
apollo computer
COMPANY CONFIDENTIAL

APOLLO DOMAIN ARCHITECTURE

by David L. Nelson

PRELIMINARY COPY January 22, 1981

apollo computer Inc. 5 executive Pork Drive. N. Billerica. MA 01862617-667-8800

APOLLO DOl:llll1 AIICIUTECTUIIF.

1.1 AIICllITECTUHE EVOLIlTIOI/:

This fiGure depicts the evolution of architecture over thc paut
20 ycars. In the center diamond at the top we show batch
eowputinL of the 1960's which is characterized by, first, very
little or no interactivencss and, second, very littl, or no
sharinG of pcripherals and data files. At the mid to the end of
tho 1960's architecture evolved inlo two distinct forms. On the
one hand there Has tirdesharlng Hhich was Intended for people IIho
needed lar~e machine architecture, but could sacrifice certain
dccreeu of performance and interactivcness. TimcsharinG systems
are eharact01'ized by poor interaet!veness but very good sharing
charaetcriatics and also large machine architecture. On ~he
other hand batch evolved into a form called dedicated
I.linieoraputer~;. flinieolJlllUters are characterized by having good
interaetlveness. That Is, Good human interfaces and very good
performancc, but lacked in the shoring of peripherals and data
emong a con~unity of users.

The Apollo DOIlIIIII syater,) has evolved as a direct result of
il.lprovcwenta in technology and is widely held to be the
architecture of the 1900's. It combines the good parts of both
til.lesharing Hnd dedicated uinicomputers, but eliminates the
disadvantat;ea of both 01' these earlier forms. The Apollo DOIlAItI
oyatem hES Lood sharing capabilities provided by a high speed
interactive netHork as well as interactiveness provided by a
dedicated comput~r available to each user.

Pr'cl il.linal'Y Jallu::>r)' 2;>, 1981

, '1805

ARC\-\ \ Tf C TU ef E \lOLUTION

1.2 GOVlilllIIIIG rnlIfCIPLF.S:

Thcre are sovcral principles that have been used to govern the
dc:::ign of thc r,pollo COI.lputcr system. Fir'st, and foremost, is
thc notion that there exists a dedicated CPU for each user.
i}econd, cecil uscr is interconnected with a high performance
local area network. Third, the design of the architecture is
bcscd on hieh level abstractions so that we may independently
evolvc lower level components (ouch as the instruction set, or
intcrnal buses) with minimum impact. Fourth, Is the use of
advanced tcchnologies, such as VLSI, IHnchester disks, and so
on.

·PreliMinary January "'" '- ~- , 1 (j(ll

• CPu.

•

• \.A51: Of" P\\)\lF\t.:)('li) T!('\-\tJOLO(. \ l::S

(\f'-Sl: CP"', ~J\NC.\"\(:.~Tf:~ D\S~s~e:tc)

1.3 IIIGH LEna, I1IPLE!IEIlTA1'IOIJ:

The Apollo f',ystela incorporates designs which are uniformly
advanced, or appear at a higher level than conventional
computers. A conventional computer is characterized by: (1) a
machine level instruction set or what we call an ISP, (2) a
machine level addrecs space or a virtual address space which is
a mcasure of the ranGe of addressing that the computer can span,
(3) the processor memory bus orGanization, or what we call PIIS,
ineludiuL the mCMory buses, the attachment of processors, the
~ttachment of multiple momory units and so on, and <_) thc 1/0
sy::;tcm of the eOlliputer', or the 1/0 bus.

The Apollo sYBtem is designed around higher level abstractions
in oach of these particular areas. For example, rather than an
inotruction Dot, wc talk about a hl£h level language
iuplewentation, namely PASCAL. Similarly, instead of a machine
level address space; such as the 2~ bit address space of the
Ilotorola 6(;000, lie talk allout a 96 bi t nettlork wide (:lobal
olljcct address space. Our thinking here is that objects are
vcry larGe entities that are 32 bits in length and whose
location ohould be anywhere on the network. This 96 bit network
vide objcct address spacc is the fundamental system addrcss 1n
thc Apollo IJOIiAIlI systelJ, and is desiened to accolilDlodate various
u~chinc levcl address spaces. Similarly, rather than dcsigning
the systcm aruund a' processor memory bus organization, the
Apollo systcm is designed around a two address packet network.
This netllork is used to attach computation units, periphcral
ullits and gntc~lays to other syotelJs. It 1s the backbone of the
systcn allowinG users to intercommunicate, to access shared
proGrams and data files and for access to shared peripherals.
Finally, our I/O bUS is not an integral part of our intcrnal
:;yntc:l.I, but rather an IBEE proposed standard IIULTIDUS Ilhich is
c~ternally avuilaille to users and 1s widely acknowledged as a
standard for s~nll computers in the computer industry.

l'rtclilililHry Januar'y 19f1 1

M~C\-\,....:lE: LeVl:l

ItV!>l2\(CTlot..) .$'=-'
(r,.p)

flRo U:::.sSOQ, - M~M'OQ. i'

Sl\S OR,(,A.:lttATI'Ot,)
PM~\

lb/lT L

IMPf;Mt,,>Tl't I\DtV
Lf\\.)c..\A~C.£:.

9b B\T ~bTu)OI2."

(\\.OG,..\., B\;:rtC.T

AOOfl.I:.~.!. ~t>Ac."

PI'ICII.E: r t\ll:T""o~"

'lJ"'~a.Ol~"" H'"

LIt IIDVIIJlCI:O COIlCEI'TS:

There are m~ny advanccd concepts that have been applied to thc
IIpollo architccture Dnd they can be rouEhly broken down into
tllree (lBneral oateGories: (1) thoDe pertaining to the overall
systeM environment, (2) thole pertaining to the proGram
01.virotll'lollt, (3) those pertaininG to the user environment. It
is uueful to point out certain particular features that have
beoll incorporated into tho DOHIIII! Dyste~ in eaoh of those
cnvil'onncnts.

The 11170110 SystOl,1 envirol1lnent is unique in the sense
The arohitecturo is based on a network as opposed to
oysteas arohitecturc, (2) a network which allows shared
peripheralo, (3) a network oriented object based
syotcm that will be described in more detail later.

that: (1)
a central
data and
operating

The procelwillL environment for the Apollo system includes: (I)
a very larGe linear address spaoe for virtual mefllory

which
shell

the

wDnDceuent, (2) advanced eOriccpts, such as stream 1/0
uill be dcsoribed later, (3) new ideas suoh as
IH'or;I'm.,min(l Hhioh allow people to build prooedures at
oOlilmDnd level.

