THE ELECTRONIC ENGINEER

DVM specification charts p. 69
Data tablets smooth man-machine interface p. 50
Tune in with N-path filters p. 62
Nomographs aid phased array design p. 57
The Performance Champ—world’s fastest general-purpose real-time scope!

The HP 183A Oscilloscope system adds one more way that you see more—do more with the field-proven 180 scope system.

Now you can measure from dc to 250 MHz—real time! Now you have a vhf scope that also gives you a bright dual-trace with a fast-writing speed of 4 cm/nsec on a big 6 x 10 cm screen. Plus, a sensitivity of 10 mV/div for low-level signal measurements—sweep speeds of up to 1 nsec/div for easier viewing of high frequency signals—and complete compatibility with the entire 180 series of plug-ins.

Sound expensive? Well, the 183A mainframe with a 250 MHz dual-channel vertical amplifier and a > 250 MHz time base costs only $3150. That’s less than some systems that don’t even approach this kind of high frequency performance.

The basic 183A mainframe uses the all-new step-ahead technique of a CRT transmission deflection system to provide real-time bandwidth beyond 500 MHz. And since it contains only the CRT and power supplies, future, improved plug-ins will give you full performance in the mainframe you buy now. You won’t have to worry about built-in mainframe limitations—now or in the future.

If you’re interested in maximum scope performance per dollar invested, then the HP 180 system is the answer. From 50 MHz, to 100 MHz, to sampling, to variable persistence and storage scopes, the 180 system has the right combination to meet your requirements. You get more for your dollar today. You get more for your dollar in the future. You get the best performing, most versatile high-frequency scope system available today!

For more information, call your local HP field engineer. Or, write to Hewlett-Packard, Palo Alto, California 94304. Europe: 1217 Meyrin-Geneva, Switzerland.

HEWLETT PACKARD
OSCILLOSCOPE SYSTEMS

Circle 1 on Inquiry Card
...want a tantalum capacitor with proven performance?

Buy TYPE 150D TANTALEX® SOLID-ELECTROLYTE CAPACITORS

Hermetically-sealed in metal cases. Four case sizes, ranging from ¼" to ¾" length. Value-packed performance characteristics — low impedances at high frequencies, low dissipation factor, minimal capacitance drift with temperature, practically no change in capacitance with life. Low leakage current limits. Investigate new higher capacitance ratings.

...looking for a specific self-mounting lytic?

Choose from TWIST-LOK® or WRAP-LOK CAPACITORS

Two styles for use in entertainment electronics and other commercial equipment with similar environmental conditions. The widely-used Twist-Lok has integral mounting ears which are twisted after fitting through slots in chassis or mounting plate. The Wrap-Lok has sharp-cornered terminals for wire-wrap type connections. Both styles have unique sandwich-type end seal and dependable venting system. All connections between terminals and capacitor sections are welded to assure freedom from intermittents or open circuits. Available with bare case, Kraftboard tube, or plastic sleeve.

THE BROAD-LINE PRODUCER OF ELECTRONIC PARTS

The Electronic Engineer • Nov. 1969
Imagine bussing an entire circuit with one push and you know what Wrapid Transit is all about. A simple sandwich of conductive material and insulation that presses into place for a clean, positive connection on wire wrap back panels.

Use any number of layers you need. The only limitation is the length of the wire wrap terminals. And, if you use enough layers, Wrapid Transit's rigidity serves as a structural member of the back plane.

Add to this our new Outside World™ connectors which provide a simple transition from stranded power wire to your solid circuit wire. It's also a unique plug/receptacle system that can be keyed into as many as 56 coded positions.

Want more? Then just call on the Viking Packaging Technology Group. They'll work out a perfect packaging system for your incredible designs. And provide you with complete service—start to finish. Call or write:

Circle 6 on Inquiry Card

The Electronic Engineer • Nov. 1969
At the outset of technical editing

Don't fight your technical editor. Work together with him from the beginning and you will produce a paper well-written and technically clear.

By Eldred E. Atkins

Graphic data tablets

A new breed of graphic input devices smooth the man-machine interface.

By Bob Patton

Nomographs simplify phased array design

Here are the three nomographs that can help you design phased antenna arrays with individual solid state frequency power generators.

By Chester W. Young

Tune in with a new N-path filter

By turning lowpass networks into bandpass filters the N-path principle finds itself in the middle of a new a-m/fm receiver.

By Erik Langer

DVM specs compared

Take a quick look, they change rapidly.

By Stephen A. Thompson

IC Ideas

- External timing signals sync this crystal clock. M. A. Rawlings & A. L. Hall
- Current source has voltage controlled output. L. J. Rennie
- One video amplifier: three oscillators. M. English

Correlation data in real-time

These units bring statistical measurements to your lab bench.

COVER

How are DVMs priced? What makes one more expensive than another with the same number of digits? Why does the addition of digits cause such big jumps in the price? You can find the answers to these questions along with a good comparison of different units on the market in Steve Thompson's article, "DVM specs compared." This article starts on page 69. Also, take a look at the Editorial on page 9 for some answers.
Compact, 20 pin units—used separately—or mounted in varying modules to provide plug-in convenience.

40 pin units—like the 20—have silver or gold contacts, lug or tapered terminals. Ideal for cable-to-fixture applications.

Handy drawer type handle permits instant plug-in and disconnect for rapid change of pre-programmed components or systems.

The type D connector features a handy locking bolt for securing the plug to the receptacle.

Silver contact resistance 14 Milliohm, Gold 9 Milliohm, 50 gram individual contact retention. 2000 volt breakdown.

Specify North’s 300 pin program plug for the interconnection of pre-wired logic and programs or systems.

Rugged — reliable — economical multi-purpose, multi-contact connectors available in 480 pin units and up. The extruded housing offers complete modular versatility.

for the unique torsion blade connectors that assure positive contact. Perfect for rack and fixture cabling.

The Electronic Engineer
Vol. 28 No. 11 November 1969

K. Robert Brink, Publisher
Alberto Socolovsky, Editor
John E. Hickey, Jr., Managing Editor
Smedley B. Ruth, Associate Editor
Sheldon Edelman, Associate Editor
Stephen A. Thompson, Western Editor
Robert Patton, Eastern Editor
Arthur J. Boyle, Technical Editor
John McNichol, Assistant Editor
Dr. O. M. Salati, Consultant
Anne Axe, Editorial Assistant
Alice C. Bach, Editorial Assistant
Lynda Rothstein, Editorial Assistant
Mae Moyer, Editorial Reader Service
Andrew Mittelbrunn, Chilton Art Director
Phae Featherston, Artist
George Baker, Washington News Bureau

Chilton

Executive and Editorial Offices:
One Decker Square, Bala Cynwyd, Pa. 19004
Tel. (215) SH 8-2000

Address Mail to: 56th & Chestnut Sts.
Philadelphia, Pa. 19139

Western Office: Stephen A. Thompson
1543 W. Olympic Blvd.
Los Angeles, Calif. 90015
Tel. (213) DU 7-1271

New York Office: Robert Patton
100 E. 42nd St., New York, N.Y. 10017
Tel. (212) OX 7-3400

Chilton Officers & Directors: Chairman of the Board: G. C. Buzby; President: R. E. McKenna; Financial Vice-President: S. Appleby; Senior Vice-Presidents: J. Kofron, L. King; Vice-Presidents: H. Barclay; Publishing Vice-Presidents: C. W. Hevner, W. A. Barbour, R. H. Groves, K. Robert Brink; Treasurer: James Miades; Secretary: J. A. Montgomery, Jr.; Other Directors: T. J. Casper, S. H. Collmann, R. Rimbach, Jr.; Asst. Secretary: I. C. Holloway.

The Electronic Engineer • Nov. 1969

4

Circle 7 on Inquiry Card
IF YOU HAD TO FLIP SWITCHES 7,843 TIMES A DAY, YOU' D ASK FOR THE MINILEVER.

Here's the compact switch that's built for switchers. With positive, clear-sounding click-ity-clicks that sweep over a 90-degree arc. So the right setting is easy to hit every time. And just as easy to see. Because the .200 inch high display characters—in up to 12 positions—really pop out at you. A simple sweep of the hand re-sets everything back to zero, too.

So next time your design calls for switches, think of the switchers' switch: The MINILEVER.® It's beautifully designed to be nice to operators and improve their efficiency where ever frequent, rapid switch-settings are a must. Besides, lots of switchers are girls, and they'll love you for it.

THE DIGITRAN COMPANY
A Division of Becton, Dickinson and Co. [B-D]
855 South Arroyo Pkwy., Pasadena, Calif. 91105
Telephone: (213) 449-3110 • TWX: 910-588-3794

There's still time to win a Bug for Christmas. Write for your entry blank and rules.
We’ll go to any length to get into your memory

National’s capable of going a long way (or short) to get the right MOS shift registers into your memory. The applications are unlimited.

For starters, you get a variety of bit lengths from our standard line, available immediately. Your National distributor’s got them on the shelf and waiting.

If you can’t find the register length your application requires, give us a call. We’ll program your register length into our standard process. We’ve been making MOS so long, our memory’s capable of anything.
How's that register?

<table>
<thead>
<tr>
<th>DYNAMIC</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Dual-25</td>
<td>MM400</td>
<td>-55°C to +125°C</td>
</tr>
<tr>
<td></td>
<td>MM401</td>
<td>-55°C to +125°C, (Internal 20K pull-up resistor)</td>
</tr>
<tr>
<td></td>
<td>MM500</td>
<td>-25°C to +70°C</td>
</tr>
<tr>
<td></td>
<td>MM501</td>
<td>-25°C to +70°C, (Internal 20K pull-up resistor)</td>
</tr>
<tr>
<td>Dual-50</td>
<td>MM402</td>
<td>-55°C to +125°C</td>
</tr>
<tr>
<td></td>
<td>MM403</td>
<td>-55°C to +125°C, (Internal 20K pull-up resistor)</td>
</tr>
<tr>
<td></td>
<td>MM502</td>
<td>-25°C to +70°C</td>
</tr>
<tr>
<td></td>
<td>MM503</td>
<td>-25°C to +70°C, (Internal 20K pull-up resistor)</td>
</tr>
<tr>
<td>Dual-100</td>
<td>MM406</td>
<td>-55°C to +125°C</td>
</tr>
<tr>
<td></td>
<td>MM407</td>
<td>-55°C to +125°C, (Internal 20K pull-up resistor)</td>
</tr>
<tr>
<td></td>
<td>MM506</td>
<td>-25°C to +70°C</td>
</tr>
<tr>
<td></td>
<td>MM507</td>
<td>-25°C to +70°C, (Internal 20K pull-up resistor)</td>
</tr>
<tr>
<td>Dual-64</td>
<td>MM410</td>
<td>-55°C to +125°C</td>
</tr>
<tr>
<td>Accumulator</td>
<td>MM510</td>
<td>-25°C to +70°C</td>
</tr>
<tr>
<td>Triple-60+4</td>
<td>MM415</td>
<td>-55°C to +125°C</td>
</tr>
<tr>
<td>Accumulator</td>
<td>MM515</td>
<td>-25°C to +70°C</td>
</tr>
<tr>
<td>STATIC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dual-16</td>
<td>MM404</td>
<td>-55°C to +125°C</td>
</tr>
<tr>
<td></td>
<td>MM504</td>
<td>-25°C to +70°C</td>
</tr>
<tr>
<td>Dual-32</td>
<td>MM405</td>
<td>-55°C to +125°C</td>
</tr>
<tr>
<td></td>
<td>MM505</td>
<td>-25°C to +70°C</td>
</tr>
<tr>
<td>8-bit</td>
<td>MM408</td>
<td>-55°C to +125°C</td>
</tr>
<tr>
<td>Serial to Parallel</td>
<td>MM508</td>
<td>-25°C to +70°C</td>
</tr>
<tr>
<td>8-bit</td>
<td>MM409</td>
<td>-55°C to +125°C</td>
</tr>
<tr>
<td>Parallel to Serial</td>
<td>MM509</td>
<td>-25°C to +70°C</td>
</tr>
<tr>
<td>Dual-32</td>
<td>MM419</td>
<td>-55°C to +125°C</td>
</tr>
<tr>
<td>Split clock</td>
<td>MM519</td>
<td>-25°C to +70°C</td>
</tr>
</tbody>
</table>

Write or call National Semiconductor, 2975 San Ysidro Way, Santa Clara, California 95051. (408) 245-4320. TWX: 910-339-9240 Cables: NATSEMICON National/MOS
Gyro-tuning

A new, wideband, high speed tuning technique for coaxial magnetrons.

Gyro-tuning employs a ring gear which drives a set of rotating dielectric paddles within the magnetron coaxial cavity. A high speed synchronous motor drives the entire mechanism, which is external to the tube vacuum envelope. This arrangement provides a high degree of frequency tuning and reliability for coaxial magnetrons used in airborne search, navigation, terrain following and missile seeker radar applications. The complete tuner assembly is compact and adds only ½ pound to the basic magnetron weight.

Gyro-tuning presently achieves tuning rates of 400 Hz at frequency excursions of 250 MHz at Ku-band. It features low tuning drive power and a simple, directly driven, high voltage electrical generator readout technique to reduce local oscillator tracking problems.

Gyro-tuning is reliable. The rotary tuner mechanism provides long operating life and meets relatively stringent shock and vibration specifications. Operation outside the vacuum enhances tube life.

Gyro-tuned magnetrons are now being delivered at the 35 kilowatt level at Ku-band and 70 kilowatt level at X-band. Tubes are in development at other power levels.

For information on Gyro-tuning and other rapid tuning techniques now available or under development, contact: Electron Tube Division, 960 Industrial Road, San Carlos, California 94070. Telephone: (415) 591-8411.
EDITORIAL

Do you really want a-m/fm, ww, ps, pb and a/c when you buy a DVM?

As scientific as a digital voltmeter looks, the art of selecting one is completely empirical. Theoretically, the price and specs should correlate, which they do—but only to a point. And at that point the choice becomes all the more difficult.

Of course, dollars buy digits, but only to a very rough approximation. For example, 3-digit DVMs start at about $240, 4-digit DVMs at $420, and 5-digit DVMs don't start before the Purchase Requisition states $1250.

Unquestionably, among the maze of types, options, characteristics and prices, a DVM can be found to fulfill your special needs. The problem is to locate that unique DVM. To simplify this task, Steve Thompson (our Western Editor) has compiled a set of tables for 3-, 4-, 5- and 6-digit DVMs that will help you in the search. (You can find these on pages 69 to 73 of this issue.)

For example, if you are satisfied with 0.01% accuracy (± 1 digit) and a temperature coefficient of 0.001%/°C, your best bet is a 4-digit DVM. No matter how much you pay for the 4-digit DVM, whether $500 or $2500, the chances are that the specs we just mentioned will stay pretty much the same.

What, then, does that $2000 buy—since it won't buy better accuracy? Well, just as you decide to add tinted glass, air conditioning and a vinyl top to the base price of the car, here, also, the name of the game is options. That $2000 will buy options such as ac voltage measurements, ohms, ratio, current measurements, autoranging, programmability, special outputs for recorders, guarding, and, one of the most expensive options of all, battery operation.

That's where the problem begins. Today, when you shop for a DVM, you no longer compare just the performance of the basic DVM, but of the options. In other words, after a certain point you are no longer paying for primary specifications, such as the number of digits and accuracy, but for secondary specifications, such as measuring speed, common-mode rejection, overrange capability, and the rest. Most of these items are of secondary importance when the instrument is read by a human being, but these same specifications assume great importance when the DVM forms part of a system.

That's what the manufacturers have in mind when they ask you to "know your application" before you specify a DVM. Still, you should put the onus on the manufacturer to prove that all the specifications and features of the DVM he's trying to sell you for an extra $1000 are indeed useful for your application. If he cannot pass this test, look at Steve Thompson's tables and see who can.

Alberto Socolovsky
Editor

Minding our own business

Even though technical magazines such as this one normally stick to technical subjects (such as the one above), and mind their own business, I am taking this space to encourage you to express your opinion on the Vietnam problem.

Perhaps you did it during the "day of moratorium," last October 15. Or, perhaps you didn't, even though you have an opinion, because you resented being compelled to express it. Whether you raised the flag, or you lowered it to half staff, whether you meditated or participated, the country needs your intelligent opinion. Vietnam is very much our business. Or else, the intelligent signals will be hopelessly drowned in the din of unintelligent noise.

If you want to express a constructive opinion, use the democratic process. Write to your Congressman, and/or write to us at EE's on Vietnam.
Low-cost optical document reader

The Univac 2703, reads numbers, symbols, and marks on "turn-around" (return stub) documents which are used in such applications as utility bills, insurance premium notices, and retail customer billing. Its functions as an on-line input device to a Univac 9000 computer which controls its operation, and processes and stores the data derived from documents.

The unit's basic speed is 300 six-inch OCR (optical character recognition) documents per minute. The speed can be increased to 600 OCR documents per minute by an optional speed-up feature. Character reading speed is 1,500 characters per second.

How it works

Documents enter the unit through an input hopper which holds about 2,000 items. On command from the central processor, the documents are aligned by canted revolving brushes and accelerated to a velocity of 150 ips.

As the documents pass a high-resolution solid state photonic scanning system, the printed OCR characters are converted into electrical pulses. These pulses enter the recognition logic section which determines what the character is and translates it into the appropriate digital code for transmission to the central processor. Reader recognizes zero to nine plus special marks, hand-printed vertical marks, and holes in punched cards. Documents are then routed to any of three carousel-type stackers through stacker vanes.

The optical document reader can read numbers, symbols, and marks at speeds of up to 600 documents per minute.

Metric system advisory panel formed

A newly formed Metric System Study Panel will serve as an advisory group to the Secretary of Commerce, the Director of the National Bureau of Standards, and the Metric System Study Group to receive and review periodic reports on the use of the Metric System.

The panel will review reports on the planning, conduct and progress of the study from the study group and advise the Secretary, Director, and the Study Group of their views and recommendations concerning the study. Likewise the final report to be submitted to Congress will be similarly reviewed by the panel for the endorsement or comment.

The Advisory panel will provide advice and information on the Study Group necessary for carrying out the various directives of the Act. The panel consists initially of 43 members representing a wide cross-section of industry and society ranging from agriculture to machinery, retail trade to construction, and consumers, to petroleum refining. Additional members may be added at the discretion of the secretary. (It certainly looks like they are serious about having us move to the metric system.)
How our Variplate™ connecting system keeps your fifty-cent IC's from becoming four-dollar headaches.

IC's don't cost much. Until you use them. You can buy, say 20,000 IC's for the innards of a compact computer, packed in the transistor cans, flat packs, or Dual-in-Line (DIP) packages, for a unit cost of less than fifty cents.

Great.
But then you have to connect them.
Not so great.
Because those 20,000 IC's have anywhere from 200,000 to 280,000 leads waiting to be connected. Fine leads. Closely spaced. And, of course, you want to pack the IC's as densely as possible. So it's really no surprise that your in-place cost of an IC can climb to $4.00.

Fortunately, we have a system that can keep your in-place cost down: the Variplate interconnection system.

With the Variplate system, you can pack those IC's—and all the pc boards and other components you have—as densely as the application demands. You can do it on automated equipment—and we'll even do the wiring for you.

All the components you need.

The system begins with the base plate, a self-supporting structural member. It carries the insulated contact modules, accommodates secondary components and hardware, and provides for mounting to support framework.

The plate can be a single metal sheet that provides a ground plane, or it can be a sandwich that provides both volt-

age and ground planes for common bussing.

For the next layer in your electronic sandwich, we have all the header plates, card-edge receptacles and guides, and bushings you're likely to require. (For unlikely requirements, we'll come up with something new.)

And the connectors. Of course. Our own respected VariMate™, Varicon™, and Varilok™ connectors, or standard fork-and-blade, terminal stud, card-edge, or bus strip contacts. Your choice.

No holes barred.

We put all these components together in any size, any shape, and almost any density of package you require. Plates can be any size. Contacts can be spaced on .100", .125", .150", or .200" centers, in square or offset grids—on non-standard configurations where you need them.

What you get is a solid electrical and mechanical foundation for your electronic network, so precisely made that any automated assembly equipment can take over from there.

However.
You'll save time and money if you let us go one step further and wire your network for you. Our fully automatic Gardner-Denver machines prevent rat's nests, ease your check-out and debugging procedures. And, of course, if something is not quite right, you'll know exactly where to place the responsibility.

Altogether, it's quite a system. And worth all the work we've put into it. Because if we can save you just a nickel on the cost of installing each of your 20,000 IC's you can add a thousand dollars to your company's profits.

We're sure we can save you that nickel, and more. For more information, write, wire, call, or TWX us for our Variplate interconnecting systems catalog. Elco Corporation, Willow Grove, Pa. 19090. 215-659-7000; TWX 510-665-5573.

The plate can be a single metal sheet that provides a ground plane, or it can be a sandwich that provides both volt-
Ion implantation for microwave transistors

An ion-implantation technique for manufacturing high-efficiency transistors for microwave communications equipment is being used by Toshiba, Japan.

The process, called "IBT" (Ion-Implantation Base Transistor Technology), ionizes and accelerates boron and phosphorous atoms with voltages up to several hundred kilovolts and implants them into a single semiconductor crystal. (For more on ion implantation, see page 68 of our January, 1969 issue.)

To achieve high-performance, microwave transistors need extremely thin, low-resistance bases. Bases produced by conventional planar diffusion methods are generally more than 0.15 micron in thickness, have unusual diffusion effects, and have greater resistance than is desirable. Toshiba's process provides a thin base of 0.05 micron in thickness. The base resistance is many times less than that achieved by the diffusion method.

Experimental microwave transistors produced by the new system provide 9 GHz cut-off frequency, 9 dB power gain, and 4 dB noise figure in the 4 GHz band. Better results are expected in the near future.

Two high-efficiency transistors produced by ion implantation are shown in a microwave amplifier.

Survey of man-made electrical noise

The Institute for Telecommunications Sciences and Aeronomy (ITSA) and the General Electric Company conducted a survey aimed at improving the available data on the expected man-made noise levels in populated areas. This man-made noise is the chief determinant of the signal quality of urban voice-broadcasts at frequencies from hf to uhf.

In this survey, the output of a narrow-band receiver was fed to a group of level detector that recorded the number of times the noise exceeded certain levels. This data lets you compute the amplitude distortion of the noise. Because the narrow bandwidth of the receiver makes the noise pulse-width essentially constant, the average noise power can be calculated from the amplitude distortion.

The survey, conducted at several sites in the New York City-New Jersey metropolitan area, was aimed at augmenting and verifying existing data at hf and vhf and obtaining basic data at uhf.

The absence of intentionally generated signals about a particular frequency determined at which frequencies the tests would be run. These were about 20 MHz for hf, 109 MHz for vhf and 800 MHz for uhf. The tests measured both true and weighted rms values.

The survey consisted of three phases. The first was preliminary field measurements during which data collection techniques were established. The second phase was the formal data gathering tests and the third consisted of data compilation and reduction.

The results of the survey show that a wide range of noise levels can be expected in urban areas. The noise tends to increase as population increases, however the relationship is weak. Rather, the noise level appears to be more closely related to the proximity of main and secondary thoroughfares.

Documentation on the survey is available from: Clearinghouse for Federal Scientific and Technical Information, Springfield, Virginia 22151. The reference number is TSP-10308 and price is $3.00.

New aircraft electronics reports

The Radio Technical Commission for Aeronautics has approved the third and fourth of a series of reports for aircraft sharing the common airspace, and using the Nation's air traffic control system. One new RTCA document (DO-140) deals with Airborne Area Navigation Systems; the other (DO-141), with Airborne DME Systems. This series of RTCA documents is a fresh approach to the long-standing problem of developing minimum requirements for airborne systems.

Copies of the documents No. DO-140, minimum operational characteristics for Airborne Area Navigation Systems, and DO-141 on Airborne DME Systems, are available at $3.00 each from the RTCA Secretariat, 2000 K Street, N.W. Washington, D.C. 20006.
Why National Semiconductor buys Teradyne J259's by the dozen

National Semiconductor can trace its considerable success as an IC manufacturer to many factors. One of the most important is the productivity of its testing facility, built around a lineup of 12 Teradyne J259 computer-operated test systems. "The Teradyne systems," according to Jeff Kalb, National's TTL product manager, "give us the economy of testing that is so important to profitable high-volume production."

National, along with most other major IC producers, has found that the J259 boosts productivity in many ways. No other test system, for example, gives its user as much multiplexing freedom as does the J259, which lets National leverage its investment by making each J259 support several test stations doing several different jobs.

Reliability is another all-important key to productivity. National experiences minimal downtime with its J259's. This is as it should be; we design and build our equipment to work shift after shift, year after year, in industrial use. Teradyne systems are right at home on production lines like National's, where the workload is heavy and continuous. And operation never has to be interrupted for calibration; the J259 has no calibration adjustments.

The J259's great versatility is also put to good use at National. The same systems that test wafers and packages also generate the distribution and end-of-life data that engineers need to control production processes and ensure high device reliability. Production, engineering, QC, and final test—all share simultaneously in the benefits from National's J259's.

A computer-operated system is only as good as its software, which in the case of the J259 is the best there is. National's J259's are orchestrated by Teradyne-supplied master operating programs for datalogging, classification, and evaluation. As Teradyne updates and improves its software, National is kept fully informed.

National's array of J259's handle the testing of its digital IC's smoothly and economically. For its linear-IC testing, National has turned to Teradyne's J263 computer-operated linear-IC test system.

Teradyne's J259 makes sense to National Semiconductor. If you're in the business of testing circuits—integrated or otherwise—it makes sense to find out more about the J259. Just use reader service card or write to Teradyne, 183 Essex St., Boston, Mass.

Teradyne makes sense.

Circle 12 on Inquiry Card
Before we seal our TL toggle switches, we make sure they’re worth sealing.

Consider all the punishment the military-aerospace and commercial aviation industries give a toggle switch. Things like dirt, moisture and severe operating environments.

Well, MICRO SWITCH has a device that can take it all. Our TL.

Small wonder it’s in wide use.

Just take a look at the new contact configuration (1). Any trouble here and the entire switch is out of whack. So we improved our silver cadmium oxide contacts to provide better toggle action and more positive detent in center position. Then made them larger to improve mating capability.

A sealed switching chamber (2) protects the contacts from pressure variations, moisture and most other harmful or destructive contaminants.

Sounds simple, but to make it work takes a whole series of silicone elastomer seals (3). And a special high-impact, arc-resistant case (4) that’s able to withstand temperatures from -85°F to +160°F. Together, they meet the requirements of MIL-S-3950.

TL switches are available in 1, 2, or 4-pole circuits. In 2 and 3 position with momentary or maintained action and special “on-on-on” circuits. And with standard or “pull-to-unlock” levers (5).

It’s all in Catalog 52. Plus a lot more. You can get a copy from your MICRO SWITCH Branch Office or Distributor. (They’re in the Yellow Pages under “Switches, Electric.”) Or drop us a line and we’ll rush one to you.

In a sealed envelope, of course.
The BUSS HTA fuseholder measures only 1 25/32 inches in overall length and extends behind the face of the panel only one inch.

The holder features the popular bayonet type knob. A strong coil spring inside the knob assures good contact when the fuse is inserted into the holder. If a test hole in the knob is needed, a breakaway hole can be punched out to allow use of a test probe.

Rugged in construction to withstand vibration and shock, the HTA fuseholder can also be furnished with a special washer to make it drip-proof from the front of the panel. And the best feature of the HTA fuseholder is that it has famous built-in BUSS quality. You can’t get it anywhere else.

For more information on the HTA fuseholder, or anything else in the complete line of BUSS small dimension fuses, fuseblocks, and fuseholders, write for BUSS Bulletin SFB.

Bussmann Mfg. Division
McGraw-Edison Co.
University at Jefferson
St. Louis, Mo. 63107

The Electronic Engineer • Nov. 1969
are better than ever: The Beckman 6155 Counter/Timer is now automatic to 525 MHz.

Beckman brings you a brand new plug-in addition to its counter...the Model 606 Prescaler for automatic counting to 525 MHz. No knobs to turn; no dial numbers to add. Results are read directly on the 6155's display, with direct BCD output of the total count.

If you buy a "plug-in" counter because you need expandability, today or tomorrow, Beckman offers a complete line of plug-ins today—and continues to provide new expandables for tomorrow's needs.

For complete information, contact your local Beckman office, sales representative or the factory direct.

Specifications

Model 6155 Measurement Modes: Frequency: 100 MHz (to 12.4 GHz with optional plug-in). Period: To 100 ns (to 1 ns with optional plug-in). Multiple Period Averages: 1 to 10 in decade steps. Ratio: X/Y with X = 0 to 100 MHz and Y = 0 to greater than 1 MHz. Pulse Width & Separation: (To 1 ns or 10 ns with optional plug-in). Voltage & Current: (Optional plug-in). Voltage: ± 5 Vdc. Current: ± 50 mA. Scaling: By decades up to 10° Crystal Frequency: 1 MHz. Stability: Better than 3 parts in 10° per 24 hours. (5 parts in 10° per 24 hours optional). Output Frequencies: 0.1 Hz to 10 MHz in decade steps selected by front-panel TIME BASE selector. External Frequency: 1 MHz, 1 V rms into 1000 ohms required at rear-panel BNC connector. Display: 8 inline digits of glow-tube display, 9th digit optional. Signal (X input) Sensitivity: 100 mV rms. Digital Output: Fourline, 1-2-4-8 BCD output at rear panel. Output compatible with Beckman 1453 Digital Printer. Power: 115/230 Vac, 50 to 400 Hz, 80 W. Size: 5¼ in. high, 16⅞ in. wide, 19 in. deep. Weight: 30 lbs. Price: $2,450.

Model 606 Frequency Range: 1 MHz to 525 MHz. Sensitivity: 50 mV rms. 10 Volts rms (max.) or 50 Volts Peak. Impedance: 50 Ω. VSWR: ≤ 1.2. Price: $525.
The EE Forefront is a graphical representation of the practical state of the art. You will find here the most advanced components and instruments in their class, classified by the parameter in which they excel.

A word of caution
Keep in mind the tradeoffs, since any parameter can be improved at the expense of others. If there is no figure-of-merit available, we either include other significant parameters of the same products, or we provide additional bar graphs for the same products.

Do not use these charts to specify. Get complete specifications first, directly from the manufacturers.

INSTRUMENTS

Differential voltmeters (dc)

<table>
<thead>
<tr>
<th>Instrument</th>
<th>Accuracy</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>H-P 740B</td>
<td>0.001</td>
<td></td>
</tr>
<tr>
<td>Fluke 885A</td>
<td>0.0005</td>
<td></td>
</tr>
<tr>
<td>Fluke 885A</td>
<td>0.002</td>
<td></td>
</tr>
<tr>
<td>Fluke 887A</td>
<td>0.0025</td>
<td></td>
</tr>
<tr>
<td>Fluke 887A</td>
<td>0.003</td>
<td></td>
</tr>
<tr>
<td>Fluke 887A</td>
<td>0.005</td>
<td></td>
</tr>
<tr>
<td>Prec. Standards SS-1000</td>
<td>0.0015</td>
<td></td>
</tr>
<tr>
<td>Prec. Standards SS-1002</td>
<td>0.0001</td>
<td></td>
</tr>
<tr>
<td>Medistor A-72</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>H-P 3420</td>
<td>0.005</td>
<td></td>
</tr>
<tr>
<td>Prec. Standards SS-1000</td>
<td>0.0025</td>
<td></td>
</tr>
<tr>
<td>Prec. Standards SS-1002</td>
<td>0.0002</td>
<td></td>
</tr>
<tr>
<td>Medistor A-72</td>
<td>0.0015</td>
<td></td>
</tr>
<tr>
<td>H-P 3420</td>
<td>0.001</td>
<td></td>
</tr>
<tr>
<td>Fluke 803D</td>
<td>0.0001</td>
<td></td>
</tr>
<tr>
<td>Fluke 881A</td>
<td>0.000</td>
<td></td>
</tr>
<tr>
<td>Fluke BB5A</td>
<td>0.000</td>
<td></td>
</tr>
<tr>
<td>Fluke 895A</td>
<td>0.0001</td>
<td></td>
</tr>
<tr>
<td>Cohu 365</td>
<td>0.000</td>
<td></td>
</tr>
<tr>
<td>Pree. Standards SS-1002</td>
<td>0.0002</td>
<td></td>
</tr>
<tr>
<td>Pree. Standards SS-1002</td>
<td>0.0001</td>
<td></td>
</tr>
</tbody>
</table>

Differential voltmeters (ac)

<table>
<thead>
<tr>
<th>Instrument</th>
<th>Accuracy</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fluke 803D</td>
<td>0.001</td>
<td></td>
</tr>
<tr>
<td>Fluke 823A</td>
<td>0.002</td>
<td></td>
</tr>
<tr>
<td>Fluke 883A</td>
<td>0.003</td>
<td></td>
</tr>
<tr>
<td>Prec. Standards SS-1002</td>
<td>0.005</td>
<td></td>
</tr>
<tr>
<td>Prec. Standards SS-1002</td>
<td>0.007</td>
<td></td>
</tr>
<tr>
<td>H-P 741B</td>
<td>0.001</td>
<td></td>
</tr>
</tbody>
</table>

General-purpose oscilloscopes

<table>
<thead>
<tr>
<th>Instrument</th>
<th>Real-time bandwidth MHz</th>
<th>Sensitivity mV/cm</th>
</tr>
</thead>
<tbody>
<tr>
<td>DuMont 766HF</td>
<td>50</td>
<td>10/500 (250 MHz)</td>
</tr>
<tr>
<td>Panasonic VP549A</td>
<td>10</td>
<td>10/500 (150 MHz)</td>
</tr>
<tr>
<td>Tektronix 7704</td>
<td>100</td>
<td>10/200 (100 MHz)</td>
</tr>
<tr>
<td>H-P 180A</td>
<td>150</td>
<td>100μV/cm</td>
</tr>
<tr>
<td>H-P 183A</td>
<td>200</td>
<td>10μV/cm</td>
</tr>
<tr>
<td>Tektronix 7704</td>
<td>250</td>
<td>10μV/cm</td>
</tr>
<tr>
<td>H-P 183A</td>
<td>300</td>
<td>10μV/cm</td>
</tr>
</tbody>
</table>

Counters

<table>
<thead>
<tr>
<th>Instrument</th>
<th>Direct-count frequency MHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Systron-Donner 7035</td>
<td>100</td>
</tr>
<tr>
<td>Eldorado 1615</td>
<td>125</td>
</tr>
<tr>
<td>Monsanto 1500A</td>
<td>135</td>
</tr>
<tr>
<td>Beckman 6380</td>
<td>200</td>
</tr>
<tr>
<td>CMC 901</td>
<td>320</td>
</tr>
<tr>
<td>H-P 5360A</td>
<td>320</td>
</tr>
<tr>
<td>H-P 5247M</td>
<td>320</td>
</tr>
</tbody>
</table>
SSPI announces the world's first high-voltage transistors designed for power switching.

