International Product Showcase

Schematics battle equations for design representation pg 62

DMM calibration shortcuts pose question of confidence pg 82

Delay lines take on timing tasks pg 108

Arm yourself with LAN know-how pg 130
It happened on a freezing Saturday in February.

Joe Reiley, a Hewlett-Packard test and measurement support engineer, was at a wedding in Pottstown, Pennsylvania. The office was the furthest thing from his mind, when suddenly his beeper went off.

In minutes, Joe was on the phone to Travis Field, the support engineer for Smith Corona in Cortland, New York. An HP test system crucial to Smith Corona's production line had gone down. Suddenly, Joe's thoughts turned to figuring out how to get Smith Corona's production line back up. Joe bid the other guests goodbye and ran to his car.

After driving through a blinding snow storm over icy mountain roads, Joe pulled into Smith Corona at 10:30 pm. A thorough analysis of the problem made it clear they needed extra parts, so Joe called another HP support engineer, Pete Nahrgang, in Valley Forge. Working through the early morning, Pete took parts from a back-up HP system, then flew them to Cortland by special courier. By Sunday afternoon, just 24 hours after Joe's beeper first went off, Smith Corona's production line was up again.

True stories like this prove HP's dedication to responsive customer support throughout the world. We'll tailor our hardware, software and education services to your test and measurement needs. With one of the largest support organizations in the industry, we're committed to keeping your production line up and running. For more information, call your local HP sales office or circle the reader service number.

There is a better way.

When Smith Corona's production line went down, HP support was up and running.
How Many Times Do You Build Your Product?

Now EEsof Has the Answer to Faster Time-to-Market for Microwave and RF Product Design...

THE SOLUTION? EEsof SOFTWARE!

With today's emphasis on commercial applications, faster time-to-market is critical to insure profit. But the cut 'n try design of microwave and RF circuits can wipe out those profits before manufacturing.

EEsof's Design-for-Manufacturing software brings advanced CAE/CAD technology to high-frequency analog engineers and lets you optimize designs under realistic manufacturing conditions. Even difficult nonlinear designs — amplifiers, mixers, and oscillators — become straightforward. EEsof's system and circuit simulation programs, including Touchstone®, OmniSys®, jOMEGA™ and Libra®, let you simulate and optimize manufacturing yield while accounting for component statistical variations.

Send today for your free copy of EEsof's "Solutions in Design for Manufacturing" and let us show you how to eliminate prototype rework and get your product through manufacturing faster. Call us at (800) 624-8999, ext. 155. Or if you prefer, contact us by FAX at (818) 889-4159.

In Europe, call (49) 8105-24005 or FAX (49) 8105-24000.

Breaking the Barriers...

EEsof®
Developing a PC-based test system with standard hardware and software saves valuable development time and produces a higher quality system. That's why National Instruments hardware and software products are built upon industry standards.

Our GPIB boards use the NAT4882™ chip for complete IEEE-488.2 compatibility. And our LabWindows® software combines powerful development tools with standard programming languages.

With LabWindows, you have the software tools you need to integrate all of the hardware in your test system. Use high-level 488.2 routines to simplify system programming or use drivers from the LabWindows Instrument Library to control your GPIB and VXI instruments without programming them at all.

LabWindows has tools for all phases of your development—data acquisition, analysis, and presentation. You can even create a graphical user interface so your test system is easy to operate.

To learn how to build a better test system, give us a call.

Circle No. 2
Our Model 91 will make your pulse race and help you function better.

Introducing the latest member of the 90 Series family: Model 91 Synthesized Pulse Function Generator. It delivers functions and pulses to 20 MHz with five digit frequency accuracy. Out the rear it has pulses to 50 MHz and a 100 MHz clock output. Choose ECL, CMOS or TTL levels, or set your own.

The functions and pulses can be swept or modulated, and there is even GPIB programmability. Plus an external frequency input that lets you use the Model 91 as a frequency counter.

With all these capabilities, Model 91 redefines the concept of an all-purpose benchtop instrument.

About all it doesn’t do is generate arbitrary waveforms, but there’s the Wavetek Model 95 Synthesized Arbitrary Function Generator for that.

Of course if you want even greater pulse generation capability, our four-channel Model 869 is among the most accurate pulse generators in the world.

For more information about our multi-purpose function generators, high performance pulse generators, or test development and arbitrary waveform software, call Wavetek at 1-800-874-4835.
HOW SUN SNAPPED UP THE LEAD IN SPARC MULTIPROCESSING.

Sun Microsystems' new 90 SPEC throughput multiprocessing SPARCserver is powered by our new SPARCCore Modules.

We have consistently delivered a performance advantage in SPARC RISC chipsets. Now, we are introducing SPARCCore™ high-performance uniprocessing and multiprocessing Modules. Cypress modules provide you (and Sun) with significant competitive advantages based on innovative technology:

1. Short-Cut to Market. With this much complexity running at 40+MHz speeds, there are non-trivial issues to integrating the CPU chipset. Using our fully integrated, tested SPARCCore modules, you save time, not to mention manufacturing and testing costs. We deliver fully tested modules, with MPU, FPU, MMU, and Cache, for the price of the chipset.

2. Plug and Play on MBus. You design your system to the MBus standard, and you can plug in modules offering a range of speed/power options, to keep your product current without major redesign. This modular approach provides a designed-in upgrade path to keep you on the leading edge.

Call for your Free SPARC Whitepaper and Data Sheets. Hotline: 1-800-952-6300.* Ask for Dept C4W.

*In Europe fax your request to the above dept. at (32) 2-652-1504 or call (32) 2-652-0270. In Asia fax to the above dept. at (415) 961-4201.

© 1991 Cypress Semiconductor, 3901 North First Street, San Jose CA 95134. Phone: 1 (408) 943-2600, Telex 921032 CYPRESS SNJ UD, TWX: 910-997-0753.

SPARC is a trademark of Cypress Semiconductor. SPARC International, Inc. Products bearing the SPARC trademark are based on an architecture developed by Sun Microsystems, Inc.
DESIGN FEATURES

Computer-Aided Engineering

Schematics battle equations for design representation

Debates have raged for years over whether equations or logic schematics are the best design form. Today, that debate is overshadowed by a shift toward synthesis—mapping design representations into silicon.—Ray Weiss, Technical Editor

Instruments

DMM calibration shortcuts pose question of confidence

Simpler methods of calibrating 7.5- and 8.5-digit digital multimeters let you adjust the overall accuracy of an instrument using as few as two external standards—or no standards at all. The methods are innovative but depart from principles the calibration community has cast in stone.—Brian Kerridge, Technical Editor

Components

Delay lines take on timing tasks

As system designs get more complex and operating speeds get faster, timing must be extremely precise. Programmable delay lines offer designers a way to make adjustments in circuit timing and maximize the performance of today's high-speed systems.—Tom Ormond, Senior Technical Editor

Computers and Peripherals

Arm yourself with LAN know-how

Setting up a local-area network is complicated—especially if you've never done it before. A clear idea of what you want to accomplish as well as a basic understanding of your hardware and software alternatives will help you deal with vendors and consultants.—Dan Strassberg, Technical Editor

Continued on page 7
Introducing SCOPEMETER.

There's More Than One Reason to Reach For It.

In fact, there’s every reason to reach for ScopeMeter. Because only ScopeMeter combines the expertise of Fluke and Philips to bring you a dual-channel digital scope along with everything you’ve come to expect from Fluke digital multimeters. The result: an integrated scope-and-multimeter that lets you see a waveform and digital meter display at the same time from the same input. Or switch between dedicated high-performance Scope and Meter functions with the touch of a key. That makes it faster and easier than ever to capture, store and analyze precisely what you’re looking for. At a price that looks good, too.

To get your hands on a ScopeMeter, contact your Fluke sales office or your nearest Fluke distributor. For more product information, call 1-800-44-FLUKE.

SCOPEMETER. Now there’s only one to reach for.

Double Duty.
- 50 MHz digital storage scope and 3000-count digital multimeter in one handheld package.
- Precision Min Max Record and 40 ns Glitch Capture make it easy to troubleshoot intermittent failures.
- Simultaneous waveform and digital display on a backlit screen you can read across the room.

Built to Take It.
- Completely sealed against water, dust and contaminants.
- EMI protected and measures up to 600 volts rms.
- Rugged construction with shock-resistant holster.
- Three-year warranty from Fluke.

Simply Easy.
- Intuitive front panel layout for simple, straightforward operation.
- Pop-up menus and five function keys for easy control.
- Autoset automatically sets voltage, time and trigger functions.
- Safety-designed BNC connectors and probes simplify floating measurements.

Go Wherever You Go.
- Runs on rechargeable NiCad batteries, standard C-cells or the included line voltage adapter/battery charger.
- Adjustable tilt-stand comes in handy as a hanger, too.
- Compatible with a wide range of Fluke multimeter accessories.

EDITORS’ CHOICES

Wideband monolithic op amp
Mask-programmable gate arrays

PRODUCT UPDATES

8-bit microcontrollers
Transceiver IC
FPGA software package

PRODUCT REVIEWS

Computer-Aided Engineering
Instruments
Components
Computers and Peripherals

DESIGN IDEAS

Circuit adjusts duty cycle, not frequency
Filter quashes 60-Hz interference

LITERATURE

Hardware and Interconnect Devices
Software
Integrated Circuits
Power Sources

DEPARTMENTS

News Breaks
Signals & Noise
Editorial
Career Opportunities
EDN’s Acronyms & Abbreviations
EDN’s International Advertisers Index

EDN December 19, 1991

ANY WAY YOU SLICE IT,
GENERATION COVERS EVERY

The squeeze is on. Today the PC market is rapidly concentrating into three segments: Notebooks, Desktops and Workstations. And once again, Conner has anticipated these changes.

Which is why we're introducing our newest wave of high-performance 2.5-inch and 3.5-inch drives to meet the needs of each of these evolving market segments.

For the notebook market, take our newest Pancho drive. With 85 Mbytes, it offers the highest capacity available in a light weight, patented 2.5-inch form factor. Low power consumption, rugged packaging and a compact form factor make it the ultimate choice for 386SX and 486SX-based notebook computers.

Then there's our new Jaguar Series for the desktop market — 3.5-inch drives offering 85 and 170 Mbytes. A 17 msec. average seek time and a light weight, patented 1-inch
CONNER'S NEWEST
SEGMENT OF THE MARKET.

high form factor make them ideal for a full range of desk­
top computers.

For workstations, we’re introducing two new 3.5-inch
drives—the 210 Mbyte Cougar and 540 Mbyte Summit. Cougar
is the highest performance low-profile drive on the market
today. While Summit delivers the greatest capacity and
performance of any 3.5-inch drive. Both provide a fast average
seek time of 12 msec., a 2.5 Mbyte per second sustained
transfer rate and a SCSI-2 interface.

It’s all a part of our innovative sell-design-build business
philosophy. To identify our customer’s needs sooner. Then
fill them faster with the most advanced products. In fact,
we’re the technological leader with nine patents issued and
27 pending. Which is why more and more PC users are
asking for systems with Conner drives.

So if the changing market segments are putting the
squeeze on your systems, call us today. We’ll guarantee you
the most refreshing results.
NEW SAMSUNG VI
FOR HIGH PERF
The new Samsung video RAMs will let you take performance to some heights that are—well, dizzying.

And since high performance is the reason for using video RAMs, that’s good news.

In speeds up to 100 nanoseconds, our new 64Kx4 and 256Kx4 parts are industry-standard in every respect. And they’re fabricated with the high level of quality and reliability that has made Samsung a leader in DRAMs, SRAMs, and specialty memories.

VIDEO RAMs FROM SAMSUNG

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Organization</th>
<th>Package</th>
<th>Speed</th>
</tr>
</thead>
<tbody>
<tr>
<td>KM424C64</td>
<td>64Kx4</td>
<td>DIP, ZIP</td>
<td>100, 120 ns</td>
</tr>
<tr>
<td>KM424C256</td>
<td>256Kx4</td>
<td>ZIP, SOJ</td>
<td>100, 120 ns</td>
</tr>
</tbody>
</table>

Additional VRAM organizations and densities are in development now. And as we increase efforts in several product categories, we are in fact rolling out a committed, broad-based Graphics offering—with VRAMs, with our new RAM DACs, and with an upcoming Clock Generator. In all, a whole Graphics line.

In the meantime, our video RAMs will let you put on quite an act.

For data sheets, call 1-800-423-7364, or 408-954-7229 today. Or write to VRAM Marketing, Samsung Semiconductor, 3725 No. First St., San Jose, CA 95134.
IN THE ERA OF MegaChip™ TECHNOLOGIES

Sometimes you need easy-

"Sorry, guys. There's been a last-minute change in the spec."

[Image of three men in an office, one on the phone, another writing, and the third observing.]
ASIC. TI FPGAs.

These are the gate arrays you design at your desk. And redesign until they’re exactly right. Then it’s on to silicon — fast. Our free interactive diskette will show you just how easy easy can be.

Even when you hit last-minute changes, have a sudden inspiration or are simply intent on getting the job done, field programmable gate arrays (FPGAs) from Texas Instruments can speed your design from start to finish.

Our FPGAs are channeled devices, which gives them their true gate array characteristics. They combine the time-to-market advantages of programmable logic devices (PLDs) with the densities of gate arrays. You have a choice of 1,200 or 2,000 equivalent gate complexities, with 4K and 8K densities coming. And military versions are available too.

Throughout the design cycle, you are in complete control, minimizing risk and avoiding nonrecurring engineering costs.

Accelerated development
Our advanced development environment, the TI Action Logic™ System (TI-ALS), lets you design and redesign at your desk. You use TI-ALS to validate, automatically place and route, analyze, program, test and debug — all within hours.

You can always see what’s going on within your design. Only the unique antifuse architecture allows 100% observability of internal nodes. And you can achieve gate utilizations of up to 90%.

TI-ALS operates on '386 personal computers or popular workstations running familiar CAE tools. You can program in minutes using our Activator™ hardware.

Unmatched service and support
From hands-on workshops at our Regional Technology Centers to a global network of sales offices and distributors, only TI can meet your FPGA needs across the country and around the world.

What’s more, you can pick up the phone and talk with our FPGA applications specialists during regular working hours (CST). Just dial our FPGA Help Line — 1-214-997-5492.

To see how easy easy can be, call 1-800-336-5236, ext. 3712, for our free interactive diskette. It will show you why our FPGAs are easy-ASIC and will introduce you to system design advantages that you can achieve quickly and efficiently.

The diskette runs on any MS-DOS® PC with an EGA or VGA graphics card, and we’ll include the diskette with our FPGA DataFile. Just call the number above or complete the return card.

MegaChip is a trademark of Texas Instruments Incorporated. Action Logic and Activator are trademarks of Actel Corporation. MS-DOS is a registered trademark of Microsoft Corporation. © 1991 TI.
The new XGA standard has opened up an era of higher performance for PC graphics. And when IBM licensed their technology to INMOS, a division of SGS-THOMSON Microelectronics, as manufacturer and sole supplier of the IBM XGA chipset, they did it to ensure that the XGA parts got to the market quickly and reliably, setting the stage for XGA to become the next volume standard in PC graphics. Specifically designed for PCs, XGA is already available to support the MicroChannel Architecture bus, and an AT bus-compatible version is under way. The new XGA standard offers significant enhancements over VGA with:

- higher speed
- higher resolution (up to 1024 × 768)
- more colors (256 up to 64K) giving photo-realistic multimedia-style images
- optimized graphics interface for better windowing
- optimization for use with latest generation processors

Fully VGA compatible, XGA performance specs offer a package that is way ahead:

- 132 column text mode
- extended graphics function mode, including hardware sprite and coprocessor hardware drawing assist
- 90% faster than IBM VGA under DOS, 55% faster under OS/2
- 67% faster running Microsoft Windows applications

TWO CHIPS THAT SET THE STANDARD

The IBM compatible XGA chipset consists of two advanced VLSI chips, the INMOS IMS G190 XGA Serializer Palette DAC in a 144 pin CQFP and the INMOS IMS G200 XGA Display Controller in a 184 pin PQFP. A major advantage of the IMS G200 is its on-chip coprocessor which offloads tasks from the host processor and allows it to support:
• 1, 2, 4, and 8 bit pixel and bit block transfers
• line draw
• area fill
• logical and arithmetic pixel mixing
• map masking
• scissoring
• X, Y axes addressing

FULL SOFTWARE SUPPORT is offered for the IBM compatible XGA chipset with the following drivers available:

• DOS Application Interface (DOS AI)
• OS/2 Presentation Manager (OS/2 PM)
• Windows 3.0
• Double Byte character set

Plus a programmer's guide so you can develop your own BIOS software.

AVAILABLE NOW
Yes, the standard IBM MicroChannel Architecture-compatible XGA chipset is available right now. Just call or fax one of the SGS-THOMSON locations listed below and get details on delivery and price.

SGS-THOMSON
MICROELECTRONICS
access to technology
WITH TRW'S VIDEO ENCODER, ANYONE CAN PRODUCE PROFESSIONAL VIDEOS WITHOUT HOLLYWOOD BUDGETS.
The monolithic Video Encoder is here. Created by TRW, the film and production industry's leading supplier of high-performance ICs. And the only company ever to be awarded an Emmy for its video IC technology.

Now, TRW brings you the first in its new line of affordable multimedia ICs for desktop video: The TMC22090.

And that means converting RGB, YUV or color-indexed computer images and graphics into studio-quality NTSC, PAL or S-Video signals can now be done with a single, low-cost chip. One fabricated in TRW's Omicron-C™ 1 µ CMOS process. Packaged in an 84 lead PLCC. And, of course, designed with the full-spec performance that is synonymous with TRW standards.

The TMC22090 boasts a 256x8x3 color lookup table, a pixel mask register and compatibility with 171 and 176 RAMDACs. All of which means transparent interface with existing device drivers.

Better still, the high performance Hollywood has come to rely on is provided by 4:4:4 digital encoding, oversampled 10-bit outputs, and built-in test signals. The TMC22090 even gives you a JTAG interface for low cost production testing. So for everything from simply providing an affordable video output for computer display boards, to developing complex desktop video workstations, you can design in confidence. With the video encoder from the leader in video ICs: TRW.

And you can count on TRW to keep you at the forefront of multimedia, too. This Video Encoder, after all, is just our debut. We've got some great sequels in development.

For data sheets, applications and other information on TRW's TMC22090 Video Encoder, as well as to be first in line for coming attractions, call or write today:

TRW LSI Products Inc.,
P.O. Box 2472, La Jolla, CA 92038
(619) 457-1000, FAX (619) 455-6314
(800) TRW-LSIP (800) 879-5747
Oh no. Please, not now. Not with manufacturing release next week.

The Prototype Doesn’t Work.
Six ASICs, fifteen PLDs and the whole thing’s gone south. Maybe I should go south too. Yeah, hop a bus. Head for Mexico.

The Prototype Doesn’t Work.
Software? Could be. Hardware? Might be. So where do I start? At the beginning, of course. And just where is that, smart guy?

The Prototype Doesn’t Work.
And my performance review comes up next month. Maybe they’ll just forget about all this, right? Yeah. Sure.

The Prototype Doesn’t Work.
Wait. What about that glitch in the handshake on the first pass? Couldn’t reproduce it. Maybe it just reproduced itself.

The Prototype Doesn’t Work.

These are just a few of the reasons Tek makes a complete line of scopes, logic analyzers and signal sources. Instrumentation that can quickly get to the core of your prototype’s problems. Whether they’re digital, analog or software. Because even when your prototype doesn’t work, Tek does. Talk To Tek/1-800-426-2200

Tektronix
Test and Measurement
SECOND ANNUAL INNOVATION AWARDS PRESENTED AT WESCON

On November 19 at a banquet and reception at Wescon/91, the EDN staff presented the second annual Innovation and Innovator of the Year awards. The team of Paul Gullick and Arlie Conner from In Focus Systems were named Innovators of the Year. The team developed a triple super-twisted nematic (TSTN) LCD that furnishes brighter pictures than other LCDs. EDN presented a check for $10,000 in their names to donate to the university of their choice.

Innovation winners were selected in seven product categories. The ISD10xx analog storage ICs from Information Storage Devices (San Jose, CA) won for ICs and semiconductors. The HP54600A 100-MHz digital storage oscilloscope from Hewlett-Packard (Colorado Springs, CO) won for test and measurement. For CAE/CAD, the winner was the Falcon Framework for Concurrent design from Mentor Graphics (Wilsonville, OR). In Focus won again in computers and peripherals with the color LCD technology. The Isocon Interconnection System from Rogers Corp (Tempe, AZ) won for components, hardware, and interconnect. IRMX for Windows from Intel Corp (Hillsboro, OR) won for software. And, last but not least, the Genesis high-power-density battery from Gates Energy Products Inc (Gainesville, FL) won for power sources. For complete product descriptions, see the November 21, 1991, edition of EDN. All winners were selected by votes from EDN readers.—Susan Rose

SINGLE CHIP EMBEDS MS-DOS SYSTEMS

NEC Electronics Inc's DOS engine is a single chip that encompasses an entire IBM PC/XT, except for external memory. Aimed at embedded systems, this chip lets designers build a DOS-compatible system with a minimum number of chips. The DOS engine includes a clock generator, a DMA controller (8273A compatible), an interrupt controller (8259A compatible), a counter/timer (8254 compatible), a speaker interface, a memory controller, an expanded-memory system (EMS) controller, and a programmable PC/XT or PS/2 keyboard and mouse interface. Designed around the NEC V20/30, the DOS Engine is based on an 0.8 μm static process. Future versions will include an ASIC core that you can tailor to your needs. The core will have as many as 20,000 gates for customer-specific circuits that link to an internal 8-bit IBM PC/XT bus. The engine can access as much as 16 Mbytes of virtual memory through its EMS hardware.

The engine operates at 3 to 5V. Running at 8 MHz and 3V, it consumes 5 mA and operates with a minimum instruction-execution time of 250 nsec. Initially, there are two versions of the chip: the V41 μPD70270, based on the V20HL with an 8-bit external bus; and the V51 μPD70280, based on the V30HL with a 16-bit external bus. Both chips are available in a 160-pin plastic quad flatpack (PQFP) with 10-, 12-, and 16-MHz speed grades. The ASIC version comes in a 208-pin PQFP. From $20 (10,000). NEC Electronics Inc, Mountain View, CA, (415) 960-6000.—Ray Weiss
NEWS BREAKS

PROCESS YIELDS FAST AMPS, PIN DRIVERS, AND ASICs

Harris Semiconductor today announced a series of high-speed linear products developed using the company's new complementary bipolar, silicon-on-insulator process. UHF-1 yields npn and pnp transistors with switching speeds greater than 8 and 4 GHz, respectively, and betas of 100 and 60, respectively. The process implements dielectric isolation with trench-isolation and bonded-wafer techniques. The combination of bonded wafers and trenches provides complete isolation between transistors, which results in reduced parasitic capacitance, resistance to latchup, and reduced leakage current at high temperatures. The process's values of beta, breakdown, and early voltage don't compromise the transistors' dc performance to achieve high speed. Size is also a crucial factor. The new process yields faster but smaller devices than were possible with the company's older process—a fact which should let the company offer performance increases without similar cost increases.

The first products built using this high-speed process include op amps, a closed-loop buffer, a pin-driver IC, and ASICs. The HFA1100 family of op amps ($9.95 (100)) features an 850-MHz unity-gain bandwidth, 2500V/µsec slew rates, 11-nsec settling times to 0.1% accuracy, and 0.04-dB gain flatness to 50 MHz. The HFA1110 closed-loop buffer ($9.95 (100)) has a 700-MHz bandwidth, and you can configure the buffer for voltage gains of ±1 or 2 without external components. The buffer's 60 mA of output current makes it appropriate for use as a cable driver and distribution amplifier. The HFA5250 500-MHz pin driver ($48 (1000)) guarantees an output impedance of 50Ω with a maximum variance of ±2Ω. Finally, the company has tied the process parameters into its Fastrack ASIC Design System, offering tile arrays and device-level designs. Designers can optimize the HTA3000 tile array or HDI3000 devices for either high speed or low-power consumption. The tile array consists of 10 device tiles, the elements of which can be op amps, current-feedback amps, comparators, and references. The HDI3000 library includes four npn and pnp transistor types. Typical NRE for the tile and device-level designs is $97,000 and $131,000, respectively. Harris Semiconductor, Melbourne, FL, (407) 724-3704, FAX (407) 724-3937.—Anne Watson Swager

SHAMIR TOUTS BUSINESS OPPORTUNITIES IN ISRAEL

At a dinner for American industrialists in Boston in November, Israeli Prime Minister Yitzhak Shamir encouraged US high-tech companies to come to Israel. The dinner was part of a recent effort to raise interest for increased American investments in Israel. Ambassador Zalman Shoval said that the climate in Israel especially favors high-tech development: Many of the new Russian immigrants are engineers who want to stay in Israel. The country also has favorable trade relations with the US and Europe, Shoval said. Already Digital Equipment Corp, Intel, Motorola, and National Semiconductor have major facilities in Israel. For more information on the business opportunities in Israel, contact the nearest Israeli Consulate.—Susan Rose

ADD FOUR SERIAL PORTS TO YOUR WINDOWS 3.0-BASED PC

The Plus 8 multiport serial board from Star Gate lets you plug more than two serial devices into your Windows-based PC. The board contains hardware drivers that provide full-duplex asynchronous communication for Windows 3.0 in each of its three operating modes—real, standard, and enhanced. As a result, there is no need for your PC to load additional device drivers in order to accommodate a Windows environment. The board plugs into your PC's expansion chassis and uses two 8051 µPs. The RS-232C version costs $570, and the RS-422 model costs $670. Star Gate, Solon, OH, (800) 782-7428, (216) 349-1860, FAX (216) 349-2056.—JD Mosley
No More Constraints!

With MicroSim Corporation's Digital Simulation option for PSpice, the dichotomy between analog and digital simulation vanishes. Here’s why!

Native Mixed Analog and Digital Simulation
You’ll experience true mixed-mode simulation of your circuits including circuits with tightly coupled feedback between analog and digital sections. All of the PSpice analog simulation features with which you’re familiar are at your disposal for mixed-mode simulation.

Outstanding Performance
With our event-driven logic processing algorithm, digital components are processed at logic simulation speeds. Over 10,000 logic gates can be simulated in a circuit along with hundreds of analog components. With Digital Simulation, your circuit’s logic states and propagation delays are computed in a snap.

Accuracy and Precision
That’s what you can count on for all PSpice mixed-mode and analog simulations. With Digital Simulation’s 5 input levels and 64 output strengths, it’s even better.

Full Integration with Schematics
Draw your mixed-mode circuits with our newly introduced Schematics circuit editor. Then simulate and analyze your design with PSpice and Probe directly from the Schematics program. In Probe, your circuit’s analog and digital waveforms can be displayed simultaneously with a common time axis.

Extensive Libraries
In addition to PSpice’s libraries with over 3,500 analog components, Digital Simulation libraries offer over 1,500 TTL and CMOS components. Optional power supply pins are available on all digital components allowing your circuit’s components to run from different power supplies and CMOS device thresholds to change with the power supply voltages.

Over 2,300 Digital Simulation Options Sold
See for yourself why PSpice with the Digital Simulation option is the industry’s best-selling mixed-mode simulator. For more information on MicroSim’s family of products, call toll free at (800) 245-3022 or FAX at (714) 455-0554.

MicroSim Corporation
Expanding the Standard for Circuit Simulation
20 Fairbanks • Irvine, California 92718 USA

MicroSim Corporation
PSpice is a registered trademark of MicroSim Corporation. All other brands and product names are trademarks or registered trademarks of their respective holder.
SMALL POWER SUPPLIES TARGET PORTABLE PCs

Two new families of switching power supplies from Tamura serve applications ranging from portable data-acquisition equipment to notebook and portable PCs. The company's new products include 1-in.-high, 50W units designed to mount inside a chassis. The FVS and FVM series products include single and triple output models that are smaller than a home-video cassette. The products range in price from $90 to $110, based on configuration and quantity ordered. Meanwhile, the company offers the SWA family products that target external power-supply applications. You can choose from 15, 20, and 30W units that plug directly into wall sockets or 40 and 60W table-top supplies. The external units range in price from $40 to $120. All of the new supplies can handle universal ac inputs that range from 85 to more than 200V. Tamura Corp, Carson, CA, (310) 638-1790, FAX (310) 638-9956.—Maury Wright

DSP CHIP SUITS PARALLEL-PROCESSING APPLICATIONS

The TMS320C40 DSP chip from Texas Instruments provides the processing power necessary for embedded parallel-processing tasks such as computer imaging and vision, 3-D graphics, neural networks, robotics, and speech recognition. The chip has six communication ports, two memory buses, and a 6-channel DMA coprocessor. Operating specs include 275 million operations/sec and 320-Mbyte/sec throughput. Both the manufacturer and third-party vendors offer parallel-processing development tools for the chip. Samples are available now for $560. Texas Instruments, Dallas, TX, (800) 336-5236, ext 700, (214) 995-6111, ext 700.—JD Mosley

DATA-COMPRESSION IC HANDLES 3000 SIMULTANEOUS TASKS

Data-compression ICs currently let you effectively double the capacities of tape and disk drives, but the model 9705 compression chip from Stac Electronics expands that coverage to networks by incorporating support for as many as 1500 simultaneous, full-duplex data streams (3000 tasks). Because of network overhead, the chip provides a typical compression ratio of 4:1 for network data packets. Consequently, you can effectively quadruple a network's available capacity through data compression.

The IC employs the same compression/decompression algorithm as its single-tasking predecessor, the model 9704, and is pin- and software-compatible with the older device. At its maximum clock rate of 50 MHz, the new device compresses 2.5 Mbytes of data/sec and decompresses at 6 Mbytes/sec. For low-power applications, you can also put the chip into a sleep mode that reduces current consumption to 300 µA. Samples of the IC are available; production quantities will be available in the first quarter of 1992. The chip costs $24 (50,000). Stac Electronics, Carlsbad, CA, (619) 431-7474.—Steven H Leibson

X-TERMINAL SOFTWARE SERVES MS-DOS AND WINDOWS

AGE introduced two new software products that let PCs act as X servers in an X-Window application. Xoftware for DOS supports video adapters ranging from monochrome to super VGA to 8514/A. The product include a hot key feature that lets you swap between X-server-DOS and Microsoft-Windows sessions. The product works with MS-DOS 5.0 and costs $395—or $465 when bundled with TCP/IP (transmission control protocol/internet protocol) networking software. Xoftware for Windows, meanwhile, lets you use Microsoft Windows as a local window manager, and still provides the X-server capability. You can cut and paste between Microsoft Windows and X-Window applications. The software can work with any graphics hardware that comes with a Microsoft Windows driver. The Windows software costs $495. AGE, San Diego, CA, (619) 455-8600, FAX (619) 597-6030.—Maury Wright
PRODUCTS: Metal film and wirewound resistors.

OBJECTIVE: Develop efficient systems for supplying and procuring MIL-style components.

UNITS INVOLVED: Raytheon and Dale Electronics, Inc.

For more than two decades, Raytheon and Dale® have developed a strong manufacturer/vendor relationship focused on close communication and a common goal to continually improve quality.

Today, Dale works closely with other Vishay companies (including Angstrohm and Ultronix) in supplying established reliability resistors used in the Patriot, Sparrow and other programs of the Raytheon Missile Division. Military specifications involved include: MIL-R-39005, MIL-R-39007, MIL-R-39009, MIL-R-39017, MIL-R-55182, MIL-R-55342 and MIL-R-83401.

In helping Raytheon meet the exacting requirements of these programs, Dale, in 1984, became the first OEM vendor to Raytheon to install an on-line computer terminal, allowing direct-order capability with several Dale plants.

Since then, this system has been tailored to allow Raytheon purchasing locations to obtain a wide range of information on orders to Dale including everything from price, to production status, to a shipping date.

“In essence,” a Dale spokesperson commented, “Raytheon can access anything we can in relation to any or all of their orders. More recently, Dale helped Raytheon pioneer their first system for electronic data interchange (EDI).”

Quality, also, has played a big part in the relationship. With a history of tens of millions of parts shipped to Raytheon, Dale has maintained exceptionally high quality levels. This is why Raytheon has chosen Dale for several quality and service awards over the last few years.

For more information on how Dale's commitment to effective partnering can benefit your operation, please contact Joe Matejka, Vice President, Quality Assurance, Dale Electronics, Inc., 1122 23rd Street, Columbus, Nebraska 68601-3647. Phone 402-563-6511. Fax 402-563-6418.
dc to 3GHz from $1145

lowpass, highpass, bandpass

- less than 1dB insertion loss
- greater than 40dB stopband rejection
- surface-mount
- BNC, Type N, SMA available
- 5-section, 30dB/octave rolloff
- VSWR less than 1.7 (typ)
- rugged hermetically-sealed pin models
- constant phase
- meets MIL-STD-202 tests
- over 100 off-the-shelf models
- immediate delivery

low pass, Plug-in, dc to 1200MHz

<table>
<thead>
<tr>
<th>Model No.</th>
<th>Passband MHz loss < 1dB</th>
<th>Stopband MHz loss > 20dB</th>
<th>Stopband MHz loss > 40dB</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLP-4</td>
<td>DC-5 8-10 10-200</td>
<td>DC-25 330-400 400-1200</td>
<td></td>
</tr>
<tr>
<td>PLP-10.7</td>
<td>DC-11 19-24 24-200</td>
<td>DC-370 415-550 550-1200</td>
<td></td>
</tr>
<tr>
<td>PBP-214</td>
<td>24.1 19.2-23.6 23.6-36.5</td>
<td>DC-420 575-800 800-2000</td>
<td></td>
</tr>
<tr>
<td>PBP-314</td>
<td>24.1 19.2-23.6 23.6-36.5</td>
<td>DC-520 750-900 900-2000</td>
<td></td>
</tr>
<tr>
<td>PBP-50</td>
<td>24.1 19.2-23.6 23.6-36.5</td>
<td>DC-620 1150-2000 2000-4000</td>
<td></td>
</tr>
<tr>
<td>PBP-75</td>
<td>24.1 19.2-23.6 23.6-36.5</td>
<td>DC-750 1350-2000 2000-4000</td>
<td></td>
</tr>
<tr>
<td>PBP-100</td>
<td>24.1 19.2-23.6 23.6-36.5</td>
<td>DC-900 1500-2000 2000-4000</td>
<td></td>
</tr>
<tr>
<td>PBP-150</td>
<td>24.1 19.2-23.6 23.6-36.5</td>
<td>DC-1050 1750-2000 2000-4000</td>
<td></td>
</tr>
<tr>
<td>PBP-200</td>
<td>24.1 19.2-23.6 23.6-36.5</td>
<td>DC-1200 2000-2100 2100-2500</td>
<td></td>
</tr>
</tbody>
</table>

Surface-mount, dc to 570MHz

<table>
<thead>
<tr>
<th>Model No.</th>
<th>Passband MHz loss < 1dB</th>
<th>Stopband MHz loss < 40dB</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCLF-21.4</td>
<td>DC-22 32-41 41-200</td>
<td>DC-190 290-380 380-900</td>
</tr>
<tr>
<td>SCLF-45</td>
<td>DC-65 75-90 90-200</td>
<td>DC-340 520-750 750-2000</td>
</tr>
<tr>
<td>SCLF-135</td>
<td>DC-135 210-300 300-600</td>
<td>DC-510 780-1600 1600-2500</td>
</tr>
</tbody>
</table>

Flat Time Delay, dc to 1870MHz

<table>
<thead>
<tr>
<th>Model No.</th>
<th>Passband MHz loss < 1dB</th>
<th>Stopband MHz loss > 20dB</th>
</tr>
</thead>
<tbody>
<tr>
<td>PBP-38</td>
<td>DC-25 78-117 117-150</td>
<td>DC-260 380-500 500-1000</td>
</tr>
<tr>
<td>PBP-117</td>
<td>DC-65 234-312 312-400</td>
<td>DC-540 800-1500 1500-2500</td>
</tr>
<tr>
<td>PBP-170</td>
<td>DC-90 280-360 360-440</td>
<td>DC-720 1100-1750 1750-2000</td>
</tr>
<tr>
<td>PBP-200</td>
<td>DC-120 354-460 460-570</td>
<td>DC-900 1900-2500 2500-3000</td>
</tr>
<tr>
<td>PBP-487</td>
<td>DC-180 460-620 620-800</td>
<td>DC-1200 3000-4000 4000-5000</td>
</tr>
<tr>
<td>PBP-1870</td>
<td>DC-650 3740-6000 6000-9000</td>
<td>DC-2400 7800-14000 14000-20000</td>
</tr>
</tbody>
</table>

high pass, Plug-in, 27.5 to 2200MHz

<table>
<thead>
<tr>
<th>Model No.</th>
<th>Stopband MHz loss < 40dB</th>
<th>Stopband MHz loss > 20dB</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHP-25</td>
<td>DC-13 13-19 19-25</td>
<td>DC-120 210-290 290-400</td>
</tr>
<tr>
<td>PHP-50</td>
<td>DC-25 25-29 29-41</td>
<td>DC-260 380-500 500-6000</td>
</tr>
<tr>
<td>PHP-100</td>
<td>DC-45 45-55 55-70</td>
<td>DC-520 650-800 800-1200</td>
</tr>
<tr>
<td>PHP-150</td>
<td>DC-70 70-95 95-130</td>
<td>DC-750 1000-1500 1500-2500</td>
</tr>
<tr>
<td>PHP-175</td>
<td>DC-70 70-95 95-130</td>
<td>DC-850 1100-1600 1600-2200</td>
</tr>
<tr>
<td>PHP-200</td>
<td>DC-90 90-116 116-160</td>
<td>DC-950 1200-1800 1800-2500</td>
</tr>
<tr>
<td>PHP-250</td>
<td>DC-100 100-150 150-220</td>
<td>DC-1100 2000-3000 3000-4500</td>
</tr>
<tr>
<td>PHP-300</td>
<td>DC-145 145-170 170-260</td>
<td>DC-1200 3000-4500 4500-6000</td>
</tr>
</tbody>
</table>

bandpass, Elliptic Response, 10.7 to 70MHz

<table>
<thead>
<tr>
<th>Model No.</th>
<th>Stopbands > 20dB at MHz</th>
<th>Stopbands > 35dB at MHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>PBP-10.7</td>
<td>10.7 9.6-11.5 11.5-13.5</td>
<td>DC-220 330-400 400-1200</td>
</tr>
<tr>
<td>PBP-21.4</td>
<td>21.4 19.2-23.6 23.6-36.5</td>
<td>DC-330 440-600 600-1000</td>
</tr>
<tr>
<td>PBP-31.4</td>
<td>31.4 27.5-33.0 33.0-45.0</td>
<td>DC-440 550-800 800-1200</td>
</tr>
<tr>
<td>PBP-50</td>
<td>50.0 45.0-60.0 60.0-80.0</td>
<td>DC-650 900-1300 1300-2000</td>
</tr>
<tr>
<td>PBP-70</td>
<td>70.0 65.0-77.0 77.0-100.0</td>
<td>DC-850 1350-1800 1800-2500</td>
</tr>
</tbody>
</table>

Constant Impedance, 21.4 to 70MHz

<table>
<thead>
<tr>
<th>Model No.</th>
<th>Stopband loss > 1dB</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHP-30</td>
<td>30.0 25.3-35.0 35.0-50.0</td>
</tr>
<tr>
<td>PHP-50</td>
<td>50.0 41.5-60.0 60.0-90.0</td>
</tr>
<tr>
<td>PHP-70</td>
<td>70.0 58.8-74.4 74.4-100.0</td>
</tr>
</tbody>
</table>

Price, (1-9 qty), all models: plug-in $14.95, BNC $32.95, SMA $34.95, Type N $39.95

NOTE: All 333 and 1870 only with connectors, at additional $2 above other connector models.

