Special Report:
Craft basic connections between objects using C++
pg 112
Within budget.
Without compromise.

Get more of what you want in a 6½ digit DMM for just $995.

It has more standard features. Like HP-IB, RS-232 and built-in SCPI commands for more system flexibility. Plus ten extended functions including continuity, diode test, limit test, reading hold, dB and null to give you greater flexibility on the bench.

What more could you want? The HP 34401A also comes with a 3-year warranty, standard.

For more information, or same-day shipment from HP DIRECT, call 1-800-452-4844**. Ask for Ext. T511. And we’ll send you a data sheet.

<table>
<thead>
<tr>
<th>HP 34401A Digital Multimeter</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC Accuracy (1 year)</td>
</tr>
<tr>
<td>AC Accuracy (1 year)</td>
</tr>
<tr>
<td>Maximum input</td>
</tr>
<tr>
<td>Reading speed</td>
</tr>
<tr>
<td>Resolution</td>
</tr>
</tbody>
</table>

* U.S. list price
** In Canada call 1-800-387-3867, Dept. 434

There is a better way.

HEWLETT PACKARD
SMALL CAGE, BIG PERFORMANCE
Ziatech's large selection of CAT computers lets you build embedded systems to your exact requirements. The CAT's STD 32® architecture delivers ferocious performance in a variety of compact packages.

ON THE PROWL?
Call or FAX today for a free CAT data sheet
Phone 805-541-0488
FAX 805-541-5088

BIG CAT FEATURES
- 16- and 32-bit Industrial PC performance
- Industrial enclosures from 4 to 24 slots
- Multiprocessing, network and industrial I/O options
- Floppy, hard, solid state and PCMCIA storage
- DOS, Microsoft Windows®, OS/2 and UNIX compatibility
- STD 32 performance, STD-80 compatibility

©Copyright 1992 Ziatech Corporation. All rights reserved.
When you need superior performance in a circuit board that's smaller...denser...faster...
Multiwire Interconnection Technology provides the better alternative to conventional multilayer. That's why many of today's advanced systems have selected Multiwire for their interconnection requirements.

Multiwire Technology is more than just a circuit board. It's an advanced interconnect system, integrating state-of-the-art rule based design software with a fully-automated discrete wiring manufacturing process. The result—predictable transmission line characteristics and extremely high interconnection density, all in a package much thinner than conventional multilayer circuits.

For specific application information contact AIT or one of the licensed manufacturers below.

WORLDWIDE AVAILABILITY

NORTH AMERICA
*AnTel, Inc. Pano, TX (214) 867-0000 FAX: (214) 867-0897 Circuitech, Inc. Eatontown, New Jersey 908-542-6550 FAX 908-542-1612 Hitachi Chemical Electro-Products, Inc. Tucker, Georgia 404-938-9388 FAX 404-934-9862

EUROPE

PACIFIC RIM
Hitachi Chemical Company, Ltd. Tokyo, Japan 81-3-3346-3111 FAX 81-3-3346-3475

© AIT, Inc. 1992
Multiwire® is a registered trademark of Advanced Interconnection Technology, Inc.

Circle No. 23
FEATURING ZIF TECHNOLOGY.

It
ITT CANNON’S DL CONNECTORS
looks
ARE GUARANTEED TO PROVIDE
like
AT LEAST 10,000 MATING
a
cycles. THE DL IS IDEAL FOR
waffle
APPLICATIONS REQUIRING THE
iron
HIGHEST DURABILITY AND GREATEST NUMBER OF CIRCUITS. ITT CANNON’S DL PRODUCTS
but it’s a lot
ARE AVAILABLE WITH UP TO 2,496 PINS, AND ARE THE ONLY ZIF CONNECTORS THAT EMPLOY
easier to use.
A CAM-ACTUATED HANDLE TO MATE WITH A SIMPLE TWIST.
What do we say to motor control designers searching for a 5-A surface-mount solution?

SURF'S UP.

Surfers spend many hours smoothing their boards to get better performance. Motor control designers do too, constantly seeking solutions requiring less space and providing increased power density. That's why Siliconix created the industry's first surface-mount, 5-A solution for 20-V to 40-V motors powering copiers, printers, and plotters.

Surface-mount motor control for automated assembly.

By combining the new Si9976 n-channel half-bridge driver with one of our LITTLE FOOT™ MOSFETs, such as the Si9940, you can develop completely surface-mount designs that save space and allow you to take full advantage of your automated assembly process.

The Si9976 has an integrated charge pump for built-in level shift plus on-board Schmitt trigger inputs for logic signal compatibility. And it's rugged - thanks to integrated undervoltage and short circuit protection.

Then there's LITTLE FOOT. A MOSFET SOIC family that delivers the industry's highest current ratings and power densities — as well as the industry's lowest on-resistance.

Get a complete 5-A motor control solution.

Contact your local Siliconix sales office. Or call our toll-free hot line now! 1-800-554-5565, ext. 973. Ask for your Si9976 Motor Control Design Manual. And remember, at Siliconix we're committed to meeting your motor control requirements, both now, and in the future.
On the cover: As you move from C into the world of C++, you face many obstacles to a complete understanding. One way to ease the transition is to know how to use C++ to implement inheritance. Photo courtesy Mentor Graphics; our Special Report begins on PAGE 112

Foldout Contents

Turn to the last information-retrieval service card in the back of this magazine and you'll find a foldout table of contents. Now, instead of flipping back and forth from this table of contents to the articles you want to read, you can have the convenient foldout open at all times while you're reading EDN. Use the foldout contents to mark off articles you'd like your colleagues to read or to remind yourself to copy stories for your files.

Build a strong foundation to program in C++

Knowing how to distinguish the four kinds of “same name, different behavior” functions in C++ means you're on your way to mastery of programming with objects.—John C Napier, Technical Editor

Design It Right—Part 3

This third part covers leverage, or how to get the biggest bang for your R&D bucks.
—Dan Strassberg, Senior Technical Editor

Designing supplies for powering LCD backlighting

Supplies for powering LCD backlights must be very efficient, have a variable sine-wave output, and include provisions for intensity and contrast control.
—Jim Williams, Linear Technology Corp

Small, smart PC cards strive for compatibility

PC cards—modules not much bigger than credit cards—now contain modems, faxes, LAN adapters, and even disk drives. Unfortunately, similar cards from different vendors aren't always interchangeable.
—Gary Legg, Senior Technical Editor

Continued on page 7
CYPRESS MEMORY AND SILICON GRAPHICS WORKSTATIONS COMBINE TO CREATE SOME SEXY GRAPHIC EFFECTS. If you're like most, you loved the stunning special effects in "The Lawnmower Man." They gave you an imaginative preview of what Virtual Reality might look like in the near future. To design and create those effects, Angel Studios relied heavily on cutting-edge Silicon Graphics® workstations, spurred on by lightning-fast Cypress memory.

Cypress offers a full range of high-performance products, including SRAM and PROM memories, PLDs, SPARC microprocessors, logic products, BiCMOS ECL memories, and multichip modules. Products that can make your designs highly attractive. If you're ready to embrace top line performance, call for the Cypress Data Book.

FOR A FREE DATA BOOK AND POSTER OF THIS AD CALL OUR HOTLINE: 1-800-858-1810* Ask for Dept C46.

*Cypress Semiconductor, 3901 North First Street, San Jose, CA 95134. Phone 1 (408) 943-2600, Telex 821032 CY PRE SS SN J UD, telex 910-997-0753. "The Lawnmower Man" image was created by Angel Studios, Carlsbad, California. © 1992 Allied Vision Lane Pringle Productions. All rights reserved. Silicon Graphics is a registered trademark of Silicon Graphics, Inc.
Chip sets help bring PC architectures to embedded control

The IBM PC architecture offers many advantages as the core of an embedded-control design. However, unless you have special needs, designing with PC chip sets can be trouble.—Richard A Quinnell, Technical Editor

PC-compatible simulator enhances latest Spice
Graphing scientific calculator solves equations
Physical design libraries let you choose foundry
2-chip set for FDDI cards handles twisted-pair wire
12-bit DACs provide 4.095V output swing

µC teams CPU and 64-bit I/O subprocessor
Enhanced PIC 16Cxx gets ADC and interrupts

Integrated Circuits .. 149
Computers & Peripherals 156
Components & Power Supplies 165
Test & Measurement Instruments 170
CAE & Software Development Tools 174

Inside EDN .. 9
News Breaks ... 17
Signals & Noise ... 29
Ask EDN ... 31
Editorial ... 37
Design Ideas ... 139
Career Opportunities 183
Business Staff ... 188
EDN's International Advertisers Index 190
EDN's Acronyms & Abbreviations 192
Hands On! .. 193
46% BOARD SAVINGS
IDT’s new 16-, 18-, and 20-bit Double-Density FCT-T Logic family offers the performance of two octal logic devices in one flow-through 48- or 56-pin high-density, JEDEC-standard, shrink small outline package (SSOP) or Cerpack, for twice the functionality in half the board space.

A WIDEBUS™ UPGRADE
IDT’s Double-Density logic family is more than twice as fast as ACT, uses 35% less power than ABT, and it’s form-, fit-, and function-compatible with both of TI’s Widebus families. The Double-Density family also offers typical pin-to-pin skew of 250ps and quiescent supply current at 0.05mA (typ.).

3 APPLICATION CHOICES
5V High Output Drive
Ideal for low-impedance bus and backplane applications.

5V Balanced Drive (Low Noise)
Contains on-chip, source-terminating resistors to minimize signal noise. These devices are ideal for driving point-to-point transmission lines and highly capacitive loads, such as a bank of DRAMs or SRAMs.

3.3V Low-Power Logic
Designed for regulated or unregulated 3.3V power supplies, these devices use less power than 5V parts, without sacrificing high speed. 5V-to-3.3V unidirectional and bidirectional translators are also available.

FREE SAMPLES
Call today for free samples and a copy of the new High-Performance Logic Data Book and start your Double-Density logic design today!

(800) 345-7015 • FAX: 408-492-8674
ASK FOR KIT CODE 3071
CIRCLE NO. 35
In a software survey EDN conducted two years ago, C++ was nowhere in sight. Our latest survey indicates a tremendous surge in C++, for good reason: Because it's upwardly compatible, C++ lets people who are using C write object-oriented programs without having to throw away their old programs. So in this issue, we present the fourth article we've printed this year on this hot software topic. Put this issue's Special Report together with three other related articles we've run this year (see January 2, July 6, and August 6 editions), and you've got a complete package that thoroughly explains what C++ is and how to use it.

If you're already comfortable with the basics, take a look at John Napier's Special Report on how to program with objects in C++. He tells how to use C++ to implement the key OOP concept of inheritance.

"Until I did this article, I didn't understand exactly when and where to use 'dynamic binding' (an OOP term that C++ calls 'virtual functions')," says John. "It's hard to follow unless you're a software jock, so I went to great lengths to describe it in my article." To complement his words, John cooked up some diagrams to explain dynamic binding.

In one of our two Technology Updates, Rich Quinnell covers PC chip sets for embedded control. He had some challenges gathering the information for the article, though. "I found a few companies that recognized embedded control as an important area for them. But most of the chip-set folks didn't want to talk about embedded control. They're set up to service the large customer—the high-volume clone-maker type. They would rather deal with 10 customers who buy a million parts each rather than a million customers who buy ten each."

Rich delves into the enormous advantages of using the IBM PC architecture as the core of embedded designs and covers the problems that designing with PC chip sets can incur.

Gary Legg has got some good news and some bad news in our second Technology Update, which describes PC cards—plug-in peripherals for small computers. A ton of newly available PC cards that contain memory, modems, faxes, hard disks, and LAN adapters are making the computer-upgrading chore a nonproblem, even for the technically unsophisticated user. However, the PC-card standard from The Personal Computer Memory Card International Association (PCMCIA) is undergoing revisions, which makes for incompatibility problems.

Gary has been following the progress of the PCMCIA standard for some time. He says that with the cards you won't need to upgrade a system in the traditional manner. "Rather, you'll just have different cards that you plug in as you need them."

The PCMCIA committee met recently to hammer out revisions to the standard. Check News Breaks in this issue for Gary's coverage of what happened.

Joan Morrow Lynch
Managing Editor

NEW PRODUCTS FOR NEW TIMES
We upgraded our full line of OCXOs, TCXOs & VCXOs to meet the requirements for improved accuracy, smaller packages, lower power, faster warm-up and lower prices.

TF65037 brings $1.2 x 10^{-8}$ stability (-10^9 to $+60^\circ$C) to under $US \; 100$ oscillators. Mini package: 27x35x16 mm.

TF69100. Instant-on 0.3 ppm stability (-10^9 to $+60^\circ$C) in a subminiature package: 20x20x10 mm.

TF68666 VHF oscillator, 100-200 MHz ECL output. Combines hi-stability ($\pm 35 \; \text{ppm} / -10^9$ to $+60^\circ$C) with wide ($\pm 150 \; \text{ppm}$) adjustment range, in a low profile DIP.

To learn more on how our new products can help you meet the challenge of new times, call TFL Marketing TEL.+972-3-5574107 FAX.+972-3-5574114.

TFL Time & Frequency Ltd.
P.O.Box 1792 Holon 58117, Israel

CIRCLE NO. 36

EDN October 29, 1992 • 9
The great 386 race is over. And the clear winner is the Am386 microprocessor family. The fact is, no other 386 microprocessors available today can rival the sheer speed and performance of the Am386 microprocessors. The Am386DXL-40 CPU brings 40MHz, full 32-bit 386 performance to the desktop. The Am386SXL-40 CPU makes 40MHz the standard for 386SX machines both at the desktop and for battery powered applications.

In either case, they're over 20% faster than those run-of-the-mill 386s.
Am386 Microprocessors.

And of course, they're proven-compatible with the IBM standard.

Best of all, they're available now, available in quantity, and available at surprisingly low prices.

So don't just keep up with the competition with ordinary 386 systems. Blow them away with the world's fastest 386 systems—built around the Am386 microprocessors from Advanced Micro Devices. Call 1-800-222-9323 for more information.

Advanced Micro Devices
"We're Not Your Competition"
With LonWorks technology, you've got it all under control.

LonWorks technology lets you create intelligent distributed control applications that tie together all kinds of systems, from all kinds of sources — and makes them work together better than ever before.

Imagine a factory floor where process control nodes constantly share information with each other — over a streamlined configurable network of distributed industrial controllers.

Or a “smart” office building that turns the lights on and off, opens and locks up the building, starts and stops elevator operations — and ties all three to the security system.

In fact, you can use LonWorks technology in virtually any automated environment, to create a network of intelligent distributed control that boosts efficiency and cuts costs.

Motorola's Neuron® Chip. The power behind the breakthrough.

What makes it all possible is the Neuron Chip, a multiprocessor integrated circuit that's contained within each node in a LonWorks network.

The Neuron Chip senses, controls, and processes information, much like an ordinary microprocessor or microcontroller. But that's where the similarity ends.

Unlike ordinary microprocessors and microcontrollers, Neuron Chips can communicate with each other — using LonTalk™ protocol. Based on the OSI model, LonTalk protocol is embedded within each Neuron Chip and allows communication over a variety of physical layers at different data rates. This means you can easily configure and link a wide range of applications over a LonWorks network.
LOWWORKS™ TECHNOLOGY.

LonWorks development support makes it easy.

When you use LonWorks technology, you get the development and engineering support you need to design distributed control applications easily and economically.

With the PC-based LonBuilder™ Developer's Workbench from Echelon Corporation, you can develop and debug your application, install it, and even monitor and test it after installation.

And if that's not enough, you've always got technical support from Echelon and Motorola behind you. Anytime you're looking for additional technical assistance, answers to questions about your application, training opportunities, or any other help to get the job done, we're just a phone call away at 1-800-937-4566.

To find out more about LonWorks technology, send in the coupon today.

We'll be glad to send you detailed literature, arrange a demonstration, or schedule you for a seminar. Just mail in the coupon, or fax it to 1-415-856-6153.

Coming through loud and clear.

MOS Digital-Analog Integrated Circuit Division

© 1992 Motorola, Inc.
Networking has become part of the mainstream, and users are demanding easier accessibility to the full spectrum of computing platforms. To meet these challenges, National is the only networking silicon supplier with solutions in Ethernet, Token Ring and FDDI. What’s more, we are constantly improving connectivity, performance, quality and interoperability. And our broad range of mixed analog + digital silicon solutions will help you quickly integrate connectivity into your systems. Our first Ethernet silicon helped foster the worldwide acceptance of LANs. National’s ST-NIC™ was the first single-chip 10BASE-T controller to put 10Mbps Ethernet on standard unshielded twisted pair wire. And our newest 16- and 32-bit solutions are making the first “Network Ready” PCs, MACs and peripherals a reality. At the same time, we are developing solutions to enable network management. We’re also creating silicon solutions to ensure full interoperability of
mixed media and multiple protocol environments. We've joined efforts with IBM, the leader in Token-Ring technology, to make it easier for your customers to seamlessly connect Ethernet and Token-Ring environments. And we introduced TROPIC™, the industry's first fully integrated single-chip Token-Ring controller. That's just the first step in a joint IBM-National relationship that will deliver new levels of flexibility to the world of networking. Meanwhile, breakthroughs like our copper and 2-chip FDDI solutions are achieving new levels of performance. These solutions will drive affordable FDDI performance to the desktop. At National, we've got the expertise and systems knowledge to take you where networks are going. For more information, call 1-800-NAT-SEMI (Ext 191), and find out why no one knows networking like National Semiconductor.

Last year we stimulated a few million disk drives, Ethernet chips, anti-lock braking circuits, HDTV systems and a mass spectrometer or two.

Here's how.

Sophisticated Signal Sources from LeCroy

To receive a complete package of technical information:

1-800-4-LeCroy
(1-800-453-2769)

LeCroy 9100 Series Arbitrary Function Generators

<table>
<thead>
<tr>
<th></th>
<th>9101</th>
<th>9109</th>
<th>9112</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAMPLE RATE (MAXIMUM)</td>
<td>200 MS/sec</td>
<td>200 MS/sec</td>
<td>50 MS/Sec</td>
</tr>
<tr>
<td>VERTICAL RESOLUTION</td>
<td>8 Bits</td>
<td>8 Bits</td>
<td>12 Bits</td>
</tr>
<tr>
<td>MAXIMUM MEMORY</td>
<td>2 Million Points</td>
<td>2 Million Points</td>
<td>1 Million Points</td>
</tr>
<tr>
<td>OUTPUT CHANNELS</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>OUTPUT LEVEL</td>
<td>10V p-p (50Ω)</td>
<td>10V p-p (50Ω)</td>
<td>10V p-p (50Ω)</td>
</tr>
<tr>
<td>DIGITAL PATTERNS</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Innovators in Instrumentation
PCMCIA standard advances as PC-card products emerge

The Personal Computer Memory Card International Association (PCMCIA) has approved a long-awaited specification for Card Services, a key software module for systems that use credit-card-sized PC cards. Until now, computer designers have worked with a Card Services draft standard that was "very stable," according to the PCMCIA, but nevertheless incomplete (see related article, pg 49). The Card Services module helps make PCMCIA-compliant computers tolerant of users who have little or no technical expertise. Key features allow "hot swapping" of PC cards while power is on and the use of different types of cards in a common slot without need for system reconfiguration. A PCMCIA executive says the Card Services standard will be available in published form by the end of October. For more information, contact PCMCIA (Sunnyvale, CA, (408) 720-0107).

Adoption of the Card Services standard comes just as a trickle of PC-card products threatens to become a flood. A 9600-bps fax card and an Ethernet LAN card from Intel are among the vanguard; many more cards, not to mention computers that use PC cards, are expected at the upcoming Comdex exhibit. Samples of the two Intel cards are available now, although volume production won't begin until next month for the fax card and January for the LAN card. The fax card will cost $180 (1000); the LAN card will be $185 (1000). Intel, Santa Clara, CA, (800) 548-4725.

—by Gary Legg

Chip sets package serial data for fiber links

TriQuint Semiconductor is offering two serial-data chip sets that work with a variety of fiber-optic-communication standards. The sets have three components: a receiver, a transmitter, and an encoder/decoder. The receiver and transmitter chips are common to both sets. The encoder/decoders for the chip sets have identical pinouts and footprints, allowing a single design that is configurable to multiple applications.

The GA9102 receiver and GA9101 transmitter chips handle 10-bit T1-level data at one port and optical signals at the other port. They need no external timing or filter components. Both are implemented in GaAs and can clock data at rates as great as 265 MHz with less than 244 psec of random jitter.

The encoder/decoder chips distinguish the sets. Both are CMOS devices that handle 8b/10b encoding and decoding, offer CRC (cyclic redundancy check) generation and checking, and detect loss of synchronization. The GA9104 meets the ESCON (Enterprise Systems Connection architecture) coding and control standards and offers parity generation and checking along with the 16-bit CRC. The GA9103 handles the Fiber Channel standard and uses a 32-bit CRC.

Parts are available either individually or as sets. Pricing for sets is $110 (100) for the ESCON chip set and $119.50 for the Fiber Channel chip set. Evaluation boards, incorporating the chip sets and necessary optics and connectors, are also available for either chip set for less than $3000. TriQuint Semiconductor, Santa Clara, CA, (408) 982-0900, FAX (408) 982-0222.

—by Richard Quinmell

Hardware emulator takes big step forward

Quickturn Systems Enterprise Emulation System is a hardware emulator that consists of up to 11 logic-emulation modules with a capacity of 30,000 emulation gates each. The system, therefore, lets you emulate up to 330,000 gates in a single system without interconnect cables. The larger your uP or ASIC design, the more likely you are to need hardware emulation. Above 100,000 gates, running design verification vectors on workstation-based simulators (at their usual 5 or 10 vectors/sec) can be impractical. Testing a large software component on a simulator takes even longer than design verification. Usually fabricating several rounds of prototype chips reveals errors that do not turn up in limited simulation. Another way to solve the problem of slow simulators is to pass your netlist to a hardware emulator.

The emulation system accepts your design in netlist form and partitions it to run efficiently on the system's Xilinx 3000 FPGAs (field-programmable gate arrays) and custom interconnect chips. Depending on the results of the mapping, running speeds range from 4 to 8 MHz. Software called the Automatic Design Partitioner maps netlists to clustered systems, letting you emulate up to 6 million gates of logic. Systems cost $388,000 for 120,000 gates or $798,000 for 330,000 gates. Quickturn Systems, Mountain View, CA, (415) 967-3800, FAX (415) 967-3199.

—by John Napier
Electronica 92 show adds new sections

Electronica 92, one of the world's largest electronic components exhibits, will be held Tuesday, November 10 to Saturday, November 14, 1992, at the Messegelände in Munich, Germany. The show will have more than 2000 exhibitors and more than 500 additional companies represented. Approximately 110,000 trade visitors from 70 countries are expected to attend. On the exhibition floor, attendees will find semiconductor components; passive components; electromagnetic, microwave, and optoelectronic components and subsystems; and equipment for development, quality assurance, and services.

In addition to exploring the exhibits on the show floor, registrants can attend a variety of programs on Wednesday and Thursday. There are three seminars on Wednesday, November 11. The 6th International Conference on Power Electronics and their applications will cover topics ranging from the use of semiconductor technology for switching and actuating applications to the aspects of high-power rectification, inversion, and conversion. "Intelligent sensors" covers the intelligent-sensor market, which is expected to grow to DM65 billion during the next eight years, according to the IntechnoConsult Market Research Institute in Basel (Switzerland). And, "Organic Semiconductors" will cover not only new materials, but also applications in selected sectors.

On Thursday, November 12, attendees can choose from two seminars. The first is a symposium on quality in electronics organized by the DGQ (German Society for Quality) in cooperation with the ZVEI German Electrical and Electronics Manufacturer's Association and Messe München. The symposium will focus on international standardization activities and will have as its central theme "TQM, ISO, CECC—Contradiction in Synergy?" Second is a seminar on the engineering experience with the latest GSM mobile radio networks (D- Networks) in public-sector applications. The seminar predominantly deals with metrological issues from the network-operator and maintenance point of view.

According to the show organizers, show attendees should expect to see the introduction of the first German-American 64-Mbit dynamic RAM, which will store 4000 typewritten pages. For more information about attending the show, contact Messe München International, (089) 51070, FAX (089) 51 07-506, Telex 5 212 081.

—by Raymond Boult, contributing editor

Manufacturing ATE detects open circuits with patented method

The 4200 in-circuit ATE from Marconi Instruments addresses problems of testing boards containing mixed ASICs, VLSI, and SMT devices. In addition to normal analog and digital in-circuit test and diagnostic facilities, the 4200 adds a patented technique, called Q-test, for detecting open circuits. Marconi maintains that open circuits are now the largest single fault area on pc boards, and result from widespread use of SMT parts. Faults arise due to component positioning, bent lead-outs, etching errors, and soldering failures. Marconi's Q-test locates open circuits with a sensor head mounted over the package to detect current flow within the device. The technique uses the parasitic diodes present between circuit elements and substrates of an IC to form a path for the test current.

Other tester features include bus emulation for testing bus-structured designs where in-circuit access is not possible, cluster testing for checking noncontactable areas of the board, and boundary-scan support in accordance with IEEE-1149.1. The VME-based 4200 runs an OS-9 operating system to provide a real-time, multitasking environment, so that testing and programming can be concurrent. Hardware interfaces include Ethernet, X-terminal, and IEEE-488. Programs and fixtures for the company's earlier System 80 ATE are compatible with 4200. Price ranges from £40,000 to £100,000, depending on test-point capacity (128 to 2048 pins). Marconi will show the 4200 at Electronica in Munich, Booth 19F01. Marconi Instruments Ltd, St Albans, UK, 727-59292, FAX 727-47983. In US, Marconi Instruments Inc, Allendale, NJ, (201) 934-9050, FAX (201) 934-9229.

—by Brian Kerridge

Tone decoder chip suits international telecom systems

The FX613 IC from Consumer Microcircuits Ltd senses call progress tones used in a range of applications in international phones, faxes, modems, and telemetry systems.

The IC senses signal level and measures signal frequency in the ranges of 300 to 660 Hz (39.47 msec/reading) and 900 to 2150 Hz (13.16 msec/reading). The IC outputs the frequency reading as a 6-bit serial word to a system microcontroller (µC). You can program a µC to recognize the frequency, sequence, and cadence of input signals, and thus adapt your product to prevailing telecommunication systems.
Desktop CAE Comes to the Sun Workstation

THE DESIGN CENTER™

YOUR ONE-STOP ANALOG AND DIGITAL CIRCUIT DESIGN STATION

The Design Center under Sun OpenWindows stands on its own, providing a comprehensive workspace for conceiving and designing the analog, digital, and mixed analog/digital circuits to fulfill your engineering task. A single system designed for user friendliness, the Design Center streamlines your circuit design process from schematic capture, to simulation with PSpice, to graphical waveform analysis. Hierarchical design, analog behavioral modeling, statistical analyses, digital worst-case timing, and our Analog and Digital Libraries with over 6,400 parts and symbols, are among the many features that are standard with the Design Center.

THE POWER OF THE SUN WORKSTATION IN A PERSONAL SYSTEM

With the Design Center, the power and performance of the Sun OpenWindows computing environment is available to every engineer on his or her own desktop. From CPU intensive circuit simulation, to detailed graphical results analysis, to high-volume multi-tasking, the Design Center under Sun OpenWindow efficiently meets your engineering requirements and goals.

THE DESIGN CENTER WILL CHANGE THE WAY YOU THINK ABOUT SUN WORKSTATIONS...

...personal and powerful Desktop CAE stations with unrivaled price/performance. Now, the system of choice for each and every circuit design engineer, the Design Center under Sun OpenWindows provides you with the optimal path to effective and productive engineering. To find out more about the Design Center on any of our platforms, please call us toll free at (800) 245-3022 or FAX at (714) 455-0554.

MicroSim Corporation
20 Fairbanks • Irvine, CA 92718

THE MAKERS OF PSpice

PSpice is a registered trademark of MicroSim Corporation
Circle No. 152—SPARCstation

EDN October 29, 1992 • 19
EDN-NEWS BREAKS

Conference focuses on DFT

The International Test Conference (Baltimore, MD, September 21 to 24), focused on DFT (design for testability)—a favorite theme for several years. Although cynics decry the DFT field’s low ratio of action to talk, there is evidence that the design community realizes it must pay attention to test needs during product development. For example, as ICs grow in complexity, just showing that they meet the design objectives requires using testability features.

ITC also saw the announcement of several multivendor alliances among IC, CAE, and ATE suppliers. The Design and Test Alliance—a group whose initial 9-firm membership includes Texas Instruments (TI) and Cadence—aims to spur cooperative efforts among vendors and users of design and test technologies and to raise management awareness of the need for integrating the technologies.

Tektronix has joined TI’s separate alliance with Teradyne to promote boundary scan and to distribute hardware and software products that support the technique. More companies may yet join that alliance. TI also announced the release of V2.0 of its MS-Windows-based Asset scan-test tools (priced from approximately $11,000).

Since the 1990 approval of the IEEE-1149.1 standard, boundary scan has apparently become the one DFT technique that has taken the industry by something approaching a storm. The pervasiveness of fine-pitch, surface-mount devices severely restricts nodal access during board testing. Boundary scan permits testing a board’s interconnections (and often more) without probing—or it would if scanable ICs existed for every need. Even as IC vendors work on new scannable parts, designs that mix scan and non-scan chips significantly reduce the need for nodal access.

Cadence announced the Test Intelligent Design Tools for use with its ASIC Workbench. These $175,000 tools combine synthesis and optimization of test features with logic synthesis. Cadence emphasizes that integrating the design of testability features with the synthesis of a device’s primary functions results in better fault coverage, smaller die size, and fewer performance penalties than adding test features after the design is otherwise complete.

Crosscheck introduced V5.0 of the internal-scan-based Aida tool set that it acquired from Teradyne earlier this year. The Aida tools, which also require a designer to think about design and testability together, are priced at $90,000 and run on Sun and HP workstations. The Aida tools complement the firm’s original test tools, which by embedding a proprietary observability matrix within an IC, impose a minimum of constraints on chip designers.

Supercomputing dips to work-station pricing

MasPar Computer Corp, developers of the MP-1 1000-processor parallel computer, is introducing its binary-compatible second-generation system, the MP-2. This computer can incorporate as many as 4096 processors working in parallel, yet is programmable in Fortran or C. Along with the introduction of the MP-2, MasPar has lowered the price of its MP-1. Even though the MP-2 costs $260,000, the entry price of an MP-1 is $75,000. Contact MasPar Computer Corp, Sunnyvale, CA, (408) 736-3300.

—by Richard A Quinnell

83-MHz PLD offers superset of 22V10 functions

If your design won’t fit in a single 22V10, or if you need functions it doesn’t offer, consider the CY7C335 from Cypress Semiconductor. The chip does everything a 22V10 will do, and a bit more, at speeds up to 83 MHz in registered pipelined operations. The chip has 12 instead of 10 I/O macrocells plus four additional buried macrocells. You can bury up to six of the 12 I/O macrocells without losing the associated input pins. The chip also provides 12 dedicated input pins with input registers.

Product terms range from 9 to 19 wide instead of the 8 to 16 on the 22V10. The 22V10 only provides D-type flip-flops. The CY7C335 includes an XOR gate after the sum-of-products to let you emulate T and JK flip-flops, reducing product term usage. The XOR gate also provides polarity control. You can select registered inputs, outputs, or bypass registers individually. Three clocks control the registers: one for input registers, one for output registers, and one additional clock you can use for either inputs or outputs. The ability to use two separate output or state clocks lets you create two asynchronous state machines in one device. The UV-erasable CMOS PLD is available in plastic or ceramic 28-pin 300-mil DIPs, LCCs, or plastic leaded chip carriers. The plastic version is $9.95 (100). Cypress Semiconductor, San Jose, CA, (408) 943-2600.

—by Doug Conner

83-MHz PLD offers superset of 22V10 functions

If your design won’t fit in a single 22V10, or if you need functions it doesn’t offer, consider the CY7C335 from Cypress Semiconductor. The chip does everything a 22V10 will do, and a bit more, at speeds up to 83 MHz in registered pipelined operations. The chip has 12 instead of 10 I/O macrocells plus four additional buried macrocells. You can bury up to six of the 12 I/O macrocells without losing the associated input pins. The chip also provides 12 dedicated input pins with input registers.

Product terms range from 9 to 19 wide instead of the 8 to 16 on the 22V10. The 22V10 only provides D-type flip-flops. The CY7C335 includes an XOR gate after the sum-of-products to let you emulate T and JK flip-flops, reducing product term usage. The XOR gate also provides polarity control. You can select registered inputs, outputs, or bypass registers individually. Three clocks control the registers: one for input registers, one for output registers, and one additional clock you can use for either inputs or outputs. The ability to use two separate output or state clocks lets you create two asynchronous state machines in one device. The UV-erasable CMOS PLD is available in plastic or ceramic 28-pin 300-mil DIPs, LCCs, or plastic leaded chip carriers. The plastic version is $9.95 (100). Cypress Semiconductor, San Jose, CA, (408) 943-2600.

—by Doug Conner

Text continued from pg 18

tions standards and main­

3.579545-MHz system
clock or crystal network.
The plastic package is 16-
in pin small-outline surface-
mount (£2.44/1000) or 14-
in pin DIP £2.22 (1000).
The FX613 is one of sev­

eral telecommunica­

tions ICs the company
will announce at Electron­

ica in Munich, Booth 25B03. Consumer Microcircuits Ltd, Witham, UK, 376-513883, FAX 376-518247. In US, MX-

COM Inc, Winston-Salem, NC, (919) 744-5050.

—by Brian Kerridge

Products severe restrictions to nodal access during board testing. Boundary scan permits testing a board’s interconnections (and often more) without probing—or it would if scanable ICs existed for every need. Even as IC vendors work on new scannable parts, designs that mix scan and non-scan chips significantly reduce the need for nodal access.

Cadence announced the Test Intelligent Design Tools for use with its ASIC Workbench. These $175,000 tools combine synthesis and optimization of test features with logic synthesis. Cadence emphasizes that integrating the design of testability features with the synthesis of a device’s primary functions results in better fault coverage, smaller die size, and fewer performance penalties than adding test features after the design is otherwise complete.

Crosscheck introduced V5.0 of the internal-scan-based Aida tool set that it acquired from Teradyne earlier this year. The Aida tools, which also require a designer to think about design and testability together, are priced at $90,000 and run on Sun and HP workstations. The Aida tools complement the firm’s original test tools, which by embedding a proprietary observability matrix within an IC, impose a minimum of constraints on chip designers.

Metal film resistance. Lots of people supply it, but at Dale® we have more ways to make it work to your advantage.

From the start, we'll give you more alternatives for fine-tuning resistance to your application — right out of the catalog. Low cost commercial to ultra precision.

High power. Ultra high or low value. Tight tolerance. Matched sets. Thick film chips, plus thin film chips for surface mounting.

Qualifications include: MIL-R-10509, MIL-R-22684, MIL-R-39017, MIL-R-55182 and MIL-R-55342.

Save time by contacting your Dale Representative or contact: Dale Electronics, Inc., Norfolk Division, 2300 Riverside Blvd., Norfolk, NE 68701-2242. Phone (402) 371-0080.

A core, two caps and nickel chromium film can't get you to market sooner.

Dale® Can.

All guided by Statistical Process Control and Just-In-Time Delivery systems.

For high performance, high volume or both, Dale has products to meet your exact needs, plus multiple sourcing to protect your production schedule.
Achieve software flexibility with hard-wired speed

You can reprogram RAM-based FPGAs (field-programmable gate arrays) an unlimited number of times to perform different functions at different times. For IEEE 1149.1 boundary-scan operation for board-level test and system self-test diagnostics, you can use a macro with Concurrent Logic’s Clu6000 family to program the IC. After test, you can load the functional logic into the FPGA, eliminating any speed or area penalty associated with dedicated boundary-scan logic.

The family takes this a step further in reprogramming logic by offering dynamic reconfiguring of individual logic cells. Dynamically reconfiguring logic opens up some interesting design possibilities: You have the flexibility of software combined with the speed of hard-wired logic. The firm calls the concept cache logic. You can individually reprogram logic cells while the chip is operating, you can have some of the counters operate while reprogramming others. The net benefit of reprogramming logic to perform different operations at different times is less logic and lower power.

The boundary-scan macro is included in a $495 preliminary collection of macros, described in volume one of the company’s application notes. The DCS2100 development system ($3995) also includes a library. Concurrent Logic Inc., Sunnyvale, CA, (408) 522-8700.—by Doug Conner

Vendors augment ASIC attributes

ASIC designers will soon have a broader range of choices for their base technology. Hitachi America, NEC Electronics, and VLSI Technology have announced their next-generation ASIC processes, with gate arrays to follow by early 1993.

Hitachi America is offering a 0.5-µm BiCMOS array with 250k-gate master slices planned. Each cell of the array contains both MOS and bipolar transistor types, creating an integrated BiCMOS product instead of the usual CMOS core with a ring of higher-drive bipolar transistors. The process was first described at CICC in 1989, but Hitachi delayed the technology’s commercial introduction until a substantial (100+) macrocell library was available. Hitachi, Brisbane, CA, (415) 589-8800.

NEC’s 0.5-µm offering is strictly a CMOS process, but it has been optimized for 3V operation. It can also incorporate Crosscheck’s gate-level test technology, JTAG, or scan techniques at the user’s option. The extra pins used for the built-in testing don’t steal from the user’s I/O pin availability, though, because the arrays use a staggered bond-pad pattern that lets them offer die sizes with as many as 1000 I/O pins. NEC Electronics, Mountain View, CA, (415) 960-6000.

VLSI’s process incorporates Quicklogic’s antifuses, adding programmability to the ASIC community. The company’s first arrays will use the antifuses for programming an on-chip memory system. Subsequent products in the pFSB family will include field-programmable logic, taking away some of the risk in committing a design to ASICs and allowing field customization of ASICs. VLSI Technology, San Jose, CA, (408) 434-7520.

—by Richard A Quinnell

RAID systems proliferate

RAID (redundant array of independent disks) mass-storage systems seem to be gaining headway. New products for implementing the systems, which combine a special controller with multiple small disk drives, are available from NCR Corp, UltraStor Corp, and Sanyo Icon; previously, Ciprico Inc introduced a 8.4-Gbyte RAID subsystem (see EDN, Oct 15, pg 75). RAID systems allow vast amounts of data, fast data access, high transfer rates, and fault tolerance.

NCR’s SCSI-2 controller, the ADP-92-06, lets you implement a RAID system on an ISA or EISA PC. The controller supports RAID 0 (data striping), RAID 1 (mirroring), RAID 3 (parallel disks with one drive devoted to parity storage), and RAID 5 (parallel disks with parity storage spread across all drives). It transfers data at 20 Mbytes/sec. The OEM list price is $1995. NCR Corp, Witchita, KS, (800) 334-5454.

The Ultra 124F RAID controller from UltraStor connects EISA computers to SCSI-1, SCSI-2, or Fast SCSI devices. It supports RAID 0, RAID 1, RAID 4 (data striping with parity), and RAID 5. A 3-channel version costs $1995; a 5-channel version is $2370. UltraStor will soon introduce a $2995 SCSI-to-SCSI RAID controller. UltraStor Corp, Irvine, CA, (714) 581-4100.

Sanyo Icon’s RAID offerings are complete mass-storage subsystems for use on networks. The $30,000 base-model LANSer MXR100 provides as much as 4.8 Gbytes of storage; the $75,000 MXR500, available later this year, can expand to more than 300 Gbytes. According to Sanyo Icon, the products will support 12 file servers, 105 disk drives, and “thousands” of PCs. The systems implement RAID 0, RAID 1, and RAID 5. They connect via SCSI ports to file servers having ISA, EISA, or Micro Channel Architecture buses. Sanyo Icon, Irvine, CA, (714) 263-3758.

—by Gary Legg
EMS II High Power Switchers. You've never seen power this clean.

The new EMS II Series Switch Mode DC Power Supplies give you clean power, every time...with no glitches, spikes or headaches. In fact, they handle the highest load of power per cubic inch in the industry. Here are some more features to make your decision easier:

- 50mV P-P PARD, 35mV typical
- 0-3 VDC @ 600A to 600 VDC @ 16A

- Models available from 600 Watts to 15,000 Watts, 1Ø and 3Ø
- No derating required
- Overload and short circuit protection

The EMS II DC Switchers. They can wash away your high power problems... once and for all. For more information or literature, contact:

ELECTRONIC MEASUREMENTS, INC.
405 Essex Road, Neptune, NJ 07753 • Telephone: 908-922-9300 • FAX: 908-922-9334
Having difficulty locating RF or pulse transformers with low droop, fast risetime or a particular impedance ratio over a specified frequency range? Mini-Circuits offers a solution.

Choose impedance ratios from 1:1 to 36:1, in connector, TO-, flatpack, surface-mount, or pin versions (plastic or metal case built to meet MIL-T-21038 and MIL-T-55831 requirements*).

Coaxial connector models are offered with 50 and 75 ohm impedance; BNC standard, other types on request.

Ultra-wideband response achieves low droop and fast risetime for pulse applications. Ratings up to 1000M ohms insulation resistance and up to 1000V dielectric voltage. For wide dynamic range applications involving up to 100mA primary current, use the T-H series. Fully detailed data appear in our 740-pg RF/IF Designer's Handbook.

Need units in a hurry?...all models are covered by our exclusive one-week shipment guarantee. Only from Mini-Circuits.

*units are not OPL listed.
<table>
<thead>
<tr>
<th>MODEL NO.</th>
<th>FREQUENCY MHz</th>
<th>INSERTION LOSS</th>
<th>PRICE $</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>0.05-200</td>
<td>0.05-200</td>
<td>0.05-150</td>
</tr>
<tr>
<td>T</td>
<td>0.05-150</td>
<td>0.05-150</td>
<td>0.05-100</td>
</tr>
<tr>
<td>T</td>
<td>0.05-300</td>
<td>0.05-300</td>
<td>0.1-100</td>
</tr>
<tr>
<td>T</td>
<td>0.05-200</td>
<td>0.1-100</td>
<td>0.2-200</td>
</tr>
<tr>
<td>T</td>
<td>0.05-250</td>
<td>0.1-100</td>
<td>0.3-100</td>
</tr>
<tr>
<td>T</td>
<td>0.05-300</td>
<td>0.1-100</td>
<td>0.3-200</td>
</tr>
<tr>
<td>T</td>
<td>0.05-250</td>
<td>0.1-100</td>
<td>0.3-200</td>
</tr>
<tr>
<td>T</td>
<td>0.05-200</td>
<td>0.1-100</td>
<td>0.3-200</td>
</tr>
<tr>
<td>T</td>
<td>0.05-250</td>
<td>0.1-100</td>
<td>0.3-200</td>
</tr>
<tr>
<td>T</td>
<td>0.05-300</td>
<td>0.1-100</td>
<td>0.3-200</td>
</tr>
</tbody>
</table>

* For A and B models:
- Typical Amplitude Unbalance: 0.1 dB over 1 dB frequency range
- 0.5 dB over entire frequency range
- 1.0° over 1 dB frequency range
- 1.5° over entire frequency range

* Denotes 75 ohm models

* Denotes 50 ohm models

* For A and B models:
- Typical Amplitude Unbalance: 0.1 dB over 1 dB frequency range
- 0.5 dB over entire frequency range
- 1.0° over 1 dB frequency range
- 1.5° over entire frequency range

* Denotes 75 ohm models

* Denotes 50 ohm models

* For A and B models:
- Typical Amplitude Unbalance: 0.1 dB over 1 dB frequency range
- 0.5 dB over entire frequency range
- 1.0° over 1 dB frequency range
- 1.5° over entire frequency range

CIRCLE NO. 42
With 18 million transistors and a total of 24 million elements, the 4-meg SRAM is the most complex memory device ever made.

But the products that will be built with it are even more extraordinary. Personal Digital Assistants, handheld notebook and pen-based computers—all with power only available in mainframes a few years ago. And complex telecommunications switches, video phones, robotics, and interactive cable systems will use the 4-meg SRAM too.

At Samsung, we're proud to be part of these advancements. And proud to extend the leadership we earned with the world's first 16-meg DRAM.

Our line of standard SRAMS is...
the broadest available—with the new 128K and 512K densities, and parts down to 64K. Industrial temperature ranges, 3.0V parts, and 55ns speeds are among the line's other highlights. And we offer additional low-power memory solutions, including SRAM memory cards and Pseudo SRAMs.

All technology that will let you build even more amazing things. Like computers with huge capabilities, small enough to fit in your hand.

For more information, please call 1-800-446-2760 today.

Or write to SRAM Marketing, Samsung Semiconductor Inc., 3655 No. First St., San Jose, CA 95134.

A Generation Ahead.

Standard SRAMS from Samsung.

<table>
<thead>
<tr>
<th>PART</th>
<th>DENSITY</th>
<th>SPEED</th>
<th>CURRENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>KM684000</td>
<td>4Mb</td>
<td>55ns</td>
<td>20uA</td>
</tr>
<tr>
<td>KM681000A</td>
<td>1Mb</td>
<td>70ns</td>
<td>20uA</td>
</tr>
<tr>
<td>KM68128K</td>
<td>512K</td>
<td>55ns</td>
<td>20uA</td>
</tr>
<tr>
<td>KM62516B</td>
<td>256K</td>
<td>70ns</td>
<td>20uA</td>
</tr>
</tbody>
</table>

All parts available in '8' and industrial temperatures.
Try stuffing these into a laptop.

Laptops have their place, but for mission-critical applications requiring serious expansion, workstation power, CRT-quality screens or toolbox ruggedness, get a P.A.C.™ (Portable Add-In Computer).