The LHjer ellvironl.lent of the Apollo 1)01111111 system is radically
differcnt frOM conventional system,. Rather than a oharacter
oriented dumb terminal, the Apollo system has for each user an
inteGral bit map display. This parallel device allONS many
concurrent proGrams to be executing on behalf of each individual
uHer, which io accomplished by dividinc the soreen into multiple
independent windON areal.

l'reolililinary January 2Z, 1901

NE:.T\'oOQ..\(, ORC.1\I-.)\ 'l.AT\t>~

RUJ(, tJH\oOQ..~ Po.OTOC.O\.

NODt A~C.H\Tt(. TU£ ~

NE;TwoQ.v:,. WIOt VIRTUAL MlMO~'(

PROC.ll)5 ~T t2~AM\ t.J(,

S"'~LL P4l.0C.R.AMtv\\f\)(,

CoMPn.r\T lOt..) IB\tJD'~(, I ~ ~E:c.\A 11 0 ~

u S~ R NAMe ~PA(~

C.DNC.\A~a. f.,...,r PROCeSS. N (,

'B,r MAP t)\~PL~"l' MAt.:)A(\~MEtJT

II.l SYSTEll r:UVIlIOI1I1CIIT OBJECTIVEs:

lictl/ork IJodulad.ty is a principal design objective of the IIpollo
computcr system, providing a I/ide range in performance, a wide
r'ule" in groutlt capability, and a wide ranee in system level
availability. rlodularity at the netuork level allows users to
incrcgcntally expand their system by themselves on their site,
and uithout substantial programming. It means that they can
rcplicatc nodes to obtain very high availability. It further
~cons that tlte overall system configuration can conform to the
users specific application in the most cost effective way he
chooses. Frow a manufacturer's point of view, netuork
Modularity siGnificantly eases system ma{ntenance, allowing the
rcplace~cnt of entire nodes as uell as the ability for one node
to diat;lIose another.

II second dcsien objective for the IIpollo system environment was
to illcorporote a hieh performance coaxial local area netuork.
Althout;h our systeu Is desiened to accommodate any tuo address
packet tranuport mechanism, the specific implementation that
Apollo has cho~cn involves a ring topology. Rings have numerous
advantages over alternative approaches: They gener.lly allow
hi[i,hcr data handl/id ths and longer distances, they alloll
miGration to neu technolobies such as fiber optics, they arc
vcr'y interactivc allo\/ing very fast network arbitration, and
finally thcy incorporate a free acknowledgement function with
the eirculotioll of each packet.

A third system environ~cnt objective was to maximize network
interactlvenesa. In this regard, our design eliminates all
superfluous messaGe buffering betl/een nodes, allowing a message
cencrated frow one process to be transmitted directly to another
proceS3 on a sepor'ate tJachine. Secondly, our network controller
transmits data thrOUGh the block multiplexor channel which
allows all hir;h pcrformance DIIII devices to have access to the
total wcmory bandwidth of both machines. Consequently, when a
1!J(,suoge it' tr'anflloli tting from one machine to another', the data
rate is at tho maxitJum possible permitted by the two memory
uY3teltls.

Prel hli 1121', Januar'y 2?, 19D1

- W\~& PE'R.r-O~""A\,;)U RA~c..~

- H\c..H A\lA\\ .. A@.\\.\TT

~(;,u')D~\<'"

HlCtH >~H~ / LOr-lt.. c.\~,"~,-=,c...f:.

MlAq,PL(:' Tt(~\~o\.Oc..\ ~~

- MA J.\ WI lA W\

IJ.2 SY~n;l; OIlGIlIJIZATIOII:

The system level orGanization of tho Apollo system is based on
the IIpollo 1>01111111 netl~ork. This netuorlc alloNS an extremely
wide range in perforMance, Growth and system availability.
I:o,'eovcr, use,':: attached to the system can intercommunicate, call
c,eeess shared procrarJG and data files across the netl/ork', can
'·.eceS3 COJ;lHOn pools of peripherals, and. Can f.lnally access
remote foeilities, including larGe foreien machines or other
111'0110 DOll1l111 sp;tet:w. Consequently, the Apollo DOIIAHI netHor/.:
te'.ether lIith the pcr UGor computing node is intended to provide
"it entire eo",plltlnG facility to each user.

P ,. (.1 i t.ol II C\ r' y

A\lAILiIl3ILITl'

II.3 RIIIG IIETIIOIIK PROTOCOL

The Apollo DOllAllI systeltJ is designed around a hlo aildress packet
transport netuork. The specificiuplementation of this n~twork
CRn take various forms, and the system is specifically desiGned
to be able to ~igrate from one form to another as the technology
rcquires.

Tile topoloCY of the Apollo netllor'k is in the form of a cil'cular
!'1118. Access to this rillg is arbitrated through the passing of
a TOKEII IIhich is a specific encoding of bits passed from one
nodc on thc netllork to Dnother. The system allows one and only
one TOKE" to be on the rin8 at any given instant, and the
post:cssion of this sinGle TOKEH Gives a particular node
c;:clusive use of the nctllork.

The forl;J<,t of thc MessaGc on thc ring inc).udes thc destination
nodc address, thc source node address, header information, data,
a ene chcc~, and finally an acknollledGeruent field. The
ac~noHledLeucnl field id adjusted by the destination node,
tilcrcby acl:nowlcdgirlG the correct receipt of the packet to the
Gource node.

The encodiliG 011 the rinG uses a conventional bit stuffing
tecilnique whereby the occurrence of five consecutive l's causes
thc insertioll of u 0 on transmission and a corl'espondine removal
of the 0 upon reception. A special flaG character is used to
establish pac~ot oynehronization and Is encoded as a string of
six cOrloccutive l's enveloped by two 0 bits. The special
encoding of tho TOKEII dcviates from the fla~ character by only
lhe ci[,hth bi t thereby allowing a nodc to acquire a TOKE/! and
trunomit a flan to its neighbor in only a single bit time. Thls
winiual rcquire~cnt reduces the delay per node around the ring
aud thereby I xililizes systelil inleraetiveness.