P 0 Box 350166, Brooklyn, New York 11235-0003 (718) 934-4500 Fax (718) 332-4661

Mini-Circuits

Finding new ways...
Setting higher standards
Great ideas tend to...

They’re simple. They’re shielded. They go in with a solid click, and release with a gentle squeeze. Keying and polarization are implicit.

And they’re very, very durable. In fact, our Shielded Data Link (SDL) connectors are rated at 3000 cycles. They owe their toughness to design and engineering, and attention to such details as selective gold plating.

Dependability is the essence of friendliness.

But good-looking and hardworking start well before the user sees this connector. The highly effective shield is designed in, so our SDL connector comes as a no-hassle, one-offset flange receptacle makes good use of real estate.

AMP SDL connectors—selectively gold plated for reliability and durability—come in 4, 6, 8, and 16 positions. Optional boot for round cable version protects against electro-static discharge.
piece assembly. It terminates to flat shielded cable in a single step—conductors and shield, plus two-point strain relief. Round cable takes only two steps.

AMP SDL connectors are a cost-effective alternative to crimp-snap type products, whether you do-it-yourself or order custom cables from us in flat, round, or coiled styles. Either way, you benefit from the same ease of application, the same well-thought-out design. And you walk away with the reliability and durability you need.

Receptacle options:
top and side entry, and shunted side entry versions for network applications.

For technical information and literature on SDL connectors, call 1-800-522-6752. AMP Incorporated, Harrisburg, PA 17105-3608.

AMP Interconnecting ideas
People say boundary in low cost, high quality

Now you can test that

Increasing device complexity. Rising pattern development costs. High density packaging. Disappearing nodal access. These are the board test problems boundary scan was created to solve. Which is fine in theory. Only problem is there hasn't been any way to put boundary scan to the test. Until now.

VICTORY - the first software to automate boundary-scan testing.

Introducing VICTORY™ from Teradyne: the only software toolset ready to help you turn boundary-scan theory into a practical advantage. From the moment your first boundary-scan device is designed in, VICTORY starts to simplify the testing of complex digital boards. And the more boundary-scan parts you have, the more time and money you save.

Delivers high fault-coverage.

Whether you're testing one boundary-scan part or boundary-scan networks, VICTORY software automatically gives you 100% pin-level fault coverage. Using the IEEE 1149.1 and BSDL standards, it takes VICTORY only a minute or two to generate test patterns. It would take a programmer days, even weeks to deliver the same fault coverage for conventional designs.

Now you can find stuck-at faults, broken wire bonds, wrong or missing components - even open input pins - all without manual diagnostic probing. VICTORY's fault diagnostics clearly spell out both fault type and fault location. And that's just the manufacturing process.
scan is a breakthrough board testing.

theory.

feedback you need to eliminate defects where it's most cost-effective—at the source.

Helps solve the test access problem.

With boundary-scan design and VICTORY software, you won't need bed-of-nails access on nodes where boundary-scan parts are interconnected. That means fewer test pads. Fewer test probes.

That's a compelling advantage to board designers. Which is why VICTORY's Access Analyzer was developed. With this concurrent engineering tool, designers get testability information early in the design process. They can easily see where test points are required for visibility and where they can be dropped, for optimized board layout without lowering fault coverage.

Good for the bottom line.

Shorter test programming time. Higher fault coverage. Lower PC board and test fixture costs. The bottom line on VICTORY is how positively it will affect your bottom line. And because VICTORY works with all Teradyne board testers, you're free to tailor a test process that's cost-effective for both your boundary-scan and non-scan boards. No matter what your test objectives. For example, with our new Z1800VP-series testers, a complete solution for in-circuit and boundary-scan testing starts at well under $100,000.

Make the next logical move. Call today.

Boundary scan is the design-for-test breakthrough that promises lower cost, higher quality board testing. But don't take our word for it. Call Daryl Layzer at (800) 225-2699, ext. 3808. We'll show you how, with VICTORY software and Teradyne board testers, you can test this theory for yourself.
No guts.

If you can’t get the parts you need, you can’t get your best designs out the door.

And that’s where we can help. With complete families of semiconductors like these. The same components that have made Sony’s consumer electronics so successful.

Perhaps more important, we’re always here to help. With a design center to help develop your applications through production.

With a service department to answer your questions and expedite your orders.

And with world-class manufacturing, including new facilities in San Antonio, Texas, to produce the technology you’ll need in 1992 and beyond.

Let Sony semiconductors bring glory to your products. Call us today at (714) 229-4331, FAX (714) 229-4285. In Canada (416) 499-1414, FAX (416) 499-8290.

SONY

Sony Corporation of America, Component Products Company; 10833 Valley View Street, Cypress, CA 90630.

Sony is a registered trademark of Sony Corporation. Prices and specifications are subject to change without notice. The purchase of products is subject to availability and Sony’s standard terms and conditions of sales.

CIRCLE NO. 73

EDN December 19, 1991
Missing information
In the article on FPGA design methods (EDN, August 5, 1991, pg 122), EDN didn’t include Synoptics as a manufacturer of image-processing boards. The company offers boards for the IBM PC/AT and VMEbus based on the ADSP2100 and a proprietary image processor. The boards offer recursive filtering and slow- or variable-scan frame-grabber modes for RS-170 or CCIR formats. Prices range from $1300 to $34,000.

Synoptics
Paragon Towers
233 Needham St
Newton, MA 02164
Phone (617) 527-4461
FAX (617) 527-4084.

EDN’s article on DSP coprocessor boards in the September 16, 1991, issue, pg 108, also omitted a vendor: Mercury Computer Systems
600 Suffolk St
Lowell, MA 01854
Phone (508) 458-3100
FAX (508) 458-9580.

Mercury’s MC family uses the i860 RISC µP. The article noted that although the i860 is not technically a DSP µP, several vendors have found it to be a very powerful DSP engine. EDN called attention to one such firm’s products and indicated that you could expect to see i860-based DSP boards from other companies. Although any i860-based board can perform DSP operations, only a few vendors of such boards emphasize the DSP capabilities.

Engineers more than 40 years old now often cannot even get jobs in engineering. They have to leave engineering for law, or more likely, as common laborers. Yet our educators and government bureaucrats keep singing the refrain, “Shortage of engineers.”

We are now second-class citizens in almost all areas of electronics because engineering leadership has been reduced to a form of rote labor. Our auto-industry products and major appliances are being made overseas, as well as most of our electronics.

Elimination of the exemption from requiring engineering activities to be headed by qualified licensed professional engineers can help, if it isn’t already too late! A measure of the severity of the situation can be drawn from the fact that whereas new law graduates start as clerks with salaries of $70,000 or more a year, young engineering graduates can’t do better than about $30,000 a year if they can even find a job. And many job openings list salaries in the low $20,000s.

How long will there be a market for our professional journals and specialty trade journals, let alone college engineering courses, if this continues? Isn’t it time that a balance be restored that can prevent further erosion of our engineering infrastructure?

Keats A Pullen, Jr
American Association of Concerned Engineers Inc
Kingsville, MD

NEXT WEEK IN EDN
In the January 9, 1992, EDN News Edition, look for
• a Product Watch on emulators vs logic analyzers
• a Career Opportunities article on medical electronics
• the beginning of the Management/Diversity series.
the world's largest selection
2KHz to 8GHz from $495

With over 300 models, from 2-way to 48-way, 0°, 90° and 180°, a variety of pin and connector packages, 50 and 75 ohm, covering 2KHz to 8000MHz, Mini-Circuits offers the world's largest selection of off-the-shelf power splitter/combiners. So why compromise your systems design when you can select the power splitter/combiner that closely matches your specific package and frequency band requirements at lowest cost and with immediate delivery.

And we will handle your "special" needs, such as wider bandwidth, higher isolation, intermixed connectors, etc. courteously with rapid turnaround time.

Of course, all units come with our one-year guarantee. Unprecedented 4.5 sigma unit-to-unit repeatability also guaranteed, meaning units ordered today or next year will provide performance identical to those delivered last year.

The best names in high-performance computer products all share something in common. They all rely on chips designed by the best name in SCSI, Emulex.

Since 1985, our Micro Devices division has been designing and producing highly integrated, high-performance SCSI chip solutions for the disk, workstation, PC, and SCSI peripherals marketplace. And they’re so fast, reliable, and innovative, they’re in virtually every high-end SCSI system sold today.

In fact, we’re the designers of the renowned Emulex SCSI Processor (ESP) Series for SCSI-I applications, which has sold worldwide to scores of

3545 Harbor Blvd., Costa Mesa, CA 92626
©1991 Emulex Corporation. This advertisement refers to various companies and products or registered trademarks.
companies who buy and integrate our designs into their products.

We're also the originators of the Fast Architecture SCSI (FAS) Series for Fast and Wide SCSI-2 applications, as well as the Triple Embedded Controller (TEC) Series, an ideal single chip SCSI solution for disk applications—which includes a disk formatter, buffer controller, and SCSI controller. So when you're looking for the most effective solutions for your next design project, call Emulex's Micro Devices. And let the best name in SCSI put you in the chips.

(800) 442-7563 or (714) 662-5600 in California

by their trade names. In most, if not all cases, these designations are claimed as trademarks by their respective companies.
For NCR, it's defined by the very things that drive our industry. The changing technology that is the core of what we do. And people who join you in a partnership and provide service that actually exceeds customer expectation.

Because our designers avidly pursue new ideas, they can help make the complex a bit simpler. And when your challenge is to design a system that goes beyond known boundaries - they will provide myriad resources to help you push that design to the limit.

Those resources include industry-leading products like mixed-signal ASICs, Ethernet and SCSI, already considered standards. Or, when your latest design requires a custom solution, these products become the cores for unique devices - providing ever-increasing levels of integration in ever-decreasing space. Moreover, because you can design systems at higher levels of abstraction... you're free to explore a universe of limitless applications... and still save time, money and reduce the...
risks associated with new product introductions.

And your design, when completed, will test and perform exactly as agreed. After all, your success, and ours... depends on it.

For more information, call NCR Microelectronics Division: 1-800-334-5454.
WE'RE GIVING THE 22V10 A WELL DESERVED REST.

The 22V10 was a pretty good part in its day. But now its days are numbered.

Because Altera's new 15ns EP610 is more dense, flexible and less costly.

In fact, the EP610 delivers 60% more macrocells than the 22V10. Which lets you pack a lot more functionality into the same board space and give any design a shot of new life.

And while the 22V10 was rigid, the EP610's programmable clocks and flip-flops give you incredible flexibility. Which means you can program the EP610's registers for D-, T-, JK- or SR-operation or for asynchronous clocks. So it's perfect for all kinds of applications, including counters, state machines, memory and peripheral interfaces, asynchronous logic and more.

Best of all, you get all this at a lower price than the 22V10.

The EP610 also gives you a wide selection of low-cost Altera and third-party development tools to choose from. And a great future to look forward to—the rest of the Altera Classic™ EPLD family. Like our 68-pin, 48-macrocell, 20ns EP1810 with more density and I/O than other mid-range CMOS PLDs. And our 12ns, 20-pin EP330 that replaces over 20 kinds of PAL's and GAL's.

And breathe new life into your designs.
Anyone looking at the electronics industry will see the momentum. And, they will realize that momentum usually relies on evolution. That momentum, and subsequent evolution, is extending to EDN. Starting with our January 20, 1992 issue, you'll see some of the ways in which EDN is evolving to help you better meet your changing needs for information.

A lot of thought and deliberation have gone into our changes and enhancements. In all cases, the new things you'll see arise from communication with our readers. We've looked at the comments on every reader-service card and we've talked with readers in focus groups. We've also run readers' needs surveys to gauge interest in specific types of articles, types of information, and organization, among other things. We know what you want and what you need.

There weren't any great surprises; readers like what we're doing to help them do their jobs better. Nevertheless, you can always improve a product and that's what we've done. For example, you'll see a new cover style. Many of you scanners or skimmers want more information about articles put on the cover. Thus, you'll find article titles and page numbers on the cover in a consistent place every issue. You'll also find our table of contents is easier to use because we're color coding similar articles. The consistent colored labels will identify article types on the cover and throughout each issue. For example, a red or pink bar denotes new products.

We've also added some new sections to EDN. Many of our Special Reports will include an "Editor's Analysis" box that gives engineers and managers distilled information about cost, design, and management issues. Because the electronics business is so closely tied to microprocessors and microcontrollers, we're dedicating special "Processor Update" pages to introductions of µPs, µCs, and related hardware and software tools. Our editors often get their hands on products and will now bench test them. You'll read their findings and critiques in the new "Hands On!" section. Typically, we'll look at computer boards, instruments, design aids, books, catalogs, and other products that we can give a quick review.

Well, there is still more to come, but I'll save that for my next editorial. In the meantime, all of us at EDN wish you and your family a happy holiday season.

Send me your comments via FAX at (617) 558-4470, or on the EDN Bulletin Board System at (617) 558-4241 300/1200/2400, 8, N, 1.
Until now, DOS and couldn't run

Introducing iRMX® for Windows:
Real-Time Windows™ for PCs.

Running DOS or Windows® and real-time on a PC used to create some rather formidable challenges. After all, you could only run one at a time.

Fortunately, there's a whole new direction in real-time processing. It's called iRMX® for Windows. And it's a proven environment that lets DOS and iRMX software work together to generate powerful applications.

This reliable operating system takes full advantage of the protected-mode features of the popular Intel386™ architecture. So it opens new avenues for cost-effective solutions.

Of course, iRMX for Windows also opens some powerful options for software

© 1991 Intel Corporation. iRMX is a registered trademark and Intel386 and Real-Time Windows are trademarks of Intel Corporation. *Windows is a trademark of Microsoft Corporation. iRMX for Windows is an EDN Innovation of the Year Award winner for 1991.
real-time applications concurrently.

engineers. Like bringing the huge installed base of DOS applications, tools, and the popular Windows environment to real-time development. What's more, as a developer, you'll receive professional support from Intel engineers.

All of which is important when you're racing to bring your application to market.

So make the shift to iRMX for Windows.

Call 1-800-GET-iRMX and ask for Lit. Packet #1C. You'll receive our Real-Time Response Kit. And give your next application some serious momentum.

intel
The Computer Inside™
ELECTRICAL COMPONENTS

Amplifiers
Frequency Mixers
RF Transformers
Phase Detectors
Power Splitters/Combiners
ls/Q/QPSK Modulators
Fixed Attenuators
Precision TTL-Controlled Attenuators
Switches and Drivers
Directional Couplers
Terminations
Limiters
Filters

All Mini-Circuits’ components listed in the latest published catalog, in all configurations and connector types, will be processed and shipped within one week after an order is received, or if the order calls for scheduled shipments, we will ship on or before the due date. If we’re late, we’ll deduct one percent per day from your bill (maximum deduction up to 25%, as allowed by law), but don’t count on this discount since we intend to meet each and every scheduled shipment.

What makes this fast turnaround possible? First, fast manufacturing throughput achieved using powerful statistical process-control techniques coupled with the latest computer-automated production and test equipment. Second, a worldwide distribution network, with a major Distributor Center in the U.S. and in England, backed by 16 regional distributors.

We wholeheartedly encourage you to place your orders with your local distributor. But let’s be realistic. Although our distributors stock our products, not every distributor will carry every single catalog item, especially in substantial quantities. In such instances, when the need for components is urgent, contact a Mini-Circuits’ Distribution Center listed and you will be covered by our shipment guarantee.

EDN December 19, 1991
RF/IF CATALOG PRODUCTS
ONE-WEEK... GUARANTEED!

Guaranteed order processing is another expression of Mini-Circuits' dedicated effort for world-class quality... meeting and exceeding customers' expectations. Write, phone, or fax your order and be confident that it will be shipped on time, every time by Mini-Circuits.

CONDITIONS OF GUARANTEE

• ORDER PLACEMENT—guarantee applies only to orders placed with Mini-Circuits' distribution center[1] or with a participating distributor.[2]
• ORDER REQUIREMENT—guarantee starts after all details of the purchase order is received complete.
• SHIPMENT TIME—guarantee applies for work days Monday through Friday, holidays excluded.
• TRANSPORTATION—does not apply to situations where shipping is inhibited due to strikes, weather, or conditions beyond our control.
• GOVERNMENT REGULATIONS—does not apply to purchase orders inhibited by government rules, regulations, export licenses, and/or customs approval.
• QUANTITIES—guarantee applies to normal distribution quantities, which vary according to product line.
• CREDIT RATING—guarantee limited to companies with approved credit rating at time of shipment.
• LETTERS OF CREDIT—guarantee limited to meeting terms of LC.

[1] Mini-Circuits
[2] Participating Distributor
Tek's new encore TDS 400. Extraordinary 4-channel power. Ordinary 2-channel price.

Tek's new TDS 400 Series oscilloscopes make TDS performance from 150 MHz to 350 MHz more portable and affordable than ever.

Now you can pick up where Tek's breakthrough TDS 500 Series left off — with a compact, versatile new series that puts the TDS platform's 4-channel acquisition, multiprocessing and intuitive operation within easy reach of digital, analog and electro-mechanical design, production test, field service, and many other demanding tasks.

For the usual price of two channels, you can now have:
- 100 MS/s sampling on each of four channels.
- On-the-fly signal processing with up to 12-bit vertical resolution.
- Record lengths to 30,000 points.
- Video trigger option with back-porch clamp and dial-up line/field selection.
- 22 time-saving automatic measurements.
- The unique graphical user interface that lets most TDS manuals stay shrink-wrapped on the shelf.

Call 1-800-426-2200 Ext. TDS4, for more information on either the new TDS 400 or the recently-announced TDS 500 Series — with up to 4 channels, 1 GS/s sampling and 500 MHz bandwidth — and for the number of your nearest Tek sales office. We'll put you through to all the right channels, fast!
Designing and manufacturing a monolithic op amp that has a gain-bandwidth product greater than 100-MHz may no longer be the challenge that it once was to IC manufacturers. However, combining wide bandwidth with gain flatness, low noise, low distortion, low phase error and the ability to supply 100-mA of output current—all at a cost-effective price—is quite another matter.

The AD811 current-feedback op amp from Analog Devices is optimized for wide bandwidth and gain flatness when operating from a ±15V supply. This device also solves the myriad problems presented by the demands of high-definition television (HDTV), medical imaging, and other video applications.

For example, compared with a bandwidth of 3.58 MHz for NTSC and 4.43 MHz for PAL standards, HDTV requires a gain flatness of 0.1 dB over a bandwidth of 30 MHz. At a gain of two, the AD811 meets this requirement handily while providing a minimum 3-dB bandwidth of 120 MHz. Moreover, differential gain and phase—key specifications for preventing color shifts and image distortion—are 0.01% and 0.01°, respectively. Another significant feature of the op amp is its ability to drive two back-terminated 75Ω cables, an important consideration when using the amplifier as a line driver in video routers or distribution amplifiers.

The AD811 is suited for medical-imaging applications, which require low noise and distortion. At 10 kHz, the op amp has a typical noise of 1.9-nV/√Hz. At 10 MHz, THD is -74 dBc, and third-order intercepts occur at 43 dBm.

The op amp also suits high-speed pulse applications, such as infrared imaging and digital oscilloscopes, where transient response is critical. The device has a typical slew rate of 2500V/µsec; settling times are 25 nsec to 0.1% for a 2V step and 65 nsec to 0.01% for a 10V step.

You can use the op amp as a buffer for ADCs and DACs or as a stand-alone gain stage: With a ±15V supply, it has bandwidth of 140 MHz at unity gain and 100 MHz at a gain of ten. Even with a ±5V supply, the op amp has a bandwidth of 80 MHz at unity gain and 70 MHz at a gain of ten. Full-power bandwidth (defined as a 10V p-p voltage swing) is 32 MHz.

Although there are devices from other manufacturers that can equal the device’s performance for a single specification, none combine the total performance capabilities of this op amp. Also, competing devices that exhibit similar performance can’t match this op amp’s cost.

The device is available in industrial (-40 to +85°C) and military (-55 to +125°C) temperature grades. Packages include 8-pin DIPs, 8-pin ceramic DIPs, 16- and 20-pin SOICs, and 20-pin LCCs. An industrial-grade device in an 8-pin plastic DIP costs $3.35 (100) and $2.85 (1000).—Dave Pryce

Analog Devices, 804 Woburn St, Wilmington, MA 01887. Phone (617) 937-2507.

Circle No. 732
WHO NEEDS THE SIGNAL PROCESSING WORKSYSTEM?

Anyone involved in DSP and communications design can benefit from the Signal Processing WorkSystem. Because SPW® is the only complete, integrated CAE software tool for signal processing design, simulation, analysis and implementation.

That's why over 200 of the world's leading telecommunications, aerospace and electronics companies around the world now use SPW. With SPW you first create a high-level, hierarchical design using its extensive libraries of DSP and communications function blocks, as well as your own custom blocks. SPW then automatically converts your design into an error-free simulation program that can accept real-world signals and parameters for accurate design analysis.

SPW also provides several optional paths to implementation, including bit-accurate fixed-point simulation, VHDL generation, logic synthesis and other ASIC/PCB support. A code generation system produces generic-C for fast prototyping on any DSP platform, links SPW to DSP chips from AT&T, Motorola and TI, and supports boards from leading vendors.

To preview the Signal Processing WorkSystem, call (415) 574-5800 for a free video demonstration tape. In fifteen minutes, you'll see how SPW can save hundreds of hours and thousands of dollars in DSP design.
Mask-programmable gate arrays field
as many as 20k raw gates/chip and 270 I/Os

Only a small proportion of board designers use gate arrays or ASICs; most board designers rely on PLAs, PAL devices, and complex discrete devices. These board designers are turning to FPGAs (field-programmable gate arrays) for higher logic densities and I/Os to fill the gap between ASICs and PLDs. FPGAs appeal to PLD designers because of a PLD heritage with fixed logic cells. Crosspoint Solutions has considered the needs of board designers when modeling its CP20K FPGA series on gate arrays.

CP20K FPGAs have a gate-array-like structure with rows of basic gate and register transistor cells. They offer an almost sea-of-gates, gate-array granularity in an FPGA form. Taking advantage of this similarity, the manufacturer has integrated the array libraries and tools with workstation CAE tools from Mentor Graphics, Viewlogic, and Cadence. Thus, gate-array designers can switch to these FPGAs without changing tools. Even better, they can prototype their designs using a relatively low-cost FPGA, thereby minimizing nonrecurring engineering costs.

The one-time-programmable FPGAs fall below current gate-array densities and speeds. Densities range from 2.2 to 20.6k raw gates and reach clock speeds as high as 40 MHz for a counter and 52 MHz for a flip-flop driving three gate levels (fanout = 3) to another flip-flop. FPGAs are slower because of their programmable interconnections. As many as 7 million programmable interconnections may be in the large 20k-gate array, although the company expects only 3 to 5% to be programmed for a typical design. The FPGAs do, however, approach mainstream gate-array I/O counts, with available I/Os running from 91 to 270 pads.

Each array has rows of diffusion layers. A row of gate pairs overlaid with register cells constitutes a single diffusion layer. The FPGA alternates diffusion-layer rows with horizontal rows of routing resources. Lying vertically across these rows is vertical routing metal for local, as well as long routing.

Unlike most FPGAs, which have complex logic cells, the granularity of the Crosspoint cells is at the basic gate level. This fine logic granularity allows designers to work at the gate level. The array's gate transistors are ordered into transistor pairs called transistor-pair tiles, two of which make up a 2-input NAND gate. Register resources are organized into RAM logic tiles that sit on top of four transistor-pair tiles. You can use RAM-logic tiles for combinatorial logic as well, such as multiplexers, XORs, and NORs.

An innovative feature of these arrays is their structuring for register-intensive designs as well as control logic. Each array has a built-in register grid, linking the RAM-logic-tile resistor resources to a memory structure (Read, Write, Column Se-
THE MOST COMPLETE OFFERING OF SURFACE MOUNT WIRE-WOUND INDUCTORS

- Expanded line of low-profile Industry Standard Series 1010, 1210 & 1812 inductors
- Series 1330/1331 and 2510 are direct physical and electrical replacements for standard shielded and unshielded axial leaded inductors
- Inductance values from 0.22 µH to 1000 µH - shielded units to 560 µH
- Exclusive terminations offers proven reliability with any soldering method
- Our SM Inductor designs are covered by U.S. Patent numbers 4,914,804, 4,801,912 and 4,934,048
- Designs available in 1%, 2%, 3%, and 5% tolerances
- Complete lot traceability with each unit

DELEVAN / SMD Divisions
AMERICAN PRECISION INDUSTRIES
Electronic Components Group
270 Quaker Road, East Aurora, NY 14052-0449
(716) 652-3600 FAX (716) 652-4814
MADE IN AMERICA BY AMERICAN CRAFTSMEN TO AMERICAN STANDARDS OF EXCELLENCE

EDN EDITORS' CHOICE

memory mix. The more registers there are, the higher the density should be. A built-in clock-distribution network minimizes skew, holding it to 1.3 nsec/clock.

The manufacturer is also fielding a programmer/tester for its arrays. The device ties into the arrays via a standard JTAG (Joint Test Action Group) port, taking four I/O pins running at 20 MHz. In addition, it provides parts pretests: a simple, 2-minute programming test and a production test. A JTAG boundary scan can test the programmed part. A developmental tool set backends standard CAE tools. It allows engineers to interactively hand-place and route, as well as automatically place and route. The tool set handles engineering change orders, and it allows users to freeze or thaw portions of the design for rework. The set provides a delay calculator and a pin and package editor.

The FPGAs use 3.5V internal logic, mainly to support 10V programming. As a side effect, the arrays consume less power than standard 5V parts. In addition, the transition to 3.3+ voltages for future systems will be easy, eliminating the present level translators at the I/O buffers.

The company uses a 0.75-µm, 2-level metal CMOS process for the arrays. The programmable interconnection is a metal-to-polysilicon antifuse with a native R_{off} of 1 GΩ and a programmed R_{on} of 100Ω. Each connection has low capacitance, measuring 0.65 fF per antifuse.

Each chip has five power and ground planes that have four decoupling capacitors. The devices come in ceramic PGAs (pin grid arrays), ceramic quad flatpacks, and plastic quad flatpacks. The CP20420 4245-gate FPGA will be available next month in a 155-pin ceramic PGA for $277.70 (100). The programmer/tester sells for $4000.—Ray Weiss

Crosspoint Solutions Inc, 5000 Old Ironsides Ave, Santa Clara, CA 95054. Phone (408) 988-1584. FAX (408) 980-9594.

Circle No. 733
In today's competitive business climate, product development is a perilous journey. One slip can mean lost opportunity... or worse. You've got to plan intelligently, execute on time, and use the best available technology. If you don't, your competitors undoubtedly will.

Why put up with risks and shortcomings associated with obsolete power technologies... bulky, one-of-a-kind designs; program delays; agency approval cycles; last minute surprises; and unproven field reliability. Vicor's power component approach has been proven by thousands of users to be the fastest and most predictable path to successful power system development. And Vicor's complete line of "plug and play" power system building blocks offer unprecedented design flexibility and result in smaller, cooler, more cost-effective products.

Tired of power development cliffhangers? The solution is right at your fingertips... just give us a call.

Component Solutions For Your Power System

Vicor

23 Frontage Road Andover, MA 01810
TEL: (508) 470-2900 • FAX: (508) 475-6715

EDN December 19, 1991
8051 family gets second wind; new versions extend life of classic μC

Old 8-bit microcontrollers don’t quietly fade away, they just get more peripherals. And so the venerable 8051 family is quietly expanding as Intel and 8051 licensees continue to pour in additional capabilities.

Today’s 8-bit 8051 carries a lot more muscle than did the early versions introduced in the late 1970s. The 8051’s on-chip memory was initially limited to 128 bytes of RAM and 8 kbytes of ROM. Vendors have pushed beyond those limits to include as much as 2 kbytes of on-chip RAM and 32 kbytes of on-chip EPROM. Peripheral muscle has also been added to the microcontroller: as many as nine 8-bit I/O ports, multiple timers and counter arrays, and even a beefed-up math peripheral with a 32-bit divide and 16-bit multiply.

Processor speeds are up, too. Matra and Phillips Components (Sunnyvale, CA) have pushed clock rates to 30 and 33 MHz, respectively, from the original 12 MHz. Other efforts to speed up the 8051 family are focusing on the core’s 12-clock-stage instruction cycle. Oki Semiconductor’s reworked 8051, the nX 65 K series, executes instructions in four clock cycles, compared with the original 8051’s 12 cycles.

New 8051 versions include

- Oki Semiconductor’s one-time-programmable version of its nX 65K series. The architecture of this series is a superset of the 8051 architecture. The series has a fast core and 4, 8, or 16 kbytes of ROM and 128, 256, or 384 bytes of RAM. Prices start at $6.51 (5000). Oki Semiconductor Inc, 785 N Mary Ave, Sunnyvale, CA 94086; (408) 702-1900. Circle No. 734

- Siemens’s SAB/80C517A/88C517A-5. This 8051 version has an additional 2 kbytes of external RAM and as much as 32 kbytes of ROM. Its clock rate is as fast as 18 MHz. The device also has seven I/O ports, a 10-bit ADC (8 channels), six counters, eight 16-bit data pointers, a 16-bit-multiply and 32-bit-divide unit, and a 21-channel PWM. Prices start at $15 (1000). Siemens Integrated Circuit Div, 2191 Laurelwood Rd, Santa Clara, CA 95054; (408) 980-4500. Circle No. 735

- Signetics’s 83C524/87C58. This 512-byte-RAM version has as much as 32 kbytes of ROM or EPROM and runs as fast as 16 MHz. The chip includes two serial ports, three timer/counters, and the company’s FC (Inter Integrated Circuit Bus) serial interface. Prices start at $7.50 (10,000). Signetics Co, 811 E Arques Ave, Santa Clara, CA 94088; (408) 991-2000. Circle No. 736

- Matra’s high-speed 8051s. Based on a fully static design, the 80C52, 80C32, and 80C154 now come in 25- and 30-MHz versions. The 80C154 also comes in 16- and 32-kbyte-ROM versions. The chips have three counter/timers, a full-duplex serial port, and 256 bytes of RAM. The 80C31Ω-30 costs $6 (10,000). Matra Design Semiconductor, 2895 Northwestern Pkwy, Santa Clara, CA 95051; (408) 986-9000; FAX (408) 748-1038. Circle No. 737
And over the last year, several vendors made some significant extensions to the 8051. Intel introduced its 87C58/80C58, which has as much as 32 kbytes of EPROM, and the 87C51FX, which has a set of programmable counter functions. And Signetics pushed out more microcontroller units with its chip-level serial bus, the FC. This bus is part of Digital Equipment Corp’s proposed Access Bus for low-speed desktop peripherals. It may become a standard.

Vendors continue to modify and extend the 8051 because of the device’s popularity. Many engineers like the 8051 because of its many versions and the wide range of on-chip peripherals available. “With the 8051, if I need more power or different peripherals I can just go to another chip,” says Jim Manley, director of electronic design at Span Instruments Inc (Costa Mesa, CA). Many take advantage of this prolific processor family to move to a higher-level language like C from assembly language. They pay for the additional overhead by moving to a more powerful chip.

The 8051 microcontroller has a rather baroque architecture. On one hand, it provides a complete set of processing operations including complex addressing and bit operations. The architecture provides memory-mapped I/O control.

On the other hand, Intel designers made some design compromises that complicate programming the device. For example, the 8051 has a complex addressing scheme that includes indexed, direct, and indirect addressing. But some addressing capabilities apply to only some areas, thus segregating entities that share the same address space (special-function registers share the same space as external RAM, for example). Also, bit operations are confined to an addressing set of 128 bits in local RAM.

On the positive side, the 8051 has direct bit addressing, four register sets in RAM, and a pseudo-Harvard architecture with as much as 64 kbytes each for program and data memory. On the down side, off-chip memory accesses take an additional instruction cycle, making off-chip access expensive. Competing microcontroller units, such as the Motorola 68HC11, take the same time for on- and off-chip accesses. Also, the 8051 has one 16-bit pointer, which makes off-chip addressing difficult. However, Siemens has added a set of eight pointer registers to its 80C517A.

Many engineers find the 8051 easy to learn and program, but they find its peripherals complex. Intel, for example, has gone beyond the original two counter/timers by adding more counters, a programmable counter array, and an up/down counter. Similarly, other vendors have added their own versions of advanced counter peripherals.

Designing in 8051s can be easy. Dallas Semiconductor Corp (Dallas, TX) offers an 8051 superchip, the DS5000. The device is a hybrid: Inside is an 8051 CPU, 8 or 32 kbytes of RAM, and a battery backup—in other words, a complete system.

—Ray Weiss

Intel Corp, 5000 W Chandler Blvd, Chandler, AZ 85226. Phone (602) 554-2388.

Circle No. 738
Transceiver IC handles both T1 CSU and ISDN primary-rate interfaces

The LXT310 transceiver integrates most of the elements of a T1-rate telephone channel-service unit (CSU) with ISDN primary-rate interface compatibility into one IC. The device allows you to build CSU capability into other customer premise equipment rather than having to add separate units.

The transceiver has separate transmit and receive ports, each capable of either bipolar or unipolar operation. Both ports integrate most of the active components needed for connection to the telephone network, requiring only isolation transformers and impedance-matching resistors to complete the interface. The device complies with relevant industry standards, including ANSI T1.403 and 408, FCC part 68, and AT&T Pub 62411.

The transmit port can drive signals through twisted-pair cable as long as 6000 feet. To handle shorter cables without needing tuned output circuits, the port offers selectable frequency-dependent line build-outs. You can select 7.5, 15, 22.5, or 0 dB of attenuation.

The receive port has a programmable receive equalizer. To increase noise margin in shorter loops, you can limit the maximum equalizer gain to 26 dB; otherwise, you can allow the gain to range to 36 dB. Using a status I/O pin, the receive channel reports on the line insertion loss as indicated by the equalizer gain setting.

The transmit and receive channels both have selectable B8ZS encoder/decoders. In addition, the channels share a low-frequency (3-Hz) jitter-attenuator circuit. You can select which channel uses the attenuator. The attenuator stores incoming data in a FIFO register, then reclocks the data. The output clock adjusts by intervals as small as 1/4 of the clock period.

The transceiver offers several diagnostic features. For example, you can set the transmit section to produce a continuous stream of 1s at the transmit clock frequency to test the cable. You also have a choice of two loopback tests. The local or software methods for controlling the device. The hardware method uses hardwired control pins and coded signals on data pins to select the various operating conditions. If you prefer software control, the device offers a serial communications port for exchanging commands and status information.

The LXT310 operates from a 5V supply and typically consumes 300 mW. It comes in a 28-pin PLCC (plastic leaded chip carrier) and ceramic and plastic 28-pin DIPs. Prices are $30 to $33, respectively (1000).

—Richard A Quinell
Level One Communications Inc, 105 Lake Forest Way, Folsom, CA 95630. (916) 985-3670. FAX (916) 985-3512.

Circle No. 731

EDN December 19, 1991
Now, the price and performance you want in 15V video op amps.

Here's great news for designers of 15V systems. Comlinear now offers its technology in monolithic, 15V video op amps. And, at a very attractive price.

Better video specs... lower price.
Immediately available, and priced at just $2.54* in 1000s, the new 55MHz CLC430 offers a lower-cost alternative for professional video applications. What's more, it delivers differential gain/phase of 0.02%/0.04°, plus superior multiple-load performance to meet the demanding standards of composite video... reliably and consistently.

It gives designers of high-speed signal processing systems a fast 2000V/us slew rate and 35ns settling time to 0.05%. Plus a high-speed disable/enable feature, making it ideal for video switching and multiplexing applications. All in an industry-standard DIP pinout, or a space saving 8-pin SOIC package.

So take advantage of the latest in Comlinear's growing family of video products. Call today for details.

*U.S. price only

CIRCLE NO. 30
Software package lets you postpone selecting of field-programmable parts

Recently released "device-independent" field-programmable gate array (FPGA) tools map your design to any of several specific FPGA architectures, but you still use device-specific place-and-route tools from FPGA vendors to lay out your circuit. FPGA Foundry goes a step further than the recent tools from Data I/O, Exemplar Logic, and Viewlogic Systems because it features place-and-route modules for several FPGA architectures.

The place-and-route modules differ from FPGA-chip-vendor-supplied tools in one key respect: The modules accept timing constraints that enable you to define clock restrictions or path delays. In contrast, vendor-supplied tools are not deterministic; you can place and route 50 iterations and get 50 different layouts—some of which may not meet your timing requirements.

The timing constraints in FPGA Foundry alleviate the necessity of running several place-and-route iterations; the deterministic result will either meet your constraints or fail to complete. (A better implementation would have been to let you choose whether to fail or to complete with warnings.) On failures, you can derate your constraints and try again. One advantage of deterministic software is that it allows incremental modification of the design; small design changes cause small layout changes.

The software provides device-independence by converting your design into low-level-logic intermediate data structures. Although your data is converted, the software still maintains whatever device-specific information you provide as part of the structure. As a result, you can design to a particular FPGA using macrocells and logic geared toward that architecture, yet still experiment with other alternatives.

Similarly, you can use the software to prototype or convert designs between masked semicustom implementations and FPGAs. Create your circuit using your silicon vendor's library, generate an EDIF netlist, map and lay out the netlist in an FPGA, and test the prototype. The final, most important step comes after verifying the function; make sure you check the timing to see that it works.

One hitch in designing a device-independent circuit is that you may use device-dependent functions that may not exist on another device. For example, Actel devices contain on-chip oscillators, Xilinx devices don't. If your design uses an oscillator and you want to place the design in a Xilinx chip, the software won't lay out the circuit.

A timing estimator is part of the software tool kit. This module uses the clock speed and levels of hierarchy to guide the mapping algorithms and place-and-route tools. Tight coupling enables all of these tools to communicate during a run to ensure a placement that meets timing and resource constraints.

An interactive graphic editor offers three modes. The read-only mode lets you view and interrogate the layout. A second mode maintains logic consistency while permitting gate and implementation changes. The third mode is an editor in which you can manually place-and-route the entire design.

The package uses a modular approach that currently includes mapping and place-and-route algorithms for Actel and Xilinx FPGAs. Neocad developed these algorithms.
With apologies to our competitors, we plan to keep on leading the way in read/write IC technology.

And why not? For nearly two decades Silicon Systems has been increasing performance and reducing power demands in an expanding range of pin-compatible functions. All designed for a world of ever-shrinking form factors.

Current achievements include low-power, +5v only read/write devices that consume under 5mW in idle mode. Our new two-terminal read/write amplifier for thin film and MIG heads. A read/write device for both 3-terminal and ferrite and thin film applications. And devices with up to 16-channel capability.

Hold on tight, though. We’re just warming up.

On the drawing board are ICs for MR heads, optical disk drives and a variety of other applications. There’s just no end to our involvement.

If you need flexible and far-reaching read/write IC solutions for your next generation of products, call us for literature package SPD-15. We’ll send you our new Read/Write IC Short Form Catalog, give you the name of your nearest Silicon Systems representative and update you on our latest developments. 1-800-624-8999, ext. 151
No two emulators run the same. The trick is to get the best functionality you can for your investment. With the SIGNUM 8051 family in-circuit emulator you get even more... you get:

- Outstanding price/performance
- Easy window interface & flash download
- Free user support
- C and PL/M debuggers
- Local variable support
- 512K mappable emulation RAM with 256K H/W breakpoints
- Break on register ranges
- Program & external data access on the fly
- Bank switching
- A no-risk, iron-clad guarantee

SIGNUM also has the Intel 8048, Zilog Z8 and Super-8, Texas Instruments DSP, the 8051/52 (from AMD, Siemens and Signetics), and more chips covered.

So, don't just look at in-circuit emulators. The only way to truly test an emulator is to use it. Call for your own free trial and demo disk.

You owe it to yourself to find how much emulator you can really get for your money.

