

o

o

o

Virtual Page Number

XVPN
(Bits 25:22)

• •
4096

entries

The Page
Translation
Table

Physical
Address

"...

HVPN
(Bits 21: 1 0)

•
• •

Physical Page
descriptors

•
• •

4096
entries

Physical Page
Number

The Page
Frame
Table

Offset
(Bits 9:0)

Offset
from Virtual
Address

Virtual
Address

Figure 2-9. The Relationship of the Page Translation Table to the Page Frame Table

The PIT must be dynamically updated, so that it will provide a current index to the PFT.
In order to update or initialize the PIT, the operating system -- or the bootstrap loader
-- must be able to access (write to) it. Since the PIT cannot be used to access itself via
normal, virtual-to-physical address translation, the PIT is assigned a fixed address range
($400000 �~� $800000).

The PIT is enabled via the PIT access enable bit (bit 1) in the MMU control register.
When this bit is set, software can access (write to, and update) the PIT. When the bit is
not set, however, software cannot access the PIT. Only when the PIT is enabled, and a

1-19 Memory Organization and Management

reference is made to address space range $400000 - $800000, can the PIT can be ac­
cessed by the operating system.

If the MMU is enabled (in mapped mode), and the PIT is disabled, address space range
$400000 - $800000 is treated as part of per-process virtual address space. If the MMU
is disabled, and the PIT is disabled, address space range $400000 - $800000 is not used.
This is because in the unmapped mode, the MMU is simply passing the 22 least sig­

nificant bits of each virtual address directly to the physical address bus. Refer to Table
2-8. It shows the relationship of an adddress to the MMU and PIT. Then, refer to
Figure 2-10. It depicts the PIT, enabled and disabled (for the operating system's, or for
the bootstrap loader's purposes) within virtual address space.

Table 2-8. The Relationship of an Address to the MMU and· PTT

Location
MMU On MMU On MMU Off MMU Off of Virtual

Address PTT On PTT Off PTT Off PTT On

400000 - .. Address PTT" "Translate "Physical .. Address PTT"
800000 Virtual Address"
(Within

Address"

(Aooess PTT (Perform (Virtual (Aooess PTT PTT Range) Instead of normal Address Instead of
memory, Virtual;'" to- Is the same mem0{y"
using V.A.) Physloal as Physloal using .A.)

translation, Address)
and aooess
memory)

o - 3FFFFC "Translate --Translate "Physical "Physical
or Virtual Virtual Address" Address"
800000 - Address" Address"

3FFFFFC (Perform (Perform (Virtual (Virtual

(Not within
normal normal Address Address
Vlrtual-to- Vlrtual-to- Is the same Is the same

PTT Range) Physloal Physloal as Physloal as Physloal
translation, translation, Address) Address)
and aooess and aooess
memory) memory)

~~----------~¥~----------" ~~----------~-~----------,~
Virtual Mode Physical Mode

Memory Organization and Management 1-20

/
I
'''- ..

o

o

c

OMB

400000

800000

16MB

Virtual Address Space

User
Global

(Global A)

User-Private
Mapped Area #1

User-Private
Mapped Area #2

User-Private
Mapped Area #3

User-Private
Mapped Area #4

User-Private
Mapped Area #5

Supervisor
Private

(per-process)

Supervisor
Global

(Global B)

MMU ENABLED AND
PTT DISABLED

-- _ _-_._------_._- .----_._-------_. __ .

Virtual Address Space
OMB r------------,

800000

User
Global

(Global A)

User-Private
Mapped Area #1

User-Private
Mapped Area #2

User-Private
Mapped Area #4

User-Private
Mapped Area #5

Supervisor
Private

(per-process)

Supervisor
Global

(Global B)

16MB '-------------'
MMU ENABLED AND

PTT ENABLED

Figure 2-10. The PIT (Enabled and Disabled) within Virtual Address Space

The ASID Register

One binary number (of 128) is assigned to each per-process address space as each new
process is created; this number is the ASrD for the current process. At process (or "con­
text") switch, the ASrD is loaded into the AsrD register, and presented to the MMU.
See Figure 2-11; it is designed to help you understand the concept of Address Space

1-21 Memory Organization and Management

IDentification. Then, see Figure 2-12. It shows and describes the contents of the ASID
register.