Pr'el il:linary

F 0\l\\\\0

T O\ll \,\\

PRDTOCOL

II .11 32 BIT [iY:;TT·;11 IIU:r:/lIlCIlY:

Thc /lpcllo central processing unit is built around a VLSI
uicroprocessor with 32 bit erehitecture. The instruction set of
tho proce88or includes both 32 bit data types as well as a 32
bit linear virtuel address spacc. The physical parameters of
t II c s y s t e '" , 1,10 S t II 0 t n b 1 y the 11 i d tho f the d a tap a t h, can be
vicwed in a hierErehieal arrangcgcnt. lit the system level
eouputer nodes are interconnected "ith a 1 bit serial packet
lIcll/ork. Ccrlain periphcrals attached to an individual computer
node ore intcrconneeted with 8 bit (1 bytc) data paths, whercos,
thc mel,.ory syutel,; and hiGh pcrformance peripherals operate on a
16 bit data patlt. Internal CPU registers and arithmetic loeic
unit arc all iwplemented with full 32 bit data paths.

Conacqucntly, lI.e CPU is
systcm is ~cnerElly 16

'only a sincle bit wide.
inverscly I/ith the
processinG reGiuters.

generally 32 bits wide, the memory
bits wide, while the network system is

The width of the data path varies
physical distance from the internal

.Jullunr'y 22, 191) 1

32.

1 BIT

Jlo - - - -

at c~,p

"-_____ ----~-__ ----____ ~J

II.5 IIODE OHGAIIIZIITIOII:

The internal Apollo node orr;anlzation is comprised of several
kcy parls. Firat, there is the central processing unit
eOlilprised of l'lUltiple !lotor'ola 68000's. This central processing
unit is connected to a memory management unit uhich translates
the 24 bit virtuel address out of the CPU into a 22 bit physical
address on the physical memory bus. The memory managemcnt unit
ih actually comprised of two parts: one for the CPU and another
part for the 110 system which I'll describe later. The memory
oystcr" is co)"pl'ised of multiple units - each unit containinG a
1/4 meGabyte. This unit is fully protected with error
correction codcs and is available in sizes up to 1 megabyte.
The 1/0 syotem of the Apollo node is broken down into two
parto. The first part is for those peripherals that are
intecral to the Apollo system, such as the inteGral Winchestcr
disk and thc inteGral network node controller. These devices
are connected to what we call a block multiplexor channcl.
Othel' perlpher'als, such as user supplied peripherals, line
printers, r.lUt;tapes and so on, are connected to the IIULTIBUS
controller.

The use of a block multiplexor channel through which all disk
and network traffic coes represents an essential part of the
Apollo oysten. Thc system tlas designed to specifically maximize
thc node-to-nodc responsi.veness across the network. To do this
we wanted to GUarantee that there would be no superfluous
bufferinc of packet messages as they left a transmitting process
and entered a receiving process on another machine; and,
secondly, wc wanted the transfer of this packet to operate at
ncar ~eClory speeds. To accomplish this responsiveness we allow
the network full (100S) bandwidth access to primary memory,
disallowinc all other block transfer devices, such as the
Hinchester disk. Conscquently, the disk and the packet network
actually shure a CO"'Io.on DUA channel into primary lI,emory so that
both of these dcviees can transfer at data rates of nearly 100%
);)OIlOI'Y bandllidth. Occassionally, a disk transfer will overlap a
nctt/ork trallsfer requiring that either device make one
additional revolution. But the system level performance
consequences of this interference is neGligible.

Finally, the display system is comprised of a sepal'ate
aulono);)ous lID flHCabytc bit map meoory uhieh is organized into a
square array of 102~ bits on each side. The display memory is
constantly I'efr'cslled onto an 800 x 102~ bit map CRT. There is a
separate bit mover wllich is capablc of woving rectangles from
one purt of the screen onto another· part ot' the screen at a data
ratc of 32 wecabits per second.

1"'01 ir.d. n,"roy January 22, 191)1

Al thouc;h the display memory and the proGram mctlory are in
separate physical bus organizations, they actually share the
same address space 30 that the CPU can instantaneouuly access
display Qcmory and alter its contents. Furthermore, the bit
mover can move display areas (rcctanGles) into and out of
proGram ~cmory. The 3ystem is designed so the CPU can access
program meuory and the display memory can refresh to the CRT
display, and the b1t mover can bc moving rectangles all in
parallel and without interference.

[MtMJ--[~M41----\ CPU]

f\ PD~LO

W'Il(LTI BlH
COl.n~OlUQ

6tC\f\t-.) \ 1. AT\OtJ
, -

11.6 BIT IIIIP Dnil'LAY:

The bit raul' displuy Dystem is comprised of a 1024 bit. by 102'1
bit array. 1\ rcctanGular reGion of BOO by 1024 is physically
tr'~'rwfet'red onto the CRT display. The remaIninG area is uDed as
tcmporary storoLe for character font tables. The bit mover is a
I.ardware primitive which is capable of moving a rectanGular area
from any place on the screen to any other plaee on the screen.
This pr'il.ti live is used t.o move ~Iindows into and out of main
wemory, to move them relative to the sereen itself, to implement.
Ecrolling and to create character strings from character fonts.
The bit movcr operates at 32 megabit per seeond data rate when
wovinG entirely within the display memory.

The bit mover can move bit aligned rectancles from display
wcwory tal from work ailicned buffers In proGram memory wherc
the CPU can efficiently perform raster operations, such as
e::clusivc ol'il1'; tl<O or more Graphic representations.

PrEclil.!inary January 22, 19(\1

\Ol.L\

800

E

---1--_\-\

T

\,o/rgOM t>~tXQ.AM
IMf M O~ '{

III.l PflOCESSIIIO r.:IIVIIlOHIlEN1' OBJECTIVES:

A principal objective in designing a system proceosing
environment uas to abstract common entities, like programs and
data file3, iuto a uni.form abstraction IIhich we call an object.
TIlc toLallity of objects across a network foruls a 96 bit virtual
address 3pacc \lhich is comprised of tuo fields: a unique object
niHJe consi3tiuG of 6i1 bits, and a 32 bit byte address within an
object. A socoud objective was to provide a demand paced
operatiuG SY3tCW to implement a network wide Virtual mewory. A
tllird objcctive uas to provide an environment for efficient
process to proccsa streaming and the control of this streaming
thrOUGh ahcll pror;rams. Finally, an efficient compiler, bindinc
aud cxccution procedure whereby network wide programs can be run
interactively.

