
Advanced Compu~.r Design

AOS Programiner's Manual

AOS Programmer's Manual

AQS. PROGRAMMER'S MANUAL

VERSION 1.0

June 1982

Advanced Computer Design

PDQ-3 is a registered trademark of Advanced Computer Design.

Information furnished by ACD is believed to be accurate and
reliable. However, no responsibility is assumed by ACD for its
use~ nor for any infringements of patents or other rights of third
parties which may result from its use. No license is granted by
implication or otherwise under any patent or patent rights of ACD.
ACD reserves the right to change product specifications at any time
without notice.

DEC is a registered trademark of Digital Equipment Corporation,
Maynard, Mass.

UCSD Pascal is a registered trademark of the University of
California.

Authors:

Part #:

Rich Gleaves
Barry Demchak

Copyright ec) 1982, Advanced Computer Design. All rights reserved.

Duplication of this work by any means is forbidden without the
prior written consent of Advanced Computer Design.

AOS Programmer's Manual

TABLE OF CONTENTS

SECTION

I INTRODUCTION •

o
1
2

Scope of this Manual • • •
Overview • • • • • • • • •
Notation and Terminology •

• • • •
• • • •
• • • •

• • •
• • •
• • •

• • • • • • •
• • • • • • •
• • • • • • •

II DEVIATIONS FROM STANDARD PASCAL • • • • • • • • • • • •

o
1
2
3
4

5

6
7
8
9

10
11
12
13

CASE Statements •
GOTO Statements •
NIL • • • • • • •
FORWARD • • • • •
ODD, CHR and NOT

I/O Intrinsics • o INPUT • • • •

•
•
•
•
•

•
•

1 RESET and REWRITE
2 EOF • • • • • •
3 READ and READLN
4 WRITE and WRITELN

• • •
• • •
• • •
• • •
• • •

• • •
• • •

• •
• • •
• • •

• •

Packed Variables • •• •
Procedural and Functional
Program Headings ••••
Records • • • • • • • • •
Files • • • • • • • • • •
Reserved Words •••• •
Comments • • •.• • • • •
Type Compatibility •••

i

• • • • • • • • •. . • • • •
• • • • • • • • • • • • • •
• • • • • • • • • • • • • •
• • • • • • • • • • • • • •
• • • • • • • • • • • • • •

• • • • • • • • • • • • • •
• • • • • • • • • • • • • •
• • • • • • • • • • • • • •
• • • • • • • • • • • • • •
• • • • • • • • • • • • • •
• • • • • • • • • • • • • •

• • • • • • • • • • • • • •
Parameters • • • • • • • •
• • • • • • • • • • • • • •
• • • • • • • • • • • • • •
• • • • • • • • • • • • • •
• • • • • • • • • • • • • •
• • • • • • • • • • • • • •
• • • • • • • • • • • • • •

PAGE

1

1
2
3

5

6
6
6
7
7

8
8
8
8
8
9

9
9
9

10
10
10
10
11

III

AOS Programmer's Manual

EXTENSIONS TO STANDARD PASCAL • • • • • •

o

1
2

3

Concurrency • o Tasks. • •
1 Semaphores
2 Interrupts
3 Time Slicing

• •
• •
• •
• •

•

• • • •
• • • •
• • • •
• • · '.
• • • •

• • • • • •
• • • • • •
• • • • • •
• • • • • •
• • • • • •

Program Segmentation •
Separate Compilation •
o Units. • • • • • •
1 USing Units • • • •
2 Unit Linkage •••

• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •

Files • • • • • • • • •
o File System Access •
1 Interactive Files • •
2 The Keyboard File • •
3 Block Files • • • • •
4 Random Access Files •

•
•
•
•
•
•

• •
• •
• •
• •
• •
• •

• • • •
• • • •
• • • •
• • • •
• • • •
• • • •

• • • • • • •

• • • • • • •
• • • • • • •
• • • • • • •
• • • • • • •
• • • • • • •

• • • • • • •
• • • • • • •
• • • • • • •
• • • • • • •
• • • • • • •

• • • • • • •
• • • • • • •
• • • • • • •
• • • • • • •
• • • • • • •
• • • • • • •

4 Strings •

5

6

7

8
9

10

Dynamic Variable Management
o The 11.0 Heap • • • • •
1 The IV.O Heap •••••

•
•

Extended Precision Arithmetic

Extended Comparisons •
o Records and Arrays
1 Pointers • • • • •

Byte Array Manipulation
Device I/O • • • • • •
Inline Machine Code •

•
•
•

•
•

• •
• •
• •

• •
• •
• •

11 Miscellaneous Extensions • •
o Identifiers... • • • •
1 Declaration Parts • • • •
2 Pointer Type Conversion •
3 Screen Control •••••
4 Clock Access • • • • • •
5 Powers of Ten • • • • • •
6 Arctangent Synonym • • •
7 Procedure Termination • •
8 I/O Completion Status • •
9 MemoryAvailable • • • •

10 Breakpoint Trap • • • • •
11 Compiler Support • • • •

ii

• • • • • • • • • • • •
• • • • • • • • • • • •
• • • • • • • • • • • •

• • • • • • • • • • •

• • • • • • • •. . . • •
• • • • • • • • • • • •
• • • • • • • • • • • •

• • • • • • • • • • • •
• • • • • • • • • • • •
• • • • • • • • • • • •

• • • • • • • • • • • •
• • • • • • • • • • • •
• • • • • • • • • • • •
• • • • • • • • • • • •
• • • • • • • • • • • •
• • • • • • • • • • • •
• • • • • • • • • • • •
• • • • • • • • • • • •
• • • • • • • • • • • •
• • • • • • • • • • • •
• • • • • • • • • • • •
• • • • • • • • • • • •
• • • • • • • • • • • •

13

14
15
20
23
24

25
30
30
33
36

37
37
39
41
41
43

44

49
49
50

53

57
57
58

59
62
57

69
69
70
71
72
73
73
74
74
75
77
77
78

IV UCSD INTRINSICS

o
1
2
3
4
S
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
4S
46
47
48
49

ATAN
ATTACH
BLOCKREAD •
BLOCKWRITE
CLOSE • • •

• •
•

•
•

CON CAT
COpy
DELETE

•
• •
• •
• •

EXIT
FILLCHAR
GOTOXY
HALT
IDSEARCH
INSERT
IORESULT
LENGTH
MARK
MEMAVAIL
MEMLOCK ••
MEMSWAP • •
MOVELEFT
MOVERIGHT •
OPENNEW ••
OPENOLD ••
PMACHINE
POS • • • •

•

•

•

•

•
•

•

•
•

•
•
•
•
•
•
•
•
•
•

•

•

• PWROFTEN
RELEASE • •

*RESET • • •
*REWRITE ••

RMEMAVAIL •
SCAN • • •
SEEK
SEMINIT ••

• • •

SIGNAL
SIZEOF
START· •••
STR • • • •

•
•

•
•

TIME
TREESEARCH
UNITBUSY
UNITCLEAR •
UNITREAD
UNITSTATUS
UNITWAIT
UNITWRITE •
VARAVAIL
VARDISPOSE

• • •

•

•

•

•

VARNEW
WAIT •

• •
• •

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

AOS Programmer's Manual

•

•
•
•
•
•
•
•
•
•
•
• • • • • • • • • • • • • • • • · .. • •
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

-*- indicates extension of a standard Pascal intrinsic.

iii

81

82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131

v

VI

VII

AOS Programmer's Manual

COMPILE OPTIONS • • • • • • • • • • • • • • •

1

~~tions • 133
o Compiled Listings • • • • • • • • • • • • • • • • • 136
1 Include Files • • • • • • • • • • • • • • • • • • • 138
2 Swapping Compiler • • • • • • • • • • • • • • • • • 139
3 Conditional Compilation • • • • • • • • • • • • • • 140
4 IIO Checks • 141
5 Range Checks • • • • • • • • • • • • • • • • • • • 141
6 Heap Intrinsics • • • • • • • • • • • • • • • • • • 142
7 Copyright Notices • • • • • • • • • • • • • • • • • 143
8 Console Display Suppression • • • • • • • • • • • • 144
9 Segment Residency • • • • • • • • • • • • • • • • • 144

10 Ver sion Control • • • • • • • • • • • • • • • • • • 145
11 System Programs • • • • • • • • • • • • • • • • • • 146
12 Operating System • • • • • • • • • • • • • • • • • 147
13 Boolean Negation • • • • • • • • • • • • • • • • • 147

Option Summary • 149

OPERATING SYSTEM CUSTOMIZATION • • • • • • • • • • • • • 151

0 Operating System Extensions • • • • • • • • • • • • • 152
1 System Prompt Line and Program Execution • • • • • • 154
2 System Device Drivers • • • • • • • • • • • • • • • • 155
3 Exception Handling • • • • • • • • • • • • • • • • • 158
4 Breakpoint Processor • • • • • • • • • • • • • • • • 159

PROGRAMMING PRACTICES • • • • • • • • • • • • • • • • • 161

0 Packed Variables • • • • • • • • • • • • • • • • • • 162
1 Accessing Words, Bits, and Bit Fields • • • • • • • 167
2 Unsigned Integer Manipulation • • • • • • • • • • • 172
3 Full-word Logical Operations • • • • • • • • • • • • 174
4 Variable-sized Buffer Allocation • • • • • • • • • • 175
5 Data Prompts • 178
6 Device Drivers • • • • • • • • • • • • • • • • • • • 182
7 Multitermina1 Applications • • • • • • • • • • • • • 187
8 Locating Execution Errors. • • • • • • • • • • • • • 190
9 Programming with Units • • • • • • • • • • • • • • • 192

10 Programs as Procedures • • • • • • • • • • • • • • • 196
11 Programming for IIO Redirection • • • • • • • • • • 198

iv

AOS Programmer's Manual

APPENDICES • 201

Appendix A: Standard I/O Results • • • • • • • • • • • • 201
Appendix B: Standard Execution Errors. • • • • • • • • • 203
Appendix C: Conditions Causing I/O Errors • • • • • • • • 205
Appendix D: Standard I/O Unit Attributes • • • • • • • • 207
Appendix E: Reserved Words • • • • • • • • • • • • • • • 219
Appendix F: Predeclared Identifiers • • • • • • • • • • • 221
Appendix G: Implementation-Limits • • • • • • • • • • • • 223
Appendix H: Compiler --Syntax Errors • • • • • • • • • • • 227
Appendix I: ASCII- Character Set • • • • • • • • • • • • • 231
Appendix J: Differences Between UCSD Versions • • • • • • 233
Appendix K: AOS Library Units • • • • • • • • • • • • • • 237

INDEX • 241

v

Introduction

~ INTBODUCTION

~ Scope gf thia Manual

This manual describes the areas in which the UCSD Pascal Advanced
Operating System (AOS) version 1.0, running on the PDQ-3 Computer
system, differs from standard Pascal. Users'are assumed to possess
a working knowledge of standard Pascal. The following topics are
covered:

1) Extensions to standard Pascal.

2) Deviations from standard Pascal.

3) Operating system customization.

4) Implementation-dependent programming practices.

This manual does not describe standard Pascal; it is intended to be
used in conjunction with the language description presented in the
Pascal ~ Manual and Report ~ edition) by Kathleen Jensen and
Niklaus Wirth (Springer-Verlag, 1975). Though the ~ Manual and
Report is suggested as an ultimate reference, many other fine books
describing Pascal are available. The following books are recom
mended:

Beginner's Guide for the UCSD Pascal System
Kenneth L. Bowles
Byte Books (McGraw-Bill), Peterborough, New Hampshire, 1979.

UCSD Pascal Handbook
Randall Clark and Stephen Koehler
Prentice-Hall, 1981.

Programming in PASCAL
Peter Grogono
Addison-Wesley, 1978.

Other documents related to the PDQ-3 Computer System include:

PDQ-3 Har~ware User's Manual - Describes the physical charac
teristics of the computer.

AOS System User's Manual - Describes the Advanced Operating
System software (including the operation of the Pascal
compiler).

AOS Library User's Manual - Describes the library modules a
vailable with the Advanced Operating System.

AOS Architecture Guide - Provides details of the system soft
ware to experienced programmers. (Available in the inde
terminate future).

Page 1

PDQ-3 Programmer's Manual

l.a.1 OVerview

The UCSD Pascal language was designed for the development of
interactive Pascal programs for microcomputers; however, it con
tains sufficient extensions to also serve as a systems implementa
tion language. All software on the PDQ-3 is written in UCSD
Pascal.

OCSD Pascal extensions include:

Concurrency - Concurrent processes, interrupt handling, and an
asynchronous I/O system allow the development of real-time and
multiuser applications.

Separate Compilation - The -unit- construct enables programs to
be built from groups of separately compilable modules1 in
addition, users may create standard library modules containing
commonly used routines.

Program Segmentation Programs may be partitioned on a proce-
dural basis into a number of disk-resident code segments.
Thus, large programs can run in limited amounts of memory by
controlling the loading and unloading of its segments.

Extended I/O Pascal's standard file I/O intrinsics are
modified to operate in an interactive, single-user environ
ment. Extensions are provided for direct access to the file
system, random-access disk files, and device I/O.

Strings Strings are character sequences whose length may vary
dynamically during program execution. A predefined string
type is provided, along with a set of intrinsics for common
string-processing operations.

Precision Arithmetic - The standard integer data type may be
extended to allow arithmetic with -long- integers containing
up to 36 digits.

This manual is organized into eight chapters. IntroductioD pre
sents an overview of UCSD Pascal along with information needed to
use the manual. Deviations describes the areas where UCSD Pascal
conflicts with standard Pascal. Extensions describes the UCSD
Pascal extensions. ~ Intrinsics provides detailed descriptions
of all the UCSD Pascal intrinsic routines; the intrinsics are
listed in alphabetiC order for easy referencing. Compile Options
describes compiler directives which affect either the compiler's
operation or the nature of the code produced. Operating System
Customization describes the addition and modification of operating
system features. Programming Practices provides common programming
practices in UCSD Pascal. Appendices includes information on 'I/O
device attributes, implementation size limits, differences from
other UCSD Pascal release versions, and available library routines.

Introduction

~ Notation and TerminolgGr

This section describes the notation and terminology used in this
manual to describe UCSD Pascal.

A variant of Backus-Naur form (BNF) is used as a notation for
describing the form of language constructs. Meta-words are words
which represent a class of words; they are delimited by angular
brackets (-<" and ">-). Thus, the words "trout", "salmon", and
-tuna- are acceptable substitutions for the meta-word "<fish>";
here is an expression describing the substitution:

<fish> ::= trout I salmon I tuna

The symbol "::=- indicates
may be substituted with
vertical bar "I- separates
example above indicates
substituted for <fish>.

that the meta-word on the left-hand side
an item from the right-hand side. The

possible choices for substitution; the
that "trout", "salmon", or ·tuna" may be

An item·enclosed in square brackets may be optionally substituted
into a textual expression; for instance, "[micro]computer" repre
sents the text strings ·computer" and -microcomputer".

An item enclosed in curly brackets may be substituted zero or more
times into a textual expression. The following expression repre
sents responses to jokes possessing varying degrees of humor:

<joke response> ::= {hal

In many instances, the notation described above is used informally
to describe the form required by a language construct. Here are
some typical examples:

START«process statement> [,<pid> [,<stacksize> [,<priority>]]])

CONCAT«string> {,<string>})

The syntax for Pascal's IF statement is:

IF <Boolean expression> THEN <statement> [ELSE <statement}]

Pascal reserved words and predeclared identifiers are printed in
CAPITAL LETTERS, while standard terms are underlined.

The following terms are used in the descriptions of UCSD Pascal:
f.i.l.e. D..allla, block, block Dumber, lm.i.,t, and lm.i.,t number. .e:.ilJl:. n.am.e
refers to the .system's file naming convention; file names are
described in chapter 2 of the System User's Manual. Block denotes
the basic unit of transfer for disk files; a block is defined as
512 bytes of data. Block is also defined in Pascal as the set of
declarations and statements comprising a program or procedure.
Unit refers either to a separately compilable module or an 1/0 unit
(as described in the System User's Manual). ~ number applies
only to 1/0 units.

Page 3

PDQ-3 Programmer's Manual

Page 4

Deviations From Standard Pascal

1L. DIWIA'l'IONS!B.Q!I STANDARD PASCAt,

This section describes the areas where UCSD Pascal deviates from
standard Pascal. Language differences are considered deviations if
they meet the following criteria:

A) The differences affect compilation or execution of programs
written in standard Pascal. These deviations affect the
transportability of standard Pascal programs onto the UCSD
Pascal system1 they are generally categorized as implementa
tion restrictions.

B) The differences subtly alter the standard Pascal language
definition. These deviations affect the transportability of
seemingly standard Pascal programs written in UCSO Pascal,
they are generally categorized as "features·!

Sections 2.5.4 (WRITE), 2.8 (program headings) and 2.9 (records)
describe deviations belonging to both categories. Sections 2.0
(CASE statements), 2.2 (NIL), 2.4 (000 and CHR) , 2.12 (comments),
and 2.13 (type compatibility) describe UCSO Pascal "features·. The
remaining sections describe implementation restrictions.

NOTE - Thi"s section describes language deviations only. Implemen
tation-dependent limits are described in Appendix G.

Page 5

PDQ-3 Programmer's Manual

~ ~ Statements

In standard Pascal, the result of a CASE statement is undefined if
the case selector contains a value which is not matched by any case
label listed in the statement.

In UCSD Pascal, CASE statements are defined to have no effect in
this situation; case selection -falls through·, and execution
continues with the statement following the CASE statement.

Example of CASE statement:

program fall through;
var ch: char;
begin

ch :. 'b';
case ch of

'a': writelnC'ch • ·a·');
'c': writelnC'ch • ·c·');

end;
writelnC'No errors from case ••• ·);

end {fallthrough}.

1&1 ~ Statements

In UCSD Pascal, the scope of labels accessible to GOTO statements
is restricted to a Single block; thus, out-of-block GOTO's are not
allowed.

NOTE - A limited form of out-of-block GOTe is provided with the
EXIT intrinsic (see section 3.11.7 for details).

Example of out-of-block GOTe:

program outside;
label 1;

procedure jump;
begin

goto 1;
end {jump};

begin
j . 1;

1:
end {outside}.

Standard Pascal defines the symbol NIL as a reserved word. NIL is
a predefined identifier in UCSD Pascal.

Page 6

Deviations From Standard Pascal

2....3. FORWARD

Standard Pascal defines the symbol FORWARD as a directive lacking
any meaning outside of a procedure declaration. FORWARD is a
reserved word in UCSD Pascal.

Standard Pascal defines the standard functions ODD, CHR, and NOT
to return a result whose ordinal value reflects the result type.
Thus, ODD and NOT are defined to return a BOOLEAN result whose
ordinal value is in the range 0 •• 1, while CHR is defined to return
a result of type CHAR whose ordinal value is in the range 0 •• 255.

In UCSD Pascal, ODD and CHR perform the required type conversion,
but the ordinal value of the result is equal to the ordinal value
of the argument. For example, ORD(ODD(56» returns 0 in standard
Pascal, but returns 56 in UCSO Pascal. ODD is defined in this
manner to allow logical operations on integer types (see section
7.3) •

In UCSD Pascal, NOT returns the l6-bit one's complement of its
operand rather than complementing only the low-order bit. For
example, ORD (NOT FALSE) returns 1 in standard Pascal, but returns
-1 in UCSD Pascal. Use of the Boolean Negation compile option
(described in section 5.0.13) causes the NOT operator to behave as
defined in standard Pascal.

WARNING - This behavior implies that variables of type BOOLEAN and
CHAR may contain values outside of their defined ordinal ranges.
BOOLEAN and CHAR comparisons do not work correctly when their
arguments possess out-of-range ordinal values, as they are imple
mented with full-word comparison operators. In addition, array
indexing using subscripts of types BOOLEAN and CHAR may not behave
as expected. Note that conditional statements in UCSO Pascal
ignore all but the low-order bit of a BOOLEAN result, and thus are
unaffected by this feature.

ODD example:

program eccentric:
var I: integer;
begin

I := 556;
I := ordCoddCI) and odd(255»;
{ The high byte of I has been masked off }
{ I now contains the integer value 44 }
I := ord(not odd(i»;
{ Taking the l's complement yields -45 }

end {eccentric}.

Page 7

PDQ-3 Programmer's Manual

~ 1LQ Intrinsics

Sections 2.5.0 through 2.5.2 describe deviations resulting from
ueSD Pascal's file I/O environment (see section 3.3). Sections
2.5.3 and 2.5.4 describe deviations resulting from implementation
restrictions.

2.5.0 IHPU:

The predeclared file INPUT is defined as an interactive file in
ueSD Pascal. Section 3.3.1 describes interactive files.

All data read from the INPUT file is echoed to the predeclared
OUTPUT file.

2.5.1 RESS: ADd REWRITB

The standard procedures RESET and REWRITE have been altered to
provide direct access to the file system (see section 3.3.0 for
details). ueSD Pascal does not allow internal files, all files
must be mapped into external files. Internal files may be
simulated with temporary external files.

Example of an internal file in standard Pascal:

procedure local,
var internal: file of integer;
begin

rewrite(internal);
•••

end {local};

In UeSD Pascal, Eor is set to false after a file is rewritten,
standard Pascal defines Eor to be true after rewriting a file. The
reason for this discrepancy is explained in section 2.5.2.

2.5,2 IQl

ueSD Pascal redefines the meaning of the standard function Eor for
files that are open for writing. The standard procedure REWRITE
initially sets Eor to false, Eor then serves as a physical
end-of-file indicator. The standard procedure PUT sets EOF to
false after every successfully written record. If PUT attempts to
write a record past the end of the space allocated for the disk
file (see section 2.1.4.4 of the System User's Manual), and the
file space cannot be extended (e.g. because of the presence of
another disk file on the volume), EOF becomes true.

2.5,3 BBAD ADd REApLN

The standard procedure READ may not be applied to files other than

Page 8

Deviations From Standard Pascal

text files. READ and READLN do not accept elements of packed
character arrays as arguments. READ and READLN are redefined when
used with interactive files (see section 3.3.1 for details).

2.5.4 WRITE ADd WRXTELI

The standard procedure WRITE may not be applied to files other than
text files.

Standard Pascal defines an optional control parameter named ~
ti2n length for specifying the output format of values of type
REAL. The fraction length parameter specifies the number of digits
to follow the decimal point in a fixed point representation of the
value. If the fraction length specifies more digits than can be
represented as Significant digits by the underlying floating point
implementation, the standard directs the fraction to be padded out
with the requisite number of a's. UCSD Pascal pads out overly long
fractional parts with blank characters in place of (nonsignificant)
·0· digits.

NOTE - The REALCON library unit (described in the Library User's
Manual) provides procedures that allow the translation of real
values to the standard format.

1&1 Packed Variables

The standard procedures PACK and UNPACK are not implemented in UCSD
Pascal. UCSD Pascal does perform packing of array and record types
preceded by the reserved word PACKED (see section 7.0).

~ Procedural ADd Functional Parameters

Procedural and functional parameters are not implemented in UCSD
Pascal.

~ Program Headings

Parameter lists associated with program headings are ignored in
UCSD Pascal. The standard files INPUT and OUTPUT are predeclared
and opened to the system console by the operating system. Programs
gain access to external files with the intrinsics REWRITE, RESET,
and CLOSE (see section 3.3.0 for details).

NOTE The INPUT and OUTPUT files may be attached to input and
output streams other than the system console by using the IIO
redirection options described in the System User's Manual.

Page 9

PDQ-3 Programmer's Manual

l..J. Records

UCSD Pascal does not allow records to be declared with empty field
lists.

UCSD Pascal does not enforce variant part completeness in record
declarations; thus, the case labels need not specify all possible
values of the tag field. For example, the following record
declaration is legal:

type
devrec :II record

s: string;
case integer of

1: Cb: boolean);
2: (r: real);

end;

.LJJl Piles

UCSD Pascal does not allow file variables to be declared as part of
an array or record. UCSD Pascal does not allow dynamic allocation
of file variables.

1&11 Reseryed words

A number of reserved words have been added to UCSD Pascal. As
noted in section 2.3, FORWARD is a reserved word rather than a
directive. The following identifiers are reserved words in UCSD
Pascal:

forward
interface
implementation
process
segment
unit
uses

L.U Cogents

Standard Pascal defines the symbols "C*" and "*)" as alternative
symbols for the comment delimiters "{" and "}" respectively. Thus,
comments may begin with "{" and end with ".)", or begin with "C*"
and end with "}". Additionally, comments may not be nested in
standard Pascal.

UCSD Pascal treats "C*" and "*)" as separate comment delimiters
from the pair "{" and "}". Thus, comments beginning with "{" must
end with "}", and comments beginning with "C*" must end with -*)".
As a result, comments may be nested by using one pair of delimiters
to comment out source code containing one or more comments
delimited by the alternative symbols.

Page 10

Deviations From Standard Pascal

Example of comments in UCSD Pascal:

program comments;
begin

(*
comment out following statements • • •

writeln('don"t writeln'); {a contradiction}

don'twriteln('writeln'); {a syntactically incorrect}
{ contradiction }

• • • end of comment
*)

end {comments}.

1&ll ~ Compatibility

In standard Pascal, the rules for type compatibility are referred
to as ~ compatibility. In general, variables are name-compati
ble if one of the following conditions is true:

a) The variables are declared with the same type identifier (e.g.
var vl: stuff; v2: stuff;).

b) The variables are in the same
variable declaration (e.g.
eger;).

identifier list of a single
var vl, v2: array[charl of int-

In UCSD Pascal, the rules for type compatibility are referred to as
structure compatibility. Variables are structure-compatible if the
data structures implementing their respective type are structurally
equivalent:

Simple types must share the same base type (note that subrange .
types are compatible with their base types).

Sets must have structure-compatible base types.

Arrays must have structure-compatible base types and index
types along with identical array bounds.

Records must have structure-compatible fields declared in the
same order.

Page 11

PDQ-3 Programmer's Manual

.Example of structure-compatible simple types:

type
length = real;
weight = real;

Example of structure-compatible arrays:

type
tl • 1 •• 10;
t2 • 1 •• 10;

x • array [tIl of integer;
y • array [t2l of 0 •• 52;

Example of structure-compatible records:

type
polar • record

radius, angle: real;
int: integer;

end;

reall • record
x: real;
y: real;
z: 0 ••• 2047;

end;

duple • record
s,t: real;
u: 10 •• 15;

end;

NOTE - Structure compatibility implies name compatibility; however,
the converse is not true. Thus, UCSD Pascal programs utilizing
structural type compatibility will not compile on standard Pascal
compilers which enforce name compatibility.

WARNING Structural equivalence of records can lead to somewhat
strange notions of type compatibility. For instance, assume that
the value 1.0 is assigned to the field x in a record of type reall.
If the record is assigned to a record of type duple, the value 1.0
is contained in the t field of duple instead of the s field! This
is a result of the compiler's scheme for allocating storage space
for record fields (see section 7.1.1 for details).

In conclusion, UCSD Pascal programmers are urged to adhere to the
·standard· practice of refraining from the use of structural type
compatibility.

Page 12

Extensions To Standard Pascal

lll& EXTENSIONS %D STANDABD PASCAL

This chapter describes UCSD extensions to standard Pascal.
extensions may be divided into three classes with respect
syntax:

The
to

Reserved Words - A handful of reserved words have been added to
support segment procedures, units, and processes. Reserved
words are listed in Appendix E.

Predeclared Types and Routines - These extensions may be used in
any UCSD Pascal program; unlike reserved word extensions,
predeclared identifiers may be redefined in the program. Two
examples of predeclared types are STRING and SEMAPHORE.
Predeclared procedures and functions are usually called in
trinsics; they comprise the majority of language extensions in
UCSD Pascal. See chapter 4 for detailed descriptions of the
UCSD intrinsics.

Syntax Extensions - Standard Pascal syntax has been modified to
accommodate some extensions. The SCAN intrinsic requires a
parameter known as a "partial Boolean expression". A partial
Boolean expression consists of an "=" or "<>" operator
followed by a character exp.ression (e.g. = 's' is a valid
partial Boolean expression). The declaration of a block file
appears as a file type declaration lacking a base type
specification (e.g. TYPE BLOCKFILE = FILE; is a valid type
declaration). Type declarations for strings and extended
precision integers contain subtype specifications which-define
the type's size attribute (e.g. TYPE LONGINT = INTEGER[201;
). Variable addresses are obtained in the PMACHINE intrinsic
by preceding a variable reference with the "up-arrow· symbol
(e.g. ApERSON.NAME[Il). Finally, many intrinsics accept
optional parameters or parameter sequences.

NOTE - All extensions described in this chapter are recognized by
the compiler and are hence part of the UCSD PASCAL base language.
Another class of extensions is available through the use of the
library modules described in the Library User's Manual. Routines
that allow program chaining, extended directory management, screen
control, and other system-oriented functions are documented there,
but are listed in Appendix K for convenience.

Sections 3.0 through 3.2 describe the major extensions to standard
Pascal: concurrency, program segmentation, and separate compila
tion. Sections 3.3 through 3.6 describe other commonly used
extensions: files, strings, dynamic variable management, and pre
cision arithmetic. Sections 3.7 through 3.10 present low-level
extensions which possess minimal type-checking and are intended
primarily for systems use; these should be used only when neces
sary. Section 3.11 describes the remaining extensions.

Page 13

PDQ-3 Programmer's Manual

l....Q. Concurrency

Concurrency is defined as the simultaneous execution of a number of
activities. Most computer systems simulate concurrency by imple
menting ·virtual machines· on the physical machine~ a virtual
machine is assigned its own processor and memory. Each of the
concurrent activities executes on its own virtual machine, leaving
the physical machine responsible for simulating concurrent execu
tion of the virtual machines. Virtual machines are generally
referred to as tasks.

Concurrency in UCSD Pascal is restricted to concurrent execution of
routines declared in a single program. A program may initiate any
number of tasks, but the tasks must finish executing before the
program is allowed to terminate.

Because the POQ-3 is a single processor system, concurrency is
simulated by sharing the processor among tasks. Processor sharing
is accomplished by allocating each task a period of time during
which it can execute, and then switching the processor to another
taskJ the latter action is known as a ~ switch. The task
executing on the- processor is called the current ~, while tasks
waiting for processor time are called ready-to-run tasks. Execu
tion states (i.e. processor register values) describing ready-to
run tasks are stored in a system structure known as the read¥
queue.

Semaphores are special variables used for task synchronization.
Semaphores are used both in preventing tasks from executing until
an event occurs, and in signalling occurrences of events. Tasks
waiting for an event to occur are called suspended tasks. Execu
tion states describing suspended tasks are stored in a semaphore's
ni.t gueue.

This section describes concurrency in UCSD Pascal. Tasks are
described in section 3.0.0. Semaphores and applications of task
synchronization are described in section 3.0.1. Section 3.0.2
describes interrupt handling, in which semaphores enable tasks to
respond to processor interrupts. Section 3.0.3 describes ~
slicing, which allows simulation of true concurrent proceSSing on
the PDQ-3's Single processor.

NOTE - See sections 7.6 and 7.7 for applications of concurrency to
the development of device drivers and multiterminal programs.

NOTE - See the Architecture Guide for a description of the PDQ-3 I s
concurrency implementation.

Page 14

Extensions To Standard Pascal

3.0.0 Tasks

A task is defined by four attributes: process, ~ identifier,
stack ~, and priority.

The primary attribute of a task is the code it executes; tasks may
only execute routines declared as processes. Processes are des
cribed in section 3.0.0.0. Each task is assigned a unique
identifying value when it is created; this value may be retained in
a taa& identifier variable to distinguish the started task from
other tasks in the system. Task identifiers are described in
section 3.0.0.1. The amount of memory allocated for a new task is
determined by the task'S stack~. Task stacks are described in
~Ection 3.0.0.2. The last (but not least) attribute is priority; a
task's priority value determines its ability to obtain processor
time given the existence of other tasks. Task priorities are
described in section 3.0.0.3.

The system assigns task attributes when a task is initiated. Tasks
are created with the UCSD intrinsic START, which has the following
form:

START (<process call> [, <processid variable>
[, <stacksize expression>

[, <priority expression>]]]);

The main parameter to START is a process call; it resembles a
procedure call, and may contain parameters passed to the task (e.g.
START (Zip) or START(Laughter(30»). Note that starting a single
process several times in a program creates a number of tasks
executing the same copy of a process's code. The remaining
parameters are optional. Task identifiers must be declared as
variables of type PROCESSID. The stack size parameter consists of
an integer-valued expression, and represents the number of words
allocated for a stack space; the default stack size is 200 words.
The priority parameter consists of an integer-valued expression; if
it is not in the range 0 •• 255, an execution error occurs. The
default priority is 128.

Tasks terminate execution when they reach the end of their process
code; however, their stack spaces occupy memory until the parent
program finishes execution. The system prevents a program from
terminating until all of its tasks have terminated.

NOTE The description of tasks presented here is sufficient for
describing the execution of programs containing processes. From
the system's point of view, the entire system (of which a user
program is merely a part) is called the main taa&; the other tasks
(including system device drivers and user-defined processes) are
known as subsidiary tasks. From the processor's point of view,
there is no distinction between the main task and subsidiary tasks;
they are functionally equivalent. See the Architecture Guide for
more information.

Page 15

POQ-3 Programmer's Manual

3. Q. 0.0 Pr'ocesses

Processes are declared similarly to procedures; however, the
reserved word PROCESS replaces the reserved word PROCEDURE. The
syntax description presented below is derived from the formal
syntax description for procedures in Appendix 0 of the Pascal ~
Manual ~ Report:

<process declaration> ::= <process heading> <block>

<process heading> ::=
PROCESS <identifier> <formal parameter part> ;

RESTRICTIONS Processes must be declared in the outer (global)
block of a programJ they may not be declared within a procedure or
another process. START may only be called from the main task;
thus, subsidiary tasks cannot create new tasks. Violating this
restriction causes an execution error.

WARNING Tasks are not allocated their own heap space: dynamic
variables are always allocated on the system heap. For this
reason, using DISPOSE to deallocate dynamic variables within a task
is recommended rather than MARK and RELEASE, as MARK and RELEASE
may inadvertently remove variables created by other tasks. Sec
tions of the operating system dealing with global resource manage
ment (e.g. the file system and heap) are protected from task
contentionJ nevertheless, processes using these resources should do
so carefully. Section 3.0.0.2 describes other problems caused by
interactions between tasks and the system heap.

NOTE - Variable parameters passed to a process may require an
associated semaphore in order to ensure mutually exclusive access
to the actual parameter (see section 3.0.1 for more information).

Examples of proces~ declarations:

process ZipJ
begin

•••
end;

process BackgroundLaughter (Laughs: integer);
begin

i := 0;
if Laughs > 0 then

repeat
w r i t e (• ha •) ;
i := (i + 1) mod Laughs:
if i • 0 then writeln;

until false:
end {BackgroundLaughter};

Page 16

Extensions To Standard Pascal

3.0.0.1 %Aak Identifiers

START assigns each task a unique value distinguishing it from other
tasks. These values may be obtained by specifying a task identifi
er variable as the processid parameter to the START intrinsic;
START assigns the value associated with the started task to the
variable. Task identifier variables must be declared with the
predefined type PROCESSID, and can be used in the same manner as
pointer variables (i.e. the only valid operations are assignment
and comparison with other task identifier variables).

NOTE - Other uses of task identifier variables are described in the
Architecture Guide.

In the following example, two tasks are created with START; the
variables PIDI and PID2 are assigned values identifying the tasks.
Because these values are unique, this program writes "Truth· when
executed:

Program a;

Var PIDI,PID2: processid;

process t;
begin

•••
end;

begin
start(t, PIDl);
startCt, PID2);
if PIDl <> PID2 then writeln ('Truth');

end.

3.0.0.2 %Aak Stacks

Each task is allocated an area of memory in which it can execute;
because UCSD Pascal programs execute on stack-oriented machines,
the memory area is called a stack space. Stack space is used to
store parameters and variables, procedure call information, and
segment procedure code. When a task exhausts its stack space, a
·stack overflow· occurs, and the system must be restarted.

NOTE - The main task's stack space is coincident with the system
stack, and is limited in size only by the amount of system memory
available. Stack spaces for subsidiary tasks are allocated on the
system heap by the START intrinsic; hence, they are generally small
compared to the main task's stack space. (Note that the main
task's stack competes with the system heap for memory, while a
subsidiary task's stack space is of fixed size, and is used only by
the task stack.)

WARNING Because task stacks are allocated on the system heap,
tasks are susceptible to destruction from careless use of MARK and

Page 17

PDQ-3 Programmer's Manual

RELEASE. Dynamic variables allocated before a started task should
be deallocated using DISPOSE; never RELEASE the heap "below a
started task.

NOTE Stack sizes must be sufficient for the basic needs of a
process; the minimum size is: 32 words plus the number of words
used by local variables and parameters. A procedure call uses a
minimum of 4 words of space. If the task executes a segment
process, stack space may be needed for the process code segment
(see section 3.1 for more information). Attempt to avoid calling
segments and/or procedures with large local data spaces, as they
can quickly consume a task's stack space. (If this is unavoidable,
the Libmap utility and compiled listings may be used to reveal the
sizes of code and data segments in order to determine the amount of
stack space required by a task (see the Architecture Guide for more
information».

Examples of stack size specification:

Program a:
Var PID: processid;

I,J: integer;

process pl;
begin

•••
end;

begin
I :- 4; J:=- 5;
start(pl,PID);
startCpl,PID,lO);
startCpl,PID,(I + J)*lOO);

end.

3.0.0.3 PriQrity

{ stack space = 200 }
{ stack space = 10 }
{ stack space = 900 }

Each task is assigned a taat priority value between 0 and 255. A
task's priority determines its ability to obtain the processor when
other tasks are ready to run. The processor's task scheduling
policy is simple: no task may execute when a higher priority task
is ready to run. The system enforces this policy by ordering all
tasks in the ready queue by their priority, and by performing a
task switch when the task at the head of the ready queue has higher
priority than the current task.

NOTE When a task is inserted into the ready queue, it is placed
behind all other tasks having priorities greater than or equal to
its own.

NOTE The main task's priority is 128. Priorities above 191 are
reserved for the operating system. Starting a process having
priority higher than 128 immediately suspends the main task.

Page 18

Extensions To Standard Pascal

Examples of priority specification:

Program a;
Var PID: processid;

I: integer;

process pl;
begin

•••
end;

begin
I := 5;
start(p1,PID,100);
start(pl,PID,100,90);
start(p1,PID,100,I*40);

end.

Page 19

{ priority = 128 }
{ priority = 90 }
{ priority = 200 }

POQ-3 Programmer's Manual

3.0.1 SemaphQres

Semaphores are variables declared with the predefined type SEMA
PHORE. Semaphores are used solely for task synchronization; they
are shared by tasks wishing to communicate with each other.
Semaphores consist of two parts: a nonnegative integer counter and
a queue for storing suspended tasks. Semaphores are never accessed
directly; they are accessed with semaphore operators.