Now, let's make something out of it.

Like, say, a high-voltage circuit with about half as many components. Because we now offer you power-switching transistors that sustain up to 325 volts, guaranteed high speed switching (total turn-on turn-off time of less than a microsecond) and throw in saturation voltages less than .4 volts at three amps in the bargain.

Which means this:

In one fell swoop you can get rid of a whole passle of transformers in the typical aerospace high-voltage circuit. End up with a much-simplified circuit design, in things like pulse modulators, switching regulators, converters, and inverters.

Choose the 2N 5660 (up to two amps), or the 2N 5664 (up to five amps) in either TO-66 or TO-5 packages. Try them for new designs and as a replacement in existing high voltage circuits.

Add in the longevity factor of planar oxide passivation, to keep the thing from crackling itself to death, and you've got one of the most exciting transistors that ever came down the pike.

So, if you'd like to make something out of it, just call Alex Polner at (617) 745-2900 and tell him to send you back the HVST Data Kit. It'll help.
THE
GENERATION
SCR

DISC PACKAGED
REGENERATIVE GATE
SCR's

Operation to 20 KHz with low switching losses
• di/dt capability to 800 A/µsec.
• low power gate drive
• dv/dt capability to 500 V/µsec.
• 175 and 370 amperes RMS
• turn-off time capability to 10 µsec.
• also available in stud type package to 470 amperes RMS.

For additional information and application assistance,
write or call National Electronics, Inc.,
a varian subsidiary, Geneva, Ill. 60134,
phone (312) 232-4300.

NATIONAL ELECTRONICS, INC.
a varian subsidiary

1969 COMPETITION WINNER
Cited by Industrial Research Inc.
as one of the 100 most
significant technical products of the year.

A NATIONAL® exclusive.
Patent Pending.

THE WESTERN COLUMN

To share or not to share

Timesharing, which some predict will be a one-billion-dollar industry by 1973, has given the industry its share of problems as well as problem-solving. To many, the decision for going with an in- or out-house capability represents a costly, and potentially repercussive, decision.

To help you make this decision, Honeywell is holding timesharing seminars around the country, centered around their entry into the field, the H1648.

At one of the seminars, Allen Hammersmith, president of Time-Sharing Enterprises, pointed to the fast growth of timesharing. As evidence, he said that there are now 138 companies in the timesharing services business. Six months ago the market was divided as follows:

GE
SBC
Call-a-computer
Com-share
Tymshare
Allan Babcock
All others

40%
19%
7%
6%
5%
3%
20%

Mr. Hammersmith cautioned users not to install an in-house system, unless they have experience with timesharing. His advice is that the uninitiated should subscribe to a service and gain familiarity with timesharing and its limitations before selecting a system. The out-house system would also give him a quicker startup and probably be more reliable.

He also warned against trying to rewrite or modify the software of the in-house system, and against justifying the purchase by assuming that your excess capacity could be sold on the outside. The competition from the other 138 companies is formidable. Further, since no system can solve all problems, be prepared for some of your people to continue using outside services in some areas.

As a rule of thumb for when to purchase an in-house system, John Taft—vice-president of Honeywell's Computer Control Division—suggests that you should consider it only if your terminal costs are running at $8,000 per month or more.

Stephen A. Thompson, Western Editor

Circle 18 on Inquiry Card
Dale puts the power in thick film networks

Dale makes thick film R-C networks as standard as this dual in-line package and as small as this 1/4-inch square model. Within this broad capability we've become known as power specialists. Our ability to work with substrate, heat sink, package density and all the other network variables lets us deliver the power you need—in the size you need. "Big" jobs like the one shown above (5" x 2-1/2", 20 resistors, 60 watts) don't scare us a bit. Whether your next network is tremendous or tiny, give us a shot at it.

Prototypes on most designs in less than three weeks... Call 402-564-3131 for complete details or write for Catalog A.

GENERAL NETWORK SPECIFICATIONS

Resistor Patterns: Thick film resistive materials with resistivities from 1 ohm/sq. to 1 megohm/sq. can be used. Patterns can be made from 1/10 square to 10 squares. Capacitors: Screened = .01 μfd/in.²; Chip = up to 5 μfd ±10% to ±20% or GMV. Dissipation Factor = Less than 1.5%. Working Voltage = 50. Packaging: Dual-in-line packaging can be used with plated Kovar or other types of leads. Also conformal coatings can be applied to modules with wire or ribbon leads. Screened and cured silicone coatings can be used to protect specific areas of the circuit.

DALE ELECTRONICS, INC.
1372 28th Ave., Columbus, Nebr. 68601
In Canada: Dale Electronics Canada, Ltd.
A Subsidiary of The Lionel Corporation
Best Buys in Lab & Shop Instruments

Come From Heath

IP-28 1-30 VDC Power Supply
A Versatile Low Voltage Source For All Solid-State Work. Variable output... 1-10 & 1-30 VDC ranges. Adjustable current limiting in 2 ranges... 10-100 mA & 10 mA-1A. Floating output... AC & DC Programming... external Voltage Sensing. Switch-selected metering of both voltage & current. Excellent load & line regulation. 9 lbs. Kit, $47.50.

Low Cost
IP-18 1-15 VDC Power Supply
Your Best Buy In A Low Voltage Source. Continuously adjustable output 1-15 VDC. Adjustable current limiting 19-500 mA. AC & DC Programming... Darlington Pair voltage regulation for excellent stability... floating output for positive or negative ground. Simple, fast circuit board construction. 5 lbs. Kit, $21.95.

EU-80A Voltage Reference Source
Lab Standard Accuracy At Low Cost. An extremely accurate, stable reference for recorder calibration & linearity checks, meter calibration, op amp circuits, recorder offsetting and many other uses. 0.10 VDC output... 15 ppm/hr stability... push-button polarity reversal, chopped DC, sum-difference & calibrator modes. Voltage-to-current accessory included. 6 lbs. Factory Assembled, $100.00.

EU-30A Decade Resistance Box
Provides Excellent Resistance Arm For AC & DC Bridges. Selects values from 1,999,999 ohms in 1 ohm steps. 0.1% & 1% precision resistors. Connections between decades allow precise voltage divider applications. Mechanical digital readout. 3 lbs. Factory Assembled, $50.00.

Call for Papers
Apr. 7-9: IEEE Reliability Physics Symp., Las Vegas, Nevada. Submit ten copies of both a 30-50 word abstract and a 300-500 word extended abstract appropriate to a 20-minute paper stating: (1) the purpose of the work, (2) how much it advances the art, and (3) what results have been obtained. Send these on or before Dec. 1, 1969, to Dr. K. H. Zaininger, Tech. Prog. Chairman, 1970 Reliability Physics Symp., RCA Laboratories, Princeton, N.J. 08540.
Designed for Automated Insertion . . . TC 100 PPM / °C over entire resistance range of 10 ohms to 2 megarhms!

The new Trimpot Model 3099 dual in-line cermet element potentiometer has standard DIP construction with a TO-116 case. Today's ever-accelerating computer industry requires dual in-line components for socket or modern state-of-the-art automated assembly. The Model 3099 utilizes this mounting and is completely compatible with manual or automatic insertion equipment.

Let us tell you the complete technical story on this newest potentiometer innovation in the industry! For full details on the Model 3099, please contact the factory, your local field office or representative!
Now available, our latest hybrid operational amplifier—2741—improves your system’s performance by offering the superior quality of the 741 plus:

- Low input bias current—40 pA
- Low input offset current—15 pA
- High input impedance—100 KΩ
- Low power dissipation—50mW

For further information contact your nearest Amelco office.

Quality in Quantity in Hybrids

AMELCO SEMICONDUCTOR
1300 Terra Bella Ave., Mountain View, California (415) 968-9241
Westwood, Massachusetts (617) 326-6600
Orlando, Florida (305) 423-5833
Ridgefield, New Jersey (201) 943-4700
Des Plaines, Illinois (312) 439-3250
Anaheim, California (714) 635-3171
Wiesbaden, Germany 372820

COURSES

Design/Fabrication: Nov. 17-Dec. 12, $10,000. Each student will design and fabricate his own ic to his circuit requirements. Laboratory, materials and technicians will be provided. Intensive class sessions and ICE's Process Compendium containing complete procedures and recipes for all ic processing techniques are included in this course open to all engineers familiar with basic solid-state theories. Harold Bell, ICE Corp., 4900 E. Indian School Rd., Phoenix, Ariz. 85018.

Failure Analysis: Dec. 5-6, Phoenix, $275. Through the use of equipped laboratories, the attendees obtain first-hand experience by observation and operation of the fabrication equipment. Seminar Registrar, ICE Corp., 4900 E. Indian School Rd., Phoenix, Ariz. 85018.

Computer Control: Dec 11-12, University of Wisconsin, Madison, $70.00. Designed to provide engineers, programmers and managers with a summary of the current state-of-the-art along with economic guidelines for successful control computer applications. David P. Hartmann, Institute Dir., 725 Extension Bldg., 432 N. Lake St., Madison, Wisc. 53706.
No other multimeter gives you all this

and no one but Cimron can make a claim like that stick

Here's the first and only 4-digit instrument that you can take with you and hook up for full multimeter performance anywhere. Cimron, the Customer Concern Company, puts your needs first. That's why this new Cimron 6453 is just one more the competition will have to catch up with.

You get the most advanced MSI and IC construction plus a thin film attenuator... which, by the way, eliminates 75% of the normal calibration requirements. Single plane Digivac readout tubes result in the lowest power consumption of any digital multimeter, and make full-day battery operation possible. The same amplifier used in the most costly instruments provides an input impedance ten times greater than any meter in its class.

The basic instrument gives you 5 ranges of DC voltage measurement with 5th digit overrange, autoranging in all functions, autopolarity, and pushbutton selection. Add remote control, AC, resistance, print output and the 8-hour battery pack options, and you have full remote programming capability anywhere. And it's computer compatible. The 6453... just 8 pounds and 3½" x 8" x 12", sells for only $1,125. A full multimeter is less than $1,600. Call us for a demonstration. Phone (714) 276-3200 or write Cimron, Dept. D-112, 1152 Morena Blvd., San Diego, Cal. 92110.

CIMRON DIVISION

CIMRON DIVISION

The Electronic Engineer • Nov. 1969

Circle 22 on Inquiry Card
Let TI's special HI-REL Task Force take you through the turbulent sometimes uncharted universe of MIL-STD-883.

We’ll keep you on course.

Scout’s honor.

Others have called 883 a lot of confusion, a mixed bag, and even “unprintable words.”

But we have tried to keep our mouth shut, our shoulder to the centrifuge, and our nose to the stress levels.

While our best minds solved the problems.

Quietly, TI has committed itself to 883. Money, manpower and facilities.

And we’re ready to deliver “in accordance to MIL-STD-883.”

In fact, we’ve been delivering 100% tested ICs for years. Millions of them for Minuteman, Sprint, Poseidon, F-111 and other programs.

And some of these had even tighter requirements than 883!

From this experience, TI has organized special HI-REL Task Forces to help you meet 883. A special Task Force has been created for DTL, another for linear, and the one pictured here for TTL ICs.

Its members are some of TI’s top managers in the areas of reliability engineering, process engineering, product sales, military marketing, product planning, product engineering, quality control engineering, manufacturing and HI-REL assembly.

They’re specialists in Series 54 and 54H TTL ICs, now available from TI in both flat pack and ceramic dual-in-line packages... standardized for 883 Classes A, B and C.

The Task Force’s assignment starts with your problem: determining the specific test procedures and levels you’ll need to satisfy 883 requirements.

Once the most practicable test plan has been devised, the Task Force sees it through. Thousands of TI personnel in many departments may be involved in your program, but the Task Force is responsible for its success.

Task Force members can cross departmental boundaries, step on toes and crack bottle necks, if need be, to keep your program on target.

In addition, you have the industry’s best test facilities going for you at TI...from more than 50,000 burn-in sockets to environmental shake, rattle and roll labs, to IR scanners, microprobes, Radiflo and variable data loggers.

One thing more.

TI has prepared a comprehensive 40-page procurement specification incorporating MIL-STD-883 — supplemented by 100 pages of detailed product specifications. From your first source for TTL ICs.

Use it to plot your course, and TI’s HI-REL Task Force will keep you on it. Scout’s honor.

Write for “MACH IV High Reliability Procurement Specification MIL-STD-883.” Texas Instruments Incorporated, PO Box 5012, MS 308, Dallas, Texas 75222. Or just circle reader service number 107.
Sylvania Electronic Systems offers you everything to build a career with. At one time. In one company.

Over the past few years, you've watched the emerging of new electronic sciences, technologies, systems, entire industries.

New career directions have opened up to you that were virtually unknown when you started college — or when you started in your field. The choices were many then. Today, by comparison they seem limitless and far more complex.

In fact, they are. So the question is: what should it cost you to determine exactly where you ought to be heading? Years gambled on trying to fit yourself into one discipline? Jobs with two or three firms in quick succession, in an attempt to explore a handful of unrelated programs or products?

At Sylvania Electronic Systems, you don't have to do either. Why? Take a brief look at who we are...

We're an operating group within Sylvania Electric Products — a subsidiary of General Telephone & Electronics Corporation. We handle systems management for GT&E's major Government projects, and coordinate the defense systems work for other GT&E subsidiaries.

To do this, we have our own national network of 20 laboratories and 4 manufacturing plants. And we can muster men and facilities from the corporation's 150,000 people (including 6,500 engineers and scientists), 71 plants, 39 laboratories, 30 domestic and international operating companies. This makes us a focal point for the full scope of advanced GT&E electronics activity, from satellite communications systems to helicopter avionics to computer-controlled training systems.

Right now, with one company, you can evolve a direction for yourself through day-to-day, shirt-sleeves contact with a mix of men, programs and objectives as broad as contemporary electronics itself.

We won't ask you to choose a career with Sylvania Electronic Systems. You don't have to. We simply offer you everything you need to find the right career... and everything to build it with.

For more information, please write to Manager, Professional Staffing, Dept. 1014, Sylvania Electronic Systems, Group Headquarters, 40 Sylvan Road, Waltham, Mass. 02154.

SYLVANIA
GENERAL TELEPHONE & ELECTRONICS
An Equal Opportunity Employer
At the outset of technical editing

Don't fight your technical editor.
Work together with him from the beginning, and you will produce a paper well written and technically clear.

By Eldred E. Atkins, Engineering Writer, Laboratory Communications, IBM Systems Development Div., Rochester, Minn.

Have you ever wondered why a perfectly logical and straight-forward manuscript you submitted to "publications" five weeks (or five months) ago is returned—beautifully "laid out"—but:
- Topics are "transmogrified"!
- Illustrations don't show what they used to—or don't show anything!
- Text and conclusions aren't related—in fact, they don't even agree!
- Conclusions intended aren't mentioned!
- Once deathless prose is dead!

It is easy to blame the much-maligned technical editor for such transgressions. But he is there to help—not to botch your job. By following the suggestions below, you can make his (and your) job easier—and the results will be well worth the effort.

When you are ready to send a draft to the Publications Department, ask yourself these questions:
- What is the central theme of your report (paper, article, speech, etc.)? Does all of the text relate to the intended message?
- Have you covered your central theme, so that you don't have to recall your report—half through the reproduction process—to write a different conclusion, or even a conclusion?

Your friendly technical editor

What's a technical editor, you might ask? Well—in some companies he's the guy who takes your often-handwritten, uncohesive, confusing inputs to technical reports, progress reports, proposals, papers—just about anything of importance that you write—and puts them all together in a form the reader (if there ever is one) can understand.

To him, and to all authors who work with him, is this article dedicated. If writing is part of your next project, we hope that the insights provided here will promote good will and timeliness throughout the publication process.

- Are text and figures, as well as the various parts of complex figures, properly related? Do figures support rather than subvert the central message?
A leader in inertial navigation systems, such as the F14 and S3A programs, announces openings for circuit design specialists. BSEE's with 5-10 years experience in either platform electronic and control systems, power conversion or signal processing.

Please write J. D. Anderson
5500 Canoga Avenue,
Woodland Hills, California 91364

Guidance & Control Systems Division
Litton Industries
An equal opportunity employer M/F

Circle 24 on Inquiry Card

Varglas Acrylic Sleeving by Varflex will not soften, flow or blister—even at 155°C, for as long as 15,000 hours. In fact, it passes the thermal endurance test under MIL-1-3190 (latest revision).

Made of modified acrylic resin on Fiberglas braid, it is compatible with polyester, epoxy, phenolic or formvar coatings and is made to exceed military, IEEE and NEMA standards. Varglas resists acids, solvents, oils, alkalies, fungus and moisture.

Select from a wide range of sizes and coding colors. Immediate off-the-shelf shipment or one week for special production.

Circle 25 on Inquiry Card

- Have you verified the accuracy of all quoted material and cited references—as well as full titles and peculiar spellings—which the editor cannot check without extensive research?
- Have you discussed your text with the editor so that the final version is compatible with your initial intent? The editor will refine whatever text he receives, but he needs some author's direction at the outset.

An early get-together

For best results, set up an engineer-editor conference as early as possible—ideally when the paper is still an idea. Such an early get-together is valuable for several reasons.

First, the engineer and editor can—from the beginning—establish a good working relationship. A much-edited text returned to an engineer sometimes sets off an explosive reaction. If you realize early that the editor wants only to improve what and how you write, a potentially strained relationship will become a friendly, mutually advantageous effort.

Second, your paper, if intended for a particular journal or audience, may need a different slant from that found in the first draft. Early recognition and agreement on the paper's style will prevent subsequent misunderstanding and duplication of effort.

Third, if the editor has a brief outline of what you intend to say—before you say it—he can review this and perhaps suggest a reorganization or a shift in emphasis that will strengthen the paper.

Fourth, an early engineer-editor conference will let you set up a schedule for publication. Engineers often don't realize how much time it takes to rework retype, reviews, make all required changes, secure illustrations or photographs, prepare a bibliography, and print the document. If the paper must meet a deadline, substantial leadtime is mandatory.

Patience and prudence

When you seek editorial help, probably the most important asset you can have is patience. If you realize that you know much more about the subject than the editor does, the battle is half won. If you recognize that he knows more about the publishing process than you do, the other half is won. Finally, if you meet with the editor early, on equal terms, there will be no battle at all. Your teamwork will produce the highest quality document in the shortest possible time—all because a little extra effort was expended at the outset of technical editing.
Innovation in IC packaging panels

Let Augat provide flexibility, reliability and fast turn around time you need

You can have increased flexibility — and save time, space and money — with Augat's unique 2-dimensional approach of packaging IC's on a point-to-point basis. And regardless of the size of package, Augat can design and produce the panels and peripheral hardware to solve your most difficult packaging problem. In addition to standard panels, modifications can be made to your specification without premium charge. Standard sockets and connectors, providing excellent lead retention, low contact resistance, and long life reliability are used on all panels.

Illustrated are four methods of input-output connections. These are available on virtually any size or shape panel required to fit your existing cabinets, racks and drawers. Variations in contacts and materials permit unusual pricing flexibility.

For your High Quality Inductor Coil needs
See
STANWYCK
"COIL SPECIALISTS FOR 34 YEARS"

Extensive product life testing in our modern, fully equipped environmental test laboratory, plus rigid quality control standards, result in high quality products.

One of the industry's largest and most complete lines...

<table>
<thead>
<tr>
<th>MOLDED</th>
<th>INDUCTORS</th>
</tr>
</thead>
<tbody>
<tr>
<td>STANWYCK SERIES</td>
<td>INDUCTION MICROHENRIES</td>
</tr>
<tr>
<td>1A2000M</td>
<td>0.15 to 1000</td>
</tr>
<tr>
<td>28000M</td>
<td>0.15 to 1000</td>
</tr>
<tr>
<td>38000M</td>
<td>0.10 to 1000</td>
</tr>
<tr>
<td>49000M</td>
<td>11 to 10000</td>
</tr>
<tr>
<td>50000M</td>
<td>1000</td>
</tr>
<tr>
<td>69000M</td>
<td>1.1 to 12</td>
</tr>
<tr>
<td>79000M</td>
<td>0.15 to 27</td>
</tr>
<tr>
<td>89000M</td>
<td>1.2 to 120</td>
</tr>
<tr>
<td>99000M</td>
<td>0.47 to 39</td>
</tr>
<tr>
<td>101000</td>
<td>1000</td>
</tr>
<tr>
<td>111000</td>
<td>475</td>
</tr>
<tr>
<td>121000</td>
<td>1500</td>
</tr>
<tr>
<td>131000</td>
<td>0.30 to 100</td>
</tr>
<tr>
<td>141000</td>
<td>1.0 to 100</td>
</tr>
<tr>
<td>151000</td>
<td>1.0 to 10000</td>
</tr>
<tr>
<td>161000</td>
<td>0.47 to 16000</td>
</tr>
<tr>
<td>171000</td>
<td>0.30 to 10000</td>
</tr>
<tr>
<td>181000</td>
<td>0.30 to 4700</td>
</tr>
<tr>
<td>191000</td>
<td>0.30 to 4700</td>
</tr>
<tr>
<td>201000</td>
<td>0.30 to 10000</td>
</tr>
</tbody>
</table>

Other Stanwyck Products

Stanwyck RF and IF Transformers, Hash Chokes, Toroids, Relay Bobbin Coils

CUSTOM DESIGN

In addition to the comprehensive inductor line, Stanwyck offers the electronic engineer a variety of special custom design electronic components.

Call your representative of Stanwyck high reliability components, or contact Stanwyck Winding Division, where service and quality count.

SEND FOR FREE CATALOG

STANWYCK WINDING DIVISION
SAN FERNANDO ELECTRIC MANUFACTURING CO., INC.
137 WALSH AVE., NEWBURGH, NEW YORK 12550
Phone (914) 561-3360 New York City (212) 732-6282

PRODUCT SEMINARS

This column lists product seminars that electronic companies offer to users of their products.

Operation and Maintenance 7600 Magnetic Tape System: Dec. 1-5, Denver, Colo., $180. To prepare the operator/technician for operation, calibration and repair of the complete tape system. The seminar requires a strong background in electronics repair with emphasis on solid state circuitry. Honeywell, Test Instrument Div., 4800 E. Dry Creek Rd., Denver, Colo. 80217

Circle 415 on Inquiry Card

Circle 416 on Inquiry Card

Circle 417 on Inquiry Card

Circle 418 on Inquiry Card

Circle 419 on Inquiry Card

Communications ICs Application Seminar: Feb. 17, Phila., Pa. The day before the International Solid State Circuits Conference The Electronic Engineer magazine will sponsor a seminar highlighted in the morning by six papers on the new ICs for communication (of limiters, age amplifiers, rf amps, etc.) and in the afternoon by a "hands on" workshop session. For information, price and registration forms.

Circle 420 on Inquiry Card

The Electronic Engineer • Nov. 1969
Looking for a special power supply system?
Acopian will ship it in just 9 days!

When you're looking for a multiple-output power supply system, and you need it in a hurry, look no further. Acopian will design it, build it, test it, and ship it...fully wired...in just 9 days!

Call 'hot line' 215-258-5441. Simply tell us the DC voltages and currents you need. We'll discuss—on the phone—the power modules, the panel size, accessories such as meters, terminations, test jacks, rotary switches or any other feature you feel is important. Then—on the phone—we'll give you a firm price—and get the order going for guaranteed 9-day shipment.

Others make promises. Acopian makes power supplies. Power modules in 3 days, and now power systems in 9 days. For immediate service, call 215-258-5441. For literature, write Acopian Corporation, Easton, Pa. 18042.

Circle 28 on Inquiry Card
DMS 3200
DIGITAL MEASURING SYSTEM
(Fully solid state with IC's)

This all-solid-state precision measurement system offers unlimited expansion capability through plug-in additions, resulting in a specialized instrument for each type of measurement. New plug-ins now broaden the measurement capability of this field-proven unit. Over 10,000 are in use at present.

Scaling controls make possible resolution of up to seven digits on the three-digit display by utilizing the overrange capability of many of the plug-ins, thus providing high resolution and accuracy with minimum investment. Companion devices such as the PR 4900 Digital Printer and 1050 Digital Set-Point Controller further extend the utility of the DMS 3200 System.

DC VOLTMETER PLUG-IN DP 100 $175

0.01 mv to 999.9 volts
± 0.1% rdg ± 1 digit

DC MICROVOLTMETER PLUG-IN DP 110 $475

0.001 mv to 999.9 volts
± 0.05% rdg ± 1 digit
4-digit resolution

AC VOLTMETER PLUG-IN DP 130 $395

0.01 mv to 999. volts
± 0.1% rdg ± 1 digit
22 Hz to 1.0 MHz

EVENT COUNTER/SLAVE PLUG-IN DP 140 $100

Up to 1,000,000 counts/sec
Cascade with second DMS to obtain 6-digit display

1 MHz COUNTER PLUG-IN DP 150A $255

0.01 Hz to 999. kHz
± 0.0005% rdg ± 1 digit
7-digit resolution

80 MHz COUNTER PLUG-IN DP 160 $395

0.01 Hz to 80.0 MHz
± 0.00005% rdg ± 1 digit
7-digit resolution

OHMMETER PLUG-IN DP 170 $295

.001 ohm to 999. megohms
± 0.1% rdg ± 1 digit
Microamp test current

CAPACITY METER PLUG-IN DP 200 $295

.001 picofarad to 9,999 mfd
± 0.1% rdg ± 1 digit
Low DC test voltage

TIME INTERVAL METER PLUG-IN DP 210 $295

0.01 ms to 999. seconds
± 0.0005% rdg ± 1 digit
Period or time interval

DC CURRENT METER ADAPTER D 310 $100

.0001 microamp to 9.99 amps
± 0.15% rdg ± 1 digit

Guide to
MICROWAVE SEMICONDUCTOR POWER GENERATORS

Tear it out, NOW
... and mount it on your wall

If the chart has been removed, Circle Number 41 on the Inquiry Card for a copy.

HICKOK ELECTRICAL INSTRUMENT COMPANY, 10514 Dupont Ave., Cleveland, Ohio 44108

Circle 29 on Inquiry Card
READ THESE BOOKS

Electronics: BJT's, FETs, and Microcircuits

Because electronics is such a fast changing field, textbooks must constantly be revised and updated. The relatively recent rise of MOSFETS, bipolar junction transistors, and integrated analog circuits have created a new need for a basic text explaining their operation and application. This book fills that need.

This book is meant primarily as an introductory text for a college course in electronics. However, it could very well serve as an up-to-date source of self-instruction for the practicing engineer who wants to acquire a basic analytical knowledge of modern electronics.

Condensed Computer Encyclopedia

Forget how an Accumulator works? Want to know a little about PL/I? This book answers those questions and a thousand more.

Here is a perfect up-to-date guide for those who come in contact with a computer. It fills the gap between elementary computer dictionaries and complicated computer manuals. A fine reference for the business man, junior programmer, or student as well as for the experienced computer specialist. A complete index supplements the alphabetical arrangement of entries.

The Oscilloscope—New Third Addition

Introduction to the Theory of Linear Systems
By E. A. Faulkner. Published by Barnes and Noble Inc. 105 Fifth Ave., New York, NY 10003. Price $3.25. 89 pages.

Audio Systems Hand Book

17th Annual National Relay Conference Proceedings
By the National Association of Relay Manufacturers. P.O. Box 1649, Scottsdale, Arizona 85252. Price $5.

Computer-Aided Design of Magnetic Circuits

Electron Optics

Hamilton has added a new plant—just to produce precision, Photoformed® parts!

This new facility is equipped with the most modern photo-etching machinery on the market. The new equipment will produce precision parts in large quantities to the highest standard of dimensional accuracy.

Now, you can get from the Precision Metals Division, finished parts to the same degree of precision as world wide metal users have come to expect in Hamilton's strip and foil.

Hamilton offers the Total Capabilities of a completely integrated facility controlling every step from melt to finished strip or foil—and now to finished parts. This means that you get the same adherence to metallurgical standards and dimensional accuracy that has become the hallmark of Hamilton.

For the complete story on the capabilities of Precision Metals Division and what it can do for you, write for your copy of the new Photoforming brochure. It's yours for the asking—write today!
This column welcomes new companies or new divisions in the electronics industry.

Microwave semiconductor source

Microwave Semiconductor Corp., headed by former engineers of RCA's Electronic Components, is presently offering high frequency power transistors and has recently begun production on a line of microwave solid state components. Its products include a 1-W, 2-GHz power transistor (with strip-line configuration), and a solid state noise source.

The MSC 2010, 10 W-2 GHz transistor is the highest power 2.0 GHz transistor presently available. The complete line of transistors is recommended for radar, ECM, communications, and telemetry applications.

This noise source has an octave bandwidth, from 2 to 4 GHz, and sells for $450 in quantities of 1-9. Other salient features include an excess noise ratio greater than 30 dB, temperature stability of 0.01 dB/°C. It needs a 28-V supply, and draws less than 30 mA.

While its production will center around the above devices, the new company will try to make power transistors with higher frequencies and power, step recovery diodes and eventually microwave ICs. It also thinks about supplying transistor chips to those involved in producing microwave ICs.

A spokesman for Microwave Semiconductor Corp. stated that major companies have sampled the new firm's wares. He feels that their strip-line ceramic package, which is hermetically sealed is both attractive and practical.

How did they fund the new semiconductor firm? From private investors—organized by the Wall Street Venture Capital Corp.

Circle 412 on Inquiry Card

Filling the custom ICs vacuum

Dionics, Inc., located in Westbury, L.I., is a new firm involved in supplying dielectric isolation material to IC manufacturers in addition to producing dielectric isolation components and ICs. Full operations began in July, 1969.

The company, financed by a closed investment group, was started by two former Industro Transistor Corp. employees with the hope of serving the needs of those requiring custom ICs. While trying to meet the up and coming needs of IC and semiconductor component manufacturers for radiation hardened materials, the OEM and equipment manufacturers are also being sought after.

The production of silicon slices, using the isolation geometry and material specs of a particular customer, is an area in which Dionics is greatly involved. The company does not grow its own silicon. Instead, involvement for Dionics begins with the ingot or slice phase and proceeds with the dielectric isolation process to arrive at a finished product. Custom slices, based on dielectric isolations, is a process finding expanded use in the development of radiation resistant microcircuits. The dielectric isolation process is said to impart 10 to 40 times more radiation immunity than pn junction isolation and effectively shields ICs and components from harmful effects of particle bombardment.

The founders of Dionics are aiming to fill the vacuum in the smaller specialty areas. They feel that the industry has progressed to the stage where OEMs are willing to buy processing rather than set up costly in-house operations. Eventual goal? To become the second materials source for firms now in the IC business.

Circle 413 on Inquiry Card

Miniaturized test equipment. Mini-Tron Co., Darby, Pa., is ready to market its first product—a miniature, hand-held, transistorized square wave generator which weighs less than 1 oz.

Priced at $9.95, the Mini-Probe Model 101 has been designed to meet the requirements of both the electronic engineer and technician alike. It can be used to test transistors and diodes without unsoldering, to provide transitions in logic circuits, or to debug audio and rf circuits.

The new company's second product will be a low-priced random pulse generator. Prime users of this device will be the research organizations—-that deal with the detection and measurement of random processes.

Circle 414 on Inquiry Card

SUPERSOCKETS!