I'r"l ihill"l'Y January ?2. If)Cl

pe.OtE:SSI"-iCt t..NV I~O~M~tJ\

OBTfC T I \I t s.

32 fl ()ne i:~~ sPA(. (:;
l~tT~OR~ GLoBAL)

rIo

oB.rt (. T

S\itLL

t FF"\ C\l: t-.:>T

III.2 SYSTEII /llIllE SPliCES:

\lc nOli tUl'1I to thc opcratil1/i system design in the Apollo DOIIAIN
system. One lIay of viewinc a complex system is to enumeratc and
describe the various name spaces that o~cur in the system. For
~~aMple: First, there is the user 610bal namespace, or what the
uocr 1I0uid normally type at a terminal to execute a program or
~ccess a data file. Second, thcre is the system Global
nemospace, or the namespace that the operating system uscs at a
IIctHork lcvel. Third, there is an object address space. Our
object address spacc is 32 bits long and contains programs and
files a3 IIcll as other entities in the opera tine system which
I'll describe later. Fourth, there is a process virtual addrcss
space that rccpresents an address space in which a lIotor'ola
68000 proccsa e~ecutes. Fifth, there is the physical addrcss
BI'ace Hllich rcprcsents the amount of physical memory that can be
placcd on the system. Sixth, there is the network address space
or tho IH!xiUllll,j number of nodes that can bc placed . on the
lIetllork. lind, finally, there is the disk address spac~ or lhe
l.Ia;:ir.lum of' ,bytCD or' pages that disk can hold.

III the 111'0110 syster.1 the user global names pace is syntactically
rcpreoented as a otream of characters separated by slashes.
This actually roprescnts a hierarchical tree space which I will
dc:;cl'ibe later. Thc system global namespace is a 96 bit address
space compriocd of a UID which is 6~ bits and an offset which is
32 bits widc. The 6q bit UID is unique in space and time. It
io unique in space in that it includes an encoding of the
~achine's serial number and it is unique in time in the sense
that it inoludes the time ht which the name Has created. This
;;uarenteeo that for all timc in the future and for all machines
that Apollo builds, no two machines will ever create the same
DID, hence thc term ulliQue ID.

OlD's are naweB of objects. Objects are used to hold pro~raws,
filen and various other entities in the Apollo system.' An
objcct is a linear 32 bit address space, byte addressable, and
can be locatcd Generally any place on the network. Objects are
the prir.lary focus for the Apollo DOlJllllf system and are cached
into the process address space provided by the 1I0torola 68000.
Thin process address space, while very larce, is still
conDiderably sualler than the 32 bit object address space.
Conocquently, address regions of an object are mapped into
rCGions of B proceDD in much the samc way that reGions of
physical mCUlory are frequently mappcd into regions of a cached
IiIclilory. Thc proce~s addrcss space is a 2q bit virtual address
uhich is cOllver ted to a 22 bit physical address by f,lImor'y
uanagemont hnrdllare. Thc unit oi al10catioll in the physical
address opaceis 1024 byte paBes.

I'r 01 ilioi rltH'y Janunry 22, 1981

USffl ~lott\t
....,AM{ ~PM .. ~

5 --l.,. T~W\ ~lu{l,AL

NAMf: S~Ac..~

(C\6 ~l' 1'\~t>Ill:.~$J)

