
Widget Firmware Specification
and

Theory of Operation

Revision 1 ,g-g
Oc t obe r 1 6 , 1 983

Written by Rodger Mohme
Ms-2XJD x4879

.-

Fi rm_1 • Seri I? t..~ • .w; dge t F-i rmware Specification Page 1
n) .j•,'.

•. ,

Widget is Appl·e"s in-house name for the latest in a line of
Winchester hard disKs. This current version is available with 1H.1
MB of storage < formatted),

Widget has been desJgned as
intelligent subsystem. The purpose of
de ta i 1 how this sub~ystem be·haveos
environment.

·~·. 1.·. ~
'·i ...

'

;:

,.

a complete, self-contained
this document is to explain in
within the complete system

JCf i rm_1 .• Seri pt Widget Fil"'mware Specification Page 2

(

Apple_Profile_Interface:

A more complete description of the Apple/Profile interface may
be found in the document "EXTERNAL REFER~CE SPECIFICATION <E.R.S>
PIPPiN HARDWARE" by Dick Woolley and Wolfgang DirKs, dated April 16,
1981 I

There are 5 control 1 ines to/from the Apple ProFile Interface Card:
1 , Par i ty

This line is 1 bit of odd parity (even parity across the
cable), The Interface Card is responsible for monitoring
this signal: the controller calculates parity only when it
sends a word across the bus; the controller does not checK
parity when a word is sent from the ho'St, i n"Stead the parity
bit is is generated once more on the controller side of the
bu'S and then routed back to the host.

2. CMO < Command/Attention: Asserted by Host, Active high)
This signal is one of two handshake si grral s' across the
interface bus. Keep in mind that even though the host and
contr-ol ler are two autonomous machines, the host is- always
considered the master and the controller the slave< in this
configuration) . When the host wishes to initiate a transfer
to the control 1 er it must first checK if BSY (discussed
below) is active. If BSY is active then the Host must wait (
hopefully it wi 11 set a DeadMan timer and catch a "sic!<"
controller) until BSY is no longer active.

3. BSY < Busy: Asserted by Controller, Active High)
Th i s s i gn a 1 i s the du a 1 of CMO, i n other words th i s i s the
signal with which the controller can hold off the host for an
indefinate period of time while it is "BUSY" performing some
task.

4. STR8 < Strobe: Asserted by the Host, Active High)
Strobe is used to signal to the controller/host pair that
data. is val id on the bus.

5. R/W (Read/Write: asserted by the Host, Write is Active Low
)

Th i -:. s i gn a. 1 i s used by the Host to i n di cat e to the control 1 €' r·
which direction data is to be going during a transmission.
Read is used to direct da"'ta. out of the control 1 er into the
host and the opposite condition is true for Write.

Fir-m_1.Script Widget Fir-mwar-e Specification Page 3

Profile Communication Protocol:

The following is an explanation of the protocol that is used
to provide communication be tween the host and the control 1 er:

< Some explanation of the symbols that I am using is probably
called for at this point.)

... <, >" : The bracKet symbols mean that the information
within them are manditory •

inclosed

... t,J" The square brac:Ket symbo.ls mean that the information
inclosed is optional.

"I,.: The vertical bar symbols is used to indicate an alter-native
or "OR" condition. For example, AIB can be thought of as "Either
A OR 8 11 •

This symbols is used to indicate a definition or
equivalence.

,.(,}" : Curly brackets ar-e used to denote comments.

"+,. The plus sign is as an addition symbol.

,.NULL,. : This Key word indicates the empty set, or in s.ome cases,
the fact that the function whose value is NULL can be ignored. An
example is:

Argle-Bar-gle ::=<NULL>

Essentially you can forget that Argle_Bargle exists for this
context.

·• -

. '

i (~F i rm_ 1 . Sc r i p t Widget Firmware Specification Page 4

PROFILE_COMMANDS

These commands are currently by the SOS driver. Widget is
designed to be backwards compatible with the current ProFile driver,
and··to that end there exists the three ProFile system commands:
Read, Write, and Wri te_Verify.

Profile Commands:

Opcode

$fHf
$.0' 1
$£J2

Def in i ti on

Read Logical Block
Write Logical Block
Write/Verify Logical Block

The three Profile commands behave in exactly the same fashion as
do the corresponding instructions on ProFile, with one small
exception: the Read Logical block command does not include
informatior1 concerning Retry count. or Sparing threshold (however,

(Jecause of a side effect in the way that the Host/Controller
interface was designed, the Host may write as many command bytes to
the controller as it chooses. The controller wi 11 only decode the
first 4.). The form of each command is:

<$88 I $81 I $82> < 3 Bytes of Logical Block Address>

There are two 'special' logical addresses defined in the ProFile
protocol, namely $FFFFFF { -1) and $FFFFFE C -2 }. Logical address
< -1 > returns as it's value Device_ID C as explained under the
Widget Diagnostic commands) and Logical address < -2 > returns as
it's value Widc;iet's spare table structure ir1 it's raw• for·m. It
should be note~ that if at any time Widg;t can not pass it's self
test that i t w i l 1 refuse to c ommu n i cat e 1..J i a 1 09 i ca 1 c ommar1 ds C be• th
Pr o F i 1 e and Sys t em t y p e c omman d s) . W i d g e t w i 1 1 respond t o
Di agn os t i c c: omman ds at a 1 1 t i mes, however.

The rest
departure
command is:

of the
from the

(< Command_Byte >

commands available on
ProFi le way of doing

< In~truction_Byte >
[Instruct~on_Parameter_String l
< Check8yte >)

Widget are
thir1gs. The

a i::ompl~te

new form o+

Command_Byt e : := < CommandTyp e _Ni bb 1 e + Cc1mmar1dLe n g th_i'-~ i bb 1 e >

CommandType_Nibble ::= < Diagnostic_Command System_Comm.and >

Diagnostic_Command : := < $13 >

Fi rm_l . Seri pt Widget Firmware Specification Page 5

System_Command : := < $29 >

CommandLength_Nibble ::=Count of all bytes
NOT including the first one. This length is
the checKbyte, and not to parse the command,
large variety of commands that perform exa.ctl y
differ in format in that their lengths are not

i.n the command string
used only to calculate

therefore there is a
the same function but
the same.

IF System_Command
THEN lnstruction_Byte
Sys_WrVer>

IF Dia.gnostic_Command

. ·.. -

THEN Instruction_Byte ::= <

<Sys_Read Sys_Wr i te

Read_ID I
Read_Controller_Status
Read_Servo_Status I
Send_Servo_Command I
Send_SeeK I
Send_Restore
Set_Recovery
Sof t_Re set I
Send_ParK I
Diag_Read I
Diag_ReadHeader
D i a g_ Wr i +. e I
Store_Map I
Read_SpareTable
Write_SpareTable
Format_Track I
In it i a 1 i ze_SpareTabl e
Read_Abort_Stat I
Reset_So:?rvo I
Scan >

Instruction_Parameto:?r_String : := C This string
dependent, and wi 1 l be formally specified at the
i n di v i du a 1 i n st r u c t i on s .)

i s i n s. tr· u ct i on
same time as the

Check8yte ::= C This byte
MOD-256 ari thmeti~, of all

is the ones-complo:?ment of the sum, in
the bytes including the Command_Byte).

>.\.,__ -

f Fi rm_l • Seri pt Widget Firmware Specification Page 6

()

DIAGNOSTIC_COMMANDS

Widget'~ "pers6na1 ity 0 , or the manner in which it behaves, can be
thought of as having two distinct parts: 1) that portion that is

.. dictated by the hardware and 2) that portion that is control 1 ed by
the firmware. As trite as that last statement may seem on the
surface, the fact remains that the part of Widget that is the
hardware is not easi 1 y molded to adapt to different env i ronme.nts.
The same is true, but not quite in the same manner, for the firmware
- the code i s 1 oc I< e d i n a ROM of some sor t and costs a 1 o t to
change. · How then can Widget's 11 persona1 i ty" be changed C on-the-f 1 y
} to· "adapt" to a new environment? The answer in this case to
architect the firmware in a layered fashion: build the intelligence
required to run Widget in it's normal operating mode from a pool of
discrete, primitive functions; these primitive functions in most
cases have only one particular ta.sK that they are capable of
completing. The impl ica.tion of this architecture is that with very
1 ittle effort these same primitive functions are availble to the
host system, and thus make Widget a 1 ittle "Schizoid". Such luxuries

'c-10 not come without their hidden co-st-s, however. For one thing, the
'Aidget controller is slightly more expen-sive to manufacture Ca cost

that I believe pale-s in the sight of the added test/diagnostic
capabilities} because of the additional code space required for all
the bells and whistle-s, and another is thld someone must now develop
Host software to emulate the controller firmware design of choice.

The purpo-se of the rest of this section on Diagno-stic Commands is
to aqua.int the casual/not-so-casual designer of Host software as to
how to ma.Ke the best use of Widget's multiple personality
cap ab i 1 i t i es.

•

()

Firm_1.Script_ Widget Fil""mware Specification Page 7

Read_ID ::=<$SS>

Instruction_Parameter_String : :=NULL
This diagnostic command requires Widget to deliver to the host some
device specif··;c information. The stl"'uctural layout of the data
returned is: .

STRUCTURE Identitiy_BlocK

{ this identity blocK is defined by the data stl"'uctures contained
within ·it; you will note, however, that a comment is given
explaining the type of structure for a given element and range of
bytes { if the entire structure is thought of as a linear arl""aY of
bytes) that include the structure. An example is NameStl""ing (first
element to be defined below} which is a 13-character asci i stl""ing,
and is located in bytes $8 thru SC of the returned blocK.

NameStr i ng : := <
1£1'M8_Name l
2.0l18_Name I
4SMB_Name (13 Bytes/$.0'.0' :$.0'C; Ase i i Str· i ng } >

HJMB_Name : := < /Wi dget-1£f / >
2..a'MB_Name : := < "W i dge t-2£f " >
4.0'MB_Name : : = < / W i dge t-4fJ ,. >

DeviceType ::= <Device.Widget+Widget.Size+Widget.Type (3 Bytes/$;
: $.0'F } >

Device.Widget : := <$fJBS1 (2 8ytes/$0'D:$.0'E))
Widget.Size::= <Size_1£f I Size_21J I Size_4.0' { 1 Nibble, Byte i>ffF

its 7:4)) ~

Size 1 £f .. -.. - <SB.0'>
Size 2£f . ·-.. - <$HJ> -Size 4.0' . ·-.. - ($22> -Widget.Type . ·-.. - <System I Diagnostic C 1 Nibble, Byte S.0'F/bi ts 3:.

} >
System : := <$fJ.0'>; This rerter-s to the type •:if f i rmw.are that

imbedded in
Widget.
System f i l"'mwal"'e wi 11 not all ow the- host to Format, or
Initialize_SpareTable; Diagnostic firmwal"'e will.

Diagnostic : := <$81>

Firmwal"'e_Revlsion : := <C 2 8ytes/$1S:$11 ~ ' i / .

Capacity : := <Cap_1B I Cap_2S I Cap_4S C 3 8yt~s/S12:S14 l>
Cap_1£f : := <S.0'S4CB.0'>
Cap _2.fi : : = <S.0'.0'98.0£0
Cap_4s : := <sg13gss>

. '

' '

·r c\
Firm_1.Script Widget Firmware Specification Page 8

Cy1_1B ::= <$820'2>
Cyl _29 : := <$8292>
Cy1_4B ::= ($84B4>

Number_Of_Heads ::= <$B2 < 1 Byte/$19·)>

Number _Of _Sec tors· : := < Sc tr _1B
Sctr_1B ::= <$13>
Sc tr _29 .: := <$26>
Sc tr_ 4B : := ($26>

Sc tr _20' Sctr_4B C 1 Byte/$1A >>

Number_Of_Possible_Spare_Locations ::= ($8HSS4C < 3 Bytes/$18:$10))

Number_Of_Spared_BlocKs ::= << 3 8ytes/$1E:$2.0'; range B •• $48))

Number_Of_Bad_BlocKs ::= <C 3 Bytes/$21 :$23; range B .. $48 >>

F i rm_2 . Sc r i p t . Widget Firmware Specification Page 9

Read Controller Status ::= <$81> -
E•Jery time an operation completes (either successfully or

exceptionally) Widget will return what I refer to as
Standard_Status, thus al lowing the Host system an opportunity to
change i t"s ·fl ow of execution based on state of the Status.
Normal 1 y, this Standard_Status is al 1 that is necessary to ensure
continuous operation. In the exceptional case, or when the Host
syst~m is emulating the controller's functions, additional
info~mation concerning the state of Widget is mandatory: without it
the Host simply could not make an optimum choice in deciding a
course of a.c t i on •

Controller_Status is then a means for the Host system to
interrogate Widget further. Ea.ch Status (with the exception of
Abort_Status, which i.s a seperate command and is discussed later in
this document) belongs to a homogeneous data structure: namely a
four byte quantity containing a bit map representing the various
exceptional conditions (active high) that is available as the
first four bytes read from the controller upon completion of the
current command.

There are eight status' available to the Host system. The Host
requests a specific status by setting Instruction_Parameter_String
to the value corresponding to the status needed.

IF Instruction_Byte = Read_Controller~Status)
THEN Instruction_Parameter_String ::= <

Standard_Status I
Last_Logical_Block
Current_Se~K_Address

Current_Cyl inder I
Inte~nal_Status I
State_Registers I
Exception_Registers
Last_SeeK_Addr·ess >

The four byte response to each of the above status requests is of
the form:

Resu1 t : := < Byte.0.' 8yte1 8yte2 8yte3 >

" .

..

, .

·f··· . . ,._

{_,~irm 2.Script Widget Firmware Specification Page 10

Standard_Status ::=<$SS>

('.

.-
(

=

'

8yteH : := <
Bit7: Other than $SS response from Host
Bit6: Write 8uf fer OverFlow
Bi t5: (not used)

Bi t4: (not used)

' Bi t3: Read error
, .. Bi t2: No matchifg header found

Bi t 1 : Unrecoverable servo error
8 i tH: Operation Failed >

8yte1 I·-.. - <
Bi t7: (not used)

Bit6: Spare Table OverFlow
Bit5: 5 or less spare bl oi:~ ~ available
8 i t4: (not used)

Bit3: Controller SelfTest failure
8 i t2: SpareTable has been updated
8 i t 1 : Seel< to wrong tr acl< occured
Bi HJ: Controller aborted last operation >

Byte2 Io-
I,- <

Bit7: First status response since power-on reset
Bi t6: Last Logical_Block_Number was out of range
bit5:S (not used) >

8yte3 : := <
Bit7: Read Error detected by ECC circuitry
Bit6: Read Error detected by CRC circuitry
Bi t5: Header Timeout on last read
8 i t 4: C not used)
Bi t3:S : number of unsuccessf~l retries (out of IS }
read

for 1 ast

F i rm_2 • Sc r i p t Widget Firmware Specification Page 11

Last_Logical_BlocK ::= < $81 >

8yte8 : := < $88 >

8yte1 ::= < {Most Significant Byte of Logical_BlocK_Number} >

8yte2 : := < { Middle Byte of Log i ca 1 _81 ocKjtumber } >

Byte3 ::= < {Least Significant Byte of Logical_BlocK_Number }
>

Current SeeK _Address . ·- < $S2 > - .. -
8yte8 I ·-I e - < Most Significant Cylinder Address >
8yte1 : := < Least Significant Cylinder Address >

8yte2 .. -.. - < Head Address >

8yte3 . ·-.. - < Sector Address >

Current_Cyl inder ::= < $a3 >

(The Curren t_Cyl i nder differs from the Current SeeK Address in
that it is perfectly reasonable for the Servo to have placed the
heads on another track under certa.,i n circumstances; for ex amp 1 e, the
drive may have been bumped }

8yte.0' ::=<Most Signifl-cant Cylinder· address>

8yte1 : := < Least Significant Cy1 i nder address >

8yte2 : := <Most Significant Cylinder of current seek address >

8yte3 : := < Least Significant Cylinder of curl"'ent seek addl"'ess
> ~ .·

.4" .. -
(~': i rm_2 • Sc r i p t Widget Firmware Specification Page 12

(

Internal_Status ::= < $84 >

Byte.0' ::= < (Register: Excpt_Status)
Bit7: Recovery {active high--> Recovery ON)
Bi t6: Spare almost full

-Blt5: Buffer structure is contaminated
Bit4: Power reset has just occured
Bit3: Current Standard Status is non-zero
B i t 2 : 1 : < n o t u se d : = g)
B i t.0' : Se t i f con tr o 1 1 er LED i s 1 i t >

Byte1 ::= < (Register: DiskStatus)
Bit?: On_TracK < heads are position where they
shou 1 d be)
Bit6: Read a Header after Recal
Bi t5: current operation is a WRITE operation
Bit4: Heads are parked
Bi t3: Do sequential search of Logical Bl ocK
look-ahead structure
Bi t2: Last commad was a mul tiblocK command
Bi ti: SeeK_complete
BitH: Ser-vo offset (auto) is on>

8yte2 : := < (Register: BlkStatus }
This byte of status is valid ONLY after a ProFile/System
command. If the byte is read after a Diagnostic command it
w i 1 1 con ta i n i n format i on concern i n g the l as t
non-Diagnostic command.