Global A
Same for all processes
(Always belongs to O/S)

Global B

Proces9-
Private

Same for all processes
(Always belongs to O/S)

Figure 2-11. Address Space Identification

Memory Organization and Management 1-22

ASID 0

• • •

ASIO 0

o

o

W/O

7 6:0

ASID
FPU
Trap Enable

FPU Trap Enable < 7 >
o = trap next FPU chip access
1 = allow FPU chip access

ASID < 6:0 >
This field Identifies the process that Is currently running.

Figure 2-12. The ASID Register

The MMU Control Register

CPU writes to this register control MMU operations. See Figure 2-13; it shows and
describes the functions of the MMU control register.

1-23 Memory Organization and Management

RIO R/W

I I I
7:4 3 2 1 0

~~

" M MU Enable

,PIT Access Enable

, ,"Domai nil Bit

, , FPU Trap

Reserved

MMU Enable < 0 >
When this bit Is set. physical addresses are formed using the contents of Page Translation
and Page Frame tables. This bit also enables access rights checking. page fault traps. and
page statistics updates. When reset (to MMU disable). this bit causes the low-order bits of
the virtual address to be passed to the physical address bus. unchanged.

PTT Access Enable < 1 >
When this bit Is set. references to those addresses within virtual address range $4000000-
$8000000 a software to read or write to (update) the PTT.

DOMAIN Bit < 2 >

This bit Is presently unused.

FPU Trap < 3 >

This bit Is presently unused.

Reserved < 7:4 >
These bits are reserved.

Figure 2-13. The MMU Control Register

Memory Organization and Management 1-24

o

o

c

The MMU Status Register

The CPU reads the MMU status register in order to monitor MMU operations. Refer to
Figure 2-14; it shows and describes the functions of the MMU status register.

1-25 Memory Organization and Management

RIO R/W

I I .
76543210

~
~~ 0 If Stingray 020 Board

, , PIT Access Enable

" Orderly Shutdown (toggle)

" MMU Error
, , Service Switch

, Bus/MMU Timeout or MMU Parity Error

, , Page Fault

Access Violation
Access Violation < 7 >
When this bit Is set, It Indicates that although the MMU has found a PFT entry with the correct
ASIO XVPN bits, the entry has failed to pass an access protection check. Writes to this register
clear the bit.

Page Fault < 6 >
This bit Indicates that the MMU has passed the end-of-list bit twice, In Its search for a "correct"
PFTE. Writes to this register clear the bit.

Bus/MMU Timeout or MMU Parity Error < 5 >
This bit Is set when the MMU times out, the bus times out, or an MMU parity error occurs.
Writes to this register clear the bit.

Service Switch < 4 >
This bit Indicates the state of the node's service switch. 1 = Normal Mode; 0 = Service Mode.

MMU Error < 3 >
This bit Is set when a fault In the MMU causes a bus error.

Orderly Shutdown < 2 >
This bit Indicates the state of the orderly shutdown switch. The bit Is normally a "1, II but It goes
to "0 II when a shutdown Is requested.

PTT Access Enable < 1 >
This bit reflects the state of the PTT Access Enable bit (bit 1) In the MMU Status Register.

020 Board < 0 >
This bit Is wired low ("0") so that the OIS can distinguish an MC68020-based CPU board
from an MC68010-based one.

Figure 2-14. The MMU Status Register

Memory Organization and Management 1-26

()

o

o

The MMU Parity Register

The MMU checks for parity in the Page Frame and Page Translation Tables. Even parity
is always used to detect the failure of memory outputs going to a high (logical 1) value.
The MMU updates the two page statistics bits in each PFT entry whenever an access is
made to the corresponding physical page. These are the Used bit (bit 13) and the
Modified bit (bit 14). As a result, these bits are not used in parity calculation, and parity
is calculated only over the remaining 30 bits. See Figure 2-15; it shows and describes
the functions of the MMU parity register.

1-27 Memory Organization and Management

RIO R/W RIO

15 14 13 12 11 :0

PFT Error or PTT Index

~ ,
I, PFT Parity Error

, , PIT Parity Error

, , MMU Parity Fault Enable (MMU PF E)

Write Wrong MMU Parity (Both PFT and PIT)

Write Wrong MMU Parity < 15 >

Diagnostics use this bit to test the MMU's error detection hardware. When the bit Is set, any
data written to the Page Translation Table or the Page Frame Table Is written with odd parity
Instead of even, and parity errors will occur.