The principal semaphore operators are SEMINIT, WAIT, and SIGNAL.

SEMINIT initializes a semaphore variable by assigning it an initial
count value and an empty wait queue.

WAIT checks the value of the semaphore count. If it is greater
than zero, the count is decremented, and the current task continues
to execute. Otherwise, the current task is stopped; it is placed
in the semaphore's wait queue, and becomes a suspended task. The
task at the head of the ready queue becomes the current task, and
resumes its execution. Note that a task executing WAIT either
continues as the current task or is stopped and becomes a suspended
task.

SIGNAL examines the semaphore's wait queue. If it is empty, the
semaphore's count is incremented. Otherwise, a suspended task is
removed from the head of the wait queue and placed in the ready
queue; it becomes a ready-to-run task. Note that if the Signalled
task has higher priority than the current task, a task switch
occurs; thus, a task executing SIGNAL either continues as the
current task or becomes aready-to-run task.

NOTE - When a task is inserted into a semaphore's wait queue, it is
placed behind all other tasks having priorities greater than or
equal to its own.

Semaphores may be divided into two classes (with respect to usage):
binary semaphores and counting semaphores. Binary semaphores have
two states, as their counts only take on the values 0 and I; they
are used for mutual exclusion (section 3.0.1.0). Counting sema
phores are so named because their count values can span the range
of natural numbers; they are used for resource allocation (section
3 .0.1.1) •

WARNING - Semaphores must be initialized with SEMINIT before use;
otherwise, system crashes may occur. Initializing a semaphore
containing suspended tasks causes the suspended tasks to be lost
forevermore. A semaphore's count value must not exceed 32767;
otherwise, the count value wraps around to a negative value,
leaving the semaphore in an undefined state.

Sections 3.0.1.0 and 3.0.1.1 present standard uses of semaphores in
concurrent systems. Section 3.0.1.0 describes mutual exclusion,
which is used to protect global variables and routines from
contention between tasks. Section 3.0.1.1 describes ~ synchron
ization, in which semaphores are used to synchronize the execution
of aC~roup of tasks.

Page 20

Extensions To Standard Pascal

3.0.1.0 Mutual Exclusion

When processes share a resource (usually a variable or an I/O
device), it is often necessary to protect the resource from being
accessed by more than one task at a time; this form of resource
protection is known as mutual exclusion. Mutual exclusion is
ensured by placing all code which accesses the resource within a
·critical section-.

Critical sections are implemented (using a binary semaphore) by
preceding the critical code with a call to WAIT and terminating the
critical code with a call to SIGNAL. The binary semaphore is
initialized to 1, indicating that the critical section is initially
open; when a task executes a critical section (by passing the
WAIT), the semaphore count is guaranteed to be zero, ensuring that
other tasks may not enter the critical section until it becomes
available (by passing the SIGNAL).

Example of mutually exclusive use of a console screen:

Program example;
Var Console: semaphore;

procedure ConWrite(OutMsg: string);
begin

wait(Console); { start critical section}
writeln(II am I, OutMsg);
signal(Console); {end critical section}

end;

process MsgWriter(WhoIAm: integer; MyMsg: string);
begin

repeat
ConWrite(MyMsg)

until false;
end;

begin
seminit(Console,l);
start(MsgWriter(l,'Shakespeare'»;
start(MsgWriter(2,'monkey'»;
start(MsgWriter(3,Itypewriter'»;
•
•

. end {example}.

Page 21

POQ-3 Programmer's Manual

3.0.1.1 Synchronization

Semaphores may be used to synchronize the execution of a group of
processes so that each process's execution depends on the actions
of another process. Processes used in this fashion are known as
cooperating processes. Cooperating processes are implemented by
aSSigning a private semaphQre to each process. A process considers
its own private semaphore to represent an event which must occur
before it can resume execution~ therefore, the process waits on its
private -event- semaphore. Processes wishing to indicate the
occurrence of an event do so by Signalling the corresponding
private semaphore, thus activating the suspended process which owns
the private semaphore.

Cooperating processes and private semaphores are illustrated in the
example below, which demonstrates buffered data transmission Ccon
currency speeds up this activity by allowing simultaneous filling
and sending of different data buffers). The resources in need of
management are the N data buffers shared by the processes FillBufs
and SendBufs. FillBufs finds an empty buffer and fills it with
data. SendBufs finds a full buffer and dispatches it. The private
semaphores are BufAvail and BufFull. BufAvail indicates that a
buffer has been sent and is available for filling; its initial
value indicates that all buffers are initially available for
filling. BufFull indicates that a buffer is full and available for
transmission, its initial value reflects the lack of full buffers
at the outset.

program Buffers,
const N • { number of available buffers };
var BufFull, BufAvail: semaphore;

process FillBufs;
begin

repeat
waitCBufAvail);
{... Select an empty buffer and fill it ••• }
signal (Buf Full);

until false,
end~

process SendBufs~
begin

repeat
waitCBufFull);
{... Select a full buffer and send it ••• }
signal (Buf Avail);

until false~
end~

begin
seminit(BufFull;O);
seminit(BufAvail,N);
start(FillBufs)~
startCSendBufs);

end {Buffers}.

Page 22

Extensions To Standard Pascal

3.0.2 Interrupts

The UCSD intrinsic ATTACH allows processes to be used as interrupt
driven device drivers. ATTACH assigns a machine-dependent hardware
interrupt vector to a semaphore; from then on, the semaphore is
signalled whenever the processor receives an interrupt through the
indicated interrupt vector.

NOTE - Interrupt vector aSSignments are described in the Hardware
User's Manual. Also see section 7.6.3 for more information.

WARNING - ATTACH treats semaphore arguments as permanent variables;
therefore, semaphores attached to interrupt vectors must be de
clared in the outer block of either the main program or the
appropriate device process. The processor knows only of the memory
address of an interrupt vector's attached semaphore, and continues
to Signal this address after every interrupt. It has no way of
determining whether it is actually Signalling a semaphore variable
or merely damaging some unsuspecting code or data which happens to
reside in memory previously occupied by an attached semaphore
variable. To wit, indiscreet use of ATTACH may adversely affect
the system.

WARNING Because the PDQ-3 system currently lacks a method for
de-attaching semaphores, the system must be rebooted after running
a user program containing attached semaphores if the devices
causing interrupts cannot be disabled.

An example of interrupt processing may be found in section 7.6.3.

Page 23

PDQ-3 Programmer's Manual

3.0,3 %1m& Sliqing

~ sliCing refers to the allocation of processor time to each
task in the ready queue. Time sliCing on the PDQ-3 is a
side-effect of interactions between the system clock handler
process and the task scheduling mechanism.

The system clock interrupts the processor 60 times per second.
The clock handler process has higher priority than user tasks; it
continually waits for clock interrupts in order to update the
system time. When the processor receives a clock interrupt, a task
switch occurs that activates the clock handler process, causing the
current user task to be inserted in the ready queue behind other
tasks of equal priority. When the clock handler suspends itself,
the processor selects the task at the front of the ready queue as
the current task. Thus, the processor circulates between tasks of
equal priority.

NOTE - T~e SY3. I. 's may perform time sliCing only if the clock
driver 1S installed as a system driver (see section 2.3.1 of the
System User's Manual for details). In its absence, task circula
tion is performed only as a result of a task blockage due to either
the execution of the WAIT intrinsic or an interrupt-driven 110.

The following example demonstrates time slicing on the PDQ-3; when
executed, the program prints final counts that are approximately
equal, indicating that the tasks receive similar amounts of
processor time.

program RaceCondition;
const limit = 10000;
var carl, car2, car3: integer;

CheckeredFla9: boolean;

process racer(var counter: integer);
begin

counter := 0;
repeat

counter := counter + 1;
if not CheckeredFlag then

CheckeredFlag := counter)= limit;
until CheckeredFlag;
write(counter:6);

end;

begin
CheckeredFlag := false;
start(racer(carl»;
startCracer(car2»;
startCracerCcar3»;

end.

Page 24

Extensions To Standard Pascal

~ Program Segmentation

Program segmentation refers to the division of program code into
disk-resident ~ segments •. A code segment is memory-resident
while it is executed; the system loads it into memory when
necessary, and releases it from memory when possible. Memory
occupied by a code segment is freed for other uses when the segment
is released, ensuring efficient use of memory; thus, segmented
programs can avoid the memory constraints normally imposed on large
programs.

Program segmentation in UCSD Pascal is achieved on a procedural
basis through the use of segments. A procedure, function, or
process is specified to reside in a separate code segment by
preceding its declaration with the UCSD Pascal reserved word
SEGMENT. The code segment contains the segment's code along with
the code belonging to its (nonsegmented) local procedures. Note
that specifying a routine as a segment does not change the meaning
of the enclosing program.

When a segment is called, the system reads the corresponding code
segment into memory and executes the call; the code segment remains
in memory until the call is terminated. Recursive segment calls
proceed directly without loading the code segment, as it is already
memory-resident. Immediately before a segment terminates, the
system determines if the current segment invocation is recursive.
If so, the code segment remains in memory; otherwise, no other
invocations exist, and the code segment is released from memory.

Programs should be segmented with an eye towards minimizing both
the amount of code in memory and the frequency with which segments
must be loaded from disk. Segmenting a frequently called routine
causes the system to thrash, as the code must be read from disk on
each call. A more suitable candidiate for segmentation is initial
ization code, which is usually executed only once at the beginning
of a program. Segments must be independent of each other in order
to reap the benefits of segmentation. For example, envision a
large piece of code requiring division into three segments (named
A, B, and C) in order to conserve memory. If the division results
in a program where A calls Band B then calls C, segmentation is
fruitless all three code segments are memory-resident while C
executesl A proper division results in three mutually independent
segments which are called sequentially (e.g. "Ai B; Ci"). The
maximum memory required by this division is the size of the largest
segment rather than the sum of all three. Program segmentation is
most effective when it influences the design of large programs (as
opposed to "tuning" existing programs).

NOTE - Within the main program or any segment declaration, the code
comprising local segments must appear before code belonging to the
enclosing segment or program. As can be seen in the example, this
does not prevent unsegmented procedures from containing local
segments, but does affect the order in which local procedures are
declared. As with unsegmented procedures, segments may be declared
forward to resolve interprocedural references. Forward declaration
of segmented and unsegmented procedures may occur in any order.

Page 25

PDQ-3 Programmer's Manual

NOTE - A program may contain between 1 and 128 code segments; one
code segment is reserved for the program itself, while the
remaining code segments are available either for segments or units
(section 3.2). In the absence of units, a program may contain up
to 127 segments. The program segment and all resident unit
segments are automatically loaded into memory at program invocation
time.

WARNING - When a program calls a disk-resident segment, the disk
volume containing the program's code file (and thus its code
segments) must be online and mounted in the same drive as when the
program was started; otherwise, the system crashes.

Example of segment declarations:

program main;

procedure pl; forward;
segment function p2: integer; forward;

segment procedure p3;

procedure p3pl;

segment function p3plpl:boolean;
begin

•••
end {p3plpll;

begin
•••

end {p3pl};

begin
•••

end {p3};

segment function p2(: integer};
begin

•••
end;

procedure pI;
begin

•••
end;

begin
•••

end {main}.

Page 26

Extensions To Standard Pascal

3.1.0 Alternate Segment Management Strategies

A segment is normally memory-resident only while it is executed.
The $R compile option and the UCSD intrinsics MEMLOCK and MEMSWAP
allow alternate segment management stategies. The $R compile
option causes a list of segments to be resident throughout the
execution of a given procedure. See section 5.0.9 for more
information. The MEMLOCK and MEMSWAP intrinsics provide runtime
control over the loading and unloading of segments. Use of these
intrinsics must be accompanied by the use of the $H compile option,
described in section 5.0.6.

The MEMLOCK and MEMSWAP intrinsics accept a string value parameter
containing a list of segments to be loaded or unloaded, respective
ly. A segment list contains segment and unit identifiers (section
3.2) declared in the program and its used units, or in the
operating system. Identifiers are separated by commas; spaces and
invalid identifiers in the segment list are ignored. The form for
a HEMLOCK or a MEMSWAP call is:

<memlock-call> ::= MEMLOCK«segment-list»
<memswap-call> ::= MEMSWAP«segment-list»

<segment-list> ::= <segment-name> {,<segment-name>} I <empty>

The MEMLOCK intrinsic causes each code segment in the segment list
to be loaded onto the system heap. Subsequent calls to such
segments use the MEMLOCKed copy of the code rather than loading it
from disk. MEMLOCKing an already MEMLOCKed segment has no effect.

The MEMSWAP intrinsic causes each code segment in the segment list
to be removed from memory. The memory occupied by the code segment
is subsequently available for reallocation by the NEW and MEMLOCK
intrinsics. ME MSWAP operates only on code segments loaded as a
result of a MEMLOCK call. It does not unload a code segment until
there has been a matching MEMSWAP call for each MEMLOCK call on
that segment and there are no active calls to that code segment.

NOTE - MEMLOCKirig a segment does not unload copies of the segment
loaded as a result of prior loads and calls. However, once the
non-MEMLOCKed copies are unloaded, subsequent calls use the MEM
LOCKed copy of the code. For example, if a currently executing
segment (resident on the system stack) MEMLOCKs itself, two copies
of the code segment will exist in memory until the active segment
invocation is terminated. At that point, the original copy of the
code segment is removed from memory. Subsequent calls to the
segment use the MEMLOCKed copy.

NOTE - All MEMLOCKed segments are unloaded at program ~ermination.

WARNING - Attempts to MEMLOCK a segment whose identifer is shared
by more than one segment has unpredictable results.

NOTE - MEMSWAPing a segment to which there are active calls causes
the code segment to be unloaded after the termination of the last

Page 27

PDQ-3 Programmer's Manual

call. Unfortunately, if the last call is terminated by the EXIT
intrinsic, the code segment is not actually unloaded until the next
call to that segment. Calls made to segments between the MEMSWAP
call and the termination of the last active call are processed as
if the segment was not MEMLOCKed.

WARNING Since MEMLOCKed segments reside in the heap, indiscreet
use of ME~~OCK may render the heap incapable of containing large
buffers. Such use may also cause a stack overflow if a MEMLOCKed
code segment is situated in memory so that extension of the system
stack is impossible.

Example of MEMLOCK and MEMSWAP use:

program mems;

segment procedure segl;
begin <... segment code ••• >
end;

segment procedure seg2;
begin <... segment code ••• >

memswap('segl '); .
end;

begin
memlock('segl, se92'~;
seg2;
memswap('seg2 ');

end {main}.

3.1.1 Segments ADd Tasks

A few restrictions are imposed on the use of segments in conjunc
tion with concurrent tasks. These restrictions are due to archi
tectural limitations.

Processes may be declared as segments; however, they operate
somewhat differently. If the process executed by a task is
declared as a segment, the code segment containing the process is
read onto the task's stack, and remains there while the task
executes. Unfortunately, when the main program terminates, the
system is unable to shut down segmented tasks in an orderly
fashion, and so must be rebooted; therefore, segment processes
should only be used in dedicated (i.e. nonterminating) programs.

A task calling a swappable segment receives a private copy of the
code segment on its task stack; code for MEMLOCKed segments is
shared among tasks.

NOTE - Due to architectural limitations, calls by tasks to segment
procedures and functions declared in units installed in the

Page 28

Extensions To Standard Pascal

intrinsics, drivers, and system support libraries (described in the
System User's Manual) must either be treated as critical sections,
or the segments must be MEMLOCKed; otherwise, system crashes may
occur. See section 3.0.1.0 for details on critical sections.

Page 29

PDQ-3 Programmer's Manual

~ separate Cgmpilation

Separate compilation (also known as Nexternal compilation" or
"modular programming") allows programs to be created from individ
ually compiled modules. Some advantages resulting from separate
compilation are:

New modules can be written, compiled, and combined with
existing modules to create new programs. The new modules
them~elves might later be used in other programs. Thus, a
grow1ng catalog of precompiled software tools may become
available for use in general software development.

Large programs constructed from separate modules are easily
modified; changes are isolated to individual modules, allowing
fast and reliable program maintenance.

Programs can be developed that are larger than could otherwise
be compiled in one piece on the system.

Separately compiled modules are built in UCSD Pascal
construct. Unit declaration is described in section
tion 3.2.1 explains how units are referenced by
Section 3.2.2 provides information on unit linkage.
provides information on the memory management of
ments.

using the UNIT
3.2.0. Sec

host programs.
Section 3.2.3
unit code seg-

NOTE - This section provides a program-level description of units.
Section 7.9 describes the philosophy and pragmatics of unit
construction and usage. The System User's Manual presents a
system-level description of units and libraries.

3.2.0 Dnits

Units are collections of uses-, constant-, type-, variable-,
procedure-, function-, and process- declarations usually oriented
toward some application. These objects become available for use
when the unit is referenced by a ~ (a program or another unit).
Units consist of four parts: an interface section, an implementa
tign section, an initialization section, and a termination section.
Objects declared in a unit's interface section are public; they are
accessible to both the unit and the host which uses the unit.
Objects declared in the implementation section are private; they
are accessible only within the unit's implementation section. The
initialization section is a code sequence that usually initializes
unit variables and is automatically executed once at program
invocation time. It is executed before any code in the host which
uses the unit. The termination section is a code sequence that is
automatically executed once at program termination time and usually
performs any Nshut-down N operations required. It is executed after
the termination code of the host which uses the unit.

An example of a unit declaration appears on the next page. Note
that the interface section may contain only procedure and function

Page 30

Extensions To Standard Pascal

headings - routine bodies are not allowed. Procedure and function
headings in the interface section are similar to forward declara
tions: when the corresponding routines are defined in the implemen
tation section, the parameter list is omitted.

unit mnemenos;
interface

type mnemone = (truth, beauty, wisdom, knowledge, etc);

procedure relapse;
{ forget all items learned }

procedure learn (newentry: mnemone);
{ learn a new item }

function recall (look: mnemone): boolean;
{ has item been learned? }

implementation

type listentry = record
data: mnemone;
next: entryptr;

end;
var listhead: Alistentry;

procedure relapse;
begin listhead := nil end;

procedure learn;
var entry: Alistentry;
begin

new (entry);
with entryA do

begin data := newentry; next := listhead; end:
listhead := entry;

end;

function recall;
var entry: Alistentry;
begin

recall := false; entry := listhead:
while entry <> nil do

end;

begin

if entryA.data <> look then
entry := entryA.next

else recall := true;

listhead := nil; {initialization section}
***. ,

relapse:
end {mnemenos}.

{termination section}

The syntax for unit definition is shown below (it is loosely based

Paqe 31

PDQ-3 Programmer's Manual

on the Pascal syntax in Appendix 0 of the ~ Manual ~ Report).

<compilation unit>

<program>

<library>

<inline unit part>

<uses part>

<unit definition>

<interface part>

::a <program> I <library>

::a <program heading>;
<inline unit part>
<uses part>
<block>.

::- <unit definition>
{;<unit definition>}.

::- {<unit definition);}

::- [USES <unit identifier>
{,<unit identifier>};]

::a UNIT <unit identifier>;
<interface part>
«implementation part>]
[BEGIN
«initialization section>]
(***;
[<termination section>]]]

E~

::- INTERFACE
<declarations>
<procedure and function headings>

<implementation part> ::-IMPLEMENTATION
<declarations>

<declarations>

<procedure and function bodies>

::- <uses part>
<constant definition part>
<type definition part>
<variable declaration part>

The ***; statement is valid only when used to separate initializa
tion and termination sections. It may not be contained in any
statement or procedure body.

Note that labels may not be declared globally in units. Neither
GOTe nor EXIT statements may occur in either the unit initializa
tion section or termination section. Segment declarations are
allowed in both the interface· and implementation sections; they
follow the conventions described in section 3.1 for forward
declarations and procedure body declarations.

Note also that a unit may consist solely of an interface section
(and possibly an initialization and/or termination section); these
are known as ~ units. A data unit consists of only uses-,
constant-, type-, and variable declarations which are accessible to
a host program.

Page 32

Extensions To Standard Pascal

Example of a data unit:

unit ComplexData~
interface

type complex = record
realpart, imaginary : real;

end;
var one, i : complex;

begin {initialization section}
one.realpart := l~ one. imaginary := 0;
i.realpart := 0; i.imaginary:= 1;

end. {ComplexData}

The compiler accepts the following combinations of units and
programs:

1) A program.

2) A unit (as in the previous example).

3) A group of units.

4) A program containing one or more inline units.

NOTE - An interface section may be contained in an include file if
the keyword INTERFACE is also contained in the include file.
However, interface sections may not contain include file direc
tives.

3.2.1 Osing Qnits

A unit may be used in a host by naming it in a USES statement. In
programs, the USES statement must appear after the program heading.
In units, the USES statement must appear at the beginning of either
the interface section or the implementation section. Objects
declared in the interface section of a used unit become globally
declared objects within the host. Objects imported by using a unit
in the implementation section remain private to the using unit.

Code segments for units are normally memory-resident for the life
of the host program. Units may b~ ~ignated swappable by using
the $N compile option described in section 5.0.9. Such units are
resident in memory only when needed (similar to segment proced
ures), unless operated upon by the $R compile option or the MEMLOCK
intrinsic (see section 3.1.0).

NOTE In situations where a used unit uses other units in its
interface section, the host must name the nested units in its USES
statement before naming the unit which uses them. For example, if
unit A uses unit B in its interface section, then a host using unit
A must contain the USES statement nUSES B,A;n.

Page 33

PDQ-3 Programmer's Manual

WARNING Because objects imported from used units have global
scope within the host, naming conflicts may arise between globally
declared program identifiers and identifiers imported from used
units.

NOTE - One copy of a unit's public and private variables exists for
all USES of a unit by a program and its used units.

Page 34

Extensions To Standard Pascal

In the following example, the program uses the mnemeOQS unit
declared in a previous example~ identifiers imported from the unit
are underlined for emphasis. Note that the initialization section
of the unit is executed before the program is executed.

program UnitDemo~
uses mnemenQS~
type charset = set of char~
var finished: booleanJ

function GetCommand(valid: charset): char~
var ch: char
begin

repeat
read(keyboard,ch);

until ch in valid~
GetCommand := Chi
writeln(ch);

end;

function GetCategory(command: string): mnemooe;
begin

write(command,': T(ruth B(eauty W(isdom K(nowledge E(tc l
);

case GetCommand(['T','S','W','K','E'1) of
'T': GetCategory := truth;
'B': GetCategory := beauty;
'WI: GetCategory := wisdom;
'K': GetCategory := knowledge;
'E': GetCategory :=~;

end;
end;

begin {UnitDemo}
finished := false;
repeat

write('Education: L(earn R(ecall F(orget G(raduate')~
case GetCommand(['L ' ,'R ' ,'F ' ,'G ' 1) of

'L': learn(GetCategory('Learn'»;
'R': if recall(GetCategory('Recall'» then

writeln('Remembered')
else

writeln('Forgotten');
'F': relapse;
'G': finished := true;

end;
until finished;

end.

Paae 35

PDQ-3 Programmer's Manual

3.2.2 unit Linkage

Linkage to units is performed both at compile time and at runtime.
At compile time, the compiler imports the identifiers contained in
a used unit's interface section. At runtime, the operating system
loads code segments of used units and resolves unit references.
Linkage information is maintained with unit code in files known as
libraries. The library system contains an intrinsics library, a
system library, and the ~ library. It is described in section
2.2 of the System User's Manual.

In order to import the interface section of a unit used by a host,
the compiler must first locate the unit in the library system. The
compiler searches the intrinsics library first, then the current
code file (for in-line units), the system library, and finally the
user libraries. If the search is unsuccessful, a compiler syntax
error is emitted.

NOTE In cases where an in-line unit's name matches one already
present in the intrinsics library, the copy supplied by the
intrinsics library is used.

If a unit is modified, it should be recompiled and reinstalled into'
the library system. If a unit's interface section is modified, its
version number (see section 5.0.10) should be changed before
recompilation, and all hosts using the unit should be recompiled
with the new version installed in the library system.

In order to execute a program using units, the operating system
must locate each unit used by the program and its used units. This
search is performed in the same manner as the compile time search.
If a unit is not found, or it is found and its version number has
changed since the host was originally compiled, the system emits an
error message and aborts the execution of the program.

WARNING - Maintenance of version numbers is an important safegaurd
against accidental incompatibilities introduced by the modification
of units. Failure to maintain version control may yield dangerous
and unpredictable results.

NOTE - Units are compiled into code segments in a manner similar to
programs; the unit occupies one segment and each segment procedure
or function occupies a segment. Programs and units may directly
access up to 127 units and segments. A program and all of its used
units cannot access more than a total of 128 units and segments,
excluding any units and segments installed in the intrinsics
library. Units installed in the intrinsics library do not count
against the 128 segment limit.

Page 36

Extensions To Standard Pascal

l....l Files

UCSD Pascal provides a number of extensions for file handling. The
extensions include:

Direct access to the file system from programs.

Interactive file IIO on the system terminal.

Random-access disk files.

Slock-oriented files for systems programming.

Section 3.3.0 introduces the UCSD intrinsic CLOSE and describes
extensions made to the standard procedures RESET and REWRITE.
Together, these allow programs to access the file system. Section
3.3.1 describes the predeclared file type INTERACTIVE; when applied
to interactive files, the standard procedures READ and RESET are
redefined to accommodate interactive I/O. Section 3.3.2 describes
the predeclared file KEYBOARD, which reads characters from the
standard input without echoing them on the standard output.
Section 3.3.3 -describes block files. Block files are accessed with
the UCSD intrinsics BLOCKREAD and BLOCKWRITE; these read and write
data in integral numbers of blocks. Block files allow efficient
manipulation of large, arbitrarily structured files. Section 3.3.4
introduces the UCSD intrinsic SEEK, which is used to randomly
access the contents of disk files.

3.3.0 !il& System AQcess

UCSD Pascal provides direct access to the file system; this allows
programs to manipulate disk files and perform file operations on
IIO devices._ It is useful to make a distinction between file
variables and external files - a file variable is declared in a
program, while an external file is either a disk file or an 1/0
device. File system access is accomplished by connecting a
program's file variable with an external file. A file is ~ if
it has been connected, and closed if it either has not yet been
connected or has been connected and subsequently disconnected.
File IIO operations may only be performed on open files.

The file system is described in section 2.1 of the System User's
Manual.

The file system is accessed with the intrinsics RESET, REWRITE, and
CLOSE. RESET and REWRITE connect files, while CLOSE disconnects
files.

Page 37

PDQ-3 Programmer's Manual

REWRITE creates new files. Its form is:

<rewrite-call> ::- REWRITE«fileid>,<filename»

••• where <fileid> is a file variable identifier and <filename>
is a string containing a file name. REWRITE creates a new external
file with the given file name and prepares the file variable for
subsequent file operations. Note that using REWRITE with a single
argument (as defined in standard Pascal) causes a syntax error in
UCSD Pascal.

NOTE As mentioned in the file system specification, files on a
disk volume must have distinct file names; an existing file is
automatically deleted if another file with the same name is entered
in the disk directory. A disk file created by REWRITE is aSSigned
temporary status; it becomes a permanent file only if it is closed
and locked (see below for details). Thus, programs which generate
temporary files need not worry about inadvertently deleting perma
nent disk files.

RESET opens existing files
resets the file position
The form for RESET is:

for subsequent file operations, or
of an open disk file to its beginning.

<reset-call> ::- RESET«fileid>(,<filename>l)

••• where <fileid> is a file variable identifier and <filename>
is a string containing a file name. Calling RESET with the second
parameter present opens an existing external file named by <file
name> and prepares the file variable for subsequent file opera
tions. Note that RESET with a single parameter (i.e. the file
identifier) works as defined in standard Pascal, but is applicable
only to open disk files. .

CLOSE disconnects files. The form for clgse is:

<close-call> ::- CLOSE«fileid>(,<option>])

<option> ::- NORMAL I LOCK I PURGE I CRUNCH

The options determine the final state of a file. NORMAL (which is
the default option) preserves permanent files which were RESET, but
deletes temporary files created by REWRITE. LOCK preserves files
as permanent disk files. Locking a temporary file may delete an
existing permanent file if they share the same name. PURGE
deletes files from the directory. CRUNCH is equivalent to LOCK,
but causes the file window pOSition to become the end of the file.
(See section 4.4 for more information.)

NOTE An implicit CLOSE«file>, NORMAL) is performed on files
which are not explicitly closed.

NOTE - The UCSD intrinsics OPENOLD and OPENNEW are synonymous with
RESET and REWRITE respectively. Chapter 4 contains detailed
descriptions of the intrinsics mentioned in this section. Section

Page 38

Extensions To Standard Pascal

2.1 of the System User's Manual describes the file system and file
naming conventions.

Examples of file system access using RESET, REWRITE, and CLOSE:

program FileDemo;
var infile,outfile: text;

ch: char;
begin

{ open up the disk file named "master" }
reset(infile,'master.text');

{ copy to a disk file named "copyl" }
rewrite(outfile,'copyl');
while not eof(infile) do

begin read(infile,ch); write(outfile,ch); end;
close(outfile,lock);

{ rewind master file for second pass }
reset(infile);

{ copy to a disk file named "copy2" }
rewrite(outfile,'copy2');
while not eof(infile) do

begin read(infile,ch); write(outfile,ch)i end;
close(outfile,lock);

{ close down master file }
close(infile,normal)i

end.

3.3,1 Interactiye riles

UCSD Pascal provides the predeclared file type INTERACTIVE in order
to facilitate use of the system terminal as an. input file.
Interactive files are structurally equivalent to text files; the
only diff~rence between them is the manner in which the standard
procedures RESET, READ, and READLN are defined to act.

To explain the need for interactive files, it is first necessary to
examine the definitions of text file operations in standard Pascal.
Let ch be a character variable, and f a file of type TEXT; the
following rules then hold for RESET and READ:

1) RESET(f) is defined to perform an impliCit GET(f)

2) READ(f,ch) is equivalent to ch := fA; GETCf)

Page 39

PDQ-3 Programmer's Manual

Using these standard definitions, the following program attempts to
create a simple console prompt by writing a prompt message to the
console screen and accepting a response from the console keyboard:

program prompter~
var infile,outfile: text~

answer: char~
begin

resetCinfile,'console:');
rewriteCoutfile,'console:');
writeCoutfile,'Are you sure this will work Cy/n) 1');
readCinfile,answer)~
if answer • 'y' then {... };

end.

Unfortunately, this program doesn't work as expected; RESET per
forms an implicit GET, so the program must wait until a character
is typed on the console. After a character is typed, the prompt
appears; however, rather than pausing after the prompt to read a
character from the terminal, READ uses the character typed in to
satisfy the RESET operation as a response to the prompt. The
program is obviously ill-suited for interactive use.

With an interactive file i, the following rules hold for RESET and
RMD:

1) RESETCi) does not perform an implicit GETCi)

2) READCi,ch) is equivalent to GETCi); ch :- i A

The program shown above executes more reasonably if infile is
declared with type INTERACTIVE. The program does not hang when the
input file is opened, and the prompt response is not read until
after the prompt message is displayed.

The definition of interactive files affects the manner in which the
standard functions EOLN and EOF are used. The following code
pieces are functionally equivalent Cf, i, and ch are defined
above):

while not eolnCf) do
readCf,ch);

readCf,ch); {EOLN marker}

while not eolnCi) do
readCi,ch);

With file f, the window variable fA is always a one-character
lookahead for chI thus, the end-of-line marker must be flushed
after EOLNCf) becomes true. With file i, i A and ch contain the
same character after each READ; thus, ch contains the end-of-line
marker when EOLNCi) becomes true.

Page 40

Extensions To Standard Pascal

3.3.2 %hA Keyboard lila

UCSD Pascal contains the predeclared file KEYBOARD for reading
characters directly from the terminal keyboard. KEYBOARD is an
interactive file, and is the nonechoing equivalent to the prede
clared file INPUT. For example, given ch as a character variable,
the statements:

read(keyboard,ch);
write(output,ch);

• • • are equivalent to read(input,ch).

NOTE - EOF(KEYBOARD) becomes true only after typing <null>. The
console end-of-file command is read as a normal character.

3.3.3 Block Piles

Block files allow low-level access to the file system; they are
intended for system programming. Block files are declared with the
predeclared type FILE, and may be accessed only with the BLOCKREAD
and BLOCKWRITE intrinsics. These are integer-valued functions.
They accept as parameters a block file identifier, buffer address,
number of blocks, and (optionally) a starting block number, and
return the number of blocks actually transferred. (A block is 512
bytes long.) The optional starting block number parameter allows
disk files to be randomly accessed by block number; in its absence,
successive block I/O operations access consecutive blocks. A disk
file is viewed as a group of contiguous blocks; the first block is
block O.

Page 41

PDQ-3 Programmer's Manual

Example of block I/O using explicit I/O checks and implicit
starting block:

program FileCopyl;
var infile,outfile: file;

buf: packed array [1 •• 5121 of char;
junk, blksread: integer;
endofile: boolean;

begin
endofile :- false;
resetCinfile,'source.data');
rewriteCoutfile,'dest.data');
while not endofile do

begin
{$I-}
blksread :- blockreadCinfile,buf,l);
if ioresult <> 0 then writelnC'disk read error');
endofile :- blksread <> 1;
if not endofile then

begin
junk :- blockwriteCoutfile,buf,l);
if ioresult <> 0 then writelnC'disk write error');

end;
{$I+}

end;
closeCinfile);
closeCoutfile,lock);

end.

Example of block I/O using implicit I/O checks and explicit
starting block:

program FileCopy2;
const N • 5;
var infile,outfile: file;

bUf: packed array [1 •• N,l •• 5l21 of char;
blknum, blksread: integer;

begin
resetCinfile,'source.data');
rewrite(outfile,'dest.data');
blknum :- 0;
repeat

blksread :- blockreadCinfile,buf,N,blknum);
if blockwriteCoutfile,buf,blksread,blknum) <> 0 then;
blknum :- blknum + N;

until blksread < N;
closeCinfile);
close(outfile,lock);

end.

3.3.4 Random A&cess Piles

UCSD Pascal provides the SEEK intrinsic for random accessing of
records in a disk file. The file must be a structured file (i.e.

Page 42

Extensions To Standard Pascal

any standard Pascal file except text). SEEK accepts two parame
ters: a file identifier, and an integer indicating the record to be
accessed. SEEK moves the file window so that a subsequent GET or
PUT operation accesses the specified record. The first record in a
file is record O.

NOTE - In standard Pascal, an open file is either read or written
exclusively. Random access files in UCSD Pascal are opened with
RESET, but can be both read (using GET) or written (using PUT).

NOTE - The standard procedure EOF can be used to check if the
specified record number exceeds the number of records in the file.
Calling SEEK itself always setsEOF to false, but a subsequent GET
operation reveals the presence or absence of a record in the file
window. If GET causes EOF to become true, the file window is past
the end of the file, and the buffer variable is undefined.

WARNING - SEEK disregards the end of a file when setting a new file
position. After seeking to a record position past the end of a
file, PUT may be called only if the file window immediately follows
the last record in the file; otherwise, the file state becomes
undefined.

Example of SEEK:

program DataBase;
var f: file of string;

recnum: integer;
begin

reset(f,'string.data');
repeat

write('Enter record number (-1 terminates) : ');
readln(recnum);
if recnum < 0 then exit(program);
seek(f,recnum);
get(f);
if eof(f) then writeln(' No such record')
else

begin
writeln(' Current value is: ',fA);
seek(f,recnum); {reseek record for update}
write(' Enter new value: ');
readln(fA);
put(f);

end;
until false;
close(f,lock);

end {DataBase};

Paqe 43

PDQ-3 Programmer's Manual

~ Strings

UCSD Pascal contains the predeclared data type STRING. Variables
and constants of type 1 •. lNG contain character sequences; the
length of the character sequence stored in a string variable may
vary during the execution of a program. A number of operations are
provided for strings:

The file operators READ, READLN, WRITE, and WRITELN accept
string arguments.

The intrinsics CONCAT, COPY, DELETE, INSERT, LENGTH, and POS
perform common string operations.

Individual characters in a string variable may be accessed
similarly to a character array.

All comparison operators (e.g. <» accept string arguments.

String types are declared with a static length attribute. The
default static length is 80 characters. Length attributes are
explicity aSSigned by following the predeclared identifier STRING
with an unsigned integer constant (denoting the static length)
enclosed in square brackets «(]). The maximum length attribute is
255 characters.

The dynamic length of a string may not exceed its static length,
otherwise, an execution error (i.e. • String too long-) occurs.

Examples of string type declarations:

type normal - stringl { default static length }

volname • string(71; { static length = 7 chars}

bigstring - string[2551; {static length = 255 chars}

NOTE - Static length attributes allow users to m1n1m1ze the amount
of space allocated to strings (disk space with respect to files of
strings; memory space with respect to string variables). Strings
are type-compatible regardless of their static length attribute.

Example of string assignment:

sl :- 'this is a string constant';
s2 := sll

NOTE - String constants may not exceed 80 characters.

Individual characters within a string may be referenced by indexing
into the string variable (e.g. sl[S] - note that string variables
are equivalent to a PACKED ARRAY OF CHAR in this respect). Valid
string indices range from 1 to the current dynamic length of the

Page 44

Extensions To Standard Pascal

string; indices outside of this range cause an execution error
(i.e. "Invalid Indexn) to occur.

Example of an invalid string index:

sl := '1234';
sl[s] := '5';

NOTE - If the length of a string is 0 (i.e. its value is n"), any
string indexing causes an execution error.

The relational operators =, <>, <, <=, >, >= yield a Boolean
result when applied to string operands. Comparisons are performed
lexicographically (e.g. word order in a dictionary). Note that
trailing spaces are significant. Appendix I displays the character
order.

Examples of string comparison:

if 'write' < 'writeln' then writelnC'strings compares work');
if sl = s2 then writelnC'string vars equal');

When a string variable is passed as an argument to READ or READLN,
all characters up to an occurrence of the end-of-line character
(carriage return) are assigned to the string variable. A carriage
return must by typed to terminate a string entered from the
console, whether or not the input was performed with READ or
READLN. By definition, READLN swallows the carriage return. READ,
however, leaves the carriage return in limbo; it is picked up by
the next read operation. As a result, it is suggested that strings
be read from the console only with READLN.

UCSD Pascal provides the following intrinsics for string manipula
tion: CONCAT, COPY, DELETE, INSERT, LENGTH, and POSe CON CAT
accepts two or more strings as arguments and returns a Single
string containing the concatenation of the string arguments. COpy
extracts a character sequence from a string and returns the
sequence as a string. INSERT stuffs a string value into another
string. DELETE removes characters from a string. LENGTH returns
an integer containing the dynamic length of a string. POS returns
an integer denoting the starting position of a character pattern
within a string.

Page 45

PDQ-3 Programmer's Manual

Example of string intrinsics:

program strings;
var sl, s2, s3: string;

int: integer;
begin

sl := 'The quick brown system';
s2 := 'jumped over the lazy document';

writeln(length(sl),' ',length('Q'»;

int := pos('brown',sl);
writeln(int,' ',pos(sl,s2»;

s3 := concat(sl,' ',s2);
writeln(s3);

writeln(copy(sl,1,4),copyCs2,posC'document',s2) ,8»;

writeln(sl);
s3 := 'quick brown';
deleteCsl,pos(s3,sl),length(s3»;

. wri teln (sl) ;

insert(' is a moving target' ,sl,succ(length(sl»);
writeln(sl);

end {strings}.

