TMS7000
Assembly

- Language
Programmer’s

Guide

8-Bit Microcomputer Family l

i3
TeEXas
INSTRUMENTS

SPNUOO28

__Manual Update

MANUAL TITLE: TMS7000 Assembly Language Programmer’s Guide

REVISION CHANGE: B to C MANUAL UPDATE NUMBER: SPBZ011

ECN NUMBER: 517192 PRINTING DATE: February 1984 DATE OF CHANGE: July 1284

This sheet accompanies the manual which has the following part numbers?-

ENGINEERING P/N: 1602127-9701 . SP NUMBER: | SPNUOQZB'
PAGE CHANGE OR ADD
2-13 When the immediate value is greater than >7F and the user precedes this immediate value

with %# (immediate and negate unary operations), the assembler correctly calculates the
value but issues an error message. The error message "EXPRESSION QUT OF BOUNGCS”
should be ignored. See following example:

TEST TMS7000 MACRO ASSEMBLER VAX/VMS 2.1 83.088 14:07:07 6/13/34
. PAGE 0001
0001 . '
0002 * VAX X-SUPPORT TEST SOFTWARE
0003 .
0004 IDT '~EST'
0005 P000 AORG >F000
0006 F000 52 MOV 1>10,8
FOOL 10 ?
0007 F002 0D LDSP
0008 FO03 Ol IDLE
0009 FO04 28 ADD 14>40,A
FO05 BF
0010 FO06 28 ADD S4>7F,A
FO07 80
0011 F008 28 ADD 14>80,A
FO09 7F
«wswwawaxr EXPRESSION OUT OF BOUNDS
0012 END

0001 ERROR, 0000 WARNINGS, LAST ERROR AT 0011l

3-5 Insert the attached sheet for page 3-5.

IMPORTANT NOTICES

Texas Instruments reserves the right to make changes at any time to
improve design and to supply the best possible product for the
spectrum of users.

The TMS7000 Assembly Language Programmer's Guide (Part Number
1602127-9701) 1is printed in the United States of America and is
copyrighted by Texas Instruments Incorporated. All rights reserved. No
part of these publications may be reproduced in any manner including
storage in a retrieval system or transmittal via electronic means, or
other reproduction in any form or any method (electronic, mechanical,
photocopying, recording, or otherwise) without prior written
permission of Texas Instruments Incorporated.

Information contained in these publications is believed to be accurate
and reliable. However, responsibility is neither assumed for its use
nor for any infringement of patents or rights of others that may
result from its use. No license is granted by implication or otherwise
uncder any patent or patent right of Texas Instruments or others.

The following is a trademark of Texas Instruments Incorporated: AMPL

~

Copyright, Texas Instruments Incorporated, 1983

—
o

OO NGOG N LGNLUGY G G U S ISR ORI S IS NSRS IS IS IS RS IO IOV S 2]

\A\J\J\J\J\J\Jb\mmmmmmmmmha»hawwwwwwwwwmu

ONOBEWWN -

W N -

£ WN -

N wWwhN =

DU E WN -

TMS 7000 ASSEMBLY LANGUAGE PROGRAMMER'S GUIDE

TABLE OF CONTENTS

SECTION 1: INTRODUCTION

INTRODUCTION & v vt v e e e v e e e e e e e 1-1
ASSEMBLY LANGUAGE APPLICATION 1-1

SECTION 2. GENERAL PROGRAMMING INFORMATION

GENERAL i i e e e e e e e e e e e e e e 2-1
DATA AREAS o o e e e e e e e e e e e e e e 2-1
THE TMS7000 INSTRUCTION SET« « . . . 2-1
Arithmetic Instructions 2=2
Branch and Jump Instructions 2-3
Compare Instructions 2-4
Control Instructions °© 2-4
Load and Move Instructions 2-4
Logical Instructions 2-5
Rotate/Shift Instructions 2-5
I70 Instructions00 2-6
SOURCE STATEMENT FORMAT « « « v v .. 2-6
Label Field ¢ ¢ o o oo e 2-8
Command Field 2-8
Operand Field « o o v ... 2-9
Comment Field « .« . .. 2-9
CONSTANTS e e e e e e e e e e e e e e e e e 2-9
Decimal Integer Constants 2-9
Binary Integer Constants 2-9
Hexadecimal Integer Constants 2-10
Character Constants« . .. 2-10
Assembly-Time Constants 2-10
SYMBOLS & . . e e e e e e e e e e e e e e e 2-10
Predefined Symbols 2-11
Terms e e e e e e e e e e e e e e e e e 2-12
Character Strings« ... 2-12
EXPRESSIONS« ¢ v v v o i v e e e e 2-12
Arithmetic Operators In Expressions 2-12
Logical Operands In Expressions 2-13
Parentheses In Expressions 2-13
Well-Defined Expressions 2-14
Relocatable Symbols In Expressions 2-14
Externally Defined Symbols In Expressions 2-15

ifi

NoOVUO easaepprAEAPLPLN-

NN N N =0 4=t bt b
WN - P WN =

OWOONOU & WN =

SECTION 3: ASSEMBLY INSTRUCTIONS

GENERAL o e e e e e e e e e e
OPERAND ADDRESSING MODES « « « « « . . .
Special AddressingModes
Register File Addressing
Peripheral File Addressing
Immediate Addressing
Program Counter Relative Addressing
Extended Addressing Modes
Direct Memory Addressing
Register File Indirect Addressing
Indexed Addressing
INSTRUCTION TYPES & & & v v v v e e e e e e e
Single Register Instruction Type
Dual Register Instruction Type
Peripheral File Instruction Type
Relative Address Instruction Types
Simple Relative Address Instruction Type
Single Relative Address Instruction Type
Dual Relative Instruction Type
Peripheral Relative Instruction Type
Extended Address Instruction Type
Implied Operand Type Instructions
Special Address Type Instructions
INSTRUCTION DESCRIPTIONS v ¢ v v v v o «
Add With Carry Instruction (ADC)
Add Instruction (ADD) «
And Instruction (AND)
AND Peripheral File Register Instruction (ANDP)
Bit Test And Jump If One Instruction (BTJO)
Bit Test And Jump If One-Peripheral Instruc. (BTJOP). .
Bit Test And Jump If Zero Instruction (BTJZ)
Bit Test And Jump If Zero-Peripheral Instruction (BTJZP)
Branch Instruction (BR)
Call Instruction (CALL)
Clear Instruction (CLR)
Clear Carry Instruction (CLRC)
Compare Instruction (CMP)
Compare With An Extended Instruction (CMPA)
Decimal Add With Carry Instruction (DAC)
Decrement Instruction (DEC)
Decrement Double Instruction (DECD)
Disable Interrupts Instruction (DINT)
Decrement Register And Jump If Non-Zero Instr. (DINZ) .
Decimal Subtract With Borrow Instruction (DSB)
Enable Interrupts Instruction (EIN)
Idle Until Interrupt Instruction (IDLE)
Increment Instruction (INC) -

HWN =

.............

iv .

WWLWLWWLWWLWWWLWWWWLWLWWLWWLWLWLWLWLWWWWLWWLWWLWLWLWWWLWLWWLWWW
N N N R N A R N N W W O I N Y N

PP PLPLLPLPAEAPLPLLSL
UNEeELELPWWLWWWNRNNNNDN -

WN - D ewWwnN -

N —

Invert Instruction (INV)
Jump Unconditional Instruction (JMP)
Jump On Condition Instruction (J<cnd>)
Load A Register Instruction (LDA)
Load Stack Pointer Instruction (LDS)
Move Instruction (MOV)
Move Double Instruction (MOVD)
Move To/From Peripheral File (MOVP)
Multiply Instruction (MPY)
No Operation Instruction (NOP)
Or Instruction (OR)« o o oo o
OR Peripheral File Register Instruction (ORP)
POP From Stack Instruction (POP)
Push On Stack Instruction (PUSH)
Return From Interrupt Instruction (RETI)
Return From Subroutine Instructor (RETS)
Rotate Left Instruction (RL)
Rotate Left Through Carry Instruction (RLC)
Rotate Right Instruction (RR)
Rotate Right Through Carry (RRC) e e e e e
Subtract With Borrow Instruction (SBB)
Set Carry Instruction (SETC)
Store A Regster Instruction (STA)
Store Stack Pointer Instruction (STSP)
Subtract Instruction (SUB)
Swap Nibbles Instruction (SWAP)
Trap To Subroutine Instruction (TRAP)
Test A Register Instruction (TSTA)
Test B Register Instruction (TSTB)
Exchange With B Register Instruction (XCHB) , .
Exclusive Or Instruction (XOR)
Exclusive Or Peripheral File Register Instruc. (XORP) .

SECTION 4: USER APPLICATION NOTES

GENERAL s e e e e e e e
ARITHMETIC INSTRUCTIONS« .« ..
Incrementing Instructions (INC/DAC/ADC)
Decrementing Instructions (DEC/DSB/DECD).
Addition Instructions (ADD/ADC/DAC)
Subtraction Instructions (SUB/SBB).
Multiply Instruction (MPY) ,
DATA MOVEMENT INSTRUCTIONS
Register Move Instructions (MOV/XCHB/MOVD)
1/0 Move Instruction (MOVP)
Load And Store Instructions (LDA/STA/DINZ)
LOGICAL INSTRUCTIONS v« v v v o
Register Logical Instructions (INV/XOR/OR/AND)
1/0 Logical Instructions (XORP/ANDP/ORP/BJOP/BTJZP) . .
BRANCH INSTRUCTION (BR)« v v v v v o

b
00N

mmmmbJbb«b#wwwwwNNNNNNNwaHHHHHHHHHw

WN -

=D 00O U S W
-

O WN -

— s s
N - O

S WN =

E VSN S N

SUBROUTINE INSTRUCTIONS (CALL/TRAP/RETS)
THE STACK . . . & . o i i e e e v e e e e e e e e e e
INTERRUPTS . v & b v v vt e e e e e e e e e e e e e

SECTION 5: ASSEMBLER DIRECTIVES

GENERAL & & & v it i vt e e e e e e e e e e e
THE MACRO ASSEMBLER (MACASM)
ASSEMBLER DIRECTIVES ¢ ¢ ¢ ¢ v ¢ ¢ v e s o v
Directives That Affect The Location Counter
Absolute Origin Directive (AORG)
Relocatable Origin Directive (RORG)
Dummy Origin Directive (DORG)
Block Starting With Symbol Directive (BSS)
Block Ending With Symbol Directive (BES)
Even Boundary Directive (EVEN)
Data Segment Directive (DSEG)
Data Segment End Directive (DEND)
Common Segment Directive CSEG)
Common Segment End Directive (CEND)
Program Segment Directive (PSEG)
Program Segment End Directive (PEND)
Directives That Affect Assembler Output
Output Options Directive (OPTION)
Program Identifier Directive (IDT)
Page Title Directive (TITL)
Restart Source Listing Directive (LIST)
Stop Source Listing Directive (UNL)
Eject Page Directive (PAGE)
Directives That Initialize Constants
Initialize Byte Directive (BYTE)
Initialize Ward Directive (DATA)
Initialize Text Directive (TEXt)
Define Assembly Time Constant Directive (EQU)
Directives That Provide Linkage Between Programs
External Difinition Directive (DEF)
External Reference Directive (REF)
Secondary External Reference Directive (SREF)
Force Load Directive (LOAD)
Miscellaneous Directives
Program End Directive (END)
Copy Source File Directive (COPY)
Define MACRO Library Directive (MLIB)
SYMBOLIC ADDRESSING TECHNIQUES

ooooooooooooo

........

vi

OO OWOH

NN NSNSNNNNNNN
O WWWN -

wWN -

00 00 00 00 00 00 00 00 0O 00 00 00 00 00 00 00 00 0O 00 0O

WWWWwWwN -~
HWN =

WWWWWWWLWwWwLwWwwwwwwwwmMrdrN -
UM eapePpPLWWWWND -

OV WN -

—

WN -

N =

SECTION 6: PROGRAM LINKING

GENERAL v s e e e e e e e e e e e e e e e
RELOCATION CAPABILITY & v v v v e e v v e o o o s
LINKING PROGRAM MODULES « « « ¢« o o o o v v
External Reference Directives
External Definition Directive
Program Identifier Directive
Linking o 4 i o e e e e e e e e e e e e

GENERAL . . . & & i i i i it e e e e e e e e e e e e e
SOURCE LISTING ¢« v v v v v v v v v v v v
ASSEMBLER ERROR MESSAGES+ ¢ v ¢« o+ ..
Normal Completion Error Messages
Abnormal Completion Error Messages
CROSS-REFERENCE LISTING « « o« v o ..
OBJECT CODE & v v v v v v e e e e e e e
Object Code Format«
External References In Object Code
Changing Object Code«

SECTION 8: MACRO ASSEMBLER LANGUAGE

GENERAL v i e e e e e e e e e e e
DEFINING MACROS & v v v v v v e e e e e e e
Sample Macrost e e e e e e e e e e
MACRO LANGUAGE ELEMENTS«
Strings . . . L L L L e e e e e e e e e e e e e e
Constants And Operators
Variables e o e e e
Parameters e e e e e e e e e
Macro Symbol Table
Variable Qualifiers
Keywords v e e e e e e e e e e e e e e e
Symbol Attribute Component Keywords
Parameter Attribute Keywords
Verbs i e e e e e e e e e e e e e e e e
$MACRO Statement v 4 e e .
$VAR Statement 0. e .
$ASG Statement L. L.
$IF Statement e e e e
SELSE Statement
SENDIF Statement e

................

.................

o

00 00 00 00 00 00 0o
nNneepppWw
WM -

APPENDIX A:
APPENDIX B:
APPENDIX C:
APPENDIX D:
APPENDIX E:

Figure 1-1.
Figure 2-1.
Figure 7-1.

Figure 7-2.
Table 2-1.
Table 3-1.
Table 3-2.
Table 3-3.
Table 3-4.
Table 3-5.
Table 3-6.
Table 3-7.
Table 3-8.
Table 3-9.
Table 3-10.
Table 3-11.
Table 3-12.
Table 3-13.
Table 5-1.

Model Statements
MACRO EXAMPLES

Macro GENCMT & & i v e e e e e e e e e e e

Macro FACT . . . v ¢ i et et e e e e e e e e e e
Macro PULSE & ¢ ¢ ¢ v v v e e e e e e e e

APPENDICES

CHARACTER SETS RECOGNIZED BY THE ASSEMBLER
TMS 7000 DATA ORGANIZATION
ASSEMBLER DIRECTIVE TABLE e e e e e
OPCODE MAP v v v v v v v v v v v
INSTRUCTION OPCODES SET

LIST OF ILLUSTRATIONS

Development Process
Source Statement Format
Cross-Reference Listing Format
Sample Object Code

LIST OF TABLES

Results Of Operations On Absolute And Relocatable

Items In Expressions
Addressing Modes
Single Register Machine Instruction Formats
Dual Register Operand Addressing Combinations . . .
Dual Register Machine Instruction Formats
Peripheral File Operand Addressing Modes
Peripheral File Machine Instruction Formats
Simple Relative Machine Instruction Formats
Single Relative Machine Instruction Formats
Dual Relative Machine Instruction Formats
Peripheral Relative Machine Instruction Formats . .
Extended Address Machine Instruction Formats .
Implied Operand Type Instructions
Conditional JUMP Instructions
Assembler Directives That Affect The

Location Counter

viti

ooooooooooooooooooo

ooooooooooooooooooooo

Macro ID e e e e e e e e e e e e e e e e

Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table

mmmmm\J\'J\:\nmmmm
NeaWNEEBEBWN=ROVAWN

Directives That Affect Assembler Qutput 5-13
Directives That Initialize Constants 5-16
Directives That Provide Linkage Between Programs . 5-19
Miscellaneous Directives 5-22
Assembly Listing Errors 7-2
Abnormal Completion Error Messages 7-6
Symbol Attributes 7-7
Object Record Format And Tags 7-11
Variable Qualifiers 8-8
Variable Qualifiers For Symbol Components 8-10
Symbol Attribute Keywords 8-11
Parameter Attribute Keywords 8-12
Macro Error Messages 8-25

ix

-~

SECTION 1

INTRODUCTION

1.1 GENERAL

Assembly Language {s a computer-oriented language for writing
programs, consisting of mnemonic 1{instructions and assembler
directives. In assembly {instructions, symbolic addresses are assigned
to memory locations and specify 1instructions by means of symbolic
operation codes called mnemonic operation codes. Instruction operands
are specified by means of symbolic addresses, numbers, and expressions
consisting of symbolic addresses and numbers.

Assembler directives control the process of converting an Assembly
Language program into a machine language program, place data in the
program, and assign symbols to values to be used in the program.
Assembler directives that place data in memory locations allow the
user to assignment of symbolic addresses to those locations.

Assembly Language is computer-oriented in that the mnemonic operation
correspond directly with machine instructions. The chief advantage of
an Assembly Language over machine language i{s that the mnemonic
symbols are easier to use and easier to remember than the binary zeros
and ones of machine language. Other advantages are the use of

expressions as operands and the use of decimal numbers in expressions
and as operands.

This manual describes the construction of Assembly Language programs
for Texas Instrument's TMS 7000 family of 8-bit microcomputers. Topics
covered 1include general programming {information, discussion of
addressing modes and instruction types, a definition of 1instructions,
discussion of user application techniques, and descriptions of source

and cross-reference listings, object code, and normal and abnormal
errors.

1.2 ASSEMBLY LANGUAGE APPLICATION

An Assembly Language program (the source program) must be processed by
an Assembler to obtain a machine language program that can be execute
by the computer. Changing a source program to object code 1is called
assembling because the process converts the mnemonic instruction to
binary values, then associates them with absolute or relocatable
binary addresses to form a machine language instruction.

To 1llustrate the function of Assembly Language in the development of
programs, consider the following steps in program development:

1-1

1) Define the problem.
2) Flowchart the solution to the problem.

3) Code the solution by writing Assembly Language statements
(machine {instructions and assembler directives) that
correspond to the steps of the flowchart.

4) Prepare the source program by writing the statements on
the medium appropriate to the installation; e.g., enter a
file on a disk, keypunch the statements, etc.

§) Execute the Assembler to assemble the machine language
object code corresponding to the source program.

6) Debug the resulting objeét code by loading and executing
the object code and making corrections d{ndicated by the
results of executing the object code.

7) Repeat steps 5 and 6 until no further correction is
required.

The use of Assembly Language 1in program development relieves the
programmer of the tedious task of writing machine language
instructions and keeping track of binary machine addresses within the
program. Figure 1-1 also fllustrates this procedure.

DEFINE |
PROBLEM |
+

FLOWCHART
SOLUTION

4———t

+m—— 4

I<

v

CODE
SOLUTION

R

4———t

v

INPUT
CODE

| !
v e

———— e - e =

4 -4

$——

EXECUTE
ASSEMBLER

4 ——t

O

LOAD AND
EXECUTE
08J CODE

+

————t

YES

e e - - - - - - e e e

e
m>
o=
=<
o
o)

(V]
oV}
$o—— ¢

FIGURE 1-1 - DEVELOPMENT PROCESS

1-3

SECTION 2

GENERAL PROGRAMMING INFORMATION

2.1 GENERAL

The TMS7000 Assembly Language is a powerful set of instructions
consisting of mnemonic operation codes (herein called mnemonics) that
correspond directly to binary machine 1{nstructions. The assembly
language program (the source program) must be converted to a machine
language program (the object program) by a process called assembling
before it can be executed by the computer. Assembling consists of
converting the mnemonics to binary values and associating those values
with binary addresses to create machine language instructions.
Assembler directives, discussed in Section 5, control the process,
place data in the object program, and assign values to the symbols to
be used in the object program.

2.2 DATA AREAS
The data manipulated by the TMS7000 are organized into three areas:
- Register areas, including up to 128 general-purpose
registers for data storage. In addition, the TMS7000 CPU
has access to three special-purpose registers: the 16-bit
Program Counter (PC), the 8-bit Status Register (ST), and
the 8-bit Stack Pointer (SP).
- Program areas containing the main program and subroutines.
- The Peripheral File (PF) area used for I/0 purposes.
Detailed information and 1illustrations of these data areas are
presented in Appendix B.
2.3 THE TMS7000 INSTRUCTION SET
The TMS7000 instruction set 1is composed of 54 dinstructions that
provide for the input, output, manipulation, and comparison of data.

The instruction set is divided into eight functional categories. They
are:

Arithmetic instructions
Branch and Jump instructions
Compare instructions
Control instructions
Load and Move instructions
Logfcal instructions
Shift instructions
I1/0 instructions
The instructions making up each category are discussed in the

following paragraphs. Detailed information concerning all of these
instructions is presented in Section 3.

2.3.1 Arithmetic Instructions

TMS7000 arithmetic instructions perform basic arithmetic operations on
byte values. They are:

INSTRUCTION MNEMONIC
Add With Carry ADC
Add ADD
Decimal Add with Carry DAC
Decrement DEC
Decrement Double DECD
Decimal Subtract with Borrow 0sB
Increment INC
Invert (Complement) INV
Multiply MPY
Subtract with Borrow sBs
Subtract sus

2-2

2.3.2 Branch and Jump Instructions

TMS7000 branch and jump instructions transfer control to specified
locations in program memory. Branch instructions are unconditional;
the destination specified may be anywhere within the 64K-byte program
space. Jump instructions may be conditional or unconditional; the
destination specified {s limited to a displacement of +127 to -128
bytes relative to the address of the next instruction in the program.
Conditional jump instructions transfer control according to the state
of one or more bits in the Status Register, a file register, or
peripheral port.

INSTRUCTION MNEMONIC
Branch BR

Bit Test and Jump if One Peripheral BTJOP
Bit Test and Jump if Zero Peripheral BTJZP
Bit Test and Jump if One BTJO
Bit Test and Jump if Zero BTJZ
Call Subroutine CALL
Decrement Register and Jump if Non Zero DJINZ
Jump 1f Carry/Jump if Higher or Same JC/JHS
Jump Unconditionally JMP
Jump if Negative JN

Jump if No Carry/Jump if Lower JNC/JL
Jump if Not Zero/Jump if Not Equal JNZ/JINE
Jump 1f Positive JP

Jump if Positive or Zero JPZ
Jump if Zero/Jump if Equal JZ /JEQ
Return from Interrupt RETI
Return from Subroutine RETS
Trap to Subroutine TRAP

2-3

2.3.3 Compare Instructions

TMS7000 compare instructions set or reset bits in the Status Register,
usually in preparation for a conditional jump instruction. The compare
instructions perform arithmetic comparisons on signed and unsigned
8-bit values.

INSTRUCTION MNEMONIC
Compare CcMP
Compare A to memory CMPA
Test A register TSTA
Test B register TSTB

2.3.4 Control Instructions

Control instructions affect the operation of the TMS7000. These
instructions are concerned with control of the carry status bit and
interrupt flag in the Status Register, and execution of IDLE and NOP
directives.

INSTRUCTION MNEMONIC
Clear Carry Bit CLRC

Set Carry Bit SETC
Disable Interrupts DINT
Enable Interrupts EINT
Idle until Interrupt IDLE

No Operation NOP

2.3.5 Load and Move Instructions

Load and move instructions form a comprehensive set of data movement
operations, with single {instructions to 1implement register to
register, memory to register and I/0 to register transfers.

INSTRUCTION MNEMONIC

Load A register LDA
Load Stack Pointer LDSP
Move MOV
Move Double MOVD
Move to/from Peripheral MOVP
Pop from Stack 0]
Push on Stack PUSH
Store A register STA
Store Stack Pointer STSP ~
Swap Nibble SWAP
Exchange with B register XCHB

2.3.6 Logical Instructions

Logical {instructions provide the capability to perform various Boolean
operations on system data, memory locations and registers.

INSTRUCTION MNEMONIC
AND AND
Clear CLR
Invert INV

OR OR
Exclusive OR XOR

2.3.7 Rotate/Shift Instructions

Rotate/Shift instructions shift the contents of a specified register
by one bit. The value of the last bit shifted out of register is
placed in the carry bit of the Status Register. The resulting value is
compared to zero and the results of that comparison are reflected in
the zero and sign bits of the Status Register.

2=5

INSTRUCTION MNEMONIC

Rotate Left RL
Rotate Left through Carry RLC
Rotate Right RR
Rotate Right through Carry RRC

2.3.8 1/0 Instructions

Input/output instructions manipulate data in any one of the peripheral
file (PF) registers. Since certain PF registers correspond to the I1/0
pins of the TMS7000, these instructions are used to set, reset, and
test the I/0 pins of the device.