'- UlJ\QIH:: \~ ~~I'1(.~"t ,l"\t

O~lf:C-T f\~\)Un
S~f\c.~

1>~O(E:SS A\)M~E:!o«;'

~~~c~ 

~t\'(s,CAl ~Dn\>.u~ 

s"f\c.~ 

N ~"lOQ2." f\bD2kSS 
S~fI)c.~ 

t>\~y'.. f\bt){H:SC; 
~~AC.E: 

[ u:to ] 

- l" -
[ 1 

t fe~'\o:\( .t 

,0 

- \f1-, 
'0(\\ 



IlI.3 SYSTEI: nELATIOIlSIIIPS: 

Tho cxecutiou of a user command on the Apollo DOHAI" system is a 
very complcx proccsa and involves many steps. First of all the 
uner typcs a comMand which is translated by the naming server 
into a UID. The UID is a 64 bit address which identifies one 
particular object on the network. These objects then are 
dynauically napped by the operating syatem into a processes 
virtual Mewory. Onoe mapped no data is transferred until the 
CPU actually requcsts it. Uhcn a page fault occurs the 
operatinG systew uill retrieve the requested pace froM some disk 
structure across thc networ~ and transfer it inlo the physical 
wewory of the local processor. It will then set up the uemory 
wauDeement unit to translate the virtual address into the 
physical address of the ,'equested page and then allow processing 
to continue. 

In this scenario we have four areas which are of interent. 
First is the operating system mapping structure, which'maps 
object address spaccs into process address spaces. Seeond is 
the memory manaGement hardware which translales process virtual 
address spaces into physical memory address spaces. Third is 
the paGine; system uhich transfers pages of physical memory into 
and out of the memory system onto either local disk or across 
-tile nctuorlc to socle remote disk. And, fourth, is the disl( 
ctructure that physically relates objects onto disk data 
blocl:!>. Tilece circular relationships are dynamically and under 
uycleD control Danaged by the Apollo operating system. 

I'r cl il:11 liar' y Janunr'y 22, 19111 

" , 

UI.O 



IlL') Sy[;rr;t': VIHTUAL ADDRESS SPACE: 

The network clobal object spaceD are mapped oelectivcly into a 
proceDU virtual address space of a particular node. Once the 
~appinG occuro no data is transferred until the processor 
I'ctually rcquests it. Consequently the mapping of a large 
add reDO space frow an object into a large region of a proccss is 
a relatively inexpensivc procedure. The objects, of course, are 
network hide; whareas, thc processes are all in a particular 
I:odc runnin('. on behalf of a particular user. The process 
addrcss space is subdivided into an area which is Global to all 
processcs and thon further divided into an area which is per 
proceus supcr'visor and pcr process user. This address space 
MoppinG represents thc only primitive In which proccsses can 
relate to objccts. For the moot part the operating uystem and 
all higher levcl views or the system relate to objects rathcr 
than processeD, and consequently a great deai of network 
trancparency is attained. 

Prel il,d,UIO':; January ::>2, 191)1 

0 

1.1.'t r-----, 

P!R 
PRO(~~S. 

~U\,~f.V'$Dfl 

Ve."-
tROlt!.S 
\A~!R. 

S\~(,ll: ~OOf: 

peOC.E:1;$ 

"\~T~~t Al>blU::H 
S;Pf\C~ 

,/11 

~ "-..~ 

tl ~. 

Nt, "" o.z.'h 
G\.O~AL 
O~'Stc. T ~PA(~ 



III.5 f1[:!J(lIlY IIAIiAGElifWT UIIIT: 

The meuory manaGement unit is a piece of hardware which 
translates tho 2~ bit virtual address spaces out of the lIotorola 
GGOOO CPU onto the 22 bit physioal address in the Apollo node. 
Tho IIlIU 11 0 !'Iu; on 1024 byte physical page sizes and has separate 
protection and statistics information for each page. There 
exists a separate entry in a pace frame table for each 
individual paGe so that when the hardware faults out of the page 
frame tablc (i.c. cannot find an appropriate requested paee), an 
interrupt 10 taken to move the requested paoe in from secondary 
storacc. Thc IIIIU is actually a t~IO level hierarchy, thc pace 
frame table beine at thc highest level. A lower levcl cache, 
called the poge translation table contains the most recently 
uflcd ("'Ges and acts as a speed up mechanism to scarch the pace 
fnl(;1C t.ablc. 

The translation of a virtual address into a physical address 
Pl'ocoods rouehly as folloHs. The 24 bi t virtual add ross is 
broken doun into three fields: First, a high order virtual page 
lIumber. Second, a paGc number. And, third, a byte offset 
within the pace. The 10 bit page number is used as an index 
inLo the pace translation table. The page translation table 
contains a 12 bit pointer which points directly to thc physical 
requestcd pace. Concurrent to the momory system beoinnine a 
wowory request, this 12 bit pOinter is also used to index into 
the pacc frame table from which the high order virtual pace 
nuabers are ohecked. If the check is okay, the protection is 
allowed, and the process ID agrees, the mewory reference 
prooeeds unillterrupted. If, however, there is no acreement on 
Bny of these accounts, the memory request is suspended and a 
c,earoll is (,lade in the pace frame table for all entries 
correspondinG to this particular value of page number. All 
possible values for this page number are linked tOGether in a 
circular list and the harduare automatically searohes for the 
requested paGe number until: (1) It finds it and continues; or 
(2) docs not filld it and causes a CPU interrupt. If the 
requestinG paGe is foulld in the page frame table, the location 
within the pace frame table is updated to the page translation 
table so that s~bsequcnt references oan proceed without 
researchinG the poce frame table. 

J"nuory 2;>, 19f11 

C t\Ec \(. 

---

---



111.6 rnOTECTI0H/9TATISTICS: 

At ench acccss to a page a set of rights (execute, read, writc) 
at·" checl:cd as a function of a particular levcl that the process 
is runnin~ at. The protection hardware specifies the particular 
rir;hts at this level and all higher levels. The levels are tuo 
supervisor levels and two user levels. 

The ncuory ~&naGeuent hardware automatically records and 
IJointains certain statistics about the page access. In 
particular a bit is set every ti~e a page is accessed and a 
Gecolld bi t is sct uhen that page is modified. The operating 
kernel Gcalls thesc bits periodically to' maintain knowledge of 
tho statistical usagc of the pages for the purpose of page 
l'eplaccr:~ent . 

J8nUOr) ;>2, 1901 

00 

at 

10 

11 

Llv€L t<'~"TS AT -T\",So LE.VR AfIJ~ H'C.H~. 

U SEC dtI\WS.;", 0 XXX 
Uset" JOIV\~i>1 1- ~_ £j(~CUTEo 
$P"I" AOMai" 0 ...• ~tA{) f\cU .. S ~ 

sp!lf' <!OMa~t1 1 wtrr~ ~((..(;SS 

Acc..E:SS~D 

MOb, F' i:J) 

t \A~f.'{) Si pf\(~~ \Zf.~LAC.E:M~.JT l04\C.) 