NEW BARNES HIGH-RELIABILITY PRODUCTION MOUNTING DIP SOCKETS . . . NONE BETTER

Maximum reliability, longest life, highest quality, low cost too—all in one socket! New Barnes 121-2002 Series Production Mounting DIP Sockets. 10,000-plus insertion capability also increases usefulness for aging and burn-in applications. Interchangeable phosphor/bronze double wiping action type contacts / terminals replace easily—even while sockets are wired on P.C. boards! Accepts standard 14-lead DIP devices, features chamfered lead entrances and removable lids in black & white for easy color coding. Get the SUPERSOCKETS from Barnes. Send for more data.

barnes CORPORATION Lansdowne, Pa. 19050 * 215/MA 2-1525

Circle 31 on Inquiry Card

Circle 32 on Inquiry Card

Circle 33 on Inquiry Card

Circle 34 on Inquiry Card
You've seen the pictures...

Now read the book.

The perfect finish to our Great Digital Systems Kit new product program—over 170 pages of hefty description, specs, logic diagrams and schematics on our TTL and DTL modules; dozens of packaged analog/digital instruments like our MINIVERTE™ and other data acquisition equipment; hardware and accessories; wire-wrapping service and applications help. Write or call for yours today. Raytheon Computer, 2700 S. Fairview St., Santa Ana, Calif. 92704. Phone (714) 546-7160.
Simpson's new 2725.

Compare it with the electronic counter you were going to buy:

<table>
<thead>
<tr>
<th>SPECIFICATIONS</th>
<th>SIMPSON 2725</th>
<th>YOUR COMPARISON</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wide frequency range?</td>
<td>YES, 5 Hz to 20 MHz.</td>
<td>6 Hz to 20 MHz.</td>
</tr>
<tr>
<td>Measures frequency ratios?</td>
<td>YES, 1 to 1,99999 x 10^4</td>
<td>YES, 1 to 1,99999 x 10^4</td>
</tr>
<tr>
<td>Measures time periods?</td>
<td>YES, 300 µ seconds to 0.2 second</td>
<td>YES, 300 µ seconds to 0.2 second</td>
</tr>
<tr>
<td>Measures time intervals?</td>
<td>YES, 300 µ seconds to 1.99999 x 10^5 seconds</td>
<td>YES, 300 µ seconds to 1.99999 x 10^5 seconds</td>
</tr>
<tr>
<td>Totalizes?</td>
<td>YES, 0 to 1.99999 x 10^5 counts</td>
<td>YES, 0 to 1.99999 x 10^5 counts</td>
</tr>
<tr>
<td>Crystal controlled time bases?</td>
<td>YES, 6 xtal-controlled bases, switch selected</td>
<td>YES, 6 xtal-controlled bases, switch selected</td>
</tr>
<tr>
<td>Self-test circuitry?</td>
<td>YES, Front panel switch tests logic circuitry</td>
<td>YES, Front panel switch tests logic circuitry</td>
</tr>
<tr>
<td>Dependable solid state design?</td>
<td>YES, Integrated circuits</td>
<td>YES, Integrated circuits</td>
</tr>
<tr>
<td>Number of full time digits</td>
<td>5. Plus automatic overrange indication</td>
<td>5. Plus automatic overrange indication</td>
</tr>
<tr>
<td>Accuracy</td>
<td>±0.01% ±1 digit</td>
<td>±0.01% ±1 digit</td>
</tr>
<tr>
<td>Price</td>
<td>$525, complete with probe and operator's manual</td>
<td>$525, complete with probe and operator's manual</td>
</tr>
</tbody>
</table>

4-digit Model 2724 also available: $450.

Practice what you preach

Sir:

I read your editorial "One Electronic World" in the May issue of The Electronic Engineer with particular interest. As an American working as a Sales Manager abroad I have become particularly aware of the American electronic industry's profound provincialism. "At last," I thought, "an American magazine is becoming aware of the world at large." I was, therefore, all the more disappointed to note that in an article in the same issue on small instrumentation computers you included only those of American manufacture.

Our company, Elbit Computers Ltd., Haifa, Israel, is the manufacturer of a low cost digital computer called the Elbit 100 which we have been delivering since January 1968.

The Elbit 100 is a low cost, special purpose digital computer, designed to be readily integrated into the user's system, instrument or control loop. A 12 bit, single address, fixed word length computer with typical add time of 7.2 µsec, the Elbit 100 is capable of operating with up to 256 channels of input-output equipment. Complete prices range from $4900 to $7000 based on memory size.

Leonard Dreyer
Sales Manager-Elbit 100
Elbit Computers Ltd.
Haifa, Israel

EDITOR's NOTE: Readers interested in the Elbit 100 can obtain more information by circling 205 in the Reader Service card.

On heckling and doing

Sir:

Re your editorial "On heckling and doing" [The Electronic Engineer, June 1969, p. 7].

Very good, man!

Harold G Lenz
Middleton, N.J.

More IC ideas

Sir:

Add more IC Ideas. The circuits are very helpful, particularly "Simple circuit speeds digital system checkout" [The Electronic Engineer, August 1969, p. 82], which saved me the $100.00 a similar probe would cost.

A. Tejeda
Computer Specialist
Computerized Testing
RCA-EC&D
Sommerville, N.J.
Find out now what NCR can do to further your career

Positions available in the following areas:

MOS/LSI
A MSEE or Physics degree required. Primary responsibilities include the following: mask making and photo-resist operations; oxidation and heat treatment; assembly and packing design automation and testing.

Military Circuit & Logic Design
Our Military Advanced Development area is presently reviewing applications for positions of senior circuit and logic design engineers. This department is concerned with government contracts of a highly sophisticated nature for both defense and non-defense programs. This department is presently engaged in highly technical programs that offer high level challenge for the senior engineer. Applicants should be capable of handling future projects.

Software Systems Engineers
These positions require creative individuals with proven leadership ability. A BS degree in engineering with 3-5 years' experience as Systems Engineer/Systems Analyst with hands-on experience with 360 systems software, related to teleprocessing, DOS, or OS is desired. Duties would include interfacing NCR terminals and communications systems with other computer equipment.

Engineering Design Evaluators
BS-MSEE minimum requirement. For detail design evaluation of product designs, before product is approved, for final stage of development or purchase of equipment from other sources is approved. Sound technical judgment as well as a good working relationship with others is essential.

Project Leader—Advanced Memory Development
Advanced degree preferred, or BS with considerable experience. Memory architecture, semiconductor memories, solid state devices, digital circuit design and logic implementation.

Display Device Engineer
MSEE or BSEE with related experience. Knowledge of solid state and electron physics, liquid crystals, optics experience desirable. Must be strong in logic circuit design.

Electro-Optics Engineer
MSEE or Physics or BS with related experience. Knowledge of geometric optics, electro-optic devices, control systems, digital circuit design and logic.

Senior Communications Systems Engineer
BS/MSEE. Modulation and coding theory, data communications, and development of high speed data modem for voice channels. Experience in data transmission and modern design desirable.

On-Line Systems Engineer
Design of commercial on-line systems involving terminals, communication networks, and central processing systems. Requires background in one or more of the following: design of computer systems preferably oriented to real-time applications, digital data transmission, systems software. Exposure to business system requirements helpful. Entails configuration analysis, trade-off analysis, optimization studies, systems modeling, subsystem requirement definition, design of interfaces, studies of reliability, maintainability, installability. Minimum of three years' pertinent experience. BS in engineering or sciences required. Advanced technical degree and/or MBA preferred.

Design Engineers
These positions are with our Industrial Products Division and are varied in their requirements. A BSME as well as five years' experience will qualify you for these positions. Duties would include a variety of assignments including design of moving mechanisms, testing and calibration as well as advisor to departmental supervision.

Terminal Hardware Design Engineers
A BSEE required. Primary responsibilities are varied but, include MOS-LSI, logic design, system transaction analysis, terminal unit design and electronic packaging.

Data Communications Engineer
Experience with switched telephone network and private lines, communication procedures, software implications at central processor, digital control, modems, signal transmission and modulation theory. Minimum requirements include BSEE plus three years' pertinent experience. Advanced EE degree desirable.

Electronic Design Engineer
BS/MSEE with experience in circuit and subsystem design. Duties would include circuit and subsystem design in frequency band up to 30 M.H.

Test Equipment Engineers
These positions involve the development of complex test systems for MOS-LSI arrays and array PC assemblies. Minimum requirements include three years' experience in logic assembly design of IC test systems.

Section Head—Test Equipment Engineer
BS/MSEE 5-7 years experience in test equipment design or EDP products. Duties include responsibility for design of equipment needed for test and inspection of EDP processing equipment, supervision of section (11-15 employees) and frequent contact with organizational section heads.

For confidential consideration, forward your resume to:

Mr. Vernon L. Mirre
Executive & Professional Placement
The National Cash Register Company
Main & K Streets
Dayton, Ohio 45409

An equal opportunity employer M/F

The Electronic Engineer • Nov. 1969
High Voltage Silicon Rectifiers
Available in production quantities now!

<table>
<thead>
<tr>
<th>HIGH VOLTAGE RECTIFIERS</th>
<th>1000V</th>
<th>1500V</th>
<th>3000V</th>
<th>4000V</th>
<th>5000V</th>
<th>2000V</th>
<th>3000V</th>
<th>4000V</th>
<th>5000V</th>
<th>6000V</th>
</tr>
</thead>
<tbody>
<tr>
<td>VA 10</td>
<td>1.36</td>
<td>1.75</td>
<td>2.1</td>
<td>2.45</td>
<td>2.69</td>
<td>1.56</td>
<td>1.9</td>
<td>2.15</td>
<td>2.35</td>
<td>2.75</td>
</tr>
<tr>
<td>VB 10</td>
<td>1.41</td>
<td>1.8</td>
<td>2.25</td>
<td>2.55</td>
<td>2.8</td>
<td>1.75</td>
<td>2.1</td>
<td>2.4</td>
<td>2.6</td>
<td>3.1</td>
</tr>
<tr>
<td>VA 15</td>
<td>1.44</td>
<td>1.94</td>
<td>2.3</td>
<td>2.65</td>
<td>2.9</td>
<td>1.9</td>
<td>2.25</td>
<td>2.5</td>
<td>2.8</td>
<td>3.3</td>
</tr>
<tr>
<td>VB 15</td>
<td>1.51</td>
<td>2.01</td>
<td>2.45</td>
<td>2.85</td>
<td>3.1</td>
<td>2.15</td>
<td>2.6</td>
<td>2.95</td>
<td>3.2</td>
<td>3.7</td>
</tr>
<tr>
<td>VC 20</td>
<td>2.5</td>
<td>3.05</td>
<td>3.6</td>
<td>4.05</td>
<td>4.4</td>
<td>3.6</td>
<td>4.15</td>
<td>4.6</td>
<td>5.05</td>
<td>5.8</td>
</tr>
<tr>
<td>VC 25</td>
<td>2.75</td>
<td>3.3</td>
<td>3.95</td>
<td>4.45</td>
<td>4.9</td>
<td>3.95</td>
<td>4.65</td>
<td>5.2</td>
<td>5.75</td>
<td>6.75</td>
</tr>
<tr>
<td>VC 30</td>
<td>3.05</td>
<td>3.7</td>
<td>4.3</td>
<td>4.85</td>
<td>5.4</td>
<td>4.6</td>
<td>5.35</td>
<td>6.05</td>
<td>6.75</td>
<td>7.95</td>
</tr>
<tr>
<td>VC 40</td>
<td>3.4</td>
<td>4.15</td>
<td>4.85</td>
<td>5.45</td>
<td>6.05</td>
<td>5.35</td>
<td>6.15</td>
<td>7.0</td>
<td>7.75</td>
<td>9.2</td>
</tr>
<tr>
<td>VC 40 2A</td>
<td>4.2</td>
<td>5.15</td>
<td>6.05</td>
<td>6.85</td>
<td>7.75</td>
<td>6.4</td>
<td>7.35</td>
<td>8.35</td>
<td>9.35</td>
<td>11.05</td>
</tr>
<tr>
<td>VC 50</td>
<td>5.5</td>
<td>6.75</td>
<td>7.95</td>
<td>9.25</td>
<td>10.75</td>
<td>8.4</td>
<td>9.65</td>
<td>11.05</td>
<td>12.55</td>
<td>15.05</td>
</tr>
<tr>
<td>VC 50 2A</td>
<td>6.5</td>
<td>8.05</td>
<td>9.85</td>
<td>11.65</td>
<td>13.45</td>
<td>10.2</td>
<td>12.05</td>
<td>14.05</td>
<td>16.05</td>
<td>19.75</td>
</tr>
<tr>
<td>VC 60</td>
<td>7.5</td>
<td>9.5</td>
<td>11.5</td>
<td>13.5</td>
<td>15.75</td>
<td>12.2</td>
<td>14.35</td>
<td>16.55</td>
<td>19.25</td>
<td>23.75</td>
</tr>
<tr>
<td>VC 60 2A</td>
<td>9.5</td>
<td>12.05</td>
<td>14.55</td>
<td>17.05</td>
<td>20.25</td>
<td>15.2</td>
<td>18.05</td>
<td>21.35</td>
<td>25.05</td>
<td>30.25</td>
</tr>
</tbody>
</table>

Available with fast recovery characteristic.

SPEAK UP

Don't buy test equipment without a good schematics
Sir:

The letter written by Mr. M. R. Barr of Redcor (The Electronic Engineer, February 1969, p. 22) was an excellent one, but was lacking in one additional item. In addition to inspection of instructions manual prior to sale, it is imperative that "inspection" include a look-see at the schematics. Take it from someone who learned the hard way, schematics are one thing you will learn to insist upon during your career in engineering. Often, a schematics that doesn't agree with actual wiring is sufficient reason to "refuse to accept", provided your purchasing department did not forget to provide that important clause in the contract.

Robert Wm. Lowe
Central Computer Corp.
Anaheim, Calif.

Cost, not price
Sir:

The article on "CAD Graphics" by Stephen A. Thompson, published in the August 1969 issue of The Electronic Engineer, was most interesting. We consider it, in general, to be most timely and well written. To clarify and expand your knowledge concerning the Mann Type 1600 Pattern Generator, the standard system of today includes the following features in addition to those described in the specifications.

(a) Four-inch motion in each axis, X and Y, in place of 2" x 2"
(b) Resolution of stage motion of 0.25 mil in place of 0.5 mil.
(c) A PDP-8L Computer in place of the PDP-8S.
(d) Rotation of the aperture.
The price of this system is $140,100 f. o. b. Burlington, Massachusetts, un-packaged (considerably less than the $250,000 stated in your article).

Aubrey C. Tobey
Director of Marketing
David W. Mann Co.
Burlington, Mass.

EDITOR's NOTE: The cost figure of a quarter million dollars, mentioned in the article, was for a system installed by a user. That figure includes the $140,100 price mentioned by Mr. Tobey, plus transportation (to the West Coast), installation, software and training.

Design contest on photosensitive FETs
Do you use photosensitive field effect transistors? Then sharpen your pencil. Crystalonics, a Teledyne Company based in Cambridge, Mass., announces a design contest on their Fotofets®. To enter, you must submit an original design that uses photo FETS, complete with circuit schematics, description of circuit operation, and description of the application you intend it for.

From the entries, Crystalonics will choose ten semi-finalists who will each receive a Polaroid Color-Pack® camera. Then, from these ten semi-finalists, The Electronic Engineer magazine will select three top designs. First, second, and third prizes will be respectively $1000, $500, and $250 worth of amateur-radio gear and/or hi-fi equipment, selected by the winners from the following brand names:

- Ham gear: Drake, Swan, Galaxie, National, Collins, Hammarlund
- Hi-fi equipment: Fisher, Scott, KLH, Acoustic Research, Sony, Macintosh, Garrard, Dual, Pickering

Entry forms together with necessary product and reference data will be mailed to all interested engineers. Entries must be postmarked no later than March 1, 1970. Crystalonics will select 10 semi-finalists by April 1, 1970, and The Electronic Engineer will pick the three top winners by May 1, 1970. In addition, we will publish the winning circuits (with their authors identified) in a subsequent issue.

For entry forms, literature on photo FETS, and contest rules, circle Number 321 on inquiry card.
Mondays never look the same to Bob Byse

When you're breaking ground on a new idea at Delco, you don't see a lot of your own desk. For Bob Byse, design engineering means work with two dozen solid professionals...people whose specialties range from microelectronics to model making to production. Wherever the project leads, Bob Byse is on his way. And every skill is at his disposal. Right through full production. And beyond. If there's trouble shooting under dealer warranty three years from now, Bob Byse is still the man we'll call for. That's why no two Mondays ever look alike to Bob Byse and his colleagues at Delco. The question is...can you say the same? Take a good hard look at how your responsibility shapes up, compared with Bob's. In fact, why not discuss it with us. By letter or telephone. Collect. Area Code 317/459-2808.

Contact: Mr. C. D. Longshore, Supervisor, Salaried Employment, Dept. 305, Delco Radio Division of General Motors, Kokomo, Indiana.

DELCO RADIO

AN EQUAL OPPORTUNITY EMPLOYER
DIVISION OF GENERAL MOTORS
KOKOMO, INDIANA

Circle 36 on Inquiry Card (Please Use Home Address on the Card)
Graphic data tablets

A new breed of graphic input devices smooth the man-machine interface

By Robert Patton, Eastern Editor

In a Massachusetts laboratory, a designer doodles on a scratch pad. The ball-point pen in his hand draws a resistor symbol, some strange markings, more symbols, more markings. He glances up at a crt, then—impatiently—crosses out several symbols and replaces them with others. The crudely drawn symbols are followed by more of the seemingly meaningless markings. The result—on the scratchpad—is a mess. But on a scope screen in front of the designer, a complex mask layout for an integrated circuit begins to take shape.

In a New York design office, an engineer traces out a new circuit on an analysis pad. Three thousand miles away a ghostly hand retraces that circuit on a storage scope in the office of a Los Angeles consulting firm. These exemplify just a few of the possible applications of a growing breed of graphic input devices that can take the motions of a stylus and display them on a storage scope, transmit them over telephone lines, or translate them into instructions for a computer. As a class, these graphic data tablets have the ability to convert the position of a stylus on a pad into Cartesian coordinates in digital or analog form.

Design approaches vary from tablet to tablet, but the external characteristics of all are the same. Each incorporates a stylus, a flat writing surface, and the all-important associated electronics that make it work. The operator uses the stylus like a pencil to draw or trace on the writing surface of the tablet, and the equipment furnishes a digital or analog output that is a function of the position of the stylus on the tablet. In some cases, certain positions on the writing surface may be assigned some special significance, and the stylus and tablet may then be used as a keyboard to input specific instructions into a computer. For example, a tablet may have various symbols inscribed on its surface—each representing a distinct command to a computer. When the operator presses the tip of his stylus against any one of these symbols, a contact switch in the probe tip closes, the digital equivalent of the coordinate position of the symbol is fed into the computer, and the command that it represents is executed.

Four contenders in the ring

There are now at least four graphic data tablets on the market. The best-known is the Rand tablet—now commercially manufactured by Bolt Beranek and Newman under the trade name, Grafacon. This is the Rolls Royce of the field, with prices starting at about $9000. The Sylvania data tablet is a somewhat lower priced contender that was introduced at the 1968 Spring Joint Computer Conference. Sales volume has not been particularly large for either of these units, perhaps because of price—or maybe it's the other way around. Whatever the case, prospective data tablet users can now get into the act for less than $3000—thanks to two recent entries into the field.

From Shintron Co., a Cambridge-based manufacturer of television equipment, comes the Ecicon, a remarkably compact, low-cost data tablet. Completely
self-contained in a single 15-lb package, the Ecricon features a data range of 2000 points per second, surpassed only by the much bulkier Grafacon. At $2000, the Ecricon is just a little more than a fifth of the cost of the Grafacon. (It should be added, however, that BB&N feels that the price of the Grafacon could be cut by as much as a factor of five if production levels were to reach a sufficiently high volume.)

The other low-priced entry comes from Science Accessories Corp., a Connecticut supplier of equipment for physics labs. The beauty of the SAC Graf/Pen is the simplicity of its operating principle. Two electrostatic capacitive microphones, constructed of aluminized mylar strips, are positioned along the X and Y axes of the writing surface. Built into the probe is a spark generator that develops fast risetime pulses that are picked up by the microphones. Since the arrival time of a signal at the microphones is a function of the proximity of the signal source in the probe, the tablet produces an output that is a function of the coordinates of the probe on the writing surface.

The SAC Graf/Pen is unique among currently manufactured graphic data tablets in that it does not use the stylus as the sensing element of the system. All the others, the Grafacon, the Ecricon, and the tablet made by Sylvania, apply some sort of voltage or signal to the tablet and use the stylus to pick up coordinate information from the writing surface.

CUTTING “HUMAN COSTS”

It all started some five years ago when the Grafacon, a commercial version of the Rand tablet, was described in a paper given at the 1964 Fall Joint Computer Conference. For the first time, a computer user could input graphic data as simply and naturally as using a pencil.

Dr. Michael Pilla of the Human Factors Group at the Bell Labs facility in Holmdel, N. J., is among those who have been intrigued by the possibilities inherent in this approach. For some time he has been examining graphic data tablets as a means of reducing what he calls “the cost to the human” in the man-machine interface.

According to Dr. Pilla, the advantages of such tablets are many. They do not force the user to conform to the requirements of the machine. He sits as he would at his desk, holds the stylus as he would a pencil, and uses skills that are virtually second nature to him. The only drawback is that while he writes naturally on a tablet at desk height, the message that he inscribes appears at a remote position on an eye-level CRT display. Most users quickly accustom themselves to this and the handicap, if any, is slight. In addition, tablets can provide both hard copy and CRT display.

For computer-aided design the graphic data tablet is a natural. A designer can sit at a desk, sketch a circuit or logic diagram on the tablet, add a few symbols to represent component parameters, and get immediate feedback on theoretical performance from his computer.

The data tablet is more natural to use than a light pen, and eliminates the need for a light-pen tracking program. Also, only the tablet has the ability to trace directly from hard copy and to operate independently of, or remotely from, a display. A light pen cannot function with a storage-scope display and does not begin to offer the degree of positional accuracy possible with a data tablet.

For many applications, however, the light pen is still the way to go. Dr. William Sutherland of BB&N (formerly with MIT’s Lincoln Laboratory) cautions against too quick a comparison of the two approaches. Having used both the Sylvania Data Tablet and the SAC Graf/Pen for computer-aided design of ICs, Dr. Sutherland is familiar with both the strengths and weaknesses of the tablet as an interactive computer input device. As he puts it, “If you just want to position a point, get a light pen, but if you need X-Y coordinate data, use a data tablet.”

Perhaps the biggest advantage of the light pen is the body of software available from large computer manufacturers who offer light pens as part of many of their systems. For the graphic data tablet user, there is a software gap that may not be bridged for some time. But this is not a problem in digitizing applications and it is here that the data tablets offer a competitive advantage.
Shintron's Ecricon, at $2000, is the lowest priced data tablet available. Self-contained in a single 15-lb package, it is also the smallest. The Ecricon graphic tablet consists of the tablet itself, a drive circuit, and a detection circuit. The tablet has a vapor-deposited sensing surface with a resistivity of about 10 kΩ/sq. Around the borders of the tablet are strips with a much lower resistivity on the order of 10 Ω/sq and each corner is an ohmic contact.

To understand the operation, imagine that a voltage applied across the tablet creates a linear electric field parallel to the axes of the sensing surface. A handheld probe then picks up the dimensional coordinate information that is to be transformed into electrical signals. (Since both X and Y fields cannot be energized simultaneously, these coordinates are measured one at a time using a time sequential detection system.)

In actual practice, a 2-kHz square wave is applied alternately to the tablet from top to bottom and from right to left. Its phase varies from 0 to 90 degrees across the tablet in either the X or Y direction and is thus a function of position on the surface. This information modulates a 64-kHz carrier to permit capacitive pickup, efficient coupling, and effective filtering of power line noise. The probe capacitively picks up this high-frequency driving signal (modulated by the 2-kHz information) and feeds it through a length of cable into a preamplifier. After the preamp, an electronic switch synchronously demodulates the 64-kHz signal to obtain a 2-kHz signal that is phase dependent on the coordinates of the stylus. Gated by the X and Y switches, the signals pass through the integrators to produce dc outputs that vary between +5 and −5 volts as a function of stylus position. These voltage levels are then compared to a 4-kHz triangle to form a 4-kHz rectangular wave in which the width of the positive and negative pulses are dependent on stylus position. This comparator output feeds the trigger input of a J-K flipflop to form a 2-kHz square-wave that varies from 0 to 90 degrees in phase as a function of coordinate position. The rising edge of this square wave strobos a scaler into a holding register which then stores the binary value of the measured coordinate.
SAC Graf/Pen boasts a simple tablet that is nothing more than two strip microphones on a writing surface. The unit pictured, a prototype, appears bulky only because it accommodates a large roll of graph paper in its hollow base.

To operate, the Graf/Pen applies high voltage both to the electrostatic capacitive microphones and to the Marx bank (which supplies the voltage required to start a spark at the tip of the stylus). Controlled by the trigger oscillator or by an external computer, the Marx bank fires fast risetime pulses—up to 200 per second—into the spark pen. At the same time the initial trigger sets the binary gates into a "one" state—or passing condition. This puts an enabling voltage on the AND gates, allowing clock pulses into the scalers. The count accumulated by the scalers is now a function of the transit time of the pulse that was emitted by the spark pen and picked up by the microphones. Therefore, the X and Y counts are directly proportional to the X and Y coordinates respectively.

The big advantage of this approach is simplicity; the tablet is essentially nothing more than two strip microphones and a writing surface. In some applications, even the writing surface can be eliminated. For example, the strip microphones can easily be mounted on two sides of a CRT screen and—with the appropriate d-a converter to interface with the scope—the user can "write" directly on the face of the tube.
BB&N's Grafacon is the most sophisticated tablet on the market today. For its somewhat stiff $8950 price tag, Grafacon offers the fastest writing speed available. It is a completely digital system, immune to drift and mechanical wear. Etching of conductors into the working surface of the tablet guarantees absolute accuracy of ±0.05% of full scale and 100 line/inch resolution. In operation, a train of twenty serial pulses, spaced 20 µs apart, is applied to etched capacitive encoders placed around the circumference of the drawing surface. Each pulse is then distributed to a different set of the etched conductors embedded in the surface of the tablet. This results in a distinctive 10-bit, serial, Gray-code pulse train on each conductor (1024 lines per axis).

When a stylus containing a high input impedance amplifier is moved over the working surface of the tablet, it capacitively senses the lines nearest to the stylus tip. Subsequently, the 10-bit pulse train from each axis is converted from Gray code to binary and arranged in a parallel configuration for the output register. An error-checking subsystem (not shown) compares each 20-bit position word with the previous word.

GRAPHIC DATA TABLET COMPARISON CHART

<table>
<thead>
<tr>
<th>Specifications</th>
<th>SAC Graf/Pen</th>
<th>Shintron Eicon</th>
<th>Bolt Beranek and Newman Grafacon</th>
<th>Sylvania Data Tablet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resolution, digital</td>
<td>10 or 11 bits, X and Y</td>
<td>10 bits, X and Y</td>
<td>10 bits, X and Y</td>
<td>12 bits, X and Y</td>
</tr>
<tr>
<td>Resolution, graphic</td>
<td>71 lines/in.</td>
<td>91 lines/in.</td>
<td>100 lines/in.</td>
<td>350 lines/in.</td>
</tr>
<tr>
<td>Accuracy</td>
<td>0.03 in.</td>
<td>0.2% pk-pk</td>
<td>±0.005 in.</td>
<td>0.1 in.</td>
</tr>
<tr>
<td>Data rate</td>
<td>200 points/s, variable</td>
<td>2000 points/s</td>
<td>pen pressure switch:</td>
<td>2000 points/s</td>
</tr>
<tr>
<td>Z-axis capability</td>
<td>2 position pressure switch</td>
<td>no pressure</td>
<td>1) no pressure</td>
<td>pressure switch</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2) light pressure</td>
<td>2) light pressure</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3) writing pressure</td>
<td>3) writing pressure</td>
<td></td>
</tr>
<tr>
<td>Power requirements</td>
<td>105 to 125 V, 50/60 Hz, 40 W</td>
<td>117 V, 60 Hz, 20 W</td>
<td>105 to 125 V, 50/60 Hz, 40 W</td>
<td>105 to 125 V, 60 Hz, 100 W</td>
</tr>
<tr>
<td>Writing surface (in.)</td>
<td>14 x 14</td>
<td>11 x 11</td>
<td>11 x 11</td>
<td>11 x 11</td>
</tr>
<tr>
<td>Analog output</td>
<td>no</td>
<td>1 V pk-pk</td>
<td>optional</td>
<td>+2V to -2V</td>
</tr>
<tr>
<td>Weight (lb)</td>
<td>30: cabinet: 26</td>
<td>42: cabinet: 35</td>
<td>optional</td>
<td>50: cabinet: 35</td>
</tr>
<tr>
<td></td>
<td>cabinet: 4</td>
<td>tablet: 15</td>
<td>10.24 x 10.24 (optional: 20.48 x 20.48)</td>
<td>tablet: 15</td>
</tr>
<tr>
<td></td>
<td>30: cabinet: 36</td>
<td></td>
<td></td>
<td>10.24 x 20.48</td>
</tr>
<tr>
<td>Size (in.)</td>
<td>tablet: 16 x 16 x 1</td>
<td>20-1/8 x 24-1/8 x 1-1/2</td>
<td></td>
<td>16.5 x 20.5 x 3/4</td>
</tr>
<tr>
<td></td>
<td>cabinet: 19 x 3-1/2 x 12-5/8</td>
<td>writing surface</td>
<td></td>
<td>cabinet: 17 x 18.5 x 7</td>
</tr>
<tr>
<td>Hard copy capability</td>
<td>ball-point cartridge in probe</td>
<td>ball point cartridge in probe</td>
<td></td>
<td>ball-point cartridge in probe</td>
</tr>
<tr>
<td>Price ($)</td>
<td>2800</td>
<td>1000</td>
<td>8950</td>
<td>6875</td>
</tr>
</tbody>
</table>

The Electronic Engineer • Nov. 1969
Sylvania's Data Tablet, unlike the Grafacon, is an analog system. Its writing surface consists of a slice of thin, transparent, conductive film, sandwiched between two sheets of glass.

In operation a drive network applies signals at discrete points around the circumference of the writing surface. This establishes what may be considered as a travelling wave parallel to each axis. The phase of this wave is a linear function of its position on the writing surface.

The future of data tablets

The fullest potential of graphic data tablets has not yet been realized. For one thing, no body of computer software exists for data tablets to nearly the extent that it does for use with light pens. Until recently, at least one other factor conspiring against wider use of tablets has been their high price. With the introduction of the above-mentioned low-cost tablets, this picture may change. If it does, the expansion of the market may influence the established manufacturers to follow suit by cutting their prices somewhat. But be careful about comparing inexpensive systems like the SAC Graf/Pen or the Shintron Ecricon with a system such as the Grafacon. The Grafacon is a sophisticated instrument with a high level of performance and a wide variety of options. To expect it to be directly cost-competitive with the new, low-priced tablets is somewhat like comparing a Cadillac with a Chevrolet on the basis of price.

References

For further information on the manufacturers and their products, circle the following numbers on the Inquiry Card:
Bolt Beranek and Newman Circle number 201
Science Accessories Corp Circle number 202
Shintron Company Inc Circle number 203
Sylvania Electronic Systems Circle number 204

Information Retrieval
Computers and peripherals
Data acquisition and processing
Circuit design

The Electronic Engineer • Nov. 1969
Give your designs the flexibility of these newest RCA "Building Blocks"

Box full of linear circuit "building blocks"—Your RCA Distributor has QK2202, RCA's linear circuits sampler containing 10 types of circuits (23 devices). Here's thorough documentation—virtually everything you need to sharpen your circuit ingenuity using linear "building blocks." The QK2202 is available at $37.95 (optional distributor resale price). Get yours today.

Ask your local RCA Representative or your RCA Distributor for full details. For specific product data, write RCA Electronic Components, Commercial Engineering, Section IC-11, Harrison, N. J. 07029.

Integrated Circuits

4 AC Amplifiers in a Package
Four independent AC amplifiers with 53 dB (min.) voltage gain per amplifier @ 10 kHz, for use to 300 kHz. For low-noise and general AC applications in industrial service.

DC to 200 MHz Dual Diff Amp
Dual independent diff amps for low-power applications. Power gain 23 dB (typ.) @ 200 MHz; noise figure 4.5 dB (typ.) at 200 MHz. Wide application potential over the full military temperature range.

Darlington-Connected Dual Differential Amplifier
Two Darlington-connected diff amps with diode bias string for low-power applications from DC to 20 MHz. CA3050 for full military temperature range; CA3051 for -25 °C to +85 °C operation. Both feature high impedance input, low bias current, low offset current.

Economy Multi-Purpose Linear IC
New economy linear IC combining performance and versatility—at a new low in cost. 40 dB (typ.) cascode voltage gain @ 10.7 MHz, 30 dB (typ.) differential voltage gain @ 10.7 MHz. Recommended for IF and general-purpose applications. 6- or 12-V operation.

120 MHz Dual Diff Amp in 14-lead DIP
Matched diff amps with independently accessible inputs and outputs. Max. input offset voltage = 5 mV; max. collector current = 50 mA. Forward current transfer ratio (hfe) (typ.) = 110. For 0 ° to 85 °C operation. Also available as CA3026 in TO-5 package for full military temperature range.

