MULTI-USER OPERATING SYSTEMS

See Pages 18-51

Also in this Issue

The Unbanker by Bob Weidmann .. 40
A Timestamp For CP/M by Chris Terry 60
Speed Up Your Diablo Printer by Gary Sabot 72
Little-Ada (Part IV) by Ralph Kenyon, Jr. 76

and more

Complete Table of Contents on Page 3

*CP/M is a registered trademark of Digital Research.
Leading edge technology in hard disk systems.

Complete systems. Morrow Designs hard disk subsystems are delivered complete with hard disk, controller, cabinet, power supply, fan, cables and CP/M* 2.2 operating system.

Widest range. Morrow Designs offers the widest range of hard disk systems available from a single supplier. 5½" 8" 14" Five to over 100 megabytes of formatted hard disk storage. $2,995 to $17,980. Cost effective systems that work. And keep working.

S-100 and more. Morrow Designs hard disk systems are designed for use with the CP/M operating system. Available software packages allow our systems to run on any IEEE696/S-100 Standard system with no hardware modification. Plus, Cromemco,** North Star,** Vector Graphics, Godbout, Dynabyte, Exidy,*** IMSAI, Micro- mation, Processor Technology and California Computer Systems.

Reliable systems. Morrow Designs is committed to hard disk system reliability. Not simply with a 90-day warranty, but with a money back guarantee. If our system fails to perform to specification, send it back. We'll send back your money.

Experience. As of April, 1981, there were over fifteen hundred Morrow Designs hard disk systems successfully installed. In fact, over 200 independent systems integrators now use our hard disks to solve their mass storage problems.

Performance answers. Morrow Designs hard disk systems have been benchmarked against all other systems. None is faster under CP/M. Morrow Designs hard disks operate at 10 times the speed of a floppy disk drive. Transfer rates range from 590,000 bytes to 900,000 bytes per second. That kind of performance can become addictive.

Cost effective answers. Compare Morrow prices and performance to anything presently available for S-100 systems. You'll find Morrow's price/megabyte/performance ratio to be unmatched. Leadership in disk systems technology earned us leadership in price/performance. And that may have earned us a call from you. Circle the Reader Service Number for our full line data sheets. Can't wait? Call us at (415) 524-2101. And yes, OEM quantity prices are available.

MORROW DESIGNS
5221 Central Avenue, Richmond, CA 94804
(415) 524-2101

*CP/M is a trademark of Digital Research.
**Northstar is a trademark of North Star Computers, Inc.
***Cromemco is a trademark of Cromemco, Inc.
****Exidy is a trademark of Exidy Corporation.
MicroDaSys
68K
MiniFrame Power

features:
- Virtual Memory Management
- Motorola 68000 Processor
- 12 Mhz operation
- 32 bit computations
- 4 Billion byte addressing
- LRU demand paging
- Peripheral processor
- UNIX multi-user operating system

Only the world’s finest minicomputer offers these features in systems available TODAY. Complete single-user systems start under $10,000. And a 6 user UNIX-based 16 MB virtual system with 512K Bytes RAM and 24M Bytes hard disk costs under $25,000! Want proof? Call or write now for brochures and information on our 68K Seminars. Or send $75 for the complete technical manual set.

MicroDaSys
2811 Wilshire Blvd., Santa Monica, CA 90403
Call (213) 829-6781

TWX: 910-321-2378

A true poster of this ad is available while supply lasts.
UNIX is a trademark of Bell Laboratories.
68K MiniFrame is a trademark of MicroDaSys, Inc.
A Good-Buy Present.

Z-80A™ CPU, Floppy Disk Controller, 64K of Memory, Serial & Parallel I/O Ports ... all on a SINGLE S-100 BOARD!

Your business computer market has problems—expensive, power-hungry machines that are hard to expand and even harder to service. Advanced Micro Digital Corporation has the solution—SUPER/NET®, a TRULY single S-100 board computer that will seem like a dream to skeptical technicians and salesmen—not to mention your customers. SUPER/NET® is less expensive, less difficult to service and expand and requires less power than traditional four board S-100 systems; yet it contains all their popular features:

- IEEE S-100 Standard
- Z-80A™ CPU
- 64K Bank Select Memory
- Both 8" or 5½" Floppy Disk Controller (WD 1793 chip)
- 2 Serial & 2 Parallel I/O Ports
- Real Time Clock Interrupts
- 2K Monitor EPROM
- Extended Addressing
- Runs with CP/M™, MP/M™ and CP/NET™
- One Year Warranty

Advanced Micro Digital Corporation is dedicated to the research and development of S-100 computer technology. The maintenance of superb quality in our product line is our priority.

Now you can say “Good-Bye!” to all your old S-100 boards without giving up convenience and configurability, because now it’s all on a single S-100 computer board.

7201 Garden Grove Blvd • Suite E • Garden Grove CA 92641 • (714) 891-4004 • TELEX: 678401 tab irin
© Copyright 1981 Advanced Micro Digital Corp
Volume 3, Number 2

Staff

Sol Libes.................................... editor
Claudette Moore............................ managing editor
Chris Terry
Jon Bondy
Anthony Skjellum.......................... contributing editors
Don Libes
Fred Gohlke
David Gewertz
Randy Reitz................................. assisting editors
David Ahl.................................. publisher

Laura MacKenzie............................ production manager
Sue Gendzwil............................... art director
Diana Negri................................ assistant art director
Chris DeMilla
Carol Ann Henderson
Eugene Bicknell............................. layout
Jean Ann Vokoun
Maureen Welsh.............................. typesetting

William L. Baumann......................... operations manager
Patricia Kennelly.......................... personnel and finance
Ethel Fisher................................ bookkeeping
Elizabeth Magin........................... secretary
Frances Miskovich
Carol Vita.................................. circulation
Sue DeMark................................ customer service
Jim Zecchin................................. order processing
Jennifer Burr
Laura Gibbons.............................. retail sales
Mary McNeice.............................. office assistant
Ron Antonacci............................. shipping & receiving

Editorial correspondence is welcomed and should be sent to: Sol Libes, c/o MICROSYSTEMS, Box 1192, Mountainside, NJ 07092. Phone: (201) 522-9347.

For information on commercial advertising, write to: MICROSYSTEMS, 39 East Hanover Ave., Morris Plains, NJ 07950, or call Claudette Moore at (201) 267-4558.

MICROSYSTEMS (ISSN #0199-7955) is published bimonthly by Creative Computing, 39 East Hanover Ave., Morris Plains, NJ 07950. Second class postage paid at New York, NY 10016 and at additional mailing offices.

POSTMASTER: Send address changes to: MICROSYSTEMS, P.O. Box 789-M Morristown, NJ 07960.

Subscriptions are $16 a year (6 issues USA). To subscribe, call our toll free number: (800) 631-8112, or (201) 540-0445 in New Jersey.

Copyright © 1981 by MICROSYSTEMS--A subsidiary of Creative Computing.

*CP/M is a registered trademark of Digital Research.

MEMBER MITA

In This Issue

Multi-User Systems

A Look At MP/M-80 II.......................... 18
Kelly Smith

The OASIS Multi-User Operating System...... 28
Michael Karas

Enhancing CP/M 2.2.......................... 36
Ralph J. Jannelli

The Unbanker................................ 40
Bob Weidemann

Interfacing A Winchester Disk To MP/M..... 43
I. Gordon & K. Wacker

Digiac CT-810 Multi-User Support Module.... 50
Dennis Thovson

The CompuTime/QT Clock Boards................. 52
L. Biese & E. Iannuccillo

Dual Systems' Clock/Calendar Board........... 59
Ray Duncan

A Timestamp For CP/M........................ 60
Chris Terry

Speed Up Your Diablo Printer.................. 72
Gary Sabot

Little-Ada (Part IV).......................... 76
Ralph Kenyon, Jr.

Printer Control With CP/M And MBasic........ 82
L. Biese & E. Iannuccillo

Book Review.................................. 86
Chris Terry

Departments

Editor's Page.................................. 6
News & Views.................................. 8
Letters to the Editor......................... 12
The CP/M Bus................................ 14
Software Directory.......................... 90
New Products................................. 94
Advertiser Index............................. 96
Called “MP/M II™”

MP/M II, the multiuser extension of our CP/M operating system, answers the lucrative business community demand for small scale distributed processing. Smart OEM’s, language companies and application programmers are enthusiastically extending their offerings to satisfy this “new” market.

MP/M II Features

Record locking and file locking ensure database validity when multiple users access the same data.

With 32 megabyte file capacity, you can daisy-chain 16 state-of-the-art disk drives, at 512 megabytes each. This gives you on-line storage of 8 gigabytes!

Fast performance is a certainty. Dispatch time between users requires as little as 600 microseconds.

Encrypted passwords provide security for user files and directories.

Time and date stamps indicate your last update of an application file and either last access or file creation.

Additional features provide increased performance with exceptionally low system overhead through streamlined housekeeping plus 30 refined utilities. 400K bytes of RAM are supported. And MP/M II is upward compatible with CP/M.

Substantial Capabilities Included

Major utilities in the MP/M II package include our RMAC™ assembler, L1NK-80™ L1B-80™ run time library manager, and RDT™ debugger.

Network capability: Your product’s growth to CP/NET™ is provided in MP/M II.

To Language & Application Companies:

You’re seizing the time-perishable market advantages of MP/M II. Its five manuals help extend your products to multiuser status, with accuracy and speed. L1NK-80’s overlay facilities help produce a higher quality. L1NK-80, RMAC and RDT are powerful development aids— which don’t cost you a thing.

Compatible software accelerates your entry into the multiuser market. Most programs running under CP/M will run under MP/M II with little or no modification. Couple that with a built-in growth path, and you’re protecting the future of your business with MP/M II.

Extend CP/M® to Multiuser Systems: Extend Your Profits
To Hardware OEM's:

The profitable impact of multiuser configurations is profound. Compare your sum-of-the-boxes pricing: Multiuser vs. single user. No question about it. Your next move will be to re-forecast sales quotes and profit margins. MP/M II is the key. With the market demand you read about, the act of extending your systems to MP/M II will bear handsome rewards. Your next step is equally clear. Have our marketing group expedite the MP/M II data sheet, OEM price list and contract. Here's an even more positive approach. Why not call our marketing group as your first priority?

These 14 companies are extending 24 languages to run under MP/M II:

- Compiler Systems, Inc.
- Control-C Software, Inc.
- Digital Research
- Ellis Computing
- Laboratory Microsystems
- Micro-Ap
- Micro Focus, Inc.
- Microsoft
- MT Microsystems, Inc.
- Ryan-McFarland Corp.
- Sorcim Corporation
- SuperSoft Associates
- Tarbell Electronics
- Tinin Engineering Co.

To Dealers, Distributors, System Houses:

It takes less effort to make more money by selling multiuser systems. Selling an upgrade path is easier than moving dead-end, dedicated systems. MP/M II means hard disks, multiple printers and terminals - add-ons right through full networking environments. One sale can truly generate cash for an extended period. So call your OEM for delivery of MP/M II based systems.

Every new market has its share of easy sales. For a while, somebody will take those orders hand over fist. Your share of that business will probably depend on a single factor: Your ability to get product first.

Digital Research

Over 250,000 microcomputers use our operating systems. Over 300 OEM's and 400 independent software vendors (ISV's) use our products as the basis of thousands of applications. These are listed in our CP/M Compatible Catalog. Over 25,000 copies, per edition, generate ISV's sales. FORUM, published quarterly, and ISV seminars provide technical and business advantages.

Multiuser Demand

Multiuser demand is more than a trend. The MP/M II market is a fact of business life. It elevates the microcomputer with larger scale capabilities, and a larger dollar/sale market base. You only get one chance to make a good first (market) impression. Now is the time. We're here to help.

Call (408) 649-3896, or write:
Digital Research, P.O. Box 579, Pacific Grove, CA 93950.
Europe: Vector, Int'l., Leuven, Belgium, 32(16)202496
Far East: Microsoftware Assoc., Tokyo, Japan, 03-403-2120
by Sol Libes

EDITOR'S PAGE

In my column in the November/December 1981 issue of Microsystems, the following appeared:

As editor of Microsystems, I have on a few occasions rejected an article that I really would have liked to publish. The problem was that the article included source code that would have taken up an entire issue, and sometimes more than an entire issue. It was with deep regret that I rejected these articles.

Although the magazine has nearly doubled in size from the first issue published less than two years ago, editorial space in the magazine is still at a premium. We have only a certain number of pages allocated in each issue for articles.

Therefore, I am seriously considering omitting source code listings from the magazine when such listings are more than two or three pages long. Instead we would refer the reader to the author to obtain the source code on disk. After all, who really wants to key in a lot of code with its attendant entry problems? Personally, I certainly would be willing to pay a reasonable sum to save the time and entry problems. Also it would free up editorial space in the magazine so that we could include more articles.

Before making such a radical change, I would like to hear from Microsystems readers and authors. Are you in favor, or opposed to the change? What do you feel is a reasonable charge for the source code? Please let me hear from you.

I received almost fifty responses from readers. It is indeed gratifying to see that so many people feel strongly enough about it to sit down and write to me. I wish to thank them all. I regret that we do not have the space to print the letters in the magazine. All were most complimentary about the magazine, and about 70% of the writers indicated that they were in favor of dropping lengthy source listings from the magazine. Of the 30% who were not in favor, most seemed to be either foreign subscribers or subscribers with non-standard disk systems.

Several subscribers suggested making the programs available on the CompuServe MicroNET, via the database of the CP/M Special Interest Group (CPMIG). I must confess that although I have been aware of this service for some time, I have never tried it. With all the free RIBBS and ARPANET facilities available to me, I trust that Microsystems' readers will excuse the oversight. I do intend to investigate the CompuServe CPMIG at the earliest opportunity.

Hence, we will continue to publish shorter listings as well as listings we judge to have broad interest. All authors of software, both published and not, will be encouraged to place their software into the SIG/M public domain software library. I have selected SIG/M because I feel that it has the widest distribution; its volumes are being distributed by over a hundred clubs, CPMUG and about a dozen RIBBS systems. I am also sure that someone will copy the SIG/M volumes to CompuServe, if this is not already being done. Furthermore, SIG/M does make their software available, on special order, for such non-standard disk formats as: TRS-80 I-I1, Micropolis 5-1/4", North-Star and Apple II. I will also ask each author to make source code printouts and disk copies available at a nominal charge.

I feel that this decision will work to the advantage of all our readers.

Articles Wanted

We are seeking articles on the following topics for inclusion in Microsystems during the second half of this year. If you would like to discuss such an article with me, feel free to call me any evening or weekend at (201)522-9347, or send the article to me at: Box 1192, Mountainside, NJ 07092. We have a free author's guide available.

• Reviews of Unix-like micro operating system packages for CP/M systems.
• Reviews of CP/M system development languages for micros (e.g., Ada, C, Pascal, etc.).
• Local network implementations on MP/M and S-100 systems.
• Interfacing CP/M and S-100 systems to the IEEE-488 bus, LSI-11 bus, etc.
• S-100 construction articles (e.g., 16-bit CPU, etc.).

Microsystems Show Schedule

Microsystems is represented at most major consumer and trade shows. We saw many of you at the Consumer Electronics Show in Las Vegas and the Which Computer Show in Birmingham, England earlier this year. Coming up, we'll be at the West Coast Computer Faire, San Francisco, March 19-21; Trenton Computer Festival, April 17, 18; National Computer Conference, June 7-10, Houston and the Consumer Electronics Show, June 6-9, Chicago. See you there!
the language that is based on
the past but looks to the uses of
the future.

Now You Can Have JANUS On Your System.

JANUS is a subset of the famous ADA language developed by the
U. S. Department of Defense. This new language was designed to
ease maintenance of programs, yet be easy to program in. ADA
combines the best features of ALGOL and Pascal to produce a
powerful programming language. ADA puts an emphasis on
Modular programming and program portability.

The JANUS implementation of an ADA subset includes features
found in no other micro-processor programming language. It
features true modular programming, where the computer, rather
than the programmer, remembers which modules are being used.
JANUS also features full error walk-backs and line number error
messages. And there is much, much more.

The JANUS system comes complete — no other
programs to buy — It includes:
- Compiler
- Screen Editor
- Assembler
- Liner
- Disassembler
- Full Documentation

The JANUS package produces ROMable, Re-entrant 8080,
opimized Z80, or 8086 machine code.

You too can take a step forward into the future.
8080 or Z80, CP/M (requires 56K memory) — $300.00
8086, CP/M-86 or 86-DOS (requires 64K memory) — $400.00

JANUS is supplied on IBM formatted, single density 8” floppy
disks. Other formats are available.

P.O. BOX 1512 MADISON, WISCONSIN 53701 (608) 244-6436
Trenton Computer Festival
Here Again

On Saturday and Sunday, April 17 and 18th, several thousand computer hobbyists will gather at Trenton State College, Trenton, New Jersey for the 7th annual Trenton Computer Festival (TCF). TCF has the largest personal computer flea market in the country. Last year it covered an outdoor area of about seven acres, and over 6,000 hobbyists flocked from all across the United States to the event. Sellers lined up for the choice spots in the wee hours of the morning, long before the gates opened. The outdoor flea market featured everything from complete computer systems to tiny electronic parts... from used TRS-80, S-100 and Apple computers to disk drives and hard-to-find parts.

TCF also features an indoor commercial exhibitor area with ninety booths, and speaker and user group sessions.

TCF is operated by the Amateur Computer Group of New Jersey, the Philadelphia Area Computer Society and the Trenton State Computer Society. The funds raised help support these nonprofit organizations and their activities. For information call (609)771-2487, or write TCF-82, Trenton State College, Trenton, NJ 08625.

How Many S-100 Systems Are There?
The January 1982 issue of Interface Age contained an interesting article on business systems. Of special interest was a list of 116 business-oriented microcomputers. Forty of the systems use the S-100 bus, six use multibus, 56 use proprietary buses, three use the SS-50 bus, eleven use no system bus and one uses the DEC Q-bus.

Another notable feature of the article was a listing of systems shipped. The article listed the following S-100 manufacturers and units shipped:

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Archives Inc.</td>
<td>1,500</td>
</tr>
<tr>
<td>California Computer Systems</td>
<td>500</td>
</tr>
<tr>
<td>Compal</td>
<td>700+</td>
</tr>
<tr>
<td>Dynabyte</td>
<td>4,500+</td>
</tr>
<tr>
<td>Exidy Systems Inc.</td>
<td>15,000</td>
</tr>
<tr>
<td>Findex</td>
<td>900</td>
</tr>
<tr>
<td>IMS International</td>
<td>5,000</td>
</tr>
<tr>
<td>Ithaca InterSystems</td>
<td>2,000</td>
</tr>
<tr>
<td>Micromation Inc.</td>
<td>1,000</td>
</tr>
<tr>
<td>North Star Computers Inc.</td>
<td>28,000</td>
</tr>
<tr>
<td>Polymorphic Systems</td>
<td>8,000</td>
</tr>
<tr>
<td>TEI Inc.</td>
<td>2,500+</td>
</tr>
</tbody>
</table>

The total is 69,000 systems. This list does not include several of the largest manufacturers of S-100 systems (e.g., Cromemco, Vector Graphic, Systems Group, Godbout Electronics, Morrow Designs, MicroDaSys, AlphaMicro, Lomas Data Products, Seattle Computer, Tarbell Electronics, Tecomar, Dual Systems, Quasar Data Products, etc.).

Further, when one adds to the list the S-100 systems in operation one must include MITS, Imail, TDL, Processor Technology and the many other smaller S-100 manufacturers who are no longer with us. It therefore seems reasonable to estimate that there are now well over 300,000 S-100 systems in operation and that 40-50,000 S-100 systems are being sold annually.

CP/M-86 Goes Into Silicon

Intel has announced that it will soon provide a silicon version of the CP/M-86 operating system. The IC will operate with both the 8086 and 8088, and allow diskless operation, making it ideal for remote computers interconnected in a local distributed network sharing a large-capacity disk drive. The device is a 16K ROM plus timers and other logic, and will bear the part number 8086-E3. It should be available by mid-year.

In another development, Intel announced that it has signed OEM distribution agreements with Digital Research to provide custom versions of CP/M and MP/M for Intel's boards and systems.

SIG/M & CPMUG News

The SIG/M group has announced the release of twelve more volumes of public domain CP/M software bringing the total number of volumes up to 55. SIG/M has also released a printed 12-page catalog listing all of the software in their library and a listing of the SIG/M distribution points. The Catalog is $1.50 (U.S. first class) or $2.00 (foreign air mail; checks must be made in U.S. funds drawn on U.S. bank). Write: SIG/M, Box 97, Iselin, NJ 08830.

The CPMUG group has announced the release of ten more volumes of software, bringing their total up to 75 volumes. However, it should be noted...
INTRODUCING PERFECT WRITER.
NOW, GET THE FINEST
WORD PROCESSOR AT ANY PRICE
FOR JUST $289.00

AND GET OUR INCREDIBLE, MONEY-BACK
GUARANTEE!

That's right. If you own an Apple II, Heath/Zenith, TRS-80 model II, North Star, Osborne 1, Superbrain, Micropolis/Vector, or CP/M E: you can now afford the most advanced, yet easy-to-use, word processor on the market today.

But don't take our word for it. See for yourself.

We're so sure you'll be amazed by Perfect Writer's easy-to-use features and capabilities, that we'll let you try it for thirty days and give you your money back if you're not completely satisfied.

FEATURES AND FLEXIBILITY YOU
HAVE TO SEE TO BELIEVE.

Looking for the advanced features you'd expect to find in the most expensive word processors?

Perfect Writer has them. Like automatic formatting of letters, cut-lines, reports, memoranda, articles, books, or other types of documents.

What makes Perfect Writer unique, are the features you won't find in word processors costing many times its price. Like the incredible sophistication of Virtual Memory Architecture, that lets you edit a full-length novel as easily as you'd edit a letter.

Or a remarkable breakthrough called Spill Screen Editing™, that lets you divide the screen into two parts, each showing a different document, and transfer sections of text between the two!

And that's just the beginning. Perfect Writer offers much more:

• Automatic numbering of pages, chapters, sections, footnotes, internal page references, and automatic generation of table of contents and indexes.
• Mail merging capability allows generation of form letters and more.
• Automatic carriage return, auto-centering, tab setting, and automatic placement of footnotes.
• Quick and easy cursor commands.
• Easy deleting and inserting procedures.
• Safe and convenient storage of materials.
• Searches for and replaces words and phrases in a document, including near misses.
• Full range of printing options, including right margin justification, micro-spacing, super and subscript, italics, and bold face.
• And lots more.

TRY THESE OTHER PERFECT SOFTWARE PRODUCTS
(THE SAME MONEY BACK GUARANTEE APPLIES).

Perfect Speller™: The best automatic proofreader available! Perfect Speller uses its 20,000 word dictionary to proofread your document and catch all your spelling mistakes. (Dictionary size limited only by your system's storage capacity.) You can add words to the dictionary, build separate dictionaries, change the dictionary, and more $189.00 guaranteed.

Perfect Mailer™: It's more than a mail merging or form maintenance system! Perfect Mailer can organize and sort your correspondence, develop sophisticated mailing systems, and keep track of your correspondence. Don't miss this remarkable new software innovation! $189.00 guaranteed.

Perfect Sort™: Here's a sort merge extract program that operates on all kinds of data! Records can be fixed or variable, with a variety of variable length fields. Files can be examined using comparison and logical operators. Want speed and efficiency? You've got to have Perfect Sort! $189.00 guaranteed.

© 1982 Computer Services Corporation of America
Common Cents

FORECASTER

With your computer, you can forecast the stock market like the Wall Street experts. FORECASTER -- a mutual and money market fund tracker, monitors the stock market and helps you make timely decisions to achieve a high and safe growth of your investment dollars. Our program tracks, estimates and predicts future movements in the stock market and selected mutual funds based on an extensive data base.

- AVOID CONFLATION
- ACHIEVE HIGH YIELD
- PRESERVE CAPITAL
- LOW RISK
- TOP PERFORMANCE
- TAKES LESS THAN 10 MINUTES FOR FORECAST

FORECASTER is written in simple, clear language. No advanced knowledge of mathematics, computer programming, or investing experience is required. Send $10.00 for programming report and user's manual, or $75.00 for complete software package. Please specify Apple II+ (Applesoft), CP/M Basic, or TRS 80 Level II.

Add $2.00 for postage and handling.

New residents also add 4% tax.

 META SOFTWARE ENGINEERING
 P.O. Box 18056
 Albuquerque, NM 87115

According to ARBAGATOR

ARBAGATOR

ARBAGATOR puts teeth into your inventory control program and takes the bite out of the cost.

ARBAGATOR: the electronic cash register that interfaces with virtually any computer on the market and doesn't cost more than your system.

ARBAGATOR Register:
- Do real time point of sale inventory control.
- RS/232 interface at 300 baud.
- Standard asynchronous ASCII code.
- Time tested LSI circuitry.
- $1295 suggested retail—dealer pricing available.

News & Views, continued...

that their volumes 55 through 75 are reissues of the old SIG/M volumes 1 through 20. Hence, if you already have the SIG/M disks then you also have the CPMUG volumes 55-75. CPMUG is distributing the SIG/M disks in order to give them wider distribution. Unfortunately, CPMUG has put their own volume numbers on the disks, and has not clearly identified that they are the same as the original SIG/M disks.

Cromemco Releases 68000 Products

Cromemco Inc., of Mountain View CA, will soon start shipping its 68000 products which I first announced in the Sep/Oct 1981 issue of Microsystems. There are three S-100 boards: The DPU dual processor board containing both 68000 and Z80 microprocessors ($995), the MCU memory controller board ($495) and the 256MSU 256K RAM board ($1995). A 512K RAM card is in the works.

The DPU can execute Z80 and 68000 instructions interchangeably, so that until a meaningful supply of 68000 software is available you can run Z80 software. Each CMU can serve as a memory manager for up to eight RAM cards. The 256MSU uses dynamic RAM chips and includes error detection, correction and logging capability that is transparent to the user. The user can consult a file to determine which RAM chips might be a little "soft" and need replacement.

Compatibility with REFORMATTER

Exchange data files with most IBM and DEC equipment through REFORMATTER disk utilities. With REFORMATTER, you can read and write IBM 3740 and DEC RT-11 formatted diskettes on your CP/M system. Programs feature bi-directional data transfer and full directory manipulation. ASCII/EBCDIC conversion provided with CP/M-IBM.

Each program $195.00 from stock. Specify CP/M-IBM or CP/M-DEC when ordering.

OASIS-16*: the operating system designed for business. Not just a hobby or development system rewritten for business use, it is the natural evolution of OASIS**: the multi-user system with a world-wide reputation as the standard for those who take business seriously.

And here's more good news: there's no waiting for application software because what now runs on OASIS is upward compatible to run on OASIS-16. That means plenty of proven software, available immediately.

OASIS-16 puts it all in one package. For manufacturers: one source for operating systems, languages, tools; custom implementation to maximize hardware potential; international support & training; flexible licensing agreements. For software developers: complete portability keeps application software machine independent; integrated tool set makes development easier, faster. For end-users: user-friendliness; data security; portability simplifies system expansion; plus an extensive application software library.

Computing professionals have long told us 'OASIS makes micros run like minis'—with OASIS-16, it's truer than ever. And that's strictly good business.

*For 8086, 68000, Z8000, LSI-11, & others.
**For Z80.

THE OASIS-16 PACKAGE CONTAINS: Operating System; EXEC JCL; Language: Editor: Script; Output Text Formatter; Assembler; Linkage Editor: Diagnostic & Conversion Utilities: BASIC Interpreter & Compiler; C Compiler.

PHASE ONE SYSTEMS, INC.
7700 Edgewater Drive, Suite 830
Oakland, CA 94621-3051
Telephone 415/652-8888 TWX 910-366-7139

I'm serious about my business—please send me quick:

☐ OASIS-16 Manual, $75
☐ OASIS Manual, $60
☐ Free Application Software Directory and put me on your mailing list.

(Add $3 for shipping; California residents add sales tax.)

Name ___________________________
St. (No Box#) _____________________
City __________________ State ________ Zip ______

☐ Check enclosed ☐ UPS C.O.D.
☐ VISA ☐ Mastercharge

Card No. ______________ Exp. date __________

Signature __________________________
LETTERS TO THE EDITOR

DMA Operations With SD Systems?
Dear Editor:
I certainly have enjoyed *Microsystems* since the first issue. Thanks for starting a magazine for the S-100 user. I have a few questions to ask you—I hope you can help me with them.

I have a complete SD Systems set-up, consisting of the SBC200, Expandoram II, Versafloppy II, and VDB8024. I use the SDOS control program and SD Systems DDBIOS Prom. My problem is that while the SD Systems literature indicates that DMA operation is supported, the SDOS or the BIOS doesn't implement it.

Can you tell me of any source of information available and/or software support that would allow me to implement DMA using these boards?

I also have a suggestion for three articles I feel would be appropriate for *Microsystems* readers like myself. (I am a home computer enthusiast.)

1. An article on SDOS similar to those *Microsystems* often runs on CP/M.
2. An article on implementing DMA using the SD Systems boards and SDOS as above (if it can be done).
3. Finally, an article on how to use the Godbout CPU-Z to replace an existing Z-80 board, so as to be able to address more than 64K of memory. This article would explain the programming techniques required to use the extended 24-bit addresses, and how to combine existing memory with additional memory for more than 64K.

Thank you for any information you may be able to provide me.

R.W. Watts
18738 LeMarsh St.
Northridge, CA

Information On Jade Big-Z CPU Card
Dear Editor:
I notice that you are planning language issues. Languages are important, but *Microsystems* could well leave them to BYTE and concentrate on S-100/CP/M with more hardware articles. Don't emulate BYTE, except in volume!

I have a Jade Big-Z CPU board which I can't get to operate properly. The symptoms are that on RESET it displays the initial message of my 2708 monitor, and then takes off into the unknown. It will occasionally go into the monitor properly, functioning properly until another RESET. It seems to be connected with JP(x) with which the print routine ends. Do you know anyone who has had trouble with this board with whom I might correspond? Incidentally, the monitor itself might be of interest to *Microsystems* at a later date. The Big-Z board was bought "assembled and tested" but has never worked; initially it was found to have an i.c. with a bent-under pin and did not work at all. It now goes occasionally. Letters to Jade have produced no reply as of yet. I would appreciate feedback from any *Microsystems* readers who could shed some light on this problem.

