

Synertek.

Table of Contents

Cell Library.
 1

Synertek Inc.
A Subsidiary of Honeywell
3001 Stender Way
Santa Clara, CA 95054
Telephone (408) 988-5600
General Information. 5

Contents

Chapter 1. Cell Library 1-1
Chapter 2. Memories 2-1
RAM Selector Guide 2-2
ROM Selector Guide 2-3
RAM Cross Reference Guide 2-4
ROM Cross Reference Guide 2-5
Random Access Memory (RAM) 2-7
SY2128, 2048×8-Bit Static RAM 2-9
SY2130/1, 1024×8-Bit Dual Port RAM 2-13
SY2132/3, 512×8-Bit Dual Port RAM 2-24
SY2147H, 4096×1-Bit Static RAM 2-35
SY2148H, 1024×4-Bit Static RAM 2-39
SY2149H, 1024×4-Bit Static RAM 2-43
SY2150, 512×9-Bit Cache Address Comparator 2-47
SY2158, 1024×8-Bit Static RAM 2-48
SY2167, $16,384 \times 1$-Bit Static RAM 2-52
SY2168, 4096×4-Bit Static RAM 2-56
SY2169, 4096×4-Bit Static RAM 2-60
Read Only Memory (ROM) 2-65
SY2316B, 2048×8-Bit ROM 2-67
SY2332/3, 4096×8-Bit ROM 2-70
SY2364/A, 8192×8-Bit ROM 2-73
SY2365/A, 8192×8-Bit ROM 2-76
SY23128/A, $16,384 \times 8$-Bit ROM 2-79
SY23256/A, $32,768 \times 8$-Bit ROM 2-82
Programming Instructıons 2-85
Chapter 3. Military 3-1
SYM2128, 2048×8-Bit Static RAM 3-3
SYM2130/1, 1024×8-Bit Static RAM 3-7
SYM2147H, 4096×1-Bit Static RAM 3-9
SYM $2148 \mathrm{H}, 1024 \times 4$-Bit Static RAM 3-13
SYM2149H, 1024×4-Bit Static RAM 3-17
SYM2167, $16,384 \times 1$-Bit Static RAM 3-21
SYM2168, 4096×4-Bit Static RAM 3-25
SYM2169, 4096×4-Bit Statıc RAM 3-29
Chapter 4. Microprocessors 4-1
Microprocessors and Peripherals
Cross Reference Guide 4-2
SY2661, Enhanced Programmable Communications Interface 4-3
SY6500, 8-Bit Microprocessor Family 4-17
SY6522/A, Versatile Interface Adapter 4-30
SY6532, RAM, I/O, Timer Array 4-50
SY6845R, CRT Controller 4-58
SY6545E, CRT Controller 4-69
CRTC Register Comparison 4-84
SY6551, Asynchronous Communication Interface Adapter 4-85
SY65C02, CMOS 8-Bit Microprocessor Family 4-93
SY65C22, CMOS Versatıle Interface Adapter 4-104
SY65C51, CMOS Asynchronous Communicatıon Interface Adapter 4-123

Contents (Contd.)

Page
Microcomputers
Z8601, Single Component Microcomputer 4-131
Z8681, ROMless Single Component Microcomputer 4-146
SY8048, Single Component 8-Bit Microcontroller 4-149
SY66C016, High Speed 16×16 CMOS Parallel Multıplıer 4-163
SY4x2901B, 16-Bit CMOS Microprocessor Slice 4-165
Chapter 5. General Information 5-1
Ordering Information 5-2
Packaging Diagrams 5-3
Application Notes 5-15
Conversion Tables 5-16
Representative/Distributor Listing 5-19

Numerical Index

Page
SY2128-1 2-9
SY2364A-2 2-73
SY2128-2 2-9
SY2128-3 2-9
SY2128-4 2-9
SY2128L-2 2-9
SY2128L-3 2-9
SY2128L-4 2-9SY2130-1
SY2132/3 2-1
SY2147H 2-35SY2147H-22-35SY2147H-32-35SY2147HL2-35SY2147HL-32-35
SY2148H 2-39
SY2148H-2 2-39
SY2364A-3 2-73
SY2365 2-76
SY2365-2 2-76
SY2365-3 2-76
SY2365A 2-76
SY2365A-2 2-76
SY2365A-3 2-76
SY2661 4-3
SY6500 4-17
SY6522/6522A 4-30
SY6532 4-50
SY65C02 4-93
SY65C22 4-104
SY65C51 4-123SY2148H-34-69SY2148HLSY6845R4-58SY2148HL-3SY80484-149SY2149HSY4x2901B4-165)2-43
SY23128 2-79
SY2149H-2 SY23128-2 2-79
SY2149H-3 2-43 SY23128-3 2-79
SY2149HL SY23128A 2-79
SY2149HL-3 SY23128A-2 2-79
SY2150 SY23128A-3 2-79
SY2158A-2 2-48 SY23256 2-82
SY2158A-3 SY23256-2 2-82
SY2158A-4 -48 SY23256-3 2-82
SY2158B-2 -48 SY23256A 2-82
SY2158B-3 2-48 SY23256A-2 2-82
SY2158B-4 2-48 SY23256A-3 2-82
SY2167 2-52
SY2167-2 2-52
SY2167-3 2-52
SY2168 2-56
SY2168-2 2-56
SY2168-3 -56
SY2169 2-60
SY2169-2 2-60SY2169-32-60
2-67
SY2316B
2-67
SY2316B-22-67SY2316B-3SYM2147H-3
4-163
4-163
SY66C016
SY66C016 4-131
Z8681 4-146
Military Grade Products: $\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
3-3
SYM2128-3
3-3
SYM2128-43-7
SYM2147H 3-9SY23322-70 SYM2148H-3
3-13SY2332-32-70 SYM2148HSY2333SYM2148H-63-11SY2333-2
SY2333-3 2-70
SYM2149H-3 3-173-11
SYM2149H 3-17
SY2364 2-73
SYM2149H-6 3-17Y23642-73
SY2364-3
SYM2167 3-213-25
SY2364A 2-73 SYM2169 3-29

Cell Library.

PageNumber
Cell Listing 13
TTL Cross Reference 1.9
CMOS Cross Reference $1-11$
General Description 112
Physical Specifications $1-13$
Cell Structures 1-15

Cell Library

SSI/MSI

Cell Identifier	Description	$\begin{gathered} \text { Area } \\ \text { (sq. } \mu \mathbf{m} \text {) } \end{gathered}$
BAM00000	Inverter	1.1 K
BAM00001	Inverter/Buffer	1.6 K
BAM00002	Inverter/Buffer	3.2 K
BAM00003	Inverter/Buffer	9.1 K
BAM00004	3-State Inverter/Buffer	2.1 K
BAM00005	Slow Inverter for Pulse Generator	3.2 K
BAM00006	TTL Compatible Inverter/Buffer	3.2K
BAM00007	3-State Inverter/Buffer	4.3K
BAM00008	3-State Inverter/Buffer	2.1 K
BAM00009	Non-Inverting TTL Compatible Buffer	TBD
BAM00010	$2-\operatorname{In}$ NAND	1.6 K
BAM00011	$3-\mathrm{In}$ NAND	2.1 K
BAM00012	$4-\mathrm{In}$ NAND	2.7 K
BAM00013	$5-\mathrm{In}$ NAND	3.2 K
BAM00014	$6-I n N A N D$	3.7 K
BAM00015	$7-\mathrm{In}$ NAND	4.3K
BAM00016	$8-\mathrm{In}$ NAND	4.8 K
BAM00020	$2-\ln$ NOR	1.6 K
BAM00021	$3-\mathrm{In}$ NOR	2.7 K
BAM00022	$4-\mathrm{In}$ NOR	2.7 K
BAM00023	$5-\mathrm{In}$ NOR	3.7 K
BAM00024	6-In NOR	3.7 K
BAM00025	$7-\mathrm{In}$ NOR	4.3K
BAM00026	$8-\ln$ NOR	4.8 K
BAM00030	$2-\mathrm{In}$ AND	2.1 K
BAM00031	$3-\mathrm{In}$ AND	2.7 K
BAM00032	$4-\mathrm{In}$ AND	3.2 K
BAM00033	$5-\mathrm{In}$ AND	3.7 K
BAM00034	$6-\mathrm{In}$ AND	4.3K
BAM00035	7-In AND	4.8 K
BAM00036	$8-\mathrm{In}$ AND	5.3K
BAM00040	$2-\ln$ OR	2.2 K
BAM00041	$3-\ln$ OR	2.7 K
BAM00042	$4-\ln$ OR	3.2 K
BAM100043	$5-\ln$ OR	4.3 K
BAM00044	$6-\ln$ OR	4.3K
BAM00045	$7-\mathrm{In}$ OR	4.8K
BAM00046	$8-\ln$ OR	5.3K
BAM00050	XOR	2.7 K
BAM00051	XNOR	2.7 K
BAM00055	P-Channel Pull-up Transistor	1.1K
BAM00056	N -Channel Pull-down Transistor	1.1 K
BAM00060	2,2 AND-NOR	2.7 K
BAM00061	2,1 AND-NOR	2.1 K
BAM00062	2,2 OR-NAND	2.7K

Cell Library

SSI/MSI (cont.)

Cell Identifier	Description	$\begin{gathered} \text { Area } \\ \text { (sq. } \mu \mathbf{m}) \end{gathered}$
BAM00063	2,1 OR-NAND	2.3 K
BAM00070	Transmissıon Gate	2.1K
BAM00071	Transmıssıon Gate with Enable Inverter	2.1 K
BAM00072	2-to-1 Mux	2.7K
BAM00073	4-to-1 Mux	2.7K
BAM00074	8-to-1 Mux	27.3K
BAM00076	Mux Driver for BAM00072	2.1K
BAM00077	Mux Decoder/Driver for BAM00073	20.3 K
BAM00078	Mux Decoder/Driver for BAM00074	52K
BAM00080	D-Latch without Reset	3.7 K
BAM00081	D-Latch with Reset	4.3K
BAM00082	D/FF with Reset	13.9K
BAM00083	D/FF with Reset	8.5K
BAM00084	D/FF with Set/Reset	9.1 K
BAM00086	T/FF with Reset	12.8K
BAM00087	T/FF with Reset	8.5K
BAM00088	T/FF with Set/Reset	11.7 K
BAM00089	T/FF with Set/Reset	9.6K
BAM00090	J-K/FF with Set/Reset	17.1 K
BAM00091	J-K/FF with Set/Reset	14.9K
BAM00092	Set/Reset Latch	2.7 K
BAM00093	Shift Register Front-end	8.5K
BAM00094	Parallel Load Shift Regıster	12.8K
BAM00095	D-Latch with 3-State O/P	11.7 K
BAM00096	D-Latch with 3-State O/P	7.5K
BAM00097	BAM00095/96 with Data Select I/P	22.4K
BAM00098	BAM00095/96 with Data Select I/P	12.8K
BAM00099	Look-ahead Carry Counter	TBD
BAM00100	Look-ahead Carry Counter	TBD
BAM00101	Look-ahead Carry/Borrow Up/Down Counter	TBD
BAM00102	Look-ahead Carry/Borrow Up/Down Counter	TBD
BAM00103	D/FF without Reset	6.4 K
BAM00104	D/FF with Reset	8.5K
BAM00105	Binary Adder	16.0K
BAM00106	Synchronous Clock Gate	TBD
BAM00107	Data Synchronizer	TBD
BAM00108	Serıal In/Out Shift Register	10.1 K
BAM00109	Serial In/Out Shift Register	10.1K
BAM00110	Serial In/Out Shift Register	10.1K
BAM00200	Power-on Reset Generator	14.4K
BAM00210	Pull-up Load	1.6K
BAM00220	Pull-down Load	1.6 K
BAM00230	Capacitor to Ground	4.3K
BAM00300	Internal Schmitt Trigger	4.7K

Cell Library

SSI/MSI (cont.)

Cell Identifier	Description	Area (sq. $\mu \mathrm{m}$)
BAM00800	Vss Pad	44.3 K
BAM00801	Vss Pad	73K
BAM00810	VDD Pad	44.3K
BAM00811	VDd Pad	73K
BAM00820	TTL/CMOS O/P Driver	153K
BAM00822	TTL/CMOS O/P Driver	76.4K
BAM00823	TTL/CMOS O/P Driver	113K
BAM00824	Versatıle O/P Pad Driver	136K
BAM00830	TTL/CMOS 3-State O/P Driver	153K
BAM00832	TTL/CMOS 3-State O/P Driver	129K
BAM00840	Open-Drain O/P Driver	93K
BAM00841	Open-Draın O/P Driver	73K
BAM00845	Open-Draın O/P Driver	50K
BAM00846	Open-Draın O/P Driver	73K
BAM00850	TTL Compatıble I/P Buffer	77K
BAM00851	TTL Compatıble I/P Buffer	73K
BAM00860	Schmitt Trigger I/P Buffer	101K
BAM00861	Schmitt Trigger I/P Buffer	96K
BAM00870	Fast TTL Compatible I/P Latch	89K
BAM00880	I/P Pad with Protectıon Device	75K
BAM00881	I/P Pad with Protection Device	73K
BAM00890	Open-Drain Driver with Pull-up	137K
BAM00891	LED Driver	239K
BAM00900	Input Pad with Pull-up	78.3K
BAM00901	Input Pad with Pull-up	TBD
BAM00910	I/O Pad with Open-Drain O/P	79K
BAM00911	I/O Pad with Open-Drain O/P	136K
BAM00920	O/P Driver Pad for Clock Osc	109K
BAM00921	Crystal Osc with Pads	143K
BAM00923	O/P Driver Pad for Clock Osc	126.2K
BAM00930	I/O Pad with 3-State O/P	185K
BAM00932	I/O Pad with 3-State O/P	144.4K
BAMVDD	VDD Connection Cell	1.1 K
BAMGND	GND Connection Cell	1.1K

SSI/MSI High-Speed Cells

Cell Identifier		Function	$\begin{gathered} \text { Area } \\ \text { (sq. } \mu \mathrm{m}) \end{gathered}$
BAM02001	Inverter/Buffer		1.6 K
BAM02002	Inverter/Buffer		3.2 K
BAM02003	Inverter/Buffer		9.1K
BAM02004	3-State Inverter/Buffer		2.1 K
BAM02007	3-State Inverter/Buffer		4.3K
BAM02008	3-State Inverter/Buffer		2.1 K
BAM02010	$2-\mathrm{In}$ NAND		2.1K
BAM02011	$3-\ln$ NAND		2.7K
BAM02012	4-In NAND		5.4K
BAM02013	$5-\ln$ NAND		TBD
BAM02014	$6-\ln$ NAND		4.3K
BAM02020	$2-\ln$ NOR		TBD
BAM02021	$3-\mathrm{In}$ NOR		TBD
BAM02022	4-In NOR		3.2K
BAM02023	$5-\mathrm{In}$ NOR		5.9K
BAM02024	$6-\ln$ NOR		7.5K
BAM02030	$2-\ln$ AND		TBD
BAM02031	$3-\mathrm{In}$ AND		TBD
BAM02032	4-In AND/NAND		5.9 K
BAM02040	$2-\ln$ OR/NOR		4.3K
BAM02041	$3-\ln$ OR/NOR		6.4 K
BAM02042	4-In OR/NOR		8.0K
BAM02050	XOR		3.7 K
BAM02051	XNOR		3.7 K
BAM02060	2,2 AND-NOR		3.2 K
BAM02061	2,1 AND-NOR		2.7 K
BAM02062	2,2 OR-NAND		3.2K
BAM02063	2,1 OR-NAND		2.7 K
BAM02070	Transmission Gate		2.1 K
BAM02080	D-Latch, Transparent		5.4K
BAM02082	D/FF with Reset		17.1K
BAM02083	D/FF with Reset		11.7K
BAM02084	D/FF with Set/Reset		20.3K
BAM02085	D/FF with Set/Reset		20.3K
BAM02086	T/FF with Reset		18.1K
BAM02087	T/FF with Reset		18.1K
BAM02088	T/FF with Set/Reset		20.3K
BAM02089	T/FF with Set/Reset		20.3K
BAM02092	SR-Latch		3.7 K
BAM02093	Shift Register		8.5K
BAM02094	Shift Register		8.5K
BAM02110 BAM02111	D-Latch with Reset D-Latch with Reset		9.1 K 9.1 K

Cell Library

MSI Cells

Cell Identifier		Function	Area (sq. $\mu \mathrm{m}$)
BAM04160	4-BIt Decade Counter (74160)		TBD
BAM04161	4-Bit Bınary Counter (74161)		TBD
BAM04162	4-Bit Decade Counter (74162)		TBD
BAM04163	4-Bıt Binary Counter (74163)		TBD

MSI Schematic Macros

Cell Identifier	Area $(\mathbf{s q} \cdot \mu \mathrm{m})$	
BAM74042	BCD-to-Decimal Decoder	35.2 K
BAM74083	4-Bit Full Adder with Carry Look-Ahead	79 K
BAM74085	4-Bit Magnitude Comparator	74.2 K
BAM74090	4-Bit Decade Counter	56 K
BAM74093	4-Bit Binary Counter	66.7 K
BAM74138	3-to-8 Line Decoder	48 K
BAM74151	8-to-1 Multiplexer	82.8 K
BAM74153	4-to-1 Multiplexer	32 K
BAM74157	Quad 2-to-1 Multiplexers	22.4 K
BAM74160	4-Bit Decade Counter	112.1 K
BAM74161	4-Bit Binary Counter	110.4 K
BAM74162	4-Bit Decade Counter	120.6 K
BAM74163	4-Bit Binary Counter	115.8 K
BAM74164	8-Bit Serial-In/Parallel-Out Shift Register	95 K
BAM74165	8-Bit Parallel-In/Serial-Out Shift Register	172.4 K
BAM74182	4-Bit Look-Ahead Generator	53.9 K
BAM74192	4-Bit Decade Up/Down Counter	121.9 K
BAM74193	4-Bit Binary Up/Down Counter	121.7 K
BAM74280	9-Bit Odd/Even Parity Generator	68.8 K
BAM76610	7-Bit Universal Asynchronous Transmitter	330.8 K
BAM76611	7-Bit Universal Asynchronous Receiver	331.2 K

Cell Library

Memory Cells

Cell Identifier	Function	Area (sq. $\mu \mathbf{m}$)
BAM6010	8×8 Static RAM	
BAM6140	64×4 Static ROM	380 K
BAM6141	64×8 Static ROM	
BAM6142	64×12 Static ROM	
		2278 K
		325 K

Analog Cells

	Area (sq. $\mu \mathbf{m}$
*Operatıonal Amplifier	TBD
*Voltage Comparator	TBD
*8-Bit A/D Converter	TBD
*8-Bit D/A Converter	TBD
*Voltage Regulator	TBD
*Voltage Reference	TBD
*Analog Switch (Pad Cell)	TBD
*3-State Input (Pad Cell)	TBD

Microprocessor Core

	Area $(\mathbf{s q .} \boldsymbol{\mu \mathrm { m }})$
*6502 Core Microprocessor	TBD
*BAM06610 UART (Transmitter Section)	TBD
*BAM06611 UART (Receiver Sectıon)	TBD

To receive Synertek's Cell Library Data Book, call or write your local sales office from listing in back of this book.

[^0]
Cell Library

TTL Cross Reference

TTL Equivalent	Cell Identifier	Function	Comment
7400	BAM00010	2-Input NAND	
7400	BAM02010	Fast 2-Input NOR	
7402	BAM00020	2-Input NOR	
7404	BAM00000	Inverter	
7404	BAM00001-3	Inverter/Buffer	
7404	BAM00006	TTL-Compatıble Buffer	Functional Equivalent
7408	BAM00030	2-Input AND	
7410	BAM00011	3-Input NAND	
7410	BAM02011	Fast 3-Input NAND	
7411	BAM00031	3-Input AND	
7420	BAM00012	4-Input NAND	
7421	BAM00032	4-Input AND	
7425	BAM00022	3-Input NOR	
7427	BAM00021	3-Input NOR	
7432	BAM00040	2-Input OR	
7442	BAM74042	BCD-Decimal Decoder	
7451	BAM00060	2,2 AND-NOR	
7474	BAM00084	D Flip-Flop with Set-Reset	
7483	BAM00105	Binary Adder	
7483	BAM74083	4-Bit Full Adder	
7485	BAM74085	4-Bit Magnitude Comparator	
7486	BAM00050	Exclusive-OR	
7490	BAM74090	4-Bit Decade Counter	
7493	BAM74093	4-Bit Binary Counter	
7496	BAM00093/94	Parallel-Load Shift Register	Cell without Clear
74107	BAM00090/91	J-K Flip-Flop with Set/Reset	
74125	BAM00004,7,8	3-State Inverter/Buffer	
74138	BAM00078	3-to-8 Line Decoder	
74138	BAM74138	3-to-8 Decoder	
74151	BAM74151	1-of-8 Data Selector	
74152	BAM00074+78	8-to-1 Multiplexer	
74153	BAM00073+77	4-to-1 Multiplexer	Cell without Strobe
74153	BAM74153	1-of-4 Data Selector	
74155	BAM00077	2-to-4 Line Decoder	Cell without Strobe
74157	BAM00072+76	2-to-1 Multiplexer	Cell without Strobe
74157	BAM74157	1-of-2 Data Selector	
74160	BAM74160	4-Bit Decade Counter	
74161	BAM74161	4-Bit Binary Counter	
74162	BAM74162	4-Bit Decade Counter	
74163	BAM00099/100	Look-Ahead Carry Counter	Cell without Count Enable

Cell Library

TTL Cross Reference (cont.)

TTL Equivalent	Cell Identifier	Function	Comment
74163	BAM74163	4-Bit Binary Binary Counter	
74164	BAM74164	8-Bit Serial-In Shift Register	
74165	BAM74165	8-Bit Serial-In Shift Register	
74182	BAM74182	Look-Ahead Carry Generator	
74192	BAM74192	Syncr Up/Down 4-Bit Counter	
74193	BAM00101/102	Look-Ahead Up/Down Counter	
74193	BAM74193	Syncr Up/Down 4-Bit Counter	
74260	BAM00023	5-Input NOR	
74266	BAM00051	Exclusive-NOR	
74279	BAM00092	Set-Reset Latch	
74280	BAM74280	9-Bit Odd/Even Parity Generator	
74363	BAM00095/96	Transparent D-Latch with 3-State	
74373	BAM00080	D-Latch without Reset	Cell without 3-State and Enable
74373	BAM02080	Fast D-Type Flip-Flop	Cell without 3-State and Enable

CMOS Cross Reference

CMOS Equivalent	Cell Identifier	Function	Comment
4001	BAM00020	2-Input NOR	
4002	BAM00022	4-Input NOR	
4008	BAM00105	Binary Adder	
4011	BAM00010	2-Input NAND	
4011	BAM02010	Fast 2-Input NAND	Functional Equivalent
4012	BAM00012	4-Input NAND	
4013	BAM00084	D Flip-Flop with Set/Reset	
4020	BAM00086/87	T Flıp-Flop with Reset	
4021	BAM00093/94	Parallel-Load Shift Register	
4023	BAM00011	3-Input NAND	
4023	BAM02011	Fast 3-Input NAND	Functıonal Equivalent
4025	BAM00021	3-Input NOR	
4027	BAM00090/91	J-K Flip-Flop with Set/Reset	
4029	BAM00101/102	Look-Ahead Up/Down Counter	Cell has only Binary-Count
4042	BAM00080	D-Latch without Reset	Cell without Clock Polarity Select
4042	BAM02080	D-Latch, Transparent, High Speed	Cell without Clock Polarity Select
4044	BAM00092	Set-Reset Latch	Cell without 3-State
4049	BAM00001-3	Inverter/Buffer	
4049	BAM00006	TTL-Compatible Buffer	
4051	BAM00074+75	8-to-1 Multiplexer	Cell without Inhibit
4052	BAM00073+77	4-to-1 Multiplexer	Cell without Inhibit
4053	BAM00072+76	2-to-1 Multiplexer	Cell without Inhibit
4069	BAM00000	Inverter	
4070	BAM00050	Exclusive-OR	
4071	BAM00040	2-Input OR	
4072	BAM00042	4-Input OR	
4073	BAM00031	3-Input AND	
4075	BAM00041	3-Input OR	
4077	BAM00051	Exclusive-NOR	
4081	BAM00030	2-Input AND	
4082	BAM00032	4-Input AND	
4085	BAM00060	2,2 AND-NOR	Cell without Inhıbit
4502	BAM00004,7,8	3-State Inverter/Buffer	Cell without Inhıbit
4555	BAM00077	2-to-4 Line Decoder	Cell without Enable
40161	BAM00099/100	Look-Ahead Carry Counter	
40174	BAM00082/83	D Flip-Flop with Reset	

Cell Library

I. General Description

The Synertek Cell Library combines the dense layout characteristics of the HCMOS process technology with the automation achieved by standard cell system design. The cells adhere to a well-defined set of design and layout structure rules, thereby relieving the chip designer of the burden of electrical and physical considerations and permitting a focus on system and logic design efforts.
In general, the cells utilize a constant height and a variable width and allow for placement adjacent to each other in the horizontal direction The structure rules are compatible with standard CAD interactive layout software by including feedthroughs on all inputs and outputs, and by accounting for power connections by cell abutment. Interactive layout systems can utilize the supplied physical outlines for each cell to mınımize layout data. In some cases, individual cells may have a non-standard height or may not have feedthroughs for all inputs and outputs in order to achieve a higher level of packing density.
The HCMOS Cell Library incorporates this structured approach to provide fundamental logic functions for high speed, low power applicatıons

The Synertek Cell Library

The Synertek Cell Library currently contans approximately 200 cells. These consist of gates, inverters, multiplexers, flip-flops, shift registers, counters, adders, I/O circuits (pad cells), and LSI type functions, such as RAMs and ROMs. Also included are analog functions which permit direct interfacing to analog signal environments (OP AMPs, Comparators, etc.). Finally, a complete set of high-speed cells is also available for those applications that need faster operation (at the expense of somewhat larger cells). With this library of cells to select from, nearly any conceivable circuit may be constructed and designed in a very quick and low cost fashion.

Hardware

Synertek uses a VAX based system to implement its Standard Cell Library approach to semi-custom design. The Library of cells resides on the computer and is accessed via Genisco and Tektronix graphics terminals for the schematic capture and place and route design states. Alphanumeric termınals can also be used for the Data Base access required during netist extraction and simulation. Digitizıng and layout of new cells is achieved on Calma graphics systems as is the merging of the cell structures into the design. The Synertek Cell Library will be ported over to a range of popular workstations and is already available on the Silvar Lisco and Daisy systems.

Design Flow

Software

Synertek's comprehensive family of software packages provides the customer with a "thoroughly checked to specification product" laid out in a state of the art process by the best router available. These user friendly packages cover schematic capture, logic and circuit simulation through to 100% place and route and a complete range of error checking.

Customer Interfaces

Three levels of sophistication in interfacing with Synertek are open to the Cell Library designer. This allows him to do as little or as much of the chip design as he chooses.

Cell Library

Level 1:

The customer provides Synertek's engıneering staff with a schematic diagram of the design along with a comprehensive specification Synertek engineers then enter the design into the computer, extract the netlist and logically simulate it before placement and routing. Critical path analysis is then carried out to ensure that the layout meets the timing specification. After the cell structures have been merged with the design, Electrical Rule and Design Rule checks are made. The final check compares the layout with the original netlist. After PG tape and tooling generation, engıneering samples are run off and cut and go's given back to the customer for evaluation. Test program generation occurs in parallel with the data base development so as to be ready for the final phase of the design program production scheduling.
Synertek offers all of the traınıng necessary for the fırst tıme Cell Library desıgner to develop his design at one of the six demonstration centers maintained throughout the country.

Level 2:

This level allows the customer to develop his netlist on a workstation and provide it to Synertek in either the simulated or unsimulated form. Synertek then takes the design through the rest of the development described in Level 1

Level 3:

The most sophisticated interface level, Level 3 provides for a customer who has a place and route capability either on his VAX or workstatıon. He gives his data base tape to Synertek who merges the cells and creates the PG tape for the mask vendor.

Electrical Requirements

A. Absolute Maximum Ratings:

Parameter	Value
Power Supply (VDD)	+6 V
Input Voltage	-03 V to $\mathrm{VDD}+03 \mathrm{~V}$
Output Voltage	-03 V to $\mathrm{VDD}+03 \mathrm{~V}$
Temperature	-55 to $+150^{\circ} \mathrm{C}$

B. Maximum Operating Conditions:

Parameter	Value
Power Supply (VDD)	20 V to 60 V
Input Voltage	0 V to $\mathrm{V}_{D D}$
Output Voltage	0 V to $\mathrm{V}_{D D}$
Temperature	-55 to $+125^{\circ} \mathrm{C}$

C. Recommended Operating Conditions:

Parameter	Value
Power Supply (VOD)	$50 \mathrm{~V} \pm 10 \%$
Temperature	-55 to $+125^{\circ} \mathrm{C}$

D. Nominal Conditions:

Parameter	Value
Power Supply (VDD)	50 V
Temperature	$25^{\circ} \mathrm{C}$

II. Physical Specifications

A. Cell Height: 69.3, and $98.7 \mu \mathrm{~m}$.
B. Cell Width: Increments of $77 \mu \mathrm{~m}$
C. Power $5.6 \mu \mathrm{~m}$ metal lines horizontally routed through each cell.
D. Metal Interconnections: $28 \mu \mathrm{~m}$ width, $35 \mu \mathrm{~m}$ spacıng.
E. Polysilicon Interconnections: $21 \mu \mathrm{~m}$ width, $25 \mu \mathrm{~m}$ spacing.

Electrical Specifications for Individual Cells

A. Propagation Delay

The output propagation delay for each cell is indicated in the individual cell data sheet. Both low-to-high and high-to-low transitions are specified. Delays are consistently measured at the 50\% points. Indıvidual cell propagation delays are specified as a function of the cell output load capacitance, C_{L}, in pF . Further, the equation is valid at nomınal conditions, only $\left(V_{D D}=5.0\right.$ $\mathrm{V}, \mathrm{T}=25^{\circ} \mathrm{C}$, nominal process). Actual delays at other than nominal conditions are determined by utilizing derating factors, as shown below:
$($ tpD $)$ actual $=($ tpD $)$ nominal $\cdot\left(X_{1}\right) \cdot\left(X_{2}\right) \cdot\left(X_{3}\right)$
$X_{1}=$ deratıng factor for temperature.
$X_{2}=$ deratıng factor for $V_{D D}$
$X_{3}=$ derating factor for process variations.
The deratıng factors for temperature and $V_{D D}$ level are taken from the following curves.

The derating factor for process variation is taken from the following table:

Process	Derating Factor
Worst Cast	150
Nomınal	1.00
Best Case	065

B. Power Dissipation

There are two components of power dissipation in the HCMOS Cell Library cells. The first component is the static or DC power and consists of three effects:

- Internal leakage paths between $V_{D D}$ and $V_{S S}$. In most cases, the currents are less than 1 nA , but sometimes they can be as high as $1 \mu \mathrm{~A}$
- Output loads. Output loads (resistive elements with a current path to ground) require substantial currents when they are driven.
- TTL input level effects. Inputs to the TTL-compatıble Input Buffer cell may cause significant power drain This results from both the pull-up and the pull-down devices being simultaneously conducting when an input level below $V_{D D}$ and above $V_{S S}$ is applied The data sheet for this cell shows this effect quantitatively
The second component of power dissipation is the transient or AC power and consists of three parts
- Internal capacitance charging. Whenever internal levels change state from low to high levels, energy is required to charge the node capacitance This occurs only at the time of transition and is a function of the amount of node capacitance and the VDD level
- Output load capacitance. When external levels change state from low to high, energy is also required for charging. In this case, however, node capacitance is typically orders of magnitude higher than internal nodes and consequently, power dissipation effects can be quite substantial
- Transitıonal push/pull currents internal cells will experience current paths between $V_{D D}$ and $V_{S S}$ when undergoing a high-to-low or low-to-high transition. This occurs for very short periods when both the p -channel and n -channel transistors simultaneously conduci
The data sheets for each cell indicate the cell power dissipation for internal node capacitance charging and for transitional push/pull currents Output loads, TTL input level effects, and output load capacitance must be accounted for additionally Internal leakage paths will not exceed $1 \mu \mathrm{~A}$ in total and hence, can usually be neglected
Cell data sheets indıcate power dissipation at fixed loadıng (usually 0.050 pF) and at nominal operating conditions. Note that the power is given in units of $\mu \mathrm{W} / \mathrm{MHz}$ In this way, the frequency of edge transitions directly effects power and can be readily calculated.

In a like fashion, additional loading (greater than 0.050 pF) increases power dissipation according to the following relation

$$
\text { PDISS }=\text { PDISS nominal }+25\left(C_{L}-0.050\right)
$$

where,
Pdiss nominal $=$ Nomınal Power Dissipation (from data sheet)
$C_{L}=$ Load Capacitance on Node (pF)

By this relation, power dissipation at any particular loading condition may be calculated. Further, the effect of $V_{D D}$ on power dissipation needs to be determined for situations that call for $V_{D D}$ levels other than nominal ($V_{D D}=5.0 \mathrm{~V}$). For this, the above curve is used.
Finally, it should be noted that temperature and process variations have no substantial effects on power dissipation.

C. Other Timings

There are other timing parameters sometimes specified besides propagation delay Some examples are pulse widths, clock rates, set-up and hold times, and threestate turn-on and turn-off delays For these parameters, the same deratıng factors are used as for propagation delays, unless otherwise noted

D. Clock Skews

Many cells require complementary clock input signals Some examples are latches, flip-flops, and shift registers. For these cells, some degree of clock skew is permitted, as shown below:

The maximum tolerable clock skew at nominal conditions $\left(V_{D D}=5.0 \mathrm{~V}, \mathrm{~T}=25^{\circ} \mathrm{C}\right.$, nominal process parameters) is ± 10 nsec. Skew effects get worse as VDD goes higher, T goes lower, and as the process parameters increase the speed of the MOS transistors. In short, unless otherwise indicated, maxımum tolerable clock skew at the worst-case conditions may not exceed ± 5 nsec. This is not as bad as it seems, however, since clock drivers get faster as the conditions for worst-case skew are approached, a self-compensating situation. Thus, if the nominal condition is met ± 10 $\mathrm{nsec})$, then the worst-case condition will be met as well.

III. Cell Structures

A. Power and Ground Connections Through Cells

VDD and GND connections are routed through rows of cells by means of cell abutment. Both VDD and GND (VSS) are bussed through the cells in the horizontal direction by $5.6 \mu \mathrm{~m}$ wide metal lines. The following diagram illustrates the bussing for both 69.3 and $98.7 \mu \mathrm{~m}$

VDD AND GND ROUTING THROUGH CELLS

Note that the busses will be routed through a row of cells, even when cell heights are mixed, providing that the cells are centered the same. Connections to VDD and GND can be made at the ends of the cell rows. This may be done either automatically (if the router software is capable) or by manual edits.

B. Power and Ground Connections in Pad Cells

The same principle applies for pad cells as for internal cells, as diagrammed below.

OUTSIDE EDGE OF CHIP

Connections between adjacent cells for VDD and GND are made by means of cell abutment. However, one difference exists for pad cells. That difference is that pad cells with different heights still have VDD and GND busses on the top and bottom of the cell. This means that, if cells of different heights are used, a gap must be provided between the cells and the $V_{D D}$ and GND busses must be entered manually. In addition, the VDD and GND busses have standard widths of $17.5 \mu \mathrm{~m}$ ($5.6 \mu \mathrm{~m}$ is the bus width for internal cells).

C. Feedthrough Cell

A feedthrough cell is required by most router software packages to permit routing a connection through a row of contiguous cells to some point beyond. To achieve this, a feedthrough cell is used, whose outline drawing is shown below.

FEEDTHROUGH CELL

D. Contacts

Connections between metal and polysilicon lines are achieved by means of contacts. The following figure illustrates the required dimensions of the contact.

The polysilicon stripes (lines) are 21 microns wide and the metal lines are 2.8 microns wide. The size of both the metal and polysilicon contact coverage is 5.6×56 microns. The contact openıng is 2.8×2.8 microns. The layer numbers are indicated on the figure:

Commercial $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$)

Part Number	Organization	Access Time (ns)	Maximum Current (mA)		Power Supply (Volts)	Number of Pins	Package Type (Note 1]	Page No.
			Operating	Standby				
SY2148H	1024×4	70	150	30	+5	18	P	2-39
SY2148H-2	1024×4	45	150	30	+5	18	P	2-39
SY2148H-3	1024×4	55	150	30	+5	18	P	2-39
SY2148HL	1024×4	70	125	20	+5	18	P	2-39
SY2148HL-3	1024×4	55	125	20	+5	18	P	2-39
SY2149H	1024×4	70	150	-	+5	18	P	2-43
SY2149H-2	1024×4	45	150	--	+5	18	P	2-43
SY2149H-3	1024×4	55	150	--	+5	18	P	2-43
SY2149HL	1024×4	70	125	--	+5	18	P	2-43
SY2149HL-3	1024×4	55	125	--	+5	18	P	2-43
SY2147H-2	4096×1	45	180	30	+5	18	P	2-35
SY2147H-3	4096×1	55	180	30	+5	18	P	2-35
SY2147H	4096×1	70	160	20	+5	18	P	2-35
SY2147HL-3	4096×1	55	125	15	+5	18	P	2-35
SY2147HL	4096×1	70	140	15	+5	18	P	2-35
SY2150	512×9	45	132	-	+5	24	C	2-47
SY2132-1	$512 \times 8{ }^{[6]}$	100	170	40/110[5]	+5	48	C, P	2-24
SY2132-2	$512 \times 8{ }^{[6]}$	120	170	40/110[5]	+5	48	C, P	2-24
SY2132-3	$512 \times 8{ }^{[6]}$	150	170	40/110 ${ }^{[5]}$	+5	48	C, P	2-24
SY2132-4	$512 \times 8{ }^{[6]}$	200	170	40/110 ${ }^{[5]}$	+5	48	C, P	2-24
SY2133-1	$512 \times 8{ }^{[6]}$	100	170	$\mathrm{NA}{ }^{\text {[4] }}$	+5	48	C, P	2-24
SY2133-2	$512 \times 8{ }^{[6]}$	120	170	N A [4]	+5	48	C, P	2-24
SY2133-3	$512 \times 8{ }^{[6]}$	150	170	$\mathrm{NA}{ }^{[4]}$	+5	48	C, P	2-24
SY2133-4	$512 \times 8{ }^{[6]}$	200	170	$\mathrm{NA}{ }^{[4]}$	+5	48	C, P	2-24
SY2130-1	$1024 \times 4{ }^{[6]}$	100	170	40/110 ${ }^{[5]}$	+5	48	C, P	2-13
SY2130-2	$1024 \times 4{ }^{[6]}$	120	170	40/110 5]	+5	48	C, P	2-13
SY2130-3	$1024 \times 4{ }^{[6]}$	150	170	40/110[5]	+5	48	C, P	2-13
SY2130-4	$1024 \times 4{ }^{[6]}$	200	170	40/110[5]	+5	48	C, P	2-13
SY2131-1	$1024 \times 4{ }^{[6]}$	100	170	N A [4]	+5	48	C, P	2-13
SY2131-2	$1024 \times 4{ }^{[6]}$	120	170	N A [4]	+5	48	C, P	2-13
SY2131-3	$1024 \times 4{ }^{[6]}$	150	170	$\mathrm{NA}{ }^{[4]}$	+5	48	C, P	2-13
SY2131-4	$1024 \times 4{ }^{[6]}$	200	170	N A [4]	+5	48	C, P	2-13
SY2158-2	1024×8	120	100	30	+5	24	P	2-48
SY2158-3	1024×8	150	100	30	+5	24	P	2-48
SY2158-4	1024×8	200	100	30	+5	24	P	2-48
SY2128-1	2048×8	100	100	20	+5	24	P	2-9
SY2128-2	2048×8	120	100	20	+5	24	P	2-9
SY2128-3	2048×8	150	100	20	+5	24	P	2-9
SY2128-4	2048×8	200	100	20	+5	24	P	2-9
SY2128L-2	2048×8	120	80	15	+5	24	P	2-9
SY2128L-3	2048×8	150	80	15	+5	24	P	2-9
SY2128L-4	2048×8	200	80	15	+5	24	P	2-9
SY2168-70 [2]	4096×4	70	120	30	+5	20	P	2-56
SY2168-55	4096×4	55	120	30	+5	20	P	2-56
SY2168-45	4096×4	45	120	30	+5	20	P	2-56
SY2169-70[2]	4096×4	70	120	--	+5	20	P	2-60
SY2169-55	4096×4	55	120	--	+5	20	P	2-60
SY2169-45	4096×4	45	120	30	+5	20	P	2-60
SY2167-70	$16,384 \times 1$	70	120	30	, 5	20	P	2-52
SY2167-55	$16,384 \times 1$	55	120	30	+5	20	P	2-52
SY2167-45	$16,384 \times 1$	45	120	30	+5	20	P	2-52

NOTES:
$1 \mathrm{P}=$ Molded DIP, $\mathrm{C}=$ Ceramic
2 Prelıminary Information

ROM Selection Guide

Part Number	Organization		Maxımum Current (mA)		Power Supply (Volts)	Number of Pins	Packae Type	Compatible EPROM/ PROM	$\begin{gathered} \text { Page } \\ \text { No } \end{gathered}$
			Operating	Standby					
SY2316B	2048×8	450	98	-	+5	24	P	2716	2-67
SY2316B-2	2048×8	200	98	-	+5	24	P	2716	2-67
SY2316B-3	2048×8	300	98	-	+5	24	P	2716	2-67
SYM2332	4096×8	450	100	-	+5	24	P	TMS2532	2-70
SY2332-2	4096×8	200	100	-	+5	24	P	TMS2532	2-70
SY2332-3	4096×8	300	100	-	+5	24	P	TMS2532	2-70
SY2333	4096×8	450	100	-	+5	24	P	2732/A	2-70
SY2333-2	4096×8	200	100	-	+5	24	P	2732/A	2-70
SY2333-3	4096×8	300	100	-	+5	24	P	2732/A	2-70
SY2364	8192×8	450	100	-	, 5	24	P	TMS2564	2-73
SY2364-2	8192×8	200	100	-	, 5	24	P	TMS2564	2-73
SY2364-3	8192×8	300	100	-	+5	24	P	TMS2564	2-73
SY2364A	8192×8	450	100	12	+5	24	P	TMS2564	2-73
SY2364A-2	8192×8	200	100	12	+5	24	P	TMS2564	2-73
SY2364A-3	8192×8	300	100	12	+5	24	P	TMS2564	2-73
SY2365	8192×8	450	100	-	+5	28	P	2764	2-76
SY2365-2	8192×8	200	100	-	+5	28	P	2764	2-76
SY2365-3	8192×8	300	100	-	+5	28	P	2764	2-76
SY2365A	8192×8	450	100	12	+5	28	P	2764	2-76
SY2365A-2	8192×8	200	100	12	+5	28	P	2764	2.76
SY2365A-3	8192×8	300	100	12	+5	28	P	2764	2-76
SY23128-2 ${ }^{[2]}$	$16,384 \times 8$	200	100	-	+5	28	P	27128	2-79
SY23128-3 ${ }^{[2]}$	$16,384 \times 8$	300	100	-	+5	28	P	27128	2-79
SY23128[2]	$16,384 \times 8$	450	100	-	+5	28	P	27128	2-79
SY23128A-2 ${ }^{[2]}$	$16,384 \times 8$	200	100	10	, 5	28	P	27128	2-79
SY23128A-3[2]	$16,384 \times 8$	300	100	10	+5	28	P	27128	2-79
SY23128A[2]	$16,384 \times 8$	450	100	10	+5	28	P	27128	2-79
SY23256-2 ${ }^{[2]}$	$32 \mathrm{~K} \times 8$	200	100	-	+5	28	P	27256	2-82
SY23256-3[2]	$32 \mathrm{~K} \times 8$	300	100	-	+5	28	P	27256	2-82
SY23256[2]	$32 \mathrm{~K} \times 8$	450	100	-	+5	28	P	27256	2-82
SY23256A-2 ${ }^{[2]}$	$32 \mathrm{~K} \times 8$	200	100	10	+5	28	P	27256	2-82
SY23256A-3[2]	$32 \mathrm{~K} \times 8$	300	100	10	+ 5	28	P	27256	2-82
SY23256A[2]	$32 \mathrm{~K} \times 8$	450	100	10	+5	28	P	27256	2-82

Synertek RAM Cross Reference Guide

Synertek	SY2128/	SY2147H	SY2148H/ SY2149H	SY2158/	SY2167	SY2168/ SY2169
AMD	AM9128	AM9247	AM2148/ AM2149			
Fujitsu	MB8128	MBM2147H	MBM2148/ MBM2149		MB8167A	MB8168
Intel		2147	$2148 /$ 2149		2167	2168
Mostek		MK4104		MK4118A/ MK4801A		
National	NMC2116	NMC2147H	NMC2148H			
NEC	μ PD446	μ PD2147				
Toshiba	TMM2016	TMM315			HM6167	
Hitachi	HM6116		HM6148			
T.I.	TMS4016	TMS2147H	TMS2149			
Mitsubishi	M58725					

Synertek ROM Cross Reference Guide

Synertek	SY2316B	SY2332	SY2333	SY2364	SY2365	SY23128	SY23256
AMD	AM9216 AM9218	AM9232	AM9233	AM9264	AM9265	AM92128	
AMI	$\begin{aligned} & \text { S68A316 } \\ & \text { S6831B } \end{aligned}$	S68332	S2333	S68A364	S2364	S23128	
G.I.	R0-3-9316	R0-3-9332	R0-3-9333	R0-3-9364	R0-3-9365	R0-9128	
MOSTEK	MK34000			MK36000	MK37000		MK38000
Motorola	MCM68316E	MCM68A332		MCM68364 MCM68365 MCM68366			MCM63256
National	MM52116	MM52132		MM52164			
NEC	${ }_{\mu}$ PD2316E	$\mu \mathrm{PD} 2332$		$\mu \mathrm{PD} 2364$			
Signetics	2616	2632		$\begin{aligned} & 2664 \mathrm{~A} \text { or } \\ & 2664 \end{aligned}$		26128A	
Toshiba	TMM334	TMM333 TMM2332			TMM2364P		TMM23256
Rockwell	R-03-1316						
EA	EA8316	EA8332	EA8333				
TI		TMS4732		TMS4764			
Fairchild	3516						
Hitachı		HN46332		HN48364			
Intel	2316E	2332			2364A		
Mitsubıshı		M58333		M58334			
OKI	MSM3870						
Panasonic		MN2332					
Siemens	SAB8316	SAB8332					

Product
Number
Page
Number
SY2128 2-9
SY2130/1 2-13
SY2132/3 224
SY2147H $2-35$
SY2148H 2-39
SY2149H 2-43
SY2150 $2-47$
SY2158 2-48
SY2167 2-52
SY2168 2-56
SY2169 2-60

Features

- 100 nsec Maxımum Access Tıme
- Fully Static Operation

No Clocks or Strobes Required

- Automatic $\overline{C E}$ Power Down
- Identical Cycle and Access Times
- Single +5 V Supply ($\pm 10 \%$)
- Pin Compatible with 16 K ROMs, EPROMs, and EEPROMs
- Totally TTL Compatıble

All Inputs and Outputs

- Common Data Input and Output
- Three-State Output
- JEDEC Approved Pınout

Description

The Synertek SY2128 is a 16,384 bit static Random Access Memory organized 2048 words by eight bits and is fabricated using Synertek's new scaled n-channel silicon gate technology It is designed using fully static circuitry, therefore requiring no clock or refreshing to operate. The common data input and three-state output pins optımize compatıbility with systems utilizing a bidirectional data bus.
The SY2128 offers an automatıc power down feature under the control of the chip enable ($\overline{\mathrm{CE}}$) input When $\overline{\mathrm{CE}}$ goes high, deselecting the

Pin Configuration

chip, the device will automatically power down and remain in a standby power mode as long as $\overline{\mathrm{CE}}$ remains high. This feature provides signifıcant system level power savings
The SY2128 is configured in the JEDEC approved pinout for 24 pin byte organized memories and is pin compatible with 16 K ROMs, EPROMs and EEPROMs This offers the user the flexibility of being able to switch between RAM, ROM, EPROM, or EEPROM ashis needs dictate with a mınımum of board changes

Block Diagram


```
Absolute Maximum Ratings*
Temperature Under Bias ................ \(-10^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\)
Storage Temperature .................. \(-65^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\)
Voltage on Any Pin with
    Respect to Ground ........................ -35 V to +7 V
Power Dissıpation ...................................... 1.0 W
```


Absolute Maximum Ratings*

```
Temperature Under Bias ............... \(-10^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\)
........... \(-65^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\)
Respect to Ground ....................... -35 V to +7 V
Power Dissipation .................................... 1.0 W
```


Comment*

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device This is a stress rating only and functional operation of the device at these or at any other condition above those indicated in the operational sections of this specification is not implied Exposure to absolute maxımum rating conditions for extended periods may affect device reliability.
D.C. Characteristics $\quad T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%$ (Unless otherwise specified)

Symbol	Parameter	2128-1/-2/-3/-4		2128L-2/L-3/L-4		Unit	Conditions	
		Min.	Max.	Min.	Max.			
ILI	Input Load Current (All input pins)		10		10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {CC }}=$ Max, $\mathrm{V}_{\text {IN }}=$ Gnd to $\mathrm{V}_{\text {CC }}$!	
'LO	Output Leakage Current		10		10	$\mu \mathrm{A}$	$\begin{aligned} & \overline{\mathrm{CE}}=\mathrm{V}_{I \mathrm{H}}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Max} \\ & \mathrm{~V}_{\mathrm{OUT}}=\mathrm{G} \text { nd to } 4.5 \mathrm{~V} \end{aligned}$	
${ }^{\text {I CC }}$	Power Supply Current		95		75	mA	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\text { Max, } \overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}} \\ & \text { Outputs Open } \end{aligned}$
			100		80	mA	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$	
${ }^{\text {ISB }}$	Standby Current		20		15	mA	$\mathrm{V}_{\text {CC }}=\mathrm{Min}$ to Max, $\overline{\mathrm{CE}}=\mathrm{V}_{1 H}$	
IPO	Peak Power-on Current Note 6		40		30	mA	$\begin{aligned} & V_{C C}=G \text { nd to } V_{C C} M ı n \\ & C E=\text { Lower of } V_{C C} \text { or } V_{I H} M ı n . \end{aligned}$	
$V_{\text {IL }}$	Input Low Voltage	-3.0	0.8	-3.0	0.8	V		
$\mathrm{V}_{\text {IH }}$	Input High Voltage	2.0	6.0	2.0	6.0	V		
$\mathrm{V}_{\text {OL }}$	Output Low Voltage		0.4		0.4	V	$\mathrm{IOL}^{\prime}=3.2 \mathrm{~m}$	
V_{OH}	Output High Voltage	2.4		2.4		V	$\mathrm{I}^{\mathrm{OH}}=-1.0$	

Capacitance $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}$

Symbol	Test	Typ.	Max.	Unit
C $_{\text {OUT }}$	Output Capacitance		5	pF
$\mathrm{C}_{\text {IN }}$	Input Capacitance		5	pF

NOTE This parameter is periodically sampled and not 100% tested.

A.C. Characteristics $\quad \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%$ (Note 7)

READ CYCLE

Symbol	Parameter	2128-1		2128-2/L-2		2128-3/L-3		2128-4/L-4		Unit	Conditions
		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.		
trC	Read Cycle Time	100		120		150		200		ns	
${ }^{t_{A A}}$	Address Access Tıme		100		120		150		200	ns	
${ }^{\text {t }}$ ACE	Chip Enable Access Time		100		120		150		200	ns	
${ }^{\text {t }}$ AOE	Output Enable Access Time		40		50		60		700	ns	
${ }^{\text {toh }}$	Output Hold from Address Change	10		10		10		10		ns	
thz	Output Low 2 Time	10		10		10		10		ns	
${ }^{\text {t }} \mathrm{HZ}$	Output High Z Time	0	35	0	40	0	50	0	60	ns	
tPu	Chip Enable to Power Up Time	0		0		0		0		ns	
${ }_{\text {PD }}$	Chip Disable to Power Down Time		50		60		80		100	ns	

WRITE CYCLE

${ }^{\text {tw }}$ W	Write Cycle Time	100		120		150		200		ns	
${ }^{\text {t }} \mathrm{CW}$	Chip Enable to End of Write	80		90		120		150		ns	
${ }^{\text {t }}$ AW	Address Valid to End of Write	80		90		120		150		ns	
${ }^{\text {tas }}$	Address Setup Time	0		0		0		0		ns	
${ }^{\text {twp }}$	Write Pulse Width	60		70		90		120		ns	
${ }^{\text {twR }}$	Write Recovery Time	0		0		0		0		ns	
tbw	Data Valid to End of Write	40		50		70		90		ns	
${ }_{\text {t }}$ H	Data Hold Tıme	0		0		0		0		ns	
${ }^{\text {t }}$ Wz	Write Enabled to Output in High Z	0	35	0	40	0	50	0	60	ns	Note 5
tow	Output Active from End of Write	0		0		0		0		ns	Note 5

Timing Diagrams

READ CYCLE NO. 1 (NOTES 1 and 2)

READ CYCLE NO. 2 (NOTES 1 and 3)

WRITE CYCLE NO. 1 (NOTE 4)

DATA OUT

$X X X X X$

Notes:

$1 \overline{W E}$ is high for Read Cycles.
2. Device is continuously selected, $\overline{\mathrm{CE}}=\overline{\mathrm{OE}}=\mathrm{V}_{I L}$
3. Addresses valid prior to or coincident with $\overline{C E}$ transition low.
4. If $\overline{\mathrm{CE}}$ goes high simultaneously with $\overline{W E}$ high, the outputs remain in the high impedance state.
5. Transition is measured $\pm 500 \mathrm{mV}$ from low or high impedance voltage with load B. This parameter is sampled and not 100% tested.
6. A pullup resistor to $V_{C C}$ on the $\overline{C E}$ input is required to keep the device deselected otherwise, power-on current approaches $I_{C C}$ active.
7. A mınimum 0.5 ms tıme delay is required after applicatıon of $\mathrm{V}_{\mathrm{CC}}(+5 \mathrm{~V})$ before proper operatıon is achieved.

A.C. Testing Input, Output Waveform

A.C. Testing Load Circuit

Package Availability 18 Pin Molded DIP

Ordering Information

Order Number	Access TIme (Max)	Operating Current (Max)	Standby Current (Max)	Package Type
SYP2128-1	100 ns	100 mA	20 mA	Molded DIP
SYP2128-2	120 ns	100 mA	20 mA	Molded DIP
SYP2128-3	150 ns	100 mA	20 mA	Molded DIP
SYP2128-4	200 ns	100 mA	20 mA	Molded DIP
SYP2128L-2	120 ns	80 mA	15 mA	Molded DIP
SYP2128L-3	150 ns	80 mA	15 mA	Molded DIP
SYP2128L-4	200 ns	80 mA	15 mA	Molded DIP

PRELIMINARY

Features

- 100 ns Address Access Time
- Fully Statıc Operation
- Full TTL Compatibility
- Interrupt Function (INT)

Open Draın for OR-tied Operation

- Easy Microprocessor Interface
- $\overline{\text { BUSY }}$ Function to Handle Contention. Open Draın for OR-tied Operation
- SY2130 - Transparent Power Down ($\overline{\mathrm{CE}}$)
- SY2131 - Non-Power Down ($\overline{\mathrm{CS}}$)
- Output Enable Function ($\overline{\mathrm{OE}})$
- Both Ports Operate Independently

Description

The Synertek SY2130 and SY2131 are 8192 Bit Dual Port Static Random Access Memories organızed 1024 words by 8 bits They are designed using fully static circuitry and fabricated using Synertek's n-channel double poly silicon gate technology
The SY2130 and SY2131 feature two separate I/O ports that each allow independent access for read or write to any location in the memory The only situation where contention can occur is when both ports are active and both addresses match Two modes of operation are provided for
this situation In one mode, contention is ignored and both operations are allowed to proceed In the other mode, onchip control logic arbitrates delaying one port until the other port's operation is completed $\mathrm{A} \overline{\mathrm{BUSY}}$ flag is sent to the side whose operation is delayed $\overline{B U S Y}$ is driven out at speeds that allow the port's processor to preserve its address and data
An interrupt function (INT) is also provided to allow communication between systems This function acts like a writable flag When the flag's location is written from one

Pin Configuration

${ }^{*}\left(\overline{\mathrm{CS}}_{\mathrm{L}}\right) \overline{\mathrm{CE}}_{\mathrm{L}} \square 1$	1	48	v_{Cc}
$\mathrm{R} / \bar{W}_{\mathrm{L}} \mathrm{C}^{2}$	2	47	$\overline{\mathrm{CE}}_{\mathrm{R}}\left(\overline{\mathrm{CS}}_{\mathrm{R}}\right)^{*}$
$\overline{B U S Y}_{L}{ }_{\text {C }}$	3	46	$\mathrm{R} / \bar{W}_{\text {R }}$
$\overline{\mathrm{INT}}_{\mathrm{L}}$ [4	45	$\overline{\overline{B U S Y}_{\text {R }}}$
$\overline{O E}_{L}$ ¢	5	44	$\underline{\mathrm{INT}} \mathrm{T}_{\mathrm{R}}$
$\mathrm{A}_{0} \mathrm{C}$	6	43	$\overline{O E}_{R}$
A_{1}	7	42	A_{0}
A_{2}	8	41	A_{1}
$\mathrm{A}_{3} \mathrm{C}$	9	40	A_{2}
A_{4}	10	39	A_{3}
A_{5}	11	38	fa_{4}
A_{6}	12	37	A_{5}
A_{7}	13	36	A_{6}
A_{8}	14	35	A_{7}
Ag_{9}	15	34	A_{8}
$1 / \mathrm{O}_{0}$ L	16	33	f_{9}
$1 / \mathrm{O}_{1}$ [17	32	$\mathrm{l}^{1 / O_{7}}$
$1 / \mathrm{O}_{2}$	18	31	$\mathrm{PI} / \mathrm{O}_{6}$
$1 / \mathrm{O}_{3} \mathrm{C}$	19	30	-1/05
$1 / \mathrm{O}_{4}$ [20	29	$\mathrm{l}_{1 / \mathrm{O}_{4}}$
$1 / \mathrm{O}_{5}$	21	28	$\mathrm{p}^{1 / O_{3}}$
$1 / \mathrm{O}_{6} \mathrm{C}$	22	27	$\mathrm{l}^{1 / \mathrm{O}_{2}}$
1/O7	23	26	$\mathrm{l} / \mathrm{O}_{1}$
GND	24	25	$\mathrm{I} / \mathrm{O}_{0}$

Block Diagram

side, the other side's INT pin goes LOW until the flag location is read by that side. Both the $\overline{B U S Y}$ and $\overline{\mathrm{NT}}$ pins are open drain outputs to allow OR-tied operation.
The SY2130 has an automatic power down feature which is controlled by the Chip Enable inputs. Each Chip Enable controls automatic power-down circuitry that allows it's respective side of the device to remain in a standby power mode.

The SY2131 chip select (no power down) access has been designed to be faster than it's address access so that the chip select decode tıme will not add to the memory's overall access time This feature significantly improves system performance.

Pin Definitions

$\overline{\mathrm{CE}}_{\mathrm{L}}{ }^{(10)}$
$\overline{\mathrm{CE}}_{\mathrm{R}}{ }^{(10)}$
$\overline{\mathrm{CS}}_{\mathrm{L}}{ }^{(11)}$
$\overline{\mathrm{CS}}_{\mathrm{R}}{ }^{(11)}$
$\mathrm{AO} \mathrm{O}_{\mathrm{L}}-\mathrm{A} 9_{\mathrm{L}}$

Left Port Chip Enable. When $\overline{\mathrm{CE}}_{\mathrm{L}}$ goes HIGH, the left port of the RAM is deselected and the left port control circuitry will automatically power down and remain in a standby power mode as long as $\overline{\mathrm{CE}}_{\mathrm{L}}$ remaıns HIGH.
Right Port Chip Enable. When $\overline{\mathrm{CE}}_{\mathrm{R}}$ goes HIGH, the right port of the RAM is deselected and the right port control circuitry will automatically power down and remain in a standby power mode as long as $\overline{\mathrm{CE}}_{\mathrm{R}}$ remains HIGH.

$\overline{\mathrm{CS}}_{\mathrm{L}}(11)$	Left Port Chip Select. When $\overline{\mathrm{CS}}_{\mathrm{L}}$ goes
	HIGH, the left port of the RAM is de-
selected.	

Right Port Chip Select. When $\overline{\mathrm{CS}}_{\mathrm{R}}$ goes HIGH, the right port of the RAM is deselected.
$A 0_{\mathrm{L}}-\mathrm{A} 9_{\mathrm{L}} \quad$ Left Port Address Inputs. The 10-bit field presented at the left port Address Inputs selects one of the 1024 memory locations to be read from or written into via the left port Data Input/Output Lines.
$A 0_{R}-A 9_{R} \quad$ Right Port Address Inputs The 10-bit field presented at the right port Address Inputs selects one of the 1024 memory locations to be read from or written into via the right port Data Input/Output Lines.
$\overline{\mathrm{OE}}_{\mathrm{L}} \quad$ Output Enable for Left Port When $\overline{\mathrm{OE}}_{\mathrm{L}}$ is HIGH, the left port outputs are disabled, when $\overline{O E}_{L}$ is LOW, the left port outputs are enabled. Also controls contention mode for left port
$\overline{\mathrm{OE}}_{\mathrm{R}}$
Output Enable for Right Port. When $\overline{\mathrm{OE}}_{\mathrm{R}}$ is HIGH, the right port outputs are disabled. When $\overline{\mathrm{OE}}_{\mathrm{R}}$ is LOW, the right port outputs are enabled. Also controls contention mode for right port
1/OOL-1/O7 Left Port Data Input/Output Lines
$1 / 00_{R}-1 / 07_{R} \quad$ Right Port Data Input/Output Lines.
$\mathrm{R} / \overline{\mathrm{W}}_{\mathrm{L}} \quad$ Left Port Read/Write Enable. When $\overline{\mathrm{OE}}_{\mathrm{L}}$ is LOW and R/W \bar{W}_{L} is HIGH, data from the RAM location selected by the left address field is present at the left port Data Input/ Output Lines When $\mathrm{R} / \bar{W}_{\mathrm{L}}$ is LOW, data present on the left port Data Input/

Output Lines is written into the RAM location selected by the left address field irregardless of the state of $\overline{\mathrm{OE}}_{\mathrm{L}}$. These operations can be affected by contention. (See Functional Description on page 9).
$R / \bar{W}_{R} \quad$ Right Port Read/Write Enable. When $\overline{\mathrm{OE}}_{\mathrm{R}}$ is LOW and R / \bar{W}_{R} is HIGH, data from the RAM location selected by the left address field is present at the right port Data Input/Output Lines When $\mathrm{R} / \overline{\mathrm{W}}_{\mathrm{R}}$ is LOW, data present on the right port Data Input/Output Lines is written into the RAM location selected by the right address field irregardless of the state of $\overline{\mathrm{OE}}_{\mathrm{R}}$. These operations can be affected by contention. (See Functional Description page 9).
Left Port Busy Flag. $\overline{B U S Y}_{L}$ remaıns HIGH at all times unless both ports initiate an operation to the same address location and the left port is operating in contention mode with the right port receiving priority. When this occurs, the right port operation will be completed first and $\overline{B U S Y}_{L}$ will go LOW until the right port operation is completed.
$\overline{\operatorname{BUSY}}_{\mathrm{R}}{ }^{(12)} \quad$ Right Port Busy Flag $\overline{\mathrm{BUSY}}_{\mathrm{R}}$ remaıns HIGH at all times unless both ports initiate an operation to the same address location and the right port is operating in contention mode with the left port receiving priority. When this occurs, the left port operation will be completed first and $\overline{B U S Y}_{\mathrm{R}}$ will go LOW until the left port ${ }_{\text {operation }}$ is completed Both $\overline{B U S Y}_{L}$ and $\overline{\mathrm{BUSY}}_{\mathrm{R}}$ are open draın outputs allowing OR-tied operation.
$\overline{\mathrm{N} T}_{\mathrm{L}}{ }^{(12)} \quad$ Left Port Interrupt Flag. If the right port writes to memory location 3 FE then $\overline{\mathrm{NT}}_{\mathrm{L}}$ is latched LOW until the left port reads data from memory location 3FE.
Right Port Interrupt Flag. If the left port writes to memory location 3FF, then $\overline{\mathrm{INT}}_{\mathrm{R}}$ is latched LOW until the right port reads data from memory location 3FF Both $\overline{\mathrm{NT}}_{\mathrm{L}}$ and $\overline{\mathrm{NT}}_{\mathrm{R}}$ are open draın allowing OR-tied operation.

Absolute Maximum Ratings*

Temperature Under Bias $-10^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
Storage Temperature $65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Voltage on any Pin with
Respect to Ground -35 V to +7 V
Power Dissipation 1 OW

Comment*

Stresses above those listed under "Absolute Maxımum Ratıngs" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or at any other condition above those indicated in the operational sections of this specification is not implied.
D.C. Characteristics $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%$ (Unless otherwise specified)

Symbol	Parameter	sY2130/SY2131-1/-2/-3/-4		Unit	Conditions
		Min.	Max.		
I_{LI}	Input Load Current (All input pıns)		10	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\text {IN }}=\mathrm{GND}$ to $\mathrm{V}_{\text {CC }}$
lo	Output Leakage Current		10	$\mu \mathrm{A}$	$\begin{aligned} & \overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IH}}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Max} . \\ & \mathrm{V}_{\text {OUT }}=\mathrm{GND} \text { to } 4.5 \mathrm{~V} \\ & \hline \end{aligned}$
I_{CC}	Power Supply Current (Both Ports Active)		150	mA	$V_{C C}=\operatorname{Max}, \overline{C E}=V_{\mathrm{IL}}$ Outputs Open
			170	mA	
$\mathrm{I}_{\text {SB1 }}$	Standby Current (Both Ports Standby)		40	mA	$\begin{aligned} & V_{\mathrm{CC}}=M \mathrm{M} \text { n. to Max., } \\ & \overline{\mathrm{CE}}_{\mathrm{L}} \text { and } \overline{\mathrm{CE}}_{\mathrm{R}}=\mathrm{V}_{\mathrm{IH}} \text { (Note 10) } \end{aligned}$
$\mathrm{I}_{\text {SB2 }}$	Standby Current (One Port Standby)		110	mA	$\begin{aligned} & V_{C C}=\text { Min. to Max., } \\ & \overline{C E}_{L} \text { or } \overline{C E}_{R}=V_{I H} \text { (Note 10) } \end{aligned}$
$\mathrm{V}_{\text {IL }}$	Input Low Voltage	-0 5	08	V	
V_{IH}	Input High Voltage	22	60	V	
V_{OL}	Output Low Voltage		04	V	$\mathrm{I}_{\mathrm{OL}}=32 \mathrm{~mA}$ (Note 12)
V_{OH}	Output High Voltage	24		V	$\mathrm{I}_{\mathrm{OH}}=-1.0 \mathrm{~mA}$ (Note 12)

Capacitance $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}$

Symbol	Test	Typ.	Max.	Unit
$\mathrm{C}_{\text {OUT }}$	Output Capacitance		5	pF
C_{IN}	Input Capacitance		5	pF

NOTE• This parameter is periodically sampled and not 100% tested
A.C. Characteristics $T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%$

READ CYCLE (Note 12)

Symbol	Parameter	$\begin{aligned} & \text { SY2130-1 } \\ & \text { SY2131-1 } \end{aligned}$		$\begin{aligned} & \text { SY2130-2 } \\ & \text { SY2131-2 } \end{aligned}$		$\begin{aligned} & \text { SY2130-3 } \\ & \text { SY2131-3 } \end{aligned}$		$\begin{aligned} & \text { SY2130-4 } \\ & \text { SY2131-4 } \end{aligned}$		Units	Conditions
		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.		
t_{RC}	Read Cycle Tıme	100		120		150		200		ns	
$t_{\text {AA }}$	Address Access Tıme		100		120		150		200	ns	
$t_{\text {ACE }}$	Chıp Enable Access Tıme		100		120		150		200	ns	[10]
$\mathrm{t}_{\text {AOE }}$	Output Enable Access Tıme		40		50		60		80	ns	
t_{OH}	Output Hold from Address Change	10		10		10		20		ns	
t_{Lz}	Output Low Z Tıme	10		10		10		20		ns	[5]
t_{Hz}	Output High Z Tıme	0	40	0	50	0	60	0	80	ns	[5]
t_{PU}	Chip Enable to Power Up Tıme	0		0		0		0		ns	[10]
$\mathrm{t}_{\text {PD }}$	Chip Disable to Power Down Tıme		50		60		70		100	ns	[10]
$\mathrm{t}_{\text {ACS }}$	Chıp Select Access Tıme		80		100		110		160	ns	[11]

A.C. Characteristics $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%$ (continued) (Note 12)

WRITE CYCLE

Symbol	Parameter	$\begin{aligned} & \text { SY2130-1 } \\ & \text { SY2131-1 } \end{aligned}$		$\begin{aligned} & \text { SY2130-2 } \\ & \text { SY2131-2 } \end{aligned}$		$\begin{aligned} & \text { SY2130-3 } \\ & \text { SY2131-3 } \end{aligned}$		$\begin{aligned} & \text { SY2130-4 } \\ & \text { SY2131-4 } \end{aligned}$	
		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.
twc	Write Cycle Tıme	100		120		150		200	
t_{EW}	Chip Enable to End of Write	90		105		120		180	[10]
${ }_{\text {t }}$ W	Chip Select to End of Write	70		85		90		140	[11]
$\mathrm{t}_{\text {AW }}$	Address Valıd to End of Write	90		105		120		180	
t_{AS}	Address Setup Time	0		0		0		0	
$t_{\text {WP }}$	Write Pulse Width	60		70		80		120	
twr	Write Recovery Time	0		0		0		0	
tow	Data Valıd to End of Write	40		50		60		80	
t_{DH}	Data Hold Tıme	0		0		0		0	
twz	Write Enabled to Output in Hıgh Z	0	40	0	50	0	60	0	80 [5]
tow	Output Active from End of Write	0		0		0		0	[5]

BUSY TIMING

t_{RC}	Read Cycle Tıme	100		120		150		200	
$t_{\text {WC }}$	Write Cycle Tıme	100		120		150		200	
$\mathrm{t}_{\text {OEH }}$	Output Enable Hold Tıme	20		25		30		40	
$\mathrm{t}_{\text {OER }}$	Output Enable Recovery Tıme	0		0		0		0	
$t_{\text {BAA }}$	$\overline{\text { BUSY }}$ Access Tıme to Address		40		50		60		80
$\mathrm{t}_{\text {BDA }}$	$\overline{\text { BUSY Disable Time to Address }}$		40		50		60		80
$\mathrm{t}_{\mathrm{BAC}}$	$\overline{B U S Y}$ Access Tıme to Chıp Enable or Chip Select		40		50		60		80
$\mathrm{t}_{\mathrm{BDC}}$	$\overline{B U S Y}$ Dısable Tıme to Chıp Enable or Chip Select		40		50		60		80
$\mathrm{t}_{\text {APS }}$	Arbitration Prıorıty Set Up Tıme	20		25		30		40	
$\mathrm{t}_{\text {AOS }}$	Arbitratıon Overrıde Set Up Tıme	20		25		30		40	

INTERRUPT TIMING (Note 12)

t_{AS}	Address Set Up Tıme	0		0		0		0	
t_{AW}	Wrıte Recovery Tıme	0		0		0		0	
$\mathrm{t}_{\mathrm{INS}}$	Interrupt Set Tıme		40		50		60		80
$\mathrm{t}_{\mathrm{INR}}$	Interrupt Reset Tıme		40		50		60		80

NOTES

1 R/W is high for Read Cycles
2 Device is continuously enabled/selected, $\overline{C E}=V_{I L}$ or $\overline{C S}=V_{I L}$
3 'Addresses valid prior to or coincident with $\overline{\mathrm{CE}}$ or $\overline{\mathrm{CS}}$ transition low
4 If $\overline{C E}$ or $\overline{C S}$ goes high simultaneously with R / \bar{W} high, the outputs remain in the high impedance state
5 Transition is measured $\pm 500 \mathrm{mV}$ from low or high impedance voltage with load B This parameter is sampled and not 100% tested
6 A pullup resistor to V_{CC} on the $\overline{\mathrm{CE}}$ or $\overline{\mathrm{CS}}$ input is required to keep the device deselected otherwise, power-on current approaches ICC active
$7 \overline{O E}$ can be $V_{I H}$ when contention arbitration mode occurs or $V_{I L}$ when contention override mode occurs, see Tables 2 and 3
$8 \quad \overline{\mathrm{CE}}_{\mathrm{L}}=\overline{\mathrm{CE}}_{\mathrm{R}}=\mathrm{V}_{\mathrm{IL}}$ or $\overline{\mathrm{CS}}_{\mathrm{L}}=\overline{\mathrm{CS}}_{\mathrm{R}}=\mathrm{V}_{\mathrm{IL}}$
9 Busy tıming is identical to Contention Cycle Nos 1 and 2
10 Applies to SY2130 version (power down) only
11 Applies to SY2131 version (non-power down) only
12 The interrupt and busy signals (pins 3, 4, 44 and 45) are open draın outputs A pull-up resistor is required for system operation Load C is used for A C testing these pins All other outputs use load A
13 Read or Write Cycle Tımıng after BUSY ınactive as shown in previous tımıng diagrams

Timing Diagrams

READ CYCLE NO. 1 EITHER SIDE (Notes 1 and 2)

READ CYCLE NO. 2 EITHER SIDE (Notes 1 and 3)

WRITE CYCLE NO. 1 EITHER SIDE (Note 4)

WRITE CYCLE NO. 2 EITHER SIDE ($\left.\overline{O E}=V_{I I}\right)$ (Note 4)

CONTENTION CYCLE NO. 1 ($\overline{\mathbf{C E}} / \overline{\mathrm{CS}}$ CONTENTION ARBITRATION MODE) (Note 7)
$\overline{\mathbf{C E}}_{\mathbf{L}} / \overline{\mathbf{C S}}_{\mathrm{L}}$ VALID FIRST:

$\overline{\mathrm{CE}}_{\mathrm{R}} / \overline{\mathrm{CS}}_{\mathrm{R}}$ VALID FIRST:

CONTENTION CYCLE NO. 2 (ADDRESS CONTENTION ARBITRATION MODE) (Notes 7 and 8)

ADDRESS $_{\text {R }}$ VALID FIRST:

CONTENTION CYCLE NO. 3 (CONTENTION OVERRIDE MODE) (Note 9)

LEFT PORT CONTENTION IGNORED:

RIGHT PORT CONTENTION IGNORED:

INTERRUPT MODE (Note 8)

LEFT SIDE FLAGS RIGHT SIDE:

RIGHT SIDE FLAGS LEFT SIDE:

(see page 2-16 for notes)

Functional Description

The SY2130 and SY2131 are 1024 -word by 8-bit dual port RAMs that feature two separate I/O ports Each port allows independent access for read or write to any location in the memory
The SY2130 features separate left and right port Chip Enable controls ($\overline{\mathrm{CE}}_{\mathrm{L}}$ and $\overline{\mathrm{CE}}_{\mathrm{R}}$) Each Chıp Enable actıvates its respective port when it goes LOW and controls automatic power-down circuitry that allows it's respective side of the device to remain in a standby power mode as long as it remains HIGH When a port is active, it is allowed access to the entire memory array
The SY2131 features separate left and right port Chip Select controls ($\overline{\mathrm{CS}}_{\mathrm{L}}$ and $\overline{\mathrm{CS}}_{\mathrm{R}}$) Each Chıp Select activates its respective port when it goes LOW and allows its respective side of the device to remain selected as long as it remains LOW. When a port is active, it is allowed access to the entire memory array.
Each port has an Output Enable control ($\overline{\mathrm{OE}}_{\mathrm{L}}$ and $\left.\overline{\mathrm{OE}}_{\mathrm{R}}\right)$ that keeps its respective output in a high impedance mode when HIGH When a port's $\overline{\mathrm{OE}}$ is LOW, that port's output drivers are turned on providing its R / \bar{W} control is HIGH
Separate Read/Write Enable inputs ($\mathrm{R} / \overline{\mathrm{W}}_{\mathrm{L}}$ and $\mathrm{R} / \bar{W}_{\mathrm{R}}$) control writing of new data into any location in the RAM from etther port When $\mathrm{R} / \bar{W}_{\mathrm{L}}$ is LOW, new data is written into the location selected by the left address field Likewise, when $\mathrm{R} / \overline{\mathrm{W}}_{\mathrm{R}}$ is LOW, new data is written into the location selected by the right address field When a port's Read/ Write Enable is HIGH, data can be read from that port if its respective $\overline{\mathrm{OE}}$ is LOW When $\mathrm{R} / \bar{W}_{\mathrm{L}}$ is HIGH and $\overline{\mathrm{OE}}_{\mathrm{L}}$ is LOW, data is read from the location selected by the left address field When $\mathrm{R} / \overline{\mathrm{W}}_{\mathrm{R}}$ is HIGH and $\overline{\mathrm{OE}}_{\mathrm{R}}$ is LOW, data is read from the location selected by the right address field

There is one situation where contention can occur it is when both left and right ports are active and both addresses match Two modes of operation are provided for this situation (1) on-chip control logic arbitrates the situation, or (iI) contention is ignored and both ports are given access to that memory location $\overline{\mathrm{OE}}$ controls the mode of operation If $\overline{C E}$ or $\overline{C S}$ is LOW before $\overline{O E}$ goes LOW when both addresses match, then on-chip control logic arbitrates the situation Priority is given to the port whose $\overline{\mathrm{CE}}$ or $\overline{\mathrm{CS}}$ became valid first, the other port will not be allowed access to the memory core until that port's operation is completed

If both port's $\overline{\mathrm{CE}}$ or $\overline{\mathrm{CS}}$ controls became valid at the same time while their $\overline{\mathrm{OE}}$ are HIGH, then the left port is given priority If both $\overline{\mathrm{CE}}$ or $\overline{\mathrm{CS}}$ pins are valid before their respective $\overline{O E}$ controls and an address change causes an address match while $\overline{\mathrm{OE}}$ is HIGH, then priority is given to the port whose address became valid first; the other port is not allowed access to the memory until that port's operation is completed If both addresses became valid at the same tıme and match, and $\overline{\mathrm{OE}}$ is HIGH, then the left port is given priority
In the other mode, contention is ignored and one or both ports have access to the memory core at all tımes This is accomplished by having $\overline{\mathrm{OE}}$ LOW when the contention occurs That is, the RAM core is accessible from a port even if the on-chip control logic would have delayed its access provided (a) the port's $\overline{\mathrm{OE}}$ is LOW when its $\overline{\mathrm{CE}}$ or $\overline{\mathrm{CS}}$ goes LOW durıng an address match, or (b) both ports are active and its $\overline{\mathrm{OE}}$ is LOW when an address change causes an address match Therefore, it is possible for both ports to have access to the same memory location at the same tıme, even in a WRITE Wh $_{\text {WRITE }}^{\text {R }}$ situation
Separate Busy Flags ($\overline{\mathrm{BUSY}}_{\mathrm{L}}$ and $\overline{\mathrm{BUSY}}_{\mathrm{R}}$) are provided to signal when a port's access to the memory core has been delayed When both ports try to access the same memory locatıon, the on-chip arbitration logic causes the Busy Flag to go LOW on the side that is delayed These flags are provided to allow the user to stop the processor if desired. $\overline{\text { BUSY }}$ is driven out fast enough for the processor's address and data to be preserved if desired. The Busy Flags are operational even when the device is operating in the mode where contention is ignored and function the same as described for contention mode operation. This permits their use to signal that contention has occurred and data may have been changed

Interrupt logic is included on-chip to provide a means for two processors to communicate to one another If the left port writes to memory location 3FF, then the right port Interrupt Flag ($\overline{\mathrm{INT}}_{\mathrm{R}}$) is latched LOW until the right port reads data from that same location If the right port writes to location 3FE, then the left port Interrupt Flag ($\overline{N T T}_{V}$) is latched LOW untıl the left port reads data from that location If both ports are enabled and contention occurs, the Busy circuitry will disable the address decoder from setting or resetting the Interrupt Flags

Table 1. Non-Contention Read/Write Control

Left Port Inputs				Right Ports Inputs				Left Flags		Right Flags		Function
$\underline{R} / \bar{W}_{L}$	$\overline{\mathbf{C E}}_{\mathbf{L}} / \overline{\mathbf{C S}}_{\mathbf{L}}$	$\overline{\mathrm{O}} \mathrm{L}$	$\mathrm{AO}_{\mathrm{L}}-\mathrm{A} 9 \mathrm{l}_{\mathrm{L}}$	$\mathrm{R} / \bar{W}_{\mathbf{R}}$	$\overline{\mathbf{C E}}_{\mathbf{R}} / \overline{\mathbf{C S}}_{\mathbf{R}}$	$\overline{\mathrm{E}}_{\mathbf{R}}$	$\mathrm{AO}_{\mathrm{R}}-\mathrm{A9} 9_{R}$	$\overline{\text { BUSY }}$	INTL	$\overline{\text { BUSY }}_{\text {R }}$	$\overline{\text { INT }}_{\text {R }}$	
X	H	X	X	X	X	X	X	H	X	H	X	Left Port in Power Down Mode
X	X	X	X	X	H	X	X	H	X	H	X	Right Port in Power Down Mode
L`	L	X	X	X	X	X	X	H	X	H	X	Data on Left Port Written to Memory Location $\mathrm{AO}_{\mathrm{L}}-\mathrm{A} 9_{\mathrm{L}}$
H	L	L	X	X	X	x	X	H	X	H	X	Data in Memory Location $A O_{L}-A 9_{L}$ Output on Left Port
X	X	X	X	L	L	X	X	H	x	H	X	Data on Right Port Written to Memory Location $A 0_{R}-A 9_{R}$
X	X	X	X	H	L	L	X	H	x	H	X	Data in Memory Location $A 0_{R}-A 9_{R}$ Output on Right Port
L	L	x	3FF	X	X	x	X	H	x	H	L	Left Side Flags Right Side to Read Memory Locatıon 3FF
X	X	X	X	L	L	X	3FE	H	L	H	X	Right Side Flags Left Side to Read Memory Location 3FE

Table 2. $\overline{\mathbf{C E}} / \overline{\mathbf{C S}}$ Contention Arbitration

Left Port Inputs			Right Port Inputs			Left Flags		Right Flags		Function
$\mathrm{R} / \bar{W}_{\text {L }}$	$\overline{\mathbf{C E}}_{\mathrm{L}} / \overline{\mathbf{C S}}_{\mathrm{L}}$	$\overline{\mathrm{OE}}_{\mathrm{L}}$	$\mathrm{R} / \overline{\mathrm{W}}_{\mathrm{R}}$	$\overline{\mathbf{C E}}_{\mathbf{R}} / \overline{\mathrm{CS}}_{\mathbf{R}}$	$\overline{\mathrm{OE}}_{\mathbf{R}}$	$\overline{\text { BUSY }}_{\text {L }}$	$\overline{\mathrm{INT}}_{\mathrm{L}}$	$\overline{\text { BUSY }}_{\text {R }}$	$\overline{\mathrm{INT}}_{\mathrm{R}}$	
X	L1	X	X	L	LAC	H	X	L	X	Left Operation Allowed RAM Inaccessible from Right
X	L	LAC	X	L1	X	L	x	H	X	Right Operation Allowed RAM Inaccessible from Left
X	Both	X	X	Both	LAC	H	X	L	x	Left Operation Allowed RAM Inaccessible from Right
X	L1	X	X	L	LBC	H	X	L	X	Left Operation Allowed RAM Accessible from Right*
X	L	LBC	X	L1	X	L	X	H	X	Right Operation Allowed RAM Accessible from Left*
X	Both	x	x	Both	LBC	H	X	L	x	Left Operation Allowed RAM Accessible from Right*

$1=$ Pin active before equivalent pin on other port
LAC = LOW after chip enable
*See Contention Override Mode Tımıng on page 7

LBC = LOW before chip enable
Both $=$ Equivalent pins on both ports become active at the same time

Table 3. Address Contention Arbitration

Left Port Inputs				Right Ports Inputs				Left Flags		Right Flags		Function
$\underline{R / \bar{W}_{L}}$	$\overline{\mathbf{C E}}_{\mathbf{L}} / \overline{\mathbf{C S}}_{\mathbf{L}}$	$\overline{O E}_{L}$	$\mathrm{AO}_{\mathrm{L}^{-}-\mathrm{A} 9}$	$\mathrm{R} / \bar{W}_{\text {R }}$	$\overline{\mathbf{C E}}_{\mathbf{R}} / \overline{\mathbf{C S}}_{\mathbf{R}}$	$\overline{\mathrm{OE}}_{\mathrm{R}}$	$\mathrm{AO}_{\mathrm{R}}-\mathrm{A9} 9_{\mathrm{R}}$	$\overline{\text { BuSY }}_{\text {L }}$	$\overline{\mathrm{INT}}_{\mathrm{L}}$	$\overline{\text { BUSY }}_{\text {R }}$	$\overline{\text { INT }}_{\text {R }}$	
X	L	X	Match1	X	L	X	Match	H	X	L	X	Left Operation Allowed**
X	L	x	Match	X	L	x	Match 1	L	x	H	x	Right Operation Allowed**
X	L	X	Both	X	L	X	Both	H	X	L	X	Left Operatıon Allowed**

Match = Addresses on left and right ports are identical
Match 1 = Address valid on the port before becoming valid on opposite port
Both = Addresses match and become valid on both ports at the same tıme
**RAM inaccessible from other port unless that ports $\overline{O E}$ was low when the match occurred Also see Note 7

A.C. Testing Input, Output Waveform

AC TESTING INPUTS ARE DRIVEN AT 24 V FOR A LOGIC " 1 " AND 0 4V FOR A LOGIC " 0 ". TIMING MEASUREMENTS ARE MADE AT $20 V$ FOR A LOGIC " 1 " AND 0.8 V FOR A LOGIC " 0 " INPUT PULSE RISE AND FALL TIMES ARE 5 ns

A.C. Testing Load Circuit

Ordering Information

Order Number	Access Time (Max.)	Operating Current (Max.)	Standby Current (Max.) \dagger	Package Type
$\begin{aligned} & \text { SYP2130-1 } \\ & \text { SYC2130-1 } \end{aligned}$	100 ns 100 ns	$\begin{aligned} & 170 \mathrm{~mA} \\ & 170 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 40 \mathrm{~mA} / 110 \mathrm{~mA} \\ & 40 \mathrm{~mA} / 110 \mathrm{~mA} \end{aligned}$	Molded DIP Ceramıc
$\begin{aligned} & \text { SYP2131-1 } \\ & \text { SYC2131-1 } \end{aligned}$	100 ns 100 ns	$\begin{aligned} & 170 \mathrm{~mA} \\ & 170 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & \mathrm{NA}^{*} \\ & \mathrm{NA} \end{aligned}$	Molded DIP Ceramıc
$\begin{aligned} & \text { SYP2130-2 } \\ & \text { SYC2130-2 } \end{aligned}$	120 ns 120 ns	$\begin{aligned} & 170 \mathrm{~mA} \\ & 170 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 40 \mathrm{~mA} / 110 \mathrm{~mA} \\ & 40 \mathrm{~mA} / 110 \mathrm{~mA} \end{aligned}$	Molded DIP Ceramıc
$\begin{aligned} & \text { SYP2131-2 } \\ & \text { SYC2131-2 } \end{aligned}$	$\begin{aligned} & 120 \mathrm{~ns} \\ & 120 \mathrm{~ns} \end{aligned}$	$\begin{aligned} & 170 \mathrm{~mA} \\ & 170 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & \text { N A } \\ & \text { N A } \end{aligned}$	Molded DIP Ceramic
SYP2130-3 SYC2130-3	$\begin{aligned} & 150 \mathrm{~ns} \\ & 150 \mathrm{~ns} \end{aligned}$	$\begin{aligned} & 170 \mathrm{~mA} \\ & 170 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 40 \mathrm{~mA} / 110 \mathrm{~mA} \\ & 40 \mathrm{~mA} / 110 \mathrm{~mA} \end{aligned}$	Molded DIP Ceramıc
$\begin{aligned} & \text { SYP2131-3 } \\ & \text { SYC2131-3 } \end{aligned}$	$\begin{aligned} & 150 \mathrm{~ns} \\ & 150 \mathrm{~ns} \end{aligned}$	$\begin{aligned} & 170 \mathrm{~mA} \\ & 170 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & \text { N A * } \\ & \text { N A } \end{aligned}$	Molded DIP Ceramıc
SYP2130-4 SYC2130-4	$\begin{aligned} & 200 \mathrm{~ns} \\ & 200 \mathrm{~ns} \end{aligned}$	$\begin{aligned} & 170 \mathrm{~mA} \\ & 170 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 40 \mathrm{~mA} / 110 \mathrm{~mA} \\ & 40 \mathrm{~mA} / 110 \mathrm{~mA} \end{aligned}$	Molded DIP Ceramıc
$\begin{aligned} & \text { SYP2131-4 } \\ & \text { SYC2131-4 } \end{aligned}$	200 ns 200 ns	$\begin{aligned} & 170 \mathrm{~mA} \\ & 170 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & \text { N A } \\ & \text { N A } \end{aligned}$	Molded DIP Ceramic

[^1]
ADVANCED INFORMATION

Features

- 100 ns Address Access Time
- Fully Statıc Operatıon
- Full TTL Compatibility
- Interrupt Function (INT). Open Draın for OR-tied Operation
- Easy Mıcroprocessor Interface
- $\overline{B U S Y}$ Functıon to Handle Contention
- SY2132 - Transparent Power Down ($\overline{\mathrm{CE}}$)
- SY2133 - Non-Power Down (唁)
- Output Enable Function ($\overline{\mathrm{OE}}$)
- Both Ports Operate Independently
- Each Port Accesses Entire Memory

Description

The Synertek SY2132 and SY2133 are 4096 Bit Dual Port Statıc Random Access Memories organızed 512 words by 8 bits. They are designed using fully static circuitry and fabricated using Synertek's n-channel double poly silicon gate technology
The SY2132 and SY2133 feature two separate I/O ports that each allow independent access for read or write to any location in the memory The only situation where contention can occur is when both ports are active and both addresses match. Two modes of operation are provided for this situation. In one mode, contention is ignored and both
operations are allowed to proceed. In the other mode, onchip control logic arbitrates delaying one port until the other port's operation is completed $\mathrm{A} \overline{\mathrm{BUSY}}$ flag is sent to the side whose operation is delayed $\overline{B U S Y}$ is driven out at speeds that allow the port's processor to preserve its address and data
An interrupt function (INT) is also provided to allow communication between systems This function acts like a writable flag When the flag's location is written from one side, the other side's $\overline{\mathrm{NT}}$ pın goes LOW untıl the flag location is read by that side The $\overline{\mathrm{NT}}$ s have open drain drivers to (contınued next page)

Pin Configuration

$*^{\left(\overline{C S}_{L}\right)} \overline{C E}^{\text {L }}$	1	48	$\mathrm{v} \mathrm{cc}_{\mathrm{cc}}$
$\mathrm{R} \bar{W}_{\mathrm{L}} \mathrm{O}$	2	47	
$\overline{\text { BUSY }}$ L $\square^{\text {a }}$	3	46	$\mathrm{R} \bar{W}_{\text {R }}$
$\overline{\mathrm{NT} \mathrm{T}_{\mathrm{L}} \text {, }}$	4	45	$\overline{\text { BuSY }}_{\text {R }}$
$\overline{O E}_{1} \square_{5}$	5	44	$\overline{\mathrm{iNT}} \mathrm{T}_{\mathrm{R}}$
A_{0}	6	43	$\overline{\mathrm{OE}} \mathrm{E}_{\mathrm{R}}$
A_{1} ¢	7	42	A_{0}
$\mathrm{A}_{2} \mathrm{C}$	8	41	A_{1}
$\mathrm{A}_{3} \mathrm{C}$	9	40	A_{2}
$\mathrm{A}_{4} \mathrm{C}$	10	39	A_{3}
A_{5}	11	38	A_{4}
A_{6}	12	37	A_{5}
$\mathrm{A}_{7} \mathrm{C}$	13	36	A_{6}
A_{8}	14	35	Pa_{7}
V_{R} Q	15	34	A_{8}
$1 / 0_{0}$ ¢	16	33	v_{R}
$1 / 0_{1}$ ¢	17	32	$1 / 0_{7}$
$1 / \mathrm{O}_{2}$ 万	18	31	$1 / 0_{6}$
$1 / 0_{3}$ C	19	30	$1 / 0_{5}$
$1 / \mathrm{O}_{4}$	20	29	$\mathrm{l}_{1 / \mathrm{O}_{4}}$
$1 / 0_{5}$	21	28	$\mathrm{I}_{1 / \mathrm{O}_{3}}$
$1 / 0_{6}$ ¢	22	27	$\mathrm{r}_{1 / \mathrm{O}_{2}}$
$1 / 0_{7}$ ¢	23	26	$\mathrm{l}_{1 / \mathrm{O}_{1}}$
GND	24	25	$1 / o_{0}$

Block Diagram

* $\overline{C S}$ APPLIES TO SY2133, $\overline{C E}$ APPLIES TO SY2132

allow OR-tied operation

The SY2132 has an automatic power down feature which is controlled by the Chıp Enable inputs Each Chip Enable controls automatic power-down circuitry that allows it's respective side of the device to remain in a standby power mode.