III.1 110 III1PPIIIG: 

PeripheralG on the NULTIDUS are mapped into the 22 btt Apollo 
phyuieal adurE'ss bus by means of an 1/0 map. The 1/0 map 
consists of 256 page entries, each entry pointing to a 
particular IIpollo pagc. A peripheral on the IIULTIBUS can 
Gcnerate a 16 bit word or byte address and have the high order 
bits indexed into the page map and tho low order bits inuexed 
relativc to the page. In this way MULTIDUS peripherals can 
uircctly address themselves into the virtual memory of a 
proce6S. 

January 2;>. 1901 

tI\"\..T'~U~ {\o()(H:S\ 
I.UIR E: D 

\btiT ,""oab IB1ft it Pta. (H\I'(E: 

[ili] \ I I \ 

""'\J ~I 
~9<n 0,,,., 

...........woltD ~\J\G~ 

q ul"( ,""oRO ~ 

[ I \ \ ] 
f ~\"r ~f'I{.E: ti 

II MA~ 

41 
.i 
I-
Q 
'lI ll. &\T PM,!; 

'" i 
Q.. 

~ 

MULTI \jUS 



III.(\ OI'Ef:IITII/G 3YS'J'EII n:nllEL: 

To il.Jplcl"cnt tile nctl/ork wide virtual meMory system, sevcral 
t:..bles Dr'e maintaincd lIithin the operating system kernel. lis 
objects arc tloppcd into process address spaces, entries are made 
into thc nnJ>pcd se{;mcnt tablc (liST). IIhen a CPU fault occurs 
for tllat virtual address, the operating system scans the active 
sc~mcnt table (liST). This tablc contains a cache of pointers to 
tile aotual looation of the pag'es, be they in physical memory, on 
local disk or on a remote network node. In this way, objects 
that are locically mapped into a process are being constantly 
sI!2pped in and out of memory across the network solely on a 
delUGnd basis. 

I't'e!hd.hat'y JattU2.1')' 1')01 

Os 

Vv\t\~~H~ 
Sf Gt\\ft,,)T 

TA~L~ 



111.9 DISK STRUCTURE: 

Objects are wappcd onto physioal disks using a rather dynamic 
::;torar,e allocation. First of all a disk structure contains a 
lJhysical volumc label Hhicl! is'a list of pointers which point to 
wnltiple lOGical volume labels. The division of a physical 
volume into multiple locieal volumes is a means whereby fixcd 
lJurtitionu oan be oreated Hhieh do not compete for comwon 
::;torage. In other Hords, one can create a logical volume and 
I:uarantee it h2s a certain minimum amount of allocation. 

Cach logical volume label contains a volume table of contents 
wap. The volume table of contents is a list of all of the 
object UID's in that volume and for each object a set of object 
;:ttrlbuteu. The object attributeu consist of the object type, 
aeeeSD control information, accounting information (last date 
accesued, laut date Modified), and a map to all of the various 
data blocks which comprise the object. The map is comprised of 
35 pointcrs. The first 32 pointcrs point directly to data 
blocl:s cach of ,,:hich consists o( a single page. The 33rd 
pointcr points to a block of second level pointers (256 of them) 
\ll1ich in tUl'n pol.nt to actual data blocks. The 3/Jth pointer 
L~p&nds into throe levels of storage and the 35th pointer 
,,"panda into four levels of storage. Consequently, for small 
objects deta access is very effiCient; and for large objects 
8toraGo allocation ia very efficient. 

::ach blocl< coutaills not only 1021j bytes of data, but also the 
I!ID and object page number that this paGe represents. 
Consequently if a failure should occur, the entire mapping 
~tructure can be recreated by a single pass over all of the data 
pacen. 

(I." (:1 iu i nary J[tlluar'y 2~, 19(Jl 

VTot. Mf\P 
\lTOL 

_ D~l£.t:r ,"'(Pf 
_ P.Ctt:)!. (WJTQ.O\.. 

- ACC004t.lT''''c. 

- \Y.f\ P 



III.10 I/O IIIEIlAIlCIIY: 

Thore are four lcvels of abstraction in the 1/0 system of the 
(.pollo DOIiAIII. The hiGhest level is the lan~uage level which is 
~upported by the standard lanGuage compilers, such as Fortran 
I'ead and wri tc. The implcmentation of this language level is 
done by whotHO cell the stream lovel. The stream level has the 
charEcteristic of beine object type independent and can 
:.ccordill(;ly talk to files, peripheral devices, or to other 
prOCeSSDG. Thc iMplementation of the stream level is 
uccompliHhed throuch the map primi~ives which were described 
carlier. The map primitives have the Characteristic of being 
object location independent thereby allowing streams to co 
nerODS the network. The mapped primitive associates object to 
process addressinG only. 110 data is transferred until the 
reference is mode. 1111 data transfer in the entire system 
occure at the paGe lcvel. The paGe level is the physical 1/0 to 
locel and reuote disks across the network. This data is 
transferred 01. delilond, resul tinG exclusively from a CPU pace 
r~'ul t. 

I't, 01 iui Jlc.ry January 

I/O 

1/0 

\ '" e.\ '" s\ vy c.o"'{k\ \," \~, 
~'l$teW\ i~t\Q"~~(l\t 

STRE:AM flO 

........ 

"LIO 

ob.l~c.t t'lpe \",d(~~t\e\(",t, 
~focess - pt'ocUS, ~,'~, dN'C(,tf< .. 

ob~ ec:t \O(C\\,'o"\ ty\~\\AJO(" "",~...(f) 
("Ae\\ .. ~e"t . r:1\~OC.\t:\tL~ o\)..\el\
pfO(e~~ adJK.~'>'~ 0"'\", ~o Jo~C\ 
"t'feu, f, lQ rted 1.1,,",\\ ,ef~'~M~ ,~ ~t • 

f"'i'S lett \ I/o ~o 'oea \ et"'.t ,"~"'Dh 
L\ u v,,. 0. (.r 0 !os. '" ~ t"" 0 I' \(. • «\1\ t f!\ 

" . IA \\" 
tV'a.~sf""''''e'' ,of\de""ctwf.' J "e~v. \"'~ 
tUM cP", f'e.,\e -tfll\\\t. 



IlL!! 3TnEAI: I/O: 

The otream 1/0 level deals with the interconnection of objccts, 
includinC prOCBOS to file operations, and proccss to process 
oper&tions. It haD the principal characteristic of being object 
type indcpcndent. And since it is implemented through the 
ruapped 1/0 level, objects can be conceptually interconnected by 
otrcams both within the same node and across the network. 

\1I'8n otreaI;Js are uocd to interconnect procesoes, thc output of 
OIlC proceso io connected to the input of another process. This 
uultlple proccss application can acquire the form of a stream 
filter whereby every process forms some transformation on its 
input and thcn pasoes the output to another process. "hcn 
applications arc cllcodcd in this manner, programmers are 
encouraGed to urite processes as simple, modular programs that 
per'form sor,lO primitive function.· Frequently, these functions 
eRn be reused aeroos many applications. 

I't'cliulnr.I'Y JallllLry 22, 191>1 

It-lPl\T 
S-rRtA 

Ilo 

--
/ 

/1 
/ 



111.12 SOFl'lIl.nr: TOOLS: 

A l~rcc ccllcction of procram modules designed to perform some 
prh;itive function have evolved over years of uoe by a lal'Ge 
collection cf users. These modules are referred to aD Software 
Tools elld are lIidely distributed throul3hout the user cOl:lnlUnity. 
~oftu2re Tooln follows the methodoloGY Inid out in thc book 