INSTRUCTIONS MNEMONIC
Move to/from Peripheral Register MOvP

OR Peripheral File Register ORP

AND Peripheral File Register . ANDP

XOR Peripheral File Register XORP
Bit Test and Jump if One-Peripheral BTJOP

Bit Test and Juﬁp if Zero-Peripheral BTJZP

NOTE

The particular use of peripheral file registers varies among
TMS7000 family microcomputers. See the User's Guide for that
particular device for details.

2.4 SOURCE STATEMENT FORMAT

An Assembly Language source program consists of source statements that
may contain assembler directives, machine instructions,
pseudo-instructions, or comments. Source statements scanned by the
Assembler may contain four ordered fields separated by one or more
blanks. These fields, 1label, command, operand, and comment, are
discussed in the following paragraphs. Source statements containing an
asterisk (*) in the first character position are comment statements,
and as such, they have no affect on the assembly.

2-6

The character set accepted by the TMS7000 Assembler consists of the
ASCII character set as well as special characters that are undefined
in ASCII. Appendix A contains tables that 1ist the TMS7000 Assembler
character set, along with associated ASCII and Hollerith codes.

The syntax for source statements other than comment fields is:

[<1abel>] ...<mnemonic> ...[<operand>]...... [<comment>]

- A source statement may have a label that 1s defined
by the user.

- One or more blanks separate the 1label from the
command mnemonic. Instruction operation codes,
assembler directives, and user-defined operation
codes are all included in the generic term mnemonic.

- One or more blanks separate the mnemonic from the
operand (when an operand is required).

- One or more blanks separate the operand(s) from the
comment field. Comments are ignored by the Assembler.

The following conventions are required:

- Items in capital letters and special characters must
be entered as shown.

- Items within angle brackets (< >) are defined by the
user.

- Items 1in lowercase letters are classes (generic
names) of items.

- Items within brackets ([]) are optional.

- Items within braces ({ }) are alternative items; one
must be entered.

- A1l ellipses (...) indicate that the preceding item
may be repeated.

- Blanks (indicated by carets (=)) 1in the definition
or syntax are significant.

The last source statement of a source program 1{s followed by the
end-of-file statement for the source medium (e.g., for punched cards,
a card with a slash, (/) punched in column one and an asterisk (*) in
column two).

Figure 2-1 illustrates a method of entering source statements. In each
of the first four statements, the label begins in column 1, the opcode

2-7

in column 8, the operands in column 14, and comments in column 26.

EXAMPLE TMS7000 FAMILY MACRO ASSEMBLER DX2.1 83.074 9:15:53 7/19/83

PAGE 0001

0001 * *
0002 * EXAMPLE OF SOURCE PROGRAM INPUT *
0003 * *
0005
0005 IDT 'EXAMPLE'
0006 0000 cs CLR B
0007 0001 80 LABEL1 MOVP P4,A

0002 04
0008 0003 67 BTJZ 1,A,LABEL]

0004 FC
0009 END

NO ERRORS, NO WARNINGS

FIGURE 2-1 - SOURCE STATEMENT FORMAT

2.4.1 Label Field

The label field begins in character position one of the source recordf
extends to the first blank, and contains a symbol of up to six
significant characters. The first character of the symbol must be
alphabetic. Additional characters may be any alphanumeric characters.
A label is optional for machine instructions and for many assembler
directives. When the label {s omitted, the first character position
must contain a blank. A source statement consisting of only a label
field is a valid statement. It has the effect of assigning the current
value of the location counter to the label; this is equivalent to the
following directive statement:

<label> EQU $

2.4.2 Command Field

The command field begins after the blank that terminates the label
field, or in the first nonblank character past the first character
position (which must be blank when the label is omitted). The command
field 1s terminated by one or more blanks and may not extend past the

right margin. The command field may contain one of the following
opcodes:

- Mnemonic operation code of a machine instruction

= Mnemonic operation code of user defined instructions

- Assembler directive.

2-8

2.4.3 Operand Field

The operand field begins following the blank that terminates the
command field and may not extend past the right margin of the source
record. The operand field may contain one or more constants or
expressions (described in paragraphs 2.5 and 2.7) separated by commas.
The operand field is terminated by one or more blanks.

2.4.4 Comment Field

The comment field begins after the blank that terminates the operand
field or the blank that terminates the command field, in the case of
commands that have no operands. The comment field may extend to the
end of the source record, {if required, and may contain any ASCII
character including blank(s). The contents of the comment field up to
the epd of the input record are listed in the source portion of the
assembly listing and have no other effect on the assembly.

2.5 CONSTANTS

The Assembler recognizes five types of constants, each internally
maintained as a 16-bit quantity: decimal integer constants, binary
integer constants, hexadecimal integer constants, character constants,
and assembly-time constants. They are described 1in the following
paragraphs. .

2.5.1 Decimal Integer Constants

A decimal integer constant is written as a string of decimal digits.
The range of values of decimal integers {s =-32,768 to +65,535.
Positive decimal dinteger constants in the range 32,768 to 65,535 are

considered negative when interpreted as two's complement values.

The following are valid decimal constants:

1000 Constant equal to 1000 or >3E8
-32768 Constant equal to -32768 or >8000
25 Constant equal to 25 or >19

65535 Constant equal to 65535 ot >FFFF

2.5.2 Binary Integer Constants
A binary integer constant is written as a string of up to 16 binary
digits (0/1) preceded by a question mark, "?". If less than sixteen

digits are specified, the Assembler will right justify the given bits
in the resulting constant.

The following are valid binary constants:

2-9

20000000000010011 Constant equal to 19 or >0013
?20111111111111111 Constant equal to 32767 or >7FFF
711110 Constant equal to 30 or >001E

2.5.3 Hexadecimal Integer Constants

A hexadecimal 1{nteger constant is written as a string of up to four
hexadecimal digits preceded by a greater than sign, '>'. Hexadecimal
digits include the decimal values '0' through '9' and the letters 'A'
through ‘F'.

The following are valid hexadecimal constants:

>78 Constant equal to 120
>F Constant equal to 15
>37AC Constant equal to 14252

2.5.4 Character Constants

A character constant is written as a string of one or two alphabetic
characters enclosed in single quotes. Two consecutive single gquotes
are required to represent each single quote contained within a
character constant. The characters are represented internally as
eight-bit ASCII characters. A character constant consisting only of
two single quotes (no character) is valid and is assigned the value
0000(Hex).

The following are valid character constants:

'AB' Represented internally as >4142

'c Represented internally as >43 or >0043

'N' Represented internally as >4E or >004E
tvip Represented internally as >2744

2.5.5 Assembly-Time Constants

An assembly-time constant {is a symbol given a value by an EQU
directive (see paragraph 2.4.1). The value of the symbol is determined
at assembly time and 1{s considered to be absolute or relocatable
according to the relocatability of the expression, not according to
the relocatability of the location counter value. Absolute value
symbols may be assigned values with expressions using any of the above
constant types.

2.6 SYMBOLS

Symbols are used in the label field and the operand field. A symbol is
a string of alphanumeric characters, ('A' through 'Z', '0' through '9'

2-10

and '$'). The first character in a symbol must be 'A' through 'Z' or
'$'. No character may be blank. When more than six characters are used
in a symbol, the Assembler prints all the characters, but accepts only
the first six characters for processing (the Assembler also prints a
warning indicating that the symbol has been truncated). Therefore,
symbols must be unique 1in the first six characters. User-defined
symbols are valid only during the assembly in which they are defined.

Symbols used in the label field become symbolic addresses. They are
associated with Tlocations in the program and must not be used in the
label field of other statements. Mnemonic operation codes and
assembler directive names may also be used as valid user-defined
symbols when placed in the label field.

Symbols used in the operand field must be defined in the assembly,
usually by appearing 1in the 1label field of a statement or in the
operand field of a REF or SREF directive.

The following are examples of valid symbols:

START Assigned the value of the location at which it
appears in the label field.

ADD Assigned the value of the location at which it
appears in the label field.

OPERATION OPERAT is assigned the value of the 1location
where it appears in the label field.

Symbols are discussed in the paragraphs that follow.

2.6.1 Predefined Symbols

The predefined symbols are the dollar sign character ($) and the
Register and Port symbols. The dollar sign character is used to
represent the current Jlocation within the program. The register
symbols are of the form "Rn" where 'n' is a constant in the range 0 to
255.

The peripheral file symbols are of the form Pn, where n ranges from 0
to 255.

The following are examples of a valid predefined symbols:

$ Represents the current location
RO Represents Register 0
PO Represents Peripheral Register 0

The symbol ST is reserved and may not be defined by the user.

2-11

2.6.2 Terms

Terms are used in the operand field of machine instruction and
assembler directive. A term may be a binary, character, decimal or
hexadecimal constant, an absolute assembly-time constant or a label
having an absolute value.

2.6.3 Character Strings

Several assembler directives require character strings in the operand
field. A character string 1s written as a string of characters
enclosed in single quotes. For each single quote 1in a character
string, two consecutive single quotes are required to represent the
single quote. The maximum length of the string i{s defined for each
directive that requires a character string. The characters are
represented internally as eight-bit ASCII. Appendix A gives a complete
1ist of valid characters within character strings.

The following are valid character strings:

'SAMPLE PROGRAM' Defines a l4-character string consisting
of SAMPLE PROGRAM .

'PLAN ''C'"! Defines an 8-character string consisting
of PLAN *C'
'OPERATOR MESSAGE : PRESS START SWITCH' Defines a

37-character string consisting of the
expression enclosed in in single quotes.

2.7 EXPRESSIONS

Expressions are used in the operand fields-of assembler directives and
machine instructions. An expression is a constant or symbol, a series
of constants or symbols, or a series of constants and symbols
separated by arithmetic operators. Each constant or symbol may be
preceded by a minus sign (unary minus), a plus sign (unary plus), or
the # symbol (unary invert). The # symbol causes the value of the
logical complement of the following constant or symbol to be used. An
expression may not contain embedded blanks. Symbols that are defined
as external references may be operands of arithmetic instructions
within certain limits, as described in paragraph 2.7.1.

2.7.1 Arithmetic Operators In Expressions

The arithmetic operators used in expressions are as follows:

2-12

for addition

for subtraction

for multiplication
for signed division
for logical not

=N ¢+

In evaluating an expression, the Assembler first negates any constant
or symbol preceded by a unary minus and then performs the arithmetic
operations from left to right. The Assembler does not assign
precedence to any operation other than unary plus or unary minus. All
operations are integer operations. The Assembler truncates the
fraction in division.

For example, the expression 4+5*2 would be evaluated 18, not 14 and
the expression 7+1/2 would be evaluated four, not seven.

The Assembler checks for overflow conditions “when arithmetic
operations are performed at assembly time and gives a warning message
whenever an overflow occurs, or when the sign of the result is not as
expected in respect to the operands and the operation performed.
Examples where a "VALUE TRUNCATED" message is given are as follows:

=2*>4000 >FFFE+2 -1*>8001
>8000*2 ->8000-1 -2*>8000

2.7.2 Logical Operand In Expressions

If a pound sign (#) precedes a number or an expression, the number or
expression is changed to its complement. All other arithmetic
operations have precedence over the Logical Not (#) operation, except
where modified by parenthesis.

2.7.3 Parentheses In Expressions

The Assembler supports the use of parentheses in expressions to alter
the order of evaluation of the expression. Nesting of pairs of
parentheses within expressions is also supported. When parentheses are
used, the portion of the expression within the innermost parentheses
is evaluated first. Then the portion of the expression within the next
innermost pair is evaluated. When evaluation of the portions of the
expression within the parentheses has been completed, the evaluation
is completed from 1left to right. Evaluation of portions of an
expression within parentheses at the same nesting level: may be
considered to be simultaneous. Parenthetical expressions may not be
nested more than eight deep.

For example, the use of parentheses in the expression LABl+((4+3)*7)
will result in the following operation: add four to three; multiply

the resulting sum by seven; add the resulting product to the value of
LABL.

2-13

2.7.4 Well-Defined Expressions

Some assembler directives require well-defined expressions in operand
fields. For an expression to be well-defined, any symbols or
assembly-time constants in the expression must have been previously
defined. Also, the evaluation of a well-defined expression must be
absolute and a well-defined expression must not contain a character
constant.

2.775 Relocatable Symbols In Expressions

An expression that contains a relocatable symbol or relocatable
constant immediately following a multiplication or division operator
is 1llegal. Also, when the result of evaluating an expression up to a
mu]tip}icat1on or division operator is relocatable, the expression is
{11egal.

If the current value of an expression is relocatable with respect to
one relocatable section, a symbol of another section may not be
included until the value of the expression becomes absolute. Some
examples of relocatable symbols used in expressions are:

BLUE+1 The sum of the value of symbol BLUE plus one.

GREEN-4 The result of subtracting four from the value
of symbol GREEN.

2*16+RED The sum of the value of symbol RED plus the
product of two times 16.

440/2-RED The result of dividing 440 by twc anc
subtracting the value of symbol RED from the
quotient. RED must be absolute.

Table 2-1 defines the relocatability of the result for each type of
operator.

2-14

TABLE 2-1 - RESULTS OF OPERATIONS ON ABSOLUTE AND
RELOCATABLE ITEMS IN EXPRESSIONS

A1 B 1 M8 | KB [KB | A®
ABS § ABS ; ABS ; ABS i ABS i ABS(B<0)
ABS ; RELOC | RELOC E i17ega i Notel i i1legal
RELOC g ABS i RELOC i RELOC | Note2 | Note3
RELOC i RELOC § i17egal i Noted ; 117ega) ; i1legal

! | ! |

Note 1: Illegal unless A equals zero or one. If A 1is one, the
result is relocatable. If A 1is zero, the result is an
absolute zero.

Note 2: 1Illegal unless B equals zero or one. If B is one, the
result is relocatable. If B is zero, the result is an
absolute zero.

Note 3: 1Illegal unless B equals one. If B equals one, the result
is relocatable.

Note 4: 1Illegal unless A and B are in the same section. If A and B
are in the same section, the result is absolute.

2.7.6 Externally Defined Symbols In Expressions

The Assembler allows externally defined symbols (defined in REF and
SREF directives) in expressions under the following conditions:

1) Only one externally referenced symbol may be used in an
expression.

2) The character preceding the referenced symbol must be a
plus sign, a blank, or a comma (the @ sign is not
considered). The portion of the expression preceding the
symbol, if any, must be added to the symbol.

3) The portion of the expression following the referenced
symbol must not include multiplication, division, or
logical operations on the symbol (as for a relocatable
symbol described in Subsection 2.7.4).

4) The remainder of the expression following the referenced
symbol must be absolute.

The Assembler 1limits the user to a total of 255 external referenced
symbols per module. Modules using more than 255 external symbols must

2-15

be broken into smaller modules for assembly and linked using the link
editor.

2-16

SECTION 3

ASSEMBLY INSTRUCTIONS

3.1 GENERAL

This section describes the mnemonic instructions of the TMS7000
Assembly Language. Detailed assembly instruction descriptions and
descriptions of the addressing modes used in the Assembly Language and
the instruction formats of the assembly instructions are provided.
Also included are examples of programming the instructions.

To understand the material presented in this section, the user must be
familiar with the data organization required by the Assembler.
Detailed information on byte and word organization, the status
register, peripheral files, and register files is presented in
Appendix B.

3.2 OPERAND ADDRESSING MODES

The TMS7000 Assembly Language supports seven operand addressing modes.
Four of these modes specify 8-bit operands only and are classified as
Special Addressing Modes. The remaining three are used to gererate a
full 16-bit address and are classified as Extended Addressing Modes.
Table 3-1 defines all seven modes. ‘

3-1

TABLE 3-1 - ADDRESSING MODES

@TABLE (B)

1 1 ! i SEE
| CLASS | ADDRESSING MCDE | EXAMPLE | SECTION
|- -l —— { ™ | -
i ! ! !

! DIRECT ! Register File ! R3 ! 3.2.1.1
! I Adcressing ! 3 !

| | | !

H ! Peripheral File ! P10 ! 3.2.1.2
H ! Addressing ! !

] [] [] !

E | Immediate | ANDP %-98,010 | 3.2.1.3
! ! Addressing H H

: [] []]

! i Program Counter i JMP LABEL i 3.2.1.4
! ! Relative ! !

! | Addressing ! |

[}]]]

]]]]

' i \ !

! EXTENDED ! Direct Memory I @>F476 ! 3.2.2.1
! ! Addressing ! @>THERE !

] | 1 [}

i | Register File | *RO L 3.2.2.2
i | Indirect 1 %10 =

! | Addressing H |

| | ! |

! ! Indexed Addressing ! ! 3.2.2.3
]] 1]

]]]]

3.2.1 Special Addressing Modes

The Special addressing mcdes specify 8-bit source and destination
operands. Each of these modes is discussed 1in the paragraphs that
follow.

3.2.1.1 Register File Adcressing: Register fiie addressing specifies
a file register that contains the operand. Any register may be
referenced by the expression. For example:

Rn
n '

where n is the register file number (0 <= x <= 127). In general,
instructions which refz-encz ¢he register file incluce a bLyte which
contains the regist2~ number. The fo'iowing exampies show the coding
of instructions tna= nNavs razister 7ile acdressing:

e Gn T . . . = ——— ——— - G—En W S Em S e An S b CE - G5 ae en e - ——— -

LINE ADDR OBJECT STATEMENT
Note: this is a 3-

1 0000 48 LINE1] ADD R3,R4 byte instruction;
0001 03 the opcode is >¢8,
0602 04 scurce register >03

and the destination
register is >04.

Register RO is called the A register, and register Rl is called the B
register. The fact that A or B is an operand in the instruction is
usually encoded in the opcode byte. Thus, instructions which reference
the A or B registers are usually shorter. For example, the following
line 1ists an instruction to add register R3 to A:

LINE ADDR OBJECT STATEMENT

2 0003 18 LINE2 ADD R3,A
0004 03

This example is only a two-byte instruction: the opcode is >18 and the
source register number 4is >03. The various dual-operand addressing
types which imply the A or B register are described in paragraph 3.3.

3.2.1.2 Peripheral File Addressing: Peripheral file addressing is
used to perform I/0 on the TMS7000. The Peripheral File (PF) is a
256-byte block of memory address space dedicated to the I/0 interface
and other on-chip peripheral functions (such as a programmable timer).
Each PF register, or port, has an 8-bit PF register number. Peripheral
file addressing specifies a PF register number 1in one byte of a
multi-byte instruction. A PF number is written as:

Pn where n is the port number (0 <= x <=255).

The PF is accessed by special peripheral file instructions, which have
a P postfix on the instruction name. Each is a dual operand
instruction in which the PF is the destination. The source operand is
limited to the A or B registers and immediate data. Examples of the PF
instructions are given below. The code also demonstrates immediate
addressing. Note the use of the % sign.

APORT EQU P4 PF register for 8-bit A port (input).
BPORT EQU P6 PF register for 8-bit B port (output).
CPORT EQUu P8 PF register for 8-bit C port (I1/0).
COIR EQU P9 C port data direction register.
DPORT EQU P10 PF register for 8-bit U port (I/0).
DDIR EQU P11 D port data directicn register.

ANDP A,P3 Replace contents of P3 (Timer Cntl)

* with AND of contents of A and P3.

MOVP B,PO Copy B to I/0 control register (PO).

BTJOP %>40,APORT,LAB Test bit 6 of port A and jump to LAB
* if it is a '1'.

ORP %>01,BPORT Set bit 0 of port B to '1'.

ANDP %>FE,BPORT Set bit 0 of port B to '0'.

MOVP %>F0,CDIR Setup C(3-0) input, C(7-4) output.

XORP %>80,CPORT Toggle bit 7 of C port.

MOVP %>00,DDIR Setup all D port bits as input.

An exception to the PF destination-only rule is made for the MOVP
instruction, by which PF register contents may be copied to the A or B
register.

MOVP DPORT,A Copy current inputs on D to A register
3.2.1.3 Immediate Addressing: Immediate instructions use the contents
of a byte following the opcode byte as an operand. The immediate value
operand is an expression, and the value of the expression is placed in
a byte following the opcode byte. The immediate operand is written as
an expression preceded by a percent sign. The following examples
illustrate immediate addressing:

MOV

%>98,R123 Replace the contents of R123

with >98
ANDP %MASK,P10 Logically AND the value of MASK
and the contents of P10; copy
the results to P10.

Immediate operands may be used as the source operand in all dual
operand instructions, including those with a peripheral file acting as
the destination. Immediate operands will be denoted <iop> in this
document.

3.2.1.4 Program Counter Relative Addressing: Program counter relative
addressing is used by all jump instructions. The Assembler subtracts
the target address (ta) specified from the location (pcn) of the next
instruction to form a signed 8-bit relative address (ra). For example:

ra = ta = pcn
where ra must be in the range of =128 tnhrough +127. When the
instruction is in relocatable code (that is, when the location counter

is relocatable), then the relocation type of the evaluated address
expression must match the relocatien type of the current Jlocation

3-4

counter. When the instruction is in absolute code, the expression must
be absolute. The following example illustrates the use of program
counter relative addressing:

JNC THERE Jump to THERE if the carry status bit
is equal to zero.

DINZ R3,LO0P Decrement R3 and jump to LOOP if the
result is non-zero.

BTJZP %>01,APORT,$ Keep looping as long as bit 0 of A
port is a O.

The Assembler will generate an error message if the =128 to +127 range
is exceeded.

3.2.2 Extended Addressing Modes

Three addressing modes may be used to generate a full 16-bit address
to memory. These addressing modes are Direct, Register Indirect, and
Indexed. Because the TMS7000's on-chip register, peripheral files, and
ROM are mapped into its 16-bit memory address space, these addressing
modes may be used to reference the register file, peripheral file, and
program memory data areas as well as off-chip memory.

3.2.2.1 Direct Memory Addressing: specifies a 16-bit address that
contains the operand. A direct memory address is written as:

<addr>

where <addr> is a program label or other 16-bit expression. The
following are examples of instructions using direct memory addressing:

LDA @>F47D Copy contents of memory location
>F47D to register A

BR @THERE Branch to location THERE

3.2.2.2 Register File Indirect Addressing: specifies the address of a
pair of register file Jlocations which contain the address of the
operand. An indirect register file address is written as

*Rn
or
*expr

where the decimal constant n or the expression (*expr) is the number
of the register containing the least-significant byte of the 16-bit
address. The most-significant byte of the address is contained in
register n-1. For example, if an address is contained in registers R4
and RS, "*R5" must be specified to use that address. If RO (register

3-5

A) {s specified, then R255 {s used for the most significant half. (*RO
is undefined for TMS7000 family devices that do not implement R255.)
The following example illustrates the use of register file indirect
addressing in the STA (Store A) instructon:

MOVD %>4358,R45 Load address into (R44,R45) pair.

STA *R45 Copy the contents of register A
into address >4358.

3.2.2.3 Indexed Addressing: specifies a memory address that contains
the 8-bit operand. The address is the sum of the contents of the B
register and a 16-bit direct address. An indexed address is written as
an expression preceded by an at sign, @, and followed by a B in
parentheses:

B<expr>(B)

where <expr> is a program label or 16-bit expression. The following
example illustrates the use of indexed addressing:

STA G@TABLE(B) Copy the contents of A into the
memory location specified by the
contents of B and the value of

* symbol TABLE.

w
]

This addressing mode is particulary suited for table 1lookup
algorithms. When tables start at a higher address and run to a lower
address, the two-byte DINZ B instruction may be used in a loop to step
through the table until the desired element is found. For example, the
following subroutine searches through a table for the byte contained
in A, returning with the index of that byte in B. The calling program
should initialize A to the search value and B to the total size of the
table. For example:

LOOKUP =-- TABLE LOOKUP ROUTINE
ON ENTRANCE, A IS SET BY CALLER TO SEARCH VALUE
B IS SET BY CALLER TO TABLE SIZE
ON EXIT, B IS SET TO 1-BASED INDEX OF SEARCH VALUE
IN TABLE, OR ZERO IF IT IS NOT FOUND.
®

LOOKUP EQU S
LOOP CMPA TABLE-1(B) COMPARE TABLE ELEMENT TO A

* % % * %

JZ EXIT IF EQUAL, EXIT
DJNZ B,LOOP IF NOT, DECREMENT B AND LOOP
EXIT RETS RETURN FRCM SUBROUTINE

3.3 INSTRUCTION TYPES

Instruction types are the combinations of operand addressing modes
that are used by TMS7000 instructions. The instruction types supported
are Single Register, Dual Registar, Perinheral File, Simple Relative,

]
[52)

Dual Relative, Extended Address, and Special. Each is described in the
paragraphs that follow.

