
Lisa Pascal 2 .0 Systems Software

windollRecord • RECORD

REPEAT
SystemTask;
TEldle(hTE);
temp := GetNextEvent(everyEvent, myEvent) ;
CASE myEvent .what OF

mouseOown :
EEGIN

port: arafPOrt;
windcMlind : INTEGER;
visiDle: DOOI.fNI;
nili tell: DOOL.fNI;
~lag: DOOL.fNI;
Spare/'lag: IIOOL.fNI;
s tr1JCAgl : fI91WIdle ;
con\:lql: ~le;
updatlRg't: fI91WIdle ;
windowDefProc: HIndle;
datft1Clle :

code :- FindWindow (myEvent . wher~whicHWindow) ;
CASE code OF

029-0414-A

Operating System
Reference Manual

for the Lisa 1M

Licensing Requirements for SOftware Developers
Apple has a low-cost licensing program, which permits developers of software
for the Lisa to incorporate Apple-developed libraries and object code files
into their products. Both in-house and external distribution require a license.
Before distributing any products that incorporate Apple software, please
contact Software Licensing at the address below for both licensing and
technical information.

@1983 by Apple Computer .. Inc.
20525 Mariani Avenue
Cupertino .. California 95014
(408) 996-1010

Apple, Lisa, and the Apple logo are trademarks of Apple Computer .. Inc.

Simultaneously pUblished in the USA and Canada.

OJs1Dner Satisfaction

If you discover physical defects in the manuals distributed with a Lisa
product or in the media on which a software product is distributed" Apple
will replace the documentation or media at no charge to you during the
90-day period after you purchased the product.

ProttJctRevisions

Unless you have purchased the product update service available through
your authorized Lisa dealer" Apple cannot guarantee that you will receive
notice of a revision to the software described in this manual" even if you
have returned a registration card received with the product. You should
check periodically with your authorized Lisa dealer.

limitatioo 00 Warranties and liability

All implied warranties concerning this manual and media, including implied
warranties of merchantability and fitness for a particular purpose, are
limited in duration to ninety (90) days from the date of original retail
purchase of this producL

Even though Apple has tested the software described in this manual and
reviewed its contents, neither Apple nor its software suppliers make any
warranty or representation, either express or implied, with respect to this
manual or to the software described in this manual, their quality,
performance, merchantability, or fitness for any particular purpose. As a
result, this software and manual are sold "as is," and you the purchaser are
assuming the entire risk as to their quality and performance.

In no event will Apple or its software suppliers be liable for direct,
indirect, speCial, incidental, or consequential damages resulting from any
defect in the software or manual, even if they have been advised of the
possibility of such damages. In particular, they shall have no liability for
any programs or data stored in or used with Apple products, including the
costs of recovering or reproducing these programs or data

The warranty and remedies set forth above are exclusive and in lieu of all
others, oral or written, express or implied. No Apple dealer, agent or
employee is authorized to make any modification, extension or addition to
this warranty.

Some states do not allow the exclusion or limitation of implied warranties
or liability for incidental or consequential damages, so the above limitation
or exclusion may not apply to you. This warranty gives you specific legal
rights, and you may also have other rights that vary from state to state.

iii

Ucense and eopyd{l'lt

This manual and the software (computer programs) described in it are
copyrIghted by Apple or by Apple's software suppliers" with all rIghts
reserved" and they are covered by the Lisa Software License Agreement
signed by each Lisa owner. Under the copyright laws and tne License
Agreement .. this manual or the programs may not be copied ... in whole or in
part" without the written consent of Apple" except in the normal use of
the software or to make a baCkUp copy. This exception does not allow
copies to be made for others, whether or not sold" but all of the material
purchased (with all baCkUp copies) may be sold .. given .. or loaned to other
persons if tney agree to be bound by the provisions Of the License
Agreement. Copying includes tranSlating into another language or format.
You may use the software on any computer owned by you .. but extra copies
cannot be made for this purpose. For some prOducts, a multiuse license
may be purChased to allow the software to be used on more than one
computer owned by the purChaser ... including a shared-disk system.
(Contact your authorized Lisa dealer for more information on multiuse
licenses.)

Product Revisions

Unless you have purChased the prOduct update service avallable through
your authorized Usa dealer, Apple cannot guarantee that you will receive
notice of a revisIon to the software described In thIs manual, even if you
have returned a registration card received wIth the prOduct You should
check periOdically with your authorIzed Lisa dealer.

tv

0415-A

Chapter 1
Irtt.romJctlm

Contents

1.1 The Main Functions.. 1-1
1.2 Using the OS FlIlCtions.. 1-1
1.3 The File System .. 1-2'
1.4 Process Management .•.•.•...•........•.........•......••..................••..........•..• 1-3
1.5 Memory Management .. 1-4
1.6 Exceptions and Events ...•.... .•..... .•.•. ..••. .•...•..•..........• 1-5
1.7 Interprocess cornrnunlcatlon... 1-5
1.8 USing the OS Interface •.••••••••.•.•.•••••.•••••.•••.•••••.•••••.••.•••••.........•.•••..• 1-6
1.9 Running Programs Ut'lder the OS ... 1-6
1.10 WlitiflQ Programs That Use ttle OS ... 1-6

Olapter 2
TIle File System

2.1 File Names... 2-1
2.2 The Working DIrectory •.•••••.•.••..••••••.••.••••••••••.•••••••.•.•.•..•.....•.•...•••.•• 2-2
2.3 DeVices.. 2-3
2.4 Storage ()evices.. 2-3
2.5 The VOlllTle catalog.. 2-4
2.6 Labels... •.•...•.•.......•.......•...• 2-4
2.7 Logical and Physical End of FUe .. 2-4
2.8 File Access .. 2-5
~.9 Pipes•.•.•.•.......••...........•....•••..•........•......••.•.•.•......•••....•.•.... 2-6
2 .. 10 File system calls••...••..••.•.....•....••...•••......•.•..•........•...•.............. 2-7

Chapter 3
Processes

3.1 Process Structure..... 3-2
3.2 Process Hierarchy •.....•.....•.•.........••..••.•.•.•.•...•••...•.................•..•.•..•. 3-2
3.3 Process Creation..... .. .••. 3-3
3.4 Process control .. 3-3
3.5 Process SCheduliflQ.. 3-3
3.6 Process Termination ...•••.•.•.••••.•••...•••...••.••.•••...•.•.•...•.......••••.•.•.•••.••• 3-4
3.7 A Process-Handling Example ... 3-5
3.8 Process System calls... 3-7

v

cpelatlng system Reference tvI8nU8J contents

Chapter 4
Memory MCI aageI ra.t

4.1 Data segrents .. 4-1
4.2 The Logical Data segrent I\IUn1ber .. 4-1
4.3 Shared Data segments ... 4-2
4.4 Private oata segrents ...•........................ 4-2
4.5 COde segrents ... 4-2
4.6 swapping ...•........................ 4-2
4.7 I'1ernory Management system Calls ... 4-3

~r5
Exceptions and Events

5.1 Exceptions............................... 5-1
5.2 System-Defined Exceptions .. 5-2
5.3 Exception Handlers ...•...•... 5-2
5.4 Events.... 5-5
5.5 Event Channels... 5-5
5.6 The System Clock .. 5-10
5.7 Exception Management Systet'T\ calls ... 5-10
5.8 Event Management System Calls ... 5-17
5.9 Clock System calls .. 5-27

Olapter6
COOflpatloo

6.1 configuration System calls .. 6-1

AppendIxes

A ~rating System Interface lJnit ... A-I
6 System-Reserved Exception Names ••• 6-1
C System-Reserved Event Types .. C-I
o Error IVIessages .. 0-1
E FS _II'F'O Fields ... E-1

IndeX

vi

Tables

2-1 I:EVICE_aNTRO.. Ft.rlCUons RecJJlred before USing a DeVlce ••••••••••• 2-25
2-2 I:EVICE_a:tffRO-. Q.ItpJt FtIlCtlorl8l ~ •••••••••••••••••••••••••••••••••••• 2-26
2-3 IJccode ~cs •• 2-28
2-4 [)eVIce InfoIl'flaUOfl •• 2-30
2-5 DISk t-tard Error Coc:Jes ••• 2-32

Figures

2-1 DISk t-tard Error COdes ••• 2-29
2-2 The RelaUOOShIp of aM>ACT CDj lRlJ'CA 1E 2-35

3-1 ~ Address Space LayolAt ... 3-2
3-2 ~ Tree ... 3-3

5-1 st.cicI< at E><CeJ)UOfl f-tCrldler IflVOC8UOfl. •••••• •••••• •••••••• •••••••• ••• 5-4

vii

Preface

The contents of Thls Mmud
This manual deSCribeS the qleratlng System service calls that are available to
Pascal and assembler programs. It Is written for experienced Pascal
programmers and dOeS not explain elementary terms and programming
techniques. We assume that you have read the Lisa owner's Guide and
WorkShOp User's Guide for the Lisa and are familiar with your Lisa system.
cnapter 1 is a general introauctlon to the q>eratlng system.
Chapter 2 describes the FUe system and the avaUable File System calls. This
includes a deScription of the interprocess communication facUlty, pipes, and
the qleratlng System calls that allow processes to use pipes.
Chapter 3 describes the calls available to control processes, and also describes
the structure Of processes.
Chapter 4 describes how processes can control their use of available memory.
Chapter 5 describes the use of events and exceptions that control process
synchronization. It also aescrioes the use of the system clock.
Chapter 6 describes the calls you can use to find out aboUt the configuration
of the system.
Appendix A contains the source text of Syscall, the unit that contains the
type, procedUre, and function definitions discussed in this manual.
Appendix B contains a Ust of system-reserved exception names.
Appendix C contains a l1st of system-reserved event names.
Appendix 0 contains a Ust of error messages that can be prodUCed by the
calls documented in this rnan.tal.
Appendix E contains a description of the information you can Obtain from the
~ratlng System aboUt files and devices.

Type and Syntax conventlons

029-0.416-A

Bold-face type Is used in this manual to distinguish programming keywords and
constructs from EngUsh text. For example, FLUSH is the name of a system
call. System call names are capitalized In this manual", althoUgh Pascal does
not distinguish between lower and upper case characters. Italics indicate a
new term Whose explanation follows.

ix

FutuJe Releases
A few features of the Usa Qleratlng System will be changed In future
releases:

• Pipes will not be supported.
• Timed events will not be supported.
• Configuration System calls will be charlge(1

If you want your software to be upward-compatible, please take these changes
Into consideration. More Information Is provided In tne appropriate sections
of the manual.

x

029-0053-A

Chapter 1
Introduction

Ll Ttle ~ F~tIorls •• 1-1

1.2 lJslrlg tt1e ()S FtJ1CtiOl'lS ••••.•• 1-1

1.3 The FUe System ••..••••.•.•.•.•.•••..••.•..•••..•••.•.••••.•••••..••••••••••••.•..•••••••••••• 1-2

L4 Process I'1ar aagerrterlt .. 1-3

1.5 t1ernOry I'1ar aagerrterlt ... 1-4

L6 ExceJ)t1OflS CI1d Ever1ts •• 1-5

1.7 Interprocess ~cat1(Jl .. 1-5

1.8 lJslrlg ttle ()S InterfaCe ••• 1-6

L9

1.10 WIltlr1g PIO\IldilS l1'1C:lt lJ$e ttIe ()S .. 1-6

Introduction

The Q:JeratIng System (OS) provides an environment In Which multiple processes
can coexist, communicate, and share data. It provideS a fUe system for 110
and information storage, handles exceptions (SOftware interrupts), and perfonns
memory management

1.1 The MaIn Fl.IlOtims
thIs Chapter descrIbes the four maIn functional areas of the 00: the FlIe
System, process management, memory management, and event and exception
handllng.
The File System provides input and output. The FUe system accesses devices,
volumes, and files. Each object, whether a printer, disk file" or any other type
of Object, is referenced by a pathname. Every I/O operation is perfOrmed as
an uninterpreted byte stream. Using the File System, all I/O is deVice
independent. The File system also provides device-specific control operations.
A process consists of an executing program and Its associated data. Several
processes can execute concurrently by multipleXing the processor between
them. Tttese processes can be DrOken into segments Which are automatically
swapped Into memory as needed.
Memory management routines handle data segments. A data segment is a file
that can be placedln memory and accessed directly.
Exceptions and events are process-communication constructs provldeO Dy the
os. M event Is a message sent from one process to another, or from a
process to Itself, tnat Is deUvered to the receivIng process onlY when the
process asks for that event.. M exception Is a special type of event that
forces Itself on the receiving process. There Is a set Of system-defined
excepUons (erron)" and programs: can define theIr own. System errors SUCh as
dIvisIon by zero are examples Of System-defined exceptions. You can use the
system calls provided to define any exceptions you want

1.2 USIng the (8 FtIlCtloos
Both bUilt-in language features and explicit OS system calls can access OS
routines to perform desired functions. For example, the Pascal wrlteln
procedUre is a built-in feature of the language. The COde. to execute wdteln
Is supplied In IOSPASLIB, the Pascal run-time support routines library. This
code, which Is added to the program when the program is linked, cans os
File System routines to perform ttle CIeslred output.
You can also call OS routines expllclt1y.. ThIs Is usually dOne wnan me
language does not provide the operation you want. . OS routines allow Pascal
programs, for example, to create new processes, WhIch COUld not otherwise be
dOne, sInce Pascal doeS not have any bUilt-in process-handling functions ..

1-1

t.perat/ng system ReFerence /t1cnJ8J

All calls to me OS are synctlronous .. WhiCh means tney dO not return until the
operation Is complete. Each call returns an error cOde to Indicate If anything
went wrong dUring tne operatlon. My non-zero value indicates an error or
warning. Negative error COdes Indicate warnings. For a list of error codes
and their meaning.. see ~x O.

1.3 TIle FOe System
The File System performs all 110 as unlnterpreted byte streams. These byte
streams can go to files on diSk or to other devices SUCh as a printer or an
alternative console. In aU cases .. the device or file has a File system name.
Except for device-control functions, the File System treats devices and fUes
In the same way.
The FUe System allows snaring of all types of Objects.
The FUe system prOVideS for naming Objects (devices, files, etc.~ A name In
the FUe System Is called a palfnalrJ8 A complete pathname consists of a
directory name and a fUe name. The file name Is meaningfUl only for storage
devices (deVices that store byte streams for later use, SUCh as dlSkS~

Each process has a WOrking directory associated with It. This allows you to
reference Objects with an Incomplete pathname. To access an object In the
working directory, you specIfy its fUe name. To access an Object In a
different directory, you specify Its complete pathname.
Before a device can be accessed, it must be mounted. Devices can be
mounted using the Preferences tool or by using the ~ call. see Chapter
2 for an explanation of this call and other Flle System calls. If the device Is
a storage device, the mount operation makes a volune name avaUable. A
volume name Is a logical name for a disk, and is saved on the disk Itself. The
mount operation logically connects the volume to the system, so that the fUes
on the voltme may be accessed. The volume name can replace a device name
In a pathname used to access an object on the disK. The volume name allows
you to access a file with the same pathname no matter where the drive Is
actually connected.
A device can be accessed If It Is specified In the configuration Ust created by
the Preferences tool, Is physically connected to the Usa, and Is mounted.
There are some operations that can be performed on unmounted devices. Two
examples are C£VICE_CXNTRa.. calls and scavenging. Logically mountlng a
volume on a device makes fUe access to the volume possible. For storage
devices .. a volune Is an actual magnetic medium that can contain recorded
files. For non-storage devices" volumes and fUes are concepts used to
maintain a uniform Interface. Flies on non-storage devices suCh as printers
do not store data bUt act as ports for performing 110 to the devices.

1-2

t:pemt1ng system Reference M8I1tI8J

me baSic operatlons provided by the Flle system are as follows:
mount and unmolI'lt - make a volume accessible/inaccessible
open and close - make an Object accessible/inaccessible
read and write - transfer information to and from an object
deVice control functions - control deVice-specific functions

Some operations apply only to storage deVIces:
allocate and deallocate - specify sIze of an Object
manipulate catalog - control naming of objects and creation and

destruction of objects
manipulate attribUtes - look at or change the Characteristics of

the object
In addition to the data in an Object, the Object itself has certain
characteristics called attribUtes. SUCh as the length and creation cJate of a
fUe. Calls are available to access the attributes of any FUe System object. In
addition to Its system-defined attributes, an object on a storage devIce can
have a JslJeJ. The label is available for programs to store information that
they can Interpret
Non-storage deVices suCh as printers are accessed with a llmited set of
operations. They must be mounted and opened before they can be accessed.
Sequential read and/or write operations are avaUable as appropriate for the
deVice. Device-control functions are available to perform any t1evice­
specific functions needed. The fUe-name portion of the complete pathname
for a non-storage device Is not used by the File System, although you do haVe
to provide one When you open the deVice.
For storage deVIces, the same sequential read and write operations are valld
as for non-storage devices. Storage deVices also must be mounted, and
partICUlar fUes opened, before the fUes can be used. They haVe appropriate
devIce-control functions available.
When writing to a disk fUe, space for the f11e Is allocated as needed. Space
for a fUe dOeS not need to be contiguous, and In some cases this automatic
allocation can result in a fragmented fUe, which may slow fUe access. To
insure rapid access, you can pre-allocate space for the fUe. Pre-allocating
the fUe also ensures that the process will not run out of space on the diSk.
Four types of objects can be stored on storage devIces. These are fUes, pipes,
cJata segments" and event Channels. FUes, already discussed, are sImply arrays
of stored data Pipes are objects that provide Interprocess communIcation.
oata segments are specIal cases of fUes that are loaded Into memory along
with program cOde. Event Channels are pipes with a speciaUzed structure
ImpoSed by the system.

1A Process ~,t
A process Is an executing program and the data associated with It. several
processes can exist at one tIme, and they appear to run simultaneouSly
because the CPU is multiplexed among them. The SchedUler deCIdes what

1-3

qJemtlng SjlStem Reference fvI8nUaJ IntrtJ(;U)tlon

process ShOUld use the CPU at a-ty one time. It uses a generally non­
preemptive scnedUllng algorlttrn. Tnls means that a process will not lose the
CPU tIlless It blOCkS. The blOCked state Is e)(plalned later In thIs section.
A process can lose the CPU When one of the following happenS:

• The process oalls an ~ratlng System prOCedUre or function.
• The process references one of Its code segments tJ1at Is not currenUy In

memory.
If neither of these occur, the process will not lose the CPU.

Every process Is started by another process. The neWly started process Is
called the son process. The process that started it is called its father process.
The resulting structure Is a tree of processes. See Figure 3-2 for an
Illustration of a process tree.
When any process terminates, all Its son processes and their descendcrlts are
also terminated.
When the OS Is booted, it starts a !I1eJI process. The shell process starts any
other processes desired by the user.
Every newly created process haS the same system-Standard attribUtes and
oapabIllt1es. These can be cnanged by using system calls.
My processes can suspend, activate, or t<lll any other process for Whim the
glObal ID is known, as long as the other process dOes not protect itself.
The memory accesses of an executing process are restricted to its own
memory address space. Processes can cornmtrl1cate with other processes by
using Shared flIes, pipes, event Channels, or Shared data segments.
A process can be In one of three states: reaoy, running, or blOCked. A .ready
process Is waiting for the SCneauIer to select It to nn. A.IlH1lng p.mcess Is
currenuy using the CPU to execute Its code. A blOCked p.rocess Is waiting for
some event, SUCh as the completion of an 110 operation. It wlll not be
SChedUled until the event occurs, at WhICh point It beCOmes ready. A
t.e.nnl1181et1 process has finiShed executing.
Each process has a priority from 1 to 255. The higher the number, the hi~r
the priority of the process. Priorities 226 to 255 are reserved for system
processes. The SChedUler always IU'lS the ready process with the highest
priorIty. A process can Ct'lange Its own prIority, or Ule prIority of any other
process, WhUe It Is executing.

1.5 Memory MallagelrB It
Memory managment Is concerned with what Is in physical memory at any one
time. Each process can use up to 128 memory segments. Each segment can
contain up to 128 KbyteS. Memory segments are of two types: cOde segments
and data segnents. The total amot.I1t of memory used by any one process can
exceed the avallable RAM of the Usa. The qleratlng System wll1 swap COde
segments In and out of memory as they are needed. To ald the qJeratlng

1-4

q:JeratJng system Reference M8ntJ8J Introa/CtJon

system In swapping data segments, calls are provided to give progrcms tne
ab111ty to define WhIOtl data segments must be In memory Whlle a part1cular
part of tne program Is executing.
You have control of hOW your program Is dIvided up. For executable cOde
segments, you use the segmentation commandS of the Pascal compller to break
the progrcm in pieces.
In addition to reSiding in memory, data segments can be stored permanently
on diSk. They can be accessed with calls similar to FHe system calls. This
allows you to use a data segment as a direct-access f11e--a fHe that Is
accessed as part of your memory space.
calls are provided for making, KUling, opening, and Closing data segments.
You can also Change the size of a data segment and set Its access mode to
read-only or read-write. In addition, you can make a permanent disK copy of
the contents of a data segment at any time. Other calls give you ability to
force the contents of the data segment to be swapped Into main memory so
they can be accessed by your process.

1.6 Exceptlons em Events
M exception is an unexpected condition In the execution of a process (an
Interrupt~ AA event Is a message from another process.
AA exception can be generated either by the system or by an executing
program. System exceptions are generated by various sorts Of errors SUCh as
divide by zero, illegal Instruction, and illegal address. system exception
handlers are supplied that terminate the process. You can write your own
exception handlers for any of these exceptions If you want to try to recover
from the error.
User exceptions can be declared and exception handlers can be written to
process them. Your progrMl oan then signal this new exception.
Events are messages sent from one process to another. They are sent through
event Channels.

A process that expects a message from an event channel executes a call to
walt for an event on that cnannel. 111ls will give It the next message, 1f one
exists, or blocK the process until a message arrives.
If a process wants to Know When an event arrives, bUt does not want to walt
for It, It can use an event-call Channel. This Is set up by aSSOCiating a user
exception with the event Channel When It Is opened. The qJerating system
wlll then Invoke the correspondlng user exception handler wheneVer a message
arrives in the event channel.

1.7 Interprocess COfmUllcaUm
There are four methOds for Interprocess communication: shared fUes, pipes,
event enamels, and shared data segments.

1-5

t:perating system Reference Manual IntroalCtion

Shared flIes are used for high vOlume transfers of Information. It Is necessary
to coordinate the processes somehOW to prevent tnem from overwriting each
otner's Information.
Pipes are used for communlcation between processes with an uninterpretecl
byte stream. (Note that pipes will not be supported In future releases of the
~ratlng system.) The pipe mechanism provides for the needed
synchronization; a process will blOCk If it is trying to read from an empty
pipe or write to a full one. A read from a pipe consumes the Information, so
It is no longer available. O1ly one process can read from a given pipe.
Event channels are slmllar to pIpes, except that event channels transmit snort,
structured messages Instead of unlnterpreted bytes.
A Shared data segment can be used to transmIt a large amount of data
rapIdly. HaVIng a snared data segment means that tnis data segment Is In the
memory address space of all tne processes that want to use It All the
processes can then dIrectly read and write Information in the data segment.
It Is necessary to prOVide some sort of synchronIzation to keep one process
from overwrIting anotner's Information.

1.8 usltlJ the m Interface
rtle Interface to all the system calls Is provIded In the SyscaIl unit, found In
Appendix A ThIs trllt can be used to provide access to the calls. see the
WO.lkSlJOp user~ Gulde for the Lisa for more Information on using Syscall.

1.9 Rtmlng PlOQIMlS U1der the m
progrcms can be written and run by USing the WOrkshOp, Which provides
program development tools SUCh as editing and debUgging facUlties.

1.10 Wl1~ Programs That Use the m
You can wrIte a program that calls OS routines to perform needed functions.
This program uses the Sys08U unIt and then calls the routines needed.

1-6

U7-A

Chapter 2
The File System

2.1 File I'B"nes .. 2-1

2.2 11le WOIklrlQ Directory •••••.•.••.••••••••••••••••••••••••••••••••••••..••••••.••••••••••••• 2-2

23 IJeVlces ••• 2-3

2.4 stol'alQe IJevlces ••• 2-3

2.5 11le VOltl1le catalog •••••••••••••••••••••••••••.•••••••••••••••••••••••.••••••••••••••••••••• 2-4

2.6 Labels .•••.••••••••••••••••••••••••••••.••••• 2-4

2.7 Logical CIld Alyslcal Efl(J Of File .••.•••.•••.•••.••••••.•••••••.••.••••.•••.•.••••••••.• 2-4

2.8 FUe ~ ••••••.•••••••••••.••••.•••••••.•••••••••••••.••••••••••••.••••..••••••••••••.••••••• 2-5

2.9 Pipes .. 2-6

2.10 File system calls .•••••••••••••••••••.••••••••••••••••••••••••••••••••••.••••••••.•••••••••••• 2-7

2.10.1 M,AJ-<E FILE and M,AJ-<E PIPE••..........•........... 2-8
2.10.2 KILL OOJE:CT :-.. 2-10
2.10.3 LN,<iLL FILE ... 2-11
2.10.4 REN.AJVtE" ENTRY ... 2-12
2.10.5 LCIJ'(LP .:: .. 2-13
2.10.6 INF'O .. 2-16
2.10.7 SET FILE II'F'O .. 2-17
2.10.8 CJ>EN ••••• :: .. 2-18
2.10.9 CLOSE CBJECT .. 2-19
2.10.10 RE,AD DATA and WRITE DATA .. 2-20
2.10.11 RE,AD-LABEL and WRITE LABEL .. 2-23
2.10.12 DEVICE: ~TRCl.. : .. 2-24

2.10.12.1 setting DevIce-Control Information 2-24
2.10.12.2 (l)taining Devioe-control Information 2-28

2.10.13 PL.LOCATE ~ ... 2-33
2.10.14 C(JVpf!4CT .. 2-34
2.10.15 TRl.Jf\JCATE .••.••••••••••••••••••••••••••••.••••••••••••••••••••••••.•••••••••••••• 2-35
2.10.16 FLUSH .•..••••.•.••.•••.•.•••••.••••••••••.•••••••••..•••••••••••.••••.••••••••••.•.. 2-36
2.10.17 SET 5.AF'ETY .. 2-37
2.10.18 SET-weRKING DIR and GET weRKING DIR 2-38
2.10.19 REsET_CATAL.:OO and GET3:JEXT_ENTRY 2-39
2.10.20 Ma...Jl'.!T and LJI'.IVt()Jl\IT ... 2-40

The File System

The File System provides device-independent 110, storage with access
protection, and uniform file-namIng conventions.
DevIce Independence means that all I/O Is performed In the same way,
whether the ultimate destination or source Is disk storage, another program, a
prInter, or anythIng else. In all cases, 110 Is performed to or from flIes,
although those flIes can also be devices, data segments, or programs.
Every fUe Is an unlnterpreted stream Of eight-bit bytes.
A fUe that Is stored on a block-structured devIce .. such as a disk .. is listed In
a catalog(also called a dlrectoJ:A and has a name. For eaCh such file the
catalog contains an entry describing the fUels attribUtes, Including the length
of the. fUe, its position on the disk, and the last backup copy date. Arbitrary
application-defined information can be stored in an area called the file label.
Each file has two associated measures of length, the Logical End of File
(LEa=) and the Physical End of File (PElF) The LEtF is a poInter tu the last
byte that has meaningfUl data. The PECF is a count of the number of blocks
allocated to the f11e. The poInter to the next byte to be read or written Is
called the file marker.

Since 110 is device independent, application programs do not have to take
account of the physical characteristics of a device. However, on block­
structured devices, programs can make I/O requests in whole-block increments
10 order to improve program performance.,
All input and output is synchronous in that the I/O re.quested Is performed
before the call returns. The actual 1104 hOwever .. 1s asynChronous .. tn that
processes may block when performing 110. See Section 3.5, Process SchedUling,
for more information on blocking,
To reduce the impact of an error., tne FUe System maintains dlstribUted,
redundant information abOut the files on storage devices. Duplicate copies of
critical information are stored 10 different forms and In different places on
the media. All the files are able to identify and desc.ribe th.emselves., and
there are usually several wa~ to recover lost information. The Scavenger
utility is able to reconstruct damaged catalogs from the information stored
with each fUe.

