stripping the Symbol Table 9
2.12 Profiling a Program 10
2.13 Saving a Preprocessed Source

File 10
2.14 Defining a Macro 10
2.15 Defining the Include

Directories 11
2.16 Error Messages 12

3 Lint: A C Program Cheeker

3.1 Introduction 1
3.2 Invoking lint 1
3.3 Checking for Unused Variables

and Functions 2
3.4 Checking Local Variables 3
3.5 Checking for Unreachable

1-i

j-ii

Statements 4
3.6 Checking for Infinite Loops 5
3.7 Checking Function Return

Values 5
3.8 Checking for Unused Return

Values 6
3.9 Checking Types 6
3.10 Checking Type Casts 7
3.11 Checking for Nonportable

Character Use 8
3.12 Checking for Assigrnnent of

longs to ints 8
3.13 Checking for Strange

Constructions 9
3.14 Checking for Use of Older C

Syntax 10
3.15 Checking Pointer Alignment 11
3.16 Checking Expression Evaluation

Order 11
3.17 Embedding Directives 12
3.18 Checking For Library

Compatibility 13

4 Make: A Program Maintainer

4.1 Introduction I
4.2 Creating a MakefiJe
4.3 Invoking Make 3
4.4 Using Pseudo-Target Names 5
4.5 Using Macros 6
4.6 Using Shell Environment

Variables 8
4.7 Using the Buih-In Rules 9
4.8 Changing the Built-in Rules 11
4.9 Using Libraries 13
4.10 . Troubleshooting 14
4.11 Using Make: An Example 15

5 sces: A Source Code Control System

5.1 Introduction
5.2 Basic Infmnation
5.3 Creating and Using S - files 5
5.4 Using Identification

Keywords 14
5 c,: Using S-file flags 17
~j.6 Modifying S-file

Information 19
5.7 Printing from an S - file 22
::.. ~ Editing by Several Users 24

5.9 Protecting S-files 25
5.10 Repairing SCCS Files 28
5.11 Using Other Command Options 30

6 Adb: A Program Debuaer

6.1 Introduction 1
6.2 Invocation 1
6.3 The Current Address - Dot
6.4 Formats 2
6.5 Debugging C Programs 3
6.6 Maps 7
6.7 Advanced Usage 8
6.8 Patching 11
6.9 Notes 12
6.10 Figures 13
6.1 J Adb Summary 26

7 As: AD Assembler

7.1 Introduction 1
7.2 Command Usage
7.3 Invocation Options J
7.4 Source Program Format 2
7.5 Symbols am Expressions 4
7.6 Instructions and Addressing

Modes 10
7.7 Assembler Directives 13
7.8 Operation Codes 17
7.9 Error Messages 18

8 Lex: A Ledcal Analyzer

8.1 Introduction 1
8.2 Lex Source Format 3
8.3 Lex Regular Expressions 4
8.4 Invoking l~:c 5
8.5 Specifying Olaracter

Classes 5
8.6 Specifying an Arbitrary

Olaracter 6
8.7 Specifying Optional

Expressions 7
8.8 Specifying Repeated

Expre~sions 7
8.9 SpecifY~:tg Ahemation and

GroUpLlg 7
8.10 Specifying Context

Sensiti,1ty 8

I-iii

I-iv

8.11 Specifying Expression
Repetition 9

8.12 Specifying Definitions 9
8.13 Specifying Actions 9
8.14 Handling Ambiguous Source

Rules 13
8.15 Specifying Left Context

Sensitivity 16
8.16 Specifying Source

Definitions 18
8.17 Lex am Yacc 20
8.18 Specifying Character Sets 24
8.19 Source Format 25

9 Yatt: A Compiler-CompHer

9.1 Introduction 1
9.2 Specifications 4
9.3 Actions 7
9.4 Lexical Analysis 9
9.5 How the Parser Works 11
9.6 Ambiguity and Conflicts 16
9.7 Precedence 21
9.8 Error Handling 24
9.9 The Yacc Environment 26
9.10 Preparing Specifications 27
9.11 Input Style 27
9.12 Left Recursion 28
9.13 Lexical Tie-ins 29
9.14 Handling Reserved Words 30
9.15 Simulating Error and Accept in

Actions 31
9.16 Accessing Values in Enclosing

Rules 31
9.17 Supporting Arbitrary Value

Types 32
9.18 A Small Desk Calculator 33
9.19 Yacc Input Syntax 36
9.20 An Advanced Example 38
9.21 Old Features 44

Appendix A C Language Portability

A.I Introduction I
A.2 Program Portability 2
A.3 Machine Hardware 2
A.4 Compiler Differences 7
A.5 Program Environment Differences II
A.6 Portability of Data 12
A.7 Lint 12

A.8 Byte Ordering Summary 13

Appendix B M4: A Macro Processor

B.l Introduction 1
S.2 Invoking m4 1
B.3 Defining Macros 2
B.4 Quoting 3
B.S Using Arguments S
B.6 Using Arithmetic Built-ins 6
B.7 Manipulating Files 7
B.8 Using System Commnands 7
B.9 Using Conditionals 8
B.IO Manipulating Strings 8
B.ll Printing 10

I-v

Chapter 1
Introduction

1.1 Overview 1-1

1.2 Creating C Language Programs 1-1

1.3 Creating Other Programs 1-1

1.4 Creating and ~faintaining Libraries 1-2

1.5 Maintaining Program Source Files 1-2

1.6 Creating Programs With Shell Commands 1-3

1.7 Using This Guide 1-3

1.8 Notational Conventions 1-4

In trod uction

1.1 Overview

This guide explains how to use the XENIX Software Development system to
create and maintain C and assembly language programs. The system provides
a broad spectrum of programs and commands to help you design and develop
applications and system software. These programs and commands let you
create C and assembly language programs for execution on the XENIX system.
They also let you debug these programs, automate their creation, and maintain
versions of the programs you develop.

The following sections introduce the programs and commands of the XENIX
Software Development System and explain the steps you can take to develop
programs for the XENIX system. Most of the programs and commands in these
introductory sections are fully explained later in this guide. Some commands
mentioned here are part of the X&~IX Timesharing System and are explained in
theXENIX U,er', Guide andXENIX Operation, Guide.

1.2 Creating C Language Programs

All C language programs start as a collection or C program statements on files.
The XE!,-;lX system provides a number ortext editors that let you create source
files easily and efficiently. The most convenient editor is the screen-oriented
editor vi. Vi provides many editing commands that let you easily insert,
replace, move, and search Cor text. All commands can be invoked from
command keys or from a command line. The program has also has a va.riety of
options that let you modify its operation.

Once a C language program has been written to a source file, you can create an
executable program using the cc command. The cc command invokes the
XENIX C compiler which compiles the source file. This command also invokes
other XENIX programs to prepare the compiled progr am ror execution.

You can debug an executable C program with the XENIX debugger alb. Adb
provides a direct interface to the machine instructions that make up an
executable program.

If you wish to check a program before compilation, you can use lint, the XENIX
C program checker. Lint checks the content and construction or C la.nguage
programs for syntactical and logical errors. It also enrorces a strict set oC
guidelines Cor proper C programming style. Lint is normally used in the early
stages of program development to check for illegal and improper US3.ge or the C
language.

'1.3 Creating Other Progra.ms

The C programming hnguage can meet the needs or most progra.mming
projects. In cases where finer control of execution is required, you rr·ay create

1-1

XENIX Programmers Guide

assembly language programs using the XENIX assembler 41. AI assembles
source files and produces relocatable object files that can be linked to your C
language programs with ld. The ld program is the XEl\1X . linker .It links
relocatable object files created by the C compiler or assembler and produces
executable programs. Note that the cc command automatically invokes the
linker and the assembler so use of either is optiona.l.

You can create source files for lexical analyzers a.nd parsers using the program
generators lez and yaa. The lez program is the XE!-.TJX lexical analyzer
generator. It generates lexical analyzers, written in C program statements,
from given specification files. Lexical analyzers are used in programs to pick
patterns out of complex input and convert these patterns into meaningful
values or tokens. The '!Ic,ee program is the XENIX parser generator. It
generates parsers, written in C program statements, from given specification
files. Parsers are used in programs to convert meaningful sequences or tokens
and values into actions. Lez and yaa are often used together to make complete
programs.

You can preprocess C and assembly hnguage source files, or even lez and Y4CC

source files using the m4 macro processor. The m4 program performs several
preprocessing functions, such as converting macros to their defined values and
including the contents of files into a source file.

1.4 Creating and Maintaining Libraries

You can create libraries of useful C and assembly language functions and
programs using the ar and ranlib programs. Ar, the XENIX archiver, can be
used to create libraries of relocatable object files. R anlib, the XENIX random
library generator, converts archive libraries to random libraries and places a
table of contents at the front of each library.

The lorder command finds the ordering relation in an object library. The
tsort command topologically sorts name lists so that forward dependencies are
apparent.

1.5 Maintaining Program Source Files

You can automate the creation of executable programs from C and assembly
language source files and maintain your source files using the make program
and the sees commands.

The make program is the XENIX program ma.intainer. It automates the steps
required to create executable programs and provides a mechanism for ensuring
up to date programs. It is used with small, large, and medium-scale
programming projects.

The Source Code Control (sees) commands let you maintain different versions
of a single prqgram. The commands compress all versions of a source file into a

1-2

Introduction

single file containing a list or differences. These commands also restore
compressed files to their original size and content.

Many XENIX commands let you carerully examine a program's source files. The
ctags command creates a tags file so that C runctions can be quickly round in a
set or related C source files. The mkstr command creates an error message file
by examining a C source file.

Other commands let you examine object and executable binary files. The nm
command prints the list or symbol names in a program. The hd command
perrorms a hexadecimal dump or given files, printing files in a variety or
formats, one or which is hexadecimal. The od command perrorms an octal
dump or given files. adb (see chapter 6), allows disassembly or your program.
The size command reports the size or an object file. The strings command
finds and prints readable text (strings) in an object or other binary file. The
strip command removes symbols and relocation bitsrrom executable files. The
sum command computes check sum ror a file and counts blocks. It is used in
looking ror bad spots in a file and ror verirying transmission of data between
systems. The xstr command extracts strings from C programs to implement
shared strings.

1.6 Creating Programs With Shell Commands

In some cases, it is easier to write a program as a series of XENIX shell
commands than it is to create a C language program. Shell commands provide
much or the same control capability as the C language and give direct access to
all the commands and programs normally available to the XENIX user.

The csb command invokes the C-shell, aXENlX command interpreter. The C­
shell interprets and executes commands ta.ken from the keyboard or from a
command file. It has a C-like syntax which makes programming in this
command language easy. It also has an aliasing facility, and a command history
mechanism.

1.7 Using This Guide

This guide is intended ror programmers who are familiar with the C
programming language and with the XENIX system.

C language programmers should read Chapters 2,3, and 6 ror an explanation or
how to compile and debug C language programs.

Assembly language programmers should read Chapter 7 for an explanation of
the XEI\.1X assembler and Chapter 6 ror an explanation of how to debug
programs.

Programmers who wish to automate the compilation processoftheir programs
should read Chapter 4 for an explanat.i.:m of the m a.ke program. Programmers

1-3

XENIX Programmers Guide

who wish to organize and maintain multiple versions of their programs should
read Chapter .5 ror an explanation or the Source Code Control System (SeeS)
commands.

Special project programmers who need a convenient way to produce lexical
analyzers and parsers should read Chapters 8 and 9 for explanations or thelez
and !l4CC program generators.

Chapter 1 introduces the XENIX sortware development programs provided
with this package.

Chapter 2 explains how to compile C language programs using the cc
command.

Chapter 3 explains how to check C language programs ror syntactic and
semantic correctness using the C program checker lint.

Chapter 4 explains how to automate the development or a program or other
project using the make program.

Chapter 5 explains how to control and maintain all versions or a project's
source files using the sees commands.

Chapter 6 explains how to debug C and assembly la.ngua.ge programs using the
XE~IX debugger 4db.

Chapter 7 explains how to assemble assembly language programs using the
XENIXassembler 48.

Chapter 8 explains how to create lexical analyzers using the program generator
lez.

Chapter 9 explains how to create parsers using the program generator !ICC c.

Appendix A explains how to write C langugae programs that can be compiled
on other XE~1X systems.

Appendix B explains how to use to create and process macros using the m4
macro processor.

1.8 Notational Conventions

This guide uses a number or special symbols to describe the syntax or XENIX
commands. The rollowing is a list or these sym boIs and their meaning.

[]

1-4

Brackets indicate an optional command argument.

Ellipses (three dots) indicate that the preceding
argument may be repeated oneor more times.

SMALL

bold

italic,

Introduction

Small capi tals indica.te a key to be pressed.

Boldface characters indicate a. command name.

Italic characters indicate a placeholder ror a command
argument. When typing a command, a placeholder
must be replaced with an appropriate filename,
number, or option.

1-6

Chapter 2
Cc: A C Compiler

2.1 Introduction 2-1

2.2 Invoking the C Compiler 2-2

2.3 Compiling a Source File 2-2

2.4 Compiling Several Source Files 2-3

2.5 Using Object Files 2-4

2.6 Naming the OutputFile 2-5

2.7 Compiling \VithoutLinking 2-6

2.8 Linking to Library Functions 2-6

2.9 Optimizing a Source File 2-7

2.10 Producing an Assembly Source File 2-8

2.11 Stripping the Symbol Table 2-8

2.12 Profiling aProgram 2-9

2.13 Saving aPreprocessed Source File 2-9

2.14 Defining a Macro 2-10

2.15 Defining the Include Directories 2-10

2.16 Error ~fessages 2-11

Cc: A C Compiler

2.1 Introduction

This chapter explains how to use the cc command to create executable
programs from C language source files. The command compiles C source files
by invoking the XENIX C compiler, the C preprocessor, and in some cases the C
optimizer. It then invokes other programs, such as the XENIX assembler 4' and
linker ld, to complete the creation of the executable program.

The cc command accepts as C source files any file containing a complete C
program or one or more complete C functions. The command processes the
source files in five phases: preprocessing, assembly source generation,
optimization (if necessary), machine code generation, and linking.

In the preprocessing phase, the cc command invokes the C preprocessor, which
searches the source file for C directives. The preprocessor replaces each
directive with a corresponding value or meaning. For example, it replaces each
occurrence of a macro name with its defined value and each include directive
with the contents of its corresponding include file. It then copies the expanded
version of the source file to a temporary file. The preprocessor also allows
conditional compilation.

In the assembly source generation phase, the cc command invokes the C
compiler which translates the C program statements in the temporary file into
equivalent assembly language instructions. These instructions form a
complete assembly language source file that performs the same tasks as the
statements in the C source file. The compiler copies the assembly instructions
to a temporary file.

In the optional optimization phase, the cc -0 command invokes the C optimizer
which modifies the temporary assembly language file, making it smaller and
faster without altering the tasks its performs. Programs of all sizes benefit
Crom optimization.

In the machine code generation phase, the command invokes the XENIX
assembler 48 which assembles the temporary assembly language file. The
assembler creates an "object file" containing relocatable machine instructions
that can be prepared Cor execution. If more than one source file is processed, a
permanent object file is created for each source file.

In the linking phase, the command invokes the XENIX linker ld, which resolves
all unresolved references to variables and functions in the object file. If
necessary, ld searches the appropriate program libraries to link the contents of
other object files to the given file. The linker then writes the linked instructions
to a file. This file, called an "executable binary" file, contains the program's
machine instructions in executable binary form. The file z. out is used by
deCault.

This chapter assumes that you are familiar with the C programming language
and that you can create C program source files using a XENIX text editor.

2-1

XENIX Programmer's Guide

2.2 Invoking the C Compiler

You can invoke the C compiler with the cc command. The command has the
(orm

cc [option] ... file na.me ...

where option is a command option, and filena.me is the name or a C language
'source file, an assembly language source file, or an object file. You may give
more than one option or filename, if desired, but you must separate each item
with one or more whitespace characters.

The cc command options let you control and modify command operation. For
example, you can direct the command to skip the optimization phase or create a
permanent copy or the file created during the assembly source generation
phase. The options also let you speciry additional information about the
compilation, such as which program libraries to examine and what the name or
the executable file should be. The options are described in detail in the
(ollowing sections.

The cc command lets you name three different kinds o(files: C source, assembly
language source, and object files. A file's contents are identified by the filename
extension. C source files have the extension .c. Assembly language source files
have the extension .6. Object files have the extension .0. The command delays
processing of each type or file until the appropriate phase. Thus C source files
are processed immediately, assembly language files are processed in the
machine code generation phase, and object files are processed in the linking
phase. An assembly language source file may be created by hand using aXENIX
text editor, or created using the cc command's assembly source generation
phase (see the -8 option later in thischapter). An object file must be the output
of the XENIX assembler or the cc command's machine code generation phase
(see the -c option).

2.3 Compiling a Source File

You can compile asource file containing a complete C program by giving the
name o(the file when you invoke the cc command. The command reads and
compiles the statements in the file, links the compiled program with the
standard C library, then copies the program to the derault output file z.out

To compiie a source program, type:
cc filename

where filena.me is the name or the file containing the program. The program
must be complete, that is, it must contain a main program (unction. It may
contain calls to runctions explicitly defined by the program or by the standard
C library. For example, assume the the rollowing program is stored in the file
named main.c.

2-2

:fI:include <stdio.h>

main 0
{

}

int x,y;

scanf("%d + %d", &x, &y);
printf(" %d\n", x+y);

To compile this program, type

cc main.c

Cc: A C Compiler

The command first invokes the C preprocessor which adds the statements in
the file / uBr/include/ Btdio.h to the beginning of the program. It then compiles
these statements and the rest of the program statements. Next, the command
links the program with the standard C library which contains the binary code
for the Bean! and prin.t! functions. Finally, it copies the program to the file
:I. out.

You can execute the new program by typing the command

x.out

The program waits until you enter a sum, then prints the value of tha.t sum.
For example, if you type "3 + 5" the program displays "8".

Note that when the command creates the :I. out file, it gives the file the
permissions defined by your current file creation mask.

2.4 Compiling Several Source Files

Large source programs are often split into several files to make it easier to
update and edit. You can compile such a program by giving the names or all the
files belonging to the program when you invoke the cc command. The
command reads and compiles each file in turn, then links all object files together
and copies the new program to the file :I. out.

To compile several source files, type

cc filename .. ,

where each filename is separated from the next by whitespace. One or these
files (and no more than one) must contain a program function named "main".
The others may contain runctions that a.re called by this main function or by
other runctions in the program.

2-3

XENIX Programmer's Guide

For example, suppose the following main program function is stored in the file
main.

#include <stdio.h>
extern int addO;

main 0
{

}

int X,y,z;

scant ("%d + %d", &x, &y);
z = add (x, y);
printr (" %d \n", z);

Assume that the following runction is stored in the file add. c:

add (a, b)
int a, b;
{

return (a + b);
}

You can compile these files and create an executable program by typing

cc main.c add.c

The command compiles the statements in main.c, then compiles the
statements in add.c. Finally, it links the two together (along with the standard
C library) and copies the program to z.out. This program, like the program in
the previous section, waits ror a sum, then prints the value of the sum.

Compiling several source files at a time causes the command to create object
files to hold the binary code generated for each source file. These object files are
then used in the linking phase to create an executable program. The object files
have the same basename as the source file, but are given the. 0 file extension.
For example, when you compile the two source files above, the compiler
produces the object files main.o and add.o. These files are permanent files, I.e.,
the command does not delete them arter completing its operation. The
command deletes the object file only if you compile a single source file.

2.5 Using Object Files

You can use an object file created by the cc command in any later invocation of
. the command. 'Vhen you specify an object file, the command does nothing with
it until the linking phase, that is, the command does not compile or assemble
the file.

2-4

Cc: A C Compiler

Source files containing functions do not need to be recompiled each time they
are linked to a new program. The generated object files can be used instead,
saving the programmer the time it takes to compile each source file. This is
another reason large programs are often split into several modules.

To create a program from both source files and object files, give the object
filenames along with the source filenames in the command invocation. Make
sure the filenames are separated by whitespace characters. For example,
assume that the following main program function is stored in the file multo c:

#include <stdio.h>

main 0
{

}

int x,y,z,i;

scanf("%d. %d", &x, &y);
for (i=Oj i<Yj i++)

z = add (z,x) ;
printf("%d \n", z)j

This program uses the add function compiled in the previous section. Since the
object file containing this function is named add. 0, you can compile this
program and link the object file to it by typing

cc mult.c add.o

The compiler compiles the statements in mult.c and produces an object file ror
it, then the compiler links the add. Q file to the new file and stores the executable
program in %. out. This program waits ror you to enter the values to be
multiplied, multiplies the values, then displays the result.

2.6 Naming the Output File

You can change the name of the executable program file from %. out to any valid
filename by using the -0 (for "output") option. The option has the rorm:

-0 filename

where file name is a valid filename or a full pathname. If a filename is given, the
program file is stored in the current directory. If a full path name is given, the
file is stored in the given directory. If a file with that name already exists, the
compiler removes the old file before creating the new one.

For example, the command

cc main.c add.o -0 addem

2-5

XENIX Programmer's Guide

causes the compiler to create an executable program file addem from the source
file main.c and object file add. o. You can execute this program bytyping

addem

The permissions defined by the file creation mask apply to this file just as they
do to z.out.

Note that the -0 option does not affect the z.out file. This means that the cc
command does not change the current contents of this file if the -0 option has
been given.

2.7 Compiling Without Linking

You can compile a source file without linking it by using the -c (fer "compile")
option. This option is useful if you wish to have an object file available for later
programs but have no current program that uses it. The option has thetorm:

-c filename

where filename is the name of the source file. You may give more than one
filename if you wish. Make sure each name is separated trom the next by a
space.

For example, to make object files ror the source files main.c, add.c, and mult.c,
type

cc -c main.c add.c mult.c

The command compiles each file in turn and copies the compiled source to the
files main.o, add.o, and mult.o.

2.8 Linking to Library Functions

A library is a file that contains userul functions in object file fotmat. You can
link a source file to these runctions by linking it to the library with the -I (for
"library") option. The option, used by the linker during the linking phase,
causes the linker to search the given library ror the functions called in the
source file. If the functions are round, the linker links them to the source file.

The option has the form

cc -lname

where name is a shortened version of the library's actual filename. The actual
filename has the form

2-6

Cc: A C Compiler

libname.a

Spaces between the name and option are not permitted. The linker builds the
library's filename from the given name, then searches the /lib directory ror the
library. Irnot found, it searches the /u~r/lib directory.

For example, the command

cc main.c -lcurses

links the library libcur8e8. a to the source file main.e.

A library is a convenient way to store a large collection or object files. The
XENIX system provides several libraries. The most common is the standard C
library. This library is automatically linked to your program whenever you
invoke the compiler. Other libraries, such as libeur8e8.4, must be explicitly
linked using the -I <libname> option. Without the -1 flag, cc and Id would
identify a library by inspecting its first byte. The XENIX libraries and their
Cunctions are described in detail in the XENIX Programme r', R ele re nee Guide.

Note that you can create your own libraries with the XENIX ar and ranlib
programs. These commands let you copy object files to a library file and then
prepare the library for searching by the linker. These commands are described
in the XENIX Reference Afanual.

In general, the linker does not search a library until the -I option is
encountered, so the placement oC the option is important. The option must

. follow the names oC source files containing calls to Cunctions in the given library.

2.9 Optimizing a Source File

You can optimize a source file, that is, make its corresponding assembly source
file more efficient, by using the -0 (for "optimize") option. For example, the
command

cc -0 main.c

optimizes the source file main.c.

Optimization only applies to compiled files; the compiler cannot optimize
assembly source or object files. Furthermore, the -0 option must appear
before the names of the files you wish to optimize. Files preceding the option
are not optimized. For example, the command

cc add.c -0 main.c

optimizes main.c but not add.e.

2-7

XENIX Programmer's Guide

You may cornbinethe -0 and -c options to compile and optimize source files
without linking the resulting object files. For example, the command

cc -0 -c main.c add.c

creates optimized object files from the source files maz'n.c and add. c.

Although optimization is very useful for large programs, it takes more time
than regular compilation. In general, it should be used in the last stage or
program development, after the program has been debugged.

2.10 Producing an Assembly Source File

You can direct the compiler to save a copy of the temporary assembly source
file by using the -S (for "source") option. The option causes the command to
copy the temporary assembly source file to a permanent file. This permanent
file has the same basename as the source file, but is given the file extension .,.

For example, the command

cc -S add.c

compiles the ~urce file add.c and creates an assembly language instruction file
add.,.

The -8 option applies to source files only; the compiler cannot create a source
file from an exi1:ting object file. Furthermore, the option must appear before
the names of the files for which the assembly source is to be saved.

2.11 Stripping the Symbol Table

You can reduce the size of a program by using the -8, option. This option
causes the cc command to strip the symbol table. The symbol table contains

. information about code relocation and program symbols and is used by the
XENIX debugger adb to allow symbolic rererences to variables and functions
when debugging. The inrormation in this tab!\! is not required Cor normal
execution and can be stripped when the program has been completely
debugged.

The -8 option strips the entire table, leaving machine instructions only.

For example, the command

cc -s main.c add.c

creates a executable program that contains no symbol table. It also creates the
object files main. Q and add. Q which contain no symbol tables.

2-8

Cc: A C Compiler

The -s option may be combined with the -0 option to create an optimized and
stripped program. An optimized and stripped program has the smallest size
possible.

Note that you can also strip a program with the XENIX command strip. See
the XENIX Reference Manualtor details.

2.12 Profiling a Program

You can examine the flow oC execution oC a program by adding "profiling" code
to the program with the -p option. The profiling code automatically keeps a
record of the number oC times program Cunctions are called during execution oC
the program. This record is written to the mon.out file and can be examined
with the prot command.

For example, the command

cc -p main.c

adds profiling code to the program created Crom the source file main.e. The
profiling code automatically calls the monitor Cunction which creates the
mon.out file at normal termination oCthe program. The prot command and
monitor Cunction are described in detail in pro/(CP) and monitor(S) in the
XENIX Reference Manual.

2.13 Saving & Preprocessed Source File

You can save a copy oC the temporary file created by the C preprocessor by
using the -P (Cor "preprocessing") option. The temporary file is identical to
the source file except that all macro names have been expanded and all include
directives have been replaced by the specified files. The command copies this
temporary file to a permanent file which has the same basename as the source
file and the filena.me extension .i.

For exa.mple, the command

cc -P main.c

creates a preprocessed file Cor the source file main. e.

You may also display a copy oC the preprocessed source file by using the -E
option. This option invokes the C preprocessor only and directs the
preprocessor to send the preprocessed file to the standard output.

2-9

XENIX Programmer's Guide

2.14 Defining a ,Macro

You can define the value or meaning of a macro used in a source file by using the
-D (for "define") option. The option lets you assign a value to a macro when
you invoke the compiler and is useful ir yO\! have used it directives in your
source files.

The option has the form

-D name- del

where name is the name or the macro and del is its value or meaning. For
example, the command

cc -DNEED=2 main.c

sets the macro "~"EED" to the value "2". The command compiles the source
file main. c, replacing every occurrence of "NEED" with "2". If a name is given
but no definition, the compiler assigns the va.lue 1 by derault.

You can also remove the initial definition of a macro by using the -U (for
"un define") option. Removing the initial definition is required ir you wish to
use the -D option twice in the same command line. The option has the form

cc -Uname

where name is the macro name. For example, in the command

cc -DNEED=2 main.c -UNEED -DNEED=3 add.c

the -U options removes the previous definition of "NEED" and allows a new
one.

2.15 Defining the Include Directories

You can explicitly define the directories containing include files by using the-I
(for "include") option. This option adds the given directory to the list of
directories containing include files. These directories are automatically
searched whenever you give an include directive in which the filename is
enclosed in angle brackets. The option has the rorm

-I dire ctorgftame

where directoryname is a valid pathname to a directory containing include
files. For example, the command

cc -Imyinclude main.c

Cc: A C Compiler

causes the compiler to search the directory myinclutle for include flies
requested by the source file main.c.

The directories are searched in the order they are given and only until the given
include file is found. The /utJr/inciutlc directory is the default include directory
and is always sea.rched first.

2.16 Error Messages

The cc command itself produces error messages. It a.lso lets the XENIX C
compiler, C preprocessor, C optimizer, assembler, and linker programs detect
and announce any errors found in the source files or command options. The
error messages are usually preceded by the name of the program which
detected the error. If the error is severe, the ('c command terminates and leaves
all files unchanged. Otherwise, it procee.:is with the compilation and linking or
the given source files if you have given the appropriate commands.

Most error messages are generated by the C compiler. This displays messages
about errors found during compilation such as incorrect syntax, undefined
variables, and illegal use of operators. Error messages Crom the compiler begin
with the name or the source file and list the number of the line containing the
error.

The XENIX linker also gcnemt.es many error messages. It displays messages
about errors found during linking such as undefined symbols and misnamed
libraries. The preprocessor, optimizer, and assembler 3.lso display messages if
errors are found. For example, the preprocessor disphys an error message ir it
cannot find an include file.

For convenience, you should use the XENIX C program checker lint before
compiling your C source files. Lint performs detailed error checking on a source
file and provide a list of actual errors and possible problems which may affect
execution of the program. See Chapter 3, "Lint: A C Program Checker" ror a
description of lint.

2-11

Chapter 3
Lint: A C Program Checker

3.1 Introduction 3-1

3.2 Invoking lint 3-1

3.3 Checking Cor Unused Variables and Functions 3-2

3.4 Checking Local Variables 3-3

3.5 Checking Cor Unreachable Statements 3-4

3.6 Checking (or Infinite Loops 3-4

3.7 Checking Function Return Values 3-5

3.8 Checking (or Unused Return Values 3-6

3.9 Checking Types 3-6

3.10 Checking Type Casts 3-7

3.11 Checking for Nonportable Character Use 3-7

3.12 Checking for Assignment oClongs to ints 3-7

3.13 Checking for Strange Constructions 3-8

3.14 Checking for Use of Older C Synta.x 3-9

3.15 Checking Pointer Alignment 3-10

3.16 Checking Expression Evaluation Order 3-10

3.17 Embedding Directives 3-11

3.18 Checking For Library Compatibility 3-12

Lint: A C Program Checker

3.1 Introduction

This chapter explains how to use the C program checker lint. The program
examines C source files and warns of errors or misconstructions that may cause
errors during compilation of the file or during execution of the compiled file.

In particular, lint checks for:

Unused Cunctions and variables

Unknown values in local variables

Unreachable statements and infinite loops

Unused and misused return values

Inconsistent types and type casts

Mismatched types in assignments

Nonportable and old fashioned syntax

Strange constructions

Inconsistent pointer alignment and expression eva.luation order

The lint program and the C compiler are generally used together to check and
compile C language programs. Although the C compiler compiles C langua.ge
source files, it does not perCorm the sophisticated type and error checking
required by many programs, though syntax is gone over. The lint program,
provides additional checking of source files without compiling.

3.2 Invoking lint

You can invoke lintprogram by typing

lint [option] ... filename ... lib .'.

where option is a command option that defines how the checker should operate,
filename is the name of the C language source file to be checked, and lib is the
name of a library to check. You can give more than one option, filename, or
library name in the command. If you give two or more filenames, lint assumes
that the files belong to the same program and checks the files accordingly. For
example, the command

lint main.c add.c

treats ma£n.c and add.c as two parts of a complete program.

XENIX Programmer's Guide

If lint discovers errors or inconsistencies in a source file, it produces messages
describing the problem. The message has the form

filena.me (num): deuription

where filename is the name orthe source file containing the problem, num is the
number of the line in the source containing the problem, and deleription is a
description of the problem. For example, the message

main.c (3): warning: x unused in function main

shows that the variable "x", defined in line three orthe source file main.c, is not
used a.nywhere in the file.

3.3 Checking for Unused Variables and Functions

The lint program checks for unused variables and functions by seeing if each
declared variable and function is used in at least once in the source file. The
program considers a variable or function used if the name appears in at least
one statement. It is not considered used if it only appears on the left side or on
assignment. For example, in the following program fragment

main 0
{

int x,y,z;

x=l; y=2; z=x+y;

the variables "x" and "y" are considered used, but variable "z" is not.

Unused variables and functions often occur during the development of large
programs. It is not uncommon for a programmer to remove all references to a
variable or function from a source file but forget to remove its declaration.
Such unused variables and functions rarely cause working programs to fail, but
do make programs larger, harder to understand and change. Checking for
unused variables and functions can also help you find variables or functions
that you intended to used but accidentally have left out of the program.

Note that the lint program does not report a variable or function unused if it is
explicitly declared with the extern storage class. Such a variable or function is
assumed to be used in another source file.

You can direct lint to ignore all the external declarations in a source file by
using the -x (for "external") option. The option causes the program checker to
skip any declaration that begins with the extern storage class.

The option is typically used to save time when checking a program, especially if
all external declarations are known to be valid.

3-2

Lint: A C Program Checker

Some programming styles require functions that perform closely related tasks
to have the same number and type of arguments regardless of whether or not
these arguments are used. Under normal operation, lint reports any argument
not used as an unused va.riable, but you can direct lint to ignore unused
arguments by using the -v option. The -v option causes lint to ignore all
unused Cunction arguments except for those declared with register storage
class. The program considers unused arguments of this class to be a
preventable waste orthe register resources orthe computer.

You can dirert lint to ignore all unused variables and Cunctions by using the-u
(for "unused") option. This option prevents lint rrom reporting variables and
Cunctions it considers unused.

This option is typically used when checking a source file that contains just a
portion oC a large program. Such source files usually contain declarations or
variables and functions that are intended to be used in other source files and are
not explicitly used within the file. Since lint can only check the given file, it
assumes that such variables or functions are unused and reports them as such.

3.4 Checking Local Variables

The lint program checks all local variables to see that they are set to a value
before being used. Since local variables have either automatic or register
storage class, their values at the start or the program or Cunction cannot be

. known. Using such a variable before assigning a value to it is an error.

The program checks the local variables by searching for the first assignment in
which the variable receives a value and the first statement or expression in
which the variable is used. If the first assignment appears later than the first
use, lint considers the variable inappropriately used. For example, in the
program fragment

char c;

it(c != EOT)
c = getcharO;

lint warns that the the variable "c" is used before it is assigned.

If the variable is used in the same statement in which it is assigned ror the first
time, lint determines the order of evaluation oC the statement and displays an
appropriate message. For example, in the program fragment

in t i, total;

scanf(" %d", &i};
total = total + i;

lint warns that the variable "total" is used beCore it is set since it appears on the

3-3

XENIX Programmer;s Guide

right side or the same statement that assigns its first value.

3.5 Checking tor Unreachable Statements

The lint program checks (or unrea.chable statements, that is, for unlabeled
state-ments that immediately (ollow a goto, break, continue, or return
statement. During execution or a program, the unreachable statements never
receive execution control and are thererore considered wasteful. For example,
in the program fragment

int X,Yj

return (x+y)j
exit (l)j

the function call ezit after the return statement is unreachable.

Unreachable statements are common .when developing programs containing
large case conl'tructions or loops containing break and continue statements.

During normal operation, lint reports all unreachable break statements.
Unreachable break statements are relatively common (some programs created
by the 1I4CC and lez programs contain hundreds), so it may be desirable to
suppress these reports. You can direct lint to suppress the reports by using the
-boption.

Note t.hat lint assumes that all functions eventually return control, so it does
not report as unreachable any statement that follows a function that takes

. control and never returns it. For example:

exit (1);
return;

the call to ezit causes the return statement to become an unreachable
statement, but lint does not report it as such.

3.6 Checking tor Infinite Loops

The lint program checks ror infinite loops and for loops which are never
executed. For example, the statement

while (1) { }

and

ror (jj) {}

are both considered infinite loops. \Vhile the statements

3-4

Lint: A C Program Checker

while (0) { }

or

(or (OjOj) { }

are never executed.

It is relatively common (or valid programs to have such loops, but they are
generally considered errors.

3.7 Checking Function Return Values

The lint program checks that a (unction returns a meaningful value i(
necessary. Some (unctions return values which are never usedj some programs
incorrectly use (unction values tha.t have never been returned. L1'nt addresses
these problems in a. number of ways.

Within a (unction definition, the appearance otboth

return (expr)j

and

return j

statements is cause (or alarm. In this case, lint produces the following error
message:

runction name contains return(e) and return

It is difficult to detect when a (unction return is implied by the flow o(control
reaching the end o(the given (unction. This is demonstrated with a simple
example:

r (a)
{

}

ir (a)

gO;
return (3);

Note that i(the variable "a" tests (alse, then !will call the (unction g and then
return with no defined return value. This will trigger a report rrom lint. Ir g,
like e:zit, never returns, the message will still be produced when in ract nothing
is wrong. In practice, potentially serious bugs can be discovered with this
(eature. It also accounts tor a some or the noise messages produced by lint.

3-5

XE:"-i1X Programmer's Guide

3.8 Checking tor Unused Return Values

The lint program checks for cases where a function returns a value,but the
value is usually ignored. Lint considers functions that return unused values to
be inefficient, and functions that return rarely used values to be a result or bad
programming style.

Lint also checks for cases where a. function does not return a value but the value
is used anyway. This is considered a serious error.

3.9 Checking Types

Lint enforces the type checking rules of C more strictly than the C compiler.
The additional checking occurs in four major areas:

1. Across certain binary operators and implied assignments

2. At the structure selection operators

3. Between the definition and uses orrunctions

4. In the use oCenumerations

There are a number of operators that have an implied balancing between types·
oC operands. The assignment, conditional, and relational operators have this
property. The argument of a return statement, and expressions used in
initialization also suffer similar conversions. In these operations, (har, short,
int, long, unsigned, float, and double types may be freely intermixed. The
types of pointers must agree exactly, except that arrays ofx'scan be intermixed
with pointers to x's.

The type checking rules also require that, in structure references, the left
operand of a pointer arrow symbol (-» be a pointer to a structure, the left
operand of a period (.) be a structure, and the right operand or these operators
be a member of the structure implied by the left operand. Similar checking is
done for rererences to unions.

Strict rules apply to function argument and return value matching. The types
float and double may be freely matched, as may the types char, short, int,
and unsigned. Point.ers can also be matched with the associate4 arrays. Aside
from these relaxations in type checking, all actual arguments must agree in
type with their declared counterparts.

For enumerations, checks are made that enumeration variables or members
are not mixed with other types or other enumerations, and that the only
operations applied are assignment (=), initialization, equals (==); and not­
equals (!=). Enumerations may also be function arguments and return values.

3-6

Lint: A C Program Checker

3.10 Checking Type Casts

The type cast reature in C was introduced largely as an aid to producing more
portable programs. Consider the assignment

p = 1 j

where "p" is a character pointer. Lint reports this as suspect. But consider the
assignment

p = (char *)1 j

in which a cast has been used to convert the integer to a character pointer. The
programmer obviously had a strong motivation for doing this, and has clearly
signaled his intentions. On the other hand, if this code is moved to another
machine, it should be looked at carefully. The -c option controls the printing
of comments about casts. When -c is in effect, casts are not checked and all
legal casts are passed without comment, no matter how strange the type mixing
seems to be.

3.11 Checking for Nonportable Character Use

Lint flags certain comparisons and assignments as illegal or nonportable. For
example, the fragment

char Cj

if((e = getchar()) < 0) ...

works on some machines, but fails on machines where characters always take
on positive values. The solution is to declare "e" an integer, since getchar is
actually returning integer values. In any case, lin t issues the message:

nonportable character comparison

A similar issue arises wit.h bitfields. When assignments of constant yalues are
made to bitfields, the field may be too small to hold the value. This is especially
true where on some machines bitfields are consider~d as signed quantities.
While it may seem counter-intuitiye to consider that a 2-bit field declared or
type in t cannot hold the yalue 3, the problem disappears if the bitfield is
declared to haye type unsigned.

3.12 Checking for Assignment of longs to ints

Bugs may arise rrom the assignment of a long to an int, because of a loss in

3-7

XENIX Programmer's Guide

accuracy in the process. This may happen in programs that have been
incompletely converted by changing type definitions with typedet. When a
typedct variable is changed rrom int to long, the program can stop working
because some intermediate results may be assigned to integer values, losing
accuracy. Since there are a number or legitimate reasons ror assigning longs to
integers, you may wish to suppress detection or these assignments by using the
-a option.

3.13 Checking for Strange Constructions

Several perrectly legal, but somewhat strange, constructions are flagged by
lint. The generated messa,ges encourage better code quality, clearer style, and
may even point out bugs. For example, in the statement

*p++ ;

the star (*) does nothing a.nd lint prints:

null effect

The program rragment

unsigned x ;
ir (x < 0) ...

is also strange since the test will never succeed. Similarly, the test

ir (x > 0) ...

is equivalent to

ir(x != 0)

which may not be the intended action. In these cases, lint prints the message:

degenerate unsigned comparison

Iryou use

ir(1 !== 0) ...

then lint reports

constant in conditional context

since the comparison or 1 with 0 gives a consta.nt result.

Another construction detected by lint involves operator precedence. Bugs that
arise rrom misunderstandings a.bout the precedence o(operators can be

3-8

Lint: A C Progra.m Checker

accentuated by spacing and formatting, making such bugs extremely hard to
find. For example, the statements

if(x&077 == 0) ...

or

x«2 + 40

probably do not do what is intended. The best solution is to parenthesize such
expressions. Lint encourages this by printing an appropriate message.

Finally, lint checks variables that are redeclared in inner blocks in a way that
conflicts with their use in outer blocks. This is legal, but is considered bad style,
usually unnecessary, 3.nd frequently a bug.

Uyou do not wish these heuristic checks, you can suppress them by using the -h
option.

3.14 Checking for Use of Older C Syntax

Lint checks ror older C constructions. These raIl into two classes: assignment
operators and initialization.

The older rorms or assignment operators (e.g., =+, =-, ...) can cause
ambiguous expressions, such as

a =-1;

which could be taken as either

a =- 1;

or

a = -1;

The situation is especially perplexing if this kind or ambiguity arises as the
result or a macro substitution. The newer, and prererred operators (e.g., +=,
-=) have no such ambiguities. To encourage the abandonment or the older
forms, lint checks for occurrences or these old-fashioned operators.

A similar issue arises with initialization. The older language allowed

int xl;

to initialize "x" to 1. This causes syntactic difficulties. For example

3·Q

XENIX Programmer's Guide

int x (-1);

looks somewhat like the beginning or a runction declaration

int x (y) { ...

and the compiler must read past "x" to determine what the decla.ration really
is. The problem is e,'en more perplexing when the initializer involves a macro.
The current C synta.x places an equal sign between the variable and the
initializer:

int x = -1 i

This rorm is rree or any possible syntactic ambiguity.

3.15 Checking Pointer Alignment

Certain pointer a.ssignments may be reasonable on some machines, and illegal
on others, due to alignment restrictions. For example, on some machines it is
reasonable to assign integer pointers to double pointers, since double precision
values may begin on any integer boundary. On other machines, however,
double precision values must begin on even word boundaries; thus, not all such
assignments make sense. Lint tries to detect cases where pointers are assigned
to other pointers, and such alignment problems might arise. The message

possible pointer a.lignment problem

results from this situation.

3.16 Checking Expression Evaluation Order

In complicated expressions, the best order in which to evaluate subexpressions
may be highly machine-dependent. For example, on machines in which the
stack runs up, function arguments will probably be best evaluated from right
to left; on machines wit·h a stack running down, lert to right is probably best.
Function calls embedded as arguments or other functions mayor may not be
treated in the same way as ordinary arguments. Similar issues arise with other
operators that have side effects, such as the assignment operators and the
increment and decrement operators.

In order that the efficiency of C on a particular machine not be unduly
compromised, the C language leaves the order or evaluation or complicated
expressions up to the compiler, and various C compilers have considerable
differences in the order in which they will evaluate complicated expressions. In
particular, if any variable is changed by a side effect, and also used elsewhere in
the same expression, the result is explicitly undefined.

3-10

Lint: A C Program Checker

Lint checks for the important special case where a simple scalar variable is
affected. For example, the statement

ali] == b[i++J ;

will draw the comment:

warning: i eV3.luation order undefined

3.17 Embedding Directives

There are occasions when the programmer is smarter than lint. There may be
valid reasons for illegal type casts, Cunctions with a variable number oT
arguments, and other constructions that lint flags. Moreover, as specified in
the above sections, the flow of control inTormation produced by lint oCten has
blind spots, causing occasional spurious messages about perfectly reasonable
programs. Some way oC communicating with lint, typically to turn off its
output, is desirable. Therefore, a number of words are recognized by lint when
they are embedded in comments in a C source file. These words are called
directives. Lint directives are invisible to the compiler.

The first directive discussed concerns flow oC control inCormation. Ir a
particular place in the program cannot be reached, this can be asserted at the
appropriate spot in the program with the directive:

/* NOTREACHED */

Similarly, iC you desire to turn off strict type checking Cor the next expression,
use the directive:

/* NOSTRICT */

The situation reverts to the previous deCault aCter the next expression. The-v
option can be turned on Cor one Cunction with the directive:

/* ARGSUSED */

Comments about a variable number or arguments in calls to a Tunction can be
turned offby preceding the Cunction definition with the directive:

/* VARARGS */

In some cases, it is desirable to check the first several arguments, and leave the
later arguments unchecked. Do this by rollowing the VARARGS keyword
immediately with a digit g:ving the number or arguments that should be
checked. Thus:

3-11

XE~IX Programmer's Guide

I. VARARGS2 *1

causes only the first two arguments to be checked. Finally, the directive

I. LINTLIBRARY ·1

at the head of a file identifies this file as a library deelaration file, discl1ssed in
the next section.

3.18 Checking For Library Compa.tibility

Lint accepts ct'rtain library directives, such as

-ly

and tests the source files for compatibility with these libraries. This testing is
done by accessing library description files whose names are constructed (rom
the library directives. These files all begin with the directive

I. LINTLmRARY *1

which is followed by a series of dummy function definitions. The critical parts
orthcse definitions are the declaration orthe function return type, whether the
dummy runction returns a value, and the numbt'r and types of arguments to
the function. The "VARARGS" and "ARGSUSED" directives can be used to
specify re3.tures of the library runctions.

Lint library files are processed like ordinary source files. The only difference is
that runctions that are defined in a library file, but are not llsed in a source file,
draw no comments. Lint does not simulate a rulllibrary search algorithm, and
checks to see ir the source files contain redefinitions or library routines.

By default, lint checks the programs it is given against a standard library file,
which contains descriptions otthe programs that are normal1y loaded when aC
program is run. \Vhen the -p option is in effect, the portable library file is
checked containing descriptions of the standard 110 library routines which are
expected to be portable across various ma-chines. The -n option can be used to
suppress all library checking.

Lint library files are named n lusr/lib/U.". The programmer may wish to
examine the lint libraries directly to see what lint thinks a runct.ion should
passed and return. Printed out, lint llbraries also make satisractory skeleton
quick-reference cards.

3-12

Chapter 4
Make: A Program Maintainer

4.1 Introduction 4-1

4.2 Creating a Makefile 4-1

4.3 Invoking Make 4-3

4.4 Using Pseud~ Target Names 4-4

4.5 Using Macros 4-5

4.6 Using Shell Environment Variables 4-8

4.7 Using the Built-In Rules 4-9

4.8 Changing the Built-in Rules 4-10

4.9 Using Libraries 4-12

4.10 Troubleshooting 4-13

4.11 Using Make: An Example 4-13 •

•

Make: A Program Maintainer

4.1 Introduction

The make program provides an easy way to automate the creation or large
programs. Make reads commands Crom a user-defined "makefile" that lists
the files to be created, the commands that create them, and the files from which
they are created. When you direct make to create a program, it verifies that
each file on which the program depends is up to date, then creates the program
by executing the given commands. If a file is not up to date, make updates it
berore creating the program. Make updates a program by executing explicitly
given commands, or one oC the many built-in commands.

This chapter explains how to use make to automate medium-sized
programming projects. It explains how to create makefiles ror each project, and
how to invoke make ror creating programs and updating files. For more
details about the program, see make (CP) in theXENIX Reference ManUM.

4.2 Creating a Makefile

A makefile contains one or more lines or text called dependency lines. A
dependency line shows how a given file depends on other files and what
commands are required to bring a file up to date. A dependency line has the
Cor in

target ... : [dependent ... J [j command ... J

where target is the filename or the file to be updated, dependent is the filename
or the file on which the target depends, and command is the XENIX command
needed to create the target file. Each dependency line must have at least one
command associated with it, even iC it is only the null command (j).

You may give more than one target filename or dependent filename ir desired.
Each filename must be separated Crom the next by at least one space. The
target filenames must be separated Crom the dependent filenames by a colon (:).
Filenames must be spelled as defined by the XENIX system. Shell
metacharacters, such as star (*) and question mark (1), can also be used.

You may give a sequence oC commands on the same line as the target and
dependent filenames, ir you precede each command with a semicolon (j). You
can give additional commands on rollowing lines by beginning each line with a
tab character. Commands must be given exactly as they would appear on a
shell command line. The at sign (@) may be placed in Cront or a command to
prevent make Crom displaying the command beCore executing it. Shell
commands, such as cd(C), must appear on single linesj they must not contain
the backslash (\) and newline character combination.

You may add a comment to a makefile by starting the comment with a number
sign (#=) and ending it with a newline character. All characters aCter the
'1umber sign are ignored. Comments may be place at the end of a dependency

4.-1

XENIX Programmer's Guide

line ir desired. Ir a command contains a number sign, it must be enclosed in
double quotation marks (").

If a dependency line is too long, you can continue it by typing a backslash (\)
and a newline character.

The make file should be kept in the same directory as the given source files. For
convenience, the filenames makefile, Makefile, ,.ma.kefile, and •. Ma.kefile
are provided as default filenames. These names are used by make if no explicit
name is given at invocation. You may use one of these names for your makefile,
or choose one or your own. Ir the filename begins with the •. prefix, make
assumes that it is an sees file and invokes the appropriate sees command to
retrieve the lastest version or the file.

To illustrate dependency lines, consider the rollowing example. A program
named prog is made by linking three object files, Z.o, ".0, and z.o. These object
files are created by compiling the C language source files z.c, ".c, and z.c.
Furthermore, the files z. c and ". c contain the line

*include "defs"

This means that prog depends on the three object files, the object files depend
on the C source files, and two of the source files depend on the include file del •.
You can represent these relationships in a makefile with the rollowing lines.

prog: x.o y.o z.o
cc x.o y.o z.o -0 prog

x.o: x.c ders
cc -c x.c

y.o: y.c defs
ee -c y.e

z.o: z.e
ec -c z.c

In the first dependency line, prog is the target file and Z.o, 1/.0, and z.o are its
dependents. The command sequence

cc x.o y.o z.o -0 prog

on the next line tells how to create prog ir it is out or date. The program is out of
date ir anyone or its dependents has been modified since prog was last created.

The second, third, and rourth dependency lines have the same rorm, with the
z.o, 1/.0, and z.o files as targets and z.c, '!I.C, z.c, and del. files as dependents.
Each dependency line has one command sequence which defines how to update
the given target file.

4-2

Make: A Program Maintainer

4.3 Invoking Make

Once you have a makefile and wish to update and modify one or more target
files in the file, you can invoke make by typing its name and optional
arguments. The invocation has the form

make (option] ... (mat del) ... [target) ...

where option is a program option used to modify program operation, mac delis
a macro definition used to give a macro a value or meaning, and ttzrget is the
filename ofthe file to be updated. It must correspond to one orthe target names
in the makefile. All arguments are optional. If you give more tha.n one
argument, you must separate them with spaces.

You can direct make to update the first target file in the makefile by typing
just the program name. In this case, make searches for the files makeftle,
Makeftle, ,.makefile, and ,.Makefile in the current directory, and uses the
first one it finds as the makefile. For example, assume that the current make file
contains the dependency lines given in the last section. Then the command

make

compares the current date of the prog program with the current date each of
the object files z.o, 11.0, and z. o. It recreates prog ir any changes have been
made to any object file since prog was last created. It also compares the current
dates of the object files with the dates of the rour source files Z.t I 1I.t, z.t:, or
dell, and recreates the object files if the source files have changed. It does this
before recreating prog so that the recreated object files can be used to recreate
prog. Ir none or the source or object files have been altered since the last time
prog was created, make announces this fact and stops. No files are changed.

You can direct make to update a given target file by giving the filename of the
target. For example,

make x.o

causes make to recompile the z.o file, if the z.t or del' files have changed since
the object file was last created. Similarly, the command

make x.o z.o

causes make to recompile z.o and z.o ir the corresponding dependents have
been modified. Make processes target names from the command line in a. left to
right order.

4-3

XENIX Programmer's Guide

You can specify the name of the makefile you wish make to use by giving the-r
option in the invocation. Theoption has the rorm

-f filen(Jme

where filename is the name orthe makefile. You must supply a full pathname if
the file is not in the current directory. For example, the command

make -f makeprog

reads the dependency lines of the makefile named makeprog found in the
current directory. You ca.n direct make to rea.d dependency lines from the
standard input by giving "." as the filen(Jme. Make reads the standard input
until the end-of-file character is encountered.

You may use the program options to modify the operation of the make
program. The following list descri bes some of the options.

-p Prints the complete set of macro definitions and dependency lines
in a makefile.

-i Ignores errors returned by XENIX commands.

-k Abandons work on the current entry, but continues on other
branches that do not depend on that entry .

-s Executes commands without displaying them.

-r Ignores the built-in rules.

-n Displays commands but does not execute them. Make even
displays lines beginning with the at sign (@).

-e Ignores any macro definitions that attempt to assign new values to
the shell's environ men t variables.

-t Changes the modification date of each target file without recreating
the files.

Note that make executes each command in the makefile by passing it to a
separate invocation of a shell. Because of this, care must be taken with certain
commands (e.g., cd and shell control commands) that have meaning only
within a single shell process; the results are forgotten before the next line is
executed. Ir an error occurs, make normally stops the command.

4.4 Using Pseudo-Target Names

It is often useful to include dependency lines that have pseudo-target names,
Le., names for which no files actually exist or are produced. Pseudo-target

4-4

Make: A Program Maintainer

names allow make to perform tasks not directly connected with the crea.tion of
a program, such as deleting old files or printing copies of source files. For
example, the following dependency line removes old copies of the given object
files when the pseudo-target name "cleanup" is given in the invocation of
make.

cleanup:
rm x.o y.o z.o

Since no file exists for a given pseudo-target name, the target is always assumed
to be out of date. Thus the associated command is always executed.

Make also has built-in pseudo-target names that modiry its operation. The
pseudo-target name ".IGNORE" causes make to ignore errors during
execution of commands, allowing make to continue after an error. This is the
same as the -i option. (Make also ignores errors for a given command if the
command string begins with a hyphen (-).)

The pseudo-target name" .DEFAUL T" defines the commands to be executed
either when no built-in rule or user-defined dependency line exists ror the given
target. You may give any number or commands with this name. If
".DEFAVL T" is not used and an undefined target is given, make prints a
message and stops.

The pseudo-target name" .PRECIOUS" prevents dependents of the current
target from being deleted. when make is terminated using the INTERRUPT or
QU IT key, and the pseudo-target name" . SILENT' , has the same effect as the -8

option.

4.5 Using Macros

An important feature of a makefile is that it can contain macros. A macro is a
short name that represents a filename or command option. The macros can be
defined when you invoke make, or in the makefile itself.

A macro definition is a line containing a name, an equal sign (=-), and a. value.
The equal sign must not be preceded by a colon or a tab. The name (string of
letters and digits) to the left of the equal sign (trailing blanks and ta.bs are
stripped) is assigned the string of cha.racters following the equal sign (leading
blanks and tabs are stripped.) The following are valid macro definitions:

2 = xyz
abc = -11 -ly
LmES=

The last definition assigns "LmES" the null string. A macro that is never
explicitly defined has the null string as its value.

4-5

XEND{ Programmer's Guide

A macro is invoked by preceding the macro name with a dollar sign; macro
names longer than one character must be placed in parentheses. The name of
the macro is either the single character after the dollar sign or a name inside
parentheses. The following are valid macro invocations.

S(CFLAGS)

'2
'(xy)
SZ
S(Z)

The last two invocations are identical.

Macros are typically used as placeholders for values that may change from time
to time. For example, the following makefile uses a macro for the names of
object files to be link and one for the names of the library.

OBJECTS - x.o y.o z.o
LmES == -lln
prog: '(OBJECTS)

cc S(OBJECTS) S(LmES) -0 prog

If this makefile is invoked with the command

make

it will load the three object files with the lez library specified with the -lin
option.

You may include a macro definition in a command line. A macro definition in a
command line has the same form as a macro definition in a makefile. If spaces
are to be used in the definition, double quotation marks must be used to enclose
the definition. Macros in a command line override corresponding definitions
found in the makefile. For example, the command

make "LmES==-lln -1m"

loads assigns the library options -Un and -1m to "LmES".

You can modify all or part of the value generated from a macro invocation
without changing the macro itself by using the "substitution sequence". The
sequence has the form

name :,tl =[Ite)

where name is the name of the macro whose value is to be modified, .tl is the
character or characters to be modified, and ,teis the character or characters to
replace the modified cha.racters. If .te is not given, ,tl is replaced by a null
chara.cter.

4-6

Make: A Program Maintainer

The substitution sequence is typically used to allow user-defined
metacharacters in a makefile. For example, suppose that" .x" is to be used as a
metacharacter for a prefix and suppose that a makefile contains the definition

FILES = progl.x prog2.x prog3.x

Then the macro invocation

S(FILES: .x=.o)

generates the value

progl.o prog2.0 prog3.0

The actual value of "FILES" remains unchanged.

Make has five built-in macros that can be used when writing dependency lines.
The following is a list of these macros.

S* Contains the name of the current target with the sufflX removed.
Thus if the current target is prog.o,S* contains prog. It may be
used in dependency lines that redefine the built-in rules.

S@ Contains the full pathname of the current target. It may be used in
dependency lines with user-defined target names.

$ < Contains the filename of the dependent that is more recent than the
given target. It may be used in dependency lines with built-in target
names or the .DEF AULT pseudo-target name.

S? Contains the filenames of the dependents that are more recent than
the given target. It may be used in dependency lines with user­
defined target names.

S% Contains the filename of a library member. It may be used with
target library names (see the section "Using Libraries" later in this
chapter). In this case, S@ contains the name of the library a.nd S%
contains the name of the library member.

You can change the meaning of a built-in macro by appending the D or F
descriptor to its name. A built-in macro with the D descriptor contains the
name of the directory containing the given file. If the file is in the current
directory, the macro contains".". A macro with the F descriptor cont,ains the
name of the given file with the directory name part removed. The D and F
descriptor must not be used with the $! macro.

4-7

XENIX Programmer's Guide

4.6 Using Shell Environment Variables

Make provides access to current values or the shell's environment variables
such as "HOME", "PATH", and "LOGIN". Make automatically assigns the
value or each shell variable in your environment to a macro or the same name.
You can access a variable's value in the same way that you access the value of
explicitly defined macros. For example, in the following dependency line,
"$(HOME)" has the same value as the user's "HOME" variable.

prog:
cc $(HOME)/x.o $(HOME)/y.o /usr/pub/z.o

Make assigns the shell variable values arter it assigns values to the built-in
macros, but berore it assigns values to user-specified macros. Thus, you can
override the value or a shell variable by explicitly assigning a value to the
corresponding macro. For example, the rollowing macro definition causes
make to ignore the current value or the "HOME" variable and use /ulr/pub
instead.

HOME = /usr/pub

If a makefile contains macro definitions that override the current values or the
shell variables, you can direct make to ignore these definitions by using the-e
option.

~1ake has two shell variables, "MAKE" and "MAKEFLAGS", that
correspond to two special-purpose macros.

The "MAKE" macro provides a way to override the -n option and execute
selected commands in a makefile. \Vhen "MAKE" is used in a command, make
will always execute that command, even if -n has been given in the invocation.
The variable may be set to any value or command sequence.

The "MAKEFLAGS" macro contains one or more make options, and can be
used in invocations of make rrom within a makefile. You may assign any
make options to "MAKEFLAGS" except -t, -p, and -d. Jryou do not assign a
value to the macro, make automatically assigns the current options to it, i.e.,
the options given in the current invocation.

The "MAKE" and "MAKEFLAGS"variables, together with the -n option,
are typically used to debug makefiles that generate entire software systems.
For example, in the rollowing makefile, setting "~1AKE" to "make" and
invoking this file with the -n options displays all the commands used to
generate the programs progl, prog2, and prog9 without actually executing
them.

4-8

Make: A Program Maintainer

system: progl prog2 prog3
@echo System complete.

progl : progl.c
S(MAKE) S(MAKEFLAGS) progt

prog2 : prog2.c
S(MAKE) $(MAKEFLAGS) prog2

prog3 : prog3.c
S(MAKE) S(MAKEFLAGS) prog3

4.7 Using the Built-In Rules

Make provides a set of built-in dependency lines, called built-in rules, that
automatically check the targets and dependents given in a makefile, and create
up-to-date versions of these files if necessary. The built-in rules are identical to
user-defined dependency lines except that they use the suffix or the filename as
the target or dependent instead or the filename itself. For example, make
automatically assumes that all files with the suffix. 0 have dependent files with
the suffixes.c and .,.

When no explicit dependency line for a given file is given in a makefile, make
automatically checks the derault dependents or the file. It then rorms the name
of the dependents by removing the suffix or the given file and appending the
predefined dependent suffixes. If the given file is out of date with respect to
these derault dependents, make searches ror a built-in rule that defines how to
create an up-to-date version ofthe file, then executes it. There are built-in rules
ror the rollowing files .

• 0 Object file
.c C source file
. r Ratfor source file
./ Fortran source file
., Assembler source file
.1/ Yacc-C source grammar
.1/r Yacc-Ratror source grammar
.I Lex source grammar

For example, if the file z.o is needed and there is an z.e in the description or
directory, it is compiled. If there is also an z.l, that grammar would be run
through lez berore compiling the result.

The built-in rules are designed to reduce the size of your makefiles. They
provide the rules ror creating common files from typical dependents.
Reconsider the example given in the section "Creating a Makefile". In this
example, the program prog depended on three object files z.o, ".0, and z.o.
These files in tun d~pended on the C language source files z.e, ".c, a.nd z.c.

4-g

XENIX Programmer's Guide

The files z.c and 1/.C also depended on the include file del'. In the original
example each dependency and corresponding command sequence was explicitly
given. Many of these dependency lines were unnecessary, since the built-in
rules could have been used instead. The following is all that is needed to show
the relationships between these files.

prog: x.o y.o z.o
cc x.o y.o Z.O -0 prog

x.o y.o: defs

In this makefile, prog depends on three object files, and an explicit command is
given showing how to update prog. However, the second line merely shows that
two objects files depend on the include file de!,. No explicit command sequence
is given on how to update these files if necessary. Instead, make uses the built­
in rules to locate the desired C source files, compile these files, and create the
necessary object files.

4.8 Changing the Built-in Rules

You can change the built-in rules by redefining the macros used in these lines or
by redefining the commands associated with the rules. You can display a
complete list orthe built-in rules and the macros used in the rules by typing

make -fp - 2>/dev/null </dev/null

The rules and macros are displayed at the standard output.

The macros of the built-in dependency lines define the names and options of the
compilers, program generators, and other programs invoked by the built-in
commands. Make automatically assigns a default value to these macros when
you start the program. You can change the values by redefining the macro in
your makefile. For example, the following built-in rule contains three macros,
"CC", "CFLAGS", and "LOADLmES" .

. c :
$(CC) $(CFLAGS) $< S(LOADLmES) -0 S@

You can redefine any of these macros by placing the appropriate macro
definition at the beginning of the makefile.

You can redefine the action of a built-in rule by giving a new rule in your
makefile. A built-in rule has the form

It/,f/iz-rule :
command

where nf/iz-rtde is a combination of suffIxes showing the relationship of the
implied target and dependent, and command is the XENIX command required

4-10

Make: A Program Maintainer

to carry out the rule. Ir more than one command is needed, they are given on
separate lines.

The new rule must begin with an appropriate luJfiz-rule. The available luJfiz­
rule, are

.c .c
.sh .sh
.C.o .c .0

.c .c .S.O

.5.0 .y.o

.y.o .1.0

.1.0 .y.c

.y.c .I.c

.c.a .c.a

.s.a .h.h

A tilde () indicates an sees file. A single suffix indicates a rule that makes an
executable file from the given file. For example, the suffix rule ".c" is for the
built-in rule that creates an executable file from a C source file. A pair or
suffixes indicates a rule that makes one file from the other. For example, ".c.o"
is ror the rule that creates an object file (.0) file rrom a corresponding C source
file (. c).

Any commands in the rule may use the built,;,in macros provided by make. For
example, the rollowing dependency line redefines the action of the .c. 0 rule .

. c.o:
cc6S $< -c $*.0

If necessary, you can also create new luJfiz-rule, by adding a list or new sutrlXes
to a makefile with" . SUFFIXES" . This pseudo-target name defines the sutrlXes
that may be used to make ,uJfiz-rule, for the built-in rules. The line has the
form

. SUFFIXES: luJfiz ...

where suJfiz is usually a lowercase letter preceded by a dot (.). If more than one
suffix is given, you must use spaces to separate them.

The order or the suffixes is significant. Each suffix is a dependent of the sutrlXes
preceding it. For example, the suffix list

.SUFFIXES: .0 .C .y .1 .s

causes prog.c to be a dependent of prog.o, and prog.lI to be a dependent of
prog.c.

You can create new luJfiz-rule I by com bining dependent suff'lXes with the sUff'lX
orthe intended target. The dependent suffix must appear first.

4-11

XENIX Programmer's Guide

Ir a ".SUFFIXES" list appears more than once in a makefile, the suffixes are
combined into a single list. Ir a ".SUFFIXES" is given that has no list, all
sufflXes are ignored.

4.9 Using Libraries

You can direct make to use a file contained in an archive library as a target or
dependent. To do this you must explicitly name the file you wish to access by
using a library name. A library name has the form

lib(membe r· name)

where lib is the name ofthe library containing the files and member·name is the
name of the file. For example, the library name

libtemp.a(print.o)

refers to the object file print. 0 in the archive library libtemp.a.

You can create your own built-in rules for archive libraries by adding the .a
suffix tothe suffix list, and creating new suffix combinations. For example, the
combination ".c.a" may be used for a rule that defines how to create a library
member from a C source file. Note that the dependent suffix in the new
combination must be different than the suffix of the ultimate file. For example,
the combination" .c.a" can be used ror a rule that creates. o files, but not ror one
that creates .c files.

The most common use of the library naming convention is to create amakefile
that automatically maintains an archive library. For example, the following
dependency lines define the commands-required to create a library, named lib,
containing up to date versions or the files Jile 1. 0, fileD. 0, andfile9.0.

lib:

.c.a:

lib(filel.o) lib(file2.0) lib(file3.0)
@echo lib is now up to date

S(CC) -c S(CFLAGS) S<
ar rv S@ ' •• 0
rm -f S •. o

The .c.a rule shows how to redefine a built-in rule ror a library. In the rollowing
example, the built-in rule is disabled, allowing the first dependency to create
the library.

4-12

Make: A Program Maintainer

lib:

.c.a:;

lib(filel.o) lib(file2.0) lib(file3.0)
$(00) -c $(OFLAGS) $(?:.o=.c)
ar rv lib $?
rm $?
@echo lib is now up to date

In this example, a substitution sequence is used to change the value otthe "$!"
macro Crom the names of the object files II file 1.0" , "file2.0", and "file3.0" to
"filel.c", "file2.c", and "file3.c".

4.10 Troubleshooting

Most difficulties in using make arise from make's specific mea.ning of
dependency. If the file z. c has the line

#include "deCs"

then the object file z.o depends on dels; the source file z.c does not. (If dels is
changed, it is not necessary to do anything to the file z.c, while it is necessary to
recreate z. 0.)

To determine which commands make will execute, without actually executing
them, use the -n option. For example, the command

make -n

prints out the commands make would normally execute without actually
executing them.

The debugging option -d causes make to print out a very detailed description
of what it is doing, including the file times. The output is verbose, and
recommended only as a last resort.

Ir a change to a file is absolutely certain to be benign (e.g., adding a new
definition to an include file), the -t (touch) option can save a lot of time. Instead
oC issuing a large number of superfluous recompilations, make updates the
modification times on the affected file. Thus, the command

make -ts

which stands for touch silently, causes the relevant files to appear up to date.

4.11 Using Make: An Example

As an example of the use of make, examine the ma.~'~fiie, given in Figure 4-1,
used to maintain the make itselr. The code for mak r 15 spread over anumber

4-13

XENIX Programmer's Guide

or C source flies and a lIa.ec grammar.

Make usually prints out each command berore issuing it. The rollowingoutput
results from typing the simple command

make

in a directory containing only the source and makefile:

cc -c vers.c
cc -c mam.c
cc -c doname.c
cc -c mlSC.C
cc -c files.c
cc -c dosys.c
yacc gram.y
mv y.tab.c gram.c
cc -c gram.c
cc vers.o main.o ... dosys.o gram.o -0 make
13188+3348+3044 = 19580b = 046174b

Although none or the source files or grammars were mentioned by name in the
makefile, make round them by using its suffix rules and issued the needed
commands. The string of digits results from the size make command.

The last rew targets in the makefile are useful maintenance sequences. The
print target prints only the files that have been changed since the last make
print command. A zero-length file, prin.t, is maintained to keep track or the
time or the printing; the S! macro in the command line then picks up only the
names or the files changed since print was touched. The printed output can be
sen t to a different printer or to a file by changing the definition or the P macro.

4-14

Make: A Program Maintainer

Figure 4-1. Makeflle Contents

, Description file for the make command

, Ma.cro definitions below
P = Jpr
FILES = Makefile vers.e defs main.c doname.e misc.c files.c dosys.c\

gram.y lex.e
0BJECTS = vers.o main.o ... dosys.o gram.o
LmES=
LINT = lint -p
CFLAGS =-0

'targets: dependents
, < TAB> actions

make: S(OBJECTS)
cc I(CFLAGS) S(OBJECTS) S(LmES) -0 make
size make

$(OBJECTS): defs
gram.o: lex.c

cleanup:
-rm •. 0 gram.c
-du

install:
@size make /usr /bin/make
cp make /usr /bin/make j rm make

print: $(FILES) * print recently changed files
pr I? I SP

test:

touch print

make -dp I grep -v TIME > lzap
/usr/bin/make -dp I grep -v TIME >2zap
diff hap 2zap
rm hap 2zap

lint: dosys.c doname.c files.c main.c misc.e vers.c gram.c

arch:

$(LINT) dosys.c doname.c files.c main.c misc.c vers.c gram.c
rm gram.c

ar uv /sys/source/s2/make.a S(FILES)

4-15

Chapter 5
SCCS: A Source

Control System. Code

5.1 Introduction 5-1

5.2 Basic Information 5-1
5.2.1 Files and Directories 5-1
5.2.2 Deltas and SIDs 5-2
5.2.3 sees Working Files 5-3
5.2.4 sees Command Arguments 5-4
5.2.5 File Administrator 5-4

5.3 Creating and Using S-files 5-5
5.3.1 Creating an S-file 5-5
5.3.2 Retrieving aFile for Reading 5-6
5.3.3 Retrieving aFile for Editing 5-7
5.3.4 Saving a New Version ofaFile 5-8
5.3.5 Retrieving a Specific Version 5-9
5.3.6 Changing the Release Number of a File 5-9
5.3.7 Creating aBranch Version 5-10
5.3.8 Retrieving aBranch Version 5-10
5.3.9 RetrievingtheMostRecentVersion 5-11
5.3.10 DisplayingaVersion 5-11
5.3.11 SavingaCopyofaNewVersion 5-12
5.3.12 DisplayingHelpful Information 5-12

5.4 Using Identification Keywords 5-13
5.4.1 Inserting a Keyword into a File 5-13
5.4.2 Assigning Values to Keywords 5-14
5.4.3 Forcing Keywords 5-14

5.5 Using S-file Flags 5-15
5.5.1 Setting S-file Flags 5-15
5.5.2 Using the i Flag 5-15
5.5.3 Using the d Flag 5-16

5.5.4 UsingthevFlag 5-16
5.5.5 RemovinganS-fileFlag 5-16

5.6 Modifying S-file Information 5-16
5.6.1 Adding Comments 5-17
5.6.2 Changing Comments 5-17
5.6.3 Adding Modification Requests 5-18
5.6.4 Changing Modification Requests 5-18
5.6.5 Adding Descriptive Text 5-19

5.7 Printing from an S-file 5-20
5.7.1 Using a Data Specification 5-20
5.7.2 Printing a Specific Version 5-20
5.7.3 Printing Later and Earlier Versions 5-21

5.8 Editing by Several Users 5-21
5.8.1 Editing Different Versions 5-21
5.8.2 Editing a Single Version 5-22
5.8.3 Saving a Specific Version 5-22

5.9 Protecting S-files 5-23
5.9.1 Adding a User to the User List 5-23
5.9.2 RemovingaUser from aUser List 5-23
5.9.3 Setting the Floor Flag 5-24
5.9.4 Setting the Ceiling Flag 5-24
5.9.5 Locking a Version 5-24

5.10 Repairing sees Files 5-25
5.10.1 Checking an S-file 5-25
5.10.2 Editing an S-file 5-25
5.10.3 Changing an S-file 's Checksum 5-26
5.10.4 Regenerating a G-file for Editing 5-26
5.10.5 Restoring a Damaged P-file 5-26

5.11 Using Other Command Options 5-26
5.11.1 Getting Help \Vith sees Commands 5-26
5.11.2 Creating a File With the Standard Input 5-27
5.11.3 Starting At a Specific Release 5-27
5.11.4 Adding a Comment to the First Version 5-27
5.11.5 Suppressing Normal Output 5-28
5.11.6 Including and Excluding Deltas 5-28

5.11.7 Listing the Deltas of a Version 5-29
5.11.8 MappingLinestoDeltas 5-30
5.11.9 Naming Lines 5-30
5.11.10 Displaying aList of Differences 5-30
5.11.11 Displaying File Information 5-30
5.11.12 RemovingaDelta 5-31
5.11.13 Searching for Strings 5-31
5.11.14 Comparing sees Files 5-32

SCCS: A Source Code Control System

5.1 Introduction

The Source Code Control System (sees) is a collection or XENlX commands
that create, maintain, and control special files called sees files. The sees
commands let you create and store multiple versions of a program or document
in a sinble file, instead or one file for each version. The commands let you
retrieve any version you wish at any time, make changes to this version, and
save the changes as a new version of the file in the sees file.

The sees system is useful wherever you require a compact way to store
multiple versions of the same file. The sees system provides an easy way to
update any given version or a file and explicitly record the changes made. The
commands are typically used to control changes to multiple versions of source
programs, but may also be used to control multiple versions of ma.nuals,
specifications, and other documentation.

This chapter explains how to make sees files, how to update the files contained
in sees files, and how to maintain the sees files once they are created. The
following sections describe the basic information you need to start using the
sees commands. Later sections describe the commands in detail.

5.2 Basic Information

This section provides some basic information about the sees system. In
particular, it describes '

Files and directories

Deltas and SIDg

sees wor king files

sees command arguments

File administration

5.2.1 Files and Directories

All sees files (also called s-files) are originally created from text files containing
documents or programs created by a user. The text files must have been crea.ted
using a XENIX text editor such as vi. Special characters in the files are a.llowed
only if they are also allowed by the given editor. '

To simplify s;,.'file storage, all logically related files (e.g., files belonging to the
same project) should be kept in the same directory. Such directories should
contain s-files only, and should have read a.nd examine permission for everyone,
and write permission for the user only.

5-1

XE~IX Programmer's Guide

Note that you must not use the XENIX link command to create multiple copies
or an s-file.

5.2.2 Deltas andSIDs

Unlike an ordinary text file, an sees file (or s-file for short) contains nothing
more than lists of changes. Ea.ch list corresponds to the changes needed to
construt:t exactly one version of the file. The lists can then be combined to
create the desired version from the original.

Each list of changes is caIJed a "delta". Each delta has an identification string
called an "SID". The SID is a string or at least two, and at most rour, numbers
separated by periods. The numbers name the version and define how it is
related to other versions. For example, the first delta is usua.lly numbered 1.1
and the second 1.2.

The first number in any SID is called the "release number". The release number
usually indicates a group of versions that are similar and generally compatible.
The second number in the SID is the "level number". It indicates major
differences bet ween files in the same release.

An SID may also have two optional numbers. The "branch number", the
optional third number, indicates changes at a particular level, and the
"sequence number", the fourth number, indicates changes at a particular
branch. For example, the SlOs 1.1.1.1 and 1.1.1.2 indicate two new versions
that contain slight changes to the original delta 1.1.

An s-file may at any time contain several different releases, levels, branches,
and sequences of the same file. In general, the maximum number of releases an
s-file may contain is 9999, that is, release numbers may range from 1 to 9999.
The same limit appJies to level, branch, and sequence numbers.

\Vhen you create a new version, the sees system usually creates a new SID by
incrementing the level number or the original version. It you wish to create a
new release, you must explicitly instruct the system to do so. A change to a
release number indicates a major new version of the file. How to create a new
version of a file and change release numbers is described later.

The sees system creates a branch and sequence number ror the SID of a new
version, ir the next higher level number already exists. For example, ir you
change version 1.3 to create a version 1.4 and then change 1.3 again, the sees
system creates a new version named 1.3.1.1.