MMU Parity Fault Enable < 14 >

When this bit Is cleared, MMU parity errors are Ignored.

PTT Parity Error < 13 >
This bit Is set when a parity error Is detected within the PTT.

PFT Parity Error < 12 >

This bit Is set when a parity error Is detected within the PFT.

PFT Error or PTT Index < 11: 0 >

This field designates the location where a parity error has occurred. If the error was In the
PFT, this field contains the partial contents (a PPN) of the faulty entry. If the error was In
the PTT, this field contains the Index (a PPN) of the faulty entry.

Figure 2-15. The MMU Parity Register

Memory Organization and Management 1-28

o

C)

MMU Operations
In the text that follows, we discuss MMU processes, and we explain how each of the
previously described registers and tables are utilized within the MMU, when it is in
mapped mode. Refer at this time to Figure 2-16. It provides a flowchart of MMU
mapped mode operations. When you have familiarized yourself thoroughly with the flow­
chart, go on to the text that follows it.

1-29 Memory Organization and Management

>~
/'/ il

Figure 2-16. MMU Operations (in Mapped Mode)

Memory Organization and Management 1-30

(

c:;
-,..--, --,

~~~I 
OffMt) from 

Vlrtua. Addrea 
to Phyalcal 

Addreil But. 

Cj 

@ 

o 

r----------------, 
L:!~~~t~~ 
dr·:,::~f~~t .. 

Physical Addr ••• But. 

G I PFT aearch Loop 

MMU TImeout can 
OCCl.l' at any point 
In the loop after 
12.8 ma have elapsed 
(from beginnIng of 
memory cycle). 

-
@ I AIHrt BUS Error 

Update CSR 

Walt for CPU to 
begin exception 
proc ... tng 

r\ 
U 



Successful Translations 

Every memory (CPU) cycle results in one of two occurances, either of which can result in 
a successful translation. These are: 

• a PTT hit, or 

• a PTT miss. 

A PTT Hit 

The fields within the virtual page number and the contents of the ASID register must be 
checked against the contents of specific Page Frame Table entries, pointed to by the Page 
Translation Table. A PTT hit occurs when: 

1. The XVPN field, located in the PFT entry pointed to by the PTT, matches the 
XVPN field that resides within the virtual page number (see Figure 2-17), and 

2a. The ASID field, located in the PFT entry pointed to by the PTT, matches the 
ASID field that resides within the MMU's ASID register, for the current process 
(see Figure 2-18), 

or 

2b. The Global bit is set in the PFTE. Refer again to Figure 2-6 in order to see the 
address space control (ASID and Global bit) fields in the PFTE. 

1-31 Memory Organization and Management 

(~. 



o NOTE: When the Global bit is set, it obviates the need for checking the 
ASID field. The Global bit set indicates that the address space in 
which this data (or program) resides is global; data (or programs) in 
this space are shared by all processes (regardless of their respective 
ASIDs). 

25:22 21 :10 9:0 

Virtual 
HVPN Byte Offset Address 

ASIO Field Link Field (A PPN) PFTE 

31 :25 24 23 22 21 20 19: 16 15 14 13 12 11 :0 

Figure 2-17. Comparing the XVPN Fields 

Memory Organization and Management 1-32 



7 o 

ASID Register 

1I1I1I1I1I1I1I:rjf]tl:I:::XV~P:N:J!!j[jtl[::~u:n:k~F:,e:'d::(~A::P:PN~)::]pFTE 
31:25 24 232221 20 19:16 15 141312 11 :0 

Figure 2-18. Comparing the ASID Fields 

Once a PIT hit has occurred, the MMU checks the function code emitted by the 68020 
against the way the access permissions bits (Read, Write, eXecute, Supervisor) have been 
set in the PFT entry pointed to by the PIT. Refer again to Figure 2-6 in order to see the 
access permissions bits in the PFT. Then, refer to Figure 2-19 to see the function code 
