WHY DISCRIMINATE AGAINST THE
FORTRAN PROGRAMMERS. SEE PAGE 8

SOFTWARE AGE
APRIL 1968

C9 531906WISWCOMPUT
WISCONSIN ST UNIVER
COMPUTER CENTER
WHITWATER, WI 53190

THE MAGAZINE FOR PROGRAMMERS - MATHEMATICIANS - ANALYSTS - EDP MANAGERS
The Bedford Laboratories of Raytheon’s Missile Systems Division has immediate, long-term openings for professionals seeking to join a team working at the forefront of the many varied fields of electronics, including advanced development of the new SAM-D Surface-to-Air supersonic missile system. Other long-range programs include HAWK, SPARROW, and MSR. Challenging opportunities exist for engineers, mathematicians and physicists at all degree levels.

Our Digital Systems Department is staffed with engineers and scientists proficient in analysis, conceptual and system design, detailed logic design, unit testing, and system checkout of all digital hardware contained in systems conceived and implemented by the Missile Systems Division of Raytheon. This may consist of special purpose computers such as beam steering for phased arrays or general purpose computers for fire control. In the latter application the department is also responsible for system programming such as assemblers, compilers, and executive programs; operational programming such as tracking and threat priority assignment; and support programming such as diagnostics and utility routines.

In addition, the department pursues an active research and development program in such areas as radar signature recognition, digital TV bandwidth reduction techniques, and multi-processor organization.

WORK AREAS:
- Logic Design
- Computer Logic Design
- Digital Signal Processing
- Digital Circuit Design
- Systems Analysis
- Real-Time Systems Programming
- Command and Control
- Systems Software Design

For your interview, send your resume to Richard Neal, Raytheon Company, Missile Systems Division, Dept. 64, Bedford, Massachusetts 01730. Or phone: (617) 274-6083.

RAYTHEON

An Equal Opportunity Employer
We're developing new superconductive memories with capacities of millions of bits per cubic foot... integrated circuits that pack a thousand transistors onto a single chip.

This not only means computers of greatly decreased size, but increased speed; plus tremendous potential for growth in many new areas.

Thus, there are far reaching opportunities at RCA for EDP professionals in hardware, software, programming, engineering, educational systems, graphic arts, and other areas.

We'll put every facility at your command. Plus full measures of encouragement, recognition and reward. But first...

Let's talk it over at SJCC

Current openings in these areas: Computer Design; Commercial Applications; Software Development; Display Design; Peripheral Equipment Design—high-speed electromechanical printers, high performance digital tape stations, communication terminals, serial printers, magnetic tape handlers; Digital Data Transmission Systems; Scientific Programming; Design Automation; Orbital Analysis; Product Planning; Systems Planning; EDP Sales; Field System Support.

To arrange a confidential interview with RCA at the Claridge Hotel, call Mr. T. A. Beckett at (609) 345-1271 during the Convention.

Or write: Mr. T. A. Beckett, RCA Staff Employment, Dept. SJ-18, Building 2-2, Camden, New Jersey 08102. We are an equal opportunity employer.
UPTIME YOUR CAREER at DIA

Switchover to Defense Intelligence Agency. DIA's mission is to strengthen a worldwide intelligence base which provides immediate and precise information on military ground, naval, air, missile and space forces. DIA's reports affect the nation's most vital policies.

We seek computer professionals for positions that will satisfy your most sophisticated requirements in:

HARDWARE: Latest on-line, remote access, multi-programming and time-sharing 3rd generation equipment.

SOFTWARE: Challenging assignments in: Complex systems analysis, design and programming • Design of special purpose mathematical, geographical search programs • Development and maintenance of intelligence data handling files, management files and scientific systems on all size computers • Utilization of mathematical queueing theory and modeling/simulation systems.

DIA provides starting salaries commensurate with experience and education, regular pay increases, liberal vacation and holiday policies, comprehensive medical coverage and retirement program. In short, you get all the Federal employment benefits • without the requirement of Civil Service Certification. (You must be a U.S. citizen and are subject to thorough background inquiry and physical examination.) Important bonus: DIA training will keep you current with the state-of-the-art.

Capitalize on your capability and creativity. Send us your resume or Standard Form 57 (application for Federal employment) and start enjoying more uptime in your career.

Write:

DEFENSE INTELLIGENCE AGENCY CIVILIAN PERSONNEL DIVISION S-4
Room 2E-239, The Pentagon
Washington, D.C. 20301

An equal opportunity employer M&F
Without moon men and planetary probes how on earth does United Air Lines attract top men to Elk Grove, Ill.?

The answer is simple.

United Air Lines has the largest computer system in the business world in Elk Grove Township, Ill. We have the kind of hardware that challenges even the best systems analysts and programmers.

Imagine working with hardware like this: three UNIVAC® 1108-II processors sharing a common 262K, 36-bit word core; 45 drums providing random access storage of nearly two billion characters of data; over 2800 Uniscope™ visual communication terminals that link 116 United cities to our central computer complex; 700 automatic printer units for passenger tickets and airbills.

This on-line computerized system will provide information in 17 basic categories ranging from passenger reservations, meal planning, crew and aircraft scheduling to flight planning and cargo loading.

This kind of information, and how it gets to our management, is critical to the operation of the world’s largest airline. And because we want to stay that way, you can be sure our management will encourage you in the exploration of new areas of computer science.

Since this new system becomes operational this year, you can get in on the ground floor. If you can handle responsibility for projects from analysis, through coding, debugging, and documentation and if you’ve had two to five years experience in business or scientific applications, let us hear from you.

United also offers a few fringe benefits that might attract you to Elk Grove. Free air travel for you and your family, company-paid insurance, an excellent retirement program and an employee stock purchase plan are just a few.

Please send your résumé and salary requirements to Mr. H. K. Schlinker, Management Employment, United Air Lines Executive Offices, P.O. Box 66100, Chicago, Illinois 60666.
UNIVAC world headquarters wants programmers who actually like programming

At UNIVAC world headquarters in suburban Philadelphia—Blue Bell, Pa., in fact—the emphasis is on people and ideas. We know that every bit of software springs from a human idea. And without it, the most sophisticated—and the simplest—hardware is useless. Here in Blue Bell, you might be called from your desk to join a team of data processing pioneers in a discussion of a new idea—maybe a revolutionary concept—because that’s where we live. In tomorrow.

Want to talk it over? With people who like the computer business as much as you do? Then write. Your letter will be treated confidentially, and you’ll get a prompt reply.

The address: C. E. Cooke, Senior Employment Representative, UNIVAC Data Processing Division, Dept D111, Box 8100, Philadelphia, Pa. 19101.

Write today and make an appointment with tomorrow.

UNIVAC Data Processing Division

An equal opportunity employer M/F

new installations

- Computer Learning Corporation will use 25 Model 110 computers and 4 Keytape data preparation devices of Honeywell Inc. to help young adults pursue data processing careers. The firm offers training in keypunching, programming, systems design, engineering and management science.

Four computers are planned for the Washington area and others are slated for installation at offices in Boston and Atlanta later this year.

- Rutgers University ordered two SDS, Scientific Data Systems, computers, a Sigma 2 and a Sigma 5, for studies in nuclear structure physics. Rutgers will use the $500,000 dual computer system to study the composition of atomic nuclei and the forces which hold these nuclei together.

In this application the computers will be used in conjunction with a tandem van de Graaff accelerator, which accelerates nuclei of light atoms to high energy where they strike the nuclei of the substance under study. The resultant radiations and their energies are measured and analyzed by the computer system. The Sigma 2 will gather and sort this information and feed it to the Sigma 5 for analysis.

- The Boeing Company, Commercial Airplane Div., has awarded a $1.8 million contract for the lease of EAI, Electronic Associates, Inc., digital computing equipment.

Two EAI 8400 Mod II Digital Computing Systems, with Data Conversion and other peripheral equipment, will be utilized by Boeing in design and development segments of the Supersonic Transport program. The EAI 8400 is a 32-bit, general-purpose digital computing system which features one microsecond memory base register for dynamic program relocation and memory protection and a basic memory capacity of 8,192 words—expandable to 65,536 words.

- Central Casting Corporation, the main sources of “extras” in the motion picture and television industry, has ordered a GE-405 computer system from the General Electric Co.

The GE-405, smallest number of GE’s 400 series of medium-scale information systems, will be used to calculate both gross and net daily earnings of approximately 3,000 extra players. It also will be used in processing the requirements of the Motion Picture Industry Pension Plan, the industry’s Health and Welfare Fund and Screen Actors-Producers Pension and Health and Welfare Plan, all of which cover approximately 30,000 employees in the motion picture and television industry.

- Information Systems Design, Inc., a pioneer West Coast computer service firm, has ordered a $2 million Sperry Rand Univac 1108 Computer System in order to keep pace with the increasing demand for computing service in the San Francisco Bay area.

Remote data communication terminals, located in the offices of customers, will be connected by telephone lines to the UNIVAC 1108 so that various types of engineering and scientific problems, as well as business applications can be received and processed with maximum convenience.
Collins' computer development program is still growing ...and Collins programmers are growing with it.

- Computer systems designed and manufactured by Collins handle data for airlines, railroads, and many other industrial and military organizations around the world.
- Collins computers handle hundreds of thousands of messages daily for airlines alone.
- Collins pioneered many of the concepts now widely applied in computer technology.
- Collins is bringing digital computation and control techniques to the field of avionics (for navigation, collision avoidance, and airborne integrated data systems).
- Collins leads the industry in combining communication, computation and control functions for single, integrated systems.
- Collins brings digital control to earth stations for satellite communication, and to high-power transmitter facilities for overseas broadcasts.
- Collins, a computer-oriented company, applies the most advanced digital techniques to its total operation.
- Collins programmers find assignments challenging, their ingenuity, and responsibilities reflecting the programmer's importance to Collins' growth.

Openings exist for qualified individuals (degree in one of the physical sciences plus experience) at all 3 major Collins facilities: Dallas, Texas; Cedar Rapids, Iowa, and Newport Beach, California. Assignments will be in the following areas:

- ADVANCED SYSTEMS PROGRAMMING
 These assignments at Collins will involve creative design work in the area of advanced computer hardware/software systems.

- SOFTWARE PROGRAMMING
 Openings for software programmers to participate in developing advanced software systems including compilers, assemblers, interpreters and simulators.

- REAL TIME PROGRAMMING
 Assignments for these positions will be on existing large scale systems and will involve communication and message switching operations.

- DIAGNOSTIC PROGRAMMING
 These positions will require the design, writing and documentation of hardware diagnostic programs to perform factory checkout and field maintenance of digital hardware and systems.

- DIRECT DIGITAL CONTROL PROGRAMMING
 Duties will involve work on computer controlled factory machines and numerical controlled devices and process control.

If you're interested in Collins, contact Mr. Ben E. Jeffries, Corporate Manager of Professional Employment, Collins Radio Company, Dallas, Texas 75207.

an equal opportunity employer
You thought discrimination did not carry over into the computer world? Not so! For any group there is always another to foster its we­

Fortran programmers—graduate engineers, physicists, mathematicians—analyzing signals from space, hyper velocity impact, or nonlinear circuits. Why are they forbidden by the FORTRAN speci­fi:catio~

For any group there is always another to foster its wel­

are forbidden by the FORTRAN specification writers to overlap tape input/output; to alternate I/O areas; to manipulate files; to handle data checks; to end files with tape marks? Why? They are a stereotype—the specification writers know.

Their COBOL or assembly lan­guage counterparts are not forbidden these operations: They know computers; they have important input/output problems. The FORTRAN programmer creates 'scientific' pro­grams in an ivory tower. There is no data in an ivory tower—the specification writers know. Besides, "The FORTRAN programmer would not know what to do with input/output capability if he had it," they say. "He does not know a tape mark from an IBC."

It may come as a shock to some people, but a large and growing number of FORTRAN programmers are not especially pleased with their I/O limitations. They look at their optimization programs; their matrix inversions; their simulations; their statistical analysis problems; their partial differential equations. They know they have input/output prob­lems. They figure, that since they can master higher mathematics, they can also master tape marks.

