
o

o

o

o

o

Programming with DOMAIN
Graphics Primitives

Apollo Computer Inc.
330 Billerica Road

Chelmsford, MA 01824

Order No. 005808
Revision 00

Copyright © 1985 Apollo Computer Inc.
All rights reserved. Printed in U.S.A.

First Printing:
Updated:

July, 1985
January, 1987

This document was produced using the Interleaf Workstation Publishing Software (WPS). Interleaf and WPS are
trademarks of Interleaf, Inc.

APOLLO and DOMAIN are registered trademarks of Apollo Computer Inc.

AEGIS, DGR, DOMAIN/BRIDGE, DOMAIN/DFL-100, DOMAIN/DQC-100, DOMAIN/Dialogue, DOMAINIIX,
DOMAIN/Laser-26, DOMAIN/PCI, DOMAIN/SNA, D3M, DPSS, OSEE, GMR, and GPR are trademarks of Apollo
Computer Ir:tc.

Apollo Computer Inc. reserves the right to make changes in specifications and other Information contained in this
publication without prior notice, and the reader should in all cases consult Apollo Computer Inc. to determine whether
any such changes have been made.

THE TERMS AND CONDITIONS GOVERNING THE SALE OF APOLLO COMPUTER INC. HARDWARE PRODUCTS AND
THE LICENSING OF APOLLO COMPUTER INC. SOFTWARE CONSIST SOLELY OF THOSE SET FORTH IN THE
WRITTEN CONTRACTS BETWEEN APOLLO COMPUTER INC. AND ITS CUSTOMERS. NO REPRESENTATION OR
OTHER AFFIRMATION OF FACT CONTAINED IN THIS PUBLICATION, INCLUDING BUT NOT LIMITED TO
STATEMENTS REGARDING CAPACITY , RESPONSE-TIME PERFORMANCE, SUITABILITY FOR USE OR
PERFORMANCE OF PRODUCTS DESCRIBED HEREIN SHALL BE DEEMED TO BE A WARRANTY BY APOLLO
COMPUTER INC. FOR ANY PURPOSE, OR GIVE RISE TO ANY LIABILITY BY APOLLO COMPUTER INC.
WHATSOEVER.

IN NO EVENT SHALL APOLLO COMPUTER INC. BE LIABLE FOR ANY INCIDENTAL, INDIRECT, SPECIAL OR
CONSEQUENTIAL DAMAGES WHATSOEVER (INCLUDING BUT NOT LIMITED TO LOST PROFITS) ARISING OUT OF
OR RELATING TO THIS PUBLICATION OR THE INFORMATION CONTAINED IN IT, EVEN IF APOLLO COMPUTER INC.
HAS BEEN ADVISED, KNEW OR SHOULD HAVE KNOWN OF THE POSSIBILITY OF SUCH DAMAGES.

THE SOFTWARE PROGRAMS DESCRIBED IN THIS DOCUMENT ARE CONFIDENTIAL INFORMATION AND
PROPRIETARY PRODUCTS OF APOLLO COMPUTER INC. OR ITS LICENSORS.

(-~
I'

('.

,

o

o

o

UPDATING INSTRUCTIONS

The information in this package supersedes the contents of Programming with DOMAIN
Graphics Primitives, Order Number 005808, Revision 00. To update your manual,
remove and insert the new sheets as listed below. Insert this sheet behind the title
page as a record of the changes.

NOTE:

REMOVE

The table of contents and the index will be updated when the
manual (005808) is revised

INSERT

Title/Disclaimer Title/Disclaimer
Appendix E (tab divider)
Appendix E
Appendix F (tab divider)
Appendix F

". /

(

o

o

o

G

Preface

Programming With DOMAIN Graphics Primitives describes the DOMAIN® graphics primitive
system. This manual shows how to use graphics primitive routines in application programs. For
a detailed description of .these routines see the DOMAIN System Gall Refrence (Volume I) .

Audience

This manual is for programmers who use the DOMAIN Graphics Primitives to develop
application programs. It is assumed that users of this manual have some knowledge of computer
graphics and have experience using the DOMAIN system.

All the programming examples used in this manual are presented in Pascal with translations into
FORTRAN and C in the appendices. In addition, all the programming examples are also on-line.
You can retrieve an example on-line by

Organization

This manual contains nine chapters and four appendices.

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Chapter 7

Chapter 8

Chapter 9

Appendix A

Presents an overview of the graphics primitives package and a comparison with
other DOMAIN graphics packages.

Describes display configurations, formats, and the modes within which the
graphics routines can operate.

Describes the essentials of writing GPR™ application programs.

Describes how to use GPR drawing and text routines.

Describes cursor control and input operations.

Describes the various types of bitmaps and the attribute blocks associated with
them.

Discusses bitmaps outside display memory. It demonstrates how to use bit
block transfers to copy information from one bitmap to another or from one
location to another location in the same bitmap.

Describes color configurations, formats, color maps, and the operation modes
for color graphics.

Discusses Graphics Map Files.

Presents a glossary of graphics terms in relation to the Graphics Primitives
package.

iii Preface

Appendix B

Appendix C

Appendix D

Illustrates the 880 and low-profile keyboard and keyboard charts.

Presents the Pascal program examples used in the manual translated into C.

Presents the Pascal program examples used in the manual translated into
FORTRAN.

Additional Reading

For information about using DOMAIN Graphics Metafiles, see Programming With DOMAIN 2D
Graphics Metafiles Resource. For information about using the DOMAIN system, see the
DOMAIN System Command Reference Manual and the DOMAIN System User's Guide. For
information about the software components of the operating system and user-callable system
routines, see the DOMAIN System Call Reference (Volumes I and II). For language-specific
information, see the DOMAIN FORTRAN User's Guide, the DOMAIN Pascal User's Guide,
and the DOMAIN C User's Guide. For information about the high-level language debugger, see
the Language Level Debugger Manual.

Preface iv

,/'----"""-

I:
\ , .. '

o

o

o

o

Documentation Conventions

Unless otherwise noted in the text, this manual uses the following symbolic conventions.

UPPERCASE

lowercase

[]

{ }

<>

CTRL/Z

Uppercase words or characters in formats and command descriptions represent
commands or keywords that you must use literally.

Lowercase words or characters in formats and command descriptions represent
values that you must supply.

Square brackets enclose optional items in formats and command descriptions.
In sample Pascal statements, square brackets assume their Pascal meanings.

Braces enclose a list from which you must choose an item in formats and
command descriptions. In sample Pascal statements, braces assume their
Pascal meanings.

Angle brackets enclose a key to be pressed.

The notation CTRL/ followed by the name of a key indicates a control
character sequence. You should hold down the <CTRL> key while typing the
character.

Problems, Questions, and Suggestions

We appreciate comments from the people who use our system. In order to make it easy for you
to communicate with us, we provide the User Change Request (UCR) system for software-related
comments, and the Reader's Response form for documentation comments.

You can get more information about how to submit a UCR by consulting the DOMAIN System
Command Reference manual. Refer to the CRUCR (Create User Change Request) Shell
command description. You can view the same information on-line by typing:

$ HELP CRUCR <RETURN>

For your comments on documentation, a Reader's Response form is located at the back of this
manual.

v Preface

(~'\

"-... /

o

0

0

r',
~~

C)

Contents

Chapter 1 Introduction to Graphics Primitives

1.1. Uses of Graphics Primitives
1.1.1. Characteristics of Graphics Primitives

Chapter 2 Displaying Graphics with GPR

2.1. Displaying Graphic Images
2.1.1. Pixels and Pixel Values
2.1.2. Bitmap Dimensions
2.1.3. The Display Controller

2.2. Display Devices
2.3. Generating Images Using a Bit-mapped Raster Scan Device
2.4. Operation Modes
2.5. Selecting an Operation Mode

2.5.1. Borrow-Display Mode
2.5.2. Direct Mode
2.5.3. Frame Mode
2.5.4. No-Display Mode

Chapter 3 GPR Programming Basics

3.1. Writing GPR Application Programs
3.1.1. Insert Files
3.1.2. Variables
3.1.3. Initializing the Graphics Package
3.1.4. Error Reporting
3.1.5. Developing an Algorithm to Perform a Task
3.1.6. Terminating a GPR Session

3.2. Examples Of Initializing GPR
3.2.1. Pascal Example to Initialize GPR
3.2.2. FORTRAN Example to Initialize GPR
3.2.3. C Example to Initialize GPR

Chapter 4 Drawing and Text Operations

4.1. The GPR Coordinate System
4.1.1. Current Position

4.2. GPR Drawing Routines
4.3. Line-drawing Examples

4.3.1. A Program to Draw a Single Line
4.3.2. A Program to Draw Connected Lines
4.3.3. A Program to Draw Disconnected Lines
4.3.4. A Program to Draw an Unfilled Circle

vii

1-1

1-1
1-2

2-1

2-1
2-2
2-2
2-2
2-2
2-3
2-3
2-4
2-4
2-5
2-5
2-6

3-1

3-1
3-1
3-1
3-2
3-3
3-3
3-3
3-3
3-4
3-5
3-6

4-1

4-1
4-2
4-2
4-3
4-4
4-6
4-8

4-10

Contents

4.4. GPR Fill Routines
4.5. Fill Examples

4.5.1. A Program to Draw and Fill a Triangle
4.5.2. A Program to Draw and Fill a Polygon

4.6. A Program to Draw Two Diagonal Lines
4.6.1. Extending the Line-Drawing Program

4.7. A Program to Draw a Simple Design
4.7.1. Extending the Design Program

4.8. Text Operations
4.9. A Program Using Text

Chapter 5 The Cursor and Input Events

5.1. Using Cursor Control
5.2. Implementation Restrictions On The Cursor
5.3. Display Mode and Cursor Control
5.4. Using Input Operations

5.4.1. Event Types
5.4.2. Event Reporting
5.4.3. Input Routine

5.5. A Program That Waits For An Event

Chapter 6 Initial Bitmaps and Attributes

6.1. Bitmap Structure
6.2. Bitmap Locations
6.3. Initial Bitmap Size

6.3.1. Initial Bitmap in Borrow Mode
6.3.2. Initial Bitmaps in Frame Mode
6.3.3. Initial Bitmap in Direct Mode
6.3.4. Initial Bitmap in No-Display Mode

6.4. The Current Bitmap
6.5. Bitmap Attributes

6.5.1. The Current Attribute Block
6.5.2. Creating Attribute Blocks
6.5.3. Making an Attribute Block the Current Attribute Block

6.6. Other Bitmaps
6.6.1. External Bitmaps
6.6.2. Hidden-Display-Memory Bitmaps

6.7. Listing of Bitmap Attributes and Bitmap Attribute Default Values
6.8. Changing Attributes

6.8.1. Retrieving Attributes
6.9. A Program Using Clipping
6.10. A Program To Demonstrate Rubberbanding

Contents viii

4-12
4-13
4-14
4-16
4-18
4-19
4-20
4-22
4-23
4-24

5-1

5-1
5-1
5-1
5-2
5-3
5-3
5-4
5-5

6-1

6-1
6-1
6-1
6-1
6-2
6-2
6-3
6-3
6-3
6-3
6-3
6-4
6-4
6-4
6-4
6-5
6-8
6-9

6-10
6-12

-,

/~""

\

,,r--"\ 10

o

o

o

Chapter 7 Bitmaps and Bit Block Transfers

7.1. Bitmaps In Main-memory, Hidden-display Memory and On Disk
7.1.1. Allocating Bitmaps In Main Memory
7.1.2. Making Main-memory Bitmaps Current

7.2. Hidden-display-memory Bitmaps
7.3. External Bitmaps
7.4. Using BIts With External Bitmaps and Hidden-display Memory

7.4.1. Using a Plane Mask With a BLT
7.4.2. Using Raster Operations With a BL T
7.4.3. Example of a BLT Operation

7.5. Example of A BIt With A Raster Operation
7.6. A Program To Draw A Checker Board

7.6.1. Procedure check on disk
7.6.2. Procedure draw _ design
7.6.3. Procedure bIt border
7.6.4. Procedure bIt checker to border

Chapter 8 Color Graphics

8.1. Display Configurations
8.1.1. Two-Board Configuration
8.1.2. Three-Board Configuration

8.2. Displaying Colors On The Screen
8.2.1. The Color Map: A Set of Color Values
8.2.2. The Size of a Color Map
8.2.3. Color Map for Color Displays: 4-Bit and 8-Bit Formats
8.2.4. Color Map for Color Displays: 24-Bit Imaging

8.3. Establishing A Color Map
8.3.1. Using a Color Map
8.3.2. FORTRAN Example to Establish a Color Value
8.3.3. Pascal Example to Establish a Color Value
8.3.4. Modifying a Color Table
8.3.5. Changing Pixel Values
8.3.6. Color Map for Monochromatic Displays
8.3.7. Saving/Restoring Pixel Values

8.4. Using Color Display Formats
8.4.1. Using Imaging Display Formats
8.4.2. Routines for Imaging Display Formats

8.5. Color Zoom Operations
8.6. Color Examples

8.6.1. A Program to Draw a Rectangle and Text in Color
8.6.2. A Program to Draw a Design in Color
8.6.3. A Program to Draw Concentric Circles in Color

ix

7-1

7-1
7-1
7-1
7-2
7-2
7-3
7-4
7-5
7-5
7-5
7-7

7-10
7-11
7-12
7-13

8-1

8-1
8-2
8-2
8-3
8-3
8-5
8-5
8-5
8-5
8-7
8-7
8-8
8-9
8-9
8-9
8-9

8-10
8-10
8-10
8-11
8-12
8-13
8-14
8-16

Contents

Chapter 9 Graphics Map Files

9.1. A Graphics Map File
9.2. Insert Files
9.3. Error Messages
9.4. Programming Example

9.4.1. Comments on Programming Example

Appendix A Glossary

Appendix B Keyboard Charts

Appendix C C Programs

Appendix D FORTRAN Programs

Index

Contents x

9-1

9-1
9-1
9-2
9-2
9-2

A-1

B-1

C-1

D-1

Index-1

.,-----"
! '

\ ..

Illustrations

()
Figure 2-1. A Raster Graphic System 2-1

Figure 2-2. DOMAIN Monochrome Display Configurations 2-3

Figure 4-1. A 500 x 500 Bitmap 4-1

Figure 4-2. A Single Line 4-5

Figure 4-3. Connected Lines 4-7

Figure 4-4. Disconnected Lines 4-9

Figure 4-5. A Circle 4-11

Figure 4-6. A Filled Triangle 4-15

Figure 4-7. A Filled Polygon 4-17

Figure 4-8. An "X" Across a Landscape Display 4-19

Figure 4-9. Four Filled Rectangles within a Box 4-21

0 Figure 4-10. Text On A Square 4-26

Figure 5-1. Cursor Origin Example 5-2

Figure 6-1. Frame Display 6-2

Figure 6-2. Clipping Window On A Bitmap 6-6

Figure 7-1. Information Required for Graphics BL T 7-5

Figure 7-2. BL T Example: Intersection of Source Bitmap, Source Window, Destination 7-6

Clipping Window
Figure 7-3. Example of BL T with Raster Op Code = 1 (Logical II AND ") 7-6

0 Figure 7-4. Checker Board with Border 7-7

Figure 7-5. Border Design 7-7

Figure 8-1. Four Plane Color System 8-4

Figure 8-2. Color Value Structure 8-4

Figure 8-3. From Pixel to Color Map in 24-bit Imaging 8-6

Figure 8-4. Color Zoom 8-11

Figure B-1. Low-Profile Keyboard Chart - Translated User Mode B-2

Figure B-2. Low-Profile Keyboard B-3

(~ Figure B-3. 880 Keyboard B-3

Figure B-4. 880 Keyboard Chart - Translated User Mode B-4

o
xi Illustrations

Tables

Table 6-1. Raster Operations and Their Functions

Table 6-2. Raster Operations: Truth Table

Table 7-1. GPR $OPEN BITMAP FILE Access Table

Table 8-1. Two-Board Configuration for Color Display

Table 8-2. Three-Board Configuration for Color Display

Table 8-3. Default Color Map for Monochromatic Displays

Table 8-4. Default Color Map for Color Displays

xii

6-7

6-8

7-3

8-1
8-2

8-7

8-8

Tables

--"

o

o

o

\, 0
,

Chapter 1
Introduction to Graphics Primitives

This chapter briefly outlines the uses and characteristics of the graphics primitives routines
(GPR). The graphics primitives library is built into your DOMAIN system. The routines
(primitives) that make up the library let you manipulate the least divisible graphic elements to
develop high-speed graphics operations. These elements include lines and poly lines, other drawing
operations, text fonts, pixel values, display types, and bitmaps.

The DOMAIN system also provides the DOMAIN Graphics Metafile Resource system and an
optional DOMAIN Core Graphics package.

The DOMAIN Graphics Metafile Resource package (GMR) is a collection of routines that provide
the ability to create, display, edit, and store device-independent files of picture data. The
package provides routines for developing and storing picture data and displaying the graphic
output of that data. The graphics metafile package provides you with the necessary support to
build a graphics system "with a memory. II The package integrates graphics output capabilities
with file handling and editing capabilities. For a detailed description, see Programming with
DOMAIN 2D Graphics Metafile Resource.

Core, an optional package, which is designed to meet industry standards, provides a high-level
graphics environment in which to build portable graphics application systems. For a detailed
description of Core graphics, see Programming With DOMAIN Gore Graphics.

1.1. Uses of Graphics Primitives

The graphics primitives include the following capabilities:

• Drawing lines, circles, and rectangles

• Loading text fonts and manipulating text

• Manipulating graphics with bit block transfers

• Filling polygon areas

• Accommodating input operations

• Setting attributes

• Sharing the display with other processes using windows

• Imaging with an extended color range

• Storing bitmaps externally.

The GPR package uses the following components of the DOMAIN system.

• A display

1-1 Introduction to Graphics Primitives

• Display memory

• Any portion of program memory

• A set of graphics primitive routines

• The Display Manager.

1.1.1. Characteristics of Graphics Primitives

Graphics primitives are device-dependent with respect to the display. However, they are
independent of the various display environments. The operating system provides two other sets
of calls to manipulate the display:

Display Manager interface
These program calls, (which begin with PAD), allow you to manipulate pads
and frames to display text. You cannot manipulate graphics using these calls.

Display driver interface
For monochrome displays, there is a lower level of software called the display
diriver (SMD) which can be used to do output to the display. Also, for all
displays, SMD includes the basic support for keyboard input and cursor
manipulation. Most of the display driver calls duplicate functions now
provided by the graphic primitives package.

For a description of the calls to the Display Manager interface and the display driver interface see
the Programming With General System Calls.

GPR routines are independent of the display environments in two ways. First, you can run a
program which uses GPR routines on any of the displays.

Second, graphics primitives routines can issue calls to either the Display Manager or the display
driver. Therefore, if you use the graphics primitives routines, you can easily change program
execution from one display mode to another by changing one option in the initialization routine
GPR $INIT.

Introduction to Or..aphics Primitives 1-2

I

"'-./

'.,.... /"

o

o

o

o

o

Chapter 2
Displaying Graphics with GPR

This chapter describes display configurations, formats, and the modes within which the graphics
routines can operate.

2.1. Displaying Graphic Images

DOMAIN displays are bit-mapped, raster-scan devices consisting of three main components:
display memory, also called a frame buffer, which stores a matrix of pixel values for images to be
displayed; a display monitor that can be monochrome or color; and a display controller that
converts digital data stored in frame buffers to video signals that can be displayed on the
monitor. See Figure 2-1.

bitmap

0000001000000
0000010100000
0000100010000
0001111111000
0010000000100
0100000000010
1000000000001

~----- scan line

display
controller

monitor

Figure 2-1. A Raster Graphic System

2-1 Displaying Graphics with GPR

2.1.1. Pixels and Pixel Values

Within a bitmap, an image is stored as a matrix of pixel values. Each pixel value represents one
addressable picture element or pixel in an array of pixels, which is a raster. For monochrome
displays, possible pixel values are 0 and 1. A pixel value of 0 indicates that a particular pixel
should not be illuminated on the screen. A pixel value of 1 indicates that a particular pixel
should be illuminated. Obviously, only one bit is needed to store a pixel value for monochromatic
displays. Pixel values for color displays require more than one bit and are discussed in Chapter
8.

2.1.2. Bitmap Dimensions

Bitmap width is represented by an x coordinate ranging from zero on the left to a maximum
defined for the bitmap on the right. Bitmap height is represented by a y coordinate ranging from
o on the top to a maximum defined for the bitmap on the bottom, in other words - upper-left
hand origin.

Bitmap depth specifies the number of bits of information associated with each pixel value. If a
bitmap stores one bit of information for each pixel, as it does for a monochrome display, it need
only be one plane deep. If more than one bit of information must be stored for each pixel, the
bitmap is several planes deep: one plane for each bit of information. A color display that stores
four bits of information for each pixel will use a bitmap four planes deep. A pixel value that uses
four bits can have 16 unique values.

Chapter 6 contains more detailed information about bitmaps.

2.1.3. The Display Controller

The display controller is the interface between the bitmap and the display monitor or screen. Its
function is to read successive bytes of data from the bitmap and convert this data (O's and l's) to
appropriate video signals which illuminate the pixels. To keep an image displayed, the display
controller must continually scan the bitmap one row at a time converting and sending image
information to the display. Each row of the bitmap is called a scan line.

2.2. Display Devices

Each Apollo## display device has either a monochrome display or a color display. Currently
there are two types of monochrome display devices and two color display devices.

Monochromatic Display Devices

The two types of monochromatic display devices are:

• Monochromatic portrait display

• Monochromatic landscape display.

The monochromatic portrait display is either black and white or black and green. The landscape
display is black and white. Each of these has a display memory 1024 pixels wide and 1024 pixels
high; however, they differ in the portion of display memory that is visible. The portrait visual

Displaying Graphics with GPR 2-2

o

o

o

o

display is 800 pixels wide and 1024 pixels high, while the landscape visual display is 1024 pixels
wide and 800 pixels high. The portion of display memory that is not visible is called hidden
display memory (HDM). Figure 2-2 shows the two monochromatic display configurations. Color
display configurations are covered in chapter eight.

1024
PIXELS

PORTRAIT DISPLAY

800 PIXELS

VISIBLE
DISPLAY

224 PIXELS

LANDSCAPE DISPLAY

1024 PIXELS

VISIBLE
DISPLAY

_ -HIDDEN
DISPLAY ___

r--

Figure 2-2. DOMAIN Monochrome Display Configurations

800 PIXELS

224 PIXELS

2.3. Generating Images Using a Bit-mapped Raster Scan Device

Images are generated on raster-scan devices by computing the position of each pixel to be
illuminated in a raster and then illuminating it. This would be an enormous task without GPR
routines designed to do most of the work. For example, you can draw a line by calling a GPR
line-drawing routine. You supply the two end points of the line and GPR illuminates the correct
pixels between the two end points. Geometric shapes are drawn in similiar fashon. You supply
the coordinates of the figure to the appropriate GPR routine, and GPR does the rest.

2.4. Operation Modes

Displaying graphics on a screen or storing graphics in memory is the objective of DOMAIN
graphics programs. The speed with which this process is accomplished and your ability to
perform multiple tasks on your node rely on the operation mode you choose.

GPR has four operation modes. Three of them allow you to display graphics on a screen; one is
used for storing graphic images in memory.

2-3 Displaying Graphics with GPR

The four operation modes are the following:

• Borrow mode and borrow-nc mode

• Direct mode

• Frame mode

• No display mode.

Your choice of operation mode will depend on the advantages of each in relation to your graphics
program and the display environment.

2.5. Selecting an Operation Mode

Programs select an operation mode when they initiate a graphics session with GPR $INIT.
Most of the graphics routines can operate within any of these modes, but there are some
exceptions. For example, you cannot use clipping in frame mode.

2.5.1. Borrow-Display Mode

In borrow-display mode, the program borrows the full screen and the keyboard from the Display
Manager and uses the display driver directly through GPR software. All Display Manager
windows disappear from the screen. The Display Manager continues to run during this time.
However, it does not write the output of any other processes to the screen or read any keyboard
input until the borrowing program returns the display. Input typed ahead into input pads may
be read while the display is borrowed. Borrow-display mode is useful for programs that require
exclusive use of the entire screen.

A variant of borrow-display mode, borrow-nc ("no clear") mode, allows you to allocate a bitmap
in display memory without setting all the pixels to zero. It is identical to borrow-display mode,
except that it does not clear the screen. This is useful for copying what is on the screen into a file
to save for later display or printing.

Advantages

• Borrow display mode usually provides the best graphics performance.

• You have the entire screen to use as a display area.

• You can use hidden-display memory.

• Borrow _ nc mode gives you the option of not clearing the bitmap on initialization.

Displaying Graphics with GPR 2-4

./

./

o

o

o

o

o

Disadvantage

• You lose the features offered by the Display Manager while your program is running.
For example, you cannot have multiple windows displayed.

2.5.2. Direct Mode

Direct mode is similar to borrow-display mode, but the program borrows a window from the
Display Manager instead of borrowing the entire display. The Display Manager relinquishes
control of the window in which the program is executing, but continues to run, writing output
and processing keyboard input for other windows on the screen. Direct mode offers a graphics
application the performance and unrestricted use of display capabilities found in borrow-display
mode and, in addition, permits the application to coexist with other activities on the screen.
Direct mode should be the preferred mode for most interactive graphics applications.

In direct mode, the program repeatedly acquires and releases the display for brief periods for
graphics operations. This gives the advantages of speed of operation while preserving the Display
Manager's control over display functions such as changing the window size and scrolling.

Advantages

• Performance is almost as good as in borrow-display mode.

• You retain the use of the Display Manager.

• You can use any rectangular part of the screen.

Disadvantages

• You must synchronize with the Display Manager. (Calls are provided.)

• You must redraw the window when the screen is redrawn.

2.5.3. Frame Mode

Alternately, a graphics program that executes within a frame of a Display Manager pad calls the
Display Manager, which interacts with the display driver. A graphics program executes more
slowly in frame mode than in borrow-display or direct mode, but frame mode offers some
additional Display Manager features:

• A frame provides a "virtual display" that can be larger than the window, allowing
you to scroll the window over the frame.

• Frame mode makes it easier to perform ordinary stream I/O to input and transcript
pads.

• In frame mode, the Display Manager reproduces the image when necessary.

• The program can leave the image in the pad upon exit so that users can view it at
some later time.

Frame mode currently places some restrictions on the GPR operations that are allowed. The
programmer's reference describes the individual routines, including their restrictions.

2-5 Displaying Graphics with GPR

Advantages

• Easy to use: you take care of the graphics calls, and the Display Manager takes care of
everything. It is appropriate for simple, noninteractive applications.

• Synchronization with other processes is handled by the DM.

• Reserves an area within a pad for graphics display.

• Allows you to scroll an image out of view. The Display Manager redraws the image
when it is pushed or popped.

• Allows use of high-level I/O calls such as READ and WRITE.

Disadvantages

• Graphics programs run much slower than in the other modes.

• There are restrictions on the operations on bitmaps in a frame.

• "Player piano" effect: when an image has had many changes since the last call to
GPR _ $CLEAR, all such changes are played back. This playing back, which occurs
when the window is redrawn for any reason, may take a noticeable period of time to
complete.