- **MASSIVE EXPANSION.** Nobody gives you more expansion possibilities than Dolch. In an 18 pound package a Dolch P.A.C. has room for up to five full-size EISA/ISA add-in cards. You can add up to 32 MB RAM, 1 GB HDD, and any combination of drives, CD-ROM, removable HD, streaming tape, and more. **EXTREME POWER.** Dolch P.A.C. systems have been rated "the fastest portables on the market" since 1987, and have won more Editor’s Choice awards then any other product in its category. *Computer Reseller News* calls the 486-50E “a dream machine . . . one of the most powerful PCs of any kind.” P.A.C. systems are based on 386SX and DX, and 486 CPUs up to 50MHz, delivering as much as 22 MIPS. **DAZZLING DISPLAYS.** "Breathtaking . . . Dolch’s heart-stopping TFT Color Display produces vibrant colors and sharp images virtually on par with those seen on desktop VGA monitors," reports *PC Computing*. **MIL RUGGEDNESS.** Every P.A.C. is as tough as it is powerful. Certified under MIL Std. 810C Dolch provides true mission critical reliability. “. . . it simply outclasses its competitors and it is sturdy and solid . . .” says *PC Magazine*. **GET THE FULL STORY.**

Call 1.800.995.7581. In Canada 1.800.561.4527.
He joins Shakespeare in asking, "What's in a name?"

Perhaps the slow acceptance of fuzzy logic by Western engineers is due in part to the ambiguity inherent in the name, and not because Western engineers require a new mindset, as David Brubaker states in his article (EDN, June 18, 1992, pg 111). It's hard to believe that the Japanese equivalent of the words, "fuzzy logic," could conjure up so many ill-defined images.

Alan H Ostroff, Engineer
ELA Medical SA
Worther, France

Don't abandon textual-programming methods

In Charles Small's article, "Windows and engineering software" (EDN, April 9, 1992, pg 122), perhaps he can tell me where his colleague got the "I Hate Windows" badge. I've just upgraded to V3.1, which is a bit more resilient, but still crashes to the extent that I need to switch off completely.

But my real concern is that its "look and feel" are not really suitable for CAE. His reference to engineers' abandoning textual-programming methods for diagrammatic programming is a point I don't accept. If true, it would give some merit for using Windows, if it were not for the fact that creating engineering diagrams with [diagrammatic programming] is tedious and frustrating.

Unlike text, engineering diagrams need to be larger than an A4 sheet and are not created from the top down (like typing) but grow in all directions. This requires fast screen handling and sensible drawing controls, which Windows doesn't have. My current DOS-based CAE packages are fast, probably because of the "undocumented features" Small mentions, but might be considered somewhat limited in capability.

Windows might allow for more complex FPGA and EPLD (field-programmable-gate-array and erasable-programmable-logic-device) compilers, for example, but is there nothing else? Is Microsoft going to dictate the "look and feel" of all future CAE?

Colin R Woodbridge
Development Manager
Ego Computers Ltd
Borehamwood
Herts, UK

Defuzzing fuzzy logic

After reading the articles "Fuzzy-logic basics: intuitive rules replace complex math" and "Fuzzy-logic system solves control problem" (EDN, June 18, 1992, pgs 111 and 121, respectively), my suspicions are confirmed:

- Fuzzy logic is nothing but the multivalued logic first enunciated (I believe) by Alfred Korzybski in the 1920s(?).
- Fuzzy logic, as practiced today, is actually an attempt to do analog computation by digital means and, as a result, gives a limited number of discrete results rather than a continuum of results, such as a true analog system would.

It is unfortunate that the originator of the term, "fuzzy logic," didn't choose a more accurate name, such as "continuous logic," "analogic," or even the original "multivalued logic." This choice has undoubtedly led to a lot of reluctance to use—or even to investigate—fuzzy logic, because of the implications of imprecision.

A similarly unfortunate choice of a name was made in the case of the computer language, Lisp. When one stops to think about it, doesn't the word, "lisp," carry a connotation of immaturity ("All I Want For Chrismuth Ith My Two Front Teeth")?

Afterthought: I wonder what the literal translation of the Japanese term for "fuzzy logic" might be?

Robert J Nedreski
Nedreski Industrial Service
Erie, PA

Executive-salary rate can affect the taxpayer

In response to Jon Titus's editorial, "Don't tread on me" (EDN, April 9, 1991, pg 39), I agree that in a free-enterprise economy, executives should be paid whatever the board of directors and stockholders can tolerate. But in the real world (these United States), we have a "cause and effect" society. Executives with inflated salaries (that is, compensation that doesn't correlate with the health of the business, especially when workers' salaries are depressed due to a "downturn in the business cycle"), bail out of failing companies with golden parachutes while the American taxpayer is left to pick up the tab for the increased burden on the social services that the displaced workers cause.

From the ethical, moral point of view, the human destruction through loss of ego, pride, and hope is intolerable. As the ranks of the homeless swell, and "discouraged workers" increase in number, the negative impact on the human equation as well as the economy, cannot be overlooked, especially by those who claim that the free-enterprise system is self-correcting.

If what Titus says is true, then not another family should face hardship and bankruptcy caring for a sick family member or loved one. The converse of this statement is also true: Not another failing business should be allowed to pay one penny for an executive's golden parachute before it compensates workers who will end up using tax-supported social services.

When poor business practices affect only that business, I consider that self-correcting free enterprise. When a failing company's actions start to touch my pocketbook, I demand a say in what that company does. In this country, we do this through legislation.

Russ Parham, PE
3M Co,
St Paul, MN
The chips of choice for multimedia.

Oki's IC mix adds audio, video, and more.

Entertaining the idea of adding multimedia capabilities to your system? Thinking of extending current capabilities? Oki's IC menu offers the audio, video, interface, and control features you're hungry for.

Try an order of Oki's RealVoice™ speech synthesizers for the highest quality sound. Savor the high-resolution graphics achieved with our VRAMs and field and line memories. Experience complete audio hardware and firmware support for Windows™ 3.1 with our 8-bit MCUs. Interface to it all with Oki's high-performance 0.8µm ASICs.

Is your appetite whet for more information?

Call 1-800-OKI-6388 for Pkg 060.

Oki's IC Menu for Multimedia

<table>
<thead>
<tr>
<th>Speech</th>
<th>4-bit ADPCM compression</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Built-in low-pass filter</td>
</tr>
<tr>
<td></td>
<td>2.9kHz-32kHz sample frequency</td>
</tr>
<tr>
<td>Memory</td>
<td>70ns, 1-Meg VRAM</td>
</tr>
<tr>
<td></td>
<td>30ns, 1-Meg field memory</td>
</tr>
<tr>
<td></td>
<td>28ns, 5Kx8 line memory</td>
</tr>
<tr>
<td>ASIC</td>
<td>150K gates, 100MHz, 304QFPs</td>
</tr>
<tr>
<td></td>
<td>Timing-driven layout</td>
</tr>
<tr>
<td></td>
<td><1.0ns clock trees</td>
</tr>
<tr>
<td>MCU</td>
<td>A/D conversion and PWM</td>
</tr>
<tr>
<td></td>
<td>5-volt and 3-volt</td>
</tr>
<tr>
<td></td>
<td>8-bit, 400ns at 10MHz</td>
</tr>
</tbody>
</table>

Visit us at Comdex in Okidata booth #1616, Las Vegas Convention Center.
Check your stockroom for obsolete ICs

Matric purchased the RCA 1800 series Microboard line from RCA in 1985. Now our stock of obsolete CDP1866 and CDP1867 4-bit latch ICs is nearly depleted. Does anyone know of a replacement, or have, any of these parts that we can purchase?

Les Switzer
Technical Process Engineer
Matric Ltd
Franklin, PA

We checked the CAPS system, a CD-ROM-based IC and semiconductor database available from Cahners Technical Information Service Div, and found no upgrades, downgrades, or pin-for-pin replacements for the CDP1866 or CDP1867. Calls to several distributors proved fruitless also. If anyone has a stash of these parts, please contact Ask EDN.

LCD bar graphs available as display-driver pair or standard modules

In the May 21, 1992, Ask EDN, S. Morris-Jones was looking for an LCD bar-graph module or a display-driver pair available in small quantities. Some years ago, TD Electronics developed a 256-element bar graph for a custom piece of equipment. The LCD is available from Crystalloid, and we used Motorola’s MC145000 and MC145001 driver ICs. The drivers are based on a serial stream of pulses, but you can use analog conversion via a VCO or dual-slope ADC to derive the bit stream. At project time, the LCD was about $12 (100). I would estimate the circuitry at $18 (100).

Crystalloid Electronics Co
Box 628
Hudson, OH 44236
(216) 655-2429

Motorola Semiconductor
Products Inc
Box 20912
Phoenix, AZ 85036
(800) 521-6274.

Robert B Bertolasi
TD Electronics Inc
Loves Park, IL

Thanks for the display-driver pair. Thanks also to Richard J. Borstelmann of UCE Inc, Roger Williams of Natse Instruments (Middleborough, MA), and Craig Ogden of Heath Electronics (Glenns Ferry, ID) for pointing out three sources of LCD bar-graph modules:

UCE Inc
35 Rockland Rd
Norwalk, CT 06854
(203) 888-7500
FAX (203) 888-2566

Standish Industries
W 7514 Highway V
Lake Mills, WI 53551
(414) 648-1000
In UK, (0879) 64-4411

Modutee Inc
920 Candia Rd
Manchester, NH 03103
(603) 669-5121.

Does byte-oriented HDLC data-link protocol exist?

Is there a variant of the HDLC data communications standard (ISO 3309) that uses byte-oriented frame structures in conjunction with the CCITT frame-checking sequence? The ISO specifies a frame structure that, in general, ends up transmitting a non-integral number of bytes because it uses bit stuffing to achieve data transparency. This is awkward if you want to use it for asynchronous as well as synchronous data links.

David Cooper
Coherent Research Ltd
London, UK

By definition, HDLC data communications is bit oriented. In fact, this CCITT-specified data-link protocol is the foundation on which most other bit-oriented protocols are based. We haven’t come across a byte-oriented derivative of this protocol and doubt that one exists. If any reader knows of some renegade variant, please let us know.

Singapore reader seeks electrifying engineers

I am a 1991 physics graduate from the National University of Singapore. I am certainly obsessed with electronics and lasers; however, in Singapore engineers are very boring and do boring jobs. Could you direct me to any electronics clubs in the US where I can get to know interesting people like the Free Software Foundation’s Richard Stallman?

Chui Yeok Pong
Singapore

We have several suggestions for you. First, surely not all engineers in Singapore are boring—perhaps you could start your own laser-lovers club. Second, you could contact the Free Software Foundation, which may be able to put you in touch with some interesting people to correspond with. Third, try subscribing to an international electronics magazine. Two magazines geared for hobbyists are Electronics Today International ($56/year) and Elektor Electronics ($48/year). Also, you could contact EDN Asia’s home office to start a subscription.

Free Software Foundation
675 Massachusetts Ave
Cambridge, MA 02139, USA
Phone (617) 876-3296

Electronics Today International
Argus Publications
Boundary Way
Hemel, Hempsstead
HP2 7ST, UK
Phone (0442) 66551
FAX (0442) 66998

Elektor Electronics
Worldwide Subscription Services, Ltd
Unit 4, Gibbs Reed Farm
Pashley Rd
Ticehurst, East Sussex
TN5 7HE, UK
Phone (0580) 290-657
FAX (0580) 200-616

EDN Asia
22/F Lo Yong Ct Commercial Bldg
212-220 Lockhart Rd
Wanchai, Hong Kong
Phone (852) 572-2037
FAX (852) 838-5912.

Ask EDN solves nagging design problems and answers difficult questions. Address your letters to Ask EDN, 275 Washington St, Newton, MA 02158. FAX (617) 558-4470; MCI: EDNBOS.
An Object Less
For Absolutely Pr

The MACH™ Family From AMD:
The Fastest, Most Predictable High Density PLDs Available Today.

Oops! You’re a couple of nanoseconds shy this time, and it’s going to hurt. Perhaps next time you’ll choose a more predictable vehicle. And the most predictable high speed, high-density PLDs available are the MACH family from AMD.

Only the MACH Family offers you worst case delays of 15ns* or less. Because MACH parts are essentially PAL® devices, just like the kind you already know. Not some hybrid PLD/FPGA, where you don’t know how it performs — until it’s too late. So you don’t have to guess your delays or clock speeds, you just read them right off our datasheet.

*In applications with a full 16 product terms. Every MACH part is specified using real-life conditions with all outputs switching.

32 • EDN October 29, 1992
PAL devices. They're bigger and better, with densities ranging from 900 to 3600 gates, all in our submicron CMOS technology.

Nor will you face unpredictable delays when you order. Because the entire MACH family is now shipping in volume.

Working with them is equally predictable. You don't have to learn any new techniques, just use the software and test equipment you already know. Like ABEL, CUPL, OrCad, and others. Not to mention the software and support from over 20 FusionPLD vendors — all prepared to bring your products to market on time.

And each MACH part can migrate easily to a pin-compatible, hard-wired MASC™ counterpart for high volume. So you can get the volume you need, without redesign, NRE, or unforeseen delays.

So call AMD today at 1-800-222-9323. And let the MACH family make your design cycle a whole heck of a lot safer.
“P-CAD helps us transform abstract engineering concepts into sound designs.”

Jeff Rowland, President

Sound PCB designs, with P-CAD® software.

Jeff Rowland Design Group creates high end audio products that are not only elegant in design, but are technically innovative as well.

The Jeff Rowland product design strategy emphasizes the control of complex field interactions and electrical geometries. And this task demands the finest PCB design software available.

P-CAD designed PCB products give Jeff Rowland engineers the speed and features they need to design minimum area layouts with custom path geometries.

P-CAD also combines an easy to use interface with end-to-end integration, so audio electronics designs can be completed and verified to support the world’s most demanding product quality and performance criteria.

P-CAD products, unique as your application.

P-CAD products include all the interactive and automatic tools you need to complete PCBs, from symbol creation through manufacturing.

All made possible by P-CAD’s open architecture and its interfaces to a wide range of third party tools such as VIEWlogics. P-CAD lets you easily exchange PCB files with your favorite mechanical CAD programs such as CADAM’s MICRO CADAM®. And whether it’s a DOS or UNIX®, based solution you’re looking for, there is a P-CAD product that is engineered to meet your desktop PCB design needs.

Now hear this. Here’s how to get a free P-CAD demo.*

When it comes to designing better PCBs faster and more productively, the advantages of P-CAD are definitely worth hearing about. To take advantage of this free offer for a hands-on demonstration, just call us for the name of your nearest CADAM Value Added Reseller. If you think this offer sounds great, simply call today toll-free: 1-800-255-5710.

*Available from CADAM Value Added Resellers. Contact CADAM for details. IBM is a registered trademark of International Business Machines Corp. CADAM and MICRO CADAM are registered trademarks of CADAM INC. P-CAD is a registered trademark of Personal CAD Systems, Inc. UNIX® is a registered trademark of UNIX Systems Labs, Inc. VIEWlogics is a registered trademark of Viewlogic Systems, Inc.CADAM INC. 1991 N. Buena Vista St., Burbank, CA 91504. ©1992 CADAM INC.
Engineering heroes are a dime a dozen

It’s a crisis! Something doesn’t work. Purchasing can't obtain a sole-sourced part. Customers are burning up the phone lines enraged over late deliveries. Your adrenaline starts pumping; you roll up your sleeves and jump in. You can save the day!

And you do save the day. You burn the midnight oil for a couple of nights and make a few deft circuit modifications so that production can start up again. You grin at your skill, heave a sigh of relief, and shrug off the congratulations of your superiors. Perhaps even the general manager stops by for a handshake and a brief congratulatory chat.

“Everyone has his 15 minutes of fame,” you tell yourself, and you hope that your boss will remember your skill and dedication at your next review. If past performance means anything, he or she will. “This is what engineering is all about. EEs have darned few chances to play hero.” You feel fortunate to have had the opportunity.

On your next project, will you remember your moment in the spotlight and subconsciously make a couple of design decisions that, later on, will give you another chance to be a hero? Companies that reward engineering heroics without similarly rewarding engineers who do their utmost to avoid ever having to play hero are encouraging sloppy engineering... encouraging poor quality.

Quality experts often point out that no company can have good quality unless management is committed to it. Employees will figure out what management really wants and deliver it. If management wants heroes, then it will get heroes—at least for a while. By and large, customers don’t care about your heroics. If your company makes a habit of late deliveries or provides products of questionable quality, business will suffer, and your job and your opportunities to play hero will disappear.

If management commits itself to quality, many acts of engineering heroics are seen for what they are: examples of poor engineering. Managers who think twice before they reward such engineering heroics are acting in their companies’ best interests. And if they cause engineering heroes to change their ways, they are acting in the engineers’ best interests, too. In the long run, having a job beats getting a hero’s medal.

Send me your comments via FAX at (617) 558-4470, or on the EDN Bulletin Board System at (617) 558-4241 300/1200/2400, 8,N,1; on 9600-bps modems try (617) 558-4580,4582, or 4398.
Put These G And Take So

Whatever you’re working on, please stop. You deserve to take some time off. And with any member of the AMD 29K™ Family of embedded RISC processors, you can take several months off your design cycle.

That’s because 29K processors’ simple, highly integrated designs will knock time-consuming steps off your schedule. Take the inexpensive, new Am29200™ microcontroller. With many features like I/O controls and serial ports included on-chip, it’s the easiest to use embedded processor available. Adding memory requires no interface circuitry. It’s as simple as playing “Connect the dots.”

Memory interface throughout the rest of the family is fast and easy too. Each processor in the 29K Family integrates easily with low-cost PLDs or simple glue logic to minimize your circuitry needs.

You’ll also save valuable time when you’re expanding your product line. The entire 29K family is binary compatible. So you just deter-
mine the performance you need and select the appropriate chip—from the Am29200 to the high-end Am29050™ processor. There’s no need to recompile your applications’ software as you scale up or down the performance ladder.

And thanks to the 29K’s RISC architecture, you can use inexpensive memory devices to lower your system costs and still deliver the high performance your customers demand.

For more information on the 29K embedded RISC family call today at 1-800-292-9263 Ext. 3. Then kick back and watch the AMD guys go to work.
10ns BiCMOS 1 Megs from Motorola. Everything else is dead in the water.

1 Meg BiCMOS Fast SRAMs from Motorola demonstrate a simple evolutionary principle: survival of the fastest.

With 10ns access times at 1 Meg densities, nothing else even comes close enough to compare — for speed and density.

<table>
<thead>
<tr>
<th>MCM6726</th>
<th>MCM6728</th>
<th>MCM6729</th>
<th>MCM67282*</th>
<th>MCM6727</th>
</tr>
</thead>
<tbody>
<tr>
<td>128K x 8 bit</td>
<td>256K x 4 bit</td>
<td>256K x 4 bit</td>
<td>256K x 4 bit</td>
<td>1 Meg x 1 bit</td>
</tr>
<tr>
<td>10 ns, 12, 15ns</td>
<td>10, 12, 15ns</td>
<td>10, 12, 15ns</td>
<td>10, 12, 15ns</td>
<td>10, 12, 15ns</td>
</tr>
<tr>
<td>MCM6706A</td>
<td>MCM6705A</td>
<td>MCM6708A</td>
<td>MCM6709A*</td>
<td>MCM67082A*</td>
</tr>
<tr>
<td>32K x 8 bit</td>
<td>32K x 9 bit</td>
<td>64K x 4 bit</td>
<td>64K x 4 bit</td>
<td>64K x 4 bit</td>
</tr>
<tr>
<td>8, 10, 12ns</td>
<td>10, 12ns</td>
<td>8, 10, 12ns</td>
<td>8, 10, 12ns</td>
<td>10, 12ns</td>
</tr>
</tbody>
</table>

And as if that weren’t enough to scare off the competition, these 1 Meg Fast SRAMs support both TTL and ECL I/O. They also feature an advanced pinout, with power supply, ground, and I/O pins centered on the package for reduced inductance and improved ground and power bussing.

Looking for even more speed? How about 8ns? That’s the access time on our 256K BiCMOS Fast SRAMs.

Choose whichever speed-and-density combination is right for you. Either way you’ll get the built-in quality and reliability of Motorola’s high volume, sub-micron manufacturing.

Reel in the power of our BiCMOS Fast SRAMs for your next design, and get ready to throw everything else back in the water.

To request technical information or a sample device, just mail in the coupon or FAX it to Motorola’s Fast SRAM FAX line at 1-800-347-MOTO (6686).

If you like what’s new, wait ’til you see what’s next.

Motorola offers a complete portfolio of BiCMOS and CMOS Fast SRAMs with densities from 16K to 1 meg, plus 2 and 8 meg modules. CMOS access times are as fast as 15ns (256K) and 20ns (1 meg).
Surface mount interconnects are a whole new game in technology. And as in most new games, a little help from the pros makes life easier.

Each surface mount application presents its own problems requiring a unique solution. Our experience in design and manufacturing can help guide you through the options, giving you a clearer understanding of what you can (and can’t) do to integrate surface mount interconnects into existing or new products.

We’ll show you the variations in form you can choose from— from through-hole compatibles to new, ultra-fine-pitch SMT.
products. We'll make sure the contact configuration and foot design you choose are right for the physical requirements of your system. We'll help determine optimum holddown type, based on how your product will be assembled and used. And we'll show you how the right combination can answer design needs and fit successfully into production.

We offer the manufacturing technology you need, too: our products are designed for either automated pick-and-place or robotic application. They're available in tape and reel packages (including EIA-481), tubes, and trays to meet manufacturing requirements. In fact, the packaging, tooling, and feeder modules we offer can all be tailored to your unique assembly environment.

Want more help? We'll also move you ahead in your design efforts, keep you up-to-the-minute on new advances, and simplify your design process. Full technical information, catalog sheets, and 2D and 3D models of many product lines are available in CD-ROM format to shorten your design cycle.

AMP is a trademark of AMP Incorporated.
Microcontroller Options

Masked-ROM
Cost of Component

Cost of New Mask

Cost of Being Late-to-Market

Cost of Flexibility Loss

Cost of Scrapped Inventory

Cost of Increased Lead Time
When you add it all up, going into production with our OTP microcontrollers makes perfect sense.

Why? Because our wide range of 8-bit OTP 80C51 devices gets you to market faster with a better product.

You see, by using OTP in production, you don’t have the lead times of masked-ROM. So you can ramp production almost instantly.

Our OTP devices also give you the flexibility to make quick performance upgrades. Which lets you stay on top of the ever-changing market.

Plus, unlike masked-ROM, there’s no minimum order for our OTP. So it’s ideal for designs with low production runs.

BOTTOM LINE:

COST OF OTP < COST OF MASKED-ROM

And with OTP, design changes will never leave you with a big supply of unusable masked-ROM. Hence, less waste and lower costs.

Best of all, we give you a complete solution. Because we make a complete line of devices including masked-ROM and ROM-less microcontrollers in addition to OTP versions.

Therefore, when your code is set, you can switch to masked-ROM without changing your supplier or PCB layout. All while using any of the various software programmers we support.

Plus, we offer the most choices of OTP to meet your design needs. That includes the QFP and other popular packages, as well as devices meeting all temperature ranges.

So call today and improve your product line with the OTP microcontrollers that improve your bottom line: 1-800-227-1817, ext. 761D. For immediate response, ask for your FastFAX option.
So many custom applications.

Not just for board test anymore.

If you think spring loaded test probes are only used in Bed of Nail Printed Circuit Board Testers, think again. Compact and reliable, with consistent contact and compression force, Augat POGO® spring probes are the answer to unlimited test and non-test applications.

Test Sockets you can live with.

With superior electrical shielding, POGO Custom Test Sockets offer reduced pin-to-pin cross talk. In addition, with a service life of 250,000 cycles versus less than 1,000 for conventional pin and Socket technology, POGO Test Sockets win again with the lowest total applied cost.

Augat POGOs let you design it your way.

Ideal for custom assemblies, Augat POGOs are the smart choice for portable cellular telephone and military communication, battery recharging connectors.

With uniform contact force and excellent resistance to shock and vibration, Augat has the answer for your battery powered portable equipment. For Surface Mount boards, custom designed POGOs allow you to reflow solder the probes directly to the board, saving space and assembly costs.

1,000,000 cycle life.

With rated life of up to one million cycles, Augat POGOs, utilizing coil springs, out-perform conventional stamped and formed technology. With superior life and mating tolerances, plus a wide range of spring forces and electrical loads, POGOs are easily adaptable to your specific needs.

A feature you can't resist.

Low levels of contact resistance are important. However, the more critical performance measurement is the consistency of the resistance. Augat's unique Biasing Ball® design assures consistency over life, even to 3 sigma. To learn more about how Augat POGOs can help answer your custom socket and contact needs, call and ask for our POGO Application Engineer.
Small, smart PC cards strive for compatibility

GARY LEGG, Senior Technical Editor

There's both good news and bad news about PC cards, a new category of plug-in peripheral devices for small computers. The good news is that PC cards are very small (like thick credit cards) and very smart (merely plugging a new card into a computer slot automatically reconfigures the system). The bad news is that definition of a PC-card standard has lagged product development, so some cards lack features that would make them interchangeable with similar cards.

Incompatibility problems stem from a major addition that the Personal Computer Memory Card International Association (PCMCIA) made to the PC-card standard. The original standard (Release 1.0) covered only memory cards; last year's revision (Release 2.0) provided for peripheral devices of all types in what the PCMCIA calls 110 cards. The ramifications of Release 2.0 are so enormous that many of the technical details have yet to be specified.

A flood of new products, now being introduced before the PCMCIA standard is fully defined, threatens to exacerbate the situation. Manufacturers are so eager to tap a growing market, they simply can't wait for a final PCMCIA specification. Other products—some hard-disk drives, for example—will take the physical form of PCMCIA cards without attempting PCMCIA compatibility. In those products, manufacturers believe, small size is benefit enough; attempting PCMCIA compliance would just delay market entry.

Eventually PCMCIA compliance, however, will be important in products for...
PC CARDS

non-technical consumers. In sub-notebook and palmtop computers and in handheld products known as personal digital assistants (PDAs), ease-of-use features that are key PCMCIA goals will be essential. Such features provide what is essentially "plug-and-play" capability.

Plug-and-play features make PCMCIA-compliant systems virtually goof-proof. For example, you can insert or remove a PC card while a system is running, and no damage will occur either to the system or the card. You can even plug any kind of PC card-containing disk drive, modem, memory, or whatever—into any card slot that will physically accept it. System software recognizes the card type and reconfigures itself appropriately. It also passes information about the card to the application program that is running, allowing the program to "gracefully" halt instead of proceeding with dire consequences.

The capabilities for hot insertion and removal of PC cards result from special requirements in the PCMCIA specification. For example, the pins on each PC card are of three different lengths. Power pins

The anatomy of a PCMCIA system

A computer designed to accept PC cards—plug-in modules specified by the Personal Computer Memory Card International Association (PCMCIA)—has special hardware and software features that let it make use of those cards. The tiny cards, each having their own special features, get most of the attention though.

PC cards are the size and shape of thick credit cards. They come in three thicknesses—3.3, 5.0, and 10.5 mm—and each has a recessed 68-pin connector. A card can contain either memory or a peripheral device.

A PCMCIA-compliant memory card can contain any type of memory (and combinations) except dynamic RAM (DRAM). The PCMCIA views DRAM as better suited for fixed system memory than for removable cards.

Peripheral cards, which the PCMCIA calls I/O cards, can contain any kind of device. Modem and hard-disk cards will be most prevalent for the near future, primarily because they're in demand for subnotebook computers. Flash-memory cards having a standard hard-disk interface will go in applications where size and weight are critical and cost is not.

Within a PCMCIA-compliant computer, most of the capability for using PC cards comes from software (Fig A). A BIOS-level module called Socket Services provides very basic capabilities. A higher-level module called Card Services provides special features that make PC cards easy to use. For example, Card Services recognizes different types of inserted cards and configures the system software accordingly.

Adapter IC connects bus to socket

An IC called a host adapter connects a PCMCIA-compliant computer's bus to one or more card sockets. Host adapters are hardware-dependent; each works with a specific processor type. Each adapter also needs a hardware-dependent version of Socket Services.

Fig A—Two software modules, Socket Services and Card Services, provide a standard software interface to PC cards. A host-adapter IC connects a computer bus to one or more card sockets.
are longest, so they make contact first and break contact last. Control-signal pins are intermediate in length; data and address pins are shortest. The different pin lengths, in combination with a specified electrical sequence and special system software, ensure that a system will not attempt to access a card that is in a power-up or power-down transition.

To avoid use of an inappropriate card, a PCMCIA-compliant system interrogates inserted cards to determine their functions and characteristics. Each card contains a description of itself in a memory table. The system software that interrogates cards and takes appropriate action is just now becoming available. It is part of a software module known as Card Services that the PCMCIA outlined, but did not define, with Release 2.0. PCMCIA has defined a lower-level module, Socket Services, which is already available from several software companies.

Work-around solutions

The delay of Card Services has fostered a variety of interim approaches to PCMCIA product de-

Existing host-adapter ICs reflect a changing PCMCIA standard. Some implement only the requirements of PCMCIA's Release 1.0; recent introductions, however, also cover Release 2.0.

Recently introduced adapter chips are register-compatible with Intel's 82365SL, the first adapter to comply with PCMCIA 2.0. Intel introduced the 82365 last year, along with an Exchangeable Card Architecture, the company's own specification for implementing PCMCIA systems on 80x86 processors. Existing PCMCIA host-adapter chips are necessarily similar because virtually all PCMCIA implementations are on 80x86 systems. IC manufacturers differentiate their products, however, by adding certain features. Databook's DB86082, for example, implements a PCMCIA Release 2.0 interface and adds a standard hard-disk interface. Fujitsu, Databook's manufacturing partner, sells the same chip under its own name.

Other distinguishing features of adapter ICs include on-chip line buffers, advanced power management, and versions for either one or two card sockets. One-socket versions are slightly cheaper and smaller, important for handheld consumer products. Two-socket versions can link to give a system more than two sockets.

Most host-adapter chips currently sell for around $25 and will eventually drop to about $10, sources say. In addition to Intel, Databook, and Fujitsu, Cirrus Logic and Vadem manufacture the chips. Vadem's product ($38 in OEM quantities) is a 1-chip PC that includes a PCMCIA 1.0 socket interface for memory cards. The company is also working on a stand-alone Release 2.0 adapter chip.

The two key software modules for PCMCIA systems, Socket Services and Card Services, are closely tied to system BIOS software. Socket Services, in fact, becomes a part of BIOS in most PCMCIA systems. Because Socket Services is hardware dependent, it allows higher-level software to be hardware independent.

Card Services, more than any other part of a PCMCIA system, provides the intelligence that makes PC cards so easy to use. It must recognize any inappropriate card, for example, so that a system can reject the card and halt gracefully instead of crashing. It must also dynamically reconfigure a system for any newly removed or newly inserted card. As part of dynamic reconfiguration, it must monitor and allocate all system resources, such as I/O ports and interrupt levels.

To recognize an inserted card, Card Services reads the Card Information Structure (CIS) that each card contains in a section of on-card memory. A CIS can contain very basic information, such as interface and electrical characteristics, or extremely detailed information. The more detailed information might specify the logical organization of data on a card or even include details of specific card applications. Card Services must know how to process whatever information it may find in a CIS.

By allocating system resources to a newly inserted card, Card Services spares computer users the complicated task of specifying interrupts and I/O locations. It also allows each card slot to accept any type of card without the need for setting switches or jumpers.

Because Socket Services and Card Services are closely tied to BIOS software, most implementations of the two modules are from companies that are also BIOS vendors. One exception is Databook, which offers its own software with its host-adapter chip. Other companies that provide Card Services include SystemSoft, Phoenix, American Megatrends, and Award Software, which licenses software from Databook.
development. Most system implementa-
tions, in keeping with PCMCIA’s
intentions, use a version of Card
Services that is essentially com-
plete, but which may require revi-
sion when the Card Services specifi-
cation is formally released. Another
approach uses card-specific soft-
ware drivers instead of Card Ser-
vices. Many developers of PCMCIA
products say that such work-around
solutions will exist for an interim
period of at least a few months and
possibly much longer.

Some of the difficulties in pinning
down the PCMCIA specification
come from trying to satisfy present
needs while providing for long-term
flexibility. For example, the exist-
ing market for 80x86-based comput-
ers running DOS is strong, but the
PCMCIA doesn’t want to under-
mine card portability by limiting its
specification to a particular type of
processor or operating system. So,
while the PCMCIA struggles to de-
fine a specification that is suffi-
ciently general, manufacturers
grow impatient for a specification
that addresses their immediate,
specific concerns.

For more information

For more information on the PCMCIA products and standards discussed in this article, circle the appropriate numbers on the Information Retrieval Service card or use EDN’s Express Request service. When you contact any of the following organizations
directly, please let them know you read about them in EDN.

For more information on the PCMCIA products and standards discussed in this article, circle the appropriate numbers on the Information Retrieval Service card or use EDN’s Express Request service. When you contact any of the following organizations
directly, please let them know you read about them in EDN.

Hewlett-Packard’s 20-Mbyte, 1.3-in. Kitty Hawk disk drive ($250 in OEM quantities) will soon be appearing in PCMCIA-compliant PC cards. PCMCIA Type III cards, which are 10.5 mm thick, can hold either a 1.3-in. or a 1.8-in. drive.

In some cases, manufacturers object to the added difficulties and costs of flexibility. For example, PCMCIA allows both normal operating voltage (5V) and a reduced operating voltage (3.3V) in cards. However, to ensure that cards won’t get damaged in any slot, PCMCIA requires that all cards be ca-

American Megatrends Inc
6145 F Northbelt Pkwy
Norcross, GA 30071
(800) 828-9264;
or (404) 263-8181
FAX (404) 260-9281
Circle No. 366

Award Software Inc
130 Knowles Dr
Los Gatos, CA 95030
(408) 370-7979
FAX (408) 370-3399
Circle No. 367

Chips and Technologies Inc
3050 Zanker Rd
San Jose, CA 95134
(408) 434-0600
FAX (408) 435-0534
Circle No. 368

Cirrus Logic Inc
3100 W Warren Ave
Fremont, CA 94538
(510) 233-8300
FAX (510) 226-2242
Circle No. 369

Databook Inc
10 Alder Bush
Rochester, NY 14624
(716) 889-4204
FAX (716) 889-2593
Circle No. 370

Fujitsu Microelectronics Inc
3545 N First St
San Jose, CA 95134
(408) 922-9000
FAX (408) 432-0044
Circle No. 371

Hewlett-Packard Co
Direct Marketing Organization
Box 58059, MS511-SJ
Santa Clara, CA 95051
(800) 637-7740
Circle No. 372

Intel Corp
Literature Center
Box 7641
Mt Prospect, IL 60056
(800) 548-4725
Circle No. 373

Personal Computer Memory
Card International Association
10300 E Duane Ave
Sunnyvale, CA 94086
(408) 720-0107
FAX (408) 720-9416
Circle No. 374

Phoenix Technologies Ltd
846 University Ave
Norwood, MA 02062
(617) 551-4000
FAX (617) 551-3750
Circle No. 375

SUN Disk Corp
3270 Joy St
Santa Clara, CA 95054
(408) 562-0500
FAX (408) 980-8607
Circle No. 376

SystemSoft Corp
313 Speen St
Natick, MA 01760
(508) 651-0088 (8001 828-9264;
or (404) 263-8181
FAX (408) 943-9735
Circle No. 377

Vadem
1885 Lundy Ave, #201
San Jose, CA 95131
(408) 943-9301
FAX (408) 943-9735
Circle No. 378

VLSI Technology Inc
8375 S River Pkwy
Tempe, AZ 85284
(602) 752-6008
FAX (602) 752-6008
Circle No. 379

VOTE . . .

Please also use the Information Retrieval Service card to rate this article (circle one):
High Interest 473 Medium Interest 474 Low Interest 475

52 • EDN October 29, 1992
Go ahead, search all you want. But we don't think you'll find a lower cost or higher quality 200 MB class disk drive than our new 7213.

The reason is simple. We made it with very few parts. Far fewer than any other drive in its class. So it's not only easier to manufacture, it assures exceptional reliability.

And that's critical. Because it's that level of reliability that keeps your customers sold.

Now you might be thinking, "How could Maxtor possibly produce a quality 200 MB drive at such a low cost?" Well, after producing more than 3 million 7000 series drives, you get real good at it.

The 7213 is just one more example of the New Drive at Maxtor. A very serious commitment to customer satisfaction.

Unmatched service and support. And visionary product design.

For more information, please call 1-800-4-MAXTOR. Quite frankly, you won't find a better bargain than this.
Only $851 for iceMASTER-PE

The world's most innovative 8051 emulator is incredibly affordable. MetoLink's unique Advanced Emulation Technology (AET, patent pending) delivers the best possible emulator value for engineers, consultants and students.

AET is a revolutionary design architecture that provides more features with 75% fewer components, smaller board space and lower cost. Emulator and probe electronics are integrated in a single package only 3" by 4".

MetoLink also delivers leading-edge customer service, including a 30 day money back guarantee, 10 day trial for qualified customers, rental plans and free technical support.

Up to 40 MHZ Operation
64K Emulation Code Memory
64K External Data Memory
128K Hardware Breakpoints
16K Trace Memory
Transparent Trace (View Trace While Executing)
Real Time & Nonintrusive
Symbolic & Source-Level Debug
Built-in Self-Test

Windowed User Interface
Serial Link to Any PC
Performance Analyzer
Macro Cross Assembler
Supports 8031/8032's
Supports 8XC751/8XC752's

Call today for FREE DEMO DISK!
(800) METAICE (800) 638-2423
MetoLink Corporation P.O. Box 1329 Chandler, Az 85244-1329
Phone: (602) 926-0797 FAX: (602) 926-1198

PC CARDS

CIRCUIT 592

BEYOND EXPECTATION

No two emulators run the same. The trick is to get the best functionality you can for your investment. With the SIGNUM 8051 family in-circuit emulator you get even more...you get:

- Outstanding price/performance
- Easy window interface & flash download
- Free user support
- C and PIC debuggers
- Local variable support
- 512K Mappable emulation RAM with 256K H/W breakpoints
- Break on register ranges
- Program & external data access on the fly
- Bank switching

SIGNUM also has the Intel 8048, Zilog Z8 and Super-8, Texas Instruments DSP, the 8051/52 (from AMD, Siemens and Signetics), and more chips covered.

So, don't just look at in-circuit emulators. The only way to truly test an emulator is to use it. Call for your own free trial and demo disk.

You owe it to yourself to find how much emulator you can really get for your money.

10 DAY FREE TRIAL

SIGNUM SYSTEMS
171 East Thousand Oaks Blvd.
Thousand Oaks, CA 91360
Info. Tel: (415) 903-2220 FAX: (415) 903-2221

References

Article Interest Quotient (Circle One)
High 473 Medium 474 Low 475
Which Analog DSP Interface uses 50% less power, fewer components and only one supply?

The new Voice-band Audio Processor from TI.

Our new single-chip Voice-band Audio Processor integrates all the functions of a conventional codec, the amplification for speaker and microphone and more. As a result, you reduce component count and simplify your design.

Consuming about half the power of a codec, our TCM320AC36 operates from a single 5-V supply. And that takes care of your chief concerns with designing cellular and cordless telephones and other telecom and data-acquisition systems:

TCM320AC36 Highlights
- Single 5-V supply
- Low power: 40 mW (on), 1.2 mW (standby)
- Low noise: < 17 dBmC0
- Pin-selectable 13-bit linear or 8-bit companding
- On-chip interface to speaker and microphone
- Direct interface to most DSPs
- Low cost: < $4.50 (1,000s)

- **Size/Weight** — Eliminating the need for a negative supply and regulator reduces weight and design size. And small-outline surfacemount packaging is available for size-critical applications.
- **Talk time** — Lower power consumption of the AC36 allows longer talk time or the use of smaller batteries in your design.

For more information
On our TCM320AC36, send the reply card. For faster response, call (214) 995-6611, ext. 3432, your TI sales office or your TI distributor.
Mass storage
That’s AT&T “Customerizing.”

A 3-chip disk drive solution!

A mass storage chip set that eliminates as many as 5 to 8 ICs as well as a dozen discrete components — drastically reducing your time-to-market while maximizing your disk capacity.

That’s what “Customerizing” is all about!

Low power solution

AT&T’s solution sharply decreases disk drive power demand, increases battery life, and allows for lower heat dissipation, a critical concern in small form-factor devices.

It also supports multiple data rates for zoned band recording as well as embedded servo formats and split data field techniques.

All-CMOS solution

The chip set is designed in a common CMOS process, allowing for future integration to a single device, resulting in even greater space and power savings, and producing the smallest possible form factor.

All the devices are highly programmable, permitting product differentiation and evolution — and providing unprecedented levels of power management.

Integrated solution

Our hard drive solution features the first all-CMOS read channel ICs, fabricated with AT&T’s advanced, low-power 0.9 µm drawn mixed-mode CMOS process.

This CMOS process advantage is combined with high integration and substantial system design and test expertise to minimize the number of external components needed to implement disk drive electronics.

The chip set is supported by evaluation kits, which provide both a hardware and a software platform on which to build a prototype disk drive, as well as a fast means of evaluating the devices.

To get the evaluation kit, along with complete technical information on AT&T’s 3-chip disk drive solution, just give AT&T Microelectronics a call at 1 800 372-2447, ext. 908.
SAY GOODBYE TO THE OLD WAVE

Throw out the old and bring on the new, with Samtec's .100", 2mm and .050" pitch surface mount socket and terminal strips, surface mount DIP and PLCC sockets and surface mount adaptors.

Our full line of interconnects will give you the confidence to convert your boards to 100% surface mount.

Say "Hello" to the future!

Call 1-800-SAMTEC-9 for our new SMT Design Kit including Video, Handbook and Solution Guide.
WHO’S GOT THE POWER
THE PROTECTION
THE PACKAGES
FOR YOUR HIGH VOLTAGE
SWITCHING APPLICATION
Motor driving and switching power supplies are just about the toughest applications any power MOSFET has to face. Combine tough applications with equally tough industrial or automotive environments and there are few power MOSFETs can match the challenge.

That is unless they’re smart Power MOSFETs in the new range of Intelligent Power MOS devices from SGS-THOMSON - the world’s number one for smart power devices.

Power MOS devices like the VN440FI, used just like standard power MOSFETs but combining a host of features that set them apart from the crowd. With a breakdown voltage of 450V, R_{on} of 0.75Ω and input circuitry to allow direct microcontroller drive, the VN440FI is easy to use. With protection features like short circuit and overtemperature protection plus a special overtemperature alarm output, it is able to survive the toughest environment you’re ever likely to meet.

And the VN440FI comes in a package that’s equally as brilliant as the silicon it houses. In fact the ISOWATT7 can be mounted directly on a heatsink and gives guaranteed isolation up to 2.5kV a.c.

For more information call SGS-THOMSON today.
ACCELERATE YOUR TIME TO MARKET

POWER-ONE ENERGY SERIES

MODULAR POWER SUPPLIES FROM 250 TO 450 WATTS

The Energy Series is a fast-track power solution utilizing off-the-shelf power modules configured to your requirements. You get standard product availability and reliability combined with the applications specific features of a custom. Get in the driver's seat and accelerate your time to market with the Energy Series from Power-One.

FEATURES
- Fully modular design
- Autoselect AC input
- Up to seven outputs
- Wide selection of voltages/currents
- FCC/VDE Class B EMI/RFI
- VME compatible signals
- UL 1950 & IEC950 certifications
- High power auxiliary outputs
- Adjustable auxiliary outputs
- Fully regulated outputs
- Power fail signal
- Industry standard mounting

OPTIONS
- Fan and cover
- IEEE 587 Class A and Class B
- IEC601/UL544 certification
- Custom interconnect configurations
- Fully isolated outputs
- Current share/current monitor
- Custom interface signals

NRG2/NRG3/NRG4
250/350/450 Watts Forced Air Ratings

740 Calle Plano, Camarillo, CA 93012-8583
Phone: 1-800-678-9445 FAX: (805) 388-0476

20TH ANNIVERSARY
Chip sets help bring PC architectures to embedded control

RICHARD A QUINNELL, Technical Editor

In the face of shrinking product-development cycles, one option available for embedded-control system designers is to use an industry-standard architecture as the product’s processing engine, rather than designing the engine from scratch. Using a ready-made architecture lets you focus your development efforts on your most important system component—software. The IBM PC/XT and PC/AT are good candidates because their core-logic design has already been captured in PC chip sets, further shortening design time. Unfortunately, suppliers of these sets are geared toward high-volume applications, not embedded control.

The PC architectures offer numerous advantages as core processors for embedded-control systems, not the least of which is ease of software development (Refs 1 and 2). Tools for software development on MS-DOS computers are legion, and virtually every engineer already has, or has access to, a PC-compatible computer to work on. In addition, many software designers are already familiar with programming the PC, so your people probably won’t have to spend time learning a new system.

If your system’s core is fully PC and MS-DOS compatible, you’ll be developing the software in your system’s native environment, eliminating the need to port your software from host to target.

You’ll also have numerous hardware peripherals available. These include networking, graphics display, mass storage, telecommunications, and data-acquisition cards, which you can add to your system without any design effort.

The existence of inexpensive (as low as $12) PC chip sets is another hardware bonus of the PC architectures—most of the logic design is already done for you.
Our new GP switchers have everyone’s approval!

Condor's Global Performance (GP) switching power supplies offer full agency approvals, continuous range input and more!

Our newest switchers have the approvals you need (UL 1950, VDE Level B EMI, IEC 950, CSA and TUV) and the features you want, including:

- 71 models (single- and multi-output)
- Industry-standard packages
- 6 power levels (40 to 200W)
- Continuous input voltage (85-264V)
- OVP on all 5V outputs and single-output units
- Fully regulated outputs
- MTBF 100,000 + hours per Mil Hndbk 217E
- 8-hour burn-in with cycling (24 hours on medical versions)
- Computerized testing (data sheets furnished)
- 2-year warranty
- 30-day FREE evaluation (call us for samples)

If you're looking for world class performance, quick turnaround and competitive pricing, try our new GP switchers — the only approval they're missing is yours!