The SY2133 chip select (no power down) access has been designed to be faster than its address access so that the chip select decode tıme will not add to the memory's overall access time This feature significantly improves system performance

Pin Definitions

$\overline{C E}_{L}$	Left Port Chıp Enable When $\overline{\mathrm{CE}}_{\mathrm{L}}$ goes HIGH, the left port of the RAM is deselected and the left port control circuitry will automatically power down and remain in a standby power mode as long as $\overline{\mathrm{CE}}_{\mathrm{L}}$ remaıns HIGH	$\mathrm{R} / \bar{W}_{\mathrm{R}}$
$\overline{C E}_{R}$	Right Port Chip Enable When $\overline{\mathrm{CE}}_{\mathrm{R}}$ goes HIGH, the right port of the RAM is deselected and the right port control circuitry will automatically power down and remain in a standby power mode as long as $\overline{\mathrm{CE}}_{\mathrm{R}}$ remaıns HIGH	
$\overline{\mathrm{CS}}_{\mathrm{L}}{ }^{(11)}$	Left Port Chip Select When $\overline{\mathrm{CS}}_{\mathrm{L}}$ goes HIGH, the left port of the RAM is deselected	
$\overline{\mathrm{CS}}_{\mathrm{R}}{ }^{(11)}$	Right Port Chip Select When $\overline{\mathrm{CS}}_{\mathrm{R}}$ goes HIGH, the right port of the RAM is deselected	$\overline{B U S Y}_{L}$
$\mathrm{AO}_{\mathrm{L}}-\mathrm{A8} 8_{\mathrm{L}}$	Left Port Address Inputs The 9 -bit field presented at the left port Address Inputs selects one of the 512 memory locations to be read from or written into via the left port Data Input/Output Lines	
$A 0_{R}-A 8_{R}$	Right Port Address Inputs The 9-bit field presented at the right port Address Inputs selects one of the 512 memory locations to be read from or written into via the right port Data Input/ Output Lines	$\overline{\mathrm{BUSY}}_{\mathrm{R}}$
$\overline{O E}_{L}$	Output Enable for Left Port When $\overline{\mathrm{OE}}_{\mathrm{L}}$ is HIGH, the left port outputs are disabled, when $\overline{\mathrm{O}}_{\mathrm{L}}$ is LOW, the left port outputs are enabled Also controls contention mode for left port	
$\overline{\mathrm{OE}}_{\mathrm{R}}$	Output Enable for Right Port When $\overline{\mathrm{OE}}_{\mathrm{R}}$ is HIGH, the right port outputs are disabled When $\overline{\mathrm{OE}}_{\mathrm{R}}$ is LOW, the right port outputs are enabled Also controls contention mode for right port	$\overline{\mathrm{NT}} \mathrm{L}_{L}$
$1 / 00 L_{L}-1 / 07_{L}$	Left Port Data Input/Output Lines	$\overline{\mathrm{INT}}_{\mathrm{R}}$
$1 / 00 R_{R}-1 / 07_{R}$	Right Port Data Input/Output Lines	
R / \bar{W}_{L}	Left Port Read/Write Enable When $\overline{\mathrm{OE}}_{\mathrm{L}}$ is LOW and $\mathrm{R} / \bar{W}_{\mathrm{L}}$ is HIGH, data from the RAM location selected by the left address field is present at the left port Data Input/Output Lines When R/ \bar{W}_{L} is LOW, data present on the left port Data Input/	V_{R}

left port of the RAM is deselected and the left port control circuitry will automatically power down and remain in a standby power mode as long as $\overline{\mathrm{CE}}_{\mathrm{L}}$ remains HIGH
$\overline{\mathrm{CE}}_{\mathrm{R}} \quad$ Right Port Chip Enable When $\overline{\mathrm{CE}}_{\mathrm{R}}$ goes HIGH, the right port of the RAM is deselected and the right port control circuitry will automatically power down and remain in a standby power mode as long as $\overline{\mathrm{CE}}_{\mathrm{R}}$ remaıns HIGH
$\begin{array}{ll}\overline{\mathrm{CS}}_{\mathrm{L}}{ }^{(11)} & \begin{array}{l}\text { Left Port Chip Select When } \overline{\mathrm{CS}}_{\mathrm{L}} \text { goes HIGH, the } \\ \text { left port of the RAM is deselected }\end{array} \\ \overline{\mathrm{CS}}_{\mathrm{R}}{ }^{(11)} & \begin{array}{l}\text { Right Port Chip Select When } \overline{\mathrm{CS}}_{\mathrm{R}} \text { goes HIGH, } \\ \text { the right port of the RAM is deselected }\end{array} \\ \mathrm{AO}-\mathrm{A} 8_{\mathrm{L}} & \begin{array}{l}\text { Left Port Address Inputs The } 9 \text {-bit field pre- } \\ \text { sented at the left port Address Inputs selects one } \\ \text { of the } 512 \text { memory locations to be read from or } \\ \text { written into via the left port Data Input/Output } \\ \text { Lines }\end{array}\end{array}$
$A 0_{R}-A 8_{R} \quad$ Right Port Address Inputs The 9-bit field presented at the right port Address Inputs selects one of the 512 memory locations to be read from written into via the right port Data Input/

Output Enable for Left Port When $\overline{\mathrm{OE}}_{\mathrm{L}}$ is HIGH, the left port outputs are disabled, when $\overline{\mathrm{OE}}_{\mathrm{L}}$ is trols contention mode for left port
$\overline{\mathrm{OE}}_{\mathrm{R}} \quad$ Output Enable for Right Port When $\overline{\mathrm{OE}}_{\mathrm{R}}$ is HIGH, the right port outputs are disabled When $\overline{\mathrm{OE}}_{\mathrm{R}}$ is LOW, the right port outputs are enabled Also controls contention mode for right port
$1 / 00_{L}-1 / 07 \mathrm{~L}$
$1 / 00_{R}-1 / 07_{R}$
Right Port Data Input/Output Lines
Left Port Read/Write Enable When $\overline{\mathrm{OE}}_{\mathrm{L}}$ is LOW and R / \bar{W}_{L} is HIGH , data from the RAM location left port Data Input/Output Lines When R/ \bar{W}_{L} is LOW, data present on the left port Data Input/

Output Lines is written into the RAM location selected by the left address field irregardless of the state of $\overline{O E}_{\mathrm{L}}$ These operations can be affected by contention
Right Port Read/Write Enable When $\overline{\mathrm{OE}}_{\mathrm{R}}$ is LOW and R / \bar{W}_{R} is HIGH, data from the RAM location selected by the left address field is present at the right port Data Input/Output Lines When R / \bar{W}_{R} is LOW, data present on the right port Data Input/Output Lines is written into the RAM location selected by the right address field ırregardless of the state of $\overline{\mathrm{OE}}_{\mathrm{R}}$ These operations can be affected by contention
Left Port Busy Flag $\overline{\mathrm{BUSY}}_{\mathrm{L}}$ remaıns HIGH at all tımes unless both ports initiate an operation to the same address location and the left port is operating in contention mode with the right port receiving priority When this occurs, the right port operation will be completed first and $\overline{\mathrm{BUSY}}_{\mathrm{L}}$ will go LOW until the right port operation is completed
Right Port Busy Flag. $\overline{\mathrm{BUSY}}_{\mathrm{R}}$ remaıns HIGH at all tımes unless both ports initiate an operation to the same address location and the right port is operating in contention mode with the left port receiving priority When this occurs, the left port operation will be completed first and $\overline{\mathrm{BUSY}}_{\mathrm{R}}$ will go LOW until the left port operation is completed Both $\overline{B U S Y}_{L}$ and $\overline{B U S Y}_{R}$ are open draın outputs allowing OR-tied operation
Left Port Interrupt Flag If the right port writes to memory location 1 FE then $\overline{\mathbb{N T}}_{\mathrm{L}}$ is latched LOW untı the left port reads data from memory location 1FE
Right Port Interrupt Flag If the left port writes to memory location 1 FF , then $\overline{\mathbb{N T}}_{\mathrm{R}}$ is latched LOW untıl the right port reads data from memory location 1 FF Both $\overline{\mathrm{NT}}_{\mathrm{L}}$ and $\overline{\mathrm{INT}}_{\mathrm{R}}$ are open drain allowing OR-tied operation

Pins 15 and 33 are reference inputs and should be tied to $V_{C C}$ for normal operation

Absolute Maximum Ratings*	
Temperature Under Blas	$-10^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Voltage on any Pın with Respect to Ground ..	-3.5 V to +7 V
Power Dissipation	1.0

Comment*

Stresses above those listed under "Absolute Maxımum Ratıngs" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or at any other condition above those indicated in the operational sections of this specification is not implied.
D.C. Characteristics $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%$ (Unless otherwise specified)

Symbol	Parameter	SY2132/SY2133-1/-2/-3/-4		Unit	Conditions
		Min.	Max.		
I_{LI}	Input Load Current (All input pins)		10	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=$ Max., $\mathrm{V}_{\mathrm{IN}}=\mathrm{GND}$ to $\mathrm{V}_{\text {CC }}$
lo	Output Leakage Current		10	$\mu \mathrm{A}$	$\begin{aligned} & \overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IH}}, V_{\mathrm{CC}}=\mathrm{Max} \\ & \mathrm{~V}_{\mathrm{OUT}}=\mathrm{GND} \text { to } 45 \mathrm{~V} \end{aligned}$
${ }^{\text {cc }}$	Power Supply Current (Both Ports Active)		150	mA	$V_{\mathrm{CC}}=\mathrm{Max}, \overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}}$ Outputs Open
			170	mA	
$\mathrm{I}_{\text {SB1 }}$	Standby Current (Both Ports Standby)		40	mA	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min} \text { to Max, } \\ & \mathrm{CE}_{\mathrm{L}} \text { and } \overline{\mathrm{CE}} \\ & \mathrm{R} \end{aligned}=\mathrm{V}_{\mathrm{IH}} \text { (Note 10) }$
$\mathrm{I}_{\text {SB2 }}$	Standby Current (One Port Standby)		110	mA	$\begin{aligned} & \hline V_{\mathrm{CC}}=\text { Min. to Max }, \\ & \overline{\mathrm{CE}}_{\mathrm{L}} \text { or } \overline{\mathrm{CE}}_{\mathrm{R}}=\mathrm{V}_{\mathrm{IH}} \text { (Note 10) } \\ & \hline \end{aligned}$
$\mathrm{V}_{\text {IL }}$	Input Low Voltage	-0.5	0.8	V	
V_{IH}	Input High Voltage	22	6.0	V	
V_{OL}	Output Low Voltage		04	V	$\mathrm{IOL}^{\text {a }}=32 \mathrm{~mA}$ (Note 12)
V_{OH}	Output High Voltage	24		V	$\mathrm{I}_{\mathrm{OH}}=-10 \mathrm{~mA}$ (Note 12)

Capacitance $T_{A}=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}$

Symbol	Test	Typ.	Max.	Unit
$\mathrm{C}_{\text {OUT }}$	Output Capacitance		5	pF
C_{iN}	Input Capacitance		5	pF

NOTE This parameter is periodically sampled and not 100% tested
A.C. Characteristics $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%$

READ CYCLE (Note 12)

Symbol	Parameter	$\begin{aligned} & \text { SY2132-1 } \\ & \text { SY2133-1 } \end{aligned}$		$\begin{aligned} & \text { SY2132-2 } \\ & \text { SY2133-2 } \end{aligned}$		$\begin{aligned} & \text { SY2132-3 } \\ & \text { SY2133-3 } \end{aligned}$		$\begin{aligned} & \text { SY2132-4 } \\ & \text { SY2133-4 } \end{aligned}$		Units	Conditions
		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.		
t_{RC}	Read Cycle Tıme	100		120		150		200		ns	
t_{AA}	Address Access Tıme		100		120		150		200	ns	
$\mathrm{t}_{\text {ACE }}$	Chıp Enable Access Tıme		100		120		150		200	ns	[10]
$\mathrm{t}_{\text {AOE }}$	Output Enable Access Tıme		40		50		60		80	ns	
t_{OH}	Output Hold from Address Change	10		10		10		20		ns	
t_{Lz}	Output Low Z Tıme	10		10		10		20		ns	[5]
t_{HZ}	Output Hıgh Z Tıme	0	40	0	50	0	60	0	80	ns	[5]
t_{PU}	Chip Enable to Power Up Tıme	0		0		0		0		ns	[10]
t_{PD}	Chıp Disable to Power Down Tıme		50		60		70		100	ns	[10]
$\mathrm{t}_{\mathrm{ACS}}$	Chıp Select Access Tıme		80		100		110		160	ns	[11]

A.C. Characteristics $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%$ (continued) (Note 12) WRITE CYCLE

Symbol	Parameter	$\begin{aligned} & \text { SY2132-1 } \\ & \text { SY2133-1 } \end{aligned}$		$\begin{aligned} & \text { SY2132-2 } \\ & \text { SY2133-2 } \end{aligned}$		$\begin{aligned} & \text { SY2132-3 } \\ & \text { SY2133-3 } \end{aligned}$		$\begin{aligned} & \text { SY2132-4 } \\ & \text { SY2133-4 } \end{aligned}$	
		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.
twc	Write Cycle Tıme	100		120		150		200	
tew	Chip Enable to End of Write	90		105		120		180	[10]
$\mathrm{t}_{\text {SW }}$	Chip Select to End of Write	70		85		90		140	[11]
$\mathrm{t}_{\text {AW }}$	Address Valid to End of Write	90		105		120		180	
$t_{\text {AS }}$	Address Setup Time	0		0		0		0	
$t_{\text {WP }}$	Write Pulse Width	60		70		80		120	
$t_{W R}$	Write Recovery Time	0		0		0		0	
$t_{\text {dW }}$	Data Valid to End of Write	40		50		60		80	
${ }^{\text {t }}$ D	Data Hold Tıme	0		0		0		0	
$t_{W z}$	Write Enabled to Output in High Z	0	40	0	50	0	60	0	80 [5]
tow	Output Active from End of Write	0		0		0		0	[5]

BUSY TIMING

t_{RC}	Read Cycle Tıme	100		120		150		200	
twc	Write Cycle Tıme	100		120		150		200	
toen	Output Enable Hold Tıme	20		25		30		40	
$\mathrm{t}_{\text {OER }}$	Output Enable Recovery Tıme	0		0		0		0	
$\mathrm{t}_{\mathrm{BAA}}$	$\overline{\text { BUSY Access Tıme to Address }}$		40		50		60		80
$t_{\text {BDA }}$	BUSY Disable Tıme to Address		40		50		60		80
$t_{B A C}$	$\overline{\mathrm{BUSY}}$ Access Time to Chip Enable or Chip Select		40		50		60		80
$t_{B D C}$	BUSY Disable Tıme to Chıp Enable or Chip Select		40		50		60		80
$\mathrm{t}_{\text {APS }}$	Arbitration Priority Set Up Time	20		25		30		40	
${ }^{\text {t }}$ AOS	Arbıtratıon Overrıde Set Up Tıme	20		25		30		40	

INTERRUPT TIMING (Note 12)

t_{AS}	Address Set Up Tıme	0		0		0		0	
t_{AW}	Write Recovery Tıme	0		0		0		0	
$\mathrm{t}_{\mathrm{INS}}$	Interrupt Set Tıme		40		50		60		80
$\mathrm{t}_{\mathrm{INR}}$	Interrupt Reset Tıme		40		50		60		80

NOTES

$1 \mathrm{R} / \overline{\mathrm{W}}$ is high for Read Cycles
2 Device is contınuously enabled/selected, $\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}}$ or $\overline{\mathrm{CS}}=\mathrm{V}_{\mathrm{IL}}$
3 Addresses valid prior to or coincident with $\overline{C E}$ or $\overline{C S}$ transition low
4 If $\overline{C E}$ or $\overline{C S}$ goes high simultaneously with R / \bar{W} high, the outputs remain in the high impedance state
5 Transition is measured $\pm 500 \mathrm{mV}$ from low or high impedance voltage with load B This parameter is sampled and not 100% tested
6 A pullup resistor to $V_{C C}$ on the $\overline{C E}$ or $\overline{C S}$ input is required to keep the device deselected otherwise, power-on current approaches ICC active
$7 \overline{O E}$ can be $V_{I H}$ when contention arbitration mode occurs or $V_{I L}$ when contention override mode occurs, see Tables 2 and 3
$8 \quad \overline{C E}_{\mathrm{L}}=\overline{\mathrm{CE}}_{\mathrm{R}}=\mathrm{V}_{\mathrm{IL}}$ or $\overline{\mathrm{CS}}_{\mathrm{L}}=\overline{\mathrm{CS}}_{\mathrm{R}}=\mathrm{V}_{\mathrm{IL}}$
9 Busy tıming is identical to Contention Cycle Nos 1 and 2
10 Applies to SY2132 version (power down) only
11 Applies to SY2133 version (non-power down) only
12 The interrupt and busy signals (pins 3,4,44 and 45) are open drain outputs A pull-up resistor is required for system operation Load C is used for A C testing these pins All other outputs use load A
13 Read or Write Cycle Tımıng after $\overline{B U S Y}$ ınactıve as shown in previous tımıng diagrams

Timing Diagrams

READ CYCLE NO. 1 EITHER SIDE (Notes 1 and 2)

READ CYCLE NO. 2 EITHER SIDE (Notes 1 and 3)

WRITE CYCLE NO. 1 EITHER SIDE (Note 4)

WRITE CYCLE NO. 2 EITHER SIDE ($\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IL}}$) (Note 4)

CONTENTION CYCLE NO. 1 ($\overline{\mathbf{C E}} / \overline{\mathrm{CS}}$ CONTENTION ARBITRATION MODE) (Note 7)
$\overline{\mathrm{CE}}_{\mathrm{L}} / \overline{\mathrm{CS}}_{\mathrm{L}}$ VALID FIRST:

$\overline{\mathbf{C E}}_{\mathbf{R}} / \overline{\mathbf{C S}}_{\mathbf{R}}$ VALID FIRST:

CONTENTION CYCLE NO. 2 (ADDRESS CONTENTION ARBITRATION MODE) (Notes 7 and 8)

ADDRESS ${ }_{\mathrm{L}}$ VALID FIRST:

ADDRESS $_{\text {R }}$ VALID FIRST:

CONTENTION CYCLE NO. 3 (CONTENTION OVERRIDE MODE) (Note 9)

LEFT PORT CONTENTION IGNORED:

RIGHT PORT CONTENTION IGNORED:

INTERRUPT MODE (Note 8)

LEFT SIDE FLAGS RIGHT SIDE:

RIGHT SIDE FLAGS LEFT SIDE:

Functional Description

The SY2132 and SY2133 are 512 word by 8-bit dual port RAMs that feature two separate I/O ports. Each port allows independent access for read or write to any location in the memory.

The SY2132 features separate left and right port Chip Enable controls ($\overline{\mathrm{CE}}_{\mathrm{L}}$ and $\overline{\mathrm{CE}}_{\mathrm{R}}$). Each Chip Enable activates its respective port when it goes LOW and controls automatic power-down circuitry that allows it's respective side of the device to remain in a standby power mode as long as it remains HIGH. When a port is active, it is allowed access to the entire memory array.
The SY2133 features separate left and right port Chip Select controls ($\overline{\mathrm{CS}}_{\mathrm{L}}$ and $\overline{\mathrm{CS}}_{\mathrm{R}}$) Each Chip Select activates its respective port when it goes LOW and allows its respective side of the device to remain selected as long as it remains LOW When a port is active, it is allowed access to the entıre memory array.
Each port has an Output Enable control ($\overline{\mathrm{OE}}_{\mathrm{L}}$ and $\overline{\mathrm{OE}}_{\mathrm{R}}$) that keeps its respective output in a high impedance mode when HIGH When a port's $\overline{O E}$ is LOW, that port's output drivers are turned on providing its R / \bar{W} control is HIGH
Separate Read/Write Enable inputs (R / \bar{W}_{L} and R / \bar{W}_{R}) control writing of new data into any location in the RAM from either port When $\mathrm{R} / \bar{W}_{\mathrm{L}}$ is LOW, new data is written into the location selected by the left address field Likewise, when $\mathrm{R} / \overline{\mathrm{W}}_{\mathrm{R}}$ is LOW, new data is written into the location selected by the right address field. When a port's Read/ Write Enable is HIGH, data can be read from that port if its respective $\overline{\mathrm{OE}}$ is LOW When R / \bar{W}_{L} is HIGH and $\overline{\mathrm{OE}}_{\mathrm{L}}$ is LOW, data is read from the location selected by the left address field. When $\mathrm{R} / \overline{\mathrm{W}}_{\mathrm{R}}$ is HIGH and $\overline{\mathrm{OE}}_{\mathrm{R}}$ is LOW, data is read from the location selected by the right address field

There is one situation where contention can occur it is when both left and right ports are active and both addresses match Two modes of operation are provided for this situation. (1) on-chip control logic arbitrates the situation, or (iI) contention is ignored and both ports are given access to that memory location $\overline{\mathrm{OE}}$ controls the mode of operation
If $\overline{\mathrm{CE}}$ or $\overline{\mathrm{CS}}$ is LOW before $\overline{\mathrm{OE}}$ goes LOW when both addresses match, then on-chip control logic arbitrates the situation Priority is given to the port whose $\overline{\mathrm{CE}}$ or $\overline{\mathrm{CS}}$ became valid first; the other port will not be allowed access to the memory core until that port's operation is completed

If both port's $\overline{\mathrm{CE}}$ or $\overline{\mathrm{CS}}$ controls became valid at the same time while their $\overline{\mathrm{OE}}$ s are HIGH, then the left port is given priority If both $\overline{\mathrm{CE}}$ or $\overline{\mathrm{CS}}$ pins are valid before their respective $\overline{\mathrm{OE}}$ controls and an address change causes an address match while $\overline{\mathrm{OE}}$ is HIGH, then priority is given to the port whose address became valid first, the other port is not allowed access to the memory until that port's operation is completed If both addresses became valid at the same tıme and match, and $\overline{\mathrm{OE}}$ is HIGH, then the left port is given priority,
In the other mode, contention is ignored and one or both ports have access to the memory core at all times. This is accomplished by having $\overline{\mathrm{OE}}$ LOW when the contention occurs. That is, the RAM core is accessible from a port even if the on-chip control logic would have delayed its access provided. (a) the port's $\overline{\mathrm{OE}}$ is LOW when its $\overline{\mathrm{CE}}$ or $\overline{\mathrm{CS}}$ goes LOW during an address match, or (b) both ports are active and its $\overline{O E}$ is LOW when an address change causes an address match Therefore, it is possible for both ports to have access to the same memory location at the same tıme, even in a WRITE L $_{\text {-WRITE }}^{\text {R }}$ situation
Separate Busy Flags ($\overline{B U S Y}_{L}$ and $\overline{B U S Y}_{R}$) are provided to signal when a port's access to the memory core has been delayed When both ports try to access the same memory location, the on-chip arbitration logic causes the Busy Flag to go LOW on the side that is delayed These flags are provided to allow the user to stop the processor if desired $\overline{B U S Y}$ is driven out fast enough for the processor's address and data to be preserved if desired The Busy Flags are operational even when the device is operating in the mode where contention is ignored and function the same as described for contention mode operation This permits their use to signal that contention has occurred and data may have been changed
Interrupt logic is included on-chip to provide a means for two processors to communicate to one another If the left port writes to memory location 1FF, then the right port Interrupt Flag ($\overline{\mathrm{INT}}_{\mathrm{R}}$) is latched LOW until the right port reads data from that same location If the right port writes to loation 1FE, then the left port Interrupt Flag ($\overline{\mathrm{NT}}_{\mathrm{L}}$) is latched LOW untıl the left port reads data from that location If both ports are enabled and contention occurs, the Busy circuitry will disable the address decoder from setting or resetting the Interrupt Flags

Table 1. Non-Contention Read/Write Control

Left Port Inputs				Right Ports Inputs				Left Flags		Right Flags		Function
$\underline{R} / \bar{W}_{L}$	$\overline{\mathbf{C E}}_{\mathbf{L}} / \overline{\mathbf{C S}}_{\mathbf{L}}$	$\overline{O E}_{L}$	$\mathrm{AO}_{L^{-}}-\mathrm{A} 8_{\mathrm{L}}$	$\mathrm{R} / \bar{W}_{\mathbf{R}}$	$\overline{\mathbf{C E}}_{\mathbf{R}} / \overline{\mathbf{C S}}_{\mathbf{R}}$	$\overline{O E}_{R}$	$A 0_{R}-A 8_{R}$	$\widehat{\text { BUSY }}_{\text {L }}$	$\overline{\mathrm{INT}}_{\mathbf{L}}$	$\overline{\text { BUSY }}_{\text {R }}$	$\overline{\text { INT }}_{\text {R }}$	
X	H	X	X	X	X	X	X	H	X	H	X	Left Port in Power Down Mode
X	X	X	X	X	H	X	X	H	X	H	X	Right Port in Power Down Mode
L	L	X	X	X	X	X	X	H	X	H	X	Data on Left Port Written to Memory Location $\mathrm{AO}_{\mathrm{L}}-\mathrm{AB}_{\mathrm{L}}$
H	L	L	X	x	x	X	X	H	X	H	X	Data in Memory Location $\mathrm{AO}_{\mathrm{L}}-\mathrm{A} 8_{\mathrm{L}}$ Output on Left Port
X	X	X	X	L	L	x	X	H	X	H	X	Data on Right Port Written to Memory Location $\mathrm{AO}_{\mathrm{R}}-\mathrm{A} 8_{\mathrm{R}}$
X	X	X	X	H	L	L	X	H	X	H	X	Data in Memory Location $\mathrm{AO}_{\mathrm{R}}-\mathrm{A} 8_{\mathrm{R}}$ Output on Right Port
L	L	X	1 FF	X	x	X	X	H	X	H	L	Left Side Flags Right Side to Read Memory Location 1FF
X	X	X	X	L	L	X	1 FE	H	L	H	X	Rıght Sıde Flags Left Side to Read Memory Location 1FF

Table 2. $\overline{\mathrm{CE}} / \overline{\mathrm{CS}}$ Contention Arbitration

Left Port Inputs			Right Port Inputs			Left Flags		Right Flags		Function
$\mathrm{R} / \bar{W}_{\text {L }}$	$\overline{\mathbf{C E}}^{\prime} / \overline{\mathbf{C S}}_{\mathrm{L}}$	$\overline{O E}_{L}$	$\mathrm{R} / \bar{W}_{\text {W }}$	$\overline{\mathrm{CE}}_{\mathbf{R}} / \overline{\mathrm{CS}}_{\mathbf{R}}$	$\overline{\mathrm{OE}}_{\mathbf{R}}$	$\overline{\text { BUSY }}_{\text {L }}$	$\overline{\mathrm{NTT}} \mathrm{L}$	$\overline{\text { BuSY }}_{\text {R }}$	$\overline{\mathrm{NTT}}_{\mathrm{R}}$	
X	L1	X	X	L	LAC	H	X	L	X	Left Operation Allowed RAM Inaccessible from Right
X	L	LAC	X	L1	X	L	X	H	X	Right Operation Allowed RAM Inaccessible from Left
X	Both	x	X	Both	LAC	H	x	L	x	Left Operation Allowed RAM Inaccessible from Right
X	L1	X	X	L	LBC	H	X	L	X	Left Operation Allowed RAM Accessible from Right*
X	L	LBC	X	L1	X	L	X	H	X	Right Operation Allowed RAM Accessible from Left*
X	Both	x	X	Both	LBC	H	x	L	X	Left Operatıon Allowed RAM Accessible from Rıght*

$1=$ Pın actıve before equivalent pın on other port LAC = LOW after chip enable
*See Contention Override Mode Tımıng on page 7
Table 3. Address Contention Arbitration

Left Port Inputs				Right Ports Inputs				Left Flags		Right Flags		Function
$\mathrm{R} / \bar{W}_{\mathrm{L}}$	$\overline{\mathbf{C E}}_{\mathbf{L}} / \overline{\mathbf{C S}}_{\mathbf{L}}$	$\overline{\mathrm{OE}}_{\mathrm{L}}$	$\mathrm{AO}_{\mathrm{L}}-\mathrm{A} 8_{\mathrm{L}}$	$\mathrm{R} / \overline{\mathrm{W}}_{\mathrm{R}}$	$\overline{\mathbf{C E}}_{\mathbf{R}} / \overline{\mathrm{CS}}_{\mathbf{R}}$	$\overline{\mathrm{OE}}_{\mathbf{R}}$	$\mathrm{AO}_{\mathrm{R}}-\mathrm{A8} \mathrm{R}_{\mathrm{R}}$	$\overline{\text { BUSY }}^{\text {L }}$	$\overline{\mathrm{INT}}{ }_{\mathrm{L}}$	$\overline{\text { BUSY }}_{\text {R }}$	$\overline{\text { INT }}_{\mathbf{R}}$	
X	L	x	Match1	X	L	X	Match	H	X	L	\times	Left Operatıon Allowed**
X	L	X	Match	X	L	X	Match 1	L	X	H	X	Right Operation Allowed**
X	L	X	Both	X	L	X	Both	H	X	L	X	Left Operatıon Allowed**

[^2]Match 1 = Address valid on the port before becoming valıd on opposite port
Both = Addresses match and become valıd on both ports at the same tıme
**RAM inaccessible from other port unless that ports $\overline{\mathrm{OE}}$ was low when the match occurred Also see Note 7

A.C. Testing Input, Output Waveform

A.C. Testing Load Circuit

Ordering Information

Order Number	Access Time (Max.)	Operating Current (Max.)	Standby Current (Max.) \dagger	Package Type
$\begin{aligned} & \text { SYP2132-1 } \\ & \text { SYC2132-1 } \end{aligned}$	$\begin{aligned} & 100 \mathrm{~ns} \\ & 100 \mathrm{~ns} \end{aligned}$	$\begin{aligned} & 170 \mathrm{~mA} \\ & 170 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 40 \mathrm{~mA} / 110 \mathrm{~mA} \\ & 40 \mathrm{~mA} / 110 \mathrm{~mA} \end{aligned}$	Molded DIP Ceramıc
$\begin{aligned} & \text { SYP2133-1 } \\ & \text { SYC2133-1 } \end{aligned}$	$\begin{aligned} & 100 \mathrm{~ns} \\ & 100 \mathrm{~ns} \end{aligned}$	$\begin{aligned} & 170 \mathrm{~mA} \\ & 170 \mathrm{ma} \end{aligned}$	$\begin{aligned} & \text { N A * } \\ & \text { N A } \end{aligned}$	Molded DIP Ceramic
$\begin{aligned} & \text { SYP2132-2 } \\ & \text { SYC2132-2 } \end{aligned}$	$\begin{aligned} & 120 \mathrm{~ns} \\ & 120 \mathrm{~ns} \end{aligned}$	$\begin{aligned} & 170 \mathrm{~mA} \\ & 170 \mathrm{~mA} \end{aligned}$	$40 \mathrm{~mA} / 110 \mathrm{~mA}$ $40 \mathrm{~mA} / 110 \mathrm{~mA}$	Molded DIP Ceramic
$\begin{aligned} & \text { SYP2133-2 } \\ & \text { SYC2133-2 } \end{aligned}$	$\begin{aligned} & 120 \mathrm{~ns} \\ & 120 \mathrm{~ns} \end{aligned}$	$\begin{aligned} & 170 \mathrm{~mA} \\ & 170 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & \text { N A * } \\ & \text { N A } \end{aligned}$	Molded DIP Ceramic
$\begin{aligned} & \text { SYP2132-3 } \\ & \text { SYC2132-3 } \end{aligned}$	$\begin{aligned} & 150 \mathrm{~ns} \\ & 150 \mathrm{~ns} \end{aligned}$	$\begin{aligned} & 170 \mathrm{~mA} \\ & 170 \mathrm{~mA} \end{aligned}$	$40 \mathrm{~mA} / 110 \mathrm{~mA}$ $40 \mathrm{~mA} / 110 \mathrm{~mA}$	Molded DIP Ceramic
$\begin{aligned} & \text { SYP2133-3 } \\ & \text { SYC2133-3 } \end{aligned}$	$\begin{aligned} & 150 \mathrm{~ns} \\ & 150 \mathrm{~ns} \end{aligned}$	$\begin{aligned} & 170 \mathrm{~mA} \\ & 170 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & \text { N A * } \\ & \text { N A } \end{aligned}$	Molded DIP Ceramic
$\begin{aligned} & \text { SYP2132-4 } \\ & \text { SYC2132-4 } \end{aligned}$	$\begin{aligned} & 200 \mathrm{~ns} \\ & 200 \mathrm{~ns} \end{aligned}$	$\begin{aligned} & 170 \mathrm{~mA} \\ & 170 \mathrm{~mA} \end{aligned}$	$40 \mathrm{~mA} / 110 \mathrm{~mA}$ $40 \mathrm{~mA} / 110 \mathrm{~mA}$	Molded DIP Ceramic
$\begin{aligned} & \text { SYP2133-4 } \\ & \text { SYC2133-4 } \end{aligned}$	$\begin{aligned} & 200 \mathrm{~ns} \\ & 200 \mathrm{~ns} \end{aligned}$	$\begin{aligned} & 170 \mathrm{~mA} \\ & 170 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & \text { N A } \\ & \text { N A } \end{aligned}$	Molded DIP Ceramic

[^3]
Features

- 45 ns Maxımum Access Tıme
- No Clocks or Strobes Required
- Automatı $\overline{C E}$ Power Down
- Identical Cycle and Access Times
- Single +5 V Supply ($\pm 10 \%$)
- Pinout and Function Compatible to SY2147
- Direct Performance Upgrade for SY2147
- Totally TTL Compatible All Inputs and Outputs
- Separate Data Input and Output
- Hıgh Density 18-Pın Package
- Three-State Output

Description

The Synertek SY2147H is a 4096-Bit Statıc Random Access Memory organized 4096 words by 1 -bit and is fabricated using Synertek's new scaled n-channel silicon gate technology It is designed using fully static circuitry, therefore requiring no clock or refreshing to operate Address set-up times are not required and the data is read out nondestructively with the same polarity as the input data Separate data input and output pıns provide maxımum design flexibility The three-state output facilitates memory expansion by allowing the outputs to be OR-tied to other devices

The SY2147H offers an automatic power down feature Power down is controlled by the Chip Enable input When Chip Enable ($\overline{\mathrm{CE}}$) goes high, thus deselecting the SY2147H, the device will automatically power down and remain in a standby power mode as long as $\overline{C E}$ remains high This unıque feature provides system level power savings as much as 80%
The SY2147H is packaged in an 18-pin DIP for the highest possible density The device is fully TTL compatible and has a single +5 V power supply

Block Diagram

Absolute Maximum Ratings

Temperature Under Bias	$-10^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Voltage on Any Pin with	
Respect to Ground	-3.5 V to +7 V
Power Dissipation	1.2

Comment*

Stresses above those listed under "Absolute Maxımum Ratıngs" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or at any other condition above those indicated in the operational sections of this specification is not implied.
D.C. Characteristics $T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%$ (Unless otherwise specified) (Note 8)

Symbol	Parameter	2147HL/L-3		2147H-2/-3		Unit	Conditions	
		Min.	Max.	Min.	Max.			
ILI	Input Load Current (All input pins)		10		10	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=$ Max, $\mathrm{V}_{1 \mathrm{~N}}=\mathrm{Gnd}$ to V_{CC}	
\| LO		Output Leakage Current		50		50	$\mu \mathrm{A}$	$\begin{aligned} & \overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{HH}}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Max}, \\ & \mathrm{~V}_{\mathrm{OUT}}=\mathrm{G} \text { nd to } 45 \mathrm{~V}, \\ & \hline \end{aligned}$
${ }^{\text {CCC }}$	Power Supply Current		$\begin{aligned} & 115 \\ & 125 \end{aligned}$		$\begin{aligned} & 150 \\ & 160 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$	$\begin{array}{ll} \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} & \mathrm{~V}_{\mathrm{CC}}=\text { Max, } \overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}} \\ \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C} & \text { Outputs Open } \end{array}$	
$\mathrm{I}_{\text {SB }}$	Standby Current		15		20	mA	$\mathrm{V}_{\mathrm{CC}}=$ Min to Max, $\overline{\mathrm{EE}}=\mathrm{V}_{\mathrm{IH}}$	
$\mathrm{I}_{\text {PO }}$	Peak Power-on Current (Note 9)		15		50	mA	$\begin{aligned} & V_{\mathrm{CC}}=G \text { nd to } V_{\mathrm{CC}} M_{ı n} \\ & \mathrm{CE}=\text { Lower of } V_{\mathrm{CC}} \text { or } V_{\mathrm{IH}} M ı n \end{aligned}$	
$\mathrm{V}_{\text {IL }}$	Input Low Voitage	-30	08	-30	08	V		
$\mathrm{V}_{1 \mathrm{H}}$	Input High Voltage	20	60	20	60	V		
$\mathrm{V}_{\text {OL }}$	Output Low Voltage		04		04	V	$\mathrm{l}_{\mathrm{OL}}=8 \mathrm{~mA}$	
V_{OH}	Output High Voltage	24		24		V	$\mathrm{I}^{\mathrm{OH}}=-40 \mathrm{~mA}$	

Capacitance $T_{A}=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}$

Symbol	Test	Typ.	Max.	Unit
COUT	Output Capacitance		6	pF
$\mathrm{C}_{\text {IN }}$	Input Capacitance		5	pF

NOTE This parameter is periodically sampled and not 100% tested.
A.C. Characteristics $T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%$ (Unless otherwise specified) (Notes 8, 10)

READ CyCLE

Symbol	Parameter	2147H-2		2147H-3/HL-3		2147H/HL		Unit	Notes
		Mın.	Max.	Mın.	Max.	Min.	Max.		
t_{RC}	Read Cycle Time	45		55		70		ns	
t_{AA}	Address Access Time		45		55		70	ns	
$\mathrm{t}_{\text {ACE1 }}$	Chip Enable Access Time		45		55		70	ns	1
$\mathrm{t}_{\text {ACE }}$	Chip Enable Access Time		45		65		80	ns	2
t_{OH}	Output Hold from Address Change	5		5		5		ns	
tLZ	Chip Selection to Output in Low Z	5		10		10		ns	7
$t_{H Z}$	Chip Deselection to Output in High Z	0	30	0	30	0	40	ns	7
t_{PU}	Chip Selection to Power Up Tıme	0		0		0		ns	
$\mathrm{t}_{\text {PD }}$	Chip Deselection to Power Down Time		20		20		30	ns	

WRITE CYCLE

${ }^{\text {tw }}$ W	Write Cycle Time	45		. 55		70		ns	
${ }^{\text {t }}$ CW	Chip Enabled to End of Write	45		45		55		ns	
${ }^{\text {t }}$ AW	Address Valid to End of Write	45		45		55		ns	
t_{A} S	Address Setup Time	0		0		0		ns	
$t_{\text {twp }}$	Write Pulse Width	25		25		40		ns	
$t_{\text {WR }}$	Write Recovery Time	0		10		15		ns	
${ }_{\text {t }}$ DW	Data Valid to End of Write	25		25		30		ns	
${ }_{\text {t }}{ }_{\text {d }}$	Data Hold Time	10		10		10		ns	
${ }_{\text {t }}$ Wz	Write Enabled to Output in High Z	0	25	0	25	0	35	ns	7
tow	Output Active from End of Write	0		0		0		ns	7

Timing Diagrams

READ CYCLE NO. 1 (NOTES 3 AND 4)

READ CYCLE NO. 2 (NOTES 3 AND 5)

WRITE CYCLE NO. 1 ($\overline{W E}$ CONTROLLED) (NOTE 6)

A.C. Testing Input, Output Waveform

A.C. Testing Load Circuit

Package Availibility 18 Pin Molded DIP

Ordering Information

Order Number	Access Time (Max.)	Operating Current (Max.)	Standby Current (Max.)	Package Type
SYP2147H-2	45 ns	160 mA	30 mA	Molded DIP
SYP2147H-3	55 ns	160 mA	30 mA	Molded DIP
SYP2147HL-3	55 ns	125 mA	15 mA	Molded DIP
SYP2147H	70 ns	160 mA	20 mA	Molded DIP
SYP2147HL	70 ns	125 mA	15 mA	Molded DIP

1024×4 Static Random Access Memory

Features

- 45 ns Maxımum Access Tıme
- No Clocks or Strobes Required
- Automatıc $\overline{C E}$ Power Down
- Identical Cycle and Access Times
- Single +5 V Supply ($\pm 10 \%$)
- Pinout and Function Compatıble to SY2148
- Performance Upgrade for SY2148
- Industry Standard 2114 Pınout
- Totally TTL Compatıble all Inputs and Outputs
- Common Data Input and Output
- High Density 18-Pın Package
- Three-State Output

Description

The Synertek SY2148H is a 4096-Bit Statıc Random Access Memory organized 1024 words by 4 bits and is fabricated using Synertek's new scaled n-channel silicon gate technology it is designed using fully static circuitry, therefore requiring no clock or refreshing to operate. Address set-up times are not required and the data is read out nondestructively with the same polarity as the input data Common data input and output pins provide maxımum design flexibility The three-state output facilitates memory expansion by allowing the outputs to be OR-tied to other devices.

The SY2148 offers an automatic power down feature Power down is controlled by the Chip Enable input When Chip Enable ($\overline{\mathrm{CE}}$) goes high, thus deselectıng the SYM2148H, the device will automatically power down and remain in a standby power mode as long as $\overline{\mathrm{CE}}$ remains high This unique feature provides system level power savings as much as 85%.
The SY2148H is packaged in an 18 -pin DIP for the highest possible density The device is fully TTL compatible and has a single +5 V power supply

Pin Configuration

Block Diagram

Absolute Maximum Ratings*
Temperature Under Bias $-10^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Voltage on Any Pin with
Respect to Ground -3.5 V to +7 V
Power Dissıpatıon 1.0 W

Comment*

Stresses above those listed under "Absolute Maxımum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or at any other condition above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended perıods may affect device reliabılity
D.C. Characteristics $\quad T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%$ (Unless otherwise specified) (note 8)

Capacitance $\quad \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}$

Symbol	Test	Typ.	Max.	Unit
COUT	Output Capacıtance		7	pF
CIN	Input Capacitance		5	pF.
NOTE This parameter is periodically sampled and not 100\% tested.				

A.C. Characteristics $\quad \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%$ (Unless otherwise specified) (note 8) READ CyCle

Symbol	Parameter	2148H-2		2148H-3/HL-3		2148H/HL		Unit	Conditions
		Min.	Max.	Min.	Max.	Min.	Max.		
${ }^{\text {t }}$ RC	Read Cycle Time	45		55		70		ns	
${ }^{t} A$ A	Address Access Time		45		55		70	ns	
tACE1	Chip Enable Access Time		45		55		70	ns	Note 1
tACE2	Chıp Enable Access tıme		55		65		80	ns	Note 2
${ }^{\mathrm{t}} \mathrm{OH}$	Output Hold from Address Change	5		5		5		ns	
${ }^{\text {t }}$ L Z	Chip Selection to Output in Low Z	10		10		10		ns	Note 7
${ }^{\text {H }} \mathrm{HZ}$	Chip Deselection to Output in High Z	0	20	0	20	0	20	ns	Note 7
tpu	Chip Selection to Power Up Time	0		0		0		ns	
tPD	Chip Deselection to Power Down Time		30		30		30	ns	

WRITE CYCLE

twC	Write Cycle Tıme	45		55		70		ns	
${ }^{\text {t }} \mathrm{CW}$	Chip Enabled to End of Write	40		50		65		ns	
${ }^{\text {t }}$ AW	Address Valid to End of Write	40		50		65		ns	
${ }^{t}$ AS	Address Setup Time	0		0		0		ns	
tWP	Write Pulse Width	35		40		50		ns	
tWR	Write Recovery Time	5		5		5		ns	
${ }^{\text {t }}$ WW	Data Valid to End of Write	20		20		25		ns	
${ }^{\text {t }}$ (H	Data Hold Time	0		0		0		ns	
tWZ	Write Enabled to Output in High Z	0	15	0	20	0	25	ns	Note 7
tow	Output Active from End of Write	0		0		0		ns	Note 7

(See following page for notes)

Timing Diagrams

READ CYCLE NO. 1 (NOTES 3 AND 4)

READ CYCLE NO. 2 (NOTES 3 AND 5)

WRITE CYCLE NO. 1 (WE CONTROLLED) (NOTE 6)

WRITE CYCLE NO. 2 ($\overline{\mathrm{CE}}$ CONTROLLED) (NOTE 6)

A.C. Testing Input, Output Waveform

A.C. Testing Load Circuit

Package Availability 18 Pin Molded DIP

Ordering Information

Order Number	Access Time (Max.)	Operating Current (Max.)	Standby Current (Max.)	Package Type
SYP2148H	70 ns	150 mA	30 mA	Molded DIP
SYP2148H-2	45 ns	150 mA	30 mA	Molded DIP
SYP2148H-3	55 ns	150 mA	30 mA	Molded DIP
SYP2148HL	70 ns	125 mA	20 mA	Molded DIP
SYP2148HL-3	55 ns	125 mA	20 mA	Molded DIP

Features

- 45 ns Maximum Address Access
- Fully Static Operation:

No Clocks or Strobes Required

- Fast Chip Select Access Time: 20ns Max.
- Identical Cycle and Access Times
- Single +5 V Supply
- Industry Standard 2114 Pinout
- Totally TTL Compatible: All Inputs and Outputs
- Common Data Input and Outputs
- High Density 18-Pin Package
- Three-State Output

Description

The Synertek SY2149H is a 4096 -Bit Static Random Access Memory organized 1024 words by 4 bits and is fabricated using Synertek's new N-Channel SiliconGate HMOS technology. It is desıgned using fully static circuitry, therefore requiring no clock or refreshing to operate. Address set-up times are not required and the data is read out non-destructively with the same polarity as the input data. Common data input and output pins provide maximum design flexibility. The three-state output facilitates memory expansion by allowing the outputs to be OR-tied to other devices.

The SY2149H offers a chip select access that is faster than its address access. In a typical application, the address access begins as soon as the address is valid. At this time, the high order addresses are decoded and the desired memory is then selected. With the faster chip select access, this decode time will not add to the overall access time thus significantly improving system performance.
The SY2149H is packaged in an 18-pin DIP for the highest possıble density. The device is fully TTL compatıble and has a single +5 V power supply.

Pin Configuration

Block Diagram

Absolute Maximum Ratings*Temperature Under Bıas $-10^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$Storage Temperature \ldots.Voltage on Any Pin with
Power Dissipatıon

\qquad

Comment*

Stresses above those listed under "Absolute Maximum Ratıngs" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or at any other condition above those indicated in the operational sections of this specification is not implied.
D.C. Characteristics $\quad T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%$ (Unless otherwise specified) (Note 6)

Symbol	Parameter	2149HL-3, 2149HL		$\begin{gathered} \text { 2149H-2, 2149H-3, } \\ 2149 \mathrm{H} \end{gathered}$		Unit	Conditions
		Min.	Max.	Min.	Max.		
ILI	Input Load Current (All input pins).		10		10	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\text {IN }}=\mathrm{Gnd}$ to V_{CC}
$\mid \mathrm{l}$ Lo\|	Output Leakage Current		50		50	$\mu \mathrm{A}$	$\begin{aligned} & \overline{\mathrm{CS}}=\mathrm{V}_{\text {IH }}, V_{\mathrm{CC}}=\mathrm{Max} \\ & \mathrm{~V}_{\text {OUT }}=\text { Gnd to } .5 \mathrm{~V} \end{aligned}$
Icc	Power Supply Current		115		140	mA	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\text { Max, } \overline{\mathrm{CS}}=\mathrm{V}_{\mathrm{IL}} \\ & \text { Outputs Open } \end{aligned}$
			125		150	mA	
$\mathrm{V}_{\text {IL }}$	Input Low Voltage	-3.0	0.8	-3.0	0.8	v	
V_{IH}	Input High Voltage	2.0	6.0	2.0	6.0	V	
$\mathrm{VOL}_{\mathrm{OL}}$	Output Low Voltage		0.4		0.4	V	$\mathrm{I}_{\mathrm{OL}}=8 \mathrm{~mA}$
V_{OH}	Output High Voltage	2.4		2.4		V	$1 \mathrm{OH}=-4.0 \mathrm{~mA}$
Ios	Output Short Circuit Current		± 200		± 200	mA	$\begin{aligned} & \text { VOUT = GND to VCC } \\ & \text { (Note 7) } \end{aligned}$

Capacitance $\quad T_{A}=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}$

Symbol	Test	Typ.	Max.	Unit
C OUT	Output Capacitance		7	pF
$\mathrm{C}_{\text {IN }}$	Input Capacitance		5	pF

NOTE: This parameter is periodically sampled and not 100% tested.
A.C. Characteristics $\quad \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%$ (Unless otherwise specified) (Notes 6, 8) READ CYCLE

Symbol	Parameter	2149H-2		$\begin{gathered} \hline 2149 \mathrm{HL}-3 \\ 2149 \mathrm{H}-3 \end{gathered}$		$\begin{gathered} 2149 \mathrm{HL} \\ 2149 \mathrm{H} \end{gathered}$		Unit	Conditions
		Min.	Max.	Min.	Max.	Min.	Max.		
$t_{R C}$	Read Cycle Time	45		55		70		ns	
${ }^{t} A A$	Address Access Time		45		55		70	ns	
${ }^{t}$ ACS	Chip Select Access Time		20		25		30	ns	
${ }^{\text {toh }}$	Output Hold from Address Change	5		5		5		ns	
${ }^{\text {t }}$ L	Chip Selection to Output in Low Z	5		5		5		ns	Note 5
${ }^{\text {t }} \mathrm{HZ}$	Chip Deselectio to Output in High Z	0	15	0	15	0	15	ns	Note 5

WRITE CYCLE

twc	Write Cycle Time	45		55		70		ns	
${ }^{\text {t }}$ CW	Chip Selection to End of Write	40		50		65		ns	
${ }^{\text {t }}$ AW	Address Valid to End of Write	40		50		65		ns	
${ }^{\text {t AS }}$	Address Setup Time	0		0		0		ns	
tWP	Write Pulse Width	35		40		50		ns	
tWR	Write Recovery Time	5		5		5		ns	
tDW	Data Valid to End of Write	20		20		25		ns	
to	Data Hold Time	0		0		0		ns	
tWZ	Write Enabled to Output in High Z	0	15	0	20	0	25	ns	Note 5
tow	Output Active from End of Write	0		0		0		ns	Note 5

(See following page for notes)

Timing Diagrams

READ CYCLE NO. 1 (Notes 1 and 2)

READ CYCLE NO. 2 (Notes 1 and 3)

WRITE CYCLE NO. 1 ($\overline{W E}$ controlled) (Note 4)

NOTES:

$1 \overline{W E}$ is high for Read Cycles.
2 Device is continuously selected, $\overline{\mathrm{CS}}=\mathrm{V}_{\mathrm{IL}}$
3 Addresses valid
4 If $\overline{C S}$ goes high simultaneously with $\overline{W E}$ high, the outputs remain in the high impedance state
5 Transition is measured $\pm 500 \mathrm{mV}$ from low or high impedance voltage with load B This parameter is sampled and not 100% tested
6 The operating ambient temperature range is guaranteed with transverse air flow exceeding 400 linear feet per minute
7 Duration not to exceed one minute
8 A minımum 05 ms tıme delay is required after application of $\mathrm{V}_{\mathrm{CC}}(+5 \mathrm{~V})$ before proper device operation is achieved

WRITE CYCLE NO. 2 ($\overline{C S}$ controlled) (Note 4)

A.C. Testing Input, Output Waveform

A.C. Testing Load Circuit

Package Availability 18 Pin Molded DIP

Ordering Information

Order Number	Access Time (Max.)	Supply Current (Max.)	Package Type
SYP2149H-2	45 nsec	150 mA	Molded DIP
SYP2149H-3	55 nsec	150 mA	Molded DIP
SYP2149HL-3	55 nsec	125 mA	Molded DIP
SYP2149H	70 nsec	150 mA	Molded DIP
SYP2149HL	70 nsec	125 mA	Molded DIP

Cache Address Comparator

ADVANCED INFORMATION

Features

- Fast Address to Match Valıd Delay - Two Speed Ranges. $45 \mathrm{~ns}, 55 \mathrm{~ns}$
- 512×9 Internal RAM
- 300-Mıl 24-Pın Ceramıc Sıde Brazed Package
- Maxımum Power Dıssıpatıon 660 mW
- On-Chıp Parıty Generatıon and Checkıng
- Parity Error Output/Force Parıty Error Input
- On-Chip Address/Data Comparator
- Asynchronous, Single-Cycle Reset
- Easıly Expandable
- Fully Statıc, TTL Compatıble

Description

The 8-bit slice cache address comparator consists of a highspeed 512×9 static RAM array, parity generator, and parity checker, and 9 -bit high-speed comparator it is fabricated using N -channel silicon gate technology for high speed and simple interface with MOS and bipolar TTL circuits The cache address comparator is easily cascadable for wider tag addresses or deeper tag memories Significant reductions in cache memory component count, board area, and power dissipation can be achieved with this device
When $\overline{\mathrm{S}}$ is low and $\overline{\mathrm{W}}$ is high, the cache address comparator compares the contents of the memory location addressed by AO-A8 with the data on DO-D7 plus generated parity An equality is indicated by a high level on the MATCH output A low-level output from $\overline{\text { PE signifies a parity }}$
ity error in the internal RAM data $\overline{\mathrm{PE}}$ is an N -channel open drain output for easy OR-tieing Durıng a write cycle ($\overline{\mathrm{S}}$ and $\overline{\mathrm{W}}$ low), data on DO-D7 plus generated even parity are written in the 9-bit memory location addressed by AOA8. Also during write, a parity error may be forced by holdıng $\overline{\mathrm{PE}}$ low
A $\overline{R E S E T}$ input is provided for initialization When $\overline{R E S E T}$ goes low, all 512×9 RAM locations will be cleared and the MATCH output will be forced high

The cache address comparator operates from a sıngle +5 V supply and is offered in a 24 -pin 300-mil side brazed package The device is fully TTL compatible and is guaranteed to operate from 0° to $70^{\circ} \mathrm{C}$

Features

- 120nsec Maxımum Access Tıme
- Fully Static Operatıon:

No Clocks or Strobes Required

- Automatıc CE Power Down
- Identical Cycle and Access Times
- Single +5 V Supply ($\pm 10 \%$)
- Pin Compatıble with 2716 16K EPROM
- Totally TTL Compatible:

All Inputs and Outputs

- Common Data Input and Output
- Three-State Output
- Output Enable Function ($\overline{\mathrm{OE}})$

Description

The Synertek SY2158 is a 8192 bit static Random Access Memory organızed 1024 words by eight bits and is fabricated using Synertek's new scaled n-channel silicon gate technology it is designed using fully static circuitry, therefore requiring no clocks or refreshing to operate. The common data input and three-state output pins optımıze compatibility with systems utilizing a bidirectional data bus

The SY2158 offers an automatic power down feature under the control of the chip enable ($\overline{\mathrm{CE}}$) input When $\overline{\mathrm{CE}}$ goes high, deselecting the chip, the device will automatically power down and remain in a standby power mode as long
as $\overline{\mathrm{CE}}$ remains high. This feature provides significant system level power savings.
The SY2158 is available in two versions. For the " A " version, the select reference input (A_{R}) must be at $V_{I L}$ and for the " B " version A_{R} must be at $V_{I H}$.
The SY2158 is pin compatıble with 16 K ROMs, EPROMs and E2PROMs thus offering the user the flexibility of switching between RAM, ROM, EPROM, and E2PROM with a mınımum of board layout changes.

Pin Configuration

Block Diagram

Absolute Maximum Ratings*

Temperature Under Bias $-10^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ Storage Temperature $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ Voltage on Any Pın with

Respect to Ground -35 V to +7 V
Power Dissipation .. 1 OW

Comment*

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress ratıng only and functional operation of the device at these or at any other condition above those indicated in the operational sections of this specification is not implied. Exposure to absolute maxımum ratıng conditions for extended periods may affect device reliability.
D.C. Characteristics $\quad T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{C C}=5 \mathrm{~V} \pm 10 \%$ (Unless otherwise specified)

Symbol	Parameter	2158-2/-3/-4		Unit	Conditions	
		Min.	Max.			
ILI	Input Load Current (All input pins)		10	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\text {IN }}=$ Gnd to $\mathrm{V}_{\text {CC }}$	
$\mathrm{I}_{\text {LO }}$	Output Leakage Current		10	$\mu \mathrm{A}$	$\begin{aligned} & \overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IH}}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Max} \\ & \mathrm{~V}_{\text {OUT }}=\mathrm{Gnd} \text { to } 45 \mathrm{~V} \end{aligned}$	
I_{cc}	Power Supply Current		95	mA	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}} \\ & \text { Outputs Open } \end{aligned}$
			100	mA	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$	
$\mathrm{I}_{\text {SB }}$	Standby Current		20	mA	$V_{C C}=$ Min to Max, $\overline{C E}=V_{1 H}$	
$\mathrm{IPO}_{\text {P }}$	Peak Power-on Current Note 6		40	mA	$\begin{aligned} & V_{C C}=G \text { nd to } V_{C C} M ı n \\ & C E=\text { Lower of } V_{C C} \text { or } V_{I H} M \text { In } \end{aligned}$	
$\mathrm{V}_{\text {IL }}$	Input Low Voltage	-30	08	v		
V_{IH}	Input High Voltage	2.0	60	v		
V_{OL}	Output Low Voltage		04	V	$\mathrm{I}_{\mathrm{OL}}=32 \mathrm{~m}$	
V_{OH}	Output High Voltage	2.4		v	$\mathrm{I}_{\mathrm{OH}}=-1.0 \mathrm{~mA}$	

Capacitance $\quad T_{A}=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}$

Symbol	Test	Typ.	Max	Unıt
COUT	Output Capacitance		5	
CIN	Input Capacitance		pF	

NOTE This parameter is periodically sampled and not 100% tested.
A.C. Characteristics $\quad T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%$ (Note 7)

READ CYCLE

Symbol	Parameter	2158-2		2158-3		2158-4		Unit	Conditions
		Min.	Max.	Min.	Max.	Min.	Max.		
$\mathrm{t}_{\mathrm{R}} \mathrm{C}$	Read Cycle Time	120		150		200		ns	
${ }^{t} A$ A	Address Access Time		120		150		200	ns	
${ }^{\text {t }}$ ACE	Chıp Enable Access Tıme		120		150		200	ns	
${ }^{t} A O E$	Output Enable Access Tıme		50		60		70	ns	
${ }^{t} \mathrm{OH}$	Output Hold from Address Change	10		10		10		ns	
${ }^{t}$ LZ	Output Low Z Tıme	10		10		10		ns	Note 5
${ }^{\mathrm{t}} \mathrm{HZ}$	Output High Z Time	0	40	0	50	0	60	ns	Note 5
tpu	Chip Enable to Power Up Time	0		0		0		ns	
tPD	Chip Disable to Power Down Time		60		80		100	ns	

WRITE CYCLE

twC	Write Cycle Time	120		150		200		ns	
${ }^{\text {t }} \mathrm{CW}$	Chıp Enable to End of Write	90		120		150		ns	
${ }^{\text {t }}$ AW	Address Valid to End of Write	90		120		150		ns	
${ }^{\text {t }}$ AS	Address Setup Time	0		0		0		ns	
${ }^{\text {t }}$ WP	Write Pulse Width	70		90		120		ns	
${ }^{\text {t }}$ WR	Write Recovery Time	0		0		0		ns	
${ }^{\text {t }}$ DW	Data Valid to End of Write	50		70		90		ns	
tD H	Data Hold Tıme	0		0		0		ns	
twZ	Write Enabled to Output in High Z	0	40	0	50	0	60	ns	Note 5
tow	Output Active from End of Write	0		0		0		ns	Note 5

(See following page for notes)

Timing Diagrams

READ CYCLE NO. 1 (NOTES 1 and 2)

READ CYCLE NO. 2 (NOTES 1 and 3)

WRITE CYCLE NO. 1 (NOTE 4)

Notes:

1. $\overline{W E}$ is high for Read Cycles.
2. Device is continuously selected, $\overline{C E}=\overline{O E}=V_{I} L$.
3. Addresses valid prior to or coincident with $\overline{C E}$ transition low.
4. If $\overline{\mathrm{CE}}$ goes high simultaneously with $\overline{\mathrm{WE}}$ high, the outputs remain in the high impedance state.
5. Transition is measured $\pm 500 \mathrm{mV}$ from low or high impedance voltage with load B. This parameter is sampled and not 100% tested.
6. A pullup resistor to $V_{C C}$ on the $\overline{\mathrm{CE}}$ input is required to keep the device deselected: otherwise, power-on current approaches $\mathrm{I} C \mathrm{C}$ active.
7. A minımum 0.5 ms tıme delay is required after application of $\mathrm{V}_{\mathrm{CC}}(+5 \mathrm{~V})$ before proper device operatıon is achieved

WRITE CYCLE NO. $2\left(\overline{O E}=V_{I L}\right)$ (NOTE 4)

A.C. Testing Input, Output Waveform

A.C. Testing Load Circuit

Package Availability 24 Pin Molded DIP

Ordering Information

Order Number	Access Time (Max)	Operating Current (Max)	Standby Current (Max)	Package Type	$\mathbf{A}_{\mathbf{R}}$
SYP2158A-2	120 ns	100 mA	20 mA	Molded DIP	IL
SYP2158A-3	150 ns	100 mA	20 mA	Molded DIP	V_{IL}
SYP2158A-4	200 ns	100 mA	20 mA	Molded DIP	V_{IL}
SYP2158B-4	120 ns	100 mA	20 mA	Molded DIP	V_{VL}
SYP2158B-3	150 ns	100 mA	20 mA	Molded DIP	V_{V}
SYP2158B-2	200ns	100 mA	20 mA	Molded DIP	V_{IL}

ADVANCED INFORMATION

Features

- 45 nsec Maxımum Access Time
- No Clocks or Strobes Required
- Automatic CE Power Down
- Identical Cycle and Access Tımes
- Single $+5 V$ Supply
- Totally TTL Compatıble All Inputs and Outputs
- Separate Data Input and Output
- High Density 20 Pin Package
- Three-State Output

Description

The Synertek SY2167 is a 16,384 -Bit Static Random Access Memory organized 16,384 words by 1 -bit and is fabricated usıng Synertek's new N-Channel Double Polysilicon Gate HMOS technology. It is designed using fully static circuitry, therefore requiring no clock or refreshing to operate. Address set-up times are not required and the data is read out nondestructively with the same polarity as the input data. Separate data input and output pıns provide maxımum design flexibilty The three-state output facilitates memory expansion by allowing the outputs to be OR-tied to other devices.

The SY2167 offers an automatıc power down feature. Power down is controlled by the Chip Enable input. When Chip Enable ($\overline{\mathrm{CE}}$) goes hıgh, thus de-selecting the SY2167, the device will automatıcally power down and remaın in a standby power mode as long as $\overline{\mathrm{CE}}$ remains high. This unique feature provides system level power savings as much as 80%.
The SY2167 is packaged in a 20-pın DIP for the highest possible density. The device is fully TTL compatible and has a single +5 V power supply.

Pin Configuration

Block Diagram

Absolute Maximum Ratings*

Temperature Under Bias $-10^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
Storage Temperature $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Voltage on Any Pin with
Respect to Ground
-35 V to +7 V
Power Dissipation
12 W

Comment*

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
D.C. Characteristics $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%$ (Unless otherwise specified) (Note 6)

Symbol	Parameter	Min.	Max.	Unit	Conditions
I_{LI}	Input Load Current (All input pins)		10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {CC }}=$ Max, $\mathrm{V}_{\text {IN }}=$ Gnd to $\mathrm{V}_{\text {CC }}$
$\mid \mathrm{L}$ Lo\|	Output Leakage Current		50	$\mu \mathrm{A}$	$\begin{aligned} & \overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IH}}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Max} \\ & \mathrm{~V}_{\mathrm{OUT}}=\mathrm{G} \text { nd to } 45 \mathrm{~V} \end{aligned}$
$I_{\text {cc }}$	Power Supply Current		$\frac{110}{120}$	$\frac{\mathrm{mA}}{\mathrm{~mA}}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ $\mathrm{V}_{\mathrm{CC}}=$ Max, $\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}}$ $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ Outputs Open
$\mathrm{I}_{\text {SB }}$	Standby Current		20	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{M}$ In to $\mathrm{Max} \overline{\mathrm{CE}}=\mathrm{V}_{\text {IH }}$
$\mathrm{I}_{\text {PO }}$	Peak Power-on Current (Note 7)		50	mA	$\begin{aligned} & V_{\mathrm{CC}}=G n d \text { to } \mathrm{V}_{\mathrm{CC}} \mathrm{Min}_{1} \\ & \mathrm{CE}=\text { Lower of } \mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{V}_{\mathrm{IH}} \mathrm{Min}^{2} \end{aligned}$
$\mathrm{V}_{\text {IL }}$	Input Low Voltage	-30	08	v	
V_{IH}	Input High Voltage	20	60	V	
V_{OL}	Output Low Voltage		04	V	$\mathrm{I}_{\mathrm{OL}}=16 \mathrm{~mA}$
V_{OH}	Output High Voltage	24		V	$\mathrm{I}_{\mathrm{OH}}=-40 \mathrm{~mA}$
los	Output Short Circuit Current (Note 8)	-150	300	mA	$\mathrm{V}_{\text {OUT }}=$ GND to $\mathrm{V}_{\text {CC }}$ (Note 8)

Capacitance $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=10 \mathrm{MHz}$

Symbol	Test	Typ.	Max.	Unit
$\mathrm{C}_{\text {OUT }}$	Output Capacitance		6	pF
C_{IN}	Input Capacitance		5	pF

NOTE This parameter is periodically sampled and not 100% tested
A.C. Characteristics $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%$ (Unless otherwise specified) (Notes 6, 9)

READ CYCLE

Symbol	Parameter	2167		2167-3		2167-2		Unit
		Min.	Max.	Min.	Max.	Min.	Max.	
t_{RC}	Read Cycle Time	70		55		45		ns
${ }^{\text {t }}$ A	Address Access Tıme		65		55		45	ns
${ }^{\text {t }}$ ACE	Chip Enable Access Time		70		50		40	ns
${ }_{\text {toh }}$	Output Hold from Address Change	5		5		3		ns
tLz	Chip Selection to Output in Low Z	5		5		5		ns
t_{HZ}	Chip Deselection to Output in High Z	0	40	0	30	0	25	ns
$t_{\text {PU }}$	Chip Selection to Power Up Tıme	0		0		0		ns
t_{PD}	Chip Deselection to Power Down Time		70		55		45	ns

WRITE CYCLE

Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Unit
$\mathrm{t}_{\text {WC }}$	Write Cycle Tıme	70		55		45		ns
$\mathrm{t}_{\mathrm{C} W}$	Chip Enabled to End of Write	65		50		40		ns
$\mathrm{t}_{\text {AW }}$	Address Valid to End of Write	65		50		40		ns
$\mathrm{t}_{\text {AS }}$	Address Setup Tıme	0		0		0		ns
t_{WP}	Write Pulse Width	35		25		20		ns
t_{WR}	Write Recovery Tıme	0		0		0		ns
$\mathrm{t}_{\text {DW }}$	Data Valıd to End of Write	30		20		15		ns
t_{DH}	Data Hold Tıme	0		0		0		ns
t_{WZ}	Write Enabled to Output in High Z	0	35	0	25	0	20	ns
t_{OW}	Output Active from End of Write	0	40	0	30	0	25	ns

Timing Diagrams

READ CYCLE NO. 1 (Notes 1 and 2)

READ CYCLE NO. 2 (Notes 1 and 3)

WRITE CYCLE NO. 1 (WE Controlled) (Note 4)

Notes:

$\overline{W E}$ is high for Read Cycles
2. Device is contınuously selected, $\mathrm{CE}=\mathrm{V}_{\mathrm{IL}}$

3 Addresses valid prior to or coincident with $\overline{C E}$ transition low
4 If $\overline{C E}$ goes high simultaneously with $\overline{W E}$ high, the outputs remain in the high impedance state
5 Transition is measured $\pm 500 \mathrm{mV}$ from low or high impedance voltage with load B This parameter is sampled and not 100% tested
6 The operatıng ambient temperature range is guaranteed with transverse aır flow exceeding 400 linear feet per minute
7 A pullup resistor to $V_{C C}$ on the $\overline{\mathrm{CE}}$ input is required to keep the device deselected otherwise, power-on current approaches $I_{C C}$ active
8 Duration not to exceed one second
9. A mınımum 05 ms tıme delay is required after application of $\mathrm{V}_{\mathrm{CC}}(+5 \mathrm{~V})$ before proper device operation is achieved.

WRITE CYCLE NO. 2 ($\overline{\mathrm{CS}}$ Controlled) (Note 4)

A.C. Testing Input, Output Waveform

A.C. Testing Load Circuit

Package Availability 20 Pin Molded DIP

Ordering Information

Order Number	Access Time (Max)	Operating Current (Max)	Standby Current (Max)	Package Type
SYP2167-70	70 ns	120 mA	20 mA	Molded DIP
SYP2167-55	55 ns	120 mA	20 mA	Molded DIP
SYP2167-45	45 ns	120 mA	20 mA	Molded DIP

ADVANCED INFORMATION

Features

- 45 ns Maxımum Access Time
- No Clocks or Strobes Required
- Automatic $\overline{C E}$ Power Down
- Identical Cycle and Access Tımes
- Single +5 V Supply ($\pm 10 \%$)
- JEDEC Standard Pinout
- Totally TTL Compatible All Inputs and Outputs
- Common Data Input and Output
- Hıgh Density 20-Pın Package
- Three-State Output

Description

The Synertek SY2168 is a 16,384-Bit Static Random Access Memory organized 4096 words by 4 bits and is fabricated using Synertek's scaled n-channel double poly silicon gate technology. It is designed using fully static circuitry, therefore requiring no clock or refreshing to operate. Address set-up times are not required and the data is read out nondestructively with the same polarity as the input data. Common data input and output pıns provide maxımum design flexibility. The three-state output facilitates memory expansion by allowing the outputs to be OR-tied to other devices.

The SY2168 offers an automatic power down feature Power down is controlled by the Chip Enable input. When Chip Enable ($\overline{\mathrm{CE}}$) goes high, thus de-selecting the SY2168, the device will automatıcally power down and remain in a standby power mode as long as $\overline{\mathrm{CE}}$ remains high. This unique feature provides system level power savings as much as 85%.
The SY2168 is packaged in a 20-pin DIP for the highest possible density. The device is fully TTL compatible and has a sıngle +5 V power supply

Pin Configuration

Block Diagram

Absolute Maximum Ratings*

Comment*

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
D.C. Characteristics $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%$ (Unless otherwise specified) (Note 6)

Capacitance $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}$

Symbol	Test	Typ.	Max.	Unit
$\mathrm{C}_{\text {OUT }}$	Output Capacitance		7	pF
C_{IN}	Input Capacitance		5	pF

NOTE This parameter is periodically sampled and not 100% tested
A.C. Characteristics $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%$ (Unless otherwise specified) (Notes 6, 8)

read cycle

Symbol	Parameter	2168-3		2168		2168-2	
		Min.	Max.	Min.	Max.	Min.	Max.
$\mathrm{t}_{\text {RC }}$	Read Cycle Time	55		70		45	
${ }^{\text {t }}$ A	Address Access Time		55		70		45
${ }^{\text {t }}$ ACE	Chip Enable Access Time		45		50		40
${ }^{\text {tor }}$	Output Hold from Address Change	3		5		3	
tLz	Chip Selection to Output in Low Z	20		20		20	
t_{HZ}	Chip Deselection to Output in High Z	0	25	0	30	0	20
$t_{\text {Pu }}$	Chip Selection to Power Up Time	0		0		0	
tpD	Chip Deselection to Power Down Time		55		70		45

WRITE CYCLE

Symbol	Parameter	Min.	Max.	Min.	Max	Min.	Max.
twc	Write Cycle Time	55		70		45	
${ }^{\text {t }}$ CW	Chip Enabled to End of Write	45		60		35	
${ }^{\text {taw }}$	Address Valid to End of Write	45		60		35	
${ }^{\text {t }}$ AS	Address Setup Time	0		0		0	
twp	Write Pulse Width	45		60		35	
twr	Write Recovery Time	3		5		3	
tow	Data Valid to End of Write	20		25		15	
${ }^{\text {t }}$ DH	Data Hold Time	0		0		0	
twz	Write Enabled to Output in High Z	0	25	0	30	0	20
tow	Output Active from End of Write	0		0		0	

Timing Diagrams

READ CYCLE NO. 1 (Notes 1 and 2)

READ CYCLE NO. 2 (Notes 1 and 3)

WRITE CYCLE NO. 1 ($\overline{\text { WE }}$ Controlled) (Note 4)

NOTES
$1 \overline{W E}$ is high for Read Cycles
2 Device is contınuously selected, $\overline{\mathrm{CE}}=\mathrm{V}_{1 \mathrm{~L}}$
3 Addresses valid prior to or coincident with $\overline{C E}$ transition low
4 If $\overline{C E}$ goes high simultaneously with $\overline{W E}$ high, the outputs remain in the high impedance state
5 Transition is measured $\pm 500 \mathrm{mV}$ from low or high impedance voltage with load B This parameter is sampled and not 100% tested
6. The operatıng ambient temperature range is guaranteed with transverse aır flow exceeding 400 linear feet per minute

7 A pullup resistor to $V_{C C}$ on the $\overline{C E}$ input is required to keep the device deselected. otherwise, power-on current approaches $I_{C C}$ active
8 A minımum of 05 ms tıme delay is required after application of $\mathrm{V}_{\mathrm{CC}}(+5 \mathrm{~V})$ before proper device operation is achieved
9 Duration not to exceed one second

WRITE CYCLE NO. 2 ($\overline{C S}$ Controlled) (Note 4)

A.C. Testing Input, Output Waveform

A.C. Testing Load Circuit

Package Availability 20 Pin Molded DIP

Ordering Information

Order Number	Access Time (Max)	Operating Current (Max)	Standby Current (Max)	Package Type
SYP2168-70	70 ns	120 mA	30 mA	Molded DIP
SYP2168-55	55 ns	120 mA	30 mA	Molded DIP
SYP2168-45	45 ns	120 mA	30 mA	Molded DIP

4096×4 Static
 Random Access Memory

ADVANCED INFORMATION

Features

- 45 ns Maxımum Address Access Times
- Fully Statıc Operation.

No Clocks or Strobes Required

- Fast Chip Select Access Tıme. 40 ns Max.
- Identical Cycle and Access Times
- Single +5 V Supply
- JEDEC Standard Pinout
- Totally TTL Compatıble: All Inputs and Outputs
- Common Data Input and Outputs
- High Density 20-Pın Package
- Three-State Output

Description

The Synertek SY2169 is a 16,384 -Bit Statıc Random Access Memory organized 4096 words by 4 bits and is fabricated using Synertek's N-Channel double poly silicon gate HMOS technology. It is designed using fully static circuitry, therefore requiring no clock or refreshing to operate. Address set-up tımes are not required and the data is read out nondestructively with the same polarity as the input data Common data input and output pıns provide maxımum design flexibilty. The three-state output facilitates memory expansion by allowing the outputs to be OR-tied to other devices.

The SY2169 offers a chip select access that is faster than its address access. In a typical application, the address access begins as soon as the address is valid. At this tıme, the high order addresses are decoded and the desired memory is then selected. With the faster chip select access, this decode time will not add to the overall access time thus significantly improving system performance
The SY2169 is packaged in a 20-pin DIP for the highest possible density. The device is fully TTL compatible and has a single +5 V power supply.

Pin Configuration

Block Diagram

SY2169

Absolute Maximum Ratings*

Temperature Under Bias $-10^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
Storage Temperature $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Voltage on Any Pin with
Respect to Ground -3.5 V to +7 V
Power Dissipation 1 OW

Comment*

Stresses above those listed under "Absolute Maxımum Ratıngs" may cause permanent damage to the device This is a stress rating only and functional operation of the device at these or at any other condition above those indicated in the operational sections of this specification is not implied.
D.C. Characteristics $T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%$ (Unless otherwise specified) (Note 6)

Capacitance $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}$

Symbol	Test	Typ.	Max.	Unit
$\mathrm{C}_{\text {OUT }}$	Output Capacitance		7	pF
$\mathrm{C}_{\text {IN }}$	Input Capacıtance		5	pF

NOTE This parameter is periodically sampled and not 100% tested
A.C. Characteristics $T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%$ (Unless otherwise specified) (Note 6, 8) READ CYCLE

Symbol	Parameter	2169-3		2169		2169-2	
		Min.	Max.	Min.	Max.	Min.	Max.
$\mathrm{t}_{\mathrm{R}} \mathrm{C}$	Read Cycle Time	55		70		45	
$t_{\text {AA }}$	Address Access Time		50		65		40
${ }^{\text {t }}$ ACS	Chip Select Access Time		55		70		45
${ }^{\text {toh }}$	Output Hold from Address Change	3		5		3	
tLz	Chip Selection to Output in Low Z	20		20		20	
t_{Hz}	Chip Deselection to Output in Hıgh Z	0	25	0	30	0	20

WRITE CYCLE

Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.
twc	Write Cycle Tıme	55		70		45	
${ }^{\text {t }}$ cw	Chip Selection to End of Write	45		60		35	
${ }^{\text {t }}$ WW	Address Valid to End of Write	45		60		35	
${ }^{\text {t }}$ AS	Address Setup Tıme	0		0		0	
${ }^{\text {t }}$ WP	Write Pulse Width	45		60		35	
twR	Write Recovery Tıme	3		5		3	
${ }^{\text {t }}$ W ${ }^{\text {d }}$	Data Valid to End of Write	20		25		15	
t_{DH}	Data Hold Tıme	0		0		0	
${ }^{\text {t W }}$ W	Write Enabled to Output in High Z	0	25	0	30	0	20
tow	Output Active from End of Write	0		0		0	

(See following page for notes)

Timing Diagrams

READ CYCLE NO. 1 (Notes 1 and 2)

READ CYCLE NO. 2 (Notes 1 and 3)

WRITE CYCLE NO. 1 ($\overline{\mathrm{WE}}$ controlled) (Note 4)

Notes:

$1 \overline{W E}$ is high for Read Cycles.
2 Device is continuously selected. $\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}}$.
3. Addresses valıd
4. If $\overline{C E}$ goes high simultaneously with $\overline{W E}$ high, the outputs remain in the high impedance state

5 Transition is measured $\pm 500 \mathrm{mV}$ from low or high impedance voltage with load B . This parameter is sampled and not 100% tested
6 The operating ambient temperature range is guaranteed with transverse air flow exceeding 400 linear feet per minute
7 Duration not to exceed one second.
8 A minımum of 05 ms tıme delay is required after application of $\mathrm{V}_{\mathrm{CC}}(+5 \mathrm{~V})$ before proper device operation is achieved

Synertek.

WRITE CYCLE NO. 2 ($\overline{\mathrm{CS}}$ Controlled) (Note 4)

A.C. Testing Input, Output Waveform

A C TESTING INPUTS ARE DRIVEN AT 30 V FOR A LOGIC " 1 " AND 00 V FOR A LOGIC " 0 " TIMING MEASUREMENTS ARE MADE AT $20 V$ FOR A LOGIC " 1 " AND 0.8V FOR A LOGIC " 0 " AT THE OUTPUTS THE INPUTS ARE MEASURED AT 15 V INPUT RISE AND FALL TIMES ARE 5 ns

A.C. Testing Load Circuit

Package Availability 20 Pin Molded DIP

Ordering Information

Order Number	Access Time (Max)	Operating Current (Max)	Standby Current (Max)	Package Type
SYP2169-70	70 ns	120 mA	20 mA	Molded DIP
SYP2169-55	55 ns	120 mA	20 mA	Molded DIP
SYP2169-45	45 ns	120 mA	20 mA	Molded DIP

Product Page
Number
SY2316B 2-67
SY2332 2-70
SY2333 2-70
SY2364A 2-73
SY2365/A 2-76
SY23128/A 2-79
SY23256/A 2-82
Programming Instructions 2-85

Features

- Access Time 200/300/450 ns (max)
- 2048×8 Bit Organizatıon
- Single +5 Volt Supply
- Totally Statıc Operation
- JEDEC Approved Pinout
- Completely TTL Compatible
- Three-State Outputs for Wire-OR Expansion
- Three Programmable Chip Selects
- Pın Compatıble with 2716 EPROM
- Replacement for Two 2708s

Description

The SY2316B high performance Read Only Memories are organized 2048 words by 8 bits with access times from 200 to 450 ns . The ROMs are designed to be compatible with all microprocessor and similar applications where high performance, large bit storage and simple interfacing are important design considerations. This device offers TTL input and output levels with a mınımum of 0.4 Volt noise immunity in conjunction with a +5 Volt power supply.

The SY2316B operates totally asynchronously. No clock input is required. The three programmable Chip Select inputs allow eight 16 K ROMs to be OR-tied without external decoding The device offers three-state output buffers for memory expansion
Designed to replace the 2716 EPROM, the SY2316B can elimınate the need to redesign printed circuit boards for volume mask programmed ROMs after prototyping with EPROMs.

Pin Configuration

Block Diagram

*CHIP SELECTS (CS) ARE PROGRAMIIABLE LOW ACTIVE, HIGH ACTIVE, OR DON'T CARE

Absolute Maximum Ratings*

Temperature Under Bias	$-10^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Voltage on Any Pin with	
Respect to Ground	-0.5 V to +7 V
Power Dissipation	1.0 W

Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Voltage on Any Pin with
Power Dissipation 1.0 W

Comment*

Stresses above those listed under "Absolute Maxımum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or at any other condition above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum ratıng conditions for extended perıods may affect device reliability.

D.C. Characteristics

$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \%$ (unless otherwise specified)

Symbol	Parameter	Min.	Max.	Units	Test Conditions
V OH	Output HIGH Voltage	24	Vcc	Volts	$\mathrm{VCC}=4.75 \mathrm{~V}, \mathrm{IOH}=-200 \mu \mathrm{~A}$
Vol	Output LOW Voltage		0.4	Volts	$\mathrm{VCC}=4.75 \mathrm{~V}, \mathrm{IOL}=2.1 \mathrm{~mA}$
V IH	Input HIGH Voltage	20	Vcc	Volts	
VIL	Input LOW Voltage	-0.5	0.8	Volts	See Note 1
ILI	Input Load Current		10	uA	$\mathrm{Vcc}=5.25 \mathrm{~V}, 0 \mathrm{~V} \leqslant \mathrm{~V}_{\text {ın }} \leqslant 5.25 \mathrm{~V}$
Ito	Output Leakage Current		10	uA	Chıp Deselected $V_{\text {out }}=+0.4 \mathrm{~V}$ to Vcc
Icc	Power Supply Current		98	mA	Output Unloaded $\mathrm{Vcc}=5.25 \mathrm{~V}, \mathrm{~V}_{\text {in }}=\mathrm{Vcc}$

A.C. Characteristics

$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \%$ (unless otherwise specified) (Note 3)

Symbol	Parameter	2316B-2		2316B-3		2316B		Test Conditions
		Min.	Max.	Min.	Max.	Min.	Max.	
$\mathrm{t}_{\mathrm{ACC}}$	Address Access Tıme		200		300		450	Output Load: 1 TTL load
t_{CO}	Chip Select Delay		100		130		150	and 100 pF
$t_{\text {bF }}$	Chip Deselect Delay		100		100		150	Input transition time: 20 ns
\mathbf{t}_{OH}	Previous Data Valıd After Address Change Delay	10		10		10		Timıng reference levels: Input: 1.5V Output: 0.8 V and 2.0 V

Capacitance

$t_{A}=25^{\circ} \mathrm{C}, \mathrm{f}=10 \mathrm{MHz}$, See Note 2

Symbol	Parameter	Min.	Max.	Units	Test Conditions
C $_{1}$	Input Capacıtance		7	pF	All pins except pin under
Co	Output Capacıtance		10	pF	test tied to AC ground

Notes:

1. Input levels that swing more negative than-05V will be clamped and may cause damage to the device

2 This parameter is periodically sampled and is not 100% tested
3 A minimum 05 ns tıme delay is required after application of $\mathrm{V}_{\mathrm{CC}}(+5 \mathrm{~V})$ before proper device operation is achieved.

Timing Diagram

Typical Characteristics

Programming Instructions

All Synertek Read Only Memories (ROM) utilize computer aided techniques to manufacture and test custom bit patterns. The customer's bit pattern and address information can be supplied to Synertek in a number of different ways. Synertek can process customer inputs in EPROM, ROM, PROM, paper tape, and computer punched cards. Contact your Synertek sales representative for complete details on each of the various data input formats.

Programming instructions are listed at the end of the Memory Section.

Ordering Information

Order Number	Access Time (Max.)	Operating Current (Max.)	Package Type
SYP2316B	450 ns	98 mA	Molded DIP
SYP2316B-2	200 ns	98 mA	Molded DIP
SYP2316B-3	300 ns	98 mA	Molded DIP

SY2332/SY2333
4096×8 Static Read Only Memory

Features

- SY2332 is 2532 EPROM Pin Compatıble
- 4096×8-Bit Organızation
- Single +5 Volt Supply ($\pm 10 \%$)
- Access Time 200/300/450 ns (max)
- Totally Statıc Operatıon
- Completely TTL Compatıble
- SY2333 is 2732 EPROM Pin Compatible
- Three-State Outputs for Wire-OR Expansion
- Two Programmable Chip Selects
- EPROMS Accepted as Program Data Inputs
- JEDEC Approved Pinouts

Description

The SY2332 and SY2333 high performance read only memories are organized 4096 words by 8 bits with access times from 200 ns to 450 ns They are designed to be compatible with all microprocessor and sımılar applicatıons where high performance, large bit storage and simple interfacıng are important design considerations. These devices offer TTL input and output levels with a minımum of 04 Volt noise immunity in conjunction with a +5 Volt power supply

Pin Configurations

The SY2332 and SY2333 operate totally asynchronously No clock input is required The two programmable Chip Select inputs allow four 32K ROMs to be OR-tied without external decoding Both devices offer three-state output buffers for memory expansion
Designed to replace 32 K EPROMs, the SY2332 and SY2333 can elımınate the need to redesign prınted circuit boards for volume mask programmed ROMs after prototyping with EPROMs.

Block Diagram

[^4]| Absolute Maximum Ratings* | |
| :---: | :---: |
| Temperature Under Bias | $-10^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}$ |
| Storage Temperature | $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ |
| Voltage on Any Pin with | |
| Respect to Ground | $-3.5 \vee$ to +7 V |
| Power Dissipation | 1.0 W |

Comment*

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or at any other condition above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
D.C. Characteristics $T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \%$ (unless otherwise specified)

Symbol	Parameter	Min.	Max.	Units	Test Conditions
V_{OH}	Output HIGH Voltage	2.4	$V_{\text {CC }}$	Volts	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{OH}}=-400 \mu \mathrm{~A}$
$V_{\text {OL }}$	Output LOW Voltage		0.4	Volts	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{OL}}=2.1 \mathrm{~mA}$
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage	2.0	V_{CC}	Volts	
VIL	Input LOW Voltage	-3.0	0.8	Volts	
ILI	Input Load Current		10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {CC }}=5.5 \mathrm{~V}, 0 \mathrm{~V} \leqslant \mathrm{~V}_{\text {IN }} \leqslant 5.5 \mathrm{~V}$
ILO	Output Leakage Current		10	$\mu \mathrm{A}$	Chip Deselected
ICC	Power Supply Current		100	mA	$\mathrm{V}_{\text {OUT }}=+0.4 \mathrm{~V}$ to V_{CC} Output Unloaded, Chip Enabled $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=\mathrm{V}_{\mathrm{CC}}$

A.C. Characteristics $T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \%$ (unless otherwise specified) (Note 1)

	Parameter	$\begin{aligned} & \text { SY2332-2 } \\ & \text { SY2333-2 } \end{aligned}$		$\begin{aligned} & \text { SY2332-3 } \\ & \text { SY2333-3 } \end{aligned}$		$\begin{aligned} & \text { SY2332 } \\ & \text { SY2333 } \\ & \hline \end{aligned}$		Units
Symbol		Min.	Max.	Min.	Max.	Min.	Max.	
$t_{\text {AcC }}$	Address Access Tıme		200		300		450	ns
${ }^{\text {t }} \mathrm{CO}$	Chip Select Delay		100		100		150	ns
t_{DF}	Chip Deselect Delay		100		100		150	ns
${ }^{\text {toH }}$	Previous Data Valıd After Address Change Delay	20		20		20		ns

Capacitance $t_{A}=25^{\circ} \mathrm{C}, \mathrm{f}=10 \mathrm{MHz}$ (Note 2)

Symbol	Parameter	Min.	Max.	Units	Test Conditions
C_{I}	Input Capacitance		7	pF	All pins except pin under
C_{O}	Output Capacıtance		10	pF	test tied to $A C$ ground

1 A minımum 05 mstime delay is required after application of $\mathrm{V}_{\mathrm{CC}}(+5 \mathrm{~V})$ before proper device operation is achieved
2 This parameter is periodically sampled and is not 100% tested.
Timing Diagram

Typical Characteristics

NORMALIZED ACCESS TIME vs. CAPACITIVE LOAD

normalized supply current vs. Ambient temperature

A.C. Testing Input, Output Waveform

Programming Instructions

All Synertek Read Only Memories (ROM) utilize computer aided techniques to manufacture and test custom bit patterns. The customer's bit pattern and address information can be supplied to Synertek in a number of different ways. Synertek can process customer inputs in EPROM, ROM, PROM, paper tape, and computer punched cards. Contact your Synertek sales representative for complete details on each of the varıous data input formats.
Programming instructions are listed at the end of the Memory Secton.

Package Availability 24 Pin Molded DIP

NORMALIZED ACCESS TIME vs SUPPLY VOLTAGE

NORMALIZED SUPPLY CURRENT vs. SUPPLY VOLTAGE

A.C. Testing Load Circuit

Ordering Information

Order Number	Access Time	Operating Current	Package Type
SYP2332	450 ns	100 mA	Molded DIP
SYP2332-2	200 ns	100 mA	Molded DIP
SYP2332-3	300 ns	100 mA	Molded DIP
SYP2333	450 ns	100 mA	Molded DIP
SYP2333-2	200 ns	100 mA	Molded DIP
SYP2333-3	300 ns	100 mA	Molded DIP

A custom number will be assigned by Synertek.

Features

- 8192×8 Bıt Organızatıon
- Single +5 Volt Supply
- Access Time - 200/300/450 ns (max)
- Totally Statıc Operatıon
- Completely TTL Compatıble
- 24 Pin JEDEC Approved Pınout

> SY2364A - Automatic Power Down $(\overline{\mathrm{CE}})$
> SY2364 - Non Power Down Version
> - Programmable Chip Select ($\overline{\mathrm{CS}})$
> Three State Outputs for Wire-OR Expansion
> EPROMs Accepted as Program Data Input
> - 2564 EPROM Compatıble

Description

The SY2364 and SY2364A high performance Read Only Memories are organized 8192 words by 8 bits with access tımes from 200 ns to 450 ns The ROMs are designed to be compatible with all microprocessor and sımilar applicatıons where high performance, large bit storage and simple interfacing are important design considerations Both ROMs conform to the JEDEC approved pinout for 24 pin 64K ROMs
The SY2364 offers the sımplest operation (no power down) Its programmable chip select allows two 64 K ROMs to be OR-tied without external decoding

Pin Configurations

The SY2364A offers an automatic power down feature. Power down is controlled by the Chip Enable ($\overline{\mathrm{CE}}$) input When $\overline{\mathrm{CE}}$ goes high, the device will automatically power down and remain in a low power standby mode as long as $\overline{\mathrm{CE}}$ remains high This unique feature provides system level power savings as much as 90%.
Both the SY2364 and SY2364A are pin compatible with the 2564 EPROM thus eliminating the need to redesign printed circuit boards for volume mask programmed ROMs after prototyping with EPROMs.

Block Diagram

*CHIP SELECT (CS) IS PROGRAMMABLE LOW ACTIVE, HIGH ACTIVE OR DON'T CARE

Absolute Maximum Ratings*

Temperature Under Bıas	$-10^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Voltage on Any Pin with	
Respect to Ground	-0.5 V to +7 V
Power Dissipation	1.0 W

Comment*

Stresses above those listed under "Absolute Maxımum Ratings" may cause permanent damage to the device These are stress ratıngs only Functional operation of this device at these or any other conditions above those indicated on the operational sections of this specification is not implied and exposure to absolute maximum rating conditions for extended periods may affect device reliability.