Version numhers can become quite complicated. In general, it is wise to keep
the numbers as simple as possible by carefully planning the creation or each
new version.

5-2

SCCS: A Source Code Control System

5.2.3 sees Working Files

The sees system uses several different kinds of files to complete its tasks. In
general, these files contain either actual text, or inrormation about the
commands in progress. For convenience, the sees system names these files by
placing a prefix berore the name or the original file rrom which all versions were
made. The rollowing is a list or the working files.

s-file A permanent file that contains all versions or the given text file.
The versions are stored as deltas, that is, lists or changes to be
applied to the original file to create the given version. The name or
an s-file is formed by placing the file prefix B. at the beginning orthe
original filename.

x-file A temporary copy or the s-file. It is created by sees commands
which change the s-file. It is used instead ofthe s-file to carry out the
changes. When all changes are complete, the sees system removes
the original s-file and gives the x-file the name of the original s-file.
The name of the x-file is formed by placing the prefix z. at the
beginning of the original file.

g-file An ordinary text file created by applying the deltas in a given s-file
to the original file. The g-file represents a copy of the given version
or the original file, and as such receives the same filename as the
original. When created, a g-file is placed in the current working
directory of the user who requested the file.

p-file A special file containing information about the versions of an s-file
currently being edited. The p-file is created when a g-file is
retrieved from the s-file. The p-file exists until all currently
retrieved files have been saved in the s-file; it is then deleted. The
p-file contains one or more entries describing the SID or the
retrieved g-file, the proposed SID of the new, edited g-file, and the
login name of the user who retrieved the g-file. The p-file name is
formed by placing the prefix p. at the beginning of the original
filename.

z-file A lock file used by sees commands to prevent two users from
updating a single sees file at the same time. Before a command
modifes an sees file, it creates a z-file and copies its own process ID
to it. Any other command which attempts to access the file while
the z-file is present displays an error message and stops. When the
original command has finished its tasks, it deletes the z-file berore
stopping. The z-file name is rormed by placing the prefix z. at the
beginning or the original filename.

I-file A special file containing a list or the deltas required to create a given
version or a file. The I-file name is rormed by placing the prefix t. at
the beginning of the original filename.

5-3

XENIX Programmer~s Guide

d-file A temporary copy ofthe g-file used to generate anew delta.

q-file A temporary file used by the delta command when updating the p­
file. The file is not directly accessible.

In general, a user never directly accesses x-files, z-files, d-files, or q-files. If a
system crash or similar situation abnormally terminates a command, the user
may wish delete these files to ensure proper operation of subsequent sees
commands.

5.2.4 sees Command Arguments

Almost all sees commands accept two types of arguments: options and
filenames. These appear in the sees command line immediately after the
command name.

An option indicates a special action to be taken by the given sees command.
An option is usually a lowercase letter preceded by a minus sign (-). Some
options require an additional name or value.

A filename indicates the file to be acted on. The syntax for sees filenames is like
other XENIX filename syntax. Appropriate pathnames must be given if
required. Some commands also allow directory names. In this case, all files in
the directory are acted on. If the directory contains non-sees and unreadable
files, these are ignored. A filename must not begin with a minus sign (-).

The special symbol- may be used to cause the given command to read a list of
filenames from the standard input. These filenames are then used as names for
the files to be processed. The list must terminate with an end-of-file character.

Any options given with a command apply to all files. The sees commands
process the options before any filenames, so the options may appear anywhere
on the command line.

Filenames are processed left to right. If a command encounters a fatal error, it
stops processing the current file and, if any other files have been given, begins
processing the next.

5.2.5 File Administrator

Every sees file requires an administrator to maintain and keep the file in
order. The administrator is usually the user who created the file and therefore
owns it. Before other users can access the file, the administrator must ensure
that they have adequate access. Several sees commands let the administrator
define who has access to the versions in a given s-file. These are described later.

5-4

SCCS: A Source Code Control System

5.3 Creating and Using S-files

The s-file is the key element in the sees system. It provides compact storage
for all versions of a given file and automatic maintenance of the relationships
between the versions.

This section explains how to use the admin, get, and delta commands to
create and use s-files. In particular, it describes how to create the first version
of a file, how to retrieve versions for reading and editing, and how to save new
versions.

0.3.1 Creating an S-fUe

You can creat.e an s-file from an existing text file using the -i (for "initialize")
option of the admin command. The command has the form

admin -iJilename I.filename

where -ifilename gives the name of the text file from which the s-file is to be
created,and ,.filename is the name of the new s-file. The name must begin with
I. and must be unique; no other s-file in the same directory may have the same
name. For example, suppose the file named demo.e contains the short C
language program

iinclude <stdio.h>

main 0
{
printf(" This is version 1.1 \n");
}

To create an s-file, type

admin -idemo.c s. demo.c

This command creates t.he s-file I.demo.e, and copies the first delta describing
the contents of demo. e to this new file. The first delta is numbered 1.1.

After creating an s-file, the original text file should be removed using the rm
command, since it is no longer needed. It you wish to view the text file or make
changes to it, you can retrieve the file using the get command described in the
next section.

When first creating an s-file, the admin command may display the warning
message

No id keywords (cm7)

5-0

XENIX Programmer's Guide

In general, this message can be ignored unless you have specifically included
keywords in your file (see the section, "Using Identification Keywords"later in
this chapter).

Note that only a user with write permission in the directory containing the s-file
may use the admin command on that file. This protects the file from
admini$trat.ion by unauthorized users.

0.3.2 Retrieving a File tor Reading

You can retrieve a file ror reading rrom a given s-file by using the get command.
The command has the rorm

get I.filename ...

where I.filename is the name of the s-file containing the text file. The command
retrieves the lastest version or the text file and copies it to a regular file. The file
has the same name as the s-file but with the I. removed. It also has read-only
file permissions. For example, suppose the s-file I.tiemo.t contains the first
version or the short C program shown in the previous section. To retrieve this
program, type

get s.demo.c

The command retrieves the program and copies it to the file named demo.t.
You may then display the file just as you do any other text file.

The command also displays a message which describes the SIDor the retrieved
file and its size in lines. For example, after retrieving the short C program rrom
I. de mo. t , the command displays the message

1.1
6 lines

. You may also retrieve more than one file at a time by giving multiple s-file
names in the command line. For example,the command

get s.demo.c s.der.h

retrieves the contents orthe s-files ,.demo.t and ,.de/.'" and copies them to the
text files tiemo.c and de/."'. 'Vhen giving multiple s-file names in a. command,
you must separate each with at least one space. When the get command
displays inrormation about the files, it places the corresponding filename before
the relevent inrormation.

5-6

sccs: A Source Code Control System

5.3.3 Retrieving a File (or Editing

You can retrieve a file for editing from a given s-file· by using the -e (for
"editing!') option of the get command. The command has the form

get -e 3.jilename ...

where ~.jilename is the name or the s-file containing the text file. You may give
more than one filename if you wish. If you do, you must separate each name
with a space.

The command retrieves the lastest version of the text file and copies it to an
ordinary text file. The file has the same name as the s-file but with the 3.

removed. It has read and write file permissions. For example, suppose the s-file
3.demo.c contains the first version of a C program. To retrieve this program,
type

get -e s.dcmo.c

The command retrieves the program and copies it to the file named tlemo.c.
You may edit the file just as you do any other text file.

If you ghoe more than one filename, the command creates files for each
corresponding s-file. Since the -e option applies to all the files, you may edit
each one.

After retrieving a text file, the command displays a message giving the SID of
the file and its size in lines. The message also displays a proposed SID, that is,
the SID ror the new version arter editing. For example, arter retrieving the six­
line C program in 3. demo.c, the command displays the message

1.1
new delta 1.2
6 lines

The proposed SID is 1.2. If more than one file is retrieved, the corresponding
filename precedes the relevant information.

Note that any changes made to the text file are not immediately copied to the
corresponding s-file. To save these changes you must use the delta command
described in the next section. To he lp keep track of the current file version, the
get command creates another file, called a p-file, that contains information
about the text file. This file is used by a subsequent delta command when
saving the new version. The p-file has the same name as the s-file but begins
with a p .• Theuser must not access the p-file directly.

XENIX Programmer's Guide

0.3.4 Saving a New Version or a File

You can save a new version ora text file by using the delta command. The
command has the rorm

delta I.file name

where I.filename is the name of the s-file from which the modified text file was
retrieved. For example, to save changes made to a C program in the file demo.c
(which was retrieved from the file I. de mo. e), type

delta s.demo.c

Before saving the new version, the delta command asks for comments
explaining the nature of the changes. It displays the prompt

comments!

You may type any text you think appropriate, up to 512 characters. The
comment must end with a newline character. Ir necessary, you can start a new

'line by typing a baekslash (\) followed by a newline character. It you do not
wish to include a comment, just type a newline character.

Once you have given a comment, the command uses the information in the
corresponding p-file to compare the original version with the new version. A
list or all the changes is copied to the s-file. This is the new delta.

Arter a command has copied the new delta to thes-file, it displays a message
showing the new SID and the number of lines inserted, deleted, or lert
unchanged in the new version. For example, ifthe C program has been changed
to

:f/:include <stdio.h>

main 0
{
inti = 2;

printr{" This is version 1. %d 0, i)j
}

the command displays the message

1.2
3 inserted
1 deleted
5 unchanged

Once a new version is saved, the next get command retrieves the new version.

5-8

secs: A Source Code Control System

The command ignores previous versions. If you wish to retrieve a previous
version, you must use the -r option oC the get command as described in the
next section.

5.3.5 Retrieving a Specific Version

You can retrieve any version you wish Crom an s-file by using the -r (Cor
"retrieve") oC the get command. The command has the rorm

get (-e] -rSID I.filename •..

where -e is the edit option, -rSID gives the SID oC the version to be retrieved,
and I.filename is the name oCthe s-file containing the file to be retrieved. You
may give more than one filename. The names must be separated with spaces.

The command retrieves the given version and copies it to the file having the
same name as s-file but with the I. removed. The file has read-only permission
unless you also give the -e option. If multiple filenames are given, one text file
orthe given version is retrieved rrom each. For example, the command

get -rl.l s.demo.c

retrieves version 1.1 from thes-file I.demo.c, but the command

get -e -r1.1 s.demo.c s.deC.h

retrieves for editing a version 1.1 from both I.demo.c and I.de/.A. If you give
the number of a version that does not exist, the command displays an error
message.

You may omit the level number or a version number ir you wish, that is, just
give a release number. If you do, the command automatically retrieves the
most recent version having the same release number. For example, iC the most
recent version in the file I. de mo. c is n um bered 1.4, the command

get -rl s.demo.c

retrieves the version 1.4. If there is no version with the given release number,
the command retrieves the most recent version in the previous release.

5.3.6 Changing the Release Number of a File

You can direct the delta command to change the release number of a new
version or a file by using the -r option or the get command. In this r.:ase, the get
command has the Corm

get -e -rrel-num I.filename ...

XENIX Programmer's Guide

where -e is the required edit option, -r rel-num gives the new release number of
the file, and I./UenfJme gives the name or the s-file containing the file to be
retrieved. The new release number must be an entirely new number, tha.tis, no
existing version mI.)' ha.ve this number. You ma.),give more than one filename.

The command retrieves the most recent version from the ,-flle, then copies the
new relea.se number to the p-file. On the subsequent delta command, the new
version is sa.ved using the new release number a.nd level number 1. For example,
ir the most recent version in the s-file I. tie mo:c is 1.4, the comma.nd

get -e -r2 s.demo.c

causes the subsequent delta to save a new version 2.1, not 1.5. The new release
number applies to the new version onlYi the release numbers or previous
versions a.re not affected. Thererore, iCyou edit version 1.4 (Crom which 2.1 was
derived) and save the changes, you create a new version 1.5. Similarly, ir you
edit version 2.1, you create a new version 2.2.

As berore, the get command a.lso displays a message showing the current
version number, the proposed version number, and the size orthe file in Jines.
Similarly, the subsequent delta command displays the new version number
andthe number oClinesinserted, deleted, and unchanged in the ilewfile.

5.3.7 Creating a Branch Version

You can create a branch version of a file by editing a version that has been
previously edited. A branch version is simply a version whose SID contains a
branch and sequence number.

For example, if version 1.4 already exists, the command

get -e -r 1.3 s.demo.c

retrieves version 1.3 tor editing and gives 1.3.1.1 as the proposed SID.

In general, whenever get discovers that you wish to edit a version that already
has a succeeding version,it uses the first available branch and sequence
numbers ror the proposed SID. For example, ir you edit version 1.3 a third time,
get gives 1.3.2.1 as the proposed SID.

You can save a branch version just like any other version by using the delta
command.

5.3.8 Retrieving a Branch Version

You can retrieve a branch version of a file by using the -r option of the get
command. For example, the command

5-10

SCCS: A Source Code Control System

get -r 1.3.1.1 s.demo.c

retrie\'es branch version 1.3.1.1.

You may retrieve a branch version ror editing by using the -e option or the get
command. When retrieving ror. editing, get creates the proposed SID by
incrementing the sequence number by one. For example, ir you retrieve
branch version 1.3.1.1 ror editing, get gives 1.3.1.2 as the propos~d SID.

As always, the command displays the version number and file size. Irthe given
branch version does not exist, the command displays an error message.

You may omit the sequence number ir you wish. In this case, the command
retrieves the most recent branch version with the given branch number_For
example, if the most recent branch version in the s-file I.de/.k is 1.3.1.4, the
command

get -r1.3.1 s.der.h

retrieves version 1.3.1.4.

5.3.g Retrieving the Most Recent Version

You can always retrieve the most recent version or a file by using the -t option
with the get command. For example, the command

get -t s.demo.c

retrieves the most recent version rrom the file I.demo.c. You may combine the
-r and -t options to retrieve the most recent version or a given release number.
For example, if the most recent version with release number 3 is 3.5, then the
command

get -r3 -t s.demo.c

retrieves version 3.5. If a branch version exists that is more recent than version
3.5 (e.g., 3.2.1.5), then the above command retrieves the branch version and
ignores version 3.5.

5.3.10 Displaying a Version

You can display the contents or a version at the standard output by using the
-p option of the get command. For example, the command

get -p s.demo.c

displays the most recent version in the s-file I.demo.c at the standard output.
Similarly, the command

5-11

XENIX Programmer's Guide

get -p -r2.1 s.demo.c

displays version 2.1 at the standard output.

The -p option is userul ror creating g-flles with user-supplied names. This
option also directs all output normally sent to the sta.ndard output, such as the
SID or the retrieved fite, to the standard error flle. Thus, the resulting file
contains only the contents otthe given ,'ersion. For example, the command

get -p s.demo~c >version.c

copies the most recent version in thes-flle ,.demo.c to the file fer,ion.c. The
SID orthe file and its size is copied to the standard error file.

0.3.11 Saving a Copy or a New Version

The deJt.a command normally removes the edited flle arter saving it in the
s-file. You can save a copy or this file by using the -noption or the delta
command. For example, the command

delta -n s.demo.c

first saves a new version in the s-file ,.demo.c, then saves a copy or this version
. in the file demo. c. You may display the file as desired, but you cannot edit the
file.

S.3.12 Displaying Helprul Information

An sees command displays an error message whenever it encounters an error
in a file. An error message has the torm

ERROR (filename J: mellage (code)

where filename is the name or the file being processed, me,nge is a short
description or the error, and code is the error code.

You may use the error code as an argument to the help command to display
, additional inrormation about the error. The command hasthe torm

help code

where c ode is the error code given in an error message. The command displays
one or more lines or text that explain the error and suggest a possible remedy .
For example, the comma.nd

help col

displays the message

5-12

SCCS: A Source Code Control System

col:
"not an sees file"
A file that you think is an sees file
does not begin with the characters "s.".

The help comma.nd can be used at any time.

6.4 Using Identification Keywords

The sees system provides several special symbols, called identification
keywords, which may be used in the text of a program or document to represent
a predefined value. Keywords represent a wide range of values, rrom the
creation date and time of a given file, to the name of the module containing the
keyword. When a user retrieves the file for reading, the sees system
automatically replaces any keywords it finds in a given version of a fil~ with the
keyword's value.

This section explains how keywords are treated by the various sees
commands, and how you may use the keywords in your own files. Only a rew
keywords are described in this section. For a complete list of the keywords, see
the section get(CP) in the XENIX Reference Manual.

5.4.1 Inserting a Keyword into a File

You may insert a keyword into any text file. A keyword is simply an uppercase
letter enclosed in percent signs (%). No special characters are required. For
example, "%1%" is the keyword representing the SID of the current version,
and "%H%" is the keyword representing the current date.

When the program is retrieved ror reading using the get command, the
keywords are replaced by their current values. For example, if the "%M%",
"%1%", and "%H" keywords are used in place of the module name, the SID,
and the current data in a program statement

char header(IOO) = {" %M% %1% %H%"};

then these keywords are expanded in the retrieved version of the program

char header(IOO} = {" MODNAME 2.3 07/07/77 "};

The get command does not replace keywords when retrieving a version ror
editing. The system assumes that you wish keep the keywords (and not their
values) when you save the new version of the file.

To indicate that a file has no keywords, the get, delta, and admin commands
display the message

5-13

XENIX Programmer's Guide

No id keywords (cm7)

This message is normally treated as a warning, letting you know that no
keywords are presen t. However, you may change the operation or the system to
make this a fatal error, as explained later in this chapter.

5.4.2 Assigning Values to Keywords

The values of most keywords are predefined by the system, but some, such as
the value for the "%M%" keyword can be explicitly defined by the user. To
assign a value to a keyword, you must set the corresponding s-file fla.g to the
desired value. You can do this by using the -r option of the admin command.

For example, to set the %~i% keyword to "cdemo", youmust set the m flag as
in the command

admin -fmcdemo s.demo.c

This command records "cdemo" as the current value of the %M% keyword.
Note that if you do not set the m flag, the sees system uses the name of the
original text file for %1\1% by default.

The t and q flags are also associated with keywords. A description orthese flags
and the corresponding keywords can be found in the sectionget(CP) in the
XENIX Reference Manua.l. You can change keyword values at any time.

5.4.3 Forcing Keywords

If a version is found to contain no keywords, you can force a fatal error by
setting the i flag in the given s-file. The flag caust's the delta and admin
commands to stop processing of the given version and report an error. The flag
is useful for ensuring that keywords are used properly in agiven file.

To set the i flag, you must use the -r option of the admin command. For
example, the command

admin -fi s.demo.c

sets the i flag in the s-file 6.demo.c. If the given version does not contain
keywords, subsequent delta or admin commands that access this file print an
error message.

Note that if you attempt to set the i flag at the same time asyou create an s-file,
and if the initial text file contains no keywords, the admin command displays a
fatal error message and stops without creating the s-file.

5-14

SCCS: A Source Code Control System

5.5 Using S-file Flags

An s-file flag is a special value that defines how a given sees command will
operate on the corresponding s-file. The s-file flags are stored in the s-file and
are read by each sees command before it operates on the file. S-file flags affect
operations such as keyword checking, keyword replacement values, and
default values for commands.

This section explains how to set and use s-file flags. It also describes the action
of commonly-used flags. For a complete description of all flags, see the section
admin(CP) in the XENIX Reference Manual.

5.5.1 Setting S-flle Flags

You can set the flags in a given s-file by using the -f option of the admin
command. The command has the form

admin -fflag I.filename

where -fflag gives the flag to be set, and I.filename gives the name orthe s-file in
which the flag is to be set. For example, the command

admin -fi s.demo.c

sets t.he i flag in the s-file I. de mo. c.

Note that some s-file flags take values when they are set. For example, the m
flag requires that a module name be given. When a value is required, it must
immediately follow the flag name, as in the command

admin -fmdmod s.demo.c

which sets the m flag to t.he module name "dmod".

5.5.2 Using t.he i Flag

The i flag causes the admin and delta commands to print a fatal error message
and stop, if no keywords are found in the given text file. The flag is used to
prevent a version of a file, which contains expanded keywords, from being
saved as a new version. (Saving an expanded version destroys the keywords for
all su bsequent versions).

\Vhen the i flag is set, each new version of a file must contain at lea.st one
keyword. Otherwise, the version cannot be saved.

XENIX Programmer's Guide

5.5.3 Using the d Flag

The d flag gives the derault SID ror versions retrieved by the get command.
The flag takes an SID as its value. For example, the comma.nd

admin -rd1.1 s.demo.e

sets t.he default SID to 1.1. A subsequent get comma.nd which does not use the
-:-r option will retrieve version 1.1.

5.5.4 Using the v Flag

The v flag allows you to include modification requests in an s-file. Modification
requests are names or numbers that may be used as a shorthand means of
indicating the reason for each new version.

When the v flag is set, the delta command a.sks for the modification requests
just berore asking for comments. The v flag also allows the -m option to be
used in the delta and admin commands.

5.5.5 Removing an S-file Flag

You can remove an s-file flag from an s-file by using the -d option orthe admin
command. The comma.nd has the form

admin -dflag B.filename

where -dflag gives the name of the flag to be removed and B.fiieftameis the
name of the s-file from which the flag is to be removed. For example, the
command

admin -di s.demo.c

removes the i flag rrom the s-file B.demo.e. When removing a flag which takes a
value, only the flag name is required. For example, the command

admin -dm s.demo.c

removes the m flag trom the s-file.

The -d and -i options must not be used at the same time.

5.6 Modifying S-file Information

Every s-file contains inrormation about the deltas it contains. Normally, this
intormation is maintained by the sees commands and is not directly accessible

5-16

SCCS: A Source Code Control System

by the user. Some information, however, is specific to the user who creates the
s-file, and may be changed as desired to meet the user's requirements. This
information is kept in two special parts of the s-file called the "delta table"
and the "description field".

The delta table contains information about each delta, such as the SID and the
date and time of creation. It also contains user-supplied inrormation, such as
comments and modification requests. The description field contains a. user­
supplied description or the s-file and its contents. Both parts can be changed or
deleted at any time to reflect changes to the s-file contents.

5.6.1 Adding Comments

You can add comments to an s-file by using the -y option or the delta and
admin commands. This option causes the given text to be copied to the s-file as
the comment for the new version. The comment may be any combination of
letters, digits, and punctuation symbols. No embedded newline characters are
allowed. If spaces are used, the comment must be enclosed in double quotes.
The complete command must tit on one line. For example, the command

delta -y" George Wheeler" s.demo.c

saves the comment "George Wheeler" in the s-file I.demo.c.

The -y option is typically used in shell procedures as part of an automated
approach to maintaining files. When the option is used, the delta command
does not print the corresponding comment prompt, so no interaction is
required. If more than one s-file is given in the command line, the given
comment applies to them all.

5.6.2 Changing Comments

You can change the comments in a given s-file by using the cdc command. The
command has the form

cdc -rSID I.filename

where -rSID gives the SID of the version whose comment is to be changed, and
I.filename is the name of the s-file containing the version. The command asks
for a new comment by displaying the prompt

comments?

You may type any sequence of characters up to 512 characters long. The
sequence ma.y contain embedded newline characters if they are preceded by a
backslash (\). The sequence must be terminated with a newline character. For
example, the command

5-17

XENIX Programmer's Guide

cdc -r3,4 s.demo.c

prompts ror a new comment ror version 3.4.

Although the command does not delete the old comment, it is no longer directly
accessible by the user. The new comment contains the login name or the user
who invoked the cdc command and the time the comment was changed.

5.6.3 Adding ~todification Requests

You can add modification requests to an s-file, when the v flag is set, by using
the -m option or the delta and ad min commands. A modification request is a
shorthand method or describing the reason rora particular version.
Modification requests are usually names or numbers which the user has chosen
to represent a specific request.

The -m option causes the given command to save the requests following the
option. A request may be any combination or letters, digits, and punctuation
symbols. If you give more than one request, you must separate them with
spaces and enclose the request in double quotes. For example, the command

delta -m" error3S optimizelO" s.demo.c

copies the requests "error3S" and "optimize 10" to I.demo.c, while saving the
new version.

The -m option, when used with the admin command, must be combined with
the -i option. Furthermore, the v flag must be explicitly set with the -t option.
For example, the command

admin -idef.h -m"errorO" -tv s.deth

inserts the modificat.ion request "errorO" in the new file I. de/.k.

The delta command does not prompt for modification requests if you use the
-moption.

5.6.4 Changing Modification Requests

You can change modification requests, when the v fla.g is set, by using the cdc
command. The command asks for a list of modification requests by displaying
the prompt

MRs?

You may type any number of requests. Each request may have any
combination or letters, digits, or punctuation symbols. No more than 512
characters are allowed, and the last request must be terminated with a newline

5-18

SCCS: A Source Code Control System

character. It you wish to remove a request, you must precede the request with
an exclamation mark (!). For example, the command

cdc -rIA s.demo.c

asks for changes to the modification requests. The response

MRs? error36 !error35

adds the request "errora6" and removes "errora5".

5.6.5 Adding Descriptive Text

You can add descriptive text to an s-file by using the -t option of the admin
comma.nd. Descriptive text is any text that describes the purpose and reason
ror the given s-file. Descriptive text is independent or the contents of the s-file
and c an only be displayed using the prs command.

The -t option directs the admin to copy the contents or a given file into the
description field of the s-file. The command has the form

admin -tfilename ,.filename

where -tfilename gives the name or the file containing the descriptive text, and
I.filename is the name or the s-file to receive the descriptive text. The file to be
inserted may contain any amount or text. For example, the command

admin -tcdemo s.demo.c

inserts the contents of the file c demo into the description field of the s-file
I.demo.c.

The -t option may also be used to initialize the description field when creating
the s-file. For example, the command

admin -idemo.c -tcdemo s.demo.c

inserts the contents of the file ede mo into the new s-file I. derno.c. It -t is not
used, the description field of the new s-file is left empty.

You can remove the current descriptive text in an s-file by using the -t option
without a filename. For example, the command

admin -t s.demo.c

removes the descriptive text from the s-file I.demo. c.

5-19

XENIX Programmer's Guide

5.7 Printing trom an S-file

This section explains how to use the prs command to display inrormation
contained in an s-flIe. The prs command has a variety or options which control
t,he display rormat and content.

5.7.1 Using a Data Specification

You can explicitly define the inrormation to be printed from an s-file by using
the -d option or the prs command. The command copies user-specified
inrormation to the standard output. The command has the form

prs -d,pec ,.filename

where -d8pec is the data Epecification, and I.filename is the name or the s-file
from which the inrormation is to be taken.

The data specification is a string or data keywords and text. A data keyword is
an uppercase letter, enclosed in colons (:). It represents a value contained in the
given s-file. For example, the keyword :1: represents the SID or a given version,
:F: represent the filename -or the given s-file, :C: represents the comment line
associated with a given version. Data keywords are replaced by these values
when the inrormation is printed.

For example, the command

prs -d" version: :1: filename: :F:" s.demo.c

may produce the line

version: 2.1 filename: s.demo.c

A complete list or the data keywords is given in the section P,.,(CP) in the
XE};IX Reference ,Manual.

5.7.2 Printing a Specific Version

You can print inrormation about a specific version in a given s-file by using the
-r option orthe prs command. The command has the rOfm

prs -rSID ,.filename

where -rSID gives the SID or the desired version, and ,.filename is the name or
the s-file containing the yersion. For example, the command

prs -r2.1 s.demo.c

5-20

SCCS: A Source Code Control System

prints information about version 2.1 in the s-file,. demo.c.

If the -r option is not specified, the command prints information about the
most recently created delta.

5.7.3 Printing Later and Earlier Versions

You can print information about a group or versions by using the -I and -e
options of the prs command. The -I option causes the command to print
information about all versions immediately succeeding the given version. The
-e option causes the command to print information about all versions
immediately preceding the given version. For example, the command

prs -riA -e s.demo.c

prints all information about versions which precede version 104 (e.g., 1.3, 1.2,
and 1.1). The command

prs -r 104 -1 s.abc

prints information about versions which succeed version 104 (e.g., 1.5, 1.6, and
2.1).

If both options are given, information about all versions is printed.

5.8 Editing by Several Users

The sees system allows any number users to access and edit versions oCagiven
s-file. Since users are likely to access different versions of the s-file at the same
time, the system is designed to allow concurrent editing of different versions.
Normally, the system allows only one user at a time to edit a given version, but
you can allow concurrent editing ofthe same version by setting the j flag in the
given s-file.

The following sections explain how to perform concurrent editing and how to
~ave edited versions when you have retrieved more than one version for editing.

5.8.1 Editing Different Versions

The sees system allows several different versions or a file to be edited at the
same time. This means a user can edit version 2.1 while another user edit
version 1.1. There is no limit to the number of versions which may be edited at
any given time.

\Vhen several users edits different versions concurrently, each user must begin
work in his own directory. If users attempt to share a directory and work on
versions from the same s-file at the same time, the get command will refuse to

5-21

XENIX Programmer's Guide

retrieve a version.

5.8.2 Editing a Single Version

You can let a single version of a file be edited by more than one user by setting
the j flag in the given s-file. The flag causes the get command to check the p-file
and create a new proposed SID if the given version is already being edited.

You can set the flag by using the -r option of the admin command. For
example, the command

admin -fj s.demo.c

sets the flag for the s-file ,. de mo. e.

'Vhen the flag is set, the get command uses the next available branch SID for
each new proposed SID. For example, suppose a user retrieves for editing
version 1.4 in the file ,. demo. c, and that the proposed version is 1.5. If another
user retrieves version 104 for editing before the first user has saved his changes,
the the proposed version for the new user will be 1.4.1.1, since version 1.5 is
already proposed and likely to be taken. In no case will a version edited by two
sep arate users result in a single new version.

5.8.3 Saving a Specific Version

When editing two or more versions of a file, you can direct the delt.a command
to save a specific version by using the -r option t.o give the SID of that version.
The command has the form

delta -rSJD ,.filename

. where -rSID gives the SID ofthe version being saved, and e.filename isthe name
of the s-file to receive the new version. The SID may be the SID of the version
you have just edited, or the proposed SID for the new version. For example, if
you have retrieved version 1.4 for editing (and no version 1.5 exists), both
commands

delta -r 1.5 s.demo.c

and

delta -riA s.demo.c

save version 1.5.

5-22

SCCS: A Source Code Control System

5.9 Protecting S-files

The sees system uses the normal XENIX system file permissions to protect
s-files from changes by unauthorized users. In addition to the XENIX system
protections, the sees system provides two ways to protect the s-fi)es: the "user
list" and the "protection flags". The user list is a list of login names and group
IDs of users who are allowed to access the s-file and crea.te new versions or the
file. The protection flags are three special s-file flags that define which versions
are currently accessible to otherwise authorized users. The rollowing sections
explain how to set and use the user list and protection flags.

0.9.1 Adding a User to the User List

You can add a user or a group of users to the user list or a given s-file by using
the -a option or the ad min command. The option causes the given name to he
added to the user list. The user list defines who may access and edit the versions
in the s-file. The command has the form

admin -aname ,.filename

where -aname gives the login name or the user or the group name or a group or
users to be added to the list, and ,.filename gives the name orthe s-file to receive

. the new users. For example, the command

admin -ajohnd -asuex -amarketing s.demo.c

adds the users "johnd" and "suex" and the group "marketing" to the user list
of the s-file ,. demo.c.

If you create an s-file without giving the -a option, the user list is lert empty,
and all users may access and edit the files. When you explicitly give a user name
or names, only those users can access the files.

5.9.2 Removing a User from a User List

You can remove a user or a group of users from the user list of a given s-file by
using the -e option of the admin command. The option is similar to the -a
option but performs the opposite operation. The command has the form

admin -ename I.filename

where -ename gives the login name of a user or the group name or a group of
users to be removed from the list, and ,.filename is the name ofthe s-file from
which the names are to be removed. For example, the command

admin -ejohnd -emarketing s.demo.c

5-23

XENIX Programmer's Guide

removes the user "johnd" and the group "marketing" from the user Jist orthe
s-file ,.demo.c.

5.g.3 Setting the Floor Flag

The Roor flag, r, defines the release num ber of the lowest version a userma.y edit
in a given s-file. You can set the flag by using the -r option of the admin
command. For example, the command

admin -fl'2 s.demo.c

sets the floor to release number 2. Uyou attempt to retrieve any versions with a
release number less than 2, an error will result.

5.g.4 Setting the Ceiling Flag

. The ceiling flag, c, defines the release number of the highest version a user may
edit in a given s- file. You can set the flag by using the -r option of the admin
command. For example, the command

admin -fc5 s.demo.c

sets the ceiling to release number 5. Uyou attempt to retrieve any versions with
a release number greater than 5, an error will result.

5.g.5 Locking a Version

The lock flag, I, lists by release number all versions in a given s-file which are
locked against further editing. You can set the flag by using the -r flag of the
admin command. The flag must be followed by one or more release numbers.
Multiple release numbers must be separated by commas (,). For example, the
command

admin -fl3 s.demo.c

locks all versions with release number 3 against further editing. The command

admin -fl4,5,9 s.def.h

locks all versions with release numbers 4, 5, and 9.

Note that the special symbol "a" may be used to specify a.ll release numbers.
The command

admin -fla s.demo.c

locks alJ versions in the file ,.demo.e.

5-24

SCCS: A Source Code Control System

5.10 Repairing sees Files

The sees system carerully maintains all sees files, making damage to the files
very rare. However, damage can result from hardware maIrunctions, which
cause incorrect information to be copied to the file. The following sections
explain how to check ror damage to sees files, and how to repair the damage or
regenerate the file.

0.10.1 Checking an S-flle

You can check a file ror damage by using the -h option orthe admin command.
This option causes the checksum or the given s-file to be computed and
compared with the existing sum. An s-file's checksum is an internal value
computed from the sum or all bytes in the file. If the new and existing
checksums are not equal, t·he command displays the message

corrupted file (co6)

indicating damage to the file. For example, the command

admin -h s.demo.c

checks the s-file ,. de mo. c for damage by generating a new checksum ror the file,
and comparing the new sum with the existing sum.

You may give more than one filename. If you do, the command checks each file
in turn. You may also give the name of a directory, in which case, the command
checks all files in the directory.

Since railure to repair a damaged s-file can destroy the file's contents or make
the file inaccessible, it is a good idea to regularly check all s-files ror damage.

0.10.2 Editing an S-file

When an s-file is discovered to be damaged, it is a good idea to restore a backup
copy or the file rrom a backup disk rather than attempting to repair the file.
(Restoring a backup copy or a file is described in the XENIX Operation, Guide.)
If this is not possible, the file may be edited using a XENIX text editor.

To repair a damaged s-file, use the description or an s-file given in the section
BccBfile (F) in the XENIX Reference Manual, to locate the part or the file which
is damaged. Use extreme care when making changes; small errors can cause
unwanted results.

5-25

XENIX Programmer's Guide

5.10.3 Changing a.n S-file's Checksum

. After repairing a damaged s-file, you must change the file's checksum by using
the -z option of the admin command. For example, to restore the checksum of
the repaired file I.demo.e, type

admin -z s.demo.c

The cornman d computes and saves the new checksum, replacing t.heold sum.

5.10.4 Regenerating a G-file (or Editing

You can create a g-file for editing without affecting the current contents orthe
p-file by using the -k option of the get command. The option has the same
affect as the -e option, except tha.t the current contents of the p-file remain
unchanged. The option is typically used to regenerate a g-file that has been
accidentally removed or destroyed before it has been saved m,:ing the delta
command.

5.10.5 Restoring a Damaged P-flle

The -g option of the get command may be used to generate a new copy of a
p-file tha.t has been accidentally removed. For example, the command

get -e -g s.demo.c

creates a new p-file entry for the most recent version in ,. demo.e. If the file
demo.c already exists, it will not be changed by this command.

5.11 Using Other Command Options

Many of the sees commands provide options tha.t control their operation in
useful ways. This section describes these options and explains how you may use
them to perform useful work.

5.11.1 Getting Help With Sees Commands

You can display helpful information about an sees command by giving the
name of the command as an argument to the help command. The help
command displays a short explanation of the command and command syntax.
For example, the command

help rmdel

displays the message

5-26

SCCS: A Source Code Control System

rmdel:
rmdel -r8ID name ...

5.11.2 Creating a File With the Standard Input

You can direct admin to use the standa.rd input as the source Cor a new s-file by
using the -i option without a filename. For example, the command

admin -i s.demo.c < demo.c

causes admin to create a new s-file na.med I.demo.c which uses the text file
demo. c as its first version.

This method of creating a new s-file is typically used to connect admin to a
pipe. For example, the command

cat modl.c mod2.c I admin -i s.mod.c

creates a new s-file I. mod.c which contains the first version of the concatenated
files modl. c and mod2.c.

5.11.3 Starting At a Specific Release

The admin command normally starts numbering versions with release
number 1. You can direct the command to start with any given release number
by using the -r option. The command has the form

admin -rrel-num I.filename

where -rrel-num gives the value orthe starting release number, and •. filen4me
is the name of the s-file to be created. For example, the command

admin -idemo.c -r3 s.demo.c

starts with release number 3. The first version is3.1.

5.11.4 Adding a Comment to the First Version

You can add a comment to the first version of file by using the -y option of the
admin command when creating the s-file. For example, the command

admin -idemo.c -y"George Wheeler" s.demo.c

. inserts the comment "George Wheeler" in the new s"file I.demo.c.

5-27

XENIX Programmer's Guide

The comment may be any combination or letters, digits, and punctuation
symbols. Ir spaces are used, the comment must be enclosed in double quotes.
The complete command must fit on one line.

It the -y option is not used when creating an s-file, a comment or the form

date and time created YV/MMIDD Iffi:MMSS by logname

is automatically inserted.

5.11.5 Suppressing Normal Output

You can suppress the normal display or messages created by the get command
by using the -8 option. The option prevents inrorm3tion, such as the SID orthe
retrieved file, rrombeing copied to the standard output. The option does not
suppress error messages.

The -8 option is often used with the -p option to pipe the output or the get
command to other commands. For example, the command

get -p -s s.demo.c Ilpr

copies the most recent version in the s-file ,.demo.c to the line printer.

You can also suppress the normal output or the delta command by using the-s
option. This option suppresses all output normally directed to the standard
output, except for the normal comment prompt.

5.11.6 Including and Excluding Deltas

You can explicitly define which deltas you wish to include and which you wish
to exclude when creating a g-file, by using the -i and -x options or the get
command.

The -i option causes the command to apply the given deltas when constructing
, a version. The -x option causes the command to ignore the given deltas when
constructing a version. Both options must be rollowed by one or more SIDs. It
multiple SIDs are given they must be separated by commas (,). A range or SIDs
may be given by separating two SIDs with a hyphen (-). For example, the
command

get -i1.2,1.3 s.demo.c

causes deltas 1.2 and 1.3 to be used to con%)"uct the g-file. The command

get -x1.2-1.4s.demo.c

causes delta~ 1.2 through 1.4 to be ignored ' •• hen constructing the file.

5-28

SCCS: A Source Code Control System

The -i option is useful if you wish to automatically apply changes to a version
while retrieving it for editing. For example, the com~and

get -e -i4.1 -r3.3 s.demo.c

retrieves version 3.3 for editing. When the file is retrieved, the changes in delta
4.1 are automatically applied to it, making the g-file the same as if version 3.3
had been edited by hand using the changes in delta 4.1. These changes can be
saved immediately by issuing a delta command. No editing is required.

The -x option is useful if you wish to remove changes performed on a given
version. For example, the command

get -e -x1.5 -r1.6 s.demo.c

retrieves version 1.6 for editing. When the file is retrieved, the changes in delta
1.5 are automatically left (;mt of it, making the g-lBe the same as if version 1.4
had been changed according to delta 1.6 (with no intervening delta 1.5). These
changes can be saved immediately by issuing a delta command. No editing is
required.

When deltas are. included or excluded using the -i and -x options, get
compares them with the deltas that are normally used in constructing the given .
version. If two deltas attempt to change the same line of the retrieved file, the
command displays a warning message. The message shows the range or lines in
which the problem may exist. Corrective action, if required, is the
responsibility orthe user.

5.11.7 Listing the Deltas or a Version

You can create a table showing the deltas required to create a given version by
using the -1 option. This option causes the get command to create an I-file

. which contains the SlDs or all deltas used to create the given version.

The option is typically used to create a history or a given version's
deyelopment. For example, the command

get -I s.demo.c

creates a file named I.clemo.c containing the deltas required to create the most
recent version of clemo.c.

You can display the list or deltas required to create a version by using the -lp
option. The option perrorms the same function as the -1 opt-ions except it
copies the list to the standard output file. For example, the command

get -lp -r2.3 s.demo.c

copies the list or deltas required to create version 2.3 or clemo.c to the standard

5-29

XENIXProgrammer's Guide

output.

Note that the -1 option may be combined with the -g option to create a list or
deltas without retrieving the actual version.

0.11.8 Mapping Lines to Deltas

You can map each linein a given version to its corresponding delta by using the
-m option or the get command. This option causes each line in a g-file to be
preceded by the SID of the delta that caused that line to be inserted. The SID is
separated rrom the beginning of the line by a tab character. The -m option is
typically used to review the history of each line in a given version.

0.11.0 Naming Lines

You can name each line in a given version with the current module name (i.e.,
the value of the %M% keyword) by using the -n option or the get command.
This option causes each line of the'retrieved file to be preceded by the value of
the %M% keyword and a tab character.

The -n option is typically used to indicate that a given line is from the given
file. When both the -m and -n options are specified, each line begins with the
%M% keyword.

0.11.10 Displaying a List of Differences

You can display a detailed list of the differences between a new version of a file
and the previous version by using the -p option of the delta command. This
option causes the command to display the differences, in a format similar tothe
output ofthe XENIX diff command.

0.11.11 Displaying File Information

You can display information about a given version by using the -g option or the
get command. This option suppresses the actual retrieval or a version and
causes only the information about the version, such as the SID and size, to be
displayed.

The -g option is often used with the -r option to check ror the existence or a
given version. For example, the command

get -g -r4.3 s.demo.c

displays information about version 4.3 in the s-file ~. demo.c. Irthe version does
not exist, the command displays an error message.

5-30

sees: A Source Code Control System

S.I1.12 Removing a Delta

You can remove a delta from an s-file by using the rmdel command. The
command has the form

rmdel -rSID 8.filename

where -rSID gives the SID of the delta to be removed, and 8.filename isthe name
of the s-file from which the delta is to be removed. The delta must be the most
recently created delta in the s-file. Furthermore, the user must have write
permission in the directory containing the s-file, and must either own the s-file
or be the user who created the delta.

For example, the command

rmdel -r2.3 s.demo.c

removes delta 2.3 from the s-file 8.demo.c.

The rmdel command will refuse to remove a protected delta, that is, a delta
whose release number is below the current floor value, above the current ceiling
value, or equal to a current locked value (see the section "Protecting S-files"
given earlier in this chapter). The command will also refuse to remove a delta
which is currently being edited.

The rmdel command should be reserved for those cases in which incorrect,
global changes were made to an s-file.

Note that rmdel changes the type indicator of the given delta from "D" to
"R". A type indicator defines the type of delta. Type indicators are d'C1scribed
in full in the section delta(CP) in the XENIX Reference Manual.

S.I1.13 Searching (or Strings

You can search for strings in files created from an s-file by using the what
command. This command searches for the symbol #(@) (the current value of
the C::C;Z% keyword) in the given file. It then prints, on the standard output, all
text immediately following the symbol, up to the next double quote ("), greater
than (>), backslash (\), newline, or (non-printing) NULL character. For
example, if the s-file 8. demo.c contains the following line

char id[] = "%Z%%M%:%I%";

and the command

get -r3.4 s.prog.c

. is executed, then the command

5-31

XENIX Programmer's Guide

what prog.c

displays

prog.c:
prog.c:3.4

You may also use what to search files that have not been created by sees
commands.

5.11.14 Comparing sees Files

You can compare two versions from a given s-file by using the scesdiff
command. This command prints on the standard output the differences
between two versions ofthe s-file. The command has the rorm

sccsdiff -rSIDl -rSID2,.filena.me

where -rSIDl and -rS1D2 give the SIDs or the versions to be compared, and
,.filename is the name of the s-file cont.aining the versions. The version SIDs
must be given in the order in which they were created. For example, the
command

sccsdiff -r3.4 -r5.6 s.demo.c

displays the differences between versions 3.4 and 5.6. The differences are
displayed in a form similar to the XENIX diff command.

5-32

Chapter 6
Adb: A Program Debugger

6.1 Introduction 1

6.2 Invocation 1

6.3 TheCurrentAddress - Dot 1

6.4 Fonnats 2

6.5 DebuggingCPrograms 3
6.5.1 DebuggingaCorelmage 3
6.5.2 MuhipleFunctions 4
6.5.3 Setting Breakpoints 5
6.5.4 OtherBreakpointFacilities 7

6.6 Maps 7

6.7 Advanced Usage 8
6.7.1 Fonnatted Dump 9
6.7.2 Directory Dump 10
6.7.3 llistDump 11
6.7.4 Converting Values 11

6.8 Patching 11

6.9 Notes 12

6.10 Figures 13

6.11 AdbSummary 26
6.11.1 Command Summary 26
6.11.2 IncompleteFonnatSummary 27
6.11.3 ExpressionSummary 27

- i -

Adb: A Program Debugger

6.1 Introduction

Adb is an indispensable tool for debugging programs or crashed systems. It allows yro
to look at core files resulting from aborted programs. print output in a variety of
formats. patch files. and run programs with embedded breakpoints. This chapter is an
introductiontoadbwithexamplesofitsuse. It explains the various formauingoptions.
techniques for debugging C programs. and gives examples of printing file system
information. and of patching.

6.2 Invocation

Theadb invocation syntax is as follows:

adb objectfile corefile

where objectfile is an executable XENIX file and corefile is a core image file. Often this
will look like:

adb a.out core

orm«esimply:

adb

where the defauhs are a.out and core, respectively. The filename minus (-) means
ignore this argument as in:

adb - core

Adb has requests for examining locations in either file. A question mark (1) request
examines the contents of objectjiJe; a slash (I) request examines the corefil.e. The
general form of these requests is:

address 1 Jonnat

or

adt/ress 1 Jonnat

6.3 The Current Address - Dot

Adb maintains a pointer to the currell address. called dot, similar in function to the
current pointer in the editor, ed(C). When an address is entered, the current address is
set to that location, sothat:

01 26?i

setsd~tooctalI26andprintstheinstructionatthataddress. Thereq'.lest

.,IO/d

prints 10 decimal numbers starting at d~. Dot ends up referring to the address of the
last item. printed. When used with the question mark (1) or slash (I) request, the current
address can be advanced by typing a newline; it can be decremented by typing a caret
(").

Addresses are represented by expressions. Expressions are made upof decimal, octal.
and hexadecimal integers, and symbols fno the program under test. These may be

6-1

XENlX Programmer's Guide

combined with the following operators:

+ Addition

*
%

&

Subtraction

Muhiplication

Integer division

Bitwise AND

Bitwise inclusive OR

Round up to the nextmuhiple

Not

Ntte that all arithmetic within adb is 32-bit arithmetic. When typing a symbolic
address for a C program, type either "name" or "..name"; adb recognizes both
forms. Because adb will find only one instance of' 'name" and "..name" . (generally
the first to appear in the soorce) one will mask the other if they both appear in the same
source file.

6.4 Formats

To print data, you can specify a collection of letters and characters that describe the
fonnat of the printout. Formats are remembered in the sense that typing a request
without one will cause the new printout to appear in the previous format. The
followingarethemostcommonlyusedformatletters;foracompletelistseeadb(CP)

Letter Format

b 1 byte in octal
c 1 byte as a character
o 1 word in octal
d 1 word in decimal
x 1 word in hexadecimal
D 2 words (l.longword) in decimal
X 2 words (1 longword) in hexadecimal

machine instruction
s a null terminated character string
a the value of dot
u 1 word in unsigned decimal
n print a newline
r print a blank space

backup dot

equestis:

address r ,couml command r modifier 1
which sets the current address (dot)toaddress and executes the command counttimes.
6-2

Adb: A Program Debugger

The following table illustrates some general adb colIUlll.'Uld meanings:

Command Meaning

? Print coments from a.out file
Print contents from core file
Print value of "dot"
Breakpoint control

$ Miscellaneous requests
Request separat<r
Escape to shell

Adb catches signals, so a user cannot use a quit signal to exit from adb. The request $q
or$Q (or <CONfROL-D>) must be used to exitfromadb.

6.5 Debugging C Programs

The following subsections describe use of adb in debugging the C programs given in
the numbered figures at the end of this chapter. Refer to these figures as you work your
way through the examples.

6.5.1 Debugging a Core Image

Consider the C program. in Figure 1. This program illustrates a common error made by
C programmers. The object of the program is to change the lowercase "t" to
uppercase' 'T" in the string pointed to by "charp" and then write the character string
to the file indicated by argument 1. The bug shown is that the character' 'T" is stored in
the pointer "charp" instead of the string pointed to by "charp." Executing the
program produces a core file because of an out-of-bounds memory reference.
(Note that a core file may not be produced on all systems.)

Adb is invoked by typing:

adb a.out core

The first debugging request

$c

is used to give a C backtrace through the subroutines called. .As shown in Figure 2,
only one function, rna; n, was called and the arguments' 'argc" and "argv" have hex
values Ox2 and Oxlfff90 respectively. Btth of these values look reasonable; Ox2 =
two arguments, Ox! fff9() = address on stack of parameter vector. These values may
be different on your system due to a different mapping of memory .

The next request

$r

prints out the registers including the program counter and an interpretation of the
instruction at thatlocation.

The request:

6-3

XENIX Programmer~s Guide

Se

prints out the values of all external variables.

A map exists for each file handled byadb. The map for the a.outfile is referenced with
a question mark (1), whereas the map for the core file is referenced with a slash (/).
Furthermae, a good rule of thumb is to use question mark for instructions and slash for
data when looking at programs. To print out infonnationaboutthemaps, type:

Sm

This produces a report of the contents of the maps.

In our example, it is useful to see the contents of the string pointed to by "charp ... This
is done by typing

*charpls

which means use "charp" as a pointer in the core file and print the information as a
character string. This printout shows that the character buffer was incorrectly
overwritten and helps identify the error. Printing the locations around" charp" shows
that the buffer is unchanged but that the pointer is destroyed. Similarly, we could print
infonnationabouttheargumentstoafunction. Forexample

OxlfflW,3/X

printsthehex value s of the three consecutivecellspointed toby "argv" in the function
mal n. Note that these values are the addresses of the arguments to main. Therefore:

Oxlfffb6ls

prints the ASCll value of the first argument. Another way to print this value would
have been

*"/s

The quotation mark ('') means ditto, Le., the last address typed. in this case "Oxlffi90
;"thestar(*)instructsadbtousetheaddressfieldofthecorefileasapointer.

The request

.=x

prints the current address in hex (and not its contents). This has been set to the address
of the first argument. The current address, dot, is used byadb to remember its current
location. Dot allows the user to reference locations relative to the current address. for
example:

.-IO/d

6.S.2 Multiple Functions

Consider the C program illustrated in Figure 3. This program calls functionsj, g ,andh
until the stack is exhausted and a core image is produced.

Again, enteradb by typing

adb

which assumes the names a.out and core for the executable file and core image file,
respectively. The request

6-4

Adb: A Program Debugger

$c

fills a page ofbacktrace references to!. g. and h. Figure 4 shows an abbreviated list.
Pressing the INTERRUPT key terminates the output and brings you back to the odb
request level. Additionally. some versions of adb will automatically quit after fifteen
levels unless told otherwise with the command:

.levelcount$c

The request

,S$c

prints the five most recent activations.

Notice that each function if. g. and h) has a counter that counts the number of times
each has been called.

The request

fcntlD

prints the decimal value of the counter for the function!. Similarly. "gent" and
"hcnt' , could be printed. Notice that because "fent", "gcnt", and "hcnt" are int
variables. and on the MC68000 int is implemented as long, to print its value you must
usethe Dtwo-word fonnat.

6.5.3 Setting Breakpoints

Consider the C program in Figure S. This program changes tabs into blanks. We will
run this program under the control ofadb (see Figure 6) by typing:

adb a.out-

Breakpoints are set in the program as:

address:b rrequesll

The requests

settab+8:b
fopen+8:b
tabpos+8:b

set breakpoints at the start of these functions. C does not generate statement labels.
Therefore, it is currently not possible to plant breakpoints at locations other than
function entry points without knowledge of the code generated by the C compiler. The
above addresses are entered as

symbol +8

so that they will appear in any C backtrace, because the first two in~1rUctions of each
function are used to set up the local stack frame. Note that some of the functions are
from the C library .

Toprintthe location otbreakpoints, type:

$b

The display indicates a count field. A breakpoint is bypassed count-l times before
causing a stop. The command field indicates the adb requests to be executed each time

6-S

X.ENlX Programmer's Guide

the breakpoint is encountered. In our example no command fields are present.

By displaying the original instructions at the function senab we see that the breakpoint
is set after the tstb instruction. which is the stack probe. We can display the
instructions using the adb request:

settab.5?ai

This request displays five instructions stc1Iting at settab with the addresses of each
location displayed. Another variation is

settab.5?i

which displays the in~ructions with only the starting address.

N tte that we accessed the addresses from thea. out file with the question (?) command.
In general. when asking for a printout of multiple items adb advances the current
address the number of bytes necessary to satisfy the request. In the above example.
five instructions were displayed and the current address was advanced 18 (decimal)
bytes.

To run the program type:

:r

Todeleteabreakpoint.forinstancetheentrytothefunctionsettab. type:

settab+8:d

To continue execution of the program from the breakpoint type:

:c

Once the program has stopped (iI) this case at the breakpoint for/open). adb requests
canbe used to display the contents of memory. Forexample

$c

displays a stack trace or

tabs.614X

prints six lines of four locations each from the array called "tabs". By this time (at
location/open) in the C program, settab has been called and should have set a one in
every eighth location of "tabs" .

The XENIX quit and interrupt signals act on adb itselfratherthan on the program being
debugged. If such a signal occurs then the program being debugged is stopped and
control is returned to adb. The signal is saved by adb am is passed on to the test
program if

:c

is typed. This can be useful when testing interrupt handling routines. The signal is not
passed on to the test program if

:c 0

is typed.

6-6

Adb: A Program Debugger

6.5.4 Other Breakpoint FacUlties

Argwnents and changes of standard input and output are passed toa program as:

:r arg} arg2 ••• <infile >outfile

This request kills any existing program under test and starts the a. out afresh.

The program being debugged can be single - stepped by typing:

:s

If necessary, this request starts up the program being debugged and stops after
executing the first instruction.

Adb allows a program to be executed beginning ata specific address by typing:

address:r

The count field can be used to skipthe first n breakpoints with:

,n:r

The request

,n:c

may also be used for skipping the first n breakpoints when continuing a program.

A program can be continued at an address different from the breakpoint by typing:

address:c

The program being debugged runs as a separate process and can be killed by typing:

:k

6.6 Maps

XENIX supports several executable file formats. These are used to tell the loader how
to load the program file. Nonshared program files are the most common and are
generated by a C compiler invocation such as:

cc pgm.c

A shared file is produced by a C compiler command line of the form

cc -n pgm.c

Note that separate instruction/data files are not supported on the MC68000.

Adb interprets these different file formats and provides access to the different segments
through a set of maps. Toprintthemapstype:

$m

In nonshared files, both text (instructions) and data are inlennbled. This makes it
impossible for adb to differentiate data from instructions and some of the printed
symbolic addresses look incorrect; for example. printing data addresses as offsets
from routines.

In shared text, the instructions are separated from data and the

6-7

XENIX Programmer's Guide

1*
accesses the data part of thea. outfile. This request tellsadbtousethe second part of the
map in thea. out file. Accessing data in the core file shows the data after it was modified
by the execution of the program. Notice also that the data segment may have grown
during program execution. In shared files the corresponding core file does not contain
the program text.

Figure 7 shows the display of three maps for the same program linked as a nonshared
and shared respectively. The b. e, and f fields are used by adb to map addresses into file
addresses. Theil field is the length of the header at the beginning of the file (0:<34 bytes
for an a.out file and Ox800 bytes for a core file). Thej2 field is the displacement from
the beginning of the file to the data. For unshared files with mixed text and data this is
the same as the length of the header; for shared files this is the length of the headerplus
the size of the text portion.

The b and e fields are the starting and ending locations for a segment. Given an
address, A , the location in the file (either a. Olltor core) is calculated as:

blE;;AE;;el ~ file address = (A-bl)+f1
b2E;;AE;;e2 ~ file address = (A-b2)+f2

A user can access locat ions by usingtheadb defined variables. The

$v

request prints the variables initialized by adb:

b Base address of data segment
d Length of the data segment
s Length of the stack
t Length of the text
m Execution type

In Figure 7 those variables not present are zero. These variables can be used in
expressions such as

<b

in the address field. Similarly, the· value of the variable can be changed by an
assignment request such as

02000>b

which sets "b" to octal 2000. These variables are useful to know if the file under
examination is an executable or core image file.

Adb reads the header of the core image file to find the values for these variables. !fthe
second file specified does not seem to be a core file, orifit is missing, then the header of
the executable file is used instead.

6.7 Advanced Usage

With adb it is possible to combine formatting requests to provide elaborate displays.
Below are several examples.

6-8

Adb: A Program Debugger

6.7.1 Formatted Dump

The line

<b, -lI404"SCn

prints folD' octal words followed by their ASen interpretation from the data space of
theC(R image file. Broken down. the request pieces mean:

<b The base address of the data segment.

<b, -1 Print from the base address to the end-of-file. A negative coont is used
here and elsewhere to loop indefinitely or until some error condition (like
end -of-file) is detected.

The format «. 404''SCn'' is intelpreted as follows:

40 Print four octal locations.

4" Backup the current address four locations (to the original start of the
field).

SC Print eight consecutive characters using an escape convention; each
character in the range octal Oto 037 is printed asan at-sign (@)followed
by the corresponding character in the range octal 0140 to 0177. An at­
sign is printed as "@@".

n Print a newline.

The request:

<b,<dl404"SCn

could have been used instead to allow printing to stop at the em of the data segment
«d provides the data segment size in bytes).

The formatting requests can be combined with adb's ability to read in a script to
produce a core image dump script. Adb is invoked with the command line

adb a.out core < dump

toreadinascriptfilecontainingrequestsnameddump. An example of such a script is:

6-9

XENlX Programmer'. Guide

120$w
4095Ss
Sv
=3n
Sm
=3n"C Stack Backtrace"
SC
=3n"C External Variables"
Se
= 3n"Registen"
Sr
OSs
=3n"Data Segment"
<b,-IISona

The request

120$w

sets the width of the output to 120 characters (oormally t the width is 80 characters).
Adbattemptstoprintaddressesas:

symbol + offset

The request

4095Ss

increases the maximum permissible offset to the nearest symbolic address from 255
(defauk) to 4095 . The equal sign request (=) can be used to print literal strings. Thus,
headings are provided in this dump program with requests such as:

=3n"C Stack Backtrace"

This spaces three lines and prints the literal string. Therequest

$v

prints all nonzeroadb variables. Therequest

OSs
sets the maximum offset for symbol matches to zero, thus suppressing the printing of
symbolic labels in favor of hexadecimal values. Note that this is only done for the
printing of the data segment. The request

<b,-IISona

prints a dump from the base of the data segment to the end-of-file with an octal
address field and eight octal numbers per line.

Figure 9 shows the re suIts of some formattingrequestsonthe Cprogram of Figure 8.

6.7.2 Direetory Dump

Figure 10 illustrates another set of requests to dump the contents of a directory (which
is made up of an integer • 'inumber" followed by a 14-charactername):

6-10

adb dir-
= n8t"lnum"St"Name"
0, -I '1 uStl4cn

Adb: A Program Debager

In this example, "u" prints the inumber as an unsigned decimal integer t "SC' means
thatodb will space to the next muhipleof8 onthc output line, and "14c" prints the
14-character filename.

6.7.3 Dist Dump

Similarly the contents of the iUst of a file system (c. g. t Idel'1 root) can be dumped with
the following set of requests:

adb /dev/root -
02000>b
1m <b
<b, -I ,?"flags"8ton"links.uid.gid"St3bn" ,size"Stbrdn"addr"8t8un"times"St2Y2na

In this example the value of the base forthemapwas changed to 02000by typing

1m<b

since that is the start of an iUst within a file system. The request' 'brd" above was used
to print the 24-bit size fieldasa byte, a space, and a decimal integer. The last access
time and last modify time are printed with the "2Y" operator. Figure 10 shows
portions of these requests as applied toa directory and file system.

6.7.4 Converting Values

Adbmay be used to convert values from one representation to another. Forexample

072 = odx

prints

072 5S Ox3a

which are the octal, decimal and hexadecimal representations of 072 (octal). The
format is remembered so that typing subsequent numbers prints them in the given
formats. Character values canbe converted ina similar way; for example

'a' = co

prints

a 0141

It may also be used to evaluate expressions. However. be forewarned that aU binary
operators have the same precedence. a precedence that is lower than that for unary
operators.

6.8 J»atc~g

Patching files with odb is accomplished with the write (w (X W) request. This is often
used in conjunction with the locate, (I or L) request. The request syntax for I and w are
similar:

6-11

XENlX Programmer's. Guicle

11 value

The request I is used to match on 2 bytes; L is used for 4 bytes. The request 19 is used to
write 2 bytes. whereasW writes 4 bytes. The value field in either locate or write
requests is an expression. Therefore. decimal and octal numbers. or character strings
are supported.

lnordertomodify a file.adbmust be called with the -w switch:

adb - w file I file2

When caned with this option. fileJ andfile2 are created if necessary and opened for
both reading and writing.

For example. consider the C program shown in Figure 8. We can change the word
"This" to "The " in the executable file for this program. ex7. by using the following
requests:

adb -w ex'-
11 'Th'
?W'The'

The request

11

starts at dot and stops at the first match of "Th" having set dot to the address of the
locationfound. Notetheuseofthequestionmark(1)towritetothex.outfile.Theform

1*

wruldhave been used for a shared file.

More frequently therequest is typed as:

11 'Th'; 1s

This locates the first occurrence of' 'Th" and prints the entire string. Execution of this
request sets dot to the address of the characters' 'Th' , .

As another example of the utility of the patching facility, consider a Cprogram that has
an internal logic flag. The flag could be set by the user through adb and the program
run. Forexample:

adb x.out­
:s argl arg2
flag/wi
:c

The :5 request is normally used to single-step through a processor start a process in
single-step mode. In this case it startsx.out as a subprocess with arguments "argt"
and ., arg2". If there is a subprocess running, adb writes to it rather than to the file so
the wrequestcauses "flag2" to be changed in the memory of the subprocess.

6.9 Notes

Below is a list of some things that users should be aware of:

6-12

The stack frame is allocated by teh first two instructions at the beginning of
every C routine. Thus, putting breakpoints at the entry point of routines
means that the function appears not to have been called when the breakpoint

Adb: A Program Debugger

occurs. Try placing the breakpoint at' 'routine" + instead.

1. When printing addresses, ADB uses ither text or data symbols from the
x. out tile. This sometimes causes unexpected symbol names to be printed
with data (e.g .• "savr5+022"). This does not happen ifquestionmark(,!)
is used fortext (instructions) and slash (I) for data.

2. Local variables cannot be addressed.

6.10 F:igures

Figure 1: C program with pointer bug

#include <stdio.h>
struct buf!

int tildes;
int nleft;
char *nextp;
char bun] 5121;
lbb;

struct buf *obuf;

char *charp = "this is a sentence.";

main(argc ,argv)
int argc;
char **argv;
!

char cc;
FILE *file;

if(argc < 2) !
printf("lnput file missing\n'');
exit(S);

if«file = fopen(argvf Il,"w'}) = = NULL)!
printf("%s : can't open\n", argvf 11>;
exit(S);

I
I

charp = 'T';
printf("debug 1 %s\n",charp);

while(cc= *charp+ +)
putc(cc • file);

mush(tile);

6-13

XENlX Programmer's Guide

Figure2: AdboutputrorC programorngure 1

adb
$c
start +44: ..main (Oxl, OxlFFF90)
$r
dO OxO aO
dl Ox8 al
d2 OxO a2
d3 OxO ~1

d4 OxO a4
<IS OxO a5
d6 OxO a6
d7 OxO sp

ps OxO

0:04
OxlFFF90
OxO
OxO
OxO
OxO
OxlFFF7C
OxlFFF74

pc Ox80E4..main + 160: movb (aO), -1.(a6)
$e
..environ: OxlFFF9C
_errno: Ox19
Jlb: OxO
_obuf: OxO

. _charp: OXSS
-iob: Ox9Bl C
_sobuf Ox646S627S
-Iastbu: Ox96F8
Jibuf: OxO
-.allocs: OxO
-.allocp: OxO
-.alloct: OXO
-.allocx: OxO
_end: OxO
_edata: OxO
$m
? map 'x. rut'
bl = Ox8000 el = Ox97OC
b2 = Ox8000 e2 = Ox97OC
I map
bl = OxOel = OxlOOOOOO f1 = OxO
b2 = Ox0e2 =OxOf2 = OxO
·cbarp/s
OxSS:
data address not found
Oxlfl1'9O,3/X
OxIFFF90: OxlFFFBO
Oxlft1bO/s
Ox 1 FFFBO: x.out
Is
OxlFFFBO: x.out
.=X

OxlFFFBO
.-tO/d
OxIFFFA6: 65497

6--14

f1 = Ox20
f2 = 0x20

OxlFFFB6 OxO

Ad»: A Program Debugger

$q

~-15

XENlX Programmer's Guide

Figure3: MultipiefunctionC program

int fcnt,gcnt,hcnt;
h(x,y)
!

g(p,q)
!

,
• I

f(a,b)

mainO
i

int hi; register int hr;
hi = x+1;
hr = x-y+l;
hcnt++ ;
hj:
f(hr,hi);

int gi; register int gr;
gi = q-p;
gr = q-p+1;
gcnt++ ;
gj:
h(gr,gi);

int fi; register int fr;
fi = a+2*b;
fr = a+b;
fcnt++ ;
fj:
g(fr,fi);

f(l,1);

Figure4: AdboutputforC program of Figure 3

adb
$c
.l1+46:
_g+48:
J+70:
.l1+46:
_g+48:
J+70:
.l1+46:
_g+48:
<INTERRUPT>
adb
,sSe
.l1+46:
_g+48:
J+70:
.l1+46:
_g+48:
rcntID
Jent:
gcntID
_gent:
hcntID
.l1ent:
$q

J
.l1

J
.l1

1175

1174

1174

(00, Ox92D)
(Ox92C, 0x92B)
(Ox92D. Oxl2S8)
(00, Ox92B)
(Ox92A. 0x929)
(Ox92B, Oxl2S4)
(OO,Ox929)
(Ox928, 0x927)

(00, Ox92D)
(Ox92C, 0x92B)
(Ox92D, Oxl258)
(00, Ox92B)
(Ox92A, 0x929)

Adb: A Program Debugger

6-11

XENIX PrograDlDler'. Guide

FigureS: Cprogramtodeeode.tabs

#include <stdio.h>
#define· MAXLlNE 80
#define YES 1
#define NO 0
#define T ABSP 8
char input[l = "data";
char ibu~Sl8h
int tab~ MAXLlNE h

mainO

I
I

!

int col, *ptab;
char c;

ptab = tabs;
settab(ptab); I*Set initial tab stops *1
col = 1;
if(fopen(input,ibuf) < 0) !

I
I

printf("%s: n<t found\n",input);
exit(8);

while«c = getch(ibuf) != -I) !
switch(c) !

case "\t': 1* TAB *1
while(tabpos(col) != YES) !

1* put BLANK *1
putchar(' ');
col++;

I
I

break;
case '\n': I*NEWLINE *1

putchar('\n');
eo1 = 1;

defauh:
break;

putchar(c);
eol++ ;

1* Tabpos return YES if col is a tab stop *1
tabpos(col)
int col;

if(col > MAXUNE)
retum(YES);

else
retum(tab~ colb;

6-18

Adb: A Program Debugger

1* Settab - Set initial tab stops *1
settab(tabp)
int *tabp;
I

int i;

for(i = 0; i<= MAXLlNE; i++)
(i%TABSP) ? (tab~il == NO): (tab~il == YES);

1* getch(ibuf) - Just do a getc caD. but not a macro *1
getch(ibut)
FILE *ibuf;
I

return(getc(ibut);

6-19

XENlX Programmer'. Guide

Figure6: AdboutputlorC programolFigure5

adb x.out
settab+8:b
lopen+8:b
getcb+8:b
tabpos+8:b
$b
breakpoints
count bkpt
1 ~bpos+8
1 -Ietch+8
1 Jopen+8
1 ..settab+8
settab,5?1a
..settab: link
..settab+4:
-settab+8:
_settab+12:
-Settab+ 16:
_settab+24:
settab,5?1
-Settab: link

command

a6,#OxFFFFFFFC
tstb -132.(a7)
moveml #<>,-(a7)
clrl -4. (a6)
cmpl #OXSO, -4. (a6)

a6,#OxFFFFFFFC
tstb -132.(a7)
moveml #<>, -(a7)
clrl -4. (a6)
cmpl #OXSO, -4. (a6)

:r
x.out:running
breakpoint
settab+8:d

..settab+8: movem1 #<>, --(a7)

:c
x.out:running
breakpoint
$c
..main +52:
start +44: ..main
tabs,614X
~bs: Ox!

6-20

OxO
Oxt
OxO
Oxt
OxO

Jopen+8: jsr

Jopen (0x9750, Ox9958)
(Ox!, OxlFFF98)

OxO
OxO
OxO
OxO
OxO
OxO

OxO
OxO
OxO
OxO
OxO
OxO

OxO
OxO
OxO
OxO
OxO
OxO

-findio

Adb: A Program Debugger

Figure7: Adb output for maps

adb x.ouLunshareci core.unsharecl
$m
"map 'x.rut.unshared'
bl = Ox8000 el = Ox83E4 f1 = 0x34
b2 = Ox8000 e2 = Ox83E4 f2 = Ox34
I map 'core.unshared'
b I = Ox8000 el = Ox8800 fI = Ox800
b2 = OxlEBOOO e2 = 0x200000 f2 = OxlOOO
$v
variables
b = Ox8000
d = Ox800
e = Ox8000
m = Oxl07
s = 0x15000
$q

adb x.ouLshared core.shared
$m
? map 'x. rut. shared'
bl = Ox8000 el = Ox8390 fI = Ox34
b2 = OxlOOOO e2 = OxIOO54 f2 = Ox3BO
I map 'core. shared'
bl = OxlOOOO el = OxlOl08 f1 = Ox800
b2 = Oxl EBOOO e2 = 0x200000 f2 = Oxt 000
$v
variables
b = OxI0390
d = OxSOO
e = Ox8000
m = OdOS
s = 0x15000
$q

6-21

XENIX Programmer's Guide

Flgure8: SlmpieC programBlustratiDgtormattingaad patching

char str In = 'ibis is a character string";
int one = 1;
int number = 456;
long lnum = 1234;
float fpc = 1. 25;
char str2n = 'ibis is the second character string";
mainO

one = 2;

I

~

6-22

Adb: A Program Debugger

Figure9: Adboutput Dlustratingfaneyformats

adb x.out.shared core.shareel
<b,-lI80oa
..st:rl: 052150064563020151 071440 060440 061550 060562060543

..sttl + 16: 072145071040 071564 071151 0671470 0 01

..number:

..number: 0 0710 0 02322 0376400 052150064563

..st:r2+4: 020151 071440 072150 062440 071545061557067144 020143

..stt2+20: 064141 071141 061564 062562 020163072162 064556 063400

$nd:
$nd: 01 0140
<b,20/404"8Cn
..st:rl: 052150064563020151 071440 This is

060440 061550 060562060543 a charac
072145 071040 071564 071151 ter stri
067147 0 0 01 ng@'@'@'@'@'@a

..number: 0 0710 0 02322 @'@'@aH@'@'@dR

Jpt: 037640 0 052150064563? @'@'This
020151 071440072150062440 is the
071545 061557067144 020143 second c
064141 071141 061564 062562 haracter
020163 072162064556063400 string@'

$nd: 01 0140
data address not found
<b,2OI404"St8Coa
..st:rl: 052150064563 020151 071440
..sttl +8: 060440 061550 060562060543
..st:rl + 16: 072145 071040 071564 071151
..st:rl +24: 067147 0 0 01
..number:
..number: 0 0710 0 02322
jpt:
.Jpt: 0376400 052150064563
..stt2+4: 020151 071440 072150 062440
..stt2+ 12: 071545 061557 067144 020143
..st:r2+20: 064141 071141 061564 062562
..stt2+28: 020163 072162 064556 063400
$od:
Sod: 01 0140
data address not found
<b, t0l2b8tA 2cn
..strl: 0124 0150 Th

0151 0163 is
040 0151

This is
a charac
terstri

ng@'@'@'@'@'@a

@'@'@aH@'@'@dR

? @'@'This
is the
second c
haracter
string@'

6-23

XENIX Programmer'. Guide

0163 040 s
0141 040 a
0143 0150 c:b
0141 0162 at
0141 0143 ae
OJ64 0145 te
0162 040 r

$q

6-24

Adb: A Program Debugger

Figure 10: Directory anclinodedumps

adb dir-
=nt'1node"t"Name"; O,-I?ut14cn

1 node Name
OxO: 652

82
5971 cap.c
5323 cap
0 pp

adb /dev/root -
/dev/root - not in a.out format
02000>b
?m<b
$v
variables
b = Ox400
<b, -1 ?,,0ags"8ton'1inks,uid,gid"8t3bn"size"8tbrdD"addr"8t8un"times"8tlYlna
Ox400: flags 073145

links,uid.gid 0163 0164 0141
size 0162 10356
addr 28770 8236 25956 27766 25455 8236 25956 25206
times 1976 Feb 5 08:34:56 1975 Dec 28 10:55:15

Ox420: flags 024555
links.uid.gid 012 0163 0164
size 0162 25461
addr 8308 300508294 25130 1~216 26890 29806 10784
times 1976 Aug 17 12:16:51 1976 Aug 17 12:16:51

Ox440: flags 05173
links.uid.gid 011 0162 0145
size 0147 29545
addr 25972 8306 282658308 25642152162314 25970
times 1977 Apr 2 08:58:01 1977 Feb 5 10:21:44

6-25

XENlX Programmer's Guide

6.11 AdbSummary

6.11.1 Command Summary

Formatted printing

?fornw.t printfromx.outfileaccordingt%rmat

Iformat print from core file according toformOl

=format print the vaJueofdot

?wexpr write expression intox .outfile

!wexpr write expression into core file

?Iexpr locateexpressioninx. out file

Breakpoint and prOgrlUD control

:b set breakpoint at dot
:c continue running program
:d delete breakpoint
:k kill the program being debugged
:r run x.out file under adb control
:5 single step

Miscellaneous printing

$b print current breakpoints
$c C stack trace
$e external variables
Sm print adb segment maps
$q exit from adb
$r general registers
$I set offset for symbol match
$v print adb variables
$w set output line width

Calling the shell

call sh (shell) to read rest of line

Assignment to variables

> 1ItI1M assign dot to variable or register nmne

6-26

Adb: A Program Debugger

6.11.2

a
b
c
d
i
o
D
r
s
nt
u
x
X
D
y

" "

6.11.3

Incomplete Format Summary

the value of dot
I byte in octal
I byte as a character
I word in decimal
machine instruction
I word in octal
print a newline
print a blank space
a null terminated character string
move to next n space tab
I word as unsigned integer
I word in hexadecimal
2 words (I longword) in hexadecimal
2 words (I longword) in decimal
date
backup dot
print string

ExpressioD Summary

Expression components

dedmal integer e.g., 256
octal iDteger e.g., 0Z77
hexadecimal e. g., Oxff
symbols e.g., flag ..main main.argc
variables e.g., <b
regkters e.g. t <pc <dO <aO
(expressioD) expression grouping

Dyadic operators

+ add

•
%
&
I

subtract
muhiply
integer division
bitwise and
bitwise or
round up to the next multiple

Monadic operators

not
• contents of location

integer negation

6-27

Chapter 7
As: An Assembler

7.1 Introduction 1

7.2 Command Usage 1

7.3 Invocation Options 1

7.4 Source ProgramFonnat 2
7.4.1 Label Field 3
7.4.2 OpcodeField 3
7.4.3 Operand-Field 3
7.4.4 Comment Field 4

7.5 SymbolsandExpressions 4
7.5.1 Symbols 4
7.5.2 AssemblyLocationCounter 6
7.5.3 Program Sections 7
7.5.4 Constants 7
7.5.5 Operators 8
7.5.6 Terms 9
7.5.7 Expressions 9

7.6 Instructions and Addressing Modes 10
7.6.1 Instruction Mnemonics 10
7.6.2 Operand Addressing Modes 11

7.7 Assembler Directives 13
7.7.1 .ascii .asciz 14
7.7.2 .blkb .blkw .blkl 15
7.7.3 .byte .word .long 15
7.7.4 . end 15
7.7.5 .text .data .bss 16
7.7.6 .globl.comm 16
7.7.7 .even 16

i

7.8 Operation Codes 17

7.9 Error Messages 18

As: AD Assembler

7.1 Introduction

This chapter describes the use of the XENIX assembler, named as, for the Motorola
MC68000 microprocessor. It is beyond the scope of this chapter to describe the
instruction set of the MC68000 or to discuss assembly language programming in
general. For information on these topics, refer to the "MC68000 16-Bit
Microprocessor User's Manual", 3rd Edition, Englewood Cliffs: Prentice-Hall,
1982.