and access permissions bits comparison. 

1-33 Memory Organization and Management 



o 

C' 
~; 

!!a: 
mCll 
w~ 
t:)( 

FC R/W Q. 

1 0 
Data 

1 "-
CD 
(I) 

0 ~ 

2 Program 
1 

5 
0 

1 "-
Data 

0 
en 

0 ~ 
6 CD Program Co 

1 j 
U) 

7 0 CPU 

1 
Space 

If R & W both bits 
bits must be set for { R* = enables access (data read) 

data writes. W = allows data writes 
X = allows program reads 
S = the CPU must be In Supervisor mode 

to access. If R and X are both set, then 
then execute program (do data reads). 

* R must be set for X or W to occur. 

Figure 2-1 g. Comparing the Function Code and the Access Permissions Bits 

If the permissions agree, the CPU can access the memory location described in the PFfE; 
the MMU will update the page statistics (Modified and Used) bits appropriately in the 
PFTE. Refer back to Figure 2-6 in order to see the page statistics bits. 

If the permissions do not agree, the CPU cannot access the memory location described in 
the PFTE, and the MMU generates a bus error. 

Memory Organization and Management 1-34 



A PTT Miss 

The fields within the virtual page number and the contents of the ASID register must be 
checked against the contents of specific Page Frame Table entries, pointed to by the Page 
Translation Table. A PIT miss occurs when the first PFTE pointed to by the PIT is not 
the correct one (Le., when steps 1 and 2a or 2b, above, do not occur). In the event of a 
PIT miss, the MMU proceeds around the linked list of PFT entries, searching to resolve 
the virtual page number. Two possibilities then exist: 

3a. Steps 1 and 2a or 2b, above, occur in a P FTE other than the one first pointed to 
by the PTT; remember that this is a reverse-mapped MMU. One of its charac­
teristics is that if the page exists in physical memory, a descriptor for it will reside 
in the PFT, 

or 

3b. Steps 1 and 2a or 2b, above, do not occur at all; if the page does not exist in 
physical memory, a descriptor for it will not reside in the PFT. 

Completing Translation 

If the access is permitted, and the first P FTE pointed to by the PTT provided a successful 
translation (i.e., if a PIT hit occurs), the MMU updates the page statistics (Modified and 
Used) bits appropriately in the PFTE. Refer again to Figure 2-6 in orderto see the page 
statistics bits in the PFTE. 

If the access is permitted, and a P FTE linked to the first P FTE pointed to by the PTT 
provided a successful translation (i.e., if a PIT miss occurs, but a translation is subse­
quently found), the MMU updates the page statistics (Modified and Used) bits ap­
propriately in the PFTE. It also writes back the correct PPN (from the correct PFTE) to 
the PIT (Le. the MMU "updates" the PIT). This increases the probablity that a PIT hit 
will occur on the next access to the same virtual page. 

In either case, the MMU will concatenate the 12-bit PPN, yielded by a successful transla­
tion, with the offset from the virtual address. This forms a physical address. Refer to 
Figure 2-20; it shows the format of a physical address that is ready to be sent over the 
physical address bus. 

1-35 Memory Organization and Management 

( 



o 21 :10 

Physical Page 
Number (PPN) 

.~---.. - ... - .--- ..... . 

9:0 

Byte Offset 

Figure 2-20. A Physical Address (note the PPN and Offset Fields) 

Unsuccessful Translations 

When translation is unsuccessful, a bus error (one of four types) is generated. The four 
types of bus errors are: 

1. Page Faults, 

2. Access Violations, 

3. MMU Parity Errors, and 

4. MMU Timeouts. 

We describe each type of bus error in the text that follows. 