All prices 1,000 unit level.
Nomographs simplify phased array design

Here are three nomographs that can help you design phased antenna arrays with individual solid-state power generators.

By Chester W. Young, Program Planning Manager
Walter V. Sterling, Inc., Claremont, Calif.

In his article “Solid state designs for phased arrays” (EE, Sept. 1967, pp. 42-45), G. R. Brainerd set forth design guidelines for phased antenna arrays. This started me working on a set of nomographs that would simplify the application of those guidelines. The results of that work are the three nomographs presented here. Along with a description of each nomograph is an example of its use in a design. This sample problem is followed through all the nomographs.

Antenna half-power beamwidth nomograph

The physical constraints of wavelength, antenna beamwidth, and aperture size are usually the first considerations of the system designer. This nomograph combines these parameters using the equation:

\[\theta = \frac{51 \lambda}{a} \]

where:
- \(\theta \) = antenna beamwidth in degrees
- \(\lambda \) = rf carrier wavelength
- \(a \) = length of one side of a square aperture

The left-hand scale of the nomograph is calibrated in both half-power beamwidth degrees and aperture length in wavelengths, since these are inseparable. The center scale is dually calibrated in rf carrier frequency and wavelength in feet, since most arrays are usually measured in feet.

Example. Let’s assume values of:
- \(f \) = 1000 MHz
- \(a \) = 10 ft

If we draw a straight line joining these two values and extend the line to the left, we find that the beamwidth will be 5.1°.

Power developed and radiated nomograph

This nomograph is actually three nomographs side-by-side. It determines the parameters which solid-state generators must meet to fulfill the total power requirements of the antenna.

The left three scales

The three left-hand scales solve the equation:

\[X = \frac{2a}{\lambda} \]

where:
- \(X \) = number of elements on the side of a square array
- \(a \) = aperture length in feet
- \(\lambda \) = rf wavelength in feet

Since each radiator will be a half wavelength, there will be twice as many radiating elements as the side is long in wavelengths.

Example. Assuming values consistent with the first example:
- \(\lambda = 1 \) ft
- \(a = 10 \) ft

we connect these points with a straight line and extend it to the right to the \(X \) scale, and find there are 20 elements on a side.

The center three

The right-hand side of the \(X \) scale is calibrated in \(X^2 \) values. The two scales are independent. The three center scales—\(X^2, P_1, \) and \(P_1 \)—solve the equation:

\[P_1 = \frac{P_1}{X^2} \]

where:
- \(P_1 \) = pulse power required per element
- \(P_1 \) = total output peak power per pulse required
- \(X^2 \) = total number of radiating elements available
Antenna Half-Power Beamwidth

<table>
<thead>
<tr>
<th>Wavelengths</th>
<th>Aperature Length (Feet)</th>
<th>Half-Power Beamwidth (Degrees)</th>
<th>Frequency (MHz)</th>
<th>Wavelength (Feet)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>50</td>
<td>10</td>
<td>100</td>
<td>10</td>
</tr>
<tr>
<td>7</td>
<td>40</td>
<td>7</td>
<td>200</td>
<td>5</td>
</tr>
<tr>
<td>10</td>
<td>30</td>
<td>5</td>
<td>300</td>
<td>3</td>
</tr>
<tr>
<td>20</td>
<td>20</td>
<td>4</td>
<td>500</td>
<td>2</td>
</tr>
<tr>
<td>30</td>
<td>20</td>
<td>3</td>
<td>1000</td>
<td>1</td>
</tr>
<tr>
<td>50</td>
<td>10</td>
<td>2</td>
<td>2000</td>
<td>0.5</td>
</tr>
<tr>
<td>70</td>
<td>5</td>
<td>1</td>
<td>3000</td>
<td>0.3</td>
</tr>
<tr>
<td>100</td>
<td>4</td>
<td>0.7</td>
<td>5000</td>
<td>0.2</td>
</tr>
<tr>
<td>200</td>
<td>3</td>
<td>0.5</td>
<td>10 GHz</td>
<td>0.1</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0.4</td>
<td>20 GHz</td>
<td>0.05</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0.3</td>
<td>30 GHz</td>
<td>0.03</td>
</tr>
<tr>
<td></td>
<td>0.5</td>
<td>0.2</td>
<td>50 GHz</td>
<td>0.02</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0.1</td>
<td>100 GHz</td>
<td>0.01</td>
</tr>
</tbody>
</table>

The Electronic Engineer • Nov. 1969
Power Developed and Radiated

<table>
<thead>
<tr>
<th>Wavelength</th>
<th>Aperature Length</th>
<th>Elements Per Side</th>
<th>Total Elements x^2</th>
<th>Total Peak Power P_t</th>
<th>Pulse Power Per Element P_i</th>
<th>Pulse Compression Ratio PCR</th>
<th>Peak Power Per Element P_e</th>
</tr>
</thead>
<tbody>
<tr>
<td>λ Feet</td>
<td>a Feet</td>
<td>Elements x2</td>
<td>Elements</td>
<td>KW</td>
<td>Watts</td>
<td>X:1</td>
<td>Watts</td>
</tr>
<tr>
<td>10</td>
<td>500</td>
<td>100</td>
<td>10,000</td>
<td>10,000</td>
<td>1000</td>
<td>1000</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>200</td>
<td>50</td>
<td>5000</td>
<td>5000</td>
<td>500</td>
<td>500</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>100</td>
<td>30</td>
<td>3000</td>
<td>3000</td>
<td>300</td>
<td>300</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>50</td>
<td>20</td>
<td>2000</td>
<td>2000</td>
<td>200</td>
<td>200</td>
<td>5</td>
</tr>
<tr>
<td>1</td>
<td>20</td>
<td>10</td>
<td>1000</td>
<td>1000</td>
<td>100</td>
<td>100</td>
<td>10</td>
</tr>
<tr>
<td>0.5</td>
<td>10</td>
<td>5</td>
<td>500</td>
<td>500</td>
<td>50</td>
<td>50</td>
<td>5</td>
</tr>
<tr>
<td>0.3</td>
<td>5</td>
<td>5</td>
<td>50</td>
<td>50</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>0.2</td>
<td>3</td>
<td>3</td>
<td>30</td>
<td>30</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>0.1</td>
<td>2</td>
<td>2</td>
<td>20</td>
<td>20</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>0.05</td>
<td>1</td>
<td>1</td>
<td>1000</td>
<td>1000</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
</tbody>
</table>

The Electronic Engineer • Nov. 1969

59
Array Power Cost

<table>
<thead>
<tr>
<th>Total Elements</th>
<th>Total Peak Power (PW)</th>
<th>Total Array Cost of Generators (St)</th>
<th>Dollars</th>
<th>Cost Per Element (Se)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10K x2 Elements</td>
<td>1000</td>
<td>100M</td>
<td>100.00</td>
<td>10K</td>
</tr>
<tr>
<td>5K</td>
<td>500</td>
<td>50M</td>
<td>50.00</td>
<td>5K</td>
</tr>
<tr>
<td>3K</td>
<td>300</td>
<td>10M</td>
<td>30.00</td>
<td>3K</td>
</tr>
<tr>
<td>2K</td>
<td>200</td>
<td>5M</td>
<td>20.00</td>
<td>2K</td>
</tr>
<tr>
<td>1000</td>
<td>100</td>
<td>1M</td>
<td>10.00</td>
<td>1K</td>
</tr>
<tr>
<td>500K</td>
<td>500</td>
<td>20K</td>
<td>2.00</td>
<td>20K</td>
</tr>
<tr>
<td>200K</td>
<td>200</td>
<td>10K</td>
<td>1.00</td>
<td>10K</td>
</tr>
<tr>
<td>100K</td>
<td>100</td>
<td>5K</td>
<td>0.50</td>
<td>5K</td>
</tr>
<tr>
<td>50K</td>
<td>50</td>
<td>2K</td>
<td>0.30</td>
<td>2K</td>
</tr>
<tr>
<td>20K</td>
<td>20</td>
<td>1K</td>
<td>0.20</td>
<td>1K</td>
</tr>
<tr>
<td>10K</td>
<td>10</td>
<td>5000</td>
<td>0.10</td>
<td>5000</td>
</tr>
<tr>
<td>100</td>
<td>100</td>
<td>200</td>
<td>0.02</td>
<td>200</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1000</td>
<td>0.00</td>
<td>1000</td>
</tr>
</tbody>
</table>

The Electronic Engineer • Nov. 1969
Example. If we continue our problem where we found 20 elements on the side of our array, we calculate our head or on a slide rule that \(20^2 = 400 \) and enter this value on the \(X^2 \) scale. Now, if we assume a 40-kW peak power output required for the array, we join these values on the \(X^2 \) and \(P_t \) scales and extend the line to the right—finding that the pulse power per element must be 100 W.

The right three

Since most power generators are peak power limited, these three scales determine the pulse compression ratio needed to accomplish the design. The scales cover the equation:

\[
PCR = \frac{P_t}{P_s}
\]

Example. Continuing our problem of 100 W/element and assuming a \(P_s \), or peak power per element of 5 W, we join these two values with a straight line and find that we need a pulse compression ratio of 20:1.

Array power cost nomograph

Of particular interest to the program manager or system designer are the cost tradeoffs in the proposed design. This nomograph is really two nomographs in one with the center scale common to the pair of outside scales and the pair of inside scales. The outside scales and the center scale solve the equation:

\[
\frac{S_e}{X^2} = \frac{S_t}{P_t}
\]

where:
- \(S_e \) = cost per solid state generating element
- \(S_t \) = total cost of array generators
- \(X^2 \) = total number of array elements

The inside scales and the center scale solve the equation:

\[
\frac{S_e}{W} = \frac{S_t}{P_t}
\]

where:
- \(S_e/W \) = normalized dollars per watt comparison figure of merit
- \(S_t \) = total cost of array generators
- \(P_t \) = peak power output required

Example concluded

Outer scales. If we try to meet a $20,000 per array cost for the solid state power generators and we have an \(X^2 \) of 400 elements, the cost per element must be $50 or less (dashed line).

Inner scales. Using our 40 kW of peak power and $20,000, we see that this averages $0.50 per watt (solid line). By reworking the problem with other assumed PCRs and element characteristics through all of the nomographs, we can minimize the cost per watt for a given state of the art.

FOR ELECTRONIC ENGINEERS
ON THE WAY UP...
A Course in
PROJECT MANAGEMENT

This Project Management course appeared originally in The Electronic Engineer and was devised for the engineer who wants to grow in his job and to help assure this the course was developed in collaboration with Booz, Allen and Hamilton, one of the largest management consulting firms in the world. Their experience includes the development of project plans and control systems for over 1,000 projects involving the expenditure of many billions of dollars.

What it does for you

Project Management is a relatively new discipline in the field of management sciences. And the course emphasizes the methods used to reach an objective while remaining within the prescribed product specifications, budget and schedule. It also helps the individual electronic engineer or manager to increase his personal skills, sharpen his capability and broaden his understanding of project management problems, both large and small. And, it shows you how to achieve certain specified results at a particular point in time. It can make you more valuable to your employer.

The 5 part course costs just $3.00 and includes a test paper for your use. All those passing the examination will receive a Certificate of Completion that is suitable for framing. Why not put this course to work for you now? Fill out and mail the coupon below. Your course will be sent to you promptly. Send your order to The Electronic Engineer, Chestnut and 56th Streets Philadelphia, Pennsylvania 19139.

Yes, I want to take advantage of your Project Management course. Send me ___ complete course(s) for only $3.00 each. Check, cash or money order is enclosed. Send the course to:

Name_________________________Company___________________
Address______________________City____________State__________Zip__________

Send me special quantity prices □
Tune in with a new N-path filter

By turning lowpass networks into bandpass filters, the N-path principle finds itself in the middle of a new a-m/fm receiver.

By Erik Langer, Siemens Aktiengesellschaft, West Germany

Filter networks have been the nemesis of designers trying to integrate receiver circuits. The problems of tolerances and stability usually require solutions beyond technological and economic feasibility, hence attempts to use conventional N-path filters have been unsuccessful. They need a great many components to obtain transfer functions with more than two poles since this requires a lowpass filter with complex poles in each of the N paths. Moreover, the need for all paths to be identical imposes tight tolerances that cannot be easily satisfied.

As an alternative, a new type of N-path filter with two pairs of complex poles in the transfer function—one that has a simple configuration and is not critical with respect to tolerances—is described here.

The new filter

A second-order filter is, of course, the principal functional unit for the synthesis of selective networks for communications equipment. In this case let’s start with an active lowpass RC filter network whose transfer function exhibits a single complex pair of poles (see Fig. 1). It includes two cascaded lowpass filters of first order arranged in the feedback loop of an operational amplifier. By replacing the capacitors with switched triplets of capacitors, you can convert this configuration into a variable-time filter of N-path character.

The transfer function $F_S(s)$ of the new N-path filter may be determined from the transfer function $F(s)$ of the lowpass filter shown in Fig. 1.

$$F(s) = \frac{V_o(s)}{E_i(s)} = \frac{-R_k}{R_s + R_k + R_k}$$

$$(1)$$

where

$$G_1(s) = \frac{V_1(s)}{V_i(s)} = \frac{1}{1 + sR_1C_1}, \quad G_2(s) = \frac{V_2(s)}{V_i(s)} = \frac{1}{1 + sR_2C_2}$$

This circuit differs from known active lowpass RC filter circuits only in the addition of the buffer amplifier A_2 which allows the op amp A_1 to be inserted between the two RC networks R_1C_1 and R_2C_2. This measure improves the slope of the filter and is useful for the variable-time modification that now follows.

If, as already stated, the two RC networks with the transfer functions G_1 and G_2 are replaced by first-order parallel switch N-path filters (see boxed information), a lowpass to bandpass transformation will take place in line with the laws of N-path filter theory.

Replacing

$$G(s) = \frac{1}{1 + sRC}$$

with

$$G(s) = \frac{\sin^2 \left(\frac{\pi}{N} \right)}{\left(\frac{\pi}{N} \right)^2} \left[1 + \left(s - j\omega \right) NRC \right]$$

and entering two such functions in equation (1) we obtain, after a few transformations, the transfer function of a second-order bandpass filter shown in Fig. 2:
The facts about N-path filters

N-path filters are inductorless units that function on a time-division multiplex principle. This means that \(N \) successive identical channels or paths are cyclically cut into the signal path. Such networks are said to have a variable-time character. If a lowpass element with transfer function \(H(j\omega) \) is present in each of these paths, the cyclical switching process causes a lowpass to bandpass transformation. The resulting transfer characteristic is symmetrical with respect to the switching frequency, \(\omega_0 \).

![Underlying principle of N-path filter (N=3)](image)

In particular, if each of the lowpass elements has only a single real pole point, then the corresponding bandpass element will have a single pair of complex conjugate poles. Analogously, each pair of complex conjugate poles in the lowpass elements will lead to a bandpass element with twice as many pairs of poles.

![Lowpass-to-bandpass transformation](image)

Networks in which the lowpass elements consist of only one resistor and one capacitor are of special practical interest. If commutating switches are replaced by electronic devices such as gate circuits with floating inputs and outputs, and the switching periods of these gates are mutually offset by the phase angle \(2\pi/N \), a configuration composed of \(2N \) gates and \(N \) lowpass elements is obtained.

![First-order, parallel-switch filter](image)

The transfer function of this N-path filter then has the form

\[
G(j\omega) = \sin^2 \left(\frac{\pi}{N} \right) \left[H(j\omega - j\omega_0) + H(j\omega + j\omega_0) \right] \frac{\pi}{N}
\]

While the midband frequency, \(\omega_0 \), depends solely on the switching frequency, the selectivity, like the bandwidth, of the N-path filter is determined by the lowpass elements \(H(j\omega) \). As a result, N-path filters have a low sensitivity to tolerances.
The denominator polynomial of this function has two conjugate complex roots as soon as the requirement

\[(s_0 - j\omega)^2 N^2R_1C_1R_2C_2 + (s_0 - j\omega) N (R_1C_1 + R_2C_2) + 1 + \frac{a_1k^2R_s}{R_s + R_k} = 0\]

is satisfied. Figure 3 shows the pole distribution in the complex plane of the transition from the lowpass filter network to the bandpass of second order.

The location of the poles of such a filter can be controlled by the gain \(a_1\) and the ratio \(R_s/R_k\). A quantitative analysis shows that a voltage gain of 20 to 40 dB suffices for practical requirements. This can be realized with relatively simple circuitry, but you must pay attention to the phase shift of the amplifier in the switching frequency band. Due to the variable-time character of the network, the amplifier must not have any delay or storage effects, or the rf response and overall gain will deteriorate.

If you cascade another simple N-path section as shown in Fig. 4, you get a third-order bandpass filter with a response curve that is flat in the middle.

Since the active portion of the circuit is common to all paths, parameter deviations in the operational amplifier do not affect the inherent filter noise or the center frequency. Also, placing the op amp between the keyed networks not only ensures a sharper selectivity curve, but also improves the signal-to-noise ratio.

Controlling the bandwidth

By varying \(R_1\) and \(R_2\) you can readily control the bandwidth of the filter and achieve a ratio of 1:10. For larger ratios, the capacitors must be switched as well. This feature may be used to advantage to fit the filter curve either manually or automatically to the given transfer requirements as in a receiver i-f section.

A suitable bandwidth switching circuit (See Fig. 5) may be used, for instance, to tune the receiver exactly to midband for fm. Since in an integrated receiver the otherwise conventional ratio detector is replaced by an inductorless demodulator circuit, there is no suitable tuning criterion. In the new N-path filter circuit, the transfer curve of the filter may first be adjusted during tuning to a narrow bandwidth and afterwards automatically switched to the specified value when the proper tuning position is reached.

Similarly, you can also improve a-m tuning accuracy by synchronizing the N-path filter in a practical manner with the desired signal. Since the locking range usually exceeds the pull-in range by a factor of 2 in flywheel synchronization circuits, the assurance of maintaining synchronism during temperature cycling and operating voltage fluctuations is seldom very great. However, if the bandwidth of the receiver is made narrow enough during tuning and increased to full channel width as soon as the switching pulse generator of the N-path filter is synchronized, a safety margin of from 3 to 5 results. This is shown in Fig. 6.

Another practical feature of the N-path filter is its converter function. The filter operates as a selective frequency converter if

\[f_{in} = n f_0\]

where \(f_0 = \) switching frequency

and \(n = 1, 2, 3, \ldots\)

but \(n \neq N, 2N, 3N, \ldots\)

The Electronic Engineer • Nov. 1969
Fig. 4: Third-order N-path filter. This is the basis for a new IF filter. The response curve for this filter is flatter than that of the second-order filter. All capacitors can be controlled by a single generator.

Fig. 5: By using this bandwidth switching circuit you can vary the filter bandwidth by 1:10. By switching the capacitors as well, larger ratios can be achieved.

Fig. 6: Changing the bandwidth of the filter during tuning to pull-in a precise frequency allows synchronization of the switching pulse generator with the signal frequency. Then, the filter is switched to full channel bandwidth and remains locked at that frequency.

Fig. 7: This a-m/fm integrated receiver is built around a third-order N-path filter in the IF section. Synchronization of the impulse generator with the IF signal eliminates switching noise in a-m reception and assures precise automatic frequency control. Electronic bandwidth switching and frequency conversion allow the use of the same N-path filter for both a-m and fm without changing the switching frequency. The simple automatic bandwidth switching system supplies suitable stop signals for an automatic station seeker and improves AFC stability.
The output frequency may then be chosen arbitrarily within the ranges

\[f_{\text{out}} = m f_{0} \quad \text{where} \quad m = 1, 2, 3, \ldots \]

\[\text{but} \quad m \neq N, 2N, 3N, \ldots \]

Thus, you can use the circuit with the same switching frequency for various frequency bands.

An integrated receiver concept

This inductorless filter satisfies the key requirements for designing a new and highly practical a-m/fm radio with integrated i-f amplifier and demodulators (see Fig. 7).

When designing the radio circuits, pay particular attention to the N-phase pulse generator, since the prime causes of switching noise are the phase and amplitude inequalities of the switching pulses. The best realization of this unit as yet is an integrated solid-state shift register composed of flip-flops.

Mathematical analysis has shown that the signal-to-noise ratio cannot be improved by increasing the signal voltage; and although the switching noise can be eliminated by synchronizing the switching frequency with the signal, a certain minimum unsynchronized signal-to-noise ratio must be attained or problems will arise in the synchronizing circuit.

These requirements are much less stringent than with other synthesis methods for inductorless filters of comparable selectivity, especially over the broad frequency range up to 10 MHz.

An experimental prototype of a receiver based on this philosophy was built with a bandwidth of 6 kHz for a-m and 200 kHz for fm, and an adjacent-channel selectivity of better than 46 dB. The signal-to-noise ratio of the N-path filter in its non-synchronized state is about 30 dB. During synchronization, however, the switching noise is eliminated, and the channel noise depends mostly on the front end of the receiver. The temperature effects are extremely slight and mainly affect the switching pulse generator. A stability of \(\pm 500 \text{ Hz} \) has been attained (in the temperature range of \(0^\circ-50^\circ \text{C} \)) by using a timer composed of RC oscillators and a regulated power supply unit. With diode-tuned front end sections for a-m and fm reception and a digital discriminator, this N-path filter leads to a completely new concept for radio receivers and makes possible an unusually high degree of integration.

References

INFORMATION RETRIEVAL
Integrated circuits, Passive components, Circuit design, Communications

RUBBERIZED ABRASIVES
DEBURR SM-O-O-TH POLISH

COMPLETE KIT $750
CONTENTS: 8 tapered edge wheels \(\frac{1}{16}'' \times \frac{1}{4}'' \); 16 cylinder points \(\frac{1}{16}'' \times \frac{1}{2}'' \) long; 16 bullet points \(\frac{1}{8}'' \) dia. \(\times \) 1'' long; 8 bullet points \(\frac{1}{8}'' \) dia. \(\times \frac{1}{2}'' \) long; 8 straight wheels \(\frac{1}{2}'' \times \frac{1}{4}'' \times \frac{1}{16}'' \) hole; 16 straight wheels \(\frac{1}{8}'' \times \frac{1}{2}'' \times \frac{1}{16}'' \) hole; 8 straight wheels 1'' x \(\frac{1}{4}'' \) x \(\frac{1}{16}'' \) hole; 2 wheel mandrels \(\frac{1}{4}'' \) shank; 2 point mandrels \(\frac{1}{8}'' \) shank. For use at speeds up to 25,000 RPM.

$7.50 BUYS IT ALL — 80 piece introductory Kit 777 equally assorted in 4 grit textures: coarse, medium, fine and extra fine. TRY IT — Cratex Rubberized Abrasives improve the surface while preserving critical workpiece dimensions by its unique cushioning action. FINISH THE JOB — to your most exacting specifications — often in a single operation. SEND FOR KIT 777 — or your FREE SAMPLE and catalog illustrating the full Cratex product line and its applications.

66 Circle 38 on Inquiry Card
The World's Most Advanced All-Solid-State VOM "601"

It’s the first of its kind. Triplett’s creative engineering has gone and done it. It has designed and engineered an entirely new concept in All-Solid-State VOM’s for fast in-circuit testing of electronic and electrical applications. It has built the new portable Model 601 with Field Effect Transistorized circuitry, push-button and battery operation and with 11 Megohm Input Resistance on all AC-DC voltage ranges. It’s ideal for testing IC’s, making audio measurements, and usable with Frequencies to 50 KHz.

1. 14 Ohmmeter ranges with 7 Low-Power ranges at 75 mV DC for transistorized and Integrated Circuits.
2. Voltage ranges from 10 mV AC and 100 mV DC full scale; plus AC and DC Current ranges from 10 uA full scale.
3. Modern, easy-to-use push-button selection of DC Polarity, AC and Low-Power Ohms functions.

See this new, All-Solid-State (F-E-T) VOM at your local Triplett distributor and you’ll be Testing 1 . . . 2 . . . 3

Model 601 (F-E-T) VOM

$150

Suggested U. S. A. User Net

The Triplette Electrical Instrument Company
Bluffton, Ohio 45817

Circle 39 on Inquiry Card
increase ic yield

Coors Porcelain Company
Golden, Colorado 80401
DVM specs compared

Take a quick look, they change rapidly.

Stephen A. Thompson, Western Editor

Anyone who has tried to compare the specs of digital voltmeters lately knows what a difficult task it is. The number of units available is large, as are the features to be compared.

The DVM is becoming a mature instrument, that is, extensions of performance are slow to evolve now. Most manufacturers are pushing the specs out to all the stops, and in many areas there are almost no differences worth mentioning.

The wide range of prices for DVMs tempts one to try to relate individual specs to cost. Often, however, several meters of various prices offer comparable performance. If one such spec was the sole basis for selection, the decision would be easy—buy the cheapest DVM.

Most applications, however, require some combination of specs, and the evaluation on that basis soon becomes a real problem. What is needed is an n-dimensional plot, so that each instrument could be compared in its totality to other instruments. Failing this, a handy formula that would weight the various specs and yield a DVM rating factor would be helpful. The difficulty is that no two users have the same needs, and each would assign different weighting factors for each spec.

Therefore, the first step in evaluating DVMs is to define the task it must perform. Then the user can make meaningful comparisons.

How to select a DVM

The DVM charts and tables on the following pages classify DVMs by the number of full digits. Since the user of a 3-digit DVM has different needs than one using a 5-digit DVM, we have listed those features that take on more importance as a function of the number of digits.

The tables include information on overrange capability, common-mode and normal-mode noise rejection near 60 Hz, dc and ac measuring speed, and sensitivity. Measuring speeds include amplifier settling times and worst case filtering when applicable. Measuring speed reflects the time for a response to a step input. Many of the instruments listed will sample at much higher rates.

3-digit DVMs

<table>
<thead>
<tr>
<th>MANUFACTURER</th>
<th>MODEL NUMBER</th>
<th>NO. OF RANGES</th>
<th>OVERRANGE (%)</th>
<th>DC Vols & mV</th>
<th>AC Vols</th>
<th>AC Current</th>
<th>DC Current</th>
<th>TOTAL</th>
<th>FEATURES</th>
<th>PERFORMANCE</th>
<th>PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 United Systems</td>
<td>Digitec 211</td>
<td>50</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>1/4</td>
<td>1/4</td>
<td>25</td>
<td>X</td>
<td>80 50 4.0</td>
</tr>
<tr>
<td>2 Honeywell</td>
<td>Digitest 500</td>
<td>100</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>1/4</td>
<td>1/4</td>
<td>25</td>
<td>X</td>
<td>100 30 2.0</td>
</tr>
<tr>
<td>3 Preston</td>
<td>722B</td>
<td>100</td>
<td>4</td>
<td>4</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>120 45 0.1</td>
</tr>
<tr>
<td>4 Honeywell</td>
<td>Digitest 333</td>
<td>20</td>
<td>5</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>23</td>
<td></td>
<td></td>
<td>X</td>
<td>100 20 2.0</td>
</tr>
<tr>
<td>5 Honeywell</td>
<td>Digitest 333R</td>
<td>20</td>
<td>5</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>23</td>
<td></td>
<td></td>
<td>X</td>
<td>100 20 2.0</td>
</tr>
<tr>
<td>6 Digilin</td>
<td>340</td>
<td>100</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>23</td>
<td></td>
<td></td>
<td>X</td>
<td>100 30 0.2</td>
</tr>
<tr>
<td>7 Data Technology</td>
<td>361/3618</td>
<td>ND</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>100 40 0.1</td>
</tr>
<tr>
<td>8 Dynasciences</td>
<td>330</td>
<td>20</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>18</td>
<td></td>
<td></td>
<td>X</td>
<td>80 40 0.1</td>
</tr>
<tr>
<td>9 Estorade</td>
<td>1810</td>
<td>100</td>
<td>5</td>
<td>6</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 Systron-Donner</td>
<td>7050</td>
<td>50</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>60 40 5.0</td>
</tr>
<tr>
<td>11 United Systems</td>
<td>Digitec 262</td>
<td>100</td>
<td>5</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>19</td>
<td></td>
<td></td>
<td>X</td>
<td>100 35 0.7</td>
</tr>
<tr>
<td>12 Hickok</td>
<td>DMS 3200</td>
<td>1300</td>
<td>6</td>
<td>6</td>
<td>9</td>
<td>8</td>
<td>58</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>13 Data Technology</td>
<td>360/3608</td>
<td>100</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>14 Preston</td>
<td>722C</td>
<td>100</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>120 45 0.1</td>
</tr>
<tr>
<td>15 Systron-Donner</td>
<td>9015</td>
<td>50</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>80 30 0.25</td>
</tr>
<tr>
<td>16 Systron-Donner</td>
<td>9025</td>
<td>50</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>80 30 0.25</td>
</tr>
<tr>
<td>17 Practical Automation</td>
<td>PDM-611</td>
<td>100</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>80 35 0.3</td>
</tr>
<tr>
<td>18 Hewlett-Packard</td>
<td>3430A</td>
<td>60</td>
<td>5</td>
<td>5</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>90 40 0.5</td>
</tr>
<tr>
<td>19 Non-Linear Systems</td>
<td>X3-A</td>
<td>100</td>
<td>6/2</td>
<td>3</td>
<td>9</td>
<td>9</td>
<td>29</td>
<td></td>
<td></td>
<td>X</td>
<td>106 60 0.3</td>
</tr>
<tr>
<td>20 Simpson</td>
<td>2701</td>
<td>0</td>
<td>6</td>
<td>6</td>
<td>7</td>
<td>9</td>
<td>37</td>
<td></td>
<td></td>
<td>X</td>
<td>120 40 1.0</td>
</tr>
<tr>
<td>21 Pacific Measurements</td>
<td>1010</td>
<td>100</td>
<td>4</td>
<td>1</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>N/A N/A 1.0</td>
</tr>
</tbody>
</table>

(1) Includes amplifier settling time.
(2) Includes amplifier settling time and full filtering, where applicable.
(3) A printer is included as part of the instrument.
(4) Display is in linear, dBm, or dB units.
(5) Includes 10 capacitance, 7 frequency, 6 period and 6 time interval ranges.

ND indicates no data is available N/A indicates not applicable Color indicates an option.
which is very important in some systems applications.

The sensitivity spec tells you the lowest signal that can be measured on the lowest range of the meter. Most DVMs measure up to 1000 V on the highest scale. The fully loaded prices include at least those items that are listed as optional in the table. In many cases other features are also included, but a tabulation of all of them could fill this magazine.

The simple traits of 3-digit DVMs

Three-digit models are usually made as multimeters, and are used in the same way as analog multimeters. They have a large number of ranges included for the base price, and not many options. They are not systems

<table>
<thead>
<tr>
<th>MANUFACTURER</th>
<th>MODEL NUMBER</th>
<th>NO. OF RANGES</th>
<th>PERFORMANCE</th>
<th>PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Heath</td>
<td>EU-805A</td>
<td>6 12 4 4 4</td>
<td>4</td>
<td>ND</td>
</tr>
<tr>
<td>2 Dornic</td>
<td>DS-100 R3-KS</td>
<td>5 0 4 4 4 12</td>
<td>0.01 0.01</td>
<td>2321</td>
</tr>
<tr>
<td>3 Fluke</td>
<td>8300A</td>
<td>5 20 3/2 4 5</td>
<td>6 31</td>
<td>0.01 0.003</td>
</tr>
<tr>
<td>4 Dana</td>
<td>5200</td>
<td>5 20 4 4 4 41</td>
<td>0.01 0.005</td>
<td>25/11</td>
</tr>
<tr>
<td>5 Dornic</td>
<td>DS-100 T2</td>
<td>5 0 1 2 3</td>
<td>0.006 0.006</td>
<td>23/11</td>
</tr>
<tr>
<td>6 Dornic</td>
<td>DS-100RS-K6</td>
<td>5 0 6 6 6 18</td>
<td>0.01 0.01</td>
<td>23/11</td>
</tr>
<tr>
<td>7 Vidar</td>
<td>501</td>
<td>5 300 4 7 12</td>
<td>0.017 0.017</td>
<td>23/11</td>
</tr>
<tr>
<td>8 Data Technology</td>
<td>X-1</td>
<td>5 20 3/2 4 5</td>
<td>17</td>
<td>0.006 0.008 31119 0.003 140 76 0.016 0.6 0.1</td>
</tr>
<tr>
<td>9 Non-Linear Systems</td>
<td>6753</td>
<td>5 10 4/2 4 5 4 19</td>
<td>0.016 0.0026</td>
<td>25/15</td>
</tr>
<tr>
<td>10 Cimron</td>
<td>5500</td>
<td>5 10 3/2 4 7 3 19</td>
<td>0.008 0.001</td>
<td>25/11</td>
</tr>
<tr>
<td>11 Dana</td>
<td>502</td>
<td>5 300 4 1 7 12</td>
<td>0.0175 0.0175</td>
<td>25/11</td>
</tr>
<tr>
<td>12 Vidar</td>
<td>3450A</td>
<td>5 20 5 4 6 4 19</td>
<td>0.008 0.004</td>
<td>25/5</td>
</tr>
<tr>
<td>13 Hewlett-Packard</td>
<td>7200</td>
<td>5 20 4 4 5 1 14</td>
<td>0.005 0.003</td>
<td>ND</td>
</tr>
<tr>
<td>14 Systrom-Donner</td>
<td>85</td>
<td>5 0 4/1 4 5 3 17</td>
<td>0.0086 0.00096</td>
<td>26/14 ND</td>
</tr>
<tr>
<td>15 Greibach</td>
<td>34060/3441A</td>
<td>5 20 4/1 4 5 14</td>
<td>0.004 0.002</td>
<td>25/11</td>
</tr>
<tr>
<td>16 Cimron</td>
<td>6053</td>
<td>5 10 4/2 4 5 4 23</td>
<td>0.004 0.002</td>
<td>25/11</td>
</tr>
<tr>
<td>17 Dana</td>
<td>5703</td>
<td>5 10 4/3 4 5 20</td>
<td>0.004 0.001</td>
<td>26/11 ND</td>
</tr>
<tr>
<td>18 Vidar</td>
<td>2402A</td>
<td>5 30 5 4 5 14</td>
<td>0.016 0.0026</td>
<td>25/11</td>
</tr>
<tr>
<td>19 Hewlett-Packard</td>
<td>520</td>
<td>6 300 6 1 7 20</td>
<td>0.0046 0.016</td>
<td>25/11</td>
</tr>
<tr>
<td>20 Vidar</td>
<td>3462A</td>
<td>6 20 4 4 4</td>
<td>0.005 0.0005</td>
<td>25/15</td>
</tr>
<tr>
<td>21 Hewlett-Packard</td>
<td>521</td>
<td>6 300 6 1 7 20</td>
<td>0.0046 0.015</td>
<td>26/11 ND</td>
</tr>
</tbody>
</table>

(1) Sum of (% of reading + % of full scale).
(2) Includes amplifier settling time.
(3) Includes amplifier settling time and full filtering, where applicable.
(4) Includes 3 frequency and 3 period ranges.
(5) 30 day spec.
(6) 6 month spec.