2.5.4. No-Display Mode

When the program selects no-display at initialization, the GPR initialization routine allocates a
bitmap in main memory. The program can then use GPR routines to perform graphic operations
to the bitmap, bypassing any screen display entirely. Applications can use no-display mode to
create a main memory bitmap, then call graphics map file routines(GMF calls) to write to a file,
or send the bitmap to a peripheral device, such as a printer.

Advantages

• You can perform graphic operations to the bitmap while bypassing the display.

• You can create bitmaps larger than the display.

Disadvantages

• Images are not visible on the display.

• You can not use the display after initializing GPR in no-display mode until you
terminate GPR and re-initialize it in one of the other modes.

Displaying Graphics with GPR 2-6

/--"

\,

,~.

o

o

o

o

o

Chapter 3
GPR Programming Basics

This chapter describes the essentials of writing GPR application programs.

3.1. Writing GPR Application Programs

Developing GPR application programs requires several steps. The following subsections describe
the steps needed to produce an application program. Some GPR routines are presented in these
sections along with brief explainations. For a complete description of these routines, see the
DOMAIN System Gall Reference (Volume I).

3.1.1. Insert Files

In order to write GPR application programs, you must include two insert files. The first one
defines certain commonly used system declarations. It must be one of the following:

FORTRAN
/sys/ins/base.ins.ftn

Pascal
/sys/ins/base.ins.pas

C
/sys/ins/base.ins.c

The second insert file allows you to use GPR routines. It must be one of the following:

FORTRAN
/sys/ins/gpr.ins.ftn

Pascal
/sys/ins/gpr.ins.pas

C
/sys/ins/gpr.ins.c

At times you may need other insert files. For example, if you use pad calls within your GPR
program, you have to include the appropriate pad insert file. You may also want to create your
own insert files to facilitate variable declarations. If you consistently use a particular set of
variables, you can put them in an insert file and then include the insert file in any program that
uses those variables.

Many of the programming examples used in this manual include the following insert file:

FORTRAN
/sys/ins/time.ins.ftn

Pascal
/sys/ins/time.ins.pas

C
/sys/ins/time.ins.c

This enables the programs to use the TIME _ $W AIT routine, which keeps an image displayed on
the screen for a specified period of time.

3.1.2. Variables

Variables used as parameters in GPR calls must be declared to correspond to the data types used
on our system. The documentation listed with each GPR call defines the data-types of the
parameters. In cases where declaring the necessary variables might not be straightforward, for
example record types or enumerated types in FORTRAN, you are directed to the data-type
section at the beginning of the GPR calls in the DOMAIN System Gall Refrence (Volume I).

3-1 CPR Programming Basics

3.1.3. Initializing the Graphics Package

To execute GPR calls in an application program, you must first initialize the package. You do
this by calling the routine GPR _ $INIT in the application program. You are allowed to perform
non-GPR operations before initializing GPR, but you cannot execute any GPR routines except
GPR _ $INQ _ CONFIG until GPR is initialized.

The form of GPR _ $INIT is the following:

Input Parameters

op_mode

unit

size

hi _ plane _ id

The operation mode for the application program. The possible values are the
following:

GPR_$BORROW
GPR_$BORROW_NC
GPR_$DIRECT
GPR_$FRAME
GPR_$NO_DISPLAY

The value for this parameter depends on the operation mode. The possible
operation modes and the corresponding values that unit can hold are the
following:

operation Mode

GPR_$BORROW
GPR_$BORROW_NC

GPR_$FRAME
GPR_$DIRECT

GPR_$NO_DISPLAY

UNIT

1
1

Stream id of the window
or window pane in which the
graphics is to be performed.

Any value

The width and height of the initial bitmap, in pixels.

The identifier of the bitmap's highest plane. Valid values are the following:

For display memory bitmaps:

o
0-3

For monochrome displays (1 plane)
For color displays in two-board configuration
(1 - 4 planes)

o 7 For color displays in three-board configuration
(1 - 8 planes).

For main memory bitmaps:

o - 7 for all displays (1 - 8 planes) .

GPR Programming Basics 3-2

(~
I

\.. /'

o

o

o

o

o

Output Parameters

init _ bitmap _ desc
A unique descriptor for the initial bitmap. All bitmaps have descriptors.

status The standard system error indicator.

3.1.4. Error Reporting

All GPR calls return a 32-bit status code, which indicates whether or not the call executed
successfully. If the call succeeded, the value of the status code is STATUS _ $OK (0). If the call
failed, the returned value gives the nature of the failure and where it occurred.

The GPR insert file lists all the possible error codes. Error Reporting is covered in detail in the
Programming With General System Galls.

3.1.5. Developing an Algorithm to Perform a Task

The next step in the development of a GPR application program is to prepare an algorithm using
GPR routines to accomplish the task at hand. See Chapter 4 for some sample algorithms.

3.1.6. Terminating a GPR Session

Use GPR_$TERMINATE to terminate your GPR session. You can initialize and terminate
GPR as often as you like within a graphics program. For example, you may initialize GPR in
borrow mode and perform some task, terminate GPR, re-initialize GPR in direct mode, and
perform some other task.

3.2. Examples Of Initializing GPR

Three language-specific examples to initialize GPR in borrow mode with a bitmap having
dimensions of 500 x 500 are listed in this section.

3-3 GPR Programming Basics

3.2.1. Pascal Example to Initialize GPR

Program example;

{insert files}
%nolist;
%include '/sys/ins/base.ins.pas';
%include '/sys/ins/gpr.ins.pas';
%list;

var
size {size of the initial bitmap}

gpr_$bitmap_desc_t; {descriptor of initial bitmap}

mode

gpr_$plane_t; {highest plane in bitmap}

delete_display: boolean; {This value is ignored in borrow mode.}

status status_$t; {error code}

begin

end.

size.x size 500;
size.y_size - 500;
hi_plane_id - 0; {bitmap with one plane}
gpr_$init(mode.l.size.hi_plane_id.init_bitmap.status);

gpr_$terminate(delete_display.status);

CPR Programming Basics 3~4

\""

o

o

o

o

o

3.2.2. FORTRAN Example to Initialize GPR

Program example

%include '/sys/ins/base.ins.ftn'
%include '/sys/ins/gpr.ins.ftn'

integer*2 size(2) {array to hold the size of}
{the initial bitmap}

integer*4 init_bitmap {descriptor of the inital bitmap}

integer*2 mode {data structure to hold the operation}
{mode}

integer*2 hi_plane_id {highest plane number in bitmap}

integer*4 status {error code}

logical delete_display {This value is ignored in borrow mode.}

size (1) = 500
size(2) = 500
mode = gpr_$borrow
hi_plane_id = 0
call gpr_$init(mode,l,size,hi_plane_id,init_bitmap,status)

call gpr_$terminate(delete_display,status)

end

3-5 CPR Programming Basics

3.2.3. C Example to Initialize GPR

/* Program example */

#nolist
#include "stdio.h"
#include "/sys/ins/base.ins.c"
#include "/sys/ins/gpr.ins.c"
#list

gpr_$offset_t size; /* Size of initial bitmap */

linteger init_bitmap; /*descriptor of initial bitmap. */

gpr_$plane_t hi_plane_id; /* highest plane number in bitmap */

status; /* error code *1

boolean delete_display; /* This value is ignored in */
/* borrow mode. */

mainO
{

size.x size = 500;
size.y_size = 500;
mode = gpr_$borrow;
hi_plane_id = 0;/

gpr_$init(mode, (short)l,size,hi_plane_id,init_bitmap,status);

gpr_$terminate(delete_display,status);

}

GPR Programming Basics 3-6

\,

o

o

C)

o

o

Chapter 4
Drawing and Text Operations

This chapter introduces GPR drawing, filling and text routines. Several programming examples
are presented in order to demonstrate some of these routines in actual GPR application programs.

4.1. The GPR Coordinate System

The GPR coordinate system places the coordinate origin at the top left-hand corner of a bitmap.
The x values increase to the right, and y values increase downwards. Coordinates for all drawing
operations are relative to the coordinate origin. You can change the coordinate origin using the
routine: GPR $SET COORDINATE ORIGIN.

If you initialize a 500 by 500 bitmap, the corners of your bitmap will have the coordinates
displayed in Figure 4-1.

° 499,0

0,499 499,499

Figure 4-1. A 500 x 500 Bitmap

4-1 Drawing and Text Operations

4.1.1. Current Position

All drawing and text operations begin at the current position. After an application program is
initialized with GPR_$INIT, the current position is set to the coordinate origin (0,0). After you
use some drawing or text operations, the current position gets updated to a new current position.
(See examples in this chapter. Not all drawing routines update the current position.) The routine,
GPR _ $INQ _ CP returns the x and y coordinates of the current position.

To begin a drawing or text operation at a specific point in a bitmap, it is often necessary to move
the current position. The routine, GPR _ $MOVE moves the current position to the coordinates
specfied without drawing a line.

4.2. GPR Drawing Routines

GPR provides several routines to draw geometric figures, lines, and arcs. The calls are listed
below followed by brief descriptions. The parameters have been omitted.

GPR $ARC 3P
Draws an arc from the current position, through two other points. The current
position is updated to the coordinates of the second point, which is the last
point on the arc.

GPR $CIRCLE Draws a circle with a specified radius around a specified center point. This
routine does not update the current position.

GPR $DRAW BOX

GPR $LINE

Draws an unfilled box given two opposing corners. This routine does not
update the current position.

Draws a line from the current position to the specified endpoint. The current
position is updated to the coordinates of the specified endpoint.

GPR $MUL TILINE
Draws a series of disconnected lines. The current position is updated with each
line that is drawn.

GPR $POL YLINE
Draws a series of connected lines. The current position is updated with each
line that is drawn.

GPR $SPLlNE CUBIC P
Draws a parametric cubic spline from the current position through a list of
control points. The current position is updated to the coordinates of the last
control point.

GPR $SPLINE CUBIC X
Draws a cubic spline as a function of x from the current position through a list
of control points. The current position is updated to the coordinates of the last
control point.

GPR $SPLINE CUBIC Y

Drawing and Text Operations 4-2

/

/

o

o

o

(J

o

Draws a cubic spline as a function of y from the current position through a list
of control points. The current position is updated to the coordinates of the last
control point.

4.3. Line-drawing Examples

Four programming examples are presented in this section to demonstrate how the following GPR
drawing routines work in relation to the coordinate origin and the current position:

• GPR $LINE

• GPR $POL YLINE

• GPR $MUL TILINE

• GPR $CmCLE.

Notice that some routines change the current position and some do not. Also, notice that all
drawing operations are relative to the coordinate origin. These examples are translated into
FORTRAN and C in the language-specific appendices.

TIME _ $W AIT, a call used in all the programs in this chapter and some of the programs in
other chapters, is not a GPR routine. It is used to keep an image displayed on the screen for a
specified period of time. This call is documented in the DOMAIN System Call Refrence
(Volume II).

4-3 Drawing and Text Operations

4.3.1. A Program to Draw a Single Line

This program draws a single line from the coordinate origin (0,0) to the endpoint with '
coordinates (400,500).

After drawing the line, the current position is updated to (400,500). See Figure 4-2.

Program draw a line;
%nolist; --
%include '/sys/ins/base.ins.pas';
%include '/sys/ins/gpr.ins.pas';
%include '/sys/ins/time.ins.pas';
%list;
const

one second = 250000;
five seconds = 5 * one_second;

var
init_bitmap_size : gpr_$offset_t; {size of the initial bitmap}
init_bitmap gpr_$bitmap_desc_t; {descriptor of initial bitmap}
mode : gpr $display mode t := gpr_$borrow;
hi_plane_id : gpr=$plane_t-:= 0; {highest plane in bitmap}
delete_display: boolean; {This value is ignored in borrow mode.}
pause time $clock t;
status : status_$t; {error code}

begin

end.

init_bitmap_size.x_size := 700;
init_bitmap_size.y_size := 700;
gpr_$init(mode,l,init_bitmap_size,hi_plane_id,init_bitmap,status);
gpr_$line(400,500,status);
{Keep figure displayed on the screen for five seconds.}
pause.low32 := five seconds;
pause.high16 := 0;
time_$wait(time_$relative, pause, status);
gpr_$terminate(delete_display,status); {Terminate gpr.}

Drawing and Text Operations 4-4

./

o

0,0 699,0

o

o 0,699 699,699

Figure 4-2. A Single Line

o

o
4-5 Drawing and Text Operations

4.3.2. A Program to Draw Connected Lines

This program draws three connected lines. The first line begins at the point with coordinates
(30,30), the second line at (200,300), and the third line at (400,400). The third line terminates at
(300,200). See Figure 4-3.

The routine GPR _ $POL YLlNE requires that the x and y coordinates of successive coordinate
positions be passed in two arrays. The number of coordinate positions is passed in a two-byte
integer.

The current position is updated to (200,300), (400,400) and (300,200) respectively.

Program draw connected lines;
%nolist; - -
%include '/sys/ins/base.ins.pas';
%include '/sys/ins/gpr.ins.pas';
%include '/sys/ins/time.ins.pas';
%list;
const

one second = 250000;
five seconds = 5 * one_second;

var
size gpr_$offset_t; {size of the initial bitmap}
init_bitmap gpr_$bitmap_desc_t; {descriptor of initial bitmap}
mode gpr $display mode t := gpr $borrow;
hi plane id gpr-$plane t-:= 0; {highest plane in bitmap} X: gpr_$coordinate_array_t [200,400.300]; {an array of x coord.}
y : gpr_$coordinate_array_t := [300,400.200]; {an array of y coord.}
numb_of_pts : integer := 3;
delete display: boolean; {This value is ignored in borrow mode.}
pause - time $clock t;
status : status_$t; {error code}

begin

end.

size.x_size := 700;
size.y_size := 700;
gpr_$init(mode,l,size,hi_plane_id,init_bitmap,status);
gpr_$move(30,30,status);
gpr $polyline(x,y,numb of pts,status);
{Keep figure displayed-on-the screen for five seconds.}
pause.low32 := five_seconds;
pause.high16 := 0;
time_$wait(time_$relative, pause, status);
gpr_$terminate(delete_display,status);

Drawing and Text Operations 4-6

o

0,0 699,0

o

o 0,699 699,699

Figure 4-3. Connected Lines

4-7 Drawing and Text Operations

4.3.3. A Program to Draw Disconnected Lines

This program draws three disconnected lines. The coordinates of the endpoints of the first line are
(100,100), (400,100); the coordinates of the endpoints of the second line are (100,200), (400,200);
and the coordinates of the endpoints of the third line are (100,300), (400,300). See Figure 4-4.

The routine GPR _ $MUL TILINE requires that the x and y coordinates of successive coordinate
positions be passed in two separate arrays. The number of coordinate positions is passed in a
two-byte integer. The current position is updated to (400,100), (400,200) and (400,300)
respectively.

Program disconnected_lines;
%nolist;
%include '/sys/ins/base.ins.pas';
%include '/sys/ins/gpr.ins.pas';
%include '/sys/ins/time.ins.pas';
%list;
const

one second = 250000;
five seconds = 5 * one_second;

var
size gpr_$offset_t; {size of the initial bitmap}
init_bitmap gpr_$bitmap_desc_t; {descriptor of initial bitmap}
mode gpr $display mode t := gpr $borrow;
hi_plane_id gpr=$plane_t-:= 0; {highest plane in bitmap}
x : gpr $coordinate array t:=[100,400,100,400,100,400];{an array
y : gpr-$coordinate-array-t:=[100,100,200,200,300,300];{an array
numb Of-pts : integer := 6; {number of coordinate positions}
delete_display: boolean; {This value is ignored in borrow mode.}
pause time $clock t;
status : status_$t; {error code}

begin

end.

size.x_size := 700;
size.y_size := 700;
gpr_$init(mode,l,size,hi_plane_id,init_bitmap,status);
gpr_$multiline(x,y,numb_of_pts,status);
{Keep figure displayed on the screen for five seconds.}
pause.low32 := five_seconds;
pause.high16 := 0;
time_$wait(time_$relative, pause, status);
gpr_$terminate(delete_display,status);

Drawing and Text Operations 4-8

of x coord.}
of y coord.}

o

o

o
Figure 4-4. Disconnected Lines

o

o
4-9 Drawing and Text Operations

4.3.4. A Program to Draw an Unfilled Circle

This program draws an unfilled circle centered at the coordinate position (300,300) with a radius
of 200. See Figure 4-5.

The routine GPR _ $CmCLE requires that the x and y coordinates of the center point be passed
in a two-element array. This call does not update the current position.

Program draw_circle;
%nolist;
%include ·/sys/ins/base.ins.pas·;
%include ·/sys/ins/gpr.ins.pas·;
%include ·/sys/ins/time.ins.pas·;
%list;
const

one second = 250000;
five seconds = 5 * one_second;

var
size gpr_$offset_t; {size of the initial bitmap}
init_bitmap gpr_$bitmap_desc_t; {descriptor of initial bitmap}
mode gpr $display mode t := gpr $borrow;
hi_plane_id gpr=$plane_t-:= 0; {highest plane in bitmap}
center: gpr_$position_t := [300.300];
radius : integer := 200;
delete_display: boolean; {This value is ignored in borrow mode.}
status status_$t; {error code}
pause : time_$clock_t;

begin

end.

size.x_size := 700;
size.y_size := 700;
gpr_$init(mode.l.size.hi_plane_id.init_bitmap.status);
gpr $circle(center.radius.status);
{Keep figure displayed on the screen for five seconds.}
pause.low32 := five_seconds;
pause.high16 := 0;
time_$wait(time_$relative. pause. status);
gpr_$terminate(delete_display.status);

Drawing and Text Operations 4-10

//_.--.......

o
0,0 699,0

o

o 0,699 699,699

Figure 4-5. A Circle

o

o
4-11 Drawing and Text Operations

4.4. GPR Fill Routines

The rectangle, triangle, trapezoid and multitrapezoid routines fill in a specified rectangle,
triangle, trapezoid, or list of trapezoids. The rectangle routine fills a rectangle by writing the
current fill value into the rectangle without regard to its previous contents or the raster
operations in effect. (Raster operations are covered in section 6.7.)

The triangle, trapezoid, and multitrapezoid routines compute the current fill value the same way
as in the rectangle routine.

The polygon routines open and define the boundaries of a polygon, and either close and fill the
polygon immediately, or close the polygon and return its decomposition to the program for later
drawing and filling. The routine GPR $PGON POLYLINE does not draw a polygon; the
routine defines a series of line segments for decomposition for filling operations.

A polygon's boundary consists of one or more closed loops of edges. The polygon routine
GPR _ $START _PGON establishes the starting point for a new loop, closing off the old loop if
necessary. The polygon routine GPR $PGON POLYLINE defines a series of edges in the
current loop.

The polygon routines GPR_$CLOSE_FILL_PGON and GPR_$CLOSE_RETURN_PGON
close a polygon by decomposing it. The graphics primitives define a trapezoid as a quadrilateral
with two horizontally parallel sides. The polygon routines examine the polygon and break it into
trapezoids that can be filled immediately or returned in an array to the program. At a later
time, the program can reconstruct the polygon by filling the saved trapezoids with the
multitrapezoid routine.

The polygon routines define the interior of a polygon to be all points from which a line can
originate and cross the polygon boundary an odd number of times. The graphics primitives fill
polygon interiors with the current fill value regardless of previous contents.

GPR $CIRCLE FILLED
Draws and fills a circle with a specified radius around a specified center point.
The current position is not updated.

GPR $RECTANGLE
Draws and fills a rectangle. The current position is not updated.

GPR $TRIANGLE
Draws and fills a triangle. The current position is not updated.

GPR $TRAPEZOID
Draws and fills a trapezoid. The current position is not updated.

GPR $MUL TITRAPEZOID
Draws and fills one or more trapezoids. The current position is not updated.

GPR $START PGON
Defines the starting position to create a loop of edges for a polygon boundary.
The current position is not updated.

GPR $PGON POLYLINE
Defines a series of line segments forming part of a polygon boundary. The
current position is not updated.

Drawing and Text Operations 4-12

'.

--.. -

o

o

o

()

o

GPR $CLOSE FILL PGON
Closes and fills the currently open polygon. The current position IS not
updated.

GPR $CLOSE RETURN PGON
Closes the currently open polygon and returns the list of trapezoids within its
interior. The current position is not updated.

4.5. Fill Examples

Two programming examples are presented in this section to demonstrate how GPR fill operations
are performed. The following GPR routines are presented in the examples:

• GPR $TRIANGLE

• GPR $START PGON

• GPR $PGON POLYLINE

• GPR CLOSE FILL PGON.

4-13 Drawing and Text Operations

4.5.1. A Program to Draw and Fill a Triangle

This program draws and fills a triangle with verticies at (100,100), (400,100), and (400,400). See
Figure 4-6.

The routine GPR _ $ TRIANGLE requires that the x and y coordinates of each vertex be passed in
a two-element array. Three arrays, vertex_I, vertex_2, and vertex_3 are used. This call does
not update the current position after drawing and filling the triangle.

Program filled_triangle;
%nolist;
%include '/sys/ins/base.ins.pas';
%include '/sys/ins/gpr.ins.pas';
%include '/sys/ins/time.ins.pas';
%list;
const

one second = 250000;
five seconds = 5 * one_second;

var
size gpr_$offset_t; {size of the initial bitmap}
init_bitmap gpr_$bitmap_desc_t; {descriptor of initial bitmap}
mode gpr $display mode t := gpr $borrow;
hi_plane_id gpr=$plane_t-:= 0; {highest plane in bitmap}
vertex 1 gpr $position t - [100.100];
vertex 2 gpr=$position=t - [400.100];
vertex_3 gpr_$position_t - [400.400];
delete_display: boolean; {This value is ignored in borrow mode.}
pause time $clock t;
status : status_$t; {error code}

begin

end.

size.x_size := 700;
size.y size := 700;
gpr $init(mode.l.size.hi plane id.init bitmap.status);
gpr=$triangle(vertex_l.v~rtex_2.vertex=3.status);
{Keep figure displayed on the screen for five seconds.}
pause.low32 := five_seconds;
pause.high16 := 0;
time_$wait(time_$relative. pause. status);
gpr_$terminate(delete_display.status);

Drawing and Text Operations 4-14

'-"'

,~,

o

669'669
669'0

o

o 0'669
0'0

Figure 4-6. A Filled Triangle

o

o
4-15 Drawing and Text Operations

4.5.2. A Program to Draw and Fill a Polygon

This program draws and fills a polygon with verticies at the points with coordinates (200,200),
(300,300), (300,400), (100,400), and (100,300). See Figure 4-7.

The routine GPR _ $ START _PGON sets the starting position of the polygon at (200,200). The
routine GPR _ $PGON _POLYLINE defines four lines. The endpoints of the first line are
(200,200), (300,300); the endpoints of the second line are (300,300), (300,400); the endpoints of the
third line are (300,400), (100,400); and the endpoints of the fourth line are (100,400), (100,300).
The routine GPR_$CLOSE_FILL_PGON closes the polygon by defining a line from the point
(100,300) to the point (200,200) and then fills the polygon.

Program fill_pgon;
%nolist;
%include ·/sys/ins/base.ins.pas·;
%include ·/sys/ins/gpr.ins.pas·;
%include ·/sys/ins/time.ins.pas·;
%list;
const

one second = 250000;
five seconds = 5 * one_second;

var
size gpr_$offset_t; {size of the initial bitmap}
init_bitmap gpr_$bitmap_desc_t; {descriptor of initial bitmap}
mode gpr $display mode t := gpr $borrow;
hi_plane_id gpr=$plane_t-:= 0; {highest plane in bitmap}
x : gpr $coordinate array t [300.300.100.100];
Y : gpr=$coordinate=array=t := [300.400.400.300];
npositions : integer := 4;
delete_display: boolean; {This value is ignored in borrow mode.}
i integer;
pause time_$clock_t;
status status_$t; {error code}

begin

end.

size.x_size := 700;
size.y_size := 700;
gpr_$init(mode.1.size.hi_plane_id.init_bitmap.status);
gpr $start pgon(200.200.status);
gpr=$pgon_polyline(x.y.npositions.status);
gpr $close fill pgon(status);
{Keep figure displayed on the screen for five seconds.}
pause.low32 := five_seconds;
pause.high16 := 0;
time_$wait(time_$relative. pause. status);
gpr_$terminate(delete_display.status);

Drawing and Text Operations 4-16

"' .. , ."~ ..

' ..

o

0,0
699,0

o

o 0,699
699,699

Figure 4-7. A Filled Polygon

o
4-17 Drawing and Text Operation8

4.6. A Program to Draw Two Diagonal Lines

The program presented in this section initializes GPR in Borrow mode with dimensions of 1024 x
800. The program draws the first line across the screen from the top left-hand corner of the
bitmap to the bottom right-hand corner. After drawing the first line, the coordinates of the new
current position are (1023,799). To draw a line from the top right-hand corner of the bitmap to
the bottom left-hand corner, the current position is moved to the top right-hand corner of the
bitmap using GPR _ $MOVE.

If you are not using a node with a landscape display, you will have to modify the parameters used
in GPR _ $MOVE and GPR _ $LlNE to get the same results. For a portrait display the
parameters for GPR_ $LlNE are (799,1023) to draw the first line and (0,1023) for the second
line. The parameters for GPR_$MOVE are (799,0). On DN600 and DN660 color nodes the
parameters for GPR_ $LlNE are (1023,1023) and (0,1023), respectively. The coordinates for
GPR _ $MOVE are (1023,0).

The bitmap dimensions used in this program represent a whole landscape display. When using
other displays you must modify these dimensions. If you wish, you can initialize GPR with
dimensions of 1024 x 1024 regardless of the display you are using. Fortunately, this does not
create an error. GPR _ $INIT will automatically allocate a bitmap with dimensions of 800 x 1024
for a portrait display, 1024 x 800 for a landscape display and, 1024 x 1024 for a DN600 or DN600
color display. GPR _ $INIT, however, will not allocate a bitmap larger than the dimensions you
provide. You can demonstrate this by initializing GPR with bitmap dimensions smaller than the
size of the display you are using.

Figure 4-8 shows an IIXII drawn across a landscape display.

PROGRAM draw an X;
%NOLIST; --
%INCLUDE ·/sys/ins/base.ins.pas·;
%INCLUDE ·/sys/ins/gpr.ins.pas·;
%INCLUDE ·/sys/ins/time.ins.pas·;
%LIST;

const

var

one second = 250000;
five seconds = 5 * one_second;

status : status_$t;
delete_display : boolean;
disp_bm_size gpr $offset t;
init_bitmap gpr=$bitmap=desc_t;
hi_plane_id gpr_$plane_t - 0;
i integer;
pause time_$clock_t;

BEGIN

{required insert file}
{required insert file}

{Declare the size of the bitmap you will be using.}
disp_bm_size.x_size 1024;
disp_bm_size.y_size - 800;

{Initialize GPR}
gpr_$init(gpr_$borrow,l,disp_bm_size,hi_plane_id,

init bitmap,status);
{Draw one line~}

Drawing and Text Operations 4-18

1/-........

.... /

/---""

~.-...

I '

o

o

o

o

o

END.

gpr_$line(1023. 799. status);
{Move the current position}
gpr_$move(1023.0.status);
{Draw the second line.}
gpr_$line(O. 799.status);
{Keep figure displayed on the screen for five seconds.}
pause.low32 := five_seconds;
pause.high16 := 0;
time_$wait(time_$relative. pause. status);
gpr_$term1nate(delete_display.status);

0,0

0,799

Figure 4-8. An IIXII Across a Landscape Display

4.6.1. Extending the Line-Drawing Program

1023,0

1023,799

A program to draw an IIXII across any size window when using direct mode is presented below.
Notice that when using direct mode the display must be acquired using the routine
GPR_$ACQUffiE_DISPLAY. The routine GPR_$RELEASE_DISPLAY releases the display.