2.1 FUe Nane$
All the fUes known to the ~{at1ng System at a partIcUlar time are organIzed
into catalogs,. Each disk volume has a catalog that l1sts all the files on the
dISk.

My Object c:atalQgueQ in tne Ftle System can be named by specifying the
volume on Which the file reside.s and the file name. The names are separated

2-1

.\-.

qJerating System Refemnce M8ntJ8J TIle File system

by the CharaCter It_". Because the top catalog In the system has no name, all
complete patmames begin wIth "_".
For example,

-LISA-FORMAT. TEXT

refers to a file named FORMAT. TEXT on a volume named LISA. The fHe
name can contain up to 32 characters. If a longer name Is specified, the
name Is truncated to 32 CharaCters. Accesses to sequential devices use an
arbitrary dtmny fUename that is ignored but must be present in the
pathname. For example, the serial port pathname

-RS232B

is inSUfficient, but

-RS232B-XVZ
is accepted, even thoUgh the - XYZ portlon ls Ignored.
are predefined:

Certain device names

RS232A
RS232B
PARAPORT
SLOTXCHANy
MAINCONSOLE
ALTCONSOLE
lPPER
LOWER
BITBKT

serIal Port A
serial Port B
Parallel Port
serial ports: x is 1, 2, or 3 and Y is 1 or 2
wrlteln and readln deVice
wrlteln and readln device
upper DiSkette drive (Drive 1)
Lower DiSkette drive (Drive 2)
Bit bUCKet: data Is thrown away When dIrected here

see Chapter 6 for more Information on devIce names.
Upper and lower case are not signIficant In patmames: 'TESTVCL' Is the same
Object as 'TestVol'. My ASCII ctlaracter Is legal In a pathname, InClUdIng
non-printing Characters and blank spaces. However, use of ASCII 13,
RETURN, In a patmame Is strongly dIscouraged.

2.2 llle ~ Directory
It is sometimes inconvenient to specify a complete pathname, especially When
WOrking with a group Of fUes in the same volume. To alleviate this problem,
the qJerating System maintains the name Of a WOrking dlrectory for each
process. When a pathname Is specified without a leacl1ng "_", the name refers
to an Object in the WOrking dlrectory. For example, if the working directory
is -LISA the name FIRMA T. TEXT refers to the same file as
-LISA-FCRMAT.TEXT. The default WOrking directory name is the name of the
bOOt volume dlrectory.
You can find out what the working directory is with GET_~_DIR.
You can cnange to a new WOrking Olractory with SET_~_DIR.

2-2

qJeratJng system Refemnoe Mantlal TIle File system

2.3 DeV1ces
Devioe names follow the same conventions as file names. AttribUtes like baUd
rate are controlled by using the CEVlCE_al'ffRa.. call with the appropriate
pathname.
Each device has a permanently assigned priority. From highest to lowest, the
priorities are:

Power onloff bUtton
serial port A (RS232A)
serial port B (RS232B, the leftoost port)
110 slot 1
1/0 slot 2
110 slot 3
Keyboard, mouse, battery-po~ered olock
10 ms system timer
CRT vertical retrace interrupt
Parallel port
Diskette 1 (UPPER)
DiSkette 2 (LOWER)
Video screen

The deVice driver associated with a deVice contains information about the
device's physical characteristics SUCh as sector size and interleave factors for
diskS.

2.4 storage DeVIces
on storage devices such as disk drives, the FHe System reads or writes fUe
data In terms of pages. A page Is the same size as a block. My access to
data In a file Ultimately translates into one or more page accesses. When a
program requests an amount of data that dOes not fit evenly into some
number of pages, the File System reads the next highest number of WhOle
pages. Similarly .. data Is actually written to a fUe only In whOle page
increments.
A f11e does not need to occupy contiguous pages. The File system keeps
track of the locations of all the pages that make up a file.
Each page on a storage device is self-identifying; the page descrJptoris stored
with the page contents to reduce the destructive Impact of an 110 errOT.
The eight components of the page descriptor are:

Version nuntler
VOlume 1dentif1er
File identifier
Afoount of data on the page
Page name
page position in the file
Forward link
Backward link

2-3

t:peJating system Reference Manual The FIle system

Each volume haS a Hedltm Descdptor Data File ~wnlcn deScribes the
various attributes of the medil.lTl such as Its size, page length, blOCk layout,
and the size of the boot area The t1JDF Is created When the volll1le Is
Initial1zed.
The File System also maintains a record of Which pages on the medium are
currently allocated, and a catalog of all the fUes on the volume. Each fUe
contains a set of fUe hints, Which describe and point to the actual fUe data.

2.S TIle VOlune catalog
01 a storage device, the volume catalog provides access to the flIes. The
catalog Is itself a file that maps user names Into the Internal file Identifiers
used by the qlerating System. Each catalog entry contains a variety of
Information about each file InclUding:

Name
Type
Internal file number and address
Size
Date and tine created, last fOOdi fied, and last accessed
File identifier
satety switch

The safety switch is used to avoid accidental deletions. While the safety
switch Is on., the flIe cannot be deleted. The other fields are clescrlbea under
the La:KLP File System call.
The catalog can be located anywhere on the medlun.

2.6 Lcmels
M appl1cation can store Its own Information aboUt a fUe In an area callea
the file label me label allows an application to keep the fUe data separate
from Information malntalnea abOUt the fUe. Labels can be usea for any
Object In the FHe System. The max1mum label size is 128 bytes. 110 to labels
Is hancUea separately from fUe data 110.

2.7 Logical em PhysIcal Em Of File
A fUe contains some number of bytes of data recoraecl in some number of
physical pages. Additional pages whiCh do not contain any fUe data can be
allocated to the file. There are, therefore, two measures of the end of the
file. The Logical End of File (LECF) Is a pointer to the last stored byte that
has meaning to the application. The PhysiCal End of File (PECF) is a count of
the number of pages allocated to the fUe.
In addlUon, each open file has a pointer called the nle ffJ81'1(erWhICh points
to the next byte In the file to be read or written. When the fUe is opened,
the file marker points to the first byte (byte number O~ The fne marker can
be positioned automatloally or expl101Uy using the read and write calls. For
example, when a program writes to a fUe opened with ~ access, the fne
marker Is automatically positioned to the end of the fUe before new data are
wrItten. The flIe marker cannot be poslUonea· past LECF except by a write

2-4

q;eratlng system ReFerence Manual The File system

operation that appends data to a f11e; in this case the fUe marker Is
positioned one byte past LECF.
When a flIe is created, an entry for it is made in the catalog specified in its
pathname, bUt no space Is allocated for the fUe itself. When the file is
opened by a process, space can be allocated explicitly by the process, or
automatically by the ~ratlng System. If a write operation causes the fUe
marker to be posItioned past the LECF marker, LECF (and PECF if necessary)
are automatically extended. The new space is contiguous If possible.

2.8 File Access
The FIle System provIdes a devIce-Independent bytestream Interface. As far
as an appl1catIon program Is concerned, a specifIed number of bytes Is
transferred eIther relative to the flIe marker or at a specIfied byte location
in the f11e. The physiCal attribUtes of the device or flIe are not important to
the appl1catlon, except that devIces that do not support posItionIng can
perform only sequential operations. Programs can sometimes improve
performance, nowever, by takIng 8(lvantage of a devIce's physical
Characteristics.
Programs can request any amount of data from a file. The actual I/O,
hOwever, is performed In whOle-page increments when devices are blOCk
structured. Therefore, programs can optimize I/O to such devices by setting
the fUe marker on a page boundary and making I/O requests in whOle-page
increments.
A fUe can be open for access by more than one process concurrently. All
requests to write to the fUe are completed before any other access to the file
Is permitted. When one process writes to a fl1e, the effect of the write
operation Is immediately avaUable to all other processes reading the f11e. The
other processes may, hOwever, have accessed the fUe In an earHer state.
Data already Obtained by a program are not changed. The programmer must
ensure that processes maintaIn a consistent view of a shared flle.
When you open a fUe, you specify the kind of access allowed on the fl1e.
When the fUe is opened, the QJeratlng System allocates a fUe marker for the
call1ng process and a run-time Identification number called the ref'ntm The
process must use the refnum In sUbsequent calls to refer to the file. Each
operation USing the refnum affects only the file marker associated with that
refnum.
Processes can share the same file marker. In gJOIJal access ITJOC/e, each
process uses the same refnum for the file. When a process opens a file in
global access mode, the refnum it gets back can be passed to any other
process, and used by any process. Note that any number of processes can
open a fUe with GlooaJ_Retrun.. bUt each time the £PEN call Is used a
different refnum Is prodUced. Each of thOse refnums can be passed to other
processes, and each process usIng a particular refum shares the same fUe
marker with other processes with the same refum. Processes using different

2-5

cperatlng System Reference Manual The File system

retnums, hOwever, always nave dIfferent tHe maJ1<ers, Whether or not tnose
refnums were obtained wIth Global_RefrUn
A fUe can also be opened in private mode", WhiCh specifies that no otner IFEN
calls are to be allowed for that fUe. A fUe can be opened with
GlObal_Retrun and private, whiCh opens tne fUe for global access, bUt allows
no other process to open that fUe. By using this call, processes can control
whiCh ottler processes have access to a file. Ttle opening process passes the
glObal reff'll..m to any other process that Is to nave access", and the system
prevents other processes from open1ng the file.
Processes using glObal access may not be able to make any assumptions about
the location of the fUe marker from one acoess to the next.

2.9 Pipes
Because the qlerating system supports multiple processes", a meChanism is
prOvided for Interprocess communication. This mectlanism is called a pJpe
Pipes are simUar to the other objects In the File System -- they are named
according to the same rules, and they oan have labels.

I'IlTE

Pipes will not be supported In future releases of the qleratlng system.
Do not use ttle pipe mechanism If you want your software to be
upward-compatible.

As with a fUe", a p1pe Is a byte stream. With a pipe, however, information Is
queUed In a flrst-in-flrst-out mamar. AlSo, a pipe can nave only one reader
at a time, and once data Is read from a pipe it Is removed from the pipe.
A pipe can be accessed only In sequential mode. Although only one process
can read data from a pipe, any number of processes can write data Into it.
Because the data read from the pipe Is consumed, the fUe marker is always at
zero. If the pipe is empty and no processes have it open for writing, ECF (End
Of FUe) Is returned to the reaalng process. If any process has the pipe open
for writing, the reading process is suspended until enough data to satisfy the
call arrives In the pipe, or untll all writers close the pipe.
When a pipe is created, Its size Is 0 bytes. Ulllke with ordinary flies, the
Initializing program must allocate space to the pipe before trying to write
data into It. To avoid deadlocks between the reading process and the writers",
the qJeratlng System does not allow a process to read or write an amount of
data greater than half the physical size of the pipe. For this reason, you
stloUld allocate to the pipe twice as much space as the largest amount Of data
in any planned read or write operation.
A pipe Is actually a circular bUffer with a read pointer and a write pointer.
All writers access the pipe through the same write pointer. Whenever either
pointer reaches the end of the pipe, it wraps back around to the first byte. If
the read pointer catches up with the write pointer, the read1ng process blocks

2-6

QJeratJng System Reference MantJ8i TI1e File system

until data are written or untIl all the writers close the pIpe. SimIlarly .. If the
write pointer catches up wIth the read pointer, a wrIting process blOCks until
the pipe reader frees up some space or until the reader closes the pipe.
Because pipes have this structure, there are restrictions on some operations.
These restrictions are dIscussed wIth the relevant FHe System calls.

Processes can never make read or wrIte requests bIgger than half the size of
the pIpe because the qJeratIng System always fully satisfies each read or
write request before returning to the program. In other words, if a process
asks for 100 bytes of data from a pipe .. the q>erating System walts until there
are 100 bytes of data in the pipe and then completes the call. Similarly, if a
process tries to write 100 bytes of data into a pipe, the qJeratlng System
walts until there is room for the full 100 bytes before writing anything into
the pipe. If processes were allowed to make write or read requests for
greater than half of a particular pipe, it would be poSSible for a reader and a
writer to deadlock, with neither having room in the pipe to satlsfy its
requests.

2.10 Flle System Galls
ThIs section describes all the Qlerating System calls that pertaIn to the FIle
System. A summary of all the Q:>erating System calls can be found in
Appendix A The following specIal types are used In the File System calls:

Pathlclne = STRIt«;[Hax _ Pattnane]; (. Hax _ Pattll'laloo = 255 .)
E_NcIE = STRIN3[t1ax_Enane]; (* t1axJ:tbe = 32 *)
Accesses = (Dread, o.rite, Append, Private, GlObal_RefrUn);
t1Set = SET tF Accesses;
Iof't)de = (AbSOlute, Relative, 8e(p!ntial);

The Fs_lnfo record and its associated types are described under the U]]<lP
call. The Dctype record is described under the DEVICE_aNTRa.. call.

2-7

qJeratlng System ReFerence I'1antJa1

2.10.1 MAKE_FILE CI1d MAKEYJPE Flle System Calls
MAKE_FILE (Var ECOde:Integer;

Var Path :Pa'th'≤
Label_slze:Integer)

MAKE_PIPE (Var ECOde:Integer;
var Path :PattTIane;

Label_Slze:Integer)

Ecode: Error indication
Path: Nane of new object

TIle File System

Label_Size: NUmber of oytes for the Object's label

MAKE_FILE and MAKE_PIPE create the specified type of object with the
given name. If the pathname dOes not specify a directory name (more
specifically, if the pathname does not Oegin with a daSh), the working
directory is used. Label_Size specifies the initial size in bytes of the label.
It must be less than or equal to 128 bytes. The label can grow to contain up
to 128 bytes no matter what its initial size. lVly error indication Is returned
in ECOde.

Pipes will not be supported In future releases of the ~erat1ng System.
00 not use the pipe mechanism if you want your software to be
upward-compatible.

The MAKEYILE example on the next page cheCks to see Whether the
speCified file exists before openIng It

2-8

q;eraUng System Reference fvI8ntJal

lXWST FlleExists = 890;
VM fileRe~ ErrorCOde: INTEGER;

FlleNale :PattfBE;
Happy:BQ(LEM;
Response:mM;

BEGIN
Happy: =FAlSE;
MULE t«lT Happy DO
BEGIN

The File System

REPEAT (* get a file rae *)
~ITECFlle rae: .);
READlN(fileName);
~TIL LEN2lli(FlleNCIRe »0;
tw<E_FILE(ErrorGode, filetae, 0); (-no lcmel for this file-)
IF (ErrorDode<>O) THEN (* does file already exist? *)
IF (Errol'Code=fileExlsts) n£N (* yes *)
BEGIN
IRITE(FileName,' already exists. overwrite?');
REAlJ..N(Response);
Happy:=(Response IN ['Y', 'V' J); (-go ahead a1d overwrite-)

EN)

ElSE IRITElN(' Error ., ErrorCOde,' ... ile creating file. •)
ElSE Happy: = TRlE;

EtI);
lFEN(Errol'Code, FIleName, FIIeReflUQ, [0,"1 te);

EtI);

2-9

t:peratlng System Reference MantIal

2.102 KILL_mECT File System Call

KIll_mu:CT (var EOOde:lnteger;
Var Path :PatlYlClOe)

Ecode: Error indicator
Path: Nane of Object to be deleted

TIle File System

KILl_lRECT deletes the Object given In Path from the File system. (l)jects
with the safety switch on cannot be deleted. If a fUe or pipe Is open at the
time of the KIlL_CRECT call, its actual deletion Is postponecl until It has
been closed oy all processes that have It open. DurIng th1s perIOd no new
processes are allowed to open it. The object to be deleted need not be open
at the time of the KIll CRECT call. A KIlL (B.ECT call can be reversed
by ~l_FllE, as long as the object Is a fHe and is still open.

The fOllowing program fragment deletes flIes untll RETURN Is pressed:
C(H)T FileNotFot.Ild=894;
VAH FileNcIE :PattteE;

ErrorCOde: INTEGER;
fEGIN

REPEAT
IRITE('File to delete: ');
READLN(FileName);
If (fileName<>") THEN
BEGIN
KIll_mu:CT(Erroroode,fileName);
IF (Errol'Code<>O) TJ£N
If (Erroroode=fll~tfotrld) llEN
IRITElN(FileNane,' not fCUld. ')

ELSE IRITElN(' Error ., ErrorCOde,' 11e deleting file .•)
ElSE IRITElN(FileName,' deleted.');

EN)
UNTIL (FileName='·);

00;

2-10

qJeratlng System Reference Manual

2.10.3 LN<ILL_FILE File System 0811

LN<Ill_fIlE (var Ecode:lnteger;
ReflUl:lnteger;

Var Ne...aae:e3B1e)

Ecode: Error indicator
RefNUm: Refnum of the Killed and open file
Newnalre: New nare for the file being restored

The File System

IN'<ILL_FILE reverses the effect Of KILL_eRECT as long as the Killed
Object is a file that is still open. A new catalog entry Is created for the fHe
with the name gIven In Ne\tIncI'ne, Newncme is not a full pathname: the
resurrected fHe remains in the same directory.

2-11

tperatJng System Reference H8I7tI81

2.10.4 RE~_ENTRY File System Call

RENNE:_ENlRV (var ECOde:lnteger;
Var Path: Patl'l'lCllB;
Var NeRlE:E3ane)

Ecode: Error indicator
Path: Object I s old name
Newname: Object' s ne", name

The Flle System

RfNAIvE_ENTRY changeS the name of an Object In the FUe System.
Newnane cannot be a full pathname. The name of the object Is changed, bUt
the Object remains In the same directory. The following program fragment
changes the fUe name of FCRMATTER.LIST to NEWFCRMAT.TEXT.

VM OI"':Pattt≠
Ne.r&le:E Nane;
ErrorGode:INTEGm

fEGIN
OldName:='-lISA-FORHATTER.lIST';
Ne...aoe:='t£IFmt1AT • 'TEXT , ;
REtW£_EN1RV(Errorcode, Ol<l81e, NeINCIne);

00;

The fUe's full pathname after renaming is

-LISA-I\IEWFCRMAT. TEXT
Volume names can be renamed by specifying only the volume name In Path.
Here is a sample program fragment whiCh changes a volume name. Note that
the leading daSh (-), given in (J€I\Icme, Is not given In NewName.

VM Ol(ftJne:PathNale;
NeINane:E Nane;
ErrOl'COde:INlEGER

I£GIN
OldName:='-thOmas';
NeINCIne:= 'ste8rns';
RENN£_EN1RV(Erroroode, OldName, Ne~);

00;

2-12

qJeratlng system Reference M8nIJ8J

2.10.5 LlD<LP Flle System call

UXIa.P (Var Ecode:Integer;
Var Path :Pattl1alRe;
Var Attr1bUtes:fs_InfO)

EcOde: Error indicator
Path: Object to lookup
Attributes: Information returned about path

me File system

LCD<l..P returns information abOUt an object In the file system. For devices
and mounted volumes, call UD<LP with a pathname that names the device or
volume withOUt a fHe name component:

DeVNaE:=I-(JJpfR"; (* D1skette drive 1 *)
UD<l.P(Errol'Code, DevName, InfoReo);

If the device Is currently mounted and Is blOCk structured, aU of the record
fields of Attrlbutes contain meaningful values; otherwise, some values are
undefined.
The Fs_Info record Is deflned as follows. rne meanIngs of the Information
fields are given In AppendIx E.

Fs_Info = REaR)
name: e name;
ttevrun: INlEGER;

CASE OType:1nfo_type (F
deVice t, volt.lle t:

(iOOra • .el: fNlEGER
deVt: deVtype;
slot no: INTEGER;
fs sIze: lOl2INT;
vol size: l(N;lNT;
bloCkstrootured,
IOOt.Ilted: IDLEAN;
qJtnXUlt: l(N;lNT;
privatedeV,
renute,
lockeddeV: IDLEAN;
IIIU1t ..JJE!001ng,
l.I'lIIKUlt.J)9t'lCJing: BOO...EM;
VOlraE,
paSSWOrd: e_rlaIE;
fsversim,
volid,
volrun: INlEGER;

2-13

t:peratjng System Reference Manual The File System

00;

blOCks1ze,
dataslze,
clusterslze,
filecw1t: INTEGER; (*tUDer of files on vol *)
freecolllt: l(H;INT; (*tUDer of free blocks *)
OTVe, (* Date VolllE Created *)
OTVB, (* Date VollllE last Backed ~ *)
OTVS:l(H;INT;(* Date VolllE last scavenged *)
Machine 1(1.
ovel'llDilt _ stalp,
master_copY_id: lONGINT;
privileged,
wr1 te-protected: BOO...EAN;
master,
copy,
scavenge_flag: BOO..EAN};

obJect_t: (
size: LINiINT; (*aCtual no of bytes written *)
psize: l(H;INT; (*Physical size 1n bytes *)
lpsize: INTEGER; (*logical page size in bytes *)
ftype: filetype;
etype: entrytype;
OTe, (* Date created *)
OTA, (* Date last Accessed *)
OTtL (* Date last Mod1f1ed *)
OlB: lINiINT; (* Date last Backed If) *)
refrun: INTEGER;
fmark: lONGINT; (* file marker *)
acIOOde: mset; (* access IOOde *)
nreaders, (* NlIItler of readers *)
nwri ters, (* fUItler of wrt ters *)
rnsers: INTEGER; (* tuItler of users *)
fu1o: ui~ (* unique 1dentifier *)
eof" (* ElF encou1tered? *)
safety_~ (* safety switch sett1ng *)
kswitch: BOO..EAN; (* has file been killed? *)
pr1 vate, (* F1le opened for pr1 vate access? *)
lOOked, (* Is file locked? *)
protecteo:BOO...EAN);(* F11e copy protected? *)

2-14

cperatJng system Reference MantIal TI7e File system

Uld = INTEGER:
Info_Type = (deVice_t, volllE_t, objeot_t);
Devtype = (dlskdeV, pascalb(1 seqde\I, blW<t ... naLlo);
Filetype = (tI1defined, tm=File, rootcat, freellst,

bcdllod<s" sysdata spooL exec... usercat... pipe ...
bOOtfile, swapdata, s~, 1'81111), userfile,
kl11fXn)ject);

Entrytype. (enptyentry, 08tentry, linl<entry, fileentry,
plpeentry"ecentry ... kil1eclentry);

The eof field of the FS_InfO record Is set after an attempt to read more
bytes than are available from the fUe marker to the logioal end of the file, or
after an attempt to wrIte wnen no dlSk space Is avallable. If the fUe marker
Is at the twentieth byte of a twenty-five byte fUe, for example, you can
read up to 5 bytes wlthOUt setting eof, bUt if you try to read 6 bytes, the
FUe system gives you only 5 bytes of data and eof is set.
The following program reports hOw many bytes of data a given file has:

VAH Inf~ : Fs_Info; ("1nfornotlon returned by UOClP cni Itt=O*)
FileNaIRe :PathName;
ErrorCOde: INTEGER;

EEGIN
IRITE('File: ');
READlN(FileName);
UD<lP(Errol'COOe ... FileNane, InfoRec);
IF (ErroI'Code<>O) n£N

IRITElN('camt lcx*~ ',FlleNcJ1e)
ElSE

IRITELN(FlleNaE,,' has ',InfoRec.Slze,' bytes of data. I);
00;

2-15

t:perat/ng System Reference Mantlal

2.10.6 KO File System can
IWO (Var ECOde:lnteger;

Reflt.R:lnteger;
Var RefInfO:fS_InfO)

Ecode: Error indicator

me FIle System

RefNum:
Refinfo:

Reference nuntJer of Object in File System
Information returned about RefNum's object

1"'*"0 serves a function similar to that Of LlD<LP bUt Is appl1Cable only to
Objects In the File system that are open. The definition of the FS_InfO
record Is given under UXKLP and in Appendix A

2-16

qJerat/ng system Reference MantIaJ

2.10.7 SETYILE_IN='O File system Call

SETjIlE_Itt=O (Var Eoode:Integer;
ReflUl: Integer;
fs1:fS_InfO)

Ecode: Error indicator

TtJe File system

RefNum:
fsi:

Reference nurroer of Object in File System
New information abOUt the Object

SET_FlLE_N'O changes the status information associated with a given object.
This call works In exactly the opposite way that UD<LP and If't.FO work, In
that the status information is given by your program to SETY'ILE_If'FQ The
Fsl argument Is the same type of 1nformation record as that returned by
UD<LP ana nQ The object must be open at the t1me this call Is made.
The fOllowing fieldS of tne Information report may be changed:

file_scavenged
file_closed by_OS
file_left_open
user_type
user_stlJtype

2-17

cperatJng System Reference Manual

2.10.8 {PEN Fhe System call

(PEN (Var ECOde:Integer;
Var Patn :Pattl'lal'lB;
Var ReftUa: Integer;

t1crllp:t1Set)

Ecooe:
Path:
RefNum:
Manip:

Error indicator
Name of Object to be opened
Reference number for Object
set of access types

me File System

The (FEN call opens an Object so that it can be read or written to. When
you call (FEN, you specify the set of accesses that wUI be allowed on that
fUe or sequential device. The avaUable access types are:

• Dread -- Allows you to read the file
• Dwrlte -- Allows you to write in the file (to replace existing

data)
• Appero -- Allows you to add on to the end of the file
• Private -- Prevents other processes from opening the file
• Global_Refrun -- Creates a refnum that can be passed to other

processes
Note that you can give any number of these mOdes simultaneously. If you
specify Dwrtte and ~ in the same (FfN call~ Dwrite access will be used.
see section 2.8 for more information on GlObal Refrun and Private access
nl)jes. -

If the Object opened already exIsts ana the process calls WRITE_DATA
without having specified ~ access~ the Object can be overwritten. The
qleratlng system aoes not create a temporary fUe ana walt for the
a..me:_IRECT call before deCiding what to do with the old fUe.
M object can be opened by two separate processes (or more than once by a
single process) simultaneously. If the processes write to the flIe withOUt using
a global refnum~ they must coordinate their file accesses so as to avoid
overwriting eaCh other's data
Pipes Cal'YlOt be opened for OWrlte access. You must use ~ if you want
to write Into the pipe. To set up a private pipe .. the reader process opens the
pipe first~ specifying Dread mode; the writer process then opens the pipe with
~ PrIvate access mode.

2-18

[perot/ng System RefeJ1Jf7Ge Manual

2.10.9 CLOSE_£RECT File System Call

Q05EJRICT (var ECOde:Integer;
ReftUl:Integer)

Ecode: Error indicator
RefNum: Reference runtler of object to be closed

TI1e FIle System

If ReftQn Is not global, CLOSE_CRECT terminates any use of ReftQn for 110
operations. A FLUSH operation Is performed automatically and the fHe Is
saved in its current state. If ReftQn Is a global refnum and other processes
have the fUe open, Refl\Un remains valid for these processes and other
processes can still access the fUe using Re1NMn

The follow1ng program fragment opens a fHe, reads 512 bytes from 1t, and
then closes the file.

lYPE Byte=-128 •• 127;
VAR FileNcIRe :Pattf8Re;

ErrorCOde, FileReftUl: Integer;
ActualBytes : LongInt;
BUffer:NW.Y[o •• 511] IF Byte;

EEGIN
(JlEN(EITOl'Code, FlleNcllE, fl1~ [DRead]);
IF (Errol'Code>O) UEN

IRITELN('ccnm ~ ',FileNane)
ElSE

EEGIN
READ _DATA(Errorcode,

Fil~
mD4(ii18Jffer),
512,
ActualByteS,
sequential,
0);

IF (ActualBytes<512) THEN
IRITE(' B11y rea:t ., ActualBytes,' byteS from ., FileNcJlle);

ClOSE_lB:ECT(EITOl'Code, FlleReftun);
00;

00;

2-19

qJerat/ng system Reference M8ntJaJ

2.10.10 READ_DATA CI'ld WRITE_DATA File system cans
READJlATA (var Ecode:lnteger;

ReftUR: Integer;
Data-"ddr :loogInt;
Cotnt : LongInt;

Var Actual : LoogInt;
tkJde: IotIode;
Offset:LoogInt);

IRITE_DATA (var ECOde:Integer:
ReftUR: Integer;
Data_Addr : Longint;
COU1t : LoogInt;

Var Actual :longInt;
tkJde: I(ftJde;
Offset:LongInt);

EcOde: Error indicator
RefNum: Reference nurmer of object for 1/0

TIJe File System

Oata_Addr: Address of data (source or destination)
Count: Number of bytes of data to be transferred
Actual: Actual number of bytes transferred
Node: 110 lOOCIe
Offset: Offset (abSOlute or relative modeS)

RE,AD_DATA reads information from the device, pipe, or fUe specified by
Refl\Un., and WRITE DATA writes information to It. Data Addr Is the
address for the destination or source of COU'lt bytes of data. The actual
number of bytes transferred Is returned In Actual.

t1lde can be absolute, relative, or sequential. In absolute mode, Offset
specifies an absolute byte of the f11e. In relative mode, Offset speoifies a
oyte relative to tne fUe marker. In sequential mode, Offset Is Ignored
(asuned to be zero); transfers ocour relative to the fUe marker. sequential
mode (Whlctl Is a special case Of relative mode) Is the only access mode
allowed for reading or writing data In pipes or sequential (non-diSk) devioes.
Non-sequential modes are valid only on devices that support positioning. The
first byte is numbered O.
If a process attempts to write data past the Physical End of File on a disk
fUe, the qleratlng system automatically allocates enough additional space to
contain the data. this new space, may not be contiguous with the previous
blocks. You can use the ALLOOATE call to ensure that any newly allocated
blocks are located next to each other, although they may not be located near
the rest of the fUe.
READ_DATA from a pipe that dOes not oontain enough data to satisfy COU'lt
SUSpends the call1ng process tIltll the data arrives In the pipe. If there are no

2-20

t:penJtlng System Reference I'18ntI8J T/Je FIle system

wrtters .. the eM-Of-fUe Incncatlon (error 848) Is returned in Ecode. Because
pipes are circular, WRITE_DATA to a pipe with Insufficient room suspends the
calling process (the writer) until enough space Is avatlable (untU the reader
has consumed enough data~ If no process has the pipe open for reading and
there Is not enough space In the pipe .. the end-of-fUe Indication (848) Is
returned In EOOde.