3.3.1 Single Register Instruction Type

The Single register instruction addressing type 1is wused by all
instructions that specify only one register in the operand field. The
operand of the instruction is usually the register specified. Some
instructions, however, may affect a register pair, in which case the
register specified contains the least significant byte. Single
register instructions generally require a byte in the instruction to
specify the register number. When the A or B register is used,
however, the operand is implied in the opcode; thus the register
number byte is not required.

Several examples of valid single register instructions follow:

INC A Increment A register

DEC R3 Decrement register 3

RR 43 Rotate register 43 right
COUNT EQU R14

DEC COUNT Decrement register 14

DECD RI1O Decrement -the 16-bit value
* in R9 and R10

Some TMS7000 family devices will not implement the full 256 bytes of
the register file. The results obtained by executing dinstructions
specifying non-existent registers are undefined.

The machine instruction format for each single register addressing
mode is described in Table 3-2.

TABLE 3-2 - SINGLE REGISTER MACHINE INSTRUCTION FORMATS

ASSEMBLY LANGUAGE STATEMENT MACHINE INSTRUCTION FORMAT

<inst> A P — +
! opcode !

<inst> B tecmc——ca—— +

<inst> Rd trmmrccccen- + - +
| opcode | H d [
L ettt + o +

- a» e s Gron e s W e e o -
—— - . G - - ———an - - - - -

3-7

3.3.2 Dual Register Instruction Type

Dual register instructions specify two operands in the operand field:
a source and a destination. The source may bLe a register or an
immediate 8-bit operand. The destination is always a register. In the
most general case, such instructions require 3 bytes: one for the
opcode, one for the source register number (or immediate operand) and
one for the destination register number. When the destination is the A
or B register, the destination operand is implied in the opcode. In
this case, two bytes are required: one for the opcode and one for the
source operand. When B is the source and A is the destination (B to A
addressing mode), only an opcode byte is required (however when A is
the source and B is the destination, both an opcode byte and a source
byte are required).

Table 3-3 lists the directly supported addressing modes for dual

operand instructions. The MOV instruction is expanded to include A to
B, A to RF, and B to RF addressing mode combinations.

TABLE 3-3 - DUAL REGISTER OPERAND ADDRESSING COMBINATIONS

] DESTINATION
1
]
SOURCE ! A} B | RF
! | |
A | !
A ! NI M LM
B ! X ! N ! M
RF ! X | X 1 X
%<op> ! X | X { X
[}]]
] 1]

X == Supported for all instructions
M == Supported for MOV instruction only
N == Not supported

For ease and clarity of programming, combinations of operand
addressing modes not directly supported may be specified in an TMS7000
Assembly Language statement. The Assembler will automatically
translate them to a directly suppcrted combination. For instance, ADD
A,R3 will be translatec to ADD RO,R3, which wuses the RF to RF
instruction type. When this translation occurs, it will take an extra
byte of memory that may not have been anticipated. The machine
instruction formats for the various dual register operand addressing
forms are shown in Table 3-4.

)
[}
w

TABLE 3-4 - DUAL REGISTER MACHINE INSTRUCTION FORMATS

ASSEMBLY LANGUAGE STATEMENT MACHINE INSTRUCTION FORMAT

! !

! s

! :

! !

H <inst> B,A ! tommmm——- +

| | | opcode |

! ! b ——— +

1 |

! !

! <inst> Rs,A ! i + 4emmmmee- +

! <inst> Rs,B ! | opcode | | s !

! | tommccce- + L +

! !

! <inst> Rs,Rd | o + #emeeoee- + Hmmemdt
! ! {opcode | | s | |d |
| | o n—— + e + oyt
! [}

[}]

| <inst> %<iop>,A ! $ommmm——- I +

! <inst> %<iop>,B ! ! opcode | | dop |

! H o —— + o ———— +

! !

! <inst> %<iop>,Rd ! tommmm——— + demmsoo-- A
! { lopcode’i | fop | ld |
H ! mmmmen——- + e m——- <+ fom———t
! !

| Mov A,B ' tommecmae +

i ! | opcode |

! o aemmeeee- +

! !

! Mov A,Rd ! 4ommeomae + 4emmeeee- +

! MoV B8,Rd H { opcode | | D !

! ! + + += —-——

! !

! |

3.3.3 Peripheral File Instruction Type

Peripheral file instructions are the I/0 instructions of the TMS7000.
They are dual operand instructions in which the source is A, B, or an
immediate operand and the destination is a peripheral file register.
Peripheral file instructions include MOVP, ANDP, ORP, XORP, BTJOP, and
BTJZP. The MOVP instruction additionally may be used to read from a PF
register and copy the contents into A or B.

The peripheral file operand addressing mode combinations are
summarized in Table 3-5.

3-9

- - . . Cm e D . S, . Gh - — —— - — . GPEn e - - - - - -

TABLE 3-5 - PERIPHERAL FILE OPERAND ADDRESSING MODES

]
X-Supported for all instructions |
M-Only supported for MOVP instruc.!
N-Not directly supported |
[]
]

: I DESTINATION |
[} loe - ——
]
| SOURCE | A B PF |
| | |
[]] []
]]]
! A NN X
! B NN X
: PF MM N
{ %iop> | N N X |
]
|
:
=
!

-

The machine instruction formats for peripheral type instructions are
shown in Table 3-6.

TABLE 3-6 - PERIPHERAL FILE MACHINE INSTRUCTION FORMATS

ASSEMBLY LANGUAGE

' i

H STATEMENT ! MACHINE INSTRUCTION FORMAT

]]

i |

! <inst> A,Pn ! $ommmomee + $omcmeeeo +

E <inst> B,Pn E { opcode { | n !

; : . o i

]]

] ! teccccnea + temmccee- + teccmmn—- +
| <inst> %<iop>,Pn ! ! opcode | | dop !} | n :
! ! tecccccea + bemmccce- + deccccca- +
] []

i MOVP Pn,A ! tomomocee + $ocmceee- +

H MOVP Pn,B ' { opcode | | n !

| H LR T + bemcccce- +

: :

3.3.4 Relative Address Instruction Types

Relative address instruction type is used by most instructions that
alter the flow of control (instructions not included in this type are
the BRanch, CALL, TRAP, RETI, and RETS). One operand in . the assembly
statement for relative branch instructions is the target address (ta)
to which control is transferred. The assembler calculates an 8-bit
signed relative address (ra) as follows:

ra = ta - pcn

where '"pcn" is the program counter for the next instruction. The

3-10

target address must be in the same control section (i.e., relocatable
section number or absolute) as the program counter. The relative
address types can be classified as Simple Relative, Single Relative,
Dual Relative, and Peripheral Relative instruction types, as described
in the following subsections.

3.3.4.1 Simple Relative Address Instruction Type: requires only the
target address (ta) in the operand field. These include the JMP and
J<cnd> instructions where <cnd> completes the mnemonic according to
the condition evaluated (e.g., JC for Jump if Carry).

The machine instruction format for simple relative addressing type is
shown in Table 3-7.

TABLE 3-7 - SIMPLE RELATIVE MACHINE INSTRUCTION FORMATS

ASSEMBLY LANGUAGE

| | |
! STATEMENT i MACHINE INSTRUCTION FORMAT]
[——- 1 - 1
i i ;
| | temrcmcne- + $emmmmcaa + !
! <inst> <ta> ! ! opcode } | ra | !
!] e 4+ $-mcccce= + !
| | !
| ! |

3.3.4.2 Single Relative Address Instruction Type: this instruction is
a combination of single register and simple relative address types.
There are two operands: a register number and a target address. This
addressing type is used by the DINZ (Decrement and Jump if Nonzero)
instruction. The machine instruction format for single relative
instructions is shown below in Table 3.8.

TABLE 3-8 - SINGLE RELATIVE MACHINE INSTRUCTION FORMATS

ASSEMBLY LANGUAGE

1]

]]

! STATEMENT ! MACHINE INSTRUCTION FORMAT
BT] -
]

H <inst> A,<ta> i $ommocee- + $omccooo- +

| <inst> B,<ta> | | opcode |} | ra |

! ! e ——— + temccccee +

]]

]]

! ! + + == + = +
! <inst> Rn,<ta> ! ! opcode ! | n 1 ra |
] | $omccccea + teemcccce= + $ecmcceee +
| '

3.3.4.3 Dual Relative Instruction Type: a combination of dual
register and simple relative instruction types. Dual relative
instructions, such as BTJO (Bit Test and Jump if One), contain a

3-11

—— e - —— ————— ——— ——- ——e— e

destination register and a target address. The supported source and
destination register combinations are the same as those specified for
dual register instructions. The machine instruction format for dual
relative instructions is described in Table 3-9.

TABLE 3-9 - DUAL RELATIVE MACHINE INSTRUCTION FORMATS

ASSEMBLY LANGUAGE

STATEMENT MACHINE INSTRUCTION FORMAT

| !

' !

1 [}

]]

| b

! ! + + + +

! <inst> B,A,<ta> ! | opcode | } ra |

' : rrccnaaae + brccccca= -+

| :

! <inst> Rs,A,<ta> ! + + + + + +

! «<inst> Rs,B,<ta> i | opcode | | s il ora |

! ! + + to=- + teccemme—— +

1 [}

}]

!] $occnna—— + $mmcccce- + $ecccccaa + dmceca- +
| «<inst> Rs,Rd,<ta> ! | opcode | | s Py d T o
! ! e e—— + tmccccces + tmcmmceaa + bmm—e—— +
: :

! «<inst> %<iop>,A,<ta> | + ==+ + + $ecmccces +

| <inst> %<iop>,B,<ta> | | opcode | | iop |} ra |

{ | + + + + $occccna- +

]]

]]

| g tocmcccaa + $mcccce- -t Poccccee- + temmceaa +
| <inst> %<iop>,Rd,ta> | | opcode | | iop |} | d b ora |
= = troccanee -—t beecccccas R + prcccoe -+
1 1

]]

3.3.4.4 Peripheral Relative Instruction Type: this instruction type
is a combination of the peripheral file and simple relative
instruction types. Peripheral relative instructions, such as BTJOP
(Bit Test and Jump if One--Peripheral), specify three operands: an A,
B, or immediate source; a PF register destination; and a target
address.

The machine instruction format for peripheral relative instructions is
shown in Table 3-10.

3-12

—— - - —— - - . ————————— —— —————— ——— - > G e G—Gh s GEEn G GEEe G Gmew

TABLE 3-10 - PERIPHERAL RELATIVE MACHINE INSTRUCTION FORMATS

H ASSEMBLY LANGUAGE } !
| STATEMENT H MACHINE INSTRUCTION FORMAT !
' | |
| ! |
| <inst> A,Pd,<ta> | #mmmme—- + tomem—oe- + $me——em—- + '
! <inst> B,Pd,<ta> | | opcode } | n Il ra | |
! | + + + + $emmmcme- +]
| | !
| 1o+ + + + + + ===t |
! <inst> %<iop>,Pd,<ta> ! Jopcode | | dop }} n | } ra}l |
] | #=meem——- + $emcmccc= + $emmmceme- + ===+ |

3.3.5 Extended Address Instruction Type

Extended address type instructions are those which
via 1{ts 16-bit address 1in the memory space of
instructions have a single operand in either
indirect, or indexed operand addressing mode.

Extended address instructions include CALL (Call
(BRanch) which transfer control to any instruction i

The machine instruction formats for extended address
given in Table 3-11. The most significant byte of a
the instruction is stored first.

reference a byte
the TMS7000. These
direct, register

Subroutine) and BR
n memory.

instructibns are
16-bit address in

TABLE 3-11 - EXTENDED ADDRESS MACHINE INSTRUCTION FORMATS

] ASSEMBLY LANGUAGE
! STATEMENT

]

]

! MACHINE INSTRUCTION FORMAT
lecaaee | ————
|]
| !

! 1 + + + + + +
! <inst> @<addr> ! ! opcode | | addr msb! | addr 1sb|
! | + + == 4+ $eccccccc= +
| !

! | + + + +

! <inst> *Rd | | opcode |} | d !

] | + + + +

| |

| | + + <+ + += +
! <inst> @<addr>(B) | {opcode |} | addr msb! | addr 1sb!

| ; brmmccce + $eccccccwe + $eccccccae +
] []

[} [}

3.3.6 Implied Operand Type Instructions

Implied operand type instructions are one-byte 1

3-13

nstructions whose

operands, {if any, are implied by the opcode itself. These include
several miscellaneous instructions such as EINT (Enable Interrupts)
and POP ST (Pop Status). The machine instruction format for implied
operand instructions is shown in Table 3-12.

TABLE 3-12 - IMPLIED OPERAND TYPE INSTRUCTION

ASSEMBLY LANGUAGE -
STATEMENT

MACHINE INSTRUCTION
FORMAT

<inst>

!

3.3.7 Special Address Type Instructions

Special address type instructions (e.g., MOVE DOUBLE) are those whose
operands do not fit any of the above instruction types. The machine
instruction formats for these 1instructions are 1listed with the
instruction's description in Section 3.4.

3.4 INSTRUCTION DESCRIPTIONS

The following paragraphs describe the instruction set of the TMS7000.
The Assembler for each TMS7000 family device will accept these
instructions (in the indicated Assembly Language format). The byte
count for each instruction may be determined from its instruction type
and 1ts operands. The binary opcodes and cycle counts for each
instruction may vary among family members. Refer to the individual
family member specification for opcode assignment and instruction
timing information.

The 1instruction descriptions are presented in alphabetic order. The
discussion of each instruction includes mnemonic, syntax, instruction

type, example, definition, status bit, and application note
information.

3-14

ACD ACD

3.4.1 Add With Carry Instruction (ADC)

SYNTAX: [<label>] ...ADC ...<s>,<d> ...[<comment>]
TYPE: Dual Register

EXAMPLE: LABEL ADC R66,R117

DEFINITION: Add the source operand to the destination operand with
carry in and store the result at the destination address.

EXECUTION RESULTS: (s) + (d) + C => (d)

STATUS BITS AFFECTED: C set to 'l' on carry-out of (s)+(d) +C
Z set on result
N: set on result

APPLICATION NOTES: ADC may be used to implement multi-precision
addition of signed or unsigned integers. ADC with an immediate operand
of zero value is equivalent to a conditional increment of the
destination operand. For example, the 16-bit integer in register pair
(R2,R3) may be added to the 16-bit integer in (A,B) as follows:

ADD R3,B Low @rder bytes added
ADC R2,A High order bytes added

3-15

ADD ADD

3.4.2 Add Instruction (ADD)

SYNTAX: [<label>] ...ADD ...<s>,<d> ...[<comment>]
TYPE: Dual Register
EXAMPLE: LABEL ADD A,B

Definition: Add the source operand to the destination operand and
store the result at the destination address.

EXECUTION RESULTS: (s) + (d) => (d)

STATUS BITS AFFECTED:
C: 'l' on carry-out of (s) + (d)
Z: set on result
N: set on result

APPLICATION NOTES: ADD is used to add two bytes, and may be used for
signed two's complement or unsigned addition.

3-16

AND AND

3.4.3 And Instruction (AND)

SYNTAX: [<label>] ...AND ...<s>,<d> ...[<comment>]
TYPE: Dual Register
EXAMPLE: LABEL AND A,B

DEFINITION: Logically AND ‘the source operand to the destination
operand and store the result at the destination address.

EXECUTION RESULTS: (s) .AND. (d) => (d)
STATUS BITS AFFECTED:

C: set to 'O’
N,Z: set on result

APPLICATION NOTES: AND s wused to perform a logical AND of the two
operands. Each bit of the 8-bit result follows the truth table:

SOURCE DESTINATION DESTINATION
Operand Bit Operand Bit Result Bit
Y o 0 0

0 1 0
1 0 0
1 1 1

3-17

ANDP ANDP

3.4.4 AND Peripheral File Register Instruction (ANDP)

SYNTAX: [label>] ... ANDP ...<s>,<d> [<comment>]
TYPE: Peripheral File
EXAMPLE: LABEL ANDP %>DF,P6 Clear bit 5 of B port

DEFINITION: Logically AND the source and the peripheral file register
specified in the destination, and place the result in the PF register.
The source may be the A or B registers, or an immediate value.

STATUS BITS AFFECTED:
C: set to 'O
Z,N: set on result

APPLICATION NOTES: ANDP may be used to clear one or more bits in the
peripheral file. Thus, it may be used to reset an individual output
line to zero. This may be done with an ANDP instruction where the
source is an immediate operand that serves as a mask field. The
example above shows how bit 5 of the I/0 control register (PO) is
cleared, thus disabling level-3 interrupts.

3-18

BTJO BTJO

3.4.5 Bit Test And Jump If One Instruction (BTJO)

SYNTAX: [<label>] ...BTJO ...<s>,<d>,<offset> ...[<comment>]
TYPE: Dual Relative
EXAMPLE: LABEL BTJO %>41,B,THERE Jump if bit B(6) or bit B(0) is ‘set.

DEFINITION: Logically AND the source and destination operands and do
not copy the result. If the result is non-zero, then perform a program
counter relative jump using the offset operand. The program counter is
set to the first byte AFTER the BTJO instruction before the offset is
added.

EXECUTION RESULTS: if (s).AND.(D)<>0, then PC+(offset)->PC

STATUS BITS AFFECTED:
C: set to zero
Z,N: set on (s).AND.(D)

APPLICATION NOTES: Use the BTJO instruction to test for at least one
bit which bhas a corresponding 'l' bit in each operand. for-example,
the source operand can be used as a bit mask to test for '1' bits in
the destination address.

3-19

BTJOP BTJOP

3.4.6 Bit Test And Jump If One-Peripheral Instruction (BTJOP)

SYNTAX: [<label>] ..BTJOP ..<s>,<d>,<offset> ..[<comment>]
TYPE: Peripheral-Relative
EXAMPLE: LABEL BTJOP %>01,P4,THERE Test Port A(0) bit

DEFINITION: Logically AND the source and destination operands and do
not copy the result. If the result is non-zero, then perform a program
counter relative jump using the offset operand. The program counter is
set to the first byte after the BTJOP instruction before the offset is
added.

EXECUTION RESULTS: if (s).AND.(D)<>0, then PC+(offset)->PC

STATUS BITS AFFECTED:
C: set to zero
Z,N: set on (s).AND.(D)

APPLICATION NOTES: Use the BTJOP instruction to test for at least one
bit position which has a corresponding 1 in each operand. For example,
the source " operand can be used as a bit mask to test for one bits in
the destination peripheral file register. The example above tests bit
0 of the input A port, and jumps if 1t is a 1.

3-20

BTJZ BTJZ

3.4.7 Bit Test And Jump If Zero Instruction (BTJZ)
SYNTAX: [<label>] ...BTJZ ...<s>,<d>,<offset> ...[<comment>]
TYPE: Dual Relative
EXAMPLE: LABEL BTJZ %>10,23,HERE IF R3(4)='0', JUMP
DEFINITION: Logically AND the source and the inverted destination
operand; do not copy the result. If the result is not equal to zero,
then perform a program counter relative jump using the offset operand.
The program counter {s set to the first byte after the BTJZ
instruction before the offset is added.
EXECUTION RESULTS: 4f (s).AND.(NOT d)<>0, then PC+(offset)=->PC
STATUS BITS AFFECTED:

C: set to '0'

Z,N: set on (s).AND.(NOT d)
APPLICATION NOTES: Use the BTJZ instruction to test for at least one O

bit in the destination operand which has a corresponding 1 bit in the
source operand.

3-21

BTJZP BTJZP

3.4.8 Bit Test And Jump If Zero-Peripheral Instruction (BTJZP)

SYNTAX: [<1abel>] ..BTJZP ..<s>,<d>,<offset> ..[<comment>]
TYPE: Peripheral Relative

EXAMPLE: LABEL BTJZP %>81,P4,THERE If Port A(O) or A(7) are O,
then jump.

DEFINITION: Logically AND the source and i{nverted destination
operands, and do not copy the result. If the result is non-zero, then
perform a program counter relative jump using the offset operand. The
program counter is set to the first byte after the BTJZP i{nstruction
before the offset is added.

EXECUTION RESULTS: 1f (s).AND.(NOT d)<>0, then PC+(offset)=->PC

STATUS BITS AFFECTED:
C: set to zero
Z,N: set on (s).AND.(NOT d)

Application notes: Use the BTJO fnstruction to test for at least one
bit position which has a 1 in the source and an 0 in the peripheral
file register. For example, the source operand can be used as a bit
mask to test for zero bits 1in the destination peripheral file
register. The example above tests bit 0 of the input A port, and jumps
if it is a 0.

3-22

BR BR

3.4.9 Branch Instruction (BR)
SYNTAX: [<1abel>] ...BR ...<d> ...[<comment>]

TYPE: Extended Address

EXAMPLES: LABEL BR @THERE Direct addressing
BR @TABLE(B) Indexed addressing
BR *R14 Indirect addressing

DEFINITION: Branch directly to 1location specified by the 16-bit
addressing mode. The effective address is obtained using any one of
the three extended addressing modes.

EXECUTION RESULTS: (d)->PC
STATUS BITS AFFECTED: none

APPLICATION NOTES: BR may be used to branch to any location in the the
program. The powerful concept of computed GOTO's is supported by the
BR *Rn instruction.

An indexed branch instruction of the form BR @TABLE(B) is an extremely
efficient way of executing one of several actions on the basis of some
control input. This is similar to the CASE statement of Pascal and
other high-level languages. For example, suppose register R3 contains
a control value. The program* branches to 1label ACTIONO if R3=0,
ACTION1 if R3=1, etc, for up to 128 different actions.

For Example:

ENTER EQU $ START EXECUTION HERE

MOV R3,B MOVE CONTROL INPUT TO B

RL B MPY BY 2 TO GET TABLE OFFSET

BR GTABLE(B) BRANCH TO CORRECT "JMP ACTION"
* STATEMENT

DISPATCH EQU $ DISPATCH TABLE
JMP ACTIONO
JMP ACTION1

JMP ACTIONn
ACTIONC EQU $

<code for action 0>
ACTION1 EQU $

<code for action 1>

This technique may be used to transfer control on character inputs,
error codes, etc.

3-23

CALL CALL

3.4.10 Call Instruction (CALL)

SYNTAX: [<label>] ...CALL ...<a> ...[<comment>]
TYPE: Extended Address

EXAMPLES: LABEL1 CALL @LABEL4
LABEL2 CALL @LABELS(B)
LABEL2 CALL *R12

DEFINITION: Push the Current PC on the stack and branch to the
effective operand address.

EXECUTION RESULTS: SP + 1 => SP
PC MSByte -> stack
SP + 1 -5 SP
PC LSByte -> stack
operand address => PC

STATUS BITS AFFECTED: mone

Application notes: CALL 1s used to invoke a subroutine. The PUSH and
POP instructions can be used to save, pass, or restore status or
register values.

3-24

CLR CLR

3.4.11 Clear Instruction (CLR)

SYNTAX: [<label>] ...CLR ...<d> ...[<comment>]
TYPE: Single Register
EXAMPLE: LABEL CLR B
DEFINITION: Replace the operand value with a zero.
EXECUTION RESULTS: 0 =-> (d)
STATUS BITS AFFECTED:

C: set to '0'

N: set to '0'

Z: set to '1'

APPLICATION NOTES: CLR 1s used to clear or f{nitialize any file
register including the A and B registers.

3-25

CLRC CLRC

3.4.12 Clear Carry Instruction (CLRC)

SYNTAX: [<label>] ...CLRC ...[<comment>]
TYPE: Implied Operand
EXAMPLE: LABEL CLRC

DEFINITION: Clear the carry status; the sign and zero flags are
determined by the contents of the A register.

STATUS BITS AFFECTED:
C: set to '0' ‘
N,Z: set on value of A register

EXECUTION RESULTS: status bits set

Application notes: CLRC 1{s used to clear the carry flag if required
before an arithmetic or rotate instruction. Note that the logical and
move 1instructions typically clear the carry status. The CLRC
instruction is equivalent to the TSTA instruction.