This chapter describes the following:

Command Usage

Source Program Format

Symbols and Expressions

lnstructions and Addressing Modes

AssemblerDirectives

Operation Codes

Error Messages

7.2 Command Usage

As can be invoked with one or more arguments. Except for option arguments, which
must appear first on the command line. arguments may appear in any order on the
command line. The source filename argument is traditionally named with an fl. s"
extension. Except as specified below , ftagsmay be grouped. Forexample

as -glo that.o this.s

will have the same effect as

as -g -I -0 that.o this.s

7.3 Invocation Options

The various options and their functions are described below:

-0 relname The default output name is filename .0. This can be overridden by
giving as the -0 flag am giving the new filename in the argument
followingthe -0. Forexample

as ~o that.o this.s

assembles the source this. s am puts the output in the file that.o.

-I Bydefauh, no output listing is produced. Alistingmay be produced by
giving the -I flag. lbe listing filename extension is ... L". The
filename forthe list file is based on the output file. So the command line

7-1

XENIX Programmer's Guide

as -I -0 output.x input.s

produces a listing named output. L.

-e By defauh, all symbols go into the symbol table of the a; out(F) tile that
is produced by the assembler, including locals. If you want only
symbolsthataredetinedas.globlor.eommtobeincluded,usethe-e
(externals only) flag.

-I By default, if a symbolis undefined in an assembly , an moris flagged.
This may be changed with the -g flag. If this is done, undefined
symbols will be interpreted as external.

:-v By default, the a.oot file Is for XENIX version 3.0 systems; the
number2or3spedfies which version the output Is IDtencled for •

7.4 Source Program Format

An as program consists of a series of statements, each of which OCa1pies exactly one
line, i.e., a sequence of characters fonowed by the newline character. Form feed,
ASCll <CONTROL-L>, also serves as a line terminator. Continuation lines are not
allowed, and the maximum line length is 132 characters. However, several statements
may be on a single line, separated by semicolons. Remember though, that anything
after a comment character is considered a comment. The format of an as assembly
language statement is:

[iGbel-jieldl fopcode [OJHrandsl [I commentl

Most of the fields may be omitted under certain circumstances. In particular:

1. Blank lines are permitted.

2. A statement may contain only a label field. The label defined in this field has
the same value as if it were defined in the label field of the next statement in
the program. As an example, the two statements

name:
addl dO,dl

are equivalent tothesingle statement

name: addl dO,dl

3. A line may COll$ist of only the comment field. The two statements below are
allowed as comments occupying full lines:

1 This is a comment field.
1 So is this.

4. Muhiple statements may be put on a line by separating them with a
semicolon (;). Remember, however, that anything after a comment
charac:ter(including statement separators) isa comment.

In general, blanks or tabs are allowed anywhere ina statement; that is, muhiple blanks
are allowed in the operand field to separate symbols from operators. Blanks are

7-2

As: An Assembler

significant only when they occur in a character string (e. g .• as the operand of an • ascii
pseudo-op) or in a character constant. At least one blank or tab mu~ appear between
the opcode and the operand field of a statement.

7.4.1 Label Field

A label is a user-defined symbol that is assigned the value of the current location
counter. both of which are entered into the assembler's symbol table. The value of the
labelisrelocatable.

A label is a symbolic means of referring to a specific location within a program. If
present. a label always occurs first in a statement and must be terminated by a colon. A
maximum of ten labels may be defined by a sL'lgle source statement. The collection of
label definitions ina statement is called the "label-field ...

The formatofa label-field is:

symbol: r ~mbol: 1 ...
Examples:

start:
name: name2:
7$:

I Muhiple symbols
I A local symbol (see below)

7.4.2 Opcode Field

The opcode field of an assembly language statement identifies the statement as either a
machine instruction. or an assembler directive (pseudo-op). One or more blanks (or
tabs) must separate the opcode field from the operand field in a statement. No blanks
are necessary between the label and opcode fields, but they are recommended to
improve readability of programs.

A machine instruction is indicated by an instruction mnemonic. Conventions used in
as for instruction mnemonics are descnbed in a later section. along with a complete list
ofopcodes.

An assembler directive, orpseudo-op. performs some function during the assembly
process. It does not produce any executable code. but it may assign space ina program
for data.

Asiscase-sensitive. Operators and operands may only be lowercase.

7.4.3 Operand-Field

As makes a distinction between operand-field and operand. Several machine
instructions and assembler directives require one ormore arguments. and each of these
is referred to as an "operand". In general. an operand field consists of zero. one, or
two operands, and in all cases. operands are separated by a comma. In other words,
the format for an operand - field is:

foperand r. operandl·.·1

The format of the operand field for machine instruction statements is the same for all
7-3

XENIX Programmer's Guide

instructions. The format of the operand field for assembler directives depends on the
directive itself.

7.4.4 Comment Field

The comment delimiter is the vertical bar, (I)~ notthesemicolon, (;). The semicolon is
the statement separator. The commentfield consists of all characters on a source line
following and including the comment character. These characters are ignored by the
assembler. Any character may appear in the comment field, with the exception of the
new line character, which starts a newline.

7.5 Symbols and Expressions

This section describes the various components of as expressions: symbols, numbers,
terms, and expressions.

7.5.1 Symbols

A symbol consists of 1 to 32 characters, with the following restrictions:

1. Valid characters include A-Z, a-z, 0-9, period C.), underscore (_), and
dollar sign ($).

2. The first character must not be numeric, unless the symbol is a local symbol.

There is no limit to the size of symbols, except the practical issue of running out of
symbol memory in the assembler. However. be aware that the current C compiler only
generates eight -character symbol names, so a symbol greater than eight - characters
in length that you think is the same in both C and assembly may not match. Uppercase
and lowercase are distinct (e.g., "Name" and "name" are separate symbols). The
period (.) and dollar sign ($) characters are valid symbol characters, but they are
reserved for system software symbols such as system calls and should not appear in
user-defined symbols.

A symbol is said to be "declared" when the assembler recognizes it as a symbol of the
program. A symbol is said to be "defined" when a value is associated with it. With the
exception of symbols declared by a .globl directive, all symbols are defined when they
are declared. A label symbol (which represents an address in the program) may not be
redefined; other symbols are allowed to receive a new value.

There are several ways to declare a symbol:

1. As the label of a statement

2. lnadirectassigrment statement

3. As an external symbol via the .globl directive

4. Asa common symbol viathe.commdirective

7-4

As~ An Assembler

5. As a local symbol

7.5.1.1 Direct Assignment Statements

A direct assignment statement assigns the value of an arbitrary expression to a
specified symbol. The format of a direct assigmnent statement is:

symbol = r symbol = 1 ... expression

Examples of valid directassigmnents are:

vecLsize =
vectora
vectorb =
CRLF

4
IftTe
vectora -vecLsize
IODOA

Any symbol defined by direct assignment may be redefined later in the program. in
which case its value is the resuh of the last such statement. A local symbol may be
defined by direct assignment; a label orregister symbol may n~ be redefined.

If the expression is absolute. then the symbol is also absolute. and may be treated as a
constant in subsequent expressions. If the expression is relocatable. however. then
symbol is also relocatable. and is considered to be declared in the same program
section as the expression. See the discussion in a later section of absolute and
relocatable expressions. -

7.5.1.2 Regbter Symbols

Register symbols are symbols used to represent machine registers. Register symbols
are usually used to indicate the register in the register field of a machine instruction.
The register symbols known to the assembler are givenattheend of this chapter .

7.5.1.3 External Symbols

A program may be assembled in separate modules. and then linked together to form a
single program (see Id(CP». External symbols may be defined in each of these
separate modules. A symbol that is declared (given a value) in one module may be
referenced in another module by declaring the symbol to be external in both modules.
There are two forms of external symbols: those defined with the .globl directive and
those defined with the .comm directive. See Section 8.7.6 for more information on
these directives.

7.5.1.4 LoeaJ Symbols

Local symbols provide a convenient means of generating labels for branch
instructions. Use of local symbols reduces the possibility of muhiply-defined

7-5

XENlX Programmer's Guide

symbols in a program. and separates entry point symbols from local references, such
as the top ofa loop. Local symbols cannot be referenced by other obj ect modules.

Localsymbolsareoftheformn $ where nisanyinteger. Valid local symbols include:

27$
394$

A local symbol is defined and referenced only within a single local symbol block (Isb).
A new local symbol block is entered when either:

1. Alabelisdeclared,or

2. A new program section is entered.

There is no conftict between local symbols with the same name that appear in different
local symbol blocks.

7.5.2 Assembly Location Counter

The assembly location counter is the period character (.); hence its name "dot". When
used in the operand field of any statement, dct represents the address of the first byte of
the statement. Even in assembly directives, it represents the address of the start of the
directive. A dot appearing as the third argument in a .byte directive would have the
value of the address where the first byte was loaded; it is not updated "during" the
directive.

For example:

movl . ,dl I load value of program counter into dl

At the beginning of each assembly pass, the assembler clears the location counter.
Normally, consecutive memm-y locations are assigned to each byte of generated code.
However, the location wberethecode is stored may be changed by a direct assignment
altering the location counter:

. = expression

This expression must not contain any forward references, must not change from one
pass to another, and must not have the effect ofrcducing the value of dot. Note that
setting dot to an absolute position may not have quite the effect you expect if you are
linking an as output file with other files, since dot is maintained relative to the origin of
the output file and not the resolved position in memory. Storage area may also be
reserved by advancing dot. For example, if the current value of dot is 1000, the direct
assignment statement:

TABLE: . =. + 1100

would reserve 100 (hex) bytes of storage, with the address of the first byte as the value
ofT ABLE. The next instruction would be stored at address 1100. Note that

.blkb 100

is a substantially more readable way of doing the same thing.

The : p operator, discussed in a later section, allows you to assemble values that are
location-relative, both locally (within a module) and across module boundaries,
without explicit address arithmetic.

7-6

As: An Assembler

7 ~5.3 Program Sections

As in XENIX, programs to as are divided into two sections: text and data. These
sections are interpreted as instruction space and initialized data space. respectively.

In the first pass of the assembly, as maintains a separate location crenter for each
section. Thus, for code like the following:

. text
LABELl: movw dl,d2

. data
LABEL2: . word 27

. text
LABEL3: addl d2,dl

. data
LABEL4: .byte 4

LABELl will immediately precede LABEL3, andLABEL2 will immediately precede
LABEL4 in the output. At the end of the first pass, as rearranges all the addresses so
that the sections will be output in the following order: text, then data .. The resuhing
output file is an executable image with all addresses correctly resolved, with the
exception of .comm variables and undefined .glohl variables. For more information
onthe format of the output file, consulta. out (F).

7.5.4 CODStants

All constanlsare considered absolute quantities when appearing in an expression.

7.5.4.1 Numeric Constants

Any symbol begi..'lI1ing with a digit is assumed to be a number, and will be interpreted in
the defauh decimal radix. Individual numbers may be evaluated in any of the five valid
radices: decimal, octal, hexadecimal, character, and binary. The defauh decimal
radix is only used on "bare" numbers, i.e., sequences of digits. Numbers may be
represented in tther radices as defined by the following table. The other three radices

7-7

JU!;NlA rrogrammers {:iulCle

require aprefix:

tAl
OxAl
'a
'\n
%11011

eql:la sase.
equals 15base 10.
equals 161 base 10.
e Isl61baselO.
equals 97 base 10.

ualslObasel0.
als 27 base 10.

Letters in hex constants may be uppercase or lowercase; e.g., laa=/Aa=1 AA= 170.
lllegal digits for a particular radix generate an error (e. g., "018). While the C character
constant syntaxis supported,
you cannot define character constants with a number (e. g., \27) as this is more easily
represented in one of the other fonnats.

7.5.5 Operators

An operator is either a unary operator requiring a single operand, or a binary operator
requiring two operands. Operators of each type are described below.

7.5.5.1 Unary Operators

There are three unary operators inas:

The":p" operator is a suffix that can be applied to arelocatable expression. It replaces
the value of the expression with the displacement of that value from the current location
(not dot). This is implemented with displacement relocation, so that it also works

7-8

As: An Assembier

across modules.

7.5.5.2 Binary Operators

Binary operators include:

Operator Descrie.tion Example Value
+ AddItIon 3+4 7.
- Subtraction 3-4 -1..or/FFFF
• Multiplication 4*3 12.
I Division 1214 3.
I Logical OR %011 01 I %00011 %01111

& Logical AND %011 OJ &%00011 %00001
~ Remainder Y3 "J ...

Each operator is assumed to work on a 32-bit number. lfthe value of a particular term
occupies only 8 or 16 bits, the sign bit is extended into the high byte.

Sometimes errors in expressions can be fixed by breaking the expressions intomuhiple
statements using direct assignmem statements.

7.5.6 Terms

A term is a component of an expression. A term may be one of the following:

1. A number whose 32-bit value is used

2. A symbol

3. A term preceded by a unary operator. For example, both "term" and
"-term" may be considered terms. Muhiple unary operators are allowed;
e.g. "+ - - + A" has the same value as "A".

7.5.7 ~press)ons

Expressions are combinations of terms joined together by binary operators. An
expression is always evaluated to a 32 - bit value.lfthe instruction calls for only 1 byte
(e.g., .byte), thenthelow-order8bitsareused.

Expressions are evaluated left to right with no operator precedence. Thus
"1 + 2 * 3" evaluates to 9, not 7. Unary operators have precedence over binary
operators since they are considered part of a term, and both terms of a binary operator
must be evaluated before the binary operator can be applied.

A missing expression or term is interpreti:'.d as having a value of zero. In this case, the
following error message is generated:

Invalid Expression

7-9

XENIX Programmer's Guide

An "Invalid Operator" error means that a valid end-of-line character or binary
operator was not detected after the assembler processed a term. lnparticular,thiserror
will be generated if an expression contains a symbol with an illegal character, or if an
incorrect comment character was used.

Anyexpression,whenevaluated,iseitherabsolute.relocatable,orexternaI:

1. An expression is absolute ifits value is fixed. Absolute expressions are those
whose terms are constants, or symbols assigned constants with an
assignment statement. Also absolute is a relocatable expression minus a
telocatable term, where both items belong to the same program section.

2. An expression is relocatable if its value is fixed relative to a base address,
but will have an offset value when it is linked, or loaded into core. Alllabels
of a program defined in relocatable sections are relocatable terms, and any
expression that contains them must only add or subtract constants to their
value. For example, assume the symbol "sym" was defined in a
relocatable section of the program. Then the following demonstrates theuse
ofrelocatable expressions:

sym Relocatable

sym+5 Relocatable

sym-' A Relocatable

sym*2 Notrelocatable

2-sym Not relocatable, since the expression cannot be linked by
adding sym • s offset to it.

sym-sym2 Absolute, sioce the offsets added tosym and sym2 cancel each
otherout.

3. An expression is "external" (i.e., or global) if it contains an external
symbol not defined in the current program. The same restrictions on
expressions containing relocatable symbols apply to expressions
containing external symbols.

An importanl exception is the expression sym-sym2 where both sym and
sym2 areextemal symbols. Expressions of this kind are disallowed.

7.6 Instructions and Addressing Modes

This section describes the conventions used in asto specify instruction mnemonic s and
addressing modes.

7.6.1 InstnJction Mnemonics

The instruction mnemonics used by as are described in the Motorola MC68000 User's
Manual with a few variations. Most of the MC68000 instructions can apply to byte,

7-10

As: An Assembier

word or to long operands, thus in as the normal instruction mnemonic is suffixed with
b, W, or I to indicate which length of operand was intended. Fa- example, there are
three mnemonics for the add instruction: addb, addw, and addJ.

Branch and call instructions come in 3 forms: the bra, jra, bsr and jbsr forms may
only take a label as argument. For the bra and bsr forms, the assembler will always
produce along (16-bit) pc relative address. Forthejra andjbsr forms, the assembler
will produce the shortest form of binary it can. This may be 8-bit or 16-bit pc
relative, or 32-bit absolute. The 32-bit absolute is implemented for conditional
branches by inverting the sense of the condition and branching around a 32-bit j mp
instruction. The 32-bit form will be generated whenever the assembler can't figure
out how far away the addressed location is; fa- example. branching to an undefined
symbol or a calculated value such as branching to a constant location.

7.6.2 Operand Addressing Modes

These effective addressing modes specify the operand(s) of an instruction. For details
of the effective addressing modes, seethe "MC68000User'sManual. "Notealsothat
not all instructions allow all addressing modes. Details are given in the "MC68000
User' sManual" in Appendix B under the specificinstruction.

In the examples that follow, when two examples are given, the first example is based
on the assembly format suggested by M«oroIa. The second example is in what is
called "Register Transfer Language'· or RTL and is used to describe the register
transfers that are occurring within the machine. It is provided for compatibility . Either
syntax is accepted, and it is permissible to mix the two types of syntax within a module
or even within a line when two effective address fields are allowed. Beware,however,
that a warning message will be generated when the assembler notices suchamix.

Many of the effective address modes have other names, by which they may be more
commonly known. In the following descriptions, this name appears to the right of the
Motorola name in parentheses.

Data Repter Direct

addl dO,d!

Address Register Direct

addl aO,aO

Address Register Indirect (indirect)

addl (aO),dl
addl a~,dl

Address Register Indired With Postincrement (autoinc)

movl (a7) + ,dl
movl a7@+,dl

Address Register Indirect WitbPredecrement(autodec)

7-11

XENIX programmer's Guide

movl dl, -(a7)
movl dl,a7@-

Address Register Indirect With DispJacement(indexed)

This form includes a signed 16-bitdisplacement. These displacements may be
symbolic.

movl 12(a6),dJ
movl a6@(12),dl

Address Register Indirect With Index (double-indexed)

This form includes a signed 8-bit displacement and an index register. The size
of the index register is given by following its specification with a' ': w' 0 or a' ':1" .
lfneitherisspecified, ":1" is assumed.

movl 12(a6,dO:w),dl
movla6@(12,dO:w),dJ

Absolute Short Address

movl xx:w,dl

AbsoJute Long Address (absolute)

This is the assumed addressing mode should the given value be a constant. This
is not true of branch and call instructions. Note also that the second example
hereisnotRTLsymax,butisprovidedonlybecauseitisalsoallowed.

movl xx,dl
movl xx:1,dl

Program Counter WithDisplacement(pereJative)

When pc relative addressing is used, such as

pea name(pc)

the assembler will assemble a value that is equal to "name- . • 0 , where dot (.) is
the position of the value, whether' 'name o. is in the current module or not. You
may also cause an expression to be pc relative by suffixing it with a":p' 0 •

movl 1 O(pc),d I
movl pc@(10),dl

Note that if a symbol appears in the above addressing mode (where the lOis in
the example), the symbol's displacement from the extension word will be used
in the instruction.

Program Counter With Index

jmp switchtab(pc,dO:l)
JlDP pc@(switchtab,dO:I)
switchtab:

Immediate Data

7-12

As: An Assembler

Note that this is the way to get immediate data. If a number is given with no
number sign (#), you get absolute addressing. This does not hold fC4" jsr and
j mp instructions.

movl
jmp
moveq

#47,dl
somewhere
#7,dl

In the movem instruction's register mask field, a special kind of immediate is
allowed: the register list. Its syntax is as follows:

<reg r, reg 1>
Here, reg is any register name. Register names may be given in any order. The
assembler automatically takes care of reversing the mask for the auto­
decrementaddressingmode. Normalimmediatesarealsoallowed.

7.7 Assembler Directives

UNIX Programmer's Guide

The followi ng assembler directives area vailable inas:

• ascii stores character strings
• &sea stores null - appended character strings
.blkb
.blkw saves blocks ofbyteslwordsllongs
4bJld
• byte
4 word stores bytes/words/longs
• long
• end tenninates program and identifies execution address
• text Text program section
edata Data program section
.bss Bss program section
.globl declares external symbols
.comm dedarescommunal symbols
• even forces location counter to next wordbounda.!Y

7.7.1 48Sciieasciz

The .ascii directive translates character stIings into their 7 - bit ASOI (represented as
8-bit bytes) equivalents for use in the source program. The fonnat of the e8seii
directive is as follows:

• ascii "character- string"

where character-string contains any character valid ina character constant.
Obviously. a newline must not appear within the character string. (It can be
represented by the escape sequence C '\0" as described below). The quotation mark ('')
is the delimiter character. which must not appear in the string unless preceded by a
backslash (\).

The following escape sequences are also valid as single characters:

X Value (){ X
\b <backspace> •
\t <tab>.
\n <newline>.
'I <form-feed> •
\r <return>,
\nnn hex value of nnn

Several examples follow:

7-14

Hex Code Generated: Statement:

226865 6C 6C 6F 20 74 .ascii "hello there"
6865726522

7761726E696E6720 .ascii "Warning-\OO7\OO7\n"
2D0707200A

hex 108
hex/09
hex lOA
hex IOC
hex/OD

As: An Assembler

The .asciz directive is equivalent to the .ascii directive with a zero (null) byte
automatically inserted as the final character of the !>tring. Thus, whena list or text string
is to be printed, a search for the null character can terminate the string. Null terminated
strings are often used as argumentstoXENlX system calls.

7.7.2 .blkb .blkw .blkl

The .blkb, .blkw, and .bkkl directives are used to reserve blocks of storage: .blkb
reserves bytes, • blk w reserves words and. blkJ reserves longs.

The format is:

~
label: ~
Iahel:

1

·

label:

.blkb
oblkw
• bUd

expression
expression
expression

where expression is the number of bytes or words to reserve. If no argument is given CIl

value of 1 is assumed. The expressionmust be absolute. and defined during pass 1 (i. e.
no forward references).

This is equivalent to the statement <Co = . +express;on". but has a much more
transparent meaning.

7.7.3 • byte ~ word .Iong

The • byte, • word, and .Jong directives are used to reserve bytes and words and to
initialize them with values.

The format is:

r:~~~l
t label: I

• byte
• word
.Iong ~expressionj~' expressionj""

express~on ,express~on .. .
expression ,expreSSIOn .. .

The .byte directive reserves 1 byte for each expression in the operand field and
initializes the value of the byte to be the low-order byte of the corresponding
expression. Note that muhiple exp-essions must be separated by commas. A blank
expression is interpreted as zero. and no error is generated.

For example.

• bytea, b,c,s
• byte""
• byte

reserves 4 bytes .
reserves 5 bytes. each with a value of zero .
reservesl byte, with a value of zero .

The semantics for .word and .Jong are identical. except that 16-bitor 32-bit words
are reserved and initialized. Be forewarned that the value of dot within an expressionis
that of the beginning of the statement, not of the value being calculated.

7.7.4 .end

The .enddirective indicates the physical end of the source program. The format is:

7-15

XENlX Programmer's Guide

.end

The .end is not required; reaching the end offilehas the same effect.

7.7.5 .text .data .bss

These statements change the "program section". where assembled code will be
loaded.

7.7.6 .glob) .comm

Two forms of external symbols are defined with the .globl and .comm directi ves.

External symbols are declared with the .glob) assembler directive. The format is:

• glob) symbol r , symbol ••• 1
For example, the following &tatements declare the array TABLE and the routine
SRCH to be external symbols:

.globl TABLE, SRCH
TABLE: .bJkw 10.
SRCH: movw T ABLE,aO

External symbols are only declared to the assembler. Theymu&t be defined (i.e., given
a value) in some other &tatement by one of the methods mentioned above. They need
not be defined in the current program; in this case they are flagged as "undefined" in
the symbol table. If they are undefined, they are considered to have a value of zero in
expressions.

It is generally a good idea to declare a symbol as .globl before using it in any way. This
is particularly important when defining absolutes.

The other form of external symbol is defined with the .comm directive. The .comm
directive reserves storage that may be communally defined, i.e .• defined mutually by
several modules. The link editor, Id (CP) resolves allocation of .comm regions. The
syntax of the .commdirectiveis:

.comm lUlme constant-expression

which causes as to declare the name as a common symbol with a value equal to the
expression. For the rest of the assembly this symbol will be treated as though it were an
undefined global. As does not allocate storage for common symbols; this task is left to
the loader. The loader computes the maximum size of each common symbol that may
appear in several load modules, allocates storage for it in the bss section, and resolves
linkages.

7.7.7 .even

This directive advances the location counter if its current value is odd. This is useful for
forcing storage allocation on a word boundary after a • byte or .aseD directive. Note
that many things may not be on an odd boundary in as , including instructions. and
word and long data.

7-16

As: An Assembler

7.8 Operation Codes

Below are all opcodesreeognized by as:

abed bmi dbra movb Ite
addb bmis dbt movw rtr
addw bne dbve movl Its
addl bnes dbvs movemw sbed
addqb bpI divs moveml sec
addqw bpls divu movepw scs
addql bra eorb movepl seq
addxb bras eorw moveq sf
addxw bset eorl muls sge
addxl b!l' exg mulu sgt
andb bsrs extw nbcd shi
andw btst extl negb sle
andl bvc jbsr negw sIs
aslb bYes jec negl sit
aslw bvs jcs negxb smi
asll bvss jeq negxw sne
asrb chit jge negxl spl
asrw clrb jgt nop st
asrl clrw jhi notb stop
bee clrl jle notw subb
bees cmpb jis notl subw
bchg cmpw jlt orb subl
belr cmpl jmi orw subqb
bes cmpmb jmp orl subqw
bess cmpmw jne pea subql
beq cmpml jpl reset subxb
beqs dbce jra roIb subxw
bge dbcs j!l' rolw subxl
bges dbeq jve roll svc
bgt dbf jvs rorb svs
bgts dbge lea rorw swap
bhi dbgt link rorl tas
bhis dbhi lslb roxIb trap
ble dble lslw roxlw trapv
bles dbls Isll roxll 18th
bls dblt Isrb roxrb tstw
blss dbmi Isrw roxrw tstl
bit dbne lsrl roxrl unlk
bits dbpl

The following pseudo operations are recognized:

7-17

XENIX Programmer's Guide

eascli
.asdz
.blkb
.. blkl
.blkw
.bss
.. byte
licomm
.data
.end
.even
.globl
.Iong
• text
• word

The following registers are recognized:

dO dl ell cI3 d4 cIS d6 d7
aO al a2 a3 a4 a5 a6 a7
sp pc ccsr

7.9 Error Messages

lfthere are errors in an assembly 9 anelTOrmessage appears on the standard error output
(usually the terminal) giving the type of error and the source line number. If an
assembly listing is requested, and there are errors, the error message appears before
the offending statement. Ifthere were no assembly errors, then there are no messages,
thus indicating a successful assembly. Some diagnostics are only warnings and the
assembly is successful despite the warnings.

The common error codes and their probable causes, appear below:

Invalid character
An invalid character for a character constant or character string was
encountered.

Multiply defined symbol
A symbol has appeared twice as a label, or an attempt has been made to
redefine a label using an = statement. This error message may also occur
if the value of a symbol changes betweenpasses.

OOsettoolarge
A displacement cannot fit in the space provided for by the instruction.

Invalid constant
An invalid digit was encountered in a number .

Invalid term

7-18

The expression evaluator could not find a valid term that was either a
symbol, constant or expression. An invalid prefix to a number or a bad
symbol name in an operand will generate this.

As: An Assembler

N onrelocatable expression
A required relocatable expression was not found as an operand. It was
not provided.

Invalid operand
An illegal addressing mode was given for the instruction.

Invalid symbol
A symbol was given that does not conform to the rules for symbol
formation.

Invalid assignment
An attempt was made to redefine a label with an = statement.

Invalid opcode
A symbol in the opcode field was not recognized as an instruction
mnemonic or directive.

Bad filename
An invalid filename was given.

VVrongnumberoroperands
An instruction has either too few or too many operands as required by the
syntax of the instruction.

Invalid repterexpression
An operand or operand element that must be aregisteris not, or a register
name is used where it may not be used. For example. using an address
register in a moveq instruction. which only allows data registers will
produce this erra- message; as will using a register name as a label with a
bra instruction.

Odd address
An instruction a-data item that must start at an even address does not.

Inconsistent effective address syntax
Both assembly andRTL syntax appear within a single module.

Nonword memory shift
An in-memory shift instruction was given a size other than 16 bits.

7-19

Chapter 8
Lex: A Lexical Analyzer

8.1 Introduction 8-1

8.2 Lex Source Format 8-2

8.3 Lex Regular Expressions 8-3

8.4 Invoking lex 8-4

8.5 Specifying Character Classes 8-5

8.6 Specifying an Arbitrary Character 8-6

8.7 Specifying Optional Expressions 8-6

8.8 Specifying Repeated Expressions 8-6

8.9 Specifying Alternation and Grouping 8-7

8.10 Specifying Context Sensitivity 8-7

8.11 Specifying Expression Repetition 8-8

8.12 Specifying Definitions 8-8

8.13 Specifying Actions 8-8

8.14 Handling Ambiguous Source Rules 8-12

8.15 Specifying Left Context Sensitivity 8-15

8.16 Specifying Source Definitions 8-17

8.17 LexandYacc 8-18

8.18 Specifying Character Sets 8-22

8.19 Source Format 8-23

Lex: A Lexical Analyzer

8.1 Introduction

Lex is a program generator designed ror lexical processing or character input
streams. It accepts a high-level, problem-oriented specification ror character
string matching, and produces a C program that recognizes regular
expressions. The regular expressions are specified by the user in the source
specifications given to lex. The lex code recognizes these expressions in an
input stream and partitions the input stream into strings matching the
expressions. At the boundaries between strings, program sections provided by
the user are executed. The lex source file associates the regular expressions and
the program rragments. .A13 each expression appears in the input to the
program written by lex, the corresponding rragment is executed.

The user supplies the additional code needed to complete his tasks, including
code written by other generators. The program that recognizes the expressions
is generated in the rrom the user's C program rragments. Lex is not acomplete
language, but rather a generator representing a new language reature added on
top or the C programming language.

Lex turns the user's expressions and actions (called lource in this chapter) into
a C program named yylez. The yylez program recognizes expressions in a
stream (called input in this chapter) and perrorms the specified actions ror each
expression as it is detected.

Consider a program to delete rrom the input all blanks or tabs at the ends or
lines. The following lines

%%
I\t]+$

are all that is required. The program contains a. %% delimiter to mark the
beginning or the rules, and one rule. This rule contains a regular expression
that matches one or more instances or the characters blank or tab (written \t
ror visibility, in accordance with the C language convention) just prior to the
end or aline. The brackets indicate the character class made or blank and tab;
the + indicates one or more or the previous item; and the dollar sign ($)
indicates the end orthe line. No action is specified, 50 the program generated by
lex will ignore these characters. Everything else will be copied. To change any
remaining string or blanks or tabs to a single blank, add another rule:

%%
(\t]+$
I\t]+

,
printr(" ");

The finite automaton generated ror this source scans ror both rules at once,
observes at the termination of the string or blanks or tabs whether or not there
is a newline character, and then executes the desired rule's action. The first rule
matches all strings of blanks or tabs at the end or lines, and the second rule
matches all remaining strings of blanks or tabs.

8-1

XENIX Programmer's Guide

Lex can be used alone for simple transformations, or for analysis and sta.tistics
gathering on a lexical level. Lex can also be used with a parser generator to
perform the lexical analysis phase; it is especially easy to interrace lex and
yacc. Lex programs recognize only regular expressions; yacc writes parsers
that accept a large class of context-free grammars, but that require a lower
level analyzer to recognize input tokens. Thus, a combination or lex and yacc
is often appropriate. When used as a preprocessor for a later parser generator,
lex is used to partition the input stream, and the parser generator assigns
structure to the resulting pieces. Additional programs, written by other
generators or by hand,can be added easily to programs written by lex. Yacc
users will r.ealize that the name 1I11lez is whatyac:c expects its lexical analyzer to
be named, so that the use of this name by lex simplifies interracing.

Lex generates a deterministic finite automaton from the regular expressions in
the source. The automaton is interpreted, rather than compiled, in order to
save space. The result is still a fast analyzer. In particular, the time taken by a
lex program to recognize and partition an input stream is proportional to the
length ofthe input. The number oClex rules or the complexity ofthe rules is not
important in determining speed, unless rules which include rorward context
require a significant amount of rescanning. What does increase with the
number and complexity of rules is the size of the finite automaton, and
therefore the size of the program generated by lex.

In the program written by lex, the user's fragments (representing the actions to
be performed as each regular expression is round) are gathered as cases of a
switch. The automaton interpreter directs the control flow. Opportunity is
provided for the user to insert either declarations or additional statements in
the routine containing the actions, or to add subroutines outside this action
routine.

Lex is not limited to source that can be interpreted on the basis or one
character lookahead. For example, if there are two rules, one looking ror 4b and
another for abcde/g, and the input stream is o.bcde/h, lex will recognize 4band
leave the input pointer just before cd. Such backup is more costly than the
processing of simpler languages.

8.2 Lex Source Format

The general format of lex source is:

{definitions}
%%
{rules}
%%
{user subroutines}

where the definitions and the user subroutines are often omitted. The second
%% is optional, but the first is required to mark the beginning of the rules. The
absolute minimum lex program is thus

8-2

Lex: A Lexical Analyzer

%%

(no definitions, no rules) which translates into a program that copies the input
to theoutput unchanged.

In the lex program format shown above, the rules represent the user's control
decisions. They make up a table in which the left column contains regular
expressions and the right column contains actions, program fragments to be
executed when the expressions are recognized. Thus the following individual
rule might appear:

integer printf("found keyword INT");

This looks for the string integer in the input stream and prints the message

found keyword INT

whenever it appears in the input text. In this example the C library function
printJ() is used to print the string. The end of the lex regular expression is
indicated by the first blank or tab character. If the action is merely a single C
expression, it can be given on the right side of the line; ifit is compound, or takes
more than a line, it should be enclosed in braces. As a slightly more useful
example, suppose it is desired to change a number of words from British to
American spelling. Lex rules such as

colour
mechanise
petrol

printf(" color");
printf(" mechanize");
printf(" gas");

would be a start. These rules are not quite enough, since the word petroleum
would become ga3eum; a way of dealing with such problems is described in a
later section.

8.3 Lex Regular Expressions

A regular expression specifies a set of strings to be matched. It contains text
characters (that match the corresponding characters in the strings being
compared) and operator characters (these specify repetitions, choices, and
other features). The letters of the alphabet a.nd the digits are always text
characters. Thus, the regular expression

integer

matches the string i nte ge r wherever it appears and the expression

a57D

looks for the string aS7D.

8-3

XENIX Programmer's Guide

The operator characters are

If any of these characters are to be used literally, they needed to be quoted
individually with a backslash (\) or as a group within quotation marks (").
The quotation mar k operator (") indicates that whatever is contained between
a pair of quotation marks is to be taken as text characters. Thus

xyz"++"

matches the string zllz++ when it appears. Note that a part of a string may be
quoted. It is harmless but unnecessary to quote an ordinary text character; the
expression

"xyz++"

is the same as the one above. Thus by quoting every non alphanumeric
character being used as a text character, you need not memorize the above list
of current operator characters.

An operator character may also be turned into a text character by preceding it
with a backslash (\) as in

xyz\+\+

which is another, less readable, equivalent of the above expressions. The
quoting mechanism can also be used to get a blank into an expression; normally,
as explained above, blanks or tabs end a rule. Any blank character not
contained within brackets must be quoted. Several normal C escapes with the
backslash (\) are recognized:

\n newline

\t tab

\b backspace

\ \ backslash

Since newline is illegal in an expression, a \n must be used; it is not required to
escape tab and backspace. Every character but blank, tab, newline and the list
above is always a text character.

8.4 Invoking lex

There are two steps in compiling a lex source program. First, the lex source
must be turned into a generated program in the host general purpose language.
Then this program must be compiled and loaded, usually with a library of lex

8-4

Lex: A Lexical Analyzer

subroutines. The generated program is in a file named lex.yy.c. The I/O
library is defined in terms ofthe C standard library.

The library is accessed by the loader flag -ll. So an appropriate set of
commands is

lex source
cc lex.yy.c -II

The resulting program is placed on the usual file 4. out for later execution. To
use lex with yacc see the section "Lex and Yacc" in this chapter and Chapter 9,
"Yacc: A Compiler-Compiler" ". Although the default lex I/O routines use the
C standard library, the lex automata themselves do not do so. It private
versions of input, output, and unput are given, the library can be avoided.

8.5 Specirying Character Classes

Classes of characters can be specified using brackets: [and]. The construction

[abc]

matches a single character, which may be 4, b, or c. Within square brackets,
most operator meanings are ignored. Only three characters are special: these
are the backslash (\), the dash (-), and the caret (A). The dash character
indicates ranges. For example

[a-z0-9< >-l

indicates the character class containing all the lowercase letters, the digits, the
angle brackets, and underline. Ranges may be given in either order. Using the
dash between any pair of characters that are not both uppercase letters, both
lowercase letters, or both digits is implementation dependent and causes a
warning message. It it is desired to include the dash in a character class, it
should be first or last; thus

[-+0-9]

matches all the digits and the plus and minus signs.

In character classes, the caret (A) operator must appear as the first character
after the left bracket; it indicates that the resulting string is to be
complemented with respect to the computer character set. Thus

matches all characters except 4, b, or c, including all special or control
characters; or

8-5

XENIX Programmer's Guide

("a-zA-Z]

is any character which is not a letter. The backslash (\) provides an escape
mechanism within character class brackets, so that characters can be entered
literally by preceding them with this character.

8.6 Specifying an Arbitrary Character

To match almost any character, the period (.) designates the class of all
characters except a newline. Escaping into octal is possible although
nonportable. For example

[\40-\176]

matches all printable characters in the ASCII character set, from octal 40
(blank) to octal 176 (tilde).

8.7 Specifying Optional Expressions

The question mark (1) operator indicates an optional element of an expression.
Thus

ab?c

matches either ac or abc. Note that the meaning of the question mark here
differs rrom its meaning in the shell.

8.8 Specifying Repeated Expressions

Repetitions of classes are indicated by the asterisk (*) and plus (+) operators.
For example

matches any number of consecutive a characters, including zero; while a+
matches one or more instances of a. For example,

[a-z]+

matches all strings or lowercase letters, and

[A-Za-z][A-Za-zO-9)*

matches all alphanumeric strings with a leading alphabetic character; this is a
typical expression for recognizing identifiers in computer languages.

8-6

Lex: A Lexical Analyzer

8.9 Specifying Alternation and Grouping

The vertical bar (I) operator indicates alternation. For example

(ablcd)

matches either ab or cd. Note that paren theses are used for grouping, although
they are not necessary at the outside level. For example

ablcd

would have sufficed in the preceding example. Parentheses should be used for
more complex expressions, such as

(ablcd+}?(ef).

which matches such strings as abe/el, elelel, edel, and eddd, but not abc, abed,
or abc del.

8.10 Specifying Context Sensitivity

Lex recognizes a small amount of surrounding context. The two simplest
operators for this are the caret (A) and the dollar sign ($). Ir the first character
of an expression is a caret, then the expression is only matched at the beginning
ofa line (after a newline character, or at the beginning of the input stream).
This can never conflict with the other meaning of the caret, complementation
of character classes, since complementation only applies within brackets. Irthe
very last character is dollar sign, the expression only matched at the end or a
line (when immediately followed by newline). The latter operator is a special
case of the slash (/) operator, which indicates trailing context. The expression

ab/cd

matches the string ab, but only if followed by cd. Thus

ab$

is the same as

ab/\n

Left context is handled in lex by specifying start conditions as explained in the
section "Specifying Left Context Sensitivity". If a rule is only to be executed
when the lex automaton interpreter is in start condition z, the rule should be
enclosed in angle brackets:

<x>

8-7

XENIX Programmer's Guide

Ir we considered being at the beginning of a line to be start condition ONE, then
the caret (,.) operator would be equivalent to

<ONE>

Start conditions are explained more fully later.

8.11 Specifying Expression Repetition

The curly braces ({ and}) specify either repetitions (irthey enclose numbers) or
definition expansion (if they enclose a name). For example

{ digit}

looks for a predefined string named digit and inserts it at that point in the
expression.

8.12 Specifying Definitions

The definitions are given in the first part of the lex input, before the rules. In
contrast,

a{1,5}

looks ror 1 to 5 occurrences or the character 4.

Finally, an initial percent sign (%) is special, since it is the separator tor lex
source segments.

8.13 Specifying Actions

When an expression is matched by a pattern of text in the input, lex executes
the corresponding action. This section descri bes some teatures of lex which aid
in writing actions. Note that there is a default action, which consists of copying
the input to the output. This is performed on all strings not otherwise matched.
Thus the lex user who wishes to absorb the entire input, without producing any
output, must provide rules to match everything. When lex is being used with
yacc, this is the normal situation. You may consider that actions are what is
done instead of copying the input to the output; thus, in general, a rule which
merely copies can be omitted.

One of the simplest things that can be done is to ignore the input. Specifying ae
null statement; as an action causes this result. A frequent rule is

[\t\n)

which causes the three spacing characters (blank, tab, and newline) to be

8-8

Lex: A Lexical Analyzer

ignored.

Another easy way to avoid writing actions is to use the repeat action character,
I, which indicates that the action ror this rule is the action ror the next rule. The
previous example could also have been written

" "
"\t" .
"\n"

with the same result, although in a different style. The quotes around \n and \t
are notrequired.

In more complex actions, you often want to know the actual text that matched
some expression like:

(a-zJ+

Lex leaves this text in an external character array named 1Iytezt. Thus, to
print the name found, a rule like

(a-z]+ printf{" %s", yytext);

prints the string in 1I1Itezt. The C function print! accepts a format argument
and data to be printed; in this case, the format is print 'tring where the percent
sign (%) indicates data conversion, and the ~ indicate string type, and the data
are the characters in 1I11tezt. So this just places the matched string on the
output. This action is so common that it may be written as ECHO. For example

(a-z]+ ECHO;

is the same as the preceding example. Since the default action is just to print
the characters found, one might ask why give a rule, like this one, which merely
specifies the default action? Such rules are often required to avoid matching
some other rule that is not desired. For example, if there is a rule that matches
readit will normally match the instances or re ad contained in breador readjust;
to avoid this, a rule of the form

(a-z]+

is needed. This is explained further below.

Sometimes it is more convenient to know the end of what has h.een round; hence
lex also provides a count of the number of characters matched in the variable,
1I1Ileng. To count both the number or words and the number or characters in
words in the. input, you might write

(a-zA-Z]+ {words++; chars += yyleng;}

which accumulates in the variables c hare the number or characters in the words

8·9

XENIX Programmer's Guide

recognized. The last character in the string matched can be accessed with:

yytext(yyleng-l]

Occasionally, alex action may decide that a rule has not recognized the correct
span of characters. Two routines are provided to aid with this situation. First,
yymoreO can be called to indicate that the next input expression recognized is
to be tacked on to the end of this input. Normally, the next input string will
overwrite the current entry in Y1ltezt. Second, S'ylell(n) may be called to
indicate that not all the characters matched by the currently successrul
expression are wanted right now. The argument n indicates the number or
characters in Y1ltezt to be retained. Further characters previously matched are
returned to the input. This provides the same sort or lookahead offered by the
slash(/) operator, but in a differentform.

For example, consider a language that defines a string as a set or characters
between quotation marks ("), and provides that to include a quotation mark in
a string, it must be preceded by a backslash (\). The regular expression that
matches this is somewhat confusing, so that it might be preferable to write

\"r")* {
it (yytext[yyleng-l] === '\ \')

yymoreOi
else

... normal user processing
}

which,when faced with a string such as

" abc\"der'

will first match the five characters

" abc\

and then the call to yymoreO will cause the next part of the string,

"def

to be tacked on the end. Note that the final quotation mark terminating the
string should be picked up in the code labeled normal processing.

The tunction yyleuO might be used to reprocess text in various circumstances.
Consider the problem in the older C syntax of distinguishing the ambiguity ot
=-4. Suppose it is desired to treat this as =- 4 and to print a message. A rule
might be

8-10

Lex: A Lexical Analyzer

=-[a-zA-Zj {
printf(" Operator (=-) am biguous\n");
yyless(yyleng-l);
... action for =- ...
}

which prints a message, returns the letter after the operator to the input
stream, and treats the operator as =-.

Alternatiyely it might be desired to treat this as = -4. To do this, just return
the minus sign as well as the letter to the input. The following performs the
interpretation:

=-[a-zA-Z] {
printr(" Operator (=-) ambiguous\n");
yyless(yyleng-2);
... action ror = ...
}

Note that the expressions for the two cases might more easily be written

=-/[A-Za-z]

in the first case and

=/-IA-Za-z]

in the second: no backup would be required in the rule action. It is not
necessary to recognize the whole identifier to observe the ambiguity. The
possibility or =-9, however, makes

=-/r \t\n]

a still better rule.

In addition to these routines, lex also permits access to the I/O routines it uses.
They include:

1. inputO which returns the next input character;

2. output(c) which writes the character c on the output; and

3. unput(c) which pushes the character c back onto the input stream to
be read later by input O.

By default these routines are provided as macro definitions, but the user can
override them and supply private versions. These routines define the
relationship between external files and internal characters, and must all be
retained or modified consistently. They may be redefined, to cause input or

8-11

XENIX Programmer's Guide

output to be transmitted to or from strange places, including other programs
or internal memory; but the character set used must be consistent in all
routines; a value of zero returned by input must mean end-of-file; and the
relationship between un put and input must be retained or the lookahead will
not work. Lex does not look ahead at all if it does not have to, but every rule
containing a slash (/) or ending in one of the following characters implies
lookahead:

+ • ? S

Lookahead is also necessary to match an expression that is a prefix or another
expression. See below for a discussion of the character set used by lex. The
standard lex library imposes a 100 character limit on backup.

Another lex library routine that you sometimes want to redefine is vvwrGp()
which is called whenever lex reaches an end-of-file. If lI11wrap returns a 1, lex
continues with the normal wrapup on end of input. Sometimes, however, it is
convenient to arrange for more input to arrive from a new source. In this case,
the user should provide a 1Iywrap that arranges ror new input and returns o.
This instructs lex to continue processing. The default Vllwrap always returns 1.

This routine is also a convenient place to print tables, summaries, etc. at the
end of a program. Note that it is not possible to write a normal rule that
recognizes end-of-file; the only access to this condition is through 1I11wrap(). In
fact, unless a private version of inputO is supplied a file containing nulls cannot
be handled, since a value of 0 returned by input is taken to be end-of-file.

8.14 Handling Ambiguous Source Rules

Lex can handle ambiguous specifications. When more than one expression can
match the current input, lex chooses as follows:

• The longest match is preferred.

• Among rules that match the same number or characters, the first
given rule is preferred.

For example, suppose the following rules are given:

integer
(a-z)+

keyword action ... ;
identifier action ... ;

Irthe input is integer" it is taken as an identifier, because

(a-z)+

matches 8 characters while

8-12

Lex: A Lexical Analyzer

integer

matches only 7. Irthe input is integer, both rules match 7 characters, and the
keyword rule is selected because it was given first. Anything shorter (e.g., int)
does not match the expression integer, so the identifier interpretation is used.

The principle or prererring the longest ma.tch makes certain constructions
dangerous, such as the following:

..
For example

' .. '
might seem a good way or recognizing a string in single quotes. But it is an
invitation ror the program to read far ahead, looking for a distant single quote.
Presented with the input

'first' quoted string here, 'second' here

the above expression matches

'first' quoted string here, 'second'

which is probably not what was wanted. A better rule is or the rorm

which, on the above input, stops arter 'first'. The consequences or errors like
this are mitigated by the ract that the dot (.) operator does not match a
newline. Thererore, no more than one line is ever matched by such expressions.
Don't try to dereat this with expressions like

(.\nJ+

or their equivalents: the lex generated program will try to read the entire input
file, causing internal buffer overflows.

Note tha.t lex is normally partitioning the input stream, not searching ror all
possible matches of each expression. This means that each character is
accounted ror once and only once. For example, suppose it is desired to count
occurrences or both de and he in an input text. Some lex rules to do this might
be

she s++j
he h++i
\n I

8-13

XENIX Programmer's Guide

where the last two rules ignore everything besides he and ehe. Remember that
the period(.) does not include the newline. Since de includes Ae, lex will
normally not recognize the instances or he included in eAe, since once it has
passed a ehe those characters are gone.

Sometimes the' user would like to override this choice. The action REJECT
means go do the next alternative. It causes whatever rule was second choice
after the current rule to be executed. The position of the input pointer is
adjusted accordingly. Suppose the user really wants to count the included
instances of he:

she {s++; REJECT;}
he {h++; REJECT;}
\n I

These rules are one way of changing the previous example to do just that. Arter
counting each expression, it is rejected; whenever appropriate, the other
expression will then be counted. In this example, of course, the user could note
that de includes Ae, but not vice versa, and omit the REJECT action on he; in
other cases, however, it would not be possible to tell which input characters
were in both classes.

Consider the two rules

a(bcI+
a cd +

{ ... ; REJECTi}
{ ... ; REJECT;}

Irthe input is 46, only the first rule matches, and on adonly the second matches.
The input s.tring acc6 matches the first rule for rour characters and then the
second ruie for three characters. In contrast, the input aced agrees with the
second rule for rour characters and then .the first rule for three.

Ingeneral, REJECT is useful whenever the purpose of lex is not to partition the
input stream but to detect all examples of some items in the input, and the
instances of these items may overlap or include each other. Suppose a digram
table of the input is desired; normally the. digrams overlap, that is the word the
is considered to contain both th and he. Assuming a two-dimensional array
named digram to be incremented, the appropriate source is

%%
(a-z][a-z] {digram(yytext[O]](yytext[I]]++i REJECT;}

\n

where the REJECT is necessary to pick up a letter pair beginning at every
character, rather than at every other character.

Remember that REJECT does not rescan the input. Instead it remembers the
results of the previous scan. This means that if a rule with trailing context is

8-14

Lex: A Lexical Analyzer

found, and REJECT executed, you must not have used unput to change the
characters forthcoming from the input stream. This is the only restriction to
ability to manipulate the not-yet-processed input.

8.15 Specifying Left Context Sensitivity

Sometimes it is desirable to have several sets of lexical rules to be applied at
different times in the input. For example, a compiler preprocessor might
distinguish preprocessor statements and analyze them differently rrom
ordinary statements. This requires sensitivity to prior context, and there are
several ways of handling such problems. The caret (A) operator, for example, is
a prior context operator, recognizing immediately preceding left context just as
the dollar sign ($) recognizes immediately rollowing right context. Adjacent
left context could be extended, to produce a facility similar to that for adj acent
right context, but it is unlikely to be as useful, since often the relevant left
context appeared some time earlier, such as at the beginning of aline.

This section describes three means of dealing with different environments:

1. The use of flags, when only a rew rules change from one environment
to another

2. The use of start conditions with rules

3. The use multiple lexical analyzers running together.

In each case, there are rules that recognize the need to change the environment
in which the rollowing input text is analyzed, and set some parameter to reflect
the change. This may be a flag explicitly tested by the user's action code; such a
flag is the simplest way of dealing with the problem, since lex is not involved at
all. It may be more convenient, however, to have lex remember the flags as
initial conditions on the rules. Any rule may be associated with a start
condition. It will only be recognized when lex is in that start condition. The
current start condition may be changed at any time. Finally, irthe sets orrules
for the different environments are very dissimilar, clarity may be best achieved
by writing several distinct lexical analyzers, and switching from one to another
as desired.

Consider the following problem: copy the input to the output, changing the
word magic to fir3t on every line that began with the letter (I, changing ma.gic to
8econd on every line that began with the letter b, and changing ma.gic to third
on every line that began with the letter c. All other words and all other lines are
lert unchanged.

These rules are so simple that the easiest way to do this job is with a flag:

8-15

XENIX Programmer's Guide

int flag;
%%

a {flag = 'a'; ECHO;}
Ab {flag = b'; ECHO;}
AC {flag = 'c'; ECHO;}
\n {flag = 0; ECHO;}
magic {

switch (flag)
{
case 'a': printf{" first"); break;
case b': printf{" second"); break;
case 'c': printf(" third"); break;
default: ECHO; break;
}
}

should be adequate.

To handle the same problem with start conditions, each start condition must be
introduced to lex in the definitions section with a line reading

%Start namel name2 ...

where the conditions may be named in any order. The word Start may be
abbreviated to 8 or S. The conditions may be referenced at the head of a rule
with angle brackets. For example

<namel >expression

is a rule that is only recognized when lex is in the start condition name1. To
enter a start condition, execute the action statement

BEGIN namel;

which changes the start condition to name 1. To return to the initial state

BEGIN 0;

resets the initial condition of the lex automaton interpreter. A rule may be
active in several start conditions; for example:

<namel,name2,name3>

is a legal prefix. Any rule not beginning with the < > prefix operator is always
active.

The same example as before can be written:

8-16

%START AA BB CC
%%
a {ECHO; BEGI~ AA;}

. b {ECHO; BEGI;-'; BE;}
c {ECHO; BEGIN CC;}

\n {ECHO; BEGIN O;}
<AA> magic printf(" first");
<DB> magic printf(" second");
<CC>magic printf("third");

Lex: A Lexical Analyzer

where the logic is exactly the same as in the previous method oC handling the
problem, but lex does the work rather than the user's code.

8.16 Specifying Source Definitions

Remem ber the Cormat oC the lex source:

{definitions}
%%
{rules}
%%
{user routines}

So far only the rules have been described. You will need additional options,
though, to define variables for use in your program and Cor use by lex. These
can go either in the definitions section or in the rules section.

Remember that lex is turning the rules into a program. Any source not
intercepted by lex is copied into the generated program. There are three classes
oC such things:

1. Any line that is not part oC a lex rule or action which begins with a
blank or tab is copied into the lex generated program. Such source
input prior to the first %% delimiter will be external to any Cunction
in the code; iC it appears immediately aCter the first %%, it appears in
an appropriate place Cor declarations in the Cunction written by lex
which contains the actions. This material must look like program
fragments, and should precede the first lex rule.

AB a side effect oC the above, lines that begin with a blank or tab, and
which contain a comment, a.re passed through to the genera.ted
program. This can be used to include comments in either the lex
source or the generated code. The comments should Collow the
conventionsoCthe C language.

2. Anything included between lines containing only %{ and %} is copied
out as above. The delimiters are discarded. This Cormat permits
entering text like preprocessor statements that must begin in column

8-17

XENIX Programmer's Guide

1, or copying lines th at do not look like programs.

3. Anything after the third %% delimiter, regardless of formats, is
copied out after the lex output.

Defini tions intended for lex are given before the first %% delimiter. Ally line in
this section not contained between %{ and %}, and beginning in column 1, is
assumed to define lex substitution strings. The format of such lines is

name translation

and it causes the string given as a translation to be associated with the name.
The name and translation must be separated by at least one blank or tab, and
the name must begin with a letter. The translation can then be called out by the
{name} syntax in a rule. Using {D} for the digits and {E} for an exponent field,
for example, might abbreviate rules to recognize numbers:

D
E
%%
{D}+
{D }+"." {D }*({E})1
{D }*"." {D }+({E})1
{D}+{E}

(o-gl
[DEde}[-+)? {D} +

printf{" integer");

I
I

printf(" real");

Note the first two rules for real numbers; both require a decimal point and
contain an optional exponent field, but the first requires at least one digit before
the decimal point and the second requires at least one digit after the decimal
point. To correctly handle the problem posed by a FORTRAN expression such
as 8S.EQ.I, which does not contain a real number, a contextrsensitive rule such
as

[O-Q)+/" ."EQ printf(" in teger");

could be used in addition to the normal rule for integers.

The definitions section may also contain other commands, including a
character set table, a list of start conditions, or adjustments to the default size
of arrays within lex itself for larger source programs. These possibilities are
discussed in the section "Source Format".

8.17 Lex and Yacc

Jryou want to use Jex with yacc, note that what lex writes is a program named
yylezO, the name required by yacc for its ~llalyzer. Normally, the default main
program on the lex library calls this routin": but if yacc is loaded, a.nd its m{l,in
program h~ used, yacc will callvyle:r(). In this case, each lex rule should end
with

8-18

Lex: A Lexical Analyzer

return(token)j

where the appropriate token value is returned. An easy way to get access to
yacc's names for tokens is to compile the lex output file as part of the yacc
output file by placing the line

* include "Iex.yy.c"

in the last section ofyacc input. Supposing the grammar to be named goodand
the lexical rules to be named betterthe XENIX command sequence can just be:

yacc good
lex better
cc y.tab.c -Iy -ll

The yacc library (-Iy) should be loaded berore the lex library, to obtain a main
program which invokes the yacc parser. The generation of lex and yacc
programs can be done in either order .

.As a trivial problem, consider copying an input file while adding 3 to every
positive number divisible by 7. Here is a suitable lex source program to do just
that:

%%
int k;

[O-Q] + {
k == atoi(yytext);
if (k%7 === 0)

printf(" %d", k+3}j
else

printf(" %d" ,k)j
}

The rule [O-Q]+ recognizes strings of digits; atoiO converts the digits to binary
and stores the result in k. The remainder operator (%) is used to check whether
k is divisible by 7j if it is, it is incremented by 3 as it is written out. It may be
objected that this program will alter such input items as 4Q.63 or X7.
Furthermore, it increments the absolute value of all negative numbers divisible
by 7. To avoid this, just add a few more rules after the active one, as here:

%%
int kj

-?[O-g)+ {
k == atoi(yytext)j
printf(" %d", k%7 === 0 ? k+3 : k);
}

-![O-Q.]+ ECHOj
[A-Za-z][A-Za-zO.Q]+ ECHO;

Numerical strings containing a decimal point or preceded by a letter will be

8-1Q

XENIX Programmer's Guide

picked up by one of the last two rules, and not changed. The it-else has been
replaced by a C conditional expression to save spacej the form afb:c means: if a
then b else c.

For an example of statistics gathering, here is a program which makes
histograms of word lengths, where a word is defined as astringorIetters.

%%
[a-z]+

\n
%%
yywrapO
{
int i;

int lengs[lOO]j

lengs(yyleng]++j
I

printf("Length No. words\n");
for(i=O; i<lOO; i++)

if (lengs(iJ > 0)
printf(" %5d%10d\n" ,i,lengs(i))j

return(l)j
}

This program accumulates the histogram, while producing no output. At the
end of the input it prints the table. The final statement return(l}j indicates
that lex is to perform wrapup. If yywrap() returns zero (Calse) it implies that
further input is available and the program is to continue reading and
processing. To provide a yywrap() that never returns true causes an infinite
loop.

As a larger example, here are some parts of a program written to convert
double precision FOR TRAN to single precision FORTRAN. Because FORTRAN
does not distinguish between upper- and lowercase letters, this routine begins
by defining a set of classes including both cases of each letter:

I~J a
b
c IcC]

z [zZ]

An additional class recognizes white space:

W (\t]*

The first rule changes double preci~ion to re ai, or DOUBLE PRECISION to
REAL.

8-20

Lex: A Lexical Analyzer

{d}{ o}{ u}{b }{I}{e }{W}{p}{r}{ e}{ c }{i}{s }{i}{ o}{n} {
printr(yytext[O]=='d'? "real" : "REAL")j
}

Care is taken throughout this program to preserve the case or the original
program. The conditional operator is used to select the proper form or the
keyword. The next rule copies continuation card indications to avoid confusing
them with constants:

''[' OJ ECHO;

In the regular expression, the quotes surround the blanks. It is interpreted as
beginning or line, then five blanks, then anything but blank or zero." Note the
two different meanings or the caret (.) here. There rollow some rules to change
double precision constants to ordinary floating constants.

[O-gj+{W}{ d}{W}[+-j?{W}[O-g)+ I
(O-g]+{W}"." {W}{ d}{W}!+-I?{W}[O-Q]+ I
"." {W}[O-Q)+{W}{ d }{W}[+- ? {W}[O-Q]+ {

/. convert constants ./
ror(p=yytextj .p != OJ p++)

{
ir (.p == 'd' II .p == 'D')

.p+= 'e'- 'd'j
ECHOj

}

After the floating point constant is recognized, it is scanned by the tor loop to
find the letter "d" or "D". The program then adds ,,' e' -' d'" which converts it
to the next letter of the alphabet. The modified constant, now single precision,
is written out again. There rollow a series of names which must be respelled to
remove their initial "d". By using the array 1I11tezt the same action suffices ror
all the names (only a sample of a rather long list is given here).

{d}{s}{i}{n}
{d}{c}{o}{s}
{d}{s}{q}{r}{t} I
{d}{a}{t}{a}{n} I

{ d } { r} {I} { 0 } { a} { t } printr(" %s" ,yytext+ l)j

Another list or names must have initial d changed to initial 4:

8-21

XENIX Programmer's Guide

{d}{l}{o}{g}
{d}{I}{ o}{g}lO
{d}{m}{i}{n}l
{ d }{ m} { a}{ x} 1 {

yytext[OJ += 'a' - 'd';
ECHO;
}

And one routine must have initial d changed to initial r:

{d}l{m}{a}{c}{h} {

}

yytext[O] +== 'r' - 'd';
ECHO;

To avoid such names as d~inz being detected as instances or dli", some final
rules pick up longer words as identifiers and copy some surviving characters:

[A-Za-z][A-Za-z0-9]*
[0-9]+
\n

ECHO;

Note that this program is not complete; it does not deal with the spacing
problems in FORTRAN or with the use or keywordsas identifiers.

8.18 Specifying Character Sets

The programs generated by lex handle character 1/0 only through the
routines input, output, and unput. Thus the character representation provided
in these routines is accepted by lex and employed to return values in "tezt.
For internal use a character is represented as a small integer which, it the
standard library is used, has a value equal to the integer value orthe bit pattern
representing the character on the host computer. Normally, the letter" is
represented as the same torm as the character constant:

'a'

If this interpretation is changed, by providing 1/0 routines which translate the
characters, lex must be told about it, by giving a translation table. This table
must be in the definitions section, and must be bracketed by lines containing
only % T. The table contains lines or the rorm

{integer} {character string}

which indicate the value associated with each character. For example:

8-22

Lex: A Lexical Ana.lyzer

%T
1 Aa
2 Bb

26 Zz
27 \n
28 +
2g
30 0
31 1

3Q g
%T

This table maps the lowercase and uppercase letters together into the integers 1
through 26, newline into 27, plus (+) and minus (-) into 28 and 2Q, and the digits
into 30 through 3g. Note the escape ror newline. If a table is supplied, every
character that is to appear either in the rules or in any valid input must be
included in the table. No character may be assigned the number 0, a.nd no
character may be assigned a larger number than the size or the hardware
ch aracter set.

8.19 Source Format

The general form or a lex source file is:

{ defini tions}
%%
{rules}
%%
{ user subroutines}

The definitions section contains a com bination of

1. Definitions, in the form "name space translation"

2. Included code, in the rorm "space code"

3. Included code, in the rorm

%{
code
%}

4. Start conditions, given in the rorm

%8 namel name2 ...

8-23

XENIX Programmer's Guide

5. Character set tables, in the form

%T
number space character-string
%T

6. Changes to internal array sizes, in the form

%x nnn

where nnn isa decimal integer representing an array size and z selects
the parameter as follows:

Letter
p
n
e
a
k
o

Parameter
positions
states
tree nodes
transitions
packed character classes
output array size

Lines in the rules section have the form:

ezprellion action

where the action may be continued on succeeding lines by using braces to
delimit it.

Regular expressions in lex use the following operators:

x The character" x"

"x" An" x" , even if x is an operator.

\x An" x" , even if x is an operator.

[xy) The character x or y.

[x-z] The characters x, y or z.

rx) Any character butx.

Any character but newline.

x Anx at the beginningof a line.

<y>x Anx when lex isinstart conditiony.

x$ An x at the end of a line.

8-24

Lex: A Lexica.l Analyzer

x! An optional x.

x· 0,1,2, ... instancesorx.

x+ 1,2,3, ... instances oh.

xly Anxoray.

(x) Anx.

x/y An x but only ir rollowed by y.

{xx} The tra.nsla.tion or xx rrom the definitions section.

x{m,n} mthrough noccurrencesorx.

8-25

Chapter 9
Yacc: A Com.piler-Com.piler

9.1 Introduction 9-1

9.2 Specifications 9-4

9.3 Actions 9-6

9.4 Lexical Analysis 9-8

9.5 How the Parser \Vorks 9 .. 10

9.6 Ambiguity and Conflicts 9-14

9.7 Precedence 9-19

9.8 Error Handling 9-22

9.9 The Yacc Environment 9-24

9.10 Preparing Specifications 9-25

9.11InputStyle 9-25

9.12 Left Recursion 9-26

9.13 Lexical Tie-ins 9-27

9.14 Handling Reserved Words 9-27

9.15 Simulating Error and Accept in Actions 9-28

9.16 Accessing Values in Enclosing Rules 9-28

9.17 Supporting Arbitral" Value Types 9-29

9.18 A Small Desk Calculator 9-30

9.19 YaeclnputSyntax 9-32

9.20 An Advanced Example 9-34

9.21 Old Features 9-40

Yacc: A Compiler-Compiler

9.1 Introduction

Computer program input generally has some structure; every computer
program that does input can be thought of as defining an input language which
it accepts. An input language may be as complex as a programming language,
or as simple as a sequence of numbers. Unfortunately, usual input facilities are
limited, difficult to use, and often lax about checking their inputs for validity.

Yacc provides a general tool for describing the input to a computer program.
The name yacc itself stands for "yet another compiler-compiler". The yacc
user specifies the structures of his input, together with code to be invoked as
earh ~uch structure is recognized. Yacc turns such a specification into a
subroutine that handles the input process; frequently, it is convenient and
appropriate to have most of the flow ot control in the user's application handled
by this subroutine.

The input subroutine produced by yacc calls a user-supplied routine to return
the next basic input item. Thus, the user can specify his input in terms of
individual input characters, or in terms of higher level constructs such as
names and numbers. The user-supplied routine may also handle idiomatic
features such as comment and continuation conventions, which typically defy
easy grammatical specification. The class of specifications accepted is a very
general one: LALR grammars with disambiguating rules.

In addition to compilers for C, APL, Pascal, RATFOR, etc., yaee has also been
used for less conventional languages, including a phototypesetter language,
several desk calrulator languages, a document retrieval system, and a
FORTRAi,\; de bugging system.

'Yacc provides a general tool for imposing structure on the input to a computer
program. The yace user prepares a specification of the input process; this
includes rules describing the input structure, code to be invoked when these
rules are recognized, and a low-level routine to do the basic input. Yacc then
generates a function to control the input process. This function, called a
parser. calls the user-supplied low-level input routine (called the lexical
analyzer) to pick up the basic items (called tokens) trom the input stream.
These tokens are organized according to the input structure rules, called
grammar rules; when one of these rules has been recognized, then user code
supplied for this rule, an action, is invoked; actions have the ability to return
values and make use of the values of other actions.

Yace is written in a portable dialect of C and the actions, and output
subroutine, are in C as well. Moreover, many of the syntactic conventions of
yac('" follow C.

The heart of the input specification is a collection of grammar rules. Each rule
describes an allowable structure and gives it a name. For example, one
grammar rule might be:

9-1

XENIX Programmer's Guide

date: month_name day',' year j

Here, date, month_n.ame, day, and year represent structures orinterest in the
input process; presumably, month_name, day, and ye ar are defined elsewhere.
The comma (,) js enclosed in single quotation marks; this implies that the
comma is to appear literally in the input. The colon and semicolon merely serve
as punctuation in the rule, and have no significance in controlling the input.
Thus, with proper definitions, the input:

July 4, 1776

might be matched by the above rule.

An important part of the input process is carried out by the lexical analyzer.
This user routine reads the input stream, recognizing the lower level
structures, and communicates these tokens to the parser. A structure
recognized by the lexical analyzer is called a. terminal symbol, while the
structure recognized by the parser is called a nonterminal symbol. To avoid
confusion, terminal symbols will usually be referred to as tokens.

There is considerable leeway in deciding whether to recognize structures using
the lexical analyzer or grammar rules. For example, the rules

month_na.me : 'J' 'a' 'n' ;
month_name: 'F' 'e' 'b' ;

month_name: 'D' 'e' Ie' ;

might be used in the above example. The lexical analyzer would only need to
recognize individual letters, and month_name would be a nonterminal symbol.
Such low-level rules tend to waste time and space, and may complicate the
specification beyond yacc's ability to deal with it. Usually, the lexical analyzer
would recognize the month names, and return an indication that a
month_name was seen; in this case, month_name would be a token.

Literal characters, such as the comma, must also be passed through the lexical
analyzer and are considered tokens.

Specification files are very flexible. It is relatively easy to add to the above
example the rule

date: month 'I' day'/, year;

allowing

7/4/1776

as a synonym for

Q-2

Yacc: A Compiler-Compiler

July 4, 1776

In most cases, this new rule could be slipped in to a working system with
minimal effort, and little danger of disrupting existing input.

The input being read may not conform to the specifications. These input errors
are detected as early as is theoretically possible with a leftrto-right scan; thus,
not only is the chance of reading and computing with bad input data
substantially reduced, but. the bad data can usually be quickly found. Error
handling, provided as part of the input specifications, permits the reentry of
bad data, or the continuation of the input process after skipping over the bad
data.

In some cases, yael' fails to produce a parser when given a set of specifications.
For example, the specifications may be self contradictory, or they may require
a more powerful recognition mechanism than that available to yace. The
former cases reprl'!sent design errors; the latter cases can often be corrected by
making the lexical analyzer more powerful, or by rewriting some of the
grammar rules. \\'hile yacc cannot handle all possible specifications, its power
compares favorably with similar systems; moreover, the constructions which
are difficult for yael' to handle are also frequently difficult for human beings to
handle. Some users have reported that the discipline of formulating valid yael'
specifications for their input revealed errors of conception or design early in the
program development.

The next several sections describe:

• The preparation of grammar rules

• The preparation of the user supplied actions associated with the
grammar rules

The preparation of lexical analyzers

The operation of the parser

• Various reasons why yael' may be unable to produce a parser from a
specification, and what to do about it.

• A simple mechanism for handling operator precedences in arithmetic
expressions.

• Error detection and recovery.

• The operating environment and special features of the parsers yael'
produces.

• Some suggestions which should improve the style and efficiency of the
specifications.

Q-3

XENIX Programmer's Guide

9.2 Specifications

Names refer to either tokens or nonterminal symbols. yaee requires token
names to be declared as such. In addition, Cor reasons discussed later, it is oCten
desirable to include the lexical analyzer as part of the specification file. It may
be useCul to include other programs as well. Thus, every specification file
consists oC three sections: the declarations, (grammar) rules, and programs.
The sections are separated by double percent %% marks. (The percent sign
(%) is generally used inyacc specifications as an escape character.)

In other words, a Cull specification file looks like

dedarations
%%
rules
%%
programs

The declaration sec~ion may be empty. Moreover, iC the programs section is
omitted, the second %% mark may be omitted also; thus, the smallest legal
yacc specification is

%%
rules

Blanks, tabs, and newlines are ignored except that they may not appear in
names ormultil'haraeter reserved symbols. Comments may appear wherever a
name is legal; the-y are enclosed in /* ... */, as in C.

The rules section is made up oC one or more grammar rules. A grammar rule has
the Corm:

A:BODY;

A represents a nont.erminal name, and BODY represents a sequence of zero or
more names and literals. The colon and the semicolon are yacc punctuation.

Names may be of arbitrary length, and may be made up oC letters, dot (.), the
underscore (J, and non initial digits. Uppercase and lowercase letters are
distinct. The names used in the body or a grammar rule may represent tokens
or nonterminal symbols.

A literal consists oC a character enclosed in single quotation marks ('). As in C,
the backslash (') is an escape character within literals, and all the C escapes are
recognized. Thus

9·4

'\n'
'\r'
'\"
'\\'
'\t'
'\b'
'V'
'\xxx'

Newline
Return
Single quotation mark
Backslash
Tab
Backspace
Form feed
"xxx" in octal

Yacc: A Compiler-Compiler

For a number of tt>chnical reasons, the ASCII NUL character (,\0' or 0) should
never be used in grammar rules.

Ir there are several grammar rules with the same left hand side, then the
vertical bar (I) can be used to avoid rewriting the left hand side. In addition,
the semicolon at the end of a rule can be dropped before a vertical bar. Thus the
grammar rules

A:B C D;
A:E F
A:G;

can be given to yacc as

A:B C D
IE F
IG

It is not necessary that all grammar rules with the same left side appear
together in the grammar rules section, although it makes the input much more
readable, and easier to change.

If a nonterminal symbol matches the empty string, this can be indicated in the
obvious way:

empty: ;

}\;ames representing tokens must be declared; this is most simply done by
writing

%token name 1 name2 ...

in the declarations section. (See Sections 3,5, and 6 for much more discussion).
Every nonterminal symbol must appear on the left side of at least one rule.

Of all the nonterminal symbols, one, called the start symbol, has particular
importance. The parser is designed to reeognize the start symbol; thus, this
symbol represents the largest, most general structure described by the
grammar rules. By default, the start symbol is taken to be the left hand side of
the first grammar rule in the rules section. It is possible, and in fact desirable, to

XENIX Programmer's Guide

declare the start symbol explicitly in the declarations section using the %start
keyword:

%start symbol

The end of the input to the parser is signaled by a special token, called the
endmarker. Ir the tokens up to, but not including, the endmarker form a
structure which matches the start symbol, the parser runction returns to its
caller arter the endmarker is seen; it accepts the input. Irthe endmarker is seen
in any other context, it is an error.

It is the job or the user-supplied lexical analyzer to return the endmarker when
appropriate; see section 3, below. Usually the endmarker represents some
reasonably obvious I/0 status, such as the end orthe file or end orthe record.

9.3 Actions

With each grammar rule, the user may associate actions to be perrormed each
time the rule is recognized in the input process. These actions may return
values, and may obtain the values returned by previous actions. Moreover, the
lexical analyzer can return values ror tokens, ir desired.

An action is an arbitrary C statement, and as such can do input and output, call
subprograms, and alter external vectors and variables. An action is specified
by one or more statements, enclosed in curly braces { and}. For example

and

A: '(' B ')'
{ hello(1, "abc"); }

XXX: yyy zzz
{ printr("a message\n");

flag = 25;}

are grammar rules with actions.

To racilitate easy communication between the actions and the parser, the
action statements are altered slightly. The dollar sign (S) is used as a signal to
yace in this context.

To return a value. the action normally sets the pseudo-variable $$to some
value. For example, an action that does nothing but return the value 1 is

{ ss = 1; }

To obtain the values returned by previou5action~ and the lexical analyzer, the
action may use the pseudO:variables SI, $2, ... , which rerer to the values
returned by the components or the right side or a rule, reading rrom lert to

9-6

Yacc: A Compiler-Compiler

right. Thus, irthe rule is

A:BC D;

ror example, then $2 has the value returned by C, and $3 the value returned by
D.

~ a more concrete example, consider the rule

expr : '(' expr ')' ;

The value returned by this rule is usually the value or the ezpr in parentheses.
This can be indicated by

expr : '(' expr ')' { $$ = $2 ; }

By default, the value or a rule is the value orthe first element in it ($1). Thus,
grammar rulesorthe rorm

A:B;

frequently need not have an explicit action.

In the examples above, all the actions came at the end ohheir rules. Sometimes,
it is desirable to get control before a rule is fully parsed. Yacc permits an
action to be written in the middle of a rule as well as at the end. This rule is
assumed to return a value, accessible through the usual mechanism by the
actions to the right of it. In turn, it may access the values returned by the
symbols to its lert. Thus, in the rule

A:B
{ $$ = 1; }
C
{ x = $2; y = S3; }

the effect is to set z to 1, and yto the value returned by C.

Actions that do not terminate a rule are actually handled by yacc by
manuracturing a new nonterminal symbol name, and a new rule matching this
name to the empty string. The interior action is the action triggered off by
recognizing this added rule. Yacc actually treats the above example as if it had
been written:

9-7

XENIX Programmer's Guide

SACT : ,* empty *,
{ SS = 1; }

A : B SACT C
{ x = S2j y = S3j }

In many applications, output is not done directly by the actions; rather, a data
structure, such as a parse tree, is constructed in memory, and transCormations
are applied to it beCore output is generated. Parse t.rees are particularly easy to
construct, given routines to build and maintain the tree structure desired. For
example, suppose there is a C Cunction node, written so that the call

nodc(L, nl, n2)

creates a node with label L, and descendants nl and n2, and returns the index of
the newly created node. Then parse tree can be built by supplying actions such
as:

expr : expr '+' expr
{ SS = ,node('+', SI, S3); }

in the specification.

The user may define other variables to be used by the actions. Declarations and
d~finitions can appear in the declarations section, enclosed in the marks %{ and
%}. Tht>se declarations and definitions have global scope, so they are known to
the 3.t'tion statements and the lexical analyzer. Fot exa.mple,

%{ int variable - 0; %}

could bt' placed in t.he declarations section, making tltlriable accessible to all of
the actions. The yacc parser uses only names beginning in rUj the user should
avoid such names.

In these examples, all the values are integers: a discussion oC values of other
types will be found in a later section.

9.4 Lexical Analysis

The user must supply a lexical analyzer to read the input stream and
communicate tokens (with values, if desired) to the parser. The lexical analyzer
is an integer-valued function called rulez. The Cunction returns an integer,
called the. tokE'n num ber, representing the kind or token rea.d. If there is a value
associ:tted with that token, it should be assigned to the external variable uyit·al.