CALL FOR OUR FREE CATALOG!

Condor D.C. Power Supplies, Inc.
2311 Statham Parkway
Oxnard, CA 93033 • (805) 486-4565
CALL TOLL FREE:
1-800-235-5929 (outside CA)
FAX: (805) 487-8911
PC CHIPS SETS

They include the CPU along with the system logic, needing only RAM, BIOS (basic I/O system) ROM, and some buffers.

If you want to design with PC chip sets, however, you have some significant logistics problems to overcome. PC-chip-set vendors evolved in response to the dynamic and competitive standard-computer marketplace. As a result, they aren't structured to meet the individualized needs of embedded-control applications.

Further, as an embedded-control customer, you'll have trouble getting the attention of many PC-chip-set vendors. Several vendors are small, with less than 100 employees, and concentrate their efforts on new product design, not design assistance. Some of the larger vendors, such as Siemens, are not interested in the embedded-control business. Others, such as Motorola and National Semiconductor, are not accepting any new business.

Vendors offer limited help

Even if they're interested in your business, most PC-chip-set vendors are unprepared to offer significant technical support. Instead, they are organized to provide turnkey computer designs (including schematics, parts lists, and pc-board artwork) to a handful of large customers. In most cases, you'll have to depend instead on distributors or sales representatives for your support.

Continued availability of the chip set can be another concern. To keep pace with their primary market, chip-set vendors continually pursue the leading edge of PC performance. As a result, chip sets have market lifetimes of 12 to 18 months. After that, the chip sets go out of production unless you are a large-enough customer to make continued production worthwhile. Even so, given the competition occurring in the chip-set market, the vendors themselves may start to disappear.

In addition to the problems of supply and technical support, designing with PC chip sets places heavy demands on your manufacturing capabilities. Chip sets all come in surface-mount packages (see Table 1), some of which are large and dense. If your production line isn't set up to handle fine-pitch surface-mount, you may not be able to use a chip set.

Further, the chip sets themselves may not be adequate for your needs. Because they are intended for computer use, most chip sets are only rated for operation over 0 to 70°C. Applications with harsher temperature requirements may not be feasible. Even if you can accept the 0 to 70°C range, several experienced chip-set users have found that the temperature ratings are sometimes optimistic. They suggest you run temperature tests on all
PC CHIP SETS

candidate chip sets to weed out marginal designs.

Another challenge to face when designing your own embedded-PC core involves something the chip sets don't include: the BIOS ROM. The BIOS ROM is potentially the biggest hurdle for embedded-control designers to clear because it controls your design's software compatibility with standard PCs, yet it assumes your system configuration is that of a general-purpose computer.

Standard BIOS ROMs are available from a number of sources, including the chip-set vendors, at relatively low cost. Unfortunately, the standard BIOS is unsuitable for most embedded-control applications. You may, for example, want to boot your system from ROM instead of a disk drive. You also might want a custom power-up message on the display device to conceal the existence of a PC inside your system. You might want to use a custom key panel, or have no keyboard at all.

A standard BIOS may cause your system to fail if you don’t use a standard keyboard. The BIOS will check that the keyboard is functioning during a power-up self-test sequence. If the test fails, the BIOS will halt execution. In an AT sys-

Table 1—Representative PC chip sets

<table>
<thead>
<tr>
<th>Company</th>
<th>Part #</th>
<th>CPU Model</th>
<th>Maximum clock frequency (MHz)</th>
<th>Package size(s)</th>
<th>Price (1000)</th>
<th>Special features</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACC Microelectronics</td>
<td>2046</td>
<td>80386DX</td>
<td>50</td>
<td>208-pin PQFP</td>
<td>$50</td>
<td>Includes dynamic-RAM controller, clock generators.</td>
</tr>
<tr>
<td>Chips and Technologies</td>
<td>F8600</td>
<td>8086</td>
<td>14</td>
<td>160-pin PQFP</td>
<td>$35</td>
<td>Single chip includes CPU and system logic, LCD controller, PCMCIA interface, and serial port. Offers system-management software mode.</td>
</tr>
<tr>
<td>Eteq Microsystems</td>
<td>Jaguar</td>
<td>80486SX/DX</td>
<td>50</td>
<td>160-pin PQFP</td>
<td>$12</td>
<td>VESA local bus interface.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>184-pin PQFP</td>
<td>$15</td>
<td>VESA local bus interface, write-back cache controller.</td>
</tr>
<tr>
<td>NEC Electronics</td>
<td>µPD70270 (V41)</td>
<td>V20HL (8088-compatible)</td>
<td>16</td>
<td>160-pin PQFP</td>
<td>$25</td>
<td>Single chip includes CPU and system logic. Runs 8 MHz at 3V.</td>
</tr>
<tr>
<td></td>
<td>µPD70280 (V51)</td>
<td>V30HL (8086-compatible)</td>
<td>16</td>
<td>160-pin PQFP</td>
<td>$25</td>
<td>Single chip includes CPU and system logic. Runs 8 MHz at 3V.</td>
</tr>
<tr>
<td></td>
<td>OTI-040</td>
<td>80386DX</td>
<td>33</td>
<td>160-pin PQFP</td>
<td>$28</td>
<td>Power management independent of operating system. Local-bus VGA chip interface.</td>
</tr>
<tr>
<td>Opti Inc</td>
<td>82C283/ 82C206</td>
<td>80386SX</td>
<td>33</td>
<td>160-pin PQFP</td>
<td>$18</td>
<td>Includes dynamic-RAM controller.</td>
</tr>
<tr>
<td></td>
<td>82C498/ 82C206</td>
<td>80386DX</td>
<td>33</td>
<td>160-pin PQFP</td>
<td>$28</td>
<td>Includes cache and dynamic-RAM controllers.</td>
</tr>
<tr>
<td>Symphony Laboratories</td>
<td>SL82C460 (Haydn)</td>
<td>80486SX/DX</td>
<td>66</td>
<td>Two 160-pin PQFPs</td>
<td>$50</td>
<td>VL bus, flash memory, x36 dynamic-RAM interface. Includes posted-write cache controller with built-in write buffers and tag RAM.</td>
</tr>
<tr>
<td>United Microelectronics</td>
<td>UMC82C330</td>
<td>80286</td>
<td>20</td>
<td>100- and 160-pin QFPs</td>
<td>$12</td>
<td>Offers sleep mode.</td>
</tr>
<tr>
<td></td>
<td>UMC82C480B</td>
<td>80386OX</td>
<td>50</td>
<td>100- and two 160-pin QFPs</td>
<td>$20</td>
<td>Includes cache and dynamic-RAM controllers. Runs 33 MHz at 3.3V.</td>
</tr>
<tr>
<td></td>
<td>UM82C490</td>
<td>80486SX/DX</td>
<td>50</td>
<td>208-pin QFP</td>
<td>$20</td>
<td>Runs 33 MHz at 3.3V. Available first quarter of 1993.</td>
</tr>
<tr>
<td>Vadem</td>
<td>VG-230</td>
<td>V-30HL (8086-compatible)</td>
<td>16</td>
<td>160-pin QFP</td>
<td>$84</td>
<td>Single chip includes CPU and system logic, CGA LCD controller, serial and parallel ports, PCMCIA interface, keyboard scanner, and pen-ink plane.</td>
</tr>
<tr>
<td>VLSI Technology</td>
<td>Scamp II</td>
<td>80386SX/DX</td>
<td>33</td>
<td>208- and 160-pin MQFP and 100-pin TOFP</td>
<td>$73</td>
<td>3.3 or 5V operation.</td>
</tr>
<tr>
<td></td>
<td>VLB82C480</td>
<td>80486SX/DX</td>
<td>40</td>
<td>208-pin MQFP</td>
<td>$35</td>
<td>Integrated write-back cache controller. Use VL82C113A for I/O control.</td>
</tr>
<tr>
<td></td>
<td>VLB82C486</td>
<td>80486SX/DX</td>
<td>33</td>
<td>208-pin MQFP</td>
<td>$30</td>
<td>32- or 64-bit dynamic-RAM interface. Can use flash memory for BIOS. Use VL82C113A for I/O control.</td>
</tr>
</tbody>
</table>

Note: PQFP = plastic quad flatpack; PLCC = plastic leaded chip carrier; QFP = quad flatpack; MQFP = metric quad flatpack; TOFP = thin quad flatpack.
MegaPAC™

Power: Up to 1200 Watts
Input: 110/220 VAC, strappable; 300 VDC
Outputs: 1 to 8 isolated and fully regulated, 2 to 95 VDC
Size: 11.8”L x 6.0”W x 3.4”H

Plug into instant power supply configurability with the new MegaPAC switcher from our Westcor division. MegaPAC outputs can be configured in virtually an infinite number of voltage and power combinations using up to 8 slide-in ModuPAC™ assemblies. Want to change a voltage or power level at your factory or at a customer site? No problem. shut down input power, slide out the ModuPAC you want to replace and slide in the new one. It’s that simple.

MegaPAC’s instant configurability takes Westcor’s popular StakPAC to the next level of customization and flexibility. And its improved manufacturability means a substantial price reduction too! At the heart of each plug-in ModuPAC is a standard Vicor VI-26X series DC-DC converter module. over 1 million are operating reliably in systems world-wide. With potential applications around the globe, MegaPAC is designed to meet stringent UL, CSA, and IEC safety standards (approvals in process).

So take the risk out of specifying your system power supply. Contact us today and request ordering information... then sit back and relax... your custom-tailored MegaPAC will be delivered within four weeks.

Call VICOR EXPRESS (800) 735-6200 for information and be sure to ask for a MegaPAC data sheet. Or call WESTCOR (division of Vicor) at (408) 395-7050. Fax us at (508) 475-6715 or (408) 395-1518.

VICOR Corporation
23 Frontage Road, Andover, MA 01810

Component Solutions For Your Power System

CIRCLE NO. 64

EDN October 29, 1992 • 69
tem, the standard BIOS will also stop if the system-configuration data, stored in the battery-powered real-time clock IC, is faulty. A dead battery, then, can cripple your entire system.

Modifying the BIOS can be an expensive proposition. To obtain the source code for a chip-set-optimized BIOS used in mass-production computers, expect to pay as much as $25,000 to $50,000. Once you have the source code, you'll have to be careful that your modifications don't change the BIOS's compatibility with the standard. Otherwise, you'll lose most of the software advantages that the PC architecture promises.

You may also want to modify MS-DOS to meet your needs. This may involve paring it down to its essentials by eliminating device drivers and file handlers your system doesn't need (Ref 3). It could also mean augmenting DOS with a real-time operating system to handle multitasking and time-critical functions. As with the BIOS, you'll need to take care to maintain strict compatibility with standard DOS.

One way to sidestep all of the

Your production line must be able to handle large, fine-pitch surface-mount devices, such as those from VLSI Technology, if you're going to design your own embedded PC.

For more information on the PC chip sets discussed in this article, circle the appropriate numbers on the Information Retrieval Service card or use EDN's Express Request service. When you contact any of the following manufacturers directly, please let them know you read about their products in EDN.

ACC Microelectronics Corp
2500 Augustine Dr
San Jose, CA 95054
(408) 980-0522
FAX (408) 980-0526
Contact Tim Erjavec
Circle No. 351

Ampol Computers Inc
990 Almanor Ave
Sunnyvale, CA 94086
(408) 522-2100
FAX (408) 720-1305
Circle No. 352

Annabooks
12145 Alta Carmel Ct
Suite 250
San Diego, CA 92128
(800) 462-1042
(619) 271-9526
FAX (619) 592-0061
Circle No. 353

Chips and Technologies Inc
3050 Zanker Rd
San Jose, CA 95134
(408) 434-0600
FAX (408) 434-0412
Circle No. 354

Eteq Microsystems
1900 McCarthy Blvd
Milpitas, CA 95035
(408) 432-8147
FAX (408) 432-8146
Contact Abraham Shen
Circle No. 355

Microdesign Resources Inc
874 Gravenstein Hwy S
Suite 14
Sebastopol, CA 95477
(800) 527-0288
FAX (707) 823-0504
Circle No. 356

NEC Electronics Inc
401 Ellis St
Mountain View, CA 94039
(415) 965-6437
Contact Farshad Zarghami
Circle No. 357

Oak Technology Inc
139 Kifer Ct
Sunnyvale, CA 94085
(408) 737-0688
FAX (408) 737-0688
Contact William Wong
Circle No. 358

Opti Inc
2525 Walsh Ave
Santa Clara, CA 95051
(408) 980-8178
FAX (408) 980-8860
Contact Win Cheng
Circle No. 359

PC/104 Consortium
990 Almanor Ave
Sunnyvale, CA 94086
(408) 245-9348
FAX (408) 720-1322
Circle No. 360

Radisys Corp
15025 South West Koll Pkwy
Beaverton, OR 97076
(503) 690-1299
FAX (503) 690-1228
Circle No. 361

Symphony Laboratories
2620 Augustine Dr
Suite 250
Santa Clara, CA 95054
(408) 986-1701
FAX (408) 986-1771
Contact Ron Mazza
Circle No. 362

United Microelectronics Corp
8F, No 233-1 Boo Chiao Rd
Hsin Tien, Taipei County, Taiwan, ROC
886-2-918-1589, x6305
FAX 886-2-918-0188
Contact Jet Huang
Circle No. 363

Vadem
1885 Lindy Ave
No 201
San Jose, CA 95131
(408) 943-0901
FAX (408) 943-9735
Contact Stephen Knight
Circle No. 364

VLSI Technology Inc
8375 South River Pkwy
Tempe, AZ 85284
(602) 752-6274
FAX (602) 752-6000
Contact Damon Chu
Circle No. 365

For more information . . .

For more information on the PC chip sets discussed in this article, circle the appropriate numbers on the Information Retrieval Service card or use EDN's Express Request service. When you contact any of the following manufacturers directly, please let them know you read about their products in EDN.

VOTE . . .

Please also use the Information Retrieval Service card to rate this article (circle one):

High Interest 470 Medium Interest 471 Low Interest 472
Announcing the First Annual
EMBEDDED COMPUTER
CONFERENCE AND EXPOSITION
APRIL 14-16, 1993 SANTA CLARA CONVENTION CENTER, SANTA CLARA, CA

The industry's first and only conference and exposition dedicated to the design and development of OEM embedded computers.

Unlike other industrial conferences and shows which focus on components or technology, ECC concentrates on applications and solutions to embedded computer needs. So, if your system calls for an embedded computer, you'll be able to learn about, and look at, all the alternatives from chip implementations to single-board solutions, to bus-based solutions and even embedded workstations. And most important, you'll learn about all the software, tools and what to do with them.

System Architecture Issues:
- PCs (80x86, P5) in Embedded Applications
- RISC Architectures (Alpha, HP PA, MIPS, SPARC, 88K) in Embedded Applications
- Single-board System Implementations
- Custom and Semicustom System Implementations
- VMEbus, Multibus, Futurebus+, STD/STD 32 and Others
- SPARC-Based Single-Board Workstations
- Standard Mezzanine/Daughter Boards
- SBus, TURBOchannel and Other Workstation I/O Buses
- Military Systems and Standards
- And More

Software Focus On:
- Real-time OS and Kernels
- Real-time DOS
- Windows for Embedded and Real-Time Applications
- Multiprocessing With DOS and Other Real-Time OSs
- High-performance Optimized Compilation
- POSIX and POSIX Compatibility
- Communications Protocols Standards
- And More

Typical applications
- Medical Instrumentation
- Vehicular Traffic Control
- Automated Vehicles
- Machine Control
- Low-power and Portable Applications
- Visual Inspection
- Military C3I
- Communications
- Peripheral Interface and Control
- Process Control
- Laboratory Automation
- Multimedia
- Networking and More

Plain and simple: If you need an embedded computer in a product you're developing or building, ECC is the one conference and exposition for you. ECC offers the broadest range of solutions to embedded computers ever assembled in one place.

The World-Class technical program includes lectures, application-oriented sessions, workshops and seminars on system architectures, local and subsystem interfaces, I/O interfaces and communications, software and development tools.

Return the coupon below or call (203) 831-9444, or FAX the coupon to (203) 838-1447.

☐ YES, Send information on exhibiting ☐ YES, Send information on attending

Name ____________________________
Title ____________________________
Company _________________________
Address __________________________
City ___________________ State ______ Zip ______
Phone ___________________________ Fax __________

Mail Coupon to: ECC '93, BAV Expositions, Inc.
85 Washington Street, South Norwalk, CT 06854

CIRCLE NO. 65 EDN October 29, 1992 • 71
PC CHIP SETS

Building your own system. Vadem's VG-230 has a built-in CGA display driver with an additional bit plane for the "ink" data of a pen-based user interface. Several chip sets incorporate a PC-MCIA (Personal Computer Memory Card International Association) 2.0 interface; others offer 3V operation.

If you do decide to tackle an embedded-control design with a PC-compatible core, several sources of help are available. When looking for a chip set, for instance, you may want to invest $1495 in a copy of PC Chip Sets by Microdesign Resources, publishers of the newsletter Microprocessor Report. This document includes discussions of the PC/XT and PC/AT architectures, main and cache memory structures, peripheral interfaces, and power management. It also offers detailed technical information on virtually every PC chip set available, including system block diagrams and performance benchmarks. Further, it provides business details for each chip-set vendor, so you can estimate the likelihood that your supplier will remain in business.

Further training available

If you want more information on how to adapt the IBM PC architectures for embedded control, RadiSys Corp offers free half-day seminars on the topic from the viewpoint of a module supplier. For greater technical depth, you can take a course in embedded-PC design from Annabooks. This $1995 3-day course includes discussion of the BIOS, ROM-based DOS, chip-set selection, and bus protocols.

Annabooks also offers several textbooks on PC design issues, many of which contain the necessary software. These include books on ROM-based disk emulators, resident debugging routines, and BIOS development. The BIOS books contain a complete plain-vanilla BIOS in C, including source code and detailed description, for less than $200. Royalties for production use of the BIOS run $2 to $4 per system shipped. Further, Annabooks offers an MS-DOS developer's kit and handles licensing of Microsoft's MS-DOS 5.0 ROM version for small-quantity (<1000 copies) users.

Acknowledgment

The author wishes to thank John Choissier of Annabooks and Michael Slater of Microdesign Resources for their generous contributions of time and materials for this article.

References

Article Interest Quotient
(Circle One)
High 470 Medium 471 Low 472

Log on

Check out EDN's free bulletin-board service (BBS) by dialing (617) 558-4241 (300/1200/2400/9600 B, N, 1). You can download listings, programs, and other material from published articles and from our Design Ideas department. Our editors have put more than 1500 shareware engineering programs on the BBS. We also have a place to submit questions to Ask EDN and a place to speak out on any topic of interest.
When the other guys claim they have DSP for multimedia, shoot a few questions at them.
Can I differentiate my product?

Is it affordable?

Is it available?
The other guys call it DSP for multimedia, and say it's on the way.
We call it Signal Computing, and it's here and now. In fact, leading
companies like Olivetti and Siemens have already incorporated Signal
Computing components into their latest products.

Signal Computing integrates three interchangeable and extensible
silicon and software capabilities: a multi-purpose signal processor, sigma-delta signal port ICs, and algorithm
software from Independent Algorithm Vendors (IAVs) who provide expertise in real-world media like sound, video, speech, music and communications.

Signal Computing provides an open architecture that allows you to create value-added differentiation for your computer, communications or consumer products. Toolkits allow you to easily customize Signal Computing solutions. Multiple data types can be mixed and matched on the same low cost platform. And because Signal Computing has attracted algorithm and hardware specialists worldwide, your options will not be constrained by proprietary solutions developed or supported by a small set of vendors.

Signal Computing is affordable for both coprocessing and embedded applications.
A complete V.32bis fax/data modem solution has already been introduced, priced at just $25. Perfect for mass market applications. And IAVs are already delivering algorithms for speech recognition, text-to-speech conversion, music synthesis, still image compression, audio compression and Dolby® AC-2 digital audio.

In today's market, you have to be quick on the draw.
We can help you differentiate your product right now.
So check out the other guys' claims. The more you know, the more you'll understand why Signal Computing is the right solution. To learn more, call 617-461-3771, or write us at the address below.
How to Tame a 300-Lb. Beast

Motorola's new fully-signal-conditioned Manifold Absolute Pressure Sensor provides a single-chip sensing solution for engine control.

Take an engine control sensor whose input is critical for emission control and fuel economy, cut its size, weight and connection count by fully integrating it onto one chip, give it the functionality and performance of existing hybrid modules but with greater flexibility, and what do you get? You get Motorola's new MPX4100A / 4101A Series Manifold Absolute Pressure (Map) Sensors. A new way from Motorola to help tame the beast beneath the hood.

Our Leadership Continues
Motorola's MPX4100A / 4101A is a continuation of Motorola's leadership in developing fully integrated pressure sensors with absolute reference. It gives you direct microcontroller interface and an absolute pressure reference. It combines the sensing element, offset calibration, temperature compensation circuitry and signal amplification—all on the same monolithic silicon chip.

The output signal is calibrated to 4.7V span to speak directly to microcontroller units (MCUs) with A to D inputs. And it is temperature compensated from -40°C to +125°C.

Points of the MAP
• Single-chip solution
• Reduced size and weight
• No ceramic substrates needed

• Designed for easy interface to MCUs
• Temperature compensated from -40°C to +125°C
• On-chip laser trimming ensures part-to-part uniformity
• Improved accuracy through precision trimming and on-chip compensation

Sensor-ible Solutions from Motorola
The automotive industry with its ever-tougher requirements for fuel efficiency, pollution control and reliability is the driver for technologies that lead to new and better products like our Manifold Absolute Pressure Sensor and micro-machined, capacitive accelerometers for passive restraint (air bag) systems, as well as a variety of optoelectronic sensing applications.

Our current state-of-the-art accuracy rate is only slightly more than 1% over the MPX4100A's entire -40°C to +125°C temperature range, and we're striving to improve even that. We have to continually improve on our service and quality if we're to stay ahead of our competition in providing you with the sensor solutions to keep you ahead of yours.

For more information on our new Manifold Absolute Pressure sensors or for sensor information of any kind, call toll free at 1-800-441-2447, send the coupon below, or write Motorola Semiconductor Products, Inc., P.O. Box 20912, Phoenix, AZ 85036.

To: Motorola Semiconductor Products, Inc., P.O. Box 20912, Phoenix, AZ 85036
Please send me your MAP Data Sheet #MPX4100/D.

Name
Title
Company
Address
City State Zip
Call Me ()

Motorola and () are registered trademarks of Motorola Inc.
IsSpice3 from Intusoft is based on the latest Berkeley Spice 3E.2 version and includes a number of enhancements. The simulator performs ac, dc, transient, noise, distortion, Fourier, pole-zero, temperature, sensitivity, and mixed-mode analyses on most circuits operating from dc through microwave frequencies. The company has utilized—and spent considerable effort debugging—the entire 3E.2 kernel in this simulator; other Spice vendors have added portions of the Spice 3 code to their Spice 2G-based versions or based their simulators on previous versions of Spice 3.

Unlike earlier Berkeley Spice 3 versions, Spice 3E.2 includes all the capabilities of Spice 2G.6 and enhances its analysis and modeling features. New analysis abilities include an improved distortion analyzer, pole-zero analysis, and allowing you to change the temperature of any individual element in the simulation (Spice 2G.6 only let you change the temperature of the entire circuit). New models include a MESFET, three MOSFETs (BSIM 1 and 2 and Level 6), lossy-transmission lines, and current- and voltage-controlled switches.

On top of these features inherent to the Berkeley code, IsSpice3 adds the following features: an interactive waveform display that draws waveforms from the dc, ac, noise, and transient analyses as the simulation runs, letting you decide whether to continue with the simulation; the ability to use Boolean logic expressions for if-then-else statements, mixed-mode simulations and analog behavioral statements, such as in-line equations; and user-adjustable memory allocation and control. The simulator is compatible with the I/O syntax of 2G.6-based simulators. One catch with Spice 3E.2 is that the code doesn't recognize the dependent-source polynomial syntax, and instead uses a new nonlinear dependent source called the B element. IsSpice3 includes additional code that automatically converts the polynomial syntax to this new element, providing backward compatibility to all vendor-supplied op-amp model libraries.

The simulator runs on 386- and 486-based PCs and compatibles, Macintosh, and NEC 98-series computers. Upgrades from previous versions of IsSpice are available. You can also purchase the program as part of the ICAP/4 simulation system, which includes a schematic-entry program, model libraries, the simulator, analog behavioral modeling, Monte Carlo analysis, and a graphics post processor for $695 or as part of ICAP/4, $1575.—Anne Watson Swager

Intusoft, 222 W 6th St, Suite 1070, San Pedro, CA 90731. Phone (310) 833-0710. FAX (310) 833-9658.

Circle No. 386
The TI-85 scientific calculator has four features that set it apart from less-capable scientific calculators: graphics, an equation "solver," easier programming, and simple connectivity to personal computers.

The calculator's LCD can show eight lines of 21 characters each or a 128 x 64-pixel graph. In text mode, you can enter equations or entire programs in FORTRAN-like syntax.

In graphical mode, the calculator allows you to analyze a graph, or graphs, even as you view them. Graphing functions include zooming, taking a derivative at a point, integrating between two limits, and obtaining intercepts. Cursor keys allow you to select the portion of the graph you want to analyze.

You can access many of the calculator's built-in functions, or functions you have programmed in yourself, using menu selections displayed along the bottom of the LCD. You make your selections with five dedicated hot keys. The menus-and-hot-keys approach permits the calculator to have a large number of functions without having a corresponding number of keys.

The equation “solver” is a key feature that sets top-of-the-line scientific calculators apart from low-cost, “student” models. The well-known time-value-of-money equation provides examples of the solver's power. First, the equation has five variables. You can punch in one version of the equation, enter values for any four variables, and the solver will solve the equation for the fifth variable. Less-capable calculators would require you to solve the equation for each variable and enter a version of the equation for each solution, wasting precious memory and your time.

Second, in the time-value-of-money equation, no closed-form solution exists for rate of return. The solver will use numerical methods to obtain a solution. Calculators without a solver would require you to program an iterative solution. If your scientific calculator lacks a solver and is not programmable, you would be reduced to making manual iterations to determine the rate of return.

"Ease of programming" is easy to claim but hard to document. The calculator's programming language resembles high-level-language function calls more than it does a series of key presses. A typical programming step (for the “sinc” function) looks like
$$y_1 = \text{fnint}(\sin t/t, t, 0, x).$$
This step integrates \((\sin t)/t\) between 0 and \(x\).

The calculator can solve as many as 30 simultaneous, complex equations or find the roots of a 30th-order polynomial, and it can manipulate complex matrices of up to \(30 \times 30\) elements. The unit has 32 kbytes of fixed RAM and no provisions for extending RAM or ROM.

A built-in I/O port allows the calculator to exchange data and programs with an IBM PC or a Mac. The calculator runs off of four primary AAA cells and has an internal lithium cell for backup. The calculator measures 6.9 x 3.2 x 0.8 in. and weighs half a pound. Instead of a soft holster, it comes with a clever, slide-off plastic hardshell case. The list price for the TI-85 is $130; calculators are heavily discounted, so expect the street price to be less.

—Charles H Small

Texas Instruments, Consumer Relations, Box 53, Lubbock, TX 79408. Phone (800) 842-2737. FAX (806) 741-2146. Circle No. 382

The TI-85’s graphics display, cursor keys, and built-in functions allow you to perform numerous analyses on a graph as you view it.
This 6U VMEbus board performs 400 million operations per second and is optimized for frequency domain processing such as FFTs and finite impulse response (FIR) filters using fast convolution. The FDaP features a private 32-bit, 20 MHz speed data I/O bus and extensive double buffering for continuous processing of real-time data. An additional 32-bit complex array output provides phase/magnitude data. The a66540 is available in 25 MHz and 40 MHz versions. A single 40 MHz version can execute a 1K point FFT in 132.7 µs and a 64K point FFT in 13.1 ms. These times are nearly halved for real input. Multiple FDaPs can be cascaded to achieve almost linear improvement in FFT performance. Plug 400 MOPS into your system by calling array Microsystems' Hotline: 719-540-7999.

CORNERTURN PROVIDES QUANTUM LEAP IN 2D IMAGE PROCESSING PERFORMANCE

The a66545 Comertum™ board, used in conjunction with the a66550 FDaP board for real-time two-dimensional image processing, is the first capable of processing an entire 256 x 256 pixel frame of image data in 15.2 milliseconds. This equates to a continuous, real time rate of 65 frames per second. For 512 x 512 images, the board sets transforms images in 71 milliseconds, or 14 frames per second. Designed for medical imaging, radar, sonar, machine vision, and other real-time 2D image processing applications, the board set features performance of 400 MOPS at a clock rate of up to 40 MHz. The Comertum accepts 32-bit complex I/O data through 10 MHz double-buffered external I/O connectors or through the VMEbus and stores it in one of four on-board frame store memory buffers. For technical assistance, call array Microsystems' Hotline: 719-540-7999.

OUTSIDE THE USA, CALL YOUR NEAREST INTERNATIONAL DISTRIBUTOR

AUSTRIA, GERMANY and SWITZERLAND - Alfatron GmbH, Tel: +49-89-45110-04, FAX: +49-89-45110-254 • BELGIUM and the NETHERLANDS - Maxtronix, Tel: +31-73-214040, FAX: +31-73-381190 • FRANCE - Microl, Tel: +33-1-69070824, FAX: +33-1-69071723 • ISRAEL - Titech, Ltd., Tel: +972-3-544-7283-45, FAX: +972-3-497816 • ITALY - MicrEliS S.P.A., Tel: +39-2-4817900, FAX: +39-2-4813994 • JAPAN - Nippon Inem Corporation, Tel: +81-03-3321-6000, FAX: +81-03-3325-0021 • SPAIN - Selco, Tel: +34-1-3254213, FAX: +34-1-3592394 • SWEDEN - Seltron Sweden AB, Tel: +46-8-753-0055, FAX: +46-8-755-5594 • UNITED KINGDOM - METL Ltd., Tel: +44-844-278781, FAX: +44-844-278746

DSP Built For Speed

PC-AT DSP

1K FFT/126µs

DSP engine for the 16-bit PC-AT Industry Standard Architecture (ISA) bus

Performance Benchmarks

<table>
<thead>
<tr>
<th>FFT size</th>
<th>a66550/32K @25MHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>64 Real</td>
<td>7.2 µs</td>
</tr>
<tr>
<td>64 Complex</td>
<td>10.9 µs</td>
</tr>
<tr>
<td>1024 Real</td>
<td>125.9 µs</td>
</tr>
<tr>
<td>1024 Complex</td>
<td>209.9 µs</td>
</tr>
<tr>
<td>32K Real</td>
<td>5.90 ms</td>
</tr>
<tr>
<td>32K Complex</td>
<td>10.49 ms</td>
</tr>
<tr>
<td>64K Real</td>
<td>15.73 ms</td>
</tr>
<tr>
<td>64K Complex</td>
<td>N/A</td>
</tr>
</tbody>
</table>

VME DSP

1K FFT/79.6µs

DSP engine for industry-standard VMEbus

Performance Benchmarks

<table>
<thead>
<tr>
<th>FFT size</th>
<th>a66540A @40MHz</th>
<th>a66540A Cascade Sys.</th>
</tr>
</thead>
<tbody>
<tr>
<td>64 Real</td>
<td>5.1 µs</td>
<td>2.9 µs</td>
</tr>
<tr>
<td>64 Complex</td>
<td>5.0 µs</td>
<td>3.7 µs</td>
</tr>
<tr>
<td>1024 Real</td>
<td>79.6 µs</td>
<td>20.4 µs</td>
</tr>
<tr>
<td>1024 Complex</td>
<td>132.7 µs</td>
<td>59.1 µs</td>
</tr>
<tr>
<td>32K Real</td>
<td>3.69 ms</td>
<td>0.91 ms</td>
</tr>
<tr>
<td>32K Complex</td>
<td>6.56 ms</td>
<td>1.82 ms</td>
</tr>
<tr>
<td>64K Real</td>
<td>7.37 ms</td>
<td>1.82 ms</td>
</tr>
<tr>
<td>64K Complex</td>
<td>13.11 ms</td>
<td>3.64 ms</td>
</tr>
</tbody>
</table>

Call the DSP Hotline: 1-719-540-7999

1420 Quail Lake Loop, Colorado Springs, CO 80906
Telephone 719-540-7900, FAX 719-540-7950
Email support@array.com

Circle No. 24 For Literature Only
Circle No. 25 For Sales Rep to Call

EDN October 29, 1992 • 79
With our SL™ connector system, design flexibility and cost savings are yours.

Automatically.

You’ll find Molex SL connectors in some of the world’s leading—and most dependable—makes of electrical and electronic equipment. Of course, reliability is a big reason for this preference.

But the versatility and lower applied cost that SL provides are critical factors, too, especially in systems with several interconnections.

Modular, stackable, and lower in profile, SL connectors give you virtually unlimited flexibility when you’re designing wire-to-wire, wire-to-board, and ribbon cable systems.

The single-piece IDT connectors feature, pre-assembled terminals in the housings, and interconnects with locking shrouded headers. In short, they’re ideal for high-speed, high-efficiency automated assembly.

Ask your Molex representative about SL connectors, and learn how they can multiply design options and automate assembly.
Compass Design Automation claims a first from an EDA company by offering a foundry-flexible family of physical layout libraries that also work with multiple EDA environments. Named the Liberty Series, the product and its associated services gives IC designers a single source for libraries that work with the CMOS process of their choice. The libraries also help semiconductor manufacturers make new CMOS processes that you can use within EDA environments more quickly than developing libraries one at a time for each new process.

The software retargets a base set of components to reflect the chosen set of design and electrical rules. The libraries include a set of circuit views, such as schematic descriptions, functional models, physical layouts, physical footprints, simulation models, and icons. The retargeting service generates timing models and power information that, with the previous views, make up a complete custom library.

The library takes a 2-tier approach to component organization. The lower-level components include memory blocks, standard cells, and gate-array macros that are ingredients in the higher-level components. The higher-level components include memory compilers, ALU and datapath compilers, functional system blocks, and application-specific standard products. The combination of the two lets semiconductor manufacturers avoid repeatedly developing low-level components for each new process, thereby freeing up time for developing the unique higher-level components.

Although Compass is a wholly owned subsidiary of semiconductor manufacturer VLSI Technology, the layout part of the libraries is not based on VLSI’s process technology. Test marketing customers include ES2/US2, Evans & Sutherland, Hitachi, Hyundai, Matra MHS, National Semiconductor, Raytheon, Rockwell, Sierra Semiconductor, Thomson Consumer, TSMC, and VLSI Technology. Many of these customers accept designs incorporating the libraries for production in their processes.

The library works with products of more than a dozen EDA vendors including Mentor, Valid, Dazix, Viewlogic, Racal-Redac, ZyCAD, Genrad, and Synopsys. You can use the library for work with either two or three layers of interconnect. The library is available immediately; prices start at $100,000.

—John C Napier
Compass Design Automation, 1865 Lundy Ave, San Jose, CA 95131. Phone (408) 433-4880. FAX (408) 434-7820.

Circle No. 384
National Semiconductor has reduced its 5-chip FDDI (Fiber Distributed Data Interface) chip set to two chips, eliminated the need for external filter and timing components, and simplified the set's bus interface. Along the way, the DP83200 chip set acquired some additional features to relieve software overhead and to facilitate use of twisted-pair wire instead of optical fiber. The result is that FDDI adapter boards can be made smaller and less costly.

One chip (DP83256VF) in the set combines the physical-layer interface, clock recovery, and clock distribution functions that previously required separate devices. The other chip (DP83266VF) handles the system interface, memory control, and the media access control (MAC) protocol.

The physical-layer chip (Player+) incorporates all the necessary filter and timing components for data transmission and recovery on chip. It uses digitally controlled phase-locked loops, so the only external components needed are two loading capacitors, two power-supply decoupling capacitors, and an optional 12.5-MHz crystal.

The Player+ chip connects directly to fiber-optic transmitter and receiver modules for FDDI networks. It also offers some additional signals to simplify its use with unshielded twisted-pair wires. It provides, for example, a 125-MHz data clock. It also allows access to its clock-recovery circuitry for use by the data scrambling and unscrewing circuits that help control EMI in the twisted-pair wire link.

The system interface chip (MACSI) is designed for direct connection to the SBus used in Sun SPARC workstations. It is also usable with EISA and Micro Channel Architecture buses. The chip offers a demultiplexed address bus and a 32-bit data bus that run at 33 MHz, providing a data rate to memory of >1 Gbit/sec.

To help reduce bus latency, the MACSI incorporates two independent 4608-byte FIFO buffers. The buffers handle both transmit and receive data and can each hold one entire data frame. The buffers also allow the device to operate in FDDI's optional "Copy-All" multicast mode.

National Semiconductor is offering software to facilitate use of the set's station management (SMT) capabilities. The software conforms to SMT Version 7.2. Examples of software drivers are available for such network operating systems as Netware, LAN Manager, and the TCP/IP interface protocol.

The 2-chip set costs $165 (1000) and is available in two styles. In both cases, the MACSI chip (DP83266VF) is a 160-pin PQFP (plastic quad flatpack). The Player+ chip, however, comes as a 160-pin PQFP (DV83257VF) or a 100-pin PQFP (DP83256VF). The smaller pin-count device does not offer the additional signals used in twisted-pair wire networks. National is also offering evaluation boards (DP83200MK) for both fiber and twisted-pair networks at a cost of $3995.—Richard A Quinnell

National Semiconductor, 2900 Semiconductor Dr, M/S 16300, Santa Clara, CA 95052. (408) 721-5000.

Circle No. 385
ACE Your 1553 Design!

Don’t Gamble With Your Design.

Advanced Communication Engine.

- UNDER 2 SQUARE INCHES
- BUS CONTROLLER/REMOTE TERMINAL/MONITOR
- ADVANCED ARCHITECTURE OFF-LOADS HOST

With DDC’s Advanced Communication Engine (ACE) 1553 terminals, you’re dealt a winning hand every time. A complete processor-to-1553 bus solution. A hand that’s strong in every suit: monolithic transceivers, a flexible processor interface, and an advanced functional architecture to off-load the host processor in all modes.

When the chips are down, we’re glad to lay it on the table. The ACE, packaged in a 1.9 square inch ceramic MCM, represents an ultra small size, high-reliability 1553 terminal implementation. Fully integrated dual transceiver, encoder/decoder, memory management, processor interface, and 4K X 16 RAM. The choice of RT-only BU-65170 or BC/RT/MT BU-61580 in the identical package footprint.

There’s many ways to play this hand. A wide variety of processor interface configurations serve to minimize glue logic and total board space. The winning combinations include fully buffered 8-bit and 16-bit interfaces between any microprocessor, including those without hardware wait states, and the ACE’s 4K words of internal RAM. Alternatively, the ACE can access up to 64K words of external RAM in either transparent or DMA configurations.

For BC mode, architectural enhancements include programmable retries and intermessage gaps, major frame time, auto frame-repeat, internal or external BC trigger, and designation of 1553A or 1553B error handling on a message basis. For RT, 1553A/B/1760A/McAir multi-protocol operation, plus the choice of single message, double buffering, or circular buffering on a subaddress basis, programmable illegalization, including word counts, programmable busy by subaddress, and interrupts on any subaddress or mode code. For MT, true message monitor and combined RT/monitor modes with message selection based on RT address, T/R bit, and subaddress.

With our ACEs in hand, you don’t need to bet scared money on your 1553 designs.

For additional information and product literature, call Mike Glass at (516) 567-5600 extension 7545.

WEST COAST (CA): GARDEN GROVE, (714) 895-9777, FAX: (714) 895-9688;
WOODLAND HILLS, (818) 922-1772, FAX: (818) 887-1372
WASHINGTON, D.C. AREA: (703) 450-7900, FAX: (703) 450-6610
NORTHERN NEW JERSEY: (201) 785-1734, FAX: (201) 785-4132
UNITED KINGDOM: 44 (0191) 310-1568, FAX: 44 (0191) 310-1568;
IRELAND: 353 (0191) 310-1568, FAX: 353 (0191) 310-1568;
FRANCE: 33 (1) 4334-5888, FAX: 33 (1) 4334-9762;
GERMANY: 49 (0191) 310-1568, FAX: 49 (0191) 474333
SWEDEN: 46 (8) 9200635, FAX: 46 (8) 9200635;
EDN October 29, 1992 • 83
EPSON PRESENTS ANOTHER LEADING TECHNOLOGY PRODUCT:

PC COMPATIBLE REAL TIME CLOCKS

- EISA BUS COMPATIBLE (AT/XT compatible available soon)
- 4 KBYTES OF SRAM MEMORY
- CRYSTAL AND OSCILLATION CIRCUIT BUILT IN
- COMPARTMENT FOR 2 REPLACEABLE BATTERIES

SPECIFICATIONS

<table>
<thead>
<tr>
<th>RATING</th>
<th>VALUE</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPER. VOLTAGE</td>
<td>5 ±0.5</td>
<td>V</td>
</tr>
<tr>
<td>OPER. TEMPERATURE</td>
<td>-10 TO 70</td>
<td>°C</td>
</tr>
<tr>
<td>CURRENT CONSUMPTION</td>
<td>OPER. 15 (MAX)</td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td>STANDBY 2 (MAX)</td>
<td>μA</td>
</tr>
<tr>
<td></td>
<td>BACK-UP 0.5 (TYP)</td>
<td>μA</td>
</tr>
</tbody>
</table>

PRODUCED BY SEIKO EPSON CORP.

EPSON AMERICA, INC. COMPONENT SALES DEPARTMENT

CIRCLE NO. 68
12-bit DACs operate from 5V, provide 4.095V output swing

Despite all the hoopla surrounding the introduction of 3V parts—both digital and analog—plenty of 5V systems are still in need of better-performing 5V analog components. DACs are a case in point. Most existing DACs require an external reference and an external op amp to provide close to a 5V output swing.

The 12-bit DAC-8562 and DAC-8512 voltage-output DACs best this status quo. In addition to voltage-switched 12-bit D/A converters, both devices have internal bandgap references and rail-to-rail output amplifiers. Using a BiCMOS process, the DACs combine low-power CMOS for the logic parts of the design with complementary bipolar transistors for analog accuracy.

The company laser trims the reference to 2.5V. The op amp amplifies this voltage to provide an accurate full-scale output of 4.095V for a resolution of 1mV/bit. Performance curves in the data sheets indicate that the 0-to-4.095V output swing holds for loads approximately greater than 5000. The amplifier can source and sink ±5 mA.

Even with higher integration, the 8512 serial-input version is extremely small—it fits in an 8-pin DIP and SOIC. The serial interface comprises three wires and features a 20-MHz data-loading rate. The 8562 is a parallel-input device. The simple parallel interface requires one CE (chip enable) signal. Because the 8562 has more output pins, it makes the internal reference available on a pin; the 8512 does not. The 8562 comes in a 20-pin SOIC and DIP.

When you drive the 8562 with TTL logic, typical power dissipation is 11 mW. When using CMOS logic, and when all inputs equal zero, the typical power dissipation drops to 3 mW. The typical power dissipation under the same conditions for the 8512 are 7.5 and 2.5 mW, respectively.

Two performance grades are available for each DAC. The E grades of the 8512 ($10.95) and 8562 ($12.50) feature maximum integral nonlinearity and differential nonlinearity of ±1 LSB. Typical E-grade integral nonlinearity specifications are ±1/2 LSB. The F grades, costing $6.95 and $8.95 (100) respectively, feature a maximum of ±2 LSB for both specifications. The company guarantees no missing codes for each grade of each device. The company specifies both DACs over a temperature range of -40 to +85°C.

Anne Watson Swager
Analog Devices Inc, 181 Ballardvale St, Wilmington, MA 01887.
Phone (617) 937-1428. FAX (617) 821-4273.
Circle No. 381

You need only a 5V supply to operate the serial 12-bit DAC-8512 (a) and parallel DAC-8562 (b). Both devices include an internal reference and output amplifier, which provides an output swing of 0 to 4.095V. The 8512 comes in an 8-pin SOIC or DIP.
µC teams CPU and 64-bit I/O subprocessor with abundant I/O hardware

Although microcontrollers (µCs) are used routinely in I/O-intensive applications, you often need to expend heroic programming efforts to attain the speed your application needs. The Hitachi H8/570 µC attempts to give you far more I/O horsepower than you can possibly use by teaming a microprogrammable, 64-bit I/O subprocessor with a general-purpose CPU. The chip also incorporates a variety of memory and I/O hardware (see Table).

The I/O subprocessor's (ISP) 83 1/3-nsec instruction cycle lets you create microprogrammed I/O devices such as timers, counters, refresh controllers, serial communications controllers, DMA controllers, and stepper-motor controllers. The ISP has its own instruction space, realized in a 64 × 512-bit, one-time-programmable, on-chip EPROM. A built-in time-slice sequencer and round-robin real-time operating system manage the ISP's operation through 12 program counters, allowing 12 ISP programs to operate concurrently.

The ISP and CPU exchange data through the ISP's 32 dual-ported data registers. These data registers also exist in the CPU's address space, and the dual-port register interface arbitrates access contention between the two processors. The ISP can generate general-purpose CPU interrupts and can read a number of flags that you can use for ISP-program flow control. Several of these flags are tied to the µC's I/O pins.

The µC's general-purpose CPU core is based on Hitachi's established H8/500 architecture, which has eight general-purpose 16-bit registers (two registers serve double duty as frame and stack pointers) and a 16-bit program counter. This particular member of the H8/500 µC family operates in either the "expanded minimum mode" with a 64-kbyte address space or the "expanded maximum mode" with a 1-Mbyte address space. (Other H8/500 µCs can address up to 16 Mbytes.) Five additional page registers (code, data, extended, stack, and base) boost the address space to 1 Mbyte. In either mode, the µC can operate with an 8- or 16-bit data bus, so you can tailor it for maximum system performance or minimum cost.