3-26

CMP CMP

3.4.13 Compare Instruction (CMP)

SYNTAX: [<label>] ...CMP ...<s>,<d> ...[<comment>]
TYPE: Dual Register
EXAMPLE: LABEL CMP R13,R89

DEFINITION: Subtract the source operand from the destination operand;
do not store the result.

EXECUTION RESULTS: (d) - (s) computed

STATUS BITS AFFECTED:
C: '1' if (d) is logically greater than
or equal to (s)
N: Sign of result
Z: '1'" if (d) is equal to (s)

APPLICATION NOTES: CMP is used to compare the destination operand to
the source operand. The N bit is set to the sign of the result of
subtracting (s) from (d). The C bit is set to '1' if (d) is greater
than or equal to (s), interpreting (d) and (s) as unsigned integers.
For either signed or unsigned interpretations, the Z bit is set to 'l'
if (d) and (s) are equal.

The status bits are set upon the result of computing (d) - (s). N and
Z are set on the result of this subtraction. The carry bit C 1is a
"borrow" bit--i.e., 1t is '0' if (d) is logically less than (s). The
difference between logical and arithmetic compares 1is demonstrated
below:

DESTINATION SOURCE c N z
FF 00 1 1 0
7F 00 1 0 0
80 00 1 1 0
80 7F 1 0 0
7F 7F 1 0 1
7F 80 0 1 0

As shown above, negative numbers are considered arithmetically less
than, but logically greater than, positive numbers. Note that the
state of the n bit does not necessarily reflect a comparison of s and
d interpreted as signed two's complement 8-bit numbers.

The CMP instruction can be used with the conditional branch

instructions to branch on the comparison between the destination
operand (d) and the source operand(s), as shown on the next page:

3-27

CMP CMP

JUMP CONDITION ON WHICH

INSTRUCTION JUMP IS TAKEN

JC/JHS D logically >=§

JN D arithmetically < S

JNC/JL D logically < S

JNZ/JNE D not equal to §

JP D arithmetically > §

JZ/JEQ D equal to S

JpPZ D arithmetically >= §

3-28

CMPA CMPA

3.4.14 Compare With An Extended Instruction (CMPA)

SYNTAX: [<label>] ...CMPA ...<s>...[<comment>]
TYPE: Extended Address
EXAMPLE: LABEL CMPA @TABLE(B)

DEFINITION: Subtract the contents of the byte addressed by the operand
from the contents of the A register.

EXECUTION RESULTS: (A) - <s> computed

STATUS BITS AFFECTED:
C: '1' if (A) 1s logically greater than or
equal to <s>.
N: '1' if (A) is arithmetically less than <s>
Z: '1' if (A) 1s equal to <s>

APPLICATION NOTES: CMPA may be used to compare a long-addressed
operand (e.g., via direct, indirect, or indexed addressing modes) to
the A register. It is especially useful in table lookup programs in
which the table is stored either in extended memory or in the program
ROM. The status bits are set exactly as if the register A were the
destination (d) and the addressed byte the source (s). See the CMP
instruction for programming techniques using the CMPA instruction.

3-29

DAC DAC

3.4.15 Decimal Add With Carry Instruction (DAC)

SYNTAX: [<label>] ...DAC ...<s>,<d> ...[<comment>]
TYPE: Dual Register
EXAMPLE: LABEL DAC %24,A

DEFINITION: Add the source operand to the destination -operand with
carry in and store the result at the destination address. Each operand
is a two-digit integer using BCD format.

EXECUTION RESULTS: (s) + (d) + C => (d)

STATUS BITS AFFECTED:
C: '1' if value of (s) + (d) + C >= 100
N: set on result
Z: set on result

APPLICATION NOTES: DAC 1is used to add bytes in binary-coded decimal
(BCD) form. Each byte is assumed to contain two BCD digits. Operation
of DAC 1s undefined for non-BCD operands. DAC with an immediate
operand of zero value is equivalent to a conditional increment of the
destination operand. The DAC 1instruction automatically performs a
decimal adjust of the binary sum of (s)+(d)+C. The carry bit is added
to facilitate adding multi-byte BCD strings, and so the carry bit must
be cleared before execution of the first DAC instruction.

EXAMPLE: Add '1234' (STR1) to '5678' (STR2) in binary coded decimal
form. Each operand is stored as a 2-byte BCD string with the most
significant digits first. Assume operand STR1 is stored in R3 and R4,
containing values >12 and >34 respectively. STR2 is stored in R5 and
R6 as >56 and >78. The result would be the string >69,>12,
representing the number 6,912. Assume STR1 1{s stored in registers
R3,R4 and STR2 in RS,R6. The code to add STR1 and STR2 is:

CLRC CLEAR CARRY IF NOT ALREADY CLEAR
DAC R4,R6 ADD LOW BYTES
DAC R3,R5 ADD HIGH BYTES PLUS CARRY

The result will be left in STR2 (i.e., register pair R5,R6).
The following subroutine adds packed decimal strings of less than 256
bytes (512 digits) stored at memory locations STR1 and STR2 together,

placing the result in STR2. The strings must be stored with the most
significant byte first.

3-30

DAC

DAC

* Decimal Addition Subroutine

* On input: B = length of string (number of bytes)
* Stack must have 3 available bytes.

* On output: STR2 = STR1+STR2
*
=

CLRC

PUSH ST

LDA @STR1-1(B)
MOV A,R2

LDA @STR2-1(B)
POP ST

DAC R2,A

PUSH ST

STA @STR2(B)
OJNZ B,LOOP

POP ST

RETS

LooP

CLEAR CARRY BIT

SAVE STATUS ON STACK

LOAD CURRENT BYTE OF STR1
SAVE IT IN R2

LOAD NEXT BYTE OF STR2
RESTORE CARRY FROM LAST ADD
ADD DECIMAL BYTES

SAVE CARRY FROM THIS ADD
STORE RESULT

LOOP UNTIL DONE

RESTORE STACK

Notice the use of indexed addressing mode to reference the bytes of
the decimal strings. Notice also the need to push the status register

between decimal additions, to
register is
added.

save

3-31

the decimal carry bit. The B

used to keep count of the number of bytes that have been

DEC DEC

3.4.16 Decrement Instruction (DEC) DEC

SYNTAX: [<label>] ...DEC ...<d> ...[<comment>]
TYPE: Single Register

EXAMPLE: LABEL DEC R102

DEFINITION: Subtract one from a copy of the operand and store the
result in the operand address.

EXECUTION RESULTS: (d) = 1 => (d)

STATUS BITS AFFECTED:
C: '0' 1f (d) decrements from #00 to #FF;
'1' otherwise.
N: set on result
Z: set on result

APPLICATION NOTES: The DEC instruction is used to subtract a value of

one from any addressable operand. The DEC fnstruction is also wuseful
in counting and addressing byte arrays.

3-32

DECD DECD

3.4.17 Decrement Double Instruction (DECD)

SYNTAX: [<label>] ...DECD ...<rp> ...[<comment>]
TYPE: Single Register

EXAMPLE: LABEL DECD RS51 Decrement (RS0,R51)
* register pair

DEFINITION: Subtract one from the 16-bit value contained in the
destination register pair. The operand is the register number of the
least significant byte.

EXECUTION RESULTS: (rp) = 1 => (rp)

STATUS BITS AFFECTED:
C: '0' if most significant byte decrements from
>00 to >FF. Otherwise, C = '1'.
N: set on most significant byte of result
Z: set on most significant byte of result

APPLICATION NOTES: DECD may be used to decrement 16-bit indirect
addresses stored in the register file. Tables longer than 256 bytes
may be scanned using this instruction. The subroutine shown on the
next page searches a 500 byte table for a given byte, and returns with
the (R4,R5) register pair containing the address of that byte.
Register pair (R2,R3) should be initialized to the last address (i.e.
highest-addressed element) of the table:

3-33

DECD DECD

* LONGLOOK: LONG TABLE LOOKUP ROUTINE

CALLING SEQUENCE:
MOVD <TABLE LAST ADDR>,R3 TABLE ADDRESS =-> (R2,R3)
MOVD <TABLE SIZE>,RS TABLE SIZE -> (R4,RS)
MOV <SEARCH VALUE>,A SEARCH VALUE -> A
CALL GLONGLOOK

ON EXIT, (R2,R3) WILL CONTAIN ADDRESS OF SEARCH VALUE
(R4,RS) WILL CONTAIN 1-BASED INDEX OF VALUE
CARRY BIT WILL BE SET TO '1' IF NOT FOUND,
OTHERWISE IT WILL BE RESET TO 'O'

LONGLOOK EQU §

% % % % % % % % % %

LooP CMPA ™R3 CHECK CURRENT BYTE
JZ FOUND IF EQUAL, WE FOUND IT (CARRY CLEARED)
DECD R3 IF NOT, DECREMENT TABLE ADDRESS
DECD RS DECREMENT TABLE COUNT
JNZ LOOP IF HIGH BYTE <> 0, CONTINUE
CMP %0,RS IF LOW BYTE <> 0, CONTINUE

JNZ LOOP
SETC IF COUNT = 0, SET CARRY FOR ERROR
FOUND RETS RETURN FROM SUBROUTINE LONGLOOK

3-34

DINT DINT

3.4.18 Disable Interrupts Instruction (DINT)

SYNTAX: [<label>] ...DINT ...[<comment>]
TYPE: Implied Operand
EXAMPLE: LABEL DINT

DEFINITION: Clear the interrupt enable flag in the status thus
disabling further interrupts.

STATUS BITS AFFECTED:
I: set to '0’
C,N,Z: set to '0'

EXECUTION RESULTS: 0 -> interrupt enable status bit

APPLICATION NOTES: DINT 1is used to turn off all interrupts
simultaneously. Since the interrupt enable flag is stored 1in the
status register, the POP ST, and RETI instructions may reenable
interrupts even though a DINT instruction has been executed. During
the interrupt service, the interrupt enable bit is automatically
cleared after the old status register value has been pushed onto the
stack.

3-35

DJNZ - DJNZ

3.4.19 Decrement Register And Jump If Non-Zero Instruction (DJNZ)

SYNTAX: [<label>] ...DJNZ ...<d>,<offset> ...[<comment>]
TYPE: Single-Relative
EXAMPLE: LABEL DJNZ R15,THERE

DEFINITION: Decrement the operand and copy result to operand address.
If result is non-zero, then take relative jump.

EXECUTION RESULTS: (d)=1->(d); 1f (d)<>0, then PC+(offset)=->PC
STATUS BITS AFFECTED: None
APPLICATION NOTES: The DJINZ instruction is used for looping control.

3-36

DSB DSB

3.4.20 Decimal Subtract With Borrow Instruction (DSB)

SYNTAX: [<label>] ...DSB ...<s>,<d> ...[<comment>]
TYPE: Dual Register
EXAMPLE: LABEL DSB R15,R76

DEFINITION: Subtract the source operand and borrow in from the
destination operand and store the result at the destination address.
Each operand is a two digit integer in packed BCD (binary coded
decimal) format.

EXECUTION RESULTS: (d) = (s) =1+ C => (d)

STATUS BITS AFFECTED:
C: '1' no borrow required, '0O' 1f borrow required.
N,Z: set on result

APPLICATION NOTES: DSB 1{s wused for multiprecision decimal BCD
subtraction. A DSB instruction with an immediate operand of zero value
is equivalent to a conditional decrement of the destination operand.

The carry status bit functions as a borrow bit, so if no borrow in 1is

required, the carry bit should be set to '1'. This can be accomplished
by executing the SETC instruction.

3-37

EINT EINT

3.4.21 Enable Interrupts Instruction (EINT)
SYNTAX: [<label>] ...EINT ...[<comment>]

TYPE: Implied Operand
EXAMPLE: LABEL EINT

DEFINITION: Set the interrupt enable flag in the status thus enabling
interrupts.

STATUS BITS AFFECTED:
I: set to 'l
C,N,Z: set to 'l'

EXECUTION RESULTS: 1 => interrupt enable

APPLICATION NOTES: EINT is used to turn on all enabled interrupts
simultaneously. Since the interrupt enable flag 1{s stored in the
status register, the POP ST, LDST, and RETI instructions may disable
interrupts even though a EINT instruction has been executed. During
the interrupt service, the interrupt enable bit 1is automatically
cleared after the old status register value has been pushed onto the
stack. Thus, the EINT instruction must be 1included inside the
interrupt service routine to permit nested or multilevel interrupts.

3-38

IDLE IDLE

3.4.22 1ldle Until Interrupt Instruction (IDLE)
SYNTAX: [<label>] ...IDLE ...[<comment>]
TYPE: Implied Operand

EXAMPLE: LABEL IDLE

DEFINITION Suspend further instruction execution until an interrupt or
a reset occurs. Upon return from an interrupt, control passes to the’
instruction following the IDLE instruction.

STATUS BITS AFFECTED: none

APPLICATION NOTES: IDLE is used to allow the program to suspend
operation until either an interrupt or reset occurs. It is the
programmer's responsibility to assure that the Timer Control Register
bit for Halt and Wake-up Modes (and individual interrupt enable bits
in the I/0 control register) are set before executing the IDLE
instruction.

The IDLE instruction has a differenct affect on the TMS70C00 CMOS
family devices. The IDLE inruction will cause the CMOS device to enter
one of two low power modes which use a fraction of the normal
operating power. In the Wake-Up Mode, the on-chip oscillator remains
active, and activation of the timer interrupt or the external
interrupts (RESET-, INT1-, INT3-) can be used to release the device
from the low power mode. In the Halt Mode, the oscillator and time are
disabled and only activation of an external interrupt will release the
device from the Halt Mode.

When any TMS7000 family device is released from an IDLE instruction,
program control passes to the next instruction.

3-39

INC

INC

3.4.23 Increment Instruction (INC)
SYNTAX: [<label>] ...INC ...<d> ...[<comment>]
TYPE: Single Register
EXAMPLE: LABEL INC A
DEFINITION: ADD one to a register.
EXECUTION RESULTS: (d) + 1 =5 (d)
STATUS BITS AFFECTED:
C: '1' 1f (d) incremented from #FF to #00;

'0' otherwise.
N,Z: set on result

APPLICATION NOTES: INC is used to increment the value of any register.

3-40

INV INV

3.4.24 Invert Instruction (INV)

SYNTAX: [<label>] ...INV ...<d> ...[<comment>]
TYPE: Single Register
EXAMPLE: LABEL INV A
DEFINITION: Invert or complement all bits in the operand.
EXECUTION RESULTS: NOT (d) => (d)
STATUS BITS AFFECTED:
C: set to 'O’
N/Z : set on result
APPLICATION NOTES: INV performs a logical or one's complement of the

operand. A two's complement of the operand can be made by following
the INV instruction with an increment (INC).

3-41

JMP JMP

3.4.25 Jump Unconditional Instruction (JMP)

SYNTAX: [<label>] ...JMP ...<offset> ...[<comment>]

TYPE: Simple Relative

EXAMPLE: LABEL JMP THERE

DEFINITION: Jump unconditionally to the address specified in the
operand. The second byte of the JMP instruction 1is 1loaded with the
8-bit relative address of the operand. The operand address must
therefore be within =128 to +127 bytes of the location of the
instruction following the JMP instruction.

STATUS BITS AFFECTED: none

EXECUTION RESULTS: PC + (offset) -> PC

APPLICATION NOTES: The Assembler will indicate an error if the target
address is beyond =128 to +127 bytes from the next instruction.

3-42

J(cond) J(cond)

3.4.26 Jump On Condition Instruction (J<cnd>)

SYNTAX: [<label>] ...J<cnd> ...<offset> ...[<comment>]
TYPE: Simple Relative

EXAMPLES: LABEL JNC THERE
LABEL JP HERE

DEFINITION: The assembler recognizes two mnemonics for each of the
conditional jump d{nstructions. One set of mnemonics reflects the
actual conditon of the status bits tested. The other set reflects the
particular condition of the status bits after a compare instruction
(CMP or CMPA). The destination is considered compared to the source.
For example, assume the A register contains >FE hex. The following

instruction:
CMP %3,A
is read "Compare A to 3". The instruction:

JGT LABEL1

is equivalent to "JP LABEL1" and will not jump, because A 1is not
greater than 3 (i.e., as a signed value). The instruction:

JHS LABEL2

is equivalent to "JC LABEL2", and will jump because A is higher than 3
(1.e., as an unsigned number).

Table 3-13 on the next page lists each conditional jump instruction,

and the condition in which it will cause a Jjump to the Jlocation
specified in the operand field:

3-43

J(cond)

J(cond)

TABLE 3-13 - CONDITIONAL JUMP INSTRUCTIONS

CONDITION FOR JuUMP

(STATUS BIT VALUES)

| ! |
i N

)
! INSTRUCTION | MNEMONIC | CARRY | NEGATIVE ! ZERO
!] | i '
| | | | |
{ Jump If Carry ! JC | 1 | X | X
! Jump If Equal] JEQ { X | X ! 1
! Jump If Higher Or Same | JHS | 1 | X | X
| Jdump If Lower | JL | 0 | X | X
! Jump If Negative | JN] X | 1 !X
! Jump If No Carry ! JNC | 0 ! X | X
| Jump If Not Equal ! JNE | X ! X 10
! Jump If Non-zero ! JNZ ! X ! X !0
! Jump If Positive ! JP | X ! 0 | 0
! Jump If Positive Or Zero ! JPZ ! X ! 0 ! X
! Jump If Zero ! JZ ! X ! X ! 1
1]]] 1
]]]] [

EXECUTION RESULTS: If tested condition is true, PC+offset->PC
STATUS BITS AFFECTED: none

APPLICATION NOTES:

The J<cnd>

3-44

instructions may be used after a CMP
instruction to branch according to the relative values of the operands
tested. After MOV, MOVP, LDA, or STA operations, a JZ or JUNZ may be
used to test if the value moved was equal to zero. JN and JPZ may be
used in this case to test the sign bit of the value moved.

LDA LDA

3.4.27 Load A Register Instruction (LDA)

SYNTAX: [<label>] ...LDA ...<s> ...[<comment>]

TYPE: Extended Address

EXAMPLES: LABEL1 LDA OLABEL4 DIRECT
LABEL2 LDA @LABELS(B) INDEXED
LABEL3 LDA *R13 INDIRECT

DEFINITION: Copy the contents of the source operand address to the A
register; addressing modes include direct, indexed, and indirect.

EXECUTION RESULTS: (s) => A

STATUS BITS AFFECTED:
C: set to '0'
Z,N: set on value loaded

APPLICATION NOTES: The LDA instruction is used to read values stored
in extended memory. The direct addressing provides an efficient means
of directly accessing a variable in general memory. Indexed addressing
provides an efficient table look-up capability for most applications.
Indirect addressing allows the use of very large 1look-up tables and
the use of multiple memory pointers since any pair of file registers
can be used as the pointer. The DINZ (Decrement and Jump 1{f Nonzero)
instruction can be used with either indexed or indirect addressing to
create fast and efficient program loops or table searches.

3=45

LDSP LDSP

3.4.28 Load Stack Pointer Instruction (LDSP)

SYNTAX: [<Tabel>] ...LDSP ...[<comment>]
TYPE: Implied Operand
EXAMPLE: LABEL LDSP

DEFINITION: Copy the contents of the B register to the stack pointer
register.

EXECUTION RESULTS: (B) => SP

STATUS BITS AFFECTED:
C,N,Z: no effect

APPLICATION NOTES: LDSP is used to initialize the stack pointer.

3-46

MOV MOV

3.4.29 MOVE Instruction (MOV)

SYNTAX: [<label>] ...MOV ...<s>,<d> ...[<comment>]
TYPE: Dual Register

EXAMPLES: LABEL1 MOV A,B
LABEL2 MOV R32,R234
LABEL3 MOV %10,R3

DEFINITION: Copy the source operand to the destination operand
address.

EXECUTION RESULTS: (s) => (d)

STATUS BITS AFFECTED:
C: set to '0'
Z,N: set on value loaded

APPLICATION NOTES: MOV is wused to transfer values in the register
file. Immediate values may be loaded into registers directly from the
instruction. The fact that the A or B register is a source is implied
in the MOV opcode, resulting in shorter and quicker moves from the A
or B register. See the Dual Register instruction type description.

3-47

MOVD MOVD

3.4.30 Move Double Instruction (MOVD)

SYNTAX: [label>] ... MOVD ...<s>,<rp> [<comment>]

TYPE: Special, see below

EXAMPLE: LABEL MOVD %>1234,R3 LOAD (R2,R3) REGISTER PAIR
MOVD RS,R3 COPY (R4,R5) TO (R2,R3)
MOVD XTAB(B),R3 COPY INDEXED ADDRESS TO

(R2,R3)

DEFINITION: MOVD moves a two-byte value to the register pair indicated
by the destination register number. The destination 1is the
higher-addressed register of the register pair. The sources may be a
16-bit constant, another register pair, or an indexed address. For the
latter case, the source must be of the form "%ADDR(B)" where ADDR 1s a
16-bit constant or address. This 16-bit value is added to the contents
of the B register, and the result placed in the destination register
pair.

STATUS BITS AFFECTED:
C: set to '0';
N,Z: set on most significant byte moved

APPLICATION NOTES: "MOVD %ADDR,Rn" {s useful for initializing register
pairs to be used in indirect addressing mode. "MOVD Rs,Rd" will
transfer two registers at a time. "MOVD %ADDR(B),Rn" will store an
indexed address into a register pair, for use later in 1indirect
addressing mode. That 1s, the contents of B are added to the 16-bit
value of ADDR and the result placed in the register pair (Rn-1,Rn).

INSTRUCTION FORMAT: The instruction format of the MOVD instruction is
a combination of the Extended Address and Single Register Formats, as
shown below:

ASSEMBLY LANGUAGE

STATEMENT MACHINE INSTRUCTION FORMAT
MOVD %ADDR,Rd ! opcode | | addr msb} | addr 1sb! ! d]
+ + + + + + + ———
MOVD Rs,Rd {opcode | | 3 | |} d !
. ‘. .+ NP +
MOVD %ADDR(B),Rd lopcode | | addr msb} | addr 1sb! ! d !
temcccnn + + + + + Pemcccccee +

MOVP MOVP

3.4.31 Move To/From Peripheral File (MOVP)

SYNTAX: [label>] ... MOVP ...<s>,<d> [<comment>]
TYPE: Peripheral File

EXAMPLE: LABEL MOVP A,P2 SETUP TIMER VALUE
LABEL MOVP P4,B READ PORT A DATA

DEFINITION: Read or write data to the peripheral file. The
destination is read before the source is written into it.

STATUS BITS AFFECTED:
C: set to 'O’
Z,N: set on value moved

APPLICATION NOTES: MOVP is used to transfer values to and from the
peripheral file. This may be used to input or output 8-bit quantities
on the I/0 ports. For example:

MOVP P4 A
reads the data from input port 4. The instruction
MOVP B,P6

puts the contents of the B register into I/0 register 6, which is the
B output port.

The peripheral file also contains control registers for the interrupt
lines, the I/0 ports, and the timer controls. For a full description
of the peripheral file register consult the individual MLP family
member specification.

During peripheral file instructions, a peripheral file port is read.
The read can include output operations such as 'MOV A,P6'. If this
read is undesirable because of hardware configuration, an STA (Store
A) instruction with the memory-mapped address of the peripheral
register can be used.

3-49

MPY MPY

3.4.32 Multiply Instruction (MPY)

SYNTAX: [<iabel>] ...MPY ...<s>,<d> ...[<comment>]
TYPE: Dual Register

EXAMPLE: LABEL MPY R3,A MULTIPLY R3 AND A
LABEL2 MPY %32,B SHIFT B 5 PLACES LEFT

DEFINITION: MPY performs an 8-bit multiply for a general source and
destination operand. The 16-bit result is placed in the 'A,B' register
pair with the most significant byte in A.

EXECUTION RESULTS: (s) * (d) => (A,B)

STATUS BITS AFFECTED:
C: set to '0'
N,Z: set on most significant byte of result

APPLICATION NOTES: MPY 1is used to perform an 8-bit multiply.

Multiplying by a power of two is a convenient means of performing
double-byte shifts.