Bi t7: SeeKNeeded (a seeK
the current block }
Bi t6: Head_Change~eeded

change i n stead of see K }
Bi t5:2 SSS C not used)
Bi t1: Current 81 ock is a
Bit.0': Current Block is a

8yte3 : := < $S.0' C not used) >

was needed to arrive at

(1 i Ke 8 i t 7 , bu t He ad

Bad Block
Spare 8 1 oc K >

Firm_2.Script W i dge t F i rmwar· e Spec i f i cat i on Page 13

State_Registers ::= < $85 >

Syte.0'

Byte!

. ·.. -

. ·.. -
< $8.0' (not used) >

< (Register: SelfTst_Result)
Bit7: Ram_Failure
Bi t6: Eprom_Fa i 1 ure.
Bit5: DisK_Speed_Fai1ure
Bi t4: Servo_Failure
Bit3: Sector_Count_Failure
Bi t2: State_Machine_Failure
Bi t1: Read_Write_Failure
Bit.0': No_Spare_Table_Found >

Byte2 : := < (Register: Port2)
Bi t7: Disk Read/Write direction set to Read
Bi t6: Servo is able to accept a command { SioRdy)
Bi t5: MSel 1 (MSelfJ and 1 determine the memory

/source and destination)
' 8 i t 4 : Mse 1 fl
,. Bi t3: BSY

8 i t2: CMD
B i t 1 : E cc Err or
Bi t.0': State machine is running >

8yte3 ::= < {Register: Control ler_Status_Port }
Si t7: CrcError { active low)

{ this bit is valid Of'.lLY when the
controller state machine is NOT in reset,
which should be every time that this bit is
read by the host. Therefore, if this status
bi t i n di cat es a. Cr c Err or·, then scime th i n g
has croaked. The normal way for the host to
check if a Crc or Ecc error has occured is
to examine Status: Exception_Registers
which are dicussed below.)

Bi t6: Wr i te_Not_Val id { active 1 ow }
(as in CrcError, this bit is valid only
when the state machine is NOT in reset. The
information expressed by this bit is
converted into a type of ServoError, which
is found in Status: Exception_Registers. }

Bi t5: ServoReady
Bi t4: St?r•.)oError

{ the ser•.)o -:.ta.tus bi ts l i ·:.ted :<.bove ar·e
further explained in Appendix A: Servo
Processor Documentation. Essential Jy the
two bi ts combin~ to form four possible

*<~, __ }' i rm_2 • Sc r i p t Widget Firmware Specification Page 14

servo states; the normal condition is
.ServoReady AND< NOT ServoError).)

Bit3:H Current controller state-machine state.
< as in CrcError and Wr_i te _Not_Va 1 id, these
st a.tu s b i ts are v a 1 i d on 1 y wh e·n the state
machine is NOT in l"'eset, and should r-.ead
$HS any other time.)

On the surface it appears that this byte is of 1 imited use for non
real- time situations. It is, however, invaluable in trying to
decide if the Servo Processor is healthy, wealthy, and wise. It also
provides a means for diagnosing a sick state machine.

Firm_2.Script Widget Firmware Specification Page 15

Exception_Re~isters ::= < $S6 >

ByteB ::= < {Register: RdStat)
Bit7: Read error occured on last read attempt
Bit6: Servo Error while reading
Bit5: At lea.st one successful read in last read
attempt (this means that v"a.1 id data is residing in
Buff er2)
Bit4: No matching header was found during last read
attempt
Bit3: CrcError OR EccError occured during last read
attempt
Bit2:B $2S (not used) >

(a read attempt is defined as being the sequence of events normally
associated with reading a single block of data. In the case where
the first read of a block was invalid for some reason, ANO Recovery
is active, then the controller will automatically retry 9 times: lB
tries total. For example, if the first read was invalid because of a
CrcError, but the second thru tenth reads are all correct then the
status bi ts that will be active are Bit5, and Bit3. Correct and
val id data wi 11 be both in the normal Read buffer and in Buffer2.)

8ytel .. -.. - <
Bi t7: Error detected by ECC circuitry
Bi t6: Error detected by CRC circuitry
8 i t5: Header timeout
8 i t4: (noy used ·-.- fJ)

Bi t3:B . Numbet; of bad retries during 1 a.st read .
attempt >

(For the above example, this status byte will contain the value $C1
)

8yte2 : := < (Register: WrStat >
Bi t7: Write error occured on last write attempt
Bi t6: Servo Error while writing
Bit5: At least one successful w.rite during la.'st
write attempt
Bit4: No matching header found duri":'9·)~st write
attempt ·
Bi t3:.0'..-$B.0' (not used > .-

(A write attempt is much the s~me

are several e-1.,•ents that can keep the
successfully - and tan be detected
write. If Recovery is active then
the 1 ... Jr i te buffer to Buff er2 and then

as a read atte~pt in that there
controller from writing a block
at the time of the attempted
tt-1 e con tr o 1 1 ,.. r w i 1 1 f i rs t copy
retry)

8yte3 ::=<Number of bad r·i?tries. dur·ino la:.t wr·it~ .;.tti:.1T1r1 t '>

..

l ,.
{)· i rm_2 • Sc r i p t Widget Firmware Specification Page 16

Rea.d_Servo_Status ::= < $82 >

Instruction_Parameter_String ::= < S •• 8 >

This status command is used to interrogate the Servo Processor in
much the same way that Read_Controller_Status is used. In fact, the
form of the result is the same four byte bit-mapped quantity.

This command is of particular value to a diagnostician that is
interested in /picking-about' with the servo processor without
dismantling Widget as a subsystem. Refer to Appendix A: Servo
Processor Documentation for a complete description of the various
status/ available and their resulting bit descriptions.

Send_Servo_Command ::= < $83 >

.(·Instruct i on~Paramete~ _String : := < Bytes 8yte1 8yte2 8yte3 >

· Normally, the Host will allow the controller to manipulate the servo
processor in order to perform useful (or maybe not so useful! }
work. For example, let/s suppose that the Host system wishes to
move the disK drive heads from one track to another. Under normal
operating conditions the preferred way to perform this task is· to
use the Send_SeeK command < explained below }. However, the Host has
the capabi 1.i ty to bypass the controller and direct the servo
processor. Indeed, the Host can issue the servo command to position
the heads < vi a the Send_Servo_Command) so that the seeK is
completly transparent to the controller. The implication of this
command is that the Host can gain even more control of the sy~.tem if
it so chooses.

A more complete description of the Servo Commands ca.n be read in
Appendix A: Servo Processor Documentation.

8yte.0' : := < S_Command + S_D i rec ti on + Hi _Magri i tu de >
s_comman d : : = <

Offset ~:= < $1H >

Offset
Diagnostic
Data.Reca.1
FormatRecal
Access
Access_Offset
Home

The Offset command a.11 ows the Host to. mi crcistep the heads
in either a positive or negative direction from the center
of the tr·a.cK. The Widget Firmware dc•es not make use o-f
th is feature! I ha'H~ instead 1 eft this to a more spec if i c
~,.,, ,...,.,..,.., .. .:. ... v ,.,,..,..,,..,,...::."" tt-..::.t i c:. r-un bY th~ Host, The va.J_1;.;o

Firm_2.Script Widget Firmware Specification Page 17

and direction of the microstep are sent to the Servo
Processor in 8yte2.

Diagnostic
Servo } >

::= < $2.a { this command is not implemented in the

Da t aRe ca 1 : : = < $4.0' >
· DataRecal < and al so Fol"'matRecal) is used as a 'Get the

sel"'vo in a Known state' command, and is usually sent by
the contl"'ollel"' during initialization time or wheonever the
servo is not '·Ready'. This command places the heads over
the first data tracK closest to the inside diameter of the
disK, within a tolerance of 3 tracks. The accepted method
for making certain that the heads are over a Known tracK
fol lowing a DataRecal is to read a header and 'JSe the
track information 1 ocated in the header to establish the
1 oc at ion.

FormatRecal : := < $7fJ >
This command is identical to the DataRecal command except
for the tracK that the heads end up over upon completion:
about 36 tracks closer to the inside diameter of the disK.
Unl i Ke the DataRecal command, however, the disk surface in
this area is not 1 ikely correctly store information
written· there. This command then is used to supply an
absolute reference point when formating the drive.

Access ::= < $8.0' >
I use the term 'access' and 'seek' interchangeably within
the context of this document. The servo Access command is
used to position the heads a relative distance from their
current position. The Servo Processor has no knowledge
concerning absolute position and it is up to the
controller Creal or emulated } to supply the relative
distance. This information is passed along in Bytes and
Byte 1 •

Access_Offset ::= < $9g >
The difference between an Access and an Access_Offset is
that the assumption is made that heads will position
themselves within a 'tolerable~ distance of the center of

,: the tracK with an Access command, 1,0.Jh i 1 e no such assumption
i s made w i t h an Ac c e s s _Cl f f s e t c omm an d . Th e r e i s some
information written on each tracl< of the disk 'under'· the
index mark. This ir1fc•rmation is used by the -:.erl,•o
processor to 'calculate' the center of the track (data
center) and po~ition the heads accordingly. Because the
ser1)0 must wait for the index to arrive under the t"1eads
before it can read thi-:. irifor·matic•n the-re is an implied
]~~enc~ of about 1 _r•volution { currentlv 19_4 mco~ '

l f F i rm_2 . Sc r- i p t Widget Firmware Specification Page 18

t(

attached to each Access_Offset. NormaJ ly, the Widget
control 1 er- wi 11 use the Access comma.n-d. for a.11 reads, and
the Access_Offset command for all writes.

Home : := < $C.B' >
When the heads ar-e "Homed" they ar-e sent compl et el y of-f
the data surface and held in position very near the inside
diameter crash stop.

S_Direction ::=<Positive I Negative >

Positive I I -
I ,- < $84 (move the heads toward the OU t Si de

diameter) >
Negative .. -.. - < $BB (move the heads towar-d the inside
diameter) >

Hi _Magnitude .. -.. - < g .. 3 (move the heads a mu 1 t i p 1 e of 256
tracks) >

8yte1 ::= < Low_Magnitude ::= .0' .. 255 >
Hi_Maginitude + Low_Maginitude, and S_Direction establish the
relative distance the heads must moue to arrive at the target
tr ac K •

8 y t e 2 : : = < 0.;. f =· e t _ D i r e c t i on + Au t o _Of f s e t S•..v i t c r1 + Of f s e t _Mag n i t u de
>

This command byte, when used with the Offset command,
the degree and direction of microst~pping.

estab1 i shes

Offset_Direction : := < Posi ti~e I Negative >
Positive ::= < sas· C o-ffset towards outside diameter
} > ·:. : ..
Ne g a t i v e : : = < $.0' .0' (of f s e t t ow a r d s i n ~· i de d i am e t e r· ::
>

Au t C• _ (1 f f s e t _ Sw i t c h : : = < ON I Q FF >
ON : : = < $ 4 fi C t u r- n au t om a t i c t r a c K
without an ace es=· ceirr1mand) > OFF : :=
auto track center on this command) >

centering on
< ·$fl.ff (de• n ei t

F i rm_2 • Sc r i p t Widget Firmware Speci~ication Page 19

Offset_Maginitude ::= < g .• 32 >

8yte3 ::= < Baud_Rate + Power_On_Reset >

Baud_Rate ::= < 19.5K_Baud I 57.6K_Saud >

The servo ~comes up~ at 19.Sk baud because of the
test equipment used on it before it is integrated
into a system. Once it is running with a controller,
however, it is run continuosly at 57.6K baud. This
parameter is also a bit misleading in that once the
servo has been told to go to 57.6K it will forever
more ignore this parameter: in other words it i :.
impossible to go from the higher baud rate to the
lower without reseting the servo processor.

19.5k_Baud ::= < $Bg >
57.6_8aud ::= < $8S >

Power_On_Reset ::= < $4H >
This is one of three way to reset the servo
processor (such variety! } . The other two are:
1) Power swi tc:h, and 2) have the c:ontrol ler· pull
on the servo reset line .. Out of all three
methods, choice two is the most preferable in
th a t t h e c: on t r o 1 1 e r w i 1 1 c: om p 1 e t e 1 y i n i t i a 1 i z e
a 1 1 the dr i v e par ame t e- rs re 1 ate d to the servo as
well as automatically go to the higher baud
rate.

i
(Fi l"'m_3. Sc I"' i pt Widget Fil"'mwa!"'e Specification Page 20

Send_SeeK ::= < $34 >

Instl""uction_Parameter_St!"'ing ::= < HiC)".1 LoCyl Head Sector>

Widget/s Send_SeeK command allows the Host system to place the
heads ovel"' any tl"'acK on the disK. The value of the seek add!"'ess
sent in the parameter string is used l"'ead/wri te a block of data
using the diagnostic commands for those functions. For example,
for the Host to read Cyl i nder · 1, Head fl, Sec tor 18 a
SeeK_Command would be issued for that combination of cylinder,
head, and sector ($3flfl1 Sfl 12} followed by a Diag_Read {
explained below },

Firm_3.Script Widget Firmware Specification

Send_Restore ::= < $S5 >

Restore_Data ::= < $48 >
Restore_Format ::= < $78 >

Page 21

The Send_Restore command is used by the host to initialize the
servo processor and to put the heads in a Known location. This
command is the same as performing a Data/Format Recal except
that the controller updates it's internal sta~e to account for
the new servo position { as opposed to using the
Send_Servo_Command, which is transparent to the controller}.

Widget Firmware Specification

Set_Recovery ::= < $a6 >

Instruction_Parameter_String ::=<ON I OFF>

ON : := < $g 1 >
OFF : := < $.ff.0' >

Page 22

To the best of my ability I have attempted to maKe the
exception handling characteristics of Widget a binary set:
either Widget handles everything, or the Host system does. The
command Set_Recovery is the Host,.s 1 inK with this al 1 or
nothing world in that it is through this instruction that the
Host can gain control of the media. When Widget comes up after
being reset it assumes control and sets Recovery to be ON. The
Host system must overtly change this state C via Set_Recovery)
i f i t w i shes to emu 1 ate a di ff ere n t except i on hand 1 i n g
criteria. Once Recovery is OFF, the controller wi 11 always fail
in an operation if an exception occurs: the Host system MUST
assume responsibility for ALL error handling.