Page Faults 

If the MMU encounters the "end-of-linked-list" bit twice, there is no match (and it can 
be inferred that the page does not reside in physical memory). The MMU sets the page 
fault bit (bit 6) in the MMU control register, so that the operating system can bring the 
requested page into physical memory. 

Access Violations 

When the current process does not have the appropriate permissions (R, W, X, or S) to 
perform the function that the CPU is trying to perform, the MMU sets the access viola­
tion bit (bit 7) in the MMU control register. 

MMU Parity Errors 

When hardware detects a parity error in either the PIT or the PFT, the MMU sets the 
bus timeout or MMU parity error bit (bit 5) and the MMU error bit (bit 3) in the 
MMU status register. The MMU also sets the PFT error bit (bit 12) or the PIT error 
bit (bit 13) in the MMU parity register. Additionally, the MMU loads the PPN from that 

Memory Organization and Management 1-36 



location where the fault has occurred into the MMU parity register's PFT index or PIT 
contents field. 

MMU Timeouts 

At most, the MMU needs .68ms to completely search the PFT for a valid translation. 
When a memory error in the PFT occurs, the link mark bit may be inappropriately 
cleared. If a search is not completed (a match is not found, nor is a page fault generated) 
within 12.8ms, the MMU sets the bus timeout or MMU parity error bit (bit 5), and the 
MMU error bit (bit 3) in the MMU status register. 

1-37 Memory Organization and Management 

( 



o 

Introduction 

Appendix A 

Floating Point Process­
ing 

This chapter describes the architecture of floating-point units used in DN3XX and 
DN5XX nodes (the DSPXXA does not incorporate floating-point capabilities). If you 
have a DN320 or DN550 node, floating-point operations are controlled by the Perfor­
mance Enhancement Board (PEB, or floating-point accelerator). If you have a DN330 
or DN560 node, floating-point operations are performed by the MC68881 coprocessor. 
Refer to Chapter 1, and see Figures XXX and XXX .. These figures show the system ar­
chitectures of DN3XX and DN5XX nodes. Notice where the PEB, or the MC68881, is 
located within each figure. 

A-1 Floating Point Processing 



The Performance Enhancement Board 
The PEB is a 32-bit microprogrammed computer, capable of executing 255 different in­
structions. User-visible elements of the PEB include the accumulator, temporary, and 
constant (or "x") registers; an integer 32-bit accumulator, and the PEB control page. 
Supervisor-visible elements of the PEB include user-visible elements, along with its 
writable control store (WCS) , and a control register. ' 

PEB Registers 
The PEB control page contains those registers required for control of the PEB floating­
point unit. These registers are intended for supervisor processes only. 

The PEB Control Register 

CPU writes to this register control PEB operations. 
describes the functions of the PEB control register. 

Floating Point Processing A-2 

See Figure A-l; it shows and 

\'" 

(~'. 

\ 
\ .... " 



o 15:9 8:4 3 2 1 0 

, 

, , 

, 
, , F PU Enable 

Step FPU 

FPU R eset 

FPU Exce , , ption Interrupt Enable 

rol Store Address (CSA 11 --+- CSA07) Upper FPU Cont 
, It 

Unused 

FPU Enable < 0 > 
o = clock able to be single-stepped; 
control store accessible. 
1 = clock running; 
control store inaccessible. 

FPU Step < 1 > 
If FPU Enable = 0 then toggling FPU Step (0 to 1 and back to 0) will advance 
the FPU through one microinstruction. 

FPU Reset < 2 > 
o = reset FPU, start microprogram. 