To put it mildly, FORTRAN has a few inadequacies when it comes to magnetic tape input/output. In other areas FORTRAN programmers have no complaints. They like the notational ease of FORTRAN; its optimized subscripting; its lack of verbosity. They have a great in­vestment in knowing the language inside out. It is familiar and effec­tive. Now, in the troublesome I/O area, a new development, COMPAT-F, makes them the equal of their COBOL and assembly lan­guage counterparts: It provides the status and power of genuine input/ output capability.

Inadequacies in FORTRAN Tape I/O Eliminated by COMPAT-F

Caywood-Schiller, Associates, specializing in 'hard core' highly mathematical operations research, was constantly running into these inadequacies. Problems with: TOS/ DOS FORTRAN for the IBM System/360 were particularly severe in that tape records are blocked 64 words to a block (63 actually, the first word is a FORTRAN control word). Thus, communication with the System/360 programming sup­port packages, including sort/merge, was essentially impossible. Process­ing COBOL tapes with decimal fields was also impossible, even in OS FORTRAN. CSA therefore de­cided to write its own magnetic tape I/O System for the 360. This system, called COMPAT-F, consists of several multiple entry FORTRAN call­able assembly programs that inter­face directly with the channel sched­uler of the system control. It is designed to facilitate the full utiliza­tion of System/360 hardware fea­tures normally accessible only in assembly language, while retaining the ease of expression and notational familiarity of FORTRAN. A summary of significant COMPAT-F fea­tures is presented in Figure 1.

Read Any Tape

Any 7 or 9 channel magnetic tape (in the IBM Series 2400 Magnetic Tape Units) can be read by COMPAT-F, either forward or back­ward. The byte strings are trans­ferred from tape to core by a "read" command—then a "scatter" com­mand fills the proper FORTRAN words. Provisions are made to easily
handle packed decimal, zoned decimal, or binary tape format. Blocked records are no problem, either. In fact, this is another desirable feature of COMPAT-F. When writing a tape the programmer may choose any blocking factor he wishes. He is not restricted to 252 bytes per block as with the normal TOS/DOS FORTRAN WRITE statement. Thus, better tape utilization may be realized.

When a new 360 is installed the business or COBOL-type programs are generally converted first. "Sure," the Data Processing Manager tells the FORTRAN programmer, "we can give you data for your forecasting model. We have weekly sales of all products for the last 5 years." What he failed to point out was that FORTRAN cannot read this data since it wasn't written in FORTRAN. This leaves the programmer with three alternatives, none of which is too appealing:

1) Learn COBOL and write a special purpose subroutine for this job.
2) Ask a COBOL programmer to write the special purpose subroutine.
3) Forget the whole thing.

It is not uncommon for one of these special purpose subroutines to consist of 60 to 70 statements in the Procedure Division alone. Contrast this to the three basic COMPAT-F statements that would do the job—a "read," a "check," and a "scatter." The "read" command transfers one physical record from tape to core; the "check" tests for end of file (other special conditions such as read error, write error, load point, tape unloaded, etc. may also be checked); and the "scatter" sets up the proper FORTRAN words with decimal-binary conversion, when required.

Write Compatible Tapes

The IBM utility packages such as sort/merge can be of great assistance to the programmer. But, in general, they won't read FORTRAN written tapes. Sort/merge, for example, cannot be used with FORTRAN written data if there are more than 63 words in a record.

A COMPAT-F written tape can be read by these packages as well as COBOL, assembly language, and, of course, COMPAT-F.

THE FUNDAMENTAL FEATURES OF COMPAT-F

* Allows FORTRAN utilization of data prepared by other program languages or by other computers.
* Outputs FORTRAN tapes acceptable to utility programs (i.e., sort/merge), other program languages, or other computers.
* Provides substantial computer time saving by allowing the overlapping of input/output with processing.
* Permits increased tape utilization through usage of blocked records.
* Enables FORTRAN to accept multi-file reels and/or multi-reel files.
* Furnishes the capability of complete tape manipulation, including forward and back spacing of blocks and files.
* Gives the programmer the option of taking specific action as a result of input/output errors.

In short, COMPAT-F combines the FORTRAN algorithmic capability for scientific computation with the similar capability of assembly language for data handling.

FIGURE 1

Overlap I/O and Processing

The concept of simultaneously reading, writing, and processing is generally unknown to a FORTRAN programmer—it can't be done. When FORTRAN reads, it reads, and no other operation may be occurring at the same time. However, the 360 hardware is not so limited and COMPAT-F gives the programmer the ability to exploit this capability. In other words tape input and/or output operations may be overlapped with processing. Even a FORTRAN programmer can compute that as much as two-thirds of the running time may be saved by this feature.

Program Responses to I/O Errors

What is more irritating to a programmer than to have a job abort while reading the 99,999th record? The program has already processed 99,998 records and with two more to go an unreadable portion of tape is encountered. The programmer is not consulted—he has no choice—his job is aborted by FORTRAN. With COMPAT-F, on the other hand, the programmer is in charge—he may attempt to read the record backwards (sometimes with more luck than reading it forward)—he may skip the record and go on to the next one—or he may elect to abort the program. The decision is, however, his.

Use with DOS, TOS or OS

COMPAT-F may be used with either DOS, TOS or OS FORTRAN. However, the advantages are greater with DOS or TOS. The I/O inadequacies of FORTRAN outlined in the previous sections main refer to DOS and TOS. Some, but not all, of these are eliminated by OS FORTRAN. For example, OS FORTRAN does not allow the overlapping or tape manipulation of COMPAT-F. Furthermore, the present requirement of a 256 K core will undoubtedly deter some installations from operating under OS.

Command Structure

Figure 2 illustrates the use of the two main commands of COMPAT-F—"Read Forward" and "Scatter." Another feature of COMPAT-F tells how many bytes were actually read with each "read" command. If this number is designated by NBYTE, then NREC = NBYTE/30 is the number of records read in this example. Thus, if the last block contained less than 50 records, the "scatter" command would handle the situation if the repetition factor (-50) were changed to -NREC. In all, COMPAT-F has 18 com-
EXAMPLE ILLUSTRATING THE TWO MAIN
COMMANDS—READ AND SCATTER

A magnetic tape reel exists containing sales records for a large
number of stock keeping units (SKU). There are 50 records in a
tape block—each record contains 30 bytes with the following
information:

<table>
<thead>
<tr>
<th>SKU</th>
<th>SALES</th>
<th>DESCRIPTION</th>
<th>DATE</th>
<th>DEPT.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
</tr>
</tbody>
</table>

The Description field is alphabetic; all other data is in packed decimal.
Computations with this data require only the Sales of each record.

The “read” command is

```
CALL COMREF(TAPE6, INDATA(J), 1500)
```

This command reads 1,500 bytes, or one block (whichever is smaller) from Tape 6 into the array INDATA.

The “scatter” command is

```
CALL COMCAT(INDATA(J), -50, -30, 4, 7, 0 ISALES)
```

Bytes 4 to 7 of the first record of INDATA(J) are translated to binary and moved to ISALES(1). The zero in the argument list indicates that the read-in data was in packed decimal format. Then, bytes 4 to 7 of the second record of INDATA(J) are translated to binary and moved to ISALES(2). This process is repeated 50 times as designated by the optional repetition factor (-50) in the argument list. The optional argument of -30 indicates the number of bytes in each record.

FIGURE 2

Commands which can be divided into 5 groups as follows:

Group I—Control Commands—
The commands of this group are necessary for the operation of COMPAT-F. They supply the control framework required by the flexible symbolic identification of magnetic tape units and the overlap of input, output and processing.

1. COMPat ASSign—CALL COMASSN (UNIT1,N1,UNIT2, ..., UNITK,NK)—The simple or explicitly subscripted variables UNIT1, UNIT2, ..., UNITK are established as COMPAT-F symbolic tape unit identifiers by association with the corresponding SYS numbers specified by N1, N2, ..., which may be literals, simple variable or explicitly subscripted variables of integer type.

2. COMPat CHEcK—CALL COMCHK (UNIT) CALL COMCHK (UNIT,L)—The magnetic tape unit specified by the COMPAT-F symbolic unit identifier UNIT is checked for normal completion of its last operation, and waits if necessary. After a read (or read backwards), if the optional second argument L is present, the actual number of bytes read is stored in L. This command must be followed by a simple GO TO. When the last operation has an abnormal completion (e.g., end of file), COMCHK returns to the GO TO: otherwise it skips over the GO TO on its return.

Group II—Elementary Commands—The commands of this group are the COMPAT-F high-speed version of the tape commands normally available in DOS or TOS FORTRAN.

3. COMPat WRiTe—CALL COMWRT(UNIT,ARY,L)—The physical tape unit symbolically identified by UNIT is selected and the array ARY of L bytes in length is written on it as a single physical record.

4. COMPat READ Forward—CALL COMREF(UNIT, ARY,L)—The physical tape unit symbolically identified by UNIT is selected and L bytes of data or one block (whichever is smaller) is read into the array ARY.

5. COMPat Back Space Block—CALL COMBSB(UNIT)—The physical tape unit symbolically identified by UNIT is selected and back spaced one block.

6. COMPat REWind—CALL CORREW(UNIT)—The physical tape unit symbolically identified by UNIT is rewound.

7. COMPat Write Tape Mark—CALL COMWTM(UNIT)—The physical tape unit symbolically identified by UNIT is selected and an end of file symbol (tape mark) is written on it.

Group III—Expanded Commands—This group provides additional tape manipulation commands normally available only in assembly language.

8. COMPat Forward Space Block—CALL COMFSB(UNIT)—The physical tape unit symbolically identified by UNIT is selected and forward spaced one block.

9. COMPat Forward Space File—CALL COMFSF(UNIT)—The physical tape unit symbolically identified by UNIT is selected and forward spaced one file (to next tape mark).

10. COMPat Back Space File—CALL COMBSF(UNIT)—The physical tape unit symbolically identified by UNIT is selected and back spaced one file (to last tape mark).

11. COMPat READ Backwards—CALL COMREB(UNIT, ARY,L)—The physical tape unit symbolically identified by UNIT is selected and L bytes or one block of data (whichever is smaller) is read back-
wards into the array ARY. Execution of COMCHK on UNIT causes the automatic left justification of this data with ARY.

12. COMpat Rewind and UNload—CALL COMRUN(UNIT)—The physical tape unit symbolically identified by UNIT is selected, rewound and unloaded.

13. COMpat ERase Gap—CALL COMERG(UNIT) — The physical tape unit symbolically identified by UNIT is selected and a gap is erased.

Group IV—Analysis Commands
The commands of this group provide the (optional) capability of analyzing abnormalities occurring during input/output operations— including errors—and programming specific reactions.

14. COMpat Analysis Mode—CALL COMANM—The COM-PAT-F routines are modified (set to analysis mode) so that numerous abnormal conditions including input/output errors are returned to FORTRAN by the Channel Scheduler.

15. COMpat CHECK—CALL COMCHK(UNIT) — CALL COMCHK(UNIT,L)—Checks, waits, left justifications, and abnormal returns are performed as in the non-analysis mode; however a data input/output error now causes an abnormal return.

16. COMpat TEST—CALL COMTST(UNIT,KODE) CALL COMTST(UNIT,KODE,L)—The physical unit symbolically identified by UNIT is selected and its status is determined; a status value is assigned the integer variable KODE accordingly. These values range from available through various types of busy to tape end conditions and input/output errors. If the optional third argument is present and the last operation is a read or read backwards the actual number of bytes read is stored in L. No left justification is performed on data read backwards.

Group V—Data Manipulation Commands—The commands of this group allow the gathering or scatter-
MULTI-FACET PROBLEM SOLVING

The keenly honed perceptual acuity of different minds from a variety of disciplines, thinking alongside each other, brings unique insights into problem solving. At Booz•Allen Applied Research Inc., multi-faceted non-routine problems are the routine challenge. The assignments undertaken by the more than 500 professional staff members cover a broad spectrum of problem areas that require interdisciplinary involvement of a high order.