.-

, '

Fir-m_3.Script Widget Fir-mware Specification Page 23

Soft_Reset ::= < $H7 >

Instruction_Parameter-_String ::=<NULL>

This commands instructs the
f 1 ow of exec u t i on at i t ,. s
should be the same { fr-om
power-r-eset.

.-

Widget firmware to restart it"s
i n i t i a 1 i z at i on poi n t. The r- e su 1 ts
a softwar-e point-of-view) as a

1(Firm_3.Script Widget Firmware Specification Page 24

Send_ParK ::= < $68 >

Instruction_Parameter-_Str-ing ::=<NULL>

When the Host issues a Send_ParK command to the contr-oller the
results are that that the heads are moved off the ,data surface
and held very near the inside diameter crash stop. The
difference between this command and the Send_Servo_Command:
Home is that Home is performed 'open-loop' with the crachl stop
as it'"s reference point, while Send_Pa.rK is an a.ccess command
to a specific track. The net result is a fairly hefty saving of
time: the access command can be an order of magnitude quicker
than Home/Recal.

.-

. ··~"J~.·
!':

.•

Fil"'m_3.Script Widget Fil"'mWal"'e Specification Page 25

Diag_Read ::= < $69 >

Instruction_Pal"'ameter_String ::=<NULL>

The Diag_Read command is used to read the block on the· disk
pointed to by the last seeK add!"'ess. This instruction ls val id
for states that the controller might be in: it is advised that
a Send_Seek command precede the Read. The fol"'m of the returned
data is exactly the same as that .of ProFi 1 e_Rea.d or a Sys_Rea.d
in that 4 bytes of Standard_Status precede the blocK of data.

Diag_Rea.dHeadel"' ::= < $6A >

Instl"'uction_Parameter_String ::=<Sector { $f{ •• $12) >

When the heads a.re positioned over an unknown location, or when
it is suspected that a bl ocK" s header is shot, it is time to
use the Diag_Rea.dHeader command. This instruction allows the
host to "suck-up" both whatever information is residing in the
blocK"s header field as wel 1 as the data from that blocK. The
form of the result is:

Result ::= (
< Standard_Status/$68:$63 >
< Header/$64:$69 >
< Gap/$BA:$f{F >
< Sync/$1.0' :$11 >
< Da t a/$1 2 • • > >

Standard_Status ::= < {as defined above } >

Header : := < HiCyl LoCyl HdSct -HiCyl -LoCyl -HdSct >

HiCyl ::= < 1 Byte, Most significant cyl·inder address
>

LoCyl : := < Byte-, Least sigr1ificant cylinder-
address >

HdSct : := < 1 Byte-, bi ts7:6 ar-e head address, bi ts5:S
are sector address >

-HiCyl ::= < Ones-comp1eme-nt of HiCyl >

-LoCyl : := < Ones-comp 1 emen t of LoCyl >

-HdSct : := < Ones-complement of hdSct >

firm 3.Script Widget F.i rmwa.re Specification

(

·()

Gap ::= < 5 bytes of $SS>

Sync ::= < $SlHH >

Page 26

.-

Firm_3.Script Widget Firmware Specification

Di ag_Wr i t e : : = < $.0'8 >

Instruction_Pa.rameter_String . ·.. - < NULL >

This instruction allows the host to write a block of
the location on disk pointed to by the last seek
D i ag.:_Wr i t e i s val i d for a 1 1 states that the con tr o l 1 er
up in, but it is recommended that a Send_Seek command
the write command to ensure that the correct block
wr i t ten. 1

;»·f;~.·
:';'

Page 27

data to
address.
may wind

precede
w i l l be

(

Widget Firmware Specification Page 28

Store_Map ::=<$SC>

Instruction_Para.meter_String ::=<NULL>

The Store_Ma.p command is to be used by the Host to logically
re-interleave Widget. Widget wi 11 be used on a number of target
hosts, each of which would 1 iKe to optimize the performance {
sequential) of the disk drive. This optomization can occur in
one of two ways: 1) either seperate lines are set up in
manufacturing to initialize Widgets specifically for each
target host or 2) we can manufacture a single Widget unit and
have the Host initialize the drive for it's specific
requirements.

structure is a data structure called
map is used as another level of
the ca 1 cu 1 at i on of a c y 1 i n de r , he ad,

Included in the SpareTable
the Int.erLea.ve_Map. This
logical addressing during
and sector address from
Specifically stated, once a
it is used as an index into
address is generated < the
same number of entries as
must be unique and valued
values },

a given logical blocK address.
sector address has been determinied
the Interleave_Map and a new sector
lnterLeave_Map is an array with the
there are sectors, and each entry
within the range of legal sector

It is extremely important that the host system proceed .with
caution when changing the Map. A remapping of the elements
within the SpareTable is REQUIRED with every change to the Map
{ this is because as the sectors are logically remapped the
defects that stay with a physical address move around relative
to a logical block's number }, For this reason I suggest that
all changes to the map be d6ne using the Wri te_SpareTable
command in conjunction with a remapping of all .the spare/bad
blocks.

This command is ex tern.a. 11 y executed { by the hos.t) as. a
command. The first Number_Of_Sectors worth of data
buffer are assumed to be the new map.

wr· i te
in the

()

i
(Firm_3.Sc:ript Widget Firmware Specification Page 2.9

(

Read_SpareTa.bl e : := < $.0'0 > ...

Instruction_Para.meter_String . ·.. - < NULL >

Reading { and writing) Widget~s spare table is an absolute must for
diagnostic purposes, and if the Host wishes to emulate the
cont r o 1 1 er . The re su 1 t of th i s i n st r u ct i on i s i dent i ca 1 to
performing a ProFile_Read from blocK SFFFFFE and has the form:

Result::=<
< Standard_S·tatus/$.0'.0':$.0'3 {as defined above) >
< Fence/$.0'4:$.0'7 >
< RunNumber/$.0'8:$.0'8 >
< Format_Offset/$SC >
< Format_InterLeave/$.0'0 >
< HeadPtr_Arra.y/$SE:S80 >
< SpareCount/$8E >
< 8ad81ocKCount/$8F >
< BitMap/$8A:$93 >
< Heap/$94:$1C3 >
< InterLeave_Map/$1C4:$107 >
< ChecKSum/$108:$109 >
< Fence/$1DA:$1DD >)

Fence ::= < < sFg > < $78 > < $3C > < $1E >)

R~~Number ::= < 32-bit interger >
The RunNumber is incremented each time the spare table is
writen to the disK. Because two copies are Kept on the
disk, the RunNumber is used to decide which is the mo~
recent of the two. should both copies of the table not be
updated.

Format_Offset : := < SSS .. NumberOfSectors >
Format_Offset is the number of physical sectors there are
from index mark until logical sector S.

Format_Interleave : := < $.0'.0' •• $.0'6 >
This number is the interleave factor for this disK and is
used in calculating where each of the logical sectors are
in terms of actual physical sectors.

() HeadPtr_Array· ::= < ARRAYC £! •• 127 J of. HeadPtr >

HeadPtr
Nil

pt r- . ·.. -

: := < Ni 1 + Ptr >
::= < $.0'.0' I $8.0' >
If a HeadPtr is. ·Ni 1 , then tl"1ere is nc1

· 1 i nKed-1 i st structure in the heap corresponding
to the current logical block numb~r.

< ·$.ff.09 •• $ 7F >

Firm_3.Script Widget Firmware Specification Page 30

A Ptr is a seven bit data structure that
'points' to a specific location within the Heap
C if the Heap can be though of as a 1 inear array
of bytes, the a Ptr is used to index into that
array}. To arrive at the actual index value
within the Heap, the Ptr must first be
mu 1 t i p 1 i e d by four .

When a disK is formatted and fresh data is being written to it,
each logical block is a.signed the first available physical
block on the disK. Therefore you would expect that
LogicalBlocK< 8) would occupy Physica181ocK< B >, L(1) -->
P<l>, etc. There are instances, however, when a block of data
must be relocated to another space on the disK that does not
follow the original pl"ogression { fol' example, the original
space was defective). In ol"der to 'find' these relocated
blocks in the futul"e a record must be Kept as to where all
these relocated blocks have been put. This record ta.Kes the
form of 1:28 1 inked lists having the form Hea.dPtr<n> -->
LinKedList<n), where n := 8 .. 127. The algorithm for deciding
whether or not a LogicalBlocK has been relocated is to extract
bi ts 16:18 from the LogicalBlocKNumber and use it as an index
into the HeadPtr_Array. If the Hea.dPtr associated with this
index value is Ni 1 then Logi ca.181 ocK has not been rel oca.ted
else use Hea.dPtr.Ptr to search the 1 inked 1 ist corresponding to
this HeadPtr value. Now to decide if the Logica.18locl< has been
relocated ·a test must be made as the 1 i nl<ed 1 i st is tr a.versed
by comparing the Logica1B1ocl<Number's bi ts 9:.0' to the current
1 ist element's token value. If they match then LogicalBlocl< has
been relocated and it's new position is a multiple of the list
element's position in the Heap.

SpareCount : := < $a.0* •• $4C >
Bad81ocl<Count ::= < $a8 .• $4C >

BitMap ::= < ARRAYC £5 .. $48 J of Bits>

Heap

The bit map is used to Keep a record of which spare blocks
are occupied, and their loca~ions on the disK.

. ·.. - < ARRAY[g, .$48) of ListElement >

ListElement
<
<
<

: : = (
Ni 1 +Used+Useabl e+Spr _T:;-pe+Data_T>'pe >
Tok en >
Ptr- >)

Nil : := < $8.0* { IF Ni I THEN End_Of _Chain } >
Used : := < ·$4£< >
Use.able ::= < $2£5 >

___ e~,... ~-.. "-~--- •. _ __._ ___ __L.___1~---- - __ I ~--,....1,...,'

1 ' .
{ _,': i rm_3. Seri pt Widget Firmware Specification Page 31

: . ~

0

Spare·::=< $1S >
8ad81ocK ::=<$SS>

Data_Type ::=<Data I SpareTable >
Data ::= < $S2 >
Spal"'eTable ::= < $S9 >

ToKen ::= < 8its9:S of the LogicalBlocKNumber >

In terLeav·e_Map . ·.. - <ARRAY CS .. NbrSctrsJ OF S .. NbrSctrs >

ChecKSum ::= < the sum of all bytes in the spare table from the
first fence to the end of the heap, in MOD-65536 arithmetic >

•

Firm_4.Script W-i 1~ge t Firmware Specif i c:a ti on Page 32

Wr i te,:,;Spare_Tabl e : := <. $.0'E >

Instr~ction_Parameter_String ::= < < SFS > < $78 > < $3C > < $1E >)

·This command allows the Host to ~force~ a new spare table on
the control 1 er, and· is executed just 1 i Ke · any of the other
w~ite commands< the data in this case MUST conform to the
structure presented in Read_SpareTable). The data sent to the
controller is written to the two spare table locations on the
di sl< •

•

f ('F i rm_ 4 • Sc r i p t Widget Firmware Specification Page 33

Format_TracK ::= < $.0'F >

Instruction_Parameter_String ::= <
< Format_Offset >
< Format_InterLeave >
< Pass!.iJord >

Format_Offset ::= < $88 •. Number_Of_Sectors >
This parameter dictates which sector {
sector8 - the first 'physical sector after
will be logical sector 8 for that tracK.

beginning with
index marK }

Format_Interleave ::= < $88 .• $86 { interleave factor} >

Password : := < < $F.0' > < $78 > < $3C > < $1E >)

The format command is used to:

1. Operate on the tracK that is currently beneath the
heads - this imp 1 i es that the Host had best perform a
Send_SeeK command prior to formatting a track.

2. AC erase the entire track - this implies that all
data stored on this tracK has acheived Nirvana and
are living happlily ever after in the great bit
bucket in the sKy.

3. New headers w i 1 1 be l ayed down on E1v1ERY sec tor of
the track.

F i l"'m_ ~ • Sc r i p t Widget Fil"'mware Specification

Initial ize_SpareTable ::= < $1S >

Instruction_Parameter_String ::= <
< Format_Offset >
< Format_InterLeave >
< Password >

Format_Offset ::= < $SS .. Number_Of Sectors>

. Format_InterLeave ::= < $SS .. $S6 C interleave factor)>

> < $3C > < $1E >)

Page-34

Password : := < < $F.B' > < $78
This command form the Host
the slate cleanJ as far as
i n i t i al i :zed tab l e i s wr i t ten

instructs the
the SpareTable
to disK.

contl"'oller to 'wipe
is concerned. The

' .

..

..
. .

,,.
1 ('.firm_ 4. Seri pt Widget Firmware Specification Page 35

Read_Abort_Status ::= < $11 >

Instruction_Parameter_String ::=<NULL>

Read_Abort_Status will return val id data only AFTER the
controller has aborted (identified by
Standard_Status.8yte1.8itB ,), The form of the result is a
sixteen byte string, and the contents are the con tents of th.e
controller/s registers at the time of the abort - with the
exception of. bytes $SE and $SF, wHich constitute the return
address of the procedure that cal led the Abort routine. Because
all of the information that can be derived from this request
from is extremely firmware dependent an appendix {Appendix C:
Abort_Status Variables) has been created that hopefully will
be updated with each firmware release .

. -

'.~·;'k:.'
:':

F i rm_ 4 • Sc r i p f Widget Firmware SpeciTication

Reset_Servo ::= < $12 >

Instruct i on_Parame ter _string : := < NULL >

Reset~Servo allows the host to initialize
w i thou t having to power the device down.
au tom.at i cal l y l"'ese t the Servo, checK
conditions and perTorm a Data_Recal.

· ..

Page 36

the servo processor
The controller wi 11

f or v a 1 i d i n i t i a 1

0

l . (Firm_4.Script W i dge t F i rmwar e Spec i f i cat i on · Page 37

(

Sc an : : = < $1 3 >

lnstruction_Parameter_String ::=<NULL>

The Scan command causes the Widget to read all blocks that are
with the range of blocks set aside for user data blocks. If any
of thes~ blocks are bad then the block will either be relocated
{ if the data can be recovered } or marked as bad and relocated
on the next write to that block. The SpareTable can be examined
before and aftel'j' a Scan command find the locations of all bad
blocks.

..

Fi rm_4.Scr i pt· Widget Firmware Specification Page 38 ·

SYSTEM_ COMMANDS

System_Commands have been implemented for essentially two reasons:

1. I felt that it was important for Widget to add one more checK on
the CMD/BSY handshake: namely the addition of a checkbyte following
the command string.

2. In order to increase the performance of the system without
modifying the hardware it was critical to introduce another level of
parallelism into the Host/Contr-oller interface. Most { 6.0'/. or
greater) of the reads for a specific blocK on the disk are followed
by a r-ead fol"' the logically sequential block. In fact, in the
extreme case of Lisa, this percentage is almost 1.0'a/., Therefore I
have suppressed the command decoding for all but the fir-st blocK
read (over' a small range), The implementation, then, for this
added par-allelism is to send an additional parameter with the<
fir-st } LogicalBlock indicating the number of blocKs to be read.