P.F. Ridler
Professor/Computer Science
University of Zimbabue
P.O. Box M.P. 167
Mount Pleasant
Salisbury, Zimbabue

More Coverage Of Disk-Related Problems
Dear Editor:
I own a Dynabyte DB8/2 (quad 5") and have been using it for about two years, mostly for word processing (Word Star) and keyword retrieval (Information Master, Island Cybernetics). Recently, I bought Microsoft Basic and finally am beginning to learn it, but still am a member of a minority group, understanding little about computers or language but using my own micro (I was one of the people noted in the recent Writers Digest pieces, dealing with the uses of micros for writing).

What I would like to see is a piece in your journal about disk drives, diskettes and errors; I am certain it would become a much sought about piece and be reprinted. I would like to know about the problems generated within drives and by various kinds of external things, e.g., whether poorly handled diskettes can not only give error messages but transmit them, how to analyze and deal with sources of errors. Something with charts would be much appreciated. Such a piece could probably become an expanded separate publication. Most people I have spoken to around here have had inscrutable problems with this area.

Another disk related problem deals with how individuals with, for example, 5" quad densities can use software available on other types.

Ben Singer
London, Canada
A new and powerful computer has been born... the System 83. The versatile UNIX* operating system pilots the System 83's raw power through a myriad of software such as "C", FORTRAN, PASCAL, BASIC, COBOL, and even Networking. Step into a bold new frontier with more power than you ever dreamed possible.

FEATURES:

- UNIX V7 configured by UNISOFT**
- Full IEEE 696/S-100 Compatibility
- MC68000 8Mhz Processor
- 32-Bit Data Operations with 32-Bit Internal Registers
- 16-Bit Data Transfer Operations
- Memory Management Allows Concurrent Use of Mapped and Non-mapped Address space
- Rugged Industrial Grade Components at all Levels
- 16 Mb of Main Memory Directly Addressable
- 7 Vectored Interrupt Levels
- 192 Device-supplied Interrupts
- 256 Kb of RAM with Parity Per Board Slot
- Up to 3.2 Mb of RAM Per Cabinet

* UNIX is a trademark of Bell Laboratories and is supported on the DUAL System 83 by UNISOFT
**UNISOFT is a trademark of UNISOFT Corporation of Berkeley, CA.
In this installment of "The CP/M Bus," I will discuss the use of the CP/M SUBMIT utility. A public domain SUBMIT facility with enhanced features will be discussed in the next issue.

The CP/M SUBMIT Facility

SUBMIT is a genuinely useful, but often ignored CP/M feature. The SUBMIT command causes CP/M to take command lines from a specially prepared input file instead of from the console. This allows command line sequences to be stored in a file and executed at will via SUBMIT. Not only does this eliminate the tedium of re-typing elaborate command line sequences, but it allows the system to execute a series of tasks without operator intervention.

Let's illustrate a basic use for SUBMIT with an example. Suppose several assemblies need to be done, followed by several file copies. For example:

```
ASM FIRST
ASM SECOND
ASM THIRD
PIP B:=A:*.HEX
PIP B:=A:*.PRN
```

This command line sequence causes the files FIRST, SECOND, and THIRD to be assembled after which all the .HEX and .PRN files on the A: disk are copied to the B: disk. If this is a frequently performed (and involved) operation, SUBMIT should be used. In order to do so, the above lines would be placed in a file of an appropriate name with the file extent .SUB (e.g. ASSEMBL.SUB). Then, with the A: disk as the default disk, the following command would be executed to begin the batch process:

```
SUBMIT ASSEMBL
```

SUBMIT will read the file ASSEMBL.SUB and write a specially formatted file called $$$.SUB. CP/M looks for this file on the A: drive after each warm and cold boot, and begins a batch process whenever the file is present. After SUBMIT completes its work, it will cause a warm boot and CP/M will produce the familiar A> prompt. However, input will now come from $$$.SUB, and command lines will be echoed on the console as if typed by the user. Typing any key while the CCP is handling SUBMIT input will cause termination of the batch process.

This command line sequence causes the files FIRST, SECOND, and THIRD to be assembled after which all the .HEX and .PRN files on the A: disk are copied to the B: disk. If this is a frequently performed (and involved) operation, SUBMIT should be used. In order to do so, the above lines would be placed in a file of an appropriate name with the file extent .SUB (e.g. ASSEMBL.SUB). Then, with the A: disk as the default disk, the following command would be executed to begin the batch process:

```
SUBMIT ASSEMBL
```

The file $$$.SUB is an internal format file with one command line per record. It cannot be produced with a standard CP/M editor; SUBMIT is responsible for this operation. A $$$.SUB file with read-only (R/O) attributes should never be created, since this will place the CCP in an infinite loop in which it continues to re-execute the job in $$$.SUB.

Parameter Substitution

In many cases, SUBMIT files will be general purpose, or at least contain some arguments which will be subject to change from execution to execution. For example, imagine that we want a batch process which will compile a Fortran-80 source file and then link it with the linkage editor. We will want to use this for various
source programs so it will have to use parameter substitution as follows:

```
F80 =$1  # compile source program
L80 $1, FORLIB/S/$1/N/E  # link object modules
```

The dollar-sign ($) is a signal to SUBMIT that a formal parameter is being specified. Here we use one formal parameter, $1. The formal parameters are replaced by values at the time SUBMIT is executed. If "N" parameters are used in a given SUBMIT file, then execution proceeds as follows:

```
SUBMIT SUB-FILE P1 P2 P3 ... PN
```

where P1...PN replace the formal parameters $1 ... $N. Therefore, if the above Fortran batch process is in a file FORT.SUB, we could compile and link the Fortran program TEST.FOR as follows:

```
SUBMIT FORT TEST
```

Here the formal parameter $1 is replaced by TEST, and the actual SUBMIT job run is:

```
F80 =TEST  # compile source program
L80 TEST, FORLIB/S, TEST/N/E  # link object modules
```

Finally, to place a literal "$" character in a SUBMIT file, the sequence $$ is used.

Control Characters

It is sometimes necessary to have control characters on command lines within a SUBMIT file. SUBMIT recognizes this need by performing substitutions of the form `"<CHAR>` by the control character represented by this two letter ASCII sequence.

In my version of CP/M 2.2 (for Micropolis, by Lifeboat Associates), the SUBMIT program has a bug which made it impossible to use the control character replacement feature. For some reason, this version expected a lower case character instead of an upper case character when specifying the sequence `"<CHAR>`. This is corrected by changing location 442H of a memory image from 61H to 41H using DDT or a similar facility (e.g., ZDM). Since SUBMIT is a standard feature of CP/M, the bug may well be present in other CP/M 2.2 distributions as well.

Use Of The 'Zero Program’

In some instances, batch processes will include repetitious execution of the same transient command (e.g., PIP). In cases where these transients are re-executable, the zero program technique may be employed to save disk access time. The zero program is a null length .COM file which allows the previously run program to be run again. The concept of the zero program was introduced in my article "GO: A Utility Program Under CP/M" (Dr. Dobb’s Journal #41) and is also described in the CP/M Bus column found in Microsystems, Vol. 2, No. 2. It should be noted that some programs do not re-execute correctly. However, standard utilities including PIP do work correctly when re-executed. Thus, we could imagine performing several copy operations within a batch process as follows:

```
: PIP SUB 11/81
: PIP B:="A:"*ASM  # copy all .ASM files
: B:="A:"*BAS  # copy all .BAS files (B.COM is the zero program)
: A:="C:123:"*.*  # copy some files from C: to A:
: ...  # etc.
: STAT A;  # status of A: drive
: @ B;  # and B: drive
:  
: done
```

The TELERAM S-100 Bubble Memory System

A whole lot more... at 25% less

Now there is a bubble memory system that is fully compatible with IEEE S100. And it's available from Teleram at 25% less cost compared to other bubble memory systems currently available--plus it requires only 25% of the physical space. Each board has a capacity of 128K or 256K bytes of non-volatile storage and can be daisy chained to provide one megabyte.

FEATURES:

- DATA IS RETAINED AFTER POWER OFF
- 40 MILLISECOND ACCESS TIME
- CORRECTION FOR UP TO 5 BIT BURST ERRORS
- CP/M COMPATIBLE
- UNAFFECTED BY DUST
- VERY HIGH RELIABILITY
- OPERATES IN VERY SHARED ENVIRONMENTS
- COMPLETELY MANUFACTURED IN THE U.S.
- IDEALLY SUITED FOR PORTABLE AND PROCESS CONTROL APPLICATIONS

The Teleram S-100 Bubble Memory System can provide the opportunity for new design concepts.

For a free data sheet call or write:

TELERAM COMMUNICATIONS CORPORATION,
2 CORPORATE PARK DRIVE,
WHITE PLAINS, N.Y. 10604, (914) 694-9270

TELERAM COMMUNICATIONS CORPORATION

2 Corporate Park Drive
White Plains, NY 10604
(914) 694-9270 Telex 646658

TELERAM COMMUNICATIONS CORPORATION

2 Corporate Park Drive
White Plains, NY 10604
(914) 694-9270 Telex 646658
The Q/C compiler includes the full source code for a major extension to Ron Cain's Small-C:
- For, switch/case, do-while, goto
- Assignment operators
- Improved code generation
- Command line arguments (argv and argc)
- Conditional and comma operators
- I/O redirection
- I/O library written in C
- Generates code for M80 (or ASM or MAC)

Q/C does not include float, double, long, unsigned or short; static externals; initializers; sizeof; typedef; casts; structures and unions; multidimensional arrays; #ifdef, and will selectively search “source library” files for

Small-C fans that want the source code to an extended compiler.

Systems implemented developed independently. Jim Colvin of Quality Computer

get the full source code and a running compiler with sample

(Requires

The

CP/M™, DESPOOL™, MAC™ are registered trademarks of Digital Research.

extension to Ron Cain's Small-C:

CBASIC™ is a registered trademark of Compiler Systems.

Ask your local computer store for our guide or send

P.S. Over

Research.

have been recommended by Digital

been recommended by Digital

Tired of fanning through your CP/M manuals or writing notes that remind you of the commands, functions and error codes? Well it’s about time you ordered our CP/M Summary Guide! Spiral bound and handy to hold, our guide is a 50 page booklet summarizing the features of CP/M (Ver. 1.4 & 2.x) and 2 totally alphabetical listings of the commands, functions, statements and error codes of MICROSOFT BASIC-80 Ver. 5.0 and CBASIC™-2. Areas summarized are in table form and include all direct and transient commands plus MAC™, DESPOOL™ and TEx™. Our booklet is a much needed supplement to any of the literature currently available on CP/M and has been recommended by Digital Research.

P.S. Over 4000 users can’t be wrong!

Ask your local computer store for our guide or send $6.95 plus $1.00 (postage and handling) to:

THE ROSETTA STONE, P.O. BOX 35, GLASTONBURY, CT
06035 (203)633-8490

Name ____________________________ Street ____________________________

City ______________________ State ______ Zip _______

CP/M™, DESPOOL™, MAC™ are registered trademarks of Digital Research. CBASIC™ is a registered trademark of Compiler Systems.

Source Code!

While STAT 1.4 works correctly when re-executed, the STAT usr: feature of STAT 2.x does not work correctly upon re-execution. This is only a minor inconvenience.

Comments In SUBMIT Files

Comments are possible in SUBMIT files and are often useful for the sake of documentation. Both the semi-colon and colon characters initiate comments. However, as described by D. E. Cortesi in “Doctor Dobb’s Clinic” (Dr. Dobb’s Journal #57, p. 40), Digital Research supports the colon (:) character as the legitimate comment delimiter. Comments are used in several of the examples presented in this column. Here is an additional example:

```
file: DIR.SUB created 1/1/81
purpose: list directory of current
disk. List all .COM, .REL, .OVR files
present
DIR *.COM: list command files
DIR *.REL: list relocatable object modules
DIR *.OVR: list overlay files
done
```

Some commands will tolerate comments at the end of their command line (e.g., DIR). However, it is generally best to keep comments on separate lines. Note also that comments delimited by "#" characters in various examples are strictly explanatory and would not actually be included in a SUBMIT file.

Chaining SUBMIT Jobs

SUBMIT jobs may be chained in a limited fashion. The last command of any SUBMIT job may be another SUBMIT specification. Such an operation would be done as follows:

```
SUBMIT NEW-JOB <PARAMETER-LIST> # new submit job
```

Note that SUBMIT deletes any current $$$SUB, so SUBMIT jobs may not be nested but only chained as shown here. The public domain program, Supersub, which will be discussed in the next issue, allows chaining of SUBMIT jobs.

The XSUB Facility

It is often necessary to run interactive programs in a batch processing environment. This is not easily done with CP/M 1.4 and its predecessors. However, CP/M2 provides a new utility, called XSUB, which makes this possible to some extent. XSUB is applicable to programs which use the BDOS function 10 (line input) for their input operations. When used, it will take input from the SUBMIT file instead of the console as is normally done. Imagine that we have the following SUBMIT file:

```
file: EDIT.SUB
enter line of input to the file
XSUB: provide for input re-direction
ED $1: # edit file
$2: insert second argument into file
E: # edit exit command...
done: # etc.
```

The XSUB at the beginning alters the SUBMIT environment so that subsequent calls to BDOS function 10 will be provided with input directly from EDIT.SUB.

Conclusion

In this installment, we have discussed the features of the SUBMIT utility program. With proper use of SUBMIT, powerful and convenient batch processing may be performed in the CP/M environment.
We have acquired the rights to all TDL software ($ hardware). TDL software has long held the reputation of being the best in the industry. Computer Design Labs will continue to maintain, evolve and add to this superior line of quality software.

— Carl Galelli and Roger Amidon, owners.
A Look At MP/M-80 II
by Kelly Smith

Getting It Going
Having already "brought-up" MP/M versions 1.0 and 1.1, I was surprised at how little effort was needed for the required changes to my existing software for the Loader Basic Input/Output System (LDRBIOS) and the system dependent Resident Extended Input/Output System (RESXIOS). The only changes required were to edit out the RESXIOS initial jump vector for COLDSTART, and in its place insert a JMP COMMONBASE (to terminate a running process). The routine COMMONBASE is nothing more than:

```assembly
COMMONBASE: JMP COLDSTART
; SWTUSER: JMP $-$
; SWTSYS: JMP $-$
; PDISP: JMP $-$
; XDOS: JMP $-$
; SYSDAT: DW
; COLDSTART: WBOOT:
; MVIC,O; terminate process
JMP XDOS
```

The changes to the LDRBIOS were more for cosmetic effect at sign-on time (and also a "bug"!), than changes actually required for upgrade to MP/M-80 II from the two earlier releases. The sign-on messages were for user familiarity only, to let the user know from what and where he or she had control of the system. The user would see:

```
MP/M-Net (tm), System #1
>> Multi-user Software Access <<
[USER 1]
```

Enter USER 0<cr>, if you require access to other MP/M facilities.

MP/M is a registered trademark of Digital Research

Booting MP/M-80 Version II now...

This demonstrates a customized sign-on message that can be sent to each user (in this case, USER 1) prior to actually booting MP/M into the system. This is easily added to your LDRBIOS by modifying the initial 'JMP 322' at location 100H of MPMLDR.COM to the base of your LDRBIOS (1700H), outputting the data to each console in the system, and then returning control to the MPMLDR by THEN DOING the 'JMP 322'.

This is a nice way to let each user know that he or she is loved, and that the system is "coming up." If you do not do this, there is an agonizing pause as the MPMLDR brings in the system.

MP/M-80 II System Generation
Once you have produced your RESXIOS.SPR file (page relocatable RESXIOS) with RMAC and LINK, you are ready to generate your MP/M. This is perhaps the easiest part of the whole process of getting MP/M up and running. The GENSYS program guides you through the entire configuration of your system, including default values if you care to accept them, with just a simple carriage return. For an idea of how it works refer to Figure 1. Figure 1A maps the MP/M memory system as generated by the co-efforts of GENHYS and myself.

As you can see, the Common Memory area takes up from 13 to 16K, to be shared by all users. The Banked Memory (Bank 0) area takes 48 to 51K bytes. These "sizes" are totally dependent upon the number of extras that you want added to your system at GENSYS time. If you can add bank-switched memory, do so. Keep in mind however, that even if you add more memory no one user can access more than 48K. This can be a very limiting system for certain applications requiring...
We specialize in CP/M S-100 Software and Hardware integration. Our engineers are factory trained experts in CompuPro* and Morrow Designs products. Available packages include CompuPro Disk 1 DMA floppy controller configured with Morrow Designs hard disks, CP/M 86 with hard disks, WARP DRIVE™ memory disk, and a host of terminal, printer and modem configurations.

ATTENTION IBM SOFTWARE DEVELOPERS! G&G systems can read and write IBM PERSONAL COMPUTER 5¼-inch diskettes! Our Dual Processor based system is ideal for developing 8088 software. IMAGINE: On 8-inch floppy or hard disks you can use the 8085 to run a super editor (like WORDSTAR*), or to run an 8080 to 8088 source code translator (like TRANS86 or XLT86). Then use the 8088 to assemble, execute, and debug your software. Transfer it to 5¼ and you're in business!

SAMPLE

COMPUPRO BASED CONFIGURATION

Software Development $6550

HARDWARE
6 MHz 6065/6068 Dual Processor CPU
128K Fast Low Power Static RAM
Real-Time Clock with Battery Backup, Interrupt Controller, 3 Timers, and 4MHz 9511 Type Math Processor
3 Serial I/O Ports or 2 Serial and 3 Parallel I/O Ports
Dual Density DMA Floppy Disk Controller
Desktop or Rack Mount Enclosure with CV Power Supply
2 8-inch Shugart Floppy Disk Drives (1.2 Mbytes)

SOFTWARE
CP/M 2.2 and CP/M 86 from Digital Research
WORDSTAR word processor from MicroPro
ACT80, ACT86, and TRANS86 from Sorcim
XLT86 optimizing CP/M 80 to CP/M 86 translator from Digital Research.

Scientific, Business and Word Processing Systems also available.

ADDITIONAL OPTIONS

HARDWARE
QUME D8S—double sided 8-inch floppy disk drives
QUME DTS—double sided 5¼-inch floppy disk drives
TELEVIDEO terminals
DIABLO, EPSON and TEXAS INSTRUMENTS printers
300 to 1200 baud modems for telecommunications
COMPUPRO—complete line of CompuPro hardware
MORROW DESIGNS hard disk drives, 10, 20, and 26 megabytes
ATTRACTIVE WOODEN CUBE for rack mount equipment

SOFTWARE
MICROSOFT FORTRAN with 9511 support routines
MICROSOFT BASIC, PASCAL and COBOL
SUPERCLAC financial planning and forecasting
ACT80 and ACT86—macro cross assemblers for 8080, 8085, 290, 6502, 8086, and 8088
TRANS86—converts 8080/8085/Z80 source into 8086/8088 source
dBASE II—data base manager from Ashton Tate
XLT86—from Digital Research, translates and optimizes 8080 source into 8086/8088 source. Converts CP/M 2.2 BDOS calls to CP/M 86 calls.
Complete MicroPro line—WORDSTAR, SPELLSTAR etc.

Other Hardware and software also available.

All these systems are FAST, and you can run them even faster by adding a WARP DRIVE™. WARP DRIVE™ is extended address RAM memory configured with CP/M to look like a disk drive. But it runs over 35 times faster!

WARRANTY

All CompuPro components covered under CSC, 2-year phone exchange warranty.

G&G ENGINEERING 13708 Doolittle Drive, San Leandro, California 94577 (415) 895-0798

*CompuPro is a trademark of Godbout Electronics
†CP/M is a trademark of Digital Research
‡SUPERCLAC is a trademark of Sorcim
§WORDSTAR is a trademark of MicroPro

G&G ENGINEERING is an authorized CompuPro Systems Center.
Figure 1.

AD>gensym(y(c(r)) <= an compile MP/M-80 II GENSYM.COM file

MP/M II V2.0 System Generation
Copyright (C) 1981, Digital Research

Default entries are shown in (paren). Default base is Hex, precede entry with $ for decimal.

Use SYSTEM.DAT for defaults (Y) ? <cr> (--- no, want to "roll-my-own"
Top page of operating system (FF) ? 7 2<cr> (--- I have 60K to work with
Number of Terminals (N) ? 2<cr> (--- only two terminals
Number of printers (P) ? 1<cr> (--- if this was Mike Karam, it would be 4
Breakpoint RST (0E) ? 7 2<cr> (--- let's use RST 5 instead
Add system call user stacks (Y) ? <cr> (--- definitely, to run '.COM' files
Temporary file drive (A) ? 7 2<cr> (--- this is where SUMMIT will be
Maximum locked records/processes (R) ? 16<cr> (--- reasonable value
Total open files/system (#3) ? <cr> (--- sure, why not?

Bank switched memory (Y) ? n<cr> (--- just a meager 60K system... sob!
Number of user memory segments (#3) ? 2<cr> (--- three is company, too
Accept new system data page entries (Y) ? y<cr> (--- acceptable locations!

Number of Printers (#1) ? <cr> (--- what about yours?
Total locked records/system (#3) ? <cr> (--- maximum things going on
Maximum locked records/process (#16) ? <cr>

Copyright 1981, Digital Research
Add system call user stacks (Y) ? <cr> (--- definitely, to run '.COM' files
Breakpoint RST (06) ? OS<cr> (--- let's use RST 5 instead
Total open files/system (132)

Enter memory segment table:

Memseg Base,size,attrib (OO,CO,OO)

MEMSYS II Sys

ABORT RSP BDOOH OlOOH

MP/M II Sys 6COOH 9400H

MP/M II Loader
Copyright (C) 1981, Digital Research

RDISK.DAT 7COOH 0100H

MP/M II V2.0 Review, continued...

 lots of memory (such as UCSD Pascal, which requires 56K to compile programs)—so keep your applications memory requirements in mind before deciding to use MP/M, or you may be sorely disappointed to find out that it just will not fit!

Well, the moment is almost at hand to see if it actually works. I took the option of SYSGENing a normal CP/M 2.2 diskette, which autoloaded the MPMMLDR.COM file at cold boot time. This allowed me the ability to debug the MP/M loader with the Dynamic Debugging Tool (DDT) under control of CP/M, if I ran into trouble. So, insert the diskette in the A: drive, hit reset, and watch the lights blink on the front of my old IMSAI 8080 system. Yes, all seems to be ready—I set this MP/M system up so that a remote caller initiates the system boot when my modem "hears" ring-detect. So, time to give it a call. I fire-up my Osborne-I with a communications program I wrote called "RCPMLINK" and... I get the customized sign-on message, then the booting message, and...amazing! Here comes the MP/M II Loader (Figure 2), just as Digital Research promised. I am astounded; this is the first time that I had any version of MP/M come up the first try. I then proceeded to set the time of day clock using the TOD.PRL program.

Figure 2.

MP/M II V2.0 Loader
Copyright (C) 1981, Digital Research

Mem of consoles 2
Breakpoint RST # = 5

Memory Segment Table:

SYSTEM DAT EFD0H 0100H

MP/M system, for 'round one'.

MP/M II Sys 6COOH 9400H

MP/M II Loader
Z-80 and 8086 FORTH
FORTH APPLICATION DEVELOPMENT systems for Z-80 and 8086 microcomputers — including interpreter/compiler with virtual memory management, line editor, screen editor, assembler, decompiler, utilities, demonstration programs and 100 page user manual. CP/M (tm) compatible random access disk files used for screen storage, extensions provided for access to all CP/M functions.

Z-80 FORTH... $50.00
Z-80 FORTH with software floating point arithmetic ... $150.00
Z-80 FORTH with AMD 9511 support routines ... $150.00
8086 FORTH... $100.00
8086 FORTH with software floating point arithmetic ... $200.00
8086 FORTH with AMD 9511 support routines ... $200.00

FORTH METACOMPILER system allows you to expand/modify the FORTH runtime system, recompile on a host computer for a different target computer, generate headerless code, generate ROMable code with initialized variables. Supports forward referencing to any word or label. Produces load map, list of unresolved symbols, and executable image in RAM or disk file.

Z-80 host: Z-80 and 8080 targets ... $200.00
Z-80 host: Z-80 8080, and 8086 targets ... $300.00
8086 host: Z-80, 8080, and 8086 targets ... $300.00

System requirements: Z-80 microcomputer with 48 kbytes RAM and Digital Research CP/M
2.2 or M P/M 1.1 operating system; 8086/8088 microcomputer with 64 kbytes RAM and Digital Research CP/M-86 operating system.

All software distributed on eight inch single density soft sectored diskettes. Prices include shipping by first class mail or UPS within USA and Canada. California residents add appropriate sales tax. Purchase orders accepted at our discretion.

Laboratory Microsystems
4147 Beethoven Street
Los Angeles, CA 90066
(213) 390-9292

We went you to try our INFO-80® Application Development System and have reduced its price to $395 (regularly $1,040). If you are not satisfied, return it in 30 days for a complete refund.

The INFO-80® System provides basic building blocks to implement your unique applications easily and rapidly. INFO-80® includes building blocks for file definition, data entry and editing, file sorting and merging, record access and selection, report and letter writing, file format conversion and menu driven job control. You can include your own custom programs written in any CP/M® based language. The building blocks and custom programs can be linked together into 'jobs' to run under menu control.

Each building block is made up of three programs: (1) an interactive task definition program to generate or revise a disk file containing the task description, (2) a documentation program to provide printed task documentation, and (3) a task execution program to carry out the task.

The INFO-80® programs require a CP/M® based computer with 64K of memory, at least 500K of disk storage and the Microsoft BASIC interpreter (V 6.x).

A single CPU license is $395. Dealer and multi CPU licensing are also available. For more information, call our software HOT LINE.

CP/M® is a trademark of Digital Research, Inc. INFO-80® is a trademark of The Software Store, Ltd.

Shipping $4 USA/$10 Foreign
Prepaid, COD, VISA or MASTERCARD orders accepted
Complete catalog available

The Software Store
706 Chippewa Square • Marquette MI 49855 • Phone: 906/228-7622

JAN/FEB 1982 21
MP/M-80 II Review, continued...

Here is a sample directory display (Figure 3), first from USER 1's directory, then USER 0's directory. Notice the "DAYFILE" display at the user invocation of the DIR command.

An impressive array of programs are available, but notice all the .PRL that have some very familiar CP/M names such as REN, ERA, DIR and TYPE. They are the same commands you have been using with one big difference—they are disk resident, not "built-in" commands to MP/M, and they take up valuable disk space (especially valuable if you are using 8" single density floppys). Let's face it, MP/M was not meant to run on 8" SD floppy's. Let's face it, MP/M was not meant to run on 8" SD floppy's (look at the SDIR display further on this article, for the amount of remaining disk space). However, they will do for an example until I get around to installing it on my 5" disk and have MP/M run it won't.

New Utilities And Features: SDIR, SHOW, SET With HELP Displays

One nice, new feature added to release 2.0 for MP/M-80 is that some of the system utilities have built-in HELP summaries that give examples of various ways to invoke them. I wonder, however, if it might have made sense to have the HELP portions of the files as overlays that could be deleted from the directory (and take up less memory and disk) after the USER(s) were familiar with all of the command options. Refer to Figure 4 for an example.

The utility SDIR needs 18K of the system to be able to run. I was forced to GENSYSing a 20K area for USER 0, just to see what it did, leaving only 7K for USER 1. It would have been nice to allow an equal amount of memory allocation for each user...oh well, on with the show!

After re-GENSYSing for a 20K USER 0 memory allocation, I am able to get SDIR to run. Let's try SDIR with HELP first (Figure 5).

Refer to the directory (Figure 6) to find the next file of interest. SHOW,
which is also an upgrade of the CP/M STAT utility. SHOW's HELP options are displayed in Figure 7.

So let's try a few. To see what happens look at Figure 7A.

Finally, the SET utility (Figure 8) contains some of the features of CP/M's STAT utility for setting various file or disk attributes, but goes beyond the simple $R/O or $R/W and $SYS and $DIR attributes of STAT.

It's worth noting that the MP/M II User's Guide describes a disk attribute control called NAME (see Section 7.4.5 Naming Disks, page 63)..."SET [NAME = labelname.type] does not appear in the HELP display and, if attempted, gives the following response:

```
09:48:49 A:SET .PRL
ERROR: 2
Invalid Value, Use ON or OFF
```

It is curious that Digital Research describes this feature in the SET documentation, while it does not appear to work—is this a "bug"?

Next try the time-stamping features that were described in the HELP command (Figure 9.) Note that time-stamping also works on CREATE and UPDATE when new files are created, or when a file is modified.

A User Application: SEND-MSG For Intra-User Communication

I thought it might be interesting to be able to communicate between multiple users as a "message drop" for posted mail (posted on the 'Q', and visible to other users via MPMSTAT as a pending message if they care to read it). Such as it is, this does demonstrate what can be done for intra-user communication in a common user system environment—nothing fancy, but it gets the job done, allowing up to 80 characters in a message string. To see if you have any "mail," just enter MPMSTAT<cr> to see if a SEND-MSG is attached to your console from another user. If so, just enter Control-D to attach SEND-MSG to your console, and to finish the execution of the pending message from MP/M's CLI (Control Line Interpreter) buffer storage. If you want to send a message (say to USER 0, from USER 1), just enter:

```
A>send-msg 0 Hello what's your
```

Well, that's how it works in theory. To see what happens, look at Figure 10.
S-100 MAINFRAMES

S-100 MICROFRAME - TEI

110V 60Hz CVT Mainframes, the best money can buy at a 30% savings in price.

- 12 Slot 28V 30A 16V 4A
- 24 Slot 28V 30A 16V 4A

PRICING:

- **Priority 1 has delayed the 9% TEI**
- **Priority Increase March 1st.**

S-100 MAINFRAME - GODDOUT

110V 60Hz CVT Mainframe, the best money can buy at a 30% savings in price.

- 12 Slot 28V 30A 16V 4A
- 24 Slot 28V 30A 16V 4A

PRICING:

- **Priority 1 has delayed the 9% TEI**
- **Priority Increase March 1st.**

S-100 MICROFRAME - GODDOUT

110V 60Hz CVT Mainframes, the best money can buy at a 30% savings in price.