1 = allow FPU to run. 

FPU Exception Interrupt Enable < 3 > 
o = do not allow interrupts. 
1 = allow interrupts. 

Upper FPU Control Store Address < 8:4 > 
4 = Halt. 
5 = Run. 
6 = Step. 

Unused < 15:9 > 
These bits are presently unused. 

Figure A-1. The PEB Control Register 

A-3 Floating Point Processing 



The PEB Status Register 

The CPU reads the PEB status register in order to monitor PEB operations. Refer to 
Figure A-2; it shows and describes the functions of the PEB status register. 

Floating Point Processing A-4 



o 

C\I 
) 

15 14:4 3 2 1 0 
.... 

i 
" M S8 

, , FPU Control Store Parity Error 

Unuse , , 

, 
FPU Busy 

MSB < 0 > 
(Bit 11) of micropc. 

, 
FPU Micropc 

FPU Control Store Parity Error < 1 > 

o = FPU WCS ok. 
1 = FPU error. 

FPU Exc 

d 

eption Interrupt Pending 

This bit is cleared by FPU Enable (bit 0) in the control register. 

Unused < 2 > 

This bit is unused. 

FPU Exception Interrupt Pending < 3 > 

o = Not interrupting. 
1 = Interrupt pending. 
This bit is cleared when an interrupt occurs, or FPU reset in the control register. 

FPU MicroPC < 14: 4 > 
These bits are the current micropc (bit 4 is Isb; bit 14 is msb). 

FPU Busy < 15 > 

o = FPU not busy 
1 = FPU busy. 

Figure A-2. The PEB Status Register 

A-5 Floating Point Processing 



The PEB Diagnostics Register 

See Figure A-3. It shows and describes the functions of the PEB diagnostics register. 

Floating Point Processing A-6 

( 



o 

o 

FPU Disable- < 0 > 
o = halted; r/w WCS. 

15:8 

, , 
Unused 

1 = clock on; can't read WCS. 

Step+ < 1 > 
o = clock running. 
1 = clock stepping. 

FPU Reset- < 2 > 
o = FPU is reset;, clear parity error. 
1 = FPU can be running. 

FPU Intent+ < 3 > 
o = do not allow interrupt to occur. 
1 = allow interrupt to occur. 

Halt- < 4 > 
o = FPU is halted. 
1 = FPU is running. 

76543210 

, 
PU Disab/e-, , F 

" Step + 

FPU R eset-

FPU Inte nt+ , , 
" Ha/t-

, It Freeze-

, , Full-

Rev-X 

Freeze- < 5 > 
o = FPU has hit a clock freeze and 
is halted. 
1 = no freeze encountered. 

Full- < 6 > 
o = microstack is full and micropc is 
unable to increment. 
1 = microstack is ok. 

Rev-X 
o = hardware Rev 0 1 k WCS. 
1 = hardware Rev 1 4k WCS. 

Rev-X 
These bits are unused. 

Figure A-3. The PES Diagnostics Register 

A-7 Floating Point Processing 



PEe Floating-Point Formats 
Floating-point formats for the PEB are as follows (where s = sign, e = exponent, and m = 
mantissa): 

Single Precision seee eeee emmm mmmm mmmm mmmm mmmm mmmm (an 
8-bit exponent, a 23-bit mantissa + 1 hidden bit; eeeeeeee -> 
actual exponent + 127) 

Double Precision seee eeee eeee mmmm mmmm mmmm mmmm mmmm mmmm 
mmmm mmmm mmmm mmmm mmmm mmmm mmmm (an 
ii-bit exponent, 52-bit mantissa + 1 hidden bit; eeeeeeeeeee -> 
actual exponent + 2047) 

Floating-Point Operations 
There are 6 types of floating-point operations. These are: 

1. Single precision dyadic operations 

2. Double precision dyadic operations 

3. Single precision monadic operations 

4. Double precision monadic operations 

5. Regular monadic operations 

6. Special operations 

A physical address within the FPU page represents each flotating-point operation. 
Mnemonics for floating-point operations are constructed from abbreviations. Abbrevia­
tions are as follows: 

DA Double Precision Add 

DS Double Precision Subtract 

RD Double Precision Reverse Subtract 

Floating Point Processing A-a 

( 
'- ' 



o 

I c···· 

-----"""---"""-----

DM Double Precision Multiply 

DMA Double Precision Multiply and Accumulate 

DD Double Precision Divide 

RD Double Precision Reverse Divide 