You can see how this program operates in a frame by initializing GPR in frame mode.

4-19 Drawing and Text Operations

PROGRAM draw_an_X;
%NOLIST;
%INCLUDE '/sys/ins/base.ins.pas';
%INCLUDE '/sys/ins/gpr.ins.pas'; .
%INCLUDE '/sys/ins/time.ins.pas·;
%LIST;

{required insert file}
{required insert file}

const

var

one second = 250000;
five seconds = 5 * one_second;

status status_$t;
mode gpr_$display_mode_t - gpr_$direct;
pause time_$clock_t;
delete_display boolean;
disp_bm_size gpr_$offset_t;
init_bitmap gpr_$bitmap_desc_t;
hi_plane_id gpr_$plane_t := 0;
num_of_planes gpr_$plane_t;
i : integer;
unobscured, scure: boolean;
x,y : integer;

BEGIN

END.

{Declare the size of the bitmap you will be using.}
disp_bm_size.x_size := 1024;
disp bm size.y size := 1024;
gpr_$init(mode~l,disp_bm_size,hi_plane_id,init_bitmap,status);
unobscured := gpr $acquire display(status); {Acquire the display.}
{Find out the size of the bitmap.}
gpr_$in~bitmap_dimensions(init_bitmap,disp_bm_size,

num_of_planes,status);
x := disp_bm_size.x_size;
y := disp bm size.y size;
gpr_$line(X=l, y-1~ status); {Draw one line.}
gpr $move(x-1,O,status); {Move the current position}
gpr-$line(O,y-1,status); {Draw the second line.}
gpr_$release_display(status);
{Keep figure displayed on the screen for five seconds.}
pause.low32 := five seconds;
pause.high16 := 0;
time $wait(time $relative, pause, status);
gpr_$terminate(delete_display,status); {Terminate GPR.}

4.7. A Program to Draw a Simple Design

The program presented in this section draws the design in figure 4-9 on the screen.

This program initializes GPR in borrow mode with dimensions of 1024 x 800. The program
draws the outside unfilled box first, then it draws the four filled squares and finishes by drawing
the two connecting lines. There is no special reason or advantage to the order chosen.

Notice that GPR_$DRAW _BOX takes the coordinates of two opposite corners while
GPR_$RECTANGLE requires a starting position (x and y coordinates) and a length and width.

Drawing and Text Operations 4-20

\ ..

o

o

o

o

o

Figure 4-9. Four Filled Rectangles within a Box

GPR _ $MOVE relocates the current position to (300,300) before GPR _ $LlNE draws the first
line (the choice of which line to draw first is arbitrary). After the line is drawn, the current
position changes to the destination of the line just drawn. To draw the second line,
GPR_$MOVE relocates the current position again, this time to (300,500). With this complete,
GPR $LlNE draws the second line.

program connect_four;
%NOLIST;
%INCLUDE '/sys/ins/base.ins.pas';
%INCLUDE '/sys/ins/gpr.ins.pas';
%INCLUDE '/sys/ins/time.ins.pas';
%LIST;
const

var

one second = 250000;
five seconds = 5 * one_second;

init_bitmap : gpr_$bitmap_desc_t;
st : status_$t;

{required insert file}
{required insert file}

mode : gpr_$display_mode_~ gpr_$borrow;
x.y.xl.yl :integer;
rectangle : gpr_$window_t;

4-21 Drawing and Text Operations

disp_bm_size
pause
hi_plane_id

gpr_$offset_t := [1024,800]; {size of initial bitmap}
time_$clock_t;
gpr_$plane_t := 0;

BEGIN

END.

x := 200; xl := SOO; y := 200; yl := SOO; {dimensions of box}
{starting position of 1st rectangle}
rectangle.window_base.x_coord := 250;
rectangle.window_base.y_coord := 250;
rectangle.window_size.x_size := 50; {width of each rectangle}
rectangle.window_size.y_size := 50; {height of each rectangle}
gpr $init(mode,l,disp bm size,hi plane id,init bitmap,st);
gpr-$set auto refresh(true,st); - - -
gpr=$draW_box(x,y,Xl,yl,st); {Draw an unfilled box.}
gpr_$rectangle(rectangle,st); {Draw a filled rectangle.}

{Draw three more filled rectangles within the unfilled box.}
rectangle.window_base.x_coord 500;
rectangle.window_base.y_coord 250;
gpr_$rectangle(rectangle,st);

rectangle.window_base.x_coord
rectangle.window_base.y_coord
gpr_$rectangle(rectangle,st);

250;
500;

rectangle.window_base.x_coord 500;
rectangle.window base.y coord 500;
gpr_$rectangle(rectangle,st);

gpr_$move(300,300,st);
gpr_$line(500,500,st);

gpr_$move(300,500,st);

{Move the current position.}
{Draw a line connecting two rectangles.}

gpr_$line(500,300,st); {Draw a line connecting two rectangles.}

{Keep figure displayed on the screen for five seconds.}
pause.low32 := five_seconds;
pause.highlS := 0;
time_$wait(time_$relative, pause, st);

gpr_$terminate(false, st); {Terminate the graphics session.}

4.7.1. Extending the Design Program

Try changing the Operation mode for this program to Direct mode (Remember, you must acquire
the display in Direct mode.) Notice that only a portion of the design is visible unless you have a
large window. If this is the case, enlarge the window and run the program again.

At this time, there is a situation worth mentioning. Open a few windows on your screen and run
the program again in direct mode. With the design displayed in the window, pop one or more
windows so that the window with the display gets fully or partially obscured. Pop the window
with the design back up to the top. Notice that the window becomes blank. There are two
remedies for this situation.

1. You can include the call GPR $SET AUTO REFRESH in the application

Drawing and Text Operations 4-22

\, /

\'"

o

o

o

o

program. This will signal the Display Manager to automatically redraw the contents
of the window whenever the window grows or is popped. The Display Manager only
redraws what was in the window before it was obscured or had grown. For example,
if only a portion of a drawing is displayed in a window because the window was too
small (your drawing got clipped), only that portion of the drawing will be redrawn if
the window has grown. For this reason, GPR_$SET _AUTO _REFRESH is most
useful to handle redrawing when windows get popped.

2. You can write your own refresh procedure. This technique allows your application
program to call the actual procedures that created the drawing. This technique has
the advantage that your whole drawing gets redrawn. A program that draws the
design presented in this section, and uses a refresh procedure is given in Chapter 5.

4.8. Text Operations

Using the graphics package, a program can mix text characters and graphic images in a single
bitmap in a Display Manager frame, an acquired window, the borrowed display, or main memory.
The text routines are listed below. (Parameters are not included.)

GPR $LOAD FONT FILE
Loads a font from a file into the font storage area of display memory. A single
program may load multiple fonts and then set them for use, one at a time.

GPR $UNLOAD FONT FILE
Unloads a font.

GPR $SET CHARACTER WIDTH
Sets the parameter WIDTH of the specified character in the specified font.

GPR _ $INQ _ CHARACTER _ WIDTH
Returns the width of the specified character in the specified font.

GPR $SET HORIZONTAL SPACING
Sets the parameter for the width of spacing between displayed characters for
the specified font.

GPR_$INQ_HORIZONTAL_SPACING
Returns the parameter for the width of spacing between displayed characters
for the specified font.

GPR _ $INQ _ SPACE _ SIZE
Returns the width of the space to be displayed when a character requested is
not in the specified font.

GPR $REPLICATE FONT
Creates and loads a modifiable copy of a font.

GPR $SET SPACE SIZE
Specifies the width of the space to be displayed when a requested character is
not in the specified font.

4-23 Drawing and Text Operations

GPR $SET TEXT FONT
Selects a loaded font for use in subsequent text operations.

GPR _ $INQ _ TEXT
Returns the descriptor of the currently set text font.

GPR $SET TEXT PATH
Specifies the direction in which a line of text is written.

GPR_$INQ_TEXT_PATH
Returns the direction for writing a line of text.

GPR $SET TEXT VALUE
Specifies the pixel value to use for writing text.

GPR $SET TEXT BACKGROUND VALUE
Specifies the pixel value to use for text background.

GPR_$INQ_TEXT_ VALUES
Returns the text and text background pixel values.

GPR $TEXT Writes text in the current bitmap, beginning at the current position and
proceeding in the direction specified by the most recent use of
GPR $SET TEXT PATH.

GPR_$INQ_ TEXT _EXTENT
Returns the width and height, in pixels, of the area a text string would span if
it were written with GPR $TEXT.

GPR _ $INQ _ TEXT _ OFFSET
Returns the x and y offsets from the top left pixel of a string to be written by
GPR_ $ TEXT to the origin of its first character. This routine also returns the
x or y offset to the pixel that is the new current position after the
GPR $TEXT call. This is the y offset when the text path is vertical.

4.9. A Program Using Text

The program presented in this section demonstrates how to load a text font and how to write text
into a bitmap.

The program begins by drawing an unfilled square in the bitmap. The top left-hand corner of
the square is at the point with coordinates (100,100). The bottom right-hand corner is at
(500,500).

The routine GPR_ $LOAD _FONT _FILE loads a font into hidden-display memory. The list of
fonts is in the directory /sys/dm/fonts.

The routine GPR_ $SET _ TEXT _FONT establishes the font to be used in all text operations.
Notice that font_id is an output parameter in GPR_ $LOAD _FONT _FILE and an input
parameter in GPR_$SET _ TEXT _FONT. As with drawing operations, text operations begin
at the current position. To have text begin at the desired location, the current position is moved
using GPR_$MOVE.

Drawing and Text Operations 4-24

\.

' ... /

o

o

o

o

o

The routine GPR $TEXT prints a specified string of text. The maximum length of a text
string is 256 characters.

To print vertical text, the program uses the routine GPR $SET TEXT PATH to establish
the direction of text written into the bitmap as gpr _ Sup.

Figure 4-10 shows the output of this program.

Program text on square;
%nolist; --
%include ·/sys/ins/base.ins.pas·;
%include ·/sys/ins/gpr.ins.pas·;
%include ·/sys/ins/time.ins.pas·;
%list;
const

one second = 250000;
five seconds = 5 * one_second;

var
init_bitmap_size : gpr_$offset_t; {size of the initial bitmap}
init_bitmap gpr_$bitmap_desc_t; {descriptor of initial bitmap}
mode : gpr_$display_mode_t := gpr_$borrow;
hi_plane_id : gpr_$plane_t := 0; {highest plane in bitmap}
delete_display: boolean; {This value is ignored in borrow mode.}
status : status $t; {error code}
font id : integer; {identifier of a text font}
i,j integer32;
direction gpr_$direction_t; {direction of text}
pause : time_$clock_t;

begin

end.

init_bitmap_size.x_size := 700;
init_bitmap_size.y_size := 700;
gpr_$init(mode,l,init_bitmap_size,hi_plane_id,init_bitmap,status);
gpr_$draw_box(100,100,500,500,status);

gpr_$load_font_file(·f7x13.b· ,SIZEOF(·f7x13.b·),font_id,status);
gpr_$set_text_font(font_id,status);

gpr_$move(110,90,status);

gpr_$text('This is the top of the rectangle.', 33,status);
direction := gpr_$up;
gpr $set text path(direction,status);
gpr=$move(90,-490,status);
gpr_$text('This is the side of the rectangle.', 34,status);

{Keep figure displayed on the screen for five seconds.}
pause.low32 := five_seconds;
pause.high16 := 0;
time_$wait(time_$relative, pause, status);

gpr_$terminate(delete_display,status);

4-25 Drawing and Text Operations

This is the top of the rectangle.

Q)

.;3
en .-

Figure 4-10. Text On A Square

("'\1

Drawing and Text Operations 4-26

o

o

o

o

o

Chapter 5
The Cursor and Input Events

This chapter describes cursor control and input operations. The input routines synchronize
program execution around input events. These events include keystroke, mouse or puck buttons,
locator and locator stop from mouse or touchpad, and window transition. Some of the
information in this chapter refers to attribute blocks, which are discussed in Section 6.5. You
may find it helpful to read about attribute blocks before reading this chapter.

5.1. Using Cursor Control

The complete set of cursor routines is available in Borrow-display and Direct mode. In Frame
mode, the cursor is controlled by the Display Manager and is always displayed. Therefore, III

Frame mode, you can change only the cursor's position. Cursor routines include the following:

GPR $SET CURSOR ACTIVE
Specifies whether to display the cursor. Initially, the cursor is disabled.

GPR $SET CURSOR PATTERN
Sets a bitmap pattern as the cursor pattern. This bitmap can be a maximum
of 16 x 16 pixels. The initial cursor size varies, depending on the standard font
the Display Manager uses.

GPR $SET CURSOR POSITION
Sets a position on the screen for display of the cursor. The initial cursor
position is (0,0). Programs running in frame mode can call this routine.

GPR $SET CURSOR ORIGIN
Designates one of the cursor's pixels as the cursor origin. Thereafter, when the
cursor is moved, the pixel designated as the cursor origin moves to the screen
coordinate designated as the cursor position, as shown in Figure 5-1.

5.2. Implementation Restrictions On The Cursor

When the cursor is active, the cursor pattern is stored in display memory. Therefore, programs
that operate in Borrow-display or Direct mode, have the potential to interfere with the cursor
pattern and/or to cause the cursor to interfere with a bitmap pattern. To avoid this problem,
disable the cursor before performing output procedures to any area of the display in which the
cursor could be located.

5.3. Display Mode and Cursor Control

In Borrow-display and Direct mode, the program has complete control over the cursor. In Direct
mode, the program-defined cursor pattern and origin are in effect only within the Direct-mode
window. As the user moves the cursor between the direct window and other windows on the
screen, the system automatically changes the cursor pattern.

5-1 The Cursor and Input Events

If the program executes in frame mode, program control of the cursor is limited. The only cursor
control routine that operates in frame mode is GPR_ $SET _ CURSOR_POSITION, and the
program can move the cursor with this routine only if it lies within the frame when
GPR $SET CURSOR POSITION is called.

°

7

BITMAP CONTAINING
CURSOR PATTERN

° 7

GPR_SET_CURSOR_ORIGIN(7, 0, STATUS)

GPR_$SET_CURSOR_POSITION(400,400,STATUS)

Figure 5-1. Cursor Origin Example

5.4. Using Input Operations

The graphics primitives package includes a set of routines that enable graphics programs to
accept input from various input devices. The input routines synchronize program execution
around input events. Input routines function III all display modes except
GPR $NO DISPLAY.

The Cursor and Input Events 5-2

\,

\, /'

/~,

o

o

o

o

o

5.4.1. Event Types

An event occurs when input is generated in a frame, Direct-mode window, or borrowed display.
The GPR package supports several classes of event, called event types. Programs use an input
routine to select the types of events that should be reported; this operation is called enabling an
event type. The event types are the following:

Keystroke

Button

Locator

Locator stop

A keystroke event occurs when you type specified keyboard characters.
Programs can select a subset of keyboard characters, called a keyset, to be
recognized as keystroke events. Except in borrow-display mode, keys that do
not belong to the keyset are processed normally by the Display Manager. In
Borrow-display mode, these keys are ignored.

A button event occurs when you press a button on the mouse or bitpad puck.

A locator event occurs when you move the mouse or use the touchpad or bitpad
to move a locator around the display.

A locator stop event occurs when you stop moving the mouse or stop using the
touchpad or bitpad.

Window transition
Except in borrow-display mode, the cursor may move into and out of the
window in which GPR input is being performed. When the cursor leaves a
window used for graphics display, the input routines report to the program an
event of type GPR _ $LEFT _ WINDOW. When the cursor enters the window,
the routines report an event type of GPR _ $ENTERED _ WINDOW.

Enabled input events are stored in attribute blocks (not with bitmaps) in much the same way as
attributes. However, you cannot set and inquire about input events in the same way that you can
attributes. You use GPR $ENABLE INPUT and GPR $DISABLE _ INPUT instead of
GPR_$SET ... and GPR_$INQ The effect of this difference is the following. \.¥hen a
program changes attribute blocks for a bitmap during a graphics session, the input events you
enabled are lost unless you enable those events for the new attribute block.

5.4.2. Event Reporting

If an event type is enabled, the input routines report each event of the enabled type to the
program with event data and a cursor position. This position is relative to the upper left corner
of the window.

If the enabled event type is keystroke or button, the input routines return an ASCII character
from the enabled keyset. When defining a keyset for a keystroke event, consult the system insert
files /SYS/INS/KBD.lNS.PAS, /SYS/INS/KBD.lNS.FTN and /SYS/INS/KBD.lNS.C. These
files contain the definitions for the non-ASCII keyboard keys in the range 128 through 255.

The input routines report mouse button events as ASCII characters. Down transitions range from
lIa ll to IId ll (if the mouse has four buttons); up transitions range from IIAII to IIDu. The three
mouse keys start with (a/A) on the left side. As with keystroke events, button events can be
selectively enabled by specifying a button keyset.

Locator events merely report the x and y coordinates of the locator input. If the program has not

5-3 The Cursor and Input Events

enabled locator events, the GPR software handles any locator data itself by moving the arrow
cursor around the window. At the next occurrence of an enabled event, the GPR software reports
the locator final cursor position to the program as well as the enabled event.

As noted above, enabled input events are stored in attribute blocks (not with bitmaps) in much
the same way as attributes. When a program allocates more than one attribute block, different
sets of events are associated with each attribute block. The events enabled for a particular
bitmap are the events stored in the attribute block for that bitmap. You must enable the desired
events for each window.

GPR $ENABLE INPUT and GPR $DISABLE INPUT work on the attribute block of the
following bitmap: the current bitmap if it is a screen bitmap; otherwise, the screen bitmap that
was most current.

When you have more than one bitmap displayed, you can determine the source of input by:

1. Setting a distinct character as a window id with GPR _ $SET _ WINDOW _ ID and
making certain that you have enabled entered-window events for all windows. Then
remember which window was the last entered. This window is the source of the input
event.

2. Using GPR_ $INQ_ WINDOW _ID after each input event.

5.4.3. Input Routine

The graphics primitives provide the following routines to perform input operations:

GPR $ENABLE INPUT
Enables events of a specific event type. If the event type is keystroke or
button, the routine also enables a specific keyset to select which keys or
buttons generate inpuJi events. Programs must call this routine once for each
bitmap.

GPR $DISABLE INPUT
Disables events for the event type previously enabled with
GPR $ENABLE INPUT.

GPR $EVENT WAIT
Suspends program execution until one of the events enabled by
GPR _ $ENABLE _ INPUT occurs. If the event type is keystroke or button,
this routine waits until a member of the specified keyset is input. The
information returned includes the type of event that occurred, the character (if
any) associated with the event, and the position at which the event occurred.
The position will be relative to the upper left corner of the window, or, if the
mode is borrow-display, the screen. Position information is not returned in
frame mode.

GPR $COND EVENT WAIT
Performs the same function as GPR _ $EVENT _ WAIT except that if no event
has occurred, the routine returns to the program immediately with an event
type that indicates that no event has occurred (GPR _ $NO _ EVENT).

The Cursor and Input Events 5-4

\"" ,'- ,/

""""""

o

o

o

o

()

GPR $GET EC
Returns the event count associated with a graphic input event. Programs' can
use this routine with GPR $COND EVENT WAIT to wait for a
combination of system events as well as GPR input events. See the
Programming With General System Calls for more information on event
counts.

GPR $SET INPUT SID
Establishes a selected stream as the standard input stream. The default
standard input stream is STREAM_ $STDIN. Programs can only use this call
in frame mode. In borrow-display and direct modes, input comes directly from
the keyboard.

GPR $SET WINDOW ID
Establishes the character that identifies the current bitmap's window. This
character IS returned by GPR $EVENT WAIT and
GPR_$COND_EVENT_ WAIT when they return
GPR $ENTERED WINDOW events. The character indicates which window
was entered.

GPR_$INQ_ WINDOW_ID
Returns the character that identifies the current bitmap's window.

5.5. A Program That Waits For An Event

This program is a modification of program connect _ four that was presented in the previous
chapter. This version waits for the user to type a character on the keyboard before it exits.
Specifically, it waits for a character in the range II a II •• II d ". In addition, this program uses a
refresh procedure, which refreshes the drawing in the window if the window is grown or popped.
Note that PROCEDURE draw, an external procedure, is used to draw the design initially and
any time a refresh is required. Refresh procedures must always be external.

The routine GPR $SET REFRESH ENTRY obtains the starting address of the refresh
procedure.

The routine GPR_$ENABLE_INPUT defines what type of event is enabled and what keys are
enabled. This program enables keyboard input and the set of keys II a " .. II d II •

The routine GPR _ $EVENT _ WAIT causes the program to wait for one of the enabled events
(the user pressing an II a" , lib II , IIC" ,or "d") to occur before terminating.

PROGRAM connect_four;

%NOLIST;
%INCLUDE '/sys/ins/base.ins.pas';
%INCLUDE '/sys/ins/gpr.ins.pas';
%LIST;

VAR

{required insert file}
{required insert file}

5-5 The Cursor and Input Events

st

mode

disp_bm_size
hi_plane_id

init_bitmap
unobscured

ev_pos
ev_type
ev char
keys

{status code}

gpr_$offset_t := [1024, 800]; {size of initial bitmap}
gpr_$plane_t := 0; {high plane number of initial bitmap}

gpr $bitmap desc t; {gpr bitmap descriptor}
boolean; {whether window is unobscured on acquisition}

gpr_$position_t;
gpr_$event_t;
char;
gpr_$keyset_t;

{input event position}
{input event type}
{input event character}
{set of input characters}

PROCEDURE draw (IN unobs boolean; IN pos_change boolean); EXTERN;

BEGIN

{Initialize GPR.}
gpr_$init (mode. 1, disp_bm_size, hi_plane_id, init_bitmap, st);

{Do the graphics output.}
unobscured := gpr_$acquire_display (st);
draw (FALSE, FALSE);
{Establish the refresh procedure.}
gpr_$set_refresh_entry (addr(draw), nil, st);

{Wait for user input.}

{Acquire the display.}
{Draw the picture.}

keys := ["a" .. "do]; {Create a key set.}
gpr_$enable_input (gpr_$keystroke, keys. st);{Enable input for the key set.}
{Wait for input.}
unobscured := gpr_$event_wait (ev_type, ev_char, ev_pos, st);

END.

{Terminate the graphics session.}
gpr_$terminate(false, st);

MODULE draw;

%NOLIST;
%INCLUDE "/sys/ins/base.ins.pas";
%INCLUDE "/sys/ins/gpr.ins.pas";
%LIST;

{required insert file}
{required insert file}

PROCEDURE draw (IN unobs boolean; IN pos_change boolean);

VAR

The Cursor and Input Events 5-6

,/

o

o

o

o

o

st
xl, Y 1, x2 , y2
rectangle

status_$t;
integer;
gpr_$window_t;

{status code}
{box corner coordinates}
{rectangle to be filled}

BEGIN

END;

{Set coordinate variables.}
xl := 200; x2 := 600;
yl := 200; y2 := 600;
{Set starting position of 1st rectangle}
rectangle.window_base.x_coord := 250;
rectangle.window_base.y_coord := 250;
rectangle.window_size.x_size 50;
rectangle.window_size.y_size := 50;

{Set dimensions of box.}

{Set width of each rectangle.}
{Set height of each rectangle.}

{Draw outer box and first rectangle.}
gpr_$draw_box (xl, yl, x2, y2, st); {Draw an unfilled box.}
gpr_$rectangle (rectangle, st); {Draw a filled rectangle.}

{Draw three more filled rectangles within the unfilled box.}
rectangle.window_base.x_coord := 500;
rectangle.window base.y coord := 250;
gpr_$rectangle (rectangle, st);

rectangle.window_base.x_coord := 250;
rectangle.window_base.y_coord := 500;
gpr_$rectangle (rectangle, st);

rectangle.window_base.x_coord := 500;
rectangle.window_base.y_coord := 500;
gpr_$rectangle (rectangle, st);

{Draw diagonals.}
gpr_$move (300, 300, st);
gpr_$line (500, 500, st);

{Move the current position.}

gpr_$move (300, 500, st);
gpr_$line (500, 300, st);

{Draw a line connecting two rectangles.}

{Draw a line connecting two rectangles.}

5-7 The Cursor and Input Events

/",---,,\

(J

o

o

o

o

Chapter 6
Initial Bitmaps and Attributes

This chapter describes the various types of bitmaps and the attribute blocks associated with
them. This chapter also makes refrences to bit block transfers, which are discussed in the next
chapter. It may be helpful to read about bit block transfers before reading this chapter.

6.1. Bitmap Structure

As discussed in Chapter 2, DOMAIN displays are raster scan devices. This type of display
requires the use of a bitmap to store the intensity values for each pixel in the raster.
Monochromatic displays require only one bit of information to be stored for each pixed in the
raster. Therefore, bitmaps for monochromatic displays are only one plane deep. Color displays
require several bits of information to be stored for each pixel and consequently color bitmaps are
composed of several planes. Bitmaps for color displays are discussed in Chapter 8.

6.2. Bitmap Locations

A bitmap may reside in display memory, main memory, hidden display memory, or external
storage. The only bitmaps that ~re visible on the screen are those in display memory. To see the
contents of any other bitmap, you must copy it to display memory using a bit-block transfer.

When you initialize GPR using GPR_$INIT, you are allocated an initial bitmap. You determine
the location of the initial bitmap when you select the operation mode. The dimensions of the
initial bitmap are determined by two things: size, an input parameter in GPR _ $INIT; and the
type of display you are using.

Initializing GPR in borrow, direct, or frame mode allocates an initial bitmap in display memory.
Any graphics operations performed in this bitmap are immediately visible on the screen. If you
initialize GPR in no-display mode, the initial bitmap is allocated in main memory, and any
graphics operations performed in this bitmap are not visible on the screen.

6.3. Initial Bitmap Size

The size of an initial bitmap is determined by the operation mode, the dimensions you provide,
and, in borrow and direct mode, the type of display you are using. The operation mode and
dimensions are input parameters in GPR _ $INIT.

6.3.1. Initial Bitmap in Borrow Mode

In borrow mode the initial bitmap is allocated in display memory. If you provide bitmap
dimensions smaller than the display memory of the node you are using, the size of the bitmap will
match the dimensions you provide, and the origin of the bitmap will match the origin of the
screen. If, however, you provide dimensions larger than the size of the display memory, the size
of the initial bitmap is reduced to match the size of the display memory on your node.

6-1 Initial Bitmaps and Attributes

6.3.2. Initial Bitmaps in Frame Mode

In frame mode the initial bitmap is in display memory and you can assign bitmap dimensions up
to 4096 x 4096. If you provide dimensions larger than these dimensions, you will be allowed, by
default, the maximum size of 4096 x 4096. When you provide dimensions that are smaller than
the window, the bitmap is located in the top left-hand corner of the window. (See Figure 6-1 for
the relationship between frame, bitmap, and window.)

DISPLAY
MANAGER

WINDOW

FRAME

Figure 6-1. Frame Display

6.3.3. Initial Bitmap in Direct Mode

In direct mode the initial bitmap is also in display memory. The size of the bitmap is the size of
the display window regardless of the dimensions you provide in GPR _ $INIT, unless you provide
dimensions smaller than the dimensions of the window. In this case, the bitmap is located in the
top left-hand corner of the window.