** Program output **
22 1
11 a
The quick brown system jumped over the lazy document
The document
The quick brown system
The system
The system is a moving target

3.4.0 String Parameters

Strings may be passed as value and variable parameters; however,
the compatibility of strings having different static lengths can
cause some subtle problems.

First, note that string types possessing a length attribute
speCification are considered structured types, and thus may not
appear in the formal parameter list of a procedure or function;
according to standard Pascal, only type identifiers may appear
here.

Page 46

Extensions To Standard Pascal

Example of strings as formal parameters:

type bigstring = string[l321;

procedure trans(paraml: string1 param2: bigstring);

Strings passed as value parameters are copied into local data areas
by the called procedure. The code for this task is produced
automatically by the compiler; it is executed when the procedure is
first entered. If the actual parameter's dynamic length exceeds
the formal parameter's static length, the execution error "String
too long" occurs when the string is copied.

Example of an execution error during string copying:

program example 1
type shortstring = string[411

procedure crash(param: shortstring);
begin

{ string-copying code causes error here }
end;

begin
crash('oversized actual parameter');

end {example}.

WARNING Strings passed as variable parameters can cause serious
problems as a result of poor type-checking in UCSD Pascal. Formal
parameter references within a procedure become indirect references
to the actual string parameter. Within the procedure, however, the
formal parameter's static length attribute overrides the string's
static length1 if the formal parameter's static length exceeds the
string's static length, the formal parameter may be assigned values
that overrun the string's data space without causing an execution
error. This results in either a system crash or damage to the
contents of an adjacent variable.

Page 47

PDQ-3 Programmer's Manual

Example of integrity violation from poor type checking:

program features;

type bigstring = string[250];

var smallstring: string[lO];
victim: string;

procedure whackstring(var param: bigstring);
begin

param := 'this string is larger than ten characters';
end;

begin
victim := 'this string will be overwritten';
writeln('before: ',victim);
whackstring(smallstring);
writeln('after: ',victim);

end {features}.

Page 48

Extensions To Stanqard Pascal

~ Dynamic Variable Management

UCSD Pascal provides two sets of intrinsics for dynamic variable
allocation and deallocation: the UCSD version 11.0 intrinsics and
the UCSD version IV.O intrinsics. The 11.0 intrinsics require less
memory and execute faster than the IV.O intrinsics. However, the
IV.O intrinsics allow the deallocation of single dynamic variables
and provide support for variable-sized buffer allocation. The 11.0
intrinsics are the default1 the IV.O intrinsics become available
when the $H compile option (section 5.0.6) is used. The 11.0
intrinsics include N~i, MARK and RELEASE (section 3.5.0). The IV.O
intrinsics include VARNEW, DISPOSE, VARDISPOSE, VARAVAIL and varia
tions on the 11.0 intrinsics (section 3.5.1).

3.5.0 ~ l.LJl IIU.g

All dynamic variable allocation is performed in an area of memory
known as the~. The heap starts in low memory and grows towards
high memory. The system stack starts in high memory and grows
towards low memory. The NEW intrinsic is used for the allocation
of a single dynamically allocated variable. Successive calls to
NEW allocate variables in successive ascending memory locations,
thus advancing the heap towards the stack. If the heap and stack
collide, a stack overflow error occurs.

The MARK and RELEASE intrinsics are used for the deallocation of
dynamically allocated variables. MARK and RELEASE accept pointer
variables of any type as arguments. Given a pointer variable p,
MARK(p) opens a new heap for dynamically allocated variables. The
heap is identified by the value assigned to p by ~~RK. Subsequent
calls to NEW allocate dynamic variables only in the new heap.
RELEASE(p) deal locates all dynamic variables in the heap designated
by p.

NOTE - New heaps are allocated within the current heap1 thus, heaps
are nested. Deallocating a given heap results in the deallocation
of all subsequently opened heaps.

WARNING - Careless use of MARK and RELEASE leads to "dangling
references" (i.e. pointer variables pointing to deallocated dyna
mic variables). Use of dangling references can cause unpredictable
results, including system crashes.

NOTE ~mRK and RELEASE do not check the validity of their
arguments. Pointers passed to MARK must only be used as an
argument to a subsequent call to RELEASE. Pointers passed to
RELEASE must be initialized by a previous call to MARK.

Page 49

PDQ-3 Programmer's Manual

Example of MARK and RELEASE:

program dynamic;
type citizenptr = Acitizen;

citizen = record
name: string;
number: integer;
neighbor: citizenptr;

end;
var list, listhead: citizenptr;

procedure addCcloname: string; ID: integer);
var cloneunit: citizenptr;
begin

newCcloneunit);
with cloneunitA do

begin
name := cloname;
number := ID;
neighbor := listhead;

end;
listhead := cloneunit;

end {add};

begin
markClist);
listhead := nil;
addC'Clone, Norman Q.
addC'Dumptruck, T.
addC'Maton, Otto F. S.
addC'Gleahaves, Flying R.
listhead := nil;
releaseClist);

end {dynamic}.

3 .5.1 fDA lL..Q. II.tWl

{allocate space for list}

, ,32763);
, ,32764);
, ,32765);
, ,32766);

{deallocate entire list}

Dissimilarities between the 11.0 heap and the IV.O heap occur as a
result of the DISPOSE intrinsic. This intrinsic is used for the
deallocation of a single dynamically allocated variable. The
memory space occupied by the deallocated variable is recycled by
subsequent calls to NEW, assuming the space occurs in the current
heap and it is large enough to accomodate the new variable. Note
that subsequent calls to NEW are not guaranteed to allocate
variables adjacently in memory, as is the case with the II.O heap.

The VARNEW and VARDISPOSE intrinsics are used for the allocation
and deallocation of variable-sized buffers. They accept two
parameters: a pointer variable of any type and an unsigned word
count. (Unsigned integers are discussed in section 7.2). The
VARNmi function attempts to allocate a buffer of the requested
number of words. If there is sufficient memory for such a buffer,
the pointer is returned pointing to the buffer, and the requested
word count is returned as the function value; otherwise the
function value is zero. The VARDISPOSE procedure deallocates a

Page 50

Extensions To Standard Pascal

buffer of a specified size.

The VARAVAIL function accepts a string value containing a list of
segments and returns the size of the largest available memory
space, assuming all specified segments are memory-resident. The
segment list is of the same form as that used by the MEMLOCK
intrinsic described in section 3.1. VARAVAIL is calculated assum
ing that any specified segments that are currently nonresident
would be loaded onto the system stack rather than MEMLOCKed.

NOTE - Pointer variables passed to the RELEASE, DISPOSE, and
VARDISPOSE intrinsics are returned containing the value NIL.

NOTE Pointer values passed to RELEASE must be the result of a
prior MARK: otherwise, an "Invalid Heap Operation" error occurs.

NOTE - Calls to DISPOSE or VARDISPOSE must be made with the same
sized structure as was used with the corresponding NEW or VARNEW
call: otherwise, a system crash may occur.

NOTE - Calling NEW or VARNEW to allocate a one-word structure
actually allocates two words: corresponding calls to DISPOSE and
VARDISPOSE deallocate two words. Calls to MARK allocate three
words in addition to a new heap: calls to RELEASE deallocate that
space.

NOTE - Calls to RELEASE do not disturb MEMLOCKed segments resident
on the released heap. Calls to NEW and VARNEW do not reallocate
this memory until the segment has been MEMSWAPPed.

WARNING - A host and its used units must all use either the 11.0
intrinsics or the IV.O intrinsics, but not both. Units that don't
use any dynamic variable allocation intrinsics are compatible with
both sets of intrinsics. This constraint is enforced by the system
at program invocation time. Intrinsic units escape this check and
intermixing of heap mechanisms is done at the risk of the user.

NOTE The IV.O intrinsics are maintained in a nonresident unit
(called HEAPOPS> located on the system disk. They are loaded into
memory along with any program that uses them. Thus, the system
disk must be in the system drive when such programs are invoked:
otherwise, a system I/O error occurs. HEAPOPS may be made
permanently resident by transferring it from the system support
library to the intrinsics library. See section 2.3.5 of the System
User's Manual for details.

Page 51

PDQ-3 Programmer's Manual

Example of extended memory management usage:

{$H+}
program extended;
type buffer = record

case integer of
2: twoblocks
4: fourblocks :

end;

array [0 •• 511] of integer;
array [0 •• 1023] of integer;

procedure method1(size: integer);
var bufptr: Abuffer;
begin

if size = 2 then
new (bufptr, 2)

else
new (bufptr, 4);

{use buffer for something}
if size = 2 then

dispose (bufptr, 2)
else

dispose (bufptr, 4);
end;

procedure method2(size: integer);
var bufptr: Abuffer;
begin

if varnew (bufptr, size*256) <> a then
begin

{use buffer for something}
vardispose (bufptr, size*256);

end;
end;

begin
methodl(2);
method2(4);

end {extended}.

Page 52

Extensions To Standard Pascal

~ Extended Precision Arithmetic

UCSD Pascal provides a data type known as "long integer n for
extended precision arithmetic. Long integers are used like stan
dard integers, but may contain up to 36 digits.

Long integer types are defined by appending a length attribute to
the predeclared type INTEGER. Length attributes are similar to
those used in string types: an unsigned integer constant delimited
by square brackets ([and]). The maximum length attribute is 36.
Long integer length attributes specify the maximum number of digits
expected; they do not impose a strict upper bound on the number of
digits allowed. Length attributes are used to minimize the amount
of space allocated to long integers (disk space with respect to
files containing long integers; memory space with respect to long
integer variables). Long integers are type compatible regardless
of their length attribute.

Examples of long integer type defintions:

type shortint = integer[31;
longint = integer[361; { max size }

Depending on their value, integer constants become either integer
constants or long integer constants. Constants in the range
-32767 •• 32767 default to integer constants; constants outside this
range are treated as long integer constants.

Examples of integer constants:

const Rydberg = 10973731;
Hoffman = 0;

{ long integer }
{ integer }

In general, long integers may be used anywhere it is syntatically
correct to use REAL types. For instance, long integers and
integers may be mixed in arithmetic expressions; integers are
implicitly converted to long integers in mixed expressions. Inte
gers may be aSSigned to long integers;. however, long integers must
be explicity converted to integers (with the standard function
TRUNe) • Note that direct conversion between long integers and
reals is impossible.

WARNING - See Appendix G for some problems arising from the use of
mixed expressions.

The arithmetic operators +, , *, and DIV yield a long integer
result when applied to long integer operands. (Note that MOD is
not defined.) The relational operators =, <>, <, <=, >, >= yield a
Boolean result when applied to long integer operands.

Unlike integers, long integers enforce overflow checking; when a
long integer variable is assigned a value larger than it can
contain, the execution error "Integer Overflown occurs.

Page 53

PDQ-3 Programmer's Manual

WARNING - Intermediate expression results should not exceed 36
digits - integer overflow may not be detected.

Example of a program using long integers:

program example;
var long: integer[361;
begin

long := 1;
repeat

writeln(long);
long :- long * 2;

until long> 20000000;
end.

All file I/O operators (including READ and WRITE) accept long
integer arguments.

WARNING - Backspace does not work when reading a long integer from
the console.

NOTE - The long integer intrinsics are maintained in a nonresident
unit (called LONGINTS) located on the system disk. They are loaded
into memory along with any program that uses them. Thus, the
system disk must be in the system drive when such programs are
invoked or a system I/O error occurs. LONGINTS may be made
permanently resident by transferring it from the s} (m support
library to the intrinsics library. See section 2.3.5 of the System
User's Manual for details.

The standard function TRUNe is extended to accept long integers as
arguments (as with reals, an execution error occurs if the argument
is outside of the range for integers). The UCSD intrinsic STR
converts long integers to strings. Given a long integer L and a
string S, STR(L,S} assigns to S a character string representation
of the value in L (complete with minus sign, if required).

Page 54

Extensions To Standard Pascal

Example of STR:

program money~
type bucks = integer[301~
var CashFlow: bucks~

procedure PrintDough(amount: bucks);
var dollars: "string~
begin

strCamount, dollars);
insertC'.', dollars, predClengthCdollars»);
writelnC'$',dollars)~

end {PrintDough};

begin
CashFlow := 2323972233;
PrintDoughCCashFlow);
PrintDough(199)~

end {money}.

Program output

$23239722.33
$1.99

3.6.0 LAn; Integer Parameters

Long integers may be passed as value and variable parameters;
however, the compatibility of types with different length attri
butes may cause some subtle problems.

First, note that long integer types are considered structured
types, and thus may not appear in the formal parameter list of a
procedure or function~ according to standard Pascal, only type
identifiers may appear here.

Example of long integers as formal parameters:

type longint = integer[32]~
procedure transCparaml, param2: longint);

When long integers are passed as variable parameters, long integer
types with different length attributes lose their type compatibili
ty. The formal and actual parameter types must possess identical
length attributes.

Long integers passed as value parameters are adjusted by the caller
to the size declared in the callee's formal parameter list. The
code for this task is produced automatically" by the compiler; it is
executed by the calling procedure. If the value of the actual
parameter is too large to fit in the formal parameter, the
execution error "Integer overflow" occurs when the long integer is
adjusted.

Page 55

PDQ-3 Programmer's Manual

Example of an execution error during parameter adjust:

program example;
type shortint = integer[41;

procedure crash(param: shortint);
begin {... }
end;

begin
{ adjust code causes error here }
crash(3294875938475);

end {example}.

Page 56

Extensions To Standard Pascal

lA1 Extended Cgmparisons

UCSD Pascal extends the relational operators to accept pointer,
array, and record types as operands.

3.7.0 Records ADd Arrays

The relational operators = and <> yield a Boolean result when
applied to array and record operands. Operands must be type
compatible (see section 2.13). Operators compare entire structured
variables; structures are equal if and only if the fields compris
ing the structures are equal.

WARNING - Structured comparisons are implemented as multiword
comparisons; structured variables which fail to completely utilize
their allocated data space render structured comparisons useless.
Relational operators should not be used in the following cases:

Records containing string types.

Most packed arrays and records.

Data space for strings is allocated statically; string values
expand and contract in their data area at run time. The area
between the end of a string value and the end of its data space is
undefined, but is considered significant in a structured compari
son; thus, comparison of records containing strings does not work
correctly.

The UCSD Pascal compiler's packing algorithm may leave unused bit
fields in the words comprising the data space allocated for packed
records and arrays. Because the unused bit fields contain unde
fined values, comparison of packed records and arrays may not work
correctly. The exceptions to this restriction are byte arrays
(e.g. PACKED ARRAY OF CHAR) and packed variables which (by chance
or design) completely utilize their allocated data spaces. See
section 7.0 for a description of the packing algorithm.

Page 57

PDQ-3 Programmerls Manual

Example of record and array comparison:

program compare;
var a,b: record

i,j: integer1
r: real1

end1
x,y: array[O •• 1501 of integer;
count: integer1

begin
for count := 0 to 150 do

begin x[countl := 4; y[countl := 4 end;
with a do

begin i := 41 j := 6; r := 3.14159 end;
with b do

begin i := 41 j := 6; r := 2.71828 end;
if (x = y) and (a <> b) then
writeln('t~uth is beauty')

else
writeln('truth is rude')1

end {compare}.

3.7.1 Pointers

The relational operators =, <>, <, <=, >, >= yield a Boolean result
when applied to pointer operands. These operators are implemented
as unsigned integer comparisons.

Paqe 58

Extensions To Standard Pascal

~ ~ Array Manipulation

UCSD Pascal provides the intrinsics MOVELEFT, MOVERIGHT, SCAN,
FILLCHAR, and SIZEOF for efficient manipulation of large arrays of
data. MOVELEFT and MOVERIGHT perform mass movement of data within
arrays. FILLCHAR initializes arrays. SCAN searches an· array for
the presence (or absence of) a byte value. These intrinsics are
intended for use with byte (e.g. character) arrays; however, the
lack of type checking on their parameters allows them to be used as
general purpose data manipulators (with the understanding that the
price of freedom is responsibility). These intrinsics are byte-or
iented: address parameters are resolved to byte addresses; count,
values are byte counts; byte values are characters or integers in
the range 0 •• 255.

WARNING - Count values are treated as signed integers. Negative
count values in MOVELEFT, MOVERIGHT, and FILLCHAR are treated as
zero byte counts. Be wary of large unsigned count values; it may
be necessary in some cases to divide an operation into two parts in
order to avoid this problem.

SIZEOF is a (compile time) function which accepts either a variable
or type identifier as an argument and returns an integer value
indicating the number of bytes allocated for the data type denoted
by the identifier. SIZEOF shifts the burden of determining the
size of a data type onto the compiler, thus making it safer and
easier to use the byte array intrinsics.

NOTE - If a record contains variant fields, SIZEOF uses the largest
variant when determining its size.

WARNING - SIZEOF ignores variable references. For example:

••• returns the size of the pointer variable p rather than the
size of the object which p points to; in this case, it is necessary
to pass SIZEOF the identifier denoting piS base type.

FILLCHAR accepts a starting address, in~eger byte count, and byte
value. Beginning with the starting address, it initializes <byte
count> bytes to the indicated byte value.

MOVELEFT and MOVERIGHT perform mass movement of data; both accept a
source address, destination address, and integer byte count. The
bytes between the source address and the address formed by <source
address> + <byte count> - 1 comprise the source array. The bytes
between the destination address and the address formed by <dest
address> + <byte count> - 1 comprise the destination array.

WARNING Array indices on the PDQ-3 are treated as signed
integers. Use of an index whose value is less than the declared
lower bound of the the source or destination array may yield
unexpected or fatal results.

MOVELEFT and MOVERIGHT move data from the source array to the

Page 59

PDQ-3 Programmer's Manual

destination array one byte at a time. MOVERIGHT starts at the left
end of both arrays and copies bytes traveling right; it is used to
prevent data moved to the left (i.e. lower addresses) from
overwriting source bytes that haven't been moved to their destina
tion. MOVERIGHT starts at the right end of both arrays and copies
bytes traveling left; it is used to prevent data moved to the right
(i.e. higher addresses) from prematurely overwriting source bytes.

NOTE - z.tovementof data blocks between nonoverlapping arrays is
usually performed with MOVELEFT, as it represents a more natural
style of moving data. Certain combinations of MOVELEFT and
MOVERIGHT with overlapping source and destination addresses produce
complex results; their use is not recommended without some fore
thought Csee example below).

Example of byte array manipulators:

program blockmove;
var sourcel, source2: packed array[0 •• 5l11 of char;

dest: packed array[0 •• 10231 of char;
int: integer,;

begin
fillchar(sourcel, sizeof(sourcel), 0);
fillcharCsource2, sizeofCsource2), 1);
moveleft(sourcel[Ol, dest[O], 512);
moverightCsource2[0], dest[5l21, 512);
moveleft(dest[5l11, int, 2);

end.

Example of shady use of MOVELEFT and MOVERIGHT:

program boggle;
var bytes: packed array [1 •• 30] of char;
begin

bytes :- 'this is the text in this array';
writeln ('123456789012345678901234567890');
writelnCbytes);
moverightCbytes[101,bytes[11,10);
writelnCbytes);
moveleft(bytes[11,bytes(31,10);
write1n(bytes);
moveleftCbytes[231,bytes[21,8);
writelnCbytes);

end.

** Program Output **
123456789012345678901234567890
this is the text in this array
ne text ine text in this array
nenenenenenetext in this array
nis arrayenetext in this array

Page 60

Extensions To Standard Pascal

SCAN is a function which accepts an integer scan length, a partial
Boolean expression, and a starting address.

A partial Boolean expression has the following form:

<partial Boolean expression> ::= <relop> <target>
<relop> ::= "=" I "<>"
<target> ::= <character variable> <character constant>

Partial expressions appear as half of a Boolean expression; the
missing operand is defined to be the byte value currently pOinted
to by SCAN. The partial expression is evaluated for each byte
examined by SCAN; if it evaluates to true, SCAN returns immediate
ly.

Starting with the byte at the starting address, SCAN examines
successive bytes until it either finds a byte value satisfying the
partial expression or exceeds the Scan length. SCAN returns an
integer value indicating the number of bytes examined.

The scan length may be positive or negative. If the scan length is
negative, SCAN proceeds backwards (i.e. towards lower addresses)
from the starting address; otherwise, SCAN proceeds forward through
memory. SCAN returns the offset from the starting address; this
value is negative when scanning backwards, and positive when
scanning forwards. SCAN returns 0 when it terminates on the byte
at the starting address.

Example of SCAN:

program SCANdemo;
var farkle: string;
begin

farkle := ' ••••• the pterac is a member of the USCD family';
writeln(scan(-26, = ':', farkle[30]»; { writes -26 }
writeln(scan(lOO, <>'.', farkle[l] »; { writes 5 }
writeln(scan(lS , = , I, farkle[l] »; { writes 8 }

end.

Page 61

PDQ-3 Programmer's Manual

~ pevice lLQ

UCSD Pascal provides the intrinsics UNITREAD, UNITWRITE, UNITCLEAR,
UNITSTATUS, UNITBUSY, and UNI~lAIT for accessing IIO devices.
These intrinsics comprise the IIO level known as ·unit I/O·; this
is the lowest level of I/O available to the system, and must be
used with care. UNITREAD and UNITWRITE are described in section
3.9.0. UNITCLEAR, UNITBUSY, and UNI~lAIT are described in section
3.9.1. UNITSTATUS is described in section 3.9.2.

The primary argument to the unit I/O intrinsics is the unit number,
specifying an I/O device. Unit numbers and device assignments for
the PDQ-3 are described in Appendix D.

NOTE - The compiler does not generate I/O checks (section 5.0.4)
after calls to unit I/O intrinsics; I/O checks must be explicitly
performed by examining the I/O completion status after every
operation. (I/O completion status is examined with the IORESULT
intrinsic - see section 3.11.8 for details.)

NOTE - The system routines implementing unit IIO are protected from
task contention.

3.9.0 QIITBEAQ &Dd QNITIRITE

The UNITREAD and UNITWRITE intrinsics (in most cases) transfer data
between memory and an I/O device. They accept a unit number, I/O
buffer, byte count, and two optional parameters: a block number and
a cont~ol word. The IIO buffer is specified by either an indexed
or an unindexed variable name (e.g. Arr[Index] or Arr). The byte
count is an unsigned integer in the range 0 •• 65535. The block
number is a Signed integer used in I/O involving block-structured
devices; its default value is zero. The control word specifies
special processing options; its default value is zero. The syntax
for UNITREAD and UNITWRITE is described in sections 4.42 and 4.45.
Their semantics are device dependent and are described in Appendix
D.

WARNING - The most common results of incorrect use of UNITREAD and
UNITWRITE are damaged disk files and/or directories and program
crashes caused by overrunning data buffers on read operations. No
range checking is performed on accesses to the IIO buffer.

WARNING
integers.
buffer's
results.

Array indices on the PDQ-3 are treated
Use of an index whose value is less than

declared lower bound may yield unexpected

as signed
the IIO

or fatal

NOTE - On the PDQ-3, a variable of type CHAR occupies a full word;
the actual character value occupies the low-order byte. UNITREADs
and UNITWRITEs on these quantities also operate on the low-order
byte. This fortunate circumstance does not necessarily occur on
other processors. Instances of these intrinsics operating exclu
sively on PACKED ARRAYs of CHAR are guaranteed to be portable to
those processors.

Page 62

Extensions To Standard Pascal

NOTE - Variables of type CHAR used with a UNITREAD call for 1 byte
should be initialized before the UNITREAD call. This sets the
high-order byte of the variable to zero so the variable may be
correctly compared to other characters.

NOTE Unit I/O intrinsics are used in a few cases for system
actions unrelated to device 1/0. UNITREAD on unit 0 implements a
feature known as "time delay" (see appendix D and the SysUtil unit
in the Library User's Manual). The keyboard type-ahead buffer can
be manipulated by applying UNITWRITE to unit 3 (see appendix 0 for
details).

Example of UNITREAD and UNITWRITE:

program unitdemoJ
var buff: packed array[0 •• 2047l of char;

ch: char;

procedure putline(msg: string)J
var cr: packed array [0 •• 0] of charJ
begin

if length(msg) > 0 then
unitwrite(l,msg[ll,lengthCmsg»;

cr [0] := chr (13) J
unitwriteCl,cr,l);

end {putconsole}J

procedure getkey(var key: char);
begin

key : = • 'J
unitread(2,key,1);

end {getkey};

begin
putline('*** Screen Garbage Generator ***');
putl ine (, ,) ;
putline(' G(arbage E(xit ')J
repeat

getkey(ch)J
until ch in ['g','G','e','E'l;
if ch in [ie' ,'E'l then exit(program);
unitreadC4,buff,2048,2)J
if ioresult <> 0 then

begin
putline('»> 1/0 error detected');
exitCprogram);

end;
unitwriteCl,buff,2048);
putlineC'That' 's all, folks ••• ·)J

end.

3.9.1 UNITGLEAB, UNIT8QSY, And QNITWAIT

UNITCLEAR, UNITBUSY, and UNITWAIT accept a unit number as a

Page 63

PDQ-3 Programmer's Manual

parameter. Their syntax is described in chapter 4. Their seman
tics are device dependent and are described in Appendix D.

The UNITCLEAR procedure resets andlor initializes IIO devices. In
the case of serial input devices it usually clear~ the type-ahead
buffer. The value of IORESULT after a UNITCLEAR call is often used
to test the existence of the device.

The UNITBUSY function is used to poll the status of an IIO device.
It returns TRUE if the device has not completed a pending I/O;
otherwise it returns FALSE. When it is used on a serial input
device, it returns TRUE if no character has been received;
otherwise it returns FALSE. The UNITSTATUS procedure returns more
complete information than UNITBUSY (see section 3.9.2>.

The UNITWAIT procedure performs no actions on the PDQ-3.

Example of UNITCLEAR and UNITBUSY:

pr09ram serialdemo;
var buff: packed array(O •• O] of char;
be9in

unitclear(2); {clear keyboard type-ahead}
while unitbusy(2) do

writeln('please type a character:');
unitread(2,buff,I);
writeln ('character received: I, buff);

end.

3,9.2 UNXTS1ATQS

The UNITSTATUS procedure accepts a unit number, a status record,
and an unused integer as parameters. It returns status information
on the specified device. The format of the status record depends
on the device bein9 polled; it may be of any type, but should
occupy at least 30 words. The unused parameter should be passed as
either zero or one.

The IsBlocked field is located in the same place relative to the
beginning of the record in each format. It indicates the format
being used.

Page 64

Extensions To Standard Pascal

The format of a status record for a serial device is:

SerialStatus = record {IsBlocked = FALSE}
CharsQueued integer;
QueueSize integer;
Fillerl : array [0 •• 5] of integer;
DeviceName : string[71;
case IsBlocked : b~) t ~n of

false: (VolName : string[7];
InUnit : boolean;
Safety : array [0 •• 11]

of integer);
end; {SerialStatus}

In this format, the IsBlocked boolean is always FALSE. CharsQueued
gives the number of characters currently available for input.
QueueSize contains the maximum number of characters that can be
queued. DeviceName contains a string indicating the type of device
being polled (e.g. ftDLV-I1J ft for a DEC DLV-llJ serial card).
VolName contains the volume name for the device (e.g. CONSOLE for
unit 1). InUnit is TRUE if the device is an input device;
otherwise FALSE.

The format of a status record for a block-structured device is:

BlockedStatus = record {IsBlocked = TRUE}
Filler2 : integer;
BytesSector : integer;
SectorsTrack : integer;
TracksDisk : integer;
Filler3 : array [0 •• 3] of integer;
DeviceName string[71;
case IsBlocked : boolean of

true: (HardDisk boolean;
PhysicalUnit : integer;
Safety : Array [0 •• 14]

of integer);
end; {BlockedStatus}

In this format, the IsBlocked boolean is always TRUE. BytesSector
gives the number of bytes per sector on the device as of the last
time it was accessed. SectorsTrack contains the number of sectors
per track. TracksDisk contains the number of tracks per disk.
OeviceName is a string indicating the type of device being polled
(e.g. ftRL-02ft for a DEC RL-02 disk drive). HardDisk contains TRUE
if the device is a hard disk drive. In this case, the value of
TracksDisk does not account for a bootstrap track (see Appendi~ D
for details). PhysicalUnit denotes the hardware controller's
address for the device.

Page 65

PDQ-3 Programmer I s lrlanual

The format of a status record for the system clock (unit 0):

SystemStatus = record {IsBlocked = FALSE}
LastWord : integer;
LowTime : integer;
BighTime : integer;
Filler4 : array [0 •• 4] of integer;
DeviceName : string[71;
case IsBlocked : boolean of

true: (VolName : string[71;
InUnit : boolean;
Safety : array [0 •• 11]

of integer);
end; {SystemStatus}

LastWord gives the address of the last location in memory. LowTime
and BighTime are the current value of the system clock (see the
TIME intrinsic - section 3.11.4). DeviceName is a string indicat
ing the type of clock being polled (e.g. ·PDQ Clk· for the onboard
PDQ-3 clock). IsBlocked is FALSE, VolName contains ·CLOCK·, and
InUnit is FALSE.

NOTE - The value of IORESULT returned by the UN ITSTATUS intrinsic
reflects the presence of device handlers for the device polled. It
does not indicate device readiness.

Page 66

Extensions To Standard Pascal

~ Inline Machine ~

UCSD Pascal provides the PMACHINE intrinsic for generating in-line
machine code within Pascal programs. In-line machine code is used
for programming low level operations which cannot be expressed
efficiently (if at all) in the Pascal language.

WARNING PMACHINE is the lowest level intrinsic in UCSD Pascal.
Its use requires familiarity with the PDQ-3 instruction set (see
the Architecture Guide for details) and extreme care in specifying
code sequences.

DISCLAIMER - Incorrect use of PMACHINE in any program invalidates
all warranties on ACD system software.

PMACHINE accepts a series of items; multiple items are separated by
commas. An item is either code, an expression, or an address
reference.

A code item consists of a constant value or constant identifier
denoting an integer between 0 and 255. PMACHINE emits a single
byte in the code with the specified value. Values outside of this
range (e.g. signed constants) have only their least significant
byte emitted. Code items are used for emitting P-code instructions
and instruction operands.

An expression is any valid Pascal expression enclosed in parenthe
ses. PMACHINE generates code to evaluate the expression and leave
the result on the stack.

An address reference is any valid Pascal variable reference
preceded by the character IAI. PMACHINE generates code to leave
the address of the specified variable on the stack.

Example of PMACHINE:

program PcodeDemo;
const STM = 142;
type complex = record re,im: real end;

vector = array [0 •• 10] of complex;
var speed: Avector;

x: real;
begin

new(speed);
x := 3.14159;
pmachine(AspeedA[71.re, (x / 1.0), STM, 2);
writeln(lresult is: I, speedA[71.re);

end {PcodeDemo}.

Page 67

PDQ-3 Programmer's Manual

Standard PMACHINE operations:

const STO = 196;
IXA = 215;
SINDO = 120;
BNOT =159;
LEUSW = 180;
GEUSW = 181;

{ store indirect }
{ index array }
{ load indirect }
{ Boolean negation }
{ unsigned <= }
{ unsigned >= }

var i,j,index: integer;
b: boolean;
p: Ainteger;
pb: Aboolean;
a: array[O •• O] of integer;

{ pA will reference memory address FC24 hex }
Pl4ACHINE (Ap, (-988), STOll

{ pA will reference a[index] }
Pf.IACHINE (Ap, Aa , (index), IXA, 1, STO);

{ p := pb }
PMACHINE (Ap, (pb), STOll

{ i : = pA }
PMACHINE (Ai, (p), SINDO, STOll

{ b := i <= j (unsigned) }
PMACHINE (Ab, (1), (j), LEUSW, STOll

{ b := i < j (unsigned) }
PMACHINE (Ab, (i), (j), GEUSW, BNOT, STOll

Page 68

Extensions To Standard Pascal

~ MiscellaneQus Extensions

This section describes miscellaneous extensions to standard Pascal.
Sections 3.11.0 and 3.11.1 describe alterations of the syntax rules
for identifiers and declaration parts respectively. Section 3.11.2
describes extension of the standard function ORO to perform pointer
to integer type ponversion.

The remaining extensions are the following UCSD intrinsics: GOTOXY
for console cursor positioning (section 3.11.3), TIME for reading
the system clock (section 3.11.4), PWROFTEN for real powers of ten
(section 3.11.5), ATAN as an alternative name for the standard
function ARCTAN (section 3.11.6), EXIT for terminating procedures
or programs (section 3.11.7), IORESULT for checking the system I/O
completion status (section 3.11.8), ME~~VAIL and RMEMAVAIL for
checking the amount of unused memory (section 3.11.9), HALT for
invoking the system monitor (section 3.11.10), and the compiler
intrinsics TREESEARCH and IDSEARCH (sectIon 3.11.11) •

3.ll~O Identifiers

Identifiers .in UCSD Pascal may contain the underscore character
"_". Occurrences of "_" are ignored by the compiler; thus, the
identifiers "procnum" and "proc_num" are equivalent.

NOTE - Identifiers are significant to 8 characters.

WARNING Although they contribute to program readability, long
variable names should be used carefully in UCSD Pascal, as it is
disconcertingly easy for two "different" long variable names to map
into the same identifier because of the eight character rule.
Identifier aliases can cause mysterious compiler syntax errors
and/or elusive program bugs.

The following identifiers are equivalent in UCSD Pascal:

identifier
i_dent_i_fi_er
Identifier
IDENTIFI
I_dent_I_fire
identifier_of_sparse_matrix_

Page 69

PDQ-3 Programmer I s ~1anual

3.11.1 Declaration Parts

Suites of related
uses-, constant-,
UCSD Pascal, this
the group in a
each program in
declaration part.

programs often must share a common group of
type-, variable-, and procedure declarations. In
can be done by placing the source code defining
separate include file (section 5.0.1), and having
the suite include the declarations into its

Standard Pascal restricts the ordering of declarations in a
declaration part so that uses are declared before constants,
constants are declared before types, and so on. An include file
containing a set of related declarations would not compile success
fully when included in a host program's declaration part, as the
declaration order would be violated. (e.g. given an include file
containing uses-, constant-, type-, and variable declarations, what
is the proper location in the host program's uses-, constant-,
type-, and variable declarations for the include file directive?)
Thus, UCSD Pascal relaxes the restrictions on declaration order for
include files appearing in declaration parts.

NOTE - Files containing uses, constant, type,' or variable declara
tions may not be included after a procedure body; however, they may
be included after forward declarations.

Page 70

Extensions To Standard Pascal

Example of included declarations:

*** The include file (named INC1.TEXT):

const H = 'Hi, guys! This is Eddy, your shipboard computer!';
type car - record

make: string;
license: integer;

end;
var c, a: car;

procedure riceCr: car);
begin

a := c;
writeln(H);

end;

*** The host program:

program margorp;
const N = 5;
var i,j,k: integer;

{$I INC1.TEXT}

procedure useless;
begin
end;

begin
with c do

begin make := 'Edsel'; license := 10101 end;
writelnCH);
for i := 1 to N do

begin writeln('and again ••• ·);· rice(c) end;
end {margorp}.

3.11.2 Pointer ~ Conversion

In UCSO Pascal, the standard procedure ORO is extended to accept
pointer types. This extension should only be used in machine-spe
cific tasks requiring pOinter-to-integer type conversion.

NOTE - Pointer values on the PDQ-3 may be considered scalar values
Cunsigned l6-bit) in the range 0 •• 65535 which correspond to memory
addresses. Integers (signed l6-bit) returned by ORD«pointertype»
are in the range -32768 •• 32767. See section 7.2 for more informa
tion.

PDQ-3 Programmer's Manual

3.11.3 Screen Control

The UCSD intrinsic GOTOXY provides terminal-independent X-Y coordi
nate cursor positioning. GOTOXY is used in conjunction with READ,
READLN, WRITE, and WRITELN to create formatted screen displays and
prompt lines. See section 8.3 in the System User's Manual for more
information on the GOTOXY intrinsic.

Example of GOTOXY:

program SControl;
type horz = 0 •• 79;

vert = 0 •• 23;

procedure putline(x: horz; y: vert; line:string);
var len: integer;
begin

gotoxy(x,y);
write(line);
gotoxy(x,y+l);
if length(line)) 0 then

for len := 1 to length(line) do write('-');
end;

begin
putline(37,2,'North');
putline(76,12,'East');
putline(37,2l,'South');
putline(O ,12,'West');

end {SControl}.

Paae 7?

Extensions To Standard Pascal

3.11.4 Clock Access

The UCSD intrinsic TIME provides access to the system clock. The
clock is defined as a 32-bit unsigned integer incremented every
60'th of a second. The clock value is returned in a pair of
integers passed as variable parameters. Note that the integers
contain unsigned values (see section 7.2).

NOTE - The UNITSTATUS intrinsic described in section 3.9.2 may also
be used .to read the system clock.

Example of TIME:

program timer;
var notused, starttime, endtime: integer;

count, limit, elapsedtime: integer;
begin

writeln('** Clock Demo **1);
repeat

write(lenter delay (0 terminates): I);
readln(limit);
time(notused,starttime);
for count := 1 to limit do

notused := notused * 100 div 100;
time(notused,endtime);
elapsedtime := endtime - starttime;
writeln(1 elapsed time = " (elapsedtime +30) div 60,

, seconds ');
until limit = 0;

end {timer}.

3.11.S Powers Af ~

The UCSD intrinsic PWROFTEN (short for Rpower of ten R) accepts an
integer argument whose value is in the range 0 •• 38 and returns a
real result equal to ten raised to the power of the argument.

NOTE - Arguments less than a cause PWROFTEN to always return ten to
the zero'th power (i.e. 1). Arguments larger than 38 cause the
execution error RFloating point error R•

Example of PWROFTEN:

program powers;
var i: integer;
begin

repeat
write('enter arg: I>;
readln(i);
writeln('arg is ',i,' result is ',pwroftenCi»;

until i = 0;
end {powers}.

Page 73

PDQ-3 Programmer's Manual

3.11.& Arctangent Synonym

Standard Pascal defines ARCTAN as the standard function for the
arctangent function. In UCSD Pascal, both ARCTAN and ATAN denote
the arctangent function.

3.11.7 PrQcedure TerminatioD

The UCSD intrinsic EXIT accepts a procedure, function, or program
identifier as an argumentJ it causes execution to continue at the
end of the block named by the identifier. The Simplest case of
EXIT occurs when the identifier denotes the current block; EXIT
jump~ to the end of the current block. If the EXIT argument
specifies a routine at an outer level, all routines on the call
chain between the current routine and the specified routine are
also terminated. The entire program can be terminated by calling
EXIT with either the program identifier or the reserved word
PROGRAM.

NOTE - If EXIT specifies a recursively invoked procedure, only the
most recent invocation is terminated.