This implementation holds for Reads and Writes, but not for
Wr i teVer if i es. I have taken the 1 i ber ty of . assuming { hopeofu l 1 y
correctly } that Wri teVeorifies do not exhibit the same
characteristic: behaviour as the other two types of commands, and
that they are fairly long commands to begin with. The trade-off then
was one of saving code space C a Sys_WrVer is the same routine as a
Pr-o_WrVer, but with command checKbyting) vs. adding a third
multi block function with 1 imi ted performance increases.

The protocol for System commands is slightly different then that of
Pr of i 1 e commands . In the case of a Re ad command, each b 1 oc k of data
is transfered to the host when it received by the controller: there
is NO buffering of disk blocks on Widget at this time. The transfer
1 ooKs just 1 i ke other read-style tr-ansfer·s in that Standard_Status
is sent with the data block and the data block is the same length C
532 bytes), Instead, however, of responding with the basic
'Controller is ready for command' response when the Host sets CMD C
after storing the data block) the controller wi 1 l respond with a
'Controller ready to get next block' response.

f(_,~. i rm_ 4. Sc:r i pt Widget Fi~mware Specification

f

Iristruc:tion_Parameter_String ::=·< < Blocl<_Count > < LogicalBlo·c:I< >
)

BlocK_Count ::= < $S1 •• $13 >
This parameter is the number of bloc:Ks to be read that
follow sequentially from LogicalBloc:K. It is assumed that
one bloc:K < LogicalBloc:K } will be read, ma.King the
Blocl<_Count the number of bloc:Ks following the first one
that is to be read, also.

Logic:alBlocK ::= < L_1SM8 I L_2£JM8 I L_4SM8 >
L_1SMB ::= < $SBSSSS •• $SS48FF >
L_2SMB : := < $SSSSSS .• $SS97FF >
L_4SMB ::= < $SSSSSS •• $S12FFF >

Firm_4.Script Widget Firmware Specification Page 40

Sys_Wr i te : := < $.0'1 >

Instruction_Parameter_String ::= < < BlocK_Count > < l.ogicalBlocK >
)

BlocK_Count ::= < $.0'1 •• $13 > ·

LogicalBlocK ::= < L_1.0'M8 I L_2.SM8 I L_4.0'M8 >
L_1.0'M8 ::= < $.0'.0'.0'.0'.0'.0' •• $.0'.0'4BFF >
L_2BM8 ::= < $.0'.0'.0'.0'.0'.0' •• $.0'.0'97FF >
L_4.0'MB ::= < $.0'.0'.0'.0'.0'.0' •• $.0'12FFF >

Sys_WrVer ::= < $.0'2 >

Instruction_Parameter_String ::= < LogicalBlocK >

LogicalBlocK ::= < L_1.0'M8 I L_2.0l18 I L_4.0'M8 >
L_ 1 BMB : : = < $£HJS.0'.0'.0' •• $.0'.0' 48FF >
L_2.0l18 ::= < $.0'.0'.0'.0'.0'.0' •• $.0'.0'97FF >
L_4.0'M8 ::= < $.0'.0'.0'.0'.0'.0' •• $.0'12FFF >

•

·~·. .~ . ~ .

. -

c

r(·.

(

Fir-m_S.Scr-ipt W i dge t F i r-mwar- e Spec i f i c: at· i on Page 41

HANDSHAKE PROTOCOL

Both Widget and Pr-oFile share the same Host interface scheme, and
therefore a lot in common when it comes to trying to communicate
with the Host system. ProFi 1 e-'s protocol is documented in "'ProFi 1 e
Communication Protocol-', and a fol 1 ow-up ·document titled "'The
Extended ProFile Protocol-' written by Karl Young is available for
more detail.

The actual sequence of events can be portayed as follows:

Protocol_Sequence ::= <
< Initial_HandShaKe >
< Command_DownLoad >
< Response_HandShaKe >
[Data Received HandShaKe]
< Final_HandShaKe >)

Initial_HandShaKe ::=
1. Host asserts CMD, sets data direction to r-ead
2. Controller asynchronously responds by:

a • Wr i t i n g $.0' 1 to the Host
b. Asserting BSY

3. If the Host recognizes the controller response, it will
r-espond by:

a. Writing a $55 to the controller
b. Otherwise it will write a $AA
c. In either case the Host wi 11 de-assert CMD.

4. The controller will respond to the Host by:
a. In el ther case C whether the Host responded with a
$55 or $AA or anything else > the controller will
eventually end up waiting for the next instance of
CMD.
b. If the response was a $55 then the controller wi 11
be a 'captive' audience, anxiously awaiting
instructions from the Host as to what to do next.

c

c. Otherwise, the controller will Abort, and leave
Standard Status saying so in it's buffer where the
host can read it. The state of the command sequence
for the controller then becomes Ini tia1_HandShaKe,
and the Host should read do it's best to read the
Standard Status as soon as it notices that the
handshake sequence has been changed. The execption to
t h i :. / 0 t h e r w i s e ,. i s w h e n t h e r· e s p C• n :. e f r· om tl"1 e Ho-:. t
is a FreeProcess response { explained below },

Command_DownLoad . ·.. -

Fi1"m_5.Script Widget Firmware Specification Page 42

1. The Host writes a variable length stf'ing of hex bytes
to the controller. The address of where these bytes are
sent is set up by the controller in the Ini tial_HandShaKe
phase. The length of the hex string is up to the Host, but
is intended to be the length of a command stf'ing { indeed,
the string of bytes is supposed to be a command str-ing! }.
The controller Knows to increment it's address counter {
r-emember-, it is r-esponsible for loading the string into
it,.s memory) by a falling edge of STROBE from the
interface card.

Response_HandShaKe ::=

1. The Host asserts CMD

2. The controller r-esponds asynchronously by fir-st reading
i t,.s buffer in the locations that it set aside for the
Host to. perform i t,.s command download, doing what is
neicessa.r>' to decode thei command C i.e., validating the
checkbyte, maKing certain that the command was of the
right type, and decoding the command), It then Wf"i tes a
r-esponse byte to the Host which has the value of (
Instr-uction_Byte + 2) .

3. The contr-oller asserts BSY

4. (look at 3. for Initial_HandShake}

5. If the cont r o 1 l er rec e i v es a
executing the command, otherwise
Ini tial_HandShake.

Data_Received_HandShaKe . ·.. -

$55 then it
i t w i l l Abor· t

w i 1 l continue
and l"etur·n to

1. If the controller is expecting data (as is the case
for a write command) then in the Response_HandShake it
wil 1 de-assel"t 8$Y and wait for the next occurance of CMD.

2. When the Host /sees' 8SY become- de-asser·ted it wi J 1
then write as much data as i. t pl eases (1 i ke the command
download, the control lei" dictates the address ~f the data
while the Host dictates the length }.

3. The Host the assel"ts CMD

4. The control lei" l"esponds asynchronously to the Host by
wl"i ting a $86 to the Host.

5. The contl"ol ler then asserts 8SY

f~-~irm_5.Sc:ript Widget Firmware Specification Page 43

(
..

6. Assuming the Host accepts the response :f,rom the
controller, it will respond by writing$55 b.acl< to the
controller and then de-asserting CMO.

7. The controller will
command.

Final_HandShaKe ::=

then continue executing

1. When the controller finishes with the execution of the
instruction, .

it will put the latest Standard_Status in a location in
it's buffer

where it wi 11 be accessible to the Host < as wel 1 as
any data that

might be a result of the command execution}.

2. The controller then de-asserts BSY

3. The Host detects that BSY has been de-asserted and then
reads from the controller as many bytes as it wishes C in
much the same fashion as it does when writing a command
string to the controller: the controller points to the
data and the Host moves it).

There is {at least) one implication to this protocol: the Host is
cap ab 1 e of t y i n g up 1.0.0'/. · of the cont r o 1 l er/ s re sour c i's i f i t sc•
chooses. This is becauie the controller has no way of Knowing when
the Host has finished reading/1A1ri ting from/to i t/s data buffer.
There needs, therefore, to be a mechanism for the Host to let the
control li-r Know that it has fr-eed up the control ler/s resource-: ..
This mechanism C for lacK of a better name) is called the
Free-Process. The Host communicates the Fr·eePr·ocess to the con tro11 e
·in either of two ways: 1) the ProFi1e way, and 2) the Widget way.

ProFile_FreeProcess ::=

1. The Host downloads a commands of <$FE > to the
c on tr o 1 1 er .

2. The controller
Fr-eeProcess .

. Widget_Fr-ee-Process . ·.. -

·~ .. . : . ~
decodes the command and enters

1. During the In it i a 1 HandShaKe { when the controller· i :.
attempting to 1et the Host Know that it is r-eady for- a new

Fi l"m_5. Sci" i pt Widget Fil"mware Specification Page 44

command} the Host responds to the $81 with a $69.

2. The controller responds to the reception of a $69
instead of $~5 by entering FreeProcess. All further
handshaKing is terminated •

. ~ .. . : ~ ~

.-

,,,.
"('f i rm_S.Scr i pt Widget Firmware Specification Page 45

·(

COMMAND SUMMARY

ProFi 1 e_Commands:

ProFile_Read ::= < ($S.0'> < 3 bytes Logica181ocK >)
ProFile_Write ::= < <$S1> < 3 byte-s LogicalBlocK >)
ProFile_Wr-Verify ::= (($.0'2> < 3 bytes Log_ica181ocK >)

Oiagnostic_Commands:

Read_ID ::= < ($12> ($S.0'> ($ED>)
Read_Controller_Status ::= < ($13> ($S1> <Status> < ChecK8yte >
)

Read_Servo_Status ::= (($13> ($S2> <Status> < ChecKByte >)
Send_Servo_Command ::= < ($16> ($S3> < 4 command byte-s > <
ChecKByte >)
Send_S&eK : := < ($16> ($.0'4> < 4 bytes cyl/head/sector > <
ChecKByte >)
Send_Restore ::= < ($13> ($SS> <Data/Format Recal > < ChecKByte >
)

Set_Recovery ::= < ($13> ($S6> <On/Off > < ChecKByte >)
Soft_Reset ::= < ($12> ($S7> ($E6>)
Send_ParK ::= < ($12> <$S8> ($E5>)
Oiag_Rea.d ::= < ($12> <$89> ($E4>)
Diag_ReadHeader ::= < ($13> ($SA> <Sector > < ChecKByte >)
Diag_Wri te ::= < ($12> ($88> <$E2>)
Store_Map ::= < <$12> <$SC> <$El >)
Read Spa.reTabl e : := < ($12> ($SO> ($£0'))
Wr i t;_SpareTabl e : := < ($16> ($SE> < Password > < ChecKByte >)
F~rmat_TracK ::= < ($18> ($SF>
<Offset><InterLeave><PassWord><ChecKByte>)
Initial ize_SpareTable : :=

< ($16> <S1.0'> < Offset > < Interleave> < Password > <
ChecKByte >)

Read_Abort_Stat :::= < ($12> <Sil> ($DC>)
Reset_Servo ::= < ($1~> ($12> <SOB>)
Scan : := < <S12> <S13> <'$DA>)

System Cornman ds:

Sys._Read : :=
(($26> ($.0'.0'> <
ChecKByte >)

Sys_INr i te : :=

.. ~ ..

.-

: •?

61 kCn t > < 3 bytes Logica18locK > <

< ($26> ($81> < 81KCnt > < 3 bytes Logical8locK > <
ChecKByte >)

Sys_WrVerify ::= < <$25> ($.0'2> < 3 byte~. Lc11~ical8locl< > <
Checl<Byte >)

.
Fir-m_S-.Scr-ipt Widget Fir-mware Specification Page 46

Password ::= < $FS $78 $3C $1E >

('= i rm_6. Sc r- i pt Widget Fir-mwar-e Specification Page 47

Exception Handling:

Widget has been designed to r-un fault free for most of it;s
operating time. This means that almost every single time that a
request is made of the controller it wil 1 be performed flawlessly.
However, there are some exceptional cases most fall into the
category of extreme errors- where the controller must attempt to
correct a problem. The most 1 iKely to occur is either when the drive
is externally ;bumped; and the heads are forced off tracK, or flaKy
block is read (crc/ecc error }.

SERVO EXCEPTIONS

It is possible for the Servo Processor to detect that the heads
have gone off tracK. When this occurs the Servo will attempt to put
the heads bacK on track transparently to the controller. There are
three outcomes to this exception:

1. The Servo wil 1 put the heads back on the correct track and
al 1 w i 1 1 be we 1 1 w i th t h.e wor 1 d.

2. The Servo will mistakenly put the heads on a tracK that is
close to the target track. In this case theo controller will
detect a header mismatch the next time it reads a block on the
disk and will issue a seek to correct the position error.

3. The Servo wi l 1 raise ServoError (a gross misalignment
detected } and drop ServoReady in which case the controller
wi 11 have no choice but to issue a DataRecal to c 1 ear the
ServoError, then issue a seek to get back to the target track .

. -

Firm_6.Script Widget Firmware Specification . Page 48

READ/WRITE EXCEPTIONS

There are occasions when the a spot on the disK surface becomes
unuseable, or for some reason causes the data stored in that area to
change. To handle thii type of excep~ion Widget is equiped with 2
error detecting devices and 1 ~rror correcting device {although Ecc
is both error detecting and error correcting }. Widget uses a
sixteen-bit ere polynomial C CRC-16 } to detect all single-burst
errors less than sixteen bits in len91th,· almost all single-burst
errors of sixt~en bits, and most single-burst errors greater than
sixteen bi ts in length. A 48-bit ecc polynomial is also used that
has error detecting properties similar to that of the ere
polynomial, except that it handles burst of up to 48 bits. It can
also correct single-error bursts up to twelve bits in length.

When
then the
comm.and.
the fir-st

a bl ocK read, if the f i.rst read is successful { no errors }
data is transfered to the Host, thus completing it"s
Suppose, however, that the block is not read successfully

time. The causes of this exception are 4:

1. Servo Error: this execption is handled by leaving the read
routine and getting in touch with the Servo Processor to see if
things can be straightened out. Once the controller is
conv i need that the Servo is wel 1 and that the heads are
positioned where thye should be, it retries the r-ead.

2. The state· machine indicates that it is in the wr·ong ending
state. This is considered a catastrophic exception an the
controller will abort.

3. The state machine indicates that a matching header wa~ not
found. Before making this decision the state machine searches
the tr-ack twice for a match header. To handle this exception
the controller reads a header- from the track that the heads are
curr-ently positioned ove~ and tries to determine if the heads
are positioned correctly. If they are, then it is assumed that
target block~s header is faulty and the track wil 1 be spared.
If no header can be read fr-om the ~rack it can be determined if
the heads are positioned corr-ec t 1 y or if al 1 header-s on the
tr-ackar,,eshot. In this case the controller will issue a data
r·ecal ·"'.and seeK back to the targft location and retr·y. If a
header sti l 1 can not be found the block wi 11 be spared.

4. The state machine indicates that a ere or ecc err-or has
o c c u r e d . Th e c on t ,.. o l 1 e r w i l 1 au t om a t i c a l 1 y ,.. e t r / .. :~: t i me s (a
tc•tal of Hf r-eads }. If a successf•Jl read is "'encoun.f>?red dur·ing
this retr-y session the control 1 er wi 11 save the valid data. At
the end of a 11 the r-e tr· i es, if the number of bad reads !Alas 2 c•r
1 ess then the bl .:i'ck is transfered to the Host. If the number i ·:. ..
bt?t1,\ieen 2 and 1.\J then the data i~. st'i11 r·et1Jr·ned to the HLi-=.t.

f (7 i rm_6. Seri pt Widget Firmware Specification Page 49

,(

(~l

but the controller goes bacK to the target blocK and performs a
WriteVerify with the valid data; if the blocK fails the verify
then it is spared. If the number of bad reads is 1H then the
ecc correction algorithm is applied to the result of the last
retry. If the data is correctable then it is returned to the
Host; the target blocl< is then write verified with the valid
data and if it fails it is spared. If the data is
uncorrectable, then undefined data is returned to the Host { if
it chooses to read it) and Standard_Status indicates that the
operation fai 1 ed. The target bl ocK is then- decl a.red a 8ad81 ocK
{ a form of spare).