On-chip peripherals abound on this µC. A data-transfer controller moves data between memory and

A microprogrammable I/O subprocessor with an 83 1/3-nsec instruction cycle on the H8/570 dual-processor µC allows you to create high-speed, custom I/O controllers. The chip also provides a number of standard peripherals.
Pull for total customer satisfaction.
That's how you win three STACK awards in a row.

For the third consecutive year, STACK—the world’s largest electronic component user group—has named Texas Instruments the recipient of its top Gold Award. The members of STACK International collectively purchase more than $2 billion worth of semiconductor components every year. Their requirements for quality, delivery and service are the most demanding in the industry.

“I find it truly remarkable that TI has won the Gold Award every year since its inception,” says Peter J. Savage, managing director, STACK International. “This is not a ‘warm feeling’ award—it’s truly global and is based on hard performance data collected from our members.”

The STACK award is a great honor, one of which the thousands of TI employees throughout Europe and the world can be justifiably proud.

But the award is also a great challenge—to continue to strengthen TI’s efforts so that our partners and all of our customers realize the truest value from the semiconductor components we supply and our dedication to total customer satisfaction.

© 1992 Tl
All the makings of a masterpiece.

Before your name goes on it, you've got to depend on what goes in it. That's why you should know IBM has the quality parts, products, technology, software and services you need for all your greatest creations.

With our manufacturing sites around the world, you can count on IBM for just about whatever you need, whenever and wherever you need it. We can supply OEM versions of just about everything in our product line—at competitive prices. All backed with a range of services and support unmatched in the business. OEM versions of everything from 1.2GB disk drives, Optical Link Cards and Token-Ring MINI cards, to OS/2® 2.0 and ESCON™ products, all the way to OEM versions of complete systems like the PS/2® Model 95 and various RISC System/6000™ models, and more. And everything carries IBM's reputation for quality that's earned all kinds of recognition, including the prestigious Malcolm Baldrige National Quality Award for the manufacturing process of the IBM AS/400®.

With IBM as your OEM supplier, you can create your own masterpiece. For a free OEM product reference guide or to have an IBM OEM marketing representative contact you, call 1 800 486-0974, send the attached reply card by mail, or fax it to 1 800 394-0974.

When you think OEM, think IBM.

- A wide range of OEM offerings.
- Award-winning technology and quality.
- Competitive pricing and responsiveness.
- Worldwide availability.
EDN-PROCESSOR UPDATE

Hitachi H8/570

H8/500 8/16-bit CPU core
- 12-MHz clock rate
- 167-nsec min instruction cycle
- 8 16-bit general registers
- 57 instructions
- 16 x 16-bit multiply
- 32/16-bit divide

64-bit I/O subprocessor
- 1-cycle instructions
- 83½-nsec instruction cycle
- 32 16-bit data registers
- 64 x 512-bit program EPROM
- Simple real-time operating system
- Time-slice scheduler runs as many as 12 independent programs

Other features:
- 2 kbytes of RAM
- Data-transfer controller
- 3-channel PWM timer
- Watchdog timer
- Wait-state controller
- Serial communications controller
- 10-bit, 8-channel ADC
- 66 general-purpose I/O pins
- 122-lead PQFP package
- $29.25 (10,000)

I/O devices without assistance from either of the on-chip processors. An on-chip wait-state controller inserts a programmable number of wait states in external bus cycles for the CPU, the ISP, and the data-transfer controller. The μC's 3-channel, 16-bit PWM (pulse-width-modulator) timer generates six independent waveforms simultaneously plus a programmable number of wait states to generate periodic CPU interrupts instead of resetting signals.

The μC's 8-channel, 10-bit ADC performs conversions in 13.4 μsec. There is an S/H circuit between the 8-channel analog multiplexer and the ADC. You can program the ADC to make one conversion or to take continuous readings of one to four channels. In continuous mode, readings appear in four 16-bit registers that the CPU can read.

Finally, the H8/570 includes traditional serial and parallel I/O ports. The serial communications controller operates either synchronously or asynchronously and has a built-in bit-rate generator. Although there is only one serial controller built into the μC's hardware, you can build several more using the ISP. The μC has 66 I/O pins divided into several bidirectional ports and one 8-bit input port. The 8-bit input port doubles as the ADC's analog input port. Many of the other port pins also have multiple uses depending on how you configure them.—Steven H Leibson

Hitachi America Ltd, 2000 Sierra Point Pkwy, MS-080, Brisbane, CA 94005. Phone (415) 589-8300. FAX (415) 583-4207.

Circle No. 387

Microchip PIC 16C71 8-bit μC

- 8-bit μC, 20-MHz clock
- 35 14-bit instructions
- 200-nsec instruction execution, 2-stage pipeline
- 36-byte RAM
- 16-long (14 bits) ROM
- 4-channel, 8-bit A/D converter (20 μsec)
- Sleep mode with A/D wake-up
- 3 to 5V (2 mA at 3V, 4 MHz)
- $3.25 (10,000) in 18-pin DIP or SOIC

Enhanced PIC 16Cxx gets ADC and interrupts

Eight-bit microcontrollers (μCs) are taking over the low-cost, down-in-the-dirt, embedded-system world. Low-cost small pinouts, critical peripherals, and easy design-in are requirements in this tough design environment. Microchip Technologies' upgraded version of its PIC 16Cxx 8-bit μC line, the PIC 16C71, now has additional functions that include interrupt processing, an A/D converter, and high-current I/O for driving LEDs directly.

PIC μCs combine high processor-throughput rates with small pinouts (18 to 28 pins) and simple register-based architecture. PIC μCs evolved from an I/O controller for GE mainframes and have taken on distinct RISC-like features: a small number of fixed-length instructions and a pipelined operation (2 stage). Unlike RISC, PICs have an accumulator (working register) and handle dynamic data in registers, not RAM.

The 16C71 adds significant power to the PIC 16Cxx family. The instruction word is lengthened from 12 to 14 bits, which makes control easier; interrupts have been added (earlier chips required continual polling); and a 4-channel A/D converter (20 μsec) has been added, which eliminates the need for an off-chip converter.

Microchip Technology Inc, 2355 W Chandler Blvd, Chandler, AZ 85224. Phone (602) 963-7373. FAX (602) 899-9210.

Circle No. 388

EDN October 29, 1992 • 91
New SLICs cut the cost of on-premises/PBX subscriber lines

Lower cost chips that need fewer external components are the latest Subscriber Line Interface Circuit offerings from Ericsson.

Designed for cost sensitive applications such as general purpose PBX/Key systems, they give you three other major advantages over alternative solutions: wide supply voltage operation from -24 V to -58 V dc, on-hook transmission and a very low on-hook power dissipation of just 35 mW with -48 V dc supply or 20 mW when running from a -24 V dc supply.

So you can reduce the cost of your power supply circuit too!

Each SLIC includes loop current and ring trip detection, together with a ring relay driver. And they work with either a conventional or programmable CODEC/filter, all of which simplifies design.

Equally important, the new circuits are available in two versions: the PBL 3766 with a programmable constant loop current, and the PBL 3767 with programmable resistive battery feed and loop current limitation for short lines.

Both come in a choice of 22-pin plastic DIP or 28-pin PLCC packages with compliant 'j' leads.

Simply call us for full technical data or clip the coupon.

Ericsson Components Inc.
403 International Parkway, Richardson TX 75081
Tel: 214 - 669 - 9900 Fax: 214 - 680 - 1059

Please send me your latest PBL 3766 and PBL 3767 datasheets

Name
Company
Job Title
Address
Telephone
Fax

CIRCLE NO. 73

EDN October 29, 1992
It's easy to design high performance into your products with RAD's world class LSI components. Now RAD brings you the new RJ series of LSIs to let you quickly design in the functionality you need. You'll find components offering multiplexing, modem, V.54 async-sync conversion, error correction and bit error rate testing features. All are based on CMOS technology for low power consumption. And every LSI is backed by RAD's unparalleled communications experience and our assurance of high reliability.

So put your next product in a class of its own with our world class LSI components.

Contact RAD today.
Rest assured, no scope was injured in the making of this ad.

After all, the volunteer is a member of our new TAS 400 family of analog oscilloscopes. And every TAS has its entire acquisition system (including the vertical, horizontal and trigger functions for each input channel) housed on a proprietary hybrid circuit.

The result is a kind of scope on a chip. One with 75% fewer parts and far greater reliability. In fact, the TAS is three times more reliable than previous scopes. What's more, each and every TAS...
comes with smashing features like AutoSet, on-screen cursors and readout, dual timebases, and save and recall settings. Plus a unique user interface that makes the 60 MHz TAS 455 and 100 MHz TAS 465 easier to use and dramatically unlike any other analog scope.

A claim that is further backed up by their remarkably affordable price.

But then a lot of performance for not a lot of money is exactly what the TAS is all about.

Scopes that add to a long list of low-cost Tektronix products. Like our handheld 60 MHz 224 digitizing oscilloscope. Our fully programmable, analog/digital 2212 scope. And our family of affordable and stackable basic test gear.

Now that's a lot to drop on you in one ad. So to learn more about these and other economical Tektronix products, call your authorized Tektronix distributor today.

Or call us at (800) 426-2200, ext. 140 to place your order or for the name of the distributor nearest you.
You can now control any IEEE-488 (HP-IB, GP-IB) instrument using CEC's responsive IEEE-488 hardware and software for Windows™.

WINDOWS MADE EASY

Writing a Windows application is easy. You can use one of our example programs or write your own program using our standard IEEE-488 functions. When the program is written, you link it with our Dynamic Link Library and your Windows program is ready to run. Visual BASIC, Turbo C++, Turbo Pascal for Windows, and HP Instrument BASIC for Windows are all supported.

PERFORMANCE

CEC has the world's fastest IEEE-488 controller and software that's designed to give you top performance. Couple this with our printer and plotter utilities, third party software support, and software library and you have the professional package you need for just $395.

NO COMPROMISES

All IEEE-488 functions and features are supported within Windows, making graphing, analysis, and access to '488 data easier and better than ever before.

Literature 1-800-234-4232
Tech support 617-273-1818
FAX 617-273-9057

Capital Equipment Corporation 76 Blanchard Rd. Burlington, MA 01803

All product names are trademarks of their respective manufacturers.
Leverage:
Unconventional approaches lead to bigger, faster payoffs

Dan Strassberg, Senior Technical Editor

This third part of Design It Right covers leverage, or how to get the biggest bang for your R&D bucks. It tells the stories of three companies that took advantage of nontraditional resources and technologies to accomplish more in less time than conventionally possible.

In designing its 7200A modular high-performance digital-storage oscilloscope (DSO), LeCroy Corp replaced a proprietary µP board with pliers. These companies recognized that by helping Quadtech become successful, they could contribute to their own success. As a result, the suppliers became, in effect, members of Quadtech's design team.

Finally, you'll learn how the VXI modular-instrumentation bus saved the day for a Tektronix design manager. VXI came to the rescue when, despite extensive customer contacts, team members discovered that they knew a little less than they had thought about customer requirements for a new signal source's user interface.
Designing a PC into your product: Many benefits, some caveats

Test and measurement instruments that contain one or more µPs are the norm rather than the exception and have been so for years. Instruments on cards that plug into PCs are fairly common, too. But high-performance instruments built around complete PC mother boards are rather rare. LeCroy Corp’s experiences with designing a PC mother board into a mainframe for a top-of-the-line, modular DSO reveal the many benefits of using PC components in a product that isn’t a PC. However, those who believe that this approach will give them a free ride on PC technology had better think twice and read on.

LeCroy’s new product is the 7200A. It is a DSO mainframe and the successor to the 7200, which has been on the market a little over two years. Each unit includes a power supply, a display, some panel controls, hard- and floppy-disk drives, and much of the DSO’s computing power. The mainframes accommodate plug-ins that house the scope’s analog electronics, A/D converters, acquisition memories, and more panel controls. Both mainframes accept the same family of plug-ins, including those that acquire 1G sample/sec in real time and store 1M sample/channel. That combination represents state-of-the-art performance.

For many customers, the most important difference between the 7200 and the 7200A is the price. Configured as most customers will buy it, the 7200A is about $4000 less expensive. In addition, its high-resolution color display replaces the 7200’s monochrome display. The 7200A is also faster. In performing an ensemble of tasks that LeCroy believes represents a typical use, the 7200A is from 2.5 to 5 x as fast as the 7200; certain tasks run as much as 20 x faster. Despite the reduced mainframe cost, the 7200A equipped with acquisition plug-ins carries a price tag that befits a top-of-the-line, state-of-the-art DSO.

Systems cost from around $30,000 to over $50,000.

What made the 7200A’s added features and lower mainframe cost possible was replacing a proprietary 68000-based dual-processor board with a standard 80386-based PC mother board and commercial I/O cards. LeCroy also designed an I/O card of its own. This card interfaces the backplane that accepts the acquisition modules to the mother board’s ISA bus. On the card is firmware that, at startup, copies BIOS code from the hard disk into part of the mother board’s 8 Mbytes (or more) of RAM. Bill Richardson, engineering director of LeCroy’s Automated Test Division, points out that the 7200A’s speed improvements are unique to its hardware. If you port one of your own designs from a 680X0 to an 80X86, you won’t necessarily obtain similar results.

Unlike a standard PC, the 7200A does not run under MS-DOS or any other general-purpose operating system. Rather, the operating system (OS) for both the 7200 and 7200A is pSOS from Software Components Group (Santa Clara, CA). This OS, which in the LeCroy units loads from the hard disk into RAM at startup, was designed for embed-
ded-processor applications. MS-DOS and pSOS are compatible to a certain degree. Systems that use either OS can read from and write to floppy disks formatted on systems that use the other OS. This feature allows users of pSOS-based systems to process acquired data on standard PCs.

Before making any changes, LeCroy took several months to study the idea of moving from its proprietary hardware to the PC architecture. Richardson admits that he resisted the move because he was convinced it would bring on problems nobody had predicted. What finally tipped the scales was the availability of an 'X86 version of pSOS. Because of the similarity between this version and the 7200's 68000 pSOS, software engineers could, simply by recompiling, try out 'X86 versions of 7200 code modules—at least ones not specific to the 7200 hardware (DSP routines, for example). When these modules ran immediately, Richardson became a champion of the PC approach. He says his subsequent experiences have only confirmed the wisdom of moving to PCs.

LeCroy had a long tradition of vertical integration; you might even call it a fear of anything it hadn't invented itself. But this approach created problems. Although the firm has annual sales of around $60 million, it competes with two instrumentation giants—Tektronix and Hewlett-Packard—and it has two DSO divisions. The division in Switzerland makes unitized scopes and the other, at corporate headquarters north of New York City, builds the modular 7200 series. LeCroy's key realization was that departing from vertical integration would let it compete more effectively. By buying components not directly related to acquiring high-speed signals, it can focus more resources on technologies that differentiate it from its competition.

Hidden costs

What was not immediately apparent either to Richardson or to LeCroy management was that, for all its benefits, the PC strategy isn't free; there are some hidden costs. The PC components marketplace changes rapidly as any in electronics. Items

DESIGN IT RIGHT

LEVERAGE

Gauge team performance by adherence to cost goals

Set product-cost goals, stick to them religiously, and revisit them regularly.

> Failure to regularly review how well the project team is adhering to its cost goals is an invitation to such ills as creeping elegance (the tendency to add features that "might be nice" but that, most of all, add unnecessary cost and complexity). You can make a strong case that adherence to cost goals is the single best gauge of whether a project is falling victim to these maladies because, unlike other measures, cost is quantitative.

Conform to industry standards wherever possible.

> By using the standard VGA resolution (640 x 480 pixels), the 7200A provides as clear a display as it could using a custom nonstandard-resolution video adapter, and it does so at much lower cost.

Moreover, the VGA adapter can drive an industry-standard large-screen monitor in addition to the 7200A's built-in display. This capability opens up applications in classroom settings that are not accessible to most DSOs.

Always question contemporary thinking.

> The 7200A, which uses a single processor, is faster than the 7200, which used dual-processors. According to conventional wisdom, the single-processor scope should have been slower, but eliminating the interprocessor-communication overhead (and using a µP with a higher clock rate) saved enough time that the supposedly slower system turned out to be faster.

Use a universal power supply.

> Not having to build different versions of your product to accommodate the different mains voltages and frequencies in different parts of the world will quickly pay for the cost of a universal supply. Moreover, if you use several types of supplies, there are additional hidden costs associated with spare-parts inventories.

Don't mix assembly technologies on a pc board.

> An earlier version of the 7200 contained a board that mixed surface-mount and through-hole components. LeCroy found that the mixture required multiple insertion, soldering, and testing processes, which resulted in errors and necessitated rework that raised the product cost.

Don't blindly accept simulation results.

> Before it goes into production, any new design requires the scrutiny of smart engineers.

VOTE! Please also use the Information Retrieval Service card to rate this article (circle one):

- High Interest 479
- Medium Interest 480
- Low Interest 481
that were introduced 18 months ago are now obsolete. A company that commits to using PC components must devote some resources to keeping abreast of what is available and tracking how prices shift to favor one component over another.

For example, to achieve fast video performance, the 7200A has a graphics-accelerator video-adapter card. LeCroy may soon be able to purchase mother boards that include video adapters that provide nearly equivalent performance. Using a mother board that doesn’t require a separate video adapter would reduce the 7200A’s cost. If such mother boards became popular enough, they might make graphics-accelerator cards like the one in the 7200A obsolete. Were these events to occur while LeCroy wasn’t looking, shipping 7200As would become impossible.

Other consequences of the PC-component strategy relate to field service. Suppose LeCroy were to start using a mother board with an integrated video adapter, but a customer needed a replacement of an older 7200A mother board—one that used a (now obsolete) plug-in video adapter. The company would need to know that it should get the video adapter back; the customer would no longer need it after the replacement mother board arrived, but the card would be useful to LeCroy should someone else require a replacement video adapter.

Richardson says that to handle such situations, LeCroy’s customer service group is toying with a concept developed by the military: the least replaceable unit (LRU). In this case, the LRU is a mother board whose video adapter takes either of two forms: a group of on-board components or a plug-in board.

These concerns notwithstanding, LeCroy is enthusiastic about the potential of building high-performance instruments around PC components. PC-based designs let companies that manufacture products in moderate volume take advantage of the low cost and high reliability of mass-produced subassemblies. Moreover, by letting designers focus on what differentiates their products from competing products, PC-based designs help companies squeeze the full value from their development dollars.

LeCroy Corp
700 Chestnut Ridge Rd
Chestnut Ridge, NY 10977
(914) 578-6011
FAX (914) 578-5985
Anna Iriarte
Circle No. 301

Quadtech Instruments—1865 TΩ Meter

Using suppliers as members of the team

Dave Warnock is VP of engineering at Quadtech. You don’t have to talk to him for very long to sense his enthusiasm for the new company, its products, or its people. And his excitement is contagious. You just have to believe that Quadtech can and will do what it has set out to do: become a major force in several segments of the precision-measurements market. One such area, and the focus of the company’s first R&D program, is measuring very high resistances. Quadtech’s no-nonsense, can-do approach is reflected in its premiere product—the 1865 TΩ meter. It measures to 10^{14}Ω, tests insulation quantitatively at voltages to 1 kV, and costs $3775.

Although Quadtech is a new kid on the block, it is also one of the oldest companies in the test-and-measurement field. Just 18 months ago, entrepreneur Phillip Harris, with venture-capital backing, bought what is now Quadtech from GenRad. Quadtech’s product lines are the ones that were GenRad’s core businesses until the late 1960s when the now-77-year-old firm shifted its focus to systems for automatic testing of pc boards.

With the exception of Harris, most of Quadtech’s 78 employees came from GenRad. Nevertheless, essential elements of the new firm’s operating style are quite different from GenRad’s. Although some GenRad products do contain major elements purchased from outside, the company was known for its vertical integration. The firm’s renowned quality resulted in part from its tight control over nearly every aspect of its products’ manufacture. GenRad even ran the facility that made its well-known knobs. Quadtech simply couldn’t afford such luxuries.

Nor could Quadtech afford the long cycles that, for decades, had been traditional in the development of the older firm’s products.
Quadtech's answer was to turn to outside sources to supply key parts of its products, and to take maximum advantage of the suppliers' experience. Though the assemblies and software that Quadtech buys are significant, they don't relate to its instruments' basic measurement technology. The 1865 uses an 80186-based CPU card set—the PC104—from Ampro (Sunnyvale, CA) and a custom keypad assembly manufactured by Lucas Control System Products (Hampton, VA). The system runs under DR-DOS from Digital Research (Monterey, CA).

One measure of the 1865's complexity is the 128 kbytes the firmware occupies. Another index of the magnitude of the design task is the expected sales volume—roughly 3000 units. Despite the complexity and the expected volume, only five months elapsed between the program inception and the announcement. A problem obtaining a dot-matrix LCD caused a longer-than-planned interval between the announcement and the first customer shipments, but Quadtech still managed to deliver the initial units just 10 months after the project started. Of the 69 person-months invested, two-thirds were in design. The figures include replacing the original display. Differences in the new and old units' resolution and backlighting necessitated firmware and power-supply changes.

The speed with which Quadtech shipped its first product is all the more remarkable because of what was going on behind the scenes: the new company was extricating itself from GenRad. Besides relocating all

Quadtech's lessons: Keep your perspective and focus

- Focus on the goal; learn to quickly dismiss ideas that don't differentiate the product from its competition. The differentiation is in the customer's eye, not the design team's. Make sure everyone knows the target and that every decision, conscious or subconscious, is based on that knowledge.

- Take advantage of every available resource. Time is the project team's most expensive resource. Use it wisely. Reuse portions of other designs; adapt technology from other fields; draw on the expertise of suppliers.

- Don't make unjustified changes. You will receive many suggestions to make such changes, but if you really understand your goal, figuring out which ones are "unjustified" should not be as difficult as it might at first seem to be.

- Trust your designers and empower them to make decisions. If all team members truly are focused on the same goal, you can safely delegate decision-making authority. Doing so will save countless hours of meetings.

- Don't design by committee. If all of the team members are focused on a single goal, you needn't second-guess their decisions.

- Listen to your customers and hear what they mean—not what they say. Customers base their opinions on what they know. New technology changes customer needs. Customers who haven't yet been exposed to the new technology will describe what they need in terms of the products they know. In other words, when you change the rules, you must interpret what customers say they need in the light of the new rules.

- In areas of your product that don't differentiate it from competition, rely on vendors to solve problems. Though purchased solutions may appear uneconomical, they can avoid hidden costs; hence, they often turn out to be the least expensive approach.

- Be certain that new components you use really will be available. Even experienced designers can be fooled. In Quadtech's case, the vendor first selected to supply the 1865's LCD panel found that it couldn't obtain a key component of the panel and hence couldn't supply the panel. As a result, Quadtech had to find a new vendor and make several design changes to accommodate the new part.

- Don't underestimate the cost of compressing schedules. Eliminating steps can increase scrap and rework.

- Don't think that a design is complete just because you've shipped the product. As soon as customers learn what they can do with the new product, their requirements will change. (That is, the product's new capabilities will trigger new customer requirements.) Although beta-site evaluations can help you minimize the number of times you must make changes, the evolution should never end. Thinking that you have achieved perfection is dangerous to your competitive position.

VOTE! Please also use the Information Retrieval Service card to rate this article (circle one): High Interest 479 Medium Interest 480 Low Interest 481
personnel to a facility about 15 miles from the group’s former location, activities included setting up a new computer system and establishing new part-numbering and inventory systems. All the while, the new firm had to manufacture and support its older lines—former GenRad products.

Warnock credits two groups for Quadtech’s ability to bring out the 1865 so quickly: the company’s own people, who put in long hours and showed exceptional dedication, and the vendor personnel, who rolled up their sleeves and worked right beside them. In essence, the vendors became full-fledged members of the Quadtech team.

Thoughts are free

Of course, the people who eventually became Quadtech’s marketers and engineers had been thinking about new products long before they knew that there would be a Quadtech. Although they realized that a cash-cow product line of a company with other fish to fry had little chance of getting significant R&D funds, one way the group sustained its morale and team spirit was by thinking about new products. Even though under GenRad the group hadn’t received money for formal market research, the members had maintained close ties with customers. So when Quadtech became a separate company, it had a good handle on its customers’ needs. This knowledge helped in the creation of a detailed written specification for the 1865.

Nevertheless, intuition played a greater role in defining the 1865 than it did in defining the multimeters discussed in Part I of this series (EDN, October 1, 1992, pg 60). Automatic-teller machines (ATMs) became the model for the user interface. Quadtech’s engineers were confident of this approach because millions of people, even people who are afraid of computers, have learned to use ATMs and have done so without training.

The user interface is the first thing about an instrument, after the external appearance, that customers and potential customers react to. Warnock says that the customers to whom he’s shown the 1865 are delighted with the unit’s intuitive operation, especially when they compare it with competitive products. He is surprised that Quadtech’s competitors, some of which have large human-factors staffs, apparently haven’t devoted as much effort to ease of use as Quadtech has.

Because, as a relatively small company, Quadtech has limited resources, the 1865 had to be more than just a 1-shot product; it had to lay a foundation for further developments. The unit is a platform on which the firm can base a family of instruments. Everything that adapts it to a specific function—in this case, measuring high resistances—is on one PCB and a small segment of the front panel that contains the terminals you connect to the device under test. Quadtech can develop a family of instruments by designing a single board and connection panel for each one. Yet designing the product with this flexibility didn’t lengthen the development effort, and it did not appear to raise the manufacturing cost.

Quadtech Inc
45 Main St
Bolton, MA 01470
(800) 253-1230; (508) 779-8300
FAX (508) 779-0247
Robert White
Circle No. 302
John Hengeveld managed the digital design of the 9DG1 and 9DG2 630-MHz data time generator modules for Tektronix's HFS 9000 signal-source system. If you ask him about the VXI modular-instrumentation bus, he'll tell you, "VXI saved my bacon; I'm a believer!" He doesn't know of another way Tek could have taken the data time generators from initial concept to first customer shipments in only 12 months. Among VXI's benefits: the infrastructure of hardware- and software-support tools cut down on the ground work the design team had to do before it could tackle the real issues in the design. More important, VXI helped Hengeveld's team recover from a major miscalculation with a minimum of schedule slip.

The 9DG1 and 9DG2 combine a data generator's deep pattern memory and multichannel capabilities with a pulse generator's precise control of such parameters as amplitude and pulse width. Tek's design replaces many of the analog function blocks usually found in pulse generators with digital blocks. The company claims that this novel approach results in significant benefits for users. For example, setting up for some applications takes minutes, rather than the days, that can be consumed using conventional instruments.

Cost was an important consideration in developing these signal sources. Tek cites an 8-channel configuration in which conventional instruments—data and pulse generators and a switch matrix—would cost approximately $85,000, yet a setup based on a data time generator costs only $28,000. Tek says that for this comparison, it didn't even select the most expensive competitive instruments.

Daring choice

The selection of VXI for a cost-sensitive commercial application was daring. Although the number of suppliers of VXI products is nearing 100, only a small number of companies use VXI technology in commercial benchtop and rack-and-stack instruments. Hengeveld suspects that more firms aren't using VXI in such products because of a widely held misconception that VXI is too expensive except in unusual cases. Hengeveld strongly disagrees. He figures that most of the design and marketing managers in other companies who could decide to use VXI in new instruments have not yet awakened to its advantages.

At this point, you may express skepticism. After all, Tektronix is a major supplier of VXI products, so you probably consider it a special case—a company that can profitably use VXI when others can't. Before you jump to that conclusion, remember that although the mainframes—the card cages and power supplies that house the data time generators—are standard Tek products that anybody can buy (you'll also find them in the pulse generators that are part of the HFS 9000 series), the modules are not; Tek sells them only as components of HFS 9000 systems. Therefore, although Tek obtains the mainframes at a favorable cost, it enjoys no similar savings on the modules.

The modules are cost effective, despite a combination of handicaps that you might think would prove insurmountable:

- Because Tek sells the modules only as a part of systems, it can't achieve the economies of scale that might have resulted from selling the units separately.
- Tek builds the modules from scratch without the aid of the hardware components it sells to builders of small numbers of VXI modules.

EDN October 29, 1992 • 103
Simple rules and customer rapport keep designs focused

Don't rush to define a product. Instead . . .

Allow yourself time to appreciate the needs of a representative group of customers. Get the customers to define their needs in their own terms. Don't put words in the customers' mouths. The data time generator design team set out initially to solve a customer problem rather than to design an instrument. Although the expectation was that the solution would take the form of an instrument, that it would do so was not a foregone conclusion at the outset.

Make sure that each team member has close contact with customers. The rapport must be close enough that team members don't feel shy about calling the customers for inputs. The data time generator team found that its selected customer contacts were more than happy to discuss design decisions throughout the program. This rapport resulted in a shift in mind set from "Gee, this is a neat feature" to "This is what the customers want."

Concentrate on features that will make a difference to customers. To control creeping elegance, the team developed a set of questions for evaluating proposed features:
- Will adding it generate sales?
- Will not adding it cost us sales?
- Will adding it cost us sales (by increasing cost or delaying the introduction)?

Thoroughly characterize each component for its application; don't rely on guesses.

Specify hardware/software interfaces early in the project.

Develop the software that will drive custom ICs before you release the ICs. If you release the ICs before you have the software, you will either have to redo the IC designs or you will make a lot of extra work for the software developers who will have to work around the limitations imposed by the hardware. Either way, the cost and the impact on your schedule will be significant.

Don't build any more custom hardware than you absolutely need.

Don't go beyond what the customer needs.

Don't neglect weird intermittent problems in prototypes. If you do, they will return at the least opportune moment. Finding the cause and remedying it immediately may be inconvenient and unpleasant, but the debugging effort will be $100 \times$ more inconvenient and unpleasant later on.

Don't wait until your product is perfect to introduce it. Introduce it in phases; learn from the feedback; respond quickly.

- The modules use hardware and bus interfaces they would not have needed with another approach.

An even more convincing argument for VXI is that Tek manufactures other modular-instrument families, and it could have used any of them—had there been one that could match VXI's performance at lower cost.

Nobody's perfect

So by choosing VXI for the HFS 9000 series, Tek achieved a flexible modular architecture, shortened development cycles, and attained favorable costs. Moreover, VXI helped the team recover from a serious error—a flaw in the user interface. Beta testers inside and outside of Tektronix, though impressed with the evaluation units' performance, were unanimous in condemning certain features. The designers had erred: they assumed that an earlier program, the HFS 9000-series pulse-generator development, had taught them everything they needed to know about what users wanted in the controls and displays of the more complex data time generators.

Because the use of VXI saved time early in the program, evaluation units were available relatively early. If the beta testers had had to wait longer for these units, the problems wouldn't have surfaced until later, so the schedule slippage would have occurred later and would have been more severe.

Tektronix Inc
Box 1520
Pittsfield, MA 01201
(800) 426-2200
FAX (503) 690-3959
Circle No. 303

Article Interest Quotient
(Circle One)
High 479 Medium 480 Low 481
EDITOR'S ANALYSIS

It’s not over even when the fat lady sings

A funny thing happened during the research for this series. Although the editorial call letters we sent out referred to “Design it Right,” we never referred to “designing it right the first time.” Nevertheless, a large percentage of the respondents apparently thought we had used the phrase “the first time,” because their letters spoke of “EDN’s upcoming series on ‘Designing it right the first time.’”

In fact, hardly any product discussed in the series is the first of a kind to be produced by its designers; nearly all incorporate improvements that result from experience with earlier products. It’s highly probable that every company will produce successors to these products.

Designing it right, though it implies achieving excellence, doesn’t necessarily mean attempting to create the ultimate product in a class. The idea that you can ever design the ultimate product is seductive, but probably wrong. It entices you to waste valuable time on creeping elegance — on refinements that too often are needless.

If, instead of fine tuning endlessly, you bring out a solid, carefully engineered but possibly less than perfect product, customers will suggest improvements that you never thought of. However, if the product doesn’t reach their hands, customers won’t be inspired to make suggestions. More than likely, acting on customer suggestions will produce more sales and profits than all of the tweaks and modifications you could think of while sequestered in the sterile sanctum of your lab.

Next in Design It Right . . .

Part IV, the final part of Design It Right, will appear in the November 12, 1992, issue of EDN. It will tell the stories of two companies that based products on custom integrated circuits. One product, a large automatic-test system, uses 11 custom ICs from three vendors. The other, a plug-in for a modular logic-analysis system, uses two custom chips manufactured by another division of the same company. If you work for a multi-divisional company, you know that buying a key part of your product from a sister division can sometimes require more skill than dealing with a separate company.

Here’s a story of successful relationships between divisions. Lastly, Part IV includes a story about a company that pioneered in forming strategic partnerships with other firms. The company engineers and manufactures a variety of high-tech products that hardly anybody knows it designs and builds.
Maximize productivity for all your engineers.

with CAPS® network-based component management systems

How much can you save by integrating a CAPS component information system into your local area networks? Plenty if you're like most organizations.

Rockwell's Collins Air Transport Division saved hundreds of engineering hours in just a few months. Tekelec saved more than $50,000 the first year. Welch Allen's Data Collection Division saved over $19,000 at the demo.

In fact, five-fold productivity gains in component selection are common with benefits to design engineering, component engineering, manufacturing engineering and purchasing.
CAPS is a CD-ROM based database that makes it easy to find and compare ICs, semiconductors, resistors and capacitors. A search through millions of parameters takes seconds. The complete database is updated monthly so you're always working with current information.

Plus CAPS accommodates preferred parts lists so you can implement consistent selection practices throughout your organization.

It all adds up to better quality management.
And dramatically improved productivity.

See for yourself. CAPS is available for PCs, workstations, and in a variety of network configurations. Send for a free demo disk and complete details. (800) 245-6696.

Source, Select, Manage,
Source, Select, Manage.

(Minutes)
Minimum Daily Requirement

Compact TOKIN Surface Mount Devices get you through the day with flying colors.

When you need something extra to get you through your next project, try a dose of TOKIN Surface Mount Devices (SMDs). Designed to provide maximum working room in tight spaces, TOKIN SMDs offer the ideal remedy for downsizing computers and other electronic or communications equipment and systems. What's more, TOKIN SMDs come in a wide range of sizes to ensure you of the right formulation for your own special needs. EMC components—such as EMC Chip Filters and ultra-small Solid Chip Inductors—and SN Coils—counter noise emissions from compact, high-frequency power supplies, data terminals, personal computers, and so on. SMD Transformers make for easy high-density mounting on a wide range of communications equipment. And High-capacitance Multilayer Ceramic Capacitors enable automatic mounting on PC boards. If you're not getting the SMDs you need to get you through the day, be sure to call TOKIN.

Tokin Corporation
Hazama Bldg., 5-8, Kita-Aoyama 2-chome, Minato-ku, Tokyo 107, Japan
Phone: 03-3402-8166 Fax: 03-3487-9756

Korea Representative Office
602, Champs-Elysees Bldg., 889-6, Daechi-Dong, Kangnam-gu, Seoul, Korea
Phone: (2) 268-2582-5 Fax: (2) 544-7087

Tokin America Inc.
155 Nicholson Lane, San Jose, California 95134, U.S.A.
Phone: 408-432-8020 Fax: 408-434-0375

Chicago Branch
9935 Capitol Drive, Wheeling, Illinois 60090, U.S.A.
Phone: 708-215-8802 Fax: 708-215-8804

Boston Branch
945 Concord Street, Framingham, Massachusetts 01701, U.S.A.
Phone: 508-875-0389 Fax: 508-875-1479

Tokin Electronics (HK) Ltd.
Room 806 Austin Tower, 22-26A Austin Avenue, Tsimshatsui, Kowloon, Hong Kong
Phone: 367-9157 Fax: 359-5950

Taiwan Liaison Office
3F-4, No. 57 Fu Shing N. Road, Taipei, Taiwan
Phone: (02) 7728852 Fax: (02) 7114260

Singapore Branch
140 Cecil Street, No. 13-01 PIL Bldg., Singapore
Phone: 2237076 Fax: 2236093, 2276772

Tokin Europe GmbH
Kronstr. 142, 8000 München 45, Germany
Phone: 089-311 10 66 Fax: 089-311 35 84

Sun Microsystems' new SPARCstation* 10 is fast making history running at speeds to
400 MIPS and beyond. Inside is SuperCache;* a Sony-designed, 20 ns,
one-meg, self-timed static RAM that's optimized for SPARC* processors. The CXK77910J-20.

This synchronous "STRAM" gives Sun's power users three times more
fast cache than any other workstation. You, too, can make history with Sony SRAMs and
other breakthrough ICs. Call 800-288-SONY. Or FAX your current requirements
to 714-229-4333 in U.S.A., 416-499-8290 in Canada.

*Sony is a trademark of Sony. Sun, Sun Microsystems, and SuperCache are trademarks or registered trademarks of Sun Microsystems, Inc.
All SPARC trademarks are trademarks or registered trademarks of SPARC International, Inc. SPARCstation is licensed exclusively to Sun Microsystems, Inc.

CIRCLE NO. 81
BUILD A STRONG FOUNDATION TO PROGRAM IN C++

Knowing how to distinguish the four kinds of "same name, different behavior" functions in C++ means you're on your way to mastery of programming with objects.

John C Napier, Technical Editor

As a C programmer moving to C++, you face a double challenge that can put you into an endless loop of misunderstanding. C++, as an extension of a procedural language, lets you use the principles of object-oriented programming (OOP) but does not teach them to you. Yet getting up to speed in any new language requires memorizing a lot of the language syntax. And, learning syntax by brute-force memorization is inordinately time consuming.

Illustration by Kevin Hawkes
if you lack a higher-level view of its purpose, such as, for C++, implementing OOP principles. One way to break out of this loop and teach yourself the missing chunk of C++ is to aim for a detailed understanding of how you use C++ to implement the core OOP concept, inheritance.

As an over-simplified description, you could call inheritance just an elegant way to avoid mistakes that usually come with the cut-and-paste method of making new programs from pieces of existing ones.

As an over-glorified description, you could call inheritance the basis of a new design methodology. Traditional programming projects march a straight line from problem analysis to system specification, design, coding, testing, and documentation—or so the story goes. In practice, most engineers begin the new program with pieces of an old one and develop programs from the bottom up as much as from the top down. Inheritance formalizes a “begin-in-the-middle” approach
Build a foundation for C++

to design (see box, “A warm, fuzzy touch of OOP”).

A solid proposition lies between those extremes—inheritance lets you do “programming by difference.” You can wrap up your work-to-date, give it a name (class), and use that name as a starting point for further work.

Where objects get sticky

Programming by difference is a new organizational tool that objects give you. Beyond simply bundling data and procedures, objects let you develop a program by making well-defined, incremental changes, even if the program is very large. They help you avoid duplicating code within one program. These benefits come at a price of additional complexity. As an example, consider the issue of the scope of a variable.

A warm, fuzzy touch of OOP

You begin a procedural program holding in hand some specification of the design intent and purpose of the program. But design, by definition, lacks a formal syntax: you cannot compile a spec. The program is the most complex unit of executing code under the procedural approach. If you represent levels of complexity by indentation and separate compilable from noncompilable documents by a dotted line, a diagram of the procedural approach looks like:

```
<table>
<thead>
<tr>
<th>design</th>
</tr>
</thead>
<tbody>
<tr>
<td>program</td>
</tr>
<tr>
<td>procedures</td>
</tr>
<tr>
<td>data</td>
</tr>
</tbody>
</table>
```

or perhaps:

```
<table>
<thead>
<tr>
<th>design</th>
</tr>
</thead>
<tbody>
<tr>
<td>program</td>
</tr>
<tr>
<td>data</td>
</tr>
<tr>
<td>procedures</td>
</tr>
</tbody>
</table>
```

An object, like a program, includes persistent data, procedures (also called member functions or functions) that manipulate that data, and a way (called messages) to invoke the procedures. All users of the term “object” agree that, at the very least, an object bundles data and procedures together under one name. Given this much information, you can look at an object as a miniature procedural program complete in itself. You can diagram these OOP relationships as:

```
<table>
<thead>
<tr>
<th>design</th>
</tr>
</thead>
<tbody>
<tr>
<td>program</td>
</tr>
<tr>
<td>objects</td>
</tr>
<tr>
<td>data</td>
</tr>
<tr>
<td>procedures</td>
</tr>
</tbody>
</table>
```

Two features of this simple diagram give you a hint that learning to program with objects calls for substantial work and for understanding new information. First, objects are compilable code; you work with them using defined computer languages. They are not just part of the seeming anything-goes world of design terminology. Second, “program” is still sitting at the top of the hierarchy and object is not: “object” is not just another name for a program or for a procedure. The term object does introduce a new level of organization to programs.

Objects are not runtime-compatible

There is no common definition of objects that carries from design through coding to runtime compatibility. In general, the software developer who uses an object chooses its name, data types and methods, as well as their order of appearance in an argument list. The ANSI standard defines C++ as a source language but does not standardize its compilation to the level of runtime compatibility. In other words, you cannot compile one object using a Borland compiler, another using Zortech’s, another using Microsoft’s, and another from Sun, then link them to form one executable program.

Class, Object—what’s the difference?

Strictly speaking the C++ language does not even include the term object. It only defines classes, which in OOP terminology are cooperating groups of types. You, the programmer, make an object by instantiating one from a class definition, that is, by declaring it.
tions mostly by giving them unique names. For example, OOP languages let you give the same name to differing functions within multiple objects as long as the objects themselves are not related by inheritance.

As you deal with distributed scope, relatively simple OOP features can become confusing. For example, you may be tempted to consign overloading to the dustbin of design jargon and forget that the term also refers to compiler behavior, which will get your program in trouble if you do not understand how to use it.

Finally, dynamically bound messages (or virtual-member functions, as C++ calls them) introduce the issue of runtime scope resolution. When you are learning to program with objects, dynamic binding may make objects seem not only somewhat unfamiliar but downright bizarre. However, you can learn how to use virtual functions and the other new tools C++ gives you for programming by difference.

Knowing where to look is half the battle

You pay for the new tools by learning how to deal with a syntax that distributes functions across an inheritance hierarchy. Even small working programs become too complex to clearly illustrate the scope resolution rules. The following example is trivial but makes the principles obvious.

When you are discussing principles without detailed examples, you can easily confuse the two OOP terms...
Build a foundation for C++

overloading and polymorphism. You may have heard both described nontechnically as "same name, different behavior"—this is an oversimplification. C++ gives you at least four kinds of same name, different behavior scenarios for

- overloaded functions
- functions in disjoint objects
- overridden functions
- dynamically bound functions.

Four ways to use the same name

The first and simplest same name, different behavior function comes from overloaded functions. An example are the three functions

```c
add(int x, int y)
add(float x, float y)
add(double x, double y)
```

The C++ compiler distinguishes these three functions automatically by their signatures; that is, by the combination of function name (add) and argument types. (C distinguishes functions only by name.) The compiler selects the proper add function for each call at compile time, not at runtime.

The second same name, different behavior functions are disjoint functions. These functions have the same name, but they belong to classes that do not inherit from each other. An example might be functions that print nets, symbols, and sheet borders in an electronic CAD program. As long as you call the print functions by name (net.print, symbol.print, or sheet.print) and the net, symbol, and sheet classes do not inherit from each other, the compiler will give you the bindings you intend at compile time.

In the third case, overridden functions, you have defined static functions of the same name in classes that do inherit from each other. Presumably you have done this to override inherited behavior. In this case, if you do not call the function using the full name (object.function), C++ looks first for the function in the calling object. If the compiler does not find the function defined there, it goes up the class hierarchy, ancestor by ancestor, until it does find a function of that name and binds that one to your object.

The fourth kind of same name, different behavior function can be the most complicated to understand, even though it is simple enough to use. Called dynamic binding, late binding, runtime binding, or virtual functions, it implements polymorphism. Note that although people sometimes use the term polymorphism loosely to describe the other three same name, different behavior scenarios, the term technically refers only to runtime binding, called "virtual functions" in C++.

Dynamic binding saves you recompiling

It is appropriate to use dynamic binding with functions that have the same name, different code, and appear in multiple classes that inherit from each other. In these ways, the use of dynamically bound functions resembles that of overridden functions. But a late-bound function differs from an overridden function in one of two important ways. Either it exists only in name at compile time (you will write its body code in the future in a separately compiled module), or a member function (whose body already exists) calls one of several, class-specific versions of the late-bound function.

You can use runtime binding when you (or your customers) want to achieve two goals in combination. The first goal is to avoid having to recompile in the
future when you write extensions to class functions from an existing hierarchy. You may want to avoid this recompiling to save disk space, compiling time, or to keep your source code confidential. The second goal is to continue to use the existing compiled classes' functions to call those of your new extension classes. Because your extension classes are unknown when you compile your library, only a runtime lookup can make the binding between the two.

You must use runtime binding when one function calls another within the same class and you will specialize the second function in descendants of the class. You must use runtime binding here, as Fig 2 and its explanation show. This example is actually a generalization of the previous case.

Compilers work to prevent duplications in your source code from becoming duplications in memory (the computer doesn't benefit from repetition as people do). C++ compilers, in particular, keep only one copy of a function, even if many objects use it (through inheritance). So far so good. But when one function calls another and specializes that second function in subclasses, the compiler has a problem.

The problem is not with binding the object, or its

Fig 2—A member function that calls another member function within the same class will require dynamic binding if the second function is specialized within subclasses. Because a C++ compiler keeps only one copy of both the caller and called functions, the caller function must consult a lookup table to choose one of several called functions based on which object called it.
Build a foundation for C++

descendants, to the one copy of the caller function. The compiler can do that. The problem comes up when the compiler goes to bind the one copy of the caller function to each of the several called functions. That binding is one-to-many; which one of the many is right depends on which object does the calling, and that cannot be determined until runtime. Therefore, the compiler sets up a runtime table to make the call dynamically.

Fig 1 illustrates inheritance using four function types: overloaded, overridden, disjoint, and dynamically bound. It shows four classes and two objects that represent instantiations of the two "leaf" (bottom of hierarchy) classes. The defined functions for each class appear to the right of the box enclosing the class name. At the bottom, the same function boxes represent the full set of functions inherited by objects objA and objB.