Bitmaps allocated to the size of a window can be troublesome if the window is smaller than the
bitmap you need. If you are using a window that is displayed on the screen before you initialize
GPR, you can adjust the size of the window before initializing GPR. Alternatively, you can use
PAD _$CREATE_ WINDOW to create a transcript pad within a window of a user-defined size,
and then initialize GPR using the new pad's stream id as the unit.

Initial Bitmaps and Attributes 6-2

----------------_ .. ,,-_._---._-.-.

/~

I
\,~ .,'

o

o

o

o

o

6.3.4. Initial Bitmap in No-Display Mode

In no-display mode, the initial bitmap is allocated in main memory, not display memory. Main
memory bitmaps can contain up to eight planes regardless of the display, and can have
dimensions up to 8192 x 8192. The contents of main memory bitmaps are not visible on the
screen.

6.4. The Current Bitmap

When you initialize GPR, the initial bitmap is also the current bitmap. This bitmap can be in
display memory or main memory. All graphics output operations performed take place on the
current bitmap. The initial bitmap remains the current bitmap until another is designated to be
current using GPR _ $SET _ BITMAP. Only one bitmap can be current at a time.

6.5. Bitmap Attributes

Each bitmap is associated with a set of attributes identified in an attribute block. These
attributes specify the characteristics that operations performed on that bitmap will have. For
example, with attributes you can specify that only a certain section of the bitmap be manipulated
in any subsequent operations (clipping attribute), that lines be drawn with dashed lines (line style
attribute), or that text written on the bitmap be displayed in a specific font (font id attribute).
You can change any of the attributes in an attribute block.

6.5.1. The Current Attribute Block

The current bitmap is associated with the current attribute block. When you initialize GPR, the
initial bitmap is allocated an attribute block with default settings. This attribute block is the
current attribute block and remains so until you change it. If the attribute settings in this block
are acceptable, you do not need to concern yourself with the attribute block. If, however, you
want to change some of the attributes, you can change them as follows:

• Change them in the current attribute block .

• Allocate a new attribute block, make it current, change the necessary attributes on
the new attribute block.

6.5.2. Creating Attribute Blocks

It IS possible and often convenient to allocate additional attribute blocks using
GPR $ALLOCATE ATTRIBUTE BLOCK. This call establishes a new attribute block with
default settings. The form of the call is the following:

6-3 Initial Bitmaps and Attributes

Output parameter

attrib block desc
The descriptor of the attribute block. This value is needed to make the
attribute block current.

6.5.3. Making an Attribute Block the Current Attribute Block

To make an attribute block the current one that will be associated with the current bitmap, use
gpr _ $set _ attribute _ block. The form of the call is the following:

Input parameter

attrib block desc
The describtor of the attribute block you want to make current. This
parameter IS an output parameter In

GPR $ALLOCATE ATTRIBUTE BLOCK.

6.6. Other Bitmaps

In addition to bitmaps in visible display memory and main memory, there are two other types of
bitmaps: external and hidden-display-memory (HDM). The contents of these bitmaps are not
visible on the screen. To view them, you must perform a bit-block transfer to display memory.

6.6.1. External Bitmaps

External bitmaps allow you to allocate space on disk in order to store a bitmap for later use.
External bitmaps can be treated like any others. Their content, however, is not visible. In this
respect, they are similiar to main-memory bitmaps. See Chapter 7 for a sample program that uses
external bitmaps.

6.6.2. Hidden-Display-Memory Bitmaps

In either borrow or direct mode, you can allocate a bitmap in HDM using
GPR_$ALLOCATE_HDM_BITMAP. The advantage of HDM bitmaps is their location: they
are part of display memory, but their contents are not visible. This means that images can be
stored in HDM and transferred to visible display memory more quickly than from main memory.
The drawback of HDM bitmaps is their size. The largest bitmap can be 224 x 224 pixels.

On DN6XX and DN550 nodes in borrow mode, you can effectively use all of hidden-display
memory by using GPR_$SET _BITMAP _DIMENSIONS and increasing the bitmap size to
1024 x 2048. To use the hidden portion, vary the y coordinate by 1024, and to see the contents
of hidden-display memory use either:

1. A bit-block transfer, where the current bitmap is both the source and destination
bitmap, and only the x and y offset changes.

Initial Bitmaps and Attributes 6-4

()

o

o

o

o

2. GPR _ $SELECT _ COLOR _ FRAME to display:

• Frame ° : normally visible display

• Frame 1 : normally hidden display

6.7. Listing of Bitmap Attributes and Bitmap Attribute Default Values

Bitmap attributes, their descriptions, and default values are listed below.

Clipping Window The clipping window attribute specifies a rectangular section of the bitmap,
outside which no pixels can be modified. (See Figure 6-2.) After a program
calls the routine GPR _ $SET _ CLIP _WINDOW to specify the dimensions of
a clipping window, it may call GPR_$SET _ CLIPPING_ACTIVE to enable
the new clipping window. Otherwise, the default clipping window remains
active.

Default

NOTE

Coordinate Origin

Default

Draw Value

Default

Fill Value

Same size as bitmap. If the program reassigns the attribute block from one
bitmap to a smaller bitmap, the clipping window is automatically reduced to
the new bitmap size.

In borrow and frame mode, clipping is disabled by default. In direct mode, it is
enabled, and the clip window is set to the size of the window.

Enabling and Disabling clipping has two effects:

1. With clipping enabled, you are restricted to the area of the bitmap
which is within the clipping window.

2. With clipping disabled, you are allowed access to the entire bitmap,
but some GPR routines, such as GPR _ $TRIANGLE, will return
an errror status if any of the specified coordinate values are lie
outside bitmap limits. Other routines, such as GPR _ $LINE, will
perform as if clipping were enabled but the clip window covered the
entire bitmap.

The coordinate origin specifies a pair of offset values to add to all coordinate
positions. These values are subsequently used to calculate offsets for all
drawing, text, bit block transfers and move operations on the current bitmap.
For example, the coordinate origin affects calls to the routines GPR _ $MOVE,
GPR_$LINE, and GPR_$PIXEL_BLT.

(0,0)

The draw pixel value specifies the value to which pixels will be set when
drawing lines.

1

The fill pixel value specifies the value to which pixels will be set when filling
areas.

6-5 Initial Bitmaps and Attributes

Default

Fill Pattern

Default

Text Value

Default

1

CLIPPING
WINDOW

Figure 6-2.

BITMAP

Clipping Window On A Bitmap

The fill pattern value specifies the pattern used to fill the current bitmap.

Solid.

The text pixel value specifies the value to which pixels will be set to write text.

1, for borrowed displays, direct mode displays, memory bitmaps, and display
manager frames on monochromatic displays; 0, for Display Manager frames on
color displays.

Text Background Value

Default

Text Font

Default

Line Style

Default

Plane Mask

The text background pixel specifies the value to which pixels will be set for text
background.

-2 (same as bitmap background, which is 0 for borrowed displays, direct mode
displays, and memory bitmaps, and the same as the window background for
display manager frames).

The text font attribute specifies the font in which to display text characters in
the bitmap.

No default. Program must load and set font.

The line style attribute specifies the style in which to display line segments in
the bitmap. Line style can be either solid or dashed; if dashed, the style scale
factor determines the length of the dash.

Solid line.

The plane mask specifies which planes of a bitmap can be modified by any
graphics operation and which planes are protected from modification.

Initial Bitmaps and Attributes 6-6

o

o

o

o

o

Default All planes can be modified.

Raster Operation A raster operation specifies how pixel values are determined in each plane of a
destination bitmap for BLT, drawing and text operations. There are sixteen
different raster operations that form the set of rules for combining pixel values.
Assigning a raster operation code to a bitmap or to a plane of a bitmap alters
no values: it specifies how pixel values are determined when BL Ts and drawing
operations are performed.

Default

For BL Ts, the raster operation compares each pixel value within the boundary
of the BL T in the source bitmap with each appropriate pixel value in the
destination bitmap. The ultimate value of a particular pixel in the destination
bitmap is then determined by combining these values using the current raster
operation.

For drawing and text operations there is no source bitmap. Destination pixel
values are determined as follows. For each pixel included in the drawing or
text, the draw value is compared with the value of all pixels affected by the
drawing or text operation with the current raster operation.

Op = 3, set all destination bit values to source bit values.

Table 6-1. Raster Operations and Their Functions

Op Code Logical Function

o
1
2
3
4
5
6
7
8

9
10
11
12
13
14

15

Assign zero to all new destination values.
Assign source AND destination to new destination.
Assign source AND complement of destination to new destination.
Assign all source values to new destination. (Default)
Assign complement of source AND destination to new des~ination.
Assign all destination values to new destination.
Assign source EXCLUSIVE OR destination to new destination.
Assign source OR destination to new destination.
Assign complement of source AND complement of destination to
new destination.
Assign source EQUIVALENCE destination to new destination.
Assign complement of destination to new destination.
Assign source OR complement of destination to new destination.
Assign complement of source to new destination.
Assign complement of source OR destination to new destination.
Assign complement of source OR complement of destination to
new destination.
Assign one to all new destination values.

6-7 Initial Bitmaps and Attributes

Table 6-2. Raster Operations: Truth Table

Source Destination Resultant Bit Values For The Following Op Codes:

Bit Bit

Value Value 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
1 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

6.8. Changing Attributes

To change an individual attribute, a program must call one of the attribute-setting routines.
These routines change the attributes on the current attribute block. To change the attributes on
an attribute block which is not current, you must make it current using
GPR_$SET _ATTRIDUTE_BLOCK before calling a routine to change an attribute.

The following guidelines may be helpful for using attribute blocks and changing attributes.

If you only have one bitmap, use multiple attribute blocks (if necessary) and use
GPR $SET ATTRIDUTE BLOCK to switch between them. If you are only changing one or
two attributes, just change the default attribute block as needed.

If you have multiple bitmaps, use one attribute block per bitmap. Use GPR_$SET_BITMAP to
get the current bitmap and the current attribute block. Then modify the current attribute block
as necessary.

The routines for setting attributes are listed below:

GPR $SET CLIP WINDOW
Changes the clipping window for the current bitmap.

GPR $SET CLIPPING ACTIVE
Enables/ disables a clipping window for the current bitmap.

GPR $SET COORDINATE ORIGIN
Establishes x- and y-offsets to add to all x and y coordinates used as input for
these operations: moving the current position, drawing and text operations, and
block transfers.

GPR $SET DRAW_VALUE
Specifies the color/intensity to use to draw lines.

GPR $SET FILL BACKGROUND VALUE
Specifies the color/intensity value used for drawing the background of tile fills.

Initial Bitmaps and Attributes 6-8

./

o

o

(J

o

o

GPR $SET FILL PATTERN
Specifies the fill pattern to use for the current bitmap.

GPR $SET FILL VALUE
Specifies the color/intensity to use to fill rectangles.

GPR $SET LINESTYLE
Specifies the line style as solid or dashed.

GPR $SET LINE PATTERN
Establishes the pattern used in drawing lines.

GPR $SET PLANE_MASK
Establishes a plane mask that specifies which planes to use for subsequent write
operations.

GPR $SET RASTER OP
Specifies a new raster operation for BL Ts and lines.

GPR $SET TEXT BACKGROUND VALUE
Specifies the color/intensity to use for text background.

GPR $SET TEXT FONT
Establishes a new font for subsequent text operations.

GPR $SET TEXT VALUE
Specifies the color/intensity to use for writing text.

6.S.1. Retrieving Attributes

Before you change an attribute, you may want to know the value it currently ha .. s. The following
routines return attribute values as output parameters:

GPR _ $INQ _ CONSTRAINTS
Returns the clipping window and plane mask used for the current bitmap.

GPR _ $INQ _ COORDINATE _ ORIGIN
Returns the x and y offsets added to all x and y coordinates used as input to
move, line drawing, and BL T operations on the current bitmap.

GPR_$INQ_DRAW _ VALUE
Returns the color/intensity value used for drawing lines.

GPR_$INQ_FILL_BACKGROUND_ VALUE
Returns the color/intensity value used for drawing the background of tile fills.

GPR_$INQ_FILL_PATTERN
Returns the fill pattern in use for the current bitmap.

GPR_$INQ_FILL_ VALUE
Returns the color/intensity value used for filling rectangles.

6-9 Initial Bitmaps and Attributes

GPR_$INQ_LINE_PATTERN
Returns the pattern used in drawing lines.

GPR _ $INQ _ LINESTYLE
Returns information about the current line style.

GPR_ $INQ_RASTER_ OPS
Returns the raster operations in use for the current bitmap.

GPR_$INQ_ TEXT
Returns the text font and text path used for the current bitmap.

GPR_ $INQ_ TEXT _ OFFSET
Returns the x and y offsets from the top left pixel of a string to the origin of
the string's first character. This routine also returns the pixel that is the new
current position after the text is written with GPR_$TEXT.

GPR_$INQ_ TEXT _ VALUES
Returns the current values of color/intensity for text and text background in
the current bitmap.

6.9. A Program Using Clipping

This program modifies the program in Section 4.6 that draws an "X" across the screen. This
version draws the "X" with dashed instead of solid lines. In addition, this program establishes a
clipping window with a length and width of 100 pixels. The location of the clipping window is
the center of the Display-manager window

The routine, GPR _ $SET _ CLIP _WINDOW requires that you define the coordinate position of
the top left-hand corner of the clipping window, and the length and width of the window.

Two methods are available for changing attributes for a particular bitmap:

1. You can change the attributes on the current bitmap's current attribute block. This
may be the most convenient method when you are not changing the same attributes
several times within the same program.

2. You can create a new attribute block, associate it with the current bitmap, and
change the necessary attributes. This approach initially requires more work, but will
save time if you frequently use a particular set of attributes.

This program changes the necessary attributes on the current attribute block since the changes
are made only once.

PROGRAM Clip an X;
%NOLIST; --
%INCLUDE ·/sys/ins/base.ins.pas·;
%INCLUDE ·/sys/ins/gpr.ins.pas·;
%LIST;

var
st

Initial Bitmaps and Attributes

{required insert file}
{required insert file}

6-10

\, /

I' -"
I

---_ ... ----

o

o

o

o

o

delete_display : boolean;
disp_bm_size : gpr_$offset_t;
init_bitmap : linteger;
i,x,y : integer;
bm_size : gpr_$offset_t;
num_of_planes : gpr_$plane_t;
unobscured : boolean;
second_attr_block : integer32;
style : gpr_$linestyle_t;
scale : integer;
window : gpr_$window_t;
mid_x, mid_y : integer;
mode : gpr_$display_mode_t - gpr_$direct;
ev_pos : gpr_$position_t;
ev_type : gpr_$event_t;
ev_char : char;
keys : gpr_$keyset_t; {set of characters}

BEGIN {Main program}
{Declare the size of the bitmap you will be using.}

disp_bm_size.x_size 1024;
disp_bm_size.y_size := 1024;

{Initialize GPR}
gpr_$init(mode, 1, disp_bm_size, 0, init_bitmap, st);
unobscured := gpr $acquire display(st);
gpr_$in~bitmap_dimensions(init_bitmap,bm_size,num_of_planes,st);
x - bm_size.x_size;
y := bm_size.y_size;

{Change the attribute for line style in the attribute block associated}
{with the initial bitmap. Make it dotted.}

style := gpr_$dotted;
scale := 5;
gpr_$set_linestyle(style,scale,st);

- (x div 2); { Find the midpoint of one of}
- (y div 2); { the lines.}

{Set the origin of the clipping window.}
with window. window base do

begin
x coord
y_coord

end;

mid x-50;
- mid_y - 50

with window. window size do {Set the width and height of the}
{clipping window.}

begin
x size - 100;
y_size 100

end;
gpr_$set_clip_window(window,st); {Set clipping active.}

{Draw the lines. This time, only pixels within the clipping window}
{will be visible. }

gpr_$line(x, y, st); {Draw one line.}
gpr_$move(x,O,st); {Move the current position}
gpr_$line(O,y,st); {Draw the second line.}
keys := [·a· .. 'd']; {Create a key set.}
gpr_$enable_input(gpr_$keystroke, keys, st);

6-11 Initial Bitmaps and Attributes

unobscured := gpr_$event_wait(ev_type, ev_char, ev_pos, st);
gpr $release display(st); {Release the display.}
gpr=$terminate (delete_display, st) {Terminate GPR}

END. {Main program}

6.10. A Program To Demonstrate Rubberbanding

This program is interactive and demonstrates how to perform rubberbanding. It allows the user
to define where a line starts by pressing:

• <Fl>

• <F2>

• The left-most mouse button

• The middle mouse button.

It allows the user to rubberband (stretch) a line by moving the cursor either with the mouse or
the touch pad. The end of the line is defined when the user presses:

• <Fl>

• <F2>

• <F3>

• The left-most mouse button

• The middle mouse button

• The right-most mouse button

The program ends when the user presses either <F3> or the right-most mouse button after a
line is drawn.

PROGRAM rubberband;

%nolist
%include '/sys/ins/base.ins.pas'
%include '/sys/ins/gpr.ins.pas' ;
%include '/sys/ins/error.ins.pas'
%include '/sys/ins/kbd.ins.pas' ;
%list

CONST
black = 0
white = 1

VAR
offset : gpr_$offset_t

Initial Bitmaps and Attributes 6-12

'

r----,
(" ,,_._/

o

o

o

o

o

pos : gpr_$position_t ;
i : integer ;
b_desc : gpr_$bitmap_desc_t
status : status_$t ;
size: gpr $offset t;
mouse buttons: gpr $keyset t := ['a', 'b', 'c'];
pfks : gpr_$keyset_t := [kbd_$f1, kbd $f2, kbd_$f3];
null_buttons : gpr_$keyset_t - [] ;
first : boolean ;
et : gpr_$event_t ;
ed : char ;
last, anchor : gpr_$position_t
wait boolean;
rect : gpr_$window_t;

BEGIN
offset.x_size := 800 ;
offset.y_size := 800 ;
gpr_$init (gpr_$borrow, 1, offset, 0, b_desc, status)
rect.window_base.x_coord := 200;
rect.window_base.y_coord := 200;
rect.window_size.x_size := 200;
rect.window size.y size := 200;
gpr $rectangle(rect, status);
{Enable the three mouse buttons.}
gpr_$enable_input (gpr_$buttons, mouse_buttons, status)
{Enable the three function keys.}
gpr_$enable_input (gpr_$keystroke, pfks, status);
REPEAT

first := true ;
{ Set 'exclusive or' raster op. }
gpr $set raster op (0, 6, status) ;
{ Wait for the inital mouse key to begin. }
gpr_$set_cursor_active (true, status) ;
wait := gpr_$event_wait (et, ed, pos, status)
gpr $set cursor active (false, status) ;
if «ed ; 'c') or (ed = kbd_$f3)) then exit;
anchor.x_coord := pos.x_coord ;
anchor.y coord := pos.y coord;
gpr $move (anchor.x coord, anchor.y coord, status) ;
gpr=$enable_input (gpr_$locator, null_buttons, status)

{ Rubberband to the locator position until mouse key. }
REPEAT

wait := gpr_$event_wait (et, ed, pos, status) ;
IF et = gpr_$locator

THEN
begin

IF not first
begin

gpr $move
gpr=$line

end
ELSE

THEN

anchor.x coord, anchor.y coord, status)
last.x_coord, last.y_coord, status) ;

first := false ;

gpr_$set_draw_value(white,status);
gpr $move (anchor.x coord, anchor.y coord, status)
gpr=$line (pos.x_coord, pos.y_coord~ status) ;
last. x_coord - pos.x_coord ;

6-13 Initial Bitmaps and Attributes

last.y_coord := pos.y_coord
end ; { if locator }

UNTIL ((et = gpr_$buttons) or (et = gpr_$keystroke));

{ Now really draw the line with normal a raster_op. }
gpr $set raster op (0, 3, status);
gpr-$move(anchor.x coord, anchor.y coord, status);
gpr-$line (last.x-coord, last.y coord, status) ;
gpr=$disable_input-(gpr_$locator, status) ;

UNTIL false;

gpr_$terminate (false, status)

END.

Initial Bitmaps and Attributes 6-14

o

o

o

o

o

Chapter 7
Bitmaps and Bit Block Transfers

This chapter discusses bitmaps outside display memory. It demonstrates how to use bit-block
transfers to copy information from one bitmap to another or from one location to another
location in the same bitmap.

7.1. Bitmaps In Main-memory, Hidden-display Memory and On Disk

For some graphics applications, it is necessary or convenient to establish bitmaps in locations
other than display memory. These bitmaps are used just like bitmaps in display memory except
that nothing appears on the screen. Therefore, these bitmaps can be used as scratch areas or as
areas to save images. To display images from any of these bitmaps, you must use a bit-block
transfer operation (BL T) to transfer information to a bitmap in visual display memory.

7.1.1. Allocating Bitmaps In Main Memory

Use GPR_$ALLOCATE_BITMAP to allocate a bitmap in main memory. The form of the call
is the following:

Input Parameters

size

hi_plane_id

The dimension of the memory bitmap. Main Memory bitmaps can have
dimensions up to 8192 x 8192.

The number of the highest plane in the bitmap. Bitmap planes are numbered
from 0 - 7.

attrib block desc
The descriptor of the attribute block that the new main-memory bitmap will
use. This can be the current attribute block, or you can can designate an
already existing block which is not current. You can create a new attribute
block if necessary and use its descriptor.

Output Parameters

bitmap _ desc The descriptor of the new main-memory bitmap.

7.1.2. Making Main-memory Bitmaps Current

You have a bitmap allocated in memory, but it is not the current bitmap. You can make it the
current by using the call:

7-1 Bitmaps and Bit Block Transfers

When you use this call, the attribute block associated with the bitmap becomes the current
attribute block (see attrib _ block_ desc in section 7.1.1). This call makes a bitmap current, not
visible.

7.2. Hidden-display-memory Bitmaps

In borrow-mode and direct-mode you can allocate additional bitmaps in hidden display memory
using GPR_ $ALLOCATE_HDM_BITMAP. The parameters for this call are identical to the
parameters in GPR _ $ALL0 CATE _ BITMAP.

The following restrictions apply to hidden-display-memory bitmaps:

• The maximum size allowed for a HDM bitmap is 224 x 224 .

• In direct mode, if your program releases the display and another process acquires the
display (this could be the Display Manager or another program) before the original
program reacquires the display, the contents of hidden-display memory may be
written over.

7.3. External Bitmaps

To save a graphic image for use at a latter time, you must store it on disk using
GPR $OPEN . BITMAP FILE. The form of the call is the following:

GPR_$OPEN_BITMAP_FILE(access,filename,name size,version,size
groups,group headers~attribs,bitmap,created,status)

Input Parameters

access

filename

Specifies how you are going to use the file. There are four possible values:

gpr _ $create

gpr _ $update

Allocates a new file on disk for storage of a graphic image.

Allows you to modify a previously created file, or create a
new one.

gpr _ $write Allows you to write to an existing file.

gpr _ $readonly Permits you to read a previously created file.

The pathname of the bitmap file.

Input or Output Parameters

The following parameters can be input or output parameters depending on the value of access
and whether or not the file exists. See Table 7-1.

verSIOn The number on the header of the external bitmap file.

Bitmaps and Bit Block Transfers 7-2

\ ..

o

o

0

o

o

size

groups

Contains the dimensions of the bitmap.

The number of groups in external bitmaps. Currently, groups are not used; this
value must be 1.

group _headers The descriptors of the external bitmap group headers.

attribs The descriptor of the attribute block to be used by this bitmap.

Output Parameters

bitmap The descriptor of the bitmap on disk.

created A boolean value which specifies whether the bitmap file was created.

Table 7-1. GPR $OPEN BITMAP FILE Access Table

GPR_$CREATE GPR_$UPDA TE GPR_$WRITE GPR_$READONL Y
file exists
no yes

version,
size,

IN IN OUT OUT OUT groups,
gro~
hea ers

7.4. Using BIts With External Bitmaps and Hidden-display Memory

If you have a bitmap in main memory, hidden-display memory, or on disk, and you want to
make all or part of it visible, use a bit-block transfer to a display memory bitmap. A BLT copies
a rectangle of pixels from one bitmap to another, or from one place in a bitmap to another place
in the same bitmap.

Bit-block transfers (sometimes called transfers) can be made from one bitmap to another or
within the same bitmap. When a BLT is performed from one bitmap to another, the bitmap that
contains the information being transferred is the source bitmap, and the bitmap that receives the
information is the destination bitmap. When a BL T is done within the same bitmap, this bitmap
serves as both the source and destination bitmap.

7-3 Bitmaps and Bit Block Transfers

The three BL T subroutines are listed below. With each call, there is a description of its
parameters. Identical parameter descriptions are not repeated for each call.

This routine copies a rectangle from all planes of the source bitmap to the corresponding planes
of destination bitinap.

Input Parameters

source _ bitmap _ desc
The bitmap descriptor of the source bitmap. The current bitmap IS the
destination.

source window The coordinates of the rectangle to be moved. This is the same format as
window in GPR $SET CLIP WINDOW.

dest _ origin The coordinates of the upper left corner of the rectangle In the destination
bitmap.

GPR_$BIT_BLT(source_bitmap_desc, source_window, source_p lane,
dest_origin, dest_plane, status)

This routine copies a rectangle from one plane of the source bitmap to one plane of the
destination bitmap. You specify the planes.

Input Parameters

source _ plane The plane id of the plane from which the rectangle is to be moved.

dest_plane The plane id of the plane to which the rectangle is to be moved.

GPR_$ADDITIVE_BLT(source_bitmap_desc, source_window, sour ce_plane,
dest_origin, status)

This routine copies a rectangle from one plane of the source bitmap (you specify the plane) to all
planes of the destination bitmap.

Input Parameters

source _ plane The plane id of the plane from which the rectangle is to be moved.

7.4.1. Using a Plane Mask With a BLT

A program can mask planes of a bitmap to establish the following:

• Destination planes of a pixel BL T operation

• Destination planes of an additive BL T operation.

Bitmaps and Bit Block Transfers 7-4

(~

\, .. '

-,/

----------------------------------.. ----------

o

o

o

o

o

For plane masking procedures, see the routine GPR_$SET _PLANE_MASK.

7.4.2. Using Raster Operations With a BLT

When a program invokes a BL T with the default raster operation, the BL T moves the rectangle
and retains all bit values. When the program uses a BLT with any other raster operation, the
BL T combines two rectangles and assigns the resultant bit values according to the raster
operation of the destination bitmap.

SOURCE
BITMAP

SOURCE BITMAP

WINDOW ---t---.---_}
ORIGIN

SOURCE
WINDOW

SOU RCE WI N DOW
WIDTH

DESTINATION BITMAP

*

SOURCE WINDOW
HEIGHT

Figure 7-1. Information Required for Graphics BLT

7.4.3. Example of a BLT Operation

DESTINATION
ORIGIN

In a BLT operation, bits are transferred only on the rectangular area in which the source bitmap,
source window, and destination clipping window intersect (see Figure 7-2). Nothing is transferred
outside the bounds of the bitmap. For example, if the clipping window of the current bitmap
(the destination bitmap) excludes part of the destination rectangle that would otherwise receive
pixels, the size of the actual rectangle moved will be smaller than the source window. Similarly,
if the source window overflows the boundaries of the source bitmap, the size of the actual
rectangle moved will be smaller than the source window.