- 12 Slot 28V 30A 16V 4A
- 24 Slot 28V 30A 16V 4A

PRICING:

- **Priority 1 has delayed the 9% TEI**
- **Priority Increase March 1st.**

S-100 MAINFRAME - GODDOUT

110V 60Hz CVT Mainframe, the best money can buy at a 30% savings in price.

- 12 Slot 28V 30A 16V 4A
- 24 Slot 28V 30A 16V 4A

PRICING:

- **Priority 1 has delayed the 9% TEI**
- **Priority Increase March 1st.**

S-100 MAINFRAME - GODDOUT

110V 60Hz CVT Mainframe, the best money can buy at a 30% savings in price.

- 12 Slot 28V 30A 16V 4A
- 24 Slot 28V 30A 16V 4A

PRICING:

- **Priority 1 has delayed the 9% TEI**
- **Priority Increase March 1st.**
MP/M-80 II Review, continued...

You can continue stacking as many SEND-MSG’s as your user memory allocation allows (I obviously didn’t have enough memory!). The “Send Message” program (Figure 11) may be assembled with RMAC and LINK, or as REL0 and REL1 ‘HEX’ files using GENMOD.

Conclusion

Digital Research’s user documentation is perhaps the best that you could desire, including a comprehensive User’s Guide, Programmer’s Guide, and System Guide, all with complete glossaries and indexes, and even an acronyms and conventions list. This is a far cry from the original (terrible) CP/M 1.4 documentation. Also included are manuals for the LINK-80 linkage-editor, and MAC (as a reference document to the RMAC relocating macro assembler facilities. Incidentally, LINK-80, RMAC (and LIB-80 as well as XREF) are well worth the price of the diskette without MP/M-80 II!

MP/M-80 II is not for everyone, especially the casual user on a tight budget. In the hands of a good systems-type programmer, and given the hardware resources to properly support all of the features of MP/M, this is the multi-user/multi-tasking operating system to be using for running the myriad of CP/M-compatible applications programs that are available. I strongly recommend that you purchase both the “MP/M II User’s Guide” and “MP/M II System Guide” manuals before purchasing the MP/M diskettes themselves—you really need to get an overall view to make the best possible choice in applying MP/M to a particular application environment.

MP/M, MP/M II, RMAC and LINK-80 are trademarks of Digital Research.

Figure 9.

```
OA>set .prl [time] <cr> --- SET all *.prl files for time stamping 09:45:14 ASSET .PRL
OA>DIR .PRL Time Stamps ON
OA>ASM .PRL Time Stamps ON
OA>CONSOLE .PRL Time Stamps ON
OA>DIR .PRL Time Stamps ON
OA>RESET .PRL Time Stamps ON

i) --- and on and on...ad nauseam!
i)
OA>set {access = on} <cr> --- SET time stamping to any file accessed 09:46:19 ASSET .PRL

Label for drive A:
Directory Label
Repd XREC Create Access Update
----- ----------- ----- -------
A:Label --- off on off on

OA>DIR .PRL Time Stamps ON
OA>stat <cr> --- access DIR as an experiment for time stamp 09:46:52 A:DIR .PRL

Directory for User 0:
OA>STAT .PRL
OA>stac0r <cr> --- also access STAT for time stamping.

OA>set .prl Time Stamps ON
OA>stat <cr> --- also access STAT for time stamping.

OA>dir stat.* <cr> --- access STAT for time stamping.
```

Figure 10.

```
OA>send-msg 1 Hello from USER 0...What's up? <cr> --- set-up 1st message 09:37:45 ASSEND-MSG .PRL
OA>send-msg 1 I hope you got my message, bye! <cr> --- set-up 2nd message 09:38:11 ASSEND-MSG .PRL

OA>mmstat <cr> --- let's see if the messages are 'posted'
09:38:20 Mag Quad

OA>user 1 <cr> --- switch to USER 1.
09:39:04
```

```
Figure 9.
```

Figure 10.

```
OA>send-msg 1 Hello from USER 0...What's up? <cr> --- set-up 1st message 09:37:45 ASSEND-MSG .PRL
OA>send-msg 1 I hope you got my message, bye! <cr> --- set-up 2nd message 09:38:11 ASSEND-MSG .PRL

OA>mmstat <cr> --- let's see if the messages are 'posted'
09:38:20 Mag Quad

OA>user 1 <cr> --- switch to USER 1.
09:39:04
```

```
Figure 10.
```

```
OA>send-msg 1 Hello from USER 0...What's up? <cr> --- set-up 1st message 09:37:45 ASSEND-MSG .PRL
OA>send-msg 1 I hope you got my message, bye! <cr> --- set-up 2nd message 09:38:11 ASSEND-MSG .PRL

OA>mmstat <cr> --- let's see if the messages are 'posted'
09:38:20 Mag Quad

OA>user 1 <cr> --- switch to USER 1.
09:39:04
```

```
Figure 10.
```

```
OA>send-msg 1 Hello from USER 0...What's up? <cr> --- set-up 1st message 09:37:45 ASSEND-MSG .PRL
OA>send-msg 1 I hope you got my message, bye! <cr> --- set-up 2nd message 09:38:11 ASSEND-MSG .PRL

OA>mmstat <cr> --- let's see if the messages are 'posted'
09:38:20 Mag Quad

OA>user 1 <cr> --- switch to USER 1.
09:39:04
```

```
Figure 10.
```

```
OA>send-msg 1 Hello from USER 0...What's up? <cr> --- set-up 1st message 09:37:45 ASSEND-MSG .PRL
OA>send-msg 1 I hope you got my message, bye! <cr> --- set-up 2nd message 09:38:11 ASSEND-MSG .PRL

OA>mmstat <cr> --- let's see if the messages are 'posted'
09:38:20 Mag Quad

OA>user 1 <cr> --- switch to USER 1.
09:39:04
```

```
Figure 10.
```

```
OA>send-msg 1 Hello from USER 0...What's up? <cr> --- set-up 1st message 09:37:45 ASSEND-MSG .PRL
OA>send-msg 1 I hope you got my message, bye! <cr> --- set-up 2nd message 09:38:11 ASSEND-MSG .PRL

OA>mmstat <cr> --- let's see if the messages are 'posted'
09:38:20 Mag Quad

OA>user 1 <cr> --- switch to USER 1.
09:39:04
```

```
Figure 10.
```

Microsystems

Kelly Smith is a senior engineer/programmer with Pertec Computer Corporation, developing diagnostic software for systems and system peripherals. He is the vice-president of the Valley Computer Club (Burbank, CA) and system operator of the CP/M-Net Remote CP/M System, in addition to editor and publisher of the CP/M-Net News. Activities and interests include contributing software to the SIG/M User Group library and West Coast SIG/M software distributor via modem.
Figure 11.

```
base equ 0          ; MP/M system absolute base address
xdos equ base+5h   ; MP/M XDS entry address
buff equ base+80h  ; temporary command buffer

systemreset equ 009h ; MP/M system reset
printString equ 009h ; MP/M print string function
rawcon$out equ 004h ; MP/M raw console output function
attach$con equ 093h ; MP/M attach console function
detach$con equ 093h ; MP/M detach console function
procs$descr$addr equ 09ch ; MP/M return process descriptor address

bel equ 07h         ; ASCII bell code
lf equ 0ah          ; ASCII line feed character
cr equ 0dh          ; ASCII carriage return character

begin: lxi a,sp,stack ; set system stack
lxi h,buff ; point to CLI command buffer
mov a,m ; message string < 4 characters?
cj errexit
inx h ; now point to console destination number
push h ; save the pointer...
mov e,a ; save string length in [e]
mvi d,0 ; put total string length in [dl]
dad d
mvi m,'$' ; tag the end of string with string delimiter
pop h ; point to console user number...
inx h
mov a,m ; and get it
cpi 'O'; < user 0?
cj errexit

cpi 'I' ; > user 9?
jnc errexit
mov e,a ; subtract ASCII bias, and make hex digit
mov e,a ; save for now in [de]
push d
mvi c,attach$con ; detach console function
call xdos
mvi c,procs$descr$addr ; get process descriptor address
call xdos
lxi d,14
add d
mov a,m
addi 'O'
sta b,4 ; set counter to issue 4 bells to user console
send: push b
mvi e,bal ; ASCII bell code
mvi c,rawcon$out ; do raw console output
call xdos
pop b
ldcr b
lw notify
mvi c,80h ; kill some time between bells...
delay: mvi e,a,255
delay2: clr a
jnz delay2
dcr c
jnz delay1
jmp send ; send next bell character
;; notify: mvi c,attach$con ; attach console function
call xdos
lxi d,cr$msg
mvi c,print$string ; print string function
call xdos
lxi d,usr$msg
mvi c,print$string ; print string function
call xdos
lxi d,d$buf4
mvi c,print$string ; print string function
call xdos
lxi d,cr$msg
mvi c,print$string ; print string function
call xdos
exit: mvi c,systemreset ; system reset (terminate calling program)
jmp xdos

err$msg db cr,l,$'>' Error in message line "<<<,cr,l,$'>'

; cr$msg db 'This message is from console number: '
usr$msg db 1

userinside db 32 ; 16 level stack area
stack: equ 9
end
```
The dictionary defines an "oasis" as a green, growing area in a desert or as a welcome change from the usual pace of life. "OASIS" is also the name of a microcomputer operating system that has gained a significant foothold in the microcomputer software marketplace. One has to wonder why a software product such as this was named OASIS. The microcomputer business is far from a desert. The hardware and software aspects are growing so rapidly that it is virtually impossible to keep ahead of new developments. As soon as products become available, we hear of new application areas for microprocessor hardware and software systems. The new needs then tend to foster development in a seemingly never-ending cycle. Thus, considering the state of the micro-marketplace, it must be that the OASIS operating system was introduced not as "green spot in the desert," but as a welcome change from the way things have been done. In the next few pages I will try to show why the OASIS operating system may very well be a new approach to the way microcomputer operating systems function.

As a first time user, I had never seen OASIS in operation. To become familiar with this product (or any other software product, for that matter) I had to use it, and compare it with other products in the marketplace performing a similar function. I am professionally involved in the systems end of the microprocessor business. My field of comparison for OASIS was to contrast the operational characteristics, human interface aspects, development tools, and end-user application possibilities. Access to an appropriate hardware system and the OASIS software was obtained such that I could "setup" the system to my specific requirements much as an end-user would in purchasing a microcomputer system for use in a business, scientific, or educational application.

An OASIS Hardware Configuration

The system hardware upon which the operating system evaluation was performed was the SYSTEM 80W, an S-100 machine produced by NNC Electronics. This high quality hardware product is a united computer/mass storage system measuring approximately 18 inches wide, 11 inches high, and 19 inches deep. The SYSTEM 80W is based upon the IEEE/S-100 Bus Standard with a 4MHz Z-80A CPU card and two 64K dynamic RAM boards providing a total of 128K of memory in a bank-switched configuration. The primary data storage is provided by a Shugart SA1004 Winchester Disk, with 8.4 Megabyte formatted data storage capacity in conjunction with the companion XCOMP Winchester disk controller. File backup and loading convenience is included via a Shugart 801R 8" double density and double-sided floppy disk drive. The drive, including features of AC motor on/off and a door lock, is controlled by an OEM version of the CCS floppy disk controller.

Peripheral I/O was via three RS-232 serial I/O ports accessible on the rear panel of the computer. Optional hardware can include parallel ports or more serial ports. The internal card cage could also accommodate user-
CUSTOM PRODUCTS
DESIGN • LAYOUT
MANUFACTURING

ECT-100-F
RACKMOUNT CARD CAGES

ECT-100-F
Rackmount Card Cages

8080 CPU
CENTRAL PROCESSING UNITS

8080 CPU
Central Processing Units

CCMB-10-F MIN
6,10 OR 20 SLOT CARD CAGES

CCMB-10-F MIN
6, 10 or 20 Slot Card Cages

R 2I/O
ROM/RAM & I/O

RM-10
CARD CAGE & POWER SUPPLY

RM-10
Card Cage & Power Supply

16K RAM
FULLY STATIC MEMORY

16K RAM
Fully Static Memory

BUILDING BLOCKS
FOR
MICROCOMPUTER SYSTEMS,
DEDICATED CONTROLLERS
AND TEST EQUIPMENT

BUILDING BLOCKS
For
Microcomputer Systems,
Dedicated Controllers
And Test Equipment

CARD CAGES, POWER SUPPLIES
MAINFRAMES, CPU’S, MEMORY
I/O, OEM VARIATIONS

CARD CAGES, Power Supplies
Mainframes, CPU’s, Memory
I/O, OEM Variations

TT-10
TABLE TOP MAINFRAMES

TT-10
Table Top Mainframes

SPECIALIZING IN
QUALITY
MICRO COMPUTER
HARDWARE

SPECIALIZING IN
QUALITY
Micro Computer
Hardware

MULTIBUS® PRODUCTS
MULTIBUS IS A TRADEMARK OF INTEL CORP.

MULTIBUS® PRODUCTS
MULTIBUS IS A TRADEMARK OF INTEL CORP.

ELECTRONIC CONTROL TECHNOLOGY, INC.
763 Ramsey Ave., Hillside, NJ 07205 (201) 686-8080

ELECTRONIC CONTROL TECHNOLOGY, INC.
763 Ramsey Ave., Hillside, NJ 07205 (201) 686-8080

PS-30 A
POWER SUPPLIES

PS-30 A
Power Supplies
OASIS Review, continued...

specified hardware such as a modem board for communication or additional memory cards. This system is available from the manufacturer: NNC Electronics, 15631 Computer Lane, Huntington Beach, CA 92649; (714)895-8000, for $8,799 and $850 for OASIS.

Obtaining The Software

The system software, the latest Multi-user Version 5.5A of OASIS, was provided in a format properly configured for the NNC Electronics hardware through the courtesy of the product distributor, Phase One Systems, and NNC Electronics. The evaluation package included all system functional modules and others such as a Basic Interpreter/Compiler, Macro Assembler/Linker package, plus an impressive array of compatible utility packages that handle system maintenance and configuration chores. Complete documentation on the OASIS System was also provided. The OASIS product was written by a talented and enterprising fellow by the name of Timothy S. Williams, and is distributed and supported by Phase One Systems, Inc., 7700 Edgewater Drive, Suite 830, Oakland, CA 94621; (415)562-8085. OASIS is $850, and includes all the software described in this article.

Initial Observations

Once I had the system and software in place, the evaluation really began. My goal was to attach a Televideo 912 CRT as the system console at one serial port, (this was to be straightforward since the standard NNC configuration also utilizes a Televideo terminal), configure a second terminal for user two on another serial port, and connect a serial interface printer as the system hard copy device. The terminal for user two was a DEC VT100 and the printer a TI 820 dot matrix line printer. A review of the documentation was needed to learn how to go about the peripheral attachment process.

OASIS Documentation

The OASIS documentation consists of a well-organized set of manuals describing every aspect of the operation of the software. The first is a general system reference guide that led me by the hand through the OASIS philosophy, command entry formats, and command definitions. Each system command that may be used at the Command String Interpreter (CSI) control level has a complete section of description, option definition and examples!

Another feature of the manual (and all other OASIS documentation) that I have found extremely useful is the fact that commands, each in a separate chapter, are presented in alphabetical order with a topical index marker printed in the lower outside corner of each page. On the first trip through the documentation, the value of this index was not realized. It was only later at the “try and learn” phase when I would say “How did SHOW work?”, that I realized the value of this indexing. “SHOW” was easily found in alphabetic order between “SHARE” and “SPOILER.”

Only one comment need be made on the physical attributes of the manual. There is a great deal of paper in the binder with only a limited binder size. The paper is very thin and could easily have been torn from the three binder rings. Printing of each manual in a separate softbound format would allow heavier paper to be used, and would probably allow the system documentation to survive through months of use. Since the OASIS is generally intended to be multiuser, the three ring binder documentation format might limit the “stay-in-one-piece” life—as many people require its use to learn system operation.

The documentation package also includes complete operational and example-filled paperwork to describe the Basic, Macro Assembler, Linker, Executive Language and so on. Each manual has had the same care taken in its presentation to the user. The topics are presented and indexed for easy information access.

Another impressive feature of the system is an on-line help system. A file on the system disk contains a quick summary of the command formats and possible options for each OASIS command. Just in case the user needs a quick review on how to use a command such as BACKUP, he or she need only type the following:

HELP BACKUP<cr>

and a screen full of information pops up to tell you how to use the BACKUP program. Many of the command programs that have their own operator prompt mode, such as the DEBUG program debugger, support an internal access mode to the help file. Such utility packages permit the word HELP to be typed at the command prompt for immediate display of the command options available for that utility.

Setting Up Terminal Two

As the system was made available, the default mode of operation for the system terminal was a “Class 7” console, meaning a Televideo. (A TVI-912 in my case.) In OASIS, all user console devices are driven by an appropriate assembly language driver package. An integral part of this driver package is the function of translating an internal “OASIS Standard” set of terminal controls to the actual control functions required by the user’s terminal. As each user console is put on-line by the default parameters specified either at system generation time or at the time it is “ATTACH”ed via a system utility, the translation information is indicated by reference to one of several available “SYSTEM.CLASSnn” files. These files (on system disk) are each specified for a given class of terminals. In my case, the terminal I desired to attach as the second user console was a DEC VT-100.

None of the standard class code files supplied with the system matched the translation characteristics of the VT-100 or VT-52. (Note that the VT-100 may be configured to respond to the DEC VT-52 screen control codes. This subsequent control code set is more typical of the screen commands used by other terminals.) It is possible to use a terminal that appears as a TTY-like device, but many system functions, like the editor, console listing functions, and certain applications programs, work better with screen erase and cursor positioning capabilities. Thus I elected to get a taste of using the OASIS text editor and macro assembler by making up a new class code file for the VT52 mode of the terminal. As seems to be normal for the OASIS documentation, the process of setting up the class code file for a new terminal type was clearly explained.
The assembly language native to the OASIS system and processed by the Macro Assembler is a Z-80 utilizing ZILOG mnemonics. Notice from the listing that the assembler knows the values for control codes such as "ESC" and "LF." Also, the procedure of making a system call involves a simple macro invocation like "SC 64." This translates into a system call type 64 that sends the character in (C) to the device addressed by the (B) register. (For documentation purposes only, the PON, POFF, ... ULOFF are macro invocation parameters for control sequences not available on the VT-52 terminal. Typical controls possible via these codes, provided the terminal can interpret them, are underline off/on and reverse video on/off.)

The program file described above was converted to the appropriate relocatable object file by using the Macro Assembler and Linker programs. An interesting capability provided with the OASIS system is a command file "ASM.EXEC," a program similar to a job submittal function on other operating systems. In this case, "ASM.EXEC" is a command file that successively invokes the macro assembler and linker. To get all of the CLASS52 file put into the proper format, all I had to type was:

>ASM CLASS52<cr>

The executive command processor did the rest by calling in the assembler and linker in turn. The similarity of OASIS EXEC to job submittal functions on other microcomputer operating system ends at the capability to process predetermined sequences of operator commands. In the OASIS environment, the EXEC processor more closely resembles the JCL language that I used some years ago on an IBM 370 system. The EXEC processor will execute an ASCII command file in a somewhat interpretive mode. The command file may contain direct CSI commands and internal calculations based upon EXEC variables and system codes returned from the last executed program. Command statements include looping possibilities with "WHILE" and "UNTIL" constructs, direct console/printer I/O and operator parameter input query. Another feature includes the possibility of passing parameters from the EXEC command processing level to the next executing transient applications package. This feature allows for the passage of information between programs without having to write it to a disk file.

The process of making the VT 52 mode of the DEC terminal work was completed with shining success. I was immediately able to get the system to bring up the second console, using the system utility commands to define a second memory partition and start active execution of a second user. Attachment of the printer was also easy since the physical device drivers that allow connection of printer devices support a number of printer "BUFFER FULL" determination mechanisms. I chose to use the "Data Set Ready" hardware handshake mechanization due to the simple nature of getting it going. The NNC hardware implementation of all serial ports includes the data set ready input on pin 20 of the rear panel DB25 RS-232 connector. The TI 820 printer may conveniently be configured to assert a "reverse channel handshake" buffer full on a specific line. All I had to do was wire this line to the SYSTEM 80W connector pin 20, and the printer was up and going. The process took less than a third of the time typically expended in attaching a printer to an S-100 computer using another popular operating system.

Multiluser Processing

With the two consoles configured to the system, I was ready to try the multiluser aspects of OASIS. The multi-
A time slice of ten milliseconds was found to give the best performance for program executions requiring huge amounts of serial I/O via the three serial ports. If the processing was generally CPU speed bound, then the time slice factor had little effect on the speed of program execution.

The table below shows representative numbers for program execution times in various modes to give an indication of system performance in the multi-user mode versus single-user mode. The example mode used was primarily CPU speed bound. I took the previously presented class code definition file, and made two copies of it named USER1TST.ASSEMBLE and USER2TST.ASSEMBLE. The Macro Assembler executive command file "ASM" was used at both user consoles to assemble the two identical programs. Note that the two assembly processors shared hard disk resources for source input, object output, and print file output. Also shared were the included macro file "CLASS", the assembler command file, and the linker command file.

In the examples, both users were running at a file access privilege level of six (6) and had consoles at 9600 baud. The system time slice was at the default 30 millisecond value. The start time indicated was measured from depression of the carriage return key after the user's CSI command had already been typed in. Time measurements were made using a digital wrist watch with a one second resolution time.

The assembly times in Figure 1 are obviously limited by processing time. For two users to perform the same task, the execution time is almost exactly twice as long. Note that the last example was run to show that single-user operation of the system is very slightly lowered by having an attached and idle second user console.

Looking at OASIS Basic

The OASIS system includes a complete Basic language programming system that has some unique features. The Basic package is both an interpreter and a compiler. The interactive interpreter may be used for program development and debug, while the compiled mode may be invoked to produce a program that executes without needing the overhead of having the whole interpreter/compiler resident in the memory of the active user area. Also included with the system is a re-entrant version of the Basic that may be loaded such that multiple users may access the same image, from multiple active user areas. In reviewing the memory requirements to have Basic resident for each user versus having one re-entrant copy for all users, it appears that on a three-user system, more program memory space would be available for the second and third users than would be available on a two-user system, each with his own copy of Basic. This estimate was based upon the 128K memory configuration of the NNC SYSTEM 80W.

The functional capability of the OASIS Basic is roughly equivalent to other popular Basics from Compiler Systems or Microsoft. A number of special capabilities available appear to be due to the presence of the powerful host operating system file manager and real-time capabilities. Command functions within the language may include any valid system CSI level command, right in the middle of the Basic program! This allows full use of separately developed programs (in any language) to enhance the operation of a Basic program. (Couple this with the parameter-passing capability of the EXEC processor, and you have an extremely powerful vehicle upon which to develop sophisticated turn-key application packages.)

Direct Indexed file I/O is possible within the Basic, as this file format is directly supported by the operating system. For multi-user processing of files under the Basic (or other programs, if properly written), automatic file access record lockout is a feature that will guarantee data base integrity if multiple programs (users) are using the same data files. Many other systems do not provide this capability intrinsic to the operating system. Thus, incredible programming games must be played to achieve the same level of data access integrity.

A few other comments related to the Basic and its operation are in order here. During program development,
INFOSOFT Has a Better Way

FULLY INTEGRATED "C" AND ASSEMBLER DEVELOPMENT TOOL KIT FEATURING INFOSOFT'S I/SAL™

PRICES

"C" (REQUIRES I/SAL) $ 50
I/SAL $225
SOURCE $250

Apple is a registered trademark of Apple Computer Inc.
OASIS Review, continued...

the program syntax is checked (and can be corrected) as
the statements are entered, not as they are executed. In
addition, since syntax checking need not be done at
interpretation/execution time, the user will see some
improvement in execution speed. Another feature dis­
covered in the Basic manual was something I had not
seen in a high level computer language since I programmed
on a main-frame computer. That feature is the capability
of the Basic programmer to access the time and date
routines of the system. I have illustrated the use of the
time function in the Basic program listing that follows.
The program listing below shows a short program written
to exercise the system execution times, as I did with the
class file assembly times, using the system clock to time
the program execution. Recall that the Basic interpreter
was running on a 4 MHz Z-80, should the reader desire to
compare execution time of this program against that of
another Basic. The system time slice during these tests
was at the default 30 millisecond value.

```plaintext
00 EXECUTION TIME TEST PROGRAM (USES SQUARE ROOT FUNC)
10 PRINT "START TIME",TIMES(0)
20 FOR I% = 1 TO 10000
30 J = SQR(I)
40 NEXT I%
50 PRINT "END TIME",TIMES(0)
60 END
```

Figure 2: Ten Thousand Square Roots Execution Time Tests.

<table>
<thead>
<tr>
<th>Execution Condition</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Executed by User 1 with attached printer in console echo mode. User 2 in prompt mode of Basic.</td>
<td>0 min/43 sec</td>
</tr>
<tr>
<td>Executed by User 2 with no attached devices. User 1 in Basic prompt mode with attached printer.</td>
<td>0 min/53 sec</td>
</tr>
<tr>
<td>Executed by User 1 with attached printer but no print echo on. User 2 in prompt mode of Basic.</td>
<td>0 min/43 sec</td>
</tr>
<tr>
<td>Executed by both users at same time with no printer echo on at User 1. Device still attached.</td>
<td>USER 1: 1 min/28 sec USER 2: 1 min/28 sec</td>
</tr>
<tr>
<td>Executed by both users at same time with printer echo on at User 1. User 2 startup delay due to User 1 printing.</td>
<td>USER 1: 1 min/25 sec USER 2: 1 min/25 sec</td>
</tr>
</tbody>
</table>

Random Comments
Other items of interest relate primarily to several of the
utility packages furnished with OASIS. For a systems
person such as myself, I feel that the Z-80 program debug­
ger is a particularly nice package. Direct assembly/
disassembly is permitted in complete ZILOG mnemonics.
The on-line assembler does immediate syntax checking and
program listing—just like an assembler output.
A disk backup utility furnished with the system called
"ARCHIVE" makes the file backup process a breeze.
One feature of OASIS is the direct indexed file format
supported by the host file manager. As an applications
program data base is built in a file of this type, much of the
file may contain blanks in filling out records fields. Many
records may also be inactive because of delete status, or
may never have been allocated as active records. This
leads to the situation where ARCHIVE is an especially
powerful backup utility. The backup from an active system
work disk (such as the hard disk) to floppy compacts the
data files as they are transferred. This allows random
access direct files larger than a whole floppy to be brought
into reasonable backup storage size. Other features of the
ARCHIVE system are backup of files by selected wild
card names, by range of creation dates, or by range of
most recent access dates. Multi-volume diskette ARCHIVE
backup is also possible with operator prompting for insertion
of the proper diskette(s).

The hardware configuration utilized for the evaluation
also deserves a final comment here. During the 45 day
period that the NNC SYSTEM 80W was tested, it performed
flawlessly. The reliability of the floppy system was evident
in that no floppy read/write problems were encountered.
The double density media conformance to IBM standard
format compatibility was checked via format interchangeable­
ability with another computer system. No interchange
problem was found despite the fact that the computers
used entirely different types of floppy disk controllers.
The SHUGART SA1004 8" Winchester disk system with
the XCOMP controller seems to provide more than
adequate media access speed and reliability for a multi-
user system. Note from the previous assembly time tests
(Figure 1) that two users building files at the same time in
different areas of the hard disk did not degrade performance
at all. The two-user assembly process took less than
twice as long as one user, indicating that disk access
performance is not generally a problem with multiple
users on the NNC hardware configuration.

Conclusion
OASIS is an absolutely fresh approach to the way that
8-bit microcomputer operating systems have typically
been implemented. The quality of the product is evident
in several important areas:

- The quality of documentation allows anyone
 modestly serious about using a computer in profes­
sional applications to get into a productive mode of
 operation.
- Consistency of the operator interface at all levels
 of system usage provides for an easily learned system.
- Run-time error checking, error reporting, and the
 availability of the on-line HELP system make it almost
 impossible for the user to "mess up the system."
- Development tools that are standard with OASIS
 and optional packages available from the same source
 provide an OEM software development environment
 for sophisticated applications not found on other
 systems with "standard" operating systems.

No, Oasis is not just another operating system. And as
a person just introduced to this system, all I can say is that
I am impressed at the possibilities. Just for the record,
OASIS 16, the 16-bit version, written in "C," will be in
distribution by the time you read this evaluation. It promises
to be everything that I’ve said to be true of the 8-bit Z-80
version—and more. Watch for it!
MICROCOMPUTERS

THE CHOICE JUST GOT EASIER!

PRICE $4390

PERFORMANCE

SOFTWARE

EXPANSION

QUALITY

DELIVERY

GETS YOU A TEC-86 COMPLETE 16 BIT 8086 SYSTEM, INCLUDING 64K BYTES OF MEMORY, DUAL 8 INCH DOUBLE DENSITY FLOPPY DISKS, AND MORE. . . (SEE COMPLETE TEC-86 SPECS BELOW.)

Faster Processing, Increased Address Space, up to One Megabyte of available memory, and the increased throughput of the the TEC-86 16 Bit System means that you can now do work on a microcomputer never before practical with the slower 8 Bit systems.

CP/M-86™ Brings the World of CP/M software up to the 16 bit systems. BASIC-86™, MS-Fortran™, MS-Pascal™ are just a few of the Languages currently available.

Memory Expansion up to ONE MEGABYTE. Disk Storage can be increased to over 30 Megabytes with our Winchester Disk Subsystem. Multi User Systems available soon!

Full ONE YEAR WARRANTY is standard on TECMAR components. This Warranty is possible due to our High Engineering Standards, and Thorough Product Testing.