ND indicates no data available, N/A indicates not applicable, Color indicates option.
4-digit DVMs

<table>
<thead>
<tr>
<th>MANUFACTURER</th>
<th>MODEL NUMBER</th>
<th>NO. OF RANGES</th>
<th>FEATURES</th>
<th>PERFORMANCE</th>
<th>PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Disa-S&B</td>
<td>55D30</td>
<td>2</td>
<td>DC Volts & mV</td>
<td>X</td>
<td>ND</td>
</tr>
<tr>
<td>2 Preston</td>
<td>723A</td>
<td>100</td>
<td>AC Volts</td>
<td>X</td>
<td>4.0</td>
</tr>
<tr>
<td>3 Denelcor</td>
<td>DV 101</td>
<td>20</td>
<td>Ohms</td>
<td>X</td>
<td>4</td>
</tr>
<tr>
<td>4 United Systems</td>
<td>Digitec 251/251</td>
<td>40</td>
<td>AC Current</td>
<td>80</td>
<td>0.1</td>
</tr>
<tr>
<td>5 Tycho</td>
<td>404</td>
<td>40</td>
<td>DC Current</td>
<td>X</td>
<td>3</td>
</tr>
<tr>
<td>6 Simpson</td>
<td>2700</td>
<td>10</td>
<td>AC Current</td>
<td>90</td>
<td>50</td>
</tr>
<tr>
<td>7 Preston</td>
<td>723B</td>
<td>100</td>
<td>AC Current</td>
<td>120</td>
<td>4.5</td>
</tr>
<tr>
<td>8 Rohde & Schwarz</td>
<td>Digivolt 06-UGWD</td>
<td>50</td>
<td>AC Current</td>
<td>54</td>
<td>0.33</td>
</tr>
<tr>
<td>9 Eldorado</td>
<td>1820</td>
<td>100</td>
<td>AC Current</td>
<td>60</td>
<td>6.0</td>
</tr>
<tr>
<td>10 Trymetrics</td>
<td>DVM 4230</td>
<td>20</td>
<td>AC Current</td>
<td>80</td>
<td>0.1</td>
</tr>
<tr>
<td>11 Fluke</td>
<td>8100A</td>
<td>20</td>
<td>AC Current</td>
<td>70</td>
<td>2.0</td>
</tr>
<tr>
<td>12 Data Technology</td>
<td>350</td>
<td>40</td>
<td>AC Current</td>
<td>100</td>
<td>2.0</td>
</tr>
<tr>
<td>13 United Systems</td>
<td>Digitec 251/251-3</td>
<td>40</td>
<td>AC Current</td>
<td>80</td>
<td>0.1</td>
</tr>
<tr>
<td>14 Greibach</td>
<td>620B</td>
<td>20</td>
<td>AC Current</td>
<td>100</td>
<td>2.0</td>
</tr>
<tr>
<td>15 Trymetrics</td>
<td>DVM 4240</td>
<td>20</td>
<td>AC Current</td>
<td>80</td>
<td>0.1</td>
</tr>
<tr>
<td>16 Doric</td>
<td>DS-101-K4</td>
<td>20</td>
<td>AC Current</td>
<td>148</td>
<td>4</td>
</tr>
<tr>
<td>17 United Systems</td>
<td>Digitec 251/251-4</td>
<td>40</td>
<td>AC Current</td>
<td>80</td>
<td>0.1</td>
</tr>
<tr>
<td>18 Philips Elect. Inst.</td>
<td>PM-2421</td>
<td>21</td>
<td>AC Current</td>
<td>70</td>
<td>0.1</td>
</tr>
<tr>
<td>19 Trymetrics</td>
<td>DVM 4243</td>
<td>20</td>
<td>AC Current</td>
<td>100</td>
<td>2.0</td>
</tr>
<tr>
<td>20 Cohu Electronics</td>
<td>514-122</td>
<td>20</td>
<td>AC Current</td>
<td>70</td>
<td>0.1</td>
</tr>
<tr>
<td>21 Doric</td>
<td>DS-100-K3</td>
<td>20</td>
<td>AC Current</td>
<td>148</td>
<td>4</td>
</tr>
<tr>
<td>22 Monsanto</td>
<td>200A</td>
<td>20</td>
<td>AC Current</td>
<td>120</td>
<td>2.0</td>
</tr>
<tr>
<td>23 Presten</td>
<td>723C</td>
<td>100</td>
<td>AC Current</td>
<td>120</td>
<td>2.0</td>
</tr>
<tr>
<td>24 Doric</td>
<td>DS-100-K2</td>
<td>20</td>
<td>AC Current</td>
<td>148</td>
<td>4</td>
</tr>
<tr>
<td>25 Doric</td>
<td>DS-100-K5A</td>
<td>20</td>
<td>AC Current</td>
<td>148</td>
<td>4</td>
</tr>
<tr>
<td>26 Doric</td>
<td>DS-100-K1</td>
<td>20</td>
<td>AC Current</td>
<td>148</td>
<td>4</td>
</tr>
<tr>
<td>27 Trymetrics</td>
<td>DVM 4250A</td>
<td>20</td>
<td>AC Current</td>
<td>110</td>
<td>4.0</td>
</tr>
<tr>
<td>28 Dynasciences</td>
<td>440</td>
<td>20</td>
<td>AC Current</td>
<td>140</td>
<td>0.1</td>
</tr>
<tr>
<td>29 Doric</td>
<td>DS-100-K5</td>
<td>20</td>
<td>AC Current</td>
<td>148</td>
<td>4</td>
</tr>
<tr>
<td>30 Non-Linear Systems</td>
<td>X-2</td>
<td>20</td>
<td>AC Current</td>
<td>120</td>
<td>0.1</td>
</tr>
<tr>
<td>31 Cinron</td>
<td>6453</td>
<td>20</td>
<td>AC Current</td>
<td>120</td>
<td>0.1</td>
</tr>
<tr>
<td>32 California Inst.</td>
<td>8300</td>
<td>20</td>
<td>AC Current</td>
<td>120</td>
<td>0.1</td>
</tr>
<tr>
<td>33 E.G. & G.</td>
<td>736A</td>
<td>200</td>
<td>AC Current</td>
<td>80</td>
<td>0.1</td>
</tr>
<tr>
<td>34 Sytron-Doner</td>
<td>9200</td>
<td>20</td>
<td>AC Current</td>
<td>100</td>
<td>0.1</td>
</tr>
<tr>
<td>35 Sytron-Doner</td>
<td>7000A</td>
<td>20</td>
<td>AC Current</td>
<td>60</td>
<td>0.2</td>
</tr>
<tr>
<td>36 Hewlett-Packard</td>
<td>3440A/3445A</td>
<td>5</td>
<td>AC Current</td>
<td>70</td>
<td>0.45</td>
</tr>
<tr>
<td>37 Doric</td>
<td>DS-100-K6</td>
<td>20</td>
<td>AC Current</td>
<td>148</td>
<td>4</td>
</tr>
<tr>
<td>38 Dana</td>
<td>4500/230</td>
<td>10</td>
<td>AC Current</td>
<td>100</td>
<td>0.5</td>
</tr>
<tr>
<td>39 Sytron-Doner</td>
<td>9210</td>
<td>20</td>
<td>AC Current</td>
<td>100</td>
<td>0.1</td>
</tr>
<tr>
<td>40 Sytron-Doner</td>
<td>9230</td>
<td>20</td>
<td>AC Current</td>
<td>100</td>
<td>0.1</td>
</tr>
<tr>
<td>41 Doric</td>
<td>DS-100-T3D</td>
<td>100</td>
<td>AC Current</td>
<td>160</td>
<td>0.5</td>
</tr>
<tr>
<td>42 Sytron-Doner</td>
<td>9220</td>
<td>20</td>
<td>AC Current</td>
<td>100</td>
<td>0.5</td>
</tr>
<tr>
<td>43 California Inst.</td>
<td>8303</td>
<td>20</td>
<td>AC Current</td>
<td>120</td>
<td>0.5</td>
</tr>
<tr>
<td>44 Singer/Ballantine</td>
<td>3570/3572</td>
<td>25</td>
<td>AC Current</td>
<td>130</td>
<td>0.075</td>
</tr>
<tr>
<td>45 Dana</td>
<td>5403</td>
<td>10</td>
<td>AC Current</td>
<td>120</td>
<td>0.012</td>
</tr>
<tr>
<td>46 Sytron-Doner</td>
<td>9240</td>
<td>20</td>
<td>AC Current</td>
<td>100</td>
<td>0.2</td>
</tr>
<tr>
<td>47 Cintron</td>
<td>6653A</td>
<td>10</td>
<td>AC Current</td>
<td>80</td>
<td>0.001</td>
</tr>
<tr>
<td>48 Rohde & Schwarz</td>
<td>UGZ</td>
<td>60</td>
<td>AC Current</td>
<td>114</td>
<td>4.0</td>
</tr>
<tr>
<td>49 Singer/Ballantine</td>
<td>3570/3571</td>
<td>25</td>
<td>AC Current</td>
<td>120</td>
<td>0.25</td>
</tr>
<tr>
<td>50 Sytron-Doner</td>
<td>7100A</td>
<td>10</td>
<td>AC Current</td>
<td>120</td>
<td>0.25</td>
</tr>
<tr>
<td>51 Fluke</td>
<td>9500</td>
<td>20</td>
<td>AC Current</td>
<td>120</td>
<td>0.25</td>
</tr>
</tbody>
</table>

(1) Includes amplifier setting time.
(2) Includes amplifier setting time and full filtering, where applicable.
(3) Includes 4 frequency ranges.
(4) Includes 6 coulomb ranges.
(5) Includes 2 thermocouple temperature ranges.

ND indicates no date is available
N/A indicates not applicable
Color indicates option

Basic Price ($) With Options ($)

The Electronic Engineer • Nov. 1969

The table provides a comprehensive list of models and specifications for 4-digit digital voltimeters (DVMs). Each entry includes details such as the number of ranges, features, performance metrics like accuracy and speed, and pricing information. The table also notes the presence of amplifier settings and filtering options, along with specific comments and footnotes for each row.
oriented, as evidenced by the fact that only one autoranges; none are programmable; and a recorder output is only available in a few models. They are general-purpose instruments, used in the lab for trouble-shooting. Several can be battery operated, giving them real portability.

Fours galore

The 4-digit classification is where the action is. Four-digit DVMs also have multimeter capabilities, but most of them get there via the option route. System compatibility is important, much more than with 3-digit models. Many of them autorange, can be externally programmed, and have a recorder output capability. Measurement speed is given for dc, and ac where available. Guarded inputs are common. Battery-operated models are rare, but should become more common as a method of improving CMR.

When comparing items such as short and long term accuracy, temperature coefficient, etc., we could not find any striking variations in performance—save for a few instances. Short and long term accuracy usually runs right at 0.01% of reading and 0.01% of full scale. Tempco usually runs very close to 0.001%/°C.

Top of the line

Five- and 6-digit DVMs are for the man who really cares about his readings. These DVMs have been considered as a group for two reasons. There are only a few of them, and while 6-digit models give better resolution, it is not with order-of-magnitude better accuracy.

The data tabulated for this class of meters is slightly different. Since virtually all of them offer system compatibility, features like programmability are ignored. Because most users of this type of instrument will demand long term accuracy and temperature coefficient data, the 90-day accuracy spec and tempco are listed.

If two instruments have the same accuracy spec, the one with the wider temperature tolerance will be superior. Sometimes data sheets separate tempco into a percent of reading and a percent of full scale. Our tabulation assumes that the instrument is at full scale. This allows us to add the two percentages and give a single, full scale value.

The CMR and NMR figures for 5- and 6-digit DVMs are excellent compared to most lesser digit models. Measuring speeds are also very good on the average.

Since many of these DVMs are expensive, a rigorous, in-depth evaluation must be made by the prospective user before he can choose wisely. Fortunately, in this category, a plot of accuracy (shown in Fig. 1) versus price is an aid to judgment. If you combine accuracy and tempco into a single sum, you get the same kind of a plot, giving some support to the theory that you really gain something for those extra dollars.
Now, you can enjoy a choice of suppliers...

Clare’s TO-5 meets or exceeds MIL-R-5757E!

In TO-5’s, you can now enjoy a choice of suppliers—and you can sit back and enjoy Clare’s dependable performance and prompt delivery. For Clare’s TF (TO-5) Relays meet or exceed the requirements of MIL-R-5757E. TF features: a rigid frame to keep elements stable, balanced armature aligned; pressurized nitrogen to minimize arcing, extend contact life; hermetically-sealed case—all welded; optimized magnetic circuitry to assure maximum contact pressure. Withstands shock to 80 G, vibration to 30 G. Keeps going at temperatures from -65°C to $+125^\circ\text{C}$. 1,000,000 operations at low level, 100,000 at rated load.

For information, circle Reader Service number, call your Clare sales engineer or distributor, or write for Data Sheet 758. C. P. Clare & Co., Chicago, Illinois 60645…and worldwide.

CLARE TF MILITARY RELAY
Three contact arrangements: 1 Form C with base-connected movable contacts; 1 Form C and 2 Form C with movable contacts insulated from case.
Feature article abstracts

Published information is vital to your job. To save time in finding this information, we have abstracted the important technical features from eight electronic engineering publications. Should any of these articles interest you, contact the magazine—names and addresses are listed below. Reprints of articles with an asterisk are available free. Save this section for future reference.

Charts and Nomographs
*Nomographs simplify phased array design, Chester W. Young, Walter V. Sterling Inc., "The Electronic Engineer," Vol. 28, No. 10, Nov. 1969, pp. 57-61. The author has developed three nomographs to simplify the design of phased antenna arrays. The articles include nomographs for arranging beams from lower beams, power developed and radiated, and array power cost.

Circuits
Hybrids move ahead in '69. James A. Rose, Consulting Ed., "EDN," Vol. 14, No. 17, Sept. 26, 1969, pp. 49-57. This report rambles through a number of areas of hybrid technology, in order to illustrate the author's two points: (1) hybrids today show a trend to get the job done in the most expeditious manner; (2) more than a hundred companies make thousands of special, custom, and off-the-shelf hybrid devices, so don't expect any manufacturer's catalog to give you the full story on hybrids.

Feedback sharpens filter response, Roland J. Turner, General Atomics Corp., "Electronics," Vol. 42, No. 20, Sept. 29, 1969, pp. 102-103. Trying to cascade LC networks of very low frequencies to sharpen response is not practical because of the large capacitors and inductors. By using an active filter and an op amp, you can achieve very low frequencies, in the order of 0.3 Hz.

Analyse Nonlinear Control Systems, John D. Mortal, U.C. Santa Barbara, "Electronic Design," Vol. 17, No. 19, Sept. 13, 1969, pp. 84-89. In many active circuits the method of Popov is hailed as being destined to become as important as the Bode and Nyquist criteria. It gives sufficient conditions for stability of nonlinear systems. A brief review of system stability is provided, as are computer programs for analyzing linear and nonlinear systems.

IC artwork profits from electroplating process, Roger H. McClung, IBM. "EDN," Vol. 14, No. 18, Oct. 3, 1969, pp. 60-63. The author describes a method to generate IC mask masters. His technique saves up to 80% of the time now needed to produce such artwork, by eliminating the cut-and-peel associated with the red, photographically opaque films now used.

Circuit Design

Communications
What's Delaying U.S. Satellite Communications?, C. D. LaFond & M. J. Riezman, editorial staff, "Electronic Design," Vol. 17, No. 20, Sept. 29, 1969, pp. 36-46. Everyone wants to see the U.S. develop a communication satellite system, but there is a multi-cornered battle between such giants as Comsat, AT&T GE, the Ford Foundation, and the FCC over just how to do this. The topic of power for satellites and how to provide it or design around it is also treated.

Components
Reed relays — new applications/developments, Sidney C. Silver, Assoc. Ed., "Electronic Products," Vol. 12, No. 14, Sept. 1969, pp. 26-37. This is a survey of the reed relay field: where they stand in comparison with crystal- and semiconductor types; the proliferating applications for reed relays; and advantages and disadvantages.

Computers and Peripherals
Talk it out with your Computer, J. T. McCauley & P. D. Oyer, Professional Computer Services, Inc., "Electronic Design," Vol. 17, No. 18, Sept. 1, 1969, pp. 86-92. The authors hold that engineers and computers should be able to work together without a mysterious programmer/engineer interface. They advocate QUIKTRAN as a conversational language that solves the problem, and attempt to explain how to use it. Several examples accompany the text.

Abstracts

ABSTRACTS

Feature article abstracts

Published information is vital to your job. To save time in finding this information, we have abstracted the important technical features from eight electronic engineering publications. Should any of these articles interest you, contact the magazine—names and addresses are listed below. Reprints of articles with an asterisk are available free. Save this section for future reference.

Charts and Nomographs
*Nomographs simplify phased array design, Chester W. Young, Walter V. Sterling Inc., "The Electronic Engineer," Vol. 28, No. 10, Nov. 1969, pp. 57-61. The author has developed three nomographs to simplify the design of phased antenna arrays. The articles include nomographs for arranging beams from lower beams, power developed and radiated, and array power cost.

Circuits
Hybrids move ahead in '69. James A. Rose, Consulting Ed., "EDN," Vol. 14, No. 17, Sept. 26, 1969, pp. 49-57. This report rambles through a number of areas of hybrid technology, in order to illustrate the author's two points: (1) hybrids today show a trend to get the job done in the most expeditious manner; (2) more than a hundred companies make thousands of special, custom, and off-the-shelf hybrid devices, so don't expect any manufacturer's catalog to give you the full story on hybrids.

Feedback sharpens filter response, Roland J. Turner, General Atomics Corp., "Electronics," Vol. 42, No. 20, Sept. 29, 1969, pp. 102-103. Trying to cascade LC networks of very low frequencies to sharpen response is not practical because of the large capacitors and inductors. By using an active filter and an op amp, you can achieve very low frequencies, in the order of 0.3 Hz.

Analyse Nonlinear Control Systems, John D. Mortal, U.C. Santa Barbara, "Electronic Design," Vol. 17, No. 19, Sept. 13, 1969, pp. 84-89. In many active circuits the method of Popov is hailed as being destined to become as important as the Bode and Nyquist criteria. It gives sufficient conditions for stability of nonlinear systems. A brief review of system stability is provided, as are computer programs for analyzing linear and nonlinear systems.

IC artwork profits from electroplating process, Roger H. McClung, IBM. "EDN," Vol. 14, No. 18, Oct. 3, 1969, pp. 60-63. The author describes a method to generate IC mask masters. His technique saves up to 80% of the time now needed to produce such artwork, by eliminating the cut-and-peel associated with the red, photographically opaque films now used.

Circuit Design

Communications
What's Delaying U.S. Satellite Communications?, C. D. LaFond & M. J. Riezman, editorial staff, "Electronic Design," Vol. 17, No. 20, Sept. 29, 1969, pp. 36-46. Everyone wants to see the U.S. develop a communication satellite system, but there is a multi-cornered battle between such giants as Comsat, AT&T GE, the Ford Foundation, and the FCC over just how to do this. The topic of power for satellites and how to provide it or design around it is also treated.

Components
Reed relays — new applications/developments, Sidney C. Silver, Assoc. Ed., "Electronic Products," Vol. 12, No. 14, Sept. 1969, pp. 26-37. This is a survey of the reed relay field: where they stand in comparison with crystal- and semiconductor types; the proliferating applications for reed relays; and advantages and disadvantages.

Computers and Peripherals
Talk it out with your Computer, J. T. McCauley & P. D. Oyer, Professional Computer Services, Inc., "Electronic Design," Vol. 17, No. 18, Sept. 1, 1969, pp. 86-92. The authors hold that engineers and computers should be able to work together without a mysterious programmer/engineer interface. They advocate QUIKTRAN as a conversational language that solves the problem, and attempt to explain how to use it. Several examples accompany the text.

Develop Useful General Models, Marvin E. Daniel, Sandia Laboratory, "Electronic Design," Vol. 17, No. 19, Sept. 13, 1969, pp. 69-72. This article concerns itself with developing mathematical expressions for the analysis of complex computer-aided design programs. An example illustrates the use of such a model that can aid the designer in the areas of increased component density and problems associated with bipolar interfacing. The authors review the technology and show its application to the construction of a Z-blade memory.

Integrated Circuits
Silicon-gate technology, L. L. Yados, A. S. Grove, T. A. Rowe, G. E. Moore, Intel Corp., "Electronics Design," Vol. 17, No. 19, Sept. 13, 1969, pp. 76-79. Despite the enthusiasm for their MOS integrated circuits, the authors concern themselves with the use of polycrystalline silicon for the gate element because of its potential for increased component density in the areas of increased component density and problems associated with bipolar interfacing. The authors review the technology and show its application to the construction of a Z-blade memory.

MOS: A Critical Review, Raymond Saper, Technical Editor, "Electronic Design," Vol. 17, No. 18, Sept. 1, 1969, pp. 48-50. This is a special report consisting of the following four articles:

Problems for the Designer, S. R. Parris, Burroughs Corp., pp. 66-69. The designer must learn about MOS processing so that he can appraise what can be done in cooperation with a chosen vendor to get the best results. Considerations such as power, frequency, threshold voltage, and N or P channel devices are touched on.

TIT Compatibility is Here, J. Leland Seely, General Electric Co., pp. 70-72. Since the MOS process is always assumed to be responsible for all problems of the interface, the process is altered to achieve compatibility. Pros and cons of using either silicon nitride or 10-20 process steps in MOS are discussed.

Partitioning is a Challenge, Glen Malden, Intergraph, pp. 74-77. MOS logic building blocks much larger than gates are possible. This task leads to partitioning problems and the tradeoffs for optimizing several interrelated considerations are discussed.

Testing a Buffered Comparator, L. E. Sheehan, Vixtron Computer Systems Corp., pp. 78-80. MOS design is becoming a feasible solution for many applications as the vendor/user interface. Both parties must have an understanding of their respective abilities. A program manager must be set up to handle the myriad problems.

A faster generation of MOS devices with low thresholds is riding the crest of the new silicon-gate IC's, Frederico Faggin and Thomas Klein, Fairchild microelectronics, "Electronics," Vol. 42, No. 20, Sept. 29, 1969, pp. 88-94. This article describes a newer generation of MOS devices that use instead of aluminum for the gate electrode. Because of this new technique, the devices become more robust with bipolar processing. These new devices feature greater speed at lower threshold voltages.

An up-to-date look at thick films, John C. Cox Jr. and Donald T. DeCourtey, E. I. du Pont de Nemours, "Electronic Design," Vol. 17, No. 19, Sept. 15, 1969, pp. 35-42. This article is a wide-ranging look at thick-film technology. Bending of the board, bonding, lead attachment, and IC attachment are discussed.

Power Supplies

Semiconductors
FETs—what's new, William 1. Hillenbrand, Assoc. Ed. Electronics Design, Vol. 17, No. 14, Sept. 1969, pp. 26-37. FETs are widely used today, although it is often assumed that advances in technology, accomplished by price reductions, have made these devices more attractive to potential users. The article describes the various classes of FETs available, and their general applications.

Test and Measurement
A quiet look at noise injection, Barton Wells and 2. F. Seitz, "EDN," Vol. 14, No. 18, Sept. 19, 1969, pp. 45-47. This is a discussion of the performance differences in noise measurement. The noise signal is normally measured at an undesired signal level and is indirectly measured at the vendor/user interface. The method described is a digital Voltmeter. The noise signal is generally thought of as an undesired ac signal riding on the top of the fundamental (50 or 60 Hz). The use of digital Voltmeters eliminates the need for special signal processing. The use of a 1000 ohm source is recommended and the use of multiple filters. The authors favor the use of a 1000 ohm source and explain the point of new.

Special report on x-y recorders, Irwin Sherry, Western Electric, "EDN," Vol. 14, No. 19, Sept. 24, 1969, pp. 118-125. This is a description of the general factors that are important in the design of an x-y analog recorder, as well as the use of such an instrument in data analysis. The article concludes with a discussion of the term "production engineer," and the duties of such a man and why they are necessary, and discusses what he is responsible for in quality assurance, and marketing people. An important consideration is that the users of the system are required to be professional people, degree and capable.
The first 20 amp, 500 nanosecond rectifier assemblies with full-power operation up to 40kHz.

Here's what we mean when we say “They're reliability designed from the inside out.”

All four of the diodes in this aluminum heat-sink case are Unitrode's individually fused-in-glass controlled avalanche, fast-recovery high-surge diodes. So you start with monolithic parts that have typical failure rates of less than 0.0006%, and you have the added bonus of the convenience of the Magnum package.

This is what's in the heart of our diodes

For fast action, call Fred Swymer COLLECT

UNITRODE

580 Pleasant Street, Watertown, Massachusetts 02172 • (617) 926-0404

Circle 44 on Inquiry Card
This significant advance in Helipot's cermet technology is now available at only a dime/unit more . . . 100 ohms thru 2 megohms. In addition, you get essentially infinite resolution, environmental stability, reliability, no catastrophic failures — all superior to wirewound trimmers. We'll also deliver off-the-shelf, locally stocked trimmers with a standard tempco of ±100 ppm/°C in the 100 ohm thru 2 megohm range.
External timing signals sync this crystal clock .. 964
Current source has voltage-controlled output ... 965
One video amplifier: three oscillators .. 966

Vote for the one you like best.

Send us practical, reproducible ideas that are original with you and have been implemented with linear or digital ICs.
- If we publish your idea you win a check for $25.00.
- If our readers vote yours the best of the issue in which it appears, you have your choice of a Simpson 270 or a Triplett 600 multimeter.
- After 12 issues our readers will vote on the best idea for all 12 issues. The winner gets his choice of either a Hewlett-Packard 1206A or a Tektronix 310A oscilloscope.

Submit your IC Ideas to:
Alberto Socolovsky
Editor
THE ELECTRONIC ENGINEER
Chestnut & 56th Sts.
Philadelphia, Pa. 19139

Here’s how you voted
The winning Idea for the June 1969 issue is, “Fault monitor checks for circulating logic bit.”

Robert Serody, our prize-winning author, is a Task Manager in the Radar Systems Department of Raytheon Company, at Bedford, Mass. Mr. Serody selected a Simpson Model 270 multimeter.
The wide selection of crystal oscillator modules available today is a tremendous aid: you can select a module to fit your clock needs as simply as you can an MSI circuit to fit your logic needs.

However, a crystal oscillator's high Q means that it cannot respond to sudden phase changes, so you usually do not use such oscillators where you must synchronize a local clock to incoming data or timing signals. But here is a circuit which does let you incorporate a crystal oscillator into your design, and still lets you control the clock phase from external sync pulses.

Here's how it works. A crystal oscillator drives a series of flip-flops which counts down to the desired clock frequency. The flip-flops form a ripple counter such that the crystal oscillator frequency, f_c, and the clock frequency, f_m, are related by the equation, $f_m = 2^n f_c$, where n is the number of flip-flops.

To determine the maximum phase shift introduced by the synchronizing counter, you must assume that f_c has exactly the same frequency as the remote clock, f_m, which generates the sync pulses.

If the sync pulse and the negative slope of f_c occur at the same time, the counter will reset to count zero; it will not step to count one until a full period of f_c has occurred. In such a case, there is no error in the count and f_m will be in phase with f_m. But a phase difference will occur if f_c clocks the counter prior to one period of delay after the sync pulse occurs. This phase difference is equal to the period of f_c, less the delay between the occurrence of the sync pulse and f_c's first negative transition.

The maximum possible phase difference is equal in time to the period of f_m, and you can control it by the number of flip-flops in the circuit. In use, the frequency tolerance of the crystal oscillator may add to the maximum phase difference of the circuit, so you must consider not only the sync pulse rate, but also the tolerance of f_m.

Note that you can synchronize the circuit directly from the incoming data, simply by differentiating the incoming data.
Pick the perfect tuning diode for your design from this selection of 118 standard types.

One of Motorola's 118 EPICAP* Tuning Diodes probably fits your requirements better than any other electronic or mechanical device you may be designing with now. Sure, there may be a few applications where bulky mechanical types are still needed, but you'll find the flexibility and simplicity of diode tuning will be more appealing for most designs.

We want to help, so we made up the EPICAP Tuning Diode Selector Guide to show Q, TR, and nominal capacitance for each device, and working voltage, package type, and line highlights by series. Send for it.

Motorola EPICAP Tuning Diodes range from high-production-volume, low-cost plastic AFC diodes like the MV2201 to the epitome of quality and performance for the most exacting commercial and military communications applications like the premium 1N5461A or 1N5139. Most are abrupt junction diodes, but some, like MV1401, are the hyper-abrupt junction types needed for applications involving tuning over a wide frequency range. Nominal capacitance values from 1.0 pF to 550 pF are covered, and maximum working voltage ranges from 12 V to 60 V. Package variations include ceramic, plastic, and two different glass cases.

Motorola's tuning diode facilities are geared for volume production and quick turn-around to assure fast delivery on any quantity large or small. For information contact your Motorola Sales Office or Distributor. Or write: Motorola Semiconductor Products Inc. P. O. Box 20912, Phoenix, Arizona 85036.

*Trademark of Motorola

—where the priceless ingredient is care!
965 Current source has voltage-controlled output

Lawrence J. Rennie
Hughes Aircraft, Culver City, Calif.

This circuit gives an output current inversely proportional to an input control voltage. An RCA CA3018A quad transistor array performs both the log and antilog functions; this not only saves parts, but also minimizes the temperature differences which otherwise could cause errors in the output current.

The circuit uses the logarithmic relationship between a transistor's emitter current and its base-to-emitter voltage. Transistors Q1, Q2, and Q3 give the log functions, while Q4 gives the antilog function.

Connected as diodes, Q1 and Q2 produce $V_1 = \frac{kT}{q} \ln \frac{I_b^2}{I_n}$; I_b is reverse saturation current, and I_n is a constant current.

Assuming $I_{3b} = 0$, you can show that $V_{be4} = \frac{kT}{q} \exp \left(\frac{V_b4}{I_n}\right)$. Transistor Q4 takes the antilog of voltage V_{be4}, and the temperature dependent reverse saturation currents cancel each other: $I_3 = I_b \exp \left(\frac{qV_{be4}}{kT}\right) = P_4/|I_b|$, after substituting the previous expression for V_{be4}. Substituting $I_2 = (-V_d + V_{be4} - V_{in})/R_2$ into the previous expression for I_3 gives you $I_3 = \frac{(P_4/R_2)}{(-V_d + V_{be4} - V_{in})}$.

You use R_5 to adjust the current through CR1 so that to a first-order cancellation, $(-V_d + V_{be4}) = 0$. The equation for I_3 now becomes $I_3 = \frac{(-P_4/R_2)}{V_{in}}$.

The µA709 op amp and Q5 form a voltage follower that buffers the collector voltage of Q4, and also gives a current gain $A_i = R_5/R_4$ for I_3. So the circuit's output current is $I_{out} = \frac{(-R_3/R_4)(P_4/R_2)}{V_{in}} = K/V_{in}$. Measured output currents match the calculated output currents to within ±10% over a range of 0.038 mA (at -9 V) to 3.8 mA (at -90 mV).

Circuit limitations are due to non-zero base currents and the first-order diode cancellation of V_{be4}. Base current I_{3b} increases with input voltage and causes the "constant" current, I_i, to decrease. This in turn causes the actual I_{out} to be less than its theoretical value at high input voltages.

Because $V_d = V_{be4}$ at only one value of I_3, the actual value of I_{out} depends on $(-V_d + V_{be4})$. This causes I_{out} to be again less than its predicted value at low inputs and, in fact, to roll off where $(-V_d + V_{be4})$ is significant compared to the input control voltage.
Michael English
Fairchild Semiconductor, Mountain View, Calif.