7.5. Example of A BIt With A Raster Operation

Figure 7-3 shows a source bitmap in main memory, a destination bitmap in display memory, and
the bitmap created by using a BLT with raster operation 1, the logical IIANDII function. The
figure shows 0 bits as black, and 1 bits as white.

7-5 Bitmaps and Bit Block Transfers

SOURCE
WINDOW
WIDTH

SOURCE
WINDOW
ORIGIN

HEIGHT

SOURCE
WINDOW

SOURCE BITMAP

DESTINATION
ORIGIN

RECTANGLE
MOVED AS
RESULT OF
THE BLT

RECTANGLE TO BE
MOVED BY
THE BLT

DESTINATION BITMAP

OUTLINE OF

CLIPPING
WINDOW
OF DESTINATION
(CURRENT)
BITMAP

SOURCE WINDOW
SUPERIMPOSED ON
DESTINATION. ON L Y
SHADED RECTANGLE
IS ACTUALLY MOVED.

Figure 7-2. BLT Example: Intersection of Source Bitmap, Source Window,

Destination Clipping Window

II
• II

II II II
•• II II ••••• • • II II

II II II
• II

II

Figure 7-3. Example of BLT with Raster Op Code = 1 (Logical "AND")

Bitmaps and Bit Block Transfers 7-6

7.6. A Program To Draw A Checker Board

o The program presented in this section draws the checker board in Figure 7-4.

XXXXXXXXXX
X X
X X
X X

o X X
X X
X X
X X

o X X
XXXXXXXXXX

Figure 7-4. Checker Board with Border

o

Figure 7-5. Border Design

o
7-7 Bitmaps and Bit Block Transfers

The problem of drawing this design can be approached in several ways. In order to demonstrate
BL T operations and the various types of bitmaps, the program uses the following approach:

1. Draws and stores the checker board in a bitmap file.

2. Draws and stores the design in Figure 7-5 in hidden-display memory.

3. BLTs the design in Figure 7-5 into a display bitmap and create the border.

4. BL Ts the checker board from the file on disk into the border in display memory.

Each of the steps above is performed in a separate procedure to facilitate explanations. The
program Checker _ with_Border is listed first. Following this, each procedure is listed in a
separate subsection. All variables are global and are listed in the main program.

To create a checker board on an external bitmap, the program creates an external file using
GPR $OPEN BITMAP FILE. After the program sets the external bitmap current, the
checker board is created in procedure CHECK_ ON _DISK.

Once the checker board is drawn in the external bitmap, the program draws one square of the
border design in hidden display memory. This is performed in the procedure DRAW _DESIGN.

With one square of the design drawn in hidden display memory, the remainder of the border
design is drawn in visible display by transferring the design several times. This is done in
procedure BLT _BORDER. Notice that the current bitmap is both the source and the
destination.

The program finishes by transferring the checker board stored on disk into the border. This is
done in the procedure BLT _ CHECKER_ TO _BORDER.

program checker_with_border;

%NOLIST;
%INCLUDE '/sys/ins/base.ins.pas';
%INCLUDE '/sys/ins/gpr.ins.pas';
%LIST;

{required insert file}
{required insert file}

var
init_bitmap: gpr_$bitmap_desc_t; {bitmap descriptor}
hdm_bitmap gpr_$bitmap_desc_t; {bitmap descriptor}
i.j integer;
source: gpr $window t;
dest_pos gpr $position t;
ev_type gpr=$event_t;-
event_data.ev_char: char;
corner 1. corner 2: gpr_$position_t;
st - status it;
keys: gpr_$keyset_t; {set of characters}
mode: gpr_$display_mode_t;
x.xl.y.yl integer;
disp_bm_size gpr_$offset_t; {size of initial bitmap}
filename array[l .. 256] of char;
name size integer;

Bitmaps and Bit Block Transfers 7-8

--"

/---""

o

o

o

o

o

version gpr_$version_t;
size gpr_$offset_t;
groups integer;
group_headers gpr_$bmf_group_header_array_t;
header gpr_$bmf_group_header_array_t;
disk_bitmap gpr_$bitmap_desc_t;
created: boolean;
attribs: gpr_$attribute_desc_t;
hdm attr block: gpr_$attribute_desc_t;
hi_plane: gpr_$plane_t:= 0;
hdm attr blk desc gpr_$attribute_desc_t;

BEGIN

disp_bm_size.x_size
disp_bm_size.y_size

1024;
800;

{width of bitmap for display}
{height of bitmap for display}

{initialize graphics primitives}
gpr_$init(gpr_$BORROW, 1, disp_bm_size, hi_plane, init_bitmap, st);

name size := 7; {number of characters in the pathname}
groups := 1;
header [0] .n sects := hi plane + l'
header [0] . pixel size :=-1;
header [0] . allocated_size - o·
header [0] .bytes per line - 0;
header [0] .bytes-per-sect 0;

{Declare the size of the external bitmap.}
size.x size - 500;
size.y_size := 500;

gpr $allocate attribute block(attribs,st);
gpr-$open bitmap file(gpr $create, "checker" ,name size,version,size,

- - - groups,header,attribs,diSk bitmap,created,st);

gpr_$set_bitmap(disk_bitmap,st); {Set the external bitmap current.}

CHECK_ON_DISK; {Procedure to draw a checker board in an external bitmap}

gpr_$allocate_attribute_block(hdm_attr_blk_desc,st);
size.x_size := 224; {width of bitmap for hdm}
size.y size := 224; {height of bitmap for hdm}
gpr $allocate hdm bitmap(size,O,hdm attr blk desc,hdm bitmap,st); - - - - - - -

gpr_$set_bitmap(hdm_bitmap,st); {Make the HDM bitmap current.}

gpr_$clear(O,st); {Clear the HDM bitmap.}

DRAW_DESIGN; {Procedure to draw one rectangle of the border design.}

gpr_$set_bitmap(init_bitmap,st); {Make display bitmap current.}

BLT_BORDER; {Procedure to create the border on the screen.}

BLT CHECKER_TO_BORDER; {Procedure to BLT the checker board from}
{the external bitmap into the border which}
{is displayed on the screen.}

7-9 Bitmaps and Bit Block Transfers

{Typing a lower-case a - d will end the program.}
keys : = [. a' .. · d .] ;
GPR_$ENABLE_INPUT(GPR_$KEYSTROKE, KEYS, ST);
UNOBSCURED := GPR $EVENT WAIT(EV TYPE, EV CHAR, dest_POS, ST)
gpr_$terminate(f;lse, st) - -

end.

7.6.1. Procedure check on disk

This procedure creates a checker board with dimensions of 400 x 400. An unfilled box is drawn
as a border. Following this, two rows of the board are drawn and then these two rows are
transferred three times to complete the entire board. Notice that the external bitmap is used as
both the source and the destination of the BL T.

BEGIN

x := 0; xl := 400; y := 0; yl
gpr_$draw_box(x,y,xl,yl,st);

x := 0; y := 0;

400; {dimensions of box}

{Define the dimensions of the rectangle to be drawn.}
source.window_base.x_coord := x· {x coord. of rectangle}
source.window_base.y_coord := y; {y coord. of rectangle}
source.window_size.x_size - 50; {rectangle width}
source.window_size.y_size := 50; {rectangle height}

{This loop will draw two rows of rectangles. There are}
{eight rectangles per row but only four of them need be}
{drawn since four are filled and four are empty.}

for j := 1 to 2 do {Draw two rows of rectangles.}
begin

for i := 1 to 4 do {Draw four rectangles 50 pixels apart.}
begin

source.window_base.x_coor.d - x;
gpr_$rectangle(source,st);
x := x + 100;

end;
y := y + 50; {Go to next row.}
x := 50; {Move over one position.}
source.window_base.y_coord - y;

end;

{BLT the two rows of rectangles three times to get}
{eight rows. This is a BLT with the current bitmap}
{serving as both the source and the destination.}

{Define the area for the BLT.}
source.window_base.y_coord
source.window base.x coord

Bitmaps and Bit Block Transfers

-
-

O·
0;

7-10

\. /

f"'''
(
\,

o

o

o

o

o

source.window_size.x_size 400;
source.window_size.y_size 100;

dest_pos.x_coord .- 0; {Define x coordinate for the destination.}
{of the BLT.}

y := 100;
for i := 1 to 3 do {BLT figure 3 times.}
begin
dest_pos.y_coord := y; {Define y coordinate for the destination.}

{of the BLT.}
gpr_$pixel_blt(disk_bitmap,source,dest_pos,st);
y := y + 100; {Increment y value of destination.}

end;

END;

7.6.2. Procedure draw _ design

This procedure draws one square of the border design in hidden display. It is similiar to program
Connect_Four in Chapter 4.

Procedure draw_design;

begin
x := 0; xl := 49; y := 100; yl - 149; {coordinates of box}
gpr_$draw_box(x,y,Xl,yl,st);

{Draw filled rectangles.}
rectangle.window_base.x_coord := 10;
rectangle.window_base.y_coord := 110;
rectangle.window_size.x_size := 10;
rectangle.window_size.y_size := 10;
gpr_$rectangle(rectangle,st);

rectangle.window_base.x_coord
rectangle.window_base.y_coord
gpr_$rectangle(rectangle,st);

rectangle.window_base.x_coord
rectangle.window_base.y_coord
gpr_$rectangle(rectangle,st);

rectangle.window_base.x_coord
rectangle.window_base.y_coord
gpr_$rectangle(rectangle,st);

{Draw connecting lines.}
gpr $move(20,120,st);
gpr-$line(30,130,st);

gpr $move(20,130,st);
gpr-$line(30,120,st);

end;

30;
- 110;

10;
130;

- 30;
- 130;

7-11 Bitmaps and Bit Block Transfers

7.6.3. Procedure bIt border

This procedure transfers the design stored in hidden display to visible display memory. First the
design is transferred ten times vertically and then nine times horizontally. This creates one
corner of the border. Two more transfers are done in the procedure. These transfers take
advantage of the work already done and BL T a whole row and a whole column of squares. The
display bitmap is used as both the source and the destination bitmap.

Procedure bIt_border;

BEGIN

{Define the area for the BLT.}
source.window_base.x_coord := 0;
source.window_base.y_coord := 100;
source.window_size.x_size - 50;
source.window_size.y_size := 50;

dest_pos.x_coord - 290; {Define x coordinate for the destination.}
{of the BL T. }

y := 290;
for i := 1 to 10 do {BLT figure vertically 10 times.}
begin
dest_pos.y_coord := y; {Define y coordinate for the destination.}

{of the BLT.}
gpr_$pixel_blt(hdm_bitmap,source,dest_pos,st);
y := y + 50; {Increment y value of destination.}

end;

dest_pos.y_coord - 740; {Define x coordinate for the destination.}
{of the BLT.}

x := 340;
for i := 1 to 9 do {BLT figure 9 times horizontally.}
begin
dest_pos,x_coord := x; {Define y coordinate for the destination.}

{of the BLT.}
gpr $pixel blt(hdm bitmap,source,dest pos,st);
x :; x + 50; {Incr~ment x value of destination.}

end;

{Define the area for the BLT to the top row.}
source.window base.x coord - 340;
source.window_base.y_coord - 740;
source.window_size.x_size - 450;
source.window_size.y_size := 50;

{Define destination coordinates for BLT to the right-hand column.}
dest_pos.x_coord - 340;
dest_pos.y_coord := 290;

Bitmaps and Bit Block Transfers 7-12

\'"

o

o

o

o

o

•

{Define the area for the BLT.}
source.window_base.y_coord := 340;
source.window base.x coord := 290;
source.window size.x_size 50;
source.window_size.y_size - 400;

END;

dest_pos.x_coord := 740;
dest_pos.y_coord := 340;
gpr_$pixel_blt(init_bitmap,source,dest_pos,st);

7.6.4. Procedure bIt checker to border

This procedure BL Ts the checker board stored on disk into the border in display memory. The
source bitmap is the disk bitmap (disk _ bitmap) and the destination bitmap is the display
bitmap (init_bitmap).

Begin

{Define the area for the BLT.}
source.window_base.y_coord := 0;
source.window_base.x_coord := 0;
source.window_size.x_size 400;
source.window_size.y_size := 400;

{Define the origin for the destination of the BLT.}
dest pos.x coord := 340; dest pos.y coord :=340;
gpr_$pixel=blt(disk_bitmap,so~rce,dest_pos,st);

End;

7-13 Bitmaps and Bit Block Transfers

"\

o

o

o

o

o

Chapter 8
Color Graphics

This chapter describes color configurations, formats, color maps, and the ·operation modes for
color graphics. The information presented in this chapter builds upon the basic information
presented in Chapter 2.

8.1. Display Configurations

Similiar to monochrome displays, color displays are bit-mapped, raster-scan devices. Two
hardware configurations are available for this device.

• Two-board configuration, which has four planes.

• Three-board configuration, which has eight planes.

Within each of these configurations two formats are available.

• Interactive format

• Imaging format.

The formats are user-defined and specify the number of colors that can be displayed
simultaneously (see Figures 8-1 and 8-2). Imaging formats restrict GPR operations by decreasing
the number of calls that can be used, and with 24-bit imaging, screen resolution is reduced.

Table 8-1. Two-Board Configuration for Color Display

Format Pixel Dimensions

Visible Hidden Number of
Display Display Colors

DN6xx 4-bit interactive (Default) 1024 x 1024 1024 x 1024 16
8-bit imaging 1024 x 1024 none 256

DN550 4-bit interactive (Default) 1024 x 800 1024 x 1024 16
plUS 1024 x 224

8-bit imaging 1024 x 800 1024 x 224 256

8-1 Color Graphics

Table 8-2. Three-Board Configuration for Color Display

Format Pixel Dimensions

Visible Hidden Number of
Display Display Colors

DN6xx 8-bit interactive (Default) 1024 x 1024 1024 x 1024 256
24-bit imaging 512 x 512 512 x 512 16.7

million

DN550 8-bit interactive (Default) 1024 x 800 1024 x 1024 256
plus 1024 x 224

24-bit imaging 512 x 400 512 x 512 16.7
plus 512 x 112 million

8.1.1. Two-Board Configuration

The interactive 4-bit pixel format is the default for a two-board configuration. This means that
four bits are used to assign a pixel value (color map index) to each pixel. This format allows
sixteen different colors to appear on the screen at one time. On a DN6xx graphics processor, the
pixels are arranged 1024 x 1024 in visible display memory, and 1024 x 1024 in hidden-display.
On a DN550 graphics processor, there are two sections of display memory. Each section has the
dimensions of 1024 x 1024. Each section is divided into two subsections: one subsection has the
dimensions 1024 x 800 pixels and is viewable, the other subsection has the dimensions 1024 x 224
and is hidden. You can map only one section to the display at a time. Interactive formats
support all GPR operations.

Optionally, software can change a two-board configuration to an 8-bit imaging format, with eight
bits used to assign a pixel value (color map index) to each pixel. This format allows 256 colors to
appear on the screen at one time. The pixels are arranged 1024 x 1024 in the display memory.
Using a DN6xx graphics processor, you can view the entire display memory. Using a DN550
graphics processor, you can view only 1024 x 800 of the display memory. Hidden-display memory
is not available with imaging formats on a two-board configuration. Imaging formats support
only limited GPR operations.

8.1.2. Three-Board Configuration

The interactive 8-bit pixel format is the default for a three-board configuration. This means that
eight bits are used to assign a pixel value (color map index) to each pixel. This format allows 256
different colors to appear on the screen at one time. On a DN6xx graphics processor, the pixels
are arranged 1024 x 1024 in visible display memory, and 1024 x 1024 in hidden-display. On a

Color Graphics 8-2

----"
. ,'/

.. _,

/---~

---------------------- ----------------- ---------------------- ---------

o

o

o

o

o

DN550 graphics processor, there are two sections of display memory. Each section has the
dimensions of 1024 x 1024. Each section is divided into two subsections: one subsection has the
dimensions 1024 x 800 pixels and is viewable; the other subsection has the dimensions 1024 x 224
and is hidden. You can map only one section to the display at a time.

Interactive formats support all GPR operations. The 8-bit interactive format is compatible with
the 4-bit interactive format. For example, the Display Manager uses four planes, but runs on a
configuration using eight planes. In general, the operations performed in 4-bit format can also be
performed in 8-bit format.

Optionally, software can change a three-board configuration to a 24-bit imaging format. This
means that 24 bits are used to assign a pixel value (color map index) to each pixel, making it
possible to use over 16 million different colors. On a DN6xx graphics processor, the pixels are
arranged with 512 x 512 in visible display and 512 x 512 in hidden display. On a DN550 graphics
processor, the pixels are arranged 512 x 400 in visible display, 512 x 400 in hidden display.
Imaging formats support only limited GPR operations.

8.2. Displaying Colors On The Screen

The color of every pixel in a raster is determined by interpreting its pixel value. A pixel value is a
number that is used as an index into a color map where color values are stored. For drawing
operations, the pixel value is called the draw value, and for fill operations, it is called the fill
value. For text operations, it is the text value.

For monochrome displays, a pixel value can be represented by one bit, and a color map has only
two entries. A pixel value of 0 can represent white, and 1 can represent black or vice-versa For
color displays, pixel values must be represented by several bits, and the color map must have
several entries.

Colors are displayed on the screen as follows. Each pixel value is used as an index into the color
map to determine the correct color value. The intensity level for each primary color is then
calculated from the color value and sent to the appropriate color gun which illuminates the pixel
with the proper amount of light. Figure 8-1 illustrates the relationship between pixel values and
the color map.

8.2.1. The Color Map: A Set of Color Values

A color map is a set of indexed color values. Each color value is a 4-byte integer that uses eight
bits to represent the intensity of each of the three primary colors of this graphics package (red,
green and blue). The remaining eight bits are ignored. Figure 8-2 shows the format of a color
value.

The eight bits used to represent the intensity of each primary color provide 256 levels. Intensity
level 0 means none of that color, while intensity level 255 represents full intensity. Combinations
of the 256 levels of each of the three primary colors provide over 16 million colors.

8-3 Color Graphic8

o

4-plane bitmap

V' / pixel value

0110

red green blue

0000 00000000 00000000 00000011

0001 00000000 11111111 00001111

0010 0 0 0

~ 0011 0 0 0

color m ap 0100 0 0 0

0101 0 0 0

0110 11111111 00001111 00000000

0 0 0 0

0
0 0 0

1111 0 0 0

Figure 8-1. Four Plane Color System

\ ,. ,;

Bit position 31 24 23 16 15 8 7 0

Ignored Red Green Blue
Component Component Component

Figure 8-2. Color Value Structure

',-_ /.

Color Graphics 8-4

------------------ ------------ ------------- --- -

o

o

o

o

o

8.2.2. The Size of a Color Map

The size of a color map is determined by the machine configuration and the color format being
used. These two taken together specify how many bits represent each pixel. For example, with a
2-board configuration using interactive format, each pixel is represented by four bits. Four bits
allow 16 different combinations, thus the color map can contain at most 16 colors. You can fill
the 16 places in the color map with any colors you wish, but you cannot have more than 16
colors.

8.2.3. Color Map for Color Displays: 4-Bit and 8-Bit Formats

For a color display in the 4-bit pixel format, the color map has 16 entries, with index values- 0-15.
For a color display in the 8-bit pixel format, the color map has 256 entries, with index values
0-255. In both formats, all entries are set to default values at the initialization of the graphics
primitives package. Mter initialization, either of these maps can be changed to contain any colors
from the over 16 million available colors.

The color map can be thought of as a one-dimensional array of 4-byte integers. The pixel values
can be thought of as the indices to that array. To set the color of a pixel, you assign it the value
of the index in the array that contains the color value you want.

8.2.4. Color Map for Color Displays: 24-Bit Imaging

Color maps for 24-bit imaging are slightly different. The color map can be thought of as a 256 x
3 matrix. The color value is still represented by a 4-byte integer, (however, only three bytes are
used), but each byte can be indexed separately. The rows of the matrix represent intensity levels
and the columns represent the primary colors.

In this format, the 3-byte pixel value is divided into three 8-bit fields. The value in each field is
associated with a particular column of the matrix. In other words, eight bits of the pixel value are
an index into the red column, eight bits of the pixel value are an index into the green column,
and eight bits of the pixel value are an index into the blue column. This allows you to choose the
intensity of each primary color. Figure 8-3 displays how the color map is used in 24-bit imaging.

With 24-bit imaging, the color map is the same size as it is for 8-bit interactive format or 8-bit
imaging format. You get access to more colors because you are using eight bits from the pixel
value as an index to each primary color (a column in the matrix).

8.3. Establishing A Color Map

At initialization of the graphics primitives package, a default color map is established. The
default color maps for monochromatic and color displays are displayed in Tables 8-3 and 8-4. In
frame mode or direct mode, a program cannot modify color map entries 0 and 7-15. These colors
are used by the display manager for window backgrounds and borders. All other entries in the
map can be modified.

8-5 Color Graphics

red green blue

00000000 00001111 11111111

index for_--l
red value

index for
green value

pixel value

index for blue value

Index red green
24 16

00000000 00000000 00000000

00001111 00001111 00001111

11111111 11111111 11111111

This pixel value specifies no red t half green t and full blue.

Figure 8-3. From Pixel to Color Map in 24-bit Imaging

Color Graphics 8-6

blue
8 0

00000000

00001111

11111111

o

o

o

o

o

8.3.1. Using a Color Map

After a color map is established, a program can use it to specify the color/intensity to use for
displaying lines, text, text background, fill operations, and the full screen, as follows. The
program assigns a pixel value (color map index) to the draw value attribute, the text value
attribute, the text background value attribute, the fill value attribute, and/or uses the index to
clear the screen. See the description of the following routines in the DOMAIN System Call
Refrence (Volume I):

GPR_$SET_DRAW_VALUE
GPR_$INQ_DRAW_VALUE
GPR_$SET_TEXT_VALUE
GPR $SET TEXT BACKGROUND VALUE
GPR=$INQ=TEXT=VALUES -
GPR_$SET_FILL_VALUE
GPR_$INQ_FILL_VALUE
GPR_$CLEAR

Table 8-3. Default Color Map for Monochromatic Displays

Color Table Color Value Resultant
Index Visible Color/Intensity

0 0 black
1 16#FFFFFF white

To establish a particular color value, you must specify the amount of each primary color. This
can be done in FORTRAN and Pascal as shown in the following subsections.

8.3.2. FORTRAN Example to Establish a Color Value

The FORTRAN function presented in this section returns a 4-byte integer that contains intensity
values for each primary color. The parameters red, green, and blue must be assigned values in
the range 0 - 255.

Integer*4 Function color_entry(red,green,blue)
integer*2 red,green,blue

end

color_entry = (65536 * red) + (256 * green) + blue
return

8-7 Color Graphics

Table 8-4. Default Color Map for Color Displays

Color Table Color Value Resultant
Index Visible

Color /Intensity

R G B

0 0 0 0 (GPR $BLACK) black
1 255 0 0 (GPR-$RED) red
2 0 255 0 (GPR=$GREEN) green
3 0 0 255 (GPR $BLUE) blue
4 0 255 255 (GPR=$CYAN) cyan
5 255 255 0 (GPR $YELLOW) yellow
6 255 0 255 (GPR-$MAGENTA) magenta
7 255 255 255 (GPR=$WHITE) white

8-15 contain colors used by the Display Manager
to display windows.

16-255 0 0 0 (GPR_$BLACK) black

8.3.3. Pascal Example to Establish a Color Value

The Pascal function presented in this section returns
a 4-byte integer
that contains intensity values for each primary color.
The parameters red, green, and blue must be assigned values in the
range 0 - 255.

Function color_entry(IN red : integer;
IN green: integer;
IN blue : integer) integer32;

begin
color_entry (65536 * red) + (256 * green) + blue;

end;

Color Graphics 8-8

o

o

o

o

o

--- -----------------

8.3.4. Modifying a Color Table

There is one system color table. To modify it, use GPR _ $SET _ COLOR _ MAP. The format
of the call is the following:

This call allows you to set several consecutive color values in the color map with just one call.
Start_index is the index of the first entry to be modified. N _ entries is the number of entries to
be modified; values is an array that contains the new color values that you are placing in the
color map.

If you want to modify the color map, but the entries you want to modify are not consecutive, you
have to use GPR _ $SET _ COLOR _ MAP for each entry, or each group of consecutive entries.

8.3.5. Changing Pixel Values

To change the color of a pixel, line, text, etc., you can use either of two procedures.

1. You can change the color value that is stored in the location that corresponds to the
pixel value index. When you do this, any other pixels with the same pixel value index
will also change color because they look to that location for a color value.

2. You can change the draw value, text value, etc., if another location in the color map
stores the color value you need.

8.3.6. Color Map for Monochromatic Displays

For a monochromatic display, the color map has only two entries. The default color map assigns
the color value ° to color map index 0, and the color value 1 to color map index 1 (see Table 8-3).
If a program uses the default color map and sets a particular bitmap pixel to 1,
(GPR_$WHITE), the corresponding pixel on the screen appears bright. If it selects 0,
(GPR_$BLACK), the corresponding pixel appears dark. On a monochromatic node, there are no
other choices -- you cannot get grey-scale output.

8.3.7. Saving/Restoring Pixel Values

In interactive formats, a program can read the pixel values of each pixel in a bitmap or section of
a bitmap and store the values in a pixel array. Imaging formats do not permit read operations.
In both interactive and imaging formats, a program can write the pixel values from a pixel array
into a bitmap. See the routines GPR $READ PIXELS and GPR $WRITE PIXELS.

8-9 Color Graphic8

8.4. Using Color Display Formats

Interactive display formats fully support all GPR output operations -- bit-block transfer, area
filling, line drawing, text manipulation. Imaging display formats support only limited display
operations -- displaying (not reading) pixel data and changing the color map. Other functions
return error messages.

Imaging display formats make it possible to display images with more bits per pixel than are
available with interactive formats. Additionally, in 24-bit pixel format, operations to select a
frame (GPR_$SELECT _ COLOR_FRAME) are allowed. These operations are used to look at
either half of display memory.

8.4.1. Using Imaging Display Formats

Switching the display between an interactive format and an imaging format causes the hardware
to reconfigure the refresh buffer memory and to rearrange the bitmap. This means that an
intelligible image in one format becomes unintelligible in another.

The imaging formats are supported only in borrow-display mode. To change from an interactive
to an imaging format, you must be in borrow-display mode.

8.4.2. Routines for Imaging Display Formats

Use the following routines and procedures for imaging display formats. For a detailed description
of these calls, see the GPR calls in the reference library.

1. Establish borrow-display mode:

You mayor may not first want to perform some graphics operations in
interactive format.

2. Set the display to 24-bit pixel format:

Use the format argument to switch to 8- bit or 24-bit imaging
format.

3. To inquire about the format. use:

4. To establish new values for the color map. use:

5. To write pixel data to the display. use:

6. To return to interactive format. use the folloWing call with the

Color Graphics 8-10

--- -----------------

o

o

o

o

o

interactive argument:

7. To terminate the session and return the display to the Display Manager.
use:

GPR_$TERMINATE

8.5. Color Zoom Operations

The DOMAIN color displays have a hardware zoom feature, to make an image larger. This
feature only works on color displays and only in borrow-display mode. The zooming is done by
pixel replication.

You specify a separate zoom factor for the x and y directions. One pixel in display memory is
then shown on the screen in x by y pixels (see Figure 8-4).

one pixel in display memory.

A zoom with x = 3 and
Y = 2 gives this result.

Figure 8-4. Color Zoom

8-11 Color Graphic8

If desired, you can keep the aspect ratio equal by making x and y equal. The zoom always starts
at the upper left corner of the screen.