READ DATA from the MAINCO'JSCl.E or AI... TCCNSCl.E devIces must
speoifY COt.rlt - 1.

The following program copies a fUe. Note that you must supply the correct
location for Syscall in the second line of the program.

PROORN1 COpyF11e;
USES (*Syscall.Obj*) SySCS11:
TYPE By te=-128 .• 127;
VAR 01(l='1le, Ne.t='11e :Pa~:

Ol~tt.In, NeIReftt.ln: INlEGER;
BytesReac:1, Byteslr1 tten :LHINT:
frrorCOde: INTEGER;
Respmse :DM;
Buffer:MRAV [0 •• 511] (F Byte:

BEGIN
WRITE(Ifile to copy: I);
READLN(Ol(l=' 1 Ie);
(FEN(ErtorCOde, 01(1='1le, 01Cftmt.n, [mead]);
IF (ErroI'Code>O) nEN
BEGIN

MUlELN(I Error I, ErrorCOde, I "'lIe openlng I .. 01(1='11e);
EXIT(COpyF11e);

Ettl:
~ITECNe' file rae: I);
READLN(talFlle);
HAKE fILf(Erro1'Code, Nelfile, 0);
{PEN(Errol'Code, Nelfile, Ne~ftt.IQ, (Dlri te]):
REPEAT

READ _DATA(Erro1'COde,
Olftfton,
0004(ilBUffer),
512, BytesRead, sequential, 0);

IF (Errol'Code=O) Atf) (BytesRead>O) nEN
IRIlEJ>ATA (Errol'Code,

Ne~
mD4(ilBuffer),
8ytesRead, Byteslri tten, sequential, 0);

OOIl (8ytesRead=0) m (Byteslritten=O) m (ErrorCOde>O);

2-21

qJerst/ng System Reference H8ntI81 The File System

If (ErrorcOde>O) T1£N
IRIffiN(IFile ~y encou1tered error I I Erro1'Code);

£l.OSE_lIU:CT(ErrorcOdel Neftftt.n);
£l.OSE_(BECT(Erro1'CodeI OlftflUR);

00.

2-22

qJerating system Reference MantIal

2.10.11 READ_LABEL <n:1 WRITE_LABEL File system caJls

READ_LABEL (Var Ecode:lnteger;
Var Path :Patt1'Ble;

Data_Addr : LorYJint;
COt.I1t : LmgInt;

Var Actual : LongInt)

IRITE_LABEL (var Ecode:lnteger;
Vat Path:PattllCllB;

Data_Addr : LorYJlnt;
COU1t : LongInt;

Var Actual:L~nt)

Ecode: Error indicator
Path: Name of Object containing the label
Data Addr: Source or destination Of 1/0
Count: Number of bytes to transfer
Actual: Actual number of bytes transferred

Tile File system

These calls read or write the label of an Object in the FUe system. 110
always starts at the begiming of the label. comt is the number of bytes the
process wants transferred to or from Data_Addr, and Actual is the actual
number of bytes transferred. Nt error Is returned if you attempt to read
more than the maximum label size, 128 bytes.

2-23

cpercJtJng System Reference HanIJa/

2.10.12 [EVlCE_aNTRa.. FDe System Call

DEVI~JlJ(nn. (var ECOde:Integer;
Var Path:Pattn:IE;
Var CParm:Dctype)

ECOde: Error indicator
Path: Device to be oontrolled

TIle File System

CParm: A record of information for the device driver

DEVICE_aNTRa.. Is used to send device-specific information to a device
driver or to Obtain devioe-speclfio information from a devloe driver.
Regardless of Whether you are sett1ng deVice-control parameters or requesting
Information" you always use a record Of type Dctype. The structure of Dctype
Is:

Dctype = REctRl
OOVersloo: INTEGER:
deCode: INTEGER;
dcOata: MAPeY [0 •• 9] (F UN2INT
Etfl;

dcVersion: currently 2
deCode: control code for devioe driver
dCOata: specific control or data parameters

2.10.12.1 setting Device-QJ1trol Infmmatioo
Before you use a device" you call DEVICE_aNTRa.. to set the device driver.
Olee you begin using the devloe" you call DEVlCE_CCNTRa.. as necessary.
Table 2-1 shows WhiCh groups of deVice-control functIons must be set before
using each type Of deVice. Table 2-2 shOWs which Characteristics are
contained In each group. For example, you must set Group A for RS-232
Input. As you see In Table 2-2" Group A indioates the type of parity used
wIth the devIce. Each group requires a separate call to OEVlCE_aNTRlL,
and you can set only one oharacteristio from each group. If you set more
than one from the same group for a partIcular devIce .. the last one set will
apply.

2-24

[peratj/~l ~ystem ReFelmoe 1'-1anllai Tfle File Sf"sten}

Table 2-1
DEVICE_C(JfI'R(L FlrICtions Required

before using a DeVIce

Device Type Device Name Required Groups
Serial-::R~S~-~23=2=--=fo-r----=R~S2=-=3=-=2~A"":'0':'::r::':':R=-=S=2=32=8~-"":'':'::A?,==c:='::, D':-,==E:-=, F=-,=-':G~
input

Ser1al RS-232 for
output or printer

RS232A or RS2328

ProFile SLOTxCHANy (where J
x and yare nUmbers)
or PARAPORT

Parallel printer SLOTxCHANy (where I
x and yare numbers)
or PARAPORT

Console screen and HAINCONSOLE or I
keyboard ALTCONSOLE

Oiskette drive UPPER or LOWER J

Here is a sample program that shows how a device-control parameter is set.
This program sets the parity attribute for the RS232B port to "no parity."
Note that the parity attrIbUte requires only that you set cparm.dccode and
cparrn.dCdatc(OJ Other parameters require that you also set cparm.dcdat((l]
and cparm.dCdatc(21 They are set in a similar manner.

VAR
cparm: dctype;
errrun: integer;
path: pattlrlane;

BEGIN
path: = • -RS232B· ;
cparm.dcversioo:=2; (~ always set this value ~)
cparm. decode: = 1;
cparm. dcdata[0] : = 0;
OEVI~_ cmTRCl..(errrun, path, cparm);

EN);

2-25

cperatJng System Reference /YfanUa1 TtJe File system

Table 2-2 shOws hOw to set oparm.OOCOde, oparm.dCdatc(O], oparm.dCdatc(l],
and oparm.dCdaU(2] for the var10us available attr1OUtes. Note that any values
in cpaml.OOdata past oparmdCdatc(2] are Ignored when you are setting
attribUtes dOCumented here.

Table 2-2
IIVla::_C(IfJR(l. rutput FU1Ctimal ~s

FUNCTION .decode .dCdataO] .dcdatal1 .dcdata21

Group A--parity:
No parity 1 0
Odd parity, no 1 1
input parity
cheCking

Odd parity,
input parity

1 2

errors = 00
Even parity, no 1 3
input parity
CheCking

Even parity, 1 4
input parity
errors = $80

Group B--OUtput Handsnake:
None 11
OTR handshaKe 2
XON/XOFF handsnake 3
delay after Cr, IF 4 ms delay

Group C--Baud rate:
5 baud

Group D--Input waiting during Read_Data:
wait for count bytes 6 0
return Whatever rec'd 6 1

Group E--Input handshake:
no tlandShake 7

9 -1 -1 32767

OTR handShake 7

XON/XOFF handshake 8

2-26

cperatJng system Reference I'18ntI8l me File System

Table 2-2 (cont1rued)

FUNCTION .decode .dcdate(O] .dcdatc(I] .dcdatc(2]

Group F--Input typeahead bUffer:

fluSh only 9
flush and re-size 9
fluSh, re-size, 9
and set threShOld

Group G--Disconnect Detection:

none 10
BREAK detected 10
neans di sconnect

-1
bytes
bytes

o
o

-2
-2
10111

o
non-zero

Group H--Tineout on output (handshaKe interval):
no timeout
tirreout enabled

12
12

o
seconds

Group I--Automatic linefeed insertion:

dlsat>led 17 0
enabled 17 1

-2
-2
hi

Group J--Disk errors (set to 1 to enable, to 0 to disable):

enable sparing 21 sparing relllrite reread

Group K--Break command (never required -- available only on serial
RS-232 devices):

send break 13

send break 13
While lowering DTR

millisecond
duration
millisecond
dUration

o

1

Using Group C, you oan set baud to any standard rate. However, 3600, 7200,
and 19200 baUd are available only on the RS232B port.
"Low" and "Hl" under Group F set the low and high threshOld In the typeahead
input bUffer. When "HI" or more bytes are in the input bUffer, XCFF Is sent
or DTR is dropped. When "Low" or fewer bytes are in the typeahead bUffer,
X(J\j Is sent or DTR Is reasserted. The size of the typeahead buffer (bytes) can
be any value between 0 and 1024 bytes Inclusive.

In Group J, enabUng disk sparing permits the devioe driver to relocate blOCks
of data from areas of me 0181< that are fauna to be bad. Enabllng disk rewrite

2-27

qJeratfng system Reference I'1a?lIaI The File System

permits the q>eratlng System to rewrIte data that It had trOUble readIng, bUt
finally managed to read. This condition Is referred to as a soft error.
Enaollng disk reread tells the (l)eratlng System to read data after they are
written to make certain that they were written correctly.
When sending a break command, as shown In Group K" any device control from
Group A removes the break condition even if the allotted time has not yet
elapsed. Also, sending a break will disrupt transmission of any other character
still being sent. If you want to make certain that enough time has elapsed for
the last character to be transmitted, call WRITE_DATA with a single null
character (equal to 0) just prior to calUng CEVlCE_ C(JffR(L to send the break.
Table 2-3 gives a list of mnemonic constants that you can use in place of
expUclt numbers when setting Decode. These mnemonics are provided for
convenience.

laHe 2-3
Occode Mleroonlcs

Occode

1

Mleroonlc

dvParity
dvOUtDlR
dVOUtXON
dVOutDelay
dveaud
dvlnwait
dvlnDTR
dvlnXON
dVlypeahd
dvDiscon
dVOutNoHS

2
3
4
S
6
7
8
9

10
11
12
13
15
16
17
20
21

no rmemonic
no mnemonic
dvErrStat
dvGetEvent
avAutOlF
dVOiSkStat
dvDiskSpare

2.10.12.2 (l)taln1ng Devlce-cmtrol Information
To use OEVICE_CCNTRO.. to find out abOut the current state of a particular
devIce, simply give the pathname for the particular device along with a
function COde for the type of information you need. The record of type Dctype
that you supply is returned f11led with information.

2-28

tpell1tJng System Reference /t1lnJ8I T11e FIle System

Tnere are three types of Infonnatlon requests you can make. NOte tnat eacn
type applles only to some of the available devices. The request types EI'ld the
returnecJ InformatIon are deSCrIbed In Table 2-4-
Table 2-5 ShOWS the error code provided In response to a 0CC0de-15
Informatlon ~ This code Is given In qJaIm.OOdaU(O]. The code, a long
Integer, Is ShOWn In Table 2-5; tne bits and bytes are numbered from the rIgI'lt,
COt.Iltlng from 0, as shOWn In Figure 2-1. The meaning asslgled to the bit
applies If the bit Is set (equalS 1~

1 0 1 0 1 0 1 ..•........... 0

Figure 2-1
DISk Hard Error QJdes

Here Is a program frcgnent that uses lEVICE_atflR{L to get Information
aboUt the t4lP8r diSkette drive.

VM
qJ8J'II: ootype;
el'JTUl: INT£(£R;
path: patrnE;

BEGIN
path: =. -lJIPER. :
cparII.oovers1m:-2; (- 8l.ays set this Value -)
cpam.dOcode : = 20;
DEVI(E_aJfI1Q..(~ path, qmw);
11TH cpat'II DO
IRIlaN (cbiata[OL cbiata[l], dcdBta[2L cbiata(3],

cbJata[4 J, cbiata[5 L dcdBta[6])
00;

2-29

cperatlng System Reference ManiJ8J TIle FIle System

Table 2-4
oevice Information

Decode oevices

15

16

Profiles

console Screen
and KeybOard

RetUI'lled in IXXJata

[0] contains disK error status on
last hardware error (see Table
2-5)
(1] contains error retry count
since last system bOot

[0] contains nunvers 0-10 ..
Which indicate events:

o = no event
1 = upper disKette inserted
2 = upper diskette bUtton
3 = lower diskette inserted
4. = lower diskette bUtton
6 = mouse bUtton dOwn
7 = mouse plugged in
8 = power bUtton
9 = mouse button up

10 = mouse unplugged
(1] contains the current state of
certain keys, indicated by set
bits (if the bit is 1, the key is
pressed) (bits are numbered from
the right)

o = caps lock key
1 = shift key
2 = option Key
:5 = coornand Key
4. = mouse bUtton
5 = auto repeat

[2] contains X and V coordinates
of mouse, X in left 2 bytes .. V in
rift 2 bytes
(3 contains timer value in
milliseconds

2-30

cperatlng system Reference fvIInI8l me File system

Table 2-4 (continued)
Dooode oevices Returned 1n Dcdata

20 Profile or
Diskette Drive

[0] oontains:
o = no disk present
1 = disK present (bUt not

accessed yet)
The fOllowing indioate that a
disk 1s present and has been
acoessed at least once.

2 = bad block track appears
unformatted

3 = diSk formatted by some
program other than the
operating System

4 = OS-formatted a1sK
[1] contains:

o = no bUtton press pending
1 = button press pend1~

disk not yet ejected
[2] contalns number of available

spare blocKS, 0-16,
~anlngful only IJJhen
OOdata[O] = 4 and for a
diSkette

[3] contains:
o = bOth coples of the

bad-block directory OK
1 = one copy is corrupt

(~anlngful only when
Dcdata[O] = 4)

[4] contains:
o = sparlng d1sabled
1 = sparing enabled

[5] contains:
o = rewrite disabled
1 = rewrite enabled

(6] contains:

2-31

o = reread disabled
1 = reread enabled

TIle FIle Sptem

Temle 2-5
Disk Hard Error COdes

Byte 3
7 :; ProFile received <> 55 to its last response
6 = Write or write/verify abOrted because more than 532 bytes of

elata were sent or because Profile could not read its spare
table

5 = Host's data is no longer in RAM because Profile updated its
spare table

4 = SEEK ERRm -- unable in 3 tries to read 3 oonsecuti ve headers
on a track

3 = CRC error (only set during actual read or verify Of
write/verify, not While trying to read headers after seeking)

2 :; TIMEOUT ERRm (could not find header in 9 revolutions)-- not
set While trying to read headers after seeking

1 :; Not Used
o = Operation unsuccessful

Byte 2
7 = SEEK ERROR -- unable in 1 try to read 3 consecutive headers

on a track
6 = Spared sector table overflow (more tnan 32 sectors spared)
5 • Not used
4 = Bad blOCk table overflow (more than 100 bad blOCks in table)
3 • Profile unable to read its status sector
2 = Spar1ng occurred
1 = seek to wrong track occurred
o = Not Used

Byte 1
7 = Profile has been reset
6 :; Invalid blOCk number
5 = Not used
4 :; Not used
3 = Not used
2 :; Not used
1 = Not used
o :; Not used

Byte 0
TIlls byte contains tne t'lt.Il'lber Of errors encotIltered wnen rereading a
blOCk after S'ly read error.

2-32

lPJratlng syStem ReferenCe I'48nUaJ

2.10.13 .auJ:CAlE FHe system can
1U000lE (var Ecode:Integer;

,."..:Integer;
COOtigl.llUS :Booleal;
COtnt :lcn:l1nt;

var ActUal: Integer)

Ecode: Error indicator

me FIle system

RefNlln: Reference rustler of Object to be allocated space
contiguous: True = allocate contiguouSly
COlrlt: Nu1tler Of bloct<s to be allocated
ActUal: tU1tJer of blocks actually allocated

use PLLCCATE to Increase the space allocatecl to an object. If possible,
PLLOOA 1E addS the requested number Of blOCks to the space available to the
object referenced by RettUn. The actual runber Of blOCks allocated Is
returnecl in Actual If cmtQ,ws Is true, the new space Is allocated In a
single, unfragmented space on the diSk. This space Is not necessarUy adjacent
to any existing file blOCks.

PLLOOATE applles only to Objects on block-Structured devices. M attempt to
allocate more space to a pipe Is succeSSfUl only If the pipe's read pointer Is
less than or equal to its write pointer. If the write pointer haS wrapped
arOllld bUt the read pointer has not, an allocation would cause the reader to
read InValid and l.I'llnltlallzed data, so the FHe System returns error 1186 In
this case.

2-33

cperatlng System Refenmce I'1antJaJ

2.10.14 ~ACT FUe System Call

COPACT (Var EOOt1e:Integer;
Refb:ln~r)

Erode: Error indicator

The File System

RefNum: Reference number of object to be compacted

~ACT changeS the Physical End of FUe to deallocate any blocks after the
block that contains the Logical End of File for the file referenced by ReN.m
(See Figure 2-1.) C(I'1)ACT applies only to objects on block-structured
devices. As in the case of ALLOOATE, compaction of a pipe Is legal only If
the read pointer Is less than or equal to the write pointer. If the write pointer
has wrapped around, but the read pointer has not, compaction COUld destroy
data In the pipe. The File System returns error 1188 in this case.

2-34

Q:Jemtlng system Reference Mantlal

2.10.15 TRl..t£ATE File system Call

TRl.N!ATE (var ECOde:Integer;
ReftUn: Integer)

Ecode: Error indicator

The File System

RefNum: Reference nunt)er of Object to be truncated

l"Rl.J\ICA lE sets the Logical End of FHe indIcator to the current posItion Of
the file marker. Any data beyond the fHe marker are lost l"Rl.J\ICAlE
appIles only to blOCk-structured devices. Truncation of a p1pe can destroy
data that have been wrItten bUt not yet read. ~ the dIagram ShOws,
TRu\cAlE Changes only LECF. CCl"PACT, on the other hand, changeS only
PElF.

,TRU>lCATE
new

r COVPACT -

L.HF

I
new

PElF

~

~I .r~ - t~'-""""""""""'''':'':''1~~'

File Marker old
LECF

Figure 2--2
The Relationship of C{]VPN:;T md TRl..I\ICA TE

old
PElF

In this fIgure the bOxes represent bloCks of data Note that LECF can point to
any byte 1n tne fUe bUt PECF always points to a block. boundary. Therefore,
TRl..I\CATE can reset LElF to any byte In the f11e, but aJ'1>ACT can reset
PElF only to a block boUndary.

2-35

t:peratlng System Refemnce Manu8J

2.10.16 FLUH File system call

FlUSH (var Ecode:lntegeri
ReftUt:lnteger)

EcOde:" Error 1nd1cator
Reftt.ln: Reference I'UJt)er of destinat10n of 1/0

T/1IJ FIle System

FLUSH forces all buffered Information destined for the object Identified by
Reft\Un to be written out to that objecl

A side effect of FLUSH Is that all FS Duffers ancJ data structures are flustled
(as well as the oontrol Information for the referenced flle~ If Reft\Un Is -L
only the glObal File system Is flushed. This Is a methOd by wntcn an
application can ensure that the File system Is consistent

2-36

tperatlng system Reterence MantIaJ

2.10.17 SET_SAFETY FDe System Call
SET_WEll (var Ecode:lnteger;

var Path:Patil .B;
(r_off :8001eal)

EOOde: Error indicator
Path: Nane of Object containing safety switch
on_Off: set safety s.1 tch:

on • true
Off = false

TIle FIle System

Each object In the File System haS a "safety switch" to help prevent accidental
deletion. If the safety Nltch Is on., the Object cannot be deleted.
SET_SAFETY turns the switch on or off for the Object Identified by paUl.
Processes tnat are snaring an Object ShOUld cooperate with each other When
setting or clearing the safety switch.

2-37

fJJerat/ng System Reference 1'18rK.I81 TIle File System

2.10.18 SET_wmKIJI.G_DJR and GET_wmKIJI.G_DIR File System C8lls

SET_W(R(1t«j_DIR (Var Ecode:Integer;
Var Path:Patmane)

~T_I(R(It«jJ)IR (Var Ecode:Integer;

Ecode:
Path:

Var Path:Patmane)

Error indicator
working directory name

The (lleratlng system uses the wOrking directory name to resolve partially
specified pathnames Into complete pathnames. GET _ wtRKING_DIR returns the
current working directory name In Path. SET _ W(RKJNG_DIR sets the WOrking
directory name.
me following program fragment reports the current name of the working
dIrectory and allows you to set It to sometning else:

VM lOrki~ir :Patt8lne;
Errol'COde : INTEGER;

BEGIN
GET_wmat«;_DIR(Errorcode,lorki~ir);
IF (ErrorCode<>O) l1£N

IRIffiN('C<nllt get the current WOrking directory!')
ELSE WU1ELN(· The current WOrking dIrectory Is: • , IDrklngDlr);
IRITE('New WOrk~ directory rae: ');
READLN(lDrkingDir);
SET_wmat«j_DIR(Erro1'Code,lorkl~ir);

EN>;

2-38

cperatlng system Reference Manual

2.10.19 RESET_CATALOO CI'ld GET_f'EXT_ENTRY File System C8lls
RESET_CATAlOO (var ECOde:INTEGER;

Var Path:Patmane)

GET_tEXT_ENTRY (var ECOde:INTEGER;

Ecocle:
Path:
Prefix:
Entry:

Var Prefix,
EntrY:E_Nalne)

Error indicator
WOrking directory name
Beginning of file names returned
Nares from catalog

me FIle System

RESET_CATALOO and GETJ,£XT_ENlRY give a process access to catalogs.
RESET_CAT ALCG sets tne catalog file marker to the beginning of the catalog
specified by Path. Path should be a root volume name. GET_I'EXT_ENlRY
then performs sequentlal reads through the catalog fHe specified In the
RESET_CATALOO call and returns File System object names. M end-of-file
error code (848) is returned when GET_~XT_ENTRY reaches the end of the
catalog. If Preftx is non-null, only those entries in the catalog that begin with
that prefix are returned. If Preflx Is "p,s", for example, only flle names that
begin with "Pe" are returned. me prefix and catalog marker are local to the
calling process, so several processes can Simultaneously read a catalog withOUt
affecting each other.

2-39

q:;emtJng System Reference ~

2.18.20 ~ ald l.N1l.NT FOe System cans
tIlIff (var ECOde : Integer;

Var ~:E MaIRe;
Var PassWorii:E ..
Var Df:M'ae:EjiaE)

lNDJfT (var Ecode:lnteger;
Var YnaM:E-, __)

ECOde: Error indicator
vnane: ValUE nane
password: Password for aevice (currently ignored)
DeVr'lane: Device name

The FIle System

~ and l.N1l.NT handle access to sequential devices or blOCk-structured
devices. For blOCk-structured devices, ~ logically attaches the voU.me's
catalog to the File system. The nane of the volt.me rTlOU1ted Is returned in
the \ftIne parameter.
l.N1l.NT detaches the specified voll.lTle from the File system. No Object on
tnat voltme can be openeCI after l.N1l.NT has been Called. The voll.llle
cannot be urmounted t.rttU all the Objects on the volume have been closed by
all processes using tnem.

0evnEme Is the name of the device on whiCh a volume is being mounted.
Devrane should be given withOut a lead1ng dash (-~

'hBne Is tile ncme of tile VOlume tnat was succesSfUlly mounted, and Is
returned.

2-40

029-0418-A

Chapter 3
Processes

3.1 Process st.J'l.I)1lare •• 3-2

3.2 Process I-Ilerarctly ••• 3-2

3.3 Process creatloo ••••.•••.•••••••••••••••••••••••••••••••••••.••••••••••••••••••••••••••••••••• 3-3

3.4 Process QJltrol •• 3-3

3.5 Process Sctm.dh1g •• 3-3

3.6 Process Temdr1atIOI'l •• 3-4

3.7 A Process-l-larldllrlg ExaJ11)le •• 3-5

3.8 Process System C8ll$.. 3-7

3.8.1 M.AJ<E PROOESS ••••••••••••.••••••••••••••••••••••.••••••••••••••••.••••••••••••••••• 3-8
3.8.2 TERMiNATE PROOESS .. 3-9
3.8.3 II'F'O PROOESs ... 3-11
3.8.4 K1LL-PROOESS .. 3-13
3.8.5 ~ PROOESS .. 3-14
3.8.6 Pt()TlVATE PROOESS .. 3-15
3.8.7 SETPRlmlTY PROOESS ... 3-16
3.8.8 YIELD CPU .: ... 3-17
3.8.9 MY _10-: .. 3-18

Processes

A process Is an entity in the Lisa system that performs work. When you ask
the ~erating System to run a program, the OS creates a specific instance of
the program and its associated data. That instance is a process.
The Lisa can have a number of processes at anyone time; they appear to be
running simultaneously. Although processes can share code and data each
process has its own stack.
011 y one process at a time can use the CPU. The Scheduler determines
which process is active at a particular time. The Scheduler allows each
process to run until some condition that would slow execution occurs (an 110
request, for example). At that time, the running process is saved in its
current state. The Scheduler then checks the pool of ready-to-run processes.
When the original process later resumes execution, it piCkS up where it left
off.
The process SChedullng state has three possibilIties. A mnnlng process is
actually executing Instructions. A.ready process Is ready to execute but Is
being held back by the Scheduler. A lJlocket.1 PlrJCeSS Is ignored by the
Scheduler. It cannot continue its execution untll something causes it to
become ready. Processes commonly become blocked whUe awaiting
completion of I/O, although there are a number of other lIkely causes.

3-1

p.nJCeSSeS

3.1 Process SUUCture
A process can use up to 16 data segments and 106 code segments.
The layout of the process address space for user processes is shown In Figure
3-1.

seg'
+--------o I unavailable
+--------
1 I User Code segments

I
I
I
I

106 I
+--------

107 I LDSN 1
I
I (data segments)
I
I

122 I LDSN 16
+--------

123 I Stack
+--------

124 I Shared Intrinsic unit Data
+--------

125 I Screen
+--------

126 I Reserved
+--------

127 I Reserved
+--------

F11JJ1'8 3-1
Process AddreSs Space Layout

Each process haS an associated priority, an integer between 1 and 255. The
SChedUler usually executes the highest-priority ready process. The higher
prlorlties (226 to 2S5) are reserved for the ~rating System.

3.2 Process HIerarchy
When the system is first started, several system processes exist. At the base
Of the process hierarchy .. ShOwn In Figure 3-2", Is the root process .. WhiCh
handles various internal ~rating System functions. It has at least two sons:
the Memory Manager process and the Shell process.
The Me/norJI Manager process handles COde and data segment swapping.