The parser and the lexica.l analyzer must agree on these t.oken numbers in order
ror .communication between them to take place. The numbers may be chosen

0·8

Yacc: A Compiler-Compiler

by yacc, or chosen by the user. In either case, the '* define mechanism or Cis
used to allow the lexical analyzer to return these numbers symbolically. For
example, suppose that the token name DIGIT has been defined in the
declarations section or the yacc specification file. The relevant portion or the
lexical analyzer might look like:

yylex(){
extern int yylval;
int c;

C III: getchar();

switch(c) {

case '0':
case 'I':

case '9':
yylval = c·'O';
return(DIGIT);

The intent is to return a. token number or DIGIT, and a value equal to the
numerical value of the digit. Provided that the lexical analyzer code is placed in
the programs section of the specification file, the identifier DIGIT will be
defined as the token number associated with the token DIGIT.

This mechanism leads t.o clear, easily modified lexical analyzers; the only pitfall
is the need to avoid using any token names in the grammar that are reserved or
significant in C or the parser; ror example, the use or token names iJor wAile will
almost certainly cause severe difficulties when the lexical analyzer is compiled.
The token name error is reserved ror error handling, and should not be used
naively.

As mentioned above, the token numbers may be chosen by yacc or by the user.
In the derault situation, the numbers are chosen by yacc. The default token
number ror a literal character is the numerical value or the character in the
local character set. Other names are assigned token numbers starting at 257 .

To assign a token number to a t.oken (including literals), the first appearance or
the token name or literal in the declara.tions section can be immediately
rollowed by a nonnegative integer. This integer is taken to be the token number
or the name or literal. Names and literals not defined by this mechanism retain
their derault definition. It is important that all token numbers be distinct.

For historical reasons, the endmarker must have token number 0 or nega.tive.
This token number cannot be redefined by the user. Hence, all lexical analyzers
should be prepared to return 0 or negative as a token number upon reaching the

9·9

XENIX Programmer's Guide

end oftheirinput.

A very useful tool ror constructing lexical analyzers is lex, discussed in ~
previous section .. These lexical analyzers are designed to work in close harmony
with yacc parsers. The specifications ror these lexical analyzers use regular
expressions instead of grammar rules. Lex can be easily used to produce quite
complicated lexical analyzers, but there remain some languages (such as
FORTRAN) which do not fit any theoretical Cramework, and whose lexical
analyzers must be crafted by hand.

9.5 How the Parser Works

Yacc turns the specifica.tion file into a C program, which parses the input
according to the specification given. The algorithm used. t9 go from the
specification to the parser is complex, and will not be discussed here (see the
reCerences for more information). The parser itself, however, is relatively
simple, and understanding how it works, while not strictly necessary, will
nevertheless make treatment of error recovery and ambiguities much more
comprehensible.

The parser produced by yacc consists oC a finite state machine with a stack.
The parser is also capable oC reading and remembering the next input token
(called the lookahead token). The current state is always the one on the top oC
the stack.· The states of the finite state machine a.re given small integer labels;
initially, the machine is in state 0, the sta.ck contains only state 0, and .no
lookahead token has been read.

The machine has only Cour act.ions available to it, calledd((t, reduce, accept,
and e TrOT. A move orthe parser is done as CoUows:

1. Based on its current state, the parser decides whether it needs a
look ahead token to decide what action should be done; iC it needs one,
and does not have one, it calls 1I11lez to obtain the next token.

2. Using the current state, and the lookahead token if needed, the parser
decides on its next action, and carries it out. This may result in states
being pushed onto the stack, or popped off oC the stack, and in the
look ahead token being processed or leCt alone.

The shift action is the most common action the parser takes. Whenever a shiCt
action is taken, there is always a lookahea.d token. For example, in state 56
there may be an action: .

IF shift 34

which says, in state 56, itthe lookahead token is IF, the current state (56) is
pushed down on the stack, and state 34 becomes the current state (on the top of

. the stack). The lookahead token is cleared. .

9-10

Yacc: A Compiler-Compiler

The reduce action keeps the stack from growing without bounds. Reduce
actions are appropriate when the parser has seen the right hand side of a
grammar rule. 3.nd is prepared to announce that it has seen an instance of the
rule, replacing the right hand side by the left hand side. It may be necessary to
consult the look ahead token to decide whether to reduce, but usually it is not; in
fact, the default action (represented by a.) is often a reduce action.

Reduce actions are associated with individual grammar rules. Grammar rules
are also given small integer numbers, leading to some confusion. The action

reduce 18

refers to grammar rule 18, while the action

IF shift 34

refers to state 34.

Suppose thp. rule being reduced is

A: x y z;

The reduce action depends on the left hand symbol (A in this case), and the
number of symbols on the right hand side (three in this case). To reduce, first
pop off the top three states from the stack (In general, the number of states
popped equals the number of symbols on the right side of the rule). In effect,
these states were the ones put on the stack while recognizing z, 1/, and z, and no
longer serve any useful purpose. Arter popping these states, a state is
uncovered which was the state the parser was in before beginning to process the
rule. Using this uncovered state, and the symbol on the left side of the rule,
perform what i::: in effect a shift of A. A new .state is obtained, pushed onto the
stack, and parc:ing continues. There are significant differences between the
processing of thf' left hand symbol and an ordinary shift of a token, however, so
this action is called a goto ar.tion. In particular, the look ahead token is cleared
by a shift, and is not affected by a goto. In any case, the uncovered state
contains an entry such as:

A goto 20

causing state 20 to be pushed onto the stack, and become the current stat·e.

In effect, the reduce action turns back the clock in t.he parse, popping the states
off the stack to go back to the state where the right hand side orthe rule was first
seen. The parser then behaves as if it had seen the left side at that time. If the
right h:mdside of the rule is empty, no states are popped off orthe stack: the
uncovered state is in fact the current state.

The reduce action is also important in the treatment of user-supplied actions
and values. \Vhen a rule is reduced, the ~ode supplied with the rule is executed
before the sta ('k is adjusted. In additionLo the stack holding the states, another

Q-ll

XENIX Programmer's Guide

stack, running in parallel with it, holds the values returned from the lexical
analyzer and the actions. When a shirt takes place, the external variable 1I111val
is copied onto the value stack. Arter the return rrom the user code, the
reduction is carried out. 'When the goto action is done, the external variable
1I11va1 is copied onto the value stack. The pseudo-variables $1, $2, etc., refer to
the value stack.

The other two parser actions are conceptually much simpler. The accept action
indicates that the entire input has been seen and that it matches the
specification. This action appears only when the lookahead token is the
endmarker, and indicates that the parser has successfully done its job. The
error action, on the other hand, represents a place where the parser can no
longer continue parsing according to the specification. The input tokens it has
seen, together with the look ahead token,cannot be rollowed by anything that
would result in a legal input. The parser reports an error, and attempts to
recover the situation and resume parsing: the error recovery (as opposed to the
detection of error) will be in a later section.

Consider the rollowing example:

%token DING DONG DELL
%%
rhyme: sound place

,
sound: DING DONG

,
place: DELL

When yacc is invoked with the -v option, a file called 11. output is produced,
with a human-readable description or the parser. The 11. output file
corresponding to the above grammar (with some statistics stripped off the end)
is:

9-12

state 0
'accept. : _rhyme Send

DING shift. 3
· error

rhyme goto 1
sound gota 2

state 1
'accept: rhyme_Send

'end accept
· error

state 2
rhyme: sound-place

DELL shirt 5
· error

place gota 4

state 3
sound: DING_DONG

DONG shirt 6
· error

state 4
rhyme: sound pl3.ce_ (1)

· reduce 1

state 5
place: DELL_ (3)

· reduce 3

state 6
sound: DING DONG_ (2)

· reduce 2

Yacc: A Compiler-Compiler

Notice that, in addition to the actions ror el.ch state, there is a description otthe
parsing rules being processed in each state. The underscore character (j is used
to indicate what hl.S been seen, and what is yet to come; in each rule. Suppose
the input is

9-13

XENIX Programmer's Guide

DING DONG DELL

It is instructive to follow the steps orthe parser while processing this input.

Initially, the current state is state 0. The parser needs to refer to "the input in
order to decide between the actions available in state 0, so the first token,
DING, is read, becoming the lookahead token. The action in state OonDINGis
,hift 8, so state 3 is pushed onto the stack, and the lookahead token is cleared.
State 3 becomes the current state. The next token, DONG, is read, becoming
the lookahead token. The action in state 3 on the token DONG is Bhift 6, so
state 6 is pushed onto the stack, and the lookahead is cleared. The stack now
contains 0, 3, and 6. In state 6, without even consulting the lookahead, the
parser reduces by rule 2.

sound: DING DONG

This rule has two symbols on the right hand side, so two states,6 and 3, are
popped off of the stack, uncovering state 0. Consulting the description of state
0, looking for a goto on Bound,

sound goto 2

is obtained; thus state 2 is pushed onto the stack, becoming the current state.

In state 2, the next token, DELL, must be read. The action is ~hift 5, so state 5 is
pushed onto the stack, which now has 0, 2, and 5 on it, and the lookahead token
is cleared. In state 5, the only action is to reduce by rule 3. This has one symbol
on t.he right hand side, so one state, 5, is popped off, and state 2 is uncovered.
The goto in state 2 on place, the left side of rule 3, is state 4. Now, the stack
contains 0,2, and 4. In state 4, the only action is to reduce by rule 1. There are
two symbols on t.he right, so the top two states are popped off, uncovering state

,0 again. In state 0, there is a goto on rhyme causing the parser to enter state l.
In state 1, the input is read; the endmarker is obtained, indicated by $endin the
y. output file. The action in state 1 when the endmarker is seen is to accept,
successfully ending the parse.

The reader is urged to consider how the parser works when confronted with
such incorrect strings as DING DONG DONG, DING DONG, DING DONG
DELL DELL, etc. A few minutes spend with this and other simple examples
will probably be repaid when problems arise in more complicated contexts.

9.6 Ambiguity and Conflicts

A set of grammar rules is ambiguous if there is some input string that can be
structured in two or more different ways. For example, the grammar rule

expr : expr '-' expr

is a natural way of expressing the fact that one way of forming an arithmetic

9-14

Yacc: A Compiler-Compiler

expression is to put two other expressions together with a minus sign between
them. Unrortunately, this grammar rule does not completely speciry the way
that all complex inpu ts should be structured. For example, ir the input is

expr - expr - expr

the rule allows this input to be structured as either

(expr - expr) - expr

or as

expr - (expr - expr)

(The first is called iert association, the second right association).

Yacc detects sllch ambiguities when it is attempting to build the parser. It is
instructive to consider the problem that conrronts the parser when it is·given
an input such as

expr - expr - expr

When the parser has read the second expr, the input that it has seen:

expr - expr

matches the right side or the grammar rule above. The parser could reduce the
input by applying this rule; arter applying the rule; the input is reduced to ezpr
(the lert side or the rule). The parser would then read the final part of the input:

- expr

and again reduce. The effect of this is to take the left associative interpretation.

Alternatively, when the parser has seen

expr - expr

it could defer the immediate application of the rule, and continue reading the
input until it had seen

expr - expr - expr

It could then apply the rule to the rightmost three symbols, reducing them to
ezpr and leaving

expr - expr

Now the rule can be reduced once more; the effect is to take the right associative
interpretation. Thus, having read

9-15

XENlX Progra,mmer's Guide

expr - expr

the parser can do two legal things, a shift or a reduction, and has no way of
deciding between them. This is called a shirt/reduce conflict. It may also
happen that the parser has a choice of two legal reductions; this is called a
reduce/redu~e conflict. Note that there are never any shift/shift conflicts.

\Vhen there are shift/reduce or reduce/reduce conflicts, yacc still produces a
parser. It does this by selecting one of the valid steps wherever it has a choice.
A rule describing which choice to make in a given situation is called a
disam biguating rule.

Yacc invokes two disambiguating rules by default:

1. In a shift/reduce conflict, the default is to do the shift.

2. In a reduce/reduce conflict, the default is to reduce by the earlier
grammar rule (in the input sequence) .

. Rule 1 implies that reductions are deferred whenever there is a choice, in favor
of shifts. Rule 2 gives the user rat.her crude control over the behavior or the
parser in this situation, but reduce/reduce conflicts should be avoided
whenever possible.

Conflicts may arise because of mistakes in input or logic, or because the
grammar rules, while consistent, require a more complex parser than yacc can
construct. The use of actions within rules can also cause conflicts, if the action
must be done before the parser can be sure which rule is being recognized. In
these cases, the application or disambiguating rules is inappropriate, and leads
to an incorrect parser. For this reason, yacc always reports the number of
shift/reduce and reduce/reduce conflicts resolved by Rule 1 and Rule 2.

In general, whenever it is possible to apply disambiguating rules to produce a
correct parser,it is also possible to rewrite the gramma.r rules so that the same
inputs are read but there are no conflicts. For this reason, most previous parser
generators have considered conflicts to be fatal errors. Our experience has
suggf>sted that this rewriting is somewhat unnat.ural, and produces slower
parsers; thus, yacc will produce parsers even in the presence of conflicts.

As an example or the power or disambiguating rules, consider a rragment rrom a
programming language involving an ir-then-else construction:

stat : IF '(' cond ')' stat
I IF T cond T stat ELSE stat

In these rules, IFand ELSE are tokens, eondis anonterminal symbol describing
('onditional (logical) expressions, and stat is a nonterminal symbol describing
statements. The first rule will be called the simple-if rule, and the second the

Q-16

Yacc: A Compiler-Compiler

if-else rule.

These two rules form an ambiguous construction, since input orthe form

IF (CI) IF (C2) 81 ELSE S2

can be structured according to these rules in two ways:

or

IF (Cl) {
IF (C2) 81
}

ELSE S2

IF (Cl) {
IF (C2) 81
ELSE 82
}

The second interpretation is the one given in most programming languages
having this construct. Each ELSE is associated with the last IF immediately
preceding the ELSE. In this example, consider the situation where the parser
hasseen

IF (Cl) IF (C2) 81

and is looking at the ELSE. It can immediately reduce by the simple-ir rule to
get

IF (Cl) stat

and then read the remaining input,

ELSE S2

and reduce

IF (Cl) stat ELSE 82

by the if-else rule. This leads to the first of the above groupings of the input.

On the other hand, the ELSE may be shirted, S2read, and then the right hand
portion of

IF (Cl) IF (C2) SI ELSE 82

can be reduced by the ir-else rule to get

9-17

XENIX Programmer's Guide

IF (01) stat

which can be reduced by the simple-it rule. This leads to the second or the
above groupings or the input, which is usually desired.

Once again the parser can do two valid things - there is a shirt/reduce conflict.
The application or disambiguating rule 1 tells the parser to shirt in this case,
which leads to the desired grouping.

This shift/reduce conflict arises only when there is a particular current input
symbol, ELSE, and particular inputs already seen, such as

IF (01) IF (02) SI

In general, there may be many conflicts, and each one will be associated with an
input symbol and a set or previously read inputs. The previously read inputs
are characterized by the state or the parser.

The conflict messa.ges or yace are best understood by examining the verbose
(-v) option output file. For example, the output corresponding to the above
conflict state might be:

23: shift/reduce conflict (shitt 45, reduce 18) on ELSE

state 23

stat: IF (cond) stat_ (18)
stat: IF (cond) stat~LSE stat

ELSE shift 45
reduce 18

The first line describes the conflict, giving the state and the input symbol. The
ordinary state description follows, giving the grammar rules active in the state,
and the parser actions. Recall that the underline marks the portion of the
grammar rules which has been seen. Thus in the example, in state 23 the parser
has seen input corresponding to

IF (cond) sta.t

and the two grammar rules shown are a.ctive at this time. The parser can do
two possible things. If the input symbol is ELSE, it is possible to shift into state
45. State 45 will have, as part of its description, the line

stat: IF (cond) stat ELSE_stat

since the ELSE will have been shifted in this state. Back in state 23, the
alternative action, described by "." , is to be done if the input symbol is not
mentioned explicitly in the above actions; thus, in this case, it the input symbol

9·18

Yaee: A Compiler-Compiler

is not ELSE, the parser reduces by grammar rule 18:

stat: IF '(' cond ')' stat

Once again, notice that the numbers following shift commands rerer to other
states, while the numbers rollowing reduce commands reter to grammar rule
numbers. In the y. output file, the rule numbers are printed after those rules
which can be reduced. In most one states, there will be at most reduce action
possible in the state, and this will be the derauit command. The user who
encounters unexpected shift/reduce conflicts will probably want to look at the
verbose output to decide whether the default actions are appropriate. In really
tough cases, the user might need to know more about the behavior and
construction of the parser than can be covered here. In this case, one or the
theoretical rererences might be consulted; the services of a local guru might also
be appropriate.

9.7 Precedence

There is one common situation where the rules given above for resolving
conflicts are not sufficient; this is in the parsing of arithmetic expressions. Most
or the commonly used constructions for arithmetic expressions can be naturally
described by the notion of precedence levels for operators, together with
information about lert or right associativity. It turns out that ambiguous
grammars with appropriate disambiguating rules can be used to create parsers
that are faster and easier to write than parsers constructed from unambiguous
grammars. The basic notion is to write grammar rules ofthe form

expr : expr OP expr

and

expr : UNARY expr

for all binary and unary operators desired. This creates a very ambiguous
grammar, with many parsing conflicts. AI; disambiguating rules, the user
specifies the precedence, or binding strength, of all the operators, and the
associativity of the binary operators. This information is sufficient to allow
yare to resolve t.he parsing conflict.s in accordance with these rules, and
construct a parser that realizes the desired precedences and associativities.

The precedences and associativities are attached to tokens in the declarations
sect.ion. This is done by a series of lines beginning with a yacc keyword: %left,
%right, or %nonassoc, followed by a list of t.okens. All of the tokens on the
same line are assumed to have the same precedence leyel and associativity; the
lines are listed in order of increasing precedence or binding strength. Thus,

%left '+' '-'
%left '*' '/'

9-19

'XENIX Programmer's Guide

describes the precedence and associativity of the four arithmetic operators.
Plus and minus are left associative, and have lower precedence than star a.nd
sla.sh, which are also left associative. The keyword %right is used to describe
right associative operators, and the keyword %nonassoc is used to describe
operat.ors, like the operator .LT. in FORTRAN, that may not associate with
themselves; thus,

A.LT.B.LT.C

is illegal in FORTRAN, and such an operator would be described with the
keyword %nonassoc in yacc. As an example of the behavior of these
declarations, t.he description

%right '='
%left '+' '.'
%left '.' 'I'

%%

expr : expr '=' expr
I expr '+! expr
I expr '.' expr
lexpr '.' expr
I expr '/' expr
I NAME

might be used to structure the input

a = b = c*d • e • f*g

as follows:

a = (b = (((c*d).e) • (r*g)))

When this mechanism is used, unary operators must, in general, be given a
precedence. Sometimes a unary operator and a binary operator have the same
symbolic representat.ion, but different precedences. An example is una.ry and
binary '-'j unary minus may be given the same strength as multiplication, or
even higher, while binary minus has a lower strength than multiplication. The
keyword, %prec, changes the precedence level a,ssociated with a particular
grammar rule. The %prec appears immediately after the body of the grammar
rule, before the action or closing semicolon, and is followed by a token name or
literal. It causes the precedence of the grammar rule to become that of the
following t.oken name or literal. For example, to make unary minus have the
same precedence as multiplication the rules might resemble:

9-20

(

%left '+' '.'
%left '.' 'I'

%%

expr : expr '+' expr
I expr '.' expr
I expr '.' expr
I expr '/' expr
I '.' expr %prec '.'
I NAME

Yacc: A Compiler-Compiler

A token declared by %left, %right, and %nonassoc need not be, but may be,
declared by %token as well.

The precedences and associativities are used by yacc to resolve parsing
conflicts; they give rise to disambiguating rules. Formally, the rules work as
follows:

1. The precedences and associativities are recorded for those tokens and
literals that have them.

2. A precedence and associativity is associated with each grammar rule;
it is the precedence and associativity of the last token or literal in the
body of the rule. If the %prec construction is used, it overrides this
default. Some grammar rules may have no precedence and
associativity associated with them.

3. When there is a reduce/reduce conflict, or there is a shift/reduce
conflict and either the input symbol or the grammar rule has no
precedence and associativity, then the two disambiguating rules
given at the beginning of the section are used, and the conflicts are
reported.

4. If there is a shift/reduce conflict, and both the grammar rule and the
input character have precedence and associativity associated with
them, then the conflict is resolved in favor of the action (shift or
reduce) associated with the higher precedence. If the precedences are
the same, then the associativity is used; left associative implies
reduce, right associative implies shift, and nonassociating implies
error.

Conflicts resolved by precedence are not counted in the number of shift/reduce
and reduce/reduce conflicts reported by yacc. This means that mistakes in the
specification of precedenres may disguise errors in the input grammar; it is a
good idea to be sparing with precedences, and use them in an essentially
cookbook fashion, until some experience has been gained. The 11. output file is
very useful in deciding whether the parser is actually doing what was intended.

9·21

XENIX Programmer's Guide

9.8 Error Ha.ndling

Error handling is an extremely difficult area, and many or the problems are
semantic ones. When an error is round, ror example, it may be necessary to
reclaim parse tree storage, delete or alter symbol table entries, and, typically,
set switches to avoid generating any further output.

It is seldom acceptable to stop all processing when an error is round. It is more
useful to continue scanning the input to find rurther syntax errors. This leads
to the problem of getting the parser restarted a.fteran error. A general class or
algorithms t.o perform this involves discarding a number or tokens from the
input string, and attempting to adjust the parser so that input can continue.

To allow the user some control over this process, yacc provides a simple, but
reasonably general feature. The token name error is reserved for error
handling. This name can be used in grammar rules; in effect, it suggests places
where errors are expected, and recovery might take place. The parser pops its
stack until it enters a state where the token error is legal. It then beha.ves as ir
the token error were the current look ahead token, and perrorms the action
encountered. The lookahead token is then reset to the token t.hat caused the
error. If no special error rules have been specified, the processing halts when an
error is detected.

In order to prevent a cascade of error messages, the parser, after detecting an
error, remains in error state until three tokens have been successrully read and
shifted. If an error is detected when the parser is already in error state, no
message is given, and the input token is quietly deleted.

As an example, aruleofthe form

stat: error

would, in effect, mean that on a syntax error the parser would attempt to skip
over the statement in which the error was seen. More precisely, the pa.rser will
scan ahead, looking for three tokens that might legally follow a statement, and
start processing at the first of these; if the beginnings of statements are not
sufficiently distinctive, it may make a false start in the middle of a statement,
andend up reporting a second error where there is in fact no error.

Actions may be used with these special error rules. These actions might
attempt to reinitialize tables, reclaim symbol table space, etc.

Error rules such as the above are very general, but difficult to control.
Somewhat easier are rules such as

stat: error 'j'

Here, when there is an error, the parser attempts to skip over the statement,
but will do so by skipping to the next 'j'. All tokens after the error and before

Q·22

Yacc: A Compiler-Compiler

the next ';' cannot be shifted, and are discarded. When the ';' is seen, this rule
will be reduced, and any cleanup action associated with it performed.

Another form of error rule arises in interactive applications, where it may be
desira.ble to permit a line to be reentered after an error. A possible error rule
might be

input: error '\n' { printr("Reenter line: ");} input
{ SS = S4;}

There is one potential difficulty with this approach; the parser must correctly
process three input tokens before it admits that it has correctly resynchronized
after the error. It the reentered line contains an error in the first two tokens,
the parser deletes the offending tokens, and gives no message; this is clearly
unacceptable. For this reason, there is a mechanism that can be used to force
the parser to believe that an error has been fully recovered from. The
sta.tement

yyerrok ;

in an action resets the parser to its normal mode. The last example is better
written

input: error '\n'
{ yyerrok;

printf("Reenter last line: "); }
input
{ SS = $4; }

As mentioned above, the token seen immediately after the error symbol is the
input token at which the error was discovered. Sometimes, this is
inappropriat.e; for example, an error recovery action might take upon itselfthe
job of finding the correct place to resume input. In this case, the previous
look ahead token must be cleared. The statement

yyclearin ;

in an act.ion will have this effect. For example, suppose t.he action after error
were to call ~ome sophisticated resynchronization routine, supplied by the user,
that attempted to advance the input to the beginning of the next valid
statement. After this routine was called, the next token returned by yylex
would presumably be the first token in a legal stat.ement; the old, illegal token
mu~t be discarded, and the error state reset. This could be done by a rule like

9-23

XENIX Programmer's Guide

stat: error
{ resynchO;

yyerrok;
yyclearin ; }

These mechanisms are admittedly crude, but do allow for a simple, fairly
effective recovery or the parser from many errors. Moreover, the user can get
control to deal with the error actions required by other portions ot the
program.

9.9 The Yacc Environment

When the user inputs a specification to yacc, the output is a file of 0 programs,
called y.tab.c on most systems. The runction produced by yacc is called
yyparBe j it is an integer valued function. When it is called, it in turn repeatedly
calls yylez, the lexical analyzer supplied by the user to obtain input tokens.
Eventually, either an error is detected, in which case (it no error recovery is
possible) yypar3e returns the value 1, or the lexical analyzer returns the
endmarker token and the parser accepts. In this case, yypane returns the value
o.

The user must. provide a certain amount or environment tor this parser in order
to obtain a working program. For example, as with every 0 program, a
program called main must be defined, that eventually calls yypar3e. In
addition, a routine called yyerror prints a message when a syntax error -is
detected.

These two routines must be supplied in one rorm or another by the user. To
ease the initial effort or using yacc, a library has been provided with default
versions of main and yt/error. The name orthis library is system dependent; on
many systems the library is accessed by a -Iy argument to the loader. To show
the triviality of these derault progn.ms, the source is given below:

mainO{
return(yyparseO)j
}

and

:/I: include <stdio.h>

yyerror(s) char *5; {
fprint!(stderr, "%s\n", s);
}

The argument to yyeTToris a string containing an error me~age, usually the
string 3yntaz error. The average application ,",ill w,mt to do better than this.
Ordinarily, the program should keep track of the in ;Jt line number, and print

9·24

Yacc: ,A Compiler-Compiler

it along with the message when a synta.x error is detected. The external integer
variable 1/1/C kar contains the lookahead t·oken number at the time the error was
detected; this may be of some interest in giving better diagnostics. Since the
main program is probably supplied by the user (to read arguments, etc.) the
yacc library is useful only in small projects, or in the earliest stages oC larger
ones.

The external integer variable 1/1/debug is normally set to O. If it is set to a.
nonzero value, the parser will output a verbose description or its actions,
including a discussion or which input symbols have been read, and what the
parser actions are. Depending on the operating environment, it may be
possible to set this variable by using a debugging system.

9.10 Preparing Specifications

This section contains miscellaneous hints on preparing efficient, easy to change,
and clear specifications. The individual subsections are more or less
independent.

9.11 Input Style

It is difficult t.o provide rules with substantial actions and still have a rea.dable
specification file.

1. Use uppercase letters ror token names, lowercase letters for
nonterminal names. This rule helps you to know who to blame when
things go wrong.

2. Put grammar rules and actions on separate Jines. This allows either
to be changed without an automatic need to change the other.

3. Put all rules with the same left hand side together. Put the left hand
side in on ly once, and let all following rules begin with a vertical bar.

4. Put a semicolon only arter the last rule with a given lert hand side, and
put the semicolon on a separate line. This allows new rules to be easily
added.

5. Indent rule bodies by two tab stops, and action bodies by three tab
stops.

The examples in the text orthis section follow this style (where space permits).
The user must make up his own mind about these stylistic questions; the central
problem, however, is to make the rules visible through the morass of action
code.

Q·25

XENIX Programmer's Guide

9.12 Left Recursion

The algorithm used by the yacc parser encourages so-called left recursive
grammar rules: rules of the form

name : name rest_oCrule j

These rules frequently arise when writing specifications of sequences and lists:

list: item
I list ',' item

and

seq: item
I seq item

In each of these cases, the first rule will be reduced ror the fi·rst item only, and
the second rule will be reduced ror the second and all succeeding items.

\Vith right recursive rules, such as

seq: item
I item seq

the parser would be a bit bigger, and the items would be seen, and reduced,
rrom right to lert. More seriously, an internal stack in the parser would be in
danger or overflowing ir a very long sequence were read. Thus, the user should
use lett recursion wherever reasonable.

It is worth considering whether a sequence with zero elements has any meaning,
and irso, consider writing the sequence specification with an empty rule:

seq: ,* empty *,
I seq item

Once again, t.he first rule would always be reduced exactly once, before the first
item was read, and then the second rule would be reduced once ror each item
read. Permitting empty sequences often leads to increased generality.
However, conflicts might arise ifyacc is asked to decide which empty sequence
it has seen, when it hasn't seen enough to know!

Q-26

Yacc: A Compiler-Compiler

9.13 Lexical Tie-ins .

Some lexical decisions depend on context. For example, the lexical ana.lyzer
might want to delete blanks normally, but not within quoted strings. Or names
might be entered into a symbol table in declara.tions, but not in expressions.

One way of handling this situation is to create a global flag that is examined by
the lexical analyzer, and set by actions. For example, suppose a program
consists of 0 or more declarations, followed by Oor more statements. Consider:

%{
int dflag;

%}
... other declarations ...

%%

prog : decls stats

decls : /* empty */
{ dflag = 1;

I decls declaration

stats : /* empty */
{ dflag = 0;

I stats statement

other rules .. ,

}

}

The flag dflag is now 0 when reading statements, and 1 when reading
declarations, except for the first token in the first statement. This token must
be seen by the parser before it can tell that the decla.ration section has ended
and the sta.tements have begun. In many cases, this singie token exception does
not affect the lexical scan.

This kind of back door approach can be over done. Nevertheless, it represents a
way of doing some things that are difficult to do otherwise.

9.14 Handling Reserved Words

Some programming languages permit the user to use words like if, which are
normally reserved, as label or va.riable names, provided that such use does not
conflict with the legal use of these names inthe programming language. This is
extremely hard to do in the framework of yacc; it is difficult to pass
information to the lexical analyzer telling it "this instance of 'ir is a. keyword,

9·27

XENIX Programmer's Guide

and that instance is a va.riable". The user can ma.ke a stab at it, but it is
difficult. It is best that keywords bereservedj that is, be forbidden for use as
variable names.

9.15 Simulating Error and Accept in Actions

The parsing actions of error and accept can be simulated in a.n action by use or
macros }'YAOOEPTand }'YERROR. ITA OOEP T causes "ptlr,e to return
the value 0; YYERROR causes the parser to behave as if the current input
symbol had been a syntax error; ggerror is called, and error recovery takes
place. These mechanisms can be used to simulate parsers with multiple
endmarkers or contex~sensitive syntax checking.

9.16 Accessing Values in Enclosing Rules

An action may refer to valuE's returned by actions to the lett of the current rule.
The mechanism is simply the same as with ordinary actions, a dollar sign
followed by a digit, but in this case the digit may be 0 or negative. Consider

sent : adj noun verb adj noun
{ look at the sentence ... }

adj : THE {$S =- THE; }
I YOUNG { S$ - YOUNG; }

noun : DOG {SS- DOGj }
I CRONE { if($0 ==- YOUNG){

printf("what!\n")j
}

$$ = CRONE;
}

In the action following the word ORONE,tlchecki,made preceding token
shirted was not YOUNG. Obviously,this is only possible when a great deal is
known about. what might precede the symbol noun in the input. There is also a
distinctly unstructured flavor about this. Nevertheless, at times this
mechanism will save a grea.t deal of trou ble, especially when a few combinations
are to be excluded from an otherwise regular structure.

9-28

Yacc: A Compiler-Compiler

9.17 Supporting Arbitrary Value Types

By default, the v&.lues returned by actions and the lexical analyzer are integers.
Yacc can also support values of other types, including structures. In addition,
yacc keeps track of the types, and inserts appropriate union member names so
that the resulting parser will be strictly type checked. The yacc value stack is
declared to be a union or the various types or values desired. The user declares
the union, and associates union member names to each token and nonterminal
symbol having a value. When the value is referenced through a IS or in
construction, yaee will automatically insert the appropriate union na.me, so
that no unwanted conversions will take place. In addition, type checking
commands such aslint(C) will beCar more silent.

There are three mechanisms used to provide ror this typing. First, there is a
way of defining the union; this must be done by the user since other programs,
notably the lexical analyzer, must know about the union member names.
Second, there is a way of associating a union member name with tokens and
nont.erminals. Finally, there is a mechanism for describing the type or those
few values where yace cannot easily determine the type.

To declare the union, the user includes in the declaration section:

%union {
bod,l 0/ union ...
}

This declares the yacc value stack, and the external variables 1I1IIvai and 1I1It1a/,
to have type equal to this union. If yace was invoked with the -d option, the
union declaration is copied onto the 1I.tab.h file. A1ternatively, the union may
be declared in a header file, and a typeder used to define the variable YYS TYPE
to represent this union. Thus, the header file might also have said:

typedet union {
body 0/ union ...
} YYSTYPE;

The header file must be included in the declarations section, by use of %{ and
%}.

Once YYSTYPE is defined, the union member names must be associated with
the various termina.l and nonterminal names. The construction

< name>

is used to indicat.e a union member name. It this tollows one of the keywords
%token, %lert, %right, and %nonassoc, the union member name is associated
with the tokens listed. Thus, saying

XENIX Programmer's Guide

%lert <optype> '+' '.'

will cause any rererence to values returned by these two tokens to be tagged
with the union member name optllpe. .Another keyword, %type, is used
similarly to associate union member names withnonterminals. Thus, one
might say

%type <nodetype> expr stat

There remain a couple of cases where these mechanisms are insufficient. It
there is an action within a rule, the value returned by this action has no
predefined type. Similarly, rererence to lert context values (such as $0 - see the
previous su bsection) leaves yacc with no easy way or knowing the type. In this
case, a type can be imposed on the rererence by inserting a union member name,
between < and>, immediately arter the first S. An example orthis usage is

rule: 303030 { S<intval>S == 3; } bbb
{ rune S<intval>2, S<other>O); }

This syn tax has little to recommend it, but the situation arises rarely.

A sample specification is given in a later section. The racilities in this subsection
are not triggered until they are used: in particular, t.he use of %type wiJI turn on
these mechanisms. \Vhen they are used, there is a fairly strict level or checking.
For example, use of Sn or $S to refer to something with no defined type is
diagnosed. It these facilities are not triggered, the yacc value stack is used to
hold int's, as was true historically.

9.18 A Small Desk Calculator

This example gives the complete yace specificat.ion ror a small desk calculator:
the desk calculator has 26 registers, labeled (I through z, and accepts arithmetic
expressions made up ofthe operators +, -, *, I, % (mod operator), & (bitwise
and), I (bitwise or), and assjgnment. It an expression at the top level is an
assignment, the value is not printed; otherwise it is. As in C, an integer that
begins with 0 (zero) is assumed to be octal; otherwise, it is assumed to be
decimal.

As an example of ayacc specification, the desk calculator does a reasonable job
or showing how precedences and ambiguities are used, and demonstrating
simple error recovery. The major oversimplifications are that the lexical
analysis phase is much simpler than ror most applications, and the output is
produced immediately, line by line. Note the way tha.t decimal and octal
integers are read in by the gramma.r rules; This job is probably better done by
the lexical analyzer.

9·30

Yacc: A Compiler-Compiler

%{ '* include < stdio.h > '* include <ctype.h>

int regsl26];
int base;

%}

%sta.rt Est

%token DIGIT LETTER

%left l'
%left '&'
%left '+' '-'
%left '*' '1' '%'
%lert l~lI~rus 1* precedence ror una.ry minus *,
%% ,* beginning of rules section *,
list : ,* empty *,

I list stat \n'
I list error \n'

{ yyerrok; }

stat: expr
{ printr("%d\n" , $1); }
LETTER '=' expr

{ regs[SI] = S3; }

expr : '(' expr l'
{ $S = S2; }

I expr '+' expr
{ SS = $1 + S3; }

I expr '-' expr
{ $S = $1 - $3; }

I expr '.' expr
{ $$ = $1 • $3; }

I expr '1' expr
{ $S = $1 I $3; }

I expr '%' expr
{ SS = $1 % $3; }

I expr '&' expr
{ $S = $1 & $3; }

I expr l' expr
{ $S = $1 I $3; }

9-31

XENIX Programmer's Guide

I '-' expr %prec UMINUS
{ '$ - - $2; }

I LETTER
{ '$ - regslSl); }

I number

number : DIGIT

%%

{ •• - $1; base - ($1--0) ? 8 : 10; }
I number DIGIT

{ S' == base * SI+ $2; }

,* start or programs *,
yylexO { ,* lexical analysis routine *, ,* returns LETTER for a lowercase letter, *, ,* yylval== 0 through 25 *, ,* return DIGIT for a digit, *, ,* yylval= 0 through 9 *, ,* all other characters*' ,* are returned immediately *,

int Cj

while((c=getchar()) === ' ') {,* skip blanks *, }

,* c is now nonblank *,

if(islower(c)) {
yylval - c - 'a';
return (LETTER);
}

if(isdigit(e)) {
yylval = c - '0';
return(DIGIT);
}

return(c);
}

9.19 Yacc Input Syntax

This section has a description of the yace input syntax, as a yaec specification.
Context dependencies, etc., are not considered, Ironically, the yaec input
specification language is most naturally specified as an LR(2) grammar; the
sticky part cOJQes when an identifier is seen in a rule, immediately following an
action. It this identifier is followed by a colon, it is the start of the next rule;
otherwise it isa continuation or the current rule, which just happens to have an

9·32

Yacc: A Compiler-Compiler

action embedded in it. As implemented, the lexical analyzer looks ahead after
seeing an identifier, and decide whether the next token (skipping blanks,
newlines, comments, etc.) is a colon. If ~o. it returns the token
C_IDENTIFIER. Otherwise, it returns IDENTIFIER. Literals (quoted
strings) are also returned as IDENTIFIER, but never as part of
C_IDENTIFIER.

/* grammar ror the input to Yacc */

/* basic entities *,
%token IDENTIFIER ,* includes identifiers and literals */
%token C_IDENTIFIER ,* identifier followed by colon */
%token NUMBER /* [0.0]+ *,

,* reserved words: %type => TYPE, %lert => LEFT, etc. */

%token LEFT RIGHT NONASSOC TOKEN PREC TYPE START UNION

%token MARK ,* the %% mark *,
%token LCURL ,* the %{ mark *,
%token RCtJRL ,* the %} mark */

,* ascii cha,racter literals st.and for themselves *,
%start spec

%%

spec : ders MARK rules ta.il

ta.il : MARK {Eat up the re8t 0/ the file}
1'* empty: the second MARK is optional ,"

ders : ,* empty */
I defs def

der : ST.ART IDENTIFIER

I UNION {Copy union definition to outpflt }
LCURL { Copy C code to output file} RCURL

I nders rword tag nlist

rword : TOKEN
I LEFT
I RIGHT
I NONASSOC

0·33

XENIX Programmer'. Guide

I TYPE

tag : /* empty: union tag is optional */
1 ' <' IDENTIFIER '>'

nlist : nmno

I nUst nmno
nlist ',' nmno

nmno : IDENTIFIER /* Literal illegal with %type */
I IDENTIFIER NUMBER /* Illegal with %type */

/* rules section ./

rules : CJDENTIFIER r.bodyprec
I rules rule

rule : C_IDENTIFIER rbody prec
I 'I' rbody prec

rbody : /* empty */
I rbody IDENTIFIER
I rbody act

act :'{' { Copy action, tran.,late SS, etc. } '}'

prec : /* empty */

I PREC IDENTIFIER
PREC IDENTIFIER act

I prec 'j'

9.20 An Advanced Example

This section gives an example of a grammar using some or the a.dvanced
features discussed in earlier sections. The desk calculator example is modified
to provide a desk calculator that does floating point interval a.rithmetic. The
calculator understands floating point constants, the arithmetic operations +,
-, *, /, unary -, and = (assignment), and has 26 floating point variables, G

through z. Moreover, it also understands intervals, written

9·34

Ya.cc: A Compiler-Compiler

(x , y)

where z is less than or equal to 1/. There are 26 interval va.lued variables A
through Z that may also be used. Assignments return no value, and print
nothing, while expressions print the (floa.ting or interval) value.

This example explores a number or interesting reatures or ya.cc and C.
Intervals are represented by a structure, consisting or the left and right
endpoint values, stored as a double precision values. This structure is given a
type name, INTERVAL, by using t,lpedeJ. The yacc value stack can also
contain floating point scalars, and integers (used to index into the arrays
holding the variable va.lues). Notice tha.t this entire strategy depends strongly
on being able to assign structures and unions in C. In fact, ma.ny of the actions
call runctions that return structures as well.

It is also worth noting the use or YYJ:,'RROR to handle error conditions:
division by an interval containing 0, and an interval presel1ted in the wrong
order. In effect, the error recovery mechanism oryacc is used to throwaway
the rest of the offending line.

In addition to the mixing or types on the value stack, this grammar also
demonstrates an interesting use ofsyntax to keep track orthe type (e.g., scalar
or interval) or intermediate expressions. Note that a scalar can be
automatically promoted to an interval if the context demands an interval
value. This causes a large number of conflicts when the grammar is run
through yacc: 18 Shift/Reduce and 26 Reduce/Reduce. The problem can be
seen by looking at the two input lines:

2.5 + (3.5 - 4.)

and

2.5 + (3.5 , 4.)

Notice that the 2.5 is to be used in an interval valued expression in the second
example, but this ract is not known until the comma (,) is read; by this time, 2.5
is finished, and the parser cannot go back and change its mind. More generally,
it might be nece~sary to look ahead an arbitrary number or tokens to decide
whether to convert a scalar to an interval. This problem is circumvented by
having two rules for each binary interval valued operator: one when the lert
operand is a scalar, and one when the lert operand is an interval. In the second
case, the right operand must be an interval, so the conversion will be applied
automatically. However, there are still many cas~s where the conversion may
be applied or not, leading to the above conflicts. They are resolved by listing
the rules that yield scalars first in the specification file; in this way, the conflicts
will be resolved in the direction or keeping scalar valued expressions scalar
valued until they are rorced to become intervals.

This way of handling multiple types is very instructive, but not very general. If
there were many kinds of expression types, instea.d of just two, the number of

9-35

XENIX Programmer's Guide

rules needed would increase dramatically, and the conflicts even more
dramatically. Thus, while this example is instructive, it is better practice in a
more normal programming language environment to keep the type
information as part of the va.lue, and not as part of the grammar.

Finally, a word about the lexical analysis. The only unusual reature is the
treatment of floating point constants. The C library routine (Jto/is used to do
the actual conversion lroma character string to a double precision value. If the
lexical analyzer detects an error, it responds by returning a token that is illegal
in the grammar, provoking a syntax error in the parser, and thence error
recovery.

9-36

%{

* include <stdio.h> * include <ctype.h>

typedef struct interval {
double 10, hi;
} INTERVALj

INTERVAL vm ulO, vdivOj

double atofOj

double dreg(26 J;
INTERVAL vreg(26 J;

%}

%start lines

%union {
int ivaI;
double dval;
INTERVAL vval;
}

%token <ivai> DREG VREG ,- indices into dreg, vreg arra.ys -,

%token <dval> CONST

%type < dval> dexp

%type <vval> vexp

,* floating point constant *,
,* expression *,
,-interval expression -,

,* precedence information about the operators *,
%Ieft '+' '.'

Yacc: A Compiler-Compiler

%lert '.' 'I'
%lert UMINUS /. precedence ror unary minus */

%%

lines : /. empty ./
I lines line

line : dexp '\n'
{ printr("%IS.8I\n", SI); }

I vexp '\n'
{ printf("(%IS.8f, %IS.8f)\n" , SUo, Sl.hi); }

I DREG '=' dexp '\n'
{ dreg[SIJ = S3; }

I VREG '=' vexp '\n'
{ vreg[Sl] = $3; }

I error '\n'
{ yyerrok; }

dexp : CONST
I DREG

{ S$ = dreg[SI}; }
I dexp '+' dexp

{ $S = S 1 + S3; }
I dexp '-' dexp

{ $S = SI - $3; }
I dexp '.' dexp

{ SS = $1 • $3; }
I dexp 'I' dexp

{ $$ = $1 / S3; }
1'-' dexp %prec UMINUS

{ $$ = - $2; }
I '(' dexp ')'

{ $S = $2; }

vexp : dexp
{ $S.hi = $$.10 = $1; }

I '(' dexp ',' dexp ')'
{

$$.10 = $2;
$S.hi = S4;
if($$.Io > SS.hi){

printf(" interval out of order\n");
YYERROR;

}}
IVREG

Q-37

XENIX Programmer's Guide

9·38

%%

{ ss == vreg[SI)i }
I vexp '+' vexp

{ SS.hi - SI.hi +SS.hi;
S$.Io - $ 1.10 + $S.lo; }

I dexp '+' vexp
{ $$.hi - $1 + $S.hi;

S$.Io ..; SI + SS.1o; }
I vexp '.' vexp

{ '$.hi - 'l.hi • S3.1o;
$$.10 == SI.1o • 8S.hi; }

I dexp '.' vexp
{ SS.hi .. SI • $3.10;

S$.lo - $1 • S3.hi;}
I vexp '.' vexp

{ SS == vmul(SI.1o, SI.hi, SS); }
I dexp '.' vexp

{ '$ == vmul(SI,SI, SS)j }
I vexp '/' vexp

{ if (dcheck('3)) YYERRORj
SS == vdiv(SUo, S1.hi, S3); }

I dexp '/' vexp
{ if (dcheck(S3)) YYERRORj

$S == vdiv(SI, SI, S3)j }
I '.' vexp . %prec UMINUS

{ SS.hi == ·S2.1o; 'S.1o == ·82.hij }
I '(' vexp ')'

{ $$ == 82; }

=I/: define BSZ 50 /. buffer size for rp numbers ./

/* lexical analysis ./

yylexO{
register Cj

{ /* skip over blanks */ }
while((c = getcharO) == ' ,)

if (isupper(c)){
yylval.ival == c· 'A';
return(VREG)j
}

if (islower(c)){
yylvaLival = c· 'a'j
return(DREG);
}

if(isdigit(r , " c==='.')(

Yacc: A CompiJer-Compiler

/* gobble up digits, points, exponents */

char buf(BSZ+l), *cp == bufj
int dot == 0, exp == OJ

for(j (cp-buf)<BSZ j ++cp,c==getcharO)(

*cp == Cj
if (isdigit(c)) continue;
if(c == == '.') {

if (dot++ " exp) return('.')j
/* above causes syntax error */

continue;
}

if(c ==== 'e') {
if (exp++) return('e');

/* above causes syntax error */
continue;
}

/* end of number */
breakj
}

*cp == '\O'j
if((cp-buf) >== BSZ)

printf("constant too long: truncated\n")j
else ungetc(c, stdin);

/* above pushes back last char read */
yylval.dval == atof (buf);
return(CONST);
}

return(c);
}

INTERVAL hilo(a, b, c, d) double a, b, c, d; {
/* returns the smallest interval containing a, b, c, and d */
/* used by *, / routines */
INTERVALvj

if(a>b) { v.hi == a; v.lo == bj }
else { v.hi == b; v.lo == a; }

if(c>d) {

else {

if (c>v.hi) v.hi == Cj
if (d<v.lo) v.lo == d;
}

if (d>v.hi) v.hi == d;
if (c<v.1o) v.lo == c;

9-39

XENIX Programmer's Guide

}
return(v);
}

INTERVAL vmul(a, b, v) double a, bj INTERVAL Vj {
return(hilo(a.v.hi, a.v.lo, b.v.hi, b.v.1o));
}

dcheck(v) INTERVAL Vj {
ir(v.hi > = o. && v.lo <- O.){

printf("divisor interval contains O. \n");
return(l);
}

return(O}j
}

INTERVAL vdiv(a, b, v) double a, bj INTERVAL Vj {
return(hilo(a/v.hi, a/v.lo, b/v.hi, b/v.lo))j
}

9.21 Old Features

This section mentions synonyms and features which are supported tor
historical continuity, but, for various reasons, are not encouraged.

1. Literals may also be delimited by double quotation marks (").

2. Literals may be more than one character long. It all the cha.racters are
alphabetic, numeric, or underscore, the type number of the literal is
defined, just as if the literal did not have the quotation ma.rks around
it. Otherwise, it is difficult to find the value for such literals. The use
of multicharacter literals is likely to mislead those unfamiliar with
yacc, since it suggests that yacc is doing a job that must be actually
done by the lexical analyzer.

3. Most places where '%' is legal, backslash (\) may be used. In
particular, the double backslash (\ \) is the same as %%, \le/t the
same as %leJt, etc.

4. There are a number of other synonyms:

9-40

% < is the same as %lert
%> is the same as %right
%binary and %2 are the same as %nonassoc
%0 and %term are the same as %token
%= is the same as %prec

Yacc: A Compiler-Compiler

5. Actions may also have the torm

={ ... }

and the curly braces can be dropped if the action is a single C
statement.

6. C code between %{ and %} used to be permitted at the head ot the
rules section, as well as in the declaration section.

9-41

Appendix A

C Language Portability

A.1 Introduction

A.2 Program Portability 2

A.3 t'achine Hardware 2
A.3.1 Byte Length 2
A.3.2 Word Length 2
A.3.3 Storage Alignment 2
A.3.4 Byte Order in a Word 4
A.3.5 Bit fields 5
A.3.6 Pointers 5
A.3.7 Address Space 6
A.3.8 Char acter Set 6

A.4 Compiler Differences 7
A.4.1 Signed/Unsigned char, Sign Extension 7
A.4.2 Shift Operations 7
A.4.3 Identifier Length 7
A.4.4 Register Variables 8
A.4.5 Type Conversion 8
A. 4. 6 Functions With Var iable Number of Arguments 9
A.4.7 Side Effects, Evaluation Order 11

A.5 Program Environment Differences 11

A.6 Portability of Data 12

A.7 Lint 12

A.8 Byte Ordering Summary 13

1-ii

C Language Portability

A.l Introduction

The standard definition of the C programming language leaves many deta.ils to
be decided by individual implementations of the language. These unspecified
features of the language detract from its portability and must be studied when
attempting to write portable C code.

Most of the issues affecting C portability arise from differences in either target
machine hardware or compilers. C was designed to compile to efficient code for
the target machine (initially a PDP-ll) and so many of the language features
not precisely defined are those that reflect a particular machine's hardware
characteristics.

This appendix highlights the various aspects of C that may not be portable
across different machines and compilers. It also briefly discusses the portability
of a C program in terrns of its environrnent, which is determined by the system
calls and library routines it uses during execution, file pathnarnes it requires,
and other iterns not guaranteed to be constant across different systems.

The C language has been implemented on many different computers with
widely different hardware characteristics, from smallS-bit microprocessors to
large mainframes. This appendix is concerned with the portability ofC code in
the XENIX programming environment. This is a more restricted problern to
consider since all XENIX systems to date run on hardware with the following
basic characteristics:

ASCII character set

8-bit bytes

2-byte or 4-byte integers

Two's complement arithmetic

These features are not formally defined for the language and rnay not be found
in all irnplementations of C. However, the remainder of this appendix is
devoted to those systems where these basic assumptions hold.

The C language definition contains no specification of how input and output is
performed. This is left to system calls and library routines on individual
systems. \Vithin XENIX systems there are system calls and library routines that
can be considered portable. These are described briefly in a later section.

This appendix is not intended as a C language primer. It is assumed that the
reader is familiar with C, and with the basic architecture of common
microprocessors.

A-I

XENIX Programmer's Guide

A.2 Program Portability

A program is portable if it can be compiled ~nd run successfully on different
machines without alteration. There are many ways to write portable,
programs. The first is to avoid using inherently nonportable language features.
The second is to isolate a.ny nonportable intera.ctions with the environment,
such as 1/0 to nonstandard devices. For example programs should avoid hard­
coding pathnames unless a pathname is common to all systems (e.g.,
/etc/p411wlj.

Files required at compiletime (i.e., include files) may also introduce
non portability it the pathnames are not the same on all machines. In some cases
include files containing machine parameters can be used to make the source
code itseIrportable.

A.3 Machine Hardware

Differences in the hardware of the various target machines and differences in
the corresponding. C compilers cause the greatest number of portability
problems. This section lists problems commonly encountered on XENIX
systems.

A.3.l Byte Length

By definition, the char data type in 0 must be large enough to hold as positive
integers all members of a machine's character set. For the machines described
in this appendix, the char size is exactly an 8bit byte.

A.3.2 Word Length

In 0, the size of the basic data types ror a given implementation are not
formally defined. Thus they often rollow the most natural size for the
underlying machine. It is safe to assume that short is no longer than long.
Beyond that no assumptions are portable. For example on some machines
short is the same length as int,whereas on others long is the same length as
into

Programs that need to know the size of a particular data type should avoid
hard-coded constants where possible. Such inrormation can usually be written
in a fairly portable way. For example the maximum positive integer (on a two's
complement machine) can be obtained with:

#define MAXPOS ((int)(((unsigned) 0) > > 1))

This is preferable to something like:

A-2

lifdef PDPll
Idefine MAXPOS 32767
lelse

#endif

C Language Portability

To find the number or bytes in an int use "size of (int)" rather than 2,4, or some
ot,her nonportable constant.

A.3.3 Storage Alignment

The C language defines no particular layout for storage of data items relative to
each other, or ror storage of elements of structures or unions within the
structure or union.

Some CPU's, such as the PDP-II and M6S000 require that data types longer
than one byte be aligned on even byte address boundaries. Others, such as the
SOS6and VAX-II have no such hardware restriction. However, even with these
machines, most compilers generate code that aligns words, structures, arrays,
and long words on even addresses, or even long word addresses. Thus, on the
VAX-II, the following code sequence gives "S", even though the VAX
hardware can access an int (a 4-byte word) on any physical starting address: -

struct s_tag {
char c;
int i;

};
printf{" %d\n" ,sizeof(struct s_tag));

The principal implications of this variation in data storage are that data
. accessed as nonprimitive data types is not portable, and code that makes use of
knowledge of the layout on a particular machine is not portable.

Thus unions containing structures are nonportable if the union is used to access
the same data in different ways. Unions are only likely to be portable ifthey are
used simply to have different data in the same space at different times. For
example, if the following union were used to obtain 4 bytes from a long word,
the code would not be portable:

union {

} u;

char c[4J;
long lw;

The lizeo/ operator should always be used when reading and writing
structures:

A-3

XENIX Programmer's Guide

struct s_tag st;

write(fd, !tst, sizeof(st))j

This ensures portability of the source code. It does not produce a portable data
file. Portability of data is discussed in a later section.

Note that the ,ize o! operator returns the number of bytes an object would
occupy in an array. Thus on machines wher.e structures are always aligned to
begin on a word boundary in memory, the sizeo! operator will include any
necessary padding for this in the return value, even it the padding occurs after
all useful data in the structure. This occurs whether or not the argument is
actually an array element.

A.3.4 Byte Order in a Word

The variation in byte order in a word affects the portability or data more than
the portability of source code. However any program that makes use of
knowledge or the internal byte order in a word is not portable. For example, on
some systems there is an include file miBc.k that contains .the following
structure declaration:

/* * structure to access an
• integer in bytes

*/
struct {

char lobyte;
char hibyte;

};

With certain less restrictive compilers this could be used to access the high and
low order bytes or an integer separately, and in a completely nonportable way.
The correct way to do this is to use mask and shift operations to extract the
required byte:

#define LOBYTE(i) (i &. Oxfi)
#define HIBYTE(i) ((i > > 8) &. Oxfi)

Note that even this operation is only applicable to machines with two bytes in
anint.

One result or the byte ordering problem is that the rollowing code sequence will
not always perrorm as intended:

A-4

C Language Portability

int c == 0;

read(fd, &c, 1);

On machines where the low order byte is stored first, the value of "c" will be the
byte value read. On other machines the byte is read into some byte other than
the low order one, and the value of" e" is different.

A.3.S Bitflelds

Bitfields are not implemented in all C compilers. When they are, no field may
be larger than an int, and no field can overlap an int boundary. If necessary the
compiler will leave gaps and move to the next int boundary.

The C language makes no guarantees about whether fields are assigned left to
. right, or right to left in an into Thus, while bitfields may be useful for storing
flags and other small data items, their use in unions to dissect bits rrom other
data is definitely non portable.

To ensure portability no individual field should exceed 16 bits.

A.3.6 Pointers

The C language is fairly generous in allowing manipulation of pointers, to the
extent that most compilers will not object to nonportable pointer operations.
The lint program is particularly useful ror detecting questionable pointer
assignments and comparisons.

The common non portable use of pointers is the use of casts to assign one pointer
to another pointer of a different data type. This almost always makes some
assumption about the internal byte ordering and layout orthe data type, and is
therefore non portable. In the following code, the byte order in the given array
is not portable:

char c[4J;
long *lpj

lp = (long *)&c(OJj
*lp = Ox12345678Lj

The lint program will issue warning messages about such uses or pointers. Code
like this is very rarely necessary or valid. It is acceptable, however, when using
the maUoe tunction to allocate space tor variables that do not have char type.
The routine is declared as type char • and the return value is cast to the type
to be stored in the allocated memory. If this type is not char • then lint will
issue a warning concerning illegal type conversion. In addition, the malloe
tunction is written to always return a starting address suitable tor storing all
types ot data. Lint does not know this, so it gives a warning about possible data

A .. 5

.
XENIX Programmer's Guide

alignment problems too; In the following example, maUoe is used to obtain
memory for an array or 50 integers.

extern char *mallocO;
int *ip;

ip = (int *)malloc(50};

This example will attract a warning message from lint.

A.3.7 Address Space

The address space available to a program running under XENIX varies
considerably rrom system to system. On a small PDP-II there may be only 64K
bytes available for program and data combined. Larger PDP-II's, and some 16
bit microprocessors allow 64K bytes or data, and 64K bytes or program text.
Other machines may allow considerably more text, and possibly more data as
well.

Large programs, or programs that require large data a.reas may have
portability problems on small machines.

A.3.8 Character Set

The C language does not require the use or the ASCn character set. In ract, the
only character set requirements are all characters must fit in the char data
type, and all characters must have positive values.

In the ASCn character set, all characters have values between zero and 127 .
. Thus they can all be represented in 7 bits, and on an 8-bits-per-byte machine
are all positive, whether char is treated as signed or unsigned.

There is a set or macros defined under XENIX in the hea.der file
/u8r/include/ctype.h that should be used ror most tests on character
quantities. They provide insulation from the internal structure or the
character set and, in most cases, their names are more meaningrul than the
equivalent line or code. Compare

ir(isupper(c))

to

ir((c >='A') && (c <='Z'))

With some or the other macros, such as i,digit to test ror a hex digit, the
advantage is even greater. Also, the internal implementation or the macros
makes them more efficient than an explicit test with an 'ir statement

A-6

C Language Portability

A.4: Compiler Differences

There are a number of C compilers running under XENIX. On PDP-ll systems
there is the so-called "Ritchie" compiler. Also on the 11, and on most other
systems, there is the Portable C Compiler.

A.4.1 Signed/Unsigned char, Sign Extension

The current state of the signed versus unsigned char problem is best described
as unsatisractory.

The sign extension problem is a serious barrier to writing portable 0, and the
best solution at present is to write defensive code that does not rely on
particular implementation features.

AA.2 Shift Operations

The left shift operator, "< <" shifts its operand a number of bits left, filling
vacated bits with zero. This is a so-called logical shift. The right shift operator,
"> >" when applied to an unsigned quantity, performs a logical shift
operation. When applied to a signed quantity, the vacated bits may be filled
with zero (logical shift) or with sign bits (arithmetic shift). The decision is
implementation dependent, and code that uses knowledge of a particular
implementation is nonportable.

The PDP-l1 compilers use arithmetic right shift. To avoid sign extension it is
necessary to shift and mask out the appropriate number of high order bits:

char Cj

c = (c > > 3) &, Oxlfj

You can also avoid sign extension by using using the divide operator:

char Cj

c = c /8j

A.4.3 Identifier Length

The use of long symbols and identifier names will cause portability problems
with some compilers. To avoid these problems, a program should keep the
rollowing sym bois as short as possible:

C Preprocessor Symbols

A-7

XENIX Programmer's Guide

C Local Symbols

C External Symbols

The loader used may also place a restriction on the numb~r of unique
characters in C external symbols.

Symbols unique in the first six characters are unique to most C language
processors.

On some non-XENIX C implementations, uppercase and lowercase letters are
not distinct in identifiers.

A.4.4 Register Variables

The number and type of register variables in a function depends on the machine
hardware and the compiler . Excess and invalid register declarations are treated
as nonregister declarations and should not cause a portability problem. On a
PDP-Il, up to three register declarations are significant, and they must be of
type int, char, or pointer. While other machines and compilers may support
declarations such as ' ,

register unsigned short

this should not be relied upon.

Since the compiler ignores excess variables of register type, the most important
register type variables should be declared first. Thus, if any are ignored, they
will be the least important ones.

A.4.5 Type Conversion

The C language has some rules for implicit type conversion; it also allows
explicit type conversions by type casting. The most common portability
problem in implicit type conversion is unexpected sign extension. This is a
potential problem whenever somethingortype char is compared with an into

For example

char c;

if(c == Ox80)

will never evalua.te true on a. ma.chine which sign extends since "c" is sign
extended before the compa.rison with Ox80, an into

A-8

C Language Portability

The only safe comparison between char type and an int is the following:

char c;

if(c === 'x')

This is reliable because C guarantees all characters to be positive. The use of
hard-coded octal constants is subject to sign extension. For example the
following program prints "fJ'80" on a PDP-II:

mainO
{

printf{" %x\n" ,'\200');
}

Type conversion also takes place when arguments are passed to functions.
Types char and short become into Machines that sign extend char can give
surprises. For example the following program gives-128 on some machines:

char c == 128;
printf("%d\n" ,c);

This is because "c" is converted to int before passing 0 the runction. The
function itseIr has no knowledge of the original type of the argument, a.nd is
expecting an into The correct way to handle this is to code defensively and
allow for the possibility of sign extension:

char c == 128;
printf(" %d\n", c &. Oxff);

A.4.6 Functions \Vith Variable Number or Arguments

Functions with a variable number of arguments present a particular
portability problem if the type of the arguments is variable too. In such cases
the code is dependent upon the size of various data types.

In XENIX there is an include file, /usr/inciuJe/ fJa.ra.rgs.k, that contains macros
for use in variable argument functions to access the arguments in a portable
way:

typedcf char *va_listj
Idefine va_del int va_alist;
Idefine va_start(list) list == (char *) &.va_alist
#define va_end(list)
#dcfine va_arg(list,mode) ((mode *)(list += sizeof(mode)))[-IJ

The va_endO macro is not currently required. Use of the other macros will be

A-9

XENIX Programmer's Guide

demonstrated by an example or the Iprintllibrary routine. This has a first
argument or type FILE *, and a second argument ortype char *. Subsequent
arguments are or unknown type and number at compilation time. They are
determined at run time by the contentsorthe control string, argument 2.

The first few lines of/printl to declare the arguments and find the output file
and control string address could be:

linclude <varargs.h>
,include <stdio.h>

int
fprintf(va_alist)
va_deli
{

va_list api
char *formatj
FILE *fpj

/* pointer to arg list

va_start(ap}j /* initialize arg pointer */
fp == va_arg(ap, (FILE *))j
format == va_arg(ap, (char *))j

}

*/

Note that there is just one argument declared to Iprintl. This argument is
declared by the va_del macro to be type int, although its actual type is
unknown at compile time. The argument pointer "ap" is initialized by fla_dart
to the address of the first argument. Successive arguments can be picked from
the stack so long as their type is known using the fla_arg macro. This has a type
as its second argument, and this controls what da.ta is removed from the stack,
and how far the argument pointer "ap" is incremented. In Ipn·ntl, once the
control string is found, the type of subsequent arguments is known and they
can be accessed sequentially by repeated calls to va_argO. For example,
arguments of type double, int *, and short, could be retrieved as follows:

double dint;
int *ipj
short Sj

dint == va_arg(ap, double)j
ip = va_arg(ap, (int *))j
s == va_arg(ap, short)j

The use of these macros makes the code more portable, although it does assume
a certain standard method of passing arguments on the stack. In particular no
holes must be left by the compiler, and types smaller than int (e.g., char, and
short on long word machines) must be declared as into

A-tO

C Language Portability

A.4.7 Side Effects, Evaluation Order

The C language makes few guarantees about the order of evaluation of
operands in an expression, or arguments to a function call. Thus

func(i++, i++)j

is extremely non portable, and even

func(i++);

is unwise if Junc is ever likely to be replaced by a macro, since the macro may
use "i" more than once. There are certain XENIX macros commonly used in
user programs; these are all guaranteed to use their argument once, and so can
safely be called with a side-effect argument. The most common examples are
getc, putc, getchar, andputchar.

Operands to the following operators are guaranteed to be evaluated left to
right:

&& II ?

Note that the comma operator here is a separator for two C statements. A list
of items separated by commas in a declaration list is not guaranteed to be
processed left to right. Thus the declaration

register int a, b, c, d;

on a PDP-ll where only three register variables may be declared could make
any three or the four variables register type, depending on the compiler. The
correct declaration is to decide the order of importance of the variables being
register type, and then use separate declaration statements, since the order of
processing of individual declaration statements is guaranteed to be sequential:

register in t a;
register int bj
register int Cj

register int d;

A.5 Program Environment Differences

Most programs make system calls and use library routines for various services.
This section indicates some of those routines that are not always portable, and
those that particularly aid portability.

\Ve are concerned here,primarily with portability under the XENIX operating
system. Many of the XENIX system calls are specific to that particular
operating system environment and are not present on all other operating

A-ll

XENIX Programmer '8 Guide

system implementations of C. Examples of this are getptDent tor accessing
entries in the XENIX password file, and getenfl which is specific to the XENIX
concept of a process' environment.

Any program containing hard-coded pathnames to flIes or directories, or user
IDs, login names, terminal lines or other system dependent parameters is
nonportable. These types of constant should be in header flIes, passed as
command line arguments, obtained from the environment, or obtained by
using the XENIX detault parameter library routines d/open,and d/read.

Within XENIX, most system calls and library routines are portable across
different implementations and XENIX releases. However, a few routines have
changed in their user interface. The XENIX library routines are usually
portable among XENIX systems.

Note that the members of the printr family, print/, /pn'nt/, ,print/, IIC(m/, and
,can/have changed in several ways during the evolution otXENIX, and some
reatures are not completely portable. The return values or these routines
cannot be relie·d upon to have the same meaning on all systems. Some of the
format conversion characters have changed their meanings,in particular those
relating to uppercase and lowercase in the output of hexadecimal numbers, and
the specification of long integers on IS-bit word machines. The reference
manual page for print! contains the correct specification for these ro~tines.

A.6 Portability of Data

Data files are almost always nonportable across different machine CPU
architectures. As mentioned above, structures, unions, and arrays have
varying internal layout and padding requirements on different machines. In
addition, byte ordering within words a.nd actual word length may differ.

The only way achieve data file portability is to write and read data flIes as one
dimensional character arrays. This avoids alignment and padding problems if
the data is written and read as characters, and interpreted that way. Thus
AseD text files can usually be moved between different machine types without
too many problems.

A.7 Lint

. Lint is a e program checker which attempts to detect features of a collection of
e source files that are non portable or even incorrect C. One particular
advantage of lint over any compiler checking is that lint checks function
declaration and usage across source files. Neither compiler nor loader do this.

Lint will generate warning messages about nonportable pointer arithmetic,
assignments, and type conversions. Passage unscat·hed through lint is not a
guarantee that a program is completely porta.ble.

A-12

C Language Porta.bility

A.8 Byte Ordering Summary

The rollowing conventions are used in the tables below:

300 The lowest physically addressed byte orthe data item. 300 + 1, and so on.

bO The least significant byte ot the data item, 'bI' being the next least
significant, and so on.

Note that any program that actually makes use or the rollowing intorma.tion is
guaranteed to be nonportable!

Byte Ordering ror Short Types

CPU Byte Order

300 301
PDP-II bO bl
VAX-ll bO bl
8086 bO bl
286 bO bl
M68000 bI bO
Z8000 bI bO

Byte Ordering tor Long Types

CPU Byte Order

300 301 302 8.3
PDP-ll b2 b3 bO bl
VAX-ll bO bI b2 b3
8086 b2 b3 bO bl
286 b2 b3 bO bI
M68000 b3 b2 bl bO
Z8000 b3 b2 bl bO

A-13

Appendix B

M4: A Macro Processor

B.1 Introduction

B.2 Invoking m4 1

B.3 Defining ~1acros 2

B.4 Quoting 3

B.5 Using Arguments 5

B.6 Using Arithmetic Built-ins

B.7 Manipulating Files 7

B.8 Using System Commnands

B.9 Using Cond i tional s 8

B.10 Manipulating Strings 8

B.11 Printing 10

7

6

1-i

M4: A Macro Processor

B.I Introduction

The m-l macro processor defines and processes specially defined strings ot
characters called macros. By defining a set of macros to be processed by m-l, a
programming language can be enhanced to ma,ke it:

More structured

More readable

More appropriate for a particular application

The #=define statement in C and the analogous define in Rattor are exa.mples
of the basic facility provided by any macro processor-replacement ot text by
other text.

Besides the straightforward replacement of one string ot text by another, m-l
provides:

Macros with arguments

Conditional macro expansions

Arithmetic expressions

File manipulation facilities

String processing tunctions

The basic operation or m-l is copying its input to its output . .& the input is read,
each alphanumeric token (that is, string of letters and digits) is checked. If the
token is the name or a macro, then the name or the macro is replaced by its
defining text. The resulting string is reread by m-l. Macros may also be called
with arguments, in which case the arguments are collected and substituted in
the right places in the defining text betorem-l rescans the text.

M4 provides a collection ot about twenty built-in macros. In addition, the user
can define new macros. Built-ins and user-defined macros work in exactly the
same way, except that some or the built-in macros have side effects on the state
ot the process.

B.2 Invoking m4

The invocation syntax tor m-lis:

m4 [files]

Each file name argument is processed in order. If there are no arguments, or it

B-1

XENIX . Programmer 'sGuide

an argument is a dash (-), then the standard is read. The processed text is
written to the standard output, and can be redirected as in the following
example:

m4 filel file2 - > outputfile

Note the use of the dash in the above example to indicate processing of the
standard input, a/terthe files file1 andfileDhave been processed by m4.

B.3 Defining Macros

The primary built-in function or m4 is define, which is used to define new
macros. The input

define (name, .ltujJ)

causes the string name to be defined as ,tuff. All subsequent occurrences or
name will be replaced by ,tuff. Name must be alphanumeric and must begin
with a letter (the underscore (_) counts as a letter). Stuffis any text, including
text that contains balanced parentheses; it may stretch over multiple lines.

Thus, as a typical example

define(N, 100)

it (i > N)

defines "N" to be 100, and uses this symbolic constant in a later it statement.

The left parenthesis must immediately follow the word define, to signal that
- define has arguments. If a macro or built-in name is not followed immediately

by a left parenthesis, '~(", it is assumed to have no arguments. This is the
situation for "N" above; it is actually a macro with no arguments. Thus, when
it is used, no parentheses are needed following its name.

You· should also notice that a macro name is only recognized as such it it
appears surrounded by nonalphanumerics. For example, in

define(N, 100)

if (NNN > 100)

the variable "NNN" is absolutely unrelated to the defined macro "N", even
though it contains three N's.

Things may be defined in terms or other things. For example

B-2

define(N, 100)
define(M, N)

defines both M and N to be 100.

M4: A Macro Processor

What happens ir"N" is redefined? Or, to say it another way, is "M" defined as
"Nil or as 100? In m-l, the latter is true, "M" is 100, so even ir "N" subsequently
changes, "M" does not.

This behavior arises because m-l expands macro names into their defining text
as soon as it possibly can. Here, that means that when the string "N" is seen as
the arguments or define are being collected, it is immediately replaced by 100j
it's just as iryou had said

define(M, 100)

in the first place.

If this isn't what you really want, there are two ways out or it. The first, which
is specific to this situation, is to interchange the order of the definitions:

define(M, N)
define(N, 100)

Now "M" is defined to be the string "N", so when you ask tor "M" later, you
will al ways get the value or liN" at that time (because the "M" will be replaced
by "N" which, in turn, will be replaced by 100).

B.4: Quoting

The more general50lution is to delay the expansion or the arguments or define
by quoting them. Any text surrounded by single quotation marks' and 'is not
expanded immediately, but has the quotation marks stripped oft'. Iryousay

define(N, 100)
define(M, 'N')

the quotation marks around the "N" are stripped off as the argument is being
collected, but they have served their purpose, and "M" is defined as the string
"N", not 100. The general rule is that m4 always strips off one level ot single
quotation marks whenever it evaluates something. This is true even outside ot
macros. It you want the word "define" to appear in the output, you ha.ve to
quote it in the input, as in

'define' == 1;

As another instance or the same thing, which is a bit more surprising, consider
redefining "N":

B-3

XENIX Programmer's Guide

define(N, 100)

define(N, 200)

Perhaps regrettably, the "N" in the second definition is evaluated as soon as it's
seen; that is, it is replaced by 100, so it's as iryou had written

define(IOO, 200)

This statement is ignored by m4, since you can only define things tha.t look like
names, but it obviously doesn't have the effect you wanted. To really redefine
"N" ,you must delay the evaluation by quoting:

define(N, 100)

define('N', 200)

In m4, it is often wise to quote the first argumen t or a macro.

If the forward and backward quotation marks (' and ') are not convenient ror
some reason, the quotation marks can be changed with the built-in
changequote. For example:

changequote([,])

makes the new quotation mar ks the lert and right brackets. You can restore the
original characters with just

changequote

There are two additional built-ins related to define. The built-in undefine
removes the definition of some macro or built-in:

undefine(' N')

removes the definition or "N". Built-ins can be removed with undefine, as in

undefine('define')

but once you remove one, you can never get it back.

The built-in irdef provides a way to determine if a macro is currently defined.
For instance, pretend that either the word "xenix" or "unix" is defined
according to a particular implementation of a program. To perform operations
according to which system you have you might say:

. ifdef('xenix', 'define(system,l)')
ifdef('unix', 'define(system,2),)

Don't forget the quotation marks in the above example.

B-4

M4: A Macro Processor

Irdef actually permits three arguments: if the name is undefined, the value of
ifdef is then the third argument, as in

ifdef('xenix', on XENIX, not on XENIX)

B.5 Using Argu men ts

So far we have discussed the simplest form of macro processing - replacing one
string by another (fixed) string. User-defined macros may also have arguments,
so different invocations can have different results. \Vithin the replacement text
for a macro (the second argument of its define) any occurrence of $n will be
replaced by the nth argument when the macro is actually used. Thus, the
macro bump, defined as

define(bump, $1 == $1 + 1)

generates code to increment its argument by 1:

bump(x)

is

x==x+l

A macro can have as many arguments as you want, but only the first nine are
accessible, through $1 to $9. (The macro name itself is $0.) Arguments that are
not supplied are replaced by null strings, so we can define a macro eat which
simply concatenates its arguments, like this:

define(cat, $1$2$3$4$5$6$7$8$Q)

Thus

cat{x, y, z)

is equivalent to

xyz

The arguments $4 through $9 are null, since no corresponding arguments were
provided.

Leading unquoted blanks, tabs, or new lines that occur during a.rgument
collection are discarded. All other white space is retained. Thus:

define(a, b c)

defines "a" to be lib c".

B-5

XENIX . Programmer's Guide

Arguments are separated by commas, but pa.rentheses a.re counted properly, so
a comma protected by parentheses does not terminate an argument. That is, in

define(a, (b,c))

there are only two arguments; the second is literally "(b,c)". And of course a
bare comma or parenthesis can be inserted by quotingit.

B.6 Using Arithmetic Built-ins

M-I _provides two built-in functions for doing arithmetic on integers. The
simplest is iner, which increments its numeric argument by I. Thus, to handle
the common programming situation where you want a variable to be, defined as
one more than N, write

define(N, 100)
define(Nl, 'incr(N)'}

Then "Nl" is defined as one more than the current value of "N" ..

The more general mechanism for arithmetic is a built-in called eval, which is
capable of arbitrary arithmetic on integers. It provides the following operators
(in decreasing order of precedence):

una.ry + a.nd •
** or" (exponentiation)
• / % (modulus)
+ .
== 1= < <= > >=
I (not)
&, or && (logical and)
I or II (logical or)

Parentheses may be used to group operations where needed. All the operands
of an expression given to eval must ultimately be numeric. The numeric value
of a true relation (like 1> 0) is 1, and false is O. The precision in eval is
implementation dependent.

As asimple example, suppose we want"M" to be"2**N+l". Then

define(N, 3)
define(M, 'eval(2**N+l)')

As a matter of principle, it is advisable to quote the defining text for a macro
unless it is very simple indeed (say just a number); it usually gives the result you
want, and is a good habit to get into.

B-6

M4: A Ma.cro Processor

B.7 Manipulating Files

You can include a new file in the input at any time by the built-in function
include:

include(file name)

inserts the contents of filename in place of the include command. The
contents of the file is often a set of definitions. The value of include (that is, its
replacement text) is the contents of the file; this can be captured in definitions,
etc.

It is a fatal error if the file named in include cannot he accessed. To get some
control over this situation, the alternate form sinclude can be used; sinclude
(for "silent include") says nothing and continues irit can't access the file.