8.6. Color Examples

Three programming examples are presented in this section to demonstrate how to load a color
map and how the following GPR routines work:

• GPR $SET COLOR_MAP

• GPR $SET DRAW_VALUE

• GPR $SET FILL VALUE

• GPR $SET TEXT_VALUE.

Color Graphic8 8-12

/--'"

(~,

II

"- .-'

.\ ... _

o

o

o

o

8.6.1. A Program to Draw a Rectangle and Text in Color

This program draws an unfilled rectangle with text. It is identical to the program in Section 4.9
except that routines to set the draw value and text value have been added. This program uses
the default color map.

Program color rec text;
%nolist; - -
%include '/sys/ins/base.ins.pas';
%include '/sys/ins/gpr.ins.pas';
%include '/sys/ins/time.ins.pas';
%list;
const

one second = 250000;
five seconds = 5 * one_second;

var
init bitmap size : gpr $offset t; {size of the initial bitmap}
init-bitmap- gpr $bitmap desc-t; {descriptor of initial bitmap}
mode- : gpr=$display_mode_t := gpr_$borrow;
hi_plane_id : gpr_$plane_t := 4; {highest plane in bitmap}
delete_display: boolean; {This value is ignored in borrow mode.}
status status_$t; {error code}
font_id : integer; {identifier of a text font}
i.j integer32;
direction gpr_$direction_t; {direction of text}
pause time_$clock_t;

BEGIN
init_bitmap_size.x_size := 700;
init_bitmap_size.y_size := 700;
gpr_$init(mode.l.init_bitmap_size.hi_plane_id.init_bitmap.status);

gpr $set draw value(4.status); {blue box}
gpr=$draW_box(100.100.500.500.status);

gpr $load font file('f7x13.b' .SIZEOF('F7X13.B').font id.status);
gpr=$set_text_font(font_id.status); -

gpr_$move(110.90.status);

gpr_$set_text_value(3.status); {green text}
gpr_$text('This is the top of the rectangle.'. 33.status);
direction := gpr_$up;
gpr $set text path(direction.status);
gpr=$move(90.-490.status);

gpr_$set_text_value(6.status); {magenta text}
gpr_$text('This is the side of the rectangle.'. 34.status);

{Keep figure displayed on the screen for five seconds.}
pause.low32 := five_seconds;
pause.high16 := 0;
time_$wait(time_$relative. pause. status);

8-13 Color Graphics

gpr_$terminate(delete_display,status);
end.

8.6.2. A Program to Draw a Design in Color

This program draws the design in Figure 4-9. It is identical to the program presented in Section
4.7 except that routines to change the default color map and routines to change the draw and fill
values have been added.

program color4;
%NOLIST;
%INCLUDE ·/sys/ins/base.ins.pas·;
%INCLUDE ·/sys/ins/gpr.ins.pas·;
%INCLUDE ·/sys/ins/time.ins.pas·;
%LIST;

const
one second = 250000;
five seconds = 5 * one_second;

var

{required insert file}
{required insert file}

init_bitmap : gpr_$bitmap_desc_t;
unobscured : boolean;
st : status_$t;
mode : gpr_$display_mode_t gpr_$borrow;
x,y,x1,y1 : integer;
rectangle : gpr $window t;
disp_bm_size : gpr_$offset_t := [1024,800]; {size of initial bitmap}
hi plane id : gpr $plane t := 4;
color value :array [0 .. 7] of gpr_$pixel_value_t;
pause : time_$clock_t;

function color_entry(IN red: integer;
IN green: integer;
IN blue : integer) : integer32;

begin
color_entry :=lshft(red,16) ! lshft(green,8) ! lshft(blue,O);

end;

BEGIN

color_value [0] - color_entry (0,0,0); {color--black}
color value[l] - color_entry (255,125,0); {color--orange}
color-value [2] - color_entry (255~O,O); {color--red}
cOlor=value[3] - color_entry (0,255,0); {color--green}
color value[4] - color_entry (0,0,255); {color--blue}
cOlor=value[5] - color_entry (255,255,0); {color--yellow}
color_value [6] - color_entry (255,0,255); {color--magenta}
color_value [7] - color_entry (255,255,255); {color--white}

gpr_$init(mode,l,disp_bm_size,hi_plane_id,init_bitmap,st);
gpr_$set_color_map(O,8,color_value,st); {modifies color table}

Color Graphics 8-14

/

\ ..

o

o

o

o

x := 200; xl := 600; y := 200; yl := 600; {dimensions of box}
rectangle.window_base.x_coord := 250; {starting position of 1st rectangle}
rectangle.window base.y coord := 250;
rectangle.window-size.x-size - 50; {width of each rectangle}
rectangle.window=size.y=size := 50; {height of each rectangle}

gpr_$set_draw_value(4,st); {blue box}
gpr_$draw_box(x,y,xl,yl,st); {Draw an unfilled box.}

gpr_$set_fill_value(5,st); {yellowbox}
gpr_$rectangle(rectangle,st); {Draw a filled rectangle.}

{Draw three more filled rectangles within the unfilled box.}
rectangle.window_base.x_coord - 500;
rectangle.window_base.y_coord := 250;

gpr $set fill value(l,st); {orange box}
gpr=$rectangle(rectangle,st);

rectangle.window_base.x_coord
rectangle.window_base.y_coord

- 250;
- 500;

gpr $set fill value(7,st); {white box}
gpr-$rectangle(rectangle,st);

rectangle.window_base.x_coord
rectangle.window_base.y_coord

- 500;
- 500;

gpr $set fill value(2,st);
gpr=$rectangle(rectangle,st);

gpr_$move(300,300,st); {Move the current position.}

gpr $set draw value(7,st); {line}
gpr-$line(500~500,st); {Draw a line connecting two rectangles.}

gpr_$move(300,500,st);
gpr_$set_draw_value(6,st); {line}
gpr_$line(500,300,st); {Draw a line connecting two rectangles.}

{Keep figure displayed on the screen for five seconds.}
pause.low32 := five_seconds;
pause.high16 := 0;
time_$wait(time_$relative, pause, st);

gpr_$terminate(false, st); {Terminate the graphics session.}
END.

8-15 Color Graphics

_8.6.3. A Program to Draw Concentric Circles in Color

This program draws seven concentric circles. The outer most circle is drawn first in dark blue.
Each addition circle is drawn in a lighter shade of blue except the last one which is drawn in
white. The various shades of blue are achieved by loading the color map with the desired shades
of blue. The darkest shade of blue has no red, no green, and the maximum amout of blue.
Lighter shades of blue have increasing amouts of red and green with the maximum amount of
blue.

Program color_circles;
%nolist;
%include ·/sys/ins/base.ins.pas·;
%include ·/sys/ins/gpr.ins.pas·;
%include ·/sys/ins/time.ins.pas·;
%list;
const

one second = 250000;
five seconds = 5 * one_second;

var
size : gpr $offset t; {size of the initial bitmap}
init_bitmap : gpr=$bitmap=desc_t; {descriptor of initial bitmap}

ev_pos : gpr_$position_t;
ev_type : gpr_$event_t;
event_data,ev_char char;
unobscured : boolean;
st status_$t;
keys gpr_$keyset_t; {set of characters}

mode : gpr_$display_mode_t := gpr_$borrow;
hi_plane_id : gpr_$plane_t := 3; {highest plane in bitmap}
center: gpr_$position_t := [300,300];
radius : integer; { := 200;}
delete_display: boolean; {This value is ignored in borrow mode.}
status : status_$t; {error code}
cv : integer;
pause : time_$clock_t;
color value :array [0_ .7] of gpr_$pixel_value_t;

function color_entry(IN red: integer;
IN green: integer;
IN blue : integer) : integer32;

begin
color_entry :=lshft(red,16) ! lshft(green,8) ! lshft(blue,O);

end;

BEGIN
size.x size := 700;
size.y size := 700;
gpr_$init(mode,l,size,hi_plane_id,init_bitmap,status);

color_value [0]
color_value [1]

Color Graphics

color_entry (0,0,0); {color--black}
color_entry (0,0,255); {color--dark blue}

8-16

o

o

o

o

o

color_value [2] - color_entry (50,50,255);
color value[3] - color_entry (75,75,255);
cOlor=value[4] - color_entry (100,100,255);
color value[5] - color_entry (150,150,255) ;
cOlor=value[6] - color_entry (200,200,255); {color--light blue}
color_value [7] - color_entry (255,225,225); {color--white}

gpr_$set_color_map(O,8,color_value,st); {modifies color table}
radius := 300;

{Draw concentric circles - each a lighter color of blue.}
{ The last circle is white.}

END

for cv := 1 to 7 do
begin

gpr $set draw value(cv,status);
gpr-$cirCle(center,radius,status);

gpr_$set_fill_value(cv,status);
gpr_$circle_filled(center,radius,status);
radius := radius - 50;

end; {for}
{Keep figure displayed on the screen for five seconds.}
pause.low32 := five_seconds;
pause.high16 := 0;
time_$wait(time_$relative, pause, status);

gpr_$terminate(false, st); {Terminate the graphics session.}

8-17 Color Graphics

-'~,

"./

/ '
I

---------------------------------_._--_ ... _-_•... _._---------

o

o

o

o

o

Chapter 9
Graphics Map Files

9.1. A Graphics Map File

A graphics map file, or GMF, is an image of the graphic information in a bitmap. Each bit in
the GMF represents the state of one visible point on the display. On DOMAIN color nodes,
where more than one plane is used to represent visible information, a GMF stores the state of
only one plane, typically plane O.

Once you have stored image data in a GMF, you can restore it to the display or produce a
printed copy of the image. The GMF contains information that helps the GW' manager or
application program interpret the contents of the GW'. For instance, the GMF may indicate the
following: the physical density of the original image, and the dimensions of the display area
stored in the GMF. A GMF can contain the contents of an entire plane or any specified
rectangular portion of the plane (subplane).

In Software Releases 6.0 and earlier, GW's were called graphics metafiles. The calls to the GMF
manager begin with the letters GMF. To store image data in a GMF, you typically use
GMF _ $OPEN to create or open the GMF, then use GMF _ $COPY _ PLANE to specify the
information to be copied into the GW', then close the GMF with GW' _ $CLOSE.

The GMF _$COPY _PLANE routine copies a plane of display memory. To make a GW' of any
rectangular area on the display, regardless of its position, use the more general call
GMF $COPY SUBPLANE.

The GMF _ $RESTORE _ PLANE call returns to the screen any image data that is stored in a
specified GW'. To use this call, the node must be in borrow-display mode. The call changes a
rectangular portion of the display, with the size determined by the size of the GW' you specify.

In place of graphic map files, it is strongly recommended that you use external bitmap files. For
a description of the routine for creating such files, see GPR $OPEN BITMAP FILE In

Section 7.2 of this manual.

9.2. Insert Files

To use GW' calls in an application program, the following insert file must be included in your
program:

FORTRAN

/SYS/INS/BASE.INS.FTN
/SYS/INS/GMF.INS.FTN

Pascal

SYS/INS/BASE.INS.PAS
SYS/INS/GMF.INS.PAS

The GW' manager does not define any new data structures.

9-1

C

SYS/INS/BASE.INS.C
SYS/INS/GMF.INS.C

Graphics Map Files

9.3. Error Messages

Here are the possible error messages generated by the GW' calls described in this chapter:

GMF_$BAD_BPI
GMF_$BAD_X_DIM
GMF_$BAD_Y_DIM
GMF_$BAD_WPL

GMF_$BAD_POS
GMF_$NOT_GMF

-- Bits/inch parameter is negative
-- X dimension parameter is not positive
-- Y dimension parameter is not positive

Words/line parameter is too small for the
X dimension you specified

Opening position parameter is illegal
The file you wanted to open is not a GMF

9.4. Programming Example

This example in Pascal shows how to combine the calls described in this chapter with GPR calls
(see Chapter 11) to form a typical GW' operation. This example restores a previously saved
GW'.

{Initialize the graphics primitive package in borrow-display mode.}

gpr_$init (gpr_$borrow. 1. scsize. O. disp_desc. sts);

{ Get the starting pointer. }

{ Open the file. }

gmf_$open (o//pepsi/adm/gmf/turbine.pado .27.gmf_$read.id.sts);

{ Restore the screen. }

gmf_$restore_plane (id.scsize.x_size.scsize.y_size.wpl.ptr.bpi.sts);

{ Close the file. }

gmf_$close (id.status);

9.4.1. Comments on Programming Example

The call to GPR _ $INIT puts the screen in borrow-display mode. The next call obtains .. ptr, II
the pointer to the start of the screen bitmap. The call to GW' _ $OPEN opens a GW' with the
specified name, returning the identification by which you subsequently refer to the GMF. The
next call restores the screen from this GW'. (Alternatively, you can use a call here to copy a
plane or subplane to the GW'.) The final call closes the GMF.

Graphics Map Files 9-2

/-

c'

o

o

o

C)

Attribute

Bitmap

Bit plane

-------- -------- ---- ---

Appendix A
Glossary

Specification of the manner in which a primitive graphic operation is to be
performed, (for example line type or text value). Each bitmap has a set of
attributes.

A three-dimensional array of bits having width, height, and depth. When a
bitmap is displayed, it is treated as a two-dimensional array of sets of bits.
The color of each displayed pixel is determined by using the set of bits in the
corresponding pixel of the frame-buffer bitmap as an index into the color table.

A one-bit-deep layer of a bitmap. On a monochromatic display, displayed
bitmaps contain one plane. On a color display, displayed bitmaps may contain
more planes, depending on the hardware configuration and the number of bits
per pixel.

Borrow display mode

Button

A mode for use of the DOMAIN display whereby a program borrows the entire
screen from the Display Manager and performs graphics operations by directly
calling the display driver.

A logical input device used to provide a choice from a small set of alternatives.
Two physical devices of this type are function keys on a keyboard and selection
buttons on a mouse.

Clipping window A rectangular section of a bitmap outside of which graphics operations do not
modify pixels.

Color map

Color table

See Color Table.

A set of color table entries, each of which can store one color value. Each color
value contains red, blue, and green components. Each entry is accessed by a
color table index.

Color table entry One location in a color table. Each entry stores one color value that can be
accessed by a corresponding color table index.

Color table index An index to a particular color table entry.

Color value The numeric encoding of a visible color. A color value is stored in a color table
entry. Each color value is divided into three fields: the first stores the value of
the red component of the color, the second stores the value of the green
component of the color, and the third stores the value of the blue component.
Each component value is specified as an integer in the range of zero to 255,
where zero is the absence of the primary color and 255 is the full intensity
color.

Core graphics system
A package of graphics functional capabilities designed for building higher-level

A-I Glossary

interactive computer graphics applications programs. Unlike graphics
primitives, the Core graphics system allows temporary storage of picture data
during execution, with limited segmentation of the pictures. In addition, the
Core system uses device-independent coordinates.

Current bitmap The bitmap on which a program is currently operating.

Current position In graphics primitives, the starting point of any line drawing and text
operations. The current position is initially set at the coordinate position at
the top left corner of the bitmap (0,0).

Direct mode

Event

Font

Frame

Frame buffer

Frame mode

A mode for use of the DOMAIN display whereby the program performs
graphics operations in a window borrowed from the Display Manager. Direct
mode allows graphics programs to coexist with other activities on the screen,
with less Display Manager overhead than frame mode.

An input primitive which is associated with an interrupt from a device such as
a keyboard, button, mouse, or touchpad.

One set of alphanumeric and special characters. The font in which text is to be
displayed may.be specified as an attribute.

A two-dimensional data structure that holds a picture in a Display Manager
pad. This structure is looked at through a Display Manager window. The
structure can be larger (or smaller) than the window, and it can be scrolled.

The digital memory in a raster display unit used to store a bitmap.

A mode for use of the DOMAIN display whereby a program performs graphics
operations on a Display Manager pad. In this mode, the user has access to
other processes through windows on the display, and can scroll the frame under
the Display Manager window. In this mode, unlike direct mode, the Display
Manager refreshes the window when appropriate.

Imaging display format

Initial bitmap

Input device

An 8-bit or 24-bit color display format which allows display of an extended
color range, but supports only limited graphics primitives operations. In an
8-bit imaging format, eight bits are used to assign a pixel value (color map
index) to each pixel. In a 24-bit imaging format, 24 bits are used to assign a
pixel value to each pixel. An 8-bit imaging format allows 256 colors to appear
on the screen at one time. A 24-bit imaging format extends the possible color
range to 16 million different colors, with 512 x 512 pixels visible at one time.

The first bitmap created in a graphics session.

A device such as a function key, touchpad, or mouse that enables a user to
provide input to a program.

Input device number
The identifier of one input device in an input device class.

Glossary A-2

/

/ '-,

o

o

o

o

o

---.-.-.--.----- ----

Interactive display format

Keyboard

Line style

Locator

A 4-bit or 8-bit color display format which supports all graphics primitives
operations. In a 4-bit interactive format, four bits are used to assign a pixel
value (color map index) to each pixel. In an 8-bit format, eight bits are used to
assign a pixel value to each pixel. A 4-bit format allows sixteen different colors
to appear on the screen at one time. An 8-bit format allows 256 colors to
appear on the screen at one time.

A logical input device used to provide character or text string input. One
physical device of this type is the alphanumeric keyboard.

An attribute that specifies the style of lines and polylines (for example, solid
or dotted).

A logical input device used to specify one position in coordinate space (for
example, a touchpad, data tablet, or mouse).

Logical input device
An abstraction of an input device that provides a particular type of input data.
This abstraction corresponds to a group of physical input devices that provide
this type of input data.

No-display mode A mode for use of the DOMAIN system whereby a program creates a bitmap in
nondisplayed memory and performs graphic operations there, bypassing the
display.

Picture element A single element of a two-dimensional displayed image or of a two-dimensional
location within a bitmap. It is commonly called a pixel.

Pixel

Pixel value

Plane

Primitive

See Picture Element.

The set of bits at a two-dimensional location within a bitmap. A pixel value is
used as an index to the color map.

See Bit Plane.

The least divisible graphic operation that changes a bitmap (for example, lines,
polylines, and text).

Primitive attribute
See Attribute.

RGB color model A model used to specify color values. It defines red, green, and blue as primary
colors. All other colors are combinations of the primaries, including the three
secondary colors (cyan, magenta, and yellow).

Scan line

Window

A row of pixels; one horizontal line of a bitmap.

A rectangular area of the visible screen. Parts of the area may be obscured by
other windows.

A-3 Glossary

\ ...

o

o

o

o

o

Appendix B
Keyboard Charts

The following two charts and figures give the 8-bit ASCn values generated for two DOMAIN
keyboards: 880 and low-profile. These charts include characters used in keystroke events. The
columns represent the four highest order bits of an 8-bit value. The rows represent the four
lowest order bits of an 8-bit value. For a more complete description of conventions for naming
keys, see the DOMAIN System Command Reference.

B-1 Keyboard Charts

o 1 2 3 4 5 6 7 a 9 A B C D E F

o "SP "p SP 0 @ P
'\

P R1 RIO Fl FlS FlU F1C
. ,

1 "A "Q ! 1 A Q a q L1 R2 LID R2U F2 F2S F2U F2C

2 13 ~ n 2 B R b r L2 R3 L20 R:lJ F3 F3S F:D F~

3 "c "s # 3 C S c s L3 R4 L:lJ R4U F4 F4S F4U F4C

4 "D "T $ 4 D T d t L4 R5 L40 RSU F5 FSS FSU FSC

5 "E "u % 5 E U e u L5 BS L5U R2S F6 F6S F6U F6C

6 "F "V & 6 F V f v L6 CR L6U R3S F7 F7S F7U Fie

7 AG Vi' I 7 G W 9 w L7 TAB L70 R4S Fa Fas F8J Fa:

a "H ""X (a H x h x La STAB LEU R:S Rl£ Las LlA LOO

AI "Y) 9 I Y i y L9 crAB L~ Ll£ L98 L2A L2AIJ '. ,/ 9

"J "z * · J Z j z LA LAU L28 LAS L3A L3AIJ · A

"K ESC + · K [k { LB LBU L3S IBS R6 R6U , B

C L A\ , < L \ 1 I LC 1.0) L48 LCS LlPS

D "M A] - = M] rn } LD UJJ LSS IDS L2AS

r~ "'- > N '" LE LEU L6S LES L3AS . n E

F "'0 "'? / ? 0 0 DEL LF LtlJ L78 LPS R6S

o 1 2 3 4 5 6 7 a 9 A B c D E F

Figure B-l. Low-Profile Keyboard Chart - Translated User Mode

Keyboard Charts B-2

()

D
o Figure B-2. Low-Profile Keyboard

INI UNI CHAII

~
DIL DIL

- COlD -+!

t>--------< 1--"-< 1---<

El
~ t-1 ~
- ~ ~ i---<

p:1 ~ ~

o
Figure B-3. 880 Keyboard

o
B-3 Keyboard Charts

o I 2 3 4 5 6 7 8 A B C D E F

o "" 1> SP 0 @ p
,

P RI RIU FI FIS FlU FIC
---..,

I "'A "'Q ! I A Q a q LI R2 LIU R2U F2 F2S F2U F2C

2 "'B "'R n 2 B R b r L2 R3 L2U R3.J F3 FlS F3.J F3:

3 ""c S # 3 C S c s L3 R4 L3.J R4U F4 F4S F4U F4C

4 1) "'T $ 4 D T d t L4 R5 L4U R5U FS FSS FSU FSC

5 ""E "'u % 5 E U e u L5 BS L5U F6 F6S F6U F6C

6 F "V & 6 F V f "'1 L6 CR L6U F7 F7S F7U F7C

7 ""G "W , 7 G W 9 w L7 TAB L7U Fa FES FaJ Fa:

8 H "X (8 H X h x L8 STAB LID NO N8 NClJ NED

9 "I "y) 9 I y i y L9 crAB L:lJ NI N9 NIU N~

"'J z * · J Z j z LA LAIJ N2 N. N2U N.U · A

_.
"K '" [+ · K [k { LB LBU N3 N= NlJ N=U , B

L "'\ , < L \ 1 I LC LClJ N4 N+ N4U N+U //' -c

D ~ J - = M] In } LD LOO N5 N- NSU N-U

"N "'- > N ""
LE LEll N6 N* N6U N*U . n E

""0 "'/ / ? 0 0 '" LF LEU N7 N/ N7U N;tJ F

o 1 2 3 4 5 6 7 8 9 A B c D E F

Figure B-4. 880 Keyboard Chart - Translated User Mode

Keyboard Charts B-4

o

o

0

o

Appendix

Decomposition and
Rendering Techniques

This appendix describes the various decomposition and rendering techniques available in GPR.

E.1. The Need for New Decomposition Techniques

E

New features affecting filled primitives provide flexibility for filling operations, raster operations on filled
primitives, and performance improvements during filled-polygon rasterization. These features affect both
the decomposition and rasterization of filled primitives drawn with the following routines:

• GPR_$TRIANGLE

• GPR_$MULTITRIANGLE

• GPR_$TRAPEZOID

• GPR_$MULTITRAPEZOID

• GPR_$CLOSE_FILL_PGON

GPR_$PGON_DECOMP_TECHNIQUE implements the new features by allowing you to choose a decom
position and rasterization technique. The available choices are:

• GPR_$FAST_TRAPS. This value indicates that filled polygons are decomposed into trapezoids.
The decomposed polygons are rendered as a group of trapezoids.

• GPR_$PRECISE_TRAPS. This value indicates that filled polygons are decomposed into trape
zoids. The rendering algorithm that is used is slower but more accurate for self-intersecting poly
gons than the algorithm used for GPR_$FAST_TRAPS. The decomposed polygons are rendered
as a group of trapezoids.

• GPR_$NON_OVERLAPPING_TRIS. This value indicates that filled polygons are decomposed
into triangles. The decomposed polygons are rendered as a group of triangles.

• GPR_$RENDER_EXACT. This value indicates that polygons are to be decomposed into individ
ual pixels. The decomposed polygons are rendered pixel by pixel. When possible, adjacent pixels
are grouped together and the group of pixels is rendered.

E-1 Decomposition and Rasterization Techniques

E.1.1. Decomposition Versus Rasterization
Polygon decomposition is the process of breaking a complex polygon down into simpler elements. Cur
rently, GPR decomposes a complex polygon into groups of triangles, trapezoids, or individual pixels (pos
sibly rectangles). In GPR, decomposition takes place in software on all devices. Figure E-1 displays a six
sided polygon decomposed into both triangles and trapezoids.

Figure E-1. A Polygon Decomposed into Triangles and Trapezoids

Rendering or rasterization is the process of representing a graphic object after it has been decomposed. A
list of primitive objects that the polygon was decomposed into is passed to the rendering algorithm and this
algorithm decides which pixels belong to each primitive object. For example, the triangle technique passes
a list of triangles to the rendering algorithm, and the rendering algorithm decides which pixels belong to
each triangle. Rendering takes place in software or microcode depending on the device. Our more sophis
ticated hardware devices (DN5XXs and DN6XXs) provide rendering algorithms in microcode.

E.1.2. Comparing the, Techniques
Prior to Software Release 9.2 the trapezoid techniques were the only available decomposition and render
ing techniques. At Software Release 9.2, the triangle technique was introduced to complement the capa
bilities of the DN570s and DN580s and to provide the basis for implementing new filling techniques and
raster operations on filled primitives. At Software Release 9.5 a new technique, GPR_SRENDER_EX
ACT, is being introduced. This technique is provided to decompose and render polygons that are not ac
curately rendered by the triangle technique.

The major difference among the available techniques is in the pixels that are rendered after decomposi
tion. The trapezoid and triangle techniques render slightly different pixels. In most cases, the triangle and
render-exact techniques render identical pixels; however, differences may occur with self-intersecting
polygons. For these polygons, the render-exact technique provides a more accurate rendering. In addi
tion, minor differences exist in rendering speed. This issue is discussed in Section E.3. The differences be
tween the various techniques are described in the following sections.

Triangle versus Trapezoid Decomposition

The following two problems exist with polygons decomposed into trapezoids:

1) Adjacent trapezoids overlap.

2) Adjacent polygons decomposed into trapezoids overlap.

Decomposition and Rendering Techniques E-2

(-'-"\
'\ l '- •.. /'

/ " I '
\
\,

o

0

0

o

o

The trapezoid technique includes the following pixels as a part of a trapezoid:

• Every pixel whose center lies within the boundary of the trapezoid

• Every pixel that is touched by the boundary line of the trapezoid.

Figure E-2 shows the pixels that are rendered for a trapezoid.

2

3

4

5

6

NOTE: The polygons in the following figures are drawn with heavy borders to emphasize
the polygon in the figure. The filled polygons drawn with GPR routines are bor
derless.

2 3 4 5 6 7 8 9 10 11 12 13

Figure E-2. The Pixels Rendered for a Trapezoid with the Trapezoid Technique

14

Figure E-3 shows the pixels that are rendered for a six-sided polygon decomposed and rendered using the
trapezoid technique. Notice that some of the pixels have been rendered twice. This feature produces un
desirable results when some raster operations are applied to this polygon. For example, if a raster opera
tion of six (XOR) were applied, the polygon would appear as displayed in Figure E-4. Similar results exist
if adjacent polygons are decomposed into trapezoids. For example, Figure E-5 shows two adjacent poly
gons decomposed into trapezoids. Notice that all the pixels between adjacent trapezoids as well as the pix
els between the adjacent six-sided polygons are rendered more than once. Figure E-6 shows how the two
adjacent six-sided polygons would appear if an XOR raster operation were applied. The raster operations
work correctly; however, the problem is the overlapping of adjacent trapezoids.