Typical assignments might include: simulation studies; math modeling; war gaming; information retrieval systems; applied mathematics; operations research. The range is wide; the probing is deep. Over 30 diverse disciplines interact to contribute to unique solutions.

There are no proprietary hardware interests to cloud the objectivity of the individual professional. The integrity of each staff member is unhampered. Personal fulfillment is limited only by the parameters of his self image because the challenges may take him to the edges of his own vision. Advancement can be either through channels of research or client contact. Personnel selection is necessarily limited to the scientist and engineer of rare quality.

Contact Mr. P. T. Paul, Manager of Staff Selection at the Shelbourne Hotel, Atlantic City, New Jersey during the Joint Computer Conference or write Mr. Robert M. Flint, Director of Professional Appointments.

BOOZ•ALLEN
APPLIED RESEARCH Inc.
135 South LaSalle Street—Room 1744
Chicago, Illinois 60603, Phone (312) 372-1728

SOFTWARE AGE

An equal opportunity employer

ing of data into or out of the array format required by the COMPAT-F commands. In the case of packed or zoned decimal input the scattering is accompanied by the optional automatic conversion to binary and vice versa in gathering for output.

17. COMPAT scATter—CALL
COMCAT(ARY,NF1,NL1, LOC1,NAME1,NF2,NL2, LOC2,NAME2, . . . , NFK, NLK, LOCK, NAMEK) — With ARY as the input array the general parameter sequence—NF,NL,LOC,NAME—which is repeated as required, has the following significance: The field (bytes) of ARY between NF (the First byte of this field) and NL (the Last byte of this field) inclusively is moved into the field starting at byte position LOC in NAME.

When LOC is zero (or minus one) the specified field of ARY is taken as packed decimal (or zoned decimal) and is moved into the word at NAME as a FORTRAN integer in binary format. The general parameter sequence may be prefixed by an optional repetition factor (preceded by a minus sign) to effect a chained scatter in the following manner: --NR,NF, NL,LOC,NAME. In this case NAME must be an array name.

18. COMPAT GATHER—CALL
COMGAR(ARY,NF1,NL1, LOC1, NAME1, NF2,NL2, LOC2, NAME2, . . . , NFK, NLK, LOCK, NAMEK) — With ARY as the output array the general parameter sequence—NF,NL, LOC,NAME—has the same significance as in COMCAT except that the movement commences with the LOC byte in NAME and consecutively fills the field at ARY having NF as its First byte and NL as its LAST byte, inclusively. When LOC is zero (or minus one) the word NAME is taken as a FORTRAN binary integer and is converted to packed decimal (or zoned decimal) during the move to the specified field of ARY. The repetition factor applies as before.

Programmer in Command

As with any language, the clever programmer can use COMPAT-F to better advantage than the not-so-clever programmer. In COMPAT-F the programmer is "more in command" than he is in FORTRAN I/O. There are, therefore, certain things that he must know. For example,

1) Does the tape have a tape mark at the beginning? If so, he must have a "forward space file" statement before he attempts to read the tape.

2) Does the tape have a label? If so, he may either check the label or "forward space block" and skip it.

3) Are the numeric fields written in packed decimal, zoned decimal, or binary? If packed decimal or zoned decimal are used in the numeric fields, then the scatter with binary conversion is mandatory.

In general, the programmer must know the tape fairly well. With FORTRAN I/O, for example, he needs not know the answer to any of the above three questions—FORTRAN "takes care of him." The problem is that FORTRAN overprotects him and, in so doing, takes away some of the powerful features of the 360 hardware. COMPAT-F gives him back these features.
Flexibility, diversity, challenge... are three vital ingredients for progress you'll find in abundance at AC Electronics. Why? Because, here at AC, you'll have a crack at a variety of jobs on some of today's most exciting and advanced projects. What's more, you'll be in on the ground floor of rapidly expanding computer activity. Example: a Hybrid Simulation System for future space flights already in the works. If you have a degree, plus two or more years' experience, look over the career opportunities listed below. Then write, phone or wire: Mr. R. W. Schroeder, Dir. of Professional and Scientific Employment, Box 507, AC Electronics Div., Milwaukee, Wisconsin 53201.

Real Time Programmers — Perform system programming for special-purpose digital and hybrid airborne computers to achieve optimum system performance. Participate in check-out and engineering analysis of programs.

Simulations Programmers — Design programs to perform math simulations and modeling of systems and vehicles. Pre-mission check of validity of systems and program accuracy performed on large-scale digital and hybrid computers.

Design and Programming Aids — Develop highly automated systems for designing, fabricating, and programming small special-purpose computers, including the development of programs and techniques to code, assemble, simulate and analyze operational programs.

Scientific Programmers — Analyze and prepare computer programs for solution of engineering and scientific problems utilizing the I.B.M. system 360. Applications include missile trajectory simulation, flight test data reduction, design automation and automatic check-out systems for airborne computer software.

AC ELECTRONICS

An Equal Opportunity Employer
Encoding from Alphanumeric Names to Record Addresses

Dr. Thomas C. Lowe
Informatics Inc.
4720 Montgomery Lane
Bethesda, Maryland

This work was performed at the Information Systems Laboratory, The Moore School of Electrical Engineering, University of Pennsylvania. It was supported by the Army Research Office (Durham) under contract number DA-31-124-ARO-D-352 and by the Air Force Office of Scientific Research under contract number AF-49(638)-1421.

In many applications it is necessary to obtain an absolute memory address for a record in external storage (such as disk) when given an alphanumeric name. Some approaches to this problem will be presented below.

This problem in general is called the encoding problem; the given alphanumeric name is called a term. It is not the purpose of this article to present any general solution, but rather what follows is a brief review of some well-known techniques, and an introduction of a new one.

Many workers have investigated problems in the area of address encoding. The basic problem is easy to understand: for example, assume that a term consists of up to 28

<table>
<thead>
<tr>
<th>FEATURES OF DECODING MECHANISMS</th>
<th>Symbol Tree</th>
<th>Key-to-Address Transformation</th>
<th>Balanced Tree</th>
<th>Triplet Search</th>
</tr>
</thead>
<tbody>
<tr>
<td>Processes Variable Length Term</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>False Hits Possible When Term in File</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>False Hits Possible When Term Not in File</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Extensive Character Processing Required</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Easily Partitioned for Few External Memory Accesses</td>
<td>No</td>
<td>—</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Easily Updated</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Large Fast Memory Requirement</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>
characters from an alphabet of 37 symbols. There are then about 10^{44} possible terms.

In a typical situation at most 10^4 or 10^5 terms will actually be used, so that the encoding problem is one of mapping the index items used into appropriate external memory addresses.

Several schemes for encoding will be considered in brief. Not all of these methods were originally proposed for this purpose, but they are applicable to it.

It is necessary that any system design be particularly oriented toward the characteristics of the equipment available. Not only do such factors as word size, fixed word length operation as compared to variable word length (or character oriented), and character handling features in fixed word length machines enter the picture, but as Bowlden1 has pointed out, some older machines with table look-up features such as the IBM650 and the Control Data RPC-4000 have instructions that may make vast differences in the methods used. Associative memory devices are not considered here.

Symbol Trees

In symbol trees each node represents a symbol (that is, a single character) of a term and branches lead to following symbol nodes. If two or more terms have the same initial symbol sequence, they share an initial path down the tree until the first symbol differentiating the two symbol sequences is encountered. The average branching factor at the nodes and the tree depth may be controlled by considering an index item as a string of bits, and generating a new symbol sequence by partitioning the bits in a way different from the original character representation scheme. The size of the alphabet used in the tree representation can thus be varied. Fredkin has proposed the use of two bits per node in his "binary Trie"4. In the decoding application being presently considered, the external memory address could be placed at the last node of every path through the tree corresponding to an index item.

The efficient mechanization of such a tree structure has been given considerable attention. Susenguth11 (Continued on page 28)
SIMPLE COMPUTER MODEL—
GEOMETRICAL APPROACH

This model's objective is to present a descriptive picture of the "goodness" of a siting. It is not intended to be a mathematical solution. It must be, however, an equation, for example:

$$ g_s = \sum_{i} w_i m_i $$

where:

- $$ g_s $$ = goodness of the site
- $$ m_i $$ = $$ i^{th} $$ merit factor
- $$ w_i $$ = weight of $$ i^{th} $$ factor in the overall picture

After some consideration, two merit factors can be arrived at.

- $$ m $$: an indicator of the number of people that are not defended by a siting
- $$ v $$: the volume of space that measures the imbalance of coverage of the $$ p_w $$ surface.

In this model, we cannot perform any simulation or any optimization analyses since we will be looking only at the capabilities of the defense under a specific attack given the required number of ABM's in consideration of the balanced defense approach. That is, we will assume that the unanswered questions fall out as corollaries to the theorem that if we answer the question: How well are we defending the $$ p_w $$ surface?, then we have reached the game-theoretic best. The goodness here is defined as a geometrical good.

Let's look at the city once more and see what restrictions are imposed by this intercept surface (Figure 8).

The $$ d_a $$ or decision altitude which has been set by the firing doctrine is a measure of the discrimination and target tracking capabilities. It says that launching the ABM before the ICBM reaches this altitude would handicap the defense by wasting missiles.

The $$ l_a $$ or launch altitude which is computed as a function of the intercept point and the time to intercept is used to compute the surface of last penetration. Once the object has penetrated this surface, no site could launch any missiles to intercept the object and prevent its penetration of the $$ p_w $$ surface.

The next question is a complicated expression which yields this launch altitude. I mention it only for the readers who are interested.

$$ l_a = h(t_0 + t(i_a)) $$

where:

- $$ t_0 $$ = time to intercept
- $$ i_a $$ = intercept altitude
- $$ t(i_a) $$ = time function which gives the time to impact as a function of altitude
- $$ h(t_0 + t(i_a)) $$ = altitude function (inverse of the time function) which gives altitude of object as a function of time to impact

Note from inspection of Figure 8 that there is an opening or a weak spot to the defense. Note further that it is near the heart of the city. But also notice that the opening is quickly closed if (1) we could move the intercept altitude down or (2) move the decision altitude up. The question that comes to mind then is how can we measure this weakness.

One way to measure the imbalance of coverage of $$ p_w $$ is by calculating the signed volume of space between the $$ d_a $$ and the $$ l_a $$ as a weighted function of $$ d_a $$ and since $$ d_a $$ is a horizontal plane (for local defense), we have the formula:

$$ v = \frac{\int_{d_a}^{d_2} v \omega(d_a) \, d_a}{\int_{d_1}^{d_2} \omega(d_a) \, d_a} $$

$$ v = $$ the volume of space between $$ l_a $$ and $$ d_a $$, where

- $$ v $$ = $$ v_o + A \cdot (d_a - d_0) $$
- $$ v_o $$, $$ A $$, and $$ d_0 $$ are constants
- $$ w $$ = the weight associated with $$ d_a $$

Another way to measure this vulnerability is to ask how many people are affected by the hole in the defense. The answer to this question is unfortunately not easy to obtain by this approach. For example, by intercepting lower, you could obtain such a measure by subtracting $$ X $$ number of people from the balanced defense plan. However, by doing so, you would disturb the entire game-theoretic balance of intercepting on the $$ p_w $$ surface. About the best you can say is that with this $$ d_a $$, this siting plan fails.
You can. You’ll like what you see at Sikorsky Aircraft—a company dedicated to producing the most advanced VTOL airborne and surfaceborne transportation systems.

And you’ll like working with a select group of stimulating, top-talent people... on abundant and provocative challenges. You would be applying your professional talents to specifying, designing and implementing advanced computer-based technical and commercial systems.

Our current equipment includes Univac 1108’s and IBM 360’s with Graphics and Teleprocessing. Current and planned applications include—

Scientific: Man/Machine Interactive Graphics in Engineering Analysis and Design.
Development of Batch Programs and Systems in all engineering disciplines.

Commercial: Data Base and Real Time applications in Accounting, Manufacturing, Purchasing, Inventory Control and other related areas.