10 DAY FREE TRIAL

SIGNUM SYSTEMS
171 East Thousand Oaks Blvd.
Thousand Oaks, CA 91360
Tel: 805-371-4608 • Fax: 805-371-4610

CIRCLE NO. 53

UPDATE

without assistance from either company.

Support for devices from other FPGA vendors is under consideration. When available, these algorithms will be delivered as optional modules costing roughly $5000 to $7500 on the PC.

The software currently accepts design data in several formats. EDIF 2.0, LPM (Library of Parameterized Models) standard formats as well as Xilinx- and Actel-specific formats are presently supported. Hooks written into the code will let the tool accept data from CAE- and ASIC-vendor libraries.

Outputs from the software include a cross-reference file, a utilization report, a file containing actual timing delays for back annotation into your simulator, and the output file to program the FPGA. The cross-reference file lets you find buried, replaced, or deleted nodes between schematic and layout. The report generator provides feedback on path and net delays, logic block and I/O utilization, and remaining FPGA resources.

The company is also separately offering its Xilinx place-and-route module. This module does not provide device independence—it only lays out Xilinx FPGAs. The module piggybacks off the Xilinx front-end tools. This software uses the Xilinx intermediate format and, therefore, doesn't support timing. Its cost starts at about $8000.

Written in C++, the software runs under Windows on DOS workstations and on Unix-based workstations running X-Windows and Motif. The company claims the software will be available in January, starting at $18,000.

—Michael C Markowitz

Neocad Inc, 2585 Central Ave, Boulder, CO 80301. Phone (303) 442-9121. FAX (303) 442-9124.

Circle No. 730

CIRCLE NO. 51

You can control any IEEE-488 (HP-IB, GP-IB, 488.2) device with our cards, cables and software for the PC/AT/386, EISA, Micro Channel and Macintosh II. You get fast hardware and software support for all the popular languages, plus a software library of time saving utilities.

Instrument control has never been easier.

FREE
Informative Catalog 800-234-4CEC
Applications help 617-273-1818

CIRCLE NO. 53

Micro Channel is a trademark of IBM

Capital Equipment Corp.
Burlington, MA. 01803

CIRCLE NO. 51

EDN December 19, 1991
Finally, engineering software that clears the way to problem solving without programming.

```c
void service_id(int eid);
{ int stat, byte;
  // serial poll inst
  byte=hpib_spoll(eid);
  if (byte<0) {
    printf("SRQ Prob\n");
    return;
  }
  stat=my_read(eid, DVM);
  if (stat>0) {
    buffy[stat] = '\0';
    printf("Data from instr\n");
  } else printf("I/O read error\n");
  return;
}
main() {
  int busid, stat, MTA, MLA;
  char command[MAXCHARS];
  busid=open("/dev/hpib7", O_RDWR); /* open raw HP-IB for
  MTA=hpib_bus_status(busid, CURRENT_BUS_ADDRESS) + 64;
  MLA=hpib_bus_status(busid, CURRENT_BUS_ADDRESS) + 32;
  stat = BUTTON_BIT;
  sprintf(command, "KM%02o", stat); /* 2 octal digits */
```

With HP VEE, you simply link the icons.
Computers are great for problem solving, if only programming didn’t get in the way and slow you down. And now, it doesn’t have to. Because the HP visual engineering environment (HP VEE) lets you solve problems without programming.

With HP VEE, you explore solutions visually by arranging and linking icons on the CRT. Each icon represents and executes a specific function for data collection, analysis—from simple mathematics to complex algorithms—and presentation. You don’t have to write a single line of code.

There are two HP VEE software packages for prototyping, experimentation, and problem modeling. HP VEE-Engine, at $995*, is a general-purpose tool for analysis and presentation of existing data. HP VEE-Test includes HP VEE-Engine and adds extensive I/O capability, including soft panels and device I/O objects for $5,000*. So, if programming is keeping you from solutions, call 1-800-752-0900. Ask for Ext. 2380, and we’ll send a brochure on clearing the way with HP VEE.

* U.S. list prices

There is a better way.

©1983 Hewlett-Packard Co. TMMO/18A/EDN

CIRCLE NO. 60

59
Actually, a bullet doesn’t do it justice. But you get the picture. Motorola’s new 68330 integrated microprocessor is fast.

And well it should be. After all, it gets its firepower from a 68020-based core processor that’s optimized to run on a 16-bit data bus. So you get 32-bit microprocessor performance with the economy of a 16-bit memory system.

As the simplest and lowest priced member of the 68300 family, the ‘330 is an ideal companion to your favorite peripheral circuits. Even if you’ve already combined them into an ASIC or custom circuit.

What’s more, the 68330’s Systems Integration Module comes already loaded with system glue logic. Saving you the trouble of designing in functions like clock...
HOW PURCHASING SEES IT.

So if you're looking for 32-bit performance at a 16-bit system price, call 1-800-845-MOTO. Ask for a free 68330 product sample, and discover a high-caliber value.

© 1991 Motorola Inc. All rights reserved.
Schematics battle equations for design representation

Debates have raged for years over whether equations or logic schematics are the best design form. Today, that debate is overshadowed by a shift toward synthesis—mapping design representations into silicon.

Ray Weiss, Technical Editor

In the “Good Old Days,” engineers had total control over their designs. Schematics, with gate-level design, ruled. If you drew it, you had it; a gate on a schematic was a gate on the board. Not so today—the designer-to-board connection is not as close, and schematics must compete with equations, as well as truth tables and hardware description languages (HDLs), to represent designs.

Designers no longer have just one universal design representation, but this diversity means they can use the best mechanism for each type of logic. “We use what works. We do PAL [programmable array logic] devices in equations,” says Bob Donaldson, chief engineer at Annapolis Microsystems (Annapolis, MD), “and we use mainly schematics for FPGAs [field-programmable gate arrays]—they let us get close to the configurable-logic-block cell structure for efficient design.” However, opinions of what is best for each type of logic keep shifting.

But more is going on than just a simple competition between schematic-level and equational design methodologies. Engineers are turning to sophisticated tools to optimize and map their designs into silicon. Even with a gate-level schematic, tools may translate and optimize that design into an unrecognizable gate-level implementation.

Design methodologies and tools
are tied closely to the underlying implementation logic. Logic schematics, for example, meshed well with traditional 5400/7400 TTL SSI and MSI ICs. Over the last 30 years, three major logic waves have impacted engineers’ design methods and representation (see box, “Logic waves”).

The shift to equations

Programmable logic is responsible for a large-scale shift in design methodologies from logic schematics to equation-based design. During most of the 1970s and 1980s, programmable logic was largely ignored by mainstream CAE. Today, the majority of board-level designers work with programmable logic.

However, because of its early isolation, programmable logic developed its own brand of representations, including fuse maps and various equational forms. Hardware languages, such as Palasm, Cupl, Abel, and AHDL, evolved during this time for programmable as well as standard logic.

PLDs had fixed logic forms that lent themselves well to easy equational representations. PLAs had a sum-of-products form, with an AND array feeding into a selectable OR array. PAL devices simplified this structure by linking the AND array into a fixed OR array, linking each output to a fixed OR, and having a set number of AND-gate inputs. These PLA and PAL-device structures made it easy for designers to write simple AND/OR equations that mapped directly into the programmable silicon. Not only that, if a design needed changing, designers could simply reprogram a new part, or, with EPLDs, erase the old design and replace it.

PLAs and PAL devices now basically own the board-level design world. “This is the age of PAL-device design,” says Trevor Marshall, president of Yarc Systems Inc (Newbury Park, CA). In achieving dominance, PLDs led design into the world of equations: Most PLD designs are done in equations or a PLD language.

EPLDs and FPGAs have emerged to deal with logic problems beyond the PLD’s grasp. They are large-scale programmable devices with higher pin counts and gate counts than PLDs. Typically, they are built around one or two core logic

You don’t have to use logic schematics or equations to represent logic. Minc’s PLDesigner software lets you use waveforms to represent PLDs. The circuit shown enables a microprocessor to read data from dynamic memory. Inputs appear as (LI) and outputs appear as (O).
FPGAs (field-programmable gate arrays) is that EPLDs use a hierarchical logic structure and fixed routing to combine cells, whereas FPGAs tend to follow the gate-array model, embedding a set of cells in a flat routing structure.

Designing for EPLDs and FPGAs is much more complicated than writing a set of equations for a simpler PLD. Placement and routing become critical for many designs—timing can change drastically depending on placement and signal routing. In general, FPGAs have more flexible routing than PLDs, but they're prone to wider variations in signal delay and skew.

"FPGA-based design is an iterative process," says Billy Beckworth an engineering consultant at Beckworth Enterprises (Mesquite, TX). "I work mainly with schematics. And I do a lot more simulation with them. I try a design and see how well the implementation works and change it as needed." Beckworth works with Actel FPGAs and finds that simulation takes up most of his design cycle.

With EPLDs and FPGAs, designers must map their logic into a collection of cells. This method is somewhat similar to designing with MSI-type logic, but mapping EPLDs and FPGAs into cells only lets designers use one or two MSI functions. However, some EPLD and FPGA cells allow designers to use elements in a cell for different macros or designs. In a Quicklogic (Santa Clara, CA) FPGA, for example, each cell can be treated as three separate elements for design.

Many EPLD and FPGA designers use vendor-supplied macros as design elements. The macros are optimized MSI components made up of cells. These macros serve as logic blocks and lend themselves well to schematic-based design.

ASICs have led large-scale design. But ASIC design levels have been growing slowly. Vendor capabilities have far outstripped mainstream usage. Vendors can deliver usable gate densities of over 200,000 gates. But the typical gate-array design uses far fewer than 20,000 gates.

Many engineers and managers believe the barrier to high-density usage is that few design teams or companies have the capability to define, test, and maintain large-scale gate-level designs. Most ASIC designs have been done the old-fashioned way—with schematics, using primitives and library macro elements.

However, ASIC designers are shifting away from gate-level design and schematics toward higher-level representations. One company shifting its ASIC-design methods is Teradyne Semiconductor Test Division (Agoura Hills, CA), which builds high-performance VLSI testers having hundreds of ASIC chips.

"We're going to VHDL and logic synthesis," says Ben Brown, hardware engineering manager. "We used gate-level design at up to 200 MHz for our J971 tester. We averaged about a man year per ASIC on it. As chip densities go up, we need to up our productivity. HDL-based design offers a way up. There are some things I have some problems with, such as verification at the language level. But we've talked to a lot of users and feel it will work for us."

Almost all the major computer and workstation vendors are working with an HDL and logic synthesis. For example, IBM has designed its mainframes for years using this combination. Similarly, Sun Microsystems uses an HDL for its workstation designs.

HDLs, such as Verilog and VHDL, enable engineers to describe their designs at a behavioral or register-transfer level and to verify the designs through simulation rather than breadboarding. However, until recently the HDL-based design had to be hand translated down to a gate-level design.

Some logic-synthesis tools can overcome that problem. These tools translate the HDL-based design into a silicon implementation. Synthesis tools from Synopsys, Mentor Graphics, Racal Redac, Exemplar, and Viewlogic optimize implementations to meet user-defined speed or area constraints. One of the major benefits to synthesis is a level of independence from the underlying silicon. Engineers can move their designs to different ASIC families, different vendors, or even different silicon technologies.

This new combination of HDLs and synthesis is a major force in the ASIC-design shift from schematic logic to equational forms. Many engineers predict that within five years the bulk of ASIC design for glue and control logic will be in an equational form.

However, all is not perfect yet. Synthesis is still at the logic-chunk level—designers must partition their designs into synthesizable chunks by trial and error. Also, synthesis comes up short in critical areas such as clock distribution and high-speed buffering with latches.

Bucking the trend

Over the last decade, equations have steadily advanced into the schematic world. A key factor has been the engineering shift to equation-based PLD design. Now, however, that invasion shows signs of losing momentum as engineers shift back to schematic based design for the

"Programmable logic is the TTL of the 90s... My advice is to just dive in and start using it."—J Stewart Dunn
Logic waves

Design representations (schematics and equations) closely connect to their underlying logic. So as engineers have moved from logic family to logic family, the design representations they’ve used have also shifted. The last 30 years have seen three major waves in mainstream logic design:

- **5400/7400 SSI/MSI (TTL forms)**
- **programmable, packaged logic (PLDs: PLAs and PAL devices)**
- **large-scale logic (EPLDs, FPGAs, and ASICs)**

In the first wave, the logic-design community reached an unparalleled degree of commonality and standards. Designers expressed most logic in standard SSI (small-scale integration) and MSI (medium-scale integration) forms. Engineers could go to any company and be comfortable with their design representations (everybody used the same design templates to draw their logic).

The second logic wave started in the 1970s with the emergence of programmable logic. When traditional schematic forms proved cumbersome, designers shifted to equational representations, which fit the sum-of-products structure of programmable logic. Engineers used simplified hardware languages, such as Abel, Cupl, and Palasm, as well as other forms, such as truth tables and even schematics, to design devices.

The third logic wave has paralleled the first two waves, slowly picking up momentum over time. This third wave, large-scale chip design, includes both ASICs and emerging large programmable logic: EPLDs (erasable programmable logic devices) and FPGAs (field-programmable gate arrays). Larger designs built on more flexible logic components reflect these devices’ greater complexity. Most third-wave design activity is at the schematic logic level; however, ASIC designers, particularly those tackling large designs, are turning to equational forms, using hardware description languages such as VHDL and Verilog.

You can view these three design waves and their underlying silicon as a silicon continuum, ranging from 5400/7400 TTL to gate arrays and standard cells. **Fig A** shows this continuum as one axis, with design mapping as the other axis. At the far extremes—SSI/MSI discretes and high-speed ASICs—most design is at the gate level and has a one-to-one mapping to the raw logic primitives.

However, as design moves from the earlier 5400/7400 components to more modern chips, engineers increasingly rely on design tools to optimize and map their logic into the target circuitry. PLA, PAL-device, and GAL (generic array logic) designers use optimizers and hardware languages. EPLD and FPGA designers rely on optimizers as well as place-and-route tools to map logic to the underlying FPGA cells. And ASIC designers are increasingly turning to synthesis (a software-based logical mapping) and HDLs.
COMPUTER-AIDED ENGINEERING

higher-density EPLDs and FPGAs. EPLD and FPGA vendors provide a path for engineers to stay with schematic-level design using libraries of vendor-supplied macros. Engineers can cobble together their designs using macro building blocks; and they can do so using schematics.

"I use schematic entry for FPGAs," says Highgate's Steve Wasson. "We build our own equivalents to the vendor's macros for efficiency. And we lay out a design in schematics and then tweak it to get high density and efficient routing. Schematics let us see what is happening and serve as a final design medium. We put constraints on the design, such as which pin aligns to what signal. With careful work we can get 75 to 85% gate usage."

"We use equations for PAL devices, and generally schematics for the larger PLDs," says J. Stewart Dunn, vice president of R&D at Datacube (Peabody, MA). "With PAL devices, it was easy to see if a design would fit into a part. With the larger programmable parts, some designs won't fit. And we either redo the design or do hand fitting and routing. In general, equations are much faster—you can change a design in a few hours and have a new part—whereas changing a schematic can take two days. However, for larger PLDs, schematics are the best way now to do design and map into the hardware."

Designers don't have to stay with schematics, they can choose from HDL alternatives. For example, Altera developed its own hardware language, AHDL. The language is basically an extension of the Abellike languages, which feature simple logic equational forms. AHDL, however, supports hardware modules (subdesigns)—designs can be made up of multiple logic modules. Also, Data I/O's Abel now supports a number of EPLDs and FPGAs as well.

The verdict isn't in yet on which design representation is preferable for EPLDs and FPGAs. New tools are emerging that open FPGA de-

For more information...

For more information on the products discussed in this article, circle the appropriate numbers on the Information Retrieval Service card or use EDN's Express Request service. When you contact any of the following manufacturers directly, please let them know you saw their products in EDN.

- Actel Corp
- Altera Corp
- Camp Design Automation
- Compass Design Automation
- Crosspoint Solutions Inc
- Cypress Semiconductor
- Data I/O Corp
- Exemplar Logic
- Logical Devices Inc
- LSI Logic Corp
- Mentor Graphics Corp
- Mine Inc
- Minc Inc
- Racal-Redac
- Synopsys Inc
- Viewlogic Systems Inc
- Xilinx Inc

VOTE...

Please also use the Information Retrieval Service card to rate this article (circle one):

- High Interest 506
- Medium Interest 507
- Low Interest 508
THE NEW MICRO-CAP III™
SO YOU CAN TEST-FLY
EVEN MORE MODELS.

It wasn't easy. But we did it. Made the
long-time best-selling IBM® PC-based
interactive CAE tool even better.

Take modeling power. We've significantly
expanded math expression capabilities to
permit comprehensive analog behavioral
modeling. And, beyond Gummel Poon BJT
and Level 3 MOS, you're now ready for
nonlinear magnetics modeling. Even
MESFET modeling.

Analysis and simulation is faster, too.
Because the program's now in "C" and
assembly language. That also means more
capacity — for simulating even larger
circuits.

As always, count on fast circuit crea-
tion, thanks to window-based operation
and a schematic editor. Rapid, right-from-
schematics analysis — AC, DC, fourier and
transient — via SPICE-like routines. The
ability to combine digital/analog circuit
simulations using integrated switch
models and parameterized macros. And
stepped component values that stream-
line multiple-plot generation.

And don't forget MICRO-CAP III's
extended routine list — from impedance,
Nyquist diagrams and BH plots to Monte
Carlo for statistical analysis of production
yield. The algebraic formula parsers for
plotting virtually any function. The support
for Hercules, CGA, MCGA, EGA and VGA dis-
plays. Output for plotters and laser printers.

Cost? Still only $1495. Evaluation ver-
sions still only $150. Brochure and demo
disk still free for the asking. Call or write
for yours today. And see how easily you can
get ideas up and flying.

1021 S. Wolfe Road
Sunnyvale, CA 94086
(408) 738-4387
sign to VHDL. Both Mentor and Viewlogic support VHDL representations that can be mapped into FPGAs as well as ASICs. Also, Exemplar Logic Inc (Berkeley, CA) is fielding a VHDL-based synthesis tool for EPLDs (it is the base for Viewlogic's EPLD synthesis). And Synopsys, the pioneering ASIC synthesis company, is now fielding a design compiler for FPGAs that accepts design representations in VHDL or Verilog as well as state tables, equations, or netlists.

Schematics reborn
Schematic capture is becoming more than just an entry tool for logic gates and MSI (medium-scale integration) parts. Instead, schematics are becoming the front end for management of top-down designs. They provide a graphical, hierarchical mechanism to climb down the design tree from a top-level block diagram to detailed logic diagrams and openings to code.

Thus, schematics can serve as the access mechanism for VHDL code as well as for other representations, including truth tables, state-machine diagrams or equations, and waveforms. For example, Mentor Graphics' Design Assistant allows engineers to describe their designs at a block level, with blocks then opening up into VHDL code. Users can define a block, and the system will create a VHDL code stub ready for coding. The schematic interface shows linkage between modules in addition to providing a top-down view.

OrCAD fields a development environment, ESP, that integrates schematic capture, PLD design tools, a simulator, and board-layout packages. You can access PLDs specified in the schematic via the other tools and examine or simulate the underlying source code. Add tionally, the system transforms traditional logic (using special primitives) into PLD equations. The schematic serves as the overall controlling element.

Xilinx's Blox, a new schematic-based FPGA design tool, further encourages using schematics in engineering. Blox enables engineers to work with large parameterized modules. These modules or blocks are chunks of standard logic functions, such as adders, buses, and registers, whose width can be automatically adjusted. You only have to change one parameter on any one of the interconnected blocks to have the design automatically scale to a new size. Blox is an FPGA equivalent to the silicon compiler module generators. It accepts design input from the major schematic entry systems.

No winners
There may be no clear winner in the battle between equations and schematics at all. Instead of a wholesale adoption of hardware description languages or a retreat back to logic schematics, we may end up in a mixed world. Graphics and functional blocks may represent logic subsystems and functions. And those blocks may be in different representational forms, such as truth tables, equations, logic gates, or HDL descriptions for complex control logic.

However, an HDL will probably underlie these representations. And all forms will translate to this HDL for common documentation, simulation, and test.

The future of design holds one sure thing: engineers will be in the same boat as programmers, who live in a world of software mapping. Today, most programmers code in high-level languages, which compile down to executable object code. Similarly, an engineer's designs will pass through a tool-translation layer, which will map them to silicon. Thus, engineers, like programmers, will be increasingly dependent on their tools.

References

Article Interest Quotient
(Circle One)
High 506 Medium 507 Low 508
A WORLD OF THANKS

We wish you the Happiest of Holidays and success for 1992

/software, Inc.
119 Russell Street, Littleton, MA 01460
(800) 255-7814

EDN December 19, 1991
Who's Behind The Simulation Acceleration Movement?

MENTOR GRAPHICS LSI LOGIC
SYNOPSYS VLSI TECHNOLOGY
DAZIX AN INTERGRAPH COMPANY COMPASS
VALID NEC
VANTAGE SEATTLE SILICON
GENRAD EXPERTTEST

And Who's Leading It?

ZYCAD
Spice-compatible simulator improves convergence, capacity, and capability

Spectre from Cadence Design Systems is a circuit simulator that is written in C and uses modified Spice-based algorithms to improve convergence. Because the simulator is written in the C language, it uses a computer’s memory more efficiently than Fortran-based Spice does. The simulator also uses data structures whose efficiency lets you simulate large circuits in half the memory other versions of Spice require.

Three features let the circuit simulator simulate faster than Spice. First, the simulator uses a more efficient sparse-matrix algorithm to calculate voltages and currents. And because the software uses a node-based algorithm rather than a device-based one, the simulator performs fewer calculations. Finally, the simulator uses automatic time-step control to minimize calculations when circuit voltages and currents are stable.

The simulator accepts both C-language user-compiled models and standard Spice models. Among the models included are the Gummel and Poon BJT (bipolar junction transistor) model, five MOSFET models (MOS1, MOS2, MOS3, BSIM1, and BSIM2), a GaAs MESFET model, and standard diode models.

The simulator runs on most workstations and is integrated in the vendor’s Analog Artist design framework. The software costs $30,000 for a single-user license.

Cadence Design Systems Inc, 555 River Oaks Pkwy, San Jose, CA 95134. Phone (408) 943-1234. FAX (408) 943-0513.

Circle No. 684

CAE tools ease mixed-signal design for digital designers

MSDS is a suite of software tools that automates and simplifies mixed-signal ASIC designs. The Analog Model Builder uses your performance requirements as inputs to a compiler that adjusts model parameters for 17 analog functions such as filters, DACs, ADCs, comparators, references, and regulators. The software creates a simulatable behavioral model and schematic symbol for cells in the MSDS library and produces specifications for custom cells.

The Design Critiquer compares your design against a set of rules that highlight potential design flaws. Another component of the tool suite is the Parameterized Analog Building Block Generators. The generators use files created by the model builders to generate silicon-level implementations of the functions you need.

Multiplexer cells modeled and characterized for accurate simulation are coupled to each of the analog building blocks. The simulator automatically inserts these blocks into your design, but you have the option of removing any of the multiplexer cells.

The tool suite also includes Mentor Graphics’s schematic-capture software and the Saber/Cadat mixed-signal simulation software. All of the pieces of the tool kit are integrated under an X-Window-compliant graphical user interface. The software is available now; prices start at $75,000.

Gould AMI, 2300 Buckskin Rd, Pocatello, ID 83201. Phone (208) 233-4690. FAX (208) 234-6795.

Circle No. 685
the world's largest selection
500Hz to 5GHz from $249

Over 200 off-the-shelf models, from low-cost rugged industrial to Hi-Rel military/space approved types, with LO power level requirements from -4dBm to +27dBm. We offer this wide variety of models, up to 5GHz, to allow you to select exactly what you need... pin, surface-mount, TO-8, flatpack, and connector package types, the specific frequency range your design involves, the optimum LO drive level, and a host of special types.

And, exclusively from Mini-Circuits, ULTRA-REL™ mixers with a five-year guarantee and specification limits held to 4.5 sigma for unprecedented unit-to-unit repeatability.

Choose mixers with low LO drive, low noise, load insensitive, quadrature mixer/modulators, plus a large number of MIL-mixer types tested to MIL-M-28837/A, and TX screened.

For the most comprehensive computer characterization of mixers (isolation, conversion loss, intermod, and VSWR vs frequency), call or write your closest Mini-Circuits' rep or distributor or our office for a free copy of our RF-IF Signal Processing Handbook, Vol. 1/2.

finding new ways...
setting higher standards

Mini-Circuits

A Division of Scientific Components Corporation
P.O. Box 350166, Brooklyn, New York 11235-0003 (718) 934-4500
Fax (718) 332-4661 Domestic and International Telexes: 6852844 or 620156
WE ACCEPT AMERICAN EXPRESS AND VISA
The DAZIX Simultaneous Engineering Environment (SEE) turns design work into teamwork. SEE allows your departments to coordinate efforts during every phase of the design process. This helps to improve product quality, lower production costs, and get products to market faster.

SEE delivers the integration you asked for. Common database management. Common user interface across applications. And a complete toolset, including solutions for front-to-back electronics design, mechanical design, manufacturing, and document management.

What's more, with SEE, your entire team can benefit from an open-system framework. A framework that integrates DAZIX, Intergraph, and Sun products— as well as leading third-party tools—in a single environment.

There's more you should know. Call us today at 800-239-4111 for a free copy of *Simultaneous Engineering*.

In Europe, call 33-1-4537-7100. In the Asia-Pacific area, call 852-8661966.

DAZIX
An Intergraph Company
VHDL Spreadsheet

Hum uses a spreadsheet paradigm that maps a descriptive matrix into behavioral VHDL (VHSIC Hardware Description Language). Pop-up menus prompt you for the proper input needed to control object and state columns. The software creates data-conversion functions and assigns signals and variables. After developing your models, the software compiles your tabular design into an intermediate format, which you can compile into VHDL. SPARC or VAX X-Windows version, $12,000. An IBM PC version, which sacrifices the multiwindowing capability useful for displaying multiple tables and internally created waveform graphs, $3500.

Thermal-Analysis Program

Flowtherm is a thermal-analysis CAD program for studying 3-D airflow and heat-transfer in electronic systems. The program accepts data on your hardware design and considers the effects of air viscosity, turbulence, and buoyancy force. The program outputs a picture of the hardware, showing fluid velocities and temperature profiles in all areas of your design. You can apply the program to only a section of pc board or to a complete rack of equipment. The program analyzes natural, forced, or mixed-convecton designs and considers steady-state and transient effects. Version for 386-PC and SPARC-2 workstation, £12,000 and £30,000, respectively. One month trial and two days of tuition, £1100.

Flowmecics Ltd, Kingsgate Business Centre, 12-50 Kingsgate Rd, Kingston-upon-Thames, Surrey KT2 5AA, UK. Phone (81) 547-3373. FAX (81) 547-2682. Circle No. 411

PC-Board CAD Program

Boardmaker-2 is a pc-board CAD program for PCs that accepts netlist inputs, and outputs artwork data in HPLG, or DMPL penplotting language. The program handles through-hole and surface-mount components for as many as ten layers of circuit and silk screen. You can enter a netlist manually, or via a netlist translator, for Mentor, Protel, Racal-Redac, Schema, Tango, and Vutrax formats. The program includes a top-down modification facility for installing modifications to existing designs. Schematic changes automatically modify layout and netlist files and provide automatic time and date stamping. Component renumbering follows through to silk-screen mask, and an update file automatically back-annotates the schematic. A postscript driver lets you import layout files to text processing software, enabling you to generate artwork master drawings on a laser printer or at a typesetting bureau. £295.

Tsien UK Ltd, Cambridge Research Laboratories, 181A Huntingdon Rd, Cambridge CB3 0DJ, UK. Phone (223) 277777. FAX (223) 277747. Circle No. 412

System Simulation Software

Simulab is a simulation and analysis tool for nonlinear dynamic systems. In addition to nonlinear systems, the software also simulates the behavior of linear, continuous, discrete-time, multirate, single-input-single-output, and multivariable input/multivariable output systems. The software models sets of linear and nonlinear differential or difference equations that you can provide as either block-diagram models or in equation form. The software assists in creating block diagrams, and it accepts C, Fortran, or the vendor's own format for the equations. Among the blocks included with the simulator are linear and nonlinear blocks, source and sink blocks, and connection blocks. The tool set allows hierarchical modeling. Analysis tools allow you to solve differential equations, evaluate linear models and determine a system's equilibrium point. The software runs on Apple and IBM PCs and workstations from Apollo, HP, Sun, and DEC. Windows 3.0-based PC version, $3995.

The Mathworks Inc, Cochituate Pl, 24 Prime Park Way, Natick, MA 01760. Phone (508) 653-1415. FAX (508) 653-2997. Circle No. 413
PC-Board Software
ALS-View III Version 6 is a multi-layer pc-board software tool for viewing and editing pc-board layouts. The software, which runs on personal computers with 2 Mbytes of RAM, offers a Motif-like user interface. The software allows viewing and editing of as many as 128 layers; you can edit by window or layer. Resolution of the layers is to one mil. The software generates printer outputs for Postscript and Dot Matrix printers. You can use the software to generate drill files; it also merges multiple Gerber files on a single film. Software, $795; Gerber design-rule-checker option, $495.

ALS Design Corp, 1 Kendall Sq, Suite 2200, Cambridge, MA 02139. Phone (617) 621-7109. FAX (617) 577-1209. Circle No. 414

Fault Simulator
Unlike concurrent fault simulators that simultaneously simulate a good circuit and its evil twin, Adas Fault Simulator uses a differential algorithm that simulates a good circuit and a faulty circuit sequentially. The differential fault simulator only records and tracks the difference between the good and faulty circuits at latches and flip-flops. As a result, the simulator has lower memory requirements than concurrent fault simulators. The algorithm in the difference fault simulator includes dynamic fault grouping to simulate multiple faulted circuits simultaneously. Intelligent fault injection speeds runtimes and reduces the risk of eventless simulation. The software runs on SPARCstations. From $25,000.

Adas Software Inc, 3333 Bowers Ave, Suite 295, Santa Clara, CA 95054. Phone (408) 988-3846. FAX (408) 988-2483. Circle No. 415

Simulation Comparison Program
VCAP is a simulation data comparison-and-analysis program. The software allows you to normalize data to adjust for differences in format, timing, and display modes. The normalization routines include state mapping, timing translation between print-on-change data and cycle data, and data separation on bidirectional pins. The software's analysis routines include reports on output-pin delays and transitions, input-pin timing, and a resource file that checks tester compatibility. You specify which data pins to compare, the allowable timing tolerance, times to mask the comparison, and four comparison algorithms. The software runs on Sun and HP/Apollo workstations. Single user, $3995; server node configuration, $7995.

Source III Inc, 3958 Cambridge Rd, Suite 247, Cameron Park, CA 95682. Phone (916) 676-9329. Circle No. 416

Manufacturability Tool
The Manufacturing Advisor/PCB tool provides information on product cost, quality, and delivery for the analysis of pc-board design alternatives. Built upon the vendor's Falcon Framework, the software evaluates parts lists, board-area consumption, and other considerations that might impact product manufacture. The software monitors and identifies unusual labor requirements, special manufacturing processes, lack of standards compliance, and other issues that lead to high-risk assembly. The software includes a component library containing 800 package styles. Currently available on HP/Apollo workstations, the company plans to run it on Sun and HP Series 700 workstations early in 1992. Software, $16,900 option to Idea Station and Board Station. Additional parts library, $1500.

Mentor Graphics Corp, 8005 SW Boeckman Rd, Wilsonville, OR 97070. Phone (503) 685-7000. Circle No. 417

PC-Board Software
PADS-2000/UX is a design tool for pc-board design. The software includes a push-and-shove auto-router. The design tool offers automatic component placement and rotation of pads and components in 1/10° increments. A 1-µm database provides high resolution and a capability of spacing traces and components closely. The software also features an automatic copper-fill facility. Available on SPARC-stations under OpenLook/X Window. $19,995.

CAD Software Inc, 119 Russell St, Suite 6, Littleton, MA 01469. Phone (508) 486-9321. FAX (508) 486-8217. Circle No. 418
As you would expect, the perfect Christmas calculator can do polar plots.

The HP 48SX will revolutionize the way you work.

No wonder the revolutionary HP 48SX is on so many wish lists this year. It's the only scientific calculator that has over 2100 built-in functions and custom capabilities.

You can type an equation just like it appears in a textbook. Graph an equation and determine its characteristics while viewing it. Or, with automatic unit management, enter data in any given unit and get the answer in the unit you want. And all with the option of accessing PCs via a built-in serial I/O.

And when you buy an HP 48SX this holiday season, you'll also be helping America's kids excel! Your purchase of an HP 48SX will help equip selected high schools with a $5,000 set of calculators and other key teaching materials.

So put an HP 48SX on your shopping list now, and see your nearest HP retailer today.

HP calculators. The best for your success.
VHDL Tools
The V-System/SPARC VHDL (VHSIC Hardware Description Language) development and simulation suite works on SPARCstations running Sun OS and Open Windows. The system, which handles designs of 100,000 lines of code, includes a VHDL compiler, an interactive VHDL simulator, and a source-level debugger. The system provides six windows that allow you to view and interrogate the design, display variables and signals, control the simulator, display processes, and list the simulation output. The debugger provides features such as breakpoints, reading and setting signal and variable values, and single-stepping through the source. The software supports the IEEE 1076 standard. The vendor claims initial compilation benchmark results of 15,000 lines per minute and simulation rates of 10,000 RTL statements per second on a Sun IPC. Single-user license, which requires a 15% annual maintenance fee, $4995.

Model Technology Inc, 15455 NW Greenbrier Pkwy, Suite 210, Beaverton, OR 97006. Phone (503) 690-6838. Circle No. 419

Spice Enhancement
The Profile front-end tool works with the Analog Workbench II Spice-based simulation tool. The front-end tool enables both graphi-cal and textual entry of structural- and behavioral-level circuit descriptions. You can build circuit models from block diagrams that include such components as PLLs, differentiators, oscillators, and gain blocks. Although this software also accepts standard Spice netlists, it also permits behavioral-level models containing differential equations, Laplace transforms, and basic arithmetic. The software allows distributed processing of multiple tasks across a network; such tasks don't include simple dc and transient analysis but include statistical and parametric simulation. The software incorporates modeling extensions to Spice to enable such effects as hysteresis, memory, and conditional branching. The models also let you eliminate discontinuities in nonlinear models using piecewise-linear functions. An option to the company’s $12,000 Analog Workbench II simulation and analy-
Computer-Aided Engineering

sis tools, Profile runs on Sun, DEC, and IBM workstations. $15,000.
Valid, 2820 Orchard Pkwy, San Jose, CA 95134. Phone (408) 432-9400.
Circle No. 420

DSP Simulation Software
Hypersignal-Windows Block Diagram software allows you to design and sequence process blocks for DSP applications. Among the functions included with the software are blocks for FFTs, FIR and IIR filters, linear predictive coding, IFFT (inverse FFT), and difference equations. In addition to these blocks, you can create your own. Each block is of the input, output, process, or display type. After stringing each of the blocks together, you can apply a stimulus and simulate the response. You can measure the response using display blocks at your choice of probe points. The software runs on personal computers under Windows. From $1995.
Hyperception Inc, 9550 Skillman, LB 125, Dallas, TX 75243. Phone (214) 343-8525.
Circle No. 421

PC-Board Design Tool
Eagle is a modular PC-based circuit-board design tool that includes a schematics editor, an autorouter, and a layout editor. The tool databases are shared, thereby calling components into the layout editor as you use them in creating your schematic. Alternatively, you can use a utility to convert netlists generated by several other schematic packages into the proper layout database. The software, which runs on PCs, uses expanded memory for large designs. An Electric Rules Checker evaluates the design for shorts, overlapping signals, and continuity. A Design Rules Checker compares trace spacing, wires not in a 45° raster, off-grid objects, and minimum and maximum sizes against user-defined criteria. The autorouter routes two signal layers and unlimited supply layers. Schematic editor, $899; layout editor, $399; autorouter, $699; total system, $1199.

Cadsoft Computer GmbH, Rosenweg 42, W-8261 Pleiskirchen, Germany. Phone 8635-810. FAX 8635-920. Circle No. 423

the JTAG/IEEE 1149.1 testability standard? Let us count the ways.

Texas Instruments was the first electronics company to develop products for implementing the JTAG/IEEE 1149.1 testability standard. Here’s the latest of a fast-growing list of TI products compatible with the 1149.1 standard.

Standard Logic
1. BiCMOS (BCT) Octals (5)
2. Advanced BiCMOS (ABT) Octals (8)
3. Advanced BiCMOS (ABT) Widebus™ (7)

Support Devices
4. Test Bus Controller
5. Digital Bus Monitor
6. Scan Path Linker
7. Scan Path Selector

Application-Specific Memory
8. Diary
9. TMS320C40
10. TMS320C50
11. TMS320C51

Floating-Point Processor
12. TMS34082

Futurebus+
13. Protocol I/O Controller
14. Arbitration Controller
15. Programmable Arbitrer
16. Data Path Unit
17. Protocol and Cache Controller
18. Data Path for Cache

Gate Arrays
19. TGCl00 Family (14 macros)
20. TGB1000 Family (15 macros)

Standard Cells
21. TSC700 Family (14 macros)

Diagnostic Software Tools
22. ASSET™

Comprehensive support
TI offers a wide selection of literature as well as training and educational testability courses.

For more information, call 1-800-336-5236, ext. 3911
If you would like to know more about JTAG/IEEE 1149.1 and how it’s being supported by Texas Instruments, please request a copy of our “Testability Q&A Update.”

When it comes to JTAG/IEEE 1149.1 testability support, you can count on TI.

TEXAS INSTRUMENTS
We call it a FET Array.
She’d call it a Miracle.

The variety of applications for our new RFA120 never ceases to amaze us. But then, a linear array that combines both bipolar and JFET gain blocks can provide some pretty versatile characteristics:

<table>
<thead>
<tr>
<th>RFA120 FET Array</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating Range: ±5V to ±15V</td>
</tr>
<tr>
<td>Input Offset Voltage: 5 mV typ.</td>
</tr>
<tr>
<td>Input Bias Current: 30 pA typ.</td>
</tr>
<tr>
<td>Gain Bandwidth Product: 3.0 MHz typ.</td>
</tr>
<tr>
<td>Slew Rate (Gain = 1): 8 V/µs</td>
</tr>
</tbody>
</table>

The RFA120 is a low power device that’s ideal for signal conditioning applications. One of our favorites also takes advantage of its small size.

It’s a cochlear implant system that bypasses injured or congenitally defective “hardware” in the ear canal. The system converts audio signals to analog signals, routing them deep into the inner ear to stimulate the natural audio nerves that are "hardwired" to the brain.

We’re committed to analog technology. And we’re committed to helping you develop creative, cost effective solutions.

Our Win-Win program is a good example. It lets you get to market quickly with a semicustom array, then shift to full custom as sales increase. It’s fast, flexible and makes good business sense because it eliminates the risk of going full custom before you’re really ready.

If you’d like more information on our analog arrays, give us a call at 1-800-722-7074. We’ll send you our new brochure.

Raytheon Company. Semiconductor Division.
350 Ellis St. Mountain View, CA 94039.
The requirement for only 2 and 20V dc and 20-kΩ and 1-MΩ standard sources to calibrate Keithley's model 2001 exemplifies the trend toward easier user calibration.

Brian Kerridge, Technical Editor

THE TREND TO SIMPLER methods of maintaining the accuracy of instruments stems from a natural desire to reduce the inconvenience and expense of calibration. Examples of easier ways to calibrate instruments appear on several high-end DMMs. These instruments have many functions and ranges that require regular calibration, and traditionally the cost of ownership is high. Two new methods, “artifact” and “self calibration,” imply you can enjoy substantial cuts in these support costs.