Multiple-precision multiply routines may be implemented easily with
the MPY instruction. The subroutine shown on the next page implements
a 16 by 8 bit multiply:

3-50

MYP MYP

* MPY16X8: MULTIPLY 16-BIT NUMBER IN (R2,R3) BY

* 8 BIT NUMBER IN A. ON RETURN,

* LOW ORDER 16-BITS OF RESULT IS (R2,R3). HIGH 8 BITS
* ARE IN A.

* IF NO OVERFLOW, ZERO BIT IS '1'

* IF OVERFLOW ERROR, ZERO BIT IS 'O

* USES 3 BYTES OF STACK (NOT INCLUDING RETURN PC)

®

* CALLING SEQUENCE:

* MOVD <16-BIT>,R3 R2 R3

* MOV <8-BIT>,A x A

* CALL MPY16X8 ~ —=----

. A*R3(MSB) A*R3(LSB)

. + A*R2(LSB)

. + A*R2(MSB)

»
]
*

RESULT: A R2 R3
MPY16X8 EQU $

PUSH B SAVE TEMPORARY REGISTERS

PUSH R4

MOV A,R4 COPY A

MPY R3,A A=A*R3(MSB) B=A*R3(LSB)

PUSH A SAVE A*R3(MSB)

MOV B,R3 RESULT LSB = A*R3(LSB)

MOV R4,A RESTORE A

MPY R2,A A=A*R2(MSB) B=A*R2(LSB)

POP R2 POP A*R3(MSB) TO RESULT(MSB)
ADD B,R2 RESULT(MSB)= A*R3(MSB)+A*R2(LSB)
ADC %0,A RIPPLE CARRY TO OVERFLOW BYTE
POP R4 RESTORE TEMPS

POP B

RETS RETURN

3-51

NOP NOP

3.4.33 No Operation Instruction (NOP)

SYNTAX: [<label>] ...NOP ...[<comment>]
TYPE: Implied Operand

EXAMPLE: LABEL NOP

DEFINITION: Perform no operation.
EXECUTION RESULTS: PC + 1 -> PC

STATUS BITS AFFECTED: none

APPLICATION NOTES: NOP is useful as a pad imstruction during program
development, to "patch out" unwanted or erroneous instructions.

3-52

OR OR

3.4.34 Or Instruction (OR)

SYNTAX: [<label>] ...OR ...<s>,<d> ...[<comment>]
TYPE: Dual Register
EXAMPLE: LABEL OR A,R12

DEFINITION: Logically OR the source operand to the destination operand
and store the result at the destination address.

EXECUTION RESULTS: (s) .OR. (d) => (d)
STATUS BITS AFFECTED:

C: set to 'O’
N,Z: set on result

APPLICATION NOTES: OR is used to perform a logical OR of the two
operands. Each bit of the 8-bit result follows the truth table:

SOURCE DESTINATION DESTINATION
OPERAND BIT OPERAND BIT RESULT BIT
0 0 0
0 1 1
1 0 1
1 1 1

3-53

ORP ORP

3.4.35 OR Peripheral File Register Instruction (ORP)

SYNTAX: [<label>] ...ORP ...<s>,<d> ...[<comment>]
TYPE: Peripheral File
EXAMPLE: LABEL ORP A,P12

DEFINITION: Logically OR the source operand to the destination
peripheral file register and write the result to the peripheral file
register. The source may be the A or B registers, or an immediate
value.

EXECUTION RESULTS: (s) .OR. (d) => (d)

STATUS BITS AFFECTED:
C: set to '0'
N,Z: set on result

APPLICATION NOTES: OR is used to perform a logical OR of the source
operand with a peripheral file location, and write the result back to
the peripheral file. This may be used to set an individual I/0 bit, as
follows:

ORP %>01,.P6 SET BIT 0 OF PF REGISTER 6 (B Port)

3-54

POP POP

3.4.36 POP From Stack Instruction (POP)

SYNTAX: [<label>] ...POP ...<d> ...[<comment>]

TYPE: Single Register
"POP ST" Special, see below

EXAMPLES: LABEL1 POP R32
LABEL2 POP ST

DEFINITION: Remove the top byte from the stack and copy to the operand
address. Decrement the stack pointer to point to the new top-of-stack
byte.

EXECUTION RESULTS: Stack top => (d)
SP - 1-> 5P

STATUS BITS AFFECTED:

C: set to 'O’
N,Z: set on value POPped

APPLICATION NOTES: The data stack can be used to save or to pass
operands, especially during subroutines and 1interrupt service
routines. The POP instruction pulls an operand from the stack.

The status register may be replaced with the contents on the
stack by the statement:

POP ST

This one-byte instruction 1s usually executed in conjunction with a
previously performed "PUSH ST" instruction.

3-55

PUSH PUSH

3.4.37 Push On Stack Instruction (PUSH)

SYNTAX: [<label>] ...PUSH ...<d> ...[<comment>]

TYPE: Single Register
"PUSH ST" Special, see below

EXAMPLES: LABEL1 PUSH A
LABEL2 PUSH ST

DEFINITION: Increment the stack pointer and place the operand value on
the stack as the new top-of-stack.

EXECUTION RESULTS: SP + 1 => SP;
(d) -> (stack top)

STATUS BITS AFFECTED:
C: set to '0'
N,Z: set on value pushed

APPLICATION NOTES: The data stack can be wused to save or pass
operands, especially during subroutines and interrupt service
routines. The PUSH instruction places an operand on the stack. The
Status register may be pushed on the stack with the statement:

PUSH ST

This one-byte instruction 1s usually executed in conjunction with a
subsequently performed "POP ST" instruction. The status register is
unaffected.

3-56

RETI RETI

3.4.38 Return From Interrupt Instruction (RETI)

SYNTAX: [<label>] ...RETI ...[<comment>]
TYPE: Implied Operand
EXAMPLE: LABEL RETI

DEFINITION: POP the top two bytes from the stack to form the return
address, POP the status from the top of stack, and branch to the
return address.

EXECUTION RESULTS: Stack => PC LSByte
SP-1->5SP
Stack => PC MSByte
SP-1->SP
Stack => ST
SP-1->5P

STATUS BITS AFFECTED:
ST register loaded from stack

APPLICATION NOTES: RETI 1is typically the 1last 1instruction in an
interrupt service routine. RETI restores the status register to its
state immediately before the interrupt occurred and branches back to
the program at the instruction boundary where the interrupt occurred.

3-57

RETS RETS

3.4.39 Return From Subroutine Instruction (RETS)

SYNTAX: [<label>] ...RETS ...[<comment>]
TYPE: Implied Operand
EXAMPLE: LABEL RETS

DEFINITION: POP the top two bytes from the stack and branch to the
resulting 16-bit address.

EXECUTION RESULTS: Stack => PC LSByte

SP-1-> 5P
Stack =>,PC MSByte
SP-1->58P

STATUS BITS AFFECTED: no effect
APPLICATION NOTES: RETS 1is typically the 1last dinstruction in a

subroutine. RETS results in a branch to the location immediately
following the subroutine call instruction.

3-58

RL RL

3.4.40 Rotate Left Instruction (RL)

SYNTAX: [<label>] ...RL ...<d> ...[<comment>]
TYPE: Single Register

EXAMPLE: LABEL RL R102

DEFINITION: Shift the operand one position to the left and fill the
least significant bit and the carry status bit with the value of the
original most significant bit; copy the result to destination addresss

EXECUTION RESULTS: Bit(n) => Bit(n+1)
Bit(7) -> Bit(0) and Carry .

STATUS BITS AFFECTED:
C: set to bit(7) of original operand
N,Z: set on result

APPLICATION NOTES: An example of the RL instruction is: If the B
register contains the value >93, then the RL instruction changes the
contents of B to >27 and sets the carry status bit.

to—— +
1 Cl<+-{MSB|6}5})4}3}2}1]}LSB

m—— |+

<=—+

-+

3-59

RLC RLC

3.4.41 Rotate Left Through Carry Instruction (RLC)

SYNTAX: [<label>] ...RLC ...<d> ...[<comment>]
TYPE: Single Register
EXAMPLE: LABEL RLC R102

DEFINITION: Shift the operand to the left one bit position and fill
the least significant bit with the original value of the carry status
bit; copy the result to the destination address. Move the original
operand most significant bit to the carry status bit.

EXECUTION RESULTS: Bit(n)->Bit(n+1)
Carry->Bit(0)
Bit(7)->Carry

STATUS BITS AFFECTED:

C: set to bit(7) of original operand
N,Z: set on result

APPLICATION NOTES: An example of the RLC instruction is: 1if the B
register contains the value >93 and the carry status bit is a zero,

then the RLC instruction changes the operand value to >26 and carry to
one.

[Y
4.-<--= c :<
rmmemy

+

MSBI6}5})4}3}21)11} LSB

<=+

+--

+-— +

3-60

RR RR

3.4.42 Rotate Right Instruction (RR)

SYNTAX: [<label>] ...RR ...<d> ...[<comment>]
TYPE: Single Register

EXAMPLE: LABEL RR A

DEFINITION: Shift the operand to the right one bit position and fill
the most-significant bit and the carry status bit with the value of
the original least significant bit. Copy the result to operand
address.

EXECUTION RESULTS: Bit(n+l) => Bit(n)
Bit(0) =-> Bit and Carry

STATUS BITS AFFECTED:
C: set to bit(0) of original operand
N,Z: set on result

APPLICATION NOTES: An example of the RR instruction is: If the B
register contains the value >93, then the "RR B" instruction changes
the contents of B to >C9 and sets the carry status bit.

to——t - +
| Cd<==+-=>! MSB | 6 | 51 4|32} 1]} LSB i<
ro— ! + +

3-61

RRC RRC

3.4.43 Rotate Right Through Carry (RRC)

SYNTAX: [<label>] ...RRC ...<d> ...[<comment>]
TYPE: Single Register
EXAMPLE: LABEL RRC R32

DEFINITION: Shift the operand to the right one bit position and fill
the most significant bit from the carry status bit. Fill the carry
status bit with the value of the original least significant bit.

EXECUTION RESULTS: Bit(n+1)->Bit(n)
Carry->Bit(7)
Bit(0)->Carry

STATUS BITS AFFECTED:
C: set to bit(0) of original operand
N,Z: set on result

APPLICATION NOTES: An example of the RRC instruction is: If the B
register contains the value >93 and the carry status bit is zero, then
the 'RRC B' instruction changes the operand value to >49 and sets the
carry status bit.

D e J +

4==>] Cl====>| MSB | 6 } 51 413121} LSB

] tonay +
]
|

—— -

+-—- +

3-62

SBB SBB

3.4.44 Subtract With Borrow Instruction (SBB)

SYNTAX: [<label>] ...SBB ...<s>,<d> ...[<comment>]
TYPE: Dual Register
EXAMPLE: LABEL SBB %23,B

DEFINITION: Subtract the source operand and borrow in from the
destination operand and store the result at the destination address.

EXECUTION RESULTS: (d) = (s) =1 + C => (d)

STATUS BITS AFFECTED:
C: set to '1' if no borrow; '0O' otherwise
N,Z: set on result.

APPLICATION NOTES: SBB is used for multiprecision two's complement
subtraction. An SBB d{nstruction with an immediate operand of zero
value is equivalent to a conditional decrement of the destination
operand. With (s)=0, if C='0', then (d) is decremented, otherwise it
is unchanged. A borrow is required if the result ifs negative. In this
case, the carry bit {s set to '0'.

3-63

SETC SETC

3.4.45 Set Carry Instruction (SETC)

SYNTAX: [<label>] ...SETC ...[<comment>]
TYPE: Implied Operand
EXAMPLE: LABEL SETC

DEFINITION: Set the carry and zero status flags and clear the sign
status flag.

EXECUTION RESULTS: status bits affected
STATUS BITS AFFECTED:

C: set to 'l'

N: set to 'O’

Z: set to 'l’

APPLICATION NOTE: SETC is used to set the carry flag i{f required
before an arithmetic or rotate instruction.

3-64

STA STA

3.4.46 Store A Register Instruction (STA)

SYNTAX: [<label>] ...STA ...<d> ...[<comment>]

TYPE: Extended Address

EXAMPLES: LABEL1 STA G@LABEL4 DIRECT.
LABEL2 STA (@LABELS(B) INDEXED
LABEL3 STA *R13 INDIRECT

DEFINITION: Copy the contents of the A register to the
operand address. The addressing modes are Direct,
Indexed, and Indirect.

EXECUTION RESULTS: (A) => (D)

STATUS BITS AFFECTED:
C: set to 'O’
N/Z: set on value loaded

APPLICATION NOTES: The STA instruction is wused to store values
anywhere in the memory address space. The direct addressing provides
an efficient means of directly accessing a variable in general memory.
The indexed addressing provides an efficient table look-up capability.
Indirect addressing allows the use of very large look-up tables and
the use of multiple memory pointers since any pair of file registers
can be used as the pointer. The 'Decrement Register and Jump if
Non-Zero' instruction (DINZ) can be used with either indexed or
indirect addressing to create fast and efficient program loops or
table searches. '

3-65

STSP STSP

3.4.47 Store Stack Pointer Instruction (STSP)

SYNTAX: [<label>] ...STSP ...[<comment>]
TYPE: Implied Operand
EXAMPLE: LABEL STSP

DEFINITION: Copy the contents of the stack pointer register to the B
register.

EXECUTION RESULTS: (SP) =-> (B)
STATUS BITS AFFECTED: none
APPLICATION NOTES: STSP is used to make a copy of the SP if required.

This instruction can be used to test the stack size. The indexed
addressing mode may be used to reference operands on the stack.

3-66

SUB SUB

3.4.48 Subtract Instruction (SUB)

SYNTAX: [<label>] ...SUB ...<s>,<d> ...[<comment>]
TYPE: Dual Register
EXAMPLE: LABEL SUB- R19,B

DEFINITION: Subtract the source operand from the destination operand
and store the result at the destination address.

EXECUTION RESULTS: (d) - (s) => (d)

STATUS BITS AFFECTED:
C: set to '1' 1f result >=0, '0' otherwise
N,Z: set on result

APPLICATION NOTES: SUB is used for two's complement subtraction The

carry bit is set to '0' if a borrow is required, i.e. if the result is
negative.

3-67

SWAP SWAP

3.4.49 Swap Nibbles Instruction (SWAP)

SYNTAX: [<label>] ...SWAP ...<d> ...[<comment>]
TYPE: Single Register
EXAMPLE: LABEL SWAP R45

DEFINITION: Swap the least significant nibble of the operand with the
most significant nibble and copy the result to the operand address.
The SWAP i{nstruction i{s equivalent to four consecutive rotate left
(RL) instructions with the carry status bit set equal to the least
significant bit of the result.

EXECUTION RESULTS: Bits 7:6:5:4 <-> Bits 3:2:1:0

STATUS BITS AFFECTED:
C: set to Bit(0) of result or Bit(4) of original
Z,N: set on result

APPLICATION NOTES: SWAP 1is wused to manipulate four bit operands,
especially during packed BCD operations.

3-68

TRAP TRAP

3.4.50 Trap To Subroutine Instruction (TRAP)

SYNTAX: [<label>] ...TRAP ...<n> ...[<comment>]
TYPE: Special
EXAMPLE: LABEL TRAP 15

DEFINITION: The operand <n> {s a trap number which identifies a
location in the Trap Vector Table, addresses >FFDO to >FFFF in memory.
The contents of the two-byte vector location form a 16-bit trap vector
to which a subroutine call is performed.

[]

STATUS BITS AFFECTED: none

EXECUTION RESULTS: SP + 1 -> SP
PC MSByte -> stack
SP + 1 -> SP

PC LSByte -> stack
Entry vector -> PC

APPLICATION NOTES: TRAP 1{s an efficient way to invoke a subroutine.
The uppermost block of memory is the Trap Vector Table, and contains
as many subroutine addresses as available traps for the TMS7000 family
member. The subroutine addresses are stored like any other address in
memory, with the least significant byte in the higher-addressed
location, as shown below.

TRAP VECTOR TABLE

>FFFF | TRAP 0 Address LSB |}
>FFFE | b MSB |
>FFFD | TRAP 1 Address LSB |
>FFFC | " MSB |
>FFFB | TRAP 2 Address LSB |
>FFFA | " MSB |
>FFE1l | TRAP 15 Address LSB !
>FFEOQ | " MSB |
>FFD1 | TRAP 23 Address LSB |
>FFDO | " MSB |

]

]

3-69

TRAP TRAP

A Trap subroutine address 'TRAPn' may be used as follows:

ORG FFF-2N-1
DATA TRAPn TRAP n SUBROUTINE ADDRESS

Note that TRAP 1, TRAP 2, AND TRAP 3 correspond to the
hardware-invoked i{nterrupts 1,2, and 3 respectively. The
hardware-invoked interrupts, however, push the program counter and the
status register before branching to the interrupt routine, while the
TRAP instruction pushes only the program counter. TRAP 0 will branch
to the same code executed for a system reset.

The number of traps allowed depends on the individual family member.
On the TMS7000 and TMS7020 the maximum number of traps allowed is 24.

3-70

TSTA TSTA

3.4.51 Test A Register Instruction (TSTA)

SYNTAX: [<label>] ...TSTA ...[<comment>]
TYPE: Implied Operand
EXAMPLE: LABEL TSTA TEST A REGISTER
DEFINITION Set the status bits on.the value of the A register
EXECUTION RESULTS: C,N,Z bits set
STATUS BITS AFFECTED:
C: set to '0’

Z,N: set on value in A register

APPLICATION NOTES: This instruction can be used to set the status bits
according to the value in the A register.

3-71

TSTB TSTB

3.4.52 Test B Register Instruction (TSTB)

SYNTAX: [<label>] ...TSTB ...[<comment>]
TYPE: Implied Operand
EXAMPLE: LABEL TSTB TEST B REGISTER
DEFINITION: Set the status bits on the value of the B register
EXECUTION RESULTS: C,N,Z bits set
STATUS BITS AFFECTED:
C: set to 'O’
Z,N: set on value in B register
APPLICATION NOTES: This instruction can be used to set the status bits

according to the value in the B register. It may be used to clear the
carry bit.

3-72

XCHB XCHB

3.4.53 Exchange With B Register Instruction (XCHB)

SYNTAX: [<label>] ...XCHB ...<d> ...[<comment>]
TYPE: Single Register

EXAMPLE: LABEL XCHB A
XCHB R3

DEFINITION: Copy the destination operand to the B register; then copy
the B value to the destination register.

EXECUTION RESULTS: Bits (B) <=> (d)

STATUS BITS AFFECTED:
C: set to 'O’
N,Z: set on original contents of B.

APPLICATION NOTES: XCHB is used to exchange a file register with the B
register without going through an intermediate location. The XCHB
instruction with the B register as the operand is equivalent to the
TSTB instruction.

3-73

XOR XOR

3.4.54 Exclusive Or Instruction (XOR)

SYNTAX: [<label>] ...XOR ...<s>,<d> ...[<comment>]
TYPE: Dual Register
EXAMPLE: LABEL XOR %>98,R125

DEFINITION: Logically exclusive OR +the source operand to the
destination operand and store the result at the destination address.

EXECUTION RESULTS: (s) .XOR. (d) => (d)

STATUS BITS AFFECTED: '
C: set to '0'
N,Z: set on result

APPLICATION NOTES: XOR is used to perform a bit-wise exclusive OR of
the operands. The XOR instruction can be used to complement bits in

the destination operand. Each bit of the 8-bit result the following
truth table:

SOURCE DESTINATION DESTINATION
OPERAND BIT OPERAND BIT RESULT BIT
0 0 0
0 1 1
1 0 1
1 1 0

3-74

XORP KORP

3.4.55 Exclusive Or Peripheral File Register Instruction (XORP)

SYNTAX: [<label>] ...XORP ...<s>,<d> ...[<comment>]
TYPE: Peripheral File
EXAMPLE: LABEL XORP %>01,P9 REVERSE BIT C(0) DIRECTION

DEFINITION: Logically exclusive OR the source operand to the
peripheral file register specified, and write the result to the
peripheral file register.

EXECUTION RESULTS: (s) .XOR. (d) => (d)

STATUS BITS AFFECTED: .
C: set to '0'
N,Z: set on result

APPLICATION NOTES: XORP is used to perform a bit-wise exclusive OR of
the operands. The XORP instruction can be used to complement bits in
the destination PF register. The example above inverts bit 0 of P9,
which 1is the port C data direction register, thus reversing the
directipn of the bit.

3-75

SECTION 4

USER APPLICATION NOTES

4.1 GENERAL

This section provides information and specific examples that
supplement the application notes in the instruction descriptions.
Programming examples are included for those instructions for which the
application notes require additional explanation.

4.2 ARITHMETIC INSTRUCTIONS -

The TMS7000 Instruction Set supports all arithmetic operations, as
well as array indexing, loop control, and bit shifting.

4.2.1 Incrementing Instructions (INC/DAC/ADC)

The TMS7000 dnstruction set supports single and double-precision
incrementing of any file register. These instructions can be used for

arithmetic purposes, for array indexing, or for loop control.

Any file register can be directly incremented using the INC
instruction. For example, the instruction sequence:

INC A
INC R14

increments the contents of both register A and register 14. The INC
instruction can also be used to control a flag value as follows:

* 150 BYTE BUBBLE SORT

FLAG EQuU R2 COUNT

4

SORT CLR FLAG RESET SWAP FLAG
Mov %149 ,B SORT COUNT

LOOP1 LDA @TABLE(B)
CMPA @TABLE-1(B) COMPARE ADJACENT VALUES

JL Loop2 IF LOWER, SKIP
INC FLAG SET DETECT FLAG TO NON-ZERO
PUSH A USE STACK FOR TEMPORARY STORAGE
LDA @TABLE-1(B)
STA @TABLE(B) SWAP OPERANDS
POP A
STA @TABLE-1(B)
LOOP2 EQU $
DINZ B,LOOP1 LOOP UNTIL ALL TABLE IS SWEPT

BTJO %>FF,FLAG,SORT IF SWAP MADE, RESWEEP TABLE

In this bubble sort routine, the INC instruction is used to guarantee
a non-zero value in the FLAG register if an operand swap is made. The
FLAG value is initialized using the CLR instruction. The BTJO
instruction is used to test the FLAG value to determine if a swap has
been made.

A register containing Binary Coded Data (BCD) can be incremented with
the DAC instruction as shown below:

CLRC Clear Carry
DAC %1,R18 Add "1" to register 18
using BCD format

The CLRC instruction is required only if the carry status bit 1is not
already cleared by the preceding instruction execution sequence.

Any file register can be conditionally incremented by a single
instruction using the ADC instruction with a zero value immediate
source operand. For example, the instruction sequence:

INC R19
ADC %0,R18

performs a double precision increment by unconditionally incrementing
register R19 and then conditionally incrementing register R18.

4.2.2 Decrementing Instructions (DEC/DSB/DECD)

The TMS7000 instruction set supports single and double-precision

decrementing of any file register. These instructions can be used for
arithmetic purposes, for array indexing, or for loop control.

Any file register can be directly decremented using the DEC
instruction or conditionally decremented using the SBB instruction.
For example, the instruction sequence:

DEC B
SuB R103,R3
SBB %0 ,A

unconditionally decrements the B register, subtracts register R103
from register R3, and then decrements the A register if a borrow-out
is generated by the subtraction.

A register containing BCD data can be decremented with the DSB
instruction as shown below:

SETC Clear Borrow
DSB8 - %1,8 BCD Decrement

The SETC instruction is required only if the carry status bit is not
already set by the preceding instruction execution sequence. Remember
that the subtraction "borrow-in" is the complement of the carry status
bit.

Any pair of contiguous registers can be decremented using the double
precision DECD instruction. DECD is especially powerful when used in
conjunction with instructions with register indirect adddressing. For
example, the instruction sequence:

* 'TABLE' START OF TABLE OF DATA
POINT EQU R81 TABLE POINTER
START EQU TABLE+1000 TABLE START
MOVD START,POINT INITIALIZE POINTER
Loop EQU $
CMPA *POINT MATCH
JEQ MATCH IF SO, EXIT
DECD POINT NEXT TEST VALUE
JC Loop
NOMTCH
MATCH EQU $

searches a 1000-byte table for an entry matching the contents of the A
register. If a match is found, then register pair R80::R81 points at
the matching table entry. The DECD instruction is used to step the
pointer through the table.

4.2.3 Addition Instructions (ADD/ADC/DAC)

The TMS7000 instruction set supports both single and double-precision
addition for either binary or BCD data.