The three oscillators shown here use an IC video amplifier as their active element. Oscillation frequencies range from several Hz to more than 10^7 MHz, and the output signals can directly drive DTL or TTL circuits. Output rise times and fall-times are less than 10 ns.

The Fairchild µA733 has differential inputs and outputs, and a 120-MHz, 3-dB bandwidth when operated at 20-dB voltage gain. It needs no external frequency-compensation. Gain-adjustment terminals let you continuously vary the IC’s gain from 10 to 400 with an external resistor; without external components, you can still select fixed gains of 10, 100, or 400.

The basic oscillator is an RC relaxation circuit, with the other two being variations upon it. In this basic circuit, capacitor C and the voltage divider formed by R_1 and R_2 supply positive feedback. The period of oscillation, T, is

\[T = 2C \left(\frac{R_1 + R_2}{R_1 R_2} \right) \]

\[\ln \left(A_g R_1 (R_1 + R_2) \right) \geq 2. \]

The approximation is due to the fact that the IC draws input bias current when the input signal is positive, but none when the input is negative. This means that the duty factor of the oscillation differs slightly from the ideal value of 50%, and thus the coefficient of the equation is not exactly two.

A voltage gain \(A_g \) of ten holds the division ratio \(R_1 / (R_1 + R_2) \) to values between 0.2 and 0.4. The equation for T sets the lower limit, because the inequality \(A_g R_1 / (R_1 + R_2) \geq 2 \) must hold for practical solutions.

The single-ended output swing, and the input range of the device (±1 V), set the upper limit.

You can control the oscillation frequency in two ways, both of which give rise to the voltage-control variant of the basic circuit. In one method, you shunt an FET across \(R_1 \), and vary the FET’s drain resistance by its gate voltage. Take care that you still satisfy the division ratio restrictions for the combination of \(R_1 \), \(R_2 \), and the FET.

A second method of frequency control uses the fact that the period, T, is proportional to the natural log of the gain. So, to control the gain, connect an FET across the gain-adjustment terminals of the device, as shown. A junction FET as the gain control element gives about a 3:1 frequency variation: the higher the gain, the lower the oscillation frequency.

Another variant of the basic relaxation circuit comes about because, in principle, you can replace capacitor C with a crystal of the desired frequency. To prevent excitation of the crystal’s overtone modes, put a tuned circuit in the feedback loop. This tank favors oscillations at its own resonant frequency, but suppresses other, spurious modes. To sustain oscillations, the voltage division ratio, \(C_1 / C_2 \), must be greater than the reciprocal of the amplifier gain.
Same big volts.

New little package.

We took everything in the big one and put it in the little one. Then we made the little one in all the same output ranges as the big one. And gave it the same price. And the same guarantee. And put all the details in our new catalog which is yours for the asking. Simply write to: acdc electronics, inc. 2979 N. Ontario St., Burbank, Calif. 91504.
Correlation data in real-time

These units bring statistical measurements to your lab bench.

Here are two instruments that compute correlation and probability functions quickly and painlessly. These online units let you concentrate your time and effort on using the data, rather than on getting it.

Both instruments compute the cross-correlation of two signals—or the auto-correlation of a signal with itself—for 100 values of the time shift between the signals. The Saicor SAI-41 gives you the data in the form of outputs to an oscilloscope and an x-y plotter. The Hewlett-Packard 3712A, in addition to scope and plotter outputs, displays the data on its own CRT.

Bandwidth limitations

You can adjust the time shift between inputs (time shift is the time between input samples) on both units; on the SAI-41 from 25µs to 50 ms, and on the 3712A, from 1µs to 1 s. For the sake of comparison, let's assume you need 4 points to define a function. This gives you an upper frequency response of 250 kHz on the HP unit and 10 kHz on the Saicor unit. Because the units use digital techniques, their low frequency limit is dc. The 3712A gives you the option to use an external clock to set the input sampling rate, so you can make the time between samples as long as you wish.

An optional delay offset feature on HP's processor lets you enlarge a portion of the display. With a front panel control, you can select an offset as long as 900 times the time between samples. Thus, by decreasing the time between samples and selecting the appropriate offset, you can increase the resolution of the display in a particular area.

Both instruments also compute the probability density function and its integral, the probability distribution function for a waveform.

Signal recovery

HP's 3712A lets you recover periodic signals hidden in noise, through the use of its averaging mode. This mode needs a synchronizing signal at the start of each period of the signal of interest. The sync signal can be an external trigger, or you can derive it from the instrument's internal clock. The 3712A then samples the input at fixed intervals for a predetermined number of repetitions, and stores the information in a memory. Each time it takes a sample, the 3712A algebraically adds the new value to its memory. Each sample thus enhances the signal portion of the input, while the noise, which is random with respect to the synchronizing signal, tends to cancel.

Sample averaging

Both units use summation averaging to compute the 100 values of a particular function. With this method, each value is composed of equal parts of all samples of the value up to that time. Front panel controls on both instruments let you select the number of samples you want. The 3712A has a range of 128 (2^7) to 131,072 (2^17); the SAI-41's range is 500 to 100,000. Both units compute for the number of samples you select and then stop automatically.
Saicor's correlator gives you a continuing integration mode. Here, there is no preselected number of samples. The instrument continuously computes the 100 values of the function and stops only when you exceed the capacity of the memory.

Exponential averaging

Besides summation averaging, HP's 3712A lets you use an exponential averaging technique. Here, the unit gives more weight to the most recent sample of a value. This mode is useful for the analysis of time-varying signals, because the unit recognizes changes more quickly than in the summation averaging mode.

The exponential mode has switch-selectable time constants from 36 ms to 10^7 s. And with an external clock, you can make the time constant as long as you need it to be.

Correlation is the measure of the similarity of two signals. Suppose you take two waveforms, multiply them together ordinate by ordinate, and find the average of all the products. Now, insert some time delay between the two signals and perform the same operations again. Do this a number of times, plot the averages as a function of the time delay, and you have the correlation function of the two waveforms. And this is what the HP and Saicor instruments do.

You can use correlation to detect periodic signals hidden in noise; to establish coherence between otherwise random-appearing signals; to find the transmission time and locate the source of a signal, and so on.

Correlation lets you analyze the behavior of large, complex, non-electrical or electromechanical systems (with appropriate transducers, of course). You apply a low-level, broadband stimulus to the system's input, and correlate its output with that input. This gives you the impulse response of the system, and you've gotten it without disturbing the system's normal operation.

Autocorrelation — the correlation of a waveform with itself — gives you the Fourier transform of the waveform's power spectrum or, in the case of random signals, their power-density spectrum.

The correlation function does not give you any information about signal amplitude variations with time. A statistic that does give you such waveshape information is the probability density function. The area under the probability density curve between any two amplitudes is the probability that the signal will be between those amplitudes at any arbitrary time. The most familiar pdf is the bell-shaped Gaussian curve of distribution.

The integral of the probability density function is the probability distribution of a signal. This gives you the probability that a measurement will not exceed a particular value.

Exponential averaging on the 3712A gives you another advantage. Because of the particular algorithm used, the time constant at the beginning of an experiment is short and builds up to the value that you select. This means that the 3712A can give you a rough average in the early stages of low frequency or long time-constant applications. With this, you can uncover errors in your test setup without waiting for the experiment to run its course.

The Saicor Model SAI-41 comes in either a bench or rack-mounting unit. Its price is about $8000 with a four-month delivery. Signal Analysis Industries Corp., 595 Old Willets Path, Hauppauge, N.Y. 11787. (516) 234-5700.

A lighted panel on HP's instrument gives you display sensitivity (mean square volts/div.) at a glance, making the unit very easy to use. The 3712A costs $8350 and deliveries are scheduled to start in January. Inquiries Manager, Hewlett-Packard Co., 1501 Page Mill Rd., Palo Alto, Calif. 94304. (415) 326-7000.

For more information on these units, please use the reader service card:

Hewlett-Packard: Circle 206
Saicor: Circle 207

Correlation in flow measurement performed by the HP 3712A. A noise signal with a BW of 150 Hz was applied to the head of a tape recorder. The output from a second head located 9/16 in. downstream is cross-correlated with the input. Time scale 1 ms/mm. Tape speed 7.5 in./s.

Signal Recovery. Top photograph is a repetitive waveform buried in noise (S/N = -20 dB). Bottom trace on photograph shows sync pulse that identifies the start of each repetition. The lower photograph shows the signal as recovered by HP's instrument after averaging 32,768 repetitions.
Hung up on things analog?

Unscramble with Philbrick/Nexus amplifiers.

Like we did in this inexpensive instrumentation amplifier with our new, easy-to-use monolithic IC amplifiers.

Other new, value-packed Op Amps from Philbrick/Nexus

Hybrid & Monolithic

1405 — This differential FET input, high speed, hybrid op amp comes in a dual-in-line size package with no external stabilization required. Salient specifications include 1 MHz full output frequency, $A_o = 500K$, slew rate of $50V/\mu s$ and output current of $\pm 20 \text{ ma}$.

1300 — Dual amplifier monolithic chip in a dual-in-line size package. Two general purpose amplifiers in one package for the price of one. 5.20 in hundred quantity.

1301/1303 — Single general purpose amplifiers in a dual-in-line size package (1303) and a TO-99 package (1301) compatible with $\mu A 709$ size configurations. These amplifiers are very stable, free from latch-up, and output protected. T82AH — Differential wideband IC amplifier in a 10-pin, TO-5 case with 70 MHz GBW, $20 \mu V/\circ C$ max. $\circ C$ to $+125 \circ C)$, $\pm 10 \text{ ma}$ output current, 10.00 per hundred quantity. Has excellent performance in high speed comparator applications.

Discrete

1021 — A high CMRR economy differential FET input or better known as the "100-cubed" amplifier. CMRR of 100 dB (min.), full output frequency of 100 kHz (min.) and A_o of 100 dB (min.) with a hundred quantity price of 27.00 make this a "value-cubed" amplifier! Other salient specifications are $\pm 10 \text{ V}$ common voltage range, $\pm 20 \text{ ma}$ output current and -30 pa (max.) bias current.

1022 — This differential FET input, high voltage amplifier picks up where the 20V amplifiers leave off. Specifications include power supply range of $\pm 40 \text{ V}$ to $\pm 150 \text{ V}$; output voltage of $\pm 30 \text{ V}$ to $\pm 140 \text{ V}$; common mode voltage of $\pm 25 \text{ V}$ to $\pm 135 \text{ V}$; full output frequency of 50 kHz (min.) and output current of $\pm 20 \text{ ma}$. Priced at 78.00 in hundred quantity.

1017 — An inexpensive, general purpose, high output current ($\pm 125 \text{ ma}$ from $-25 \circ C$ to $+85 \circ C$) amplifier in the standard small "Q" package. More power to you at 29.50 in hundred quantity.

Write, today, for your free copy of the NEW 1969/70 Philbrick/Nexus Catalog.

For further information on any of these new Philbrick/Nexus products, contact your local Philbrick/Nexus field representative or Philbrick/Nexus Research, 67 Allied Drive at Route 128, Dedham, Massachusetts 02026. Telephone: (617) 329-1600.

No. 1 should do more ... you expect us to.
NEW MICROWORLD PRODUCTS

STATIC RANDOM-ACCESS MEMORY
Uses large-scale integration.

Model 1101 stores 256 bits and all decoding circuitry on a single silicon chip. The memory is the first silicon gate MOS semiconductor to reach the market. The device interfaces directly with TTL and DTL logic. Maximum access time is 1.5 µs for Model 1101 and 1µs for the slightly faster Model 11011. Power dissipation is 50 µW/bit on standby and 2 mW/bit during access. The device organizes the bits in a 256 x 1 format, and comes hermetically sealed in a 16-lead dual in-line package. Stock delivery for small quantities; to 1000, 30 days. Model 1101, $150 ea., Model 11011, $187.50 ea., 1-9 pcs. Intel Corp., 365 Middlefield Rd., Mountain View, Calif. 94040. (415) 969-1670.

Circle 225 on Inquiry Card

INTEGRATED CIRCUIT ANALYZER
Checks all pins without removing device from circuit.

The Model 410 uses a snap-on, multi-pin probe to check digital ICs. The visual display shows level errors, logic errors, or low Vc, and you can select a mode which shows signal presence at each pin. You can use the analyzer with RTL, DTL, and TTL ICs in the dual-in-line or flat-pack packages. The unit compares voltage levels or signal presence with a reference device operating under the same conditions. The reference device is a plug-in board that is pre-programmed for commonly used circuits. Universal blanks are available for programming in the field. Price of the unit is $2500. delivery, 30 days. Testex, Inc., 154 San Lazaro Ave., Sunnyvale, Calif. 94086. (408) 732-0461.

Circle 226 on Inquiry Card

Famous Globe motors, gearmotors and blowers are now shelf-stocked by a distributor near you. Get units by phone—no long waits!

Globe/TRW is the largest manufacturer of precision miniature motors—A.C. and D.C. up to 1/12 HP continuous duty. Hundreds of speed-torque output choices via Globe’s exclusive planetary gearing. Get the exact speed you need out of the nearby box! New catalog.

GLOBE INDUSTRIES DIVISION OF TRW INC
Dayton, Ohio 45404 513-228-3171

Globe/ TRW

a distributor has your motor stockpile

Circle 48 on Inquiry Card

The Electronic Engineer • Nov. 1969
DUAL WIDEBAND OP AMP
Unit has channel separation of 140 dB.

The µA749 has a gain of 20,000 and input impedance of 150 kΩ. The device is latch-up proof and short circuit protected, and it has a 20 MHz unity gain bandwidth. It is constructed from a single silicon chip and contains two identical three stage op amps. Each op amp has differential inputs and an uncommitted pnp output stage. This output approach gives you a variety of load configurations for applications from dc to 10 MHz. The device comes in a hermetically sealed ceramic dual-in-line package. $5.95 ea. (ind.), $17.95 (mil), in quantities of 1-24 pcs. Fairchild Semiconductor, 313 Fairchild Dr., Mountain View, Calif. 94040. (415) 962-3563.

Circle 227 on Inquiry Card

MONOLITHIC OPTOELECTRONIC ARRAYS
Typical array has 31 photodiodes on 0.005 in. centers.

You can consider these monolithic arrays as the optoelectronic equivalent of integrated circuits. They offer advantages over discrete arrays of better resolution, better and easier alignment of array elements, space savings and potentially lower cost per element. Because the parameters vary with the application, present arrays are custom made to meet customer requirements. The manufacturer supplies these arrays in various packages and has developed special packages for large arrays, including a 100-pin ceramic flat pack. Technical Information Center, Motorola, Semiconductor Products, Inc., Box 20924, Phoenix, Ariz. 85036. (602) 273-6900.

Circle 228 on Inquiry Card

The Electronic Engineer • Nov. 1969
NEW MICROWORLD PRODUCTS

TEN-CHANNEL MULTIPLEXER
Made by silicon nitride process.

The MU-6-2281 has ten insulated field effect transistors. You get a $10^{10} \Omega R_{in}$, integrated zener clamp protection, and a low on resistance with this device. In a 24-lead DIL package, the price is $21.20 ea., in quantities of 100. General Instrument Corp., 600 W. John St., Hicksville, N.Y. 11802. (516) 733-3333.

Circle 274 on Inquiry Card

THIN-FILM RESISTOR KIT
RETMA valves; 33Ω to 470 kΩ.

These resistors have a symmetrical center tap with an insulation resistance of $10^{10} \Omega$ min. tc is ± 50 ppm from -55 to $125^\circ C$. Substrate material is oxidized silicon 25 mils square by 10 mils thick max. Price is $187, delivery 2 weeks. Dickson Electronics Corp., Box 1390, Scottsdale, Ariz. 85252. (602) 947-2231.

Circle 275 on Inquiry Card

LSI DDA
Special purpose computer.

This Digital Differential Analyzer on a single slice of silicon uses discretionary LSI routing. The DDA is an incremental computer for solving differential equations. Interconnecting two of them will provide the incremental solution to the sine and cosine functions. Texas Instruments, Incorporated, Box 5012, Dallas, Tex. 75222. (214) 238-2011.

Circle 276 on Inquiry Card

IC LOGIC CARDS
Additions to DTL series.

The module 273 is a 2 input or gate and the 275 is a 2 input and gate. Both modules have the manufacturer's "dynamic decoupling" which eliminates both high and low frequency noise in large systems. Both are $29, delivery, two weeks. Datascan, Inc., 1111 Paulison Ave., Clifton, N.J. 07013. (201) 478-2800.

Circle 277 on Inquiry Card

INTEGRATED LIGHT SWITCH
Has output current of 4 mA.

The Type IPL 11 has a silicon planar photodiode, and integrated circuitry on a single substrate. It's in a TO 18 can with glass window. Light of a pre-selected intensity activates the photodiode. Switching speed is about 1 ms in normal operation. Teknis Inc., Plainville, Mass. 02672. (617) 695-3591.

Circle 278 on Inquiry Card

Are you interested in COMMUNICATIONS and in INTEGRATED CIRCUITS?

Then, you must be interested in COMMUNICATIONS ICs

Attend the seminar organized by The Electronic Engineer magazine, in Philadelphia, on February 17, 1970 (the day before ISSCC)

For details Circle 420 on Inquiry Card
LOGIC LINE
For low-speed, high-noise uses.

The Monilologic H Series has over 25 types of cards. The series uses 15 V ICs in the DIL package. The threshold level is 7.5 V versus the 1.5 V for normal DTL logic, and the propagation delay is typically 110 ns. Monitor Systems, 401 Commerce Dr., Pt. Washington, Pa. 19034. (215) 646-8100.

Circle 280 on Inquiry Card

SLICING AND DICING UNIT
Has kerf loss of 0.005 in.

Model 850 can cut large samples of brittle materials with little operator attention. You can use the instrument to cut materials such as semiconductor crystals, ceramics, thin film substrates, ferrites and glass. South Bay Technology, Inc., 4900 Santa Anita Ave., El Monte, Calif. 91731.

Circle 281 on Inquiry Card

IC TEST SYSTEM
Computer controlled.

Series 5000C system, can greatly increase throughput rates. This is due to a high-speed A/D converter, use of computer control, and a complete software package. Basic 5000C system performs static parameter measurement of digital ICs. A complete system tests both digital and linear ICs, performs static and dynamic measurement and high speed functional testing. Fairchild Systems Technology, 974 E. Arques Ave., Sunnyvale, Calif. 94086.

Circle 282 on Inquiry Card

The Electronic Engineer • Nov. 1969

A Very Special

VHF RECEIVER

W-J's new Type 555 VHF Receiver offers a wealth of special features in a unit designed for specialized surveillance and monitoring applications.

It receives AM, FM and CW signals in the 90 to 180 MHz range and, since FM signals normally encountered in this band are of low deviation, incorporates a high slope FM detector. Separation of closely spaced signals in this congested band is accomplished by IF filters with very steep skirts. A 50 kHz wide band position is provided by a crystal filter. Mechanical filters provide bandwidths of 10 kHz and 20 kHz.

The receiver includes an integral signal monitor with a dispersion adjustable from 0 to 300 kHz and a resolution of 2.5 kHz. The monitor has a center frequency marker to indicate the center of the IF band for precise tuning. Markers are provided in 50 kHz increments on both sides of the center frequency marker for accurate determination of spacing of interfering signals.

Other features: a carrier operated relay and an independently variable beat frequency oscillator, plus Digital Automatic Frequency Control capability when the receiver is connected to an external counter such as W-J's DRO-302A.

There's more! Ask the receiver specialists at W-J's CEI Division.
NEW LAB INSTRUMENTS

DIGITAL PULSE GENERATOR
Has both high and low power outputs.

The PG-100 gives synchronized pulse chains on two separate outputs. You can adjust pulse width from 2 ns to 20 ms. One output, for use with bipolar circuits, provides 5 V at 120 mA. This output has 1 ns rise and fall times and you can adjust the repetition rate from less than 1 Hz to 150 MHz. The other output gives you -28 V at 600 mA and is useful in testing MOS FETs. This output has rise and fall times of 7 ns and a repetition rate of up to 30 MHz. The unit also gives you the logical inverse of both outputs. Price is $2,450 with four-week delivery. Tau-tron Inc., 685 Lawrence St., Lowell, Mass. 01852. (617) 458-6871.

Circle 208 on Inquiry Card

COLOR TV MODULATOR
Unit accepts either local or microwave input.

The CTM-2500 gives you phase equalized color video signals that exceed NTSC standards. The unit has an envelope delay equalizing network and produces broadcast-quality transmission signals in any closed-circuit, film, local-origination, or microwave system. The audio input to the unit is either 600 to 10,000 Hz or an inter-carrier 4.5 MHz signal. The unit controls the audio carrier frequency to assure a maximum drift of 2 kHz. The video carrier frequency is crystal controlled and maintains a stability of 0.001%. Price of the unit is $1,050 with immediate delivery. Cate! Corp., 517 Marine View Ave., Belmont, Calif. 94002. (415) 592-3776.

Circle 209 on Inquiry Card

PRECISION RESISTOR TESTER
Can monitor and control resistor trimming equipment.

Model 603 uses ratio and voltage-current techniques to measure resistance, instead of the conventional resistance bridge circuit. You can use this instrument to control air abrasive or laser equipment to trim resistors to absolute values or to specific ratios. You can also use it to trim active networks by monitoring voltage ratios. Typical accuracies are 60 ppm of the reading for absolute values and 20 ppm for ratio measurements. A front panel switch gives you six resistance ranges from 100Ω to 10 MΩ. Maximum dissipation during testing is 11 mW on the 100Ω range. James G. Biddle Co., Plymouth Meeting, Pa. 19462.

Circle 210 on Inquiry Card

ISOLATION AMPLIFIER
Linearity is ±3%; stability, ±3%/day.

Model 399 lets you make measurements at up to ±1500 V off ground. The instrument is a unity-gain amplifier with a full scale input of ±1 V. With the input floating, you can ground the output or it can float up to 100 V from ground. Gain accuracy is ±0.2%. The unit has two modes of operation to give you a choice between response and noise. The fast mode has a frequency response of 100 Hz and a noise level of 5 mV pk to pk. The slow mode gives you a response of 0.3 Hz and has a noise level of 0.5 mV pk to pk. Price of the instrument is $175, delivery in 30 days. Keithley Instruments, Inc., 28775 Aurora Rd., Cleveland, Ohio, 44139. (216) 248-0400.

Circle 211 on Inquiry Card

The Electronic Engineer • Nov. 1969
Now Varian delivers the highest power single-diode oscillators on the market. These Impatt-mode devices put out 1 watt CW in C or X band, operate at 6% typical efficiencies and require only 160 mA at 95 Vdc for X band or 110 mA at 150 Vdc nominal for C band. Operating frequency range is from 6 to 10 GHz. Two versions are offered: a ±250 MHz tunable model and a fixed-frequency model. Delivery is 60 days or less.

These Varian oscillators are available with optional current regulators and power supplies, operating from 115 Vac, 60-400 Hz, or 28 Vdc. Or you can order the high power Impatt diode alone.

Only from Varian. What you need in Microwave Solid State. Contact our more than 30 Electron Tube and Device Group Sales Offices around the world, or call our Solid State Microwave Operation, Salem Road, Beverly, Massachusetts.
NEW LAB INSTRUMENTS

POWER PULSER
Output is adjustable from 0 to 2 kV.

The PM-2 gives you output pulses of up to 1 A at 2 kV. The unit has a frequency range of 1 pps to over 20,000 pps and you can adjust the pulse width from $\frac{1}{2} \mu$s to 1 ms. An active discharge circuit gives good fall times even when operating into high-C loads. You can also use the unit as a 100 W dc power supply with an adjustable output of 0 to 2 kV, 0 to 50 mA. In this mode the unit gives you a rms ripple of less than 0.4% at full load, and a regulation of 0.12%/mA. The meter lets you read both voltage and current. Current Research Co., Box 231, Lincoln, Mass. 01773. (617) 897-7647.

Circle 212 on Inquiry Card

NOISE-LOADING TEST SET
For multiplex networks of from 12 to 2700 channels.

The Model 330A test set consists of a white noise generator (illustrated above), a receiver, and appropriate filters. The set loads all channels with noise and measures the mean noise level in one or more selected channels. A filter blocks the noise in the selected channel and the set measures the noise due to intermodulation distortion at the output of the network. You get the noise power ratio, a measure of network performance under maximum design-load conditions, by comparing the two measurements. Price is $2,950 with filters extra. Sierra Electronic Operation, Philco-Ford Corp., 3885 Bohannon Dr., Menlo Park, Calif. 94025. (415) 322-7222.

Circle 214 on Inquiry Card

PLUG-IN MULTIPLIER
Improves counter resolution at low frequencies.

Model 5268A multiplies the frequency of an input signal by 10, 100, or 1000, depending on the setting of a front panel switch, and then applies the multiplied frequency to the counter. You can increase the counter resolution for a given gate time, or, for the same resolution, you can divide the gate time by the multiplying factor. The instrument measures sine-wave signals as small as 100 mV rms or positive or negative pulses as small as 500 mV peak. The pulse duty factor can be as low as 5%. Price of the 5268A is $650. Delivery from stock. Inquiries Mgr., Hewlett-Packard Co., 1501 Page Mill Rd., Palo Alto, Calif. 94304. (415) 326-7000.

Circle 213 on Inquiry Card

WAVEFORM REPRODUCER
 Gives output from optically scanned waveform.

The Model 47A can reproduce waveforms for computer analysis, or you can use its output to drive shock or vibration test equipment. The input to this instrument can be a photograph from an oscilloscope camera or you can use a drawing of a waveform that has a white line on a black background. A front panel control adjusts the scan rate from 0.1 to 150 s to make the unit compatible with other equipment. You can also vary the time between scans from 0.01 to 30 s and adjust the amplitude of the output. The instrument is priced at less than $6,000; delivery within 30 days. Physi Tech, Inc., 645 Davisville Rd., Willow Grove, Pa. 19090. (215) 657-2900.

Circle 215 on Inquiry Card
At 12.4 GHz, forget about crosstalk.

This new switch gives 60 db of isolation at 12.4 GHz. You can forget about crosstalk at high frequencies because it's held to an absolute minimum.

Besides excellent isolation across its entire operating range (zero to 12.4 GHz), electrical characteristics are well suited to high-frequency applications. VSWR at 12.4 GHz is 1.5 max. Insertion loss is only 0.5 db max.

Mechanical characteristics make Amphenol's high-isolation switch easy to use. Switches come with standard N or TNC connectors. They measure a small $2\frac{1}{8}'' \times 2\frac{3}{16}'' \times 1''$ and can be easily stacked. Temperature range is from $-55°$ to $85°C$. Altitude range goes from zero to 70,000 feet. Shock and vibration performance meets MIL-S-3928B.

For high-isolation, high-frequency switches, talk to Amphenol RF Division, 33 E. Franklin St., Danbury, Conn. 06810.
NEW LAB INSTRUMENTS

DUAL-BEAM OSCILLOSCOPE
Has 6- x 10-cm CRT.

The D51 has a dc- to 6-MHz bandwidth for Channel 1, and a dc- to 3-MHz bandwidth for Channel 2. The unit has deflection factors from 100 mV/cm to 50 V/cm for both channels, and sweep rates from 1 µs/cm to 100 ms/cm in 6 steps. Price, $345.

Tektronix, Inc., Box 500, Beaverton, Ore. 97005 (503) 644-0161.
Circle 216 on Inquiry Card

SIGNAL GENERATOR
From 61 kHz to 512 MHz.

Model SG-1000 gives a choice of modulation; AM, FM, pulse, video or combinations such as AM/FM, FM/ pulse, etc. You can also use it as a counter for signals between 100 Hz and 2 MHz. $3,790. Availability 90 days. Singer Co., Instrumentation Div., 915 Pembroke St., Bridgeport, Conn. 06608. (203) 366-3201.

Circle 219 on Inquiry Card

WATT HOUR STANDARDS METER
Has internal rf shielding.

Model 2002 has a digital readout for direct reading of power consumption, power comparison correction factor and meter constant. You can use this unit in all fields of dc power consumption and also for calibrating dc watthour meters. Applied Electronics, 877 Cowan Rd., Burlingame, Calif. 94010. (415) 697-2701.

Circle 222 on Inquiry Card

DECADE RESISTOR BOXES
Have accuracy of 0.02%.

The DR-100 Series give you six decade selection with two concentric dials. Four models offer a choice of resistances from 12.22 kΩ to 12.22 MΩ. Prices, $210 to $260. You can get 0.0025% accuracy as an option. Julie Research Laboratories, Inc., 211 W. 61 St., New York, N.Y. 10023. (212) 245-2727.

Circle 217 on Inquiry Card

PORTABLE RELAY ANALYZER
Measures contact performance.

This instrument checks the operate time, release time and bounce of reed relays, mercury-wetted relays and crystal can relays. The only other equipment you need is a relay power supply, $650. New Product Engineering, Inc., Sub. of Wabash Magnetics, First & Webster Sts., Wabash, Ind. 46992. (219) 563-2191.

Circle 220 on Inquiry Card

POWER SYSTEMS TRANSDUCER
For use with dc instruments.

Series S-2000 includes watt, var, voltage, current and frequency transducers. These units will measure single phase or three phase (both 3- and 4-wire) systems. A standard 2 in. wide package gives you high density mounting. F. W. Bell, Inc., 4949 Freeway Dr., East, Columbus, Ohio 43229. (614) 294-4906.

Circle 223 on Inquiry Card

TEST CHAMBER
Has range of -120 to 350°F.

This unit has a controller that uses zero-voltage switching to eliminate any rf interference. Its accuracy is ±1/4°F throughout the range. The refrigeration system has no expendable refrigerant and gives you an operating cost of about $6/h. Tenney Engineering, Inc., 1090 Springfield Rd., Union, N. J. 07083 (201) 686-7870.

Circle 218 on Inquiry Card

PROXIMITY VOLTMETER
Accuracy is ±4% of full scale.

Model 5051 measures potentials on electrically charged surfaces without loading or physical contact. The instrument gives you seven switch-selectable ranges from ±1 to ±1000 V. Victoreen Instrument, Div., Victoreen Leece Neville, Inc., 10101 Woodland Ave., Cleveland, Ohio 44104. (216) 795-8000.

Circle 221 on Inquiry Card

OSCILLOSCOPE
Has bandwidth > 25 MHz.

Model OS2000R has a maximum sensitivity of 10 mV/cm (1mV/cm at 5 MHz). You have a choice of single or dual trace and standard or delayed time-base plug-ins. Price is $775 for the single trace version and $895 for the dual trace model. Marconi Instruments, 111 Cedar Lane, Englewood, N. J. 07631. (201) 367-0607.

Circle 224 on Inquiry Card
Now, an MSI dual quad latch that won’t break the bank...

$7.42 from TI—your first source for TTL.

If the cost of temporarily storing 8 bits is more than you really like to pay, then TI's new MSI dual quad latches (SN54100/SN74100) will please you.

For example, the SN74100N, in 100-999 quantities, is a cost-conscious $7.42.

These new MSI functions combine two independent quadruple latches in a single, 24-pin dual-in-line plastic package. Typical power dissipation is 40 mW per latch. And the SN54100/SN74100 are fully compatible with TI's other TTL and DTL integrated circuits.

As attractive as the price is, you'll want more details before you buy. Our new 424-page TTL catalog contains a data sheet on these dual quad latches as well as sheets on all TI Series 54/74 circuits. Circle 110 on the Reader Service Card, or write Texas Instruments Incorporated, P. O. Box 5012, M.S. 308, Dallas, Texas 75222. Or call your authorized TI Distributor.
GLASS ENCLOSED
Thermostatic
DELAY RELAYS
by
AMPERITE

Offer true
hermetic
sealing—
 assure
maximum
stability
and life!

Delays: 2 to 180 seconds
Actuated by a heater, they operate on A.C.,
D.C., or Pulsating Current... Being hermetically
sealed, they are not affected by altitude,
misture, or climate changes... SPST
only — normally open or normally closed
Compensated for ambient temperature
changes from -55°C to +80°C... Heaters
consume approximately 2 W. and may be
operated continuously. The units are rugged,
explosion-proof, long-lived, and inexpensive!

TYPES: Standard Radio Octal
and 9-Pin Miniature... List Price, $4.00

PROBLEM? Send for Bulletin No. TR-81.

NEW LAB INSTRUMENTS

DIGITAL DATA CONSOLE
Accepts up to 100 inputs.

Inputs to the Kadac unit can include thermocouples, RTD’s, pressure transducers, strain gauges, or other analog
sensors. This unit will scan all points, continuously, or update a single point every five seconds. Electronic Mod-
ules Corp., Box 141, Timonium, Md. 21093. (301) 666-3300.
Circle 232 on Inquiry Card

DIFF. AMP/NULL METER
Has drift of < 0.1 µV/°C.

The X-MOD 706 has an input range of 1 µV full scale to 1 V full scale in 20 calibrated, switch-selected steps.
The unit lets you select three bandwidth ranges of 10, 1 and 0.1 Hz, with a bandwidth accuracy of ±5%. Price
Circle 233 on Inquiry Card

DIGITAL CURRENT METER
Measures from 10 mA to 1 A.