We have exceptional assignments at all levels of experience for:

COMPUTER SYSTEMS PROGRAMMERS AND ANALYSTS FOR BOTH COMMERCIAL AND SCIENTIFIC FIELDS

You and your family will find the unique cultural and recreational advantages of pleasant Connecticut to be abundantly satisfying. And our interest in your continuing professional development is exemplified by our corporation-financed Graduate Education Programs. They are available at these fully accredited schools: Bridgeport • Brooklyn Poly • CCNY • Columbia • Connecticut • NYU • Rensselaer (Hartford Grad. Center) • Stevens • Trinity • Yale.

Send your resume in confidence, stating salary requirements, to Mr. Leo J. Shalvoy, Professional Employment.
With others, it might work. The formula we are looking for is then:

\[m = \frac{\int d_{a_{1}} w \cdot m \cdot d(d_{a})}{\int d_{a_{0}} w \cdot d(d_{a})} \]

where:

\[m = 0 \text{ or } 1 \text{ depending on } d_{a}; \]
\[\text{if } d_{a} < d_{a_{0}}, \text{ then } m = 0 \]
\[\text{if } d_{a} \geq d_{a_{0}}, \text{ then } m = 1 \]

\[w, d_{a_{1}}, \text{ and } d_{a_{2}} \text{ are as before} \]

The next step is to be able to compute these merit factors considering all types of threats. The three variables considered will be reentry angle, \(\alpha \), reentry azimuth, \(\theta \), and weapon yield, \(y \). The formula for \(\bar{v} \) becomes then:

\[\bar{v} = \frac{\int v \cdot d_{a} \cdot d_{a} \cdot d \cdot \theta \cdot d \cdot y}{\int \cdot \int \cdot \int v \cdot d_{a} \cdot d_{a} \cdot d \cdot \theta \cdot d \cdot y} \]

where:

\[w = \text{considered as a weight function of each variable} \]

The equation 7 is merely the mathematical way of describing the sentence “By ‘combining’ all the variables together, we can look at the final merit factor and come up with our decision.” This ‘combining’ must be rigorously followed because (1) every statement must be verified by a certain amount of logic or mathematics and (2) no computer program could possibly understand the laymen’s terms.

A similar equation can be formulated for \(\bar{m} \).

Now to the computer program. The Geometrical Approach is a very simple approach insofar as the computer goes.

In finding the volume \(v \) for the purpose of solving equation 7, in principle, is straightforward. Volume is equal to Area times the Height.

\[V = A \cdot (\bar{I}_{a} - d_{a}) \]

where:

\[A = \text{area of the plane cut out by the} \]
\[\bar{I}_{a} = \text{average altitude of the} I_{a} \text{over some} \]
\[\text{projection of this defended Area} \]

In a computer program written in FORTRAN what is done is as follows:

Setup a two dimensional array \(\text{HEQU} \) which describes the \(p_{w} \) surface. \(\text{HEQU}(1,J) \) represents the height above the surface at which \(p_{w} \) people would be killed if a weapon of yield \(y \) were burst there. The point \((1,J) \) represents a grid point, or a grid square with area \(A_{p} \). If no such altitude exists for some \((1,J) \), set \(\text{HEQU}(1,J) = 0 \).

The defended area \(A \) of equation 8 falls out immediately and has the equation:

\[A = (\sqrt{1}) \cdot A_{p} \text{ which is easily computed.} \]

The next step is to calculate for each grid point \((1,J) \) the launch altitude for each site. The minimum is then saved. As given before the launch altitude is determined by knowing \(t_{0} \), the time to intercept and \(\text{HEQU}(1,J) \), the intercept altitude. The functions \(t \) and \(h \) of equation 4 must be fairly simple to compute or a tremendous amount of machine time can be eaten up. Hence the best procedure is to do all trajectory calculations (offense and defense) long before the volume calculations are done and to save the results in the form of a set of coefficients which are, perhaps, produced by a least squares method.

This procedure is recommended for simulations which are called event oriented as opposed to clocktime oriented. The reduction in speed is usually enormous. The accuracy, however, can be somewhat limited. I will spend more time on this subject when discussing the Monte Carlo approach.

We can now see that:

\[\overline{L}_{a} = \frac{\sum I_{a} \text{ (minimum's)}}{n} \]

where:

\[\text{HEQU}_{1,J} \neq 0 \]
\[n = \sum 1 \quad \text{as in the Area equation 9.} \]
\[\text{HEQU}_{1,J} \neq 0 \]

Having done this for every reentry angle, reentry azimuth and weapon yield, we can obtain the answer as per question 7. The number of calculations which are needed of those which are time consuming (those involving missile trajectories) amounts to:

\[\frac{\text{number of probable sets of calculations}}{\text{number of sets of calculations}} \cdot \frac{\text{number of grid points such that HEQU(1,J) \neq 0}}{\text{number of sets of calculations}} \cdot \frac{\text{number of sites}}{\text{number of sites}} \cdot \frac{\text{number of reentry angles}}{\text{number of reentry angles}} \cdot \frac{\text{number of weapon yields}}{\text{number of weapon yields}} \cdot \frac{\text{number of deployments}}{\text{number of deployments}} \]

To achieve any kind of accuracy the number of probable sets of calculations should be greater than \(n_{e} \).

By using equation 11, the number of sets of calculations for a small hypothetical city would be \(n_{e} = 1000 \cdot 3 \cdot 3 \cdot 3 \cdot 3 = 243,000 \) sets. To insure that we can safely solve this problem in, say, one hour of computer time, we must be able to perform each set of calculations in roughly .015 seconds. Under the above scheme this is moderately easy to do on the Control Programming time (assuming background software age).
model is already developed) is very minimal; perhaps 120 manhours.

In closing, this approach can be very useful in establishing a play that will work in most cases and will not cost a great deal to use.

THE MONTE-CARLO APPROACH

The purpose of this approach is to reduce a complicated strategy to a simple and understandable curve which can produce for you a merit figure. It makes use of the confidence level that is so often annoying when solving real problems. It answers satisfactorily the question: How many people will die if I push this button? Complicated chains of different logic can be linked together by merely playing a game in which you simulate conditions by throwing switches on or off depending on random numbers.

The merit factor described here is P_w, the price of admission, or the number of ICBM's necessary to penetrate.

In the Monte-Carlo Approach, we are free to bring into play all manner of hazards, both offense and defense, which under the Geometrical Approach would have been impossible. Some of these are ABM stockpile depletion, ABM aborts, miss distance at intercept, warheads-decoys problem, warhead dispersal, and intercept geometry.

You need a firing doctrine or a set of rules by which you should play under every set of circumstances. Not all plays are made but the logic must be there. Here again, though, we maintain our theory that we must site to defend the surface and hence that our intercepts must be on that surface.

The Monte-Carlo method must establish a simulation procedure because of the importance of the interdependence of events over a period of time and the need to sample this interdependence at any moment in its history.

There are two types of simulations: (1) event oriented and (2) clock-time oriented. Both types accomplish the same purpose but in a slightly different manner.

The event oriented simulation is the easier of the two since you establish a chain of happenings in advance and determine the success or failure of the simulation by merely looking at the resultant happening.

In a time oriented simulation we must, at each clock pulse, check for success or failure. When timing is most important (e.g. the ABM and the warhead must be at the same place at the same time and the ABM burst must be so timed), it is desirable to use this type of simulation. You will then be able to observe a truer test of your system. However, it turns out that the time oriented simulation is good only for “feasibility studies” or “demonstration of effectiveness” and not for analysis work. It is too time consuming (on the computer) and therefore must be restricted to typical cases.
Ours will be event oriented and so we proceed to describe the events. In this approach, we can put in as many details as we need. However, for simplicity’s sake, I only choose five events with meager descriptions.

1. Detection and track
2. Assignment of site to object, computing intercept point and proper salvo
3. Discrimination
4. Computation of launch altitude
5. Determination of intercept

Due to the fact that this approach is much more time consuming than the one described in the Geometric Approach, we cannot afford to have trajectories intersect every grid square of the p_w surface; therefore, we select various likely “aimpoints” in this defended zone at which their side would aim their ICBM’s. We can, perhaps, weight them, but we still intercept on this p_w surface.

The way this method is implemented is as follows:

a. For every threat condition: aimpoints, trajectory, and warhead yield perform the next tasks
b. Play X number of games (described below) until you obtain a set of points corresponding to an S curve (also described below)
c. Perform smoothing to obtain the S curve and compute the P_a
(d) Perform some summation to link up all the threats

Since the purpose of a game is to obtain an S curve, I will first describe this curve. The probability of success of some happening many times depends on the number of times a particular event takes place. This "depending" is a function which when mapped looks like an S. (See Figure 9). The regularity of occurrence of the curve in analysis work is sufficient excuse to go into more detail.

Suppose, for example, n in Figure 9 represents the number of rocks thrown at a snake in an attempt to kill it. The probability for actually killing the snake should increase as the number of rocks thrown at him increases. Further, since any rock could do a specified job, the curve begins to rise rapidly. However, since the snake can only be so dead, the curve has to taper. This S curve is merely an expression of the normality of distribution of misses or failures which is well-known in statistics.

The same is true if n is the number of ICBM's and p is the probability of penetration, which our game's will provide.

A game is played by selecting a particular value for n and determining by random sampling whether or not the offense has penetrated. By playing enough games at that level of ICBM's, we can establish a probability of success for that n and be able to place a point on the curve. By doing this for every n, we can obtain the desired curve. Again, unfortunately, due to time considerations, we cannot afford playing games at every level or, in fact, the same number of games at all levels unless some small number of games were decided upon. Because we are only interested in a certain portion of the curve, namely around the value that gives the price of admission, P_a, we are led to another method for calculating the points on the curve. But first a word about the important part of the curve.

From what was said before we are interested in the P_a, or the number of ICBM's needed to penetrate but by the above, we see that penetration is a probability. By what means do we then determine P_a? Figure 10 gives the answer.

We want the place on the curve where if n goes beyond this number, we improve our probability very little and if n goes below this number our probability drops off quite a bit. This point is usually called the knee of the curve. It is obtained by sliding a line with some slope m up the p-axis until it becomes tangent to the curve. The point of tangency is taken to be the place where P_a is obtained. The slope of the line is a function of the "cost" of extra ICBM's versus the "importance" of the penetration. The higher the slope, the costlier the missiles; the lower the slope, the higher the importance of penetration. Therefore, we want to play most

Whirlpool's a Natural

Just like 7 on a roll of the dice. We are a company that offers no substitute for the professional interested in positive opportunity, challenge and recognition.

We are now seeking mature, imaginative men in systems who want an environment conducive to career fulfillment in our distribution and service function.

TECHNICAL ANALYST

This position requires a man capable of developing new concepts for computer usage along with researching, developing, installing and evaluating new and revised systems and techniques in the effective use of computer, unit record or communications equipment facilities.

As a project coordinator, the successful candidate will assume the responsibilities and authority for the direction of staff activities and assignments.

SYSTEMS ANALYST

Scope of responsibilities include the review of methods and procedures to determine the feasibility of computer, unit record or communications equipment application. Duties also encompass preparation of specifications, procedures and proposals in the areas of system design and systems implementation.

For both positions a BS or BA in Business Administration, Accounting, Engineering or Computer Sciences preferred, but will consider non-degreed man possessing appropriate practical experience. Two to five years in-depth experience in data processing, programming, systems analysis or related fields along with some 3rd generation experience necessary.

Send complete resume in strict confidence to:

Mr. Richard Mahrling, Personnel Manager
Administrative Center
Benton Harbor, Michigan 49022
of our games near the knee as that is the point of interest.

A well known procedure for the game playing is as follows:

1. Play a game with \(n = 1 \); add 1 to the number of games played at 1.
2. If you win (from a defense point of view) add \(4 \times q_n \) (integerized) to \(n \). \(q_n \) = probability of loss at \(n \) and assumed 1 at beginning. If you lose, add 1 to the number of games played at \(n \); subtract 1 from \(n \) unless \(n = 1 \) in which case do not change \(n \).
3. Play the game at \(n \) and add 1 to the number of games played at \(n \); compute \(q_n \), and unless the number of games is exhausted, go to 2.
4. When all the games are over, you typically will have a table of probabilities looking like Figure 11a. This data is then smoothed resulting in Figure 11b.