It is also possible to divert the output of m4 to temporary files during
processing, and output the collected material upon command. M4 maintains
nine of these diversions, numbered 1 through 9. Iryou say

divert(n)

all subsequent output is put onto the end of a temporary file referred to as "n".
Diverting to this file is stopped by another divert command; in particular,
divert or divert(O) resumes the normal output process.

Diverted text is normally output all at once at the end of processing, with the
diversions output in numeric order. It is possible, however, to bring back
diversions at any time, that is, to append them to the current diversion.

undivert

brings back all diversions in numeric order, and undivert with arguments
brings back the selected diversions in the order given. The act of undiverting
discards the diverted stuff, as does diverting into a diversion whose number is
not between 0 and 9 inclusive.

The value of undivert is not the diverted stuff. Furthermore, the diverted
material is not rescanned for macros.

The built-in divnum returns the number of the currently active diversion.
This is zero during normal processing.

B.8 Using System Commands

You can run any program in the local operating system with the syscmd
built-in. For example,

B-7

XENIX Programmer's Guide

syscmd(date)

runs the date command. Normally, syscmd would be used to create a file for a
subsequent include.

To facilitate making unique file names, the built-in maketemp is provided,
with specifications identical to the system Cunction mktemp: a string of
"XXXXX" in the argument is replaced by the process id orthe current process.

B.D Using Conditionals

There is a built-in called irelse which enables you to perform arbitrary
conditional testing. In the simplest Corm,

ifelse(4, h, c, tl)

compares the two strings 4 and h. It these are identical, irelse returns the
string c; otherwise it returns d. Thus, we might define a macro called
compare which compares two strings and returns "yes" or "no" irthey are the
same or different.

define(compare, 'ifelse($l, $2, yes, no)')

Note the quotation mar ks, w hichprevent too-early evaluation of irelse.

If the fourth argument is missing, it is treated as empty.

ifelse can actually have any number of arguments, and thus provides a limited
form or multi-way decision capability. In the input

ifelse(4, h, c, tI, e,f, g)

ir the string 4 matches the string b, the result is c. Otherwise, ir dis the same as
e, the result is I. Otherwise the result is g. Ir the final argument is omitted, the
resul t isn ull, so

ifelse(4, h, c)

is c ir 4 matches b, and null otherwise.

B.I0 Manipulating Strings

The built-in len returns the length or the string that makes up its argument.
Thus

len(abcdef)

is 6, and

B-8

M4: A Macro Processor

len((a,b))

is 5.

The built-in substr can be used to produce substringsoCstrings. For example

substr{ 6,i, n)

returns the substring of , that starts at position i (origin zero), and is "
characters long. If n is omitted, the rest of the string is returned, so

s'ubstr('now is the time', 1)

is

ow is the time

It lor nare out of range, various sensible things happen.

The command

index(11,,2)

returns the index (position) in ,1 where the string 120ccurs, or -1 it it doesn't
occur. As with substr, the origin for strings isO.

The built-in translit performs character transliteration.

translit(I, I, t)

modifies I by replacing any character found in Iby the corresponding character
oft. That is

translit{s, aeiou, 12345)

replaces the vowels by the corresponding digits. It t is shorter than I,
characters that don't have an entry in t are deleted; as a limiting ease, if t is not
present at all, characterstrom/are deleted rrom I. So

translit(s, aeiou)

deletes vowels from "s".

There is also a builtrin called dnl which deletes aU characters that follow it up
to and including the next newline. It is useful mainly for throwing away empty
lines that otherwise tend to clutter up m./ output. For example, if you say

B-9

XENIX Programmer's Guide

define(N, 100)
define(M, 200)
define(L, 300)

the newline at the end ot each line is not part ot the definition, so it is copied into
the output, where it may not be wanted. It you add dol to each of these lines,
the newlines will disappe~r.

Another way to achieve this, is

divert(-l}
define{ ...)

divert

B.ll Printing

The builtrin errprint writes its arguments out on the standard error file.
Thus, you can say

errprint('tatal error')

Dumpdet is· a debugging aid tha.t dumps the current definitions ot defined
terms. If there are no arguments, you get everything; otherwise you get the
ones you name as arguments. Don't torget the quotation marks.

B-IO

Index

-c option -u option
C compiler 2-8 lint 3-3

-D option -v option
C compiler 2-13 lint 3-11

-E option lint 3-3
C compiler 2-15 -x option

-h option lint 3-2
lint 3-9 Adb

-I option basic tool 1-1
C compiler 2-14 ar

-1 option description 1-2
C compiler As

-0 option basic tool 1-2
C compiler 2-5 Assembl er See As

-0 option assembler
C compiler 2-10" error messages 2-15

-p option C compiler
C compiler 2-12 -I option, include file

-P option search 2-14
C compiler 2-15 -1 option

-s option library linking 2-9
C compiler 2-10" -0 option

-x option a .out file naming 2-5
C compiler 2-10" -0 option

-a option output optimization
lint 3-8 2-10"

-b option -p option, preproce ssor
lint 3-4 invocation 2-15

-c option -p option, profiling
lint 3-7 code 2-12

-n option -s option, output
lint 3-12 stripping 2-10"

-p option -S option
lint 3-12 assembly language

1-1

XENIX Programmers Guide

output 2-12
-x option, external symbol
entry 2-10"
-X option, symbol saving
2-10"

.s file 2-12
a .out file

default output file 2-3

naming 2-4
assembly language
output 2-12
creating

object files 2-8
D option

macro definition 2-13
error messages 2-15
expression

evaluation order 3-11
function calls

counting 2-12
incl ude file

search 2-14
label discard 2-10"
library

linking 2-9
linking

library 2-9
lint directives,
effect 3-11
macro

definition 2-13
preprocessor 2-15

mon.out file write out 2-
12
multiple source files 2-3
object file

creation 2-4

1 -2

optimization 2-10"
output file See a.out
file
output

assembly language
output 2-12
stripping '2-10"

preprocessing 2-13
preprocessing 2-15
profiling code 2-12
source file

linking 2-4
multiple 2-4
single 2-2

strip command, output
stripping 2-10"
symbol table 2-10"

C language
compiler See cc
usage check 1-1
yacc 9-1

C program
string extraction 1-3

C programming language 1-1
C programs

creating 1-1
C source file

compilation See C
compiler 2-2

C-shell
command hi story
mechanism 1-3
command language 1-3

cc command
error messages 2-15
source file

compiling 2-3

Command
execution 1-3
interpretation 1-3
sces commands See sees
sees See sees

csh
description 1-3

Deb ugg er See Adb
Del ta See sees
Desk calculator

specifications 9-31
Error message file

creation 1-3
execution profile

prof 2-12
File

archives 1-2
block counting 1-3
check sum computation 1-3
error message file See
Error message file
octal dump 1-3
relocation bits
removal 1-3
removal

sees use See sees
Source Code Control System
See sees
symbol removal 1-3
text search, pr int 1-3

FORTRAN
conversion program 8-20"

Hexadecimal dump 1-3
Id

basic tool 1-2
Lex

-11 flag
library access 8-5

0, end of file
notation 8-12
a.out file

contents 8-5
action

default 8-8
description 8-3
repeti tion 8-9
specification 8-8

alternation 8-7
ambiguous source rules 8-
12
angle brackets «»

operator character 8-24

operator character 8-4
start condition
referencing 8-16

arbitrary character
match 8-6
array size change 8-24
aster 1sk (.)

operator character 8-25

operator character 8-4
repeated expression
specification 8-6

automaton interpreter
initial condition
reset ting 8-16

backslash (\)
C escapes 8-4

backslash (\)
operator character 8-24

backslash (\)
operator character 8-4

1-3

XENIX Programmers Guide

backsl ash (\)
operator character
escape 8-4

backslash (\)
operator character
escape 8-6

BEGIN
start condition
entry 8-16

blank char acter
quoting 8-4
rule ending 8-4

blank, tab line
beginning 8-17
braces ({})

expression
repetition 8-8
operator character 8-25

operator character 8-4
brackets ([])

character class
specification 8-5
character class use 8-1

operator character 8-24

operator character 8-4
operator character
escape 8-5

buffer overflow 8-13
C escapes 8-4
caret (A) operator

left context
recognizing 8-15

caret (A)

1-4

. character class
incl usion 8-5

context sensitivity 8-7

operator character 8-24

operator character
string complement

char acter class
notation 8-1
specification 8-5

char ac ter set
specification 8-22

char acter
internal use 8-22
set table 8-22

8-4
8-5

set table 8-24
translation table See
set table

context sensitivity 8-7
copy classes 8-17
dash (-)

operator character 8-24

character class
inclusion 8-5
operator character 8-4
range indicator 8-5

definition
expansion 8-8
format 8-18
placement 8-8

defin i tions
character set table 8-
22
contents 8-18
contents 8-23
format 8-23
location 8-18

specification 8-17
delimiter

discard 8-18
rule beginning
marking 8-1
source format 8-2
third delimiter,
copy 8-18

description 1-2
description 8-1
dollar sign ($) operator

right context
recognlzlng 8-15

dollar sign ($)
context sensitivity 8-7

end of line
notation 8-1
operator character 8-24

operator character 8-4
dot (.) operator See
per iod (.)
double precision constant
change 8-21
ECHO

format argument, data
pr inting 8-9

end-of-file
o handling 8-12
yywrap routine 8-12

env ironment
change 8-15

expression
new line illegal 8-4
repetition 8-8

external character
array 8-9

flag
environment change 8-15

FORTRAN conversion program
8-20"

grouping 8-7
I/O library See library
I/O routine

access 8-11
consistency 8-11

input () routine 8-11
input routine

char acter I/O
handling 8-22

input
description 8-1
end-of-file, 0
ignoring 8-8
manipulation
restriction 8-15

invocation 8-4
left context 8-7

caret (A) operator 8-15

sensitivity 8-15
lex.yy.c file 8-5
lexical analyzer

environment change 8-15

library
access 8-5
avoidance 8-5
backup limitation 8-12
loading 8-19

line beginning ,match 8-7
line end match 8-7
loader flag See -11 flag

1-5

XENIX Programmers Guide

lookahead
characteristic 8-12
lookahead characteristic

8-10"
match count 8-9
matching

occurrence counting 8-
13
preferences 8-12

new line
illegali ty 8-4

newline
escape 8-23
matching 8-13

octal escape 8-6
operator character

escape 8-4
quoting 8-4

operator characters
aaSee also Specific
Operator Character
designated 8-24
escape 8-5
escape 8-6
listing 8-4
literal meaning 8-4

optional expression
specification 8-6

output (c) routine 8-11
output routine

char acter I/O
handling 8-22

parentheses «»
grouping 8-7
operator character· 8-4

parenthesis «»
operator character 8-25

1-6

parser generator
analysis phase 8-2

percentage sign (~)

delimiter notation
(~') 8-1
operator character
remainder operator

source segment
separator 8-8

period (.) operator
designted 8-24

period (.)
arbitrary character
match 8-6

8-4
8-19

newline no match
operator character

pI us sign (+)
operator character

8-13
8-4

8-25

oper ator character 8-4
repeated expression
specification 8-6

preprocessor statement
entry 8-18
question mark (?)

operator character 8-25

operator character 8-4
optional expression
specification 8-6

quotation marks, double
(\0
real numbers rule 8-18
regular expression

descripti6n 8-3
end indication 8-3

operators See operator
characters
rule component 8-3

REJECT 8-14
repeated expression

specification 8-6
right context

dollar sign ($)
operator 8-15

rule
active 8-16
real number 8-18

rules
components 8-3
format 8-24

semicolon (;)
null statement 8-8

slash (/)
operator character 8-25

operator character 8-4
trailing text 8-7

source definitions
specification 8-17

source file
format 8-23

source progr am
compilation 8-4

source
copy into generated
program 8-17
description 8-1
format 8-17
format 8-2
interception
failure 8-17
segment separator 8-8

spacing character
ignoring 8-9
start condition 8-7

entry 8-16
environment change 8-15

start conditions
format 8-23
location 8-23

start
abbreviation 8-16

statistics gathering 8-
20"
string

printing 8-3
substitution string

defin i tion See
definition

tab line beginning See
blank, tab line beginning

text character
quoting 8-4

trailing text 8-7
unput (c) routine 8-11
unput routine

char acter I/O
handling 8-22

unput

lex

REJECT
noncompatible 8-15

unreachable statement 3-4
Lex

vertical bar (D
action repetition 8-9
al ternation 8-7

1-7

XENIX Programmers Guide

operator character 8-25

operator character 8-4
wrapup See yywrap routine

Yacc interface
tokens 8-19
yylex(} 8-18

Yacc
interface 8-2
library loading 8-19

yyleng variable 8-9
yyless ()

text reprocessing 8-10

yyless (n) 8-10
yylex () program

lace interface 8-18
yylex program

contents 8-1
yymore () 8-10
yytext

external character
array 8-9

yywrap () 8-20
yywrap(} routine 8-12

Library
conversion 1-2
maintenance 1-2
ordering relation 1-2
sort 1-2

linker
error messages 2-15

Lint
-h option 3-9
-a option 3-8
-b option 3-4

1-8

-c option 3-7
-ly directive 3-12
-n option 3-12
-p option 3-12
-u option 3-3
-v option

turnon 3-11
unused variable report
suppression 3-3

-x option 3-2
ARGSUSED directive 3-11
ARGSUSEDdirective 3-12
argument number comments
turnoff 3-11
assignmeRt of long to int

check 3-8
aSSignment operator

new form 3-10"
old form, check 3-9
operand type
balancing 3-6

aSSignment, implied See
implied assignment
binary operator, type
check 3-6
break statement

unreachable See
unreachable break
statement

C language check 1-1
C program check 3-1
C syntax, old form,
check 3-9
cast See type cast
conditional operator,
operand type balancing 3-E

constant in conditional
context 3-9
construction check 3-1
construction check 3-8
control information
flow 3-11
degenerate unsigned
corn par ison 3-8
description 3-1
directive

defined 3-11
embedding 3-11

enumeration, type
check 3-6
error message, function
name 3-5
expression, order 3-10"
extern statement 3-2
external declaration,
report suppression 3-2
file

library declaration file
identification· 3-12

function
error message 3-5
return value check 3-5
type check 3-6
unused See unused
function

implied assignment, type
check 3-6
initialization, old style
check 3-10"
library

compatibility check 3-
12
compatibility check
suppression 3-12

directive
acceptance 3-12
file processing 3-12

LINTLIBRARY directive 3-12

loop check 3-4
nonportable character
check 3-7
non portable expression
evaluation order check

3-10"
NOSTRICT directive 3-11
NOTREACHED directive 3-11
operator

oper and types
balancing 3-6
precedence 3-9

output turnoff 3-11
pointer

agreement 3-6
alignment check 3-10"

relational operator,
operand type balancing 3-6

scalar variable check 3-11

source file, library
compatibility check 3-12
statement, unlabeled
report 3-4
structure selection
operator, type check 3-6
syntax 3-1
type cast

check 3-7
comment printing
control 3-7

1-9

XENIX Programmers Guide

type check
description 3-6
turnoff 3-11

unreachable break
statement, report
suppression 3-4
unused argument

report suppression 3-3

unused function, check 3-2

unused variable, check 3-2

VARARGS directive 3-12
variable

external variable
initialization 3-4
inner/outer block
conflict 3-9
set/used
information 3-3
static variable
initialization 3-4
unused See unused
variable

Load er See ld
Loop

lint use See Lint
lorder

description 1-2
m

4" description
Macros

preprocessing 1-2
Mainta iner See Make
make command

arguments 4-4

1-10

syntax 4-4
Make

-d option 4-13
-n option 4-13
-t option 4-13
.c suffix 4-9
.DEFAULT 4-5
• f suffix 4-9
• IGNORE 4-5
.1 suffix 4-9
.0 suffix 4-9
• PRECIOUS 4-5
.r suffix 4-9
• s suffix 4-9
.SILENT 4-5
.y suffix 4-9
.yr suffix 4-9
argument quoting 4-6
backslash (\)

description file
continuation 4-2

ba sic tool 1-2
command argument

macro definition 4-6
command string
substitution 4-5
command str ing

hyphen (-) start 4-5
command

form 4-1
location 4-1
print without
execution 4-13

dependency line
substitution 4-5
dependency line

form 4-1

description file
comment convention 4-1

macro definition 4-6
description filename

argument 4-4
doll ar sign ($)

macro invocation 4-6
equal sign (=)

macro definition 4-5
file generation 4-5
file update 4-1
file

time, date printing 4-
13
updating 4-13

hyphen (-)
command str ing
start 4-5

macro definition
anal ysis 4-6
arg ument 4-4
description 4-5

macro
definition 4-6
definition override 4-6

invocation 4-6
substitution 4-5
value assignment 4-6

medium sized projects 4-1
metacharacter
expansion 4-1
number sign (II)

description file
comment 4-1

object file
suffix 4-9

option argument
use 4-4

parentheses «»
macro enclosure 4-6

program maintenance 4-1
semicolon (;)

command
introduction 4-1

source file
suffixes 4-9

source grammar
suffixes 4-9

suffixes
list 4-9
table 4-9

target file
pseudo-target files 4-5

update 4-13
target filename

argument 4-4
target name omission 4-3
touch option See -t
option
transformation rules

table 4-9
troubleshooting' 4-13

Notational conventions 1-5
Object files

creating 2-8
Pipe

SCCS use See SCCS
prof command 2-12
Program development 1-1
Program

maintainer See Make
ps command

C-shell use See C-shell

1-11

XENIX Programmers Guide

Quotation marks, single (")
C-shell use See C-shell

ranlib
desor.iption 1-2

rm command
'secs use See SCCS

sees, source oode
control 1-3

secs
SMS keyword

g-file line
precedence 5-30

-a option
login name addition
use 5-23

-d flag
flags deletion 5-16

-d option
data speoifioation
provision 5-20"
flag removal 5-16

-e option
delta range
pr inting 5-21
file editing use 5-7
login name removal 5-24

-f option
flag initialization ,
modification 5-15
flag, value setting 5-
16

-g option
output suppression 5-
30"
p-file regeneration 5-
26

1-12

-h option
file audit use 5-25

-i flag
keyword message, error
treatment 5-15

-i option
delta inolusion list
use 5-28

-k option
g-file regeneration 5-
26

-1 option
del ta range
pr inting 5-21
l-file creation 5-29

-m option
effective when 5-18
file change
identification 5-30"
new file creation 5-27·

-n option
SMS keyword value use

5-30"
g-file preservation 5-
12
pipeline use 5-30"

-p option
delta printing 5-30"
output effect 5-11

-r option
delta oreation use 5-22

delta printing use 5-21

file retrieval 5-9
release number
specification 5-27

-s option
output suppression 5-28

-t option
delta retrieval 5-11
file initialization 5-
19
file modification 5-19

-x option
delta exclusion list
use 5-28

-y option
comments prompt
response 5-17
new file creation 5-27

-z key
file audit use 5-26

tH 11) string
file information,
search 5-31

admin command
file administration 5-
25
file checking use 5-25
file creation 5-5
use authorization 5-6

administrator
description 5-4

argument
minus sign(-) use
types designated 5-4

branch delta
retrieval 5-10"

branch number
description 5-2

cdc command
commentary change 5-17

ceiling flag
protection 5-24

checksum
file corruption
determination 5-25

command
argument See argument

execution control 5-4
explanation 5-26

comments
change procedure 5-17
omission, effect 5-28

corrupted file
determination 5-25
processing
restrictions
restoration

d flag

5-25
5-26

default
specification 5-16

d-file
temporary g-file 5-4

data keyword
data specification
component 5-20"
replacement 5-20"

data specification
description 5-20"

delta command
comments prompt 5-8
file change
procedure 5-8
g-file removal 5-12
p-file reading 5-7
p-file reading 5-8

delta table
del ta removal,

1-13

XEN1X Programmers Guide

effect 5-31
description 5-17

delta
branch delta See branch
delta
defined 5-1
d.efined 5-2
exclusion 5~28
incl usion 5-28
interference 5-29
latest release
retr ieval 5-11
level number See level
number
name See 181D"
printing 5-21
pr inting 5-30"
range printing 5-21
release number See
release number
removal 5-31

descriptive text
initialization 5-19
modification 5-19
removal 5-19

diagnostic output
-p option effect 5-12

diagnostics
code as help
argument 5-12
form 5-12

directory use 5-1
directory

file argument
application 5-4
x-file location 5-3

error message
code use 5-12

1-14

form 5-12
exclamation point (I)

HR deletion use 5-19
file argument

description 5-4
processing 5-4

file creation
comment line
generation 5-28
commentary 5-27
comments omission,
effect 5-28
level number 5-27
release number 5-27

file protection 5-23
file

administration 5-25
change identification

5-30"
change procedure 5-8
change, major 5-9
changes See delta
checking procedure 5-25

comparison 5-32
composition 5-16
composition 5-2
corrupted file See
corrupted file
creation 5-5
data keyword See data
keyword
descriptive text
description 5-17
descriptive text See
descriptive text
editing, -e option
use 5-7

grouping 5-1
identifying
information 5-31
1 ink See 1 ink
multiple concurrent
edits 5-22
name arbitrary 5-12
name See 1 ink
name, s use 5-5
parameter
initialization,
modification 5-19
pr inting 5-20"
protection methods 5-23

removal 5-5
retrieval See get
command
x-file See x-file

flags
deletion 5-16
initialization 5-15
modification 5-15
setting, value
setting 5-16
use 5-16

floor flag
protection 5-24

g-file
creation 5-3
creation date, time
recordation 5-13
description 5-3
line identification

5-30"
line, ~M~ keyword value

5-30"

owner ship 5-3
regeneration 5-26
removal, delta command
use 5-12
temporary See d-file

get command
-e option use 5-7
concurrent editing,
directory use 5-21
delta inclusion,
exclusion check 5-29
file retrieval 5-6
filename creation 5-6
g-file creation 5-3
message 5-6
release number
change 5-9

help command
argument 5-12
code use 5-12
use 5-26

i flag
file creation,
effect 5-14

ID keyword See keyword
identification string See
1SID"

j flag
multiple concurrent
edits specification 5-
22

keyword
data See data keyword

format 5-13
lack, error
treatment 5-15

1-15

XENIX Programmers Guide

use 5-13
l-file

contents 5-3
creation 5-29

level number
del tacomponent 5-2
new file 5-27
omission ,file
retrieval, effect 5-9

link
number restriction 5-2

lock file See z-file
lock flag

R protecti.on5-24
minus sign (-)

option argument use 5-4

minus sign(-)
argument use 5-4

mode
g-file 5-3

HR
commentary supply 5-17

deletion 5-18
new file creation 5-27

multiple users 5-4
option argument

description 5-4
processing order 5-4

output
data specification See
data specification
suppression, -g option

5-30"
suppression, -8
option 5-28

write to standard
output 5-11

p-file
contents 5-3
contents 5-7
creation 5-3
delta command
reading 5-8
naming 5-3
ownership 5-3
permissions 5-3
regeneration 5-26
update 5-3
updating· 5-4

percentage sign (S)
keyword enclosure 5-13

piping 5-28
-n option use 5-30"

prs command
file printing 5-20"

purpose 5-1
q file

R
use 5-4

delta removal check 5-
31

release number
-r option,
specification 5-27
change 5-2
change procedure 5-9
delta component 5-2
new file 5-27

release
protection 5-24

rm command
file removal 5-5

rmdel command
delta removal 5-31

sccsdiff command
file comparison 5-32

sequence number
description 5-2

tab character
-n option, designation

5-30"
user list

empty by default 5-23
login name addition 5-
23
login name removal 5-24

protection feature 5-23

user name
list 5-23

v flag
new file use 5-16

what command
file information 5-31

write permission
delta removal 5-31

x-file
directory, location 5-3

naming procedure 5-3
permissions 5-3
tempor ary file copy 5-3

use 5-3
XEN1X command

use precaution 5-25
z-file

lock file use 5-3

ownership 5-3
permissions 5-3

1S10" components
1S1D" delta printing
use

SCS
output

piping 5-28
Semicolon (;)

C-shell use See C-shell
Software development

described 1-1
Source Code Control System

See SCCS
Source files 1-1
strip

description 1-3
sum

description 1-3
Symbol

name list 1-3
removal 1-3

sync
description 1-3

Tags file
creation 1-3

Text editor
creating programs 1-1

tsort
description 1-2

vi, the screen-oriented text
editor 1-1

XENIX file
identifying
information 5-31

Yacc
~ token keyword

1-17

XENIX Programmers Gu1de

union member name
association 9-30"

Sleft keyword 9-20"
Ile n:. keyword

union member name
association . 9-30"

Sleft token
synonym 9-42

Snonassoc keyword 9-21
union member name
association 9-30"

Inonassoc token
synonyms 9-42

Spree keyword 9-21
Sprec

synonym 9-42
Sright keyword 9-21

union member name
association 9-30"

Sr ight token
synonym 9-42

Stoken
synonym 9-42

Stype keyword 9-31
)

o key"
-ly argument, library
access 9-25
-v option

y.output file 9-13
o character

grammar rules •
. avoidance 9-5

accept action See parser
accept simulation 9-29
action

0, negative number 9-
29

1-18

conflict source 9-17
defined 9-7
error rules 9-23
torm 9-42
global flag setting 9-
28
input style 9-26
invocation 9-1
location 9-8
nonterminating 9-8
parser See parser
return value 9-30"
statement 9-7
statement 9-8
value in enclosing
rules, access 9-29

ampersand (&)
bitwise AND
operator 9-31
desk calculator
operator 9-31

arithmetic expression
desk calculator 9-31
parsing 9-20"
precedence See
precedence

associativity
arithmetic expression
par sing 9-20"
grammar rule
association 9-22
recordation 9-22
token attachment 9-20"

asterisk (*)
desk calculator
oper ator 9-31

-b ac ks 1 ash (\)
escape character 9-5
percentage sign (~)

substitution 9-41
binary operator

precedence 9-21
blank char acter

restrictions 9-5
braces ({})

action 9-8
action statement
enclosure 9-7
action, dropping 9-42
header file enclosure

9-30"
colon (:)

identifier, effect 9-33

punctuation 9-5
comments

location 9-5
conflict

associativity See
associativity
disambiguating
rules 9-17
message 9-19
precedence See
precedence
reduce/reduce
conflict 9-17
reduce/reduce
conflict 9-22
resolution, not
counted 9-22
shi ft/reduce
conflict 9-17

shi ft/reduce
conflict 9-19
shi ft/reduce
con fl ic t 9-22
source 9-17

declaration section
header file 9-30"

declaration
specification file
component 9-4

description 1-2
desk calculator
specifications 9-31
desk calculator

advanced features 9-35

error recovery 9-36
floating point
interval 9-35
scalar conversion 9-36

dflag 9-28
disambiguating ~ule 9-17
disambiguating rules 9-17
dollar sign ($)

action significance 9-7

empty rule 9-27
enclosing rules,
access 9-29
endmarker

lookahead token 9-12
parser input end 9-6
representation 9-6
token number 9-10"

environment 9-25
error action See parser
error token

parser restart 9-23

1-19

XENIX Programmers Guide

error
handling 9-23
nonassociating
implication 9-22
parser restart 9-23
simulation 9-29
yyerrok statement 9-24

escape characters 9-5
external interger
var iable 9-26
nag

global flag See global
flag

floating point intervals
See desk calculator
global flag

lexical analysis 9-28
grammar rules 9-1

o character avoidance
9-5
advanced features 9-35
ambiguity 9-15
associativity
association 9-22
C code location 9-42
empty rule 9-27
error token 9-23
format 9-5
input style 9-26
left recursion 9-27
left side
repeti tion 9-5
names 9-5
numbers 9-20"
precedence
association 9-22
reduce action 9-1'

1-20

reduction 9-12
rewrite 9-17
right recursion 9-27
specification file
componen t 9-4
value 9-7

header file, union
declaration 9-30"
historical features 9-41
identifier

input syntax 9-33
if-else rule 9-18
if-then-else
construction 9-17
input error detection 9-3
input language 9-1
input

style 9-26
syntax 9-33

keyword 9-20"
keyword

reservation 9-29
union member name
assQciation 9-30"

left association 9-16
left associative

reduce implication 9-22

left recursion 9-27
value type 9-31

lex
interface 8-2
lexical analyzer
construction 9-10"

lexical analyzer
context dependency 9-28

defined 9-1
defined 9-9
endmarker return 9-6
floating point
constants 9-31
function 9-2
global flag
examination 9-28
identifier analysis
lex 9-10"
return value 9-30"
scope 9-8
specification file
component 9~
terminal symbol See
terminal symbol
token number
agreement 9-9

lexical tie-in 9-28
library 9-25
library 9-26
literal

defined 9-5
delimiting 9-41
length 9-41

lookahead token 9-10"
lookahead token

clearing 9-24
error rules 9-23

LR(2)
main program
minus -sign (-)

desk calculator
operator 9-31

names
composition 9-5
length 9-5

reference 9-4
token name See token
name

newline character
restrictions 9-5

nonassociating
error implication 9-22

nonterminal name
input style 9-26
representation 9-5

nonterminal symbol 9-2
empty string match 9-6
location 9-6
name See nonterminal
name
start symbol
symbol

See start

nonterminal
union member
association

octal interger
o beginning

parser

name
9-31

9-31

accept action 9-12
accept simulation 9-29
ac tions 9-1 1
arithmetic expression

9-20"
conflict See conflict
creation 9-20"
defined 9-1
description 9-10"
error action 9-12
error handling See
error
goto action 9-12

1-21

XENIX Programmers Guide

initial state 9-15
input end 9-6
lookahead token 9-11
movement 9-11
names, yy prefix 9-9
nonterminal symbol See
non terminal
production failure 9-3
reduce action 9-11
restart 9-23
shift action 9-11
start symbol
recogni tion 9-6
token number
agreement 9-9

percentage Sign (I)
action 9-8
desk calculator mod
operator 9-31
header file enclosure

9-30"
precedence keyword 9-
20"
specification file
section separator 9-4
substitution 9-41

plus sign (+)
desk calculator
operator 9-31

precedence
binary operator 9-21
change 9-21

1-22

grammar rule
association 9-22
keyword 9-20"
par sing function 9-20"

recordation 9-22
token attachment 9-20"

unary operator 9-21
program

specification file
component 9-4

punctuation 9-5
quotation marks, double
(9-41
quotation marks, single

(")
literal enclosure 9~5

reduce action See parser
reduce command

number reference 9-20"

reduce/reduce conflict 9-
17
reduce/reduce conflict 9-
22
reduction conflict See
reduce/reduce conflict
reduction conflict See
shift/reduce conflict
reserved words 9-28
right association 9-16
right associative

shi ft impl ication 9-22

right recursion 9-27
semicolon (;)

input style 9-26
punctuation 9-5

shift action See parser
shi ft command

number reference 9-20"

shift/reduce conflict 9-17

shift/reduce conflict 9-19

shift/reduce conflict 9-22

simple-if rule 9-18
slash (/)

desk calculator
operator 9-31

specification file
contents 9-4
1 ex ic al an al yzer
inclusion 9-4
sections separator 9-4

specification files 9-2
start symbol

description 9-6
location 9-6

symbol synonyms 9-41
tab character

restrictions 9-5
terminal symbol 9-2
token name

decl ar ation 9-6
input style 9-26

token names 9-10"
token number 9-9

agreement 9-9
assignment 9-10"
endmarker 9-10"

token
associativity
defined 9-1

9-20"

error token See error
token
names 9-4

organization 9-1
precedence 9-20"

unary operator
precedence 9-21

underscore sign ()
par ser 9-14 -

union
copy 9-30"
declaration 9-30"
header file 9-30"
name association 9-30"

yacc
unreachable statement 3-4

Yacc
value stack 9-30"
value stack

declaration 9-30"
floating point scalars,
intergers 9-36

value
typing 9-30"
union See union

vertical bar (I)
bi twi se OR oper ator 9-
31
desk calculator
operator 9-31
grammar rule
repeti tion 9-5
input style 9-26

y.output file 9-13
parser checkup 9-22

y.tab.c file 9-25
y.tab.h file 9-30"
YYACCEPT 9-29
yychar 9-26

1-23

XENIXProgrammers Guide

yyclearin statement 9-24
yydebug 9-26
yyerrok statement 9-24
yyerror 9-25
YYERROR9-36
yylex 9-25
yyparse 9-25

YYACCEPT effect 9-29
YYSTYPE 9-30"

XENIX Timesharing
system 1-1

1-24

Information in this document is subject to change without notice and
does not represent a commitment on the part of The Santa Cruz
Operation, Inc. and Microsoft Corporation. The software described in
this document is furnished under a license agreement or nondisclosure
agreement. The software may be used or copied only in accordance
with the terms of the agreement.

CThe Santa Cruz Operation, Inc., 1984
@Microsoft Corporation, 1983

The Santa Crus Operation, Inc.
500 Chestnut Street
P.O. Box 1900
Santa Cruz, California 95061
(408) 425-7222 • TWX: 910-598-4510 SeQ SACZ

UNIX is a trademark of Bell Laboratories
XENIXis a trademark of Microsoft Corporation
Apple, Lisa 2, and ProFile are trademarks of Apple Computer Inc.

Release: 68-5-24-84-1.0/1.0

5.8 . Waiting f<l" a Process 5-6
5.9 Inheriting Open Files 5-7
5.10 Program Example 5-7

6 CreatblgaDdUsbJgPlpes

6.1 Introduction 6-1
6.2 Opening aPipe toa New Process 6-1
6.3 ReadingandWritingtoaProcess 6-2
6.4 Closing a Pipe 6-2
6.5 OpeningaLow-LevelPipe 6-3
6.6 ReadingandWritingtoaLow-LevelPipe 6-4
6.7 Closing a Low Level Pipe 6-4
6.8 Program Examples 6-5

7 UsingSigDals

7.1 Introduction 7-1
7.2 UsingthesignalFunction 7-1
7.3 Controlling Execution with Signals 7-7
7.4 Using Signals in MuhipleProcesses 7-11

8 Using System Resources

8.1 Introduction 8-1
8.2 AUocatingSpace 8-1
8.3 LockingFiles 8-4
8.4 UsingSemapbores 8-6
8.5 Using Shared Memory 8-12

9 Error Processing

9.1 Introduction 9-1
9.2 Using Standard Err<l" Handling 9-1
9.3 U sing theermo Variable 9-2
9.4 PrintingError Messages 9-2
9.5 U sing Error S ignals 9-3
9.6 Encountering System

Appendix A Assembly LauguageIDterface

A.l Introduction A-I

Chapter 5 describes the process control functions. These functions let a
program execute other programs and create multiple copies of itself.

Chapter 6 describes the pipe functions. These functions let programs
communicate with one another withcout resorting to the creation of temporary
files.

Chapter 7 describes the signal functions.· These functions leta program process
signals that are normally processed by the system.

Chapter 8 describes system resource functions. These functions let a program
dynamically allocate memory, share memory with other programs, lock files
against access by other programs, and use semaphores.

Chapter 9 describes the error processing functions. These functions leta
program process errors encountered while accessing the file system or
allocating memory.

Appendix A describes the assembly language interface with Cprograms and
explains the calling and return value conventions or 0 functions.

Appendix B explains how to create and use new XENIX system calls.

This manual assumes that you understand the 0 programming language and
that you are familiar with the XENIX shell, III,. Nearly all programming
examples in this guide are written in 0, and all examples showing a shell use the
,hshell.

1.4 Notational Conventions

This manual uses a number otspecial symbols to describe the torm ot the
library function calls. The rollowing is a list or these symbols and theirmeanlng.

()

SMALL

italics

1-2

Brackets indicate an optional function argument.

Ellipses indicate that the preceding argument may be repeated
one or more times.

Small capitals indicate manirest constants. These system­
dependent constants and are defined in a variety ot include files.

Italic characters indicate placeholders ror runction arguments.
These must be replaced with appropriate values or names ot
variables.

2.5.3 Setting the BuO'er 2-23
2.5.4 Putting a Character Back into aBuO'er 2·24
2.0.5 Flushing a File BuO'er2-25

2.6 Using the Low-Level Functions 2-25
2.6.1 Using File Descriptors 2-26
2.6.2 OpeningaFile 2-26
2.6.3 Reading Bytes From a File 2-27
2.6.4 WritingBytestoaFile 2-27
2.6.5 Closing a File 2-28
2.6.6 ProgramExamples 2-28
2.6.7 UsingRandomAccessI/O 2-31
2.6.8 Moving the Character Pointer 2-31
2.6.9 Moving the CharacterPointer in a Stream 2-32
2.6.10 Rewinding a File 2-33
2.6.11 Getting the Current Character Position 2-33

XENIX Programmer's Reference

The following is a list of the special names:

stdin

stdout

stderr

EOF

NULL

FILE

BSIZE

The name of the standard input file.

The name of the standard output file.

The name orthe standard error file.

The value returned by the read routines on end-of-fileor error.

The null pointer, returned by pointer-valued functions, to indicate
an error.

The name of the file type used to declare pointers to streams.

The size in bytes (usually 1024) suitable for an I/0 buffer supplied
by the user.

2.1.3 Special Macros

The functions getc, getc har, putc ,putchar,/e o/,/error, and fileno are actually
macros, not functions. This means that you cannot redeclare them or use them
as targets tor a breakpoint when debugging.

2.2 Using Command Line Arguments

The XENIX system lets you pass information to a program at the same time you
invoke it for execution. You can do this with comma.nd line arguments.

A XENIX command line is the line you type to invoke a program. A command
line argument is anything you type ill a XENIX command line. A command line
argument can be a filename, an option, or a number. The first argument in any
command line must be the filename of the program you wish to execute.

When you type a command line, the system reads the first argument and loads
the corresponding program. It also counts the other arguments, stores them in
memory in the same order in which they appear on the line, and passes the
count and the locations to the main function of the program. The function can
then access the arguments by accessing the memory in which they are stored.

To access the arguments, the main function must have two· parameters:
"argc", an integer variable containing the argument count, and "argv", an
array of pointers to the argument values. You can define the parameters by
using the lines:

2-2

XENIX Programmer's Reference

2.3 Using the Standard Files

Whenever you invoke a program for execution, the XENIX system
automatically creates a standard input, a standard output, and a standard
error file to handle a. program's input and output needs. Since the bulk of input
and output of most programs is through the user's own terminal, the system
normally assigns the user's terminal keyboard and screen as the standard input
and output, respectively. The standard error file, which receives any error
messages generated by the program, is also assigned to the terminal's screen.

A program can read and write to the standard input and output files with the
getc/tar, get6, ,co.n/, putckar, put" and print/functions. The standard error
file can be accessed using the stream functions described in the section "Using
Stream I/O" later in this chapter.

The XENIX system lets you redirect the standard input and output using the
. shell's redirection symbols. This allows a program to use other devices and files
as its chief source of input and output in place of the terminal's keyboard and
screen.

The following sections explains how to read from and write to the standard
input and output. It also explains how to redirect the standard input and
output.

2.3.1 Reading From the Standard Input

You can read from the sta.ndard input with the geteko.r, geh, and ,can/
functions.

The getchar function reads one character at a time from the standard input.
The function call has the form:

e = getcharO

where c is the variable to receive the character. It must have int type. The
function normally returns the character read, but will return the end-of-file
value EOF if the end of the file or an error is encountered.

The getckar function is typically used in a conditiona.lloop to read a string of
characters from the standa.rd input. For example, the following function reads
"cnt" number of characters from the keyboard.

2-4

XENIX Programmer's Reference

. where format is a pointer to a string that defines the rormat or the values to be
read and argptr is one or more pointers to the variables that will receive the
values. There must be one argptr ror each rormat given in the format string.
The format may be "%s" ror a string, "%c" ror a character, and "%d", "%0",
or "%x" ror a decimal, octal, or hexadecimal number, respectively. (Other
rormats are described in Icanf(S) in the XENIX Reference Manual.) The
runction normally returns· the number or values it r.ead rrom the standard
input, but it will return the value £OF ir the end or the file or an error is
encountered.

Unlike the getch,ar and getl runctions, Ican/ skips allwhitespace cha.ra.cters,
reading only those characters which make up a value. It then converts the
characters, ir necessary, into the appropriate string or number.

The lean/runction is typically used whenever rormatted input is required, i.e.,
input that must be ty ped in a special way or which has a special meaning. For
example, in the rollowing program fragment Ican/ reads both a name and a
number from the same line.

char namel20);
int number;

scanf(" %s %d", name, &number)j

In this example, the string "%s %d" defines what values are to be read (a
string and a decimal number). The string is copied to the character array
"name" and the number to the integer variable "number". Note that pointers
to these variables are used in the call and not the actual variables themselves.

When reading rrom the keyboard, scan/ waits for values to be typed before
returning. Each value must be separated from the next by one or more
whitespace characters (such as spaces, tabs, or even newline characters). For
example, ror the runction:

scanf("%s %d %c", name, age, sex);

an acceptable input is:

John 21
M

If a value is a number, it must have the appropriate digits,that is, a decimal
number must have decimal digits, octal numbers octal digits, and hexadecimal
numbers hexadecimal digits.

If IC an/ encounters an error, it immediately stops reading the standard input.
Before Bcan/ can be used again, the illegal character that caused the error must
be removed from the input using the getchartunction.

2-6

XENIX Programmer's Reference

Since the Cunction aut.omatically appends a newline character, it is typically
used when writing Cull lines to the standard output. For example, the following
program Cragment writes one oC three strings to the standard output.

char Cj

switch(c) {
case(' 1 '):

case('2'):

deCault:

}

puts(" Con tinuing ... ");
break;

puts(" All done.")j
break;

puts("Sorry, there was an error.");

The string to be written depends on the value of "c".

The print/function writes one or more values to the standard output where a
value is a character string or a decimal, octal, or hexadecimal number. The
function automatically converts numbers into the proper display format. The
Cunction call has the Corm:

printf(Jormat[, arg] ...)

where format is a pointer to a string which describes the format oCeach value to
be written and arg is one or more variables containing the values to be written.
There must be one arg for each Cormat in the format string. The formats may
be "%s" Cor a string, "%c" for a chara.cter,and "%d", "%0", or "%x" for a
decimal, octal, or hexadecimal number, respectively. (Other formats are
described in print/(S) in the XENIX Re/erenee Manual.) It a string is requested,
the corresponding 4rg must be a pointer. The function normally returns zero,
but will return a nonzero value if an error is encountered.

The print! function is typically used when formatted output is required, i.e.,
when the output must be displayed in a certain way. For example, you may use
the function to display a name and number on the same line as in the following
example.

char name 0;
int number;

printf(" %s %d" , name, number);

In this example, the string "%s %d" defines the type of output to be displayed
(a string and a number separated by a space). The output values are copied
Crom the character array "name" and the integer variable "number".

2-8

XENIX Programmer's Reference

For example, the command line

dial I wc

connects the standard output of the program dial to the standard input or the
program we. (The standard input or dia.l and standard output or we are not
affected.) It dial writes to its standard output with the puteluJr, put., or print/
runctions, we can read this output with the getcAarand ,c4n/runetions.

Note that when the program on the output side or a pipe terminates, the system
automatically places the constant value EOF in the standard input or the
program on the input side. Pipes are described in more detail in Chapter 6,
"Creating and Using Pipes".

2.3.6 Program Example

This section shows how you may use the standard input and output files to
perform useful tasks. The ceetrip (for "control character strip") program
defined below strips out all ASCn control characters from its input except tor
newline and tab. You may use this program to display text or data files which
contain characters that may disrupt your terminal screen.

#include <stdio.h>

mainO /* ccstrip: strip nth characters */
{

}

int Ci
while ((c == getchar()) !== EOF)

exit(O);

if ((c >= ' , && C < 0177) II
c ==='\t' II c === '\n')
putchar(C)i

You can strip and display the contents of a single file by changing the standard
input orthe cCBtripprogram to the desired file. The command line

ccstrip <doc.t

reads the contents orthe file doc. t, strips out control characters, then writes the
stripped file to the standard output.

Ir you wish to strip several files at the same time, you can create a pipe bet ween
the cat command and cCltrip.

To read and strip the contents or the files jilel, file2, and file9, then display
them on the standard output use the command:

2-10

XENIX Program mer '8 Reference

The standard input, output, and error files, like other opened files, have
corresponding file pointers. These file pointers are named ,tdin for sta.ndard
input, ,tdout for standard output, a.nd etderrCor standard error. Unlike other
file pointers, the standard file pointers are predefined in the ,tdio.'" file. This
means a program may use these pointers to read and write from the standard
files without first using the/open function to open them.

The predefined file pointers are typically used when a program needs to
alternate between the standard input or output file and an ordinary file.
Although the predefined file pointers have FILE type, they are constants,not
variables. They must not be assigned values.

2.4.2 Opening a File

The /open function opens a given file and returns a pointer (called a file pointer)
to a structure containing the data necessary to access the file. The pointer may
then be used in subsequent stream functions to read from or write to the file.

The function call has the rorm:

/p = fopen(fllename, tgpe)

where /p is the pointer to receive the file pointer, filename is a pointer to the
name of the file to be opened andtgpe isa pointer to a string that defines how
the file is to be opened. The type string may be "r" for reading, "w" for
writing, and "a" for appending, that is, open for writing at the end orthe file.

A file may be opened for different operations at the same time ir separate file
pointers are used. For example, the following program fragment opens the file
named /Ulr/ accountefor both reading and writing.

FILE *rp, *wPi

rp = fopen(" /usr/accounts" ,"r");
wp = fopen(" /usr /accounts" ," a");

Opening an existing file ror writing destroys the old contents. Opening an
existing file ror appending leaves the old contents unchanged and causes any
data written to the file to be appended to the end.

Trying to open a nonexistent file for reading causes an error. Trying to open a
nonexistent file ror writing or appending causes a new file to be created. Trying
to open any file for which the program does not have appropriate permission
causes an error.

The function normally returns a valid file pointer, but will return the value
NULL if an error opening the file is encountered. It is wise to check ror the NULL
value after each call to the runction to prevent reading or writing arter an error.

2-12

XENIX Programmer's Rererence

The function is typically used to read a full line from a file. For example, the
following program fragmen.t reads a string oC charactersCrom the file given by
"myfile" .

char cmdln[MAX];
FILE *myfile;

if (fgets(cmdln, MAX, myfile) !== NULL)
parse(cmdln);

In this example, Igets copies the string to the character array "cmdln".

2.4.5 Reading Records rrom a File

The Irea.d function reads one or more records from a file and copies them to a
given memory location. The function call has the form:

fread(ptr, size, ",items, stre am)

where ptr is a pointer to the location to receive the records, size is the size (in
bytes) of each record to be read, ",ite ms is the number of records to be read, and
stre am is the file pointer of the file to be read. Theptr may be a pointer to a
variable of any type (from a single character to a structrure). The lize, an
integer, should give the numbers of bytes in each item you wish to read. One
way to ensure this is to use the size 01 function on the pointer ptr (see the
example below). The function always returns the number of records it read,
regardless of whether or not the end oC the file or an error is encountered.

The function is typically used to read binary data from a file. For example, the
following program fragment reads two records from the file given by
"database" and copies the records into the structure "person".

FILE *database;
struct record {

} person;

char name(20);
int age;

fread(&person, sizeof(person), 2,database);

Note that since Ire ad does not explicitly indicate errors, the Ie 01 and lerror
Cunctions should be used to detect end of the file and errors. These functions are
described later in this chapter.

2.4.6 Reading Formatted Data From a File

The IBC anI function reads formatted input from a given file and copies it to the
memory location given by the respective argument pointers,just as the 8C a",1

2-14

XENlX Programmer's Reference

FILE .out;
char namelMAX);
int ij

(or (i=O; i<MAX; i++)
(putc(name[iJ, out);

The only difference between thepute and/pute functions is that pute is defined
as a macro and /pute as an actual function. This mea.ns that /pute, unlike pute,·
may be used as an argument to another function, as the target of a brea.kpoint
when debugging, and to avoid the side effects of macro processing.

2.4.8 Writing a String to a File

The /pull function writes a string to a given file. The runction call has the rorm:

rputs(I, ,tre am)

where, is a pointer to the string to be written and ,tream is the file pointer to
the file.

The runction is typically used to copy strings from one file to another. For
example, in the rollowing program rragment, get, and /put, are combined to
copy strings rrom the standard input to the file given by "out".

FILE .outj
cha.r cmdln(MAX];

ir (gets(cmdln) != EOF)
rputs(cmdln, out);

The runction normally returns zero, but will return EOF ir an error is
encountered.

2·16

XENIX Programmer's Reference

FILE .*databasei
struct record {

} person;

char name(20);
int age;

Cwrite(&person, sizeoC(person), 2, database)i

The records are copied Crom the strueture "person".

Since the runction does not report the end or the file or errors, the Ie 01 and
Ie rror Cunctions should be used to detect these conditions.

2.4.11 Testing for the End of a File

The Ie 01 Cunction returns the value -liC a given file has reached its end. The
Cunctioncall has the Corm:

CeoC (Itre4m)

where Itre4mis the file pointer orthe file. The function returns-l only irthe file
has reached its end, otherwise it returns O. The return value is always an
integer.

The Ie 01 function is typica.lly used arter those functions whose return value is
not a clear indicator oC an end-of-file condition. For example, in the Collowing
program fragment the Cunction eheeks for the end or the file aCter each
character is read. The reading stops as soon as Ie olreturns-1.

char nameIIO);
FILE *streamj

do
rread(name, size(name), 1, stream);

while(rreoC(stream));

2.4.12 Testing For File Errors

The Ie rror function tests a given stream file ror a.n error. The Cunction call has
the Corm:

rerror (,trum)

where ,trum is the file pointer or the file to be tested. The function returns a
nonzero (true) value if an error is detected, otherwise it returns zero (false).
The function returns an integer value.

2-18

XENIX Programmer's Reterence

Idole f~nctions to open, close, read, and write to the given files. The program
incorporates a basic design that is common to other XENIXprograms, namely it
uses the filenames found in the command line as the files to open and read, or if
no names are present, it uses the standard input. This allows the program to be
invoked on its own, or be the receiving end of a pipe.

2-20

XENIX Programmer's Reference

program writes an error message to the standard error file "stderr" with the
/print/ function. The function prints the format string "wc: can't open %s",
replacing the "%s" with the name pointed to by "argv[i}".

Once a file is opened, the program uses the ge tc function to read each character
from the file. As it reads characters, the program keeps a count of the number
of characters, words, and lines. The program continues to read until the end of
the file is encountered, that is, when getc returns the value EOF.

Once a file has reached its end, the program uses the print/function to display
the character, word, and line counts at the standard output. The rormat string
in this function causes the counts to be displayed as long decimal numbers with
no more than 7 digits. The program then closes the current file with the /clole
function and examines the command line arguments to see if there is another
filename.

\Vhen all files have been counted, the program uses the print/ function to
display a grand total at the standard output, then stops execution with the ezit
function.

2.5 Using More Stream Functions

The stream functions allow more control over a file than just opening, reading,
. writing, and closing. The functions also let a program take an existing file
pointer and reassign it to another file (similar to redirecting the standard input
and output files) as well as manipulate the buffer that is used for intermediate
storage between the file and the program.

2.5.1 Using Buffered Input and Output

Buffered I/0 is an input and output technique used by the XENIX system to cut
down the time needed to read from and write to files. Buffered I/O lets the
system collect the characters to be read or written and then transfer them all at
once rather than one character at a time. This reduces the number of times the
system must access the I/0 devices and consequently provides more time for
running user programs. Not all files have buffers. For example, files associated
with terminals, such as the standard input and output, are not buffered. This
prevents unwanted delays when transferring the input and output. When a file
does have a buffer, the buffer size in bytes is given by the mainfest constant
BSIZE, which is defined in the Itdi 0 .• file.

When a file has a buffer, the stream functions read from and write to the buffer
instead orthe file. The system keeps track orthe buffer and when necessary fills
it with new characters (when reading) or flushes (copies) it to the file (when
writing). Normally, a buffer is not directly accessible to a. program, however a
program can define its own buffer for a file with the ,etbu/ function. The
function also lets a program change a buffered file to bean unbuffered one. The
ungetcfunction lets a program put a character it has read back into the buffer,

2-22

XENlX Programmer's Reference

char·Pi

p=malloc(BSIZE)i
setbuC (stdout, p)j

The new buffer isBSIZE bytes long.

The Cunction may also be used to change a file Crom buffered to unbuffered input
or output. Unbuffered input and output generally increase the total time
needed to transCer large numbers or characters to or rrom a file, but give the
fastest transfer speed Cor individual characters.

The tetbu/Cunction should be called immediately aCter opening a file and before
reading or writing to it. Furthermore, the /clote or DIu,'" Cunction must be used
to flush the buffer beCore terminating the program. If not used, some data
written to the buffer may not be written to the file.

2.5.4 Putting a Character Back into a Buffer

The ungete Cunction puts a character back into the buffer oC a given file. The
function call has the rorm:

ungetc (e, 'trecm)

where e is the character to put back and ,tre am is the file pointer orthe file. The
function normally returns the same character it put back, but will return the
value EOF ir an error is encountered.

The runction is typically used when scanning a file ror the first character or a
string or characters. For example, the rollowing program rragment puts the
first character that is not a whitespace character back into the buffer or the file
given by "infile", allowing the subsequent call to gett to read that character as
the first cha.racter in the string.

FILE *infile
char namel20]j

while(isspa.ce(c=getc(infile)))
,

ungetc(c, stdin)j
gets(name, stdin);

Putt.ing a character back into the buffer does not change the corresponding file;
it only changes the next character to be read.

Note that the Cunction can put a character back only ir one has been previously
read. Therunction cannot put more than one character back at a time. This
means it three characters are read, then only the last character can he put back,
never the first two.

2-24

XENIX Programmer's Reference

Once a file is opened for reading, a program can read bytes from it with the re ad
function. A program can write to a file opened for writing or appending with
the wn'te function. A program can close a file with the dOle function.

2.6.1 U.sing File Descriptors

Each file that has been opened for access by the low-level functions has a unique
integer called a "file descriptor" associated with it. A file descriptor is similar
to a file pointer in that it identifies the file. A file descriptor is unlike a file
pointer in that it does not point to any specific structure. Instead the descriptor
is used internally by the system to access the necessary information. Since the
system maintains all information about a file, the only access to a file for a
program is through the file descriptor.

There are three predefined file descriptors (just as there are three predefined
file pointers) for the standard input, output, and error files. The descriptors are
o for the standard input, 1 ror the standard output, and 2 ror the standard error
file. As with predefined file pointers, a program may use the predefined file
descriptors without explicitly opening the associated files.

Note .that if the standard input and output files are redirected, the system
changes the default assignments ror the file descriptors 0 and 1 to the named
files. This is also true if the input or output is associated with a pipe. File
descriptor 2 normally remains attached to the terminal.

2.6.2 Opening a File

The open function opens an existing or a new file and returns a file descriptor
for that file. The function call has the rorm:

fd == open(name, acau (,mode]);

where/dis the integer variable to receive the file descriptor, name is a pointer to
a string containing the filename, aeceu is an integer expression giving the type
of file access, and mode is an integer number giving a new file's permissions.
The function normally returns a. file descriptor (a. positive integer), but will
return -1 ifan error isencountered.

The aece" expression is formed by using one or more orthe following manirest
consta.nts: O_RDONL Y for reading, 0_ VlRONL Y for writing, O_RDWR ror both
reading and writing, O_APPEND for appending to the end of an existing file,and
O_CREAT for creating ~ new file. (Other constants are described in open(S) in
the XENlX Re/erence Manual.) The logical OR operator (I) may be used to
combine the constants. The mode is required only ir O_CREAT is given. For
example, in the rollowing program rragment, the function is used to open the
existing file named I u,r/ ace ountl ror reading and open the new file na.med
/ uer/tmp/ ICrateAror reading and writing.

2-26

XENIX Progra.mmer's Reference

requested to be written.

The number or bytes to be written is arbitrary. The two most common va.lues
are 1, which means one character at a time and 512, which corresponds to the
physical block size on many periphera.l devices.

2.6.5 Closing a File

The ciole runction breaks the connection between a tile descriptor and an open
file, a.nd trees the file descriptor tor use with some other file. The tunction call
has the rorm:

close (It!)

where I d is the file descriptor ot the file to close. The function normally returns
0, but will return -1 if an error is encountered.

The function is typically used to close files that are not longer needed. For
example, the following program fragment closes the standard input if the
argument count is greater than 1.

int tdj

it (argc >1)
close(0)j

Note that all open files in a program are closed when a program terminates
normally or when the ezit function is called, so no explicit call to do,e is
required.

2.6.6 Program Examples

This section shows how to use the low-level tunctionsto pertorm userul tasks. It
presents three examples that incorporate the functions as the sole method of
input and output.

The first program copies its standard input to its standard output.

2-28

XENIX Programmer's Reference

,define CMASK 0377
,define BUFSIZE

/* tot making char's> 0*/
BSIZE

getcharO/* buffered version */
{

}

static char
static char
static intn == OJ

bur(BUFSIZE);
-bufp == bufj

ir (n ==== 0) { /- buffer is empty -/

}

n == read(O, bur, BUFSIZE)j
burp == burj

retutn((--ri >- 0) ! -bufp++ &, CMASK : EOF)j

Again, eal=h character must be masked with the octal constant 0377.

The final example is a simplified version or the XENIX utility; cp, a program
that copies one file to another. The main simplification is that this version
copies only one file, and does not permit the second argument to be a directory.

2-30

,define NULL 0
,define BUFSIZE BSIZE
,define PMODE 0644/* RW ror owner, R ror group, others */

main{argc, argyl /- cp: copy n to 12 -/
int argc;
char *argvDj
{

}

int fl, 1'2, nj
char buff BUFSIZE);

ir(argc!= 3)
error("Usage: cp rrom to", NULL);

ir ((rt == open(argv[l), O_RDONL V)) == -I)
error("cp: can't open %s", argv(I));

it ((12 == open(argv(2), O_CREAT I O_WRONLY,
PMODE))==== -I)

error(" cp: can't create %s", argv(2})i

while ((n = read(fl, bur, BUFSIZE)) > 0)
ir (write(l2, bur, n) !== n)

error(" cp: write error", NULL)j
exit(O)j

XENIX Programmer's Reference

, The runction may be used to move the character pointer to the end or a file to
allow appending, or to the beginning as in a rewind runction. For example, the
call

lseek(rd, (long)O, 2);

prepares the file ror appending, and

lseek(rd, (long)O, 0);

rewinds the file (moves the character pointer to the beginning). Notice the
"(long)O" argument; it could also be written as

OL

Using ',eek it is possible to treat files more or less like large arrays, at the price
or slower access. For example, the rollowing simple runction reads any number
or bytes rrom any arbitrary place in a file:

get(rd, pos, bur, n) ,* read n bytes rrom position pos *,
int Cd, n;
long pos;
char -bur;
{

}

lseek(rd, pos, 0); ,* get to pos *,
return(read(Cd, bur, n));

2.6.0 Moving the Cha.racter Pointer in a Stream

The I,eel~ runction, a stream runction, moves the character pointer in a file to a
given location. The Cunction call has the Corm:

rseek (,tream, off,et, ptrname)

where ,tre am is the file pointer or the file, off,et is the number ·of characters to
move to the new position (it must be a long integer), and ptrname is the starting
position in the file or the move (it must be "0" for beginning, "I", for current
position, or "2" for end otthe file). The function normally returns zero, but will
return the value EOF iC an error is encountered.

For example, the following program fragment moves the character pointer to
the en d of the file given by "stream" .

FILE *stream;

tseek(stream, (longlO, 2);

2·32

3.4.6 Inserting Characters 3-19
3.4.7 Deleting Characters and Lines 3-20
3.4.8 Clearing the Screen 3-21
3.4.9 Refreshing From a Window 3-22
3.4.10 Overlaying Windows 3-23
3.4.11 Overwriting a Screen 3-23
3.4.12 Moving a Window 3-24
3.4.13 Reading a Character From a Window 3-24
3.4.14 Touching a Window 3-25
3.4.15 Deleting a Window 3-25

3.5 Using Other Window Functions 3-26
3.5.1 Drawing a Box 3-26
3.5.2 Displaying Bold Characters 3-26
3.5.3 Restoring Normal Characters 3-27
3.5.4 Getting the Current Position 3-28
3.5.5 Setting Window Flags 3-28
3.5.6 Scrolling a Window 3-29

3.6 Combining Movement With Action 3-30

3.7 Controlling the Terminal 3-30
3.7.1 Setting a Terminal Mode 3-30
3.7.2 Clearing a,Terminal Mode 3-31
3.7.3 Moving the Terminal's Cursor 3-32
3.7.4 Getting the Terminal Mode 3-32
3.7.5 Saving and Restoring the Terminal Flags 3-33
3.7.6 Setting a Terminal Type 3-33
3.7.7 Reading the Terminal Name 3-33

re/re"', or wre/re,k, a program can maintain several different windows, each
containing different characters ror the same portion or the terminal screen.
The program can choose which window should actually be displayed berore
updating.

A program can continue to add new characters to a screen or window as needed,
and edit these characters by using runctions such as in,ertln, tldetein, and
clear. A program can also combine windows to make a composite screen using
theoverlall and overwrite runctions. In each case, the re/reek orwre/ruk
runction is used to copy the changes to the terminal screen.

3.1.2 Using the Library

To use the cUrie, library in a program, you must add the line

#include <curses.h>

to the beginning or your program. The cUrle,.k file contains definitions ror
types and variables use d by the library.

The actual screen processing runctionsare iIi the library files libeurleIJ.a and
libtermeap.a. These files are not automatically read when you compile your
program, so you must include the appropriate library switches in your
invocation or the compiler. The command line must have the form:

cc file ... -lcurses -ltermcap

where file is the name of the source file you wish to compile. You may given
more than one filename if desired. You may also use other compiler options in
the command line. For example, the command

cc main.c intr.c -lcurses -ltermcap -0 sample

compiles the files main.e and int/.e, and copies the executable program to the
file I14mple arter linking the screen processing library files to the program.

Note that the eurIJee.k file automatically includes the file ,gtt,.k in your
program. This file must not be included twice.

The screen processing library has a variety of predefined names. These names
rerer to variables, manirest constants, and types that ca.n be used with the
library runctions. The rollowing is a list of these names.

3-2

I
\

Name
reg

bool
TRUE
FALSE

Types and Constants

Description
A storage class. It· is the same as
register storage class.
Atype. It is the same achar type.
The boolean true value (1).
The boolean raise value (0').

3.2 Preparing the Screen

The initlCr and endwin runctions perrorm the .operations required to initialize
and terminate programs that use the screen processing runctions. The
Collowing sections describe these Cunctionsand how they affect the terminal.

3.2.1 Initializing the Screen

The initlcr function initializes screen processing Cor a program by allocating
the required memory space Cor the screen processing functions and variables,
and by setting the terminal to the proper modes. The function call has the
form:

initscrO

No arguments are required.

The initBcr Cunction must be used to prepare the program for subsequent calls
to other screen processing functions and for use of the screen processing
variables. For example, in the following program fragment initlcr initializes
the screening processing functions.

#include <curses.h>

main 0
{

initscrO;
if (cmpstr(ttytype,"dumb"))

Cprintf(stderr, " Terminal type Can't display screen.");

In this example, the predefined variable "ttytype" is checked for the current
terminal type.

The fun ction ret urns (WINDOW.) ERR ir memory allocation causes an overftow.

3-4

Note

The terminal mode Cunctions should only be used in conjunction with
other screen processing Cunctions. They should not be used alone.

3.2.4 Using Default Window Flags

The i nitle r Cunction au tomatically clears the cursor ,scroll, and clear flags oC
the standard screen to their deCault values. These flags, called the window
flags, define how the re/red, Cunctionafl'ects the terminal screen when
reCreshing Crom the standard screen. When clear, the cursor flag prevents the
terminal's cursor Crom moving back to its original location arter the screen is
updated, the scroll flag prevents scrolling on the screen, and the clear flag
prevents the characters on the screen Crom being cleared beCore being updated.
The flags maybe chaIigeod by using the functions described in the section
"Setting Window Flags," in this chapter.

3.2.5 Using the Derault Terminal Size

The initler Cunction sets the terminal screen size to a default number.or lines
and columns. The default values are given in the predefined variables "LINES"
and "COLS". You can change the deCault size of a terminal by setting the
variables to new values. This should be done before the .first call to ;nitler. If it
is done aCter the first call, a second call to initler must be made to delete the
existing standard screen and create a new one.

3.2.6 Terminating Screen Processing

The entlwin Cunction terminates the screenptocessing in a program by Creeing
all memory resources allocated by the screen processing Cunctions and
restoring the terminal to the state before screen processing began. The
funCtion call has the Corm:

endwinO

No arguments ate required.

The entlwin Cunction must be used beCore leaving a program that has called the
initler function to restore the terminal to its previous state. The function is
generally the last function call in the program. For example, in the Collowing
program fragment init.er and endwl'n form the beginning and end of the
program.

3·6

3.3.2 Adding a String

The addBtr function adds a string of characters to the standard screen, placing
the first character of the string at the current position and moving the pointer
one position to the right for each character in the string. The function caUhas
the form:

addstr(Btr)

where Itr is a character pointer to the given string. For example, ifthe current
position is (0,0), the function call

addstr(" line");

places the beginning orthe string "line" at this position and moves the pointer
to (0,4).

If the string contains newline, return, or tab characters, the function performs
the same actions as described for the addck. function. If the string does not fit on
the current line, the string is truncated.

The Cunction returns ERRifitencounters an error such as illegal scrolling.

3.3.3 Printing Strings, Characters, a.nd Numbers

The printw function prints one or more values on the standard screen, where a
value may be a string, a character, or a decimal, octal, or hexadecimal number.
The Cunction call has the form:

printw(/mt I, argJ ...)

where fmt is a pointer toa string that defines the format of the values, and Grg is
a value to be printed. Ir more than one Grg is given, each must be separated
from the preceding argument with a comma (,). For each arggiven, there must
be a corresponding format given in /mt. A format may be "%S" for string,
"%c" for character, and "%d", "%0", or "%x" for a decimal, octal, or
hexadecimal number, respectively. (Other formats are described in printl(S) in
the XENIX Reference Manual.) If "%s" is given, the corresponding Grgmust be
a character pointer. For other formats, the actual value or a variable
con taining the value may be given.

The function is typically used to copy both numbers and strings to the standard
screen at the same time. For example, if the current position is (0,0), the
function call '

printw{" %s %d", name, IS};

prints the name given by the variable "name" starting at position {O,O).lt then

3-8

keyboard and stores it in the array "name".

char name{20);

getstr(name);

!r the terminal is set to ECHO mode, getltr copies the string to the standard
screen. If the terminal is not set to RAW or NOECHO mode, the function
automatically sets the terminal to CBREAK mode, then restores the previous
mode arter reading the character .. Terminal modes are described later in the
chapter.

The function returns ERR if it encounters an error such as illegal scrolling.

3.3.6 Reading Strings, Characters, and Numbers

The Ica'UD function reads one or more values from the terminal keyboard and
copies the values to given locations. A value may be a string, character, or
decimal, octal, or hexadecimal num ber. The function call has the form:

scanw(,mt, argptr .•.)

where 'mt is a pointer to a string defining the format of the values to be read,
and argptr is a pointer to the variable to receive a value. !rmore than one argptr
is given, each must be separated from the preceding item with a comma (,). For
each argptr given, there must be a corresponding format given in 'mt. A format
may be "%s" for string, "%c" for character, and "%d", "%0", or "%x" for a
decimal, octal, or hexadecimal number, respectively. (Other formats are
described in Icanf(S) in theXENIX Reference Manual.)

The function is typically used to read a combination of strings and numbers
from the keyboard .. For example, in the following program fragment .CtlnfD

reads a name and a number trom the keyboard.

char name[20];
int idj

scanw("%s %d", name, &id)j

In this example, the input values are stored in the character array "name" and
the integer variable "id".

If the terminal is set to ECHO mode, the tunction cC)pies the string to the
sta.ndard screen. It the terminal is not set to RA Wor NOECHO mode, the
tunction automatically sets the terminal to CBREAK mode, then restores the
previous mode atterreading the character~

The function returns ERR itit encounters an error such as illegal scrolling.

3-10

insertlnO

No arguments are required.

The function is used to insert additional lines of text in the standard screen.
For example, in the following program fragment in,ertln is used· to insert a
blank line when the count in"cnt" is equal to 79.

int cnt;

if (cnt == 79)
insertlnO;

The function returns ERR ifitencounters an error such as illegal scrolling.

3.3.10 Deleting a Character

The deleA function deletes the character at the current position and shirts the
character to the right of the deleted character (and all characters to its right)
one position to the left. The last character on the line is replaced by a space.
The function call has the form:

delchO

No arguments are required.

The function is typically used to delete a series of characters from the sta.ndard
screen. For example, in the rollowing program fragment deleA deletes the
character at the current position as long as the count in "cnt" is notO.

int cnt;

while (cnt !== 0) {
delchO;
cnt-- ;
}

3.3.11 Deleting a Line

The deleteln function deletes the current line and shirts the line below the
deleted line (and all lines below it) one.line up, leaving the last line on the screen
blank. The runction call has the rorm:

deletelnO

No arguments are required.

3-12

clears all charactersrrom (IO, 10) to (10,79). The characters at the beginning or
the line remain unchanged.

Note that both the clrtobotand clrtoeol runctions do not change the current
position.

3.3.14 Refreshing From the Standard Screen

The relreeh function updates the terminal screen by copying one or more
characters (rom the standard screen to the terminal. The (unction effectively
changes the terminal screen to reflect the new contents oCthe standard screen.
The runction call has the (orm:

rerreshO

No arguments are required.

The runction is uSed solely to display changes to the standard screen. The
(unction copies only those characters that have changed since the last call to
relred and leaves any existing text on the terminal screen. For example, in the
(ollowing program rragment relre Ih is called twice;

addstr(" The first time.\n");
re(reshO;
addstr("The second time.\n");
re(reshO;

In this example, the first call to relre,h copies the string "The first time." to the
terminal screen. The second call copies only the string "The second time." to
the terminal, since the original string has not been changed.

The (unction returns ERR i(it encounters an error such as illegal scrolling. Ir an
error is encountered, the (unction attempts to update as much o(the screen as
possible without causing the scroll.

3.4 Creating and Using Windows

The (ollowing sections explain how to create and use windows to display and
edit text on the terminal screen.

3.4.1 Creating a Window

The newwin (unction creates a window and returns a pointer tha.t may be used
in subsequent screen processing (unctions. The (unction call has the (orm:

win == newwin(linu, cole, beginJ, begin_z)

3-14

swin = subwin(win, linu, eol., beginJl, begin_z)

where .win is the pointer variable to receive the return value, win is the pointer
to the window to contain the new subwindow, line. and col. are integer values
that give the total number of lines and columns, respectively, in the
subwindow, and beginJiand begin_z are integer values that give the line and
column position, respectively, of the upper left corner of the subwindow when
dislayed on the terminal screen. The .win variable must have type
WINDOW •.

The function is typically used to divide a large window into separate regions.
For example, in the following program fragment ,ubwin creates the subwindow
named "cmdmenu" in the lower part orthe standard screen.

WINDOW *cmdmenu;

cmdmenu = subwin(stdscr, 5, 80, 19, 0);

In this example, changes to "cmdmenu" affect the standard screen as well.

The ,ab win function returns the value (WINDOW-) ERR on an error, such as
insufficient memory for the new window.

3.4.3 Adding and Printing to a Window

The wtJddell., w.4dd,tr, and wprintw functions add and print characters, strings,
and numbers to a given window.

The wtJdde II. function adds a given character to the given window and moves the
character pointer one position to the right. The function call has the form:

waddch{ win, ell.)

where win is a pointer to the window to receive the character, and eA gives the
character to be added; ell. must have char type. For example, if the current
position in the window "midscreen" is (0,0), the function call

waddch(midscreen, 'A')

places the letter "A" at this position and moves the pointer to (0,1).

The wedd.t, fQnction adds a string of characters to the given window, placing
the first character of the string at the current position and moving the pointer
one position to the right for each character in the string. The function call has
the form:

waddstr(toin, .t,)
where win is a pOinter to the window to receive the string, and It, is a character.

3-16

where 'fDin is a pointer to a window, and e is the character variable to receive the
character.

The runction is typically used to read a series or characters from the keyboard.
For example, in the rollowing program rragment 'fDgetc" reads characters until
a colon (:) is roun d.

char c; dir(MAX)j
int ij

i - o·
while '((c-wgetch(cmdmenu)) !- ':'&& i <MAX)

dirli++J == Cj

The 'fDget,tr runction reads a string or characters rrom the terminal keyboard
and copies the string to a given location. The runction call has the rorm:

wgetstr('fDin, 'tr)

where 'fDinis a pointer to a window, and "~ris a character pointer to the variable
or location to receive the string. When typed at the keyboard, the string must
end with a newline character or with the end-or-file character. The extra
character is replaced by a null character when the string is stored. It is the
programmer's responsibility to ensure that Itr has adequate space for storing
the typed string.

The function is typically used to read names and other text from the keyboard.
For example, in the rollowing program fragment 'fDgetltrreads a string rrom the
keyboard and stores it in the array "filename".

char filename(20);

wgetstr(cmdmenu, filename};

The'fD'c 4n'fD function reads one orniore values from the standard input file and
copies the values to given locations. A value may be a string, a character, or a
decimal, octal, or hexadecimal number. The function call has the form:

wscanw('fDin, Imt I, 4rgptr 1 ...)

where 'fDin is a pointer to a window, Imt is a pointer to a string defining the
format of the values to be read,and orgptr is a pointer to the variable to receive
a value. If more than one .rgptr is given, each must be separated from the
preceding by a comma (,). For each orgptrgiven, there must be a corresponding
format given in/mt. A format may be "%s" for string, H%C" for character, and
"%d", "0/'00", or "%x" fora decimal, octal, or hexadecimal number,
respectively. (Other rormatsare described in ICGnl(S) in theXENIX Relerence
M.nual.)

3-18

The function is typically used to edit the contents of the given window. For
example, the function call

winsch(midscreen, 'X');

inserts the character "X" at the current position in the window "midscreen".

The win,ertln function inserts a blank line at the current position a.nd moves
the existing line (and all lines below it) down one line, causing the last line to
move off the bottom of the screen. The function call has the form:

winsertln(win)

where win is a pointer to the window to receive the blank line.

The function is used to insert lines into a window. For example, in the rollowing
program fragment win,ertln inserts a blank line at the top of the window
"cmdmenu" preparing it ror anew line.

char line[80];

wmove(cmdmenu, 3, 0);
winsertln(cmdmenu);
waddstr(cmdmenu, line);

Both fun ctions ret urn ERR if they en coun ter errors su ch as illegal scrolling.

304.7 Deleting Characters and Lines

The wtleleh and wtleleteln functions delete characters and lines from the given
window.

The wdelehrunction deletes the character at the current position and shirts the
character to the right of the deleted character (and all characters to its right)
one position to the left. The last character on the line is replaced with a space.
The function call has the form:

wdelch(win)

where win is a. pointer to a window.

The function is typically used to edit the contents or the standard screen. For
example, the function call

wdelch(midscreen);

deletes the character at the current position in the window "midscreen".

3-20

position in the window "midscreen" is (10,0), the function call

wclrtobot(midscreen)j

clears all characters from line 10 and all lines below line 10.

The wclrtoeol function clears the standard screen from the current position to
the end of the current line. The function call has the form:

wclrtoeol(win)

where win is a pointer to the window to be cleared. For example, if the current
position in "midscreen" is (10,10), the function call

wclrtoeol(midscreen)j

clears all characters from (10,10) to the end of the line. The characters at the
beginning of the line remain unchanged.

Note that the wclrtobot and wclrtoeol functions do not change the current
position.

3.4.g Retreshing From a Window

The wre/relh, function updates the terminal screen by copying one or more
characters from the given window to the terminal. The function effectively
changes the terminal screen to reflect the new contents of the window. The
function call has the rorm:

wrefresh(win)

where win is a pointer to a window.

The runction is used solely to display changes to the window. The runction
copies only those characters that have changed since the last call to ",re/red
and leaves any existing text on the terminal screen. For example, in the
rollowing program fragment wre/ruh is called twice.

waddstr(cmdmenu, "Type a command name\n")j
wrefresh(cmdmenu)j
waddstr(cmdmenu, "Command: ")j
wrefresh(cmdmenu)j

In this example, the first call to wre/re,h copies the string "Type a command
name" to the terminal screen. The second call copies only the string
"Command:" to the terminal, since the original string has not been changed.

3-22

overwrite(win1, win~)

where win1 is a pointer to the window to be copied, and win~is a pointer to the
window to receive the copied text. If win1 is larger thanwin~, the runction
copies only those lines and columns in win1 that fit in win~.

The runction istypically used to display the contents of a temporary window in
the middle of a larger window. For example, in the following program fragment
oflerwrite is used to copy the contents or a work window to the standard screen.

WINDOW *workj

overwrite(work, stdscr)j
rerreshOi

3.4.12 Moving a Window

The mflwin function moves a given window to a new position on the terminal
screen, causing the upper left corner or the window to occupy a given line and
column position. The runction call has the form:

mvwin(win, 11, z)

where win is a pointer to the window to be moved, 11 is an integer value giving
the line to which the corner is to be moved, and z is an integer value giving the
column to which the corner is to be moved.

The runction is typically used to move a temporary window when an existing
window under it contains inrormation to be viewed. For example, in the
rollowing program rragment mt7win moves the window named "work" to the
upper lert corner or the terminal screen.

WINDOW *workj

mvwin(work, 0,0);

The runction returns ERR ir it encounters a error such as an attempt to move
part oC a window off the edge or the screen.