At the top of the hierarchy, Class 1 contains four member functions, readin, putout, efficiency and scalefactor. You define the class in C++ as:

```cpp
class Class 1 {  
protected:  
   int xin, zout, eff, sc, factor;  
protected:  
   void readin (int xstep = 2) {cin > xin; xin += xstep;}  
   void putout () {zout = xin * 100;}  
   void efficiency () {eff = (sc = scalefactor()) * zout/xin;}  
   virtual int scalefactor () {return(factor = 88);}  
};
```

Next, the two child classes (Class_1_0 and Class_1_1) of the top object inherit all member functions defined for the top object and add their versions of other functions. Both new classes also add the new function monitorstate. In addition, Class_1_1 overrides function efficiency and specializes virtual function scalefactor.

```cpp
class Class_1_0 : public Class_1 {  
   protected:  
   float yin;  
   protected:  
   void readin (float ystep = 3.5) {cin > yin; yin += ystep;}  
   void putout () {zout = (int) (xin*100 + yin);}  
   int scalefactor () {return(factor = 255);}  
};
```

```cpp
class Class_1_1 : public Class_1 {  
   protected:  
   int zout;  
   protected:  
   int scalefactor () {return(factor = 255);}  
};
```

Class_1_1 defines a new function readin that overloads an existing function by adding an input of type float. It also specializes virtual function scalefactor.

```cpp
class Class_1_1_0 : public Class_1_1 {  
   protected:  
   float zout;  
   protected:  
   void monitorstate () { . . . sample at 2 msec rate . . . . . . . .}  
   void scalefactor () {return(factor = 255);}  
};
```

Now you can see how the four kinds of same name, different behavior functions show up in this example.

Editor's Analysis

Ten years ago, fourth-generation languages were all the rage. Pundits predicted that users would develop their own applications without programmers. They projected that users would write programs with terms and syntax that are unique to the problem domain rather than terms and syntax of generic information processing.

Instead, the reverse happened; a 2½-generation language became popular. An operator-rich language with weak type checking, terse syntax, freewheeling access to pointers, and abundant bit-fiddling, C won over assembler and systems programmers first. For example, coding application software for DSP chips, mostly an assembler job in 1987, became mostly a C job by 1990. Of course, it also helped that 16- and 32-bit DSP-µP architectures evolved toward matching the needs of the C language.

Any language beyond assembler increases the size of the compiled program, but on average a C program might compile 1.3 to 1.8 times the number of statements of its equivalent in assembler. The time the programmer saves from using the (moderately) high-level language offsets the penalty in program size. And because most programs spend most of their time executing a small subset of the overall code, you can use a profiler to identify those routines, code them in assembler, and recoup most of any speed loss.

Yet, the sarcastic call C the "write-only" language—you can write it but you can’t read it—C’s Unix-inspired pipeline, or toolbox, approach leads to lines of code in which sometimes a left-hand term operates on the right hand, sometimes the right hand operates on the left hand, and sometimes both occur in one line. C’s rich operator set lets you write abbreviated expressions with dense and deep nesting of symbols that confound easy reading.

Now C++ gives you OOP extensions that let you program in what you might call a 3½-generation language. Third-generation languages give you tools for organizing your work only up to the level of the procedure. C++ goes beyond third-generation languages by inserting the notion of the class/object into the organizational wasteland between the level of the procedure and that of the program.
New Tango-Route PRO is the fastest, high-completion PCB autorouter for PC workstations. Its speed, ease of operation and professional results set Tango-Route PRO apart from all other autorouters. Whether you're a novice or an experienced designer, you’ll find Tango-Route PRO packed with features to help you be more productive, design better boards and get your products to market faster.

Unrivaled Performance and Features.

Tango-Route PRO has a unique “reconstruct” algorithm which iterates to 100% completion up to five times faster than comparable PC-based “rip-up and retry” or “push and shove” PC-based autorouters. Its automated options work like an “expert system” selecting the optimum routing configuration right out of the box for best results in the shortest time. Intelligent algorithms produce boards with fewer vias and shorter trace length to ensure high yields, lower fab cost and enhance board aesthetics. Uniform-, non-uniform- and off-grid routing offer performance equal to or better than “gridless routers.” The program fully supports the 32-bit power of 386/486 computers, virtual memory and all current PCB technologies including advanced SMD. And you’ll drive Tango-Route PRO with the easy-to-use, Windows™-like Tango interface.

Benchmark Tango-Route PRO.

Tango-Route PRO, together with our design editor, Tango-PCB PLUS, can greatly enhance your productivity. But don’t take our word for it... call toll-free for complete specs and a free evaluation package to see the future in auto-routing for yourself.

Helping good ideas become great products.
ACCEL Technologies, Inc.
6825 Flanders Drive • San Diego, CA 92121 USA
Service & Support 619/554-1000 Fax 619/554-1019
CIRCLE NO. 82
Build a foundation for C++

Overloaded function:

readin—This function name occurs twice with different types of arguments (one an int, the other a float). C++ distinguishes one from the other on that basis, called a difference in signature.

Overridden function:

efficiency—This function occurs first in the top class of this hierarchy (Class_1) and then again in its child (Class_1_1). The compiler binds the local version of the function to the local object in each case, hiding the higher-level function by binding the lower-level one. Note that you can still instruct the child class to use the top class's version by explicitly naming it using the scope-resolution operator (::), as in Class_1::efficiency(). Similarly, a child object can call the top object's version as in the message Class_1.efficiency().

Disjoint functions:

monitorstate—This function name occurs in two classes that are not related by inheritance. The compiler binds each function to its own object.

Dynamically bound functions:

scalefactor—In the top class, Class_1, member function efficiency calls virtual member function scalefactor. Because the compiler keeps only one copy of all member functions, it can form only one-to-one bindings. You declare scalefactor as virtual so that the one copy of function efficiency can call any one of the many versions of scalefactor that may appear in descendant classes. The resulting runtime lookup table for this example contains three entries, one each for the three classes that specialize in the function (Fig 2).

Acknowledgment

The author wishes to thank the following individuals for their invaluable assistance with this story: Harris Shiffman, Technical Specialist, SunPro, the software development business of Sun Microsystems Inc (Mountain View, CA) and John Schwartz, Senior Engineer, Mentor Graphics Corp, Corporate Engineering Group (Wilsonville, OR). Thanks also go to Semaphore Tools for the illustration concept.

References

John Napier is a Technical Editor for EDN. He can be reached at (617) 558-4890.
Our new LVT logic family gives you 5-volt performance at 3 volts. Because not all 3-volt systems are all 3 volts.

If you're ready for 5-V speed and 5-V drive from 3.3-V logic, step up to the new Low Voltage Technology (LVT) logic family of bus-interface circuits from Texas Instruments.

Our new LVT family isn't hastily recharacterized 5-V logic. It's designed to operate at 3.3 V from the ground up. It drives industry-standard 5-V buses at speeds faster than 5 ns. Plus, our exclusive Bus Hold feature conserves valuable board space and power by eliminating the need for external pull-up resistors—without affecting speed or drive.

Mixed-mode operation makes things easy
Our new LVT logic can interface directly to 5-V systems on both the input and output pins of the device while operating at 3.3 V. That makes it an excellent choice for the latest mixed-voltage systems where 5- to 3-V and 3- to 5-V TTL voltage translation is required.

SN74LVT245 Highlights
- **Speed:** tpd 4.0 ns max
- **V_{CC} Range:** 2.7 V-3.6 V
- **Drive:** 32/64 mA
- **Low noise:** V_{OLP} < 0.8 V (typ)
- **Packages:** SOIC, TSSOP & Widebus™
- **Bus Hold:** Eliminates pull-up resistors

Free sample available today
Simply fill out the attached reply card, or call (214) 995-6611, ext. 3010, today for a free TI SN74LVT245 octal transceiver. Plug it in and solve a few of life's little ups and downs.

© 1992 TI

Trademark of Texas Instruments Incorporated
You don’t always get what you pay for.

With PTS synthesizers, you get more.

Because we’re synthesizer specialists, we give you more for your money in more ways than one.

From our economy PTS x10, to our space-saving PTS 310, to our top-of-the-line PTS 1000, we have more models to cover your source needs from 100 KHz to 1 GHz.

And more options, including:

- OCXO, TCXO or external standard,
- choice of resolution from 100 KHz to 0.1 Hz,
- DDS with phase-continuous switching,
- digital phase rotation,
- BCD or GPIB remote control,

and almost a hundred others to let you specify a synthesizer so well-tailored to your requirements that it’s like having one custom made for you.

Our priority in design and manufacturing is to make our synthesizers more reliable, and this has led to a demonstrated MTBF of 25,000 hours. That’s why we can back them with our all-inclusive 2-year warranty, along with a flat-rate service charge for eight years following the warranty period.

But wait, there’s less!

All of our synthesizers feature low power consumption, low spurious output (as low as -75 dBc), low phase noise, and fast frequency switching (as fast as 1 μsecond).

And all of our models are available, at a lower price, in a remote-only OEM configuration for easy integration into your OEM system.

Our full catalog has all the information you need to specify the most synthesizer for your money.

Call or FAX us for your copy, or for immediate engineering assistance.
Supplies for powering LCD backlights have some unique requirements. The units must be very efficient, have a variable sine-wave output, and include provisions for intensity and contrast control.

Current-generation portable computers and instruments use backlit LCDs. Cold-cathode fluorescent lamps (CCFLs) provide the most efficient way for backlighting the display. These lamps require high-voltage ac to operate, so you’ll need an efficient high-voltage dc/ac converter. In addition to high efficiency, the converter should deliver the lamp drive in the form of a sine wave to minimize RF emissions. Such emissions can cause interference with other devices, as well as degrade overall operating efficiency. The circuit should also provide for lamp-intensity control from zero to full brightness with no hysteresis or pop-on. The LCD also requires a bias supply for contrast control. The supply’s negative output should be regulated and variable over a considerable range.

The small size and battery-powered operation associated with LCD-equipped apparatus mandate low component count and high efficiency for these circuits. Size constraints place severe limitations on circuit architecture, and long battery life is usually a priority. Laptop and handheld portable computers offer an excellent example. The CCFL and its power supply are responsible for almost 50% of the battery drain. Additionally, these components, including pc board and all hardware, usually must fit within the LCD enclosure, which has a height restriction of 0.25 in.

Any discussion of CCFL power supplies must consider lamp characteristics. These lamps are difficult to drive (particularly for a switching regulator) because they have a negative resistance characteristic—the starting voltage is significantly higher than the operating voltage. Typically, the starting voltage is about 1000V and the operating voltage is about 300 to 400V. These are typical figures and they can vary for different bulbs. CCFL bulbs will operate from dc, but migration effects within the bulb will quickly damage them. Therefore, the waveform must be ac—no dc content should be present.

The negative-resistance characteristic, combined with the frequency-compensation problems associated with switching regulators, can cause severe loop instabilities, particularly on startup. Once the lamp is in its operating region, it assumes a linear load characteristic, easing stability criteria. Bulb operating frequencies are typically 20 to 100 kHz, and a sine-wave drive is preferred. The sine wave’s low harmonic content minimizes RF emissions, which could cause interference and efficiency degradation.

The circuit in Fig 1a meets CCFL drive requirements. Circuit efficiency is 78% with an input-voltage range of 4.5 to 20V. If you can drive the LT1172 from a 3 to 5V input, 82% efficiency is possible. Additionally, lamp intensity is continuously and smoothly variable from zero to full intensity. When power is applied, the
POWER SUPPLIES

voltage level at the feedback pin of the LT1172 switching regulator is below the device’s internal 1.23V reference and generates full duty-cycle modulation at the VSW pin (Trace A in Fig 1b). L2 conducts current (Trace B) that flows from T1’s center tap through the transistors and into L2. The regulator switches L2’s current to ground.

T1 and the transistors form a current-driven Royer-class converter that oscillates at a frequency primarily set by T1’s characteristics (including its load) and the 0.02-µF capacitor. The LT1172 drives L2, which sets the magnitude of the Q1-Q2 tail current, and hence T1’s drive level. The 1N5818 diode maintains L2’s current flow when the LT1172 is off. The LT1172’s 100-kHz clock rate is asynchronous with respect to the push-pull converter’s 60-kHz rate.

The 0.02-µF capacitor combines with T1 to produce a sine-wave voltage drive at the Q1 and Q2 collectors (Traces C and D, respectively). T1 steps up the voltage and about 1400V p-p appears at its secondary (Trace E). Current flows through the 15-pF capacitor into the lamp. On negative waveform cycles, the lamp’s current goes to ground via D1. The positive waveform cycles that appear across the 562Ω-50 kΩ potentiometer chain (Trace F) represent ½ the lamp current. The 10 kΩ-1 µF combination filters this signal and steers it to the LT1172’s feedback pin.

This last connection closes a control loop that regulates lamp current. The 2-µF capacitor at the Vcc pin of the LT1172 provides stable loop compensation. The loop forces the LT1172 to switch-mode modulate L2’s average current to whatever value is required to maintain a constant current in the lamp. You can vary this current value, and hence lamp intensity, with the potentiometer. The constant current drive allows 0 to 100% intensity control with no lamp dead zones or pop-on at low intensities.

You should keep several points in mind when observing this circuit’s operation. To monitor T1’s high-voltage secondary, you can only use a wideband, high-voltage probe that is fully specified for this type of measurement. The majority of oscilloscope probes will break down and fail if used for this measurement (see box, “Obtaining meaningful efficiency measurements”).

Fig 1—Efficiency for this CCFL drive circuit (a) equals 78% for a 4.5 to 20V input-voltage range. The circuit’s operating waveforms are shown in (b). When power is applied, voltage at the LT1172 switching regulator’s feedback pin is less than the 1.23V internal reference, which generates full duty-cycle modulation at the Vsw pin (Trace A).

NOTES:

C2 = MUST BE A LOW-LOSS CAPACITOR
METALLIZED POLYCARB
WIMA FK2(GERMAN) RECOMMENDED

T1 = SUMIDA-6354-020 OR COILTRONICS-CTX110092-1
PIN NUMBERS SHOWN FOR COILTRONICS UNIT
L2 = COILTRONICS-CTX300-4
Q1-Q2 = AS SHOWN OR BCP56(PHILIPS SO PACKAGE)
DO NOT SUBSTITUTE COMPONENTS
COILTRONICS (305)781-8900, SUMIDA (708)956-0666

126 • EDN October 29, 1992
Waveform monitoring is another consideration. The LT1172’s switching frequency is completely asynchronous from the Q1-Q2 Royer converter’s switching rate. As such, most oscilloscopes cannot simultaneously trigger and display all the circuit’s waveforms. To obtain waveforms like those in Fig 1b requires a dual-beam oscilloscope. LT1172-related waveforms (Traces A and B) are triggered on one beam, while the remaining traces are triggered on the other beam. You can also use single-beam instruments with alternate sweep and trigger switching, but they are less versatile and will only display four traces.

Be sure of efficiency measurements

Obtaining and verifying high electrical efficiency requires some amount of diligence. The optimum efficiency values given for C1 and C2 are typical and will vary for specific types of lamps. C1 sets the circuit’s resonance point which varies, to some extent, with the lamp’s characteristic. C2 ballasts the lamp, effectively buffering its negative resistance characteristic. Small values of C2 provide the most load isolation but require relatively larger transformer output voltage for loop closure. Large C2 values minimize transformer output voltage but degrade load buffering. Also, C1’s best value is somewhat dependent on the type of lamp used. Typical values for C1 are 0.01 to 0.047µF. C2 usually ends up in the 10 to 47 pF range. C1 must be a low-loss capacitor, and it would be wise to use the type listed in Fig 1a.

A poor-quality dielectric for C1 can easily degrade efficiency by 10%. You select C1 and C2 by trying different values for each and iterating toward a minimum.

Fig 2—The drive circuit must deliver more power when the backlighting scheme involves two CCFLs. The transformer in this circuit can develop an 11-mA output—the transformer in Fig 1a delivers only 7.5 mA.

Fig 3—Optimized for low-current operation, this drive maintains control down to tube currents of 1 mA—a very dim light. This design suits applications that need to maximize battery life. Primary supply drain ranges from hundreds of microamperes to 100 mA with tube currents of microamperes to 1 mA.
Achieving meaningful efficiency measurements

You must pay attention to measurement techniques to obtain reliable efficiency data for cold-cathode fluorescent-lamp (CCFL) circuits. The combination of high voltage and high-frequency harmonic-laden waveforms makes it difficult to obtain meaningful results. When selecting test instrumentation, it's important to know how the instrument works and how to use it. Only then can you hope to avoid unpleasant surprises.

Consider the case of test probes, for example. The selected probes must respond accurately under a variety of conditions. Measuring across the resistor in series with the CCFL is the most favorable circumstance because you can use a standard 1× probe to make this low-voltage, low-impedance measurement. The probe's relatively high input capacitance does not introduce significant error. You can also use a 10× probe for this measurement, but you must be sure to address frequency compensation issues.

On the other hand, the high-voltage measurement across the lamp is considerably more demanding on the probe. The waveform fundamental in this case is in the 20- to 100-kHz range, and harmonics can range into the megahertz region. This activity occurs at peak voltages in the kilovolt range.

The probe must have a high-fidelity response under these conditions. Additionally, the probe should have low-input capacitance to avoid loading effects that would corrupt the measurement.

The design and construction of such a probe requires significant attention. Table A lists some recommended probes along with pertinent characteristics. Almost all standard oscilloscope probes will fail if you try to use them to measure the waveform across the CCFL. Attempting to circumvent probe shortcomings by resistively dividing the lamp voltage also creates problems because large-value resistors often have significant voltage coefficients and shunt capacitance that is high and unpredictable. Similarly, common high-voltage probes designed for d-c measurement will have large errors because of a-c effects.

The P6013A and P6015 are the preferred probes for making measurements across the CCFL; their 100-MΩ input and small capacitance introduce low-loading error. You sacrifice output level to gain 1000× attenuation, but the right voltmeters can make this tradeoff.

![Fig A—To generate a known rms voltage, this circuit takes advantage of a voltmeter's insensitivity to waveform shape.](image)

<table>
<thead>
<tr>
<th>Tektronix probe type</th>
<th>Attenuation factor</th>
<th>Accuracy</th>
<th>Input resistance (MΩ)</th>
<th>Rise time (nsec)</th>
<th>Bandwidth (MHz)</th>
<th>Max voltage (V)</th>
<th>Denoted above (kHz)</th>
<th>Derated to at frequency (kHz)</th>
<th>Compensation range (pF)</th>
<th>Assumed termination resistance (Ω)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P6007</td>
<td>100x</td>
<td>3%</td>
<td>100</td>
<td>2.2</td>
<td>14</td>
<td>25</td>
<td>1.5</td>
<td>200</td>
<td>700 Vrms at 10 MHz</td>
<td>15-55 pF</td>
</tr>
<tr>
<td>P6009</td>
<td>100x</td>
<td>3%</td>
<td>100</td>
<td>2.5</td>
<td>2.9</td>
<td>120</td>
<td>1.5</td>
<td>200</td>
<td>450 Vrms at 40 MHz</td>
<td>15-47 pF</td>
</tr>
<tr>
<td>P6013A</td>
<td>1000x</td>
<td>Adjustable</td>
<td>100M</td>
<td>3</td>
<td>7</td>
<td>50</td>
<td>12</td>
<td>100</td>
<td>800 Vrms at 20 MHz</td>
<td>12-60 pF</td>
</tr>
<tr>
<td>P6015</td>
<td>1000x</td>
<td>Adjustable</td>
<td>100M</td>
<td>3</td>
<td>1.4</td>
<td>250</td>
<td>20</td>
<td>100</td>
<td>2000 Vrms at 20 MHz</td>
<td>12-47 pF</td>
</tr>
</tbody>
</table>
All of the recommended probes are designed to work into an oscilloscope input. Such inputs typically have an impedance of 1 MΩ in parallel with a capacitance of 10 to 22 pF. Appropriate voltmeters have significantly different input characteristics (Table B). As a result, you must compensate oscilloscope probes to accommodate the voltmeter's input characteristics. Normally, you can readily determine and adjust the optimum compensation point by observing probe output on an oscilloscope. Using a square input of known amplitude (usually from the oscilloscope calibrator), you can adjust the probe for the correct response.

Using the probe with the voltmeter presents an unknown impedance mismatch and makes it difficult to determine when compensation is correct. The impedance mismatch occurs at low and high frequency. You can correct the low-frequency term by placing an appropriate value resistor in shunt with the probe's output. For a 10 MΩ voltmeter input, a 1.1 MΩ resistor is suitable. This resistor should be built into the smallest possible BNC-equipped enclosure to maintain a coaxial environment. Do not use any cable connections; you should locate the enclosure directly between the probe output and the voltmeter input to minimize stray capacitance. This arrangement compensates for the low-frequency impedance mismatch.

Correcting the high-frequency mismatch term is more involved. The range of voltmeter input capacitances combined with the added shunt resistor's effects presents problems. One solution is to feed a predetermined rms signal to the probe-voltmeter combination and adjust compensation for a proper reading. Fig A shows a simple way to generate a known rms voltage. This scheme takes advantage of the recommended voltmeter's insensitivity to waveform shape. A stable 10.00V source drives the CMOS flip-flop. The CMOS output stage, which is purely ohmic, switches error between the supply and ground rails. Clocking the flip-flop generates a square wave output with a 10.00V amplitude. The result is a known 5.00V rms output. Now, you adjust the probe's compensation for a 5.00V voltmeter reading. This procedure, combined with the added resistor, completes the probe-to-voltmeter impedance match.

Table B—Thermally based rms voltmeter characteristics

<table>
<thead>
<tr>
<th>Manufacturer and model</th>
<th>Full-scale ranges</th>
<th>Accuracy at 1 MHz</th>
<th>Accuracy at 100 kHz</th>
<th>Input resistance and capacitance</th>
<th>Max bandwidth</th>
<th>Crest factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hewlett-Packard 3400</td>
<td>1 mV to 300V,</td>
<td>1%</td>
<td>1%</td>
<td>0.001 to 0.3V range=10M and</td>
<td>10 MHz</td>
<td>10:1 at full scale, 100:1 at 0.1 scale</td>
</tr>
<tr>
<td>Meter Display</td>
<td>12 ranges</td>
<td></td>
<td></td>
<td>< 50 pF; 1 to 300V range=10M and</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>< 20 pF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hewlett-Packard 3403C</td>
<td>10 mV to 1000V,</td>
<td>0.5%</td>
<td>0.2%</td>
<td>10- and 100-mV range=20M and</td>
<td>100 MHz</td>
<td>10:1 at full scale, 100:1 at 0.1 scale</td>
</tr>
<tr>
<td>Digital Display</td>
<td>6 ranges</td>
<td></td>
<td></td>
<td>20 pF±10%, 1 to 1000V range=10M</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>and 24 pF±10%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fluke 8920A</td>
<td>2 mV to 700V,</td>
<td>0.7%</td>
<td>0.5%</td>
<td>10M and < 30 pF</td>
<td>20 MHz</td>
<td>7:1 at full scale, 70:1 at 0.1 scale</td>
</tr>
<tr>
<td>Digital Display</td>
<td>7 ranges</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
input supply current. You can ensure that loop closure is maintained during this procedure by monitoring the LT1172’s feedback pin, which should be at 1.23V. Several trials usually produce the optimum C_1 and C_2 values. Note that the highest efficiencies are not necessarily associated with the most esthetically pleasing wave-shapes, particularly at Q_1, Q_2, and the output.

Maintaining circuit efficiency

Other issues influencing efficiency include bulb-wire length and energy leakage from the bulb. The high-voltage side of the bulb should have the smallest practical lead length. Excessive length results in radiative losses, which can easily reach 3% for a 3-in. wire. Similarly, no metal should contact or be in close proximity to the bulb. This prevents energy leakage, which can exceed 10%.

Because of the high voltage at the output, pay special attention to the layout of the circuit board. You must place the output coupling capacitor carefully to minimize leakage paths on the circuit board. A slot in the board will further minimize leakage. Such leakage can permit current flow outside the feedback loop, resulting in starved lamp drive or destructive arcing.

Another technique for minimizing leakage is to evaluate and specify the silk-screen ink for its ability to withstand high voltages. Once you follow these procedures, you can measure efficiency by calculating bulb current and voltage. To measure the current, you can measure the rms voltage across the 562Ω resistor (short the potentiometer). The bulb current is

$$I_{\text{bulb}} = 2(E/R)$$

Achieving meaningful efficiency measurements (continued)

Efficiency measurements require a voltmeter with an rms response. This instrument must respond accurately at high frequency to irregular and harmonically loaded waveforms. These considerations eliminate almost all ac voltmeters, including digital voltmeters with ac ranges. There are a number of ways to measure rms ac voltage. Three of the most common include average, logarithmic, and thermal.

Averaging instruments are calibrated to respond to the average value of the input waveform, which is almost always assumed to be a sine wave. Deviation from an ideal sine-wave input produces errors. Logarithmically based voltmeters attempt to overcome this limitation by continuously computing the input's true-rms value. Although these instruments are real-time analog computers, their 1% error bandwidth is well below 300 kHz and the crest-factor capability is limited. Almost all general-purpose DVMs use a logarithmically based approach and, thus, are not suited for CCFL efficiency measurements.

Thermally based rms voltmeters are direct acting thermo-electronic analog computers. They respond to the input’s rms heating value. This technique is explicit, relying on the very definition of rms (the heating power of the waveform). By turning the input into heat, thermally based instruments achieve vastly higher bandwidth than other techniques. Additionally, thermal voltmeters are insensitive to waveform shape and easily accommodate large crest factors. These characteristics are necessary for the CCFL efficiency measurements.

Fig B shows a conceptual thermal rms-to-dc converter. The input waveform warms a heater, increasing the output from its associated temperature sensor. A dc amplifier forces a second identical heater-sensor pair to match thermal conditions of the input-driven pair. This differentially sensed feedback-enforced loop makes ambient-temperature shifts a common-mode term, eliminating their effect. Although the voltage and thermal interaction is nonlinear, the input-output rms voltage relationship is linear with unity gain. In order for this arrangement to reject ambient-temperature shifts, the heater-sensor pairs must be isothermal.

You can make the pairs isothermal by thermally insulating them with a time constant well below that of ambient shifts. If the time constants to the heater-sensor pairs are matched, ambient temperature terms will affect the pairs equally in phase and amplitude. The dc amplifier will reject this common-mode term. Note that, although the pairs are isothermal, they are insulated from each other. Any thermal interaction between the pairs reduces the system’s thermally based gain terms, causing unfavorable signal-to-noise performance and limited dynamic operating range.

The output in **Fig B** is linear because the matched thermal pair’s nonlinear voltage-temperature relationships cancel each other. The instruments listed in **Table B** are typical of what is required for meaningful results. The HP 3400A and the Fluke 8920A are currently available from their manufacturers. The HP 3403C is no longer produced but is readily available on the secondary market.
"CLICK", "CLICK", "CLICK"...
"CLICK"...
..."CLICK"...
..."CLICK."

THEM MAXI/PC

THE SOUND OF SPEED...

...is actually quieter with MAXI/PC. You see, our OSF/Motif style graphical user interface has built-in intelligent defaults that save you hundreds of keystrokes and mouse clicks on every design. You’ll spend more time designing, and less time manipulating the software than you would with the competition. User-defined function keys and macros add to this speed. MAXI/PC gives you a faster, simpler and more natural way to work.

Quiet Power
When you do click your mouse in MAXI/PC, there’s a lot of power behind it. MAXI/PC is the clear PCB CAD price/performance leader, giving you fully integrated schematic capture, layout, automatic routing, and manufacturing outputs...all for $995. Compared to the noisy guys on the left, MAXI/PC saves you time, motion and money.

Compare these features:
- 5,000+ part library
- Graphical symbol/part library browser
- Automatic placement and routing
- Automatic gate and pin swap
- Automatic component rename
- Back annotation
- On-screen design rule checking
- Hotline support

Click On A Winner
Rarely do you find such a combination of elegance and economy. MAXI/PC has the time-saving automatic routines, elegant and efficient user-interface, and hotline support, all at a price that can’t be beat. Racal-Redac provides you with a growth path upward to the high level, PC-based CADSTAR and the workstation-based Expert Series. This growth path protects your design investment. Plus, MAXI/PC comes with a 30 day, 100% money-back guarantee. Try MAXI/PC. You’ll save a lot of clicks...and a lot of bucks.

Call 1-800-356-8352 today

MAXI/PC
PCB CAD SOFTWARE
RACAL-REDAC

238 Littleton Road
Westford, MA 01886 USA
Fax: (508) 692-4725

SEE US AT WESCON SHOW—BOOTH #’s 3353, 3355, 3452, and 3454

CIRCLE NO. 86
The 2x factor is necessary because the diode steering dumps the current to ground on negative cycles. The shunting effects of the 10 kΩ-1 µF RC network across the 562Ω resistor introduce a small current-measurement error. To maximize accuracy, you can temporarily insert a 1% 562Ω resistor in the ground lead of the negative-current steering diode and measure the voltage across it. Once this measurement is complete, you can delete this second resistor and again return the negative-current steering diode directly to ground.

You can measure bulb rms voltage at the bulb with a properly compensated high-voltage probe. Multiplying these two results gives power in watts, which you can compare to the dc input supply EI product. In practice, the lamp's current and voltage contain small out-of-phase components, but their error contribution is negligible. Both the current and voltage measurements require a wideband, true-rms voltmeter. The meter must use a thermal-type rms converter—the more common logarithmically based instruments are inappropriate because their bandwidth is too low.

Some displays require two lamps instead of the more popular single-lamp approach. These 2-lamp designs usually require more power. You'll need separate ballast capacitors to accommodate two lamps (Fig 2), but circuit operation is similar to that for the single-lamp circuit. Higher power may require a different transformer rating. Fig 1's transformer can supply 7.5 mA, although more current is possible with appropriate transformer types. For reference, the transformer in Fig 2 has an 11-mA capability.

The Fig 2 design reflects slightly different loading back through the transformer's primary winding. C2 usually ends up in the 10- to 47-pF range. Note that C2A and C2B appear with their lamp loads in parallel across the transformer's secondary winding. As such, C2's value is often smaller than in a single-lamp circuit using the same type lamp. Ideally, the transformer's secondary current splits evenly between the two capacitor lamp branches, with the total load current being regulated. In practice, differences between C2A and C2B and differences in lamp-wiring layout preclude a perfect current split. However, these differences are small and the lamps appear to emit equal amounts of light.

The design in Fig 3 (the so-called dim backlight) is...
Where Standard DSP Tools End, Hypersignal™—Macro EX Begins.

Is your DSP project taking you into unknown territory? Standard development tools such as assemblers, compilers, and even those old reliables, the hardware debugger and software simulator, can only take you so far. They can help you implement your algorithms and your product, but they can't help you with design. Even DSP design programs with “tool boxes” and “modules” can come up short, leaving you with limited functionality for a high price.

Hypersignal™—Macro EX contains a full range of integrated simulation and real-time tools for algorithm design and development, and supports over 40 DSP/Acquisition boards and 8 DSP chips with built-in device drivers and downloa...
optimized for single-tube operation at very low currents. The circuit is designed for use at low-input voltages—typically 2 to 6V. Fig 1a's circuit drives 5 mA max, but the low-power design tops out at 1 mA. The circuit in Fig 3 maintains control down to tube currents of 1 mA—a very dim light. This design is aimed at applications looking to maximize battery life. Primary supply drain ranges from hundreds of microamperes to 100 mA with tube currents of microamperes to 1 mA. In shutdown, the circuit draws only 110 mA.

The basic design requires some modifications to maintain high efficiency at low tube currents. The operating current level in Fig 1a's circuit must be lowered to achieve high efficiency. To do this, the circuit uses an LT1173 in place of the LT1172. The LT1173 is a burst-mode type regulator. When the 1173's feedback pin voltage is too low, the unit delivers a burst of output-current pulses, putting energy into the transformer and restoring the feedback point. The regulator maintains control by appropriately modulating the burst duty cycle. The ground-referred diode at the VSW pin prevents substrate turn-on due to excessive L2 ring-off.

During the off periods, the regulator is essentially shut down. This type of operation limits available output power but cuts quiescent current losses. In contrast, Fig 1a's LT1172 pulse-width modulator-type regulator maintains housekeeping current between cycles. This design results in more available output power, but higher quiescent currents. Fig 4 shows operating waveforms. When the regulator comes on (Trace A), it delivers bursts of output current to the L1, Q1-Q2 high-voltage converter. The converter responds with bursts of ringing at its resonant frequency. The circuit's loop operation is similar to that of Fig 1a.

Providing bias for LCDs

LCDs also require a bias supply for contrast control. The supply's variable negative output permits adjustment of display contrast. Relatively little power is involved, which eases RF radiation and efficiency requirements. The logic sections of display drivers operate from single 5V supplies, but the actual driver outputs swing between +5V and a negative bias potential. Varying this bias causes the contrast of the display to vary.

The design in Fig 5 is an LCD bias generator. In this circuit, IC1 is an LT1173 micropower dc/dc converter. IC1's switch, L2, D2, and C2 convert the 3V input. The switch pin (SW1) also drives a charge pump composed of C3, C5, D3, and D4 to generate 24V. Line regulation is 0.2% min with 2- to 3.3V inputs. Load regulation measures 2% with a 1- to 7-mA load. The circuit will deliver 7 mA from a 2V input at 75% efficiency.

If you need more output power, you can drive the Fig 5 circuit from a 5V source. You have to change R1 to 47Ω and C5 to 47 µF. With a 5V input, the circuit...
Synergy. Out Front Again... And Again.

The New Dual '040 VME SBC:
Faster, More Efficient and Lower Cost Than Any Multi-board Solution

Get on-board multiprocessing and an astounding **40 MIPS** throughput, when you power your system with Synergy's new SV420 single-slot SBC. The SV420's dual-CPU design means you'll need fewer boards in your VME chassis, with no VMEbus bandwidth bottlenecks between the '040s, and system-wide cost saving of more than 40%.

And even if you don't need multiprocessing right now, the SV420 still puts you out front. Use the second '040 as a super-smart DMA controller. When combined with the SV420's **66 MByte/sec VME64®** circuitry, nothing communicates faster over the VMEbus.

Add even more on-board power by selecting from Synergy's big list of high-performance, intelligent plug-on I/O modules — such as our latest Super-DSB module offering 40+ MB/sec over the VSB bus. Or choose another module, from a T1/E1 controller to a super-fast graphics engine, that plugs onto any Synergy SBC.

Better yet, just tell us what you need. We're the company you can talk to about your VME system design problems. You'll find that we listen and deliver (every Synergy I/O module on our list started as a customer request). We mean business when we say customer support is our most important mission.

So if you want to be out front in system performance, just be up front with Synergy. Call us today.

Synergy Microsystems
Synergy Microsystems, Inc.
179 Calle Magdalena, Encinitas, CA 92024
(619) 753-2191 FAX: 619-753-0903
Fortify for the future with RIFA electrolytic capacitors.

Built to last!
RIFA high-quality capacitors are constructed to meet the challenges of the next century.
In 1942, RIFA began manufacturing electrolytic capacitors, and is now one of the leading suppliers in the world market.

Our active, long-life capacitors are designed for high-load capabilities and strengthened for optimum reliability, providing increased product performance and cost effectiveness.

Discerning engineers in all fields rely on the technical expertise and individual support that RIFA extends to its customers.
Formulated and manufactured with biodegradable materials, our capacitors are environmentally friendly.
Reliability, performance and long life. That's RIFA!

RIFA electrolytic capacitors
Rifa Electrolytics AB, Box 98, S-56300 Granna, Sweden.
Tel +46 390 124
Telex 70053 GNARIF S. Telefax +46 390 124 90

POWER SUPPLIES
will output 40 mA at 75% efficiency. To obtain shutdown, simply bring the anode of D1 to a logic high, which forces the feedback pin of IC, to go above the internal 1.25V reference voltage. Shutdown current is 110 mA from the input source and 36 mA from the shutdown signal.

Fig 6 shows a boost converter that can provide negative bias from a 5V supply. The converter is half switcher and half charge pump. The flying node at VSW drives the charge pump (C1, C2, D2, and D3). The output is variable from 10 to 30V and provides contrast control for the display. On low voltage supplies (6V or less), you can tie VIN and V_BATT together. To obtain higher efficiency with higher battery voltages, run the LT1172 VIN pin from 5V. Shutoff the 5V supply automatically turns off the LT1172. The maximum value for V_BATT is equal to the negative output +1V. Also, the difference between V_BATT and VIN must not exceed 16V. R1, R2, and R3 have large values that minimize battery drain in shutdown because they are permanently connected to the battery via L1 and D1. Efficiency is about 80% at IOUT = 25 mA.

Author's biography
Jim Williams, staff scientist at Linear Technology Corp (Milpitas, CA), specializes in analog-circuit and instrumentation design. He has served in similar capacities at National Semiconductor, Arthur D Little, and the Instrumentation Lab at the Massachusetts Institute of Technology.
A former student at Wayne State University (Detroit, MI), Jim enjoys art, collecting antique scientific instruments, and restoring old Tektronix oscilloscopes.

Article Interest Quotient (Circle One)
High 482 Medium 483 Low 484

ASK EDN
Have you been stumped by a design problem? Can't interpret a spec sheet? Ask EDN.
The Ask EDN column serves as a forum to solve nagging problems and answer difficult questions. Address your questions and answers to Ask EDN, 275 Washington St, Newton, MA 02158; FAX (617) 558-4470; MCI: EDNBOSS.
Or, send us a letter on EDN's bulletin-board system. You can reach us at (617) 558-4241 and leave a letter in the /ask_edn Special Interest Group.
IF YOU SELL TO THE WORLD, WORK WITH A WORLD LEADER.

Selling worldwide calls for special capabilities: strict adherence to the standards of Europe, Asia and the Americas; a working knowledge of different applications and local needs; and listing by standards agencies—to name just a few. Bussmann’s been there. We’re there right now, with local offices and distribution. Add to this Bussmann’s sales leadership in numerous key markets and you have the prime fuse supplier to the world. No matter what your need, we’re prepared to fill it. In glass tube fuses (time-delay and fast-acting), holders and clips—5x20mm, 1/4" x 1-1/4". And Bussmann’s advanced high-performance fuses are ready when you are ready to redesign or to lower your costs to compete harder. For example, our PC-Tron® current-limiting fuses and SMD Tron® surface-mount fuses hold the destructive energy potential. So you components, as tional subminiature offers everything you demand for your high-volume production. Like the PC-Tron and SMD Tron, the Microtron fuse withstands the rigors of automated wave soldering and board washing. For full information on Bussmann products, contact your Bussmann distributor.
THE MOST COMPLETE OFFERING OF SURFACE MOUNT AUDIO ALARMS

In-Depth Stock

We are committed to the SMT market with sample quantity audio devices from stock and short lead times for production quantities from our worldwide distribution network.

- DC Operated buzzers
- AC Operated audio transducers
- Electro-mechanical models
- Piezo Models
- Operating voltage from 1.5V to 16V; AC or DC
- Output of 85 dBA or greater
- Electrical equivalent thru-hole models available for transitional design
- Sealed for washing
- All mechanical and electrical parameters verified IAW MIL - STD-105

For our Surface Mount catalog, our complete product line catalog of audio indicators, transducers and benders or for more information, please contact our Audio Products Group.

PROBLEM SOLVERS
Sometimes a specific application requires something a little or maybe a lot different from a standard off-the-shelf audio device. We can help. Please contact one of our knowledgeable sales engineers.

projects unlimited
3680 Wyse Road
Dayton, Ohio 45414
(513) 890-1918
FAX (513) 890-4911
2 AA Cells Replace 9V Battery, Extend Operating Life

Design Note 63

Steve Pietkiewicz

Operating life is an important feature in many portable battery-operated systems. In many cases the power source is the ubiquitous 9V "transistor" battery. 5V generation is accomplished with a linear regulator. Significant gains in battery life can be obtained by replacing the 9V/linear regulator combination with 2 AA cells and a step-up switching regulator. Two (alkaline) AA cells occupy 1.3 cubic inches, the same as a 9V battery, but contains 6WH of energy, compared to just 4WH in an alkaline 9V battery. Two AA cells also cost less than a 9V battery.1 The additional energy in the AA cells provides longer operating life when compared to a 9V battery based solution.

An evaluation of the three approaches with a 30mA load illustrates the differences in battery life. An HP7100B strip chart recorder provides a nonvolatile record of circuit performance. The linear regulator circuit shown in Figure 1 uses an LT1120 micropower low-dropout regulator IC. A minimum of external components are required. No inductors or diodes are needed; however, the linear step-down process is inherently inefficient. The step-down switcher shown in Figure 2 uses an LT1173 configured in step-down mode driven from an alkaline 9V battery. In Figure 3 the step-up circuit uses an LT1173 configured in step-up mode driven from a pair of alkaline AA cells. The two switching circuits require an external inductor, diode and output capacitor in addition to the IC.

Circuit operation of the switching step-down regulator is straightforward. A comparator inside the LT1173 senses output voltage on its "sense" pin. When V_{OUT} drops below 5V, the on-chip switch cycles. As current ramps up and ramps down in L1, it flows into C1 and the load, raising output voltage. When V_{OUT} rises above 5V, the cycling action stops and the regulator goes into a standby mode, pulling 110µA from the supply. C1 is left to supply energy to the load. These "bursts" of cycles occur as needed to keep the output voltage at 5V. 50mV of hysteresis at the sense pin eliminates the need for frequency compensation. The step-up regulator operates in a similar fashion, although in this case the inductor current flows into the load only on the discharge half of the switch cycle. Output voltage is regulated in a similar manner.

1. A quick check at the local drugstore yielded $2.99 for a 4-pack of alkaline AA cells and $2.49 for a single 9V battery (after $1.00 mail-in rebate).
Efficiency curves for the three circuits are shown in Figures 4 and 5. The linear regulator circuit has efficiency of 52% with a fresh battery. As the input-output differential decreases, the efficiency increases and at end of battery life exceeds 90%. Regulator ground current limits efficiency at drop-out. The switch-mode step-down circuit has almost constant efficiency, ranging from 84% at 6.3V input to 82% at 9.5V input. Minimum V_{IN} is set by the drop of the emitter follower switch inside the LT1173. Performance for the step-up converter is shown in Figure 5. At higher inputs, the switch drop is a lower percentage of supply, resulting in higher efficiency.

The three regulators show substantial differences in operating life. The linear regulator operates for 16.5 hours, as shown in Figure 6. Figure 7 shows a 19 hour operating life for the step-down switching circuit. The step-up regulator circuit’s performance, detailed in Figure 8, yields an operating life of 26 hours. This is an increase of 58% over the linear step-down approach at less cost and 37% over the switching step-down approach.

Figure 4. Step-Down Conversion Efficiency – 5V Output, 30mA Load

Figure 5. Step-Up Conversion Efficiency – 5V Output, 30mA Load

Figure 6. 9V to 5V Step-Down Linear – LT1120, 30mA Load

Figure 7. 9V to 5V Step-Down Switcher – LT1173-5, 30mA Load

Figure 8. 3V to 5V Step-Up Switcher – LT1173-5, 30mA Load

For literature on our Micropower Switching Regulators, call (800) 637-5545. For applications help, call (408) 432-1900, Ext. 456.
Latching relay disconnects low battery

Yongping Xia, EBT Inc, Torrance, CA

The circuit in Fig 1 uses a latching relay to disconnect the load when a battery voltage drops to a certain level. Because the latching relay can hold its status, the circuit consumes very little current, about 3 µA, under normal working conditions. Another attractive point for the low-voltage power supply is that the relay has no drop voltage.

The circuit configures a MAX404 low-power op amp as a voltage comparator with a 30-MΩ positive-feedback resistor. Using the component values in Fig 1, the comparator has a positive threshold, \(V_{H+} \), of \(5.88 \times V_R \) and a negative threshold, \(V_{H-} \), of \(4.41 \times V_R \), where \(V_R \) is a reference voltage provided by LED D1. When a small current flows through D1, the LED shows lower dynamic resistance, that is, a flatter slope of the VI curve, than a normal or zener diode. For example, experiments show that the voltage drops across the LED are 1.47V at 10 µA and 1.36V at 1 µA. For a 1N4148 diode, the drops are 0.39 and 0.25V, respectively. The LED's smaller change in voltage with changes in current make it a better regulated voltage reference than a standard diode.

When \(S_1 \) turns on, if the battery voltage is higher than \(V_{H+} \), which in this case is 7.9V because \(V_R \) equals 1.34V, the op amp's output changes from low to high. This high signal produces a narrow positive pulse through \(C_1, R_1, \) and \(R_2 \) that drives \(Q_2 \). Thus, one of the latching-relay coils will have power for a moment to turn the relay on. Once the battery voltage is below \(V_{H-} \) (6.9V in this case), the op amp's output goes low. This low signal sends power to another coil though \(C_2, R_3, R_4, \) and \(Q_1 \) to turn the relay off. \(Q_1 \) and \(Q_2 \)'s \(H_v \) should be greater than 200.

To Vote For This Design, Circle No. 395

EDN BBS /DL_SIG #1191

Fig 1—This circuit cuts off a low battery while and consumes only 3 µA.
Three ICs outperform commercial generator

Thomas P Hack, Comlinear Corp, Fort Collins, CO

Using several new high-performance ICs that simplify high-frequency triangle-wave generation, Fig 1's circuit provides 10-MHz, 1 V p-p bipolar-output triangle waves into 50Ω loads.

The circuit generates triangle waves by way of the following scenario. Assume flip-flop IC1 is set and the output of integrator IC2 pin 6 is between −1 and +1 V. Comparator A's and B's Q outputs (IC3, pins 1 and 16) are low. IC2's output ramps up until the voltage into comparator A's input (pin 8) exceeds its trip point (+1 V, set by voltage divider R5 and R6). Comparator A's Q output pulses high, resetting IC1. With IC1 reset, IC2's output ramps down until the voltage into comparator B's input (pin 10) is less than its trip point (−1 V set by R4 and R3), pulsing comparator B's output high, thereby setting IC1. The cycle repeats at this point. The circuit produces triangle waves at the output of IC2. Trigger outputs are available at pin 2 or pin 15 of IC3.