But take care. You might delight in the prospect of lower support costs and more convenience, but calibration diehards frown upon using these methods alone. They argue that traditional methods already represent a minimum procedure for achieving satisfactory calibration. Their argument maintains that the new methods break the all-important traceability chain and are incompatible with established company audit procedures and MIL-STD-45662A (Ref 1).

Artifact calibration is similar to the normal procedure for calibrating an instrument, during which you use external standards to check and adjust key points of a DMM’s performance. The difference with artifact calibration is that the num-

DMM calibration shortcuts pose question of confidence

Simpler methods of calibrating 7.5- and 8.5-digit digital multimeters let you adjust the overall accuracy of an instrument using as few as two external standards—or no standards at all. The methods are innovative but depart from principles the calibration community has cast in stone.
ber of key points you need to check reduces from about 80 to just 2. Consequently, a calibration laboratory needs only two prime standards (the artifacts), instead of a full-compass calibrator, to perform a complete calibration. In practice, the artifacts needed are a 10V dc standard source and one or two resistance standards.

The other new method of calibrating, self-calibration, requires no external equipment at all. DMMs with this facility use standard sources housed within the instrument. At any time you can initiate a self-calibration routine from the instrument’s front panel, and a 10-minute cycle of internal adjustments resets the accuracy on all the unit’s functions and ranges. Of course, the DMM’s internal standards require calibrating at some time, otherwise there would be a complete loss of traceability. Vendors present self calibration primarily as a means of enhancing a DMM’s accuracy and not as a replacement for conventional calibration—an acknowledgment that this method has traceability deficiencies.

Convenience vs confidence

It’s easy to see why both artifact and self calibration offend calibration diehards. The trend among DMM vendors is to reduce most of the cross referencing carried out between external standards and instruments during calibration. DMMs, particularly high-end models, generally find application in critical measurement situations. For example, high-end DMMs are often deployed in ATE systems to provide traceable accuracy for the whole system. Elsewhere, you will find high-end DMMs heading up a company’s in-house system for auditing the accuracy of many other instruments in the plant. In applications such as these, it’s natural to imagine the need for more, rather than fewer, checks in a calibration procedure.

There is no doubt that the easier methods of adjusting accuracy work effectively and are convenient. There’s also no doubt that reconciling these methods with traditional procedures is awkward. The most obvious weakness of the new methods is that they leave you with very little indication that the instrument has in fact been adjusted. It’s this lack of hard records that causes doubts over the traceability of the techniques. If you follow the shortcut methods with a full calibration check, then traceability worries disappear. But you’ll need a full set of calibration sources for that check, which devalues the convenience of the new techniques.

In the short term, it’s unlikely that calibration methods such as artifact and self calibration will ease your calibration costs. In the long term, as the virtue of using the techniques alone becomes evident, you may find it acceptable to extend the regular interval for a full calibration. In the end, your confidence will be the deciding factor.

Laurie Cronin, principal officer

A self-calibrating DMM requires no external standards and offers the easiest way to improve instrument accuracy. For Datron’s model 1281, self calibration provides approximately a 2:1 improvement in both overall long-term accuracy and the effective temperature coefficient over the 15 to 35°C ambient range.
and specialist in dc and low-frequency metrology with the National Physical Laboratory at Teddington, UK, offers advice to reconcile opposing views of artifact and self-calibration. He says if you calibrate an instrument using any new technique, you should still check the instrument’s performance on all its functions and ranges via a full conventional calibration. You should adopt this procedure each time you calibrate the instrument over the first few calibration intervals. As you build up confidence in artifact and self-calibration, you can consider extending the interval between full calibrations.

As an example, you could choose to carry out artifact calibration every 12 months and conduct a full calibration at 24-month intervals.

Simpler methods for adjusting the accuracy of DMMs offer the possibility of extending the period between full calibrations.

Cronin emphasizes that extending the calibration interval is not a recommendation and should be done only when there is evidence to support the change. In his experience, users that have artifact- or self-calibration DMMs have all chosen to check performance fully each time they calibrate the instrument. Cronin suggests that as an overall policy you should treat each instrument on its merits, irrespective of the technique used for adjusting its accuracy.

Table 1 shows which calibration methods today’s 7.5- and 8.5-digit DMMs employ. Artifact calibration appears only on Hewlett-Packard’s 3458A and Keithley’s 2001. HP’s model 3458A needs two standard sources—10V dc and 10 kΩ. For Keithley’s model 2001, you need 2 and 20V dc sources and 20-kΩ and 1-MΩ resistance standards. For both instruments you also need a low-thermal shorting link.

The 3458A also includes a means of self calibration, which the company calls auto calibration, or Acal. Self calibration, or Selfcal, is also a feature of Datron’s model 1271 and 1281 DMMs. Datron’s models also provide a means of conventional calibration against a full set of external standards for those who are not believers in calibration short-

Common DMM and calibration terms

Absolute accuracy—an accuracy figure that includes all sources of measurement uncertainty. Some standards laboratories calculate this figure as the arithmetic sum of all uncertainty elements. Other laboratories calculate it as the square root of the sum of the squares of the uncertainty contributions to a declared confidence level.

Accuracy relative to calibration standards—an accuracy figure that includes only the uncertainty elements contained within an instrument and excludes the uncertainty of the calibration source.

Artifact calibration—a calibration method that uses a minimum number of standard calibration sources. The sources for a DMM typically include a 10V dc standard and a standard resistance.

Calibration—comparing an instrument of unknown accuracy to a standard of known accuracy, the purpose being to record or adjust the difference.

Calibration interval—the period of time over which an instrument maintains its specification without adjustment or verification. Typical calibration intervals for DMMs are 90 days and 12 months.

Calibration uncertainty—the arithmetic or statistical total of all uncertainty contributions for a calibration standard.

Full scale—the maximum number of counts on a scale; for example, 19,999,999.

Full range—the number of counts at the cardinal point on a scale; for example, 10,000,000.

Linearity error—the maximum deviation from a straight line between zero and full scale.

Low-thermal short—a link used as a zero reference for short circuiting an instrument’s input terminals and producing a minimal thermal EMF.

National standard—a standard maintained at a National Standards Laboratory, such as the National Institute of Standards and Technology in Washington, DC.

Reference standard—the best, or prime, standard of a hierarchy of standards in a calibration laboratory.

Traceability—an unbroken chain of calibration records going back to a national standard.

Transfer standard—a standard having no absolute accuracy but having sufficient stability and resolution to allow comparison of two similar devices.

Working standard—a standard used for general calibration. Working standards are regularly compared to a reference standard.

Acknowledgment

Thanks go to Peter Crisp, head of standards at Datron Instruments, for helping with this glossary.
In a conventional calibration procedure, you connect 80 inputs in turn to the DMM. At each setting, you initiate a trigger to update a corresponding parameter in the DMM’s calibration memory. This method clearly provides a high degree of confidence that you’ve calibrated most aspects of the DMM’s performance. The drawback is the extensive range of standard sources required to effect the calibration—a single-instrument calibrator to do this job costs approximately $35,000.

Although most DMMs provide a front-panel key to initiate the trigger, usually vendors and calibration laboratories calibrate DMMs remotely using an IEEE-488 system controller and a programmable calibrator. Even so, such an automatic routine could take two hours to calibrate a high-end DMM fully.

Although artifact calibration requires only two or three external standards, the 80 or so accuracy-correction parameters in the instrument still need updating during the process. Clearly, something smart needs to happen inside the instrument to translate two dc and resistance inputs to signals capable of adjusting the overall accuracy of the unit. The overall accuracy adjustment points appear not only on all the dc and resistance ranges of the unit but also on all current and ac voltage ranges.

On Keithley’s 2001 DMM, you use 2 and 20 V dc sources and 20-kΩ and 1-MΩ resistances to calibrate ranges for those inputs directly. To calibrate other dc and resistance ranges, the DMM internally switches its internal gain-defining components to scale up or down from the same standard inputs. When you calibrate the resistance function, you in fact calibrate the currents the unit sources when operating in its normal mode as a resistance meter. The DMM uses these same currents to calibrate its operating current-function ranges.

For ac ranges, the 2001 DMM uses the dc source to calibrate the low-frequency end of the band while

cuts. To add confusion, though, Datron uses the term auto calibration, or Autocal, to describe the company’s conventional method of calibrating the DMMs.

All other high-end-DMM vendors stick rigidly to tradition with their models and provide only a conventional way of calibrating.

Eighty points need adjustment

Table 2 summarizes the merits of the three calibration methods you will find on high-end DMMs. Note that for the majority of DMMs, including even some 4.5-digit handheld units, accuracy control relies solely on correction parameters stored digitally in nonvolatile RAM inside the DMM. It’s partly the function of calibration to adjust these parameters to make the instrument produce accurate readings.

Normally, there is a correction parameter for every function and range combination on a DMM. Some ranges require more than one parameter. For example, the dc function has parameters for zero and both polarities of input, and the ac function has parameters for the low- and high-frequency ends of the band. In total, there could be 80 correction parameters.
Artifact calibration lets you adjust the accuracy of a digital multimeter using one voltage and one resistance standard.

Sanit in a dc-coupled mode. For the high-frequency end, the DMM requires no source at all. The DMM's internal reference voltage generates a step input to each ac range in turn. On each range the DMM stores two samples of the transient response of the input circuits. The magnitude of the samples, in turn, determines the setting of a flatness-compensation amplifier in the ac-measurement signal path.

But there are factors that influence accuracy that artifact calibration doesn't compensate for. These factors include linearity of the main ADC, ac/dc difference in the ac-detection circuit, and self heating on high-voltage and high-current inputs. John Banaska, 2001 project manager at Keithley, explains that you can look at these factors as characterization factors for an individual DMM. He says characterization factors are stable over the life of the product and any change has minimal effect on overall accuracy.

Keithley cancels the effects of these characterization factors at the manufacture stage using an in-house calibration routine. This once-in-a-lifetime routine should need repeating only if the instrument receives a major repair. Banaska says routine user calibration compensates for drifts in the DMM's reference and gain-defining components and that these drifts are the predominant reasons for accuracy drift in a DMM.

In answer to the suggestion that artifact calibration is weak on traceability, Banaska explains that you can output all the accuracy parameters stored in the 2001 DMM. These figures provide a basis for maintaining full records of the stability of the instrument.

A tradeoff of artifact calibration is your loss of flexibility to adjust one area of the instrument's performance or to improve on the published specifications of the product. Conventional calibration lets you optimize one specific range and always make the instrument read nominal value. Artifact calibration gives you no way to do this fine tuning. When the artifact-calibration routine is over, all readings will be within published limits, but not necessarily reset to the center point of the accuracy spread.

Datron's 1271 and 1281 DMMs embody a limited set of calibration sources to let you improve the accuracy of the unit without any external standards. These models also let you perform a conventional external calibration; during that process, the calibration of the internal sources takes place transparently.

Fig 1 shows the salient features of the arrangement. In Datron's instruments, three separate blocks of nonvolatile RAM store different sets of accuracy parameters. The first block sets the accuracy of the DMM following a conventional external calibration. The second block stores parameters relating to the internal calibration sources. The third block sets the DMM's accuracy each time you conduct an internal calibration.

The internal dc voltage sources

Datron's self-calibrating DMMs hold accuracy-correction parameters in three blocks of nonvolatile RAM. The first block sets the accuracy of the DMM following a conventional external calibration. The second block contains parameters relative to the accuracy of internal calibration sources. The third block sets the DMM's accuracy following an internal calibration. In normal operation, the DMM can measure inputs using parameters in blocks one or three.
Today’s high-speed devices are simply too fast for yesterday’s measurement methods. To develop accurate models you need modern tools that test “at-speed”, on the wafer. You need tools that provide better data, and more data, to characterize and refine your process with fewer design turns. You need probes that won’t contaminate your measurements with crosstalk and parasitic impedance.

You need the all-new Summit 10000 Semi-Automatic Probe Station from Cascade Microtech.

Summit 10000 is specifically designed for high-speed measurements using gigahertz microprobes, and offers superior rigidity, planarity and precision for probe placement with picosecond resolution.

The Summit 10000 automatically performs the large numbers of measurements required for meaningful statistical modeling and process control. While the industry’s only square chuck holds your wafer and calibration substrate at the same time, speeding calibration and system verification.

And, simple menu-driven operation will help your engineers, technicians and operators become proficient quickly.

The Summit 10000 Probe Station is just the latest in a full line of cutting-edge solutions from the leader in high frequency measurement. Cascade Microtech offers a wide range of microprobes and stations for digital and microwave applications. Plus comprehensive applications support to help you step up to today’s high-speed measurement technology.

For details on the Summit 10000, and free copies of our two booklets on high-speed measurement and modeling, just write or call Ken Smith at (503) 626-8245.
Nobody Does It
For Less...

DAS-12/50
$499*
12-Bit Resolution
50 kHz Sample Rate

DAS-12/125
$650*
12-Bit Resolution
125 kHz Sample Rate

*Single unit price, quantity discounts available.

Low-Cost
Data Acquisition
For The PC/AT

- High Speed DMA Operation
- Programmable Gain Amplifier
- Dual 12-bit Analog Outputs
- Dual 8-Bit Digital I/O Ports
- 16-Bit Counter Timer
- 16 Single-Ended or
8 Differential Channels-
Expandable to 256 single ended
- High Level Language Drivers Free
- TurboLab Software Compatible:
Easy-to-Use Menu-Driven Data
Acquisition & Analysis Software

CALL NOW!
1-800-446-8936

INSTRUMENTS

are ±100 mV, ±1V, and ±10V. The two resistance sources are 1
and 100 kΩ. A critical feature of the dc sources is their use of a trans­
former multiplier’s fixed turns ratio to determine the 10:1 and 100:1 ra­
tio of the voltages.

The internal process of self cali­
bration follows a path similar to
that of artifact calibration. First, in­
ternal dc sources calibrate the dc
and ac functions; next, the internal
resistance sources calibrate the
drive current on the resistance
function; and last, these drive cur­
rents calibrate the DMM’s current
function.

The real benefit of self calibration
is the cancellation of drift effects in
gain-defining components of the
DMM’s measurement circuits.
These drifts occur when you oper­
ate the DMM at varying ambient
temperatures or as the values of the
components change with time. Self
calibration does not cancel the ef­
fect of drift in the DMM’s main in­
ternal reference.

Not all models make use of self
calibration in the same way. On
Datron’s 1281 model, you use self
calibration as a means of enhancing
the specified accuracy when you de­
cide you need enhanced accuracy.
On other models, you must operate
self calibration at regular intervals
to guarantee that the instrument
meets its accuracy specification.
For Datron’s 1271 and Hewlett­
Packard’s 3458A, these mandatory
self-calibration intervals are 30 days
and 1 day, respectively.

Reference

Article Interest Quotient
(Circle One)
High 509 Medium 510 Low 511
A fully self-contained 3 Amp, 1 MHz, step-down Integrated Switching Regulator

This new Power Chipset™ from Power Trends provides the entire power supply for your notebook computer in less than 1 cubic inch. It features a +5 volt, 3 Amp, 1 MHz Integrated Switching Regulator (ISR) that provides state-of-the-art power density of more than 50 watts per cubic inch and a high 85% efficiency at maximum load. This means less board space and longer battery life!

And, for those who require a +12 volt output for flash memory or other functions, the companion unit offered is a 1 MHz step-up Boost Converter.

Power Trends' Power Chipset™ drastically cuts component count and simplifies your design. This means lower costs and shorter time to market!

Last year, Power Trends' 1.5 Amp product was voted the power supply innovation of the year by EDN magazine. Recently, the Power Chipset™ has been recommended by Intel for use in their 386™SL Mustang Notebook Computer.

If you are designing notebook computers or other battery operated products, then Power Trends has the power conversion products for you. Call or write for more information about the Power Chipset™ for Notebook Computers from Power Trends. Samples are available now. Call today.

POWER TRENDS

Power Trends, Inc. 1101 North Raddant Road, Batavia, IL 60510 • (708) 406-0900 • FAX (708) 406-0901

EDN December 19, 1991 CIRCLE NO. 91
Now you can perform NIST-traceable, spectrally-based photometric and colorimetric measurements anywhere, anytime. With the battery-powered Photo Research® PR-650 SpectraColorimeter. You no longer need to settle for the inaccuracy of filter instruments just for the convenience of cost-effective portability.

This hand-held portable offers AutoSync®, a unique feature which automatically locks to, and measures, refresh frequency. Pritchard®-style spot viewing and measuring optics are also included.

A plug-in Integrated Circuit Memory Card holds the complete and easy-to-use program software for the internal microcomputer—and there is enough space for over 150 measurements. Fast-Charge Nicad batteries, Energy-Saving Auto Shut-Off, an RS-232 interface permitting remote control from a host computer, plus numerous other features make it the most flexible and versatile colorimeter on the market.

Proven SpectraScan® diode-array technology captures the entire visible spectrum from 380 to 780 nm—simultaneously. With the press of a button. And a wide variety of accessories are also available to choose from.

Call us and discover how affordable, easy and accurate spectrally-based light and color measurement can be.

The PR-650. Light Measurement on the Move.
Windows 3.0 software and hardware package performs digital-instrument functions

The Hypersignal-AMPS software package runs under Windows 3.0 and performs the functions of a spectrum analyzer, digital oscilloscope, data logger, and programmable filter. It also displays data in a variety of ways and supports various printers and plotters. You can execute each of the bundled programs individually or in concert. The software performs digital signal processing (DSP) in both real and nonreal time and interfaces to common DSP and data-acquisition boards.

The package's user interface includes computer simulations of the front panels of common instruments. Instruments simulated include classic and modern oscilloscopes, a digital recorder, a spectrum analyzer, and a function generator.

The package includes a block-diagram facility with which you can simulate complex DSP algorithms by linking elements from a library of modular DSP functions. Other software functions include graphical analysis and code generation.

Prices range from $1995 to $7995, depending on the bandwidth and resolution of the hardware and the DSP routines you select.

Hyperception, 9550 Skillman, LB 125, Dallas, TX 75243. Phone (214) 343-8525.

Circle No. 686

Data-acquisition and -analysis package simulates multiple instruments

Snap-Master for Windows, an icon-based data-acquisition, -analysis, and -display software package, allows you to define custom test instruments. Running on a PC equipped with an A/D card, the software simulates instruments such as a data-acquisition system, digital storage oscilloscope, strip-chart recorder, spectrum analyzer, waveform analyzer, or multimeter. You can also combine simulations of these instruments.

The software’s maximum data-handling rate is 400 ksamples/sec. The software can control sensors, transducers, actuators, and signal conditioners. You can input data from either plug-in A/D cards or A/D cards in separate enclosures as well as IEEE-488 and RS-232C instruments, all from a variety of manufacturers.

To create a custom instrument, you define the flow of data through the virtual test system with a flowchart. You use pipes to connect graphical icons representing each test-instrument element.

Minimal hardware is a 386 or 486 PC with 2 Mbytes of memory (4 Mbytes recommended) and Windows 3.0. The Snap-Master software package costs $995.

HEM Data Corp, 17336 Twelve Mile Rd, Suite 200, Southfield, MI 48076. Phone (313) 559-5607. FAX (313) 559-8008.

Circle No. 687
You have to build a
to build just

The new Tek TDS Series

More than a million Tektronix oscilloscopes have all been leading up to this: the most powerful, versatile, and intuitive instruments ever developed for the mainstream of test and measurement.

The new TDS 500 Series is the culmination of everything Tek has learned in the design, manufacture and use of digitizing oscilloscopes. It’s an achievement made possible only by the unique integration of acquisition functions and combinational trigger logic onto a single board.

Only by the development of a milestone multiprocessor architecture.

Only by the addition of Tek’s TriStar™ Digital Signal Processor (DSP).

Only by Tek’s capacity for taking the hard work out of high performance.

The TDS Series performs, live, updates and measurements that inhibit most other digitizing scopes. Its real-time DSP lets you perform single-shot averaging and extend resolution to 12 bits. The TDS Series arms you with up to four full-featured channels. 500 MHz bandwidth. Up to 1 GS/s sampling and 4 ns peak detect.

Up to 50K record lengths. Time interval, 2 ns glitch, runt, pattern and state triggers. With acquisition sensitivity and fast overdrive recovery bringing greater waveform detail within your grasp.

Copyright © 1991, Tektronix, Inc. All rights reserved.
could be, you owe yourself a demo of the TDS. Its simplified front panel, VGA-quality display resolution, on-line help text, innovative icons that instantly differentiate menu functions — all add up to a scope that makes the user’s manual more a formality than a necessity.

The TDS Series signals the start of a new generation of friendlier, more powerful instruments from the world’s leading supplier of digitizing and analog oscilloscopes. To get a first-hand feel for why performance like this only comes along about once in a million scopes, contact your Tek sales engineer or call 1-800-426-2200.

One company measures up.

Tektronix

EDN December 19, 1991

CIRCLE NO. 132
Now you can afford VFD quality...VFD visibility

itron VFD T-Version Module
- Low power
- Long-term reliability
- Easy user interface
- Surface mount technology
- Flexible control data
- Parallel and serial input
- Built-in test function
- ASCII, European, Japanese Katakana characters
- 9 Modules to choose from

Call or write to see our entire line:

Noritake

Los Angeles
23820 Hawthorne Blvd.
Suite 100
Torrance, CA 90505
Tel. 213-373-6704
Fax 213-772-3918

Chicago
415 E. Golf Rd.
Suite 109
Arlington Heights, IL 60005
Tel. 708-439-9020
Fax 708-593-2285

Boston
263 Winn St.
Suite 1D
Burlington, MA 01803
Tel. 617-270-0360
Fax 617-273-2892

Dallas
2454 Trade Mart
Dallas, TX 75207
Tel. 214-742-9389
Fax 214-742-9389

Europe
Frankfurter Strasse 97-99
6096 Raunheim
F.R. Germany
Tel. 06142-43095/96/97
Fax 06142-22799

CIRCLE NO. 88
Introducing the biggest thing in slides since ball bearings.

No pinched fingers. Just smooth slide action.
The new Green Button™ release. Only from General Devices.

Stop damaged digits by specifying Chassis Trak® slides with the new Green Button release.
Safe, simple and superior to its spring-clip counterparts, Green Button is standard on our most popular ball bearing slide models. A feature available at no additional cost to you.

Be part of the push. Push these buttons now: 1-800-626-9484.
We'll rush you a copy of our new ball bearing slide catalog and all the info on Green Button...the biggest thing in slides since ball bearings.

General Devices Company, Inc. P.O. Box 39100, 1410 S. Post Rd., Indianapolis, IN 46239-0100
Heard the news about Keithley's new switching system?

It's on all 80 channels.

Introducing the Keithley Model 7001 High-Density Switching System.

Now, get up to 80 channels of two-wire switching from just one half-rack mainframe and two high-density cards.

Monitor all channels at once, too. The unique vacuum fluorescent display shows the open/close status of all channels simultaneously. Program, modify, or debug your test systems with remarkable ease.

Plus, have the capability to switch a variety of signals. From femtoamps to amps. Nanovolts to kilovolts. And DC to 500MHz. It's the kind of measurement integrity that has made Keithley switches a preferred choice for nearly two decades.

Call 1-800-348-3735. Or return the card. An applications engineer will provide details, arrange a demonstration, even help you design your test system.

Contact Keithley today. We'll be watching for your reply.
6.5-Digit Digital Multimeter
The SI 7063 is a 6.5-digit DMM for measuring dc and ac voltage in the range 100 nV to 1050V, and dc and ac current in the range 1 nA to 2A. The meter also measures resistance from 100 µΩ to 999 MΩ; it measures temperature using a platinum-resistance thermometer, or J, K, R, T type thermocouple sensors. The meter has counter and timer functions to let you measure 1 Hz to 1 MHz, and 1 µsec to 1 sec for analog signals; and measure to 20 MHz and to 100 nsec for TTL signals. IEEE-488 interface programming includes an on-line help facility to provide correct syntax commands. £1810.

Schlumberger Technologies, ATE Systems Div, Victoria Rd, Farnborough GU14 7PW, UK. Phone (252) 544433. FAX (252) 543854. Circle No. 370

Handheld Oscilloscopes
The models 93, 95, and 97 Scopes combine a 50-MHz, 25-Msample/sec, dual-channel storage oscilloscope and an autoranging digital multimeter. The model 97 also includes a signal generator and component tester. The units have an RS-232C interface for calibration. The scopes capture glitches as narrow at 40 nsec and can store eight waveforms and 10 front-panel setups. Metering capabilities include simultaneous display of minimum and maximum readings, relative and percent-relative readings, and dB readings. The units have soft keys and weigh 4 lbs. Batteries power the units. Model 93, $1195; model 95, $1495; model 97, $1795.

John Fluke Mfg Co Inc, Box 9090, Everett, WA 98206. Phone (206) 577-1101. FAX (201) 356-6100. TLX 185102. Circle No. 371

68302 µP Emulator
The Mime-700 in-circuit emulator works with the 68302 microcontroller (μC). You can connect the emulator to the Integrated Services Digital Network as a terminal controller, multiplexer, or concentrator. The 68302 personality module (pod), tracks the μC's pipelined execution to halt when the emulated μC actually executes an instruction, not when the μC first fetches the instruction.

The emulator has 256 kbytes (2 Mbytes max) of emulator memory that you can allocate in 512-byte blocks. The emulator’s trace and trap circuitry features 64k discrete breakpoints as well as 64k breakpoints for 512-byte blocks of memory. The circuitry also has four 80-bit word recognizers, each with its own pass counter. The unit has an 8-ksample x 128-bit trace memory, as well as a digital-waveform generator, a frequency meter, and a digital voltmeter. Emulator with 68302 pod, $14,159.

Pentica Systems Inc, 1 Kendall Square, Bldg 200, Cambridge, MA 02139. Phone (617) 577-1101. FAX (617) 494-9262. Circle No. 372

VXI Chassis
The HP 307X VXI board tester combines a VXIbus chassis with the manufacturer’s existing board tester. You can mount the VXIbus chassis externally or on the tester’s testhead. The VXIbus chassis provides connections to VXIbus and IEEE-488 instruments. The chassis accepts C-sized VXIbus cards. $821,500.

Hewlett-Packard Co, 19310 Pruneridge Ave, Cupertino, CA 95014. Phone (800) 752-0900. Circle No. 373

Low-Noise Synthesizer
The PTS 310 broadband signal source covers 0.1 to 310 MHz with a 1-Hz resolution (0.1 Hz optional). Spurious suppression specifies 60 or 65 dB. The instrument offers switching times of 20 µsec or 1 µsec to 20 µsec, depending on band selected. Frequency switching is phase continuous. You have a choice of BCD or IEEE-488 interfaces. PTS 310, approximately $6000. Delivery, six weeks ARO.

Programmed Test Sources Inc, Box 517, Littleton, MA 01460. Phone (508) 486-3008. FAX (508) 486-4495. Circle No. 374
Logic Analyzers

The TA4000 series of logic analyzers includes models with 32, 48, or 80 channels. Asynchronous sampling is at 100 MHz max across all channels or at 400 MHz max across 8 or 16 channels. Memory depth at 100- and 400-MHz sampling is 2k and 8k words, respectively. Its 5-nsec glitch capture operates on eight channels without loss of memory depth.

Synchronous sampling is at 50 MHz max across all channels and includes an 8-level branching-trigger facility that steps as much as 20 nsec. Optional disassemblers cover a range of 8-, 16-, and 32-bit µPs. In addition to internal nonvolatile memory, you can store 512 kbytes of data on a front-panel plug-in memory card. Included as standard are interfaces for IEEE-488, Centronics, RS-232C, and composite video. TA4000-32, £2495; TA4000-48, £2995; TA4000-80, £3995.

Thurlby-Thandar Ltd, Glebe Rd, Huntingdon, Cambs PE18 7DX, UK. Phone (480) 412451. FAX (480) 450409. Circle No. 375

DSP Board

The MacDSP MB/A digital-signal-processing pc board for Macintosh computers runs at 30 Mflops. The board includes a DSP32C DSP µP, a 68000 µP, and data-acquisition modules. The board's two processors run under Apple's A/Ros out of onboard memory. The onboard RAM maps directly into the Mac's Nubus memory space. Board, $3495; expanded-memory version, $4995; data-acquisition daughter boards, $595; C compiler, $1500; array-processor library, $495; signal-analysis package, $495.

Spectral Innovations Inc, 4633 Old Ironsides Dr, Suite 401, Santa Clara, CA 95054. Phone (408) 727-1314. FAX (408) 727-1423. Circle No. 376

Gang Programmer

The MultiTrk-4000 gang programmer programs as many as 32 devices at once using four 8-device plug-ins. It can also impress sequential serial numbers on as many as 32 devices simultaneously. Plug-ins are available for DIPs, plastic
leaded chip carriers, and pin-grid arrays. You can program copies of a single ROM or sets of ROMs for 8-, 16-, and 32-bit-wide designs. The unit handles certain microcontrollers and CMOS PLDs. Other features include a keypad, an LCD, RS-232C and parallel interfaces, and a 3½-in. disk drive. The onboard memory has 256 kbytes, expandable to 16 Mbytes. $4995. Delivery, four to six weeks ARO.

Bytek, 543 NW 77th St, Boca Raton, FL 33487. Phone (407) 994-3520. Circle No. 377

Wooden And Nylon Probers

This line of wood and nylon probers is safe for use around ESD-sensitive components. The hygroscopic properties of these probing tools mean that they will readily take up and retain static-dissipating moisture from the atmosphere or skin. The probers will not mar or nick component leads. The birchwood spudgers will not melt when holding wires near soldering irons. $0.22 to $1.56.

Desco Industries Inc, 761 Penarth Ave, Walnut, CA 91789. Phone (714) 598-2753. Circle No. 378

PC-Programmable Power Supply

The model ATEPS-1606 triple-output, programmable power supply plugs into a PC's backplane. It features a single 0 to 6V, 0 to 2A output, and two independent bipolar outputs. The bipolar outputs range from -15.75V to +15.75V at 0 to 200 mA each. Outputs of 0 to 28V and 0 to 125 mA are alternately available. You can vary all outputs in real time and monitor the supply's outputs via an onboard 12-bit A/D converter. You control and monitor the outputs using onboard control registers. The board comes with software. Model ATEPS-16, $995.

Analyx Systems Inc, Box 14644, Fremont, CA 94539. Phone (415) 656-8017. FAX (415) 657-0927. Circle No. 379
Integrated schematic and PCB software that was designed that way, not kludged that way.

- Imagine using the same drawing tools for both schematic drawings and PCB artwork.
- Picture the convenience of displaying and editing schematic and PCB drawings simultaneously.
- Visualize being able to create or modify library symbols in seconds using the same commands you use for other drawings.
- Envision a 100% completion rip-up-and-re-route autorouter that costs thousands less than comparable autorouters.
- Suppose you could unleash all this power by spending less than eight hours with the tutorial.
- Now fancy a toll-free number provided for no-charge technical support, and a 30-day, no-hassle, money-back guarantee.

300-MHz Digital Oscilloscopes

The 2-channel model 9310L and the 4-channel model 9314L digital oscilloscopes have 300-MHz analog bandwidth, independent 100-Msample/sec digitizers on all inputs, and 1-Msample/channel memories. You can segment the sample memories for storing multiple events. Trigger events include pass/fail testing, glitches, and windows. The scopes perform signal-processing functions including FFTs. The scopes use credit-card-sized memories for offline storage. Model 9310L, $9900; model 9314L, $14,900. Delivery, six weeks ARO.

LeCroy Corp, 700 Chestnut Ridge Rd, Chestnut Ridge, NY 10977. Phone (800) 553-2769; (914) 425-2000. Circle No. 380

3-GHz Oscilloscope Plug-ins

The model 11A81 3-GHz plug-in for the company’s models 11403A and CSA 404 digitizing scopes has a rise time of ≤130 psec. The plug-in’s external-trigger input’s bandwidth is 2 GHz. Input sensitivity ranges from 10 mV/div to 1V/div in 1-2-5 sequence. Offset range is ±50 divisions. The unit is programmable. Model 11A81, $5495. Delivery, four to six weeks ARO.

Tektronix, Box 19638, Portland, OR 97219. Phone (800) 426-2200; (503) 627-7111. Circle No. 381

68HC16 Emulator

The HMI-200 in-circuit emulator supports the 68HC16 DSP µP. The emulator runs in real time. It has four complex hardware breakpoints and two 4-ksample × 104-bit trace buffers. The unit comes with 256 kbytes of emulation memory. Emulator and software, $16,000; software-performance-analysis unit, $2500; software for Sun or Apollo workstations, $1000.

Huntsville Microsystems Inc, 3322 S Memorial Pkwy, Huntsville, AL 35801. Phone (205) 881-6005. FAX (205) 882-6701. TWX 510-600-8258. Circle No. 383
KEPCO TRIPLE OUTPUT,
LOW PROFILE, OEM a-c TO d-c
SWITCHING MODULES
SERIES MRW/35 AND 50 WATTS

Model MRW 150KV
Model MRW 151KV
35 Watts

Model MRW 160KV
Model MRW 161KV
50 Watts
FEATURES:
- **115/230V a-c operation without user intervention:** Special flyback circuit accepts any input voltage from 90V to 264V a-c.
- **Power-OK logic (TTL compatible) signal** may be used as power fail signal. Logic “1” is given when +5 output is above 4.5V.
- **Current trade-off:** Current may be increased from one of the outputs at the expense of the others, within the limits defined by Figure 1.
- **Adjustable voltage:** Internal trimmer accessible through the case allows manual adjustment of the voltage setting.
- **Overvoltage protection for principal output** shuts down all outputs if output voltage is forced beyond the set limit.
- **Holding time:** Output is sustained by internally stored energy for 30 milliseconds typically, 20 milliseconds minimum.
- **Built-in EMI filter** attenuates conducted noise below the requirements of FCC 20780 for Class B computing devices.
- **Safety:** All models recognized by UL, certified by CSA, and approved by TÜV Rheinland to meet VDE 0806/IEC 380.

MRW INPUT CHARACTERISTICS

<table>
<thead>
<tr>
<th>SPECIFICATION</th>
<th>MRW 150KV</th>
<th>MRW 151KV</th>
<th>MRW 160KV</th>
<th>MRW 161KV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage range</td>
<td>90 to 264V a-c; 130 to 370V d-c</td>
<td>Maximum load</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brownout voltage</td>
<td>85V a-c; 120V d-c</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Current</td>
<td>1.0A</td>
<td>1.3A</td>
<td>Typ load, 115V a-c</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.5A</td>
<td>0.8A</td>
<td>Typ load, 230V a-c</td>
<td></td>
</tr>
<tr>
<td>Fuse value</td>
<td>2.5A</td>
<td>3A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Initial, turn-on surge, first 1/2-cycle.</td>
<td>50A max</td>
<td>115V a-c, typical load 25°C cold start</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frequency</td>
<td>50/60Hz nominal; range 47-440Hz(1)</td>
<td>Single Phase</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EMI</td>
<td>Meets the conducted noise standard of FCC 20780, Class B and VDE 0871, Class B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leakage current</td>
<td>0.5mA</td>
<td>115V a-c (UL method) 25°C</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.75mA</td>
<td>230V a-c (VDE method) 25°C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Startup time</td>
<td>400msec (typ)</td>
<td>500msec (typ)</td>
<td>Std.(2)</td>
<td></td>
</tr>
<tr>
<td>Holdup time</td>
<td>20ms</td>
<td>Std.(2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Circuit type</td>
<td>Flyback</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Switching frequency</td>
<td>~100KHz</td>
<td>80KHz typ</td>
<td>Operating</td>
<td></td>
</tr>
</tbody>
</table>

(1) At 440Hz the leakage current exceeds the UL/VDE safety specification limit.
(2) Std conditions = nominal input, typical load, 25°C

MRW OUTPUT CHARACTERISTICS

<table>
<thead>
<tr>
<th>SPECIFICATION</th>
<th>MRW 150KV/MRW 151KV</th>
<th>MRW 160KV/MRW 161KV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source effect</td>
<td>1% max</td>
<td>1% max</td>
</tr>
<tr>
<td>Load effect</td>
<td>3% max</td>
<td>5% max</td>
</tr>
<tr>
<td>Temperature effect</td>
<td>2% max</td>
<td>2% max</td>
</tr>
<tr>
<td>Combined effect (source, load, & temperature)</td>
<td>+4%-2% max</td>
<td>+4%-6% max</td>
</tr>
<tr>
<td>Time effect (drift)</td>
<td>0.5% max</td>
<td>0.5-8.5 hr; nom input, rated load, 25°C</td>
</tr>
<tr>
<td>Cross effect</td>
<td>Output #1</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Output #2</td>
<td>1.5% max</td>
</tr>
<tr>
<td></td>
<td>Output #3</td>
<td>0.5% max</td>
</tr>
<tr>
<td>Recovery characteristics:</td>
<td>Excursion</td>
<td><4.0%</td>
</tr>
<tr>
<td></td>
<td>Recovery (within ±1%)</td>
<td><2msec</td>
</tr>
</tbody>
</table>
MRW MODEL TABLE

<table>
<thead>
<tr>
<th>SPECIFICATION</th>
<th>OUTPUT VOLTAGE</th>
<th>OVP SETTING</th>
<th>OUTPUT CURRENT</th>
<th>CURRENT LIMIT</th>
<th>OUTPUT POWER</th>
<th>RIPPLE SOURCE</th>
<th>SWITCHING</th>
<th>NOISE (SPMK)</th>
<th>EFFICIENCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Units</td>
<td>Volts</td>
<td>Volts</td>
<td>Amps</td>
<td>Watts</td>
<td>mV</td>
<td>mV</td>
<td>Percent</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Condition</td>
<td>Factory set(1)</td>
<td>Adjustment range(2)</td>
<td>Nominal input, 25°C</td>
<td>Nominal input</td>
<td>40°C, 50°C, 60°C, 71°C</td>
<td>Nominal input, typ load</td>
<td>d-c, 1b, 20MHz</td>
<td>Nominal input, rated load</td>
<td>Volts, Watts</td>
</tr>
</tbody>
</table>

MRW 150KV (35 WATTS)

- **Output #1** +5 4.75-5.25 5.8-6.9 1.0-2.2 (typ) (4.0 max)
 - Total maximum output power no more than 35.0 35.0 24.5 14.0 30 50 150 70%
- **Output #2** +12 4.75-5.25 5.8-6.9 1.0-2.2 (typ) (4.0 max)
 - Total maximum output power no more than 35.0 35.0 24.5 14.0 30 50 150 70%
- **Output #3** -12 4.75-5.25 5.8-6.9 1.0-2.2 (typ) (4.0 max)
 - Total maximum output power no more than 35.0 35.0 24.5 14.0 30 50 150 70%

MRW 151KV (35 WATTS)

- **Output #1** +15 4.75-5.25 5.8-6.9 1.0-2.2 (typ) (4.0 max)
 - Total maximum output power no more than 50 50 35 20 30 50 150 72%
- **Output #2** +12 4.75-5.25 5.8-6.9 1.0-2.2 (typ) (4.0 max)
 - Total maximum output power no more than 50 50 35 20 30 50 150 72%
- **Output #3** -15 4.75-5.25 5.8-6.9 1.0-2.2 (typ) (4.0 max)
 - Total maximum output power no more than 50 50 35 20 30 50 150 72%

MRW 160KV (50 WATTS)

- **Output #1** +5 4.75-5.25 5.8-6.9 1.0-5.0 (typ) (6.0 max)
 - Total maximum output power no more than 60 Watts
- **Output #2** +12 4.75-5.25 5.8-6.9 1.0-5.0 (typ) (6.0 max)
 - Total maximum output power no more than 60 Watts
- **Output #3** -12 4.75-5.25 5.8-6.9 1.0-5.0 (typ) (6.0 max)
 - Total maximum output power no more than 60 Watts

MRW 161KV (50 WATTS)

- **Output #1** +5 4.75-5.25 5.8-6.9 1.0-5.0 (typ) (6.0 max)
 - Total maximum output power no more than 60 Watts
- **Output #2** +15 4.75-5.25 5.8-6.9 1.0-5.0 (typ) (6.0 max)
 - Total maximum output power no more than 60 Watts
- **Output #3** -15 4.75-5.25 5.8-6.9 1.0-5.0 (typ) (6.0 max)
 - Total maximum output power no more than 60 Watts

(1) Nominal input, typical load, 25°C
(2) All outputs are shut down when OVP is activated
(3) Output #2 follows the adjustment of Output #1

KEPCO

TRIPLE OUTPUT, LOW PROFILE, OEM a-c TO d-c SWITCHING MODULES

SERIES MRW

A new series of multi-output PC card switchers featuring a low profile (component height) on the popular 100x160mm footprint. The MRW 150KV and MRW 151KV produce 35W. MRW 160KV and MRW 161KV are rated for 50W continuous duty. All are triple output designs in which output #3 (the "-" rail) is stabilized by a 3-terminal regulator.