BadBlocKs have the property that when they are read the
controller will attempt to extract the data from the target
block and performing exactly the same steps as in a normal read
in an attempt to recover the data. When they are written to,
the controller performs a write verify to the target block. If
the blocK passes the verifyu then it is no longer a BadBlock,
otherwise it is spared.

SpareBlocKs have the property that they are /relocated/
logicalblocks. In other words, Spare81ocks are blocks on the
disl< that are transparent to the Host and were set aside for
the explicit purpose of relocating faulty blocks. There are 76
such Spare81ocks on each Widget, spaced 256 blocks apart on a
1.3MB dr i v e , 51 2 b 1 oc Ks apart on a 2.0'M8 dr i v e , and 1 B24 b 1 oc Ks
apart on the 4SMB drive. When I decided upon this sparing
algorithm I chose a trade-off .between overall performance and
data security.

When a bl ocK is spared, it is relocated to the nearest avai 1 a.bl e
spare block so that the time to get to it is minimized. This
works only as long as spared blocKs are more or less uniform
over the en t i re di sK surf a.c e • On) the other hand~ i f the i de a 1
c:ase 1A1ere to be-';;impl emented (the c:ontrol 1 er keeping track of
which blocks on the disk were unused and relocating to the
nearest 6ne) t~e space needed to contain the data structure
that k e p t track of the a 1 gp or i t hm wou 1 d be enormous . The
decision to Keep the structure contained inside of one data
block C 512 bytes) led to the /checker-board/ algorithm that
has been implemented on Widget.

.-

Fil"m_6.Scr'ipt Widget Firmwal"e Specification Page 50

MISCELLANEOUS

Parking:

To guard against any mishaps when powel"' is shut off to Widget,
there is a mechanism in the firmware that taKes the heads off
the data area of the tjisK aftel"' a period of idleness. This
mechanism is Known as 'parking". Unfortunately, it is possible
for parking to synchronize with periodic uses of the drive by
the Host, causing a mild. form of thrashing brought about by the
constant ·seeking needed to move the heads betw~en the parK
position and the target position. It was determined
empirically on Pl"'oFile that a good compromise delay time to
park is 3 seconds and that time hold for Widget.

Arm_Sweep:

To protect the head-arm bearings from too many short seeks <
this causes a possible migration of lubrication away from the
surfaces that are me ant to be 1 u br i cat e d) the arm i s swept the
complete width of the disl< data surface every 2.9'48 seeks.

Self_Test:

When the control 1 er comes up from being r-ese- t it performs the
following selftest functions:

. -

1. Reg!stel"' Test
Write and verify
halt if failure

2. Stack Test

one's and zero/z to all registers;

Check push/pop,
failure

call/return capabilities; halt if

3. Ram Test
Write one-s and zeros to a11 ram lc::ications; don't
al low ProFile or System commands if failure.

4. Eprom Test
Check external eprom banks £!and 1 for check tiyte;
don't al low ProFile or System commands if failure.

5. Motor- Speed
ChecK ti me from i r1dex to index; don't a 11 c1r..v Pr·oF i 1 e
or System commands if failure •

6. Track Courit

SeeK from the format recal
test fails if the servo is
tasK.

7 . Spare T 3.b 1 e

position to track z. This
unable to complete this

_I () i rm_6. Seri pt W i dge t F i rmwar e Sp e c-i f i cat i on Page 51

Find both spare tables and write verify them; don't
allow ProFile or Syst~m commands if failure.

8. Read/Write Test

...

Widget performs a read/write test on a tracK not used
for data. If a failure occurs on all blocks of that
tracK then the controller assumes that either the
disk or the read/write channel is unusable •

.. ~

·'

Firm_7.Script Widget Firmware Specification Page 52

r.: •.

APPENDIX C: Abort_Status_Variables

There are occasions when the Widget controller will detect that
?Omething is radically wrong with the Widget subsystem, i.e., the
ram on-boar·d the controller goes on vacation, or the state machine
gives up the ghost, etc. In one of these cases the controller will
,. abort'° i1t"s curr-ent instruction and return control to the Host,
hopefully with enough information that the Host can make an
intelligent decision concerning the state of the Widget.

The Host can read in some information concerning the abort that the
controller took by read Last_Abort_Status. This command returns a
result that is 2.0' bytes long: 4 bytes of Standard_Status fol lowed by
16 bytes of abort status. The contents of the 16 byte result is
dependent upon the abort taken, and is determined by examining the
contents of the 15th and 16th bytes which are a pointer into the
firmware where the abort occrJred.

In the f o I 1 ow i n g 1 i st the contents of bytes 1 S and 1 6 are i n di cat e d
{ as a hexadecimal 16-bi t integer, just as you would read them from
the buffer: byte 15 most significant •.. >, with a brief description
of th ereason why the abort was taken as wel 1 as any comments
concerning other bytes of immediate interest included within the
Abort_Status structure.

$.0'2EA:

$.0'388:

$.0487:

$.0'4CB:

$.0'51 3:

$1 1.0' 1 :

·$11EA:
·$1 2.0'3:
$1217:
$131.0':
$13E8:
·$1513:
$158D:
$16B4:
~19j9·

Illegal interface response, or· Host NaK
8yte.0'9: Response Byte ~~ceived from Host

Illegal Ram_Bank select -
ByteBB: Bank number of attempted select

Format Err or : I 1 1 e ga 1 St ate _Mach i n e St ate
8yteBA: State of State_Machine at time of failure

I l 1ega1 Bank_Sw itch: Either ca 11 or re turn
8yte.0'B: Bank number of attempted bank select

I 11 egal Interrupt or Dead_Man_Timeoout
8yteBA:B8 : Address of routine at time of timeout

Format Err or : Err or wh i 1 e wr i t i n g sect or
Byte.0'9: Error Status from Format81ocK

Command Check8yte Error
ProFi le or System command attempted while SelfTest error
Illegal Interface instructi•:in
Unrecoverable Ser~~ ~rror while reading
Spar· i ng attempted oii.;;;·nc•n-ex i stent :.par·ed bl 1::icK
Sparing attempted while spare table full
Deletion attempted of non-existent bad block
Illeg.:-.1 exception instruction
l_f~,_r.Q_r'i-1ut:1r- :.i-1_l __ o ___ C:.:.r-~1c-. ~~-~._.-._.-.. 1.1~.; 1 ...:!.. 1 .• ,....; +.: -- --

1(:=irm_7.Script Widget Firmware Specification Page 53

. ;(

$18.ff 1:
$1856:

$18A8:

$1802:
$1C15:
$1C24:

$1C78:
$1CFF:
$1E4A:

$1F2F:

$2.0'21 :

i-21F7:

Servo Status request sent as Servo Command
Restore Error: Non-Recal parameter

Byte.ff.ff: Illegal parameter sent
Store_Map Error: Parameter larger then the number of sectors

Byte.fJA: I 11 egal parameter sent
Illegal password sent for Write_Spare_Table command
Illegal password sent for Format command
Illegal format parameters

8yte£J9: Offset para.meter
8yteffA: interleave par-amter

Illegal password sent for- Initial ize_Spare_Table command
Zero block count sent for MultiBlocK transfer
Write Error: Illegal State_Machine state

Byteff~: State_Machine state at time of error
Read Error: Illegal State_Ma.chine state

8yteffA: State_Machine state at time of error
ReadHeader Error: I 11 egal State_Machi ne state

8yte£JA: State_Machine state at time of error
Requerst for illegal logical block

8yte£JC: High byte of requested logical block
8yte£JC: Middle byte of requested logical block
8yteffC: Low byte of requested logical block

$237.fJ: Search for SpareTable failed
$2493: No SpareTable structure found in SpareTable
$2483: UpDate of SpareTable failed
$2522: Illegal SpareCount instruction

8yteff9: Value of illegal instruction
$265E: Unrecoverable Servo Error while performing overlapped seek
$2688: Unrecoverable Servo Error while seeking
$29EE: Servo Error after Servo Reset

8yteSA: Value of controller status port at time of error
$2A1ff: Servo Communication error after Servo Reset
S2013: Scan attempted without SpareTable

" '

I WIDGET SERVO FUNCTIONAL OBJECTIVE

I. BASIC SERVO FUNCTIONS

Widget servo control functions are handled by a Z8 microprocessor. The
ZS handles all I/O operations, timing operations and communication with a
host controller. Controi functions to the Z8 Servo Controller are ma.de
through the serial I/O •..

The following commands foJ: the Widget servo are:

A. HOME - not detented, heads off data zones located at the inner stop.

B. RECAL - detented at one of two positions.

1. FORMAT REGAL: 32, -0, +3 tracks from HOME use only during data
formatting.

2. RECAL: 72, -0, +3 tracks from HOME use to initialize home posi
tion after power on or following an access or any other error.

C. SEEK - coarse track positioning of data head to any desired track
location.

D. TRACK FOLLOWING - heads are detented on a specific track location and
the device is ready for another command.

E. OFFSET - controlled microstepping of fine position system during
TRACK FOLLOWING (two modes).

l. COMMAND OFFSET
the servo.

direction and amount of off set is specified to

•
2. AUTO OFFSET - command allows the servo to automatically move off

track by the amount indicated by the embedded servo signal on the
data surface (disk).

F. STATUS - command can read. servo status.

G. DIAGNOSTIC - not implemented.

·See Table l for the actual command description. With the present com
mand structure a SEEK COMMAND can be augmented with an OFFSET COMMAND.
Upon completion of a seek, the offset command bit is tested to determine
if an offset ·will occur following a seek (either auto or command offset).

c

('
/

(1

.(

II.

When a SERVO ERROR occurs the Z8 SERVO will attempt to do a short RECAL
(ERROR REGAL). Two attempts are made by the system to do the ERROR l:{ECAL
function. If. either of ·the two RECAL .operations terminate successfully
the protocol status will be SERVO READY, SIO READY and SERVO ERROR.
Should the ERROR RECAL fail then the system will complete the error
recovery by a HOME function.

The two OFFSET commands will be described. First COMMAND OFFSET is a pre
determined amount of microstepping of. the fine position servo. Included
in the OFF-SET BYTE (STATREG) bit B6=0 is a COM11AND OFFSET. Bit B7=1 is a
forward offset step (toward the spindle); B7=0 is a reverse step. In the
case bit B6=1 the OFFSET command is.AUTO OFFSET.

AUTO OFFSET command normally occurs d~ring a write operation. When the
HDA was initially formated at the factory special encoded servo data was
writ ten on each track 11near1' the index zone. The reason for this follows:

Normal coarse and fine position information for the position servos is
derived from an optical 9ignal relative to the actual data head-track
location. Over a period of time the relative position (optical signal)
will not be aligned to the absolute head-track position by some unknown
amount (less than 100 uin). This small change is important for reliabil
ity during the write operation. Write/Read reliability can be degraded
due to this misalignment. The special disk encoded sefVO signal is avail
able to the fine position servo and will correct the difference between
the relative position signal of the optics and the absolute head to track
position under the data head only at index time. The correction signal
can be held indefinitely or updated (if desired at each index time) or
until a new OFFSET command or move command (SEEK or R.ECAL) occurs.

COMMUNICATION FUNCTIONS

The servo functions described in the previous section only occur when the
servo Z8 microprocessor is in the communication state. Communication
states occur immediately after a system reset, upon completing head set
ting after a rec.al, seek, offset, read servo status or set servo diag
nostic. A special communication state exists after a servo error has
occurred. If + SIO READY is not active no communication can exist between
the external controller and the servo Z8 processor.

Servo commands are serial bits grouped as five separate bytes total. Re
f er to Table 1 parts I through V as the total communication string. First
byte is the command byte (i.e. seek, read status, recal, etc.). Second
byte is the low· order difference for a seek (i.e. Byte 2 = $0A is a ten
track seek)". Third byte is the off set byte (AUTO or COMMAND OFFSET and
the magnitude/direction for command offset). Fourth byte is the status
and diagnostic byte (use for ~ading internal servo status or setting
diagnostic comm.ands). Byte five is the check sum byte used to check ver
ify that the first four bytes ~ere correctly transmitted (communication
error checking).

f Part of the communication function requires a spe~ific protocol between
the servo Z8 processor and the external controller.

Servo control and communication are described in CHART I. This chart
illustrates the basic sequencing and control operations. Chart I does
not illustrate the servo error handling or command/protocol handling
functions. Error handling is described in Section IV and illustrated by
CHART II.

III. Z8 SERVO PROTOCOL

The protocol between the Z8 SERVO microcomputer and the CONTROLLER is
based on five I/O lines. Two of the I/O.lines are serial input (to Z8
servo from controller) serial output (from Z8 servo to controller). Data
stream between the Z8 servo and controller is 8 bit ACSII with no parity
bit (the fifth byte of the command string contains check sum byte use for
error checking). There are three additional output lines between the Z8
servo used as control lines to the controller. Combining the two serial
I/O lines and the three unidirectional port'lines generates the bases of
the protocol between the Z8 servo and controller. The important opera
tions between the Z8 servo and controller are:

1. Send commands to Z8 servo.

2. Read ZS servo status.

3. Check validity of all four command bytes.

4. I/O timing signals between the Z8 servo and controller.

5. Z8 servo reset.

Sequencing the Z8 servo controller is an important process following a
Power Up (Power On Reset) or if the controller should issue a Z8 Servo
Reset at any time. After a Z8 Servo Reset is inhibited the Z8 I/O ports
and internal register are initialized. This takes approximately 75 msec
after the Z8 Servo Reset is inhibited. The protocol baud rate is auto
matically set to 19.2KB and then the system is parked at HOME position
and SIO READY is set active. ***IMPORTANT***· If the desired baud rate
needs to be increased to 57.6KB; **after a Z8 Servo Reset is the ONLY
time this can be done***· Once set to 57.6KB the communication r~re
ruains at 5 7. 6KB until a Z8 Servo Reset occurs. Se.t ting 5 7. 6KB is achieved
as follows:

1.

2.

3.

Z8 Servo "Power On or Controller" Reset

Wait for SIO Ready

Send a READ STATUS

BYTE l = $ 00
BYTE 2 = $ 00
BYTE 3 = $ 00
BYTE 4 = $ 87

..; ·~

COMM.AJ.\l'D as follows: C'

-·

(

After the completion of transmitting the bytes, the Z8 Servo Controller
chanzges to 57.6KE and will be waiting for the next transmitted command
at S7.6KB.

Before the· controller transmits the command byte th~ controller must pole
the SIO READY line from the Z8 servo to determine if it is active (+S
volts). If the line is active then a command can be transmitted to the
Z8 servo. The program in the ZS.servo will determine what to do with the
command bytes (depending upon the current status of the Z8 servo). After
the command (five bytes long) has been transmitted to the Z8 servo, the
program in the Z8 servo will determine if the command bytes (first four
bytes) are in error by' evaluating the check sum byte (fifth byte trans
mitted). See table Chart III and IV for the error handling. After the
controller has transmitted the last serial string it must wait 250 usec
then test for SERVO ERROR active (+S volts). If SERVO'"ERROR is active the
command was rejected (check sum error or invalid command). If the SERVO
ERRO~ is set active 600~sec after the command is sent (and not 250 sec),
this was a command reject. The SERVO ERROR must be cleared by READ
STATUS COMMAND or RECAL COMMAND before transmitting another command.
See CHART 1 for time diagram of the command sequence and I/O protocol.