4-3

The ADD and ADC instructions are used for single and multi-precision
binary addition respectivly. The ADD instruction adds the two
specified operands with a zero value carry-in. The ADC instruction
adds the two operands with a carry-in value equal to the value of the
carry status bit. Thus, the following instruction sequence:

ADD R30,R12C
ADC R29,R119
ADC R28,R118
ADC R27,R117

adds the 32-bit value 1in registers R27-R30 to the 32 bit value in
registers R117-R120. The initial instruction is ADD since no carry-in
is desired. ADC 1{s wused in the next three instructions in order to
ripple a carry through all 32 bits.

The DAC instruction is used to add BCD values. The carry=in value is
equal to the carry status bit value. Consequently, the carry status
bit must be cleared if no carry-in 1is desired. For example, the
following sequence:

MovP P4, A
MOvP P8,B
DAC %>13,8B
DAC %>47,A

adds a BCD constant equal to 4713 to the contents of the A and B
registers. Note that the MOVP instruction automatically clears the
carry status bit thus eliminating the need for a CLRC instruction.

4.2.4 Subtraction Instructions (SUB/SBB)'

The TMS7000 instruction set supports both single and double-precision
subtraction for either binary or BCD data. The SUB and SBB
instructions are used for single and multi-precision binary
subtraction respectively. The SUB instruction adds the two specified
operands with no borrow-in. The SBB instruction uses a borrow-in which
is equal to the complement of the carry status bit. For example, the
following sequence:

SUB R2,R125
SBB R3,Rlz¢
SBB R4,R123

subtracts the 24-bit value in registers R2 through R4 from the 24-bit
value in registers RI125 through R127. Because the borrow in is the
complement of the carry status bit, the following examples clears the
A register:

MOV %l1,A
SBB %0.A

Normally, however, the one-byte 'CLR A' instruction is used to place a
zero value in the A register.

4.2.5 Multiply Instruction (MPY)

The MPY instruction performs an 8-bit by 8-bit multiply with a 16-bit
result that is stored in the A and B registers. The most significant
byte of the result is in A, and the least significant byte in B. The
MPY instruction can also be used for multi-bit right or left shifts as
shown below:

MPY %8,8

This instruction takes the value of B and multiplies it by 8. After
the instruction executes, B contains the previous value, left shifted
3 bits (2**3=8) with zero fill bits. The A register can be considered
to contain the previous value right shifted 5 bits (2**[8-5]=8) with
zero fill bits. Thus, left or right multi-bit shifts can be performed
as shown below:

BITS BITS
IMMEDIATE RIGHT LEFT
MULTIPLIER SHIFTED SHIFTED

.2 7 1

4 6 2

8 5 3

16 4 4

32 3 5

64 2 6
128 1 7

Multi-precision multiplications can be conveniently performed by
breaking the multiplier and multiplicand into scaled 8-bit quantities
as shown below:

4-5

* 16 BIT MPY: XH XL X VECTOR

* X YH YL Y COEFFICIENT

®

* XLYLm XLYL1 1=1sb

* XHYLm XHYL1 m = msb

* XLYHm XLYH1

* + XHYHm XHYH1

]

* RSLT3 RSLT2 RSLT1 RSLTO

;]

XH EQU R2 Higher operand of X

XL EQU R3 Lower operand of X

YH EQU R4 Higher operand of Y

YL EQU RS Lower operand of Y

RSLT3 EQU R6 MSB of the final result

RSLT2 EQU R7

RSLT1 EQU R8

RSLTO EQU R9 LSB of the final result

]

MPY32 CLR ACC2 Clear the present value
CLR ACC3
MPY XL,YL Multiply LSBs
MOV B,RSLTO Store LSB in Result Register O
MOV A,RSLT1 Store MSB in Result Register 1
MPY XH,YL Get XHYL
ADD R1,RSLT1 Add to existing result XLYL
ADC RO,RSLT2 Add carry if present
MPY XL,YH Multiply to get XLYH
ADD R1,RSLT1 Add to existing result XLYL+XHYL
ADC RO,RSLT2 Add to existing results and carry
ADC %0,RSLT3 Add if carry present
MPY XH,YH Multiply MSBs
ADD R1,RSLT2 Add once again to the Result Register
'ADC RO,RSLT3 Do the final add to the Result Register

The 16-bit operands 1in registers R2-R3 and R4-R5 are multiplied to
yield the 32-bit result in registers R6-R9. Note: the A and B
registers are, in general cases, referred to as RO and Rl in order to
emphasize that the dual register addressing mode with A or B as the
source operand is not directly supported (except for MOV instruction).
The RO or Rl address 1is substituted for the A or B register

respectively. The assembler normally, however, automatically performs
this translation.

4.3 DATA MOVEMENT INSTRUCTIONS

The TMS7000 Instruction Set supports instructions which permit simple
data movement, exchange or swapping of register contents, copy
register contents from one continguous register pair to another,
calculations of indexed addresses, transfer peripheral file port
values, and move values to an I/0 port, read and store values, table
look-up, searching, and loop control (of table or block transfers).

4-6

4.3.1 Register Move Instructions (MOV/XCHB/MOVD)

For simple data movement between registers, the MOV, XCHB, and MOVD
instructions are wused. The MOV dinstruction 1is used to copy the
contents of one register into another register or load a register with
an 8-bit immediate value. For example, the instruction sequence:

MOV %87,A
MOV A,R93
MOV R93,R112

results in RO, R93, and R112, each containing the decimal value "87".

The XCHB (exchange with B register) instruction is used to exchange or
swap the contents of the B register and any other register. Thus, the
A and B registers can be exchanged with the instruction:

XCHB A

The MOVD instruction 1is used to copy the contents of any two
contiguous registers into any other register pair, or else load a
16-bit immediate value into a register pair. The higher-numbered
register of the register pair is specified as shown below:

MOVD %>18FA,R4
MOVD R4,R117

In the above example, R3 and R4 are first loaded with immediate values
>18 and >FA respectively. R3 and R4 are then copied into R116 and R117
respectively. The MOVD instructions are often used to initialize or to
copy register pairs to be used in the indirect register addressing
mode. In the following instruction sequence:

MOVD %>F900,R100
LDA *R100

The A register is loaded with the value of memory location >F900.

The MOVD instruction also supports a special "indexed immediate" mode.
This mode adds the B8-bit B register value to a 16-bit immediate
operand and stores the result in a register pair. This 1is equivalent
to calculating an indexed address but in this case the resulting
address is stored rather than used to fetch an operand. For example,
the following examples place the values of >97 and >1E into registers
R17 and R18 respectively:

MoV %20,B
MOVD %>971E(B),R18

4-7

4.3.2 1/0 Move Instruction (MOVP)

The peripheral move (MOVP) instruction is used to transfer a
peripheral file port value to or from the A or B register, or move an
immediate value to an I/0 port. There are consequently five different
MOVP address combinations as shown below:

MovP P4, A INPUT I/0 TO A
MOVP P4,B INPUT I/0 TO B
MOvVP A,P6 OUTPUT A TO 1/0
MovP B8,P6 OUTPUT B TO 1/0
MOvP %>13,P6 OUTPUT IMMEDIATE TO I/0

A peripheral file port is read during ALL peripheral file instructions
including output operations (e.g., "“MOVP A,P4"). If this read is
undesirable as a result of hardware concerns, then a (store A)STA
instruction should be wused with the memory-mapped address of the
peripheral port.

4.3.3 Load and Store Instructions (LDA/STA/DJNZ)

The LOAD A register (LDA) and STORE A register (STA) instructions are
used to read or store values anywhere in the full 64K byte address
space. There are three extended addressing modes: direct, indirect,
and indexed. Direct addressing provides an immediate 16-bit address
which directly points to any byte in the TMS7000 memory space. The
following instructions result in the transfer of the byte in location
>F819 to location >7193 and the A register.

LABEL EQU >F819
LDA @LABEL
STA ©>7193

Indexed addressing also uses a 16-bit direct address. The effective
16-bit memory address, however, is formed by adding the 8-bit B
register value to the 16-bit direct address. Thus, the following
instructions copy the A register value into memory location >1927:

MoV %>27,8
STA @>1900(8)

Indexed addressing is normally used in table lookup, transfer, or
search algorithms The 8-bit B register index value provides a range of
up to 256 bytes, which is sufficient for most applications. Register
indirect addressing, however, is available for applications requiring
a larger table size.

A table lookup can be performed by simply placing the table index into
the B register and using an indexed LDA instruction as shown below:

MOVP P37,8 INPUT B REG
LDA @TABLE(B) LOOKUP VALUE B

4-8

The DJINZ instruction is especially powerful 1in table or block
transfers. This 1loop control instruction decrements the specified
register and transfers control if the result is non-zero. Thus, the
table index can be stepped with automatic looping until the transfer
is completed. For example, an 80-byte block transfer is performed by
the following sequence:

MOV %80,8

LooP LDA @SRC-1(B)
STA @DEST-1(B)
DJNZ B,LOOP

Table searches are efficiently performed through the use of the
compare A register extended (CMPA) instruction. In the following
example, a 150-byte table 1is searched. for a match with a 6-byte
string:

SEARCH MoV %150+1,R2 TABLE LENGTH = 150 bytes

LOOP1 MOV %6,8 STRING LENGTH = 6 bytes
LooP2 XCHB R2 SWAP POINTERS, LONG STRING IN B
DEC B TABLE END? IF SO, NO MATCH FOUND
* JZ NOFIND
LDA OTABLE-1(B) LOAD TEST CHARACTER
XCHB R2 SWAP POINTERS, STRNG POINTER IN B
CMPA @STRING-1(B) MATCH?
JNE LOOP1 IF NOT, RESET STRING PTR.
DJNZ 8,L00P2 ELSE TEST NEXT CHARACTER
MATCH EQU $ MATCH FOUND
»®
NOFIND EQU $ NO MATCH FOUND

The indexed addressing mode is used in the above example and has the
capability to search a 256 byte string if necessary. The B Register
alternates between a pointer into the six-byte test string and a
pointer in to the longer table string.

Register indirect addressing is normally used when the 256-byte
indexing range is not adequate. For example, a 1000-byte table move is
performed in the following example:

MOVD %1000,R6
MOVD %SRC+999 R4
MOVD %DEST+999,R6

Loop LDA *R4
DECD R4
STA *R6
DECD R6

DJNZ RZ,LOOP
DJNZ 8,L00P

4-9

4.4 LOGICAL INSTRUCTIONS

The TMS7000 instruction set provides powerful and flexible register
and I/0 logical bit manipulation and test support.

4.4.1 Register Logical Instructions (INV/XOR/OR/AND)

The 1invert (INV), exclusive OR (XOR), AND, and OR instructions are
used for register logical or Boolean bit manipulation. The bit test
and jump instructions (BTJO,BTJZ) provide efficient and flexible
single or multi-bit testing.

Any register can be complemented via the INV instruction. Each bit is
replaced with its boolean NOT thus resulting in a one's compliement of
the register. Individual bits may be complemented with the XOR
instruction as shown below:

XOR %>81,R24

In this example, the most significant and least significant bits of
R24 are complemented since the immediate operand has "1" bits in these
bit positions. The remaining bits of R24 are unaffected since the
immediate operand has "O" bits in the corresponding bit positions. The
XOR bit mask source can be specified to be a register operand as well
as an immediate operand. In the following example, the contents of R24

are selectively complemented after a table lookup to find the desired
bit made:

MovP P6,B
LDA @TABLE(B)
XOR RO,R24

Note the use of RO to specify the A register in the final instruction.

The AND and OR instructions can be used to clear or to set selected
bits in a register. The instruction sequence:

BITO EQU >01
BITé EQU >40
AND %BITO,A
OR %BITO+BIT6,B

clears the least significant bit (Bit 0) of the register A and sets
bit 6 and bit 0 of the B register.

The BTJO and BTJZ instructions provide register single or multiple bit
test capability. The Bit Test and Jump if One (BTJO) instruction tests
for "1" bits in the destination operand. A relative jump is made if at
Teast one such match is found. The BTJO instruction can be thought of
as a logical AND instruction in which the relative jump 1is taken if
the result 1is non-zero. The result, however, 1is not stored thus
leaving the destination operand unchanged. The instruction:

4-10

BTJO %>FF,A,NZERO

causes a relative jump to location NZERO if the A register contains at
least one "1" bit. The instruction sequence:

BIT4 EQU >10
BTJO %BIT4,R19,>FD19

results in a relative jump to location >FD19 if bit 4 of R19 is a "1"
independent of other R19 bit values.

The Bit Test and Jump if zero (BTJZ) instruction is similar to BTJO
except that it tests for "0" bits in the destination operand. BTJZ
test for "0" bits in the destination corresponding to "1" bits in the
source operand and jumps if at least one match occurs. For example,
the instruction:

BTJZ %>0F ,B,ZEROS

results in a conditional Jjump to location ZEROS if any bit in the
least significant nibble (bits 0-3) of the B register is a "QO".

4.4.2 1/0 Logical Instructions (XORP/ANDP/ORP/BJOP/BTJZP)

The exclusive OR (XORP), ANDP, ORP, BTJOP, and BTJZP provide 1/0
Boolean 1logical support. The Boolean bit mask can be specified to be
either an immediate operand or else derived from the A or B registers.
The destination operand is any one of the 256 peripheral file 1/0
ports.

The XORP, ANDP, and ORP allow any bit in an I/0 port to be toggled,
cleared, or set by a single instruction. For example, the following
instruction sequence toggles bit 7 of PORTB, clears bit 0 of PORTC,
sets bits 1 and 6 of PORTC, and then restores bit 7 of PORTB to its
original value:

BITO EQU >01
BIT1 EQU >02
BIT6 EQU >40
BIT7 EQU >80
CPORT EQU P8
BPORT EQU P6
XOR %B1T7,BPORT
AND '%BITO,CPORT
OR %BIT1+BIT6,CPORT
XOR %BIT7,BPORT

The BTJOP and BTJZP instructions are similar to the BTJO and BTJZ
instructions. They provide flexible and efficient I/0 bit testing. For
example, the instruction:

BTJZP %>0F,P18,8

4-11

loops on itself as long as any bit in the lower nibble (bits 3-0) of
170 port P18 is a "0". The Bit Test Jump instructions can also be used
to test a single I/0 bit as shown below:

BITS EQU >20
BTJOP %BITS,PO,>FEA7

Execution of the above code causes a conditional jump to location
>FEA7 if bit 5 of 1/0 port PO is a "1".

The conditional jump instructions can also be used to test for I/0
values. For example, the following instruction sequence:

AND A,P200
JZ LABEL

logically ANDs the value of the A register to I/0 port P200 and then
jumps to location LABEL 1f the resulting PZOO value is zero. The Jump
if Negative (JN) and Jump if Positive or Zero (JPZ) instructions can
also be used if the most significant bit (i.e., sign bit as bit 7) is
to be tested. For example, the instructions:

OR 8,P97
JPZ LABEL1

Or the contents of the B register to 1/0 port P97 and jump if bit 7 of
the result is a "1" bit.

4.5 BRANCH INSTRUCTION (BR)

The Branch instruction (BR) 1is wused to unconditionally transfer
program control to any desired location in the 64K-byte memory space.
The BR instruction supports direct, indexed, and indirect addressing.
Direct addressing is used for simple "GOTO" programming. Indexed
addressing allows table jumps. In the example below, indexed
addressing is used to access a relative jump table:

MOVP P4,B
RL B
BR @CTABLE (B)

CTABLE JMP CASEO IF P4=0
JMP CASE1 IF Pa=1

JMP CASE2 IF P4=2

This 1indexed branch technique is similar to the Pascal “CASE"
statement. Program control 1{is transferred to location CASEQD if the
input is '0', to CASEl if it is a 'l', etc. Up to 128 cases can be

4-12

implemented. The case table entries can, of course, be longer entries
simply by adjusting the B register index to a different alignment
value.

The branch instruction can also be used with indirect addressing in
order to branch to a computed address. For example, suppose that a
computed branch address has been constructed in R19 and R20. The
desired program control transfer is made by:

BR *R20

4.6 SUBROUTINE INSTRUCTIONS (CALL/TRAP/RETS)

TMS7000 Instruction Set provides several simple and flexible means of
invoking and transferring control between subroutines, and for
implementing complex algorithms.

The TMS7000 has two means of invoking subroutines: CALL and TRAP. Both
instructions save the current value of the program counter on the
stack before transferring control to the subroutine. Since the return
address is stored on the stack, subroutines can be easily nested. The
two instructions differ only in the way 1in which the subroutine
address is determined. :

The CALL instruction uses direct, indirect, or indexed addressing to
specify the subroutine address. This permits both simple calls with a
fully specified address or more complex calls with a calculated
address. Thus, a table driven subroutine call similar to the branch
“"CASE" statement can be implemented with indexed addressing.

The TRAP instruction is the most efficient way to invoke a subroutine.
There can be up to twenty-four TRAP instructions. The precise number
supported 1is specified in the appropriate TMS7000 family member data
manual. For example, the TMS7000 and TMS7020 both support twenty-four
different TRAPs.

An individual subroutine address is associated with each of the TRAPs.
These addresses are contained in a TRAP vector table which is in the
upper-most block of memory. Each vector table entry contains the
ls;bit starting address of the corresponding subroutine as shown
below.

4-13

TRAP 4

ORG >FFF8 TRAP 4 VECTOR TABLE ENTRY
DATA BITTEST TRAP 4 SUBROUTINE ADDRESS

The trap subroutine address may be placed into the table as shown
below:

ORG >FFFF=2N=-1
DATA TRAPn TRAP n subroutine address

Thus, for example, the subroutine starting at location BITTEST can be
called either by a CALL instruction:

CALL @BITTEST

or by a TRAP instruction.

In each instance, a CALL requires three bytes: the opcode and two
subroutine address bytes. If the subroutine 1is required at six
locations, eighteen program bytes are used in total to implement the
CALLs. The first use of a TRAP instruction also requires three bytes:
the opcode and the two bytes in the vector table. However, only the
opcode byte is required for successive use of the same TRAP. Thus, six

uses of a TRAP require eight bytes (ten less than required by the
equivalent CALLs).

The Return from Subroutine (RETS) instruction restores program control
to the instruction immediately following the CALL or TRAP instruction.
The return address is "POPped" off the stack and placed into the
program counter. The stack 1is restored to its original state. If

desired, the subroutine return can be aborted as demonstrated in the
following code:

Jc ERROR DETECTED ERROR%
RETS IF NOT, NORMAL RETURN
ERROR POP ST ELSE POP OFF RETURN

POP ST ADDRESS

In this example, the return address is removed from the stack since it
is no longer desired.

The value of a file register and the status register can be pushed on
or POPped from the stack. This is often done to pass data between
routines or to temporarily store data during loops. For example, the
following instruction sequence restores the value of the A register to

4-14

its value before a table lookup instruction occurs:

PUSH A

MOVP P19,B
LDA @TABLE(B)
Movp A,P20

POP A

4.7 THE STACK

The stack is located in RAM and can be tailored to the specific needs
of the user. One powerful application of the stack 1is the
establishment of tables. For example, the following program
i1lustrates a dispatch table with an Interpretive Program Counter
(IPC). An IPC is used in some high-level languages, such as Pascal, to
give the proper execution sequence. The IPC can be contained in any
register, and it points to an interpretive pseudo code (PCODE) byte
that in turn specifies one of 256 dispatch routines. The overall
effect of this function is that a program can execute one of a large
number of different routines, depending on the single value stored in
a register. Two separate 256-byte sections are required for the high
and low address bytes of each dispatch routine. The first entry of
each section (ROVO) corresponds to PCODE=0, and the second entry
(ROV1) corresponds to PCODE=1, etc.

IPC EQU R3 INTERPRETIVE PROGRAM COUNTER
LDA *1PC GET INPUT CODE. RANGE = 0-255
DECD IPC POINT TO NEXT INPUT CODE
MOV A,B PCODE INDEX REGISTER
LDA @DTABLE(B) LOOKUP ADDRESS MSB
PUSH A PUT MSB ON STACK
LDA @DTABLE+256(B) LOOKUP ADDRESS LSB
PUSH A PUT LSB ON STACK
RETS JUMP TO ADDRESS ON THE STACK
. .
DTABLE BYTE ROV0/256 BEGINNING OF MSB TABLE
BYTE ROV1/256
BYTE ROV255/256
» BEGINNING OF LSB TABLE. WARNING
BYTE ROVO MESSAGES MAY APPEAR HERE, BUT
BYTE ROV1 THEY DO NOT AFFECT RESULTS.
BYTE ROV255

It should be noted that the assembler expressions have 16-bit values.

4-15

For those 1{nstructions requiring an 8-bit operand, the expression is
truncated to the least significant eight bits. A warning message may
result from this truncation, but the value will be correct. Thus, the
following instructions place byte values >AA, >55, >55 at memory
locations >8000, >8001, and >8002 respectively:

AASS LABEL EQU >AASS
8000 AORG 80C0
8000 AASS DATA LABEL
8002 AA BYTE LABEL LSB only

The most significant byte (MSB) of an expression can be obtained by
dividing the value by 256 as shown below:

AASS LABEL EQU >AAS5
8000 AAS5 AORG 8000
8000 AA DATA LABEL
- BYTE LABEL/256 MSB only

In this example, byte values >AA, >55, >AA are placed at memory
locations 8000, 8001, and 8002.

4.8 INTERRUPTS

The number of interrupts for an TMS7000 family device is specified by
the appropriate device data manual. The TMS7020, for example, has
three interrupts in addition to RESET.

RESET and the 1interrupts are vectored through predetermined memory
locations. RESET uses the "TRAP 0" vector which is stored at memory
locations >FFFE->FFFF. The interrupts also use the TRAP vector table
with INT1 wusing the "TRAP 1" vector, etc. Thus, the "TRAP 2"
instruction involves the same code as the interrupt INT2 instruction.

The interrupts differ from the TRAPs, however, in that they also push
the Status Register value on the stack, clear the interrupt enable bit
in the Status Register, and reset the corresponding interrupt flag
bit. Thus, the EINT instruction must be used if nested interrupts are
desired. The return from interrupt (RETI) instruction restores the
Status Register and the Program Counter, re-enabling interrupts.

Many interrupt service routines alter the status of key registers such
as the A and B registers. These routines should use the stack to
restore the machine state to the desired value. For example, the
following interrupt routine performs an I/0 driven table lookup. The A
and B registers are used, but their values are saved and restored:

4-16

INT PUSH A STORE A AND B REGISTERS ON STK

PUSH B8

MOvP P4,B GET INPUT FROM A PORT

LDA @LOOKUP(B) DO TABLE LOOKUP TO GET NEW VAL

Movp A,P6 OUTPUT NEW VALUE ON B PORT

POP B RESTORE A AND B REGISTER IN

POP A THE REVERSE ORDER THAT THEY
WERE PUT ON THE STACK

RETI RETURN TO MAIN PROGRAM

®

Normally, all interrupts are disabled during an interrupt service
routine. If an interrupt needs to be able to occur while the processor
is servicing another interrupt, then the interrupt enable bit 1in the
Status Register should be set to a 1. The number of interrupts that
can be serviced at any one time is determined by the size of the
stack, which 1s always a maximum of 128 bytes because the stack
resides in the register file. Since other registers and data will most
likely share the same space, the stack size is usually much less.

When doing nested interrupts, great care must be taken to avoid
corrupting the data in the registers used by the most recent routine.
If INT1 interrupts an ongoing INT1 service routine, then the registers
used by the INT1 routine are used in two different contexts. If
provisions are not made for these types of sftuations, such as
disabling all interrupts at critical times, then data errors will
result.

Sometimes a program will have distinct parts which require different
responses to the same interrupt call. Since the interrupt vector is
always set in nonchangeable ROM, another method must be used to change
the vector for each part. One way of accomplishing this is to store a
second vector in a RAM register pair and then 1let the first
instruction in the interrupt routine execute an indirect branch on
that register. The example below shows how this is done:

4-17

* PROGRAM TO DEMONSTRATE MULTIPLE INTERRUPT SERVICE ROUTINE
* LOCATIONS

* (Main Program)
MOVD %SERVIC,R127 PUT INT1 SERVICE ROUTINE IN
EINT REGISTER, TURN ON AND WAIT
IDLE FOR INTERRUPTS.