XCP EXcePtion Status and Interrupt Enable 

FA Floating Accumulator 

FAL Floating Accumulator Low 

FAH Floating Accumulator High 

FT Floating Temporary 

LFT Load Floating Temporary 

LIT Load Integer Temporary 

SA Single Precision Add 

SS Single Precision Subtract 

RS Single Precision Reverse Subtract 

SM Single Precision Multiply 

SMA Single Precision Multiply and Accumulate 

SD Single Precision Divide 

RDS Single Precision Reverse Divide 

Refer to Table A1, Table A-2, and Table A-3. These tables provide listings of floating­
point operations, by type. The tables also provide those FPU page address assigned to 
every operation. 

A-9 Floating Point Processing 



Table A-1. Single Precision Dyadic Floating-Point Operations 

Single Precision Dyadic Operations 

Mnemonic Address and Meaning 

BUS FA SA $7004 
lFTl=A -SA FT $7008 single precision add 
FA_'eUS:'SA $700C 

BUS FA SS $7010 
lFT l=A -Ss FT 
FA_BUS:'SS-

$7014 
$7018 

single precision subtract 

BUS FA RS $701C 
lFTl=A -Ss FA $7020 single precision reverse subtract 
FA_BUS:'RS- $7024 

BUS FA SM $7028 
lFTl=A-SM FT $702C single precision multiply 
FA_eUS:'SM $7030 

BUS FA SO $7034 
lFTl=A -SO FT $7038 single precision divide 
FA_BUS:'SD $703C 

BUS FA RDS $7040 
lFTl=A RDS FA $7044 single precision reverse divide 
FA_BUS:'RDS- $7048 

\ ' .... 

Single Precision (Dyadic) Operations continue on the next page 

Floating Point Processing A-10 



o 

o 

Table A-1 (continued). Single Precision Dyadic Floating-Point Operations and 
their Addresses within the FPU Page 

Single Precision Dyadic Operations 

Mnemonic Address and Meaning 

LFT SMIN $7138 Min (FA, FT) -> FA 
FA_BUS_SMIN $713C Condition Codes -> lAC high word 

LFT SMAX $7150 Min (FA, FT) -> FA 
FA_BUS_SMAX $7154 Condition Codes -> lAC high word 

LFA SAX $7168 FA + FX -> FA (single precision) 
FA_BUS_SAX $716A 

LFA SMX $717C FA * FX -> FA (single precision) 
FA_eUS_SMX $7180 

BUS FA SP $71A4 write sp "x" register for sp polynomial 
LFT -FA -RDS FA $71A8 load FA for SP polynomial operation 
FA_BUS:RDS- $71AC (FA * FX) + FT -> FA 

W_IAC_SP $7214 load integer accumulator, float to sp 

BUS FA SMA $7234 sp multiply and accumulate 
LFT-SMA $7238 (FA * FT) + FX -> FA, FX 
FA_BUS_SMA $723C 

LFT_PWR $7260 FA ** FT -> FA 

IAC_SP_PWR $726C FA ** lAC -> FA 

A-11 Floating Point Processing 



Table A-2. Double Precision Dyadic Floating-Point Operations 

Double Precision Dyadic Operations 

Mnemonic Address and Meaning 

BUS FAH RDS $704C 
BUS-FAL-oA $7050 
BUS-FTt1DA $7054 double precision add LFTC FA 1>A FT $7058 
FAH ~US'" DA $705C 
FAL.:aUS:OA $7060 

BUS FAH OS $7064 
BUS-FAL-oS $7068 
BUS-FTt1DS $706C double precision subtract LFTC FA 1>S FT $7070 
FAH ~US'" oS'" $7074 
FAL.:aUS:OS $7078 

BUS FAH RD $707C 
BUS-FAL~O $7080 
BUS-FTt1RO $7084 double precision reverse subtract LFTC FA 1>S FA $7088 
FAH ~US'" RI5' $708C 
FAL.:aUS.:RO $7090 

BUS FAH OM $7094 
BUS-FAL -OM $7098 
BUS-FTt10M $709C double precision multiply LFTC FA 1>M FT $70AO 
FAH llUS'" oM"" $70A4 
FAL.:aUS:OM $70A8 

BUS FAH DO $70AC 
BUS-FAL-oO $70BO 
BUS-FTt1DO $7084 double precision divide LFTC FA 1>0 FT $70B8 
FAH ~US'" 015' $70BC 
FALJ3US,:oO $70CO 

BUS FAH ROD $70C4 
BUS-FAL~OO $70C8 
BUS-FTt1ROO $70CC double precision reverse divide LFTC FT 1>0 FA $7000 
FAH ~US'" R[5b $7004 
FALJ3US.:ROO $7008 

Double Precision (Dyadic) Operations continue on the next page 

Floating Point Processing A-12 



C) 
Table A-2 (continued). Double Precision Oyadic Floating-Point Operations 

Double Precision Dyadic Operations 

Mnemonic Address and Meaning 