MRW GENERAL SPECIFICATIONS

<table>
<thead>
<tr>
<th>SPECIFICATION</th>
<th>RATING/DESCRIPTION</th>
<th>CONDITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
<td>0-71°C (see model table)</td>
<td>Operating</td>
</tr>
<tr>
<td></td>
<td>-40 to 85°C</td>
<td>Storage</td>
</tr>
<tr>
<td>Humidity</td>
<td>95% RH</td>
<td>Non-condensing; operating & storage</td>
</tr>
<tr>
<td>Shock</td>
<td>20g, 3 axes (11msec ±5msec pulse duration)</td>
<td>Non-operating 3 shocks each axis</td>
</tr>
<tr>
<td>Vibration</td>
<td>5-10Hz; 10mm amplitude</td>
<td>Non-operating 1 hour each axis</td>
</tr>
<tr>
<td>Isolation Output to ground</td>
<td>500V d-c, 100MΩ</td>
<td>Non-operating 1 hour each axis</td>
</tr>
<tr>
<td>Isolation Voltage</td>
<td>3.75KV a-c for 1 minute</td>
<td>Non-operating 1 hour each axis</td>
</tr>
<tr>
<td>Safety</td>
<td>UL 478 recognized, CSA C22.2 certified, VDE 0806/IEC 380 approved by TUV Rheinland</td>
<td>25°C, 65% RH</td>
</tr>
<tr>
<td>Type of construction</td>
<td>PC card</td>
<td>25°C, 65% RH</td>
</tr>
<tr>
<td>Enclosure</td>
<td>Optional metal</td>
<td>Y capacitor removed</td>
</tr>
<tr>
<td>Cooling</td>
<td>Convection</td>
<td>25°C, 65% RH</td>
</tr>
</tbody>
</table>

KEPCO, INC. • 131-38 SANFORD AVE • FLUSHING, NY 11352 USA • TEL: (718) 461-7000 • FAX: (718) 767-1102 • Easylink (TWX): 710-582-2631
A feature of MRW is the ability to draw nearly full power from either of the two "+" rails. The curves reproduced to the right illustrate how the current from one output can be balanced against the other to power your application. Note the effect of the secondary voltage dropping when the primary output's load is reduced below its minimum value (the stabilization of the secondary output is degraded).

KEPCO TRIPLE OUTPUT, LOW PROFILE, OEM a-c TO d-c SWITCHING MODULES SERIES MRW

OUTPUT RATINGS (MRW 150KV)
- **MAX POWER**: 38.5W

OUTPUT RATINGS (MRW 151KV)
- **MAX POWER**: 38.5W

OUTPUT RATINGS (MRW 160KV)
- **MAX POWER**: 60W

OUTPUT RATINGS (MRW 161KV)
- **MAX POWER**: 60W

NOTE1:
- Forced air 20 CFM at 1 atmosphere

DIMENSIONS
- MRW 150KV:
 - inches: 1.14 x 3.94 x 6.3
 - mm: 29 x 100 x 160
- MRW 151KV:
 - inches: 1.14 x 3.94 x 6.3
 - mm: 29 x 100 x 160
- MRW 160KV:
 - inches: 1.5 x 3.94 x 6.3
 - mm: 38 x 100 x 160
- MRW 161KV:
 - inches: 1.5 x 3.94 x 6.3
 - mm: 38 x 100 x 160

NET WEIGHT
- **MRW 150KV**: 12.35 oz, 350 gm
- **MRW 151KV**: 12.35 oz, 350 gm
- **MRW 160KV**: 17.65 oz, 500 gm
- **MRW 161KV**: 17.65 oz, 500 gm

OPTIONAL STEEL ENCLOSURES:
- For MRW 150KV: CA 19
- For MRW 151KV: CA 19
- For MRW 160KV: CA 20
- For MRW 161KV: CA 20

INPUT-OUTPUT CABLE KITS:
- For MRW 150KV: 219-0184
- For MRW 151KV: 219-0184
- For MRW 160KV: 219-0184
- For MRW 161KV: 219-0184

OUTLINE DIMENSIONAL DRAWINGS
Dimensions in light face type are in inches, dimensions in bold face type are in millimeters.
Omron optical switches keep an eye on innovation. They work by sight rather than touch. Which means they won't wear out like electromechanical switches in tough applications such as duplicating, fax machines and computer peripherals. In fact, our optical switches operate thousands of times faster than electromechanical switches. And, they perform reliably for up to twenty years or more, exceeding the lifetime of the product itself.

Omron's optical switches dramatically improve the reliability of your end product by virtually eliminating switch failure. Take switches. There are over 50 Or ask us about the more than components we produce. You can reach us at 1-800-62-OMRON.

EDN December 19, 1991

CIRCLE NO. 133
If you think DSPs are priced
Our TMS320 family starts at
out of reach, think again.
just $3.

Cost is no longer a barrier to using DSPs. At Texas Instruments, our TMS320 family is well within your reach, thanks in large part to a decade of DSP leadership.

16-bit DSPs as low as $3
Our 16-bit, fixed-point solutions begin at $3. At that, they are on a price par with microcontrollers and are as easy to use, yet give you 10X the performance. These DSPs are extremely well suited to high-volume applications, providing you with opportunities to optimize price/performance ratios. In fact, our 16-bit DSPs are replacing microcontrollers in mainstream applications such as answering machines and disk drives.

32-bit DSPs starting at $25
You can get floating-point performance at a fixed-point price. Starting as low as $25, our 32-bit floating-point DSPs are finding widespread use in embedded, cost-sensitive applications. Performance is superior to RISC processors because of highly paralleled architectures.

When you require a custom approach, we have the unique capability to adapt our 16- and 32-bit DSPs to your needs. The entire TMS320 family is supported by an extensive array of development tools, readily accessible applications help and full documentation to help enhance your productivity and cut development time.

Passing savings on to you
In the 10 years since TI introduced its first single-chip DSP, we have shipped tens of millions of these devices worldwide. And we have applied the principles of manufacturing excellence learned from our commitment to DRAM manufacturing. This has resulted in the economies of scale that enable us to provide you with true value and dependable prices.

To put TI's DSPs within reach, call 1-800-336-5236, ext. 3537
We'll send you information on our TMS320 family, world-class support and cDSP capability.

© 1991 TI
Delay lines take on timing tasks

As system designs get more complex and operating speeds get faster, timing must be extremely precise. Programmable delay lines let designers adjust circuit timing and maximize the performance of today’s high-speed systems.

Tom Ormond, Senior Technical Editor

Programmable delay lines allow designers to readily introduce timing corrections in today’s systems. These devices employ control inputs to generate a variable delay between input and output signal transitions. The variable delay lets OEMs stock a single part for a variety of applications requiring delay lines. For one, you can use the variable delay in upgradable PCs to resolve speed mismatches between the upgraded CPU and the system clock.

Most programmable-delay-line applications fall into two categories—de-skewing and timing generation. In the first case, the lines cancel or compensate for the variations generated by system components. Typical de-skew applications would be found in clock-distribution systems, high-speed buses, instrumentation, and test equipment—especially automatic test equipment (ATE). In timing-generation applications, the delay line is used to initiate events at specified times. Typical applications would involve test equipment and other instrumentation.

Programmable delay lines typically employ one of two circuit approaches: selected path or analog variable. In analog-variable delay lines, the designs employ a constant signal path but rely on a variable control level to develop a given propagation delay. The ramp-and-generator design is a popular analog-variable approach because it is flexible and linear. In this design, an input signal transition causes a ramp voltage to start from an initial...
level. The ramp and control voltage levels serve as the inputs of a comparator that switches at a time determined by the value established at the control inputs.

Selected-path devices use digital gates to select one of several fixed-delay paths between the input and the output. Selected-path devices can consist of different elements, including transmission lines, digital gates, and RC delays. All these elements may be configured either in series or in parallel.

While implementations vary from manufacturer to manufacturer, most off-the-shelf programmable delay lines rely on similar operating theory. Hence, examining a single delay line—Analog Devices' AD9501—will give some insight into the internal workings of delay lines in general.

The inside story

As the block diagram in Fig 1a illustrates, the AD9501 consists of three main subcircuits—a linear ramp generator, an 8-bit D/A converter, and a voltage comparator. The rising edge of the input trigger pulse initiates the delay cycle by enabling the ramp generator. The voltage comparator monitors the ramp generator output and switches the delayed output High when the ramp voltage crosses the threshold set by the D/A-converter output voltage. Users program the threshold of the D/A-converter output voltage using digital inputs D₀ through D₇.

The internal timing diagram of the AD9501 (Fig 1b) provides a detailed illustration of how the delay is established. Minimum delay value t₀ equals the sum of trigger-circuit delay, ramp-generator delay, and comparator delay. The trigger-circuit delay and the comparator delay are fixed; ramp-generator delay varies as a function of the rate of change of the linear ramp and, to a lesser degree, the value of the offset voltage. Maximum delay is the sum of minimum delay (t₀₀) and full-scale program delay (tₒ₉₅). Ramp-generator delay is a measure of the time required for the ramp to slew from its reset voltage to the most positive D/A-converter reference voltage (00H). The difference in these two voltages is nominally 18 mV with offset-adjust open or 34 mV with offset-adjust grounded.

These two voltage levels require an offset between them for three reasons. An offset allows the ramp to reset and settle without reenter-
ing the voltage range of the D/A converter. Secondly, the D/A converter may overshoot as it switches to its most positive value (00H); this overshoot could generate false output pulses without the offset between the ramp reset voltage and the upper reference. Overshoot on the ramp could also develop false outputs if there were no offset. Finally, the ramp is slightly nonlinear for a short interval when it first starts. The offset shifts the most positive D/A-converter level below this nonlinear region and maintains ramp linearity for short programmed delay settings. The offset-adjust of the AD9501 allows the user to control the amount of offset separating the initial ramp voltage and the most positive D/A-converter reference. This, in turn, causes the ramp generator delay to vary.

Buy, don't build

While some applications might require an application-specific delay line, you can find a number of commercial programmable delay lines that will solve a variety of timing problems. These off-the-shelf components are available in packages that interface directly with standard logic families.

As the information in Table 1 indicates, commercial programmable delay lines offer varied performance attributes. Total programmable delay figures ranging from 2.5 to 10,000 nsec and delay-resolution figures as low as 5 psec illustrate the versatility of today's off-the-shelf devices. Units are available that will interface directly with logic families such as TTL, CMOS, and ECL. The delay lines will also operate at trigger rates as high as 800 MHz. Off-the-shelf delay lines are available for both commercial and military applications.

While the figures in the table illustrate delay-line capability, they don't tell the whole story; today's off-the-shelf units offer other advantages. When you look at printed circuit board real estate considerations, you'll find plenty of packaging options—14-, 16-, and 20-pin DIP, 28-pin PLCC (plastic leaded chip carrier), 32-pin quad flatpack, and gullwing, surface-mount units. All TTL-compatible units operate from one 5V supply, so there's no problem with unique power-supply requirements to consider. The TTL-compatible delay lines also have good driving capabilities—from 10 to 20 gates.

Technitrol and Analog Devices offer products screened to MIL-STD-883, and the PLD-ACT devices from Engineered Components have a standby mode power drain of only 5 nW. Brockettree even makes it easy to familiarize yourself with the information in Table 1.

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>Model</th>
<th>Total delay (nsec)</th>
<th>Delay steps (psec)</th>
<th>Logic output</th>
<th>Trigger rate (MHz)</th>
<th>Operating range</th>
<th>Package</th>
<th>Circuit type (AV=analog variable, SP=selected path)</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analog Devices</td>
<td>AD9501</td>
<td>2.5 to 10,000</td>
<td>10</td>
<td>TTL, CMOS</td>
<td>50</td>
<td>0 to 70, -55 to +125°C</td>
<td>20-pin DIP, plastic leaded chip carrier</td>
<td>AV From $8.60 (100)</td>
<td></td>
</tr>
<tr>
<td>Brooktree</td>
<td>B630</td>
<td>25 to 400</td>
<td>NS</td>
<td>TTL</td>
<td>50</td>
<td>-55 to +125°C</td>
<td>14-pin DIP</td>
<td>AV $11.10 (100)</td>
<td></td>
</tr>
<tr>
<td>Dallas Semiconductor</td>
<td>DS1020</td>
<td>74 to 522</td>
<td>250 to 1000</td>
<td>CMOS</td>
<td>0.020</td>
<td>0 to 70°C</td>
<td>16-pin DIP</td>
<td>AV $13 (1000)</td>
<td></td>
</tr>
<tr>
<td>Elmem Technology</td>
<td>PDL 6</td>
<td>3.1 to 31</td>
<td>50 to 500</td>
<td>ECL</td>
<td>80</td>
<td>-10 to +60°C</td>
<td>12-pin single in-line package</td>
<td>SP $63 (1000)</td>
<td></td>
</tr>
<tr>
<td>Engineered Components</td>
<td>PDL-ACT</td>
<td>15 to 358</td>
<td>1000 to 50,000</td>
<td>TTL</td>
<td>To 80</td>
<td>-40 to +85°C</td>
<td>16-pin DIP</td>
<td>SP $15 (100)</td>
<td></td>
</tr>
<tr>
<td>Motorola</td>
<td>MC10E/100E195</td>
<td>2.58</td>
<td>20</td>
<td>ECL</td>
<td>1000</td>
<td>0 to 85°C</td>
<td>28-lead plastic leaded chip carrier</td>
<td>SP $38.07</td>
<td></td>
</tr>
<tr>
<td>Newport</td>
<td>60A</td>
<td>14 to 91</td>
<td>1000 to 12,000</td>
<td>TTL</td>
<td>NS</td>
<td>0 to 70°C</td>
<td>16-pin DIP</td>
<td>NS £3.8</td>
<td></td>
</tr>
<tr>
<td>Sony</td>
<td>CBX1159QY</td>
<td>1.4 to 22</td>
<td>5</td>
<td>ECL</td>
<td>800</td>
<td>-55 to +125°C</td>
<td>32-pin quad flatpack</td>
<td>SP $25 to $40 (100)</td>
<td></td>
</tr>
<tr>
<td>Technitrol</td>
<td>GCTR PC</td>
<td>13 to 111</td>
<td>1000 to 15,000</td>
<td>TTL, CMOS</td>
<td>0.100 to 1</td>
<td>-55 to +125°C</td>
<td>16-pin gullwing surface mount</td>
<td>AV $49 (100)</td>
<td></td>
</tr>
</tbody>
</table>
with standard delay products. They offer a demonstration board that lets you test and evaluate the performance of their BT630 programmable delay lines. The board includes circuitry that can generate a TTL input signal that has user-selectable period and pulse width. The board also includes DIP switches to set the delay range and potentiometers for making fine delay-time adjustments.

Maximizing flexibility

The PDL-ACT devices from Engineered Components have been designed to allow for final delay adjustment during installation or after the lines have been installed in a circuit. These delay lines incorporate all required drive and pick-off circuitry and are self-contained in a 16-pin DIP. Compatible with TTL, advanced CMOS, and FAST (Fairchild Advanced Schottky TTL) logic families, the delay lines feature a hybrid design that includes compensation for propagation delays and incorporates internal termination at the output—no additional external components are required to obtain the required delay. The delay lines are programmed by inputting a logic 1 or 0 at each of the three programming pins. Because only dc levels are involved, you can program the lines using remote switches or you can perma-
Clear Out Your Excess Parts By Year End
Earn Tax Benefits Up To 200% Of Cost

Q: Who could possibly need my truckload of excess parts or my office supplies?
A: Over 1,200,000 students in community, technical and four-year colleges need thousands of metal, electric, electronic parts and all kinds of equipment for training.

Q: Where do the non-profits get them? And how?
A: We have nine warehouses around the country where colleges and social service non-profits come in and select what they need.

Q: How can my company benefit by donating excess parts, assemblies and complete products?
A: Your donations could qualify as a tax benefit up to 200% of cost under IRS 170(e)(3).

Q: Can my company get the tax benefit by year end?
A: Absolutely. We'll clear out your excess inventory quickly because of our warehouses. So call or write today and we'll reply within 48 hours.

Company/College
Gifts-In-Kind Clearing House
P. O. Box 850 Davidson, NC 28036
704/892-2228 Fax 704/892-3825

CIRCLE NO. 20

AT BUS EXPANSION THAT REALLY WORKS!

Now you can expand your PC-AT system without timing or noise problems and without time-consuming system reconfiguration with the new ETRC-AT active Expansion Bus Interconnect Kit from ACCES.

Hardware and Software Transparent.
No need to add drivers or modify software.
No Address Restrictions.
Put disk drives, video controllers and other computer resources into open slots in your expansion chassis.
No Initializing Software.
Just plug in the cards and you’re all set to go.

It Really Works!
Operation has been verified with cable lengths up to 12 feet and zero wait states in 386 systems running at 25 MHz CPU clock rate!

CIRCLE NO. 50

COMPONENTS

With an 800-MHz max operating frequency, Sony’s ECL-compatible delay lines are designed for high-speed bus, test-equipment, and clock-distribution applications.

Looking down the road
Today's off-the-shelf programmable delay lines offer high performance. However, looking down the road, designers want more. They want more on-board functionality, higher resolutions, and faster programmability. This is particularly true in mixed-signal and VLSI ATE, where programmable-delay networks play an important role in minimizing overall test times without sacrificing precision. Multichannel event-triggered applications require more functionality and easier interfacing to µP/control circuitry.

Article Interest Quotient
(Circle One)
High 512 Medium 513 Low 514
The Series 6600/6700 Thermostats

Now you can ensure the highest level of thermal protection for your P.C. board without compromising its design. Specify an Airpax Series 6600 or 6700 miniature bimetallic snap-action thermostat.

The 6600 provides precise sensing of ambient temperatures in applications where the control of high temperatures is crucial. The 6700 gives you accurate thermal surface sensing when mounted on heat sinks in applications such as

Small things come in good packages.

The 6700 conforms to Y220/T0220 international product package standards, so you can automatically insert and solder the thermostats onto your board with high-speed automated equipment. The nickel-plated copper mounting bracket assures accurate thermal conductivity for heat-sink applications.

Excellent repeatability from 40°C to 110°C.

Series 6600/6700 thermostats provide fast, positive response with 1-amp switching capability at 48 Vdc over their operating range of 40°C to 110°C (104°F to 230°F) for a minimum of 30,000 operations. The operating temperature is pre-set at the factory. Both the 6600 and 6700 meet UL and CSA standards.

Never Has So Little Done So Much For Thermal Protection.

power supplies. Both the 6600 and 6700 are ideal for today's crowded P.C. boards, where reliable thermal protection is essential. And space is at a premium.

So much to do, so little space.

The 6600 occupies less than .84 sq. cm. of precious board space, yet provides complete, self-contained thermal protection. The STD 8-pin dual in-line package is shipped ready for use in auto-insertion assembly equipment.

The 6600 is VDE approved; the 6700 is VDE pending.

A little information goes a long way.

To find out more about Airpax Series 6600/6700 thermostats, call or write us today. You'll see how so little can do so much to increase your P.C. board's reliability. Airpax, Husky Park, Frederick, MD 21701. (301) 663-5141. FAX (301) 698-0624. A North American Philips Company.
The Power in Telecommunications

The squeeze is on

Slimming is an obsession in the electronics industry as engineers face the task of making thinner cards to fit even more functions into standard racks. Once again Ericsson can help.

The new PKE is a 25-30 W DC/DC converter squeezed into a slim package little more than half the height of its predecessor, the internationally acclaimed PKA converter. The PKE is only 10.7 mm (0.42") high and has the same 3"x3" industry-standard footprint and pin out.

Having set the standard for DC/DC converters in 1983, Ericsson's new series represents a remarkable leap forward in power supply technology. The PKE needs no power derating over its entire ambient temperature range of -45 to +85 °C. Quite simply, no one else achieves this in so little space. And you can choose from versions with one, two or three regulated outputs.

Perhaps most surprisingly, performance is in no way compromised by the size reduction. In fact, the PKE is even better than the PKA. A wide input voltage of 38 to 72 VDC is complemented by 1500 VDC isolation, 80-85% typical efficiency and two million hours MTBF at +45 °C ambient.

The PKE converter from Ericsson - slim, compact and beautifully formed. Squeeze in the time to call us for more information.
Sealed toggle switch meets severe-environment demands

If your control panel needs a toggle switch that can withstand the rigors of road graders, farm vehicles, or industrial processing equipment, the NT Series from Micro Switch is worth a look. Switches in the series have lever-to-bushing and cover-to-case seals made from a molded elastomer, as well as terminal inserts that are molded into the high-impact thermoplastic case.

This complete sealing of the switching chamber enables the toggle switches to comply with the UL 508, paragraph 13.3 hose-down test. You can use these switches in control panels that are subjected to periodic splashes or wash downs, such as the panels common to food and beverage equipment. The switches can also withstand exposure to heavy accumulations of moisture, such as that experienced by vehicles left outdoors overnight.

Options include 1-, 2-, or 4-pole circuitry; screw, quick-connect, or solder terminals; and momentary or maintained action. The switches are available in 5, 10, and 15A ratings. The toggle levers are 0.68-in. long and have a nonglare nickel finish. In addition to the bat-handle toggle lever, the company can furnish pull-to-unlock and logic-level versions.

NT Series switches have an operating range of -40 to +71°C and are UL recognized and CSA certified. List prices range from $11.59 to $26.44.

Micro Switch, 11 W Spring St, Freeport, IL 61032. Phone (815) 235-6600.

Circle No. 688

Surface-mount RC networks satisfy EMI/RFI filter applications

Advances in digital IC technology are creating stringent demands for the reduction of electromagnetic interference (EMI) and radio-frequency interference (RFI) in electronic equipment. EMI/RFI filters are used in personal computers, data terminals, test equipment, and process controllers to suppress high frequencies. Bourns's 601 Series EMI/RFI lowpass filters are smaller and less expensive than inductive-type filters. The filters come in surface-mount packages and use a resistor-capacitor (RC) network.

Featuring a T-configuration of 16 series resistors and 8 parallel capacitors, the filters can handle filtering for as many as eight lines. The filters are available with resistor values of 10 to 100Ω and capacitor values of 50 to 200 pF. Using 25Ω resistors, a filter's typical 3-dB attenuation point ranges from 20 to 64 MHz, depending on the capacitor value.

The tolerance for component values is ±10% for resistors and ±30% for capacitors. The operating temperature range is 10 to 85°C. In addition to 18- and 20-pin surface-mount packages, the filters are available in 18- and 20-pin plastic DIPs. Prices for the 601 series EMI/RFI filters begin at $2.15 (10,000).

Bourns Networks Inc, 1400 N 1000 W, Logan, UT 84321. Phone (801) 750-7200.

Circle No. 689
The tide is turning. More and more people are washing their hands of ordinary memories and looking to SGS-THOMSON for EPROMs and EEPROMs. One big reason: our new King Size 4 Megabit device. It's specially formulated with high-performance ingredients to make your designs come out sparkling: CMOS low power, plus an 80ns super-fast access speed, ultra-short programming time and more.

SGS-THOMSON is big on selection, too. You can get 16K and 2 Meg devices, plus every density in between, right off the shelf. We won't soft-soap you with delivery excuses either. Backed by a list of distributors that reads like Who's Who, SGS-THOMSON ships on time.

Our serial EEPROMs feature guaranteed one million Erase/Write cycles and are available in I²C and MICROWIRE® bus versions.

No wonder we're now one of the world's top EPROM suppliers. And we'll continue to sparkle in the memory business.

Full-feature serial EPROMs in 4K and 8K sizes are ready to hit the shelves. And our 16 Meg EPROM is in the works!

Let SGS-THOMSON's quality, selection and service wash away your memory problems once and for all.

SGS-THOMSON Microelectronics
1000 E. Bell Rd., Phoenix, AZ 85022 (602) 867-6259

1991 SGS-THOMSON Microelectronics. All rights reserved.

MICROWIRE® is a registered trademark of National Semiconductor.
The NEW Piher Opens Up Unlimited Specifying And Design Options

The New Piher is now backed by the resources of The Meggitt Group. Powered by a nationwide sales and distribution network. Poised to offer you unmatched resistive component options and value.

Designers can now team with our international pool of engineering talent to create custom specials.

Specifiers and Purchasers can expect prompt technical support and efficient customer service from people who understand your production requirements.

Choose from a complete, quality line of carbon and cermet trimmer potentiometers in a wide range of specifications. All are competitively priced and readily available from one of the nation’s most extensive inventories.

And all Piher components (as evidenced by our prestigious Ford Q-1 award) meet the highest standards for quality and reliability.

Find out more about the New Piher. For a Free 108-page Product Catalog, call 1-800-323-6693, or write Piher, 903 Feehanville Drive, Mt. Prospect, IL 60056.

Signal "The American Original" introduces a new family of transformers for 2.5 to 80 VA applications that require low power and a high degree of isolation. These new "Class 2" transformers feature the same dual high-temperature bobbin construction and insulating shroud originally developed for the company's very successful International Series. Available in both PC and chassis mount versions, they offer a choice of inherently limited or non-inherently limited designs and feature 4000 VRMS primary and secondary isolation.

Signal's insulation system results in very high isolation between the primary and the secondary windings, and between either winding and the core. The dual bobbin design reduces capacitance and eliminates the need for an electrostatic shield. The Class 2 dual bobbin series satisfies UL 1585 requirements and CSA safety and performance standards.

Signal transformers are available through Signal's PRONTO 24-Hour Off-the-Shelf shipment program. For additional technical data, contact Signal Transformer, 500 Bayview Avenue, Inwood, N.Y. 11696.

BUY DIRECT
(516) 239-5777
Fax: (516) 239-7208

THE PRONTO™ PLEDGE
Because we are America's largest stocking manufacturer of power magnetics (over 1000 part numbers), we promise to ship a minimum of 24 pieces in 24 hours.
Power Switch With Environmental Shielding

Designed to meet the needs of the marine, trucking, automotive and food-processing industries, the V series switch provides complete protection against dust and prolonged immersion in water under pressure. The short-throw, rocker-actuated panel switch is available with a rocker made from a hard, thermoplastic surface or a soft, rubberized surface. The rockers are easily removable using an actuator removal tool, allowing separate stocking of base assemblies and actuators. Illumination options include neon, incandescent, or LED lamps. The switch has a 15A/125V rating. $2.80 (1000). Delivery, six weeks ARO.

Carlingswitch Inc, 60 Johnson Ave, Plainville, CT 06062. Phone (203) 793-9266. FAX (203) 793-2239. Circle No. 390

Magnetic Speed Sensor

Model 70084-1000-077 magnetic speed sensor features a 10-ft cable assembly, allowing for easier positioning of a tachometer or process controller used in conjunction with the sensor. The sensor features a stainless-steel body and pole piece and measures 2.75 x 0.74 in. The output voltage is 190V p-p with an external 100-kΩ load. The operating temperature range is −40 to +107°C. Applications include variable and constant-speed motor or turbine controls, fans, and compressors. In unit quantities, sensor/cable assembly, $35.

Airpax, Cheshire Industrial Park, Cheshire, CT 06410. Phone (800) 982-0030; (203) 271-6000. Circle No. 392

Picosecond Delay Lines

The PE-23451 to PE-23460 series delay lines help control clock skew and allow users to fine-tune critical clock-distribution circuits. The series comes in delay values from 100 to 1000 psec, in 100-psec increments. The delay lines have an impedance of 50Ω and a maximum dc resistance of 0.5 or 1Ω, depending on part number. The devices meet UL 94V-0 flammability ratings. $2.44 (1000).

Pulse Engineering, 7250 Convoy Ct, San Diego, CA 92111. Phone (619) 268-2400. FAX (619) 268-2515. Circle No. 391

Noise-Suppression Capacitor

Constructed with a series-wound polyester dielectric rated at 250V ac, the RBEX series of noise-suppression capacitors are available with standard values between 0.01 and 1 µF. The capacitors can handle transient spikes of 2.5 kV and have a rated dielectric withstanding voltage of 1075V dc for 2 sec. Depending on the capacitance value, the maximum pulse-rise-time rating is between 100 and 200V/µsec. The capacitors meet the requirements of UL-1414, CSA C22.2, and VDE 0565-1 (approvals are pending) for line-to-line capacitors. The capacitors have a flame-retardant case and epoxy fill that meets the requirements of UL-94V-0, and they can operate between −55 and +100°C. From $0.50 to $3 (100).

Aerovox Inc, Electronic Products Group, 742 Belleville Ave, New Bedford, MA 02745. Phone (508) 999-1000. Circle No. 393

Low-Profile Crystal

The CP21B range of low-profile crystals suits surface-mount applications. You can choose a frequency in the 16- to 110-MHz range to a tolerance of ±10 ppm. Temperature coefficient is ±5 ppm over the temperature range −10 to +50°C. The leadless package size is 7.5 x 5.1 x 1.3 mm. Sample quantities, £4.30.

NDK Europe Ltd, Tolworth Tower, Ewell Rd, Surbiton KT6 7EL, UK. Phone (81) 390-8344. FAX (81) 390-6926. Circle No. 394

Microwave Transistor

Designed for VHF and UHF applications, the silicon bipolar B12V105 microwave transistor features a typical fT of 10 GHz at a collector current of 10 mA. At that current, the transistor has a gain of 18.1 dB at 1 GHz and 12.6 dB at 2 GHz. At 5 mA, the gain is 16 dB at 1 GHz. At a collector current of 2 mA, the noise figure is typically 1.6 dB at 1 GHz and 2 dB at 2 GHz. Package options include TO-92, SOT-23, SOT-143, 85-mil Micro-X, and hermetic 70-mil stripline. From $0.99 (1000).

Bipolaircs Inc, 5437 Scotts Valley Dr, Scotts Valley, CA 95066. Phone (408) 438-0806. Circle No. 395
Components

10Base-T Filter And Common-Mode Choke
The 1661 filter and isolator and the 1662 common-mode choke meet requirements of IEEE-802.3 10Base-T network systems. The filter and isolator provide 17-MHz lowpass filtering with 2-kV isolation in both transmit and receive lines. The common-mode choke attenuates common-mode noise signals by 20 dB, without differential loss. The 1661 and 1662, in 16- and 8-pin DIPs, respectively, £3.88 and £1.86 (100).

Newport Components Ltd, Tunners Dr, Blakelands North, Milton Keynes MK14 5NA, UK. Phone (908) 615232. Circle No. 396

120

Side-Actuated DIP Switch
The BP series of side-actuated DIP switches consists of 10 spst models having 1 through 8, 10, or 12 positions. Wiping contacts provide reliable switching, and high-temperature materials meet UL 94V-0 requirements. The contacts are rated at 100 mA (max) and have a resistance of <50 mΩ. All terminals are tin plated and epoxy sealed. Models are also available with gold-plated contacts. 8-position switch, $1.08 (1000).

C&K Components Inc, 15 Riverdale Ave, Newton, MA 02158. Phone (617) 964-6400. FAX (617) 527-3062. Circle No. 397

Solid-State Relays
The LH1500 family of solid-state relays features 21 devices that represent the most common relay forms. Included are Form A, Form B, Form A/B,C and dual versions of Form A and B. The relays use a GaAs LED for actuation control and a monolithic silicon chip comprising a photodiode array, control circuitry, and a DMOS output switch. Some of the relays employ current-limiting circuitry, enabling them to pass FCC voltage-surge requirements. The Form A/B relays have a break-before-make action that provides a true Form-C function in a solid-state relay. From $1.25 to $4.75 (1000).

AT&T Microelectronics, Dept 52AL040420, 555 Union Blvd, Allentown, PA 18103. Phone (800) 372-2447, ext 810. In Canada, (800) 553-2448, ext 810. Circle No. 398

Unparalleled Reliability

From the first discussion about your specs, through prototype design, testing, fine tuning and full-scale production, Toyocom is devoted to developing a completely reliable solution for your computer application – one that delivers maximum performance at a minimal price.

Our crystal clock oscillators offer performance you would typically associate with customization, at standard prices. Our TCO-700 series performs to the most exacting specs:
- TTL output levels to 100 MHz.
- CMOS output levels to 70 MHz.
- Full (14-pin) and half-size (8-pin) models.
- Tri-state output feature.

Let us develop a reliable solution for your computer applications. Contact TOYOCOM, 617 E. Golf Road, Arlington Heights, IL 60005.
Phone Toll-Free today 1-800-TOYOCOM.

TOYOCOM
Timing is everything

CIRCLE NO. 44
BNC Cable Assemblies

- Impedance matched
- High strength molded terminations

Meritec’s BNC impedance matched cable assemblies are available in a variety of configurations, including cable end plug, cable end jack, front panel mount jack, front panel mount jack with isolated ground and rear panel mount jack. The connectors are terminated to subminiature coax cable and feature standard BNC and cable impedances of 50 and 75 ohms. High strength molded terminations make the assemblies ideal for critical applications requiring high reliability. The assemblies may be terminated with Meritec’s SSI™, SSC™, SPI™ or PCB Solderable Interconnects on the opposite end.

Mark No. 40 on Inquiry Card

High-Performance Interconnects That Terminate High Cost.

Meritec has terminated the high cost of high performance interconnects for fast logic applications. We produce a full line of cable assemblies for applications in the 3ns to sub nanosecond range—engineered to match your requirements for controlled impedance and propagation rate while minimizing crosstalk. We deliver assemblies of unparalleled quality On time. At a very reasonable price.

Our complete line includes Single Signal Interconnects (SSI™), Shielded Performance Interconnects (SPI™) and Multi Signal Interconnects (MSI™) terminated to a diversity of controlled impedance cables, including coax, twin coax, FEP, PTFE and our Frialex™ textile cable.

Call Meritec today at 216-354-3148 for more information and a free copy of our capabilities brochure.

Card Edge Connectors with .050" centers are available in SMT and through hole configurations

Meritec’s CP50™ Card-Edge Connectors are designed with .050" centers to minimize board space requirements. The 50 Ω impedance matched connectors are ideal for high density board-to-board applications. The connectors are designed to meet IR or vapor phase reflow requirements. Through hole and SMT contact tail configurations are available. Precision, high strength molded terminations provide reliability in critical applications.

Mark No. 40 on Inquiry Card
Accurate Power Resistors
The PAC-series wirewound resistors have 1% accuracy and power ratings of 2 to 6W. Resistance values range from 0.22Ω to 12 kΩ in E24 steps. Temperature coefficient is <100 ppm/°C, and long-term stability is <0.5%. The size of the 2W version is 13 x 5.5 mm, and the 6W version is 25 x 7.5 mm. 1 kΩ, 2W resistor, gld 35 (100).

Philips Components, Box 218, Bldg BAF-153, 5600 MD Eindhoven, The Netherlands. Phone (40) 722091. FAX (40) 724825.

Circle No. 399

Amber LEDs
Emitting a wavelength of 605 nm, these LEDs exhibit a true amber color. In the color spectrum, the amber hue falls between that of pure yellow at 580 nm and standard orange at 630 nm. Because of its “emotionally neutral” color, an amber LED is commonly used in automotive instrument-panel lighting. Previously, designers who wanted a near-amber hue had to use yellow LEDs that were off-color to the high side, or orange LEDs off-color to the low side. The LEDs are available in T-1, T-1¼ and 2 x 5-mm shapes. The devices can handle a steady peak-current of 30 mA, and a pulsed current (10-µsec duty cycle) of 155 mA. Light efficiency is 2 lm/W and quantum efficiency is 0.6%. Depending on quantity and package style, $0.15 to $0.50. Delivery, stock to eight weeks ARO.

Lumex Opto/Components Inc, 292 E Hellen Rd, Palatine, IL 60067. Phone (708) 359-2790. FAX (708) 359-8904. Circle No. 400

Subminiature Pin-Plunger Optical Switch
Offering longer service life and higher reliability than traditional mechanical switch designs, the EESA105 optical switch operates without a contact mechanism. The subminiature, pin-plunger switch uses an infrared LED and phototransistor combination to activate the device, eliminating the contact bounce and wear associated with electromechanical switches. The EESA105 activates with a 15-gram (max) operating force and has a 0.059-in. (max) pretravel and a

HEAT SINKS for INTEL 80486 and i860XR MICROPROCESSORS

Designed for use with the Intel 80486DX and 80486SX microprocessors and the Intel i860XR RISC processor, packaged in 168-pin ceramic PGAs, the EG&G Wakefield 669 Series Heat Sink/Clip Assembly offers a cost-effective heat dissipation solution for today’s high-speed microprocessors. This assembly provides the highest clamping force available with a nylon-coated stainless steel clip, for the most efficient interface heat transfer and to meet system shock and drop test requirements. Our omnidirectional heat sink offers optimized heat dissipation and ease of application; the symmetrical clip is suitable for high volume installation with the EG&G Wakefield 162-IT installation tool. Heat dissipation with the 669 Series Heat Sink/Clip Assembly is optimized for PC, workstation, and server applications with low airflow (e.g., 50-200LFM). Pressure drop is minimized in multiple-processor applications.

Intel, 80486, i860XR, and 80386 are trademarks of Intel Corporation.
Call our Application Engineering Department today at (617) 245-5900 for information about the EG&G Wakefield Engineering 669 Series (patent pending) and other heat sinks for the Intel 80386 and 80486 microprocessor family. Also ask for information about the EG&G Wakefield DELTEM™ family of heat sinks for cooling high-speed cache RAM used with 50 MHz microprocessors.
POWER SOLUTIONS

Smart Power 3-Phase Bridge

The PWR-82331 is a 200V, 30A 3-phase motor drive hybrid. Contained within the PWR-82331 are six power MOSFETs and associated flyback diodes, which comprise the output stage. Each phase has separate high- and low-side gate drives to control the output stage, and protection circuitry that prevents simultaneous turn-on of upper and lower output FETs in the same phase. The internal drive and protection circuitry can operate on 5V or 15V logic levels and has Schmitt triggered inputs for noise immunity. The internal dc-dc converter provides constant high-side gate drive and power to the internal logic.

Circle #99 For Sales Contact, Circle #100 For Literature

Solid-State Power Controllers

The SSP-21110 series of 28 Volt dc Solid-State Power Controllers (SSPCs) replace electromagnetic circuit breakers and solid-state relays rated from 2 thru 15 amp. They provide status outputs and permit logic input control so they may be remotely located near the load. Solid-state electronics offers instant trip (fault) and a true I2T trip protection for the wire and loads.

The SSP-21116 Series of 270 Volt dc, (SSPCs) replace electromagnetic circuit breakers and solid-state relays rated from 5 thru 15 amp. They provide status outputs and permit logic input control so they may be remotely located near the load. Solid-state electronics offers fault (under 25 µs) and a true I2T trip protection for the wire and loads. They also provide an output leakage clamp for system safety.

Power MOSFET switches are used for their low "on" resistance, low voltage drop, high "off" impedance and low power dissipation. Built with power MOSFETs and custom monolithics and using thick-film hybrid technology, they offer small size, low power, and high reliability.