D.C. Characteristics $T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 10 \%$

Symbol	Parameter	Min.	Typ.	Max.	Unit	Conditions
V_{OH}	Output HIGH Level	2.4		$\mathrm{~V}_{\mathrm{CC}}$	V	$\mathrm{I}_{\mathrm{OH}}=-10 \mathrm{~mA}$
$\mathrm{~V}_{\mathrm{OL}}$	Output LOW Level			04	V	$\mathrm{I}_{\mathrm{OL}}=3.2 \mathrm{~mA}$
$\mathrm{~V}_{\mathrm{IH}}$	Input HIGH Level	20		$\mathrm{~V}_{\mathrm{CC}}$	V	
V_{IL}	Input LOW LeveI	-0.5		0.8	V	
I_{LI}	Input Leakage Current			10	$\mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V}$ to V_{CC}
I_{LO}	Output Leakage Current			10	$\mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{OUT}}=0 \mathrm{~V}$ to V_{CC}
I_{CC}	Operating Supply Current			100	mA	Note 1
I_{SB}	Standby Supply Current			12	mA	Note 2
I_{OS}	Output Short CIrcuit Current			90	mA	Note 3

Capacitance $T_{A}=25^{\circ} \mathrm{C}, \mathrm{f}=10 \mathrm{MHz}$

Symbol	Parameter	Min.	Max.	Unit	Conditions
C_{I}	Input Capacitance		5	pf	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$
C_{O}	Output Capacıtance		5	pf	$\mathrm{V}_{\mathrm{OUT}}=0 \mathrm{~V}$

Note This parameter is periodically sampled and is not 100% tested

A.C. Characteristics $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 10 \%$ (Note 7)

Symbol	Parameter	$\begin{gathered} \text { 2364-2 } \\ 2364 A-2 \end{gathered}$		$\begin{gathered} \text { 2364-3 } \\ 2364 A-3 \end{gathered}$		$\begin{gathered} 2364 \\ 2364 A \end{gathered}$		Unit	Conditions
		Min.	Max.	Min.	Max.	Min.	Max.		
$\mathrm{t}_{\mathrm{CYC}}$	Cycle Time	200		300		450		ns	
$\mathrm{t}_{\text {AA }}$	Address Access Tıme		200		300		450	ns	
t_{OH}	Output Hold After Address Change	10		10		10		ns	
$\mathrm{t}_{\text {ACE }}$	Chip Enable Access Time		200		300		450	ns	Note 4
$\mathrm{t}_{\text {ACS }}$	Chip Select Access Tıme		85		100		150	ns	
t_{Lz}	Ouput LOW Z Delay	10		10		10		ns	Note 5
t_{HZ}	Output HIGH Z Delay		85		100		150	ns	Note 6
t_{PU}	Power Up Time	0		0		0		ns	Note 4
$t_{\text {PD }}$	Power Down Tıme		85		100		150	ns	Note 4

Notes:

1 Measured with device selected and outputs unloaded
2 Applies to " A " versions only and measured with $\overline{C E}=20 \mathrm{~V}$
3 For a duration not to exceed one second
4 Applies to " A " versions (power down) only
5 Output low impedance delay ($t_{L Z}$) is measured from $\overline{\mathrm{CE}}$ going low or CS going active
6 Output high impedance delay $\left(\mathrm{t}_{\mathrm{HZ}}\right)$ is measured from $\overline{\mathrm{CE}}$ going high or CS going inactive
7 A minımum 05 ms tıme delay is required after application of $\mathrm{V}_{\mathrm{CC}}(+5 \mathrm{~V})$ before proper device operation is achieved

Timing Diagrams

Propagation Delay from Address ($\overline{\mathrm{CE}}$ LOW or CS = Active)

Propagatıon Delay from Chıp Enable, Chıp Select (Address Valıd)

A.C. Testing Input, Output Waveform

Programming Instructions

All Synertek Read Only Memories (ROM) utilize computer asided techniques to manufacture and test custom bit patterns. The customer's bit pattern and address information can be supplied to Synertek in a number of different ways. Synertek can process customer inputs in EPROM, ROM, PROM, paper tape, and computer punched cards Contact your Synertek sales representative for complete detalls on each of the various data input formats
Programming instructions are listed at the end of the Memory Section.

A.C. Testing Load Circuit

Figure 1.

Package Availability 24 Pin Molded DIP

Ordering Information

Order Number	Access Time	Operating Current	Standby Current	Package Type
SYP2364	450 ns	100 mA	$\mathrm{~N} \mathrm{~A}^{*}$	Molded DIP
SYP2364-3	300 ns	100 mA	N A	Molded DIP
SYP2364-2	200 ns	100 mA	NA	Molded DIP
SYP2364A	450 ns	100 mA	12 mA	Molded DIP
SYP2364A-3	300 ns	100 mA	12 mA	Molded DIP
SYP2364A-2	200 ns	100 mA	12 mA	Molded DIP

*Not Applicable

Features

- 2764 EPROM Pin Compatıble
- 8192×8 Bit Organızatıon
- Single +5 Volt Supply
- Access Time - 200/300/450 ns (max)
- Totally Static Operation
- Completely TTL Compatible
- 28 Pin JEDEC Approved Pinout
- SY2365A - Automatı Power Down ($\overline{\mathrm{CE}}$)
- Output Enable Function ($\overline{\mathrm{OE} \text {) }}$
- Two Programmable Chip Selects (CS)
- SY 2365 - Non Power Down Version
- Four Programmable Chip Selects (CS)

Three State Outputs for Wire-OR Expansion

- EPROMs Accepted as Program Data Input

Description

The SY 2365 and SY 2365A high performance Read Only Memories are organized 8192 words by 8 bits with access tımes from 200 ns to 450 ns The ROMs are designed to be compatible with all microprocessor and similar applications where high performance, large bit storage and simple interfacing are important design considerations Both ROMs conform to the JEDEC approved pinout for 28 pin 64K ROMs
The SY 2365 offers the simplest operation (no power down) Its four programmable chip selects allow up to sixteen 64 K ROMs to be OR-tied without external decoding
The SY 2365A offers an automatic power down feature Power down is controlled by the Chip Enable ($\overline{\mathrm{CE}}$) input When $\overline{\mathrm{CE}}$ goes high, the device will automatically power down and remain in a low power standby mode as long as $\overline{\mathrm{CE}}$ remains high This unique feature provides system level power savings as much as 90% An additional feature of the SY 2365A is the Output Enable ($\overline{\mathrm{OE})}$ function This

Pin Configurations

SY2365A

elımınates bus contention in multiple bus microprocessor systems. The two programmable Chip Selects (CS) allow up to four 64 K ROMs to be OR-tied without external decoding.

Both the SY 2365 and SY 2365A are pin compatible with the 2764 EPROM thus elımınatıng the need to redesign printed circuit boards for volume mask programmed ROMs after prototyping with EPROMs

Block Diagram

[^5]
Absolute Maximum Ratings*

Comment*

Stresses above those listed under "Absolute Maximum Ratıngs" may cause permanent damage to the device. These are stress ratıngs only. Functional operation of this device at these or any other conditions above those indicated on the operational sections of this specification is not implied and exposure to absolute maxımum rating conditions for extended periods may affect device reliability

D.C. Characteristics $T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 10 \%$

Symbol	Parameter	Min.	Typ.	Max.	Units	Conditions
V_{OH}	Output HIGH Level	24		$\mathrm{~V}_{\mathrm{CC}}$	V	$\mathrm{I}_{\mathrm{OH}}=-10 \mathrm{~mA}$
$\mathrm{~V}_{\mathrm{OL}}$	Output LOW Level			04	V	$\mathrm{I}_{\mathrm{OL}}=32 \mathrm{~mA}$
$\mathrm{~V}_{\mathrm{IH}}$	Input HIGH Level	20		$\mathrm{~V}_{\mathrm{CC}}$	V	
V_{IL}	Input LOW Level	-0.5		08	V	
I_{LI}	Input Leakage Current			10	$\mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V}$ to V_{CC}
I_{LO}	Output Leakage Current			10	$\mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{OUT}}=0 \mathrm{~V}$ to V_{CC}
I_{CC}	Operatıng Supply Current			100	mA	Note 1
I_{SB}	Standby Supply Current			12	mA	Note 2
I_{OS}	Output Short CIrcuit Current			70	mA	Note 3

Capacitance $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=10 \mathrm{MHz}$

Symbol	Parameter	Min.	Max.	Unit	Conditions
C_{I}	Input Capacitance		5	pf	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$
C_{O}	Output Capacıtance		5	pf	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$

Note This parameter is periodically sampled and is not 100% tested

A.C. Characteristics $T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 10 \%$ (Note 7)

Symbol	Parameter	$\begin{gathered} 2365-2 \\ 2365 A-2 \end{gathered}$		$\begin{gathered} 2365-3 \\ 2365 A-3 \end{gathered}$		$\begin{gathered} 2365 \\ 2365 A \end{gathered}$		Unit	Condition
		Min.	Max.	Min.	Max.	Min.	Max.		
$\mathrm{t}_{\mathrm{CYC}}$	Cycle Time	200		300		450		ns	
t_{AA}	Address Access Tıme		200		300		450	ns	
${ }^{\text {toh }}$	Output Hold After Address Change	10		10		10		ns	
$t_{\text {ACE }}$	Chip Enable Access Tıme		200		300		450	ns	Note 4
$t_{\text {ACS }}$	Chıp Select Access Time		85		100		150	ns	
$t_{\text {AOE }}$	Output Enable Access Tıme		85		100		150	ns	Note 4
t_{Lz}	Ouput LOW Z Delay	10		10		10		ns	Note 5
$t_{\text {Hz }}$	Output HIGH Z Delay		85		100		150	ns	Note 6
$t_{\text {PU }}$	Power Up Tıme	0		0		0		ns	Note 4
$t_{\text {PD }}$	Power Down Tıme		85		100		150	ns	Note 4

Notes:

1 Measured with device selected and outputs unloaded
2 Applies to " A " versions only and measured with $\overline{C E}=2 \mathrm{OV}$
3 For a duration not to exceed one second
4 Applies to " A " versions (power down) only
5 Output low impedance delay (t_{Lz}) is measured from $\overline{\mathrm{CE}}$ and $\overline{\mathrm{OE}}$ going low and CS going active, whichever occurs last
6 Output high impedance delay $\left(t_{H Z}\right)$ is measured from either $\overline{C E}$ or $\overline{O E}$ going high or CS going inactive, whichever occurs first
7 A minımum 05 ms tıme delay is required after application of $\mathrm{V}_{\mathrm{CC}}(+5 \mathrm{~V})$ before proper device operation is achieved

Timing Diagrams

Propagation Delay from Address ($\overline{\mathrm{CE}}=\overline{\mathrm{OE}}=\mathrm{LOW}, \mathrm{CS} / \overline{\mathrm{CS}}=$ Active)

Propagatıon Delay from Chıp Enable, Chıp Select (Address Valıd)

A.C. Testing Input, Output Waveform

Programming Instructions

All Synertek Read Only Memories (ROM) utllize computer aıded techniques to manufacture and test custom bit patterns. The customer's bit pattern and address information can be supplied to Synertek in a number of different ways. Synertek can process customer inputs in EPROM, ROM, PROM, paper tape, and computer punched cards. Contact your Synertek sales representative for complete detals on each of the varıous data input formats.
Programming instructions are listed at the end of the Memory Section.

A.C. Testing Load Circuit

Figure 1.

Package Availability 28 Pin Ceramic DIP 28 Pin Molded DIP
Ordering Information

Order Number	Access Time	Operating Current	Standby Current	Package Type
SYP2365	450 ns	100 mA	N.A.* *	Molded DIP
SYP2365-3	300 ns	100 mA	N.A.	Molded DIP
SYP2365-2	200 ns	100 mA	N.A.	Molded DIP
SYP2365A	450 ns	100 mA	12 mA	Molded DIP
SYP2365A-3	300 ns	100 mA	12 mA	Molded DIP
SYP2365A-2	200 ns	100 mA	12 mA	Molded DIP

[^6]
PRELIMINARY

Features

- EPROM Pin Compatible
- $16,384 \times 8$ Bit Organization
- Single +5 Volt Supply
- Access Time - 200/300/450 ns (max)
- Totally Statıc Operation
- Completely TTL Compatıble
- 28 Pin JEDEC Appróved Pinout
- SY23128A - Automatic Power Down (CE)
- Output Enable Function ($\overline{\mathrm{OE}})$
- One Programmable Chıp Select ($\overline{\mathrm{CS}}$)
- SY23128 - Non Power Down Version
- Three Programmable Chip Selects
- Three State Outputs for Wire-OR Expansion
- EPROMS Accepted as Program Data Input

Description

The SY23128 and SY23128A high performance Read Only Memories are organized 16,384 words by 8 bits with access times from 200 ns to 450 ns The ROMs are designed to be compatible with all microprocessor and similar applications where high performance, large bit storage and simple interfacing are important design considerations Both ROMs conform to the JEDEC approved pinout for 28 pin 128K ROMs
The SY23128 offers the simplest operation (no power down) Its three programmable chip selects allow up to eight 128 K ROMs to be OR-tied without external decoding
The SY23128A offers an automatic power down feature Power down is controlled by the Chip Enable ($\overline{\mathrm{CE}}$) input When $\overline{\mathrm{CE}}$ goes high, the device will automatically power down and remain in a low power standby mode as long as $\overline{\mathrm{CE}}$ remains high This unique feature provides system level power savings as much as 90% An additional feature of the SY23128A is the Output Enable ($\overline{\mathrm{OE}}$) function This

Pin Configurations

eliminates bus contention in multiple bus microprocessor systems The programmable chip select allows two 128 K ROMs to be OR-tied without external decoding

Both the SY23128 and SY23128A are pin compatible with EPROMs thus elımınatıng the need to redesign printed circuit boards for volume mask programmed ROMs after prototyping with EPROMs

Block Diagram

[^7]
Absolute Maximum Ratings*

Comment*

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only. Functional operation of this device at these or any other conditions above those indicated on the operational sections of this specification is not implied and exposure to absolute maximum rating conditions for extended periods may affect device reliability.

D.C. Characteristics $\quad T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 10 \%$

Symbol	Parameter	Min.	Typ.	Max.	Units	Conditions
V_{OH}	Output HIGH Level	2.4		$\mathrm{~V}_{\mathrm{CC}}$	V	$\mathrm{I}_{\mathrm{OH}}=-1.0 \mathrm{~mA}$
$\mathrm{~V}_{\mathrm{OL}}$	Output LOW Level			0.4	V	$\mathrm{I}_{\mathrm{OL}}=3.2 \mathrm{~mA}$
$\mathrm{~V}_{\mathrm{IH}}$	Input HIGH Level	2.2		$\mathrm{~V}_{\mathrm{CC}}$	V	
V_{IL}	Input LOW Level	-3.0		08	V	
I_{LI}	Input Leakage Current			10	$\mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V}$ to V_{CC}
I_{LO}	Output Leakage Current			10	$\mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{OUT}}=0 \mathrm{~V}$ to V_{CC}
I_{CC}	Operating Supply Current			100	mA	Note 1
I_{SB}	Standby Supply Current			10	mA	Note 2
I_{OS}	Output Short Circuit Current			90	mA	Note 3

Capacitance $\quad T_{A}=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}$

Symbol	Parameter	Min.	Max.	Units	Conditions
C_{1}	Input Capacitance		5	pF	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$
C_{0}	Output Capacitance		5	pF	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$

Note: This parameter is periodically sampled and is not 100% tested
A.C. Characteristics $\quad \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 10 \%$ (Note 7)

Symbol	Parameter	$\begin{gathered} \text { 23128-2 } \\ \text { 23128A-2 } \end{gathered}$		$\begin{gathered} \text { 23128-3 } \\ 23128 A-3 \end{gathered}$		$\begin{gathered} 23128 \\ 23128 A \\ \hline \end{gathered}$		Unit	Conditions
		Min.	Max.	Min.	Max.	Min.	Max.		
${ }^{\text {t }}$ YYC	Cycle Time	200		300		450		ns	
$t_{\text {AA }}$	Address Access Tıme		200		300		450	ns	
${ }^{\text {toH }}$	Output Hold After Address Change	10		10		10		ns	
$\mathrm{t}_{\text {ACE }}$	Chip Enable Access Tıme		200		300		450	ns	Note 4
$t_{\text {ACS }}$	Chip Select Access Time		85		100		150	ns	
$\mathrm{t}_{\text {AOE }}$	Output Enable Access Time		85		100		150	ns	Note 4
t_{Lz}	Output LOW Z Delay	10		10		10		ns	Note 5
$t_{H Z}$	Output HIGH Z Delay		85		100		150	ns	Note 6
t_{PU}	Power Up Tıme	0		0		0		ns	Note 4
t_{PD}	Power Down Time		100		120		150	ns	Note 4

Notes:

1 Measured with device selected and outputs unloaded.
2 Applies to " A " versions only and measured with $\overline{C E}=2.0 \mathrm{~V}$.
3. For a duration not to exceed one second with $\mathrm{V}_{\mathrm{OUT}}=0 \mathrm{~V}$.
4. Applies to " A " versions (power down) only.
5. Output low impedance delay (t_{LZ}) is measured from $\overline{\mathrm{CE}}$ and $\overline{\mathrm{OE}}$ going low or CS going active, whichever occurs last.
6. Output high impedance delay (t_{HZ}) is measured from either $\overline{\mathrm{CE}}$ or $\overline{\mathrm{OE}}$ going high or CS going inactive, whichever occurs first.
7. A minimum 0.5 ms time delay is required after applicatıon of $\mathrm{V}_{C C}(\pm 5 \mathrm{~V})$ before proper device operation is achieved

Timing Diagrams

Propagation Delay from Address ($\overline{\mathrm{CE}}=\overline{\mathrm{OE}}=\mathrm{LOW}, \mathrm{CS} / \overline{\mathrm{CS}}=$ Actıve)

Propagation Delay from Chıp Enable, Chıp Select (Address Valıd)

A.C. Testing Input, Output Waveform

Programming Instructions

All Synertek Read Only Memories (ROM) utılize computer arded techniques to manufacture and test custom bit patterns. The customer's bit pattern and address information can be supplied to Synertek in a number of different ways. Synertek can process customer inputs in EPROM, ROM, PROM, paper tape, and computer punched cards. Contact your Synertek sales representative for complete details on each of the various data input formats.
Programming instructions are listed at the end of the Memory Section.

PRELIMINARY

Features

- EPROM Pin Compatible
- $32,768 \times 8$ Bit Organızation
- Single +5 Volt Supply
- Access Time - 200/300/450 ns (max)
- Totally Static Operatıon
- Completely TTL Compatible
- 28 Pin JEDEC Approved Pinout
- SY23256A - Automatic Power Down ($\overline{\mathrm{CE}}$)
- Output Enable Function ($\overline{\mathrm{OE}})$
- SY23256 - Non Power Down Version
- Two Programmable Chip Selects (CS)
- Three State Outputs for Wire-OR Expansion
- EPROMs Accepted as Program Data Input

Description

The SY 23256 and SY23256A high performance Read Only Memories are organized 16,384 words by 8 bits with access tımes from 200 ns to 450 ns . The ROMs are designed to be compatible with all microprocessor and sımilar applications where high performance, large bit storage and sımple interfacıng are important design considerations Both ROMs conform to the JEDEC approved pınout for 28 pin 256K ROMs

The SY23256 offers the simplest operation (no power down) Its two programmable Chip Selects allow up to four 256K ROMs to be OR-tied without external decoding
The SY23256A offers an automatic power down feature. Power down is controlled by the Chip Enable ($\overline{\mathrm{CE}}$) input When $\overline{\mathrm{CE}}$ goes high, the device will automatically power down and remain in a low power standby mode as long as $\overline{\mathrm{CE}}$ remains high This unique feature provides system level power savings as much as 90% An additional feature of

Pin Configurations

the SY23256A is the Output Enable ($\overline{\mathrm{OE}}$) function. This eliminates bus contention in multiple bus microprocessor systems

Both the SY23256 and SY23256A are pin compatıble with EPROMs, thus elimınating the need to redesign printed cırcuit boards for volume mask programmed ROMs after prototyping with EPROMs

Block Diagram

[^8]| Absolute Maximum Ratings* | |
| :---: | :---: |
| Temperature Under Bias | $-10^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ |
| Storage Temperature. | $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ |
| Voltage on Any Pin with | |
| Respect to Ground | -3.5 V to +7 V |
| Power Dissipation | 1.0W |

Absolute Maximum Ratings*

Comment*

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only. Functional operation of this device at these or any other conditions above those indicated on the operational sections of this specification is not implied and exposure to absolute maximum rating conditions for extended periods may affect device reliability.

D.C. Characteristics $\quad T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 10 \%$

Symbol	Parameter	Min.	Typ.	Max.	Units	Conditions
V_{OH}	Output HIGH Level	2.4		$\mathrm{~V}_{\mathrm{CC}}$	V	$\mathrm{I}_{\mathrm{OH}}=-1.0 \mathrm{~mA}$
$\mathrm{~V}_{\mathrm{OL}}$	Output LOW Level			0.4	V	$\mathrm{I}_{\mathrm{OL}}=3.2 \mathrm{~mA}$
$\mathrm{~V}_{\mathrm{IH}}$	Input HIGH Level	2.0		$\mathrm{~V}_{\mathrm{CC}}$	V	
V_{IL}	Input LOW Level	-3.0		0.8	V	
I_{LI}	Input Leakage Current			10	$\mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V}$ to V_{CC}
I_{LO}	Output Leakage Current			10	$\mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{OUT}}=0 \mathrm{~V}$ to V_{CC}
I_{CC}	Operating Supply Current			100	mA	Note 1
I_{SB}	Standby Supply Current			10	mA	Note 2
I_{OS}	Output Short Circuit Current			90	mA	Note 3

Capacitance $\quad T_{A}=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}$

Symbol	Parameter	Min.	Max.	Units	Conditions
C_{I}	Input Capacitance		5	pF	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$
C_{O}	Output Capacitance		5	pF	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$

Note. This parameter is periodically sampled and is not 100% tested

A.C. Characteristics $T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 10 \%$ (Note 7)

Symbol	Parameter	$\begin{gathered} 23256-2 \\ 23256 A-2 \end{gathered}$	$\begin{gathered} \text { 23256-3 } \\ 23256 A-3 \end{gathered}$		$\begin{gathered} 23256 \\ 23256 A \end{gathered}$		Unit	Conditions
		Min. Max.	Min.	Max.	Mịn.	Max.		
$\mathrm{t}_{\mathrm{CYC}}$	Cycle Time	200	300		450		ns	
$t_{\text {AA }}$	Address Access Time	200		300		450	ns	
${ }^{\text {t }} \mathrm{OH}$	Output Hold After Address Change	10	10		10		ns	
$t_{\text {ACE }}$	Chıp Enable Access Tıme	200		300		450	ns	Note 4
$\mathrm{t}_{\text {ACS }}$	Chip Select Access Tıme	85		100		150	ns	
$\mathrm{t}_{\mathrm{AOE}}$	Output Enable Access Time	85		100		150	ns	Note 4
$t_{L Z}$	Output LOW Z Delay	10	10		10		ns	Note 5
$t_{H z}$	Output HIGH Z Delay	85		100		150	ns	Note 6
$\mathrm{t}_{\text {PU }}$	Power Up Tıme	0	0		0		ns	Note 4
$t_{\text {PD }}$	Power Down Tıme	100		120		150	ns	Note 4

Notes

1 Measured with device selected and outputs unloaded
2 Applies to " A " versions only and measured with $\overline{C E}=20 \mathrm{~V}$
3 For a duration not to exceed one second with $V_{O U T}=0 V$
4 Applies to " A " versions (power down) only
5. Output low impedance delay (t_{Lz}) is measured from $\overline{\mathrm{CE}}$ and $\overline{\mathrm{OE}}$ going low or CS going active, whichever occurs last.

6 Output high impedance delay (t_{HZ}) is measured from either $\overline{\mathrm{CE}}$ or $\overline{\mathrm{OE}}$ going high or CS going inactive, whichever occurs first.
7 A minımum 05 ms tıme delay is required after application of $\mathrm{V}_{\mathrm{CC}}(\pm 5 \mathrm{~V})$ before proper device operation is achieved.

SY23256/SY23256A

Timing Diagrams

Propagation Delay from Address ($\overline{\mathrm{CE}}=\overline{\mathrm{OE}}=\mathrm{LOW}, \mathrm{CS} / \overline{\mathrm{CS}}=$ Active)

Propagatıon Delay from Chıp Enable, Chıp Select (Address Valıd)

A.C. Testing Input, Output Waveform

Programming Instructions

All Synertek Read Only Memories (ROM) utilize computer aided techniques to manufacture and test custom bit patterns. The customer's bit pattern and address information can be supplied to Synertek in a number of different ways. Synertek can process customer inputs in EPROM, ROM, PROM, paper tape, and computer punched cards. Contact your Synertek sales representative for complete detalls on each of the various data input formats.
Programming instructions are listed at the end of the Memory Section.

A.C. Testing Load Circuit

Package Availability 28 Pin Molded DIP

Ordering Information

Order Number	Access Time	Operating Current	Standby Current	Package Type
SYP23256	450 ns	100 mA	N A	Molded DIP
SYP23256-3	300 ns	100 mA	N A	Molded DIP
SYP23256-2	200 ns	100 mA	NA	Molded DIP
SYP23256A	450 ns	100 mA	10 mA	Molded DIP
SYP23256A-3	300 ns	100 mA	10 mA	Molded DIP
SYP23256A-2	200 ns	100 mA	10 mA	Molded DIP

Programming Instructions

All Synertek Read Only Memories utilize computer aided technıques to manufacture and test custom bit patterns The custom bit pattern and address information are supplied on standard 80 column computer cards in the format described below

All addresses and related output patterns must be completely defined Each deck of cards definıng a specific ROM bit pattern consists of 1) four Title Cards and 2) address and bit pattern Data Cards Positive logic is generally used on all input cards a logic " 1 " is the most positive or HIGH level, and a logic " 0 " is the most negative or LOW level Synertek can also accept ROM data in other formats, compatible with most microprocessors and PROMs Consult your Synertek representative for detalls

Title Cards

A set of four Title Cards should accompany each data deck These cards give our computer programs additional information necessary to accurately produce high density ROMs. These four Title Cards must contain the following information

	Column	Information
First Card	$1-30$	Customer name
	31-50	Customer part number
	60-72	Synertek part number
Second Card	$1-30$	Customer contact (name)
	31-50	Customer telephone number
Third Card	1-6	Leave blank - pattern number to be assigned by Synertek
	29	CS chip select logic level (if LOW selects chip, punch " 0 ", if HIGH selects chip, punch " 1 ". If DON'T CARE, punch " 2 ")
	30	CS chip select logic level
	31	CS chip select logic level
	32	CS chip select logic level
Fourth Card	1.8	Data Format Synertek, or Intel data card format may be used. Specify format by punching "Synertek," or "Intel" starting in column one
	15-28	Logic format, punch "POSITIVE LOGIC" or "NEGATIVE LOGIC"
	35-57	Truth table verification code, punch either "VERIFICATION HOLD" (manufacturing starts after customer approval of bit pattern data supplied by Synertek) or "VERIFICATION NOT NEEDED" (manufacturing starts immediately upon receipt of customer card deck)

Synertek Data Card Format

All addresses are coded in decımal form (0 through 2047) All output words are coded both in binary and octal forms Output $8\left(\mathrm{O}_{8}\right)$ is the MSB, and Output $1\left(\mathrm{O}_{1}\right)$ is the LSB.

	Column	Information
Data Cards	$1-4$	Decımal address
	$6-13$	Output (MSB-LSB)
	$15-17$	Octal equivalent of output data
	$22-25$	Decımal address
$27-34$	Output (MSB-LSB)	
	$36-38$	Octal equivalent of output data
	$43-46$	Decımal address
	$48-55$	Output (MSB-LSB)
	$57-59$	Octal equivalent of output data
	$64-67$	Decımal address
	$69-76$	Output (MSB-LSB)
	$78-80$	Octal equivalent of output data

Intel Data Card Format

Output data is punched as ether a " P " or an " N ", a " P " is defined as a HIGH, and an "N" is defined as a LOW Output 8 $\left(\mathrm{O}_{8}\right)$ is the MSB and Output $1\left(\mathrm{O}_{1}\right)$ is the LSB. The four Title Cards listed above must accompany the Intel card deck.

Column

Information

Data Cards 1-5 Punch the 5-digit decimal equivalent of the binary coded address which begins each card This is the initial input address The address is right justified, le 00000, 00008, 00016, etc
7-14 Output data (MSB-LSB) for initial input address.
16-23 Output data for initial input address +1
25-32 Output data for initial input address +2 .
34-41 Output data for initial input address +3 .
43-50 Output data for initial input address +4
52-59 Output data for initial input address +5
61-68 Output data for initial input address +6
70-77 Output data for initial input address +7
79-80 ROM pattern number (may be left blank)

Send bit pattern data to the following special address:
Synertek - ROM
P.O. Box 552

Santa Clara, CA 95052

Third Card Chip Select Setups

Column	SY2316B	SY2332/3	SY2364	SY2365/A	SY23128	SY23256	SY3308	SY3316
29					CS3/ ${ }^{\text {CS3 }}{ }^{*}$	CS1/ट्C1	CS4/ $\overline{C S 4}$	
30	CS3/ $\overline{\mathrm{CS}} 3$	CS2/ $\overline{\mathrm{CS} 2}$		CS3/ ${ }^{\text {CS3 }}{ }^{*}$	CS2/ $\overline{\mathrm{CS} 2}$	CS2/ $\overline{C S 2}^{*}$	CS3/ $\overline{\text { CS3 }}$	CS3/ $\overline{C S 3}$
31	CS2/ $\overline{\mathrm{CS} 2}$	CS1/ $\overline{\mathrm{CS} 1}$		CS2/ $\overline{C S 2}$	CS1/ट्र1		CS2/ES2	CS2/ $\overline{\mathrm{CS} 2}$
32	CS1, $\overline{\mathrm{CS} 1}$		CS/ $\overline{\mathrm{CS}}$	CS1/ट्र1			CS1/ $\overline{\mathrm{CS} 1}$	CS1/ $\overline{\mathrm{CS} 1}$

[^9]
Intel Paper Tape Format

The paper tape which should be used is 1 " wide paper tape using 7 or 8 bit ASCll code, such as a model 33 ASR teletype produces.

BPNF Format

The format requirements are as follows:

1. All word fields are to be punched in consecutive order, starting with word field O (all addresses low). There must be exactly N word fields for the $\mathrm{N} \times 8$ ROM organization.
2. Each word field must begin with the start character B and end with the stop character F. There must be exactly 8 data characters between the B and F for the $\mathrm{N} \times 8$ organization. NO OTHER CHARACTERS, SUCH AS RUBOUTS, ARE ALLOWED ANYWHERE IN A WORD FIELD. If in preparing a tape, an error is made, the entire word field, including the B and F must be rubbed out. Within the word field, a P results in a high tape level output, and an N results in a low level output.
3. Preceding the first word field and following the last word field, there must be a leader/trailer length of at least 25 characters. This should consist of rubout punches (letter key for Telex tapes)
4. Between word fields, comments not containing Bs or Fs may be inserted. Carriage return and line feed characters should be inserted (as a "comment") just before each word field (or at least between every four word fields). When these carriage returns, etc. are inserted, the tape may be easily listed on the teletype for purposes of error checking. The customer may also find it helpful to insert the word number (as a comment) at least every four word fields.
5. Included in the tape before the leader should be the customer's complete Telex or TWX number and if more than one pattern is being transmitted, the ROM pattern number.
6. MSB and LSB are the most and least significant bit of the device outputs. Refer to the data sheet for the pin numbers.

Hexadecimal Program Tape Format

The hexadecımal tape format used by the INTELLEC 8 system is a modified memory image, blocked into discrete records. Each record contains record length, record type, memory address, and checksum information in addition to data. A frame by frame description is as follows:

Frame 0

Frames 1,2
(0-9, A-F)

Frames 3 to 6

Frames 7,8

Frames 9 to 9+2*
(Record Length) - 1

Frames 9+2*
(Record Length) to 9+2* (Record Length) +1

Record mark. Signals the start of a record. The ASCII character colon (":'" HEX 3 A) is used as the record mark. Record length. Two ASCII characters representing a hexadecimal number in the range 0 to ' FF ' (0 to 255). This is the count of the actual data bytes in the record type or checksum. A record length of O indicates end of file. Load Address. Four ASCll characters that represent the initial memory will be loaded. The first data byte is stored in the location pointed to by the load address, succeeding data bytes are loaded into ascending addresses.
Record type. Two ASCII characters. Currently all records are type 0 , this field is reserved for future expansion.
Data. Each 8 bit memory word is represented by two frames containing the ASCII characters (0 to $9, A$ to F) to represent a hexadecimal value 0 to 'FF' (0 to 255).
Checksum. The checksum is the negative of the sum of all 8 bit bytes in the record since the record mark ("."') evaluated modulus 256. That is, if you add together all the 8 bit bytes, ignoring all carries out of an 8 -bit sum, then add the checksum, the result is zero.

Example: If memory locations 1 through 3 contain 53F8EC, the format of the hex file produced when these locations are punched is:

:0300010053F8ECC5

Send bit pattern data to the following special address-
Synertek - ROM
P.O. Box 552

Santa Clara, CA 95052

Synertek.

Military.

Page
 Number

SYM2128 3-3
SYM2130/31 3-7
SYM2147H 3-9
SYM2148H 3-13
SYM2149H 3-17
SYM2167 3-21
SYM2168 3-25
SYM2169 3-29

Military Selection Guide

Part Number	Organization	$\begin{aligned} & \text { Access } \\ & \text { Time } \\ & \text { [ns] } \end{aligned}$	Maximum Current (mA)		Power Supply [Volts]	Number of Pins	Packae Type (Note 1)	Compatible EPROM/ PROM	Page No.
			Operating	Standby					
SYM2148H-3	1024×4	55	150	30	+5	18	C, D, F, K		3-13
SYM2148H	1024×4	70	150	30	+5	18	C, D, F, K		3-13
SYM2149H-3	1024×4	70	150	30	+5	18	C, D, F, K		3-17
SYM2149H	1024×4	70	150	30	+5	18	C, D, F, K		3-17
SYM2147H-3	1024×4	70	160	30	+5	18	C, D, F, K		3-9
SYM2147H	1024×4	70	160	30	+5	18	C, D, F, K		3-9
SYM2128-3	2048×8	150	100	30	+5	24	C, D, K		3-3
SYM 2128-4	2048×8	200	100	30	+5	24	C, D, K		3-3
SYM2168[2]	4096×4	70	[3]	[3]	+5	24	C, D, K		3-21
SYM2169[2]	4096×4	70	[3]	-	+5	24	C, D, K		3-25
SYM2167[2]	$16,348 \times 1$	70	[3]	[3]	+5	24	C, D, K		3-29
SYM2130	1024×8	150	[3]	[3]	+5	40	C		3-7

SYM2128

Military 2048×8 Static Random Access Memory Extended Temperature Range

Features

- 150 nsec Maxımum Access Tıme
- Fully Static Operation:

No Clocks or Strobes Required

- Automatic CE Power Down
- Identical Cycle and Access Times
- Single +5 V Supply ($\pm 10 \%$)
- Pin Compatible with 2716 16K EPROM
- Totally TTL Compatible:

All Inputs and Outputs

- Common Data Input and Output
- Three-State Output
- JEDEC Approved Pinout

Description

The Synertek SYM2128 is a 16,384 bit static Random Access Memory organızed 2048 words by eight bits and is fabricated using Synertek's new scaled n-channel silicon gate technology It is designed using fully static circuitry, therefore requirıng no clock or refreshing to operate. The common data input and three-state output pins optımize compatibility with systems utilizing a bidirectional data bus

The SYM2128 offers an automatic power down feature under the control of the chip enable $(\overline{\mathrm{CE}})$ input. When $\overline{\mathrm{CE}}$ goes high, deselectıng the

Pin Configuration

chip, the device will automatically power down and remain in a standby power mode as long as $\overline{\mathrm{CE}}$ remaıns high. This feature provides signifıcant system level power savings.
The SYM2128 is confıgured in the JEDEC approved pinout for 24 pin byte organized memories and is pin compatıble with 16 K ROMs, EPROMs and EEPROMs. This offers the user the flexibility of being able to switch between RAM, ROM, EPROM, or EEPROM ashis needs dictate with a minımum of board changes.

Block Diagram

Absolute Maximum Ratings*
 Temperature Under Bias $-65^{\circ} \mathrm{C}$ to $+135^{\circ} \mathrm{C}$
 Storage Temperature $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
 Voltage on Any Pin with
 Respect to Ground
 -1.5 V to +7 V
 Power Dissipation
 1.0 W

Symbol	Parameter	SYM2128-3/-4		Unit	Conditions
		Min.	Max.		
${ }_{\text {LI }}$	Input Load Current (All input pins)		10	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\text {IN }}=\mathrm{Gnd}$ to V_{CC}
lo	Output Leakage Current		10	$\mu \mathrm{A}$	$\begin{aligned} & \overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IH}}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Max} \\ & \mathrm{~V}_{\mathrm{OUT}}=\mathrm{G} \text { nd to } 4.5 \mathrm{~V} \end{aligned}$
ICC	Power Supply Current			mA	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \quad \mathrm{V}_{C C}=\mathrm{Max}, \overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}}$
			100	mA	$\mathrm{T}_{A}=-55^{\circ} \mathrm{C}$ Outputs Open
$\mathrm{I}_{\text {SB }}$	Standby Current		30	mA	$\mathrm{V}_{\mathrm{CC}}=$ Min to Max, $\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IH}}$
$\mathrm{V}_{\text {IL }}$	Input Low Voltage		0.8	V	
$\mathrm{V}_{\text {IH }}$	Input High Voltage	2.0	6.0	V	
V_{OL}	Output Low Voltage		0.4	V	$\mathrm{IOL}=3.2 \mathrm{~mA}$
V_{OH}	Output High Voltage	2.4		V	$\mathrm{I}_{\mathrm{OH}}=-1.0 \mathrm{~mA}$

Capacitance
$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}$

Symbol	Test	Typ.	Max.	Unit
$C_{\text {OUT }}$	Output Capacitance		5	pF
$\mathrm{C}_{\text {IN }}$	Input Capacitance		5	pF

NOTE This parameter is periodically sampled and not 100% tested.

A.C. Characteristics $\quad T_{A}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%$
 read cycle

Symbol	Parameter	SYM2128-3		SYM2128-4		Unit	Conditions
		Min.	Max.	Min.	Max.		
t_{RC}	Read Cycle Time	150		200		ns	
${ }^{\text {A A }}$	Address Access Time		150		200	ns	
$t_{\text {ACE }}$	Chip Enable Access Time		150		200	ns	
$\mathrm{t}_{\text {AOE }}$	Output Enable Access Time		60		70	ns	
${ }^{\text {toh }}$	Output Hold from Address Change	10		10		ns	
${ }_{\text {t }}^{\text {L }}$	Output Low Z Time	10		10		ns	Note 5
t_{Hz}	Output High Z Time	0	50	0	60	ns	Note 5
$\mathrm{t}_{\text {PU }}$	Chip Enable to Power Up Time	0		0		ns	*
tPD	Chip Disable to Power Down Time		80		100	ns	

WRITE CYCLE

$t_{\text {WC }}$	Write Cycle Time	150		200		ns	
t_{CW}	Chip Enable to End of Write	120		150		ns	
$\mathrm{t}_{\text {AW }}$	Address Valid to End of Write	120		150		ns	
$\mathrm{t}_{\text {AS }}$	Address Setup Time	0		0		ns	
$\mathrm{t}_{\text {WP }}$	Write Pulse Width	90		120		ns	
$\mathrm{t}_{\text {WR }}$	Write Recovery Time	0		0		ns	
$\mathrm{t}_{\text {DW }}$	Data Valid to End of Write	70		90		ns	
$\mathrm{t}_{\text {DH }}$	Data Hold Time	0		0		ns	
$\mathrm{t}_{\text {WZ }}$	Write Enabled to Output in High Z	0	50	0	60	ns	Note 5
$\mathrm{t}_{\text {OW }}$	Output Active from End of Write	0		0		ns	Note 5

Timing Diagrams

READ CYCLE NO. 1 (NOTES 1 and 2)

READ CYCLE NO. 2 (NOTES 1 and 3)

WRITE CYCLE NO. 1 (NOTE 4)

Notes:

1. $\overline{W E}$ is high for Read Cycles.
2. Device is continuously selected, $\overline{C E}=\overline{O E}=V_{1 L}$.
3. Addresses valid prior to or coincident with $\overline{\mathrm{CE}} \mathrm{transition} \mathrm{low}$.
4. If $\overline{\mathrm{CE}}$ goes high simultaneously with $\overline{\mathrm{WE}}$ high, the outputs remain in the high impedance state.
5. Transition is measured $\pm 500 \mathrm{mV}$ from low or high impedance voltage with load B . This parameter is sampled and not 100% tested.
6. A pullup resistor to V_{CC} on the $\overline{\mathrm{CE}}$ input is required to keep the device deselected: otherwise, power-on current approaches ICC active.

A.C. TEST CONDITIONS

INPUT PULSE LEVELS	0.8 to 2.4 V VOLTS
INPUT RISE AND FALL	10 nsec
TIMES	
INPUT AND OUTPUT	15 VOLTS
TIMING REFERENCE	
LEVELS	
OUTPUT LOAD	SEE LOAD A

LOAD A

LOAD B

Package Availability 24 lead Cerdip 24 lead Ceramic

Ordering Information

Order Number	Access Time (Max)	Operating Current (Max)	Standby Current (Max)	Package Type
SYMD2128-3	150 ns	100 mA	30 mA	Cerdıp
SYMC2128-3	150 ns	100 mA	30 mA	Ceramıc
SYMD2128-4	200 ns	100 mA	30 mA	Cerdıp
SYMC2128-4	200 ns	100 mA	30 mA	Ceramıc

ADVANCED INFORMATION

Features

- 150 ns Address Access Time
- Fully Statıc Operatıon
- Full TTL Compatıbility
- Interrupt Function ($\overline{\mathrm{INT}}$):

Open Draın for OR-tied Operation

- Easy Mıcroprocessor Interface
- $\overline{B U S Y}$ Function to Handle Contention: Open Draın for OR-tied Operation
- SYM2130 - Transparent Power Down ($\overline{\mathrm{CE}}$)
- SYM2131 - Non-Power Down (टS)
- Output Enable Function ($\overline{\mathrm{OE}})$
- Both Ports Operate Independently

Description

The Synertek SYM2130 and SYM2131 are 8192 Bit Dual Port Statıc Random Access Memories organızed 1024 words by 8 bits They are designed using fully static circuitry and fabricated using Synertek's n-channel double poly silicon gate technology
The SYM2130 and SYM2131 feature two separate I/O ports that each allow independent access for read or write to any location in the memory. The only situation where contention can occur is when both ports are active and both addresses match. Two modes of operation are provided for
this situation. In one mode, contention is ignored and both operations are allowed to proceed. In the other mode, onchip control logic arbitrates delaying one port until the other port's operation is completed. A BUSY flag is sent to the side whose operation is delayed. $\overline{B U S Y}$ is driven out at speeds that allow the port's processor to preserve its address and data.
An interrupt function ($\overline{\mathrm{NT}}$) is also provided to allow communication between systems. This function acts like a writable flag When the flag's location is written from one
(contınued next page)

Pin Configuration

${ }^{*}\left(\overline{C S}_{L}\right) \overline{\mathrm{CE}}_{\mathrm{L}} ¢ 1$	1	48	v_{cc}
R/ \bar{W}_{L} ¢	2	47	$\bigcirc \overline{\mathrm{CE}}_{\mathrm{R}}\left(\overline{\mathrm{CS}}_{\mathrm{R}}\right)^{*}$
$\overline{\text { BUSY }}_{\text {L }}$ [3	46	$\square R \bar{W}_{R}$
$\overline{\text { INT }}$ L $^{\text {d }}$	4	45	$\overline{\operatorname{BUS} \bar{Y}_{R}}$
$\overline{O E}_{1}$ ¢	5	44	$\underline{-\overline{N T}_{R}}$
A_{0} [6	43	$\square \overline{O E}_{R}$
A_{1} [7	42	A_{0}
A_{2}	8	41	A_{1}
$\mathrm{A}_{3} \mathrm{C}$	9	40	A_{2}
$\mathrm{A}_{4} \mathrm{C}$	10	39	P_{3}
A_{5}	11	38	OA_{4}
A_{6}	12	37	J_{5}
A_{7}	13	36	f_{6}
A_{8}	14	35	H_{7}
$\mathrm{Ag}^{\text {d }}$	15	34	$7 \mathrm{~A}_{8}$
$1 / \mathrm{O}_{0}$ d	16	33	A_{9}
$1 / O_{1}$	17	32	$\mathrm{ll}_{1 / 0_{7}}$
$1 / \mathrm{O}_{2}$	18	31	-1/0 ${ }_{6}$
$1 / \mathrm{O}_{3} \mathrm{C}$	19	30	$\mathrm{l} / \mathrm{O}_{5}$
$1 / \mathrm{O}_{4} \mathrm{C}$	20	29	$1 / O_{4}$
$1 / \mathrm{O}_{5}$ 亿	21	28	$\mathrm{Fl}^{1 / O_{3}}$
$1 / \mathrm{O}_{6} \mathrm{C}$	22	27	$1 / \mathrm{O}_{2}$
1/O7	23	26	$\mathrm{fl}_{1 / \mathrm{O}_{1}}$
GND	24	25	$1 / \mathrm{O}_{0}$

Block Diagram

* $\overline{C S}$ APPLIES TO SYM2131, $\overline{\mathrm{CE}}$ APPLIES TO SYM2130
side, the other side's $\overline{\mathrm{NT}}$ pin goes LOW until the flag location is read by that side. Both the $\overline{B U S Y}$ and $\overline{\mathrm{INT}}$ pins are open drain outputs to allow OR-tied operation.
The SYM2130 has an automatic power down feature which is controlled by the Chip Enable inputs Each Chip Enacle controls automatic power-down circuitry that allows it's respective side of the device to remain in a standby power mode.

The SYM2131 chip select (no power down) access has been designed to be faster than it's address access so that the chip select decode tıme will not add to the memory's overall access time This feature significantly improves system performance

Pin Definitions

$\overline{C E}^{\text {L }}{ }^{(10)}$	Left Port Chip Enable When $\overline{\mathrm{CE}}_{\mathrm{L}}$ goes HIGH, the left port of the RAM is deselected and the left port control circuitry will automatically power down and remain in a standby power mode as long as $\overline{\mathrm{CE}}_{\mathrm{L}}$ remaıns HIGH	$\mathrm{R} / \bar{W}_{\text {R }}$
$\overline{\mathrm{CE}}_{\mathrm{R}}{ }^{(10)}$	Right Port Chip Enable. When $\overline{\mathrm{CE}}_{\mathrm{R}}$ goes HIGH, the right port of the RAM is deselected and the right port control circuitry will automatically power down and remain in a standby power mode as long as $\overline{\mathrm{CE}}_{\mathrm{R}}$ remains HIGH.	
$\overline{\mathrm{CS}}_{\mathrm{L}}{ }^{(11)}$	Left Port Chip Select. When $\overline{\mathrm{CS}}_{\mathrm{L}}$ goes HIGH, the left port of the RAM is deselected	
$\overline{\mathrm{CS}}_{\mathrm{R}}{ }^{(11)}$	Right Port Chip Select When $\overline{\mathrm{CS}}_{\mathrm{R}}$ goes HIGH, the right port of the RAM is deselected.	
$A 0_{L}-A 9_{L}$	Left Port Address Inputs The 10-bit field presented at the left port Address Inputs selects one of the 1024 memory locations to be read from or written into via the left port Data Input/Output Lines	
$\mathrm{AO}_{\mathrm{R}}-\mathrm{A} 9_{\mathrm{R}}$	Right Port Address Inputs. The 10-bit field presented at the right port Address Inputs selects one of the 1024 memory locations to be read from or written into via the right port Data Input/Output Lines	$\overline{\operatorname{BUSY}}_{\mathrm{R}}{ }^{(12)}$
$\overline{O E}_{L}$	Output Enable for Left Port When $\overline{\mathrm{OE}}_{\mathrm{L}}$ is HIGH, the left port outputs are disabled, when $\overline{\mathrm{OE}}_{\mathrm{L}}$ is LOW, the left port outputs are enabled. Also controls contention mode for left port	
$\overline{\mathrm{OE}}_{\mathrm{R}}$	Output Enable for Right Port When $\overline{\mathrm{OE}}_{\mathrm{R}}$ is HIGH, the right port outputs are disabled When $\overline{\mathrm{OE}}_{\mathrm{R}}$ is LOW, the right port outputs are enabled Aiso controls contention mode for right port	$\overline{\mathrm{NT}_{L}}{ }^{(12)}$
$1 / 00 L_{L}-1 / 07_{L}$	Left Port Data Input/Output Lines.	
$\begin{aligned} & 1 / 00_{R^{-1 / 07}}^{R} \\ & \mathrm{R} / \bar{W}_{\mathrm{L}} \end{aligned}$	Right Port Data Input/Output Lines Left Port Read/Write Enable When $\overline{\mathrm{OE}}_{\mathrm{L}}$ is LOW and $\mathrm{R} / \bar{W}_{\mathrm{L}}$ is HIGH, data from the RAM location selected by the left address field is present at the left port Data Input/ Output Lines When $\mathrm{R} / \overline{\mathrm{W}}_{\mathrm{L}}$ is LOW, data present on the left port Data Input/	$\overline{\mathrm{NT}}_{\mathrm{R}}{ }^{(12)}$

Output Lines is written into the RAM location selected by the left address field trregardless of the state of $\overline{\mathrm{OE}}_{\mathrm{L}}$. These operations can be affected by contention (See Functional Description on page 9).
Right Port Read/Write Enable When $\overline{\mathrm{OE}}_{\mathrm{R}}$ is LOW and R/W \bar{W}_{R} is HIGH, data from the RAM location selected by the left address field is present at the right port Data Input/Output Lines When $\mathrm{R}^{\prime} / \overline{\mathrm{W}}_{\mathrm{R}}$ is LOW, data present on the right port Data Input/Output Lines is written into the RAM location selected by the right address field irregardless of the state of $\overline{\mathrm{OE}}_{\mathrm{R}}$. These operations can be affected by contention (See Functional Description page 9).
Left Port Busy Flag $\overline{B U S Y}_{L}$ remains HIGH at all times unless both ports initiate an operation to the same address location and the left port is operating in contention mode with the right port receiving priority When this occurs, the right port operation will be completed first and $\overline{\mathrm{BUSY}}_{\mathrm{L}}$ will go LOW until the right port operation is completed
Right Port Busy Flag $\overline{\mathrm{BUSY}}_{\mathrm{R}}$ remaıns HIGH at all tımes unless both ports initiate an operation to the same address location and the right port is operating in contention mode with the left port receiving priority When this occurs, the left port operation will be completed first and $\overline{B U S Y}_{\mathrm{R}}$ will go LOW until the left port operation is completed Both $\overline{B U S Y}_{L}$ and $\overline{B U S Y}_{R}$ are open drain outputs allowing OR-tied operation

Left Port Interrupt Flag If the right port writes to memory location 3FE then $\overline{\mathrm{NT}}_{\mathrm{L}}$ is latched LOW until the left port reads data from memory location 3FE
Right Port Interrupt Flag If the left port writes to memory location 3FF, then $\overline{\mathrm{INT}} \mathrm{R}_{\mathrm{R}}$ is latched LOW until the right port reads data from memory location 3FF Both $\overline{\operatorname{NT}}_{\mathrm{L}}$ and $\overline{\mathrm{NT}}_{\mathrm{R}}$ are open draın allowing OR-tied operation

SYM2147H

Military 4096×1 Static Random Access Memory Extended Temperature Range $\left(-55^{\circ} \mathrm{C}\right.$ to $\left.+125^{\circ} \mathrm{C}\right)$

Features

- 55 ns Maxımum Access
- No Clocks or Strobes Required
- Automatic $\overline{\mathrm{CE}}$ Power Down
- Identical Cycle and Access Times
- Single +5 V Supply ($\pm 10 \%$)
- Totally TTL Compatible All Inputs and Outputs
- Separate Data Input and Output
- High Density 18-Pin Package
- Three-State Output

Description

The Synertek SYM2147H is a 4096-Bit Static Random Access Memory organızed 4096 words by 1 -bit and is fabrıcated usıng Synertek's new N-Channel Silicon-Gate HMOS technology. It is designed using fully static circuitry, therefore requiring no clock or refreshing to operate. Address set-up times are not required and the data is read out nondestructively with the same polarity as the input data. Separate data input and output pins provide maximum design flexibility. The three-state output facilitates memory expansion by allowing the outputs to be OR-tied to other devices.

The SYM2147H offers an automatic power down feature Power down is controlled by the Chip Enable input. When Chip Enable ($\overline{\mathrm{CE}}$) goes high, thus deselectıng the SYM2147H, the device will automatically power down and remain in a standby power mode as long as CE remains high This unique feature provides system level power savings as much as 80%

The SYM2147H is packaged in an 18 -pin DIP for the highest possible density The device is fully TTL compatible and has a single +5 V power supply.

Block Diagram

Absolute Maximum Ratings*

Comment*

Stresses above those listed under "Absolute Maximum Ratıngs" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or at any other condition above those indicated in the operational sections of this specification is not implied.
D.C. Characteristics $T_{A}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%$ (Unless otherwise specified) (Note 8)

Symbol	Parameter	M2147H-3		Unit	Conditions
		Min.	Max.		
$\mathrm{ILI}^{\text {l }}$	Input Load Current (All input pins)		10	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=$ Max, $\mathrm{V}_{\text {IN }}=$ Gnd to $\mathrm{V}_{\text {CC }}$
ILO	Output Leakage Current		50	$\mu \mathrm{A}$	$\begin{aligned} & \overline{C S}=V_{I H}, V_{C C}=M a x \\ & V_{\text {OUT }}=G \text { Gnd to } 45 \mathrm{~V} \\ & \hline \end{aligned}$
${ }^{\text {ICC }}$	Power Supply Current		140	mA	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \quad \mathrm{V}_{\mathrm{CC}}=$ Max, $\overline{\mathrm{CS}}=\mathrm{V}_{\mathrm{IL}}$
			160	mA	$\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \quad$ Outputs Open
$\mathrm{I}_{\text {SB }}$	Standby Current		30	mA	$\mathrm{V}_{\mathrm{CC}}=$ Min to Max, $\overline{C S}=\mathrm{V}_{\text {IH }}$
$\mathrm{l}_{\text {PO }}$	Peak Power-on Current (Note 9)		50	mA	$\begin{array}{\|l\|} \hline \mathrm{V}_{\mathrm{CC}}=G n d \text { to } \mathrm{V}_{\mathrm{CC}} \mathrm{M}_{1 n} \\ \mathrm{CS}=\text { Lower of } \mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{V}_{\mathrm{IH}} \mathrm{M} \text { In } \\ \hline \end{array}$
$\mathrm{V}_{\text {IL }}$	Input Low Voltage	-30	0.8	V	
$\mathrm{V}_{\text {IH }}$	Input High Voltage	20	60	V	
$\mathrm{V}_{\text {OL }}$	Output Low Voltage		04	V	$\mathrm{I}_{\mathrm{OL}}=8 \mathrm{~mA}$
V_{OH}	Output High Voltage	24		V	$\mathrm{I}_{\mathrm{OH}}=-40 \mathrm{~mA}$

Capacitance $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz} \quad$ NOTE This parameter is periodically sampled and not 100% tested.

Symbol	Test	Typ.	Max.	Unit
COUT	Output Capacıtance		6	pF
CIN	Input Capacıtance		5	pF

A.C. Test Conditions $T_{A}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%$ (Unless otherwise specified) (Note 8) READ CYCLE

Symbol	Parameter	M2147H-2		M2147H		Unit	Conditions
		Min.	Max.	Min.	Max.		
t_{RC}	Read Cycle Tıme	55		70		ns	
t_{AA}	Address Access Time		55		70	ns	
$\mathrm{t}_{\text {ACE1 }}$	Chip Enable Access Time		55		70	ns	Note 1
${ }^{\text {t }}$ ACE2	Chip Enable Access Time		65		80	ns	Note 2
t_{OH}	Output Hold from Address Change	5		5		ns	
thz	Chip Enabled to Output in Low Z	10		10		ns	Note 7
$t_{\text {t }}$	Chip Disabled to Output in High Z	0	40	0	40	ns	Note 7
t_{PU}	Chip Enabled to Power Up Tıme	0		0		ns	
tPD	Chip Disabled to Power Down Tıme		30		30	ns	

WRITE CYCLE

twc	Write Cycle Time	55		70		ns	
${ }^{\text {t }}$ CW	Chip Enabled to End of Write	45		55		ns	
${ }^{\text {t }}$ AW	Address Valid to End of Write	45		55		ns	
${ }^{\text {t }}$ AS	Address Setup Time	0		0		ns	
$t_{\text {WP }}$	Write Pulse Width	35		40		ns	
${ }^{\text {twR }}$	Write Recovery Time	10		15		ns	
$t_{\text {DW }}$	Data Valid to End of Write	25		30		ns	
${ }_{\text {t }}{ }_{\text {dH }}$	Data Hold Tıme	10		10		ns	
${ }_{\text {t }}$ Wz	Write Enabled to Output in High Z	0	30	0	35	ns	Note 7
tow	Output Active from End of Write	0		0		ns	Note 7

SYM2147H

Timing Diagrams

READ CYCLE NO. 1 (NOTES 3 AND 4)

READ CYCLE NO. 2 (NOTES 3 AND 5)

WRITE CYCLE NO. 1 ($\overline{W E}$ CONTROLLED) (NOTE 6)

NOTES

1 Chip disabled for greater than 55 ns prior to selection
2 Chıp disabled for a finıte tıme that is less than 55 ns prior to selection (If the deselect tıme is Ons, the chip is by defınition selected and access occurs according to Read Cycle No 1)
$3 \overline{W E}$ is high for Read Cycles
4 Device is continuously selected, $\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}}$
5 Addresses valid prior to or coincident with $\overline{C E}$ transition low
6 If $\overline{C E}$ goes high simultaneously with $\overline{W E}$ high, the outputs remain in the high impedance state
7 Transition is measured $\pm 500 \mathrm{mV}$ from low or high impedance voltage with load B This parameter is sampled and not 100% tested
8 The operatıng ambient temperature range is guaranteed with transverse aır flow exceeding 400 linear feet per minute
9 A pullup resistor to V_{CC} on the $\overline{\mathrm{CE}}$ input is required to keep the device deselected otherwise, power-on current approaches I_{CC} active
10 A mınımum of 05 ms tıme delay is required after applicatıon of $\mathrm{VCC}(+5 \mathrm{~V})$ before proper device operation is achieved

WRITE CYCLE NO. 2 ($\overline{\mathrm{CS}}$ CONTROLLED) (NOTE 6)

A.C. Testing Input, Output Waveform

A.C. Testing Load Circuit

Package Availability
18 Pin Cerdip
18 Pin Ceramic
18 Pin Leadless Chip Carrier

Ordering Information

Order Number	Access Time (Max.)	Operating Current (Max.)	Standby Current (Max.)	Package Type
SYMC2147H-3	55 ns	160 mA	30 mA	Ceramıc
SYMD2147H-3	55 ns	160 mA	30 mA	Cerdıp
SYMF2147H-3	55 ns	160 mA	30 mA	Flatpak
SYMC2147H	70 ns	160 mA	30 mA	Ceramıc
SYMD2147H	70 ns	160 mA	30 mA	Cerdıp
SYMF2147H	70 ns	160 mA	30 mA	Flatpak

Features

- 55ns Maximum Access
- No Clocks or Strobes Required
- Automatic $\overline{\mathrm{CE}}$ Power Down
- Identical Cycle and Access Times
- Single +5 V Supply ($\pm 10 \%$)
- Industry Standard 2114 Pınout
- Totally TTL Compatible All Inputs and Outputs
- Common Data Input and Output
- Hıgh Density 18-Pın Package
- Three-State Output

Description

The Synertek SYM2148H is a 4096-Bit Static Random Access Memory organızed 1024 words by 4 bits and is fabricated using Synertek's new N-Channel Silicon-Gate HMOS technology it is designed using fully static circuitry, therefore requirıng no clock or refreshing to operate Address set-up times are not required and the data is read out non-destructively with the same polarity as the input data Common data input and output pins provide maxımum design flexiblity The three-state output facilitates memory expansion by allowing the outputs to be OR-tied to other devices

The SYM2148H offers an automatic power down feature Power down is controlled by the Chip Enable input When Chip Enable ($\overline{\mathrm{CE}}$) goes high, thus deselectıng the SY2148H, the device will automatically power down and remain in a standby power mode as long as $\overline{C E}$ remains high This unique feature provides system level power savings as much as 85%

The SYM 2148 H is packaged in an 18 -pin DIP for the highest possible density The device is fully TTL compatible and has a single +5 V power supply.

Pin Configuration

Block Diagram

Comment*

Stresses above those listed under "Absolute Maxımum Ratings" may cause permanent damage to the device. This is a stress ratıng only and functional operation of the device at these or at any other condition above those indicated in the operational sections of this specification is not implied.
D.C. Characterisitcs $\quad T_{A}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%$ (Unless otherwise specified) (note 8)

Symbol	Parameter	Min.	Max.	Unit	Condition	, .	
ILI	Input Load Current (All input pins)		10	$\mu \mathrm{A}$	$V_{C C}=M a x, V_{\text {IN }}=$ Gnd to $V_{C C}$		
\|LO		Output Leakage Current		50	$\mu \mathrm{A}$	$\begin{aligned} & \overline{\mathrm{CS}}=\mathrm{V}_{\mathrm{IH}}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Max} \\ & \mathrm{~V}_{\text {OUT }}=G \text { Gnd to } 4.5 \mathrm{~V} \end{aligned}$	
ICC	Power Supply Current		130	mA	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max} ; \overline{\mathrm{CS}}=\mathrm{V}_{\mathrm{IL}}$ Outputs Open	
			150	mA	- $\mathrm{A}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$		
$\mathrm{I}_{\text {SB }}$	Standby Current		30	mA	$\mathrm{V}_{\mathrm{CC}}=$ Min to Max, $\overline{\mathrm{CS}}=\mathrm{V}_{1 H}$		
IPO	Peak Power-on Current (Note 9)		50	mA	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\text { Gnd to } \mathrm{V}_{\mathrm{CC}} \mathrm{Min} \\ & \overline{\mathrm{CS}}=\text { Lower of } \mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{V}_{\mathrm{IH} . \text { Min }} \end{aligned}$		
$V_{\text {IL }}$	Input Low Voltage	-3.0	0.8	V			
$\mathrm{V}_{\text {IH }}$	Input High Voltage	2.1	6.0	V			
V_{OL}	Output Low Voltage		0.4	V	$\mathrm{IOL}^{\prime}=8 \mathrm{~mA}$		
VOH	Output High Voltage	2.4		V	$\mathrm{I}_{\mathrm{OH}}=-4 \mathrm{~m}$		

Capacitance $\quad T_{A}=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz} \quad$ NOTE This parameter is periodically sampled and not 100% tested.

Symbol	Test	Typ.	Max.	Unit
C OUT $^{\text {OUP }}$	Output Capacıtance		7	pF
$\mathrm{C}_{\text {IN }}$	Input Capacıtance		5	\cdots

A.C. Characteristics $\quad T_{A}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%$ (Unless otherwise specified)' (nöte 8) READ CYCLE

Symbol	Parameter	M2148H-3		M2148H		Conditions
		Min.	Max.	Min.	Max.	
$\mathrm{t}_{\text {RC }}$	Read Cycle Time	55		70		
$\mathrm{t}_{\mathrm{A} A}$	Address Access Time		55		70	
${ }^{\text {t }}$ ACE1	Chip Enable Access Time		55		70	Note 1
$\mathrm{t}_{\text {ACE }}$	Chip Enable Access Time		65		80	Note 2 ,
${ }^{\text {toh }}$	Output Hold from Address Change	5		5		
thz	Chip Enabled to Output in Low Z	10		10		Note 7
${ }_{t} \mathrm{~Hz}$	Chip Disable to Output in High Z	0	20	0	20	Note 7
tPu	Chip Enabled to Power Up Tıme	\bigcirc		0		
${ }^{\text {tPD }}$	Chip Disable to Power Down Time		30		30	.

WRITECYCLE

twc	Write Cycle Time	55		70		:
${ }^{\text {t }}$ CW	Chip Enabled to End of Write	50		65		..
${ }^{\text {taw }}$	Address Valid to End of Write	50		65		
$\mathrm{t}_{\text {AS }}$	Address Setup Time	0		0		.
twp	Write Pulse Width	40		50		
twr	Write Recovery Time	5		5		, \quad.
${ }_{\text {t }}$ W	Data Valid to End of Write	20		25		
$\mathrm{t}_{\text {DH }}$	Data Hold Time	0		0		
twz	Write Enabled to Output in High Z	0	20	0	25	Note 7
tow	Output Active from End of Write	0		0		Note 7

[^10]
Timing Diagrams

READ CYCLE NO. 1 (NOTES 3 AND 4)

READ CYCLE NO. 2 (NOTES 3 AND 5)

WRITE CYCLE NO. 1 ($\overline{W E}$ CONTROLLED) (NOTE 6)

NOTES 1 Chip disabled for greater than 55 ns prior to selection
2 Chip disabled for a finite time that is less than 55 ns prior to selection (If the deselect time is Ons, the chip is by definition selected and access occurs according to Read Cycle No 1)
$3 \overline{W E}$ is high for Read Cycles
4 Device is contınuously selected, $\overline{C E}=V_{I L}$
5 Addresses valid prior to or coincident with $\overline{C E}$ transition low
6 If $\overline{\mathrm{CE}}$ goes high sımultaneously with $\overline{W E}$ high, the outputs remain in the high impedance state
7 Transition is measured $\pm 500 \mathrm{mV}$ from low or high impedance voltage with load B This parameter is sampled and not 100% tested
8 The operating ambient temperature range is guaranteed with transverse air flow exceeding 400 linear feet per minute
9 A pullup resistor to $V_{C C}$ on the $\overline{C E}$ input is required to keep the device deselected. otherwise, power-on current approaches ICC active
10 A minımum of 05 ms time delay is required after application of $\mathrm{VCC}(+5 \mathrm{~V})$ before proper device operation is achieved

WRITE CYCLE NO. 2 ($\overline{\text { CE }}$ CONTROLLED) (NOTE 6)

A.C. Testing Input, Output Waveform

Package Availability

18 Pin Cerdip 18 Pin Ceramic
A.C. Testing Load Circuit

Ordering Information

Order Number	Access Time (Max.)	Operating Current (Max.)	Standby Current (Max.)	Package Type
SYMC2148H-3	55 ns	150 mA	30 mA	Ceramıc
SYMD2148H-3	55 ns	150 mA	30 mA	Cerdıp
SYMC2148H	70 ns	150 mA	30 mA	Ceramıc
SYMD2148H	70 ns	150 mA	30 mA	Cerdıp

> Military 1024×4 Static Random Access Memory Extended Temperature Range $\left(-55^{\circ} \mathrm{C}\right.$ to $\left.+125^{\circ} \mathrm{C}\right)$

Features

- 55 ns Maximum Address Access
- Fully Static Operation:

No Clocks or Strobes Required

- Fast Chip Select Access Time: 25 ns Max.
- Identical Cycle and Access Tımes
- Single +5 V Supply ($\pm 10 \%$)
- Industry Standard 2114 Pinout
- Totally TTL Compatible:

All Inputs and Outputs

- Common Data Input and Outputs
- High Densıty 18-Pin Package
- Three-State Output

Description

The Synertek SYM2149H is a 4096-Bit Static Random Access Memory organızed 1024 words by 4 -bits and is fabricated using Synertek's new N-Channel Silicon-Gate HMOS technology. It is designed using fully static circuitry, therefore requiring no clock or refreshing to operate Address set-up times are not required and the data is read out non-destructively with the same polarity as the input data Common data ınput and output pıns provide maxımum design flexibility The three-state output facilitates memory expansion by allowing the outputs to be OR-tied to other devices

The SYM2149H offers a chip select access that is faster than address access. In a typical application, the address access begins as soon as the address is valid. At this tıme, the high order addresses are decoded and the desired memory is then selected. With the faster chip select access, the decode tıme will not add to the overall access tıme thus significantly improving system performance
The SYM 2149 H is packaged in an 18-pin DIP for the highest possible density. The device is fully TTL compatible and has a single +5 V power supply.

Pin Configuration

Block Diagram

Absolute Maximum Ratings*	
Temperature Under Blas	$-65^{\circ} \mathrm{C}$ to $+135^{\circ} \mathrm{C}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Voltage on Any Pin with	
Respect to Ground (under blas)	-3.5 V to +7 V
Power Dissipation	1.0

Absolute Maximum Ratings*

Temperature Under Bias $-65^{\circ} \mathrm{C}$ to $+135^{\circ} \mathrm{C}$
Storage Temperature................
Voltage on Any Pin with
Respect to Ground (under bias) -3.5 V to +7 V
Power Dissipation 1.0 W

Comment*

Stresses above those listed under "Absolute Maxımum Ratıngs" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or at any other condition above those indicated in the operational sections of this specification is not implied.
D.C. Characterisitcs $T_{A}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%$ (Unless otherwise specified) (Note 6)

Symbol	Parameter	Min.	Max.	Unit	Conditions
I_{LI}	Input Load Current (all input pins).		10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {CC }}=\mathrm{Max}, \mathrm{V}_{\text {IN }}=\mathrm{Gnd}$ to V_{CC}
ILO	Output Leakage Current		50	$\mu \mathrm{A}$	$\begin{aligned} & \overline{\mathrm{CS}}=\mathrm{V}_{1 \mathrm{H}}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Max} \\ & \mathrm{~V}_{\mathrm{OUT}}=\mathrm{G} \text { nd to } 4.5 \mathrm{~V} \end{aligned}$
ICC	Power Supply Current		130	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \overline{\mathrm{CS}}=\mathrm{V}_{\mathrm{IL}}$ Outputs Open
			150	mA	
$V_{\text {IL }}$	Input Low Voltage	-3.0	0.8	V	
$\mathrm{V}_{\text {IH }}$	Input High Voltage	2.0	6.0	V	
V_{OL}	Output Low Voltage		0.4	V	$1 \mathrm{OL}=8 \mathrm{~mA}$
V_{OH}	Output High Voltage	2.4		V	$1 \mathrm{OH}=-4.0 \mathrm{~mA}$
IOS	Output Short Circuit Current		± 200	mA	$\mathrm{V}_{\text {OUT }}=$ GND to $\mathrm{V}_{\text {CC }}$ ((lote 8)

Capacitance $T_{A}=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}$

Symbol	Test	Typ.	Max.	Unit
COUT	Output Capacitance		7	pF
CIN $_{\text {IN }}$	Input Capacitance		5	pF

NOTE: This parameter is periodically sampled and not 100% tested.

A.C. Characteristics $T_{A}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%$ (Unless otherwise specified) (Note 6) READ CYCLE

Symbol	Parameter	M2149H-3		M2149		Unit	Conditions
		Min.	Max.	Min.	Max.		
t_{RC}	Read Cycle Time	55		70		ns	
${ }^{\text {t }}$ A	Address Access Time		55		70	ns	
${ }^{\text {taCS }}$	Chip Select Access Time		25		30	ns	
${ }_{\text {toh }}$	Output Hold from Address Change	5		5		ns	
tiz	Chip Selection to Output in Low Z	5		5		ns	Note 5
${ }_{\text {thz }}$	Chip Deselection to Output in High Z	0	15	0	15	ns	Note 5

WRITE CYCLE

twC	Write Cycle Time	55		70		ns	
${ }^{\text {t }}$ W W	Chip Selectıon to End of Write	50		65		ns	
${ }_{\text {t }}$ AW	Address Valıd to End of Write	50		65		ns	
${ }_{\text {t }}^{\text {AS }}$	Address Setup Tıme	0		0		ns	
$t_{W P}$	Write Pulse Width	40		50		ns	
tWR	Write Recovery Tıme	5		5		ns	
tow	Data Valid to End of Write	20		25		ns	
${ }^{\text {D }}$ D	Data Hold Time	0		0		ns	
${ }^{\text {t WZ }}$	Write Enabled to Output in Hıgh Z	0	20	0	25	ns	Note 5
tow	Output Active from End of Write	0		0		ns	Note 5

(See following page for notes)

Timing Diagrams

READ CYCLE NO. 1 (NOTES 1 AND 2)

READ CYCLE NO. 2 (NOTES 1 AND 3)

WRITE CYCLE NO. 1 (WE CONTROLLED) (NOTE 4)

NOTES: 1. $\bar{W} E$ is high for Read Cycles.
2. Device is continuously selected, $\overline{\mathrm{CS}}=\mathrm{V}_{\mathrm{IL}}$.
3. Addresses valid.
4. If $\overline{\mathrm{CS}}$ goes high simultaneously with $\overline{W E}$ high, the outputs remain in the high impedance state.
5. Transition is measured $\pm 500 \mathrm{mV}$ from low or high impedance voltage with load B. This parameter is sampled and not 100% tested.
6. The operating ambient temperature range is guaranteed with transverse air flow exceeding 400 linear feet per minute.
7. A minimum of 0.5 ms time delay is required after application of $\mathrm{V}_{\mathbf{C C}}(+5 \mathrm{~V})$ before proper device operation is achieved.
8. Duration not to exceed one minute.

WRITE CYCLE NO. 2 ($\overline{\mathrm{CS}}$ CONTROLLED) (NOTE 4)

A.C. Testing Input, Output Waveform

A.C. Testing Load Circuit

Package Availability 18 Pin Cerdip 18 Pin Ceramic

Ordering Information

Order Number	Access Time (Max)	Supply Current (Max)	Package Type
SYMC2149H-3	55 nsec	150 mA	Ceramıc
SYMD2149H-3	55 nsec	150 mA	Cerdıp
SYMC2149H	70 nsec	150 mA	Ceramic
SYMD2149H	70 nsec	150 mA	Cerdıp

SYM2167

Military 16,384 x 1 Static Random Access Memory Extended Temperature Range

PRELIMINARY INFORMATION

Features

- 55 ns Maxımum Access
- No Clocks or Strobes Required
- Automatic CE Power Down
- Identical Cycle and Access Tımes
- Sıngle $+5 V$ Supply
- Avaılable in Ceramıc (C), Cerdıp (D), Flatpack (F), and Leadless Chıp Carrier (K)
- Totally TTL Compatıble All Inputs and Outputs
- Separate Data Input and Output
- High Densıty 20 Pın Package
- Three-State Output

Description

The Synertek SYM2167 is a 16,384 -bit Static Random Access Memory organized 16,384 words by 1 -bit and is fabricated using Synertek's new N-channel Double Polysilicon Gate HMOS technology. It is designed using fully static circuitry, therefore requiring no clock or refreshing to operate. Address set-up times are not required and the data is read out nondestructively with the same polarity as the input data. Separate data ınput and output pıns provide maxımum desıgn flexibility. The three-state output facilitates memory expansion by allowing the outputs to be OR-tied to other devices

The SYM2167 offers an automatic power down feature. Power down is controlled by the Chip Enable input. When Chip Enable ($\overline{\mathrm{CE}}$) goes high, thus deselecting the SYM2167, the device will automatically power down and remain in a standby power mode as long as $\overline{\mathrm{CE}}$ remains high. This unique feature provides system level power savings as much as 80%.

The SYM2167 is available in 20-pin DIP and 20-lead Leadless Chip Carrier packages for the highest possible density. The device is fully TTL compatible and has a single +5 V power supply.

Pin Configuration

Block Diagram

Absolute Maximum Ratings*

Temperature Under Bias	$-65^{\circ} \mathrm{C}$ to $+135^{\circ} \mathrm{C}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Voltage on Any Pin with	
Respect to Ground	-3.5 V to +7 V
Power Dissipation	1.0W

Comment*

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

D.C. Characteristics $\quad T_{A}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%$ (Unless otherwise specified) (Note 6)

A.C. Characteristics $\quad \mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$, to $+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%$ (Unless otherwise specified) (Notes 6,9)

Symbol	Parameter	2167-70		2167-55		Unit	Conditions
		Min.	Max.	Min.	Max.		
READ CYCLE							
t_{RC}	Read Cycle Time	65		55		ns	
$t_{A A}$	Address Access Tıme		65		50	ns	
$\mathrm{t}_{\text {ACE }}$	Chip Enable Access Time		70		55	ns	
t_{OH}	Output Hold from Address Change	5		5		ns	
t_{L}	Chip Selection to Output in Low Z	5		5		ns	
t_{Hz}	Chip Deselection to Output in High Z	0	40	0	30	ns	
tpu	Chip Selectıon to Power Up Tıme	0		0		ns	
t_{PD}	Chip Deselectıon to Power Down Time	0	70		55	ns	
WRITE CYCLE							
$t_{\text {wc }}$	Write Cycle Tıme	65		55		ns	
t_{CW}	Chip Selection to End of Write	60		50		ns	
$t_{\text {AW }}$	Address Valid to End of Write	55		50		ns	
$\mathrm{t}_{\text {AS }}$	Address Setup Tıme	8		0		ns	
$t_{\text {WP }}$	Write Pulse Width	30		25		ns	
$t_{\text {WR }}$	Write Recovery Tıme	10		0		ns	
t_{DW}	Data Valıd to End of Write	23		20		ns	
t_{DH}	Data Hold Tıme	8		0		ns	
$t_{W Z}$	Write Enabled to Output in High Z	0	28	0	25	ns	
tow	Output Active from End of Write	0	40	0	30	ns	

Timing Diagrams

READ CYCLE NO. 1 (Notes 1 and 2)

READ CYCLE NO. 2 (Notes 1 and 3)

WRITE CYCLE NO. 1 ($\overline{\text { WE }}$ Controlled) (Note 4)

Notes:

1. $\overline{W E}$ is high for Read Cycles.
2. Device is continuously selected, $\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}}$.
3. Addresses valid prior to or coincident with $\overline{\mathrm{CE}}$ transition low.
4. If $\overline{\mathrm{CE}}$ goes high simultaneously with $\overline{\mathrm{WE}}$ high, the outputs remain in the high impedance state.
5. Transition is measured $\pm 500 \mathrm{mV}$ from low or high impedance voltage with load B . This parameter is sampled and not 100% tested.
6. The operating ambient temperature range is guaranteed with transverse air flow excedding 400 linear feet per minute.
7. A pullup resistor to V_{CC} on the $\overline{\mathrm{CE}}$ input is required to keep the device deselected; otherwise, power-on current approaches I_{CC} active.
8. Duration not to exceed one second.
9. A minimum 0.5 ms time delay is required after application of $\mathrm{V}_{\mathrm{CC}}(+5 \mathrm{~V})$ before proper device operation is achieved.

WRITE CYCLE NO. 2 ($\overline{C E}$ Controlled) (Note 4)

A.C. Testing Input, Output Waveform

A.C. Testing Load Circuit

Package Availability 20 Lead Cerdip 20 Lead Ceramic 20 Lead Flatpack 20 Lead LCC

Ordering Information

Order Number	Access Time (Max)	Operating Current (Max)	Standby Current (Max)	Package Type
SYMC2167-70	70 ns	150 mA	30 mA	Ceramıc
SYMD2167-70	70 ns	150 mA	30 mA	Cerdıp
SYMK2167-70	70 ns	150 mA	30 mA	LCC
SYMF2167-70	70 ns	150 mA	30 mA	Flatpack
SYMC2167-55	55 ns	150 mA	30 mA	Ceramıc
SYMD2167-55	55 ns	150 mA	30 mA	Cerdip
SYMK2167-55	55 ns	150 mA	30 mA	LCC
SYMF2167-55	55 ns	150 mA	30 mA	Flatpack

Features

- 55 ns Maxımum Access Time
- No Clocks or Strobes Required
- Automatıc $\overline{\mathrm{CE}}$ Power Down
- Identical Cycle and Access Times
- Single +5 V Supply ($\pm 10 \%$)
- Avaılable in Ceramıc (C), Cerdıp (D), Flatpack (F), and Leadless Chıp Carrier (K)
- JEDEC Standard Pinout
- TTL Compatıble: Inputs and Outputs
- Common Data Input and Output
- Hıgh Density 20-Pın Package
- Three-State Output

Description

The Synertek SYM2168 is a 16,384 -bit Static Random Access Memory organized 4096 words by 4 bits and is fabricated using Synertek's scaled N -channel double poly silicon gate technology. It is designed using fully static circuitry, therefore requiring no clock or refreshing to operate. Address set-up times are not required and the data is read out non-destructively with the same polarity as the input data. Common data input and output pins provide maxımum design flexibility. The three-state output facılitates memory expansion by allowing the outputs to be OR-tied to other devices.

The SYM2168 offers an automatic power down feature. Power down is controlled by the Chip Enable input. When Chip Enable (CE) goes high, thus deselectıng the SYM2168, the device will automatically power down and remain in a standby power mode as long as CE remains high. This unique feature provides system level power savings as much as 85%.
The SYM2168 is available in 20-pin DIP and 20 -lead Leadless Chip Carrier packages for the highest possible density. The device is fully TTL compatible and has a single +5 V power supply.

Pin Configuration

Block Diagram

Comment*

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
D.C. Characteristics $\quad T_{A}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}, \mathrm{V}_{C C}=5 \mathrm{~V} \pm 10 \%$ (unless otherwise specified) (Note 6)

Symbol	Parameter	Min.	Max.	Units	Conditions
$I_{\text {LI }}$	Input Load Current (All input pins)		10	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=$ Max., $\mathrm{V}_{\text {IN }}=$ Gnd to $\mathrm{V}_{\text {CC }}$
$\left\|\mathrm{L}_{\mathrm{L}}\right\|$	Output Leakage Current		50	$\mu \mathrm{A}$	$\begin{aligned} & \overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IH}}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Max} . \\ & \mathrm{V}_{\mathrm{OUT}}=\mathrm{Gnd} \text { to } 4.5 \mathrm{~V} \end{aligned}$
Icc	Power Supply Current		110	mA	$\mathrm{V}_{\mathrm{CC}}=\text { Max., } \overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}}$ Outputs Open
			150	mA	
$\mathrm{I}_{\text {SB }}$	Standby Current		30	mA	$\mathrm{V}_{\mathrm{CC}}=$ Min. to Max., $\overline{\mathrm{CE}}=\mathrm{V}_{1 \mathrm{H}}$
$\mathrm{IPO}_{\text {P }}$	Peak Power-on Curent (Note 7)		60	mA	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\text { Gnd to } \mathrm{V}_{\mathrm{CC}} \operatorname{Min} . \\ & \mathrm{CE}=\text { Lower of } \mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{V}_{\mathrm{IH}} \text { Min. } \end{aligned}$
$\mathrm{V}_{\text {IL }}$	Input Low Voltage	-3.0	0.8	V	
V_{IH}	Input High Voltage	2.0	6.0	V	
V_{OL}	Output Low Voltage		0.4	V	$\mathrm{l}_{\mathrm{OL}}=8 \mathrm{~mA}$
V_{OH}	Output High Voltage	2.4		V	$\mathrm{I}_{\mathrm{OH}}=-4 \mathrm{~mA}$
Ios	Output Short Circuit Current	-200	+200	mA	$\mathrm{V}_{\text {OUT }}=$ GND to $\mathrm{V}_{\text {CC }}$ (Note 9)

Capacitance
$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}$

Symbol	Test	Typ.	Max.	Units
$\mathrm{C}_{\mathrm{OUT}}$	Output Capacitance		7	pF
C_{IN}	Input Capacitance		5	pF

Note: This parameter is periodically sampled and not 100% tested.
A.C. Characteristics $\quad \mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$, to $+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%$ (Unless otherwise specified) (Notes 6,8)

Symbol	Parameter	2168-70		2168-55		Unit	Conditions
		Min.	Max.	Min.	Max.		
READ CYCLE							
$\mathrm{t}_{\text {RC }}$	Read Cycle Time	70		55		ns	
t_{AA}	Address Access Tıme		70		55	ns	
$\mathrm{t}_{\text {ACE }}$	Chıp Enable Access Tıme		70		55	ns	
t_{OH}	Output Hold from Address Change	3		3	0	ns	
tiz	Chip Selection to Output in Low Z	20		20		ns	
t_{Hz}	Chip Deselection to Output in Hıgh Z	0	30	0	25	ns	
t_{PU}	Chıp Selectıon to Power Up Tıme	0		0		ns	
t_{PD}	Chıp Deselectıon to Power Down Tıme	0	70		55	ns	

WRITE CYCLE

t_{WC}	Write Cycle Tıme	70		55		ns	
t_{CW}	Chıp Enabled to End of Wrıte	65		45		ns	
t_{AW}	Address Valıd to End of Wrıte	65		45		ns	
t_{AS}	Address Setup Tıme	0		0		ns	
t_{WP}	Write Pulse Wıdth	65		45		ns	
t_{WR}	Write Recovery Tıme	5		3		ns	
t_{DW}	Data Valıd to End of Write	30		20		ns	
t_{DH}	Data Hold Tıme	5		0		ns	
t_{WZ}	Write Enabled to Output \ln Hıgh Z	0	30	0	25	ns	
t_{OW}	Output Active from End of Write	0		0		ns	

SYM2168

Timing Diagrams

READ CYCLE NO. 1 (Notes 1 and 2)

READ CYCLE NO. 2 (Notes 1 and 3)

WRITE CYCLE NO. 1 (WE Controlled) (Note 4)

NOTES

1. $\overline{W E}$ is high for Read Cycles
2. Device is contınuously selected, $\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}}$
3. Addresses valid prior to or coincident with $\overline{C E}$ transition low

4 If $\overline{C E}$ goes high simultaneously with $\overline{W E}$ high, the outputs remain in the high impedance state.
5. Transition is measured $\pm 500 \mathrm{mV}$ from low or high impedance voltage with load B. This parameter is sampled and not 100% tested
6. The operating ambient temperature range is guaranteed with transverse air flow exceeding 400 linear feet per minute.
7. A pullup resistor to V_{CC} on the $\overline{C E}$ input is required to keep the device deselected: otherwise, power-on current approaches I_{CC} active.
8. A mınımum 0.5 ms tıme delay is required after application of $\mathrm{V}_{\mathrm{CC}}(+5 \mathrm{~V})$ before proper device operation is achieved.

WRITE CYCLE NO. 2 ($\overline{\mathrm{CS}}$ Controlled) (Note 4)

A.C. Testing Input, Output Waveform

A.C. Testing Load Circuit

Package Availability 20 Pin Ceramic 20 Pin Flatpack 20 Pin Cerdip 20 Lead LCC

Ordering Information

Order Number	Access Time (Max)	Operating Current (Max)	Standby Current (Max)	Package Type
SYMC2168-70	70 ns	150 mA	30 mA	Ceramıc
SYMD2168-70	70 ns	150 mA	30 mA	Cerdıp
SYMF2168-70	70 ns	150 mA	30 mA	Flatpack
SYMK2168-70	70 ns	150 mA	30 mA	LCC
SYMC2168-55	55 ns	150 mA	30 mA	Ceramic
SYMD2168-55	55 ns	150 mA	30 mA	Cerdıp
SYMF2168-55	55 ns	150 mA	30 mA	Flatpack
SYMK2168-55	55 ns	150 mA	30 mA	LCC

Extended Temperature Range

- Available in Ceramıc (C), Cerdip (D), Flatpack (F), and Leadless Chip Carrier (K)
- JEDEC Standard Pinout
- TTL Compatible Inputs and Outputs
- Common Data Input and Outputs
- High Density 20-Pın Package
- Three-State Output

Description

The Synertek SYM2169 is a 16,384 -bit Static Random Access Memory organized 4096 words by 4 bits and is fabricated using Synertek's N -channel double poly silicon gate HMOS technology. It is designed using fully static circuitry, therefore requiring no clock or refreshing to operate. Address set-up times are not required and the data is read out non-destructively with the same polarity as the input data. Common data input and output pıns provide maximum design flexibility. The three-state output facilitates memory expansion by allowing the outputs to be OR-tied to other devices

The SYM2169 offers a chıp select access that is faster than its address access. In a typical application, the address access begins as soon as the address is valid At this time, the high order addresses are decoded and the desired memory is then selected. With the faster chip select access, this decode time will not add to the overall access time thus significantly improving system performance
The SYM2169 is available in 20-pin DIP and 20-lead Leadless Chip Carrier packages for the highest possible density. The device is fully TTL compatible and has a single +5 V power supply.

Pin Configuration

20 PAD LCC
A4 A_{3}
$A_{5} \mathrm{Vcc}$

Block Diagram

Absolute Maximum Ratings*

Temperature Under Bias	$-65^{\circ} \mathrm{C}$ to $+135^{\circ} \mathrm{C}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Voltage on Any Pin with	
Respect to Ground	-3.5 V to +7 V
Power Dissipation	1.0W

Comment*

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
D.C. Characteristics $\quad T_{A}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%$ (Unless otherwise specified) (Note 6)

Symbol	Parameter	Min.	Max.	Units	Conditions		
I_{LI}	Input Load Current (All input pins)		10	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=$ Max., $\mathrm{V}_{\mathrm{IN}}=$ Gnd to V_{CC}		
ILO	Output Leakage Current		50	$\mu \mathrm{A}$	$\begin{aligned} & \overline{\mathrm{CS}}=\mathrm{V}_{\mathrm{IH}}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Max} . \\ & \mathrm{V}_{\mathrm{OUT}}=\mathrm{Gnd} \text { to } 4.5 \mathrm{~V} \end{aligned}$		
I_{CC}	Power Supply Current		110	mA	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		
			150	mA	$\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ Outputs Open		
$\mathrm{V}_{\text {IL }}$	Input Low Voltage	-3.0	0.8	V			
V_{IH}	Input High Voltage	2.0	6.0	V			
V_{OL}	Output Low Voltage		0.4	V	$\mathrm{l}_{\mathrm{OL}}=8 \mathrm{~mA}$		
V_{OH}	Output High Voltage	2.4		V	$\mathrm{I}_{\mathrm{OH}}=-4 \mathrm{~mA}$		
l_{OS}	Output Short Circuit Current	-200	+200	mA	$\mathrm{V}_{\text {OUT }}=$ Gnd to $\mathrm{V}_{\text {CC }}$ (Note 7)		
Capacitance $\quad \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}$							
Symbol	Test			Typ.	Max.	Units	
$\mathrm{C}_{\text {OUT }}$	Output Capacitance				7	pF	
$\mathrm{C}_{\text {IN }}$	Input Capacitance				5	pF	

Note: This parameter is periodically sampled and not 100% tested.
A.C. Characteristics $\quad T_{A}=-55^{\circ} \mathrm{C}$, to $+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%$ (Unless otherwise specified) (Notes 6,8)

Symbol	Parameter	2169-70		2169-55		Units	Condition
		Min.	Max.	Min.	Max.		
READ CYCLE							
t_{RC}	Read Cycle Time	70		55		ns	
$t_{\text {AA }}$	Address Access Time		65		50	ns	
$t_{\text {ACE }}$	Chip Select Access Tıme		70		55	ns	
${ }^{\text {toH }}$	Output Hold from Address Change	5		3		ns	
t_{L}	Chip Selection to Output in Low Z	20		20		ns	
t_{Hz}	Chip Deselection to Output in Hıgh Z	0	30	0	25	ns	
WRITE CYCLE							
twc	Write Cycle Time	70		55		ns	
${ }^{\text {t }}$ CW	Chip Selection to End of Write	60		45		ns	
$\mathrm{t}_{\text {AW }}$	Address Valid to End of Write	60		45		ns	
$\mathrm{t}_{\text {AS }}$	Address Setup Tıme	0		0		ns	
$t_{\text {WP }}$	Write Pulse Wıdth	60		45		ns	
$t_{\text {WR }}$	Write Recovery Time	5		3		ns	
$\mathrm{t}_{\text {DW }}$	Data Valid to End of Write	25		20		ns	
${ }^{\text {d }}$ H	Data Hold Tıme	0		0		ns	
t_{Wz}	Write Enabled to Output in High Z	0	30	0	25	ns	
tow	Output Active from End of Write	0		0		ns	

Timing Diagrams

READ CYCLE NO. 1 (Notes 1 and 2)

READ CYCLE NO. 2 (Notes 1 and 3)

WRITE CYCLE NO. 1 ($\overline{\mathrm{WE}}$ controlled) (Note 4)

Notes:

1. WE is high for Read Cycles.
2. Device is continuously selected, $\overline{\mathbf{C S}}=\mathrm{V}_{\mathrm{IL}}$.
3. Addresses valid.
4. If $\overline{C S}$ goes high simultaneously with $\overline{\mathrm{WE}}$ high, the outputs remain in the high impedance state.
5. Transition is measured $\pm 500 \mathrm{mV}$ from low or high impedance voltage with load B. This parameter is sampled and not 100% tested.
6. The operating ambient temperature range is guaranteed with transverse air flow exceeding 400 linear feet per minute.
7. Duration not to exceed one second.
8. A minimum 0.5 ms time delay is required after application of $\mathrm{V}_{\mathrm{CC}}(\pm 5 \mathrm{~V})$ before proper device operation is achieved.