3-2

q;eraUng System Reference M8nIJ81 Processes

me Shell process Is a user process that Is automatically started When the OS
Is InitialiZed. It Is typically a command Interpreter, but It can be any
program. The 00 sImply lOOkS for the program called SYSTEM.SHELL and
executes It.

Root Process

/I~ Shell
Process

Memory Mcr1ager I Ottler
Process U ser

)T\
O~er User Processes

F1gure 3-2
Process Tree

My other system process (the network control process, for example) is a son
of the root process.

3.3 Process creatloo
When a process is created, it is placed in the ready state with a priority equal
to that of the process that created it. All the processes created by a given
process can be thOUght of as existing in a subtree. Many of the process
management calls affect the entire subtree of a process as well as the process
itself.

3.4 Process control
Three system calls are provided for expllclt control of a process. These calls
allow a process to kill, suspend (blOCk), or activate any other user process In
the system, as long as the process IdentifIer Is known. Process-handl1ng calls
are not allowed to control qleratlng system processes.

3.5 Process ScheWllng
Process sohedUl1ng is based on the priority established for the process and on
requests for qJeratlng System services.
me SCtledUler generally executes the hIghest-priorIty ready process. O'lce a
process Is executing, it loses the CPU only under certain circumstances. The
CPU Is lost When there Is some specIfIC request for the process to walt (for
an event, for example), When there Is an 1/0 request, or When there Is a
reference to a COde segment that Is not In memory. A process that makes

3-3

Q,Jel-atJng Systen1 ReFerel1ce f\1ant./al Processes

any cperatlng System call may lose the CPU. The process gets the CPU back
when the q>erating System is finished" except under the following conditions:

• The running process requests input or output. The Scheduler starts the
next highest-priority process running while the first process waits for the
110 to complete.

• The runnIng process lowers Its prIorIty below that of another ready process
or sets another process's priority higher than its own.

• The running process expllci t1 y yields the CPU to another process.
• The runnIng process activates a hIgher-prIorIty process.
• The running process suspends itself.
• A higher-priority process becomes ready.
• The running process needs code to be swapped into memory.
• The runnIng process executes an event -wal t call.
• The running process calls DELAY _ TIIVE.

Because the ~erat1ng System cannot seize the CPU from an executing
process except In the cases noted above" baCkground processes should be
liberally sprinkled with YIELD_CPU calls.
When the Scheduler Is invoked" it saves the state of the current process and
selects the next process to run by examining the POOl of ready processes. If
the new process requires that code or data be loaded into memory, the
Memory Manager process Is launched. If the Memory Manager Is already
working on a process" the Scheduler selects the highest priority process In the
ready queue that does not need anything swapped.

3.6 Process Termination
A process termInates under one of the fOllowIng conditions:

• It calls TERMINA'TE_PROCESS.

• It reaches an 'EN): statement
• It Is referred to in a KILL_PROCESS call.
• Its father process termlnates.
• It runs into an abnormal condItion.

When a process begins to terminate" a SYS_ TERMINATE exception condition Is
sIgnaled to the terminating process and all of the processes It has created.
By means of the DECl...ARE_EXCEP J-I)L call (described in Chapter 5)" any
process can create an exception handler to catch the termInate exception and
clean up before termInating. The SYS _TERMINATE exception handler will be
executed only once. If an error occurs whlle the handler Is executing" the
process terminates immediately.

3-4

QJerat1ng system RefeJ-entJe tvkY1tIal PJ1JtJesses

A process can call Klll_PR£:o:SS on any user process whose Proc_ld Is
known. TERMINATE_PR£:o:SS, on the other hand, terminates the process that
called It (and its descendants~ TERMINATEYROCESS also allows an event to
be sent to the father of the terminating process if a local event channel was
specIfIed In the MAKE_PROCESS call.
Termination Involves the fOllowing steps:

1. Signal the SYS _ TERMINATE exception on the terminating process.
2. Execute the user's exception handler, if any.
3. Instruct all sons of the current process to termInate.
4. Close all open flIes, data segments~Ipes, and event channels left open by

the user process.
5. Send the SYS_SCN_ TERM event to the father Of the terminating process

I f a local event channel exists.
6. walt for all the sons to finIsh termination.

3.7 A ProceSS-Handling Example
The following programs illustrate the use of many of the process-management
calls described In this Chapter. The program Father .. below .. creates a son
process and lets it run for a While. It then gives the user a chance to
activate .. suspend .. Kill .. or get information about the son.

PR(GW1 Father;
USES (1J SOlIrce:Syscall.(J)jit) sy5Call;
VAR Errol'Code:INTEGER; (*error returns from system calls *)

proc_id:LONGINT; (it process global identifier it)
progncllle: PattYlarle; (* program file to execute *)
rull:NaleString; (it progran entry point it)
InfO_Rec:PrOClnfoRec; (* information abOUt process *)
i:INTEGER;
Answer : CHAR;

3-5

Q;JeratJng system Reference MantJaJ Processes

BEGIN
~: = I&W.(I)J'; (* this prognn is defined belOW-)
ttJll:=' ';
tw<EJJIIXESS(ErrorCode, Proc_Id, PrOflBe, tt.l11, 0);
IF (Erro1'COde<>0) n£N

1RI1B.N(I Error I, ErrorCode,' citring process Ell8geftB It. ');
FOO 1:=1 TO 15 DO (* 1dle for alh1le *)
BEGIN

IRITElNCFather executes for a IIDIBlt. ');
VIElD_(JlU(ErrorGode,FfLSE); (* let son lU'l *)

Eft);
IRITE('K(ill S(uspend A(otivate I(nfo');
READLN(Answer);
CASE Answer (F

'K', "k": KIll_PlUESS(Errol'COde,Proo_Id);
·S·, 's': SlJSPEN)_PRIlESS(ErrorCode,Proo_Id, TRlE (* suspend

fcnily *»;
'A', 'a': ACTIVATE_PROCESS(ErroI'Code,PI'oo_Id, TRl£ (it activate

fcnily it»;
'I', 'i': BEGIN
Itt=O JJIIXESS(ElTOlCOde, Proo _Id, InfO_Reo);
IRITElN('SOO"s nane 1s ',Info_Rec.~ttWame);
EtI);

00;
IF (Erro1'COde<>0) TI£N

IRITElNCError " ... ErrorCOde,' wrilYJ process .-.agene It ••);

The program son Is:
PR£DW1 son;
USES (*$U Source:Syscall.(l)j*) sy5Call;
VAH ErrorCOde : INTEGER;

nAIl :NaneString;
BEGIN

.alE TRlE 00
BEGIN

WU1B.N(·son executes for a IIDIBlt ••);
VIElD_mJ(Errol'COde,FfLSE);(*let father process lUl*)

00;
Eft).

3-6

cperatlng System Reference ManIIaJ Processes

3.8 PrOcess system calls
This section describeS the ~rating System calls that pertain to process
control. A summary Of all the qJeratlng system calls can be found in
Appendix A. The following special types are used in process-control calls:

Patt'nIIE := SlRIN2[255];
Nanestrirg = SlRIN:;[20);
P s eventblock := "s eventblock;
s-eV'entblock = T event text;
T=event_text = may [O •• size_etext] of 1~1nt;
ProoInfoRec = record
~ : pattnJIe;
QlOO8l_id : long1nt;
father _id : It:X1gint;
priority : 1 •• 255;
state : (pactive, psuspelmi .. pwa1ting);
data in : boolecll
end;-

3-7

t:perating System Reference Mantlal

3.8.1 MAKE_PRoc:ESS Process System can

MAKEJ'ROC'ESS (Var ErrtUn:lnteger;
Var Proc_Id:longlnt;
Var Pl'Oc:t'ile: Patt"flcloo;

Processes

Var EntryNale:NclJBString; (it NaEString = STRING[20] it)
Evnt_Chn_Reft«.ln:lnteger)

ErrNum:
Proc Id:
ProgFile:
EntryNalOO:
Evnt_Chn_RefNum:

Error indicator
Process identifier (globally unique)
Process file name
Program entry point
Communication channel between calling
process and created process

A son process is created when another process ... the father process ... calls
MAKE_PROCEss. The son process executes the program identified by the
pathname in t>rocj=ile. If t>rocj=ile is a null character string... the program name
of the father process is used. A globally unique identifier for the son process
is returned in Proc_Id.
Evnt_Ctrt_RefNtm Is a local event channel supplied by the father process.
Event channels are discussed in Chapter 5. The ~erating System uses the
event channel Identlfled by Evnt_Oln_RefNlm to send the father process
events regarding the son process (for example ... SYS_S()'.J_ TERM~ If
Evnt_Ctrt_Refl\lm Is zero" the father process Is not informed when such
events are prodUCed.
EntryNcme, if non-null, specifies the program entry point where execution is
to begIn. Because alternate entry points have not yet been defined for
Pascal, this parameter is currently ignored.
My error encountered durIng process creation Is reported In EI11"Un

3-8

[peJC1tfng Systen'J Reference fvlanUal

3.82 TERMINATE_PRCCESS Process System Call

TERMINATE JlRlnSS(Var ErrtUl: Integer;
Event_ptr:P_s_eventblk)

ErrNum: Error indicator
Event_ptr: Information sent to process's creator

Prot.;·esses

A process can be ended by TERMINATE _ PRCCESS. This call causes a
SYS _ TERMINATE exception to be signaled for the calling process and for all
of the processes it has created. The process can declare Its own
SYS _TERMINATE exception handler to handle whatever cleanup it needs to do
before it Is actually terminated by the system. When the terminate exception
handler is entered, the exception information block contains a longlnt that
describes the cause of the process termination:

Excep_Datc(O] - 0 Process called TERMINATE_PROCESS.

1 Process executed the 'Ef\I).· statement.
2 Process called KILL_PROCESS on Itself.
3 Some other process called KILL_PROCESS on the

terminating process.
4 Father process Is terminatlng.
5 Process made an invalid system call (that Is, an

unknown call~
6 Process made a system call wIth an invalid ErrNlm

parameter address.
7 Process aborted due to an error whlle trying to swap

in a code or data segment
8 Process exceeded Its maximum specified stack size.
9 Process aborted due to possible lockup of the system

by a data space exceedIng physical memory size.
10 Process aborted due to a parity error.

There are an additional twenty-siX errors that can be signaled. The entire list
Is shown at the begInning of Appendix A.
If the terminating process was created with a communication channel, a
SYS_S(]\C TERM event is sent to the termInating process's father. The
terminating process can specify the text of the SYS_SCI',t TERM with the
Event_Ptr parameter. Note that the first (O'th) longlnt of the event text Is
reserved by the system. When the event Is sent to the father, the OS places
the termInation cause Of the son process In the fIrst longlnl ThIs Is the same
termination cause that was supplied to the terminating process 1 tsel f In the

3-9

qJeretlng SjlStem Reference MantIaJ Processes

SYS_TERMINATE exception information block. Any user-supplled data in the
first lorvnt of the event text is overwritten.
If a process specifies an event to be sent in the lERMINATE_~SS call
but the process was created withOUt a local event channel, no event is sent to
the father.
If the process was created wIth a local event cnannel, an event Is sent to the
father if the process calls TERMlNATE_PROOESS with a n11 Event_Ptt or if
the process terminates by a means other than callIng lERMINA lEJ>R(XJE5S.
The event contains the termination cause in the first longlnt and zeroes in the
remaining event text.
P _s_eventblk Is a pointer to s_eventblk, defined as:

m.8T size_etext = 9; (* event text size - 40 bytes *)
TYPE t_event_text = MRAV [0 •• slze_etext] (F LongInt;

s_eventblk = t_everlt_text;

If a process calls lERMINATE_~SS twice, the q>eratlng System forces it
to terminate even if it has disabled the terminate exception.

3-10

t:perating System Reference Manual

3.8.3 IN=O _ma::::ESS Process System call

Itf='O_PROCESS (Var ErrI'bI:lnteger;
PrOCLld : Longlnt;

Var Proc_Info:ProclnfoRec);

ErrNum: Error indicator
Proc Id: Global identifier of process

Processes

Proc~)nfo: Information about the process identified by
Proc_Id

A process can call IN='O_PRo:::::ESS to get a variety of information about any
process known to the ~erating System. Use the function MY _10 to get the
Proc_Id of the calling process.
ProcInfoRec is defined as:

TYPE ProclnfoRec = REcmD
~tt1'lcIE :PattTlclE;
GIObal_id : Longint;
Priority :1. .255;
state : (PAct1 ve, PSusperlded, PWCl1 ting);
oata in :Boolean

Ettl; -

Data_In InaIcates whether the data space of the process is currently In
memory.
The procedure on the next page gets information about a process and displays
some of it.

3-11

t:peratlng System Reference Manual

PROCEDlft: Display _Info(Proc_Id :L£NiINT);
VAA ErrorCOde: INTEGER;

Info Roo : ProcInfoRec;
BEGIN -

Itt="o_PROCESS(ErrorGode, PrO(LId, Info_ReG);
IF (ErrorDode=lOO) THEN

IRITELN("Attempt to display info aboUt nonexistent
process. I)

ELSE
BEGIN

WITH Info Rec DO
BEGIN -

IRITELN(' program nanE: ',PmFclthNclle);
IRITELN(' global id: I, Global_id);
.uTELN(' priority: I, priority);
IRITE(' state: I);
CASE State (F

PActi ve: IRlTELN(I active I);
PSuspended: MUffiN(I suspended I);
Plaiting: IRITELN('waiting')

EN)
EN)

EN)
END;

3-12

Processes

cperatfng System Reference Manual

3.8.4 KILL_PRo:::ESS Process System Call

KILLJJROCESS (Var ErrNlln:lnteger;
Proc_Id:Longlnt)

ErrNum:
Proc_Id:

Error indicator
Process to be killed

Processes

KILL_PROCESS kills the process referred to by Proc_Id and all of the
processes in its sUbtree. The actual termination of the process does not occur
until the process is in one of the following states:

• Executing in user mode.

• Stopped due to a SUSPENJ _PRo:::ESS call.

• Stopped due to a DELAY _ n~ call.

• Stopped due to a WAIT_EVENT _ Ct-N or SEN) _EVENT _a-N call, or
READ_DATA or WRITE_DATA to a pipe.

3-13

I:perating System Reference Manual

3.8.5 ~_PRo::ESS Process System Call

StJSPEN)-'JI~SS (var ErrfUl:lnteger;
Proc_Id:loogInt;
SUspyam11y:Boolea1)

ErrNum: Error indicators
proc_Id: Process to be suspended

Processes

Susp_Family: If true, suspend the entire process subtree

~ _PROCESS allows a process to suspend (block) any process In the
system. The actual suspension does not occur until the process referred to by
Proc_Id is in one of the fOllowing states:

• Executing in user mode
• Stopped due to a DELAY _ TIfvE call
• Stopped due to a WAIT_EVENT _ct-N call

Neither expiration of the delay time nor receipt of the awaited event causes
a suspended process to resume execution. SUSPEI\O _ PRo::ESS is the only
direct way to block a process. Processes, however, can become blocked durIng
I/O, by the timer (see OElAY _TIM:), or for many other reasons.
If SUSpJcm11y Is true, the ll>eratlng System suspends both the process
referred to by Proc_ld and all of its descendents. If SUSp_Fcmily Is false,
only the process identified by Proc_Id is suspended.

3-14

qJeJCJtlng System Reference Hantlsl

3.8.6 ACTIVATE_PROCESS Process System Call

ACTIVATEJJROCESS{Var ErrtUl: Integer;
Proc_Id :longInt;
Act_Family : Boolean)

ErrNum: Error indicator
Proc Id: Process to be activated

Processes

Act_Family: If true, activate the entire process SUbtree

To awaken a suspended process, call ACTIVATE_PR«£ES5. A process can
activate any other process in the system. Note that ACTlVATE_PRCCESS can
awaken only a suspended process. If the process is blocked for some other
reason, ACTlVAlE_PRoc:ESS cannot unblocK it. If Act_Fcmlly is true,
ACTIVATE_PROCESS also activates all the descendents of the process referred
to by Proc_Id.

3-15

(iJeratlng System Reference Manual

3.8.7 SETPRICRITY _PRo::::ESS Process System Call

SETPRI(IUTV JJROCESS(Var ErrtUn: Integer;
Proc_Id:loogInt;
Ne __ Priority:Integer)

ErrNum: Error indicator
Proc_Id: Glooal id of process
New_Priority: Process·s new priority number

Processes

SETPRICRITY _PRoc:ESS changes the schedullng priority of the process
referred to by Proo_ld to New_Priority. The priority value must be between 1
and 225. (~eratlng System processes execute with priori ties between 226
and 255.) The higher the priority, the more llkely the process is to be allowed
to execute.

3-16

qJerating System Reference Hantlal

3.8.8 YIELD_CPU Process System Call

YIElO_CPU(Var ErrNum:lnteger;
To_Any:Boolem)

ErrNum: Error indication
TO_Any: Vield to any process, or only higher or equal

priority

Processes

Background processes should use YIELD_CPU often to allow other processes to
execute when they need to. Successive yielOs by processes of the same
priority result in a "round robin" scheduling of the processes. If To_Any is
true, YIELD_CPU causes the calling process to yield the CPU to any other
ready process. If To_Any is false, YIELD_a:u causes the calling process to
give the CPU to any other ready-to-execute process with an equal or higher
priority. If no process meets the To_Any criterion, the calling process simply
continues execution.

3-17

t:peratJng System Reference Mantlal

3.8.9 MY _10 Process System Call
t1V_ID:Longlnt

Processes

MY _ID is a function that returns the unique glObal identifier (a longlnt) of the
call1ng process. A process can use MY _10 to perform process handUng calls
on itself.
For example:

setPrlorlty_Prooess(Errtt.lQ, My_Id, 100)

sets the priority of the calling process to 100.

3-18

419-A

Chapter 4
Memory Management

4..1 [)ata~ts ••• 4-1

lL2 Tt1e Logical [)ata Seg rtel1t tol.I1lber .. 4-1

4.3 SI'lare(j [)ata Se{J'nerlts ••• 4-2

lL4 PrIvate llata Segrnerlts •• 4-2

4..5 Q)deSeg1etts ... 4-2

4..6 ~ ••• 4-2

4..7 tw1eITloryl'1ar.agefl8ttS}'Stefnc:aJ.ls .. 4-3

4.7.1
4.7.2
4.7.3
4.7.4
4.7.5
4.7.6
4.7.7
4.7.8

M,AJ<f OAT ASEG •••••••••.••••...••..••••••••••••••••.•.••.•.••••.••••..••••••.•••• 4-4
KILL OAT ASEG ... 4-6
CPEN-OATASEG .. 4-7
CLosE' OAT ASEG ... 4-8
FLUSI-i- OAT ASEG .. 4-9
SIZE DATASEG .. 4-10
II'FO-OATASEG ... 4-11
If',F'O - L[)SI\I .. 4-12

4.7.9 II'oFO-A[)[)J<ESS •••.•••••••••••••••••••• 4-13
4.7.10 I'1EM-II'-F'O ... 4-14
4.7.11 SET~SS DATASEG ... 4-15
4.7.12 BII\O_DATASEGandl..Jt'eIND_DATASEG 4-16

Memory Management

Every process has a set of code segments and data segments which are In
physical memory when they are used. The logical address used by the process
must be translated into the physical address used by the memory controller.
This function is handled by the memory management unit (MMU~

4.1 oata SEgnents
Each process has a data segment that the q>erating System automatically
allocates to it for use as a staCk. The stack segment's Internal structures are
managed by the hardware and the q>eratIng System.
A process can acquire additional data segments for uses such as heaps and
interprocess communication. These additional data segments can be private
(or local) data segments or shared data segments. Private data segments
can be accessed only by the creating process. When the process terminates"
any private data segments still in existence are destroyed. SfJared data
segments can be accessed by any process that opens those segments.
The qlerating System requires that data segments be in physical memory
before the data are referencecJ. The Scheduler automatically loacJs all of the
data segments that the program says it needs. It is the responsibl11ty of the
programmer to ensure that the program declares all Its needs by assocIating
itself with the needed data segments before they are needed.
This process of association is called binding. A program can bind a data
segment to itself In several ways. When a program creates a data segment by
using the MAKE_DATPSEG call, the segment is automatically opened and
bound to the program. If a program needs to open a segment that was
created by another program" the CPEN_DATPSEG call is used. That call binds
the segment to the calling process" as well as opening the segment for the
process. Since there may be times when a process needs to use more data
segments than can be bound at one time, the LN3INJ_DATASEG call Is
provided to unbind the data segment without closing it. The program can then
use BIN)_DATASEG to bind another data segment to the program.
The qlerating System views all data segments except the stack as linear
arrays of bytes. Therefore" allocation, access, and interpretation Of structures
within a data segment are the responsibility of the program.

4.2 TIle Logical Data 3egT1ent tQlt)er
The address space of a process allows up to 16 data segments bound to a
process at the same time, in addition to the stack. Each bound data segment
is associated with a specific region of the address space by means of a
Logical Data Segment Number (LDSN~ See Figure 3-1 for an illustration of
the address space of a process. While a data segment is bound to the process,
it Is said to be a member of the wortdng set of the process.

4-1

t:perating System Reference Manual MemorY Management

The process assocIates a data segment wIth a specIfic LDSN In the
MAKE_DATASEG or (pfN_DATASEG call.
The LDSN" which has a val1d range of 1 to 16" Is local to the calling process.
The process uses the LDSN to keep traCk of where a given data segment can
be found. More than one data segment can be associated with the same LDSN"
bUt only one such segment can be bound to a given LOSN at any instant and
thUs be a member of the working set of the process.

4.3 Shared Data SEgnents
Cooperating processes can share data segments. Shared segments cannot be
larger than 128 Kbytes In length. As wIth local data segments, the segment
oreator assIgns the segment a File System pathname. All processes that share
that data segment then use the same pathname. If the shared data segment
contains address pointers to data within the segment" the cooperating
processes must also use the same LDSN wIth the segment. ThIs ensures that
all logical data addresses referencing locations within the data segment are
consIstent for the processes sharing the segment. A shared data segment Is
permanent until explicitly killed by a process.

4.4 Private Data SEgnents
Data segments can also be private to a process. In this case" the maximum
size of the segment can be greater than 128 Kbytes. The actual maximum
size depends on the amount of physical memory in the machine and the
number of adjacent LOSNs available to map the segment. The process gives
the desired segment size and the base LDSN to map the segment. The
Memory Manager then uses ascending adjacent LDSNs to map successive 128
Kbyte chUnks of the segment. The process must ensure that enough
consecutive LDSNs are available to map the entire segment.
Suppose a process has a data segment already bound to LDSN 2. If the
program tries to bind a 256 Kbyte data segment to LDSN 1" the ~erat1ng
System returns an error because the 256 Kbyte segment needs two consecutive
free LDSNs. Instead" the program should bind the segment to LDSN 3 and the
system automatically also uses LOSN 4.

4.S COde SEgnents
Division of a program into multiple code segments (swapping units) is dictated
by the programmer through commands to the Compiler and Linker. The MMU
registers can map up to 106 code segments.

4.6 ~Ing
When a process executes" the following segments must be in physical memory:

• The current code segment
• All the data segments In the process working set (the stack and all bound

data segments)
The q>eraUng System ensures that this minimum set of segments is in physical
memory before the process is allowed to execute. If the program calls a
procedUre In a segment not in memory" a segment swap-in request is initiated.

4-2

qJeratlng System Reference Manual Memo.ry Management

In the sImplest case, thIs request only requIres the system to allocate a block
of physIcal memory and to read in the segment from the disk. In a worse
case, the request may requIre that other segments be swapped out fIrst to
free up suffIcient memory. A clock algorithm is used to determine which
segments to swap out or replace. This process Is InvIsible to the program.

4.7 Memory ~t System Calls
This section describes all the q>erating system calls that pertain to memory
management A summary of all the Q:lerating System calls can be found In
Appendix A The following special types are used in memory management
calls:

PattYlal1e = STRING [255];
Tdstype = (dS_Shared, dSJ>rlvate);
DslnfoRec = Record

mem_size:longlnt;
disc_size:longint;
fUIt}_qJen: integer;
lDSN: integer;
~:ooole<Jl;
presentf : boolean;
creatorf:boOl~
rwaccess : boolean;
SEg)tr: longint;
volnane:e nane;

end; -

E_naRe = string [32];

4-3

cpemtlng System Reference Manual

4..7.1 MAKE_DATASEG Memory Ma1agement System Call

t1AKE_OATASEG (var ErrtOn:lnteger;

ErrNum:

Var ~:PattTlclE;
tIem_Size, Oisk_S1ze:longInt;

Var Reft«.In:lnteger;
Var ~r : Longlnt;

ldsn: Integer
Ostype:Tdstype)

Error indicator
Segnare: Pathnare of data segment

MemolY Management

Nem Size:
Disk Size:
RefNum:

Bytes of memory to be allocated to data segment
Bytes on disk to be allocated for swapping segment
Identifier for data segment

SegPtr
Ldsn:
Dstype:

Address of data segment
Logical data segment number
Type of dataseg (shared or private)

MAKE_OAT ASEG creates the data segment identified by the pathname ...
seglaffie ... and opens it for immediate read-write access. seglaffie is a FUe
System pathname.

The parameter Mem_Slze determInes hOW many bytes Of maIn memory are
allocated to the segment. The actual allocation takes place in terms of
512-byte pages. If the data segment Is private (OStype Is dSJulvate) ...
Mem_Slze can be greater than 128 Kbytes ... but you must ensure that enough
consecutive LDSNs are free to map the enUre segment.

DIsk_Size determines the number of bytes of swapping space to be allocated
to the segment on disk. If Disk_Size Is less than t-1em_Size ... the segment
cannot be swapped out of main memory. In this case the segment is memory
resident untll it is killed or until its size in memory becomes less than or
equal to its Disk_Size (see SIZE_DATASEG). The appl1catlon programmer
should be aware of the serious performance implications of forCing a segment
to be memory resident Because the segment cannot be swapped out, a new
process may not be able to get all of its Working set into memory. To avoid
thraShIng, each applIcation should ensure that all of Its data segments are
swappable before it relinquishes the attention Of the processor.

The call1ng process assocIates a LogIcal Data Segment Number (LDSN) with
the data segment. If this LDSN Is bound to another data segment at the time
of the call ... the call returns an error.

Refi'lrn is returned by the system to be used in any further references to the
data segment. The q>erating System also returns segPtr ... an address pointer to
be used to reference the contents of the segment. segPtr poInts to the base
of the data segment.

My error cond1 tlons are returned In EfI1\tm.

4-4

qJerating System Reference Manual HemolY Management

When a data segment Is created, It Immediately becomes a member of the
working set of the calling process. You can use LteINJ_DATASEG to free
the LDSN.

4-5

q:Jeratlng system Reference Manual

4.72 KILL_DATASEG l'1emOry Malagement System Call

KILL_DATASEG (var ErrtOn:lnteger;
Var ~:Patl'n'lll!)

ErrNum: Error indicator
Segname: Name of data segment to be deleted

MemolY Management

When a process Is finished with a shared data segment, it can Issue a
KlLL_DATASEG call for that segment. (KILL_DATASEG cannot be used on a
private data segment.) If any process, inclUding the calling process, still has
the data segment open, the actual deallocatlon of the segment is delayed until
all processes have closed it (see a...OSE_DATASEG). During the interim periOd,
however" after a K1LL_DATASEG call has been issued but before the segment
is actually deallocated, no other process can open that segment.
KlLL_DAT~G does not affect the membership of the data segment In the
working set of the process. The RefNtm and ~ values are valid untll a
aJlSE_DATASEG call is issued.
01e Important note: normally" when a data segment is closed" the contents
are written to diSk as a fIle with the pathname associated wlth the data
segment. If, however, the program calls KlLL_DATASEG on the data segment
before clos1ng it, the contents of the data segment are not written to disk and
are lost when the segment is closed.