We have been delivering 16 Bit Boards and Systems for nearly two years. Most orders are shipped from stock or within 30 days.

|$4390| TEC-86 | $4390|

16 BIT 8086 MICROCOMPUTER SYSTEM

FEATURES: 5 MHz 8086 CPU * 64K Bytes RAM * S100 IEEE-696 * Dual 8 Inch Double Density Floppy Disk Drives * Two RS 232 Serial Ports, 50 to 19200 Baud * Three Parallel Ports * ROM Boot for CP/M-86 * Heavy Duty Power Supply * Attractive Industrial Quality Desk Top Cabinet * Completely Assembled and Tested * OPTIONS: Up to One Megabyte of Memory, Double Sided Double Density Floppy Disks * Up to 31 Megabytes of Winchester Fixed Disk Storage. * CP/M-86 * BASIC-86 * MS-FORTRAN * MS-PASCAL * CBASIC/86™ * PASCAL/M86™

$10990 TEC-86W $10990

Same Great Features as our TEC-86 except that the TEC-86W has 256K of RAM, and our 31 Megabyte Winchester Disk Subsystem.

See our catalog for many other fine S-100 and Apple Boards including:

- Analog to Digital Converters (16-256 channels; 12, 14, or 16 bit accuracy; 30, 40, 100, or 125 KHz; programmable gain; timer/counters)
- Digital to Analog Converters (12 bit accuracy, 3 microsecond conversion)
- 8086 CPU Board
- I/O Boards
- 16K Static RAM
- Real-time Video Digitizer and Display.

CP/M MP/M CP/M-86 and MP/M-86 are trademarks of Digital Research Inc. BASIC-86, MS-FORTRAN and MS-PASCAL are trademarks of MicroSoft Inc.
PASCAL/M86 is a trademark of Sorcim
CBASIC/86 is a trademark of Compiler Systems Inc.

DEALER INQUIRIES INVITED

TECMAR, INC.

23600 Mercantile Rd. • Cleveland, OH 44122

(216) 464-7410
Enhancing CP/M 2.2

by Ralph J. Jannelli

Enhance the performance of CP/M 2.2 in multi-user applications by setting up multiple-user directories.

Several enhancements have been made to CP/M since version 1.4. One of these enhancements, found in version 2.2, is the ability to have multiple user directories—an obvious lead-in to MP/M. However, as implemented, it offers little advantage to the user. In CP/M 2.2 each directory must contain all files that need to be accessed by that user. This is a colossal waste of disk space! Imagine having four or five users each using Basic and/or a word processor and the normal CP/M utility files (STAT, DDT, ASM, etc.). These files must be duplicated for each user on the disk. If each user had his own diskette there would be no need for separate user directories. User directories provide their greatest utility in hard disk environments, which are becoming more prevalent in today's micros. Although a hard disk has many times the capacity of a floppy, why waste disk space?

This article describes a modification to CP/M which may be made to the CCP (Console Command Processor) module, allowing any user to access all the files in user directory 0. Directory 0 (zero) can now be considered a utility or system directory. Only user-specific files will need to be included in the user directory. Example: If I am user 5 and I want to run my Basic application program "SORT.BAS", I simply enter the CP/M command "BASCOM SORT". CP/M, under control of the CCP, will search my user directory for BASIC.COM, which, however, does not exist in my directory. Normally CP/M would return an error. By intercepting this error and interrogating the current user number a decision can be made. If the current user number is 0, then no other directory is searched for the requested file; control is therefore passed back to the CCP and the resulting error is sent to the user. If the current user number is not 0, the current user number is saved, the user number is changed to 0 and the search is re-initiated. If as a result of searching the user 0 directory the file is still not found, the user number is restored to its previous value and control is passed back to the CCP with the normal "file not found" error as a result. If the file is found in user directory 0, the file is loaded. After the file is loaded the user number is restored. Control is now passed to the CCP which in turn passes control to the program just loaded, in this case the Basic interpreter. Now the Basic interpreter will utilize the BDOS (Basic Disk Operating System) module of CP/M to search for the applications program SORT.BAS. If the Basic interpreter does not find the file under the current user directory it will return an error message. Note that only files invoked under control of the CCP will cause a search in both the user directory and directory 0.

A further modification to the CCP provides a much more convenient prompt for a multi-user environment. Normally the CCP prompt identifies only the currently logged disk drive (i.e., A> for disk A), but gives no indication of the current user directory. The modification will cause the prompt to be the user number followed by the normal prompt (i.e., 5A> for user 5 disk A).

These changes are implemented by modifying the BIOS (Basic I/O System) module of CP/M. I chose to implement my changes in the BIOS, rather than in the CCP module, because CP/M documentation normally includes a source listing or disk file of the BIOS program, whereas a source listing of the CCP module is not available to the system user. Three jump instructions in the CCP need to be patched, but are not modified until the GOCPM routine of

RALPH J. JANNELLI holds a B.S.E.E. from New Jersey Institute of Technology. He has spent nine years designing hardware and software for calculators and office products systems with Monroe Systems for Business. He is currently working for Gilbarco Inc. as a Sr. Systems Engineer in the field of Retail Data Systems.
NEW FROM MICRO-LOGIC
ZDOS™ 2.0

- More power than CP/M® without losing additional user memory.
- Full software compatibility with CP/M®.
- Supports floppy or hard disks.
- Up to 60% faster Disk I/O.
- Both maskable and non-maskable interrupt capability.
- Designed for networking or stand alone installations.
- Directory linking to other user numbers.
- Fully symbionic printer spooling.
- Unlimited nesting of SUBMIT files.
- Easy upgrade from CP/M® - use your present BIOS if desired.
- Clear, concise user reference manual.
- Full user support service for registered owners.
- Affordable Price.

ZDOS is a trademark of MICRO-LOGIC INC.
* CP/M is a trademark of Digital Research.
Enhancing CP/M 2.2, continued...
the BIOS is executed. The GOCPM routine is executed on both warm and cold boot operations. (Remember that BIOS itself is not reloaded except on a cold boot operation.) The patches are accomplished by loading the new jump address into the HL register and storing HL at the given location for each of the three patches. The equate statements at the beginning of the program are calculated from the MSIZE given at the beginning of the normal system BIOS program, allowing appropriate relocation of the patched addresses according to the system memory size.
NEW! Speech synthesis using the Votrax SC-01 with the * Votrax Synthecalker!

- 64 PHONEMES AND 4 INFLECTIONS PROVIDE AN UNLIMITED VOCABULARY THAT IS USER PROGRAMMABLE
- PROGRAMMABLE OSCILLATOR FOR PITCH CONTROL GIVES YOU MORE NATURAL SPEECH OR MULTIPLE VOICES
- EXTENDED DEVICE OPTION
- UP TO TWO WAIT STATES
- EASILY PROGRAMMED IN BASIC!

Write or call for complete details
Ackerman Digital Systems, Inc.
110 No. York Rd., Suite 208
Elmhurst, IL 60126
(312) 530-8992

CP/M SYSTEMS COMPATIBLE 8000/80 SOFTWARE

STANDARD UTILITIES

$ Source/Object

COMMIX™ — Menu-Driven Communications with Information Services DEC-IBM - UNIVAC - CYBER - SDC — Use All COMMIX Systems Transfer Any File Type/Size. Nine Link and Eight Local Functions Prompt for Mindless Operation.

D — Disk Directory 4 Column Sort with File Size/Dir Size/And Space Status.

DB — Disk Directory Database UPDATE/INQUIRY Catalogs Fills and Formats.

DCOMP — Disk File Compare with Another Disk File with Display Option.

MCOMP — Memory Range Compare to Memory (RQM or RAM) - Console Log Errors.

MTEST — Memory Test Any Range with Before/Mere write Error Bits + Pass #

ADVANCED UTILITIES

CDIR — Comprehensive Sorted Disk Directory/Cross File Block Allocation/Check

COPY — Specify Disk Area and Copy Sequentially to CP/M File.

DASM — 8080 Object Dis-Assembler with Symbol Table/XREF/ASCII MAP.

DERS — Disk Exerciser Read or Write/Track/Sector/All/Set and Check Skew.

EDIT — Gang String Substitution Made Globally in One Pass Editor.

PREDIT — Source Program Version Number Maintenance at Pre-Edit Time.

PRGRM — Load/Display/Patch/Copy/Verify/Burn *K+K*K+K Proma.

RELOC — 8080 Object Code Relocator; Put This Into Your Program.

X6502 — 6502 Cross-assembler MAC Macro Library and Post Processor.

MEMORY MAPPED VIDEO

CGEN — EPROM Character Generator Editor for Video Display Boards.

DXAM — Disk Track Sector Examine with Update in Hex or ASCII or ASCII.

VBASIC — Disk Basic with Super Video Commands and Full Screen Program Editor Supports Different Video Cards with Identical Program Execution.

VGAMES — For VBASIC: OrthoBlack/Black/Breakout/Blockade/Poker Slot and Draw.

SOUNDS — VBASIC Development System for Y-3-8510 Sound Chip Sounds.

PMMS — Program Management Information System (Critical Path Method).

OBMS — VBASIC Data Base Management System (Define/Query/Report).

VIDEO — Parameter Controlled Multi-User or Scroll Window Video Driver.

VORAW — Vector Line Draw and Plot Subroutine for Fast Graphics.

CHESS — IMSAI VIO: VECTOR GRAPHIC Flashwriter 2: RGB-VGA.

INVERDAR — Zapper Sound Effects/Joystick or Buttons or Console/Kill or be Killed.

STARTKAR — Realtime Action/Sound Effects with Host of Commands and Missions.

TARGET — Moving Aircraft Shooting Gallery with Speed Options/Sound Effects.

©CP/M is a Registered Trademark of Digital Research
Disk $9.50 Extra — Cal. Residents Add 6% Sales Tax
Send Your Disk/— S, Den 8” +MICROP+APPLE+NSTAR
Call 213/330-1090 to Get Free Product Brochure

HAWKEYE GRAFIX
23914 MOBILE CANOGA PARK CA 91307 USA

ABM PRODUCTS
8680 CLAIREMONT MESA BLVD.
SAN DIEGO, CALIFORNIA 92123
Toll Free 800-834-1555 Order Only
For Information or California Orders
(714) 286-3537
Increasing the system memory space on a two-user system.

Why is it that the solutions to nine of every ten computer dilemmas fall outside the system restraints? While installing an MP/M system into my S-100 system, I discovered that I had a BOOS (Basic Operation System) 16 1/2 Kbytes long logically, with only 16 Kbytes available physically. Simple arithmetic showed me to be 512 bytes short. My solution is simple and should be of interest to anyone who finds himself a little low on memory, whether he's using MP/M, or CP/M or any other operating systems.

Background

In a two-user MP/M system, each user has his own bank of memory. The maximum contiguous memory available to each user simultaneously or individually is 48K. To achieve this, one simply buys two 64K memory cards and leaves 16K of chips off each card. Each card is addressed by the 16 address lines of the CPU, and by one more bit supplied by an output port (typically port 40H). The eight bits of the port should only have one bit on at a time, so that only one board (out of a maximum of eight) is on at a time.

The nice part of the scheme is that the I/O port bit is latched, so that you only have to change the bank bit occasionally, such as when the processor services a different user.

The 48K available to each user is roughly equivalent to a CP/M 56K environment since the CP/M system would have a BDOS-BIOS area included in it; whereas MP/M's 48Kbytes is separate from the BDOS-XIOS (as it is called in MP/M environments).

The typical 8-bit microprocessor can address up to 64K of memory. 16K remains after we subtract the 48K in either bank. This 16K is special. It contains the MP/M operating system, and must be available to the processor no matter which bank is currently being used. This 16K is not banked; it doesn't look at the output port at all. Its physical address is the top 16K of memory, no matter which bank is on. The other two boards are located in the bottom 48K of memory and are turned on or off by flipping the bits in the port.

A simple way to implement this 16K is to use two old 8K cards that don't have bank select, or that have the bank select disabled. (By the way, most of those old 8K cards will work at 4 MHz even if you didn't pay for "high speed" chips—so don't give them away!) Since you're not using bank select, this 16K of memory will always be addressable, regardless of which bank is on.

A better way to implement this 16K is to put 16K of chips back onto one of the two banked boards. But this 16K must be removed from the banking scheme, so that it is always selected.

The Problem

Remember when you first got CP/M and you decided to improve on the BIOS? Naturally, adding just one more little routine increased your BIOS size, so that you had to decrease your TPA (Transient Program Area). Typically, you did that by pretending your total memory was 1K less than it actually was, when you constructed (used MOVCPM) your CP/M system. Now suppose you are working with MP/M and your BDOS-XIOS goes just over 16K long. How can you keep a 16+K system in your non-banked memory when you've only got 16K available? Remember that the SYSTEM must always be in memory, no matter which bank (or user) is on. If you use a portion of the banked memory, you would lose part of your operating system when the "other" user comes on.
After studying the MP/M manual, I realized that others must have the same problem since MP/M provides for a "banked BDOS." This feature allows you to increase your system to over 16Kbytes. MP/M does this by transferring the overage from bank to bank every time you change banks. This feature may not be worth implementing because of the CPU time lost in doing the transfers. I did attempt to implement this feature, and suffered increased time delays. I might even have lived with this problem for a while, except that MP/M did not work properly when I invoked the "banked BDOS" option. Only one user's bank worked correctly. The other bank did not get updated properly. I believe it to be a bug in the MP/M implementation, but I felt that this direction wasn't worth wasting time on.

My solution
Adding a half-K memory card that is always in the base page of memory (does not bank) deselects (phantoms out) any other memory cards whenever it is addressed. Also, MP/M allows a user to increase his non-banked system area, at the expense of losing that area from every user's memory space. So, the cost of my solution is the loss of one-half Kbyte from the TPA of each user, which is why I am not using the entire 1K available to me from this board.

It took six chips to implement what I call my "Unbanker" circuit, shown in Figure 1. I had two choices of memory to use, static or dynamic. For this small amount of memory, dynamic would increase the chip count (due to refresh requirements) and would otherwise complicate things unnecessarily. Ideally, I wanted a 512 x 8 bit chip. Second choice would be a 1024 x 8 bit chip. Neither of these were readily available, so I was forced to use two very common 2114's (1024 x 4); but I have extra memory for future expansion.

The memory is located from BE00 to BFFF hex. An 8 input NAND gate is used as an address decoder.

Editor's Note:
Although the circuitry shown works in the author's system, it may present some problems in other S-100 systems. Note the following:
1) If there is another device which can enable the Phantom line (67) then a tri-state gate should be used to generate the Phantom signal. The input to the gate should be grounded and the WRITE* signal used to enable the gate.
2) If memory read problems are encountered due to critical CPU read timing then the READ* signal should be generated by NANDing pDBIN (78), sMEMR (47) and MEM SELECT*.

BOB WEIDEMANN is totally immersed in computers. During the day he teaches programming at LaGuardia Community College; in the evening (ever since Altair sold the first S-100 computers) Bob's quest has been to develop the "perfect" S-100 system. He has put all this experience to good use by assisting many small businesses with the purchase and installation of microcomputers.
Interfacing a Winchester Disk To MP/M

by Ira Gordon And Karl Wacker

With many manufacturers now advertising hard disks, we could not resist the temptation of interfacing one to an S-100 computer system. We priced the available units, and found that IMI (International Memories Inc.) was offering a 5-1/4", 6.7 Mbyte unit (unformatted), complete with intelligent controller, power supply, and cable set, for $1,900. This is the same disk system that Corvus uses in their Constellation System, so we felt it had reached a level of product maturity.

The price was justified because of the hard disk's cost effectiveness over multiple 8" quad density floppy disks yielding equivalent storage. The use of a multi-tasking, multi-user operating system, such as Digital Research's MP/M or Phase One's Oasis, would provide additional cost justification.

The IMI-5000's specifications were very impressive. The rotational speed of the twin platters is 4800 RPM compared to the Seagate ST-506's 3600. The byte transfer rate from drive to controller is 960,000 bytes/second and from controller to CPU is 500,000 bytes/second.

The IMI-5000's intelligent controller also performs automatic sector blocking/de-blocking and track sparing of the disk media. We expected to see at least a four- to five-fold increase in performance over a single density floppy disk drive environment.

We were interfacing the hard disk to a development system using Digital Research's MP/M or Phase One's Oasis, would provide additional cost justification.

Hardware Considerations

The MP/M implementation utilized bank-switched memory. The two SD Expandoram II memory cards, each set up for 48K byte memory partitions, performed perfectly. The Bank 0 memory card contained a non-bank switched memory partition located from C000H to FFFFH. This partition contained the MP/M operation system.

Our desire was to have the entire O/S, including the hard disk drivers, contained in this 16K byte partition—rather than use the banked BDOS file manager which would reduce system performance.

The SD Expandoram II memory cards also required that the XIOS be modified to use port FFH as the bank switch port. Outputting a selected bank number to port FFH would cause that bank to be selected. The Expandoram II has a dip switch which allows for the setting of unique bank addresses.

The Zobex Z80 S-100 CPU card was utilized to support the MP/M environment. It has a built-in prom monitor, located at F000H, which contained a debug monitor and disk bootstrap routine. The CPU card, in addition, has the following standard features:

- Zilog CTC—used to generate MP/M interrupt clock.
- Two Zilog darts — 4 ASYNC Serial I/O channels.
- Phantom prom monitor.
- AM9519 interrupt controller.
- Intel 8255 parallel port interface.
- 2 or 4 MHz operation.

The Zobex CPU, after executing the MP/M boot program, would phantom the prom monitor and allow the entire...
Winchester Disks, continued...

16Kbyte memory partition (C000H to FFFFH) to be utilized for the MP/M System.

The S-100 interface schematic supplied by IMI (see Figure 1) was found to have three deficiencies. First, the interface would not supply an I/O generated reset signal long enough to properly rest the IMI controller. Second, the IMI design did not use one address line in decoding the I/O address space. Third, separate I/O addresses were used for the four functions of the interface (data to controller, data from controller, status from controller and controller reset).

The first problem was solved by adding a one-shot (74123) and a buffer gate as a pulse stretcher. The second required the addition of another gate to the address decoding logic. The third problem was not serious in this application, and was not implemented.

The IMI 5007 drive has several major differences from other 5-1/4" Winchester drives:

- It rotates at 4800 rpm instead of 3600.
- It has a formatted capacity of 5.73 Mbytes instead of 5.01 Mbytes.
- It has the data separator, the most important part of the read/write logic, on the drive instead of on the controller.
- It uses plated media instead of conventional oxide-coated media.

The IMI 5000 controller operates the drives with 512 byte sectors, but allows you to operate as if you have 128 or 256 byte sectors (this was used to avoid the buffer space needed to do external blocking/deblocking). It also permits you to access the drives by several different methods—including absolute cylinder, head and sector numbering or, as was done in this application, by way of logical sector number. In addition, the drive does automatic track sparing for defective tracks. If the drive develops a bad track, a command sequence is provided to instruct the controller/drive combination to functionally independent of your interface.

A note of caution is in order; the drive, just like any Winchester unit, is sensitive to shock, because the heads rest on the media when the unit is powered down. For this reason, keep the drive in the shipping foam until you have shock mounted it in your system. The drive should be mounted with the disks in a vertical plane, so that if your system is bumped during transport, the heads will not clatter against the media. (IMI has a shock detector inside the drive, and the warranty is void if this has been tripped due to mishandling of the drive.)

The controller responds to the same command set as the IMI controller for the larger 8" drives, except it can only operate two drives instead of eight. The IMI power supply has sufficient capacity to operate both the controller and one 5-1/4" drive.

Software Considerations

Due to various external factors, the drive was brought up on an MP/M system, which proved to be a blessing in disguise, as it allowed one user to use DDT to debug the driver software while the other user did normal system operations to test the drive and software.

The S-100 interface and controller were initially tested with DDT. When they performed properly, the driver software was written and incorporated into the operating system.

The actual software consisted of several sections:

- The parameter tables needed by CP/M and MP/M to define the logical characteristics of the drive.
- The software driver for the controller.
- The intercept interface to the existing floppy driver.

The parameter tables were generated first and verified by using the STAT command.

The intercept interface was then written to test for the IMI drive number in the select routine. Then instead of returning to the floppy driver, it jumped to the IMI driver routines.

The IMI software driver did several sub-functions:

- Translation of the sector/track information generated by the operating system into a logical sector number for use by the controller.
- Verified the controller was in a known state by doing a null command, and reset the controller if necessary.
- Load the command block into the controller.
- If doing a write then load the write data.
- Wait for the controller to do the command.
- Verify completion status of the command and do error retries.
- Read in the data if it was a read command.

The actual data transfer was done using the block input and output instructions of the Z80. This type of transfer was not time critical with the interrupts enabled, and proved to be very useful in a real-time environment.

The parameter tables for standard 8" single density floppy and for the IMI are listed below for reference:

```
.Floppy
.defw 26 ;# sectors/track
.defw 3 ;block shift factor
.defb 7 ;block mask
.defb 6 ;preempt mask
.defw 242 ;disk size - 1
.defw 53 ;# directory entries - 1
.defb 0 ;allocation
.defb 000h ;allocation 0
.defw 16 ;check size
.defw 2 ;# reserved tracks (for boot, etc)

.IMI
.defw 192 ;# pseudo-sectors/track
.defb 8 ;block shift factor
.defb 63 ;block mask
.defb 31 ;preempt mask
.defw 574 ;disk size - 1
.defw 355 ;# directory entries - 1
.defb 000h ;allocation 0
.defw 000h ;allocation 1
.defw 0 ;check size
.defw 0 ;# reserved tracks
```

The following is the software listing for the IMI hard disk driver:

```
.LST: ;the long awaited int routines $99/$91
;note: several of the internal temps are only for debugging
10 .org 00
20 .org 50h
30 .org 50h
40 .org 68h
50 .org 6Ch
60 .org 7Ah
70 .org 80h
80 .org 90h
90 .org A0h
A0 .org B0h
B0 .org C0h
C0 .org D0h
D0 .org E0h
E0 .org F0h
.Floppy
.defw 26 ;# sectors/track
.defw 3 ;block shift factor
.defb 7 ;block mask
.defb 6 ;preempt mask
.defw 242 ;disk size - 1
.defw 53 ;# directory entries - 1
.defb 0 ;allocation
.defb 000h ;allocation 0
.defw 16 ;check size
.defw 2 ;# reserved tracks
```

Microsystems
Figure 1: Circuit for the IM/S-100 Interface Adaptor.

Note: This schematic reflects the Rev 1 modification. Address bit A3 is not decoded.
Upon completion of the hardware interface and software drive design efforts, we reassembled the XIOS and performed the required genmod and genseq sequences. The MP/M system was bootstrapped and the following load map appeared on the CRT screen:

The entire MP/M nucleus just fits into the 16Kbyte memory partition on the Bank-0 memory card.

The hard disk was assigned as the "D:" drive select, and responded correctly when selected. We proceeded to do a STAT DSK: operation on the hard disk and observed the following:

43200 : 128 byte record capacity
5400 : Kilobyte drive capacity
256 : 32 byte directory entries
0 : Checked directory entries
512 : Records/extent
64 : Records/block
192 : Sector/track
0 : Reserved tracks

The next step in our testing phase required that we write and then read files to and from the hard disk. The PIP program was used to perform this operation. We copied most of the files (assembler, source, DDT, etc.) from the floppy drives. This worked correctly. The final test came when we assembled the XIOS directly on the hard disk itself. All was indeed well. STAT was used to verify that the storage space on the disk decreased or increased correctly when files were created and deleted. The performance that was observed when we assembled the XIOS on the hard disk as compared to doing it on the floppy was approximately a 5 to 1 speed improvement.

Complete software details and listings for interfacing the IMI hard disk to the Zobex single or double density systems are available on 8" media from the author; 6 Lenox Road, Farmingdale, New York 11735.
The Best Boards
SD Prices Slashed !!!

Single User System
SBC-200, 64K ExpandoRAM III, Versaflippy II, CP/M 2.2

$995.00

4 MHz Z-80A CPU, 64K RAM, serial I/O port, parallel I/O port, double-density disk controller, CP/M 2.2 disk and manuals, system monitor, control and diagnostic software.

-All boards are assembled and tested-

ExpandoRAM III
64K to 256K expandable RAM board

SD Systems has duplicated the famous reliability of their ExpandoRAM I and II boards in the new ExpandoRAM III, a board capable of containing 256K of high-speed RAM. Utilizing the new 64K x 1 dynamic RAM chips, you can configure a memory of 64K, 128K, 256K, or 512K, all on one S-100 board. Memory address decoding is done by a programmed bipolar ROM so that the memory map may be dip-switch configured to work with either COSMOS/MPP-type systems or with OASIS-type systems.

Extensive application notes concerning how to operate the ExpandoRAM III with Cromemco, Intersystems, and other popular 4 MHz Z-80 systems are contained in the manual.

MEM-65064A 64K A & T $495.00
MEM-65128A 128K A & T $639.95
MEM-65192A 192K A & T $785.00
MEM-65256A 256K A & T $879.95

Versaflippy II
Double density controller with CP/M 2.2

$370.00

- S-100 bus compatible • IBM 3740 compatible soft sectored format • Controls single and double-sided drives, single or double density, 5¼" and 8" drives in any combination of four simultaneously • Drive select and side select circuitry • Analog phase-locked loop data separator • Vectored interrupt operation optional • CP/M 2.2 disk and manual set included • Control/diagnostic software PROM included

The Versaflippy II is faster, more stable and more tolerant of bit shift and "jitter" than most controllers. CP/M 2.2 and all necessary control and diagnostic software are included.

IOD-1160A A & T with CP/M 2.2 $370.00

SBC-200
2 or 4 MHz single board computer

$1995.00

Two Z-80A CPUs (4 MHz), 256K RAM, 5 serial I/O ports with independently programmable baud rates and vectored interrupts, parallel input port, parallel output port, 8 counter/timer channels, real time clock, single and double sided/single or double density disk controller for 5¼" and 8" drives, up to 36K of on-board ROM, CP/M 2.2 compatible COSMOS interrupt-driven multi-user disk operating system, allows up to 8 users to run independent jobs concurrently, C BASIC II, control and diagnostic software in PROM included.

-Multi-User System-
SBC-200, 256K ExpandoRAM III, Versaflippy II, MPC-4

SBC-200, 256K ExpandoRAM III, Versaflippy II, CP/M 2.2

COSMOS Multi-User Operating System, C BASIC II

$1995.00

Intelligent communications interface

MPC-4

$495.00

Four buffered serial I/O ports • On-board Z-80A processor • Four CTC channels • Independently programmable baud rates • Vectored interrupt capability • Up to 4K of on-board PROM • Up to 2K of on-board RAM • On-board firmware

This is not just another four-port serial I/O board! The on-board processor and firmware provide sufficient intelligence to allow the MPC-4 to handle time consuming I/O tasks, rather than loading down your CPU. To increase overall efficiency, each serial channel has an 80 character input buffer and a 128 character output buffer. The on-board firmware can be modified to make the board SDLC or BISYNC compatible. In combination with SD's COSMOS operating system (which is included with the MPC-4), this board makes a perfect building block for a multi-user system.

TOI-1504A A & T with COSMOS $495.00

Place Orders Toll Free
Continental U.S. Inside California
800-421-5500, 800-262-1710
For Technical Inquiries or Customer Service call:
213-973-7707

JADE Computer Products
4901 W. Rosecrans, Hawthorne, Ca 90250

TERMS OF SALE: Cash, checks, credit cards, or Purchase Orders from qualified firms and institutions. Minimum Order $15.00. California residents add 5% tax. Minimum shipping & handling charge $10.00. Pricing & availability subject to change.
NEC 7700 & 3500
NEC Spinwriter w/Intelligent Controller

Standard serial, Centronics parallel, and current loop interfaces. Selectable baud rates 50 to 19,200 baud.
• Automatic bidirectional printing
• Logic seeking
• 650 character buffer with optional 16K buffer
• 55 characters per second print speed
• Comes with vertical forms tractor, ribbon, nibble and cable
• Diode compatible software
• Available with or without optional front panel

PRD-55511 1K no front panel $275.00
PRD-55512 16K no front panel $2895.00
PRD-55515 1K w/front panel $2995.00
PRD-55516 16K w/front panel $3095.00

Intersell NEC 3500Q

New from NEC - the 3500 series Spinwriters. Incorporates all the features and reliability of the 5500 and 7700 series Spinwriters into an inexpensive 30 CPS letter quality printer with an optional bi-directional tractor assembly.

PRD-55351 3500Q 1K $1995.00
PRD-55352 3500Q 16K $2095.00
PRA-55100 Deluxe tractor option $300.00

NEC Computer Products
Printers

230 Column, 9 x 12 dot matrix, fricion feed, pin feed, adjustable tractor feed, removable handles, 8 part forms up to 9.5" wide, rear & bottom feed, paper tear bar. 100 duty cycle.

PRD-55351 12/32 column, 120 CPS, 8 x 9 dot matrix, friction feed, pin feed, adjustable tractor feed, trimmable handles, 4 part forms up to 9.5" wide, rear & bottom feed, paper tear bar, 100 duty cycle, 200,000 character print head. Bi-directional/logic seeking, both serial & parallel interfaces included, front panel switch & program control of 19 different form lengths, use inexpensive speed type ribbons, double width & allized characters, true lower case descenders & graphs.

PRM-43090 with free tractor $595.95

PRD-55352 120/32 column, 120 CPS, handles forms up to 13/2" wide, plus all the features of the 230.

PRM-43090 with free tractor $595.95

16K MEMORY UPGRADE
Add 16K of RAM to your TRS-80, Apple, or Exidy in just minutes. We've sold thousands of these 16K RAM upgrades which include the appropriate memory chips (as specified by the manufacturer), all necessary jumper blocks, fool-proof instructions, and our 1 year guarantee.

MEX-16100K TRS-80 kit $44.95
MEX-16101K Apple kit $44.95
MEX-16102K Exidy kit $44.95

16K RAM CARD - for Apple II

Expand your Apple to 64K, 1 year warranty

MEX-16500A Save $70.00 !!! $129.95

Z-80 CARD FOR APPLE II

Z-80 cards in one, Z-80 & 6502, more than doubles the power & potential of your Apple, includes Z-80 CPU card, CP/M 2.2, & 16K RAM card.

CPS-30900A A & T $299.95

8" DISK CONTROLLER

New from Vista Computer, single or double sided, single or double density, compatible with DOS 3.2/3.3, Pascal, & CP/M 2.2. Shugart & Qume compatible.

IOI-27000A 5500 & 7700 series Spin writers into an optional bi-directional tractor assembly.

5500 & 7700 series Spin writers into an optional bi-directional tractor assembly.