A differential-input integrator topology provides high half-wave symmetry and eliminates offset circuitry that would be required in a single-ended input integrator. An MC10E131 works better than gate-based R-S flip-flops for IC1 because the MC10E131's lower Q-to-Q skew (30-psec typical, 50-psec maximum) reduces flat spots at the triangle waveform's endpoints.

Linear 10-MHz triangle waves require low amplitude and phase errors of Fourier components well past 100 MHz. IC1 must generate excellent square waves, and IC2 must have a nearly ideal integrator transfer function up to 100 MHz. To meet these requirements, the circuit uses ECLinPS logic for IC1 and a CLC420 current-feedback op amp for IC2. Careful passive-component selection ensures that self resonances and other effects due to device parasitics are well above 100 MHz. The circuit uses 33-pF NPO ceramic capacitors for C1 and C2 so that self resonance occurs at approximately 300 MHz. Keeping R1 and R2 below 850Ω ensures that the 0.6-pF parasitic capacitance typical of RNC55 metal-film resistors produces an inte-

Fig 1—Using IC1 to produce pure square waves and IC2 as a nearly ideal integrator, this triangle-wave generator produces linear 10-MHz, 1 V p-p triangle waves that exhibit low second harmonics of −51 dBc.

140 • EDN October 29, 1992
The opportunity for automated, low-cost assembly is a key benefit of surface-mount technology but is often wiped out by the high price of surface-mount components. Now Mini-Circuits offers a new series of mixers to meet the pricing and quality demands of SMT...only $3.30 in 1,000 quantity ($3.95 in quantity of 10)...lower than most conventionally-packaged mixers.

The Ultra-Rel SCM-series spans 1 to 2500 MHz and is housed in a rugged non-hermetic 0.38 by 0.75 by 0.2 in. high (max. dimensions) plastic/ceramic package. Spacing between connections is 0.2 in.

Each SCM is built to meet severe environmental stresses including mechanical shock/vibration as well as temperature shock. Operating and temperature storage range is -55° to +100°C. Ultra-Rel SCM mixers come with a five-year guarantee, ready for off-the-shelf delivery, and available in tape-and-reel format (500 qty, 32 mm).

Unprecedented 4.5 sigma unit-to-unit repeatability is also guaranteed, meaning units ordered today and next year will provide performance identical to those delivered for your initial prototype design.

When you think SMT for low-cost production, think of Mini-Circuits' low-cost Ultra-Rel SCM mixers.

SPECIFICATIONS

<table>
<thead>
<tr>
<th>MODEL</th>
<th>SCM-1</th>
<th>SCM-2</th>
<th>SCM-5</th>
<th>SCM-2500</th>
</tr>
</thead>
<tbody>
<tr>
<td>Freq Range (MHz)</td>
<td>LO, RF</td>
<td>IF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-500</td>
<td>10-1000</td>
<td>DC-500</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1250-1800</td>
<td>DC-500</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>500-2500</td>
<td>DC-500</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conversion Loss (dB)</td>
<td>mid-band</td>
<td>total range</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.0</td>
<td>6.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.5</td>
<td>5.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Isolation (dB)</td>
<td>L-R (L-I) (L-I)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>low-band</td>
<td>60</td>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>mid-band</td>
<td>45</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>high-band</td>
<td>40</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRICE (1000 qty)</td>
<td>3.30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(1-9 qty)</td>
<td>4.25</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

With extra long life due to unique HP monolithic diode construction, 300°C high temp. storage, 1000 cycles thermal shock, vibration, acceleration, and mechanical shock exceeding MIL requirements.

ULTRA-REL MIXERS 5 yr. GUARANTEE

Units are shipped in anti-static plastic "tubes" or "sticks" for automatic insertion.

CIRCLE NO. 94

Mini-Circuits
P.O. Box 350166, Brooklyn, New York 11235-0003 (718) 934-4500 Fax (718) 332-4661 Telexes : 6852844 or 620156
grator zero above 300 MHz. If you use precision buffered resistors, which have a distributed capacitance of 0.06 pF, higher values of \(R_1 \) and \(R_2 \) are tolerable.

This circuit requires careful consideration of grounding, layout, and decoupling. Use a ground plane. The circuit should be laid out as it is drawn in Fig 1. Use the shortest lead lengths for \(R_1 \) and \(R_2 \). ECL terminators at \(Q \) and \(\overline{Q} \) of IC1 should have minimum lead lengths. The terminations should also share a common bypass and tie point to \(-5.2V\). The 2.7\(\Omega \) resistors and 0.1-\(\mu \)F ceramic capacitors decouple the comparator and the integrator from the rest of the circuit and from one another, preventing potential instability. Adding a Schottky-diode clipping in the signal path between IC1 and IC2 could boost performance.

Meter indicates 455-kHz carrier level

Alexandru Ciubotaru, Polytechnic Institute of IASI, Romania

Using a high-speed OPA404 op amp, Fig 1's circuit accurately indicates the carrier level of a 455-kHz amplitude-modulated signal (modulation index less than 1). The circuit also produces a demodulated signal output at little extra cost. The circuit is a half-wave precision rectifier and connects a low-power buffer, which draws approximately 0.5 \(\mu \)A when no input signal is present, to the output of amplifier IC1A. The circuit connects the amplifier and buffer in a basic follower configuration so that the duo's output is virtually ground for ac signals. The excitation of the circuit is a current that flows either through \(Q_1 \) or \(Q_2 \), depending on the current's polarity.

The circuit's input impedance is approximately 2 k\(\Omega \). The 500\(\Omega \) potentiometer lets calibration adjustment compensate for the internal resistance of the signal source. The demodulator's sensitivity has a value of 3, and the cutoff frequency of the output lowpass filter is 4 kHz. If necessary, you can use the other two op amps from the OPA404 package to perform additional filtering and amplification.

Fig 1—This circuit indicates the carrier level of a 455-kHz AM signal and produces a demodulated output.
He has his pick of more than 90,000 patents.

And that's just for starters. Now that his company has chosen Philips Key Modules as their product development partner, he has full access to world-class Philips technology that literally defines the state-of-the-art of multi-media computing and digital recording. Plus sophisticated manufacturing facilities that can turn his most imaginative designs into reality. And bring them to market on time, on spec, and on budget.

Whether he chooses from a virtually unlimited range of off-the-shelf subassemblies and technologies, or applies our applications expertise to developing customized modules to his unique specifications, he's assured of a "can-do" environment that shares a common goal: success.

Call Philips Key Modules at (408) 453-7013. From data processing to telecommunications, automotive electronics to consumer electronics, you've got more than 90,000 ways to succeed.
Backup supply sustains pseudostatic RAMs

Chuck Thurber, Illy King, and Roger Chen, Maxim Integrated Products, Sunnyvale, CA

The battery-backed supply in Fig 1 will keep self-refreshing, pseudostatic RAMs alive using only a single 3V lithium cell. Pseudostatic RAMs have high density and require no external refresh circuitry, making them attractive for battery-powered systems. However, their minimum supply voltage is 4V, necessitating a step-up converter for 3V backup cells.

In Fig 1, power supervisor IC3’s internal switchover circuit connects Vcc to Vout for normal operation. If the 5V supply fails, its declining output triggers two events: at 4.75V, IC3’s pin 6, LLB, goes low and inverter IC2’s outputs go high, delivering power to switching regulator IC1. IC1 pumps charge into C1, causing VBATT to rise toward 4.5V as Vcc continues to fall. When Vcc<VBATT (which occurs well above 4V) the switchover circuit completes the transition to backup power by connecting VBATT to VOUT. Note that IC1 receives power only when Vcc is less than 4.75V, minimizing current drain during normal operation.

EDN BBS /DL_SIG #1180

To Vote For This Design, Circle No. 392

Fig 1—A power supervisor, IC3, uses a ganged inverter, IC2, as a miniature solid-state relay to power a step-up regulator, IC1, only when the main 5V supply fails. The backup supply can supply 4V from a single 3V lithium cell to keep pseudostatic RAMs alive.
the new abbott SM200.

- Highest density in a military power supply
- 50 Watts per cubic inch
- Size: 2.4" W x 4.6" L x .5" H
- Power limit: up to 280 Watts
- Fixed frequency; no derating
- Temperature range of operation: -55°C to +100°C
- Extended input voltage range: 11-40Vdc
- Output: 5, 12, 15, 24, 28Vdc; sync pin, trim pin
- OVP, TTL included
- Remote Error Sensing
- Qualifications: Mil-Stds 704D, 810E, 901C
- Board-mountable
- Readily available, off-the-shelf military
- Price: very competitive

the sun.

- Highest density in the solar system
- 500,000,000,000,000 Watts per cubic inch
- Size: diameter = 864,000 miles
- Power limit: undetermined
- Variable frequency; derating nonverifiable
- Temperature range of operation: +5500°C to +15,000,000°C
- Extended input voltage range: 1-10^9Vdc
- Output: unchanneled; scattered dispersion
- Output protections: shade, sunscreen
- No system of error sensing/detection
- Mil-Std qualifications: none
- Board-mountable: not
- Readily available; not deliverable in unit form
- Price: very expensive

COMPARE OUR VERY-HIGH-DENSITY POWER SUPPLY WITH ITS CLOSEST COMPETITOR.

While the competition is admittedly tough, a closer look at the specs should serve to convince even the most skeptical reader of the many practical benefits of our new SM200 very-high-density power supply, which, despite its shorter track record, in reliability is second to — only one.
A crushing advantage for the DOS Engineer.

Imagine a single chip that wipes out the need for the individual components of a PC-XT motherboard. That’s DOS Engine. The familiar DOS environment, including LiM 4.0 support, keeps software development running on time.

More powerful than a locomotive.

DOS Engine is a ready-to-use standard part. But, you can also add up to 20,000 gates of your own on-board logic. Or even use DOS Engine as the core of your cell-based application (CB-C7), choosing peripherals from our huge ASIC library.

Order a whole trainload.

Need PC functionality in a standard part? Only DOS Engine is powered by NEC’s astonishing cell-based technology. When high volumes are your destination, your safest route is NEC. You know we’ll never run out of steam.

Hop on board.
Ask for Info Pack 160.
Call 1-800-632-3531.
FAX 1-800-729-9288.
From Kepco...

1KW Power Supplies • Hot Swappable

N+1 Redundant — Current Sharing

Power Factor Correction

Universal Input
fleeted back onto the mains below the limits of FCC docket 20780, level A and VDE 0671, level A. HSP are capable of sustaining full load operation through the loss of one full mains cycle at any source voltage and without indication of failure. If the mains power is lost for more than one cycle, HSP provides a flag a minimum of 5 milliseconds before the output loses regulation. They meet the ANSI C62.41 guidelines for withstanding surges on the mains.

HSP are plug-in designs. Their 5” x 5” crossection allow three HSP to be mounted in a standard 5.25” x 19” rack adaptor. Output voltage and current limit can be preset outside of the housing so that an HSP can be installed without powering down the system. Their outputs are fully protected for any overload including a short circuit. The normal overload protection mode is continuous current limiting. A switch selectable option will latch the power off after 30 seconds to avoid damage to load wires. An overvoltage protector latches the power off whenever the output exceeds a user-set limit.

Remote control of the HSP is provided via one of two isolated TTL-level signals, one normally high, the other normally low. An internal 5V supply powers this circuit and provides an auxiliary 5V, 100mA output on all models. This voltage is available whenever source power is applied whether or not the main output is inhibited. The main output is normally ON if no remote logic is applied. The main output voltage is remotely trimmable by resistance. Both output voltage and current limit are adjustable via remote analog programming, or can be computer controlled with Kepco digital programmers.

HSP OUTPUT CHARACTERISTICS

<table>
<thead>
<tr>
<th>SPECIFICATIONS</th>
<th>RATING / DESCRIPTION</th>
<th>CONDITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output setting range</td>
<td>-30% to +10%</td>
<td>Of nominal output</td>
</tr>
<tr>
<td>Source effect</td>
<td>typ 0.05%</td>
<td>Nominal ±15%</td>
</tr>
<tr>
<td></td>
<td>max 0.1%</td>
<td></td>
</tr>
<tr>
<td>Load effect</td>
<td>typ 0.05%</td>
<td>5%-100% load operation 0-5% has increased ripple and degraded transient response</td>
</tr>
<tr>
<td></td>
<td>max 0.1%</td>
<td></td>
</tr>
<tr>
<td>Temperature effect</td>
<td>typ 0.01%</td>
<td>Per degree C (0 to 50°C)</td>
</tr>
<tr>
<td></td>
<td>max 0.02%</td>
<td></td>
</tr>
<tr>
<td>Combined effect</td>
<td>(source, load temperature & time) typ 0.15%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>max 0.3%</td>
<td></td>
</tr>
<tr>
<td>Time effect (drift)</td>
<td>typ 0.05%</td>
<td>0.5-8.5 hours</td>
</tr>
<tr>
<td></td>
<td>max 0.1%</td>
<td></td>
</tr>
<tr>
<td>Start up time</td>
<td>max 1 second</td>
<td>Any source/load</td>
</tr>
<tr>
<td>Recovery characteristics</td>
<td>Excursion <3% of Nominal Output</td>
<td>50-100% load</td>
</tr>
<tr>
<td></td>
<td>Recovery 100 Microseconds</td>
<td>Return to 1% of setting</td>
</tr>
<tr>
<td>Ride through</td>
<td>min 22 Milliseconds</td>
<td>From loss of source to flag signal</td>
</tr>
<tr>
<td>Hold up time</td>
<td>min 5 Milliseconds</td>
<td>After signal flag</td>
</tr>
<tr>
<td>Overshoot</td>
<td>None</td>
<td>Turn on/off</td>
</tr>
<tr>
<td>Error sense</td>
<td>3.3 & 5V 0.25V</td>
<td>Voltage allowance per wire</td>
</tr>
<tr>
<td></td>
<td>All others 0.4V</td>
<td></td>
</tr>
<tr>
<td>Series connection</td>
<td>(output floats) 500V</td>
<td>Maximum voltage off ground</td>
</tr>
<tr>
<td>Parallel connection</td>
<td>(for redundancy) Current shares within 5% of rated load</td>
<td>Hot swappable</td>
</tr>
<tr>
<td>Over voltage protection</td>
<td>130% of nominal</td>
<td>Latched, reset by cycling source power off</td>
</tr>
<tr>
<td>Current limiting</td>
<td>Constant current mode</td>
<td>Optional; output off after 30 seconds</td>
</tr>
<tr>
<td>Remote on/off</td>
<td>RC-1 Normally high</td>
<td>Isolated form C or TTL</td>
</tr>
<tr>
<td></td>
<td>RC-2 Normally low</td>
<td>Isolated form C or TTL</td>
</tr>
<tr>
<td>Over temperature</td>
<td>Thermostat</td>
<td>Auto re-start with hysteresis</td>
</tr>
</tbody>
</table>

HSP GENERAL SPECIFICATIONS

<table>
<thead>
<tr>
<th>SPECIFICATIONS</th>
<th>RATING / DESCRIPTION</th>
<th>CONDITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
<td>-20° to +71°C (see model table)</td>
<td>Operating</td>
</tr>
<tr>
<td></td>
<td>-40° to +85°C</td>
<td>Storage</td>
</tr>
<tr>
<td>Humidity</td>
<td>0 to 95% RH</td>
<td>Non condensing operating & storage</td>
</tr>
<tr>
<td>Shock</td>
<td>20g 11msec ±50% half sine</td>
<td>3-axes 3 shocks each axis</td>
</tr>
<tr>
<td>Vibration</td>
<td>5-10Hz 10mm double amplitude 10-55Hz 2g</td>
<td>Non operating 1 hour each axis</td>
</tr>
<tr>
<td>Altitude</td>
<td>Sea level to 10,000 ft</td>
<td></td>
</tr>
<tr>
<td>Isolation</td>
<td>Output-case 500V d-c</td>
<td>25°C, 65%RH</td>
</tr>
<tr>
<td>Withstand voltage</td>
<td>Input-output 2500V a-c</td>
<td>25°C, 65%RH</td>
</tr>
<tr>
<td></td>
<td>Input-case 1500V a-c rms</td>
<td>Y CAPS removed</td>
</tr>
<tr>
<td>Safety</td>
<td>UL 478, 1950; EN 950; CSA 1402C (level 3)</td>
<td>Recognition and certification applied for</td>
</tr>
<tr>
<td>Type of construction</td>
<td>Enclosed, plug-in style includes status LEDs circuit breaker, handle voltage/current trimmers monitor test points</td>
<td>Stand alone or rack mountable into RA-57 to accommodate up to 3 plug-in units</td>
</tr>
<tr>
<td>Cooling</td>
<td>Internal d-c fan</td>
<td>Exhaust to rear</td>
</tr>
</tbody>
</table>
The Kepco HSP Series is a group of seven, kilowatt-size power supplies with outputs from 3.3 Volts to 48 Volts. They feature current-sharing for parallel operation and hot swappability for redundancy applications. Kepco's HSP have a universal input (85-277V a-c), and incorporate power factor correction (0.998) to meet IEC 555-2. These modern power supplies operate at 100KHz (200KHz for the boost converter) in current mode. This provides rapid response to source and load changes and tight stabilization.

They are designed in accordance with EN 950 and UL 1950 and will be submitted for approval by UL/CSA/TÜV. A built-in conducted EMI filter attenuates the noise re-
1KW 5" x 5" x 15.5"

POWER SUPPLIES

HOT SWAPPABLE

N + 1 REDUNDANT-CURRENT SHARING

POWER FACTOR CORRECTION

UNIVERSAL INPUT

STAND ALONE OR RACK MOUNTABLE

HSP SIGNALS AND FLAGS

<table>
<thead>
<tr>
<th>SPECIFICATIONS</th>
<th>RATING/DESCRIPTION</th>
<th>CONDITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Status flags</td>
<td>ACFAIL (source fail) signal asserted 5 Msec prior to loss of output voltage</td>
<td>Both NO and NC available</td>
</tr>
<tr>
<td>(Form C relay contacts)</td>
<td>DCFAIL Indicates normal operation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>OVERTEMP Over temperature shutdown</td>
<td></td>
</tr>
<tr>
<td></td>
<td>FANFAIL Failure of internal fan</td>
<td></td>
</tr>
<tr>
<td>Status indicators</td>
<td>Power Green</td>
<td>Lit when a-c is sufficient (>83V a-c)</td>
</tr>
<tr>
<td>front panel LEDs</td>
<td>DCFAIL Red</td>
<td>Lit when d-c is ±5% beyond limits</td>
</tr>
<tr>
<td></td>
<td>OVERTEMP Yellow</td>
<td>Lit when thermostat activates</td>
</tr>
<tr>
<td></td>
<td>FANFAIL Red</td>
<td>Lit when fan failure is detected</td>
</tr>
<tr>
<td>Test points</td>
<td>Monitor setpoint voltage 0.1 x E out</td>
<td></td>
</tr>
<tr>
<td>Auxiliary voltage</td>
<td>Monitor setpoint current 0-10 Volts full scale</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4.5-5.5V d-c (parallelable) 0-100 milliamperes</td>
<td>Present whenever housekeeping supply is operating</td>
</tr>
</tbody>
</table>

HSP CONTROL

<table>
<thead>
<tr>
<th>SPECIFICATIONS</th>
<th>RATING/DESCRIPTION</th>
<th>CONDITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage set programming (mode selected by internal switches)</td>
<td>Internal Multiturn potentiometer Resistance, 1000 ohms/volt</td>
<td>The DCOK-DCFAIL fault detect window tracks the programmed output voltage, OVP trip unaffected</td>
</tr>
<tr>
<td></td>
<td>External 1 Resistance, 1000 ohms/volt</td>
<td></td>
</tr>
<tr>
<td></td>
<td>External 2 Voltage, 0-10V = 0-100% of rated output voltage</td>
<td></td>
</tr>
<tr>
<td>Current limit programming (mode selected by internal switches)</td>
<td>Internal Multiturn potentiometer Voltage, 0-5V = 0-110% of rated output current</td>
<td></td>
</tr>
<tr>
<td></td>
<td>External Voltage, 0-5V = 0-110% of rated output current</td>
<td></td>
</tr>
<tr>
<td>Remote ON/OFF</td>
<td>Normal H TTL level Isolated 5V, 100mA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Normal L TTL level Isolated 5V, 100mA</td>
<td></td>
</tr>
<tr>
<td>Forced load share</td>
<td>Single wire connection between modules</td>
<td>0-5.5V signal indicates each module's current</td>
</tr>
</tbody>
</table>

HSP PHYSICAL CHARACTERISTICS

<table>
<thead>
<tr>
<th>SPECIFICATIONS</th>
<th>RATING/DESCRIPTION</th>
<th>CONDITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimensions</td>
<td>English 5" x 5" x 15.5" Excluding front latch, circuit breaker, handle and rear connections</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Metric 127 x 127 x 394 mm</td>
<td></td>
</tr>
<tr>
<td>Weight</td>
<td>English 15 lbs</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Metric 6.8 Kg</td>
<td></td>
</tr>
<tr>
<td>Source connection</td>
<td>3 pin IEC Connector</td>
<td>Compatible with molded line cord</td>
</tr>
<tr>
<td>Load connection</td>
<td>Two bus bars 1.25" x 0.125" x 2.5" Bright nickel finish</td>
<td></td>
</tr>
<tr>
<td>Signal connection</td>
<td>37 Pin D-subminiature connector</td>
<td></td>
</tr>
</tbody>
</table>

Call/fax/write for any of our catalogs.
Multiprocessor embedded controller. The dual-processor H8/570 contains a main processor, the 16-bit H8/500 CPU core, which runs at 10 MHz and performs 16×16-bit multiplication and 32×16-bit division. You can program the processor using C or Forth code. A 64-bit auxiliary processor, the H8/570 core, implements a real-time operating system in silicon. $29.25 (10,000). Hitachi America Ltd, S&IC Div, 2000 Sierra Point Pkwy, MS-080, Brisbane, CA 94005. Phone (800) 285-1601, ext 21. Circle No. 401

Resolver-to-digital converter. The HSD/HRD1066 converts signals from a resolver to 10-, 12-, 14-, or 16-bit resolution. A type II tracking loop provides an accuracy of ±1.3 arc-minutes and a zero velocity lag error for a 1800/sec tracking rate. An antifalse lock circuit prevents locking to a 180° phase step. A differential signal conditioner provides 70 dB of common-mode rejection for the resolver inputs. From $530. Natel Engineering Co, 4550 Runway St, Simi Valley, CA 93063. Phone (805) 581-3950. Circle No. 402

IDE hard-disk controller. The AIC-8160 hard-disk controller automates ISA bus I/O tasks that usually require a local µC. The chip provides 11 bits of error detection and correction and can continuously read while correcting. A data-flow manager controls data flow in and out of a buffer RAM while both the host and disk ports are operating. The chip also has power-down modes. $15.95. Adaptec Inc, S Milpitas Blvd, Milpitas, CA 95035. Phone (408) 945-8600. FAX (408) 262-2533. Circle No. 403

Communication chip set. The HDMP-1000 Gigabit-Link chip set provides point-to-point communication as fast as 1.5 Gbps. A transmitter and receiver transfer data over a fiber-optic link as far as 10 km. A parallel ECL bus option enables transmission of 16-, 17-, 20-, or 21-bit parallel data. You can select data rates from 100 to 1500 Mbps. $710. Hewlett-Packard, 19310 Pruneridge Ave, Cupertino, CA 95014. Phone (800) 752-0900. Circle No. 404

Multimedia video chips. Two multimedia video chips process and display full-motion video for personal computers. The programmable CL-PX2070 captures, stores, processes, and routes multiple streams of video data. The CL-PX2080 is a RAMDAC that digitally.
In the race to market, we offer you a few shortcuts.

If you need magnetics for your prototype, our Designers Kits can get you off and running fast!

Each assortment puts a wide range of values right at your fingertips. So there's no need to waste hours calling around for samples or winding your own.

And when you're ready for production, you'll find we stock just about all the parts in our kits at low, factory-direct prices.

Call today and you can have your kit tomorrow! To order phone 800/322-2645.

Surface Mount Kits

1008 Surface Mount Inductors
Inductance: 4.7 nH - 10 µH
42 values [10 of each] Kit C100 $125

0805 Surface Mount Inductors
Inductance: 3.3 nH - 220 nH
19 values [10 of each] Kit C103 $60

“Spring” Surface Mount Air Core Inductors
Inductance: 2.5 nH - 43 nH
10 values [12 of each] Kit C102 $60

RF Inductor Kits

“Unicoil” 7/10 mm Tuneable Inductors
Inductance: 0.0435 µH - 1.5 µH
49 shielded, 49 unshielded [2 of each] Kit M102 $60

“Unicoil” 5 mm Tuneable Inductors
Inductance: 9 nH - 281 nH
19 shielded, 19 unshielded [2 of each] Kit M105 $60

“Slot Ten” 10 mm Tuneable Inductors
Inductance: 0.7 µH - 1143 µH
18 shielded, 18 unshielded [3 of each] Kit M100 $60

“Slot Seven” 7 mm Tuneable Inductors
Inductance: 0.094 µH - 2.75 µH
39 values [3 of each] Kit M106 $60

Axial Lead Chokes

Inductance: 0.1 µH - 1000 µH
25 values [5 of each] Kit F102 $50

Horizontal Mount Inductors

Tuneable and fixed
Inductance: 31.5 nH - 720 nH
33 values [3 of each] Kit M104 $60

EMI/RFI Filter Kits

Common Mode Data Line EMI Filters
Attenuation: 15 dBm, 1.5 - 300 MHz
DC current capacity: 100 mA
2, 3, 4, 8 line, surface mount and leaded [4 each] Kit D103 $75

Common Mode Line Chokes
Current: 25 - 9 Amps rms
Inductance: 508 µH - 10.5 µH
8 styles [2 of each] Kit P202 $100

Power Magnetics Kits

Current Sensors

Sensing range: 0.5 - 35 Amps
Freq. resp.: 1 - 100 kHz, 50 - 400 Hz
Transformer and sensor-only versions
8 styles [15 total pieces] Kit P203 $50

Base/Gate Driver Transformers

Inductance: 1.5 mH Min.
Freq: 10 - 250 kHz
2 single, 2 double section [2 of each] Kit P204 $50

Mag Amp Toroids

Current: 1.5 Amps
Volt-time product: 42 - 372 V - usec
6 styles [2 of each] Kit P206 $100

Power Filter Chokes

Current: 3, 5, 10 Amps
Inductance: 5 - 300 µH
18 styles [48 total pieces] Kit P205 $75

Axial Lead Power Chokes

Current: 0.4 - 4.3 AC Amps
Inductance: 3.9 µH - 82 µH
30 values [2 of each] Kit P209 $150

Other Magnetics Kits

Low Pass LC Filters
Poles: 3, 5 and 7
Cutoff frequency: 17 MHz
Impedance: 50 Ohms
3 filters [4 each] Kit D102 $60
Integrated Circuits

Mixes and simultaneously displays graphics data. CL-PX2070, $85; CL-PX2080, $65. Cirrus Logic Inc, 3100 W Warren Ave, Fremont, CA 94538. Phone (510) 623-8300. FAX (510) 226-2240. Circle No. 405

Octal DACs. The MP7641 and MP7651 contain eight independent 8-bit DACs. Each DAC has a 10-MHz input bandwidth. The maximum clock rate is 12.5 MHz. The MP7651 includes an addressable chip-select feature via a serial data bus. The chips operate from -40 to +85°C and come in 28-pin DIPs, $8.90 (1000). Micro Power Systems Inc, 3100 Alfred St, Santa Clara, CA 95054. Phone (408) 562-3615. FAX (408) 562-3605. Circle No. 406

Specialty memories. The MK45180 SnoopTAG is a cache TGRAM with integrated-bus-snooping logic. The chip also has a 4x10-bit asynchronous dual-port SRAM (static RAM), a comparator, a match output, and a flash-clear input. The MK6246 BRAM is a 32k x 9 bit SRAM that features a parity bit and an integrated 2-bit burst counter for 486-compatible µs. MK45180, $29.33; MK6246, $13.29 for 8-nsec version (5000). SGS-Thompson, 1000 E Bell Rd, Phoenix, AZ 85022. Phone (602) 867-6100. FAX (602) 867-6102. Circle No. 407

Codecs. The AD1848 and AD1849 codecs feature a pair of 16-bit sigma-delta ADCs and a pair of 16-bit sigma-delta DACs. The devices provide a dynamic range and a S/N ratio that exceeds 80 dB over the 20-kHz audio bandwidth. The devices operate with sample rates from 5.5 to 48 ksamples/sec. The AD1848 has a parallel ISA bus-compatible interface and costs $33 (1000). The AD1849 has a serial interface and costs $30 (1000). Analog Devices Inc, 804 Woburn St, Wilmington, MA 01887. Phone (617) 937-1480. FAX (617) 937-1011. Circle No. 408

High-current PLDs. The GAL16VP8B-15/25L and GAL20VP8B-15/25L feature 64 mA of output sink (IOL) current and 32 mA of output drive (IOH) current. The devices have Schmitt-trigger inputs that have a typical hysteresis of 200 mV. They operate as fast as 80 MHz and have maximum propagation delays of 15 nsec. The devices typically draw 90 mA. GAL16VP8B-15L in a DIP, $3.75; GAL20VP8B-15L in a DIP, $5.60 (1000). Lattice Semiconductor Corp, 5555 NE Moore Ct, Hillsboro, OR 97124. Phone (503) 661-0118. FAX (503) 661-3037. TLX 277338. Circle No. 409

A new INCREDI BLY EMBEDDABLE! 100% PC-compatible single board computer for embedded applications Features 486 Power, On-Board Video, and Flash ROM

Flat panel display interface
To 16M DRAM
Semiconductor disk
BIOS
VGA Monitor
Keyboard & speaker
PC/AT bus expansion
COM1 & COM2
Real-time clock w/ROM
IDE-AT hard drive
- SBX expansion
Parallel printer port
- 80387SX math co-processor
Floppy controller
+5V only power

SMALL AND TOUGH
The SBC-486 is just 5.75" x 7.75," and rated for 0-70°C at 7W.

STATE OF THE ART VIDEO
On-board controller drives 512 colors (up to 256 simultaneous) on color TFT and passive color LCD displays; 16 gray levels on monochrome.

LOTS OF MEMORY OPTIONS
On-board semiconductor disk lets you run from 768k of flash ROM or 1.5M of RAM/ROM disk; also 16M of DRAM.

EXPANSION POSSIBILITIES
Add extra functions through PC or SBX connectors.

AD DING A FLAT PANEL DISPLAY?
Our "DisplayPacs" combine flat panel displays and touchscreens with our SBCs. Ask your Computer Dynamics Applications Engineer. Also, ask about our 386SX, 286, and 8088 single board computers.

OEM prices from $936. Call now for more information.

"The Flat Panel Experts"
See us at COMDEX #52491 and ISA #6618
107 SOUTH MAIN STREET, GREER, SC 29650 USA · (803) 877-8700 · FAX (803) 879-2030

CIRCLE NO. 98
Fast static RAMs. These three 256-kbit fast static RAMs have access times as fast as 8 nsec. Versions are also available having 10- or 12-nsec access times. The MCM6706A has a 32k x 8-bit organization. The MCM6708A and MCM6709A have 64k x 4-bit organizations. The MCM6709A doesn’t have an output enable pin. The 8-nsec version, $52.90 (1000). Motorola Inc, Box 52073, MD 56-102, Phoenix, AZ 85072. Phone (512) 928-7726. Circle No. 410

13-bit serial A/D converter. The ML2223 is an A/D converter that provides serial RS-232C-compatible output data. The chip contains a 13-bit A/D converter, sample-and-hold circuit, voltage reference, RS-232C UART, and baud-rate generator. It performs a conversion in 35.5 µsec and transmits data at 19.2 kbps. $14.50. Micro Linear Corp, 2092 Concourse Dr, San Jose, CA 95131. Phone (408) 433-5200. Circle No. 411

8-bit RISC µC. The PIC16C71 is an 8-bit RISC µC containing a 4-channel, 8-bit A/D converter. A sleep instruction places the core in a low-power sleep mode while the analog section converts the sampled signal using a dedicated RC oscillator. After conversion, an interrupt awakens the core to store the converted data. The core operates at 20 MHz and incorporates a 1024 x 14-bit program EPROM. $3.25 (10,000). Microchip Technology Inc, 2355 W Chandler Blvd, Chandler, AZ 85224. Phone (602) 963-7373. Circle No. 412

Power-line modem. The ST7536 modem chip permits data communications on 110/220V ac power lines. The chip employs frequency shift keying to transfer data at 600 or 1200 bps in half-duplex mode. The carrier frequency is in the 70- to 90-kHz band. You must add a transformer, line driver, and a 60-Hz input filter to complete the modem design. $10. (5000). SGS-Thomson Microelectronics, 1000 E Bell Rd, Phoenix, AZ 85022. Phone (602) 867-6100. FAX (602) 867-6102. Circle No. 413

3V ADC chips. Three A/D converter chips operate from 3.3V. The 10-bit LTC1283 and 12-bit LTC1289 contain 8-channel multiplexers. The 12-bit LTC1287 comes in an 8-pin miniature DIP. The chips employ a successive-approximation converter, a S/H acquisition system, and a 3- or 4-wire serial port. LTC1283, $11.40; LTC1287, $16.70. LTC1289, in surface-mount package, $22.05 (100). Delivery, stock to 60 days ARO. Linear Technology Corp, 1630 McCarthy Blvd, CA 95035. Phone (408) 432-1900. Circle No. 414

Low-noise op amp. The LT1128 op amp has a typical input noise density of 0.85 nV/√Hz and is stable at unity

EDN·NEW PRODUCTS
Integrated Circuits

High-Tech-Peaks
Check-up for peak performance of equipment utilising latest miniature fuse-link technology
at
electronica 92
Munich
10.11.-14.11.92
Hall 24
Stand 24 A04
Wickmann presents the latest high tech, peak of technology products, products proven in practice and news for the future.

Wickmann-Werke GmbH
Postfach 2520 · D-5810 Witten 6 · Tel. 02302/6620 · FAX 02302/662219

CIRCLE NO. 100

DSP FLOATING POINT POWER FOR ONLY
$995*

Now available: the Elf-31, an integral PC component or versatile DSP development tool. It incorporates a floating-point DSP and a full complement of signal converter and interface technologies.

Options include a complete library of algorithms:
- Audio processing for stereo music and sound effects.
- Speech processing for voice mail and voice synthesis.
- Functions as a FAX/Modem.

Call for complete details.
404/892-7265 • FAX 404/892-2512
*OEM Board, quantity 10 price for hardware only

Atlanta Signal Processors, Inc.
770 Spring Street
Atlanta, GA 30308 USA

CIRCLE NO. 99
The squeeze is on

Slimming is an obsession in the electronics industry as engineers face the task of making thinner cards to fit even more functions into standard racks. Once again Ericsson can help.

The new PKE is a 25-30 W DC/DC converter squeezed into a slim package little more than half the height of its predecessor, the internationally acclaimed PKA converter. The PKE is only 10.7 mm (0.42") high and has the same 3"x3" industry-standard footprint and pin out.

Having set the standard for DC/DC converters in 1983, Ericsson's new series represents a remarkable leap forward in power supply technology. The PKE needs no power derating over its entire ambient temperature range of -45 to +85 °C. Quite simply, no one else achieves this in so little space. And you can choose from versions with one, two or three regulated outputs.

Perhaps most surprisingly, performance is in no way compromised by the size reduction. In fact, the PKE is even better than the PKA. A wide input voltage of 38 to 72 VDC is complemented by 1500 VDC isolation, 80-85% typical efficiency and two million hours MTBF at +45 °C ambient.

The PKE converter from Ericsson - slim, compact and beautifully formed. Squeeze in the time to call us for more information.
Can you pick out the right EMI solution for your design?

We can.

It's easy to achieve electromagnetic compatibility when you know what product to use. And where to use it.

But you don't have to know the difference between wire mesh and finger stock to succeed. You just have to know Instrument Specialties.

We start at the drawing board, so you don't have to go back to it.

Our engineers work with yours to develop a total shielding solution right from the design stage. It can save plenty of costly rework—and worry.

Say goodbye to frantic product searches.

Everything you need is already in-house or in stock—whether it's conductive elastomers, wire mesh, or the best beryllium copper fingers (to name just a few)... plus specified platings. With our prompt shipping, off-the-shelf parts can be at your door in no time. And our capabilities like CAD/CAM, photoetching and wire EDM not only make customization fast and easy, but downright economical too—especially with Finite Element Analysis, which tests parts before production.

You don't even have to go somewhere else for certified testing.

We can test for all current EMC specs and standards, at your facility or ours. And with our EMC experts helping you from design to production, passing the test will be a lot easier.

So why settle for just shielding, when you can have solutions? Call Instrument Specialties today at 717-424-8510, and find out what it's like to be EMC worry-free.

Instrument Specialties

Headquarters: Delaware Water Gap, PA 18327-0136
TEL: 717-424-8510 FAX: 717-424-6213

Western Division: 505 Porter Way, Placentia, CA 92870
TEL: 714-579-7100 FAX: 714-579-7105

European Division: 3 Avenue du Progres, B4432 Alleur, Belgium
TEL: +32-41-63-3021 FAX: +32-41-46-4862

CIRCLE NO. 102
See us at WESCON, Booth #2162-2164.
gain. Other features include maximum offset voltage of 40 µV; minimum open-loop gain of 7×10^6; gain-bandwidth product of 18 MHz; and minimum slew rate of 5V/µsec. The chip comes in an 8-pin small-outline surface-mount package or a DIP. $4.95. Linear Technology Corp, 1630 McCarthy Blvd, Milpitas, CA 95035. Phone (408) 432-1900. FAX (408) 434-0507. Circle No. 415

14-bit A/D converters. The AD1465 family of 14-bit A/D converters offers conversion speeds as fast as 5 MHz. The devices provide a spurious-free dynamic range of −88 dB and a signal-to-noise ratio of 82 dB. They come in 3 x 4-in. metal packages and consume 1.7W each. The devices have latched TTL outputs and integrated timing- and error-correcting circuitry. From $265 (100). Edge Technology, 15 Pine St, Lynnfield, MA 01940. Phone (617) 334-3339. Circle No. 416

Low-power prescaler. The NE/SA701 is a dual-modulus divide by 128/129 or 64/65 prescaler. The NE/SA702 is a triple-modulus divide by 64/65/72 prescaler and the NE/SA703 is a triple-modulus divide by 128/129/144 prescaler. The chips operate with input-signal frequencies as high as 1.2 GHz. The chips come in 8-pin surface-mount plastic packages. NE/SA701, $2.95 (1000). Signetics Co, 811 E Arques Ave, Sunnyvale, CA 94088. Phone (408) 991-2000. Circle No. 417

Testable octal transceivers. Each of five octal transceivers incorporates an IEEE 1149.1 test access port. The chips have less than a 5-ns delay. The devices are the SN74ABT8245 octal transceiver; SN74ABT8543 octal-latched transceiver; SN74ABT8646 octal-registered transceiver; SN74ABT8652 octal-enhanced registered transceiver; and the SNABT8952 octal-register transceiver with clock enable. $4.50 (5000). Texas Instruments Inc, Semiconductor Group, Box 808956, Dallas, TX 75380. Phone (214) 995-6611, ext 3990. Circle No. 418

3V SRAMs. Four CMOS static RAMs (SRAMs) operate from 2.7 to 5.5V. The CXK58257AP/AM-12LB, and the CXK58257ATM/AYM-12LB are 256-kbit SRAMs with 32k x 8-bit organization. The chips have a 150-nsec access time at 3.3V and 120 nsec at 5V. Typical 3V power consumption is 75 µW in standby mode. The CXK 581000P/M-12LB and CXK581100TM/YM-12LB are 1-Mbit SRAMs having 128k x 8-bit organization. 256-kbit chips, $4.50; 1-Mbit chips, $12. Sony Corp of America, 10833 Valley View St, Cypress, CA 90630. Phone (800) 288-7669. FAX (714) 229-4333. Circle No. 419

Low cost. Sound impossible? Not at Meritec, where we specialize in impedance matched connectors that meet today's demanding requirements for signal clarity at sub-nanosecond speeds. Our expertise is in high density, surface mount, card edge and through hole connectors for tight packaging applications. And tight budgets. Whether your needs call for a totally new design, an emulation of an existing footprint or an improvement on a current connector product, Meritec can provide an economical, efficient solution for you.
Accelerator card. The Micro Express has resolutions to 1280 x 1024 pixels with 16 colors and 1024 x 768 pixels with 256 colors. The card is based on the S3 video processor and includes 1 Mbit of video RAM. The card comes with a variety of software drivers and has refresh rates to 72 Hz. The card offers noninterlaced operation to 1024 x 768-pixel resolution and interlaced operation to 1280 x 1024 pixels. Video memory is organized as 256 x 4 bits. $245. Micro Express, 1801 Carnegie Ave, Santa Ana, CA 92705. Phone (714) 852-1400. FAX (714) 852-1225. Circle No. 434

Video system. This board set consists of the Commotion Video and the Commotion Video Developers Toolkit. Commotion Video offers real-time compression and decompression of full-color moving video images with a resolution of 640 x 480 pixels at 30 frames/sec. The Toolkit provides the information and tools needed to produce video applications. It includes 80286 assembler source code for the TSR (terminate and stay resident) video capture and display drivers. A software package provides a function-key interface to standard functions for audio and video transmission. $7900 per set. AW & Associates, 500 E Spring St, Suite 100, Long Beach, CA 90815. Phone (310) 420-9696. FAX (310) 420-2875. Circle No. 435

Tape-backup systems. The QICVault Series of 720-Mbit ⅜-in. tape-backup systems are compatible with the DC600 standard and have speeds as high as 15 Mbits per minute. The line includes five models. To achieve the 720-Mbit capacity, the systems use high-density encoding, which expands storage capacity through the use of extended-length tape, software enhancements, and data compression. From $1139. Teemar, 6225 Cochran Rd, Solon, OH 44139. Phone (216) 349-0600. FAX (216) 349-0851. Circle No. 436

Optical disk drive. The SS-1000 drive suits harsh-environment applications. It has an ANSI-standard SCSI interface, uses ISO/ANSI-standard media, and has an average seek time of 35 msec and data-transfer rate of 10 Mbps. The unit can store as much as 1 Gbyte of data using the zoned-constant angular-velocity recording method. $10,500. Delivery, six to eight weeks ARO. Mountain Optech Inc, 4775 Walnut St, Suite A, Boulder, CO 80301. Phone (303) 444-2851. FAX (303) 444-4431. Circle No. 437

Bridge/routers. The ConnectLAN family of Token-Ring and Ethernet bridge/routers consists of the 2000, 3000, and 5000. The ConnectLAN 2000 comprises five local or remote 802.5/16-Mbyte bridge/routers that work with four WAN ports at 2.048 Mbps. The ConnectLAN 3000 is an 802.3 Ethernet bridge and concurrent router providing connectivity within a locally dispersed LAN environment. The 5000 is a family of stand-alone and hub/concentrator multiprotocol bridge/routers that provide connectivity within multiprotocol local and remote distributed 802.3 Ethernet and/or 802.5 Token-Ring LAN environments. From $3250. Teliglobe Communications Inc, 40 High St, North Andover, MA 01845. Phone (508) 681-0600. FAX (508) 681-0660. Circle No. 438

THIS OUGHTA START YOUR MOTOR

Here's the fast way to get your motors started. Call Harris. We've got everything you need for every kind of motor control application. Including power MOSFETs, IGBTs, ultra-fast rectifiers, MOVs and IC drivers. So tap the power of Harris. Call 1-800-4-HARRIS, ext. 7009. Today.