NOTE - A process may not EXIT out of its block. Attempts to do so
result in the termination of the process.

WARNING EXIT statements are not legal in either the initializa
tion or termination sections of a unit. Moreover, attempts to
EXIT (PROGRAM) from an implementation procedure during the execution
of either an initialization or a termination section result in a
runtime error.

NOTE - GOTe statements naming a label outside of the current block
(called -out-of-block- GOTQ's) are not implemented in UCSD Pascal;
the EXIT intrinsic is used to provide an alternative (albeit
limited) form of out-of-block GOTO.

NOTE - A CLOSE«file), NORMAL) is performed on all files local to a
procedure terminated by a call to EXIT.

WARNING When EXIT is used to terminate a function, the function
value must have been assigned beforehand; otherwise, the function
returns an undefined value when exited.

Page 74

Extensions To Standard Pascal

Example of EXIT:

program exitdemo;
var num: integer;

procedure readNatural(var int: integer);
var ch: char;

procedure blowout(errmsg: string);
var ch: char;
begin

writeln;
writeln('»>Error: ',errmsg);
write(' type <space> to continue, "1" to escape');
repeat read(keyboard,ch) until ch in [' ','1'];
writeln(ch);
if ch = '1' then exit(program)
else exit (readNatural);

end {blowout};

begin
int := 0;
repeat

read(ch);
if not (ch in [' 0 ' •• ' 9 ' " .]) then

blowout('Input format');
if ch =.' , then exit(readNatural);
if (int > maxint div 10) or «int = maxint div 10) and

(ord(ch) - ord('O') > maxint mod 10» then
blowout('Integer too large');

int := int * 10 + ord(ch) - ord('O');
until false;

end {readNatural};

begin
repeat

write(' enter nonnegative number (17 terminates): ');
readNatural(num);
writeln(1 number entered is: ',num);

until num = 17;
end {exitdemo}.

3.11.8 1lQ Completion Status

The UCSD intrinsic IORESULT returns an integer result containing
the current value of the system I/O completion status. The status
is reset after every I/O operation (including file operations).
Calling IORESULT is usually unnecessary, as the compiler automati
cally generates I/O checks after every file I/O operation; however,
if I/O checks are suppressed (using the $I compile option see
section 5.0.4), the value returned by IORESULT should be explicitly
checked after each I/O operation to prevent I/O errors from causing
program errors.

IORESULT is used in programs which substit11te their own error

Page 75

PDQ-3 Programmer's Manual

checking and recovery for the system's error handling facilities.

NOTE - Appendix A lists the standard IIC result values and their
definitions. Appendix C lists conditions causing bad IIO results.

NOTE - Nonstandard I/O results may be defined using the PROGOPS and
EXCEPINFO system units. See the Library User's Manual for details.

NOTE Each task maintains its own I/O status; thus, I/O results
are protected from task contention.

NOTE - The low-level unit I/O intrinsics (section 3.9) always
require explicit I/O checks. The compiler does not generate I/O
checks after occurrences of these intrinsics.

WARNING - Because the I/O completion status word is reset after
every I/O operation, care must be taken to preserve IIO result
values between their detection and subsequent actions. In the
following example, the bad IIO result is inadvertently obliterated
(by the preceding string write) before it reaches the console:

{SI-}
program inoperative;
var f: file;
begin

reset(f,'nonexistent.file.text');
writeln('I/O result after file open is ',ioresult);

end {inoperative}.

Section 7.5 contains another example using IORESULT.

Example of IORESULT:

program IOdemoJ
var num: integer;

procedure getnum(prompt: string; var int: integer);
begin

{SI-} { suppress IIO checks }
repeat

write(prompt);
readlnCint);

until ioresult • 0;
{SI+}

end {getnum};

begin
repeat

getnumC'Enter number C-l terminates): ',num);
writelnC' number returned is: ',num);

until num = -1;
end {IOdemo}.

Page 76

Extensions To Standard Pascal

3.11.9 Memory Ayai1ab1e

The UCSD intrinsics Rl;lENAVAIL and ~1ENAVAIL return the number of
unused words in memory. RMEl.mVAIL returns a real value; l1EMAVAIL
returns an unsigned integer.

NOTE - Values returned by MEMAVAIL should be treated as l6-bit
values in the range 0 •• 65535; unfortunately, values in the range
32768 •• 65535 are considered negative numbers in the Signed l6-bit
representation used for integer types and operators. See section
7.2 for more information.

NOTE - Values returned by RMEMAVAIL and MEMAVAIL are best used in
conjunction with the 11.0 heap intrinsics. They return the number
of words between the system stack and current heap. When using the
IV.O heap intrinsics, there may be additional unused space in the
heap as a result of calls to DISPOSE. Therefore, the VARAVAIL
intrinsic should be used in conjunction with the IV.O heap
intrinsics. See section 3.5 for further information.

Example of MEMAVAIL and RMEMAVAIL:

program memDisplay;
begin

writeln(' System has' ,rmemavail,' words available');
writeln(' Integer memavail value = ',memavail);

end {memDisplay}.

Section 7.4 contains other examples.

3.11.10 Breakpoint ~

The UCSD intrinsic HALT invokes the system breakpoint handler. The
default breakpoint handler prints a halt message and prompts for an
input from the standard input. Typing <return> resumes program
execution.

NOTE The system breakpoint handler may be altered by replacing
the HALTUNIT system unit. See section 6.4 for further details.

Example of HALT:

program succinct;
begin

halt;
end {succinct}.

Page 77

PDQ-3 Programmer's Manual

3.11.11 Compiler Support

The compiler uses the UCSD intrinsics IDSEARCH and TREESEARCH for
scanning identifiers and maintaining symbol trees respectively.
IDSEARCH is unsuited for use outside of the compiler, and is not
described· in this manual; however, TREESEARCH performs a suffici
ently generalized task to merit description.

TREESEARCH manages binary trees ordered by the contents of an 8
character field. A node in the tree must have the following
structure:

type nodeptr = Anode;
node = record

name: packed array [1 •• 8] of char;
left_link, right_link: nodeptr;
• • •
{ user-defined record fields }
•••

end {node};

TREESEARCH accepts a tree root pointer, node pOinter, and an 8
character packed array as arguments; it returns an integer as a
function result, and also assigns a value to the node pointer
(variable) parameter. If a node in the tree matches the array
argument, TREESEARCH returns the value a as a function result; the
node pointer is set to the node. If no node in the tree matches
the array argument, TREESEARCH returns either 1 or -1; the node
pointer is set to the last node searched. 1 indicates that the
array argument is greater than the value of the last node (and
should be inserted on its right link); -1 indicates that the
argument is less than the last node (and should be inserted on its
left link).

NOTE - Trees are constructed by the PDQ-3 TREESEARCH intrinsic such
that right (post-order) traversals of a tree visit the nodes in
lexicographical order of their name fields. This ordering may vary
in other UCSD Pascal implementations.

Extensions To Standard Pascal

Example of TREESEARCH:

program tree_demo~
type alpha = packed array [1 •• 8] of char~

nodeptr = "'node;
node = record

narpe: alpha;
llink, rlink: nodeptr;
value: integer;

end {node};
var root: nodeptr;

cmd: char;

procedure get_name(var name: alpha);
var s: string;

cnt: integer;
begin

readln(s); name := ,
for cnt := 1 to length(s) do

, . ,

if cnt <= 8 then name[cnt] := s[cnt];
end {get_name};

procedure find_node;
var entry: nodeptr;

search: alpha;
begin

write(' Enter name: I);
get_name(search);
if treesearch(root,entry,search) <> 0 then

writeln(' Entry not found')
else with entry'" do

writeln(' Name: ',name,' Value: ',value);
end {find_node};

procedure print_nodes(tree: nodeptr);
begin {print nodes in ascending lexigraphic order}

if tree"'.rlink <> nil then
print_nodes(tree"'.rlink);

with tree'" do
writeln(' Name: ',name,' Value: ',value);

if tree"'.llink <> nil then
print_nodes(tree"'.llink);

end {print_nodes};

Page 79

PDQ-3 Programmer I s ~lanual

procedure add_node;
var new_node, entry: nodeptr;

result, new_val: integer;
new_name: alpha;

begin
write(' Enter name: I);
get_nameCnew_name);
result := treesearchCroot,entry,new_name)i
if result = 0 then

writelnC' Entry already exists')
else

begin
newCnew_node);
with new_node A do

begin
writeC' Enter value: ');
readlnCvalue);
name := new_name;
llink := nil; rlink := nil;
if result = 1 then

entryA.rlink := new_node
else

entryA.llink := new_node
end;

end {else};
end {add_node};

begin
new C root) ;
with rootA do

begin
name := ' '; value := 0;
llink := nil; rlink := nil;

end;
repeat

writeC'ACdd node FCind node PCrint node QCuit');
readCkeyboard,cmd); writelnCcmd);
case cmd of

'a': add_node;
'f': find_node;
'pi: print_node(root);

end;
until cmd = 'q';

end {tree_demo}.

Page 80

UCSD Intrinsics

~ ~ INTBINSICS

This chapter contains descriptions 6f all UCSD intrinsics. The
intrinsics are listed in alphabetic order. Each description
contains a reference to a related section in chapter 3, which
describes the intrinsics in terms of the features they implement
(and also presents programming examples).

NOTE - Users unfamiliar with the UCSD intrinsics should peruse
chapter 3 before reading this chapter.

With two exceptions, the identifiers chosen to denote UCSD intrin
sics are distinct from the standard procedures defined in standard
Pascal; RESET and REWRITE are sufficiently altered to warrant
inclusion in this section as intrinsics.

NOTE - In order to completely specify the UCSD Pascal intrinsics,
this section embellishes Pascal syntax with the metasymbols defined
in section 1.2 and two special type identifiers. Metasymbols are
used to indicate optional, parameters ([<opt-param>l) and sequen
ces of one or more parameters ({<param-seq>}). The special type
identifiers indicate relaxed type checking on the corresponding
parameterCs). The type UNIV denotes a universal type; formal
parameters declared with UNIV accept actual parameters of any type.
The type FILEID is compatible with all file types.

NOTE - All extensions described in this chapter are recognized by
the compiler and are hence part of the UCSD PASCAL base language.
Another class of extensions is available through the use 'of the
library modules described in the Library User's Manual. Routines
that allow program chaining, extended directory management, screen
control, and other system-oriented functions are documented there,
but are listed in Appendix K for convenience.

Page 81

LJl AUB

Syntax:

PDQ-3 Programmer's Manual

function atanCX: real): real;

ATAN is equivalent to the standard procedure ARCTAN.

See section 3.11.6 for more information.

Page 82

UCSD Intrinsics

iA1 ATTACH

Syntax:

procedure attach(var SEM
VECTOR

: semaphore;
integer);

ATTACH associates the semaphore variable SEM with the PDQ-3
interrupt vector specified by VECTOR: SEM is signalled whenever the
processor receives an interrupt through the interrupt vector.

Interrupt vectors are described in the Hardware User's Manual.

Only one semaphore may be attached to an interrupt vector at one
time; attaching a new semaphore to an interrupt vector implicitly
detaches the old semaphore. Interrupts through the specified
vector must be disabled before an attached semaphore variable is
deallocated; otherwise, system crashes may occur.

See sections 3.0.2 and 7.6 for more information.

Page 83

PDQ-3 Programoer's Manual

.L..a . BLOCKREAP

Syntax:

function blockread(var F file;
univ;
integer

var BUFF
BLOCKS

[; RELBLOCK integer]) : integer;

BLOCKREAD attempts to read the number of blocks specified by BLOCKS
from the file F into the variable BUFF; it returns the number of
blocks actually read. If the number of blocks returned is less
than the number of blocks requested, BLOCKREAD encountered either
the end of the file or an I/O error while reading the data.

IIO checks are automatically generated for BLOCKREAD calls; if IIO
checks are suppressed, IORESULT should be used to check the
completion status after BLOCKREAD calls.

The optional parameter RELBLOCK applies only when reading from
block-structured (disk) files; when specified, it indicates the
block in the file where BLOCKREAD starts reading. The starting
block is relative to the front of the disk file, with block a being
the first block in the file.

RELBLOCK is ignored when reading from serial devices.

In the absence of a RELBLOCK parameter, blocks are read from the
file 'consecutively; the first BLOCKREAD after F is opened reads
from block O.

Users must ensure that BUFF specifies a word-aligned address as the
starting address- of the buffer; this is most important when the
starting buffer address is an indexed address in a packed array of
char. Users are responsible J for not overrunning the buffer
specified by BUFF; no range checking is provided.

See section 3.3.3 for more information.

?~C'e 84

UCSD Intrinsics

!&l BLQCKWRITE.

Syntax:

function blockwrite(var F : file1
var BUFF : univ;

BLOCKS : integer
[; RELBLOCK : integer]) : integer;

BLOCKWRITE attempts to write the number of blocks specified by
BLOCKS from the variable BUFF to the file F1 it returns the number
of blocks actually written. If the number of blocks returned is
less than the number of blocks requested, BLOCKWRITE encountered an
I/O error while writing the data.

I/O checks are automatically generated for BLOCKWRITE calls; if I/O
checks are suppressed, IORESULT should be used to check the
completion status after BLOCKWRITE calls.

The optional parameter RELBLOCK applies only when writing to
block-structured (disk) files1 when specified, it indicates the
starting block in the file where BLOCKWRITE starts writing to. The
starting block is relative to the front of the disk file, with
block 0 being the first block in the file.

RELBLOCK is ignored when writing to serial devices.

In the absence of a RELBLOCK parameter, blocks are written to the
file consecutively; the first BLOCKWRITE after F is opened writes
to block O.

Users must ensure that BUFF specifies a word-aligned address as the
starting address of the buffer; this is most important when the
starting buffer address is an index into a packed array of char.

See section 3.3.3 for more information.

Page 85

PDQ-3 Programmer's Manual

!&! CLOSE

Syntax:

procedure close(var F : fileid [; OPTION]);

CLOSE sets the file state of the (arbitrarily typed) fileF to
ftclosed ft • Disk file options include -LOCK ft , -NORMAL", "PURGE-, and
ftCRUNCS-; these determine the final state of the associated disk
file. (All options except PURGE are ignored when the external file
is not a disk file.)

NORMAL preserves modificat'ions to files opened with REa$T; however,
if the file was extended, the extension is deleted. If the file
was modified, the file date attribute is assigned the current
system date. Temporary files created with RDIRITE are deleted.
NORMAL is the default option.

LOCK preserves files opened with RESET. If the file was extended,
the extension is saved. If the file was modified, the file date
attribute is assigned the current system date. Temporary files
created with REWRITE become permanent files. Note that if the
temporary file's name matches an existing file's name, the existing
file is deleted when the tempor.ary file becomes permanent.

PURGE deletes the specified disk' file. If the external file is an
entire volume, the volume is taken off line; serial volumes cannot
be opened for subsequent I/O operations until the system is
reinitialized.

CRUNCH is equivalent to LOCK except that the file is truncated by
designating the file window position as the end of the file. (The
position of the file window is determined by the last file
operation.) All data between the file window and the original end
of the file is deleted.

When a structured file is closed, the contents of the file window
become undefined. Closing a non-open file causes an I/O error. At
procedure termination, a NORMAL close is performed on all open
files declared in that procedure.

See section 3.3.0 for more information.

Page 86

UCSD Intrinsics

~ CON CAT

Syntax:

function concatCS
{; S

string
string}) : string;

CONCAT returns a string containing the concatentation of the string
values of its arguments. Note that CONCAT accepts one or more
string parameters.

NOTE - The length of the string result is not allowed to exceed 255
characters.

See section 3.4 for more information.

Page 87

Syntax:

function copy(SOURCE
. INDEX

SIZE

PDQ-3 Programmer's Manual

: string;
: integer;
: integer) : string;

COpy returns a string containing SIZE characters copied from
SOURCE, starting at the INDEXth character position in SOURCE.

NOTE- COpy returns an empty string if the string specified by SIZE
and INDEX exceeds the length of the string in SOURCE.

See section 3.4 for more information.

Page 88

UCSD Intrinsics

L1. DELETE

Syntax:

procedure deleteCvar S : string;
INDEX: integer;
SIZE : integer);

DELETE removes SIZE characters from the string in S, starting at
the INDEXth character position in S.

NOTE DELETE leaves S unaltered if the string specified by SIZE
and INDEX exceeds the length of the string in S.

See section 3.4 for more information.

Page 89

PDQ-3 Programmer's Manual

Syntax:

procedure exit«routine»;

EXIT causes program execution to continue at the end of the' block
associated with <routine); acceptable arguments are procedure or
function identifiers, program names, or the reserved word PROGRAM.
If EXIT specifies a recursively invoked routine, only the most
recent invocation is terminated.

NOTE - Calls to EXIT are not legal inside of unit initialization
and termination sections. EXIT (PROGRAM) should not be performed
from implementation procedures during the execution of either of
these sections.

NOTE Exiting through an uncalled procedure results in execution
error 3 ("Exit from uncalled procedure").

WARNING - When EXIT is used to terminate a function, the function
result must have been assigned beforehand; otherwise, the function
returns an undefined value when exited.

See section 3.11.7 for more information.

Page 90

UCSD Intrinsics

!&i FILLCBAB

Syntax:

procedure fillchar(var BUFFER: univ;
BYTES : integer;
CH character);

FILLCHAR initializes BYTES bytes in memory with the value in CHi
the starting address is specified by BUFFER.

NOTE The SIZEOF intrinsic is often used in FILLCHAR to specify
the size of BUFFER.

WARNING - Negative values in BYTES are treated as zero byte counts;
hence, large unsigned values may not work as expected.

WARNING - FILLCHAR offers' no range or type checking.

WARNING Array indices on the PDQ-3 are treated as signed
integers. In the specification of the starting buffer address, use
of an array index whose value is less than the buffer's declared
lower bound may yield unexpected or fatal results.

See section 3.8 for more information.

Page 91

PDQ-3 Programmer' s filanual

Ll.Q. GQ'l'QXY

Syntax:

procedure gotoxy(X : integer;
Y : integer);

GOTOXY moves the cursor to the position specified by its arguments.
X determines the horizontal displacement, while Y determines the
vertical displacement; the upper left corner of the screen is
defined to be (0,0). If parameter values exceed the maximum values
defined for the system terminal, they are truncated to the maximum
values.

NOTE GOTOXY is a terminal-dependent procedure; it usually
requires redefinition when a new terminal is incorporated into the
system. See section 8.3 in the System User's Manual for details on
redefining GOTOXY.

See section 3.11.3 for more information.

Page 92

UCSD Intrinsics

Syntax:

procedure halt;

HALT suspends the current program and prints a halt prompt.

NOTE - The behavior of the HALT intrinsic may be changed by
replacing the operating system HALTUNIT. See section 6.4 for
details.

NOTE - Programs may be terminated with the EXIT intrinsic.

See section 3.11.10 for more information.

Page 93

PDQ-3 Programmer's Manual

!&la IDSEABCB

Syntax:

procedure idsearchCINX : integer;
var BUFFER: univ);

A description of IDSEARCH is beyond the scope of this document; see
the Architecture Guide for details.

See section 3.11.11 for more information.

Page 94

UCSD Intrinsics

.L.ll INSERT

Syntax:

procedure insert(SUBSTRING : string;
var S : string;

INDEX : integer);

INSERT stuffs the string in SUBSTRING into the string contained in
S at the INDEXth character position in S.

NOTE - INSERT leaves S unalta:~;~.t: if the position specified by INDEX
exceeds the length of the string in S by more than one character.

See section 3.4 for more information.

Page 95

PDQ-3 Programmer's Manual

!&l! IQRESULT

Syntax:

function ioresult : integer;

IORESULT returns an integer value indicating the result of the last
IIO operation performed by the current task (section 3.0.0).

NOTE - I/O results are updated after every I/O operation; there
fore, an I/O result value must be saved in a variable if subsequent
I/O operations occur before it can be manipulated.

NOTE - A table of standard I/O error numbers and their correspon
ding messages is displayed in Appendix A. Conditions causing bad
I/O results are listed in Appendix C.

NOTE - Nonstandard I/O error numbers may be defined by the user.
See the EXCEPINFO and PROGOPS unit documentation in the Library
User's Manual for details.

See section 3.11.8 for more information.

Page 96

.Lll LENGTB

Syntax:

UCSD Intrinsics

function length(S : string) : integer;

LENGTH returns the dynamic length of the string contained in S.

See section 3.4 for more information.

Page 97

PDQ-3 Programmer's Manual

Syntax:

procedure mark(var MARKP : -integer);

MARK opens a heap for dynamically allocated variables. Subsequent
calls to NEW allocate dynamic variables only in the new heap. The
heap is identified by the value assigned to l-tARKP. The RELEASE
intrinsic is used to deallocate all dynamic variables in a heap
opened by ~1ARK.

NOTE - New heaps are allocated within the current heap~ thus, heaps
are nested. Deallocating a given heap results in the deallocation
of all subsequently opened heaps.

WARNING - Pointers passed to MARK must only be used as arguments to
subsequent calls to RELEASE. Careless use of MARK and RELEASE
leads to -dangling references· (i.e. pointers to deallocated
dynamic variables, which mayor may not be overwritten by subse
quent system actions).

NOTE - When the $H+ compil~ option (section 5.0.6) is in effect,
MARK allocates a three word mark record in addition to allocating a
new heap.

See section 3.5 for more information.

Page 98

UCSD Intrinsics

!&l1 MEHAVAIL

Syntax:

function memavail : integer;

MEMAVAIL returns the number of unused words in memory. The integer
result contains an unsigned value; if large, it may be interpreted
as a negative value unless specifically treated as an unsigned
integer result (see section 7.2>.

NOTE The MEMAVAIL intrinsic returns the number of words between
the system stack and heap. It should be used in conjunction with
the 11.0 heap intrinsics; VARAVAIL (section 3.5.1> is intended for
use with the IV.O heap intrinsics.

See section 3.11.9 for more information.

Page 99

PDQ-3 Programmer's Manual

L..U HEMLQCK

Syntax:

procedure memlock(SEGLIST : string);

MEMLOCK loads the code of each segment named in
MEP~OCKed segment remains in memory until it is
MEMSWAP (section 4.19). The SEGLIST consists of
names separated by commas; spaces are ignored.
segment name declared either in the program and
or in the operating system. Unrecognized
ignored.

the SEGLIST. A
named in a call to
a list of segment
It may contain any

the units it uses,
segment names are

NOTE - The MEl~OCK intrinsic may be used only when the $H+ compile
option (section 5.0.6) is in effect.

WARNING MEMLOCKed segment code resides
Indiscreet calls to MEMLOCK may render the
providing large continuous blocks of memory.

See section 3.2.0 for more information.

PaGe 100

in the current heap.
heap incapable of

UCSD Intrinsics

!&li MEMSWAP

Syntax:

procedure memswap(SEGLIST : string);

MEMSWAP unloads the code of each ME~~OCKed segment (section 4.18)
named in the SEGLIST. The SEGLIST consists of a list of segment
names separated by commas; spaces are ignored. It may contain any
segment name declared either in the program and its used units, or
in the operating system. Unrecognized segment names are ignored.

NOTE - The MEMSWAP intrinsic may be used only when the $H+ compile
option (section 5.0.6) is in effect.

NOTE - MEMSWAP operates only on MEMLOCKed segments. A MEMLOCKed
code segment is not unloaded until a MEMSWAP call has been
performed for each MEMLOCK call naming that segment and all active
calls are complete.

See section 3.2.0 for more information.

Page 101

PDQ-3 Programmer's Manual

L.l.Q. MOVELEFT

Syntax:

procedure moveleft(var SOURCE : univ;
DESTINATION : univ;
BYTES : integer);

MOVELEFT moves BYTES bytes of data from the buffer addressed by
SOURCE to the buffer addressed by DESTINATION. The data is moved
one byte at a time, starting with the bytes addressed by SOURCE and
DESTINATION, and moving successively higher-addressed bytes until
BYTES bytes have been moved.

WARNING - Negative values in BYTES are treated as zero byte counts;
hence, large unsigned values may not work as expected.

WARNING - MOVELEFT does not perform type or range checking on its
parameters.

WARNING Array indices on the PDQ-3 are treated as signed
integers. In the specification of the starting buffer address, use
of an array index whose value is less than the buffer'S declared
lower bound may yield unexpected or fatal results.

See section 3.8 for more information.

Page 102

UCSD Intrinsics

L.ll MOVERIGRT

Syntax:

procedure moverightevar SOURCE
DESTINATION
BYTES

univi
univi

: integer);

MOVERIGHT moves BYTES bytes of data from the buffer addressed by
SOURCE to the buffer addressed by DESTINATION. The data is moved
one byte at a time, starting with the bytes addressed by the
expressions (SOURCE + BYTES- 1) and (DESTINATION + BYTES - 1), and
moving successively lower-addressed bytes until BYTES bytes have
been moved.

WARNING - Negative values in BYTES are treated as zero byte counts;
hence, large unsigned values may not work as expected.

WARNING - MOVERIGHT does not perform type or range checking on its
parameters.

WARNING Array indices on the PDQ-3 are treated as signed
integers. In the specification of the starting buffer address, use
of an array index whose value is less than the buffer's declared
lower bound may yield unexpected or fatal results.

See section 3.8 for more information.

Page 103

PDQ-3 Programmer's Hanual

L.2.2. OPENNEW

Syntax:

procedure opennew{var F fileid;
FILENMIE : string);

OPENN~~ is equivalent to the REWRITE intrinsic.
describes REWRITE.

Page 104

Section 4.29

UCSD Intrinsics

.L.ll OPENOLD

Syntax:

procedure openold(var F
[; FILENAHE

fileid
string]);

OPENOLD is equivalent to the RESET intrinsic.
describes RESET.

Page 105

Section 4.28

PDQ-3 Programmer's Manual

L.2J. PMACBINE

Syntax:

procedure pmachine«item> {,<item>});

PMACHINE generates inline machine code corresponding to the items
specified in the parameter list. See the Architecture Guide for a
description of the PDQ-3 instruction set.

<item> ::- <code>

<code>

<expression>
<address-reference>

::= A constant value or constant identifier
denoting an integer between 0 and 255;
PMACBINE emits a single byte with the
specified value. Values outside this
rang.e have only their least signif icant
byte emitted. Code bytes represent
either P-code instructions or instruction
operands.

<expression> ::- «Pascal expression»

<Pascal expression> ::- An expression (e.g. the right-hand
side of an assignment statement).
PMACHINE generates code which
evaluates the expression, leaving
the result on the stack.

<address-reference> ::- A<variable reference>

<variable reference> ::- A referenced variable (e.g. the
left-hand side of an assignment
statement). PMACHINE generates
code which evaluates the variable
reference, leaving the address on
the stack.

DISCLAIMER - Incorrect use of PMACHINE invalidates all warranties
on PDQ-3 system software.

~ See section 3.10 for more information.

Page 106

UCSD Intrinsics

Syntax:

function pos(SUBSTRING : string;
S : string) : integer;

POS searches S for an occurrence of SUBSTRING; it returns an index
indicating the start of the matched substring. If S contains
multiple occurrences of SUBSTRING, POS locates the first occur
rence. If S contains no occurrences of SUBSTRING, POS returns O.

See section 3.4 for more information.

Page 107

PDQ-3 Programmer I s r.lanual

L..2i pwROFTEN

Syntax:

function pwroftenCEXPONENT : integer) : real;

PWROFTENreturns the floating point representation of ten raised to
the EXPONENT'th power. EXPONENT must be in the range 0 •• 38;
negative arguments always return 1, while arguments greater than 38
cause execution error 12 C- Floating point error -).

See section 3.11.5 for more information.

Page 108

UCSD Intrinsics

.L..2.1 RELEASE

Syntax:

procedure release(var MARKP : Ainteger);

RELEASE deallocates all dynamic variables in the heap associated
with l-lARKP.

NOTE - New heaps are allocated within the current heap; thus, heaps
are nested. Deallocating a given heap results in the deallocation
of all subsequently opened heaps.

WARNING - Pointers passed to RELEASE must be initialized by a
previous call to the MARK intrinsic. Careless use of MARK and
RELEASE leads to ndangling references" (i.e. pointers to dealloca
ted dynamic variables, which mayor may not be overwritten by
subsequent system actions).

NOTE - MEMLOCKed segment code (section 3.2.0) is maintained in the
current heap. RELEASEing the current heap does not deallocate the
memory occupied by the segment code.

NOTE - When the $H+ compile option (section 5.0.6) is in effect,
RELEASE deallocates a three word mark record in addition to
deallocating the specified 'heap.

See section 3.5 for more information.

Page 109

PDQ-3 Programmer I s f.lanual

h2.a. RESET

Syntax:

procedure reset(var F : fileid
£.; FILENMIE string]) ;

RESET opens the external file named in FILENAME, and prepares the
file variable F for subsequent operations on the external file. If
F does not denote an interactive file, RESET performs an implicit
GET; this is consistent with the standard procedure RESET in
standard Pascal.

RESET is used to open existing files for reading and/or writing.

RESET generates an I/O error in the following cases:

The file variable F is already open.

FILENAME· specifies a nonexistent external file.

FILENAME specifies a write-only device.

RESET without the file name parameter rewinds the file window to
the beginning of the (open) file.

External files opened with RESET may be closed with the CLOSE
intrinsic.

See section 3.3.0 for more information.

Page 110

UCSD Intrinsics

.L.2.S. REWRITE

Syntax:

procedure rewrite(var F fileid;
·FILENAJ.1E : string);

R~~RITE creates a temporary external
prepares the file variable F for
external file.

file named FILENAHE, and
subsequent operations on the

R~~RITE is used to open new files for writing.

R~iRITE generates an I/O error in the following cases:

The file variable F is already open.

Insufficient room on disk to create the file.

External files opened with REWRITE may be saved with the CLOSE
intrinsic.

See section 3.3.0 for more information.

Page III

PDQ-3 Programmer's r.tanual

L.JJl RMEMvAIL

Syntax:

function rmemavail : real;

RMEMAVAIL returns the number of unused words in memory.

NOTE - The RMEMAVAIL intrinsic returns the number of words between
the system stack and heap. It should be used in conjunction with
the II.O heap intrinsics; VARAVAIL (section 3.5.1) is intended for
use with the IV.O heap intrinsics.

See section 3.11.9 for more information.

Page 112

UCSD Intrinsics

Syntax:

function scan(BYTES : integer;
<partial expression>;

var BUFF : univ) : integer;

Starting at the address specified by
exam1nes successive bytes in memory
conditions becomes true:

the variable BUFF, SCAN
until one of the following

The current byte contains a value which satisfies the partial
expression.

BYTES bytes have been examined without finding a value that
satisfies the partial expression.

Partial expressions are incomplete Boolean expressions; the left
hand operand is defined to be the current byte being examined by
SCAN. A partial expression is satisfied when it evaluates to true.
The partial expression is evaluated for each byte examined by SCAN;
if it becomes true, SCAN returns immediately.

<partial expression> ::= = I <> <character expression>

<character expression> ::= character variable or constant

SCAN returns the number of bytes examined. If the byte pOinted at
by the starting address contains a value satisfying the partial
expression, SCAN returns O. If the value in BYTES is negative,
SCAN scans backwards (towards lower addresses> from its starting
address searching for the target byte, and returns a negative
number (in the range BYTES •• O) whose magnitude indicates the number
of bytes examined.

WARNING - Negative values in BYTES cause backwards scanning; hence,
large unsigned values may not work as expected.

WARNING Array indices on the PDQ-3 are treated as Signed
integers. In the specification of the starting buffer address, use
of an array index whose value is less than the buffer's declared
lower bound may yield unexpected or fatal results.

See section 3.8 for more information.

Page 113

POQ-3 Programmer' s ~lanual

Syntax:

procedure seek(var F : fileid1
RECNUM: iriteger)1

SEEK moves the file window in F so that a subsequent GET or PUT
accesses the RECNUM'th record in the file. F must be a structured
disk file (i.e. any standard Pascal file except text). The first
record in a file is record O. The standard procedure EOF is used
to detect seeks off the end of the file. Though SEEK itself always
sets EOF to false, a subsequent GET sets EOF to true if the new
file position is at (or past) the end of the file.

WARNING - The result of SEEK is undefined if the file position is
moved more than one record past the final record in the file. If
SEEK moves to the first empty record in the file, a subsequent PUT
extends the file in a normal fashionJ however, if records are
written at file positions more than one record past the end of the
file, the file itself becomes undefined (resulting in subsequent
program errors). Note that EOF alone is insufficient to distin
guish these cases.

See section 3.3.4 for more information.

Page 114

UCSD Intrinsics

L.ll SEMINIT

Syntax:

procedure seminitevar SEM
COUNT

semaphore;
integer);

SEMINIT initializes SEM with the value COUNT.

WARNING Calling SIGNAL or WAIT with an uninitialized semaphore
variable may crash the system. Calling SEMINIT with a semaphore
holding suspended tasks causes the system to lose the tasks.

See section 3.0.1 for more information.

Page 115

PDQ-3 Programmer' s lilanual

Lll SIGNAL

Syntax:

procedure signal(var SEM : semaphore);

If no tasks are wai ting on SEM, SIGtlAL increments the semaphore I s
count; otherwise, SIGNAL selects the highest priority waiting task
and inserts it in the ready queue.

See section 3.0.1 for more information.

Page 116

UCSD Intrinsics

~ SIZEQF

Syntax:

function sizeof«identifier» : integer;

SIZEOF returns the number of bytes of memory allocated for the data
object denoted by <identifier>. <identifier> may be either a
variable or type identifier. SIZEOF is used in conjunction with
the intrinsics MOVELEFT, MOVERIGHT, and FILLCHAR.

NOTE - SIZEOF is evaluated by the compiler; it replaces each call
with a constant containing the result. Thus, SIZEOF cannot return
the size of runtime variable references.

NOTE - If a record contains variant fields, SIZEOF uses the longest
variant when determining its size.

See section 3.8 for more information.

Page 117

PDQ-3 Programmer's Manual

.LJi START

Syntax:

procedure startC<process call>
[~ var PID : processid

[~ STACKSIZE : integer
[~PRIORITY : integer]]]);

START initiates tasks.

The main parameter to START is a process call; it resembles a
procedure call, and may contain parameters passed to the task.

The remaining parameters define various task attributes. PIO is
assigned a value which uniquely identifies the new task. STACKSIZE
indicates the number of words of memory to be allocated for a stack
space; if absent, START uses 200 as a default stack size. PRIORITY
indicates the task priority to be assigned the new task; if it is
not .in the range 0 •• 255, an execution error occurs. The default
priority is 128.

See section 3.0.0 for more information.

Page 118

UCSD Intrinsics

Syntax:

procedure str(L
var S

integer[361;
string);

STR converts the value in L into a string in
format long integer ~flues for output.
negative, the first character placed in S is

See section 3.6 for more information.

Page 119

5;
If

"_" •

it is used to
the value in L is

PDQ-3 ProgramQer's Manual

Syntax:

procedure time(var HIWORD : integer;
var LOWORD : integer);

TIME returns the current value in the system clock in the integer
pair HIWORD and LmiORD. The system clock is an unsigned 32-bit
integer incremented every 60'th of a second. HIWORD contains the
most significant word.

NOTE HIWORD and LC»10RD contain unsigned values; they may be
treated as negative numbers by some integer operations unless
specifically treated as unsigned integers (section 7.2).

See section 3.11.4 for more information.

Page 120

UCSD Intrinsics

~ TREESEABCB

Syntax:

type alpha = packed array [1 •• 8] of char;
nodeptr = Anode;
node = record

name: alpha;
left_link, right_link: nodeptr;
{ user-defined record fields }

end {node};

function treesearch(ROOT
var NODE :

nodeptr;
nodeptr;

NAAE : alpha) : integer;

TREESEARCH manages binary trees ordered b~ the contents of an 8
character field. TREESEARCH searches the tree rooted at ROOT for a
record whose name field matches N~lE; on return, NODE contains a
pointer to the last record examined, and the function result
indicates the results of the search.

If a record in the tree matches the array argument, TREESEARCH
returns a as a function result; NODE points to the matching record.
If no record in the tree matches the array argument, TREESEARCH
returns either 1 or -1; NODE is set to the last node searched. 1
indicates that NAME is greater than the name in the record pointed
at by NODE (and would be inserted on its right link); -1 indicates
that the argument is less than NODE (and would be inserted on its
left link).

NOTE - The PDQ-3 TREESEARCH intrinsic constructs trees so that
right (post order) traversals visit the records in lexicographical
order of their name fields. This ordering may differ on other UCSD
Pascal implementations.

See section 3.11.11 for more information.

Page 121

PDQ-3 Programmer's Hanual

LJjl UNITBUSY

Syntax:

function unitbusy(UNITNUf.l : integer) : boolean;

UNITBUSY indicates whether the specified device is waiting for an
I/O operation to finish.

See section 3.9 and Appendix 0 for more information.

Page 122

UCSD Intrinsics

LJ.l ONITCLEAR

Syntax:

procedure unitclear(UNITNUM : integer);

UNITCLEAR cancels any 1/0 operations occuring
device, and resets the unit to its initial (i.e.

on the specified
power-up) state.

See section 3.9 and Appendix 0 for more information.

Page 123

PDQ-3 Programmer's Manual

!&ia UNITBEAP

Syntax:

procedure unitread(UNITNUM
var BUFF

BYTES
[; BLOCKNOM
[; CONTROL

integer;
univ;
integer

: integer
: integer]]);

UNITREAD reads BYTES bytes from the device UNITNOM into the
variable BUFF. BLOCKNOM is applicable only when reading from
block-structured units; it specifies the starting block of the
transfer. (Block numbers start at 0.) CONTROL is treated as a bit
array; certain bits in the control word are defined to select
various IIO options (depending on the unit specified - see Appendix
D for details).

The BLOCKNOM parameter is ignored when UNITNOM specifies a serial
unit. Though it is not specified in the syntax definition above,
UNITREAD accepts a CONTROL parameter in the absence of a BLOCKNON
parameter. The form is:

UNITREAD«unit>,<buffer>,<length>,,<control»

NOTE - BUFF is constrained to start on a word address
specified unit is block-structured; reading into an
address causes IIO error 18 (illegal buffer address).

when the
odd byte

WARNING - UNITREAD performs no type or range checks on its
parameters.

WARNING Array indices on the PDQ-3 are treated as signed
integers. In the speCification of the starting buffer address, use
of an array index whose value is less than the buffer's declared
lower bound may yield unexpected or fatal results.

See section 3.9 and Appendix D for more information.

Page 124

UCSO Intrinsics

L.J.l UNITSTATUS

Syntax:

procedure unitstatus(UNITNUM :
var STATREC

OIR

integer;
univ;
integer);

Ut~ITSTATUS returns the status of the device UNITNUH in the STATREC
record. The format of the STATREC record depends on the type of
device being polled. It may be either a serial device record,
block-structured device record, or a system clock record. The
record should occupy at least 30 words to allow for future
expansion.

The OIR parameter is not used and should be passed as zero.

See section 3.9 and Appendix 0 for more information.