3.4.13 Reading a Character From a Window

The inch and winch Cunctions read a single character from the current pointer
position in a window or screen.

The inch runction reads a character rrom the standard screen. The runction
call has the form:

3-24

allocated variables. The function call has the form:

delwin(win)

where win is the pointer to the window to be deleted.

The function is typically used to remove temporary windows from a program
or to free memory space for other uses. For example, the function call

delwin{ midscreen)j

removes the window named "midscreen".

3.5 Using Other Window Functions

The following sections explain how to perform a variety of operations on
existing windows, such as setting window flags and drawing boxes around the
window.

3.5.1 Drawing a Box

The box function draws a box around a window using the given characters to
form the horizontal and vertical sides. The function call has the form:

box(win, flert, hor)

where win is the pointer to the desired window, tlert is the vertical character,
and hor is the horizontal character. Both tie rand hor must have char type.

The function is typically used to distinguish one window from another when
combining windows on a single screen. For example, in the following program
rragment boz creates a box around the window in the lower half ofthescreen.

WINDOW *cmdmenu;

cmdmenu =- subwin{stdscr, 5, 80, 19, 0);
box(cmdmenu, 'I', '-')j

If necessary, the runction will leave the corners of the box blank to prevent
illegal scrolling.

3.5.2 Displaying Bold Characters

The ,tandout and w,t4ndout functions set the standout character attribute,
causing characters subsequently added to the given window or screen to be
displayed as bold characters.

3-26

The functions are typically used after an error message or instructions have
been added to a screen using the standout attribute. For example, in the
following program fragment ,tandend restores the normal attribute after an
error message has been added to the standard screen.

if (code - 5) {
standoutOi
addstr{"Illegal character.\n")j
standendOi
}

3.5.4 Getting the Current Position

The get7lz function copies the current line and column position of a given
window pointer to a corresponding pair of variables. The function call has the
form:

getyx{ Vlin, 71, z)

where Vlin is a pointer to the window containing the pointer to be examined, ris
the integer variable to receive the line position, and z is the integer variable to
receive the column position.

The function is typically used to save the current position so that the program
can return to the position at a later time. For example, in the following
program fragment getllz saves the current line and column position in the
variables "line" and "column".

int line, columni

getyx(stdscr, line, column)i ,

3.5.5 Setting Window Flags

The letlt1eok, ,c,ollok, and eletl,ok functions set or clea.r the cursor, scroll,
and clear-screen flags. The fla.gs control the action of the ,elruA function
when called for the given window.

The letlt1eok function sets or clears the cursor flag which defines how the
relruA function places the terminal cursor and the window pointer after
updating the screen. If the flag is set, ,el,e"', leaves the cursor after the last
character to be copied .and moves the pointer to the corresponding position in
the window. If the flag is cleared, relre'" moves the cursor to the same position
on the screen as the current pointer position in the window. The function call
has the form:

3-28

in special cases only.

3.6 Combining Movement With Action

Many screen operations move the current position of a given window before
performing an action on the window. For convenience, you can combine a
number of functions with the movement prefix. This combination has the
form:

mvfunc ([win,) 11, z [, 4rg) ...)

where fune is the name of a function, win is a pointer to the window tobe
operated on (.ttl.er used if none is given), 11 is an integer value giving the line to
move to, z is an integer value giving the column to move to, and argis a required
argument Cor the given function. Ir more than one argument is required they
must be sep arated with commas (,). For example, the function call

mvaddch(IO, 5, 'X');

moves the position to (10,5) and adds the character "X". The operation is the
same as moving the position with the motle function and then adding a
character with atltleh.

A complete list of the functions which may be used with the movement prefix is
given in eUr3e,(S) in the XENIX Reference M4nual.

3.7 Controlling the Terminal

The following sections explain how to set the terminal modes, how to move the
cursor, and how to access other aspects oC the terminal. These functions should
only be used when using other screen processing functions.

3.1.1 Setting a Terminal Mode

The crmotle, echo, nl, and f4tD functions set the terminal mode, causing
subsequent input from the terminal's keyboard to be processed accordingly.

The crmotle function sets the CBREAK mode for the terminal. The mode
preserves the function of the signal keys, allowing allowing signals to be sent to
a program from the keyboard, but disables the function orthe editing keys. The
function call has the form:

crmodeO

No arguments are required.

3-30

nonlO

No arguments are required.

Thenoraw function clears a terminal from RAW mode, restoring normal
editing and signal generating function to the keyboard. The function call has
the form:

norawO

No arguments are required.

3.7.3 Moving the Terminal's Cursor

The mvcur function moves the terminal's cursor from one position to another
in an optimal fashion. The runction call has the form:

where la,t-1/ and la.ez are integer values giving the last line and column
position or the cursor, and newJI and new_z are integer values giving the new
line and column position or the cursor. For example, the runction call

mvcur(IO, 5, 3, 0)

moves the cursor from (10,5) to (3,0) on the terminalscreen.

Note

The mtlcur runction should only be used in programs that do not use
other screen processing runctions. This means the runction can be
used to perform optimal cursor motion without the aid of the other
functions. For programs that do use other functions, the motle,
wmotle, re/rtlh, and wre/ruh runctions must be used to move the
cursor.

3.7.4 Getting the Terminal Mode

The gettmodefunction returns the current tty mode. The function call has the
form:

s = gettmodeO

where, is the variable to receive the status.

3-32

4.2.2 Converting to ASCII Characters

The toaleiifunctionconverts non-ASCII characters to ASCII. The function call
has the rorm:

c . == . toascii ('1

where c is the variable to receive the character, and iis the value to be changed.
The function creates an ASCII character by truncating all but the low order 7
bits of the non-ASCII value. Ir thei value .is already an ASCII character, no
change takes place. For example, the function call

ascii == toascii(160)

converts value 160 to 32, the ASCII value orthe space character.

The runctionis typically used to prepare non-ASCII characters for display at
the standard output. For example, in the following program fragmenttoalcii
converts each character read from·the file given by "oddstrm".

FILE *oddstrmj
int Cj

c == toascii(getc(oddstrm))j
if (isprint(c) II isspace(c))

putchar(c)j

If the resulting character is printable or is whitespace, it is written to the
standard output.

4.2.3 Testing for Alphanumerics

The il4lnum function tests for letters and decimal digits, i.e., the alphanumeric
characters. The function call has the form:

isalnum (c)

where c is the character to test. The function returns a nonzero (true) value if
the character is an alphanumeric, otherwise it returns zero (false). For
example, the function call

isalnum('l')

returns a nonzero value, but the call

isalnum('> ')

returns zero.

4-2

where e is the character to be tested. The function returns a nonzero value if
the character is a digit, otherwise it returns zero. For example, in the following
program fragment each new character in "c"is added to the running total if the
character is a digit.

FILE *infilej
int c, numj

while (isdigit(c-getc(infile)))
num - num*10 + c-48j

4.2.1 Testing tor a Hexadecimal Digit

The i,zdigit function tests for a hexadecimal digit, that is, a character that is
either a decimal digit or an uppercase or lowercase letter in the range A to F.
The function call has the form:

isxdigit (e)

where e is the character to be tested. The function returns a nonzero value if
the character is a digit, otherwise it returns zero. For example, in the following
program fragment i,zdigit tests whether a hexadecimal digit is read from the
standard input.

int Cj

c == getchar()j
if (isxdigit(c))

hexmode();

In this example, a function named kezmode is called if a hexadecimal digit is
read.

4.2.8 Testing tor Printable Characters

The i'print function tests for printable characters, i.e., characters whose ASCII
values range rrom 32 to 126. The function call has the rorm:

isprint (e)

where e is the character to be tested. The runction returns a nonzero value if
the character is printable, otherwise it returns zero.

4.2.0 Testing tor Punctuation

Thei'punetrunction tests for punctuation characters, i.e., characters that are

4-4

c = tolower (I)

and

c = toupper (a)

where c is the variable to receive the converted letter, and i is the letter to be
converted. For example, the function call

lower = tolower(,B'}

converts "B" to "b" and assigns it to the variable "lower", and the call

upper = toupper('b'}

converts "b" to "B" and assigns it to the variable "upper".

The tolotDer function returns the character unchanged if it is not an uppercase
letter. Similarly, the toupper function returns the character unchanged if it is
not a lowercase letter.

These functions are typically used to make the ease ofthe characters read from
a file or standard input consistent. For example, in the following statement
tolower changes the character read from the standard input to lowercase before
it is compared.

if (tolower(getcharO) 1= 'y')
exit{O}j

This conversion allows the user to type either "Y" or "y" to prevent the
statement from executing the ezit function.

4.3 UsiDg the String FunctioDs

The string functions concatenate, compare, copy, and count the number of
characters in a string. Two special string functions, "can/and 'print/, let a
program read from and write to a string in the same way the standard input
and output can be read and written. These functions are convenient when
reading or writing whole lines containing values of several different formats.

Many string functions have two forms: a form that manipulates all characters
in the string and one that manipulates a given number of characters. This gives
programs very fine control over all or parts of strings.

4.3.1 Concatenating Strings

The ,trcatfunction concatenates two strings by appending the characters of
one string to the end of another. The runction call has therorm:

4-6

4.3.3 Copying a String

The Itrepprunction copies a given string to a given location. The runction call
has the rorm:

strcpy (dlt, Ire)

where Ire is a pointer to the string to be copied, and d,t is a pointer to the
location to receive the string. The runction copies all characters in the source
string Ire to the dlt and appends a null character (\0) to the end or the new
string. Ir tilt contained a string berore the copy, that string is destroyed. The
runction always returns the pointer to the new string.

For example, in the program fragment Itrepll copies the string "not available"
to the location given by "name".

char na(] = "not available";
char name(20J;

strcpy(name, na)j

Note that the location to receive a string must be large enough to contain the
string. The runction cannot detect overflow.

4.3.4 Getting a String's Length

The ,tne" function returns the number of character contained in a given
string. The runction call has the rorm:

strlen (,)

where, is a pointer to a string. The count includes all characters up to, but not
including, the first null character. The return value is always an integer.

In the following program fragment, ItrleR is used to determine whether or not
the contentsor"inname" are short enough to be stored in "name".

char *inname;
char namelMAXJj

if (strlen(inname) < MAX)
strcpy(name, inname)j

4.3.5 Concatenating Characters to a String

The ,trneat function appends one or more characters to the end of a given
string. The function call has the form:

4-8

4.3.7 Copying Characters to a String

The Itrne pyfunction copies a given number of characters to a given string. The
function call has the form:

strncpy (dlt, ,re, n)

where d,t is a pointer to the string to r~ceive the characters, ,re is a pointer to
the string containing. the characters, and n is an integer value giving the
number of characters to be copied. The function copies either the first A

characters in ,re to dlt, or if ,re has fewer than n characters, copies all
characters up to the first null character . The function always returns the
pointer d,t.

In the following program fragment, ,trnep, copies the first three characters in
"date" to "day".

char buf [MAX];
char date (29] = {"Fri Dec 29 09:35:44 EDT 1982"};
char*day = bur;

strncpy(day, date, 3);

In this example, "day" receives the string "Fri".

4.3.8 Reading Values (rom a String

The lie 4n/ function reads one or more values rrom a given character string and
stores .. the values at a given memory location. The runctionis similar to the
,can/function which reads values rrom the standard input. The function call
has the rorm:

sscanr (I, format, argptr ..•)

where, is a pointer to the string to be read, format is a pointer to the string
defining the rormat or the values to be read, and 4rgptr is a pointer to the
variable that is to receive the values read. If more than one 4rgptris given, they
must be separated with commas. The format string may contain the same
formats as given for ,c4n/(see IC4n/(S) in the XENIX Re/erence Manual). The
runction always returns the number orvalues read.

The runction is typically used to read values rrom a string containing several
values or different rormats, or to read values rrom a program's own input
buffer. For example, in the rollowing program rragment lie 4nl reads two
values rrom the string pointed to by "datestr".

4-10

system (c omm and-Ii ne)

where command-line is a pointer to a string containing a shell command line.
The command line must be exactly as it would be typed at the terminal, that is,
it must begin with the program name rollowed by any required or optional
arguments. For example, the call

system(" date")j

causes the system to execute the date command, which displays the current
time and date at the standard output. The call

system(" cat > response")j

causes the system to execute the cat command. In this case, the standard
output is redirected to the file reeponee, so the command reads rrom the
standard input and copies this input to the file reepo",e.

The 'lIliem function is typically used in the same way as a runction call.to
execute a program and return to the original program. For example, in the
(ollowing program fragment '1Ilie m calls a program whose name is given in the
string "cmd".

char *name, *cmdj

printr(" Enter filename: ");
scanf(" %s", name)j
sprintf(cmd, "cat %s " , name};
system(cmd)j

Note that the string in "cmd" is built using the 'print/function and contains
the program name c at and an argument (the filename read by ,can/). The effect
is to execute the cat command with the given filename.

When using the '1I,tem function, it is important to remember that buffered
input and output functions, such as getc and putc, do not change the contents of
their buffer until it is ready to be read or flushed. If a program uses one o(these
functions, then executes a command with thel1lltem (unction, that command
may read or write data not intended (or its use. To avoid this problem, the
program should clear all buffered input and output before making a call to the
11IBtem function. You can do this for output with the J/lu,'" runction, and for
input with the eethl function described in the section "Using More Stream
Functions" in Chapter 2.

5.4 Stopping a Program

The ezit function stops the exeeutionof a program by returning control to the
system. The function call has the form:

5-2

execv (patkname, ptr);

where pathname is the full pathname of the program you want to execute, and
ptr is pointer to an array of pointers. Each element in the array must point to a
string. The array may have any number of elements, but the first element must
point to a string containing the program name, and the last must be the null
pointer, NULL.

The ezecl and ezeclI functions are typically used in programs that execute in
two or more phases and communicate through temporary files (for example a
two-pass compiler). The first part of such a program can call the second part by
giving the name of the second part and the appropriate arguments. For
example, the following program fragment checks the status of "errftag", then
either overlays the current program with the programpaeee, or displays an
error message and quits.

char *tmpfile;
int errflag;

if (errftag == 0)

else {
execl(" /usr/bin/pass2", "pass2", tmpfile, NULL);

fprintf(stderr, "Error %d: Quitting", errflag);
exit(2};

The ezeclI runction is typically used to pass arguments to a program when the
precise number or arguments is not known berorehand. For example, the
following program rragment reads arguments rrom the command line
(beginning with the third one), copies the pointer or each to an element in
"cmd", sets the last element in "cmd" to NULL, and executes the cat command.

char *cmd(. J;

cmd[OJ = "cat";
ror (i=3; i<argc; i++)

cmd[i) = argv[i);
cmd[argcJ= NULL;

execv{" Ibinl cat", cmd);

The ezecl and ezeclI runctions return control to the original program only if
there is an error in finding the given program (e.g., a misspelled pathname or no
execute permission). This allows the original program to check for errors and
display an error message ir necessary. For example, the following program
fragment searches rot the program diBplallin the / u;r/ bin directory.

5-4

execl(" /usr/bin/display", " display", NULL);
rprintr(stderr, "Can't execute 'display' \n");

process, starts its execution at the same point, that is, just arter the fork call.
(The child never goes back to the beginning or the program to start execution.)
The two processes are in effect synchronized, and continue to execute as
independent programs.

The fork runction returns a different value to each process. To the parent
process, the runction returns the process ID or the child. The process ID is
always a positive integer and is always different than the parent's 10. To the
child, the runction returns O.AlI other variables and values remain exactly as
they were in the parent.

The return value is typically used to determine which steps the child and
parent should take next. For example, in the program segment

char *cmdj

ir (rorkO == 0)
execl{" /bin/sh", "sh", "-c", cmd, NULL)j

The child's return value, 0, causes the expression "rorkO == 0", to be true,
and thererore the ezecl runction is called. The parent's return value, on the
other hand, causes the expression to be raIse, and the runction call is skipped.
Executing the ezecl runction causes the child to be overlayed by the program
given by "command". This does not affect the parent.

If fork encounters an error and cannot create a child, it will return the value-I.
It is a good idea to check ror this value arter each call.

5 .8 Waiting for a Process

The wait runction causes a parent process to wait until its child processes have
completed their execution berore continuing its own execution. The Cunction
call has the Corm:

wait (ptr)

where ptr is a pointer to an integer variable. It receives the termination status
or the child rrom both the system and the child itselr. The Cunction normally
returns the process 10 or the terminated child, so the parent may check it
against the value returned by fork.

The runction is typically used to synchronize the execution of a parent and its
child, and is especia.lly userul ir the parent and childproeesses access the same
files. For example, the rollowing program rragment ca.uses the parent to wait
while the program named by "pathname" (which has overlaid the child
process) finishes its execution.

5-6

#include <stdio.h>

main(argc, argYl
int argCj
char *argv [];
{
int status;

ir (argc < 2) {

}

rprintr(stderr,"No tty given.O);
exit(l)j

ir (rorkO == 0) {

}

ir (rreopen(argv[lJ,"~" ,stdin) == NULL)
exit{2}j

ir (rreopen{argv[l],"w" ,stdout) == NULL)
exit(2};

ir (rreopen(argv[l),"w" ,stderr) -- NULL)
exit(2)j

exed{" /bin/sh" ,"sh" ,NULL);

waite &status}j
ir {status == 512}

}
rprintf("Bad tty name: %sO, argvll));

In this example, the fork runction creates a duplicate copy or the program. The
child changes the standard input, output, and error files to the new terminal by
closing and reopening them with the /reopen runction. The terminal name
pointed to by "argv" must be the name orthe device special file associated with
the terminal, e.g., "/dev/tty03". The ezecl runction then calls the shell which
uses the new terminal as its standard input, output,and error files.

The parent process waits ror the child to terminate. The ezit Cunction
terminates the process iC an error occurs when reopening the standard files.
Otherwise, the process continues until the CNTRL-D key is pressed at the new
terminal.

5-8

FILE .pstrmj

pstrm == popen(" cat > response" ,"w");

The new pipe given by "pstrm" links the standard input or the command with
the program. Data written to the pipe will be used as input by the cat
command.

6.3 Reading and Writing to a Process

The /uan/, /print/, and other stream functions may be used to read from or
write to a pipe opened by the popen function. These functions have the same
rorm as described in Chapter 2.

The /Bean/ function can be used to read from a pipe opened for reading. For
example, in the following program fragment /Ican/ reads trom the pipe given
by pltrm.

FILE .pstrmj
char name[20);
int number;

pstrm == popen(" cat" ," r");
fscanf(pstrm, "%s %d" ,name, &number);

This pipe is connected to the standard output of the cat command, so /Ican/
reads the first name and number written by cat to its standardoutput.

The /print/ function can be used to read from a pipe opened for writing. For
example, in the rollowing program fragment/print/writes the string pointed to
by "buf" to the pipe given by "pstrm".

FILE *pstrmj
char buf[MAX];

pstrm == popen("wc" ,"w");
Cprintr(pstrm," %s" ,buC)

This pipe is connected to the standard input of the we command, so the
command reads and counts the contentsoC"bur'.

6.4 Closing a Pipe

The pciole function closes the pipe opened by the pope n function. The function
call has the Corm:

pclose (dream)

6-2

(

'\

6.6 Reading and Writing to a Low-Level Pipe

The read and write input and output functions can be used to read and write
characters to a low-level pipe. These functions have the same Corm and
operation described in Chapter 2.

The re ad function can be used to read from the read side of an open pipe. For
example, in the following program fragment read reads MAX characters Crom
the read side ofthe pipe given by "chan".

int chan[2];
char buf[MAX)i
int number;

number == read(chan[O), buf, MAX);

In this example, read stores the characters in the array "bur'.

Note that unless the end-of-file character is encountered, a read call waits tor
the given number of characters to be read before returning.

The write function can be used to write to the write side oC a pipe. For example,
in the following program fragment write writes MAX characters Crom the
character array "buf" to the writing side oCthe pipe given by "chan".

int chan[2J;
char buf[MAX];
int number;

pipe(chan};
number ==write(chan[I), input, 512};

If the write function finds that a pipe is too full, it waits until some characters
have been read beCore completing its operation.

6.7 Closing a Low-Level Pipe

The ciole function can be used to close the reading or the writing side oC a pipe.
The function has the same Corm and operation as described in Chapter 2. For
example, the function call

close (chan[O))

closes the reading side of the pipe given by "chan", and the call

close (chan[l]}

closes the writing side.

6-4

function to create two copies cf the original process. Each process has its own
copy of the pipe. The child process decides whether it is supposed to read or
write through the pipe, then closes the other side of the pipe and uses eze d to
create the new process and execute the desired program. The parent, on the
other hand, closes the side of the pipe it does not use.

The sequence of d08e functions in the child process is a trick used to link the
standard input or output of the child process to the pipe. The first clole
determines which side or the pipe should be closed and closes it. If "mode" is
WRITE, the writing side is closed; if READ, the reading side is closed. The
second clole closes the standard inputor output depending on the mode. Irthe
mode is WRITE, the input is closed; if READ, the output is closed. The tlup
function creates a duplicate orthe side orthe pipe still open. Since the standard
input or output was closed immediately before this call, this duplicate receives
the same file descriptor as the standard file. The system always chooses the
lowest available file descriptor ror a newly opened file. Since the duplicate pipe
has the same file descriptor as the standard file it becomes the standard input or
output file for the process. Finally, the last clo8e closes the original pipe, lea.ving
only the duplicate.

The following example is a modified version or the pclole function. The
modified version requires a file descriptor as an argument rather tha.n a file
pointer.

6-6

XENIX Programmer's Reference

signal, caused by pressing the QUIT key, or "SIGHUP" ror hangup signal,
caused by hanging up the line when connected to the system by modem. (Other
constants ror other signals are given in ,ignd(S) in the XENIX Reference
Manud.)

For example, the runction call

signal(SIGINT, SIG_IGN)

changes the action or the interrupt signal to no action. The signal will have no
effect on the program. The derault action is usually to terminate the program.

The following sections show how to use the 'ignd function to disable, change,
and restore signals.

7.2.1 Disabling a Signal

You can disable a signal, i.e., prevent it rrom affecting a program, by using the
"SIG_IGN" constant with 'ignal. The Cunction ca.ll has the Corm

signal (,igt1lpe, SIG_IGN)

where 'igtype is the manirest constant or the signal you wish to disable. For
example, the Cunction call

signal(SIGINT, SIG_IGN);

disables the interrupt signal.

The Cunction call is typically used to prevent a signal rrom terminating a
program executing in the background (e.g., a child process that is not using the
terminal ror input or output). The system passes signals generated trom
keystrokes at a terminal to all programs that have been invoked Crom that
terminal. This means that pressing the INTERRUPT key to stop a program
running in the Coreground will also stop a program running in the background iC
it has not disabled that signal. For example, in the Collowing program fragment
'ignal is used to disable the interrupt signal Cor the child.

7-2

XENIX Programmer's Reference

#include <signal.h>
#include <stdio.h>

main 0
{

}

FILE *fp;
char *recordIBUF], filename[MAX];

signal (SIGINT, SIG_IGN);
fp = fopen(filcname, "30");
fwrite(fp, BUF, record, 512);
signal (SIGINT, SIGJ)FL);

In this example, the interrupt signal is ignored while a record is record from the
file given by "fp".

1.2.3 Catching a Signal

You can catch a signal and define your own action for it by providing a function
that defines the new action and giving the function as an argument to lign.al.
The function call has the form

signal (Iigtllpe, ne wptr)

where ligtllpe is the manirest constant defining the signal to be caught, and
newptr is a pointer to the function defining the new action. For example, the
runction call

signal(SIGINT, catch)

changes the action of the interrupt signal to the action defined by the function
named ClltC".

The function call is typically used to let a program do additional processing
before terminatiIl!. In the following program fragment, the function cIte"
defines the new action for the interrupt signal.

1-4

XENIX Programmer's Reference

7.2.4 Restoring a Signal

You can restore a signal to its previous value by saving the return value or a
,igncU call, then using this value in a subsequent call. The function call hasthe
form:

signal (,igtype, oUptr)

where ligtypt is the manirest constant defining the signal to be restored and
oldptris the pointer value returned by a previous 'ignal call.

The runction call is typically used to restore a signal when its previous action
may be one of many possible actions. For example, in the following program
fragment the previous action depends solely on the return value of a function
keyte,t.

:fI:include <signal.h>

main 0
{

}

int catchlO, catch20j
int (*savesig}Oj

if (keytestO ====1)
signal(SIGINT, catchl}j

else
signal(SIGINT, catch2}j

savesig == signal (SIGINT, SIG_IGN}j
computeO;
signal(SIGINT, savesig)j

In this example, the old pointer is saved in the variable "savesig". This value is
restored arter the runction compute returns.

7.2.5 Program Example

This section shows how to use the ,igncU function to create a modifed version of
the ,yste m function. In this version, system disables all interrupts in the parent
process until the child process has completed its operation. It then restores the
signals to their previous actions.

7-6

XENIX Programmer's Reference

Delaying a signal is especially useful in programs that must not be stopped at an
arbitrary point. If, Cor example, a program updates a linked list, the action of a
signal can be delayed to prevent the signal from interrupting the update and
destroying the list. For example, in the following program rragment the
function tlelo.JI used to catch the interrupt signal sets the globally-defined flag
"sigflag" and returns immediately to the point of interruption.

,include <signal.h>
int sigflagj

main 0
{

delay 0
{

}

int delay OJ
int (-savesig)Oj
extern int sigflag;

signal(SIGINT, delay); /* Delay the signal. -/
u pdatelistO;
savesig = signal(SIGINT, SIG_IGN);/- Disable the signal. -/
ir (sigflag)

/* Process delayed signals ir any. -/

extern int sigflagj

sigflag=lj

In this example, ir the signal is received while uptlo.telilt is executing, it is
delayed until arter updateliet returns. Note that the interrupt signal is disabled
before processing the delayed signal to prevent a change to "sigflag" when it is
being tested.

Note that the system automatically resets a signal to its derault action
immediately after the signal is processed. If your program delays a signal,
make sure that the signal is redefined arter each interrupt. Otherwise, the
derault action will be taken on the next occurrence or the signal.

7.3.2 Using Delayed Signals With System Functions

When a delayed signal is used to interrupt the execution or a XENIX system
. runction, such as reo.tlor wait, the system rorces the runction to stop and return
an error code. This action, unlike actions taken during execution or other
runctions, causes all processing perrormed by the system function to be
discarded. A serious error can occur ir a program interprets a system function
error caused by delayed signals as a normal error. For example, ir a program

7-8

XENIX Programmer's Reference

The longjmp function has the form

longjmp (buffer)

where buffer is the variable containing the execution state. "It must contain
values previously saved with a ,etbu/ function. The function copies the values
in the buffer variable to the program counter, data and address registers, and
the process status table. Execution continues as ifit had just returned from the
,etbu/function which saved the previous execution state. For example, in the
following program fragment ,etbu/saves the execution state orthe program at
the location just before the main processing loop and longjmp restores it on an
interrupt signal.

#include <signa.l.h>
#include <setjmp.h>

mainO
{

}

onintr 0
{

int onintrOj

setjmp(sjbuf)j
signal(SIGINT, onintr)j

1* ma.in processing loop */

printr(" \nInterru pt \n");
longjmp(sj buf);
}

In this example, the action of the interrupt signal as defined by onintr is to print
the message "Interrupt" and restore the old execution state. When an
interrupt signal is received in the main processing loop, execution passes to
onintr which prints the message, then passes execution back to the main
program function, making it appear as though control is returning from the
,etb u/function.

7.4 Using Signals in Multiple Processes

The XENIX system passes all signals generated at a given terminal to all
programs invoked at that terminal. This means that a program has potential
access to a signal even if that program is executing in the background or as a
child to some other program. The following sections explain how signals may
be used in multiple processes.

7-10

XENIX Programmer's Reference

7.4.2 Protecting Parent Processes

A program ca.n create and wait ror a child process that catches its own signals ir
and only ir the program protects itselC by disabling all signals before calling the
wait runction. By disabling the signals, the parent process prevents signals
intended for the child processes trom terminating its call to wait. This prevents
serious errors that may result ir the parent process continues execution berore
the child processes are finished.

For example, in the rollowing program tragment the interrupt signal is disa.bled
in the parent process immediately aCter the child is created.

#inelude <signa.l.h>

main 0
{

}

int (*saveintr)Oi

it (Cork 0 === 0)
execl(...);

saveintr = signal (SIGINT, SIG_IGN}i
wait(&status)j
signal (SIGINT, saveintr);

The signal's action is restored after the wait function returns normal control to
the parent.

7-12

(
\

The Cunction is typically used to allocate storage Cor a group oC strings that vary
in length. For example, in the Collowing program fragment mtdloc is used to
allocate space for ten different strings, each of different length.

int ij
char *temp, *strings[lO}j
unsigned isizej

for (i==Oj i<lOj i++) {
scanC("%s", temp}j
isize == strlen(temp)j
string[iJ == malloc(isize)j
}

In this example, the strings are read Crom the standard input. Note that the
.trle n fun ction is used to get the size in bytes oC each string.

8.2.2 Allocating Space tor an Array

The c alloc function allocates storage Cor a given array and initializes each
element in the new array to zero. The Cunction call has the Corm:

caHoc (n, 'ize)

where n is the number oC elements in the array, and ,ize is the number or bytes
in each element. The function normally returns a pointer to the starting
address of the allocated space, but will return a null pointer value iC there is not
enough memory. For example, the Cunction call

table = caBoc (10,4)

allocates sufficient space Cor 3010 element array. Each element has 4 bytes.

The Cunction is typically used in programs which must process large arrays
without knowing the size oC an array in advance. For exa.mple, in the following
program Cragment calloc is used to allocate storage Cor an array orvalues read
Crom the standard input.

int ij
char *tablej
unsigned inurn;

scanC(" %d" , &inum);
table == caBoc (inurn, 4);
Cor (i=O; i<inumj i++)

scanC(" %d", table[i));

Note that the number or elements is read from the standard input berore the
elements are read.

8-2

main 0
{
char -table;

if (tablelO] == -1)
free (table);

8.3 Locking Files

Locking a file is a way to synchronize file use when several processes may
require access to a single file. The standard C library provides one file locking
function, the locking function. This function locks any given section of a file,
preventing all other processes which wish to use the section from gaining
access. A process may lock the entire file or only a small portion. In any case,
only the locked section is protected; all other sections may be accessed by other
processes as usual.

File locking protects a file from the damage that may be caused if several
processes try to read or write to the file at the same time. It also provides
unhindered access to any portion of a file for a controlling process. Before a file
can be locked, however, it must be prepared using the open and lfeekfunctions
described in Chapter 2, "Using the Standard I/0 Functions." To use the
locking function, you must add the line

#include <sys/locking.h>

to the beginning of the program. The file fYI/locking." contains definitions for
the modes used with the function.

8.3.1 Preparing a File for Locking

Before a file can be locked, it must first be opened using the open function, then
properly positioned by using the IBeek function to move the file's character
pointer to the first byte to be locked.

The open function is used once at the beginning of the program to open the file.
The IBeek function may be used any number of times to move the character
pointer to each new section to be locked. For example, the following statements
prepare the first 100 bytes beginning at the byte position 1024 from the
beginning of the file re servati onB for locking.

8-4

fd = open("reservations", O_RDONLY)
Iseek(fd, 1024, 0)

0.
1 include <sys/locking.h>

mainO.
{
int fd, err;
char *data;

fd = open(" data" ,2};
if (fd == -1)

perrod"");

/* Open data ror R/W */

else {

}

Iseek(Cd, 100L, 0); /* Seek to pos 100 */
err = 10cking(Cd, LK_LOCK, 100L); /* Lock bytes 100-200 */
iC (err == -1) {

/* process error return */
}

/* read or write bytes 100 - 200 in the file */

Iseek(Cd, 100L, 0); /* Seek to pos 100 */
locking(fd, LK_UNLCK, 100L); /* Lock bytes 100-200 */

}

8.4 Using Semaphores

The standard C library provides a group of functions, called the semaphore
functions, which may be used to control the access to a given system resource.
These functions create, open, and request control or· "semaphores."
Semaphores are regular files that have names and entries in the file system, but
contain no data. Unlike other files, semaphores cannot be accessed by more
than one process at a time. A process that wishes to take control oC a semaphore
away from another process must wait until that process relinquishes control.
Semaphores can be used to control a system resource, such as a data file, by
requiring that a process gain control oC the semaphore before attempting to
access the resource.

There are five semaphore Cunctions: creatBem, openBem, waitBem, nbwait6em,
and sigsem. The creatBem Cunction creates a semaphore. The semaphore may
then be opened and used by other processes. A process can open a semaphore
with the openBem function and request control or a semaphore with the
waitsem or nbwaitBem function. Once a process has control or a semaphore it
can carry out tasks using the given resource. All other processes must wait.
\Vhen a process has finished accessing the resource, it can relinquish control oC
the semaphore with the sigsem Cunction. This lets other processes get control
oCthe semaphore and use the corresponding resource.

8-6

8.4.2 Opening a Semaphore

The opensem function opens an existing semaphore for use by the given
process. The function call has the form:

where eem_name is a pointer to the name of the semaphore. This must be the
same name used when creating the semaphore. The function returns a
semaphore number that maybe used in subsequent semaphore functions to
refer to the stmaphore. The function returns -1 if it encounters an error, such
as trying to open a semaphore that does not exist or using the name of an
existing regular file. .

The function is typically used by a process just before it requests control of a
given semaphore. A process need not use the function if it also created the
semaphore. For example, in the following program fragment openeem is used
to open the semaphore named eemaphore 1.

main 0
{
int semI;

if ((semI = opensem("semaphoreI")) != -1)
waitsem(seml);

In this example, the semaphore number is assigned to the variable "semI". Ir
the number is not -I, then "semI" is used in the semaphore function waitBem
which requests control ofthe semaphore.

A semaphore must not be opened more than once during execution of a process.

8.4.3 Requesting Control of a Semaphore

The waiteem function requests control of a given semaphore for the calling
process. If the semaphore is available, control is given immediately.
Otherwise, the process waits. The function call has the form:

where 8em_num is the semaphore number of the semaphore to be controlled. Ir
the semaphore is not available (if it is under control of another process), the
function forces the requesting process to wait. If other pro.cessesare already
waiting for control, the request is placed next in a queue of requests. When the
semaphore becomes available, the first process to request control receives it.
When this process relinquishes control, the next process receives control, and so
on. The function returns -I if it encounters an error such as requesting a

8-8

semaphore with the w4iteem ornbw4iteem function. The function returns -I if
it encounters an error such as trying to take control of a semaphore that does
not exist.

The function is typically used after a process has finished accessing the
corresponding device or system resource. This allows waiting processes to take
control. For example, in the following program fragment eig,em signals the
end of control or the semaphore "tty I".

main 0
{
int tty1;
FILE temp, fttyl;

waitsem(tty 1)j
while ((c=rgetc(temp)) != EOF)

rputc(c, fttyI);
sigsem(tty 1);

This example also signals the end of the copy operation to the semaphore's
corresponding device, given by "rtty 1".

Note that a semaphore can become locked to a dead process if the process fails
to signal the end of the control berore terminating. In such a case, the
semaphore must be reset by using the cre4teemfunction.

8.4.6 Program Example

This section shows how to use the semaphore runctions to control the a.ccess of a
system resource. The following program creates five· different processes which
vie ror control of a semaphore. Each process requests controlof the semaphore
five times, holding control for one second, then releasing it. Although, the
program perrorms no meaningful work, it clearly illustrates the use or
semaphores.

8-10

The program contains a number of global variables. The a.rray "semf"
contains the semaphore name. The name is used by the Cf'eat,em and open,em
functions. The variable "sem_num" is the semaphore number. This is the
value returned by creatum and openum and eventually used in tDait,em and
,ig,em. Finally, the variable "holdsem" contains the number of times each
process requests control of the semaphore.

The main program function uses the mktemp function to create a unique name
for the semaphore and then uses the name with creat,em to create the
semaphore. Once the semaphore is created, it begins to create child processes.
These processes will eventually vie for control of the semaphore. As each child
process is created, it opens the semaphore and caUs the doit function. When
control returns from doit the child process terminates. The parent process also
calls the doit function, then waits for termination of each child process and
finally deletes the semaphore with the unlinHunction.

The doit function calls the tDait,em function to request control of the
semaphore. The function waits until the semaphore is available, it then prints
the process ID to the standard output, waits one second, and relinquishes
control using the ,ig,e m function.

Each step of the program is checked for possible errors. If an error is
encountered, the program calls the err function. This function prints an error
message and terminates the program.

8.5 Using Shared Data

Shared memory is a method by which one process shares its allocated data
space with another. Shared memory allows processes to pool information in a
central location and directly access that information without the burden of
creating pipes or temporary files.

The standard C library provides several functions to access and control shared
memory. The ,dget function creates and/or adds a shared memory segment to
a given process's data space. To access a segment, a process mt:lst signal its
intention with the ,denter function. Once a segment has completed its access, it
can signal that it is finished using the the segment with the ,d/eave function.
The,d/ree function is used to remove a segment from a process's data space.
The ,dgetv and ,dwaitv functions are used to synchronize processes when
several are accessing the segment at t.he same time.

To use the shared data functions, you must add the line

#include <sd.h>

at the beginning of the program. The ,d. II. file contains definitions for the
mainfest constants and other macros used by the functions.

8-12

8.5.2 Entering a Shared Data Segment

The ,de nter signals a process's intention to access the contents or a shared data
segment. A process cannot effectively access the contents or the segment unless
it enters the segment. The runction call has the form:

sdenter. (4ddr, flag)

where 4ddr is a character pointer to the segment to be accessed, and jf4g is an
integer value which defines how the segment is to be accessed. The jf4g may be
SD_RDONLY for indicating read only access to the segment, or SD.,NOWAIT for
returning an error if the segment is locked and another process is currently
accessing it. These values may also be combined by logically ORingthem.

The runction normally waits for the segment to become available before
allowing access to it. A segment is not available if the segment has been created
without SD_UNLOCK flag and another process is currently accessing it.

In general, it is unwise to stay in a shared data segment any longer than it takes
to examine or modiry the desired location. The ,dle4f1f runction should be used
after each access. When in a shared data segment, a program should avoid
using system functions. System runctions can disrupt the normal operations
required to support shared data and may cause some data to be lost. In
particular, if a program creates a shared data segment that cannot be shared
simultaneously, the program must not call the fork function when it is also
accessing that segment.

8.5.3 Leaving a Shared Data Segment

The ,dle ave runction signals a process's intention to leave a shared data
segment arter reading or modirying its contents. The runction call has the
form:

sdleave (4ddr)

where addr is a pointer with type char to the desired segment. The runction
returns -1 ir it encounters an error, otherwise it returns O. The return value is
always aninteger.

The function should be used arter each access or the shared data to terminate
the access. Ir the segment's lock flag is set, the runction must be used after each
access to allow other processes to access the segment. For example, in the
rollowing program rragment ,dle ave terminates each access to the segment
given by "shared".

8-14

has the form:

sdwaitv (addr, vnum)

where addr is a character pointer to the desired segment, and tlnum is an integer
value which defines the version number to wait on. The function normally
returns the new version number. It returns -1 if it encounters an error. The
return value is always an integer.

The function is typically used to synchronize the actions of two separate
processes. For example, in the following program fragment the program waits
while the program corresponding to the version number "radical_change"
performs its operations in the segment.

#include <sd.h>.

main 0
{
int radicaLchange == 3;

if (sdwait (sdseg, radical_change) ==- -1)
fprintf(stderr, "Cannot find segment\n");

Ir an error occurs while waiting, an error message is printed.

8.5.6 Freeing a Shared Data Segment

The ,dire e function detaches the current process from the given shared data
segment. The Cunction call has the form:

sdfree (addr)

where addr is a character pointer to the segment to be set free. The function
returns the integer value 0, if the segment is Creed. Otherwise, itreturns-l.

Ir the process is currently accessing the segment, ,dlree automatically calls
,die ave to lea.ve the segment before freeing it.

The contents of segments that have been freed by all attached processes are
destroyed. To reaccess the segment, a process must recreate it using the ,dget
function and SD_CREAT flag.

8-16

number or the most recent XENIX system runction error. Errors detected by
system runctions, such as access permission errors and lack of space, cause the
system to set the errno variable to a number and return control to the
program. The error number identifies the error condition. The variable may
be used in subsequent statements to process the error.

The errno variable is typically used immediately after a system function has
returned an error. In . the following program fragment, errno is used to
determine the course of action arter an unsuccessful call to the ope n function.

if((fd=open("accounts", O_RDONLY)) == -1)
switch (errno) {

}

case(EACCES):

. default:

fd = open(" /usr/tmp/accounts" ,OJU)ONLy);
break;

exit(errno);

In this example, if err no is equal to EACCES (a manirest constant), permission
to open the file ClCC otmtl in the current directory is denied, so the file is opened
in the directory / ulr/tmp instead. If the variable is any other value, the
program terminates.

To use the errno variable in a program, it must be explicitly defined as an
external variable with int type. Note that the file errno.A contains manifest
constant definitions ror each error number. These constants may be used in
any program in which the line

linclude <errno.h>

is placed at the beginning of the program. The meaning or each manifest
constant is described in Intro(S) in theXENlX Reference MClnual.

9.4 Printing Error Messages

The perror runction copies a short .error message describing the most recent
system runction error to the standard error file. The function call has the rorm:

perror (I)

where , isa pointer to a string containing additional information about the
error.

The pe rror function places the given string berore the error message and
separates the two with a colon (:). Each error message corresponds to the
current value or the errno variable. For example, in the following program
fragment perror displays the message

0·2

Most system errors occur during calls to system runctions. If the system error is
recoverable, the system will return an error value to the program and set the
errno variable to an appropriate value. No other inrormation about the error
is available.

Although the system lets two or more programs share a given resource, it does
not keep close track or which program is using the resource at any given time.
When an error occurs, the system returns an error value to all programs
regardless or which caused the error. No inrormation about which program
caused the error is available.

System errors that occur during routine I/O operations initiated by the XENIX
system itselr generally do not affect user programs. Such errors cause the
system to display appropria.te system error messages on the system console.

Some system errors are not detected by . the system until after the
corresponding runction has returned successrully. Such errors occur when data
written to a file by 1t. program has been queued ror writing to disk at a more
convenient time, or when a portion or data to be read rrom disk is found to
already be in memory and the remaining portion is not read until later. In such
cases, the system assumes that the subsequent read or write operation will be
carried out successrully and passes control back to the program along with a
successful return value. If operation is not carried out successfully, it causes a
delayed error.

When a delayed error occurs, the system usually attempts to return an error on
the next call to a system function that accesses the same file or resource. If the
program has already termina.ted or does not make a suitable ca.ll, then the error
is not reported.

9-4

XENlX Programmer's Reference

procedure that is being setjmped to. Hence, register variable values after a longjmp are
the same as before a corresponding setjmp is called. If you need local variables to
changebetweenthecall ofsetjmp andlongjm.p, they cannot be register variables.

A.I.2 Calling Sequence

The calling sequence is straightforward: arguments are pushed on the stack from the
lastto first: i. e .• from rightto left as yoo read them in the C source. The push quantum is
4 bytes, so if you are pushing a character. you must extend it appropriately before
pushing. Structures and floating point numbers that are larger than 4 bytes are pushed
in increments of 4 bytes so that they end up in the same order in stack memory as they
are in any othermemory. Thismeans pushing the last word first and longword padding
the last word (the first pushed) if necessary. The caller is responsible for removing his
own arguments. Typically. an

addqi #constant,sp

is done. It is not really important whether the caller actually pushes and pops his
arguments or just stores them in a static area at the top of the stack, but the debugger,
adb. examines the addql or addw from the sp to decide how many arguments there
were.

A.I.3 Stack Probes

XENIX is designed to dynamically allocate stack for local variables. function
arguments. return addresses. etc. To do this. the XENIX kerneIchecks the offending
instruction when a memory fault occurs. If it is a stack reference, the kernel maps
enough stack memory for the instruction to complete its execution successfully. Then
the procedure continues execution where it left off. Generally. this means restarting
the offending memory reference instruction (usually a push or store). Unfortunately,
the MC68000doesntt provide a way to restart instructions.

Therefore, we need to perform a special instruction, which we call astaclc probe, that
potentially causes the mem<X}' fault. but that has no effect other than the memory fauk
itself. The kernel can then allocate any needed stack mem<X)'. ignore the fact that the
stack probe instruction did not complete. and continue on lothe next instruction.
When we perform a stack probe and a memory fault occurs, the kernel allocates
additional memory for the stack. The stack probe instruction for 68000XENIX is

tstb -value(sp)

Value must be negative: since a negative index from the stack pointer is above the top of
the stack- an otherwise absurd reference-- XENIX knows that this instruction can
only be a stack probe.

Focthegeneral case, use the following procedure entry sequence:

procedure..entry:
link
tsth

a6,#-savesize
-pushsize-slop-8(sp)

AIrj registers among d2-d7 and a2-a5 that are used in this procedure are saved wit.lt a
movemJ instruction after this sequence. The number of registers saved in the moveml
needs to be accounted for in the push size. Thus. pushstze is the sum of the number of

A-2

/time runctions. The /time runction, used with the etime runction, provides the
derault value ror the time zone when the TZ environment variable has not been
set. This. means a binary configuration program can be used to change the
derault time zone. No source license is required.

B.5 Changes to the ioctl Function

XENIX 3.0 and UNIX System 3.0 have a rull set or XENIX 2.3-compatible ioetl
calls. Furthermore, XENIX 3.0 has resolved problems that previously hindered
UNIX System 3.0 compatibility. For convenience, XENIX 2.3-compatible ioetl
calls can be executed by a UNIX System 3.0 program. The available XENIX 2.3
ioetl calls. are: TIOCSETP, TIOCSETN, TIOCGETP, TIOCSETC, TIOCGETC,
TIOCEXCL, TIOCNXCL, TIOCHPCL, TIOCFLUSH, TIOCGETD, and TIOCSETD.

B.O Pathname Resolution

If a null pathname is given, XENIX 2.3 interprets the name to be the current
directory, but UNIX System 3.0 considers the name to be an error. XEl\T}X 3.0
uses the version number in the z.out header to determine what action to take.

If the symbol " .. " is given as a pathname when in a root directory that has been
defined using the droot function, XENIX 2.3 moves to the next higher
directory. XENIX 3.0 also allows the " .. " symbol, but restricts its use to the
super~ user.

B.? Using the mount and chown Functions

Both XENIX 3.0 and UNIX System 3.0 restrict the use orthe mount system call to
the super-user. Also,both allow the owner of a file to use ehotDnfunction to
change the file ownership.

B.8 Super-Block Format

Both UNIX System 3.0 and UNIX System 5.0 have new super-block rormats.
XE..~IX 3.0 uses the System 5.0 format, but uses a different magic number for
each revision. The XENIX 3.0 super-block has an additional field at the end
which can be used to distinguish between XENIX 2~3and 3.0 super-blocks.
XENIX 3.0 checks this magic number at boot time and during a mount. If a
XENIX 2.3 super~block is read, XENIX 3.0 converts it to the new rormat
internally. Similarly, if a XENIX 2.3 super~block is written, XENIX 3.0 converts
it back to the old format. This permits XENIX 2.3 kernels to be run on file
systems also usable by UNIX System 3.0.

B-2

XENIX Programmer's Reference

Child process,
described 5-5

clear function 3-13
clearok function 3-28
close funotion 2-28
clrtobot funotion, 3-13
clrtoeol funotion 3-13
Command line arguments 2-2
COl'IInsnd line arguments,

storage order 2-2
Command line

described 2-2
Compilation

cc program 1-1
creatsem function 8-7
crmode funotion 3-30
otype.h file 4-1
cur ses, the soreen

processing library 1-1
curses.h file 3-2
Debugging, restrictions 2-2
deloh function 3-12
deleteln function 3-12
del win function 3-25
dup funotion 6-6
echo function 3-30
ECHO mode 3-31
ECHO mode 3-5
End-of-file value, £OF 2-2
End-of-file

testing 2-18
end win function 3-6
EOF, end-of-file value 2-2
erase function 3-13
errno variable

defined 9-2
desoribed 9-1

Errors
catohing signals 9-3
delayed 9-4
errno variable 9-1
error constants 9-2
error numbers 9-1
printing error
messages 9-2
processing 9-1
routine system I/O 9-4
sharing resources 9-4
signals 9-3
standard error file 9-1
system 9-3
testing files 2-18

execl funotion 5-3
execv funotion 5-3
exit funotion 5-2
fclose function 2-19
feof funotion 2-18
ferror funotion 2-18
fflush funotion 2-25
fgeto funotion 2-13
fgets function 2-13
File desoriptors

oreating 2-26
desoribed 2-26
freeing 2-28
pipes 6-1
predefined 2-25

File pointers
oreating 2-11
defining 2-11
described 2-11
file descriptors 2-25
FILE type 2-11
freeing 2-19

XENIX Programmer's Reference

islower function 4-5
ispr.int function 4-4
ispunct function 4-4
isspace function 4-5
isupper function 4-5
isxdigit function 4-4
leaveok function 3-28
libc.a. standard Clibrary

file 1-1
11bcurses.a. screen

processing library
f.11e 1-1

11bcurses.a, the screen
processing library 3-2

libtermcap.a, the terminal
library 3-2

Locking files
de scr ibed 8-4
prepar ation 8-4
sys/locking.h file 8-4

locking function 8-5
longjmp function 7-10
longname function 3-33
Low-level functions

accessing files 2-26
described 2-25
file descriptors 2-26
random access 2-31

lseek function 2-31
Macros, special I/O

functions 2-1
malloe function 8-1
Memory allocation functions,

described 8-1
Memory

allocating arrays 8-2
allocating dynamically 8-1

1-4

allocating variables 8-1
freeing allocated
space 8-3
reallocating 8-3

move function 3-11
mvcur function 3-32
mvw1n function 3-24
nbwaitsem function 8<~9
NEWLINE mode 3-31
newwin function 3-14
nl function 3-30
nocrmode function 3-31
noecho function 3-31
nonl function 3-31
noraw function 3-31
Notational conventions,

described 1-2
NULL, null pointer

value 2-2
o.pen function 2-26
opensem function 8-8
overlay function 3-23
overwrite function 3-23
Parent process,

descr ibed 5-5
pclose function 6-2

'perrorfunction 9-2
pipefunct'ion 6-3
Pipes

closing 6-2
cloSing low-level
access 6-4
described 6-1
file descriptor 6-3
file descriptors 6-1
file pointer 6-1
file pointers 6-1

XENIX Programmer's Reference

adding characters 3-16
adding characters 3-7
adding strings 3-16
adding strings 3-8
adding values 3-16
adding values 3-8
bold characters 3-26
olearing a screen 3-13
clearing a screen 3-21
oreating subwindows 3-15
oreating windows 3-1~
ourrent position 3-1
o~rrent position 3-28
cur ses.h file 3-2
defaul t terminal 3-5
deleting a window 3-25
del~ting oharacters 3-12
deleting characters 3-20
deleting lines 3-12
deleting lines 3-20
described 3-1
initializing 3-~
inserting characters 3-11
inserting characters 3-19
inserting lines 3-11
inserting lines 3-19
libcurses.a file 3-2
libtermcap.a file 3~2
movement prefix 3-30
moving a window 3-2~
moving the position 3-11
moving the position 3-19
normal characters 3-27
overlaying a window 3-23
overwriting a window 3-23
predefined names 3-2
reading characters 3-17

1-6

reading characters 3-9
reading strings 3-17
reading strings 3-9
reading values 3-10
reading values 3-17
refreshing a screen 3-22
refreshing the screen 3-14

screen 3-1
scrolling 3-29
sgtty.h file 3-2
standard screen 3-7
terminal oapabilities 3-1
terminal cursor 3-32
terminal modes 3-30
terminal modes 3-5
terminal size 3-6
terminating 3-6
using 3-~
window 3-1
window flags 3-28
window fl ags 3-6

Screen
described 3-1
posi tion 3-1

scroll function 3-29
scrollokfunction 3-28
sdenter function 8-14
sdfree function 8-16
sdget function 8-13
sdgetv function 8-15
sdleave runction 8-14
sdwaitv function 8-15
Semaphore functions,

described 8-6
Semaphores

checking status 8-9

(

XENIX Programmer's Reference

redireoting 2-9
Standard output

descr ibed 2-4
redireoting 2-9

Standard Output
writing 2-7

Stand ard output
writing characters
wri ting formatted
output 2-8

2-7

2-7

wri ting str ings
standend function
standout function
stderr, standard

3-27
3-26

error file
pointer 2-2

stderr, standard error file
pointer 2-12

stderr, the standard error
file 9-1

stdin, standard input file
pointer 2-2

stdin, standard input file
pointer 2-12

stdio.h file
described 2-1
including 2-1

stdout, stand ard output file
pointer 2-2

stdout, standard output file
Pointer 2-12

strcat function 4-6
strcmp function 4-7
strcpy funotion 4-8
Stream functions,

descr ibed 2-11
Stream funotions

aocessing files 2-12

1-8

aooessing standard
files 2-11
file pointers 2-1'
random access 2-31

String funotions,
desoribed 4-6

Strings
comparing 4-7
comparing 4-9
conoatenating 4-6
concatenating 4-8
copying 4-10
copying 4-8
length 4-8
pr in t i ng to 4 -11
processing, described 4-1
reading from a file 2-13
reading from standard
input 2-5
scanning 4-10
writing to a file 2-16
writing to standard
output 2-7

strlen function 4-8
strncat function 4-8
strncmp function 4-9
strncpy funotion 4.10
stterm function 3-33
subwin function 3-15
sys/locking.h file 8-4
System errors

described 9-3
repOrting 9-4

system function 5-1
System programs

calling as a separate
process 5-1

/

\

l-ii

strings

strip
time
tsort
unget

val
xref
XSU'
yace

Finds tbeprintable strings in an
object
Removes symbols and relocation bits
Times a command

. Sorts a file topologically
U ndoesa previCllS get of an
SCCSfile
ValidatesanSCCS file
Cross-referencesCprograms
Extracts strings from Cprograms
lnvokeaacompiler-compikt

lNTRO(CP} INTRO (CP)

case or "norma.!" termination) one supplied by the program (see
u:ait(S) and t:eit(S)). The former byte is 0 ror normal termination;
the latter is customarily 0 ror successrul execution and nonzero to
indica.te troubles such as erroneous parameters, or bad or inaccessi­
ble data.. It is called variously "exit code", "exit status" , or "return
code", and is described only wherespeeial conventions are involved.

Notes

Not all.commands adhere to the above syntax.

,
March 24, lQS4 Page 2

ADB(CP) ADB(CP)

escape a'.

< . name The value of name, which is either a variable name or a
register name. Adb maintains a number of variables (see
V ARlABLES) named by single letters or digits. If name is
a register name then the value of the register is obtained
from the system header in corjiJ .

symbol A symbol is a sequence of upper or lower case letters,
umerscores or digits, not starting with a digit. The value
of the symbol is taken from the symbol table in obifiJ. An
inltial_ or· will be prepended to symbol if needed.

_ symbol
In C, the 'true name' of an external symbol begins with
an underscore (.;.). It may be necessary to use this name
to distinguish it from the internal or hidden variables of a
program.

(exp) The value of the expression exp.

MODadic operaton

.exp The contents of the location addressed by exp in corfU.

@exp The contents of the location addressed by exp in obi/il.

-up Integer negation.

-exp Bitwise complemem.

Dyadic operators are left associative and are less binding than
Illonadic operators.

el + e2 Integer addition.

el-e2 Integer subtcacticn.

el.e2 Integer multiplication.

el%e2 Integer division.

el &e2 Bitwise conjunction.

elle2 Bitwise disjunction.

e1 :fIe2 E1 rounded up to the next multiple of e2.

COMMANDS
Most commands consist of a verb followed by a modifier or list of
modifiers. The following verbs are available .. (The commands '1'
and '/' may be followed by'.'; see ADDRESSES for further
details.)

?/ Locations starting at address in obi/il are printed according

May 10, 1984 Page 2

ADB(CP) AD8(CP)

are checked to. ensure that they have an
appropriate type as indicated below.

local or global data symbol
1 local or global text symbol

local or global absolute symbol

p 2 Print the addressed value in symbolic form using
the same rules for symbol lookup as a.

t 0 When preceded by an integer tabs to the next
appropriate tab stop. For example, 8t moves to
the next 8-space tab stop.

r 0 Print a space.
D 0 Print a newline.
" ••• " 0 Print the enclosed string.

Dot is decremented by the current increment.
Nothing is printed.

+ Dot is incremented by 1. Nothing is printed.
D~t is decremented by 1. Nothing is printed.

newline If the previous command temporarily incremented dot,
make the increment permanent. Repeat the previous
command with a count of 1.

[?/11 value mask
Words starting at dot are masked with mask and compared
with value until a match is found. If L is used then the
match is for 4 bytes at a time instead of 2. If no match is
found then dot is unchanged; otherwise dot is set to the
matched location. If mask is omitted then -1 is. used.

[1/1", value ...
Write the 2-byte value into the addressed location. If the
command is W, write 4 bytes. Odd addresses are not
allowed when writing to the subprocess address space.

[?/1m bl el flf?/l
New values for (bl, el, fl) are recorded. If less than
three expressions are given then the remaining map
parameters are left unchanged. If the '1' or '/' is followed
by 'iii' then the second segment (b2 , e2 ,12) of the map­
ping is changed. If the list is terminated by '1' or 'I' then
the file (obi/il or corfU respectively) is used for subsequent
requests. (So that, for example, '1m?' will cause 'I' to
refer to obifil.)

>name Dot is assigned to the variable or register named.

May 10, 1984 Page 4

ADB(CP)

VARIABLES

ADB(CP)

the same line as the command. An argument
starting with < or > causes the standard input or
output to be established for the command. All
signals are turned on on entry to the subprocess.

es The subprocess is continued with signal s c s, see
signal(S). If address is given then the subpro­
cess is continued at this address. If no signal is
specified then the signal that caused the subpro­
cess to stop is sent. Breakpoint skipping is the
same as for r.

ss As for c except that the subprocess is single
stepped count times. lfthere is no current sub­
process then obifil is run as a subprocess as for r.
In this case rio signal can be sent; the remainder
of the line is treated as arguments- to the subpro­
cess.

k The current subprocess, if any, is tenninated.

Adb provides a number of variables. . Named variables are set ini­
tially by adb but are not used subsequently. Numbered variables
are reserved for communication as follows.

o The last value printed.
1 The last offset part of an instruction source.
2 The previous value of variable 1.

On entry the following are set from the system header in the cotfil.
If corfU does not appear to be a core file then these values are set

, from obifil.

b The base address of the data segment.
d The data segment size.
e The entry point.
s The stack segment size.
t The text segment size.

ADDRESSES
The address in a file associated· with a written address is deter­
mined by a mapping associated with that file. Each mapping is
represented by two triples (bl, el, fl) and (b2, e2.}2) and thefile
address corresponding to a written address is calculated as follows.

bl ~address<el => file
address = address +fl-bl, otherwise,

May· 10, 1984 Page 6

ADMIN(CP) ADMIN(CP)

Name

admin - Creates and administers sees files.

Syntax

admin [- n] [- i[name]J [- nell [- t[namel) (- fftag(flag-vallI

f
- dflag[flag-val]] [- alogin] [- elogin) [- m[mrlist
- y[commentJ] [- h] [- z] files

Description

Admin is used to create new sees files and to change parameters of
existing ones. Arguments to adminmay appear in any order. They
consist of options, which begin with - , and named files (note that
sees filenames must begin with the characters s.). _If a named file
doesn't exist, it is created, and its parameters are initialized accord­
ing to the specified options. Parameters not initialized by a. option
are assigned a default value. If a named file does exist, parameters
corresponding to specified options are changed, and other parameters
are left as is.

If a directory is named, admin behaves as though each file in the
directory were specified as a named file, except that nonSeCS files
(last component of the pathname does not begin with 8.) and
unreadable files are silently ignored. If the dash - is given, the
standard input is read; each line of the standard input is taken to be
the name of an sees file to be processed. Again, nonsees files and
unreadable files are silently ignored.

The options are as follows. Each is explained as though only one
named file is to be processed since the effects of the arguments apply
independently to each named file.

-n

- il name]

March 24, lQS4

This option indicates that a new sees file is to be
created.

The name of a file from which the text for a new
sees file is to be taken. The text constitutes the
first delta of the file (see - r below for delta
numbering scheme). If the i option is used, but the
filename is omitted, the text is obtained by reading
the standard input until an end-of-file is encoun­
tered. If this option is omitted, then the sees file is
created empty. Only one sees file may be created
by an admin command on which the i option is sup­
plied. Using a single admin to create two or more
sees files require that they be created empty (no
- i option). Note that the - i option implies the
-n option.

Page 1

ADMIN (CP) ADMIN (CP)

- dlJlagJ

March 24, 1984

IIi It A lilt of releases to which deltas can no longer
be made(pt - e . against one or these
"locked" releases tails). Theli.t has the tol­
lowing syntax:

n

<list> ::=- <range> I <list> , <range>
<range> ::- RELEASE NUMBER II.

The character a in the lilt is equiva.lent to
specitying. all relet lie. tor the named sees file.

Causes delt4(CP) to create a "null" delta in
each ot those releases (it any) being skipped
when a delta is made in a new release (e.g., in
making delta S.l after delta 2.7, releases 3 and
4 are ·skipped). These null deltas serve as
"anchor points" so that branch deltas may
later be created tromthem. The absence of
this flag. causes skipped releases to be nonex­
istent in the sees file preventing branch deltas
trom being created from them in the future.

qtezt User-definable text substituted ror all
occurrences or the keyword in sees file text
retrieved by get(CP).

mmod

ttllpe

v[pgm)

Module name ot the sees file substituted for
all occurrences of the admin.CP keyword in
sees file text retrieved by get(CP). If the m
flag is not specified, the value assigned is the
name of the sees file with the leading 8.

removed.

TlIpeof module in the sees file substituted for
all occurrences of
keyword in sees file text retrieved by

get(CP).

Causes delta (CP) to prompt tor Modification
Request (MR) numbers as the reason for
creating a delta. The optional value specifies
the name of an MR number validity checking
program (see delta(CP)). (If this flag is set
when creating an sees file, the m option must
also be used even it its value is null).

Causes removal (deletion) of the specified jftJ, rrom
an sees file. The - d option may be specified only
when processing existing sees files. Several - d
options may be supplied on a single adm;,. com­
mand. See the - t option for allowable flag names.

Page 3

ADAfIN(CP)

- z

Files

ADMIN(CP)

The sees file checksum is recompured and stored in
the first line ot the sees file (see -h, above).

Nore that use ot this option on a truly ~orrupted file
may prevent tuture derection or the corruption.

The last component ot all sees filenames must be or the rorm
s.Jile-name. New sees files are created read-only (444 modified by
umask) (see chmod(C»). Wrire permission in the pertinent directory
is, or course, required to creare a file. All writing done by 4tImin is
to a remporary x-file, called x.filename, (see get(CP)), created with
read-only permission ir the admin command is creating a new sees
file, or with the same mode' as the sees file it it exists. Arur suc­
cessrul execution or admin, the sees file is removed (ir it exists),
and the x-file is renamed with the name or the sees file. This
ensures that changes are made to the sees file only ir no errors
occurred.

It is recommended that directories containing sees files be mode
755 and that sees files themselves be read-only. The mode ot the
directories allows only the owner to modiry sees files contained in
the directories. The mode or the sees files preven ts any
modification at all except by sees commands.

Ir it should be necessary to patch an sees file ror any reason, the
mode may be changed to 644 by the owner allowing use of a text
editor. Oare mUlt be taken! The edited file should alwalllbe pro­
cessed by an admin - h to check tor corruption rollowed by an
admin - z to generate a proper checksum. Another admin - h is
recommended to ensure the sees file is valid.

Admin also makes use or a transient lock file (called z.jilen4me) ,
which is used to prevent simultaneous updates to the sees file by
different users~ See get(CP) ror further inrormation.

See Also

delta(CP}, ed(C), get(CP), help(CP), prs(CP), what(C), sccsfile(F)

Diagnostics

Use help(CP) ror explanations.

March 24, 1984 Page 5

AR(CP) AR (CP)

file.

v Verbose. Under the verbose option, . cu' gives a file-by-file
dest"ription or the making or a new archive file rrom the old
archive and the constituent files. When used with t, it gives a
long listing or all inrormation about the files. When used with
x, it precedes each file with a name.

c Create. Normally (U' will create afile when it needs to. The
create option suppresses the normal message that is produced
when afile is created.

Local. Normally 4r pla.ces its temporary files in the directory
/tmp. This option causes them to be phced in the local direc­
tory.

Files

/tmp/v· Temporary files

See Also

Id(CP), lorder(CP), ar(F)

Notes

If the same file is mentioned twice in an argument list, it may be put
in the archive twice.

March 20, 1984 Page 2

CB(CP) CB (CP)

Name

cb - Beautifies C programs.

Syntax

cb [file]

Description

Cb places a. copy of the C program in file (standard input if file is
not given) on the st3.ndard output with spacing a.ndindentation that
displays the structure of the program.

March 24, 1984 Page 1

CC(CP) CC(CP)

-K Do not generate stack probes. Stack probes are necessary
for XENlX user programs to assure proper stack growth.

Other arguments
are taken to be either loader option arguments, or C­
compatible object programs, typically produced by an
earlier cc run, or perhaps libraries of C-compatible
routines. These programs, together with the results of
any compilations specified, are loaded (in the order
given) to produce an executable program with name
a.out.

FUes
file.c
file. 0

a.out
file·risxl
Ilib/cpp
Ilib/c68
Ilib/c68c
Ilib/crtO.o
Ilibllibc.a
lusc/include

See Abo

input file
object file
loaded output
temporaries for cc
preprocessor
compiler for cc
optional optimizer
runtime startoff
standard library, see intro(S)
standard directory for 'II include' files

B. w. Kernighan am D. M. Ritchie, The C Programming
Language, Prentice-Hall, 1978
D. M. Ritchie, C Reference Manual
adb(CP),ld(CP)

DIAGNOSTICS
The diagnostics produced by C itself are intended to be self­
explanatory. Ocatsional messages may be produced by the
assembler or the loader. Of these, the most mystifying are from
the assembler, as(C), which produces line number reports based on
the generated code, which is only loosely related to the source
linenumber. Running the compiler with the -S option and assem­
bling the result by ham may help you resolve the difficulty.

May 10, 1984 Page 2

CDC(CP) CDO(CP)

Ir - m is not used and the standa.rd input is a
~rminal, the prompt MRs! is issued on the
standa.rd output berore the standard input is
rea.dj ir the standard input is not a. ~rminal,
no prompt is issued. The MRs! prompt always
precedes the comment.5!prompt (see - y
option) .

MRs in a list a.re sepa.ra~d by blanks and/or
tab charac~rs. An unescaped newline cha.rac­
~r· terminates the MR list.

No~ that ir the v flag has a value (see
admin(CP)), it is taken to be the name of a
progral11 (or shell procedure) which valida~s
the correctness or the MRnumbers. Ir a
nonzero exit status is returned from the MR
number valida.tion program, cdc termina~s
and the delta. commentary remains unchanged.

- y(comment] Arbitrary~xt used to replace the comment(s)
already existing for the deltaspeci6ed by the
- r option. The previous commenU! are kept
and preceded by a comment line stating that
they were changed. A null comment has no
effect.

If - y is not specified and the standa.rd input is
a ~rmina), the prompt "comments?" is issued
on the standard output before the standard
input is read; ir the standard input is not a ~r­
minai, no prompt is issued. An unescaped
newline charac~r ~rmina~s the comment ~xt.

In general, if you made the delta, you can change its delta
commentary; or if you own the file and direetory you can
modify the delta commentary.

Examples

The following:

cdc - r1.6 - m"b178-12345 !b177-54321 bI7g~OOOOl" - ytrouble
s.file

a.dds b178-12345 and b17g .. 00001 to the MR list, removes b177-54321
from the MR list, and adds the comment trouble to delta 1.6 of
s.file. •

(

March 24, 1 g84 Pa.ge 2

CO.\fB(CP) COMB (CP)

Name

com b - Combines sees deltas.

Syntax

comb (- 0] (- ~] (~p3idl [;... dist) files

Description

Comb provides the means to combine one or more deltas in an sees
file andm ake a single new delta. The new delta replaces the previous
deltas, making the sees file ~maller than the original.

Comb does not perform the combination itself. Instead, it generates
a shell procedure that you must save and execute to reconstruct the
given sees files. Comb copies the generated shell procedure to the
standard output. To save the procedure, you must redirect the out;.
put to a file. The saved file can then be executed like any other shell
procedure (see ,h(C)).

When invoking comb, arguments may be specified in any order. All
options apply to all named sees files. If a directory is named, comb
behaves as though each file in the directory were specified as a
named file, except that nonsees files (last component of the path­
name does not begin with s.) and unreadable files are silently
ignored. If a name of - is given, the standard input is read; each
line of the standard input is taken to be the name of an sees file to
be processed; nonsees files and unreadable files are silently ignored.

The options are as follows. Each is explained as though only one
named file is to be processed, but the effects of any option apply
independently to each named file.

- pSID The Sees IDentification string (SID) of the oldest delta to
be preserved. All older deltas are discarded in the recon­
stru cte d file.

- eli. A li,t (see get(CP) for the syntax ofa li,t) of deltas to be
preserved. All other deltas are discarded.

- 0 For each get - e generated, this argument causes the recon­
structed file to be aceessed at the release of the delta to be
created, otherwise the reconstructed file would be accesse.d
at the most recent ancestor. Use of the - 0 option may
decrease the size of the reconstructed sees file. It may also
alter the shape of the delta tree of the original file. •

March24 t 1984 Page 1

CONFIG(CP) CONFIG(CP)

Name

config - configure a XENIX system

Syntax

/ek/config [- t] (- 1 file] (- c file] [- m file] dfile

Description

Config isa program that takes a description of aXE NIX system and
generates a file which is a C program defining the configuration
tables for the various devices on the system.

The - c opt.ion specifies the name of the configuration table file; C.c
is the default name.

The - m option specifies the name of the file that contains all the
information regarding supported devices; /ek/mastel' is the default
name. This file is supplied with the XENIX system and should not be
modified unless the user Jullyunderstands its construction.

The - t option requests a short table of major device numbers for
character and block type devices. This can facilita.te the creation of
special files.

The user must supply dfile; it must contain device information for
the user's system. This file is divided into two parts. The first part
contains physical device specifications. The second part contains
system-dependent information. Any line with an asterisk (*) in
column 1 is a co~ment.

All configurations are assumed to have a set of required devices
which must be present to run XENIX such as the system clock.
These devices must not be specified in dfile.

First Part ot dfile

Each line contains two fields, delimited by blanks and/or tabs in the
following format:

devname number

where devname is the name of the device (as it appears in the
/ek/mastel' device table), and number is the number (decimal) of
devices associated with the corresponding controller; number is
optional, and if omitted, a default value which is the maximum
value for that controller is used.

March 24, 1984 Page 1

CONFIG(CP} COf..TIG (CP)

We must also specify the following parameter information:
root device is an HD (pseudo disk 3)
pipe device is an HD (pseudo disk 3)
swap device is an HD (pseudo disk 2)

with a swplo of 1 and an nswap of 2300
number of buffers is 50
number of processes is 50
maximum number of processes per user ID is 15
number of mounts is 8
num ber of inodes is 120
num ber of files is 120
number of calls is 30
number Qf texts is 35
num ber of character buffers is 150
number of swapmap entries is 50
number of memory pages is 512
number of file locks is 100
timezone is pacific time
daylight time is in effect

The actual system configuration would be specified as follows:
hd 1

Files

fd 1
root hd 3
pipe hd 3
swap hd 2 0 2300
• Comments may be inserted in this manner
buffers 50
procs 150
maxproc 15
mounts 8
inodes 120
files 120
calls 30
texts 35
clists 150
swapmap 50
pages (1024/2);
locks 100
timezone (8*60)
daylight 1

/etc/m aster
c.c

default input master device table
default output configuration table file

See Also

master(F)

March 24, lQ84 Page 3

CREF(CP) CREF.(CP)

Name

crer - Makes a cross-reference listing.

Syntax

cret[- aeilnostuxl23) files

Description

Cre! makes a cross-rererence listing or assembler or C programs. The
program searches the given jile. for symbols in the appropriaU! C or
assembly language syntax.

The output report is in four columns:

1. Symbol
2. Filename
3. ,Current sym bol or line num ber
4. Text as it appears in the file

Cre! uses ,either an ignore file or an onl1l file. It the - i option is
given, the next argument is taken to be an ignore file; it the - 0

option is given, the next argument is taken to be an only file. Ignore
and onl1l files are lists of symbols separated by newlines. AU sym­
boIs, in an ignore file are ignored in columns 1 and 3 of the output.
It an only file is given, only symbols in that file will appear in
column 1. Only one of these options may be given; the derault Se~
ting is - i using the derault ignore file (see FILES below). Assem­
bler predefined symbols or C keywords are ignored.

The - s option causes current symbols to be put in column 3; In the
assembler,the current symbolis the most recent name symbol; in C,
the current function name. The -I option causes the line number
within the file to be put in column 3.

The - toption causes the nex't available argument to be used as the
name of the intermediate file (instead of the temporary file
/tmp/crt!!). This file is created and is not removed at the end or
the process.

The cre! options are:

a ,Uses assem bIer format (default)

c Uses C format

Uses an ignore file (see above)

Puts line number in column 3 (instead of current symbol)

,
March 24, 1984 Page 1

OTAGS (CP) OrAGS (CP)

Name

ctags - Creates a tags file.

Syntax

ctags [- u] [- w] [- x) name ...

Description

Ota9' makes a tags file for lIi(C) from the specified C sources. A tags
file gives the locations of specified objects (in this case functions) in
a group oC files. Each line of the tags file contains the Cunction
name, the file in which it is defined, and a scanning pattern used to
find the Cunction definition. These are given in separate fields on the
line, separated by blanks or tabs. Using the tag' file, 11; can quickly
find these function definitions.

Ir the - x flag is given, cta9'produces a list of Cunction names, the
line number and file name on which each is defined, as well as the
text oC that line and prints this on the standard output. This is a sim­
ple index which can be printed out as an off-line readable Cunction
index.

Files whose name ends in .c or .h are assumed to be C source files
and are searched Cor C routine and macro definitions.

Other options are:

- w Suppresses warning diagnostics.

- u Causes the specified files to be updated in tags; that is, all rerer­
ences to them are deleted, and the new values are appended to
the file. (Beware: this option is implemented in a way which is
rather slow; it is usually raster to simply rebuild the tag' file.)

The tag main is treated specially in C programs. The t~g formed is
created by prepending M to the name of the file, with a trailing .c
removed, if any, and leading pathname components also removed.
This makes use of ctag' practical in directories with more than one
program.

Files

tags Output tags file

See Also

ex(C), vi(C)

March 24, tQ84 Page t

DELTA (OP) DELTA (OP)

Name

delta.,... Makes a delta (change) to an;SeeS file.

Syntax

delta (- rSID] [- s] [- n] [- glist] I..;. m[mrlistJl [- y[comment))
(- p) files

Description

Delt4 is used to permanently introduce into the named sees file
changes that were made to the file retiievedby get{ OP) (called the
g-file, or generated file).

Delt4 makes a delta to each sees file named by file,. Ir a directory
is named, tlelt4 'behaves as though each file in the directory were
specified as a named file, except that nonSeeS files (last component
of the pathna.me does not begin with s.) and unreadable files are
silently ignored. Ir a name of - is given, the standard input is read
(see Warning); each line of the standard input is taken to be the
name of an sees file to be processed.

Delt4 may issue prompts on the standard output depending upon
certain options specified and flags (see 4 dmin. (OP)) that may be
present in the sees file (see - m and - y options below).

Options apply independently to each named file.

- rSID

-8

-n

March 24, 10S4

Uniquely identifies which delta is to be made to the
sees file. The use of this keyletter is necessary
only if two or more versions of the same sees file
ha.ve been retrieved for editing (get - e) by the
same person (login name). The SID value specified
with the - r keyletter can be either the SID specified
on the get command line or the SID to be made as
reported by the get command (see get(OP)). A
diagnostic results if the specified SID is ambiguous,
or if it is necessary and omitted on the command
line.

Suppresses the issue, on the standard output, of the
created delta's SID, as well as the number of lines
inserted, deleted and unchanged in the sees file.

Specifies retention of the edited g-file (normally
removed at completion of delta processing).

Page 1

DELTA(CP)

p-rile

q-rile

x~file

z,;,rile

d-file

DELTA (CP)

Existed before the execution of delta; may exist
after completion of delta.

Created during the execution of delta; removed after
completion of delta.

Created during the execution of delta; renamed to
sees file after completion of delta.

Created during the execution or delta; removed dur­
ing the execution or delta.

Created during the execution or delta; removed after
completion or delt4.

/usr/bin/bdirr Program to compute differences between the
"retrieved" file and the g-file.

Wamins

Lines beginning with an SOH ASCII character (binary 001) cannot be
placed in the sees file unless the SOB is escaped. This character has
special meaning to sees (see .ee.file(F)) and will cause an error.

A get of many sees files, followed by a delta of those· files, should
be avoided when the get generates a large amount or data.. Instead,
multiple fet/delt4 sequences should be used.

If the standard input (-) is specified on the delta command line, the
- m (ir necessary) and - y options mu.t also be present. Omission
of these options causes an error to occur.