As long a~ SIO READY is active the controller can communicate with the Z8
Servo Controller. If SERVO RE.ADY is not active the only command that will
cause the Widget Servo to set SERVO READY active is a. RECAL COMMAND (NOR
MAL or FORMAT). Read Status will only clear SERVO ERROR. And all other
commands will be rejected.

Next, if SERVO READY is active and SERVO ERROR is also active, SERVO
ERROR can be cleared by:

1. Any READ STATUS COMMAND.

2. Any RE CAL COMMAND.

3. Any other commands will be rejected and maintain SERVO ERROR •
•

If a SEEK COMMAND is transmitted with both SERVO READY and SERVO ERROR
active the command will be rejected.

It is important to check the status of all three status lines from the
Z8 Servo. It is best to avoid sending a SEEK COMMAND with SERVO RE.ADY
and SERVO ERROR active.

Chart V parts A-I illustrate some of the serial communication commands
and error conditions that can occur between the controller and ZS SERVO.

IV.·:· :ERROR HANDLING

C SERVO ERROR will be generated during the following conditions:

· 1. During Recal mode (velocity control only) access time-out.If a Recal
function exceeds 150 msec then an a~cess timeout occurs.

.r 2. During Seek mode (velocity control only) access time-out. If a Seek
function .exceeds 150 msec then an access time-out occurs.

3. During Settling mode (following. a Recal, Seek, or Offset) if there is
excessive On Track pulses (3 crossings) indicating excessive head
motion a Settling error check will "occur.

4. During a-command transmission if a communication error occurs (check
sum error).

5. During a command tansmission if a invalid command is sent.

•: .. . : ..

..

f.t" APPENDIX A: •• ('

(

I. The purpose of the FINE POSITION SERVO is to maintain detent or lock on

II.

a given data track. Any misregistrations of the head/arm due to windage,
mechanical observed by the optics position signal are corrected by the
close loop position servo. Misregistrations at the data head relative to
the actual data track on the disk must be corrected by the AUTO OFFSET
command. Figure I illustrates a block diagram of the Widget FINE POSI
TION SERVO. The amount of misregistration at the data track sensed after
a AUTO OFFSET command are summed into the servo and the servo is automat
ically repositioned over the data track.

The COARSE POSITION SERVO (SEEK) has the function of moving the data
head arbitarily from a current track to any other arbitrary track loca-

. tion within the total number of track locations between the inner to
outer crash stops. When a command is transmitted to the Z8 Servo con
troller, the Z8 decodes and interprets the command into a servo function.
If a SEEK command is sent to the ZS Servo Controller a direction and
number of tracks to move is also sent. The system starts its move to the
new track location. When the arm has moved to its new location the Z8
Servo Controller provides control and delay necessary to allow the data
head and the FINE POSITION SERVO to come to rest immediately following a
SEEK. This insures that motion in FINE POSITION SERVO and data head will
be under control when the READ/WRITE channel begins operation. Reliabil
ity of ·the data channel is assured with high margins. Figure I illustrates
a block diagram of the Widget COARSE POSITION SERVO.

The differences between the FINE POSITION SERVO and the COARSE POSITION
SERVO is handled by the ZS Servo Controller. The two servos share for
the most part the same set of electronics. The Z8 Servo Controller and
analog multiplexers switch between the signal paths. In general there
are some circuits that are not shared because of their uniqueness for a
particular servo.

J

28 SER~JO COMMAND BYTES
TA8LE 1

page

I. BYTE 1: COMMAND BYTE (DIFCNTH)

:87
command :86
l:i its : 85

l84

:83 -X- not used
access :82 -access direction
bits l81 -hi ditf2 <512)

:80 -hi diffl (256)

I
I

87 86 85 84 I FUNCTIONS I

----------------~-------------------------~
1 0 0 0 -~cce-ss C•n 1 Y
1 0 0 1 acce'E.s with C•t f ·:.e t
0 1 0 ~3 norma 1 reca.l <to trK 72)
0 1 1 1 -format rec al <to trK 32)
0 0 0 1 offset-trK f o 1 f 0\1.1 i ng
1 1 0 0 home-send to ID stop
0 0 1 0 diagnostic command
El 0 0 0 r-ead <:.tatus commar1d

access dir-ection = 1 (FORWARD: toward the spindle)
= 0 <REVERSE: a.way fr om the ·:.pi nd 1 e)

hi diff2 (51 2) = 1 (512 tracks to go)
= 0 <not set)

hi diffl <256) = 1 C256 tracks to go)

= 0 <not set)

II. BYTE 2: DIFF BYTE <DIFCNTL)

command BYTE 2 contains the LOW ORDER DIFFERENCE COUNT for a s.ee-K

~ :;;_

:87 -bi t 7= 128 tr-acKs
:86 -bi t6= 64 tracks
:95 -bi t5= 32 tracks
:84 -bi t4= 16 tracks
:83 -bi t3= 8 tr ac l< s
:a2 -bi t2= 4 tr ac Ks
: 81 -bi t 1 = 2 tracks
: 80 -bi t0= 1 track

·1

.. Z 8 SERl.)IJ COMMAND BYTES
TABLE 1

page:

\ .1. BYTE 3: OFFSET BYTE (STATREG)

c omma.nd BYTE 3 con ta i n s the INSTRUCT I ON f 1::ir an OFFSET ClJMMAl"m < se E' K
or during track following)

187 -offset direction
:86 -auto offset function
:es -read offset value (after auto or manual)
:84 -offset bit4 =16
:83 -offset bi t3 =8
182 -offset bi t2 =4
181 -offset bitl =2
:s0 -offset bit0 =1

1. if offset command f!"om BYTE 1 is fol lowed by bit.!. set <auto offse1
offset direction (bit7) read offset (bit5) and bits 4-0 ar~ ignor~
but should be s~t to 6 if not used.

2. OFFSET DIRECTION =1 <FORWARD OFFSET:tow.~rd the spindle)

3. AUTO OFFSET

4. READ OFFSET

=0 <REtJERSE OFFSET:away frc1m the spindle)

=1 <normally used preceeding a write operation;
=0 <manua I offset :MUST send direction and magn i t '

of offset)

= 1 <re a.d o-f f set v a I u e fr om DAC; i • e . after au l:.
offset)

=0 <no ac t i on)

*READ OFFSET COMMAND desired after AUTO OFFSET MUST be sent as t·
seperate commands

I'.). BYTE. 4: STATUS BYTE <CNTREG)

CJ

:87 -communication rate
:86 -power on reset
: 85 -not used
:94 -not u:.ed
: 83 --:.ta tus 1Jr d i agn os. t i •: b i ts
:s2 -
:s1 -
:80 -

87=0 . •
=1 .

'
86=(1 .

'
=1 . •

Commun
Cvmmur1

F'ot 1.:-r
Poi . .<J>? r·

i
j

I
I

.J..,/". .

cat i . :,n
c .3, t i on

On Re--::et
Ori ;;:~ .. =~ t

Rate- j "E . 1 ,""'\ .-. .., .~ KBAUD
Ratei i ·:. 57.6 K8AUD.

t:1 i t i s no .;.1: t i 1 •.• • e-
bi t i -3\C .. i 1 . .1~ =· •.

28 SERVO COMMAND BYTES
TABLE 1

\). BYTE 5 : CHECKSUM BYTE < CK SUM)

C87 B6 85 84 83 82 81 80J

resu 1 ts of the transmitted CHECKSUM BYTE are der i veod a:.:

~------~--------------·~----·~---<BYTE 1 + BYTE 2 + BYTE :3 + BYTE 4) :: CHECKSUM BYTE

(+)is defined as the addition of eoach BYTE

(BYTE) is defined a:. the c:ompl imer1t of the BYTE (1-4)

\)!.The SERVO STATUS 1 ine·~ <SIO RDY~SERVO RDY,SERl.)Q ERROR) must ha•Je the
foll owing conditions in or-der to ser1d the 1 i sted Z8 COMMANDS:

Z8 SERVO CMD HEX

access< only) 8X
access<offset) 9X
recal(data) 40
recal (format) 70
park C0
offset< de tent) 1 0
status
diagnostic

><= e i the r 0 ., 1

00
20

SERVO STATUS

I
I

s
r
0

R
D
y

1
: 1
I 1 I

: 1
I 1 I

: 1
: 1

s
R
v

R
D
y

1
1
x
x
x
1
x

s
R
v

E
R
R

0:
0:
x:
x:
x:
0:
;<:

:------------: --------------
not impl i men te d

.-

f;

-NO..,.
~=co :i
:'"'!MM'

~~~ ~ 

ecc_) 
SL 
so 

~~ J'' 
~ bM, SIO 

Z C.7C- J It/I IU' 



-NO.• 
':DCDID':I 
~MM' 

~~~ i 

('\

/. ,r,vr;t'~/~e.Pr CM.lr~IJi.L.LJr

'9 ~ ~g~: trAM.1R"'lJ Sr"~ c,;rc,

b) r' ;?/,,ya- { 7 . .3 -f z.} .

?. '-::?..c:c..ov4" Y

~ J),:Fk.,rS ~ S,Afl-IAJ C.

;) #4is£ 1 •

c.) St£1tVo ,e,f,/L() ~

~) ~.,.."' UJ/l..lt..£C-r~

•

,. "' ...

('•

...... ...
<<< ::>:>::>
000 ,,
§35
:c:i::i: ,,
000
w,2~

-C"llO>•
com•~
C"'lf"H.., ~

~~~! 

~i.1 
~ 

/. 
(. 

3 

f. 
(~) 

.3 >-AJGA'1UJA11~;l.rAJ:J· ro 01~-':.. 

f>£1VOtt'1S lf'.£-40_, aJ11-1r~ r:iJ11N~~ 1f1M1J#U1J1'!. 

t! ~t!../ ec.c . &&n-el'LA-;r~ 
d) e!UUL D~ru,_r,,Ou 

~/$ro~.s 4.lrl"r£/l'MI 'JJhtl- ~ P~.J:. 

?c>c.J£~ 01< 

4.) J:Je;r£GrJ 4.J/'ILP ""-s- ~ /S s 1 ,,, t.J~r""~ 
. RAU'~ 



---. .,....-----·-------·-------------------'----~---------------~ 

.... 

... 

~-~ 
=- ~ ~ r: - ~ ....._ ' ..... 
~ ~~ .......... 

... .;:. -~ . 
··· .. I 

.~ ... , 

,.,,--
'%" ,· ~i9 \ 

21~ ;:: - \ 
·"-...._/', ,... -~\ ~\0~-

~ . 

I 
I 

J 

I 

./' 
~ 

/ ~ s 
-,... 

'. . . '. 

.._ 
. ';°'"' ;-... 'i-i-,- \~ ,:r-
~ ~ s ................ -



•, 

c / 

MM 

~~~ 
~~~ 

I:I:I: 
'./)"""" 
000 
~e~ 

-"""°" .· :OIJ2<:0 ~ 
~MM' 

'."'<NC-:.i ..,..,,..,,, 

2a/.d 

·g4LJ 

/11.5.&<..:t. :.. PAt.,sL; /HS~,P.: = 'TIU.I...£ { />/6'i'f ~ e8 ~ 
~~ ~G)rr.e~ t.t.J 1"-nl #~~,e 

~ - - Trt,-u<. ~ ?""TL 

~= t.o- ~ n~ 
..... 

<#';- Ali~.£ ::>: = /~ Sc:: G.&Gr 

<<--~~>:= s~llUI!- ~~ 
<., 1':.CJ£ :> ; .:: -;;:..AA/~r( < .:=-c.14'> ) 
< it!:.::7;:"'> : = ;z;,vvJeA..T( < .-oc..> ) 
< 1':.1t1> ::: z.uvLA-r(< #01.::>':>) 

< ·-!' II "> ; - # fl¥' 

' 5,cr-t.I,. $ TA-r-£ ./H/k:./f/.V£ 

,,ms~ !L. .. # -r~; fl'sc41.::. ~L.Se {Ate,,... ~ i> 1'.rk} 
:JJM -:;> OGJ//'VI /ott.T ! .:: t/i 
':J>a'4.u.. : = rAG.S£ { :JJl..s-k !l£""j) f 1 ,Ci"!t-.ut.. : = rA-t4e 

rr /l'l;t..-~ A'-£~ o/£1Z,;1 //:,.v 
7:#.&,Q :? Dll~a.11 ' - ,,?"Alc:..sL 

~,.e i't)l'ft:Jd .· .:: T~ { '2>cv-7 c:.;1~ A-~ #1£.# .dLA.. ~ 
?o~ fo<. -5#~~~ /JIA?Clc. { f'o#Lf .3 1 .3 d- .2 I 
?&:1t-L Fr:J,(_ ~r( J£c.w1t ~A'ICK) 
:SrAtz,(L : ::. 7/ZdL { Tt:./;tt..,t/ ~'TAA-Y£ />J,4C#/.V ~ G'.4 f 

.... 
t:::' IC... n ,.-, 4-CJa r 

z;.,: 'T/;., £ elV/ 7'# ..,:t.u' £;<~77dv 
~ ~~TZJtC- l>o.P~ 

Th'o.v' 
K..t="AO .:5rA-rz:. fi?~;,,,; ~77/J 

.srA-r' ¢> /A'~ Ji.eAIJ~ A11s,11101.~/ c>,1-/ ,J/dr f;~ 
:;::, .sr;;r1.-r..t .i!. 

)",fz;.e/ 

:i>frk. -:t>A-rA Hr /?;41H /tJ1t_ ( ~ /9 - ~ 1. ~C...) 
~ kr ~ ,,l-iM!. ( ~ Z.Z..0 - ~ 2. -z..£ ) 

£4:.... ~ ~ 41J~ ~ ~ - 8 z. s.y J 
_;:-,.,:: Gf'C.. e';t'/&1~ /#c.,d -6°X'C~/""7?d::v 

,&s& 

tluk.uo~d .s~ £.xc:L/'r/~ 
STAJ1t..7Z.. '.:: >A<;se ? /'LJC.r£,.T :5./,,¢-T',£ ./H~,;;-e: 

,.... A>a: u r#is ~kS A- /f£AD ~~ ~ ~ 771£ 

73~ 1-.V tf(A-#1. A-Pq;M ... <iii 4'£>:, ;tJ. 1D ,4t)U,£ tRG-~<..A-GLLJ B'f 
-rJI.£_ ~ ri'i!.:5 i JJ r1H- f;.£tJ-O UL- cS f 11-U... ac-! ..,..-~ ~ /,:5 t::. ~ 



-NO." 
<:OCDGI ':i 
,..,~,.., < 

~~~ i 

~·
r11t/>lolA~

/. /1111~ .Z-#r~AGC /'Mro<:AL.

~ ?u F1~~J ~~A~AJoJr11'e,J /11(Jc_r1&tJcJ...