INEXPENSIVE PRINTERS - Epson

MX-70 80 column, 80 CPR, 5.5 x 7 dot matrix, adjustable tractor feed, graphics.

PRM-27070 List $459.95 $399.95

MX-80 80 column, 80 CPR, bi-directional/logic seeking printing, 5 x 7 dot matrix, adjustable tractor feed, 64 graphics characters.

PRM-27060 List $645 $495.95

MX-80FT same as MX-80 with friction feed added.

PRM-27085 List $745 $595.95

MX-100 100 column, correspondence quality, graphics, up to 13/2" paper, friction feed & adjustable tractor feed, 9 x 9 dot matrix, 80 CPS.

PRM-27110 List $945 $759.95

PRM-27084 Serial interface $495.95

PRM-27088 Serial inf & K2 buffer $194.95

PRM-27381 Apple card $74.95

PRM-27382 Apple cable $22.95

PRM-27386 IEEE 489 card $52.95

PRM-27387 TRS-80 cable $32.95

PRM-27385 Grafix II $69.95

PRM-27383 Extra ribbon pkg. of 2 $14.95

NEC Computer Products

Modems

CAT MODEMS - Novation

CAT 300 baud, acoustic, answer/originate

10M-5020A List $189.95 $149.95

D-CAT 300 baud direct connect, answer/originate

10M-5020A List $189.95 $149.95

AUTO-CAT Auto answer/originate, direct connect

10M-5020A List $399.95 $299.95

Apple-CAT - Novation

Software selectable 1200 or 300 baud, direct connect, auto-answer autodial, auxiliary RS-232C serial port for printer.

10M-5025A Save $50.00 !!! $325.00

SMARTMODEM - Hayes

Sophisticated direct-connect auto-answer autodial modem, touch-tone or pulse dialing, RS-232C interface, programmable

10M-5040A Smartmodem $395.95 $499.95

SMARTMODEM - Hayes

Sophisticated direct-connect autodial answer/originate modem, touch-tone or pulse dialing, RS-232C interface, programmable

10M-5040A Smartmodem $395.95 $499.95

Single Board Computer

AIM-65 - Rockwell

6510 computer with alphanumeric display, printer, keyboard, and complete instructional manuals

CPK-50105 1K AIM $424.95
CPK-50415 4K AIM $424.95
CFK-7460000E 8K BASIC ROM $64.95
CFK-5040000E 16K assembler ROM $45.95
PSX-030A Power supply $64.95
ENX-00002 Enclosure $54.95

$4K AIM, 8K BASIC, power supply, & enclosure

Special package price $649.95

Z-80 STARTER KIT - SD Systems

Complete Z-80 microcomputer with RAM, ROM, 1/0, keyboard, display, blade area, manual, & workbook

CPS-31000K KIT $299.95
CPS-3100A KIT $409.95

SYM-1 - Synterix Systems

Single board computer with 1K of RAM, 4K of ROM, keypad, LED display, 30ma & cassette interface on board

CPK-50004A KIT $249.95

Video Monitors

HI-RES 12" GREEN - Zenith

15 MHz, benchwidth, 700 lines/inch, 512 pixel phosphor, swatchable 60 or 80 column, small, light weight, & portable.

VDM-200201 List price $159.00 ... $118.95

Leedex / Amdek

Reasonably priced video monitors

VDM-801210 Video 100 12" B&W $169.95
VDM-801220 Video 110 12" B&W $169.95
VDM-801250 12" Green Phosphor $199.95
VDC-801310 13" Color I $379.95

12" COLOR MONITOR - NEC

12" monitor with audio & sculpted case

VDM-651212 Color Monitor $479.95

12" GREEN SCREEN - NEC

20 MHz, 512 pixel phosphor video monitor with audio, exceptioanlly high resolution - A fantastic monitor at a very reasonable price

VDM-651200 Special Sale Price $199.95

Video Terminals

AMBER SCREEN - Volker Craig

Detachable keyboard, amber on black display, 7 x 9 dot matrix, 10 program function keys, 14 key numeric pad, 12" non-glare screen, 96 to 28,000 baud, direct cursor control, auxiliary bi-directional serial port

VDT-351200 List price $795.00 ... $645.00

VIEWPOINT - ADDS

Detachable keyboard, serial RS232C interface, baud rates from 110 to 19,200, auxiliary serial output port, 24 x 80 display

VDT-501210 Sale Price $639.95

TELEVIDEO 950

VDT-901250 List $1195.00 ...

DIALOGUE 80 - Ampex

VDT-230080 List $1195.00 ...

$985.00
What capabilities and features should you look for in an I/O board? The answer to that question depends on your application. For example: How many peripheral devices (printers, terminals, modems, etc.) are required? Which of these devices require serial ports? Parallel ports? Do any of these peripherals require handshake signals such as RTS/CTS? Do you require interrupt capability, or is the program I/O sufficient? Is software control of parameters such as baud rate necessary? Any or all of these features and more can be obtained with I/O boards readily available today—for a price. Which brings us to the Digiac CT-810 Multi-User Support Module, an S-100 board designed expressly for systems running under Digital Research's MP/M operating system. This board provides the essential I/O features required by MP/M, plus some convenience operations that make life a little easier for the user.

First the basics. The board provides four RS-232C serial ports (75-19,200 baud) plus one input and one output parallel port. In addition, the board contains a clock which can be programmed to provide an interrupt every 16.7 milliseconds (or optionally, 33 milliseconds) as required by MP/M for task-switching and time-of-day functions. Also available are provisions for an on-board EPROM (2708 or 2716) and the necessary circuitry to jump-on-reset to the EPROM. Extended address capability is provided through an output port which controls address bits A16-A19. Now let's look at each of these major functions in a little more detail.

This is a hardware-configurable board with no provision for software control of the serial ports. All options are selected by jumpers on the board. Of the many options available, most are preselected on the board as received from the factory—except the baud rate for each serial port which must be selected by the user. (An advantage of hardware optioning such as used on this board is that no software initialization of the UARTS is required on power-up.) The port addresses on the board as delivered occupy a block from 80H through 87H. The block of port addresses can be changed to occupy any eight consecutive ports starting on either an X0 or X8 hex boundary (X = 0-0FH). There are essentially no provisions for any RS-232C handshake signals for the serial ports. (There are instructions in the manual for adding a handshake signal to one of the serial ports with some simple external circuitry.) By contrast, the input and output parallel ports can be configured to accommodate full handshake with the connected peripheral device. In addition, these ports provide or accept strobe pulses associated with the transmitted or received data respectively.

The Digiac CT-810 provides the essential I/O features required by MP/M, plus some convenience options that make life a little easier for the user.
This is the only interrupt generated by this board—the I/O ports do not generate interrupts. The interrupt rate can be selected to provide either 60 Hz (16.7 msec.) or 30 Hz (33.3 msec.) interrupt intervals. In either the 8080 mode or the Z80 mode two interrupts can be used with the clock. The board also contains a counter which counts the unacknowledged interrupts. This provides a method for MP/M to keep its time-of-day clock accurate when a high priority interrupt, such as a disk operation, prevents acknowledging the clock interrupt for a few “ticks.” The MP/M XIOS clock routine simply reads the counter (which automatically resets it to zero) and corrects the tick count accordingly.

The on-board EPROM, which is not provided, is normally addressed at OFC00H (optionally OF400H) for a 2708. The board contains a jump on reset to this location. Main system memory at 0 and that which may overlap the EPROM address space must respond to a Phantom signal from the board for these features to work properly. The EPROM can be made to disappear from the system address space by an output to port 87, and will remain out of the address space until the next system reset. Options are provided to change the EPROM address to OF000H or OF800H to accommodate a 2K 2716 (the jump on reset address can also be changed). Or, the EPROM and jump on reset can be permanently disabled if desired.

The CT-810 provides the features required by MP/M which may, in other implementations, require multiple boards (e.g., clock and extended addressing). It is an ideal board for systems which can be set to a given configuration at installation, and not require the flexibility provided by software control of its I/O functions. This is probably true of the majority of business systems in which MP/M is used.

Physically, the board appears to be well laid out and of good quality. The only minor complaint I have is that all option jumpers require soldering, although it looks like there is enough space available on the board to have provided some other method of optioning, particularly the baud rate selection. I have used the board in a Z80 system running a 4MHz for about one month with no problems. It does everything it is advertised to do without fuss or bother. I did not use the extended address capability of the board, but I have every reason to expect it works as stated. The unacknowledged interrupt counter is a simple but clever way to get around the annoyance of the time-of-day clock running late, as in a typical MP/M system which disables interrupts during disk read and write activity. It worked nicely in my system. The manual furnished with the CT-810 is complete and relatively good. However, it appears to have been written by an engineer for an engineer (which may be appropriate for a hardware products such as this). This is definitely not a manual for someone unfamiliar with microcomputer hardware.

The CT-810 is available from the Digiac Corporation for $319 assembled and tested. Digiac also makes a full line of S-100 boards—CPU, memory, disk controllers, etc.—as well as complete systems that are ready to run. They are located at 175 Engineers Road, Hauppauge, NY 11788, telephone: (516)273-8600.
Hardware Product Review

The CompuTime/QT Clock Boards

by Leo Biese and Emilio Iannuccillo

At last fall's Boston Computer show we picked up what surely seemed a good bargain—a couple of QT “S100-Clock/Calendar+” kits (List $100 a kit/$150 A/T). Unfortunately, it turned out that the bargain boards did not quite work as implied by the designation “S-100,” since they don’t work with an 8080 CPU that meets the IEEE-696 standard! A letter to Don Smith, President of O.T. Computer Systems, Inc. went unanswered for nearly one and a half months and, when received, indicated that he was unaware of this problem and would be interested in hearing about our fix. By this time the present review was underway and we did not follow-up his letter. While we were waiting for an answer we had noted the external similarity of the CompuTime ComputerWatch (their name is also on the QT board in small print, a point which we missed the first time around) and contacted them for further information. CompuTime president Gail Beaver was most helpful and kindly supplied their current board (marked S-100 880 REV B) for evaluation. CompuTime turned out to be the manufacturer of both boards and was well aware of the incompatibility problem, having revised the whole board some time ago. We will discuss the incompatibility in this review, since many of the earlier versions are still around.

The Board

This full-function clock board is remarkably simple and requires only a backup battery and few support chips for the OKI MSM5832 monolithic “Microprocessor Real-Time Clock/Calendar” chip. This 18-lead CMOS integrated circuit contains its own oscillator and divider chain, 13 four-bit I/O registers for the seconds, minutes, hours, day-of-the-week, date, and year as well as the required chip-select, read, write, and test circuits and a +/-30 sec. correction feature we use programatically. A “hold” input maintains the time while preventing rollover of the clock during a read. Leap year correction is automatic, and either 12- or 24-hour time format can be selected. Details of the registers are covered in the documentation and need not be discussed here. The board requires four consecutive I/O ports which can conveniently be selected by a DIP switch over the entire range of 0-255.

This full-function clock board is remarkably simple and requires only a backup battery and few support chips for the OKI MSM5832 monolithic “Microprocessor Real-Time Clock/Calendar” chip.

The very low power dissipation of this chip (90 micro Watts @ 3V) allows safe battery backup for several months with as little as 2.2 volts, in this case supplied by a 3.6 volt G.E. “Data Sentry” miniature Ni-Cad battery with on-chip automatic power-loss switching. The oscillator is driven by an external 32.768 Hz crystal (about the size of a 1/8 watt resistor!); and a trimming capacitor is provided to “pull” the oscillator frequency. The frequency stability for the 5832 crystal oscillator is given as +/-2 ppm for an approximate two-fold change in operating temperature or a voltage drop to as low as two volts from the nominal five volts. This is an order of magnitude of only about one second per week, so obviously there are factors that effect the clock stability other than oscillator frequency. Since the chip runs at five volts (from the standard 7805 regulator) and is warmer when on-line; and then drops to 3.6 volts and a cooler environment when on standby, the accuracy of the clock is significantly affected. This is not a real problem with our use, dating print-outs, but it would

Biese/Iannuccillo, RFD1 Murray Hill Rd., Hill, NH 03243.
have been a considerable enhancement to have the board designed so that the alternate power sources were more closely matched. One of the boards tested lost about ten seconds per day despite repeated "tweaking" of the variable capacitor. The second board lost over an hour when it was removed from the computer for about two months.

A significant design flaw is the use of a horizontal access trimmer capacitor. Since the oscillator must be touched-up daily over a period of a week or more to maintain accuracy, the board has to reside atop an extender board until this is done. A top-mounted capacitor would have been better.

In addition to the basic clock/calendar function of the 5832 chip, the CompuTime/QT boards provide four hardware interrupt times at one hour, one minute, one second, and one millisecond (approximately) which are potentially useful in real-time process control if the board is kept activated.

In addition to the basic clock/calendar function of the 5832 chip, the CompuTime/QT boards provide four hardware interrupt times at one hour, one minute, one second, and one millisecond (approximately) which are potentially useful in real-time process control if the board is kept activated. As long as the computer is turned on, the accuracy is very good; not a single second was lost during a six hour session with the National Bureau of Standards (WWV) time signals coming into the computer room. Accuracy suffers only when the computer is turned off and the board goes into the 3.6 volt stand-by mode. The board as supplied is clean, solder-masked, silk-screened and quite up to current manufacturing standards. There is plenty of kludge area available for your own special projects. The 35 page manual supplied is, if anything, too simply written and redundant—the register descriptions are presented in the theory of operation, in the programming section, and again in the appendix. The schematic is poorly done, but usable. Potential users would benefit by obtaining the OKI MSM5832 data sheet which is not supplied. Board-level manufacturers should follow the lead of the disc-controller providers and include the data sheets for "uncommon" chips with their documentation, since these can sometime be very difficult to obtain.

Several redundant sample programs in Basic are provided in the manual to set and read the clock, but we prefer our own version given in Listing 1. The program, "SETCLOCK," allows the clock to be synchronized with the national standard when accurate time measurements are needed. The U.S. National Bureau of Standards broadcasts time signals continuously on the 2.5, 5, 10 and 15 MHz shortwave frequencies that are readily received by even the most simple receiver anywhere in the continental U.S. (station WWV) and in the Pacific (station WWVH in Hawaii). In addition, the Canadian government also broadcasts universal time signals over its CHU channels on 3.33, 7.335 and 14.67 Hz. The details of the format for these signals can be found in any one of the many amateur radio or shortwave listener's handbooks.

Essentially, the world-wide time standard is kept very accurately and announced by a distinctive tone on the second, and by a voice on the minute. SETCLOCK is self-prompting, and makes use of the +/- 30 second adjust input (pin 15) provided on the clock chip. When pulsed high, this pin zeroes the seconds counter and, if over 30 seconds are on the clock, also adds one minute. First you must set the Year, Month, Day/Date, and Hours according to a menu selection, you are then advised to set the clock ahead at least one minute. Unlike the programs supplied with the board, the time is always visible on the screen (by using the direct cursor addressing of the ADM3a and similar terminals) while entries are being made. At this point you simply wait for the minute mark and hit the return key. We use a compiled version of this program. The delay (Line 1490) can be adjusted so that Line 950 rings the terminal bell synchronously with the time signals.

The main use we have for this board is to print the date on program listings and runs, thereby getting rid of some of the confusion we have been living with over the years (since we never can remember when anything was printed). While the Basic programs provided are adequate, we
CompuTime/QT Clock Boards, continued...

also wanted this facility for assembly language listings and developed the program PTIME as a CP/M transient command given in Listing 2. Constant paranoia about whether or not the clock was correct led to a nearly identical program, directed to the console, which we incorporated into our CP/M as an auto-load program (See cf. James J. Franz, "Turn-key CP/M Systems," Creative Computing, December 1979). With this modification, the time and the date is printed right below the CP/M sign-on message each time the system is brought up, and whenever a warm start is done. This allows, for example, correcting the clock if we have been on vacation and would have forgotten to reset it before printing.

Problems

The inability of this "S-100" board to work with many 8080 CPUs reminds us again that if the manufacturer doesn't say the board conforms to the IEEE-696 standard, it almost certainly doesn't and the potential user should proceed with caution.

Refer to this quote from the standard:

"2.2.3 Status Bus. The status bus consists of eight lines which identify the nature of the bus cycle in progress, and qualify the nature of the address on the address bus."

One of the the status signals is sOUT. This signal, according to the standard, indicates the type of I/O in progress. Nowhere in the standard does sOUT 'time' the type of I/O.

Another excerpt from the standard:

"2.7.5.2 The Write Strobe. The generalized write strobe, pWR*, is used to write data from the data bus into the addressed bus slave... Data out on the data bus must be guaranteed valid for a specified period both before and after the activation of the write strobe. Hence, either the leading or the trailing edge of the write strobe may be used to strobe data into the addressed slave."

Herein lies the problem with the QT board (and the earlier CompuTime version). The design completely ignored the IEEE standard relating to the pWR* strobe, and does not even have that signal coming into the board. Instead, it uses the sOUT signal not only to indicate an OUT operation to the board, but also (and improperly) to time the data onto the board. Consequently an 8080, such as the earlier CompuTime version, doesn't say the board conforms to the IEEE-696 standard, and developed the program PTIME as a CP/M transient command given in Listing 2. Constant paranoia about whether or not the clock was correct led to a nearly identical program, directed to the console, which we incorporated into our CP/M as an auto-load program (See cf. James J. Franz, "Turn-key CP/M Systems," Creative Computing, December 1979). With this modification, the time and the date is printed right below the CP/M sign-on message each time the system is brought up, and whenever a warm start is done. This allows, for example, correcting the clock if we have been on vacation and would have forgotten to reset it before printing.

Problems

The inability of this "S-100" board to work with many 8080 CPUs reminds us again that if the manufacturer doesn't say the board conforms to the IEEE-696 standard, it almost certainly doesn't and the potential user should proceed with caution.

Refer to this quote from the standard:

"2.2.3 Status Bus. The status bus consists of eight lines which identify the nature of the bus cycle in progress, and qualify the nature of the address on the address bus."

One of the the status signals is sOUT. This signal, according to the standard, indicates the type of I/O in progress. Nowhere in the standard does sOUT 'time' the type of I/O.

Another excerpt from the standard:

"2.7.5.2 The Write Strobe. The generalized write strobe, pWR*, is used to write data from the data bus into the addressed bus slave... Data out on the data bus must be guaranteed valid for a specified period both before and after the activation of the write strobe. Hence, either the leading or the trailing edge of the write strobe may be used to strobe data into the addressed slave."

Herein lies the problem with the QT board (and the earlier CompuTime version). The design completely ignored the IEEE standard relating to the pWR* strobe, and does not even have that signal coming into the board. Instead, it uses the sOUT signal not only to indicate an OUT operation to the board, but also (and improperly) to time the data onto the board. Consequently an 8080, such as the Imsai which produces valid IEEE signals, cannot strobe the power data into the clock board. The 8080 needs both pWR* and sOUT to operate properly. The sOUT signal is latched by the 8212 (on the CPU board) from long before until long after the data is valid, but the pWR* signal is needed to indicate the period when the data is valid.

These timing problems should be obvious from the diagrams supplied by the IEEE standard and the CPU manufacturers. (We will not reproduce them here.) The pWR* signal is active for a much shorter time than sOUT. The clock board latches trigger on the release of sOUT; by this time pWR* has already gone away and the data is no longer stable. (For the non-hardware types, this means that you set the clock correctly, and the next day, it reads something ridiculous like: "December 68, 1999 18:48:91 PM"—because the data wasn't caught, or latched, at the proper time in the CPU cycle.)

So why does it work with the Z80? It just so happens that the sOUT signal from the Z80 occurs at just about the same time as the pWR* signal. The Z80 has both signals and they look about the same. The Z80, however, does not latch the sOUT signal—in fact, the Z80 does not need to latch any signals, reminding us that while it may run 8080 code, the Z80 is an entirely different chip!

Note: This problem does not apply to the "Revision B" board supplied by CompuTime. They have added an extra chip (U12) to pick up pWR* in a manner very similar to our Mod-2 below; the difference being that they AND pWR* with sOUT one step later. In addition they have provided pads for connection to the bus interrupt lines.

Modifications

There are several ways to modify the board to make it IEEE compatible. (Note: while this article was in progress a board fix, without comment, was published by Zoso in Lifelines Vol.1, No.10. It is rather cryptic to say the least.)

Figure 1: Modification #1; This requires no additional components but sacrifices the interrupt timers.

MOD #1 (Figure 1): We had no need of the interrupt features, so the fix was quite easy, mainly because we then had 1/2 of U3 (7421) available as well as all of U2 (7401) and a section of U9 (7404).

1. Cut the trace from Bus #45 (sOUT) to U6 (11,13).
2. Cut the trace leading to U9 (5) at the chip.
3. Cut the traces to U2 (9) on both the top and bottom of the board next to the chip.
4. Run a wire from Bus #77 (pWR*) to U9 (5).
5. Connect Bus #45 (sOUT) to U2 (9).
6. Connect pad C to U9 (1).
7. Connect U9 (2) to U6 (11,13).
Unlock the Engineering Power of the Microcomputer

Software for TRS-80 Mods I, II & III

• Air Cond. Com. Cooling/Heating Load
• Residential Cooling/Heating Load
• Structural Space Frame Analysis
• Fire Sprinkler System
• Lighting Design
• Air Duct Design
• Accounting

10% DISCOUNT COUPON FOR TRS-80 HARDWARE

McCintock Corp.
P.O. Box 43098O, Miami, FL 33143
(305) 666-1300 Telex 441582

Before disk errors ruin your work again order BADLIM.

• BADLIM assures the reliability of your CP/M computer.
• You can use your disks 10 times longer without losing your data AND your time.
• BADLIM checks thoroughly your disk marking all the blocks which have defective sectors. The operating system will know that those sectors should be skipped.
• BADLIM is the only program that gives protection for soft and hard errors.
• The first time BADLIM will list which files in your disk are on bad sectors, so you can take action to correct it.
• But thereafter the bad areas in your disk will be automatically by-passed.
• For CP/M 1.4 single density and for CP/M 2.xx of any format and density. It is a must for Winchester as the media cannot be replaced.

BADLIM cost only $73. Whatever the reason you have to use a computer you need BADLIM. Contact your dealer or call us today:

BLAT R&D Corp., 8016 188th. St SW, Edmonds WA 98020. Phone: (206) 771-1408

DEALER INQUIRIES INVITED.

S-100 INNOVATORS:

REMOTE CONTROLLER—Innovative Features:
• Complete 256 address control—not just 16
• No ultrasonic link—prevents erratic operation
• 120,208,240 and 277VAC control—for single & 3 phase operation
• Hardware driven—requires minimal software
• Complete line of industrial switches available—to 5.5KW

REAL TIME CLOCK—Innovative Features:
• First to use LSI OKI clock chip
• Crystal controlled for .002% accuracy
• 4 software selectable clock generated interrupts
• Full clock and calendar data
• Lithium battery backup good for 6000 hours!

ENERGY WATTCHER™—Innovative Features:
• First microcomputer based energy monitor
• Clip on probes for easy installation
• Monitors Real Power, not volt-amps
• Peak Power and continuous power readings
• Single and 3 phase operation

See your local computer dealer or contact SciTronics directly for more information. Watch for future innovative products from SciTronics Inc., 523 So. Clewell St., P.O. Box 5344, Bethlehem, PA 18015 (215) 868-7220
CompuTime/QT Clock Boards, continued...

MOD #2 (Figure 2): If you desire to keep all functions of the board intact you will have to add a gate. We used a 72LS02 and called it U12.

1. Tie U12 (14) to +5 volts and (8) to ground.
2. Cut the trace from U8 (2) to U6 (3) on the solder side of the board.
3. Cut the trace from U6 (10) to U6 (4). This trace is on the component side under the socket. It must be done before assembly or the socket will have to be removed.
4. Tie U12 (2) to Bus #77 (pWR*).
5. Tie U12 (3) to U1 (9).
6. Tie U12 (1) to U6 (10 and 2).

Figure 2: Modification #2; All functions of the original board can be retained by adding a gate (U12).

<table>
<thead>
<tr>
<th>Modification</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Tie U12 (14) to +5 volts and (8) to ground.</td>
</tr>
<tr>
<td>2</td>
<td>Cut the trace from U8 (2) to U6 (3) on the solder side of the board.</td>
</tr>
<tr>
<td>3</td>
<td>Cut the trace from U6 (10) to U6 (4).</td>
</tr>
<tr>
<td>4</td>
<td>Tie U12 (2) to Bus #77 (pWR*).</td>
</tr>
<tr>
<td>5</td>
<td>Tie U12 (3) to U1 (9).</td>
</tr>
<tr>
<td>6</td>
<td>Tie U12 (1) to U6 (10 and 2).</td>
</tr>
</tbody>
</table>

Summary

To reemphasize, the modifications pertain to the QT and earlier CompuTime boards only; the current CompuTime revision B works perfectly as is. Despite the problems we encountered, we consider each of the boards to be a bargain and a valuable addition to the system. After approximately six months of use, it is hard to think of using a computer without them. The assembled and tested boards are the same price but you can save $25 by getting the QT kit and making the changes suggested here.

For real-time process control the boards are highly accurate and it seems hard to justify some of the other clock boards currently on the market for several hundred dollars. Indeed, Gail Beaver at CompuTime tells us that this is a major use of their board; for everything from timing rides at amusement parks to controlling grain elevators in Australia!

As a simple time/data board, it is a 'must' for every S-100 bus computer. Any sort of billing or reporting use of the microcomputer, such as a professional practice, requires the addition of at least a date—and many types of reports also require a time entry as well. This facility has long been standard on virtually all mini- and mainframe computers and is now available for the micro user at a reasonable cost.

For more information contact:
CompuTime, P.O. Box 5343, Huntington Beach, CA 92648; (714)536-5000.
QT Computer Systems, Inc., 15620 Inglewood Ave., Lawncle, CA 90260; (800)421-5150.
OKI Semiconductor, 1333 Lawrence Expressway, Suite 104, Santa Clara, CA 95051.

IMPL CLOCKS

For more information contact:
CompuTime, P.O. Box 5343, Huntington Beach, CA 92648; (714)536-5000.
QT Computer Systems, Inc., 15620 Inglewood Ave., Lawncle, CA 90260; (800)421-5150.
OKI Semiconductor, 1333 Lawrence Expressway, Suite 104, Santa Clara, CA 95051.

Summary

To reemphasize, the modifications pertain to the QT and earlier CompuTime boards only; the current CompuTime revision B works perfectly as is. Despite the problems we encountered, we consider each of the boards to be a bargain and a valuable addition to the system. After approximately six months of use, it is hard to think of using a computer without them. The assembled and tested boards are the same price but you can save $25 by getting the QT kit and making the changes suggested here.

For real-time process control the boards are highly accurate and it seems hard to justify some of the other clock boards currently on the market for several hundred dollars. Indeed, Gail Beaver at CompuTime tells us that this is a major use of their board; for everything from timing rides at amusement parks to controlling grain elevators in Australia!

As a simple time/data board, it is a 'must' for every S-100 bus computer. Any sort of billing or reporting use of the microcomputer, such as a professional practice, requires the addition of at least a date—and many types of reports also require a time entry as well. This facility has long been standard on virtually all mini- and mainframe computers and is now available for the micro user at a reasonable cost.
; INITIALIZE. Program begin here. Save old CPM stack for access, read the data and save it. Repeat until the 13 clock registers are read.

1110 INPUT Y
1120 IF X = 5 AND Y THEN Y = Y + 4
1130 IF X = 5 AND Y THEN Y = Y + 6
1140 CPOUS 1400 ;Send it

1150 --- Return and get the next register. We load them backwards 1w. tens and tens units.
1160 X = X - 1
1170 IF X = 10 THEN GOTO 1200
1180 GOTO 1200
1190 --- The actual clock register is changed here.
1200 OUT ADD,N ;Point to the register.
1210 OUT DAT,Y + 16 ;Send it the new data
1220 OUT ADD,N + 16 ;Read back.
1230 RETURN

1480 ROUTINE TO SYNC THE CLOCK WITH WWV OR CRU -------------------

1480 * On the west coast: WWV or WWVH on 5.0, 10.0, or 15.0 MHz
1480 * On the east coast: CRU (Canada) on 3.33, 7.335 or 14.67 MHz

1480 OUT DAT,22 ;Raise the +/- 30 sec.
1490 EOR X, TO 20: NEXT A
1500 RESTART THE CLOCK
1510 GOTO 700
1520 PRINT CHR$(26)+CHR$(1)+CHR$(T)+CHR$(S)+CHR$(P)+CHR$(E)

[LOG: JULY 11, 1981 11:34:07 PM]

; PTIME: Prints time and calendar on the CP/M console (CP/M@)
; and later (Diablo 1648) using the Computime/QT clock board
; By Emilio D. Lamuccio, 825 Hope St, Bristol, R.I. 02809
; January 1981
; Restructured by L.P. Stiee, Hill Rd., R.I. 03243 May 24, 1981

MAR/APR 1982
CompuTime/QT Clock Boards, continued...

STA @MPM+2; buffer. It's meaningless.

DAYROUTINE:

ON: ;Put Diablo in 1/120 spacing mode by sending ESC 31 2'

; If 12 hr format, then
MOV A, M
RTS

; Set it AM as PM
MOV A, P
ANL B, 0

; alias change 'A' in AM
STA @MPM

; Restore Diablo to normal spacing mode
CALL LISTER
MOV A, $F
CALL LISTER

; This is a subroutine that makes a CPM call
; to output byte in $ register to the listing device.
LISTER: MOV C, 5
CALL 5
RET

LISTDRES: MOV A, $EDH
; Now print a CRLF
CALL LISTER
MOV A, $EAH
CALL LISTER

BACKCMP: LHEH RETURNSSTACK ;Get CPM stack pointer
SPRL RET ; send BACK to CPM we go

----- TABLES and STORAGE AREA

MOVTABLE: DB 'January', 'February', 'March', 'April', 'May', 'June', 'July', 'August', 'September', 'October', 'November', 'December',

MOVTABLE: DB 'S', 'a', 't', ' ', '6', 'a', 'n', 'd', 'u', 'n', '

THESDATE: MOV A, $3
CONV
STA Y1
STORE

PRINTIT: Print buffer is now the picture wanted
for output. Send it to the console and lister.