Although the two figures may not resemble one another remember that the same number of games were not played at each \(n \).

Now to the games themselves. Since this is an event oriented simulation, we will not consider such multiprocessing defense problems as radar sweeps of sky and tracking capabilities. These multiprocessing and time sharing problems can be implemented more in the time oriented simulations.
This leads to engaging each object as it is detected. If necessary, give it a probability of detection that varies as the range of the object and draw a random number at a critical point. Detection is important since through this you can determine where the intercept will be. The aimpoint that is selected to bombard is offset because of two criteria: (1) cloud pattern and (2) accuracy-of-hitting-aimpoint indicator. The first has been preset by offense, but the second must be obtained by drawing a random number which will yield actual trajectory. The pre-launch computations are performed and a site is selected according to some rule. This leads to a computation of the launch altitude as in the Geometric Approach.

If we have no more missiles left from any site and if any of the warheads remaining successfully penetrates, we score a loss for this game. This last result depends on actual aimpoint and reliability of warhead.

After establishing the assignment doctrine, we determine whether we must launch before we can discriminate or whether we can allow the object to penetrate assuming that it has been determined to be a decoy. We must be very certain that assumed decoy is not a warhead before we allow it to penetrate.

Now we must insure a certain reliability of our intercept; hence we must, if necessary, fire more than one missile at the target. The number of such is called a salvo and depends on the particular accuracy of intercept (or miss distance) at the intercept point (also on abort probability). This accuracy depends on the geometry of the intercept point. In our pre-launch calculations, then, we determine how many missiles we should send up (if we have them). As each missile is fired, random numbers are drawn and we determine if a success or failure happened. Actually, we need not waste our time with these calculations when dealing with decoys except insofar as the stockpile depletion occurs.

If any warhead penetrates, the game is lost. Every warhead of every ICBM is thus engaged. If all are knocked down, the game is won.

After determination of the price of admission via playing these games as directed, the summation takes place with respect to all the threats as in the Geometric Approach. We then obtain our merit figure.

Computer time is much more important here since one game may take precious seconds. If say, 50 games were played for each aspect of the threat and the same number of threats were considered as in SIMPLE COMPUTER MODEL — GEOMETRIC APPROACH, the number of games actually played, \(n_e > 50 \cdot 20 \cdot 3 \cdot 3 \cdot 3 \cdot 3 \cdot 3 \), is greater than 243,000 games. If each game lasted one second, the number of hours of computer time would be around 67 hours for determining the correct deployment. This is far too much time and as it turns out, we must take away many of the niceties of the model. There

"If I were a Computer Programmer..."

"... I would want to be certain that I was earning a top salary commensurate with my ability. I would want to be aware of new and greater opportunities for growth, and with growth companies. I would want to be sure that my potential in the data processing field was being developed to the fullest. I would want the experience and advice of computer specialists who have a demonstrated record of success." If this interests you, phone or write Bill Geary. We respect your privacy. Our clients pay all fees.

If you've got what it takes to BE A LEADER IN SOFTWARE prove it at Informatics.

Informatics is one of the fastest-growing software companies in the world. Since we were founded in 1962, the company has expanded to more than 350 employees and now has offices in seven U.S. cities and a field office in Europe. By plan, our markets represent the greatest growth areas in the computer industry, and that is why we need more people who feel and work like leaders. About 80% of our work is concentrated in on-line and real-time systems, with increasing emphasis on advanced information systems, command and control, system engineering, and commercial software products.

We are seeking professionals with experience and goals in our major fields of interest...individuals who are innovative enough to make outstanding contributions in an industry and company that demands top creative ability. Opportunities exist at our Eastern Operations Office and various other East and West Coast locations.

There is much more to tell about prospects at Informatics. For additional career information, send your resume or phone Mr. Peter Kaminsky, (301) 654-9190.

Informatics inc.
Eastern Operations Office
4720 Montgomery Lane
Bethesda, Maryland 20014
An equal opportunity employer
How low down can a decision get?

Our attitude is, the lower down the better.

Which is simply another way of saying that as a computer pro here at Control Data, you'll have a much larger say in the things that really count than you would be likely to have elsewhere. And that's not just talk. We designed it that way.

We're organized on a highly decentralized basis, with each division accountable for its own profit and loss. And within each division not only is every individual expected to participate fully in the delineation of his own bi-annual work goals, but every effort is made to insure that all upward, downward and lateral channels of communication are kept wide open and happening. This means you can always count on the people who count being familiar with both your intentions and your accomplishments.

The upshot is, that as a computer professional here, you're apt to find your influence outdistancing your position. Not that the discrepancy should worry you. Odds are, if you're like most people here, your position will grow at a pretty astonishing rate, too.

What do we get out of this low down approach to decision making? That's easy. The world's only supercomputer, for one thing. For another, what's generally acknowledged to be one of the most advanced lines of peripheral equipment in the industry. For still another, medium size computers, special purpose computers and things like analog-to-digital hybrids that are burning up the track.

If any of this inspires you to want to really get to the bottom of things, just write for more information or send a copy of your resume to: Thomas Linklater, Dept. S-4, Control Data Corporation, 8100 34th Avenue South, Minneapolis, Minn. 55440.

An equal opportunity employer.

CONTROL DATA
CORPORATION

We deliver what others promise.
IMMEDIATE SEATING
• if you’re exceptionally knowledgeable in your field
• if you’re willing to utilize your full potential
• if you’ve reached the limits of your present position

We are the leading Personnel and Management Consultant Organization concerned with EXCLUSIVE placement of Data Processing Personnel. Our extensive search facilities and specific recruiting place us in a unique position to fulfill the requirements of employers of Data Processors. Your application is processed by E.D.P. Specialists who know the industry, its needs and WHERE THE OPPORTUNITIES EXIST. All fees are paid by the hiring company; there is no charge to the individual. Please contact Mr. Henry J. Lloyd, President.

EMPLOYMENT FOR DATA PROCESSORS
140 Barclay Center, Cherry Hill, New Jersey 08034
609/428-7338

Visit our suite during SJCC at Howard Johnson’s Motor Lodge.

U. S. Navy Scientific and Technical Intelligence Center has vacancies for selected personnel in its Computer Branch

Programmers, Analysts with three or less years experience—work on hybrid, real time and time shared computer systems.

The U. S. Naval Scientific and Technical Intelligence Center located in the Washington, D. C. metropolitan area has programmer and systems analyst positions available. Positions include programming for on-line data analysis, interactive problem solving, dynamic CRT displays, text manipulation, process control and data base manipulation.

To apply, send Application for Employment, Standard Form 57 (available at any first class post office) to:

SJCC INTERVIEWS
Call Mr. Steiger at the Dennis Motel, (609) 344-8111, between 1 PM and 4 PM on Tues., April 30 or Wed., May 1.

SUMMATION

How can these approaches be applied to other game-theoretic applications?

The underlying motif is outlined as follows:

1. Obtain an objective that is programmable.
2. Determine a game theoretic minimax that is independent of which plays can actually be made. This is the most difficult since it usually involves some very sophisticated mathematics. This minimax will be used as the guideline for setting up the various merit factors. That is, how well we play (according to some merit) is measured against the minimax.
3. Line up the plays on both sides so that most calculations that do not involve interaction can be done ahead of time. When interaction does occur, perhaps a simple calculation can be performed or a simple table search can be done.
4. Indicate opponent’s plays by likelihood rather than some prefabricated method, i.e., establish weights for each of his plays.
5. Perform each play through to completion obtaining the final merit figures.
6. Select the play that gives the highest g (see 1).

It must be reminded that computer solutions must be geared to importance of results. These programs require much computer time at a large cost and hence cannot be overly fancy.

To write a chess playing program, for example, that would play fairly “good” chess at a rapid rate by either of these two approaches, strikes me as reasonably difficult. The reason behind this is not so much the complexity of the game, but because the solution to chess is not very important. From these approaches, you pay for what you play for.

*By using the above symbolisms it is not intended to confuse the reader. I merely want to indicate that a mathematical method exists and that, because of this, certain computer methods are necessary to solve them.

SOFTWARE AGE
Programmers/Analysts

If you're interested in working five years ahead of the times, learn about IBM in Atlantic City.

We're working at state-of-the-art levels—and we need programmers and analysts now.

Our Federal Systems Division is involved in a series of real-time projects for the Government that are about as advanced as anything in the field of computer technology today: trajectory analysis, orbit prediction, multi-programming, multiple-access concepts, acoustic instrumentation. And most of this work is being done using the latest computers and peripheral equipment available.

Our positions are located in Atlantic City, New Jersey.

At IBM you'll find completely company-paid benefits that include life and medical insurance and hospitalization coverage. IBM also offers you an exceptional Tuition Refund Program.

Are you one of these people?

We need programmers and analysts with experience in one of two basic areas: information-handling systems and scientific-engineering programming.

Ideally, you should have a Bachelor's degree in Mathematics, Physics, Engineering, Economics, or Statistics. (Equivalent experience in some instances is acceptable.) You should have at least one year's experience.

Contact IBM today.

If you're interested in one of the hottest careers going in computer technology, we want to talk to you. Send a brief resume to: Mr. J. F. Ryan, IBM Corporation, Department BD-1049, 18100 Frederick Pike, Gaithersburg, Md. 20760.

It could be the most important resume you've ever written.

An Equal Opportunity Employer
Space shots to the moon... golf shots to the green...

JOIN US IN BOTH AT THE J. F. KENNEDY SPACE CENTER IN SUNNY FLORIDA.

NASA's lunar module (LM), which took its first space journey in late January, was a talkative "bug." ITT Federal Electric Corporation's project team listened in and monitored each action and reaction of the craft from when it was first mated to its launch vehicle until the mission's end. The successful flight was a significant step toward the manned lunar landing.

As a prime contractor, Federal Electric Corporation has some 1500 professionals on the talented NASA/industry team involved with the Saturn Apollo program. Our fast expanding computation work at the Center provides real-time scientific test support, data reduction, systems analysis, computer operations and data storage and retrieval. This scientific, engineering and administrative support activity utilizes two GE 635 time sharing digital computer systems with 16 magnetic tape units, 128K word storage, a 786K word drum and real-time input/output controllers on each system. We also use an IBM 7010 computer system for financial management and an IBM 1050 connected to a separate IBM 1440-7010 computer system for a real-time 30K item inventory system.

While the size and complexity of our mission provides you with talent-extending excitement, the great climate here in the heart of Florida's beautiful East Coast offers you unmatched relaxation. There's sun, sand and seashore plus water skiing, surfing, fishing, hunting and superb golf. It's comfortable living (at well below the national average cost), lots to do, and the perfect climate for doing it.

Please forward your resume, including salary history, in complete confidence to Mr. L. A. Hamilton, Federal Electric Corporation, Suite 501, Cape Royal Building, Cocoa Beach, Florida 32931.

FEDERAL ELECTRIC CORPORATION

ITT's World-Wide Service Associate. A Plans for Progress Equal Opportunity Employer (m/f)

ENCODING FROM ALPHA-NUMERIC NUMBERS

(Continued from page 15)

has proposed a doubly chained memory structure that eliminates the reservation of computer memory space for the unused nodes that are represented by blank cells in Fredkin's Tries. But passing through a node via the second (continuation) chain does not involve that node's symbol in the symbol sequence, so extra linkages are needed. Scidmore and Weinberg have proposed a tree structure which has no unused nodes also, although three linkage addresses are required at each node and frequently not more than one is used.

Cheyleur has proposed the physical construction of a memory element utilizing not only sharing of initial symbol strings, but the sharing of polygrams in general.

Such symbol trees are of particular advantage in working with data of variable length. Some tree implementations are particularly easy to update.