4-6

cperatlng System Refemnce Manual

4.7.3 CPEN_DATASEG Memory McIlagement System Call

(lJEN_DATASEG (var ErrtUn:Integer;
Var ~:Pa'tl'1'lclE;
Var ReftOn:Integer;
Var ~r:LmgInt;

Ldsn: Integer)

ErrNum: Error indicator
Segnarre: Narre of data segrrent to be opened
RefNum: Identifier for data segment

MemoIY Management

SegPtr Pointer to contents of data segment
Ldsn: Logical data segment nuntler

A process can open an existing shared data segment with lPEN_DATASEG.
The calling process must supply the name of the data segment (Seglcme) and
the Logical Data segment Number to be associated with it The LDSN given
must not have a data segment currently bound to it. The segment's name is
determined by the process that creates the data segment; it cannot be nUll.
The qrerating System returns both Re1N.rn, an identifier for the calling
process to use In future references to the data segment .. and 8e<f'tr .. an
address poInter used to reference the contents of the segment.
When a data segment is opened, it immediately becomes a member of the
working set of the calUng process. The access mode of the newly opened
segment is Readonly. You can use SETACCESS_DATASEG to change the
access rights to Readwrlte. You can use lN3l1\D_DATASEG to free the
LDSN.
You cannot use CPEN on a prIvate data segment, sInce callIng a...OSE on a
private data segment deletes It.

4-7

tperatlng System Reference /V1anlIal

4.7.4 a...rnE_DATASEG Memory Ma1agement system can

CLOSE_DATASEG (Var ErrtUR:Integer;
Reftt.n: Integer)

ErrNum: Error indicator
RefNum: Data segment identifier

Cl..OSE_DATASEG termInates any use of Retl\k.m for data segment operations.
If the data segment is bound to a Logical Data Segment Number,
Q.JJSE_DATASEG frees that LDSN. The data segment Is removed from the
workIng set of the calling process. RefNlm Is made invalid. My references
to the data segment using the orIginal ~ wIll have unpredictable results.

If RefNl.m refers to a private data segment., QOSE_DATASEG also kills the
data segment, deallocatlng the memory and dIsk space used for the data
segment. If Ref1\km refers to a shared data segment, the contents of the
elata segment are wrItten to dIsk as If FLUSt-CDATASEG had been called. (If
KILL OAT ASEG Is called before a..OSE OAT ASEG, the contents of the data
segment are thrown away when the lase process closes the data segment.)

The followIng procedUre sets up a heap for LisaGraf using the memory
management calls:

Pf«lRllRE Inl tOat~OrLisaGraf (var ErroI'COde: integer);
CONST HeapSize=16384; (* 16 KBytes for graphios heap *)

DlSkSlze=16384;
VAR HeapBuf:lONlINT; (* pointer to heap for lisaGraf *)

GrafHeap: Pattf&oo; (* data segnent path nane *)
Heap_Refrun:INTEGER; (* refrun for heap data seg *)

BEGIN
GrafHeap:='grafheap";
(llEN _DATASEG(Errol'Code, GrafHeap, Heap _ Refnum, HeapBuf, 1);
IF (Errorcooe<>O) TI-EN
BEGIN

WRITElN('lilable to open', Grafheap, 'Error Is " Errorcooe)
END
ElSE

END;

InltHeap(POINTER(HeapBuf),POINTER(HeapBuf+HeapSlze),
~rror);

4-8

QJeratlng System Reference Manual

4.7.5 FLUSf-LDATASEG Memory Mcnagement System Call

FlUSf-LOATASEG (Var ErrtUn:lnteger;
RefNtJn:lnteger)

ErrNum: Error indicator
RefNum: Data segment identifier

MemoJy Management

FLUSH_DATASEG writes the contents of the data segment identified by
Re1Nlm to the disk. (Note that Cl..OSE_DATASEG automatically flushes the
data segment before closing it, unless KILL_DATASEG was called first.) This
call has no effect upon the memory residence or binding of the data segment.

4-9

cperat/ng system Reference Manual

4.7.6 SIZE_DAT~G Memory Mcmgement System Call

SIZE_OATASEG (Var ErrtOn:Integer;

ErrNum:
RefNum:

Refrun: Integer;
DeltaMemSize:LongInt;

Var Nell1emSlze : LoogInt;
DeltaDlSkSlze:LongInt;

Var NelOiskSlze:LongInt)

Error indicator
Data segment identifier

MemolY Management

Deltat1emSize: Amount in bytes of change in memory
allocation

NewHemSize:
DeltaoiskSize:
NewDiskSize:

New actual size of segment in memory
Amount in bytes of change in disk allocation
New actual disk (swapping) allocation

SIZE_DATASEG changes the memory and/or disk space allocations of the data
segment referred to by RefNlm. Both DeltaMemSlze and DeltaDlSkSize can
be either positive, negative, or zero. The changes j to the data segment take
place at the high end of the segment and do not destroy the contents of the
segment, unless data are lost in shrinking the segment. Because the actual
allocation is done in terms of pages (S12-byte blOCkS), the NewMemSI2e and
NewOiskSize returned by SIZE_DATASEG may be larger than the old size plus
delta size of the respective areas.
If the NewOlskSize is less than the NewfVIemS1ze, the segment cannot be
swapped out of memory. The appllcat10n programmer should be aware of the
serious performance implications of forcing a segment to be memory resident.
Because the segment cannot be swapped out, a new process may not be able
to get all of its working set into memory. To avoid thrashing, each
application should ensure that all of its data segments are swappable before It
rellnqulshes the attention of the processor.
If the necessary adjacent LDSNs are avallable, SIZE_DATASEG can increase
the size of a private data segment beyond 128 Kbytes.

4-10

qJerat/ng S)'Stem Reference ManuaJ

4.7.7 N=O_DATASEG MemoJy Mauagemellt System call

IW'O_DATASEG (var ErrtUn:Integer;
Reftt.ln: Integer;

Var Dslnfo:DsInfoRec)

ErrNUm: Error indicator
RefNum: Identifier of data segment
DsInfo: AttribUtes of data segment

MemoIY Management

II\FO_DATASEG returns Information abOUt a data segment to the calling
process. The structure of the OSInfoRec record is:

REaR)
tleoLsize:longInt (* Bytes of IERDry allocated to data segEnt *);
Disc_Slze:loogInt (* ByteS of diSk space allocated to segJBlt *);
tt.IItqlen: Integer (* DJrrent rumer Of processes with segBlt open *);
ldsn:Integer (* lOSN for segEnt binding *);
Bc::M.n.F:Boolec.l (* True if segoent is bOt.rld to lDSN of calling proc *);
PresentF:Boolea1 (* True If segnent Is present In RelDry *);
creatorF:Boolecnn (* True if the calling process Is the creator *)

(* of the ~t *);
RIAOOess:Booleal (* True if the calling process has Irite access *)

(* to segment *)
EN>;

4-11

qJeratJng System Reference Manual

4.7.8 IN=O_lDSN Memory Marsgernerlt system Call

Itf=O_lDSN (Var Errtt.lA:lnteger;
Ldsn:Integer;

Var RefNum:Integer)

ErrNum: Error indicator
Ldsn: Logical data segnent nUflt)er
RefNum: Data segroont identifier

MemolY Management

If\FO_LDSN returns the refnum of the data segment currently boUnd to LdSn.
You can then use IN=O_DATASEG to get information about that data segment.
If the LDSN specified is not currently bound to a data segment, the refnum
returned is -1.

4-12

cperat/ng System Reference Manual

4.7.9 II'FO_PlX:RESS t-1emOry Managemel'lt System Call

Irt=O_IVXH:SS (var ErrtUI: Integer;
Address:Longlnt;

Var RefNum:lnteger)

ErrNum: Error indicator

HeInoI}' Management

Address: The address about Which the program needs information
RefNum: Data segment identifier

ThIs call returns the refnum of the currently bound data segment that
contaIns the address given.
If no data segment that contaIns the address given Is currently bOUnd to the
callIng process, an error IndIcation is returned in ErrI'l.m

4-13

qJeratJng System Reference fvIantJaJ

4..7.10 M:M_JN=O Memory Mooagement system Call

tEtCItf=O (var Erl'fUlt:Integer;
Var SEpspace;

Dataspace:
cur COdeSlze;
Hax:COdeslze:Longlnt)

ErrNUm: Error indicator
Swapspace: Amount, in bytes, of swappable system memory

available to the calling process
Dataspace: Amount, in bytes, of system memory that the

calling process needs for its bOUnd data areas,
inclUding the process stacK and the shared
intrinsic data segment

cur_COdesize: Size, in bytes, of the calling segment
Max_codesize: Size, in bytes, of the largest code segnent

within the address space of the calling process
This call retrieves Information about the memory resources used by the call1ng
process.

4-14

cperating System Reference Manual MemolY Management

4.7.11 SETACCESS_DATASEG tw1emory Ma1agement System call

SETACCESS_DATASEG (Var ErrNun:lnteger;
Ref Nun: Integer;
Readally:Booleal)

ErrNum: Error indicator
RefNum: Data segrrent identifier
Readonly: Access lOOde

A process can control the kinds of access it Is allowed to exercise on a data
segment with the SETACCESS_DATASEG call. Refrun is the identifier for
the data segment. If Readonly Is true, an attempt by the process to write to
the data segment results in an address error exception condition. To get
readwrite access, set ReadOOly to false.

4-15

lPeratJng System Reference Manual MemolY Management

4.7.12 BII'V_DATASEG CIld LteNJ_DATASEG Memory Malagement System calls

BIND_DATASEG(Var ErrNUm:Integer;
Reftt.ln: Integer)

tJeIND_DATASEG(Var ErrtUn:Integer;
Rem.In: Integer)

ErrNum: Error indicator
RefNum: Data segment identifier

BINJ_DATASEG binds the data segment referred to by RefNU'n to its
associated Logical Data Segment Number(s~ LteII'V _OAT ASEG unbinds the
data segment from its LDSNs. BII'V_DATASEG causes the data segment to
become a member of the current working set. At the time of the
BINJ_DATASEG call, the necessary LDSNs must not be bound to a different,
data segment. l..N3I1'V_DATASEG frees the associated LDSNs. A reference to
the contents of an unbound segment gives unpredictable results.
(PEN DAT ASEG and MAKE OAT ASEG define Which LDSNs are associated
with a given data segment. -

4-16

1-0~20-A

Chapter 5
Exceptions and Events

5.1 EXCeJ)tlons •.••.•••••••••••••••.•.•••.••••••••••••••••••••••••••••••••••.•••••••••••••••.•••••••••• 5-1

52 s~ ExceJ:rt.l0llS •.••••••••••••••••••••••••••••.•••••.•••••••••••••••••••••••••• 5-2

5.3 EXCE!J)tloo I-Ialdlers ••••.•••••••.••••••••••••••••••••••••••••••••.•.•••••••••••••••••••••••••• 5-2

SA EverlU •••••••••••••••••.•.••••.••.•.••••.••••.••••••••••.•.•.•••.•••.•.•••••.•••••••••.•••••••••• 5-5

5.5 Everlt c::tlarIlels •••.•••••.•••••••• 5-5

5.6 TIle system ClOCk •••.•••••.•••••••••••••••••••••••• 5-10

5.7 EXCE!J)tloo fVB.ageI.81t system C8lls ... 5-10

5.7.1 [)ECLAAE EXCEP I-IDL ... 5-11
5.7.2 DISABLE EXCEP ::: .. 5-12
5.7.3 EN,ABLE -EXCEP .. 5-13
5.7.4 Jt'-IFO EX"CEP •••••••••••••.••• 5-14
5.7.5 SIGI\W.. EXCEP ... 5-15
5.7.6 FLUSH_EXCEP .. 5-16

5.8 Eveflt 1'1cI tager. tei It system calls ... 5-17

5.8.1 MPJ'<E_EVE'NT _CI-N ... 5-18
5.8.2 KILL EVENT Cf-N c .. 5-19
5.8.3 CJ>EN- EVE'NT- Cf-N ••.•.•.•.••••••.•••••••.••••.••••...••••.••.•.••.••••.•.•••••••• 5-20
5.8.4 CLooE' E'lE:NT Cf-N ... 5-21
5.8.5 INFO EVE'NT CHN ... 5-22
5.8.6 WAIT E'iE:NT CHN .. 5-23
5.8.7 FLLISFt EVE'NT CI-f'.I .. 5-25
5.8.8 SEi'O _EVENT _ Ct-N .. 5-26

5.9 ClOCk system (JaIls •••••••••••••••••••••••••••.•••••.••••••••••••••••.••••••••••••••••••••• 5-27

5.9.1 ClE:LAY TItvE .. 5-28
5.9.2 GET TI'ME ... 5-29
5.9.3 SETLOOAl.. TIf'1E: DIFF .. 5-30
5.9.4 ~RT_TlrvE .. : ... 5-31

Exceptions and Events

Processes have several ways to keep informed about the state of the system.
Normal process-to-process communication and synchronization employ pipes ..
shared data segments .. or events. Abnormal conditions .. InclUding those your
program may define .. employ exceptions (interrupts~ Exceptions are signals to
which the process can respond In a variety of ways under your control.

5.1 Exceptions
NOrmal execution of a process can be Interrupted by an exceptional condl tlon
(SUOh as dIvIsion by zero or referenoe to an invalid address~ Some error
conditions are trapped by the hardware and some by the system software. The
process itself can define and signal exceptions of your choice.
When an exception ooours .. the system first checks the state of the exception.
The three exception states are:

• Enabled
• Queued
• Ignored

If a system-defined exception Is enableq, the system looks for an associated
user-defined handler. If none is found .. the system invokes the default
exception handler .. which usually aborts the process that generated the
exception. If a user-defined exception is enabled .. the system invokes the
associated user-defined exception handler. You create a new exception by
declaring and enabling a handler for it.
If the state of the exceptlon Is qllellelt the exception Is placed on a queue.
When the exception Is subsequently enabled .. the queue is examined and the
appropriate exception handler Is Invoked. Processes can flUSh the exception
queue.
If the state of the exception is jgnoreq, the system detects the occurrence of
the exception .. but the exception is neither honored nor queued. Note that
ignoring a system-defined exception has uncertain effects. Although you can
cause the system to ignore even the SYS _ TERMINATE exception .. that
capability is provided so that your program can clean up before terminating.
You cannot set your program to ignore fatal erroIS.
Invocation of the exception handler causes the Scheduler to run .. so it is
possible for another process to run between the signaling of the exception and
the execution of the exception handler.

5-1

cperatlng System Reference Manual Exceptions and Events

52 System-Deflned ExcepUons
Certain exceptions are predefined by the q>erating System. These inclUde:

• Division by zero (SYS_ZERO_DIV). The default handler aborts the process.
• Value out of bounds (that 1s~ range check error) or illegal string index

(SYS_ VALUEJlE)' The default handler aborts the process.
• Arithmetic overflow (SYS_OVERFLOW). The default handler aborts the

process.
• Process termination (SYS _ TERMINATE). This exception is signaled when a

process terminates~ or when there Is a bus error~ address error~ illegal
instruction~ privilege violation~ or 1111 emulator error. The default handler
does noth1ng. This exception Is different from the other system-defIned
exceptions in that the program always terminates as soon as the exception
occurs. In the case of other (non-fatal) errors~ the program is allowed to
continue until the exception is enabled.

Except where otherwise noted, these exceptions are fatal if they occur within
q>erating System code. The hardware exceptions for parity error~ spurious
interrupt~ and power failure are also fatal.

5.3 ExcepUm Henners
A user-defined exception handler can be declared for a specific exception.
This exception handler Is coded as a procedure but must follow certain
conventions. Each handler must have two input parameters: Environmentytr
and Data_Ptr. The ~erating system ensures that these pointers are valld
When the handler Is entered. Environrnent_Ptr points to an area In the stack
containing the interrupted environment: register contents .. condition flags~ and
program state. The handler can access this environment and can modify
everything except the program counter, register A7~ and the supervisor state
bit in the status register. Data_Ptr points to an area In the stack contaInIng
information about the specIfic exception.
Each exception handler must be defined at the global level of the process~
must return~ and cannot have any EXIT or global GOTO statements. Because
the qJerating System disables the exception before calling the exception
handler~ the handler should re-enable the exception before it returns.
If an exception handler for a given exception already exists when another
handler is declared for that exception, the old handler becomes dissociated
from the exception.
AA exception can occur during the execution of an exception handler. The
state of the exception determines whether it is honored,placed on a queue, or
ignored. If the second exception has the same name as the exception that is
currently being handled and its state is enabled~ a nested call to the exception
handler occurs. (The system always disables the exception before calling the
exception handler, however. Therefore, nested handler calling occurs only if
you explicitly enable the exception.)

5-2

cpemt/ng System Reference Manual Except/ons and Events

There Is an exception-occurred flag, Ex_OOCUrre(Cf .. for every declared
exception; it is set whenever the corresponding exception occurs. This flag
can be examined and reset using the II'FO_EXCEP system call. c:nce the flag
Is set .. it remains set until FLUSI-CEXCEP is called.
The following program fragment gives an example of exception handling.
PRa::::E£::l.RE Henner (Envln:nnent_Ptr:p_env_hlk;

Data_ptr-.p_ ex_data);
VAA EIl1'tm:INTEGER;
BEGIN
(itfnvlrorrnent_Ptr points to a recon2 containing the progrcm *)
(-counter CIld all registers. Data_Ptr points to an array of 12 *)
(*longInts that contain the event neader <nj text If this haldler *)
(*ls associated witll an event-call ctalnel (see belOW) *)

· ENPBLE_EXCEp(emun.excep_ncrne);

· EI"V;

BEGIN (-Main progrcrn*)

· Excep_ rane:-'ErdlfDoo';
DECLAAE_EXCEP J-D...(e~xcep_name)iHa1dler);

·
SIGNAL_EXCEP(ertrrun.excep_ncme~xcep_data);

At the time the exception handler is invoked for a SYS _TERMINATE
exception .. the stack is as shown in Figure 5-1.

5-3

cperatJng System Reference Mantia} Exceptions and Events

lOW add ress
LInk

program Counter

oata_Ptr ~

r-- Environment_Ptr

Terminate Flag

Exception Kind ~

Function Code (fc)
Access Address (aa) E xception Data Block

Instruction Register (SY S _TERMINATE Exception)

Staws Register
Program Counter

...
~ Program Counter Exc eptlon Environment Block

Status Register
00-07 and AO-A7

Link

Program Counter

nigh address

Figure 5-1
Stack at Exception HcJ1dler Invocation

The Exception Data Block given here reflects the state of the stack upon a
SYS_ TERMINATE exception. The Term_Ex_Data record (described in Appendix
A) gives the various forms the data block can take. The ExcepJ<lnd field (the
first, or Oth, longlnt) gives the cause of the exception. The status register and
program counter values in the data block reflect the true (current) state of
these values. The same data in the Environment block reflects the state of

5-4

t:perating System Reference M8f1lIsJ Exceptions and Events

these values at the time the exception was sIgnaled .. not the values at the
time the exception actually occurs.
For SYS_ZERO_DIV, SYS_VALUE_CXE, and SYS_OVERFLOW exceptions, the
Hard_EX_Data record descrIbed In Appendix A gIves the various forms that
the data block can take.
In the case of a bus or address error, the PC (program counter) can be 2 to 10
bytes beyond the current instruction. The PC and A7 cannot be modified by
the except10n handler.
When a disabled exception Is re-enabled, a queued exception may be signaled.
In this case, the exception environment reflects the state of the system at the
time the exception was re-enabled, not the time at which the exception
occurred.

5.4 Events
M event Is a piece of information sent by one process to another, generally
to help cooperating processes synChronize their act1vIt1es. An event Is sent
through a kind of pipe called an event channel. The event is a fixed-size
data block consisting of a header and some text. The header contains control
information, the identifier of the sending process, and the type of the event.
The header Is written by the system .. not the sender.. and Is readable by the
receiving process. The event text is written by the sender; its meaning is
defined by the sending and receiving processes.
There are several predefined system event types. The predefined type "user" Is
assIgned to all events not sent by the cperatlng System.

5.5 Event Chcn1els
Event channels can be viewed as higher-level pipes. O1e important difference
Is that event channels requIre fIxed-size data blocks, whereas pipes can
handle an arbitrary byte stream.
An event channel can be defIned globally or locally. A global event channel
has a glObally defined pathname catalogued In the File System and can be
used by any process. A local event channel, however, has no name and is
known only by the ~rat1ng System and the process that opened it. Local
event channels can be opened by user processes only as receIvers. A local
channel can be opened by the father process to receive system-generated
events pertaining to Its son.
There are two types of glObal and local event channels: event-walt and
event-call. If the receivIng process is not ready to receive the event, an
event-walt type Of event Channel queues an event sent to It. M event-call
type of event Channel, however, forces Its event on the process, In effect
treatIng the event as an exception. In that case, an exception name must be
given when the event-call event channel Is opened, and an exception handler
for that exception must be declared. If the process reading the event-call
channel Is suspended at the time the event Is sent, the event Is deI1vered
when the process becomes active.

s-s

t:peratlng System Refe/TlJl1Ct1 H8ntIaJ Exceptions and Events

When an event channel Is created, the (l)eratIng system preallocates enough
space to the channel for typlca11nterprocess communication. If
SEN:) _EVENT _Ct-N Is called when the channel dOeS not have enough space for
the event, the call1ng process Is blocked until enough space Is freed up.
If WAlT_EVENT_Ct-N Is called When the channel is empty, the calling process
Is blOCl<ed until an event arrives.
The following code fragments use event-wait channels to handle process
synchronization. q>eratIng System calls used In these program fragments are
dOcunented later In this chapter.
Process A:

.
ch1 raRe : = levent ctBT1el 11

•

exciption: = ": - - ,
receiver : = TRlE;
tPEN_EVENT_~ (errint, cm3la1E, refrunl., exception, receiver);
ch1_raRe : = 'event_ctBT1el_2':
receiver := FAlSE;
(FEN_EVENT _~ (errint, ch1_rane, refl'Ultl, exception, receiver);
.aitllst.length := 1;
waitlist.refrun[O) := reflUd.;
REPEAT

eventl.J)tr A .(0) := agreed_'4JtIl_V81ue;
interval. sec : = 0; (... send event iJmEdlately ...)
interval.1IISeC : = 0;
SENl_EVENT _~ (errint, refrua2, event1J)tr, interval, clktlne);
WAIT_EVENT_~ (errint, waitlist, refrutLsipl~ event2J)tr);

(.. processirYJ perfOl'lEd here ..)

.
lIfTIL All.Dcl1e;

5-6

t:peradng System Reference Manual

Process B:

.
em name : = 'event Chamel 21

•

exciptioo: = "; - - 6

receiver := TRlE;

Excepdons and Events

CPEN_EVENT J]fi (errint, Ch1_naE, refrutl, exceptioo, receiver);
em rane := levent Chamel 11•
receiver := fAlSE;- - ,
fPEN_EVENT_~ (errint, Chl_nane, reffUll, exceptioo, readver);
.ai tlist . length : = 1;
.aitlist.refnum(O] := refrutl;
REPEAT

event2,J)tr A
• [0] := agreed_~_value;

interval. sec : = 0; (.. sen;j event illlll8diately it)
interval.1IISeC : = 0;
WAIT_EVENT_~ (errint,.a1tlist, reffUl_sipling, eventl.J)tr);

(* process1nd perfOrmed here *)

SEN) _EVENT _CtW (errint, refrutl, event2J)tr, intervaL clktine);
lMTIL AllOone;

The order of execution of the two processes is the same regardless of the
process prlorltles. Process switCh always occurs at the WAIT_EVENT_CI-N
caU.
In the following example using event-call channels, process switch may occur
at different places in the programs. Process A calls YIELD_CPU, whiCh gives
the CPU to Process B only if Process B is ready to run.

5-7

qJeratJng System Reference MtnI8J

Process ~

PfUBlR: HEnJler(Env..,ptr:p_BW_blk;
Data...,Ptr:p_ex_data);

.
BEGIN

event2J)tr [0] := agreed_ttm_V8lue;

(* prooessirwJ perfOrB here *)

.
1nterval.sec := 0; (* send event ~atelY *)
interval.1ISeC :. 0;
SENl_EVENT_la (err1nt,,~ewnt2..Ptr,,1nterval, clktine);
to_any : = true;
VIElD_mJ (errlnt" to_SlY);

00;

BEGIN (. l18in progr.-)

1Ea..ARE_ElaEP _fill (errint, excep_naE_l, ilHandler);
CfYl raE : = "event chcnlel 1'·
exciption: = excepjaE_l; - "
receiver : = TRt£;
(FEN_EVENT_Dtf (errint, Chn_nane, refrunl, exception, receiver);
CfYl rae : = 'event chcnlel 20

•

receiver := FH..SE;- - ,
except1on: = •• ;
(FEN_EVENT_a.. (errint" Chn_rae, refn..2" exception, receiver);
SENl_EVENT_DM (errlnt,,1'8frI.IrL event2..:ptr, intervaL clkt1ne);
to_any : = true;
VIElD_mJ (err1nt" to_SlY);

5-8

cperatlng $)IStem Reference Manual Exceptions and Events

Process B:

PrOEIlR tIa1dler(ErlV.J)tr:p_env_blk;
Data...ptr:p_e~data);

.
BEGIN

event2J)tr''.[O] := agreed_t~'Lvalue;

(* processing perfOl'lEd here *)

.
Interval. sec : = 0; (* sero event Il11JEdlately *)
interval.1OSeC : = 0;
SErtl_EVENT_(}fl (err1nt, refrunl, event2...,ptr, IntervaL clktlne);
to any : = true;
YIElD_CRJ (errInt, to_CIly);

Eft);

.
BEGIN (-Main program *)

DEClARE_EXCEP_HDL (errint,excep_namej_l,~ler)
em·t1aIIB := °event Chcn1e1 1°·
exception:= excepjaE_l; - ,
receIver -= FPLSE;
exception:= ";
{PEN_EVENT -(}W (errInt, ctll_t'BE, refrUn1, exceptIon, receIver);
Chn flCIE : = • event Chcnlel 2';
receIver : = TRl.f:; - -
CPEN _EVENT _ ()fl (errint, em_name, refl'Ultl, exception, receiver);

.
00.

5-9

t:peratlng System Reference Manu8l Exceptions and Events

5.6 1lle System Clod<
A process can read the system clock time" convert it to local time" or delay
its own continuation until a given time. The year" month, day" hOUr" minute"
second" and millisecond are available from the clocK. The system clock Is set
up through the WOrkShOp snell. For more information" see the WOl1<shop user's
Guide for the Lisa.

5.7 Exceptlm MalIaQeI net It System calls
This section describes all the ~rating system calls that pertain to exception
management. A summary of all the ~rat1ng System calls can be found In
Appendix A. The following special types are used in exception management
calls:

5-10

cperatlng System ReFerence ManllaJ Exceptlons and Events

5.7.1 a:a...ARE_EXCEP -,-0. .. Exception Mmagement System Call
1I:Cl..ARE_EXCEP _K1 (Var ErrttJn:lnteger;

Var Excep_NaE:t_ex_rlaIE;
Entry_Polnt:LongAdr)

ErrNum: Error indicator
Excep_Narre: N~ of exception
Entry_Point: Address of exception handler

a:a...ARE_EXCEP -'''0 ... sets the q>eratlng System so that the occurrence of
the exception referred to by Excep J~cme causes the execution of the
exception handler at Entry_Point.
ExoepJ"'cme Is a character strIng name wIth up to 16 characters that Is
locally defIned In the process and known only to the process and the q>eratlng
System. If Entry_PoInt Is n11 and Exoep_Nm'Ie specIfies a system exception,
the system default exceptIon handler Is used. Any prevIously declared
exception handler Is dissocIated by thIs call. The exception I tsel f Is
automatically enabled.
If any Excep_Name exceptions are queued at the time of the
DEQ..ARE_EXCEP _HJL call, the exception is automatically enabled and the
queued exceptions are handled by the neWly declared handler.
You can call DECLARE_EXCEP _...a... with an exception handler address ofnl1
to dissociate your handler from the except1on. If there is no system handler
defined, the program that signals the exception receives an error 201.