Page 125

PDQ-3 Programmer's Manual

.4....J! QNIT'8AlT

Syntax:

procedure unitwait(UNITNUM : integer);

UNITWAIT waits for the device specified by UNITNUM to finish its
cu~rent I/O operation.

NOTE - UNITWAIT is not implemented on the PDQ-3; if called, it
returns immediately.

See section 3.9 and Appendix D for more information.

Page 126

UCSD Intrinsics

L..U.UNI'l'WRITE

Syntax:

procedure uni twrite (UNITNUf.l · integer; · var BUFF univ;
BYTES · integer · [; BLOCKNUM · integer · [; CONTROL · integer]]); ·

UNITtiRITE wri tes BYTES bytes .to the device UNITNUl'l from the
variable BUFF. BLOCKNUM is applicable only when writing to
block-structured units; it specifies the starting block for the
transfer. (Block numbers start at 0.) CONTROL is treated as a bit
array; certain bits in the control word are defined to select
various IIO options (depending on the unit specified - see Appendix
D for details).

The BLOCKNUM parameter is ignored when UNITNUM specifies a serial
unit. Though it is not specified in the syntax definition above,
UNITWRITE accepts a CONTROL parameter in the absence of a BLOCKNUH
parameter. The form is:

UNI~lRITE«unit>,<buffer>,<length>,,<control»

NOTE - BUFF is constrained to start on a word address
specified unit is block-structured; writing from an
address causes IIO error 18 (illegal buffer address).

when the
odd byte

WARNING - UNITWRITE performs no type or range checks on its
parameters.

WARNING Array indices on the PDQ-3 are treated as signed
integers. In the specification of the starting buffer address, use
of an array index whose value is less than the buffer's declared
lower bound may yield unexpected or fatal results.

See section 3.9 and Appendix D for more information.

Page 127

PDQ-3 Programmer's Manual

LJi YARAYAIL

Syntax:

function varavailCSEGLIST : string) : integer;

The VARAVAIL function returns the size of the largest continuous
free space in memory assuming that all segments named in the
SEGLIST are resident. The SEGLIST consists of a list of segment
names separated by commas; spaces are ignored. It may contain any
segment name declared either in the program and the units it uses,
or in the operating system. Unrecognized segment names are
ignored. In calculating VARAVAIL, it is assumed that all currently
nonresident segments named in the SEGLIST would be loaded onto the
system stack rather than be UEMLOCKed.

NOTE - The VARAVAIL intrinsic may be used only when the $H+ compile
option (section 5.0.6) is in effect.

See section 3.5,for more information.

Page 128

UCSD Intrinsics

.L.ll VARDISPOSE

Syntax:

procedure vardispose(var P Auniv;
WORDCOUNT : integer);

The VARDISPOSE procedure deallocates the buffer referenced by P.
The buffer size is specified by the unsigned integer parameter,
WORDCOUNT. P is returned containing nil.

WARNING Deallocating a buffer of a different size than was
originally allocated could lead to a system crash.

NOTE - The VARDISPOSE intrinsic may be used only when the $H+
compile option (section 5.0.6) is in effect.

NOTE - Attempts to deallocate a one word buffer actually deallocate
two words.

See section 3.5 for more information.

Page 129

PDQ-3 Programmer's Manual

!.all VABNEW

Syntax:

function varnew(var P : Auniv;
WORDCOUl~T : integer) : integer;

The V~lEW function attempts to allocate a buffer of WORDCOUNT
words on the heap and return P as a pointer to the buffer. If
there is enough contiguous free memory for the buffer, it is
allocated and the value of VARNEW is returned equal to WORDCOUNT;
otherwise VARNmv is returned zero.

NOTE - The VARNEW intrinsic may be used only when the $H+ compile
option (section 5.0.6) is in effect.

NOTE - Attempts to allocate a one word buffer actually allocate two
words.

See section 3.5 for more information.

Page 130

UCSD Intrinsics

Syntax:

procedure wait(var SEM semaphore);

If the semaphore count of SEM is greater than zero, it is
decremented, and the current task continues to execute; otherwise,
the current task is suspended, and waits for a SIGNAL on SEH.

See section 3.0.1 for more information •

..... - -- - ,,,,

PDQ-3 Programmer's Manual

Page 132

Compile Options

~ COMPILE OPTIONS

This chapter describes the compile options in UCSD Pascal. Compile
options affect both compiler operation and the execution character
istics of code produced by the compiler. Compile options are
controlled by directives embedded in the text of source programs;
these are processed by the compiler as they are encountered in the
program. Section 5.0 describes the use of compile options, and
provides a detailed description of each compile option. Section
5.1 summarizes the compile options.

~ Options

Compile options appear as directives in a source program; these
directives are called pseudo-comments. A pseudo-comment 1S a
comment (as defined in UCSD Pascal) which contains a n$n character
immediately following the left-hand comment delimiter. Following
the "$" is a list of one or more compile options; multiple options
are delimited by commas. Each compile option consists of a Single
alphabetic character (upper or lower case) denoting a specific
option, possibly followed by an argument.

An option which may accept "+", "-" or "An is known as a switch
option. Compile options which accept alpha-numeric arguments are
known as string options. These arguments may be integers, lists of
UCSD Pascal identifiers, file names, or simply text strings.
String options are terminated by the right-hand comment delimiter.
Note that a single pseudo-comment cannot contain more than one
string option.

NOTE - String arguments may not contain the character n*" when the
right-hand comment delimiter is "*)", and may not contain the
character'"}" when the right-hand delimiter is "In.

WARNING - Generally, invalid compile options are ignored by the
compiler; the pseudo-comment is treated as a normal comment. One
exception to this is when a string option contains an argument
violating the restriction described above (in the NOTE); the string
argument is erroneously truncated. If the illegal character is the
first character in the string, and the option character happens to
be used for both string and switch options, the string option is
incorrectly treated as a switch option - beware!

Examples of compile options:

{$1+}
(*$1 yeenly.text *)
{$L+,U-,S+}
(*SL+,U-,V 34 *)
(*$B Cond1dent- *)
{$P}

Page 133

PDQ-3 Programmer's Manual

Example of string option incorrectly treated as switch option:

(*$I*dysfunc.text *)

All switch options accept the n+n and n_n switches as arguments.
The n+.n switch enables the option (on); n_" disables the option
(off). Values for the 0, I, J and R options may be stacked up to
16 levels deep. Thus, when a directive is set (e.g. R- or I+),
the new value is pushed onto the top of its stack. An option's
current value is the value on the top of its stack. The nAft switch
pops the option's stack, causing the option to be restored to its
prior value. Stacked options are useful when a short section of
code requires the assertion of an option value, but the option
value of the enclosing program is unknown or subject to change. A
directive pair of the form: {$I-} ••• {$IA} asserts the desired
compile option value without affecting the option value in the
enclosing program.

Example of stacked compile option values:

program stack1
var i: integer;
begin

repeat
{$I-}
readln(i)i
{$IA}

until ioresult = 01
writeln ('value is: ',i);

end {stack}.

Page 134

Compile Options

Syntax for compile options:

<pseudo-comment> ::= <L-delim>$<options><R-delim>

<L-delim> .. -· .- UCSD Pascal comment delimiter: "{" or "(*"

<R-delim> : : = UCSD Pascal comment delimiter: "}ft or "*)"

<options> · .-· .- <string-option> <option-list>

<option-list> ::= <switch-option-list> [,<string-option>l

<switch-option-list> ::= <switch-option>{,<switch-option>}

<switch-option>

<string-option>

.. -.. -

: : =

<switch-directive><switch>
<button-directive>

<string-directive><string> I
<number-directive><integer> I
<idlist-directive><idlist> I
<cond-directive><flag> [<switch>l

<string> · .-· .- any sequence of characters other than
"*" or ft}" (see previous NOTE)

<idlist> : : = <identifier>{,<identifier>}

<flag> ::= A compile flag identifier which follows the same
rules as a UCSD Pascal identifier.

<switch> · .-· .- ft +" "-"

<switch-direc~ive> : : = H
Q

<button-directive> .. -.. - P

<string-directive> : : = C

<number-directive> : : = V

<idlist-directive> : : = N

<cond-directive> : : = B

Page 135

I
R

J
S

I L

R

D E

L
U

o

Switch directive

H
I
J
L
o
Q
R
S
U

Button directive

P

String directive

C
I
L

Number directive

v

Id List directive

N
R

PDQ-3 Programmer r s r·lanual

Compile option

Heap intrinsics (section 5.0.6)
IIO checking (section 5.0.4)
Boolean NOT evaluation (section 5.0.13)
Listing (section 5.0.0)
Operating system (section 5.0.12)
Console display (section 5.0.8)
Range checking (section 5.0.5)
Swapping compiler (section 5.0.2)
User lex level (section 5.0.11)

Compile option

Page eject during listing (section 5.0.0)

Compile option

Copyright notice (section 5.0.7)
Include file (section 5.0.1)
Compiled listing (section 5.0.0)

Compile option

Version control (section 5.0.10)

Compile option

Nonresident unit (section 5.0.9)
Resident segment (section 5.0.9)

Conditional directive Compile option

B
o
E

5.0.0 Compiled Listings

Begin of section (section 5.0.3)
Identifier declaration (section 5.0.3)
End of section (section 5.0.3)

Compiled listings serve two purposes in UCSD Pascal". First, they
provide a complete listing of the program source in a single text
file: this is useful when the program source itself resides in a
number of text files which are included during compilation. Second
(and more importantly), they serve as a debugging tool; a compiled

Page 136

Compile Options

listing contains information used to locate the Pascal source
statement responsible for causing an execution error (see section
7.8 for details).

Example of a compiled listing:

1 128
2 128
3 128
4 128
5 128
6 128
7 129
8 129
9 129

10 129
11 129
12 129
13 129
14 129
15 129
16 129
17 129
18 129
19 129
20 130
21 130
22 130
23 130
24 130
25 130
26 128
27 128
28 128
29 128
30 128
31 128

1:0
1:0
1:0
1:0
1:0
1:0
1:0
1:0
1:0
2:0
2:0
2:1
2:1
2:0
2:0
1:0
1:1
1:0
1:0
1:0
1:0
1:1
1:1
1:0
1:0
1:0
1:1
1:1
1:1
1:1
1:0

1 {$L look.text}
1 program example;
1 var i,j,k: integer;
4 sl,s2: string;

86 r: real;
88

1
1
3
1
o
o

21
27
30
o
o
8

segment procedure stuff;
var 11,12: integer;

procedure local;
begin

writeln('in stuff');
exit(program);

end;

begin
if i = 45 then Local;

end {stuff};
10

1
o
o
6

segment function maxCa,b:integer):integer;
begin

14
16
o
o
8

15
41
52

if a < b then max := b
else max := a;

end {max};

begin
i : = 45;
r : = 4. 4El;
if max(i,truncCr» =
stuff;

end {example}.

i then i := 45;

The first column displays the line number (in the listing) of the
current source line. The second column displays the segment number
of the code segment containing the code corresponding to the source
line.

The third column displays two numbers separated by a colon. The
left-hand number displays the procedure number of the procedure
which contains the code corresponding to the source line. The
right-hand number displays the current nesting level of the source
statement. The nesting level is determined by the number of
unterminated BEGIN - END pairs enclosing the source statement.
Note that the nesting level is replaced by the letter "0" when the
corresponding source line contains declarations rather than state
ments.

The fourth column displays the code offset of the corresponding
source statement, or the data offset of the corresponding declara-

Page 137

PDQ-3 Programmer's Manual

tions (indicated by the presence of a NON in the previous column).
Code offsets are byte offsets from the beginning of the current
procedure. Data offsets are word offsets into the data segment of
the enclosing block. In both cases, the value displayed represents
the offset before the c~~~r cr data associated with the current line
is compiled.

NOTE - Odd messages occasionally appear in a compiled listing:

Code range: <x> - <y> moved <n> bytes

The compiler emits these messages when it is forced to change the
position of previously generated code~ this spoils the offsets
displayed on previous lines in the compiled listing. <x> and <y>
are code offsets within the procedure, and <n> is an integer value.
The messages indicate that the compiler has moved the code between
<x> and <y> down by <n> bytes~ code offsets between <x> and <y> are
no longer listed correctly. Offset values can be corrected by
adding <n> to the displayed offsets.

Compiled listings are generated when the List option is enabled.
The List option is controlled by the pseudo-comment directive NLN,
which is used as both a switch option and a string option.

The default setting of the List option is off. -L+ N enables the
List option, and produces a compiled listing written to the disk
file *SYSTEM.LST.TEXT. The compiled listing may be written to a
different file name by using -L- as a string option, this enables
the List option and specifies a user-defined list file name.

Portions of a program may be listed by selectively enabling (-L+ N)
and disabling (NL--) the List option.

List files are saved whether or not the compiler flags syntax
errors, if errors occur, error messages are embedded in the list
file.

NOTE - -L N may be used only once during the course of a compilation
as a string option.

Page breaks may be placed in a compiled listing by using the Page
option. _p N emits a Single page break.

Example of listing directives:

{SL mylist.text }
{SL+}
{SL-}
{SP}

S.Q.1 Include Piles

Include files allow the source comprising a large program to be
distributed among a number of relatively small and easy-to-manage

Page 138

Compile Options

text files. The compiler accepts only one source file as an input
file; however, the input file may contain an include directive for
each include file required. When the compiler finds an include
directive, it includes the contents of the specified text file as
program source; when the end of the include file is reached, the
compiler returns to the source following the original include
directive.

NOTE - Include files may be nested up to three deep. Certain
restrictions on the use of include files arise when compiling units
(see section 3.2 for details). Include files adversely affect
compiler operation in some circumstances - see section 5.2.1 in the
System User's Manual for details.

Include files are specified by the pseudo-comment directive "I"
used as a string option. The string contains an include file name,
which does not require a file suffix. If the file cannot be opened
as specified, the compiler appends ".TEXT" to the file name and
attempts to reopen it; if this also fails, syntax error 403 occurs.

Example of include directives:

{$I foon.text}
{$I 3.2:globals }

See section 3.11.1 for an example of include files.

S.0.2 Swapping Cgmpiler

The compiler may assume an alternate mode of operation for
compiling large programs. The compiler normally operates as a
single memory-resident segment; this mode is used to compile
programs that don't tax the system's compile-time memory resources.
The Swapping option transforms the compiler into two separate
disk-resident segments, thus providing extra memory space for the
compilation of large programs.

Swapping mode saves about four thousand words of memory during
compilation, but halves the compile speed when the compiler code
file resides on a floppy.

The Swapping option is controlled by the pseudo-com~ent directive
"S"used as a switch option. The default setting of the Swapping
option is off. "S+" enables swapping.

NOTE Swapping option directives must appear before the program
heading; unlike other options, swapping cannot be selectively
turned on and off during compilation.

Example of swapping directive:

{$S+}

Page 139

PDQ-3 Programmer's r·lanual

S.Q.3 Conditignal Compilation

Conditional compilation allows the selective inclusion of sections
of source text during compilation. Conditional compilation is
controlled by the nBn, nOn and nE n pseudo-comment directives and
the boolean values associated with compile-time identifiers known
as compile flags.

Compile flags are declared by using the Declare option before the
program heading. The pseudo-comment directive nDn is followed by a
unique flag name which must conform to the same syntax as a UCSD
Pascal identifier (see section 3.11.0). The initial value of the
flag is set by a trailing n+n (indicating TRUE) or "-- (indicating
FALSE). In the absence of a trailing "+" or "_n, the flag value
defaults to TRUE. Compile flag values may be redefined within the
program. Attempts to redefine flags not declared before the
beginning of the program or unit generate a syntax error.

Examples of compile flag declaration and value assignment:

{$O debug}
{$D Z80+}
{$O listing-}
{$D debug~}

Declare flag "debug n with value TRUE
Declare flag nzaO" with value TRUE
Declare flag nlistingn with value FALSE
Set flag "debug" to its prior value

Source code is selectively included in a compilation by using the
Begin and End options. These are analogous to BEGIN and END in
Pascal. When the compiler scans a "B" pseudo-comment directive
which contains a valid compile flag, the value of the flag
expression determines whether the source text between the "B n
directive and its corresponding nE" directive is to be compiled.
If the flag expression evaluates to FALSE, the compiler skips over
source text until it encounters an "E" directive containing the
flag identifier. If the compile flag in the nBn directive is
followed by a "-,, switch, the flag expression is equal to the
logical negation of the flag identifier value.

NOTE The n~" switch is ignored if it appears in the flag
expression of the "B" directive. All switches are ignored .in the
nE n directive, but are useful for documentation purposes.

WARNING - Unit interface text is stored in a library without regard
for the values of imbedded flag expressions. Thus, conditional
compilation directives can be found in imported interface text.
All such flags should be defined before the beginning of the host
using, the unit. For added security, it is recommended that the
value of the flag be redefined in the interface text so as to avoid
any inconSistency between the unit's actual interface and the
interface perceived by the host.

Page 140

Compile Options

Example of conditional compilation:

{$D debug-} {Declare flag "debug" with value FALSE}
program demo;
begin

{$B debug} {The following statement is not compiled}
writeln ('there is a bug');
{$E debug}

{$D debug+} {Set debug to TRUE}

{$B debug} {The following statement is compiled}
writeln ('now there really is a bug');
{$E debug}

{$D debug A

}

end {demo}.

S.0.4 lLQ Checks

{Restore debug to FALSE}

The compiler normally emits I/O checks after every file I/O
operation; these checks cause an execution error if the I/O result
(section 3.11.8) reveals that an I/O error occurred during the
operation.

I/O checks are emitted when the I/O Check option is enabled. The
I/O Check option is controlled by the pseudo-comment directive "I"
used as a switch option.

The default setting of the I/O Check option is on. "1-" disables
the option, and suppresses the generation of I/O check code. I/O
checking may be restricted to portions of a program by selectively
enabling ("1+") and disabling ("1-") the I/O Check option.

NOTE - Programs compiled with the I/O Check option disabled require
explicit I/O checks. Failure to provide these checks in some form
leaves a program susceptible to unexpected actions of both a human
and mechanical nature.

Example of I/O check directives:

See section 3.11.8 for more information. An example using I/O
check directives appears in section 7.5.

5.0.5 Range Checks

The compiler normally emits range checks before every indexed array
reference or subrange aSSignment. These checks cause an execution

Page 141

PDQ-3 Programmer's Hanual

error if an array is indexed outside of its declared bounds, or if
a subrange variable is assigned a value outside of its declared
range.

Range checks are emitted when the Range Check option is enabled.
The Range Check option is controlled by the pseudo-comment direc
tive -R- used as a switch option.

The default setting of the Range Check option is on. -R-- disables
the option, and suppresses the generation of range check code.
Range checking may be restricted to portions of a program by
selectively enabling (-R+-) and disabling (-R-·) the Range Check
option.

NOTE - Programs compiled with the Range Check option disabled are
smaller and faster than their cautious counterparts; however, they
must be correct at the outset, for undetected range errors can
propagate various and sundry species of nasty and elusive bUgs.
Proofs of program correctness are left to the user.

NOTE - The Range Check option only affects the generation of
execution error 1 (-Value range error-) in the cases mentioned
above. The I/O Check option affects" the generation of execution
errors due to I/O faults. Suppression of other execution errors
requires the modification of the system exception handler. See
section 6.3 for 'further details.

NOTE If the second argument to the MOD operator is negative, a
nonsuppressable value range execution error occurs.

Example of range check directives:

($R+}
($R-}
($RA)

An example using range check directives appears in section 7.3.

s.O,S B&Ag Int;insies

UCSD Pascal provides two sets of intrinsics for dynamic variable
a!location: the Il.O and IV.O heap intrinsics. A particular set of
heap intrinsics may be selected using the Heap compile option.
This option is controlled by the pseudo-comment directive -8- used
as a switch option. The II.O heap intrinsics may be used when the
Heap compile option is disabled (-a--); this is the default. The
IV.O heap intrinsics are available when the Heap option is enabled
(-8+-).

NOTE The Heap option directive must appear before the program
heading. Unlike other options, the Heap option may not be
selectively enabled and disabled during compilation.

~·l~tING A host and its used units must all use either the II.O

Page 142

Compile Options

intrinsics or the IV.O intrinsics, but not both. Units that don't
use any dynamic variable allocation intrinsics are compatible with
both sets of intrinsics. Heap compatibility is enforced by the
system at program invocation time. Intrinsic units escape this
check7 intermixing of heap mechanisms is done at the risk of the
user.

NOTE The IV.O intrinsics are maintained in a nonresident unit
(called HEAPOPS) located on the system disk. They are loaded into
memory along with any program that uses them. Thus, the system
disk must be in the system drive when such programs are invoked or
a system IIO error occurs. HEAPOPS may be made permanently
resident by transferring it from the system support library to
intrinsics library using the Library utility. See section 2.3.5 of
the System User's Manual for further details.

Example of heap directives:

{$H+}
{$H-}

See section 3.5 for more information.

5.0.7 Cogyrigbt Notices

Copyright notices (or other textual information) may be embedded in
a program's code file with the Copyright option. The notice is
placed in blOck 0 of the code file (see the Architecture Guide for
details).

The Copyright option is controlled by the pseudo-comment directive
"C" used as a string option. The string may contain up to 80
characters.

NOTE - Copyright directives must appear before the program heading.

Example of copyright directive:

{$C copyright (c) 1982 by SurfDreck MondoSystems, Inc.}

Page 143

PDQ-3 Programmer's Manual

5.0,8 Console Pisplay Suppression

The compiler normally displays a running account of the compiler's
progress on the console screen. Enabling the Quiet option sup
presses'the console display, resulting in faster compilations (due
to the time saved by not writing to the console).

The console display is suppressed when the Quiet option is enabled.
The Quiet option is controlled by the pseudo-comment directive "Q"
used as a switch option.

The default setting of the Quiet option is off. nQ+n enables the
option, and suppresses the console display. The display may be
restricted to portions of a compilation by selectively enabling
(nQ+_) and disabling (nQ_n) the Quiet option.

Example of quiet compile directives:

{SQ+}
{$Q-}

See section 5.1.1 in the System User's Manual for a description of
the compiler console display.

5,0.9 Segment Residengy

Normally, segment procedure code is resident only during it
execution, and unit code is resident throughout the program's
execution. The default behavior for segment residency may be
altered by using the Noload and Resident compile options.

The Noload option allows used units to be swapped as if they were
segment procedures. It is controlled by the pseudo-comment direc
tive "N n used as a string option. The directive appears immediate
ly after a USES statement and contains a list enumerating the
swappable units. The unit identifiers are separated by commas.
Spaces and unrecognizable unit identifiers are ignored.

NOTE - In order for a unit to become swappable, each host using the
unit must list it in a Noload directive.

The Resident option allows segments and/or swappable units to be
memory-resident throughout the execution of a given procedure.
Segment residency is controlled by the pseudo-comment directive "R n
used as a string option. The directive appears immediately after
the first BEGIN of the desired procedure and contains a list of
segments and swappable units to be made memory-resident. Segment
and unit identifiers are separated by commas, and spaces are
ignored.

NOTE A Resident option applied to a segment or unit that is
already memory-resident has no effect.

NOTE - ~1isplaced rloload and Resident options are ignored.

Page 144

Compile Options

NOTE - The HENLOCK and r·1EHS~lAP intrinsics may also be used to
control segment residency. See section 3.1.0 for details.

Example of segment residency directives:

program favoritethings;
uses raindrops, roses, sashes;

{$N raindrops, roses} {only sashes is resident}

segment procedure snowflakes;
begin
end {snowflakes};

procedure music;
begin

{$R snowflakes,
snowflakes;

end {music};

begin
b;

{snowflakes and raindrops remain}
{ resident throughout call to music}

raindrops}

end {favoritethings}.

5.0.10 Version Control

Use of the Version Control compile option insures runtime compati
bility between hosts and their used units. This option is used to
assign a version number to a unit. A unit's version number should
be changed whenever its interface section is modified. Execution
of a host program is not allowed if the current ve:~ion of a used
unit differs with the version available when the host was compiled.
Such hosts must be recompiled with the new version of the unit
before they may be executed.

A version number is specified as a non-negative integer argument to
the pseudo-comoend directive "V n

• The default version is O.

NOTE The Version Control option must occur before the unit
heading.

NOTE - Changing a unit's version number may inadvertently force
recompilation of several hosts. This overhead may be avoided by
using the Library utility (described in the System User's Manual)
to construct a code file containing a host program and a copy of
the old version of the unit. Assuming the new version does not
reside in the intrinsics library, the obsolete, but compatible,
version is used when the code file is executed. See section 2.2 in
the System User's Manual and section 3.2 for details on unit
library searches.

NOTE - The Libmap utility reports unit and host version informa
tion. See the System User's 1-1anual for detail ... s.

WARNING - Failure to faithfully maintain version control may result

Page 145

PDQ-3 Programmer f s ~lanual

in unpredictable system crashes.

~'1ARNING - Version control is not enforced at bootstrap time. It is
the user's responsibility to enforce version compatibility between
units installed in the drivers library and the intrinsics library.

Example of version control use:

{$V 77}
unit filesystem;
interface

< ••• >

end {filesystem}.

5.0.11 System Programs

Programs are normally compiled to execute at the lexical level
defined for u']:r programs. The User Program option changes the
lexical level to that of the operating system; programs compiled at
the system level may access system variables outside the scope of
user programs.

A program is compiled at the system lexical level when the User
Program option is disabled. The User Program option is controlled
by the pseudo-comment directive "UN used as a switch option. The
default setting of the User Program option is on. "U-" disables
the option and also sets the following options: "R-" and "I-n.

If the User Program option is off, the user program should be
declared as a segment procedure inside of a pseudo-operating
system. The pseudo-operating system may contain system variable
declarations (usually the real operating system's global declara
tions), but should not contain any code other than the user program
segments.

NOTE Unlike other versions of UCSD Pascal, no imbedded filler
segment declarations are required to avoid conflict with reserved
operating segment declarations. In addition, no forward-declared
procedures may go undefined.

NOTE - Code files generated for system level programs contain an
. extra block due to the emission of a dummy segment for the
pseudo-operating system level. This block is automatically removed
when the Library program (described in the System User' s r·Ianual) is
used to create a copy of the code file.

NOTE - The User Program option directive must appear before the
program header. Unlike other options, User Program may not be
selectively enabled and disabled during compilation.

Page 146

Compile Options

Example of user-level directive use:

{$U-}
program fakeOS;
var OSvariable: integer;

segment procedure user program;
var progglobal: integer;

segment procedure progseg;
begin
end {progseg}i

procedure progproc;
begin
end {progproc};

begin
end {userprogram};

begin {should contain NO code}
end {fakeOS}.

5.0.12 Operating System

Code segment numbers for user programs and units start at 128 and
continue through 255. Operating system code segments are numbered
a through 127. The Operating System compile option determines
which segment numbering is to be generated.

The Operating System option is controlled by the pseudo-comment
directive "0" used as a switch option. The default setting, "0_",
selects a user program compilation.

NOTE - The Operating System option directive must appear before the
program heading. The "0+" directive must be accompanied by the
"U-" directive (section 5.0.11).

Example of· operating system directive use:

{$O-}
{$O+,U-}

5,0,13 Boolean Negation

In UCSD Pascal, the boolean NOT operator normally calculates the
16-bit l's complement of its argument. In versions 11.0, 11.1 and
IV.O it returns this result; in version 111.0 it returns the
low-order bit and sets all other bits to zero. The Boolean
Negation option is used to select the result of boolean NOT
evaluations.

The Boolean Negation option is controlled by the pseudo-comment
directive "J" used as a switch option. Enabling the option returns

Page 147

PDQ-3 Programcer's Manual

a III. a-style result; disabling the option returns a II. a-style
result. The default setting is off (nJ_ n).

The Boolean Negation option may be selectively enabled or disabled
anywhere in a program.

NOTE - Most existing UCSD Pascal systems evaluate boolean NOTs in
the II. a-manner. However, this has the effect of generating
boolean values outside of the range FALSE •• TRUE. Such results may
cause invalid indexing on arrays whose indices are defined over the
BOOLEAN range.

Example boolean negation directive use:

Page 148

Compile Options

~ Option Summary

B Starts a conditional compilation
section based on the following f~ag
expression.

c

D

E

H

I

J

L

N

o

p

Q

The following string is embedded in
the code file as a copyright notice.

Declares/defines a conditional
compilation flag and sets its value.
Default value: TRUE

Terminates a conditional compilation
section based on the following flag.

"H+" selects the IV.O heap intrinsics.
"H-" selects the II.O heap intrinsics.
Default value: H-

"I+" generates IIO checks after file
IIO operations. "I-" suppresses
checks. Default value: I+

The following string contains the
name of a text file to be "included"
into the source.

J+ selects l-bit NOT result. J- selects
16-bit NOT result. Default value: J-

"L+" enables listing. "L-"
suppresses listing. Default
value: L-

The following string contains the
name of the compiled listing file.

The following unit list is to be
made swappable during program
execution.

0+ selects operating system comp
ilation. 0- selects user program
compilation. Default value: 0-

"p" emits a page break in listing.

"Q+" enables the console display.
"Q-" suppresses the display.
Default valu&: Q+

Page 149

R

5

u

v

PDQ-3 Programmer's r.tanual

"R+" generates range checks on array
indeces and subrange variables. "R-"
suppresses checks. Default value: R+

The following segment/unit list is to
be made resident throughout the
current procedure.

·5+· specifies swapping compiler.
Default value: 5-

·U+- specifies a user-level program. ·U-- specifies a system level program
and -I-,R--. Default value: U+

The following integer is the version
number of the unit.

Page 150

Operating System Customization

~ OPERATING SYSTEM CQSTOMIZATION

This chapter describes ways in which users may customize the
Advanced Operating System. Customization may be achieved with
either user-programmed extensions to the operating system or
changes to the user interface.

Section 6.0 describes how to program and install operating system
extensions. Section 6.1 describes how to change the system prompt
line and program execution processing. Section 6.2 shows how to
construct and install system I/O device drivers. Section 6.3
describes how the system execution error processing may be modi
ifed. Section 6.4 shows how to transform the system "breakpoint
processor into a custom applications debugger.

NOTE - Operating system customization relies heavily on a thorough
understanding of units and the library system. Units are described
in section 3.2. The library system is described in the System
User's Manual.

PDQ-3 Programmer's Manual

~ Operating system Extensions

Generally speaking, the UCSD Pascal operating system is a collec
tion of subsystems that provide runtime support for the execution
of a program. Such subsystems are usually loaded and initialized
at system bootstrap time. They are available for use by any
program at any time, and are terminated at system halt time. (For
example, the file system is loaded and its variables are initial
ized at bootstrap time. It is available for use by any program.)

A user-defined subsystem is programmed as a unit, called an
intrinsic ~, and is installed in the intrinsics library,
*SYSTEM.INTRINS. Any user unit may be deSignated as an intrinsic
unit merely by including it in the intrinsics library (using the
Library utility described in the System User's Manual) and reboot
ing. Facilities provided by intrinsic units are available simply
by using the unitJ when attempting to locate a used unit during
both program compilation and execution, the compiler and the
operating system look first in the intrinsics library and then
elsewhere.

Code segments for intrinsic units are loaded and their global data
spaces are allocated at system bootstrap time. Their initializa
tion sections are called after all operating system initialization
is complete; any operating system facilities may be used anywhere
in intrinsic units. Both unit code and data spaces remain
memory-resident for the duration of system execution. Unit termin
ation sections are executed when the H(alt command is invoked from
the system prompt.

NOTE - A trade-off is made between the maintenance of intrinsic
units and free memory space. The M(emory comcand may be invoked at
the system prompt line to help monitor the amount of free memory
available under various configurations of the intrinsics library.

NOTE - Since intrinsic unit initialization and termination sections
are executed at system bootstrap and halt times, they are not
executed as a result of the invocation of programs that use
intrinsic units. Intrinsic units requiring reinitialization after
use by a program should provide a reinitialization procedure in
their interface sections.

Intrinsic units may be used for a number of purposes. Library
units used by many programs may be designated as intrinsic units in
order to reduce the time required to invoke the programs, as disk
accesses and program setup time are reduced when used units are
already memory-resident and initialized. Large applications may
use intrinsic units to maintain data structures and procedure calls
common to a number of (possibly called or chained) programs. A
spooler may be created by programming the initialization section of
an intrinsic unit to start background tasks which continue to
execute during normal system operation.

NOTE - Intrinsic units and their segments do not occupy any of the
128 segment pOSitions allocated to user programs.

Page 152

Operating System Customization

WARNING - Unit version control is not enforced at bootstrap time.
It is the user's responsibility to assure version compatibility
between units installed in the intrinsics library. Version control
is, however, enforced at program invocation time. See section
5.0.10 for further details.

WARNING - Heap usage consistency involving intrinsic units is not
enforced. It is the user's responsibility to assure heap compati
bility between units installed in the intrinsics library. See
section 5.0.6 for further details.

WARNING Simultaneous calls from concurrent tasks to segment
procedures declared within intrinsic units should be protected by
critical sections, or the segment should be ME~~OCKed; otherwise
the system may crash.

---- ,~~

PDQ-3 Programmer's Manual

i&l System Prompt Lin& ~ Program Execution

A shell is a program that performs user interface functions and is
capable of starting programs in response to user commands. The
system shell program, *SYSTEM.SHELL, performs all system-level user
interface and program invocation processing (i.e. it maintains the
system prompt line, executes system and user programs, prints the
bootstrap welcome message, invokes *SYSTEM.STARTUP or *PROFILE
.TEXT, performs program chaining, etc). The system shell is
executed by the operating system at system bootstrap time and is
re-executed at system re-initialization time.

User-written programs may function as shells by using the facili
tie·s provided by the PROGOPS unit described in the Library User's
Manual. A shell executes a program as if the program were a
procedure of the shell. A shell may be executed from the system
prompt line (or any other shell) in the same way as any normal
program, or it may be executed at system bootstrap time by naming
it *SYSTEM.SHELL. When a shell terminates, the shell that invoked
it resumes. The standard system shell terminates when the H(alt
command is entered at the system prompt line. This causes the
termination code for each intrinsic and driver unit to be executed
(see sections 6.0 and 6.2) and the system to halt.

The shell facility is useful in constructing dedicated application
systems and custom operating systems. It is also useful in calling
entire programs as if they were procedures. See section 7.10 for
an example of a shell.

NOTE Section 2.4.4 of the System User's Manual describes the
effects of using I/O redirection options when XCecuting the system
shell.

NOTE - Termination of a program because of an execution error does
not cause the re-initialization of the system. Instead, the
execution error number is returned to the shell that invoked the
program.

NOTE - The source for the standard system shell is available for
modification from ACD.

Page 154

Operating System Custornization

~ System peyice priyers

System device drivers are collections of routines called by the
unit IIO intrinsics (section 3.9) to perform IIO functions. These
routines are packaged as a unit and reside in the drivers library
file, *SYSTEM.DRIVERS. The *SYSTEM.DRVINFO file contains the
mapping between IIO unit numbers and logical device numbers of
specified device driver units. A new system driver is installed by
using the Library utility to include it in the driver library and
then by using the Drvr.lnfo utility to specify the IIO unit numbers
that address it. See section 2.3.1 in the System User's Manual for
further details.

Each driver unit interface section contains a standard set of
declarations, including a read, write, clear, status, initializa
tion, termination, and power fail restart routine. The interface
section must have the following form:

type DevWindow = packed array [0 •• 0] of char;
DevStatRec = array [0 •• 29] of integer;

procedure Devlnit;

function DevRead (UnitNo
StartBlock

Var Buffer
Index
BytesLeft
Control

function DevWrite CUnitNo
StartBlock

integer;
: integer;
: Dev\vindow;
: integer;
: integer;
: integer)

integer;
integer;
Devtiindow;
integer;
integer;

integer;

Var Buffer
Index
BytesLeft
Control integer) : integer;

function DevClear (UnitNo : integer) integer;

function DevPower (UnitNo : integer) : integer;

function DevStatus (UnitNo : integer;
Var StatRec : DevStatRec;

Direct : boolean) : integer;

procedure DevTerm;

The Devlnit procedure initializes the driver and device state; it
should be called from the driver unit initialization section. The
DevTerrn procedure terminates the driver and shuts down the device;
it should be called from the driver unit termination section. The
DevPower function is currently unused. The DevRead, DevWrite,
DevClear, and DevStatus functions provide the UNITREAD, UNITWRITE,
UNITCLEAR, and UNITSTATUS routines, respectively for the device.

PDQ-3 Programmer I s r·lanual

They should operate in the manner described in section 3.9 and
Appendix D. Note that device driver construction is discussed in
section 7.6.

Most parameters passed to the unit I/O intrinsics are passed to the
driver routines without modification, but the UnitNo, Buffer, and
Index parameters are the results of intermediate calculations. The
UnitNo parameter specifies a driver-dependent logical device number
derived from the mapping provided in the ·SYSTEl"l.DRVINFO file (i.e.
o for virtual floppy 0). The buffer address for the DevRead and
DevWrite routines consists of a buffer base pointer (Buffer) and a
byte-offset (Index). The actual buffer starts at the byte address
ed by Buffer[Index]. All other parameters match those passed to
the unit I/O intrinsics. Section 7.6 describes how to construct
Pascal code to communicate with I/O devices.

Drivers enumerated in the *SYSTEM.DRVINFO file are loaded and their
data space is allocated at system bootstrap time. The initializa
tion section of each driver is called b~fore the system itself is
initialized. The driver may be called at any time during system
operation. The termination section of each driver is called when
the system halts (i.e. when the H(alt command is invoked from the
system prompt line); it is executed after the·termination sections
of any intrinsic units (see section 6.0).

NOTE - Normally, user programs may access drivers installed in the
driver library only through the unit I/O intrinsics. A driver may
be called by both the system and user programs by including it in
the intrinsic library, instead.

NOTE - Drivers may use routines provided by other drivers when
necessary. The ALL. DRIVERS library contains a copy of the code and
interface section of each available driver. The interface section
may be examined using the Libmap utility described in the System
User's Manual. A special driver, called SYSDRIVER, provides the
INTRENABLE procedure which enables the interrupt system. Driver
sources for several devices are available from ACD.

NOTE - The Tester utility (TESTER. TEXT on the AOS release disk) may
be used to test disk drivers during driver debug and validation.
It tests the data transfer functions most often used during system
execution.

WARNING Drivers should not call segment procedures during the
execution of their initialization o~ termination sections unless
the driver for the bootstrap device has been used within the
calling driver (e.g. USES FLOPPYDRIVER). This assures that the
bootstrap device driver has been initialized and is capable of
loading the segment procedure. Drivers calling unit I/O intrinsics
must also use the unit containing the driver associated wic l·-l.e
unit I/O call. Also, since drivers are initialized and called
before system initialization is complete, no file system functions
(i.e. READ, RmvRITE, etc) should be used within the driver.

WARNING - Unit version control is not enforced at bootstrap ti~e.
It is the user's responsibility to assure version compatibility

Page 156

Operating System Customization

between units installed. in the drivers library. See section 5.0.10
for further details.