Recalling that a "symbol" need not correspond to a character of the original alphabet, at least one comparison and address calculation must be performed for every symbol of the symbol string being traced through the tree. The symbol tree cannot give a false external memory address for an item not contained in the tree.

"Hashing" Transformations

In this method, first described as "open addressing" by Peterson, external memory is divided into equal sized portions, called "buckets". The term is transformed to an address by some algorithm. Such transformations may include selection of digits or bits, "folding" by adding some parts of the index item to others, or taking a remainder after division. The address so found is one of a bucket and is taken as the starting point of a directed cyclic scan of that bucket and all following buckets. The scan continues until either the desired item is found, or a flag is encountered. The flag indicates an unused memory location in which the item would be placed had it existed in the file.

Several transformation algorithms are discussed in one of the refer-
ences in which the use of a table of partial index items is suggested to reduce the number of occurrences of identical addresses corresponding to different index items.

As the allocated memory becomes full, the number of searches for an item grows. Chaining from full buckets instead of the use of cyclic structure has been suggested.

Such items use a relatively small amount of high speed memory, but have the disadvantage that unless the complete file can be tested in advance the performance of the system is very difficult to predict.

Triplet Searching

As this method, proposed by Rubinson, has not been described in the open literature, it will be covered in somewhat greater detail here than the other methods.

The first step in the triplet method is the arrangement of all the terms into lexicographic order and partitioning them into groups. The groups are not necessarily of the same length, as two restrictions are made on the partitioning. The first restriction is that the groups may not exceed some predetermined number of index items and the second is that the initial K characters of the last item of a group may not be identical with the initial K characters of the first item of the following group. In other words, it is possible to distinguish the index items at a group division using only the first K characters of the index items. K is chosen depending on the equipment used, and it is convenient to make K the number of characters contained in a word if a fixed word length machine is used.

In order to search for a term, first the group in which the term lies must be located. This may be done by performing a binary search of the list of group identifiers, these group identifiers being the first K characters of the first term of each group. That is, a relatively short list of single words is searched so that the group in which the term falls may be identified.

After the correct group has been found, a list of triplets that have a one to one correspondence with the terms of the group is brought into core memory. The triplets consist of

* Another possible reason for modifying the length of groups is mentioned below.
Join the
Montgomery Ward re-generation

Multiply your capabilities
...multiply your rewards.

How do you computerize a conglomerate of stores, products and catalogs—all generating fast-moving challenges in distribution, credit, inventory control and other related areas? Montgomery Ward does it with retailing's largest 3rd generation data control center—and with a programming effort aimed at attacking a total management information system from 8 different areas simultaneously!

Essentially, an operation as fast and furious as this does three things for a programmer or systems man: (1) it generates continuous new challenges, (2) it continually expands and regenerates his capabilities, and, (3) it multiplies his rewards in terms of increasing responsibilities and earnings.

If you have two or more years COBOL or BAL experience and would like to enlarge upon it fast, make your move now to join Montgomery Ward. Write: M. K. Fenwick, Personnel Representative/Corporate Systems Division.

MONTGOMERY WARD
6th Floor, Data Center/140 S. State Street, Chicago, Illinois 60603
An Equal Opportunity Employer
In a few cases triplet pairs are required, which indicate two required conditions. The first is the length of the term, and the second a comparison as before.

Referring to the example triplet group, suppose that the μ address corresponding to the term TOLD is required. (For this discussion TOLD will be considered to be justified left in a field containing as many blanks as necessary.) First, the list of group identifiers (initial K characters of initial index items of groups) is searched, and the triplet group shown above is brought into fast memory. Then the triplets are examined one at a time. Since the seventh character of TOLD is not an N, the first triplet is not the correct one.

Similarly, the second and third triplets indicate R and D as the fifth characters of the complete term, which they are not. The fourth triplet indicates that the term is four characters long by 5μ (blank at end of word in the fifth position) but requires that the fourth character be an E by $4E\mu$. This latter condition is not met by the word TOLD. Finally, the next triplet does indeed correspond to the correct term, and is $4D\mu$. The match occurs when it is found that the fourth character of TOLD is D.

If a term is not in the system, a false hit is possible; entering the search process with TOLERABLY would retrieve the μ address associated with TOLERABLE. For this reason, in most applications the full term should be repeated at some location in the external memory record specified by the μ address, so that it may be checked.

Mention has been made before of the fact that the μ address may be partial or relative. Since the group identifier is already determined when the triplet search begins, there may be an additional address segment or base associated with the group identifier.

The triplet group is generated in the reverse direction from that in which it is searched (that is, from the top down in the example). The
When your job begins to feel like this...

Think about this:
There are no dead ends for programmers and systems analysts at Univac. Your career can grow any direction you choose. You get new assignments and new responsibilities as fast as you can handle them.

What are we up to now?
We're creating and manufacturing the finest computer hardware/software in the industry. And developing advanced methods of program construction. And planning for advanced software support. And exploring new logical language translation, compiler construction, mass memory allocation, information storage and retrieval, and interpretive programs. As well as conducting research in assemblers and loaders, program documentation techniques, advanced executive systems, remote program systems, graphics... you name it.

To put your career back on the track, write and tell us your experience, capabilities and goals for today/tomorrow. Mail to: R. K. Patterson, Employment Manager, Dept. 108, address below.

UNIVAC
FEDERAL SYSTEMS DIVISION
2750 WEST SEVENTH BLVD.
ST. PAUL, MINNESOTA 55116
AN EQUAL OPPORTUNITY EMPLOYER M/F
An investigation into the limitations of existing software systems for information retrieval applications has led to the development of a novel retrieval methodology. The system is entitled STERILE (System of Terminology for Retrieval of Information through Language Engineering). It permits the selection of information from structured indexes and/or from free text utilizing either permuted word forms or letter/character patterns, in addition to the traditional full-word-for-full-word matching.

Third generation computer hardware systems are a reality. The burden of responsibility for efficiently and effectively utilizing the inherent capabilities of the new families of computer systems now lies with the software community. In no other area of computer applications is this fact of life more forcefully brought to bear than in the area of information storage and retrieval.

The information explosion, which to a large degree was spawned by the emerging technologies of the World War II era, and is reaching maturity during the Space Age, has led to a variety of mechanized systems for isolating and retrieving applicable materials in response to a search query. For the most part, these techniques have revolved about the reworking of traditional word-for-word matching applications, in which the search term (in absolute or coded form) is required to be identical in form, num-
A system which permits root word or character string searching has been developed. The system is entitled STERILE (System of Terminology for Retrieval of Information through Language Engineering). It permits the selection of information based upon permuted word forms or letter patterns, in addition to the traditional full-word-for-word matching.

STERILE is an information retrieval methodology which encompasses word analysis in both construction and meaning, strategy development, and application of these factors to an information file.

Mechanized and/or manual information retrieval operations revolve about the matching of terminology in a search question with the indexing terminology of the documents in a file. Whether the matching is accomplished by the needling of marginal hole-punched cards, by the manual correlation of the index entries and the search analytics, or through the electronic comparisons of digital computers, the operations are relatively similar. Terms may be joined together in a query by using "and", "or", or "not" connectors to form a search strategy, and the terms and connectors are then related to the indexed information. Documents matching the requirements of the question are isolated and retrieved.

STERILE does not alter any of the foregoing operations. It does, however, directly impinge upon the manner by which selected search terms are implemented.

As an example, an inquiry to a materials-oriented specialized information center may request "all documents relating to organic materials and their uses". In selecting search terms, an analyst would be expected to call for: organic; aluminum compound; organic boron compound; organic chemistry; organic compound; organic coolant; organic cooled reactor; organic fluorine compound; organic germanium compound; organic laser; organic liquid; organic lithium compound; organic material; organic moderated reactor; organic tin compound; organometallic; organometallic compound; organometallic polymer; etc. It is assumed that these are all viable terms for the given information center. Under existing techniques, the above series of terms would be searched, each term individually and specifically, in order to determine those documents which are applicable to the search query. However, STERILE alters the traditional approach, and requires, as the intervening step between selection of search terms and conducting of the search, an analysis of the selected word forms. The purpose of the analysis is to determine if, in the corpus of analytics chosen for searching, a commonality exists. In

Systems Analysts

Teleprocessing, EDP Systems, Quality Control, Procedural Writers

The largest single state writer of automobile insurance needs experienced personnel for EDP systems in operation now—360/M30 and 360/M40's, with 360/M50's, 2314's and 2321 on order.

Call or Write: D. E. SCHMEISER

Automobile Club of Michigan

Detroit Insurance Exchange

150 Bagley, Detroit, Michigan 48226

(313) 963-2911, Ext. 311
the example under consideration, the letters O-R-G-A-N are common to all terms.

STERILE operates on the prediction that it is unnecessary to match complete word for complete word, as in traditional information retrieval systems operation, and that a partial match of carefully selected word bases may be more efficient and comprehensive a methodology to apply to literature searching. In the above example, then, STERILE would suggest the use of ORGAN as a search term. There is, however, an obvious inadequacy, and that is that the letters O-R-G-A-N form a unique English word which has no relationship to the search query. STERILE encompasses a method for eliminating this objection.

While current indexing systems utilize three types of connectors to relate the strategy terms: "or" (+); "and" (*); and "not" (–), STERILE develops three additional connectors. They are: "permuted or" (@); "permuted and" ($); and "permuted not" (#). The traditional connectors, in STERILE, are known as "absolute or" (+); "absolute and" (*); and "absolute not" (–).

When an "absolute" connector is used, it indicates that the particular term to which the connector relates is to be treated as in conventional systems (i.e., in exactly the manner in which it appears), and as an entire-term-for-entire-term match.

STERILE’s permuted connectors (@, $ and #) act in somewhat the same manner as do the traditional linking devices, with one major exception. The permuted connectors call for a methodology of document selection based upon the occurrence of specific letters in the indexing analytics in a predetermined pattern, regardless of whether or not the letters are meaningful as an entity, and whether or not they form a specific term. Thus, in using ORGAN as a permuted search term, the desire is not to isolate all documents containing the specific index term ORGAN, but rather to locate all documents which have an index entry containing the letters O-R-G-A-N, in that uninterrupted sequence, somewhere in the body of the term. Such terms would include ORGANIC, ORGANOMETALLIC, and HYPERORGANIC in which the letters O-R-G-A-N appear in a skein. It does not matter in the STERILE system whether the desired configuration of letters is the physical prefix, suffix, or base of the indexing term, since the scan is by letters and not words.

In the STERILE system, then @ORGAN specifies the selection of documents in which ORGAN appears in any portion of an indexing analytic. $ORGAN calls for all materials indexed by a permutation of ORGAN in conjunction with some other specified term or terms. #ORGAN requests that documents containing indexing terms with permutations of ORGAN be withheld from retrieval.

In the example requesting "all documents relating to organic materials and their uses", STERILE would call for a strategy of @ORGAN–ORGAN–ORGANISM–ORGANIZATION. The @ORGAN calls for all documents indexed by any word of which ORGAN forms a part; however, this is further restricted by negating those documents for which the letters O-R-G-A-N are derived from ORGANISM, ORGAN or ORGANIZATION.

In another situation, an information file user may request "information on triodes, diodes, tunnel diodes, and other related devices". By applying the STERILE technique, term analysis reveals the commonality of the letters I-O-D-E. While these letters may not form a meaningful word, the IODE base may nonetheless be applied for searching. The STERILE format would be @IODE.

Of course, the STERILE system will not, with the @IODE strategy, locate documents indexed under SOLID STATE DEVICE, TRANSISTOR, etc., unless the system to which STERILE is applied contains an automatically-assigning thesaurus or cross-indexing and cross-referencing mechanism. In that case, the @IODE strategy could generate a series of additional STERILE and traditional terms and bases, such as ISTOR, SOLID STATE, etc. And as with conventional retrieval schemes, the selected word bases and full terms can, in STERILE, be related into complex search strategies, in which both STER-
PROGRAMMERS PROGRAMMER/ANALYSTS SYSTEMS ANALYSTS

In this age of specialization let a specialist help you make sure your next move is the correct move.