5-11

t::peratJng system Reference Haf1lJ8J

5.72. DISABLE_EXCEP ExcepUon MaI.agemeI.t System can
OISABlE_EXCEP (Var Erltl.R:Integer;

Var Excep Ncme:t ex rune;
~:80019C1l) -

ErrNum: Error indicator

Exceptions and Events

Excep_Name: Name of exception to be disabled
Queue: Exception queuing flag

A process can expllclt1y dIsable the trappIng of an exception by callIng
DISABLE_EXCEP. ExcepJ-ene Is the name of the exception to be dIsabled.
If ~ Is true and an exception occurs, the exception Is queued and Is
handled when It Is enabled again. If Queue Is false, the exception Is Ignored.
When an exception handler Is entered, the state of the exception In question
Is automatically set to queued.
If an exception handler Is associated through tFEN_EVENT_a-N with an
event channel and DISABLE_EXCEP Is called for that exception, then:

• If Queue Is false, and if an event Is sent to the event channel by
SEN) EVENT Q-N" the SEI'D EVENT CH\I call succeeds" bUt it is
equlvSient to not calling SEN5_EVEN'f_a-N at all.

• If QJeue Is true, ana If an event Is sent to the event channel by
SEN) EVENT CI+I, the SEN) EVENT CI-N call succeeds and a call to
WAIT:EVENT:CI-N receIves the event:" thUs dequeulng the exception.

5-12

q;eratJng System Reference I'1InJaJ

5.7.3 ENABLE_EXCEP Exceptlon Mar.agelIBlt System Call

ENAELE_E)((E) (var Errtt.n:lnteger;
Var E~-rBII!:t_ex_l'BII!)

ErrNUm: Error indicator

ExceptJons a7d Events

Excep_Name: Name of exception to be enabled

ENABLE_EXCEP causes an exception to be handled again. Since the
qlerating System automatically disables an exception When its exception
handler is entered (see OJSABLE_EXCEP), the exception handler shOUld
explicitly re-enable the exception before it returns to the process.

5-13

t:peratfng system Reference Manual

5.7.4 IN=O_EXCEP ExcepUm Management system Call
ltEO_E)((EJ (var Errtt.:lnteger;

Var EXC8p_NcIne :t_ex_rBE;
Var EXcep_status:t_ex_sts)

ErrNUm: Error indicator
Excep_Nafre: Name of exception
EXDep_Status: Status of exception

Exceptions and Events

IN=O_EXCEP returns information abOut the exceptlon specified by
ExcepJ""ne. The parameter fxceJJ_ status Is a record containing information
aboUt the exception. ThIs record contains:

t ex sts = RECORD (* exception status *)
Ex_occurred_f:Boole8l;(ttexceptl00 occurred flag *)
Ex_state:t_ex_state; (* exception status *)
tULexcep:1nteger; (-no. Of exceptloos (JJeUeCJ *)
HdI_adr:LongacJr; (-exceptIon ts"dler's address *)

EN>;

()'\Ce EX_OOClJrreC:Cf has been set to true, only a call to FLUSI-CEXCEP can
set it to false.

5-14

qJerating system Refe.rence Manl/al

5.7.5 SIGNAL_EXCEP ExcepUon MCI.agelIBlt System call
SIlM..._E)C(Ep (Var ErrtUl:Integer;

Var Excep_NcIIe: t _ex_name;
Var ExcepJlata: t_ex_data)

ErrNum: Error indicator

Exceptions and Events

Excep_name: Narre of exception to be sigu3led
Excep_Oata: Information for exception handler

A process can signal the occurrence of an exception by calling
SIGNAL_EXCEP. The exception handler assooiated with ExcepJ\lclne is
entered. It Is paSSed ExcepJJata, a data area containing information aboUt
the nature and cause of the exception. The structure of this information area
Is:

array [O •• s1ze_eXdata] of Lmg1nt

SIGNAL_EXCEP can be used for user-defined exceptions and for testing
exception handlers defined to handle system-defined exceptions.

5-15

t:peratlng system Reference Manual

5.7.6 FLLS-CEXCEP Exception Mauagemeflt system Call

FlUStCEXCEP (Var ErltUD:lnteger;
Var Excep_NclRe: t _ex_name)

ErrNum: Error indicator

Exceptions and Events

Excep_Name: Name of exception WhOse queue is flushed

FLlS"LEXCEP clears out the queue assocIated wIth the exception
Excep_Ncme and resets Its "exception occurred" flag.

5-16

t:peratJng System Reference /V1cnJal ExceptJens and Events

5.8 Event to1auagement System Calls
This section describeS all too q:>eratlng System calls that pertain to event
management A stmmary of all the q>eraUng system calls can be found In
Appendix A. The fOllowing special types are used In event management calls:

Pattn:Jre = STRIt«2[255];
T_ex_nanB = SlRIN3[16];
T em sts = Record
- - cn"Ltype:dY'Lkind;

num_events:integer;
open_recv : integer;
operl_ send: integer;
ec _IKIE :patmalE;

em;
Ch'l_kind = (wit_ee, call_ec);
T .aitlist = Record
- lerYJth: integer;

refnum:array [0 •. 10J of integer;
end;

P r eventblk = Ar eventblk;
R-eVentblk = Rerold
- event header:t eheader;

event-text: t eVent text;
end;- - -

T eheader = Record
- sendjpid:longint;

event_type:longlnt;
ern;

T _event_text = array (0 .. 9] Of longint;
P s eventblk = AS eventblk;
S-eV"entblk = T event text;
TInestnp_interVal = Record

Tine roo = Record

sec: longint;
1IISeC: o •• 999;

end;

- year: integer;
day: 1. .366;
hoUr: -23 •• 23;
min.rte: -59 .. 59;
second:O •• 59;
msec:O •• 999;

end;

5-17

t:peratlng System Reference Manl/al

5.8.1 MAKE_EVENT_a-N Event MCltagemelit system Call

t'IAKE_EVENT_Dfl (Var ErrtUR:Integer;
var Event_D'rl_Nane :PattnJne)

ErrNum: Error indicator
Event_Chn_Name: Pathrlane of event channel

Exceptions and Events

MAKE_EVENT_a-N creates an event Channel with the name given in
Event_On_Ncme. The name must be a FHe System pathname; it cannot be
null.

5-18

qJerating system Reference Manual

5.8.2 K1LL_EVENT_Cf-N Event Mcrlagement System Call

KILL_EVENT_CHN (Var ErrNum:lnteger;
Var Event_ ctJl_ Ncme :Pa'tt1'lclle)

ErrNum: Error indicator

Exceptions and Events

Event_Chn_Nanne: Pathname of event channel

To delete an event channel, call KILL EVENT a-N. The actual deletion is
delayed until all processes using the event channel have closed it. In the
period between the KILL_EVENT _c::H\I call and the channel's actual deletion,
no processes can open it. A channel can be deleted by any process that
Knows the channel's name.

5-19

tperatlng System Reference Hanual

5.8.3 (pEN_EVENT _ ()-N Event Management System Call

(pEN_EVENT_Clfl (Var ErrNun:lnteger;
Var Event 01n Ncme:Pa~·
Var RefnUm:lnteger; ,

Excep _NanE: t _ex _.raoo;
Recelver:Boolean)

ErrNum: Error indicator

Exceptions and Events

Event Chn Name: PathnaJre of event charnel
RefNum: - Identifier of event channel
Excep_Name: Exception name, if any
Receiver: Access mode of calling process

CPEN_EVENT_CH\I opens an event channel and defines its attributes from ttle
process point of view. RefNlm is returned by the qJerating System to be
used in any further references to the channel.
Event_ct'Vl_Name determines whether the event channel is locally or globally
defined. If It Is a null string, the event channel is locally defined. If
Event_Chn_Name Is not nUll, it 1s the File System pathname of the channel.
Excep-'~cme determines whether the channel is an event-wait or event-call
channel. If it is a null string, the channel is of event-wait type. Otherwis.e,
the channel is an event-call channel and Excep_Ncme is the name of the
exception that is signaled when an event arrives in the channel. Excep._Name
must .be declared before its use in the CPEN_EVENT_ct-N call.
Receiver Is a Boolean value indIcatIng whether the process Is openIng the
channel as a sender (Receiver Is false) or a receiver (Receiver is true~ A
local channel (one wIth a null pathname) can be opened only to receive
events. Also, a call-type channel can only be opened as a receiver.

5-20

q;eratlng system Reference /'1anUal

5.8.4 CLOSE_EVENT_a-N Event Management System Call

CLOSE_EVENT_afl (Var ErrtU1:Integer;
ReflUn: Integer)

ErrNum: Error indicator

EMJeptJons and Events

RefNum: Identifier of event channel to be closed

CLOSE_EVENT_ct-N closes the event channel associated wIth Refl\lm. Any
events queued In the chamel remain there. The channel cannot be accessed
until 1 t 1s opened again.
If the channel has previously been killed with KILL_EVENT_Ct+.I, you cannot
open it after It has been closecl.
If the channel has not been killed, it can be opened by (PE~CEVENT_a-N.

S-21

cperatlng System Reference Manual

5.8.5 It~'O_EVENT _Cf-N Event Mal ~ It System Call

INFO_EVENT_CHN (var ErrNum:Integer;
RefIUn: Integer;

Var Chn_Info:t_Chn_stS)

ErrNum: Error indicator
RefNum: Identifier of event channel
Chn_Info: Status of event channel

Exceptions and Events

II\FO_EVENT_D-N gives a process information about an event channel. The
qJerating System returns a record, Chl_lnfO, with information pertaining to
the channel associated with Refi'Un

The definition of the type of the Ch1_lnfO record is:

t cITl sts =
- -RECCRl (* event Chamel status *)

ClTLtype:ChrLkind; (* wait_ec or call_ec *)
N 'Levents:Integer; (* nt.IItler of queued events *)
OperLrecv:lnteger; (* I'UltJer Of processes reading chcn1el *)
Open_send: integer; (* 00. Of processes sending to this

chcnlel *)
EC_naIle:pathname: (* event chamel name *)
EN);

5-22

qJerating System Reference Manual

5.8.6 WAlT_EVENT_~ Event Mcnlgement System Call

WAIT_EVENT_CHN (Var ErrNum:Integer;
Var ~it List:t waitlist;
Var RefNUm:lnteQer;

Event_ptr :p_r_eventblk)

ErrNum: Error indicator

Exceptions and Events

Wait List:
RefNum:
Event_Ptr:

Record with array of event channel refnums
Identifier of channel that had an event
Pointer to event data

WAlT_EVENT_CI-N puts the call1ng process in a waiting state pending the
arrival of an event in one of the specified channels. Walt_list is a pointer to
a Ust of event channel identifiers. When an event arrives in any of these
channels, the process is made ready to execute. RefN.rn identifies which
channel got the event, and Event_Ptr points to the event itself.
A process can walt for any Boolean combination of events. If it must walt
for any event from a set of channels (an (R condition), it should call
WAlT_EVENT_O+J with Walt_list containing the list of event channel
Identifiers. If .. on the other hand .. it must wait for all the events from a set
of channels (an AN) condition), then for each channel in the set,
WAlT_EVENT_CI-f\I should be called with Walt_list contaIning Just that
channel identifier.
The structure of t_ walUlst is:

REcmD
Length: Integer;
Refrun:Array[O .. slze_wsltllst] of Integer;

EI'D;

Event_Ptr is a pointer to a record containing the event header and the event
text. Its definition is:

P r eventblk = Ar eventblk;
R - eVentblk = Record
- event header:t eheader"

~t-ten:t event te~;
end;- - -

T etleader = Recoro
- serl(tpid: longint;

event_type:longlnt;
end;

T_event_ten = array [0 .. 9] of longlnt;
Senctpld is the process id of the sender.

5-23

QJeratlng System Reference Manual Exceptions and Events

Currently, the poss1ble event type values are:
1 Event sent by user process
2 - Event sent by system

When you receIve the SYS_SCl',CTERM event, the fIrst longlnt of the event
text contains the termination cause of the son process. The cause is same as
that gIven In the SYS_ TERMINATE exception gIven to the son process. The
rest of the event text can be filled by the son process.

If you call WAIT_EVENT_a-f\J on an event-call channel that has queued
events, the event is treated just like an event in an event-wait channel. If
WAIT_EVENT_a-f\J is called on an event-call channel that does not have any
queued events, an error Is returned.

5-24

qJeratJng System Reference ft-1anUal

5.8.7 FLUS'-LEVENT _ct-f\I Event Ma'lagement system Call

FLlSCEVENTjl-fl (var Errtt.ln:lnteger;
ReffUl:lnteger)

ErrNum: Error indicator

£'«:eptJons and Events

RefNum: Identifier of event channel to be flushed

FLUSI-'-EVENT_a-N clears out the specified event channel. All events
queued in the channel are removed. If FLUSt-'-EVENT_~ is called by a
sender, it has no effect.

5-25

QJeratlng System Reference MantIa}

5.8.8 SEf\I) _EVENT _ Cf-N Event MCllagement system Call

SENLEVENTJ1~ (Var ErrtUn:Integer;

ErrNum:
RefNum:
Event Ptr:
Interval:
Clktime:

Ref tUn: Integer;
Event_ptr :p_s_eventblk;
Interval: Tinestnp_interval;
Clkt1me:Time_rec)

Error indicator
Channel for event
Pointer to event data
Tiner for event
Time data for event

Exceptions and Events

SEf\D_EVENT_a-N sends an event to the channel specified by RefI'Un
Event_Ptr points to the event that is to be sent. The event data area
contains only the event text; the header is added by the system.
If the event Is of the event-wait type, the event Is queued. otherwise the
~erating System signals the corresponding exception for the process receiving
the event.
If the channel is opened by several senders, the receiver can sort the events
by the process identifier, which the qJerating System places in the event
header. Alternatively, the senders can place predefined identifiers, which
identify the sender, In the event text.
The Interval parameter indicates whether the event is a timed event.

I'IlTE

TImed events wIll not be supported In future releases of the ~eratlng
system. The InteIVal and ClI<time parameters will be Ignored In future
releases. If you want your software to be upward-compatible, always
set both fields of the Interval parameter to zero.

Tl~_lnterval Is a record contaIning a second and a mUl1second field. If
both fields are 0, the event is sent Immediately. If the second given is less
than 0, the millisecond field is ignored and the Time_reo record is used. If
the time in the Tlme_rec has already passed, the event is sent immediately.
If the millisecond field is greater than 0, and the second field is greater than
or equal to 0, the event is sent that number of seconds and m1lliseconds from
the present.
A process can time out a request to another process by sendlng Itself a timed
event and then waiting for the arrival of either the timed event or an event
IndIcating the request has been served. If the timed event Is receIved fIrst,
the request has timed out. A process can also time Its own progress by
perIodically sendIng itself a timed event through an event-call event Channel.

5-26

qJeratlng system Reference ManI/al Exveptlons and Events

5.9 ClOCk System calls
This section describes all the q>erating System calls that pertain to the clock.
A summary of all the ~erating System calls can be found in Appendix A.

The following special types are used in clock calls:

Tirestnp_interval = Record
sec: longint;
msec:O •• 999;

end;
Tire rec = Record

- year: integer;
day: 1. .366;
hOUr:-23 •• 23;
mirute: -59 .• 59;
second: o .. 59;
msec:O •• 999;

erx1;
Hour_range = -23 •• 23
Mioote_lCVlQ9 = -59 •. 59;

5-27

Q:Jeratlng System Reference Manual

5.9.1 DELAY_TIf"E ClOCk System can

DElAY_TItE (var Errtt.lR:lnteger;
Interval:Timestmp_interval;
Clktime:Time_rec)

ErrNum: Error indicator
Interval: Delay timer
Clktime: Time information

Exceptions and Events

CELAY _ TII'£ stops execution of the calling process for the number of seconds
and ml11lseconds specified in the Interval record. If this time period is zero,
DELAY _ TI~ has no effect. If the pertod Is less than zero, execution of the
process is delayed until the time specified by Clktlme.

5-28

cperatfng System Reference MantJal

5.92 GET _ TII"1: Clook System call

GET _ TItE (Var Errtun: Integer;
Var Sys_Tiae:Time_rec)

ErrNum: Error indicator
Sys_ Time: Time information

Exceptfons and Events

GET _ TII'£ returns the current system clock time in the record Sys_ Time. The
msec field of Sys_Tlme always contains a zero on return.

5-29

t:perating System Reference Manual

5.9.3 SET _LOCAL_ TIfYE_DIFF ClOCk System Call

SET_LOOAL_TItE_DIFF (Var ErrtUl:lnteger;
IbIr:Hour _1CI1ge;
Mlnute:Mlrute_range)

ErrNum: Error indicator

Exceptions and Events

Hour: Number of hours difference from the system clock
Minute: Number of minutes difference from the system clock

SET _LOCAL_ TJ(VE_DIFF informs the q:lerating System of the difference in
hours and minutes between the local time and the system clock. Hour and
Mlrute can be negative.

5-30

cperat/ng System Reference Manual

5.9.4 a:NVERT_TII'1:: ClOCk System can
CONVERT _ TItE (Var Errtun: Integer;

Var Sys_Tine:Tine_rec;
Var Local TillE: TillE rec;

TO_SYS:Boolea1)-

ErrNum: Error indicator
Sys_Time: system clock time
Local Tire: Local time
To_SYS: Direction of time conversion

Except/ons and Events

aNVERT _ TIJVE converts between local time and system clock time.
To_81$ is a Boolean value indicating in which direction the conversion is to
go. If TO_S1$ is true, the system takes the time data in Local_Time and puts
the corresponding system time in 81$_Tlme. If To_S1$ is false, the system
takes the t1me data In S1$_ Time and puts the corresponding local time In
Local_Time. Both time data areas contain the year, month, day, hour, minute,
second, and millisecond.

S-31

1421-A

Chapter 6
Configuration

6.1 ~guratlot'l System C8lls ••• 6-1

6.1.1 CMOS EQlJIPPED •••••••..•.•.•.•.••..•.••..•....•••....•••...•.•.•.•..•....••••..• 6-2
6.1.2 GET cCi\FIG N,AJVE .. 6-3
6.1.3 ~ .. :: •...•••.•••.•.•..•••.•••...•••...•...•...•.•.•••••...••..•.•....•.•..•...• 6-4

Configuration

Every Lisa system is configured using the Preferences tool. Preferences
places the configuration state of the system In a special part of the system's
memory called parameter metT1O/')i AlthOUgh parameter memory Is not
contained on a diSk, It is supplled with battery power so that the contents are
kept even when the system is turned off. The batteries are charged as long
as the Lisa is plugged In, even If the tI11t is powered off. If line power is
lost, the batterles will keep parameter memory secured for several hOUrs. In
addition, every time parameter memory is changed, a copy of the new data is
made on the boot diSk. If the contents of parameter memory are lost, this
diSk copy is automatically restored to parameter memory.
Since the devIces actually connected may dIffer from ttle confIguration stored
In parameter memory, three calls are provided that allow programs to request
Information abOUt tJ'le configuration of the system.

J\IJTE

configuration system Galls will be changed In future releases of the
Q3eratIng System. 00 not use these calls If you want your software to
be upward-compatible.

6.1 cont1lJ.11C1tlm system Calls
This section describes all the ~ratlng system calls that pertain to
configuration. A sunmary of all the Q'Jeratlng System calls can be found in
Appendix A. Special data types used by configuration calls are defined along
with the calls.

6-1

qJemtlng System Reference Manual

6.1.1 CARDS_EQUIPPED COOflpauon System call
CAIIlS_ECJJIPPED (var ErrM.a:lnteger;

Var In_Slot:Slot_array)

ErrNum: Error code
In_Slot: Identifies the types of cards configured

Conflgumtlon

Ttlis call returns an array ShOwing tne types of cards WhICh are In tne varIous
card slots.
The definition of Slot_anay is:

slot_array = array (1. .3] Of card_types;
where:

6-2

t:pe.l8t1ng System Reference I'18nIJ8J

6.12 GET_CXN=IG_NAIVE cmrtguratloo System can
GET_art=IG_tWt:: (var Emun:Integer;

Devpostn: Tports;
var Devt1iIIe :E_NclE)

Errnum: Error code
Devpostn: A port identifier
Devr'IaIIe : The name of the device attached to the port

COnfiguration

Ttlis call retums the name Of the deVice configured at the port given in
Devpostn. see (9DJ1'V(L for the defInItion of Tports. Type Ej8ne is
defined as:

E_NaIne = SlRINi [32];

6-3

qJeratlng system ReFerence I'1aV8J

6.1.3 CS:DlTVO... cont1patlon system Call

0StDll'V(I.. (var Er1'tUI:lnteger) : Tports

ErrNUm: Error COde
Tports: Identifies the port to Which the boot volune is attached

CS:DlTVO... Is a fl..l1CUon that returns the identifier for the port attached to
the boot volume. This port might not be the port configured for the boot
volume, since It is possible for the user to override the default boot. Note
that the port Identifier Is not the same as the device name. You can use
GET_ctN=IG_NAM: to find out the name of the device attached to the port.
Tports Is a set tnat has this definition:

Tports = (~tl1g, lOErtl1g, parallel,
slotl1, slotl2, slotl3, slot14,
slot2!, slot22, slot23, slot24,
slot3!, slot32, slot33, slot34,
ser1ala, ser1a1b, main console, al t console,
t_RlJUse, t_speaker, tjixtral, t_extia2, t_extra3);

6-4

Appendixes

A (llemtlng S,YStern Interface Ullt ... A-I

8 S,YStern-ReseJVe(J ExceJltlon "lames... •••••••.•••••.•. .••••••.•. ••.•••••••• ••••••••••••• 8-1

C S,YStern-ReseJVeC2 Evetlt T~ .. C-l

o Error t-1essages .. 0-1

E FS_»O Fields •.•...•.•......•.•.•...•••...•••••••.•.•.••..•••••••.•.•••...••..••.......••.••.. E-l

29-0422-A

Appendix A
Operating System Interface Unit

OOT syscall;
INTRINSIC;

INTERFACE

emsT

(- system call definitions unit -)

max eraE = 32'
max]lattnlne :;.' 255;

(- maxinun ler¥Jth of a file system ooject rae -)
(* max1nun length of a file system patmanB *)

max label size = 128;
len - exnarii = 16;
size_ext1ata :;. 11;

(- maximum size of a file label, in bytes *)
(* length of exception ncne *)
(* 43 bytes, exception data block shoUld haVe the

sane size as r_eventblk, received event blOCk *)

size etext :;. 9; (* event text size - 40 bytes *)
size=waitlist = 10; (* size of wait list - shoUld be same as reqptr_list *)

(* exception kind definitions for 'SYS_TERt1INATE' exceptim *)
call_tel'lft = 0; (* process called terminate-process *)
ended = 1; (* process executed 'end' stateEnt *)
self_killed :;. 2; (* process called kill-process on self *)
killed = 3; (* process was killed by CJ10ther process *)
fthr_term = 4; (* process's father is tel'lR1nating *)
bad_syscall :;. 5; (* process made invalid sys call - StJlcode bad *)
bad_er1't'Ul = 6; (* process pasSed bad address for errrun pam *)
swap_error = 7; (* process aborted we to code swap-in error -)
stk_overflow = 8; {* process exceeded max size (+ T m1) of stack *)
data_overflow = 9; (* process tried to exceed max data space size -)
parity_err = 10; (* process got a parity error .. i1e e)(OOUting *)

def diu zero
def -valUe 000
def-ovfW -
de()m._key
def_ratge
def _str_indeX

:;. 11;(* default handler for div zero exception was called *)
:;. 12; (* • for value 000 exception *)
= 13; (* • for overflow exception *)
= 14; (* • for tt1I key exception *)
= 15; (* • for I SYS_VALlE_(XIl I excep we to value lCI'lQe err *)
= 16; (* • for 'SYS_VAllE_(XIl1 excep due to string indeX err -)

A-I

qJeratJng system Reference Manual q;eratJng system Interface unit

bUs_error = 21;
addl'_error = 22;
111Q..1nst = 23;
priv_violation = 24;
line_lOl0 = 26;
line_llil = 27;

..-.expected_ex = 29;

div zero = 31;
valUe_oob = 32;
ovfw .. 33;
nlD1_key = 34;
value_nIlge = 35;
str_indeX = 36;

(* bUs error occurred
(* aJdress error occurred
(* Illegal Instruct 1m trap occurred
(* privilege violation trap occurred
(* line 1010 enulator occurred
(* line 1111 enulator occurred

(* CIl ..-.expected exception occurred

(* exception kind definitions for hardWare exceptim

(* excep kind for value 1'a1ge aro string 1Mex error
(* ttlte that these two cause ·SYS_VAlLEJlm· excep

(*RS-232*)
(-RS-232*)
(*RS-232*)
(*RS-232*)
(-RS-232*)
(-RS-232, tnm..E*)
(-RS-232*)
(*RS-232*)
(*RS-232*)
(*RS-232*)
(-RS-232*)
(tIPftlFILE*)
(-cD6l.E*)

*)
*)
*)
*)
*)
*)

*)

*)

*)
*)

dVPar1 ty = 1;
dVOJtDlR = 2;
dVOItXOO = 3;
dVOJtDelay = 4;
dVBaud = 5;
dVlnlait = 6;
dVIr1llR = 7;
dVInx(Jf = 8;
dVT~ = 9;
dVOiscon = 10;
dVO.I'ttbiS = 11;
dVErrStat = 15;
dVGetEvent = 16;
dVAUtol.f = 17;
dVDiskstat = 20;
dVOiskSpare .. 21;

(-RS-232, tnm..E, PARAlLEL PRINTER*) (-rot yet*)
(*DISKETTE, PllFILE*)
(*DISKE~ PROFILE*)

lYPE
pattrBne = string (lBX,J)8t1TaRe);
e_name = string (IBCetlElE);
namestrtng = str1ng [20];
procinfoReo .. record
P1'(Q)8tt1lame : patl'llaE;

glooal_id : longint;
father_ld : long1nt;
priority : 1 •• 255;
state : (pact1ve, psusperlded, pwa1t1ng);
data in : boolean

end; -

A-2

cperating System Reference Manual QJerating System Interface Unit

Tdstype = (dS_sI'lare(1 ds..,private); (* types of data segnmts *)

ds1nfoRec = record
mem_size : longint;
disc_size: long1nt;
nuntl_ open : integer;
ldsn : 1nteger;
boundF : boolean;
presentF : boolean;
creatorF : boolean;
rwaccess : boolean;
segptr : longint;
volnane: e nane;

end; -

t_ex_nare = string [len_exnanE];
longadr = "long1nt;
t_ex_state = (enabled, queued, ignored);
p_ex,J2ata = "t_ex_data;

(* exception lKJOO

(* exception state

*)

*)

t_ex_data = array [0 .. size_eXdata] of longint;
t ex sts = record

(* exception data bIt< *)
(* exception status *)

ex oCcurred f : boolean;
ex-state: t ex state;
M_ excep : Integer;
hCH_adr : longadr;
end;
p_env_blk = "env_blk;
env bIt< = record

- pc : longint;
sr : integer;
dO : long1nt;
d1 : longint;
d2 : long1nt;

encJ;

d3 : longint;
d4 : longlnt;
dS : longint;
Cf6 : longlnt;
d7 : longint;
aO : longlnt;
a1 : longint;
a2 : longint;
a3 : longint;
a4 : longlnt;
as : longint;
a6 : longint;
a7 : longint;

(* exception occurred flag *)
(* exception state *)
(* nuntler of exceptions q' ed *)
(* handler address *)

(* environment block to pass to handler *)
(* program COlIlter *)
(* status register *)
(* data registers 0 - 7 *)

(* address registers 0 - 7 *)

A-3

t:peratjng System Reference Mantlal t:peratjng System Interface Unjt

p_ tem_eX_data = "term_eX_data;
term ex data = record (* terminate exception data block *)

case excep_kind : longint of
call term.
ended,
self killed,
killed,
fthr term.
ba«(sysoall,
bacC erlTlUlQ,
swap_error,
stk overflow,
data overflow,
parity_err : (); (* due to process termination *)

1ll{Llnst"
priv_violation,

line 1010,
11ne-l111,
def div zero,
def-valUe 00b1

def-oVfW,-

(* dUe to illegal instruction, privilege
violation

(* due to 11ne 1010, 1111 emulator

*)

*)

de(~nmi_key (* terminate due to default handler for hardware
exception *)

: (sr : integer;
pc : longint); (* at the time of occurrence *)

def_range,
def_str_index (* terminate due to default handler for

'SVS_VALUE_OOB' excep for value range or string
index error *)

: (value_check : integer;
upper_bOUnd : integer;
lower_boUnd : integer;
returnJlC : longint;
cal1er_a6 : longint);

bus error"
~_error (* due to bus error or address error

(flll_ field : packed record (* one integer
filler: O .. S7ff; (* 11 bits
r_w_f1ag : boolean;
i_n_flag : boolean;

fun_COde: 0 .. 7; (* 3 bits *)
end;