WARNING Simultaneous device accesses by concurrent tasks resul
ting in segment procedure calls by system drivers should be
protected by critical sections, or the segment should be "MEMLOCKed;
otherwise the system may crash.

6.2.Q Bootstrap Driyers

Bootstrapping the AOS on the POQ-3 involves three stages. In the
first stage, the system monitor (Chapter 7 in the System User's
Manual) reads the bootstrap off the boot device and executes it.
In the second stage, the bootstrap reads the system off the boot
device and executes it. In the third stage, the system prepares
itself for normal execution. Each bootstrap stage requires its own
copy of the boot device driver.

The device driver required by the first stage is provided as a
procedure burned into the system monitor prom (the HOT Prom
described in the Hardware User's Manual). The procedure accepts
the boot drive number and the bootstrap memory address as parame
ters. It reads the bootstrap from the boot drive into the
specified memory buffer. The driver is declared as follows:

procedure readboot (device, address: integer);

A prom burner, the Prom utility, and the sources for the HOT Prom
are required to burn a new HOT Prom. Call ACD for assistance.

The device driver required by the second stage is a copy of the
system device driver. The Make.Boot utility (described in the
System User's Manual) constructs a bootstrap from the BOOT. CODE
file, the bootstrap serial device driver, and a given system device
driver; it writes the bootstrap onto the bootstrap area of the boot
device.

The third stage uses the drivers installed in the driver library.

Page 157

PDQ-3 Programmer's r.tanual

~ Exception Handling

Execution errors are processed by the EXCEPTION unit installed in
the system support library file. The standard exception handler
calculates the site of an error and prints an error message on the
system console (see section 2.0 of the System User's Manual). It
uses the EXCEPINFO unit, also installed in the system support
library file, to translate an execution error number (and possibly
an I/O error number) into error message text.

Custom exception handling may be provided by reprogramming the
EXCEPTION unit and substituting it for the standard exception
handler. Note that the exception handler may use units installed
in the intrinsic library containing the global data of an applica
tion; when an execution error occurs, it may perform an orderly
termination of the application.

The EXCEPTION unit provides a single routine, called HandleExcep
tion, in its interface section. The interface section appears as
follows:

Unit Exception;
Interface

Function HandleException (Error: Integer): Boolean;

The HandleException function accepts the number of the execution
error (see Appendix B for a list of standard execution error
numbers), processes the error, and returns a boolean function
result. The function value is returned FALSE if the exception
handler has determined that the program must be terminated;
otherwise the function value is returned TRUE.

Custom execution errors and I/O errors may be programmed into the
Pascal system by adding the error description text to the EXCEPINFO
unit. These errors are raised by calling the PROGEXCEPTION and
PROGIOSET procedures provided by the PROGOPS unit. The EXCEPINFO
and PROGOPS units are documented in the Library User's Hanual.

The sources to the standard EXCEPTION and EXCEPINFO units are
available from ACD.

NOTE - The termination sections of units used by a program are
executed regardless of the occurance of an execution error.

NOTE Stack overflow errors are not processed by the exception
handler. The erroneous program is terminated without recourse.

WARNING The caveats applying to system driver units stated in
section 6.2 apply to the exception handler as well.

Page 15B

Operating System Customization

~ Breakpoint Processor

Execution of the HALT intrinsic (section 3.11.10) invokes the
system breakpoint handler. Breakpoints are processed by the DoHalt
routine in the HALTUNIT unit installed in the system support
library. The standard breakpoint processor prints a halt message
on the console and waits for keyboard input.

A new HALTUNIT unit may be constructed and substituted for the
standard breakpoint processor, allowing custom breakpoint handling
in applications requiring debugging output based on complex condi
tions. For example, the breakpoint processor may use intrinsic
units containing the global data of an application; when a
breakpoint is encountered, it may perform debugging operations
based on the states of the global variables.

NOTE The SYSDRIVER driver unit contains the ENTERHOT procedure,
which may be used to invoke the system monitor (Chapter 7 of the
System User's Manual). The SYSDRIVER unit contained in the
standard driver library calls the system monitor resident in the
PDQ-3 HOT prom. The SYSORIVER unit in the HOT.ORVR.COOE file
(provided on the AOS release disk) calls a copy of the system
monitor contained in the SYSDRIVER unit; this version provides
memory display primitives for use on systems whose HOT prom does
not contain such primitives. Section 2.3.1 of the System User's
r·lanual describes how to install a ne'll driver.

WARNING - The caveats stated in section 6.2 apply to the breakpoint
handler as well.

The standard HALTUNIT unit is listed below:

unit HaltUnit;
interface

procedure DoHalt;
implementation

procedure DoHalt;
begin

write ('Halted. Hit <return).');
readln;

end {DoHal t} ;
end.

Page 159

PDQ-3 Programmer's Hanual

?age 160

Programming Practices

~ PROGRAMMING PRACTICES

This chapter describes common UCSD Pascal programming practices.
Note that these practices are implementation dependent they
should not be used in programs intended for use outside of the UCSD
Pascal system.

Section 7.0 describes packed variable allocation (knowledge of
which aids the design of compact data structures). Section 7.1
explains how to access arbitrary words, bit fields, and bits in
memory. Section 7.2 explains how to perform unsigned integer
arithmetic and comparisons. Section 7.3 explains how to perform
logical operations on word quantities (e.g. integers). Section
7.4 shows how the UCSD Pascal heap implementation can be exploited
to create dynamic arrays. Section 7.5 describes the implementation
of data prompts suitable for an interactive environment. Section
7.6 explains how to write asynchronous device drivers in UCSD
Pascal. Section 7.7 explains how the PDQ-3 1 s concurrent IIO system
can be used to create multiterminal programs. Section 7.8 des
cribes methods for locating execution errors in Pascal programs.
Section 7.9 describes how and why to use separate compilation
units. Section 7.10 explains how programs may be called as
procedures.

Page 161

PDQ-3 Programcer's Hanual

~ Packed Variables

This section describes the implementation of packed variables in
UCSD Pascal. Record and array data are stored in a packed
representation when their type declaration is preceded by the
reserved word PACKED. Packing is not performed on files and sets.
(Note that bit strings are the default representation of sets in
UCSD Pascal; specifying a set as packed is unnecessary and thus
ignored.)

Packed format is usually chosen for data that occupies large
amounts of space, but which is accessed relatively infrequently. A
decision to use packed data should be influenced by two distinct
tradeoffs: speed versus space, and code space versus data space.
The code-versus-data tradeoff is the increase in program size
(caused by extra code for packing and unpacking data at every
variable reference) versus the space saved by compressing the data
representation. The space-versus-space tradeoff is the space saved
by compressing the data representation versus the slower access
time (caused by packing and unpacking data during every variable
reference). Note that the first tradeoff is a function of the
static variable references contained in a program, while the second
is a function of the dynamic variable references executed by a
program.

Sections 7.0.0 and 7.0.1 present examples of packed arrays and
records respectively.

Users should be aware of the packing rules (and restrictions) in
order to construct packed data structures consuming minimal amounts
of space. Section 7.0.2 presents the packing rules and restric
tions for UCSD Pascal.

NOTE - The SIZEOF intrinsic is useful for determining the size of a
packed type. See section 4.35 for details.

7.0.0 Paqked Arrays

UCSD Pascal performs packing of arrays if the array type definition
is preceded by the reserved word PACKED. Consider the following
type definitions:

type
large = array[0 •• 91 of char;
small = packed array[O •• 91 of char;

Character variables are normally allocated a full word, but can
fit in a Single byte. A variable of type NlargeN is allocated ten
words of data space; each character element is allocated a full
word for storage~ A variable of type Nsmall" is allocated five
words of data space. Two character elements are packed into each
word; each element is allocated a single byte for storage.

Page 162

Programming Practices

Examples of packed arrays:

type
one = packed array [0 •• 7] of 0 •• 3;
two = packed array [0 •• 2] of 0 •• 31;
zip = packed array [0 •• 2] of set of 0 •• 8;

Variables of type "one" fit in one word; each element is two bits
long, and the eight elements fit in a single word. Variables of
type "two" are one word long; each element is five bits long, and
three of them fit in a word (with the high order bit unused).
Variables of type "zip" require three words. Packing is not
performed, as the base type is nine bits long; each element is
allocated a full word (9 bits for the set, 7 bits unused).

The following type definitions are not equivalent in UCSD Pascal:

type
a = packed arrayCO •• Sl of array[0 •• 7] of char;
b = arrayCO •• Sl of packed array[0 •• 71 of char;

Type definitions containing nested arrays are packed only if the
last occurrence of the reserved word ARRAY is preceded by PACKED;
in the example above, packing is performed on variables of type
"b", but not on variables of type "a". To ensure packing of types
containing mixes of arrays and records, precede all occurrences of
ARRAY and RECORD with PACKED.

NOTE String constants
character arrays; they are
arrays.

7.0.1 Packed RecQrds

are type-compatible only with packed
incompatible with unpacked character

UCSD Pascal performs packing of records if the record type
definition is preceded by the reserved word PACKED. Consider the
following type definitions:

type large = record'
a,b,c,d: char;

end;
small = packed record

a,b,c,d: char;
end;

Character variables are normally allocated a full word, but can
fit in a single byte. A variable of type "large" is allocated four
words of data space; each character field is allocated a full word
for storage. A variable of type "small" is allocated two words of
data space. Two character fields are packed into each word; each
field is allocated a single byte for storage.

Page 163

PDQ-3 Programcer's Manual

Examples o£ packed records:

type
one = packed record

£1,£2,£3,£4: 0 •• 3;
byte: 0 •• 255;

end;
two = packed record

fl,£2,£3: 0 •• 31;
end;

zip = packed record
fl,f2,f3: set of 0 •• 8;

end;

Variables of type NoneN fit in one word. Each NfN field is two
bits long; the four fields fit into a single byte. The Nbyte N
field occupies the other byte in the word. Variables of type Ntwo N
are one word long; each field is five bits long, and three of them
fit in a word (with one bit unused). 'Variables of type ·zipN
require three words. Packing is not performed, as the fields are
larger than 8 bits; each field is allocated a full word (9 bits for
the set, 7 bits unused).

The following type definitions are not equivalent in UCSD Pascal:

type
a = packed record

i: integer;
r: packed record

rl,r2: char;
end;

end;
b = packed record

i: integer;
r: record

end;

rl,r2: char;
end;

Type definitions containing nested records are packed only if the
innermost occurrence of the reserved word RECORD is preceded by
PACKED; in the example above, packing is performed on variables of
type nan, but not on variables of type nb n• To ensure packing of
types containing mixes of records and arrays, precede all occur
rences of ARRAY and RECORD with PACKED.

NOTE - When a record contains a variant part, it is allocated
enough space to contain the largest variant (unless dynamically
allocated with N~v«variant list»).

Page 16~

Programming Practices

7.0.2 Packing Rules

This section describes the rules for packing variables in UCSD
Pascal; these consist of constraints imposed on variable packing
and optimizations performed within those constraints.

The following table displays packed and unpacked sizes for some
common types:

Type Unpacked Packed
-------- ------

integer word word
boolean word 1 bit
char word 8 bits
real 2 words 2 words
subrange a •• b word log base 2 (b - a) bits
set O •• n . n<16 word n bits .

NOTE Subranges are packable only if their range values are
nonnegative; if either bound is negative, they are not packed.
With the exception of sub-word sets, structured fields (i.e.
records, arrays, and multiword sets as record fields) begin on word
boundaries, and are thus unpackable.

The primary constraint on packed variables is that fields in packed
variables cannot be packed across word boundaries.

Records benefit from packing only if they contain a number of
scalar, subrange, or set fields, each of which can be stored in 8
bits or less. Consecutively declared fields needing more than 8
bits apiece cannot be packed (because of the word boundary
restriction); they are allocated one or more words for storage, and
are accessed as unpacked fields. Fields are allocated storage
space in the order in which they are declared in a record; thus,
rearranging the fields in a record sometimes results in a smaller
record, as fields can be packed only if they are declared
adjacently to other packable fields (see example below).

NOTE When a packable field
because of adjacent word-aligned
unpacked field.

is forced to occupy a full word
fields, it is accessed as an

NOTE - To wit: packed records may contain both packed and unpacked
fields - packing is determined by the sizes and declaration order
of the record's fields.

Page 165

PDQ-3 Programr.ler I s r·lanual

Example of rearranging record fields:

type foon = packed record
bl: boolean: {l word }

il: integer: {I word }

b2: boolean: {I word }

r1: real; {2 words}
b3: boolean; {I word }

end: {total = 6 words}

newfoon = packed record
bl,b2,b3: boolean: {l word }
11: integer; {l word}
rl: real: {2 words}

end: {total = 4 words}

In foon, il and rl are constrained to word boundaries because th~y
o~cupy integral numbers of words (1 and 2 words respectively). The
Boolean fields are unpackable because of their adjacence to
word-aligned fields. In newfoon, the adjacency of the Boolean
fields allows them to be packed into a single word (note that there
is space in the word for up to 13 more (packed) Boolean fields).

Arrays benefit from packing only if their base type is a scalar,
subrange, or set type which can be stored in 8 bits or less.
Packing is not performed if an array element is larger than 8 bits.

See section 7.1.1 (bit fields) and the Architecture Guide for more
information on variable packing.

Page IGG

Programming Practices

~ Accessing Words, Bits, ADd Bit Pields

This section presents methods enabling UCSD Pascal programs to
access arbitrary words, bit fields, and bits in PDQ-3 memory. Very
few programs require direct access to memory: it is generally
restricted to system programs (see section 7.6 for an example).

NOTE - Memory access can also be accomplished with in-line machine
code (section 3.10): however, the methods presented here are less
error-prone and donlt require knowledge of the PDQ-3 instruction
set.

The following examples utilize the standard Pascal feature known as
a record variant; it is used here to provide a controlled form of
type conversion, which in turn allows exploitation of the machine
representations of various Pascal types for gaining direct access
to the machine.

WARNING - The methods presented here work on other UCSD Pascal
implementations; however, they are highly nonportable because of
different system memory··configurations and/or machine architectures
(see the Archiecture Guide for details).

7.1.0 WOrds

Example of arbitrary word access:

program cl;
type address = integer;

word = integer;

function peek(location: address): word:
{ return value at specified address }
type trick = record case boolean of

true: (addr: address);
false: (wordptr: A word):

end:
var access: trick;
begin

access.addr := location;
peek :- access.wordptr A

;

end {peek};

begin
•••

end {c1}.

In this example, the record variant overlays an integer variable
and a pointer variable (both of which are word quantities). The
integer variant is used to assign a memory address into the
pointer: the pointer variant is used to access the memory word.
Note that the integer value specifies a word address on the PDQ-3.
One drawback of this method is the necessity of specifying large
(i.e. > 8000 hex) addresses as negative integer values. For

Page 167

PDQ-3 Programmer's Manual

example, the word at address FFFF hex is returned by calling.
peek(-l). (A hexadecimal calculator such as the TI Programmer is
useful in these situations.) A second drawback is the specifica
tion of address 8000 hex; it cannot be represented as an integer
constant because its decimal value is -32768, which is treated by
the compiler as a long integer constant. 8000 hex can be specified
by the integer expression 32767 + 1 (remember? no integer
overflow checks in UCSD Pascal).

7.1.1 Bit Fi.ldl

Bit fields are acce~sed in a similar fashion using packed records.
The pointer variant is defined to point to a one-word packed
record, which is declared so that the desired bit fields are
accessible. See section 7.0 for details on record packing.

Page 168

Programming Practices

Example of arbitrary bit field access:

program C21
type address

byte
nibble

= integer1
= 0 •• 255;
= 0 •• 15;

procedure doio(deviceNum: nibble; command: integer);

{ synchronous device driver }

const deviceAddr • -16833;

type deviceWord • packed record
switch: O •• 1;
control: 0 •• 7;
device: nibble;
unused: byte;

end;

trick = record case boolean of
true: (addr: address)1
false: (wordptr: AdeviceWord);

end;

var access: trick
begin

access.addr := deviceAddr;
with access.wordptrA do

begin
switch := 1;
device :- deviceNum;
~ontrol := command;
repeat until switch = 0;

end;
end {doio};

begin
•••

end {c2}.

In this example, the record variant overlays an integer and a
pointer to a packed record (both of which are word quantities).
The integer variant is used to assign a memory address into the
pointer; the pointer variant is used to access the fields of the
record. Note that the integer value specifies a word address on
the PDQ-3.

Bit field allocation in a packed record starts from the least
significant bit of a word. Defining bit a and bit 15 as the least
and most significant bits respectively, the record declared in the
previous example is allocated in the following fashion: switch is
in bit 0, control occupies bits 1-3, device occupies bits 4-7, and
unused occupies bits 8-15."

Page 169

PDQ-3 Programmer's Manual

NOTE - Fields in a packed record are not always allocated in the
order of their appearance in the record declaration; the exception
is a list of variables (separated by commas) which share the same
type declaration. These variables are allocated in reverse order
of their appearance in the list.

Example of reverse field allocation in records:

type widgetWord • packed record
switch: 0 •• 1;
control: 0 •• 7;
bl,b2,b3,b4: boolean;
device: nibble;
unused: nibble;

end;

widgetword is allocated in the following fashion: switch is in bit
0, control occupies bits 1-3, b4 is in bit 4, b3 in bit 5, b2 in
bit 6, bl in bit 7, device occupies bits 8-11, and unused occupies
bits 12-15.

NOTE A data access optimization applies to packed records
containing a quantity of up to 8 bits immediately before a
word-aligned field. If this quantity is not already word-aligned,
it is adjusted to occupy the byte preceding the word-aligned field
and is accessed as an 8 bit field.

Example of byte-alignment optimization:

type twimp • packed record
bl: boolean;
ch: char;

end;

newtwimp • packed record
bl: boolean;
ch: char;
i: integer;

end;

7.1.2 B1ta

{starts on bit O}
{starts on bit l}

{starts on bit O}
{starts on bit 8}
{starts next word}

Bits are accessed in a similar fashion to bit fields; sets are used
instead of packed records. The pointer variant is defined to pOint
to a one-word set; set operations are used to test and set
individual bits in the word.

Page 170

Programming Practices

Example of arbitrary bit access:

unit bitter1
interface

type address = integerl
bits = 0 •• 151

procedure setbit(addr: address1 bit: bits);

procedure clearbitCaddr: address; bit: bits),

function bitsetCaddr: address1 bit: bits): boolean;

implementation

type bitstring = set of bits;'
trick • record case boolean of

true: (addr: address) 1
false: (bitsPtr: Abitstring);

end;

var access: trick,

procedure setbit,
begin

access.addr :- addr;
access.bitsPtr A

:- access.bitsPtr A + [bit];
end {setbit};

procedure'clearbit,
begin

access.addr := addr1
access.bitsPtrA

:= access.bitsptrA - [bit];
end {clearbit};

function bitset;
begin

access.addr := addr;
bitset :- bit in access.bitsPtrA;

end {bitset};

end {bitter}.

In this example, the record variant overlays an integer and a
pointer to a set (both of which are word quantities). The integer
variant is used to assign a memory address into the pointerl the
pointer variant is used to access the set.

Page 171

PDQ-3 Programmer's Manual

~ qnsigned Integer ManipulatioD

It is occaSionally necessary to treat the contents of an integer
variable as an unsigned value. Integer operators expect signed
values as arguments; thus, they must be used carefully when dealing
with unsigned integers.

Integer variables are defined to contain values in the range
-32768 •• 32767, while unsigned integers are defined to contain
values in the range 0 •• 65535. Both representations are equiva
lent in the range 0 •• 327671 however, unsigned values in the range
32768 •• 65535 are treated by integer operations as Signed values
in the corresponding range -32768 •• -1.

Integer arithmetic operators are +, -, *, ~, and mgg. Only +, -
and * may be used with unsigned integers (as a consequence of their
lack of overflow checking), ~ and mgg do not work correctly with
large unsigned integers.

Integer comparision operators are -, <>, <, <=, >, and >=. Only •
and <> may be used with unsigned integers, the remaining operators
do not work correctly with large unsigned integers. Unsigned
comparison operators may be programmed by the user.

Example of unsigned comparisons:

function uLessCa,b: integer): boolean;
begin

if (a > 0) and (b < 0) then
uLess :- true

else if (a < 0) and (b > 0·) then
uLess :- false

else
uLess :- a < b;

end {uLess},

function uGtrCa,b: integer): boolean;
begin

if (a > 0) and (b < 0) then
uGtr :- false

else if (a < 0) and Cb > 0) then
uGtr := true

else
uGtr := a > b;

end {uGtr};

NOTE - The example above assumes that the < and > operators produce
consistent results when treating unsigned integers as signed
integers c This is not entirely the case. These operators produce
inconsistent results when comparing the value -32768 (only bit 15
set). correct versions of uGtr and uLess account for this at the
expense of additional code. More efficient unsigned comparison
operators may be constructed using the PMACHINE intrinsic. See
section 3.10 for examples. Unsigned operators are also available
in the NumCon library unit (described in the Library User's

Page 172

Programming Practices

Manual).

The system integer read routines accept both signed and unsigned
integers. The integer write routine expects signed integers, but
may be used for unsigned integer I/O with the understanding that
the user is responsible for translating between signed and unsigned
representations. (This is not especially difficult if one has
access to a calculator such as the TI Programmer.) If this is not
sufficient, unsigned integer write operations may be programmed by
the user.

Example of an unsigned write routine:

program uwrite,
const uint = -20000; {alEO hex or 45536}
var ones,tens: integer,

ureal: real,
begin

if uint < 0 then
begin

ureal := 65536.0 + uint;
uint := uint + 32767 + 1,
tens := uint Div 10 + 3276,
ones := uint Mod 10 + 8,

end
else

begin
ureal := uint;
tens := 0, ones := uint;

end;
writeln (Iunsigned integer = I, ureal:l:l);
writeln (Iunsigned integer = I, tens + ones div 10,

ones mod 10);
end.

Two different methods are used to write the unsigned integer uint.
The first method translates the integer to a real and prints the
real value. Unfortunately, this requires the memory-residence of
the real I/O routines. The second method breaks the integer into
two parts and reconstructs it on output.

Unsigned integer values are returned by the MEMAVAIL, RMEMAVAIL,
VARNEW, and TIME intrinsics. Section 7.1 describes one use of
unsigned integers.

Page 173

PDQ-3 Programmer's Manual

1Al Pull-yord Logie.l Operations

UCSD Pascal allows logical operations on word quantities (e.g.
integers, characters, and pointers). The standard functions ORO,
ODD, and CBR are defined as type transfer functions in UCSO Pascal;
they do not modify the ordinal value of their arguments (see
section 2.4). The logical operators AND and OR are full-word
operators; they do not mask off the high order bits of ~heir
result.

Example of full-word logical operations:

program logical;
var I: integer;
begin

I :- 556;
I :- ord(odd(I) and odd (255»L
{ The high byte of I has been masked off }
{ I now contains the integer value 44 }

end {logical}.

The NOT operator may be used either to perform a l6-bit l's
complement or to complement the low order bit and mask off the
other bits. Its behavior is selected using the Boolean Negation
compile option described in section S.0.13.

Page 174

Programming Practices

~ Variable-sized Buffer Allocation

The use of variable-sized buffers increases the efficiency of
programs that access byte arrays whose size is unknown at compile
time. Variable-sized buffers may be allocated at runtime by taking
advantage of the system's dynamic variable allocation mechanisms.

A variable-sized buffer is created in the heap by coercing the
system heap intrinsics to generate a pointer to a dynamic array
variable contained in a memory space the size of the desired
buffer. Memory is accessed beyond the declared size of the dynamic
array variable by indexing into the array with compile-time range
checks suppressed (section 5.0.5). A program must maintain its own
range checks by keeping track of the size of the allocated memory
space and not indexing beyond its upper bound.

NOTE - The FILLCHAR, MOVELEFT, and MOVERIGHT intrinsics are useful
in manipulating variable-sized arrays. However, the byte count
arguments to these intrinsics must be in the range 0 •• 32767. Calls
containing negative byte counts perform no action.

WARNING Array indices on the PDQ-3 are treated as signed
integers. Indexing array elements greater than 32767 yield unex
pected and often unfortunate results.

Two different buffer allocation strategies are available; one uses
the 11.0 heap intrinsics, the other uses the IV.O heap intrinsics.

7.4.0 ~ B&Aa Strategy

The 11.0 heap centers around the heap pointer. Dynamic variables
are created by calls to the NEW intrinSiC, which assigns the
current value of the heap pointer to the associated pointer
variable, and then moves the heap pointer up by the number of words
allocated for the variable. The heap grows from lower addresses to
higher addresses; as a result, consecutively NEWed dynamic vari
ables are allocated contiguously in memory.

Programs may take advantage of this implementation feature to
create variable-length arrays; a variable-length array is con
structed by creating a series of dynamic variables at runtime, and
then treating them as a single, large array.

The UCSD filer and editor use this method to create large arrays
for manipulating file information; their arrays are allocated in
integral numbers of blocks. In order to create as large an array
as possible, these programs use the MEMAVAIL intrinsic to determine
the maximum buffer size allowed by the host system's configuration.
MEMAVAIL returns the number of unused words in system memory;
construction of a variable-length array consists of repeatedly
NEW'ing one-block arrays until MEMAVAIL returns a value less than
or equal to the program's memory threshold.

A memory threshold is defined as the minimum amount of memory
required to execute a program (independent of the variable-length

Page 175

PDQ-3 Programmer's Manual

buffer)J this includes space for variables and code segments used
by the program in the course of its execution. The memory
threshold for a given program is determined by making a rough
estimate of the maximum space consumed· by the program, and then
tuning the estimate (usually through trial and error) toa minimum.
A conservative minimum threshold for any program is 500 words (for
system overhead) plus the program's requirements.

WARNING This method of buffer allocation must be treated as a
critical section (section 3.0.1.0) when tasks contend for heap
space. Refer to section 7.4.1 for a method that is more secure in
a multitasking environment.

Example of ·the II.O variable-sized buffer strategy:

program makeAbuffer;
const

threshold - 1000;
maxblks - 60;

type
bl~ck - array 10 •• 255] of integer;
bufptr - AblockJ

var
buffer, bufblock: bufptr;
bufblks, index: integer;

begin
bufblks :- 1;
newCbuffer);
repeat

new(bufblock);
bufblks :- bufblks + 1;

until (bufblks >- maxblks) or
(Cmemavail > 0) and (memavail <- threshold»;

{ Note that bufblks * 512 < 32767 }
(array bounds - O •• Cbufblks * 512 - 1) }

fillcharCbufferA,bufblks * 5l2,0)J
{$R-}

•••
bufferA(index] :- 4;
•••

end {makeAbuffer}.

7, •• 1 ~ BAAR Strat'iJ

When using the IV.O heap, successive NEWs are not guaranteed to
allocate dynamic variables adjacently in memory. The VARNEW
function is.available for variable-sized buffer allocation. It
accepts a buffer size request (in words) and allocates a buffer of
that size. See section 3.5 for details.

The size of the largest possible memory buffer may be determined
using the VARAVAIL function. It accepts a list of segments that
might be memory-resident during the life of the variable-sized

Page 176

Programming Practices

buffer. VARAVAIL returns the size of the largest memory space
available, subject to the residency of all of the enumerated
segments. The VARNEW intrinsic may be called to allocate a buffer
of that size.

NOTE - It is indeterminable whether the result of the VARAVAIL
function refers to an area between the stack and heap, or to a
memory space recycled by the DISPOSE, VARDISPOSE, or HEMLOCK
intrinsics. Thus, it is difficult to decide whether to apply the
program threshold calculations described in the 11.0 strategy. If
no calls to DISPOSE or VARDISPOSE have been made, the result of the
VARAVAIL function refers to an area between the stack and heap,
thus, the program threshold calculation should be applied.

NOTE Al though the VARNEW i~1 i..sic is prY_E.el:.:. _ tm task
contention, combination of the VARAVAIL and VARNEW functions may
yield unexpected results in a multitasking environment. A temporal
window exists between a call to VARAVAIL and a call to VARNEW
during which the memory reported by VARAVAIL may be allocated to
another task. In this case, the call to VARNEW fails CVARNEW
returns 0) and another call to VARAVAIL is required before the
VARNEW may be retried.

Example of the IV.O variable-sized buffer strategy:

program makeAbufferJ
const

type

var

threshold = 1000;
maxblks = 60;

block = array (0 •• 255] of integer;
bufptr =: Ablock;

buffer: bufptr;
trash, bufsize, index: integer;

begin
bufsize := varavailC") - threshold,
if (bufsize < 0) or (bufsize > maxblks*256) then

bufsize := maxblks*256
else

bufsize := bufsize - bufsize mod 256;
trash := varnew(buffer, bufsize);

{ array bounds = O •• (bufsize - 1) }
fillchar(buffer A,bufsize*2,O),
{$R-l
•••
bufferA[index] := 4;
•••

end {makeAbuffer}.

Page 177

PDQ-3 Programmer's Manual

~ DAta Prompts

This section describes the implementation of interactive data
prompts. UCSD Pascal provides some support for interactive data
prQmpts; one example of this is the acceptance of backspace
characters when reading integers and strings from the console. One
feature conspicuously absent is the ability to respond to invalid
user inputs such as illegal characters in an integer or illegal
file names in a file name; the system responds to invalid data and
file names with an execution error. Therefore, responsibility for
detection of and responses to invalid inputs falls to the program
itself; this is accomplished by suppressing I/O checks and using
the IORESULT intrinsic to implement user-proof error recovery.

The following three sections present robust implementations for
single character prompts, integer prompts, and file prompts. The
file prompt uses the file system conventions described in section
2.1.6 in the System User's Manual.

NOTE Though not demonstrated in this section, the GOTOXY
intrinsic is useful for constructing interactive screen displays.
See section 3.11.3 for details.

NOTE Many of the inadequecies of the UCSD Pascal system support
for data prompts are solved in the NUMCON, REAL CON , and SCCNTRL
library units described in the Library User's Manual.

NOTE The UNITCLEAR intrinsic may be used to flush the keyboard
type-ahead buffer before issuing a critical data prompt. This
ensures that the prompt receives an explicit response from the user
(rather than soaking up whatever characters happen to be queued for
input). Examples of this feature can be found in the filer
commands K(runch and R(emove.

Page 178

Programming Practices

7.5.0 Character Prompts

Example of character prompt:

program pl:
var ch: char;

done: boolean;
begin

done := false:
repeat

write('Do you wish to continue? (Y/N) I):
repeat

read(keyboard,ch):
until ch in ['n','N','y','Y']:
writeln(ch);
done := ch in ['y','Y'];

until done;
end {pl}.

This example demonstrates secure input checking_ The prompt
indicates acceptable responses to the question. The keyboard file
is used to filter out invalid responses before they can reach the
screen: only when a valid response is received is the input echoed
to the console. Note that the prompt accepts both lower- and
upper-case characters as valid responses.

7.5.1 Integer Prompts

Example of integer prompt:

program p2;
var int: integer;

done: boolean:
begin

done := false;
repeat

{$I-}
repeat

write('Type a number (0 exits) : I);
readln(intl:

until ioresult = 0;
{$IA}
writeln(' You typed: ',int);
done := (int = 0);

until done;
end {p2}.

This example demonstrates explicit, user-defined error recovery.
If I/O checks were enabled, READLN would cause an execution error
whenever the input didn't match the format defined for an integer
(e.g. input containing alphabetic characters); in this example,
the input prompt merely repeats itself if an invalid integer is
entered.

Page 179

PDQ-3 Programmer's Manual

7.5.2 lila Prompts

Example of file prompts:.

program p3;
var infile,outfile: file;

filename, inname: string[301;
result: integer;

procedure addSuffixCvar fname: string;
suffix: string);

begin
if ~name(lengthCfname)l • 1.1 then

deleteCfname,lengthCfname),I)
else

fname :- concatCfname,suffix);
end {addSuffix};

begin
repeat

writeCinput file C<cr> to escape): I);
readlnCfilename);
inname :- filename;
if lengthCfilename) - 0 then exitCprogram);
addSuffixCfilename, '.TEXT');
{$I-}
reset(infile,filename);
result :- ioresult;
{$IA}
if result <> 0 then

writelnCI Cannot open ',filename);
until result • 0;
repeat

write(output file C<cr> for same): I);
readlnCfilename);
if lengthCfilename) • 0 then

filename :- inname;
addSuffixCfilename, '.CODE');
{$I-}
rewriteCoutfile,filename);
result :- ioresult;
{$IA}
if result <> 0 then

writeln(' Cannot open ',filename);
·until result • 0;

end {p3}.

This example again demonstrates explicit, user-defined error reco
very. If I/O checks were enabled, RESET and REWRITE would cause an
execution error whenever an invalid file name was entered; in this
example, the prompts reappear after responding with an error
message. Note the use of file name suffixes; this conforms to the
file system's naming conventions for file name prompts (as des-

Page 180

Programming Practices

cribed in section 2.1.6 of the System User's Manual). Also note
the presence of a standard escape response for the input prompt
(typing a carriage return escapes the prompt), and a short-circuit
on the output prompt (typing a carriage return uses the input file
title in the output file name).

Page 181

PDQ-3 Programmer's Manual

1Ai Device privers

A device driver is a set of one or more routines which provides an
interface between a program and a peripheral device. The program
initiates a device operation by calling the device driver with
parameters. describing the desired operatiQn. The device driver
performs the actions necessary to perform the device operation, and
notifies the program of the device status.

This section describes how to write drivers for Q-bus compatible
I/O devices. Unlike most computers, all device drivers on the
PDQ-3 are written in a high-level language (i.e. UCSD Pascal);
thus, they are less incomprehensible than drivers written in
assembly language.

Section 7.5.0 describes the interface between programs and device
drivers. Section 7.5.1 explains how to access devices in UCSD
Pascal. Section 7.5.2 describes the handling of direct memory
access (DMA) devices. Section 7.5.3 describes the handling of
device interrupts.

NOTE This section describes how to write device drivers for use
in programs; operating system device drivers are discussed in
section 6.2.

7.6.0 Drive, InterfAQe

A driver typically consists of a set of functions or procedures
declared in a program or unit. I/O driver parameters usually
include a device identifier, a source or destination address, and a
data transfer length; depending on the driver, anyone of these
parameters may be implicit in the driver's definition.

Examples of driver interfaces:

TapeRead (l{device number}, buffer, S12{byte count});
LPWrite (buffer, SizeOf(buffer) {byte count});
TapeRewind (2{device number});

The source or destination address is normally an area of memory
corresponding to a variable declared in the program. Parameter
type checking often prevents extensive use of a driver by restrict
ing the type of variables allowed as a source or destination
address; programs often need to read or write data from a variety
of (differently typed) variables.

Page 182

Programming Practices

One method of overriding type-checking constraints is. the use of
variant records; this allows the source or destination parameter to
accept arguments having different types. The following example
assumes that the programmer wishes to read data from a device into
two different types of variables. The driver parameter is declared
with a type allowing both kinds of variables.

Example of multi type parameter:

type VariantStructure = record
case integer of

o : (FirstStructure : Typel);
1 : (SecondStructure : Type2);

end {of VariantStructure};

procedure Driver (Var Buffer: VariantStructure);

The variant part may be extended in the following manner to
accommodate byte-oriented drivers:

Example of byte-oriented address parameter:

type ByteArray • packed array [0 •• 0] of 0 •• 255;
VariantStructure = record case integer of

o : (FirstStructure : Typel);
1 : (SecondStructure : Type2);
2 : (Memorylmage : ByteArray);

end {of VariantStructure};

The driver may access any byte in the buffer by indexing through
the Memory Image variant. Note that range checks (section 5.0.5)
must be suppressed in order to access arbitrary bytes without
causing an execution error.

7.6.1 Deyige Aqgess

Devices are accessed through their device registers. The driver
views these registers as the contents of specific memory addresses;
accessing these memory addresses causes a device register to be
accessed. Reading from a device register obtains device status
information; writing to a device register issues device commands.

Device register access is accomplished in UCSD Pascal by aSSigning
the memory address of the device register· to a pOinter variable,
and then by accessing the register through the pointer. Since most
devices have several device registers located in contiguous ad
dresses, the pOinter is usually declared to point to a multiword
record describing the device registers. The record fields are
declared so that they coincide with the various bit fields in the
device registers (see sections 7.0 and 7.1 for details).

NOTE - The process of storing into a packed record field involves
reading the entire word containing the record field, updating the

Page 183

PDQ-3 Programmer's Manual

record field, and then writing the modified word back to the
record. Beware of side effects caused by reading and/or writing of
packed fields adjacent to the field being modified.

The following example presents a simple device driver for the
DLV-Il (a bidirectional serial line whose device registers start at
FPBS hex). A pOinter is initialized with the address of the device
register block. The program reads characters from the receiver and
echoes them to the transmitter.

Example of simple DLVlI device driver:

program DLV1lDemo;
const DLVIIAddress • -72; {FFBS hex}
type
DLVllRec • record

RCsr : packed·record {receiver status}
Unused: 0 •• 31; {unused bits}
IntEnab: boolean; {interrupt enable}
Ready : boolean; {char received}

end {of RCsr};
RBuf : char; {input data}
XCsr : packed record {xmitter status}

Unused: 0 •• 31; {unused bits}
IntEnab: boolean; {interrupt enable}
Ready : boolean; {xmitter empty}

end {of XCsr};
XBuf : char; {output data}

end {of DLVllRec};
var DLV1l : record

case integer of
o : (Ptr : A OLV11Rec);
1 : (Value: integer);

end {of DLVll};

begin
DLVl1.Value :- DLVlIAddress;
with DLVll.Ptr A do

end.

begin
RCsr.lntEnab :- False;
XCsr.lntEnab :- False;
repeat

repeat {wait for a char to arrive}
until RCsr.Ready;
repeat {wait for xmitter to become available}
until XCsr.Ready;
XBuf :- RBuf; {send character received}

until false;
end;

Specific operational details of Q-Bus I/O devices can be found in
the hardware documentation provided by the device's manufacturer.
This information contains device register descriptions, operational
assumptions, and device register addresses. Due to architectural

Page 184

Programming Practices

differences between the PDQ-3 and other Q-Bus-based computers (i.e.
others are byte addressed the PDQ-3 is word addressed), the
device register addresses specified in the hardware documentation
must be converted to hex and then divided by two to obtain the
proper PDQ-3 address. For example, the DLVll address is specified
as 377560 octal in most hardware documentation. This is equivalent
to lFF70 hexJ dividing by 2 obtains FFB8 hex, which is the proper
PDQ-3 address. Note that this does not apply to interrupt vectors
(section 7.6.3).

NOTE - Device drivers may require protection (i.e.
fr,om task contention.

7.6.2 DBA QpecatigDs

semaphores)

Some Q-Bus devices are capable of performing direct memory access
(DMA) operations. These devices provide a device register which
contains the memory address of the next buffer element on which an
I/O operation is to take place. The device driver must determine
the starting buffer address and supply it to the device before a
DMA operation is initiated. The address is obtained with the
PMACHINE intrinsic (see section 3.10 for details), which returns
the address in a temporary variable.