Contact Bob Fryer, at (516)567-5600 ext. 390, for information on the above products.

Smart Power High Voltage 3-Phase Bridge

The PWR-82333 is a 270V, 30A, 3-phase motor drive with a maximum voltage rating of 500Vdc. Designed for high-power motor applications, the PWR-82333 can deliver 10kW of power to the load. The PWR-82333 uses an IGBT output stage with flyback diodes, high- and low-side gate drives, and protection circuitry for in-line firing. The internal dc-dc converter supplies continuous power to the high-side drives for continuous operation even in stall conditions. Package in a 2.1" x 3.0" chassis mount package with a thermal resistance from junction-to-case of 0.85°C/W.

Circle #101 For Sales Contact, Circle #102 For Literature

60 Watt, Triple Output DC-DC Converter

The PWR-82400 is a triple output 60W dc-dc converter. Designed using a forward converter topology, the PWR-82400 has a power density of 19.4 watts per cubic inch. Available as ±15V or ±12V output at 1.3A and 1.7A respectively, both versions have a ±5V output at 4Amps. The input voltage range is 16-40Vdc and operates under emergency power conditions in accordance with MIL-STD-704. Full power output is available up to +100°C case temperature with linear derating to 10 watts at +125°C.

Circle #103 For Sales Contact, Circle #104 For Literature

Contact Steve Friedman, at (516)567-5600 ext. 381, for information on the above products.
0.035-in. (min) overtravel. The LED accommodates 50 mA of forward current and has a light-intensity degradation of only 7.5% over 500 hours of continuous operation at a forward current of 20 mA. $0.99 (5000).

Omron Electronics Inc, 1 E Commerce Dr, Schaumburg, IL 60173. Phone (708) 843-7900. FAX (708) 843-7787. Circle No. 401

Solder-In Filters

The 9900 series solder-in EMI/RFI filters are hermetically sealed at one end, allowing for through-hole sealing, and can withstand installation temperatures of 300°C. The filters have a soldered construction, allowing high-frequency filtering to 10 GHz. Specifications include a current rating of 5A, voltage ratings of 50, 100, and 200V dc, and capacitance values of 10 pF to 0.015 µF. Tolerance is 0 to 100%, and capacitance stability is ±30 ppm for NPO types and ±15% for X7R types. Approximately $2 (1000).

Spectrum Control Inc, 2185 W 8th St, Erie, PA 16505. Phone (814) 455-0966. Circle No. 402

Diode Laser With Adjustable-Focus Beam

Designed for industrial applications such as optical and physical alignment in manufacturing, this 111b-class laser diode has an adjustable focus over distances from 20 mm to 5 ft. The diode has a 4-mW (max) optical output, a wavelength of 675 nm, and 6-mm x 2-mm beam dimensions. The diode assembly, which includes a 110V ac plug-in transformer and an on-off switch, fits the company's 1-in. ring mount for easy mounting to a post or other positioning equipment. Optical mounting accessories are available. $149.

Edmund Scientific Co, Dept 11B1, N900 Edscorp Bldg, Barrington, NJ 08007. Phone (609) 573-6250. Circle No. 403

Pressure Sensors

Designed for high-accuracy applications, the SMRT series pressure sensors comprise five devices that offer absolute, differential, and gauge pressure from low pressure (0 to 1 psi) to high pressure (0 to 100 psi). The sensors operate from a 5V supply and output a synchronous, serial digital signal. Internal compensation limits all errors to <0.5% over a range of −20 to +85°C. Long-term stability is typically better than 0.1%, and response time is <80 msec. From $115 (100).

Sensym Inc, 1244 Reamwood Ave, Sunnyvale, CA 94089. Phone (408) 744-1500. Circle No. 404

Time to Switch

It's all new. GET YOUR COPY OF THE NEW C&K NEWTON DIVISION FULL LINE SWITCH CATALOG. This is your primary source for the best miniature and subminiature switches worldwide.

It's time to switch. Get the catalog from the company that offers the broadest line of toggle, rocker, pushbutton, slide, DIP, rotary and coded switches in the industry.

CALL (800) 635-5936 or FAX (617) 527-3062 for your copy today.

C&K Components, Inc.
15 Riverdale Avenue
Newton, MA 02158-1082

The Primary Source Worldwide®

REPRESENTATION WORLDWIDE, MANUFACTURING FACILITIES: USA, Hong Kong, England, Costa Rica.

CIRCLE NO. 41
Vertical Mount Fixed Resistors

Series RSS Vertical Mount Metal Oxide Fixed Resistors feature self-standing, snap-in terminals, and they exhibit an excellent high frequency response and low inductance, making them suitable for PC board mounting in power supplies, switching regulators, monitors, printers, and color TVs.

Model RSS3FB is rated at 3W with a resistance range of 1Ω to 100kΩ. Model RSS5FB is rated at 5W with a resistance range of 1Ω to 2.4kΩ. Both are available in 15mm and 25mm heights. Free samples are available, contact Noble at 708/364-6038.

2-, 4-Bit and 5-Bit Rotary Encoders

Noble SDB161 2-, 4- and 5-bit encoders are compact (21mm o) with a low profile (under 10mm height). Built with a sturdy diecast and steel construction, these encoders offer long life and reliability.

SDB161 encoders are for relative (2-bit) and absolute (4-bit, 5-bit) reference applications. 2-bit switches offer 36 detented positions; 4-bit switches offer 12 or 16 detented positions; 5-bit switches offer 24 or 32 detented positions. All encoders feature continuous rotation. The 2-bit is available in gray code; the 4- and 5-bit versions offer either binary or gray code. Custom designs can be accommodated. For free samples, contact Noble at 708/364-6038.

4mm Surface Mount Trimmers

TMC4K “chip” trimmers feature a ceramic substrate, a metal glaze element, and an insulated knob for easy adjustment. The TMC4K can withstand operating temperatures of -30°C to +125°C and is rated at 0.2 watts of power at 20V. Its standard resistance range is 200Ω to 1MΩ. Outside dimensions are 3.8mm wide x 4.5mm long (2.1mm height).

Available on tape and reel. Can be held to a circuit board by an adhesive for reflow soldering. Call Noble at 708/364-6038 for a free sample.

Slide Potentiometers

The VJ Series High and Low Profile Slide Potentiometers are lightweight, durable, and provide smooth operation. They function as volume, balance, brightness/contrast, temperature, lighting and graphic equalizer controls.

The Low Profile Series (with single or dual elements) features a slide travel of 15, 20, 30, 45, or 60mm. The High Profile Series is available in 30, 45, 60, 80 or 100mm travel.

Custom designs can be accommodated. Contact Noble at 708/364-6038 for a free sample.
Make all these disappear.

Poof, they're gone. Bulky battery packs, slow hard disks and more. You see, where memory cards make sense, the new Intel 4MB Flash Memory Card provides a high-density, read/write, truly nonvolatile portable storage solution.

The real trick, of course, is that it allows you to store large amounts of code or accumulate data in a small, rugged card that uses less power than traditional memory technologies. So now you can design products that are faster, lighter, tougher and more energy efficient.

Not tomorrow, but today. Thanks to our System Developer's Kit. A DOS-compatible package that includes a 1MB Flash Memory Card, an add-in board as well as design information. In addition, it includes an evaluation copy of Microsoft's Flash File System software. All the stuff to get you started—now!

Plus, Intel's Flash Memory Card is the first to comply with the 68-pin PCMCIA/JEIDA standard. This allows the card and its data to be interchangeable between a host of
With this simple card trick.

Want to know more about the secrets of this amazing technology? Then call (800) 548-4725 today and ask for Literature Packet #C8A01. And start performing your own disappearing tricks.

EDN December 19, 1991

CIRCLE NO. 140
"We saved more than $50,000 last year!"

CAPS® is a productivity-boosting engineering tool that helps you find, select, and specify ICs and semiconductors faster and easier than ever before.

"Tekelec designs and manufactures custom diagnostic systems for the communications industry. Every piece of equipment we build is unique, so we spend a lot of time searching for ICs and semiconductors for new designs. That's why we invested in the CAPS system.

"With CAPS, it's a snap to find the right components. When we need information, it's there. We no longer have to look through catalogs or play telephone tag with vendors. CAPS identifies alternate sources and gives us technical specs, pricing information, and hardcopy printouts—all on one PC. Since we installed the system, we've saved hundreds of component engineering hours. CAPS saved us more than $50,000 last year alone!"

"Productivity-boosting tools like CAPS pay for themselves and help Tekelec maintain our competitive advantage."

— Tom Cannon
Senior Vice President,
Research and Development
Tekelec

Updated monthly, the CD-ROM (Compact Disc – Read-Only Memory) based CAPS system gives you fast, easy, query-driven access to technical specifications and applications data for over 600,000 ICs and semiconductors made by nearly 500 companies worldwide. Best of all, CAPS provides instant access to hundreds of thousands of pages of complete, unabridged manufacturers' datasheets, so you have everything you need right at your fingertips.
If you had this...

and we gave you this...

think what you could do!

Introducing the Logic Switch™

Imagine! Noise-free, logic-level switching from an electromechanical package! We’re calling it the Logic Switch because this alternative to mechanical contact switches gives you discrete, noise-free signal through optoelectronics. Solid-state and designed for long life and reliability. Think of the possibilities!

Here’s How It Works.
The Logic Switch uses an infrared emitter and phototransistor sensor combination. An internal “flag” interrupts a beam of infrared light from emitter to sensor, thus changing the switch’s output when activated.

The infrared light transmission reduces dust problems associated with visible light transmission, and the solid-state life-span is estimated at 50 million cycles.

What Can You Do With It?
The Logic Switch is so new, we wouldn’t presume to guess at all its uses. Instead, we invite you to examine it firsthand and try it out on your ideas. Call Cherry at 708-360-3500, and we’ll send qualified engineers a free Logic Switch and a specifications sheet.

The Logic Switch is ideal for any application in which logic-level switching is necessary and traditional snap-action switches are problematic. But perhaps you have some different ideas.

Why not call us today and put those ideas to the test right in your own laboratory—for FREE. All you’ve got to lose is signal noise.

The Logic Switch: an electronic device in an electrical package.

Logic Switch shown here in our Terminator® quick-connect, fast-mount configuration.
Arm yourself with LAN know-how

Setting up a local-area network is complicated—especially if you've never done it before. A clear idea of what you want to accomplish as well as a basic understanding of your hardware and software alternatives will help you deal with vendors and consultants.

Dan Strassberg, Technical Editor

FOR A LONG MOMENT, the phone line was silent. When the consultant spoke, his tone was one of disbelief tinged with exasperation: "You're going to do what in eight pages?" he demanded. "I'm going to write a primer for engineers who have no LAN experience and whose managers want them to set up a local-area network in an engineering department or a manufacturing-test area," I replied, my manner reflecting more humility than it had earlier. "I'm hoping to get these people to the point where they can ask questions of LAN hardware and software vendors without embarrassing themselves," I continued. There was another pregnant pause. "It's clear that you don't understand how enormous this field is," the consultant retorted. "I don't think you can do what you want to do; I'm not sure anyone can. For certain, what you've described would take a LAN expert, and you aren't one." "I know," I said, "but I'm certainly going to try."

At this point, the consultant seemed to change the subject abruptly; he asked if I ever get to New York City. I happened to be going the following week. He recommended that I stop at the McGraw-Hill Bookstore at 1221 Avenue of the Americas in Manhattan. Several other people gave me similar advice, asserting that the store's collection of technical books is unequaled elsewhere. When I arrived at 1221 and descended into the basement store, I asked where I could find LAN books. The salesperson directed me to a section of...
shelving at least four feet wide by
eight feet high, filled from top to
bottom and side to side with books
on networking and LANs. Even af­
ter the warnings I had received, I
gulped; I wasn't prepared for so
much material.

I began to think that perhaps one
of the most important things my tu­
torial could do would be to provide
a reading list. The box “LANs:
Read all about ‘em” names the
books I picked up at the bookstore
and elsewhere, as well as a few
magazine articles. Obviously, it in­
cludes only a small fraction of the
LAN and networking materials
available. However, some of the
materials are particularly useful.

To paraphrase Sophie Tucker, a
good LAN consultant, these days, is
hard to find. The networking field
is so vast and continues to evolve
so rapidly that most consultants
have experience with only a fraction
of the available products. Indeed,
many consultants are familiar with
only a few types of products. More­
over, because of its complexity and
rapid rate of change, the network­
ing field is rife with mythology
and strongly held opinions that, too
often, result from an incomplete
understanding. Unfortunately, the
consulting fraternity is not totally
innocent of disseminating mis­
information.

Still, the situation is not all bad.
If you have no networking experi­
ence, the person you need to guide
you is someone with relevant expe­
rience—somebody who knows prod­
ucts and techniques likely to work
for you, who understands where the
pitfalls lie and how to avoid them.
A consultant need not have experi­
ence with a wide variety of net­
working products and technologies.
The important thing is that your
consultant be familiar with net­
working requirements similar to
your own.

Nearly all modern texts on net­
working begin with a diagram of the
so-called 7-layer cake—the Interna­
tional Standards Organization’s
open-systems-interconnection
model (the ISO/OSI model). In an
attempt to guide you through the
black forest of connectivity, the OSI
model organizes network hardware
and software into seven conceptual
“layers.” The ability to categorize
an item as performing functions as­
associated with one or more layers
can be useful, because if you know
where the product belongs, you will
be less likely to compare it with an­
other product whose function is not
really equivalent.

Instead of digesting this cake,
you may be better off first deter-
mining why you want to have a LAN. LAN projects are important enough to justify a considerable amount of study before you commit to a course of action. Understanding both your immediate and longer-term goals can save you from selecting a seemingly cost-effective approach that you will outgrow rapidly. And careful examination can lead you to products that are less costly than those you had thought necessary. Although you don't want to choose too quickly, you also don't want to waste time trying to absorb everything there is to know about networks.

Once you know what you want to accomplish, you have to avoid jumping to conclusions about the products you must have and being swayed by every input you receive. Keep an open mind while talking to vendors, but remember that claims that seem too good to be true are usually just that. The best immunization against seductive sales pitches is to inoculate yourself with information. If you become confused by conflicting claims as you evaluate products, take time for additional study.

F J Derfler, Jr's PC Magazine Guide to Connectivity (see box) organizes the process of determining your needs and selecting the classes of products most likely to meet them. Bound into the book is a decision tree (flow chart) that asks questions about the types of data you expect to share, how you propose to use the data, and the physical arrangement of the people and equipment you want to connect. Each time the tree leads you to a class of hardware or software, it highlights strong and weak points typical of products in the class. Considering the complexity of the issues it deals with, the simplicity of the diagram is reassuring.

Another strong point of the book is its extensive, though hardly comprehensive, listing of connectivity products and vendors. This 51-pg appendix organizes the products into categories. Unfortunately, the section doesn't present the categories in any obvious order, and the book's index fails to mention the categories. Individual companies and products do appear in the index, however.

Glossaries untangle technobabble

In addition to a directory of connectivity products and services, an item that you'll quickly realize you need is a glossary of networking terms. Several of the source materials in the box contain glossaries, but a full-fledged dictionary wouldn't hurt. LANs are closely related to telecommunications, and the network field has picked up the telephone industry's penchant for technobabble. Many networking acronyms have other acronyms nested within them. Often, the second acronym is built on yet a third one. (An example is 10Base-T—which stands for 10-MHz, baseband-signaling, twisted-pair technology—a network-wiring scheme that forms a part of IEEE standard 802.3. IEEE-802.3 governs a network architecture that began life as Ethernet and is still commonly known by that name. The standard is just one in a family, collectively called IEEE-802.x, whose members cover a variety of LAN technologies.)

Networking glossaries worthy of the name are longer than this article; one that I found useful is in Derfler's guide. Actually, much of his book is equally useful. Chances are, before you're done you'll want to acquire additional texts, but if you have no LAN experience and you can afford only one book on networking, this guide should be it.

While fortifying yourself with some healthy LAN reading, you may find yourself mulling over some of the considerations that follow.

One common reason for wanting a network is to be able to share expensive hardware that no one computer user uses very heavily. A good example of an item you might want to share is a laser printer. If four or five people in a work group each use a printer for an average of a few minutes a day, together they won't use the printer more than an hour a day. If the cost of connecting the computers of all of the work-group members to a single printer is significantly less than the cost of buying four or five printers, the company saves money. The likelihood of any work-group member having to wait very long for a printout is small. If sharing a printer or some other piece of lightly used equipment (a modem, for example) is all you need to do, you can buy hardware (switchboxes) that will do the job. You might not think of several computers connected to one printer via a switchbox as a network, but such a setup is the most elementary form of a computer network.

A switchbox need not have a rotary or pushbutton switch on its front. If you had to walk over and set the switchbox to receive data from your PC every time you wanted to print, you would be losing a major advantage of printer sharing. Some switchboxes automatically connect to the PC of a user requesting printer services. Other users who try to use the printer at the same time receive a "busy" indication. To avoid this annoyance, some switchboxes incorporate a memory buffer. Then all us-
ers can send data to the switchbox at the same time, and the switchbox will buffer the incoming data and queue it up for printing.

Reaping real benefits

Printer-sharing hardware can give you a few networking benefits—most notably equipment-cost savings and perhaps some associated office-space savings. However, to achieve the major benefits of networking (file sharing is the first one that comes to mind), you must choose a more ambitious arrangement; in other words, a real network.

For small networks, an approach that has considerable appeal is "peer-to-peer" resource sharing. The majority of networks—including Unix-based networks—don't provide peer-to-peer capabilities. Most networks (that is, those without peer-to-peer resource sharing) designate the computers either as "clients" or "servers." A client is usually a PC or workstation at which an individual work-group member works. A server is a computer whose resources (printers, mass-storage devices, data files, certain program files) are available to all of the work-group members. Servers are often more powerful than the work-group members' computers. Without peer-to-peer resource sharing, the computer resources of an individual work-group member are available only to that member.

With peer-to-peer resource sharing, all of the networked computers perform both client and server functions. The situation sounds ideal until you consider the drawbacks. A significant drawback of MS-DOS-based peer-to-peer networks is the amount of memory the networking software uses. With DOS's ability to directly address only 640 kbytes, the amount of memory available for running client applications can be so limited that the individual PCs become all but useless. Using extended or expanded memory for portions of the network software and portions of client applications can alleviate these memory problems. Nevertheless, you don't need a great deal of imagination to envisionsoft-
ware-compatibility issues rearing their heads at nearly every turn.

Another approach sometimes used in small networks is to make only one computer both a client and a server. With PCs based on 80386 and i486 CPUs, you can create additional “virtual” 8086-based machines. Virtual machines behave as if they consist of dedicated hardware, whereas in fact, a virtual machine borrows all of its hardware resources from another computer. If you create a virtual machine, it can act as a client while the real machine performs as the server. The two machines can coexist happily—until a client application crashes. Even then, the server will continue working, blissfully unaware of the misfortune that has befallen its virtual-machine client. But to get the client application running again, you must reboot the virtual machine. Whether you like it or not, doing so means bringing down the real machine—in this case, the server. The effects on all of the other clients are potentially disastrous.

Such problems often dictate dedicating a computer as a server. Most networks have dedicated servers. Probably the most important attribute of a server is a fast hard-disk drive with greater capacity than you can imagine ever needing. Though an effective technique on client computers, using a disk cache to improve the access time of a hard disk may not prove very helpful on a server. A group of clients can ask a server to access many widely dispersed files in rapid succession. Caches determine what information they should store by analyzing which files the CPU has recently accessed. In a server, the likelihood is lower than in a client computer that a disk cache will contain information the CPU needs. Therefore, you should be sure the server’s hard drive has fast access even without improvements achieved through disk caching.

You might think that other factors—for example the speed at which messages travel around a network—would have a profound effect on the speed with which clients can access information. To be sure, network speed is affected by many factors. However, several authors report that tests show that with today’s technology, no factor is as important as the server’s hard-disk access speed. So when selecting a server, pick one with the fastest, highest capacity hard disk you can afford.

Many other considerations

Despite the importance of disk access speed, no discussion of LANs should neglect transmission media, physical topologies, logical topologies, and media-access protocols. When you start to deal with these topics, you begin to appreciate just how large and complex a field networking is.

The routes that the LAN signals travel within a building (the network’s physical topology) don’t necessarily bear any relationship to the way the computers that make up the LAN perceive the connection scheme (the network’s logical topology). Physically, a network can be a daisy chain (a bus) or a star. Logically, the network can be a star, a ring, or a bus. But a network that is physically a star can, for example, behave as if it were a ring. Moreover, all other permutations of physical and logical topologies are possible. In general, a physical star will be more reliable than a daisy chain, but the reliability has a price. Despite being easier to install, the physical star costs more than the daisy chain—it uses more cable and requires wiring-hub hardware at its center.

Examples of LAN architectures are Ethernet, Appletalk, Token Ring, and Arcnet (in which ARC is short for attached-resource computing). Although some network architectures are associated with particular physical topologies, when you choose an architecture, you often still have a choice of physical topology. On the other hand, choosing an architecture determines a network’s logical topology.

Similarly, some architectures tie you to a particular transmission medium, whereas others permit choosing among media. Examples of media are fiber-optic cable, coaxial cable, shielded twisted-pair cable, and unshielded twisted-pair cable. None of these descriptions is adequately detailed, however, because each medium has characteristics that depend strongly on its physical properties. Therefore, a specification for coaxial cable might call for type RG-58/AU.

Actually, the situation is a bit more complicated than the previous paragraph implies. For example, the term Ethernet is often changed or modified to tell you something about the medium. “Thick-wire” Ethernet refers to the original Ethernet implementation, which used thick, semi-rigid coaxial cable (a medium known in the trade as “frozen, yellow garden hose”). “Thin-wire” Ethernet (sometimes called “Cheapernet”) uses much thinner, flexible coaxial cable. The thinner medium is not only less expensive than the thick cable, it is easier to work with. However, using it reduces the maximum permissible...
length of the LAN cabling and necessitates placing the network's nodes (the points where you connect computers) closer together. The term 10Base-T Ethernet describes an implementation that uses unshielded twisted-pair cable—similar to that used for telephone wiring. Such cable is less expensive and easier to work with than the thin coax, but using it places still greater restrictions on wiring length.

Mixing and matching technologies

Sometimes, a network-architecture specification will let you combine networks having different architectures. For example, through a protocol named Ethertalk, Apple Computer has extended its Appletalk standard to let Appletalk networks take advantage of many attributes of the IEEE-802.3 Ethernet standard. Originally, Appletalk used an unshielded, twisted-pair wiring scheme now called Localtalk. Localtalk, which is still being installed, is an economical medium well suited to small networks. It is limited in speed, however, having a data rate (signaling rate) of 230 kbits/sec. Ethernet, now including twisted-pair implementations, supports a data rate of 10 Mbits/sec. Ethertalk also allows Appletalk networks to incorporate many more nodes than does Localtalk.

You should not confuse running Appletalk over Ethernet with the interconnection of networks. One of the hottest subjects in networking at the moment is "internetworking"—tying networks together; for example, connecting a network in a design department to one in a test-engineering department. Internetworking schemes use hardware systems called bridges, routers, and gateways.

A common misconception about LANs is that using fiber-optic cable will greatly increase a network's speed. Certainly, optical cable can handle much greater signal bandwidths than copper cable can. Nevertheless, in LANs as they exist today, the bandwidth of high-quality coaxial cable isn't what limits data rates. At present, LANs can achieve the same data rates with carefully chosen coax as with optical cable. Therefore other considerations should determine which medium you select. Paramount among these is cost—both the initial cost of the hardware and the installation cost. Other factors include the cable's diameter and flexibility (which affect its ease of installation), the maximum allowable cable length, the network's required degree of immunity to electrical interference (including lightning), the need for keeping the network secure from electronic eavesdropping, and the difficulty of adding nodes to an existing cable run.

A technology that is just emerging is the wireless LAN. Wireless LANs use radio-frequency (RF) or infrared signals as the transmission medium. Several RF schemes use spread-spectrum techniques in which the signals are disbursed over a wide frequency spectrum to improve both data security and the rejection of interference. Proponents of wireless LANs insist that the networks address two major costs of copper-wire (coaxial or twisted-pair) and fiber-optic-cable LANs: the cost of the cable and the cost of installing it. Although that claim is true, wireless-LAN hardware costs sufficiently more than cabled-LAN hardware to make informed consultants suggest that you need some reason besides cost for choosing a wireless LAN. One such reason is that with some wireless LANs, you can walk around your office using a notebook PC, all the while remaining connected to the network—the computer equivalent of using a cordless telephone.

EDN December 19, 1991
method of controlling nodes' access to the transmission medium. By definition, networking involves sharing the medium. With sharing comes the likelihood that several nodes will try to talk at once so that nobody can hear. There are several radically different access-control schemes (protocols). The three most important are carrier-sense, multiple-access with collision detection (CSMA/CD), used by Ethernet and defined by IEEE-802.3; token passing, used on IBM token-ring networks and defined by IEEE-802.5; and the scheme, apparently known only as the Arcnet scheme, used by

You have to walk a fine line between jumping to conclusions about the products you must have and being swayed by every input you receive.

The Arcnet protocol is in many ways less sophisticated than the other two. Each Arcnet adapter has a set of switches that you must program with a node number from 1 to 255. (Token-ring and Ethernet adapters require no such address-switch programming.) The lowest numbered node becomes the network controller. It polls all of the nodes for messages. A node that has no message remains silent. Nodes that have messages are granted use of the network for a limited time. Adding a node (for example by applying power to a computer that had been shut down), initiates a reconfiguration process that takes at most 65 msec. Thanks to the address switches, Arcnet adapters are relatively simple—a real advantage, but the scheme imposes a burden on the network manager. When network problems arise, he or she must know which address corresponds to which node. Woe betide the manager who loses (or fails to maintain) a record of the numbers assigned to an Arcnet LAN's nodes.

Although the topologies and protocols may be similar, typical applications of networks in electronic engineering departments are not entirely representative of LAN applications in business. There is probably more similarity between the uses of LANs on college campuses and in electronic-engineering departments in industry than there is with typical LAN applications in manufacturing, commerce, and finance. Design-engineering departments and universities have a significant lead over most nontechnical users in storing and manipulating graphical information. Despite the growing popularity of graphical user interfaces, computers outside engineering departments and universities still deal overwhelmingly with text.

The emphasis on graphics in engi-
A few words of advice from high-performance µPLDs.

Many designers have hot, high-performance designs. Literally.

Fortunately, Intel has a simple way to reduce system heat and still get incredible performance. The µPLD Family of programmable logic devices.

Take, for example, the 85C220 and 85C224. They operate at 80MHz (100 MHz internally) with only a 10ns total propagation delay.

And since µPLDs are manufactured using Intel's CHMOS* technology, they require just 1/4 the power of their pin-compatible bipolar PAL* alternatives. Which means they can lower system heat by 35 percent and help reduce board-level failures, too. So they're certain to give your high-performance system a boost. And send chills up the spine of your motherboard.

Learn more about Intel µPLDs and receive a µPLD/PAL heat comparison. Call (800) 548-4725 and ask for Literature Packet #IA28.

Otherwise, you could take some heat over your system design.

Chill out, PAL.

© 1991 Intel Corporation. *CHMOS is a patented process of Intel Corporation. PAL is a trademark of AMD.
REAL TIME DEVICES
“Accessing the Analog World”

Quality U.S.-manufactured PC Bus cards and software for single user, OEM, or embedded applications.

AD3700 - $395
200 kHz THROUGHPUT
• 8 S.E. analog inputs, 12-bit 5 ms A/D
• FIFO interface & DMA transfer
• Trigger-in and trigger-out; pace clock
• 4 Conversion modes & channel scan
• 4 Independent timers/counters
• 16 TTL/CMOS digital I/O lines
• Assembler, BASIC, Pascal & C source code

DataModule PRODUCTS
Plug-compatible with Ampro CoreModule
DM402 12-bit 100 kHz analog I/O board with trigger, T/C, DMA & 16 DIO lines $395
DM602 12-bit 4-channel D/A; voltage range select; current loop & DIO control $289
DM802 24-Line opto 22 compatible 82CS5 PPI-based DIO interface $149

POPULAR XT/AT PRODUCTS
AD1000 8 S.E. 12-bit A/D inputs; 25 kHz throughput; three 8-MHz timer/counters; 24 PPI-based digital I/O lines. $275
ADA1000 12-bit 100 kHz, 38 kHz throughput, 2 D/A outputs, and configurable gain $365
ADA2000 8 Diff./16 S.E. analog inputs; 12-bit 20 µs A/D; 12 or 8 µs A/D optional; two 12-bit D/A outputs; programmable gain; 3 T/Cs; 40 DIO lines from 82C55 PPI $489
ADA3100 8 Diff./S.E. 12-bit analog inputs; 200 kHz throughput; gain select; FIFO interface & DMA transfer; pace clock; external trigger; 4 conversion modes; multi-channel scan & channel burst; 4T/Cs; 16 DIO lines; two fast-settling analog outputs $659
AD510 8 S.E. inputs; 12-bit integrating A/D with programmable gain $259
ADA900 4 Diff./S.E. inputs; 18-bit V/F type A/D; variable resolution & conversion speed; 16-bit @ 16 Hz; 12-bit D/A; T/C & 16 DIO lines $410
DA600/DA700 Fast-settling 2/4/6/8-channel 12-bit D/A; double buffered $192/359
DG24/48/72/96 Digital I/Olines; 82C55 based; optional buffers & line resistors $110/256
TC24 Am9513A System Timing & 82C55 Digital I/O control card $218
MX32 External analog multiplexer $198
ATLANTIS/PEGASUS/PEGASUS Acquire Menu-driven, real-time monitoring, control, data acquisition and analysis turn-key software packages $150/290

Call for your Free Catalog!

RTD logo: “Accessing the Analog World” and DataModule are trademarks of Real Time Devices, Inc. AMPRO and CoreModule are registered trademarks of Ampro Computers, Inc. opco 23 is a registered trademark of Opco 23 Inc.

Custom/OEM designs on request!

Real Time Devices, Inc.
State College, PA USA
Tel: 814/234-8087 FAX: 814/234-5218

CIRCUIT NO. 48

COMPUTERS AND PERIPHERALS

neering means that your LAN requirements, though almost certainly not unique, probably aren’t run-of-the-mill. Confucius understated the real facts when he said that a picture is worth a thousand words. Without the use of data compression, high-resolution images (especially color images) require megabytes to store and transmit. A screen filled with text encoded in ASCII (American-Standard Code for Information Interchange) represents a mere two kilobytes. The high data content of images can tax networks designed for text.

Despite the differences between engineering LAN applications and many others, most of the areas that customarily concern LAN specialists are also important in engineering LANs. One such area is shared databases or simply shared access to files. A major reason for wanting a LAN is to free yourself from at least part of the nightmare of keeping track of multiple versions of data files. Consider this very simple case: Fred and Joe have a 2-man office—an office without a network. At various times, each of them creates files that the other one works on. When Joe needs to work on a file that Fred created, he asks Fred to copy it from his hard drive onto a floppy disk. Joe then loads the file onto his hard drive. Now there are three copies of the file. If Fred and Joe each work on their own copies, they will soon find it difficult, if not impossible, to figure out whose copy is the “correct” one.

With a LAN, only one copy of the file need exist—on the server’s hard drive. There are still complex issues involved when both Fred and Joe attempt to update the file simultaneously. However, network operating system-software and application-software packages designed to run on networks incorporate mechanisms for dealing with problems of this type. By installing a LAN, Fred and Joe can, in effect, delegate their file-revision-control problem to the authors of the software they use. When they select particular packages, they are opting for certain ways of making the tradeoffs. Chances are, though, that they won't have to give the tradeoffs another thought.

There are many reasons for the huge popularity of networking; you can almost guarantee that your list of reasons for setting up a departmental, facility-wide, or company-wide network aren’t unique. Moreover, once you have a network, you will discover ways to benefit from it that you hadn’t thought of originally. That networks drastically and permanently alter the way people do their jobs is no exaggeration. The effects of adopting networking are nearly as profound as those of adopting computers. Because of this great potential and great effect on people, you should take setting up a network very seriously; doing your homework will pay big dividends. If reading this article is the first research you’ve done on LANs, you have not really even scratched the surface. The references listed in the box will take you much further.

Acknowledgments
Paul Polishuk of IGI Consulting, 214 Harvard Ave, Allston, MA 02134 provided some of the material on which I based this article.
Joseph Biagiotti and Leonard Pienta III of Compu-tame Inc, Box 1826, Wakefield, MA 01880 familiarized me with their personal experiences in setting up a LAN in a small company.

Article Interest Quotient
(Circle One)
High 515 Medium 516 Low 517

EDN December 19, 1991
WE'RE BREAKING NEW GROUND BY MAKING IT EASY TO PUT SCSI ON THE MOTHERBOARD.

Introducing Adaptec's new AIC-6260.

You're already a big believer in the performance and connectibility of SCSI. But you're also digging around for an uncomplicated way to design-in SCSI to your AT motherboard. Well... Eureka! Now with Adaptec's new AIC-6260, you've just hit pay dirt.

After all, it makes a lot of sense that a single-chip solution is easier to design-in than multiple chip packages. They're also more reliable. And take up less real estate. Plus, since we've built the AT bus in, designing SCSI in is as easy as connecting signal lines dot-to-dot.

What's more, we get you to market in the fastest possible time. That's because industry-standard, Adaptec-developed SCSI software drivers and BIOS are ready and available. For all major peripherals—under all major operating systems. All this, and a complete design-in package, too. Which means, you can now afford to design the performance and connectibility of SCSI in your system as a standard feature.

So step on it. And call us at 1-800-227-1817, ext. 52 today. We think you're going to really dig it.

When you're serious about SCSI.
The Board Determines Whether Or Not You Move Up.

Approved: A high-performance laminate priced comparably with FR-4. After the investment you've made in the technology needed to build more sophisticated circuitry like SMT, high layer count and impedance control, the only thing holding you back is the board. A high-performance laminate at a price that'll get approved.

This is where GETEK® Laminate and Prepreg go to work. From a technical standpoint, they offer better thermals—higher maximum operating temperatures, higher Tg and lower Z expansion. Plus better electricals—lower and more stable dielectric constant and dissipation factor.

So with GETEK Laminate you get high performance without the penalties. And that ought to get a raise out of somebody upstairs.

Find out more about GETEK Laminate and Prepreg: technical data, samples, or a meeting to talk it over.
Contact GE Electromaterials, 1350 South Second St., Coshocton, OH 43812. 800-848-3710.

*GETEK is a registered trademark of the General Electric Company.

GE Electromaterials
Low-power, 1.8-in. hard-disk drive stores 21.4 Mbytes

The 1.8-in. Model 1820 hard-disk drive stores 21.4 Mbytes in an assembly measuring 0.394 x 2.01 x 2.76 in. The drive employs a separate controller card that measures 0.276 x 2.01 x 3.03 in. Together, the two components weigh 95g.

The drive runs on 5V and can run on batteries. It draws 2W while reading or writing information, 1W when idle, 35 mW in standby mode, and 15 mW in sleep mode. The drive typically spins up in 1.5 sec. During the first second of activation after receiving a data-transfer request, the drive consumes 3.5W. In the next second, the drive consumes 2W while performing the requested data transfer. For the next 5 sec, the drive is in its 1W idle mode.

While in the idle mode, the drive keeps the platter spinning in case another data-transfer request appears. If no requests are made during the 5-sec idle time, the drive drops into its 35-mW standby mode. After another 5 sec of inactivity, the drive goes into its 15-mW sleep mode.

The controller circuitry includes a 32-kbyte data buffer and an IDE (integrated device electronics) disk interface that transfers data in bursts at 4 Mbytes/sec. The average seek time is 20 msec. The disk drive costs $485.

Circle No. 682

VMEbus card couples two TMS320C30s for general-purpose DSP applications

The DPV30 6U VMEbus DSP board employs two TMS320C30 chips running at 33 MHz. The board's architecture tightly couples the DSP chips to a 2k x 32-bit dual-port static RAM (SRAM). One chip shares an additional 2k x 32-bit dual-port SRAM with a slave parallel I/O port; the other chip connects directly to a master parallel I/O port. Each chip has a separate, local 64k x 32-bit SRAM to optimize program execution speed.

The board functions as an application-development platform in Sun SPARCstations. You can also develop applications in MS-DOS or Unix using an IBM PC or compatible computer. A proprietary I/O port transfers 16-bit words at 5 MHz. Two full-duplex synchronous serial ports transfer data as 8-, 16-, or 32-bit words at 8.33 Mbps. An optional daughter board contains a dual-channel ADC and dual-channel DAC.

One option provides a 16-bit delta-sigma ADC sampling as fast as 50 kHz. Another option uses an 18-bit successive-approximation ADC sampling as fast as 200 kHz. The DPV DSP board costs £4395; the daughter board costs £600.

Circle No. 683
MEET OUR RUGGED TEAM

We’ve expanded our line of rugged microcomputers into a full team of products, all built rugged from the ground up. These are full rugged systems, versatile enough for military applications, and tough enough for the harshest environments.

- The KMS-4000—powerhouse 386 or 486 microcomputer. Direct access to four removable media. Larger 10.4” EL display. Low MTTR, dependable KMS rugged technology.
- The CP-1932(3)/UYK—rugged PC/AT-compatible micro, praised for performance and reliability during Desert Storm. 386 or 486 computing power. Internal EL display. Fixed and removable drives. Portable or rack-mount.
- The RCM-1900—tough 19” color monitor, fits standard rack for rugged graphics anywhere. Brilliant image, resolution to 1,280 x 1,024 pixels.

For more information on the complete KMS team of rugged hardware, call:

1-800-521-1524
or 1-313-769-1780.
(FAX 1-313-769-8660)

GSA Schedule GS00K89AGS6289
1280 x 1024 Monitors

The Viewsonic 7 and 8 are 17- and 20-in. noninterlaced monitors, respectively. Both monitors provide 1280 x 1024-pixel resolution. The monitors display a page of text or graphics on a flat, square, static-free screen. A µP lets you store and automatically configure the position and size of an image. Digital controls offer 16 video-graphic modes—eight of which are set at the factory. The monitors' auto-tracking and multiscanning features adjust to vertical scan rates from 50 to 90 Hz and horizontal scan rates from 30 to 64 kHz. The monitors accept RGB analog inputs and support XGA, 8514/A, SuperVGA, VGA, and Mac II graphics standards. The Viewsonic 7, with 0.28-mm dot pitch, $1999. The Viewsonic 8, with 0.31-mm dot pitch, $2999.

Viewsonic, 12130 Mora Dr, Santa Fe Springs, CA 90670. Phone (800) 888-8583; (213) 946-0711. FAX (213) 946-1618. Circle No. 351

VMEbus Single-Board Computer

The VME201, a single-board computer (SBC) for the VMEbus, has a 16-MHz 68HC000 µP and complete slot-1 controller functions. It features two RS-232C ports, a 16-bit interrupt timer, four 32-pin JEDEC memory sockets for as much as 2 Mbytes of EPROM or 1 Mbyte of static RAM, a calendar clock, and a watchdog timer. An interrupt controller prioritizes interrupts from 12 sources, including the seven VMEbus interrupts, Sysfail, an abort switch, an on-board dual UART, and the watchdog interrupt. A standard version typically draws 700 mA from a 5V supply, and a low-power version draws less than 300 mA. Software options include Microware's OS9 and PDOS VMEPROM operating systems, as well as the company's Microbug debugger and monitor. $350 (100).