A-4

*)
*)
*)

cpemtlng System Reference Manual

end;

acceSS_ad! : long1nt;
inst_register : integer;
sr_error : 1nteger;
pc_error : longint);

p_narccex_data = "nanCex_data;

cperatlng System Interface UnIt

hard ex data = record (* hard.are exception data block *) ease excep_k1nd : long1nt of
div zero, value 00b, OVfw
: (sr : 1nteger;

end;

pc : longint);
value_range, str_1ndex
: (value _cneck : integer;
t4lJ)er_txltnl : integer;
lower_bOUld : integer;
return..J)C : long1nt;
caller _86 : longint);

accesses ... (dread, dwrite, append, private, global_refrun);
mset = set of accesses;
ionooe = (absolute, relative, sequential);

UID = record (*U'lique id*)
a, b: longlnt

end;

tlnEstnp_interval = record
sec : longlnt;
msec : 0 •• 999;

end;

(* time interval *)
(* number of seconds *)
(* IUItler of milliseconds witnin a second *)

1nfo_type = (deV1ce_t, VOltJE_t, ooject_t);
deVtype = (diskdev, pascalbd, seqdeV, bitbkt, non_io);
filetype = (lI'ldef1ned, tlXFf1le, rootcat, freel1st, bcdllOCks, sysdata,

spool, exec, usercat, pipe, bootfile, swapdata, swapcode, ranap,
userflle, kllledOOJect);

entrytype= (emptyentry, catentry, I1nkentry, flleentry, plpeentry, ecentry,
killedentry);

A-S

t:perating System Reference Mantia}

fS_1nfO = record
raE : e raE;
dirJ)8th -: pattnllB;
1IBCh1ne_ld : longint;
fS_overt'lead : integer;
result_scavenge: integer;
case otype : 1nfo_type of
device_t, volllE_t: (
iOChar rael : 1nteger;
devt : devtype;
slot_no : 1nteger;
fS_s1ze : longint;
VOI_s1ze : longint;
blOCkstructured, IID.Ilted : bool~
qleI'lCOlIlt : longint;
privatedeV, retll)te, 1000eddeV : boolea'l;
IIW1t.J8lding, tnID.Ilt.J8lding : bOOlecwl;
VOlraE, paSSWOrd: e3lC1E;
fsverslon, volrun : Integer;
wlid : UIO;
baCk~_Volid : UIO;

QJerating System Interface UnIt

blOCksize, dataslze, clusters1ze, filecot.llt : integer;
label_Size : integer;
fl'eeCOlllt : longint;
OTVe, OTCC, OlVO, OlVS : long1nt;
IIBster _copy _id, copy_thread : longint;
ovel'lD.flt_staJp : UIO;
boot_COde : integer;
bOOt_environ : integer;
privileged, writeJ)rotected : boolea'l;
IIBster, copy, copy_flag, scavenge_flag : boolean;
WI_Ieft_lID.Ilted : boolean);

object_t : (
size : longlnt;
ps1ze : longint; (* physical file size in bytes *)
lpslze : integer; (* log1cal page size in bytes for th1s f1le *)
ftype : filetype;
etype : entrytype;
OTC, OTA, 0Tt1, 018, OTS : longint;
refrun : 1nteger;
fmark : longint;
CllIIlde : mset;
nreaders, nwriters, rusers : integer;
fU1d : UID;
user_type : integer;
user_SUltype : integer;

A-6

cperating System Reference Mantlal cperating System Interface Unit

system_type : integer;
eof, safety_on, ks.,itCh : bOOlem;
private, lOCked, protected, master_file : bOOlean;
file_scavenged, file_closed_by_OS, file_left_open:bOOlem)

end;

ootype = record
dcversion : integer;
decOde : integer;
dcdata : array [0 .. 9] of longint;

end;

t waitlist = record
- length: integer;

(* user/driver defined data

(- wait list

refrun : array [0 .. size_wsitllstl Of integer;
end;

t eheader = record
- send-pld: longlnt;

event_type : longint;
end;

(- event header
(- sender's process id
(* type of event

t_event_text = array [0 .. size_etext] of longlnt;
p_r_eventblk = "r_eventblk;
r_eventblk = record

event header : t eheader;
event-text : t eVent text·

end; - - - ,

p_s_eventblk = "s_eventblk;
s_eventblk = t_event_ text;

tilE rae = record

end;

Year : integer;
day : 1. .366;
hOUr : -23 •• 23;
mioote : -59 .. 59;
second : o •• 59;
msec : 0 .. 999;

(- Julian date *)

A-7

*)

*)

*)
-)
*)

cperatlng System Reference Manual

ctrl_kind = (wait_ee, call_eel;
t em sts = record
- iiln_t.YP8: ctI1J<1nd;

n.I'Levents : integer;
~_recv : integer;
operLSEnt : integer;
ee_1'lCIE : pattrane;

end;

hour _lCI'lQe = -23 •• 23;
1R1nJte_lCPJ8 = -59 •• 59;

{cootiguration stuff: }

qJeratlng System Interrace unit

(* Chcn1e1 status *)
(* Chcn1e1 type *)
(* JUItler of events (J.IeUed *)
(* fUlt)er of ~s for receiving *)
(* rumer of opens for sending -)
(* event Chcn1e1 rae *)

tports = (l4lJ)ertwig, 100000wig, parallel,
slotlL slotl2" slot13, Slot1.,
slot21, slot22, sl0t23, slOt2.,
slot3L slot32" Slot33, slot34,
serials, serialb, min console, al t console,
t_lIIlUse, t_speaker, tjixtral, t_extla2, t_extra3);

canctypes = (no_cant 8Wle_card, nJ)Ort_card, net_cant laser_card);

slot_array = array [1. .3] Of canctypes;

{ lisa Office Systell paraEter ERm'y type }

pIl8ytel"11~ = -128 •• 127;
pt1enfiec = array [1 •• 62] of Jll8Ytellll(JJe;

(* File System calls *)

procewre tw<E_FllE (ver ecode:integer; var path:patmame;
Uilel_s1ze: integer);

procewre tW<E_PIPE (var erode: integer; var patn:patmame;
18beI_slze:integer);

procewre t1AKE_CATAlOO (var eoode:integer; var path:pattnE;
label_slze:lnteger);

proceWre HAKE_LIN< (var erode:integer; var path, ref:patmame;
label_size:1nteger);

A-8

L/."lel"8tillg .. ~slefn Refelp.I7l"1t? f--1a/?I.18l L/.lelati/~7 Systenl Jnlel"face l.lnR

procedUre KILL_OB.:ECT (var ecode:lnteger; var pattl:patt"trlaOO);

procedUre UNKILL_FILE (var ecOde:lnteger; refnum:lnteger; var
new_name: e _naRe);

procedure OPEN (var ecode:integer; var path:patl"lrKllE; var refrun:1nteger;
manlp:mset);

prOCedUre CLOSEJJBJECT (var erode: integer; refrun: integer);

procedUre READ_DATA (var ecooe:lnteger; refnum:lnteger; data_addr:longint;
count: longint; var actual: longint; oode: iOlOOde;
offset:longlnt);

procedUre WRITE_DATA (var ecode:lnteger; refnuntlnteger; data_addr:longint;
count:longint; var actual:longint; lOOde:ionooe;
offset:longlnt);

procedUre FLUSH (var ecooe:lnteger; refnum:lnteger);

procedUre LOOKlP (var ecode:lnteger; var pattl:pattlnane; var
attribUtes:fs _info);

procedUre INFO (var ecode:integer; refrun:integer; var refinfo:fs_info);

procedUre ALLOCATE (var ecode:integer; refnum:integer; contiguous:boolean;
count:longlnt; var actual:longint);

procedUre TRUNCATE (var ecooe:integer; refnum:integer);

procedUre COMPACT (var ecooe:integer; refnuntlnteger);

procedUre RENAtE_ENTRY (var ecOde:lnteger; var pattl:patnnane; var
neWJ'lOOE".e _ nane);

procedure REM_LABEL (var ecode:integer; var path:pathr'lal1e;
oata_addr:longlnt; count:longlnt; var actual:longlnt);

procedUre WRITE_LABEL (var ecooe:lnteger; var pattl:pattllafre;
data_addr:longint; count:longint; var actual:longint);

procedure t100NT (var ecode:integer; var Vf"t8Ire : e_rtare; var password
e _nafOO ; var devnaroo : e _nalre);

prOCedUre lH1Ol.tff (var ecode:lnteger; var vnarre : e_natre);

A-9

[;'Jelatill!l .. ~'stenl RefelPI7Ce !'-1anlla} L'/.Jel"Btillf} Systenl 1l7tel"face UnH

procedure SET_WORKING_OIR (var ecode:integer; var path:pathname);

procedUre GET_WORKING_OIR (var ecode:integer; var path:pathname);

procedure SET_SAFETY (var ecode:integer;var path:pathname;on_off:boolean);

procedure DEVICE_CONTROl (var ecooe:integer; var path:pathname;
var cparm : dCtype);

procedure RESET_CATALOG (var ecode:integer; var path:pathnare);

procedure GET_NEXT_ENTRV (var ecode:lnteger; var prefi~ entry:e __ nane);

procedure SET_FILE_INFO (var ecOde :integer; refnuntinteger; fsi:fs __ info);

(* Process Management system calls *)

ftllCtlon My _ID:longlnt;

proceoure Info_Process (var errnt.lJt1nteger; prOC_ld:longlnt; var
proc_info:procinfoRec);

procedUre Yield_CPU (var errnum:integer; to_any:boolean);

prOCedure setPriority_Process (var err~integer; prOC_id:longint;
new "prior1 t y:1nteger);

prOCedUre SUspend_Process (var errnum:integer; proc_ld:longint;
susp_family~lean);

procedure Activate_Process (var errnum:lnteger; proc _ id:longint;
act _ faml1y:boolean);

procedUre Killyrocess (var errnum.:lntp.ger; proc_ld:long1nt);

procedure Terminate_Process (var errnum:lnteger; event..ptr:p_s_eventblk);

procedUre Make_Process (var errnumtlnteger; var proc_id:longlnt; var
progfile:pathnalre; var entrynane:natrestring;
evnt_chn_refnumtlnteger);

A-10

[;)elC7ti,.,!} ... S)<'>teln Reli?l"8nCe I'--1817{/81 q..,elC7tJI7!l Systen7 jntelf"..QCe 1....ll7ft

(* Memory Management system calls *)

procedUre make_dataseg(var errnum: integer; var segnarre: pathnatre; rreJl_size,
disc_size: longint; var refnum: integer; var segptr:
longint; ldsn: integer; dstype: Tdstype);

procedUre kl11_dataseg (var er~integer; var segname:pathname);

procedUre open_dataseg (var errnum:integer; var segnarre:pattlrlalre; var
refnum:integer; var segptr:longint; ldsn:integer);

procedUre close_dataseg (var er~integer; refnumtinteger);

procedUre size_dataseg (var errnuntinteger; refnuntinteger;
del tanemsize:longint; var neWfOOffiSize:longint;
deltadiscslze: longlnt; var newdiscsize: longint);

procedUre infO_dataseg (var errnum:lnteger; refnumtinteger; var
dsinfo:dsi.nfoRec);

procedure setaccess_dataseg (var errnum:integer; refnum:integer;
readonly:ooolean) ;

procedUre unbind_dataseg (var er~lnteger; refnuntinteger);

procedUre blnd_dataseg(var err~integer; refnLmtinteger);

procedUre info_ldsn (var errnuntinteger; 1d5O: integer; var refnum: integer);

procedUre f1ush __ dataseg(var errnum: integer; refnum: integer);

procedUre mem_info(var errnum: integer; var swapspace, dataspace,
cur_cooesize, max_codesize: longint);

procedure infO_address(var errnum: integer; address: longint; var refnum:
integer);

(* Exception t&lagenrot system calls *)

procedure declare_excepJ1dl (var errnum:integer; var excep_natre:t_ex_nalre;
entrY.J)Oint:longadr) ;

procedUre disatlle_excep (var errnum:integer; var excep_natre:t_ex_nane;
queue:boolean) ;

A-l1

tj.7eJaUng SystenJ RefeJ"8IJce I'-1anaal q.78J-atlng SystenJ bJt8Jface Llnjf

prOCedUre enable_excep (var errrun:lnteger; var excep_rtalet_ex_naIOO);

procedUre slgnal_excep (var errrun:lnteger; var excep_nafOO:t_exJ'la'Je;
excep_dat~t_eX_data);

procedUre Info_excep (var errnt.mlnteger; var excep_raRe:t_ex_naRe; var
excep_status:t _ex_ sts);

procedUre fluSh_excep (var errnt.l1tlnteger; var excep_nare:t_ex_naI'OO);

(* Event ctslnel n&lageIIlent system calls *)

procedUre n&<e _event _ Chn (var errnum:integer; var event_em _nalJe:pathrlalre);

procedUre kll1_event_Chn (var errnum:lnteger; var event_ct'ln_natre:pathnal'OO);

procedUre open_event_em (var errnuntinteger; var event_Ctln_natre:pathnalle; var
refnuntinteger; var excep_natre:t_ex_nalJe;
reeei ver:tlOOlean);

procedUre close_event_Ctln (var er~lnteger; ref~integer);

procedUre info_event_Ctln (var errnum:integer; refnumtinteger; var
Chn_info:t_ct'rl_sts);

procedUre .alt_event_Chn (var err~lnteger; var wait_list:t_waitlist; var
refnum:integer; event ""'ptr:p_r _eventblk);

procedUre flUSh_event_em (var errnuRinteger; ref~integer);

procedUre send_event _Chn (var errnuntinteger; refnum:integer;
event JJtr:p_s_eventblk; Interval:tlmestfJP_lnterval;
Clkti~tirne_rec);

(* Timer functions system calls *)

procedure delay_time (var er~integer; interval:timestmp_interval;
Clktl~tlme_rec);

procedure get_time (var errrun:lnteger; var gmt_tl~time_rec);

procedure set_l0C81_tlme_dlff (var erl1'll.lltlnteger; nour:hOUr_range;
minutemdnute_range);

A-12

LpelC1ling ~y:~tem RetelPo17ce f-1B1J1.laJ Q}elC1ti17!l Sy~tefn flltelface Unit

procedUre convert_tine (var erl'fUltinteger; var gmt_tire:tlre_ree; var
local_ tire:tine _ ree; to ~t:boolean);

{configuration stuff}

flllCtion OSBOOTVOL(var error : integer) : tports;

procedUre GET _CONFIG_NAtE(var error:integer; devpostn:tports; var
deVf'lalOO:e _ natre };

procedUre CARDS_EQUIPPED(var error:integer; var in_slot:slot_array);

IMPlEtENTATION

procedUre MAKEjFILE; external;

procedUre MAKE_PIPE; external;

procedUre MAKE_CATALOG; external;

procedUre MAKE_LINK; external;

procedUre KILL_OBJECT; external;

procedUre OPEN; external;

procedUre CLOSE _OBJECT; external;

prOCedUre READ _DATA; external;

procedUre WRITE_DATA; external;

procedUre FLUSH; external;

procedUre LOOKUP; external;

procedUre INFO; external;

prOCedUre ALLOCATE; external;

procedUre TRlH!ATE; external;

procedUre COtPACT; external;

A-13

cperating System Reference Manual

proceclJre RENAt£_ ENlRV; external;

proceclJre READ_LABEL; external;

proceclJre WRITE_LABEL; external;

procedUre tDMT; external;

proceclJre ~T; external;

procedUre SET _IOOKIt«2_0IR; external;

procedUre GET _1(R(It«2_0IR; external;

proceclJre SET_SAFETY; external;

procedUre DEYI£EjlJURCl.; external;

procedUre RESET_CATN-.OG; external;

proceclJre GET_tEXT _ENlRV; external;

proceclJre GET_DEY _NN"E; external;

ftrlCtion My_IO; external;

proceclJre Info_Process; external;

proceclJre Vield_(JlIJ; external;

proceclJre setflriori ty _Process; external;

proceclJre SUspend_Process; external;

procedUre Activate_Process; external;

proceclJre Kill_Process; external;

proceclJre Terminate_Process; external;

proceclJre Make_Process; external;

proceclJre SChed_Class; external;

A-14

cperating System Interface Unit

q;erat/ng System RefellJnce Manual

proceWre make_dataseg; external;

proceWre kill_dataseg; external;

proceWre open_dataseg; external;

proceWre close_dataseg; external;

proceWre size_dataseg; external;

proceWre infO_dataseg; external;

proceWre setaccess_dataseg; external;

proceWre l.Itllnd_dataseg; external;

proceWre bind_dataseg; external;

proceWre info_ldsn; external;

procea.ae fluSh_dataseg; external;

proceWre I1B1Linfo; external;

proceWre declare_excep_hdl; external;

proceWre dlscmle_excep; external;

proceWre enable_excep; external;

proceWre sllJl81_excep; external;

proceWre Info_excep; external;

procec1lre fluSh_excep; external;

proceWre make_event_em; external;

proceWre kill_event_em; external;

proceWre open_event_Chn; external;

proceWre close;,...everlt_em; external;

A-1S

ClJeratlng System Interface unit

q;eratfng System Reference Manual

proceclJre Info_event_ctrl; external;

procewre wait_event_ctrl; external;

proceclJre flustLevent_ctrl; external;

proceclJre seRCevent_ctrl; external;

proceclJre delay_tilE; external;

proceclJre get_tilE; external;

proceclJre set_looal_tilE_diff; external;

proceclJre convert_tilE; external;

proceclJre set_file_info; external;

fl.l'\Ction ENABlEDBG; external;

fl.l'\Ction 0SB001V(L; external;

proceclJre GET JlH=IG_twE; external;

function DISK_liKELV; external;

procedure CARDS_EQUIPPED; external;

proceclJre Read JJt1em: external;

proceclJre IIi te_Pt1eIq; external;

end.

A-16

Q:Je18tfng system Interface unit

Appendix B
System-Reserved
Exception Names

SYS_(NERFLOW {)ferflow exception. Signaled when the TRAPV instruction is
executed and the overflow condition Is on.

SYS_V~L£J1B Yalue-out-of-boUnd exception. Signaled when the CHK
instruction is executed and the value is less than 0 or greater
than ~r bound.

SYS_ZERO_DIV Division by zero exception. Signaled when the DIVS or DIVU
Instruction Is executed and the divIsor Is zero.

SYS_TERMINATE Termination exception. Signaled When a process is to be
terminated.

B-1

Appendix C
System-Reserved

Event Types

"Son terminate" event type. If a father process has created a son
process wIth a lOcal event channel, this event is sent to the
father process When the son process terminates.

C-l

Appendix 0
Error Messages

-6081 End of exec file input
-6004 Attempt to reset text file with typed-file type
-6003 Attempt to reset nontext file with text type
-1885 ProFile not present during driver initialization
-1882 Profile not present during driver initialization
-1176 Data in the object have been altered by Scavenger
-1175 File or volume was scavenged
-1174 File was left open or volume was left mounted" and system crashed
-1173 File was last closed by the OS
-1146 Oily a portion of the space requested was allocated
-1063 Attempt to mount boot volume from another Lisa or not most recent boot

volume
-1060 Attempt to mount a foreign boot disk following a temporary unmount
-1059 The bad block directory of the diskette 1s almost full or difficult to read
-696 Printer out of paper during initialization
-660 Cable disconnected during ProFile initialization
-626 Scavenger indicated data are questionable ... but may be CK
-622 Parameter memory and the disk copy were both invalid
-621 Parameter memory was invalid but the disk copy was valid
-620 Parameter memory was valid but the disk copy was invalid
-413 Event channel was scavenged
-412 Event channel was left open and system crashed
-321 Data segment open when the system crashed. Data possibly invalid.
- 320 Could not determine size of data segment
-150 Process was created ... but a library used by program has been scavenged and

altered
-149 Process was created ... but the speCified program file has been scavenged and

altered
-125 Sepcified process is already terminating
-120 Specified process is already active
-115 Specified process is already suspended
100 SpeCified process does not exist
101 Specified process is a system process
110 Invalid priority specIfied (must be 1..225)
130 Could not open program file
131 File System error while trying to read program file
132 Invalid program file (incorrect format)
133 Could not get a stack segment for new process
134 Could not get a syslocal segment for new process
135 Could not get sysglobal space for new process
136 Could not set up communication channel for new process

0-1

QJerating System Reference Manual

138 Error accessIng program fIle whIle lOadIng
141 Error accessIng a library file while loading program
142 Cannot run protected file on this machine

Error Messages

143 Program uses an intrinsic unit not found in the Intrinsic Library
144 Program uses an intrinsIc unIt whose name/type does not agree wIth the

Intrinsic Library
145 Program uses a Shared segment not found in the Intrinsic Library
146 Program uses a shared segment whose name does not agree wIth the Intrinsic

Library
147 No space in syslocal for program file descriptor during process creation
148 No space in the shared IU data segment for the program's shared IU globals
190 No space in syslocal for program file description during List_LibFiles

operation
191 Could not open program file
192 Error trying to read program file
193 Cannot read protected program file
194 Invalid program fUe (incorrect format)
195 Program uses a shared segment not found in the Intrinsic Library
196 Program uses a shared segment whose name does not agree with the Intrinsic

Library
198 Disk I/O error trying to read the intrinsic uni t directory
199 Spec! fled library file number does not exist in the Intrinsic Library
201 No such exception name declared
202 No space left in the system data area for Declare_Excep_Hdl or

slgnal_Excep
203 Null name spec! fied as exception name
302 Invalid LDSN
303 No data segment bound to the LDSN
304 Data segment already bound to the LDSN
306 Data segment too large
307 Input data segment path name Is invalld
308 Data segment already exists
309 Insufficient dIsk space for data segment
310 An invalid size has been speCified
311 Insufficient system resources
312 Unexpected File System error
313 Data segment not found
314 Invalld address passed to InfO_Address
315 Insufficient memory for operation
317 Disk error while trying to swap in data segment
401 InvalId event Channel name passed to Make_Event_Chn
402 No space left in system glObal data area for Open _ Event_ Chn
403 No space left in system local data area for Open_Event_Chn
404 Non-block-structured device speCified in pathname
405 Catalog Is full In Mak8_Event_Chn or Open_Event_Chn
406 No such event channel exists in Kill Event Chn
410 Attempt to open a local event channel to send

0-2

t:peIaUng System Reference Manual EIrOI Messages

411 Attempt to open event Channel to receive When event Channel has a receiver
413 Unexpected File System error in Open_Event_ Chn
416 Cannot get enough dIsk space for event Channel in apen_Event_ Chn
417 Unexpected File System error in Close_Event_Chn
420 Attempt to walt on a Channel that the call1ng process dId not open
421 wait_Event_ Chn returns empty because sender process could not complete
422 Attempt to call waiCEvenCChn on an empty event-call Channel
423 Cannot find corresponding event channel after beIng blocked
424 Amount of data returned while reading from event channel not of expected

size
425 Event channel empty after beIng unblOCked .. Wait_Event_Chn
426 Bad request pointer error returned In Wait_Event_ Chn
427 Walt_List has illegal length specIfied
428 Receiver unblocked because last sender closed
429 unexpected FIle System error In WaIt_Event_Chn
430 Attempt to send to a channel which the calling process does not have open
431 Amount of data transferred while writing to event channel not of expected

sIze
432 Sender unblocked because receIver closed In Send Event Chn
433 Unexpected File System error in Send_Event_Chn - -
440 Unexpected File System error In Make_Event_Chn
441 Event channel already exists in Make _Event_ Chn
445 Unexpected Flle System error in Ki11_Event_Chn
450 Unexpected File System error in Flush_Event_ Chn
530 SIze Of stack expansion request exceeds limit specified for program
531 Cannot perform explicit stack expansion due to lack of memory
532 Insufficient dISk space for expllci t staCk expansion
600 Attempt to perform I/O operation on non 110 request
602 No more alarms available during driver initialization
605 Call to nonconfigured device driver
606 Cannot find sector on flOPPY dIskette (dISk unformatted)
608 lllegallength or disk address for transfer
609 Call to nonconfigured device driver
610 No more room in sysglobal for I/O request
613 Unpermitted dIrect access to spare track with sparIng enabled on flOPPY

drive
614 No disk present In drIve
615 Wrong call version to floppy drive
616 Unpermitted floppy drive function
617 Checksum error on floppy diskette
618 Cannot format., or write protected .. or error unclamping flOPPY dISkette
619 No more room in sysglobal for I/O request
623 Illegal devIce control parameters to floppy drive
625 Scavenger indicated data are bad
630 The time passed to Delay_TIme .. convert_Time .. or Send_Event_Chn has

invalid year
631 Illegal timeout request parameter

0-3

qJelatilJ!-l SySlen1 Relerent-)? 1'-18111.1a1

632 NO memory available to initialize clock
634 Illegal timed event id of -1

Elm!" l'-1essages

635 Process got unblocked prematurely due to process termination
636 Timer request did not complete successfully
638 TIme passed to Delay_Time or Send_Event_ Chn more than 23 days from

current time
639 Illegal date passed to Set_Time, or illegal date from system clock in

Get Time
640 RS-232 drIver called with wrong version number
641 RS-232 read or write initiated with illegal parameter
642 Unimplemented or unsupported RS-232 drIver function
646 No memory available to ini lialize RS-232
647 unexpected RS-232 timer interrupt
648 UnpermItted RS-232 Inl Ual1zatlon, or disconnect detected
649 Illegal device control parameters to RS-232
652 N-port driver not initialized prior to ProFile
653 No room In sysglobal to ini tlallze proFlle
654 Hard error status returned from drive
655 Wrong call version to ProFile
656 unpermitted ProFile function
657 Illegal device control parameter to ProFile
658 Premature end of file when reading from driver
659 Corrupt Flle System header Chain found in driver
660 Cable disconnected
662 Parity error while sending command or wrIting data to ProFlle
663 Checksum error or CRC error or parity error in data read
666 Timeout
670 Bad command response from drive
671 Illegal length specified (must ... 1 on input)
672 Unimplemented console driver function
673 No memory available to initialize console
674 Console driver called with wrong version number
675 Illegal device control
680 Wrong call version to serial driver
682 Unpermitted serial driver function
683 No room in sysglobal to irlitialize serial driver
685 Eject not allowed this device
686 No room in sysglobal to initialize n-port card driver
687 UnpermItted n-port card driver function
688 Wrong call version to n-port card driver
690 wrong call version to parallel prInter
691 Illegal parallel printer parameters
692 N-port card not initialized prIor to parallel printer
693 No room in sysglobal to initialize parallel printer
694 Unimplemented parallel printer function
695 Illegal device control parameters (parallel printer)
696 Printer out of paper

0-4

qJeratil7g System Reference Manual Error Messages

698 Printer offlIne
699 No response from printer
700 MIsmatch between loader version number and ~erat1ng System version

number
701 OS eXhausted its internal space during startup
702 Cannot make system process
703 Cannot k1ll pseUdo-outer process
704 Cannot create driver
706 Cannot Initialize floppy disk driver
707 Cannot initialize the File System volume
708 Hard d1sk mount table unreadable
709 Cannot map screen data
710 Too many slot-based devIces
724 The boot tracks do not know the right File System version
725 EIther damaged Flle System or damaged contents
726 Boot device read failed
727 The OS w111 not fit into the available memory
728 SYSTEM.OS is missing
729 SYSTEM.CONFIG Is corrupt
730 SYSTEM.OS Is corrupt
731 SYSTEM.DEBUG or SYSTEM.DEBUG21s corrupt
732 SYSTEM.LLD is corrupt
733 Loader range error
734 Wrong driver is found. For instance .. storing a diskette loader on a ProFile
735 SYSTEM.LLD is missing
736 SYSTEM.UNP ACK is miSSing
737 UnpaCk of SYSTEM.OS with SYSTEM.UNPACK failed
801 ICResult <> 0 on I/O using the Monitor
802 Asynchronous I/O request not completed successfully
803 Bad combination of mode parameters
806 Page specified is out of range
809 Invalid arguments (page ... address .. offset ... or count)
810 The requested page could not be read in
816 Not enough sysglobal space for File System buffers
819 Bad device number
820 No space in sysglobal for asynchronous request list
821 Already initialized I/O for this device
822 Bad device number
825 Error in parameter values (Allocate)
826 No more room to allocate pages on device
828 Error in parameter values (Deallocate)
829 Partial deallocation only (ran into unallocated region)
835 Invalid s-file number
837 Unallocated s-file or I/O error
838 Map overflow: s-flle too large
839 Attempt to compact file past PECF
841 Unallocated s-fl1e or I/O error