,Due to architectural differences between the PDQ-3 and other Q-Bus
processors, most I/O devices require that the PDO-3 buffer address
be shifted left one bit before being used. The low order 16 bits
of the shifted result is written to the buffer address device
register. The high order bit (bit 17) is written to a second
device register, part of which is dedicated to address extension
bits.

One method of shifting the address involves the use of a temporary
record. The DMA address register in the device register declara
tion is assumed to be declared as type DeviceAddress.

Example of DMA buffer address shifting:

type DeviceAddress = packed record
LoBit : O •• IJ
Hi15Bits : 0 •• 32767;

end {of DeviceAddress}J
var Raw Address : packed record

LolSBits : 0 •• 32767J
HiBit : 0 •• 1;

end {of RawAddress};

pmachine (ARawAddress, ADMAbuffer, STO);
{ RawAddress := memory address of DMA buffer }
<DMA address register>.LoBit := 0; {perform the shift}
<DNA address register>.Hi15Bits := RawAddress.LoI5Bits;
<DMA address extension reg> := RawAddress.HiBit;

Page 185

POQ-3 Programmer's Manual

7.'.3 Interrupts

Interrupt-driven device drivers are implemented with the concurren
cy intrinsics WAIT, SIGNAL, and ATTACH (see section 3.0). The
interrupt vector used by a device can be found in the hardware
documentation describing-the device; it is specified in octal, and
need only be converted to hexadecimal to obtain the correct vector
address for the POQ-3.

NOTE The interrupt system becomes disabled when an interrupt
occurs. The driver is responsible for re-enabling the interrupt
system so that subsequent interrupts are handled. Re-enabling is
done by setting the Int Enab bit of the System Status Register (see
the Hardware User's Manual for details).

WARNING A device'S interrupt enable bit should never be cleared
while the POQ-l interrupt system is enabled. The interrupt system
is disabled by clearing the Int Enab bit of the System Status
Register (see the Hardware User's Manual for details). Note that
it is necessary to repeatedly reset the Int Enab bit until it stays
at O. The interrupt system should be disabled a.s infrequently as
possible since the act of disabling the interrupt system may lead
to system crashes.

NOTE - Because no method currently exists for deallocating attached
semaphore variables, programs must turn off interrupt-causing
devices before terminating in order to prevent possible system
crashes. See section 3.0.2 for details.

This program uses a clock to beep every l seconds:

program clock;
const ClockVector - 26 {60 Hz timer interrupt};
var tick: semaphore;

pid: processid;

process timer;
const bell - 7;

var
begin

ThreeSeconds - 180 {ticks};
ticks: integer;

ticks :- 0;
repeat

wait(tick);
pmachine «-988), (70),196);
ticks :- ticks + 1; ~
if ticks >- ThreeSeconds then

{reenables interrupts}

begin ticks :- 0; writeCchrCbell» end;
until false;

end {timer};

begin
seminitCtick,O);
attachCtiek,ClockVector);
startCtimer,pid,SOO,180);

end. {clock}

Page 186

Programming Practices

~ Multiterminal AppliCAtions

This section describes the role of UCSD Pascal's concurrency
features and the PDQ-3 asynchronous 1/0 system in the development
of multi terminal programs. A multiterminal hardware configuration
consists of a PDQ-3 communicating with two or more terminals over
serial lines. A multi terminal program assigns a task to each of
the terminals; each task is responsible for receiving input from
its assigned terminal, initiating actions specified by the terminal
user, and sending output back to the terminal. When a task
initiates an 1/0 operation, it is suspended until the 1/0 operation
is completed; this allows other tasks to proceed with their
e~~~~tion.

Th~ varia). l ~eclared in a multiterminal program may be divided
into two classes: private variables, and shared variables. Private
variables define the state of each user. They are declared in the
terminal process; thus, each task is assigned its own set of
private variables. A typical example of a private variable is the
file variable which each task uses for reading and writing to its
own terminal. Shared variables define the resources being shared
by all tasks. They are declared in the main program; because they
are subject to task contention, they must be guarded by semaphores.
A typical example of a shared variable is a disk file which is
accessible to every task.

The example presented below illustrates the adaptation of a
single-user program to a multiterminal environment. Most of the
conversion effort involves the determination of which global
variables in the program should be shared, and which should be
private. (Note that nonglobal variables are unaffected by the
conversion.) Semaphores are assigned to each shared variable;
references to shared variables must be guarded by semaphores to
ensure mutual exclusion of the terminal tasks. A terminal process
must be written; it contains the declarations of all private
variables, and does nothing more than initialize its private
variables and execute the main program routine. The main program
routine must be modified so that references to (formerly) global
variables become references to private task variables.

NOTE Each task must have a task stack space large enough to
execute the main program (see section 3.0.0.2 for details).

NOTE - See section 3.1.0 for restrictions imposed by interaction
between tasks and segments.

NOTE - In addition to the changes mentioned above, it is necessary
to locate all critical sections (see section 3.0.1.0) and protect
them with semaphores. Failure to identify and protect all poten
tial critical sections can cause multi terminal programs to fail
intermittently.

Page 187

PDQ-3 Programmer's Manual

Example of single-terminal program:

program StraightTalk;
const EscapeChar = ':1;
var Ch: char;

InFile : interactive;
OutFile, LogFile : text;

procedure LogCh~r (Ch : char);
begin

writeln (LogFile, 'Received " Ch);
end;

begin
reset (InFile, 'REMINl:');
rewrite (OutFile, 'REMOUTl:');
rewrite (LogFile, 'CONSOLE:');
repeat

read ClnFile, Ch);
write (OutFile, Ch);
LogChar (Ch);

until Ch = EscapeChar;
end {StraightTalk}.

Page 188

{ init global vars }

{ main routine }

Programming Practices

Example of multi terminal program:

program CrossTalk;
var LogLock : semaphore;

LogFile: text;
pid: processid:

{ shared }

procedure LogChar (Ch : char; Receiver: string):
begin

wait (LogLock):
writeln (LogFile, 'Received I, Ch, , from I, Receiver);
signal (LogLock);

end:

process ATerminal (InName, OutName : string);
const EscapeChar = ':1;
var Ch : char; { private}

InFile : interactive:
OutFile : text;

begin
reset (InFile, InName); { init private vars }
rewrite (OutFile, OutName);
repeat { main routine }

read (InFile, Ch);
write (OutFile, Ch):
LogChar (Ch, InName);

until Ch = EscapeChar;
end {ATerminal};

begin
{ init tasks & shared variables }
seminit (LogLock, 1);
rewrite (LogFile, 'CONSOLE:');
start (ATerminal ('REMIN1:', 'REMOUT2:'), pid, 500);
start (ATerminal ('REMIN2:', 'REMOUT1:'), pid, 500);

end.

Page 189

PDQ-3 Programmer's Manual

1&1 Locating Elecution Errors

This section describes how to locate the source of an execution
error in a UCSD Pascal program. When the operating system detects
an execution error, it halts the program and displays an error
message on the screen (see section 2.0.0 in the System User's
Manual for more information). The error message includes a field
such as:

Segment PROSE Proc 90, Offset 101

This message field specifies the error location in terms of the
code file structure. The ·Segment· value indicates the name of the
current code segment. The ·Proc· value indicates the current
procedure within the segment. The ·Offset· value indicates the
procedure-relative byte offset of the instruction which caused the
error.

NOTE It is possible to obtain a list of procedure calls leading
up to an execution error by setting the Error List Length greater
than 1. This field is maintained using the Setup utility described
in the System User's Manual.

7.8.0 oaing Cgmpiled Listings

A compiled listing displays the segment number, procedure number,
and code offset of each line in the program (see section 5.0.0 for
details on compiled listings). Finding the source of an execution
error consists of finding the Pascal statement in the listing for
the segment whose list procedure and offset numbers match those of
the error message. Note that while the procedure numbers can be
matched exactly, the code offset displayed in the error message
usually falls between the- code offsets displayed in the listing.
The error location can be narrowed down to the line whose displayed
offset value is the closest value less than or equal to the error
offset.

NOTE - In some Situations, the execution error displays segment or
offset numbers which don't appear in a compiled listing of the
program. If an execution error occurs in an unrecognized segment,
something is seriously wrong with the system! (Call ACD for
assistance.) If an execution error is traced to a used unit, a
compiled listing of the unit must be obtained before the error can
be traced any further. When strings or long integers are passed as
parameters, execution errors can occur in the vicinity of the
associated procedure call. See sections 3.4 and 3.6 for more
information.

Having located the suspected source line, the execution error
message should be sufficient to determine the cause of the error.
·Value range error· indicates that the program tried to assign a
value outside of the declared bounds of an array or subrange
variable. ·Integer overflow· is only generated by long integer
operations; it cannot result from integer operations (as no
overflow checks are performed on integers). ·Divide by zero· is

Page 190

Programming Practices

detectable in integer, long integer, and real division. User IIO
errors are generated either by an invalid input or by a file system
error.

7.8.1 WithOut Psing Compiled Listings

It is possible to trace execution errors to the procedure level
without the use of compiled listings1 all that is required is
knowledge of the program's overall structure (i.e. declaration
order of procedures) and an understanding of the compiler's rules
for assigning procedure numbers in a compiled program.

Procedures in a program or segment are aSSigned procedure numbers
in the order in which their headings appear, starting at procedure
number one. (Note that forward declarations count as headings.)
Procedure number one in a segment or program is the outermost block
of the segment or program1 in both cases, the first. local procedure
declaration is aSSigned procedure number two, the next three, and
so on. Note that procedure numbers are assigned independent of the
lexical nesting of procedures within a segment.

The procedure aSSignment rules presented in this section may be
partially verified by examining the compiled listing printed in
section 5.0.0.

7.8.2 Further Inyestigations

Locating the source of an execution error is often only the first
step in finding program errors; it is often necessary to begin
printing debug information (by inserting WRITELN statements into
the incorrect program) in order to investigate values of suspected
variables prior to the ~xecution error.

Page 191

PDQ-3 Programmer's Manual

!&! Programming ~ Units

This section demonstrates the value of the UCSD Pascal UNIT in the
economical and reliable production of applications software. The
major benefits of unit usage are derived from their ability to act
as a foundation for the development of increasingly complex
facilities, and their ability to be separately and independently
compiled.

The following two sections demonstrate unit usage by showing how to
develope a unit and how to take advantage of pre-existing units.
Unit syntax and semantics are discussed in section 3.2. The unit
library system is described in section 2.2 of the System User's
Manual. The integration of user units into the operating system is
described in section 6.0.

7.9.0 DD1t Deyelopment

Program development using units is faster and more reliable than
traditional methods. Large sections of code normally included in a
program may be separated into units where they are available Simply
by reference rather than by in-line compilation. Facilities
provided by such units are also available to any other programs
requiring them. This approach saves time during program compila
tion and allows a unit to be tested and maintained independently of
the'program. Since a single copy of a unit is shared among all
client programs, bug fixes and performance optimizations applied to
a unit are automatically available to all client programs.

The first step in the development of a unit is the specification of
its interface section. When pOSSible, it is prudent to structure
interface variables and procedures to provide generalized function
ality rather than facilities specific to an individual program.

Once the unit interface has been specified, it is wise to consider
how each component of the interface is to be tested. This results
in a greater understanding of all details of the interface
functions, and provides a foundation for the construction of test
and validation suites.

Implementation of the unit is performed by coding the interface
functions 'and writing initialization and termination code for the
unit's global variables. Note that pre-existing units may provide
functions valuable in implementing this unit (see section 7.9.1>.

Once the unit has been compiled, it may be installed in the library
system and tested. Testing and validation suites should be
developed to exercise each component of the unit interface. These
suites may be used during initial unit debugging and as a debugging
aid during unit maintenance. Note that the unit may be programmed
and maintained as an in-line unit of the validation suite program.
This arrangement facilitates the validation of the unit after
updates since the validation suite is always recompiled with the
unit.

Page 192

Programming Practices

NOTE - It is most expedient to install the unit in the user library
(see section 2.2.3 of the System User's Manual) until debugging is
complete.

7,9,1 Osing Pre-existing Onits

A number of units have been developed for use with the Advanced
Operating System, including units which perform complex system,
programming, and applications functions. They afford access to
routines that might be impossible for most programmers to write
(i.e. routines that require intimate knowledge of the system
architecture) or routines that might be merely inconvenient to
rewrite each time they are required. A partial listing of
pre-existing units available for use with the AOS appears in
Appendix K.

WARNING - Since the use of a unit causes the entire unit to be
memory-resident during program execution, excessive use of pre-ex
isting units in the construction of new units can lead to
exorbitant runtime memory requirements.

The example below demonstrates the use of several of the units
listed in Appendix K. The program performs the essential functions
of the Printer utility documented in the System User's Manual.
Note that the majority of the code serves to link the complex
functions of the units together. Identifiers provided by used
units are underlined.

Page 193

PDQ-3 Programmer's Manual

program DumpFiles;
uses SpoolUnit, PatternMatch, nitInfo, NumCon;
const LinesInPage = 66;

PrintPerPage = 60;
Esc = 27;

var Lines,
OutUnit : integer;
S : string;

procedure GetFileName (var Name: string; Lines: integer);
begin

writeln;
write ('File to print? I);
readln (Name);
if length (Name) <> 0 then

if Name[l] = '\' then
begin

delete (Name, 1, 1);
Lines :- LinesInPage;

end {of if}
else

Lines := PrintPerPage;
if length (Name) <> 0 then

if Name(length (Name)] = '., then
delete (Name, length (Name), 1)

else
Name := concat (Name, '.Text');

end {GetFileName};

procedure GetOutUnit (var OutUnit: integer);
var Temp: string;
begin

repeat
writeln;
write ('What is the output unit (1, 6, 8) ? ');
readln (Temp);
if NStrTolnt (Temp, 1, OutUnit) = 1 then

exit (DumpFiles);
until OutUnit In (1,6, 8];

end {GetOutUnit};

Page 194

Programming Practices

procedure PrintFiles (Name: string~ Lines: integer);
var List DListP;

Ch : char~
Heap: Ainteger;

begin
mark (Heap);
if OpirList (Name, [pText], List, False) = PQkay then

while List <> Nil Do
begin

Name := concat (ListA.DVolume, I:', ListA.OTitle);
repeat

write ('Print " Name, • ? I);
read (Ch);
if not eoln then writeln;

until Ch in ('Y', 'y', 'N', 'n', , " Chr (Esc) 1;
if Ch in ('Y', 'y'] then

case SpoolFile (Name, Lines,
LineslnPage, OutUnit) of

SpNgtFound : writeln (Name, , not found l
);

SpFull : begin
writeln ('Queue is full');
ListA.pNextEntry := Nil;

end {of SPFull}; .
SpOueued : writeln (Name, I queued');

end {of case};
if Ch = Chr (Esc) then List := Nil
else List := ListA.DNextEntry;

end {of while}
else writeln ('No files found');
release (Heap);

end {PrintFiles};

begin
GetOutUnit (OutUnit);
SpoolStop;
repeat

GetFileName (5, Lines);
if length (5) <> 0 then

PrintFiles (5, Lines);
until length (5) = 0;
SpoolRestart; .

end.

Page 195

PDQ-3 Programmer's Manual

1AlA Programs &a Procedures

Applications occasionally require the execution of certain func
tions already performed by existing programs. Combination of the
system program call and IIO redirection facilities allows applica
tion to perform these operations by invoking existing programs
either interactively or secretly.

The PROGCALL function provided by the PROGOPS unit (described in
the Library User's Manual) allows a program to be called as a
procedure from anywhere in a program or unit. IIO redirection
options and the name of· a program are passed to PROGCALL as
parameters. Using the IIO redirection facilities to provide
preprogrammed input and redirected output allows silent invokation
of the program; the user need never be aware of the program call.
Interactive calls may be performed by using no IIO redirection
options. IIO redirection options are documented in section 2.4.4
of the System User's Manual.

NOTE The time required by the PROGCALL intrinsic to set up a
program for execution may result in unacceptable delays in cases
where the program is repetitively invoked. Combining the PROGSETUP
and either the PROGSTART or PROGEXECUTE intrinsics results in the
elimination of the program setup overhead in these cases. For
further details, refer to the Library User's Manual.

WARNING - The PROGOPS intrinsics should be called from only one
concurrent task at a time. Attempts to execute these intrinsics
from more than one task simultaneously may yield bizarre and
unpredictable results.

The following example demonstrates the PROGCALL function; it
compiles each ".TEXT" file on a given volume (assuming each text
file contains a program or unit) to 'its corresponding" .CODE" file,
then calls the Filer for a directory listing of all ".CODE" files.
Keyboard input is accepted after the listing is started, and the
program regains control when the Filer is terminated. Note that
there are no facilities in this program for handling exceptional
conditions. Note also that the DIRINFO unit is used to obtain the
names of all unit text files.

Page 196

Programming Practices

program CompAndList1
uses Progops, PatternMatch, Dirlnfo1
var Name,

Prefix : string1
List : DListP;

procedure Call (ProgName: string);
var Error : string1

ErrNum : integer;
begin

if not ProgCall (ProgName, Error, ErrNum) then
begin

writeln (Error);
exit (CompAndList);

end;
end {Call};

begin
wri te ('Volume id: ') 1
readln (Prefix);
if length (Prefix) <> 0 then

if DDirList (concat (Prefix, ':=.Text'), [DTextl,
List, True) = DOkay then

begin
while List <> Nil Do

begin
with ListA do

. Name := Copy (DTitle, ., l..FPat C:>l.:t-Len)
,:;iteln ('Compiling " Name);
Call (Concat C'*System.Compiler. pp=', Prefix,

, i=n" Name, ',$,. o=bucket:'»;
List := ListA.DNextEntry;

end {of while}1
Call (Concat ('.System.filer. i=n e "

Prefix, ':=.code,'»;
writeln;
writeln ('Units, ProgCalls, and I/O redirection!');

end
else writeln ('No files found')

else writeln C'Aborted')1
end.

Page 197

PDQ-3 Programmer's Manual

~ Programming ~ 1LQ Redirection

Programs may be written to take advantage of the system I/O
redirection facilities. The system provides routines that suspend,
restart, and provide status information on the I/O redirection
facilities. Special system devices are also provided to access the
standard inp~t and standard output.

I/O redirection proceSSing may be suspended or resumed using
procedures provided in the CO~D~NDIO unit (described in the Library
User's Manual). The SuspendRedir procedure temporarily suspends
the most recent input and output redirection options. I/O is
performed using the input and output streams existing prior to the
creation of the current input and output streams. The ResumeRedir
procedure resumes I/O to the current input and output streams.
These procedures may be used to generate alarm messages when a
program encounters an unexpected condition. The SuspendT procedure
temporarily suspends the most recent t-file redirection options.
The ResumeT procedure restores t-file I/O. These procedures may be
used to guarantee that certain output reaches only the device
attached to the standard output rather all t-files, too.

I/O redirection status may be obtained using the ProgRedir function
provided by the PROGOPS unit (described in the Library User's
Manual). This function returns true if redirection options have
been applied to either the standard input or the standard output.

A program may access the standard input or standard output through
the unit I/O intrinsics or local file variables instead of through
the predeclared INPUT and OUTPUT file identifiers. I/O performed
to the STANIN: (unit 21) and STANOUT: (unit 22) volumes is directed
to the standard input and standard output, respectively.

The following program takes advantage of I/O redirection using the
facilities described above. It outputs a report either to a file
or simultaneously to the console and a printer. Assume that the
program resides in the file PRINT. CODE and that it may be invoked
by specifying ·Print TO-Printer:- as the execution option list.

Page 198

Programming Practices

program PrintReport;
uses CommandIO;
var OutFi1eName : string;

procedure PrintReport (Name string);
var OutFi1e : text;
begin

{$I-} rewrite (OutFi1e, Name);
{$IA} if IORESULT = 0 then

begin
ResumeT; {Activate write to t-fi1e}

{$I-} writeln (OutFile, 'Sample report:');
< ••• >

{$IA} if IORESULT <> 0 then
begin

SuspendRedir; {in case of 0= redir option}
writeln ('Error writing to " Name, 'Ill I);
ResumeRedir;

end;
SuspendT; {Deactivate write to t-file}

end
else

writeln ('Can"t open file I, Name);
end {of PrintReport};

begin {of PrintReport}
SuspendT; {Don't write prompts to t-files}
write ('Print to what file «return> for STANOUT:) ? I);
readln (OutFileName);
if length (OutFileName) = 0 then

OutFileName := 'Stanout:'
else

if OutFileName[length (OutFileName») = '.' then
delete (OutFileName, length (OutFileName), 1)

else
OutFileName := Concat (OutFileName, '.Text');

PrintReport (OutFileName);
< ••• >

end {of PrintReport}.

Page 199

PDQ-3 Programmer's Manual

Paqe 200

Appendices

APPENDIX ~ STANDARD llQ RESULTS

o No error
1 Bad Block, Parity error (eRe)
2 Bad Unit Number
3 Bad Mode, Illegal operation
4 Undefined hardware error
5 Lost unit, Unit is no longer on-line
6 Lost file, File is no longer in directory
7 Bad Title, Illegal file name
8 No room, insufficient space
9 No unit, No such volume on line
10 No file, No such file on volume
11 Duplicate file
12 Not closed, attempt to open an open file
13 Not open, attempt to access a closed file
14 Bad format, error in reading real or integer
15 Ring buffer overflow
16 Write Protect; attempted write to protected disk
17 Illegal block number
18 Illegal buffer address

Page 201

PDQ-3 Programmer's Manual

Page 202

Appendices

APPENPIX ~ STANDARD EXECUTION ERRORS

o No error
1 Invalid index, value out of range
2 No segment, bad code file
3 Exit from uncalled procedure
4 Stack overflow
5 Integer overflow
6 Divide by zero
7 Invalid memory reference <bus timed out>
8 User Break
9 System 1/0 error
10 User 1/0 error
11 Unimplemented instruction
12 Floating Point math error
13 String too long
14 Illegal heap operation

Page 203

PDQ-3 Programmer's f.lanual

Page 204

Appendices

APPENDIX ~ CONDITIONS CAUSING llQ ERRORS

1 eRC Error

2 Bad Unit Number

3 Bad Mode

4 Undefined Error

5 Lost Unit

6 Lost File

7 Bad Title

8 No Room

9 No Unit/Volume

Returned whenever a CRC (cyclic
redundancy check) or Parity
error occurs.

Returned for accesses to a device
for which there is no driver
declared.

Returned for attempts to read
on a write-only device or write
on a read-only device.

Returned when an error of
indeterminable type occurs.

Returned by the file system
only; it indicates that a disk
has gone off-line during an I/O
operation.

Returned by the file system
only; it indicates that a file
expected to be in a disk
directory is not present.

Returned by the file system
only; it indicates an attempt to
open a file with an invalid file
name.

Returned by the file system
only; it indicates either an
attempt to open or extend a
disk file when disk space is
unavailable, or an attempt to
open a new file on a disk with
a full directory.

Page 205

Returned either after an attempt
to access an off-line unit or
after an error occurs during
UNITCLEAR. Also returned by the
file system to indicate an
attempt to access a volume which
is not on-line.

PDQ-3 Programmer's Manual

10 No File Returned by the file system
only; it indicates an attempt to
open a nonexistent disk file.

11 Duplicate File Returned by the file system
only; it indicates an attempt to
create more than one temporary
file with the same file name on
a Single disk volume.

12 Not Closed Returned by the file system
only; it indicates an attempt to
open a file variable which is
already connected to an external
file.

13 Not Open Returned by the file system
only; it indicates an attempt to
access a file variable which is
not connected to an external file.

14 Bad Format Returned by the file system
only; it indicates an attempt to
read a real value or integer value
with incorrect input format.

15 Ring Buffer Overflow Returned during a read from a
serial device after its input
buffer has overflowed. (Not
currently implemented)

16 Write Protected Disk Returned when attempting to
write to a write-protected disk.

17 Illegal Block Number Returned when attempting to
access a nonexistent block on a
block-structured device, or when
a seek error occurs.

18 Illegal Buffer Address Returned when attempting to
initiate an I/O operation with a
non-word-aligned starting buffer
address. (Applies only to
block-structured devices)

Page 206

Appendices

APPENDIX ~ STANDARD lLQ DBl% ATTRIBUTES

This section describes the operations defined for the PDQ-3 system
1/0 units in their standard configuration. Since system device
drivers and the 1/0 device configuration itself may be modified in
the field (see section 6.2 for details), this section may not apply
to a custom 1/0 configuration. All operations are performed with
the unit 1/0 intrinsics described in section 3.9. See the Hardware
User's Manual for more information on 1/0 devices.

I/O units can be divided into two classes according to their
attributes: serial units, and block-structured units. A unit's
class determines the kinds of operations performed on the unit and
the available 1/0 options. I/O options are specified by setting
various bits in the control word parameter of the UNITREAD and
UNITWRITE intrinsics.

NOTE An option is enabled if its bit is set to 1; otherwise, it
is disabled. The low order bit in a control word is bit O. Unused
bits in control words should always be set to O. For example, a
control word value of 6 sets bits 1 & 2 to 1 (and all other bits to
0) •

D&A Serial unit Attributes

Serial units read andlor write sequences of characters to a serial
device. Each serial input unit maintains its own input queue.
Certain characters are treated as control characters rather than
data. (See section 1.4 in the System User's Manual for more
information on control characters.>

0.0.0 Serial Input Attributes

Characters recognized as control characters by serial input opera
tions are:

Control-S and control-Q suspend and resume device output.

<eof> is treated as the end-of-file marker; the end-of-file
marker is placed in the buffer, and the input operation is
terminated immediately.

Control-D is the floppy disk type key.

Control-F discards ("flushes") subsequent device output.

Control-P invokes the system monitor.

Control-X discards the contents of- the console type-ahead
queue.

<null> is treated specially in some cases (see section 6.1.3
in the System User's Manual and section 3.3.2 in this manual).

Page 207

POQ-3 Programmer's Manual

Serial input options are defined as follows:

Sit 1

Bit 2

Bit 3

Raw input mode; disable all control character processing.
Suppress character echoing when reading from unit 1.
Note that the input unit retains this mode after complet
ing a read operation, thus affecting the handling of
subsequent asynchronously received input. This mode can
be disabled by performing another read operation with bit
1 reset; a read of 0 bytes is sufficient to enable or
disable the mode.

Suppress recognition of the end-of-file character.

Suppress CR/LF generation in character echOing when
reading from unit 1.

P,O,l Serial Ogtput Attribgtes

Characters treated specially by serial output operations are:

The ASCII OLE character is treated as the escape character of
a blank compression character sequence; the next character is
defined to contain a byte value which is 32 greater than the
number of blank characters to be written to the device. Note
that OLE processing applies only to text files; it must be
suppr~ssed when writing code or data files to a serial device.

The ASCII CR character is defined as a -new-line- character in
text files. Whenever CR is written to a serial device, the
I/O system automatically follows it with the ASCII LF charac
ter (line feed). Note that CR/LF processing applies only to
text files; it must be suppressed when writing code or data
files to a serial device.

The ASCII FF character is defined as a -Clear Screen"
character in text files. Whenever FF is written to units 1 or
2, the I/O system automatically substitutes the console Clear
Screen sequence defined with the Setup utility (see section
8.3 in the System User's Manual). Note that FF processing
applies only to text files; it must be suppressed when writing
code or data files to a serial device.

Serial output options are defined as follows:

Bit 2

Bit 3

Suppress OLE expansion.

Suppress automatic LF after CR.
tion.

Suppress FF substitu-

NOTE - I/O is somewhat faster if bits 2 & 3 are set.

Page 208

Appendices

n,o.2 HandshakinQ Protogo1s

All serial units support the RS-232 DTR ("Data Terminal Ready")
handshaking protocol. Serial unit drivers use DTR (when supported
by the serial device) to simulate the control-S / control-Q
handshaking described in section 0.0.0. Note that raw input mode
disables normal control-S / control-Q handshaking by swallowing the
control characters, while DTR protocol is unaffected by raw input
mode.

D&l Blgck-strugtured DDit Attributes

Block-structured I/O options differ between floppy disk units and
hard disk units. The UNITSTATUS intrinsic (section 3.9.2) indi
cates whether a block-structured unit is a floppy or a hard disk.

D,l.Q PlopRY DDit Attributes

Floppy disk units perform automatic switching between single and
double density disks. Double-sided disks are handled by manual
switches via the disk type key (see section 1.4.3.4 in the System
User's Manual).

I/O options for floppy disks units are defined as follows:

Bit 1 Physical sector I/O. Allows access to any physical
sector on the disk. Disk sectors are addressed by
logical sector number1 the first sector on the disk 1S
sector O. Note that physical sector mode allows normally
inaccessible disk sectors to be accessed (e.g. sectors
on track 0). The starting block parameter is redefined
to denote the starting logical sector number. If the
byte count parameter is 0, the I/O operation transfers
one physical sector of data1 the size of a physical
record is determined by the type of the current disk (128
for single density disks and 256 for double density
disks) and may be obtained by using the UNITSTATUS
intrinsic. If the byte count parameter is nonzero, it is
treated as a normal byte count.

D.1.1 ~ Diak DDit Attributes

IIO options for hard disks specify addressing relative to one of
three areas on the hard disk: the data space, the bootstrap space,
and the configuration space. Since the mapping between IIO units
and physical drives is hidden at the driver level, the physical
drive number may also be specified.

The bootstrap space contains a copy of the system bootstrap. It is
usually up to 3328 bytes (6.5 blocks) long.

The configuration space contains a 1024 byte table specifying how
the data space is partitioned into virtual floppies. The table is

Page 209

PDQ-3 Programmer's t-tanual

maintained by the Drive.Con utility described in the System User's
Manual. It is declared as follows:

HardConTbl: record
MaxEntry : integer; {last ConEntry}
BlocksSegment : integer; {blocks in a segment}
SegmentsDrive : integer; {segments in a drive}
ConEntry : array [O •• MaxConLenl of

end {HardConTbl};

packed record
StartArea : integer;
IsMounted : boolean;
LastBlock : 0 •• 32767;
Description: string[l91;

end {of ConEntry};

The MaxEntry field is a zero-based index specifying the last valid
entry in the ConEntry table. BlocksSegment indicates the number of
512-byte blocks contained in a disk track. SegmentsDrive contains
the number of tracKS per physical disk drive. The ConEntry table
lists each virtual floppy contained on the disk drive. StartArea
contains the zero-based starting physical tr,ack number for the
floppy (note that track 0 is reserved for the bootstrap and
configuration spaces). IsMounted indicates whether the virtual
floppy is available for system access. LastBlock is a zero-based
value containing the number of the last accessable block on the
floPPYJ it is a multiple of BlocksSegment and usually coincides
with the floppy size contained in the floppy volume directory.
Description contains up to 19 user-supplied characters describing
the contents of the virtual floppy.

Bits 1 and 2 1/0 addreSSing environment. -0- specifies addres
sing relative to the data space allocated for the unit.
Offsets from the beginning of the data space are express
ed in blocks. -1- and -2- specify addreSSing relative to
the bootstrap and configuration spaces, respectively.
Offsets from the beginning of these areas are expressed
in logical disk sectors; the size of a sector is
determined by the type of the hard drive and may be
obtained by using the UNITSTATUS intrinsic. The first
sector on the disk is sector O. Note that the bootstrap
and configuration spaces are normally inaccessible to the
f~_~ ~ystem. I~ the bj: ~cunt parameter is 0, the IIO
operation transfers one sector of data; otherwise the
specified byte count is used.

Bits 3, 4, 5 Physical drive number. This field is used to
specify a physical drive number in the range 0 •• 7. It is
used in conjunction with IIO to the bootstrap and
configuration spaces; it is ignored during accesses to
the data space.

Page 210

Appendices

~ lLC unit SpegificatioD

This section describes the standard system IIO units. The unit
attribute determines the options available for use with the
UNITREAD and UNITWRITE intrinsics. (see sections 0.1 and 0.2 for
details; see sections 4.42 and 4.45 for parameter information).
Unit-specific features are described next to the operations affect
ed. The UNITSTATUS record format depends on the type of unit being
polled. See section 3.9.2 for details.

NOTE For reasons of compatibility with other implementations of
UCSD Pascal, references to unit 128 are mapped into unit 3, and
references to unit 129 are mapped into unit 21. The REMIN: (unit
7) and REMOUT: (unit 8) map to the same device as REMIN4: (unit 19)
and REMOUT4: (unit 20).

to: - Device
- Volume Name
- Attribute

- UnitClear
- UnitRead

- UnitWrite

- UnitBusy
- UnitWait
- UnitStatus

#1: - Device
- Volume Name
- Attribute

- UnitClear
- UnitRead

- UnitWrite
- UnitBusy
- UnitWait
- UnitStatus

- System Clock
- CLOCK:
- Serial

- No action
- If BLOCKNUM >= 0, current task is

suspended for the
number of clock ticks specified
by value in BLOCKNUM; next, if
BYTES >= 4, the system time is read
into the first two words of BUFF
(least significant word first).

- Stores first two words in'BUFF
into system time variable (least
significant word first).

- Returns FALSE
- No action

- System console
- CONSOLE:
- serial

- Clears type-ahead and UART buffers.
- Masks off high order bit, echoes

input character, zero-fills remainder
of BUFF instead of returning end-af-file
marker.

- Returns FALSE
- No action

Page 211

#2: - Device
- Volume Name
- Attribute

- UnitClear
- UnitRead
- UnitWrite
- UnitBusy

- UnitWait
- UnitStatus

#3: -. Device
- Volume Name
- Attribute

- UnitClear

- UnitRead
- UnitWrite

- UnitBusy

- UnitWait
- UnitStatus

14: - Device
- Volume Name
- Attribute

- .. Uni tClear
- UnitRead
- UnitWrite
- UnitBusy
- UnitWait
- UnitStatus

#5: - Device
- Volume Name
- Attribute

- UnitClear
- UnitRead
- UnitWrite
- UnitBusy
- .UnitWait
- UnitStatus

PDQ-3 Programmer's Manual

- System console
- SYSTERM:
- Serial

- Clears type-ahead and UART buffers
- Masks off high order bit.

- Returns TRUE if no input character
is available

- No action

- System Console Type-ahead buffer
- KEYBUFR:
- Serial

- Clears keyboard characters inserted
by UNITWRl;TE(3).

- Bad mode
- Writes characters into console

type-ahead buffer in front of
keyboard-queued characters.

- Returns TRUE if type-ahead buffer
is full.

- No action

- Floppy drive 0
- user defined
- Block-structured

- Seek to track O.

- Returns FALSE
- No action

- Floppy drive 1
- user defined
- Block-structured

- Seek to track O.

- Returns FALSE
- No action

Page 212

Appendices

#6: - Device
- Volume Name
- Attribute

- UnitClear
- UnitRead
- UnitWrite
- UnitBusy
- UnitWait
- UnitStatus

17: - Device
- Volume Name
- Attribute

- UnitClear
- UnitRead
- UnitWrite
- UnitBusy

- UnitWait
- UnitStatus

18: - Device
- Volume Name
- Attribute

- UnitClear
- UnitRead
- UnitWrite
- UnitBusy
- UnitWait
- UnitStatus

19: - Device
- Volume Name
- Attribute

- UnitClear
- UnitRead
- UnitWrite
- UnitBusy
- UnitWait
- UnitStatus

- Parallel printer output (FFA4 hex)
- PRINTER:
- Serial

- Bad mode

- Returns FALSE
- No action

- DLV-llJ port 3 input (FFB8 hex)
- REMIN:
- Serial

- Clears REMIN: type-ahead queue

- Bad mode
- Returns TRUE if no input

character is available.
- No action

- DLV-llJ port 3 output (FFB8 hex)
- REMOUT:
- Serial

- Clears REMIN: type-ahead queue
- Bad mode

- Returns FALSE
- No action

- Optional hard disk virtual floppy 0
- user defined
- Block-structured

- Indicate status

- Returns FALSE
- No action

Page 213

#10: - Device
- Volume Name
- Attribute

- UnitClear
- UnitRead
- UnitWrite
- UnitBusy
- UnitWait
- UnitStatus

#11: - Device
- Volume Name
-. Attribute

- UnitClear
- UnitRead
- UnitWrite
- UnitBusy
- UnitWait
- UnitStatus

#12: - Device
- Volume Name
- Attribute

- UnitClear
- UnitRead
- UnitWrite
- UnitBusy
- UnitWait
- UnitStatus

#13: - Device
- Volume Name
- Attribute

- UnitClear
- UnitRead
- UnitWrite
- UnitBusy

- UnitWait
- UnitStatus

PDQ-3 Programmer's Manual

- Optional hard disk virtual floppy 1
- user defined
- Block-structured

- Indicate status

- Returns FALSE
- No action

- Optional hard disk virtual floppy 2
- user defined
- Block-structured

- Indicate status

- Returns FALSE
- No action

- Optional hard disk virtual floppy 3
- user defined
- Block-structured

- Indicate status

- Returns FALSE
- No action

- DLV-IIJ port 0 input (FEAO hex>
- REMINl:
- Serial

- Clears REMINl: type-ahead queue

- Bad mode
- Returns TRUE if no input

character is available.
- No action.