~. 6ArtuJGS SrAr£ ,/)'IJl.Gll"ALJ ~"-'lo
~) -:3As1C: DiJA rvt111c,,rJ;4} s

1.) J&.s~i-/;Q /~"

3 /(~t:.tJ t/L,/t.,'f • (I

"/. ;z:>L~tLMA.t.lfL-

.-

• •

.......
"""""" ~=:ii aoa
SES
::c::z:
000
""00 _...,

-""'·· allCDCD :i ,.,,.,f"t ~

~~~! 

('! 

• 
Z. rS1r A"- b8 lt.l..~~sr£/Lf 

.l Sri'/~" {A1,1. ~ ,f~nJ~ /£Sr 

~ 2;:1"';,,~l:,,c r~ . 61..>b..J.. V'4".s . 7Q/ 

...:s-: 1P ~*' ?:l"sr 

~- .!°l'AIJJflf r~r 

7. /l?~tt SPLt/J ns,- f ~ 7>Muf 
~. S4GTOL &.ur 
9. SeYUJo n-sr 

/d. ff.e.41/1.1.J,.,""fe... "!ar 
//. r/,/.;IJ S l'llU ~~GL. 

/Z. Sc..A.J 



( ) 

...... .... 
<<< 
""" 000 ....... 
::= ...... 
::::: ....... 
000 
"'~, 

-""'°". =••:i M,_,C"'I ~ 

~~~t 

!
~p~Atf.

• .
•

~" -~ _, .

~

:~

p
rJ>

/. /<i Nd -:, / sl11~/ u' '"ac.ocls ·
r{ 20 /II~ ., I SfAu/ .SI'- 'iiloc.J..s

fo hJ~ --? / 5'Ad/ ;1~2y ~uci.s

Z, A ~dt.. ;.s SfJl'l-IUt /J i ff:

~ VAt.iD DJJTA i..s ,tll/AtGA 6l..L

h) r,.,.c otocL i.: 11 llA1t.2 ~~£~
\

3. 7~ /IJrA'- Bt..odJ Al/Alt"161.£ RJn- .9'Art1,J,;

~ S,AfLL 74/JGC i~ CoU/.11£1) """' z.
'-) 71 U~r ~o,,_ UJ£1t- hA-T'f

(--\

c

...... ... <<< !)==
000
........
:::::
:::z:
000
.,,~~

-('1110.. '. o••~
f ~'""""''

(_j·

•

.3. a ffsa- SEG71J(f.. "'

..) u, ~ '' ~cc.,.1&.1
b) //&111J ~ ,1 /ILA.IJ .J.. /~•Ll'~IJ£1./r

I

t_, ,4)£AIL /l/Ztl.lt;

4Jr Se-~s ~g'

-;.....---+---___;;~)/£4) ~Qetl..

-

~~.. : ..

\
I

-
. I

'

-

()

WIDGET SERVO FUNCTIONAL OBJECTIVE

I. BASIC SERVO FUNCTIONS

Widget servo control functions ar~ handled by a ZS microprocessor. The
ZS handles all I/O operations, timing operations and communication with a
host controller. Control functions to the ZS Servo Controller are made
through the serial I/O.

The following commands for the Widget servo are:

A. HOME - not detented, heads off data zones located at the inner stop.

B. RECAL - detented at one of two positions.

l. FORMAT RECAL: 32, -0, +3 tracks from HOME. Used only during
data formatting.

,.
2. RECAL: 72, -0, +3 tracks from HOME. Used to initialize home

position after on or following an access error or any other
error.

C. SEEK - coarse track positioning of data head to any desired track
location.

D. TRACK FOLLOWING - heads are detented on a specific track location and
the device is.ready for another command.

E. OFFSET - controlled microstepping of fine position system during
TRACK FOLLOWING (two modes).

1. COMMAND OFFSET - direction•and amount of offset is specified to
the servo.

2. AUTO OFFSET - command allows the servo to automatically move off
track by the amount indicated by the embedded servo signal on the
data surface (disk).

F. STATUS - command can read servo status.

G. DIAGNOSTIC - not implemented.

See Table 1 for the actual command description. With the present .. com
mand structure a SEEK COMMAND can be augmented with an OFFSET COMMAND.
Upon completion of a seek, the off set command bit is tested to determine
if an offset will occur following a seek (either auto or command offset).

()

II.

{

When a SERVO ERROR occurs the ZS SERVO will attempt to do a short RECAL
(ERROR RECAL) .__ Two attempts are made by the system to do the ERROR RECAL
function. If either of the two RECAL operations terminate successfully
the protocol. status will be SERVO READY, SIO READY and SERVO ERROR.
Should tha ERROR RECAL fail then the system will complete the error
recovery by a ROME function.

The two OFFSET commands will be described. First COMMAND OFFSET is a pre
determined amount of microstepping of the fine position servo. Included
in the OFFSET BYTE (STATREG)_,bit B6•0 is a COMMAND OFFSET. Bit B7•1 is a
forward offset step (toward the spindle); B7•0 is a reverse step.
If bit B6•1, the OFFSET command is AUTO OFFSET.

AUTO OFFSET command_ normally occurs during a write operation. When the
HDA was initially formated at the factory, special encoded servo data was
written on each track "near" the index zone. The reason for this follows:

·Normal coarse and fine position information for the position servos is
derived from an optical signal relative to the actual data head-track
location. Over a period of time, the relative position (optical signal)
will be misaligned to the ab$olute head-track position by some unknown
amount (less than 100 uin). This small change is important for reliabil
ity during the write operation. Write/Read reliability can be degraded
due to this misalignment. The special disk encoded servo signal is avail
able to the fine position servo. It will correct the difference between
the relative position signal of the optics and the absolute head to track
position under the data head only at index time. The correction signal
can be held indefinitely or updated (if desired at each index time)
until a new OFFSET command or move command (SEEK or REGAL) occurs.

COMMUNICATION FUNCTIONS

The servo functions described in the previous section only occur when the
servo Z8 microprocessor is in the communication state. Communication
states occur immediately after a system reset, upon completing head set
ting after a recal, seek, offset, read servo status or set servo diag
nostic command. A special communication state exists after a servo error
has occurred. If + SIO READY is not active, no communication can exist
between the external controller and the servo Z8 processor.

Servo commands are serial bits grouped as five separate bytes total. Re
fer 'to Table l parts I through V for the total communication string.
The first byte is the command byte (i.e. seek, read status, recal, etc.).
The second byte is the low order difference for a seek (i.e. Byte 2 = $0A
is a ten track seek). The third byte is the offset byte (AUTO or COMMAND
OFFSET and the magnitude/direction for command offset). The fourth byte
is the status and diagnostic byte (use for reading internal servo status
or setting diagnostic commands). Byte five is the check sum byte used to
check verify that the first four bytes were correctly transmitted
(communication error checking).

- -- ---~-----

. -------· ---·--.... ---~------···--·--.. .. ·-----·-·------ ·-- --··--

Part of the communication function requires a specific protocol between
the servo ZS p~ocessor and the external controller.

Servo control and communication are described in CRART I. This chart
il1ustrates the basic sequencing and control operations~ Chart I. doe&
not il1ustrata the servo error hand1ing or command/protocol handling
funct.ions. Error handling is described in Section IV and illustrated by
CHART II. .

III. ZS SERVO PROTOCOL

The protocol between the ZS SERVO microcomputer and the CONTROLLER is
based on five I/O lines. Two of the I/O lines are serial input (to ZS
servo from controller) serial output (from ZS servo to controller). Data
stream between the ZS servo and controller is S bit ASCII with no parity
bit (the fifth byte of the command string contains check sum byte use for
error checking). There are three additional output lines between the ZS
servo used as control lines to the controller. Combining the two serial
I/O lines and the three unidirectional port lines generates the bases of
the protocol between the ZS servo and controller. The important opera
tions between the ZS servo and controller are:

l. Send commands to ZS servo.

2. Read ZS servo status.

3. Check validity of all four command bytes.

4. I/O timing signals between the ZS servo and controller.

5. ZS servo reset.

Sequencing the ZS servo controller is an important process following a
Power Up (Power On Reset) or if the controller should issue a ZS Servo
Reset at any time. After a Z8 Servo Reset is inhibited, the Z8 I/O ports
and internal register are initialized. This takes approximately 75 msec
after the ZS Servo Reset is inhibited. The protocol baud rate is auto
matically set to 19.2KB and then the system is parked at HOME position
and SIO READY is set active. ***IMPORTANT***· If the desired baud rate
needs to be increased to 57.6KB; **after a Z8 Servo Reset is the ONLY
time this can be done***· Once set to 57.6KB the communication r~re
mains at 57.6KB until a Z8 Servo Reset occurs. Setting 57.6KB is achieved
as follows:

l. Z8 Servo "Power On or Controller" Reset

2. Wait for SIO Ready

3. Send a READ STATUS COMMAND as follows:

BYTE l = $ 00
BYTE 2 = $ 00
BYTE 3 = $ 00
BYTE 4 = $ 87

(il
-~.

. ,•

After the completion of transmitting the bytes, the ZS Servo Controller
changes to 57~6Kl5 and will be waiting for the next: transmitted command
at 57.60. -= •.

Before the controller transmits the command byte the controller must pole
the SIO READY line from the ZS servo to determine.if it is active (+5
volts). If the line is active then a command can be transmitted to the
ZS servo. The program in the ZS servo will determine what to do with the
command bytes (depending upon the current status of the ZS servo). After
the command (five bytes long) has been transmitted to the ZS servo, the
program in the ZS servo will determine tf the command bytes (first four
bytes) are in error by evaluat.ing the check sum byte (fifth byte trans
mitted). See Charts III and IV for the error handling procedures. After the
controller has transmitted the last serial string it must wait 250 usec
then test for SERVO ERROR active (+5 volts). If SERVo-Ei'ROR is active the
command was rejected (check sum error or invalid command). If SERVO
ERROR is set active 600 U sec after the command is sent (and not
250 U sec), this was a colDIJland reject. The SERVO ERROR must be cleared
by a READ STATUS COMMAND or RECAL COMMAND before transmitting another command.
See CHART 1 for the timing diagram of the command sequence and I/O protocol.

As long as SIO READY is acti-:ve the controller can communicate with the ZS
Servo Controller. If SERVO READY is not active the only command that will
cause the Widget Servo to set SERVO READY active is a RECAL COMMAND (NOR
MAL or FORMAT). Read Status will only clear SERVO ERROR, and all other
commands will be rejected.

Next, if SERVO READY is active and SERVO ERROR is also active, SERVO
ERROR can be cleared by:

1. _Any READ STATUS COMMAND.

2. Any RECAL COMMAND •.

3. Any other commands will be rejected and maintain SERVO ERROR.

If a SEEK COMMAND is transmitted with both SERVO READY and SERVO ERROR
active, the command will be rejected.

It is important to check the status of all three status lines from the
ZS Servo. It is best to avoid sending a SEEK COMMAND with SERVO READY
and SERVO ERROR active.

Chart V, parts A-I, illustrate some of the serial communication commands
and error conditions that can occur between the controller and ZS SERVO.

IV. ERROR HANDLINd-

SERVO ERROR will be generated during the following conditions:

1. During Recal mode (velocity control only) access time-out.If a Recal
function exceeds 150 msec then an access timeout occurs.

()

2. During Seek mode (velocity control only) access time-out. Ir a Seek
function exceeds .150 msec then an access time-out. occurs.

3. During Settling. mode (following a Recal,. Seek, or Offset) if there is
excessive On. Track pulses (3 crossings)~indicating excessive head
motion,. a Settling error check will occur. · .

4. During a command transmission if a communication error occurs (check
sum error).

5. During a command tansmission if a invalid command is sent.

APPENDIX A:

I. The- purpose of the FINE POSITION SERVO is to maintain detent or lock on
a given data track. Any misregistrations of the head/arm due to windage,
mechanically observed by the optics position signal are corrected by the
close loop position servo. Misregistrations at the data head relative to
the actual data track on the disk must be corrected by the AUTO OFFSET
command. Figure I is a block diagram of the Widget FINE POSITION
SERVO. The amount of misregistration at the.data track sensed after
an AUTO OFFSET command is summed into the servo and the servo is automat
ically repositioned over the data track.

II. The COARSE POSITION SERVO (SEEK) has the function of moving the data
head arbitrarily from a current track to any other arbitrary track loca
tion within the total number of track locations between the inner to
outer crash stops. When a command is transmitted to the ZS Servo con
troller, the ZS decodes and interprets the command into a servo function.
If a SEEK command is sent to the ZS Servo Controller a direction and
number of tracks to move is also sent. The system starts its move to the
new track location. When the arm has moved to its new location the Z8
Servo Controller provides control and delay necessary to allow the data
head and the FINE POSITION SERVO to come to rest immediately following a
SEEK. This insures that motion in FINE POSITION SERVO and data head will
be under control when the READ/WRITE channel begins operation. Reliab.il
ity of the data channel is assured with high margins. Figure I is a block
diagram of the Widget COARSE POSITION SERVO.

The differences between the FINE POSITION SERVO and the COARSE POSITION
SERVO is handled by the Z8 Servo Controller. The two servos share for
the most part the same set of electronics. The Z8 Servo Controller and
analog multiplexers switch between the signal paths. In general there
are some circuits that are not shared because of their uniqueness for a
particular servo.

. . ::::::::~ - ---· -----------------·.-.. ·~---- .. ~ - --- -- ----- - - -...-----.--- -- - - -- - - - - --- - ------ .

..

--·,

APPENDIX B:

An important part of the Widget Servo System. is the optic~"signal. The optics
signal provides the necessary signals for the fine positi:on servo to position the
data head accurately over the data track and to provide th~ system. velocity
signal during seek mede. The alignment of the. optics signal is described in
the following section on "WIDGET OPTICS ALIGNMENT PROCEDURE."

~-----------------------------·-· -·-

Dan Retzinger
Nov. 9 ,_ 1982

INTRODUCTION

WIDGET OPTICS ALIGNMENT PROCEEDURE

The purpose of this ·note is to describe the procedure for properly adj us ti nq
fi-ve pots on the widget mother board used to control the amplitude of tlie optics
signal. The five pots are R7, R8, Rl7, Rl9 and R35. The optics signal
or·iginates at the end of the servo arm and is used in positioning the arm.

EQUIPMENT REQUIRED

An oscilloscope capable of operating in the X-Y mode of operation. A Tektronix
model 465 works fine.

PROCEEDURE

1f Op ti cs LED Ori ve Adjustment

1. Connect channel 1 of the oscilloscope to TP 5 on the 1.oJidget Mother Board.
2. Scope Vert. setting: 1 Volt/Div. Horizontal: Any sweep rate.
3. Adjust R35 so the voltage at TPS is 3.6 volts+/- .2 volts.

(clockwise, or more resistance=lower voltage)
~

Figure 1: TPS Amplitude

•

1
). le voCiS

c·, I
~

.... ~ .

(

f

(~--.

... --

Position A and. Position B Adjustment

4. Put scope_ . in X-Y mode, ground channel s X and Y, move dot ·to
center of screen.

5. Connect chan X to T'P9 , chan Y to TPS. (Both TP' s are 1 ocated
near· pin 1 of' the ZS microprocessor)

6. Scope vertical: Chan X and Y, 2 volts/Div.
7. At this point. a"1t is to be moved. **'- to be determined how **
8. With ann· in movement, a circular pattern· should appear on the

scope. Adjust. R7, RS, Rl7, R19 so the top, bottom, right
and left sides of the circle come at but no closer than a
minimum· of 2.5 scope. divisions from the center ot the screen.

9. Each pot adjusts the circle as follows: -

R7
RS
R17
Rl9

Left side
Right side
Bottom

clockwise or lower res=smaller circle
II

II

Top II

10. Figure 2 shows a properly adjusted optics signal.

Figure 2: Position A and B

I
2.~ Div' M IJ\l,

l

PROCEEDURE SUMMARY

1. Adjust R35 so the voltage at TPS (R37) is 3.6 Volts +/- .2 volts.

2. Put scope in X-Y mode, chan 1 & 2 set to 2 volts/div. Adjust R7,
RS, Rl7, Rl9, so that the sides of the circle (during minimum
fluctuation) are each within 2.5 Divisions (+/- .1 div) of the
center. This corresponds to 5 Vol ts from the center· to the
top, bottom, or either side.