See Also

acimin(CP), bdiff(C), get(CP), help(CP), prs(CP), sccsfile(F)

Diagnostics

Use latl,,(CP) lor explanations.

March 24, 1984 Page 3

GET(CP) GET (CP)

gets for editing on the same SID until delta is executed or
the j (joint edit) flag is set in the sees file (see
admin(CP)). Concurrent use or get - e ror different
SIOs is always allowed.

If the g-Jile generated by get with an - e option is
accidentally ruined in the editing process, it may be
regenerated byreexecuting the get command with the
- k option in place or the - e option.

sees file protection specified via the ceiling, floor, and
authorized user list stored in the sees file (see
admin(CP)) are enforced when the - e option is used.

- b Used with the - e option to indicate that the new delta
should have an SID in a new branch. This option is
ignored if the b flag is not present in the file (see
admin(CP)) or if the retrieved delta is not a leaf delta.
(A l~af delta is one that h2iS no successors on the sees
file tree.)

- ilin

Note: A branch delta may always be created from a non­
leaf delta.

A li,t of deltas to be included (forced to be applied) in
the creation of the generated file. The lilt has the Collow­
ing syntax:

<list> ::- <range> I <list> , <range>
<ra.nge> ::-SID I SID - SID

SID, the sees Identification of a delta., may be in any
form described in Chapter 5, "SCCS: A Source Code
Control System," in the XENIX Programmer', Guide.

- xli,t A li,t of deltas to be excluded (forced not to be applied)
in the creation of the generated file. See the - i option
for the liBt format.

- k Suppresses replacement of identification keywords (see
below) in the retrieved text by their value. The - k
option is implied by the - e option.

-I[pJ Ca.uses a delta. summary to be written into an '-file. If
- Ip is used then an I-file is not created; the delta sum-
mary is written on the standard output instead. See
FILES for the format of the I-file.

- p Causes the text retrieved from the sees file to be written
on the standard output. No g-file is crea.ted. All output
thatnorma.lly goes to the standard output goes to file
descriptor 2 instea.d, unless the -8 option is used, in
which case it disappears.

March 24, lQS4Page2

GET(CP) GET(OP)

wherever they occur. The following keywords may be used in the
text stored in an sees file:

Keyword
%J%

~%

'Jm%
~%
'Jm%
%)%
~%
~%
%f%
~%
o/((j%
'3ro%
%Y%

Files

Value
Module name: either the value or the m flag in the file
(see admin(CP)), or ir absent, the name of the sees file
with the leading 8. removed.
sees identification (SID) (o/cR%<Ja..%m3%o/cS%) of the
retrieved text.
Release.
Level.
Branch.
Sequence.
Current date (YY/MM/DD).
Current date (MM/DD/YY).
Current time (HH:MM:SS).
D ate newest applied delta was created (YY /MM/DD).
Date newest applied delta was created (MM/DD/YY).
Time newest applied delta was created (HH:MM:SS).
Module type: value of the t flag in the sees file (see
admin(CP)).
sees filename.
Fully qualified sees filename.
The value of the q flag in the file (see admin(CP)).
Current line number. This keyword is intended for iden­
tifying messages output by the program such as "this
shouldn't have happened" type errors. It is not intended
to be ·used on every line to provide sequence numbers.
The 4-character string 0 (I) recognizable by wkat(C).
A shorthand notation for constructing wkat(C) strings for
XENIX program files. o/rNV% == %Z%%M%<horizontal­
tab>m%
Another shorthand notation for constructing wkat(C)
strings for nonXENIX program files.
o/oA % == o/Ol%o/O'l% o/OM% o/a%%Z%

Several auxiliary files may be created by get. These files are known
generically as the g-/ile, I-file, p-file, and z-file. The letter berore the
hyphen is called the tag. An auxiliary filename is formed from the
sees filename: the last component of all sees filenames must be of
the rorm s.module-name, the auxiliary files are named by replacing
the leading s with the tag. The g-file is an exception to this scheme:
the g-file is named by removing the s. prefix. For example, s.xyz.c,
the auxiliary filenames would be xyz.c, l.xyz.c, p.xyz.c, and z.xyz.c,
respectively.

The g-{de, which contains the generated text, is created in the
current directory (unless the - p option is used). A g-file· is created
in all cases, whether or not any lines of text were generated by the
get. It is owned by the real user. It the - k option is used or

March 24, 1984 Page 4

GET(CP) GET(CP)

created mode 444.

See·Nso

admin(CP), delta(CP), help(CP), prs(CP), what(C), sccsfile(F)

Diagnostics

Use help(CP) for explanations.

Notes

If the effective user has write permission (either explicitly or impli­
citly) in the directory containing the sees files, but the real user
doesn't, then only one file may be named when the - e option is
used.

March 24, 1984 Page 6

HDR (CP) HDR (CP)

Name

hdr - Displays selected parts of object files.

Syntax

heir I - dhprsSt I file ...

Description

Hd, displays object file headers, symbol tables, and text or data relo­
cation records in human-readableCormats. It also prints out seek
positions for the various segments in the object file.

A.out, x.out, and x.out segmented formats and archives are under­
stood.

The symbol table format consists of six fields. In a.out rormats the
third field is missing. The first field is the sym bol's index or position
in the symbol table, printed in decimal. The index or the first entry
is zero. The second field is the type, printed in hexadecimal. The
third field is the s_seg field, printed in hexadecimal. The rourth
field is the symbol's value in hexadecimal. The firth field is a single
character which represents the sym bol's type as in nm(CP), except C
common is not recognized as a special case or undefined. The last
field is the symbol name.

If long rorm relocation is present, the format consists or six fields.
The first is the descriptor, printed in hexadecimal. The second is the
symbol ID, or index, in decimal. This field is used ror external relo­
cations as an index into the symbol table. It should rererence an
undefined symbol table entry. The third field is the position, or
offset, within the current segment at which relocation is to take
place; it is printed in hexadecimal. The fourth field is the name of
the segment rererenced in the relocation: text, data, bss or EXT ror

,externaI. The fifth field is the size of relocation: byte, word (2
bytes), or long. The last field will indicate, if present, that the relo­
cation is relative.

If short form relocation is present, the rormat consist of three fields.
The first field is the relocation command in hexadecimal. the second
field contains the name of the segment referenced; text or data. The
last field indicates the size oC relocation: word or long.

Options and their meanings are:

-h Causes the object file header and extended header to be printed
out. Each field in the header or extended header is labeled;
This is the default option.

March~4,198. Page 1

HELP(CP) HELP(CP)

Name

help - Asks ror help about sees commands.

Syntax

help (args]

Deseri ption

Help finds inrormation to explain a message from an sees command
or explain the use or a command. Zero or more arguments may be
supplied. Ir no arguments are given, Aelp will prompt ror one.

The arguments may be either message numbers (which normally
appear in parentheses following messages) or command names.
There are the rollowing types of arguments:

type 1

type 2

type 3

Begins with nonnumerics, ends in numerics. The non­
numeric prefix is usually an abbreviation for the program
or set or routines which produced the message (e.g., ge6,
for message 6 rrom the get command).

Does not contain numerics (as a command, such as get)

Is all numeric (e.g., 212)

The response or the program will be the explanatory information
related to the argument, if there is any.

When all else rails, try. "help stuck".

Files

, /usr/lib/help Directory containing files or message text

March 2·i, 1984 Page 1

w(CP) LD(CP)

, -I , or -F options can be used to produce different types of
executable files.

fA understands several options. Except for -I, they should appear
before the names of all object file arguments.

-5 'Strip' the output to save space by removing the symbol
table and relocation records. Note that stripping impairs
the usefulness of the debugger. This infonnation can also
be removed later with strip(CP).

-5r Do not attach the short form of relocation. This does not
imply removing the symbol table, as with -5 •

-u Take the following argument as a symbol and enter it as
undefined in the symbol table. This is useful for loading
wholly from a library, since initially the symbol table is
empty and an unresolved reference is needed to force. the
loading of the first routine.

- U Discard all symbols except those that are undefined exter­
nal.

-g The same as - U, except also retain the following list of
global symbols. The list consists of the next conunand
line arguments and is tenninated by the end of the com­
mand line, by - alone, or by any further option beginning
with a -.

-G The same as -g, except that the list of global symbols is
taken from the file named by the following argument. If
the next argument is - alone, the standard input is read.
The symbols may be separated by any type of whitespace.

- h' This option is an abbreviation for the library name
'Jlibllibx.a', where x is a string. If the library does not
exist, Id then tries '/usrJlibllibx.a'. A library is searched
when its name is encountered, so the placement of a -1 is
significant. Note that -I with no argument, defaults to
-Ie • If the processor on which Id is running is not the
saDle as the target processor, then it is possible that -p
may be implied. In the case of the MC68000 target, -p
lusr/HblmHb is implied.

-p Take the following argument as the directory in which -h'
libraries will be found.

-x Do not preserve local (non.globl) symbols in the output

May 10, 1984 Page 2

W(CP) W(CP)

segment. With -DD, it is used to compute the base of the
data segment. With -or, it is used to compute the base
of the text segment.

- R The next argument is taken to be a hexadecimal number
that is used as the base address for text relocation. With
-I or -DD , it also specifies the text base address; with
-Dr it specifies the data base address.

- F The next argument is taken 19 be a hexadecimal number
that specifies the size of the stack required by the object
file when executing. This only has meaning on those
processors that cannot expand the stack dynamically.

FOes
mbmb*.a libraries
lusr/mlibmb* .a more libraries
x.out output file

See Also
as(CP), ar(CP), cc(CP), ranlib(CP), stcip(CP), x.out(F)

May 10, 1984 Page 4

LEX(CP) LEX(CP)

and write to, defaulted to stdin and stdout, respe.ctively.

Any line beginning with a blank is assumed. to contain only C text
and is eopied; it it precedes .~ it is eopied into the external defini­
tion area oC the lex.yy.e tile. All rules should Collow a ~ as in
YACC. Lines preceding ~ whieh begin with a non blank eharacter
define the string on the· leCt to be the remainder or the line; it can be
called out later by surrounding it with 0. Note that curly brackets
do not imply parenthesesj only string substitution is done.

Example

D
%%

(0- g)

ir printC("IF statement\n");
(a- z) + printC("tag, value %s\n",yytext);
O{D}+ printr("octal number %s\n",yytext)i
{D}+ printr("decimal number %J\n",yytext);
"+ +" printr("unary op\n");
"+ " printC("binary op\n");
"/*" { loop:

while (input() !- '*');
switch (input())

. {
case' I': break;
case '*': unput('*');
deCault: go to loop;
}

The external names generated by lez all begin with the prefixyy or
YV.

The options must appear berore any riles. The option ~ e indicates
C actions and is the default, - t eauses thelex.yy.c program to be
written instead to standard output, - v provides a one-line summary

. or statisties oC the maehine generated, - n will not print out the -
. summary. Multiple riles are treated as a. single file. If no files are

speciCied, standard input is used.

Certain table sizes Cor the resulting rinite state machine can be set in
the definitions section:

~4>A
num ber or positions is A (derault 2000)

%iA
number or states is A (50~)

%A
number or parse tree nodes is A (1000)

. Ma.rch 26, 1984 Page 2

LINT(CP) LINT(CP)

Name

lint - Cheeks C language usage and syntax.

Syntax

lint [- abchlnpuvx] file ...

Description

Lint attempts to detect features of the C program file that are likely
to be bugs, nonportable, or wasteful. It also checks type usage more
strictly than the C compiler. Among the things which are currently
detected are unreachable statements, loops not entered at the top,
automatic variables declared and not used, and logical expressions
whose value is constant. Moreover, the usage of functions is
checked to find functions which return values in some places and
not in others, functions called with varying numbers of arguments,
and functions whose values are not used.

It more than one file is given, it is assumed that all the files are to be
loaded together; they are checked for mutual compatibility. It rou­
tines from the standard library are called from file, lint checks the
function definitions using the standard lint library lIibc.ln. It lint is
invoked with the -. p option, it checks function definitions from the
portable lint library Ilibport.ln.

Any number of lint options may be used, in any order .. The follow­
ing options are used to suppress certain kinds of complaints:

- a Suppresses complaints about assignments of long values to vari­
ables that are not long.

- b Suppresses complaints about break statements that cannot be
reached. (Programs produced by lez or yacc will often result in
a large number of such complaints.)

- c Suppresses complaints about casts that have questionable porta.­
bility.

- h Does not apply heuristic tests that attempt to intuit bugs,
improve style, and reduce waste.

- u Suppresses complaints about functions and external variables
used and not defined, or defined and not used. (This option is
suitable for running lint on a subset of files of a larger program.)

- v Suppresses complaints about unused arguments in functions.

- x Does not report variables referred to by external declarations
but never used.

March 24, 1084 Page 1

LINT (CP) LINT(CP')

/usr /li b/lli be , /usr /lib/llibpott, /usr/lib/llibm, /u5r /lib/llibdbm,
/usr /lib/llibtermlib

Standard lint libraries (source format)

/usr/tmp/*lint* Temporaries

See Also

cc(CP)

Notes

Ezit(S), a.nd other functions which do not return, are not under­
stood. This can cause improper error messages.

March 24, 1984 Page 3

Af4(CP) M-I (CP)

Name

m4 - Invokes a macro processor.

Syntax

m4 I options I I files)

Description

M./ is a macro processor intended as a front end for Ratlor, C, and
other languages. Each of the argument file, is processed in order; if
there are no files, or ir a filename is - ; the standard input is read.
The process.ed text is written on the standard output.

The options and their effects areaS follows:

- eOperates interactively. Interrupts are ignored and the output is
unbuffered.

- s Enables line sync output for the C p.reprocessor (,line ..•)

- Bint
Changes the size of the push-back andargulIlent collection
buffers from the default of 4,096.

- Hint
Changes the size or the symbol table hash array from the
derault or 199. The size should be prime.

- Sint
Changes the size of the call stack from the deCault of 100·'Slots.
Macros take three slots, and nonmacro arguments take one.

- Tint
Changes the size or the token buffer from the default of 512
bytes.

To be effective, these ftags must appear before any filenames and
before any - D or - U ftags:

- Dnllme(==vtll]
Defines n4me to filii or to null in 1141's absence.

- Unllme
Undefines "lime.

March 24, U)84 Pagel

M-IlCP)

shift

M-I(CP) ,

Returns all but its first argument. The other arguments
are quoted and pushed back with commas in between.
The quoting nullifies the effect of the extra scan that
will subsequently be performed.

changequote Changes quota.tion marks tc the first and second argu­
ments; The symbols may be up to five characters long.
Clu/,fI,ge'luote without arguments restores the original
values (i.e.,' 1.

changecom Changes left and right comment markers trom the
default f and newline. With no arguments, the com­
ment mechanism is effectivelydisa.bled. With one
argument, the lett marker becomes the argument and
the right marker becomes newline. With two argu­
ments, both markers are affected. Comment markers
may be up to five characters long.

divert M-I mainta.ins 10 output streams, numbered 0-9. The
final output is the concatenation of the streams in
numerical order; initially stream 0 is the current
stream. The divert macro changes the current output
stream to its (digit-string) argument. Output diverted
to a stream other than 0 through 9 is discarded.

undivert Causes immediate output of ~xtrrom diversions
named as arguments, or all diversions if no argument.
Text may be undiver~d into another diversion.
U ndiverting discards the diverted ~xt.

divnum Returns the value otthe current output stream.

dnl Reads and disca.rds charac~rsup to and including the
next newline.

ifelse Has three or more arguments. Irthe first argument is
the same string as the second, then the value is the
third arg1!ment. If not, and if there are more than rour
arguments, the process is repeated with arguments 4, 5,
6 and 7. Otherwise, the value is either the fourth
string, or if it is not present, null.

incr Retutnsthe v:alue ot its argument incremented by 1.
The value of the argument is ca.lcula~d by interpreting
aninitiaJ digit-string as a decimal 'number.

deer Returns the value of its argument decremented by 1.

eval Evaluates its argument as an arithmetic expression,
using 32-bitarithmetic. Operators include +, - ,., /,
% .. (exponentiation), bitwise &, I, A, and -; relation­
als; parentheses. OctaJand hex numbers may be
specified as in C. The second argument specifies the

March 24" 1 984 Page 3

MAKE (CP) MAKE(CP)

Name

make - Maintains, updates, and regenerates groups of programs.

Syntax

make [- r makefile] [- p] [- i) [- kJ [- sl [- r) [- nJ [- b) [- e)
[- t) [- q] [- d) I names 1

Description

The rollowing is a brief description of all options and some specia.l
names:

- r make/ite Description filename. Makefile is assumed to be the
na.me or a description file. A filename or - denotes
the standard input. The contents or makefile override
the built-in rules if they are present.

- p Prints out the complete set of macro definitions and
target descriptions.

- i Ignores error codes returned by invoked commands.
This mode is entered if the rake target name .IGNORE
appears in the description file.

- k Abandons work on the current entry, but continues on
other branches that do not depend on that entry.

- s Silent mode. Does not print command linesberore
executing. This mode is also entered if the Cake target
name .SILENT appears in the description file.

- r Does not use the built-in rules.

,- n No execute mode. Prints commands, but does not
execute them. Even lines beginning with an Q are
printed.

- b Compatibility mode for old makefiles.

- e Environment variables override assignments within
makeflles.

- t Touches the target files (causing them to beuJ>*to­
date) rather than issues the usual commands.

- d Debug mode. Prints out detailed information on files
and times examined.

March 24, 1984 Page 1

AfAKE(CP) MAKE (CP)

line is always executed (see discussion of the MAKEFLAGS macro
under Environment). The - t (touch) option updates the modified
date of a file without executing any commands.

Commands returning nonzero status normally terminate make. U
the - i option is present, or the entry .IGNORE: appears in makefile,
or if the line specifying the command begins with
<tab> <hyphen>, the error is ignored. It the - k option is
present, work is abandoned on the current entry, but continues on
other br3.nches tha.t do not depend on that entry.

The - b option allows old makefiles (those written for the old ver­
sion of make) to run without errors. The difference between the old
version of make and this version is that this version requires all
dependency lines to have a (possibly nUll) command associated with
them. The previous version of make assumed if, no command was
specified explicitly that the command was null.

Interrupt and quit cause the target to be deleted unless the target
depends on the special name .PRECIOUS.

Environment

The e'nvironment is read by make. All variables are assumed to be
macro definitions and processed as such. The environment variables
are processed before any makefile and after the internal rules; thus,
macro assignments in a makefile override environment varia.bles.
The - e option causes the environment to override the macro
assignments in a make file.

The MAKEFLAGS environment varia.ble is processed by make as
containing any legal input option (except - f, - p, and - d) defined
for the command line. Further, upon invocation, make "invents"
the variable if it is not in the environment, puts the current options
into it, and passes it on to invocations of commands. Thus,
MAKEFLAGS always contains the current input options. This proves
,very useful for "super-makes". In fact, as noted above, when the
- n option is used, the command $(MAKE) is executed anyway;
hence, one can perform a make - n recursively on a whole software
system to see what would have been executed. This is because the
- n is put in MAKEFLAGS and passed to further invocations of
$(MAKE). This is one way of debugging all of the makefiles for a
sortware project without actually doing anything.

Macro,

Entries of the form ,tring1 == ,tringe are macro definitions. Subse­
quent appearances of S(ltringl[:"ubIt1=[BubBteJl) are replaced by
,tringe. The parentheses are optional if a single character macro
name is used and there is no substitute sequence. The optional
:,ub,t1=BUblte is a substitute sequence. It it is specified, all nono­
verlapping occurrences of lubstl in the named macro are replaced by

March 24, 1984 Pa.ge 3

AfAKE(CP) MAKE(CP)

dependents such as .C, .5, etc. Ir no upda~ commands for such a
file appear in makefile, and if a default dependent exists, that prere­
quisi~ is compiled to make the target. In this case, make has infer­
ence rules which allow building files from other files by examining
the suffixes and de~rmining an appropriate inference rule to use.
The current default inference rules are:

.c .c- .sh .sh - .C.o .c-.o .c-.c .5.0 .5-.0 .y.o .y-.o .1.0 r.o

.y.c .y-.c .I.c .c.a .c-.a .s-.a .h-.h

The in~rnal rules for make are contained in the source file rules.c
for the make program. These rules can be locally modified. To print
out the rules compiled into the make on any machine in a form suit­
able for recompilation, the following command is used:

make - fp - 2>/dev/null </dev/null

The only peculiarity in this output is the (null) string which printf(S)
prints when handed a null string.

A tilde in the above rules refers to an sees file (see Icufile(F)).
Thus, the rule .c-.o would transform an sees C source file into an
object file (.0). Because the s. of the sees files is a prefix it is
incompatible with make's suffix point-of-view. Hence, the tilde is a
way or changing any file reference into an sees file reference.

A rule with only one suffix (i.e .• c:) is the definition of how to build
z from z .c. In effect, the other suffix is null. This is useful for
building targets from only one source file (e.g., shell procedures,
simple C programs).

Additional suffixes are given as the dependency list for .SumXES.
Order is significant; the first possible name for which both a file and
a rule exist is inferred as a prerequisi~.

The default list is:

.StTFF1XES: .0 .c .y .1 .s

Here again, the above command for printing the in~mal rules will
display the list of suffixes implemented on the current machine.
Multiple suffix lists accumula~; .SUFFlXES: with no dependencies
clears the list of suffixes.

Inference Rulu

The first example can be done more briefly:

pgm: &.0 b.o
cc 30.0 h.o - 0 pgm

&.0 b.o: incl.h

March 24, lQ84 Page 5

MAKE(CP) MAKE (CP)

C source files are out of date. The substitution mode translates the
.0 to .c. (Unrortunately, one cannot as yet transform to .c-) Note
also, the disabling of the .c.a: rule, which would have created each
object file, one by one. This particular construct speeds up archive
library maintenance considerably. This type of construct becomes
very cumbersome if the archive library contains a mix of assembly
programs and C programs.

-Files

[Mm]akefile

s.[MmJ akefile

See Also

sh(C)

Notes

Some commands return nonzero status inappropriately; use - i to
overcome the difficulty. Commands that are directly executed by the
shell, notably cd(C), are ineffectual across newlines in make. The

• syntax (lib(filel.o file2.0 file3.0) is illegal. You cannot build
Iib(file.o) from file.o. The macro $(a:.o=.c-) is not available.

March 24, 1984

MKSTR (CP)

Example

char eftlna.me[) == "/usr/lib/pi_strings"j
int eftl - -lj

errore ai, 302, a3, 304)
{

char bur[2561;

it (eftl < 0) {
eftl == open(eftlname, 0) j
it (eftl < 0) {

}
}

perror(eftlname) j
exit(C);

MKSTR (CP)

it (lseek(eftl, (long) ai, 0) II read(eftl, hur, 256) < == 0)
goto OOpS;

printr(buf, a2, &.3, 304);
}

See Also

lseek(S), xstr(CP)

Credit

This utility was developed at the University or Calirornia. at Berkeley
and is used with permission.

Notes

All the arguments except the name or the ftle to be processed are
unnecessary.

March 24, 1984 Pa.ge 2

PROF (CP) PROF (CP)

Name
prof - display profile data

Syntax .

prof r -8 If -Ilf -low r -high llr file 1
Description

Prof interprets the file mon.out produced by the monitor subrou­
tine. Undec default modes, the symbol table in the named object
file (x.out default) is read and correlated with the mon.out profile
file. For each external symbol, the percentage of time spent exe­
cuting between that symbol and the next is printed (in decreasing
order), together with the number of times that routine was called
and the number of milliseconds per call.

If the -8 option is used, all symbols are reported rather than just
external symbols. If the -1 option is used, the output is listed by
symbol value rather than decreasing percentage.

If the -v option is used, all printing is suppressed and a graphic
vecsion of the profile is produced on the standard output for display
by the plot(C) filters. The numbecs low and hi,r:h, by default 0 and
100, cause a selected percentage of the profile to be plotted with
accordingly higber resolution.

In order for the number of calls to a routine to be tallied, the -p
option of cc must have been given when the file containing the
routine was compiled. This option also arranges for the mon.out
file to be produced automatically.

FOes
mon.out for profile
x.out for namelist

See Also
morutor(S), profil(S), cc(CP) , plot(C)

Notes
Beware of quantization errors.

If you use an explicit call to monitor(S) you will need to make sure
that the buffer size is equal to or smaller than the program size.

May 10, 1984 Page 1

PRS(CP) PRS(CP)

Data Keywords

Data keywords speciry which parts or an sees file are to be retrieved
and output. All parts or an sees file (see .ee.file(F)) have an asso­
ciated data keyword. There is no limit on the number of times a
data keyword may appear in a datclpee.

The inrormation printed by prB consists or the user-supplied text and
appropria.te va.lues (extracted from the sees file) substituted for the
recognized data keywords in the order of appearance in the dtJttJipec.
The format of a data keyword value is either simple, in which key­
word substitution is direct, or multiline, in which keyword substitu­
tion is followed by a carriage return.

User-supplied text is any text other than recognized data keywords.
A tab is specified by \t and carria.ge return/newline is specified by \n.

~'larch 24, H~84 Page 2

PRS(CP) PRS (CP)

Examples

The following:

prs - d"U sers and/or user IDs for :F: are:\n:UN:" s.file

may produce on the standard output:

Users and/or user IDs fors.file a.re:
xyz
131
abc

prs - d"Newest delta for pgm :M:: :1: Created :D: By :P:" - r
s.file

may produce on the standard output:

Newest delta for pgm main.c: 3.1 Created 77/12/1 By cas

As a 'pecial cale:

prs s.file

may produce on the sta.ndard output:

D 1.1 77/12/1 00:00:00 cas 1 000000/00000/00000
MRs:
b178-12345
b179-54321
COMMENTS:
this is the comment line ror s.ftle initial delta

for each delta table entry of the "D" type. The only option allowed
to be used with the 'pecial cale is the - a option.

Files

/tmp/pr!?!!!

See Also

admin(CP), delta(CP), get(CP), help(CP), sccsfile(F)

Diagnostics

Use I&elp(CP) for explana.tions.

March 24, 1984 Page 4

RATFOR(CP) RATFQR (CP)

Name

ratfor - Converts Rational FORTRAN inu> standard FORTRAN.

Syntax

rador (option ...)[filename)

Description

RAt/or converts a rational diale~t of FORTRAN'inu> ordinary irra­
tional FORTRAN. RAt/or provides control flow constructs essentially
identical U> those in C:

statement grouping:
{statement; statement;' statement '}

de cisio n-makin.g:
if (condition) statement (else s~tement)
switch (integer value) { ,

caSe integer: statement'

}
(default:) statement

loops:
while (condition) statement
tor (expression; condition; expression) statement
do limits statement
repeat statement (until (condition))
break In)
next In]

,and some additional syntax U> make programs easier to read and write:

Free form input: ,
multiple statements/linej auu>matic continuation

Comments: * this is a comment

Translation of relationals:
>, >==, etc., become .GT., .GE., etc.

Return (expression)
returns expression to caller from function

Define:
define name replacement

March, 26, 1984 Page 1

REGCMP(CP) REGCMP(CP)

Name

regcmp - Compiles regular expressions.

Syntax

regcmp [- 1 riles

Description

Regcmp, in most cases, precludes the need for calling regcmp (see
regez(S)) rrom C programs. This saves on both execution time and
program size. The command regcmp compiles the regular expres­
sions in file and places the output in file .i. If the - option is used,
the output will be placed in file .c. The format of entries in lile is a
name (C variable) followed by one or more blanks followed by a
regular expression enclosed in double quotation marks. The output
or regcmp is C source code. Compiled regular expressions are
represented as ex~m char vectors. File.i files may thus be 'ncluded
into C programs, or IJe.c files may be compiled and later loaded. In
the C program which uses the regcmp output, regez(abc,line) applies
the regular expression named dc to line. Diagnostics are seIr­
explanatory.

Examples

name "([A- Z&-'- z][A- Z&-'- zo- 9-1 ·)$0"

telno "\({O,I}«(2- 9](01)[1- Q))$O\){O,I} *"
"((2-91[0- 9j{2})$1(-){O,t}"
"(0- Q {4})S2"

In the C program that uses the regcmp output,

regex(teIno, line, area, exch, rest)

will apply the regular expression named telnt> to line.

See Also

regex(S)

March 26,1984 Page 1

SACT(OP) SACT(CP)

Name

sact - Prints current sees file editing activity.

Syntax

sad files

Description

Sad inrormsthe user or any impending. deltas to a named sees file.
This situation·· occurs when get(CP} with the - eoption has been
previously execured without a subsequent execution or clelta(CP). If
a directory is named on the command line, 'ilet behaves as though
each file in the directory were specified as a named file, except that
nonsees files and unreadable files are silently ignored. If a name or
- is given, the standard input is read with each line being taken as
the name or an sees file to be processed.

The output ror each named file consists or five fields separared by
spaces.

Field 1

Field 2

Field 3

Field 4

Field 5

See Also

Specifies the SID or a delta that currently exists in the
sees file to which changes will· be made to make the
new delta

Specifies the SID ror the new delta to be creared

Contains the logname or the user who will make the
delta i.e., execured a get ror editing

Contains the dare that get - e wasexecured

Contains the time that get - e was execured

delta.(OP), get{ CP), unget(CP)

Diagnostics

Use help (CP) ror explanations.

March 24, Ul84 Pa.ge 1

SIZE (OP) SIZE (CP)

Name

size - Prints the size of an object file.

Syntax

size [0 bje ct '.0 .)

Description

Size prints the (decimal)' num ber of bytes required by the text, data,
and bss portions, and their sum in decimal and hexadecimal, of each
object-file argument. It no file is specified, a.out is used.

SeeAlao

a.out{F)

March 24, 1984 Page 1

STRINGS (CP) STRINGS (CP) .

Name

strings - Finds the printable strings in an object file.

Syntax

strings [-] [- 0) (- number] file ...

Description

String. looks for ASCII strings in a binary file. A string is any
sequence or four or more printing characters ending with a newline
or a. null character. Unless the - flag is given, Itring' only looks in
the initialized data space of object files. It the - 0 flag is given, then
each string is preceded by ita decimal offset in the file. It the
- number flag is given then number is used as the minimum string
length rather than 4.

String. is useful for identifying random object files and many other
things.

See Also

hd(C), od(C)

Credit

This utility was developed at the University of California at Berkeley
and is used with permission.

March 24, 1 gS4 Page 1

TIME (CP) TIME(CP)

Name

time - Times a command.

Syntax

time command

Description

The given eomma"tl is executedj alter it is complete, time prints the
elapsed time during the command, the time spent in the system, and
the time spent in execution of the eommand. Tunes are reported in
seeonds.

The times are printed on the standard error.

See Also

times(S)

March 24, 1984 Page 1

.UNGET(CP) UNGET(CP)

Name

unget - Undoes a previous get of an sees file.

Syntax

unget [- rSlD] [- 51 (- nJ files

Description

Vnget undoes the effect or a get - e done prior to creating the
intended new delta. If a directory is named, unget behaves as
though each file in the directory were specified as a named file,
except that nonSCeS files and unreadable files are silently ignored.
It a ,name of - is given, the standard input is read with each line
being taken as the name of an sees file to be processed.

Options apply independently to each named file.

- rSID

-s

-n

See Also

Uniquely identifies which delta is no longer intended.
(This would have been specified by get as the "new
delta" .)The use of this option is necessary only if two
or more versions of the same sees file have been
retrieved ror editing by the same person (login name).
A diagnostic results if the specified SID is ambiguous,
or ir it is necessary and omitted on the command line.

Suppresses the printout, on the standard output, of the
intended delta's SID.

Causes the retention of the file which would- normally
be removed from the current directory.

de Ita(OP), ge t(OP), sact(OP)

Diagnostics

Use kelp(CP) ror explana.tions.

March 24~ 1984 Page 1

VAL (CP) VAL (CP)

The 8-bit code returned by ftll is. a disjunction of the possible errors,
i. e., can be interpreted as a bit string where (moving rrom lert to
right) set bits are interpreted asrollows:

bit 0 == Missing file argument

bit 1 == Unknown or duplicate option

bit 2 .. Corrupted sees file

bit 3 - Can't open file or file not sees

bit 4 =- SID is invalid or ambiguous

bit 5 - SID does not exist

'bit 6 - %Y%, - y mismatch

bit 7 - ~% - m mismatch

Note that filii can process two or more files on a given command line
and in tum can process multiple command line (when reading the
standard input). In these cases 8.n aggregate code is returned; a logi­
calOR or the codes generated ror each command line and file pro­
cessed.

See Also

admin(CP), delta(OP), get(CP), prs(CP)

Diagnostics

Use help(OP) Cor explanations.

Notes

Veal can process up to 50 files on a single command line.

March 24, 1984 Page 2

XSTR (CP) XSTR (CP)

Name

xstr - Extracts strings rrom C programs.

Syntax

xstr (- c) (- J(file J

Description

X,tr maintains a file ,triftg, into which strings in component parts of
a large program are hashed. These strings are replaced with refer­
ences to this common area. This serves to implement shared con­
stant strings, most userul if they are also read-only. '

The command

xstr - c name

will extract the strings from the C source in name, replacing string
rererences by expressions or the torm (&xstrlnumber)) ror some
number. An appropriate declaration ot zltr is prepended to the file.
The resulting C text is placed in the file z.e, to then be compiled.
The strings from this file are pla.ced in the Itring, data base if they
are not there already. Repeated strings and strings which are suffices
ot existing strings do not cause changes to the data base.

Arter all components or a large program have been compiled, a file
z'.e declaring the common z,tr space can be created by a command
of the rorm

xstr -c namel name2 name3 ...

This z'.e file should then be compiled and loaded with the rest or the
program. Ir possible, the array can be made read-only (shared) sa.v­
ing space and swap overhead.

X,tr can also be used on a single file. A command

xstr name

crea.tes files z.e and z'.c as berore, without using or affecting any
,tring' file in the same directory.

It ma.y be userul to run zltr alter the C preprocessor ir any macro
definitions yield strings or it there is conditional code which contains
strings which may not, in ract, be needed. Xltr reads rrom its stan­
dard input when the argument - is given. An appropriate command
sequence for running zstr arter the C preprocessor is:

Marl"h 24, 1984 Page 1

(

YAOC(CP) YACC(CP)

Name

yacc - Invokes a compiler-compiler.

Syntax

yacc [- vd] grammar

Description

Yau converts a contex~free grammar into a set of tables for a sim­
ple automaton which executes an LR(l) parsing algorithm. The
grammar may be ambiguous; specified precedence rules are used to
break ambiguities.

The output file, y.tab.c, must be compiled by the C compiler to pro­
duce a program marie. This program must be loaded with the lexi­
cal analyzer program, vglez, as well as main and vuerror, an error
handling routine. These routines must be supplied by the user;
lez(CP) is useful for creating lexical analyzers usable by "acc.

IC the - v flag is given, the rile y.output is prepared, which contains
a description of the parsing tables and a report on conflicts generated
by am biguities in the grammar.

IC the - d flag is used, the file y.tab.h is generated with the fdenne
statements that associate the JI<lcc-assigned "token codes" with the
user-declared "token names". This allows source files other than
y.tab.c to access the token codes.

Files

y.output

y.tab.c

y.tab.h Defines for token names

yacc. tm p, yacc. acts Temporary files

lusr Ilib/yaccpar Parser prototype for C programs

See Also

lex(CP)

March 26, 1984 Page 1

defopen, defread
dup,dup2

ecvt,fcvt
exeel, execv, execle,
execve,execlp,execvp
exit
exp, log, pow, sqrt

fclose, fftush
fcllli
ferror, feof,
elearerr, fileno,
ftoor, fabs, ceil,
fmod

fopen, freopen, fdopen
fork
fread, fwrite

frexp.ldexp, modi

fseek, fteR. rewind
gamma
getc, getchar,
fgetc,getw

getcwd

getenv
getgrent, getgrgid,
getgrnam, setgrent,
endgrent
getlogin
getopt

getpass
getpid. getpgrp,
getppid

getpw
getpwent, getpwuid.
getpwnam.. setpwent.
endpwent
gets.fgets
getuid. geteuid,
getgid, getegid

hypot
ioetl
kill

l-ii

Reads defauh entries
Duplicates an open file
descriptor
Performs output conversions

Executes a file
Tenninates a process
Performs exponential, logarithm,

. power, square root functions
Closes or ftushesa stream
Comrols open files

Determines stream status

Performs absolute value, ftoor,
celling. andremainderfunctions
Opens a stream
Creates a new process
Performs buffered binary
input and output
Splits ftoating-point number into
amantissaand an exponent
Repositions a stream
Performs log gamma functions

Oets character or word from a
stream
Getspathnam.e of current
watingdirecta}'
Gets value forenviromnentname

Get group file entry
Gets login name
Oetsoption letter from argument
vector
Reads a password

Oetsprocess, process group, and
parentproeess!Ds
Oetsname from UlD

Gets password file entry
Oetsa string from a stream

Oetsreal user, effective user ,real
group and effective grouplDs
Detennines Euclidean distance
Controls character devices
Sends a signaIto aproeessorora
groupofproeesses

sdgetv. sdwaitv
setbuf
setjmp.longjmp
setpgrp
setuid, setgid
shutdn

signal

sigsem

sinh, cosh, tanh
sleep

ssignal, gsignal
stat,fstat
stdio

Slime
string, streat,
strncat. strcmp,
strncmp, strcpy.
strncpy, strlen,
strehr, strrchr,
strpbrk, strspn.
strespn, strtok
swab
sync
system
termcap, tgetent,
tgetnum, tgethg,
tgetstr, tgoto, tputs
time,ftime
times

tmpfile
tmpnam

trig, sin, cos, tan,
asin, acos, atan, atan2
ttyname, isatty
ulimit
umask.

umount
uname

ungetc

unlink
ustat
utime

l-iv

Synchronizes shared data access
Assigns buffering toa stream
Performsa nonlocal "gpto"
Sets process grouplD
Sets user and groupIDs
flushes blockJJO andhahs
the CPU
Specifies what to do upon
receipt of a signal
Signals a process waiting on
a semaphore
Peformshyperbolic functions
Suspendsexecutionforan
interval
Implements software signals
Gets file status
Performs standard buffered
input and ouq>ut
Setsthetime

Performs string operations
Swapsbyres
U pdates the super-block
Executes a shencommand

Performsterminal functions
Getstime and date
Gets process and child
process times
Creates a temporary file
Createsaname fora
temporary file

Performs trigonometric functions
. Finds the name of a terminal

Gets and sets user limits
Sets and gets file creation
mask.
Unmounts a file system
GetsnameofCUJTeD1XENlX
system
Pushes character back into
input stream
Removes directory entry
Gets files system statistics
Sets file access and

Execution, files_"'""""'"--,-----------exee
Execution, nonlocal' 'goto" set.jmp
Execution, profiling moDitor
Execution, shell system
execvfunction exee
execve function exee
execvp function exee
fabs function Iloor
fcvt function ecn
fdopenfunction 'OpeD
feoffunction 'error
fetch function dbm
mush function Idose
fgetc function gete
fgets function gets
File system, mounting moant
File system, statistics astat
File system, unmounting amCIIDt
File, access and modification times utime
File, accessibility access
File. check forreading rcIehk
File, closing dose
File. control feDd
File, creation creat
File, creation mkDod
File. creation mask anuBk
File. duplication dap
File. error and status ferror
File, linking link
File, locking regions loddng
File, mode ehmocl
File. opening opeD
File, ownership mown
File. reading read
File,removal anlink
File, size ebsize
File, status stat
File ,temporary tmpme
File,userandgroupID setuicl
File, writing write
Filename, creation mtemp
Filename, temporary tmpnam
fileno function ferror
Files, repositioning)seek
firstkey function dbm
Floor, ceiling, and remainder functions floor
fmod function Boor
fprintffunction prind'

logfunction ________________ exp
loglOfunction exp
Login name cusericl
Login name, user logname
Login, name gedogiD
longjmpfunction setjmp
hol3 function I3to1
Mathematics, Bessel functions bessel
Mathematics, Euclidean distance hypot
Mathematics, exponential and logarithm functions exp
Mathematics, hyperbolic functions siDh
Mathematics, log gamma function gamma
Mathematics, trigonometric functions trig
Memory, allocation maDoc
Message, errors assert
modffunction frexp
Name list DlDt
Name list xlDt
nbwaitsem function waitsem
nextkeyfunction dbm
Option, from argument vector getopt
Password, file entries getpweDt
Password, file entries putpweDt
Password, foruserID getp"
Password, input getpass
pclose function ,opeD
Pipe, creating pipe
Pipe, opening and closing popeD
pow function exp
Process, alarm clock alarm
Process, creation fork
Process, execution priority nice
Process, execution time profile profil
Process, execution times times
Process, group ID setpgrp
Process, limits ulimlt
Process, locking in memory lock
Process, memory allocation sbrk
Process, real and effective IDs getuicl
Process, suspension until signal pause
Process. temporary suspension Dap
Process, temporary suspension sleep
Process, termination abort
Process. termination exit
Process, termination kill
Process, trace ptrace
Process, waiting for child process "ait
Process, IDs getpid

Stream,stringoutput _____________ pufs
Strings, operations string
strlen function string
stmcat function striDg
strncmp function striDg
strncpy function striog
strpbrkfunction striDg
strrchrfunction string
strspnfunction striDg
strtokfunction striDg
System, current name uname
System, stopping shutdD
System, super-block syDe
System, time stlme
sys..errlist variable perror
SYUlerrvariable perror
tan function trig
tanh functioon sinh
Terminal, capability functions termcap
Terminal, filenames etermicl
Terminal, name UyDame
tgetflag function termcap
tgetnumfunction termeap
tgetstr function termeap
tgotofunction termcap
T~eMd~~ ~
toascii function CODY

tolowerfunction CODY
toupper function CODV

tputs function termcap
tzset function dime
Working directory ehclir
Working directory , pathname getcwd
yO function bessel
y 1 function bessel
ynfunction bessel

INTRO(S) INTRO (S)

EPERM Not owner
Typically this error indicates an attempt to modiry a file in some
way rorbidden except to its owner or super-user. It is also
returned ror attempts by ordinary users to do things allowed
only to the super-user.

2 ENOENT No such file or directory
This error occurs when a filename is specified and the file
should exist but doesn't, or when one or the directories in a
pathname does not exist.

3 ESRCH No such process
No process can be round corresponding to that specified by pid
in kill or ptraee.

4 EINTR Interrupted system call
An asynchronous signal (such as interrupt or quit), which the
user has elected to catch, occurred during a system call. It exe­
cution is resumed alter processing the signal, it will appear as ir
the interrupted system call returned this error condition.

5 EIO I/O error
Some physical I/O error. This error may in some cases occur on
a call rollowing the one to which it actually applies.

6 ENXIO No such device or address
I/O on a special file refers to a subdevice which does not exist,
or beyond the limits or the device. It may also occur when, for
example, a tape drive is not on-line or no disk pack is leaded on
a drive.

7 E2BIG Arg list too long
An argument list longer than 5,120 bytes is presented to a
member of the ezec family.

8 ENOEXEC Exec rormat error
A request is made to execute a file which, although it has the
appropriate permissions, does not start with a valid magic
num ber (see 4.out(F)).

9 EBADF Bad file number
Either a file descriptor refers to no open file, or a read (respec­
tively write) request is made to a file which is open only ror
writing (respectively reading).

10 ECHILD No child processes
A wait, was executed by a process that had no existing or
unwaited-for child processes.

11 EAGAIN No more processes
A /ork, failed because the system's process table is full or the
user is not allowed to create any more processes. .

March 24, 1984 Page 2

INTRO(S) INTRO(S)

23 ENFILE File table overflow
The system's table of open files is full, and temporarily no more
open. can be accepted.

24 EMFILE Too many open files
No process may have more than 20 file descriptors open at a
time.

25 ENOTTY Not a typewriter

26 ETXTBSY Text file busy
An attempt to execute a pure-procedure program which is
currently open for writing (or reading). Also an attempt to open
tor writing a pure-procedure program that is being executed.

27 EFBIG File too large
The size of a file exceeded the maximum file size
(1,082,201,088 bytes) orULIMIT; see tilimit(S).

28 ENOSPC No space left on device
During a write to an ordinary file, there is norree space left on
the device.

29 ESPIPE Illegal seek
An l.eek was issued to a pipe.

30 EROFS Read-only file system
An attempt to modify a file or directory was made on a device
mounted read-only.

31 EMLINK Too many links
An attempt to make more than the maximum number of links
(1000) to a file.

32 EPIPE Broken pipe
A write on a pipe for which there is no process to read the data.
This condition normally generates a signal; the error is returned
ir the signal is ignored.

33 EDOM Math arg out of domain or runc
The argument of a function in the math package is out of the
domain of the runction.

34 ERANGE Math result not representable
The value of a function in the math package is not representable
within machine precision.

35 EUCLEAN File system needs cleaning
An attempt was made to motint(S) a file system whose super­
block is not flagged clean.

36 EDEADLOCK Would deadlock
A process' attempt to lock a file region would cause a deadlock

March 24, 1984 Page 4

INTRO(S) INTRO(S)

Retd U,erlD Gnd ReGl Croup ID

Each user allowed on the system is identified by a positive integer
called a real user 10.

Each user is also a member or a group. The group is identified by a
positive integer called the real group 10.

An active process has a real user ID and real group 10 that are set to
the real user 10 and real group 10, respectively, or the user responsi­
ble ror the creation or the process.

An active process has an effective user 10 and an effective group 10
that are used to determine file access permissions (see below). The
effective user 10 and effective group 10 are equal to the process' real
user 10 and real group 10 respectively, unless the process or. one or
its ancestors evolved Crom a file that had the set-user-ID bit or set­
group IO bit set; see ezee(S).

Super·U,er

A process is recognized as a luper-uler process and is granted special
privileges ir its effective user 10 is O.

The processes with a process 10 of 0 and a process 10 of 1 are special
processes and are referred to as procO and prod.

ProcO is the scheduler. Prod is the initialization process (init).
Proel is the ancestor or every other process in the system and is
used to control the process structure.

Names consisting of up to 14 characters may be used to name an
ordinary file, special file or directory.

These characters may be selected rrom the set or all character values
excluding 0 (null) and the ASCII code for a / (slash).

Note that it is generally unwise to use *, !, [, or] as part or
filenames because or the special meaning attached to these characters
by the shell. Likewise, the high order bit or the character should not
be set.

March 24, 1984 Page 6

'INTRO(S) IN71l0(S)

match the group ID of the file, and the appropriate access bit of
the "other" portion (07) of the file mode is set.

Otherwise, the corresponding permissions are denied. See eAmocl(C)
and chmocl(S).

See Also

intro(C)

M a.rch 24, 19S4 Page S

ABORT(S)

Name

abort - Genera~s an lOT rault.

Syntax

abort ()

Description

ABORT(S)

Ab-ort causes an I/O trap-signal (SIGIOT) U> fie sent U> the calling
process. This usually results in ~rmination with a core dump.

Abort can return control ir the calling process is set U> catch or
ignore the SIGIOT signal; see eigacsl(S).

See Also

adb(CP), exit(S), signal(S)

Diagnostics

Ir a.n aborted process returns control to the shell (.A(C», the shell
usually displays the message "abort - core dumped".

March 24, U~84 PaJP:e 1

ACCESS (S) ACCESS(S)

Name

access - Derermines accessibility of a file.

Syntax

int access (path, amode)
char *path;
int amode;

Description

Pat! points to a pathname naming a file. Aue" checks the named
file for accessibility according to the bit patrern contained in 4mode,
using the real user ID in place of the effective user ID and the real
group ID in place or the effective group ID. The bit patrern for
lImode can be formed by adding any combination or the rollowing:

04 Read
02 Wrire
01 Execure (search)
00 Check exisrence or file

Access to the file is denied if one or more of the following are true:

A component or the path prefix is not a directory. [ENOTDIR]

Read, wrire, or execure (search) permission is requesred tor a
null pathname. IENOENTj

The named file does not exist. !ENOENT!

Search permission is denied on a component or the path prefix.
IEACCESj

Write aceess is requesred for a file on a read-only file system.
IEROFSj

Write aceess is requesred ror a pure procedure (shared rext) file
that is being executed. [ETXTBSYj

Permission bits of the file mode do not permit the requested
access. [EACCESj

PlIt! points outside the process' allocated address space.
IEFAULT!

Aue" eheeksthe permissions ror the owner of a file by cheeking the
"owner" read, wrire, and execure mode bits. For mem bers of .the
file's group, the "group" mode bits are checked. For all others, the
"other" mode bits are checked.

March 24, 1984 Page 1

ACCT(S) ACCT(S)

Name

aect - Enables or disables process accounting.

Syntax

int a.cct (path)
char ·path;

Description

Aut is used to enable or disable the system's process accounting
routine. It the routine is enabled, an accounting record will be writ­
ten on an accounting file for each process that terminates. A process
can be terminated by a call toezit or by receipt of a signal which it
does not ignore or cat.chj see ezit(S) and ligntll(S). The effective
user ID of the calling process must be super-user to use this call.

PtltA points to the pathname of the accounting file. The accounting
file format is given in tlcct(F).

The accounting routine is enabled if "tltA is nonzero and no errors
occur during the system call. It is disabled if "tltA is zero and no
errors occur during the system call.

Aut will fail if one or more of the following are true:

The effective user ID of the calling process is not super-user.
I EPERM]

An attempt is being made to enable accounting when it is
already enabled. lEBUSY]

A component of the path prefix is not a directory. lENOTDIR]

One or more components of the accounting file's pathname do
not exist. I ENOENT]

A component of the path prefix denies search permission.
lEACCES]

The file named by "tdA is not an ordinary file. IEACCESj

Mode permission is denied ror the named accounting file.
lEACCES]

The named file is a directory. lEACCESJ

The named file resides on a read-only file system. IEROFSj

March 24, lQ84 Page 1

ALARM(S)

Name

alarm - Sets a process' alarm clock.

Syntax

unsigned &lann (sec)
unsigned sec;

Description

ALARM(S)

AllJnn sets the calling process' alarm clock to lee seconds. After lee
"real-time" seconds have elasped, the alarm clock sends a SIGALRM
signal to the process; see ngnlJl(S).

Although aJtlnn does not wait for· the signal after setting the alarm
clock,plJa,e(S) may be used to make the calling process wait. , .

Alarm requests are not stacked; successive calls reset the calling pro­
cess'alarm clock.

It lee is 0, any previously made alarm request is canceled.

Retum Value

Alllnn returns the amount of time previously remaining in the cal­
ling process' alarm clock.

See Also

pause(S), signal(S)

March 24, 1984 Page 1

ATOF(S)

Name

atof, atoi, atol- Converts ASCII to numbers.

Syntax

double atot (nptr)
char ·nptr;

int atoi (nptr)
char ·nptr;

longatol (nptr)
char ·nptr;

Description

ATOF(S)

These functions convert a string pointed' to by ftptr to floating,
integer, and long integer numbers respectively. The first unrecog­
nized character ends the string.

Atof recognizes a string of the form:

[+ \-] digits(. digits](el E(+ 1- J digits]

where the digits are continguous decimal digits. Any number ottabs
and spaces may precede the string. The + and - signs are optional.
Either e or E ma.y be used to mark the beginning of the exponent.

Atoi and dol recognize strings of the form:

(+ \ -] digits

where the digits are contiguous decimal digits. Any number of tabs
and spaces may precede the string. The + and - signs are
optional.

See Also

scant(S)

Notes

There are no provisions tor overflow.

March 24, 1984 Page 1

BSEARCH (8)

Name

bsearch - Perrorms a binary search.

Syntax

char -bseareh (key, base, nel, width, compar)
char -key;
char -base;
int nel, width;
int (·compar)();

Description

BSEARCH(S)

B,e4rch is a binary search routine generalized from Knuth (6.2.1)
Algorithm B.· It returns a pointer into a table indicating the location
at which a datum may be round. The table must be previously
sorted in increasing order. The first argument is a pointer to the
datum to be located in the table. The second argument is a pointer
to the base of the table. The third is the number of elements in the
table. The rourth is the width or an element in bytes. The last argu­
ment is the name of the comparison routine. It is called with two
arguments which are pointers to the elements being compared. The
routine must return an integer less than, equal to, or greater than 0,
depending on whether the first argument is to be considered less
than, equal to, or greater than the second.

Return Value

If the key cannot be found in the table, a. value of 0 is returned.

See Also

Isearch(S), qsort(S)

March 24, 1984 Page 1

OHAfOD (S)

Name

chmod - Cha.nges mode of a file.

Syntax

int chmod (path, mode)
char ·path;
int mode;

Description

OHMOD(S)

Path points to a pathname naming a file. Ohmod sets the access per­
mission portion of the named file's mode according to the bit pattern
contained in mode.

Access permission bits for mode can be formed by adding any combi­
na.tion· of the following:

04000 Set user ID on execution
02000 Set group ID on execution
01000 Save text image after execution
00400 Read by owner
00200 Write by owner
00100 Execute, (or search if a directory) by owner
00040 Read by group
00020 Write by group
00010 Execute (or search) by group
00004 Read by others
00002 Write by others
00001 Execute (or search) by others

To change the mode of a file, the effective user ID of the process
must match the owner of the file or must be super-user.

If the effective user ID of the process is not super-user, mode bit
01000 (save text image on execution) is cleared.

It the effective user ID of the process is not super-user or the
effective group ID of the process does not match the group ID .of the
file, mode bit 02000 (set group ID on execution) is cleared.

If an executable file is prepared for sharing, then mode bit 01000
prevents the system from abandoning the swap-space image of the
program-text portion of the file when itslast user terminates. Thus,
when the next user executes the file, the text need not be read from
the file system but can simply be swapped in, saving time. Many
systems have relatively small amounts of swap space, and the same­
text bit should be used sparingly, ir at all.

March 24, 1984 Page 1

OHOWN(S)

Name

chown - Changes the owner and group of a file.

Syntax

int chown (path, owner, group)
char·path;
int owner, group;

Description

OHOWN(S)

Path points to a pathname naming a file. The owner 10 and group
10 of the named file are set to the numeric values contained in
owner. and group respectively.

Only processes with an effective user ID equal to the file owner or
super-user may change the ownership of a file.

If chown is invoked by other than the super-user, the set-user-IO
and set-group-ID bits of the file mode, 04000 and 02000 respectively,
will be de are d.

Ohown will fail and the owner and group of the named file will
remain unchanged if one or more of the following are true:

A component of the path prefix is not a directory. IENOTDIRj

The named file does n.ot exist. IENOENTj

Search permission is denied on a component of the path prefix.
IEACCESj

The effective user IDdoes not match the owner of the file, and
the effective user ID is not super-user. I EPERMj

The named file resides on a read-only file system. IEROFSI

Pat! points outside the process'allocated address space.
IEFAULTj

Return Value

Upon successful completion, a value of 0 is returned. Otherwise, a
value of - 1 is returned and ermo is set to indicate the error.

See Also

chmod(S)

March 24, 1984 Page 1

CHSIZE(S)

Name

chsize - Changes the size of a file.

Syntax

int chsize (fildes, size)
int fildes;
long size;

Description

CHSIZE(S)

Filde, is a file descriptor obtained Crom a ereilt, open, dup, lentl, or
pipe system call. CAnze changes the size of the file associated with
the file descriptor filtlee to be exactly lize bytes in length. The rou­
tine either truncates the file, or pads it with an appropriate number
of bytes. H,ize is less than the initial size of the file, then all allo­
cated disk blocks between ,ize and the initial file size are freed.

The maximum file size as set by ulimit(S) is enforced when cAlize is
called, rather than on subsequent writes. Thus eAlize fails, and the
file size remains unchanged if the new changed file size would
exceed the ulimit.

Return Value

Upon successCul completion, a value of 0 is returned. Otherwise,
the value - 1 is returned and ermo is set to indicate the error.

See Also

creat(S), dup(S), Iseek(S), open(S), pipe(S), ulimit(S)

Notes

In general it ch"ize is used to expand the size oC a file, when data is
written to the end of the file, intervening blocks are filled with zeros.
In a rew rare cases, reducing the tile size may not remove the data
beyond the new end-of-file.

March 24, 19S4 Page 1

CONV(S)

Name

conv, toupper, tolower, toascii - Transla~s charac~rs.

Syntax

#include <ctype.h>

int toupper (c)
int c;

int tolower (c)
int c;

int _toupper (c)
int c;

int _tolower (c)
int c;

int toascii (c)
int C;

Description

CONV(S)

Toupper and tolower convert the argument e to a letter of opposi~
case. Arguments may be the in~gers - 1 through 255 (the same
values returned by gete(S)). If the argument of toupper represents a
lowercase let~r, the result is the corresponding uppercase let~r. If
the argument of tolower represents an uppercase let~r, the result is
the corresponding lowercase let~r. All other arguments are 1'eturned
unchanged.

_toupper and _tolower are macros that accomplish the same thing as
toupper and tolower but have restric~d argument values and are fas­
~r. _to uppe r requires a lowercase let~r as its argument; its result is
the corresponding uppercase let~r. _tolower requires an uppercase
letter as its argument; its result is the corresponding lowercase letter.
All other arguments cause unpredictable results.

TO(J,Ieii converts in~ger values to ASCII charac~rs. The function
clears all bits of the in~ger that are not part of a. standard ASCII
charac~r; it is in~nded for compatibility with other sys~ms.

See Also

ctype(S)

March 24, 1984 Pa.ge 1

OREAT(S) OREAT(S)

Name

creat - Creates a new file or rewrites an existing one.

Syntax

int creat (path, mode)
char ·path;
int mode;

Description

O,.e4t creates a new ordinary file or prepares to rewrite an existing
file named by the pathname pointed to by P4th.

If the file exists, the length is truncated to 0 and the mode and
owner are unchanged. Otherwise, the file's owner ID is set to the
process' effective user 10, the file's group ID is set to the process'
effective group 10, and the access permission bits (i.e., the low-order
12 bits of the file mode) are set to the value of mode. Mode may
has the same values as described for dmod(S). O,.eat will then
modify the access permission bits as rollows:

All bits set in the process' file mode creation mask are cleared.
See um4Bk(S).

The "save text image after execution bit" is cleared. See
eAmod(S).

Upon successful completion, a nonnegative integer, namely the file
descriptor, is returned and the file is open ror writing, even ir the
mode does not permit writing. The file pointer is set to the begin­
ning or the file. The file descriptor is set to remain open across ezee
system calls. See JeRtl(S). No process may have more than 20 files
open simultaneously. A new file may be created with a mode that
forbids writing.

O,.e4t will rail if one or more or the rollowing are true:

A component of the path prefix is not a directory. IENOTDIR]

A component of the path prefix does not exist. [ENOENT]

Search permission is denied on a component of the path prefix.
IEACCESj

The pathname is null. IENOENT]

The file does not exist and the directory in which the file is to
be created does not permit writing.IEACCES]

March 24, 1984 Pagel

CREATSEM (S) CREATSEM (S)

Name

creatsem - Creates an instance of a binary semaphore.

Syntax

selILnum = creatsem(sem_name,mode);
int sem_num,mode
char *sem_name;

Description

Creatum defines a binary semaphore named by ,em_"ame ro be used
by wait,em(S) and ,ig,em(S) ro ma.nage mutually exclusive access to
a. resource, shared variable, or critical section of a program.
Creat,em returns a unique semaphore number ,em_"um which may
then be used as the parameter in wa.~,em and fig,em calls. Sema­
phores are special files of 0 length. The filename space is used to
provide unique identifiers for semaphores. Mode sets the accessibil­
ity of the sem aphore using the same format as file access bits.
Access to a semaphore is granted only on the basis of the read
access bit; the write and execute bits are ignored.

A semaphore can be operated on only by a synchronizing primitive,
such as wait,em or tig,em, by creatltm which initializes it to some
value, or by open,em which opens the semaphore for use by a pro­
cess. Synchronizing primitives a.re guaranteed to be executed
without interruption once started. These primitives are used by
associating a semaphore with each resource (including critical code
sections) to be protected.

The process controlling the semaphore should issue

sem_num = creatsem("semaphore", mode);

to create, initialize, and open the semaphore for that process. All
other processes using the semaphore should issue

sem_num = opensem("semaphore")

ro access the semaphore's identification value. Note that a process
cannot open and use a semaphore that has not been initialized by a
call to creauem, nor should a process open a semaphore more than
once in one period of execution. Both the creating and opening
processes use wait,em and ,ig,em to use the semaphore ,em_num.

See Also

opensem(S), waitsem(S), sigsem(S).

Ma.rch 24, 1984 Page 1

ORlPT(S)

Name

crypt, setkey, encrypt - Performs encryption functions.

Syntax

char *crypt (key, salt)
char *key, ·salt;

setkey (key)
char *key;

encrypt (block, edftag)
char *block;
int edflag;

Description

ORlPT(S)

Orypt is the password encryption routine. It is based on the NBS
Data Encryption Standard (DES), with variations in~nded (among
other things) to frustrate use of hardware implementations or ~e
DES rorkey search.

The first argument to crwt is a user's typed password. The second is
a 2-character string chosen from the set [a.-zA-ZO-9./1 ithis ,idt
string is used to perturb ~e DES algorithm in one or 4096 different
wa.ys, af~r which the password is used as the key to encrypt repeat­
edly a constant string. The returned value points to the encrypted
password, in the same alphabet as the ,t< The first two· charac~rs
are the Itdt itself.

The .etkey and encrypt entries provide access to the actual DES algo­
rithm. The argument or .etke, is a character array or length 64 con­
taining only the characters with numerical value 0 and 1. It this
string is divided into groups of 8; the low-order bit in each group is
ignored, leading to a 56-bit key which is set into the machine.

The argument to the encrypt entry is likewise a charac~r array or
length 64 containing zeroes and ones. The argument array is
modified in place toa similar array representing the bits or the. argu­
ment after having been subjected to the DES algorithm using the key
set by .etke,. It edflafJ is 0, ~e argument is encrypted; if nonzero, it
is decrypted.

See Also

passwd(C), getpass(S), passwd(M)

March 24, 1984 Page 1

CTERMID (S)

Name

ctermid - Generates a filename for a terminal.

Syntax

,include <8tdio.h>

char ·ctermid(8)
char ·8;

Description

CTERMID (S)

Ctermid returns a pointer to a string that, when used used as a
filename, refers to the controlling terminal of the calling process.

It (int), is zero, the string is stored in an internal static area, the
contents of which are-overwritten at the next call to etennid, and the
address of which is returned. It (int), is nonzero, then' is assumed
to point to a character arra.y ot at least L_ctermid elements; the
string is placed in this array and the value of , is returned. The
manifest constant L_ctermid is defined in <stdio.h>.

Notes

The difference between ctermitl and ttyftame(S) is that ttyftame must
be given a file descriptor and it returns the actual name ot the termi­
nal associated with that file descriptor, while aennitl returns a magic
string (ldev/tty) that will refer to the terminal if used as a filename.
Thus ttyftame is useless unless the process already has at least one
file open to a terminal.

See Also

ttyn am e (S)

March 24, 1984 Page 1

CTIME(S) CTIME(S)

The structure declaration for tm is defined in /usr/include/time.h.

The external long variable timezofte contains the ditTerence, in
seconds, between GMT and local standard time (e.g., in Eastern
Standard Time (EST), timezofte is 5·60·60); the external integer vari­
able daylight is nonzero if and only if the standard U.S.A. Daylight
Savings Time conversion should be applied. The program knows
·about the peculiarities of this conversion in 1974· and 1975.

Ir an environment variable na.ined TZ is present, a,ctime uses the
contents of the va.riable to override the default time zone. The
value of TZ must be a three-letter time zone name, rollowed by a
number representing the ditTere_nce betw~en local time (with optional
sign) and Greenwich time in hours, rollowed by an optional three­
letter name ror a daylight time zone. For example, the setting ror
New Jersey would be EST5EDT. The etTects of setting TZ are thus to
change the values of the external va.riables timezone and dtl.1Jight. In
a.ddition, the time zone names contained in theextemal variable

char ·tzname(2] == {"EST", "EDT"};

are set from the environment variable. The function tZlet sets the
external variables from TZ ; it is called by a,ctime and may also be
called explicitly by the user.

See Also

time(S), getenv{ S), environ{M)

Notes

The return values point to static data those content is overwritten by
each call.

March 24, 1984 Page 2

OTYPE(S)

See Also

ascii(M)

,March 24, 1984

OTYPE(S)

Page 2

CURSES (S) cURSES(S)

nlO Sets newline mapping
nocrmode() Unsets cbreak mode
noechoO Unsets echo mode
nonl() U nsets newline mapping
noraw() Unsets raw mode
overlay(winl, win2) Overlays winl on win2
overwrite(winl, win2) Overwrites winl on top of win2
printw(rmt,argl,arg2, ...) Printrs on red,er
raw() Sets raw mode
rerreshO Makes current screen look like retl,er
restty() Resets tty rlags to stored value
savetty() Stored current tty flags
scanw(rmt,argl,arg2, ...) Scanf through ,til.er
scroll(win) Scrolls toi" one line
scrollok(win,booU) Sets scroll flag
setterm(name) Sets term variables ror name
unctrl(ch) Printable version or eh
waddch(win,ch) Adds char to toi"
waddstr(win,str) Adds string to toi"
wclear(win) Clear toi"
wclrtobot{ win) Clears to bottom or toi"
wclrtoeol(win) Clears to end of line on toi"
werase(win) Erase toi"
wgetch(win) Gets a char through toi"
wgetstr(win,str) Gets a string through toi"
winch(win) Gets char at current (y,x) in toi"
wmove(win,y,x) Sets current (y,x) co-ordinates on toi"
wprintw{ win,rmt,argl,arg2, ...)Printf on toi"
wrerresh(win) Makes screen look like toi"
wscanw(win,rmt,argl,arg2, ... }Scanf through toi"

Credit

This utility was developed at the University or Calirornia at Berkeley
and is used with permission.

March 27, lQ84 Page 2

DBM(S) DBM(S)

Name

dbminit, retch, store, dele~, firstkey, nextkey - Performs database
runctions.

Syntax

typeder struct {char *<fptr; int dsize; } datum;

dbminit(flle)
char *file;

datum fetch(key)
datum key;

store(key, content)
datum key, content;

delete(key)
datum key;

datum flrstkey();

datum nextkey(key);
datum key;

Description

These runctions maintain key/content pairs in a database. The func­
tions will h3Jldle very large (a billion blocks) databases and will
access a keyed item in one or two file system accesses. The func­
tions are obtained with the loader option - Idbm.

Ke1ls and contents are described by the de tum typeder. A detum
. specifies a string or dlize bytes poin~d to bydptr. Arbitrary binary
data., as well as normal ASCII strings, are allowed. The database is
stored in two files. One file is a directory containing a bit map and
has ".dir" as its suffix. The second file contains all data and has
".pag" as its suffix.

Berore a database can be accessed, it must be opened by dbminit. At
the time or this call, the files file.dir and file .pag must exist. (An
empty database is created by creating zero-length" .dir" and" .pag"
files.)

Once open, the data stored under a key is accessed by letcA and data
is pla.ced under a key by ,tort. A key (and its associated contents) is
deleted by delete. A linear pass through all keys in a database may
be made, in an (apparently) random order, by use of fir,tkt1l and
ntztke1l. Fi"tke1l will return the first key in the database. With any
key neztke1l will return the next key in the database. This code will

Ma.rch 24, 1084 Page 1

DEFOPEN(S)

Name

defopen, deCread - Reads default entries.

Syntax

int defopen(fllename)
char *filename;

char *<Ietread(pattem)
char .pattem;

Description

DEFOPEN(S)

De/open andde/re4d are a pair of routines designed to allow easy
access to default definition files. XENIX is normally distributed in
binary form; the use of deCault files allows OEMS or site administra­
tors to customize utility deCaultswithout having the source code.

De/open opens the default file named by the pathname in jilen4me.
De/open returns null if it is successful in opening the file, or the
/open failure code (ermo) if the open rails.

De/read reads the previously opened file Crom the beginning until it
encounters a line beginning with p4ttem. De/read then returns a
pointer to the first character in the line alter the initial pattem. Ir a
trailing newline character is read it is replaced by a null byte.

When all items or interest have been extracted rrom the opened file
the program may call de/open with the name or another file to be
searched, or it may call de/open with NULL, which closes the default
file without opening another.

Files

The XENIX convention is Cor a system program ZllZ to store its
defaults (iC any) in the file /etc/di!rault/xyz.

, Diagnostics

De/open returns zero on success and nonzero if the open rails. The
return value is the ermo value set by /open(S).

De/read returns NULL if a default file is not open, if the indicated
pattern could not be found, or it it encounters any line in the file
greater than the maximum length of 128 characters.

Ma.rch 24, Ig84 Page 1

ECVT(S)

Name

ecvt, fcvt, gcvt - Performs output conversions.

Syntax

char *ecvt (value, ndigit, decpt, sign)
double value;
int ndigit, *decpt, *sign;

char *rcvt (value, ndigit, decpt, sign)
double value;
int ndigit, *decpt, *sign;

char *gcvt (value, ndigit, bur)
double value;
char *bur;

Description

ECVT(S)

Ecvt converts the 1Jalue to a null-terminated string of "digit ASCII
digits and returns a pointer to the string. The position of the
decimal point relative to the beginning of the string is stored
indirectly through decpt (negative means to the lert of the returned
digits). If the sign of the result is negative, the word pointed to by
.ig" is nonzero, otherwise it is zero. The low-order digit is rounded.

FCflt is identical to ecflt, except that the correct digit has been
rounded for' FORTRAN F format output of the number of digits
specified by ndigit •.

GC1Jt converts the tlclue to a null..,terminated ASCII string in bu/ and
returns a pointer to bu/. It attempts to produce "digit significant
digits in FORTRAN F format if possible, otherwise E format, ready
for printing. Trailing zeros maybe suppressed.

See Also

Notes

The return values point to static data whose content is overwritten
by each call.

Match 24, U)84 Page 1

EXEC(S) EXEC(S)

En/up is an array of character pointers to null-terminated strings.
These strings constitute the environment tor the new process. EnfJp
is terminated by a null pointer.

File descriptors open in the calling process remain open in the new
process, except for those whose close-on-exec flag is set; see
fcntl(S). For those rile descriptors that remain open, the file pointer
is unchanged.

Signals set to terminate the calling process will be set to terminate
the new process. Signals set to be ignored by the calling process will
be set to be ignored by the new process. Signals set to be caught by
the calling process will be set to terminate new process; see
.ignal(S).

It the set-user-ID mode bit ot the new process file is set (see
chmod(S)), ezec sets the errective user ID of the new process to the
owner ID of the new process file. Similarly, if theset-group-ID
mode bit of the new process· file is set, the effective group ID of the
new process is set to the group ID of the new process file. The real
user ID and real group ID of the new process remain the same as
those of the calling process.

Profiling is disabled for the new process; see profll(S).

The new process also inherits the following attributes from the cal­
ling process:

Nice value (seeniee(S))

Process ID

Parent processlD

Process group ID

tty group ID (see ezit(S) and "gnal(S))

Trace Clag (see ptrace(S) request 0)

Time left until an alarm clock signal (see 4larm(S))

Current working directory

Root directory

File mode creation mask (see uma,k(S))

File size limit(see ulimit(S))

ut&me ,Btime, tUUme, and e,t&me (see time.(S))

March 24, 1984 Page 2

EXEC (S) EXEC(S)

Search permission is denied ror a directory listed in the new pro­
cess file's path prefix. IEACCESj

The new process file is not an ordinary file. IEACCES]

The new process file mode denies execution permission.
IEACCES]

The new process file has the appropriate access permission, but
has an invalid magic number in its header. !ENOEXEC]

The new process file is a pure procedure (shared text) file that is
currently open for writing by some process. IETXTBSYj

The new process requires more memory than is allowed by the
system-imposed maximum. IENOMEMj

The number of bytes in the new process' argument list is greater
than the system-imposed limit of 5120 bytes. !E2BIG]

The new proces~ file is not as long as indicated by the size
values in its header. IEFAULT]

Path, argfJ, or en'fJp point to an illegal address. IEFAULT)

Retum Value

If ezec returns to the calling process an error has occurred; the
return value will be - 1 and ermo will be set to indicate the error.

See Also

exit(S), fork(S)

March 24, 1 Q84 Page 4

EXP(S) EXP(S)

Name

exp, log, pow, sqrt, 10glO - Performs exponential, logarithm,
power, square root functions.

Syntax

,include <math.h>

double exp (x)
double x;

double log (x)
double x;

double pow (x, y)
double x, y;

double sqrt (x)
double x;

double log!O (x)
double x;

Description

Ezp returns the exponential function or z.

Log returns the naturallog3l'ithm or z.

Pow returns zll.

Sqrt returns the square root or z.

See Also

intro(S), hypot(S), sinh(S)

Diagnostics

Ezp and pow return a huge value when the correct value would
overflow. A truly outrageous argument may also result in el'f'no
being set to ERANGE. Log returns a huge negative value and sets
el'f'no to EDOM when z is nonpositive. Pow returns a huge negative
value and sets ermo to EDOM when z is nonpositive and 11 is not an
integer, or when z and 11 are both zero. Sqrt returns 0 and sets el'f'no
to EDOM when z is negative.

March 24, 1984 Page 1

FCNTL (S) FCNTL (S)

Name

fcntl- Controls open files.

Syntax

'include <rcntl.h>

int fcntl (HIdes, cmd, arg)
int HIdes, cmd, arg;

Description

Fend provides for control over open files. Filde, is an open file
descriptor obtained from a creat, open, dup, lentl, or pipe system call.

The emds availa.ble are:

Returns a new file descriptor as follows:

Lowest numbered available file descriptor greater than
or equal to 4rg.

Same open file (or pipe) as the original file.

Same file pointer as the original file (i.e., both file
descriptors share one file pointer).

Same access mode (read, write or read/write).

Same file status flags (i.e., both file descriptOrs share
the same file status flags).

The close-on-exec flag associated with the new file
descriptor is set to remain open across ezec(S) system
calls.

F _G ETFD Gets the close-on-exec flag a.ssociated with the file
descriptor fllde,. If the low-order bit is 0 the file will
remain open across ezec, otherwise the file will be
closed upon execution of ezee.

F _SETFD Sets the close-on-exec fla.g associated with flUe. to the
low-order bit of 4rg (0 or 1 as above).

F_GETFL Gets file status flags.

F _SETFL Sets file status flags to 4rg. Only certain flags can be
set.

March 24, 1984 Page 1

FERROR (8) FERROR (8)

Name

ferror, feof, clea.rerr, fileno - De~rmines stream status.

Syntax

#indude< stdio.h >
int reor (stream)
FlLE ·stream;

int terror (stream)
FlLE ·stream

dearerr (stream)
FlLE ·stream

int flleno(stream)
FlLE ·stream;

Description

Feo/returns nonzero when end-of-file is read on the named input
,tream, otherwise zero.

Ferror returns nonzero when an error has occurred reading or wri~
ing the named ,tream, otherwise zero. Unless cleared by clearerr,
the error indication lasts until the stream is closed.

Clearerr resets the error indication on the named ,tream.

Fileno returns the in~ger file descriptor associa~d with the "ream,
see open(8) .

Fe 0/, terror, and jileno are implemen~d as macros; they ca.nnot be
redeclared.

See Also

open(8), fopen(8)

Ma.rch24, 1984 Pa.ge 1

FOPEN(S)

Name

ropen, rreopen, rdopen - Opens a stream.

Syntax

#indude <stdio.h>

HLE -ropen (filename, type)
char *filename, -type;

FlLE -rreopen (ftlename, type, stream)
char *filename, -type;
FlLE -stream;

FlLE -rdopen (fildes, type)
int flldes;
char -type;

Description

FOPEN(S)

Fopen opens the file named by filenGme and associa~s a stream with
it. Fopen returns a poin~r to be used to identify the stream in sub­
sequent operations.

Type is a charac~r string having one or the rollowing value"!:

r Open for reading

w Crea~ for writing

a Append; open for writing at end of file, or crea~ for writing

r+ Open for upda~ (reading and writing)

w+ Crea~ for upda.~

a+ Append; open or crea~ for upda~ at end of file

Freopen substitu~s the named file in place of the open ,treGm. It
returns the original value of ,tream. The original stream is closed,
regardless or whether the open call ultima~ly succeeds.

Freopen is typically used to attach the preopened constant names
J stdin,stdout, and stdcrr to specified files.

Fdopen associa~s a stream with a file descriptor obtained from open,
dup, creat, or pipe(S). The type of the stream must agree with the
mode of the open file. The twe must be provided because the stan­
dard 1/0 library has no way to query the type of an open file desc·rip­
tor. Fdopen returns the new stream.

March 24, lQS4 Page 1

FORK(S) FOR/(S)

Name

rork- Creates a new process.

Syntax

int fork ()

Description

Fork causes creation of a new process. The new process (child pro­
cess) is an exact copy or the calling process (parent process) except
ror the rollowing:

The child process has a unique process JD.

The child process has a different parent process 10 (i.e., the pro­
cess 10 or the parent process).

The child process has its own copy or the parent's file descrip­
tors. Each or the child's file descriptors shares a common file
pointer with the corresponding file descriptor or the parent.

The child process' utime, ,time, eutime, and e,time are set to 0;
see time,(S).

The time lert on the parent's alarm clock is not passed on to the
child.

Fork returns a. value or 0 to the child process.

Fork returns the process 10 of the child process to the parent pro­
cess.