WRITE CYCLE NO. 2 ($\overline{\text { CS }}$ controlled) (Note 4)

A.C. Testing Input, Output Waveform

A.C. Testing Load Circuit

Package Availability 20 Pin Ceramic 20 Pin Cerdip

20 Pin Flatpack 20 Lead LCC

Ordering Information

Order Number	Access Time (Max)	Operating Current (Max)	Package Type
SYMC2169-70	70 ns	150 mA	Ceramıc
SYMD2169-70	70 ns	150 mA	Cerdıp
SYMF2169-70	70 ns	150 mA	Flatpack
SYMK2169-70	70 ns	150 mA	LCC
SYMC2169-55	55 ns	150 mA	Ceramıc
SYMD2169-55	55 ns	150 mA	Cerdıp
SYMF2169-55	55 ns	150 mA	Flatpack
SYMK2169-55	55 ns	150 mA	LCC

ProductNumber
Page
Number
Cross Reference Guide 3-2
SY2661 $4-3$
SY6500 4-17
SY6522/A $4-30$
SY2532 $4-50$
SY6845R $4-58$
SY6845E $4-69$
SY6551 $4-85$
SY65C02 4-93
SY65C22 4-104
SY65C51 4-123
Z8601 4-131
Z8681 4-146
8048 4149
66 C 016 4163
4×2901 B 4-165

Microprocessor
 Cross Reference Guide

Synertek Part Number	SY6502-7	SY6512	SY6522	SY6551	SY6545R	SY2661-1	SY2661-2	SY2661-3	SYZ8601
Rockwell	$6502-7$	6512	6522	6551					
Motorola					$6845 R$	68661 A	68661 B	68661C	
MOSTEC	$6502-7$	6512	6522	6551					
Zilog									Z8601
SGS									Z8601
Sharpe									Z8601
SMC						$2661-1$	$2661-2$	$2661-3$	
AMI				6551					
Signetics						2661 A	2661 B	2661 C	
Hitachi					$6845 R$				

SY2661

Enhanced Programmable Communications Interface

Features

SYNCHRONOUS OPERATION

- 5 to 8 -bit characters plus parity
- Single or double SYN operation
- Internal or external character synchronization
- Transparent or non-transparent mode
- Transparent mode DLE stuffing (Tx) and detection (Rx)
- Automatic SYN or DLE-SYN insertion
- SYN, DLE and DLE-SYN stripping
- Odd, even, or no parity
- Local or remote maıntenance loop back mode
- Baud rate: dc to 1 M bps (1 X clock)

ASYNCHRONOUS OPERATION

- 5 to 8 -bit characters plus parity
- $1,11 / 2$ or 2 stop bits transmitted
- Odd, even, or no parity
- Parity, overrun and framıng error detection
- Line break detection and generation
- False start bit detection
- Automatic serıal echo mode (echoplex)
- Local or remote maıntenance loop back mode
- Baud rate dc to 1 M bps (1X clock)
- dc to 62.5 K bps (16 X clock)
- dc to 15 625K bps (64X clock)

OTHER FEATURES

- Internal or external baud rate clock
- 3 baud rate sets (2661-1, -2, -3)
- 16 internal rates for each set
- Double buffered transmitter and receiver
- Dynamic character length switching
- Full or half duplex operatıon
- TTL compatible inputs and outputs
- RxC and TxC pins are short circuit protected
- 3 open draın MOS outputs can be wire-ORed
- Single 5V power supply
- No system clock required
- 28-pın dual-ın-lıne package

Pin Configuration

Block Diagram

Table 1 Baud Rate Generator Characteristics

2661-1 (BRCLK = 4.9152 MHz)

MR 2				Baud Rate	Actual Frequency 16X Clock (KHz)	Percent Error	Divisor
3	2	1	0				
0	0	0	0	50	0.8	-	6144
0	0	0	1	75	12	-	4096
0	0	1	0	110	1.7598	-0.01	2793
0	0	1	1	134.5	2152	-	2284
0	1	0	0	150	2.4	-	2048
0	1	0	1	200	32	-	1536
0	1	1	0	300	4.8	-	1024
0	1	1	1	600	9.6	-	512
1	0	0	0	1050	168329	0.196	292
1	0	0	1	1200	19.2	-	256
1	0	1	0	1800	28.7438	-0.19	171
1	0	1	1	2000	31.9168	-0.26	154
1	1	0	0	2400	38.4	-	128
1	1	0	1	4800	768	-	64
1	1	1	0	9600	153.6	-	32
1	1	1	1	19200	307.2	-	16

2661-2 (BRCLK $=\mathbf{4 . 9 1 5 2 ~ M H z) ~}$

MR 2				Baud Rate	Actual Frequency 16X Clock (KHz)	Percent Error	Divisor
3	2	1	0				
0	0	0	0	455	0.7279	0.005	6752
0	0	0	1	50	0.8	-	6144
0	0	1	0	75	1.2	-	4096
0	0	1	1	110	1.7598	-0.01	2793
0	1	0	0	1345	2.152	-	2284
0	1	0	1	150	2.4	-	2048
0	1	1	0	300	4.8	-	1024
0	1	1	1	600	96	-	512
1	0	0	0	1200	19.2	-	256
1	0	0	1	1800	287438	-0.19	171
1	0	1	0	2000	319168	-0.26	154
1	0	1	1	2400	38.4	-	128
1	1	0	0	4800	76.8	-	64
1	1	0	1	9600	1536	-	32
1	1	1	0	19200	307.2	-	16
1	1	1	1	38400	614.4	-	8

2661-3 (BRCLK $=5.0688 \mathbf{M H z}$)

MR 2				Baud Rate	Actual Frequency 16X Clock (KHz)	Percent Error	Divisor
3	2	1	0				
0	0	0	0	50	0.8	-	6336
0	0	0	1	75	1.2	-	4224
0	0	1	0	110	1.76	-	2880
0	0	1	1	134.5	2.1523	0016	2355
0	1	0	0	150	2.4	-	2112
0	1	0	1	300	48	-	1056
0	1	1	0	600	9.6	-	528
0	1	1	1	1200	192	-	264
1	0	0	0	1800	28.8	-	176
1	0	0	1	2000	32081	0.253	158
1	0	1	0	2400	384	-	132
1	0	1	1	3600	57.6	-	88
1	1	0	0	4800	76.8	-	66
1	1	0	1	7200	1152	-	44
1	1	1	0	9600	1536	-	33
1	1	1	1	19200	3168	3125	16

Note 16X CLK is used in asynchronous mode In synchronous mode, clock multiplier is 1X and BRG can be used only for TxC

Signal Descriptions

CPU Interface

RESET (Reset)

A high on this input performs a master reset on the SY2661. This signal asynchronously terminates any device activity and clears the mode, command and status registers. The device assumes the idle state and remaıns there until inıtialized with the appropriate control words
$\mathrm{A}_{0}, \mathrm{~A}_{1}$ (Address 0,1)
Address lines used to select the internal registers.

$\overline{\mathrm{R}} / \mathrm{W}$ (Read/Write)

The direction of data transfers between the EPCI and the CPU is controlled by the \bar{R} / W input. When $\overline{C E}$ and \bar{R} / W are both low the contents of the selected registers will be transferred to the data bus. With $\overline{\mathrm{CE}}$ low and $\overline{\mathrm{R}} / \mathrm{W}$ high a write to the selected register is performed

$\overline{\mathrm{CE}}$ (Chip Enable)

When low, the selected register will be accessed When high the $D_{0}-D_{7}$ lines will be placed in the high impedance state

$\mathrm{DB}_{0}-\mathrm{DB}_{7}$ (Data Bus)

An 8-bit three-state positive true data bus used to transfer commands, data and status between the EPCI and the CPU

$\overline{\text { TxRDY (Transmitter Ready) }}$

This output is the complement of status register bit SRO When low, it indicates that the transmit data holding register (TxHR) is ready to accept a data character from the CPU. It goes high when the data character is loaded. This output is valid only when the transmitter is enabled It is an open drain output which can be "wire-ORed" to the CPU interrupt.

$\overline{\mathrm{RxRDY}}$ (Receiver Ready)

This output is the complement of status register bit SR1 When Io N, it indicates that the receive data holding register (RxHR) has a character ready for input to the CPU It goes high when the RxHR is read by the CPU and also when the receiver is disabled It is an open drain output which can be "wire-ORed" to the CPU interrupt line

$\overline{\text { TxEMT }} / \overline{\mathrm{DSCHG}}$

This output is the complement of status register bit SR2 When low, it indicates that the transmitter has completed serialization of the last character loaded by the CPU, or that a change of state of the $\overline{\mathrm{DSR}}$ or $\overline{\mathrm{DCD}}$ inputs has occurred This output goes high when the status register is read by the CPU if the TxEMT condition does not exist Otherwise, the TxHR must be loaded by the CPU for this line to go high It is an open drain output which can be "wire OR-ed" to the CPU interrupt line

Transmitter/Receiver Signals

BRCLK (Baud Rate Clock)

Clock input to the internal baud rate generator. This is not required when external receiver and transmitter clocks are used.

$\overline{\mathrm{RxC}} / \mathrm{BKDET}$ (Receiver Clock, Break Detect)

When the EPCI is programmed for External Receiver Clock, this pin will act as an input and control the rate at which a character is received The frequency is programmed in Mode Register 1 and may be $1 \mathrm{X}, 16 \mathrm{X}$ or 64 X the baud rate Data
are sampled on the rising edge. If internal Receiver Clock is programmed this pin will provide an output, either a $1 \mathrm{X} / 16 \mathrm{X}$ clock or Break Detect signal determined by programming Mode Register 2
$\overline{T X C} /$ XSYNC (Transmitter Clock/External SYNC)
When the EPCI is programmed for External Transmitter clock, this pin will act as an input and control the rate at which the character is transmitted The frequency is programmed in Mode Regıster 1 and may be 1X, 16X or 64X the baud rate Data changes on the falling edge of this clock. If the UPCI is programmed for Internal Transmitter clock, this pin can be either an output providıng a $1 \mathrm{X} / 16 \mathrm{X}$ clock or an input for External Synchronızation determined by Mode Register 2 programming.

RxD (Receive Data)

RxD is the serial data input to the receiver.
TxD (Transmıt Data)
TxD is the serial data output from the transmitter. When the transmitter is disabled the output will be in the high, "Mark", state

$\overline{\mathrm{DSR}}$ (Data Set Ready)

$\overline{\mathrm{DSR}}$ is an input that can be used to indicate to the UPCI Data Set Ready or Ring Indicator. Its complement appears in the Status Regıster as bit SR7. A change of state on $\overline{\mathrm{DSR}}$ will cause $\overline{\text { TxEMT }} / \overline{\mathrm{DSCHG}}$ to go low if etther CRO or CR2 $=1$.

$\overline{\mathrm{DCD}}$ (Data Carrier Detect)

The $\overline{D C D}$ input must be low for the receiver to operate if $\overline{D C D}$ goes high while receiving, the RxC is internally inhibited The complement of $\overline{D C D}$ appears in the Status Register as bit SR6 A change of state in $\overline{\mathrm{DCD}}$ will cause $\overline{\mathrm{T} X E M T} / \overline{\mathrm{DSCHG}}$ to go low if ether CRO or CR2 $=1$.
$\overline{\text { CTS }}$ (Clear To Send)
The $\overline{\mathrm{CTS}}$ input must be low for the transmitter to operate. If $\overline{\mathrm{CTS}}$ goes high while transmitting, the character currently in the Transmit Shift Regıster will be transmitted before termınation TxD will then go to the high level (Mark)

$\overline{\text { DTR }}$ (Data Termınal Ready)

The $\overline{D T R}$ output is the complement of CR1 It is normally used to indicate Data Termınal Ready

$\overline{\mathrm{RTS}}$ (Request To Send)

The $\overline{\mathrm{RTS}}$ output is the complement of CR5. If the Transmit Shift Register is not empty when CR5 is reset, $\overline{\mathrm{RTS}}$ will not go high until one TxC after the last serial bit is transmitted.

Functional Description

The internal organization of the EPCI consists of six major blocks, (see Fig 1) These are the Transmitter, Receiver, Clock Control, Operation Control, Modem Control and SYN/DLE Control These blocks internally communicate over common data and control buses The data bus is also linked to the CPU via a bi-directional three-state interface
Briefly, these blocks perform the following functions:

Transmitter

The Transmitter receives parallel data from the CPU and converts it to a serial bit stream, inserting Start, Stop, and Parity bits, as selected by the user, and outputs a composite serial data stream

Receiver

The Receiver accepts serial data from the sending device, converts it to a parallel format checking for appropriate Start, Stop and Parıty bits and Control Characters, as selected by the user, and sends the assembled character to the CPU.

Timing Control

The Timing Control block contaıns a programmable Baud Rate Generator (BRG) which is able to accept external Transmit ($\overline{\mathrm{TxC}}$) or Receive ($\overline{\mathrm{RxC}}$) clocks or to divide external clock (BRCLK) for controlling data transfers. The BRCLK input allows the user to program one of 16 commonly used baud rates.

Operating Control

The Operation Control block contains four registers; Mode Registers 1 and 2, (MR1, MR2) the Command Register (CR) and Status Register (SR). These registers are used to store configuration and operation commands from the CPU. They generate the necessary internal control signals for proper device operation, and maintain status information for the CPU.

Modem Control

The modem control section provides interfacing for three input signals and three output signals used for "handshaking" and status indication between the CPU and a modem

SYN/DLE Control

This section contains control circuitry and three 8-bit registers storing the SYN1, SYN2, and DLE character provided by the CPU. These registers are used in the synchronous mode of operation to provide the characters required for synchronızation, idle fill and data transparency.

Operation

The EPCl's operation is determıned by programmıng the Mode and Command Registers. Baud rate, asynchronous or synchronous communication, and SYN characters are determined before enabling the transmitter or receiver

Asynchronous Receiver Operation

After the Mode Registers are configured the receiver is enabled when the RxEN bit in the Command Register (CR2) is set to a 1 and $\overline{\mathrm{DCD}}$ is low. The EPCI then monitors the RxD input waiting for a high to low transition If a transition is detected, the RxD input is again sampled one-half bit time later. If RxD is now high, a search for a valid start bit is begun again If RxD is still low a valid start bit is assumed and the receiver contınues to sample the RxD input at one bit time intervals until the correct number of data bits, parity bit and one stop bit have been assembled. The character is then transferred to the Receive Data Holdıng Regıster (RxHR); RxRDY in the status Register is set (SR1); the $\overline{\text { RxRDY }}$ output goes low. If the character length is less than 8 bits, the high order unused bits in the holding register are set to zero. The parity error, framing error, and overrun error status bits are strobed into the status register on the positive going edge of $\overline{\mathrm{RxC}}$ corresponding to the received character boundry. See Figure 6 and 8
If the stop bit is present, the receiver will immediately begin its search for the next start bit. If the stop bit is absent (fram-
ing error), the receiver will interpret a space bit if it persists into the next bit tıme interval. If a break condition is detected (RxD is low for the entire character as well as the stop bit), only one character consistıng of all zeros (with the FE status bit set) will be transferred to the holding register. The RxD input must return to a high condition before a search for the next start bit begıns See Figure 9
Pin 25 can be programmed as a Break Detect (BKDET) output by settıng both bits 4 and 7 of Mode Register 2 (MR2). When these bits are set and a break is detected, the BKDET output will go high. If RxD returns high for at least one RxD tıme, BKDET will return low.

Synchronous Receiver Operation

When the EPCI is programmed for synchronous operation the receiver will remain idle until the receiver enable bit (CR2) is set. At this tıme the EPCl enters the hunt mode Data are shifted into the receive data shift register (RxSR) one bit at a tıme. The contents of RxSR are then compared to the contents of the SYN1 register. If the two are not equal, the next bit is shifted in and the comparison is repeated. When the two registers match, the hunt mode is terminated and character assembly mode begins. If single SYN operation is programmed, the SYN DETECT status bit is set If double SYN operation is programmed, the first character assembled after SYN1 must be SYN2 in order for the SYN DETECT bit to be set. Otherwise the EPCI returns to the hunt mode. (Note that the sequence SYN1-SYN1-SYN2 will not achieve synchronızation). See Figure 6
When synchronization has been achieved, the EPCI contınues to assemble characters and transfer them to the holding register, setting the RxRDY status bit and asserting the $\overline{R \times R D Y}$ output each time a character is transferred. The PE and OE status bits are set as appropriate. Further receipt of the appropriate SYN sequence sets the SYN DETECT status bit If the SYN stripping mode is commanded, SYN characters are not transferred to the holdıng regıster Notethe SYN characters used to establish initial synchronization are not transferred to the holding register in any case
By setting MR24 (MR2 bit 4) and MR27 = 1 pin 9 ($\overline{\mathrm{RXC}} / \mathrm{XSYNC}$) will be programmed as an external jam synchronization input When XSYNC is selected internal SYN1, SYN1-SYN2 and DLE-SYN1 detection is disabled Each positive going signal on XSYNC will cause the receiver to establish synchronization on the rising edge of the next RxC pulse Character assembly will start with the RxD input at this edge. XSYNC must be lowered prior to the next rising edge of RxC. This external synchronization will cause the SYN DETECT status bit to be set until the status register is read Refer to XSYNC tıming dıagram.

Asynchronous Transmitter Operation

When the EPCI is programmed to transmit the transmitter will remaın idle untıl $\overline{\mathrm{CTS}}$ is low and the TxEN bit (CRO) is set The EPCI will respond by settıng status regıster (SR) bit 0 and asserting the TxRDY output When the CPU writes a character into the transmit data holdıng register (TxHR), SRO is reset and $\overline{T \times R D Y}$ returns high. The character is then transferred to the transmit shift register (TxSR) when it is idle or has completed transmission of the previous character. SRO is again set, and TxRDY goes low See Figure 7.

Abstract

In the asynchronous mode, the transmitter automatically sends a start bit followed by the programmed number of data bits, the least significant bit being sent first. It then appends an optional odd or even parity bit and the programmed number of stop bits if, following transmission of the data bits, a new character is not available in the transmit holding register, the TxD output remains in the marking (high) condition and the TxEMT/DSCHG output and its corresponding status bit are asserted Transmission resumes when the CPU loads a new character into the holding register The transmitter can be forced to output a contınuous low (BREAK) condition by settıng CR3

Synchronous Transmitter Operation

When the EPCI is initially programmed for synchronous transmission it will remain in the idle state ($R \times D$ high) until TxEN is set At this point TxD remains high, $\overline{\text { TxRDY will go }}$ low and both will stay in this state until the first character (usually a SYN character) is written into the TxHR This starts transmission, with TxRDY going low each time a character is shifted from the TxHR to the TxSR If $\overline{T x R D Y}$ is not serviced before the previous character is shifted out of the TxSR, the TxEMT output will go low and the EPCI will automatically fill the pendıng gap with SYN1, SYN1, SYN2 doublets, or DLESYN1 doublets, dependıng on the state of MR6 and MR17 Transmission will be continuous untıl TxEN is reset to 0 See Figure 7

If the send DLE bit (CR3) is set, the DLE character is automatically transmitted prior to the transmission of any character stored in the TxHR Since this is a one time command, CR3 does not have to be reset

EPCI Programming

Before data communicatıons can be started the EPCI must be programmed by writing to its mode and command registers Additionally, if synchronous communication has been selected the appropriate SYN1, SYN2 and DLE registers must be loaded Reference the Regıster Addressing Table and Inıtıalızatıon Flow Chart for address requirements and programming procedure

The Register Addressing table shows MR1 and MR2 at the same address The EPCI has an internal pointer that initially directs the first read or write to MR1, then on the next access at that same address the pointer directs the operation to MR2 A similar sequence occurs for the SYN and DLE registers, first SYN1 then SYN2 then DLE. If more than the required number of accesses are made the internal pointer resets to the first register The pointer is also reset to MR1 and SYN1 by a RESET input or a read of the Command Register, but unaffected by any other read or write operation.

Register Formats

The register formats are summarized in Figures 2 through 5. MR1 and MR2 define the general operatıng characteristics The Command Register controls the basic operation defined by MR1 and MR2 The Status Register indıcates the EPCI operatıng status and the condition of external inputs These registers are cleared by a RESET input (SR6 and SR7 excepted).

Mode Register 1 (MR1)

MR11 and MR10 select the communication mode and baud rate multıplier Note. the multiplier in asynchronous mode applies only if the external input option is selected by MR24 and MR25

MR13 and MR12 select Character length. Character length does not include the parity bit, when selected, and does not include the start and stop bits in asynchronous operation
MR14, when set, selects parity A parity bit will be transmitted with each character, and a parity check will be performed on each character received.

MR15 selects either odd or even parity.
In the asynchronous mode MR16 and MR17 select the number of stop bits; 1,15 or 2 . If 1 X baud rate is programmed 1.5 stop bits defaults to 1 on transmit
In the synchronous mode MR17 controls the number of SYN characters used to establish synchronization, and the number of fill characters to be transmitted when $\overline{T x R D Y}$ and $\overline{\text { TxEMT }}$ are 0

MR16 controls selection of the transparent mode When MR16 is set (transparent selected) DLE-SYN1 is used for character fill and SYN detect (SR 5), but the normal synchronization sequence is used to establish character sync When transmitting in the synchronous transparent mode, a DLE character in the TxHR will cause a second DLE character to be transmitted Note: if the send DLE command (CR3) is active when a DLE character is in the TxHR only one addıtional DLE will be transmitted
The bits in the mode register affectıng character assembly and disassembly (MR12-MR16) can be changed dynamically (during active receive/transmit operation) The character mode register affects both the transmitter and receiver, therefore in synchronous mode, changes should be made only in half duplex mode (RxEN = 1 or TxEN = 1, but not both simultaneously = 1) In asynchronous mode, character changes should be made when RxEN and TxEN $=0$ or when TxEN = 1 and the transmitter is marking in half duplex mode (RxEN = 0)
To effect assembly/disassembly of the next received/transmitted character, MR12-15 must be changed within n bit tımes of the actıve going state of $\overline{\mathrm{RxRDY}} / \overline{\mathrm{TxRDY}}$. Transparent and non-transparent mode changes (MR16) must occur within n-1 bit times of the character to be affected when the receiver or transmitter is active ($\mathrm{n}=$ smaller of the new and old character lengths)

Mode Register 2 (MR2)

MR20 through MR23 select the internal Baud Rate Generator (BRG) There are sixteen selectable rates for each version as outlined in Table 1.
MR24 through MR27 define the receive and transmit clock source and the function of pins 9 and 25. Reference Figure 3

Table 2 SY2661 Register Addressing

$\overline{\mathbf{C E}}$	$\mathbf{A}_{\mathbf{1}}$	$\mathbf{A}_{\mathbf{0}}$	$\overline{\mathbf{R}} / \mathbf{W}$	Function
1	\mathbf{X}	\mathbf{X}	\mathbf{X}	Three-state Data Bus
0	0	0	0	Read Receıve Holdıng Regıster (RxHR)
0	0	0	1	Wrıte Transmıt Holdıng Regıster (TxHR)
0	0	1	0	Read Status Regıster (SR)
0	0	1	1	Write SYN1/SYN2/DLE Regısters
0	1	0	0	Read Mode Registers (MR1, MR1/MR2)
0	1	0	1	Write Mode Regısters (MR1, MR1/MR2)
0	1	1	0	Read Command Regıster
0	1	1	1	Write Command Regıster

EPCI Initialization Flow Chari

Figure 2. Mode Register 1

7	6	5	4	3	$2 \quad 1$	0		
\square SEE BAUD RATE TABLES								
7	6	5	4	TxC	RxC	PIN9	PIN25	MODE
0	0	0	0	E	E	TxC	RxC	SYNC/ASYNC
0	0	0	1	E	1	TxC	1x	SYNC/ASYNC
0	0	1	0	1	E	1x	RxC	SYNC/ASYNC
0	0	1	1	1	1	$1 \times$	1x	SYNC/ASYNC
0	1	0	0	E	E	TxC	RxC	SYNC/ASYNC
0	1	0	1	E	1	TxC	16x	SYNC/ASYNC
0	1	1	0	1	E	16x	RxC	SYNC/ASYNC
0	1	1	1	1	1	16x	16x	SYNC/ASYNC
1	0	0	0	I	E	XSYNC	RxC	SYNC
1	0	0	1	E		TxC	BKDET	ASYNC
1	0	1	0	1	E	XSYNC	RxC	SYNC
1	0	1	1	1	1	1x	BKDET	ASYNC
1	1	0	0	1	E	XSYNC	RxC	SYNC
1	1	0	1	E	1	TxC	BKDET	ASYNC
1	1	1	0	1	E	XSYNC	RxC	SYNC
1	1	1	1	1	1	16x	BKDET	ASYNC

Figure 3. Mode Register 2

Command Register (CR)

CRO (TxEN) will enable or disable the transmitter When TxEN $=0$, TxD,$\overline{T \times R D Y}$ and $\overline{T x E M T}$ are all high, the transmitter is disabled When TxEN goes active, $\overline{\text { TxRDY }}$ will go low requesting the first character to be written to the TxHR, and the TxD output will be enabled to transmit When TxEN goes inactive, the UPCI will complete transmission of any charac-
ter still in the TxSR TxD will then go to the marking state and $\overline{\text { TxRDY }}$ and TxEMT will go high. Refer to Transmit timing diagram
CR1 controls the $\overline{\text { DTR }}$ output. The $\overline{\text { DTR }}$ output is a logical complement of CR1
CR2 (RxEN) will enable or disable the receiver. When RxEN = 0 , the receiver is in an idle mode with $\overline{\text { RxRDY }}$ high. A 0 to 1 transition of RxEN will initiate a start bit search in asynchronous mode or initiate the hunt mode in synchronous transmission A 1 to 0 transition of RxEN immediately termınates receiver operation
In the asynchronous mode setting CR3 will force the TxD output low (break condition) at the end of the current transmitted character TxD will then remain low until CR3 is cleared; at that tıme TxD will go high for a mınımum 1 bit tıme before resuming normal transmission.
In the synchronous mode setting CR3 will force the transmission of the DLE character prior to sending the character in the TxHR Because this is a one-time command, bit 3 will automatically reset.
CR5 controls the state of the $\overline{\mathrm{RTS}}$ output. When CR5 $=1$, $\overline{\text { RTS }}$ will go low and the transmit logic will be enabled. A 1 to 0 transition of CR5 will cause $\overline{\operatorname{RTS}}$ to go high one TxC tıme after the last serial bit is transmitted, (if the TxSR was not already empty)
CR7 and CR6 provide four alternate modes of operation in both synchronous and asynchronous operation When both bits are 0 normal operation is selected
In the asynchronous mode, when only CR6 is set automatic echo mode is selected Clocked, regenerated received data are automatically directed to the TxD line while normal receiver operation contınues The receiver must be enabled
(CR2 $=1$), but the transmitter need not be enabled. CPU to receiver communications contınues normally, but the CPU to transmitter link is disabled. Only the first character of a break condition is echoed. The TxD output will go high until the next valid start is detected. The following conditions are true while in automatic echo mode:

1. Data assembled by the receiver are automatically placed in the transmit holding register and retransmitted by the transmitter on the TxD output.
2. Transmit clock $=$ receive clock.
3. $\overline{\text { TxRDY }}$ output $=1$.
4. The $\overline{\text { TxEMT }} / \overline{\mathrm{DSCHG}}$ pın will reflect only the data set change condition.
5. The TXEN command (CRO) is ignored.

In the synchronous mode, when only CR6 is set automatic SYN/DLE stripping is performed. The state of MR17 and MR16 controls which characters are stripped. Reference Figure 6 for a detailed example of the characters stripped. Note automatic stripping does not affect setting of the SYN and DLE detect status bits.
Two diagnostic modes are achievable in both synchronous and asynchronous operation; local loop back with CR7 $=1$ and CR6 $=0$, and remote loopback with both bits $=1$.

Local Loop Back

1. The transmitter output is connected to the receiver input
2. $\overline{\mathrm{DTR}}$ is connected to $\overline{\mathrm{DCD}}$ and $\overline{\mathrm{RTS}}$ is connected to $\overline{\mathrm{CTS}}$.
3. Transmit clock is connected to the receive clock.

4 The $\overline{\mathrm{DTR}}, \overline{\mathrm{RTS}}$ and $\overline{\mathrm{TxD}}$ outputs are held high.
5 The $\overline{C T S}, \overline{\mathrm{DCD}}, \overline{\mathrm{DSR}}$ and RxD inputs are ignored.
Note: CR bits 0,1 and 5 must be set, CR2 is a don't care.

Remote Loop Back

1. Data assembled by the receiver are automatically placed in the transmit holding register and retransmitted by the transmitter on the TxD output.
2. Receive clock is connected to the transmit clock.
3. No data are sent to the local CPU, but the error status conditions (PE, OE, FE) are set.
4. The $\overline{\mathrm{RxRDY}}, \overline{\mathrm{T} \times R D Y}$, and $\overline{\mathrm{TxEMT}} / \overline{\mathrm{DSCHG}}$ outputs are held high
5. CR1 (TxEN) is ignored.
6. All other signals operate normally.

Status Register

SRO is the transmitter ready (TxRDY) status, it is the logıcal complement of the TxRDY output. This bit indicates the state of the TxHR when the transmitter is enabled (TxEN =1). A 0 indicates TxHR is full, a 1 indicates TxHR is empty and requires servicıng by the CPU. This bit is cleared by writıng to TxHR or by disabling the transmitter ($T \times E N=0$). Note: SRO is not set in either the auto echo or remote loop back modes.
SR1 is the receiver ready (RxRDY) status, it is the logical complement of the RxRDY output. This bit indicates the state of the RxHR when the receiver is enabled ($\mathrm{RxEN}=1$). A 0 indicates the RxHR is empty, a 1 indicates the RxHR is full and requires servicing by the CPU. This bit is cleared by writing to the TxHR or by disabling the receiver. ($\mathrm{RxEN}=0$).
SR2 indicates a change of state of either $\overline{\mathrm{DSR}}$ or $\overline{\mathrm{DCD}}$ or that the TxSR is empty. This bit is the logical complement of the $\overline{\text { TxEMT }} / \overline{\mathrm{DSCHG}}$ output. A read of the status register will clear bit 2 if a state change on $\overline{\mathrm{DSR}}$ or $\overline{\mathrm{DCD}}$ has occurred. If a

Figure 4. Command Register
second successive read of the status register indicates bit 2 $=0$, then $\overline{\mathrm{DCD}}$ or $\overline{\mathrm{DSR}}$ changed If bit 2 is still set, then the TxSR is empty. Because the transmitter does not start until the first character has been written to the TxHR, TxEMT status will not be reflected until tranşission of the first character is complete, TxEMT status is cleared by writing to the TxHR or disabling the transmitter. Note. TxEMT status will be set in synchronous mode even though "fill" characters are being transmitted
SR3 when set reflects a parity error when parity checking is enabled in both the synchronous and asynchronous modes In the synchronous transparent mode, (MR16 = 1) and the parity enable bit (MR14) is 0 , SR3 will then indicate DLE detect when set This indicates that a character matching DLE register was received and the present character is nether SYN1 nor DLE This bit is cleared when the next character following the above sequence is loaded into the RxHR, when the receiver is disabled or by a reset error command.

SR4 indicates an overrun error when set An overrun condition exists when the CPU does not read the RxHR before the next received character is transferred to it. (The previous character is lost.) SR4 is cleared by the reset error command and when the receiver is disabled
In the asynchronous mode SR5 indicates that the received character was not framed by a stop bit. If the RxHR is all O's when bit 5 is set, a break condition was present. In synchronous non-transparent mode, it indicates receipt of the SYN1 character in single SYN mode or the SYN1-SYN2 pair in double SYN mode In synchronous transparent mode this bit is set upon detection of the initial synchronizing characters (SYN1 or SYN1-SYN2) and after synchronization has been achieved, when a DLE-SYN1 pair is received. The bit is reset when the receiver is disabled, when the reset error command is given in asynchronous mode, and when the status register is read by the CPU in the synchronous mode SR6 and SR7 reflect the condition of the $\overline{\mathrm{DCD}}$ and $\overline{\mathrm{DSR}}$ inputs respectively. Their state is the logical complement of their respective inputs

Figure 5. Status Register

Absolute Maximum Ratings*

Rating	Symbol	Allowable Range
Supply Voltage	V_{CC}	-0.3 V to +7.0 V
Input/Output Voltage	V_{IN}	-0.3 V to +70 V
Operatıng Temperature	T_{OP}	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage Temperature	$\mathrm{T}_{\mathrm{STG}}$	$-55^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$

Comment*

All inputs contain protection circuitry to prevent damage to high static charges Care should be exercised to prevent unnecessary application of voltages in excess of the allowable limits

Stresses above those listed under "Absolute Maximum Ratıngs" may cause permanent damage to the device This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied
D.C. Characteristics $\quad V_{C C}=5.0 \mathrm{~V} \pm 5 \%, T_{A}=0-70^{\circ} \mathrm{C}$, unless otherwise noted

Characteristic	Symbol	Min.	Typ.	Max.	Unit
Input High Voltage	V_{IH}	2.0		$\mathrm{~V}_{\mathrm{CC}}$	V
Input Low Voltage	V_{IL}			0.8	V
Input Leakage Current $\mathrm{V}_{\mathrm{IN}}=0$ to 5.5V	I_{N}			10	$\mu \mathrm{~A}$
Input Leakage Current for Hıgh Impedance State	ITSI			10	$\mu \mathrm{~A}$
Output Hıgh Voltage: ILOAD $=-400 \mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{OH}}$	24			V
Output Low Voltage: ILOAD $=2.2 \mathrm{~mA}$	$\mathrm{~V}_{\mathrm{OL}}$			04	V
Input Capacitance $\mathrm{fC}=1 \mathrm{MHz}$	C_{IN}			20	pF
Output Capacitance	$\mathrm{C}_{\mathrm{OUT}}$			20	pF
Power Dissipation $\left(\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}\right)$	P_{D}			650	mW

Receiver/Transmitter Signal Timing

Clocks

Transmit Timing

Receive Timing

Symbol	Characteristic	MIN	TYP	MAX	UNIT
$\mathrm{T}_{\mathrm{R}} / \mathrm{TH}$	$\overline{\mathrm{TxC}}$ or $\overline{\mathrm{RxC}} \mathrm{HIGH}$	500			ns
$T_{R} / T L$	$\overline{T \times C}$ or $\overline{\mathrm{RxC}}$ LOW	500		1.0	ns
$f R / T$	$\overline{T \times C}$ or $\overline{\mathrm{R} \times \mathrm{C}}$ freq.	DC		1.0	MHz
TBRH	BRCLK HIGH	70			ns
TBRL	BRCLK LOW	70			ns
f BRG	BRCLK freq. [1]		4,9152		MHz
$\mathrm{T}_{\mathrm{Rx} \mathrm{S}}$	RxD SETUP	300			ns
$\mathrm{T}_{\mathrm{RxH}}$	RxD HOLD	350			ns
TTxD	$\begin{aligned} & \text { T×D DELAY FROM } \overline{T \times C} \\ & C_{L}=150 \mathrm{pF} \end{aligned}$			650	ns
TTCS	SKEW TxD vs $\overline{T \times C}$ $C_{L}=150 \mathrm{pF}$		0		ns

Note
$1 \mathrm{~F}_{\mathrm{BRG}}=49152$ applicable for -1 and $-2, \mathrm{~F}_{\mathrm{BRG}}=50688$ for -3

Read/Write Timing Characteristics

$V_{C C}=50 \mathrm{~V} \pm 5 \%, T_{A}=0-70^{\circ} \mathrm{C}$, unless otherwise noted

Symbol	Characteristic	MIN	MAX	UNIT
TCE	$\overline{\mathrm{CE}}$ Pulse Width	250		ns
TCED	$\overline{\mathrm{CE}}$ to $\overline{\mathrm{CE}}$ Delay	600		ns
TSET	Address and $\overline{\mathrm{R}} / \mathrm{W}$	10		ns
	Set Up			
THLD $^{\text {Address and } \overline{\mathrm{R}} / \mathrm{W} \text { Hold }}$	10		ns	
TDS	Write Data Set Up	150		ns
TDH	Write Data Hold	0		ns
TDD	Read Data Delay		200	ns
	C $_{\mathrm{L}}=150 \mathrm{pF}$			
TDF	READ DATA HOLD	10	100	ns
	$\mathrm{C}_{\mathrm{L}}=150 \mathrm{pF}$			

Table 3 Effect of MR17 and MR16 on Character Fill and Character Stripping (Synchronous Mode)

MR17	MR16	Mode	Synchronizing Sequence	Character Fill	$\begin{aligned} & \text { Character(s) } \\ & \text { Stripped CR7 }=0, C R 6=1 \end{aligned}$
0	0	Double SYN Normal	SYN1-SYN2	SYN1-SYN2	SYN1 SYN1-SYN2 ${ }^{[1]}$
1	0	Single SYN Normal	SYN1	SYN1	SYN1 ${ }^{[1]}$
0	1	Double SYN Transparent	SYN1-SYN2	DLE-SYN1	DLE-SYN1 ${ }^{[1]}$ SYN1-SYN2 ${ }^{[1]}$ (Only Initial Synchronızing Sequence) DLE (also Sets SR3 if Parity Disabled and it is not Following a DLE or SYN1) In a DLE-DLE Sequence Only the First DLE is Stripped
1	1	Single SYN Transparent	SYN1	DLE-SYN1	DLE-SYN1 ${ }^{[1]}$ SYN1 (only Intial Synchronızing Sequence) DLE and DLE-DLE same as Double SYN Transparent

Note
1 Symbol indicates SYN DET status set upon detection of initial synchronızing characters and after SYNC has been achieved by detection of a DLE-SYN1 pair

Test Load

Figure 6. Receiver Operation Timing Diagram

SYNCHRONOUS MODE 7-BIT CHARACTER, NO PARITY

یш רחת

Figure 8. Asynchronous Receiver Operation with Loss of $\overline{\mathrm{DCD}}$ or Disabling RxEN

SR BIT 5
FRAMING ERROR

BKDET

Figure 9. Framing Error and Break Detection Timing

Package Availability 40 Pin Molded DIP

Ordering Information

Part No.	Package
SYP2661-X	Molded DIP

$X=1,2$ or 3
(See Table 1)

8-Bit Microprocessor Family

Features

- Single $5 \mathrm{~V} \pm 5 \%$ Power Supply
- N Channel, Silicon Gate, Depletion Load Technology
- Eight Bit Parallel Processıng
- 56 Instructions
- Decimal and Bınary Arıthmetic
- Thirteen Addressing Modes
- True Indexıng Capability
- Programmable Stack Poınter
- Varıable Length Stack
- Interrupt Capability
- Non-maskable Interrupt
- Use with Any Type or Speed Memory
- Bi-directional Data Bus
- Instructıon Decodıng and Control
- Addressable Memory Range of up to 65K Bytes
- "Ready" Input
- Direct Memory Access Capability
- Bus Compatible with MC6800
- Choice of External or On-board Clocks
- $1 \mathrm{MHz}, 2 \mathrm{MHz}$ Operation
- On-chip Clock Options
- External Sıngle Clock Input
- Crystal Tıme Base Input
- 40 and 28 Pin Package Versions
- Pipelıne Architecture

Description

The SY6500 Series Microprocessors represent the first totally software compatible microprocessor family. This family of products includes a range of software compatible microprocessors which provide a selection of addressable memory range, interrupt input options and on-chip clock oscillators and drivers. All of the microprocessors in the SY6500 family are software compatible within the group and are bus compatible with the MC6800 product offering.

Members of the Family

Part Number	Clocks	Pins	IRQ	NMI	RYD	Addressing
SY6502	On-Chıp	40	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	64 K
SY6507	".	28			$\sqrt{ }$	8 K
SY6512	External	40	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	64 K

The family includes six microprocessors with on-board clock oscillators and drivers for four microprocessors driven by external clocks The on-chip clock versions are aımed at high performance, low cost applications where single phase inputs or crystals provide the time base. The external clock versions are geared for the multi-processor system applications where maxımum timıng control is mandatory. All versions of the microprocessors are available in $1 \mathrm{MHz}, 2$ $\mathrm{MHz}, 3 \mathrm{MHz}$ and 4 MHz maxımum operatıng frequencies.

Ordering Information

Synertek.

Comments on the Data Sheet

The data sheet is constructed to review the basic "Common Characteristics" - those features which are common to the general family of microprocessors. Subsequent to a review of the family characteristics will be sections devoted to each member of the group with specific features of each.

SY6500 Internal Architecture

NOTE
1 CLOCK GENERATOR IS NOT INCLUDED QN SY651X
2 ADDRESSING CAPABILITY AND CONTROL OPTIONS VARY WITH
EACH OF THE SY6500 PRODUCTS

Absolute Maximum Ratings*

Rating	Symbol	Value	Unit
Supply Voltage	V_{CC}	-0.3 to +7.0	V
Input Voltage	$\mathrm{V}_{\text {in }}$	-0.3 to +7.0	V
Operating Temperature	T_{A}	0 to +70	${ }^{\circ} \mathrm{C}$
Storage Temperature	$\mathrm{T}_{\text {STG }}$	-55 to +150	${ }^{\circ} \mathrm{C}$

Comment ${ }^{*}$

This device contains input protection against damage due to high static voltages or electric fields; however, precautions should be taken to avoid application of voltages higher than the maxımum ratıng.
D.C. Characteristics $\quad\left(V_{C C}=5.0 \mathrm{~V} \pm 5 \%, T_{A}=0-70^{\circ} \mathrm{C}\right)$
($\emptyset_{1}, \emptyset_{2}$ applies to SY651X, $\emptyset_{0(\mathrm{n})}$ applies to SY650X)

Symbol	Characteristic	Min.	Max.	Unit
V_{IH}	$\left.\begin{array}{l}\text { Input High Voltage } \\ \text { Logic and } \emptyset_{\mathrm{o}} \text { (in) for } \\ \text { all } 650 \times \text { devices }\end{array}\right\}$ \emptyset_{1} and \emptyset_{2} only for all $651 \times$ devices. Logic as $650 X$$\quad\left\{\begin{array}{l}1,2,3 \mathrm{MHz} \\ 4 \mathrm{MHz}\end{array}\right.$	$\begin{aligned} & +2.0 \\ & +3.3 \end{aligned}$ $\mathrm{V}_{\mathrm{CC}}-0.5$	$\begin{gathered} \mathrm{V}_{\mathrm{CC}} \\ \mathrm{~V}_{\mathrm{CC}} \\ \mathrm{~V}_{\mathrm{CC}}+0.25 \end{gathered}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$
$\mathrm{V}_{\text {IL }}$	 Input Low Voltage Logıc, $\emptyset_{\mathrm{o}(\mathrm{nn})}$ $(650 \mathrm{X})$ $\emptyset_{1}, \emptyset_{2}$ $(651 \mathrm{X})$	$\begin{array}{r} -0.3 \\ -0.3 \\ \hline \end{array}$	$\begin{aligned} & +0.8 \\ & +0.2 \\ & \hline \end{aligned}$	V
$I_{\text {IL }}$	$\begin{aligned} & \text { Input Loading } \\ & \left(\mathrm{V}_{\mathrm{in}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{cc}}=5.25 \mathrm{~V}\right) \\ & \mathrm{RDY}, \mathrm{~S} .0 . \end{aligned}$	-10	-300	$\mu \mathrm{A}$
$\mathrm{I}_{\text {In }}$	Input Leakage Current $\begin{aligned} \left(\mathrm{V}_{\mathrm{in}}=0\right. & \text { to } \left.5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{cc}}=0\right) \\ & \operatorname{Logıc}(\text { Excl. RDY, S.O. }) \\ \emptyset_{1}, \emptyset_{2} & (651 \mathrm{X}) \\ \emptyset_{\mathrm{o}(\mathrm{in})} & (650 \mathrm{X}) \end{aligned}$	$-$	$\begin{gathered} 2.5 \\ 100 \\ 10.0 \end{gathered}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \\ & \mu \mathrm{~A} \end{aligned}$
${ }^{\text {ISSI }}$	Three-State (Off State) Input Current $\begin{gathered} \left(\mathrm{V}_{\mathrm{in}}=0.4 \text { to } 2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{cc}}=5.25 \mathrm{~V}\right) \\ \text { DB0-DB7 } \end{gathered}$	-	± 10	$\mu \mathrm{A}$
V_{OH}	Output High Voltage $\begin{aligned} & \left(I_{\text {LOAD }}=-100 \mu A d c, V_{c c}=4.75 \mathrm{~V}\right) \quad 1,2 \mathrm{MHz} \\ & \text { SYNC, DBO-DB7, AO-A } 15, \mathrm{R} / \overline{\mathrm{W}} \end{aligned}$	2.4	-	V
V_{OL}	$\begin{aligned} & \text { Output Low Voltage } \\ & \qquad \begin{array}{l} \left(I_{\text {LOAD }}=16 \mathrm{mAdc}, \mathrm{~V}_{\mathrm{Cc}}=4.75 \mathrm{~V}\right) \quad 1,2 \mathrm{MHz} \\ \text { SYNC, DBO-DB7, AO-A15, R/W } \end{array} \\ & \hline \end{aligned}$	-	0.4	V
$P_{\text {D }}$	$\begin{array}{ll} \text { Power Dissipation } & 1 \mathrm{MHz} \text { and } 2 \mathrm{MHz} \\ \left(\mathrm{~V}_{\mathrm{CC}}=5.25 \mathrm{~V}\right) & \end{array}$	-	700	mW
C $C_{\text {in }}$ $C_{\text {out }}$ $C_{\emptyset_{\text {o(n) }}}$ $C_{\emptyset_{1}}$ $C_{\emptyset_{2}}$	Capacitance $\left(V_{\mathrm{In}}=0, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}\right)$ $\overline{R E S}, \overline{N M I}, ~ R D Y, ~ \overline{I R Q}, ~ S . O ., ~ D B E ~$ DB0-DB7 A0-A15, R/ \bar{W}, SYNC	$\begin{aligned} & - \\ & - \\ & - \\ & - \end{aligned}$	$\begin{aligned} & 10 \\ & 15 \\ & 12 \\ & 15 \\ & 50 \\ & 80 \end{aligned}$	pF

Dynamic Operating Characteristics

$\left(V_{C C}=5.0 \pm 5 \%, T_{A}=0^{\circ}\right.$ to $\left.70^{\circ} \mathrm{C}\right)$

Parameter	Symbol	1 MHz		2 MHz		Units
		Min.	Max.	Min.	Max.	
651X						
Cycle Time	Tcyc	100	40	050	40	$\mu \mathrm{S}$
\emptyset_{1} Pulse Width	$\mathrm{T}_{\text {PWH0 }}$	430	-	215	-	ns
\emptyset_{2} Pulse Width	$\mathrm{T}_{\mathrm{PWH}_{2}}$	470	-	235	-	ns
Delay Between \emptyset_{1} and \emptyset_{2}	TD	0	-	0	-	ns
\emptyset_{1} and \emptyset_{2} Rise and Fall Times ${ }^{[1]}$	$\mathrm{T}_{\mathrm{R}}, \mathrm{T}_{\mathrm{F}}$	0	25	0	20	ns
650X						
Cycle Time	$\mathrm{T}_{\text {CrC }}$	100	40	050	40	$\mu \mathrm{S}$
$\emptyset_{\text {व(IN) }}$ Low Tıme ${ }^{[2]}$	$\mathrm{T}_{\mathrm{L} \varphi_{\text {o }}}$	480	-	240	-	ns
$\emptyset_{\text {व(IN) }}$ High Time ${ }^{[2]}$	$\mathrm{T}_{\mathrm{H} \omega_{\mathrm{o}}}$	460	-	240	-	ns
\emptyset_{0} Neg to \emptyset_{1} Pos Delay ${ }^{(5]}$	T_{01+}	10	70	10	70	ns
\emptyset_{0} Neg to \emptyset_{2} Neg Delay ${ }^{[5]}$	T_{02-}	5	65	5	65	ns
\emptyset_{0} Pos to \emptyset_{1} Neg Delay ${ }^{[5]}$	T_{01}	5	65	5	65	ns
\emptyset_{0} Pos to \emptyset_{2} Pos Delay ${ }^{[5]}$	T_{02+}	15	75	15	75	ns
$\emptyset_{\text {O(N) }}$ Rise and Fall Tıme ${ }^{[1]}$	$\mathrm{T}_{\mathrm{RO}}, \mathrm{T}_{\mathrm{FO}}$	0	30	0	20	ns
\emptyset_{1} (OUT) Pulse Width	$\mathrm{T}_{\text {PWH0 }}$	$\mathrm{T}_{\underline{L} \varphi_{0}}-20$	$\mathrm{T}_{\mathrm{L} \theta_{\text {o }}}$	$\mathrm{T}_{\mathrm{L} \varphi_{0}}-20$	$\mathrm{T}_{\mathrm{L} \varnothing_{\text {o }}}$	ns
$\emptyset_{\text {20ut) }}$ Pulse Width	$\mathrm{T}_{\mathrm{PWHO}}^{2}$	$\mathrm{T}_{\mathrm{L} \emptyset_{0}}-40$	$\mathrm{T}_{\underline{L} \theta_{0}}-10$	$\mathrm{T}_{1 \emptyset_{0}}-40$	$\mathrm{T}_{\underline{L} 0_{0}}-10$	ns
Delay Between \emptyset_{1} and \emptyset_{2}	T	5	-	5	-	ns
\emptyset_{1} and \emptyset_{2} Rise and Fall Times ${ }^{[1,3]}$	T_{R}, T_{F}	-	25	-	25	ns
650X, 651X						
R/W Setup Time	$\mathrm{T}_{\text {RWS }}$	-	225	-	140	ns
R/W Hold Time	$\mathrm{T}_{\text {RWH }}$	30	-	30	-	ns
Address Setup Time	$\mathrm{T}_{\text {ADS }}$	-	225	-	140	ns
Address Hold Tıme	$\mathrm{T}_{\text {ADH }}$	30	-	30	-	ns
Read Access Time	$\mathrm{T}_{\text {ACC }}$	-	650	-	310	ns
Read Data Setup Tıme	$\mathrm{T}_{\text {DSU }}$	100	-	50	-	ns
Read Data Hold Tıme	$\mathrm{T}_{\text {HR }}$	10	-	10	-	ns
Write Data Setup Tıme	$\mathrm{T}_{\text {MDS }}$	20	175	20	100	ns
Write Data Hold Time	T_{HW}	60	150	60	150	ns
Sync Setup Time	$\mathrm{T}_{\text {SYS }}$	-	350	-	175	ns
Sync Hold Time	$\mathrm{T}_{\text {SYH }}$	30	-	30	-	ns
RDY Setup Time ${ }^{[4]}$	$\mathrm{T}_{\text {RS }}$	200	-	200	-	ns

Notes:

1. Measured between 10% and 90% points.

2 Measured at 50\% points
3. Load $=1 \mathrm{TTL}$ load +30 pF .

4 RDY must never switch states within $T_{R S}$ to end of ϕ_{2}.
5. Load $=100 \mathrm{pF}$

6 The 2 MHz devices are identified by an " A " suffıx.

Timing Diagram Note:

Because the clock generation for the SY650X and SY651X is dif ferent, the two clock timing sections are referenced to the main tıming diagram by three reference lines marked REF ' A ', REF ' B ' and REF ' C '. Reference between the two sets of clock timings is without meanıng. Timing parameters are referred to these lines and scale variations in the diagrams are of no consequence.

Pin Functions

Clocks $\left(\phi_{1}, \phi_{2}\right)$

The SY651X requires a two phase non-overlapping clock that runs at the $V_{C C}$ voltage level.
The SY650X clocks are supplied with an internal clock generator. The frequency of these clocks is externally controlled. Clock generator circuits are shown elsewhere in this data sheet.

Address Bus $\mathrm{A}_{\mathbf{0}}-\mathrm{A}_{15}$)

(See sections on each micro for respective address lines on those devices.)

These outputs are TTL compatible, capable of driving one standard TTL load and 130 pF .

Data Bus ($\mathrm{DB}_{0}-\mathrm{DB}_{7}$)

Eight pins are used for the data bus. This is a bi-directional bus, transferring data to and from the device and peripherals. The outputs are three-state buffers, capable of driving one standard TTL load and 130 pF .

Data Bus Enable (DBE)

This TTL compatible input allows external control of the three-state data output buffers and will enable the microprocessor bus driver when in the high state. In normal operation DBE would be driven by the phase two $\left(\phi_{2}\right)$ clock, thus allowing data output from microprocessor only during ϕ_{2}. During the read cycle, the data bus drivers are internally disabled, becoming essentially an open circuit. To disable data bus drivers externally, DBE should be held low. This signal is available on the SY6512, only.

Ready (RDY)

This input signal allows the user to halt the microprocessor on all cycles except write cycles. A negative transition to the low state during or coincident with phase one, $\left(\phi_{1}\right)$ will halt the microprocessor with the output address lines reflecting the current address being fetched. This condition will remain through a subsequent phase two $\left(\phi_{2}\right)$ in which the Ready signal is low. This feature allows microprocessor interfacing with low speed PROMS as well as fast (max. 2 cycle) Direct Memory Access (DMA). If ready is low during a write cycle, it is ignored until the following read opeation. Ready transitions must not be permitted during ϕ_{2} time.

Interrupt Request ($\overline{\mathbf{R Z}}$)

This TTL level input requests that an interrupt sequence begın withın the microprocessor. The microprocessor will complete the current instruction being executed before recognizing the request. At the tıme, the interrupt mask bit in the Status Code Register will be examined. If the interrupt mask flag is not set, the microprocessor will begin an interrupt sequence. The Program Counter and Processor Status Register are stored in the stack. The microprocessor will then set the interrupt mask flag high so that no futher interrupts may occur. At the end of this cycle, the program counter low will be loaded from address FFFE, and program counter high from location FFFF, therefore transferring program control to the memory vector located at these addresses. The RDY signal must be in the high state for any interrupt to be recognized. A $3 \mathrm{~K} \Omega$ external resistor should be used for proper wire-OR operation.

Non-Maskable Interrupt (NMI)

A negative going transition on this input requests that a non-maskable interrupt sequence be generated within the microprocessor.
$\overline{\mathrm{NMI}}$ is an unconditional interrupt. Following completion of the current instruction, the sequence of operations defined for $\overline{\mathrm{RQ}}$ will be performed, regardless of the state interrupt mask flag. The vector address loaded into the program counter, low and high, are locations FFFA and FFFB respectively, thereby transferring program control to the memory vector located at these addresses. The instructions loaded at these locations cause the microprocessor to branch to a non-maskable interrupt routine in memory.
$\overline{\mathrm{NMI}}$ also requires an external $3 \mathrm{~K} \Omega$ resistor to V_{CC} for proper wire-OR operations.
Inputs $\overline{\mathrm{RO}}$ and $\overline{\mathrm{NMI}}$ are hardware interrupts lines that are sampled during ϕ_{2} (phase 2) and will begin the appropriate interrupt routine on the ϕ_{1} (phase 1) following the completion of the current instruction.

Set Overflow Flag (S.O.)

A NEGATIVE going edge on this input sets the overflow bit in the Status Code Register. This signal is sampled on the trailing edge of ϕ_{1}.

SYNC

This output line is provided to identify those cycles in which the microprocessor is doing an OP CODE fetch. The SYNC line goes high during ϕ_{1} of an OP CODE fetch and stays high for the remainder of that cycle. If the RDY line is pulled low during the ϕ_{1} clock pulse in which SYNC went high, the processor will stop in its current state and will remain in the state until the RDY line goes high. In this manner, the SYNC signal can be used to control RDY to cause single instruction execution.

Reset ($\overline{\mathrm{RES}}$)

This input is used to reset or start the microprocessor from a power down condition. During the time that this line is held low, writing to or from the microprocessor is inhibited. When a positive edge is detected on the input, the microprocessor will immediately begin the reset sequence.
After a system ınitialization tıme of six clock cycles, the mask interrupt flag will be set and the microprocessor will load the program counter from the memory vector locations FFFC and FFFD. This is the start location for program control.

After $V_{\text {CC }}$ reaches 4.75 volts in a power up routine, reset must be held low for at least two clock cycles. At this time the $\mathrm{R} / \overline{\mathrm{W}}$ and SYNC signal will become valid.

When the reset signal goes high following these two clock cycles, the microprocessor will proceed with the normal reset procedure detailed above.

Read/Write (R/W)

This output signal is used to control the direction of data transfers between the processor and other circuits on the data bus. A high level on $\mathrm{R} / \overline{\mathrm{W}}$ signifies data into the processor; a low is for the data transfer out of the processor.

Programming Characteristics

INSTRUCTION SET - ALPHABETIC SEQUENCE

```
ADC Add Memory to Accumulator with Carry
AND "AND" Memory with Accumulator
ASL Shift left One Bit (Memory or Accumulator)
BCC Branch on Carry Clear
BCS Branch on Carry Set
BEQ Branch on Result Zero
BIT Test Bits in Memory with Accumulator
BMI Branch on Result Minus
BNE Branch on Result not Zero
BPL Branch on Result Plus
BRK Force Break
BVC Branch on Overflow Clear
BVS Branch on Overflow Set
CLC Clear Carry Flag
CLD Clear Decimal Mode
CLI Clear Interrupt Disable Bit
CLV Clear Overflow Flag
CMP Compare Memory and Accumulator
CPX Compare Memory and Index X
CPY Compare Memory and Index Y
DEC Decrement Memory by One
DEX Decrement Index X by One
DEY Decrement Index Y by One
EOR "Exclusive-or" Memory with Accumulator
INC Increment Memory by One
INX Increment Index X by One
INY Increment Index Y by One
JMP Jump to New Location
JSR Jump to New Location Saving Return Address
```

LDA Load Accumulator with Memory
LDX Load Index X with Memory
LDY Load Index Y with Memory
LSR Shift One Bit Right (Memory or Accumulator)
NOP No Operation
ORA "OR" Memory with Accumulator
PHA Push Accumulator on Stack
PHP Push Processor Status on Stack
PLA Pull Accumulator from Stack
PLP Pull Processor Status from Stack
ROL Rotate One Bit Left (Memory or Accumulator)
ROR Rotate One Bit Right (Memory or Accumulator)
RTI Return from Interrupt
RTS Return from Subroutine
SBC Subtract Memory from Accumulator with Borrow
SEC Set Carry Flag
SED Set Decımal Mode
SEI Set Interrupt Disable Status
STA Store Accumulator in Memory
STX Store Index X in Memory
STY Store Index Y in Memory
TAX Transfer Accumulator to Index X
TAY Transfer Accumulator to Index Y
TSX Transfer Stack Pointer to Index X
TXA Transfer Index X to Accumulator
TXS Transfer Index X to Stack Pointer
TYA Transfer Index Y to Accumulator

ADDRESSING MODES

Accumulator Addressing

This form of addressing is represented with a one byte instruction, implying an operation on the accumulator.

Immediate Addressing

In immediate addressing, the operand is contained in the second byte of the instruction, with no further memory addressing required.

Absolute Addressing

In absolute addressing, the second byte of the instruction specifies the eight low order bits of the effective address while the third byte specifies the eight high order bits. Thus, the absolute addressing mode allows access to the entıre 65 K bytes of addressable memory

Zero page Addressing

The zero page instructions allow for shorter cqde and execution times by only fetching the second byte of the instruction and assuming a zero high address byte. Careful use of the zero page can result in significant increase in code efficiency.

Indexed Zero Page Addressing - (X, Y indexing)

This form of addressing is used in conjunction with the index register and is referred to as "Zero Page, X " or "Zero

Page, Y " The effective address is calculated by adding the second byte to the contents of the index register. Since this is a form of "Zero Page" addressing, the content of the second byte references a location in page zero Additionally due to the "Zero Page" addressing nature of this mode, no carry is added to the high order 8 bits of memory and crossing of page boundaries does not occur.

Indexed Absolute Addressing - (\mathbf{X}, Y indexing)

This form of addressing is used in conjunctıon with X and Y index register and is referred to as "Absolute, X," and "Absolute, Y ." The effective address is formed by addıng the contents of X or Y to the address contained in the second and third bytes of the instruction. This mode allows the index register to contain the index or count value and the instruction to contain the base address. This type of indexing allows any location referencing and the index to modify multiple fields resulting in reduced coding and execution tıme.

Implied Addressing

In the implıed addressing mode, the address containing the operand is implicitly stated in the operation code of the instruction.

Relative Addressing

Relative addressing is used only with branch instructions and establishes a destination for the conditional branch.

The second byte of the instruction becomes the operand which is an "Offset" added to the contents of the lower eight bits of the program counter when the counter is set at the next instruction. The range of the offset is -128 to +127 bytes from the next instruction.

Indexed Indirect Addressing

In indexed indırect addressing (referred to as [Indirect, X]), the second byte of the instruction is added to the contents of the X index register, discarding the carry. The result of this addition points to a memory location on page zero whose contents is the low order eight bits of the effective address. The next memory location in page zero contains the high order eight bits of the effective address. Both memory locations specifying the high and low order bytes of the effective address must be in page zero.

Programming Characteristics

PROGRAMMING MODEL

Indirect Indexed Addressing

In indirect indexed addressing (referred to as [Indirect], Y), the second byte of the instruction points to a memory location in page zero. The contents of this memory location is added to the contents of the Y index register, the result being the low order eight bits of the effective address. The carry from this addition is added to the contents of the next page zero memory location, the result being hte high order eight bits of the effective address.

Absolute Indirect

The second byte of the instruction contains the Iwo order eight bits of a memory location. The high order eight bits of that memory location is contained in the third byte of the instruction. The contents of the fully specified memory location is the low order byte of the effective address. The next memory location contains the high order byte of the effective address which is loaded into the sixteen bits of the program counter.

INSTRUCTION SET - OP CODES, EXECUTION TIME, MEMORY REQUIREMENTS

SY6502 - 40 Pin Package

$\mathrm{vss}^{\text {d }}$	1	40	$\square \overline{\mathrm{RES}}$
RDY ${ }^{\text {d }}$	2	39	$\square \square_{2}$ (OUT)
\emptyset_{1} (OUT)	3	38	$\square \mathrm{so}$
IRO-	4	37	$\square \varnothing_{0}(1 N)$
NC	5	36	$\square \mathrm{NC}$
NMİ	6	35	$\square \mathrm{nc}$
sync \square	7	34	$\square \mathrm{R} / \overline{\mathrm{w}}$
$\mathrm{vcc}^{\text {c }}$	8	33	$\square \mathrm{DBo}$
ABo	9	32	$\square \mathrm{DB1}$
AB1	10	31	$\square \mathrm{DB2}$
AB2 ${ }^{-1}$	11	30	$\square \mathrm{DB3}$
AB3	12	29	$\square \mathrm{DB4}$
$A B 4-$	13	28	$\square \mathrm{DB5}$
AB5 -	14	27	$\square \mathrm{DB6}$
AB6 $\square^{\text {a }}$	15	26	$\square \mathrm{DB7}$
AB7 \square^{-1}	16	25	$\square A B 15$
AB8	17	24	AB14
AB9	18	23	$\square \mathrm{AB} 13$
AB10	19	22	$\square A B 12$
AB11	20	21	v_{ss}

Features

- 65K Addressable Bytes of Memory
- IRO Interrupt - $\overline{\text { NMI Interrupt }}$
- On-the-chip Clock
\checkmark TTL Level Single Phase Input
\checkmark Crystal Time Base Input
- SYNC Signal
(can be used for single instruction execution)
- RDY Signal
(can be used for single cycle execution)
- Two Phase Output Clock for Timing of Support Chips

SY6503-28 Pin Package

RES	1	28	$\square \varnothing_{2}$ (OUT)
$\mathrm{V}_{\text {SS }} \square$	2	27	$\square \emptyset_{0}$ (IN)
IRO-	3	26	$\square \mathrm{R} / \bar{W}$
NMI \square	4	25	$\square \mathrm{DBO}$
$\mathrm{V}_{\mathrm{CC}} \square$	5	24	DB1
$A B 0 \square$	6	23	$\square \mathrm{DB2}$
AB1 \square	7	22	\square DB3
$A B 2 \square$	8	21	DB4
AB3 \square	9	20	DB5
AB4 \square	10	19	DB6
AB5 \square	11	18] DB7
$A B 6$	12	17	$\square A B 11$
$A B 7 \square$	13	16	$\square A B 10$
AB8 \square	14	15	$\square \mathrm{AB9}$

Features

- 4K Addressable Bytes of Memory (AB00-AB11)
- On-the-chıp Clock
- IRQ Interrupt
- $\overline{\mathrm{NMI}}$ Interrupt
- 8 Bit Bı-Directional Data Bus

SY6504 \& SY6507 - 28 Pin Package

Features

- IRQ Interrupt (6504 only)
- RDY Signal (6507 only)
- 8K Addressable Bytes of Memory (AB00-AB12)
- On-the-chip Clock
- 8 Bit Bı-Directional Data Bus

SY6505－ 28 Pin Package

Features

－4K Addressable Bytes of Memory（AB00－AB11）
－On－the－chıp Clock
－$\overline{\mathrm{RO}}$ Interrupt
－RDY Signal
－ 8 Bit Bı－Dırectıonal Data Bus

SY6506－ 28 Pin Package

Features

－ 4 K Addressable Bytes of Memory（AB00－AB11）
－On－the－chıp Clock
－IRQ Interrupt
－Two phases off
－ 8 Bit Bi－Directional Data Bus

SY6512－ 40 Pin Package

$\mathrm{v}_{\mathrm{ss}}{ }^{1}$	40	$\overline{\mathrm{RES}}$	
RDY ${ }^{2}$	39	$\square^{a_{2}}$（OUT）	Features
$\emptyset_{1} \square^{3}$	38	－so	
－	37	$\square{ }^{\text {a }}$	－65K Addressable Bytes of Memory
$\mathrm{v}_{\mathrm{ss}} \mathrm{C}_{5}$	36	Jdbe	
NM1 ${ }^{6}$	35	］nc	－IRQ Interrupt
sync ${ }^{\text {7 }}$	34	万r／̄／	
$\mathrm{v}_{\mathrm{cc}} \mathrm{D}^{8}$	33	万obo	－NMI Interrupt
${ }^{\text {abo }}{ }^{-9}$	32	D81	－RDY Signal
AB1 10	31	－ ¢b2	－RDY Signal
${ }^{\text {AB2 }}{ }^{11}$	30	$\mathrm{p}^{\text {dB3 }}$	－ 8 Bit Bi－Directıonal Data Bus
AB3 12	29	］DB4	
${ }^{\text {A } 4-13}$	28	］${ }^{\text {b }} 5$	－SYNC Signal
${ }^{\text {AB5 }}$－${ }^{14}$	27	$\mathrm{J}^{\text {dB6 }}$	
${ }^{\text {AB6 }} 15$	26	Јob7	－Two phase input
${ }^{\text {AB7 }}$－ 16	25	万ab15	－Data Bus Enable
AB8 ${ }^{17}$	24	Dab14	
AB9 18	23	］ab13	
${ }^{\text {AB10 }} 19$	22	ПAB12	
AB11 20	21	p^{ss}	

$\mathrm{v}_{\mathrm{ss}} \square_{1}$	28	$\overline{\mathrm{RES}}$
$\emptyset_{1} \square_{2}$	27	\square_{2}
$\overline{\mathrm{RO}}$	26	R / \bar{W}
तला 4	25	$\square \mathrm{DB}$ о
$\mathrm{vcCr}^{\text {C }}$	24	］DB1
$A B 0 \square 6$	23	$\square \mathrm{DB} 2$
$A B 1-$	22	DB3
$A B 28$	21	］DB4
AB3 9	20	－DB5
AB4 10	19	］DB6
AB5 11	18	－DB7
AB6 12	17	$\square \mathrm{AB} 1$
AB7 13	16	$\square \mathrm{AB10}$
AB8 14	15	］ $\mathrm{AB9}$

Features

－4K Addressable Bytes of Memory（AB00－AB11）
－Two phase clock input
－IRO Interrupt
－$\overline{\text { NMI Interrupt }}$
－ 8 Bit Bi－Directional Data Bus

SY6514－ 28 Pin Package

$\mathrm{v}_{\text {ss }} \square_{1}$	28	万 $\overline{\mathrm{RES}}$
$ø_{1} \mathrm{C}_{2}$	27	$\square \square_{2}$
$\overline{\mathrm{RO}} \square^{3}$	26	口 $\mathrm{R} / \overline{\mathrm{W}}$
$\mathrm{V}_{\mathrm{cc}} \square_{4}$	25	$\square \mathrm{DB0}$
${ }^{\text {ABO }} 5$	24	］DB1
$A B 1{ }^{6}$	23	DB2
$A B 2{ }^{\text {C }} 7$	22	\square DB3
$A B 3-8$	21	口DB4
AB4 9	20	口DB5
AB5 10	19	Пов6
AB6 11	18	$\square \square^{\square}{ }^{\text {d }}$
AB7 12	17	$\square A B 12$
AB8 13	16	$\square A B 11$
AB9 14	15	$\square \mathrm{AB} 10$

Features

－ 8 K Addressable Bytes of Memory（AB00－AB12）
－Two phase clock input
－$\overline{\mathrm{RQ}}$ Interrupt
－ 8 Bıt Bı－Directıonal Data Bus

SY6515－ 28 Pin Package

$\mathrm{v}_{\text {ss }}{ }^{\text {d }}$	28	$\square \overline{R E S}$
RDY 2	27	$\square \mathrm{D}_{2}$
$\emptyset_{1} \square_{3}$	26	$\square \mathrm{R} / \bar{W}$
iRQ ${ }_{4}$	25	$\square \mathrm{DBO}$
$\mathrm{v}_{\mathrm{cc}} \square_{5}$	24	Пов1
$A B O 6$	23	$\square \mathrm{DB2}$
AB1 7	22	－DB3
$A B 2 \square 8$	21	$\square \mathrm{DB4}$
$A B 3 \square$	20	$\square \mathrm{DB5}$
AB4 10	19	$\square \mathrm{DB6}$
AB5 11	18	$\square \square^{\text {D } 7}$
AB6 12	17	$\square \mathrm{AB} 11$
$A B 7-13$	16	\square АВ10
AB8 14	15	$\square \mathrm{AB9}$

Features
－ 4 K Addressable Bytes of Memory（AB00－AB11）
－Two phase clock input
－$\overline{\mathrm{RQ}}$ Interrupt
－ 8 Bit Bi－Directional Data Bus

Clock Generation Circuits*
*For further detalis refer to Synertek SY6500 Applications Information Note AN2. Crystals used are CTS Knight MP Series or equivalents. (Series Mode)

.Features

- Two 8-Bit Bidirectional I/O Ports
- Two 16-Bit Programmable Timer/Counters
- Expanded "Handshake" Capability Allows Positive

Control of Data Transfers Between Processor and

- Serial Data Port
- Single +5 V Power Supply

Peripheral Devices

- TTL Compatible
- CMOS Compatible Peripheral Port A lines
- Latched Output and Input Registers
- 1 MHz and 2 MHz Operation

Description

The SY6522 Versatile Interface Adapter (VIA) is a very flexible I/O control device. In addition, this device contains a pair of very powerful 16 -bit interval timers, a serial-to-parallel/parallel-to-serial shift register and input data latching on the peripheral ports. Expanded handshaking capability allows control of bi-directional data transfers between VIA's in multiple processor systems.
Control of peripheral devices is handled primarily through two 8 -bit bi-directional ports. Each line can
be programmed as either an input or an output. Several peripheral I/O lines can be controlled directly from the interval timers for generating programmable frequency square waves or for counting externally generated pulses. To facilitate control of the many powerful features of this chip, an interrupt flag register, an interrupt enable register and a pair of function control registers are provided.

Figure 1. SY6522 Block Diagram

Absolute Maximum Ratings*

Rating	Symbol	Value	Unit
Supply Voltage	V_{CC}	-0.3 to +7.0	V
Input Voltage	$V_{\text {IN }}$	-0.3 to +7.0	V
Operating Temperature Range	$\mathrm{T}_{\text {A }}$	0 to +70	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-55 to +150	${ }^{\circ} \mathrm{C}$

Comment*

This device contains circuitry to protect the inputs against damage due to high static voltages. However, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages.

Electrical Characteristics $\quad\left(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=0-70^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Symbol	Characteristic	Min.	Max.	Unit
$\mathrm{V}_{1 \mathrm{H}}$	Input High Voltage (all except ϕ 2)	2.4	V_{CC}	V
V_{CH}	Clock High Voltage	2.4	V_{Cc}	V
$V_{\text {IL }}$	Input Low Voltage	-0.3	0.4	V
IIN	```Input Leakage Current - V VIN =0 to 5 Vdc R/\overline{W},\overline{RES}, RS0, RS1, RS2, RS3, CS1, \overline{CS2}, CA1, Ф2```	-	± 2.5	$\mu \mathrm{A}$
${ }^{\text {TSI }}$	$\begin{aligned} & \text { Off-state Input Current }-V_{I N}=.4 \text { to } 2.4 \mathrm{~V} \\ & V_{C C}=M a x, D 0 \text { to } D 7 \end{aligned}$	-	± 10	$\mu \mathrm{A}$
$I_{\text {IH }}$	Input High Current $-\mathrm{V}_{\mathrm{IH}}=2.4 \mathrm{~V}$ PA0-PA7, CA2, PB0-PB7, CB1, CB2	-100	-	$\mu \mathrm{A}$
IIL	Input Low Current $-\mathrm{V}_{\mathrm{IL}}=0.4 \mathrm{Vdc}$ PAO-PA7, CA2, PBO-PB7, CB1, CB2	-	-1.6	mA
V_{OH}	```Output High Voltage VCC}=min, I Ioad = -100 \muAd PA0-PA7, CA2, PB0-PB7, CB1, CB2```	2.4	-	V
V_{OL}	$\begin{aligned} & \text { Output Low Voltage } \\ & V_{\mathrm{CC}}=\mathrm{min}, \mathrm{I}_{\text {load }}=1.6 \mathrm{mAdc} \end{aligned}$	-	0.4	V
IOH	Output High Current (Sourcing) $\begin{aligned} & \mathrm{V}_{\mathrm{OH}}=2.4 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{OH}}=1.5 \mathrm{~V}(\mathrm{PBO}-\mathrm{PB} 7) \end{aligned}$	$\begin{array}{r} -100 \\ -1.0 \\ \hline \end{array}$	$-$	$\begin{array}{r} \mu \mathrm{A} \\ \mathrm{~mA} \\ \hline \end{array}$
IOL	Output Low Current (Sinking) $\mathrm{V}_{\mathrm{OL}}=0.4 \mathrm{Vdc}$	1.6	-	mA
IOFF	Output Leakage Current (Off state) $\overline{\text { RO }}$	-	10	$\mu \mathrm{A}$
$\mathrm{C}_{\text {IN }}$	Input Capacitance $-\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$ (R/W, $\overline{\mathrm{RES}}, \mathrm{RS} 0, \mathrm{RS} 1, \mathrm{RS} 2, \mathrm{RS} 3, \mathrm{CS} 1, \overline{\mathrm{CS} 2}$, D0-D7, PAO-PA7, CA1, CA2, PB0-PB7) (CB1, CB2) ($\Phi 2$ Input)	- - -	$\begin{array}{r} 7.0 \\ 10 \\ 20 \\ \hline \end{array}$	pF pF pF
$\mathrm{C}_{\text {OUT }}$	Output Capacitance $-\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$	-	10	pF
$P_{\text {D }}$	Power Dissipation ($\mathrm{V}_{\text {CC }}=5.25 \mathrm{~V}$)	-	700	mW

Test Load

OPEN COLLECTOR OUTPUT TEST LOAD

Figure 2. Test Load (for all Dynamic Parameters)

Figure 3. Read Timing Characteristics

Read Timing Characteristics (Figure 3)

Symbol	Parameter		SY6522		SY6522A	
		Min.	Max.	Min.	Max.	Unit
T_{CY}	Cycle Time	1	50	0.5	50	
$\mathrm{~T}_{\text {ACR }}$	Address Set-Up Time	180	-	90	-	ns
$\mathrm{T}_{\text {CAR }}$	Address Hold Time	0	-	0	-	ns
$\mathrm{T}_{\text {PCR }}$	Peripheral Data Set-Up Time	300	-	300	-	ns
$\mathrm{T}_{\text {CDR }}$	Data Bus Delay Time	-	340	-	200	ns
$\mathrm{~T}_{\text {HR }}$	Data Bus Hold Time	10	-	10	-	ns

NOTE: $\mathrm{tr}, \mathrm{tf}=10$ to 30 ns .

Figure 4. Write Timing Characteristics

Write Timing Characteristics (Figure 4)

Symbol	Parameter	SY6522		SY6522A		Unit
		Min.	Max.	Min.	Max.	
T_{CY}	Cycle Time	1	50	0.50	50	$\mu \mathrm{s}$
T_{C}	$\phi 2$ Pulse Width	0.44	25	0.22	25	$\mu \mathrm{s}$
TACW	Address Set-Up Time	180	-	90	-	ns
TCAW	Address Hold Time	0	-	0	-	ns
Twcw	R/W Set-Up Time	180	-	90	-	ns
TCWW	R/产 Hold Time	0	-	0	-	ns
TDCW	Data Bus Set-Up Time	300	-	150	-	ns
THW	Data Bus Hold Time	10	-	10	-	ns
TCPW	Peripheral Data Delay Time	-	1.0	-	1.0	$\mu \mathrm{s}$
Tcmos	Peripheral Data Delay Time to CMOS Levels	-	2.0	-	2.0	$\mu \mathrm{s}$

NOTE: $\mathrm{tr}, \mathrm{tf}=10$ to 30 ns .

Peripheral Interface Characteristics

Symbol	Characteristic	Min.	Max.	Typ.	Unit	Figure
$\mathrm{tr}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	Rise and Fall Time for CA1, CB1, CA2, and CB2 Input Signals	-	1.0		$\mu \mathrm{S}$	-
TCA2	Delay Time, Clock Negative Transition to CA2 Negative Transition (read handshake or pulse mode)	-	1.0		$\mu \mathrm{S}$	5a, 5b
T_{RS}	Delay Time, Clock Negative Transition to CA2 Positive Transition (pulse mode)	-	1.0		$\mu \mathrm{S}$	5 a
$\mathrm{T}_{\mathrm{RS} 2}$	Delay Time, CA1 Active Transition to CA2 Positive Transition (handshake mode)	-	2.0		$\mu \mathrm{s}$	5b
$\mathrm{T}_{\text {WHS }}$	Delay Time, Clock Posıtive Transition to CA2 or CB2 Negative Transition (write handshake)	0.05	1.0		$\mu \mathrm{S}$	$5 \mathrm{c}, 5 \mathrm{~d}$
T_{DS}	Delay Time, Peripheral Data Valıd to CB2 Negative Transition	0.20	1.5		$\mu \mathrm{S}$	5c, 5d
$\mathrm{T}_{\mathrm{RS} 3}$	Delay Time, Clock Transition to CA2 or CB2 Positive Transition (pulse mode)	-	1.0		$\mu \mathrm{S}$	5c
$\mathrm{T}_{\text {RS4 }}$	Delay Time, CA1 or CB1 Active Transition to CA2 or CB2 Positive Transition (handshake mode)	-	2.0		$\mu \mathrm{S}$	5d
T21	Delay Time Required from CA2 Output to CA1 Active Transition (handshake mode)	400	-		ns	5d
$\mathrm{T}_{\text {IL }}$	Set-up Time, Peripheral Data Valid to CA1 or CB1 Active Transition (Input latching)	300	-		ns	5 e
$\mathrm{T}_{\text {SR1 }}$	Shift-Out Delay Time - Tıme from ϕ_{2} Falling Edge to CB2 Data Out	-	300		ns	$5 f$
$\mathrm{T}_{\text {SR2 }}$	Shift-In Setup Time - Time from CB2 Data in to ϕ_{2} Rising Edge	300	-		ns	5 g
$\mathrm{T}_{\text {SR3 }}$	External Shift Clock (CB1) Setup Time Relative to ϕ_{2} Traıling Edge	100	T_{CY}		ns	5 g
TIPW	Pulse Width - PB6 Input Pulse	$2 \times \mathrm{T}_{C Y}$	-			$5 i$
Ticw	Pulse Width - CB1 Input Clock	$2 \times \mathrm{T}_{C Y}$	-			5h
TIPS	Pulse Spacing - PB6 Input Pulse	$2 \times \mathrm{T}_{\mathrm{CY}}$	-			51
TICS	Pulse Spacing - CB1 Input Pulse	$2 \times \mathrm{T}_{\mathrm{CY}}$	-			5h
T_{AL}	CA1, CB1 Set Up Prior to Transition to Arm Latch	$\mathrm{T}_{\mathrm{C}}+50$	-		ns	5 e
$\mathrm{T}_{\text {PDH }}$	Perıpheral Data Hold After CA1, CB1 Transition	150	-		ns	5 e
$\mathrm{T}_{\text {PWI }}$	Set Up Required on CA1, CB1, CA2 or CB2 Prior to Trıggering Edge	$\mathrm{T}_{\mathrm{C}}+50$	-		ns	5 J
TDPR TDPL	Shift Register Clock - Delay from ϕ_{2} to CB1 Rising Edge to CB1 Falling Edge			$\begin{array}{r} 200 \\ 125 \\ \hline \end{array}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \hline \end{aligned}$	$\begin{aligned} & 5 k \\ & 5 k \end{aligned}$

SY6522/SY6522A

Figure 5a. CA2 Tïming for Read Handshake, Pulse Mode

Figure 5b. CA2 Timing for Read Handshake, Handshake Mode

Figure 5c. CA2, CB2 Timing for Write Handshake, Pulse Mode

Figure 5d. CA2, CB2 Timing for Write Handshake, Handshake Mode

Figure 5e. Peripheral Data Input Latching Timing

Figure 5f. Timing for Shift Out with Internal or External Shift Clocking

Figure 5g. Timing for Shift In with Internal or External Shift Clocking

Figure 5h. External Shift Clock Timing

Figure 5i. Pulse Count Input Timing

Figure 5j. Setup Time to Triggering Edge

Figure 5k. Shift-in/out with Internal Clock Delay CD2 to CB1 Edge

Pin Descriptions

$\overline{\text { RES (Reset) }}$

The reset input clears all internal registers to logic 0 (except T1 and T2 latches and counters and the Shift Register). This places all peripheral interface lines in the input state, disables the timers, shift register, etc. and disables interrupting from the chip.

$\phi 2$ (Input Clock)

The input clock is the system $\phi 2$ clock and is used to trigger all data transfers between the system processor and the SY6522.

R/W (Read/Write)

The direction of the data transfers between the SY6522 and the system processor is controlled by the R / \bar{W} line. If R / \bar{W} is low, data will be transferred out of the processor into the selected SY6522 register (write operation). If R / \bar{W} is high and the chip is selected, data will be transferred out of the SY6522 (read operation).

DB0-DB7 (Data Bus)

The eight bi-directional data bus lines are used to transfer data between the SY6522 and the system processor. During read cycles, the contents of the selected SY6522 register are placed on the data bus lines and transferred into the processor. During write cycles, these lines are high-impedance inputs and data is transferred from the processor into the selected register. When the SY6522 is unselected, the data bus lines are high-impedance.

CS1, CS2 (Chip Selects)

The two chip select inputs are normally connected to processor address lines either directly or through decoding. The selected SY6522 register will be accessed when CS1 is high and $\overline{\mathrm{CS} 2}$ is low.

RS0-RS3 (Register Selects)

The four Register Select inputs permit the system processor to select one of the 16 internal registers of the SY6522, as shown in Figure 6.

Register Number	RS Coding				Register Desig.	Description	
	RS3	RS2	RS1	RSO		Write	Read
0	0	0	0	0	ORB/IRB	Output Register "B"	Input Register "B"
1	0	0	0	1	ORA/IRA	Output Register " ${ }^{\text {" }}$ "	Input Register " A "
2	0	0	1	0	DDRB	Data Direction Register "B"	
3	0	0	1	1	DDRA	Data Direction Register " $\mathrm{A}^{\prime \prime}$	
4	0	1	0	0	T1C-L	T1 Low-Order Latches	T1 Low-Order Counter
5	0	1	0	1	T1C-H	T1 High-Order Counter	
6	0	1	1	0	T1L-L	T1 Low-Order Latches	
7	0	1	1	1	T1L-H	T1 High-Order Latches	
8	1	0	0	0	T2C-L	T2 Low-Order Latches	T2 Low-Order Counter
9	1	0	0	1	T2C-H	T2 High-Order Counter	
10	1	0	1	0	SR	Shift Register	
11	1	0	1	1	ACR	Auxiliary Control Register	
12	1	1	0	0	PCR	Peripheral Control Register	
13	1	1	0	1	IFR	Interrupt Flag Register	
14	1	1	1	0	IER	Interrupt Enable Register	
15	1	1	1	1	ORA/IRA	Same as Reg 1 Except No "Handshake"	

Figure 6. SY6522 Internal Register Summary

$\overline{\text { IRQ }}$ (Interrupt Request)

The Interrupt Request output goes low whenever an internal interrupt flag is set and the corresponding interrupt enable bit is a logic 1 . This output is "opendrain" to allow the interrupt request signal to be "wire-or'ed" with other equivalent signals in the system.

PA0-PA7 (Peripheral A Port)

The Peripheral A port consists of 8 lines which can be individually programmed to act as inputs or outputs under control of a Data Direction Register. The polarity of output pins is controlled by an Output Register and input data may be latched into an internal register under control of the CA1 line. All of these modes of operation are controlled by the system processor through the internal control registers. These lines represent one standard TTL load in the input mode and will drive one standard TTL load in the output mode. Figure 7 illustrates the output circuit.

CA1, CA2 (Peripheral A Control Lines)

The two Peripheral A control lines act as interrupt inputs or as handshake outputs. Each line controls an internal interrupt flag with a corresponding interrupt enable bit. In addition, CA1 controls the latching of data on Peripheral A port input lines. CA1 is a highimpedance input only; while CA2 represents one standard TTL load in the input mode. CA2 will drive one standard TTL load in the output mode.

Figure 7. Peripheral A Port Output Circuit

PB0-PB7 (Peripheral B Port)

The Peripheral B port consists of eight bi-directional lines which are controlled by an output register and a data direction register in much the same manner as the

PA port. In addition, the PB7 output signal can be controlled by one of the interval timers while the second timer can be programmed to count pulses on the PB6 pin. Peripheral B lines represent one standard TTL load in the input mode and will drive one standard TTL load in the output mode. In addition, they are capable of sourcing 1.0 mA at 1.5 VDC in the output mode to allow the outputs to directly drive Darlington transistor circuits. Figure 8 is the circuit schematic.

CB1, CB2 (Peripheral B Control Lines)

The Peripheral B control lines act as interrupt inputs or as handshake outputs. As with CA1 and CA2, each line controls an interrupt flag with a corresponding interrupt enable bit. In addition, these lines act as a serial port under control of the Shift Register. These lines represent one standard TTL load in the input mode and will drive one standard TTL load in the output mode. Unlike PB0-PB7, CB1 and CB2 cannot drive Darlington transistor circuits.

Figure 8. Peripheral B Port Output Circuit

FUNCTIONAL DESCRIPTION

Port A and Port B Operation
Each 8-bit peripheral port has a Data Direction Register (DDRA, DDRB) for specifying whether the peripheral pins are to act as inputs or outputs. A 0 in a bit of the Data Direction Register causes the corresponding peripheral pin to act as an input. A 1 causes the pin to act as an output.

When programmed as an output each peripheral pin is also controlled by a corresponding bit in the Output Register (ORA, ORB). A 1 in the Output Register causes the output to go high, and a " 0 " causes the output to go low. Data may be written into Output Register bits correspending to pins which are pro-
grammed as inputs. In this case, however, the output signal is unaffected.
Reading a peripheral port causes the contents of the Input Register (IRA, IRB) to be transferred onto the Data Bus. With input latching disabled, IRA will always reflect the levels on the PA pins. With input latching enabled and the selected active transition on CA1 having occurred, IRA will contain the data present on the PA lines at the time of the transition. Once IRA is read, however, it will appear transparent, reflecting the current state of the PA lines until the next "latching" transition.

The IRB register operates similar to the IRA register. However, for pins programmed as outputs there is a difference. When reading IRA, the level on the pin determines whether a 0 or a 1 is sensed. When reading IRB, however, the bit stored in the output register, ORB, is the bit sensed. Thus, for outputs which have large loading effects and which pull an output " 1 " down or which pull an output " 0 " up, reading IRA may result in reading a " 0 " when a " 1 " was actually programmed, and reading a " 1 " when a " 0 " was programmed. Reading IRB, on the other hand, will read the " 1 " or " 0 " level actually programmed, no matter what the loading on the pin.

Figures 9,10, and 11 illustrate the formats of the port registers. In addition, the input latching modes are selected by the Auxiliary Control Register (Figure 16.)

Handshake Control of Data Transfers

The SY6522 allows positive control of data transfers between the system processor and peripheral devices

REG 0 - ORB/IRB

OUTPUT REGISTER "B" (ORB)
OR
INPUT REGISTER "B" (ORB)

$\begin{gathered} \text { Pın } \\ \text { Data Direction } \\ \text { Selection } \end{gathered}$	WRITE	READ
DDRB = "1" (OUTPUT)	MPU writes Output Level (ORB)	MPU reads output register bit in ORB Pin level has no affect
DDRB = "0" (INPUT) (Input latching disabled)	MPU writes into ORB, but no effect on pin level, until DDRB changed	MPU reads input level on PB pin
DDRB $=$ " 0 " (INPUT) (Input latching enabled)		MPU reads IRB bit, which is the level of the PB pin at the tume of the last CB1 active transition

Figure 9. Output Register B (ORB), Input Register B (IRB)

REG 1 - ORA/IRA

Figure 10. Output Register A (ORA), Input Register A (IRA)

REG 2 (DDRB) AND REG 3 (DDRA)

" 0 " ASSOCIATED PB/PA PIN IS AN INPUT (HIGH IMPEDANCE)
" 1 " ASSOCIATED PB/PA PIN IS AN OUTPUT, WHOSE LEVEL IS DETERMINED BY ORB/ORA REGISTER BIT

Figure 11. Data Direction Registers (DDRB, DDRA)
through the operation of "handshake" lines. Port A lines (CA1, CA2) handshake data on both a read and a write operation while the Port B lines (CB1, CB2) handsbake on a write operation only.

Read Handshake

Positive control of data transfers from peripheral devices into the system processor can be accomplished very effectively using Read Handshaking. In this cáse, the peripheral device must generate the equivalent of a "Data Ready" signal to the processor signifying that valid data is present on the peripheral port. This signal normally interrupts the processor, which then reads the data, causing generation of a "Data Taken" signal. The peripheral device responds by making new data available. This process continues until the data transfer is complete.

Figure 12. Read Handshake Timing (Port A, Only)

Figure 13. Write Handshake Timing

In the SY6522, automatic "Read" Handshaking is possible on the Peripheral A port only. The CA1 interrupt input pin accepts the "Data Ready" signal and CA2 generates the "Data Taken" signal. The "Data Ready" signal will set an internal flag which may interrupt the processor or which may be polled under program control. The "Data Taken" signal can either be a pulse or a level which is set low by the system processor and is cleared by the "Data Ready" signal. These options are shown in Figure 12 which illustrates the normal Read Handshaking sequence.

Write Handshake

The sequence of operations which allows handshaking data from the system processor to a peripheral device is very similar to that described for Read Handshaking. However, for Write Handshaking, the SY6522 generates the "Data Ready" signal and the peripheral device must respond with the "Data Taken" signal. This can be accomplished on both the PA port and the PB port on the SY6522. CA2 or CB2 act as a "Data Ready" output in either the handshake mode or pulse mode and CA1 or CB1 accept the "Data Taken" signal from the peripheral device, setting the interrupt flag and cleaning the "Data Ready" output. This sequence is shown in Figure 13.

Selection of operating modes for CA1, CA2, CB1, and CB2 is accomplished by the Peripheral Control Register (Figure 14).

Timer Operation

Interval Timer T1 consists of two 8-bit latches and a 16 -bit counter. The latches are used to store data which is to be loaded into the counter. After loading, the counter decrements at $\phi 2$ clock rate. Upon reaching zero, an interrupt flag will be set, and $\overline{\mathrm{IRQ}}$ will go low if the interrupt is enabled. The timer will then disable any further interrupts, or (when programmed to) will automatically transfer the contents of the latches into the counter and begin to decrement again. In addition, the timer may be programmed to invert the output signal on a peripheral pin each time it "times-out". Each of these modes is discussed separately below.
The T1 counter is depicted in Figure 15 and the latches in Figure 16.

REG 12 - PERIPHERAL CONTROL REGISTER

Figure 14. CA1, CA2, CB1, CB2 Control

Two bits are provided in the Auxiliary Control Register (bits 6 and 7) to allow selection of the T1 oper-
ating modes. The four possible modes are depicted in Figure 17.