0-5

[peJC1ting System Refel-ence Manual

843 Requested exact fl t, but one could not be provIded
847 Requested transfer count is <- 0
848 End of file encountered
849 Invalid page or offset value in parameter list
852 Bad un1 t numoer
854 No free slots in s-l1st directory (too many s-files)
855 No available disk space for flIe hInts
856 Device not mounted
857 Empty, lOcked, or InvalId s-fl1e
861 Relative page is beyond PEOF (bad parameter value)
864 No sysglobal space for volume bi tmap
866 Wrong FS version or not a valid Lisa FS volume
867 Bad unit number
868 Bad un1 t number
869 Unl t already mounted (mount)/no unl t mounted
870 No sysglobal space for DCB or MDDF
871 Parameter not a valId s-flle ID
872 No sysglobal space for s-flle control block
873 Specified file is already open for private access
874 Device not mounted
875 Invalid s-flle 10 or s-flle control block
879 Attempt to postion past LEOF
881 Attempt to read empty file
882 No space on volume for new data page of file
883 Attempt to read past LEOF
884 Not first auto-allocation, but file was empty
885 Could not update fllesize hints after a wrIte
886 No syslocal space for I/O request list
887 Catalog poInter does not IndIcate a catalOg (bad parameter)
888 Entry not found in catalog
890 Entry by that name already exists
891 Catalog is full or is damaged
892 Illegal name for an entry
894 Entry not found, or catalog Is damaged
895 Invalid entry name
896 Safety switch is on--cannot kill entry
897 Invalld bootdev value
899 Attempt to allocate a pipe
900 Invalid page count or FCB poInter argument
901 Could not satisfy allocation request
921 Pathname invalld or no such devIce
922 Invalid label size
926 Pathname invalid or no such device
927 Invalid label size
941 Pathname Invalld or no suCh devIce
944 Object is not a file
945 File is not in the killed state

0-6

Error Messages

t:pelating ~ystenl Refel"lJllC8 1'-/811lJal

946 Pathname invalid or no such device
947 Not enough space in syslocal for File System refdb
948 Entry not found In specIfIed catalog
949 Private access not allowed if file already open shared

E1TOf f-/eSSB!:.7tJS

950 Pipe already in use, requested access not possible or dW'rite not allowed
951 File is already opened in private mode
952 Bad refnum
954 Bad refnum
955 Read access not allowed to specIfied Object
956 Attempt to position FMARK past LEOF not allowed
957 Negatl ve request count Is mega!
958 Nonsequential access Is not allowed
959 System resources eXhausted
960 Error wri ling to pipe while an unsatisfied read was pending
961 Bad refnum
962 No WRITE or APPEND access allowed
963 Attempt to position FMARK too far past LEOF
964 Append access not allowed in absolute mode
965 Append access not allowed in relative mode
966 Internal inconsistency of FMARK and LECf" (warning)
967 Nonsequential access is not allowed
968 Bad refnum
971 Pathname invalid or no SUCh device
972 Entry not found in specified catalog
974 Bad refnum
977 Bad refnum
978 Page count Is nonpositlve
979 Not a block-structured device
981 Bad refnum
982 No space has been allocated for specified file
983 Not a block-structured device
985 Bad refnum
986 No space has been allocated for specified fHe
987 Not a block-structured device
988 Bad refnum
989 Caller is not a reader of the pipe
990 Not a block-structured device
994 Invalid refnum
995 Not a block-structured device
999 AsynChronous read was unblocked before it was satisfied

1021 Pathname invalid or no SUCh entry
1022 No such entry found
1023 Invalid newname, checK for' -' in string
1024 New name already exists in catalog
1031 Pathname invalid or no SUCh entry
1032 Invalid transfer count
1033 No such entry found

0-7

q:.7eratjng Systef17 Reference Manual

1041 Pathname InvalId or no SUCh entry
1042 InvaI1d transfer count
1043 No such entry found
1051 No device or volume by that name
1052 A volume Is already mounted on device

ErIor Messages

1053 Attempt to mount temporarlly unmounted boot volume just unmounted from
tt11s Usa

1054 The bad block directory of the diskette is invalid
1061 No device or volume by that name
1062 No volume is mounted on device
1071 Not a valid or mounted volume for working directory
1091 Pathname invalid or no such entry
1092 No SUCh entry found
1101 Invalid device name
1121 Invalid device, not mounted, or catalog is damaged
1128 Invalid pathname, devIce" or volume not mounted
1130 Flle is protected; cannot open due to protection violation
1131 No device or volume by that name
1132 No volume is mounted on that device
1133 No more open files in the file list of that device
1134 Cannot find space in sysglobal for open file Ust
1135 Cannot find the open file. entry to mOdify
1136 Boot volume not mounted
1137 Boot volume already unmounted
1138 Caller cannot have h1gher priority than system processes when calling ubd
1141 Boot volume was not unmounted when calling rbd
1142 Some other volume still mounted on the boot device when call1ng rbd
1143 No sysglobal space for HOOF to do rbd
1144 Attempt to remount volume which is not the temporarily unmounted boot

volume
1145 No sysglobal space for bit map to do rbd
1158 Track-by-track copy buffer is too small
1159 Shutdown requested while boot volume was unmounted
1160 Destination device too small for track-by-track copy
1161 Invalid final shutdown mode
1162 Power is already off
1163 Illegal command
1164 Device is not a diskette device
1165 No volume Is mounted on the device
1166 A valid volume is already mounted on the device
1167 Not a blOCk-structured devIce
1168 Device name Is invalld
1169 Could not access device before initialization usIng default device

parameters
1170 Could not mount volume after inl tlallzatlon
1171 • -' Is not allowed in a volume name
1172 No space available to initialize a bitmap for the volume

0-8

1176 Cannot read from a pipe more than half of its allocated physical size
1177 Cannot cancel a read request for a pipe
1178 Process waiting for pipe data got unblocked because last pipe writer closed

it
1180 Cannot write to a pipe more than half of Its allocated physical size
1181 No system space left for request block for pipe
1182 Wrt ter process to a pIpe got unblocked before the request was satisfIed
1183 Cannot cancel a wrIte request for a pipe
1184 Process waIting for pIpe space got unbloCked because the reader closed the

pipe
1186 Cannot allocate space to a pIpe whlle It has data wrapped around
1188 Cannot. compact a pipe while it has data wrapped around
1190 Attempt to access a page that Is not allocated to the pipe
1191 Bad parameter
1193 Premature end of fHe encountered
1196 Something is still open on cJevice--cannot unmount
1197 Volume Is not formatted or cannot be read
1198 Negative request count is illegal
1199 Function or procedure is not yet implemented
1200 Illegal volume parameter
1201 Blank fHe parameter
1202 Error wri tlng destination file
1203 Invalid UCSD dIrectory
1204 File not found
1210 Boot track program not executable
1211 Boot track program too big
1212 Error readIng boot track program
1213 Error writing boot track program
1214 Boot track program file not found
1215 Cannot wri te boot tracks on that device
1216 Could not create/close internal buffer
1217 Boot track program has too many code segments
1218 Could not find confIguration information ent.ry
1219 Could not get enough working space
1220 Premature ECF in boot tracK program
1221 Posi tion out of range
1222 No devIce at that posItion
1225 Scavenger has detected an internal inconsistency symptomatic of a software

bug
1226 Invalid device name
1227 Device is not block structured
1228 Illegal attempt to scavenge the boot volume
1229 Cannot read consIstently from the volume
1230 Cannot write consistently to the volume
1231 Cannot allocate space (Heap segment)
1232 Cannot allocate space (Map segment)
1233 Cannot allocate space (SFOB segment)

0-9

LIJt?lating ~ysten] Refel'l?l7Ce f\-1ama}

1237 Error rebu1ldlng the volume root directory
1240 Illegal attempt to scavenge a non-OS-formatted volume
1296 Bad string argument has been passed
1297 Entry name for the object is invalid (on the volume)
1298 S-l1st entry for the object is invalid (on the vOlume)
1807 No disk in floppy drive
1820 Write-protect error on floppy drive
1822 Unable to clamp floppy drive
1824 Floppy drive write error
1882 Bad response from ProFile
1885 ProFile timeout error
1998 Invalid parameter address
1999 Bad refnum
6001 Attempt to access unopened file

EllUl" I'-1essages

6002 Attempt to reopen a file which is not closed using an open FIB (file info blOCk)
6003 Cperation incompatible with access mode with which file was opened
6004 Printer offline
6005 File record type incompatible with character device (must be byte sized)
6006 Bad integer (read)
6010 Cperation incompatible with file type or access mode
6081 Premature end of exec fHe
6082 Invalid exec (temporary) file name
6083 Attempt to set prefix with null name
6090 Attempt to move console with exec or output file open
6101 Bad real (read)
6151 Attempt to reinitalize heap already in use
6152 Bad argument to NEW (negative size)
6153 Insufficient memory for NEW request
6154 Attempt to RELEASE outside Of heap

qlerating System Error COdes
The error codes listed below are generated only when a nonrecoverable error
occurs while in Operating System code.

10050 Request block is not chained to a PCB (Unblk_Req)
10051 Bld_Req is called with interrupts off
10100 An error was returned from SetUp_Directory or a Data Segment routine

(Setup_IUlnfo)
10102 Error> 0 trying to create shell (Root)
10103 Sem_Count> 1 (Init_Sem)
10104 Could not open event channel for shell (Root)
10197 Automatic stack expansion fault occurred in system COde (Cheek_Stack)
10198 Need_Mern set for current process while scheduling is disabled

(SimpleScheduler)
10199 Attempt to block for reason other than I/O while scheduling is disabled

(SlmpleScheduler)
10201 Hardware exception occurred while in system code
10202 No space left from Sigl_Excep call in Hard_Excep

0-10

qJerating System Reference Mantlal

10203 No space left from Sigl_Excep call in Nml_Excep
10205 Error from Walt_Event_Chn called in Excep_Prolog
10207 No system data space in Excep_Setup
10208 No space left from Sigl_Excep call in range error
10212 Error In Term_Def _Hdi from Enable_Excep
10213 Error in Force_ Term_Excep .. no space in Enq_Ex_Data
10401 Error from Close_Event_Chn in Ec_Cleanup
10582 Unable to get space in Freeze _ Seg
10590 Fatal memory parity error
10593 Unable to move memory manager segment during startup
10594 Unable to swap In a segment during startup
10595 Unable to get space in Extend _ MMl1st

Error Messages

10596 Trying to alter size of segment that is not data or stack (Alt_DS_Size)
10597 Trying to allocate space to an allocated segment (Alloc_Mem)
10598 Attempting to allocate a nonfree memory regIon (Take _Free)
10600 Error attempting to make timer pipe
10601 Error from KillJl)ject of an existing timer pipe
10602 Error from second Make _Pipe to make timer pipe
10603 Error from Open to open timer pIpe
10604 No syslocal space for head of timer list
10605 Error during allocate space for timer pipe .. or interrupt from nonconfigured

device
10609 Interrupt from nonconflgured device
10610 Error from info about timer pipe
10611 Spurious interrupt from floppy drive ~t2
10612 Spurious interrupt from floppy drive ~H .. or no syslocal space for timer list

element
10613 Error from Read_Data of timer pipe
10614 Actual returned from Read_Data is not the same as requested from timer

pipe
10615 Error from open of the receiver's event channel
10616 Error from Write Event to the receiver's event channel
10617 Error from Clos(~Event_ Chn on the receiver's pipe
10619 No sysglobal space for timer request block
10624 Attempt to shut down flOPPY disk controller while drive Is still busy
10637 Not enough memory to initialize system timeout drives
10675 Spurious timeout on console driver
10699 Spurious timeout on parallel printer driver
10700 MIsmatch between loader version number and Operating System version

number
10701 OS exhausted its internal space during startup
10702 Cannot make system process
10703 Cannot kIll pseUdo-outer process
10704 Cannot create driver
10706 Cannot Initialize floppy disk driver
10707 Cannot initialize the File System volume
10708 Hard disk mount table unreadable

0-11

QJeJ-atJng ~y'Stenl Reference I'-1am18]

10709 Cannot map screen data
10710 Too many slot-based devices
10724 The boot tracKS do not Know the right Flle System version
10725 Either damaged File System or damaged contents
10726 Boot devIce read falled
10727 The OS will not fit into the available memory
10728 SYSTEM.OS Is missing
10729 SYSTEM.CCNFIG is corrupt
10730 SYSTEM.OS Is corrupt
10731 SYSTEM.DEBUG or SYSTEM.DEBUG21s corrupt
10732 SYSTEM.LLD Is corrupt
10733 Loader range error

Enor fv!essages

10734 Wrong driver is found. For instance .. storing a dIsKette loader on a ProFile
10735 SYSTEM.LLD Is missing
10736 SYSTEM.UNPACK is mIssIng
10737 Unpack of SYSTEM.OS with SYSTEM.UNPACK failed
11176 Found a pending write request for a pipe while in Close_Object when it is

called by the last wri ter of the pipe
11177 Found a pending read request for a pipe while In Close_Object when it is

called by the (only possible) reader of the pIpe
11178 Found a pendIng read request for a pipe whIle in Read_Data from tne pipe
11180 Found a pending write request for a pipe while in Write_Data to the pIpe
118xx Error xx from diskette ROM (See OS errors 18xx)
11901 Call to Getspace or Relspace with a bad parameter .. or free pool is bad

0-12

Appendix E
FS INFO Fields

* defined for mounted or unmounted det;jces
$ defined for mounted devices only

All otner fields BJt? defined for mounted block-structured devices only.

OEVICE_ T~ va...UME_ T:

backup __ volid
blocksize

* block structured
boot code
boot-environ
clustersize
copy
copy_flag
copy_thread
datasize

* devt
* diryath

OTCC
OTVB
OTVC
DTVS
filecount
freecount
fs __ overhead

fs size
fsversion

* iochannel

label_size

$ lockeddev
machine_ID
master
master_copy_IO

* mounted
$ mount -pending
* name
$ opencount

overmount_ stamp
password

10 of the volume of which this volume is a copy.
Number of bytes in a block on this device.
Flag set if this device is block-structured.
Reserved.
Reserved.
Reserved.
Reserved.
Flag set if this volume is a copy.
count of copy operations involving this volume.
Number of data bytes in a page on this volume.
Device type.
Pathname of the volume/device.
Date/time volume was created if it is a copy.
Date/time volume was last backed-up.
Date/time volume was created.
Date/time volume was last scavenged.
Count of files on this volume.
Count of free pages on this volume.
Number of pages on this volume required to store
File System data structures.
Number of pages on this volume.
Version number of the File System under which
this volume was initialized.
Number of the expansion card channel through
which this device is accessed.
Size in bytes of the user-defined labels associated
with objects on this volume.
Reserved.
Machine on which this volume was initialized.
Reserved.
Reserved.
Flag set if a volume is mounted.
Reserved.
Name of this volume/device.
Count of objects open on this volume/device.
Reserved.
Password of this volume.

E-l

qJeratjng System Reference Mantlal F~/NFO Fjelds

$ prlvatedev
privileged

$ remote
resul t_ scavenge
scavenge_flag

$ unmountJ)enOing
volid
vol_left_mounted

volname
volnum
vol_size

writeJ)rotected

CBJECT_T:

acmode
dirJ)ath
DTA
DTB
DTC
DTM
DTS
eof

etype
fUe _closed_by _OS

file_left_open

file_scavenged

fmark
fs_overhead

ftype
fuid
kswltch
locked
Ipsize

Reserved.
Reserved.
Reserved.
Reserved.
Flag set by the Scavenger if it has altered this
volume in some way.
Number of the expansion slot holding the card
through which this device is accessed.
Reserved.
Unique identifier for this volume.
Flag set if this volume was mounted during a
system crash.
Volume name.
Volume number.
Total number of blocks in the File System volume
and boot area on this device.
Reserved.

Set of access modes associated with this refnum.
Pathname of the directory containing this Object.
Date/time object was last accessed.
Date/time Object was last backed-up.
Date/time object was created.
Date/time Object was last modified.
Date/time object was last scavenged.
Flag set if end of file has been encountered on
this object (through the given refnum~
Directory entry type.
Flag set if this Object was closed by the Operating
System.
Flag set if this object was open during a system
crash.
Flag set by the Scavenger if this Object has been
al tered In some way.
Absolute byte to which the file mark points.
Number of pages used by the Flle System to store
control information about this object.
Cbject type.
Unique identifier for this Object.
Flag set when the Object is kllled.
Reserved.
Number of data bytes on a page.

E-2

qJel"8tJn!l ~~'Stefn Refel-etlCe f\-181ll181 F~JNFO Fielt.1s

machine 10
master_fhe
name
nreaders

nwriters

nusers
private
protected
pslze
refnum

resul t _scavenge
safety_on
size
system_type
user_type
usecsubtype

Machine on which this object may be opened.
Flag set if this object is a master.
Entry name of this object.
Number of processes with this object open for
reading.
Number of processes with this object open for
writing.
Number of processes with this object open.
Flag set if this object is open for private access.
Flag set if this object is protected.
Physical size of this object in bytes.
Reference number for this object (argument to
INFO~
Reserved.
Value of the safety switch for this object.
Number of data bytes in this object (LECF).
Reserved.
User-defined type field for this object.
User-defined sUbtype field for this Object.

E-3

Index

Please note that the topic references In this Index are by section number.

----------A----------
accessing devices 1.3, 2.8
ACTIVATE_PROCESS 3.8.6
ALLOCATE 2.10.13
Append access 2.10.8
attribute 1.3, 2.10.5

----------8----------
baud rate 2.10.12.1
binding 4.1
BIND_DATASEG 4.7.12
blocked process 1.4,

3 (introduction), 3.8.5
buffer 2.9, 2.10.12.1, 2.10.16,

5.5, 5.8

----------C----------
CARDS_EQUIPPED 6.1.1
catalog 2.1, 2.5, 2.10.19
changing file size 2.10.13-2.10.15
clock 5.6
clock system calls 5.9
CLOSE OATASEG 4.7.4
CLOSE EVENT CHN 5.8.4 - -
CLOSE_OBJECT 2.10.9
code segment 4.5
cO""I.Jnication between processes 1.7
COMPACT 2.10.14, 2.10.15
configuration 6 (introduction)
configuration system calls 6.1
controlling

)29-0427-A

a device 2.10.12
,a process 3 .4

CONVERT_TIME 5.9.4
creating

a data segment 4.7.1
an event channel 5.8.1
an object 2.10.1
a process 3.3, 3.8.1

----------0----------
data segment

creating 4.7.1
private 4.1, 4.4
shared 1.7, 4.1, 4.3
swapping 4.6

Dccode mnemonics 2.10.12
OCdata 2.10.12
Dctype 2.10.12
Dcversion 2.10.12
DECLARE EXCEP HDL 5.7.1 - -

Index-l

DELAV_TIME 5.9.1
deleting

a process 3.8.2, 3.8.4
an object 2.10.2

device 2.3-2.7, 2.10.12
accessing 1.3, 2.8
control information 2.10.12
mounting 1.3, 2.10.20
names 2.1, 2.3, 2.10.12.1
priority 2.3
storage 2.4

DEVICE CONTROL 2.10.12
directory 2 (introduction)
DISABlE_EXCEP 5.7.2
disk hard error codes 2.10.12.2

t:peratlng System Reference Manual

division by zero 5.2, B
Dread, Dwrite access 2.10.8

----------E----------
ENABLE_EXCEP 5.7.3
end of file 2.7, 2.10.14, 2.10.15
eof 2.10.5; see also end of file.
error

disk hard error codes 2.10.12.2
error messages D
soft error 2.10.12.1
See also exception.

event 1.6, 5.4, C
event channel 1.7, 5.5, 5.8.1
event management system calls 5.8
event types C
exception 1.6, 5.1-5.3, B
exception handler 5.1, 5.3
exception management system calls

5.7
exception names B

----------F----------
father process 1.4, 3.6, 3.7,

3.8.1, 3.8.2
file 2 (introduction)

access 2.8
attributes 2.10.5-2.10.7
changing size 2.10.13-2.10.15
label 2.6, 2.10.11
marker 2.7, 2.10.15
name 2.1, 2.10.1
private 2.8
shared 1.7, 2.8

File System 1.3, 2
File System calls 2.10
FLUSH 2.10.16

Index-2

FLUSH_DATASEG 4.7.5
FLUSH_EVENT_CHN 5.8.7
FLUSH_EXCEP 5.7.6
FS_INFO fields E

----------G----------
GET_CONfIG_NAME 6.1.2
GET_NEXT_ENTRY 2.10.19
GE T_TI HE 5.9.2
GET_WORKING_DIR 2.10.18
global access to files 2.8
global event channel 5.5
GlObal_Refnum 2.8, 2.10.8

----------H----------
handshake 2.10.12.1
hierarchy of processes 3.2

----------1----------
INFO 2.10.6
INFO_ADDRESS 4.7.9
INFO_OATASEG 4.7.7
1NFO_EVENT_CHN 5.8.5
INFO_EXCEP 5.7.4
INFO_LDSN 4.7.8
INFO_PROCESS 3.8.3
interface unit A

Index

interprocess communication 1.7, 2.9
I/O 2 (introduction)

----------K----------
KILL_OATASEG 4.7.2
KILL_EVENT_CHN 5.8.2
KILL_OBJECT 2.10.2
KILL_PROCESS 3.8.4

qJeratJng System Reference ManIJaJ

----------L----------
label, file 2.6, 2.10.11
LDSN 4.2, 4.4, 4.7.8
LEOF. See end of file.
local data segment 4.1
local event channel 5.5
logical data segment number 4.2,

4.4, 4.7.8
logical end of file. see end of

file.
LOOKUP 2.10.5

----------H----------
HAKE_DATASEG 4.7.1
HAKE_EVENT_CHN 5.8.1
HAKE_FILE 2.10.1
HAKE_PIPE 2.10.1
HAKE_PROCESS 3.8.1
memory management 1.5, 4.1-4.6
memory management system calls 4.7
memory, parameter 6 (introduction)
HEH_INFO 4.7.10
mnemonics for Decode 2.10.12.1
HOUNT 2.10.20
mounting a device 1.3, 2.10.20
HY_IO 3.8.9

----------N----------
naming an object 2.1, 2.10.1,

2.10.4

----------0----------
object 1.3

creating 2.10.1
deleting 2.10.2
naming 2.1, 2.10.1
renaming 2.10.4

OPEN 2.10.8
OPEN_DATASEG 4.7.3
OPEN_EVENT_CHN 5.8.3
OS interface A
OSBOOTVOL 6.1.3

----------P----------
page 2.4

Index

parameter memory 6 (introduction)
parity 2.10.12.1
pathname 1.3, 2.1, 2.2
PEOF. See end of file.
physical end of file. See end of

file.
pipe 1.7, 2.9. 2.10.1, 2.10.8
priority of devices 2.3
priority of processes 3.5, 3.8.7,

3.8.8
private access to files 2.8, 2.10.8
private data segment 4.1, 4.4
process 1 .4, 3

blOCKed 1.4, 3 (introduction),
3.8.5

creating 3.3, 3.8.1
father 1.4,3.6,3.7,3.8.1,

3.8.2
hierarchy 3.2
priority 3.5, 3.8.7, 3.8.8
queuing 3.5, 3.8.5-3.8.8
scheduling 3.5, 3.8.5-3.8.8
shell 1.4, 3.2
son 1.4, 3.7, C
starting 3.8.1, 3.8.6
stopping 3.8.2, 3.8.4
structure 3.1
termination 1.4, 3.6, 5.2, B, C

process system calls 3.8

Index-3

t:peratlng system Reference Mantia}

----------Q----------
queuing a process 3.5~ 3.8.5-3.8.8

----------R----------
range check error 5.2~ 8
READ_DATA 2.10.10
READ LABEL 2.10.11
refnum 2.8; see also Global_Refnum.
RENAME_ENTRY 2.10.4
renaming an object 2.10.4
RESET_CATALOG 2.10.19
running a program 1.4~ 1.9, 3.8.1,

3.8.6

----------S----------
safety switch 2.5~ 2.10.17
Scheduler 3
scheduling processes 3.5~

3.8.5-3.8.8
SEND_EVENT_CHN 5.8.8
SETACCESS_DATASEG 4.7.11
SETPRIORITY_PROCESS 3.8.7
SET_FIlE_INFO 2.10.7
SET_LOCAL_TIME_OIFF 5.9.3
SET_SAFETY 2.10.17
SET_WORKING_OrR 2.10.18
shared data segment 1.7~ 4.1~ 4.3
shared file 1.7, 2.8
shell process 1.4, 3.2
SIGNAL_EXCEP 5.7.5
SIZE OATASEG 4.7.6
soft error 2.10.12.1
son process 1.4, 3.7, C
sparing 2.10.12
starting a process 3.8.1, 3.8.6
stopping a process 3.8.2, 3.8.4
storage device 2.4
SUSPEND_PROCESS 3.8.5

swapping 4.6
Syscall unit A
system call s

clock 5.9
configuration 6.1
event management 5.8
exception management 5.7
file 2.10
memory management 4.7
process 3.8

Index

system clock 5.6, 5.9
system-defined exceptions 5.2, B
SYS_OVERFLOW 5.2, B
SYS_SON_TERM C
SYS_TERMINATE 5.2, B
SYS_VALUE_OOB 5.2, B
SYS_ZERO_OIV 5.2, B

----------T----------
terminated process 1.4, 3.6, 5.2,

8, C
TERMINATE_PROCESS 3.8.2
timed events 5.8.8
tree, process 3.2
TRUNCATE 2.10.15

----------U----------
UNBINO_OATASEG 4.7.12

Inaex-4

UNKILl_FILE 2.10.3
UNMOUNT 2.10.20
user-defined exception handler 5.3

----------V----------
value out of bounds 5.2, B
volume catalog 2.1, 2.5, 2.10.19
volume name 1.3

t:peratlng system Reference MantJal

----------w----------
WAIT_EVENT_CHN 5.8.6
working directory 2.2
working set 4.2
WRITE_DATA 2.10.10
WRITE_LABEL 2.10.11
writing buffered data 2.10.16

----------V----------
VIELD CPU 3.8.8

Index

Index-S

TaIS MANUAL was produced using
LisaWrite, LisaD raw , and

LisaList.

AIL PRINTING was done with an
Apple Dot Matrix Printer.

the Lisa'"
... we use it ourselves.

[jJelaling S.yslefl? Reference ,..18nlIal "'tail-Bac/{ FOln?

Apple publications would like to learn about readers and what you think about this
manual in order to make better manuals in the future. Please fill out this form ... or
write all over it and send It to us. We promise to read it.
How are you using this manual?
[] learning to use the product [] reference [] both reference and learning
(lother __ ___

Is it quick and easy to find the Information you need In thIs manual?
[] always [] often [] sometimes [] seldom [] never
commen~ __ __

What makes this manual easy to use? __________________________ _

What makes this manual hard to use? ______________________ _

What do you like most about the manual? __________________________ _

What do you like least about the manual? __________________ _

Please comment on ... for example ... accuracy, level of detail, number and usefulness of
examples, length or brevity Of explanation, style, use of graphics, usefulness of the index,
organization, suitabillty to your partiCUlar needs, readab1l1ty.

What languages do you use on your Lisa? (Cheek each)
[] Pascal [] BASIC [] COO[L [] other ______________ _

How long have you been programming?
[] 0-1 years [] 1-3 [] 4-7 [] over 7 [] not a programmer
What is your jab title? ______________________________ _

Have you completed:
[) high school [] some college [] BNBS [] MAIMS [) more
What magazines do you read? _________________________ _

Other comments (please attach more sheets if necessary) ____________ _

029-0408-A

.. FaO····· .. ······· ·· .. ······· .. ·· .. · · .. · ·· .. ·· ·

.. FaO····· .. · · .. ·· .. · ·· · .. · ·· · · ·

'-
.~pplC! computczr

POS PUblications Department

20525 Mariani Avenue

cupertino, Callfomla 95014

TAPE tR STAPLE