LXI B, THESDATE ; Point to print buffer

MVI C, 9
CALL LISTER
; using CPM lineprint convention

MVI E, $EH
; print dot listing
CALL LISTER
; device, first
MVI A, $2
; output a
CALL LISTER
; CRLF then
LXI D, THEDATE
; print point to print table

NEXTLETTER: LXTH2
; start loop
CLI
; through the buffer
JZ LISTERDRES
; printing until 5 is reached
EHI
; also check for 8
JNZ DE2PRINT
; do not print 8
INX E
JMP NEXTLETTER

OKPRINT: PUSH D
; Save print buffer pointer
MOV E, A
; Get character to print
MOV D, A
; Save it

; Hardware specific for Diablo 1608

; This block in code for my Diablo printer. It prints
; the character twice, but offset 1/120 of an inch
; from each other. It gives the appearance of being
; a bold print. For a straight forward listing on any
; CPM Listing device, eliminate the code in this block
; down to End Diabo Code.

; Put Diablo in 1/120 spacing mode by sending ESC 31 2'

; If 12 hr format, then
MOV A, M
RTS

; Set it AM as PM
MOV A, P
ANL B, 0

; alias change 'A' in AM
STA @MPM

; Restore Diablo to normal spacing mode
CALL LISTER
MOV A, $F
CALL LISTER

; This is a subroutine that makes a CPM call
; to output byte in $ register to the listing device.
LISTER: MOV C, 5
CALL 5
RET

LISTDRES: MOV A, $EDH
; Now print a CRLF
CALL LISTER
MOV A, $EAH
CALL LISTER

BACKCMP: LHEH RETURNSSTACK ;Get CPM stack pointer
SPRL RET ; send BACK to CPM we go

----- TABLES and STORAGE AREA

MOVTABLE: DB 'January', 'February', 'March', 'April', 'May', 'June', 'July', 'August', 'September', 'October', 'November', 'December',

MOVTABLE: DB 'S', 'a', 't', ' ', '6', 'a', 'n', 'd', 'u', 'n', '

THESDATE: MOV A, $3
CONV
STA Y1
STORE

PRINTIT: Print buffer is now the picture wanted
for output. Send it to the console and lister.

LXI B, THESDATE ; Point to print buffer

MVI C, 9
CALL LISTER
; using CPM lineprint convention

MVI E, $EH
; print dot listing
CALL LISTER
; device, first
MVI A, $2
; output a
CALL LISTER
; CRLF then
LXI D, THEDATE
; print point to print table

NEXTLETTER: LXTH2
; start loop
CLI
; through the buffer
JZ LISTERDRES
; printing until 5 is reached
EHI
; also check for 8
JNZ DE2PRINT
; do not print 8
INX E
JMP NEXTLETTER

OKPRINT: PUSH D
; Save print buffer pointer
MOV E, A
; Get character to print
MOV D, A
; Save it
The CLK-24 from Dual Systems Control Corp. (1825 Eastshore Highway, Berkeley, CA 94710, 415-549-3854) is an S-100 board which can be interrogated by the computer to obtain month, day, year, day of the week, hours, minutes, and seconds. It can also generate vectored interrupts on every 0.97 msec, second, or hour. The board is I/O mapped and occupies two port addresses which are switch-selectable.

The board, which costs $250, is cleanly laid out and well constructed. The CLK-24 is based on the OKO Semiconductor MSM5832 CMOS chip, a derivative of the circuits used in digital watches. The clock interface is very simple, consisting of eleven integrated circuits, a few discrete components and a crystal oscillator. A particularly nice feature of the board is an on-board battery backup. Two penlight batteries continue to supply power to the clock chip when the microcomputer is turned off.

Setting and reading the clock is straightforward from either assembly language or Basic. Detailed examples in Basic are provided in the user manual which, when implemented, proved to work correctly without modification.

The manual consists of nine photocopied pages (including diagrams), and gives intelligible and well-organized guidance on the use of the board. Unfortunately, it does not include any technical information or a schematic.

My field is microprocessor applications for laboratory and medical environments, and many of them need a reliable time base for data collection. I have tried most of the advertised S-100 clock and calendar boards and found them to be erratic to various degrees. In contrast, the CLK-24 board has been reliable, accurate, and easy to use. It has weathered all sorts of power fluctuations and interruptions without ever losing or altering the time and date.

CLK-24 board has been reliable, accurate, and easy to use. It has weathered all sorts of power fluctuations and interruptions without ever losing or altering the time and date. I would recommend this module to Microsystems' readers without any reservation.

Un-can your canned software! $175. ppd

Z-80 Disassembler Feel coupled up with your canned software? Our Z-80 Disassembler recreates assembly language source files from absolute code enabling users to easily tailor programs to meet their specific needs. The Preconditioner works with the Disassembler to decode ASCII.

$75. ppd

E-Z Text A unique word processor organized around user-created text files, embellished with simple control commands, which supports such 'BIG GUYS' features as Automatic Footnoting, Table Spacing, Heading, Paging, Left & Right Margins, Proportional Spacing and MORE, at a 'LITTLE GUYS' price tag.

Great looking letters & reports!
A Timestamp For CP/M

by Chris Terry

A low-cost S-100 clock/calendar circuit and CP/M BIOS driver software.

Introduction

Although this article covers some of the same material as Fred Deadrick's clock/calendar article in the July/August 1981 issue of Microsystems, it breaks new ground in three areas:

• Discussion of generalized I/O ports circuitry.
• Alternative (and somewhat lower cost) interfacing to the MSM5832 clock/calendar chip.
• Modification of the CP/M BIOS to produce a date and time upon cold boot. The routine for this can be accessed by application programs.

Fred Deadrick's article describes an interface dedicated to one particular peripheral. The chip count is low and it presents no problems in construction. However, the 8131 magnitude comparator is becoming difficult to find; I have not seen this or the 8833 bus driver/receiver quoted in any advertisement anywhere in the last few months. Also, it has been my experience that a wire-wrap board, once purchased, gets used for a number of different interfaces, some of which become a permanent part of the system. Others are purely experimental and are removed (or at least disabled) when the experiment is finished. Thus, it is an advantage for as much of the circuitry as possible to be shared among the I/O ports, to avoid duplication.

In this article I shall therefore present the basic address decoding and strobe circuits for eight input and eight output ports. All of the chips are readily available at prices between 25 cents and $1.50 from mail order houses such as Digi-Key or Jameco. Once the logic is understood, it can be implemented with chips other than those specified. None of these circuits are new—in one form or another, they can be found on almost any S-100 interface board on the market. However, it has been some time since any general article on interfacing has appeared, and I hope that newcomers to the S-100/IEEE-696 bus may benefit from the ideas and go on to bigger and better hardware experiments. Those who are already expert interfacers can skip right to the logic diagrams and software description.

Interface Circuitry

A complete interface can be functionally divided into three parts: the computer side, the peripheral side and the software. The computer side consists of the address decoding and strobe generation circuits. These are identical in form, regardless of the type of peripheral, and can therefore be common to all I/O ports on the board. The peripheral side consists of data and control registers for input and output; the number and timing of these depends on the requirements of each individual peripheral. Some peripherals may also require signal level converters to...
YOU CAN'T BUY A FASTER S100 BUS SYSTEM

Presenting the LDP 1/2 S100 Bus System:

Standard features:
- Lightning One CPU
- 2 Serial Ports
- 2 Parallel Ports
- 128K RAM
- 600K bytes floppy storage
- MS-DOS** or CP/M-86* operating system

Options available:
- 10 MHz 8086
- 8087 - 8089 co-processor (onboard, not tacked on)
- 128K static RAM
- Multi-user option including MP/M-86
- 1.2M bytes disk storage
- 2.4M bytes disk storage
- 11.2M bytes disk storage

The LDP 1/2 system incorporates the fastest S100 bus CPU, the Lightning One™. The Lightning One, when coupled with our other fine board products offers a level of performance comparable to many large 16-bit minicomputers. Our multi-user system doesn't lose steam as with other 8-bit systems.

In addition to Lightning performance, Lomas Data Products has the widest selection of operating systems software. We offer both MS-DOS** and CP/M-86* for single user systems and MP/M-86 for multiuser systems. A wide variety of high-level languages are available including: BASIC (interpreter and compiler), FORTRAN, PASCAL, COBOL, C, and FORTH.

Call or write for our benchmark comparisons with other systems.

We have saved the best for last: Our standard system, the LDP 1 with 600K bytes of disk storage is available for just $4150.

Dealer and OEM inquiries invited.

For 16 bit computing on the S100 bus, come to the leader...

LOMAS DATA PRODUCTS, INC.
11 Cross Street
Westborough, Massachusetts 01581
Telephone: 617-366-4335
be interposed between the registers and the device (e.g.,
TTL/RS232 drivers and receivers). As an illustration of
the device side, I shall describe an assembly of flip-flops
and tri-state buffers to control and read the MSM5832
clock/calendar chip. As an illustration of the software
required, I shall describe a routine for incorporation into
the CP/M BIOS so that the sign-on message (at cold
boot) contains the current date and time, and a corres­
ponding transient program for setting the date and time.

Address Decoding
Since we are considering a block of eight consecutively
numbered ports, the common address circuitry should
decode the upper five address lines (A7 through A3) to
generate a board ENABLE signal. The three low-order
address lines are decoded by strobe generation circuits
to produce an input or output strobe for each of the eight
ports. Conceptually, the simplest way to generate an
ENABLE* is to wire the address lines (directly or through
inverters) to five inputs of a 74LS30 8-input NOR gate
(see Figure 1). However, changing the address of the
first block of the port is then a problem, because DIP
switches cannot be used—they are single-pole, single­
throw switches that are either on or off. The scheme of
Figure 1 requires jumpers from the gate inputs to the
direct or inverted address lines. And while jumpers are
feasible, they are inconvenient. With the jumpers shown,
the port addresses are from 60H through 67H.

A more convenient method of decoding is to use a
magnitude comparator such as the DM8131 (see Figure
2). This chip compares six bits. The level on the B inputs
is set by the switches and pull-up resistors; an open
switch allows the associated resistor to pull the corre­
sponding B input high. The chip produces an active-low ENABLE* signal if—and only if—the bit pattern on the
address lines matches the pattern set into the switches
(again, 60H through 67H). Since we are only applying
five address lines to the A input, the A6 and B6 inputs are
both tied to ground so that they always match. (They
could also both be tied to +5V.)

As mentioned above, you may not be able to obtain the
DM8131. One alternative is to cascade two 4-bit magnitude
comparators such as the 74LS85; another is to use
exclusive-NOR gates such as the 74LS266 or 74L288
with open-collector outputs wired together (see Figure
3). Each section of the chip produces a low output if the
two input lines are at different levels. If both inputs are
high or both are low, the output of the chip is high. Since
all five chip section outputs are hard-wired together, a
line/switch mismatch on any one address line pulls the
common output line low; the ENABLE line is high only if
the bit pattern on the address lines matches the pattern
set into the switches. Again, an open switch matches a
high address line. The open-collector chip is preferred
over the standard totem-pole chip for applications in
which gate outputs are to be wired together, because the
internal impedance of the totem-pole may be too high to
pull several gate outputs below the 0.8V logic 0 threshold
reliably. If an active-low ENABLE* signal is required,
another section of chip G2 can be used as an inverter, as
shown, or a spare section of a 74LS04 hex inverter chip
may be used instead.
FEATURES
- Conforms to IEEE 696 standard.
- 8 or 16 bit data transfers.
- 24 bit addressing.
- Bank select in 32K-32K or 48K-16K.
- Banks selectable/deselectable on DMA.
- Responds to phantom pin 67 or 16.
- 2K x 8 static rams with 2716 pin out.
- Power consumption is typically 600 ma.
- Banks on or off on power up.
- Bank addressable to any of 256 possible ports.
- 8MHz with 150ns parts standard, faster speeds available on request.
- Available partially loaded as a 32K board.
- Multiple bank residence.

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>Ext Addr</th>
<th>Bank Select</th>
<th>2716 Pin Out</th>
<th>Current</th>
<th>16 Bit</th>
<th>Speed</th>
<th>Phantom</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSM</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>600mil.</td>
<td>No</td>
<td>6meg.</td>
<td>✓</td>
<td>$850</td>
</tr>
<tr>
<td>Memory Mer.</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>350mil.</td>
<td>No</td>
<td>10meg.</td>
<td>✓</td>
<td>$795</td>
</tr>
<tr>
<td>Digital Design</td>
<td>✓</td>
<td>✓</td>
<td>No</td>
<td>990mil.</td>
<td>✓</td>
<td>12meg.</td>
<td>✓</td>
<td>$995</td>
</tr>
<tr>
<td>Static Mem. Systems</td>
<td>✓</td>
<td>No</td>
<td>✓</td>
<td>550mil.</td>
<td>No</td>
<td>6meg.</td>
<td>✓</td>
<td>$679</td>
</tr>
<tr>
<td>Seattle Comp. Products</td>
<td>✓</td>
<td>✓</td>
<td>No</td>
<td>2.5amps</td>
<td>✓</td>
<td>8meg.</td>
<td>✓</td>
<td>$995</td>
</tr>
<tr>
<td>California Digital</td>
<td>✓</td>
<td>No</td>
<td>✓</td>
<td>9amps</td>
<td>✓</td>
<td>8meg.</td>
<td>✓</td>
<td>$850</td>
</tr>
<tr>
<td>Godbout</td>
<td>✓</td>
<td>No</td>
<td>✓</td>
<td>250mil.</td>
<td>✓</td>
<td>8meg.</td>
<td>✓</td>
<td>$850</td>
</tr>
<tr>
<td>Digital Res. Computers</td>
<td>✓</td>
<td>No</td>
<td>✓</td>
<td>500mil.</td>
<td>No</td>
<td>?</td>
<td>✓</td>
<td>$539</td>
</tr>
<tr>
<td>Omniram 64</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>600mil.</td>
<td>✓</td>
<td>8meg.</td>
<td>✓</td>
<td>$470</td>
</tr>
</tbody>
</table>

Omniram 64
- 64K
- 32K

<table>
<thead>
<tr>
<th></th>
<th>64K</th>
<th>32K</th>
</tr>
</thead>
<tbody>
<tr>
<td>With 200ns. Rams</td>
<td>$470</td>
<td>$325</td>
</tr>
<tr>
<td>With 150ns. Rams</td>
<td>$490</td>
<td>$340</td>
</tr>
<tr>
<td>With 120ns. Rams</td>
<td>$550</td>
<td>$395</td>
</tr>
</tbody>
</table>

FULCRUM
Distributed by **WW COMPONENT SUPPLY INC.**
1771 JUNCTION AVENUE • SAN JOSE, CA 95112 • (408) 295-7171
I/O Strobe Generation

A convenient method of generating I/O strobes is shown in Figure 4. A strobe is a pulse that can be used to open a set of gates for a limited time, or to load a register with data. This register may be a single flag bit that is set or reset to indicate some condition, or it may have multiple bits to hold some pattern such as a binary number or an ASCII character. In this particular article, we shall be considering an input strobe as a means of opening gates to transfer several bits of data from the peripheral (the clock chip) to the S-100/IEEE-696 DATA IN bus; and an output strobe as a means of loading a register with several bits of command or time-of-day data, which will continue to affect the peripheral (the clock chip) long after the bit pattern has vanished from the DATA OUT bus.

This definition tells us something about the conditions under which a strobe is generated. First, we are going to output commands, so we shall do so through an output port, using the OUT instruction with an address. Second, we are going to send data to the clock chip (to initialize or correct it if it runs fast or slow) and also read data from the clock chip. An I/O port at a given address can be used either for input or for output (though not both at the same time).
time); since we are going to output both commands and time-of-day data, but to different parts of the clock chip, we had better use two separate ports—one for commands, the other for data. We could use either port for input from the clock chip; however, the chip has only four data lines, which are used for both input and output, depending on the current command. It therefore makes more sense to use one of our ports solely for outputting 8-bit commands, and the other for input and output of 4-bit time-of-day data. A common convention is to use the even-numbered port of a pair for status input and common output, and the odd-numbered port for data input and output. We shall therefore enable the board for addresses 60H through 67H, and use port 60H for command output and port 61H for data input and output.

The ENABLE* signal is generated by the five high-order bits of any one of these addresses. The lower three bits, which select one particular address out of the block of eight are applied to the A, B, and C address inputs of two 74LS138 3-to-8 line decoders. The ENABLE* signal is applied to the G2B enabling input on both chips, and the G1 enabling input of each chip is tied to +5V. When the third enabling input (G2A) of either chip is pulled low, one of the eight output lines (selected by the three address bits) also goes low. Thus, if we activate the G2A input of one 74LS138 during an output instruction, and the G2A line of the other chip during an input instruction, we have a means of generating either an output strobe or an input strobe for each of the eight port addresses.

The timing of the strobe is important. It should be active only when the processor has placed valid data on the DATA OUT bus during an output instruction, or when the processor is ready to accept data on the DATA IN bus during an input instruction. Fortunately, the S-100/IEEE-696 bus has signals from which we can derive the I/O READ* or I/O WRITE* signal to be applied to the G2A multiplexer inputs, and thereby ensure that the output pulses have proper timing and duration. Execution of the OUT instruction causes the processor to generate a status signal called sOUT; execution of the IN instruction produces a similar signal called sINP. Each is active high and appears when the address is stable on the address bus and before any data is transferred. These signals allow us to distinguish I/O instructions from memory read/write instructions. Likewise, when the processor has placed data from the A register on the DATA OUT bus, and it is stable, the processor generates the active-low pWR* signal. This signal in effect says "I've put data on the bus for you; take it now." When the processor is ready to accept data from a peripheral via the DATA IN bus, it generates the active-high signal pDBIN which says "I'm ready to take

SOFTWARE

<table>
<thead>
<tr>
<th>ORDER CODE</th>
<th>DESCRIPTION</th>
<th>LIST</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST</td>
<td>COMPLETE BUSINESS ACCOUNTING SOFTWARE</td>
<td>$250</td>
</tr>
<tr>
<td></td>
<td>Includes source code in CBASIC2 for General Ledger, Accounts Payable, Accounts Receivable, Payroll, Order Entry, Purchase Orders, Depreciation of Capital Goods, Mailing Lists</td>
<td></td>
</tr>
<tr>
<td>SA</td>
<td>Osborne G/L, A/R, A/P</td>
<td>$450</td>
</tr>
<tr>
<td>SB</td>
<td>Osborne Payroll w/Cost Accounting</td>
<td>$150</td>
</tr>
<tr>
<td>SCA</td>
<td>EDS Inventory for Osborne A/R-A/P w/District Functions</td>
<td>$400</td>
</tr>
<tr>
<td>SCB</td>
<td>EDS Inventory for Osborne A/R-A/P w/o District Functions</td>
<td>$250</td>
</tr>
<tr>
<td>SP</td>
<td>MAGSAM IV indexed sequential file system</td>
<td>$295</td>
</tr>
<tr>
<td>SQ</td>
<td>PRISM ADS Data base management system</td>
<td>$795</td>
</tr>
<tr>
<td>SR</td>
<td>PRISM IMS Data base management system</td>
<td>$495</td>
</tr>
</tbody>
</table>

Terms: A. Cash, Check, Money Order, C.O.D.—20% Discount
B. Master Charge or Visa—15% Discount

*Software products require CBASIC2 for operation.

EXpress

CATCH THE S-100 INC. BUS!

Move up to an 8MHZ 8086 Super System

- System Support Board
- 1 serial/1 parallel port, 8 MHZ 8086 CPU (16 Bit Processor)
- 86 DOS Disk Operating System
- Realtime Clock
- Timers
- Monitor EPROM
- 86 DOS Disk Operating System
- 64K byte (32k word) Static RAM (70 NS)
- Double Density DMA Disk Controller
- 10 Slot Mainframe w/2 Qume Data Trak 8 drives
- Assembled & Tested

LIST PRICE OVER $4300
SPECIAL CASH PRICE $3499
Assembly and check out available for $200 extra

Offer Expires March 31, 1982
Subject to Available Quantities
Prices Quoted Include Cash Discounts. Shipping & Insurance Extra.

S-100, inc.
14425 North 79th Street, Suite B
Scottsdale, Arizona 85260
Order Number 800-528-3138
Technical 602-991-7870

EXECUTIVE DATA SYSTEMS
post office box 205
roselle park, new jersey 07204
(201) 241-4887

MAR/APR 1982
By gating together the sINP and pDBIN signals to produce I/O READ*, which completes the activation of one 74LS138, we ensure that the input strobe line selected by the three low-order address bits goes low only during an input instruction, at a time and for a period that exactly corresponds to the pDBIN pulse. Likewise, by gating together sOUT and pWR (inverted pWR*) to generate I/O WRITE*, which completes the activation of the other 74LS138, we cause the selected output strobe line to go low at a time and for a period corresponding to the pWR* pulse, and thereby load data from the DATA OUT bus into a register located either on the interface or in the peripheral itself.

Simple peripherals that operate at TTL levels, such as the MSM5832 clock chip, require no other signals. We shall use the IS 1* strobe directly for opening tri-state gates to connect the clock data lines to the DATA IN bus. We shall invert the OS0* and OS1* strobes and use the rising edge of the pulse to load data from the DATA OUT bus into command and data registers.

The Clock And I/O Registers

The clock chip and I/O registers are shown in Figure 5. The command lines (Hold, Read, Write, and 30-second Adjust) are connected to the four high-order bits of a 74LS374 command register; the four address lines, which select the internal clock register to be accessed, are connected to the four low-order bits of the register. This register is an MSI chip containing eight edge-triggered, D-type flip-flops. Data applied from the DATA OUT bus to the eight input terminals D0 through D7 is loaded into the register by the rising edge of a clock pulse; here we use the OS0* output strobe inverted. Thus, data on the bus is clocked into the register by the leading edge of OS0* (which corresponds also to the leading edge of pDBIN) during an output to port 60H.

The clock data lines D0 through D3 are bidirectional. With HOLD and READ high, D0 through D3 carry a BCD (binary-coded decimal) number obtained from the internal register selected by register address lines A0 through A3. This number is gated onto DATA IN lines D10 through D13 by tri-state buffers which are enabled for the duration of the IS1* strobe generated by an input instruction addressing port 61H. DATA IN lines D14 through D17 are left unconnected, and the random data on them should be masked out by the software—additional tri-state buffers could be used to ground these lines, but it is hardly worth the effort of putting in the additional wiring.

With HOLD and WRITE high, the selected internal register is set to the value placed on the data lines from DATA OUT lines D00 through D04 via half of another 74LS374 register. This register is loaded by the leading edge of pulse OS1* (inverted) during an output to port 61H. Note that the outputs of this register are tri-stated by the READ command; this is necessary to prevent the contents of the register interfering with the clock data.

Software

The software consists of a set of subroutines for reading the date and time, which form part of the CP/M CBIOs. A separate transient program is provided for initializing or resetting data and time; this program is resident on the
LASTING MEMORY™

The LASTING MEMORY™ uses byte-wide electrically erasable PROM's (E’PROM’s) to bring ease of firmware development and non-volatile memory to the S100 bus. An E’PROM programmer on this 32K (8 bit only) board generates all required timing and voltages. Single bytes can be erased and written using normal memory write instructions. E’PROM’s can be operated and programmed in the same socket. All sockets also accommodate static RAM’s and 2716 type EPROM’s. Prices for the LASTING MEMORY™ start at $299 without memory IC’s. Call or write for pricing on additional configurations.

For your general memory needs, remember THE LAST MEMORY™ 64 K static RAM/E’PROM board for 8 bit S100 systems. Prices start at less than $100.

static memory systems inc.
15 So. Van Buren Ave. Suite 209
Freeport, Illinois 61032 (815) 235-8713
9 A.M. to 4 P.M. Monday - Friday

MC, VISA accepted
All prices net, FOB Freeport, IL
OEM discounts available
Dealer inquiries invited.
diskette as a .COM file and is invoked from the CCP in the usual manner by giving the command:

```
A>CLKSET
```

The clock read routines are invoked by a CALL inserted into the cold boot portion of the CBIOS, or from application programs via an extra JMP instruction added to the end of the standard CP/M jump vector (after the jump to SECTRAN in CP/M 2.2, or after the jump to WRITE in CP/M 1.4). These routines first read the clock registers into a 13-byte numeric array; the BCD digits are then converted to ASCII code and transferred to a string array for printing. The formatting of the string is done by the transfer routine.

Reading the Clock Register

The CALL instruction at ODABBH in the cold boot transfers control to the main clock subroutine called CLKRD at 0DCE4H in Listing 1. The first instruction in CLKRD is another subroutine RDCLK at 0DD1DH. To read the thirteen registers, at clock addresses 0 through C (see Figure 6), the HOLD line must first be asserted for at least 150 microseconds. This delay is produced by calling the DELAY subroutine. For a system with a 4 MHz clock, the delay constant NDELAY should be increased from 15H to 30H or more. Upon return from the DELAY subroutine, register reading begins. For each digit, an OUT instruction to port 60H loads the command register with READ, HOLD, and a 4-bit block register address. Data from the currently addressed internal register appears on clock data lines D0 through D3 six microseconds later, and is read by an IN instruction to port 61H.

The addressing sequence of the clock registers is shown at the top of Figure 6. The obvious procedure would be to read the registers in ascending address sequence, but each pair of digits is then the reverse of the normal printing sequence—e.g., the year appears as 18 instead of 81. The LOOP1 portion of RDCLK therefore reads the registers into the CLKTB array in descending register address order, so that upon completion of the RDCLK subroutine the array will contain the digit pairs in the more convenient printing sequence. The Year/Month/Day sequence is then reformatted for printing, and is convenient for application programs that sort records into date order. The Day of Week digit at TBUF3 can be directly used as entry into a table of day names. Note that at TBUF4, containing the tens-of-hours digit, bit 3 is set to indicate 24-HR format. This is later removed by subtracting 8 to obtain the true value.

Building The Timestamp String

CLKRD sets a pointer (in HL) to the start of the character array STRING2, and then makes repeated calls to the GET2 subroutine at 0DD3EH. GET2 fetches a pair of digits from M(BC) in the CLKTB array, adds 30H to convert them to the equivalent ASCII code, and deposits them at M(ML) in the string array starting at STRING2. The pointers are updated after each fetch and deposit. The sequence in which digit pairs are fetched can be changed by setting BC to point to the desired pair before each call to GET2. CLKRD inserts a delimiter between each digit pair ("/" between date pairs, ":" between time pairs, and spaces between the end of the date and the start of the time).

Using The Timestamp String

Listing 1 represents fragments of the CBIOS for a 56K CP/M 2.2 system using a Tarbell controller. The subroutine CALL to CLKRD is inserted into the cold boot routine at ODABBH. The null terminator at the end of the sign-on message (SMSG at ODC95H) is removed, and two further portions of message are added: "Logged on" at STRING (0DCB7H), and the STRING2 array, pre-initialized. CLKRD overwrites the string. The null terminator is placed at the end of STRING2. Thus, when the cold boot calls its printing routine PMSG, the timestamp is printed as part of the sign-on message (see Figure 7).

Figure 7: Log-On Message.

```
Logged on 09/23/81 14:36:53
```

Care must be taken to keep the CLKTB array and STRING2 within the body of the CBIOS. If these items are included in the data area at the end of the CBIOS, they may be overwritten by BDOS.

Application programs may call CLKRD via an extra entry in the standard jump vector (placed after the jump to SECTRAN), and then copy either the BCD data or the string into a local data area for processing or printing. However, STRING2 does not end with a ".". It is therefore better to include the clock reading routines and arrays in the application source code and reassemble. This procedure allows greater freedom in formatting and permits printing via a standard BDOS call to Write Buffer function.

Initializing and Adjusting the Clock

The CLOCKSET program is seldom used once the oscillator frequency has been correctly adjusted by means of the variable capacitor. However, a means of resetting the time is required when there is a change from summer to winter time and vice versa. CLOCKSET is therefore set up as a disk-resident utility executed in the TPA as and when required. As for the read, HOLD is raised for 150 microseconds to prepare the chip, WRITE is then raised, and eleven successive commands are issued, each consisting of HOLD, WRITE, and a register address. Each command is directly followed by a data transfer of the digit to be placed in that address. The command/data sequence takes place in writing loop WRLO: at 162H in Listing 2. The data are entered via the keyboard into a buffer, from which they are transferred to the clock when the space bar is hit on a time signal. The routine is given in Listing 2, and the prompts are shown in Figure 8.

CHRIS TERRY was educated in England as a linguist, with an M.A. from the University of Cambridge and technical training in the Royal Corps of Signals during WWII. He came to the USA in 1958, and has worked as a technical writer for various publishing houses and digital equipment manufacturers. Chris has been with the Systems Development division of Dun & Bradstreet, Inc. since 1974.
The text appears to be a listing of assembly code, likely for a computer program, but it is not entirely clear due to the formatting issues. The code is written in a style that suggests it is for a microprocessor or similar device. The code includes instructions for handling ASCII characters, managing buffers, and interacting with hardware registers.

Some key points from the code:
- There are instructions for handling ASCII characters, likely for a display or printer.
- The code includes instructions for reading and writing to hardware registers, such as those used for handling the clock data.
- There are also instructions for error handling and checking whether certain conditions are met (e.g., checking if a character is available).

Overall, the code appears to be a part of a larger program that handles various inputs and outputs, likely for a system with a real-time need, such as a clock or another device that requires frequent updates or interact with external hardware.
CLOCK READING ROUTINES

; DEFINE PORT PARAMETERS
0000 = CT1A EQU 60H ; Clock Control, Output only
0001 = CT1B EQU 61H ; Date Port, Read or Write
0000 = CHPD EQU 62H ; Clock Chip Parameters

; DEFINE CHIP COUNTERS
0010 = CT2A EQU 80H ; Address for seconds
0011 = CT2B EQU 81H ; Address for minutes
0012 = CT2C EQU 82H ; Address for hours
0013 = CT2D EQU 83H ; Address for days
0014 = CT2E EQU 84H ; Address for months
0015 = CT2F EQU 85H ; Address for years

; DEFINE SYSTEM PARAMETERS
0003 = MONT EQU 060H ; Day of month
0036 = SCRN EQU 063H ; Screen buffer
0037 = READ1 EQU 0637H ; Read buffer
0028 = LBUF EQU 026AH
002A = CI EQU 002A... ; Clock buffer

; Define 100H
0100 = ORG 100H

; DUMMY DRIVER

; CLOCK INITIALIZATION ROUTINE

; Clock Initialization and subsequent Time Request.