REG 4 - TIMER 1 LOW-ORDER COUNTER

WRITE - 8 BITS LOADED INTO T1 LOW-ORDER LATCHES. LATCH CONTENTS ARE TRANSFERRED INTO LOW-ORDER COUNTER AT THE TIME THE HIGHORDER COUNTER IS LOADED (REG 5).
READ - 8 BITS FROM T1 LOW-ORDER COUNTER TRANSFERRED TO MPU. IN ADDITION, T1 INTERRUPT FLAG IS RESET (BIT 6 IN INTERRUPT FLAG REGISTER)

REG 5 - TIMER 1 HIGH-ORDER COUNTER

WRITE - 8 BITS LOADED INTO T1 HIGH-ORDER LATCHES. ALSO, AT THIS TIME BOTH HIGH AND LOW-ORDER LATCHES TRANSFERRED INTO T1 COUNTER, AND INITIATES COUNTDOWN. T1 INTERRUPT FLAG ALSO IS RESET
READ - 8 BITS FROM T1 HIGH-ORDER COUNTER TRANSFERRED TO MPU.

Figure 15. T1 Counter Registers

REG 6 - TIMER 1 LOW-ORDER LATCHES

WRITE - 8 BITS LOADED INTO T1 LOW-ORDER
LATCHES THIS OPERATION IS NO
DIFFERENT THAT A WRITE INTO REG 4
READ - 8 BITS FROM T1 LOW-ORDER LATCHES
TRANSFERRED TO MPU UNLIKE REG 4 OPERATION, THIS DOES NOT CAUSE OPERATION, THIS DOES NOT CA

REG 7 - TIMER 1 HIGH-ORDER LATCHES

WRITE - 8 BITS LOADED INTO T1 HIGH-ORDER
LATCHES UNLIKE REG 4 OPERATION
NO LATCH-TO-COUNTER TRANSFERS
TAKE PLACE.
READ - 8 BITS FROM T1 HIGH-ORDER LATCHES
TRANSFERRED TO MPU.

Figure 16. T1 Latch Registers
REG 11 - AUXILIARY CONTROL REGISTER

Figure 17. Auxiliary Control Register
Note: The processor does not write directly into the low order counter (T1C-L). Instead, this half of the counter is loaded automatically from the low order latch when the processor writes into the high order counter. In fact, it may not be necessary to write to the low order counter in some applications since the timing operation is triggered by writing to the high order counter.

Figure 18. Timer 1 and Timer 2 One-Shot Mode Timing

Timer 1 One-Shot Mode

The interval timer one-shot mode allows generation of a single interrupt for each Timer load operation. In addition, Timer 1 can be programmed to produce a single negative pulse on PB7.

To generate a single interrupt ACR bits 6 and 7 must be 0 then either TIL-L or TIC-L must be written with the low-order count value. (A write to TIC-L is effectively a Write to TIL-L). Next the high-order count value is written to TIC-H, (the value is simultaneously written into TIL-H), and TIL-L is transferred to TIC-L. Countdown begins on the ϕ_{2} following the write TIC-H and decrements at the ϕ_{2} rate. T1 interrupt occurs when the counters reach 0 . Generation of a negative pulse on PB7 is done in the same manner except ACR bit 7 must be a one. PB7 will go low after a Write TIC-H and go high again when the counters reach 0 .

The T1 interrupt flag is reset by either writing TIC-H (starting a new count) or by reading TIC-L.

Timing for the one-shot mode is illustrated in Figure 18.

Timer 1 Free-Run Mode

The most important advantage associated with the latches in T1 is the ability to produce a continuous series of evenly spaced interrupts and the ability to produce a square wave on PB7 whose frequency is not affected by variations in the processor interrupt response time. This is accomplished in the "freerunning" mode.

In the free-running mode, the interrupt flag is set and the signal on PB7 is inverted each time the counter reaches zero. However, instead of continuing to decrement from zero after a time-out, the timer automatically transfers the contents of the latch into the counter (16 bits) and continues to decrement from there. It is not necessary to rewrite the timer to enable setting the interrupt flag on the next time-out. The interrupt flag can be cleared by reading TIC-L, by writing directly into the flag as described later, or if a new count value is desired by a write to TIC-H.

All interval timers in the SY6522 are "re-triggerable". Rewriting the counter will always re-initialize the time-out period. In fact, the time-out can be prevented completely if the processor continues to rewrite the timer before it reaches zero. Timer 1 will operate in this manner if the processor writes into the high order counter (T1C-H). However, by loading the latches only, the processor can access the timer during each down-counting operation without affecting the time-out in process. Instead, the data loaded into the latches will determine the length of the next timeout period. This capability is particularly valuable in the free-running mode with the output enabled. In this mode, the signal on PB7 is inverted and the interrupt flag is set with each time-out. By responding to the interrupts with new data for the latches, the processor can determine the period of the next half cycle during each half cycle of the output signal on PB7. In this manner, very complex waveforms can be generated. Timing for the free-running mode is shown in Figure 19.

Note: A precaution to take in the use of PB7 as the timer output concerns the Data Direction Register contents for PB7. Both DDRB bit 7 and ACR bit 7 must be 1 for PB7 to function as the timer output. If either is a 0 , then PB7 functions as a normal output pin, controlled by ORB bit 7.

Figure 19. Timer 1 Free-Run Mode Timing

Timer 2 Operation

Timer 2 operates as an interval timer (in the "oneslot" mode only), or as a counter for counting negative pulses on the PB6 peripheral pin. A single control bit is provided in the Auxiliary Control Register to select between these two modes. This timer is comprised of a "write-only" low-order latch (T2L-L), a "read-only" low-order counter and a read/write high order counter. The counter registers act as a 16 -bit counter which decrements at $\Phi 2$ rate. Figure 20 illustrates the T2 Counter Registers.

Timer 2 One-Shot Mode

As an interval timer, T2 operates in the "one-shot" mode similar to Timer 1. In this mode, T2 provides a single interrupt for each "write T2C-H" operation. After timing out, (reading 0) the counters "roll-over" to all 1 's (FFFF_{16}) and continue decrementing, allowing the user to read them and determine how long T2 interrupt has been set. However, setting of the interrupt flag will be disabled after initial time-out so that it will not be set by the counter continuing to decrement through zero. The processor must rewrite T2C-H to enable setting of the interrupt flag. The interrupt flag is cleared by reading T2C-L or by writing T2C-H. Timing for this operation is shown in Figure 18.

REG 8 - TIMER 2 LOW-ORDER COUNTER

WRITE - 8 BITS LOADED INTO T2 LOW-ORDER LATCHES.
READ - 8 BITS FROM T2 LOW-ORDER COUNTER TRANSFERRED TO MPU T2 INTERRUPT FLAG IS RESET

REG 9 - TIMER 2 HIGH-ORDER COUNTER

WRITE - 8 BITS LOADED INTO T2 HIGH-ORDER
COUNTER ALSO, LOW-ORDER LATCHES
TRANSFERRED TO LOW-ORDER
COUNTER IN ADDITION, T2 INTERRUPT FLAG IS RESET
READ - 8 BITS FROM T2 HIGH-ORDER COUNTER TRANSFERRED TO MPU

Figure 20. T2 Counter Registers

Timer 2 Pulse Counting Mode

In the pulse counting mode, T2 serves primarily to count a predetermined number of negative-going pulses on PB6. This is accomplished by first loading a number into T2. Writing into T2C-H clears the interrupt flag and allows the counter to decrement each time a pulse is applied to PB6. The interrupt flag will be set when T2 reaches zero. At this time the counter will continue to decrement with each pulse on PB6. However, it is necessary to rewrite T2C-H to allow the interrupt flag to set on subsequent down-counting operations. Timing for this mode is shown in Figure 21. The pulse must be low on the leading edge of $\Phi 2$.

Shift Register Operation

The Shift Register (SR) performs serial data transfers into and out of the CB2 pin under control of an internal modulo- 8 counter. Shift pulses can be applied to the CB1 pin from an external source or, with the proper mode selection, shift pulses generated internally will appear on the CB1 pin for controlling external devices.

The control bits which select the various shift register operating modes are located in the Auxiliary Control Register. Figure 22 illustrates the configuration of the SR data bits and the SR control bits of the ACR.

Figures 23 and 24 illustrate the operation of the various shift register modes.

Interrupt Operation

Controlling interrupts withın the SY6522 involves three principal operations. These are flagging the interrupts, enabling interrupts and signaling to the processor that an active interrupt exists within the chip. Interrupt flags are set by interrupting conditions which exist within the chip or on inputs to the chip. These flags normally remain set until the interrupt has been serviced. To determine the source of an interrupt, the microprocessor must examine these flags in order from highest to lowest priority. This is accomplished by reading the flag register into the processor accumulator, shifting this register either right or left and then using conditional branch instructions to detect an active interrupt.

Associated with each interrupt flag is an interrupt enable bit. This can be set or cleared by the processor to enable interrupting the processor from the corresponding interrupt flag. If an interrupt flag is set to a logic 1 by an interrupting condition, and the corresponding interrupt enable bit is set to a 1 , the Interrupt Request Output ($\overline{\mathrm{RQ})}$ will go low. $\overline{\mathrm{IRQ}}$ is an "open-collector" output which can be "wire-or'ed" with other devices in the system to interrupt the processor.

In the SY6522, all the interrupt flags are contained in one register. In addition, bit 7 of this register will be read as a logic 1 when an interrupt exists within the chip. This allows very convenient polling of several devices within a system to locate the source of an interrupt.

Figure 21. Timer 2 Pulse Counting Mode

REG 11 - AUXILIARY CONTROL REGISTER

NOTES
1 WHEN SHIFTING OUT. BIT 7 IS THE FIRST BIT OUT AND SIMULTANEOUSLY IS ROTATED BACK INTO BIT 0
2 WHEN SHIFTING IN, BITS INITIALLY ENTER BIT 0 AND ARE SHIFTED TOWARDS BIT 7

Figure 22. SR and ACR Control Bits

SR Disabled (000)

The 000 mode is used to disable the Shift Register. In this mode the microprocessor can write or read the SR, but the shifting operation is disabled and operation of CB1 and CB2 is controlled by the appropriate bits in the Peripheral Control Register (PCR). In this mode the SR Interrupt Flag is disabled (held to a logic 0).

Shift in Under Control of T2 (001)

In the 001 mode the shifting rate is controlled by the low order 8 bits of T2. Shift pulses are generated on the CB1 pin to control shifting in external devices. The time between transitions of this output clock is a function of the system clock period and the contents of the low order T2 latch (N).

The shifting operation is triggered by writing or reading the shift register. Data is shifted first into the low order bit of SR and is then shifted into the next higher order bit of the shift register on the negative-going edge of each clock pulse. The input data should change before the positive-going edge of the CB1 clock pulse. This data is shifted into the shift register during the ϕ_{2} clock cycle following the positive-going edge of the CB1 clock pulse. After 8 CB1 clock pulses, the shift register interrupt flag will be set and $\overline{\mathrm{IRO}}$ will go low.

Shift in Under Control of $\phi_{\mathbf{2}}$ (010)

In mode 010 the shift rate is a direct function of the system clock frequency. CB1 becomes an output which generates shift pulses for controlling external devices. Timer 2 operates as an independent interval timer and has no effect on SR. The shifting operation is triggered by reading or writing the Shift Register. Data is shifted first into bit 0 and is then shifted into the next higher order bit of the shift register on the trailing edge of each ϕ_{2} clock pulse. After 8 clock pulses, the shift register interrupt flag will be set, and the output clock pulses on CB1 will stop.

Shift in Under Control of External CB1 Clock (011)

In mode 011 CB1 becomes an input. This allows an external device to load the shift register at its own pace. The shift register counter will interrupt the processor each time 8 bits have been shifted in. However, the shift register counter does not stop the shifting operation; it acts simply as a pulse counter. Reading or writing the Shift Register resets the Interrupt flag and initializes the SR counter to count another 8 pulses.
Note that the data is shifted during the first system clock cycle following the positive-going edge of the CB1 shift pulse. For this reason, data must be held stable during the first full cycle following CB1 going high.

Figure 23. Shift Register Input Modes

Shift Out Free-Running at T2 Rate (100)
Mode 100 is very similar to mode 101 in which the shifting rate is set by T2. However, in mode 100 the SR Counter does not stop the shifting operation. Since the Shift Register bit 7 (SR7) is recirculated back into bit 0, the 8 bits loaded into the shift register will be clocked onto CR2 repetitively. In this mode the shift register counter is disabled, and $\overline{\mathrm{RQ}}$ is never set.

Shift Out Under Control of T2 (101)
In mode 101 the shift rate is controlled by T2 (as in the previous mode). However, with each read or write of the shift register the SR Counter is reset and 8 bits are shifted onto CB2. At the same time, 8 shift pulses are generated on CB1 to control shifting in external devices. After the 8 shift pulses, the shifting is disabled, the SR Interrupt Flag is set and CB2 remains at the last data level.

Shift Out Under Control of ϕ_{2} (110)
In mode 110, the shift rate is controlled by the ϕ_{2} system clock.

Shift Out Under Control of External CB1 Clock (111)
In mode 111 shifting is controlled by pulses applied to the CB1 pin by an external device. The SR counter sets the SR Interrupt flag each time it counts 8 pulses but it does not disable the shifting function. Each time the microprocessor writes or reads the shift register, the SR Interrupt flag is reset and the SR counter is initialized to begin counting the next 8 shift pulses on pin CB1. After 8 shift pulses, the interrupt flag is set. The microprocessor can then load the shift register with the next byte of data.

Figure 24. Shift Register Output Modes

The Interrupt Flag Register (IFR) and Interrupt Enable Register (IER) are depicted in Figures 25 and 26, respectively.
The IFR may be read directly by the processor. In addition, individual flag bits may be cleared by writing a " 1 " into the appropriate bit of the IFR. When the proper chip select and register signals are applied to the chip, the contents of this register are placed on the data bus. Bit 7 indicates the status of the IRQ output. This bit corresponds to the logic function: $I R Q=$ IFR6 \times IER6 + IFR5 \times IER5 + IFR4 \times IER4 + IFR3 \times IER3 + IFR2 \times IER2 + IFR1 \times IER1 + IFR0 \times IER0. Note: $X=$ logic AND, $+=$ Logic OR.
The IFR bit 7 is not a flag. Therefore, this bit is not directly cleared by writing a logic 1 into it. It can only be cleared by clearing all the flags in the register or by disabling all the active interrupts as discussed in the next section.

REG 13 - INTERRUPT FLAG REGISTER

* IF THE CA2/CB2 CONTROL IN THE PCR IS SELECTED AS "INDEPENDENT" INTERRUPT INPUT, THEN READING OR WRITING THE OUTPUT REGISTER ORA/ORB WILL NOT CLEAR THE FLAG BIT. INSTEAD, THE BIT MUST BE CLEAR THE FLAG BIT. INSTEAD, THE BIT MUST BE
CLEARED BY WRITING INTO THE IFR, AS DESCRIBED CLEARED BY
PREVIOUSLY

Figure 25. Interrupt Flag Register (IFR)

For each interrupt flag in IFR, there is a corresponding bit in the Interrupt Enable Register. The system processor can set or clear selected bits in this register to facilitate controlling individual interrupts without affecting others. This is accomplished
by writing to address 1110 (IER address). If bit 7 of the data placed on the system data bus during this write operation is a 0 , each 1 in bits 6 through 0 clears the corresponding bit in the Interrupt Enable Register. For each zero in bits 6 through 0, the corresponding bit is unaffected.
Setting selected bits in the Interrupt Enable Register is accomplished by writing to the same address with bit 7 in the data word set to a logic 1. In this case, each 1 in bits 6 through 0 will set the corresponding bit. For each zero, the corresponding bit will be unaffected. This individual control of the setting and clearing operations allows very convenient control of the interrupts during system operation.
In addition to setting and clearing IER bits, the processor can read the contents of this register by placing the proper address on the register select and chip select inputs with the R / \bar{W} line high. Bit 7 will be read as a logic 1.

REG 14 - INTERRUPT ENABLE REGISTER

NOTES.
1 IF BIT 7 IS A " 0 ", THEN EACH " 1 " IN BITS $0-6$ disables The CORRESPONDING INTERRUPT
2. IF BIT 7 IS A " 1 ", THEN EACH " " 1 " IN BITS $0-6$ ENABLES THE CORRESPONDING INTERRUPT.
3 IF A READ OF THIS REGISTER IS DONE, BIT 7 WILL BE " 1 " AND ALL OTHER BITS WILL REFLECT THEIR ENABLE/DISABLE STATE

Figure 26. Interrupt Enable Register (IER)

Pin Configuration

vss ${ }_{1}$	$1 \quad 40$	$\square \mathrm{CA} 1$
${ }^{P A O} \mathrm{Cl}_{2}$	239	9 CA 2
PA1	$3 \quad 38$	$8 \square \mathrm{RSO}$
${ }^{\text {PA } 214}$	437	$7 \mathrm{RS1}$
${ }^{\text {PA }} 35$	$5 \quad 36$	${ }^{\square} \mathrm{RS} 2$
PA4 \square_{0}^{6}	$6 \quad 35$	5 RS3
PA5 \square_{7}	$7 \quad 34$	4 RES
Pa6 8	83	$3 \square \mathrm{Do}$
PAT \square^{9}	932	2 D 1
${ }^{\text {Pbo }} \square_{10}$	$10 \quad 31$	$1 \square \mathrm{D} 2$
PB1 11	1130	$\square \mathrm{\square} 3$
PB2 12	$12 \quad 29$	صD4
PB3 ${ }^{13}$	1328	口D5
PB4 14	$14 \quad 27$	7 D6
PB5 ${ }^{15}$	$15 \quad 26$	¢ ${ }^{\text {D7 }}$
P86 ${ }^{16}$	$16 \quad 25$	5 口巾2
PB7 17	$17 \quad 24$	${ }^{\square} \mathrm{\square}$ cs 1
CB1 18	18 23	ص $\overline{\mathrm{CS} 2}$
CB2 ${ }^{19}$	1922	$2 \mathrm{R} / \overline{\mathrm{w}}$
vcc \square^{20}	$20 \quad 21$	1］$\sqrt{\text { RO}}$

Package Availability 40 Pin Molded DIP

Ordering Information

Order Numbrer	Package Type	Frequency Option
SYP6522	Molded DIP	1 MHz
SYP6522A	Molded DIP	2 MHz
SYPJ6522	Molded J Lead	1 MHz
SYPJ6522A	Molded J Lead	2 MHz

Features

- 8-Bit Bi-directıonal Data Bus for Direct Communicatıon with the Microprocessor
- Programmable Edge-sensitive Interrupt
- 128×8 Static RAM
- Two 8-bit Bi-directional Data Ports for Interface to Peripherals
- Two Programmable I/O Perıpheral Data Direction Registers
- Programmable Interval Tımer
- Programmable Interval Timer Interrupt
- TTL \& CMOS Compatıble Peripheral Lines
- Perıpheral Pıns with Direct Transistor Drive Capability
- High Impedance Three-State Data Pins

Description

The SY6532 is designed to operate in conjunction with the SY6500 Microprocessor Family. It is comprised of a 128×8 static RAM, two software controlled 8 -bit bi-directional data ports allowing direct interfacing between the microproces-
sor unit and peripheral devices. a software programmable interval timer with interrupt capable of timing in various intervals from 1 to 262,144 clock periods, and a programmable edge-detect interrupt circuit.

Block Diagram

Maximum Ratings

Rating	Symbol	Voltage	Unit
Supply Voltage	V_{CC}	-0.3 to +7.0	V
Input/Output Voltage	V_{IN}	-0.3 to +7.0	V
Operatıng Temperature Range	T_{OP}	0 to 70	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\mathrm{STG}}$	-55 to +150	${ }^{\circ} \mathrm{C}$

D.C. Characteristics $\left(V_{C C}=5.0 \mathrm{~V} \pm 5 \%, V_{S S}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0-70^{\circ} \mathrm{C}\right)$

Characteristic	Symbol	Min.	Typ.	Max.	Unit
Input High Voltage	V_{IH}	2.4		$V_{\text {CC }}$	V
Input Low Voltage	V_{IL}	-0.3		0.4	V
Input Leakage Current, $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{SS}}+5 \mathrm{~V}$ A0-A6, $\overline{\mathrm{RS}}, \mathrm{R} / \overline{\mathrm{W}}, \mathrm{RES}, 02, \mathrm{CS} 1, \mathrm{CS} 2$	$\mathrm{I}_{\text {IN }}$		10	2.5	$\mu \mathrm{A}$
Input Leakage Current; for Hıgh Impedance State (Three State), $\mathrm{V}_{\mathrm{IN}}=0.4 \mathrm{~V}$ to $24 \mathrm{~V}, \mathrm{DO}-\mathrm{D7}$	$\mathrm{I}_{\text {TS }}$		± 1.0	± 10.0	$\mu \mathrm{A}$
Input High Current, $\mathrm{V}_{\mathrm{IN}}=2.4 \mathrm{~V}$ PAO-PA7, PB0-PB7	IIH^{\prime}	-100	-300		$\mu \mathrm{A}$
Input Low Current; $\mathrm{V}_{\mathrm{IN}}=04 \mathrm{~V}$ PAO-PA7, PBO-PB7	IIL		1.0	1.6	mA
Output High Voltage $\begin{gathered} V_{C C}=M I N, I_{\text {LOAD }} \leq-100 \mu \mathrm{~A}(\text { PAO-PA7, PBO-PB7, DO-D7 }) \\ \mathrm{I}_{\text {LOAD }} \leq 3 \mathrm{~mA}(\text { PBO-PB7) } \end{gathered}$	V_{OH}	$\begin{aligned} & 24 \\ & 1.5 \end{aligned}$			V
Output Low Voltage; $\mathrm{V}_{\text {CC }}=\mathrm{M}$ ın, $\mathrm{l}_{\text {LOAD }} \leq 16 \mathrm{~mA}$	V_{OL}			0.4	V
Output High Current (Sourcıng), $\begin{aligned} \mathrm{V}_{\mathrm{OH}} & \geq 24 \mathrm{~V} \text { (PAO-PA7, PBO-PB7, D0-D7) } \\ & \geq 1.5 \mathrm{~V} \text { Available for direct transistor drıve (PBO-PB7) } \end{aligned}$	$\mathrm{IOH}^{\text {l }}$	$\begin{gathered} -100 \\ 30 \end{gathered}$	$\begin{gathered} -1000 \\ 5.0 \end{gathered}$		$\begin{aligned} & \mu \mathrm{A} \\ & \mathrm{~mA} \end{aligned}$
Output Low Current (Sınkıng); $\mathrm{V}_{\mathrm{OL}} \leq 0.4 \mathrm{~V}$	$\mathrm{IOL}^{\text {a }}$	1.6			mA
Clock Input Capacitance	$\mathrm{C}_{\text {CLK }}$			30	pF
Input Capacitance	$\mathrm{C}_{\text {IN }}$			10	pF
Output Capacitance	$\mathrm{C}_{\text {OUT }}$		10		pF
Power Dissıpation ($\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}$)	$P_{\text {D }}$			680	mW

Test Load

Write Timing Characteristics

Read Timing Characteristics

Write Timing Characteristics

Symbol	Parameter	SY6532		SY6532A		Unit
		Min.	Max.	Min.	Max.	
T_{CY}	Cycle Time	1	50	0.50	50	$\mu \mathrm{s}$
T_{C}	$\phi 2$ Pulse Width	0.44	25	0.22	25	$\mu \mathrm{s}$
TACW	Address Set-Up Time	180	-	90	-	ns
TCAW	Address Hold Time	0	-	0	-	ns
TwCW	R/产 Set-Up Time	180	-	90	-	ns
TCWw	R/产 Hold Time	0	-	0	-	ns
TDCW	Data Bus Set-Up Tıme	265	-	100	-	ns
THW	Data Bus Hold Tıme	10	-	10	-	ns
TCPW	Perıpheral Data Delay Tıme	-	1.0	-	1.0	$\mu \mathrm{s}$
TCMOS	Perıpheral Data Delay Tıme to CMOS Levels	-	2.0	-	2.0	$\mu \mathrm{s}$

NOTE $\mathrm{tr}, \mathrm{tf}=10$ to 30 ns .

Read Timing Characteristics

Symbol	Parameter		SY6532		SY6532A	
		Min.	Max.	Min.	Max.	Unit
T_{CY}	Cycle Time	1	50	0.5	50	$\mu \mathrm{~s}$
$\mathrm{~T}_{\text {ACR }}$	Address Set-Up Time	180	-	90	-	ns
$\mathrm{T}_{\mathrm{CAR}}$	Address Hold Time	0	-	0	-	ns
$\mathrm{T}_{\text {PCR }}$	Perıpheral Data Set-Up Time	300	-	300	-	ns
$\mathrm{T}_{\mathrm{CDR}}$	Data Bus Delay Time	-	340	-	200	ns
$\mathrm{~T}_{\mathrm{HR}}$	Data Bus Hold Time	10	-	10	-	ns

NOTE $\mathrm{tr}, \mathrm{tf}=10$ to 30 ns .

Interface Signal Description

Reset ($\overline{\mathrm{RES}}$)

During system initialızation a Logic " 0 " on the $\overline{\text { RES }}$ input will cause a zeroing of all four I/O registers. This in turn will cause all I/O buses to act as inputs thus protecting external components from possible damage and erroneous data while the system is being configured under software control. The Data Bus Buffers are put into an OFF-STATE during Reset. Interrupt capability is disabled with the $\overline{\mathrm{RES}}$ signal. The $\overline{\mathrm{RES}}$ signal must be held low for at least one clock period when reset is required.

Input Clock

l'he input clock is a system Phase Two clock which can be either a low level clock ($\mathrm{V}_{\text {IL }}<0.4, \mathrm{~V}_{\text {IH }}>2.4$) or high level clock $\left(\mathrm{V}_{\mathrm{IL}}<0.2, \mathrm{~V}_{\mathrm{IH}}=\mathrm{Vcc}_{-.2}^{+.3}\right.$).

Read/Write ($\mathrm{R} / \overline{\mathrm{W}}$)

The $R / \overline{\mathrm{W}}$ signal is supplied by the microprocessor and is used to control the transfer of data to and from the SY6532. A high on the R / \bar{W} pin allows the processor to read (with proper addressing) the SY6532. A low on the $R / \overline{\mathrm{W}}$ pin allows a write (with proper addressing) to the SY6532.

Interrupt Request ($\overline{\mathrm{RO}}$)

The $\overline{I R Q}$ output is derived from the interrupt control logic. It will normally be high with a low indicating an interrupt from the SY6532. $\overline{\mathrm{IRQ}}$ is an open-drain output, permitting several units to be wire-or'ed to the common $\overline{\mathrm{IRQ}}$ microprocessor input pin. The $\overline{I R Q}$ output may be activated by a transition on PA7 or timeout of the Interval Timer.

Data Bus (D0-D7)

The SY6532 has eight bi-directional data lines (D0-D7). These lines connect to the system's data bus and allow transfer of data to and from the microprocessor. The output buffers remain in the off state except when a Read operation occurs.

Peripheral Data Ports (PA0-PA7, PB0-PB7)

The SY6532 has two 8-bit peripheral I/O Ports, Port A (lines PA0-PA7) and Port B (lines PB0-PB7). Each line is individually programmable as either an input or an output. By writing a " 0 " to any bit position of the Data Direction Register (DDRA or DDRB) the corresponding line will be programmed as an input. Likewise, by writing a " 1 " to any bit position in DDRA or DDRB will cause the corresponding line to act as an output.
When a Port line is programmed as an input and its ouput register (ORA or ORB) is read by the MPU, the TTL level on the Port line will be transferred to the data bus. When the Port lines are programmed as outputs, the lines will reflect the data written by the MPU into the output registers. See Edge Sense Interrupt Section for an additional use of PA7.

Address and Select Lines (A0-A6, $\overline{\mathrm{RS}}, \mathrm{CS} 1$ and $\overline{\mathrm{CS} 2}$)

A0-A6 and $\overline{\mathrm{RS}}$ are used to address the RAM, I/O registers, Timer and Flag register. CS1 and $\overline{\mathrm{CS} 2}$ are used to select (enable access to) the SY6532.

Internal Organization

A block diagram of the internal architecture is shown in Figure 1. The SY6532 is divided into four basic sections: RAM, I/O, Timer, and Interrupt Control. The RAM interfaces directly with the microprocessor through the system data bus and address lines. The I/O section consists of two 8-bit halves. Each half contains a Data Direction Register (DDR) and an I/O register.
RAM 128 Bytes (1024 Bits)
A 128×8 static RAM is contaned on the SY6532. It is addressed by A0-A6 (Byte Select), $\overline{\mathrm{RS}}, \mathrm{CS} 1$, and $\overline{\mathrm{CS} 2}$.

Internal Peripheral Registers

There are four 8-bit internal registers: two data direction registers and two output registers. The two data direction registers (A side and B side) control the direction of the data into and out of the peripheral I / O. A logic zero in a bit of the data direction register (DDRA and DDRB) causes the corresponding line of the I/O port to act as an input. A logic one causes the corresponding line to act as an output. The voltage on any line programmed as an output is determined by the corresponding bit in the output register (ORA and ORB).

Data is read directly from the PA lines during a peripheral read operation. For a PA pin programmed as an output, the data transferred into the processor will be the same as the data in the ORA only if the voltage on the line is allowed to be $\geqslant 2.4$ volts for a logic one and $\leqslant 0.4$ volts for a zero. If the loading on the line does not allow this, then the data resulting from the read operation may not match the contents of ORA.

The output buffers for the PB lines are somewhat different from the PA buffers. The PB buffers are push-pull devices which are capable of sourcing 3 mA at 1.5 volts. This allows these lines to directly drive transistor circuits. To assure that the processor will read the proper data when performing a peripheral read operation, logic is provided in the peripheral B port to permit the processor to read the contents of ORB, instead of the PB lines.

Interval Timer

The Timer section of the SY6532 contains three basic parts: preliminary divide down register, programmable 8-bit register and interrupt logic. These are illustrated in Figure 2.

The Interval Timer can be programmed to count up to 256 time intervals. Each time interval can be either 1T, $8 \mathrm{~T}, 64 \mathrm{~T}$, or 1024 T increments, where T is the system clock period. When a full count is reached, the interrupt flag is set to a logic " 1 ". After the interrupt flag is set the internal clock continues counting down, but at a 1 T rate to a maximum of -255T. This allows the user to read the counter and then determine how long the interrupt has been set.

The 8 -bit system Data Bus is used to transfer data to and from the Interval Timer. If a count of 52 time intervals were to be counted, the pattern 00110100 would be put on the Data Bus and written into the Interval Time register.

At the same time that data is being written to the Interval Timer, the counting intervals of $1,8,64,1024 \mathrm{~T}$ are decoded from address lines A0 and A1. During a Read or Write operation address line A3 controls the interrupt capability of $\overline{\mathrm{IRQ}}$, i.e., $\mathrm{A}_{3}=1$ enables $\overline{\mathrm{IRQ}}, \mathrm{A}_{3}=0$ disables $\overline{\mathrm{IRQ}}$. In e1ther case, when timeout occurs, bit 7 of the Interrupt Flag Register is set. This flag is cleared when the Timer register is either read from or written to by the processor. If $\overline{\operatorname{IRQ}}$ is enabled by A3 and an interrupt occurs $\overline{I R Q}$ will go low. When the Timer is read prior to the interrupt flag being set, the number of time intervals remaining will be read, i.e., $51,50,49$, etc.
When the Timer has counted down to 00000000 an interrupt will occur on the next count time and the counter will read 11111111 . After interrupt, the Timer register decrements at a divide by " 1 " rate of the system clock. If after interrupt, the Timer is read and a value of 11100100 is read, the time since interrupt is 28 T . The value read is in two's complement.

$$
\begin{array}{ll}
\text { Value read } & =1 \\
\text { Complement } & =01110001000 \\
\text { Add } 1 & =00001110111 \\
&
\end{array}
$$

Figure 2. BASIC ELEMENTS OF INTERVAL TIMER

Thus, to arrive at the total elapsed time, merely do a two's complement and add to the original time written into the Timer. Again, assume time written as $00110100(=52)$. With a divide by 8 , total time to interrupt is $(52 \times 8)+1=417 \mathrm{~T}$. Total elapsed time would be $416 \mathrm{~T}+28 \mathrm{~T}=444 \mathrm{~T}$, assuming the value read after interrupt was 11100100 .
After an interrupt, whenever the Timer is written or read the interrupt is reset. However, the reading of the Timer at the same time the interrupt occurs will not reset the interrupt flag.
Figure 3 illustrates an example of interrupt.

Figure 3. TIMER INTERRUPT TIMING

1. Data written into Interval Timers is $00110100=5210$
2. Data in Interval timer is $00011001=2510$

$$
52-\begin{gathered}
213 \\
8
\end{gathered}-1=52-26-1=25
$$

3. Data in Interval Timer is $00000000=010$

$$
52-8-8-1=52-51-1=0
$$

4. Interrupt has occurred at $\emptyset 2$ pulse \#416

Data in Interval Timer = $1 \overline{1111111}$
5. Data in Interval Timer is 10101100
two's complement is $01010100=8410$ $84+(52 \times 8)=500_{10}$

When reading the Timer after an interrupt, A3 should be low so as to disable the $\overline{I R Q}$ pin. This is done so as to avoid future interrupts until after another Write operation.

Interrupt Flag Register

The Interrupt Flag Register consists of two bits: the tımer interrupt flag and the PA7 interrupt flag. When a read operation is performed on the Interrupt Flag Register, the bits are transferred to the processor on the data bus, as the dagram below, indicates.

Figure 4. INTERRUPT FLAG REGISTER

The PA7 flag is cleared when the Interrupt Flag Register is read. The tımer flag is cleared when the timer register is either written or read.

Addressing

Addressing of the SY6532 is accomplished by the 7 address inputs, the $\overline{\mathrm{RS}}$ input and the two chip select inputs CS1 and $\overline{\mathrm{CS} 2}$. To address the RAM, CS1 must be high with $\overline{\mathrm{CS} 2}$ and $\overline{\mathrm{RS}}$ low. To address the I/O and Interval Timer CS1 and $\overline{\mathrm{RS}}$ must be high with $\overline{\mathrm{CS} 2}$ low. As can be seen to access the chip CS1 is high and $\overline{\mathrm{CS} 2}$ is low. To distinguish between RAM or I/O-Timer Section the $\overline{\mathrm{RS}}$ input is used. When this input is low the RAM is addressed, when high the I/O Interval Timer section is addressed. To distinguish between Timer and I/O, address line A2 is utilized. When A2 is high the Interval Timer is accessed. When A2 is low the I/O section is addressed. Table 1 illustrates the chip addressing.

Edge Sense Interrupt

In addition to its use as a peripheral I/O line, PA7 can function as an edge sensitive input. In this mode, an active transition on PA7 will set the internal interrupt flag (bit 6 of the Interrupt Flag Register). When this occurs, and providing the PA7 interrupt is enabled, the $\overline{\text { IRQ }}$ output will go low.
Control of the PA7 edge detecting logic is accomplished by performing a write operation to one of four addresses. The data lines for this operation are "don't care" and the addresses to be used are found in Table 1.

The setting of the internal interrupt flag by an active transition on PA7 is always enabled, whether PA7 is set up as an input or an output.
The $\overline{\operatorname{RES}}$ signal disables the PA7 interrupt and sets the active transition to the negative edge-detect state. During the reset operation, the interrupt flag may be set by a negative transition. It may, therefore, be necessary to clear the flag before its normal use as an edge detectıng input is enabled. This can be achieved by reading the Interrupt Flag Register.

I/O Register - Timer Addressing

Table 1 illustrates the address decoding for the internal elements and timer programming. Address line A2 distinguishes I/O registers from the Timer. When A2 is low and $\overline{\mathrm{RS}}$ is high, the I/O registers are addressed. Once the I/O registers are addressed, address lines A1 and A0 decode the desıred register.
When the timer is selected A1 and A0 decode the "divide-by" matrix. This decoding is defined in Table 1. In addition, Address A3 is used to enable the interrupt flag to $\overline{\mathrm{IRQ}}$.

Table 1 ADDRESSING DECODE

FUNCTION	$\overline{\mathrm{RS}}$	A6	A5	A4	A3	A2	A1	A0	WR	RD
RAM	L	X	X	X	X	X	X	X	\checkmark	$\sqrt{ }$
ORA	H	-	-	-	-	L	L	L	$\sqrt{ }$	$\sqrt{ }$
DDRA	H	-	-	-	-	L	L	H	\checkmark	$\sqrt{ }$
ORB	H	-	-	-	-	L	H	L	$\sqrt{ }$	\checkmark
DDRB	H	-	-	-	-	L	H	H	\checkmark	\checkmark
Timer, $\div 1$, IRQ ON	H	-	-	H	H	H	L	L	$\sqrt{ }$	
Timer, $\div 8$, IRQ ON	H	-	-	H	H	H	L	H	$\sqrt{ }$	
Timer, $\div 64$, IRQ ON	H	-	-	H	H	H	H	L	$\sqrt{ }$	
Timer, -1024 , IRQ ON	H	-	-	H	H	H	H	H	$\sqrt{ }$	
Timer, $\div 1$, IRQ OFF	H	-	-	H	L	H	L	L	\checkmark	
Timer, $\div 8$, IRQ OFF	H	-	-	H	L	H	L	H	$\sqrt{ }$	
Timer, $\div 64$, IRQ OFF	H	-	-	H	L	H	H	L	$\sqrt{ }$	
Timer, $\div 1024$, IRQ OFF	H	-	-	H	L	H	H	H	$\sqrt{ }$	
Read Timer, IRQ ON	H	-	-	-	H	H	-	L		$\sqrt{ }$
Read Timer, IRQ OFF	H	-	-	-	L	H	-	L		$\sqrt{ }$
Read Interrupt Flags	H	-	-	-	-	H	-	H		$\sqrt{ }$
PA7 IRQ OFF, NEG EDGE	H	-	-	L	-	H	L	L	*	
PA7 IRQ OFF, POS EDGE	H	-	-	L	-	H	L	H	*	
$\begin{aligned} & \text { PA7 IRQ ON, NEG } \\ & \text { EDGE } \end{aligned}$	H	-	-	L	-	H	H	L	*	
$\begin{aligned} & \text { PA7 IRQ ON, POS } \\ & \text { EDGE } \end{aligned}$	H	-	-	L	-	H	H	H	*	

NOTES: X = ADDRESS - = ADDRESS BITS DON'T CARE * = DATA BITS ARE "DON'T CARE"

Ordering Information

Part Number	Package	Speed
SYP6532	Molded DIP	1 MHz
SYP6532A	Molded DIP	2 MHz

Features

- Single +5 volt ($\pm 5 \%$) power supply.
- Alphanumeric and limited graphıcs capabilities.
- Fully programmable display (rows, columns, blanking, etc.).
- Interlaced or non-interlaced scan.
- $50 / 60 \mathrm{~Hz}$ operation.
- Fully programmable cursor.
- External light pen capability.
- Capable of addressing up to 16 K character Video Display RAM.
- No DMA required.
- Compatible with MC6845R.
- Straight-binary addressing for Video Display RAM.

Description

The SY6845 is a CRT Controller intended to provide capability for interfacing any microprocessor family to CRT or TV-type raster scan displays. A unique feature

Pin Designation

is the inclusion of several modes of operation, so that the system designer can configure the system with a wide assortment of techniques.

Interface Diagram

Absolute Maximum Ratings*

Supply Voltage, $V_{C C}$ Input/Output Voltage, VIN Operatıng Temperature, T_{OP}
Storage Temperature, $\mathrm{T}_{\text {STG }}$

All inputs contain protection circuitry to prevent damage due to high static discharges. Care should be exercised to prevent unnecessary application of voltages in excess of the allowable limits.

Comments*

Stresses above those listed under "Absolute Maxımum Ratıngs" may cause permanent damage to the device. These are stress ratings only Functional operation of this device at these or any other conditions above those indicated in the operational sections of this specification is not implied and exposure to absolute maximum ratıng conditions for extended periods may atfect device reliability

Electrical Characteristics ($\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=0-70^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Characteristic	Min.	Typ.	Max.	Unit
$\mathrm{V}_{\text {IH }}$	Input High Voltage	2.0		V_{Cc}	V
$V_{\text {IL }}$	Input Low Voltage	-0.3		0.8	V
1 IN	Input Leakage ($\phi 2$, R/ $\overline{\text { w }}$, $\overline{\mathrm{RES}}, \overline{\mathrm{CS}}, \mathrm{RS}, \mathrm{LPEN}, \mathrm{CCLK}$)	-		2.5	$\mu \mathrm{A}$
$I_{\text {TSI }}$	Three-State Input Leakage (DB0-DB7) $V_{I N}=0.4 \text { to } 2.4 \mathrm{~V}$	-		± 10.0	$\mu \mathrm{A}$
V_{OH}	Output High Voltage $\begin{aligned} & \text { ILOAD }=-205 \mu \mathrm{~A} \text { (DB0-DB7) } \\ & \text { IOAD }=-100 \mu \mathrm{~A} \text { (all others) } \end{aligned}$	2.4		-	V
V_{OL}	Output Low Voltage $I_{\text {LOAD }}=1.6 \mathrm{~mA}$	-		0.4	V
P_{D}	Power Dissipation	-	325	650	mW
$\mathrm{CIN}_{\text {I }}$	```Input Capacitance \phi2, R/\overline{w},\overline{RES},\overline{CS}, RS, LPEN, CCLK DB0-DB7```	-		$\begin{aligned} & 10.0 \\ & 12.5 \end{aligned}$	$\begin{aligned} & \mathrm{pF} \\ & \mathrm{pF} \end{aligned}$
Cout	Output Capacitance	-		10.0	pF

Test Load

$\mathrm{R}=11 \mathrm{~K} \Omega$ FOR DB ${ }_{0}-\mathrm{DB}_{7}$
$R=24 \mathrm{~K} \Omega$ FOR ALL OTHER OUTPUTS
$\mathrm{C}=130 \mathrm{pF}$ TOTAL FOR $\mathrm{D}_{0}-\mathrm{D}_{7}$
$\mathrm{C}=30 \mathrm{pF}$ ALL OTHER OUTPUTS

MPU Bus Interface Characteristics

Write Timing Characteristics $\left\langle\left(V_{C C}=5.0 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=0-70^{\circ} \mathrm{C}\right.\right.$, unless otherwise noted)

Symbol	Characteristic	SY6845R		SY6845RA		SY6845RB		SY6845RC		Unit
		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
$\mathrm{t}_{\mathrm{CYC}}$	Cycle Time	1.0	-	0.5	-	0.33	-	0.25	-	$\mu \mathrm{s}$
$\mathrm{p}_{\text {WEH }}$	E Pulse Width, High	440	-	200	-	150	-	115	-	ns
$\mathrm{p}_{\text {WEL }}$	E Pulse Width, Low	420	-	190	-	140	-	100	-	ns
$\mathrm{t}_{\text {AS }}$	Address Set-Up Time	80	-	40	-	30	-	20	-	ns
$t_{\text {AH }}$	Address Hold Time	0	-	0	-	0	-	0	-	ns
t_{CS}	R/ $\bar{W}, \overline{\text { CS }}$ Set-Up Time	80	-	40	-	30	-	20	-	ns
t_{CH}	R/ $\bar{W}, \overline{\text { CS }}$ Hold Time	0	-	0	-	0	-	0	-	ns
$\mathrm{t}_{\text {DSW }}$	Data Bus Set-Up Time	165	-	60	-	60	-	60	-	ns
$\mathrm{t}_{\text {DHW }}$	Data Bus Hold Time	10	-	10	-	10	-	10	-	ns

(t_{r} and $\mathrm{t}_{\mathrm{f}}=10$ to 30 ns)

Read Timing Characteristics $\quad\left(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=0-70^{\circ} \mathrm{C}\right.$, unless otherwise noted)

	Characteristic	SY6845R		SY6845RA		SY6845RB		SY6845RC		Unit
Symbol		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
$\mathrm{t}_{\mathrm{CYC}}$	Cycle Time	1.0	-	0.5	-	0.33	-	0.25	-	$\mu \mathrm{s}$
$\mathrm{p}_{\text {WEH }}$	E Pulse Width, High	440	-	200	-	150	-	115	-	ns
PWEL	E Pulse Width, Low	420	-	190	-	140	-	100	-	ns
$t_{\text {AS }}$	Address Set-Up Time	80	-	40	-	30	-	20	-	ns
$\mathrm{t}_{\text {AH }}$	Address Hold Time	0	-	0	-	0	-	0	-	ns
t_{CS}	R/ \bar{W}, $\overline{\mathrm{CS}}$ Set-Up Time	80	-	40	-	30	-	20	-	ns
$\mathrm{t}_{\text {DDR }}$	Read Access Time (Valid Data)	-	290	-	150	-	100	-	85	ns
$\mathrm{t}_{\text {DHR }}$	Read Hold Time	20	60	20	60	20	60	20	60	ns
$\mathrm{t}_{\text {DA }}$	Data Bus Active Time (Invalid Data)	40	-	40	-	40	-	40	-	ns

(t_{r} and $\mathrm{t}_{\mathrm{f}}=10$ to 30 ns)

Light Pen Strobe Timing

NOTE
"Safe" time position for LPEN positive edge to cause address $n+2$ to load into Light Pen Register
$t_{\text {LP2 }}$ and $t_{\text {LP1 }}$ are time positions causing uncertain results

CCLK
\square
LPEN

	Characteristic	SY6845R		SY6845RA		SY6845RB		SY6845RC		Unit
Symbol		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
$\mathrm{t}_{\text {LPH }}$	LPEN Strobe Width	100	-	100	-	100	-	100	-	ns
$\mathrm{t}_{\text {LP1 }}$	LPEN to CCLK Delay	-	120	-	120	-	120	-	120	ns
$\mathrm{t}_{\text {LP2 }}$	CCLK to LPEN Delay	-	0	-	0	-	0	-	0	ns

t_{r} and $\mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns}$ (max.)

MPU Interface Signal Description

E (Enable)

The enable signal is the system input and is used to trigger all data transfers between the system microprocessor and the SY6845. Since there is no maximum limit to the allowable E cycle time, it is not necessary for it to be a continuous clock. This capability permits the SY6845 to be easily interfaced to non-6500-compatible microprocessors.

R/ $\overline{\mathrm{W}}$ (Read/Write)

The R / \bar{W} signal is generated by the microprocessor and is used to control the direction of data transfers. A high on the $\mathrm{R} \overline{\mathrm{W}}$ pin allows the processor to read the data supplied by the SY6845; a low on the R / \bar{W} pin allows a write to the SY6845.

$\overline{\mathrm{CS}}$ (Chip Select)

The Chip Select input is normally connected to the processor address bus either directly or through a decoder. The SY6845 is selected when $\overline{\mathrm{CS}}$ is low.

RS (Register Select)

The Register Select input is used to access internal registers. A low on this pin permits writes into the Address Register and reads from the Status Register. The contents of the Address Register is the identity of the register accessed when RS is high.

$\mathrm{DB}_{0}-\mathrm{DB}_{7}$ (Data Bus)

The $\mathrm{DB}_{0}-\mathrm{DB}_{7}$ pins are the eight data lines used for transfer of data between the processor and the SY6845. These lines are bi-directional and are normally high-impedance except during read cycles when the chip is selected.

Video Interface Signal Description

HSYNC (Horizontal Sync)

The HSYNC signal is an active-high output used to determine the horizontal position of displayed text. It may drive a CRT monitor directly or may be used for composite video generation. HSYNC time position and width are fully programmable.

VSYNC (Vertical Sync)

The VSYNC signal is an active-high output used to determine the vertical position of displayed text. Like HSYNC, VSYNC may be used to drive a CRT monitor or composite video generation circuits. VSYNC position and width are both fully programmable.

DISPLAY ENABLE

The DISPLAY ENABLE signal is an active-high output and is used to indicate when the SY6845 is generating active display information. The number of horizontal
displayed characters and the number of vertical displayed characters are both fully programmable and together are used to generate the DISPLAY ENABLE signal.

CURSOR

The CURSOR signal is an active-high output and is used to indicate when the scan coincides with the programmed cursor position. The cursor position may be programmed to be any character in the address field. Furthermore, within the character, the cursor may be programmed to be any block of scan lines, since the start scan line and the end scan line are both programmable.

LPEN

The LPEN signal is an edge-sensitive input and is used to load the internal Light Pen Register with the contents of the Refresh Scan Counter at the time the active edge occurs. The active edge of LPEN is the low-to-high transition.

CCLK

The CCLK signal is the character timing clock input and is used as the time base for all internal count/control functions.

$\overline{\text { RES }}$

The $\overline{\mathrm{RES}}$ signal is an active-low input used to initialize all internal scan counter circuits. When $\overline{\mathrm{RES}}$ is low, all internal counters are stopped and cleared, all scan and video outputs are low, and control registers are unaffected. $\overline{\text { RES }}$ must stay low for at least one CCLK period. All scan timing is initiated when $\overline{R E S}$ goes high. In this way, $\overline{\mathrm{RES}}$ can be used to synchronize display frame timing with line frequency.

Memory Address Signal Description

MA0-MA13 (Video Display RAM Address Lines)

These signals are active-high outputs and are used to address the Video Display RAM for character storage and display operations. The starting scan address is fully programmable and the ending scan address is determined by the total number of characters displayed, which is also programmable, in terms of characters/line and lines/ frame.

- Binary Addressing

Characters are stored in successive memory locations.
Thus, the software must be developed so that row and column co-ordinates are translated to sequentiallynumbered addresses for video display memory operations.

RA0-RA4 (Raster Address Lines)

These signals are active-high outputs and are used to select each raster scan withın an individual character row. The number of raster scan lines is programmable and determines the character height, including spaces between character rows.

Description of Internal Registers

Figure 1 illustrates the format of a typical video display and is necessary to understand the functions of the varıous SY6845 internal registers. Figure 2 illustrates vertical and horizontal tıming. Figure 3 summarizes the internal registers and indicates their address selection and read/write capabilities.

Address Register

This is a 5-bit register which is used as a "pointer" to direct SY6845 data transfers to and from the system MPU. Its contents is the number of the desired register (0-31). When RS is low, then this register may be loaded; when RS is high, then the register selected is the one whose identity is stored in this register.

Status Register

This 2-bit register is used to monitor the status of the CRTC, as follows:

Horizontal Total (R0)

This 8-bit register contains the total of displayed and non-displayed characters, mınus one, per horizontal line. The frequency of HSYNC is thus determined by this register.

Horizontal Displayed (R1)

This 8-bit register contains the number of displayed characters per horizontal line.

Horizontal Sync Position (R2)

This 8-bit register contains the position of the HSYNC on the horizontal line, in terms of the character location number on the line. The position of the HSYNC deter-
mines the left-to-right location of the displayed text on the video screen. In this way, the side margins are adjusted.

Horizontal and Vertical SYNC Widths (R3)

This 4-bit register programs the width of HSYNC.

VSYNC width is set to 16 scan line times.

Vertical Total (R4)

The Vertical Total Register is a 7-bit register containing the total number of character rows in a frame, minus one. This register, along with R5, determines the overall frame rate, which should be close to the line frequency to ensure flicker-free appearance. If the frame time is adjusted to be longer than the period of the line frequency, then $\overline{R E S}$ may be used to provide absolute synchronism.

Vertical Total Adjust (R5)

The Vertıcal Total Adjust Register is a 5-bit write only register contaınıng the number of additional scan lines needed to complete an entire frame scan and is intended as a fine adjustment for the video frame tıme.

Vertical Displayed (R6)

This 7-bit register contaıns the number of displayed character rows in each frame. In this way, the vertical size of the displayed text is determined.

Figure 1. Video Display Format

Vertical Sync Position (R7)

This 7-bit register is used to select the character row time at which the VSYNC pulse is desired to occur and, thus, is used to position the displayed text in the vertical direction.

Mode Control (R8)

This register is used to select the operatıng modes of the SY6845 and is outlined as follows:

Scan Line (R9)

This 5-bit register contaıns the number of scan lines per character row, including spacing minus one.

Cursor Start (R10) and Cursor End (R11)

These 5-bit registers select the starting and ending scan lines for the cursor. In addition, bits 5 and 6 of R10 are used to select the cursor mode, as follows:

BIT		CURSOR MODE
6	5	
0	0	No Blinking
0	1	No Cursor
1	0	Blink at $16 x$ field rate
1	1	Blink at $32 x$ field rate

Note that the ability to program both the start and end scan line for the cursor enables either block cursor or underline to be accommodated. Registers R14 and R15 are used to control the character position of the cursor over the entire 16 K address field.

CS	RS	Address Reg					$\begin{aligned} & \text { Reg } \\ & \text { No. } \end{aligned}$	Register Name	Stored Info.	RD	WR	Register Bit						
		4	3	2	1	0						765	54	3	2	1		0
1		-	-	-	-	-	-					W以	$1 \times$		N	'		17
0	0	-	-	-	-	-	-	Address Reg	Reg No		\checkmark	, 1	VA_{4}		A_{2}			
0	0	-	-	-	-	-	-	Status Reg.		\checkmark		$\sqrt{T L V}$	v_{f}		TI			1 V
0	1	0	0	0	0	0	R0	Horiz Total	\# Charac. -1		\checkmark	- - -	- -	-	\bullet			\bullet
0	1	0	0	0	0	1	R1	Horiz Displayed	7 Charac		\checkmark	- - -	- -	-	-	-		\bullet
0	1	0	0	0	1	0	R2	Horiz Sync Position	\# Charac		\checkmark	-	- -	-	-			-
0	1	0	0	0	1	1	R3	VSYNC, HSYNC Widths	$\begin{aligned} & =\text { Scan Lines and } \\ & =\text { Char. Times } \end{aligned}$				$\sqrt{1} \times \sqrt{4}$		H_{2}	H		H_{0}
0	1	0	0	1	0	0	R4	Vert Total	\# Charac. Row -1		\checkmark	v•	- \bullet	-	-	-		-
0	1	0	0	1	0	1	R5	Vert Total Adjust	\# Scan Lines		\checkmark		V•	-	-			\bullet
0	1	0	0	1	1	0	R6	Vert Displayed	\# Charac Rows		\checkmark	V••	- -	-	-	-		-
0	1	0	0	1	1	1	R7	Vert Sync Position	7 Charac Rows		\checkmark	1-	- -	\bullet	-	-		\bullet
0	1	0	1	0	0	0	R8	Mode Control			\checkmark	, 4	1		11	l_{1}		I_{0}
0	1	0	1	0	0	1	R9	Scan Lıne	7 Scan Lines -1		\checkmark			-	-	-		-
0	1	0	1	0	1	0	R10	Cursor Start	Scan Line No		\checkmark	$\mathrm{B}_{1} \mathrm{~B}_{0}$	$3_{0} \bullet$	-	-	-		-
0	1	0	1	0	1	1	R11	Cursor End	Scan Lıne No		\checkmark		1	-	-	-		\bullet
0	1	0	1	1	0	0	R12	Display Start Addr (H)					- -	-	-	-		-
0	1	0	1	1	0	1	R13	Display Start Addr (L)			\checkmark	- -	-	-	-	-		-
0	1	0	1	1	1	0	R14	Cursor Position (H)		\checkmark	\checkmark	14 l	- -	-	\bullet	-		\bullet
0	1	0	1	1	1	1	R15	Cursor Position (L)		\checkmark	\checkmark	$\bullet \bullet \bullet$	- -	-	-	-		\bullet
0	1	1	0	0	0	0	R16	Light Pen Reg (H)		\checkmark		M1v	- -	-	-	-		\bullet
0	1	1	0	0	0	1	R17	Light Pen Reg (L)		\checkmark		$\bullet \bullet \bullet$	- -	-	-	-		\bullet

Notes: \bullet Designates binary bit
NDesignates unused bit. Readıng this bit is always " 0 "
Figure 3. Internal Register Summary.

Display Start Address High (R12) and Low (R13)

These registers together comprise a 14-bit register whose contents is the memory address of the first character of the displayed scan (the character on the top left of the video display, as in Figure 1). Subsequent memory addresses are generated by the SY6845 as a result of CCLK input pulses. Scrolling of the display is accomplished by changing R12 and R13 to the memory address associated with the first character of the desired line of text to be displayed first. Entire pages of text may be scrolled or changed as well via R12 and R13.

Cursor Position High (R14) and Low (R15)

These registers together comprise a 14-bit register whose contents is the memory address of the current cursor position. When the video display scan counter (MA lines) matches the contents of this register, and when the scan line counter (RA lines) falls within the bounds set by R10 and R11, then the CURSOR output becomes active. Bit 5 of the Mode Control Register (R8) may be used to delay the CURSOR output by a full CCLK time to accommodate slow access memories.

LPEN High (R16) and Low (R17)

These registers together comprise a 14-bit register whose contents is the light pen strobe position, in terms of the
video display address at which the strobe occurred. When the LPEN input changes from low to high, then, on the next negative-going edge of CCLK, the contents of the internal scan counter is stored in registers R16 and R17.

STRAIGHT BINARY ADDRESSING SEQUENCE

Figure 4. Display Address Sequences (with Start Address $=0$) for 80×24 Example

Figure 5. Shared Memory System Configuration

Memory Contention Schemes for Shared Memory Addressing

From the diagram of Figure 5, it is clear that both the SY6845 and the system MPU must be capable of addressing the video display memory The SY6845 repetitively fetches character information to generate the video signals in order to keep the screen display active. The MPU occasionally accesses the memory to change the displayed information or to read out current data characters. Three ways of resolving this dual-contention requirement are apparent:

- MPU Priority

In this technıque, the address lınes to the video display memory are normally driven by the SY6845 unless the MPU needs access, in which case the MPU addresses immediately override those from the SY6845 and the MPU has immediate access.

- $\phi 1 / \phi 2$ Memory Interleaving

This method permits both the SY6845 and the MPU access to the video display memory by time-sharing via the system $\phi 1$ and $\phi 2$ clocks. During the $\phi 1$ portion of each cycle (the time when E is low), the SY6845 address outputs are gated to the video display memory. In the $\phi 2$ tıme, the MPU address lines are switched in. In this way, both the SY6845 and the MPU have unimpeded access to the memory. Figure 6 illustrates the tımings.

Interlace Modes

There are three raster-scan display modes (see Figure 7).
a) Non-Interlaced Mode. In this mode each scan line is refreshed at the vertical field rate (50 or 60 Hz).

In the interlaced scan modes, even and odd fields alternate to generate frames. The horizontal and vertical tımıng relationship causes the scan lines in the odd fields to be displaced from those in the even fields. The two additional raster-scan display modes pertain to interlaced scans.
b) Interlace Sync Mode. This mode is used when the same information is to be displayed in both odd and even fields. Enhanced readability results because the spaces between adjacent rows are filled and a higher quality character is displayed. This is achieved with only a slight alteration in the device operation: in alternate fields, the position of the VSYNC signal is delayed by $1 / 2$ of a scan line time. This is illustrated in Figure 8 and is the only difference in the SY6845 operation in this mode
c) Interlaced Sync and Video Mode. This mode is used to double the character density on the screen by displayıng the even lines in even fields and the odd lines in odd fields. As in the Interlace-Sync mode, the VSYNC position is delayed in alternate display fields. In addition, the address generation is altered.

Figure 6. $\phi \mathbf{1} / \phi 2$ Interleaving.

Figure 7. Comparison of Display Modes.

Figure 8. Interface Sync Mode and Interface Sync \& Video Mode Timing

Package Availability 40 Pin Molded DIP

Ordering Information

Part Number	Package	CPU Clock Rate
SYP6845	Molded DIP	1 MHz
SYP6845RA	Molded DIP	2 MHz
SYP6845RB	Molded DIP	3 MHz

Features

- Single +5 volt ($\pm 5 \%$) power supply.
- Alphanumeric and limited graphics capabilities.
- Fully programmable display (rows, columns, blanking, etc.).
- Interlaced or non-interlaced scan.
- $50 / 60 \mathrm{~Hz}$ operation.
- Fully programmable cursor.
- External light pen capability.
- Capable of addressing up to 16 K character Video Display RAM.
- No DMA required.
- Pin-compatible with MC6845R.
- Row/Column or straight-binary addressing for Video Display RAM.
- Video Display RAM may be configured as part of microprocessor memory field or independently slaved to 6845
- Internal status register.
- 3.7 MHz Character Clock
- Transparent Address Mode

Description

The SY6845E is a CRT Controller intended to provide capability for interfacıng any 8 or 16 bit mıcroprocessor family to CRT or TV-type raster scan displays. A unique

Pin Configuration

feature is the inclusion of several modes of operation, so that the system designer can configure the system with a wide assortment of techniques.

Interface Diagram

VIDEO DISPLAY RAM AND CHARACTER ROM

Absolute Maximum Ratings*

Supply Voltage, V_{CC} Input/Output Voltage, V_{IN} Operating Temperature, $T_{O P}$ Storage Temperature, $\mathrm{T}_{\text {STG }}$

All inputs contain protection circuitry to prevent damage due to high static discharges. Care should be exercised to prevent unnecessary application of voltages in excess of the allowable limits.

Comment*

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only. Functional operation of this device at these or any other conditions above those indicated in the operational sections of this specification is not implied and exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Electrical Characteristics ($\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=0-70^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Characteristic	Min.	Typ.	Max.	Unit
V_{IH}	Input Hıgh Voltage	2.0		$\mathrm{~V}_{\mathrm{CC}}$	V
V_{IL}	Input Low Voltage	-0.3		0.8	V
I_{IN}	Input Leakage ($\phi 2, \mathrm{R} / \mathrm{W}$, RES, CS, RS, LPEN, CCLK)				

Test Load

$\mathrm{R}=11 \mathrm{k} \Omega$ FOR $\mathrm{DB}_{0}-\mathrm{DB}_{7}$
$R=24 K \Omega$ FOR ALL OTHER OUTPUTS
$\mathrm{C}=\mathbf{1 3 0} \mathrm{pF}$ TOTAL FOR $\mathrm{D}_{0}-\mathrm{D}_{7}$
C $=30 \mathrm{pF}$ ALL OTHER OUTPUTS

MPU Bus Interface Characteristics

Write Timing Characteristics $\left(V_{C C}=5.0 \mathrm{~V} \pm 5 \%, T_{A}=0-70^{\circ} \mathrm{C}\right.$, unless otherwise noted)

Symbol	Characteristic	SY6845E		SY6845EA		SY6845EB		SY6845EC		Unit
		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
$\mathrm{t}_{\mathrm{CYC}}$	Cycle Time	1.0	-	0.5	-	0.33	-	0.25	-	$\mu \mathrm{s}$
PWEH	E Pulse Width, High	440	-	200	-	150	-	115	-	ns
PWEL	E Pulse Width, Low	420	-	190	-	140	-	100	-	ns
$t_{\text {AS }}$	Address Set-Up Time	80	-	40	-	30	-	20	-	ns
t_{AH}	Address Hold Time	0	-	0	-	0	-	0	-	ns
${ }^{\text {t }}$ CS	R/W, CS Set-Up Time	80	-	40	-	30	-	20	-	ns
${ }^{\text {t }}$ CH	R/W, CS Hold Time	0	-	0	-	0	-	0	-	ns
$\mathrm{t}_{\text {DSW }}$	Data Bus Set-Up Time	165	-	60	-	60	-	60	-	ns
$\mathrm{t}_{\text {DHW }}$	Data Bus Hold Time	10	-	10	-	10	-	10	-	ns

(t_{r} and $\mathrm{t}_{\mathrm{f}}=10$ to 30 ns)

Read Timing Characteristics $\quad\left(V_{C C}=5.0 \mathrm{~V} \pm 5 \%, T_{A}=0-70^{\circ} \mathrm{C}\right.$, unless otherwise noted)

Symbol	Characteristic	SY6845E		SY6845EA		SY6845EB		SY6845EC		Unit
		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
$\mathrm{t}_{\mathrm{CYC}}$	Cycle Time	1.0	-	0.5	-	0.33	-	0.25	-	$\mu \mathrm{s}$
PWEH	\$2 Pulse Width, High	440	-	200	-	150	-	115	-	ns
PWEL	\$2 Pulse Width, Low	420	-	190	-	140	-	100	-	ns
$t_{\text {AS }}$	Address Set-Up Time	80	-	40	-	30	-	20	-	ns
$t_{\text {AH }}$	Address Hold Time	0	-	0	-	0	-	0	-	ns
${ }^{\text {t }}$ S	R/W, CS Set-Up Time	80	-	40	-	30	-	20	-	ns
$t_{\text {DDR }}$	Read Access Time (Valid Data)	-	290	-	150	-	100	-	85	ns
$t_{\text {DHR }}$	Read Hold Time	10	-	10	-	10	-	10	-	ns
$t_{\text {DA }}$	Data Bus Active Time (Invalid Data)	20	60	20	60	20	60	20	60	ns
$t_{\text {TAD }}$	MA0-MA13 Switching Delay (Refer to Figure Trans. Addressing)	$\begin{aligned} & 100 \\ & \text { typ. } \end{aligned}$	160	$\begin{aligned} & 100 \\ & \text { typ. } \end{aligned}$	160	$\begin{gathered} 90 \\ \text { typ. } \end{gathered}$	130	$\begin{array}{r} 60 \\ \text { typ. } \end{array}$	95	ns

(t_{r} and $\mathrm{t}_{\mathrm{f}}=10$ to 30 ns)

Memory and Video Interface Characteristics $\left(V_{C C}=50 \mathrm{~V} \pm 5 \%, T_{A}=0\right.$ to $70^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Parameter	Min.	Typ.	Max.	Unit
$t_{C C H}$	Minimum Clock Pulse Width, High	130			ns
$\mathrm{t}_{\mathrm{CCY}}$	Clock Frequency			3.7	MHz
$\mathrm{t}_{\mathrm{r}} \mathrm{t}_{\mathrm{f}}$	Rise and Fall Time for Clock Input			20	ns
$\mathrm{t}_{\text {MAD }}$	Memory Address Delay Time		100	160	ns
$\mathrm{t}_{\text {RAD }}$	Raster Address Delay Time		100	160	ns
$\mathrm{t}_{\mathrm{DTD}}$	Display Timing Delay Time		160	250	ns
$\mathrm{t}_{\mathrm{HSD}}$	Horizontal Sync Delay Time		160	250	ns
$\mathrm{t}_{\mathrm{VSD}}$	Vertical Sync Delay Time		160	250	ns
$\mathrm{t}_{\mathrm{CDD}}$	Cursor Display Timing Delay Time		160	250	ns

Transparent Addressing (\$1/\$2 Interleaving)

Light Pen Strobe Timing

NOTE "Safe" time position for LPEN positive edge to cause address $n+2$ to load into Light Pen Register ${ }^{\text {t }}$ LP2 2 and t LP1 are time positions causing uncertain results

Symbol	Characteristic	SY6845E		SY6845EA		SY6845EB		SY6845EC		Unit
		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
$\mathrm{t}_{\text {LPH }}$	LPEN Strobe Width	100	-	100	-	100	-	100	-	ns
$\mathrm{t}_{\text {LP1 }}$	LPEN to CCLK Delay	-	120	-	120	-	120	-	120	ns
$\mathrm{t}_{\text {LP2 }}$	CCLK to LPEN Delay	-	0	-	0	-	0	-	0	ns

MPU Interface Signal Description

E (Enable)

The enable signal is the system input and is used to trigger all data transfers between the system microprocessor and the SY6845. Since there is no maximum limit to the allowable E cycle time, it is not necessary for it to be a continuous clock. This capability permits the SY6845 to be easily interfaced to non-6500-compatible microprocessors.

R/W (Read/Write)

The R / \bar{W} signal is generated by the microprocessor and is used to control the direction of data transfers. A high on the \mathbf{R} / \bar{W} pin allows the processor to read the data supplied by the SY6845; a low on the R \bar{W} pin allows a write to the SY6845.

$\overline{\mathrm{CS}}$ (Chip Select)

The Chip Select input is normally connected to the processor address bus either directly or through a decoder. The SY6845 is selected when $\overline{\mathrm{CS}}$ is low.

RS (Register Select)

The Register Select input is used to access internal registers. A low on this pin permits writes into the Address Register and reads from the Status Register. The contents of the Address Register is the identity of the register accessed when RS is high.

$\mathrm{DB}_{0}-\mathrm{DB}_{7}$ (Data Bus)

The $\mathrm{DB}_{0}-\mathrm{DB}_{7}$ pins are the eight data lines used for transfer of data between the processor and the SY6845. These lines are bi-directional and are normally high-impedance except during read cycles when the chip is selected.

Video Interface Signal Description HSYNC (Horizontal Sync)

The HSYNC signal is an active-high output used to determine the horizontal position of displayed text. It may drive a CRT monitor directly or may be used for composite video generation. HSYNC time position and width are fully programmable.

VSYNC (Vertical Sync)

The VSYNC signal is an active-high output used to determine the vertical position of displayed text. Like HSYNC, VSYNC may be used to drive a CRT monitor or composite video generation circuits. VSYNC position and width are both fully programmable.

DISPLAY ENABLE

The DISPLAY ENABLE signal is an active-high output and is used to indicate when the SY6845 is generating active display information. The number of horizontal displayed characters and the number of vertical displayed characters are both fully programmable and together are used to generate the DISPLAY ENABLE signal.

DISPLAY ENABLE may be delayed by one character time by setting bit 4 of R8 to a " 1 ".

CURSOR

The CURSOR signal is an active-high output and is used to indicate when the scan coincides with the programmed cursor position. The cursor position may be programmed to be any character in the address field. Furthermore, within the character, the cursor may be programmed to be any block of scan lines, since the start scan line and the end scan line are both programmable. The CURSOR position may be delayed by one character time by setting bit 5 of R8 to a " 1 ".

LPEN

The LPEN signal is an edge-sensitive input and is used to load the internal Light Pen Register with the contents of the Refresh Scan Counter at the time the active edge occurs. The active edge of LPEN is the low-to-high transition.

CCLK

The CCLK signal is the character tımıng clock input and is used as the time base for all internal count/control functions.

$\overline{\text { RES }}$

The $\overline{\operatorname{RES}}$ signal is an active-low input used to initialize all internal scan counter circuits. When $\overrightarrow{R E S}$ is low, all internal counters are stopped and cleared, all scan and video outputs are low, and control registers are unaffected. $\overline{\mathrm{RES}}$ must stay low for at least one CCLK period. All scan timing is initiated when $\overline{\mathrm{RES}}$ goes high. In this way, $\overline{\mathrm{RES}}$ can be used to synchronize display frame timing with line frequency.

Memory Address Signal Description

MAO-MA13 (Video Display RAM Address Lines)

These signals are active-high outputs and are used to address the Video Display RAM for character storage and display operations. The starting scan address is fully programmable and the ending scan address is determined by the total number of characters displayed, which is also programmable, in terms of characters/line and lines/ frame.
There are two selectable address modes for MA0-MA13:

- Binary

Characters are stored in successive memory locations. Thus, the software must be developed so that row and column co-ordinates are translated to sequentiallynumbered addresses for video display memory operations.

- Row/Column

In this mode, MA0-MA7 function as column addresses CCO-CC7, and MA8-MA13, as row addresses CROCR5. In this case, the software may handle addresses in terms of row and column locations, but additional
address compression circuits are needed to convert CCO-CC7 and CRO-CR5 into a memory-efficient binary scheme.

RA0-RA4 (Raster Address Lines)

These signals are active-high outputs and are used to select each raster scan within an individual character row. The number of raster scan lines is programmable and determines the character height, including spaces between character rows.
The high-order line, RA4, is unique in that it can also function as a strobe output pin when the SY6845 is programmed to operate in the "Transparent Address Mode". In this case the strobe is an active-high output and is true at the time the Video Display RAM update address is gated on to the address lines, MA0-MA13. In this way, updates and readouts of the Video Display RAM can be made under control of the SY6845 with only a small amount of external circuitry.

Description of Internal Registers

Figure 1 illustrates the format of a typical video display and is necessary to understand the functions of the various SY6845 internal registers. Figure 2 illustrates vertical and horizontal timing. Figure 3 summarizes the internal registers and indicates their address selection and read/write capabilities.

Address Register

This is a 5-bit register which is used as a "pointer" to direct SY6845 data transfers to and from the system MPU. Its contents is the number of the desired register (0-31). When RS is low, then this register may be loaded; when RS is high, then the register selected is the one whose identity is stored in this register.

Status Register

This 3-bit register is used to monitor the status of the

CRTC, as follows:

" 0 " Scan currently not in vertical blanking portion of its timing
" 1 " Scan currently is in its vertical blanking time
LPEN REGISTER FULL
" 0 " This bit goes to " 0 " whenever edther register R16 or R17 is read by the MPU
" 1 " This bit goes to " 1 " whenever a LPEN strobe occurs
"UPDATE READY
" 0 " This bit goes to " 0 " when register R31 has been either read or written by the MPU
" 1 " This bit goes to " 1 " when an Update Strobe occurs

Horizontal Total (R0)

This 8 -bit register contains the total of displayed and non-displayed characters, minus one, per horizontal line. The frequency of HSYNC is thus determined by this register.

Horizontal Displayed (R1)

This 8 -bit register contains the number of displayed characters per horizontal line.

Horizontal Sync Position (R2)

This 8-bit register contains the position of the HSYNC on the horizontal line, in terms of the character location number on the line. The position of the HSYNC determines the left-to-right location of the displayed text on the video screen. In this way, the side margins are adjusted.

Figure 1. Video Display Format

Horizontal and Vertical SYNC Widths (R3)

This 8-bit register contains the widths of both HSYNC and VSYNC, as follows:

Control of these parameters allows the SY6845 to be
interfaced to a variety of CRT monitors, since the HSYNC and VSYNC timing signals may be accommodated without the use of external one-shot timing.

Vertical Total (R4)

The Vertical Total Register is a 7-bit register containing the total number of character rows in a frame, minus one. This register, along with R5, determines the overall frame rate, which should be close to the line frequency to ensure flicker-free appearance. If the frame time is adjusted to be longer than the period of the line frequency, then $\overline{R E S}$ may be used to provide absolute synchronism.

$\overline{\mathrm{CS}}$	RS	Address Reg.					Reg. No	Register Name	Stored Info.	RD	WR	Register Bit					
		4	3	2	1	0						76	54	32	2	1	0
1		-	-	-	-	-	-					$\cdots 1$	$1 \times$	1×1	1		
0	0	-	-	-	-	-	-	Address Reg	Reg No		\checkmark		VA_{4}	$\mathrm{A}_{3} \mathrm{~A}_{2}$	A_{2}		
0	0	-	-	-	-	-	-	Status Reg		\checkmark		U L V	v^{n}	$11 /$	1		
0	1	0	0	0	0	0	R0	Horiz Total	\# Charac. -1		\checkmark	- \bullet	- -	- -	-	-	\bullet
0	1	0	0	0	0	1	R1	Horiz Displayed	\# Charac		\checkmark	- -	- -	- -	-	-	\bullet
0	1	0	0	0	1	0	R2	Horiz Sync Position	\# Charac.		\checkmark	$\bullet \bullet$	- -	- -	-		\bullet
0	1	0	0	0	1	1	R3	VSYNC, HSYNC Widths	\# Scan Lines and \# Char. Times		\checkmark	$\mathrm{V}_{3} \mathrm{~V}_{2} \mathrm{~V}$	$\mathrm{V}_{1} \mathrm{~V}_{0}$	$\mathrm{H}_{3} \mathrm{H}_{2}$	$\mathrm{H}_{2} \mathrm{H}$	H_{1}	H_{0}
0	1	0	0	1	0	0	R4	Vert Total	\# Charac. Row-1		\checkmark	$\sqrt{2}$	- -	- -		-	\bullet
0	1	0	0	1	0	1	R5	Vert Total Adjust	\# Scan Lines		\checkmark	, 14	V•	-		-	\bullet
0	1	0	0	1	1	0	R6	Vert Displayed	\# Charac Rows		\checkmark	N•	- -	-		-	\bullet
0	1	0	0	1	1	1	R7	Vert Sync Position	\# Charac. Rows		\checkmark	No	- -	- -	-	-	-
0	1	0	1	0	0	0	R8	Mode Control			\checkmark	$U_{1} \cup_{0} \mathrm{C}$	C D	T RC	RC ${ }_{1}$	1	10
0	1	0	1	0	0	1	R9	Scan Line	¢ Scan Lines -1		\checkmark		V•	-		-	-
0	1	0	1	0	1	0	R10	Cursor Start	Scan Line No		\checkmark	$N B_{1} B$	B_{0} -	-	-	-	\bullet
0	1	0	1	0	1	1	R11	Cursor End	Scan Line No		\checkmark	A 4	$1{ }^{\circ}$	-	-	-	-
0	1	0	1	1	0	0	R12	Display Start Addr (H)	Row				- -	- -		-	\bullet
0	1	0	1	1	0	1	R13	Display Start Addr (L)	Col		\checkmark	- -	- -	- -	-	-	-
0	1	0	1	1	1	0	R14	Cursor Position (H)	Row	\checkmark	\checkmark	Alvo	- -	- -	\bullet	-	\bullet
0	1	0	1	1	1	1	R15	Cursor Position (L)	Col	\checkmark	\checkmark	- $\bullet \bullet$	- -	-	\bullet	-	\bullet
0	1	1	0	0	0	0	R16	Light Pen Reg (H)		\checkmark		14 y	- -	-	-	-	\bullet
0	1	1	0	0	0	1	R17	Light Pen Reg (L)		\checkmark		- -	- -	-	-	-	\bullet
0	1	1	0	0	1	0	R18	Update Location (H)					- \bullet	- -			\bullet
0	1	1	0	0	1	1	R19	Update Locatıon (L)			\checkmark	- -	- -	- \bullet			\bullet
0	1	1	1	1	1	1	R31	Dummy Location				AMM	1414	14	1 N		

 which operates likewise.

Figure 3. Internal Register Summary

Vertical Total Adjust (R5)

The Vertical Total Adjust Register is a 5-bit write only register containing the number of addıtional scan lines needed to complete an entire frame scan and is intended as a fine adjustment for the video frame time.

Vertical Displayed (R6)

This 7-bit register contains the number of displayed character rows in each frame. In this way, the vertical size of the displayed text is determined.

Vertical Sync Position (R7)

This 7-bit register is used to select the character row time at which the VSYNC pulse is desired to occur and, thus, is used to position the displayed text in the vertical direction.

Mode Control (R8)

This register is used to select the operating modes of the SY6845 and is outlined as follows:

Scan Line (R9)

This 5-bit register contains the number of scan lines per character row, including spacing minus one.

Cursor Start (R10) and Cursor End (R11)

These 5 -bit registers select the starting and ending scan lines for the cursor. In addition, bits 5 and 6 of R10 are used to select the cursor mode, as follows:

BIT		CURSOR MODE
6	5	
0	0	No Blinking
0	1	No Cursor
1	0	Blink at $16 \times$ field rate (fast)
1	1	Blink at $32 \times$ field rate (slow)

Note that the ability to program both the start and end scan line for the cursor enables either block cursor or underline to be accommodated. Registers R14 and R15 are used to control the character position of the cursor over the entire 16 K address field.

Display Start Address High (R12) and Low (R13)

These registers together comprise a 14 -bit register whose contents is the memory address of the first character of the displayed scan (the character on the top left of the video display, as in Figure 1). Subsequent memory addresses are generated by the SY6845 as a result of CCLK input pulses. Scrolling of the display is accomplished by changing R12 and R13 to the memory address associated with the first character of the desired line of text to be displayed first. Entire pages of text may be scrolled or changed as well via R12 and R13.

Cursor Position High (R14) and Low (R15)

These registers together comprise a 14 -bit register whose contents is the memory address of the current cursor position. When the video display scan counter (MA lines) matches the contents of this register, and when the scan line counter (RA lines) falls within the bounds set by R10 and R11, then the CURSOR output becomes active. Bit 5 of the Mode Control Register (R8) may be used to delay the CURSOR output by a full CCLK time to accommodate slow access memories.

LPEN High (R16) and Low (R17)

These registers together comprise a 14 -bit register whose contents is the light pen strobe position, in terms of the video display address at which the strobe occurred. When the LPEN input changes from low to high, then, on the next negative-going edge of CCLK, the contents of the internal scan counter is stored in registers R16 and R17.

Update Address High (R18) and Low (R19)

These registers together comprise a 14 -bit register whose contents is the memory address at which the next read or update will occur (for transparent address mode, only). Whenever a read/update occurs, the update location automatically increments to allow for fast updates or readouts of consecutive character locations. This is described elsewhere in this document.

Dummy Location (R31)

This register does not store any data, but is required to detect when transparent addressing updates occur. This is necessary to increment the Update Address Register and to set the Update Ready bit in the status register.

Description of Operation

Register Formats

Register pairs R12/R13, R14/R15, R16/R17, and R18/ R19 are formatted in one of two ways:

1. Straight binary if register R8, bit 2 is a " 0 ".
2. Row/Column if register R8, bit 2 is a " 1 ". In this case the low byte is the Character Column and the high byte is the Character Row.

STRAIGHT BINARY ADDRESSING SEQUENCE

Figure 4 illustrates the address sequence for the video display control for each mode.

Note from Figure 4 that the straight-binary mode has the advantage that all display memory addresses are stored in a continuous memory block, starting with address 0 and ending at 1919. The disadvantage with this method is that, if it is desired to change a displayed character location, the row and column identity of the location must be converted to its binary address before the memory may be written. The row/column mode, on the other hand, does not need to undergo this conversion. However, memory is not used as efficiently, since the memory addresses are not continuous, but gaps exist. This requires that the system be equipped with more memory than is actually used and this extra memory is wasted. Alternatively, address compression logic may be employed to translate the row/column format into a continuous address block.

In this way, the user may select whichever mode is best for the given application. The trade-offs between the modes are software versus hardware. Straight-binary mode minimizes hardware requirements and row/column requires minimum software.

ROW/COLUMN ADDRESSING SEQUENCE

Figure 4. Display Address Sequences (with Start Address $=0$) for 80×24 Example

Video Display RAM Addressing

There are two modes of addressing for the video display memory:

1. Shared Memory

In this mode the memory is shared between the MPU address bus and the SY6845 address bus. For this case, memory contention must be resolved by means of external timing and control circuits. Both the MPU and the SY6845 must have access to the video display RAM and the contention circuits must resolve this
multiple access requirement. Figure 5 illustrates the system configuration.
2. Transparent Memory Addressing

For this mode, the display RAM is not directly accessible by the MPU, but is controlled entirely by the SY6845. All MPU accesses are made via the SY6845 and a small amount of external circuits. Figure 6 shows the system configuration for this approach.

Figure 5. Shared Memory System Configuration

Figure 6. Transparent Memory Addressing System Configuration (Data Hold Latch needed for Horizontal/Vertical Blanking updates, only).

Memory Contention Schemes for Shared Memory Addressing

From the diagram of Figure 4, it is clear that both the SY6845 and the system MPU must be capable of addressing the video display memory. The SY6845 repetitively fetches character information to generate the video signals in order to keep the screen display active. The MPU occasionally accesses the memory to change the displayed information or to read out current data characters. Three ways of resolving this dual-contention requirement are apparent:

- MPU Priority

In this technique, the address lines to the video display memory are normally driven by the SY6845 unless the MPU needs access, in which case the MPU addresses immediately override those from the SY6845 and the MPU has immediate access.

- $\phi 1 / \phi 2$ Memory Interleaving

This method permits both the SY6845 and the MPU access to the video display memory by time-sharing via the system $\phi 1$ and $\phi 2$ clocks. During the $\phi 1$ portion of each cycle (the time when E is low), the SY6845 address outputs are gated to the video display memory. In the $\phi 2$ time, the MPU address lines are switched in. In this way, both the SY6845 and the MPU have unimpeded access to the memory. Figure 7 illustrates the timings.

Figure 7. $\phi 1 / \phi 2$ Interleaving

- Vertical Blanking

With this approach, the address circuitry is identical to the case for MPU Priority updates. The only difference is that the Vertical Retrace status bit (bit 5 of the Status Register) is used by the MPU so that access to the video display memory is only made during vertical blanking time (when bit 5 is a " 1 "). In this way, no visible screen perturbations result.

Transparent Memory Addressing

In this mode of operation, the video display memory address lines are not switched by contention circuits, but are generated by the SY6845. In effect, the contention is handled by the SY6845. As a result, the schemes for accomplishing MPU memory access are different:

- $\phi 1 / \phi 2$ Interleaving

This mode is similar to the Interleave mode used with shared memory. In this case, however, the $\phi 2$ address is generated from the Update Address Register (Registers R18 and R19) in the SY6845. Thus, the MPU must first load the address to be accessed into R18/R19 and then this address is always gated onto the MA lines during $\phi 2$. Figure 8 shows the timing.

Figure 8. $\phi \mathbf{1} / \phi 2$ Transparent Interleaving

- Horizontal/Vertical Blanking

In this mode, the Update Address is loaded by the MPU, but is only gated onto the MA lines during horizontal or vertical blank times, so memory accesses do not interfere with the display appearance. To signal when the update address is on the MA lines, an update strobe (STB) is provided as an alternate function of pin 34. Data hold latches are necessary to temporarily retain the character to be stored until the retrace time occurs. In this way, the system MPU is not halted waiting for the blanking time to arrive. Figure 9 illustrates the address and strobe timing for this mode.

Trańsparent address modes are quite complex and offer significant advantages in system implementation. The details of their application are covered thoroughly in a related Technical Note available from Synertek.

Figure 9. Retrace Update Timings

Interlace Modes

There are three raster-scan display modes (see Figure 10).
a) Non-Interlaced Mode. In this mode each scan line is refreshed at the vertical field rate (50 or 60 Hz).
In the interlaced scan modes, even and odd fields alternate to generate frames. The horizontal and vertical timing relationship causes the scan lines in the odd fields to be displaced from those in the even fields. The two additional raster-scan display modes pertain to interlaced scans.
b) Interlace-Sync Mode. This mode is used when the same information is to be displayed in both odd and even fields. Enhanced readability results because the
spaces between adjacent rows are filled and a higher quality character is displayed. This is achieved with only a slight alteration in the device operation: in alternate fields, the position of the VSYNC signal is delayed by $1 / 2$ of a scan line time. This is illustrated in Figure 11 and is the only difference in the SY6845 operation in this mode.
c) Interlaced Sync and Video Mode. This mode is used to double the character density on the screen by displaying the even lines in even fields and the odd lines in odd fields. As in the Interlace-Sync mode, the VSYNC position is delayed in alternate display fields. In addition, the address generation is altered.

NON-INTERLACED

INTERLACED-SYNC

INTERLACED SYNC AND VIDEO

Figure 10. Comparison of Display Modes.

Figure 11. Interlace Sync Mode and Interlace Sync \& Video Mode Timing

Cursor and Display Enable Skew Control

Bits 4 and 5 of the Mode Control register (R8) are used to delay the Display Enable and Cursor outputs, respectively. Figure 12 illustrates the effect of the delays.

Figure 12. Cursor and Display Enable Skew

Figure 13. Operation of Vertical Blanking Status Bit

Package Availability 40 Pin Molded DIP

Ordering Information

Part Number	Package	CPU Clock Rate
SYP6845E	Molded DIP	1 MHz
SYP6845EA	Molded DIP	2 MHz
SYP6845EB	Molded DIP	3 MHz

Detailed help in Applıcation Notes 7 and 8 avaılable from Synertek sales offices.

Synertek

CRTC Register Comparison

NON-INTERLACE

REGISTER	SY6845R	MC6845R HD6845R	HD6845S	SY6545-1	SY6845E
RO HORIZONTAL TOT	TOT-1	TOT-1	TOT-1	TOT-1	TOT-1
R1 HORIZONTAL DISP	ACTUAL	ACTUAL	ACTUAL	ACTUAL	ACTUAL
R2 HORIZONTAL SYNC	ACTUAL	ACTUAL	ACTUAL	ACTUAL	ACTUAL
R3 HORIZONTAL AND VERT SYNC WIDTH	HORIZONTAL	HORIZONTAL	HORIZONTAL AND VERTICAL	HORIZONTAL AND VERTICAL	HORIZONTAL and Vertical
R4 VERTICAL TOT	TOT-1	TOT-1	TOT-1	TOT-1	TOT-1
R5 VERTICAL TOT ADJ	ANY VALUE	ANY VALUE	ANY VALUE	ANY VALUE EXCEPT R5 $=(\mathrm{ROH}) \cdot X$	ANY VALUE
R6 VERTICAL DISP	ANY VALUE <R4				
R7 VERTICAL SYNC POS	ACTUAL-1	ACTUAL-1	ACTUAL-1	ACTUAL-1	ACTUAL-1
R8 MODE REG BITS 0 AND 1	INTERLACE MODE SELECT				
BITS 2	-	-	-	ROW/COLUMN OR STRAIGHT BINARY ADDRESSING	ROW/COLUMN OR STRAIGHT BINARY ADDRESSING
BITS 3	-	-	-	SHARED OR TRANSPARENT ADDR	SHARED OR TRANSPARENT ADDR
BITS 4	-	-	DISPEN SKEW	DISPEN SKEW	DISPEN SKEW
BITS 5	-	-	DISPEN SKEW	CURSOR SKEW	CURSOR SKEW
BITS 6	-	-	CURSOR SKEW	RA4/UPSTB	RA4/UPSTB
BITS 7	-	-	CURSOR SKEW	TRANSPARENT MODE SELECT	TRANSPARENT MODE SELECT
R9 SCAN LINES	TOT-1	TOT-1	TOT-1	TOT-1	TOT-1
R10 CURSOR START	ACTUAL	ACTUAL	ACTUAL	ACTUAL	ACTUAL
R11 CURSOR END	ACTUAL	ACTUAL	ACTUAL	ACTUAL	ACTUAL
R12/R13 DISP ADDR	WRITE ONLY	WRITE ONLY	READ/WRITE	WRITE ONLY	WRITE ONLY
R14/R15 CURSOR POS	READ/WRITE	WRITE ONLY	READ/WRITE	READ/WRITE	READ/WRITE
R16/R17 LPEN REG	READ ONLY				
R18/R19 UPDATE ADDR REG	N/A	N/A	N/A	TRANSPARENT MODE ONLY	TRANSPARENT MODE ONLY
R31 DUMMY REG	N/A	N/A	N/A	TRANSPARENT MODE ONLY MODE ONLY	TRANSPARENT MODE ONLY
STATUS REG	YES	NO	NO	YES	YES

INTERLACE SYNC

| RO | TOT- $1=$ ODD
 OR EVEN | TOT- = ODD | TOT- $=$ ODD | TOT- $=$ ODD | TOT- $1=$ ODD
 OR EVEN |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

INTERLACE SYNC AND VIDEO

R4 VERTICAL	TOT-1	TOT-1	TOT-1	TOT/2-1	TOT-1
R6 VERT DISP	TOT	TOT/2	TOT	TOT/2	TOT
R7 VERT SYNC	ACTUAL-1	ACTUAL-1	ACTUAL-1	ACTUAL/2	ACTUAL-1
R9 SCAN LINES	TOT-1 ODD/EVEN	TOT-1 ONLY EVEN	TOT-2 ODD/EVEN	TOT-1 ODD/EVEN	TOT-1 ODD/EVEN
R10 CURSOR START R11 CURSOR END	ODD/EVEN ODD/EVEN	BOTH ODD OR BOTH EVEN	ODD/EVEN ODD/EVEN	ODD/EVEN ODD/EVEN	ODD/EVEN ODD/EVEN
CCLK	2.5 MHz	2.5 MHz	3.7 MHz	2.5 MHz	3.7 MHz

SY6551

Asynchronous Communication Interface Adapter

Features

- On-chıp baud rate generator: 15 programmable baud rates derived from a standard 1.8432 MHz external crystal (50 to 19,200 baud).
- Programmable interrupt and status register to sımplıfy software design.
- Single +5 volt power supply.
- Serial echo mode.
- False start bit detection.
- 8-bit bi-dırectıonal data bus for direct commı'nicatıon with the microprocessor.
- External 16x clock input for non-standard baud rates (up to 125 Kbaud).
- Programmable. word lengths; number of stop bits; and parity bit generation and detection.
- Data set and modem control signals provided.
- Parity: (odd, even, none, mark, space).
- Full-duplex or half-duplex operation.
- 5, 6, 7, 8 and 9 bit transmission.

Description

The SY6551 is an Asynchronous Communication Adapter (ACIA) intended to provide for interfacıng the 6500/ 6800 microprocessor famılies to serial communication
data sets and modems. A unique feature is the inclusion of an on-chip programmable baud rate generator, with a crystal being the only external component required.

Pin Configuration

Block Diagram

SY6551

Absolute Maximum Ratings*

Rating	Symbol	Allowable Range
Supply Voltage	V_{CC}	-0.3 V to +7.0 V
Input/Output Voltage	V_{IN}	-0.3 V to +7.0 V
Operating Temperature	T_{OP}	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage Temperature	$\mathrm{T}_{\mathrm{STG}}$	$-55^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$

Comment*

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

All inputs contain protection circuitry to prevent damage to high static charges. Care should be exercised to prevent unnecessary application of voltages in excess of the allowable limits.