Model 801A displays the peak magnitude of pulse currents as short as 7
ns. The unit has a built-in calibrator which lets you calibrate the instrument
and current probe at levels of 10, 50, 100, 250 or 500 mA. Scientific Meas-
234-0200.
Circle 234 on Inquiry Card

WAVESFORM GENERATOR
Programmable output.

Model 8272 can simulate sonar and radar signals, antenna and transducer
patterns, video signals, response curves, analog and digital test patterns,
and various other signals. Price of the unit is $1700., availability 45 days.
Metric Systems Corp., Ft. Walton
Beach, Fla. 32548. (904) 242-2111.
Circle 235 on Inquiry Card

MICROWAVE COUNTER
From 20 Hz to 3.0 GHz.

Model 970 is designed for the new
communication and telemetry bands. The unit has a 9-digit readout, a reso-
lution of 0.1 Hz, and a sensitivity of -7 dBm. Price of the instrument is
$2,250; delivery 2 weeks. Eldorado Electrodata Corp., 601 Chalmar Rd.,
Concord, Calif. 94520. (415) 686-4200.
Circle 236 on Inquiry Card

FREQUENCY PROCESSOR
Unit has selectable bandwidth.

Model 251/Type B recovers fre-
quency and phase of a signal. The out-
put is a high level square wave that is
frequency coherent and phase locked
with the input. The unit covers a range
of 1 to 240 kHz in six steps. Price,
$1945. Interstate Electronics Corp.,
Box 3117, Anaheim, Calif. 92803.
(714) 772-2811.
Circle 237 on Inquiry Card

The Electronic Engineer • Nov. 1969
Ferroxcube is ±1% intolerant about pot cores

Ferroxcube is extremely intolerant of wide tolerances in pot core inductance.

As one example out of dozens, our 3B9 material 1408 size pot cores with 100 A_L maintain ±1% tolerances. No one else in the industry holds to better than ±3%. Maybe they could. But then maybe they couldn't match our competitive prices.

Ferroxcube's ability to beat down pot core tolerances means that you get better stability (because you have a smaller tuning range). And it isn't just A_L values. We keep our specs strict in every parameter.

We also deliver faster. No one else has eight Stocking Centers nationwide... loaded for immediate local shelf-to-you deliveries.

And no one else gives you such a wide choice of bobbins and hardware accessories. Not to mention an unbeatable variety of pot cores in sizes from 9 mm to 42 mm and in five materials.

If you were harder on your pot core supplier, maybe you could be easier on yourself... in design, in costs. Write to Ferroxcube for Bulletin 220-C. When you study the pot cores there, you won't tolerate any other kind.

Ferroxcube
Saugerties, New York
A NORTH AMERICAN PHILIPS COMPANY.
NEW PRODUCTS

SWITCHING TRANSISTOR
Radiation-resistant.

The pnp Si switching transistor, Type MM4261H, retains more than 50% of its specified dc current gain after exposure to a fluence of 3×10^{14} neutrons/cm2 at a neutron energy level of 1 MeV, or 1×10^{15} neutrons/cm2 at > 10 keV. It has a high current-gain BW product of 3.5 GHz typ. Motorola Semiconductor Products Inc., Box 20924, Phoenix, Ariz. 85036.

Circle 238 on Inquiry Card

TERMINAL STRIPS
For instant plug-in connections.

Solderless terminal strip is for breadboarding with even the largest DIPs as well as TO-5s. It also accepts all discrete components with lead diameters from 0.010 to 0.032 in. Any solid wire can be used. Typical contact res. after 1000 insertions is $< 5 \times 10^4$ Ω at 1 A at 25°C. AP Inc., 72 Corwin Dr., Painesville, Ohio 44077; (216) 357-5597.

Circle 239 on Inquiry Card

NUMERIC READOUTS
With std. T 1 3/4 flange based lamps.

Series 68030 seven bar readouts with character ht. of 0.7 in. come completely enclosed and ready for mounting into a rectangular panel cut out. They can be supplied with matching BCD to 7 bar decoder-drivers. Info-Lite Div. of Cartelli Technology, Inc. 55 Jericho Tpke., Jericho, N. Y. 11753.

Circle 240 on Inquiry Card

SILICON RECTIFIER
2 kV to 5 kV.

New BH series of up to 5 kV PIV, 250 mA rectifiers comes in a 0.2 in. dia. x 0.38 in. long DO-27 package. Easily mounted on a pc board, they are suitable for use in TWT amplifiers, medical instruments, lasers, transmitters, screen supplies, and Xenon flash power supplies. Electronic Devices, Inc., 21 Gray Oak Ave., Yonkers, N.Y. 10710. (914) 965-4400.

Circle 241 on Inquiry Card

POWER SUPPLIES
For op amps and related devices.

The A-951 supply furnishes $±15$ V at 100 mA and features separate positive and negative sections to eliminate interaction. It provides two 15 V at $±0.3$ V outputs, and guarantees line reg. 0.02% max., load reg. 0.02% max., and rms noise 0.5 mV max. Price $55.00. Intech Inc., 1220 Coleman Ave., Santa Clara, Calif. 95050. (408) 244-0500.

Circle 242 on Inquiry Card

POWER TRANSISTORS
Typical $V_{CE}(sat)$ of 0.6 V at 70 A I_C.

MiniSat series is for Mil type high current switching applications. Packaged in a JEDEC TO-114 double ended stud, the series offers minimum H_{FE} of 10 at collector currents to 100 A and V_{CEO} to 150 V. Price range is $220 \text{ to } 325$. PowerTech Inc., 9 Baker Court, Clifton, N.J. 07011. (201) 478-6205.

Circle 243 on Inquiry Card

TANTALUM CAPACITOR
Low-profile.

Type 193 D Domino® rectangular-block solid tantalum capacitors are for use on hybrid substrates and pc boards. They come in six working voltages from 3 to 35 Vdc and in 10% and 20% tol. from 0.1µ F to 47 µF for the 3 V units to a range of 0.1 µF to 3.3 µF for the 35 V units. Sprague Electric Co., Marshall St, North Adams, Mass. 01247. (413) 664-4411.

Circle 244 on Inquiry Card

WRAP POST CONNECTORS
Simplify wire terminating.

Multi-conductor round wire flat cable, twisted pairs or individual hook-up wires are simultaneously terminated to wrap posts with these two connectors. "Scotchflex" No. 3399 (26 pos.) and No. 3414 (34 pos.) transition flat cable directly to 0.025 in.² posts on 0.100 in.² grid without soldering or stripping insulation. 3M Co., 3M Center, St. Paul, Minn. 55101.

Circle 245 on Inquiry Card

POWER SUPPLIES
For 1ks.

New series of 100 W supplies allow full-load operation for a minimum of 30 ms after the loss of ac input. Noise and ripple, including spikes, is held to a max. of 50 mV pk-to-pk. Line and load reg. is $< 0.5\%$, and TC is 0.02%/°C. Trio Laboratories, Inc., 80 Dupont St., Plainview, L.I., N.Y. 11803. (516) 601-0400.

Circle 246 on Inquiry Card
EPITAXIAL TRANSISTOR

Fast switching, HV, high current.

Double epitaxial transistor has a typ. speed \(f_t \) of 30 MHz at voltages \(V_{CEO\text{ or }B} \) up to 375 V and a peak current \(I_C \) of 30 A. Type 1843 is for use in power supplies, voltage regulators, dc to dc inverters, linear amps, dc to ac converters, control circuitry and other basic industrial applications. Westinghouse Electric Corp., Box 868, Pittsburgh, Pa. 15230. (412) 255-3693.

Circle 247 on Inquiry Card

ROTARY SELECTOR SWITCH

For PC board mounting.

Model SW62S, single pole, miniature switch is only 0.570 in. in dia. It features positive detent action at 36° intervals up to 10 factory-set positive stop positions, and environmental sealing. Gold contacts provide low resistance of 0.050 Ω max. Contact rating is 0.25 A at 28 Vdc max, Minelco, 600 South St., Holbrook, Mass. 02343.

Circle 248 on Inquiry Card

DC TUBEAXIAL FAN

Produces 80 cfm at 0 in. H₂O.

Circle 249 on Inquiry Card

The Model 912 Digital Data Generator is the most versatile, multi-purpose unit on the market today. With its 960 bit capacity, at clock rates from DC to 10 MHz in serial data stream or 5 MHz in parallel, it is ideal for exercising core memory logic, checking data communications lines, or computer interfaces; for exercising LSI's, IC's, MOS and logic cards. It's even a programmer — it replaces a paper tape reader for industrial control applications.

Other functions include testing D to A converters and CRT displays for example.

No other Digital Data Generator can provide 12 independent data streams in parallel (simultaneously) with capacities of 80 bits each, or 960 bits in a serial data stream without repetition.

For detailed description and specifications on the Model 912 Digital Data Generator, contact Jerry Heyer, SRC Division, Crescent Technology Corp., 2222 Michelson Drive, Newport Beach, California 92664, (714) 833-2000.

-- SRC --

Start testing those LSI's, IC's, MOS & Logic Cards with this!

Circle 54 on Inquiry Card
Every Engineer or Draftsman should have the NEW BY-BUK CROSS REFERENCE GUIDE P-45 (supersedes By-Buk Catalog No. P-42) to better printed circuit drafting.

This FREE 24 page booklet contains color-coded standard MIL-SPEC SIZES and design standards ... plus a newly added numerical index for easy reference to over 2000 pre-cut tapes, pads, shapes, transistor tri-pads, spaced IC terminal pad sets and other drafting aids for faster, more accurate, distortion-free printed circuit master drawings.

Send for your FREE guide today!

BY-BUK COMPANY
4326 West Pico Blvd. • Los Angeles, Calif. 90019 • (213) 937.3511

For critical airborne position readings, Gulton LVDT's tell you where it's at.

Our 4500 series LVDT displacement transducers provide infinitesimal resolution — AC/AC or DC/DC — for all sorts of hypercritical monitoring. With travel as small as ±0.005". And 50,000 hour MTBD, even in the presence of hydraulic fluids or aircraft fuel. We won't burden you with other specs, because we make LVDT's that'll do just about anything. Even with dual outputs, when it's nice to have a redundant system to fall back on.

Now, what's your application?

Gulton Industries, Inc.
SERVONIC DIVISION
1644 Whittier Avenue, Costa Mesa, California 92627 / (714) 642-2400

NEW PRODUCTS

RELAYS

Only ¼ in. high.

Model 3120 spdt and 3121 dpdt Trimpack™ subminiature relays have a 1.0 A rating at 26.5 Vdc, and are only 0.80 long x 0.56 wide x 0.25 in. high. Operating temp. range is −65 to +125°C and both models meet Mil-R-5757D. Operating life is 100,000 cycles. Bourns, Inc., Trimpot Products Div., 1200 Columbia Ave., Riverside, Calif. 92507. (714) 684-1700.

Circle 259 on Inquiry Card

CERMET CONDUCTIVE PASTE

Screen-printable.

ESL #6831 palladium/gold composition has good ultrasonic wire bonding characteristics, may be eutectically bonded with SIs without preform and readily accepts all tin-lead solders or various gold alloys. Thermo compression bonding and parallel-gap welding may also be used. Electro-Science Laboratories, Inc., 1133 Arch St., Philadelphia, Pa. 19107. (215) 563-1360.

Circle 260 on Inquiry Card

REED RELAYS

Have built-in diodes.

New 442DS series of ss relays have a blocking or arc depression diode within a 0.04 in.³ package. Forty two-pole relays can be mounted on a 5½ x 4½ in. pc board. Height is only 0.25 in. Relays are available in 2, 3, and 4 pole models. Contacts are rated at a full 7 W. Wheelock Signals, Inc., 273 Branchport Ave., Long Branch, N.J. 07740. (201) 222-6880.

Circle 261 on Inquiry Card

The Electronic Engineer • Nov. 1969
FAST SETTING EPOXY
Cures even under water.

New adhesive cures at room temp. and bonds to a wide variety of materials. Thin films of the two-component, clear Epo-Tek 201 compound will set up to handling strength in five to 10 min. Successful applications have included bonding delaminated pc land areas, optical encoders, and in fiber optics. Epoxy Technology, Inc., 65 Grove St., Watertown, Mass. 02172.

Circle 262 on Inquiry Card

HV CAPACITORS
For low inductance energy discharge.

Series C capacitors include voltage ratings from 5 kV to 75 kV, with peak discharge currents up to 150 kA and rep. rates to 4 ppm at 85% voltage reversal. They are for capacitor bank applications where fast current rise times, hv reversals, long life expectancy and low cost/joule are required. Maxwell Laboratories, Inc., 9244 Balboa Ave., San Diego, Calif. 92123. (714) 279-5100.

Circle 265 on Inquiry Card

AIR TRIMMER CAPACITOR
For pc or panel installations.

Two variable air dielectric trimmers are available in two ratings each—from below 0.8 pF to above 10 pF and from below 0.8 pF to above 14 pF. Quality factor (Q) is guaranteed to exceed 4000 at 100 MHz. Panel mount units are the AT10N and AT14N (shown); the vertical PCB units are the AF10N and AF14N. Voltronics Corp., West St., Hanover, N.J. 07936. (201) 887-1517.

Circle 263 on Inquiry Card

PC CARD RACK
Easily assembled.

All you need to assemble Versa-Cage® is a screw driver. Side rails are drilled to hold snap-in, one piece molded polycarbonate pc card guides. Rack is 19 in. long and will hold 32 cards 4½ in. wide and up to 6½ in. long (on ½ in. centers). Unitrack® Div. of Calabro Plastics, Inc. 8738 West Chester Pike, Upper Darby, Pa. 19082.

Circle 264 on Inquiry Card

FORCE CELLS
Wafer thin.

Model LP load cells measure loads and forces as high as 500 lbs., and as low as a few grams. The cells are for applications where accurate, dynamic subminiature force or load cells are needed and a total system accuracy of 1% is required. Typical linearity and hysteresis is 0.5%. Sentor Div., of Comtel Corp., 1400 Holly Ave., Columbus, Ohio 43212.

Circle 267 on Inquiry Card

PRODUCT ENEMY NO.1
To every manufacturer who permits hot, high voltage AC to go directly from the wall outlet to his battery-operated or low voltage DC product.

Modern manufacturers employ the simple, low cost DYNAMIC SYSTEM which keeps hot AC at the wall outlet and delivers only cool, low voltage DC to the product and completely eliminates the need for a bulky internal transformer.

Go MODERN with the U/L listed DYNAMIC SYSTEM and turn that wall outlet into a FRIEND instead of an enemy!

Dynamic Instrument CORP.
Dept. EE11 115 E. Bethpage Rd., Plainview, N.Y.

Circle 57 on Inquiry Card
NEW PRODUCTS

SELENIUM RECTIFIERS
Replace some silicon types.

These selenium rectifiers are for many applications where silicon rectifiers are now used. The selenium types offer greater resistance to transients. They come in flat and block type configurations with a wide range of power ratings, sizes and designs to meet specific requirements. Siemens America Inc., Box 1268, Union, N.J. 07083.

Circle 268 on Inquiry Card

PC BOARDS
Eight varieties offered.

New standardized "Computoboards" all have std. ic attachments and fittings, and may be inserted into std. PCB connectors. They allow quick circuit assembly by either solderless wrapping or point-to-point soldering methods. Silicon Systems, Inc., 1555 Placentia, Newport Beach, Calif. 92660. (714) 548-1881.

Circle 269 on Inquiry Card

DC-DC REGULATORS
Only 2-1/16 x 1-1/2 x 1/8 in.

CX 95 Series dc-dc, positive or negative "point-of-load" regulators come in 14 models. Outputs are from 3 to 24 Vdc at 4 A; inputs from 7-35 Vdc, depending on model. Flat-pack units provide ±0.5% "point-of-load" regulation for line or load changes. Technipower, Inc., Benrus Ctr., Ridgefield, Conn. 06877. (203) 438-0333.

Circle 270 on Inquiry Card

LIGHTED DISPLAY MODULE
Self-contained assembly.

New 4-lamp display module is for use as a lighted switch actuator or integral indicator display with the Series 40 pushbutton switch and Series 1M matrix system. A total of 384 easily changeable standard options are available. Display area measures 0.60 in. square. Stacoswitch, 1139 Baker St., Costa Mesa, Calif. 92626. (714) 549-3041.

Circle 271 on Inquiry Card

FLUIDIC SENSOR
High S/N ratio.

Model 24AS13A, Angular Rate Sensor is a laminar jet type sensor with an inherently high S/N ratio. It has an integral amplifier to provide scale factors as high as 0.25 psi/radian/s. A typical range of the sensor is ±20 radians/s, with a threshold of 2°/s (p = 10⁻³ psi). General Electric Co., Schenectady, N.Y. 12305.

Circle 272 on Inquiry Card

MINIATURE CONNECTORS
And interconnecting assemblies.

New line of interconnecting cable assemblies and jumpers has both 14- and 16-pin, dual, in-line connectors. The miniature 14- and 16-pin connectors have gold-plated pins measuring 0.015 x 0.025 x 0.190 in. arranged in a dual line for a 0.300 x 0.100 in. grid pattern. Circuit Assembly Corp., 3023 S. Kilson Dr., Santa Ana, Calif. 92707.

Circle 273 on Inquiry Card
We offer over 200 talking pictures. Pick one that speaks your language.

Our CRT's have been articulate right from the start. Our first, thirty years ago, told us we were onto a good thing. Some people didn't believe it, but that one spoke our language.

Since then we've gone on to develop and produce CRT's that make up an electronic United Nations.

One speaks to the weatherman. Another to a heart specialist. There's one that sits on a desk and talks to bookkeepers or accountants. And one that communicates with aircraft control tower personnel. One that strikes up a conversation with geologists. And even one that displays nuclear explosion data to anyone who cares.

That's asking a lot from a CRT. But then we've always done that. And we'll go right on doing it. Because even as our customers tell us, there's almost no limit to what a CRT can talk about.

Want to start a conversation with a CRT? Call or write us to arrange a meeting... anytime.

Electronic Tube Division, GENERAL ATRONICS
General Atronics, Philadelphia, Pennsylvania 19118
Dependable Hermetic Seals For Highly Critical Specs...

Specify E-I Glass-to-Metal Seals for Sophisticated Applications:

- Sealed Terminals and Multiple Headers
- Transistor and Diode Bases
- Compression-type Threaded End Seals
- Plug-in Connectors
- Vibrator Plug-in Connectors
- High Voltage Glass-bonded Ceramic Seals
- Hermetically-sealed Relay Headers
- Special Application Custom Seals
- Custom Sealing to Specifications

Quality Control at E-I begins with the raw material and follows through to the finished product. The picture above depicts one phase of this program — X-Ray Spectrographic Analysis. The Spectrograph provides a quantitative chemical analysis of the metals, alloys and glasses which are utilized in the manufacture of Electrical Industries' glass-to-metal seals. Continued surveillance of the chemical constituents of materials is just the beginning of the E-I quality control program that assures our customers the highest quality hermetic seals each and every time.

If you require standard or custom seals or sealing of your own components, check with E-I. Our engineers will gladly make recommendations. Illustrated technical literature is available — call or write today.

Electrical Industries
A Division of Philips Electronics and Pharmaceutical Industries Corp.
Murray Hill, N.J. 07974 — Tel. (201) 464-3200

Patented in U.S.A., No. 3,035,372; in Canada, No. 523,390; in United Kingdom, 734,583; other patents pending.

Circle 60 on Inquiry Card

EE NEW PRODUCTS

REED RELAYS
With built-in ss driver stage.

These ultra-miniature Series 442SS relays occupy only 0.05 in. including the transistor driving stage. They need only microwatts of power. Contact for the 442SS series is rated at a full 7 W and has been tested to a 10^7 MCFF (Mean Cycle to First Failure) at this load. They come in 2 to 4 pole models. Wheelock Signals, 273 Branchport Ave., Long Branch, N.J. 07740. (201) 222-6880.

Circle 256 on Inquiry Card

WIDEBAND POWER AMP
Measures only 1 1/2 x 2 x 3 in.

Min-Econ Model 3502, linear power amplifier is for laboratory use, for "bread-boarding," and for actual system amplification. It has a typical 3 dB bandpass from 0.5 to 325 MHz and a gain of 6 dB. Model 3502 sells for $130. C-COR Electronics, Inc., State College, Pa. 16801. (814) 238-2461.

Circle 257 on Inquiry Card

BRIDGE RECTIFIERS
Pre-packaged silicon units.

Series AFW full wave bridge rectifiers are for commercial and industrial applications. They directly replace individual units in multi-rectifier circuits. Units come in PRV ranges of: 50, 100, 200, 300, 400, 500, 600, 800, and 1000 V all with dc output current of 2.0 A at 50°C. Analog Equipment Corp., 18 Granite St., Haverhill, Mass. 01830. (617) 373-1501.

Circle 258 on Inquiry Card

The Electronic Engineer • Nov. 1969
Special introductory offer to new members of the ELECTRONICS AND CONTROL ENGINEERS' BOOK CLUB

For trial membership take
ANY ONE
for only $1.00
Values up to $12.50

Choose bonus from Library Group A

ANY ONE
for only $2.00
Values up to $18.50

Choose bonus from Library Group B

ANY ONE
for only $3.00
Values up to $37.50

Choose bonus from Library Group C

#A850 MATHEMATICS FOR ELECTRONICS WITH APPLICATIONS by H. M. Nodelman and F. W. Smith. Pub. price, $8.00. Club price, $6.80
#A896 BASIC PULSE CIRCUITS by R. Blitzer. Pub. price, $8.50. Club price, $7.25
#A930 PROJECT ENGINEERING by V. Hajek. Pub. price, $9.75. Club price, $8.30
#A955 ELECTRONIC TESTING by L. L. Farkas. Pub. price, $10.00. Club price, $8.50
#A999 ELECTRONIC TESTING by L. L. Farkas. Pub. price, $12.00. Club price, $10.25
#A144 DESIGN MANUAL FOR TRANSISTOR CIRCUITS by J. M. Carroll. Pub. price, $12.50. Club price, $10.65

YOUR BONUS BOOK comes with your first selection

YOUR FIRST CLUB SELECTION available from any Library Group above

Here is a professional book club designed to meet day-to-day engineering needs by providing practical books in your field on a regular basis at below publisher prices.

How the club operates: Basic to the club's service is its publication, the Electronics and Control Engineers' Book Club Bulletin, which brings you news of books in your field. Sent to members without cost, it presents in detail the featured book of the month as well as many alternate selections also available at special members' prices.

When you want to examine the club's featured book, you do nothing. It will be mailed as a regular part of your Club service. If you prefer one of the alternate selections—or if you want no book at all for that month—you let us know by returning the convenient card enclosed with each Bulletin.

As a member, you agree only to take four books in two years. Considering the many essential books published in your field, there will surely be at least four that you would want to own anyway. By joining the club, you save both money and the trouble of searching for the best books.

For trial membership take
ANY ONE
for only $3.00
Values up to $37.50

Choose bonus from Library Group C

#C330 ELECTRONIC ANALOG AND HYBRID COMPUTERS by G. A. Korn and T. M. Korn. Pub. price, $18.75. Club price, $15.95
#C335 MODERN OPTICAL ENGINEERING by W. J. Smith. Pub. price, $16.00. Club price, $13.60
#C336 ELECTRONIC AND RADIO ENGINEERING by F. E. Terman. Publisher's price, $19.50. Club price, $16.55
#C360 ELECTRONIC COMPUTER AND HYBRID COMPUTERS by G. A. Korn and T. M. Korn. Pub. price, $18.75. Club price, $15.95
#C371 SYSTEM ENGINEERING HANDBOOK by J. W. Truxal. Pub. price, $12.50. Club price, $10.65
#C381 PULSE, DIGITAL, AND SWITCHING WAVEFORMS by J. M. C. L. Truxal. Pub. price, $12.50. Club price, $10.65
#C509 ELECTRONIC AND RADIO ENGINEERING by F. E. Terman. Publisher's price, $19.50. Club price, $16.55
#C691 FLUID AMPLIFIERS by J. M. Kirchner. Pub. price, $17.75. Club price, $15.10
#C81 PULSE, DIGITAL, AND SWITCHING WAVEFORMS by J. Millman and H. Taub. Pub. price, $18.00. Club price, $15.30

Electronics and Control Engineers' Book Club
330 W. 42 St. 18th floor, N.Y., N.Y. 10036

Please enroll me as a member of the Electronics and Control Engineers' Book Club and send me the two books indicated below. I am to receive the bonus book at the special Library Group price and my first selection at the special Club price. These books are to be shipped on approval, and I may return them both without cost or further obligation. If I decide to keep the books, I agree to purchase as few or as four additional books during the next two years at special Club prices guaranteed to be about 15% under publisher prices.

Write Code No. of bonus book here
Write Code No. of first selection here

Name
Address
City
State Zip
(Offer good in U.S. and Canada only.)

E33121

The Electronic Engineer • Nov. 1969
Circle 61 on Inquiry Card
For a true record of temperature in service...

Tempilabel

*Easy to use...

![Tempilabel](image)

Easy to read

![Tempilabel](image)

Self-adhesive Tempilabels assure dependable monitoring of attained temperatures. Heat-sensitive indicators, sealed under the little round windows, turn black and provide a permanent record.

Tempilabel can be removed easily to document a report.

AVAILABLE

Within the range 100°F to 500°F Tempilabels are available to indicate a single temperature rating each — and also in a wide choice of four-temperature combinations per Tempilabel.

JUST A FEW OF THE TYPICAL APPLICATIONS

- Electrical Apparatus
- Electronic Assemblies
- Appliance Warranties
- Aircraft and Rockets
- Machinery and Equipment
- Storage and Transportation of Heat Sensitive Materials.

For descriptive literature and a sample Tempilabel for evaluation... (please state temperature range of interest).

NEW PRODUCTS

RESISTOR FLATPACKS

With many applications.

Ceramic sandwich resistor flatpack comes in three sizes: ¼ x ¼, ¼ x ½, and ¼ x ½ in. These thick-film networks may be used as voltage dividers, miniature attenuators, matching networks, 4-bit ladders, and as precision feedback resistors for amps. They meet all environmental requirements of Mil-Std-202. Mepco Inc., Morristown, N.J. 07960.

Circle 283 on Inquiry Card

PROBE

For logic circuitry.

Model 401A LogicProbes is for high noise immunity circuits, 12 V Vee ±15%. It visually displays quiescent states, single pulses as narrow as 50 ns and rep. rates to 10 MHz. Lamp on end of probe indicates and identifies quiescent logic levels, single pulses and continuous pulse trains regardless of rise and fall times. Automated Control Technology Inc., 3452 Kenneth Dr., Palo Alto, Calif. 94303. (415) 328-6080.

Circle 284 on Inquiry Card

PHOTODIODE DETECTORS

Responses from 0.4 to 1.1 µm.

MD1 and MD2 Si pin photodiodes match emission characteristics of the company's IR GaAs light-emitting diodes and are most sensitive at a wavelength of 0.9 µm. Some applications are in high-speed optical switching, laser detecting, optical encoding, and process and industrial control. Monsanto Electronic Special Products, 10131 Bubb Rd., Cupertino, Calif. 95014. (408) 257-2140.

Circle 285 on Inquiry Card

VOLTAGE SOURCE

Dialable from 1-999 V in 1 V steps.

Output on this multi-tapped transformer is shown in three windows. Accuracy at 10 mA is guar. ½% and is normally > ¼%. Larger currents may be drawn. Input is settable to a single ref. point on an expanded scale meter. Input volt. range is 105-125 V. Input freq. range is 50-1000 Hz. Idalee Electronics Corp., 891 Fulton St., Valley Stream, N.Y. 11580. (516) 825-8955.

Circle 286 on Inquiry Card

PLASTIC HYBRID PACKAGES

Molded in one piece.

Epoxy resin package line includes std. DIP's, ¼ x ¼, ½ x ½ in. with 0.600 and 0.300 plug-in; flat packs with substrate areas of 0.100 in., 0.500 in. and 1.00 in². Modules contain all necessary metal leads and ext. connections molded in place ready for placement of chips and bonding of interconnections. U. S. Electronic Services Corp., Holgar Ind. Park, Clifton Heights, Pa. 19018. (215) 626-5200.

Circle 287 on Inquiry Card

HYBRID OP AMP

With low input bias current.

The 2741 amplifier is for use in sample and hold applications, as integrators, and as high impedance filters. It provides low input bias current of 40pA, low input offset current of 15pA, low power dissipation of 50 mW and a high input impedance of 100 GΩ. Ameleo Semiconductor, A Telelyne Co., 1300 Terra Bella Ave., Mountain View, Calif. 94042. (415) 968-9241.

Circle 288 on Inquiry Card

The Electronic Engineer • Nov. 1969
Philco has something new in Series 74 T^2L... glassivated chips in cerdip packages.

Why consider another source for Series 74 T^2L? Here are three good reasons from Philco-Ford.

- RELIABILITY—as a final production step, we put an added layer of glass over the completed chip. This glassivation process protects the circuit against damage, and gives an extra measure of reliability.

- HERMETIC DUAL IN-LINE PACKAGES—All Philco-Ford Series 74 circuits are manufactured in hermetically sealed ceramic dual in-line packages... AND at prices comparable to plastic. Your assurance of quality is the experience we have gained in manufacturing many millions of cerdip DTL and T^2L circuits.

- CLAMP DIODES—All Philco-Ford Series 74 circuits have been designed with clamp diodes input to reduce ringing and improve system noise immunity.

All popular Series 74 circuits are now available from our Lansdale facility, one of the country's largest IC manufacturing plants.

For complete data and prices, contact your nearest sales office. Or write Philco-Ford Corporation, Microelectronics Division, Blue Bell, Pa. 19422.

Contact the nearest Philco-Ford Sales office:

Suite 714, 3641 Airport Blvd
Los Angeles, Calif. 90045
(213) 641-8105

3939 Fabian Way
Palo Alto, Calif. 94303
(415) 321-8740

2225 West North Ave.
Melrose Park, Ill. 60160
(312) 345-1000

Northwest Industrial Park
Second Avenue
Burlington, Mass. 01803
(617) 272-1600

Blue Bell, Pa. 19422
(215) 848-9100

20000 Rotunda Drive
Eng. Bldg. 3, Room 2060
Dearborn, Mich. 48121
(313) 323-3797

609 Saw Mill River Road
Ardsley, N.Y. 10502
(914) 693-3700

900 Don Mills Road
Don Mills, Ontario, Canada
(416) 444-2541

Room 428, State Tower Bldg.
Syracuse, N.Y. 13202
(315) 422-3154 or 3155

the better idea people in bipolar IC's PHILCO Ford
Vector-strut Cages Have Universal Adjustability

- STRENGTH
- HANDSOME APPEARANCE
- QUICK ASSEMBLY
- LOW COST

CHECK THE SPECS AND SEE:

THE VECTOR-STRUT CAGE provides an adjustable aluminum frame which through customer test has proven to be more versatile than other competitive units on the market.
- Mountable on 10", 19" or 24" racks.
- Three standard heights - 3½", 7½", 8½".
- Three standard depths - 8.975", 11.975", 15.725".
- Prototype quantities shipped from stock.
- Production quantities in minimum time.
- Vertically slotted side walls and adjustable cross member end brackets allow universal height and depth adjustability for cards and module cases.
- Infinite adjacent positioning capability for modules, cards and connectors with extruded fastener holding ducts.
- "EFP" ALUMINUM MODULE CASES to fit Vector-Strut Cages.
- Sixty (60) standard sizes for circuit cards, featuring 1/8" extruded grooves on .150" centers across case width for easy card mounting — no holes required in circuit board.
- Slide out side covers for quick access to cards.
- Front panels with captive thumb screws and rear panels either slotted or closed for user's connector design.

FOR HIGH FREQUENCY Vector Pak plug-in cases provide 90 to 100 DB of shielding with optional side panel gasketing.

Write the factory for specification data and prices.

EFP MODULE™

Patented Features

Vector ELECTRONIC COMPANY, INC.
12460 Gladstone Ave., Sylmar, Calif. 91342

Circle 64 on Inquiry Card

NEW PRODUCTS

TNC RECEPTACLE
Isolate rf.

Known as the KA79-59, this TNC receptacle has a Teflon insulated ground lug to isolate rf from the equipment panel. It mounts in a 1/2 in. dia. hole, on a 1/4 in. thick panel. Its rigid fastening insures low noise level. Kings Electronics Co., Inc., 40 Marbledale Rd., Tuckahoe, N.Y. 10707.

Circle 229 on Inquiry Card

MODULATOR/DEMODULATOR
For communications systems.

MC1596 monolithic balanced modulator/demodulator generates a double-sideband suppressed carrier signal. Unit features adjustable gain, good carrier suppression (60 dB typ. at 0.5 MHz), carrier feedthrough of 40 μV rms typ. at 1 kHz, and high CMR ratio of 85 dB typ. Motorola Semiconductor Products Inc., Box 20924, Phoenix, Ariz. 85036. (602) 273-3466.

Circle 230 on Inquiry Card

HEAT-SHRINKABLE TUBING
Insulates connector pins.

Mojo™ connectors (Elco Corp.) are shown before and after application of TL™ shrink-tubing. The tubing shrinks to cylindrical or odd shapes in seconds from any source of 200°F heat such as a heat lamp or hot air. Applications include wire and cable termination and insulation, cable marking and splice jacketing. The Zipper-tubing Co., 13000 S. Broadway, Los Angeles, Calif. 90061.