Page 214

Appendices

#14: - Device
- Volume Name
- Attribute

- UnitClear
- UnitRead
- UnitWrite
- UnitBusy
- UnitWait
- UnitStatus

t15: - Device
- Volume Name
- Attribute

- UnitClear
- UnitRead
- UnitWrite
- UnitBusy

- UnitWait
- UnitStatus

116: - Device
- Volume Name
- Attribute

- UnitClear
- UnitRead
- UnitWrite
- UnitBusy
- UnitWait
- UnitStatus

#17: - Device
- Volume Name
- Attribute

- UnitClear
- UnitRead
- UnitWrite
- UnitBusy

- UnitWait
- UnitStatus

- DLV-llJ port a output (FEAO hex)
- REMOUT1:
- Serial

- Clears REMIN1: type-ahead queue
- Bad mode

- Returns FALSE
- No action

- DLV-IIJ port 1 input (FEA4 hex)
- REMIN2:
- Serial

- Clears REMIN2: type-ahead queue

- Bad mode
- Returns TRUE if no input

character is available.
- No action

- DLV-I1J port 1 output (FEA4 hex)
- REMOUT2:
- Serial

- Clears REMIN2: type-ahead queue
- Bad mode

- Returns FALSE
- No action

- DLV-llJ port 2 input (FEA8 hex)
- REMIN3:
- Serial

- Clears REMIN3: type-ahead queue

- Bad mode
- Returns TRUE if no input

character is available.
- No action

Page 215

#18: - Device
- Volume Name
- Attribute

- UnitClear
- UnitRead
- UnitWrite
- UnitBusy
- UnitWait
- UnitStatus

#19: - Device
- Volume Name
- Attribute

- UnitClear
- UnitRead
- UnitWrite
- UnitBusy

- UnitWait
- UnitStatus

'20: - Device
- Volume Name
- Attribute

- UnitClear
- UnitRead
- UnitWrite
- UnitBusy
- UnitWait
- UnitStatus

#21: - Device
- Volume Name
- Attribute

- UnitClear
- UnitRead
- UnitWrite

- UnitBusy
- UnitWait
- UnitStatus

PDQ-3 Programmer's Manual

- DLV-IlJ port 2 output (FEA8 hex)
- REMOUT3:
- Serial

- Clears REMIN3: type-ahead queue
- Bad mode

- Returns FALSE
- No action

- DLV-IlJ port 3 input (FFB8 hex)
- REMIN4:
- Serial

- Clears REMIN4: type-ahead queue

- Bad mode
- Returns TRUE if no input

character is available.
- No action

- DLV-lIJ port 3 output (FFB8 hex)
-. REMOUT4:
- Serial

- Clears REMIN4: type-ahead queue
- Bad mode

- Returns FALSE
- No action

- System console
- FASTCON:
- Serial

- Clear type-ahead and UART buffers
- Bad mode
- Fast console output. No CR, FF,

or DLE expansion.
- Returns FALSE
- No action

Page 216

#22:

#23:

124:

125:

Appendices

- Device
- Volume Name
- Attribute

- UnitClear
- UnitRead
- UnitWrite
- UnitBusy
- UnitWait
- UnitStatus

- Device
- Volume Name
- Attribute

- UnitClear
- UnitRead
- 'UnitWrite
- UnitBusy
- UnitWait
- UnitStatus

- Device
- Volume Name
- Attribute

- UnitClear
- UnitRead
- UnitWrite

UnitBusy
- UnitWait
- UnitStatus

- Device
- Volume Name
- Attribute

- UnitClear
- UnitRead
- UnitWrite
- UnitBusy
- UnitWait
- UnitStatus

- Standard input
- STANIN:
- Serial

- No action
- Read from KEYBOARD file
- Write to OUTPUT file
- Returns FALSE
- No action

- Standard output
- STANOUT:
- Serial

- No action
- Read from KEYBOARD file
- Write to OUTPUT file
- Returns FALSE
- No action

- Bit bucket
- BUCKET:
- Serial

- No action
- Supply CHR(O) (e.g. EOF)
- Ignore output

Returns FALSE
- No action

- Optional hard disk virtual floppy 4
- user defined
- Block-structured

- Indicate status

- Returns FALSE
- No action

Page 217

PDQ-3 Programmer's Manual

#26: - Device - Optional hard disk virtual floppy 5
- Volume Name - user defined
- Attribute - Block-structured

- UnitClear - Indicate status
UnitRead

- UnitWrite
- UnitBusy - Returns FALSE
- UnitWait - No action
- UnitStatus

#27: - Device - Optional hard disk virtual floppy 6
- Volume Name - user defined
- Attribute - Block-structured

- UnitClear - Indicate status
- UnitRead
- UnitWrite
- UnitBusy - Returns FALSE
- UnitWait - No action
- UnitStatus

128: - Device - Optional hard disk virtual floppy 7
- Volume Name - user defined
- Attribute - Block-structured

- UnitClear - Indicate status
- UnitRead
- UnitWrite
- UnitBusy - Returns FALSE
- UnitWait - No action
- UnitStatus

Page 218

Appendices

APPENDIX ~ RESERVEP WORDS

Standard Pascal Reserved Words

and end not then
array file of to
begin for or type
case function packed until
const goto procedure var
div if program while
do in record with
downto label repeat
else mod set

NOTE - NIL is a predefined identifier in UCSD Pascal.

~ Pascal Reserved Words

forward
interface
implementation
process
segment
separate
unit
uses

Page 219

PDQ-3 Programmer's l-lanual

Page 220

Appendices

APPBNDIX ~ PREDECLARED IDENTIFIERS

Standard Pascal Predeclared Identifiers

abs false page
arctan get pred
boolean input put
char integer read
chr In readln
cos maxint real
dispose new reset
eof odd rewrite
eoln ord round
exp output sin

~ Pascal Predeclared Identifiers

atan
attach
blockread
blockwrit~
close
concat
copy
delete
exit
fillchar
gotoxy
halt
idsearch
insert
interactive

ioresult
keyboard
length
mark
memavail
memlock
memswap
moveleft
moveright
nil
opennew
openold
pos
processid
pwroften

release
rmemavail
scan
seek
semaphore
seminit
signal
sizeof
start
str
string
time
treesearch
unitbusy
unitclear

NOTE - NIL is a reserved word in standard Pascal.

Page 221

sqr
sqrt
succ
text
true
trunc
write
writeln

unitread
unitstatus
unitwait
unitwrite
varavail
vardispose
varnew
wait

PDQ-3 Programmer's Manual

Page 222

Appendices

APPENDIX ~ IMPLEMENTATION LIMITS

Maximum number of segments in a program: 128

Maximum number of procedures in a segment: 255

Maximum level of nested procedures: 8

Maximum level of nested statements: 12

Maximum size of a procedure: 1200 bytes

Maximum size of variables in a procedure:

Maximum size of a record or array: 32766

Maximum size of a set: 4080 elements

Maximum size of a string: 255 characters

32766

words

words

Integer range: -32768.. 32767 (no overflow checking)

Long integer accuracy: up to 36 digits

Real range: -3.0E38.. 3.0E38 (approximate)

Real accuracy: up to 6 significant digits

An integer subrange type encompassing negative integer values may
not be used as the base type of a set in UCSD Pascal. -Negative"
sets compile successfully, but cause execution error 1 (ftValue
range error ft) when they are assigned negative values.

Example of an invalid set:

program revelation;
var nuclear: set of -66 •• 6;

solar: set of 3 •• 33;
begin

solar := [5];
nuclear := [-30]; {program crashes here}

end.

Page 223

PDQ-3 Programmer's Manual

Mixed Expression Eyaluation

The lack of integer overflow checking can affect expressions mixing
integers with long integers or reals. The compiler evaluates mixed
expressions left-to-right; the expression is evaluated with integer
operations until either an operand of the final" type (long integer
or real) is encountered or the end of the expression is reached.
Only at this point does the compiler convert the expression
(sub)result to the final type; however, the integer-valued expres
sion may have already overflowed.

Example of mixed expression misevaluation:

program mali
var I: integer;

R: real;
begin

I :- 20000;
R :- 3.0;
writeln(I + 20000 + R);

In this example, the compiler emits code to perform an integer
addition of the integer variable I and the integer constant 20000.
The integer result is then converted to type real and added to the
real variable to obtain the expression result. Unfortunately, the
integer addition overflows, resulting in an incorrect integer
subresult; the error is me~ely propagated by the subsequent real
operations.

This problem can be avoided by reordering expressions so that real
or long integer operands precede the integer operands 1 this forces
the compiler to convert integer operands to the final type as they
are encountered.

BlL Pointer References

UCSD Pascal does not detect dynamic variable references through
pointer variables containing the value NIL (these should be flagged
with execution error 7, but are not).

Record Variant Accesses

UCSD Pascal provides no checks for the detection of invalid record
variant references (i.e. acceSSing a record variant which doesn't
correspond with the tag field value).

[QR Statements

FOR statements with a final value of MAXINT become infinite loops.
Avoid using ~mXINT (and -MAXINT) as the initial and final values.

Page 224

Appendices

~ Statements

CASE statements in UCSD Pascal are implemented with a jump table;
the table size is dependent on the range of values spanned by the
case labels. Consider the following CASE statement:

case int of
-1000: kind:= loss:

1000: kind:= profit:
end {case}:

The jump table generated by this statement would be 2000 words long
(11): however, the compiler's limit on procedure size prevents
large CASE statements such as this one from compiling successfully.
When confronted with situations of this type, it is more efficient
(with respect to code size) to use IF statements for detecting
extreme values, and save CASE statements for relatively small
ranges of values (e.g. CHAR, enumerated types, and modest integer
subranges).

Special Symbols

Some of the special symbols in UCSD Pascal are internally equiva
lent; they may be substituted for each other without affecting the
compilability of a program.

SEGMENT is equivalent to PROGRAM

. . is equivalent to • •

HaD and ~ ~ Negatiye Arguments

The result of a MOD or DIV operation involving negative arguments
differs between implementations of UCSD Pascal. The result of a
DIV operation with positive arguments is always truncated. When
using negative operands, some processors round the result of a DIV
towards the larger integer (less negative); some processors round
towards the smaller (more negative). Since "a MOD b" is defined to
be "a - (a DIV b) * b", the values returned by MOD are affected by
the result of DIV.

The PDQ-3 rounds the result of a DIV using a negative operand
towards the larger integer. For example, -3 DIV 2 results in -1.

NOTE - On the PDQ-3, if the second operand of a MOD calculation is
negative, a non-suppressable range check execution error occurs.

Page 225

PDQ-3 Programmer's Manual

Page 226

Appendices

APPENDIX ~ COMPILER SYNTAX ERRORS

1: Error in simple type
2: Identifier expected
3: 'PROGRAM' expected
4: ')' expected
5: ':' expected
6: Illegal symbol (maybe missing ';1 on the line above)
7: Error in parameter list
8: 'OF' expected
9: 1(1 expected

10: Error in type
11: 1[1 expected
12: ']' expected
13: 'END' expected
14: ':' expected
15: Integer expected
16: '=' expected
17: 'BEGIN' expected
18: Error in declaration part
19: error in <field-list>
20: ',' expected
21: '.' expected
22: 'INTERFACE' expected
23: 'IMPLEMENTATION' expected
24: 'UNIT' expected

50: Error in constant
51: ':=1 expected
52: ITHEN' expected
53: 'UNTIL' expected
54: 'DO' expected
55: 'TO' or I DOWNTO' expected in for statement
56: 'IF' expected
57: 'FILE' expected
58: Error in <factor> (bad expression)
59: Error in variable
60: Must be semaphore
61: Must be processid I

101: Identifier declared twice
102: Low bound exceeds high bound
103: Identifier is not of the appropriate class
104: Undeclared identifier
105: sign not allowed
106: Number expected
107: Incompatible subrange types
108: File not allowed here
109: Type must not be real
110: <tagfie1d> type must be scalar or subrange
Ill: Incompatible with <tagfield> part
112: Index type must not be real
113: Index type must be a scalar or a subrange
114: Base type must not be real

Page 227

115:
116:
117:
118:
119:
120:
121 :
122:
123:
124:
125:
126:
127:
128:
129:
130:
131:
132:
133:
134:
135:
136:
137:
138:
139:
140:
141:
142:
143:
144:
145:
146:
147:
148:
149:
150 :
151:
152:
153:
154:
155:
156:
157:
158:
159:
160:
161:
162:
163:
164:
165:
166:
167:
168:
169:
170:

PDQ-3 Programmer's Manual

Base type must be a scalar or a subrange
Error in type of standard procedure parameter
Unsatisified forward reference
Forward reference type identifier in variable declaration
Re-specified params not OK for a forward declared procedure
Function result type must be scalar, subrange or pointer
File value parameter not allowed
Forward declared fu~.~ion resul: type Cl ."t be re-specified
Missing result type in function declaration
F-format for reals only
Error in type of standard procedure parameter
Number of parameters does not agree with declaration
Illegal parameter substitution
Result type does not agree with declaration
Type conflict of operands
Expression is not of set type
Tests on equality allowed only
Strict inclusion not allowed
File comparison not allowed
Illegal type of operandCs)
Type of operand must be boolean
Set element type must be scalar or subrange
Set element types must be compatible
Type of variable is not array
Index type is not compatible with the declaration
Type of variable is not record
Type of variable must be file or pointer
Illegal parameter solution
Illegal type of loop control variable
Illegal type of expression
Type conflict
Assignment of files not allowed
Label type incompatible with selecting expression
Subrange bounds must be scalar
Index type must be integer
Assignment to standard function is not allowed
Assignment to formal function is not allowed
No such field in this record
Type error in read
Actual parameter must be a variable
Control variable cannot be formal or non-local
Multidefined case label
Too many cases in case statement
No such variant in this record
Real or string tagfields not allowed
Previous declaration was not forward
Again forward declared
Parameter size must be constant
Missing variant in declaration
Substition of standard proc/func not allowed
Multidefined label
Multideclared label
Undeclared label
Undefined label
Error in base set
Value parameter expected

Page 228

Appendices

171: Standard file was re-declared
172: Undeclared external file
173: Fortran procedure or function expected!
174: Pascal function or procedure expected
175: Semaphore value parameter not allowed
182: Nested units not allowed
183: External declaration not allowed at this nesting level
184: External declaration not allowed in interface section
185: Segment declaration not allowed in unit
186: Labels not allowed in interface section
187: Attempt to open library unsuccessful
188: Unit not declared in previous uses declaration
189: 'USES' not allowed at this nesting level
190: Unit not in library
191: No private files
192: 'USES' must be in interface section
193: Not enough room for this operation
194: Comment must appear at top of program
195: Unit not importable
196: 'USES LONGINT' required

201: Error in real number - digit expected
202: String constant must not exceed source line
203: Integer constant exceeds range
204: 8 or 9 in octal number

250: Too many scopes of nested identifiers
251: Too many nested procedures or functions
252: Too many forward references of procedure entries
253: Procedure too long
254: Too many long constants in this procedure
256: Too many external references
257: Too many externals
258: Too many local files
259: Expression too complicated

300: Division by zero
301: No case provided for this value
302: Index expression out of bounds
303: Value to be assigned is out of bounds
304: Element expression out of range

398: Implementation restriction
399: Implementation restriction
400: Illegal character in text
401: Unexpected end of input
402: Error in writing code file, not enough room
403: Error in reading include file
404: Error in writing list file, not enough room
405: Call not allowed in separate procedure
406: Include file not legal
407: disk error
408: compiler error

Page 229

PDQ-3 Programmer's Manual

Page 230

. Appendices

APPENDIX .l.:.. ASCII CHARACTER ~

0 000 00 NUL 32 040 20 SP 64 100 40 @ 96 140 60 "
1 001 01 SOH 33 040 21 ! 65 101 41 A 97 141 64 a
2 002 02 STX 34 042 22 II 66 102 42 B 98 142 62 b
3 003 03 ETX 35 043 23 i 67 103 43 C 9~ 143 63 c
4 004 04 EaT 36 044 24 $ 78 104 44 0 100 144 64 d
5 005 05 ENQ 37 045 25 % 69 105 45 E 101 145 65 e
6 006 06 ACK 38 046 26 & 70 106 46 F 102 146 66 f
7 007 07 BEL 39 047 27 I 71 107 47 G 103 147 67 9
8 010 08 BS 40 050 28 (72 110 48 H 104 150 68 h
9 011 09 HT 41 051 29) 73 III 49 I 105 151 69 i

10 012 OA LF 42 052 2A * 74 112 4A J 106 152 6A j
11 013 OB VT 43 053 2B + 75 113 4B K 107 153 6B k
12 014 OC FF 44 054 2C , 76 114 4C L 108 154 6C 1
13 015 00 CR 45 055 20 - 77 115 40 lwl 109 155 60 m
14 016 OE SO 46 056 2E • 78 116 4E N 110 156 6E n
15 017 OF SI 47 057 2F / 79 117 4F 0 III 157 6F 0
16 020 10 OLE 48 060 30 0 80 120 50 P 112 160 70 P
17 021 11 OC1 49 061 31 1 81 121 51 Q 113 161 71 q
18 022 12 OC2 50 062 32 2 82 122 52 R 114 162 72 r
19 023 13 OC3 51 063 33 3 83 123 53 S 115 163 73 s
20 024 14 OC4 52 064 34 4 84 124 54 T 116 164 74 t
21 025 15 NAK 53 064 35 5 85 125 55 U 117 165 75 u
22 026 16 SYN 54 066 36 6 86 126 56 V 118 166 76 v
23 027 17 ETB 55 067 37 7 87 127 57 W 119 167 77 w
24 030 18 CAN 56 070 38 8 89 130 58 X 120 170 78 x
25 031 19 EM 57 071 39 9 89 131 59 Y 121 171 79 Y
26 032 1A SUB 58 072 3A · 90 132 SA Z 122 172 7A z · 27 033 1B ESC 59 073 3B · 91 133 5B [123 173 7B { ,
28 034 1C FS 60 074 3C < 92 134 5C \ 124 174 7C I
29 035 10 GS 61 075 3D = 93 135 50] 125 175 70 }

30 036 IE RS 62 076 3E > 94 136 5E A 126 176 7E -
31 307 IF US 63 077 3F ? 95 137 SF 127 177 7F DEL

Page 231

PDQ-3 Programmer's Manual

Page 232

Appendices

APPENDIX ~ DIFFERENCES BETWEEN utSD VERSIONS

This section describes differences between versions II, III, IV and
AOS 1.0 of the UCSD Pascal system. Executable code files are not
transportable across versions; however, UCSD Pascal programs are
generally source compatible across versions (i.e. they may be
recompiled without changes to run on a different version). Source
incompatibilities result from changes in some of the UCSD Pascal
extensions; programs written in the UCSD variant of standard Pascal
are completely source compatible across versions.

Concurrency

Concurrency is not included in version II UCSD Pascal; it exists
only in versions III and IV. Concurrency in versions III and IV is
identical. Time delays are unique to the versions 111.1 and the
AOS on the PDQ-3.

The NOT operator in versions II and IV returns the full-word
logical negation of its operand. NOT in version III (releases B.O
and beyond) returns the Boolean negation of its operand (i.e. the
low order bit of the operand is negated, but the high order 15 bits
of the result are zeroed). The AOS default evaluation matches
versions II and IV. Boolean negation may be selected using the $J
compile option described in section 5.0.13.

LQng Integers

In version III, programs
system unit named LONGINT.
and the AOS.

Transcendental Functions

containing long integers must use the
This is unnecessary in versions II, IV

In some version II systems, programs calling the transcendental
functions must use the system unit named TRANSCEND. This is not
necessary in versions III, IV and the AOS.

Segments

Some versions of II allow a program to contain up to 8 segments.
Version IV allows up to 255 segments. The AOS allows up to 128
segments (not including intrinsic units).

Page 233

PDQ-3 Programmer's Manual

Units

Separate units are unique to version II. Data units (i.e. units
containing only an interface section of types and variables) are
allowed in versions II.l, III.l and the AOS. Version IV and AOS
units may contain segment procedures, files, and termination
sections. Versions IV, II.l, the AOS, and some releases of version
II allow intialization sections.

Treesearch

The ordering of trees built by TREESEARCH is implementation
dependent and varies across machines. TREESEARCHitself works
correctly on all systems; only manual tree traversals are affected
by this property.

Intrinsics

The intrinsics PMACHINE, ATTACH, SEMINIT, SIGNAL, START, and WAIT
are present in versions III, IV and the AOS. Version IV and the
AOS allow the memory management intrinsics MEMLOCK, MEMSWAP,
DISPOSE, VARNEW, VARDISPOSE, and VARAVAIL. Note that the file
intrinsics OPENOLD and OPENNEW are not present in version IV.
Version III and the AOS allow the memory management intrinsic
RMEMAVAIL. Versions IV, the AOS, and some versions of II.O allow
the Unit I/O UNITSTATUS intrinsic. The I/O redirection intrinsic
REDIRECT is provided only in version IV.

The value of the UNITBUSY boolean function in version III systems
distributed by western Digital differs with values returned on
other UCSD Pascal systems. The UNITBUSY function value should be
negated when transferring software between western Digital version
III systems and others.

lL.C Redirection

I/O redirection is provided in version IV and the AOS. The PIa,
PO=, P=, and L= options are supported in both versions. The PP=,
PLa, TO=, PTO-, TI=, and PTI= options are supported only by the
AOS. The 0= and 1= options are supported in version IV. The AOS
maps these to the Po= and PI options. The 0= and 1= options may be
simulated in the AOS by re-executing the system shell using the Po=
and PIa options.

Pointer Comparison

Extended pointer comparison exists in versions III, IV, and the
AOS.

'. Page 234

Appendices

Procedure ~

The restrictions on procedure size are greatly relaxed in version
IV. This can affect the transportability of programs developed on
version IV.

Page 235

PDQ-3 Programmer's Manual

Page 236

Appendices

APPENDIX ~ Ana LIBRARY UNITS

This section lists library units available for use by programs
running under the AOS. Some units are provided with the AOS;
others may be purchased separately. Each unit listing contains a
brief description of the unit and a list of its interface routines.
Complete documentation is available in the Library User's Manual.

PROGOPS

The PRbGOPS unit contains routines useful in the invocation and
termination of programs. It is provided in the standard AOS
release and resides in the intrinsics library.

The interface routines are:

Prog_Call
Prog_Setup
Prog_Execute
Prog_Start
Prog_Redir
Prog_Exception
Prog_IO_Set

COMl-lANPXQ

Setup and execute program
Prepare a program for execution
Execute program with I/O redirection
Execute program (no I/O redirection)
Indicate current I/O redirection
Cause execution error
Cause I/O error

The COMMANDIO unit-contains routines useful in CHAINing and I/O
redirection control. It is provided in the standard AOS release
and resides in the system library.

The interface routines

Chain
Exception
Suspend_T
Resume_T
Suspend_Redir
Resume_Redir

EXCEPINFO

are:

Chain another program
Flag exceptional condition
Suspend T-file processing
Resume T-file processing
Suspend I/O redirection
Resume I/O redirection

The EXCEPINFO unit contains routines useful in translating execu
tion and I/O errors numbers into a text form. It is provided in
the standard AOS release and resides in the system support library.

The interface routines are:

Ex_Stats
Ex_IO_Err_Name
Ex_Err_Name

Convert runtime info to listing info
Translate an I/O error into text
Translate an error into text

Page 237

PDQ-3 Programmer I s lvlanual

SPOOLER

The SPOOLER unit contains routines useful in initiating and
controlling a printer spooler. It is provided in the standard AOS
release and resides in the system library.

The interface routines are:

Spool_File
Spool_Status
Spool_Restart
Spool_Stop

SYSUTIL

Spool a file to a serial unit
Return the spooler status
Restart the spooler
Stop the spooler

The SYSUTIL unit contains miscellaneous routines useful in reading
the system serial number, performing time delays, and other
system-oriented functions. It is provided in the standard AOS
release and resides in the system library.

The interface routines are:

Ser_Num
Time_Delay

PATTERN HATCH

Get system serial number
Delay for a specified time

The PATTERN MATCH unit contains pattern matching routines capable of
matching multiple wildcards, character ranges, and literals. It is
provided as an optional system library unit.

The interface routine is:

P_Match Compare a wildcard and source string

DIRINFQ

The DIRINFO unit contains routines useful in the manipulation of
the file system. Directory list, name change, file deletion, and
date access routines are provided. DIRINFO uses the PATTERNMATCH
uni t for· added flexibility in file name specif ication. It is
provided as an optional system library unit.

The interface routines are:

D_Dir_List
D_Scan_Title
D_Change_Name
D_Change_Date
D_Rem_Files
D_Init
D_Lock
D_Release

Build a list of directory entries
Parse a file name
Change a file name
Change date on a set of file entries
Remove a set of files
Initialize DIRINFO
Lock file system
Release file system

Page 238

Appendices

SCCNTRL

The SCCNTRL unit contains screen control routines capable of
operating in a multi-terminal, multi-processing environment. Text
port and prompt line support are also provided. It is provided as
an optional system library unit.

The interface routines are:

SC_Init
SC_New_Port
SC_Out_Lock
SC_Out_Release
SC_In_Lock
SC_In_Release
SC_Scrn_Has
SC_Left
SC_Right
SC_Up
SC_Down
SC_Home
SC_Goto_XY
SC_Clr_Line
SC_Erase_To_Eol
SC_Clr_Screen
SC_Eras_Eos
SC_Has_Key
SC_Map_Crt_Command
SC_Prompt

NPtlCQN

Initialize a text port
Declare a new text port
Lock a text port output channel
Release a text port output channel
Lock a text port input channel
Release a text port input channel
Query screen capabilities
Move the cursor left
Move the cursor right
Move the cursor up
Move the cursor down
Move the cursor home
Move the cursor
Clear a line
Erase to the end of a line
Clear a screen
Erase to the end of a screen
Query keyboard capabilities
Read a key from a keyboard
Display a prompt

The NUMCON unit contains routines useful in integer manipulations,
including unsigned comparisons, min, max, and conversions of
integers to strings and vice versa. It is provided as an optional
system library unit.

The interface routines are:

N_Str_To_Int
N_Int_To_Str
N_Uns_To_Str
N_Min
N_Max
N_Leq_U
N_Geq_U
N_Min_U
N_Max_U

Convert a string to an integer
Convert an integer to a string
Convert an unsigned int to a string
Return the smaller of two integers
Return the larger of two integers
Unsigned <= comparison
Unsigned)= comparison
Unsigned Min
Unsigned Max

Page 239

PDQ-3 Programmer's Manual

REAL CON

The REALCON unit contains routines useful in real manipulations,
including conversions of reals to strings and visa~versa. It is
provided as an optional system library unit.

The interface routines are:

R_Str_To_Real
R_Real_To_Str
R_Min
R_Max

FILEINFQ

Convert a string to a real
Convert a real to a string
Return the smaller of two reals
Return the larger of two reals

The FILEINFO unit contains routines providing information on file
variables. It is provided as an optional system library unit.

The interface routines are:

F_Length
F_Unit
tF_Volume
F_File_Title
F_Start
F_Is_Blocked
F_Date

SYSINFQ

Get length of a file
Get unit number containing a file
Get volume containing a file
Get title of a file
Get starting block of a file
Get type of unit containing a file
Get last access date of a file

The SYSINFO unit contains routines providing access to the system
workfile, date, and file prefix variables. It is provided as an
optional system library unit.

The interface routines are:

SI_Code_Vid
SI_Code_Tid
SI_Text_Vid
SI_Text_'l'id
SI_Sys_Unit
SI_Get_Sys_Vol
·SI_Get_Pref_Vol
SI_Set_Pref_Vol
SI_Get_Date
SI_Set_Date

Get name of vol holding workfile code
Get name of file holding workfile code
Get name of vol holding workfile text
Get name of file holding workfile text
Get number of boatload unit
Get system volume name
Get prefix volume name
Set prefix volume name
Get current system date
Set current system date

Page 240

PDQ-3 Programmer's Manual

<null> •
ALL.DRIVERS •••••••••••••••••••••••••••
AND •
Architecture Guide •••••••••••••••••••• · ~ ARCTAN
ATAN
ATTACH

•
•

Backus-Naur Form ••••••••••••••••••••••
Binary Semaphore ••••••••••••••••••••••

• Block
Block File
BLOCKREAD
BLOCKWRITE

•
•

•
BNF •
Boolean Ne9ation ••••••••••••••••••••••
Breakpoint Processor ••••••••••••••••••
CASE Statement ••••••••••••••••••••••••

• CHAIN
CHR
CLOSE

•
•

Code Se9ment ••••••••••••••••••••••••••
CO~DmNDIO Unit ••••••••••••••••••••••••
Compile Flags •••••••••••••••••••••••••
Compile option ••••••••••••••••••••••••
Compiled ~.-:_..:,tings •••••••••• ~ ~ •••••••••

• Compiler
CONCAT •
Concurrency •••••••••••••••••••••••••••
Conditional Compilation •••••••••••••••
Cooperatin9 Processes •••••••••••••••••
COpy ••••••••••••••••••••••••••••••••••
Copyright •
Counting Semaphore ••••••••••••••••••••
Critical Section ••••••••••••••••••••••
CRUNCH •
Current Task ••••••••••••••••••••••••••

• Data Unit
DELETE •
Device Drivers ••••••••••••••••••••••••
DIRINFO Unit ••••••••••••••••••••••••••
DISPOSE •
Drive.Con •••••••••••••••••••••••••••••
Drivers Library •••••••••••••••••••••••
EOF •

• EOLN
EXCEPINFO
Exception
Exception
EXCEPTION
Execution
EXIT

Unit ••••••••••••••••••••••••
Handler •••••••••••••••••••••
Handling ••••••••••••••••••••
Unit ••••••••••••••••••••••••
Error •••••••••••••••••••••••

•
External File •••••••••••••••••••••••••
File System •••••••••••••••••••••••••••
FILEID •
FILEINFO Unit •••••••••••••••••••••••••

Page 241

207
156
174
1
74
74,82
23,83,186
3
20,21
175
13,37
37,41,84
37,41,85
3
147
159
6
237
7,174
9,37,38,86,110,111
25,33,36
198,237
140
133
136
227
45,87
14
140
22
45,88
143
20
21,187
38,86
14
32
45,89
155
194,196',238
16,50
209
28,146,155,159
8,40,41,43,114
40
158,237
142
158
158
154,158,203
6,74,90
110,111
74
81
240

Index

FILLCHAR ••••••••••••••••••••••••••••••
FORWARD •••••••••••••••••••••••••••••••
Fraction Length •••••••••••••••••••••••
GET •••••••••••••••••••••••••••.••••••••
GOTO •
GOTOXY ••••••••••••••••••••••••••••••••
HALT ••••••••••••••••••••••••••••••••••
HALTUNIT Unit •••••••••••••••••••••••••
HandleException Procedure •••••••••••••
Hardware User's Manual ••••••••••••••••
HDT.DRVR.CODE •
Heap ••••••••••••••••••••••••••••••••••
HEAPOPS •
I/O Check •••••••••••••••••••••••••••••
I/O Redirection •••••••••••••••••••••••
I/O Result ••••••••••••••••••••••••••••
IDSEARCH ••••••••••••••••••••••••••••••
IMPLEMENTATION ••••••••••••••••••••••••
Implementation Section ••••••••••••••••
Include File ••••••••••••••••••••••••••
Include Files •••••••••••••••••••••••••
Initialization Section ••••••••••••••••
INPUT •••••••••••••••••••••••••••••••••
INSERT ••••••••••••••••••••••••••••••••
INTERACTIVE •••••••••••••••••••••••••••
INTERFACE •••••••••••••••••••••••••••••
Interface Section •••••••••••••••••••••
Interrupt Handling ••••••••••••••••••••
Intrinsic •••••••••••••••••••••••••••••
Intrinsic Unit ••••••••••••••••••••••••
Intrinsics Library ••••••••••••••••••••

•
•
File •••••••••••••••••••••••••

IORESULT
KEYBOARD
Keyboard
LENGTH •
Libmap ••••••••••••••••••••••••••••••••
Library •••••••••••••••••••••••••••••••
Library User's Manual •••••••••••••••••
LOCK ••••••••••••••••••••••••••••••••••
Long Integer ••••••••••••••••••••••••••
LONGINTS •
Main Task •••••••••••••••••••••••••••••
ft1.ARK ••••••••••••••••••••••••••••••••••
lwlEMAVAIL
MEMLOCK

•
•

Memory Management •
MEMSWAP •••••••••••••••••••••••••••••••
Meta-words ••••••••••••••••••••••••••••
MOVELEFT ••••••••••••••••••••••••••••••
MOVERIGHT •••••••••••••••••••••••••••••
Multiterminal Applications ••••••••••••
Mutual Exclusion ••••••••••••••••••••••
Name Compatibility ••••••••••••••••••••
NEW •••••••••••••••••••••••••••••••••••
NIL •

Page 242

59,91,117
7
9
43,114
6,74
72,92,178
77,93
159
158
1
159
16,17,27,49,77,142,175
51,143
141
154,196,198,234,237
201
78,94
30
30
70
138
30
8,9,41,198
45,95
37,39
30
30
14,23,156
13,81
152,156,159
28,36,51,54,143,145,146,152,153,
156,237
62,64,75,96,178
37,41
179
45,97
145
36,143,145,~46,152
1
38,86
53
54
15,18
16,17,49,98,109
77,99,173,175
27,51,100,101,109

·25,33
27,51,100,101
3
59,102,117
59,103,117
187
20,21
11
49,98,164
6

PDQ-3 Programmer's Manual

•
•

Noload
NORMAL
NOT •
NUMCON Unit •••••••••••••••••••••••••••

• ODD
OPENNEW
OPEN OLD

•
•

OR •
• ORO

OUTPUT
PACK
PACKED

•
•

•
Packed Artay ••••••••••••••••••••••••••
Packed Record •••••••••••••••••••••••••
Packing Rules •••••••••••••••••••••••••
PATTERNMATCH Unit •••••••••••••••••••••
PMACHINE •

• POS
Printer
Priority

•
•

Private Semaphore •••••••••••••••••••••
Process •••••••••••••••••••••••••••••••
PROCESSID •
PROGCALL Function •••••••••••••••••••••
PROGEXECUTE Function ••••••••••••••••••
PROGOPS Unit ••••••••••••••••••••••••••
Program Segmentation ••••••••••••••••••
PROGREDIR Function ••••••••••••••••••••
PROGSETUP Function ••••••••••••••••••••
PROGSTART Function ••••••••••••••••••••
Pseudo-comment ••••••••••••••••••••••••

• PURGE
PUT
PWROFTEN
Quiet

•
•

•
Range Checks ••••••••••••••••••••••••••

• READ
READLN •
Ready Queue •••••••••••••••••••••••••••
Ready-To-Run Task •••••••••••••••••••••
REALCON Unit ••••••••••••••••••••••••••
REDIRECT ••••••••••••••••••••••••••••••
RELEASE •
Reserved Word •••••••••••••••••••••••••

• RESET
Resident •
RESUMEREDIR Procedure •••••••••••••••••
RESUMET Procedure •••••••••••••••••••••

• REWRITE
RMEMAVAIL •
SCAN •
SCCNTRL Unit ••••••••••••••••••••••••••

• SEEK
Segment
Semaphore
SEMINIT

•
• · .

Page 243

144
38,86
147,174,233
178,194,239
7,174
38,104,234
38,105,234
174
71,174
9,198
9
57
162
163
165
194,238
13,67,106,172,185
45,107
193
15,18
22
15,16,74
17
196
196
154,158,196,198,237
25
198
196
196
133
38,86
8,43,114
73,108
144
141
8,39,45,54
8,39,45
14,18,20
14
178,240
234
16,17,49,98,109
13,219
8,9,37,38,39,43,86,105,110,180
144
198
198
8,9,37,38,104,111,180
77,112,173
13,61,113
178,239
37,42,114
17,25
14,20
20,115

Index

Separate Compilation ••••••••••••••••••
Setup •••••••••••••••••••••••••••••••••
Shell
SIGNAL
SIZEOF

•
•
•

SPOOLER Unit ••••••••••••••••••••••••••
SPOOLUNIT Unit ••••••••••••••••••••••••
Stack Overflow ••••••••••••••••••••••••
Stack Size ••••••••••••••••••••••••••••
Stack Space •••••••••••••••••••••••••••
Standard Input ••••••••••••••••••••••••
Standard Output •••••••••••••••••••••••
STANIN: •
STANOUT: •
START •••••••••••••••••••••••••••••••••
STR •••••••••••••••••••••••••••••••••••
STRING •
String Option •••••••••••••••••••••••••
Structure Compatibility •••••••••••••••
Subsidiary Task •••••••••••••••••••••••
Suspended Task ••••••••••••••••••••••••
SUSPENOREDIR Procedure ••••••••••••••••
SUSPENOT Procedure ••••••••••••••••••••
Swapping ••••••••••••••••••••••••••••••
Switch Option •••••••••••••••••••••••••
Synchronization •••••••••••••••••••••••
Syntax Error •••••• e •••••••••••••••••••

SYSDRIVER •••••••••••••••••••••••••••••
SYSDRIVER Unit ••••••••••••••••••••••••
SYSINFO Unit ••••••••••••••••••••••••••
System Library ••••••••••••••••••••••••
System Monitor ••••••••••••••••••••••••
System Serial Number ••••••••••••••••••
System Shell ••••••••••••••••••••••••••
System Support Library ••••••••••••••••
System User's Manual ••••••••••••••••••
SYSTEM. DRIVERS •
SYSTEM.DRVINFO ••••••••••••••••••••••••
SYSTEM.SHELL ••••••••••••••••••••••••••
SYSUTIL Unit ••••••••••••••••••••••••••
T-Files •••••••••••••••••••••••••••••••
Task ••••••••••••••••••••••••••••••••••
Task Identifier •••••••••••••••••••••••
Task Priority •••••••••••••••••••••••••
Task Scheduling Policy ••••••••••••••••
Task S~ack ••••••••••••••••••••••••••••
Task Switch •••••••••••••••••••••••••••
Task Synchronization ••••••••••••••••••
Termination Section •••••••••••••••••••
TIME •
Time Delays •••••••••••••••••••••••••••
Time Slicing ••••••••••••••••••••••••••
TREESEARCH ••••••••••••••••••••••••••••
TRUNC •••••••••••••••••••••••••••••••••
UCSD Pascal •
UNIT ••••••••••••••••••••••••••••••••••

Page 244

30
208
154,196
20,115,116,186
59,91,117,162
238
194
17,28,49
15
17
8,37,77,198
8,37,198
198
198
15,118
54,119
44,57
133
11
15
14
198
198
139
133
22
227
159
156
240
36,237,238,239,240
159
238
234
28,51,54,143,158,159,237
1
155
155
154
238
198
14
15,17,118
118
18'
118
14,18
14,20
30
73,120,173
238
14,24
78,121,234
53,54
1
30,74,192

PDQ-3 Programmer's l-lanua1

Unit I/O
UNITBUSY
UNITCLEAR
UNITREAD

•
•

•
•

UNITSTATUS ••••••••••••••••••••••••••••
UNITWAIT
UNITWRITE

•
•

• UNIV
UNPACK •
Unsigned Integer ••••••••••••••••••••••
User Library ••••••••••••••••••••••••••
User Manual and Report ••••••••••••••••

• USES
VARAVAIL •
VARDISPOSE ••••••••••••••••••••••••••••
VARNEW ••••••••••••••••••••••••••••••••
Version Control •••••••••••••••••••••••
WAIT •
Wait Queue ••••••••••••••••••••••••••••

• WRITE
WRITELN •

Page 245

155
63,122,207
63,123,178,205,207
62,124,207
64,125,207,209,210
63,126,207
62,127,207
81
9
50,172
36,192
1,16,31
30,33
51,77,128
50,129
50,130,173
145
20,115,131,186
14,20
9,54
9,191

ADDENDA FOR THE PROGRAMMER'S MANUAL

~ection 8.0.0 (page 15)

As stated, the system prevents a proqram from terminating until
all of its tasKs have terminated. This is implemented by recording
the number of tasKs active in the system before the program
executes. The program is prevented From terminating until the
number of active tasKs matches the original count. Unfortunately,
if a program starts a tasK then calls another program, which also
starts a tasK. The cal led program is erroneously al lowed to
terminate iF the calling program's tasK terminates, but the called
program's tasK does not.

Appendix D (page 217)

When the UnitStatus intrinsic is called For the STANIN: device
(unit 22) it returns the CharsQueued and QueueSize Fields
appr~priate for the device currently supplying the input stream.
If this device is a disK file or a literal string, both fields
are returned zero.

Appendix K (page 238)

The SPOOLER unit is actually called SPOOLUNIT.

	00001
	00002
	00003
	0001
	0002
	0003
	0004
	0005
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210
	211
	212
	213
	214
	215
	216
	217
	218
	219
	220
	221
	222
	223
	224
	225
	226
	227
	228
	229
	230
	231
	232
	233
	234
	235
	236
	237
	238
	239
	240
	241
	242
	243
	244
	245
	errata