Micro-Link, 14602 N US Highway 31, Carmel, IN 46032. Phone (800) 428-6155. Circle No. 352

Sbus DSP Board

The Sbus board is a DSP development board for the Sbus in Sun SPARCstations. The board uses TI's 33-MHz TMS320C30 DSP chip and 128k x 32 bits of zero-wait-state RAM. You can expand the RAM to 512k x 32 bits. You can also add a daughter card, which has dual 16-bit ADCs and DACs. Daughter cards containing either a 200-kHz I/O module or a delta-sigma I/O module are also available. The board contains the company's 16-bit DSP-Link expansion bus for high-speed communication with other Sbus boards. Operating as an Sbus slave, the board has a 2k x 32-bit dual-port static RAM for communicating with the SPARCstation. $4595. Board with TI's assembler and linker, TI's C compiler, and SPOX operating system, $9595.

Computer and Peripherals

DSP System For Sbus Workstations
The SDSP/C30D DSP system on a card suits Sbus-compatible workstations. The system hardware consists of a Texas Instruments 33-MHz TMS320C30 processor, 2k x 32-bit-word dual-port static RAM (SRAM), and 128k x 32-bit-word zero-wait-state SRAM (expandable to 512k). The base card accepts plug-in analog-signal I/O daughter boards, and the combination fits an Sbus single-slot space. Options exist for either a proprietary 16-bit parallel I/O port or a SCSI port. Software support includes an interface library of control functions and a device driver. Other software tools include a debug monitor, C compiler, and Spectron Microsystems Spox applications programming interface. System with device driver, debug monitor, and interface library, £2695; analog daughter board, £600.

Loughborough Sound Images, The Technology Centre, Epinal Way, Loughborough LE11 0QE, UK. Phone (509) 231843. FAX (509) 262433. Circle No. 355

STD-32 DSP Board
The ZT 89CT30 DSP board conforms to the STD-32 specification. The board contains a 27-MHz 56001 DSP chip, which executes 24-bit integer arithmetic. The board also contains two synchronous serial channels, a 24-bit Opto-22 interface, a watchdog timer, 2 kbytes of EEPROM; and a configurable DIP switch that lets the board control a variety of I/O operations. As an I/O controller, the board communicates with the STD system's master via dual-port I/O registers and a priority interrupt controller. Motorola’s C compiler and simulator are available for program development. An optional debugger and downloader is also available. The all-CMOS design operates from −40 to +85°C. $1050. Development kit, which includes the board, 12k x 24 bits of RAM, and the debugger and downloader, $1450.

Ziatech Corp., 3433 Roberto Ct, San Luis Obispo, CA 93401. Phone (805) 541-0488. FAX (805) 541-5088. Circle No. 356

STEbus Processor Board
The SCIM88 STEbus processor board combines a 16-MHz 80188 CPU with a user-defined 1-Mbyte memory array. You can populate the memory array with 0.5 Mbytes of EPROM or flash EPROM and 0.5 Mbytes of static RAM (SRAM). Of the SRAM, 16 kbytes are dual-ported, and 256 kbytes can be battery-backed. You can link the processor board to the company’s range of remote signal-conditioning modules via a front-panel ribbon connector. You can expand the function of the processor board with plug-in options, which include a VGA graphics controller, PC-communications ports, analog and digital I/O, and a prototyping module. Software options include DR-DOS and Sourceview, which is a source-level remote debugger for developing DOS-compatible target programs. SCIM88 without memory, £300.

Arcom Control Systems, Units 8-10 Clifton Rd, Cambridge CB1 4WH, UK. Phone (223) 411200. FAX (223) 410457. Circle No. 357

Sbus Graphics Board
The GXTRA 1280 single-slot graphics card works with the Sbus in Sun SPARCstations. It drives 1280 x 1024-pixel displays and has a Sun-4 keyboard and mouse port. The board contains an 8-bit color frame buffer, and it runs on Sun’s Open Windows 2.0 software. Windows executes partially on the board and partially on the host CPU. You can install multiple Sbus boards to service additional users on a single SPARCstation. The board uses a proprietary gate array, which accelerates low-level graphics primitives such as drawing 2-D vectors, solid fills, and characters. $2250.

PCXI Computers
The PX1010 and PX1012 are 19-in. rack-mount and 17-in. desktop industrial computers, respectively. The computers conform to the PC Extended for Industry standard (PCXI) for modular industrial PCs. They feature passive back-planes, PCXI-specified cooling systems, and EMI/RFI metal-shielded modules. The cooling system consists of two 72-cfm positive pressure fans that have washable polyurethane foam filters. The modules accept PC-instrumentation function cards from any manufacturer, and you can
Portable data products from Datakey are meeting the needs of electronic OEM design engineers in a wide range of commercial and military applications. They can help you:

- Save valuable system space
- Reduce system power requirements
- Cut the cost of memory/feature expansion
- Improve system and facility security
- Speed data transfer, make data handling more convenient
- Make ROM upgrades quicker, easier
- Simplify system design and manufacturability
- Ruggedize your system or I/O device
- Reduce repetitive data input
- Differentiate your product in the marketplace

These versatile devices withstand rough handling and retain your data even when exposed to dust, dirt, moisture, magnetic fields, and other environmental hazards.

We've developed a whole array of solutions for tough portable data applications — including the access device for the U.S. government's secure phone system. Hundreds of thousands of these devices are in use today.

Choose from our standard products, including:

- Serial Memory Keys (1K, 2K, or 4Kbit capacity)
- Parallel Memory Keys (64K to 512Kbit capacity)
- Memory Cards (chip-on-card or edge-connect with embedded memory)
- Low-Cost Personal ID and Memory Tokens
- Mechanical/Electronic Keys

We also design and manufacture custom portable data devices.

So, call today for our free booklet. It just may help you solve some of the toughest design problems around. Yours.

Call 1-800-328-8828
Need it fast? We'll fax it.
order custom connectors. The modules also feature front-panel access. The backplane has 12 16-bit ISA bus slots and an additional slot for a power-supply module. A base system comes with a 200W switching power supply. $1595.

Rapid Systems, 433 N 34th St, Seattle, WA 98103. Phone (206) 547-8311. FAX (206) 548-0322.
Circle No. 359

VMEbus Single-Board Computer
The MVME167 single-board computer for the VMEbus uses a 25-MHz 68040 µP and from 4 to 32 Mbytes of dynamic RAM. It has a VME D64-compatible interface, letting the board transfer data at 40 Mbytes/sec. All CMOS electronics keep the power consumption at 15 to 18W typ. The 6U board uses ASICs and VLSI controllers that are optimized for Unix and real-time applications. Additional features include a 32-bit Ethernet controller; a 2-way parallel port; four sockets for as much as 2M bytes of ROM, EPROM, or EEPROM; a 7-level interrupt handler; a 4-level arbiter; four serial I/O ports; 128 kbytes of static RAM; and 8 kbytes of nonvolatile RAM. The board supports VMEexec real-time development software. $3995.

Motorola Inc, Computer Group, 2900 S Diablo Way, Tempe, AZ 85282. Phone (800) 624-8999, ext 230; (602) 438-3576.
Circle No. 360

Nonvolatile Semiconductor Memory Module
The ASSD range of semiconductor memory modules can replace your PC's hard disk. The modules include a SCSI, and have 10-, 20-, or 40-Mbyte capacity. Typical data retention time is five years. You can expand memory size in 1-Mbyte steps for the 10-Mbyte model, and in 2-Mbyte steps for other models. Minimum data-transfer rate is 4 Mbytes/sec. The 40-Mbyte version is 160 x 41.5 x 48 mm. 10-Mbyte version, DM 4870; 20-Mbyte version, DM 7914.

Atron Electronic, Am Zeigelstad 14, W-8015 Markt Swaben, Germany. Phone (81) 21-5071. FAX (81) 21-40333. Circle No. 361
It's no bigger than this ad (6U VMEbus to be exact). It doesn't suck power like less efficient controllers. It’s RISC-based for super performance. It connects single or dual attached stations from a single VME slot. It supports a variety of media, from fiber to twisted pair. It's ANSI X3T9 FDDI standard compliant. It's certified by the Advanced Networking Test Center™ and the University of New Hampshire Interoperability Lab (Interphase is a charter member of both).

And, IT'S AVAILABLE...RIGHT NOW.

The Interphase V/FDDI 4211 Peregrine is at work right now in some of the industry's leading open systems networks. Put Interphase high performance expertise to work for you.

Call or FAX us today for information about Interphase FDDI solutions, including VME and Multibus controllers, the new fiberHUB FDDI Concentrator and the FDDI System Designer's Kit. We've also got proven Ethernet and Token-Ring products to tell you about.

(214) 919-9000 FAX: (214) 919-9200

In Europe:
(44) 869-321222 FAX: (44) 869-247720

INTERPHASE CORPORATION

© 1991 Interphase Corporation. Specifications subject to change without notice. Interphase is a registered trademark of Interphase Corporation. Advanced Networking Test Center is a trademark of Advanced Micro Devices, Inc.
Parallel-Port Expander
The Quad LPT expands the number of parallel I/O ports on an ISA- or EISA-bus computer. The expansion board adds four additional ports to the one or two ports generally available in DOS-compatible computers. You can set the base address of the board anywhere in the host's I/O space using a DIP switch. The host sequentially accesses each port starting with Port 0 at the selected base address, followed by Port 1, Port 2, and Port 3. You can configure any port as an output to drive a printer or as an input to accept data from a scanner. The factory-set base address is 280H. The driver software requires DOS 2.0 or higher version or Windows 3.0. $295.

Computer Modules Inc, 2348C Walsh Ave, Santa Clara, CA 95051. Phone (408) 496-1881. FAX (408) 496-1886. Circle No. 362

Voice I/O System
The Microdyn II is a voice I/O system that provides voice recognition of 1000 isolated words or phrases. The system provides unlimited text-to-speech synthesis. The system consists of an external module that plugs into the serial port of an MS-DOS- or OS/2-compatible computer, a headset and microphone, software, and documentation. Because the module plugs into a standard RS-232C port, the system does not occupy an expansion slot. The system requires 5 kbytes of RAM and runs with any monitor. To train the system, you establish a range of voice patterns for a spoken command, which the computer stores as voice macros. $1995.

Voice Dynamics Corp, 17835 Skypark Circle, Suite C, Irvine, CA 92714. Phone (714) 252-1211. Circle No. 363
FUTABA
Sets the Standards in Custom Vacuum Fluorescent Displays and Vacuum Fluorescent Modules

CUSTOM DESIGN

Futaba is the leading global supplier of vacuum fluorescent displays and modules. We have the capability, technology, and market knowledge to provide you with the most cost effective display system tailored to your specific application.

Futaba's high brightness fluorescent display products range from simple numeric and dot matrix displays to large multi-color graphic panels.

TECHNICAL SUPPORT

Futaba engineers have a broad range of application experience including automotive, point of sale, appliance, medical, and instrumentation products. They are ready to assist you in optimizing your display system design.

U.S. MANUFACTURING

Futaba's state-of-the-art SMD manufacturing facility in Schaumburg, Illinois provides local service, JIT delivery, and reinforces its commitment to supply the North American market.

QUALITY

Futaba's number one commitment is supplying products having the highest level of quality. Quality begins with the initial design and is controlled throughout the manufacturing process by using SPC and having well trained and motivated employees.

Futaba is dedicated to the principal of continuous improvement and always strives to provide the highest level of customer satisfaction.

Pick up the phone - take advantage of our superior technical background and design expertise. Call or write for more information on Futaba custom vacuum fluorescent display modules.
IEEE Power Electronics and Industry Applications Societies

Manufacturers Association

Present APEC '92

Seventh Annual
APPLIED POWER ELECTRONICS
CONFERENCE AND EXHIBITION

February 23-27, 1992
Westin Hotel, Copley Place
Boston, Massachusetts USA

The premier event in Power Electronics!!!

Featuring:
• Over 100 papers and seminars
• Speakers representing 14 nations
• Exhibition/Trade Show
 > 35 Leading Vendors
 Wine & Cheese Reception
 Exhibitor Education Seminars
• Lively Informal RAP Sessions
• Annual MICRO-MOUSE Contest
• An Evening at Boston’s Museum of Science

The international source for valuable practical information

• 6 Sigma Design & Manufacturing Technologies
• Distributed Power
• Control Techniques
• IC and Discrete Power Devices
• Modeling and Simulation
• Power Circuit Packaging in Aerospace & Military Applications
• Magnetics
• High Power Inverters & Converters
• High Frequency and Resonant Converter Design
• Power Factor Correction and Power Quality
• Performance and Design of AC and DC Motor Drives

Please send complete APEC ’92 information to:

Name/Title ___
Company __
Address ___

Return this form to: APEC, Suite 300, 655 12th St., NW, Washington, DC 20005, 202/639-4990.

Photo courtesy of Massachusetts Office of Travel and Tourism

EDN December 19, 1991
We’ve got your number.

With the demand for super high capacity, rapid charging batteries on the rise...there are new hot numbers you can call on for power: the SM-30 nickel-cadmium batteries from Panasonic.

They play the numbers game with the best of them. With recharge times under one hour. A foamed nickel substrate that results in nominal capacities of 600 – 1800 mAh...about 40% more than a rapid recharge battery of the same size. And with light weights averaging from .63 to 1.66 ounces for super portability.

No wonder the SM-30 won Research and Development magazine’s IR100 Award as one of the 100 most significant new technical products of the year when it was introduced.

Over 40 more reasons to buy Panasonic Ni-Cds.

You can choose from more than 40 rechargeable Panasonic Ni-Cds for just about any application you can dream up. Every one of them offers excellent discharge characteristics. 100% testing. And a long shelf-life. All at competitive prices.

Panasonic Ni-Cd batteries...strength in numbers.

Panasonic SM-30 batteries. The answer to your prayers.

Northeast:
SEACAUCUS, NJ 07094 • (201) 348-5272

Southeast:
NORCROSS, GA 30093 • (404) 717-6768

North Central:
ARLINGTON HEIGHTS, IL 60005 • (708) 640-2504

South Central:
FT. WORTH, TX 76155 • (817) 685-1150

West Coast:
CYPRESS, CA 90630 • (714) 373-7538

Panasonic Industrial Company
BATTERY SALES GROUP
OEM SALES & MARKETING
CIRCLE NO. 90
Take your best shot.
For emulation, analysis or chip support, we’re the pros who’ll improve your score.
We’re American Arium, and we’ve created a winning combination: EZ-PRO® development software and emulators from American Automation and high-performance logic analyzers from Arium.

From the RCA 1802 to the Intel i960, the Motorola 68040 to the MIPS R3000A, we now deliver support for virtually any chip you select.

Our development systems will keep your embedded projects on course with compilers, assemblers, C source level debug, variable tracking, extensive triggering and selective trace.
To give you an easy shot at debugging, our logic analyzers feature solid disassemblers, timestamp, symbolic debug, performance analysis and expanded memory with high-speed timing to 400 MHz.
And to keep you clear of hidden traps, we’ve developed a fully integrated set of relocating linkers, assemblers, language translators, disassemblers and more than 20 different cross compilers.
Make your next project an easy chip shot. Call the pros: American Arium.

EZ-PRO is a registered trademark of American Automation
A 4-Cell Ni-Cad Regulator/Charger for Notebook Computers – Design Note 54

Tim Skovmand

The new LTC1155 Dual Power MOSFET Driver delivers 12V of gate drive to two N-channel power MOSFETs when powered from a 5V supply with no external components required. This ability, coupled with its micropower current demands and protection features, makes it an excellent choice for high side switching applications which previously required more expensive P-channel MOSFETs.

A notebook computer power supply system is a good example of an application which benefits directly from this high side driving scheme. A four cell, Ni-Cad battery pack can be used to power a 5V notebook computer system. Inexpensive N-channel power MOSFETs have very low ON resistance and can be used to switch power with low voltage drop between the battery pack and the 5V logic circuits.

Figure 1 shows how a battery charger and an extremely low voltage drop 5V regulator can be built using the new LTC1155 and three inexpensive power MOSFETs.
Quick Charge Battery Charger

One half of the LTC1155 Dual MOSFET Driver controls the charging of the battery pack. The 9V, 2A current limited wall unit is switched directly into the battery pack through an extremely low resistance MOSFET switch, Q2. The gate drive output, Pin 2, generates about 13V of gate drive to fully enhance Q1 and Q2. The voltage drop across Q2 is only 0.17V at 2A and, therefore, can be surface mounted to save board space.

An inexpensive thermistor, RT1, measures the battery temperature and latches the LTC1155 OFF when the temperature rises to 40°C by pulling low on pin 1, the Drain Sense Input. The window comparator also ensures that battery packs which are very cold (<10°C) are not quick charged.

Q1 drives an indicator lamp during quick charge to let the computer operator know that the battery pack is being charged properly. When the battery temperature rises to 40°C, the LTC1155 latches OFF and the battery charge current flowing through R9 drops to 150mA.

Extremely Low Voltage Drop Regulator

A four-cell Ni-Cad battery pack produces about 6V when fully charged. This voltage will drop to about 4.5V when the batteries are nearly discharged. The second half of the LTC1155 provides gate voltage drive, pin 7, for an extremely low voltage drop MOSFET regulator. The LT1431 controls the gate of Q4 and provides a regulated 5V output when the battery is above 5V. When the battery voltage drops below 5V, Q4 acts as a low resistance switch between the battery and the regulator output.

A second power MOSFET, Q3, connected between the 9V supply and the regulator output "bypasses" the main regulator when the 9V supply is connected. This means that the computer power is taken directly from the AC line while the charger wall unit is connected. The LT1431 provides regulation for both Q3 and Q4 and maintains a constant 5V at the regulator output. The diode string made up of diodes D2-D4 ensure that Q3 conducts all the regulator current when the wall unit is plugged in by separating the two gate voltages by about 2V.

R14 acts as a current sense for the regulator. The regulator latches OFF at 3A when the voltage drop between the second Drain Sense Input, pin 8, and the supply, pin 6, rises above 100mV. R10 and C3 provide a short delay. The µP can restart the regulator by turning the second input, pin 5, OFF and then back ON.

The regulator is switched OFF by the µP when the battery voltage drops below 4.6V. The standby current for the 5V, 2A regulator is less than 10µA. The regulator is switched ON again when the battery voltage rises during charging.

Very Low Power Dissipation

The power dissipation in the notebook computer is very low. The current limited wall unit dissipates the bulk of the power created by quick charging the battery pack. Q2 dissipates less than 0.5W. R9 dissipates about 0.7W. Q4 dissipates about 2W for a very short period of time when the batteries are fully charged and dissipates less than 0.5W as soon as the battery voltage drops to 5V. The three integrated circuits shown are micropower and dissipate virtually no power.

Cost Effective and Efficient Power System

The circuit shown in Figure 1 consumes very little board space. The LTC1155 is available in a 8-pin SO package and the three power MOSFETs can also be housed in SO packaging. Q4 must be heatsinked properly for the short period of time that the battery voltage is above 5.5V. (Consult the MOSFET manufacturer data sheet for SO heatsink recommendations).

The LTC1155 allows the use of inexpensive N-channel MOSFET switches to directly connect power from a 4-cell Ni-Cad battery pack to the charger and the load. This technique is very cost effective and is also very efficient. Nearly all the battery power is delivered directly to the load to ensure maximum operating time from the batteries.

For literature on our MOSFET Drivers, call (800) 637-5545. For applications help, call (408) 432-1900, Ext. 361
Circuit adjusts duty cycle, not frequency

Yongping Xia
Dept of Electrical and Computer Engineering,
West Virginia University, Morgantown, WV

The output of Fig 1’s circuit has an adjustable duty cycle that, once set, is constant for inputs that range in frequency from 30 Hz to 1 kHz. The leading edge of the input signal generates a 3-µsec pulse at point A. This pulse closes IC3A and causes the voltage on C4 to equal the output of IC28. The 3-µsec pulse also generates a narrower 1.5-µsec pulse at point B through C2, R2, IC1C. This pulse discharges the integrator after its peak output is stored in the hold capacitor C4. The integrator is composed of IC2B, R3, and C3 and has the following ramping rate:

\[
\text{Rate} = \frac{5V}{(R_a \times C_a)} = 0.106V/msec.
\]

Thus, if the input frequency is 100 Hz, the peak output of the integrator will be 1.06V.

IC2C buffers and R4 divides C1’s peak signal after which it serves as a reference for voltage comparator IC2A. The other comparator input is the output of the integrator at point C. When the signal at point C is lower than the reference, IC2A’s output will be negative. Otherwise, its output will be positive. Since point C is a linear ramp signal and the reference is the peak of that signal, IC2A’s output duty cycle will only depend on the divide ratio of R4. Thus, you can adjust the duty cycle by adjusting R4. The errors of R3 and C3 will not alter the output duty cycle.

The output of IC2A is between ±3.5V. IC1D, D1, and R5 convert this output to a standard TTL signal. With no input signal present, the integrator will reach the highest voltage and the output will stay at zero. Changing the frequency range of the circuit requires changing the values of the hold capacitor and components that make up the integrator and pulse generators.

EDN BBS /DL_SIG #1056

To Vote For This Design, Circle No. 746

Fig 1—Once you adjust and set R4, the output duty cycle of this circuit remains constant over a 30 Hz to 1 kHz range.
Filter quashes 60-Hz interference

Adolfo A Garcia
Analog Devices, Santa Clara, CA

The circuit in Fig 1 filters 60-Hz interference from low-frequency, low-level signals. The filter exhibits 40-dB rejection \((Q = 0.75)\) and draws 95 µA max from a single-sided 5V supply.

Resistors \(R_1\), \(R_2\), and \(R_3\) and capacitors \(C_1\), \(C_2\), and \(C_3\) form a classic twin-T section, and IC1 and IC2 provide local and global feedback. The frequency selectivity \((Q)\) and the rejection performance of this active filter are very sensitive to the relative matching of the capacitors and resistors in the twin-T section. Table 1 shows rejection and \(Q\) as a function of the value of \(R_Q\).

\(R_4\), \(R_5\), \(C_4\), and IC3 form a very-low-impedance reference source to bias IC1 and the twin-T section to half the supply voltage.

To configure the filter to operate at 60 Hz, choose a \(Q\) that will provide enough rejection without excessive loss of desired low-frequency signals that may be close to the filter’s notch frequency. The value of \(R_Q\) is

\[
R_Q = (4Q - 2)R_7.
\]

The gain of the output amplifier is simply that of a conventional noninverting amplifier:

\[
A = 1 + \left(\frac{R_4}{R_7} \right) = 4Q - 1,
\]

and the overall gain of the band-reject filter below and above the notch frequency is

\[
\frac{V_{OUT}}{V_{IN}} = \frac{2A}{1 + A}.
\]

If you need additional rejection, cascade filter sections. Keep in mind that you might have to modify the circuit to account for out-of-band gain multiplication.

EDN BB S /DL_SIG #1036

To Vote For This Design, Circle No. 747

Table 1— \(R_Q\) rejection at 60 Hz, and the filter’s voltage gain as a function of the filter \(Q\)

<table>
<thead>
<tr>
<th>Filter (Q)</th>
<th>(R_Q) (kΩ)</th>
<th>Rejection (dB)</th>
<th>(V_{OUT}/V_{IN})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.75</td>
<td>1.0</td>
<td>40</td>
<td>1.33</td>
</tr>
<tr>
<td>1.00</td>
<td>2.0</td>
<td>35</td>
<td>1.50</td>
</tr>
<tr>
<td>1.25</td>
<td>3.0</td>
<td>30</td>
<td>1.60</td>
</tr>
<tr>
<td>2.50</td>
<td>8.0</td>
<td>25</td>
<td>1.80</td>
</tr>
<tr>
<td>5.00</td>
<td>18</td>
<td>20</td>
<td>1.90</td>
</tr>
<tr>
<td>10.0</td>
<td>38</td>
<td>15</td>
<td>1.95</td>
</tr>
</tbody>
</table>

Fig 1— This notch filter suppresses 60-Hz interference in low-frequency signals.
You asked for a connector family that's ideal for both high-density signal and power applications.

We were listening.

Change your circuit size. Change the configuration. There's no re-qualification of connectors when you work with the Mini-Fit family, including Mini-Fit, Jr™ and Mini-Fit, TPA™ connectors.

That can mean substantial savings in time and work, especially since the Mini-Fit family offers such a wide range of connection options for power, (up to 9 amperes/circuit), and signal applications, (10 milliohm contact resistance).

And now the new Mini-Fit, BMI connector makes assembly more efficient and fool-proof than ever. Blind Mating Interconnects are designed for fast, positive alignment in blind-mating situations requiring wire-to-board, panel-to-board, and board-to-board connections. They can even eliminate harnesses in many applications.

Ask your Molex representative for more information on the growing family of Mini-Fit connectors.
This meter has what you need most:
Accuracy and stability that are easy to use.

The Fluke 8840 Series is your best choice in high performance 5½ digit multimeters.

The Fluke 8840A is one of the world’s most popular 5½ digit dmms. For good reason. Basic dc accuracy is 0.005% over one year. And 8840A owners report that typical performance is even better.

The 8840A is also one of the most reliable multimeters in its class, with an MTBF of more than 100,000 hours.

The 8842A offers even more performance. Basic dc accuracy is 0.003% and minimum dcV resolution is 100 nV. And both the warranty and calibration cycle are extended to two years.

The 8840 Series are among the most stable dmms in their class. That means you can use all 5½ digits of resolution to make meaningful measurements.

And just by looking, you can tell the 8840A and 8842A are easy to use. The vacuum fluorescent display is easy to read from all angles, under all lighting conditions. Plus, true-rms ac and IEEE-488 interface options allow you to buy just the features you need today and to add more later if you need them.

An adjustable tilt-stand for bench use is standard. But rack mounting is quick and simple. Closed case calibration cuts maintenance time. And measurement speed can be set for 2.5, 20 or 100 readings per second to meet the throughput needs of your application.

So put one of the world’s most popular 5½ digit dmms to work for you today.
Call 1-800-44-FLUKE (1-800-443-5853).

FROM THE WORLD LEADER IN DIGITAL MULTIMETERS.
Take a look at the fresh, innovative, and dynamic graphic and editorial enhancement of EDN in the January 20th Magazine Edition.
EMC/EMI Materials Design Manual
The 24-pg Materials Design Manual contains information on properties of materials used to prevent electromagnetic interference, as well as design tips, formulae, and product applications. In particular, the manual discusses the new EC Directive on EMC, 89/336/EEC, a standard that takes effect in January of 1992. This directive affects European Community business standards as well as businesses that deal internationally and plan to conduct business within the EEC after the first of the year.

Nutwood Publicity Ltd, Marketing Consultants to RFI Shielding Ltd, Boyton End Farmhouse, Baythorne End, Halstead, Essex CO9 4AW, UK.

Plethora Of Connectors And Related Products
This 576-pg catalog, Electronic Interconnection Systems, is a product-ordering guide to connectors and related products. It describes connectors for IC sockets; board-mount and wire-mount sockets; Mix stacking; headers; plugs; DIN standard; pc boards; DIPs; card edge; D-sub; and D-ribbon. Related products include breadboard systems, cable, and assembly equipment. The publication features cross-reference charts for locating the products you want. Three indexes are classified by grid spacing, part number, and product type. Physical, electrical, and environmental specifications are given for each product.

3M, Electronic Products Div Catalog, Box 3064, Cedar Rapids, IA 52406.

Publication Features Adjustable Speed Controls
The 8-pg brochure, Type ABL, presents operating and application information for the Type ABL low-voltage, adjustable speed controls for brushless dc motors. It discusses the three chassis-level PWM models: analog voltage, 8-bit parallel digital, or variable frequency. The publication describes other features, such as dynamic braking, plug-reversible direction control, adjustable acceleration rates, and current limiting. Specifications for the ABL-compatible 34B brushless dc motors and gearmotors as well as optional ABL accessories are included.

Bodine Electric Co, 2500 W Bradley Pl, Chicago, IL 60618.

Catalog Of Components
This 100-pg catalog provides an expansive listing of fuses, fuse holders, ac connectors and plugs, Nema 5-15R outlets, power-entry modules, and voltage selectors. It describes components for ac power-entry products having 1 to 20A IEC 320 inlets and outlets. Also featured are plugs for cold or hot connections, snap-in and chassis-mount filtered power-entry modules, and the Felcom series of modular power-entry modules for custom configurations. It discusses newly introduced products, such as medical-grade fuse holders with captive fuse carriers, filtered and unfiltered power-entry modules, and 250V microfuses with pc-board leads built to IEC standards with UL recognition.

Schurter Inc, Electronic Components, Box 750158, Petaluma, CA 94975.
After all, it's Sun.

That's right, FORCE and Sun have teamed up to offer one of the brightest new products in embedded systems. The SPARC™ CPU-1E engine. It's a complete implementation of SPARCstation™ 1, fully supported by the powerful SunOS™ and the real-time expertise of FORCE.

For the first time, you can design with SunOS and real-time on the same VME backplane. With industry-standard SPARC technology, no less.

And that's just the beginning. FORCE will spark embedded systems for generations to come, based on our partnership with Sun. In fact, we're already designing the SPARC CPU-2E. Of course, our entire family of SPARC-based products is 100% SunOS-compatible.

So nothing stands between you and the most powerful development environment in embedded systems. With SunOS and the SPARC CPU-1E, you can program, debug and observe real-time code. All within the same development and target system, thereby slashing costs and development time.

The SPARC CPU-1E accommodates up to 80 Mbytes of DRAM. You can run real-time, UNIX®, Sun Windows™ and utility programs. Standard DMA-driven SCSI and Ethernet interfaces give you full network access. There's even an SBus™ interface for I/O expansion.

We also provide such leading real-time operating systems as VxWorks®, VADSWorks®, VRTX®, MTOS®, PDOS™ and OS-9/9000™ products. Along with over 2100 third-party applications from Sun's Catalyst™ program.

Finally, we can supply all your system components. Everything from SPARCstations and mass storage modules to expansion boards, monitors and keyboards.

But that's what you'd expect from the vendor with the broadest, most flexible line of embedded systems solutions. So call 1-800-BEST-VME, ext. 10 for more information or fax a request to (408) 374-1146.

And put the heat on your competition.

FORCE Computers, Inc. 3165 Winchester Blvd., Campbell, CA 95008-6557

All brands or products are trademarks of their respective holders.

©1991 FORCE Computers, Inc.

VME at its best.
Instrumentation-Software Demo Package

This demonstration package for a Macintosch computer with at least 2 Mbytes of RAM, 2 Mbytes of hard-disk space, and a 13-in. monitor provides a “guided tour” of the Labview 2 instrumentation software package. It explains how the software works, shows how to build a virtual instrument (VI), and looks at a completed VI and its components.

Catalog Of PC Tools

This 160-pg catalog describes a comprehensive selection of PC software and hardware products; descriptions include product options and system requirements. Some of the book's 12 sections include Hardware Accessories, IEEE-488 Software & Hardware, Schematic Capture & PCB Layout, Logic Programming & Simulation, Analysis & Design Programs, CAD, Programming Tools & Utilities, and Text Processing. The Product Index helps you find your selections. Discounts for related products are specified in the “Acom-Packs,” which are found throughout the catalog.

App Notes Cover FFTs, LabWindows, And VXI Systems

The first of these six application notes, titled An Introduction to the LabWindows Instrument Driver, describes the components of an instrument driver and the interaction between the driver components. Developing a LabWindows Instrument Driver explains how to use the core driver utility functions to perform error handling. Fast Fourier Transforms and Power Spectra in LabWindows examines the building of a signal-processing application, using the Labwindows Advanced Analysis Library. NI-488.2—What’s New? discusses the functions, routines, user-interface options, and other features added to the driver software. Use of Local Shared RAM on NI-VXI Interfaces, Using VXImemAlloc(), VXImemCopy(), and VXImemFree(), examines special functions for application programs that share local RAM with the VXIbus. Finally, Using NI-VXI Software for VMEbus Systems, explains how to use the NI-VXI software to configure and program a VMEbus system.
TOKIN TECHNOLOGY UPDATE

Shrink Your Power Supplies with TOKIN SMDs

The continuous integration of high-density electronic equipment has created a burgeoning demand for thinner, more compact switching power supplies. To meet this demand, TOKIN has come up with an outstanding lineup of SMD (Surface Mount Devices) transformers. And to help you counter noise emissions from compact, high-frequency power supplies, TOKIN offers a full selection of SMD-type EMC components including High-Capacitance Multilayer Ceramic Capacitors. Give us a call.
ASIC Design Brochure
This publication explains the company’s design strategy, design environment, and process flexibility for ASICs. The chapter on design environment overviews design tools, libraries, and utility kits. Another chapter concentrates on mixed-mode ASIC design.

Austria Mikro Systeme International, Schloss Premstatten, A-8141 Unterpremstätten, Austria. Phone (3136) 36660, FAX (3136) 2501-3650. Circle No. 430

Brochure Discusses Custom Mixed-Signal ICs
The 12-pg brochure, Mixed Signal IC Custom Solutions, surveys design approach, computer-aided tools, process technologies, fabrication capability, and assembly operation. Easy-to-read charts compare and contrast design approaches and processes. A flow chart shows how the step-by-step approach allows satisfactory custom solutions.

Silicon Systems, 14351 Myford Rd, Tustin, CA 92680. Circle No. 431

All About Radiation Hard Products
This 700-pg publication contains product information about silicon-on-sapphire ICs. It describes RAMs containing as many as 64k bits, logic, 1553 databus components, 29xx bit slice, and MIL-STD 1750A microprocessors and peripheral devices. Also included are ASICs having as many as 30,000 gates.

GEC Plessey Semiconductors, Cheney Manor, Swindon, Wiltshire SN2 2QW, UK. Circle No. 433

Four Publications Present IC Products
The sixth edition of ASIC & Custom Products Short Form Catalog provides single-page descriptions of devices from the frequency-synthesis, forward-error-correction (FEC), and coding and demodulation product families. The book also outlines the custom design service. The DDS Handbook offers 216 pages of data sheets and application notes on direct-digital-synthesis products, from ASICs through board- and chassis-level products. The Spread Spectrum Handbook is a 189-pg compilation of data sheets and application products. The Forward Error Correction Handbook covers FEC encoding and decoding in its 56 pages of data sheets.

Stanford Telecom, ASIC & Custom Products Div, 2421 Mission College Blvd, Santa Clara, CA 95056. Circle No. 434
Yuasa Battery Company, Ltd. has been a world leader in the production of storage batteries since 1915. And now we're proud to announce that we've got a whole new source of power. Because we recently acquired the Industrial Battery Division of Exide Corporation, the leading producer of stationary batteries in the United States since 1888.

Merging people, power and performance.

The new Yuasa-Exide, Inc. combines the resources of two industry leaders, resulting in the creation of the world's premier industrial battery company.

Yuasa-Exide, Inc. will provide a complete range of energy products for the industrial battery market, including telecommunications, UPS, utilities and security. From over 200 years combined experience come a number of industry firsts and technological breakthroughs. And the tradition will continue in the years to come.

Leading the way in every way.

Yuasa-Exide, Inc. maintains four state-of-the-art manufacturing facilities in Kansas, Kentucky, South Carolina and Ohio. Yuasa-Exide Research and Development Corporation in Laureldale, Pennsylvania, is the site of ongoing efforts to meet the changing needs of stationary battery users. Global marketing capabilities combined with old-fashioned personal service will be the trademark of this new company.

A whole new tradition of excellence.

When you buy Yuasa-Exide batteries, you'll be buying the most technologically advanced, broadest range of products available anywhere. From the smallest power needs to the very largest, we have the battery systems to fit every requirement. And our sales and service team is unmatched. So when you need an excellent battery, look for the name that means excellence: Yuasa-Exide.
LITERATURE: POWER SOURCES

Listing Of Power Supplies And DC/DC Converters

This 16-pg catalog offers a quick glance at the company's products for high-voltage power supplies and dc/dc converters. Proportional PC modules, miniature low-power converters, low-noise PC modules, precision photomultiplier supplies, miniature-rugged, regulated multiple-output, and precision-regulated CRT supplies, as well as custom high-voltage supplies are a few of the products covered in this catalog. For each section, a product photo accompanies specifications and related technology or information.

EMCO, 11126 Ridge Rd, Sutter Creek, CA 95685. Circle No. 440

Power-Conversion Catalog

This 148-pg power-conversion catalog provides specifications, data sheets, an ordering guide, and applications for more than 170 power-conversion products. The range of products includes 57 wide-range input, dc/dc converter modules in industry-standard 2 x 2-in., 2 x 1-in., and 24-pin double DIPs. An extensive overview of the vendor's other products includes data-conversion hybrids, IBM PC/AT and VMEbus board-level products, and panel-mount instruments. A glossary of Power-Supply Terms and a section on Modern Power Supply Principles and Practices details some recent innovations in power-converter design as well as in standard design practices.

Datel Inc, 11 Cabot Blvd, Mansfield, MA 02048. Circle No. 441

Switch-Mode Rectifier Series

This 23-pg short-form catalog presents electrical specifications, operating characteristics, and design benefits of the Twinpack switch-mode rectifier systems. It outlines the advantages of each component and offers charts and product photos. Describing Twinpack modular power systems, the publication includes the PS/19; system status/control panels; low-voltage disconnect panels; miniload centers; digital-equalize panels; fuse-alarm panels; fuse panels; circuit-breaker panels; battery-disconnect panels; positive or negative-bus bars; battery trays; relay racks; ringing generators; dc/dc converters; dc/ac static converters; and a µP monitor.

Power Conversion Products Inc, Box 380, Crystal Lake, IL 60014. Circle No. 442

Power-Protection Devices

This 46-pg catalog presents power-protection devices for PCs, microcomputers, minicomputers, LANs, workstations, PBXes, and other sensitive equipment. The table of contents lists section titles such as New Technology, How to Solve Power Problems, Choosing the Level of Protection That's Right for You, How to Buy a UPS, The Ferrups Line, Fortress, PLC, Spike-free, Interface Kits, Extended Runtime Options, Installation Options, and Service Plans. Photos and question-and-answer sections complement the product specifications, listings, and technology updates. The catalog's tables supply competitor's prices and comparative product information such as option prices and compatibility requirements.

Best Power Technology, Box 280, Necedah, WI 54646. Circle No. 443

EDN December 19, 1991
Design in our fully static V20HL or V30HL microprocessor and you'll

Run rings around the competition.

Sparkling performance for handheld devices.

Our 16MHz V20HL and V30HL microprocessors run 60% faster than 10 MHz 80C88 and 80C86 devices.

But the V20HL/30HL give you more than just a faster clock.
You'll blaze through multiply/divide operations in half the time, even if you choose to set the V20HL/30HL at the same clock rate as the 80C88/80C86.

Smaller. Lighter. Faster. Better.

Lower power consumption and 3-volt operation mean your design will weigh less and take up less space. And later, you can shrink even the smallest design by converting to NEC's DOS Engine* (PC-on-a-chip) or application-specific standard product based on V20HL/30HL cpu core.

That's why Hewlett-Packard engineers chose our V20HL microprocessor as the heart of the amazing new 11 ounce HP 95LX "palmtop" PC, which runs Lotus 1-2-3 on just two AA batteries.

Free Information Fast. Ask for Info Pack 155.
Call 1-800-632-3531. FAX 1-800-729-9288.

© 1991 NEC Electronics Inc. 401 Ellis St. P.O. Box 7241 Mountain View, CA 94039-7241 1-800-632-3531 1-415-965-6158

DOS Engine is a trademark of NEC Electronics Inc.

CIRCLE NO. 142
What You Don’t Know About RITTAL Can Hurt Your Design.

The new PC Industrial Enclosure is just one of over 3000 RITTAL solutions. See what our perfect enclosure systems can do for you. Call 1-800-4PS 4000 for free RITTAL literature. You’ll change the way you think about enclosures, forever.

RITTAL Corporation
3100 Upper Valley Pike
Springfield, OH 45504
Phone: 1-(800)-477-4000
Fax: (513) 328-5299

EDN December 19, 1991
This advertising is for new and current products. Please circle Reader Service number for additional information from manufacturers.

Plug and Play!

PC HOST OR TERMINAL

KEYBOARD

SCANTEAM 2380

Welch Allyn's SCANTEAM family of Instant Interface products plugs your business directly into bar coding.