D.C. Characteristics $\quad\left(V_{C C}=5.0 \mathrm{~V} \pm 5 \%, T_{A}=0-70^{\circ} \mathrm{C}\right.$, unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit
Input High Voltage	$V_{I H}$	2.0	-	V_{cc}	V
Input Low Voltage	V_{IL}	-0.3	-	0.8	V
Input Leakage Current: $\mathrm{V}_{\mathrm{IN}}=0$ to 5 V ($\left.\phi 2, \mathrm{R} / \overline{\mathrm{W}}, \overline{\mathrm{RES}}, \mathrm{CS}_{0}, \overline{\mathrm{CS}}_{1}, \mathrm{RS}_{0} ; \mathrm{RS}_{1}, \overline{\mathrm{CTS}}, \mathrm{R} \times \mathrm{D}, \overline{\mathrm{DCD}}, \overline{\mathrm{DSR}}\right)$	I_{IN}	-	± 1.0	± 2.5	$\mu \mathrm{A}$
Input Leakage Current for High Impedance State (Three State)	$\mathrm{I}_{\text {TSI }}$	-	± 2.0	± 10.0	$\mu \mathrm{A}$
Output High Voltage: $I_{\text {LOAD }}=-100 \mu \mathrm{~A}$ $\left.\mathrm{iDB}_{0}-\mathrm{DB}_{7}, \mathrm{TxD}, \mathrm{RxC}, \overline{\mathrm{RTS}}, \overline{\mathrm{DTR}}\right)$	V_{OH}	2.4	-	-	V
Output Low Voltage: $\mathrm{I}_{\text {LOAD }}=1.6 \mathrm{~mA}$ $\left(\mathrm{DB}_{0}-\mathrm{DB}_{7}, \mathrm{TxD}, \mathrm{RxC}, \overline{\mathrm{RTS}}, \overline{\mathrm{DTR}}, \overline{\mathrm{RQ}}\right)$	V_{OL}	-	-	0.4	V
Output High Current (Sourcing): $\mathrm{V}_{\mathrm{OH}}=2.4 \mathrm{~V}$ ($\mathrm{DB}_{0}-\mathrm{DB}_{7}, \mathrm{TxD}, \mathrm{R} \times \mathrm{C}, \overline{\mathrm{RTS}}, \overline{\mathrm{DTR}}$)	${ }^{\mathrm{OH}}$	-100	-	-	$\mu \mathrm{A}$
Output Low Current (Sinking): $\mathrm{V}_{\mathrm{OL}}=0.4 \mathrm{~V}$ $\left(\mathrm{DB}_{0}-\mathrm{DB}_{7}, \mathrm{~T} \times \mathrm{D}, \mathrm{RxC}, \overline{\mathrm{RTS}}, \overline{\mathrm{DTR}}, \overline{\mathrm{IRQ}}\right)$	${ }^{\prime} \mathrm{OL}$	1.6	-	-	mA
Output Leakage Current (Off State): $\mathrm{V}_{\text {OUT }}=5 \mathrm{~V}(\overline{\mathrm{IRQ}})$	I OFF	-	1.0	10.0	$\mu \mathrm{A}$
Clock Capacitance ($\phi 2$)	$\mathrm{C}_{\text {CLK }}$	-	-	20	pF
Input Capacitance (Except XTAL1 and XTAL2)	$\mathrm{C}_{\text {IN }}$	-	-	10	pF
Output Capacitance	$\mathrm{C}_{\text {OUT }}$	-	-	10	pF
Power Dissipation (See Graph) ($\left.\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}\right) \mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}$	P_{D}	-	170	300	mW

Power Dissipation vs. Temperałure

Figure 2. Write Timing Characteristics

Write Cycle ($\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=0$ to $70^{\circ} \mathrm{C}$, unless otherwise noted)

Characteristic	Symbol	SY6551		SY6551A		Unit
		Min	Max	Min	Max	
Cycle Time	${ }^{\text {t }}$ CYC	1.0	-	0.5	-	$\mu \mathrm{s}$
$\phi 2$ Pulse Width	${ }^{\text {t }}$ C	400	-	200	-	ns
Address Set-Up Time	$\mathrm{t}_{\text {ACW }}$	120	-	70	-	ns
Address Hold Time	${ }^{\text {t }}$ CAH	0	-	0	-	ns
R/W్ Set-Up Time	$\mathrm{t}_{\text {WCW }}$	120	-	70	-	ns
R/W Hold Time	${ }^{\text {t }}$ CWH	0	-	0	-	ns
Data Bus Set-Up Time	$\mathrm{t}_{\mathrm{DCW}}$	150	-	60	-	ns
Data Bus Hold Time	$\mathrm{t}_{\text {HW }}$	20	-	20	-	ns

(t_{r} and $\mathrm{t}_{\mathrm{f}}=10$ to 30 ns)

Crystal Specification

1. Temperature stability $\pm 0.01 \% ~\left(0^{\circ}\right.$ to $\left.70^{\circ} \mathrm{C}\right)$
2. Characteristics at $25^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$
a. Frequency (MHz)
1.8432
b. Frequency tolerance ($\pm \%$)
0.02
c. Resonance mode
Series
d. Equivalent resistance (ohm) 400 max.
e. Drive level mW
f. Shunt capacitance pF
g. Oscillation mode 2
7 max.
Fundamental

No other external components should be in the crystal circuit

Clock Generation

INTERNAL CLOCK

EXTERNAL CLOCK

Figure 3. Read Timing Characteristics

Read Cycle ($V_{C C}=5.0 \mathrm{~V} \pm 5 \%, T_{A}=0$ to $70^{\circ} \mathrm{C}$, unless otherwise noted)

Characteristic	Symbol	SY6551		SY6551A		Unit
		Min	Max	Min	Max	
Cycle Time	${ }^{\text {t }}$ CYC	1.0	-	0.5	-	$\mu \mathrm{s}$
Pulse Width ($\phi 2$)	${ }^{\text {t }}$ C	400	-	200	-	ns
Address Set-Up Time	$t_{\text {ACR }}$	120	-	70	-	ns
Address Hold Tıme	${ }^{\text {C CAR }}$	0	-	0	-	ns
R//W Set-Up Time	${ }^{\text {W }}$ WCR	120	-	70	-	ns
Read Access Time (Valıd Data)	${ }^{\text {t }}$ CDR	-	200	-	150	ns
Read Data Hold Time	t_{HR}	20	-	20	-	ns
Bus Active Tıme (Invalıd Data)	${ }^{\mathrm{t}} \mathrm{CDA}$	40	-	40	-	ns

Test Load

Figure 4a. Transmit Timing with External Clock

Figure 4b. Interrupt and Output Timing

Figure 4c. Receive External Clock Timing

Transmit/Receive Characteristics

Characteristic	Symbol	SY6551		SY6551A		Unit
		Min	Max	Min	Max	
Transmit/Receive Clock Rate	$\mathrm{t}_{\mathrm{CCO}}$	400*	-	400*	-	ns
Transmit/Receive Clock High Time	${ }^{\text {cher }}$	175	-	175	-	ns
Transmit/Receive Clock Low Time	${ }^{\text {t }}$ CL	175	-	175	-	ns
XTAL1 to TxD Propagation Delay	$t_{\text {DD }}$	-	500	-	500	ns
Propagation Delay ($\overline{\mathrm{RTS}}, \overline{\mathrm{DTR}}$)	${ }^{\text {D }}$ DY	-	500	-	500	ns
$\overline{\text { IRQ Propagation Delay (Clear) }}$	$\mathrm{t}_{\mathrm{IRO}}$	-	500	-	500	ns

($\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}=10$ to 30 ns input clocks only)
*The baud rate with external clocking is:
Baud Rate $=\frac{1}{16 \times \mathrm{T}_{\mathrm{CCY}}}$

Interface Signal Description

$\overline{R E S}$ (Reset)

During system initialization a low on the $\overline{\mathrm{RES}}$ input will cause internal registers to be cleared.

$\phi 2$ (Input Clock)

The input clock is the system $\phi 2$ clock and is used to trigger all data transfers between the system microprocessor and the SY6551.

R/W (Read/Write)

The R / \bar{W} is generated by the microprocessor and is used to control the direction of data transfers. A high on the $\mathrm{R} / \overline{\mathrm{W}}$ pin allows the processor to read the data supplied by the SY6551. A low on the $\mathrm{R} \overline{\mathrm{W}}$ pin allows a write to the SY6551.

$\overline{\text { IRO }}$ (Interrupt Request)

The $\overline{\mathrm{RO}}$ pin is an interrupt signal from the interrupt control logic. It is an open drain output, permitting
several devices to be connected to the common $\overline{\mathrm{RO}}$ microprocessor input. Normally a high level, $\overline{\mathrm{IRO}}$ goes low when an interrupt occurs.

$\mathrm{DB}_{\mathbf{0}}-\mathrm{DB}_{7}$ (Data Bus)

The $\mathrm{DB}_{0}-\mathrm{DB}_{7}$ pins are the eight data lines used for transfer of data between the processor and the SY6551. These lines are bi-directional and are normally high-impedance except during Read cycles when selected.
$\mathbf{C S}_{\mathbf{0}}, \overline{\mathbf{C S}}_{\mathbf{1}} \quad$ (Chip Selects)
The two chip select inputs are normally connected to the processor address lines either directly or through decoders. The SY6551 is selected when CS_{0} is high and $\overline{\mathrm{CS}}_{1}$ is low.

$\mathbf{R S}_{\phi} \mathbf{R S}_{\mathbf{1}}$ (Register Selects)

The two register select lines are normally connected to the processor address lines to allow the processor to select the various SY6551 internal registers. The following table indicates the internal register select coding:

$\mathbf{R S}_{\mathbf{1}}$	$\mathbf{R S}_{\mathbf{0}}$	Write	Read
0	0	Transmit Data Register	Receiver Data Register
0	1	Programmed Reset (Data is "Don't Care")	Status Register
1	0	Command Register	
1	1	Control Register	

The table shows that only the Command and Control registers are read/write. The Programmed Reset operation does not cause any data transfer, but is used to clear the SY6551 registers. The Programmed Reset is slightly different from the Hardware Reset ($\overline{\mathrm{RES}}$) and these differences are described in the individual register definitions.

ACIA/Modem Interface Signal Description

XTAL1, XTAL2 (Crystal Pins)

These pins are normally directly connected to the external crystal (1.8432 MHz) used to derive the various baud rates. Alternatively, an externally generated clock may be used to drive the XTAL1 pin, in which case the XTAL2 pin must float.

TxD (Transmit Data)

The TxD output line is used to transfer serial NRZ (non-return-to-zero) data to the modem. The LSB (least significant bit) of the Transmit Data Register is the first data bit transmitted and the rate of data transmission is determined by the baud rate selected.

RxD (Receive Data)

The RxD input line is used to transfer serial NRZ data into the ACIA from the modem, LSB first. The receiver data rate is either the programmed baud rate or the rate of an externally generated receiver clock. This selection is made by programming the Control Register.

RxC (Receive Clock)

The $R x C$ is a bi-directional pin which serves as either the receiver $16 x$ clock input or the receiver $16 x$ clock output. The latter mode results if the internal baud rate generator is selected for receiver data clocking.

RTS (Request to Send)

The $\overline{\mathrm{RTS}}$ output pin is used to control the modem from the processor. The state of the $\overline{\mathrm{RTS}}$ pin is determined by the contents of the Command Register.

$\overline{\text { CTS }}$ (Clear to Send)

The $\overline{C T S}$ input pin is used to control the transmitter operation. The enable state is with $\overline{\mathrm{CTS}}$ low. The transmitter is automatically disabled if $\overline{\mathrm{CTS}}$ is high.

$\overline{\text { DTR }}$ (Data Terminal Ready)

This output pin is used to indicate the status of the SY6551 to the modem. A low on $\overline{\text { DTR }}$ indicates the SY6551 is enabled and a high indicates it is disabled. The processor controls this pin via bit 0 of the Command Register.

$\overline{\mathrm{DSR}}$ (Data Set Ready)

The $\overline{\mathrm{DSR}}$ input pin is used to indicate to the SY6551 the status of the modem. A low indicates the "ready" state and a high, "not-ready." $\overline{D S R}$ is a high-impedance input and must not be a no-connect. If unused, it should be driven high or low, but not switched.
Note: If Command Register Bit $0=1$ and a change of state on $\overline{\mathrm{DSR}}$ occurs, $\overline{\mathrm{IRO}}$ will be set, and Status Register Bit 6 will reflect the new level. The state of $\overline{\mathrm{DSR}}$ does not affect either Transmitter or Receiver operation.

$\overline{D C D}$ (Data Carrier Detect)

The $\overline{D C D}$ input pin is used to indicate to the SY6551 the status of the carrier-detect output of the modem. A low indicates that the modem carrier signal is present and a high, that it is not. $\overline{\mathrm{DCD}}$, like $\overline{\mathrm{DSR}}$, is a highimpedance input and must not be a no-connect.
Note: If Command Register Bit $0=1$ and a change of state on $\overline{\mathrm{DCD}}$ occurs, $\overline{\mathrm{RQ}}$ will be set, and Status Register Bit 5 will reflect the new level. The state of $\overline{D C D}$ does not affect Transmitter operation, but must be low for the Receiver to operate.

Internal Organization

The Transmitter/Receiver sections of the SY6551 are depicted by the block diagram in Figure 5.

Figure 5. Transmitter/Receiver Clock Circuits

Bits 0-3 of the Control Register select the divisor used to generate the baud rate for the Transmitter. If the Receiver clock is to use the same baud rate as the Transmitter, then RxC becomes an output pin and can be used to slave other circuits to the SY6551.

Control Register

The Control Register is used to select the desired mode for the SY6551. The word length, number of stop bits, and clock controls are all determined by the Control Register, which is depicted in Figure 6.

*This allows for 9 -bit transmission (8 data bits plus parity)
HARDWARE RESET

PROGRAM RESET \quad| 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
0	0	0	0	0	0	0	0

Figure 6. Control Register Format

Command Register

The Command Register is used to control Specific Trans-
$\mathrm{mit} /$ Receive functions and is shown in Figure 7.
PARITY CHECK CONTROLS

BIT			OPE RATION
7	6	5	
-	-	0	Parıty Disabled - No Parity Bit Generated - No Parity Bit Received
0	0	1	Odd Parıty Receıver and Transmıtter
0	1	1	Even Parıty Receiver and Transmıtter
1	0	1	Mark Parıty Bit Transmitted, Parıty Check Disabled
1	1	1	Space Parıty Bıt Transmıtted, Parıty Check Disabled

NORMAL/ECHO MODE
FOR RECEIVER
COMMAND REGISTER

	7	6	5	4	3	2	1	0
HARDWARE RESET	0	0	0	0	0	0	0	0
PROGRAM RESET	-	-	-	0	0	0	0	0

Figure 7. Command Register Format

Status Register

The Status Register is used to indicate to the processor the status of various SY6551 functions and is outlined in Figure 8.

*NO INTERRUPT GENERATED FOR THESE CONDITIONS.
**CLEARED AUTOMATICALLY AFTER A READ OF RDR AND THE NEXT ERROR FREE RECEIPT OF DATA.

HARDWARE RESET PROGRAM RESET

Figure 8. Status Register Format

Transmit and Receive Data Registers

These registers are used as temporary data storage for the 6551 Transmit and Receive circuits. The Transmit Data Register is characterized as follows:

- Bit \mathbf{O} is the leading bit to be transmitted.
- Unused data bits are the high-order bits and are "don't care" for transmission.

The Receive Data Register is characterized in a similar fashion:

- Bit 0 is the leading bit received.
- Unused data bits are the high-order bits and are " 0 " for the receiver.
- Parity bits are not contained in the Receive Data Register, but are stripped-off after being used for external parity checking. Parity and all unused high-order bits are " 0 ".

Figure 9 illustrates a single transmitted or received data word, for the example of 8 data bits, parity, and 1 stop bit.

Figure 9. Serial Data Stream Example

Ordering Information

Part No.	Package	Clock Rate
SYP6551	Molded DIP	1 MHz
SYP6551A	Molded DIP	2 MHz

PRELIMINARY

Features

- High Performance n-Well HCMOS Family of Microprocessors
- Low Power Consumption, 4 mA at $1 \mathrm{MHz}, 10 \mu \mathrm{~A}$ in Standby Operation Allowing Battery Operation
- Pin and Software Compatible with the NMOS 6500
- Improved Software Performance
- 27 New Operation Codes
- 15 Addressıng Modes
- 66 Microprocessor Instructions
- 178 Total Operation Codes
- External or On-Board Clock Generation
- On-Board Clock Generator can be Driven by an

External Sıngle-Phase Clock Input, an RC Network, or a Crystal Circuit

- $1,2,3$ or 4 MHz Operation
- Advanced Memory Access Tımıng Option
- Early Address Valıd Allows High Speed Microprocéssor Use with Slow Memories
- Early Write Data for Dynamıc Memories
- Decımal and Bınary Arıthmetıc
- Programmable Stack Poınter
- Variable Length Stack
- Improved Operational Capabilities

Description

The CMOS 65CO2 microprocessor is compatible with the NMOS 6500 family of microprocessors This 8-bit microprocessor unit designed in Synertek's proprietary high performance N -well silicon gate technology offers higher performance than the origınal NMOS 6502 The design allows for operatıng frequencies up to 4 MHz , and below 1 MHz further reducing its already low power consumption

Pin Configuration

	SY65C02		
v_{ss} [1	40	$\square \overline{\text { RES }}$
RDY	2	39	$]_{\text {¢ } 2 \text { (Out) }}$
¢1 (OUT)	3	38	万र̄
$\overline{\text { ROC }}$	4	37	$\mathrm{D}_{\phi 0}$ (IN)
Nc. ${ }^{\text {a }}$	5	36]n.c
तला -	6	35	-nc
synct	7	34]r/w
v_{DD} -	8	33	Do
A0	9	32	D1
A1	10	31	D2
A2	11	30	D3
A3	12	29]04
${ }^{\text {A }}$	13	28	D5
${ }^{\text {A5 }}$	14	27	D06
A6	15	26	707
A7	16	25	- 15
A8	17	24	-A14
${ }^{\text {A9 }}$	18	23	-A13
${ }^{10} 1$	19	22	A12
A11	20	21	v_{ss}

Block Diagram

Figure 1.

Absolute Maximum Ratings

$\left(V_{D D}=5.0 \mathrm{~V} \pm 5 \%, V_{S S}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}\right.$ to $\left.70^{\circ} \mathrm{C}\right)$
Supply Voltage (VDD -0.3 to +7.0 V
Input Voltage (V_{IN}) . -0.3 to +7.0 V
Operatıng Temperature (T_{A}) $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature ($\mathrm{T}_{\mathrm{STG}}$) $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Comment*

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or at any other condition above those indicated in the operational sections of this specification is not implied

Pin Function

Pin	Function
$A_{0}-A_{15}$	Address Bus
$D_{0}-D_{7}$	Data Bus
$\overline{\mathrm{RQ}}^{*}$	Interrupt Request
$R D Y^{*}$	Ready
$\overline{\mathrm{ML}}$	Memory Lock
$\overline{\mathrm{NMI}}{ }^{*}$	Non-Maskable Interrupt
SYNC	Synchronize
$\overline{\mathrm{RES}}^{*}$	Reset

Pin	Function
$\overline{\mathrm{SO}}^{*}$	Set Overflow
NC	No Connection
$\mathrm{R} / \overline{\mathrm{W}}$	Read/Write
V_{DD}	Power Supply (+5V)
V_{SS}	Internal Logıc Ground
ϕ_{0}	Clock Input
ϕ_{1}, ϕ_{2}	Clock Output

*This pin has an optıonal internal pullup for a No Connect condition

DC Characteristics

	Symbol	Min.	Typ.	Max.	Unit
Input High Voltage $\phi_{0}(\mathrm{IN})$ $\overline{\text { RES }}, \overline{N M I}$, RDY, $\overline{\text { RQ }}$, Data, S.O.	$\mathrm{V}_{\text {IH }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{SS}}+2.4 \\ & \mathrm{~V}_{\mathrm{SS}}+2.0 \end{aligned}$	$-$	$\begin{gathered} \mathrm{V}_{\mathrm{DD}} \\ - \end{gathered}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Input Low Voltage $\phi_{0}(\mathrm{IN})$ $\overline{\mathrm{RES}}, \overline{\mathrm{NMI}}, \mathrm{RDY}, \overline{\mathrm{RQ}}$, Data, S.O.	$\mathrm{V}_{\text {IL }}$	$\mathrm{V}_{\mathrm{SS}}-0.3$ -		$\begin{aligned} & \mathrm{V}_{\mathrm{SS}}+0.4 \\ & \mathrm{~V}_{\mathrm{SS}}+0.8 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Input Leakage Current $\left(V_{I N}=0 \text { to } 5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=5.25 \mathrm{~V}\right)$ With Pullups Without Pullups	I_{IN}	$\begin{gathered} -30 \\ - \end{gathered}$	-	$\begin{aligned} & +10 \\ & +1.0 \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$
Three State (Off State) Input Current $\begin{aligned} & \left(\mathrm{V}_{\text {IN }}=0.4 \text { to } 2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=5.25 \mathrm{~V}\right) \\ & \text { Data Lines } \end{aligned}$	${ }_{\text {ITSI }}$	-	-	10	$\mu \mathrm{A}$
Output High Voltage $\left(l_{O H}=-100 \mu \mathrm{Adc}, \mathrm{V}_{\mathrm{DD}}=4.75 \mathrm{~V}\right.$, SYNC, Data, $\left.A_{0}-A_{15}, R / W\right)$	V_{OH}	$\mathrm{V}_{\text {SS }}+2.4$	-	-	V
```Output Low Voltage ( }\mp@subsup{l}{\textrm{OL}}{=}=1.6\textrm{mAdc},\mp@subsup{\textrm{V}}{\textrm{DD}}{}=4.75\textrm{V}\mathrm{ , SYNC, Data, A0-A A5, R/W)```	$\mathrm{V}_{\mathrm{OL}}$	- -	-	$\mathrm{V}_{\text {SS }}+0.4$	V
Supply Current $f=1 \mathrm{MHz}$   Supply Current $\mathrm{f}=2 \mathrm{MHz}$	$\begin{aligned} & \hline \mathrm{I}_{\mathrm{DD}} \\ & \mathrm{I}_{\mathrm{DD}} \end{aligned}$	-	-	$\begin{aligned} & 4 \\ & 8 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
$\begin{aligned} & \text { Capacitance } \\ & \left(\mathrm{V}_{\mathrm{IN}}=0, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}\right) \\ & \text { Logıc } \\ & \text { Data } \\ & \mathrm{A}_{0}-\mathrm{A}_{15}, \mathrm{R} / \mathrm{W}, \text { SYNC } \\ & \phi_{0}(\mathrm{IN}) \end{aligned}$	$C$ $\mathrm{C}_{\mathrm{IN}}$ $\mathrm{C}_{\mathrm{OUT}}$ $\mathrm{C} \phi_{\mathrm{O}}(\mathrm{IN})$	-	-	$\begin{gathered} 5 \\ 10 \\ 10 \\ 10 \\ \hline \end{gathered}$	pF

## Microprocessor Operational Enhancements

Function	NMOS 6502 Microprocessor	SY65C02 Microprocessor
Indexed addressing across page boundary	Extra read of invalıd address	Extra read of last instruction byte
Execution of invalid op codes	Some termınate only by reset Results are undefıned	All are NOPs (reserved for future use)     Op Code Bytes Cycles   X2 2 2   X3, X7, XB, XF 1 1   44 2 3   54, D4, F4 2 4   5C 3 8   DC, FC 3 4
Jump indırect, operand = XXFF	Page address does not increment	Page address increments and adds one additional cycle.
Read/modify/write instructions at effective address	One read and two write cycles	Two read and one write cycle
Decımal flag	Indetermınate after reset	Initialized to binary mode ( $\mathrm{D}=0$ ) after reset and interrupts
Flags after decımal operatıon	Invalıd N, V and Z flags	Valid flag adds one additional cycle.
Interrupt after fetch of BRK instruction	Interrupt vector is loaded, BRK vector is ignored	BRK is executed, then interrupt is executed

Microprocessor Hardware Enhancements

Function	NMOS 6502	SY65C02
Assertıon of Ready RDY durıng   write operatıons	Ignored	Stops processor durıng $\phi_{2}$
Unused input-only pıns ( $\overline{\mathrm{RQ}}, \overline{\mathrm{NMI}}$,   RDY, $\overline{\mathrm{RES}}, \overline{\mathrm{SO}})$	Must be connected to low ımpedance   sıgnal to avoıd noıse problems	Connected ınternally by a hıgh-   resıstance to $\mathrm{V}_{\text {DD }}$ (approxımately 250K   ohm).

## New Instruction Mnemonics

HEX	Mnemonic	Description
80	BRA	Branch relative always [Relative]
$3 A$	DEA	Decrement accumulator [Accum]
1A	INA	Increment accumulator [Accum]
DA	PHX	Push X on stack [Implied]
5A	PHY	Push Y on stack [Implied]
FA	PLX	Pull X from stack [Implied]
7A	PLY	Pull Y from stack [Implied]
9 C	STZ	Store zero [Absolute]
$9 E$	STZ	Store zero [ABS, X]
64	STZ	Store zero [Zero Page]
74	STZ	Store zero [ZPG, X]
$1 C$	TRB	Test and reset memory bits with accumulator [Absolute]
14	TRB	Test and reset memory bits with accumulator [Zero page]
OC	TSB	Test and set memory bits with accumulator [Absolute]
04	TSB	Test and set memory bits with accumulator [Zero page]
89	BIT	Test immediate with accumulator [IMMEDIATE]

SY65C02

## Additional Instruction Addressing Modes

HEX	Mnemonic	Description
72	ADC	Add memory to accumulator with carry [(ZPG)]
32	AND	"AND" memory with accumulator [(ZPG)]
$3 C$	BIT	Test memory bits with accumulator[ABS, X]
34	BIT	Test memory bits with accumulator [ZPG, X]
D2	CMP	Compare memory and accumulator [(ZPG)]
52	EOR	"Exclusive OR" memory with accumulator [(ZPG)]
7C	JMP	Jump (New addressing mode) [ABS(IND, X)]
B2	LDA	Load accumulator with memory [(ZPG)]
12	ORA	"OR" memory with accumulator [(ZPG)]
F2	SBC	Subtract memory from accumulator with borrow [(ZPG)]
92	STA	Store accumulator in memory [(ZPG)]



Figure 2. AC Characteristics, SY65C02

AC Characteristics, SY65C02 $V_{D D}=50 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Parameter	Symbol	1 MHz		2 MHz		3 MHz		4 MHz		Unit
		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
Delay Time, $\phi 0$ (IN) to $\phi 2$ (OUT)	$t_{\text {D } 0}$	-	100	-	100	-	100	-	100	ns
Delay Time, $\phi 2$ (IN) to $\phi 2$ (OUT)	$\mathrm{t}_{\mathrm{D} \text { 2 } 2}$	-	75	-	75	-	75	-	75	ns
Delay Time, $\phi 1$ (OUT) to $\phi 2$ (OUT)	${ }^{\text {D }}$ ¢ 1	-	50	-	50	-	50	-	50	ns
Cycle Time	$\mathrm{t}_{\mathrm{CYC} \text { ¢ }} \mathrm{N}$	1.0	DC	050	DC	033	DC	0.25	DC	$\mu \mathrm{s}$
Clock Pulse Width Low	$\mathrm{t}_{\text {PW }}(\phi)$ INLO	470	-	240	-	160	-	115	-	ns
Clock Pulse Wıdth High	$\mathrm{t}_{\text {PW( }}(\mathrm{P}) \mathrm{NH}$	470	-	240	-	160	-	115	-	ns
Fall Tıme, Rise Time		-	25	-	25	-	15	-	15	ns
Address Hold Time	$\mathrm{t}_{\mathrm{AH}}$	30	-	30	-	15	-	10	-	ns
Address Setup Tıme	$\mathrm{t}_{\text {ADS }}$	-	225	-	140	-	110	-	90	ns
Access Tıme	$t_{\text {ACC }}$	650	-	310	-	170	-	110	-	ns
Read Data Hold Tıme	$t_{\text {DHR }}$	10	-	10	-	10	-	10	-	ns
Read Data Setup Tıme	$t_{\text {DSR }}$	100	-	50	-	50	-	50	-	ns
Write Data Delay Tıme	$\mathrm{t}_{\text {MDS }}$	-	175	-	100	-	75	-	70	ns
Write Data Hold Tıme	t ${ }_{\text {DHW }}$	30	-	30	-	30	-	30	-	ns
$\overline{\text { SO Setup Tıme }}$	tso	100	-	50	-	35	-	25	-	ns
Processor Control Setup Tıme	$\mathrm{t}_{\text {PCS }}$	200	-	200	-	150	-	120	-	ns



Figure 4. Microprocessor Programming Model

## Functional Description

## Timing Control

The timing control unit keeps track of the instruction cycle being monitored. The unit is set to zero each time an instruction fetch is executed and is advanced at the beginning of each phase one clock pulse for as many cycles as is required to complete the instruction. Each data transfer which takes place between the registers depends upon decoding the contents of both the instruction register and the timing control unit.

## Program Counter

The 16 -bit program counter provides the addresses which step the microprocessor through sequential instructions in a program.
Each time the microprocessor fetches an instruction from program memory, the lower byte of the program counter (PCL) is placed on the low-order bits of the address bus and the higher byte of the program counter $(\mathrm{PCH})$ is placed on the high-order 8 bits The counter is incremented each time an instruction or data is fetched from program memory.

## Instruction Register and Decode

Instructions fetched from memory are gated onto the internal data bus. These instructions are latched into the instruction register, then decoded, along with timing and interrupt signals, to generate control sıgnals for the varıous registers.

## Arithmetic and Logic Unit (ALU)

All arithmetic and logic operations take place in the ALU including incrementing and decrementing internal registers (except the program counter). The ALU has no internal memory and is used only to perform logical and transient numerical operations.

## Accumulator

The accumulator is a general purpose 8-bit register that stores the results of most arithmetic and logic operations, and in addition, the accumulator usually contains one of the two data words used in these operations.

## Index Registers

There are two 8-bit index registers ( X and Y ), which may be used to count program steps or to provide an index value to be used in generating an effective address.
When executing an instruction which specifies indexed addressing, the CPU fetches the op code and the base address, and modifies the address by adding the index register to it prior to performing the desired operation Pre-or post-indexing of indirect addresses is possiblea/see addressing modes).

## Stack Pointer

The stack pointer is an 8-bit register used to control the addressing of the variable-length stack on page one The stack pointer is automatically incremented and decremented under control of the microprocessor to perform stack manipulatıons under direction of either the program or interrupts ( $\overline{\mathrm{NMI}}$ and $\overline{\mathrm{RQ}}$ ). The stack allows simple implementation of nested subroutınes and multiple level interrupts. The stack pointer should be initialized before any interrupts or stack operations occur

## Processor Status Register

The 8-bit processor status register contains seven status flags. Some of the flags are controlled by the program, others may be controlled both by the program and the CPU The 6500 instruction set contains a number of conditional branch instructions which are designed to allow testing of these flags (see microprocessor programming model).


Figure 5 (a). Crystal Circuit for Internal Oscillator


Figure 5 (b). Suggested RC Network Configuration for Internal Oscillator

## Addressing Modes

Fifteen addressing modes are available to the user of the SY65C02 microprocessor The addressıng modes are described in the following paragraphs

## Implied Addressing (Implied)

In the implied addressing mode, the address containing the operand is implicitly stated in the operation code of the instruction

## Accumulator Addressing (Accum)

This form of addressing is represented with a one byte instruction and implies an operation on the accumulator
Immediate Addressing (Immediate)
With immediate addressing, the operand is contained in the second byte of the instruction, no further memory addressing is required

## Absolute Addressing (Absolute)

For absolute addressing, the second byte of the instruction specifies the eight low-order bits of the effective address, while the third byte specifies the eight high-order bits Therefore, this addressing mode allows access to the total 64K bytes of addressable memory

## Zero Page Addressing (Zero Page)

Zero page addressing allows shorter code and execution times by only fetching the second byte of the instruction and assuming a zero high address byte The careful use of zero page addressing can result in significant increase in code efficiency
Absolute Indexed Addressing (ABS, $\mathbf{X}$ or ABS, Y )
Absolute indexed addressing is used in conjunction with $X$ or Y index register and is referred to as "Absolute, X ," and "Absolute, $Y$." The effective address is formed by adding the contents of $X$ or $Y$ to the address contained in the second and third bytes of the instruction This mode allows the index register to contain the index or count value and the instruction to contain the base address This type of indexing allows any location referencing and the index to modify multiple fields, resulting in reduced coding and execution tıme

## Zero Page Indexed Addressing (ZPG, X or ZPG, Y)

Zero page absolute addressing is used in conjunction with the index register and is referred to as "Zero Page, X " or Zero Page, $Y$ " The effective address is calculated by adding the second byte to the contents of the index register Since this is a form of "Zero Page" addressing, the content of the second byte references a location in page zero Additionally, due to the "Zero Page" addressing nature of this mode, no carry is added to the high-order eight bits of memory, and crossing of page boundaries does not occur

## Relative Addressing (Relative)

Relative addressing is used only with branch instructions; it establishes a destınation for the conditional branch. The second byte of the instruction becomes the operand which is an "Offset" added to the contents of the lower eight bits of the program counter when the counter is set at the next instruction The range of the offset is -128 to +127 bytes from the next instruction

## Zero Page Indexed Indirect Addressing [(IND, X)]

With zero page indexed indirect addressing (usually referred to as indirect $X$ ) the second byte of the instruction is added to the contents of the $X$ index register, the carry is discarded The result of this addition points to a memory location on page zero whose contents is the low-order eight bits of the effective address The next memory location in page zero contaıns the high-order eight bits of the effective address Both memory locations specifyıng the high- and low-order bytes of the effective address must be in page zero

## *Absolute Indexed Indirect Addressing [ABS(IND, X)] (Jump Instruction Only)

With absolute indexed indirect addressing the contents of the second and third instruction bytes are added to the X register The result of this addition, points to a memory location containing the lower-order eight bits of the effective address The next memory location contains the higherorder eight bits of the effective address

## Indirect Indexed Addressing [(IND), Y]

This form of addressing is usually referred to as Indirect, Y. The second byte of the instruction points to a memory location in page zero The contents of this memory location are added to the contents of the Y index register, the result being the low-order eight bits of the effective address. The carry from this addition is added to the contents of the next page zero memory location, the result beıng the high-order eight bits of the effective address.
*Zero Page Indirect Addressing [(ZPG)]
In the zero page indirect addressing mode, the second byte of the instruction points to a memory location on page zero contaınıng the low-order byte of the effective address. The next location on page zero contaıns the high-order byte of the effective address

## Absolute Indirect Addressing [(ABS)]

## (Jump Instruction Only)

The second byte of the instruction contains the low-order eight bits of a memory location. The high-order eight bits of that memory location is contained in the third byte of the instruction The contents of the fully specified memory location is the low-order byte of the effective address. The next memory location contains the high-order byte of the effective address which is loaded into the 16 bit program counter

NOTE ${ }^{*}=$ New Address Modes

## Signal Description

Address Bus ( $A_{0}-A_{15}$ )
$\mathrm{A}_{0}-\mathrm{A}_{15}$ forms a 16 -bit address bus for memory and I/O exchanges on the data bus. The output of each address line is TTL compatıble, capable of drıving one standard TTL load and 130 pF .
Clocks ( $\phi_{0}, \phi_{1}$, and $\phi_{2}$ )
$\phi_{0}$ is a TTL level input that is used to generate the internal clocks in the 6502. Two full level output clocks are generated by the 6502. The $\phi_{2}$ clock output is in phase with $\phi_{0}$. The $\phi_{1}$ output pin is $180^{\circ}$ out of phase with $\phi_{0}$. (See timing diagram.)

## Data Bus ( $\mathrm{D}_{0}-\mathrm{D}_{7}$ )

The data lines ( $D_{0}-D_{7}$ ) constitute an 8 -bit bidırectional data bus used for data exchanges to and from the device and peripherals. The outputs are three-state buffers capable of driving one TTL load and 130 pF .

## Interrupt Request ( $\overline{\mathbf{R O}}$ )

This TTL compatible input requests that an interrupt sequence begin within the microprocessor. The $\overline{\mathrm{RQ}}$ is sampled during $\phi_{2}$ operation; if the interrupt flag in the processor status register is zero, the current instruction is completed and the interrupt sequence begins durıng $\phi_{1}$. The program counter and processor status register are stored in the stack. The microprocessor will then set the interrupt mask flag high so that no further $\overline{\mathrm{RO}}$ s may occur. At the end of this cycle, the program counter low will be loaded from address FFFE, and program counter high from location FFFF, transferring program control to the memory vector located at these addresses The RDY signal must be in the high state for any interrupt to be recognized. A 3 K ohm external resistor should be used for proper wire OR operation.

## Memory Lock ( $\overline{\mathrm{ML}}$ )

In a multiprocessor system, the $\overline{M L}$ output indicates the need to defer the rearbitration of the next bus cycle to ensure the integrity of read-modify-write instructions. $\overline{\mathrm{ML}}$ goes low during ASL, DEC, INC, LSR, ROL, ROR, TRB, TSB memory referencing instructions. This signal is low for the modify and write cycles.

## Non-Maskable Interrupt ( $\overline{\mathrm{NMI})}$

A negative-going edge on this input requests that a nonmaskable interrupt sequence be generated within the microprocessor. The $\overline{N M I}$ is sampled during $\phi_{2}$; the current instruction is completed and the interrupt sequence begins during $\phi_{1}$ The program counter is loaded with the interrupt vector from locations FFFA (low byte) and FFFB (high byte), thereby transferring program control to the non-maskable interrupt routıne.
NOTE: Since this interrupt is non-maskable, another $\overline{\text { NMI }}$ can occur before the first is finished. Care should be taken when using NMI to avoid this.

## Ready (RDY)

This input allows the user to single-cycle the microprocessor on all cycles including write cycles A negative transition to the low state, during or coincident with phase one ( $\phi_{1}$ ), will halt the microprocessor with the output address lines reflecting the current address being fetched. This condition will remain through a subsequent phase two ( $\phi_{2}$ ) in which the ready signal is low. This feature allows microprocessor interfacing with low-speed memory as well as direct memory access (DMA).

## Reset ( $\overline{\mathrm{RES})}$

This input is used to reset the microprocessor. Reset must be held low for at least two clock cycles after $V_{D D}$ reaches operating voltage from a power down. A positive transition on this pin will then cause an initialization sequence to begin. Likewise, after the system has been operatıng, a low on this line of at least two cycles will cease microprocessing activity, followed by initialization after the positive edge on $\overline{R E S}$.
When a positive edge is detected, there is an initialization sequence lastıng six clock cycles. Then the interrupt mask flag is set, the decimal mode is cleared, and the program counter is loaded with the restart vector from locations FFFC (low byte) and FFFD (high byte). This is the start location for program control. This input should be high in normal operation.

## Read/Write (R/W)

This sıgnal is normally in the high state indicatıng that the microprocessor is reading data from memory or I/O bus. In the low state the data bus has valid data from the microprocessor to be stored at the addressed memory location

## Set Overflow ( $\overline{\mathbf{S O}}$ )

A negative transition on this line sets the overflow bit in the status code regıster. The sıgnal is sampled on the trailing edge of $\phi_{1}$.

## Synchronize (SYNC)

This output line is provided to identify those cycles during which the microprocessor is doing an OP CODE fetch The SYNC line goes high during $\phi_{1}$ of an OP CODE fetch and stays high for the remainder of that cycle. If the RDY line is pulled low during the $\phi_{1}$ clock pulse in which SYNC went high, the processor will stop in its current state and will remain in the state until the RDY line goes high. In this manner, the SYNC signal can be used to control RDY to cause single instruction execution.

## Instruction Set - Alphabetical Sequence

ADC Add Memory to Accumulator with Carry
AND "AND" Memory with Accumulator
ASL Shift One Bit Left
BCC Branch on Carry Clear
BCS Branch on Carry Set
BEQ Branch on Result Zero
BIT Test Memory Bits with Accumulator
BMI Branch on Result Minus
BNE Branch on Result Not Zero
BPL Branch on Result Plus

- BRA Branch Always

BRK Force Break
BVC Branch on Overflow Clear
BVS Branch on Overflow Set
CLC Clear Carry Flag
CLD Clear Decımal Mode
CLI Clear Interrupt Disable Bit
CLV Clear Overfiow Flag
CMP Compare Memory and Accumulator
CPX Compare Memory and Index $X$
CPY Compare Memory and Index $Y$
DEC Decrement by One
DEX Decrement Index $X$ by One
DEY Decrement Index $Y$ by One
EOR "Exclusive-or" Memory with Accumulator
INC Increment by One
INX Increment Index $X$ by One
INY Increment Index $Y$ by One
JMP Jump to New Location
JSR Jump to New Location Saving Return Address
LDA Load Accumulator with Memory
LDX Load Index $X$ with Memory

DY Load Index $Y$ with Memory
LSR Shift One Bit Right
NOP No Operatıon
CRA "OR" Memory with Accumulator
PHA Push Accumulator on Stack
PHP Push Processor Status on Stack

- PHX Push Index X on Stack
- PHY Push Index Y on Stack

PLA Pull Accumulator from Stack
PLP Pull Processor Status from Stack

- PLX Pull Index X from Stack
- PLY Pull Index Y from Stack

ROL Rotate One Bit Left
ROR Rotate One Bit Right
RTI Return from Interrupt
RTS Return from Subroutine
SBC Subtract Memory from Accumulator with Borrow
SEC Set Carry Flag
SED Set Decımal Mode
SEI Set Interrupt Disable Bit
STA Store Accumulator in Memory
STX Store Index $X$ in Memory
STY Store Index $Y$ in Memory

- STZ Store Zero in Memory

TAX Transfer Accumulator to Index $X$
TAY Transfer Accumulator to Index $Y$

- TRB Test and Reset Memory Bits with Accumulator
- TSB Test and Set Memory Bits with Accumulator

TSX Transfer Stack Pointer to Index X
TXA Transfer Index $X$ to Accumulator
TXS Transfer Index $X$ to Stack Pointer
TYA Transfer Index Y to Accumulator

Note - $\quad$ New Instruction

	0	1	2	3	4	5	6	7	8	9	A	B	C	D	E	F	
0	BRK	ORA ind, $X$			$\begin{aligned} & \text { TSB } \\ & \text { zpg } \end{aligned}$	$\begin{aligned} & \text { ORA } \\ & \text { zpg } \end{aligned}$	$\begin{aligned} & \text { ASL } \\ & \text { zpg } \end{aligned}$		PHP	$\begin{aligned} & \text { ORA } \\ & \text { imm } \end{aligned}$	$\begin{gathered} \text { ASL } \\ \text { A } \end{gathered}$		$\begin{aligned} & \text { TSB } \\ & \text { abs } \end{aligned}$	ORA abs	ASL   abs		0
1	BPL rel	ORA ind, $Y$	ORA ind		$\begin{aligned} & \text { TRB } \\ & \text { zpg } \end{aligned}$	$\begin{gathered} \text { ORA } \\ \text { zpg. } X \end{gathered}$	$\begin{gathered} \text { ASL } \\ \text { zpg, } \mathrm{X} \end{gathered}$		CLC	ORA abs, Y	$\underset{A}{\text { INC }}$		$\begin{aligned} & \text { TRB } \\ & \text { abs } \end{aligned}$	ORA abs, $X$	$\begin{gathered} \text { ASL } \\ \text { abs, } X \end{gathered}$		1
2	$\begin{aligned} & \text { JSR } \\ & \text { abs } \end{aligned}$	AND ind, $X$			$\begin{aligned} & \mathrm{BIT} \\ & \mathrm{zpg} \end{aligned}$	$\begin{gathered} \text { AND } \\ \mathrm{zpg} \end{gathered}$	$\begin{gathered} \mathrm{ROL} \\ \mathrm{zpg} \end{gathered}$		PLP	AND imm	$\begin{gathered} \mathrm{ROL} \\ \mathrm{~A} \end{gathered}$		$\begin{aligned} & \text { BIT } \\ & \text { abs } \end{aligned}$	AND abs	$\begin{aligned} & \text { ROL } \\ & \text { abs } \end{aligned}$		2
3	BMI rel	AND ind, $Y$	AND ind		$\begin{gathered} \text { BIT } \\ \text { zpg, } X \end{gathered}$	$\begin{gathered} \text { AND } \\ \text { zpg, } X \end{gathered}$	$\underset{\text { zpg, } \mathrm{x}}{\substack{\mathrm{ROL}}}$		SEC	AND abs, $Y$	$\begin{gathered} \text { DEC } \\ \text { A } \end{gathered}$		$\underset{\text { abs, } \mathrm{X}}{\text { BIT }}$	AND abs, $X$	$\begin{aligned} & \text { ROL } \\ & \text { abs, } \mathrm{X} \end{aligned}$		3
4	RTI	$\begin{aligned} & \text { EOR } \\ & \text { ind, } X \end{aligned}$				$\begin{gathered} \text { EOR } \\ \text { zpg } \end{gathered}$	$\begin{aligned} & \text { LSR } \\ & \text { zpg } \end{aligned}$		PHA	$\begin{aligned} & \text { EOR } \\ & \mathrm{imm} \end{aligned}$	$\begin{gathered} \text { LSR } \\ \text { A } \end{gathered}$		$\begin{aligned} & \text { JMP } \\ & \text { abs } \end{aligned}$	$\begin{gathered} \text { EOR } \\ \text { abs } \end{gathered}$	$\begin{aligned} & \text { LSR } \\ & \text { abs } \end{aligned}$		4
5	BVC rel	$\begin{aligned} & \text { EOR } \\ & \text { ind, } Y \end{aligned}$	$\begin{aligned} & \text { EOR } \\ & \text { ind } \end{aligned}$			$\begin{aligned} & \text { EOR } \\ & \mathrm{zpg}, \mathrm{X} \end{aligned}$	$\begin{gathered} \text { LSR } \\ \text { zpg, } \mathrm{X} \end{gathered}$		CLI	$\begin{aligned} & \text { EOR } \\ & \text { abs. } Y \end{aligned}$	PHY			$\begin{aligned} & \text { EOR } \\ & \text { abs, } X \end{aligned}$	$\begin{gathered} \text { LSR } \\ \text { abs, } x \end{gathered}$		5
6	RTS	$\begin{gathered} \text { ADC } \\ \text { ind, } X \end{gathered}$			$\begin{aligned} & \text { STZ } \\ & \text { zpg } \end{aligned}$	$\begin{gathered} \mathrm{ADC} \\ \mathrm{zpg} \end{gathered}$	$\begin{aligned} & \mathrm{ROR} \\ & \mathrm{zpg} \end{aligned}$		PLA	ADC Imm	$\begin{gathered} \text { ROR } \\ \text { A } \end{gathered}$		JMP ind	ADC abs	ROR abs		6
7	BVS rel	$\begin{gathered} A D C \\ \text { ind, } Y \end{gathered}$	ADC ind		$\begin{gathered} \text { STZ } \\ \text { zpg, } X \end{gathered}$	$\begin{gathered} \mathrm{ADC} \\ \mathrm{zpg}, \mathrm{X} \end{gathered}$	$\begin{gathered} \text { ROR } \\ \text { zpg, } X \end{gathered}$		SEI	ADC abs, $Y$	PLY		$\begin{aligned} & \mathrm{JMP} \\ & \text { ind, } \mathrm{X} \end{aligned}$	ADC abs, $X$	ROR abs, $X$		7
8	BRA rel	$\begin{aligned} & \text { STA } \\ & \text { ind, } x \end{aligned}$			$\begin{aligned} & \text { STY } \\ & \text { zpg } \end{aligned}$	$\begin{aligned} & \text { STA } \\ & \text { zpg } \end{aligned}$	$\begin{aligned} & \text { STX } \\ & \text { zpg } \end{aligned}$		DEY	$\begin{aligned} & \text { BIT } \\ & \text { imm } \end{aligned}$	TXA		$\begin{aligned} & \text { STY } \\ & \text { abs } \end{aligned}$	STA   abs	$\begin{aligned} & \text { STX } \\ & \text { abs } \end{aligned}$		8
9	$\begin{gathered} \mathrm{BCC} \\ \mathrm{rel} \end{gathered}$	$\begin{aligned} & \text { STA } \\ & \text { ind, } Y \end{aligned}$	STA ind		$\begin{gathered} \text { STY } \\ z p g, X \end{gathered}$	$\begin{gathered} \text { STA } \\ \text { zpg, } x \end{gathered}$	$\begin{gathered} \text { STX } \\ \text { zpg, Y } \end{gathered}$		TYA	$\begin{gathered} \text { STA } \\ \text { abs, } Y \end{gathered}$	TXS		$\begin{aligned} & \text { STZ } \\ & \text { abs } \end{aligned}$	$\begin{gathered} \text { STA } \\ \text { abs, } X \end{gathered}$	$\begin{aligned} & \text { STZ } \\ & \text { abs, } \mathrm{X} \end{aligned}$		9
A	$\begin{aligned} & \text { LDY } \\ & \text { Imm } \end{aligned}$	$\begin{aligned} & \text { LDA } \\ & \text { ind, } x \end{aligned}$	$\begin{aligned} & \text { LDX } \\ & \text { Imm } \end{aligned}$		$\begin{aligned} & \text { LDY } \\ & \text { zpg } \end{aligned}$	$\begin{aligned} & \text { LDA } \\ & \text { zpg } \end{aligned}$	$\begin{aligned} & \text { LDX } \\ & \text { zpg } \end{aligned}$		TAY	$\begin{aligned} & \text { LDA } \\ & \mathrm{imm} \end{aligned}$	TAX		$\begin{aligned} & \text { LDY } \\ & \text { abs } \end{aligned}$	$\begin{aligned} & \text { LDA } \\ & \text { abs } \end{aligned}$	$\begin{aligned} & \text { LDX } \\ & \text { abs } \end{aligned}$		A
B	$\begin{gathered} \mathrm{BCS} \\ \text { rel } \end{gathered}$	$\begin{aligned} & \text { LDA } \\ & \text { ind, } Y \end{aligned}$	LDA ind		$\begin{gathered} \text { LDY } \\ \text { zpg, } X \end{gathered}$	$\begin{gathered} \text { LDA } \\ \text { zpg, } \mathrm{X} \end{gathered}$	$\begin{gathered} \text { LDX } \\ \text { zpg, } Y \end{gathered}$		CLV	$\begin{aligned} & \text { LDA } \\ & \text { abs, } Y \end{aligned}$	TSX		$\begin{aligned} & \text { LDY } \\ & \text { abs, } X \end{aligned}$	$\begin{aligned} & \text { LDA } \\ & \text { abs, } X \end{aligned}$	$\begin{gathered} \text { LDX } \\ \text { abs, } Y \end{gathered}$		B
C	CPY Imm	$\begin{aligned} & \text { CMP } \\ & \text { ind, } X \end{aligned}$			$\begin{aligned} & \text { CPY } \\ & \text { zpg } \end{aligned}$	$\begin{gathered} \text { CMP } \\ \text { zpg } \end{gathered}$	$\begin{aligned} & \text { DEC } \\ & \text { zpg } \end{aligned}$		INY	$\begin{aligned} & \text { CMP } \\ & \text { imm } \end{aligned}$	DEX		$\begin{aligned} & \text { CPY } \\ & \text { abs } \end{aligned}$	$\begin{aligned} & \text { CMP } \\ & \text { abs } \end{aligned}$	DEC abs		C
D	BNE rel	CMP ind, $Y$	CMP ind			$\begin{gathered} \text { CMP } \\ \text { zpg, } X \end{gathered}$	$\begin{gathered} \text { DEC } \\ \text { zpg, } \mathrm{X} \end{gathered}$		CLD	CMP abs, Y	PHX			$\begin{aligned} & \text { CMP } \\ & \text { abs, } X \end{aligned}$	$\begin{gathered} \text { DEC } \\ \text { abs, } X \end{gathered}$		D
E	$\begin{aligned} & \mathrm{CPX} \\ & \mathrm{Imm} \end{aligned}$	$\begin{aligned} & \text { SBC } \\ & \text { ind, } X \end{aligned}$			$\begin{aligned} & \text { CPX } \\ & \text { zpg } \end{aligned}$	$\begin{aligned} & \mathrm{SBC} \\ & \mathrm{zpg} \end{aligned}$	$\begin{aligned} & \text { INC } \\ & \text { zpg } \end{aligned}$		INX	$\begin{aligned} & \mathrm{SBC} \\ & \mathrm{Imm} \end{aligned}$	NOP		$\begin{aligned} & \text { CPX } \\ & \text { abs } \end{aligned}$	$\begin{aligned} & \text { SBC } \\ & \text { abs } \end{aligned}$	$\begin{aligned} & \text { INC } \\ & \text { abs } \end{aligned}$		E
F	$\begin{gathered} \mathrm{BEQ} \\ \text { rel } \end{gathered}$	$\begin{aligned} & \text { SBC } \\ & \text { ind, } \mathrm{Y} \end{aligned}$	$\begin{aligned} & \text { SBC } \\ & \text { ind } \end{aligned}$			$\begin{gathered} \mathrm{SBC} \\ \mathrm{zpg}, \mathrm{X} \end{gathered}$	$\underset{\text { zpg, }}{\substack{\text { INC }}}$		SED	$\underset{\text { abs, } \mathrm{Y}}{\mathrm{YBC}}$	PLX			$\underset{\text { abs, } \mathrm{XBC}}{\mathrm{SBC}}$	$\begin{aligned} & \text { INC } \\ & \text { abs, } x \end{aligned}$		F
	0	1	2	3	4	5	6	7	8	9	A	B	C	D	E	F	

Note $\square=$ New Op Codes
Figure 6. Microprocessor Op Code Table

## Operational Codes, Execution Time, and Memory Requirements

			IMMEDIATE			ABSO LUTE		$\begin{aligned} & \text { ZERO } \\ & \text { PAGE } \end{aligned}$			ACCUM		$\begin{gathered} \text { IM }- \\ \text { PLIED } \\ \hline \end{gathered}$		$\begin{gathered} \hline \text { (IND, } \\ \text { X) } \end{gathered}$			(IND,Y)		ZPG, X		ZPG, Y		ABS, X		ABS, Y		RELA TIVE		(ABS)		$\left.\left\lvert\, \begin{array}{c} A B S \\ (I N D, X) \end{array}\right.\right)$		(ZPG)		PROCESSOR STATUS CODES		
MNE	OPERATION		OP	$n$ \#		OP $n$	n \#	\# OP	OP $n$	n \#	OP	n \#	OP n	n \#	\% OP	P ${ }^{\text {n }}$	n \#	OP	n	OP	n \#	OP	$n$	OP	n \#	OP	n	OP	$n$ \#	OP	n \#	OP $n$	n \#	OP	n \#	\# 7	7 6 5 4 3 2 1 0   $N$ $V$ $B$ $D$ 1 $Z$ $C$	(1) CNE
ADC   AND   ASL   BCC   BCS	$\begin{aligned} & A+M+C \rightarrow A \\ & A \wedge M \rightarrow A \\ & C \rightarrow-7 \quad 0 \\ & \text { Branch if } C=0 \\ & \text { Branch if } C=1 \end{aligned}$	$\begin{aligned} & \hline(1,3) \\ & (1) \\ & (1) \\ & (2) \\ & (2) \\ & \hline \end{aligned}$	69	2 2   2 2	$\begin{array}{l\|l} 2 & 60 \\ 2 & 20 \\ & 20 \end{array}$	6D	$\left.\begin{array}{\|l\|l\|} \hline 4 & 3 \\ 4 & 3 \\ 6 & 3 \end{array} \right\rvert\,$	$\begin{array}{\|l\|l} 3 & 65 \\ 3 & 25 \\ 3 & 06 \end{array}$	65 3   25 3   06 5	3 2   3 2   5 2	0A	21				$\begin{array}{l\|l\|} 61 & 6 \\ 21 & 6 \end{array}$	$\left.\begin{array}{l\|l} 6 & 2 \\ 6 & 2 \end{array}\right\}$	$\begin{aligned} & 71 \\ & 31 \end{aligned}$	5 2   5 2	$\begin{aligned} & 75 \\ & 35 \\ & 16 \end{aligned}$	$\left(\begin{array}{l\|l} 4 & 2 \\ 4 & 2 \\ 6 & 2 \end{array}\right.$			$\begin{aligned} & 7 \mathrm{D} \\ & 3 \mathrm{D} \\ & 1 \mathrm{E} \end{aligned}$	$\begin{array}{ll}4 & 3 \\ 4 & 3 \\ 6 & 3\end{array}$	$\left\|\begin{array}{l} 79 \\ 39 \end{array}\right\|$	4 3   4 3	$90$ $B 0$	$\begin{array}{lll}  & \\ 2 & 2 \\ 2 & 2 \\ \hline \end{array}$					$\begin{aligned} & 72 \\ & 32 \end{aligned}$	$\left.\begin{array}{\|l\|l} 5 & 2 \\ 5 & 2 \end{array} \right\rvert\,$	$2 \begin{aligned} & \text { N } \\ & 2 \\ & N \\ & N\end{aligned}$	$\begin{array}{ll}N & V \\ N & Z C \\ N & Z \\ & Z C\end{array}$	$\begin{array}{\|l\|} A D C \\ A N D \\ A S L \\ B C C \\ B C S \\ \hline \end{array}$
BEQ   BIT   BMI   BNE   BPL	$\begin{aligned} & \text { Branch if } Z=1 \\ & A \wedge M \\ & \text { Branch if } N=1 \\ & \text { Branch if } Z=0 \\ & \text { Branch if } N=0 \end{aligned}$	(2)   (4)   (2)   (2)   (2)	89	22	22	2 C 4	43	324	243	3										34	42	2		3C	43			$\begin{gathered} F 0 \\ 30 \\ D 0 \\ 10 \\ \hline \end{gathered}$	$\begin{array}{ll\|} 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ \hline \end{array}$								$M_{7} M_{6} \quad Z$	BEQ BIT BMI BNE BPL
BRA BRK BVC BVS CLC	Branch Always Break   Branch if $\mathrm{V}=0$   Branch if $\mathrm{V}=1$   $0 \rightarrow C$	(2)   (2)   (2)											$\begin{gathered} 00 \\ 18 \end{gathered}$	$\begin{array}{\|c\|c\|} \hline 7 & 1 \\ 2 & \\ \hline \end{array}$														$\begin{aligned} & 80 \\ & 50 \\ & 70 \end{aligned}$	$\begin{array}{lll} 2 & 2 \\ 2 & 2 \\ 2 & 2 \end{array}$								$\begin{array}{lll} 1 & 1 & \\ & & \\ 0 & & 0 \end{array}$	$\begin{aligned} & \mathrm{BRA} \\ & \mathrm{BRK} \\ & \mathrm{BVC} \\ & \mathrm{BVS} \\ & \mathrm{CLC} \end{aligned}$
$\begin{aligned} & \text { CLD } \\ & \text { CLI } \\ & \text { CLV } \\ & \text { CMP } \\ & \mathrm{CPX} \end{aligned}$	$\begin{aligned} & 0 \rightarrow D \\ & 0 \rightarrow 1 \\ & 0 \rightarrow V \\ & A \end{aligned}$	(1)	C9   E0	2 2   2 2	$2 . \mathrm{CD}$	$\begin{array}{l\|} \mathrm{CD} \\ \mathrm{EC} \end{array}$	$\begin{array}{\|l\|l\|} \hline 4 & 3 \\ 4 & 3 \\ \hline \end{array}$	$\begin{array}{\|l\|l} 3 & \text { C5 } \\ 3 & \text { E4 } \\ \hline \end{array}$	C5 3   E4 3	3			$\begin{array}{\|l\|} \hline \mathrm{D} 8 \\ 58 \\ \mathrm{~B} 8 \end{array}$	$\left.\begin{array}{\|l\|l\|} \hline 2 & 1 \\ 2 & 1 \\ 2 & 1 \end{array} \right\rvert\,$	C	C1 6	62	D1 5	52	2 D5	42	2		DD	43	D9	43							D2	52		$\begin{array}{lllll\|}  & & & 0 & \\ & & & & \\ & 0 & & 0 & \\ N & & & & \\ N & & C \\ N & & & & Z \\ \hline \end{array}$	CLD   CLI   CLV   CMP   CPX
CPY   DEA   DEC   DEX   DEY	$\begin{array}{ll} Y & M \\ A & 1+A \\ M & 1 \rightarrow M \\ X & 1+X \\ Y & 1 \rightarrow Y \end{array}$	(1)	CO	22	$\begin{array}{r} 2 \mathrm{CC} \\ \mathrm{Cl} \end{array}$					32	3A	21	CA   88	$\begin{array}{ll\|l}  & & \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ \hline \end{array}$	$1$					D6	62			DE	63												$\begin{array}{ll} z & c \\ z & \\ z & \\ z & \\ z & \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline C P Y \\ D E A \\ D E C \\ D E X \\ D E Y \\ \hline \end{array}$
EOR   INA   INC   INX   INY	$\begin{aligned} & A \forall M \rightarrow A \\ & A+1 \rightarrow A \\ & M+1 \rightarrow M \\ & X+1 \rightarrow X \\ & Y+1 \rightarrow Y \end{aligned}$	(1)	49	22		EE		345	45 3   $E 6$ 5	32	1 A	21	E8 C8	$\begin{array}{\|l\|l}  & \\ & \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ \hline \end{array}$	$1{ }^{1}$	416	62	51	52	$\left\|\begin{array}{l} 55 \\ \mathrm{~F} 6 \end{array}\right\|$	$\begin{array}{l\|l} 4 & 2 \\ 6 & 2 \end{array}$			FD	4    6 3	59	43							52	52		$\begin{array}{ll}N & Z \\ N & Z \\ N & Z \\ N & Z \\ N & Z\end{array}$	$\begin{aligned} & \text { EOR } \\ & \text { INA } \\ & \text { INC } \\ & \text { INX } \\ & \text { INY } \end{aligned}$
$\begin{aligned} & \text { JMP } \\ & \text { JSR } \\ & \text { LDA } \\ & \text { LDX } \\ & \text { LDY } \end{aligned}$	Jump to new loc Jump Subroutine $\begin{aligned} & M * A \\ & M * X \\ & M * Y \end{aligned}$	(1)   (1)   (1)	A9 A2 A 0	$\begin{array}{llll} & \\ 2 & 2 \\ 2 & \\ 2 \\ 2 & 2\end{array}$	$\begin{array}{\|l\|l} \hline & 4 \mathrm{C} \\ & 2 \mathrm{O} \\ 2 & \mathrm{AC} \\ 2 & \mathrm{AB} \\ 2 & \mathrm{AC} \\ \hline \end{array}$	4C	$\begin{array}{\|l\|l\|} \hline 3 & 3 \\ \hline 6 & 3 \\ 4 & 3 \\ \hline & 3 \\ \hline & 3 \\ \hline \end{array}$		A5 3   A6 3   A4 3	3 2   3 2   3 2						A1 6	62	B1 5	52	$\begin{array}{\|l\|} \hline 2 \\ \hline \end{array}$	$\begin{array}{ll} 4 & 2 \\ 4 & 2 \\ \hline \end{array}$	86	42	$\begin{aligned} & B D \\ & B C \\ & \hline \end{aligned}$	4 3   4 3	$\left\|\begin{array}{l} \mathrm{B9} \\ \mathrm{BE} \end{array}\right\|$	4 3   4 3			6 C	63	7C 6	63	B2	$5{ }^{2}$		$\begin{array}{ll}N & Z \\ N & Z \\ N & Z\end{array}$	$\begin{array}{\|l\|} \hline \text { JMP } \\ \text { JSR } \\ \text { LDA } \\ \text { LDX } \\ \text { LDY } \end{array}$
LSR   NOP   ORA   PHA   PHP	$\begin{aligned} & O \rightarrow\left[\begin{array}{l} 7 \\ P C+1 \rightarrow P C \\ A \vee M \rightarrow A \\ A \rightarrow M_{S} S \\ A \end{array}\right) S \\ & P \rightarrow M_{S} S \text { S } 1 \rightarrow S \end{aligned}$	(1) (1)	09	22		$\begin{array}{l\|l} 4 E & 6 \\ 0 D & 4 \end{array}$	6    4 3	3 46   3 05	46 5   05 3	5 2   3 2	4A	$2{ }^{2} 1$	$\begin{aligned} & 1 \\ & \text { EA } \\ & 48 \\ & 08 \\ & \hline \end{aligned}$		$\begin{array}{l\|l} 1 & \\ 1 & 0 \\ 1 & 0 \\ 1 & \end{array}$	016	62	115	52	$2\left\|\begin{array}{l} 56 \\ 15 \end{array}\right\|$	$\begin{array}{ll} 6 & 2 \\ 4 & 2 \\ 2 \end{array}$			$\begin{gathered} 5 \mathrm{E} \\ 1 \mathrm{D} \end{gathered}$		19	43							12	52	$2{ }^{0}$	$\left.\begin{array}{ll} 0 & z c \\ N & z \end{array} \right\rvert\,$	$\begin{array}{\|l\|} \hline \text { LSR } \\ \text { NOP } \\ \text { ORA } \\ \text { PHA } \\ \text { PHP } \end{array}$
$\begin{aligned} & \text { PHX } \\ & \text { PHY } \\ & \text { PLA } \\ & \text { PLP } \\ & \text { PLX } \end{aligned}$	$\begin{aligned} & X \rightarrow M_{S} S \quad 1 \rightarrow S \\ & Y \rightarrow M_{S} S \\ & S+1 \rightarrow S \\ & S+1 \rightarrow S \quad M_{S} \rightarrow A \\ & S+1 \rightarrow S \quad M_{S} \rightarrow P \\ & S+1 \rightarrow S \quad M_{S} \rightarrow X \end{aligned}$												$\begin{array}{\|l\|} \hline D A \\ 5 A \\ 68 \\ 28 \\ \text { FA } \\ \hline \end{array}$	$\begin{array}{\|l\|l\|} \hline 3 & 1 \\ 3 & 1 \\ 4 & 1 \\ 4 & 1 \\ 4 & 1 \\ \hline \end{array}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & \hline \end{aligned}$																						$\begin{array}{lllll}\text { N } & & & \\ N\end{array}$	$\begin{aligned} & \text { PHX } \\ & \text { PHY } \\ & \text { PLA } \\ & \text { PLP } \\ & \text { PLX } \end{aligned}$
PLY   ROL   ROR   RTI   RTS	$\begin{aligned} & S+1 \rightarrow S M_{S} * Y \\ & -\sqrt{7}-0+\sqrt{c} \\ & 0-6 \end{aligned}$   Return from Inter Return from Subr	$\begin{aligned} & (1) \\ & (1) \end{aligned}$				$\begin{aligned} & 2 \mathrm{E} \\ & 6 \mathrm{E} \end{aligned}$	$\begin{array}{\|l\|l\|} \hline 6 & 3 \\ 6 & 3 \\ \hline \end{array}$		26 5   66 5	52	$\begin{array}{l\|l} 2 A & 2 \\ 6 A & 2 \end{array}$	$\begin{array}{\|l\|l} 2 & 1 \\ 2 & 1 \\ \hline & \\ \hline \end{array}$	$\begin{array}{l\|l\|} 1 & 7 A \\ 1 & \\ 40 \\ 60 \\ \hline \end{array}$	4     1   6 1   6 1	1					$\begin{aligned} & 36 \\ & 76 \end{aligned}$	$\begin{array}{l\|l\|} 6 & 2 \\ 6 & 2 \end{array}$			$\begin{aligned} & 3 \mathrm{E} \\ & 7 \mathrm{E} \end{aligned}$	$\left.\begin{array}{\|l\|l\|} \hline 6 & 3 \\ 6 & 3 \end{array} \right\rvert\,$													$\begin{aligned} & \text { PLY } \\ & \text { ROL } \\ & \text { ROR } \\ & \text { RTI } \\ & \text { RTS } \\ & \hline \end{aligned}$
SBC   SEC   SED   SEI   STA	$\begin{aligned} & A \cdot M \cdot \bar{C}+A \\ & 1 \rightarrow C \\ & 1 \rightarrow D \\ & 1 \rightarrow 1 \\ & A \rightarrow M \end{aligned}$	$(1,3)$	E9	22		$\begin{gathered} \hline E D \\ 8 D \end{gathered}$	$\begin{array}{\|l\|l} \hline 4 & 3 \\ 4 & 3 \\ 4 & 3 \end{array}$	$\begin{array}{\|l\|l} \hline & \mathrm{E} 5 \\ 3 & 85 \\ \hline \end{array}$	$\begin{array}{l\|l} \mathrm{E} 5 & 3 \\ 85 & 3 \\ \hline \end{array}$	$\begin{array}{l\|l\|} \hline 3 & 2 \\ 3 & 2 \\ \hline \end{array}$			38 F8 78	$\begin{array}{\|l\|l\|} \hline 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ \hline & 1 \\ \hline \end{array}$	$\begin{array}{\|l\|l\|} 1 & E 1 \\ 1 & \\ 1 & \\ \hline & 81 \end{array}$	$\begin{array}{l\|l\|} \hline 1 & 6 \\ 81 & 6 \\ \hline \end{array}$	$\begin{array}{ll\|l} 6 & 2 \\ 6 & 2 \\ \hline \end{array}$	$\begin{aligned} & F 1 \\ & 91 \end{aligned}$	$\begin{array}{\|l\|l\|} \hline 5 & 2 \\ 6 & 2 \\ \hline \end{array}$	$\begin{array}{l\|l\|} \hline 2 & 55 \\ 2 & 95 \\ \hline \end{array}$	$\begin{array}{ll} 4 & 2 \\ 4 & 2 \\ 2 \end{array}$			$\left.\begin{gathered} F D \\ 9 D \end{gathered} \right\rvert\,$	$\begin{array}{lll} 4 & 3 \\ 5 & 3 \\ & 3 \end{array}$	$\begin{aligned} & F 9 \\ & 99 \end{aligned}$	$\begin{array}{lll} 4 & 3 \\ 5 & 3 \end{array}$							$\begin{gathered} F_{2} \\ 92 \end{gathered}$	$\begin{array}{\|c\|c\|c} 5 & 2 \\ 5 & 2 \\ 5 & 2 \end{array}$	$\begin{aligned} & 2 \mid N \\ & 2 \\ & 2 \end{aligned}$	N V $\quad$ llll	$\begin{aligned} & \text { CSBC } \\ & 1 \\ & \text { SEC } \\ & \text { SED } \\ & \text { SEI } \\ & \text { STA } \end{aligned}$
$\begin{aligned} & \hline \text { STX } \\ & \text { STY } \\ & \text { STZ } \\ & \text { TAX } \\ & \text { TAY } \end{aligned}$	$\begin{aligned} & X \rightarrow M \\ & Y \rightarrow M \\ & O O \rightarrow M \\ & A \rightarrow X \\ & A \rightarrow Y \end{aligned}$					$\begin{aligned} & 8 \mathrm{E} \\ & 8 \mathrm{C} \\ & 9 \mathrm{C} \end{aligned}$	$\begin{array}{\|l\|l\|} \hline 4 & 3 \\ 4 & 3 \\ 4 & 3 \end{array}$	$\begin{array}{\|l\|l\|} \hline 3 & 86 \\ 3 & 84 \\ 3 & 64 \\ \hline \end{array}$	86 3   84 3   64 3	$\begin{array}{l\|l} 3 & 2 \\ 3 & 2 \end{array}$				$$	1					$\begin{aligned} & 94 \\ & 74 \end{aligned}$	$\begin{array}{l\|l} 4 & 2 \\ 4 & 2 \\ 4 & 2 \end{array}$	${ }^{96}$			53												$N$ $Z$   $N$ $Z$	$\begin{aligned} & \text { STX } \\ & \text { STY } \\ & \text { STZ } \\ & \text { TAX } \\ & \text { TAY } \end{aligned}$
$\begin{aligned} & \text { TRB } \\ & \text { TSB } \\ & \text { TSX } \\ & \text { TXA } \\ & \text { TXS } \end{aligned}$	$\begin{aligned} & \bar{A} \wedge M \rightarrow M \\ & A \vee M \rightarrow M \\ & S \rightarrow X \\ & X \rightarrow A \\ & X \rightarrow S \end{aligned}$	(4)   (4)				1C	$\begin{array}{\|l\|l} 6 & 3 \\ 6 & 3 \end{array}$	$\begin{array}{\|l\|l} 3 & 14 \\ 3 & 04 \end{array}$	$\begin{array}{l\|l} 14 & 5 \\ 04 & 5 \end{array}$	$\begin{array}{l\|l} 5 & 2 \\ 5 & 2 \end{array}$			$\begin{array}{\|l\|} \hline B A \\ 8 A \\ 9 A \\ \hline \end{array}$	2 1   2 1   2 1   2 1	1																						$M_{7} M_{6}$ $Z$   $M_{7} M_{6}$ $Z$   $N$ $Z$   $N$ $Z$	$\begin{aligned} & \text { TRB } \\ & \text { TSB } \\ & \text { TSX } \\ & \text { TXA } \\ & \text { TXS } \end{aligned}$
TYA	$Y+A$												98	21	1																					N	N Z	TYA

Notes

1. Add 1 to " $n$ " if page boundary is crossed

2 Add 1 to " $n$ " if branch occurs to same page Add 2 to " $n$ " if branch occurs to different page 3 Add 1 to " $n$ " if decımal mode.
4 V bit equals memory bit 6 prior to execution N bit equals memory bit 7 prior to execution
$X$ Index $X$
$Y$ Index $Y$
A Accumulator
M Memory per effective address
Ms Memory per stack poınter