clltitled "Softll;:,re Tools" by ((ernican and PlnuGer, published by 
IIcldisoll HeGley. 

IIpplicatiollG CBn be easily formed by interconnectinG streams of 
data throuGh p collection of Software Tools. The collection of 
ctandard Softllnrc Tools is derived frorn a library of prol3rams -
2 "toolbox" of Software Toolo. In this way complex applications 
enn frequently be formed with little or no prouramminu. The 
ti~e required to develop a ncw application is significalltly 
reduccd. Furthermore, users are encouraged to write prourams 
that are sllioll, conceptually simple, and usable for many 
applications and by mnny users. 

Pl'cliuillnry January ..,., 
'- €. t 19!J1 

TOOLS" 

APPU(lA TIOtV: 

.0 



llI.13 SIIELL PHOGIUI!fS: 

A shell prograw is a higher level flow of control above tbc 
conventional proGram level (e.g. Fortran or Pascal). Shell 
pro~raws arc written in a sbell programming language tbat has a 
I'ich set of' conctructs that are, in nany respects, similar to a 
convcntional lanGuBge. lIowever, an executable statement within 
n shell proGrGm frequently involves the complete execution of 
OIlC or more cOllventional programs. In this regard, a shell 
proGram can be thouGht of as a sophisticated comDand processor 
,;hlch coordill<ltcs the execution of multiple program steps. 

Tile ability of users to proGran applications. in a shell 
proGramminc lancuagc relieves a Groat deal of complexity that 
lIould otherwisu be required within a Fortran or Pascal proGram. 
Consequently, programs written in these languages tend to be 
::.;111.plor and Ilave feuer input .options. 

Tile eOllccpt of shell pl'ocramming goes hand-in-hand with the 
COllccpt of Softwal'e Tools. lIere, the shell programs represent 
thc intercollnect of streams between various programs, and can be 
DEtended to richly interconnect small programs in order to form 
coupler. applications. 

JGllll':I'Y "'> 
I .•. , 1 9 D 1 

Cot..:l" f:: I.)T\'OuA \.. 
Co,"~A""O L~"{-L 

e)<.~e""t<t r"lO~ '1 
e ... ee ..... \-e P"D91. 

IF 

ElSt 

etc.. 



111.1'1 COIiPILIIT101l/IlIIIDHIG/EXECUTIOII: 

!Je nOH Ghl!'t to the hi(;her level orGanization of objects in the 
system as they relate to user programs, compilers, linters and 
IOQder's. 

The compil cr translates a source proGram object into a eotlpiled 
object. The compiled object has a format which is suitable for 
direct e:'eeution if .,there are no unresolved referenecs (i.e., no 
other subroutillcs Hhich need to be bound together). If the 
npplication contained several source program objects, these 
coupiled objects must be bound together prior to execution, a 
"t'occss accomplished by the IllIIDER. The process of loading and 
e:ecutinc a compiled o~ject consists of: (1) Happing the pure 
position indepelldent code into a reGion of a process address 
space. (2) Creating an impure data object and mapping that data 
object into an iapllre section of the process address space. (3) 
Dynamically linl:inG oper-ating system references to the operating 
nystea durinG execution. 

There arc tHO il:Jportant points in this procedure: (1) The 
output of a compiler can be directly executed if there are no 
external references to be resolved. (2) A compiled object, once 
formed, is never referenced again until it is in execution. 
This reprcaento n very efficient compile and run time design. 

I'r'elililillu'y 

Ce""I" .:_"1 

O~J6C-n 

?RuCe)> 
I\\)()(U s S 
~Pf\U: 



III. 15 COIJPIL1W Ol1JI':CT: 

The eompiled objcct format is comprised of two parts: The first 
uajor part is position independent code and pure data which is 
dircctly wapped and executed into a process address space. The 
second parl is a database used by the loader to ereate an impure 
teQPorary data object whieh is subsequently mapped into the 
impure part of a process address space. 

l'r·oljnin' ... ·y '"1') 
r .'. , 1'11)1 

COMP'Le() 
OBJ€.Cr 

Fo!tw\\'\\ 

\U~I) ~R. 

PO~\TIO~ 
'~O(PllGot~r 
c.eo t: 

t 
puQ(: 
o PI'fA 

MOO"l.t O\tEClOM 
Sf.tT'D~ '(1'1"1.1. 
<4'-Oe"lo,ellONAt,. 
11.J11.AI.'ttll I~. Ot'It"fI 
H'\>TOlh' ,uFO 

~"'''''Qo .. l-"l&\.I:S 

I 

pe.. 0(.(: !> oS 

A(}bR.E::S ~ 
S~AC.f=. 



IV.l u:;r:r; EI!VIIIOIJIlr:IIT OBJECTIVES: 

A key objective in desieninc the Apollo user environmcnt io to 
cowbine oimplicity and uniformity with a high de8ree of 
functionality. 

All objects that the oysteM io capable of referencing can be 
c~prD0ged in a uniform name space that tranocends the entire 
network. Further, a bit map display, ao opposed to a character 
display, is used to repreoent text and graphics output. The 
output frou wultiple programs cen be concurrently display~d 
through uultjplc lIilldows, thereby providinC a decree of 
rutlctiollality unavailable on conventional systenls. 

l'rellf:llnn .... y Janu~.ry ;>;>, 1981 

LA St R 



IV.2 USEIl /Il\liE SPI\CE: 

Tho narucspaoc secn by a user is organized as a hierarohical tree 
structurc. The hiehest node of the network in thc tree 
reprosents the most global portions of the network. Hhereas, 
the leaves at tho bottom of the tree represent particular 
objeots, suoh as programs, files and devices. Intermediate 
nodes arc uscd to represent oollection of objeots that have some 
corumon association. For example, an entire node on the network 
way be represcntcd by an entire subtree in the tree hierarohy. 
The overall namespaoe hierarchy is intended to represent a 
logical orcanlzation of the network. All leaves, or thc lowest 
level of thc tree, represents objects and the user has a variety 
of syntacticsl forms in which to express thc location of an 
object. First of all there is the network wide syntax which is 
oomprised of two leading slashes followed by a full path name to 
I'oach the objcct. Second, there is the looal root relative 
syntax which oan be used to express objects that are local to a 
particular users node. Syntactically this is expressed by one 
leadinG slush followcd by a relative path name. For 
convcnience, the user may attaoh himself or his working 
direotory to Bny point in the tree name hierarohy; and, 
consequently, he May express a path name which is relative to 
his lrorl(ing dil'ectory. lie does this by expressing the relutive 
path name without a leading slash. Eaoh node in the network is 
reprcsented as a direotory objeot and contains a list of 
2ssociutions. For each namc at a lower level there is oontained 
lIithin tho dipcctory a UIO or a path name. If it is a UIO it 