Fork wiJJ rail and no child process will be created ir one or more or
the rollowing are true:

The system-imposed limit on the total number or processes
under execution would be exceeded. IEAGAINJ

The system-imposed limit on the total number or processes
under execution by a single user would be exceeded. IEAGAIN]

Not enough memory is available to create the rorked image.
IENOMEMj

Return Value

Upon successful completion, fork returns a value or 0 to the child
process and returns the process ID or the chiJdprocess to the parent

March 24, lQS4 Page 1

•

FREAD (S) FREAD (S)

Name

fread, fwrite - Performs buffered binary input and output.

Syntax

,include <stdio.h>

int fread (char *) ptr, sizeof (*ptr) , nitems, stream)
FlLE ·stream;

int fwrite «char *) ptr, sizeof (*ptr), nitems, stream)
FlLE ·stream;

Description

Fread reads, intAl a block beginning at ptr, niteml of data of the type
of *ptrrrom the named input dream. It returns the number or items
actually read.

Fwrite appends at most "item, or data or the type or *ptr beginning at
ptr tAl the named output ,tream. It returns the number or items
actually written.

See Also

read(S), write(S), ropen(S), getc(S), putc(S), gets(S), puts(S),
printr(S), scanC(S)

March 24, 19S4 Page 1

FSEEK(S)

Name

fseek, ftell, rewind - Repositions a stream.

Syntax

#include <stdio.h>

int rseek (stream, offset, ptmame)
FlLE ·stream;
long offset;
int ptmame;

long rtell (stream)
FlLE ·stream;

rewind(stream)
FlLE ·8 tream;

Description

FSEEK(S)

Fseek sets the position of the next input. or output operation on the
stream. The new position is at the signed distance offset bytes from
the beginning, the current position, or the end of the file, according
as ptmame has the value 0, 1, or 2.

Fseek undoes any effects of ungetc(S).

After /seek or rewind, the next operation on an upda.te file may be
either input or output.

Ftell returns the current value of the offset. relative to the beginning
of the file associa.ted with the named stream. The offset is measured
in bytes.

Rewind(stream) is equivalent to /seek(,tream, OL, 0).

See Also

Iseek(S), ropen(S)

Diagnostics

Fseek returns nonzero for improper seeks, otherwise zero.

March 24, 1984 Page 1

GETC(S) GETC(S)

Name

getc, getchar, fgetc, getw - Gets character or word from a stream .

• Syntax

#include <stdio.h>

int gek (stream)
nLE ·stream;

• int get<:har ()

int tgek (stream)
nLE ·stream;

int gctw (stream)
nLE ·stream;

Description

Getc returns the next character from the named input,tream.

Getckar() is identical to getc(,ttlin).

Fgetc behaves like getc, but is a genuine function, not a macro; it
may thererore be used as an argument. Fgetc runs more slowly than
getc, but takes less space per invocation.

Getw returns the next word from the named input 'trum. It returns
the constant EOF upon end-of..;file or error, but since that is a valid
integer value, leol and le"or(S) should be used to check the success
of getw. Getw assumes no special alignment in the file.

See Also

ferror(S), fopen(S), fread(S), gets(S), putc(S), scanf(S)

Diagnostics

These functions return the integer constant EOF at the end-of-file or
upon a read error.

Notes

Because getc is implemented as a macro, ,tream arguments with side
effects are treated incorrectly. In particular, "getc(.f+ +)" doesn't
work properly.

March 24, 1984 Pa.ge 1

GETENV(S)

Name

getenv - Gets value ror environment name.

Syntax

char -getenv (name)
char -name;

Description

GETENV(S)

Getenf1 searches the environment list (see enf1iron(M)) ror a string or
the rorm nsme=f1tJlue and returns f/slue ir such a string is present,
otherwise 0 (NULL).

See Also

sh(C), exec(S)

March 24, 1984 Page 1

GETGRENT(S) GETGRENT (S)

See Also

getlogin(S), getpwent{S), group(M)

Diagnostics

A null pointer (O) is returned on end';'of-file or error.

Notes

All information is contained in a static area, so it must be copied if it
is to be saved.

March 24, 1984 Page 2

GETOPT(S)

Name

getopt - Gets option letter from argument vector.

Syntax

,include <stdio.h>

int getopt (argc, argv, optstring)
int argc;
char •• argv;
char ·optstring;
ex tern char ·optarg;
extern int optind;

Description

GETOPT(S)

Getopt returns the next option letter in 41'gfJ that matches a letter in
opt8tring. Opt~tring is a string of recognized option letters; if a letter
is followed by a colon, the option is expected to have an argument
that mayor may not be separated from it by whitespace. OpttJ1'g is
set to point to the start of the option argument on return from
getopt.

Getopt places in optintl the 41'gfl index of the next argument to be
processed. Because optind is external, it is normally initialized to
zero automatically before the first call to getopt.

When all options have been processed (i.e., up to the first nonoption
argument), getopt returns EOF. The special option -- may be used to
delimit the end of the options; EOF will be returned, and -- will be
skipped.

Diagnostics

Getopt prints an error message on Ittlerrand returns a question mark
(!) when it encounters an option letter not included in opt.tnng.

Examples

The following code fragment shows how one might process the argu­
ments for a. command that can take the mutually exclusive options a
and b, and the options rand 0, both of which require arguments:

March 24, 1984 Page 1

GETPASS(S)

Name

getpass - Reads a password.

Syntax

char *getpass (prompt)
char ·prompt;

Description

GETPASS(S)

Getpall reads a password from the file /dev/tty, or if that cannot be
opened, rrom the standard input, arter prompting with the null­
terminated string prompt and disabling echoing. A pointer is
returned to a null-terminated string or at most eight characters.

Files

/dev /tty

See Also

crypt(S)

Notes

The return value points to static data whose content is overwritten
by each call.

March 24, 1984 Page 1

GETPW(S)

Name

getpw -:- Gets password for a given user ID.

Syntax

getpw (uid, bur)
int uid;
char ·bur;

Description

GETPW(S)

Getpw searches the password file for the vitl, and fills in bv! with the
corresponding line; it returns nonzero if vitl could not be found.
The line is null-terminated. Uitl must be an integer value.

Files

/etc/passwd

See Also

getpwent(S), passwd(M)

Diagnostics

Returns nonzero on error.

Notes

This routine is included only for compatibility with prior systems and
should not be used; see getpwent(S) Cor routines to use instead.

Ma.rch 24, 1984 Page ·1

GETPWENT(S) GETPWENT(S)

Diagnostics

Null pointer (0) returned on EOF or error.

Notes

All information is contained in a static area so it must be copied if it
is to be saved.

March 24, 1984 Page 2

GETUID (8) GETUID (8)

Name

getuid, geteuid, getgid, getegid - Gets real user, eft'ective user, real
group, and eft'ective group IDs.

Syntax

int getuid ()

int geteuid ()

int getgid ()

int getegid ()

Description

Getuitl returns the real user ID of the calling process.

Geteuitl returns the eft'ective user ID of the calling process.

Getgitl returns the real group ID of the calling process.

Getegitl returns the effective group 10 of the calling process.

See Also

intro{ S), setuid(S)

March 24, 1984 Page 1

'loan (S)

Name

ioctl - Controls character devices.

~tax

#indude <sys/ioctl.h>

ioctl(fildes, request, arg)
int flldes;

Description

IOOTL (S)

loetl perrorms a variety or runctions on characUlr special files (dev­
ices). The writeups or various devices in Section M discuss how ioefl
applies to them.

Ioctl will rail ir one or more or the rollowing are true:

Fildel is not a valid open file descriptor. IEBADF]

Fildel is not associated with a characUlr special device.
IENOTTYj

Requelt or arg is not valid. See ttg(M). IEINVAL]

Return Value

It an error has occurred, a value or - 1 is returned and ermo is set
to indicate the error.

See Also

tty(M)

March 24, 1984 Page 1

KILL (S) KILL (S)

The sending process is not sending to itselr, its effective user ID
is not super·user, and its effective user ID does not match the
real user ID or the receiving process. IEPERMJ

Return Value

Upon successrul completion, a value or 0 is returned. Otherwise, a
value or - 1 is returned and errno is set to indica.te the error.

See Also

kill (C), getpid(S), setpgrp(S), signal(S)

March 24, 1984 Page 2

LINK (8) LINK(S)

Name

link - Links a new filename ro an existing file.

Syntax

int link· (pathl, path2)
char ·pathl, *path2;

Description

Pathl points ro a pathname narning an existing file. P4thD points ro
a pathname giving the new filename ro be linked. Link makes a new
link by creating a new direcrory entry tor the existing file using the
new name. The contents ot the existing file can then be accessed
using either name.

Link will fail and no link will be created if one or more or the fol­
lowing are true:

A component of either path prefix is not a direcrory. IENOTDIRj

A component of either path prefix does not exist. IENOENTj

A component or either path prefix denies search permission.
IEACCESj

The file named by pathl does not exist. [ENOENTj

The link named by pathD already exists. [EEXISTj

The file named by pathl is a direcrory and the effective user ID
is not super-user. [EPERMj

The link named by pathD and the file named by ptJthl are on
different logical devices (file systems). !EXDEVj

Pathe points ro a null pathname. !ENOENTj

The requested link requires writing in a direcrory with a mode
that denies write permission. IEACCESj

The requested link requires writing in a direcrory on a read-only
file system. [EROFSj

Path points outside the process' allocated address space.
fEFAULTj

March 24, 1984 Page 1

LOCK (S) LOOK(S)

Name

lock - Locks a process in primary memory.

Syntax

lock (flag)

Description

Ir the flag argument is nonzero, the process executing this call will
not be swapped except iC it is required to grow. Ir the argument is
zero, the process is unlocked. This call may only be executed by the
super-user.

Notes

Locked processes interCere with the compaction of primary memory
and can cause deadlock. Systems with small memory configurations
should a.void using this call. It is best to lock process soon after
booting because that will tend to lock them into one end of memory.

March 24, 19S4 Page 1

LOCKING(S) LOCKING(S)

LK_NBLCK 2
Locks the specified region. IC any part oC the region is already
locked by a different process, return the error EACCES instead
oC waiting Cor the region to become available Cor locking (non­
blocking lockrequest).

LK_RLCK 3
Same as LK_LOCK except that the locked region may be read by
other processes (read permitted lock). '

LK_NBRLCK 4
Same as LK..,NBLCK except that the locked region may be read
by other processes (nonblocking, read permitted lock).

Size is the number or contiguous bytes to be locked or unlocked.
The region to be locked starts at the current offset in the file. Ir lin
is 0, the entire file (up to a maximum or 2 to the power or 30 bytes)
is locked or unlocked. Size may extend beyond the end or the file,
in which case only the process issuing the lock call may access or add
inrormation to the file within the boundary defined by size.

The potential Cor a deadlock occurs when a process controlling a
locked area is put to sleep by accessing another process' locked area.
Thus calls to locking, rea.d, or write scan ror a deadlock prior to sleep­
ing on a locked region. An error return is made ir sleeping on the
locked region would cause a deadlock.

Lock requests may, in whole or part, contain or be contained by a
previously locked region ror the same process. When this occurs, or
when adjacent regions are locked, the regions are combined into a
single area ir the mode or the lock is the same (i.e.; either read per­
mitted or' regular lock). U the mode or the overlapping locks differ,
the locked areas will be assigned assuming that the mo,t recent
requut must be satisfied. Thus ir a read only lock is applied to a
region, or part or a. region, that had been previously locked by the
same process against both reading and writing, the area of the file
specified by the new lock will be locked Cor read only, while the
remaining region, iC any, will remain locked against reading and writ­
ing. There is no arbitrary limit to the 'number or regions which may
be locked in a. file. There is however a system-wide limit on the
total num ber of locked regions. This limit is 200 Cor XENIX systems.

Unlock requests may, in whole or part, release one or more locked
regions controlled by the process. 'When regions are not Cully
released, the remaining areas are still locked by'the process. Release
or the center section or a locked area requires an additional locked
element to hold the separated section. Ir the lock table is Cull, an
error is returned, and the requested region is not released. Only the
process which locked the file region may unlock it. An unlock
request for a region that the process does not have locked, or that is
already unlocked, has no effect. When a process terminates, all
locked regions controlled by that process are unlocked.

March 24, 1984 Page 2

LOGNAME(S) LOGNAME(S)

Name

logname - Finds login name or user.

Syntax

char -Iogname();

Description

Log"Gmt returns a pointer to the null-terminated login name. It.
uses the string round in the LOGNAME variable lromthe user's
environment.

Files

tete/profile

See Also

env(C), login(M), profile(M), environ(M)

March 24, 1984 Page 1

LSEEK(S) LSEEK(S)

Name

lseek - Moves rea.d/wri~ file poin~r.

Syntax

long Iseek (fildes, offset, whence)
int flldes;
long offset;
int whence;

Description

FJdel is a file descriptor returnedtrom a creat, Dpt", flup, or Jed
sys~m call. L,eek sets the file poin~r associa~d with flUe, as tol­
lows:

If whence is 0, the poin~r is set to . oD,et by~s.

If whence is 1, the poin~r is set to its eurrent loeation plus oD,et.

If whence is 2, the poin~r is set to the size or the file plus oD,et.

Upon successful completion, the resulting poin~r location as meas­
ured in by~s rrom the beginning or the file is returned.

L,eek will rail and the file poin~r will remain unehanged irone or
more or the following are true:

FJdel is not an open file descriptor. IEBADFJ

FJde, is associa~d with a pipe or firo. I ESPIPEI

Whence· is not 0, lor 2. !EINVAL and SIGSYS signal)

The resulting file poin~r would be negative. IEINVAL]

Some devices are incapable or seeking. The value or the file poin~r
associa.~d with such a device is undefined.

Return Value

Upon successful completion, a nonnegative in~ger indicating the file
poin~r value is returned. Otherwise, a value or - 1 is returned and
ermo is set to indica.~ the error.

Ma.rch 24, 1984 Page 1

MALLOC(S)

Name

malloc, free, realloc, calloc - Allocates main memory.

Syntax

char ·malloc (size) unsigned size;

tree (ptr)
char ·ptr;

char ·realloc (ptr, size)
char ·ptr;
unsigned size;

char ·calloc (nelem, elsize)
unsigned elem, elsize;

Description

MALLOC(S)

MaUoe and free provide a simple general-purpose memory allocation
package. M aUoe returns a pointer to a block of at least .ze b~s
beginning on a word boundary.

The argument to free is a pointer to a block previously allocated by
maUoe; this space is made available for further allocation, but its
contents are left undisturbed.

Needless to say, grave disorder will result if the space assigned by
malloe is overrun or if some random number is handed to lree.

MaUoe allocates the first contiguous reach of free space found in a
circular search from the last block allocated or freed, coalescing adja­
cent free blocks as it searches. It calls ~brk (see ,brk(S) to get
more memory from the system when there is no suitable space
already free.

Realloe changes the size of the block pointed to by ptr to lize bytes
and returns a pointer to the (possibly moved) block. The contents
will be unchanged up to the lesser of the new and old sizes.

Realloc also works if ptr points to a block freed since the last call of
malloe, realloe, or calloe; thus sequences of free, maUoe and realloe
can exploit the search strategy of maUoe to do storage compaction.

Calloc allocates space for an array of nelem elements of size eleize.
The space is initialized to zeros.

Each of the allocation routines returns a pointer to space suitably
aligned (after possible pointer coercion) for storage of any type of

March 24, 1984 Page 1

MKNOD (S) MKNOD (S)

Name

mknod - Makes a directory, or a special or ordinary rile.

Syntax

int mknod (path, mode, dev)
char ·path;
int mode, dey;

Description

Mknod creates a new rile named by the pathname pointed to by ptltla.
The mode of the new tile is initialized from mode. Where the value
of mode is interpreted as follows:

0170000 File type; one of the following:
0010000 Named pipe special
0020000 Character special
0040000 Dire ctory
0050000 Name special file
0060000 Blo ck . spe cial
0100000 or 0000000 Ordinary tile

0004000 Set user ID on execution

0002000 Set group ID on execution

0001000 Save text image after execution

0000111 Access permissions; constructed from the following
0000400 Read by owner
0000200 Write by owner
0000100 Execute (search on directory) by owner
0000010 Read, write, execute (search) by group
0000001 Read, write, execute (search) by others

Values of mode other than those above are undefined and should not
be used.

The file's owner ID is set to the process' effective user ID. The file's
group ID is set to the process' effective group 10.

The low-order g bits of mode are modified by the process' file mode
creation mask: all bits set in the process' file mode creation mask are
cleared. See umtuk(S). If mode indicates a block, character, or
name special file, then defl is a configuration dependent specification
of a character or block I/O device. If mode does not indicate a
block, character, or name special file, then defl is ignored. For block
and character special files, defl is the special rile's device number.
For name special files, defl is the type of the name file, either a

March 24, 1984 Page 1

MKTEMP(S)

Name

mktemp - Makes a unique filename.

Syntax

char *mktemp(template)
char *template;

Deseri ption

MKTEMP(S)

Mktemp replaces template with a unique filename, and returns a
pointer to the name. The template should look like a filename with
six trailing X's, which will be replaced with the current process ID
preceded by a zero.

See Also

getpid(S)

March 24, 1984 Pa.ge 1

MONITOR (8) MONITOR (8)

Notes

An executable program created by cc - p automatically includes calls
tor monitor with detault parameters; monitor needn't be called expli­
citly except to gain fine control over profiling.

March ~, 1984 Page 2

MOUNT(S) MOUNT(S)

Return Value

Upon successful completion a value of 0 is returned. Otherwise, a
value of - 1 is returned and ermo is set to indicate the error.

See Also

mount(C), umount(S)

March 24, 1984 Page 2

NICE (S)

Name

nice - Changes priority ot a process.

Syntax

int nice (incr)
int incr;

Description

NICE(S)

Nice adds the value ot incf' to the nice value ot the calling process.
A process' nice value is a positive number for which a higher value
results in lower CPU priority.

A maxim um nice value or 39 and a minimum nice value or 0 are
imposed by the system. Requests tor values above or below these
limits result in the nice value being set to the corresponding limit.

Nice will not change the nice value ir incr is negative and the
effective user ID of the calling process is not super-user. !EPERM!

Return Value

Upon successtul completion, nice returns the new nice value minus
20. Note that nice is unusual in the way return codes are handled. It
differs trom most other system calls in two ways: the value - 1 is a
valid return code (in the case where the new nice value is 19), and
the system call either works or ignores the request; there is never an
error.

See Also

nice(C), exec(S)

March 24, 1984 Page 1

OPEN(S) OPEN(S)

Name

open - Opens file ror reading or writing.

Syntax

'include <fcntl.h>
int open (path, oftag[, mode])
char ·path;
int oftag, mode;

Description

Path points to a pathname naming a file. Open opens a file descrip­
tor ror the named file and sets the file status flags according to the
value or oftag. Oftag values are constructed by or-ing flags rrom the
rollowing list (only one or the first three flags below may be used):

March 24, 1984

Open ror reading only.

Open for writing only.

Open for reading and writing.

This flag may affect subsequent reads and writes.
See read(S) and write(S).

When opening a FIFO with O_RDONL Y or
O_WRONLY set:

Ir O_NDELAY is set:

An open ror reading-only will return without
delay. An open ror writing-only will return an
error if no process currently has the file open ror
reading.

Ir O_NDELAY is clear:

An open ror reading-only will block until a pro­
cess opens the file ror writing. An open for
writing-only will block until a process opens the
file ror reading.

\Vhen opening a file associated with a communication
line:

Ir O_NDELAY is set:

The open will return without waiting for carrier.

Page 1

OPEN(S) OPEN(S)

Ofta9 permission is denied Cor the named file. !EACCESj

The named file is a directory and oftag is write or read/write.
IEISDIRj

The named file resides on a read-only file system a.nd 6ft49 is
write or read/write. {EROFSj

Twenty file descriptors are currently open. IEMFILEj

The named file is a character special or block special file, and
the device associated with this special file does not exist.
IENXIOj

The file is a. pure procedure (shared text) file that is being exe­
cuted and .oftag is write or read/write. IETXTBSYj

Path points outside the process' allocated address space.
!EFAULTj

O_CREA T and O_EXCL are set, and the named file exists.
IEEXIST!

O_NDELAY is set, the named file is a FIFO, O_WRONLY is set,
and no process has the file open Cor reading. IENXIOj

Jretum Value

Upon successCul completion, a nonnegative integer, namely a file
descriptor, is returned. Otherwise, a value oC - 1 is returned and
ermo is set to indicate the error.

See Also

close(S), creat(S), dup(S), Ccntl(S), Iseek(S), read(S), write(S)

March 24, 1 QS4 Page 3

PAUSE (S) PAUSE(S)

Name

pause - Suspends a process un til a signal occurs.

Syntax

int pause ();

Description

Po.u,e suspends the calling process until it receives a signal. The sig­
nal must be one that is not currently set to be ignored by the calling
process.

It the signal causes termination of the calling process, po.UBe will not
return.

It the signal is ctlught by the calling process and control is returned
from the signal catching function (see ngn41(S)), the calling process
resumes execution from the point of suspension; with a return value
of - 1 from ptlUBe and ermo set to EINTR.

See Also

alarm(S), kill(S), signal(S), wait(S)

Ma.rch 24, 1084 Page 1

PIPE (S}

Name

pipe - Creates an interprocess pipe.

Syntax

int pipe (HIdes)
int tildes [2];

Description·

PIPE (S}

Pipe creates an I/0 mechanism called a pipe and returns tW() file
descriptors in the array filde,. Ftlde,(O) is opened for reading and
filde'[I] is opened for writing. The descriptors rem ain open across
/0'*(S)system calls, making communication between parent and
child possible.

Writes up to 5120 bytes of data. are buffered by the pipe before the
writing process is blocked. A read on file descriptor jilde,(O]
accesses the data. written to fildee[l} on a first-in-first-out basis.

No process may have more than 20 file descriptors open simultane­
ously.

Pipe will fail if 19 or more file descriptors are currently open.
[EMFILEJ

Return Value

Upon successful completion, a value of 0 is returned. Otherwise, a
value of - 1 is returned and ermo is set to indicate the error.

See Also

sh(C), read(S), write(S}, fork(S), popen(S)

March 24, 1984 Page 1

PRINTF(S)

Name

printf, fprintf, sprintf- Formats output.

Syntax

#indude <stdio.h>

int printf (format (, arg) ...
char ·tormat;

int fprintt (stream, format (, arg] ...
HLE ·stream;
char ·tormat;

int sprintt (s, format I , arg] ...
char ·s, format;

Description

PRINTF(S)

Printf places output on the standard output stream stdout. FprintJ
places output on the named output etream. Sprintf places output,
followed by the null character (\0) in consecutive bytes starting at ';
it is the user's responsibility w ensure that enough swrage is avail­
able. Each function returns the number of characters placed (not
including the \0 in the case of ,printf), or a negative value if an out­
put error was encountered.

Each of these functions converts, formats, and prints its args under
control of the format. The format is a character string that contains
two types of objects: plain characters, which are simply copied to the
output stream, and conversion specifications, each of which results
in fetching of zero or more 4rgs. The results are undefined if there
are insufficient 4rgs for the format. If the format is exhausted while
4rgs remain, the excess 4'gS are simply ignored.

Each conversion specification is introduced by the character %
After the % the following appear in sequence:

Zero or more flag', which modify the meaning of the conver­
sion specification.

An optional decimal digit string specifying a mlDlmum field
width. If the converted value has fewer characters than the field
width, it will be padded on the left (or right, if the left­
adjustment flag described below has been given) w the field
width.

Apreci,ion that gives the minimum number of digits to appear
for the d, 0, U, x, or X conversions, the number of digits to
appear after the decimal point for the e and f conversions, the

March 24, 1984 Page 1

PRINTF(S) PRINTF(S)

0, X, or X an.d the" flag is present).

r The float or double arg is converted to decimal notation
in the style "[-)ddd.ddd", where the number of digits
aIter the decimal point is equal to the precision
specification. It the precision is missing, six digits are
output; if the precision is explicitly 0, no decimal point
appears.

e,E The float or double arg is converted in the style
"[-) d.ddde± dd", where there is one digit berore the
decimal point and the number of digits arter it is equal to
the precision; when the precision is missing, 6 digits are
produced; if the precision is zero, no decimal point
appears. The E format code will produce a number with
E instead of e introducing the exponent. The exponent
always contains exactly two digits.

g,G The float or double arg is printed in style r or e (or in
style E in the case ora G format code), with the precision
specirying the number or significant digits. The style used
depends on the value converted: style e will be used only
if the exponent resulting from the conversion is less than
- 4 or greater than the precision. Trailing zeroes are
removed from the result; a decimal point appears only if
it is followed by a digit.

c The character arg is printed.

s The arg is taken to be a string (character pointer) and
characters from the string are printed until a null charac­
ter (\0) is encountered or the number of characters indi­
cated by the precision specification is reached. It the pre­
cision is missing, it is taken to be infinite, so all charac­
ters up to the first null character are printed.

% Print a % no argument is converted.

In no case does a nonexistent or small field width cause truncation
of a field; ir the result of a conversion is wider than the field width,
the field is simply expanded to contain the conversion result. Char­
acters generated by print! and /print! are printed as if putchar had
been called (see putc(S)).

March 24, 1984 Page 3

PROFIL (S)

Name

profil - Creates an execution time profile.

Syntax

profil (buff, bursiz, offset, scale)
char -buff;
int bursiz, offset, scale;

Deseri ption

PROFIL (S)

Buff points to an area of core whose length (in bytes) is given by
bU/liz. After this call, the user's program counter is examined each
clock tick, where a clock tick is some fraction of a second given in
machine(M). Off Bet is subtracted from it, and the result multiplied
by lcale. If the resulting number corresponds to a word inside buff,
that word is incremented.

The scale is interpreted as an unsigned, fixed-point . fraction with
binary point at the left: 0177777 (octal) gives a 1-1 mapping of pc's
to words in buff; 077777 (octal) maps each pair of instruction words
together. 02(octal) maps all instructions onto the beginning of buff
(producing a noninterrupting core clock).

Profiling is turned off by giving a lcale of 0 or 1. It is rendered
ineffective by giving a bU/Biz of o. Profiling is turned off when an
ezec is executed, but remains on in child and parent both after a
/ork. Profiling will be turned off if an update in buff would cause a
memory fault.

See Also

prof(CP), monitor(S)

March24, 1984 Page 1

PTRACE(S) PTRACE(S)

not defined ror this request. Peculiar results will
ensue ir the parent does not expect to trace the child.

The remainder or the requests can only be used by the parent pro­
cess. For each, pid is the process ID or the child. The child must be
in a stopped state berore these requests are made.

1; 2 The word at location tJddr in the address space or the
child is returned to the parent process. Ir I and D
space are separated, request 1 returns a word rrom I
space, and request 2 returns a word Crom D space. Ir
I andD space are not separated, either request 1 or
request 2 may be used with equal results. The data
argument is ignored. These two requests will Cail if
addr is not the start address or a word, in which case a
value of - 1 is returned to the parent process and the
parent's ermo is set to EIO.

3 With this request, the word at location addr in the
child's USER area in the system's address space (see
<sys/user.h» is returned to the parent process.
The data argument is ignored. This request will rail ir
addr is not the start address or a word or is outside
the USER area, in which case a value of - 1 is
returned to the parent process and the parent's ermo
is set to EIO.

4, 5 With these requests, the value given by the dattJ argu­
ment is written into the address space or the child at
location tJddr. If I and D space are separated, request
4 writes a word into I space, and request 5 writes a
word into D space. Ir I and D space are not separated,
either request 4 or request 5 may be used with equal
results. Upon successful completion, the value written
into the address space of the child is returned to the
parent. These two requests will fail if Gddr is a loca­
tion in a pure procedure space and another process is
executing in that space, or addr is not the start address
or a word. Upon failure a value of - 1 is returned to
the parent process and the parent's ermo is set to EIO.

6 With this request, a few entries in the child's USER
area can be written. Data gives the value that is to be
written and tJddr is the location or the entry. The few
entries that can be written rollow:

- The general registers

- Any floating-point status registers

- Certain bits of the processor status

March 27, 1984 Page 2

PTRAOE(S) PTRAGE(S)

portable across all implementations without some change. Please
note that IBM-PC perrorms no memory mapping.

System calls cannot be single-steppe d. It a ptrtlCt call requests a sin­
gle step through a. system call, the traace bit is cleared, and the user
program will run to completion or until it encounters an explicitly set
breakpoint.

See Also

adb(CP), exec(S), signal(S), wait(S), machine(M)

Ma.rch 21, 1984 Page 4

PUTC(S) PUTC(S)

Diagnostics

These functions return the constant EOF upon error. Since this is a
valid integer, /error(S) should be used to detect putw errors.

Notes

Because pute is implemented as a macro, the Itrum argument with
side effects is not treated correctly .

. March 24, 1984 Page 2

PUTS (S)

Name

puts, fputs - Puts a string on a stream.

Syntax

#indude <stdio.h>

int putB (8)
char ·8;

int rputB (s, stream)
char ·8;
FlLE ·8tream;

Description

PUTS (S)

Put. copies the null-terminated string , to the standard output
stream .tdout and appends a newline character.

Fput. copies the null-terminated string' to the named output dream.

Neither routine copies the terminating null character.

Diagnostics

Both routines return EOF on error.

See Also

ferror(S), fopen(S), fread(S), gets(S), printf(S), putc(S)

Notes

Pu.t. appends a newline, /puu does not.

March 24, 1984 Page 1

RAND (S)

Name

rand, srand - Generates a random number.

, Syntax

. srand (seed)
unsigned seed;

intrand ()

Description

RAND (S)

Rand uses a multiplicative congruential random number generator
with period 282 to return successive pseudo-random numbers in the
range rrom 0 to 215

_ 1.

The genera.tor is reinitialized by ca.lling ,rand with 1 as argument. It
can be set to· a random starting point by calling Irand 'With an
unsigned integer in argument ,eed.

March 24, IGS4 Page 1

READ (8)

Name

read - Reads rrom a file.

Syntax

int read (flldes, but, nbyte)
intflldes;
char *bur;
unsigned nbyte;

Description

READ (5)

Fildel is a file descriptor obtained from a ere lit, Dpen, dup, lentl, or
pipe sysre m call.

Rudatrempts to read nbyte byres rrom the file assoeiared with flUe,
into the buffer pointed to by bu/.

On devices capable or seeking, the relld starts at a position in the file
given by the file poinrer associared with flUet. Upon return trom
read, the file poinrer is increlrienred by the number or byres actually
read.

Devices that are incapable ot seeking always read rrom the current
position. The value or a file poinrer associared with such a file is
undefined.

Upon successful completion, read returns the number ot bytes actu­
ally read and placed in the buffer; this number may be less than
nbyte if the file is associared with a comm unication line (see ioetl(S)
and tty(M)), or it the number ot byres lett in the file is less than
nbyte byres. A value ot 0 is returned when an end-or-file has been
reached.

When atrempting to rea.d trom an empty pipe (or FIFO):

If O_NDELAY is set, the read will return a O.

It O_NDELA Y is clear, the read will block until data is written to
the file or the file is no longer open tor writing.

When attempting to read a file associared with. a tty that has no data
currently available:

It O_NDELAY is set, the read will return a O.

It O_NDELA Y is clear, the read will block until data becomes
available.

March 24, 1984 Page 1

REGEX(S) REGEX(S)

Name

regex, regcmp - Compiles and execu~s regular expressions.

Synt.ax

char eregcmp(stringl[,strlng2, o ••],0);
char estring!, ·string2, ... ;

char ·regex(re,subject[,retO, .0.]);
char ere, ·subject, ·retO, .00;

Description

Regcmp compiles a regular expression and returns a poinrer to the
compiled form. Mdlloe(S) is used to creare space for the compiled
expression. It is the user's responsibility to free unneeded spa.ce so
allocared. A zero return from regemp indicares an incorrect argu­
ment. Regcmp(OP) has been written to generally preclude the need
for this routine at execution time.

Rege.z executes a compiled pattern against the subject string. Addi­
tional arguments are passed to receive values back. Regez returns
zero on failure or a pointer to the next unmatched character on suc­
cess. A global character pointer _lod points to where the match
began. Although regemp and regez were derived from the editor,
etl(C), the syntax and semantics have been changed slightly. The
following are the valid sym bois and their associated meanings.

These symbols retain their current meaning.

Ma.tches the end of the string, \n matches the newline.

Within brackets the minus means through. For example,
[a- z] is equivalent to [abed .•. xyz]. The - can appear as
itseIr only if used as the last or first chara.cter. For exam­
ple, t·he characrer class expression []-] matches the char­
acrers] and - .

+ A regular expression followed by + means "one or more
times". For example, [0- g]+ is equivalent to
[0- g][O- g] •.

{m} {m,} {m,u}
Integer values enclosed in {} indicate the number or times
the preceding regular expression is to be applied. m is the
minimum number and u is a number, less than 256, which
is the maximum. Ir only m is present (e.g., {m}), it indi­
cares the exact number of times the regular expression is

Ma.rch 24, 1984 Pa.ge 1

REGEX(S) REGEX(S)

See Also

ed(C), regcmp(CP), malloc(S)

Notes

The user program may run outot memory it regemp is called itera­
tively without treeing thevectQrs no longer required. The rollowing
user·supplied replacementtormaUoe(S) reuses the same vector sav­
ing time and space:

'* user's program *'
malloc(n)
{

}

Ma.rch 24, 1984

sta.tic int rebuf(256]j
return &rebutj

Page 3

REGEXP(S)

UNGETC(c}

RETU RN(pointer)

ERROR(fl41)

Error
11
16
25
36
41
42
43
44
45
46
49
50

REGEXP(S}

Cause the argument e to be returned by the
next call toGETC(} (and PEEKC()). No more
that one eharac~r of pushback is ever needed
and this charac~r is guaran~ed to be the last
charac~r read by GETC(). The value 01 the
macro UNGETC(e) is always ignored.

This macro is used on normal exit of theeom­
pile routine. The value of the argument
pointer is a poin~r to the character a1ter the
last character of the compiled regular expres­
sion. This is useful to programs which have
memory allocation to manage.

This is the abnormal return from the compile
routine. The argument fl41 is an error number
(see table below for meanings). This call
should never return.

Meaning
Range endpoint too large
Bad number
"\digit" out of range
Illegal or missing delimiter
No remembered search string
\(\) imbalance
Too many \(
More than 2 numbers given in \{ \}
} expected after \
First number exceeds second in \{ \}
[] imbalance .
Regular expression overflow

The syntax of theeompile routine is as follows:

compile(instring, expbul, endbuf, eof)

The first parameter inlfring is never used explicitly by the (ompile
routine but is useful ror program that pass down different pointers to
input characters. It is sometimes used in the INIT declaration (see
below). Programs which call functions to input characters or have
characters in an external array can pass down a value or ((char *) O}
ror this parameter.

The next parameter ezpbu/ is a character pointer. It points to the
place where the compiled regular expression will be placed.

The parameter endbu/ is one more that the highest address that the
compiled regular expression may be placed. It the compiled expres­
sion cannot fit in (endbu/- ezpbu/) bytes, a call to ERROR(50) is
made.

March 27, 1984 Page 2

REGEXP(S) REGEXP(S)

rar as possible and will recursively call itself trying to match the rest
or the string to the rest or the regular expression. As long as there
is no match, 4df14ftcewillback up along the string until it finds a
match or reaches the point in the string that initially matched the *
or \{ \}. It is sometimes desirable to stop this backing up before the
initial point in the string is reached. It the external charac~r poin~r
IDC' is equal to the point in the string at sometime during the back­
ing up process, .4duftee will break out of the loop that backs up and
will return zero. This is used be ed(C) and ,edt C) rorsubstitutions
done globally (not just the first occurrence,bllt the whole line) so,
for example, expressions like s/y*//g do not loop forever.

The routine.s tcmp and getrtJftge are simple and are called by the rou­
tines previously mentioned.

Examples

The following is an example of how the regular expression macros
and calls look trom grtp(C):

,define INIT
fdefine GETC()
fdefine PEEKC()
fdefine UNGETC(c)
fdefine RETU RN(c)
fdefine ERROR(c)

,include <regexp.h>

regis~r char *sp == instring;
(*sp+ +)
(*sp)
(- - sp)
return;
regerr()

compile(*argv, expbuf, &expbuf[ESIZE), '\0');

it(s~p(linebur, expbur))
succeed();

Files

/usr/include/regexp.h

See Also

ed(C), grep(C), sed(C).

Notes·

The handling of circ! is kludgy.

The routine tcmp is equiva.lent to the standard I/O routine,trftcmp
and should ~)e replaced by that routine.

March 27, 1984 Pa.gE; 4

SCANF(S)

Name

scanf, fscanf, sscanf - Converts and formats input.

Syntax

finclude <stdio.h>

int scant (format (, pointer) •••
char ·format;

int fscant (stream, format (, pointer] .•.
FlLE ·stream;
char ·tormat;

int sscant (s, format (, pointer] .••
char ·s, ·format;

Descri ption

SCANF(S)

SCGn/ reads from the standard input stream .tda'n. F.can/ reads from
the named input .tream. S.ean/ reads from the ch~racter string •.
Each function reads chara.cters, interprets them according to a for­
mat, and stores the results in its arguments. Ea.ch expects, as argu-

. ments, a. control string format described below, and a set of pot'nter
arguments indicating where the converted input should be stored.

The control string usually contains conversion specifications, which
are used to direct interpretation of input sequences. The control
string may contain:

1. Blanks, tabs, or newlines, which cause input to be read up to the
next nonwhitespace character.

2. An ordinary character (not~, which must match the next char­
acter of the input stream.

3. Conversion specifications, consisting of the character % an
optional assignment suppressing character ., an optional numeri­
cal maximum field width, and a conversion character.

A conversion specification directs the conversion of the next input
field; the result is placed in the variable pointed to by the
corresponding argument, unless assignment suppression was indi­
cated by *. An input field is defined as a string of nonspace charac­
ters; it extends to the next ina.ppropriate character or until the field
width, if specified, is exhausted.

The conversion character indicates the interpretation of the input
field; the corresponding pointer argument must usually be or a res­
tricted type. The following conversion characters are allowed:

Ma.rch 24, 1984 Page 1

SOANF(S) SOANF(S)

latter cale, tAe offentling charader is lett unread in the input stream.
This is very import.ant to remember, because subtle errors can

occur when not taking this into account.

Scan! returns the number ot successtully matched and assigned
. input items; this number can be zero in the event ot an early conflict
between an input character and the control string. It the input ends
before the first conftictor conversion, EOF is returned.

Examples

The call:

inti; float x; char name(50);
scanr ("o/cd~CJ&", cti, ctx, name);

with the input line:

25 54.32E-l thompson

will assign to i the value 25, to z the value 5.432, and name will
contain thompson\O. Or:

int i; float x; char name(50);
scant ("o/c2d~%·dcyq1234567890]",cti,ctx,name);

with input:

56789 0123 56a72

will assign 56 to i, 780.0 to z, skip 0123, and place the string 56\0 in
name. The next call to getehar (see gdc(S)) will return a.

See Also

atot(S), getc(S), printr(S)

Diagnostics

These tunctions return EOF on end ot input and a short count tor
missing or illegal data items.

Notes

The success or literal matches and suppressed assignments is not
directly determinable.

Trailing whirespaee (including a newline) is lett unread unless
mat.:hed in the control string.

Mar.::h ?4, 1984 Page 3

SDEN1'£R(S) SDENl'ER (S)

Retum Value
Successful calls return O. Unsuccessful calls return -1, and errno
is set to indicate the error.

See Also
sdget(S), sdgetv(S)

May 10, 1984 Page 2

SDGET(S) SDGET(S)

Retum Value

On successful completion, the address at .which the segment WI8

attached is returned. Otherwise, -1 is returned, and emaois set to
indicate the error.

Notes

Use or the SD_UNLOCK flag on systems without hardware support
for shared data may ca.use severe performance degradation.

See Also

sdenter(S), sdgetv(S)

March 24, 1984 Page 2

SETBUF(S)

Name·

setbuf ~ Assigns buRering fA:) a stream.

Syntax

'include <stdio.h>

setbut (s tream, but)
FlLE -stream;
char-but;

Description

SETBUF(5)

Setbul is used at~r a stream has been opened but berore it is read or
,writ~n. It causes the charac~rarray bulto be used ins~ad or an
automatically alloca~d buffer. If 6ul is the constant poin~rNULL,
input/output will be comple~ly unbuffered. '

A manirestconsta.ntBUFSIZ~lls how big an array is needed:

char buf[BUFSIZ)i

A buffer is normally obtained from m411ot(5) upon the first gdt(S)
or putt(S) on· the fil~, except that output streams direc~d to ~rmi­
nals, and the standard error stream stderr are normally not buffered.

A common source of error is allocation of buf1'er space as. an
"automatic"variable in a code block, and then railing to close the
stream in the same block.

See Also

fopen(S), getc(5), manoc(S), putc(S)

March 24, 1984 Page 1

SETPGRP(S)

Name

setpgrp - Sets process group ID.

Syntax

intsetpgrp ()

Description

SETPGRP(S)

Setpgrp sets the process group ID of the calling process to the process
ID of the calling process and returns the new process group ID.

Retum Value

Setpgrp returns the value or the new process grouplD.

See Also

exec(S), fork(S) ,getpid(S), intro(S), kiU(S),signal(S)

March 24, 1984 Page 1

SHUTDN(S)

Name

shutdn - Flushes block I/O and halts the CPU.

Syntax

finclude < s)'I/fllsys.h >
shutdn (sblk)
struct fllsys •• blk;

Description

SHU7DN(S)

SAutd" causes all information in core memory that should be on disk
to be written out. This includes modified super-blocks, modified
inodes, and delayed block I/O. The super-blocks or all writable file
systems are flagged 'clean', so that they can be remounted without
cleaning when XENIX is rebooted. SAued" then prints "Normal Sys­
tem Shutdown" on the console and halts the CPU.

If ,hllr is nonzero, it specifies the address of a super-block which will
be written to the root device as the last I/O before the halt. This
facility is provided to allow file system repair programs to supercede
the system's copy of the root super-block with one or th,ir own.

SAutd" locks out all other processes while it is doing ita work. How­
ever, it· is recommended that user processes be killed off (see
Irall(S)) before calling ,Autd" as some types or disk activity could
cause file systems to not be flagged "cle8.l)".

The caller must be the super-user.

See Also

fsck(C), haltsys(C), .shutdown(C), mount(S), kill(S)

March 24, 1984 Pa.ge 1

SIGNAL (S) SIGNAL (S)

1. All of the receiving process' open file descripoors will be closed.

2. If the parent process of the receiving process is executing afDait,
it will be notified of the ~rmination of the receiving process and
the ~rminating signal's number will be made available 00 the
parent process; see 1Dait(S).

3. If the parent process or the receiving process is not executing a
fDait, the receiving process will be transformed inoo a zombie
process (see ezit(S) for definition of zom bie process).

4. The parent process 10 or each or the receiving process' existing
child processes and zombie processes will be set 00 1. This
means the initialization process (see intro(S)) inherits each ot
these processes.

o. An accounting record will be writ~n on the accounting file it the
sys~m's accounting routine is enabled; see aut(S).

6. Ir the receiving process' process 10, tty group 10, and process
group ID are equal, the signal sJ(mup will be sent 00 allot the
processes that have a process group 10 equal 00 the process
group ID or the receiving process.

7. A "core image" will be made in the current working direcoory
or the receiving process ir fig is one ror which an as~risk
appears in the above list antI the tollowing conditions are met:

- The effective user 10 and the real user ID or the receiving
process are equal.

- An ordinary· filenamed core exists and is writable or can be
created. Ie the file must be created, it will have a mode or 0666
modified by the file creation mask (see uma.k(S)) , a file owner
10 that is the sam.e as the effective user ID ot the receiving pro­
cess, a file group ID that is the same as the effective grouplD or
the receiving process

The SIG~IGN value causes the process 00 ignore a signal. The signal
.ig is 00 be ignored. Note that the sign31 SJ(~aLL cannot be
ignored.

A function addre •• value causes 00 process 00 catch a signal. Upon
receipt of the signal .ig, the receiving process is 00 execute the
signal-catching function pointed 00 by Junc. The signal number .ig
will be passed as the only argument 00 the signal-catching runction.
There are the rollowing consequences:

1. Upon return rrom the signal-catching function, the recelvmg
process willresume execution at the point it was interrupted and
the value of func for the caught sign&! will be set 00 SIG_DFL
unless the signal is SIGlLL, SIGmAP, SIGCLD, or SIGPWR.

March 24, lQ84 Page 2

SIGNAL (8) SIGNAL (8)

Notes

SIG_IGN - ignore signal
The signal is to be ignored. Also, it eig is SIGCLD, the
calling process' child processes will not create zombie
processes when they terminate; see ezit(S).

Junction addre" - catch signal
If the signal is SIGPWR, the action to be taken is the
same as that described above tor June equal to Junetion
addrele. The same is true ir the signal is SIGCLD except,
that while the process is executing the signal-catching
runction any received SIGa..D signals will be queued and
the signal-catching function will be continually reentered
until the queue is empty.

The SIGa..D affects two other system calls (wait(S), and ezit(S))
in the following ways:

wait If the June value or SIGCLD is set to SIG_IGN and a wait
is executed, the wait wiJ) block until all or the calling pro­
cess' child processes terminate; it will then retuma value
or -1 with ermo set to ECHILD.

ezit If in the exiting process' parent process the June value or
SIGCLD is set to SIG_IGN, the exiting process will not
create a zombie process.

When processing a pipeline, the shell makes the last process in the
pipeline the parent or the proceeding processes. A process that
may be piped into in this manner (and thus become the parent or
other processes) should take care not to set SIGCLD to be caught.

The defined constant NSIG in signal.h standing ror the number or
signals is always at least one greater than the actual number.

March 24, 19S4 Page 4

SINH (S)

Name

sinh, cosh, tanh - Performs hyperbolic functions.

Syntax

'include < math.h>

double sinh (x)
double x;

double coeh (x)
double X;

double tanh (x)
double Xi

Description

SINH(S)

These functions compute the designated hyperbolic functions for real
arguments.

Diagnostics

Sinl& and eo,1& return a huge value of appropriate lip when the
correct va.lue would overflow.

Ma.rch 24, 1084 Page 1

SSIGNAL (S) SSIGNAL (S)

Name

ssign31, gsignal - Implements software signals.

Syntax

,include <signal.h>

int (*ssignal (sig, action»()
int sig, (·action)();

int gsignal (sig)
int sig;

Description

Slignal and g,ignal implement a software racility similar to Iignal(S}.
This facility is used by the standard C library to enable the user to
indicate the disposition of error conditions, and is also made avail­
able to the user for his own purposes.

Sortware signals made available to users are associated with integers
in the inclusive range 1 through 15. An action ror a sortware signal
is elltablilh,ed by a call to ,lignal, and a sortware signal is rai,ed by a
call to glignal. Raising a sortware signal causes the action esta­
blished ror that signal to be taien.

The first argument to IIignal is a number identifying the type or sig­
nal for which an action is to be established. The second argument
defines the action; it is either the name or a (user defined) action
function or one of the manirest constants SIG_DFL (default) or
SIG_IGN (ignore). S,.,·gnal returns the action previously established
for that signal type; if no action has been established or the signal
number is illegal, "ignal returns SIG_DFL.

GBignal raises the signal identified by its argument, lig:

If an action runction has been established for lig, then that
action is reset to SIG_DFL and the action function is entered
with argument lig. Glignal returns the value returned to it by
the action function.

If the action for lig is SIG_IGN I glignal returns the value 1 and
takes no other action.

If the action for lig is SIG_DFL I glignal returns the value 0 and
takes no other action.

If lig has an illegal value or no action was ever specified ror
lig, glignai returns the value 0 and takes no other action.

March 24, 1984 Page 1

STAT(S) STAT(S)

Name

stat, rstat - Gets file status.

Syntax

,include <sys'types.h>
linclude <sys'stat.h>

int stat (path, bur)
char ·path;
s truct stat *bur;

int rs tat (Hides, bur)
int tildes;
struct stat *bur;

Description

Path points to a pathname naming a file. Read, write or execute
permission of the narned file is not required, but all directories listed
in the pathname leading to the file must be searchable. Stat obtains
inCormation about the named file.

Similarly, fetat obtains inCormation about an open file known by the
file descriptor jilt!.e" obtained from a successful open, creat, t!.up,
fentl, or pipe system call.

Buf is a pointer to a .tat structure into which inCormation is placed
concerning the file.

The contents of the structure pointed to by buf include the following
members:

ushort
ino_t
dev_t

short
ushort
ushort
ofCt
time_t
time_t
time_t

March 24, 1984

st_modej
st_inoj
st_dev;

st_nlink;
st_uid;
st-r;id;
st_size;
st_atimej
st_mtimej
st_ctimej

r File mode; see mknot!.(S) *'
r Inode number *' r ID oC device containing *' r a directory entry ror this file *'
rID of device *' r This entry is defined only Cor *' r special files *' r Number oC links *' r User ID of the file's owner *'
1* Group ID oC the file's group *'
r File size in bytes *' r Time of last access *' r Time oC last data. modification *' r Time of last file status change *' r Times measured in seconds since *'
/* 00:00:00 GMT, Jan. 1, 1970 */

Page 1

!

(

"

Name

stdio - Performs standard buffered input and output.

Syntax

,include <stdio.h>
FJLE*stdin, *stdout, *stderr;

Description

The ndio library contains .an efficient, user-level I/O buffering
scheme. The in-line macros getc(S) and putc(S) handle eharac~rs
quickly, The macros getchar, putchar, and the higher-level routines
/getc, /getl, /pn'nt/, /putc, /puu, fread, /lcan/, /write, getl, getw, print/,
put" putw, and lcan/ all use getc and putc; they can be freely in~r­
mixed,

A file with associated buffering is called a "stream" and is declared
to be a pointer to a defined type FILE. Fopen(S) creates certain
descriptive data for a stream and returns a pointer to designate the
stream in all 'further transactions. Normally, there are three' open
streams with constant pointers declared in the "include" file and
associated witht.he standard open files:

stdin
.stdout
stderr

Standard input file
Standard output file
Standard error file

A constant "pointer" NULL designates the null stream.

An integer constant £OF is returned upon end-of-file or error by
most integer funct.ions that deal with streams (see the individual
descriptions for details).

Any program that uses this package must include the header file of
pertinent macro definitions, as follows: .

iinclude <stdio.h>

Most of the functions and constants mentioned in this section of the
manual are declared in that "include" file an.d ,are described else­
where. The constants and the following "functions" are imple­
mented as macros (redeclaration of these names is perilous): getc,
getchar, putc, putchar, /eo/, /error, and fileno.

March 24, Ig84 Page 1

STIME(S)

Name

stime - Sets the time.

Syntax

#include <sys/types.h>
,include <sys/timeb.h>

time_t stime (tp)
long *tp;

Description

STI.ME(S)

Stime sets the system's idea. or the time and date. Tp points to the
value or time as measured in seconds rrom 00:00:00 GMT January 1,
1970.

Stime will rail ir the effective user ID or the calling process is not
super-user. IEPERMj

Retum Va.lue

Upon successrul completion, a value or 0 is returned. Otherwise, a
value or - 1 is returned and ermo is set to indicate the error.

See Also

time(S)

March 24, 1984 Page 1

STRING (5) STRING (8)

Description

These functions operate. on null-terminated strings. They do not
check for overflow of any receiving string~

Streat appends a copy of string ,e to the end of string ,1. Stme"t
copies at most n characters. Both return a pointer to the null­
terminated result.

Stremp compares its arguments and returns an integer greater than,
equal to, or less than 0, according 18 11 is lexicographically greater
than, equal to, or less than ,e. Str"emp makes the same comparison
but looks at at most n characters.

Stren copies string II to ,1, stopping after the null character has
been moved. Stmen copies exactly" characters, truncating or nu11-
padding ,e; the target may not be null-terminated if the length ot ,e
is n or more. Both return d.

Stnen returns the number oCnonnullcharacters in ,.

Streb (,t,.,eAr) returns a pointer to the first (last) occurrence of
character e in string 't or NULL if e does not occur in the string.
The null character terminating a string is considered to be pa.rt of the
string.

Strpbrk returns a pointer to the first occurrence in string d of any
character from string ,e, or NULL if no character from ,e exists in
11.

St"P" (,tre,pn) returns the length of the initial segment of string 11
which consists en tirely of cha.ra.cters from (not from). string .e.

Strtok considers the string 11 to consist of a. sequence or zero or
more text tokens separated by spans of one or more characters from
the separator string ,e. The first call (with pointer d specified)
returns a pointer to the first character of the first token, and will
have written a NULL character into 11 immediately following the
returned token. Subsequent calls with zero for the first argument,
will work through the string 11 in this way until no tokens remain.
The separator string ,e may be different from call to call. When no
token remains in 11, a NULL is returned.

Strtlup returns a pointer to a duplicate copy of the string pointed to
by,. The duplicate string is automatically allocated storage using a
malloc(S) system call. This call allocates the exact number of bytes
needed to store the string and its terminating ~ull character.

March 24, 1984 Page 2

SWAB(S)

Name

swa.b - Swaps byus.

Syntax

swab (trom, to, nbytea)
char -"rom, -to;
int nbyta;

Description

SlVAB(S)

StDtJb eopies ft6rte. poinud tQ by frDm tQ the position pointed tQ by
tD, exehanging adjacent even a.nd odd byus. It is useful for tran­
sporting binary data between maehines that differ in the ordering of
bytes. Nbvte. should be even.

Ma.rch 24, 1984 Pa.ge 1

SYSTEM (S)

Name

system - Executes a shell command.

Syntax

linc:lude <stdio.h>

int system (string)
char -string;

Description

SYSTEM(S)

System passes the string to a new invocation or a shell (see ,h(C)).
The shell rea.ds and executes the ftn'ng as ir it had been typed as a
command at a terminal, then returns the exit status or the command
to the ca.lling process. The calling process waits until the shell has
returned a status berore proceeding with execution.

See Also

sh(C), exec{ S)

Diagnostics

System stops ir it can't execute sh(C).

Ma.rch 24, 1984 Page 1

/

~.

TERMCAP(S) TERMCAP(S)

write the rile /etc/termcap.

Tgetnum gets the numeric value of capability id, returning - 1 if is
not given for the terminal. Tgetflag returns 1 if the specified capabil­
ity is present in the terminal's entry, 0 if it is not. Tgetltr gets. the
string value of capability id, placing it in the buffer at czrecz, advanc­
ing the area pointer. It decodes the abbreviations for this field
described in termcap(M) , except for cursor addressing and padding
information.

Tgoto returns a cursor addressing string decoded from em to go to
column deetcol in line deetline. It uses the external variables UP (trom
the up capability) and BC (iC be is given rather than bs) if necessary
to avoid placing \n, CNTRL-D or NULL in the returned string. (Pro­
grams which call tgoto should be sure to turn oCC the TAB3 bit (see
tty (M)), since tgoto may now output a tab. Note that programs
using term cap should in general turn off TAB3 anyway since some
terminals use CNTRL-I for other functions, such as nondestructive
space.) Ir a %sequence is given which is not understood, then tgoto
returns "OOPS".

Tpute decodes the leading padding inCormation of the string CPt" aflcnt
gives the number oC lines aCfected by the operation, or 1 if this is
not applicable, outc is a routine which is called with each character in
turn. The external variable oepeed should contain the output speed
of the terminal as encoded by etty(C). The external variable PC
should contain a pad character to be used (from the pc capability) if
a NU LL is inappropriate.

Files

/usr/lib/libtermcap.a - ltermcap library
/etc/termcap data base

See Also

curses(S), termcap(M), tty(M)

Credit

This utility was developed at the University oC California at Berkeley
and is used wit.h permission.

Notes

These routines can be linked by using the linker option - ltermcap.

March 24, 1984 Page 2

TIAIE (S) TIME(S)

The strl1ctur~ contains the time since the epoch in seconds, up U)

1000 milliseconds or lIlore-pr,cise interval, the local time Jone
(measured in minutes or time westward trom Greenwich}, d atlas
that, .if nonzero, indica~s that Daylight Saving time applies locally
during the .appropriate part of the year.

See Also

date(C),stime(S), ctime(S)

March 24, 1984 Page 2

TMPFILE(S) TMPFILE(S)

Name

tmpfile - Creates a temporary rile.

Syntax

,include <stdio.h>

HLE *tmpCile ()

Description

Tmp/ile creates a temporary rile a.nd returns a. corresponding FILE
pointer. Arrangements are made so that the rile will automatically
be deleted when the process using it terminates. The rile is opened
ror update.

See Also

creat(S), unlink(S), ropen(S), mktemp(S), tmpnam(S)

March 24, 1984 Page 1

TRIG (S) TRIG(S)

Name

sin, cos, tan, asin, acos, atan, atan2 - Performs trigonometric func­
tions.

Syntax

,include <math.h>

double sin (x)
double x;

double cos (x)
double x;

double asin (x)
double x;

double acos (x)
double x;

double atan (x)
double x;

double atan2 (y, x)
double x, y;

Description

Sin, eo, and tan return trigonometric functions of radian arguments.
The magnitude of the argument should be checked by the caller to
make sure the result is meaningful.

A,in returns the arc sin in the range - 1T' /2 00 7r /2.

Aeo, returns the arc cosine in the range 0 00 1T'.

Atan returns the arc tangent of zin the range - 1T' /2 to 7r /2.

Atan.t? returns the arc tangent of 11/ z in the range - 1T' 00 1T'.

Diagnostics

Arguments of ma.gnitude grea.ter than 1 cause a,in and Cleo, 00
return value o.

Notes

These routines can be linked with the linker option - 1m.

March 24, lQS4 Page 1

ULIMIT(S)

Name

ulimit - Gets a.nd sets user limits.

Syntax

long ulimit (cmd, newlimit)
int cmd;
long newlimit;

Description

ULIMIT(S)

This function provides for control over process limits. The emtl
v&lues a.vaila.ble are:

1 Gets the process' file size limit. -The limit is in units or disk
blocks and is inherited by child processes. Files of any size can
be read.

2 Sets the process' file size limit to the value ofn.twlimit. Any
process may decrease this limit, but only a. process with an
effective user lDof super-user may increase the limit. Ulitnit
will fail and the limit will be unchanged if a. process with an
effective user ID other than super-user a.ttempts to increase its
file size limit. I EPERMj

3 • Gets the muimum possible bre&k va.lue. See ,6,*(S).

Return Value

Upon successful completion, a nonnegative value is returned. Oth­
erwise, a value of - 1 is returned and trmo is set to indicate the
error.

See Also

shrk(S), chsize(S), write(S)

Notes

The file limit is only enforced on writes to regular files. Tapes, disks,
and other devices of any size can he written.

Ma.rch 27, 1984 Page 1

UMOUNT(S) UMOUNT(S)

Name

uJ:Ilount - Unmounts a file system.

Syntax

int umount (spec)
char ·spec;

Description

Umount requests that a previously mounted file system contained on
the block special device identified by ,pec be unmounted. Spec is a
pointer to a pathname. Arter unmounting the file system, the direc­
tory upon which the file system was mounted reverts to its ordinary
interpretation.

Umount may be invoked only by the super-user.

Umount will rail if one or mQre of the rollowing are true:

The process' effective user ID is not super-user. I EPERMI

Spec does not exist. [ENXIOI

Spec is not a block special device. IENOTBLKj

Spec is not mounted. [EINVAL]

A file on 'pec is busy. [EBUSYI

Spec points outside the process' allocated address space.
[EFAULTI

Return Value

Upon successrul completion a value or 0 is returned. Otherwise, a
value of - 1 is returned and errno is set to indicate the error.

See Also

mount(C), mount(S)

March 24, lQ84 Page 1

UNAME(S)

See Also

uname(C)

Notes

Not all fields may be set on a. pa.rticular system.

March 24, lQS4

UNAME(S)

Page 2

UNLINK (S) UNLINK(S)

Name

unlink - Removes directory entry.

Syntax

int unlink (path)
char ·path;

Description

Unlink removes the directory entry named by the pathname pointed
to by path.

The named file is unlinked unless one or more of the following are
true:

A component of the pa.th prefix is not a directory. [ENOTDIR]

The named file does not exist. [ENOENT]

Search permission is denied for a component of the path prefix.
[EACCES]

Write permission is denied on the directory containing the link
to be removed. [EACCES]

The named file is a directory and the effective user ID of the
process is not super-user. [EACCES)

The entry to be unlinked is the mount point for a mounted file
system. !EBUSY]

The entry to be unlinked is "." or " .. " in the root directory of a
mounted filesystem. [EBUSY]

The entry to be unlinked is the last link to a pure procedure
(shared text) file that is being executed. [ETXTBSY)

The directory entry to be unlinked is part of a read-only file sys­
tem. iEROFS)

Path points outside the process' allocated address space.
[EFAULT)

When all links to a file have been removed and no process has the
file open, the space occupied by the file is freed and the file ceases to
exist. If one or more processes have the file open when the last link
is removed, the removal is postponed until all references to the file
have been closed.

March 24, 1984 Page 1

USTAT(S) USTAT(S)

Name

usta.t - Gets file system sta.tistics.

Syntax

linclude <sys/types.h>
,include <ustat.h>

int ustat (dev, bur)
int dev;
struct ustat -but;

Description

UBtat returns information about a mounted file system. DefJ is a
device num ber identifying a device containing a mounted file system.
Bul is a poin ter to a uBtat structure that includes the following ele­
ments:

daddr_t Ctfreej
ino_t Ctinode;
char Crnamel6];
char Cfpackl6];

1* Total free blocks */
1* Number of free inodes */
1* Filsys name * /
/* Filsys pack name */

UBtat will fail if one or more of the following are true:

Det} is not the device number or a device containing a mounted
file system. !EINVAL!

Bul points outside the process' allocated address space.
IEFAULT]

Return Value

Upon successful completion, a value or 0 is returned. Otherwise, a
value of - 1 is returned and ermo is set to indicate the error.

See Also

stat(S), filesystem (F)

Notes

When using file systems from previous versions of XENIX, IBck(C)
must be run on the file system before mounting. Otherwise the uBtat
system call will not work correctly. This only needs to be done once.

March 24, 1984 Page 1

UTIME(S) UTIME(S)

Tames is not NULL and points outside the process' allocated
address space. IEFAULT!

Path points outside the process' allocated address space.
IEFAULT!

Return Value

Upon successful completion, a value or 0 is returned. Otherwise, a
value of - 1 is returned and ermo is set k> indicate the error.

See Also

stat(S)

March 24, lQS4 Page 2

WAIT(S) WAIT(S)

Wait will fail and return immediately if one or more of the rollowing
are true:

The calling process has no existing unwaited-for child processes.
!ECHILD]

StaCloc points to an illegal address. !EFAULT]

Return Value

If wait returns due to the receipt or a signa.l, a value or - 1 is
returned to the calling process and ermo is set to EINTR. If wait
returns due to a stopped or terminated child process, the process ID
of the child is returned to the calling process. Otherwise, a value of
- 1 is returned and ermo is set to indica.te the error.

See Also

exec(S), exit(S), rork(S), pause(S), signal(S)

Warning

See Warning in ,ignal(S).

March 24, 1984 Page 2

WRITE(S)

Name

write - Writes to a file.

Syntax

int write (fildes, bur, nbyte)
int tildes;
char ·bur;
unsigned nbyte;

Description

WRITE(S)

FJriel is a file descriptor obtained from a creat, open, dup, lend, or
pipe system call.

Write attempts to write nbyte bytes from the buffer pointed to by bu/
to the file associated with the jildel.

On devices capable of seeking, the actual writing of data proceeds
from the position in the file indicated by the file pointer. Upon
return from write, the file pointer is incremented by the number of
bytes actually written.

On devices incapable of seeking, writing always takes place starting
at the current position. The value of a file pointer associated with
such a device is undefined.

If the O-.APPEND flag of the file status flags is set, the file pointer
will be set to the end of the file prior to each write.

Write will fail and the file pointer will remain unchanged if one or
more of the following are true:

FJdel is not a valid file descriptor open ror writing. IEBADFj

An attempt is made to write to a pipe that is not open ror read­
ing by any process. IEPIPE and SIGPIPE signal]

An attempt was made to write a file that exceeds the process'
file size limit or the maximum file size. Se.e ulimit(S). !EFBIGj

Bu/ points outside the process' allocated address space.
!EFAULT!

Ir a wn'te requests that more bytes be written than there is room for
(e.g., the ulimit (see ulimit(S)) or the physical end of a medium),
only as many bytes as there is room for will be written. For exam­
ple, suppose there is spa.ce for 20 bytes more in a file before reach­
ing a limit. A write of 512 bytes will return 20. The next write of a
nonzero number of bytes will give a failure return (except as noted

March 24, 1984

XL 1ST (S)

Name

xlist, fxlist - Gets name list entries from files.

Syntax

,include <a.out.b>
x list(filename, xl)
char *filename;
struct xlist xl[];

,include <a.out.h>
#inelude <stdio.h>
rxlist(rp, xl)
FlLE .rp;
struct xlist xl[];

Description

XLIST(S)

Fzlilt performs the same function as zliff, except that /zliltaccepts a
pointer to a previously opened file intead or a. filename.

Xlilt examines the name list in the given executable output file and
selectively extracts a list of values. The· name list structure zl con­
sistsof an array of· zlwt structures containing names, types, values,
and segment values (ifapplicable)~ 'The list is terminated by either a
pointer to a null name or a null pointer .. Each name is looked up in
the name list or the file. It the name is found, the type and value of
the name are inserted inro the next two fields. The segment value (if
it exists) is inserted in the third field. It the name is not found,
both entries are set ro zero. See CI.out(F) for a discussion of the xlist
structure.

X.out and a.out formats are undersrood, as well as 8086 relocatable
and x.out segmented formats.

It the symbol table is in a.out format, and if the symbol name given
ro zlilt is longer than eight characters, only the first eight characters
are used for comparison. In all other cases, the name given ro :elilt
must be the same length as a name list entry in order ro match.

It two or more symbols happen ro match the name given to zliff,
then the type and value used will be those ot the last symbol found.

See Also

a.out(F)

March 24, 1984 Page 1

A.OUT(F) A.OUT(F) ,

Name

Lout - Format or assembler and link editor output.

Description

A.out is the output tile,ot the ,assembler ., and the link editor Itl.
Both programs will makea.oUt executable it there were no, errors in
assembling or linking, and no unresolved extemal references.

The tormat or a.out, called the x.out or segmented x.out format, is
derined by the tiles ,".rlftelutle/a.out.l and ,",rlaelutle/,p/reI'1JfR.1.
The a.out file h-aS the tollowing general layout:

1. Header.

2. Extended header.

3. File segment table (for segmented tormats).

4. Segments (Text, Data, Symbol, and Relocation) ..

In the segmented format, there may be several text and data seg­
ments, depending on the memory model ot the program. Segments
within the file begin on boundaries which are multiplies ot 512 b~8
as defined by the file'spagesize.

See Also

as(CP), Id(CP), nm(CP), strip(CP).

March 24, 1984 Page 1

AR (F) AR (F)

Name

ar - Archive file format.

Description

The archive command .4r is used to combine several files into one.
Archives are used mainly as libraries to be searched by the link edi­
tor ld(0).

A file produced by .r has a magic number at the start, followed by
the. constituent files, each preceded by a file beader. The magic
num ber is 0171545 octal (or Oxft65 bexadecimal). The beader or
each file is declared in /usr/includt!/ar.h.

Each file. begins on a word boundary; a null byte is inserted between
files if necessary. Nevertheless tbe size given reflects the actual size
of the file exclusive of padding.

Notice there is no provision for empty areas in an archive file.

See Also

ar(OP), Id(OP)

March 24, 1984 Page 1

CORE (F) OORE(F)

Name

core - Format of core image file.

Description

XENIX writes out a core image ofa terminated process when any of
various errors occur. See ,ignal(S) for the list or reasons; the most
common are memory violations, illegal instructions, bus errors, and
user-generated quit signa.ls. The core image is called core and is
written in the process' working directory (provided it can be; normal
access controls apply). A process with an effective user ID different
from the real user 10 will not produce a core image. .

The first section of the core image is a copy of the system's per-user
data for the process, including the registers as they were at the time
of the fault. The size of this section depends on the parameter ""ze,
which is defined in /usr/include/sys/param.h. The remainder
represents the actual contents of the user's core area when the core
image was written. If the text segment is read-only and shared, or
separated from data. space, it is not dumped.

The format of the information in the first section is described by the
",er structure of the system, defined in /usr/include/sys/user.h.
The locations of registers, are outlined in /usr/include/sys/reg.h.

See Also

adb(CP), setuid(S), signal(S)

March 24, 1984 Page 1

DIR (F) DJR (F)

Name

dir - Forma.t of a directory.

Syntax

finclude <sys/dir.h>

Description

A directory behaves exactly like an ordinary HIe, except that no user
may write into a directory. The fact that a HIe is a directory is indi­
cated by a bit in the flag word of its inode entry (see file"ltem(F».
The structure of a directory is given in the include file
/usr/indude/sys/dir.h.

By. convention, the Hrst two entries in· each directory are"dot" (.)
and "dotdot" (_.). The first is an entry for the directory itself. The
second is for the parent directory. The meaning of dotdot is
modified for the root directory of the master file system; there is no
parent, so dotdot has the same meaning as dot.

See Also

Hlesystem(F)

Ma.rch 24, 1984 Pa.ge t

DU.\{P (F) DUMP(F)

The fields or tbeheader structure are as follows: .

c_type The type or the header.

c_date The date the dump was taken.

c_ddate The date the file system was dumped from.

c_volume The current volume number or the dump.

c_tapea The current block number or this record. This is
counting 512 byte blocks.

c_inumber The number or the inode being dumped if this is of
type TS_INOD E.

c_magic This contains the value MAGIC above, truncated as
needed.

c_checksum This contains whatever value is needed to make the
block sum to CHECKSUM.

This is a copy or the inode as it appears on the file
system.

This is the count of characters rollowing that describe
the file. A character is zero it the block associated
with that character was not present on the file system,
otherwise the character is nonzero. If the block was
not present on the file system no block was dumped
and it is replaced as a hole in the file. If there is not
sufficient space in this block to describe all or the
blocks in a file, TS..J\DDR blocks will be scattered
through the file, each one picking up where the last
lert off.

This is the array of characters that is used as described
above.

Each volume except the last ends with a tapemark (read as an end of
file). The last volume ends with a TS_END block and then the tape­
mark.

The structure idates describes an entry of the file where dump his­
tory is kept.

See Also

dump(C), restor(C), filesystem(F)

March 24, 1984 Page 2

FILESYSTEM (F) FILESYSTEM (F)

try again. To rree an inode, provided '_ftiftode is less than 100, place
its number inw ,_iftodel'_ftiftode] and increment ,_ftiftode. It
,_ftiftode is already 100, do not bother to enter the rreed inode into
any table. This list or inodes only speeds up the allocation process.
The inrormation about whether the inode is really tree is maintained
in the inode itselt.

S_tinode is the wtal rree inodes available in the file system.

S..ftockand ,_ilotk are flags ma.intained in the core copy ot the file
system while it is mounted and their values on disk are immaterial.
The value or 'Jmod on disk is also immaterial, and is used as a flag
w indicate that the super-block has changed and should be copied to
the disk during the next periodic update ot file system intormation.

S_ronl, is a read-only flag to indicate write-protection.

S_tif'M is the last time the super-block ot the file system was
changed, and is a double-precision representation or the number ot
seconds that have elapsed since 00:00 Jan. 1, 1970 (GMT). During a
reboot, the ,_time ot the super-block tor the root file system is used
to set the system's idea ot the time.

I-numbers begin at 1, and the swrage tor inodes begins in block 2.
Also, inodes are 64 bytes long, so 8 or them fit inw a block. There­
rore, inode i is located in block (i+ 15)/8, and begins
64>«(i+ 15) (mod 8)) bytes (rom its start. Inode 1 is reserved tor
future use. Inode 2 is reserved tor the root direcwryor the file sys­
tem, but no other i-number has a built-in meaning. Each inode
represents one file. For the rormat or an inode and its flags, see
iftode(F).

Files

/usr/include/sys/filsys.h

/usr/include/syslstat.h

See Also

rsck(C), mkfs(C), inode(F)

March 24, 1984 Page 2

MASTER (F) MASTER (F)

Name

master - master device information table

Description

This file is used by the conjig(CP) program to obtain device informa­
tion that enables it to generate the configuration files. The file eon­
sists of 4 parts, each separated by a line with a dollar sign (I) in
column 1. Part 1 contains device information; part 2 contains the
line discipline table; part 3 contains names or devices that have
aliasesj part 4 contains tunable parameter inrormation. Any line
with an asterisk (*) in column 1 is treated as a comment.

Part 1 contains lines consisting or 14 fields wit·h the fields delimited
by tabs and/or blanks:

Field 1:
Field 2:
Field 3:

Field 4:

Field 5:
Field 6:
Field 7:
Field 8:
Field 9:

device name (8 chars. maximum).
interrupt vector size (decimal, in bytes).
device mask (octal)- each "on" bit indicates that
the driver has the corresponding handler or struc-
ture:

000400 tty structure
000200 stop handler
000100 not use.d
000040 not used
000020 open handler
000010 close handler
000004 read handler
000002 write handler
000001 ioctl handler.

device type indicator (octal):
000200 allow only one of these devices
000100 not used
000040 not used
000020 required device
000010 block device
000004 character device
000002 not used
000001 not used.

handler prefix (4 chars. maximum).
not used.
major device number for block-type device.
major device number for character-type device.
maximum number or devices per controller
(decimal) .

Field 10: not used.
Fields 11-14: maximum of four interrupt vector addresses.

March 24, 1984

Each address is followed by a unique letter or a
blank.

Page 1

MNTTAB(F)

Name

mnttab - Format or mounted file system table.

Syntax

,include <stdio.h>
,include <mnttab.h>

Description

MNTTAB(F)

The /etc/mnttab file contains a table of devices mounted by the
mount(C) command.

Each table entry contains the pathname of the directory on which
the device is mounted, the name of the device special file, the
read/write permissions of the special file, and the date on which the
device was mounted.

The maximum number of entries in mnttczb is based on the system
parameter NMOUNT located in /usr/sys/cont/c.c, which defines the
number of allowable mounted special files.

See Also

mount{C)

Ma.rch 24, 1084 Page 1

I
\

SCOSFILE(F) SOOSFILE (F)

The first line (@ s) contains the number of lines
inser~d/deleted/unchanged respectively. The second. line (0 d)
contains the type or the delta (currently, normal: 0, and removed:
R),the sees ID of the delta, the dau and time of creation of the
delta, the login name corresponding to the real user 10 at the time
the delta was crea~d, and the serial numbers of the delta and its
predecessor, respectively.

The @ i, 0 X, and·@ g lines contain the serial numbers or deltas
included, excluded, and ignored, respectively. These lines are
optional.

The @ m lines (optional) each contain one MR num ber associa~d
with the delt3.; the @ c lines contain comments associated with the
delta.

The @ e line ends the delta table entry.

The list or login names and/or numerical group IDs or users who
may add deltas to the file, separaud by new-lines. The lines contain­
ing these login names and/or numerical group IDs are surrounded by
the bracketing lines @ u and Q U. An empty list allows anyone to
make a delta.

Keywords used inumally (see admira(CP) for more inrormation on
their use). Each flag line takes the torm:

@ r <flag> <optional uxt>

The following flags are defined:

@ft
@fv
@li
@fb
arm
@f f
@r c
@rd
ern
@r j
@rI
@fq

<type of program >
<program name>

<module name>
<floor>
<ceiling>
< de fau It--sid >

<lock-releases>
<user defined>

The t flag defines the replacement for the identification keyword.
The v flag controls prompting for MR numbers in addition to com­
ments; ir the optional text is present it defines an MR number

March 24, 1984 Page 2

TYPES (F) TYPES (F)

Name

type... Primitive Iy.~m data type ••

Syntax

'include <sya/types.h>

Description

. The data typea de&ned in the include ftle <s)'S/types.h> are uaed
in XENIX ays~m code; aomedata of these types are acceliible to
user code.

The form 4.44,_, is used tor disk addresa" except in an mode on
disk, see· Jile,,,ttm(F). 'nmes are encoded m seconde since 00:00:00
GMT, January 1, IG70. The major and minor parta ot a device code
specify kind and unit number of a device and are installation­
dependent. Oft'seta are meuured in by~a from the beginning of a
ftle. The label_' variables are used to save the processor sta~ while
another process is running.

See Allo

filesy.~m(F)

March 24, 1984 Page 1

X.OUT(F) X.OUT(F)

is not loaded.

The layout of a symbol table emy, and the principal flag values
that distingWsh symbol types, are· given in the include file. If a
symbol's type is undefined external, and the value field is non­
zero, the symbol is interpreted by the loader, lei, as the name of a
common region whose size is indicated by the value of the symbol.
The value of a word in the text or data portions. which is not a
reference to an undefined external symbol, is exactly the value that
will appear in core when the file is executed. If a word in the text
or data portion involves a reference to an u~efined external sym­
bol, as indicated by the relocation information for that word, then
the value of the word as stored in the file is an offset from the
associated external symbol.

When the file is processed by. the loader and the external symbol
becomes defined. the value of the symbol will be added do the
word in the file. H relocation information is present, it amounts to
one word. per word of program text or initialized data.

FOes
lusr/includela.out.h

Notes
See also as(CP), Id(CP), am(CP), lusr/includeJa.out.h.

May 10, 1984 Page 2