E-3 Decomposition and Rasterization Techniques

2

3

4

5

6

2

3

4

5

6

2 3

Pixel belongs to one trapezoid.

11 12 13 14

Pixel belongs to more than one
trapezoid.

Figure £-3. Interior Pixels of a Six-sided Polygon Decomposed Into Trapezoids

2 3 11 12 13 14

Figure £-4. Six-sided Polygon Decomposed and Rendered with the Trapezoid Technique. The Raster
Operation was Set to XOR.

Decomposition and Rendering Techniques E-4

----_._-- -------_ -------_. __ .. _--.-------------------------

('"
\,. __ .. -

\, .. _--,--/

I~'
I,

I-

o

o

o

o

o

1

2

3

4

5

6

2

3

4

5

6

Pixel belongs to one trapezoid. Pixel belongs to more than one
trapezoid.

Figure E-5. Two Adjacent Six-sided Polygons Decomposed into Trapezoids

Figure E-6. Two Adjacent Six-sided Polygons Decomposed and Rendered with the Trapezoid
Technique. The Raster Operation was Set to XOR.

The triangle rendering algorithm avoids the problems associated with the trapezoid technique by establish
ing guidelines for pixel selection; the guidelines prevent adjacent polygons and triangles from overlapping.
Figure E-7 shows the pixels that would be rendered for a pair of triangles with the triangle technique.

E-5 Decomposition and Rasterization Techniques

2 3 11 12 13 14

2

3

4

5

6

Figure E-7. Interior Pixels of Two Triangles Decomposed into Triangles.

The triangle technique includes the following pixels as a part of a triangle:

• Any pixel whose center lies within the boundary of the triangle

• Any pixel whose center lies on a boundary line is included if the following condition is true: the
interior of the polygon lies directly to the right or below the pixel.

The triangle technique excludes any pixels whose center lies on a right-hand boundary line.

NOTE: If a pixel forms the vertex for two boundary lines, the pixel is an interior pixel
only if it passes the above criteria for both boundary lines. For example, pixel
(1,4) in Figure E-2 is not an interior pixel because it is on a right-hand bound
ary line.

These rules prevent the triangles that compose a complex polygon from overlapping. In addition, they pre
vent adjacent polygons decomposed into triangles from overlapping. For this reason, any raster operation
can be applied to polygons decomposed and rendered using the triangle technique with satisfactory results.

A six-sided polygon decomposed into triangles is displayed in Figure E-8 (interior pixels are shaded).

Decomposition and Rendering Techniques E-6

(~
1,

" ,"

0

0

o

o

2 3 11 12 13 14

2

3

4

5

6

Figure E-B. Six-sided Polygon Decomposed into Triangles.

Triangle versus Render-Exact Techniques

The triangle technique is similar to the trapezoid technique for the following reasons: both techniques de
compose a complex polygon into simpler primitives and then render those primitives. The final rendered
polygon from either technique is actually a group of several simple polygons. The render-exact technique
does not decompose a complex polygon into simpler polygons: it examines each pixel, and if the pixel
should be included in the polygon it is rendered. The render-exact technique uses the same criteria for
determining which pixels belong to a polygon as does the triangle technique to determine which pixels be
long to a triangle. For this reason, most polygons rendered with the triangle technique will be similar to the
same polygons rendered with the render-exact technique. The only exceptions are self-intersecting poly
gons where one of the coordinates of the intersection is a noninteger. For these polygons, the render-ex
act technique will render a more accurate polygon.

Consider the polygon in Figure E-9. Two edges of the polygon intersect between four pixels. If the trian
gle technique is used, the decomposition algorithm will move the intersection so that it passes through the
center of a pixel. This process actually creates a new polygon which will be different from the original. Fig
ure E-l0 displays the polygon in Figure E-9 if the triangle technique is used (rendered pixels are shaded).
Figure E-ll displays the polygon in Figure E-9 if the render-exact technique is used (rendered pixels are
shaded) . For this polygon, render-exact provides a more accurate rendering.

E-7 Decomposition and Rasterization Techniques

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 V1
(;:

"'-' .. ,/

2 ~V \
3 ~ ----

,
----4 ~-----7

5 \ /
6 V

\
Figure E-9. A Sample Self-Intersecting Polygon ''''0 __ ''/

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

2

3
(\

4

5

6

7 /-~,

Figure E-10. The Pixels Rendered for the Polygon in Figure E-9 with the Triangle Technique.

Decomposition and Rendering Techniques E-8

o

o

o

o

Figure E-11. The Pixels Rendered for the Polygon in Figure E-9 with the Render-Exact Technique.

E.2. Filling Polygons
The decomposition and rendering technique determines the available filling criteria. The following sec
tions describe how the different techniques allow you to fill a polygon. The programs in sections E. 7.2
demonstrate how to use various filling criteria with the triangle technique.

E.2.1. Filling Polygons with the Triangle and Render-Exact Techniques
The triangle and render-exact techniques offer the most flexibility for filling polygons because these algo
rithms calculate winding numbers during decomposition. Winding numbers allow the following filling tech
niques to be used: parity filling, nonzero filling, and specific winding number filling.

Calculate winding numbers as follows:

1. Trace around the polygon from some point and keep track of the direction of the line.

2. Draw imaginary horizontal lines through the polygon. If the imaginary line passes through a line
and the direction of that line is upwards, the winding number for the region to the right of the
polygon line is incremented by 1. If the horizontal line passes through a polygon line and the di
rection of that line is downwards, the winding number for the region to the right of the polygon
line is decreased by 1. Initially the winding number is zero.

Figure E-12 illustrates the winding numbers for all regions of the polygon. A parity fill is used to fill the re
gions with odd winding numbers; a nonzero fill is used to fill all the regions with nonzero winding num
bers; and a specific winding number fill is used to fill all the regions with a specific winding number (zero
is not allowed as a specific winding number).

E-9 Decomposition and Rasterization Techniques

® ©
------------~~----

1
~~--4_----------~--~~~ CD

1 2

®
0 0 o ®

1 @ ®

CD

Figure E-12. The Winding Numbers of a Complex Polygon

E.2.2. Filling Polygons with the Trapezoid Technique
The trapezoid technique uses parity filling numbers to determine which areas of a polygon to fill. This pre
vents some classes of polygons from being completely filled and does not provide any flexibility. Calculate
parity filling numbers as follows:

1. Set the filling number outside the polygon to zero.

2. Draw imaginary horizontal lines through the polygon. When an imaginary line passes through a
line of the polygon, increase the parity filling number from zero to one. When the line passes
through another line of the polygon, decrease the parity filling number from one to zero. Con
tinue this process until the imaginary line is outside the polygon. The parity filling number outside
the polygon must always be zero.

Figure E-13 illustrates the parity filling numbers calculated for all regions of the polygon. Only the areas
with a filling number of 1 can be filled.

NOTE: The same polygon decomposed and rendered with the triangle or the render-ex
act technique is guaranteed to be similar to the same polygon decomposed and
rendered with the trapezoid technique only in the following situation: when the
polygon decomposed with either the triangle or render-exact technique is filled
using gpr_$parity as the filling criterion.

Decomposition and Rendering Techniques E-10

'\

" .

o
1

1 a

a a a

1

o

Figure E-13. The Parity Filling Numbers of a Complex Polygon

o E.3. Polygons From Start to Fill

o

To create a filled polygon, perform the following steps:

1. Make certain that. the decomposition technique is appropriate. Use
GPR_SINQ_PGON_DECOMP _TECHNIQUE to inquire the current decomposition technique. If
the current technique is not adequate, change it with GPR_SPGON_DECOMP _TECHNIQUE.
See Section E.6 for additional information.

2. Set the filling criterion with GPR_SSET_TRIANGLE_FILL_CRITERIA unless the trapezoid tech
nique is used.

3. Define the starting location of a polygon with GPR_SSTART_PGON.

4. Define the remaining points of a polygon's boundary with GPR_SPGON_POLYLINE.

(Steps 3 and 4 can be repeated. See example program in Section E.4.3.)

5. Close the polygon with one of the following routines: GPR_SCLOSE_RETURN_PGON_TRI,
GPR_SCLOSE_RETURN_PGON, or GPR_SCLOSE_FILL_PGON.

GPR_SCLOSE_RETURN_PGON_TRI returns a list of triangles that can be rendered at any
time with GPR_SMUL TITRIANGLE. (The decomposition technique must be set to
GPR_SNON_OVERLAPPING_TRIS.) GPR_SCLOSE_RETURN_PGON_TRI does not ren
der a polygon.

GPR_SCLOSE_RETURN_PGON returns a list of trapezoids that can be rendered at any time
with GPR_SMULTITRAPEZOID. (The decomposition technique must be set to
GPR_SFAST_TRAPS or GPR_SPRECISE_TRAPS.) GPR_$CLOSE_RETURN_PGON does
not render a polygon.

E-11 Decomposition and Rasterization Techniques

GPR_$CLOSE_FILL_PGON renders the decomposed polygon immediately; it does not store
any list of triangles or trapezoids. Any decomposition technique works with
GPR_$CLOSE_FILL_PGON. You must, however, use this procedure to render polygons de
composed using the render-exact technique.

NOTE: An error occurs if you attempt to close a polygon using gpr_$close_re
turnygon_tri and the decomposition technique is not gpr_$non_overlap
ping_tris. An error also occurs if you attempt to close a polygon using
gpr_$close_returnygon and the decomposition technique is not gpr_$fast_traps
or gpr_$precise_traps. This means that existing applications that use
gpr_$close_returnygon will have run-time errors on DN5701580s and DN3000s
if they use the default decomposition technique.

E.4. The Default Decomposition Techniques
All display devices in the DOMAIN product line use a default decomposition technique to take full advan
tage of the hardware during rasterization: Depending on your application, the default mayor may not be
adequate. For example, the trapezoid technique may not be adequate if you are using raster operations on
filled polygons~

NOTE: The decomposition technique can affect the application's portability. For exam
ple, if you attempt to use a specific winding number fill and the decomposition
technique is set to the trapezoid technique, your application will not run to com
pletion.

Table E-llists the default decomposition technique used on existing models. The render-exact technique
is not the default on any existing hardware devices.

E.S. Performance Considerations
When choosing a decomposition technique, keep in mind the following:

On DN570s and DN580s, triangle technique provides the best performance because the algorithm
to render triangles is in microcode. On DN5501560s and DN600/660s, this technique runs con
siderably slower since the algorithm to render triangles is in software. All other machines,
DNIOOs, DN3XX/4XXs and DN3000s, have rendering algorithms in software regardless of the
technique used. If, however, you are filling complex polygons and you need the flexibility that
filling with winding numbers provides, or you plan to use raster operations on filled polygons, you
must use either the triangle or render-exact technique.

If performance is the only issue, decompose polygons into triangles on DN5701580s and decom
pose polygons into trapezoids on DN5501560/600/660s. Be aware, however, that the polygons
rendered with the triangle technique contain fewer pixels than the same polygon rendered with
the trapezoid technique. The difference is minor, but you must be aware that it exists.

The render-exact technique currently provides the best performance for rectilinear axis aligned
polygons. Your application may be able to take advantage of this.

Table E-2 shows where the rendering algorithms are located on our current devices.

For static polygons that are frequently displayed, it is efficient to decompose the polygon into a list of
trapezoids or triangles. In this way, yOl;! avoid the overhead of repeatedly decomposing the same polygon.
For polygons that change frequently or polygons that are rendered only once, it is more efficient to use
GPR_$CLOSE_FILL_PGON.

Decomposition and Rendering Techniques E-12

..... _-_._ _-_._---------------------------------

,r"\
'I

\ _,.,.-"',,1

\,

0

0

o

o

o

Table E-1. The Default Decomposition Techniques Used

Model Trapezoid Triangle
Decomposition Decomposition

DN300/330/320 x

DN 400/ 420/460 X

DN550/560 X

DN570 X

DN580 X

DN600/660 X

DN3000 X

E.S. Limitations
You cannot change the decomposition technique from one of the trapezoid techniques to the triangle or
render-exact technique when a polygon definition is in progress. Likewise, you cannot change the de
composition technique from the triangle or render-exact technique to one of the trapezoid techniques if a
polygon definition is in progress. For example, if you are currently in a polygon operation and the decom
position technique is set to one of the trapezoid techniques, you cannot change the decomposition tech
nique to gpr_Snon_overlapping_tris. You can, however, change the decomposition technique either be
fore beginning a polygon operation or upon completion of a polygon operation.

The following is true in borrow mode on DN550/560s and DN6XXs with extended bitmap dimensions
(GPR_SSET_BITMAP _DIMENSIONS). Drawing operations cannot span frame 0 and frame 1 if you are
using triangle decomposition.

E-13 Decomposition and Rasterization Techniques

Table E-2. Where Rasterization Occurs

Decomposition Technique Used

TRAPEZOIDS TRIANGLES RENDER EXACT

Machine

DN300/330/320 software software software

DN400/420/460 software software software

DNSSOIS60 microcode software software

DNS70 software microcode microcode

DNS80 software microcode microcode

DN600/660 microcode software software

DN3000 software software software

E. 7. Sample Programs
There are two example programs presented in this section. Each program is translated into Pascal, FOR
TRAN, and C.

E.7.1. Programs to Set the Decomposition Technique
These sample programs are intended as shells for future enhancements: the actual graphics application has
been omitted. The purpose of these programs is to set the decomposition technique to gpr_Snon_overlap
ping_tris if it is not already set to that value. The program begins by checking the default display type with
GPR_SINQ_DISP _CHARACTERISTICS. If the display type is gpr_Sctl_color_2, gpr_Sctl_color_3,
gpr_Sctl_color_ 4, or gpr_Smono_ 4, the default decomposition technique is gpr_Snon_overlapping_tris. In
this case, no action is necessary. If, however, the display type is anything else, the decomposition tech
nique is set to gpr_Snon_overlapping_tris with GPR_SPGON_DECOMP _TECHNIQUE.

In addition, this program uses the routine GPR_SRASTER_OP _PRIM_SET to establish the set of primi
tives that will be affected by the current raster operation. In this example, raster operations will affect lines
and fills.

Decomposition and Rendering Techniques E-14

/'_._'\

/~.~

/

o

o

o

o

o

Pascal Example to Set the Decomposition Technique

PROGRAM example;

{ Required insert files }
%nolist;
%inc1ude ' Isys/inslbase.ins.pas';
%inc1ude ' Isys/ins/gpr.ins.pas';
%inc1ude ' Isys/ins/pfm.ins. pas';
%inc1ude ' Isys/ins/error.ins.pas';
%list;

VAR
size
init_bitmap
hi.J'lane_id
delete _ displa y
status
disp_Ien

: gpr_Soffset_t; { Size of the initial bitmap}
: gpr_Sbitmap_desc_t; {Descriptor of initial bitmap}
: gpr_Splane_t; { Highest plane in bitmap}
: BOOLEAN;
: status_$t; { Error code}
: INTEGER; { Requested number of bytes to }

{ be returned by gpr_Sin~disp_characteristics. }
disp _len_returned
disp

: INTEGER; { Number of bytes returned }
: gpr_Sdisp_char_t; { Returned display characteristics}

acquire
node_type

: BOOLEAN;

PROCEDURE check(st : status_St);

BEGIN
if st.all<>status_Sok then

pfm_Serror_trap(status);
END;

BEGIN {Main}
disp_Ien := 32;
gpr _ $in~ disp _characteristics (

{The type of node the}
{ application is running on }
{ The set of primitives that}
{ raster operations will affect}

gpr _ Sdirect { Mode of operation }

) ;
check (status) ;

,1 { Display unit or stream id of DM pad if any}
,disp_Ien { Length of "disp" (the next argument) in BYTES}
,disp { Returned display characteristics}
,disp_Ien_returned { Number of BYTES actually written in "disp" }
,status { Returned status }

size.x_size := disp.x_window_size;
size.y_size := disp.y_window_size;
hi.J'lane_id := disp.n.J'lanes - 1;

E-15 Decomposition and Rasterization Techniques

gpr_S in it (gpr_Sdirect, 1,size,hiylane_id,init_bitmap,status);
check (status) ;

node_type := disp.controller_type;
CASE node_type of { Determine the type of node the application is running on. }

gpr_Sctl_mono_l,
gpr_Sctl_mono_2,
gpr_Sctl_color_l ;

gpr _ Spgon _ decomp _technique (gpr _ Snon _ overlapping_ tris, status);
END;

prim_set := [gpr_Srop_line, gpr_Srop_fill];
gpr_Sraster_opyrim_set(prim_set, status);
check (status) ;

DISCARD(gpr_Sacquire_display(status»;
check (status) ;

{ Set raster operations for lines and fills. }

{ Acquire the display. }

{ .. }

{ Graphics application code goes here.}
{ .. }

gpr_Srelease_display(status) ;
check (status) ;

gpr_Sterminate(FALSE,status);
check (status) ;

END.

Decomposition and Rendering Techniques E-16

~
! \
\.

o

o

o

o

FORTRAN Example to Set the Decomposition Technique

C Required insert files
%nolist
%include '/sys/ins/base.ins.ftn'
%include '/sys/ins/gpr.ins.ftn'
%include '/sys/ins/pfm.ins.ftn'
%list

INTEGER * 2
INTEGER * 2
INTEGER * 2
INTEGER * 2
INTEGER*4
INTEGER*2
INTEGER * 2
INTEGER * 4
INTEGER*2
LOGICAL
INTEGER*2
INTEGER*2

mode
maximum_display_length
displa y _characteristics (28)
actual_ displa y _length
status
size (2)
hiylane_id
init_bitmap
node_type
acquire

. prim_set
set_size

mode = gpr_$direct
maximum_display_length = 32

CALL GPR_$INQ_DISP _CHARACTERISTICS
+ (gpr_$direct
+ ,stream_$stdout
+ ,maximum_display_length
+ ,display_characteristics
+ ,actual_display_length
+ ,status)
CALL check(status)

size(l) = display_characteristics(5)
size(2) = display_characteristics(6)
hiylane_id = display_characteristics(15) - 1

CALL gpr_$init(mode, stream_$stdout, size. hiylane_id.
+ init_bitmap,status)
CALL check(status)

C If the node is not a DN3000. DN570. or DN580. set the decomposition
C technique to nonoverlapping_tris.

node_type = display_characteristics (1)
IF «node_type .EQ. gpr_$ctl_mono_1) .OR.
+ (node_type .EQ. gpr_$ctl_mono_2) .OR.
+ (node_type .EQ. gpr_$ctl_color_1» THEN
CALL gpr_$pgon_decomp_technique(gpr_$non_overlapping_tris. status)
ENDIF
CALL check(status)

C Set raster operations for lines and fills.
setsize = 16

E-17 Decomposition and Rasterization Techniques

CALL lib_Sinit_set(prim_set, setsize)
CALL lib_Sadd_to_set(prim_set, setsize, gpr_Srop_line)
CALL lib_S add_to_set (prim_set, setsize, gpr_Srop_fill)

C Acquire the display.
acquire = gpr_Sacquire_display(status)
CALL check(status)

C··
C Graphics application code goes here.

C··
CALL gpr_Srelease_display(status)
CALL check(status)

CALL gpr_Sterminate(.FALSE.,status)
CALL check(status)
END

SUBROUTINE check(st)

%include ' Isys/inslbase.ins.ftn'
%include ' Isys/ins/error.ins.ftn'

INTEGER·4 st

IF (st .ne. status_Sok) then
CALL pfm_Serror_trapSst)

ENDIF
END

Decomposition and Rendering Techniques E-18

i,~
\"".""-,,.,,//

(

o

r' U

o

o

C Example to Set the Decomposition Technique

#nolist; /* Required insert files * /
#include "/sys/ins/base.ins.c"
#include "/sys/ins/gpr.ins.c"
#include "/sys/ins/pfm.ins.c"
#include "/sys/ins/error.ins.c"
#list;

#define FALSE 0

gpr _ Sdispla y _mode_t
short int
gpr _ S disp _char _ t
short int
status_St

gpr_$offset_t
gpr_Splane_t
gpr_Sbitmap_desc_t

gpr _ Scontroller _type _ t
gpr_Srop--prim_set_elems_t

short int
void
status_St
{
if (st.all 1= status_Sok)

pfm_Serror_trap(st) ;
}

mainO
{
gpr _ Sin~ disp _characteristics (

mode = gpr_Sdirect;
maximum_display_length = 16;
displa y _characteristics;
actual_display_length;
status;

size _of_window;
hi --plane _id;
init_bitmap;

node_type;
prim_set;

setsize = 16;
check (st)
st;

mode /* Mode of operation * /
,1 /* Display unit or stream id of DM pad if any * /
,maximum_display_length /* Length of display_characteristics in bytes. * /
,display_characteristics 1* Returned display characteristics * /
,actual_display_length /* Returned number of bytes written

to display_characteristics. * /
,status
) ;

check (status) ;
size_of _window.x _size = display _ characteristics.x _window_size;
size_of _window. y _size = display_characteristics. y _window_size;
hiylane_id = display_characteristics.nylanes - 1;
gpr_Sinit(mode, 1 ,size_of_window,hi--plane_id,init_bitmap, status) ;

check (status) ;
/* Determine the type of node the application is running on. * /
node_type = display_characteristics . controller_type;
switch (node_type)

E-19 Decomposition and Rasterization Techniques

{
case gpr_Sctl_mono_1
case gpr_Sctl_mono_2
case gpr_Sctl_color_1 :

gpr_Spgon_decomp_technique(gpr_Snon_overlappin~tris, status);
check (status) ;

}

setsize = 16;
lib_Sinit_set(prim_set, setsize);
lib_Sadd_to_set(prim_set, setsize, gpr_Srop_line);
lib_Sadd_to_set(prim_set, setsize, gpr_Srop_fill);
gpr_Sraster_opyrim_set(prim_set, status); ,. Set raster operations

for lines and fills. .,
check (status) ;

gpr_Sacquire_display(status) ;
check (status) ;

,. Acquire the display .• ,

, .. , , ... Graphics application code goes here. . .. , , ... ,

}

gpr_Srelease_display(status) ;
check (status) ;

gpr_Sterminate(FALSE,status) ;
check (status) ;

Decomposition and Rendering Techniques E-20

/~" . \

o

o

o

o

E.7.2. Sample Programs to Draw a Polygon
These sample programs demonstrate using the triangle technique and filling a polygon with the three avail
able filling criteria. The polygon that is filled is displayed in Figure E-14. The arrows in the figure indicate
the drawing direction from the starting point (indicated by a dot), and the numbers indicate winding num
bers.

The programs begin by using a parity fill. In this way, only the odd numbered region is filled. Next, a non
zero fill is used. This filling criterion fills the polygon so that it is solid. Finally, the program uses a specific
winding number fill. A winding number of 2 is used; this fills the three interior rectangles.

Different results can be achieved by changing the drawing direction of one or more of the polygons. In ad
dition, this is an ideal polygon for testing the render-exact technique because it is rectilinear and axis
aligned.

o 1 ~l 2

•

Pascal Example to Draw a Polygon

PROGRAM example;

{ Required insert files }
%nolist;
%include ' Isys/ins/base .ins. pas';
%inc1ude ' Isys/insl gpr .ins. pas';
%include ' Isys/ins/pfm.ins.pas';
%inc1ude ' Isys/ins/error.ins.pas';
%inc1ude ' Isys/insltime.ins.pas';
%list;

const
one_second = 250000;.
five_seconds = 5 * one_second;

VAR

h 2

Figure E-14.

size
init_bitmap
hi--IJlane_id

: gpr_$offset_t; { Size of the initial bitmap}
: gpr_$bitmap_desc_t; {Descriptor of initial bitmap}
: gpr_$plane_t; { Highest plane in bitmap}

E-21 Decomposition and ·Rasterization Techniques

delete_display
status
disp_Ien

disp_Ien_returned
disp
acquire
node_type
prim_set

x, y
x_array, y_array
list_size
t_list
n_triangles
winding_set
n-positions
pixel_array
window
pause

: BOOLEAN;
: status_St;
: INTEGER;

{ Error code}
{ Requested number of bytes to }

{ be returned by gpr_Sin~disp_characteristics. }
: INTEGER;
: gpr_Sdisp_char_t;
: BOOLEAN;

{ Number of bytes returned }
{ Returned display characteristics}

: gpr_Scontroller_type_t; { Node type}
: gpr_Srop-prim_set_t; {The set of primitives that raster

operations will affect.}
: gpr_Scoordinate_t;
: gpr _ Scoordinate _ arra y _t;
: integer;
: ARRAY [1 .. 30] OF gpr_Striangle_t;
: integer;
: gpr_Striangle_fill_criteria_t;
: integer;
: ARRAY[l .. l] OF integer32;
: gpr_Swindow_t;
: time_Sclock_t;

PROCEDURE check(st : status_St);

BEGIN
if st.all<>status_Sok then

pfm_Serror_trap(status);
END;

BEGIN {Main}
disp_Ien := 30;
gpr _ $in~ disp _characteristics (

gpr _ Sdirect

);
check (status) ;

,1
,disp_Ien

,disp
,disp_Ien_returned
,status

size.x_size := disp.x_window_size;
size.y_size := disp.y_window_size;
hi-plane_id := disp.n-planes - 1;

{ Mode of operation }
{ Display unit or stream id of DM pad if any}
{ Length of "disp" (the next argument) in

BYTES}
{ Returned display characteristics }
{ Number of BYTES actually written in "disp" }
{ Returned status }

gpr_Sinit(gpr_Sdirect, 1,size,hi-plane_id,init_bitmap,status);
check (status) ;

node_type := disp.controller_type;

Decomposition and Rendering Techniques E-22

o

o

o

o

o

CASE node_type of { Determine the type of node the application is running on. }
gpr_$ctl_mono_l,
gpr_$ctl_mono_2,
gpr_$ctl_color_l,

gpr_$pgon_decomp_technique(gpr_$non_overlapping_tris, status);
END;

prim_set := [gpr_$rop_line, gpr_$rop_fill];
gpr_$raster_opyrim_set(prim_set, status);

check (status) ;

WITH window do
BEGIN

window_base.x_coord := 200;
window_base.y_coord := 200;
window_size.x_size := 1;
window_size.y_size := 1;

END;

DISCARD (gpr_$acquire_display (status));
check (status) ;

gpr _ $read yixels (window, pixel_ arra y, status);
check (status) ;

x := 50;
y := 600;
gpr_$startygon(x, y, status);
check (status) ;

x_array[l] := 50;
y_array[l] := 100;

x_array [2] := 750;
y_array[2] := 100;

x_array[3] := 750;
y_array[3] := 600;
nyositions := 3;

{ Draw clockwise.}

{ Set the raster operations }
{ for lines and fills. }

{ Acquire the display. }

gpr_$pgonyolyline(x_array, y_array,nyositions, status);
check (status) ;

x := 150;
y := 500;
gpr_$startygon(x, y, status);
check (status) ;

x_array [1] := 150;
y_array[l] := 200;

{ Draw clockwise.}

E-23 Decomposition and Rasterization Techniques

x_array [2] := 250;
y_array[2] := 200;

x_array[3] := 250;
y_array[3] := 500;
n~ositions := 3;

gpr_SpgonJ'olyline(x_array, y_array, nJ'ositions, status);
check (status) ;
x := 350;
y :~ 500;
gpr_Sstartygon(x, y, status);
check (status) ;

x_array[l] := 350;
y_array[l] := 200;

x_array [2] := 450;
y_array[2] := 200;

x_array [3] := 450;
y_array[3] := 500;
nyositions := 3;

{ Draw clockwise.}

gpr_Spgonyolyline(x_array, y_array, nyositions, status);
check (status) ;

x := 550;
y := 500;
gpr_Sstartygon(x, y, status);
check (status) ;

x_array[l] := 550;
y_array[l] := 200;

x_array[2] := 650;
y_array[2] := 200;

x_array [3] := 650;
y_array[3] := 500;
nyositions := 3;

{ Draw clockwise.}

gpr_Spgonyolyline(x_array, y_array, nyositions, status);
check (status) ;

winding_set.wind_type := gpr_Sparity;
gpr _ Sset_triangle _fill_criteria (winding_set,status);
check (status) ;

list_size := 30;
gpr_Sclose_returnygon_tri(list_size, t_list, n_triangles, status);
check (status) ;

Decomposition and Rendering Techniques E-24

(~,

•• -,,1

,.
-'

o

o

o

o

o

{ Draw the triangles with a parity fill. }
gpr_Smultitriangle(t_list, n_triangles, status);
check (status) ;

{Keep image displayed on screen for five seconds.}
pause.low32 := five_seconds;
pause.high16 := 0;
time_Swait(time_Srelative, pause, status);

gpr_Sclear(pixel_array[l], status);
check (status) ;

windin~set.wind_type := gpr_Snonzero;
gpr _ Sset_ triangle _ fill_criteria (winding_set,status) ;
check (status) ;

{ Draw the triangles with a nonzero fill. }
gpr_Smultitriangle(t_list, n_triangles, status);
check (status) ;

time _ Swait(time _ Srelative,pause,status) ;
check (status) ;

gpr_Sclear(pixel_array[1], status);
check (status) ;

windin~set.wind_type := gpr_Sspecific;
winding_set. winding_no := 2;
gpr_Sset_triangle_fill_criteria(windin~set,status) ;
check (status) ;

{ Draw the triangles with a specific winding number fill. }
gpr_Smultitriangle(t_list, n_triangles, status);
check (status) ;

time_Swait (time_Srelative,pause , status) ;
check (status) ;

gpr_Srelease_display(status) ;
check (status) ;

gpr_Sterminate(FALSE,status) ;
check (status) ;

END.