HARRIS HAS YOUR MOTOR APPLICATION UNDER CONTROL

![Device Voltage Rating](image)

- Power MOSFETs
- IGBTs
- IGBTs with diode

DEVICE VOLTAGE RATING

25°C DEVICE CURRENT RATING

- 100A
- 10A
- 1A

Power MOSFETs

IGBTs

IGBTs with diode

EDN NEW PRODUCTS

Computers & Peripherals

October 29, 1992
Port card. The TR114 fits into a single ISA-compatible bus slot. It has a dedicated CPU with a DSP on each channel. The card can simultaneously transmit and receive voice or fax data on four analog or four/eight digital channels. The CPUs in each channel are NS32FX16 processors operating at 25 MHz. They include a 32-bit CISC with a built-in, fixed-point DSP core. All are linked by a parallel data bus as well as a PCM highway. Each channel has 1 Mbit of parity checking dynamic RAM. $2995. Brooktrout Technology Inc, 144 Gould St, Needham, MA 02192. Phone (617) 449-4100. FAX (617) 449-9009. Circle No. 439

Single-board computers. The CPU-EC30 and CPU-EC40 offer integer-processing power in a configuration suited to embedded-control applications. The boards are available with 4- and 16-Mbyte shared-DRAM options. Both units feature full I/O capabilities. An Ethernet controller with a dedicated 64-kbyte data buffer is available via the front panel. The SCSI controller and floppy-disk-drive controller provide mass-memory control. $2990 and $2990 for the CPU-EC30 and CPU-EC40, respectively. Force Computers Inc, 3105 Winchester Blvd, Campbell, CA 95008. Phone (408) 370-6300. Circle No. 440

Optical-link card. The HOLC-0266 optical-link card transmits at 266 Mbps and complies with the ANSI Fiber Channel standard. The card connects the motherboard or I/O-channel card of a desktop computer or workstation to a fiber-optic cable. The unit fully implements the FC-0 physical layer, incorporating the transmit and receive functions for both the electrical and optical interfaces. The card interfaces with multimode fiber. $495. Hewlett-Packard Co, Box 58059, Santa Clara, CA 95052. Phone (800) 752-0900 or local sales office. Circle No. 441

Protocol converter. The PPC programmable protocol converter supports various datacomm devices. It comes with a number of ready-made routines, including drivers for CAD/CAM devices and a 50-user, 3-modem dial-back program. Users can program from a PC, and can download and store in EPROM as many as 20 programs at once. The basic device comes with two RS-232C ports. Options include two additional ports, a real-time clock, 16-bit analog I/O, and memory cards. $699. The Saelig Co, 1193 Moseley Rd, Victor, NY 14564. Phone (716) 425-3758. FAX (716) 425-3835. Circle No. 442

Computer module. The Coremodule/386SX contains the equivalent of a 25-MHz, 80386SX-based PC/AT motherboard and several expansion cards. Its built-in functions include the CPU, 4 Mbytes of DRAM, a serial/parallel in-
Interface, a keyboard, and speakers. An onboard, bootable solid-state disk, a watchdog timer, and power-monitor functions are also included. The unit requires a 5V supply and operates over 0 to 70°C. $571 (100). Ampro Computers Inc, 990 Almanor Ave, Sunnyvale, CA 94086. Phone (408) 522-2100. FAX (408) 720-1305. Circle No. 443

Multiport board. The One Slot combination multiport board allows a single ISA or EISA expansion slot to work with seven peripheral devices. Compatible with hundreds of Windows, multimedia, OS/2, Novell, SCO Unix, SCO Xenix, and DOS applications, the unit connects in minutes and requires no device-driver installation. $349. Star Gate Technologies Inc, 29300 Aurora Rd, Solon, OH 44139. Phone (800) 782-7428; (216) 349-1860. Circle No. 444

Industrial computer. A typical SafeCase 4000 includes a 386 or 486 CPU with as much as 32 Mbytes of memory mounted on a full-function plug-in card; a 4-slot backplane; a 100-Mbyte hard-disk drive; a floppy-disk drive; a keyboard; and a 640 x 480-pixel, VGA-compatible LCD. A dual-fan system wards off airborne particles. The aluminum case provides maximum protection during transport, and the fixed disk drives are shock mounted. $3975. Industrial Data Systems Inc, 14900 Woodham, Building 170, Houston, TX 77073. Phone (713) 821-3200. Circle No. 445

Modem. Model 92 is a miniature sync/async short-haul modem that provides full-duplex, synchronous, serial data communications at 1.2 to 19.2 kbaud with a Manchester-encoded self-clocking signal. The transmission of a self-clocking signal on a balanced differential voltage loop permits the transfer of clocking information as well as data. An externally accessible DIP switch lets users employ the unit in asynchronous applications. For operating power, the unit appropriates basic power from the interface signals on the RS-232C connectors. $175. Telebyte Technology Inc, 270 E Pulaski Rd, Greenlawn, NY 11740. Phone (800) 888-8583; (516) 423-3232. FAX (516) 385-8184. Circle No. 446

Color monitor. The 1024 x 768-pixel, noninterlaced Viewsonic 5E has a 72-Hz refresh rate at all resolutions. Circuitry in the 14-in. monitor adjusts to vertical frequencies of 50 to 60 Hz and horizontal frequencies of 31 to 60 kHz. The unit features a silica-coated nonglare screen. All controls are located up front. $599. Viewsonic, 20480 E Business Pkwy, Walnut, CA 91789. Phone (800) 888-8583; (714) 869-7976. FAX (714) 869-7958. Circle No. 448

Modems. The FasTalk V.32bx is a fully compatible CCITT V.32 bis, 14.4-kbps modem. It supports full-duplex,

Once a transient has fried your circuit, it's a very permanent problem. That's why you need surge protection from Harris.

We're a leading supplier of transient surge suppressors. With products that can stop everything from a lightning strike. To the dreaded HERF (high energy radio frequencies). In fact, our ceramic chips and MOVs cover a range of voltages from 3.5V dc to 6000V ac. From a tiny 10th of a joule to tens of thousands of them.

And Harris is your one and only source for QPL MOVs. So suppress those transient surges. Call 1-800-4-HARRIS, ext. 7011. Today.
Asynchronous, or synchronous data, and it can transmit over dial-up or leased lines. The FasTalk FAX32bx modem has all the same features but adds a 9600-bps, Group III, Class 1 fax. This unit lets you fax materials with a PC. FasTalk V.32bx, $796; FasTalk FAX32bx, $845. UDS Motorola, 5000 Bradford Dr, Huntsville, AL 35805. Phone (205) 430-8000. FAX (205) 430-8208.

Graphics adapter. The XTC/2000 is a hardware-accelerated, true-color graphics-display adapter for PCs and compatibles. Providing 2 Mbytes of video display memory, the unit can display as many as 256 colors at a 1280×1024-pixel resolution and as many as 65,536 colors at an 800×600-pixel resolution. The board comes with software drivers for a variety of applications, including AutoCAD, Windows 3.0 and 3.1, Digital Research GEM, X-Windows X11R5, and Lotus 1-2-3. $499. Video Dynamics Inc, 1550 Bryant St, San Francisco, CA 94103. Phone (415) 863-3023. FAX (415) 863-2979.

Bitbus controller. The DIP335/44 Bitbus-compatible digital controller provides 24 bits of bidirectional I/O and is compatible with the Intel 44/10 Bitbus controller. The 100×220-mm Eurocard module is shipped with extended C-language support, including low-level device drivers, a real-time clock, power up/down monitoring, table-driven I/O, and software counter/timers. From $249. DIP Inc, Box 9550, Moreno Valley, CA 92552. Phone (714) 924-1730. FAX (714) 924-3359.

Network modem. The Lanfast DM25 modem attaches directly to LAN cabling and acts as a network node. The unit contains a built-in network-interface card and an integral, fully compliant V.32bis, 14.4-kbps modem. The device includes V.42bis data compression for maximum throughput rates as high as 57.6 kbps. It also features an additional RS-232C port that lets users connect a second modem or digital device for simultaneous dial-in or dial-out. $2595. UDS Motorola, 5000 Bradford Dr, Huntsville, AL 35805. Phone (205) 430-8000. FAX (205) 430-8208.

BECOMING PERMANENT

Traditional transient suppressors have their response times slowed by parasitic lead impedances. But Harris's new surface mount surge suppressors feature a unique multi-layer interdigitated construction that results in virtually zero inductance. For response time less than 100 picoseconds. And much better protection.

TRANSIENT THREAT TYPE OF APPLICATIONS
NEMP Military, Rad Hard
HERF, EMI Aerospace
ESD Instrumentation, Computer Logic
EMP Motors, Power Supplies, Controls, Medical
Primary Lightning Transformer, Power Delivery & Distribution, HVAC
Secondary Lightning (Inductive Switching) Domestic, Industrial, PCs, Medical
Automotive Load Dump ABS, Engine Management

NEW FORMS OF SURGE SUPPRESSION FROM HARRIS

Connector Pin MOVs Unique design slips over connector pin, eliminating inductive lead effects

Pin Array Multilayers Protects all pins of connector, adding negligible weight and space

MultiLayer Surface Mount Surge Suppressors Unique leadless design has virtually zero inductance, improves response time, increases protection
The CI-VME40 is the ultimate high-speed, high-capacity DRAM memory board with a dual-port interface to the VME and VSB Busses. The CI-VME40 is optimized for Block Transfer Cycles yielding a bus transfer rate up to forty megabytes per second. Chrislin is the only memory supplier to offer such an advanced and versatile dual-ported VME/VS memory!

THE CI-VME40 FEATURES:
- 20ns write/20ns read ACCESS TIMES in BLOCK CYCLE
- 90ns write/140ns read ACCESS TIMES in SINGLE CYCLE
- 63ns write/83ns CYCLE TIMES in BLOCK CYCLE
- 195ns write/195ns CYCLE TIMES in SINGLE CYCLE
- 4MB, 8MB, 16MB, 32MB, 64MB in one VMEbus/VS slot
- Byte Parity Error Detection
- Memory start and end addresses selectable on 256KB boundaries
- VMEbus and VSB memory start and end addresses configured independently

ALSO AVAILABLE FOR THE VMEBUS ARE...

THE CI-VMEemory FEATURES:
- Low-cost high-power VME memory with 4, 8, or 16MB
- VME Revision C.1 compatibility
- Lower and upper memory addresses independently selectable in 64K byte increments
- Byte Parity Error Detection with selectable trap on Parity Error
- On-board Control Status Register

THE CI-VSB-EDC FEATURES:
- Low-cost high-power dual-ported VMEbus/VS EDC (Error Detection and Correction) memory
- 4, 8, 16, 32 or 64MB in one VMEbus/VS slot
- VME Revision C.1 compatibility, VSB Revision C
- Lower and upper memory addresses independently selectable on 256K byte boundaries
- Single-Bit Error Detect and Correct, Double-Bit Detect
MOSFETs. The BTS 112A and 113A both have on-chip overtemperature protection that shuts off the transistors at junction temperatures in excess of 150°C. The 112A has a 0.15Ω on-resistance and ±1% variation, respectively. The 113A has a 0.17Ω on-resistance and is designed for applications with a 10V gate drive requirement. The units are available in through-hole and surface-mount packages. The units come in current ratings of 120, 160, and 240A with repetitive peak reverse voltage ratings of 35 and 45V. Voltages drop at a 240V repetitive peak reverse voltage equals 0.91V. $14.71, $14.96, and $25.50 for 120, 160, and 240A devices, respectively (500). SGS-Thomson Microelectronics, 1000 E Bell Rd, Phoenix, AZ 85022. Phone (602) 867-6100. FAX (602) 867-6102. Circle No. 456

Schottky diodes. SPTS455 high-current dual diodes are housed in fully isolated packages. The units come in current ratings of 120, 160, and 240A with repetitive peak reverse voltage ratings of 35 and 45V. Voltage drop at a 240V forward current equals 0.91V. $14.71, $14.96, and $25.50 for 120, 160, and 240A devices, respectively (500). SGS-Thomson Microelectronics, 1000 E Bell Rd, Phoenix, AZ 85022. Phone (602) 867-6100. FAX (602) 867-6102. Circle No. 456

LCD module. The DMX-973 requires a panel cutout of 1.53×2.81 in. and is furnished with a bezel to simplify mounting. All display memory and driver circuits are on board to ease interfacing via IDC ribbon connectors. Each of the 70×32 pixels is individually addressable. Twelve available commands include display, read-write, scroll, and display on-off. $123. Martel Electronics, Box 897, Windham, NH 03087. Phone (800) 821-0023; (603) 893-0886. FAX (603) 898-6820. Circle No. 460

Pushbutton switches. Series 584 lighted switches have a 75° cone of vision. A rod-mount feature allows for gang-mounting a number of units into a small panel opening. Available with an 8A rating, the 0.625-in. square switches can be matrix or individually mounted. The matrix accepts MIL-C-39029/57-354 terminals. Options include RFI/EMI protection and splash-proof front-panel seals. $95 to $285 (1000). Eaton Corp, Aerospace & Commercial Controls Div, 4201 N 27th St, Milwaukee, WI 53216. Phone (414) 449-7326. Circle No. 461

DIP switches. The DHS Series switches have a 0.650-in. pitch. The spst units feature gold plated contacts and terminals and are available in 4-, 6-, 8-, and 10-position versions. Contacts are rated to carry 100 mA at 50V dc and switch 100 mA at 5V dc. Operating life equals 1000 cycles, and operating range spans -20 to +80°C. $3.95 (1000) for an 8-position model. MORS/ASC, Box 544, Wakefield, MA 01880. Phone (617) 246-1007. FAX (617) 245-4531. Circle No. 462
Schottky diodes. The surface-mountable CMFD6263 and CMFPHS3 Series diodes are designed for applications requiring forward voltage drops in the 0.29V range and with switching times of 5 nsec max. All eight devices are housed in SOT-23 cases. The CMFD6263 units operate at 15 mA at 70V; the CMFPHS3 devices are rated for 100 mA at 30V. Each line features four configurations—single, dual common anode, dual common cathode, and dual in series. $0.176 to $0.208 (3000). Central Semiconductor Corp, 145 Adams Ave, Hauppauge, NY 11788. Phone (516) 435-1110. FAX (516) 435-3368.

DC/DC converters. XW Series 30W single-output converters have an output noise of 10 mV p-p. The six units in the line operate at 84% efficiencies and have a 500V input-to-output isolation. Internal suppressors protect input and output against spikes, and a 6-sided shielded case provides RFI protection. Line and load regulation equals 0.05%, and operating range spans -25 to +80°C. $117.60 (100). Calex Mfg Co Inc, 2401 Stanwell Dr, Concord, CA 94520. Phone (800) 542-3355; (510) 687-4411. FAX (510) 687-3333. Circle No. 463

DC/DC converter. HPR7XXX4675W converters come in a SIP, have a 16W/in.³ density, and operate at 85% efficiency. The line includes single- and dual-output models. The units accept inputs of 5, 12, and 15V and output 5, ±5, ±12, and ±15V. Operating range spans -25 to +70°C. $16.25 (1000). Delivery, stock to six weeks ARO. Burr-Brown Corp, Box 11400, Tucson, AZ 85734. Phone (602) 746-1111. FAX (602) 889-1510. Circle No. 468

Mounting rack. The MPB-16PC provides a simple interface to motors, relays, and other high-voltage, high-current devices. Using 16 lines of the printer port, the rack handles loads as high as 260V ac or dc and current levels of 3A. Isolation equals 4000V. The unit accepts Opto 22 (G4) and Grayhill (G5) modules. Operating range spans -40 to +85°C. Software libraries are included on disk. $75. Octagon Systems Corp, 6510 W 91st Ave, Westminster, CO 80030. Phone (303) 430-1500. FAX (303) 426-5126. Circle No. 469

Solid-state relay. The HSSR-7110 spot relay is housed in an 8-pin hermetic DIP. Contacts are rated for 0.8A ac/dc at 24V ac or 28V dc. The relay operates from a logic-level control signal (5 mA nom). Input/output isolation equals 1500V dc. The unit operates over the -55 to +125°C military temperature range. $75. Hewlett-Packard Co, Box 58059, Santa Clara, CA 95052. Phone (800) 752-0900, or local sales office. Circle No. 470

Pressure switch. The 744 Type C pressure switches feature set pressure adjustment ranges of 25 to 6000 psig. A tamper-resistant locking device on the adjusting sleeve maintains the integrity of the set point. The snap-action switch at the output is rated for 7A at 115 to 230V ac and 7A resistive, 4A inductive.
SIMPLY BRILLIANT!

Meet two of our bright new stars!

The unique 7 x 10 dot matrix LED display modules that command attention!

- VISTA’s 1” (25.4mm) high characters are visible to up to 40 feet away—perfect for use in production floor displays, warning systems, parking lots, security, communications, fire alarms, refineries, etc.

- Character generators for U.S. ASCII, General European, Katakana, Hebrew, and Cyrillic are all included.

- VISTA is intelligent—A built-in microprocessor controller handles all display refresh and overhead functions.

- VISTA enables the user to:
 - Create and download 16 custom characters.
 - Select one of four brightness levels to suit various ambient light conditions.
 - Blink, clear, or reset the display.
 - Horizontally scroll messages.

- Available in both 1 x 20 and 1 x 12 formats.

- 9600 baud serial ASCII interface—RS-422 with RS-449/DB-9 I/O.

- Low power—5VDC, 2.5 Amps typical on brightest setting!

- VISTA modules are available in red, green, yellow and super-bright (sunlight readable) red. All modules are available with contrast enhancing optical filters.

COMPACT—VISTA mounts anywhere!

Overall dimensions of the VISTA 6800 series:
- 1 x 20: 20.55 x 2.5 x 0.90” (WHD)
 522.0 x 63.5 x 22.9mm
- 1 x 12: 13.85 x 2.5 x 0.90” (WHD)
 351.8 x 63.5 x 22.9mm

- Meet other IEE stars—Call or write for our free four-color Product Selector Guide to Alphanumeric Displays.
and 2.5A lamp at 28V dc. Operating range spans -40 to +250°F. $69.10 to $901.10. Sigma-Netics Inc. 1 Washington Ave, Fairfield, NJ 07004. Phone (201) 227-6372. FAX (201) 882-0662.

Circle No. 471

Quick-logic FPGAs

Quick-logic FPGAs are two to three times faster than Actel and Xilinx in most applications, offer fast, fully automatic place and route designs using 100% of the logic cells, and will be second sourced by Cypress Semiconductor. QuickLogic Corporation, 2933 Bunker Hill Lane, Santa Clara, CA 95054.

DC/DC converters. LAN-1 converters accept inputs of 5 or 12V and provide a single 9V output or 10/5V dual output at 250 mA. Regulated units have line and load regulation of ±0.3% and ±0.5%, respectively. The units are housed in a 24-pin DIP, feature pi input filters, and operate over a -25 to +71°C range without any derating. $19.50 for single-output regulated models. Delivery, stock to eight weeks. ARO. D1 International Inc, 95 E Main St, Huntington, NY 11743. Phone (516) 673-6866.

Circle No. 472

Input module. The 7B35 4- to 20-mA current input module includes an isolated loop power supply, which eliminates the need for an external supply when using a 2-wire transmitter. It operates from a single unregulated 24V supply and features a ±0.1% max span error, ±0.02% span nonlinearity, and ±1-mV/°C temperature stability. A galvanic transformer provides 1500V-rms isolation. The module meets IEEE-STD-472 and IEC-255-4 standards for transient protection. From $75 (1000). Analog Devices Inc, 181 Ballardvale St, Wilmington, MA 01887. Phone (617) 937-1428.

Circle No. 473

Switches. HB Series snap-action switches are available in single- and double-pole models. Contact ratings range from 1 to 22A. Electrical terminations include solder terminal, screw terminal, and quick connect. The devices are available in a variety of actuators. A pin-plunger model rated for 20A, from $1.99. Unimax, Box 152, Wallingford, CT 06492. Phone (203) 269-8701. FAX (203) 265-5398.

Circle No. 474

FOR QUICK RESPONSE

Fax: 408-987-2012
Phone: 408-987-2000

Please send the Very High-Speed FPGA Data Book.

Name
Company
Address
City
State Zip
Phone Fax

CIRCLE NO. 109
In fact, we’re the first domestic capacitor maker to earn ISO 9001 registration. We did it by continually keeping your needs in our sights.

Our Company-Wide Quality Concept includes continual monitoring of your satisfaction with our present products and services.

To create new products to meet your needs, we utilize the KEMET Advanced Quality Planning System. It’s thoroughly based on the performance levels and operating specs you establish for your new products—and it drives our design, development, and manufacture of new KEMET products.

To score big against your competition, team-up with a trading partner that stays in front by putting you first. KEMET.

We Help You Hit Your Targets.

KEMET Electronics Corporation

P.O. Box 5928 Greenville, SC 29606
803/963-6348
In-circuit emulator for PIC16CXX µCs. The Picmaster development system, whose software runs under MS Windows V3.1.x, allows you to debug applications for the PIC16CXX family of 8-bit RISC µCs. Changing a probe card lets the system work with the PIC17CXX family. The unit performs full-speed, real-time in-circuit emulation, program-memory emulation with memory mapping to 64k words, and instruction execution from emulation or target memory. With the unit, you can obtain a symbolic display and alter all special-purpose, stack, and bank registers, and register files. Synchronizing multiple units allows debugging of multiprocessor systems. $2995, including the Picpro programmer. Microchip Technology Inc, 2355 W Chandler Blvd, Chandler, AZ 85224. Phone (602) 963-733. FAX (602) 899-9210.

Clamp-on digital multimeter. The 600 measures dc and ac rms current in two ranges, 200 and 600A, with 1% maximum error. On the lower range, the resolution is 0.1A. The meter also has two ac and dc voltage ranges, 200V ac or dc and 1 kV dc/750V ac. A resistance range extends to 2 kΩ and offers protection against 500V ac or dc overloads; a continuity buzzer sounds below 1.2 in. and accommodate conductors as large as 1/2-in. in diameter. $249. LEM USA, 6643 W Mill Rd, Milwaukee, WI 53218. Phone (800) 236-5366; (414) 353-0711. FAX (414) 353-0733. Circle No. 475

Miniature data logger for MS-DOS PCs and Macintoshes. The Hobo-Temp is a tiny pc board housed in a 2.1-in.-long x 1.3-in.-diameter plastic cylinder. The unit connects to an MS-DOS PC's or Apple Macintosh's serial port. You can obtain the loggers with choice of hard disks that store as much as 240 Mbytes and adds a 3.5-in. floppy-disk drive; the 3-slot unit can have a 420-Mbyte hard disk. From $595. National Instruments Corp, 6904 Bridge Point Pkwy, Austin, TX 78730. Phone (800) 433-3488; (512) 794-0100. FAX (512) 794-8411. TLX 756737.

Optical attenuation/return loss test set. The FOT-900-BR is a handheld unit that, at the press of a single key, allows testing of fiber-optic cables at wavelengths of 1310 and 1550 nm. From US$6700; delivery four to six weeks, ARO. Exfo EO Engineering Inc, 465 Godin, Vanier, QC, PQ G1M 3G7, Canada. Phone (418) 683-0211. FAX (418) 689-2170.

In-circuit emulator for i960 CF RISC µP. The Express III supports the i960 CF RISC µP as well as the i960 CA. Versions are available that operate at 25, 33, and 40 MHz. The development system includes a source-level debugger, SDBug960, that works with multiple compilers and runs under MS Windows 3.x. Versions are also available for Sun-3, Sun-4, and IBM RS6000 hosts. Adding an Ethernet interface to the host permits remote debugging. Among the system features are a 32k-frame trace buffer with passive trace and time stamping; hardware and software breakpoints with multilevel, logic-analyzer-style hardware triggering and store-control facilities; and 71 hardware-range match words and breakpoints. From $10,500. Step Engineering Inc, Box 3166, Sunnyvale, CA 94088. Phone (800) 538-1750; (408) 733-7837. FAX (408) 773-1073. TWX 9103395006.

Low-power, 50k-sample/sec, 13-bit ISA bus data-acquisition board. The 410 is a half-size card that uses only two supply voltages, 5 and 12V, at 500 mW (operating) and 50 mW (standby)—attributes that suit it to data acquisition in several laptop PCs. The card provides 16 single-ended or eight differential analog inputs, a 3-channel counter/timer, and 16 digital I/O lines. The ADC, which has a ±5V range is pre-
Test & Measurement Instruments

encoded by an amplifier having software-programmable gains of 1, 2, 4, and 8 and a sample/hold circuit. Maximum sensitivity is 153 µV/count. The hardware supports a 512-point channel/gain list and DMA transfers. $495. TransEra Corp, 3707 N Canyon Rd, Provo, UT 84604. Phone (801) 224-6550. FAX (801) 224-0355. TLX 296438. Circle No. 482

2-channel, 100-MHz dual-timebase scope. The 8101, which can display four traces, has 12 sensitivity ranges to 5V/div. Bandwidth is 20 MHz on the 1-mV/div and 2-mV/div ranges. The maximum sweep speed is 5 nsec/div. Delayed-sweep and variable hold-off increase the resolution of short segments of long sweeps. Alternate-sweeps and chopped displays are possible as are X-Y displays. $1895. Leader Instruments Corp, 380 Oser Ave, Hauppauge, NY 11788. Phone (800) 645-5104; (516) 231-6900. Circle No. 483

Combinational in-circuit/functional pc-board-test systems. The vendor aims the GR2283 and GR2284 at companies that need the capabilities of expensive testers but that, until now, could not afford them. In many cases, a budget for only a manufacturing-defects analyzer will now allow acquiring a full-fledged tester with as many as 1920 pins. The new testers also address the need for rapid construction of test fixtures. Software allows creation of fixtures in parallel with test-program generation. From $100,000; delivery, eight weeks, ARO. GenRad Inc, 300 Baker Ave, Concord, MA 01742. Phone (508) 369-4400. Circle No. 484

ICE for 50-MHz SPARClite RISC µP. The vendor calls the Excell-930 the first in-circuit emulator for any chip using a SPARC architecture. The emulator is available in 40- and 50-MHz versions. It has an 8k-frame trace buffer and 52 external inputs. It has 16 software and

EDN October 29, 1992 • 171
Use Minimum Real Estate
And do it for just $29.85

The PA41 from Apex is the industry’s first monolithic operational amplifier to explode the voltage/cost barrier. Capable of 350V, and priced at $29.85 in 100s, the PA41 is just the thing for driving piezo electric devices efficiently and economically.

Now Available In A SIP!
If the PA41 is what your application needs, but you’re tight on board space, then consider the PA42. The PA42 offers all the benefits of the PA41, but in a hermetic ceramic SIP package.

SPECIFICATIONS CHART PA41 PA42
- SUPPLY RANGE 350V 350V
- OUTPUT CURRENT 60mA 60mA
- OUTPUT VOLTAGE SWING ±12V ±12V
- SLEW RATE 40V/µs 40V/µs
- QUIESCENT CURRENT 2.0mA 2.0mA
- OFFSET VOLTAGE (max) 60mV 60mV
- DRIFT (max) 130µV/C 130µV/C
- POWER DISSIPATION 12W 9W

DMM for automotive testing. Besides performing the usual DMM functions, the 4000-count model 78 measures duty cycle, dwell, temperature, and frequency. A $49 accessory permits rpm measurements. Maximum ac and dc voltage is 500V; maximum current is 10A ac or dc; maximum frequency is 20 kHz; maximum resistance is 40 MΩ. The most sensitive range is 400 mV. A $250 upgrade cost is $600. Laboratory Technologies Corp., 400 Research Dr, Wilmington, MA 01887. Phone (800) 873-5853; (206) 347-6100. FAX (206) 356-5116.

Real-time, multitasking, data-acquisition software for MS Windows. Notebook and Notebook/XE let you collect data, display the data in real time, simultaneously log the data to disk, and perform triggering and control functions based on the data. The software allows gap-free real-time sampling at rates to 1 kHz. Notebook costs $1495. Notebook/XE, which supports IEEE-488 instruments and handles 250 channels vs 50 for Notebook, costs $2495. Owners of earlier Windows versions of either package can upgrade for $250. For owners of MS-DOS versions, the upgrade cost is $600. Laboratory Technologies Corp., 400 Research Dr, Wilmington, MA 01887. Phone (800) 879-5228; (508) 657-5400. FAX (508) 658-7343.

Wafer-level reliability-test software. WLR software permits verification of semiconductor-device quality and prediction of potential reliability problems before the costs of packaging individual dice have been incurred. The software, which runs on the vendor’s S900 system with as many as five source-measure units, controls standard electromigration acceleration tests, charge-breakdown tests, hot-carrier-injection tests, measurement of maximum substrate current, and CMOS latch-up tests. $2500. Keithley Instruments Inc, 28775 Aurora Rd, Cleveland, OH 44139. Phone (800) 552-1115; (216) 248-0400. FAX (216) 248-6168.

1-Hz-to-10-MHz pulse generator. The B-1010 supplies pulses of seven widths from 50 nsec to 50 msec (in decade steps). With a 500 load, the pulse amplitude is adjustable from 0 to 5V; rise and fall times are <10 nsec. There are six ranges of variable delay, from 0 to 50 nsec to 0 to 500 nsec. The internal oscillator has a maximum frequency that you can switch through seven decades and vary within each decade. The highest frequencies in each decade range from 10 Hz to 10 MHz. $499. Protek Inc, Box 59, Norwood, NJ 07648. Phone (201) 767-7242. FAX (201) 767-7343.
Every company experiences finger pointing when a design doesn’t work.

Your circuit designers claim the models are not accurate. The model developers claim the process shifted since the time they began work on the models. The process engineers claim the model developers aren’t tracking the process.

Meta eliminates finger pointing and helps you get it right first time™. Meta-Labs modeling services, combined with the HSPICE circuit simulator, provide the crucial link between your fab and circuit designers. The Meta-Software methodology helps your design, process and modeling groups work together as one team.

Get back in the chips with Meta-Software. For a right first time information package, call toll free (800) 442-3200, ext. A2.
Task-set design tool. ViewTask software for the PC lets you define a set of tasks by name, timing, and triggering methods as well as other parameters. You can then choose a processor from a list of common µPs and microcontrollers (µCs) and simulate those tasks. A graphics display illustrates timing relationships as the tasks run. When you are satisfied with the performance of your task set, the software documents the task specifications, timing analysis, and diagrams, and it translates the specifications into source code frameworks in Borland and Microsoft-compatible C. US price: $495. US Software Corp, 14215 NW Science Park Dr, Portland, OR 97229. Phone (503) 641-8446. FAX (503) 644-2413. Circle No. 420

Software development tools. C++. Softbench 3.0 is a software-development tool set that saves time in building, debugging and editing. The tool set facilitates the use of C++ 3.0 by offering templates, nested classes, and exception handling. The software also includes three graphical browsers: The Static Graph Browser shows relationships among program variables, functions, and C++ classes; the Dependancy Graph Browser gives graphical views of program makefile structures; and the Data Graph Browser displays a program's data structures. Additional features include a File Compare and Combine Tool, an Encapsulator, an incremental linker, and a Motif interface to the vi and emacs editors. For HP 9000 and Sun SPARCstation, $4500. Hewlett-Packard Co, Direct Marketing Organization, Box 58059, MS51115-SJ, Santa Clara CA 95051. Phone (800) 752-0900. Circle No. 421

Active-filter design software. Active 2.08 lets you design both active- and switched-capacitor filters. Other improvements include software that handles up to 45 circuit topologies, five types of cascoded filters, filters of order 1 to 50, and eight types of filters, including Linear Phase and Inverse Chebyshev. $745. Tatum Labs Inc, 1287 N Silo Ridge Dr, Ann Arbor, MI. Phone (313) 663-8810. FAX (313) 663-3640. Circle No. 422

PC-board design software. Criterion software integrates schematic and layout tools for PC-based design. It gives you tools for both analog and digital design, including radio-frequency and surface-mount work. The software also handles round boards and curved traces. Runs on the PC. $650. Dynacomp Inc, 178 Phillips Rd, Webster, NY 14580. Phone (716) 265-4040. Circle No. 423

Technical graphics software. Axum 2.0 adds batch processing; plots unlimited-size 3-D mesh surfaces with color; provides additional curve-fitting plot types, automatic axes scaling and tick placement, adjustable tick labeling; and comes with a 600-pg manual. It runs in as little as 420 kbytes of memory and automatically uses extended and expanded memory. For the PC, $495. Tri-metrix Inc, 444 NE Ravenna Blvd, Suite 210, Seattle, WA 98115. Phone (206) 527-1801. FAX (206) 522-9159. Circle No. 424

Electronic circuit optimizer. PCD+ optimizes Spice-like simulation and can also change selected component parameters to make a circuit meet performance specifications. Specifications can combine objectives, constraints, and weighting factors. The software also lets you link component values so that they track one another and optimize in more than one domain at once. Examples of domains are dc behavior, frequency response, gain, bandwidth, and rise time. $950. Electrical Engineering Software Inc, 4675 Stevens Creek Blvd, Suite 200, Santa Clara, CA 95051. Phone (408) 296-8151. FAX (408) 296-7563. Circle No. 425

Board/system-level design tools. The System Workbench combines tools for design entry, PLD/FPGA design, simulation, physical design, and board/system-level analysis. The tool set includes front-end tools such as Composer design-entry software and the Verilog-XL simulator, as well as Allegro Correct-by-Design physical design and analysis tools. The user can follow a design flow or customize the design flow to manage tool encapsulation, tool sequencing, and methodology automation. A minimum tool set for design entry, packaging, and physical design starts at $58,000. The complete tool set starts at $115,000. Cadence Design Systems Inc, 555 River Oaks Pkwy, San Jose, CA 95134. Phone (408) 943-1234. FAX (408) 943-0518. Circle No. 426

PC-board layout software. The Eagle Autorouter 2.6 gives 100% routing by ripup/retry and a minimum routing grid of 4 mils. Additional features include handling surface-mount devices and multilayer boards. A layout editor and a schematic-entry package are also available and work with the autorouter. Autorouter, layout editor, schematic module: $399 each. Cadsoft Computer GmbH, 801 S Federal Hwy, Delray Beach, FL 33448. Phone (407) 274-8355. FAX (407) 274-8218. Circle No. 427

Memory-management libraries for C and C++. VMData gives you a single data memory-management tool that works across multiple operating systems for the PC. Instead of making calls to the OS, you call tool set functions to instruct a virtual-memory manager to dynamically allocate space for data. The program distinguishes between addressable, fast-access, and disk storage, and it allocates these resources according to frequency of data use and to user-specified priority. The tool uses all available memory for DOS, MS-Windows, and OS/2. $495 for first OS; $295 for each subsequent OS. Pocket Soft Inc, Box 821049, Houston, TX 77282. Phone (713) 460-5600. FAX (713) 460-2651. Circle No. 428

Numerical-analysis tool for X-Windows system. Xmath 1.1 includes improvements to previous versions, such as a programmable user interface that lets you develop and run interactive design tools. Such tools can create and manipulate objects built from the Motif widget set without software development in a low-level language such as C. Additional improvements include extended graphics, linking with C and Fortran routines, and the ability for C/C++ routines to call Xmath functions. For Sun SPARCstation and DEC workstations, $2500. Integrated Systems Inc, 3200 Jay St, Santa Clara, CA 95054. Phone (408) 980-1500. FAX (408) 980-0400. Circle No. 429
The Affordable Commercial Centigrid®

- Low cost sealed relay
- Functions in harsh environments
- Excellent price/performance ratio

Now look what we’ve done for you. Just when you thought you’d have to settle for less, we’ve made Centigrid® quality and performance available in an affordable commercial/industrial version.

Don’t get us wrong. This is no cheap imitation. It’s the real McCoy. You get all the advantages you’ve learned to expect from the Centigrid. You get a sealed relay that locks out harsh environments. You get the rugged uniframe construction, the tiny .14 sq. in. footprint, the low profile and direct PC board plug in. But even more important, you get the proven performance of TO-5 technology in a reliable, low power DPDT relay with excellent RF characteristics up through UHF.

How did we do it? Automation, mainly. We designed and built our own unique production equipment which ensures quality while speeding production. Our microprocessor-controlled header assembly system, for example, automatically tests the sub-assemblies while they are being produced. This cuts down on human error and assures built-in reliability.

The Commercial Centigrid. It gives you the benefit of a truly excellent price/performance ratio. Call or write today for complete information.
EDIF translator for Design Architect. DXL800 lets you convert schematic designs and symbol libraries from the Mentor Graphics' Design Architect design environment into the EDIF data format. The software also converts schematics and symbols from EDIF format back to Design Architect format. The software also lets you define libraries and specify property names, units of numerical quantities and output data types. For HP/Apollo 68K and HP 9000/400 workstations and Domain operating system. $4800 single-direction seat license; $8000 for bidirectional seat license. Engineering DataXpress Inc, 5 Town & Country Village, Suite 736, San Jose, CA 95128. Phone (408) 243-8786. FAX (408) 243-8994. Circle No. 430

Multimedia operator-interface development. Rave 1.4 is a video/sound development and runtime package for OS-9000 80386/80486 systems. The software comes with all the OS-9000 system modules and development tools needed to create interactive graphics and display panels. It provides sound for real-time process control, automation, and data-acquisition systems. The development system runs on the target processor, allowing simultaneous development and execution of displays and control programs. The software works with a variety of VGA controllers up to 1024 x 768 pixels with 256 colors. $750. Microwave Systems Corp, 1900 NW 114th St, Des Moines, IA 50325. Phone (515) 224-1929. FAX (515) 224-1352. Circle No. 431

Analog and mixed-signal tools. The DSP Station is a suite of tools for designing the digital signal-processing portions of analog/digital systems. It provides design entry, simulation, optimization, and implementation of DSP designs. You can choose board, ASIC, or IC implementations. The software does "what-if" analysis from early stages of design, including hardware/software tradeoffs, analog vs digital partitioning, and architectural optimizations. HP/Apollo version, $33,000. Also available for Sun. Mentor Graphics Corp, 1001 Ridder Park Dr, San Jose, CA 95131. Phone (408) 436-1500. FAX (408) 451-5538. Circle No. 432

Image processing and analysis for Macintosh. IPLab Spectrum 2.2 contains features for scientific visualization, image enhancement, and region analysis. Its new view, called Perspective, lets you view 2-D image data from a 3-D perspective. The software's image registration allows you to place registration marks on images, then find the best rotation, scale, and shift parameters to align the marks in the images. Signal Analytics Corp, 374 Maple Ave E, Suite 204, Vienna, VA 22180. Phone (703) 281-3277. FAX (703) 281-2509. Circle No. 433

SHORT DESIGN CYCLES REQUIRE A DEPENDABLE PARTNER FOR SUCCESS

Today's competitive market dictates rapid development cycles. The first to market wins. Autec's team will work with you to make sure your projects are completed on schedule and on budget. We'll take care of the complexities of the power supply issues so you won't have to. Autec has built its account base on a solid foundation of service and support. Afterward Autec satisfies your production requirements with consistent on-time delivery and exceptional quality. We're not just a power supply vendor, we're your partner.

POWER SUPPLIES

Open Frame - 20 to 110 watt
90 - 260 VAC Universal Input

PC Power Supplies & Desktop Plastic Adapters

DISK DRIVE ENCLOSURES

3.5" to 5-1/4"
Third Height, Half Height and Full Height

TEL: (805) 522-0888
69 MORELAND ROAD
SIMI VALLEY, CA 93065
FAX: (805) 522-8777

CIRCLE NO. 116
SEE US AT WESCON BOOTH 1279 IN "POWER ALLEY"
This is an advertising page for new and current products. Please circle Reader Service number for additional information from manufacturers.

Imagine if your product could talk!

- Converts plain ASCII text into high quality speech
- Unlimited vocabulary-no custom recording necessary
- Requires only a single 3V supply and speaker

68HC11
PC-based emulator for 68HC11

CALL OR WRITE FOR FREE DEMO DISK!

New Little PLC™ $195
Program It In C

Our new Little PLC™ measures only 4.33 x 2.85 inches and can mount on standard DIN rail. This miniature controller costs only $195, including 8 optically isolated inputs and 8 relay driver outputs. Low cost expansion cards allow you to add more inputs and outputs: digital and analog. It has dual RS-485 serial I/O, battery backed memory and time/date clock, programmable timers and a watchdog. Our easy to use and affordable Dynamic C™ integrated development system also costs $195. You can write simple programs in an hour, or you can develop major applications with 20,000 lines of C language.

To advertise in Product Mart, call Joanne Dorian, 212/463-6415

Z-World Engineering
1724 Picasso Ave., Davis, CA 95616
(916) 757-3737 Fax: (916) 753-5141
24 hr. Automatic Fax: (916) 753-0518
(Call from your fax, request catalog #18)

CIRCLE NO. 233

CIRCLE NO. 231

CIRCLE NO. 232

UNIVERSAL PROGRAMMER, EMULATOR & TESTER
TUP-400 $745.00
TUP-500 $750.00

- New improved hardware and software
- The most complete PC-based Universal Programmer, Programmer
- PDI/PDI, GAL, CPL, EPROM, PEL, MAX.
- 8 IN, 8 OUT, 8 IN, 8 OUT (up to 16 Mbits)
- Flash EPROM, EPROM, Special PROM, MPU
- TESTS JR, 28, PROM, PLX, PLS, TMS320CXX,
- UPD76XX, HX02XX, ...
- Genex DIP, PLCC, QFP, and PGA with 8 to 84 pins. Gang Programming, adapters available also
- EPROM (EMULATION) capability.
- Tests Turbo ICs and 8K-bit (512x16-bit) PROM adapter available.
- Free software updates and new devices added upon request.
- IC Manufacturers' approval.
- 1 year warranty. 30 day money back guarantee.

Supports Motorola and PIC MICRO.
WSI PSO 3XX, MAX
and MACH.

CALL TODAY
FOR MORE INFORMATION.
Distributors are welcomed!

Tribal Microsystems Inc.
40305 S. GRAMMER BLVD., Fremont, CA 94538
TEL: (510) 665-8900
FAX: (510) 923-9925

CIRCLE NO. 234

CIRCLE NO. 234
Advln Systems Inc.

Advln and Data

Optional daughter board interface • 8 Mb RAM

Assembler, Linker and Debug software.

Updates: free via electronic BBS.

One-year money-back guarantee and unlimited technical support included in price.

To advertise in Product Mart, call Joanne Dorian, 212/463-6415

WINTRISS ENGINEERING CORPORATION

P.O. Box 230035, Encinitas, CA 92023

1-800-332-8246

AMD Mach • Actel

Xilinx • Altera Max

FREE CATALOG

Get more schematic design power, for less.

For just $895:

FutureNet® Schematic Designer gives you the most features and support for your money.

Graphical symbol browser

Integrated post-processing

Extended memory support for large, complex designs

Standard EDIF 200 netlist writer

Get a FREE Cadence translator when you order FutureNet! Call Data I/O® Direct today.

1-800-3-DatalO

U.S. list price only.

Look for FutureNet in the Data I/O® Direct Catalog.

FREE 30 Day Trial

Flynn Systems Corporation

(603) 891-1111

EDN October 29, 1992 • 179
Looking for a Quality Programmer?

SPRINT Universal Programmers

Call now and find out why Sprint is the fastest growing 84 pin programmer in North America.

Tel 800/722-4122 FAX 206/883-8601 for a free demo disk

SBS

North America Inc.

CIRCLE NO. 254

PROM/PAL Programmers

Any EPROM programmer designed for DIPs can be converted to accept LCC, PLCC, and SOIC sockets in seconds! To program, just insert an Adapt-A-Socket™ between the programmer’s DIP socket and the circuit to be programmed. Designed to fit all types of EPROM programmers, including Data LO 120/121A, Stag, Logical Devices, etc. Quick turnaround on custom engineering services, if needed. For a free catalog, contact:

Emulation Technology, Inc.

2344 Walsh Ave. Santa Clara, CA 95051

Phone: 408-962-0660 FAX: 408-962-0664

MULTI PIN CABLE CONNECTORS

OPTIONAL SIGNAL & POWER MODULES

L Series cable connectors modular building block system provides optional signal, 15-50 amp power, as well as, 50 & 75 Ohm coax and 8,000 volt high-voltage modules. Black polycarbonate housings provide jack screw assisted durable enclosures. L Series connectors use the Hypertac® Hyperboloid, low force contact which offers high cycle life, immunity to shock and vibration, and contact resistance in the 4 to 2.5 milliohm range. For additional information, contact:

HYPERTRONICS CORPORATION

16 Brent Drive, Hudson, MA 01749

(508) 225-6229

IN MA & Canada (508) 568-0451

FAX: (508) 568-0680

CIRCLE NO. 258

CUT PGA/PLCC NOISE

MICRO/O® 3000 capacitors reduce noise associated with PGA and PLCC devices. Designed to be mounted under the device, take no extra board space. Can be used under MPUs, Gate Arrays, and ASICs. Choose from 25V, X7R, and X9 dielectrics. Available in both through-hole and surface mount versions. Several sizes available to fit all devices.

Circuit Components Inc.

2400 S. Roosevelt St., Tempe, AZ 85282.

Tel: 602/967-0624

CIRCLE NO. 257

BP-1128 LOGIC DEVICE PROGRAMMER $995.00

Program over 1100 different PLDs including the latest architectures from AMD, Cypress, NS. Qualified by AMD, Lattice, National Semiconductor, Signetics and others. Supports all MAC and MAP devices, all versions of 22V10, including the /4 from AMD, 5 & 7 PLDs from NS, and Altera 900 & 1800 series EPDs. Only uses the manufacturer approved programming algorithms to ensure accuracy. LIFETIME FREE SOFTWARE UPDATES VIA BBS and US MAIL. Risk free 30-day money-back guarantee.

BP MicroSystems

1-800-225-2102

Houston, Texas 77043-3239 • (713) 461-9430 • (713) 461-7415

CIRCLE NO. 259

4 Color Product Mart Ads Are Now Available In EDN's Magazine and News Editions!

Call Joanne Dorian for more information

212) 463-6415

RS-232/GPIB/488 SOLUTIONS FOR INSTRUMENTATION PROGRAM STORAGE & TRANSFER NEEDS

The Easi-Disk Simplies Your Data Acquisition, Transfer, and Retrieval Needs Completely:

- IBM/MS-DOS PC Compatible
- RS-232, GPIB-488, 8-Bit Parallel, RS-485, RS-422, and other Interfaces
- Host or Manual Controls
- Remote Poking
- 3½” and 5½” Floppy Disks or Removable RAM
- Stand-Alone, Rackmount or “Built-in” OEM
- 110VAC, 220VAC, 6VDC, or Battery Operation
- Stand-Alone Price is $795, Controller Card Price is $495 in Singles with Quantity Discounts
- Application Notes Available
- ADPI “One for All” Tape Backup System Featuring 160 Meg of Storage for Multiple PC Backup

ANALOG & DIGITAL PERIPHERALS, INC.

P.O. BOX 499

TROY, OHIO 45373

PHONE: 937-339-2241

CIRCLE NO. 261
Complete System $1895.00

New Windows 3.0 Compatible Software

- 48 Channels @ 50 MHz x 4K words deep
- 16 Trigger Words/Level Trigger Sequence
- Storage and recall of traces/setups to disk
- Disassemblers available for: 68001, 8088, 8086, 6801, 6811, 286, 386, 386SX, 386DX, 28333

NCI

6438 UNIVERSITY DRIVE, HUNTSVILLE, AL 35806
(205) 837-6667 FAX (205) 837-5221

CIRCLE NO. 271

R&M Prediction and FMECA Software

Powertronic Systems offers software to predict reliability, maintainability and FMECA. Since 1982, hundreds of users have selected from our large, versatile, integrated software family for military and industrial equipment, electrical or mechanical. Program highlights include visible assembly hierarchy, defaults and library data, extensive report sorting, user defined reports, what-if and derating analysis, and concurrent engineering data links.