- For laptops, PCs or terminals
- Bar code scanning and decoding in a compact wand scanner
- No footprint: single cable connection SCANTEAM 2380 keyboard wedge. SCANTEAM 6180 for RS-232 compatible output.

Instant Microcontroller

Instant C

Instant New Product

Use our Little Giant™ and Tiny Giant™ miniature microprocessor-based computers to instantly computerize your product. Our miniature controllers feature built-in power supplies, digital I/O, serial I/O (RS232 / RS485), A/D converters (to 20 bits), solenoid drivers, time of day clock, battery backed memory, watchdog, field wiring connectors, and more! Designed to be easily integrated with your hardware and software. Priced from $159. Core modules as low as $59. Low cost, interactive Dynamic C™ makes serious software development easy.

Universal Emulator Assembler

Over 170 different microprocessors are supported in this high-performance software/hardware environment for assembly language development. Call today for a FREE ECAL Demo Disk. For more information

Vail Silicon (365) 491-7443

HIGH-SPEED EEPROM PROGRAMMERS

TEP-801/804/808

TEP-101/104/108

from $175.00

- TEP-BOX series program EPROMs from 2716-2MBit
- TEP-10X series program EPROMs from 2716-2MBit
- EEPROMs from 2816-28256A
- High speed programming: 20 seconds for eight 27256
- TUP-300 universal programmer is also available

ROM-IT

EPROM EMULATION SYSTEM

NEW 4-MEGABIT VERSION

- Emulates up to 8 4-Megabit EPROMS with one control card
- Downloads 2-Megabit programs in less than 23 seconds
- Allows you to examine and modify individual bytes or blocks

ORDER TODAY--IT'S EASY
CALL OR FAX FOR MORE INFORMATION

Incredible Technologies, Inc.
(708) 437-2433
(708) 437-2473 Fax

VISA now accepted.

To advertise in Product Mart, call Joanne Dorian, 212/463-6415

EDN December 19, 1991
RELIABILITY AND MAINTAINABILITY PREDICTION AND FMECA ANALYSIS SOFTWARE

Hundreds have used this leading computer-aided engineering software since 1982.

Powertronics Systems offers software to predict Reliability and Maintainability and fault mode effects and criticality analysis. Hundreds of users have selected from PS1's large, versatile and integrated software family for military and industrial equipment and for both electrical and mechanical systems. And, data inputs to these programs may be interactive or batch mode from other CAE or database programs.

Programs implement MIL-STD-1629: MIL-HDBK-217 including E Notice 1; and MIL-HDBK-472.

LEASING PROGRAM & SITE LICENSE AVAILABLE
30 DAY MONEY BACK GUARANTEE

DC/CADE, Innovative, Intelligent & Integrated Software

CIRCLE NO. 334
UNIVERSAL PROGRAMMER

- PAL EPROM $475
- GAL EPROM 8748/49
- PROJ 87C51...
- EEPROM EXOTIC's

- 5ns PALS
- 4 Meg EPROMs
- Parts added at your request.
- FREE software updates on BBS.
- Powerful menu driven software.
- Call — (201) 808-8990
 Link Computer Graphics, Inc.
 389 Passaic Ave., Suite 100
 Fairfield, NJ 07004 FAX: 808-9786

EAO's NEW MODULAR

FLUSH MOUNT PANEL ADAPTOR AVAILABLE

- Oil/watertight to IP 65 and NEMA 4 & 13
- Same back of panel depth
- 1.2 & 3 pole; PCB mountable
- 5/8" round mounting hole
- Rating: 5 A, 250 VAC
- 4 international approvals

EAO SWITCH, YOU CAN FEEL THE DIFFERENCE

EAO SWITCH CORPORATION

P.O. BOX 522, MILFORD, CT 06460 203/877-4577
TELEX: EAOswitchmfr 945437, FAX: 203/877-3848

CIRCLE NO. 340

HIGH PERFORMANCE

DAC-Per-Pin™

Device Programmers

- Programs virtually every device available today with a certified programmer from the leading U.S. supplier of hardware/software device tools. The Allpro starts at $1295 and is fully upgradeable to 88 pins.
- We have the Best Products on The Market. For more information, call: 1-800-331-7766 or (305) 974-0800.

CIRCLE NO. 341

MORE FOR LESS

OakGrigsby

OakGrigsby redlines affordable excellence with our rotary switches. Features include 1½" enclosed rotary and binary coded switches in compact sizes (500' and 552' diameter). PC or solder lug, sealed versions, fixed or adjustable stops. Available in commercial or to military specifications.

CIRCLE NO. 346

EDN December 19, 1991
RUGGED & HIGH PERFORMANCE
COMPUTER SYSTEMS WITH FOLD DOWN
KEYBOARD & VGA MONITOR FOR RACK,
BENCH OR PORTABLE APPLICATIONS

STANDARD FEATURES INCLUDE:
• 12 SLOT PASSIVE BACK PLANE, 250W POWER SUPPLY
• 80386 CPU CARD AT 20/25/33 MHZ , UP TO 8MB OF
ZERO WAIT STATE RAM
• SONY TRINITRON TUBE, HIGH RESOLUTION VGA
(640 x 480) MONITOR AND CARD
• ROOM TO MOUNT THREE HALF HEIGHT DRIVES
• 2 SERIAL, 1 PARALLEL PORT, MS DOS/GW BASIC
ALSO AVAILABLE WITH 80486 OR 80286 CPU CARD S IN
VARIOUS CONFIGURATIONS, FOR FURTHER DETAILS
CONTACT:
IBI SYSTEMS INC., 6842 NW 20 AVE.
FT. LAUDERDALE, FL33309. 305-978-9225
FAX: 305-978-9226

CIRCLE NO. 349

EZ - ROUTE PLUS

SCHEMATIC TO ERROR-FREE ARTWORK ($65)
INCLUDES AUTO ROUTER

EZ-ROUTE PLUS system from AMS for IBM PC, PS/2 and compatibles is an integrated system and includes schematic capture, PCB layout, Automatic Router, Design Rule checker and ability to view gitter plot files. The schematic capture module from EZ-ROUTE/IBM system supports all major PC CAD/CAM packages enabling the user to transfer their schematics and outputs netlist to different formats such as transistor, PL/I, and EDIF. The PCB Layout Module virtually simulates the board physical size, with the board size from 0.01 inch to 6.25 inch. Flexible, 360 components on each side of the board, and outputs on gerber, plotter, and dot matrix printers.

Schematic Capture $100, PCB Layout $250, Auto Router $250.
FREE EVALUATION PACKAGE
30 DAYS MONEY BACK GUARANTEE
1-800-972-3733 or (305) 975-9515
Fax: (305) 975-5402
ADVANCED MICROCOMPUTER SYSTEMS, INC.
1321 N.W. 65 Place
Ft. Lauderdale, FL 33309

CIRCLE NO. 752

20 MHz 286 CPU CARD — $595
• 2 Serial/1 Parallel Ports
• Up to 4 Meg DRAM: 0/1 VS
• Low Power 6-layer PCB
• Award BIOS — Norton SI 21.1
• Optional 287 Co-Processor
• Small Size (XT-Form Factor)
• User Replaceable Battery
• Made in USA
• $595 qty 10 w/OK

295 Airport Road
Naples, FL 33942
1-800-634-0701

CIRCLE NO. 753

REMOVER
HARDWARE LOCKS

PROTECT YOUR INVESTMENT!
MAINTAIN PRODUCTIVITY!

Software utility that allows for the removal of hardware locks.

Available for most major
CAD/CAM and PCB software programs
Easy - Simple - Guaranteed

Programs start at $99.00 U.S.
Visa and Mastercard Welcome
Call or Fax for more information

To advertise in Product Mart, call Joanne Dorian, 212/463-6415

CIRCLE NO. 754

Nichicon
Electronic Components

Aluminum Electrolytic Capacitors, Plastic Film Capacitors,
Positive Thermistors "Post-R", and Hybrid I.C.s "Hi-Net",
are all listed in Nichicon's latest full line catalog. Over 150
pages complete with operating and test specifications.
Chip type, ultra miniature, standard type, high realability,
special type audio, and solid electrolytic capacitors.
Also Positive Thermistors for color TV auto degaussing
circuits, thermal protection and overcurrent protection.
Hybrid I.C.s include diode arrays graphic equalizer,
custom-made and switching regulator power series.

Nichicon (America) Corporation
927 East State Parkway, Schaumburg, IL 60173
Phone (708) 843-7500 FAX: (708) 843-2793

CIRCLE NO. 755 CIRCLE NO. 756 CIRCLE NO. 757

To advertise in Product Mart, call Joanne Dorian, 212/463-6415

EDN December 19, 1991
CUT PGA NOISE
Micro/Q (R) 3000 capacitors reduce noise associated with PGA and PLCC devices. Designed to be mounted under the device, take no extra board space. Can be used under MPUs, Gate Arrays, and ASICs. Choose from 25V, X7R, and X5R dielectrics. Available in both thru-hole and surface mount versions. Several sizes available to fit all devices.

Rogers Corp.
2400 South Roosevelt St., Tempe, AZ 85282
(602) 967-0624

CIRCLE NO. 758

PROTOTYPING ADAPTORS

BY THE HUNDREDS

Our line of prototyping adaptors for VLSI devices including PGA, PLCC, LCC, ZIP, DIP and Quad Flat PAK is the most extensive available in the industry. These devices allow easy prototyping of these difficult to handle devices. Pins and sockets used are gold plated and of the highest quality. Parts are available in solderable or with 3 level wirewrap pins. All types of wirewrap panels are covered. Ask about our custom design services for unique solutions in packaging.

IRONWOOD ELECTRONICS
P.O. BOX 21151, ST. PAUL, MN 55121
(612) 431-7025; FAX (612) 432-8616

CIRCLE NO. 759

CIRCUIT CROSS-OVER

Z280, Z180, Z80 & 8085 Full ANSI C Compilers

- Completely automatic MMU support (no programming effort) for UP TO ONE MEGABYTE Z180 programs.
- DOS based cross-compilers for ANSI and K&R C code.
- Complete with high-speed assembler, linker, and librarian. Includes macros to interface C and assembly.
- NOT A SMALL C!! Full ANSI C at a small C price.
- All ANSI JH files and applicable functions provided.
- Optimized code generation for all data types. Char types are not promoted to int. Generates inline port.
- Fast ANSI/IEEE 754/INTEL floating point support.
- Supports C interrupt service routines and pseudo-variables to access registers at the C level. Can compile reentrant code.
- All code is reentrant and ROMable.
- Fast ANSI/IEEE 754/INTEL floating point support.
- Supports C interrupt service routines and pseudo-variables to access registers at the C level. Can compile to user defined segments.
- ANSI C Compiler, Assembler, Linker - $699

Assembler and Linker Only - $279

CIRCLE NO. 761

I EC Pub. 801-2

HIGH REPRODUCIBLE ESD TESTING

IC Pub. 801-2 features a new test method for evaluating static discharge on a Chip. Electrostatic Discharge simulator ESS-630A

U.S.A. WATAHAN NOHARA INTERNATIONAL INC.
TEL (800) 366-3515

CIRCLE NO. 762

CUPL

PLD/FPGA Design Software
Now Featuring Mach™ Support

Get the popular CUPL development software with the newest and latest features for PLD/FPGA logic design and shorten your time to market. CUPL's powerful "C-like" syntax allows you to develop custom logic design quickly. CUPL starts at $495.

Call your order in TODAY! - Start customizing Tomorrow!
1-800-331-7766 or (305) 974-0967.

CIRCLE NO. 764

48 Channel 50MHz Logic Analyzer

Complete System $1895.00
New Windows 3.0 Compatible Software

- 48 Channels @ 50 MHz x 4K words deep
- 16 Trigger Words/16Level Trigger Selection
- Storage and recall of traces/setups to disk
- Disassemblers available for: 6800, 6303, 6800J, 6811, 6800, 6303, 6801, 6811, 280, 9385, 603, 6890, 6003, 6001

NCI
8438 UNIVERSITY DRIVE, HUNTZEVILLE, AL 35740
(205) 837-5011 FAX (205) 837-5221

CIRCLE NO. 766
CAREER OPPORTUNITIES

1992 Recruitment Editorial Calendar

<table>
<thead>
<tr>
<th>Issue</th>
<th>Issue Date</th>
<th>Ad Deadline</th>
<th>Editorial Emphasis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Magazine Edition</td>
<td>Jan. 2</td>
<td>Dec. 12, '91</td>
<td>Programmerable Logic Devices</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ICs & Semiconductors Multichip Modules</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CAE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Reader Vote Contest: All advertisers in issue quality</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Medical Electronics</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Diversity Special Series</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Software—Part I * ICs & Semiconductors</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Hardware & Interconnect</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Technical Article Database Index</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Buscon Show Coverage</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Buscon Hot Products</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Automotive Electronics</td>
</tr>
<tr>
<td>Magazine Edition</td>
<td>Feb. 3</td>
<td>Jan. 9, '92</td>
<td>Digital ICs</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Microcomputer Boards</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Software—Part II * High-Speed Digital Circuits</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Software/CAE</td>
</tr>
<tr>
<td>News Edition</td>
<td>Feb. 6</td>
<td>Jan. 23, '92</td>
<td>STATE OF ENGINEERING</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Special Supplement</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Computers & Peripherals</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Communications Technology</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Annual Salary Survey</td>
</tr>
<tr>
<td>Magazine Edition</td>
<td>Feb. 17</td>
<td>Jan. 23</td>
<td>EDN’s 35th Anniversary</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Issue * ASICs * ICs</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Semiconductors</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Test & Measurement</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Manufacturing Issues</td>
</tr>
<tr>
<td>News Edition</td>
<td>Feb. 20</td>
<td>Feb. 6</td>
<td>IGs & Semiconductors</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ESSCC Hot Products</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Computers & Peripherals</td>
</tr>
<tr>
<td>Magazine Edition</td>
<td>Mar. 2</td>
<td>Feb. 6</td>
<td>COMMUNICATIONS SPECIAL ISSUE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Test & Measurement</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Local-area Networks</td>
</tr>
<tr>
<td>Wildlife</td>
<td></td>
<td></td>
<td>* Microprocessors</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Memory Technology</td>
</tr>
<tr>
<td>Magazine Edition</td>
<td>Mar. 5</td>
<td>Feb. 20</td>
<td>COMPUTER & PERIPHERAL</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SPECIAL ISSUE * Multimedia Components</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Memory Technology</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Computer Peripherals</td>
</tr>
<tr>
<td>Magazine Edition</td>
<td>Mar. 16</td>
<td>Feb. 20</td>
<td>Regional Profile: Tokyo, Japan</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>International Technology</td>
</tr>
<tr>
<td>News Edition</td>
<td>Mar. 19</td>
<td>Mar. 5</td>
<td>DSP Software</td>
</tr>
<tr>
<td></td>
<td>Mar. 30</td>
<td>Mar. 5</td>
<td>Communications</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Regional Profile: New York, New</td>
</tr>
<tr>
<td>Magazine Edition</td>
<td>Mar. 30</td>
<td>Mar. 5</td>
<td>Pennsylvania</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Multimedia Circuits</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CAE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Test & Measurement</td>
</tr>
</tbody>
</table>

Call today for information on Recruitment Advertising:
East Coast: Janet O. Penn (201) 228-8610
West Coast: Nancy Olbers (603) 436-7565
National: Roberta Renard (201) 228-8602

EDN December 19, 1991
Looking for a superior career path in integrated circuits and solutions? You can travel farther, faster with Advanced Micro Devices. Innovation and the right industry moves have put AMD in a commanding position in microprocessors and related peripherals, programmable logic devices, high performance memories, and the World Network™ Solution. We’re ready to challenge the world with our simply superior products. Take the Advanced path to the leading edge in the exceptional living and working environment of our Austin, Texas facility.

THE ADVANCED PATH TO THE LEADING EDGE.

SR. DESIGN ENGINEERS
Requires experience in CMOS ASIC design and an understanding of PC Systems. BSEE required.

SR. TECHNICAL MARKETING ENGINEERS
Requires the ability to make effective customer presentations using product value characteristics and competitive analysis data. An understanding of CMOS microprocessors and portable PC Systems is also required. BSEE, MS preferred.

SR. PRODUCT ENGINEER
BSEE with 3+ years product engineering experience in testing and evaluating complex MOS integrated circuits. Position responsible for yield analysis, new test equipment introduction, and supporting all reliable testing and reject failure analysis.

PROCESS INTEGRATION ENGINEER
Responsible for the transfer of technologies and optimization of processes for high quality and yields. 5+ years experience in process integration of CMOS memory devices and hands-on development of submicron process technology. Experience with EPROM, FLASH and other non-volatile memories. MSEE/PhD preferred.

CAD ENGINEER
1+ years of experience in VLSI design with knowledge of "C" programming. BSEE required.

SR. PROCESS ENGINEER-THIN FILMS/IMPLANT
5+ years of direct wafer fab process engineering experience required. Must be familiar with Ion Implantation, thin films, SPC and DOE. Supervisory experience a plus. Technical BS degree required.

PHYSICAL DESIGN
Responsible for Physical Design of CMOS VLSI chips. Background in using state-of-the-art CAD tools from Mentor, Cadence, Silvar Lisco and others in the performance of chip layout, verification and analysis is essential. Compiled, cell based and custom layout techniques will be used in a networked workstation environment. BSEE a plus.

NETWORK ENGINEER
Must have 1-2 years experience with the design and implementation of network configurations, as well as familiarity with the following media: Ethernet-10Base T, 10Base5, 10Base2, RS232, V.35, fiber and Apollo token ring. Operating systems should include Unix, DEC-VMS and IBM-VM, MVS. BS/BA in Computer Science or Electrical Engineering required.

SR. EQUIPMENT ENGINEER
Responsible for the implementation of statistical equipment control systems. BSEE preferred plus 4 years experience in interface electronics and control systems. Must be familiar with most fab equipment and facilities requirements.

Qualified applicants should send a resume to: Advanced Micro Devices, MS-556/EDN12, 5204 E. Ben White Blvd., Austin, Texas 78741, Attn: Professional Staffing. You may also call (512) 462-5355 or FAX your resume to (512) 462-5108.

We are an equal opportunity employer.

© 1991 Advanced Micro Devices, Inc. All rights reserved. ADVANCED MICRO DEVICES and the AMD logo are registered trademarks of Advanced Micro Devices, Inc.
Real satellites, spacecraft and launch vehicles face their first moments of truth at Orbital Sciences Corporation. We are the fastest growing aerospace company in the world, noted for our aggressive approach to modern technology and the exceptional quality of our individual employees.

You will be a part of a team that has excited the aerospace world and received the President's National Medal of Technology by designing and launching the Pegasus air-launched rocket in only three years. You will also find yourself engaged in such challenging OSC programs as:

ORBCOMM: An innovative commercial space-based communications system incorporating a constellation of 24 small low earth orbiting data relay satellites.

SeaStart: A complete system of spacecraft, launch vehicle and ground stations to provide remote color imaging of the world's oceans for NASA and commercial customers.

APEX: A satellite system which provides a platform for experiments in advanced photo-electric technology for the U.S. Air Force.

Pegasus: The world's first commercially developed orbital launch vehicle capable of placing small payloads in a wide range of orbits.

Taurus: A ground-based launch vehicle which combines the Pegasus design philosophy with expanded payload capability.

Immediate opportunities now exist for the following:

ELECTRICAL ENGINEERS
- RF Design
- Attitude Control
- Telemetry & Command
- Power Systems
- Digital Design

ELECTRICAL DESIGNERS
- Electrical product/multi-layer PC board designers

Additional opportunities exist for software, systems and mechanical engineers and mission managers.

To find out more about the people behind the innovation...send a resume and letter of introduction to: Employment Administrator, Orbital Sciences Corporation, Dept. EDN-1, 14119 Sullyfield Circle, P.O. BOX 10840, Chantilly, Virginia 22021.

TV ANSWER, INC. is revolutionizing television by pioneering the field of wireless, realtime interactive television. We’re seeking the following:

NETWORK ENGINEER - Requires a BSEE or BSCS and experience in network design (LAN, WAN, Terrestrial, and Satellite), “C” language, and one year in software development and data communications Protocols and Systems.

SENIOR PROGRAMMERS - Requires 5 years experience in structured systems development under UNIX. Plus a BSCS and experience in two or more of the following: full life cycle development, SCSS, TCP/IP with ETHERNET or Token Ring, Wide Area Network (i.e. X.25, SDLC), and Case Tools.

SYSTEMS ENGINEER - Requires a BSCS or BSEE, hardware experience with DOS based systems, and background in Quick Basic and PARADOX.

ELECTRICAL MANUFACTURING ENGINEER - Requires product support and design experience in digital, video, radio frequency and production test equipment.

SENIOR INDUSTRIAL ENGINEER - Requires seven years related experience plus Macintosh or PC experience utilizing spreadsheet and/or database applications software to create detailed reports.

Send your resume to: TV ANSWER, INC., 1941 Roland Clarke Place, Reston, VA 22091 or FAX it to (703) 715-8852. U.S. citizens and permanent residents only. An equal opportunity employer.
Join The Company That Accelerates The Industry

When you join Allen-Bradley, you join a world leader in industrial automation controls and factory information systems. We're developing tomorrow's technology today that keeps our customers in the forefront of their industries.

At Allen-Bradley, you'll have the opportunity to apply your skills to challenges as varied as our global customers. From the automotive and packaged goods to manufacturing and steel industries, we have the variety and technology you need to be challenged both personally and professionally.

If you're an experienced engineer in the industrial automation industry and have the desire to be in the forefront of technology, join us in one of the following areas:

- Software Engineering
- Project Engineering
- Firmware Design Engineering
- Mechanical Engineering
 (packaging injection molding background)

In return for your contributions, we'll provide you with a competitive salary; comprehensive benefits; generous relocation assistance; and the opportunity to appreciate not only where you work, but where your work is put into use. For additional information or for immediate consideration, please forward your resume in confidence to: Human Resources; Dept. EDN12/19; Allen-Bradley; 747 Alpha Drive; Highland Heights, Ohio 44143. An Equal Opportunity Employer, M/F/H/V.

ALLEN-BRADLEY
A ROCKWELL INTERNATIONAL COMPANY

It's not only where you work, but where your work is.
Electronic Warfare Specialist

CAE-Link Corporation, located in Binghamton, New York, is the worldwide industry leader in the design, development and integration of advanced simulation hardware and training systems for aircraft and ground vehicle applications.

We are currently seeking an Electronic Warfare Specialist to perform in-depth analyses of EW components. The successful candidate will be responsible for analyzing emitter radiation characteristics and the interaction of emitters to ECM, hostile/friendly threat environments. Responsibilities also include deriving parametrics from Intelligence Reports (EWIRs, STIFFs, CADOBs, etc.) and deriving software models for implementation of specific elements of electronic warfare receivers.

Qualifications include a Bachelor's degree in electrical engineering or physics and eight years of work experience with electronic warfare systems. Qualified applicants should also possess software test and integration skills. Simulation experience is preferred. Professionals with the kind of talent we seek can expect a competitive salary and an excellent benefits plan.

For prompt, confidential consideration fax your resume and salary requirements to: Laura Miller, Employment Administrator, at (607) 721-5736 or mail to Dept. EON 11-8, CAE-Link Corporation, P.O. Box 1237, Binghamton, NY 13902-1237

E/O Employer M/F/H/V • Drug-Testing Employer
U.S. Citizenship Required
Applications selected will be subject to a security investigation and must meet eligibility requirements for access to classified information.

MERRY CHRISTMAS
DON GALLAGHER
Gallagher & Associates
1145 Linn Ridge Rd., Mount Vernon, IA 52314
(319) 895-8042 (319) 895-6455 FAX
IEEE-802.x—Family of network-architecture standards; also the IEEE subcommittees responsible for those standards.

I/O—Input-output

ISO—International Standards Organization

LAN—Local-area network

LCA—Logic cell array

MAP—Manufacturing Automation Protocol. A network protocol developed by General Motors Corp to interconnect computers and programmable factory equipment.

MS-DOS—Microsoft disk operating system

MSI—Medium-scale integration

OEM—Original equipment manufacturer

OSI—Open-systems-interconnection

PAL—Programmable Array Logic, trademark of Advanced Micro Devices

PC—Personal computer

PLA—Programmable logic array

PLCC—Plastic leaded chip carrier

PLD—Programmable logic device

PROM—Programmable read-only memory

RAM—Random-access memory

RC—Resistance-capacitance

SSI—Small-scale integration

TCP/IP—Transfer control protocol/internet protocol

10Base-T—10-MHz, baseband, twisted-pair technology. A network-wiring scheme that forms a part of IEEE standard 802.3.

TTL—Transistor-transistor logic

VHDL—VHDL Hardware Description Language

VHSIC—Very-high-speed integrated circuit

VLSI—Very-large-scale integration

Replace Messy Grease Under Isolated Transistors

- Q-Pad II replaces grease in applications where isolation is not required (isolated transistors).
- Q-Pad II provides maximum heat transfer between interfaces, 0.1 °C/Watt TR.
- .006 in. thickness, Silicone / Alum. Foil construction, 2.5 W/m-k Therm. Cond., available in standard configurations and custom shapes.

Contact Bergquist for a Free Copy of the New Sil-Pad Design Guide, 1-800-347-4572

BERGQUIST

5300 Edina Industrial Blvd., Minneapolis, MN 55439
Tel: (612) 835-2322 • Fax: (612) 835-4156

Quality Sockets and Plugs

Standard, Customized and New Designs • Prototype through Production

CONNECTOR CORPORATION

6025 N. Keystone Ave., Chicago, IL 60646-5290
Phone: 312/539-3108 • TWX 910-221-6059 • FAX: 312/539-3825

CIRCLE NO. 54
Somewhere in the world a Sanyo battery is being "designed-in" to a high performance application.

Right now.

Industry leaders select industry leaders.

CADNICA. In 1964 Sanyo's proprietary technology led to a breakthrough battery that withstands continuous overcharging and overdischarging...the sealed, rechargeable nickel cadmium Cadnica.

LITHIUM. Sanyo developed the technology for manganese dioxide compounds to be used in Lithium batteries which produced a cell with high voltage and high energy density characteristics.

CADNICA EXTRA. Sanyo's Cadnica E series incorporates high-density electrode plates in a new concept design for 40% greater capacity than conventional batteries and 1-hour charge capability via Sanyo's 3V voltage sensor changing method.

SOLAR. Sanyo leads the development of solar cells with the application of amorphous silicon for physical flexibility and the ability to be fabricated into large-area cells.

NiMH. Sanyo's proprietary electrode manufacturing process and built-in resealable safety vent lead the development of high capacity, high performance rechargeable, Nickel Metal Hydride batteries.

If you're developing an industry leading product right now, perhaps you should contact Sanyo...right now.

For specification and design assistance please contact your regional Sanyo sales office at the following address:

SANYO Energy (U.S.A.) Corporation
2001 Sanyo Avenue
San Diego, California 92173
(619) 661-6620

In Florida: (904) 376-6711
In Illinois: (312) 595-5600
In New Jersey: (201) 641-2333
In Georgia: (404) 279-7377
In Dallas: (214) 480-8345

CIRCLE NO. 72
<table>
<thead>
<tr>
<th>Company Name</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analogic Corp</td>
<td>88</td>
</tr>
<tr>
<td>AMP</td>
<td>28-29</td>
</tr>
<tr>
<td>Altera Corp</td>
<td>113</td>
</tr>
<tr>
<td>American Cerium</td>
<td>152</td>
</tr>
<tr>
<td>AMP</td>
<td>28-29</td>
</tr>
<tr>
<td>Analogic Corp</td>
<td>88</td>
</tr>
<tr>
<td>APEC</td>
<td>150</td>
</tr>
<tr>
<td>Aval Corp of Ireland</td>
<td>173</td>
</tr>
<tr>
<td>Baker Consulting</td>
<td>170</td>
</tr>
<tr>
<td>Berquist Co</td>
<td>179</td>
</tr>
<tr>
<td>BP Microsystems</td>
<td>173</td>
</tr>
<tr>
<td>CAD Software Inc</td>
<td>69</td>
</tr>
<tr>
<td>Cahners CAPS</td>
<td>128</td>
</tr>
<tr>
<td>Capilano Computer Systems Inc</td>
<td>171</td>
</tr>
<tr>
<td>Capital Equipment Corp</td>
<td>128</td>
</tr>
<tr>
<td>Cascade Microtech</td>
<td>87</td>
</tr>
<tr>
<td>C & K Components Inc</td>
<td>124</td>
</tr>
<tr>
<td>Cherry Electrical Products Inc</td>
<td>129</td>
</tr>
<tr>
<td>Comdisco</td>
<td>48</td>
</tr>
<tr>
<td>Comlinear Corp</td>
<td>55</td>
</tr>
<tr>
<td>Communications Specialties Inc</td>
<td>170</td>
</tr>
<tr>
<td>Connector Corp</td>
<td>179</td>
</tr>
<tr>
<td>Conner Peripherals</td>
<td>8-9</td>
</tr>
<tr>
<td>Cybernetic Micro Systems</td>
<td>33</td>
</tr>
<tr>
<td>Cypress Semiconductor</td>
<td>4</td>
</tr>
<tr>
<td>Dale Electronics Inc</td>
<td>25</td>
</tr>
<tr>
<td>Data I/O Corp</td>
<td>170</td>
</tr>
<tr>
<td>Datakey</td>
<td>145</td>
</tr>
<tr>
<td>Delvaun Devices, API</td>
<td>50</td>
</tr>
<tr>
<td>Design Computation Inc</td>
<td>170</td>
</tr>
<tr>
<td>Diversified Technology</td>
<td>98-99</td>
</tr>
<tr>
<td>EAO Switch Corp</td>
<td>171</td>
</tr>
<tr>
<td>EEROS</td>
<td>112</td>
</tr>
<tr>
<td>EG&G Fieldale Engineering Inc</td>
<td>122</td>
</tr>
<tr>
<td>Elcon</td>
<td>172</td>
</tr>
<tr>
<td>Emulation Technology Inc</td>
<td>172</td>
</tr>
<tr>
<td>Emulex Corp</td>
<td>36-37</td>
</tr>
<tr>
<td>Enea Data AB**</td>
<td>C2</td>
</tr>
<tr>
<td>Erieport</td>
<td>112</td>
</tr>
<tr>
<td>Force Computers Inc</td>
<td>161</td>
</tr>
<tr>
<td>Futaba</td>
<td>149</td>
</tr>
<tr>
<td>GE Electromaterial</td>
<td>140</td>
</tr>
<tr>
<td>General Devices</td>
<td>95</td>
</tr>
<tr>
<td>Gifts-in-kind</td>
<td>112</td>
</tr>
<tr>
<td>Grayhill Inc</td>
<td>170</td>
</tr>
<tr>
<td>Guardian Electric</td>
<td>170</td>
</tr>
<tr>
<td>Hewlett-Packard Co</td>
<td>C2, 59, 77, 167</td>
</tr>
<tr>
<td>Honda Connectors</td>
<td>146</td>
</tr>
<tr>
<td>IBI Systems Inc</td>
<td>172</td>
</tr>
<tr>
<td>ILC Data Device Corp</td>
<td>123</td>
</tr>
<tr>
<td>Incredible Tech</td>
<td>169</td>
</tr>
<tr>
<td>Innovative Software Designs</td>
<td>170</td>
</tr>
<tr>
<td>Intel</td>
<td>42-43, 126-127, 137</td>
</tr>
<tr>
<td>InTeracon Corp</td>
<td>74</td>
</tr>
<tr>
<td>International Rectifier</td>
<td>C3</td>
</tr>
<tr>
<td>Interphase Corp</td>
<td>147</td>
</tr>
<tr>
<td>Intusoft</td>
<td>173</td>
</tr>
<tr>
<td>Ironwood</td>
<td>173</td>
</tr>
<tr>
<td>John Fluke Manufacturing Co Inc</td>
<td>6, 158</td>
</tr>
<tr>
<td>Keithley</td>
<td>96</td>
</tr>
<tr>
<td>Kepco Inc</td>
<td>101-104</td>
</tr>
<tr>
<td>KMS Advanced Products</td>
<td>142</td>
</tr>
<tr>
<td>Lansing Instrument</td>
<td>171</td>
</tr>
<tr>
<td>Linear Technology Corp</td>
<td>153-154</td>
</tr>
<tr>
<td>Link Computer Graphics Inc</td>
<td>171</td>
</tr>
<tr>
<td>Logical Devices Inc</td>
<td>171, 173</td>
</tr>
<tr>
<td>Meritec</td>
<td>121</td>
</tr>
<tr>
<td>Microstar Laboratories</td>
<td>171</td>
</tr>
<tr>
<td>MicroSim Corp</td>
<td>23</td>
</tr>
</tbody>
</table>

Mini-Circuits Laboratories
- 26-27, 34-35, 44-45, 72-73, 182
- Molex Inc | 157 |
- Motorola | 60-61|
- National Instruments | 2 |
- NEC | 173 |
- NCR Corp | 38-39|
- Nichicon Corp | 172 |
- Nohau Corp | 169 |
- Noble | 125 |
- Noise Laboratory Co | 173 |
- Nortak Electronics Inc | 94 |
- Oak Grigsby | 171, 172|
- Omron Electronics Inc | 105 |
- Otto Controls | 148 |
- Panasonic | 151 |
- Photo Research | 90 |
- Pico | 53, 181|
- Pifer International Corp | 117 |
- Power Trends Inc* | 89 |
- Powertronic | 170 |
- PreciDip** | 175 |
- Raytheon Semiconductor Div | 80-81|
- Realtime Devices | 138 |
- Rittal Corp | 170 |
- Rogers Corp | 173 |
- Safe Soft Systems | 172 |
- Samsung Semiconductor | 10-11|
- Sanyo Electric Inc | 180 |
- Schurter AG | 50 |
- SGS-Thomson | 32 |
- Sony Corp of America | 32 |
- Spectrum Software | 67 |
- Taiyo Yuden (USA) Inc | 166 |
- TEAC Corp** | 89 |
- Tektronix Inc | 18, 46, 92-93|
- Tempus Technologies Inc | 172 |
- Teradyne Inc | 114 |
- Test Systems | 170 |
- Texas Instruments Inc | 12-13, 78-79, 106-107|
- Tokin Corp | 163 |
- Toyocom | 120 |
- TRW LSI Products Inc | 16-17|
- Vesta Technology Inc | 170 |
- Vicor | 51 |
- VST | 169 |
- WaveTech | 3 |
- Welch-Allin | 169 |
- Wintek Corp | 100 |
- Yusa-chrome | 165 |
- Z-World | 169 |
- Zytec | 70 |

Recruitment Advertising 174-178
- Advanced Micro Devices | Allen-Bradley |
- CAE Link Company | Gallagher & Associates |
- Orbital Sciences Corp | Zytec |
- *Advertiser in International edition |
- **Advertiser in European edition |

This index is provided as an additional service. The publisher does not assume any liability for errors or omissions.
SPDT switches with built-in driver

ABSORPTIVE or REFLECTIVE dc to 5GHz

Truly incredible...superfast 3nsec GaAs SPDT reflective or absorptive switches with built-in driver, available in pc plug-in or SMA connector models, from only $19.95. So why bother designing and building a driver interface to further complicate your subsystem and take added space when you can specify Mini-Circuits' latest innovative integrated components? Check the outstanding performance of these units...high isolation, excellent return loss (even in the "off" state for absorptive models) and 3-sigma guaranteed unit-to-unit repeatability for insertion loss. These rugged devices operate over a -55°C to +100°C span. Plug-in models are housed in a tiny plastic case and are available in tape-and-reel format (1500 units max, 24mm). All models are available for immediate delivery with a one-year guarantee.

SPECIFICATIONS (typ)

<table>
<thead>
<tr>
<th>Frequency (MHz)</th>
<th>Absorptive SPDT</th>
<th>Reflective SPDT</th>
</tr>
</thead>
<tbody>
<tr>
<td>dc</td>
<td>YSWA-2-50DR</td>
<td>YSW-2-50DR</td>
</tr>
<tr>
<td>500-2000-5000</td>
<td>ZYSWA-2-50DR</td>
<td>ZYSW-2-50DR</td>
</tr>
<tr>
<td>Ins. Loss (dB)</td>
<td>1.1 1.4 1.3</td>
<td>0.9 1.3 1.4</td>
</tr>
<tr>
<td>Isolation (dB)</td>
<td>42 31 20</td>
<td>50 40 28</td>
</tr>
<tr>
<td>1dB Comp. (dBm)</td>
<td>18 20 22.5</td>
<td>20 22 26</td>
</tr>
<tr>
<td>RF Input (max dBm)</td>
<td>20</td>
<td>22 22 26</td>
</tr>
<tr>
<td>VSWR "on"</td>
<td>1.25 1.35 1.5</td>
<td>1.4 1.4 1.4</td>
</tr>
<tr>
<td>Video Bkthr</td>
<td>30 30 30</td>
<td>30 30 30</td>
</tr>
<tr>
<td>(mV/p/p)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sw. Spd. (nsec)</td>
<td>3 3 3</td>
<td>3 3 3</td>
</tr>
<tr>
<td>Price, $</td>
<td>YSWA-2-50DR (pin) 23.95</td>
<td>ZYSW-2-50DR (SMA) 69.95</td>
</tr>
<tr>
<td>(1-9 qty)</td>
<td>ZYSWA-2-50DR (SMA) 69.95</td>
<td>ZYSW-2-50DR (SMA) 59.95</td>
</tr>
</tbody>
</table>

CIRCLE NO. 67

Mini-Circuits
P.O. Box 350166, Brooklyn, New York 11235-0003 (718) 934-4500 Fax (718) 332-4681 Telexes: 6852844 or 620156
Now you can replace a fistful of components, and drive power FETs and IGBTs with one cost-effective part: The IR2110 monolithic dual channel 2A gate driver with floating high side and ground reference low side.

Count your design time in hours instead of days. And cut assembly time to a fraction.

The IR2110 runs as fast as it designs. With operation above 1 MHz. On-chip bootstrap. Plus matched channel delay within 10 ns. That's right. 10 ns.

It takes good care of your circuit too, with gate undervoltage protection.

And latched shutdown makes current mode control both simple and easy.

Is it rugged? 50 V/ns dv/dt at -55 to 150°C in plastic. Versatile? Operates off 12 to 500 V rails with 5 to 20 V input, in any circuit topology. Reliable? The IR2110 meets the same high standards as IR's incomparable HEXFET power MOSFETs.

Call (800) 245-5549 for more information. We'll get it off the ground and on your desk in no time.
NEW ABEL-FPGA helps you get the most out of the latest FPGAs. If you want to take advantage of the sophisticated capabilities of today's FPGAs, only Data I/O®'s new ABEL-FPGA™ Design Software has the power to pack in maximum logic. It combines the industry-standard ABEL Hardware Description Language (ABEL-HDL™) with our new intelligent FPGA Device Fitter™ technology. So, you can create more complex designs with less effort — ABEL-FPGA does the hard work for you!

ABEL-FPGA’s powerful Device Fitters automatically optimize your circuits for minimum area or maximum speed. Fitters are available for all the leading architectures, including Actel, Altera, AMD, Atmel, ICT, National, Plus Logic, and Xilinx. And with built-in knowledge of its target architecture, each fitter masters the complex features of its device automatically, intelligently.

Practical, detailed documentation, complete with FPGA design examples, also helps to ensure that you get the most from each architecture. And for added design power and flexibility, ABEL-FPGA lets you specify place-and-route constraints directly in your circuit description, so you can easily migrate the same design between multiple FPGA vendors.

Pack more logic into your next FPGA design, with the single solution to all your FPGA behavioral entry needs: ABEL-FPGA. Call today to find out more about NEW ABEL-FPGA.

1-800-3-DataIO
(1-800-332-8246)

The Personal Silicon Experts