MOVD %SERVI2,R127 CHANGE INT1 ROUTINE TO SERV12

(First INT1 Service Routine)

SERVIC PUSH A BEGIN INT1 SERVICE ROUTINE
PUSH B FOR THIS PART OF PROGRAM.
. cee
* ’ (Second INT1 Service Routine)
SERVI2 PUSH A BEGIN ANOTHER INT1 SERVICE
DEC R4) ROUTINE.
. ces
INT1 BR *R127 THE ENTIRE INT1 SERVICE
* ROUTINE TRANSFERS CONTROL
* TO THE ADDRESS IN R126 AND
* R127.
o (Interrupt Vector Table At End Of Memory)
AORG >FFFC
DATA INT1 ADDR OF INT1 SERVICE ROUTINE
DATA >F806 RESET VECTOR START OF PROGRAM

The next routine is an example of a bubble-type sorting program. The
routine demonstrates the utility of Indexed Mode addressing. Table up
to 256 bytes in length can be sorted using the routine. Longer tables
can be sorted using the Indirect Addressing Mode.

* 150-BYTE BUBBLE SORT

»

FLAG SWAP HAD BEEN MADE FLAG
SORT CLR FLAG RESET SWAP FLAG
MOV %149,B NUMBER OF BYTES TO BE SORTED
LOOP1 LDA @TABLE(B) LOOK AT ENTRY IN TABLE
CMPA @TABLE-1(B) LOOK AT NEXT LOWER BYTE
JL LooP2 If LOWER, SKIP TO NEXT VALUE
INC FLAG ENTRY IS NOT LOWER; SET SWAP FLAG
PUSH A STORE UPPER BYTE
LDA @TABLE-1(B) TAKE LOWER BYTE
STA @TABLE(B) PUT WHERE UPPER BYTE WAS
POP A GET OLD UPPER BYTE
STA @TABLE-1(B) PUT WHERE LOWER BYTE WAS
LoorP2 OJNZ B,LOOP1 LOOP TIL ALL TABLE IS EXAMINED
BTJO %>FF,FLAG, SORT IF SWAP MADE, THEN RESWEEP TABLE;

4-18

IF NO SWAP MADE, TABLE DONE.

SECTION 5

ASSEMBLER DIRECTIVES

5.1 GENERAL

The TMS7000 assembly language is processed by the Macro Assembler,
executing in a host computer. This section describes the assembler and
its directives.

5.2 THE MACRO ASSEMBLER

The Macro Assembler generates object code for the TMS7000
microcomputer. The Assembler processes source code twice. On the first
pass, the assembler maintains the Location Counter, builds a symbol
table, and produces a copy of the source code for processing during
the second pass. On the second pass, the assembler reads the copy of
the source and assembles the object code using the operation codes and
the symbol table produced during the first pass.

5.3 ASSEMBLER DIRECTIVES
Assembler directives and machine {instructions in source programs
supply data to be included in the program and control the assembly
process. The assembler supports a number of directives in the
following categories:
. = Directives that affect the location counter
- Directives that affect the assembler output
- Directives that initialize constants

= Directives that provide linkage between programs

- Miscellaneous directives.

5.3.1 Directives That Affect The Location Counter

As an assembler reads the source statements of a program, a component
of the assembler called the Location Counter advances to correspond to
the memory locations assigned to the resulting object code. The first
nine of the assembler directives listed below initialize the Location
Counter and define the value as relocatable, absolute, or dummy. The
last three directives advance the Location Counter to provide a block
or an area of memory for the object code to follow. The word boundary

5-1

directive also ensures a word boundary (even address). The directives
are listed in Table 5-1. The following paragraphs provide a detailed
discussion of each.

TABLE 5-1 - ASSEMBLER DIRECTIVES THAT AFFECT THE LOCATION COUNTER

| | |
| DIRECTIVES | MNEMONICS !
| ! !
* Absolute origin	AORG
™ Relocatable origin	RORG
! * Dummy origin] DORG !	
™ Data segment	DSEG !
* Data segment end	DEND !
* Common segment l. CSEG !	
* Common segment end	CEND !
! * Program segment	- PSEG !
* Program segment end	PEND !
! * Block starting with symbol ! BSS !
! ™ Block ending with symbol ! BES !
! ! |

5.3.1.1. Absolute Origin Directive (AORG): AORG places a value in
the location counter and defines the succeeding locations as absolute.
Use of the label field is optional. When a label {is used, it 1s
assigned the value that the directive places in the location counter.
The command field contains AORG. The operand field is optional, but
when used, contains a well-defined expression (wd-exp). The assembler
places the value of the well-defined expression 1in the location
counter. The comment field is optional and may be used only when the
operand field 1is also used. When no AORG directive is entered, no
absolute addresses are included in the object program. When the
operand field is not used, the length of all preceding absolute code
replaces the value of the location counter.

SYNTAX:
[<1abel>]...AORG...[<wd-exp>...[<comment>]]
EXAMPLE:
AORG >1000+X
Symbol X must be absolute and must have been previously defined. If X
has a value of 6, the 1location counter is set to >1006" by this

directive. Had a label been included, the 1label would have been
assigned the value >1006.

5.3.1.2 Relocatable Origin Directive (RORG):

RORG places a value in the location counter; if encountered in

absolute code, it also defines succeeding locations as program-relocatable
When a label is used, it is assigned the value that the directive

places into the location counter. The command field contains RORG.

The operand field is optional; when it is used, the operand must

be an absolute or relocatable expression (exp) that contains only
previously defined symbols. The comment field may be used only when

the operand field is used.

SYNTAX:
[<1abel>] ...RORG ...[<exp] ...[<comment>]

When the operand field is not used, the length of the program segment,
data segment, or specific common segment of a program replaces the
value of the location counter. For a given relocation type X (data-,
common-, or program-relocatable), the 1length of the X-relocatable
segment at any time during an assembly 1is either of the following
values:

- The maximum value the location counter has ever attained
as a result of the assembly of any preceding block of
X-relocatable code

- Zero, if no X-relocatable code has been ’previously
assembled

Since the location counter begins at zero, the length of a segment and
the next available address within that segment are identical.

If the RORG directive appears in absolute or program-relocatable code
and the operand field is not wused, the location counter value is
replaced by the current maximum length of the program segment of that
program. If the directive appears in data-relocatable code without an
operand, the location counter value is replaced by the maximum length
of the data segment. Likewise, in common-relocatable code, the RORG
directive without an operand causes the maximum 1length of the
appropriate common segment to be loaded into the location counter.

When the operand field is used, the operand must be an absolute or
relocatable expression (exp) that contains only previously defined
symbols. If the directive is encountered in absolute code, a
relocatable operand must be program-relocatable; in relocatable code,
the relocation type of the operand must match that of the current
location counter. When it appears in absolute code, the RORG directive
changes the location counter to program-relocatable and replaces its
value with the operand value. In relocatable code, the operand value
replaces the current location counter value, and the relocation type
of the location counter remains unchanged.

EXAMPLE:
RORG $-20 OVERLAY TEN WORDS

5-3

The $ symbol refers to the location following the preceding
relocatable location of the program. This has the effect of backing up
the location counter by ten words. The 1instructions and directives
following the RORG directive replace the ten previously assembled
words of relocatable code, permitting correction of the program
without removing source records. If a label had been included, the
label would have been assigned the value placed in the location
counter.

SEG2 RORG

The location counter contents depend upon preceding source statements.
Assume that after defining data for a program that occupied >44 bytes,
an AORG directive 1initiated an absolute block of code. The absolute
block is followed by the RORG directive from the preceding example.
This places >0044 1{in the location counter and defines the location
counter as relocatable. Symbol SEG2 is a relocatable value, >0044. The
RORG directive from the above example would have no effect except at
the end of an absolute block or a dummy block.

5.3.1.3 Oummy Origin Directive (DORG): DORG places a value in the
location counter and defines the succeeding locations as a dummy block
or section. When assembling a dummy section, the assembler does not
generate object code but operates normally in all other respects. The
result {s that the symbols that describe the 1layout of the dummy
section are available to the assembler during assembly of the
remainder of the program. The label ts assigned the value that the
directive places in the location counter. The operation field contains
OORG. The operand field contains an expression <exp> which may be
efither absolute or relocatable. Any symbol in the expression must have
been previously defined.

SYNTAX:

[<label>] ...DORG ...<exp> ...[<comment>]

When the operand field is absolute, the location counter is assigned the
absolute value. When the operand is relocatable, the location counter
is assigned the relocatable value and the same relocation type as the
operand. When this occurs, space is reserved in the section that

has that relocation type.

EXAMPLE:
OORG 0

The effect of this directive is to cause the assembler to assign
values relative to the start of the dummy section to the labels within
the dummy section. The example directive is appropriate to define a
data structure. The executable portion of the module (following a RORG
directive) should use the labels of the dummy section as relative
addresses. In this manner, the data is available to the procedure

5-4

regardless of the memory area into which the data is loaded.
EXAMPLE:
RORG O

(code as desired)
DORG §

(data segment)
END

The example of the DORG directive is appropriate for the executable
portion (procedure division) of a procedure that is common to more
than one task. The code corresponding to the dummy section must be
assembled in another program module. In this manner, separate data
portions (dummy sections) are available to the procedure portion.

The DORG directive may also be used with data-relocatable or
common-relocatable operands to specify dummy data or common segments.
The following example il]ustr;tes this usage:

CSEG 'COM1'

DORG $ "$" HAS A COMMON-RELOCATABLE VALUE

LAB]1 DATA §
MASK DATA >F000

CEND

In the example, no object code is generated to initialize the common
segment COM1, but space is reserved and all common-relocatable labels
describing the structure of the common block (including LAB1 and MASK)
are available for use throughout the program.

5.3.1.4 Block Starting With Symbol Directive (BSS): BSS advances the
location counter by the value of the well-defined expression (wd-exp)
in the operand field. Use of the label field is optional. When used, a
label s assigned the value of the location of the first byte in the
block. The operation field contains BSS. The operand field contains a

5-5

well-defined expression that represents the number of bytes to be
added to the location counter. The comment field 1s optional.

SYNTAX:
[<1abel>] ...BSS ...<wd-exp> [<comment>]
EXAMPLE:
BUFF1 BSS 80 CARD INPUT BUFFER

fhis directive reserves an 80-byte buffer at location BUFFI.

5.3.1.5 Block Ending With Symbol Directive (BES): BES advances the
location counter by the value in the operand field. Use of the label
field is optional. When used, a label is-assigned the value of the
location following the block. The operation field contains BES. The
operand field contains a well-defined expression that represents the
number of bytes to be added to the location counter. The comment field
is optional.

SYNTAX:

[<1abel>] ...BES ...<wd-exp> ...[<comment>]
The following example shows a BES directive:

BUF#Z BES >10

The directive reserves a 16-byte buffer. Had the location counter
contained >100 when the assembler processed this directive, BUFF2
would have been assigned the value >110.

5.3.1.6 Even Boundary Directive (EVEN): EVEN places the location
counter on the next word boundary (even byte address). When the
location counter is already on an even boundary, the location counter
is not altered. Use of the label field is optional. When used, a label
is assigned the value in the location counter after the directive is
processed. The command field contains EVEN. The operand field is not
used, and the comment field is optional. SYNTAX:

[<label>] ...EVEN ...[<comment>]
EXAMPLE:

WRF1 EVEN

The directive assures that the location counter contains an even

boundary address and assigns the location counter address to label
WRF1.

5-6

5.3.1.7 Data Segment Directive (DSEG): DSEG places a value in the
location counter and defines succeeding locations as data-relocatable.
Use of the 1label field is optional. When a label is used, it is
assigned the data-relocatable value that the directive places 1in the
location counter. The command field contains DSEG. The operand field
is not used, and the comment field is optional.

SYNTAX:
[<label>] ...DSEG ...[<comment>]

Initially, the location counter is set to zero. A RORG directive may
be used to adjust the location counter values.

The DSEG directive defines the beginning of a block of
data-relocatable code. The block is normally terminated with a DEND
directive. Ifeseveral such blocks appear throughout the program, they
comprise the data segment of the program. The entire data segment may
be relocated independently of the program segment at link-edit time.
This provides a convenient means of separating modifiable data from
executable code.

In addition to the DEND directive, the PSEG, CSEG, AORG, and END also
properly terminate the definition of a block of data-relocatable code.
The PSEG directive, like DEND, indicates that succeeding locations are
programyrelocatable. The CSEG and AORG directives effectively
terminate the data segment by beginning a common segment (CSEG) or an
absolute segment (AORG). The END directive terminates the data segment
as well as the program.

EXAMPLE:
RAM DSEG START OF DATA AREA

;Data-re1ocatab1e code>

ERAM DEND
LRAM EQU ERAM-RAM

The block of code between the DSEG and DEND directives s
data-relocatable. RAM 1is the symbolic address of the first word of
this block; ERAM is the data-relocatable byte address of the 1location

following the code block. The value of the symbol LRAM is the length
in bytes of the block.

5-7

5.3.1.8 Data Segment End Directive (DEND): DEND terminates the
definition of a block of data-relocatable code by placing a value in
the location counter and defining succeeding locations as
program-relocatable. Use of the label field is optional. When used, a
label 1is assigned the value of the Tlocation counter prior to
modification. The command field contains DEND. The operand field is
not used, and the comment field is optional. As a result of this
directive, the location counter is set to one of these values:

- The maximum value attained by the location counter as a
result of the assembly of any preceding block of
program-relocatable code.

- Zero, 1{f no program-relocatable code has been previously
a§semb1ed.

If encountered in common-relocatable or program-relocatable code, DEND
functions as a CEND or PEND, and a warning message 1is d{ssued. Like
CEND and PEND, it is invalid when used in absolute code.

SYNTAX:

[<data>]DEND ...[<comment>]

5.3.1.9 Common Segment Directive (CSEG): CSEG places a value in the
location counter and defines succeeding locations as
common-relocatable (i.e., relocatable with respect to a common
segment). Use of the label field is optional. When used, a label is
assigned the value placed by the directive in the location counter.
The operation field contains CSEG, and the operand field is optional.
The comment field may only be used when the operand field 1s used.

If the operand field 1s not used, the CSEG directive defines the
beginning of (or continuation of) the blank common segment of the
program. When used, the operand field contains a character string of
up to six characters enclosed in quotes. (If the string length exceeds
six characters, the assembler prints a truncation error message and
retains the first six characters of the string.) If this string has
not previously appeared as the operand of a CSEG directive, the
assembler associates a new relocation section number with the operand,
sets the location counter to zero, and defines succeeding locations as
relocatable with respect to the new relocatable section. When the
operand string has been previously used in a CSEG, the succeeding code
represents a continuation of the particular common segment associated
with the operand. The 1location counter is restored to the maximum
value attained during the previous assembly of any portion of that
particular common segment. The second operand, <exp>, specifies the
memory alignment for the beginning of the Section.

SYNTAX:

[<label>] ...CSEG ...['<string>' [<comment>]]

5-8

The following directives will properly terminate the definition of a
block of common-relocatable code: CEND, PSEG, DSEG, AORG, and END. The
block 1is normally terminated with a CEND directive. The PSEG
directive, 1like CEND, 1indicates that succeeding Jlocations are
program-relocatable. The DSEG and AORG directives effectively
terminate the common segment by beginning a data segment or an
absolute segment. The END directive terminates the common segment as
well as the program.

The CSEG directive permits the construction and definition of
independently relocatable segments of data that several programs may
access or reference at execution time. The segments are the assembly
language counterparts of FORTRAN blank COMMON and labeled COMMON, and
in fact, permit assembly language programs to communicate with FORTRAN
programs which use COMMON. Information placed in the .object code by
the assembler permits the link editor to relocate all common segments
independently and make appropriate adjustments to all adresses that
reference locations within common segments. Locations within a
particular common segment may be referenced by several different
programs {if each program contains a CSEG directive with the same
operand or no operand.

The following example illustrates the use of both the CSEG and the
CEND directives:

COMIA CSEG 'ONE'

<Common-relocatable section, type 'ONE'>

CEND
COM2A CSEG 'TWO'

<Comm8n-relocatab1e section, type 'TWO'>

coM28 CEND
COMIC CSEG 'ONE'

<Comm6n-re1ocatab1e section, type 'ONE'>

coMlB CEND

COMIL DATA COM1B-COMIA LENGTH OF SEGMENT 'ONE'
COM2L DATA COM2B-COM2A LENGTH OF SEGMENT 'TwO'

The three blocks of code between the CSEG and the CEND directives are
common-relocatable. The first and third blocks are relocatable with
respect to one common relocation type; the second is relocatable with
respect to another. The first and third blocks comprise the common
segment 'ONE'; the value of the symbol COMIL is the length in bytes of
this segment. The symbol COM2A is the symbolic address of the first
word of the first word of common segment 'TWO'; COM2B is the
common-relocatable (type 'TWO') byte address of the location following
the segment. (Note that the symbols COM2B and COM1C are of different
relocation types and possibly different values.) The value of the
symbol COM2L is the length in bytes of common segment 'TWO'.

5.3.1.10 Common Segment End Directive (CEND): CEND terminates the
definition of a block of common-relocatable code by placing a value in
the 1location counter and defining succeeding locations as
program-relocatable. Use of the label field is optional. When used, a
label 1is assigned the value of the 1location counter prior to
modification. The command field contains CEND. The operand field is
not used, and the comment field is optional. As a result of this
directive, the location counter is set to one of the following values:

5-10

- The maximum value the location counter has ever attained
as a result of the assembly of any preceding block of
program-relocatable code.

- Zero, 1f no program-relocatable code had been previously
assembled.

SYNTAX:
[<label>] ...CEND ...[<comment>]

If encountered in data- or program-relocatable code, this directive
functions as a DEND or PEND. As is the case for DEND and PEND, CEND is
invalid when used in absolute code. See Subsection 5.3.1.9 for an
example of the use of the CEND directive.

5.3.1.11 Program Segment Directive (PSEG): PSEG places a value in
the location counter and defines succeeding 1locations as a
program-relocatable. When used, a label is assigned the value that the
directive places in the location counter. The command field contains
PSEG. The operand field and the comment field 1s optional. The
location counter is set to one of the following values:

- The maximum value the location counter had attained as a
result of the assembly of any preceding block of
program-relocatable code.

= Relocatable zero, if no program-relocatable code had been
previously assembled.

SYNTAX:
[<1abel>] ...PSEG ...[<comment>]

The PSEG directive is provided as the program-segment counterpart to
the DSEG and CSEG directives. Together, the three directives provide a
consistent method of defining the various types of relocatable

segments. The following sequences of directives are functionally
identical:

5-11

SEQUENCE 1 SEQUENCE 2

DSEG DSEG

<6ata-relocatab1e code> <bata-relocatab1e code>

DEND)

CSEG CSEG

<éommon-re1ocatab1e code> <éommon-relocatab1e code>
?

CEND .

PSEG PSEG

<§rogram—relocatab1e code> <§rogram-re1ocatab1e code>

PEND

END END

5.3.1.12 Program Segment End Directive (PEND): The PEND directive is
provided as the program-segment counterpart to the PEND and CEND
directives. Like those directives, it places a value in the 1location
counter and defines succeeding 1locations as program-relocatable
(however, since PEND properly appears only 1in program-relocatable
code, the relocation type of succeeding locations remains unchanged).
Use of the label field is optional. When used, a label is assigned the
value of the location counter prior to modification. The command field
contains PEND. The operand field is not used, and the comment field is
optional. The value placed in the location counter by this directive
is simply the maximum value attained by the location counter as a
result of the assembly of all preceding program-relocatable code, this
directive functions as a DEND or CEND. Like DEND and CEND, it is
invalid when used in absolute code.

SYNTAX:

[<1abel>] ...PEND ...[<comment>]

5-12

5.3.2 Directives That Affect Assembler Output

This category contains the directive supplying a program identifier in
the object code and five directives affecting the source 1isting.
Table 5-2 lists those Directives. The paragraphs following discuss the
Directives in detail.

TABLE 5-2 - DIRECTIVES THAT AFFECT ASSEMBLER OUTPUT

|] |
! DIRECTIVES | MNEMONICS |
| ! !
] | |
| Output Options | OPTION |
{ Program Identifier 1 107 |
! Page Title { TITL |
| Restart Source Listing ! LIST !
! Stop Source Listing | UNL |
| Eject Page] PAGE |
| | |
! ! !

5.3.2.1 Output Options Directive (OPTION): OPTION selects several
options for the assembler 1isting output. The <option-list> operand is
a list of keywords, separated by commas, where each keyword selects a
1isting feature. The available <option-1ist> features are:

BUNLST: Limit the 1isting of BYTE Directives to one line

DUNLST: Limit the 1isting of DATA Directives to one line

FUNLST: Turn off all unlist options

NOLIST: Inhibit all 1isting output. (This overrides the
LIST Directive)

SYMLST: Produce a symbol listing in the object file

TUNLST: Limit the 1isting of TEXT Directives to one line

XREF: Produce a symbol cross-reference listing

SYNTAX:

... OPTION <option-list>

5.3.2.2 Program Identifier Directive (IDT): IDT assigns a name to
the object module produced. Use of the label field is optional. When
used, a label assumes the current value of the location counter. The
command field contains IDT. The operand field contains the module name
<string>, a character string of up to eight characters within single
quotes. When a character string of more than eight characters is
entered, the assembler prints a truncation error message and retains
the first eight characters as the program name.

5-13

SYNTAX:
[<label>] ...IDT ...'<string>' ...[<comment>]
EXAMPLE:
107 'CONVERT'

This example directive assigns the name CONVERT to the module being
assembled. The module name 1{s printed in the source listing as the
operand of the IDT directive and appears in the page heading of the
source listing. the module name is also placed in the object code and
is used by the 1ink editor for automatic entry-point resolution. A
routine whose entry point is to be automatically resolved by the link
editor must be declared as the 'string' on the IDT statement for that
module. The entry point must also be REF'd in this case.

NOTE

Although the Assembler will accept lowercase letters and
special characters within the quotes, ROM loaders, (for
example) will not. Therefore, only uppercase letters and
numerals are recommended.

5.3.2.3 Page Title Directive (TITL): TITL supplies a title to be
printed in the heading of each page of the source listing. When a
title is desired in the heading of the listing's first page, a TITL
directive must be the first source statement submitted to the
assembler. This directive is not printed in the source 1isting. Use of
the label field is optional. When used, a 1label field assumes the
current value of the location counter. The command field contains
TITL. The operand field contains the title (string), a character
string of up to 50 characters enclosed in single quotes. When more
than 50 characters are entered, the assembler retains the first 50
characters as the title and prints a truncation error message. The
comment field is optional; the assembler does not print the comment
but does increment the line counter.

SYNTAX:

[<label>] ...TITL ... '<string>' ...[<comment>]

EXAMPLE:
TITL ‘'**REPORT GENERATOR**'

This directive causes the title **REPORT GENERATOR** to be printed in
the page headings of the source 1isting. When a TITL directive is the
first source statement in a program, the title is printed on all pages
until another TITL directive 1is processed. Otherwise, the title is
printed on the next page after the directive 1s processed, and on
subsequent pages until another TITL directive is processed.

5-14

5.3.2.4 Restart Source Listing Directive (LIST): LIST restores
printing of the source 1isting. This directive is required only when a
no source listing (UNL) directive is 1in effect and causes the
assembler to resume listing. This directive is not printed in the
source listing, but the line counter 1{ncrements. Use of the label
field is optional. When used, a label assumes the current value of the
location counter. The command field contains LIST. The operand field
is not used. Use of the comment field is opt10n31 but the assembler
does not print the comment.

SYNTAX:
[<label>] ...LIST ...[<comment>]
EXAMPLE:
UNL

The UNL directive inhibits printing of the source listing, and can be
used to reduce assembly time and the size of the source listing.

5.3.2.5 Stop Source Listing Directive (UNL): UNL bhalts the source
listing output until the occurrence of a LIST Directive. It is not
printed in the source 1listing, but the source 1line counter {s
incremented. This directive is frequently used in MACRO definitions to
inhibit the listing of the macro expansion.

Use of the label field is optional, but when used, the label assumes
the value of the Location Counter. The command field contains the
symbol UNL. The operand field is not used. The comment field is
optional, but the Assembler does not print the comment.

SYNTAX: .
[<1abel>] ...UNL ...[<comments>]

5.3.2.6 Eject Page Directive (PAGE): PAGE causes the Assembler to
continue the source program 1isting on a new page. The PAGE directive
is not printed in the source listing, but the 1ine counter increments.
Use of the label field is optional. When used, a 1label assumes the
current value of the location counter. The command field contains
PAGE. The operand field is not used. Use of the comment field is
optional, but the assembler does not print the comment.