; Clock-Calendar Initialization:
; Enter Date, day of week time under prompt marks.
; When ready, press Space to initialize clock.

; Figure 8: Clock Initialization and subsequent Time Request.

; Notes: when initializing the clock, seconds are automatically set to 00.
Announcing... Brings to CP/M Some of the BEST FEATURES of UNIX!

Available for adoption by: CP/M SOFTWARE DEVELOPERS
CP/M SOFTWARE USERS

Console Input/Output Redirection
- Send Console Output to a File instead of or in addition to the screen
 Example: stat *. > status - sends "stat" output to file "status"
- Take Console Input from a File instead of the Keyboard
 Example: ed filename < script - takes "ed" commands from the file "script"
- Indispensable for: graphic debugging, saving exact Screen Output for documentation, etc.

Automatic Command File Search Path
- MicroShell finds your program. User concentrates on the big tasks, MicroShell does the details
 Permits development or data files on one drive and all programs on another
- User-specified file types for Automatic Search. Example: ".com", ".int", etc.
- User-specified Search Path. Example: Current Drive 1st, then Drive A, etc.

Multiple Commands Per Line
- User types a logical group of commands to be executed
 Example: compile file; link file; file
- MicroShell executes the commands one at a time

Direct Command File Execution
- Files of CP/M or MicroShell commands are executed by MicroShell simply by typing file name
- User-specified File Type. Example: ".com", ".int", etc.
- Argument substitution ($1, $2, etc.) as with CP/M SUBMIT/XSUB

Additional Features
- User definable prompt with Disk Drive and/or User Number optional
- Install program to customize MicroShell to user's needs & system
- Others - ORDER MANUAL FOR FULL DETAILS

CP/M 2.2/32K Required

ADOPTION FEE:
- Manual Only: $150.00
- VISA, Check or Money Order
- (VA residents add 4% sales tax)

NEW GENERATION SYSTEMS, inc.
Mail or Phone Adoption Requests to:
2153 Golf Course Drive
Reston, VA 22091
(703) 476-9143

SOFTWARE & NEWS FOR MICROPOLIS

MOOS/CP/M: For use on Micropolis S-100 drives. VG, EMBY, COMPLAB, CSS, CSS, IMSA, POLY, BLACKHAWK.
Distributor for over a dozen S/W vendors, incl. BON-DO, DATAFAST & SYSTEMATION. Dozens of programs:
Languages, Unis, Apple's, Games. Cat. 62

BASIC & 2 Compilers
- BASICS & 2 Compilers... $295
- UTI-1: Set of 9 MOOS utilities. Incl. MOOS to CP/M, CP/M to MOOS translator... $39
- SORT, A, SORT B MOOS/CP/M stem lg sets... $ 75
- REACT, Calendar Reminder-Activity (MOOS)... $ 50
- DATA BASE II (MOOS)... $ 50
- TEXTWRITER, Text Formatter (MOOSX/CP/M)... $125
- BANKING, Pers/Bus Banking Activ. (MOOS)... $ 75
- BOOKKEEPING in MicBasic or BASIC-80... $50
- MAUSYS I (MOOS)... $ 50
- MAKEME-1 (MOOS)... $ 40
- MICROPOLIS USERS GROUP, Moby news's... $ 18
- MUG Lib. Disks, 11 MOOS Vols. ea... $ 15

Products postpaid to N. Amer. Add $7 elsewhere. All funds in U.S. dollars. VISA & MC accepted at 10% of cash price.

DAMAN
- Ste. 203, 604 Springwood Cir./Huntsville, AL 35803
- (205) 881-1697

NorthStar BASIC UTILITY SET
- **EDITOR** — Create & edit a Basic program using 26 commands, including GLOBAL locate & change.
- **BPR** — Print & cross reference a Basic program.
- **BAK** — Pack a Basic program.
- **RE** — Rename a disk file, plus $1.50 shipping.

S69 Calif. Res. add 6%.
Check, VISA, M C

Software Systems
1265 Ruby Vista Road, Altadena, Calif. 91001
(213) 791-3202
Increase the speed of a Diablo printer by 50% by using the ETX/ACK protocol.

How the Diablo Operates

The Diablo is capable of receiving 120 CPS (characters per second) from a computer. These characters are stored by the Diablo, which then proceeds to print them at 45 CPS. As a result of the discrepancy between these rates, the Diablo must store any characters which it is not yet ready to print. The storage area is called the print buffer. The Diablo 1610/1620 is capable of storing 158 characters. If too many characters are sent to the Diablo too quickly, a buffer overflow will occur. The last 158 characters sent to the printer (being stored in the print buffer) are erased, and not printed. The computer is not informed of such a buffer overflow. Thus, an overflow can result, as in the loss of the middle of a paragraph in a paper, or by wreaking havoc in a computer that is printing out bills or checks.

As you can see, a computer that is operating the Diablo at full speed must take precautions to prevent a print buffer overflow. The computer cannot constantly transmit to the printer at 120 CPS—it must allow time for the printer to “catch up.” The method used by many computer vendors to prevent buffer overflow is to run the printer at only 30 CPS. This means that the computer can send a maximum of thirty characters per second to the printer. The reason that this method is used in many systems utilizing the Diablo is that it is so simple. Because the computer is transmitting characters at a rate slower than the printing rate of the Diablo, there is no way that a buffer overflow can occur. However, this method wastes the Diablo’s high speed capability, since it operates the Diablo at two-thirds of its full speed.

One of the best methods of preventing the buffer from overflowing is called ETX/ACK protocol. In this method, a program transmits the information to be printed in fixed length, 158 characters, “messages.” The reason for this specific message length is that the print buffer in the Diablo (the place where messages to be printed are stored) is capable of holding a maximum of 158 characters. Each of these messages must end up with a special character called ETX. ETX stands for “End of Transmission.” When the Diablo receives an ETX, it does not print out “ETX”—ETX is not a “printing character.” Rather, it transmits a character called ACK back to the computer. ACK stands for “Acknowledgement”—the printer is informing the computer that it received the message sent to it and has finished printing it. The computer may now send the next message to be printed.

The computer does not have to send the 158 characters of a message consecutively. For example, it may send thirty characters, then three characters, then eighty characters, and so on. As long as the computer transmits ETX after every 157th character and waits for receipt of ACK, the print buffer in the Diablo cannot overflow. As you can see, this method is independent of the baud rate—it does not matter how fast characters are being sent to the printer. The print buffer never overflows, yet the Diablo can be operated at its maximum rate.

The Hardware Modifications

To utilize the Diablo at its full speed, two hardware modifications must be made. One is made in the Diablo, the other is made within the computer. First, I will describe the change that must be made in the Diablo.

Gary Sabot, 38 Woodlawn Rd., Roslyn, NY 11576.
AUTO-CHEQUE™

Here is the answer to all your bookkeeping needs! A complete personal checking system from California Digital Engineering. In addition to the general ledger, it can also assign tax categories, break rent and phone lists into business and personal based on percentage, put credit card sub-entries in appropriate tax entries, and give you balance after checks are entered. The smart search program can locate any entry. The program also prints checks, converting the dollar value to plain English and putting it on the appropriate line. And there are built-in protections so you won’t accidentally wipe out files. The complete Autocheque program is available in North Star Basic at a cost of only $85.00.

MAGIC TYPEWRITER™ is C.D.E.’s unique, all-purpose word processing and database management tool. It eliminates the need for separate programs for separate tasks. It offers not only a sophisticated text formatter, but a fast-sort, a mailing list program, and other special purpose features. You may examine any file on the disk without disturbing the file on the screen. Available in CP/M and North Star DOS at a cost of only $175.00.

All disks are in the CP/M format except where North Star DOS is indicated. Please let us know whether you require 5¼” or 8” disk, single or double density, single or double sided, soft, 10 or 16 sectors. North Star users indicate CP/M or DOS format. Please include $2 postage and handling with each order. For our complete brochure, write or call (213) 661-2031.

See us at the
WEST COAST
COMPUTER FAIRE
San Francisco, March 19-21

Adventure

The classic computer game

California Digital Engineering offers the fastest running version of this classic game available for a microcomputer. It returns instant response to hundreds of commands. This is the complete game, exactly as Croucher and Woods intended it, implemented by Chuck Crayne. Explore the colossal caves—over a hundred rooms! Steal treasures! Cast magic! Kill dwarves! Run from dragons! Get lost in the maze of twisty little passages! The Rubik’s Cube of computer games. You won’t be heard from for months! Only $35.00 in CP/M.

C.D.E. HAS DISKS

Our disks are certified for two years, and include hard holes. Sold only in boxes of ten.

5¼” double density
(Specify soft, 10 or 16 sectors)
Single sided 27¢
Double sided 33¢
8” single density 34¢
8” double density 39¢

Sturdy, interlocking DISK BANK cases for safe storage or transporting of disks stack vertically or horizontally to build a useful system to your specifications. DISK BANK holding ten 5¼” disks is $7.95, and for ten 8” disks, $9.50.

CALIFORNIA DIGITAL ENGINEERING™

P.O. BOX 526 ★ HOLLYWOOD, CA 90028
Diablo Printer, continued...

Initially, the Diablo must be "informed" that it will be receiving characters at 1200 CPS. If you own a Diablo 1640/1650, this is quite easy to do. Remove the front panel with the label on it. Immediately below, there are several rows of DIP switches. Turn on the switch adjacent to the caption "1200 Baud" and turn off any other baud rate switch, such as "300 Baud."

If you happen to own the older Diablo 1610/1620, this change will be more difficult. The entire top of the Diablo must be taken off and a specific circuit board removed. A jumper must then be installed and the Diablo reassembled. Because the exact location of the jumper will vary depending on how old your Diablo is (older models have the jumper in a different location), I suggest that you refer to your Diablo manual for specifics. Section 5.5.2, "Jumper Installation/Removal," explains how to open the Diablo and gain access to the circuit boards, and section 5.5.2.1, "1200 Baud," indicates the proper location for the jumper. In my Diablo, the jumper location is on the left-front circuit board (see Figure 1). I used a short piece of bare wire as a jumper and taped it into place instead of soldering; consequently, I can easily remove the jumper at a future time. If you prefer, you can order a jumper-plug, Diablo part no. 10634, instead of making your own.

The second hardware change is made inside your computer. You must change the baud rate of the serial interface that is connected to the Diablo to 1200 Baud. The procedure used to make this change is different for each computer. In some computers, it is done by changing the position of DIP switches within the computer, while the others require jumpers to be soldered. Unless you own a NorthStar Horizon (for which I will detail the required procedure), you will have to refer to your computer's manuals. A local computer store, or your computer's manufacturer, should be able to offer assistance if you run into problems in this area.

In my computer, the NorthStar Horizon, the baud rates of each of the two built-in serial ports are controlled by a "DIP header" that may be found at location 2D. (See Figure 2.) Some of the wires on the DIP header control the baud rate of the left serial interface (the one closest to the left side of the computer, away from the disk drives) and others control the baud rate of the right serial interface (the one closest to the disk drives). (See Figure 3.)

If you are using a video terminal, such as the Hazeltine 1500, then it will probably be connected to the left serial port and the Diablo will be connected to the right serial port. However, if you are using a memory-mapped video board rather than a video terminal, then the Diablo will probably be connected to the left serial port (the right serial port may not even be installed!). Follow the cable that connects the Diablo to your computer to determine which port is connected to the Diablo in your system. Then, remove the DIP header from the location 2D in the computer.

If the Diablo is connected to the left port, remove (desolder) the wire which presently connects pins 3, 4, and 11. Solder in a new wire connecting pins 3, 4, and 13. Return the DIP to the Horizon.

If the Diablo is connected to the right serial port, remove (desolder) the wire which presently connects pins 5, 6, and 11. Solder in a new wire connecting pins 5, 6 and 13. Return the DIP to the Horizon.

The Software Modifications

If you use the Electric Pencil for word processing, then your system is now ready. ETX/ATX protocol is automatically used by all of the Diablo versions of the Electric

Figure 1. Jumper location on Diablo circuit board.

Figure 2. DIP location on North Star Motherboard.

Figure 3. Diagram labeling the North Star serial interfaces.

Figure 4. A BIOS sample printer output routine.
Although the modifications that I have detailed may seem complicated, they are actually not difficult to implement. The end product, a printer that runs at least 50% faster, is a joy to work with and a pleasure to behold. •

The first step in modifying the BIOS is to obtain an assembly language listing for the BIOS of your particular CP/M. Then, where the printer output routine appears (such as the sample in Figure 4), substitute a routine like the one contained in Figure 5, which incorporated ETX/ACK protocol. Remember to substitute the correct port numbers (such as the sample in Figure 4), substitute a routine like the one contained in Figure 5, which incorporated ETX/ACK protocol.

Remember to substitute the correct port numbers for your system (the sample has been set up for the Horizon's left serial port). Now, assemble the new BIOS and insert into your CP/M. The exact method for "inserting" the BIOS into CP/M may be found in the CP/M manual.

The preceeding paragraph indicated how to modify two word processing programs so that they use ETX/ACK protocol. If word processing is the sole use of your system, then no further changes need be made. However, other programs will be using the printer (i.e., MBasic, which may send program listing to the printer), then the Input/Output routines (BIOS) within CP/M itself must be modified so that they use ETX/ACK protocol. This is easier than attempting to separately modify each of the programs that your system may run. Remember that this modified CP/M should be used only with programs that do not already incorporate ETX/ACK protocol (i.e., do not use it with Electric Pencil)

The documentation also explains how to virtually change your Z-80 machine into a TRS-80 without making a single hardware change. The documentation also includes an example of patching SARGON II** into a Z-80 system. The price is $30 or FREE with the purchase of on assembled compuprism or super compuprism unit.

Add $15 to A & T price for 16 level grey scale. Add $15 to A & T price for memory management part.

If you wish to use Word Star (another word processing program), you must first run the INSTALL program that comes with Word Star, and when INSTALL shows its "Communications Protocol Menu," select choice "E," for ETX/ACK protocol. Then, a routine that can input characters from the printer must be patched into Word Star—the required procedure is described in the Word Star Manual.
The DOD does not recognize dialects of the Ada language, whether by supersetting or subsetting.

Ralph E. Kenyon, Jr., 1886 West Main Rd., Portsmouth, RI 02871.

*Ada is a trademark of the U.S. Department of Defense (Ada Joint Program Office).

The DOD does not recognize dialects of the Ada language, whether by supersetting or subsetting.
Software for NorthStar Users

EXPENSE PROFILE $29.95

Now a program that really helps at income tax time. It summarizes expenses by categories and by person. Makes SEPARATE vs JOINT TAX RETURN comparisons simple.

Promotes frequent review of spending habits. Guided by MENUS, add new expenses, categories, and users anytime. Quickly search to any item to make changes. Store expenses on disk automatically.

DYNAMIC BUDGET $29.95

Cope with rapidly changing economic conditions. Forecast effects of INFLATION on your family. CALENDAR built-in so recurring items like rent entered only once.

Monthly listings of expenses, income, and balance. Change or add items anytime, data automatically stored on disk.

PATHFINDER DISASSEMBLER $22.50

Z80 or 8080 code. Pauses at each jump or call to allow you to follow program or continue straight ahead. Printer & video output.

KID MATH $17.50

Math drill. Watch speed, accuracy and confidence grow.

TAX FORMS $49.50

First class postage paid in U.S. MD residents add 3% tax.

The Software Connection

10703 Meadowhill Rd.
Dept KB
Silver Spring, MD 20901
Introducing a smaller, faster, better Speller.

SPELL, a new spelling proofreader, recognizes over 50,000 English words. And it uses a dictionary which has been crunched by sophisticated algorithms into less than 32K bytes. That leaves more disk space for your documents. And because the whole dictionary fits into memory, SPELL runs faster than other spelling programs.

SPELL is engineered for ease of use. With a single keystroke, you can mark a questionable word in your original document, or add it to the dictionary. And it works with files generated by most editors and word processors, including WordStar and Magic Wand.

What else about SPELL is smaller and better? Its price: only $49.95. Add $3 shipping for 8" CP/M disk, $2 for 5" Heath/Zenith CP/M or HD/DS disk. Mail order, CA residents add tax.

Circle reader service card for our catalog of over 20 software products.

The Software Toolworks
14478 Gioretta Drive, Sherman Oaks, CA 91423 (213) 986-4885

Developed by: Dr. Robert Wesson, professional computer scientist.
MULTI USER...

Tried and true
SIO - 4A BOARD

4 Serial RS - 232 I/O Ports for the IEEE S - 100 Bus.
Current Loops on 2 ports. Asynchronous UARTs. Status
handshake for fast printers. Baud rates from 4.7 Baud
to 38.4K. Crystal time base.
$249.50 Assembled and tested.

Brand New! PSIO BOARD

All the features of the SIO - 4A on a 2 serial plus 2 parallel
ports. Full handshake. Card edge connectors (Prewired
connector cable RS - 232 or solder tabs) RS - 232 RTS
and CTS signals. Board may be strapped for any pin
out. serial & parallel addressed independently.
$249.50 Assembled and tested.

THETA LABS INC
SINCE 1969
ALL THETA LABS INC. PRODUCTS ARE WARRANTED FOR ONE YEAR
P. O. Box 20337, Dallas, Texas 75220 (214) 351-6093
Please add $1.50 for shipping in U.S.A.

PROBLEM:
How to mate your CP/M or ISIS system to the
Z-8000
(without losing all your present capabilities)

SOLUTION:
ZEX is the software connection which permits
Z-8000 applications to run under your cur-
rent operating system, resulting in portable
16-bit software which runs under CP/M or ISIS! And ZEX
is user-configured for any Z-8000 alternate bus master, so
that it can support your prototype hardware, as well as
commercially available Z-8000 boards.

ZAS is a complete Z-8000 Development Package,
which includes a powerful relocatable
cross assembler (ZAS), a flexible object task
builder (ZLB), and an absolute object loader (ZLO), as well
as the ZEX run time module. The package was developed
specifically for the Z-8000, and supports the complete
Little-Ada instruction syntax for both the Z8001 and Z8002,
including support for mixed segmented and non-
segmented code.

ZAS Package CP/M .. $395
ISIS II .. $495

Manual Only .. $25

SUPPLIED ON SINGLE DENSITY 8" DISK
CP/M Digital Research, Inc. ISIS II Intel Corp.
Box C Norwood, CO 81423 (303)227-4898

Little-Ada, continued...

Little-Ada, continued...
DEVELOPMENT TOOLS

Simplify your S-100 product development with our 10”x10” double-height wirewrap prototype and extender cards

10” HIGH PROTOTYPE BOARD
- Regulators provide 5V @ 4A, ±12V @ 1A
- Accepts over 120 IC's plus 3M-type connectors
- Heavy power distribution with 28 distributed 0.1 ufd caps
- Price $119 ea., 3 for $298

13” HIGH EXTENDER CARD
- Scope probe hanger on each trace
- Ground trace between signal lines
- Heavy power traces with removable jumpers for current measurement
- Price $68 ea.

WORD/BYTE WIDE ROM SIMULATOR
- Simulates 16K bytes of memory (8K bytes for 2708 and 2758)
- Simulates 2708, 2758, 2516, 2716, 2532, 2732, 2564 and 2764 PROMS
- The simulated memory may be either byte or 16-bit word organized
- No S-100 memory is needed to hold ROM data
- Driver program verifies simulated PROM contents
- Price $495 each

Inner Access Corporation

P.O. BOX 888 • BELMONT, CALIFORNIA 94002 • (415) 591-8295

No downloading – No trial PROM burning. This port-addressed RAM on your S-100 host is the ROM of your target system

LEARN FORTH NOW

Take our intensive one-week FORTH workshop. Enrollment is limited to 8 students. The course is offered once a month at $395 per student.

Now you can develop code for a target Z8000 system on your 8080/Z80 CP/M® or Cromemco CDOS® based system

Z8000 FORTH DEVELOPMENT SYSTEM
- Works with the Zilog Z8000 Development Module and may be easily tailored for use with other Z8000 target machines
- Includes Z8002 assembler
- Can produce code without header and link words for up to 30% space savings
- Can produce ROMable code
- 79 Standard FORTH
- Price $1450

Develop FORTH code for any target 8080/Z80 system on your current 8080/Z80 or Cromemco CDOS based system

8080/Z80 METAFORTH CROSS-COMPILER
- Produces code that may be downloaded to any 808 or 8080 processor
- Includes 8080 and Z80 assemblers
- Can produce code without headers and link words for up to 30% space savings
- Can produce ROMable code
- 79 Standard FORTH
- Price $450

While CP/M and the various versions of Microsoft Basic are undoubtedly the most widely used operating system and language available for the microcomputer today, the printer facilities in both can be very frustrating. Consider the following practical problem: You have just made a minor change in your master file copy of CBIOs and want to print only page fourteen. Not a chance! You can do a control-P and TYPE the whole thing. If you try to use 'TYPE' to go through the first thirteen pages on the screen and stop the listing with control-S, you are in for trouble. As soon you hit control-P to switch to the printer, CP/M thinks you are negating the previous control-S and promptly dumps the remainder of the program on the screen. A related problem occurs when you are printing a listing and want to stop before the bottom of the page. At 300 baud and up, human dexterity is just not fast enough to hit that control-S at the end of a line.

You usually end up leaving off the last few letters or printing out the first few letters of the following line, both of which end in curses, wasted paper and starting over. A friend of ours thought he had this problem licked by adding forty wait states after a carriage return. This gave a nice usable pause, but he was somewhat chagrined to learn that the lines were indeed printed out at the specified 300 baud, while the overall throughput was about 10 baud!

With Microsoft Basic the problem is even worse. Back in the "good old days" (1978) Microsoft had a CONSOLE statement that for some inexplicable reason was left out of later versions. Even this was only a partial solution at best. Several recently published schemes for implementing printer control involve POKEing the CP/M IOBYTE and retrieving the CONSOLE statement. This is a valuable help when you have a program that you may wish to direct to the printer one time and the screen the next. This solution is of no help when you have to debug a long program that you will eventually want to go to the printer. This was forcibly illustrated during the recent development of an accounting system requiring many lengthy reports. Each change in the program required printing out four or more identical pages while the next page was being "cleaned." One alternative was to write the whole thing in PRINT statements and then go back and change them to LPRINTS. Another solution was to go back to school, learn structured programming, buy a compiler and do it right the first time. Neither seemed very attractive.

All these problems were quite easily solved with two minor changes to the BIOS. Simply alter the BIOS to recognize front panel switch #8 (arbitrary) to toggle the printer only at the end of the current line being printed. These changes simply involve sandwiching six lines into CP/M's character output routine, forcing it to first look at the front panel, and if switch #8 is on, to send output to the assigned Console and Lister devices simultaneously. Once this is accomplished the lister routine must look at panel switch #9 and, if on, halt temporarily at the first carriage return encountered.

Listing 1: Changes to the CP/M console output routines to check if panel switch #8 is on and send output to both the console and the list device if TRUE.

```assembly
; WRITE A CHARACTER TO THE CONSOLE DEVICE

CONOT: MVI A,0DH ;IF IT'S A CR
CMP C
JZ CONUL ;TO NULL ROUTINE

**
FIRST PRINT THE BYTE
JMP SWITCH8

CONOT1, {LEAVE AS IS}
CONUL, {LEAVE AS IS}
CONUL1, CALL CONOT1

MVI C,0
OCR B
JNZ CONUL1!
POP SWITCH8, IN 0FFH
ANI 01
MOV A,C
JNZ LIST
RET

** TEST FRONT PANEL
SWITCHES: IN 0FFH

ANI #1
**
MOV A,C
**
JNZ LIST
** TO LISTER IF #8 ON
RET
```

Leo P. Biese and Emillio Iannuccillo, RFD #1 Murray Hill Road, Hill, NH, 03243.

82
CP/M® SOFTWARE

NEW PRICES

For The Small Computer System

ACCOUNTING
- GENERAL LEDGER
- ACCOUNTS RECEIVABLE
- ACCOUNTS PAYABLE
- PAYROLL
- JOB ACCOUNTING
- FUND ACCOUNTING
- CASH RECEIPT DISBURSEMENT
- DEPRECIATION SCHEDULE

GENERAL BUSINESS SYSTEMS
- MFG. INVENTORY
- WHOLESALE RETAIL DISTRIBUTION
- MEDICAL DENTAL SYSTEM
- STUDENT RECORDS/SCHEDULING
- PROPERTY MANAGEMENT
- PROPERTY MANAGEMENT A-T
- PROPERTY ANALYSIS SYSTEM
- INSURANCE AGENT SYSTEM
- MONEY MAESTRO-HOME BANKING

MODELING, PLANNING & ANALYSIS
- MINI MODEL
- STAMPA
- MICROSTAT
- SUPERCALC
- CALCEX
- microMP/mPath
- WORKSHEET
- TARGET/PLANNER
- FORECASTER

TIME, BILLING & SCHEDULING
- LEGAL TIME ACCOUNTING
- LEGAL BILLING & TIMEKEEPING
- PROFESSIONAL TIME ACCOUNTING
- CLIENT BILLING
- DATEREM
- MILESTONE

LANGUAGES
- µP/BASIC
- BASIC
- BASIC
- BASIC
- CBASIC
- CBASIC
- TINY C
- TINY C
- C

COMPILERS
- COBOL
- BASICS
- FORTRAN
- FORTRAN
- FORTRAN
- FORTRAN
- FORTRAN

MAILING LIST
- POSTMASTER
- MAILING-LIST

TELECOMMUNICATIONS
- ACCESS
-娛樂

ORDER INFORMATION
- CALL TOLL FREE 800-338-2310

CIF M® DEVELOPMENT TOOLS
- ZUD
- MAC
- MDOS
- DEEP "B"
- XTERM
- MACRO-80

SORTING
- MICROCOMP

CIF M® BOOKS
- CP/M HANDBOOK
- CP/M USERS GUIDE
- CP/M PRIMER

SYSTEM REQUIREMENTS
- COMPATIBILITY WITH CP/M
- SOFTWARE LISTED

CORNERSTONE SOFTWARE

PO BOX 5151 ● SAN JOSE, CA 95150

TOLL FREE 800-338-3160 CALIF (408) 290-0500

DEALER INVITATIONS WELCOME

COPYRIGHT © 1981 CORNERSTONE SOFTWARE

ALL RIGHTS RESERVED
Listing 2: Additions to the CP/M BIOS to force the Lister device to look at front panel switch #9 and halt at the first carriage return if TRUE.

LINUL1: CALL LIST1 ;PRINT CR FIRST
MVI C,0 ;GET NULL CHARACTER
JNZ LINUL1 ;AND GET THE NEXT NULL
;** ROUTINE TO HALT PRINTOUT AT THE END OF THE CURRENT LINE IF PANEL SWITCH #9 = TRUE
SWITCH9: IN 0FFH ;** LOOK AT FRONT PANEL
ANI 02 ;**
JNZ SWITCH9 ;**
POP B ;RESTORE B&C
RET

The additions are given in Listings 1 and 2, and are indicated by a [*] in the remarks column. The unmarked code is as received in the Tarbell version of CP/M CBIOS Version 1.4 with all labels preserved.

No Front Panel?

The software alteration has been eminently satisfactory for the past two years. Recently, however, we acquired an S-100 machine without a front panel and trashed our "Impossible Dream" [the Imsai front panel] after years of arbitrary problems. After most of the difficulties were solved, or at least accepted, it developed the curious habit of halting the CPU for no apparent reason. Plus, it almost always stopped just before the operator could save a long program. The front panel was replaced with a clean, brushed aluminum one and a Z-80 CPU was installed along with a monitor with a monitor program in ROM that did everything the panel did—better and faster. After living without printer control for a few months, the situation became unbearable and the hardware modification shown in Figure 1 was constructed.

This substitute for front panel switches is a simple, one-evening project (with readily available parts), and can be constructed on a blank S-100 prototype board or a small perf-board attached directly to the front panel, which is probably why we never got around to it! A much better solution is to kludge it onto an existing board and steal the power and bus signals, thus obviating the installation of yet another board, five-volt regulators, etc. We attached a 10-pin strip connector to the top of the board and, as can be seen from the diagram, switches #8 to #15 can be implemented provided you have enough sections to spare in an available hex-driver. Since only three chips are needed, it will easily fit on an Imsai or MITS CPU or I/O board and many others. Our "easy" solution developed when we acquired several QT Computer Systems Clock/Calendar boards which have enough room left to add the whole computer. If you wish to go this route, check your existing CPU, CLOCK, I/O, D/A converter, or other boards, as there are often unused chip sections available and the hex-driver (U14) may not even be needed.

LEO P. BIESE, M.D. is a pathologist and medical director of New England Clinical Laboratories, Inc., a reference laboratory located in New Hampshire. He also serves as software editor and vice-chairman of the College of American Pathologists Microcomputer Committee and its Software Exchange. His principal interests are in the application of microcomputers to the clinical laboratory, computer-assisted interpretive reporting and teaching programming to laboratory scientists.

EMILIO D. IANNuccillo is an attorney with a private practice in Rhode Island. He is Town Solicitor for Bristol, and specializes in municipal-law, commercial-law and realty-law. His interests are in systems software for the legal profession and municipal government, data retrieval, and legal application programming.

MICROSYSTEMS
INCREASE YOUR BASIC'S SORTING POWER OVER 1800%!

N*SORT is easy to use and will perform sorts on one and two dimensional or string arrays using optional sort keys. For example, to alphabetize A$:

```
10 A$ = "ZYXWVUTS", "REM Define String
20 SRT A$, LEN(A$), 1" "REM Sort A$
```

N*SORT interfaces to any release 4 or later North Star Basic and can be yours for ONLY $89 plus $1.50 shipping. Calif. Res. add 6% tax. Send check VISA or MIC Complete Brochure Available

Software Systems
1269 Rubio Vista Road, Altadena, Calif. 91001
(213) 791-3202

S-100 TERMINAL
80 CHARACTERS X 24 LINES
All This on ONE BOARD:
- Keyboard port with TYPE-AHEAD buffer
- 8275 CRT controller with light pen port fully implemented
- Two 2716's — program & character rom's
- Optional 2716 for GRAPHICS
- All screen & keyboard ram
- I/O OR Memory mapped
- Z-80 MPU — 2 Mhz operation independent of sys. clock
- Uses only EASY-TO-GET parts
- Use in any Z-BO/BOBO system
- 696 Bus Compliance: DB M16 IB T200

Now you can afford to build that video board you've always wanted.