For FREE SALARY ANALYSIS based upon the latest industry salary curves, circle Reader Service No. 12 and send your resume to PROFESSIONAL CAREER CENTERS, INC.

4641 Montgomery Avenue, Bethesda, Maryland 20014
(Suburban Washington, D. C.) or call 301/657-2760

Nationwide and Overseas

PROGRAMMERS—ENGINEERS

Washington, D. C. • New York • New Jersey • New England • Philadelphia • Chicago • Minnesota • Texas • Ohio • Florida • Arizona • California • Southeast Asia

If you have a B.S., M.S. or Ph.D. and you are experienced or interested in any of the following, contact us immediately for free career counseling and an objective analysis of your position in today's market.

PROGRAMMERS
- Management Info Systems
- Information Retrieval
- Command & Control
- Aerospace
- Applications
- Real Time/On Line Systems

SYSTEMS ENGINEERS
- Reliability Analysis
- Digital Computer
- Oceanography

SHERIDAN ASSOCIATES INC.
1901 North Fort Myer Drive, Suite 1010, Arlington, Virginia 22209
(Just over the Potomac from Washington, D. C.)

Professional Consultants to the Computer Industry

FOR CHANGE OF ADDRESS

If you're moving please let us know 5 weeks before changing your address. If you do not have your label print your old address below.

Mail to: Software Age, 1020 Church St., Evanston, Ill. 60201

Please fill in the blanks below whether you are changing your address or requesting a new subscription.

My Specialty

primed in partial terms, STERILE permits the analysis of terminology based upon word roots, upon operation-denoting suffixes, and upon prefixes and other delimiters. As such, it is especially suitable for third-generation digital computer-based information retrieval systems.
PROBLEM #2

APRIL 1968

XTRAN Coded the following routine to read 100 pairs of X,Y from 50 data cards. Can you explain why every second pair of data is lost on the read?

SUBROUTINE XTRAN
DIMENSION X(100), Y(100)
10 FORMAT(4E15.5)
K = 1
DO 20 J = 1, 50
KK = K + 1
READ (2, 10) (X(I), Y(I), I = K, KK)
20 K = K + 1
RETURN
END

TROUBLE-TRAN for fun and profit
Send your ANSWER to the problems posed here in each issue to:

TROUBLE-TRAN EDITOR
SOFTWARE AGE
1020 Church St., Evanston, Illinois 60201

The correct answer bearing the earliest postmark will net the reader submitting it $25.00

The second correct answer with earliest postmark wins $15.00

You can also profit by submitting PROBLEMS for this feature. If your problem in FORTRAN programming is selected for use in this feature, you will receive $25.00

Contest Rules:
1. ASA standard FORTRAN IV is assumed.
2. The IBM 7094 FORTRAN IV compiler is used in verifying answers.

DID YOU SAY THAT ONLY SUBROUTINE YTRAN WOULD COMPILe CORRECTLY? YOU ARE RIGHT. THE FORTRAN COMPILER WILL CLASSIFY STATEMENT TO AS AN ARITHMETIC STATEMENT FUNCTION. SUCH FUNCTIONS HAVE TO APPEAR BEFORE ANY EXECUTABLE STATEMENTS. MOST COMPILERS TRY TO CLASSIFY EACH STATEMENT FIRST AS ARITHMETIC AND IF THIS FAILS THEY SEARCH FOR THE PROPER NON-ARITHMETIC.
such a tree for the proposed application is that it is not well adapted to the use of variable length index items.

Conclusions

The choice of any scheme must depend on the application. The purpose of this paper has been only to review briefly some of the available techniques. The results are summarized in tabular form.

Acknowledgement

The author wishes to thank Dr. Morris Rubinoff, Principal Investigator of The Moore School Information Systems Laboratory, University of Pennsylvania for his suggestions and encouragement.

BIBLIOGRAPHY

Now...

The "second generation" of the famous DigiComp,
enormously more "sophisticated" as additional "switches" and "core
positions" permit many more decisions and "branching" possibilities.

The "second generation" of the famous DigiComp,
enormously more "sophisticated" as additional "switches" and "core
positions" permit many more decisions and "branching" possibilities.

WFF 'N PROOF
Developed in the course of the ALL Project (Accelerated Learning of Logic) Wff'nProof incorporates 21 games of progressive difficulty; has been used to teach propositional calculus to elementary school children but challenges the intellect of professional logicians. Complete with 224-page manual which is an introduction to the world of modern logic; filled with valuable tips to clear thinking.

$6.25 Postpaid

DIGITAL COMPUTER
Ingenious mechanical equivalent of an electronic digital computer.
Can be "programmed" to perform, individually, every operation of a
digital computer. Best thing ever for teaching binary math, how a
computer operates, how and why problems must be broken down for
machine solution. In kit form—1 hr. to assemble. $5.98 Postpaid

OH WAH REE
The ancient game of mathematical strategy which has intrigued millions for more than 30 centuries. A game at once so simple in its basics that a pre-schooler can enjoy it yet so complex in its possibilities that its fascination multiplies with the mathematical grasp of the player.

$7.95 Postpaid

CONFIGURATIONS
Based on concepts from the geometry of incidence, CONFIGERATIONS is a series of intriguing mathematical and geometric puzzles that will challenge and delight those who enjoy careful reasoning. It is authored by Professor Harold L. Dorwart, Chairman of the Mathematics Department, Trinity College, Hartford.

$4.95 Postpaid

TWIXT
Another famous "bookshelf" game, package matches that of Oh-Wah-Ree. A stimulating game with a fascinating chess-like strategy of move and countermove. Two or four players.

$7.95 Postpaid

SCIENCE/SYSTEMS
Please send me at the address below:

(name) (address) (city) (state) (zip code)

Illinois residents add 5% OES

Save $1 by ordering any 3 items or $2 on any order for 4 or more of the above
(Games are shipped from separate warehouses)

P. O. Box 1176
Evanston, Ill. 60204

APRIL, 1968
A new proprietary software package called FORCE-III has been announced by Honig, Time Sharing Associates, Inc. FORCE-III is said to operate out of a partition of OS/360 MFT. The subsystem contains a command language interpreter and file maintenance subsystem, a line editor for creation and correction of files, a FORTRAN IV (G level) compiler, a subroutine library, and scheduling and execution control monitor. Using FORCE-III, object programs may be catalogued and filed, thus permitting a library of programs which may be used repeatedly without recompilation. Files may be translated to, or generated from, catalogued OS data sets. Object programs, created and debugged under FORCE-III may be run under OS in the batch environment and, finally, OC can run simultaneously via multi-programming in the background, and provide normal batch processing at the same time. The system is designed for a 360/Model 50 or greater.

For more information circle No. 80 on the Reader Service Card

United Computing Corporation has announced two new software simulators for the SDS SIGMA 5 and 7 computers. UNITE II simulates the SDS 9300 series equipment. UNITE III simulates the CDC lower 3000 series computers.

The UNITE programs execute direct object code for the computers being simulated. This allows codes written for these computers to be run directly on SIGMA without modification. These simulators handle all hardware operations such as: bootstrap-loading, I/O operations, interrupts, and console display and switch functions.

For more information, circle No. 79 on the Reader Service Card

ESP—a comprehensive system for the evaluation, selection and application of forecasting techniques—was announced today by Software Resources Corporation.

ESP provides, for the first time in one unified package, a means of selecting the most suitable forecasting technique from the many powerful methods developed in recent years. According to Software Resources, the new system will appeal to market researchers, market planners, statisticians and others concerned with reliable forecasting of consumer demand patterns. ESP is also useful in sales analysis and evaluating the history of product demand.

Written in FORTRAN IV for the IBM 7090 and System/360 computers, output is available in both tabular reports and computer prepared graphs, Software Resources stated.

Among the techniques available under ESP are exponential smoothing, moving average, adaptive tracking, and rolling averages. In all, more than 20 different statistical and mathematical techniques are available to system users.

For more information, circle No. 78 on the Reader Service Card

Autoflow, a computer documentation proprietary software product, is now available for the Honeywell H-200 series. It was announced by Applied Data Research, Inc.

On the H-200 series, Autoflow directly accepts Honeywell's COBOL and Easy-coder languages. It is available to H-200 users on a lease or service bureau basis and was placed recently on the GSA schedule.

Autoflow is a proprietary software product that produces high-quality two-dimensional flowcharts. All statement analysis, page allocation, line drawing and rearrangement of program flow is performed automatically by the Autoflow system.

The /360 Autoflow system has been extended to accept seven additional Assembly Languages: Sleuth (Univac 1107, 1108); Symbol, Meta-Symbol (Scientific Data System 910, 920, 930); Compass (Control Data 3200, 3300, 3400, 3600); DAP II (Computer Control 24, 124, 224); Art (Univac 418); and Autocoder (IBM 7070, 7074).

For more information, circle No. 77 on the Reader Service Card

A new, compact, write only, magnetic incremental tape recorder for recording data in industry-compatible format for immediate data processing has been announced by Potter Instrument Company, Plainview, New York.

The ME-4210 can be connected to typewriters, keyboards, adding machines, accounting machines, cash registers, etc. Recorded data can be computer-processed without intermediate conversion. Applications include data logging, data transmission, and office machine output.
The ME-4210 records data in one-character increments on magnetic tape. Asynchronous data transfers from 0 to 60 characters-per-second can be accepted. Recording accuracy is better than 1 in 107. Data is recorded in NRZ-I format on 3½" 7-channel tape at a packing density of 200 bpi. The 58" diameter reels hold 140' of tape.

For more information, circle No. 74 on the Reader Service Card

Remote Switching Control Module, RSCM #101, has been designed to offer remote control switching with ease and economy of installation as well as safety. The remotely located master switch may be installed as far as 3000 feet away from the RSCM and may be connected by low voltage (16 to 24 gauge) surface wiring (bell wire, etc.).

The RSCM is said to be ideal for permanent or temporary remote control applications, some of which include: central switching, instrument panel wiring, safety control, security control, shock hazard elimination, intrusion—burglar alarm and process supervisory control.

For more information, circle No. 75 on the Reader Service Card

NAVCOR’s new 1050 Series keyboard assemblies offer flexibility in meeting today’s man/machine interface requirements. Completely modular in construction, the keyboards are available in a wide variety of standard configurations, and can be adapted to special applications with a minimum of time and cost. All-electronic design insures reliability and long life in the field. Each key has a life expectancy of over 100 million operations, and repair or modification of a keyboard involves only the removal and replacement of a modular component.

A basic keyboard consists of an array of NAVCOR KRM keys mounted directly on an etched-circuit base panel. For coded outputs, a diode matrix is available either on an etched-circuit base panel or as a separate board which mounts directly below the matrix, and can be adapted to special applications with a minimum of time and cost. All-electronic design insures reliability and long life in the field. Each key has a life expectancy of over 100 million operations, and repair or modification of a keyboard involves only the removal and replacement of a modular component.

For more information, circle No. 72 on the Reader Service Card

Honeywell EDP’s Special Products Division have made its Model M4005 disk pack compatible with every computer disk which mounts directly below the matrix, offers full double-strike protection without interfering with normal typing speeds.

For more information, circle No. 74 on the Reader Service Card

A new ultra precision rack and pinion assembly for digital readout systems, especially designed for original machine equipment manufacturers is now available from Spaulding Instruments, Pasadena, Calif.

Key features of the Spaulding rack and pinion assembly include: rack mountings ground four sides for precision alignment drilled and counterbored for 10-32 mounting screws on 6.4 inch centers, hardened and ground 416 stainless steel precision racks, rack assembly sealed from chips and dirt, and gear box and photoelectric encoder assembly with .0002 inch resolution.

For more information, circle No. 73 on the Reader Service Card

For more information, circle No. 74 on the Reader Service Card

KENT MURPHY
12 Geary Street, San Francisco, Calif.
Phone: 982-0640
NATIONWIDE DATA PROCESSING OPPORTUNITIES

SUBSCRIBER SERVICE
Mail to: Software Age, 1020 Church St., Evanston, Ill. 60201
Please fill out the blanks below whether you are changing your address or requesting a new subscription.