```
+ Add
- Subtract
\(\wedge\) And
\(\checkmark\) Or
\(\forall\) Exclusive or
```

$n$ No. Cycles
\# No. Bytes
$M_{6}$ Memory bit 6 $\mathrm{M}_{7}$ Memory bit 7

## Synertek.

Package Availability 40 Pin Molded DIP

## Ordering Information



## CMOS Versatile Interface Adapter (VIA)

## PRELIMINARY

## Features

- Two 8-Bıt Bı-dırectional I/O Ports
- Two 16-Bit Programmable Timer/Counters
- Serial Data Port
- Single +5 V Power Supply
- TTL Compatıble
- CMOS Compatıble Perıpheral Port A Lınes
- Expanded "Handshake" Capability Allows Positive Control of Data Transfers Between Processor and Peripheral Devices
- Latched Output and Input Regısters
- $1 \mathrm{MHz}, 2 \mathrm{MHz}$ Bus Operatıon


## Description

The SY65C22 Versatile Interface Adapter (VIA) is a very flexible 1/O control device. In addition, this device contains a paır of very powerful 16 -bit interval tımers, a serial-to-parallel/parallel-to-serıal shift register and input data latching on the peripheral ports. Expanded handshaking capability allows control of bi-directional data transfers between VIA's in multiple processor systems.

Control of peripheral devices is handled primarily through two 8-bit bi-directional ports Each line can be programmed
as either an input or an output. Several perıpheral I/O lines can be controlled directly from the interval timers for generating programmable frequency square waves or for countıng externally generated pulses. To facilitate control of the many powerful features of this chip, an interrupt flag register, an interrupt enable register and a pair of function control registers are provided.


Figure 1. SY65C22 Block Diagram

## Absolute Maximum Ratings*

Rating	Symbol	Value	Unit
Supply Voltage	$\mathrm{V}_{\mathrm{DD}}$	-03 to +70	V
Input Voltage	$\mathrm{V}_{\mathrm{IN}}$	-03 to	V
Operatıng Temperature   Range	$\mathrm{T}_{\mathrm{A}}$	-40 to +85	${ }^{\circ} \mathrm{C}$
Storage Temperature   Range	$\mathrm{T}_{\text {stg }}$	-55 to +150	${ }^{\circ} \mathrm{C}$

## Comment ${ }^{*}$

This device contains circuitry to protect the inputs against damage due to high static voltages However, it is advised that normal precautions be taken to avoid application of any voltage higher than maxımum rated voltages

## Pin Configuration



Electrical Characteristics $\left(\mathrm{V}_{\mathrm{DD}}=50 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=-40\right.$ to $85^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Characteristic	Min.	Max.	Unit
$\mathrm{V}_{\text {IH }}$	Input High Voltage (all except $\phi$ 2)	24	$V_{D D}+0.3$	V
$\mathrm{V}_{\text {IL }}$	Input Low Voltage	-0.3	0.8	V
$\mathrm{I}_{\mathrm{IN}}$	Input Leakage Current, $\mathrm{V}_{\mathrm{IN}}=0.4$ to 2.4 V  	-	$\pm 10$	$\mu \mathrm{A}$
$\mathrm{I}_{\text {TSI }}$	Off-state Input Current, $\mathrm{V}_{\mathrm{IN}}=0.4$ to 2.4 V $\mathrm{V}_{\mathrm{CC}}=$ Max., DO to D7	-	$\pm 100$	$\mu \mathrm{A}$
$\mathrm{IIH}^{\text {H}}$	Input High Current, $\mathrm{V}_{\mathrm{IH}}=24 \mathrm{~V}$ PAO-PA7, CA2, PBO-PB7, CB1, CB2	-200	-	$\mu \mathrm{A}$
IL	Input Low Current, $\mathrm{V}_{\mathrm{IL}}=04 \mathrm{~V}$ PAO-PA7, CA2, PB0-PB7, CB1, CB2	-	-2.4	mA
$\mathrm{V}_{\mathrm{OH}}$	Output High Voltage, $\mathrm{V}_{\mathrm{CC}}=\mathrm{min}, \mathrm{I}_{\text {LOAD }}=-200 \mu \mathrm{~A}$ PAO-PA7, CA2, PB0-PB7, CB1, CB2	2.4	-	V
$\mathrm{V}_{\mathrm{OL}}$	Output Low Voltage, $\mathrm{V}_{\mathrm{CC}}=\mathrm{min}, \mathrm{I}_{\text {LOAD }}=32 \mathrm{~mA}$	-	0.4	V
${ }^{\mathrm{OH}}$	Output High Current (Sourcing) $\mathrm{V}_{\mathrm{OH}}=15 \mathrm{~V}$ (PBO-PB7)	-3.0	-10.0	mA
$P_{\text {D }}$	Power Dissıpation, $\mathrm{V}_{\mathrm{DD}}=5.5 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$	-	11.0	mW
$\mathrm{P}_{\text {SBY }}$	Standby Power Dissıpation ( $\phi 2=\mathrm{V}_{\mathrm{IN}}$, Inputs $=\mathrm{V}_{\mathrm{SS}}$ or $V_{D D}$, No Loads)	-	11.0	$\mu \mathrm{W}$
$\mathrm{I}_{\mathrm{DD}}$	Supply Current $f=1 \mathrm{MHz}$    $f=2 \mathrm{MHz}$	-	$\begin{aligned} & 2.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
$\mathrm{C}_{\text {OUT }}$	Output Capacitance, $\mathrm{f}=1 \mathrm{MHz}$	-	10	pF
$\mathrm{Cl}_{\text {IN }}$	Input Capacitance, $\mathrm{f}=1 \mathrm{MHz}$	-	5.0	pF



Figure 2. Test Load (for all Dynamic Parameters)


Figure 3. Read Timing Characteristics
AC Characteristics - Processor Interface Timing: $\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

		65C22		65C22A		65C22B		
Parameter	Symbol	Min.	Max.	Min.	Max.	Min.	Max.	Unit
Cycle Tıme	$\mathrm{t}_{\mathrm{CYC}}$	1000	-	500	-	330	-	ns
Phase 2 Pulse WIdth Hıgh	$\mathrm{t}_{\text {PWH }}$	470	-	240	-	160	-	ns
Phase 2 Pulse Width Low	$\mathrm{t}_{\mathrm{PWL}}$	470	-	240	-	160	-	ns
Phase 2 Transition	$\mathrm{t}_{\mathrm{R}, \mathrm{F}}$	-	30	-	30	-	30	ns

Read Timing (Figure 3)

Select, $\mathrm{R} / \overline{\mathrm{W}}$ Set-Up	$\mathrm{t}_{\mathrm{ACR}}$	160	-	90	-	65	-	ns
Select, $\mathrm{R} / \overline{\mathrm{W}}$ Hold	$\mathrm{t}_{\mathrm{CAR}}$	0	-	0	-	0	-	ns
Data Bus Delay	$\mathrm{t}_{\mathrm{CDR}}$	-	320	-	190	-	130	ns
Data Bus Hold	$\mathrm{t}_{\mathrm{HR}}$	10	-	10	-	10	-	ns
Peripheral Data Set-Up	$\mathrm{t}_{\text {PCR }}$	300	-	150	-	110	-	ns



Figure 4. Write Timing Characteristics

AC Characteristics - Processor Interface Timing: $\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$

		65C22		65C22A		65C22B		
Parameter	Symbol	Min.	Max.	Min.	Max.	Min.	Max.	Unit
Cycle Tıme	$\mathrm{t}_{\mathrm{CYC}}$	1000	-	500	-	330	-	ns
Phase 2 Pulse Width Hıgh	$\mathrm{t}_{\text {PWH }}$	470	-	240	-	160	-	ns
Phase 2 Pulse WIdth Low	$\mathrm{t}_{\text {PWL }}$	470	-	240	-	160	-	ns
Phase 2 Transition	$\mathrm{t}_{\text {R, } \mathrm{F}}$	-	30	-	30	-	30	ns

Write Timing (Figure 4)

Select, $\mathrm{R} / \overline{\mathrm{W}}$ Set-Up	$\mathrm{t}_{\mathrm{ACR}}$	160	-	90	-	65	-	ns
Select, $\mathrm{R} / \overline{\mathrm{W}}$ Hold	$\mathrm{t}_{\mathrm{CAR}}$	0	-	0	-	0	-	ns
Data Bus Setup	$\mathrm{t}_{\mathrm{DCW}}$	-	195	-	90	-	65	ns
Data Bus Hold	$\mathrm{t}_{\mathrm{HR}}$	10	-	10	-	10	-	ns
Perıpheral Data Set-Up	$\mathrm{t}_{\mathrm{PCR}}$	-	1000	-	500	-	330	ns

Peripheral Interface Characteristics

Symbol	Characteristic	Min.	Max.	Typ.	Unit	Figure
$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	Rise and Fall Time for CA1, CB1, CA2, and CB2 Input Signals	-	1.0		$\mu \mathrm{S}$	-
TCA2	Delay Tıme, Clock Negative Transition to CA2 Negative Transition (read handshake or pulse mode)	-	1.0		$\mu \mathrm{S}$	5a, 5b
$\mathrm{T}_{\mathrm{RS}}$	Delay Tıme, Clock Negative Transition to CA2 Positıve Transition (pulse mode)	-	1.0		$\mu \mathrm{S}$	5 a
$\mathrm{T}_{\mathrm{RS} 2}$	Delay Time, CA1 Active Transition to CA2 Positive Transition (handshake mode)	-	2.0		$\mu \mathrm{S}$	5b
TWHS	Delay Time, Clock Positive Transition to CA2 or CB2 Negative Transition (write handshake)	005	1.0		$\mu \mathrm{S}$	5c, 5d
$\mathrm{T}_{\mathrm{DS}}$	Delay Tıme, Perıpheral Data Valıd to CB2 Negatıve Transition	0.20	15		$\mu \mathrm{S}$	5c, 5d
$\mathrm{T}_{\mathrm{RS} 3}$	Delay Tıme, Clock Transıtion to CA2 or CB2 Positive Transition (pulse mode)	-	1.0		$\mu \mathrm{S}$	5c
$\mathrm{T}_{\mathrm{RS} 4}$	Delay Time, CA1 or CB1 Active Transition to CA2 or CB2 Positive Transition (handshake mode)	-	2.0		$\mu \mathrm{S}$	5d
T21	Delay Tıme Required from CA2 Output to CA1 Active Transition (handshake mode)	400	-		ns	5d
$\mathrm{T}_{\text {IL }}$	Set-up Time, Perıpheral Data Valid to CA1 or CB1 Active Transition (Input latching)	300	-		ns	5 e
$\mathrm{T}_{\text {SR1 }}$	Shıft-Out Delay Tıme - Tıme from $\phi_{2}$ Falling Edge to CB2 Data Out	-	300		ns	$5 f$
$\mathrm{T}_{\text {SR2 }}$	Shift-In Setup Tıme - Time from CB2 Data in to $\phi_{2}$ Rısing Edge	300	-		ns	5 g
$\mathrm{T}_{\text {SR3 }}$	External Shift Clock (CB1) Setup Tıme Relative to $\phi_{2}$ Trailing Edge	100	$\mathrm{T}_{\mathrm{CY}}$		ns	5 g
TIPW	Pulse Wıdth - PB6 Input Pulse	$2 \times T_{C Y}$	-			51
TICW	Pulse Wıdth - CB1 Input Clock	$2 \times \mathrm{T}_{C Y}$	$\stackrel{-}{-}$			5h
TIPS	Pulse Spacing - PB6 Input Pulse	$2 \times \mathrm{T}_{\mathrm{Cr}}$	-			51
TICS	Pulse Spacing - CB1 Input Pulse	$2 \times \mathrm{T}_{\mathrm{Cr}}$	-			5h
$\mathrm{T}_{\mathrm{AL}}$	CA1, CB1 Set Up Prıor to Transition to Arm Latch	$\mathrm{T}_{\mathrm{C}}+50$	-		ns	5 e
$\mathrm{T}_{\text {PDH }}$	Perıpheral Data Hold After CA1, CB1 Transıtion	150	-		ns	5 e
$\mathrm{T}_{\text {PWI }}$	Set Up Required on CA1, CB1, CA2 or CB2 Prior to Triggerıng Edge	$T_{C}+50$	-		ns	5
$\begin{aligned} & T_{\text {DPR }} \\ & T_{\text {DPL }} \\ & \hline \end{aligned}$	Shift Register Clock - Delay from $\phi_{2}$ to CB1 Rısıng Edge   to CB1 Falling Edge			$\begin{array}{r} 200 \\ 125 \\ \hline \end{array}$	ns	$\begin{aligned} & 5 \mathrm{k} \\ & 5 \mathrm{k} \\ & \hline \end{aligned}$



Figure 5a. CA2 Timing for Read Handshake, Pulse Mode


Figure 5b. CA2 Timing for Read Handshake, Handshake Mode


Figure 5c. CA2, CB2 Timing for Write Handshake, Pulse Mode


Figure 5d. CA2, CB2 Timing for Write Handshake, Handshake Mode


Figure 5e. Peripheral Data Input Latching Timing


Figure 5f. Timing for Shift Out with Internal or External Shift Clocking


Figure 5g. Timing for Shift In with Internal or External Shift Clocking


Figure 5h. External Shift Clock Timing


Figure 5i. Pulse Count Input Timing
$\qquad$


Figure 5j. Setup Time to Triggering Edge

02


Figure 5k. Shift-in/ out with Internal Clock Delay CD2 to CB1 Edge

## Pin Descriptions

## $\overline{\mathrm{RES}}$ (Reset)

The reset input clears all internal registers to logic 0 (except T1 and T2 latches and counters and the Shift Register). This places all peripheral interface lines in the input state, disables the tımers, shift regıster, etc. and disables interrupting from the chip

## \$2 (Input Clock)

The input clock is the system $\phi 2$ clock and is used to trigger all data transfers between the system processor and the SY65C22

## R/W (Read/Write)

The direction of the data transfers between the SY65C22 and the system processor is controlled by the $\mathrm{R} / \overline{\mathrm{W}}$ line. If $R / \bar{W}$ is low, data will be transferred out of the processor into the selected SY65C22 register (write operation). If $R / \bar{W}$ is high and the chip is selected, data will be transferred out of the SY65C22 (read operation).

## DB0-DB7 (Data Bus)

The eight bi-directional data bus lines are used to transfer data between the SY65C22 and the system processor. During read cycles, the contents of the selected SY65C22 register are placed on the data bus lines and transferred into the processor. During write cycles, these lines are high-impedance inputs and data is transferred from the processor into the selected register. When the SY65C22 is unselected, the data bus lines are high-ımpedance.
CS1, $\overline{\text { CS2 }}$ (Chip Selects)
The two chip select inputs are normally connected to processor address lines either directly or through decoding The selected SY65C22 register will be accessed when CS1 is high and $\overline{\mathrm{CS} 2}$ is low.

## RSO-RS3 (Register Selects)

The four Register Select inputs permit the system processor to select one of the 16 internal registers of the SY65C22, as shown in Figure 6

Register Number	RS Coding				Register Desig.	Description	
	RS3	RS2	RS1	RSO		Write	Read
0	0	0	0	0	ORB/IRB	Output Register "B"	Input Register "B"
1	0	0	0	1	ORA/IRA	Output Register "A"	Input Register " A "
2	0	0	1	0	DDRB	Data Direction Register "B"	
3	0	0	1	1	DDRA	Data Direction Register " A "	
4	0	1	0	0	T1C-L	T1 Low-Order Latches	T1 Low-Order Counter
5	0	1	0	1	T1C-H	T1 High-Order Counter	
6	0	1	1	0	T1L-L	T1 Low-Order Latches	
7	0	1	1	1	T1L-H	T1 High-Order Latches	
8	1	0	0	0	T2C-L	T2 Low-Order Latches	T2 Low-Order Counter
9	1	0	0	1	T2C-H	T2 High-Order Counter	
10	1	0	1	0	SR	Shift Register	
11	1	0	1	1	ACR	Auxiliary Control Register	
12	1	1	0	0	PCR	Peripheral Control Register	
13	1	1	0	1	IFR	Interrupt Flag Register	
14	1	1	1	0	IER	Interrupt Enable Register	
15	1	1	1	1	ORA/IRA	Same as Reg 1 Except No "Handshake"	

Figure 6. SY65C22 Internal Register Summary

## $\overline{\mathbf{R O}}$ (Interrupt Request)

The Interrupt Request output goes low whenever an internal interrupt flag is set and the corresponding interrupt enable bit is a logic 1 This output is "open-draın" to allow the interrupt request signal to be "wire-or'ed" with other equivalent signals in the system

## PAO-PA7 (Peripheral A Port)

The Peripheral A port consists of 8 lines which can be individually programmed to act as inputs or outputs under control of a Data Direction Register The polarity of output pins is controlled by an Output Register and input data may be latched into an internal register under control of the CA1 line All of these modes of operation are controlled by the system processor through the internal control registers These lines represent one standard TTL load in the input mode and will drive one standard TTL load in the output mode Figure 7 illustrates the output circuit

## CA1, CA2 (Peripheral A Control Lines)

The two Peripheral A control lines act as interrupt inputs or as handshake outputs Each line controls an internal interrupt flag with a corresponding interrupt enable bit. In addition, CA1 controls the latching of data on Perıpheral A port input lines CA1 is a high-impedance input only, while CA2 represents one standard TTL load in the input mode CA2 will drive one standard TTL load in the output mode


Figure 7. Peripheral A Port Output Circuit

## PBO-PB7 (Peripheral B Port)

The Perıpheral B port consists of eight bı-directional lines which are controlled by an output register and a data direction register in much the same manner as the PA port. In addition, the PB7 output signal can be controlled by one of the interval timers while the second timer can be programmed to count pulses on the PB6 pın. Perıpheral B lines represent one standard TTL load in the
input mode and will drive one standard TTL load in the output mode In addition, they are capable of sourcing 10 mA at 15 V DC in the output mode to allow the outputs to directly drive Darlington transistor circuits. Figure 8 is the circuit schematic

## CB1, CB2 (Peripheral B Control Lines)

The Perıpheral B control lines act as interrupt inputs or as handshake outputs As with CA1 and CA2, each line controls an interrupt flag with a corresponding interrupt enable bit. In addition, these lines act as a serial port under control of the Shift Register. These lines represent one standard TTL load in the input mode and will drive one standard TTL load in the output mode Unlike PBOPB7, CB1 and CB2 cannot drive Darlington transistor circuits


Figure 8. Peripheral B Port Output Circuit

## Functional Description

## Port A and Port B Operation

Each 8-bit perıpheral port has a Data Dırection Regıster (DDRA, DDRB) for specifyıng whether the peripheral pins are to act as inputs or outputs A 0 in a bit of the Data Direction Register causes the corresponding peripheral pin to act as an input. A 1 causes the pin to act as an output.

When programmed as an output each perıpheral pin is also controlled by a corresponding bit in the Output Register (ORA, ORB). A 1 in the Output Register causes the output to go high, and a " 0 " causes the output to go low. Data may be written into Output Register bits corresponding to pins which are programmed as inputs. In this case, however, the output signal is unaffected.
Reading a perıpheral port causes the contents of the Input Register (IRA, IRB) to be transferred on to the Data Bus. With input latching disabled, IRA will always reflect the levels on the PA pins. With input latching enabled and the selected active transition on CA1 having
occurred, IRA will contain the data present on the PA lines at the time of the transition. Once IRA is read, however, it will appear transparent, reflecting the current state of the PA lines until the next "latching" transition.

The IRB register operates simılar to the IRA register. However, for pins programmed as outputs there is a difference. When reading IRA, the level on the pin determines whether a 0 or a 1 is sensed. When reading IRB, however, the bit stored in the output register, ORB, is the bit sensed Thus, for outputs which have large loading effects and which pull an output " 1 " down or which pull an output " 0 " up, reading IRA may result in reading a " 0 " when a " 1 " was actually programmed, and readıng a " 1 " when a " 0 " was programmed. ReadIng IRB, on the other hand, will read the " 1 " or " 0 " level actually programmed, no matter what the loading on the pin.
Figures 9, 10, and 11 illustrate the formats of the port registers In addition, the input latching modes are selected by the Auxiliary Control Register (Figure 16.)

## Handshake Control of Data Transfers

The SY65C22 allows positive control of data transfers between the system processor and peripheral devices through the operation of "handshake" lines. Port A lines (CA1, CA2) handshake data on both a read and a write operation while the Port B lines (CB1, CB2) handshake on a write operation only.

## Read Handshake

Positive control of data transfers from peripheral devices into the system processor can be accomplished very effectively using Read Handshaking In this case, the peripheral device must generate the equivalent of a "Data Ready" signal to the processor signifying that valid

## REG 0 - ORB/IRB



Figure 9. Output Register B (ORB), Input Register B (IRB)

REG 1 - ORA/IRA


Figure 10. Output Register $A$ (ORA), Input Register A (IRA)

REG 2 (DDRB) AND REG 3 (DDRA)


Figure 11. Data Direction Registers (DDRB, DDRA)
data is present on the peripheral port This signal normally interrupts the processor, which then reads the data, causing generation of a "Data Taken" signal The perıpheral device responds by makıng new data available. This process contınues untıl the data transfer is complete.

In the SY65C22, automatıc "Read" Handshaking is possible on the Peripheral A port only The CA1 interrupt input pın accepts the "Data Ready" signal and CA2 generates the "Data Taken" sıgnal. The "Data Ready" signal will set an internal flag which may interrupt the processor or which may be polled under program control The


Figure 12. Read Handshake Timing (Port A Only)


Figure 13. Write Handshake Timing
"Data Taken" signal can either be a pulse or a level which is set low by the system processor and is cleared by the "Data Ready" signal These options are shown in Figure 12 which illustrates the normal Read Handshaking sequence

## Write Handshake

The sequence of operations which allows handshaking data from the system processor to a peripheral device is very simılar to that described for Read Handshakıng However, for Write Handshakıng, the SY65C22 generates the "Data Ready" signal and the peripheral device must respond with the "Data Taken" signal This can be accomplished on both the PA port and the PB port on the SY65C22 CA2 or CB2 act as a "Data Ready" output in etther the handshake mode or pulse mode and CA1 or CB1 accept the "Data Taken" signal from the peripheral device, settıng the interrupt flag and cleanıng the "Data Ready" output This sequence is shown in Figure 13

Selection of operatıng modes for CA1, CA2, CB1, and CB2 is accomplished by the Peripheral Control Register (Figure 14)

## Timer Operation

Interval Timer T1 consists of two 8-bit latches and a 16-bit counter The latches are used to store data which is to be loaded into the counter After loadıng, the counter decrements at $\phi 2$ clock rate Upon reachıng zero, an interrupt flag will be set, and $\overline{\mathrm{RQ}}$ will go low if the interrupt is enabled The tımer will then disable any further interrupts, or (when programmed to) will automatically
transfer the contents of the latches into the counter and begin to decrement again In addıtıon, the tımer may be programmed to invert the output signal on a peripheral pin each tıme it "tımes-out" Each of these modes is discussed separately below.
The T1 counter is depicted in Figure 15 and the latches in Figure 16
Two bits are provided in the Auxiliary Control Register (bits 6 and 7) to allow selection of the T1 operating modes The four possible modes are depicted in Figure 17

REG 12 - PERIPHERAL CONTROL REGISTER

*SEE NOTE ACCOMPANYING FIGURE 25

Figure 14. CA1, CA2, CB1, CB2 Control

REG 4 - TIMER 1 LOW-ORDER COUNTER


WRITE-8 BITS LOADED INTO T1 LOW-ORDER LATCHES LATCH CONTENTS ARE TRANSFERREDINTOLOW.ORDER ORDER COUNTER IS LOADED (REG 5).
READ - 8 BITS FROM T1 LOW-ORDER COUNTER
TRANSFERRED TO MPU IN ADDITION,
T1 INTERRUPT FLAG IS RESET (BIT 6 IN INTERRUPT FLAG REGISTER)

REG 5 - TIMER 1 HIGH-ORDER COUNTER


WRITE - 8 BITS LOADED INTO T1 HIGH-ORDER LATCHES ALSO, AT THIS TIME BOTH HIGH AND LOW-ORDER LATCHES TRANSFERRED INTO T1 COUNTER, AND INITIATES COUNTDOWN. T1 INTERRUPT FLAG ALSO IS RESET
READ - 8 BITS FROM T1 HIGH-ORDER COUNTER TRANSFERRED TO MPU

Figure 15. T1 Counter Registers

REG 6 - TIMER 1 LOW-ORDER LATCHES


WRITE - 8 BITS LOADED INTO TI LOW-ORDER LATCHES THIS OPERATION IS NO DIFFERENT THAT A WRITE INTO REG 4
READ - 8 BITS FROM T1 LOW-ORDER LATCHES TRANSFERRED TO MPU UNLIKE REG 4 OPERATION, THIS DOES NOT CAUSE RESET OF Tí INTERRUPT FLAG

REG 7 - TIMER 1 HIGH-ORDER LATCHES


WRITE - 8 BITS LOADED INTO T1 HIGH-ORDER
LATCHES UNLIKE REG 4 OPERATION
NO LATCH-TO-COUNTER TRANSFERS
TAKE PLACE
READ - 8 BITS FROM T1 HIGH-ORDER LATCHES
TRANSFERRED TO MPU

Figure 16. T1 Latch Registers

REG 11 - AUXILIARY CONTROL REGISTER


Figure 17. Auxiliary Control Register

Note. The processor does not write directly into the low order counter (T1C-L). Instead, this half of the counter is loaded automatically from the low order latch when the processor writes into the high order counter in fact, it may not be
necessary to write to the low order counter in some applications since the timing operation is triggered by writing to the high order counter.


Figure 18. Timer 1 and Timer 2 One-Shot Mode Timing

## Timer 1 One-Shot Mode

The interval timer one-shot mode allows generation of a single interrupt for each Timer load operation In addıtion, Timer 1 can be programmed to produce a single negative pulse on PB7

To generate a single interrupt ACR bits 6 and 7 must be 0 then either TIL-L or TIC-L must be written with the low-order count value (A write to TIC-L is effectively a Write to TIL-L) Next the high-order count value is written to TIC-H, (the value is sımultaneously written into TIL-H), and TIL-L is transferred to TIC-L Countdown begins on the $\phi_{2}$ following the write TIC-H and decrements at the $\phi_{2}$ rate T1 interrupt occurs when the counters reach 0 Generation of a negative pulse on PB7 is done in the same manner except ACR bit 7 must be a one PB7 will go low after a Write TIC-H and go high again when the counters reach 0

The T1 interrupt flag is reset by either writing TIC-H (startıng a new count) or by readıng TIC-L.

Timing for the one-shot mode is illustrated in Figure 18

## Timer 1 Free-Run Mode

The most important advantage associated with the latches in T1 is the ability to produce a continuous series of evenly spaced interrupts and the ability to produce a square wave on PB7 whose frequency is not affected by variations in the processor interrupt response time This is accomplished in the "free-running" mode
In the free-running mode, the interrupt flag is set and the signal on PB7 is inverted each time the counter reaches zero However, instead of contınuing to decrement from zero after a tıme-out, the tımer automatically transfers the contents of the latch into the counter (16 bits) and continues to decrement from there, It is not necessary to rewrite the tımer to enable setting the
interrupt flag on the next time-out The interrupt flag can be cleared by reading TIC-L, by writing directly into the flag as described later, or if a new count value is desired by a write to TIC-H.

All interval timers in the SY65C22 are "re-triggerable" Rewriting the counter will always re-initialize the timeout period In fact, the tıme-out can be prevented completely if the processor continues to rewrite the timer before it reaches zero Timer 1 will operate in this manner if the processor writes into the high order counter (T1C-H). However, by loading the latches only, the processor can access the tımer during each downcounting operation without affecting the time-out in process. Instead, the data loaded into the latches will determıne the length of the next time-out period This capability is particularly valuable in the free-running mode with the output enabled In this mode, the signal on PB7 is inverted and the interrupt flag is set with each time-out By responding to the interrupts with new data for the latches, the processor can determıne the period of the next half cycle during each half cycle of the output signal on PB7 In this manner, very complex waveforms can be generated Timing for the free-running mode is shown in Figure 19

## Timer 2 Operation

Timer 2 operates as an interval timer (in the "one-slot" mode only), or as a counter for counting negative pulses on the PB6 peripheral pin. A single control bit is provided in the Auxiliary Control Regıster to select between these two modes. This timer is comprised of a "write-only" low-order latch (T2L-L), a "read-only" low-order counter and a read/write high order counter. The counter registers act as a 16-bit counter which decrements at $\Phi 2$ rate Figure 20 illustrates the T2 Counter Registers.


Note: A precaution to take in the use of PB7 as the timer output concerns the Data Direction Register contents for PB7. Both DDRB bit 7 and ACR bit 7 must be 1 for PB7 to function as the timer output. If either is a 0 , then PB7 functions as a normal output pin, controlled by ORB bit 7.

Figure 19. Timer 1 Free-Run Mode Timing

## Timer 2 One-Shot Mode

As an interval tımer, T2 operates in the "one-shot" mode sımılar to Timer 1, In this mode, T2 provides a single interrupt for each "write T2C-H" operation After tımıng out, (reading 0 ) the counters "roll-over" to all 1's ( FFFF $_{16}$ ) and continue decrementing, allowing the user to read them and determine how long T2 interrupt has been set. However, settıng of the interrupt flag will be disabled after initial time-out so that it will not be set by the counter continuing to decrement through zero. The processor must rewrite T2C-H to enable setting of the interrupt flag. The interruput flag is cleared by readıng T2C-L or by writing T2C-H. Timing for this operation is shown in Figure 18.

## Timer 2 Pulse Counting Mode

In the pulse counting mode, T2 serves primarily to count a predetermıned number of negative-going pulses on PB6. This is accomplished by first loading a number into T2. Writing into T2C-H clears the interrupt flag and allows the counter to decrement each tıme a pulse is applied to PB6. The interrupt flag will be set when T2 reaches zero. At this tıme the counter will contınue to decrement with each pulse on PB6. However, it is necessary to rewrite T2C-H to allow the interrupt flag to set on subsequent down-countıng operations Timıng for this mode is shown in Figure 21 The pulse must be low on the leading edge of $\Phi 2$

REG 8 - TIMER 2 LOW-ORDER COUNTER


WRITE - 8 BITS LOADED INTO T2 LOW ORDER LATCHES
READ - 8 BITS FROM T2 LOW-ORDER COUNTER TRANSFERRED TO MPU T2 INTERRUPT FLAG IS RESET

REG 9 - TIMER 2 HIGH-ORDER COUNTER


WRITE - 8 BITS LOADED INTO T2 HIGH ORDER
COUNTER ALSO, LOW-ORDER LATCHES
TRANSFERRED TO LOW-ORDER
COUNTER IN ADDITION, T2 INTERRUPT
FLAG IS RESET
READ - 8 BITS FROM T2 HIGH-ORDER COUNTER
TRANSFERRED TO MPU

Figure 20. T2 Counter Registers

## Shift Register Operation

The Shift Register (SR) performs serial data transfers into and out of the CB2 pin under control of an internal modulo-8 counter. Shift pulses can be applied to the CB1 pin from an external source or, with the proper mode selection, shift pulses generated internally will appear on the CB1 pin for controlling external devices.
The control bits which select the various shift register operating modes are located in the Auxiliary Control Register Figure 22 illustrates the configuration of the SR data bits and the SR control bits of the ACR
Figures 23 and 24 illustrate the operation of the various shift register modes.

## Interrupt Operation

Controlling interrupts within the SY65C22 involves three princıpal operations These are flagging the interrupts, enabling interrupts and signaling to the processor that an active interrupt exists within the chip. Interrupt flags are set by interrupting conditions which exist within the chip or on inputs to the chip. These flags normally remain set until the interrupt has been serviced To determine the source of an interrupt, the microprocessor must examıne these flags in order from highest to lowest priority. This is accomplished by reading the flag register into the processor accumulator, shifting this register
either right or left and then using conditional branch instructions to detect an active interrupt.
Associated with each interrupt flag is an interrupt enable bit. This can be set or cleared by the processor to enable interrupting the processor from the corresponding interrupt flag. If an interrupt flag is set to a logic 1 by an interrupting condition, and the corresponding interrupt enable bit is set to a 1 , the Interrupt Request Output (IRQ) will go low. $\overline{\mathrm{RQ}}$ is an "open-collector" output which can be "wire-or'ed" with other devices in the system to interrupt the processor.
In the SY65C22, all interrupt flags are contained in one register. In addition, bit 7 of this register will be read as a logic 1 when an interrupt exists within the chip. This allows very convenient polling of several devices within a system to locate the source of an interrupt.

## SR Disabled (000)

The 000 mode is used to disable the Shift Register. In this mode the microprocessor can write or read the SR, but the shifting operation is disabled and operation of CB1 and CB2 is controlled by the appropriate bits in the Peripheral Control Register (PCR). In this mode the SR Interrupt Flag is disabled (held to a logic 0 ).


Figure 21. Timer 2 Pulse Counting Mode

REG 10 - SHIFT REGISTER
REG 11 - AUXILIARY CONTROL REGISTER


NOTES
1 WHEN SHIFTING OUT BIT 7 IS THE FIRST BIT OUT AND SIMULTANEOUSLY IS ROTATED BACK INTO BIT 0
2 WHEN SHIFTING IN, BITS INITIALLY ENTER BIT 0 AND ARE SHIFTED TOWARDS BIT 7


Figure 22. SR and ACR Control Bits

Shift in Under Control of T2 (001)
In the 001 mode the shiftıng rate is controlled by the low order 8 bits of T2 Shift pulses are generated on the CB1 pın to controi shiftıng in external devices. The time between transitions of this output clock is a function of the system clock period and the contents of the low order T2 latch ( N )

The shifting operation is triggered by writing or reading the shift register Data is shifted first into the low order
bit of SR and is then shifted into the next higher order bit of the shift register on the negative-going edge of each clock pulse. The input data should change before the positive-going edge of the CB1 clock pulse. This data is shifted into the shift register during the $\phi_{2}$ clock cycle following the positive-going edge of the CB1 clock pulse. After 8 CB1 clock pulses, the shift regıster interrupt flag will be set and $\overline{\mathrm{RO}}$ will go low.


## Shift in Under Control of $\phi_{\mathbf{2}}$ (010)

In mode 010 the shift rate is a direct function of the system clock frequency CB1 becomes an output which generates shift pulses for controlling external devices Timer 2 operates as an independent interval timer and has no effect on SR. The shiftıng operation is triggered
by reading or writing the Shift Register. Data is shifted first into bit 0 and is then shifted into the next higher order bit of the shift register on the trailing edge of each $\phi_{2}$ clock pulse. After 8 clock pulses, the shift register interrupt flag will be set, and the output clock pulses on CB1 will stop.


Shift in Under Control of External CB1 Clock (011) In mode 011 CB1 becomes an input This allows an external device to load the shift register at its own pace. The shift register counter will interrupt the processor each tıme 8 bits have been shifted in. However, the shift register counter does not stop the shiftıng operation; it acts simply as a pulse counter Reading or writing the

Shift Register resets the Interrupt flag and initializes the SR counter to count another 8 pulses.

Note that the data is shifted during the first system clock cycle following the positive-going edge of the CB1 shift pulse. For this reason, data must be held stable during the first full cycle following CB1 going high


Figure 23. Shift Register Input Modes

Shift Out Free-Running at T2 Rate (100)
Mode 100 is very similar to mode 101 in which the shifting rate is set by T2. However, in mode 100 the SR Counter does not stop the shifting operation. Since the

Shift Register bit 7 (SR7) is recirculated back into bit 0 , the 8 bits loaded into the shift register will be clocked onto CR2 repetitively In this mode the shift register counter is disabled and $\overline{\mathrm{RQ}}$ is never set


Shift Out Under Control of T2 (101)
In mode 101 the shift rate is controlled by T2 (as in the previous mode). However, with each read or write of the shift register the SR Counter is reset and 8 bits are shifted onto CB2 At the same time, 8 shift pulses are
generated on CB1 to control shiftıng in external devices. After the 8 shift pulses, the shiftıng is disabled, the SR Interrupt Flag is set and CB2 remains at the last data level


Shift Out Under Control of $\phi_{\mathbf{2}}$ (110) clock
In mode 110, the shift rate is controlled by the $\phi_{2}$ system


Shift Out Under Control of External CB1 Clock (111)

In mode 111 shifting is controlled by pulses applied to the CB1 pin by an external device. The SR counter sets the SR Interrupt flag each tıme it counts 8 pulses but it does not disable the shiftıng function. Each time the microprocessor writes or reads the shift register, the SR

Interrupt flag is reset and the SR counter is initialized to begin countıng the next 8 shift pulses on pın CB1. After 8 shift pulses, the interrupt flag is set. The microprocessor can then load the shift register with the next byte of data.


Figure 24. Shift Register Output Modes

The Interrupt Flag Register (IFR) and Interrupt Enable Register (IER) are depicted in Figures 25 and 26, respectively.
The IFR may be read directly by the processor. In addıtion, individual flag bits may be cleared by writing a " 1 " into the appropriate bit of the IFR When the proper chip select and register signals are applied to the chip, the contents of this register are placed on the data bus. Bit 7 indicates the status of the IRQ output. This bit corresponds to the logic function: IRQ $=$ IFR6 $\times$ IER6 + IFR5 $\times$ IER5 + IFR4 $\times$ IER4 + IFR3 $\times$ IER3 + IFR2 $\times$ IER2 + IFR1 x IER1 + IFRO $\times$ IERO. Note $X=$ logic AND,$+=$ Logic OR.
The IFR bit 7 is not a flag Therefore, this bit is not directly cleared by writing a logic 1 into it. It can only be cleared by clearing all the flags in the register or by disabling all the active interrupts as discussed in the next section.

REG 13 - INTERRUPT FLAG REGISTER


* IF THE CA2/CB2 CONTROL IN THE PCR IS SELECTED AS "INDEPENDENT" INTERRUPT INPUT, THEN READING OR WRITING THE OUTPUT REGISTER ORA/ORB WILL NOT
CLEAR THE FLAG BIT INSTEAD, THE BIT MUST BE CLEARED BY WRITING INTO THE IFR, AS DESCRIBED PREVIOUSLY

Figure 25. Interrupt Flag Register (IFR)

For each interrupt flag in IFR, there is a corresponding bit in the Interrupt Enable Register The system processor can set or clear selected bits in this register to facilitate controlling individual interrupts without affecting others This is accomplished by writing to address 1110 (IER
address). If bit 7 of the data placed on the system data bus during this write operation is a 0 , each 1 in bits 6 through 0 clears the corresponding bit in the Interrupt Enable Register, For each zero in bits 6 through 0, the corresponding bit is unaffected

Setting selected bits in the Interrupt Enable Register is accomplished by writing to the same address with bit 7 in the data word set to a logic 1 . In this case, each 1 in bits 6 through 0 will set the corresponding bit. For each zero, the corresponding bit will be unaffected. This individual control of the setting and clearing operations allows very convenient control of the interrupts during system operation
In addition to settıng and clearıng IER bits, the processor can read the contents of this register by placing the proper address on the register select and chip select inputs with the $\mathrm{R} / \overline{\mathrm{W}}$ line high. Bit 7 will be read as a logic 1.

REG 14 - INTERRUPT ENABLE REGISTER


NOTES
1 IF BIT 7 IS A " 0 ", THEN EACH " 1 " IN BITS $0-6$ DISABLES THE CORRESPONDING INTERRUPT
2 IF BIT 7 IS A " 1 ", THEN EACH " 1 " IN BITS $0-6$ ENABLES THE CORRESPONDING INTERRUPT
3 IF A READ OF THIS REGISTER IS DONE, BIT 7 WILL BE " 1 " AND
ALL OTHER BITS WILL REFLECT THEIR ENABLE/DISABLE STATE

Figure 26. Interrupt Enable Register (IER)

## Package Availability 40 Pin Molded DIP

Ordering Information


## PRELIMINARY

## Features

- On-Chip Baud Rate Generator 15 Programmable Baud Rates Derıved from a Standard 18432 MHz External Crystal (50 to 19,200 Baud)
- Programmable Interrupt and Status Register to Sımplify Software Design
- Single Power Supply, 3 to $6 V_{D C}$
- Serial Echo Mode
- False Start Bit Detection
- 8 Bit Bı-Dırectional Data Bus for Direct Communicatıon with the Microprocessor
- External 16x Clock Input for Non-Standard Baud Rates (Up to 125 Kbaud)
- Programmable Word Lengths, Number of Stop Bits, and Parity Bit Generation and Detection
- Data Set and Modem Control Signals Provided
- Parity (Odd, Even, None, Mark, Space)
- Full-Duplex or Half Duplex Operation
- 5, 6, 7, 8 and 9 Bit Transmission
- Low Power Consumption
- 1, 2, 3, or 4 MHz MPU Bus Operatıon


## Description

The SY65C51 is a CMOS Asynchronous Communications Adapter Its inherent low power requirements and noise immunity make it an ideal communications device for remote site monitoring installations, military, industrial and harsh environment applications. It was initially intended for interfacing the 6500 and 6800 microprocessors to serial
communication data sets and modems, but is easily interfaced to all popular microprocessors A unıque feature is the inclusion of an on-chip programmable baud rate generator, with a crystal being the only external component required

## Pin Configuration



Block Diagram


Figure 1. Block Diagram

## Absolute Maximum Ratings*

Rating	Symbol	Allowable Range
Supply Voltage	$\mathrm{V}_{\mathrm{DD}}$	-0.3 V to +7.0 V
Input/Output Voltage	$\mathrm{V}_{\mathrm{IN}}$	-0.3 V to +7.0 V
Operating Temperature	$\mathrm{T}_{\mathrm{OP}}$	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature	$\mathrm{T}_{\mathrm{STG}}$	$-55^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$

All inputs contain protection circuitry to prevent damage to high static charges. Care should be exercised to prevent unnecessary application of voltages in excess of the allowable limits

## Comment*

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
D.C. Characteristics $\left(V_{D D}=5.0 \mathrm{~V} \pm 5 \%, T_{A}=-40\right.$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted)

Characteristic	Symbol	Min.	Typ.	Max.	Unit
Input High Voltage	$\mathrm{V}_{\mathrm{IH}}$	2.0	-	$\mathrm{V}_{\mathrm{DD}}+0.3$	V
Input Low Voltage	$\mathrm{V}_{\text {IL }}$	-0.3	-	0.8	V
Input Leakage Current: $\mathrm{V}_{\mathrm{IN}}=0.4$ to $2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=5.25 \mathrm{~V}$ ( $\phi 2, \mathrm{R} / \overline{\mathrm{W}}, \overline{\mathrm{RES}}, \mathrm{CS}_{0}, \overline{\mathrm{CS}}_{1}, \mathrm{RS}_{0}, \mathrm{RS}_{1}, \overline{\mathrm{CTS}}, \mathrm{RxD}, \overline{\mathrm{DCD}}, \overline{\mathrm{DSR}}$ )	IN	-		$\pm 1.0$	$\mu \mathrm{A}$
Input Leakage Current for High Impedance State (Three State)	$\mathrm{I}_{\text {TSI }}$	-	-	$\pm 10.0$	$\mu \mathrm{A}$
Output High Voltage: $\operatorname{loAD}=-200 \mu \mathrm{~A}$ ( $\mathrm{DB}_{0}-\mathrm{DB}_{7}, \mathrm{TxD}, \mathrm{RxC}, \overline{\mathrm{RTS}}, \overline{\mathrm{DTR}}$ )	$\mathrm{V}_{\mathrm{OH}}$	2.4	-	-	V
Output Low Voltage: $\mathrm{IOL}_{\mathrm{OL}}=3.2 \mathrm{~mA}$ $\left(\mathrm{DB}_{0}-\mathrm{DB}_{7}, \mathrm{TxD}, \mathrm{RxC}, \overline{\mathrm{RTS}}, \overline{\mathrm{DTR}}, \overline{\mathrm{RQ}}\right)$	$\mathrm{V}_{\mathrm{OL}}$	-	-	0.4	V
Supply Current (No Loads) $\quad f=1 \mathrm{MHz}$	IDD			2	mA
$\mathrm{f}=2 \mathrm{MHz}$	$l_{\text {DD }}$			4	mA
Standby Power Dissipation ( $\phi 2=\mathrm{V}_{\mathrm{IN}}$, Inputs $=\mathrm{V}_{\mathrm{SS}}$ or $\mathrm{V}_{\mathrm{DD}}$, No Loads, with Internal XTAL Feedback Disconnected	$\mathrm{P}_{\text {SBY }}$	-	-	11	$\mu \mathrm{W}$
Output Leakage Current (Off State): $\mathrm{V}_{\text {OUT }}=5 \mathrm{~V}$ ( $\overline{\mathrm{RQ}}$ )	IOFF	-	1.0	10.0	$\mu \mathrm{A}$
Clock Capacitance ( $\phi 2$ )	$\mathrm{C}_{\text {CLK }}$	-	-	20	pF
Input Capacitance (Except XTAL1 and XTAL2)	$\mathrm{C}_{\text {IN }}$	-	-	10	pF
Output Capacitance	$\mathrm{C}_{\text {OUt }}$	-	-	5.0	pF
Power Dissıpation (See Graph) ( $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ ) $\mathrm{V}_{\mathrm{CC}}=$	$\mathrm{P}_{\mathrm{D}}$	-	170	300	

## Power Dissipation vs. Temperature




Figure 2. Write Timing Characteristics

Write Cycle ( $\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted)

Characteristic	Symbol	SY65C51		SY65C51A		Unit
		Min.	Max.	Min.	Max.	
Cycle Time	$\mathrm{t}_{\mathrm{CYC}}$	10	-	05	-	$\mu \mathrm{s}$
$\phi 2$ Pulse Wıdth	$\mathrm{t}_{\mathrm{C}}$	470	-	240	-	ns
Address Set-Up Tıme	$\mathrm{t}_{\text {ACW }}$	160	-	90	-	ns
Address Hold Tıme	$\mathrm{t}_{\text {CAH }}$	0	-	0	-	ns
R/W Set-Up Tıme	${ }^{\text {w }}$ WCW	160	-	90	-	ns
R/W Hold Tıme	$\mathrm{t}_{\text {cW }}$	0	-	0	-	ns
Data Bus Set-Up Tıme	$\mathrm{t}_{\mathrm{DCW}}$	195	-	90	-	ns
Data Bus Hold Tıme	thw	10	-	10	-	ns

( $\mathrm{t}_{\mathrm{R}}$ and $\mathrm{t}_{\mathrm{F}}=30 \mathrm{~ns}$ MAX)

## Crystal Specification

1. Temperature stability $\pm 0.01 \%\left(0^{\circ} \mathrm{C}\right.$ to $\left.70^{\circ} \mathrm{C}\right)$
2. Characterıstics at $25^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$
a. Frequency ( MHz )
18432
b. Frequency tolerance ( $\pm \%$ )
c. Resonance mode
d. Equivalent resistance (ohm)
e. Drive level mW
f. Shunt capacitance pF
g. Oscillatıon mode
0.02
Series
400 max.

No other external components should be in the crystal circuit.

## Clock Generation



INTERNAL CLOCK


EXTERNAL CLOCK


Figure 3. Read Timing Characteristics

Read Cycle ( $\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted)

Characteristic		SY65C51		SY65C51A		
	Symbol	Min.	Max.	Min.	Max.	Unit
Cycle Time	$\mathrm{t}_{\mathrm{CYC}}$	1.0	-	0.5	-	$\mu \mathrm{s}$
Pulse Wıdth $(\phi 2)$	$\mathrm{t}_{\mathrm{C}}$	470	-	240	-	ns
Address Set-Up Time	$\mathrm{t}_{\text {ACR }}$	160	-	90	-	ns
Address Hold Tıme	$\mathrm{t}_{\mathrm{CAR}}$	0	-	0	-	ns
R/W Set-Up Tıme	$\mathrm{t}_{\mathrm{WCR}}$	160	-	90	-	ns
Read Access Tıme (Valid Data)	$\mathrm{t}_{\mathrm{CDR}}$	-	320	-	190	ns
Read Data Hold Tıme	$\mathrm{t}_{\mathrm{HR}}$	10	-	10	-	ns
Bus Active Time (Invalıd Data)	$\mathrm{t}_{\mathrm{CDA}}$	40	-	40	-	ns

Test Load


OPEN COLLECTOR OUTPUT TEST LOAD



Figure 4a. Transmit Timing with External Clock



Figure 4b. Interrupt and Output Timing

Figure 4c. Receive External Clock Timing

## Transmit/Receive Characteristics

Characteristic	Symbol	Min.	Max.	Unit
Transmit/Receive Clock Rate	$\mathrm{t}_{\mathrm{CCY}}$	400*	-	ns
Transmıt/Receıve Clock High Tıme	$\mathrm{t}_{\mathrm{CH}}$	175	-	ns
Transmit/Receive Clock Low Time	$\mathrm{t}_{\mathrm{CL}}$	175	-	ns
XTAL1 to TxD Propagation Delay	$\mathrm{t}_{\mathrm{DD}}$	-	500	ns
Propagation Delay ( $\overline{\mathrm{RTS}}, \overline{\mathrm{DTR}}$ )	$\mathrm{t}_{\text {DLY }}$	-	500	ns
$\overline{\text { IRQ Propagation Delay (Clear) }}$	$\mathrm{t}_{\text {IRO}}$	-	500	ns

*The baud rate with external clocking is. $\quad$ Baud Rate $=\frac{1}{16 \times T_{\mathrm{CCY}}}$

## Interface Signal Description

## $\overline{\mathrm{RES}}$ (Reset)

During system initialization a low on the $\overline{\operatorname{RES}}$ input will cause internal registers to be cleared.

## \$2 (Input Clock)

The input clock is the system $\phi 2$ clock and is used to trigger all data transfers between the system microprocessor and the SY65C51.

## R/W (Read/Write)

The $R / \bar{W}$ is generated by the microprocessor and is used to control the direction of data transfers. A high on the R/W pin allows the processor to read the data supplied by the SY65C51. A low on the $R / \bar{W}$ pin allows a write to the SY65C51.

## $\overline{\mathbf{R O}}$ (Interrupt Request)

The $\overline{\mathrm{RQ}}$ pin is an interrupt signal from the interrupt control logic. It is an open drain output, permitting several devices to be connected to the common $\overline{\mathrm{RQ}}$ microprocessor input. Normally a high level, $\overline{\mathrm{RQ}}$ goes low when an interrupt occurs.

## $\mathrm{DB}_{0}-\mathrm{DB}_{7}$ (Data Bus)

The $\mathrm{DB}_{0}-\mathrm{DB}_{7}$ pins are the eight data lines used for transfer of data between the processor and the SY65C51. These lines are bi-directional and are normally high-ımpedance except during Read cycles when selected.

## $\mathbf{C S}_{\mathbf{0}}, \overline{\mathbf{C S}}_{1}$ (Chip Selects)

The two chip select inputs are normally connected to the processor address lines either directly or through decoders. The SY65C51 is selected when $\mathrm{CS}_{0}$ is high and $\overline{\mathrm{CS}}_{1}$ is low.

## $\mathbf{R S}_{0}, \mathbf{R S}_{\mathbf{1}}$ (Register Selects)

The two register select lines are normally connected to the processor address lines to allow the processor to select the various SY65C51 internal registers. The following table indicates the internal register select coding:

$\mathbf{R S}_{\mathbf{1}}$	$\mathbf{R S}_{\mathbf{0}}$	Write	Read
0	0	Transmit Data   Regıster	Receıver Data   Regıster
0	1	Programmed   Reset (Data is   "Don't Care")	Status Regıster
1	0	Command Regıster	
1	1	Control Regıster	

The table shows that only the Command and Control registers are read/write. The Programmed Reset operation does not cause any data transfer, but is used to clear the SY65C51 registers. The Programmed Reset is slightly different from the Hardware Reset (RES) and these differences are described in the individual register definitions.

## ACIA/Modem Interface Signal Description

## XTAL1, XTAL2 (Crystal Pins)

These pıns are normally directly connected to the external crystal ( 1.8432 MHz ) used to derive the various baud rates. Alternatively, an externally generated clock may be used to drive the XTAL1 pın, in which case the XTAL2 pin must float.

## TxD (Transmit Data)

The TxD output line is used to transfer serial NRZ (non-return-to-zero) data to the modem. The LSB (least signifıcant bit) of the Transmit Data Regıster is the first data bit transmitted and the rate of data transmission is determıned by the baud rate selected.

## RxD (Receive Data)

The RxD input line is used to transfer serial NRZ data into the ACIA from the modem, LSB first. The receiver data rate is either the programmed baud rate or the rate of an externally generated receiver clock This selection is made by programming the Control Register.

## RxC (Receive Clock)

The RxC is a bi-directional pin which serves as either the receiver $16 x$ clock input or the receiver $16 x$ clock output. The latter mode results if the internal baud rate generator is selected for receiver data clocking.

## $\overline{\text { RTS }}$ (Request to Send)

The $\overline{R T S}$ output pin is used to control the modem from the processor. The state of the $\overline{\text { RTS }}$ pin is determined by the contents of the Command Register

## CTS (Clear to Send)

The $\overline{\mathrm{CTS}}$ input pin is used to control the transmitter operation. The enable state is with $\overline{\mathrm{CTS}}$ low. The transmitter is automatically disabled if CTS is high.

## $\overline{\text { DTR }}$ (Data Terminal Ready)

This output pin is used to indicate the status of the SY65C51 to the modem. A low on DTR indicates the SY65C51 is enabled and a high indicates it is disabled. The processor controls this pin via bit 0 of the Command Register.

## $\overline{\mathrm{DSR}}$ (Data Set Ready)

The $\overline{\mathrm{DSR}}$ input pin is used to indicate to the SY65C51 the status of the modem. A low indicates the "ready" state and a high, "not-ready". $\overline{\mathrm{DSR}}$ is a high-impedance input and must not be a no-connect. If unused, it should be driven high or low, but not switched.
Note. If Command Register Bit $0=1$ and a change of state on $\overline{\mathrm{DSR}}$ occurs, $\overline{\mathrm{IRO}}$ will be set, and Status Register Bit 6 will reflect the new level. The state of $\overline{\mathrm{DSR}}$ does not affect either Transmitter or Receiver operation.

## $\overline{\mathrm{DCD}}$ (Data Carrier Detect)

The $\overline{D C D}$ input pin is used to indicate to the SY65C51 the status of the carrier-detect output of the modem. A low indicates that the modem carrier signal is present and a high, that it is not. $\overline{\mathrm{DCD}}$, like $\overline{\mathrm{DSR}}$, is a high-impedance input and must not be a no-connect.
Note. If Command Register Bit $0=1$ and a change of state on $\overline{\mathrm{DCD}}$ occurs, $\overline{\mathrm{RO}}$ will be set, and Status Register Bit 5 will reflect the new level. The state of $\overline{D C D}$ does not affect Transmitter operation, but must be low for the Receiver to operate.

## Internal Organization

The Transmitter/Receiver sections of the SY65C51 are depicted by the block diagram in Figure 5.


Figure 5. Transmitter/Receiver Clock Circuits

Bits 0-3 of the Control Register select the divisor used to generate the baud rate for the Transmitter. If the Receiver clock is to use the same baud rate as the Transmitter, then RxC becomes an output pin and can be used to slave other circuits to the SY65C51.

## Control Register

The Control Register is used to select the desired mode for the SY65C51. The word length, number of stop bits, and clock controls are all determıned by the Control Register, which is depicted in Figure 6.

*This allows for 9-bit transmission (8 data bits plus parity)


Figure 6. Control Register Format

## Command Register

The Command Register is used to control Specific Transmit/Receive functions and is shown in Figure 7.
NORMAL/ECHO MODE
FOR RECEIVER -
0=Normal
0=Normal
1= Echo (Bits 2 and 3
1= Echo (Bits 2 and 3
must be " }0\mathrm{ '')
must be " }0\mathrm{ '')

	7	6	5	4	3	2	1	0
HARDWARE RESET	0	0	0	0	0	0	0	0
PROGRAM RESET	-	-	-	0	0	0	0	0

Figure 7. Command Register Format

## Stałus Register

The Status Register is used to indicate to the processor the status of various SY65C51 functions and is outlined in Figure 8.

7 6 5 4 3 2 1 0

*NO INTERRUPT GENERATED FOR THESE CONDITIONS.
**CLEARED AUTOMATICALLY AFTER A READ OF RDR AND
the Next error free receipt of data


Figure 8. Status Register Format

## Transmit and Receive Data Registers

These registers are used as temporary data storage for the 65C51 Transmit and Receive circuits. The Transmit Data Regıster is characterized as follows:

- Bit 0 is the leadıng bit to be transmitted.
- Unused data bits are the high-order bits and are "don't care" for transmission.
The Receive Data Register is characterızed in a simılar fashion:
- Bit 0 is the leading bit received.
- Unused data bits are the high-order bits and are " 0 " for the receiver.
- Parity bits are not contaıned in the Receive Data Register, but are stripped-off after being used for external parity checking. Parity and all unused high-order bits are " 0 ".

Figure 9 illustrates a single transmitted or received data word, for the example of 8 data bits, parity, and 1 stop bit.


Figure 9. Serial Data Stream Example

## Package Availability 28 Pin Molded DIP

## Ordering Information



## Z8 Family of Single-Chip Microcomputers

## Features

- Complete microcomputer with on-chip RAM, ROM and I/O
- 128 bytes of on-chip RAM
- 2K bytes of on-chip ROM
- 32 I/O lines
- Two programmable 8-bit counter/tımers, each with a 6-bit programmable prescaler
- Full-duplex UART clocked by an internal tımer
- 144-byte register file includes
- 124 general-purpose registers, each of which can be used as an accumulator, index register, storage element, address register or part of the internal stack
- Four I/O port registers
- Sixteen status and control registers
- Register pointer permits shorter, faster instructions to access one of nine working-register groups
- Vectored, prioritized interrupts for I/O, counter/tımers and UART
- Expandable bus interfaces up to 62 K bytes each of external program memory and external data memory
- On-chıp oscıllator can be driven by a crystal, RC, LC or external clock source
- High-speed instruction execution
- Workıng-regıster operatıons $=15 \mu \mathrm{~s}$
- Average instruction execution $=22 \mu \mathrm{~s}$
- Longest instruction $=5 \mu \mathrm{~s}$
- Low-power standby mode retains contents of generalpurpose registers
- Single +5 V supply
- All I/O pins TTL compatıble


## Description

The $\mathrm{Z8}$ microcomputer introduces a new level of sophistication to single-chip architecture Compared to earlier sıngle-chip microcomputers, the $Z 8$ offers faster execution, more efficient use of memory, more sophisticated interrupt, input/output and bit-manipulation capabilities, and easier system expansion


Figure 1. Block Diagram

Under program control, the Z8 can be taılored to the needs of its user It can be configured as a stand-alone microcomputer with 2 K of internal ROM, a traditional microprocessor that manages up to 124 K of external memory, or a parallelprocessing element in a system with other processors and perıpheral controllers linked by the Z-Bus. In all confıguratıons, a large number of pıns remaın avaılable for $1 / 0$

## Pin Description

$\mathrm{PO}_{0}-\mathrm{PO}_{\mathbf{7}}, \mathrm{P1}_{\mathbf{0}}-\mathbf{P} 1_{7}, \mathrm{P2}_{0}-\mathrm{P} 2_{7}, \mathrm{P3}_{0}-\mathrm{P} 3_{7} .1 / O$ Port Lines (Input/Outputs, TLL compatible) These 32 lines are divided into four 8 -bit I/O ports that can be configured under program control for I/O or external memory interface
$\overline{\mathbf{A S}}$. Address Strobe (output, active Low) Address Strobe is pulsed once at the beginnıng of each machine cycle Addresses are output via Ports 0 and 1 for internal and external program fetches and external data memory transfers The addresses for all external program or data memory transfers are valid at the trailing edge of $\overline{A S}$ Under program control, $\overline{\mathrm{AS}}$ can be placed in the high-impedance state along with Ports 0 and 1, Data Strobe and Read/Write
$\overline{\mathbf{D S}}$. Data Strobe (output, active Low) Data Strobe is actıvated once for each external memory transfer
$\mathbf{R} / \overline{\mathbf{W}}$. Read/Write (output) $\mathrm{R} / \overline{\mathrm{W}}$ is Low when the $\mathrm{Z8}$ is writing to external program or data memory

[^11][^12]
## Pin Description (Cont.)

XTAL1, XTAL2. Crystal 1, Crystal 2 (time-base input and output). These pins connect a series-resonant crystal (8 MHz maxımum), LC network, RC network or an external single-phase clock ( 8 MHz maximum) to the on-chip clock oscillator and buffer.
$\overline{\text { RESET. Reset (input, active Low). } \overline{\text { RESET }} \text { initializes the Z8. }}$ When RESET is deactivated, the $\mathbf{Z 8}$ begins program execution from internal program location $000 \mathrm{C}_{\mathrm{H}}$.


Figure 2. Pin Assignments


Figure 3. Pin Functions

## Architecture

Z8 architecture is characterized by a flexible I/O scheme, an efficient register and address space structure and a number of ancillary features that are helpful in many applications.
Mıcrocomputer applıcations demand powerful I/O capabilities. The Z8 fulfills this with 32 pins dedicated to input and output. These lines are grouped into four ports of eight lines each and are configurable under software control to provide tımıng, status signals, serial or parallel I/O with or without handshake, and an address/data bus for interfacıng external memory.
Because the multiplexed address/data bus is merged with the I/O-oriented ports, the Z8 can assume many different memory and I/O configurations. These configurations range from a self-contained microcomputer to a microprocessor that can address 120 K of external memory
The Z8 offers three basic address spaces to support this wide range of configurations: program memory (internal and external), data memory (external) and the register file (internal). The 144-byte random-access regıster file is composed of 124 general-purpose registers, $4 \mathrm{I} / \mathrm{O}$ port registers, and 16 control and status registers.
To unburden the program from coping with real-tıme problems such as serial data communication and countıng/tıming, the Z8 offers an on-chip asynchronous receiver/transmitter (UART), and two counter/timers with a large number of user-selectable modes. Hardware support for the UART is minimızed because one of the on-chip tımers supplies the bit clock with selectable baud rates

## Address Spaces

Program Memory. The 16-bit program counter addresses 64 K bytes of program memory space. Program memory can be located in two areas: one internal and the other external (Figure 4). The first 2048 bytes consist of on-chip maskprogrammed ROM. At addresses 2048 and greater, the Z8 executes external program memory fetches.

The first 12 bytes of program memory are reserved for the interrupt vectors. These locations contain six 16 -bit vectors that correspond to the six available interrupts.

Data Memory. The Z8 can address 62K bytes of external data memory beginning at locations 2048 (Figure 5). External data memory may be included with or separated from the external program memory space. $\overline{\mathrm{DM}}$, an optional I/O function that can be programmed to appear on pin $\mathrm{P3}_{4}$, is used to distınguish between data and program memory space.

Register File. The 144-byte register file includes four I/O port registers (RO-R3), 124 general-purpose registers (R4R127) and sixteen control and status registers (R240-R255). These registers are assigned the address locations shown in Figure 6.

## Address Spaces (Cont.)

Z8 instructions can access registers directly or indirectly with an 8-bit address field The Z8 also allows short 4-bit register addressing using the register pointer (one of the control registers). In the 4 -bit mode, the register file is divided into nıne workıng-register groups, each occupying sixteen contiguous locations (Figure 7). The register pointer addresses the starting location of the active workingregister group.

Figure 4. Program Memory Map


Figure 6. The Register File

Stacks. Either the internal regıster file or the external data memory can be used for the stack A 16-bit stack pointer (R254 and R255) is used for the external stack, which can reside anywhere in data memory between locations 2048 and 65535 An 8 -bit stack pointer (R255) is used for the internal stack which resides within the 124 generalpurpose registers (R4-R127)


Figure 5. Data Memory Map


Figure 7. The Register Pointer

## I/O Ports

The $\mathbf{Z 8}$ has 32 lines dedicated to input and output. These lines are grouped into four ports of eight lines each and are configurable as input, output or address/data. Under software control, the ports can be programmed to provide address outputs, tımıng, status signals, serial I/O, and paralled I/O with or without handshake All ports have active pull-ups and pull-downs compatible with TTL loads.

## Port 1

Port 1 can be programmed as a byte $1 / O$ port or as an address/data port for interfacing external memory. When used as an I/O port, Port 1 may be placed under handshake control In this configuration, Port 3 lines $\mathrm{P3}_{3}$ and $\mathrm{P3}_{4}$ are used as the handshake controls RDY1 and $\overline{\text { DAV1 (Ready }}$ and Data Available)

Memory locations greater than 2048 are referenced through Port 1. To interface external memory, Port 1 must be programmed for the multiplexed address/data mode $\left(A D_{0}-A D_{7}\right)$ If more than 256 external locations are required, Port 0 must output the additional lines.
Port 1 can be placed in the high-impedance state along with Port $0, \overline{\mathrm{AS}}, \overline{\mathrm{DS}}$ and $\mathrm{R} / \overline{\mathrm{W}}$, allowing the $\mathrm{Z8}$ to share common resources in multiprocessor and DMA applications. Data transfers can be controlled by assigning $\mathrm{P}_{3}$ as a Bus Acknowledge input, and $\mathrm{P}_{4}$ as a Bus Request output


## PORT 1

## Port 0

Port 0 can be programmed as a nibble I/O port, or as an address port for interfacing external memory. When used as an I/O port, Port 0 may be placed under handshake control. In this configuration, Port 3 lines $\mathrm{P}_{2}$ and $\mathrm{P}_{5}$ are used as the handshake controls $\overline{\text { DAVO }}$ and RDYO.

For external memory references, Port 0 can provide address bits $A_{8}-A_{11}$ (lower nibble) or $A_{8}-A_{15}$ (lower and upper nibble) depending on the required address space. If the address range requires 12 bits or less, the upper nibble of Port 0 can be programmed independently as $\mathrm{I} / \mathrm{O}$ while the lower nibble is used for addressing. When Port 0 nibbles are defined as address bits, they can be set to the high-impedance state along with Port 1 and the control signals $\overline{\mathrm{AS}}, \overline{\mathrm{DS}}$ and $\mathrm{R} / \overline{\mathrm{W}}$.


PORT 0

## Port 2

Each bit of Port 2 can be programmed independently as an input or an output, and is always avallable for 1/O operatıons. In addition, Port 2 can be confıgured to provide open-drain outputs.

Like Ports 0 and 1, Port 2 may also be placed under handshake control. In this configuration, Port 3 lines $P 3_{1}$ and $P 3_{6}$ are used as the handshake controls lines $\overline{\text { DAV2 }}$ and RDY2. The handshake signal assignment for Port 3 lines $P 3_{1}$ and $P 3_{6}$ is dictated by the direction (input or output) assigned to bit 7 of Port 2.


PORT 2

## Port 3

Port 3 lines can be configured as I/O or control lines. In eıther case, the direction of the eight lines is fixed as four input $\left(\mathrm{P3}_{0}-\mathrm{P} 3_{3}\right)$ and four output ( $\mathrm{P3} 3_{4}-\mathrm{P} 3_{7}$ ). For serial I/O, lines $\mathrm{P} 3_{0}$ and $\mathrm{P}_{7}$ are programmed as serial in and serial out respectively

Port 3 can also provide the following control functions: handshake for Ports 0,1 and 2 ( $\overline{\mathrm{DAV}}$ and RDY); four external interrupt request signals (IROO-IRQ3); tımer input and output signals ( $T_{\text {IN }}$ and $T_{\text {OUT }}$ ) and Data Memory Select ( $\overline{\mathrm{DM}}$ ).


PORT 3

## Serial Input/Output

Port 3 lines $\mathrm{P}_{0}$ and $\mathrm{P}_{7}$ can be programmed as serial I/O lines for full-duplex serial asynchronous receiver/transmitter operation. The bit rate is controlled by counter/tımer 0 , with a maximum rate of 625 kilobits per second.

The Z8 automatically adds a start bit and two stop bits to transmitted data (Figure 8) The Z8 can also provide odd parity Eight data bits are always transmitted, regardless of parity

## TRANSMITTED DATA - WITH PARITY


selection. If parity is enabled, the eighth bit is the odd parity bit An interrupt request (IRO4) is generated on all transmitted characters.
Received data must have a start bit, eight data bits and at least one stop bit If parity is on, bit 7 of the received data is replaced by a parity error flag Received characters generate the IRQ3 interrupt request


RECEIVED DATA - WITH PARITY


Figure 8. Serial Data Formats.

## Counter/Timers

The $\mathbf{Z 8}$ contaıns two 8-bit programmable counter/tımers ( $\mathrm{T}_{0}$ and $T_{1}$ ), each driven by its own 6-bit programmable prescaler The $T_{1}$ prescaler can be driven by internal or external clock sources, however, the $T_{0}$ prescaler is driven by the internal clock only
The 6-bit prescalers can divide the input frequency of the clock source by any number from 1 to 64 Each prescaler drives its counter, which decrements the value ( 1 to 256) that has been loaded into the counter When the counter reaches the end of count, a timer interrupt request - IRQ4 ( $\mathrm{T}_{0}$ ) or IRO5 ( $\mathrm{T}_{1}$ ) - is generated
The counters can be started, stopped, restarted to contınue, or restarted from the initial value The counters can also be programmed to stop upon reaching zero (single-pass mode), or to automatically reload the initial value and continue countıng (modulo-n contınuous mode) The counters, but not the prescalers, can be read any time without disturbing their value or count mode
The clock source for $T_{1}$ is user-definable and can be the internal mıcroprocessor clock ( 4 MHz maxımum) divided by four, or an external signal input via Port 3 The Timer Mode register configures the external tımer input as an external clock (1 MHz maxımum), a trigger input that can be retriggerable or non-retriggerable, or as a gate input for the internal clock. The counter/tımers can be programmably cascaded by connectıng the $T_{0}$ output to the input of $T_{1}$

Port 3 line $\mathrm{P}_{6}$ also serves as a timer output ( $\mathrm{T}_{\text {OUT }}$ ) through which $T_{0}, T_{1}$ or the internal clock can be output

## Interrupts

The $Z 8$ allows six different interrupts from eight sources the four Port 3 lines $\mathrm{P3}_{0}-\mathrm{P3}_{3}$, Serial In, Serial Out, and the two counter/tımers. These interrupts are both maskable and prioritized The Interrupt Mask Register globally or individually enables or disables the six interrupt requests. When more than one interrupt is pending, priorities are resolved by a programmable priority encoder that is controlled by the Interrupt Prıority Regıster.
All Z8 interrupts are vectored When an interrupt request is granted, the $\mathbf{Z 8}$ enters an interrupt machine cycle that disables all subsequent interrupts, saves the program counter and status flags, and branches to the program memory vector location reserved for that interrupt. This memory location and the next byte contain the 16 -bit address of the interrupt service routine for that particular interrupt request.
The $Z 8$ also supports polled systems. To accommodate a polled structure, any or all of the interrupt inputs can be masked and the Interrupt Request Register polled to determine which of the interrupt requests needs service.

## Clock

The on-chip oscillator has a hıgh-gaın, series-resonant amplıfier for connection to a crystal or to any suitable external clock source (XTAL1 = Input, XTAL2 = Output).
The crystal source is connected across XTAL1 and XTAL2, using the recommended capacitors ( $\mathrm{C}_{1}=15 \mathrm{pF}$ ) from each pin to ground. The specifications for the crystal are as follows:

- AT cut, series resonant
- Fundamental type, 8 MHz maximum
- Series resistance $R_{S} \leq 100 \Omega$


## Power Down Standby Option

The low-power standby mode allows power to be removed without losing the contents of the 124 general-purpose registers. This mode is available to the user as a bonding option whereby pin 2 (normally XTAL2) is replaced by the $\mathrm{V}_{\mathrm{MM}}$ (standby) power supply input. This necessitates the use of an external clock generator (input = XTAL1) rather than a crystal source.
The removal of power, whether intended or due to power failure, must be preceded by a software routıne that stores the appropriate status into the register file. Figure 9 shows the recommended circuit for a battery back-up supply system

## Z8602 Development Device

The 64-pin development version of the 40-pin maskprogrammed $Z 8$ allows the user to prototype the system in hardware with an actual $Z 8$ device, and develop the code that is eventually mask-programmed into the on-chip ROM of the $\mathbf{Z 8 6 0 1}$.
The $\mathbf{Z 8 6 0 2}$ is identical to the $\mathrm{Z8601}$ with the following exceptions:

- The internal ROM has been removed
- The ROM address lines and data lines are buffered and brought out to external pins
- Control lines for the new memory have been added


Figure 9. Recommended Driver Circuit for Power Down Operation.

## Addressing Modes

The following notation is used to describe the addressing modes and instruction operations as shown in the instruction summary.
IRR Indirect register pair or indırect workıng-register pair address

Irr Indirect working-register pair only
X Indexed address
DA Direct address
RA Relative address
IM Immediate
R Regıster or working-regıster address
r Workıng-regıster address only
IR Indirect-regıster or indırect workıng-register address
Ir Indırect workıng-regıster address only
RR Regıster pair or workıng register pair address

## Symbols

dst	Destınation location or contents
src	Source location or contents
cc	Condition code (see list)
@	Indirect address prefix
SP	Stack pointer (control registers 254-255)
PC	Program counter

FLAGS Flag register (control register 252)
RP Register pointer (control register 253)
IMR Interrupt mask register (control regıster 251)

Assignment of a value is indicated by the symbol "--" For example,

$$
\mathrm{dst}-\mathrm{dst}+\mathrm{src}
$$

indicates that the source data is added to the destination data and the result is stored in the destination location. The notation "addr( $n$ )" is used to refer to bit " $n$ " of a given location. For example,
dst (7)
refers to bit 7 or the destınation operand.

## Flags

Control Regıster R252 contaıns the following six flags
C Carry flag
V Overflow flag
Z Zero flag
D Decımal-adjust flag
S Sign flag
H Half-carry flag

Affected flags are indicated by-
0 Cleared to zero
1 Set to one

* Set or cleared according to operation
- Unaffected

X Undefined

## Condition Codes

Value	Codes Mnemonic	Meaning	Flags Set
. 1000		Always true	---
0111	C	Carry	$C=1$
1111	NC	No Carry	$\mathrm{C}=0$
0110	Z	Zero	$\mathrm{Z}=1$
1110	NZ	Not zero	$\mathrm{Z}=0$
1101	PL	Plus	$\mathrm{S}=0$
0101	MI	Minus	$\mathrm{S}=1$
0100	OV	Overflow	$V=1$
1100	NOV	No overflow	$V=0$
0110	EQ	Equal	$\mathrm{Z}=1$
1110	NE	Not equal	$\mathrm{Z}=0$
1001	GE	Greater than or equal	$(\mathrm{S} \mathrm{XOR} \mathrm{V})=0$
0001	LT	Less than	( S XOR V) $=1$
1010	GT	Greater than	
0010	LE	Less than or equal	$[Z O R(S X O R V)]=1$
1111	UGE	Unsıgned greater than or equal	$\mathrm{C}=0$
0111	ULT	Unsigned less than	$\mathrm{C}=1$
1011	UGT	Unsigned greater than	$(C=0$ and $Z=0)=1$
0011	ULE	Unsigned less than or equal	$(C$ or $Z)=1$
0000		Never true	---

Instruction Formats


ONE-BYTE INSTRUCTIONS


TWO-BYTE INSTRUCTIONS


LD


THREE-BYTE INSTRUCTIONS

Figure 11. Instruction Formats.

Lower Nibble (Hex)


Note: The blank areas are reserved instructions

[^13]
## Instruction Summary



Instruction and Operation	Addr Mode		Opcode Byte (Hex)	$\frac{\text { Flags Affected }}{C Z S V D H}$
	dst	src		
$\begin{aligned} & \text { LDEI dst, src } \\ & \text { dst -src } \\ & r-r+1, r r-r \end{aligned}$	$\begin{aligned} & \mathrm{Ir} \\ & \mathrm{Irr} \\ & 1 \end{aligned}$	$\begin{gathered} \hline \mathrm{Irr} \\ \mathrm{Ir} \\ \hline \end{gathered}$	$\begin{aligned} & 83 \\ & 93 \end{aligned}$	- - - - -
NOP			FF	-....-
OR dst, src   dst - dst OR src			$4 L^{-}$	-**0--
$\begin{aligned} & \text { POP dst } \\ & \text { dst - @SP } \\ & S P-S P+1 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{R} \\ & \mathrm{IR} \end{aligned}$		$\begin{aligned} & 50 \\ & 51 \end{aligned}$	-...-
PUSH src$S P-S P-1, @ S P-s r c$		$\begin{aligned} & \hline \mathrm{R} \\ & \mathrm{IR} \\ & \hline \end{aligned}$	$\begin{aligned} & 70 \\ & 71 \\ & \hline \end{aligned}$	- -
$\begin{aligned} & \mathrm{RCF} \\ & \mathrm{C}-\mathrm{O} \end{aligned}$			CF	0 . . -
RET$P C-@ S P, S P-S P+2$			AF	-.... -
			$\begin{aligned} & 90 \\ & 91 \end{aligned}$	* * * * - -
RLC dst			$\begin{array}{r} 10 \\ 11 \\ \hline \end{array}$	* * - -
RR dst $\square^{\text {a }}$			$\begin{aligned} & \text { E0 } \\ & \text { E1 } \\ & \hline \end{aligned}$	* * * * - -
RRC dst			$\begin{aligned} & \mathrm{CO} \\ & \mathrm{Cl} \end{aligned}$	-
$\begin{aligned} & \text { SBC dst,src } \\ & \text { dst - dst - src - C } \end{aligned}$			3 L	* * * 1 *
$\begin{aligned} & \text { SCF } \\ & \mathbf{C}-1 \end{aligned}$			DF	1-...
SRA dst -a			$\begin{aligned} & \hline \text { D0 } \\ & \text { D1 } \\ & \hline \end{aligned}$	* * * 0 - -
$\begin{aligned} & \text { SRP src } \\ & \mathrm{RP} \text { - src } \end{aligned}$		IM	31	- - - -
$\begin{aligned} & \text { SUB dst, src } \\ & \text { dst }- \text { dst - src } \end{aligned}$			2■	* * * * 1 *
SWAP dst $\stackrel{R}{\mathrm{R}}$			$\begin{aligned} & \text { F0 } \\ & \text { F1 } \end{aligned}$	x * * x - -
$\begin{array}{ll} \hline \text { TCM dst, src } & \text { (Note } \\ \text { (NOT dst) AND src. } \end{array}$			6■	- * * 0 - -
TM dst, src    dst AND src (Note 1)			7■	- * * 0 --
XOR dst, src   dst - dst XOR src	(Not	e 1)	B■	- * * 0 - -

## Note 1

Ihese instructions have an identical set of addressing modes, which are encoded for brevity in this table The higher opcode mibble is found in the instruction set table above The lower nubble is expressed symbolically by a in the table above, and its value is found in the following table to the right of the applicable addressing mode pair

## 28 Control Registers

R240 SIO<br>SERIAL I/O REGISTER<br>( $\mathrm{FO}_{\mathrm{H}}$; READ/WRITE)<br><br>$\square$ SERIAL DATA $\left(D_{0}=L S B\right)$

COUNTER/TIMER 0 REGISTER
(F4 ${ }_{H}$; READ/WRITE)

| $\mathrm{D}_{1}$ | $\mathrm{D}_{6}$ | $\mathrm{D}_{5}$ | $\mathrm{D}_{4}$ | $\mathrm{D}_{3}$ | $\mathrm{D}_{2}$ | $\mathrm{D}_{1}$ | $\mathrm{D}_{0}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

TOINITIAL VALUE (WHEN WRITTEN) TO CURRENT VALUE (WHEN READ)


R245 PREO
PRESCALER 0 REGISTER
(F5 ${ }_{H}$; WRITE ONLY)


R242 T1
COUNTER TIMER 1 REGISTER
( $\mathrm{F}_{\mathrm{H}}$; READ/WRITE)
$\mathrm{D}_{1} \mathrm{D}_{6} \mathrm{D}_{5}\left|\mathrm{D}_{4}\right| \mathrm{D}_{3}\left|\mathrm{D}_{2}\right| \mathrm{D}_{1} \mid \mathrm{D}_{0}$

(RANGE 1256 DECIMAL O1 OO HEX)

R246 P2M
PORT 2 MODE REGISTER
(F6 ${ }_{H}$; WRITE ONLY)



R247 P3M
PORT 3 MODE REGISTER

$$
\left(F 7_{H} ; \text { WRITE ONLY }^{\prime}\right)
$$




## Z8 Control Registers

R248 P01M
PORT 0 AND 1 MODE REGISTER
( $\mathrm{FB}_{\mathrm{H}}$; WRITE ONLY)


R249 IPR INTERRUPT PRIORITY REGISTER ( $\mathrm{F9}_{\mathrm{H}}$, WRITE ONLY)
 $0=\operatorname{IRQ1}>\mid$ ROA $_{4}$
$1=\operatorname{IRQ4}>\operatorname{IRQ1}$


## R251 IMR

INTERRUPT MASK REGISTER
( $\mathrm{FB}_{\mathrm{H}}$; READ/WRITE)


IRO4 $=\mathrm{T}_{0}$, SERIAL OUTPUT IROS $=T_{1}$

R252 FLAGS
FLAG REGISTER
( $\mathrm{FC}_{\mathrm{H}}$; READ/WRITE)



R253 RP REGISTER POINTER
( FD $_{H}$; READ/WRITE)

REGISTER POINTER


R254 SPH
STACK POINTER
( $\mathrm{FE}_{\mathrm{H}}$ : READ/WRITE)



R255 SPL
STACK POINTER
( FF $_{\mathrm{H}^{\prime}}$ READ/WRITE)



## Comment*

Stresses greater than those listed under "Absolute Maximum Ratıngs" may cause permanent damage to the device. This is a stress rating only; operation of the device at any condition above those indicated in the operational sections of these specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

## Standard Test Conditions

The characteristics below apply for the following standard test conditions, unless otherwise noted All voltages are referenced to GND Positive current flows into the reference pın. Standard conditions are as follows
$-+4.75 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.25 \mathrm{~V}$
$-\mathrm{GND}=0 \mathrm{~V}$
$-0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$

## DC Characteristics

Symbol	Parameter	Min.	Max.	Unit	Condition	Notes
$\mathrm{V}_{\mathrm{CH}}$	Clock Input High Voltage	3.8	$\mathrm{V}_{\mathrm{CC}}$	V	Driven by External Clock Generator	1
$\mathrm{V}_{\mathrm{CL}}$	Clock Input Low Voltage	-0 3	0.8	V	Driven by External Clock Generator	
$\mathrm{V}_{\text {IH }}$	Input High Voltage	2.0	$\mathrm{V}_{\mathrm{CC}}$	V		
$\mathrm{V}_{\text {IL }}$	Input Low Voltage	-0.3	08	V		
$\mathrm{V}_{\mathrm{RH}}$	Reset Input High Voltage	3.8	$\mathrm{V}_{\mathrm{CC}}$	V		
$\mathrm{V}_{\text {RL }}$	Reset Input Low Voltage	-0.3	0.8	V		
$\mathrm{V}_{\mathrm{OH}}$	Output High Voltage	24		V	$\mathrm{I}_{\mathrm{OH}}=250 \mu \mathrm{~A}$	1
$\mathrm{V}_{\mathrm{OL}}$	Output Low Voltage		0.4	V	$\mathrm{I}_{\mathrm{OL}}=+2.0 \mathrm{~mA}$	1
ILL	Input Leakage		$\pm 10$	$\mu \mathrm{A}$	$\mathrm{OV} \leq \mathrm{V}_{\text {IN }} \leq+525 \mathrm{~V}$	
$\mathrm{IOL}^{\text {l }}$	Output Leakage		$\pm 10$	$\mu \mathrm{A}$	$0 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq+5.25 \mathrm{~V}$	
$\mathrm{I}_{\mathrm{R}}$	Reset Input Current		-50	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=+525 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{RL}}=0 \mathrm{~V} \end{aligned}$	
$\mathrm{I}_{\mathrm{CC}}$	$\mathrm{V}_{\text {CC }}$ Supply Current		180	mA	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}$	
$\mathrm{I}_{\text {MM }}$	$\mathrm{V}_{\text {MM }}$ Supply Current		10	mA	Power Down Mode	
$V_{\text {MM }}$	Backup Supply Voltage	3.0	$\mathrm{V}_{\mathrm{Cc}}$	V	Power Down Mode	

1 For $A_{0}-A_{11}, \overline{M D S}, \overline{S Y N C}, S C L K$ and IACK on the $Z 8602$ version, $I_{O H}=-100 \mu \mathrm{~A}$ and $\mathrm{I}_{\mathrm{OL}}=10 \mathrm{~mA}$.

## Test Load Circuits



TEST LOAD 1


TEST LOAD 2


EXTERNAL CLOCK INTERFACE CIRCUIT

External I/O or Memory Read and Write Cycle

Symbol	Parameter	8601/02		8601A/02A		Units	Notes
		Min.	Max.	Min.	Max.		
TdA(AS)	Address Valıd to $\overline{\text { AS }} \uparrow$ Delay	50		35		ns	1,2
TdAS(A)	$\overline{\mathrm{AS}}$ t to Address Float Delay	60		45		ns	1,2
TdAS(DR)	$\overline{\mathrm{AS}}$ t to Read Data Required Valıd		320		220	ns	1,2,3,4
TwAS	$\overline{\text { AS Low Width }}$	80		55		ns	1,2
TdA(DI)	Address Float to $\overline{\mathrm{DS}}$ !	0		0		ns	1
TwDS	$\overline{\text { DS }}$ (Read) Low Width	250		185		ns	1,2,3,4
TwDS	$\overline{\overline{D S}}$ (Write) Low Width	160		110		ns	1,2,3,4
TdDS(DI)	$\overline{\text { DS }}$ ! to Read Data Required Valıd		200		130	ns	1,2,3,4
ThDS(DI)	Read Data to $\overline{\mathrm{SS}} \uparrow$ Hold Tıme	0		0		ns	1
TdDS(A)	$\overline{\mathrm{DS}}$ t to Address Active Delay	70		45		ns	1,2,3
TdDS(AS)	$\overline{\mathrm{DS}}$ ! to $\overline{\mathrm{AS}}$ ! Delay	70		55		ns	1,2,3
TdR/W(AS)	$\mathrm{R} / \overline{\mathrm{W}}$ Valıd to $\overline{\mathrm{AS}}$ ¢ Delay	50		30		ns	1,2,3
TdDS(R/W)	$\overline{\mathrm{DS}}$ t to R/ $\bar{W}$ Not Valid	60		35		ns	1,2,3
TdDO(DS)	Write Data Valid to $\overline{\mathrm{SS}}$ (Write) ! Delay	50		35		ns	1,2,3
TdDS(DO)	$\overline{\mathrm{DS}}$ t to Write Data Not Valıd Delay	70		45		ns	1,2,3
TdA(DR)	Address Valıd to Read Data Required Valıd		410		255	ns	1,2,3,4
TdAS(DS)	$\overline{\mathrm{AS}}$ ! to $\overline{\mathrm{DS}}$ ! Delay	80			55	ns	

## Notes:

1 Test Load 1
2 Timıng numbers given are for mınımum TpC
3 Also see Clock Cycle Time Dependent Characterıstics Table
4 When using extended memory tımıng add 2 TpC
5. All tıming references use 2 OV for a logic " 1 " and 08 V for a logic " 0 "


## Handshake Timing

Symbol	Parameter	$\begin{gathered} \hline 28601 / \\ 02 \\ \hline \end{gathered}$		$\begin{gathered} \text { Z8601A/ } \\ 02 \mathrm{~A} \\ \hline \end{gathered}$		Units	Notes
		Min.	Max.	Min.	Max.		
TsDI(DAV)	Data In Set Up Time	0		0		ns	
ThDI(DAV)	Data In Hold Time	230		160		ns	
TwDAV	Data Available Width	175		120		ns	
TdDAVIf(RDY)	$\overline{\text { DAV }}$ Input to RDY। Delay		175		120	ns	1,2
TdDAVOf(RDY)	DAV 1 Output to RDY! Delay	0		0		ns	1,3
TdDAVIr(RDY)	$\overline{\text { DAV } 1 \text { Input to RDY1 Delay }}$		175		120	ns	1,2
TdDAVOr(RDY)	(TAVI Output to RDYi Delay	0		0		ns	1,3
TdDO(DAV)	Data Out to $\overline{\mathrm{DAV}}!$ Delay	50		30		ns	1
TdRDY(DAV)	RDY! Input to $\overline{\text { DAV }}$, Delay	0	200	0	140	ns	1

## Notes:

1 Test Load 1
2 Input handshake
3 Output handshake
4 All tıming references use 20 V for a logıc " 1 " and 08 V for a logıc " 0 "


## Memory Port Timing Z8602, Z8603

Symbol	Parameter	28602		28602A		Units	Notes
		Min.	Max.	Min.	Max.		
TdA(DI)	Address Valid to Data Input Delay		460		320	ns	1,2
ThDI(A)	Data In Hold Time	0		0		ns	1

## Notes:

1 Test Load 2
2 This is a clock cycle dependent parameter For clock frequencies other than maximum frequency use the following formula Z8602 and Z8603 $=5 \mathrm{TpC}-165$
Z8602A and Z8603A $=5 \mathrm{TpC}-95$.


## Package Availability 40 Pin Molded DIP

## Ordering Information

Part Number	Temperature   Range	Number   of Pins	Package	Description
Z8601 PS	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	40	Plastıc	8 -Bit Single-Chip Mıcrocomputer Circuit
Z8601A PS	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	40	Plastıc	12 MHz Single-Chıp Mıcrocomputer Cırcuit

28681

## Features

- "ROMless" version of the Z8601 Single-Chip

Microcomputer, capable of Addressing up to 128K Bytes of External Memory Space

- Up to 24 Programmable I/O Lınes
- 40-pın Package, Single +5 V supply, all Pins TTL Compatıble


## Description

The Z8681 MCU is the "ROMless" version of the Z8601 single-chip microcomputer and offers all the outstandıng features of the Z8 Family architecture Usıng the Z8681, it is possible to design a powerful microprocessor system incorporatıng a mınımum number of support devices
Port 1 is configured to function as a multiplexed Address/ Data bus ( $A D_{0}-A D_{7}$ ), while Port 0 is software configurable to output address bits $\mathrm{A}_{8}-\mathrm{A}_{15}$ This provides for program
memory and data memory space of up to 64 K bytes each Located on-chip are 144 bytes of RAM, organızed as a regıster file of 124 general-purpose registers, 16 control and status registers, and three I/O port registers (Port 1 cannot be utilized as an 1/O register.) This file is divided into groups of working registers in such a way that short format instructions may be used to quickly access a register within a certaın group

## Pin Configuration



Figure 1. Pin Functions


Figure 2. Pin Assignments

## Functional Description

Register File. The internal register organızatıon of the $Z 8681$ centers around a 144-byte random-access register file composed of 124 general-purpose registers, 16 control registers, and the three $1 / \mathrm{O}$ port registers Any general-purpose register can be an accumulator, address pointer, index register, or part of the internal stack The register file is divided into nine groups of 16 working registers A register pointer uses shortformat instructions to quickly access any one of the nine groups, resultıng in fast and easy task-switching
1/O Ports. The 1/O ports (Ports 0,2 , and 3) are software configurable as input, output, or additional address lines These ports can also provide tıming, status signals, and serıal or parallel I/O (with or without handshake)

1/O port space is mapped into the register file, creating an efficient and convenient means of moving data
Interrupts. The $Z 8681$ can respond to six separate interrupts from eight sources The interrupts are maskable and prioritized by software control, thus allowing greater design flexibility

Using vectored interrupts, control is automatically passed to the appropriate service routine The interrupts are organized as four external lines and four internal status signals The internal interrupts control the serial port handshake and the two counter/tımers

UART. The $Z 8681$ also offers the serial I/O capability of interfacing to asynchronous data communıcatıons The onchip counter (TO) is used to supply the baud rate for the serial data transfer The UART is capable of transferring data at a rate of up to $625 \mathrm{~K} \mathrm{~b} / \mathrm{s}$

Counter/Timers. Also on-chip are two 8-bit programmable counter/tımers (TO and T1), each driven by its own 6-bit programmable prescaler Both counter/tımers can operate independently of the processor instruction sequence, thereby unburdening the program from such time-critical operations as event-countıng or elapsed-tıme calculations The counters can be started, stopped, continued, or restarted from the initial value by program control.

## Instruction Set for the Z8681

The basic instruction set for the $Z 8681$ consists of 47 instructıon types and utilizes seven addressing modes The instructions can operate on several types of data elements, including individual bits, 4-bit BCD characters, bytes, or words

All 124 general-purpose registers can be used as accumulators, address poınters, index registers, or as internal stack, resultıng in fast data manıpulatıon for real-tıme applications The internal pıpelınıng of instructions dramatıcally increases throughput by allowing instruction fetches during the previous instruction execution cycles.

## Z8681 Applications

The Z8681 is a Z-BUS-compatıble device and can be interfaced to various Z-BUS peripherals such as the Z-CIO, Z-SCC, or FIO Due to the flexibility of Port 0 and the data memory select feature, the $Z 8681$ can also support a great variety of memory configuratıons Figures 3 and 4 illustrate two design approaches using the $\mathbf{Z 8 6 8 1}$


Figure 3. Z8681 Interfacing to External Memory.


Figure 4. Z8681 Interfacing to Memory-Mapped I/O.