BUS FTH DMIN $7140 Min (DFA, OFT) -> DFA 
LFTC OMThJ $7144 Condition Codes -> lAC high word 
FAH "BUS DMIN $7148 
FAL,:eUS.:oMIN $714C 

BUS FTH DMAX $7158 Max (DFA, OFT) -> DFA 
LFTC OMAX $715C Condition Codes -> lAC high word 
FAH "BUS OMAX $7160 
FAL,:eUS.:oMAX $7164 

BUS FAH DAX $716C FA + FX -> FA (double precision) 
LFAC OAX $7070 
FAH 'BUS DAX $7174 
FAL,:eUS.:oAX $7178 

BUS FAH OMX $7184 FA '" FX ->FA (double precision) 
LFAL DMX $7088 
FAH "BUS OMX $718C 
FAL,:eUS.:oMX $7190 

BUS FXH $71BO write dp uxu register for dp polynomial 
BUS-FXL $71B4 
BUS-FAH DP $71B8 dp polynomial 
BUS-FAL l)P $71BC (OFA * OFX) + DFT -> DFA 
BUS-FTH-OP $71CO 
LFTL OP- $71C4 
FAH "SUS OP $71C8 
FAL:BUS:DP $71CC 

W_IAC_OP $7218 load integer accumulator, float to dp 

BUS FAH OMA $721C dp multiply and accumulate 
BUS-FAL l)MA $7220 (OFA * DFT) + OFX -> OFA, FFX 
BUS-FTI-f"DMA $7224 
LFTC OMA $7228 
FAH BUS DMA $722C 
FAL:SUS:OMA $7230 

BUS FTH PWR $7264 FA * * FT -> FA 
LFTL_PWR $7268 

IAC_DP_PWR $7270 FA * * lAC -> DP 

A-13 Floating Point Processing 

o 



Table A-3. Single Precision Monadic Floating-Point Operations 

Single Precision Monadic Operations 

Mnemonic Address and Meaning 

SP_NINT $720C _ nearest integer of sp -> sp 

SP_TRUNC $7240 truncate FA -> FA 

SP_LOG $7248 FA <- log (FA) 

SP_EXP $7250 FS <- exp(FA) 

SP _SQRT $7258 FA <- sqrt(FA) 

SP _SIN $7274 FA <- sin (FA) 

SP_COS $727C FA <- cos (FA) 

SP_TAN $7284 FA <- tan (FA) 

SP_ATAN $728C FA <- atan (FA) 

Floating Point Processing A-14 



C) Table A-4. Double Precision Monadic Floating-Paint Operations 

Double Precision Monadic Operations 

Mnemonic Address and Meaning 

DP_NINT $7210 nearest integer of dp -> dp 

DP_TRUNC $7244 truncate FA -> FA 

DP_LOG $724C FA <- log (FA) 

DP_EXP $7254 FA <- exp (FA) 

DP_SQRT $725C FA <- sqrt(FA) 

DP_SIN $7278 FA <- sin (FA) 

DP_COS $7280 FA <- cos (FA) 

DP_TAN $7288 FA <- tan (FA) 

A-15 Floating Point Processing 

/ .... , 

U 



Table A-5. Monadic Floating-Point Operations 

_ Monadic Operations 

Mnemonic Address and Meaning 

F_NEG $71EO negate sp/dp accumulator 

F_ABS $71E4 absolute value of sp/dp accumulator 

SP DP $71E8 convert sp in accumulator to dp 
DP:SP $714C convert dp in accumulator to sp 

L SP $71FO float integer accumulator into sp 
L:OP $71F4 float integer accumulator into dp 

SP 1 $71F8 fix sp to integer accumulator 
DP:1 $71FC fix dp to integer accumulator 

Floating Point Processing A-16 



o 

._----_.- --------- -----._. -------

Table A-6. Special Floating-Point Operations 

Special Operations 

Mnemonic Address and Meaning 

PEB_BASE $7000 base address for PEB 

FPU_RESET $7000 reset FPU 

R/W_XCP $70F8 readlwrite exception register 

HIGH_BUS $7124 read upper 24 bits of DP mantissa 

FX TO FA $7194 FX -> FA 
FA:TO:FX $7198 FA -> FX 

REV_BUS $719C read microcode revision level 

FAH BUS 
FXL.:sUS 

$7100 
$7104 

read dp "x" register 

XCHNG $7108 FA <-> FX 

FTH_BUS $71DC read dp register (high part) only 

LIT INTMUL $7200 load integer "x" register, multiply 
LlT-INTOIV $7204 load integer "x" register, divide 
L1T=INTOIV $7208 load integer "x" register, reverse divide 

FPU_STATUS_BUS $73FC fpu status register 

The MC68881 Coprocessor 
For information regarding the Motorola 68881 co-processor, refer to the Motorola 
MC68881 Floating-Point Coprocessor User's Manual (© 1985, Motorola Inc). 

A-17 Floating Point Processing 



( 
' ... 

· ... ;:;? 
.-''1.r 
:. .,~ 1 .. 

..... "".-

-.~ ... 

. . 
~" • p ~ ~ 

, '.fI." 

~ :""}~'.'''~ 
-!". I ....... ~ . .. , ...... 

-~~.~ 
, .. ' ........ 