- MIL-HDBK-217
- MIL-HDBK-472
- MIL-STD-1629
- MIL-STD-338
- Belcore NPRD-91

Powertronic Systems, Inc.
13700 Chef Menteur Hwy., New Orleans, LA 70129
504-254-0383 • FAX 504-254-0393

CIRCLE NO. 273

UNIVERSAL PROGRAMMER

- PAL EPROM FLASH
- GAL EEPROM MICRO

$475.00

5ns PALs
4 MEG EPROM (8 & 16 bit)
22V10 & 26C12 GALs
Parts added at your request
Free software updates on BBS
Powerful menu driven software

CIRCLE NO. 274

IND-286 SBC

AT Compatible DISKLESS
SBC Includes DOS in ROM

Complete 16MHz 80286 Single Board Computer for embedded PC applications features a 4M-byte PROMDISK disk emulator with battery backup and an MS-DOS 33 compatible disk operating system in ROM.

Features Include:
- 16M-byte DRAM
- XT Size Board
- Keyboard Port
- 80287 Socket
- 2 COM, 1 LPT
- WatchDog Timer
- 4M PROMDISK
- Floppy Port
- 100% PC/AT
- Optional Video Daughter Board

Other Products:
- IND-88 PC/XT Single Board Computers
- PROMDISK III & IV Disk Emulators
- FlexScan I & II Bar Code Decoders

COMY TECHNOLOGY

62 Bonaventura Dr.
San Jose, CA 95134
Tel.: 408-456-0333
Fax: 408-456-0336

CIRCLE NO. 275

INDUSTRIAL PC SINGLE BOARD COMPUTER & BACKPLANE B'D

- Full surface mount technology
- Single board is compatible with IBM and PC box systems. And all kind of industrial PC I/O board.
- 286C-12, 386XC-16/20, 386DX-33 CPU board.
- 6, 8, 12, 16, 20, 20-slot backplane board.
- Split backplane board is available.
- "19" rackmount PC enclosure is available.
- Centralized LAN station system (specialists)

CIRCLE NO. 276

PUT YOUR PRODUCT IN THE PAGES OF EDN's PRODUCT MART SECTION FOR AS LITTLE AS $1175

CIRCLE NO. 277

FILL OUT THIS FORM TO ADVERTISE IN PRODUCT MART.

Issue(s) Requested:

(Please circle)

<table>
<thead>
<tr>
<th>RATE</th>
<th>1x</th>
<th>4x</th>
<th>7x</th>
<th>13x</th>
<th>19x</th>
<th>26x</th>
<th>39x</th>
<th>52x</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1175</td>
<td>1130</td>
<td>1105</td>
<td>995</td>
<td>975</td>
<td>960</td>
<td>950</td>
<td>920</td>
</tr>
</tbody>
</table>

Company ________________________
Address ________________________
City __________________ State ______ Zip ______
Telephone ______________________
Signature _______________________

Ad Enclosed □ Ad to Follow □
Mail to: EDN/275 Washington Street/Newton, MA 02158-1630
EDN Product Mart appears in every issue - 48x a year!
1992 Recruitment Editorial Calendar

<table>
<thead>
<tr>
<th>Issue</th>
<th>Issue Date</th>
<th>Ad Deadline</th>
<th>Editorial Emphasis</th>
</tr>
</thead>
<tbody>
<tr>
<td>EDN Products & Careers</td>
<td>Nov. 19</td>
<td>Nov. 5</td>
<td>CAE Software • EDN’s “Innovation Crusade”–Winners Coverage • Communications Technology • Regional Profile: So. California, Nevada</td>
</tr>
<tr>
<td>EDN Magazine</td>
<td>Nov. 26</td>
<td>Nov. 5</td>
<td>19th Annual Microprocessor Directory • ASICS • Sensors • EDN’s “Innovation Crusade”–Winners Coverage</td>
</tr>
<tr>
<td>EDN Products & Careers</td>
<td>Dec. 3</td>
<td>Nov. 19</td>
<td>ICs & Portable Computers • Power Sources • Laptops/Portables • Low-power Design • Regional Profile: Massachusetts, New Hampshire</td>
</tr>
<tr>
<td>EDN Magazine</td>
<td>Dec. 10</td>
<td>Nov. 19</td>
<td>INTERNATIONAL PRODUCT SHOWCASE—Vol. I • Power Sources • ICs & Semiconductors • Software • Hardware & Interconnect</td>
</tr>
<tr>
<td>EDN Magazine</td>
<td>Dec. 24</td>
<td>Dec. 3</td>
<td>INTERNATIONAL PRODUCT SHOWCASE—Vol. II • Computers & Peripherals • Components • Test & Measurement • CAE</td>
</tr>
</tbody>
</table>

Call today for information on Recruitment Advertising:
East Coast: Janet O. Penn (201) 228-8610
West Coast: Judy Telander (310) 826-5818
National: Roberta Renard (201) 228-8602

Company is seeking a **Software Engineer** to conceptualize, design, develop and support CCD automatic 3-axis die-cutting hydraulic press systems, and in designing and implementing Marginal Sum detection (MSD) based target registration systems with Field programmable gate Array (FPGA). Applicant must have M.S. Degree in Electrical Engineering or Computer Science, having performed research for at least six months in the areas of MSD and Pipeline Image Process (PIP) of Target Registration for an academic institution or industry. Must have graduate courses in Digital Image Processing, Time-Computer Control Systems, Advanced Instrumentation, Optimization and Reliability Theories and be proficient in C Language. 40 hour/week $36,438/year. Submit resume and proof of qualifications to: Overland Park, Department of Human Resource Office, 8417 Santa Fe, Overland Park, Kansas 66212-2749. Telephone (913) 642-8484. The Job Order number for this job opportunity is 756547.

WE'RE KNOWN BY THE CONTRACTS WE KEEP.
Lear Astronics Corp., a leading supplier of Avionics, Radar and Advanced Electronic Systems, has opportunities for:

SYSTEMS ENGINEERS
Requires a BSEE and design experience including digital computer architecture definition, redundancy management, HW/SW integration and system integration.

SOFTWARE ENGINEERS
Qualifications include a BSEE/BSCS degree and 5 years experience in embedded SW development and integration. Ideal candidates will have experience with 80960 or 1750A and Ada.

SYSTEMS ENGINEERING MANAGER
Requires BS/MSEE and 15 years experience in automatic flight control system proposal generation, design and integration. You must have at least 5 years management experience developing and implementing new designs, plus a solid understanding of aircraft systems/SW. Will be responsible for schedules and budgets.

WE WILL BE COMING TO YOUR AREA SOON.
FOR A LOCAL INTERVIEW APPOINTMENT, CALL CHUCK DOYLE AT: 1-800-LEAR-JOB
Lear Astronics Corp., Dept. M62, 3400 Airport Ave., Santa Monica, CA 90406. (310) 915-6745. FAX (310) 915-8387.
EOE. Employment offers are contingent on satisfactory pre-employment drug tests. You will be contacted only if we are considering you for the positions advertised.

First in Readership Among Design Engineers and Engineering Managers in Electronics

EDN October 29, 1992 • 183
Monolithic Sensors, Inc. is an exciting company committed to developing leading-edge technology which combines sensors with an integrated CMOS process. Located in a rapidly growing business community in one of Chicago's far northwest suburbs, MSI has outstanding opportunities available for qualified professionals.

Sr. Design Engineer

The ideal candidate for this position will have a proven record of new IC product introductions and be able to accept project responsibility from concept to manufacturing release. This individual will possess:

- B.S.E.E./M.S.E.E. plus 5 years experience in a commercial CMOS IC design environment
- Experience in the use of HSPICE, PSPICE, Cadence tools, or equivalent
- Low voltage analog IC design experience a plus
- Good communication skills required

IC Design Engineer

- 3-5 years of experience designing CMOS analog and digital IC's
- B.S.E.E. required

CAE Engineer

Supporting design engineering via maintenance/enhancement of design tools, the selected individual will possess:

- Knowledge of IC CAE tools such as Cadence and ViewLogic
- Unix workstation experience a must
- B.S. degree required

MSI offers a competitive compensation and benefits package in a professionally encouraging environment. If you have what it takes to join a company on the move... contact:

Human Resources - Dept. 1092
Monolithic Sensors, Inc.
2800 West Golf Road
Rolling Meadows, IL 60008
An Equal Opportunity Employer M/F/H

Honeywell Industrial Automation and Control is the world's leader in automation and control systems. We serve leading worldwide industrial manufacturing markets by providing integrated control systems, products and services. We have career opportunities in Phoenix, AZ and Fort Washington, PA for:

- **Software Engineers**

 Candidates will be responsible for the development of related standard software products and applications to meet customer requirements. You will join a team of professionals responsible for the definition, design, implementation and testing of quality software products through their entire life cycle.

 In Phoenix, qualified candidates should have a technical BS degree, working knowledge of open system technologies, C and PASCAL programming experience and 4-10 years experience in the following areas:

 - Open system VAX VMS, RISC Unix, Windows/NT, and OS/2 based distributed client/server platforms and multi-platform applications.
 - Realtime process control platforms and distributed control systems.
 - Graphic user interface developments, X Windows MOTIF-based and visual programming applications.
 - Network communications and distributed relational database applications.
 - Object oriented analysis, design and data modeling.
 - CASE tools and CASE frameworks.

 These opportunities offer outstanding growth potential and professional recognition in a challenging, high technology environment in Plant Control Systems.

 Honeywell offers you a competitive salary and benefits package.

 Qualified candidates please send a resume to: Honeywell IAC, 16404 N. Black Canyon Hwy, MS 1W3-EDN, Phoenix, AZ 85023.

 Similar career opportunities are available at our Fort Washington, PA facility.

 Qualified candidates will have at least two years experience in microprocessor based realtime software/firmware development for products, preferably in the process control industry. Additional experience should include PASCAL/C, 680X0/8051 assembly; data communication experience preferred.

 Please send a resume to: Honeywell IAC, Human Resources-EDN, MS-100, 1100 Virginia Drive, Fort Washington, PA 19034.

 No agencies or phone calls please.

 Equal opportunity employer. Drug screening is a condition of employment.
Building better microprocessors and peripherals is a bit like building a faster racecar. The victories come when you break free from conventional wisdom and begin to rethink the process. The freedom to find new approaches has been the secret of AMD’s success for 20 years, and it’s why I’m here.

It’s this freedom that gave me the opportunity to help build a state-of-the-art device analysis lab from the ground up. In the process, we brought engineers and fabricators together for the first time to devise a totally new approach to analyzing products. Redefining analysis is just one of the many strategies that is paying off in superior reliability, faster product cycles and a new recognition of AMD as a driving force in the industry.

But there’s another reason why AMD is ahead of the pack. Today, AMD is a world leader in the semiconductor race because our products are designed and manufactured using cutting-edge technologies. We maintain that lead by finding creative solutions for our customers—by delighting them with products that give them the competitive advantage.

It’s exciting to be on a winning team. It’s more exciting when the victory is fueled by original thinking. If you want a faster future, you can build it at AMD.

When he’s not competing in the Autocross, Glen contributes to AMD’s competitive edge in the company’s Product Assurance Group.

Positions:

Sr. Design Engineers
Sr. Technical Marketing Engineers
Sr. VLSI Product Engineer
Etch Engineer
Sr. VLSI Applications Engineer
Network Engineer
PC Product Development Engineer
Sr. Thin Films/Implant Engineer
Sr. Process Engineer (Contamination/Defect Reduction)
Sr. Quality Assurance Engineer
RISC Software Engineer
Sr. Test Engineer
ASIC Applications Engineer—Telecom
IBM Operations Analyst
Physical Designer
CAD Designer—ASIC
Strategic Marketing Manager—Telecom

Qualified applicants should send a resume to: Advanced Micro Devices, MS/556/EDN 10/29, 5204 E. Ben White Blvd., Austin, Texas 78741. Attn: Professional Staffing. You may also call (512) 462-5355 or FAX your resume to (512) 462-5108. We are an equal opportunity employer.
EDN Databank

Professional Profile

Announcing a new placement service for professional engineers!

To help you advance your career, Placement Services, Ltd. has formed the EDN Databank. What is the Databank? It is a computerized system of matching qualified candidates with positions that meet the applicant's professional needs and desires. What are the advantages of this new service?

- It's absolutely free. There are no fees or charges.
- The computer never forgets. When your type of job comes up, it remembers you're qualified.
- Service is nationwide. You'll be considered for openings across the U.S. by PSL and it's affiliated offices.
- Your identity is protected. Your resume is carefully screened to be sure it will not be sent to your company or parent organization.
- Your background and career objectives will periodically be reviewed with you by a PSL professional placement person.

We hope you're happy in your current position. At the same time, chances are there is an ideal job you'd prefer if you knew about it. That's why it makes sense for you to register with the EDN Databank. To do so, just mail the completed form below, along with a copy of your resume, to Placement Services, Ltd., Inc.

IDENTITY

Name
Home Address:
City, State, Zip:
Home Phone (include area code):

PRESENT OR MOST RECENT EMPLOYER

Parent Company
Your division or subsidiary:
Location (City, State)
Business Phone if O.K. to use:

EDUCATION

Degrees (List)
Major Field GPA Year Degree Earned College or University

POSITION DESIRED

PREVIOUS POSITION:

Job Title:
Employer:
Division:
Type of Industry:
Salary:

EXPERIENCE

Duties and Accomplishments:
Industry of Current Employer:

Reason for Change:

From: To: Title:

DATE AVAILABLE

Date Available
□ Light □ Moderate □ Heavy
□ I own my home. How long? I rent my home/apt. □

□ I will travel

□ Employed □ Self-Employed □ Unemployed □ Married □ Single

□ Will relocate □ Will not relocate □ Other

COMPENSATION/PERSONAL INFORMATION

EDN Databank

A DIVISION OF PLACEMENT SERVICES LTD., INC.
265 S. Main Street, Akron, OH 44308 216/762-0279

186 • EDN October 29, 1992
Tomorrow's breakthroughs begin with today's ingenuity. At VLSI Technology, we provide unparalleled ASICs and Application-Specific Standard Products (ASSPs) to some of the world's most demanding customers. Our solid family of high-performing and specialized chip sets are today's standard for value-added silicon solutions and the building blocks for continual advancements. If you seek a fast-moving, challenging environment, look to VLSI. Look further to technology that will create the future—yours, ours and the world's.

In our Tempe, Arizona facility, we envision, design and market our industry-leading PC chip sets. In addition, our powerful Functional System Block (FSB) methodology offers customers easy, fast access to design highly efficient system-level products. As a valued team member, you can create the real answers, the ever-evolving solutions.

All openings require a minimum of a BSEE or a related technical degree, and 3 or more years of directly related experience.

PC Systems Engineers
You will take responsibility for program management, definition, specification and system design of customer specific PC ICs. Experience with motherboard and/or portable designs for PC/AT or compatibles and familiarity with DRAM, CPU and peripheral subsystem design for PCs are essential. Job #MU1111

Product/Test Engineers
You will have the opportunity to use your experience on state-of-the-art testers such as Sentry, STS, Tektronix or Trillium to develop engineering solutions. Job #MU1115

IC Designers
You will act as a Sr. Design Engineer for logic design of advanced products based on embedded X86 processors. Demonstrated experience in IC design and simulation is required, as is a strong background in logic design. Knowledge of UNIX® and modeling using C/Pascal/VHDL is also necessary. Familiarity with PC architecture and CPU experience are desirable. Job #MU1117

Logic Designers
Perform microarchitecture and logic design of advanced products based upon embedded X86 processors. Demonstrated experience in IC microarchitecture, logic design and simulation is required, as is knowledge of UNIX and modeling using C/Pascal/Verilog/VHDL. PC architecture and CPU design experience is desirable. Job #MUDV1

System Architects
These high profile positions involve developing specifications for highly integrated chips with embedded processors, including performing architectural analysis. You must be well versed in microprocessor busses, cache architecture tradeoffs, graphics and RAM control, as well as be able to work independently and drive issues to resolution. Job #MUDV2

We offer excellent salaries and benefits, as well as relocation assistance for those moving to the Tempe area. Please apply, indicating Job # desired, to VLSI Technology, Inc., Professional Staffing, Dept. EDN1029, 8375 South River Parkway, Tempe, AZ 85284. Additional high-profile opportunities are also available at our other sites. Please send your resume to VLSI Technology, Inc., Professional Staffing, Dept. EDN1029 at your location(s) of interest: San Jose, CA: MS01, 1109 McKay Drive, San Jose, CA 95131. San Antonio, TX: 9651 Westover Hills Boulevard, San Antonio, TX 78251. Pre-employment drug screen required. VLSI is an equal opportunity employer. UNIX is a registered trademark of UNIX System Laboratories.

Look Further

Tomorrow's breakthroughs begin with today's ingenuity. At VLSI Technology, we provide unparalleled ASICs and Application-Specific Standard Products (ASSPs) to some of the world's most demanding customers. Our solid family of high-performing and specialized chip sets are today's standard for value-added silicon solutions and the building blocks for continual advancements. If you seek a fast-moving, challenging environment, look to VLSI. Look further to technology that will create the future—yours, ours and the world's.

In our Tempe, Arizona facility, we envision, design and market our industry-leading PC chip sets. In addition, our powerful Functional System Block (FSB) methodology offers customers easy, fast access to design highly efficient system-level products. As a valued team member, you can create the real answers, the ever-evolving solutions.

All openings require a minimum of a BSEE or a related technical degree, and 3 or more years of directly related experience.

PC Systems Engineers
You will take responsibility for program management, definition, specification and system design of customer specific PC ICs. Experience with motherboard and/or portable designs for PC/AT or compatibles and familiarity with DRAM, CPU and peripheral subsystem design for PCs are essential. Job #MU1111

Product/Test Engineers
You will have the opportunity to use your experience on state-of-the-art testers such as Sentry, STS, Tektronix or Trillium to develop engineering solutions. Job #MU1115

IC Designers
You will act as a Sr. Design Engineer for logic design of advanced products based on embedded X86 processors. Demonstrated experience in IC design and simulation is required, as is a strong background in logic design. Knowledge of UNIX® and modeling using C/Pascal/VHDL is also necessary. Familiarity with PC architecture and CPU experience are desirable. Job #MU1117

Logic Designers
Perform microarchitecture and logic design of advanced products based upon embedded X86 processors. Demonstrated experience in IC microarchitecture, logic design and simulation is required, as is knowledge of UNIX and modeling using C/Pascal/Verilog/VHDL. PC architecture and CPU design experience is desirable. Job #MUDV1

System Architects
These high profile positions involve developing specifications for highly integrated chips with embedded processors, including performing architectural analysis. You must be well versed in microprocessor busses, cache architecture tradeoffs, graphics and RAM control, as well as be able to work independently and drive issues to resolution. Job #MUDV2

We offer excellent salaries and benefits, as well as relocation assistance for those moving to the Tempe area. Please apply, indicating Job # desired, to VLSI Technology, Inc., Professional Staffing, Dept. EDN1029, 8375 South River Parkway, Tempe, AZ 85284. Additional high-profile opportunities are also available at our other sites. Please send your resume to VLSI Technology, Inc., Professional Staffing, Dept. EDN1029 at your location(s) of interest: San Jose, CA: MS01, 1109 McKay Drive, San Jose, CA 95131. San Antonio, TX: 9651 Westover Hills Boulevard, San Antonio, TX 78251. Pre-employment drug screen required. VLSI is an equal opportunity employer. UNIX is a registered trademark of UNIX System Laboratories.

High Tech...

High Challenge...

High Rewards!

Cherry Semiconductor Corporation is a unique company in a unique location offering unique advantages. We're an IC technological leader, a prime supplier with a reputation for innovation. We work in a hands-on, team-oriented environment which results in robust designs and world-class quality. Located in "The Ocean State," we offer employees a wide variety of educational, recreational, cultural and social opportunities to complement our professional challenge.

Within our 100,000 sq. ft. facility, we have assembled the sophisticated tools needed to provide global-quality products. And the major quality awards the CSC team has received from the three domestic auto makers prove it. But our goal is to do even better: to achieve 2.0 Quality (less than 2 defects per billion) in 1993.

We currently have the following career opportunities available. Can you meet the challenge?

Mixed Signal IC Design Engineers
- Bipolar/BiCMOS design in a team-oriented environment
- Custom/Standard mixed signal ASIC
- Minimum 5-7 years experience; BSEE, MSEE preferred

Product/Test Engineer
- Design test hardware/software tools for bipolar/BiCMOS ICs
- Responsible for quality, yield improvements and product specifications
- Wafer level and package experience preferred
- BSEE and 5 years experience including limited customer contact

CAE/Device Modeling Engineer
- Evaluate CAE hardware/software tools
- Proficient with device modeling/measurements
- Minimum 3 years experience; BSEE, MSEE preferred

Failure Analysis Engineer
- Micro probing, SEM and IC deprocessing techniques
- Evaluate electrical testing and analysis
- Prepare and communicate technical documentation
- Utilize computerized databases
- Minimum 3 years semiconductor F/A experience; BSEE

CSC's compensation package offers a competitive salary, 401K, educational assistance, profit sharing, medical/dental/life insurance and relocation. For confidential consideration, forward your resume and salary requirements to: Human Resources Manager, Cherry Semiconductor Corporation, 2000 South County Trail, East Greenwich, RI 02818. We are an equal opportunity employer.
When performance counts, you need a C compiler that will produce the fastest, tightest code possible—especially in demanding hard real-time applications. Yet most C compilers commonly used today were originally written ten or more years ago. Since then, computer scientists have learned a lot about how to make better compilers.

That's why Microware undertook the epic task of creating an all-new C compiler based on the latest academic research—a compiler able to eke out every drop of performance from modern 16-, 32- and 64-bit CISC and RISC microprocessors. Microware's Ultra C uses a modular architecture that creates a virtual playing field for vigorous action by dozens of optimizers to analyze, arrange, accelerate and compress code into fast, compact executables. Heuristic analysis of register and variable usage far surpasses the capabilities of what most human programmers could do themselves.

State-of-the-art, plus...

Of course Ultra C has all features expected in a state-of-the-art compiler, such as full ANSI C compliance, C source code symbolic debugging, and a comprehensive set of standard libraries including support for the extensive real-time capabilities of the OS-9 and OS-9000 Real-Time Operating Systems. Options allow selection of either ANSI or K&R compatibility. You can even turn the optimization knobs yourself to best match your application's requirements.

Built-in quality and reliability

You can count on Ultra C right now, because it's probably the most thoroughly tested new compiler in history. Before the first copy went into beta test, it successfully passed the massive Plum Hall ANSI C Validation Suite—eight major sections, in all over 500,000 lines of C compiler torture track. Compilers are not a sideline at Microware—we've been developing them in-house since 1978.

CISC now, RISC soon

Ultra C is available now for all 680X0 family and 386/486 family CPUs running Microware's OS-9 and OS-9000 Real-Time Operating Systems. RISC versions are coming soon.

Call Microware Today!

1-800-475-9000

In California, call (408) 980-0201
<table>
<thead>
<tr>
<th>ADVERTISERS INDEX</th>
</tr>
</thead>
<tbody>
<tr>
<td>2500 AD Software</td>
</tr>
<tr>
<td>Abbott Electronics</td>
</tr>
<tr>
<td>ACCEL Technologies Inc</td>
</tr>
<tr>
<td>ADI</td>
</tr>
<tr>
<td>Advanced Micro Devices</td>
</tr>
<tr>
<td>Advanced Transdata</td>
</tr>
<tr>
<td>Advin Systems Inc</td>
</tr>
<tr>
<td>AIT</td>
</tr>
<tr>
<td>Aldec</td>
</tr>
<tr>
<td>Alps Electronics*</td>
</tr>
<tr>
<td>AMP</td>
</tr>
<tr>
<td>Analog Devices Inc</td>
</tr>
<tr>
<td>Apex Microtechnology Corp</td>
</tr>
<tr>
<td>Ares</td>
</tr>
<tr>
<td>array Microsystems Inc</td>
</tr>
<tr>
<td>AT&T Microelectronics</td>
</tr>
<tr>
<td>Atlanta Signal Processors Inc</td>
</tr>
<tr>
<td>A T Barrett & Assoc</td>
</tr>
<tr>
<td>Augat</td>
</tr>
<tr>
<td>Autec Power Systems</td>
</tr>
<tr>
<td>BASF*</td>
</tr>
<tr>
<td>BAV Expositions Inc</td>
</tr>
<tr>
<td>B&C Microsystems</td>
</tr>
<tr>
<td>BP Microsystems</td>
</tr>
<tr>
<td>Bussmann</td>
</tr>
<tr>
<td>Cahners CAPS</td>
</tr>
<tr>
<td>Capilano Computer Systems Inc</td>
</tr>
<tr>
<td>Capital Equipment Corp</td>
</tr>
<tr>
<td>Cermek</td>
</tr>
<tr>
<td>Chrislin Industries</td>
</tr>
<tr>
<td>Circuit Components Inc</td>
</tr>
<tr>
<td>Coilcraft</td>
</tr>
<tr>
<td>Computer Dynamics</td>
</tr>
<tr>
<td>Comytech</td>
</tr>
<tr>
<td>Condor</td>
</tr>
<tr>
<td>Cypress Semiconductor</td>
</tr>
<tr>
<td>Dale Electronics</td>
</tr>
<tr>
<td>Data I/O Corp</td>
</tr>
<tr>
<td>Datel</td>
</tr>
<tr>
<td>Delker</td>
</tr>
<tr>
<td>Delta*</td>
</tr>
<tr>
<td>Diotec*</td>
</tr>
<tr>
<td>Dolch</td>
</tr>
<tr>
<td>EAO Elektro-Apparatebau</td>
</tr>
<tr>
<td>Otten AG*</td>
</tr>
<tr>
<td>Electronic Measurements Inc</td>
</tr>
<tr>
<td>Emulation Technology Inc</td>
</tr>
<tr>
<td>EPIX Inc</td>
</tr>
<tr>
<td>Epson America Inc</td>
</tr>
<tr>
<td>Ericsson Components</td>
</tr>
<tr>
<td>Escort Instruments Corp*</td>
</tr>
<tr>
<td>Fela AG</td>
</tr>
<tr>
<td>Flynn Systems</td>
</tr>
<tr>
<td>Harris Semiconductor</td>
</tr>
<tr>
<td>Hewlett-Packard Co</td>
</tr>
<tr>
<td>Hypertronics Corp</td>
</tr>
<tr>
<td>IBM Corp</td>
</tr>
<tr>
<td>IDT</td>
</tr>
<tr>
<td>IEE</td>
</tr>
<tr>
<td>ILC Data Device Corp</td>
</tr>
<tr>
<td>Instrument Specialties Co Inc</td>
</tr>
<tr>
<td>International Rectifier</td>
</tr>
<tr>
<td>Ironwood</td>
</tr>
<tr>
<td>ISL International*</td>
</tr>
<tr>
<td>ITT Cannon</td>
</tr>
<tr>
<td>Kemet Electronics</td>
</tr>
<tr>
<td>Kepco Inc</td>
</tr>
<tr>
<td>Kikusui*</td>
</tr>
<tr>
<td>Leap Electronic Co Ltd*</td>
</tr>
<tr>
<td>LeCroy Corp</td>
</tr>
<tr>
<td>Linear Technology Corp</td>
</tr>
<tr>
<td>Link Computer Graphics Inc</td>
</tr>
<tr>
<td>Logical Devices Inc</td>
</tr>
<tr>
<td>Maxtor</td>
</tr>
<tr>
<td>MCSI</td>
</tr>
<tr>
<td>Meritec</td>
</tr>
<tr>
<td>Metalink Corp</td>
</tr>
<tr>
<td>Meta Software Inc</td>
</tr>
<tr>
<td>Microcystal/Div SMH*</td>
</tr>
<tr>
<td>Micro Link</td>
</tr>
<tr>
<td>MicroSim Corp</td>
</tr>
<tr>
<td>Microsys</td>
</tr>
<tr>
<td>Microntime Computer Inc*</td>
</tr>
<tr>
<td>Microwave Systems Corp</td>
</tr>
<tr>
<td>Migration*</td>
</tr>
<tr>
<td>Mini-Circuits Laboratories</td>
</tr>
<tr>
<td>Mitsubishi Electronics</td>
</tr>
<tr>
<td>America Inc</td>
</tr>
<tr>
<td>Molex Inc</td>
</tr>
<tr>
<td>Motorola Semiconductor Products Inc</td>
</tr>
<tr>
<td>Murrietta Circuits</td>
</tr>
<tr>
<td>National Semiconductor Corp</td>
</tr>
<tr>
<td>NEC Corp</td>
</tr>
<tr>
<td>NCI</td>
</tr>
<tr>
<td>Needham Electronics</td>
</tr>
<tr>
<td>Nohau Corp</td>
</tr>
<tr>
<td>OKI Semiconductor</td>
</tr>
<tr>
<td>P-Cad</td>
</tr>
<tr>
<td>Philips</td>
</tr>
<tr>
<td>Philips Industrial Elec Div*</td>
</tr>
<tr>
<td>Pico</td>
</tr>
<tr>
<td>Pijnenburg*</td>
</tr>
<tr>
<td>Power-One Inc</td>
</tr>
<tr>
<td>Powertronic</td>
</tr>
<tr>
<td>Programmed Test Sources</td>
</tr>
<tr>
<td>Projects Unlimited</td>
</tr>
<tr>
<td>QuickLogic</td>
</tr>
<tr>
<td>Racial-Redac</td>
</tr>
<tr>
<td>Rad</td>
</tr>
<tr>
<td>RC Systems</td>
</tr>
<tr>
<td>Rifa Inc/Capacitor Div</td>
</tr>
<tr>
<td>Samsung Semiconductor</td>
</tr>
<tr>
<td>Samtec Inc</td>
</tr>
<tr>
<td>Scientific Endeavors</td>
</tr>
<tr>
<td>SGS Thomson</td>
</tr>
<tr>
<td>Siemens Circuits</td>
</tr>
<tr>
<td>Signlogic</td>
</tr>
<tr>
<td>Signetics Corp</td>
</tr>
<tr>
<td>Signum Systems</td>
</tr>
<tr>
<td>Siliconix Inc</td>
</tr>
<tr>
<td>SMS North American</td>
</tr>
<tr>
<td>Softools</td>
</tr>
<tr>
<td>Sony Semiconductor Div</td>
</tr>
<tr>
<td>Sprague-Goodman</td>
</tr>
<tr>
<td>Stag Microsystems Inc</td>
</tr>
<tr>
<td>Synergy Microsystems</td>
</tr>
<tr>
<td>Tatum Labs</td>
</tr>
<tr>
<td>T-Cubed Systems Inc</td>
</tr>
<tr>
<td>Technosert*</td>
</tr>
<tr>
<td>Tektronix Inc</td>
</tr>
<tr>
<td>Teledyne Relays</td>
</tr>
<tr>
<td>Tempustech Inc</td>
</tr>
<tr>
<td>Texas Instruments Inc</td>
</tr>
<tr>
<td>Time & Frequency Ltd</td>
</tr>
<tr>
<td>Tribal Microsystems</td>
</tr>
<tr>
<td>Welch-Allyn</td>
</tr>
<tr>
<td>Westcor</td>
</tr>
<tr>
<td>Wickmann Werke</td>
</tr>
<tr>
<td>Wintek Corp</td>
</tr>
<tr>
<td>Wintress Engineering</td>
</tr>
<tr>
<td>Xicor Inc</td>
</tr>
<tr>
<td>Ziatech Corp</td>
</tr>
<tr>
<td>Zilog Inc</td>
</tr>
<tr>
<td>Z-World</td>
</tr>
</tbody>
</table>

Recruitment Advertising 183-187

- Advanced Micro Systems
- Cherry Semiconductor
- Honeywell-Industrial Automation Control
- Lear Astronics Corp
- Monolithic Sensors Inc

*Advertiser in European edition
Zilog's Z80® Family. It's the smartest way to add impressive performance and innovation without having to spend time learning and writing new code.

It's little wonder the Z80 is the world's most popular 8-bit microprocessor. It's the only CPU with an architecture that makes task switching so fast, simple and accurate. In fact, the Z80 outperforms many 16-bit parts. That makes it especially valuable as the core for the wide range of Superintegration™ devices that make up an industry leading family of intelligent peripheral controllers. And best of all, since you're already familiar with the Z80 code, the migration path couldn't be more expeditions.

We think the wiser strategy is to go on developing high integration, value added 8- and 16-bit solutions for the volume consumer, communications and computer peripheral designs, like yours.

At the same time, we're continuing to develop 32-bit RISC devices and to produce some of the most sophisticated ASSPs in the industry. Zilog has been producing ASSPs and refining the technology in more innovative ways longer and better than anyone. We offer one of the industry's largest library of familiar cores and cells. Our own fabrication facilities mean the high standards for quality, cost/performance and reliability for which Zilog has always been known.

The smart thing to do is to find out more about the Z80 family of Intelligent Peripheral Controllers, or any of Zilog's rapidly growing Superintegration product families. Contact your local Zilog sales office or your authorized distributor today. Zilog, Inc., 210 East Hacienda Ave., Campbell, CA 95008-6600, (408) 370-8000.
A/D—analog-to-digital
ATM—automatic-teller machine
BIOS—basic input-output system
CAD—computer-aided design
CCFL—cold-cathode fluorescent lamp
CIS—Card Information Structure
CPU—central processing unit
DRAM—dynamic random-access memory
DSO—digital storage oscilloscope
IC—integrated circuit
I/O—input-output
ISA—Industry Standard Architecture
LAN—local-area network
LCD—liquid-crystal display
LSI—large-scale integration
µP—microprocessor
MS-DOS—Microsoft disk operating system; the dominant operating system on PCs that use microprocessors in the 80x86 family
OOP—object-oriented programming
PC—personal computer
PCMCIA—Personal Computer Memory Card International Association
pSOS—an operating system for embedded systems, published by Software Components Group, Santa Clara, CA
RAM—random-access memory
ROM—read-only memory
VGA—video-graphics array, originally an IBM standard for PC displays
VXI—VME extensions for instrumentation

This list includes acronyms and abbreviations found in EDN’s Special Report, Technology Updates, and feature articles.
My last Heathkit?

The era of people starting their careers in electronics by building Heathkits may be drawing to a close. Increasing product complexity and competition in the consumer electronics arena have caused the Heath Co to eliminate most kits from its catalog. Kit-built color TVs and stereo receivers no longer make any sort of financial sense. I ordered one of the few remaining Heathkits so that I could share the experience of building an electronic kit with my 10-year-old daughter, Shaina. We built the $24.95 Model SK-118 Dragonfly during a pleasant two hours on a rainy Fourth of July. During those two hours, Shaina learned how to solder, and she can now identify several common electronic parts.

The Heathkit Dragonfly has wings made of piezoelectric film. The wings flutter when excited by 260V pulses. A simple 1-transistor, 10-kHz oscillator driving a step-up transformer generates the excitation voltage for the wings and 5V for the rest of the circuitry. A low-frequency oscillator built from a CMOS quad NAND-gate IC alternately applies the 260V to each side of the film wings through switching transistors, causing the wings to first flex one way and then the other. A small potentiometer adjusts the oscillator frequency so that you can run back and forth through the system's mechanical resonance point.

Unlike the Heathkits I built years ago, this kit arrived in a blister pack designed to hang from a peg. Instead of the familiar 8½ x 11-in. yellow Heathkit manual, this kit contains a smaller manual consisting of several printed sheets saddle-stitched into a 43-page booklet. The kit is actually made in Hong Kong instead of Benton Harbor, MI, but I was pleased to see that information in the manual was presented in the same clear, thorough style I remember.

Before starting the assembly, we inventoried all of the parts to make sure nothing was missing. This was also a good time for Shaina to learn what resistors, capacitors, transistors, transformers, and ICs looked like. The parts list includes illustrations that make kit building easy for a novice. With the usual childish eagerness, we skipped the 6-page explanation of how the Dragonfly worked and started with the assembly. Shaina was forming leads and soldering components on the pc board less than 10 minutes after opening the package.

I was fascinated to watch my daughter develop her assembly skills. I showed her how to hold the needle-nose pliers, but she needed little help after that. Without my coaching, she started doing many of the same things I had learned to do: blowing the resin smoke away after soldering a joint, bending component leads to hold the parts in the board until they could be soldered, and checking to make sure that the parts stayed down on the board before soldering them in place. She also found out how easy it is to put transistors in backwards.

As is usual with electronic projects, the mechanical aspects proved the toughest. The dragonfly portion of the kit sits a few inches above the circuit board, supported by a heavy wire. You're supposed to attach this wire to the dragonfly with double-sided foam tape, but the foam tape was too stiff. We improvised with some thinner tape.

At the moment of truth, Shaina slipped the AA battery into its holder and pressed the power switch. The wings fluttered. I watched my daughter experience the usual smoke-test jitters and the thrill of first-time success. Those are the experiences that made Heathkits famous. I will be very sad if they ever disappear entirely.

—Steven H Leibson
Heath Co, Box 8589, Benton Harbor, MI 49023. Phone (800) 253-0570; (616) 925-4914. FAX (616) 925-4876.

The Czar of Bandgaps provides solid-trouble-shooting advice

Whoever said “Engineers can't write” has obviously never encountered the works of Bob Pease. Troubleshooting Analog Circuits, derived (and considerably expanded) from a series of EDN articles, is a joy to read. What's more, its practical, how-to advice makes it indispensable for any analog-circuit designer.

Bob's highly personalized writing style is scintillating and witty. In fact, it becomes downright hilarious when he unleashes his diatribes against computers in general and Spice simulation in particular. His basic premise is that you generally can't trust computer simulations of analog circuits; you must get your hands dirty and breadboard the circuits. Furthermore, he maintains that blind reliance on computer-based design is inimical to a designer's developing a feel for the inner workings of linear circuits.

The book contains thirteen chapters and eight appendices. The chapter topics are: troubleshooting philosophy, choosing equipment, resistors and inductors, capacitors, pc boards and connectors, relays and switches, diodes, transistors, op amps, spurious oscillations, A/D issues, references and regulators, miscellaneous loose ends, letters that Bob has received and responded to, and a collection of real
circuits and their potential problems.

Chapter one, covering Pease’s philosophy of troubleshooting, is a general discussion of fault-finding methodology. The sound advice he gives in this section includes making a list of things that could (and things that couldn’t) cause the problem, appointing a “Czar” for a particular problem area, and making Murphy’s Law work for you (by designing for testability, for example). At National Semiconductor, Bob has appointed himself “Czar of Bandgaps”—he keeps a log of all successful and less-than-successful circuits, failure causes, and failure fixes for this product category.

A sprinkling of levity lightens the reading task in this chapter and, indeed, throughout the book. For example, if a circuit component gives you a lot of grief in failure analysis, you simply “Widlarize” it (in honor of the late, great Bob Widlar)—place it on an anvil and beat it into tiny pieces with a hammer. To quote: “You know that component will never vex you again.” Good therapy, Bob.

The chapter on choosing equipment presents a list of 28 items a well-stocked failure-analysis facility should have. In addition to the obvious DVMs, oscilloscopes, etc., Pease advocates some not-so-obvious aids, like a short-circuit detector, freeze mist and a hair dryer, and a thermocouple-based thermometer, to name a few. He gives schematic diagrams for the short-circuit detector and the thermometer, in case you would like to roll your own.

Passive- and active-component problems take up seven chapters. Pease goes into considerable detail in delineating the idiosyncrasies and pitfalls associated with almost every conceivable type of passive component and linear IC. He covers issues such as TCs (and TC nonlinearity) and parasitic effects of various types of resistors; ESR (equivalent series resistance), soakage (dielectric absorption), breakdown characteristics, and inductances of different capacitor types.

Detail abounds also in the chapters covering transistor, diode, and IC problems. Spec interpretation (notably, CMRR), noise characteristics, and oscillation proneness are only some of the topics Pease covers in the chapter on op amps. And at the end of this chapter, he gives good advice: Rely only on min/max specs in op-amp data sheets—the typical figures are nonbinding nonguarantees of nothing.

In addition to prescribing troubleshooting methods, Pease gives proven techniques for preventing trouble in the design stage. Bypassing practices, overload-protection circuits, op-amp compensation techniques, and antireversal diodes on power-supply lines are only a few of the tricks he recommends to avoid future failures in your designs. Here, Bob pokes a little fun at MIL-HDBK-217, which, if followed blindly, would predict lower reliability for a circuit with added protection devices.

Especially valuable is the chapter on quashing spurious oscillations. Pease shows you how to detect masked high-frequency oscillation, as well as how to prevent it. One useful technique he proposes is to jolt the output of your circuit with square waves of various amplitudes and frequencies. By observing the ringing and settling characteristics at the circuit’s output, you gain a good idea of the circuit’s inherent stability.

One delightful photo shows Bob hurling a computer to its doom from the roof of a parking garage.

So, if you’ve ever been perplexed by an analog circuit that malfunctions only between 9:30 and 10:00, or that drifts out of sight when you open the blinds, or that screams with oscillation when you put your hand near it, this book’s for you. And Pease’s writing is so delicious, I’d be willing to bet that a person who never heard of a transistor would enjoy reading this tome.

—Bill Travis

Troubleshooting Analog Circuits, Robert A Pease, Butterworth-Heinemann, 80 Montvale Ave, Stoneham, MA 02180, 208 pgs, $32.95, Phone (800) 366-2665, FAX (617) 279-4851; in Europe: Reed Book Services Ltd, Special Sales Dept, Box 5, Rushden, Northants NN10 9YZ, UK, Phone 0933-58251, FAX 0933-50284.

Bill Travis is a freelance writer living in Worcester, MA. He has been an EDN editor and an international marketing manager at Micro Network.
We’ve made the move...

EDN News Edition is now
EDN Products and Careers

With the October 8, 1992, debut of EDN Products and Careers, the tabloid edition returned to its roots: a tightly focused, timely profile of career and product information.

In response to a recently completed three-year study that reflects engineering professionals' need for more up-to-date product information, as well as a growing concern for the changing job market, EDN revamped its tabloid edition.

EDN Products and Careers will devote more of its pages to identifying innovative products and professional-advancement opportunities throughout the USA. The new edition will also continue to provide engineers with a forum for opinion, commentary, and analysis of the electronics industry.

Take a look inside the pages of EDN Products & Careers
Truly incredible...superfast 3nsec GaAs SPDT reflective or absorptive switches with built-in driver, available in pc plug-in or SMA connector models, from only $14.95. So why bother designing and building a driver interface to further complicate your subsystem and take added space when you can specify Mini-Circuits' latest innovative integrated components?

Check the outstanding performance of these units...high isolation, excellent return loss (even in the "off" state for absorptive models) and 3-sigma guaranteed unit-to-unit repeatability for insertion loss. These rugged devices operate over a -55°C to +100°C span. Plug-in models are housed in a tiny plastic case and are available in tape-and-reel format (1500 units max, 24mm). All models are available for immediate delivery with a one-year guarantee.

SPECIFICATIONS

<table>
<thead>
<tr>
<th>Absorptive SPDT</th>
<th>Reflective SPDT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency (MHz)</td>
<td>Frequency (MHz)</td>
</tr>
<tr>
<td></td>
<td>dc- 500-2000-5000</td>
</tr>
<tr>
<td>Insertion Loss (dB)</td>
<td>1.1 1.4 1.9</td>
</tr>
<tr>
<td>Isolation (dB)</td>
<td>42 31 20</td>
</tr>
<tr>
<td>1dB Comp (dBm)</td>
<td>18 20 22.5</td>
</tr>
<tr>
<td>RF Input (max dBm)</td>
<td>--- 20</td>
</tr>
<tr>
<td>VSWR "on"</td>
<td>1.25 1.35 1.5</td>
</tr>
<tr>
<td>Video Bkthru (mV, p-p)</td>
<td>30 30 30</td>
</tr>
<tr>
<td>Sw. Spd. (nsec)</td>
<td>3 3 3</td>
</tr>
<tr>
<td>Price: $</td>
<td>YSWA-2-50DR (pin) 23.95</td>
</tr>
<tr>
<td></td>
<td>YSWA-2-50DR (SMA) 69.95</td>
</tr>
</tbody>
</table>

Mini-Circuits TM

For detailed specs on all Mini-Circuits products refer to • THOMAS REGISTER Vol. 23 • MICROWAVES PRODUCT DIRECTORY • EEM • MINI-CIRCUITS' 740-pg HANDBOOK

CIRCLE NO. 125
components in many applications. The new 500V IR2125 and 20V IR2121 with 1A/2A source/sink capability can each independently drive one FET or IGBT in a wide variety of motor drive and other applications. Programmable current limiting protects both transistor and drive, and the ride-thru feature can be set to take full advantage of today's rugged devices.

The 500V IR2110 with 2A source/sink capability is setting the industry standard for a half-bridge driver. It's driving pairs of FETs or IGBTs in motor control, UPS, solid state ballast, and switching power supply applications all the way up to 500 kHz.

Designate IR. And leave the driving to us.

Now IR's MOS Gate Driver family includes high-voltage devices designated for applications where protection is paramount: Introducing the IR2125 and IR2121, designed to drive and protect motor controls and other circuits up to 30 kHz.

These MGDs outperform costly multi-component drive circuits. They simplify design, provide protection, and can eliminate the transformer and associated

Write or call 1-800-245-5549 for data.
The 3900: The engineer's ultimate programmer.

Starting at just $2995* the 3900 family of device programmers gives you more for your money.

The 3900 programs more devices including leading-edge FPGAs, PLDs, memory devices, and microcontrollers up to 100 pins. And it uses semiconductor manufacturer-certified algorithms exclusively to ensure the most reliable programming.

The 3900 supports more packages such as TSOPs, QFPs over 100 pins, and so on.

It has been approved by the world's toughest safety organizations including UL, CSA, and TÜV, and complies with the strictest EMI and ESD standards.

To hear more reasons why the 3900 is the engineer's ultimate programmer, call today. We'll send you a FREE copy of our popular Wall Chart of Programmable Devices.

1-800-3-DataIO
(1-800-332-8246)