My Specialty

□ Technical Degree
□ Non-Technical Degree □ No Degree

□ I have analog/hybrid exp.
□ I have digital exp.

□ Under . . . paid or under the wrong boss . . . under the wrong climate . . . under the wrong promotions . . . under utilized or under the wrong hours . . . under the wrong policies . . . or just "undered"?
□ For "overing" . . . call WA 3-2640

LAWRENCE PERSONNEL
1015 Chestnut, Philadelphia, Pennsylvania 19107
FEE PAID BY CLIENT COMPANIES • NO CONTRACTS • ALWAYS CONFIDENTIAL

APRIL, 1968
PROGRAMMER
High Growth & Earnings Potential
A chance to pioneer with applications never programmed before! Established and highly respected management consulting firm (ACME) offers variety of challenging assignments to a creative programmer who can develop software for sophisticated management information systems. He will work with specialists on 185-man staff; participate in team efforts to solve varied problems; find ample opportunity for professional development, promotion, and increased earnings.

* Three plus years heavy programming experience (tape and disc) in IBM, Honeywell, Univac or similar equipment. Good ability to communicate; freedom to travel. Send full details of your professional experience and earnings history, in confidence, to the attention of SAK at

Kurt Salmon Associates
350 Fifth Avenue
New York, N. Y. 10001

ARE YOU GROWING OLD WITH THE WRONG COMPANY?
Don't waste your growth years on the wrong company. If your salary is not advancing as it should and if your promotions are slowing down, take a good hard look at the market. It will give you perspective. Perhaps you'll discover that you have not been mistreated after all. On the other hand, you may be surprised to learn how much your value has gone up in the last year or so.

Tear out this ad and mail it to us, along with your resume. There is no obligation. We'll call you within 24 hours if we think you are growing old with the wrong company.

CALLAHAN CENTER
FOR COMPUTER PERSONNEL
Suite 414 Boulevard Building
1819 J. F. K. Boulevard, Phila., Pa. 19103

SJCC
While you are in Atlantic City call us collect: (215) 567-4811 to discuss career opportunities.

INFORMATION PROCESSING JOURNAL
A QUARTERLY REFERENCE JOURNAL DEVOTED TO THE THEORY, DESIGN, AND APPLICATION OF ELECTRONIC COMPUTERS
DESIGNED TO ASSIST THE COMPUTER SPECIALIST LOCATE INFORMATION On a Specific Subject or Topic, in a Fraction of the Time required by Conventional Literature Search.
PRESERVED IN ABSTRACT FORM, COMPLETELY INDEXED
By Subject, Topic, Source and Author and Thoroughly Cross-referenced.
6,000 ABSTRACTS PER YEAR
CAMBRIDGE COMMUNICATIONS CORPORATION
1612 K St. N.W.
Washington, D.C. 20006
(202) 393-1239
Specialists in Scientific Information Retrieval for over 10 years

For more information, circle No. 11 on the Reader Service Card

SOFTWARE AGE
puterized milling machines to insure that settings of start, stop and cutting depth are rigidly maintained.

Developed and manufactured by The Digitran Company of Pasadena, Calif., the Digitran Model 9000 sealed switches function in an environment of metal chips, oil, dirt and smoke, with no equipment down time due to switch malfunction.

The switches control the computers that operate the milling machines, by maintaining the exact parameters programmed into the system.

Other applications of Digitran switches include military and commercial airborne and ground communications, test equipment, computer control, and data handling systems.

For more information, circle No. 66 on the Reader Service Card

A new patient monitoring system that bridges the gap between transducers—which measure temperature, blood pressure, and other variables—and a general purpose digital computer has been introduced by Redcor Corporation, Canoga Park, Calif.

A complete network of 64 transducers and 12 display stations, in various hospitals, are connected to the Redcor system via various communication media. Under control of a general purpose digital computer, the system monitors physical variables and events in each of the 12 monitor stations. As a result of computer analysis, the system distributes information for display at the various stations. The displayed information assists hospital personnel in diagnosis and treatment.

For more information, circle No. 65 on the Reader Service Card

A series of circuit card guides specifically designed for miniature integrated circuit cards has been introduced by Scanbe Manufacturing Corp., Monterey Park, Calif.

The small card guides—designated as the Scanbe M series—are for miniature cards from one inch to 2.75 inches long. With a ½-inch minimum card spacing, the M Series is capable of accommodating more than 500 integrated card configurations.

Incorporating only one T or H-shaped mounting bar, the M Series provides a small guide profile that permits higher density packaging and better cooling.

For more information, circle No. 64 on the Reader Service Card

A new, low-cost, direct access storage system designed for the UNIVAC 9000 series computers was announced today by Sperry Rand's UNIVAC Division.

Known as the UNIVAC 8410 Disc File, the new system enables users to bridge the costly gap between punched card and direct access processing, and offers unique

How to get a job in CALIFORNIA!

The only complete guide of its kind. Complete facts on California employers, their openings, who to contact. Also information on the State's housing, taxes, cultural activities, driving regulations, food. It's the How-To-Do book on California.

Introductory letters and facts by heads of the State of California Chamber of Commerce, Greater Los Angeles and San Francisco Bay Area Chambers of Commerce.

At your newsstand now, Or write: Drake Publications, 9168 Kearny Street, San Francisco, California 94133. $2.00 post-paid. Satisfaction absolutely guaranteed or your money back.

Spring Edition 1968 — Out Now
advantages within a wide range of data processing applications.

Suitable for field-installation on any UNIVAC 9200/9300 System, the 8410 Disc File provides removable direct access storage of 3.2 to 12.8 million bytes, or 6.4 to 25.6 million digits in packed decimal format.

A basic 8410 System includes a master dual disc drive expandable one drive at a time to a total of eight drives. Each drive holds a reversible disc cartridge with two storage surfaces; one of which is on-line. By interchanging disc cartridges, unlimited storage is provided for applications which require serial processing.

Data-Control Systems, Inc. announces the availability of a new high frequency Up/Down Translator for handling data translation up to 5 MHz. Operational mode is selected through interchangeable, plug-in tuning units.

Typical uses are multichannel and constant bandwidth applications where a multiplex is translated to a higher band and summed with an untranslated multiplex for transmission or recording, or where six channels must be transmitted over a 5 MHz line.

Reference signals may be supplied by an internal crystal oscillator or an external source.

Data-Control Systems, Inc. announces the availability of a new high frequency Up/Down Translator for handling data translation up to 5 MHz. Operational mode is selected through interchangeable, plug-in tuning units.

Typical uses are multichannel and constant bandwidth applications where a multiplex is translated to a higher band and summed with an untranslated multiplex for transmission or recording, or where six channels must be transmitted over a 5 MHz line.

Reference signals may be supplied by an internal crystal oscillator or an external source.

For more information, circle No. 63 on the Reader Service Card

...

A Remote Recording feature, enabling one IBM Magnetic Tape SELECTRIC Typewriter to send information to another, has been announced by the IBM Office Products Division. A telephone data set is utilized in the system for sending exact duplicates of typewritten documents at speeds of up to 150 words per minute.

For more information, circle No. 62 on the Reader Service Card

Honig Time Sharing Associates, Inc. announced the availability of an Interface System for use with an IBM 1130 computer which expands the capabilities of the 1130 to provide a true on-line and terminally oriented system. With this interface, users can communicate to their 1130 computer over standard voice grade telephone lines and commercially available terminals.

This interface attaches to an 1130 via the IBM Storage Access Channel, feature code 7490. Computer instructions necessary to operate devices attached to the interface are standard 1130 I/O instructions and no additional modifications are necessary within the 1130 system. This interface will allow users to attach telephones, IBM 1050's, or IBM 2741's to an 1130 in numbers up to 15.

For more information, circle No. 60 on the Reader Service Card

...
CONFIDENTIAL INQUIRY

Your original copy of this form will be retained at the offices of SOFTWARE AGE and will be used for no other purpose than to notify the specific firms which you have checked (on the reverse side) of your interest.

TYPE OR PRINT CLEARLY FOR PHOTO REPRODUCTION

JOB DESIRED:

List computer hardware knowledge (names of systems, tape, disk, terminals, etc.):

Programming specialties and years of experience (commercial, scientific, theoretical, experimental, analog, etc.):

Systems programming on which you have had development experience (compilers, assemblers, executives, monitors, O.S., etc. Indicate for what computer):

Programming languages used and extent of experience (COBOL, FORTRAN, etc.):

Applications programmed (aerospace, banking, insurance, math subroutines, compilers, etc.):

Systems analysis experience (card design, flow charting, operation analysis, etc.):

EDP management experience (include years and number of people reporting to you):

SALARY: ___________________________ (current) ___________________________ (desired)

DATE OF AVAILABILITY:

EDUCATION: Indicate major as well as degree unless self-explanatory.

Degrees

Years

Schools

EMPLOYMENT: Indicate present employment and previous jobs below.

Employer

City

Years

Title or

Function

Name

Home Address

Home Phone

Security Clearance

Location Preference

Marital Status

U.S. Citizen?

BE SURE YOU HAVE CHECKED ON REVERSE SIDE THE COMPANIES YOU WANT TO SEE THIS INQUIRY. PUT FORM IN STAMPED ENVELOPE AND MAIL TO:

software age

MAGAZINE

1020 CHURCH ST., EVANSTON, ILL. 60201

APRIL, 1968
check your interests here

Fill in the confidential inquiry form on the other side of this sheet. (Be sure to use this form. We cannot process multi-page resumes; and this form provides all the information advertisers require to screen applicants. If further information is desired, you will hear from the advertiser direct.) Then, circle below the numbers of those companies to which you want copies of your form sent. Mail to SOFTWARE AGE, 1020 Church Street, Evanston, Illinois 60201.

☐ I do not now receive S/A. Please enter my FREE subscription.

My Specialty

Prime Experience in What Industry
☐ Technical Degree ☐ Non-Technical Degree ☐ No Degree
☐ I Have Analog/Hybrid Experience

Year Born

Page
1. AC Electronics Div. of General Motors Div. 13
2. Automobile Club of Michigan 34
4. Brunswick Corp. 29
5. Collins Radio Co. 7
6. Control Data Corp. 24 & 25
7. Defense Intelligence Agency 4
8. Honeywell Inc., Electronic Data Processing 4th Cover
9. IBM Corp. 27
10. Informatics Inc. 23
11. ITT Federal Electric Corp. 28
12. Kurt Salmon Associates 42
13. McDonnell Douglas Corp. 31
14. Mobil Oil Corp. 19
15. Montgomery Ward Data Center 30
16. National Cash Register Co. 20
17. National Cash Register Co. Electronics Div. 15
18. Pratt & Whitney Aircraft 11
19. Raytheon Co. Missile & Space Div./Bedford 2nd Cover
20. RCA 3
21. Santa Clara County Flood Control and Water District 35
22. Scientific Data Systems 40
23. Sikorsky Aircraft Co. 17
24. United Air Lines 5
25. U.S. Naval Command System Support Activity/Navocassct 32
26. U.S. Navy Scientific & Technical Intelligence Center 26
27. Univac Data Processing Div. 6
28. Univac Federal Systems Div. 32
29. Vitro Laboratories 44
30. Whirlpool 21
31. Xerox Corp. 3rd Cover

EMPLOYMENT AND SEARCH AGENCIES

32. Callahan Center for Computer Personnel 42
33. Computer Personnel Agency, Inc. 41
34. Computer Personnel Consultants, Inc. 23
35. Employment for Data Processors 26
36. Robert Half Personnel Agencies 34
37. Knorr Associates Inc. 43
38. Lawrence Personnel 41
39. Management Scientists, Inc. 22
40. McKenzie Associates, Inc. 40
41. Professional Career Centers, Inc. 36
42. RSVP Services 43
43. Sheridan Associates, Inc. 36
44. Source EDP 22

PRODUCTS AND SERVICES

Cambridge Communications Corp. 42
Drake Publications 43
Science/Systems 39

software age

1020 Church Street
Evanston, Ill., 60201