-

ADDITIONAL INFORMATION NEEDED FOR WALT WEBBER

To provide i nfonnati on to conver·t. the resi star trimming process i nta a 1 aser
tri11111ing process, Walt Webber needs the following infonnation:

l. The actual final resi star value of R34 and R35 on a properly adjusted mother
board.. (LED current drive adj.)

.
2. The fi na 1 resi star va 1 ue of the resi star pairs for adj usti•ng the sides of
the circle: pairs· RPl and R7, RPl and RS, RPl and Rl7, RPl and Rl9.

3. Data· from 20 to 50 boards is necessary for a good cross section.

,

.- .·

(

(-·I

APPENDIX C:

Some of the· analog control. signals cau be useful in understanding or evaluating
the· function or performance of the Widget Servo. Photographs are provided to
illustrate some of the key Widget functions. Ref er to the following document
"WIDGET SERVO WAVEFORMS."

; '

(J

()

Page 1
Page 2
Page 3
Page 4
Page 5
Page 6
Page 7
Page 8
Page 9

WIDGET SERVO

VARIOUS KEY WAVEFORMS

CONTENTS

Optics Adjustment
Current Sense and Position A
Current Sense and Position A (Forward and Rev Seeks)
Velocity and Position A
Velocity and Position A (Forward and Rev Seeks)
DAC Output and Position A
DAG Output and Position A (Forward and Rev Seeks)
Curve Shift Function and Position A (1 track seek)
Curve Shift Function and Position A (60 track seek)

.... _.

c

WAVEFORM: Optics Adjustment

Scope Adjustments:

Servo:

Channel

Chan 1
Chan 2
Trig In

Iloriz

Probe .lli.

Position A
Position B
Not used

k-Y Mode

~Point

!P9
TP8

Alternate Seeks, 512 tracks

Press Z; 82, 0' 0' 0
86' 0' 0, 0

- . - .
I . - ' . - -

PAGE 1

Notes

2V /div
2V/div

(i

c \

WAVEFOR11: Current: Sense and Position A

Scope Adjustments:

Channel

Chan l
Chan 2
Trig In

~robe Tip

Current Sense
Position A
Access Mode

Horiz: Sms/Div Calibrated

, Servo:

Test Point ----
TP19
TP9
TP27

Alternate Seeks, 96 tracks (Hex ~ . ~ ,..._

Press Z; 80' 60' 0' 0
84, 60, 0, 0

•fotes

, SV/div
. , 'SV/div

Positive trig, ~t/10

WAVEFORM: Current Sense and Position A
(Forward and Reverse Seeks)

Scope Adjustments:

Channel

Chan l
Chan 2
Trig In

.erobe .lli

Current Sense
Position A
Access dode

Horiz: 2ms/Div Uncalibrated

Servo:

~Point

TP19
TP9
TP27

Alternate Seeks, 96 tracks (Hex $60)

Press Z; 80' 60' 0' -0
84, 60, o, 0

;

t i
- I

l?AGE 3

notes

SV/div
SV/div
Positive trig, Ext/10

()

WAVEFORM: Velocity and Position.A

Scope Adjustments:

Channel

Chan l.
Chan 2
Trig In

frobe Tip

Velocity
Position A
Access Mode

lioriz: Sms/Div Calibrated

Servo:

Test Point

TP7
TPY
TP27

Alternate Seeks, 96 tracks (Hex $60)

Press Z; 80, 60, 0, 0
84, 60, o, 0

Notes

2V/div
5V/div
Positive trig, Ext/10

"

(

WAVEFORM: Velocity and Position A
(Forward and Rev Seeks)

Scope Adjustments:

Channel

Chan l
Chan 2
Trig In

~robe Tip

Velocity
Position A
Access Mode

Test Point ---
TP7
TP9
TP27

-Horiz: 2ms/Div Uncalibrated

Servo:

Alternate Seeks, 96 tracks (Hex $60)

Press Z; 80, 60, 0, 0
84, 60, 0, 0

2AGE)

Notes

SV/dfv
SV/div
Positive trig, Ext/10

c)

,.-

. ...

WAVEFORM: DAC Output and Position A

Scope Adjustments:

Channel

Chan l
Chan 2
Trig In

:erobe !!E.

DAC Output
Position A
Access tfode

Horiz: Sms/Div Calibrated

Servo:

--·--·----------

.Test Point

TP13
TP9
TP27

Notes

'i.V/div
SV/div
Positive trig, Ext/ 10 ·

Alternate Seeks, 96 traci<.s (Hex $60)

Press Z; 80, 60, 0, 0
84, 60, 0, 0

. , .

()

('

WAVEFORM: OAC Output and Position A
(Forward and Rev Seeks)

Scope Adjustments:

Channel

Chan l
Chan 2.
Trig In

Probe!!£._

DAC Output
Position A
Access Mode

Test Point ----
1'Pl3
1'P9
1'P27

Horiz: 2ms/Div Uncalibrated

Servo:

Alternate Seeks, 96 tracks (Hex $60)

Press Z; 80' 60' 0' 0
84' 60' 0' 0

t f I - --

PAGE 7

Notes

2V/div
SV/div
Positive trig, Ext/10

,~)

WAVEFOIU1: Curve Shift Function and Position A
(Forward and Rev Seeks: l track)

Scope Adjustments:

Channel Probe Tip Test Point

Servo:

Chan l
Chan 2
Trig In

Curve Shift Fune~ TP12
Position A TP9
Access Mode TP27

Horiz: 2ms/Div Uncalibrated

Alternate Seeks, l track

Press Z; 80' 01, 0' 0
84' 01, 0' 0

I U.

II:
aa- · · ·
'HI

~~
~-

::II

;;;i

.. -.

:iii

::::1

!!I

..

Lt]
~ ~

· · · · · · · · f-- · · · I · · -·
~ r i

- I
-

? .~GE 0

Notes

2V/div
SV/div
Positive trig, Ext/10

.. -..

. - -

n ...,..

(

.·., .

iJAVEFOR.U: Curve Shift Function and Position A

(60 track. seek.)

Scope Adjustments:

Servo:

•

Channel · Jo>robe Tip Test Point

Chan l
Chan 2
Trig-In

Curve- Shift Fune. TP12
Position A TP9
Access Mode TP27

H.oriz: 5ms/Div Calibrated

Alternate Seeks, 96 tracks (Hex $60)

L>ress Z; 80' 60' 0' 0
84' 60' 0' 0

Notes

2V/div
5V/div
Positive trig, Ext/10

.

(

ZS SERVO COMMAND BYTES
TABLE' 1

P.agei · 1

I. BYTE 11 COMMAND BYTE CDIFCNTH>

-------------------------I 87 86 85 84 I FUNCTIONS I I

------------------------------..-.---------
187

command 186
bi ts 185

184

1
1
0
0
8
1
0
a

8
e
1
1
8
1
0
0

& 0
0 1
8 0
1 1
0 1
0 0
1 0
0 0

access only
access with offset
normal recal <to trl< 72)
format r-ecal <to tr!< 32)
offset-tr!< following
home-send to ID stop
diagnostic command
re·ad status command 183 -x- not used

access 182 -acc•ss direction --
bits 181 -hi diff2 <S12)

188 -hi diffl <256)

I I. BYTE

access di r-ec ti on = 1 (FORWARD 1 tOl.l.lard the spindle>

hi diff2 <512)

hi diffl <256)

2: DIFF BYTE

command BYTE 2

187 -bit7= 128
186 -bi t6= 64
185 -bi t5= 32
:84 -bi t4= 16
:83 -bi t3= 8
182 -bi t2= 4
: 81 -bit 1= 2
: 80 -bi t0= 1

= 0 <REVERSE: away from the spindle)

= 1 <512 tracks to go)
= 0 <not set)

= 1 <256 tracks to go)
= 0 <not set)

<DIFCNTL>

con ta.ins the LOW ORDER DIFFERENCE COUNT for a. seeK

tracks
tracks
tracks
tracks
tr a.cks
tracks
tracks
track

ZS SERVO COMMAND BYTES
TABL.E 1

p.age2

~-

III. BYTE 3: OFFSET BYTE (STATREG)

(.)

command BYTE 3"-contains the INSTRUCTION for an OFFSET C~O <s••k
or during track fol 1 owing> "~.

197 -offset dir•ction
B6 -auto offset ·function
B5 -re ad e ff 9& 'e ._a 1 u & E a f I: fl
B4 -offset bit4 =1¢

au I: e or rn an u a 1)

83 -offset bit3 =9
82 -offset bit2 =4
81 -offset bitl =2
80 -offset bit0 =1

1. if offset comnand from BYTE 1 is followed by bit6 set <&uto offset)
offset direction (bit7> read offset Cbit5) and bits 4-0 are ignored
but should be set to 0 if not used.

2. OFFSET DIRECTIOl\I =1 <FORWARD OFFSET: toward the spindle>

3. AUTO OFFSET

4. READ OFFSET

=0 <REVERSE OFFSET:away from the spindle)

=1 <normally used preceeding a write operation>
=0 <manual offset:MUST send direction and magnitud

of offset)

• 1 (re ad of f H I: 1:1 al u e fr om DAC, i • I! • a f I: I! r au I: o
e f f se t)

; •0 (no ac: I: i 011)

~ ~EflE) OFFSET GOMMA~m eJ@ ! i r @d e: f l:@r AUTO OFFSET ~1UGT be !H l"l t !:9 tiXIO

se~ePate eefNRaRee

IV. BYTE. 4: STATUS BYTE < CNTREG>

l87 -communication rate
:86 -power on reset
185 -not used
:84 -not used
183 -status or diagnostic bits
lB2 -
: 81 -
: 80 - v

87=0; Communication Rate is 19.2 KBAUD
= 1 ; Communication Rate is 57.6 KBAUD

86=0; Power On Reset bit is no act iv e
=1 ; Power On Reset bit is active

.-

(

ZS SERVO COMMAND BYTES
TABLE 1

BYTE 5: CHECKSUM BYTE <CKSLtt>

"'
·r.::.C 87 Bo 8~ 84 83 82 81 80 J

results o~ the transmitted CHECKSUM BYTE are derived as:

<BYTE 1 + BYTE 2 + BYTE 3 + BYTE · 4) = CHECKSUM BYTE

(+) i 5 d•-f i ned as the· addition of ea.c:h BYTE

" <BYTE> is defined as the comp 1 i men t of the BYTES< 1-4)

page3

VI. The SERVO STATUS 1 ines <SIO ROY,SERVO RDY,SERVO ERROR> must have the
following conditions in order to send the 1 isted 28 COMMANDS:

28 SERVO CHO HEX

a.cce5s<only) ex
access< offset) 9X
I" e ca I (da. ta) 40
l'ecal (fol'mat) 70
parK ca
offset<detent) 10
status 00
diagnostic 20

X= either 0' 1

SERVO STATUS

s
I
0

R
D
y

: 1
: 1
I 1
: 1
: 1
: 1
: l

s
R
v

R
D
y

1
1
x
x
x
1
x

s
R
v

0:
01
x
x
x
0
x

:--------------------------
not imp I i men t e d

I

(

"JZ"

--- Pl/It.I:! ,41./b W~IT LOOP

t..Cl+O il~&ZS

(Sli.r PO.a'T'S

c "z:")

OLH

()

"JlJii:''

,, r:sz: ,,

tf ~U. ~ cE&(UBIJC..~

e1111~ .z:

sr....-r ,.,, £e.S

:;1;.,. r.t'q ""'~• C r.t.)

u ll:"

(I

-".JJZ,,

. r·

\\ - f#
LJ..t.

c-

~ S'aev~ G~t.J~t!G~

~i+M./ .z:

.. JJI"

~-- $£.19 'POl.T$

L.4.+.0 ff.uo .Sr.+it.T 7¢) Tt. TIJ.it!!,Z.$

=

i..--- SE.r rl!3~

)'

'I

. m''

• • 9:r:JZ ,,

•'.• ·.·

S'E~V(J EJ!,ea,e_

CH-A-~:r Z

,.~,,

._...,..--. ·--.---·- ·-----·-···· --·--··-•"-.

•

• v.z:u

----·-- ~--------=-=-c_ ... __ _

COA.IM()AJ/ CA-noJ.J

eHll-~7 1JI

----~-- ·----·-·-- - ·-···

•

(

~-

11 v:z: II

.- .-
(1

-- _________________ ,_. - ,_---~,-;;-~---:--:-::-- "-----.---:--. -

~. ... G , .. C:fffl-n" v A--~oL ~p
r·

~ I .- ~p.-~aA.,4 So"""

t~ " ve l!IS~Er I!//// I i I

s:.re 12-oy W111 1·~- ~ I

Ii,/}} ~ I
- .

S.E.Q...'8 /U) 'I

&:!.~ ~~ 11//!j r ~

~.z:a . '~.av~ l!l//!1 ~ ~

sz:e ,' CaN7~~ /?1/1ij ~
!- !tJ=.TE...li!. ?cwEA. (.Ip. - ~M?r~ SJ~ EU(}~

•,.--
___,,. : - A!>,t.SI}~ -------.....1

---------- ·- - ,-..-... ---,_---------
' 81 '{ e?.'. !:3 i ?;•t ,(e.s. A

,..

szo /!!!.];) y
(

se.evo el#!!JJ~ -----------------3--t-._1• __ 1_0~_;1.1._~_e _________ _

SIO ;el;) y

l=-1.e.A-C.,c /:OLL,_O(.,A...)/N~ s&.e.v~ t=At.eoll- - £~.40 s T4r(JS
~ !.,.._ \ ~s~~

t=x ~ 4 F 1oeµ~

~t----~--;l!~:----~---l\~~-----
--~----------------i ---------~

"------~.,.__-~

·--
~e.ev• ,~4 -------------~s-· -------

---------------------~{r-----------

----x-a-,x-!z~X~a3-XM-2~~-x----------~11-------------

I

------\.-\ _f/111 $!#//!Ill;

..___,r"-iW1Bl1!/i;
)

?/l/h l!'f/&1//1///~j

W/ijl/!#00~7~~' --------~~-:

:SE e.lt/e> EIU?o~------

,.)

~

P()lSF-A.B (.'),
'

TM# llj OPTIC5

P~"~ A,8 WAJllW!T -(z.)

•
'PH-A-St:. A..VALoa LP 4 .\/It-L ()(:.

A- -...
Sw.1Tt'H :S~IT{'/J...

'PlfME . 1 ,....
2.

.8 ~

l£ 1t

AAJA/...OG

r-t:. $-wlTff

'P: ·. ' r

.,.-

r&
7>ULSE _ PU/SE ~E~f/D ~

A
-. .,. -.....-

&EU ' CO/JTl?l
-;;;

PIJ(..SE I -.
11

IND£)< .

..T/o ~<
...
7

>A~'P/. . .E PE-S

7>UA L

(FllJE

. - .

~

\

t--

...
~

t1ol>£ ,.,-.-, -J:h.s1 TIDIJ S'El:V6

Av'D L.c!Jv,eSE 'IOS,TIO)J SEielA3s)

!=I >J E Lr ,4-AJ/4L~ -POOJEt?

" 4..
RJ.s I Tl•N Stu1Te1../. ./rt,/'° ,..
CGMP " \ r r-

.. 'ff JT f

~
4 A/D

. "+ (OJ.JV I. ...,..

'

j

" '

DAC..
~

r IC {J,e£ I

1ofaf z. \,
4-.. ___ ___,

uon:.e
Kr!< x . I X'~ ... - --.-

...:r .s 2

I

.A