E-25 Decomposition and Rasterization Techniques

FORTRAN Example to Draw a Polygon

%nolist
%inc1ude '/sys/ins/base.ins.ftn'
%inc1ude ' /sys/ins/gpr.ins.ftn'
%inc1ude ' /sys/ins/pfm.ins.ftn'
%inc1ude ' /sys/ins/error.ins.ftn'
%inc1ude ' /sys/ins/time.ins.ftn'
%list

C Timer Constants
INTEGER * 4 one_second
INTEGER*4 five_seconds
PARAMETER (one_second = 250000)
PARAMETER (five_seconds = 1250000)

INTEGER * 2 pause (3)
INTEGER * 4 pause_Iow32
INTEGER*2 pause_high 16
EQUIVALENCE (pause(1), pause_high16)
EQUIVALENCE (pause(2), pause_low32)

INTEGER*2 dev
INTEGER * 2 size(2)
INTEGER*4 init_bitmap
INTEGER * 2 hi-plane_id
LOGICAL delete_display
LOGICAL acquire
INTEGER*4 status

C Requested number of bytes to be returned by gpr_$in~disp_characteristics.
INTEGER*2 disp_len

C Number of bytes actually returned.
INTEGER * 2 disp_len_ret
INTEGER *2 disp(30)
INTEGER*2 node_type

C The set of primitives that raster operations will affect.
INTEGER * 2 prim_set
INTEGER*2
INTEGER*2
INTEGER*2
INTEGER * 2
INTEGER*2
INTEGER*2
INTEGER*4
INTEGER*2
INTEGER*2
INTEGER*2

C Main subprogram
dev = 1

x,y
x_array(50), y_array(50)
n -positions
setsize
winding_set (2)
window(4)
pixel_array (1)
list_size
n _triangles
t_list(175)

Decomposition and Rendering Techniques E-26

/ --'\

()

o

o

o

disp_Ien = 32
C Get the device characteristics.

CALL gpr _ $inCL disp _characteristics
+ (gpr_$direct
+ , dev
+ , disp_Ien
+ , disp
+ , disp _len_ret
+ , status)
CALL check(status)

hiJ>lane_id = dispelS) - 1
size(1) = disp(S)
size(2) = disp(6)
node_type = disp (1)

C Initialize GPR.
CALL gpr_$init
+ (gpr_$direct
+ , dev
+ , size
+ , hiJ>lane_id
+ , init_bitmap
+ , status)
CALL check(status)

C If the device is not a DN3000, DNS70, or DNS80 then set the decomposition
C technique to non_overlapping_tris.

IF «node_type .NE. gpr_$ctl_mono_ 4) .OR.
+ (node_type .NE. gpr_$ctl_color_ 4) .OR.
+ (node_type .NE. gpr_$ctl_color_2) .OR.
+ (node_type .NE. gpr_$ctl_color_3»
+ CALL gpr_$pgon_decomp_technique
+ (gpr_$non_overlapping_tris
+ , status)

CALL check(status)

setsize = 16
CALL lib_$init_set(prim_set, setsize)
CALL lib_$add_to_set (prim_set , setsize, gpr_$rop_line)
CALL lib_$ add_to_set (prim_set, setsize, gpr_$rop_fill)

C Draw each figure in a clockwise direction.
x = SO
y = 600
CALL gpr_$startJ>gon(x, y, status)
CALL check(status)

x_array(l) = 50
y_array(l) = 100
x_array(2) = 750
y_array(2) = 100

E-27 Decomposition and Rasterization Techniques

x_array(3) = 750
y_array(3) = 600
nJ'ositions = 3
CALL gpr_$pgonJ'olyline
+ (x_array
+ , y_array
+ , n J'ositions
+ , status)
CALL check(status)

x = 150
y = 500
x_array(1) = 150
y_array(1) = 200
x_array(2) = 250
y_array(2) = 200
x_array(3) = 250
y_array(3) = 500
CALL gpr_$startJ'gon(x, y, status)
CALL check(status)

CALL gpr_$pgonJ'olyline
+ (x_array
+ , y_array
+ , n J'ositions
+ , status)
CALL check(status)

x = 350
y = 500
x_array(1) = 350
y_array(1) = 200
x_array(2) = 450
y_array(2) = 200
x_array(3) = 450
y_array(3) = 500
CALL gpr_$startJ'gon(x, y, status)
CALL check(status)
CALL gpr_$pgonJ'olyline
+ (x_array
+ , y_array
+ , nJ'ositions
+ , status)
CALL check(status)

x = 550
y = 500
x_array(1) = 550
y_array(1) = 200
x_array(2) = 650
y_array(2) = 200
x_array(3) = 650
y_array(3) = 500

Decomposition and Rendering Techniques

/--',

I.
" . ~ "'.'

E-28

o

o

o

o

CALL gpr_Sstart-pgon(x, y, status)
CALL check(status)
CALL gpr_Spgon-polyline
+ (x_array
+ , y_array
+ , n -positions
+ '. status)
CALL check(statu~)

C Use a parity filling algorithm.
windinLset(l) = gpr_Sparity
CALL gpr_Sset_triangle_fill_criteria(winding_set,status)
CALL check(status)

list_size = 25
CALL gpr_Sclose_return-pgon_tri
+ (list_size
+ , t_list
+ , n _triangles
+ , status)
CALL check(status)

C Acquire the display.
acquire = gpr_Sacquire_display(status)
CALL check(status)

window(l) = 200
window(2) = 200
window(3) = 1
window(4) = 1
CALL gpr_Sread-pixels(window,pixel_array, status)
CALL check(status)

CALL gpr _ Smultitriangle
+ (t_list
+ , n_triangles
+ , status)
CALL check(status)

pause_Iow32 = five_seconds
pause_high16 = 0
CALL time_Swait(time_Srelative, pause, status)
CALL check(status)

C Clear the display.
CALL gpr_Sclear(pixel_array(l), status)
CALL check(status)

C Use a nonzero filling algorithm.
winding_set(1) = gpr_Snonzero
CALL gpr _ Sset_ triangle _fill_criteria (winding_set, status)
CALL check(status)

E-29 Decomposition and Rasterization Techniques

CALL gpr _ $multitriangle
+ (t_list
+ , n_triangles
+ , status)
CALL check(status)

pause_Iow32 = five_seconds
pause_high16 = 0
CALL time_$wait(time_$relative, pause. status)
CALL check(status)

CALL gpr_$clear(pixel_array(l), status)
CALL check(status)

C Use a specific winding number filling algorithm.
windinLset(l) = gpr_$specific
winding_set(2) = 2
CALL gpr _ $ set_triangle _fill_ criteria (winding_set. status)
CALL check(status)

CALL gpr _ $multitriangle
+ (t_list
+ , n_triangles
+ , status)
CALL check(status)

pause_Iow32 = five_secon,ds
pause_high16 = 0
CALL time_$wait(time_$relative, pause, status)
CALL check(status)

CALL gpr_$release_display(status)
CALL check(status)
STOP
END

SUBROUTINE check(st)

%include '/sys/inslbase.ins.ftn'
%include '/sys/ins/pfm.ins.ftn'
%include '/sys/ins/error.ins.ftn'

INTEG ER • 4 st

IF (st .ne. status_$ok) CALL pfm_$error_trap(st)

RETURN
END

Decomposition and Rendering Techniques E-30

/

o

o

o

o

o

C Example to Draw a Polygon

1* Required insert files • I
#nolist;
#include "/sys/inslbase.ins.c"
#include "/sys/ins/gpr.ins.c"
#include "/sys/ins/pfm.ins.c"
#include "/sys/ins/error.ins.c"
#include "/sys/ins/time.ins.c"
#list;

#define t 5 1* Pause for this many seconds before displaying next image. • I
#define time_toyause (250000 • t)
#define FALSE 0

gpr_Soffset_t
gpr _ Sbitmap _ desc _ t
gpr _ Splane _ t
short int

size_of_initial_bitmap;
description_of_initial_bitmap;
highestylane_in_bitmap;
delete_display;

short int acquire;
status_St status;
1* Requested number of bytes to be returned into display_characteristics: *1
short int display_length = 30;
gpr _ Sdisp _char _t display_characteristics;
f* Number of bytes actually returned: • I
short int display_length_returned;
gpr _ S controller_type _ t node_type;
f* The set of primitives that raster operations will affect: * I
gpr_Sropyrim_set_elems_t prim_set;
gpr_Scoordinate_t x,y;
gpr_Scoordinate_array_t x_array, y_array;
short int list_size;
gpr_Striangle_t t_list[30];
short int n_triangles;
gpr _ S triangle _ fill_criteria _ t winding_set;
short int n yositions = 3;
long int pixel_array[l];
gpr_Swindow_t window;
time_Sclock_t pause;
short int

void check (st)
status_St st;
{
if (st. all , 1= status_Sok)

pfm_Serror_trap(st);
}

mainO

setsize = 16;

E-31 Decomposition and Rasterization Techniques

{
gpr _ $inCL. disp _characteristics (

gpr_$direct

) ;

,1
,display_length
,displa y _characteristics
,displa y _length_returned
,status

check (status) ;
1* Use the information returned into display_characteristics: *'

size_of_initial_bitmap.x_size = display_characteristics.x_window_size;
size_of _ initial_bitmap. y _size = display_characteristics. y _window_size; .
highest-plane_in_bitmap = display_characteristics.n-planes - 1;

gpr _ $init (gpr _ $direct,
1,
size_of_initial_bitmap,
highest-p1ane _in_bitmap,
description_of _ initial_bitmap,
status) ;

check (status) ;
1* Determine the type of node the application is running on: *'

node_type = display_characteristics . controller_type;
switch (node_type)

{
case gpr_$ctl_mono_l
case gpr_$ctl_mono_2
case gpr_$ctl_mono_ 4
case gpr_$ctl_color_l :
case gpr_$ctl_color_ 4 :
gpr _ $pgon _ decomp _technique (gpr _ $non_ overlapping_tris, status);
check (status) ;
}

gpr _ $pgon _ decomp _technique (gpr _ $non _ overlapping_ tris, status);
check (status) ;

setsize = 16;
lib_$init_set(prim_set, setsize);
lib_$add_to_set(prim_set, setsize, gpr_$rop_line):
lib_$add_to_set(prim_set, setsize, gpr_$rop_fill);

gpr_$raster_op-prim_set(prim_set, status); '* Set the raster operations *' '* for lines and fills. *'
check (status) ;

Decomposition and Rendering Techniques E-32

- -_ .. _--------

1\
,I

/-",

/)

o

o

o

o

o

window.window_base.x_coord = 200;
window.window_base.y_coord = 200;
window.window_size.x_size = 1;
window.window_size.y_size = 1;

gpr_$acquire_display(status); 1* Acquire the display. *'
check (status) ;

gpr_$readyixels(window, pixel_array, status);
check (status) ;

'* Draw each figure clockwise. *'
x = 50; Y = 600;
x_array[O] = 50;
y_array[O] = 100;
x_array[l] = 750;
y_array[l] = 100;
x_array[2] = 750;
y_array[2] = 600;
gpr_$startygon(x, y, status);
check (status) ;
gpr_$pgonyolyline(x_array, y_array, nyositions, status);
check (status) ;

x = 150;
y = 500;
x_array[O] = 150;
y_array[O] = 200;
x_array[l] = 250;
y_array[l] = 200;
x_array[2] = 250;
y_array[2] = 500;
gpr_$startygon(x, y, status);
check (status) ;
gpr_$pgonyolyline(x_array, y_array, nyositions, status);
check (status) ;

x = 350;
y = 500;
x_array[O] = 350;
y_array[O] = 200;
x_array [1] = 450;
y_array[l] = 200;
x_array[2] = 450;
y_array[2] = 500;
gpr_$startygon(x, y, status);
check (status) ;
gpr_$pgonyolyline(x_array, y_array, nyositions, status);
check (status) ;

x = 550;
y = 500;

E-33 DecompQsiticnand Rasterization Techniques

x_array[O] = 550;
y_array[O] = 200;
x_array[l] = 650;
y_array[l] = 200;
x_array[2] = 650;
y_array[2] = 500;
gpr_Sstartygon(x, y, status);
check (status) ;
gpr_Spgonyolyline(x_array, y_array, nyositions, status);
check (status) ;

winding_set. wind_type = gpr_Sparity;
gpr_Sset_triangle_fill_criteria(winding_set,status) ;
check (status) ;

list_size = 30;
gpr_S close.;...returnygon_tri(list_size , t_list, n_triangles, status);
check (status) ;

/* Draw the triangles with a parity fill. * /
gpr_Smultitriangle(t_list, n_triangles, status);
check (status) ;

/* Keep image displayed on screen. * /
pause.1ow32 = time_toyause;
pause.high16 = 0;
time_Swait(time_Srelative, pause, status);
check (status) ;

gpr_Sclear(pixel_array[O], status);
check (status) ;

winding_set.wind_type = gpr_Snonzero;
gpr _Sset_triangle _fill_criteria (winding_set,status);
check (status) ;

/* Draw the triangles with a nonzero fill. * /
gpr_Smultitriangle(t_list, n_triangles, status);
check (status) ;

time_Swait (time_Srelative ,pause,status) ;
check (status) ;

gpr_Sclear(pixel_array[O], status);
check (status) ;

winding_set.wind_type = gpr_Sspecific;
winding_set.winding_no = 2;
gpr _ Sset_ triangle _ fill_criteria (winding:.... set,status) ;
check (status) ;

/* Draw the triangles with a specific winding number fill. * /
gpr_Smultitriangle(t_list, n_triangles, status);

Decomposition and Rendering Techniques E-34

./

,/ "\
)

()

}

o

o

o

o

check (status) ;

time_$wait (time_$relative ,pause ,status) ;
check (status) ;

gpr_$release_display(status) ;
check (status) ;

gpr_$terminate(FALSE,status) ;
check (status) ;

E-35 Decomposition and Rasterization Techniques

" , ,_ "

\. ~/

o

o

o

o

Appendix F

Display Configurations

This appendix describes the current DOMAIN hardware display configurations. It updates the configura
tion information provided in Chapter 8.

F.1. Monochromatic Display Configurations
There are three monochromatic display configurations. These configurations have one plane of display
memory, and the only possible pixel values are zero and 1.

On displays that are not inverted a pixel value of 0 indicates that the pixel is black; a pixel value of 1 indi
cates that the pixel is white. On inverted displays that simulate a color map in software (DN100, DN3XX,
and DN4XX), pixels with a value of zero are black, and pixels with a value of one are white. This is true
regardless of the contents of locations zero and one in the color map. On inverted displays that have a
color map in hardware (DN3000), a pixel value is used as an index into the color map. The color of the
pixel (black or white) is determined by the value in the color map. This is consistent with the way pixel
values function on color displays.

You can determine whether a monochromatic device simulates an inverted color map or has a color map
in hardware with GPR_SINQ_DISP _CHARACTERISTICS. Invert, a value returned in the datatype
gpr_Sdisp_char_t, has the following three possible values: gpr_Sno_invert, gpr_$invert_simulate and
gpr _ Sinvert _hardware.

The available monochromatic display configurations are listed in Table F-l.

Table F-l. Monochromatic Display Configurations

MODEL DIMENSIONS

Visible Display Hidden Display

DN100 800 x 1024 224 x 1024

DN3XX 1024 x 800 1024 x 224

DN4XX 1024 x 800 1024 x 224

DN3000 1280 x 1024 768 x 224

F-1 Display Configurations

F.2. Four-Plane Color Configurations
There are two four-pla.ne color configurations. Bitmaps on devices with a four-plane color configuration
can have one to four planes. The planes are numbered 0 - 3. Pixel values on four-plane configurations
can have one to four bits: one bit for each plane. This allows a maximum of sixteen colors to be simulta
neously displayed.

The available four-plane color display configurations are listed in Table F-2.

Table F-2. Four-Plane Color Configurations

MODEL DIMENSIONS

Visible Display Hidden Display No. of Colors

DN3000 1024 x 800 1024 x 224 16

DN550/560 1024 x 800 1024 x 1024 16

DN6XX 1024 x 1024 1024 x 1024 16

F.2. Eight-Plane Color Configurations
There are three eight-plane color configurations. Bitmaps on devices with an eight-plane configuration
can have one to eight planes. The planes are numbered 0 - 7. Pixel values on eight-plane configurations
can have one to eight bits: one bit for each plane. This allows a maximum of 256 colors to be simultane
ously displayed on eight planes.

The available eight-plane color display configurations are listed in Table F-3.

Table F-3. Eight-Plane Color Configurations

MODEL DIMENSIONS

Visible Display Hidden Display No. of Colors

DN550/560 1024 x 800 1024 x 1024 256

DN570 1024 x 800 1024 x 219 256

DN6XX 1024 x 1024 1024 x 1024 256

DN580 1280 x 1024 224 x 1024 256

Display Configurations F-2

" ,/

./

/

F.3. Limitations o The following GPR routines are only supported on DNSSOs. DNS60s. and DN6XXs •.

o

o

o

GPR_$REMAP _COLOR_MEMORY_1

GPR_$COLOR_ZOOM

GPR_$SET_IMAGING_FORMAT

GPR_$INQ_IMAGING_FORMAT

GPR_$COLOR_ZOOM is supported on DNS80s for zoom values of both x and y equal to one or two.

The maximum dimensions of a hidden-display-memory bitmap on all devices except the DNS70 is 224 x
224. On the DNS70, the dimensions of the largest hidden-display-memory bitmap is 224 x 219.

F-3 Display Configurations

\ ' , ".' , ... /

o

o

o

o

o

A
Acquiring the display 4-19

Attributes, changing 6-7

Attributes, list of 6-5

Auto refresh 4-22

B
Bit block transfer 7-3, 7-5

Bitmap 2-1,2-2

Bitmap attributes 6-3

Bitmap location 6-1

Bitmap size 6-1

Bitmap structure 6-1

Bitmaps in borrow mode 6-1

Bitmaps in direct mode 6-2

Bitmaps in frame mode 6-1

Bitmaps in no- display mode 6- 2

Bitmaps on disk 7-1

Borrow-display mode 2-4

Borrow-nc mode 2-4

Button event 5-3

Button events 5-3

c
C examples C-l

Clipping 6-5

Color Display configurations 8-1

Color display formats 8-9

Color entry 8-8

Color format 8-3

Color map 8-3,8-5,8-7,8-9

Color value 8-7

Color zoom 8-11

Coordinate origin 4-1, 6-5

Coordinate system 4-1

Creating attribute blocks 6-3

Current attribute block 6-3

Current bitmap 6-3

Current position 4-1

Cursor 5-1

Cursor control in display mode 5-1

Cursor control in frame mode 5-1

D
Direct mode 2- 5

Disabled input events 5-3

Display controller 2- 2

Index

Display devices 2-2

Displaying colors 8-3

Draw value 6-5

E
Enabled input events 5-3

Entered window events 5-5

Error reporting 3-3

Event reporting 5-3

Event types 5-2

External bitmap file 9-1

External bitmaps 6-4,7-2

Fill examples 4-13

Fill pattern 6-6

Fill routines 4-12

Fill value 6-5

F

FORTRAN examples D-l

Frame buffer 2-1

Frame mode 2-5

G
GMF error messages 9-2

GMF insert files 9-1

GMF programming example 9-2

GMF $OPEN 9-1

GMF $RESTORE_PLANE 9-1

GMF COPY PLANE 9-1

GPR $ADDITIVE BLT 7-4

GPR $ALLOCATE ATTRIDUTE BLOCK 6-3

GPR _ $ALLOCATE _ BITMAP 7-1

GPR $ARC 3P 4-2

GPR $BIT BLT 7-4

GPR $CIRCLE 4-2

GPR $CIRCLE _ FILLED 4-12

GPR_$CLOSE_FILL_PGON 4-13

GPR $CLOSE RETURN PGON 4-13

GPR $COND EVENT WAIT 5-4, 5-5

GPR $DISABLE INPUT 5-4

GPR $DRAW BOX 4-2

GPR $ENABLE INPUT 5-4

Gpr _ $entered_ window 5-3

GPR $EVENT WAIT 5-4,5-5

GPR_$GET_EC 5-4

GPR_$INQ_CHARACTER_ WIDTH 4-23

In'dex-l

GPR_ $INQ_ CONSTRAINTS 6-9

GPR_$INQ_COORDINATE_ORIGIN 6-9

GPR_$INQ_DRAW _ VALUE 6-9

GPR_$INQ_FILL_BACKGROUND_ VALUE 6-9

GPR_SINQ_FILL_PATTERN 6-9

GPR_$INQ_FILL_ VALUE 6-9

GPR_$INQ_HORIZONTAL 4-23

GPR_SINQ_LINE_PATTERN 6-9

GPR _ SINQ _ LINESTYLE 6-10

GPR _ $INQ _ RASTER _ OPS 6-10

GPR_SINQ_SPACE_SIZE 4-23

GPR _ $INQ _ TEXT 4- 24, 6-10

GPR _ SINQ _ TEXT _ EXTENT 4- 24

GPR_$INQ_TEXT_OFFSET 4-24,6-10

GPR_SINQ_TEXT _PATH 4-24

GPR_SINQ_TEXT_ VALUES 4-24,6-10

GPR_ SINQ_ WINDOW _ID 5-5

Gpr _ Sleft _ window 5-3

GPR SLINE 4-2

GPR $LOAD FONT FILE 4-23

GPR $MUL TILINE 4- 2

GPR_SMULTITRAPEZOID 4-12

GPR SOPEN BITMAP FILE 7-2

GPR $PGON POLYLINE 4-12

GPR $POLYLINE 4-2

GPR SRECTANGLE 4-12

GPR SREPLICATE FONT 4-23

GPR $SET ATTRffiUTE BLOCK 6-4

GPR SSET BITMAP 7-1

GPR $SET CHARACTER WIDTH 4-23

GPR $SET CLIP WINDOW 6-8

GPR $SET CLIPPING ACTIVE 6-8

GPR $SET COLOR MAP 8-9

GPR $SET COORDINATE ORIGIN 6-8

GPR_$SET _ CURSOR_ACTIVE 5-1

GPR $SET CURSOR ORIGIN 5-1

GPR SSET CURSOR PATTERN 5-1

GPR $SET CURSOR POSITION 5-1

GPR_$SET_DRAW _ VALUE 6-8

GPR $SET FILL BACKGROUND VALUE 6-8

GPR $SET FILL PATTERN 6-9

GPR $SET FILL VALUE 6-9

GPR_ $SET _HORIZONTAL 4-23

GPR SSET INPUT SID 5- 5

GPR $SET LINE PATTERN 6-9

GPR $SET LINESTYLE 6-9

GPR SSET PLANE MASK 6-9

GPR $SET _RASTER OP 6-9

GPR SSET SPACE SIZE 4-23

GPR $SET TEXT BACKGROUND 4-24

GPR $SET TEXT BACKGROUND VALUE 6-9

GPR_$SET_TEXT_FONT 4-23,6-9

GPR $SET TEXT PATH 4-24

GPR_$SET_TEXT_ VALUE 4-24,6-9

GPR_$SET _ WINDOW _ID 5-4,5-5

GPR $SPLINE_CUBIC 4-2

GPR $SPLINE CUBIC X 4-2

GPR $ SPLINE_ CUBIC Y 4-2

GPR $START PGON 4-12

GPR $TEXT 4-24

GPR $TRAPEZOID 4-12

GPR $TRIANGLE 4-12

GPR $UNLOAD FONT FILE 4-23

GPR_PIXEL_BLT 7-4

Graphics map file 9-1

Grey-scale 8-9

II
Hidden-display-memory bitmaps 6-4,7-1,7-2

I
Imaging display formats 8-10

Imaging format 8-1

Imaging formats 8-10

Initial bitmap 6-1

Initial bitmap location 6-1

Initializing GPR in FORTRAN 3-5

Initializing GPR in C 3-6

Initializing GPR in Pascal 3-4

Initializing the graphics package 3-1

Input operations 5-2, 5-4

Input routines 5-3

Insert files 3-1

Keyset 5-3

Keystroke event 5-3

K

L
Line drawing routines 4-2

Line style 6-6

Line-drawing examples 4-3

Listing attributes 6-5

Locator events 5-3

Locator stop event 5-3

Index-2

M Raster operations 7-5

0 Main memory bitmaps 6-4 Raster table 6-7

Main- memory bitmaps 7-1 Refresh procedure 4-22, 5-5

Making attribute blocks current 6-4 Releasing the display 4-19

Masks 7-4 Retrieving attributes 6-9

Monochromatic color map 8-g S
Scan line 2-1

N
T No-display mode 2-6

0
Terminating GPR 3-3

Operation mode 2-3 Text background value 6-6

Text font 6-6
p

Text routines Pixel array 8-g 4-23

Pixel value 2-1,8-3,8-5 Text valule 6-6

Pixel values 8-g Three- board configuration 8-1

0
Plane mask 6-6 Two- board configuration 8-1

Plane masks 7-4
V

Primary colors 8-3 Variables 3-1

R 'V
Raster operation 6-7 Window id 5-4

Raster operation truth table 6-7 Window transition event 5-3

o

o

o
Index-3