## Ordering Information

Product   Number	Package/   Temp.	Speed	Description	Product   Number	Package/   Temp.	Speed	Description
Z8681	CE	80 MHz	Z8 MCU   (ROMless, 40-pın)	Z8681	DS	8.0 MHz	Z8 MCU   (ROMless, 40-pın)
$Z 8681$	CS	80 MHz	Same as above   $Z 8681$	DE	80 MHz	Same as above	Z8681

Notes $\mathrm{C}=$ Ceramıc, $\mathrm{D}=$ Cerdıp, $\mathrm{P}=$ Plastıc, $\mathrm{E}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{S}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

## ADVANCED INFORMATION

## Features

- On-Chip Oscillator Circuit and Clock (or External Source)
- Single +5 V Power Supply
- 27 I/O Lines
- Low Standby Power Mode
- Expandable Memory and I/O
- Low Voltage Standby
- 8-Bit Timer/Counter
- 8-Bit CPU, RAM, ROM, I/O in a Single Package
- Single-Level Interrupt
- 96 Instructions (Most Single-Byte)
- $25 \mu \mathrm{sec}$ Cycle, 6 MHz Clock, $136 \mu \mathrm{sec}$ Cycle, 11 MHz Clock
- Binary and BCD Arithmetıc


## General Description

The SY8048/SY8035 are totally self-sufficient 8 -bit parallel computers fabricated on single slicon chips using Synertek's advanced N -channel sticon gate MOS process The SY8048 contains a $1 \mathrm{Kx8}$ program memory, a $64 \times 8$ data memory, 27 I/O lines, and an 8 -bit timer/counter in addition to on-board oscillator and clock circuits These microcomputers are designed to be efficient controllers as well as arithmetic processors They have extensive bit handling capability as
well as facilities for both binary and BCD arithmetic Efficient use of program memory results from an instruction set consisting predominantly of single byte instructions and no instructions over two bytes in length For systems requiring extra capability, the SY8048 can be expanded using standard memory and peripheral devices the SY8035 is the equivalent of the SY8048 without resident program memory and can be used with external ROM and RAM


FIGURE 1
SY8048 Block Diagram


FIGURE 2.
SY8048 Logic Symbol


FIGURE 4. SY8048 Detailed Block Diagram

## Functional Pin Description

## Input Signals

Reset ( $\overline{\operatorname{RESET}}$ ): An active low (0) input that initializes the processor and is used to verify program memory.
Single Step ( $\overline{\mathbf{S S}}$ ): Active low (0) input which, in conjunction with ALE, can single step the processor through each instruction

External Access (EA): An active high (1) input that forces all program memory fetches to reference external program memory.

Testable Input 0 (TO): Testable input pin using conditional branch functions JTO (TO = 1) or JNTO $(\mathrm{TO}=0)$ TO can be designated as the clock output using instruction ENTO CLK

Testable Input 1 (T1): Testable input pin using conditional branch functions JT1 $(\mathrm{T} 1=1)$ or $\mathrm{JNT} 1(\mathrm{~T} 1=0) \mathrm{T} 1$ can be designated as the Timer/Counter input from an external source using instruction STRT CNT
Interrupt (INT): An active low input that initiates an interrupt when interrupt is enabled Interrupt is disabled after a RESET Also can be tested with instruction JNI (INT $=0$ )

## Output Signals

Read Strobe ( $\overline{\mathbf{R D}}$ ): An active low output strobe activated during a Bus read Can be used to enable data onto the Bus from an external device Used as a Read Strobe to External Data Memory
Write Strobe ( $\overline{\mathrm{WR}}$ ): An active low output strobe activated during a Bus write Used as a Write Strobe to External Data Memory
Program Store Enable ( $\overline{\text { PSEN }}$ ): An active low output that occurs only during an external program memory fetch

Address Latch Enable (ALE): An active high output that occurs once during each cycle and is useful as a clock output The negative going edge of ALE strobes the address into External Data or Program Memory

Program ( $\overline{\mathbf{P R O G}}$ ): This output (active out) provides the output strobe for an 8243 I/O Expander

## Input/Output Signals

Crystal Input (XTAL1, XTAL2): These two pins connect the crystal for internal oscillator operation. XTAL1 is the timing input for external source

Port 1 (P10-P17): 8-bit quası-bidırectional port
Port 2 (P20-P27): 8-bit quasi-bidirectional port. During an external program memory fetch, the 4 high-order program counter bits occur at P20-P23. They also serve as a 4 -bit I/O Expander Bus when an 8243 I/O Expander is used

Bus ( $\mathrm{DB}_{0}-\mathrm{DB}_{7}$ ): True bidirectional port, either statically latched or synchronous. Can be written to using WR Strobe, or Read from using RD Strobe. During an External Program Memory fetch, the 8 lower-order program counter bits are present at this port The addressed instruction appears on this bus when PSEN is low During an external RAM data transaction, this port presents address and data under control of ALE, $\overline{\mathrm{RD}}, \overline{\mathrm{WR}}$
$\mathbf{V}_{\mathbf{S s}}$ : Processor Ground potential
$V_{D D}: V_{D D}$ functions as the Low Power Standby Voltage Can be tied to $V_{C C}$ if power-down operation is not required
$\mathbf{V}_{\text {CC }}$ (Pin 40): Primary power source for the SY8048

## Functional Description

The following paragraphs contain the functional description of the major elements of the SY8048 microcomputer/controller The SY8048 contains the system timing and control logic necessary to implement dedicated control functions The data paths are illustrated in simplified form (see Figure 4) to show how the various logic elements communicate with each other to implement the SY8048 instruction set

## Program Memory

The Program Memory (ROM) contaned on the SY8048 is comprised of 1024 bytes As seen by examining the SY8048 instruction set, these bytes may be program instructions, program data or ROM addressing data The ROM for the SY8048 must be mask programmed at the Synertek factory The SY8035 ROMless microcomputer uses external program memory ROM addressing, up to a maximum of 4 K bytes, is accomplished by a 12-bit Program Counter (PC) The SY8048 will automatically address external memory when the boundary of the internal 1 K memory is exceeded The binary value of the address selects one of the 8 -bit bytes contained in ROM A new address is loaded into the PC register during each instruction cycle Unless the instruction is a transfer of control instruction, the PC register is loaded with the next sequential binary count value

With reference to the Program Memory Map (see Figure 5) there are three ROM addresses which provide for the control of the mıcrocomputer
1 Memory Location 0000 - Asserting the RESET (negative true) input to the microcomputer forces the first instruction to be fetched from address 0000
2 Memory Location 0003 - Asserting the interrupt (negative true) input to the microcomputer (when interrupt is enabled) forces a jump to subroutine
3 Memory Location 0007 - A Timer/Counter interrupt that results from Timer/Counter overflow (when enabled) forcing a jump to subroutine

## Data Memory (RAM)

The resident RAM data memory is arranged as 64 bytes RAM addressing is implemented indirectly via either of two 8-bit RAM pointer registers R0 or R1 These pointer registers are essentially the first two locations in the RAM (see Figure 6), addresses 00 and 01 RAM addressing may also be performed directly by 11 direct register instructions The register area of the RAM array is made up of eight working registers that occupy either the first bank ( 0 ), locations 0 to 7 , or the second bank (1), locations 24 to 31 The second bank of working registers is selected by using the Register Bank Switch instruction (SEL RB) If this bank is not used for working registers, it can be used as user RAM

There is an 8 -level stack after Bank 0 that occupies address locations 8 to 23 These RAM locations are addressed indirectly through R0, R1 or the 3-bit Stack Pointer (SP) The stack pointer keeps track of the return address and pushes each return address down into the stack There are 8 levels of subroutine nesting possible in the stack because each address occupies 10 bits or more using two bytes in RAM When the level of subroutine nesting is less than 8 , the stacks not used may be utilized as user RAM locations


FIGURE 5. SY8048 Resident ROM Program Memory Map


FIGURE 6. SY8048 Resident RAM Data Memory Map

## Functional Description (Continued)

## Input/Output

The SY8048 has 27 Ines of input/output organized as three 8-bit ports plus three test inputs. The three ports may be used as inputs, outputs or bidirectional ports. Ports 1 and 2 differ from Port 3 (Bus Port) in that they are quasi-bidirectional ports Ports 1 and 2 can be used as input and output while being statically latched If more I/O lines are required, Port 2 can also serve as a 4-bit I/O bus expander when used in conjunction with an 8243 I/O Expander

The bus port is a true bidirectional port and is ether statically latched or synchronous it can be written to using $\overline{W R}$ strobe or read from using $\overline{R D}$ strobe During an external program memory fetch, the 8 lower-order program counter bits are present at this port. The addressed instruction appears on this bus when PSEN is low During an external RAM data transaction, this port presents address and data under control of ALE, $\overline{\mathrm{RD}}$, and $\overline{\mathrm{WR}}$


FIGURE 7. Ports 1 and 2 Input/Output Circuit

## Power-Down Mode

During the power-down mode, $\mathrm{V}_{\mathrm{DD}}$, which normally maintains the RAM cells, is the only pin that receives power $\mathrm{V}_{\mathrm{CC}}$, which serves the CPU and ports, is dropped from a voltage of nominal 5 to 0 after the CPU is reset, so that the RAM cells are unaltered by the loss of power When power is restored, the processor goes through the normal power-on procedure

## Instruction Set

Table 1 details the 96 instructions common to both the microcomputers and the microprocessors The table provides the
mnemonic, function, and description, instruction code, number of cycles and, where applicable, flag settings

TABLE 1. Instruction Set

Mnemonic	Function	Description	Cycles	Bytes	Flags			
					C	AC	F0	F1
CONTROL								
EN-I		Enable the External Interrupt input.	1	1				
DIS I		Disable the External Interrupt input.	1	1				
ENTO CLK		Enable TO as the Clock Output.	1	1				
SEL MB0	(DBF) - 0	Select Bank 0 (locations 0-2047) of Program Memory.	1	1				
SEL MB1	(DBF) - 1	Select Bank 1 (locations 20484095 of Program Memory.	1	1				
SEL RB0	(BS) -0	Select Bank 0 (locations 0-7) of Data Memory.	1	1				
SEL RB1	(BS) - 1	Select Bank 1 (locations 24-31) of Data Memory.	1	1				
DATA MOVES								
MOV A, \#data	(A) - data	Move Immediate the specified data into the Accumulator.	2	2				
MOV A, Rr	$(\mathrm{A})-(\mathrm{Rr}) ; \mathrm{r}=0-7$	Move the contents of the designated registers into the Accumulator.	1	1				
MOV A, @ Rr	$(\mathrm{A})-((\mathrm{Rr})), r=0-1$	Move Indirect the contents of data memory location into the Accumulator.	1	1				

TABLE 1. Instruction Set (Contınued)

Mnemonic	Function	Description	Cycles	Bytes	Flags			
					C	AC	FO	F1
DATA MOVES (Continued)								
MOV A, PSW	(A) - (PSW)	Move contents of the Program Status Word into the Accumulator.	1	1				
MOV Rr, \#data	$(\mathrm{Rr})-$ data; $\mathrm{r}=0-7$	Move Immediate the specified data into the designated register.	2	2				
MOV Rr, A	$(\mathrm{Rr})-(\mathrm{A}), \mathrm{r}=0-7$	Move Accumulator contents into the designated register.	1	1				
MOV @ Rr, A	$((\mathrm{Rr}))-(\mathrm{A}) ; \mathrm{r}=0-1$	Move Indirect Accumulator contents into data memory location.	1	1				
MOV @ Rr, \#data	$((\mathrm{Rr}))-$ data; $\mathrm{r}=0-7$	Move Immediate the specified data into data memory.	2	2				
MOV PSW, A	$(\mathrm{PSW})-(\mathrm{A})$	Move contents of Accumulator into the Program Status Word.	1	1	-	-	-	
MOVP A, @ A	$\begin{aligned} & (P C 0-7)-(A) \\ & (A)-((P C)) \end{aligned}$	Move the content of program memory location in the current page addressed by the content of Accumulator into the Accumulator.	2	1				
MOVP3 A, @ A	(PC 0-7) - (A) (PC 8-10) - 011   (A) $-((\mathrm{PC}))$	Move the content of program memory location in page 3 addressed by the content of Accumulator into the Accumulator.	2	1				
MOVX A, @ R	$(\mathrm{A})-((\mathrm{Rr})$ ); $r=0-1$	Move Indirect the contents of external data memory into the Accumulator.	2	1				
MOVX @ R, A	$((\mathrm{Rr}))-(\mathrm{A}) ; \mathrm{r}=0-1$	Move Indirect the contents of the Accumulator into external data memory.	2	1				
XCH A, Rr	(A) - (Rr) ; $\mathrm{r}=0-7$	Exchange the Accumulator and designated register's contents.	1	1				
XCH A, @ Rr	( A$)-((\mathrm{Rr})$ ); $r=0-1$	Exchange Indirect contents of Accumulator and location in data memory.	1	1				
XCHD A, @ Rr	$\begin{aligned} & (\mathrm{A} 0-\mathrm{A} 3)-(((\mathrm{Rr})) 0-3) \\ & \mathrm{R}=0-1 \end{aligned}$	Exchange Indirect 4-bit contents of Accumulator and data memory.	1	1				
TIMER COUNTER								
EN TCNTI		Enable Internal Interrupt Flag for Timer/Counter output.	1	1				
DIS TCNTI		Disable Internal Interrupt Flag for Timer/Counter output.	1	1				
MOV A, T	(A) - (T)	Move contents of Timer/Counter into Accumulator.	1	1				
MOV T, A	(T) - (A)	Move contents of Accumulator into Timer/Counter.	1	1				
STOP TCNT		Stop Count for Event Counter.	1	1				
STRT CNT		Start Count for Event Counter.	1	1				
STRT T		Start Count for Timer.	1	1				

TABLE 1. Instruction Set (Continued)

Mnemonic	Function	Description	Cycles	Bytes	Flags			
					C	AC	F0	F1
ACCUMULATOR								
ADD A, \#data	$(\mathrm{A})-(\mathrm{A})+$ data	Add Immediate the specified Data to the Accumulator.	2	2	-	-		
ADD A, Rr	$\begin{aligned} & (A)-(A)+(R r) \\ & \text { for } r=0-7 \end{aligned}$	Add contents of designated register to the Accumulator.	1	1	-	-		
ADD A, @ Rr	$\begin{aligned} & (A)-(A)+((R r)) \\ & \text { for } r=0-1 \end{aligned}$	Add Indirect the contents of data memory location of the Accumulator.	1	1	-	-		
ADDC A, \#data	$(\mathrm{A})-(\mathrm{A})(\mathrm{C})+$ data	Add Immediate with carry the specified data to the Accumulator.	2	2	-	-		
ADDC A, Rr	$\begin{aligned} & (A)-(A)+(C)+(R r) \\ & \text { for } r=0-7 \end{aligned}$	Add with carry the contents of the designated register to the Accumulator.	1	1	-	-		
ADDC A, @ Rr	$\begin{aligned} & (A)-(A)+(C)+((R r)) \\ & \text { for } r=0-1 \end{aligned}$	Add Indirect with carry the contents of data memory location to the Accumulator.	1	1	-	-		
ANL A, \#data	(A) - (A) AND data	Logical AND specified Immediate Data with Accumulator.	2	2				
ANL A, Rr	$\begin{aligned} & (A)-(A) \text { AND }(R r) \\ & \text { for } r=0-7 \end{aligned}$	Logical AND contents of designated register with Accumulator.	1	1				
ANL A, @ Rr	$\begin{aligned} & (A)-(A) \text { AND }((\mathrm{Rr})) \\ & \text { for } r=0-1 \end{aligned}$	Logical AND Indirect the contents of data memory with Accumulator.	1	1				
CPL A	(A) - NOT (A)	Complement the contents of the Accumulator.	1	1				
CLR A	A-0	CLEAR the contents of the Accumulator.	1	1				
DA A		DECIMAL ADJUST the contents of the Accumulator.	1	1	-			
DEC A	(A) - (A) - 1	DECREMENT by 1 the Accumulator's contents.	1	1				
INC A	(A) $-(\mathrm{A})+1$	Increment by 1 the Accumulator's contents.	1	1				
ORL A, \#data	(A) - (A) OR data	Logical OR specified immediate data with Accumulator.	2	2				
ORL A, Rr	$\begin{aligned} & (A)-(A) O R(R r) \\ & \text { for } r=0-7 \end{aligned}$	Logical OR contents of designated register with Accumulator.	1	1				
ORL A, @ Rr	$\begin{aligned} & (A)-(A) O R((R r)) \\ & \text { for } r=0-1 \end{aligned}$	Logical OR Indirect the contents of data memory location with Accumulator.	1	1				
RLA	$\begin{aligned} & (A n+1)-(A n) \\ & \text { for } n=0-6 \\ & (A 0)-(A 7) \\ & \hline \end{aligned}$	Rotate Accumulator left by 1 -bit without carry.	1	1				
RLC A	$\begin{aligned} & (A n+1)-(A n) ; n=0-6 \\ & (A 0)-(C) \\ & (C)-(A 7) \end{aligned}$	Rotate Accumulator left by 1-bit through carry	1	1	-			
RR A	$\begin{aligned} & (A n)-(A n+1), n=0-6 \\ & (A 7)-(A 0) \end{aligned}$	Rotate Accumulator right by 1-bit without carry	1	1				
RRC A	$\begin{aligned} & \text { (An) }-(A n+1), n+0-6 \\ & \text { (A7) }-(C) \\ & \text { (C) }-(A 0) \end{aligned}$	Rotate Accumulator right by 1-bit through carry.	1	1	-			

TABLE 1. Instruction Set (Contınued)

Mnemonic	Function	Description	Cycles	Bytes	Flags			
					C	AC	F0	F1

## ACCUMULATOR (Continued)

SWAP	(A4-A7) - (A0-A3)	Swap the 2 4-bıt nıbbles in the   Accumulator.	1	1		
XRL A, \#data	(A) - (A) XOR data	Logıcal XOR Immedıate specı-   fied data with Accumulator.	2	2		
XRL A, Rr	(A) - (A) XOR (Rr)   for $r=0-7$	Logical XOR contents of   designated regıster with   Accumulator.	1	1		
XRL A, @ Rr	(A) - (A) XOR ((Rr))   for $r=0-1$	Logıcal XOR Indırect the con-   tents of data memory location   with Accumulator.	1	1		

## BRANCH

DJNZ Rr, addr	$\begin{aligned} & (R r)-(R r)-, r=0-7 \\ & \text { If }(R r) \neq 0, \\ & (P C 0-7)-\text { addr } \end{aligned}$	Decrement the specified register and test contents.	2	2			
JBb addr	$\begin{aligned} & (\mathrm{PC} 0-7)-\text { addr if } \mathrm{Bb}=1 \\ & (\mathrm{PC})-(\mathrm{PC})+2 \text { if } \mathrm{Bb}=0 \end{aligned}$	Jump to specified address if Accumulator bit is set.	2	2			
JC addr	$\begin{aligned} & \text { (PC 0-7)-addr if } C=1 \\ & (\mathrm{PC})-(\mathrm{PC})+2 \text { if } C=0 \end{aligned}$	Jump to specified address if carry flag is set.	2	2			
JFO addr	$\begin{aligned} & (\mathrm{PC} 0-7)-\text { addr if } \mathrm{FO}=1 \\ & (\mathrm{PC})-(\mathrm{PC})+2 \text { if } \mathrm{FO}=0 \end{aligned}$	Jump to specified address if Flag F0 is set.	2	2			
JFI addr	$\begin{aligned} & (\mathrm{PC} 0-7) \text {-addr if } \mathrm{F} 1=1 \\ & (\mathrm{PC})-(\mathrm{PC})+2 \text { if } \mathrm{F} 1=0 \end{aligned}$	Jump to specified address if Flag F1 is set.	2	2			
JMP addr	$\begin{aligned} & \text { (PC 8-10) - 8-10 } \\ & \text { (PC 0-7) - addr 0-7 } \\ & \text { (PC 11) - DBF } \end{aligned}$	Direct Jump to specified address with the 2 K address block.	2	2			
JMPP@A	(PC 0-7) - ((A))	Jump Indirect to specified address pointed to by the Accumulator in current page.	2	1			
JNC addr	$\begin{aligned} & (\mathrm{PC} 0-7) \text {-addr if } \mathrm{C}=0 \\ & (\mathrm{PC})-(\mathrm{PC})+2 \text { if } \mathrm{C}=1 \end{aligned}$	Jump to specified address if carry flag is low.	2	2			
JNI addr	$\begin{aligned} & (P C 0-7)-\text { addr if } I=0 \\ & (P C)-(P C)+2 \text { if } I=1 \end{aligned}$	Jump to specified address if interrupt is low.	2	2			
JNT0 addr	$\begin{aligned} & \text { (PC 0-7)-addr if TO }=0 \\ & (\mathrm{PC})-(\mathrm{PC})+2 \text { if } \mathrm{TO}=1 \end{aligned}$	Jump to specified address if Test 0 is low.	2	2			
JNT1 addr	$\begin{aligned} & \text { (PC 0-7)-addr if } \mathrm{T} 1=0 \\ & (\mathrm{PC})-(\mathrm{PC})+2 \text { if } \mathrm{T} 1=1 \end{aligned}$	Jump to specified address if Test 1 is low.	2	2			
JNZ addr	$\begin{aligned} & \text { (PC 0-7)-addr if } A \neq 0 \\ & (P C)-(P C)+2 \text { if } A=0 \end{aligned}$	Jump to specified address if Accumulator is non-zero.	2	2			
JFT addr	$\begin{aligned} & \text { (PC 0-7)-addr if TF }=1 \\ & (\mathrm{PC})-(\mathrm{PC})+2 \text { if } T F=0 \\ & \hline \end{aligned}$	Jump to specified address if Timer Flag is set to 1.	2	2			
JTO addr	$\begin{aligned} & \text { (PC 0-7)-addr if TO }=1 \\ & (\mathrm{PC})-(\mathrm{PC})+2 \text { If } \mathrm{TO}=0 \end{aligned}$	Jump to specified address if Test 0 is a 1.	2	2			
JT1 addr	$\begin{aligned} & (\mathrm{PC} 0-7)-\text { if } \mathrm{T} 1=1 \\ & (\mathrm{PC})-(\mathrm{PC})+2 \text { if } \mathrm{T} 1=0 \end{aligned}$	Jump to specified address if Test 1 is a 1.	2	2			
JZ addr	$\begin{aligned} & \text { (PC 0-7)- addr if } A=0 \\ & (P C)-(P C)+1 \text { if } A=1 \end{aligned}$	Jump to specified address if Accumulator is 0 .	2	2			

TABLE 1. Instruction Set (Continued)

Mnemonic	Function	Description	Cycles	Bytes	Flags			
					C	AC	F0	F1
INPUT/OUTPUT								
ANL BUS, \#data	$\begin{aligned} & \text { (BUS) - (BUS) AND } \\ & \text { data } \end{aligned}$	Logical AND Immediate specified data with contents of BUS	2	2				
ANL Pp, \#data	$\begin{aligned} & (P p)-(P p) \text { AND data; } \\ & p=1-2 \end{aligned}$	Logical AND Immediate specified data with designated port (1 or 2).	2	2				
ANLD Pp, A	(Pp) - (Pp) AND $(A O-A 3) ; p=4-7$	Logical AND contents of Accumulator with designated port (4-7).	2	1				
IN A, Pp	$(\mathrm{A})-(\mathrm{Pp}) ; \mathrm{p}=1-2$	Input data from designated port (1-2) into Accumulator	2	1				
INS A, BUS	(A) - (BUS)	Input strobed BUS data into Accumulator.	2	1				
MOVD A, Pp	$\begin{aligned} & (\mathrm{A} 0-\mathrm{A} 3)-(\mathrm{Pp}) ; \\ & \mathrm{P}=4-7(\mathrm{~A} 4-\mathrm{A} 7)-0 \end{aligned}$	Move contents of designated port (4-7) into Accumulator.	2	1				
MOVD Pp, A	$\begin{aligned} & (\mathrm{Pp})-(\mathrm{A} 0-\mathrm{A} 3) ; \\ & \mathrm{p}=4-7 \end{aligned}$	Move contents of Accumulator to designated port (4-7).	2	1				
ORL BUS, \#data	(BUS) - (BUS) OR data	Logical OR Immediate specified data with contents of BUS.	2	2				
ORLD Pp, A	$\begin{aligned} & (P p)-(P p) O R(A O-A 3) \\ & p=4-7 \end{aligned}$	Logical OR contents of Accumulator with designated port (4-7).	2	1				
ORL Pp, \#data	$\begin{aligned} & (\mathrm{Pp})-(\mathrm{Pp}) \text { OR data; } \\ & \mathrm{p}=1-2 \end{aligned}$	Logical OR Immediate specified data with designated port (1-2)	2	2				
OUTL BUS, A	(BUS) - (A)	Output contents of Accumulator onto BUS.	2	1				
OUTL Pp, A	$(\mathrm{Pp})-(\mathrm{A}), \mathrm{p}=1-2$	Output contents of Accumulator to designated port (1-2).	2	1				

## REGISTERS

DEC Rr	$(\mathrm{Rr})-(\mathrm{Rr})-1, r=0-7$	Decrement by 1 contents of   designated register.	1	1			
INC Rr	$(\mathrm{Rr})-(\mathrm{Rr})+1 ; r=0-7$	Increment by 1 contents of   designated register.	1	1			
INC @ Rr	$((\mathrm{Rr}))-((\mathrm{Rr}))+1 ;$   $\mathrm{r}=0-1$	Increment Indirect by 1 the con-   tents of data memory locatıon	1	1			

## SUBROUTINE



TABLE 1. Instruction Set (Contınued)

Mnemonic	Function	Description	Cycles	Bytes	Flags			
					C	AC	F0	F1
FLAGS								
CPL C	(C) - NOT (C)	Complement Content of carry bit.	1	1	-			
CPL F0	(FO) - NOT (F0)	Complement Content of Flag F0	1	1			-	
CPL F1	(F1) - NOT (F1)	Complement Content of Flag F1	1	1				-
CLR C	(C) -0	Clear content of carry bit to 0	1	1	-			
CLR F0	(FO) -0	Clear content of Flag 0 to 0	1	1			-	
CLR F1	(F1) -0	Clear content of Flag 1 to 0	1	1				-
MISCELLANEOUS								
NOP		No operation	1	1				

## Symbol Definitions

Symbol	Description	Symbol	Description
A	Accumulator	p	Port Desıgnator ( $\mathrm{p}=1,2$ or 4-7)
AC	Auxillary Carry Flag	PSW	Program Status Word
addr	Program Memory Address (12 bits)	$r$	Register Designator ( $\mathrm{r}=0,1$ or 0-7)
b	Bıt Designator ( $\mathrm{b}=0-7$ )	SP	Stack Poınter
BS	Bank Switch	T	Tımer
Bus	Bus Port	TF	Timer Flag
C	Carry Flag	T0, T1	Testable Flags 0, 1
CLK	Clock Signal	X	External RAM
CNT	Event Counter	\#	Prefix for Immediate Data
D	Nibble Designator (4 bits)	@	Prefix for Indirect Address
data	Number or Expression (8 bits)	\$	Program Counter's Current Value
DBF	Memory Bank Flip-Flop	( x )	Contents of Register
$F_{0}, F_{1}$	Flags 0, 1	((xx))	Contents of Memory Location Addressed by
1	Interrupt		the Contents of Register
P	"In-Page" Operation Designator		Replaced by

## Absolute Maximum Ratings

Temperature Under Bias
Storage Temperature
All Input or Output Voltages with Respect to $V_{S S}$
Power Dissipation
$-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
-05 V to +7 V
15 Watt

Note Absolute maximum ratings indicate limits beyond which permanent damage may occur Continuous operation at these limits is not intended operation should be limited to those conditions specilied under DC Electrical Characteristics

## DC Electrical Characteristics

$T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}$, unless otherwise specified.

Symbol	Parameter	Test Conditions	Min	Typ	Max	Units
$V_{\text {IL }}$	Input Low Voltage (Except XTAL1, XTAL2, $\overline{\text { RESET }}$		-0.5		0.8	V
$\mathrm{V}_{\text {ILI }}$	Input Low Voltage (XTAL1, XTAL2, RESET)		-0.5		0.6	V
$\mathrm{V}_{\mathrm{IH}}$	Input High Voltage (Except XTAL1, XTAL2, $\overline{\text { RESET }}$ )		2.0		$\mathrm{V}_{\mathrm{Cc}}$	V
$\mathrm{V}_{\mathrm{IH} 1}$	Input High Voltage (XTAL1, XTAL2, RESET)		3.8		$\mathrm{V}_{\mathrm{cc}}$	V
$\mathrm{V}_{\mathrm{OL}}$	Output Low Voltage (Bus)	$\mathrm{IOL}^{\prime}=2 \mathrm{~mA}$			. 45	V
$\mathrm{V}_{\text {OL1 }}$	Output Low Voltage ( $\overline{\mathrm{RD}}, \overline{\mathrm{WR}}, \overline{\mathrm{PSEN}}, \mathrm{ALE})$	$\mathrm{l}_{\mathrm{OL}}=1.8 \mathrm{~mA}$			. 45	V
$\mathrm{V}_{\mathrm{OL2}}$	Output Low Voltage ( $\overline{\text { PROG }}$ )	$\mathrm{l}_{\mathrm{OL}}=1.0 \mathrm{~mA}$			45	V
$\mathrm{V}_{\text {OL3 }}$	Output Low Voltage (Ports and Others)	$\mathrm{IOL}=1.6 \mathrm{~mA}$			. 45	V
$\mathrm{V}_{\mathrm{OH}}$	Output High Voltage (Bus)	$\mathrm{I}_{\mathrm{OH}}=-400 \mu \mathrm{~A}$	24			V
$\mathrm{V}_{\mathrm{OH} 1}$	Output High Voltage ( $\overline{\mathrm{RD}}, \overline{\mathrm{WR}}, \overline{\mathrm{PSEN}}, \mathrm{ALE}$ )	$\mathrm{I}_{\text {OH }}=-100 \mu \mathrm{~A}$	2.4			V
$\mathrm{V}_{\mathrm{OH} 2}$	Output High Voltage   (Ports and Others)	$\mathrm{I}_{\mathrm{OH}}=-40 \mu \mathrm{~A}$	2.4			V
$\mathrm{I}_{\text {LI }}$	Input Leakage Current (T1, INT, EA)	$\mathrm{V}_{\mathrm{SS}} \leq \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\mathrm{CC}}$			$\pm 10$	$\mu \mathrm{A}$
$\mathrm{I}_{\text {L1 }}$	Input Leakage Current Ports	$\mathrm{V}_{S S}+0.45 \leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\text {CC }}$			-500	$\mu \mathrm{A}$
$\mathrm{I}_{\text {L1 }}$	Input Leakage Current ( $\overline{\mathrm{SS}}, \overline{\mathrm{RESET}}$ )	$V_{S S}+0.45 \leq V_{I N} \leq V_{C C}$			-300	$\mu \mathrm{A}$
ILO	Output Leakage Current (Bus, $\mathrm{T}_{0}$ ) High Impedance State	$\mathrm{V}_{\mathrm{SS}}+0.45 \leq \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\mathrm{CC}}$			$\pm 10$	$\mu \mathrm{A}$
$I_{\text {DD }}$	Standby Current			4	8	mA
$I_{D D}+I_{C C}$	Total Supply			55	80	mA
$V_{D D}$	Standby Power Supply		22		$\mathrm{V}_{\mathrm{CC}}$	V

BUS

$V_{O H}(V)$
(P1, P2)

$V_{\mathrm{OH}}(\mathrm{V})$

$V_{0 L}$ (V)

Symbol	Parameter	$f\left({ }^{\circ} \mathrm{cr}\right)$   (Note 3)	11 MHz		Units
			Min	Max	
$t_{\text {LL }}$	ALE Pulse Width (Note 1)	$7 / 30 \mathrm{t}_{\mathrm{CY}}-170$	150		ns
$t_{\text {AL }}$	Address Setup to ALE (Note 1).	$2 / 15 \mathrm{t}_{\mathrm{CY}}-110$	70		ns
$t_{\text {LA }}$	Address Hold from ALE (Note 1)	$1 / 15 \mathrm{t}_{\mathrm{CY}}-40$	50		ns
${ }^{\text {c }}{ }_{\text {Cl }}$	Control Pulse Width ( $\overline{\mathrm{RD}}, \overline{\mathrm{WR}}$ ) (Note 1)	$1 / 2 \mathrm{t}_{\mathrm{CY}}-200$	480		ns
$\mathrm{t}_{\mathrm{CC} 2}$	Control Pulse Width ( $\overline{\text { PSEN }}$ ) (Note 1)	$2 / 5 \mathrm{t}_{\mathrm{CY}}-200$	350		ns
tow	Data Setup Before $\overline{\text { WR }}$ (Note 1)	$13 / 30 t_{C Y}-200$	390		ns
two	Data Hold After $\bar{W} \mathbf{R}$ (Notes 1, 2)	$1 / 15 t_{C Y}-50$	40		ns
$t_{\text {DR }}$	Data Hold ( $\overline{\mathrm{RD}}, \overline{\text { PSEN }}$ ) (Notes 1, 4)	$1 / 10 t_{C Y}-30$	0	110	ns
$\mathrm{t}_{\mathrm{RD} 1}$	$\overline{\mathrm{RD}}$ to Data In (Note 1)	$2 / 5 \mathrm{t}_{\mathrm{CY}}-170$		370	ns
$\mathrm{t}_{\mathrm{RD2} 2}$	$\overline{\text { PSEN }}$ to Data In (Note 1)	$3 / 10 \mathrm{t}_{\text {CY }}-170$		240	ns
$t_{\text {AW }}$	Address Setup to $\overline{\mathrm{WR}}$ (Note 1)	$1 / 3 \mathrm{t}_{\mathrm{CY}}-150$	300		ns
$t_{\text {AD1 }}$	Address Setup to Data ( $\overline{\mathrm{RD}})$ (Note 1)	$21 / 30 t_{C Y}-220$		730	ns
$t_{\text {AD } 2}$	Address Setup to Data ( $\overline{\text { PSEN }}$ ) (Note 1)	$1 / 2 \mathrm{t}_{\mathrm{CY}}-200$		480	ns
$\mathrm{t}_{\text {AFC1 }}$	Address Float to $\overline{\mathrm{RD}}, \overline{\mathrm{WR}}$ (Notes 1, 2)	$2 / 15 t_{\text {CY }}-40$	140		ns
$\mathrm{t}_{\text {AFC2 }}$	Address Float to $\overline{\text { PSEN }}$ (Notes 1, 2)	$1 / 30 t_{C Y}-40$	10		ns
$\mathrm{t}_{\text {LAFC1 }}$	ALE to Control ( $\overline{\mathrm{RD}}, \overline{\mathrm{WR}}$ ) (Note 1)	$1 / 5 \mathrm{t}_{\text {CY }}-75$	200		ns
$\mathrm{t}_{\text {LAFC2 }}$	ALE to Control ( $\overline{\text { PSEN }}$ ) (Note 1)	$1 / 10 t_{\text {CY }}-75$	60		ns
$\mathrm{t}_{\text {CA1 }}$	Control to ALE ( $\overline{\mathrm{RD}}, \overline{\mathrm{WR}}, \overline{\mathrm{PROG}}$ ) (Note 1)	$1 / 15 \mathrm{t}_{\mathrm{CY}}-40$	50		ns
$\mathrm{t}_{\mathrm{CA} 2}$	Control to ALE ( $\overline{\text { PSEN }}$ ) (Note 1)	$4 / 15 t_{C Y}-40$	320		ns
$\mathrm{t}_{\mathrm{CP}}$	Port Control Setup to $\overline{\text { PROG }}$ (Note 1)	$1 / 10 t_{\text {CY }}-80$	50		ns
$t_{P C}$	Port Control Hold from PROG (Note 1)	$4 / 15 t_{\text {cY }}-260$	100		ns
$t_{\text {PR }}$	$\overline{\text { PROG }}$ to P2 Input Valıd (Note 1)	$17 / 30 t_{C Y}-140$		630	ns
$t_{\text {PF }}$	Input Data Hold from $\overline{\text { PROG }}$ (Notes 1, 4)	$1 / 10 \mathrm{t}_{\mathrm{CY}}$	0	140	ns
$t_{\text {DP }}$	Output Data Setup (Note 1)	$2 / 5 \mathrm{t}_{\mathrm{CY}}-290$	260		ns
$t_{\text {PD }}$	Output Data Hold (Note 1)	$1 / 10 t_{\text {CY }}-90$	40		ns
$t_{\text {PP }}$	$\overline{\text { PROG Pulse Width (Note 1) }}$	$7 / 10 \mathrm{t}_{\mathrm{CY}}-250$	700		ns
$t_{\text {PL }}$	Port 2 I/O Setup to ALE (Note 1)	$4 / 15 \mathrm{t}_{\mathrm{CY}}-200$	160		ns
$\mathrm{t}_{\mathrm{LP}}$	Port 2 I/O Hold to ALE (Note 1)	$1 / 10 t_{\text {cr }}-120$	15		ns
$t_{\text {PV }}$	Port Output From ALE (Note 1)	$3 / 10 t_{C Y}+100$		510	ns
$\mathrm{t}_{\mathrm{Cr}}$	Cycle Time (Note 3)		1.36	15	$\mu \mathrm{S}$
toprR	$\mathrm{T}_{0}$ Rep Rate	$3 / 15 \mathrm{t}_{\mathrm{CY}}$	270		ns

Note 1: Control outputs $\mathrm{C}_{\mathrm{L}}=80 \mathrm{pF}$, Bus outputs $\mathrm{C}_{\mathrm{L}}=150 \mathrm{pF}$
Note 2: Bus High Impedance Load $=20 \mathrm{pF}$
Note 3: $\mathrm{t}_{\mathrm{Cy}}=15 / \mathrm{f}$ (assumes $50 \%$ duty cycle)
Note 4. Maximum spec listed is for user information only to prevent system bus contention
Note 5: $V_{I H}=38 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=045 \mathrm{~V}$


Note: $A C$ testing inputs are driven at 24 V for a logic " 1 " and 045 V for a logic " 0 " Output timing measurements are made at 20 V for a logic " 1 " and 08 V for a logic " 0 " (except X1, X2, and $\overline{\mathrm{RESET}}$ ) (Note 5)

Input and Output for AC Tests

## Timing Waveforms



I/O Port Timing


Note: Diagonal lines indicate interval of high impedance
Instruction Fetch from External Program Memory


Write to External Data Memory

Timing Waveforms (Contrined)


Note- Diagonal lines indicate interval of high impedance
Read from External Data Memory


Port 2 Timing


Recommended Test Methods.
1 RESET must be low before EA goes high
2 Sync to falling edge of ALE Falling edge of ALE is machine cycle 4
3 Force address in with $\overline{\text { RESET }}$ low for 21 machine cycles starting machine cycle 5
4 Force address in with RESET high for 4 machine cycles
Force $\overline{\text { RESET }}$ high for 12 machine cycles
6 Force $\overline{\text { RESET }}$ high for 4 machine cycles Data is valid on bus
Force $\overline{\text { RESET }}$ low for 4 machine cycles
8 Repeat steps 3 through 7 for other addresses
ROM Verify Mode Timing

## Typical Application

Figure 8 shows a typical way to use the SY8048 microcontroller in a stand-alone system Crystal used is parallel resonant, AT cut and 1 MHz to 6 MHz All outputs are standard $T \mathrm{~L}$ compatible at 5 V


FIGURE 8. Stand-Alone SY8048 System

Package Availability 40 Pin Molded DIP

## PRELIMINARY

## Features

- High-Speed $16 \times 16$ Parallel Array Multiplier
- 145 nsec Typıcal Multıply Tıme
- Low Power ( $\mathrm{I}_{\mathrm{CC}}=30 \mathrm{~mA}$ Typıcal)
- Full Product Multiplexed at Output
- 2's Complement, Unsigned or Mixed Operands
- Input/Output Latches Selectable for Clocked or Transparent Mode of Operation
- Advanced CMOS Technology
- Input/Output Levels TTL Compatible
- Single +5V Power Supply
- 64-Pin Package
- SY66C016 Pın-for-Pin Functıonal Replacement for TRW TRW MPY 16HJ and AMD 29516


## Description

The SY66C016 is a parallel array multiplier built using Synertek's advanced CMOS process technology By use of a modified Booths algorithm and the state-of-the-art $2 \mu$ design rules, the SY66C016 provides a performance comparable to existing bipolar TTL multipliers at a fraction of the power consumption ( $\mathrm{I}_{\mathrm{CC}}=30 \mathrm{~mA}$ typical)
Input data is accepted in the form of 16-bit 2's complement and unsigned magnitude or mixed operands. At the output of the array a format adjust control (FA) allows the user to select a full 32 -bit product or a left shifted 31-bit product suitable for 2's-complement only.

The two halves of the product may be routed to a 16 -bit three-state output port via a multiplexer. In addition, the

## Pin Configuration

$\mathrm{X}_{4}$	1	64	$\mathrm{X}_{5}$
$\mathrm{x}_{3}$	42	63	$\mathrm{x}_{6}$
$\mathrm{x}_{2}$	4	62	$\mathrm{x}_{7}$
$\mathrm{x}_{1}$	4	61	$\mathrm{x}_{8}$
$\mathrm{x}_{0}$	${ }^{5}$	60	$\mathrm{X}_{9}$
$\overline{\mathrm{OEL}}$	$\square^{6}$	59	$\mathrm{x}_{10}$
CLKL	97	58	$\mathrm{x}_{11}$
CLKY	$8^{8}$	57	$\mathrm{x}_{12}$
$\mathrm{P}_{0}, \mathrm{Y}_{0}$	$9^{9}$	56	$\mathrm{X}_{13}$
$\mathrm{P}_{1}, \mathrm{Y}_{1}$	910	55	$\mathrm{X}_{14}$
$\mathrm{P}_{2}, \mathrm{Y}_{2}$	511	54	$\mathrm{X}_{15}$
$\mathrm{P}_{3}, \mathrm{Y}_{3}$	012	53	$\square$ CLKX
$P_{4}, Y_{4}$	O13	52	$\square \mathrm{RND}$
$\mathrm{P}_{5}, \mathrm{Y}_{5}$	$0^{14}$	51	$\mathrm{X}_{\mathrm{M}}$
$P_{6}, Y_{6}$	O15	50	$\mathrm{Y}_{\mathrm{m}}$
$\mathrm{P}_{7}, \mathrm{Y}_{7}$	816	49	$\underline{+} \mathrm{V}_{\mathrm{cc}}$
$\mathrm{P}_{8}, \mathrm{Y}_{8}$	-17	48	$\square+v_{c c}$
$\mathrm{P}_{9}, \mathrm{Y}_{9}$	18	47	$\square$ GND
$\mathrm{P}_{10}, \mathrm{Y}_{10}$	19	46	2 GND
$\mathrm{P}_{11}, \mathrm{Y}_{11}$	20	45	$\square$ MSPSEL
$\mathrm{P}_{12}, \mathrm{Y}_{12}$	521	44	$\square \mathrm{FT}$
$\mathrm{P}_{13}, \mathrm{Y}_{13}$	$\mathrm{C}^{22}$	43	R RS
$\mathrm{P}_{14}, \mathrm{Y}_{14}$	-23	42	$\overline{\text { OEP }}$
$\mathrm{P}_{15}, \mathrm{Y}_{15}$	S24	41	CLKM
$\mathrm{P}_{0}, \mathrm{P}_{16}$	S25	40	$\mathrm{P}_{31}, \mathrm{P}_{15}$
$\mathrm{P}_{1}, \mathrm{P}_{17}$	$\mathrm{S}^{26}$	39	$\mathrm{P}_{30}, \mathrm{P}_{14}$
$\mathrm{P}_{2}, \mathrm{P}_{18}$	-27	38	$\mathrm{F} \mathrm{P}_{29}, \mathrm{P}_{13}$
$\mathrm{P}_{3} \mathrm{P}_{19}$	$\mathrm{G}^{28}$	37	$\mathrm{P}^{28}$, $\mathrm{P}_{12}$
$\mathrm{P}_{4}, \mathrm{P}_{20}$	829	36	$\mathrm{P} \mathrm{P}_{27}, \mathrm{P}_{11}$
$\mathrm{P}_{5}, \mathrm{P}_{21}$	330	35	$\mathrm{P}_{26}, \mathrm{P}_{10}$
$\mathrm{P}_{6}, \mathrm{P}_{22}$	${ }^{31}$	34	$\mathrm{P}_{25}, \mathrm{P}_{9}$
$\mathrm{P}_{7}, \mathrm{P}_{23}$	-32	33	$\mathrm{P}_{24}, \mathrm{P}_{8}$

LSP is connected to the Y -input through a separate three-state buffer.

Applications of the SY66C016 multiplier include a variety of digital signal-processing systems including floatingpoint processors, FFT processors, array processors, image/video processors, speech recognition and synthesis, digital filtering, modems, missile guidance, etc.
In the SY66C016 the $\mathrm{X}, \mathrm{Y}, \mathrm{MSP}$ and LSP registers have independent clocks (CLKX, CLKY, CLKM, CLKL). The output multiplexer control ( $\overline{\mathrm{MSPSEL}})$ uses a pin which is a supply ground in the TRW MPY 16HJ. When this control is LOW the function is that of the MPY 16 HJ , thus allowing full compatibility.

## Block Diagram




#### Abstract

Absolute Maximum Ratings* Supply Voltage, $\mathrm{V}_{\mathrm{Cc}} \ldots . . . . . . . . . . . .$. Input/Output Voltage, $\mathrm{V}_{\text {IN }} \ldots . . . . . . . . .-0.3 \mathrm{~V}$ to +7.0 V Operating Temperature, Top............... .0 to $70^{\circ} \mathrm{C}$ Storage Temperature, $\mathrm{T}_{\text {STG }} \ldots \ldots . . . . .-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

All inputs contain protection circuitry to prevent damage due to high static discharges. Care should be exercised to prevent unnecessary application of voltages in excess of the allowable limits.


## Comment*

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress rating only. Functional operation of this device at these or any other conditions above those indicated in the operational sections of this specification is not implied and exposure to absolute maximum rating conditions for extended periods may affect device reliability.
D.C. Characteristics ( $V_{C C}=-5.0 \mathrm{~V} \pm 5 \%, V_{S S}=0, T_{A}=0$ to $70^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Parameter	Min.	Typ.	Max.	Units
$\mathrm{V}_{\text {IH }}$	Input High Voltage	2.0	-	$V_{C C}$	V
$\mathrm{V}_{\text {IL }}$	Input Low Voltage	-0.3	-	0.8	V
$\mathrm{ILI}^{\prime}$	Input Leakage Current ( $\mathrm{V}_{C C}=5 \mathrm{~V}$ )			10	$\mu \mathrm{A}$
lo	Output Leakage Current (3-State: $\mathrm{V}_{\mathrm{CC}}=0.4 \mathrm{~V}$ )			-10	$\mu \mathrm{A}$
lo	Output Leakage Current (3-State: $\mathrm{V}_{\mathrm{CC}}=2.4 \mathrm{~V}$ )			20	$\mu \mathrm{A}$
$\mathrm{V}_{\mathrm{OH}}$	Output High Voltage $\left(V_{C C}=\text { Min., } I_{O H}=-100 \mu A\right)$	2.4			V
$\mathrm{V}_{\mathrm{OL}}$	Output Low Voltage $\left(\mathrm{V}_{\mathrm{CC}}=\operatorname{Min} ., \mathrm{I}_{\mathrm{OL}}=1.6 \mu \mathrm{~A}\right)$			0.4	V
Icc	Supply Current $\left(\mathrm{V}_{C C}=5.25 \mathrm{~V}\right.$		300	400	mA

## Pin Description

## $\mathrm{X}_{0}-\mathrm{X}_{15}$

These 16 lines are the Multiplicand and Data inputs. Data are loaded on the rising edge of CLKX.
$\mathrm{Y}_{0}-\mathrm{Y}_{15}$
These 16 pins share functions between the Multiplier Data inputs $\left(Y_{0}-Y_{15}\right)$ and least significant product, LSP ( $\mathrm{P}_{0}-\mathrm{P}_{15}$ ), outputs. The input data are loaded on the rising edge of CLKY. The output (LSP) data are loaded on the rising edge of CLKL.

## $X_{M}, Y_{M}$

Mode control inputs for each data word.
(TCX, TCY)*
$X_{M}, Y_{M}=0$; unsigned data
$X_{M}, Y_{M}=1 ; 2$ 's complement data
$X_{M}$ is clocked by CLKX; $Y_{M}$ is clocked by CLKY.
FA(RS)*
Format Adjust control selects either a full 32 -bit product (HIGH) or a left shifted 31-bit product with the sign bit replicted in the LSP (LOW). This control is normally high except for certain fractional 2's complement applications.

## FT

Feedthrough control (HIGH) makes both MSP and LSP registers transparent.

## MSPSEL

Selects either MSP (LOW) or LSP (HIGH) to be available at the product output port.

## RND

Round control for the rounding of the MSP by adding 1 to the least significant product output. RND is strobed by CLKX or CLKY.

## OEP (TRIM)*

Three-state enable for product output (MSP) port.

## $\overline{\text { OEL (TRIL)* }}$

Three-state enable for routing LSP through $Y$ input/output port.

## CLKX

Register Clock for $\mathrm{X}_{0}-\mathrm{X}_{15}, \mathrm{X}_{\mathrm{M}}$, RND

## CLKY

Register Clock for $Y_{0}-Y_{15}, Y_{M}$, RND
CLKM
MSP Register Clock
CLKL
LSP Register Clock
*TRW MPY 16HJ pin designation.

SY4x2901B

## ADVANCED INFORMATION

## Distinctive Characteristics

- Quad Replacement for 2901B with On-board Lookahead Carry Generation
- Extremely Low Power Consumption
- Full TTL Compatibility
- Single +5 V Power Supply
- Expandable
- Any number of SY4x2901Bs can be cascaded together to form longer word lengths ${ }^{[1]}$
- Speed
- 100 ns cycle tıme (typıcal)
- Eight-function ALU
- Performs addition, two subtraction operations, and five logic operations
- Two-address Architecture
- Independent sımultaneous access to two workıng registers saves machıne cycles
- Flexible Data Source Selection
- ALU data is selected from five source ports for a total of 203 source operand pairs for every ALU function
- Left/right Shift Independent of ALU
- ADD and SHIFT operations take only one cycle
- Mıcroprogrammable
- Three groups of three bits each for source operand,

ALU function, and destination control

- Four STATUS FLAGS
- Carry, overflow, zero, and negative
- Operatıng Range
- Both commercial and military temperature ranges avaılable
- Packagıng
-64-pın Molded and Ceramic DIP
- 68-pın ceramıc leadless chıp carrıer


## Description

The SY4x2901B is a CMOS Quad implementation of the industry standard 2901B 4-bit microprocessor slice with onboard multilevel look-ahead carry generation capability it is designed to provide a high-speed cascadable ALU, intended for use in CPUs, peripheral controllers, programmable microprocessors, or any application where performance and hardware/software flexibility are system prerequisites
The SY4×2901B provides all the features of its bipolar counterparts, in addition to the inherent advantages of its low
power requirements, 16 -bit data $1 / \mathrm{O}$, and on-board lookahead carry capabilities. It is also microcode compatible with the 2901B This is a defınite advantage, sınce existıng software can be utilized in a new or upgraded hardware design The microinstruction flexibility of this device will allow efficient emulation of almost any digital computing machine. In addition, it also has three-state outputs and provides various STATUS FLAG outputs from the ALU
(contınued on next page)

## Block Diagram



Figure 1. SY4x2901B General Block Diagram


Figure 2. Functional Block Diagram

The SY4x2901B, as shown in Figure 1, consists of four 4-bit 2901s, and one and one-quarter 2902s As shown in Figure 2, the device consists of a 16 -word by bit two-port RAM, and eight function ALU, and the associated shiftıng, decoding, and multiplexing circuitry The 9-bit microinstruction word is organized into three groups of three bits each which select the ALU source operands, the ALU functions, and the ALU destination register
The partial 2902 (Figure 1) is provided so as to reduce chip count when implementing either a 24 -bit or 32-bit design. The three signals provided by the look-ahead carry circuitry are $\mathrm{C}_{\text {OUT }}$, propagate $(\mathrm{P})$, and generate $(\mathrm{G})$. Moreover, $\mathrm{C}_{\text {OUT }}$ is the only carry signal needed when cascading with either a SY2x2901B[1], or another SY4x2901B device (24-bit and 32-bit configurations respectively) - thus elımınatıng the need for an additional look-ahead carry device For system configurations greater than 32-bits, the carry propagate and generate signals can be used This on-board look-ahead carry capability provides the user with a truly economical and versatıle alternative for design

Note 1:
The SY2×2901B is an 8-bit CMOS processor slice which is available in a 48 -pin package The SY2x2901B may be cascaded with a SY4×2901B to form word lengths in any multiple of 8-bits

## Pin Definitions

$\mathrm{A}_{0-3}$
The four address inputs to the register stack used to select one regıster whose contents are displayed through the A-port
$\mathbf{B}_{0-3} \quad$ The four address inputs to the register stack used to select one register whose contents are displayed through the B-port and into which new data can be written when the clock goes LOW.
$\mathrm{I}_{0-8} \quad$ The nine instruction control lines Used to determine what data sources will be applied to the ALU ( $l_{012}$ ), what function the ALU will perform ( $l_{345}$ ), and what data is to be deposited in the Q-register or the register stack ( $\mathrm{l}_{678}$ )
$\mathrm{Q}_{15} \quad$ A shift line at the MSB of the Q register $\left(\mathrm{Q}_{15}\right)$ and $\mathrm{RAM}_{15}$ the register stack ( $\mathrm{RAM}_{15}$ ) Electrically these lines are three-state outputs connected to TTL inputs internal to the device When the destination code on $\mathrm{I}_{678}$ indicates an up shift (octal 6 or 7) the three-state outputs are enabled and the MSB of the O register is available on the $\mathrm{Q}_{15} \mathrm{pin}$ and the MSB of the ALU output is available on the RAM ${ }_{15}$ pin. Otherwise, the three-state outputs are OFF (high-impedance) and the pins are electrically LSTTL inputs. When the destination code calls for a down shift, the pins are used as the data inputs to the MSB of the Q register (octal 4) and RAM (octal 4 or 5).
$\mathrm{Q}_{0} \quad$ Shift lines like $\mathrm{Q}_{15}$ and RAM $_{15}$, but at the LSB of RAM $_{0}$ the Q-register and RAM. These pins are tied to the $\mathrm{Q}_{15}$ and $\mathrm{RAM}_{15}$ pıns of the adjacent device to transfer data between devices for up and down shifts of the Q register and ALU data.

$\mathrm{D}_{0-15}$	Direct data inputs A 16-bit data field which may be selected as one of the ALU data sources for entering data into the device $D_{0}$ is the LSB.
$\mathrm{Y}_{0-15}$	The 16 data outputs. These are three-state output lines. When enabled, they display either the 16 outputs of the ALU or the data on the A-port of the regıster stack, as determıned by the destination code $\mathrm{I}_{678}$
$\overline{O E}$	Output Enable When $\overline{\mathrm{OE}}$ is HIGH, the Y outputs are OFF; when $\overline{\mathrm{OE}}$ is LOW, the Y outputs are active (HIGH or LOW)
$\overline{\mathbf{G}}, \overline{\mathbf{P}}$	The carry generate and propagate outputs of the internal ALU. These signals can be used with another 2902 for carry-lookahead of word lengths greater than 32-bits
OVR	Overflow. This pin is logically the Exclusive-OR of the carry-in and carry-out of the MSB of the ALU. At the most significant end of the word, this pin indicates that the result of an arithmetic two's complement operation has overflowed into the sign-bit.
$F=0$	This is an open drain output which goes HIGH (OFF) If the data on the 16 ALU outputs $\mathrm{F}_{0-15}$ are all LOW. In positive logic, it indicates the result of an ALU operation is zero.
$\mathrm{F}_{15}$	The most significant ALU output bit.
$C_{n}$	The carry-ın to the internal ALU.
Cout	The carry-out of the SY4x2901B.
CP	The clock input The Q register and register stack outputs change on the clock LOW-to-HIGH transition The clock LOW tıme is internally the write enable to the $16 \times 4$ RAM.



Figure 3. Pin Configuration

## General Information.

Product
Number
Page
Number
Ordering Information ..... 5-2
Packaging Diagrams ..... 5-3
Application Notes ..... 5-15
Conversion Tables ..... 5-16
Representative/
Distributor Listing ..... 5-19

## Ordering Information



Please make note of the Leadless Chip Carrier (LCC) designator.

## Packaging Information

Molded DIP-
8 Leads


Molded DIP-
14 Leads


## Packaging Information

Molded DIP-
16 Leads


Molded DIP18 Leads


## Packaging Information

## Ceramic-

18 Leads


## Cerdip-

18 Leads


## Packaging Information

Chip Carrier18 Leads


DIMENSIONS IN INCHES AND (MILLIMETERS).

Flat Package-
18 Leads


DIMENSIONS IN INCHES AND (MILLIMETERS).

## Packaging Information

## Molded DIP-

20 Leads


Ceramic20 Leads


## Packaging Information

## Cerdip-

20 Leads


## Chip Carrier-



## Packaging Information

Molded DIP—
22 Leads


Molded DIP—
24 Leads


## Packaging Information

## Ceramic-

24 Leads


## Cerdip-

24 Leads


## Packaging Information

## Molded DIP-

## 28 Leads



Molded DIP-


## Packaging Information

## Molded DIP-

48 Leads


Molded DIP_
64 Leads


## Packaging Information

## Surface Mounted Device-

 28 Leads *

DIMENSIONS IN INCHES

## Surface Mounted Device-

 44 Leads *
*Avaılable second half ' 85

## Packaging Information

## Surface Mounted Device68 Leads*


*Avallable second half ' 85

## Synertek Application Notes

Below is a listing of Synertek Applications Information available. These Notes are available in their entirety from your local Synertek Sales Office, nearest Sales Representative, or Distributor.

## Microprocessor Application Notes

Application Note   Number   AN1	SY6551 Asynchronous   Communications Interface   Adapter (ACIA)
AN2	SY6500 Microprocessor Family   SY6522 Versatile Interface
AN5	Adapter (VIA)   SY6845 Smooth Scrolling with
AN7	SYe   the 6545
AN8	SY6845 CRTC Design and   Applications Manual
AN10	SY2661 EPCI Implements   Binary Synchronous Protocol   SY66016 High Speed   $16 \times 16$ Parallel Multiplier

## Memory Application Notes

## Application Note

Number
AN6

AN12

Title
SY2128/2129 2K x 8-Bit Static RAM Access Memory

SY2130/2131 $1024 \times 8$ Dual Port Random Access Memory

## Conversion Tables

1. Convert Hexadecimal to Decimal

$$
1 \mathrm{AF6} 6_{16}=1 \times 16^{3}+\mathrm{A} \times 16^{2}+\mathrm{F} \times 16^{1}+6 \times 160=4096+2560+240+6=6902_{10}
$$

2. Convert Octal to Decimal

$$
2147_{8}=2 \times 8^{3}+1 \times 8^{2}+4 \times 8^{1}+7 \times 8^{0}=1024+64+32+7=1127
$$

3. Convert Binary to Decimal

$$
101101_{2}=1 \times 2^{5}+0 \times 2^{4}+1 \times 2^{3}+1 \times 2^{2}+0 \times 2^{1}+1 \times 2^{0}=32+0+8+4+1=45_{10}
$$

4. Convert Decimal to Hexadecimal
$1 2 0 7 _ { 1 0 } \rightarrow \quad 1 6 3 \longdiv { 1 2 0 7 }$

$$
\begin{aligned}
\frac{0}{1207} \rightarrow 162 \begin{array}{l}
\frac{4}{1207} \\
\frac{1024}{183}
\end{array} \rightarrow 161 \sqrt{183}
\end{aligned}
$$

$$
\frac { 1 7 6 } { 7 } \rightarrow 1 6 0 \longdiv { 7 } = 4 B 7 _ { 1 6 }
$$

$153_{10} \rightarrow 8$| 2 |
| :---: |
| 153 |
|  |


$\frac{128}{25} \rightarrow 8^{1}$| 25 |
| :---: |
| 25 |

6. Convert Decimal to Binary

$$
\frac { 2 4 } { 1 } \rightarrow 8 0 \longdiv { 1 } = 2 3 1 _ { 8 }
$$



## Recommended Decimal Multiples and Submultiples

Multiples and
Submultiples
$10^{18}$
$10^{15}$
$10^{12}$
$10^{9}$
$10^{6}$
$10^{3}$
$10^{2}$
10
10-1
10-2
$10^{-3}$

Prefixes	Symbols
exa	E
pecta	P
tera	T
giga	G
mega	M
kilo	k
hecto	h
deca	da
deci	d
centi	c
milli	m
micro	$\mu$
	(greek mu)
nano	n
pico	p
femto	f
atto	a

# Conversion Tables ${ }_{\text {(cont })}$ <br> Constants and Conversion Factors <br> Conversion Factors - General 

To Obtain
Degree (angle)
Ergs
Feet
Feet of water @ $4^{\circ} \mathrm{C}$
Foot-pounds
Foot-pounds
Foot-pounds per mın
Horsepower
Inches of mercury
@ $0^{\circ} \mathrm{C}$
Joules
Joules
Kılowatts
Kilowatts
Kılowatts
Knots
Miles
Nautical miles
Radians
Square feet
Watts

Multiply	By
Radıans	572958
Foot-pounds	$1356 \times 10^{7}$
Mıles	5280
Atmospheres	33.90
Horsepower-hours	$1.98 \times 10^{6}$
Kılowatt-hours	$2655 \times 10^{6}$
Horsepower	$33 \times 10^{4}$
Foot-pounds per sec	$1.818 \times 10^{-3}$
Pounds per square ınch	2036
BTU	1054.8
Foot-pounds	135582
BTU per mın	$1.758 \times 10^{-2}$
Foot-pounds per mın.	$2.26 \times 10^{-5}$
Horsepower	0.745712
Mıles per hour	0.86897624
Feet	$1.894 \times 10^{-4}$
Mıles	0.86897624
Degrees	$1.745 \times 10^{-2}$
Acres	43560
BTU per mın	17.5796

Temperature Factors
${ }^{\circ} \mathrm{F}=9 / 5\left({ }^{\circ} \mathrm{C}\right)+32$
Fahrenheit temperature - 1.8 (temperature in kelvins) -459.67

$$
{ }^{\circ} \mathrm{C}=5 / 9\left[\left({ }^{\circ} \mathrm{F}\right)-32\right]
$$

Celsius temperature $=$ temperature in kelvıns - 273.15
Fahrenheit temperature $=18$ (Celsius temperature) +32
*Boldface numbers are exact, others are given to ten significant figures where so indicated by the multiplier factor

## Conversion Factors - Metric to English

To Obtain
Inches
Feet
Yards
Miles
Ounces
Pounds
Gallons (U.S Liquid)
Fluid ounces
Square inches
Square feet
Square yards
Cubic inches
Cubic feet
Cubic yards

Multiply
Centimeters
Meters
Meters
Kilometers
Grams
Kilograms
Liters
Milliliters (cc)
Square centımeters
Square meters
Square meters
Milliliters (cc)
Cubic meters
Cubic meters

## By

03937007874
3.280839895

1093613298
0.6213711922
$3527396195 \times 10^{-2}$
2.204622622
0.2641720524
$3.381402270 \times 10^{-2}$
0.1550003100
10.76391042
1.195990046
$6102374409 \times 10^{-2}$
35.31466672
1.307950619

# Conversion Tables 

## Conversion Factors - English to Metric*

$\quad$ To Obtain
Mıcrons
Centimeters
Meters
Meters
Kilometers
Grams
Kılograms
Liters
Milliliters (cc)
Square centımeters
Square meters
Square meters
Milliliters (cc)
Cubıc meters
Cubic meters

Multiply
Mils
Inches
Feet
Yards
Miles - 0.9144

Miles 1.609344
Ounces $\quad 28.34952313$
Pounds $\quad 0.45359237$
Gallons (U.S Liquid) $\quad 3.785411784$
Fluid ounces
Square inches
Square feet 0.09290304
Square yards 0.83612736
Cubic inches $\quad 16.387064$
Cubic feet $\quad 2.831684659 \times 10^{-2}$
Cubıc yards $\quad 0.764554858$

## Conversion Factors - General*

To Obtain	Multiply	By
Atmospheres	Feet of water @ $4^{\circ} \mathrm{C}$	$2950 \times 10^{-2}$
Atmospheres	Inches of mercury @ $0^{\circ} \mathrm{C}$	$3.342 \times 10^{-2}$
Atmospheres	Pounds per square inch	$6.804 \times 10^{-2}$
BTU	Foot-pounds	$1285 \times 10^{-3}$
BTU	Joules	$9480 \times 10^{-4}$
Cubic feet	Cords	$\mathbf{1 2 8}$

*Boldface numbers are exact, others are given to ten significant figures where so indicated by the multıplier factor

## Miscellaneous Constants

## Physical Constants

Equatorial radıus of the earth $=6378388 \mathrm{~km}=3963.34$ miles (statute)
Polar radıus of the earth, $6356.912 \mathrm{~km}=3949.99$ miles (statute)
1 degree of latitude at $40^{\circ}=69$ miles.
1 international nautical mile $=1.15078$ miles (statute) $=1852 \mathrm{~m}=6076115 \mathrm{ft}$.
Mean density of the earth $=5522 \mathrm{~g} / \mathrm{cm}^{3}=344.7 \mathrm{lb} / \mathrm{ft}^{3}$.
Constant of gravitation, ( $6673 \pm 0003$ ) $\times 10^{-8} \mathrm{~cm}^{3} \mathrm{gm}^{-1} \mathrm{~S}^{-2}$
Acceleratıon due to gravity at sea level, latitude $45^{\circ}=980.665 \mathrm{~cm} / \mathrm{s}^{2}=321740 \mathrm{ft} / \mathrm{sec}^{2}$
Length of seconds pendulum at sea level, latitude $45^{\circ}=993574 \mathrm{~cm}=391171 \mathrm{in}$
$1 \mathrm{knot}($ international) $=101269 \mathrm{ft} / \mathrm{min}=1.6878 \mathrm{ft} / \mathrm{sec}=1.1508 \mathrm{miles}$ (statute) $/ \mathrm{hr}$.
1 micron $=10^{-4} \mathrm{~cm}$
1 angstrom $=10^{-8} \mathrm{~cm}$.
Mass of hydrogen atom $=(1.67339 \pm 00031) \times 10^{-24} \mathrm{~g}$.
Density of mercury at $0^{\circ} \mathrm{C}=13.5955 \mathrm{~g} / \mathrm{ml}$.
Density of water at $398^{\circ} \mathrm{C}=1000000 \mathrm{~g} / \mathrm{ml}$
Density, maxımum, of water, at $3.98^{\circ} \mathrm{C}=0.999973 \mathrm{~g} / \mathrm{cm}^{3}$
Density of dry arr at $0^{\circ} \mathrm{C}, 760 \mathrm{~mm}=12929 \mathrm{~g} /$ liter.
Velocity of sound in dry air at $0^{\circ} \mathrm{C}=33136 \mathrm{~m} / \mathrm{s}-10871 \mathrm{ft} / \mathrm{sec}$.
Velocity of light in vacuum $=(2997925 \pm 0.000002) \times 10^{10} \mathrm{~cm} / \mathrm{s}$
Heat of fusion of water $0^{\circ} \mathrm{C}=79.71 \mathrm{cal} / \mathrm{g}$
Heat of vaporization of water $100^{\circ} \mathrm{C}=53955 \mathrm{cal} / \mathrm{g}$.
Electrochemical equivalent of silver $0001118 \mathrm{~g} / \mathrm{sec}$ international amp
Absolute wave length of red cadmium light in air at $15^{\circ} \mathrm{C}, 760 \mathrm{~mm}$ pressure $=64384696 \mathrm{~A}$
Wave length of orange-red line of krypton $86=6057802 \mathrm{~A}$

Synertek Inc.
A Honeywell Subsidiary
3001 Stender Way, MS/30
Santa Clara, CA 95054
Tel: (408) 988-5600
TWX 910-338-0135

## Northwest Regional

 Sales Office150 So. Wolfe Road Sunnyvale, CA 94086
Tel. (408) 735-0221
TWX: 910-339-9500

## Southwest Regional <br> Sales Office

4401 Atlantic Ave ,
Suite 101
Long Beach, CA 90807
Tel (213) 428-8776
TWX 910-341-7705

## Northeast Regional

Sales Office
20 Walnut St
Wellesley, MA 02181
Tel. (617) 431-7630
TWX 710-383-1582

South Central Regional Sales Office 14350 Proton Rd
P.O Box 344569

Dallas, TX 75234
Tel (214) 387-5300
TWX 910-860-5442

## U.S. Sales Representatives

## Alabama

Electronic Marketıng
Associates
500 Wynn Dr
PO Box 5306
Executıve Plaza,
Suite 304A
Huntsville, AL 35805
Tel (205) 837-7363

## Alaska <br> SDR 2

14230 N E 8tr ut
Bellevue, WA 98007
Tel (206) 747-9424
TWX 910-443-2483

## Arkansas

Ion Associates Inc
9726 E 42nd St,
Suite 122
Tulsa, OK 74145
Tel (918) 664-0186, 7, 8
TWX 910-845-3084

## Arizona

MR Engineerıng Sales Co PO Box 15270 3020 N 44th St Phoenıx, AZ 85018
Tel (602) 956-4670
TWX 910-950-1291
California
Brooks Technical Group 883 Stierlin Road Mountaın View, CA 94043
Tel (415) 960-3880 TWX 910-379-5061 Elsco Electronics Inc 11562 Knott Street Suite \#3
Garden Grove, CA 92641
Tel (714) 891-4621
TWX 910-596-2400
Reıder Associates
2660 Bernardo Ave Escondıdo, CA 92025
Tel (619) 741-0496
TWX 910-332-1157

## Colorado

Wescom Marketıng, Inc
7985 Vance Dr, Suite 102
Arvada, CO 80003
Tel (303) 422-7619
Connecticut
Dynasel Associates Inc 22 Green St
Waltham, MA 02154
Tel (617) 890-6777
TWX 710-324-0202
DYNASEL WAL

## Delaware

Conroy Sales
26 W Pennysylvanıa Ave
Baltımore, MD 21204
Tel (301) 296-2444
District of Columbia
Conroy Sales
26 W Pennsylvania Ave
Baltımore, MD 21204
Tel (301) 296-2444

## Florida

Dyne-A-Mark Corp
300 So Duncan Ave
Sulte 283
Clearwater, FL 33615
Tel (813) 441-4702,3 TWX 810-866-0438 DYNEMARK CWTR
Dyne-A-Mark Corp
1001 N W 62nd St
Suite 107
Ft Lauderdale, FL 33309
Tel (305) 771-6501,2,3
Tel (305) 771-6501,2,3
TWX 510-956-9872
DYNEMARK FTL
Dyne-A-Mark Corp
PO Box 33
Maitland, FL 32751
Maitland, FL 32751
Tel (305) 831-2097
Tel (305) 831-2097
TWX 810-853-5039
DYNEMARK ALMS

Florida (Cont)
Dyne-A-Mark Corp
PO Box 339
115 Palm Bay Rd, \#550-9
Palm Bay, FL 32905
Tel (305) 727-0192
TWX 510-959-6000

## Georgia

Electronic Marketıng
Associates
6695 Peach Tree
Industrial Blvd
Atlanta, GA 30360
Tel (404) 448-1215
TWX 810-766-0483

## Hawaii

Brooks Technical Group
8830 Stierlın Rd
Mountain View, CA 94303
Tel (415) 960-3880
TWX 910-379-5061

## Idaho

SDR 2
14230 N E 8th St
Bellevue, WA 98007
Tel (206) 747-9424
TWX 910-443-2483

## Illinols

KMA Sales Company
5105 Tollview Dr
Suite 275
Rolling Meadows, IL 60008
Tel (312) 398-5300
TWX 910-687-0263

## Indiana

Corrao/Marsh
RR2, Box 142
Greenfield, IN 46140
Tel (317) 894-0377

## Iowa

Gassner \& Clark
1834 Blaırs Ferry Rd, NE
Cedar Rapıds, IA 52402
Tel (319) 393-5763
TWX 910-525-2051

## Kansas

C-TRON, Inc
815 Claırborne St ,
Suite 275B
Olathe, Kansas 66062
Tel (913) 829-0073

## Kentucky

Call your nearest Synertek Sales Office

## Louisıana

Ion Associates Inc 1504 109th St
Grand Praırıe, TX 75050
Tel (214) 647-8225
TWX 910-866-4645
Ion Associates Inc
6300 Westpark Dr
Sulte 310
Houston, TX 77057
Tel (713) 977-4354
TWX 910-881-3776
ION ASSOC HOU

## Maıne

Dynasel Associates Inc
22 Green St
Waltham, MA 02154
Tel (617) 890-6777
TWX 710-324-0202
DYNASEL WAL

## Maryland

Conroy Sales
26 W Pennsylvanıa Ave
Baltımore, MD 21204
Tel (301) 296-2444
TLX 87770 BAL

Massachusetts
Dynasel Associates
22 Green St
Waltham, MA 02154
Tel (617) 890-6777
TWX 710-324-0202
DYNASEL WAL

## Michigan

Rathsburg Associates
16621 E Warren Ave
Detroit, MI 48224
Tel (313) 882-1717
TWX 235-229 RAI DET

## Minnesota

TLC Electronics
2499 Rice St
Roseville, MN 55113
Tel (612) 483-2226
TWX 910-333-8543

## Mississippı

Electronic Marketıng
Associates
P O Box 5306
Executive Plaza, Suite 304A
Huntsville, AL 35805
Tel (205) 837-7363
Missouri
C-TRON, Inc
815 Claırborne St ,
Suite 275B
Olathe, Kansas 66062
Tel (913) 829-0073

## Montana

SDR 2
14230 N E 8th St
Bellevue, WA 98007
Tel (206) 747-9424
TWX 910-443-2483

## Nebraska

C-TRON, Inc
815 Claırborne St ,
Suite 275B
Olathe, Kansas 66062
Tel (913) 829-0073

## Nevada

Brooks Technical Group 8830 Stierlin Rd
Mountain View, CA 94303 Tel (415) 960-3880
TWX 910-379-5061

## New Hampshire

Dynasel Associates
22 Green St
Waltham, MA 02154
Tel (617) 890-6777
TWX 710-324-0202 DYNASEL WAL
Dynasel Associates PO Box 313
Salem, N H 03079
Tel (603) 893-1443
TWX 710-324-0202
New Jersey (Northern)
Trionic Associates Inc
320 Northern Blvd
Great Neck, NY 11021
Tel (516) 466-2300
TWX 510-223-0834
New Jersey (Southern)
Sunday O'Brien
15 Potter St
Haddonfield, NJ 08033
Tel (609) 429-4013
(215) 923-5195

TWX 710-896-0679
SUN O'BRIEN

## New Mexico

MR Engıneering Sales Co
PO Box 15270
3020 N 44th St
Phoenix, AZ 85018
Tel (602) 956-4670
TWX 910-950-1291

## New York

Quality Components
116 E Fayette St
Manlius, NY 13104
Tel (315) 682-8885
TWX 710-545-0663

New York (Cont)
Quality Components
3343 Harlem Rd
Buffalo, NY 14225
Tel (716) 837-5430
Trionic Associates Inc 320 Northern Blvd Great Neck, NY 11021
Tel (516) 466-2300
TWX 510-223-0834

## North Carolina

Electronıc Marketıng
Associates
9225 Honeycutt Creek Rd
Raleıgh, NC 27609
Tel (919) 847-8800
TWX (510) 928-0594
Ohio
JN Baıley and Assoc 13071 Old Dayton Rd
New Lebanon, OH 45345
Tel (513) 687-1325
J N Barley \& Associates 28325 Center Ridge Rd Suite C17
Westlake, OH 45145
Tel (216) 892-1513

## Oklahoma

Ion Associates Inc
9726 E 42nd St
Suite 122
Tulsa, OK 74145
Tel (918) 664-0186,7,8
TWX 910-845-3084

Oregon
SDR 2
14230 N E 8th St
Bellevue, WA 98007
Tel (206) 747-9424
TWX 910-443-2483
Pennsylvania (Eastern)
Sunday O'Brien
15 Potter St
Haddonfield, NJ 08033
Tel (609) 429-4013
(215) 923-5195

TWX 710-896-0679 SUN O'BRIEN
Pennsylvania (Western)
J N Bailey and Assoc
13071 Old Dayton Rd New Lebanon, OH 45345 Tel (513) 226-0512

J N Barley and Assoc 5341 Windfall Rd Madına, OH 44256 Tel (216) 723-6808
Dynasel Associates
Florention Roman
P-34 Villa San Anton
Carolina, Puerto Rico 00630
Tel (809) 752-1961
TWX 710-324-0202

## Rhode Island

Dynasel Associates
22 Green St
Waltham, MA 02154
Tel (617) 890-6777
TWX 710-324-0202
DYNASEL WAL

## South Carolina

Electronic Marketıng
Associates
210 W Stone Ave
Greenville, SC 29609
Tel (803) 233-4637, 4638
TWX 810-281-2225

Tennessee
Electronic Marketing
Associates
PO Box 5306
Executive Plaza, Suite 304A
Huntsville, AL 35805
Tel (205) 837-7363

## Texas

Ion Associates inc
3933 Steck Ave
Suite B121A
Austin, TX 78759
Tel (512) 346-7160
TWX 910-874-1355
Ion Associates Inc
1504 109th St
Grand Prairie, TX 75050
Tel (214) 647-8225
TWX 910-866-4645
ION ASSOC DAL
Ion Associates Inc
6300 Westpark Dr
Suite 310
Houston, TX 77057
Tel (713) 977-4354
TWX 910-881-3776
ION ASSOC HOU
Utah
Wescom Marketıng. Inc
1321 S State St, \#201
Salt Lake City, UT 84115
Tel (801) 466-9594

Vermont
Dynasel Associates
22 Green St
Waltham, MA 02154
Tel (617) 890-6777
TWX 710-324-0202
DYNASEL WAL

## Virginia

Conroy Sales
26 W Pennsylvanıa Ave
Baltımore, MD 21204
Tel (301) 296-2444

## Washington

SDR 2
14230 N E 8th St
Bellevue, WA 98007
Tel (206:747-9424
TWX 910-443-2483
Washington D.C.
Conroy Sales
26 W Pennsylvanıa Ave
Baltımore, MD 21204
Tel (301) 296-2444
TLX 87770 BAL

## West Virginia

J N Barley and Assoc
13071 Old Dayton Rd
New Lebanon, OH 45345
Tel (513) 226-0512
J N Bailey and Assoc
5341 Windfall Rd
Madına, OH 44256
Tel (216) 723-6808

## Wisconsin

KMA Sales Company
2360 N 124th St
Milwaukee, WI 53226
Tel (414) 259-1771
TWX 910-262-3315

## Wyoming

Wescom Marketıng, Inc
7985 Vance Dr.
Suite 102
Arvada, CO 80003
Tel (303) 422-7619

## Canadian Sales Representatives

Byte Wide Marketing<br>5020 Fairway Ave., Suite 226<br>Lachine, Quebec<br>Canada H8T 1B8

Tel: (514) 636-4121
TLX: 05-82270

## Byte Wide Marketing

151 Carlingview Dr., Unit 5
Rexdale, Ontario
Canada M5W 5S4
Tel: (416) 675-1868
TLX: 21556206

## U.S. Distributors

Alabama
Milgray Electronics 17 Dunwoody Park
Suite 102
Atlanta, GA 30338
Tel (404) 393-9666

## Arizona

Anthem Electronic, Inc
1707-1 Weber Dr
Tempe, AZ 85281
Tel (602) 244-0900 (602) 968-3888

TWX 910-950-0110
Bell Industries
1705 W 4th St
Tempe, AZ 85281
Tel (602) 966-7800
TWX 910-950-0133

Arizona (Cont)
Kierulff Electronics
4134 East Wood St
Phoenix, AZ 85040
Tel (602) 437-0740
TWX 910-951-1550
Kıerulff Electronıcs
1806 W Grant Rd, Suite 102
Tucson, AZ 85703
Tel (602) 624-9986
TWX 910-952-1119
Kıerulff Electronıcs
5580 S Nogales Hwy
Bldg 845
Tucson, AZ 85734
Tel (602) 573-3507
TWX 910-952-1213

Arizona Cont
Western Microtechnology
7740 E Redfield Dr
Suite 105
Scottsdale, AZ 85260
Tel (602) 948-4240
TWX 910-950-1188

## Arkansas

Carlton Bates
PO Box 9649
3600 W 69th St
Little Rock, AR 72209
Tel (501) 562-9100
California (Northern)
Anthem Electronics Inc
174 Component Dr
San Jose, CA 95131
Tel (408) 946-8000
TWX 910-338-2038

California (Northern) Cont
Kıerulff Electronıcs
3969 E Bayshore Rd
Palo Alto, CA 94303
Tel (415) 968-6292
TWX 910-379-6430
Western Microtechnology
10040 Bubb Rd
Cupertıno, CA 95014
Tel (408) 725-1660
TWX 910-338-0013

California (Southern)
Anthem Electronics
20640 Bahama St
Chatsworth, CA 91311
Tel (818) 700-1000
TWX 910-493-2083
Anthem Electronics Inc 4125 Sorrento Valley Blvd Suite A
San Diego, CA 92121
Tel (619) 279-5200
TWX 910-335-1515
Anthem Electronics Inc
2661 Dow Ave
Tustın, CA 92680
Tel (714) 730-8000
TWX 910-595-1583

California (Southern) (Cont)
IEC
20600 Plummer St
Chatsworth, CA 92122
Tel (818) 998-2200
TWX 910-494-4828
IEC
17062 Murphy Ave
Irvine, CA 92714
Tel (714)660-1055
TWX 910-595-2895
Kıerulff Electronics 2585 Commerce Way Los Angeles, CA 90008
Tel (213) 725-0325
TWX 910-580-3106
Kıerulff Electronics
21053 Devonshire St
Chatsworth, CA 91311
Tel (818) 341-2211
TWX 910-580-3106
Kıerulff Electronics
8797 Balboa Ave
San Diego, CA 92123
Tel (619) 278-2112
TWX 910-335-1182
Kierulff Electronics, Inc
14101 Franklin Ave
Tustın, CA 92680
Tel (714) 731-5711
TWX 910-595-2599
Zeus Electronics
1130 Hawk Circle
Anaherm, CA 92807
Tel (714)632-6880

## Colorado

Anthem Electronics
8200 S Akron St
Englewood, CO 80112
Tel (303) 790-4500
TWX 910-935-0113
Industrial Electronics Inc 8755 E Orchard Rd, \#605 Englewood, CO 80111 Tel (303) 694-9444
Kıerulff Electronics
7060 S Tucson Way
Englewood, CO 80112
Tel (303) 790-4444
TWX 910-932-0169

## Connecticut

Kıerulff Electronics
169 No Plaıns Industrial Rd Wallingford, CT 06492
Tel (203) 265-1115
TWX 710-476-0450
Milgray Electronics 378 Boston Post Rd
Orange, CT 06477
Tel (203) 795-0711

## Delaware

Kıerulff Electronics
825 D Hammond Ferry Rd Linthicum, MD
Tel (301) 636-5800
TWX (710) 234-1971
Milgray Electronics
11820 Parklawn Dr
Rockville, MD 20852
Tel (302) 468-6400
Zebra Electronics
2400 York Rd
Suite 100
Timonium, MD 21093
Tel (301) 252-6576
TWX 710-232-9353

## District of Columbia

Kıerulff Electronics
825 D Hammond Ferry Rd
Linthicum, MD
Tel (301) 636-5800
TWX (710) 234-1971
Milgray Electronics
11820 Parklawn Dr Rockville, MD 20852
Tel (301) 468-6400
Zebra Electronics
2400 York Rd
Suite 100
Timonıum, MD 21093
Tel (301) 252-6576
TWX 710-232-9353

Forida
Kıerulff Electronics
4850 N State Rd 7
Sulte E
Ft Lauderdale, FL 33319
Tel (305) 486-4004
TWX 510-955-9801
Kıerulff Electronics
3247 Tech Dr
St Petersburg, FL 33702
Tel (813) 576-1966
TWX 810-863-5625
Milgray Electronics
1850 Lee Road \#104
Winter Park, FL 32789
Tel (305) 647-5747
TWX 810-863-5625

## Georgia

Kıerulff Electronics
5824 E Peachtree Corners E
Norcross, GA 30092
Tel (404) 447-5252
TWX 810-766-4527
Milgray Electronics
17 Dunwoody Park
Sulte 102
Atlanta, GA 30338
Tel (404) 393-9666

## Hawalı

Anthem Electronics
5020 148th Ave NE
Sulte 103
Redmond, WA 98052
Tel (206) 881-0850
TWX 910-997-0118
IEC
1750 124th Ave, NE
Bellevue, WA 98005
Tel (206) 455-2727
(800) 426-7999

TWX 910-443-3018
Kıerulff Electronics
1005 Andover Park E
Tukwila, WA 98188
Tel (206) 575-4420
Western Microtechnology
1778 N E 95th St
Redmond. WA 98052
Tel (206) 881-6737
TWX 910-935-0113

## Idaho

Anthem Electronics
5020 148th Ave, N E,
Sulte 103
Redmond, WA 98052
Tel (206) 881-0850
TWX 910-997-0188
EC
1750 124th Ave, N E
Bellevue, WA 98005
Tel (206) 455-2727
(800) 426-7999

TWX 910-443-3018
Kierulff Electronics
1005 Andover Park E
Tukwila, WA 98188
Tel (206) 575-4420
Western Microtechnology
1778 N E 95th St
Redmond, WA 98052
Tel (206) 881-6737

## Illinois

GBL Goold Electronics
610 Bonnie Ln
Elk Grove Vill, IL 60007
Tel (312) 593-3220
Kıerulff Electronics
1536 Landmeier Rd
Elk Grove Vill, IL 60007
Tel (312) 640-0200
TWX 910-222-0351
Pioneer
1551 Carmen Dr
Elk Grove Vill IL 60007
Tel (312) 437-9680
TWX 910-222-1834

## Indiana

Advent Electronics
8446 Molter Rd
Indianapolis, IN 46268
Tel (317) 872-4910
TWX 810-341-3228

Indiana (Cont)

## Pioneer

8408 Castle Place Dr
Indianapolis, IN 46250
Tel (317) 849-7300
TWX 810-260-1794

## lowa

Advent
Cedar Rapids, IA 52404
Tel (319) 363-0221
TWX 910-525-1337
Kierulff Electronics
7667 Cahill Rd
Edina, MN 55435
Tel (612) 941-7500
TWX 910-576-2721

## Kansas

Milgray Electronics
6901 W 63rd St
Suite 214
Overland Park, KS 66202
Tel (913) 236-8800

## Kentucky

Advent Electronics
8446 Moller Rd
Indianapolis, IN 46268
Tel (317) 872-4910
TWX 810-341-3228

## Loulsiana

Carlton Bates
3600 W 69th St
Little Rock, AR 72209
Tel (501) 562-9100
Kıerulff Electronics
10415 Landsbury Dr.
Suite 210
Houston, TX 77099
Tel (713) 530-7030
TWX 910-880-4057
Pioneer
5853 Point West Dr
Houston, TX 77036
Tel (713) 988-5555
TWX 910-881-1606

## Maıne

Gerber Electronics
128 Carnegie Rd
Norwood, MA 02062
Tel (617) 769-6000
TWX 710-394-0634
Kıerulff Electronics 13 Fortune Dr Billerica. MA 01865
Tel (617) 667-8331
TWX 710-390-1449
Lionex Corp
1 North Ave
Burlington, MA 01803
Tel (617) 272-9400
TWX 710-332-1387
Milgray Electronics
79 Terrace Hall Ave
Burington, MA 01803
Tel (617) 272-6800
Zeus Electronics
25 Adams St
Burlington, MA 01803
Tel (617) 273-0750

## Maryland

Kierulff Electronics
825 D Hammond Ferry Rd Linthicum, MD
Tel (301) 636-5800
TWX 710-234-1971
Milgray Electronics
11820 Parklawn Dr
Rockville, MD 20852
Tel (301) 468-6400
Zebra Electronics
2400 York Rd
Suite 100
Timonium, MD 21093
Tel (301) 252-6576
TWX 710-232-9353
Massachusetts
Gerber Electronics
128 Carnegre Row Norwood, MA 02062
Tel (617) 769-6000
TWX 710-394-0634

Massachusetts (Cont)
Kierulff Electronics
13 Fortune Dr
Billerica, MA 01865
Tel (617) 667-8331
TWX 710-390-1449
Lionex Corp
1 North Ave
Burlington, MA 01803
Tel (617) 272-9400
TWX 710-332-1387
MıIgray Electronics
79 Terrace Hall Ave
Burlington, MA 01803
Tel (617) 272-6800
Zeus Electronics
378 Adams St
Burlington, MA 01803
Tel (617) 273-0750

## Michigan

RS Electronics
34443 Schoolcraft
Livonia, MI 48150
Tel (313) 525-1155
TWX 810-242-2996
Pioneer
13485 Stamford
Livonia, MI 48150
Tel (313) 525-1800
TWX 810-242-3271
Ann Arbor (313) 525-1800

## Minnesota

Kierulff Electronics
7667 Cahill Rd
Edina, MN 55435
Tel (612) 941-7500
TWX 910-576-2721
Pioneer
10203 Bren Rd E
Minnetonka, MN 55343
Tel (612) 935-5444
TWX 910-422-2210

## Mississippi

Milgray Electronics
17 Dunwoody Park
Sulte 102
Atlanta, GA 30338
Tel (404) 393-9666

## Missouri

Kierulff Electronics, Inc 2608 Metro Park Blvd
Maryland Heights, MO 63043
Tel (314) 739-0855
TWX 910-762-0721

## Montana

Anthem Electronics
5020 148th Ave, N E,
Suite 103
Redmond, WA 98052
Tel (206) 881-0850
TWX 910-997-0118
Kierulff Electronics
10053 Andover Park E
Tukwila, WA 98188
Tel (206) 575-4420
TWX 910-444-2034
Western Microtechnology
14778 N E 95th St
Redmond, WA 98052
Tel (206) 881-6737
TWX 910-935-0113

## Nebraska

Milgray Electronics
6901 W 63rd St ,
Suite 214
Overland Park, KS 66202
Tel (913) 236-8800

## Nevada

Anthem Electronics
174 Component Dr
San Jose, CA 95131
Tel (408) 946-8000
TWX 910-338-2038
Kierulff Electronics
3969 E Bayshore Rd
Palo Alto, CA 94303
Tel (415) 968-6292
TWX 910-379-6430
Western Microtechnology
10040 Bubb Rd
Cupertino, CA 95014
Tel (408) 725-1660
TWX 910-338-0013

North Carolina
Kıerulff Electronıcs, Inc
5249 N Blvd
Raleıgh, NC 27604
Tel (919) 872-8410

## North Dakota

Kıerulff Electronics
7667 Cahill Rd
Edına, MN 55435
Tel (612) 941-7500
TWX 910-576-2721

## Ohio

Kierulff Electronics, Inc
23060 Miles Rd
Cleveland, OH 44128
Tel (216) 587-6558
TWX 810-427-2282
Milgray Electronics
6155 Rockside Rd
Cleveland, OH 44131
Tel (216) 447-1520
Pioneer
4433 Interpoint Blvd
Dayton, OH 45404
Tel (513) 236-9900
TWX 810-459-1622
Pioneer
4800 E 131st St
Cleveland, OH 44105
Tel (216) 587-3600
TWX 810-422-2211

## Oklahoma

Kierulff Electronics, Inc
Metro Park
12318 East 60th St
Tulsa, OK 74145
Tel (918) 252-7537
TWX 910-845-2150

## Oregon

Anthem Electronics 15812 S W Upper Boones Ferry Rd
Lake Oswego, OR 97030
Tel (503) 684-2661
IEC
1750 124th Ave, N E
Bellevue, WA 98005
Tel (206) 455-2727
(800) 426-7999

TWX 910-443-3018
Kierulff Electronics
10053 Andover Park E
Tukwila, WA 98188
Tel (206) 575-4420
TWX 910-444-2034
Western Microtechnology
14778 N E 95th St
Redmond, WA 98052
Tel (206) 881-6737
TWX 910-935-0113

Pennsylvania (Eastern) General Radıo \& Supply 600 Penn St
Camden, NJ 08102
Tel (609) 964-8560
TWX 710-891-1356
Milgray Electronics 3002 Greentree Executive Campus
Marlton, NJ 08053
Tel (609) 983-5010
Zebra Electronics*
1465 Rose Lawn Dr Bethlehem, PA 18017 Tel (215) 868-0685

Pennsylvanıa (Western)
Kierulff Electronics, Inc
23060 Miles Rd
Cleveland, OH 44128
Tel (216) 587-6558
TWX 810-427-2282
Milgray Electronics
6155 Rockside Rd
Cleveland, OH 44131
Tel (216) 447-1520
Pioneer
259 Kappa Dr
Pittsburgh, PA 15238
Tel (412) 782-2300
TWX 710-795-3122
Zebra Electronics
11 Kent PI
Pompton Plaıns, NJ 07444
Tel (201) 839-9040

## Rhode Island

Gerber Electionics
128 Carnegie Rd
Norwood, MA 02062
Tel (617) 769-6000
TWX 710-394-0634
Kıerulff Electronics
13 Fortune Dr
Billerica, MA 01865
Tel (617) 667-8331
TWX 710-390-1449
Kıerulff Electronics
165 No Plains Industrial Rd Wallingford, CT 06492
Tel (203) 265-1115
TWX 710-476-0450
Lionex Corp
1 North Ave
Burlington, MA 01803
Tel (617) 272-9400
TWX 710-332-1387
Milgray Electronics
79 Terrace Hall Ave
Burlington, MA 01803
Tel (617) 272-6800

Rhode Island (Cont) Zeus Electronics
25 Adams St
Burlington, MA 01803
Tel (617) 273-0750

## South Carolina

Kierulff Electronics
1800 E Fairfax Rd
Greensboro, NC 27407
Tel (919) 852-9440
TWX 510-922-7384

## South Dakota

Kierulff Electronics
7667 Cahill Rd
Edına, MN 55435
Tel (612) 941-7500
TWX 910-576-2721

## Texas

Kierulff Electronics
3007 Longhorn Blvd
Suite 105
Austın, TX 78758
Tel (512) 835-2090
TWX 910-874-1359
Kıerulff Electronics
9610 Skillman Ave
Dallas, TX 75243
Tel (214) 343-2400
TWX 910-861-9149
Kierulff Electronics 10415 Landsbury Dr Suite 210
Houston, TX 77099
Tel (713) 530-7030
TWX 910-880-4057
Pioneer
5853 Point West Dr
Houston, TX 77036
Tel (713) 988-5555
TWX 910-881-1606
Pioneer
9901 Burnett Rd
Austın, TX 78758
Tel (512) 835-4000
TWX 910-874-1323
Pioneer
13710 Omega Rd
Dallas, TX 75240
Tel (214) 386-7300
TWX 910-860-5563
Zeus Electronics
14001 Goldmark
Suite 250
Dallas, TX 75240
Tel (214) 783-7010

## Texas (West)

Bell Industries
11728 Linn Ave, NE
Albuquerque, NM 87123
Tel (505) 292-2700
TWX 910-989-0625

## Utah

Kierulff Electronics
2121 S 3600 West
Salt Lake City, UT 84119
Tel (801) 973-6913
TWX 910-925-4072

## Vermont

Gerber Electronics
128 Carnegie Rd
Norwood, MA 02062
Tel (617) 769-6000
TWX 710-394-0634
Kierulff Electronics 13 Fortune Dr
Billerica, MA 01865
Tel (617) 667-8331
TWX 710-390-1449
Lionex Corp
1 North Ave
Burlington MA 01803
Tel (617) 272-9400
TWX 710-332-1387
Milgray Electronics
79 Terrace Hall Ave
Burlington, MA 01803
Tel (617) 272-6800
Zeus Electronics
25 Adaıns St
Burlington, MA 01803
Tel (617) 273-0750

## Virgınıa

Kıerulff Electronics
825 D Hammond Ferry Rd
Linthicum, MD
Tel (301) 636-5800
TWX (710) 234-1971
Mılgray Electronics
11820 Parklawn Dr
Rockville, MD 20852
Tel (301) 468-6400
Zebra Electronics
2400 York Rd
Sulte 100
Timonium, MD 21093
Tel (301) 252-6576
TWX 710-232-9353

## Washington

Anthem Electronics
5020 148th Ave N E,
Suite 103
Redmend, WA 98052
Tel (206) 881-0850
TWX 910-997-0118
IEC
1750 124th Ave NE
Bellevue, WA 98005
Tel (206) 455-2727
(800) 426-7999

TWX (910) 443-3018
Kierulff Electronics, Inc
10053 Andover Park E
Tukwila, WA 98188
Tel (206) 575-4420
TWX 910-444-2034

Washington (Cont) Western Microtechnology 14778 N E 95th St Redmond, WA 98052
Tel (206) 881-6737
TWX 910-935-0113
Washington D.C.
Kierulff Electronics
825 D Hammond Ferry Rd
Linthicum, MD
Tel (301) 636-5800
TWX 710-234-1971
Milgray Electronics
11820 Parklawn Dr
Rockville, MD 20852
Tel (301) 468-6400
Zebra Electronics
2400 York Rd
Suite 100
Timonium, MD 21093
Tel (301) 252-6576
TWX 710-232-9353
West Virgınıa
Kıerulff Electronics, Inc
23060 Miles Rd
Cleveland, OH 44128
Tel (216) 587-6558
TWX 810-427-2282
Milgray Electronics
6155 Rockside Rd
Cleveland, OH 44131
Tel (216) 447-1520

## Wisconsin

Kierulff Electronics, Inc
2236G West Bluemound Rd
Waukesha, WI 53186
Tel (414) 784-8160
TWX 910-265-3653
Taylor Electric Co
PO Drawer 11N
Milwaukee, WI 53201
Tel (414) 241-4321
TWX 910-262-3414

## Wyoming

Anthem Electronics
8200 S Akron St
Englewood, CO 80112
Tel (303) 790-4500
TWX 910-935-0113
Industrial Electronics, Inc
8755 E Orchard Rd \#605
Englewood, CO 80111
Tel (303) 694-9444
Kıerulff Electronics
7060 S Tucson Way
Englewood, CO 80112
Tel (303) 790-4444
TWX 910-932-0169

## Canadian Distributors

Future Electronics
237 Hymus Blvd
Poınte Claıre, Montreal
Quebec
Canada H9R 5C7
Tel (514) 694-7710
TWX 610-421-325

Future Electronics 4800 Dufferın St Downsview, Ontario Downsview, Ontar
Canada M3H 5S9 Canada M3H 5S9
Tel (416) 663-5563 TWX 610-491-1470

Future Electronics
Baxter Centre
1050 Baxter Rd
Ottawa, Ontarıo
Canada K2C 3P2
Tel (613) 820-9471
TWX 610-421-3251

## International Sales Offices

Northern European<br>Zone Manager<br>Honeywell House<br>Charles Square<br>Bracknell, Berkshıre, U K<br>Rg 121 EB<br>Tel [03| (44) 424555<br>or 422258

Central European
Zone Manager
Freischuetzstrasse 92
D-8000 Muenchen 81
West Germany
Tel |49| (089) 9597-100
TWX (841)5216884

Southern European
Zone Manager
Rue Emile Verhaeren 6
92210 St Cloud
France
Tel |33| (01) 7711071
TWX (842) 200841

## European Design Center

Freischuetzstrasse 92
D-8000 Muenchen 81
West Germany
Tel |49| (089) 9597130
TWX (841)5216884

To dıal telephone numbers listed below,
Dial 011 (Internatıonal Access Code $)+\mid$ Country Code $\mid+($ City Code $)+$ Local Number

## Australia

Ampec Engıneerıng Co
114 Terry St
Rozelle, N S W 2039
Australia
Tel |61|(02) 818-1166
TLX (790) 27136
Honeywell Pty Ltd
Garden Grove Centre
Garden Grove Parade
Adamstown, N S W 2289
Tel (049) 524411
TWX AA 28338
Honeywell Pty Ltd
Units 8/9 Townsville St
Fyshwick, Australia
Tel (062) 80502
TWX AA 61583
Honeywell Pty Ltd
62 Hopkıns St
Moonah, Tasmanıa
Tel (002) 280087
Honeywell Pty Ltd
150-151 Greenhill Rd
Parkside, S A 5063
Tel (08) 271-5022
TWX AA 89553
Honeywell Pty Ltd 27 Church St
Richmond, Victoria
Tel (03) 4291933
TWX AA 31805
Honeywell Pty Ltd
389 Stanley St
South Brisbane
Tel (07) 246-1255
TWX AA 42630
Honeywell Pty Ltd Industrial Services Branch PO Box 102
Tamworth, N S W
Tel (067) 673172
Honeywell Pty Ltd
1 Thorgood St
Victoria Park, W A
Tel (09) 3621577
TWX AA 93063
Honeywell Pty Ltd
276 Cowper St
Warrawong, Australia
Tel (042) 740657
Honeywell Pty Ltd
Lot 1217 Winnellie Rd
Winnell, N T
Tel (089) 844492

Australia (cont)
Royel Micro Systems Pty Ltd
27 Normanby Rd
Nottıng Hill, 3149
Australıa
Tel $61 \mid$ (03) 543-5122
TWX 790-32673
VSI Elec (Austr) Pty Ltd
21 Chandos St
PO Box 578
Crows Nest. N S W 2065
Australia
Tel |61|(02) 439-4655
TLX (790) 22846
Energy Contro
P O Box 6502
Goodna, 4200 Australıa
Tel (07) 288-2757

## Austria

Bacher Elek Gerate GmbH
Rotenmuhlgasse 26
1120 Wien
Austria
Tel |43| (222) 835646
TWX (47) 131532
Ing Ernst Steıner
Hummelgasse 14
A-1130 Vienna
Austria
Tel |43| (222) 82-74-74
TWX 847-135026

## Belgium

Microtron
Tremelobaan 131
2850 Keerbergen
Belgium
Tel (32) 016-60-05-86
TLX (846) 22606

## Denmark

C-88
Kokkedal Industrial Park 42A
DK-2980 Kokkeda
Denmark
Tel |45| (02) 244-888
TLX 855-41198 CEIGTY DK

## England

Macro Marketing
Burnham Lane
Slough, Berkshire
England
Tel Burnham |44| (6) 936-4422
TWX (851) 847945
Pronto Elec Sys Ltd 466-478 Cranbrook Rd Gants Hill, IIford Essex
1G2 6LE England
Tel |44| (01) 5546222
TWX (851) 8954213

England (Cont)
Thame Components Ltd
Unit E, Bandet Way
Thame Park Industrial Estate
Thame, Oxon
England, OX9 3XD
Tel | $44 \mid$ ( 84 ) 421-3146
TLX (851) 837917
Finland
Saehkoelıkkeıden OY
Saehkoemetsae
SF-01300 VANTAA 30
Finland
Tel (358) 083-82201
TWX 12-4431

## France

Datadis
10-12, Rue Emile Landrin
92100 Boulogne, France
Tel |33| (1) 605-6000
TWX 201905

## Germany

Astek GmbH
Carl-Zeiss-Strasse 3
D2085 Quickborn, W Germany
Tel |04| (106) 71084
TLX 0214082
Ditronic GmbH
1M Asenwald 48
7000 Stuttgart 70
W Germany
Tel |49| (711) 722079
TWX 7255638
Electronic-2000 GmbH
Hirschlanderstrasse 2
7257 Ditzıngen
West Germany
Tel |49| (7156) 7083
TWX 841-7245265
Electronic-2000 GmbH
Werftener Dorfstrasse 27
4000 Duesseldorf
West Germany
Tel |49| (211) 767141
TWX 841-8586810
Electronic 2000 GmbH
Langer Weg 18
6000 Frankfurt 90
W Germany
Tel |49| (611) 784028
TWX (841) 89486
Electronic-2000 GmbH
Mersenweg 10
3012 Hanover-Langenhagen 7
West Germany
Tel |49| (511) 789878
TWX 841-923430
Electronic-2000 GmbH
D-8000 Munchen 80
Neumarkter Str 75
Munchen
West Germany
Tel |49| (89) 434061
TLX 841 ) 522561

Germany (Cont )
Electronic-2000 GmbH
Vestner Torgraben 3
8500 Nuernberg
West Germany
Tel 149| (911) 36739
TWX 841-626495
Hilmar Frehsdorf GmbH
ECS Elec Comp Serv
Carl-Zelss-Strasse 3
2085 Quickborn
Hamburg, West Germany
Tel |49| (40) 710 58/59
TWX (841) 213693
Hilmar Frehsdorf GmbH
Schlueterstrasse 39
1000 W Berlin 12
W Germany
Tel |49| (30) 8839040
TWX 185418

## Hong Kong

Conmos Products
Hay Mien Bidg, 11th Floor
Kwun Tong, Kowloon,
Hong Kong
Tel |852| (3) 420103
TLX (780) 85448

## Ireland

Neltronics Ltd
John F Kennedy Rd
NAAS Road
Dublin 12, Ireland
Tel (01) 501845
TLX 852-4837

## israel

Aviv Electronics Ltd
Kehilet Venezia
Street 12
69010 Tel-Aviv
Israel
Tel |972| (3) 494450
TWX 922-33572

## Italy

Comprel S R L
60025 Loreto
Via Dante Alıghierı, 26/b
Ancona, Italy
Tel (071) 977693
TLX 332484 COMPRL
Comprel S R L
40137 Bologna
Piazza Azzarıta, 6
Bologna, Italy
Tel (051) 551306
TLX 332484 COMPRL
Comprel S R L
50127 Firenze
Vıa T Mabellını, 4
Firenze, Italy
Tel (055) 412018
Tel (055) 412018
TLX 332484 COMPRL

Italy (Cont )
Comprel S R L
160043 Chıavarı
Via S Chiara, 22
Genova, Italy
Tel |01| (85) 301100
TLX 332484 COMPRL
Comprel S R L
20092 Cinisell Balsamo
Milano, Italy
Tel |39| (02) 6120641,2,3,4,5
TLX (843) 332484
Comprel S R L
00173 Roma Via
U Comandını, 49
Roma, Italy
Tel |06| (61) 33060
TLX 332484 COMPRL
Comprel SRL
10144 Torino
Via G Fagnano, 10
Torıno, Italy
Tel (011) 489655
TLX 332484 COMPRL
Comprel S R L
36100 Vicenza
Via V Veneo, 3
Vicenza, Italy
Vicenza,
Tel 104 (44)
26912
TLX 332484 COMPRL

## Japan

Synerdyne, Inc
Ishıbashı BIdg
1-20-2 Dogenzaka
Shibuya-Ku
Tokyo 150, Japan
Tel |81| (03) 461-9311
TLX (781) J32457
Tomen Electronics Corp
1-1 Uchısawaı-Cho
2 Chome, Chiyoda-Ku
Tokyo 100, Japan
Tel |86| (03) 506-3474
TLX (781) J23548 TMELC

## Korea

Yeonil \& Co Ltd
\#498-5, Dapsıprı-Dong
Dongdaemoon-Ku, Seoul
Tel 244-7492,-7493
TWX K24123 SEOUL
Latin America, Mexico
Intectra
2629 Terminal Blvd
Mountaın View. CA 94043
USA
Tel (415) 967-8818
TLX 345545 INTECTRA MNTV

## Synertek.

Luxembourg
Microtron
Microtron
Tremelobaan 131
2850 Keerbergen
Belgium
Tel. | $32 \mid$ (01) 6600586
TWX (846) 22606

## Netherlands

Alcom Electronics Lapella
Hollandsche Diep 57
2904 EP Capelle A D
Holland
Tel (010) 519533
TLX. 84426161
New Zealand
ECS
Div. of Aırspares Ltd

PO Box 1048
Palmerston North
New Zealand
Tel |64| (63) 77-407
TLX (791) 3766
Honeywell Control
Systems Ltd
PO Box 2196
8 Monohan Rd
Auckland 6
New Zealand
Tel 575-479
TWX NZ2487

New Zealand (Cont)	Portugal	Spain		
Professional Electronics, Ltd.	Semiconductores S A	Semiconductores S A		
22 Milford Rd	Clara Del Rey 39	General Mitre, 240		
Milford, Auckland 9	Oficina 128	Barcelona 6		
New Zealand	Madrid 2, Spain	Spaın		
Tel. 493-029	Tel \|34	(1) 4164071	$\mathrm{Tel}\|34\|$ (3) 217-23-40	
TWX 791-21084	TWX 47441	TWX (831) 97787 SMCD E		
Southmark Electronics Ltd.	Singapore	Semiconductores S A		
100 Anzac Ave	Desner Ele	Clara Del Rey 39		
Auckland 1	190 Middle Road	Oficina 128		
P.O Box 3407	16-07 Fortune Centre	Madrid 2 Spain		
Auckland, New Zealand	Singapore 0718	Tel [34] (1) 416-4071		
Tel [64\| (9) 798-005, 798-078	Tel 337-3188			
TLX (791) 2838 BUREAUX	TWX RS 39191DTD	$\begin{aligned} & \text { Sweden } \\ & \text { SATTCO AB } \end{aligned}$		
VSI Elec Austr Pty Ltd	South Africa	Dalvaegen 10		
21 Chandos St	Radıokom (PTY) Ltd	S-171 36 Solna		
PO Box 578	P O Box 56310	Sweden		
Crows Nest, NSW 2065	Johannesburg	TLX 854-11588		
Australıa	South Africa			
	Tel [27] (11) 789-1400	Switzerland		
Norway   Elektronix A/S	TWX 960-424822	Datacomp AG		
O Box 4329, Torshov		Zucherstrasse 20		
Sandakervn 72		CH-8952 Zurich-Schlieren		
Oslo 4, Norway		Switzerland		
Tel \|47	(2) 229850		Tel \|41	(01) 730-21-69
TWX 72738		TWX 53533 DACO		

Switzerland (Cont)
Stolz AG
Taefernstrasse 15 CH-5404 Baden-Daettwil
Switzerland
Tel |41| (056) 84-01-51
TWX 845-54070
Stolz AG
Ave Louis Casai 81
2116 Geneve
Switzerland
Tel |41| (2) 2987877
TLX 854-54070

## Taiwan

General Industries
PO Box 1076
Taıpeı, Taıwan, R O C
Tel |86| (02) 7645126-9
President Enterprises
SF, 66-1 Chung Chıng $S$ Road
Sec 1,
Taıpeı, Taıwan 100, R O C

Notes

## Synertek.

## COPYRIGHT 1984 BY SYNERTEK

All rights reserved No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photo copying, recording, or otherwise, without the prior written permission of Synertek

The information contained herein is subject to change without notice Synertek assumes no responsibility for the use of any circuitry other than circuitry embodied in a Synertek product

No other circuit patent licenses are implied


[^0]:    *Avaılable 4Q'84

[^1]:    *Not applicable
    $\dagger$ Both ports standby/one port standby.

[^2]:    Match = Addresses on left and right ports are identical

[^3]:    *Not applicable
    $\dagger$ Both ports standby/one port standby

[^4]:    *CHIP SELECTS (CS) ARE PROGRAMMABLE LOW ACTIVE, HIGH ACTIVE OR DON'T CARE

[^5]:    *CHIP SELECTS CS ARE PROGRAMMABLE LOW ACTIVE, HIGH ACTIVE OR DON'T CARE

[^6]:    *Not applicable

[^7]:    *CHIP SELECTS (CS) ARE PROGRAMMABLE LOW ACTIVE, HIGH ACTIVE, OR don't care

[^8]:    *CHIP SELECTS (CS) ARE PROGRAMMABLE LOW ACTIVE, HIGH ACTIVE, OR DON'T CARE

[^9]:    "For " $A$ " version leave blank

[^10]:    (See following'page for notes)

[^11]:    Copyright 1979 by Zilog, Inc All rights reserved No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of Zilog Reproduced by permission

[^12]:    *Z8 is a trademark of Zilog Inc

[^13]:    - 2 byte instruction, fetch cycle appears as a 3 byte instruction