Circle 231 on Inquiry Card

The Electronic Engineer • Nov. 1969

Double Coil MAGNETIC LATCHING Series LD RELAYS

$2.49 EACH

(IN LOTS OF 5,000)

Printact®
Plugs into your PC board...mates with plated conductors

Where memory without power is a requirement in the design of control circuitry, the use of the "LD" relay results in a compact-low cost module. Reliability is assured by the unique design which includes, as standard, many features not generally available in commercial relays.

Encapsulated coil, bifurcated gold or palladium contacts, low thermal EMF, plug-in without sockets or soldering, low bounce and chatter, series-break switching eliminates pig-tails, permanent magnet avoids return spring and mechanical linkage—all of which assures continuous performance for many millions of cycles.

Available with 6, 12 or 24 VDC 1 watt coil (AC operation with series diode) in 2, 3 and 4 pole configuration. Series break swing–ers permit each pair of fixed contacts to be etched with common (Form C) or isolated (Form A plus Form B) switching between make and break circuits.

For data write or call 212-EX 2-4800.

Printact Relay Division, Executone, Inc., Box 1430, Long Island City, N.Y. 11101

Circle 65 on Inquiry Card
The only hang-up I've encountered on pushbutton switches is the abnormal amount of engineering time spent on finally selecting a switch. Maybe your Forum can clear up some of the mystery.

Here's what may be happening. You're breadboarding or prototyping a new circuit. Proving-out the circuit is the big problem so why worry about a simple pushbutton switch... in fact, a Fahnstock clip and a shorting wire will do for now... need another circuit path, just add another wire. Little by little, you're building up requirements for the switch without treating it as a component with characteristics that must be functionally acceptable to your overall circuit.

Maybe so. But, you can't expect us to project our exact requirements for a pushbutton switch in the prototype state.

Granted. But, based on your preliminary specs you can select a switch series that will probably provide the range of switching desired. The important thing is to interject the overall switch characteristics into the prototype stage as soon as possible. For instance, the Switchcraft "Box Switch" series offers a variety of circuits, contact materials, spring plating, etc. Final selection of these variables poses no problem as long as the basic "Box Switch" parameters are acceptable to the circuit operation.

Fig. 1 shows other series of Switchcraft pushbutton switches such as compact "Littel Switches," miniature 903 "Button Switches," "NF-LITE" illuminated switches, computer type "DA" switch and the compact "HI-D" switches. Each series has a range of functions and characteristics that may be selected for prototyping early in the circuit design stage. Just circle the reader service number of complete information on Switchcraft pushbutton switches.

What characteristics are you talking about? I'm not so sure it's all that difficult.

Operating forces, contact bounce, insulation resistance, contact resistance, etc. And, don't forget other considerations such as, mounting space, method of mounting, pushbutton colors, cost, etc. The difficulty usually occurs when the production switch is substituted for the "spare parts" variety used in the prototype.

I'll buy that. Especially on mounting specs where the engineering conference time and drafting changes on cutout dimensions can kill you.

Not to mention the cost of actually assembling the units on the production line. Switchcraft took a hard look at these costs and developed a unique "Adjusto-clip" feature for the 'Box Switch' and "Uniswitch" switches. Fig. 2 shows how the switch snap-locks into the panel cutout from the front for split-second assembly.

The same kind of engineering know-how applies to our entire line of pushbutton switches. Which, incidentally, is the most comprehensive on the market.

And, you'll be glad to ship prototypes anytime. That's natural, but how about shipping complete info on your pushbutton line to my staff, first?

Talking about prototypes, we'll be glad to send them an illuminated or non-illuminated "Uniswitch" sample. All we need is their name on your company letterhead.

They'll also receive our "FORUM FACTS on Pushbutton Switches" handbook and TECH-TOPICS every other month. This engineering-application magazine is read by over 10,000 design engineers who find the technically oriented application stories extremely interesting and helpful.
This new digital clock is systems oriented

For systems requiring a digital output of time and date, Chrono-log offers the Series 30,000 Integrated Circuit Digital Clock, systems oriented because...

IT MEETS EXACT SYSTEM NEEDS — choose from standardized options such as BCD or NIXIE display, outputs of hours-minutes-seconds or other time formats, addition of month-and-day or day-of-year calendars, parallel or serial (or both) output gating, standard or expanded operating temperature range... and many more.

IT SAVES SYSTEM SPACE — measures only 3/4 in. high, 8 3/4 deep and half-rack wide.

IT CUTS SYSTEM COST — basic clock costs less than electromechanical or discrete-component models. Also, use of standardized options assures the features you want (over 7,500 combinations available) at off-the-shelf prices.

Uses for Chrono-log Digital Clocks include real time and elapsed time inputs for data logging, data transmission, data processing, time display, telemetry and digital printout systems.

For complete information write Chrono-log Corp., 2583 West Chester Pike, Broomall, Pa. 19008 or call (215) 356-6771.

Circle 67 on Inquiry Card

For systems requiring a digital output of time and date, Chrono-log offers the Series 30,000 Integrated Circuit Digital Clock, systems oriented because...

IT MEETS EXACT SYSTEM NEEDS — choose from standardized options such as BCD or NIXIE display, outputs of hours-minutes-seconds or other time formats, addition of month-and-day or day-of-year calendars, parallel or serial (or both) output gating, standard or expanded operating temperature range... and many more.

IT SAVES SYSTEM SPACE — measures only 3/4 in. high, 8 3/4 deep and half-rack wide.

IT CUTS SYSTEM COST — basic clock costs less than electromechanical or discrete-component models. Also, use of standardized options assures the features you want (over 7,500 combinations available) at off-the-shelf prices.

Uses for Chrono-log Digital Clocks include real time and elapsed time inputs for data logging, data transmission, data processing, time display, telemetry and digital printout systems.

For complete information write Chrono-log Corp., 2583 West Chester Pike, Broomall, Pa. 19008 or call (215) 356-6771.

Circle 67 on Inquiry Card

CORE MEMORY SYSTEM
Has a 2 µs access time.

New FI-23 plug-in random access system has capacities of 80 or 160 words with up to 17 bits/word. This 8 µs full cycle system has an interface line to insure that stored data isn't lost during power turn-on or turn-off. Power required is +5 V at 3 A max. and -5 V at 0.6 A max. Ferroxcube Corp., Systems Div., Englewood, Colo.

Circle 250 on Inquiry Card

HF RECEIVER
Has digital readout to 10 Hz.

An electronic counter with a 7 digit display, locked to a built-in crystal freq. source, lets you read received tuned freq. to within 10 Hz. Model RA9218 has demodulation facilities for am, fm, ssb, (upper and lower), cw and mcw reception, over a freq. of 1-30 MHz. Racial Communications, Inc., 8440 Second Ave., Silver Spring, Md. 20910. (301) 587-8515.

Circle 255 on Inquiry Card

HIGH SPEED DATA SET
For digital data communications.

Model 3952 transmits and receives serial binary data over a voice bandwidth at a synchronous rate of 2400 bits/s. It can be used with all-present-day transmission equipment including conventional and dedicated telephone lines, power lines, microwave and radio. RFL Industries, Inc., Boonton, N.J. 07005. (201) 334-3100.

Circle 252 on Inquiry Card

L-BAND TRANSMITTER
For fm/fm, pcm/fm telemetry data.

New 20 W hybrid uhf-fm transmitter can transmit telemetry data from 1435 to 1540 MHz (L-band). The Model 3670 features rf power output > 20 W under all environmental conditions, an efficiency exceeding 15% and true fm freq. response from zero to > 500 kHz EMR-Telemetry, Box 3041, Sarasota, Fla.

Circle 253 on Inquiry Card

DRUM PRINTER
Parallel, positive true bcd input.

Model 691 is a 3 line/s, printer expandable from 4 to 21 columns. Nineteen columns contain digital characters 0 through 9 and 6 symbols. A "floating" decimal point may be programmed in any of these columns. Two columns may be used to print 38 symbols. United Systems Corp., 918 Woodley Rd., Dayton, Ohio 45403.

Circle 254 on Inquiry Card

D/A CONVERTER
On a 3.5 x 4.3 in. card.

New 8 bit D/A converter with operational amplifier output, adjustable gain and precision voltage reference has up to 12 bit resolution, 4 µs settling time, 0° to 70°C operation and DTL/TTL compatibility. Costs $85.00 each in single quantity. Standard Logic Inc., 1630 S. Lyon St., Santa Ana, Calif. 92705.

Circle 255 on Inquiry Card

Circle 119 on Inquiry Card
Low profile.

Which means you can build a complete relay only .187" high to fit dual in-line spacing using Hamlin's new Mini-2 reed switch. It has a sensitivity range of 7.5 to 32.5 ampere turns which will rate your relay at 100 milliwatts with an operate time of 200 microseconds.

Like all Hamlin Djinnis, it's built to last longer whatever your application. That's why we're asked to build more types of reed switches for more people than any other manufacturer.

For instance, our Micro-miniature Djinni is the world's smallest. Then, there's the Tiny, Subminiature, Miniature, Compact and Standard sizes just to make sure you won't have any packaging problems.

If your application calls for RF switching, we have a Djinni that will switch frequencies from 30-100 MHz with low resistive losses and an impedance level of 52 ohms. The tiny MTRF-2 measures only .092” glass diameter by .635” glass length.

Ultra-high voltage applications call for the type DRTV that will switch voltages up to 20,000 VDC. Life expectancy is 1 million operations at full load and practically infinite life at lower voltage levels.

Work a little magic of your own the next time you have a control problem. As a starter, send for our free “Switch Lab” kit. Just write to Hamlin, Inc., “Baghdad on the Lake,” Lake Mills, Wisconsin 53551.

How’s that for low-cal magic?
Photoelectric FETs

An 8-page brochure contains an introduction to Crystalonics' Fotofets® plus electrical data and characteristics. Incidentally, Crystalonics is sponsoring a design contest on Fotofets® featuring many attractive prizes. And this brochure is sure to help! For more information on this contest and for a copy of this brochure, turn to page 48 of this issue and

Circle 321 on Inquiry Card

1969/70 complete catalog

A 100-page illustrated catalog features operational amplifiers, modules, instruments, boosters, power supplies, regulators and accessories, including up-to-date specs and prices. Information on company research, sales and customer services is provided. Indexing is the key to the usefulness of this catalog. Products are indexed by function/title with applications and are indexed numerically by series and model numbers. The company provides new specifications as new products become available. Philbrick/Nexus Research, 3 Allied Dr., Dedham, Mass. 02026.

Circle 322 on Inquiry Card

Power servo actuators

Power servo actuators for guidance and control systems are described in a 4-page folder. Those featured are in service on AN/APQ-113 Attack Radar on the F-111 series aircraft. Complete specs are given showing electrical and mechanical performance. Weston-Transcillo, Worcester, Pa. 19490.

Circle 323 on Inquiry Card

Power grid tubes

A fully-illustrated 50-page catalog provides information on current power grid tubes for new equipment design. A brief description accompanies each tube as does a chart providing characteristics and applications. EIMAC division of Varian, 301 Industrial Way, San Carlos, Calif. 94070.

Circle 324 on Inquiry Card

Monsanto metricist

The seventh issue of this 8-page publication presents two major articles, "Understanding and Using Counter/Timer Specs" and "Model 501A Programmer Simplifies Repetitive Sequences of Test Procedures." The first deals with clock stability and aging rate, concluding that there are no standards for writing counter specs, and the second with the simplification of simple or semi-automated sequential test procedures. Monsanto Electronic Instruments, 620 Passaic Ave., West Caldwell, N.J. 07006.

Circle 325 on Inquiry Card

Micro-miniature trimmer pots

This 2-page technical bulletin (P-67) contains specifications, schematics and actual size photos of micro-miniature trimmer pots. The wire-wound, single-turn trimmers, with standard resistance values ranging from 20 to 25,000 \(\Omega \), offer a wide variety of mounting, connecting, and adjusting styles. Additional material includes applications, Mil spec references and ordering information. Minelco, 600 South St. Holbrook, Mass. 02343.

Circle 326 on Inquiry Card

Neon and incandescent readouts

Miniature readout indicators and decoder-drivers are the subject of this 8-page illustrated catalog. Detailed specs, code tables, dimensional drawings, and prices are included in each description. Listed among the incandescent types are the metal-encased MS-4000 series numerical and symbol indicators. Ten types of readouts are listed as well as logic modules and special mounting kits. Additional information includes wiring instructions, schematic drawings, quantity pricing and accessories. Robert E. Laffey, Alco Electronic Products, Inc., Box 1348, Lawrence, Mass. 01842.

Circle 327 on Inquiry Card

Miniature circular connectors

A 36-page catalog describes intermediate size miniature circular connectors and provides information and illustrations for the complete line, including Mil-C-26500, Mil-C-38300 and Mil-C-5015. The connectors come in a variety of configurations. Each of the seven sections of the catalog is devoted to providing you with complete information on a specific line of miniature circular connectors. Amphenol Connector Div., The Bunker-Ramo Corp., 2801 S. 25th Ave., Broadview, Ill. 60153.

Circle 328 on Inquiry Card

Packaging panels

This 16-page catalog (#266) describes a two-dimensional concept and design features of packaging panels for S1L integrated circuits and accessories. Technical and dimensional information for the 8150 series and

Circle 329 on Inquiry Card

Power supply catalog

As with all good catalogs on dc power supplies, this one does not limit itself to a description of the company's products. It starts with 16 pages of background on dc power supplies, including a glossary of terms, a description of the operating principles of basic regulators, and explanation of the typical applications problems, such as remote sensing, programming, testing, and so forth. The product description includes all Sorensen lines—lab supplies, overvoltage protectors, programmable supplies, modular, h-v supplies, and many others. Raytheon Co., Sorensen Operation, Richards Ave., Norwalk, Conn. 06856.

Circle 330 on Inquiry Card
CRYSTAL FILTERS
State-of-the-Art-minus-1

Reeves-Hoffman can and does design discrete component and monolithic crystal filters that range from the economically prosaic to the state-of-the-art. Many of them are somewhat sophisticated (sort of “state-of-the-art-minus-1”). What we promise in capability and reliability, we fulfill.

The four filters shown below were manufactured to meet user requirements. For further information on these filters, or for crystal filters, crystals and oscillators designed to your specifications, call or write today.

MONOLITHIC BANDPASS FILTER

MONOLITHIC SIDEBAND FILTERS

BANDPASS FILTER

SINGLE SIDEBAND FILTER

CRYSTAL CONTROLS

REEVES-HOFFMAN

DIVISION, DYNAMICS CORPORATION OF AMERICA

440 W. NORTH ST., CARLISLE, PA. 17103 • 717/243-5929 • TWX: 510-650-3510

The Electronic Engineer • Nov. 1969

Circle 69 on Inquiry Card 115
LITERATURE

Dip socket boards

RN Catalog 0969 provides information on high density dip socket boards using a method of mounting the dip socket through, rather than on, the PC board. This technique allows for economy and flexibility without an increase in overall height. Mounting information is provided in the brochure as well as information on available material. Robinson-Nugent Inc., 800 East Eighth, New Albany, Ind. 47150.

Circle 346 on Inquiry Card

Panel meters

Catalog 870 lists over 3000 types of panel meters. A complete line of Windo-Mount meters is included and many options and modifications are fully described. Of special interest is the availability of all styles and sizes in Mil-Spec versions, with ruggedized movements and cases and covers of Lexan. Modutech Inc., 18 Marshall St., Norwalk, Conn. 06854.

Circle 347 on Inquiry Card

Indicator lights

Two-terminal subminiature indicator lights are the subject of this 12-page catalog (L-178D). Each indicator is illustrated and described, and diagrams provide mounting information.

Circle 348 on Inquiry Card

Energy discharge capacitors

Energy discharge capacitors are the subject of a 4-page technical bulletin. The bulletin provides curves, charts and formulae to aid in capacitor selection. Additional information includes applications, a list of standard units and a check list of data for ordering units. Aerovox Corp., New Bedford, Mass. 02741.

Circle 349 on Inquiry Card

Card-edge connectors

Mil-C-21097, modular and metal-plate designs are among 18 connector series included in a 32-page guide to connectors. The 27 sizes range from 4 to 84 contacts and include connectors compatible with terminating techniques such as solderless, solder and taper tab. Information is provided on single- and dual-readout contacts, insulator materials and contact materials. A 3-page illustrated index, complete drawings, detailed specs and connector descriptions are provided for your convenience. Elco Corp., Willow Grove, Pa. 19090.

Circle 350 on Inquiry Card
Information systems

Bulletin 2470 provides specifications, illustrations and descriptions of 15 products including the Model 3700 ANSCAN Subsystem and the Model 3701 Universal Output Coupler. The 12-page bulletin also describes the Model 816 Digital Data Processor and devotes two pages to a block diagram indicating options available with the data processing systems. Electronic Instruments Div., Beckman Instruments, Inc., 2400 Harbor Blvd., Fullerton, Calif. 92634.

Circle 351 on Inquiry Card

Film reader/recorder

A 2-page spec sheet describes the functional capabilities of the PFR-3 programmable film reader, its principles of operation, the signal processing and logic unit and peripheral equipment. Its ability to differentiate between wanted and unwanted data is a primary feature. Additional information includes a wide list of applications. Information International, 12435 West Olympic Blvd., Los Angeles, Calif. 90064.

Circle 352 on Inquiry Card

Electronic switches

Complete technical information is provided on electronic switches in an illustrated 2-page data sheet (catalog ES-697). The bulletin describes principles of operation, special features, typical applications and detailed specs for all models. It includes quantitative data on dynamic range and intermodulation distortion performance. Lorch Electronics, 105 Cedar Ln., Englewood, N.J. 07631.

Circle 353 on Inquiry Card

Free DC motor bulletins

72 performance curves on motors and gearheads

Indiana General has released specifications on custom-designed DC motors, available at off-the-shelf prices. Tolerances on these motors are often held to .0001.in.

They come in 8, 9, 12, 13 and 15 frame sizes, with delivery in 6 to 8 weeks instead of the normal 12.

For technical details, including performance curve data for each, plus information on gearheads, write: Mr. R. D. Wright, Manager of Sales, Indiana General Corporation, Electro-Mechanical Division, Oglesby, Illinois 61348.

INDIANA GENERAL

Circle 71 on Inquiry Card

SOLID STATE RELAYS

AC or DC

Flight Systems Static Relays available for either AC or DC load or control voltages.

COMPARE THESE SPECIFICATIONS AND FEATURES!

• Fast - 50 microseconds actuating and release time (DC)
• All solid state - No reed switches or light bulbs
• Isolated - Over 50 megoms of magnetic isolation
• Control circuit will not be actuated by noise
• All silicon semiconductors used throughout

All popular contact styles available

Delivery: STOCK

Circle reader service no. for new catalog which lists prices and complete specifications on Relays, Timers, Circuit Breakers, Interface Units, Current Sensors.
Schrack relays meet specifications far in excess of those required by the most exacting standards—and are priced much less. Schrack has available a complete line of sockets, plugs and dust covers for custom modular construction to suit all your requirements—including accessories.

Send for complete catalogs today.
Test socket/carriers
A 6-page catalog describes test sockets and carriers for integrated and hybrid circuits, MSI and LSI, rectifiers and other semiconductors. Information on configurations, applications and special features is provided for each unit. Additional information on a variety of related products is available. Textool Products Inc., 1410 Pioneer Dr., Irving, Texas, 75060.
Circle 357 on Inquiry Card

Flexible laminates
Descriptions, characteristics and suggested applications for a variety of laminated combinations of papers, films and foils make up this new 8-page brochure. Included in the line of flexible laminates and coated products are more than two dozen items such as Spauldo paper with aluminum foil, Kraft paper with polyester film and glass cloth with steel foil. Solvent or water base adhesives are available. Natt Burke, Spaulding Fibre Co. Inc., North Rochester, N.H. 03867.
Circle 358 on Inquiry Card

Panel meters and voltmeters
A 36-page catalog describes in detail a complete line of digital panel meters and voltmeters. Included is a family of six compact, low-cost digital panel meters, two 3-digit multimeters and sophisticated 4- and 5-digit multimeters. The catalog has illustrations of each instrument as well as a general description, technical highlights, detailed specs, available options and price list. Data Technology Corp., 1050 East Meadow Circle, Palo Alto, Calif. 94303.
Circle 359 on Inquiry Card

Multiplexers
A 4-page brochure provides information on the MULT6 MOS P-Channel IC 6-channel Multiplexer. Applications information, maximum ratings and guaranteed electrical characteristics are provided in addition to a circuit diagram, mechanical data and a test circuit for switching time detail. Union Carbide Corp., Semiconductor Dept., Box 23017, 8888 Balboa Ave., San Diego, Calif. 92123.
Circle 360 on Inquiry Card

Panel meters and voltmeters
A 36-page catalog describes in detail a complete line of digital panel meters and voltmeters. Included is a family of six compact, low-cost digital panel meters, two 3-digit multimeters and sophisticated 4- and 5-digit multimeters. The catalog has illustrations of each instrument as well as a general description, technical highlights, detailed specs, available options and price list. Data Technology Corp., 1050 East Meadow Circle, Palo Alto, Calif. 94303.
Circle 359 on Inquiry Card

RF and POWER SWITCHES
A complete line of rotary, high voltage and high current ceramic-type switches for RF and low frequency applications. Write for catalog, containing information on the mechanical and electrical properties of our standard line of switches.

Circle 77 on Inquiry Card

More air flow than other axial flow fans of the same size!

CENTAUR™

FEATURES:

- Quiet - as low as 40 db (SIL) on 60 Hz power
- Economically priced
- U.L. Yellow Card Recognition (File No. E31293)
- Impedance protected

Computer designed five-bladed impeller molded of high impact polycarbonate is precisely matched to a powerful shaded pole motor - available with either oil-impregnated sleeve bearings or precision ball bearings lubricated for life. The recommended operating ambient temperature is -40°C to +55°C with sleeve bearings, and -40°C to +72°C with ball bearings. The motor is mounted to a spider of die cast aluminum which is in turn assembled to a venturi of high temperature resistant black phenolic. The Centaur will deliver 120 cfm of air, free delivery operating at 115 volts, 60 Hz, or 100 cfm free delivery at 230 volts, 50 Hz.

For complete technical details write today to Rotron Incorporated, Woodstock, N.Y. 12498

Circle 77 on Inquiry Card

STA-STRAP® CABLE TIES

- Strap passes through head easily. No tugging.
- Protects workers' fingers against abrasion.
- Reduces fatigue.
- Increases installation speed.
- All nylon. Six sizes for bundle diameters 0 to 8".

Ask for Free Samples and Compare With Your Present Harnessing Method.

Circle 78 on Inquiry Card

RF and POWER SWITCHES
A complete line of rotary, high voltage and high current ceramic-type switches for RF and low frequency applications. Write for catalog, containing information on the mechanical and electrical properties of our standard line of switches.

Circle 77 on Inquiry Card

RADIO SWITCH CORPORATION
P.O. Box 79, Marlboro, N.J. 07746
Tel (201) 462-6100

Circle 78 on Inquiry Card

Circle 79 on Inquiry Card

FROM THE MANUFACTURERS OF
PANDUIT® PLASTIC WIRING DUCT

Visit PANDUIT Booth 308 N.E.C. Show
Components and resistors for coupling, decoupling, filtering, timing, switching or computer circuits—EPD DSF-1, (4-page). Corning Glass Works, Corning, N.Y.

Circle 331 on Inquiry Card

Wrap kits for modular direct entry packaging of ICs and discrete components—catalog 5814-16 (4-pages). Interdyne, 2217 Purdue Ave., Los Angeles, Calif. 90064

Circle 332 on Inquiry Card

Vehicle detector which consists of 1 to 6 sensing heads per amp detects the presence of a passing vehicle up to 120 mph—4 pages. Card Key Systems, 5930 W. Jefferson Blvd., Los Angeles, Calif. 90016.

Circle 333 on Inquiry Card

Energy discharge capacitors designed to permit the flow of large currents by discharging stored energy—4 pages. Aerovox Corp., EDC Dept., New Bedford, Mass. 02741.

Circle 334 on Inquiry Card

Power supplies with strip terminals, with outputs ranging from 4 to 1000 volts. Acopian Corp., Easton, Pa. 18042.

Circle 335 on Inquiry Card

Ground plane tape (pressure sensitive) for use in computer and color TV delay lines—data sheet GPF-219. Tapecon, Inc., Box 4741, Rochester, N.Y. 14612.

Circle 336 on Inquiry Card

Circle 337 on Inquiry Card

Circle 338 on Inquiry Card

Circle 339 on Inquiry Card

Connectors, protectors and extractors, including circular and rectangular connectors of the high density, military and aerospace types. Bean-Protolab, 326 Town & Country Village, Palo Alto, Calif. 94301.

Circle 340 on Inquiry Card

Spacers, posts and standoffs for electronic and electro-mechanical trade. Technical Accessories Co., 789 Jersey Ave., New Brunswick, N.J.

Circle 341 on Inquiry Card

Microwave water loads, offering low vswr, including high power miniature loads of the ceramic block type, 16 pages. Varian, 611 Hansen Way, Palo Alto, Calif. 94303.

Circle 342 on Inquiry Card

Trends in transformers, including design techniques with emphasis on insulating materials, article reprint GER-2026 (4-pages). General Electric Co., Bldg. 705, Corporation Park, Scotia, N.Y. 12302.

Circle 343 on Inquiry Card

Circle 344 on Inquiry Card

Circle 345 on Inquiry Card

Electronic time delay relays

- Transient voltage protected
- High density packaging
- Wide delay range

Protected against environmental extremes by an all-welded encapsulated construction, these solid state timers maintain timing accuracy over a wide range of voltage and temperature. Accuracy is further safeguarded by built-in transient voltage protection.

Three types are available, either factory preset or field adjustable. The 311 crystal-can module has SPST NO switching rated to 200 MA with delay times from 0.1 to 100 seconds. Series 312 and 313, rated 10 amps and 2 amps respectively, have DPDT switching. Delay times are from 0.1 to 400 seconds; reverse-action operation is also available.

Timers with longer delays, higher switching loads, closer tolerances, and other timing modes are also available.

Send for information now!

A.W. HAYDON COIL COMPANY
232 North Elm Street
Waterbury, Conn. 06702

See E.E.M. for local Representatives in U.S.

In Europe s.a. Polymotor • 1 Blvd. Anspach • Brussels 1 • Tel: 19.27.46
Timing & Stepper Motors • Electromechanical & Electronic Timing Devices & Systems
Index to Product Information

Listed below are all products and new literature that appear in this issue, along with the page number they appear on and their Reader Service Numbers (RSN). For more information, see the appropriate page and circle the corresponding number on the reader service card.

Components
- Ballast regulators: 98-52
- Capacitors: 103-263
- Capacitors, electrolytic: 90-49
- Capacitors, HV: 103-265
- Capacitors, tantalum: 4-7
- Connectors, torsion bar: 4-7
- CRTs: 105-69
- Crystal filters: 115-69
- DC tubular fan: 101-249
- Diode oscillators: 93-40
- Fans, axial flow: 119-7
- Geometers and blowers: 88-48
- Magnetic heads: 117-12
- Magnets, gyro-tuned: 8-10
- Microwave switch: 95-51
- Microwave semiconductor source: 44-412
- Molded inductors: 32-27
- Motors and gearheads: 117-7
- Potentiometer, DIP: 23-20
- Rectifier assemblies: 47-44
- Rectifiers, HV: 48-35
- Reed switches, miniature: 113-68
- Regenerative gate SCR: 20-37
- Relays: 117-73
- Relays: 102-259
- Relays, all types: 118-74
- Relays, delay: 98-52
- Relay, TO-5: 74-43
- Relay, red: 106-261
- Resistor flatpacks: 108-283
- Selecter switch, rotary: 103-74
- Switches, lever: 5-8
- Switches, pushbutton: 111-60
- Switches, rf and power: 119-78
- Tantalum capacitor: 100-244
- Thick film networks: 21-16
- Thin-film resistor kit: 90-275
- Time delay relays: 110-239
- TNC receptacle: 13-14
- Transformers: 112-75
- Trimmers, metal film: 103-266
- Trimmers, cermet: 112-70
- Tube, oscillator back cover: 45

ICs and Semiconductors
- Communications IC seminar: 90-279
- Custom ICs: 44-413
- Diodes, tuning: 81-66
- Hybrid ICs: 24-21
- Hybrid op amp: 108-288
- IC amplifiers: 87
- ICs, rel: 26-27
- LSI D DA: 20-276
- Microcircuits: 35-41
- Microwaves semiconductor source: 44-412
- MS capacitor: 97-110
- MOS shift registers: 67-9
- Photodiode detectors: 108-285
- Linear ICs: 56-37
- Modulator/demodulator IC: 110-230
- Op amp FET hybrid: 118-76
- Op amps: 89-227
- Optoelectronic arrays: 89-228
- Power transistors: 100-244
- Random-access memory: 88-225
- Rectifiers, bridge: 106-258
- Rectifiers, HV: 48-35
- Rectifiers, silicon: 253-256
- Regenerative rectifier: 100-241
- Transistor, epitaxial: 101-247
- Transistors, HV: 19-16
- Transistor, switching: 100-238
- TTL ICs: 109-63

Instrumentation
- Color TV modulator: 92-209
- Correlator: 86-206

New Literature
- Electronics New Literature Page

Materials and Packaging
- Acrylic sleeving: 30-25
- Cable ties: 119-79
- Ceramic conductor paste: 102-260
- Connecting system: 11-11
- Connects, torsion blade: 4-7
- Epox fast setting: 103-262
- Fasteners: 15-14
- Heat-shrinkable tubing: 106-231
- Heat shrink tubing: 106-231
- IC packaging panels: 31-26
- IC sockets: 44-31
- Insulation: 68-42
- Miniature connectors: 104-273
- Module cases: 110-64
- PCB boards: 104-269
- PC board rack: 103-264
- Plastic hybrid packages: 108-287
- Pot cores: 99-53
- Precision metal parts: 43-30
- Terminal strips: 109
- Wrap post connectors: 100-245

Modules, Networks and Subassemblies
- Dc-dc regulators: 104-270
- Diode oscillators: 104-272
- Fluidic sensor: 104-272
- IC amplifiers: 104-272
- IC logic cards: 90-277
- Integrated light switch: 104-279
- Light display module: 104-279
- LV line rectifier: 103-277
- Microcircuits: 35-41
- Numeric readouts: 100-240
- Op amp FET hybrid: 118-240
- Optoelectronic arrays: 89-240
- Plug-in multipliers: 94-213
- Power amperes: 106-247
- Power supplies: 100-246
- Power supply, dual: 100-247
- Power supply modules: 100-248
- Rectifiers: 77-44
- Rectifier assemblies: 106-248
- Thick-film networks: 21-16
- Voltage source: 108-286

Production and Manufacturing
- Abbrascivs: 66-38
- Circuit designer: 120-87
- Slicing and dicing unit: 91-281

Systems Equipment
- Career opportunities: 28-23
- Core memory system: 112-250
- D/A converter: 112-255
- Digital voltmeter: 98-253
- Digital clock: 112-67
- Digital current meter: 98-234
- Digital data console: 98-232
- Digital systems: 45-32
- Drum printer: 112-254
- Employment opportunities: 49-36
- Frequency counter: 98-237
- Generator, waveform: 98-235
- RF receiver: 120-251
- High-speed data set: 112-252
- I/O buffer transmitter: 112-239
- Inertial navigation: 30-24
- Microwave, counter: 98-252
- Power supply modules: 84-47
- Power supply system: 33-28

The Electronic Engineer • Nov. 1969
Nomex.
The best thing next to electricity.

No matter what the class, you want the most reliable insulation you can get. NOMEX® nylon gives Class H performance and better for Class A through H motors, generators, transformers and wrapped wire. As a result, one insulation—NOMEX—can efficiently satisfy all of your insulation needs.

NOMEX has high overload capacity. UL-rated at 220°C, it also conforms to MIL-1-24204. It will not melt or support combustion. NOMEX is tough enough to withstand the rigors of automated production. It's available in a variety of forms and can be easily creased, formed or punched. NOMEX is compatible with all major resins, varnishes and enamels. And its resistance to moisture and chemicals is outstanding.

©Du Pont registered trademark

Better things for better living
...through chemistry

Circle 2 on Inquiry Card
Measure...
the little pencil tube oscillator
that's big in aircraft transponder systems

This pencil tube and cavity oscillator, RCA-4068, is 3" long, weighs 4 oz., and costs less than $50 in quantity. Ideal, you see, for general aviation use.

What's more, its reliability is so impressive that it's warranted for 1000 hours.

The RCA-4068 is an integral device adjusted at the factory. Hence, it is easily replaceable at the factory where the whole device can be reoptimized—and, in fact, go back to the user adjusted to original specs. The device features low power drain with a dc supply voltage of 1,400 volts or less and a 500 W useful power output at peak of pulse. Note these other practical data:

- Tuning range: ±15 MHz
- Maximum output VSWR: 1.3:1
- Operating temperature: -46°C to +71°C
- Altitude: up to 35,000'
- Duty factor: up to 0.01

For further information, see your local RCA representative. For technical data on the RCA-4068 and other pencil tubes and cavities, write: RCA Electronic Components, Commercial Engineering, Section K50Q, Harrison, N. J. 07029.