SYNTAX:

[<page>] ...PAGE ...[<comment>]

5-15 :

EXAMPLE:
PAGE

The directive causes the assembler to begin a new page of the source
1isting. The next source statement is the first statement 1listed on
the new page. Use of the page directive to source listing into logical
divisions improves program documentation.

5.3.3 Directives That Initialize Constants

This category consists of directives assigning values in successive
bytes or words of the object code, a directive placing characters of
text in the object code for display or print purposes, and a directive
initializing a constant for use during the assembly process. Table 5-3
1ists these Directives. The following paragraphs discuss each
directive in detail.

TABLE 5-3 - DIRECTIVES THAT INITIALIZE CONSTANTS

| | |
| DIRECTIVE ! MNEMONIC |
' | |
! | |
| Initialize Byte | BYTE |
! Initialize Word H DATA |
| Initialize Text H TEXT |
| Define Assembly-Time Constant | EQU |
! ! |

5.3.3.1 Initialize Byte Directive (BYTE): BYTE places one or more
values in one or more successive bytes of memory. Use of the label
field is optional. When used, a label 1is assigned the 1location in
which the assembler places the first byte. The command field contains
BYTE. The operand field contains one or more expressions separated by
commas. The expressions must contain no external references. The
assembler evaluates each expression and places the value in a byte as
an eight-bit two's complement number. When truncation is required, the
assembler prints a truncation warning message and places the
right-hand portion of the value in the byte. The comment field is
optional.

SYNTAX:

[<label>] ...BYTE ...<exp>[,<exp>]...... [<comment>]
EXAMPLE:

KONS BYTE >F+1,-1,'D'~'=',0,'AB'="'AA’

The directive initializes five bytes, starting with a byte at location

5-16

KONS. The contents of the resulting bytes are 00010000, 11111111,
00000111, 00000000, and 00000001.

5.3.3.2 Initialize Word Directive (DATA): DATA places one or more
values in one or more successive two-byte words memory. Use of the
label field is optional. When used, a label is assigned the 1location
at which the assembler places the first word. The command field
contains DATA. The operand field contains one or more expressions
separated by commas. The assembler evaluates each expression and
places the value in a word as a 16-bit two's complement number. Words
are stored most significant byte first, i.e. at the lower address. The
comment field is optional.

SYNTAX:

[<label>] ...DATA ...<exp>[,<exp>]...b...[<comment>]
EXAMPLE:

KONS1 DATA 3200,1+'AB',-'AF',>F4A0,"'A'

The directive initializes five words, starting with a word at location
KONS1. The contents of the resulting words are >0C80, >4143, >BEBA,
>F4A0, and >0041.

5.3.3.3 Initfalize Text Directive (TEXT): TEXT places one or more
characters 1n successive bytes of memory. The assembler negates the
last character of the string when the string is preceded by a minus
(=) sign (unary minus). Use of the label field is optional. When used,
a label 1{s assigned the location at which the assembler places the
first character. The command field contains TEXT. The operand field
contains a character string of up to 52 characters enclosed in single
quotes, which may be preceded by a unary minus sign. The comment field
is optional.

SYNTAX:

[<label>] ...TEXT ..[-]'<string>' ...[<comment>]
EXAMPLE:

MSG1 TEXT 'EXAMPLE' MESSAGE HEADING

The directive places the eight-bit ASCII representations of the
characters 1in successive bytes. When the location counter is on an
even address, the result is >4558, >414D, >504C, and >45XX. XX, the
contents of the rightmost byte of the fourth word, are determined by
the next source statement. The label MSGl is assigned the value of te
first byte address containing >45. Another example, showing the use of
a unary minus, follows:

MSG2 TEXT - 'NUMBER'

5-17 -

When the location counter is on an even address, the result is >4E55,
>4042, and >45AE. The label MSG2 is assigned the value of the byte
address in which >4E is placed.

§.3.3.4 Define Assembly-Time Constant Directive (EQU): EQU assigns a
value to a symbol. The label field contains the symbol to be given a
value. The command field contains EQU. The operand field contains an
expression. Use of the comment field is optional.

SYNTAX:
<label> ...EQU ...<exp> ...[<comment>]
NOTE
<exp> may not contain a REF'd symbol
and may not contain forward references.
EXAMPLE:

SUM EQuU RS

The directive assigns an absolute value to the symbol SUM, making SUM
available to use as a register address. A second example of an EQU
directive follows:

TIME EQU HOURS

The above example directive assigns the value of the previously
defined symbol HOURS to the symbol TIME. When HOURS appears in the
label field of a machine 1instruction in a relocatable block of te
program, the value is a relocatable value. The two symbols may be used

interchangeably. Symbols in the operand field must be previously
defined.

5.3.4 Directives That Provide Linkage Between Programs

This category contains two directives that enable program modules to
be assembled separately and integrated into an executable program. One
directive places one or more symbols defined in the module into the
object code making them available for 1inking. The other directive
places symbols used in the module but defined in another module into
the object code, allowing them to be linked. Table 5-4 lists these
directives. The following paragraphs discuss each in detail.

5-18

TABLE 5-4 - DIRECTIVES THAT PROVIDE LINKAGE BETWEEN PROGRAMS

| | |
! DIRECTIVE ! MNEMONIC |
i ! |
! | |
| External Definition] DEF !
External Reference	REF
Secondary External Reference	SREF
Force Load	LOAD
!	

5.3.4.1 External Definition Directive (DEF): DEF makes one or more
symbols available to other programs for reference. The use of the
label field is optional. When used, a label is assigned the current
value of the 1location counter. The command field contains DEF. The
operand field contains one or more symbols, separated by commas, to be
defined in the program being assembled. The commend field is optional.

SYNTAX:

[<label>] ...DEF <symbol>[,symbol1>]...... [<comment>]
EXAMPLE:
DEF ENTER,ANS

The directive causes the assembler to include symbols ENTER and ANS in
the object code; these symbols are available to other programs.

5.3.4.2 External Reference Directive (REF): REF provides access to
one or more symbols defined in other programs. The use of the label
field is optional. When used, a label is assigned the current value of
the location counter. The command field contains REF. The operand
field contains one or more symbols, separated by commas, to be used in
the operand field of a subsequent source statement. The comment field
is optional.

SYNTAX:

[<1abel>] ...REF ...<symbol>[,<symbol>]...... [<comment>]
EXAMPLE:

REF ARG1,ARG2

The directive causes the assembler to include symbols ARGl and ARG2 in

the object code so that the corresponding addresses may be obtained
from other programs.

If a symbol 1is listed in the REF statement, then a corresponding

5-19

symbol must also be present in a DEF statement in another source
module. If a one-to-one matching of symbols does not occur, then an
error occurs at link edit time. The system will generate a summary
1ist of all “unresolved references".

5.3.4.3 Secondary External Reference Directive (SREF): SREF provides
access to one or more symbols defined in other programs. The use of
the label field is optional. When a label is used, the current value
of the location counter is assigned to the label. The command field
contains SREF. The operand field contains one or more symbols,
separated by commas, to be used in the operand field of a subsequent
source statement. The comment field is optional.

SYNTAX:

[<label>] ...SREF ...<symbol>[,<symbol>]...... [<comment>]
EXAMPLE: i : -

SREF ARG1,ARG2

The directive causes the link editor to include symbols ARGl and ARG2
in the object code so that the corresponding addresses may be obtained
from other programs.

Unlike REF, SREF does not require a symbol to have a corresponding
symbol listed in a DEF statement -of another source module. The SREFed
symbol will be an unresolved reference, but no error message will be
given.

5.3.4.4 Force Load Directive (LOAD): The load directive is like a
REF, but the symbol does not need to be used in the module containing
the LOAD. The symbol used in the LOAD must be defined in some other
module. LOADs are used with SREFs. If one-to-one matching of LOAD and
DEF symbols does not occur, then unresolved references will occur
during link editing.

SYNTAX:

[<label>] ...LOAD ...<symbol>[,<symbol>]...... [<comment>]

5-20

EXAMPLE:

Module Al Module A2 Module A3
| | | | | |
! LOAD C, D | ! LOAD C ! ! LOADE, F !
i i i Pl 1
| | |
J | !
'} v v
|
) |
Module B v
| |
| SREFC, D, E, F]
| |
! DATA C !
| DATA D !
! DATA E |
! DATA F |
+ : +
]
|
v
: : a |
Module C v Module D V Module E v Module F 0
+ + D + + + temmccnnaa
| ! | | | | |
! DEFC ! ! DEFD | ! DEF E | !\ DEF F
!]] | ! |]
+ + B + + + B +

Module Al wuses a branch table in module B to obtain one module C, D,
E, or F. Module Al knows which of module C, D, E, and F it requires.
Module B has an SREF for C, D, E, and F. Module C has a DEF for C.
Module D has a DEF for D. Module E has a DEF for E. Module F has a DEF
for F. Module Al has a LOAD for the modules C and D it needs. Module

A2 has a LOAD for the module C it needs. Module A3 has a LOAD for the
modules E and F it needs.

The LOAD and SREF directives permit module B to be written to handle a
highly involved case and still be linked together without unnecessary
modules since Al only has LOAD directives for the modules it needs.

When a link edit is performed, automatic symbol resolutions will pull
in the modules appearing in the LOAD directives.

If the 1ink control file included Al and A2, modules C and D would be

5-21 -

—— ame -

pulled in while modules E and F would not be pulled in. If the link
control file included A3, modules E and F would be pulled in while
modules C and D would not be pulled in. If the link control file
included A2, module C would be pulled in while modules D, E, and F
would not be pulled in.

5.3.5 Miscellaneous Directives
This category 1includes those assembler directives not applicable to

the other categories. Table 5-5 1ists the directives and the following
paragraphs discuss them.

TABLE 5-5 - MISCELLANEOUS DIRECTIVES

| | |
! DIRECTIVE | MNEMONIC |
| | |
| | |
! Program End | END |
| Copy Source File] COPY |
| Define MACRO Library | MLIB |
! ! !

5.3.5.1 Program End Directive (END): END terminates the assembly.
The 1last source statement of a program is the END directive. Any
source statements following the END directive are considered part of
the next assembly. Use of the label field is optional. When used, a
label 1s assigned the current value of the location counter. The
command field contains END. Use of the operand field is optional. When
used, the operand field contains a program-relocatable or absolute
symbol that specifies the entry point of the program. When the operand
field is not used, no entry point is placed in the object code. The
comment field may be used only with an operand field.

SYNTAX:
[<1abel>] ...END ...[<symbol> ...[<comment>]]
EXAMPLE:
END START
The directive causes the assembler to terminate the assembly of this

program. The assembler also places the value of START in the object
code as an entry point.

5.3.5.2 Copy Source File Directive (COPY): COPY changes the source
input for the assembler. Use of the 1label field is optional. The
command field contains COPY. The operand field contains a file name
from which the source statements are to be read. The file name may be

5-22

the following:
- An access name recognized by the operating system
- A synonym form of an access name

The comment field is optional.

SYNTAX:

[<label>] ...COPY ...<file name> ...[<comment>]

EXAMPLE:
COPY SFILE

The directive in the example causes the assembler to take {ts source
statements from a file SFILE. At the end-of-file for SFILE, the
assembler resumes processing source statements from the file or device
previous to the COPY directive. A COPY directive may be placed in a
file being copied. Nested copying of files can be performed by placing
a COPY directive in a file being copied. Such nesting is 1limited by
the assembler to eight levels; additional restrictions may be placed
by the host operating system.

5.3.5.3 Define MACRO Library Directive (MLIB): The MLIB directive is
used to provide the Assembler with the name of a 1library containing
macro definitions. The operand of this directive 1s a directory
pathname constructed according to the conventions of the host
operating system and enclosed in single quotes. (See IDT and TITL
directives) This directive is defined only for hosts which support
1ibraries on hard disks.

SYNTAX:
[<1abel>] ...MLIB ...'<pathname>' ...[<comment>]

Use of the 1label field is optional. When used, a label assumes the
current value of the Location Counter. The command field contains
MLIB. The operand field contains the pathname, a character string to
up to 48 characters enclosed in single quotes; longer strings will
cause a truncation error message. The comment field is optional.

NOTE

Neither the Assembler nor its run-time support has access to
the operating system's synonym table, and so cannot expand
pathnames. The use of synonyms will prevent finding any
macros in that library.

5-23

EXAMPLE:

MLIB 'MYVOLUME.MACDIR.CMPXMACS.NEWMACS' (9900)
MLIB 'USER32.BIGPROJ.MYTASK.MACROS' (9900)
MLIB 'DRCO:[MOORE.ASM32]' (VAX)

The above example would cause the macro function, when the program
finds a macro call SUBMAC (not previously defined), to search first
for a file named USER32.BIGPROJ.MYTASK.MACROS.SUBMAC, and then if that
file isn't found, to search for a file named
MYVOLUME .MACDIR.CMPXMACS .NEWMACS.SUBMAC, in that order.

5.4 SYMBOLIC ADDRESSING TECHNIQUES

The assembler processes symbolic memory addresses allowing the user to
address a register by its symbolic memory address.

The following example 1llustrates this type of coding:

SUM EQU 33 ASSIGN SUM FOR
REGISTER 33
QUAN EQU 34 ASSIGN QUAN FOR

REGISTER 34
ADD SUM, QUAN ADD R33 to R34

The two initial EQU directives assign meaningful labels to be used as
register addresses in the subroutine.

5-24

SECTION 6
PROGRAM LINKING

6.1 GENERAL

The TMS7000 Assembler supplies both absolute and relocatable object
code that may be linked as required to form executable programs from
separately assembled modules. This section contains guidelines to
assist the user in taking full advantage of these capabilities.

6.2 RELOCATION CAPABILITY

Relocatable code i{ncludes information that allows a bootstrap loader
to place the code in any available area of memory. This relocation
capability allows the most efficient use of available memory and is
required for disk-resident programs executed under an operating
system.

Absolute code must be loaded into a specified area of memory. Absolute
code is appropriate for code that must be placed in dedicated areas of
memory and may be used for memory-resident programs executing under
operating systems.

Object code generated by an assembler consists of machine language
instructions, addresses, and data comprising the assembled program.
The code may include absolute segments, program-relocatable segments,
data-relocatable segments, and numerous common-relocatable segments.
In assembly language source programs, symbolic references to locations
within a relocatable segment are called relocatable addresses. These
addresses are represented in the object code as displacements from the
beginning of a specified segment. A program-relocatable address, for
example, is a displacement into the program segment. At load time, all
program-relocatable addresses are adjusted by a value equal to the
load address. Data-relocatable addresses are represented by a
displacement into the data segment. There may be several types of
common-relocatable addresses 1in the same program, since distinct
common segments may be relocated independently of each other. A
subsequent section of this manual describes the representation of
these relocatable addresses in the object code.

The elements of source statements are expressions, constants, and
symbols. The relocatability of an expression is a function of the
relocatability of the symbols and constants that make up the
expression. An expression {is relocatable when the number of
relocatable symbols or constants added to the expression is one
greater than the number of relocatable symbols or constants subtracted
from the expression. (A1l other valid expressions are absolute.) When
the first symbol or constant is unsigned, it is considered to be added
to the expression. When a unary minus follows a subtraction operator,

6-1

the effective operation is addition. The unary negation operator may
not be applied to a relocatable expression or subexpression (see
Subsection 2.6.4). For example, when all symbols in the following
expressions are relocatable, the expressions are relocatable:

LABEL + 1
LABEL+TABLE+-INC
-LABEL+TABLE+INC

Decimal, hexadecimal, and character constants are absolute.
Assembly-time constants defined by absolute expressions are absolute,
and assembly-time constants defined by relocatable expressions are
relocatable.

Any symbol that appears in the label field of a source statement other
than an EQU directive is absolute when the statement is in an absolute
block of the program. Any symbol that appears in the label field of a
source statement other than an EQU directive is relocatable when the
statement is in a relocatable block of the program. The type of the
label or an EQU directive is the type of an expression in an operand
field. .

To summarize, a location 1s either absolute or relocatable and may
contain either absolute or relocatable values. The example program in
Appendix G 1includes absolute locations with relocatable contents and
relocatable locations with absolute contents.

6.3 LINKING PROGRAM MODULES

Since the assembler includes directives that generate the information
required to link program modules, it is not necessary to assemble an
entire program in the same assembly. A long program may be divided
into separately assembled modules to avoid a long assembly or to
reduce the symbol table size. Also, modules common to several programs
may be combined as required. Program modules may be linked by the link
editor to form a linked object module that may be stored on a 1library
and/or loaded as required. The following paragraphs define the linking
information that must be included in a program module.

6.3.1 External Reference Directives

Each symbol from another program module must be placed in the operand
field of an REF or SREF directive in the program module that requires
the symbol. The example below shows a program named 'MAIN' whichs REFs
a routine named 'SUBR1'. SUBR1 is not defined in File A.

(FILE A)

IDT 'MAIN'
REF SUBR1

CALL ®SUBR1

END
6.3.2 External Definition Directive
Each symbol defined 1in a program module and required by one or more
other program modules must be placed in the operand field of a DEF

directive. The example below show a program named 'ROUTINES' when DEFs

a routine named 'SUBR1'. The 1label 'SUBR1' must be defined in the
program.

(FILE B)

10T 'ROUTINES'
DEF SUBR1,SUBR2

SUBR1 EQU §

RETS
SUBRZ EQU §

RETS

END

When program 'MAIN' in FILE A 1s linked with program 'ROUTINES' in
FILE B, the linkage is automatically resolved.

6.3.3 Program Identifier Directive

Program modules that are to be 1linked by the link editor should
include an IDT directive. The module names in the character strings of
the IDT directives should be unique. The <string> on the IDT directive
is not automatically a DEF'd symbol.

6-3

6.3.4 Linking

The link editor builds a 1ist of symbols from REF directives as it
links the program modules. The link editor matches symbols from DEF
directives to the symbols in the reference 1list. The 1link editor
follows 1inking commands to determine the modules to be linked. If the
module 1in which a routine is defined has the same name as the routine
entry points, the 1ink editor can automatically locate the required
module in a designated library.

SECTION 7

ASSEMBLER OUTPUT

7.1 GENERAL

This section presents information concerning the various data output
by the assembler. The assembler output discussed includes source
1listings, error messages, a cross reference listing, and object code.

7.2 SOURCE LISTING

The source listings show the source statements and the resulting
object code.

Each page of the source listing has a title 1ine at the top. Any title
supplied by a TITL directive is printed on this line. A page number is
printed to the right of the title. The printer inserts a blank line
below the title 1ine and prints a 1line for each source statement
1isted. The line for each source statement contains a source statement
number, a location counter value, the object code assembleli, and the
source statement as entered. A source statement may result {in more
than one byte of object code. The assembler prints the location
counter value and object code on a separate 1ine for each additional
byte. Each added 1ine is printed following the source statement line.

EXAMPLE:
0018 0156 42 MoV R10,R5
0157 0A
0158 05

The source statement number, 0018 1in the example, is a four-digit
decimal number. Source records are numbered in the order in which they
are entered including those source records that are not listed (e.g.,
TITL, LIST, UNL, and PAGE directives are not listed; source records
between a UNL directive and a LIST directive are not listed). The
difference between two source record numbers printed immediately in
line indicates source records entered and not listed.

The next field on a line of the 1isting contains the location counter
value, a hexadecimal value.. In the example, 0156 is the location
counter value. Not all directives affect the location counter; the
field is blank for those directives that do not affect it. Of the
directives that the assembler lists, the IDT, REF, DEF, EQU, SREF, and
END directives leave the location counter field blank.

The third field normally contains a single blank. However, the

7-1

assembler places a dash in this field when warning errors are
detected.

The fourth field contains the hexadecimal representation of the object
code, 420A0S in the above example. All machine 1{nstructions and the
BYTE, DATA, and TEXT directives use this field for object code. The
EQU directive places the value corresponding to the label 1in the
object code field.

The fifth field contains the characters of the source statement as
they were scanned by the assembler. Spacing in this field fis
determined by the spacing 1in the source statement. The four fields
contained fn source statements will be aligned in the 1isting only
when they are aligned in the source statements or when tab characters

are used.

7.3 ASSEMBLER ERROR MESSAGES . .

The assembler issues two f}pes of error messages: normal completion
messages and abnormal completion messages. Each of these types is
described in the following paragraphs.

7.3.1 Normal Completion Error Messages

When the assembler completes an assembly, it indicates any errors it
encounters in the assembly 1listing. The assembler indicates errors
following the source line in which they occur. At the end of a module
(IDT-END pair), the corresponding messages are printed.

Table 7-1 lists error, warning, and information messages.

TABLE 7-1 - ASSEMBLY LISTING ERRORS

MESSAGE EXPLANATION/RESPONSE

NONFATAL ERRORS

:

]

]

i

i

]

!

| WARNING - 'CEND' ASSUMED

]

| WARNING - 'DEND' ASSUMED

[]

! WARNING - 'PEND' ASSUMED

!

! WARNING - 'DSEG' ASSUMED This is a warning that the following
! two statements have the same result:
! CSEG 'DATA'

; DSEG

! (CONTINUED)

7-2

TABLE 7-1 - ASSEMBLY LISTING ERRORS (CONTINUED)

MESSAGE EXPLANATION/RESPONSE
NON-FATAL ERRORS, Continued
WARNING - SYMBOL TRUNCATED The maximum length for a symbol 1s six

WARNING - STRING TRUNCATED
WARNING - TRAILING OPERAND(S)
WARNING -

**LAST WARNING

ABSOLUTE VALUE REQUIRED

DISPLACEMENT TOO BIG

INVALID EXPRESSION

EXPRESSION OUT OF BOUNDS

DUPLICATE DEFINITION

INVALID RELOCATION TYPE
INVALID OPCODE

FATAL ERRORS

7-3

characters.

Check the syntax for the directive in
question to determine the maximum
length for the string.

e G e en cren - EED ESEn e Ghar Gren e S Gran Smen

BYTE VALUE TRUNCATED A value that is to be used as a byte!

value was larger than can be 1loaded!
into a byte.

—— nen cren em e e e e enew

An instruction with an operand with a|!
fixed upper limit was encountered that!
overflowed this limit.

This may indicate d{nvalid use of a
relocatable symbol in arithmetic.

There is a range limit for the value
being used that was exceeded.

The symbol appears as an operand of a!
REF statement, as well as in the label!
field of the source, OR, the symbol!
appears more than once in the label}
field of the source.

The type of variable isn't relocatable

The second field of the source record!
contained an entry that is not a!
defined instruction, directive,!
pseudo-op, DXOP, DFOP, or macro name.

(CONTINUED)

TABLE 7-1 - ASSEMBLY LISTING ERRORS (CONTINUED)

MESSAGE

EXPLANATION/RESPONSE

FATAL ERRORS, Continued

INVALID OPTION

INVALID REGISTER VALUE

-INVALID SYMBOL

VALUE TRUNCATED

SYMBOL USED IN BOTH REF AND DEF

COPY FILE OPEN ERROR
EXPRESSION SYNTAX ERROR
INVALID ABSOLUTE CODE DIRECTV

LABEL REQUIRED
BLANK MISSING

COMMA MISSING

COPY FILENAME MISSING
INDIRECT (™) MISSING
SYMBOL REQUIRED

OPERAND MISSING
REGISTER REQUIRED

CLOSE (') MISSING

7-4

The option giveh in the OPTION direc-
tive are invalid.

The given register value is too large
or too small.

The symbol being used has invalid
characters in it.

The value used was too big for the
field, so it has been truncated.

File does not exist or 1is already
being used.

Unbalanced parentheses OR invalid
operations on relocatable symbols.

The directive PEND, DEND and CEND have
no meaning in absolute code.

A blank 1is needed but one was not
found.

Expected a comma but did not find!
one. Usually means that more operands!
were expected.

The indirect addressing (*) was needed

There was no operand field

A register should be used rather than
a label or an absolute number.

—— - - . e - S - ———— - - - -

(CONTINUED)

TABLE 7-1 - ASSEMBLY LISTING ERRORS (CONTINUED)

MESSAGE

EXPLANATION/RESPONSE

FATAL ERRORS, Continued

STRING REQUIRED

PASS1/PASS2 OPERAND C<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>