points to the next lower level directory or to the object 
itself. If it is a path name, the path name is syntactically 
substituted into the name being searched and the search 
continuo::;. This latt~r path name is used for linkinG names 
UOPoss the network. 

, I'r e 1 iL' i. nap :i Januar'y lCjDl 

S '1''''',~ )( 
II A / B Ie.·· 
I A/sIC ... 

A/B/C..·· 

~A/B 

Y\Cl.W\ e.. 

~oR~n.)( .. tH(l.l:CTlJe" {lH.ATh'i
tt 

ft (9 \I :: '/ \AS u·/ (\0. W\t!_},\.r/ 



IV.3 COllClilInEI!T I/:mll EIIVIHOlIlIElll' 

Tile notion of concurrcncy is a neu concept on the Apollo DOIIAIII 
"yatcl'1 lwavailable on cOllventional timesharing systetus. On 
tllccc latter syctcmo usera are cenerally required to axecute one 
function at a tiuc. IIhcn a UDcr Dwitchcs from onc function to 
;)Ilothcr', benet'ally thc contcxt or thc prcvious function is loot 
and haa to be oubsequcntly recreated. The Apollo integral bit 
MOp display provides the user lIith the capability of displaying 
uultiplc windalia siuultancously. Each window can contain the 
output or related or unrelatad applications. For example, one 
uindow can contain the aequential output of a proeram while a 
cocond lIindow ~raphically displays the accumulated output of the 
soue procrau. Similarly, program development, compilation, 
editinG and an on-line help oystem can all be concurrently 
dioplayed. 

COII:J(HIU(,ntly, the I\pollo system 
total user environ~cnt, which 
lIuQber of concurrent functions. 

Prclitainal'j' 

is desicned 
we believe 

to accownodatc a 
always involves a 

January 22, 19111 

~€ QUcf\.)TU·'H. 
OUTP'-'T 

6C>"T\t.)() 

"--~-Ot-l·l\~t. tH.\.~ 

PROc..~~M f=X,61.uT\otJ 

€. U:,C.:t'Q.O .. HC. MA \L 

DOC.\AMtt-lTAT\Ot-J 

'--_-.l~ ~ '-'~ 2. \b.s 



IV.II SCfll·:F.1l lI/dIIlGr.1I 

The scr~e" ukna~er represents the outer most layer of 10Cic 
I.ithin the Apollo system -- that which controls the rclationship 
2.110ne the 1,lany. windolls projected onto the CIIT scretln. 
AccordinKly. the IIpollo system adds two additional layers above 
the conventiollal proGracwling level. As mentioned earlier, a 
pror;rar.luable shull coordinates the activity of Illany pro{:rnms (in 
both parallel and sequential relationships). Thc output of this 
"hell is IIritten into a virtual termil)al, called a PAD. 
Porlions of tltis PAJ) are displayed through a rectanGular IlindoH 
uhich is then projccted onto the CIIT display. 

The sc~een I1LnaLer permits multiple windows to be displayed 
uOllcurrenl.ly, each of which can be executing an independent 
choll or connelld cnvironnent. Thc philosophy of the screen 
"onaGer is to alloll programs to output data in a lOGical fornat, 
\lhile alloldnL the user to independently control uhat is 
phyoically dioplayed. 

Thc scrcen managcr is controlled by thc use of function keys on 
the user keyboard. Pushinc a funotion key oauses the execution 
(intcrpretation) of a user pro{:rammable sequence of screen 
(,lanBLer priMitives. Consequently, the user can define function 
I:eys to per'rol'la uOI'lplcx screen laanaBer functions. 

['reI iui n':,l'Y 'l'j 
(-f. , 

5c R ctt-J 



IV.5 USEn EIIVIIIOIIl:r;IIT: 

The 1\1'0110 DOllAr" operating system oroates a d"l:;reo of 
indep8ndenee b<:tueell apillioation prograMs ond ~Ihat is actually 
viewed on the terminal screen. In partioular, applioation 
pruGrams oroate virtual terminals whioh we eall pada. The pada 
oro independently windowed onto the CRT soreen totally under 
control of' the UGel'. HindoH imagos are superimposed on the pada 
and eRn be hloved relative to the pod in either a hOl'izontal or a 
vel'tieal direotion. Window images from various pads are stocked 
lo~ieally on top of the sereen so that only the one on top is 
displu}od. Consequ<:ntly the user environment is aetuallY a 
thl'ee dir:len:;ionol volume: 800 bits going across, 10211 bits going 
down and Many levels of windows deep. The user oan also move 
liindow al'cas up or dOlln' relative to the physical serenn and 
finally can movo window areas into and out of thc screen 
relative to othcr windoH areas. 

ProGl'aws create the pad by writing oommand and data sequences 
throu~h a stream. The window image created by thc screen 
wana~er frOM the pad can be placed anywhere in the CRT and can 
be overlayed by other Hilldou Ima~es. Uindow imaGes contain 
lines and frames. A line is a single line sequence of' 
characters Dnd has only one dimension. A frame hns two 
dimensions and has a rcctanGular format. It contains characters 
and/or Graphic data. Finally, frames may also contain user 
created bit maps. These bit maps may reside either within the 
pad or uithin a separate user supplicd object. Pad information 
Ilona,,-lly accul.Julates over the life~f a process. This allol~s a 
user to scroll clther in reverse or in forward directions over 
the entire life of the process. "owever, for efficiency sake 
ccrtain corumcnds May bc emitted from the proGram to delete all 
or part of the pad as appropriate. 

Pl'ol inillcry Januar'~r ~2, 19B 1 

PAOS 
" /' 

/ 

/ 



V.l SUtlitAIIY OF ra;y I'OIIITS 

An Apollo computcr systew is comprised of a number of hiOh 
performance dedicated computers interconnectcd over a local area 
network. Each of these nodes contains a laroe machine 
Brchitccture which implements a demand paged network wide 
virtual mewory system, allowing a large number of proecsses for 
caclt user, cach proccss having a very large lincar virtual 
address space. LaneuDCcS that .run on the Apollo system include 
Fortran 77 Bnd Pascal and are implemented to take advantage of 
tile ''''lchine's 32 bit orientation. 

An object oriented network operating system coordinates the 
uscr's access to netl/ork ~Jide facilities. Objects therlselves, 
rcprcscntin~ procrams and data files, etc., are independent of 
their notHor'1; locution, and Liven appropriate access rights, can 
bc accessed uniformly by anyone on the system. 

The u::;er'::; display terminal is capable of displaying multi-font 
text, (;raphics and can be divided into multiple I/indolls each 
displayin~ independent proGram output. 

The Apollo oyoteel is designed around hiOh technolOGY. It 
incorporates VLSI CPU chips, larGe capacity Winchester disk, and 
~dvuneed communication technoloBles. 

Prel iui fH;J'Y Jalluct'.I' ??, 19::1 

Ot Po I"-.)T..5. 

\-hc..H Pl::-i2.r-OC2I'\'W\t-.)((:- LoUH .. t0~1u00~"-

OF O£OK~Tf;!) COMPL-\Tt a...s 

ItJrl:~ FAU:- COM 161 ~ It.,) () 

T&~TJ COt.J(IA£ef:t..:)\ P£O(f~~1..:I4 

T" t c. H "':'OLO~ \ t.J 