Introducing The VDB-A
Bare board with Documentation
Special Introductory Price — $43.00 + $2 s&h (Ill. res. add 6% tax)
Offer ends April 1, 1982
For more info, or to order, write
Simplifway PRODUCTS CO.
3754 Winston Drive
Hoffman Estates, IL 60195
Dealer Inquiries Invited
phone: (312) 359-7337

ATTENTION S-100 USERS, OEMs & ISOs!
MM-103 IS THE ONLY MODEM FOR YOUR NEEDS!

In previous issues, we listed more than 50 reasons why PMMI MM-103 modems are superior, along with a list of satisfied users that is now too long to print.

Quality, integrity and low cost have made the MM-103 America's most popular modem. PMMI was the first to gain FCC approval and meet IEEE-696 S-100 standards. You won't find another modem for the S-100 bus with a wider range of Baud rates, more extensive and controllable software and such an unbeatable warranty. And since PMMI has eliminated the need for an acoustic coupler or an RS 232 adapter, your connection is more reliable and you buy no unnecessary hardware.

SO DON'T DELAY!
GO WITH THE MODEM WITH EXPERIENCE!

For further information, call or write:
Three Skyline Place
5201 Leesburg Pike, Suite 604
Falls Church, VA 22041
(703) 379-9650
Or dial into our 24 hour-a-day Modem Test Center:
(703) 379-0303 (300 Baud)

AFTER ALL...
ALL MODEMS ARE NOT CREATED EQUAL!

THE
488+3
IEEE 488 TO S-100 INTERFACE
- Handles all IEEE-488 1975/78 functions
- IEEE 696 (S-100) compatible
- MBASIC subroutines supplied; no BIOS mods required
- 3 parallel ports (S255A-5)
- Industrial quality; burned in and tested
- $375

D&W DIGITAL
1524 REDWOOD DRIVE
LOS ALTOS, CA 94022
(415) 966-1460
Book Review

Interfacing To S-100/IEEE 696 Microcomputers

by Chris Terry

This book is a “must” for anyone who wishes to construct a custom interface between an S-100 microcomputer and almost any type of peripheral device. It is a goldmine of useful information new and old, much of which has never before been collected in one place. The writing is a model of what such manuals should be but seldom are; the authors say exactly what they mean—simply, understandably, and with no ambiguity. An enormous amount of hard work must have gone into not only mastering the subject matter, but also into communicating it so admirably; yet they make it look easy and read so well. In the sense that “art is the concealment of art,” the authors are artists as well as technologists.

The material falls into two main classes:
- Description of the S-100 Bus.
- Applications—How to use the bus features.
Each chapter has a short but useful bibliography of further information sources, and there is an excellent index.

Description Of The S-100 Bus

The proposed IEEE-696 Standard, reprinted from the July, 1979 issue of Computer, is included as an appendix and provides the technical definition of the current S-100 Bus. The average reader, however, will be far more enlightened by the discussions of the bus contained in Chapters 2 through 4.

Chapter 2 contains a brief history of the S-100 bus, the mechanical description of the circuit boards and motherboard, a description of the signal groups of the bus, and power supply considerations. This chapter also introduces the important concepts of a Bus Master, which has absolute control of the bus, and a Slave, which uses the bus only at the behest of the Master. The Master is normally the CPU board, but it may release control of the bus to Temporary Masters.

Chapters 3 and 4 provide the essentials for understanding the S-100 bus. Chapter 3 gives detailed description of each of the signals, grouped by function. Particular attention is paid to the differences between the original MITS version of the bus and the new IEEE-696 definition. Chapter 4 describes the timing relationships of the bus. In particular, it contains a beautifully clear description of the bus cycle, consisting of several bus states, and the purpose of each state. There is a detailed analysis of what occurs on the bus during each state of a read cycle and a write cycle, and a discussion of how a bus cycle can be extended by wait states.

This book is a “must” for anyone who wishes to construct a custom interface between an S-100 microcomputer and almost any type of peripheral device.

The book would be well worth its price for these chapters alone. After reading them, I felt that for the first time I understood not only what takes place on the bus, but why. It is impossible for the average user to get this kind of understanding from manufacturers’ documentation and timing diagrams.

Applications

Chapters 5 through 16 contain a compendium of circuits, device driver routines and useful information for interfacing a wide variety of devices. If you want to connect a special device to your system, look through the table of contents of this book before you start reinventing the wheel. There is almost certain to be a circuit that you can use or adapt.

Chapter 5 deals with decoding, buffering, and wait state generation. Chapter 6 is a comprehensive interfacing guide for static RAM and EPROM—useful if you want to add, say, 1K of workspace for a PROM monitor. Dynamic RAM is not discussed; the authors point out that timing problems are horrendous and are affected by board layout, so that a wire-wrapped dynamic RAM board would be unreliable—if it worked at all.

Chapter 7 discusses the general principles of I/O ports, handshaking, and I/O channels (a combination of ports to handle status, commands and data for one peripheral). Programmable I/O port IC’s, which combine all functions for one or more channels into a single chip, are briefly
SNOW MICRO SYSTEMS, INC.
P.O. Box 2201 Fairfax, VA 22031
378-7257

DMA S-100 FRONT PANEL SYSTEM
This front panel system becomes a temporary S-100 bus master to access system memory and I/O, and requires no connection to the CPU card. The front panel system is designed as two cards: a binary switch and display card, and an S-100 interface card. Both cards are 5" x 10". The display card is supplied with a standard "plug-back" mount to the interface card, but can be separated for chassis mount.

$395.00

STATION CONTROLLER CARD
The Station Controller was designed for satellite tracking applications. This S-100 card is packed with features like: 7 analog input channels (A to D), 6 reed relays with 1 amp contacts and a 24 hour hardware clock with battery backup provision.

$495.00

STATION CONTROLLER CARD
The Station Controller was designed for satellite tracking applications. This S-100 card is packed with features like: 7 analog input channels (A to D), 6 reed relays with 1 amp contacts and a 24 hour hardware clock with battery backup provision.

$495.00

RADIO TELETYPETTER INTERFACE CARD
The S-100/RTTY interface that lets your AR.OI kit. $245.00

$245.00

SOBREISE
The Station Controller was designed for satellite tracking applications. This S-100 card is packed with features like: 7 analog input channels (A to D), 6 reed relays with 1 amp contacts and a 24 hour hardware clock with battery backup provision.

$349.00

The S-100/RTTY interface that lets your AR.OI kit. $245.00

$245.00

APPLE IIe

INFO UNLTD
EasyWriter. $199

$199

Apple II

MICROSOFT
Software (DOS/CP/M) $298

$298

Ferton. $179

$179

COCO

Micropolis. $169/$25

$169/$25

Visifile. $149/$25

$149/$25

MICROPILOT

Access (level 3). $85/$15

$85/$15

Order entry (COBOL). $900

$900

PERSONAL SOFTWARE

WordStar/Mail-Merge. $419/$85

$419/$85
Book Review, continued...

discussed with specific reference to the Intel 8255 PPI (Programmed Peripheral Interface) and the Motorola 6820 PIA (Peripheral Interface Adaptor). Chapter 8 gives specific examples of simple parallel interfaces with and without handshaking, and typical software drivers for them. In both chapters there are brief discussions of memory-mapped I/O, in which an I/O port occupies a location in the memory space. This type of I/O is used exclusively by 6502 and 680X microprocessors which must use memory reference instructions to perform I/O; it is an alternative mode in the Z80/808X microprocessors, though here one must consider the trade-off between the improved I/O speed and the loss of addressable memory space entailed by memory-mapped I/O.

Chapters 9 and 10 are called “Interfacing to the Real World,” and cover input from keyboards and various kinds of sensors, and control of lamps, motors, sound generators, and other non-digital devices.

Chapter 11 is a brief, though excellent discussion of serial interfaces, with specific reference to some commonly used serializer/deserializer chips: the AY-5-1013 and 8250 UARTs, and the 8251A and 2651 USARTs. Since micro-computer software generally assumes asynchronous transmission over communication networks, there is no discussion of the synchronous transmission features of the USARTs; however, the bibliography cites sources for such information.

Chapter 12 covers the basics of interfacing to digital/analog and analog/digital converters. Chapter 13 is a full and very helpful discussion of interrupts and how to use them. Chapter 14 deals with programmable timer/counters (specifically the 8253) and their applications.

Chapter 15, on TMA (Temporary Master Access), deserves special mention. Its topic is the release of the bus by the primary Bus Master (usually the CPU) to some other device which becomes a Temporary Bus Master. This is a technique which in minicomputers used to be called DMA (Direct Memory Access), though that term is not appropriate on the S-100 bus. The object is to allow the Temporary Bus Master to take control of the bus for a limited time or specific task. Applications include high-speed data transfers between memory and a peripheral (such as a disk controller), or transfer of control to a different CPU (as on the Godbout 8085/8088 dual processor). The timing considerations and special requirements of TMA circuits are clearly explained, and logic diagrams illustrate several implementations for various purposes.

The last two chapters describe miscellaneous but useful interface circuits (such as a jump-on-reset circuit), and justify the deliberate omission of several types of interface. The grounds for omission were mainly complexity of the device side of the interface (e.g., video and disk controllers), software complexity (e.g., non-S-100 computers), or irrelevance to the S-100 context (e.g., cassettes).

CHRIS TERRY became involved with micros when he built an Altair 8800 in 1975; he still uses this, mainly for word processing. He is fascinated with the potential of the micro as a tool for living (and as the greatest toy in the world!). Other interests include the Arthurian legends, science fiction, and both classical and electronic music.
Over 150,000 computer owners and novices attended the 1981 National Computer Shows and Office Equipment Expositions, and more than a quarter of a million are expected to be at the 1982 shows.

Each show features hundreds of companies using thousands of square feet of display space to showcase and sell millions of dollars worth of micro and mini computers, data and word processing equipment, peripherals, accessories, supplies and software.

Under one roof you'll see — and be able to buy — all of the hardware and software made by every major computer manufacturer for business, industry, government, education, home and personal use.

The show includes computers costing as little as $100 to computers selling for $150,000.

Don't miss the coming of the new computers — show up for the show. Admission is $5 per person and $3 for children.
SOFTWARE DIRECTORY

Program Name: Jools
Hardware System: CP/M 8" SO or NorthStar DD
Minimum Memory Size: 48K
Language: Machine Code
Description: UNIX-style software tools specially adapted for the CP/M environment. The sixteen tools include VSORT—high-speed internal/external sorting on either fixed- or variable-length fields; SELECT—line extraction from a file based on the values of fixed- or variable-length fields; FIND and REPLACE—search for and replace text within files based on regular expression patterns; and REARRANGE—reorder fields of a line to a user-specified format. Jools provides a modular problem-solving facility for the CP/M programmer without requiring special programming. The manual details how Jools can maintain mailing lists and bibliographic databases, generate permuted indexes, and monitor changes made to a file.
Release: December 1981
Price: $95.00 (manual only, $20.00)
Included with price: One 8" IBM SO or two 5-1/4" NorthStar DD diskettes, 66-page manual and quick reference guide.

Where to purchase it:
Pluto Research Group
P.O. Box 50444
Palo Alto, CA 94303-0444
(415)323-5654

Program Name: REFORMATTER
Hardware System: CP/M
Minimum Memory Size: 24K
Language: Assembly Language (8080)
Description: REFORMATTER is an intelligent bi-directional file conversion program. Reads and writes IBM 3740 formatted disks (IBM Diskette 1, Basic Data Exchange Format) and gives CP/M users the ability to exchange data on floppy disk with IBM equipment, or any equipment accepting an IBM 3740 disk. Handles all conversion functions such as file reorganization and ASCII to EBCDIC character translation. Gives CP/M user access to all IBM diskette file attributes and provides facilities for examining and altering all data areas, directory entries, and fields within each IBM data set label.
Release: June 1978
Price: $195.00
Included with price: 8" disk, manual, and telephone consultation if required.

Where to purchase it:
MicroTech Exports, Inc.
467 Hamilton Avenue
Palo Alto, CA 94301
(415)324-9114

Program Name: Solomon Series II
Hardware System: Z-80 with CP/M
Minimum Memory Size: 64 RAM, 1 Mb of disk storage minimum.
Language: Assembly Language (8080)
Description: General Accounting with Job Management. A fully integrated system utilizing a single database manager. Includes General Ledger, Accounts Receivable, Accounts Payable, Payroll, Invoicing, Cash Receipts/Disbursements, Fixed Assets (depreciation), Address maintenance, mailing list, and Job Costing.
Release: December 1981
Price: $400.00
Included with price: Object code and manual (and program to print manual) on 5-1/4" DD or QD, ten hard sector disks. Source code $160 extra, $200 total, requires signed agreement.

Where to purchase it:
PASS
P.O. Box 1382
Lafayette, CA 94549
(415)945-7911

Program Name: Solomon I
Hardware System: Z-80 with CP/M
Minimum Memory Size: 64K RAM, 1 Mbyte of disk storage min.
Language: PL/I
Description: The Solomon I is an accounting package designed around the MDDS database management system. It includes several accounting modules which access the same database. The result is increased ease of use—there are no sorts to run, batches of transactions to post and all functions are available from a single master menu. Solomon I includes General Ledger, Payroll, Accounts Payable, Invoicing, Accounts Receivable,
The Seventh Trenton Computer Festival

TCF-82

April 17 & 18, 1982
At Trenton State College
Trenton, New Jersey
10 AM to 6 PM, Saturday, 17
10 AM to 4 PM, Sunday, 18

BIGGER AND BETTER THAN EVER!

Expanded Outdoor Flea Market — Surplus computer gear, bargains galore, over 5 acres of bargains. ($10 per spot; no electricity; bring own tables.) / Indoor Commercial Exhibit Area — 90 exhibitor booths showing newest products; special discounts; funky games to play / Space Invaders Contest / Forums, Talks and Seminars — Meet the leading experts and hear sessions on Software/Hardware Applications, Robotics, Music, Ham Radio, Education (Special sessions for parents and teachers), Business and Business Applications and New Languages. / Computer Graphics Theatre / User Group Sessions (Saturday) — Apple/TRS-80/PET/CBM/S-100/Z-80/6800/1800/6502 / Free Short Courses on Sunday / Day Care Center for Pre-School Children / Hundreds of Door Prizes / Banquet Saturday Night / and More!

Admission/Registration
$5 covers both days and all events (except banquet)
Student Registration — $3

Banquet $10. Avoid disappointment — pre-register for the banquet! Send your check for $10 per person to: TCF 82, Trenton, NJ 08625

Sponsored by:
Amateur Computer Group of New Jersey
Philadelphia Area Computer Society
Trenton State College Digital Computer Society

Dept of Engineering Technology
Trenton State College
I.E.E.E., Princeton Section

Convenient to NY, PA, MD & DEL
Easy to get to; free parking for over 6,000 cars.
Software Directory, continued...

Fixed Assets, and Address Maintenance.

Release: October 1981

Price: $2,995

Included with price: Compiled PL/I code and user reference manual.

Where to purchase it:

TLB Associates, Inc.
1120 Commerce Parkway
Findlay, OH 45840
(419)424-0422

Program Name: Spellbinder

Hardware System: CP/M-compatible systems

Minimum Memory Size: 32K

Language: Machine Language

Description: Offers both the novice and experienced user complete word processing and office management capabilities. Includes a hierarchy of Macro commands for such tasks as que and zip sorting, mail merge, forms generation, and line numbering. Operates in two modes: edit mode and command mode. Extremely simple to learn.

Release: July 1981

Price: $450

Included with price: Disk and special Spellbinder keytops

Where to purchase it:

Data Technology Industries
700 Whitney Street
San Leandro, CA 94577
(415)638-1206

SAVE

$150.00 for a 4-MHz Z80A system with 64-KB memory plus a real front panel

$200.00 for a 2-MHz full function CR11. You can roll your own technology, write & run your own software, write & run your own operating system. You know it! TELL ME MORE!!!

STATECXP CORP., 2723 West Butler Drive, Suite 30, Phoenix AZ 85021

ANALOG

DIGITAL

ANALOG

16 Channel A/D

2 Channel D/A

4 Channel D/A

High quality commercial grade S-100 bus compatible systems are designed for industrial and laboratory use.

- 16 channel 12 bit A/D conversion system nominally operates at 25 kHz
- 12 bit resolution, ± the LSB accuracy
- Multiplexer, converter, and sample and hold on the hybrid chip
- 7 control and measurement ports
- Utilizes Z80 and 8080 interrupt modes
- Optional Programmable Gain Instrument Amplifier allows mixing of high and low level signals
- 2 and 4 channel D/A high-speed conversion systems
- Binary and 2’s complement inputs
- Outputs: ± 5V, ± 10V, 0 to −10V, or 0 to +10V
- Replaceable output amplifiers protect circuit
- 2 channel board has 16 bit parallel I/O and scope intensification strobe
- A/D’s from $575 D/A’s from $395

CAL DATA CORPORATION

3475 Old Conejo Road, Suite C-10
Newbury Park, CA 91320
(805) 498-3651

Software Shops

Arizona

Creative Software Systems: Systems integration and custom software (BASIC, PASCAL, Z-80 assembler). Small business and word processing systems. 632 Camelot Dr., Sierra Vista, AZ 85635. Phone (602)458-6063.

California

Nelson Engineering: We write applications software for all micro-based systems in Assembly language, Basic, and Pascal. (213) 390-2963, 13450 Maxella Ave. G 185 Suite 142, Marina Del Rey, CA 90291.

Colorado

Massachusetts

MICROFT INC.: Customization of CP/M-80, CP/M-86 and other operating systems. Full range of consulting services in microsystems software (systems, utilities, applications), product selection, hardware. Contact: Tom Campbell, Chief of Technical Staff, P.O. Box 128, E. Falmouth, MA 02536. Phone (617) 563-3807.

New Jersey

New Jersey Software Services: Full range of CP/M, S-100 services.

- System design
- Business applications
- Real-time systems
- Mathematical analysis
- Software creation/customizing
- 8080 assembly language
- Z-80 assembly language
- BASIC
- FORTRAN
- Product evaluation/selection
- Hardware Software
- In house training
- Telecommunication service
- Voice I/O applications
Contact C. A. Ryan, 6 Village Circle, Westfield, N.J. 07090 (201) 239-9297.

New York

Patrick Software Inc.: Systems design, professional advice, customization and programming services for CP/M, 8080, RSX/PDP-11 and others. 853 Carroll Street, Brooklyn, NY 11215. Phone (212)622-8349.
Get 12 issues of Creative Computing for the price of 8.

Some things are still cheaper by the dozen.

When you subscribe to Creative Computing, you get 12 issues for just $24.95. The same 12 issues would cost you $35 at the newsstand.

Why not enjoy Creative Computing all year long and save $10 at the same time.

To subscribe, call toll-free from 9 AM to 6 PM 800-631-8112. In New Jersey, call 201-540-0445. Or write to Creative Computing, P.O. Box 5214, Boulder, CO 80321. We accept Visa, MasterCard and American Express.

Creative Computing is the leading magazine of small computer applications and software. It has in-depth reviews of new systems, peripherals and software. Also articles for both beginners and experts; columns about popular computers, programming techniques and new products; and complete program listings for your computer.

Alvin Toffler says, “I read Creative Computing not only for information about how to make the most of my own equipment but to keep an eye on how the whole field is emerging.”

Why not join over 160,000 subscribers and save money at the same time? Remember, they’re cheaper by the dozen.
Complete System On A Single S-100 Board
SUPER/NET, a single board S-100 system contains a 64K bank select dynamic RAM, Z-80A CPU, 2716 (2K) monitor EPROM, 5-1/4" and 8" floppy disk controller, two serial and two parallel ports and Z-80A CTC for real-time interrupts. Full DMA operation is supported. SUPER/NET meets full IEEE-696/S-100 specifications and operates under both CP/M and MP/M software.

Price is $1125.00; available from Advanced Micro Digital Corp., 7201 Garden Grove Blvd., Suite #E Garden Grove, CA 92641 (714)891-4004.

Winchester Disk System
For S-100
Tarbell Electronics has introduced a new series of S-100 Winchester subsystems allowing expansion from 10 to over 200Mb. Their ATTACH program provides a way to get up-and-running quickly. Users can start with a small system, then add up to three additional drives of any capacity. All Tarbell hard-disk subsystems 33Mbytes and above use a voice-coil actuator which provides an average access time of 50 milliseconds. Data comes off the disk into the deblocking buffer at the maximum possible speed of 1Mb/Sec, meaning that a 24K file can be loaded into memory in about one second! Additional features of the subsystems include on-board CRC performed data, automatic alternate sector assignment, 512-byte on-board deblock buffer and the use of only one S-100 board slot. The subsystem includes S-100 interface, drive cabinet, power supply, cables, software and all documentation. Tarbell Electronics, 950 Dovlen Place, Suite B, Carson, CA 90746; (213)538-4251.

64K S-100 Static RAM Board
SSM Microcomputer Products Inc., has announced a new high performance, low power 64K static RAM memory board, the MB64. It operates at up to 6MHz offering two 32K blocks, and up to 8K of EPROM. It also includes extended addressing of up to 16Mb of memory. Power consumption is typically less than 600 MA.

Price is less than $850; contact SSM Microcomputer Products Inc., 2190 Paragon Dr., San Jose, CA 95131; (408)846-7400.

S-100 Mainframe
Para Dynamics Corp., has announces the PRONTO mainframe/disk in a free-standing 26"H x 20"D x 18"W with casters. It will hold up to two 8" floppy disk drives plus one 8" rigid disk drive, or one 8" floppy disk, one 8" rigid disk and streamer tape backup. The power supply allows changing input and output voltages. The IEEE Standard S-100 motherboard uses high quality gold-plated edge card connections and accommodates up to 18 cards, including the new 10"x10" cards.

Para Dynamics, 7740 E. Redfield Rd., Scottsdale, AZ 85260, (602)991-1600.
THE WHY AND WHAT OF A SOFTWARE BUS
FOR S-100 USERS

First of all what is a “bus”? And why do we call CP/M “the software bus”?

A "bus" is a technique used to interface many different modules. Examples are the "S-100/IEEE-696 Bus" and the "IEEE-488 Bus." These are hardware buses that permit many different modules to be plugged into an S-100 bus. Nine 8-bit microprocessors are available: 6502, 6800, 6802, 6809, 2650, 8080, 8085 and Z80. Eight 16-bit microprocessors are available: 8086, 8088, 9900, Z8000, 68000, Pascal Microengine, Alpha Micro (similar to LSI-11) and even the AMD2901 bit slice processor. Take your pick from the incredible offerings.

CP/M is a Disk Operating System (DOS). It was first introduced in 1974 and is now the oldest and most mature DOS for microcomputer systems. CP/M has now been implemented on over 250 different microcomputer systems. It has been implemented on hard disk systems as well as floppy disk systems. It is supported by two user groups (CP/M-UG and SIG/M-UG) that have released over 80 volumes containing over 2,000 public domain programs that can be loaded and run on systems using the CP/M DOS. Add to this another 1,500 commercially available CP/M software packages and you have the largest applications software base in existence.

CP/M is the only DOS for micros that has stood the test of time (seven years) with the highest level of compatibility from version to version. And over the years this compatibility has been maintained as new features have been added. This is why we say "CP/M is the software bus".

Microsystems magazine is vital to providing CP/M users with technical information on using CP/M, interfacing to CP/M, new CP/M compatible products and for CP/M users to exchange ideas.

Why support the S-100 bus?

S-100 is currently the most widely used microcomputer hardware bus. It offers advantages not available with any other microcomputer system. Here are a few of the advantages:

S-100 is processor independent. There are already thirty different S-100 CPU cards that can be plugged into an S-100 bus. Nine 8-bit microprocessors are available: 6502, 6800, 6802, 6809, 2650, 8080, 8085 and Z80. Eight 16-bit microprocessors are available: 8086, 8088, 9900, Z8000, 68000, Pascal Microengine, Alpha Micro (similar to LSI-11) and even the AMD2901 bit slice processor. Take your pick from the incredible offerings.

S-100 has the greatest microcomputer power. What other microcomputer system has direct addressing of up to 16 megabytes of memory, up to 65,536 I/O ports, up to 10 vectored interrupts, up to 16 masters on the bus (with priority) and up to 10 Mhz data transfer rate? You will have to go a long way to use up that computing power.

S-100 is standardized. The S-100 bus has been standardized by the IEEE (Institute of Electrical and Electronic Engineers) assuring the highest degree of compatibility among plug-in boards from different manufacturers. And, Microsystems has published the complete IEEE S-100/696 standard (all 26 pages).

S-100 has the greatest hardware support. There are now over sixty different manufacturers of about 400 different plug-in S-100 boards. Far greater than any other microcomputer system.

With all these advantages is it any wonder that S-100 systems are so popular with microcomputer users who want to do more than just play games?

For the serious computer user.

Each issue of Microsystems brings you the latest in the CP/M and S-100 world. Articles on applications, tutorials, software development, product reviews, and lots more to keep you on top of the ever changing microcomputer scene.

And if you are an S-100 system user using other operating systems (e.g. North Star) Microsystems also supports you.

Get your copy today

Order your subscription to Microsystems. Send $16 for one year (6 issues), $30 for two years (12 issues) or $42 for three years (18 issues). If you prefer, call our toll-free number, 800-631-8112 (in NJ 201-540-0445) to put your subscription on your MasterCard, Visa or American Express card. Canadian/Mexican and other foreign surface subscriptions are $19 and $35, respectively, per year and must be prepaid. We guarantee that you will be completely satisfied or we will refund your subscription.

Join thousands of Microsystems subscribers like Jim Johnstone of Los Altos CA, who said "Microsystems has lived up to your promises and my expectations. Congratulations."

39 East Hanover Avenue
Morris Plains, NJ 07950, USA
Toll-Free 800-631-8112
(In NJ, 201-540-0445)

New subscribers are entitled to a free CP/M Reference Card. Be sure to ask for yours when you order.
Bring the flavor of Unix To your Z80-based CP/M system with Unica

"Unicum: a thing unique in its kind, especially an example of writing. Unica: the plural of unicum."

The Unica: a unique collection of programs supporting many features of the Unix operating system never before available under CP/M. The Unica are more than software tools; they are finely crafted instruments of surgical quality. Some of the Unica are:

- bc - binary file compare
- cat - catenate files
- cp - copy one or more files
- dm - disk map and statistics
- hc - horizontal file catenation
- ln - create file links (aliases)
- ls - directory lister
- mv - move (rename) files, even across users
- rm - remove files
- sc - source file compare, with resynchronization
- sr - in-memory file sorter
- sp - search multiple files for a pattern
- ss - spelling error detector, with 20,000 word dictionary

Each Unicum understands several flags ("options" or "switches") which control program alternatives. No special "shell" is needed; Unica commands are typed directly to the standard CP/M command interpreter. The Unica package supports several Unix-like facilities, like file name user numbers:

- sc data.bin:2 data.bin:3

Wildcard patterns:

- rm *mp -v
- sc data*.bin

I/O redirection:

- !list

Pipes:

- cat chap' | sp | sr > list

The Unica are written in XM-80, a low level language which combines rigorously checked procedure definition and invocation with the versatiliy of Z80 assembly language. XM-80 includes a language translator which turns XM-80 programs into source code for MACRO-80, the industry standard assembler from Microsoft. It also includes a MACRO-80 object library with over forty "software components", subroutine packages which are called to perform services such as piping, wildcard matching, output formatting, and device-independent I/O with buffers of any size from 1 to 64k bytes.

The source code for each Unicum main program (but not for the software components) is provided. With the Unica and XM-80, you can customize each utility to your installation, and write your own applications quickly and efficiently. Programs which you write using XM-80 components are not subject to any licensing fee.

Extensive documentation includes tutorials, reference manuals, individual spec sheets for each component, and thorough descriptions of each Unicum.

Update policy: each Unica owner is informed when new Unica or components become available. At any time, and as often as you like, you can return the distribution disk with a $10 handling fee and get the current versions of the Unica and XM-80, with documentation for all new or changed software.

The Unica and XM-80 (which requires MACRO-80) are priced at $195, or $25 for the documentation. The Unica alone are supplied as "CP/M executables" for $95 for the set, or $15 for the documentation. Software is distributed on 8" floppy disks for Z80 CP/M version 2 systems.

Knowledge

"Shaping Knowledge for Evolving Worlds"

P.O. Box 283
Wilsonville, Oregon 97070

Visa/Mastercard customers call (503) 639-3420 after hours for next day shipment.

CP/M is a trademark of Digital Research; Unix is a trademark of Knowledge Enterprises; Z80 is a trademark of Zilog Inc.
THE HARD EDGE
AND STILL THE LEADING EDGE...
IN SYSTEM PERFORMANCE

Hard Disk and Streaming Tape
reliability and versatility that can't be beat

OEM CONTROLLERS
- Multibus
- General Purpose
- S100

SYSTEM 8
- 8" Winchester 10 or 32 MByte formatted
- Integrated streaming cartridge backup
- Streaming backup at 5 MB/min
- Selective file backup under CP/M
- Versatile parallel I/O or DMA interface

S33
- 31 or 62 MByte formatted
- Lowest cost/MByte from any manufacturer
- CP/M* compatible "drop in" BIOS
- Single S100 card controller
- Fully expandable up to four drives, 8" or 14"
- Reliable high performance Priam Winchester Disks
- Immediate delivery

S10
- 10.5 or 32 MByte formatted

ADES
ADAPTIVE DATA & ENERGY SYSTEMS
2627 Pomona Boulevard • Pomona, CA 91768
Phone: (714) 594-5858
Performance.
Quality.
Reliability.

New!
Disk 2 DMA Hard Disk Controller,
8086/87 Co-Processor

Compupro

Compupro is a division of Godbout Electronics, Oakland Airport, CA 94614-0355 415-562-0636

For more information on these products and other business, industrial, and scientific computing solutions, contact your nearest Compupro systems center.