

Synertek.

Table of Contents

Index.

Custom/Logic. 1

Military. 4

QualityAssurance
 6

Contents

Page
Chapter 1. Custom Logic 1-1
SY7110/SY7111, 300 PBS FSK Modem 1-9
SY7100, DTMF Receiver 1-17
Chapter 2. Memories 2-1
RAM Selector Guide 2-2
ROM Selector Guide 2-3
EEPROM Selector Guide 2-3
RAM Cross Reference Guide 2-4
ROM Cross Reference Guide 2-5
Random Access Memory (RAM) 2-7
SY2101, 256×4-Bit Static RAM 2-9
SY2111, 256×4-Bit Static RAM 2-14
SY2112, 256×4-Bit Static RAM 2-19
SY2114A, 1024×4-Bit Static RAM 2-25
SY2128, 2048×8-Bit Static RAM 2-29
SY2129, 2048×8-Bit Static RAM 2-33
SY2147H, 4096×1-Bit Static RAM 2-37
SY2148H, 1024×4-Bit Static RAM 2-41
SY2149H, 1024×4-Bit Static RAM 2-45
SY2158, 1024×8-Bit Static RAM 2-49
SY2159, 1024×8-Bit Static RAM 2-53
SY2167, $16,384 \times 1$-Bit Static RAM 2-57
SY2168, 4096×4-Bit Static RAM 2-61
SY2169, 4096×4-Bit Static RAM 2-65
SY21D1, 1024×8-Bit Dual Port RAM 2-69
Read Only Memory (ROM) 2-71
SY2316B, 2048×8-Bit ROM 2-73
SY2332/3, 4096×8-Bit ROM 2-76
SY2364/A, 8192×8-Bit ROM 2-79
SY2365/A, 8192×8-Bit ROM 2-82
SY23128/A, $16,384 \times 8$-Bit ROM 2-85
SY23256/A, $32,768 \times 8$-Bit ROM 2-88
SY3308, 1024×8-Bit ROM 2-91
SY3316/A, 2048×8-Bit ROM 2-96
SY3308R, 1024×8-Bit ROM 2-97
SY3316R, 2048×8-Bit ROM 2-101
SY6364, 8192×8-Bit ROM 2-105
SY6365, 8192×8-Bit ROM 2-105
Programming Instructions 2-106
Electrically Erasable PROM (EEPROM) 2-109
SY2801A, 64×4-Bit EEPROM 2-111
SY2802E, 256×8-Bit EEPROM 2-115
Chapter 3. Microprocessors 3-1
Microprocessors and Peripherals
SY1791-02/SY1793-02, Floppy Disk Controller 3-5
SY2661, Enhanced Programmable Communications Interface 3-21
SY6500, 8-Bit Microprocessor Family 3-35
SYE6500/A, 8-Bit Microprocessor Family 3-48

Contents(Contd.)

Page
SY6520/A; SY6820/SY68B20, Peripheral Interface Adapter 3-50
SYE6520/A; SYE6820/SYE68B20, Peripheral Interface Adapter 3-62
SY6521/A; SY6821/SY68B21, Peripheral Interface Adapter 3-64
SYE6521/A; SYE6821/SY68B21, Peripheral Interface Adapter 3-76
SY6522/A, Versatile Interface Adapter 3-79
SYE6522/A, Versatile Interface Adapter 3-99
SY6530, Memory, I/O, Timer Array 3-101
SY6532, RAM, I/O, Timer Array 3-112
SYE6532/A, RAM, I/O, Timer Array 3-120
SY6545-1, CRT Controller 3-122
SY6845R, CRT Controller 3-136
SY6545R, CRT Controller 3-148
SY6545E, CRT Controller 3-160
CRTC Register Comparison 3-176
SY6551, Asynchronous Communication Interface Adapter 3-177
SYE6551/A, Asynchronous Communication Interface Adapter 3-185
SY6591/A, Floppy Disk Controller 3-187
SY68045, CRT Controller 3-201
SY65C00, CMOS 8-Bit Microprocessor Family 3-216
SY65C20, CMOS Peripheral Interface Adapter 3-219
SY65C22, CMOS Versatile Interface Adapter 3-220
SY65C32, CMOS RAM, I/O, Timer Array 3-221
SY68C40, CMOS Programmable Timer 3-222
SY65C51, CMOS Asynchronous Communication Interface Adapter 3-223
Microcomputers
Z8601/Z8602, Z8 Family of Single-Chip Microcomputers 3-224
Z8603, Microcomputer Protopak/-Emulator 3-240
Z8611/Z8612, Z8 Family of Single-Chip Microcomputers 3-242
Z8613, Microcomputer Protopak/-Emulator 3-259
Z8S MCU, Microcomputer 3-261
Z8681, Z8 Family Z8681 Microcomputer 3-276
Z8590, UPC Universal Peripheral Controller 3-279
Z86C01, Single-Chip CMOS Microcomputer with 2K ROM 3-299
Z8'm, Z8 Development Module 3-303
SY66016, High-Speed 16×16 Parallel Multiplier 3-307
SY66450, Graphic Processor 3-309
SY66550, Raster Scanner 3-310
Chapter 4. Military 4-1
SYM2114A, 1024×4-Bit Static RAM 4-3
SYM2128, 2048×8-Bit Static RAM 4-7
SYM2129, 2048×8-Bit Static RAM 4-11
SYM2147H, 4096×1-Bit Static RAM 4-15
SYM2148H, 1024×4-Bit Static RAM 4-19
SYM2149H, 1024×4-Bit Static RAM 4-23
SYM2167, $16,384 \times 1$-Bit Static RAM 4-27
SYM2168, 4096×4-Bit Static RAM 4-28
SYM2169, 4096×4-Bit Static RAM 4-29
SYM2332/SYM2333, 4096×8 ROM 4-30
SYM2364/A, 8192×8 ROM 4-33
SYM2365/A, 8192×8 ROM 4-36

Contents(Contd.)

Page
SYM3316/A, 2048×8 High Speed ROM 4-39
SYM23128/A, $16,384 \times 8$ ROM 4-41
SYM23256/A, 32,768 $\times 8$ ROM 4-43
Chapter 5. Systems 5-1
SYM-1, Single Board Computer 5-3
SYM-1/68, SYM-1/69, Single Board Computers 5-4
MOD-68, MOD-69, Adapter Board 5-4
SYM-2, Single Board Computer 5-5
SM100, OEM Version of SYM-1 5-6
SRM-1, SRM-3, Static RAM Memory Kit 5-6
BAS-1, Full Function BASIC 5-7
RAE-1, Resident Assembler/Editor/Loader 5-7
FOR-1, Forth 5-8
EPS-1, SYM-1 Diagnostic Program 5-8
PEX-1, Port Expansion and Connector Kit 5-9
CP110, Super Jolt CPU Board 5-10
KTM-2, Keyboard Terminal Module 5-11
KTM-3, The Tubeless Terminal 5-12
MBC010/MBC020, CPU/Video Board 5-13
MBC01A2/MBC01A2-1, Single Board Computer Motorola Micromodule Replacement 5-15
MBC008/016, Static RAM Modules 5-17
MBC016D, MBC032D, MBC048D, MBC064D, Dynamic RAM Boards 5-18
MBC081/MBC091/MBC092/MBC093, EPROM Programmer/Prototyping
Board/Extenders 5-19
MBC210, Floppy Disk Controller 5-20
MBC510, Combo I/O Board 5-20
MDT 2000, Micro Development System for Z8 and SY6500 Processors 5-21
Chapter 6. Quality Assurance 6-1
Chapter 7. General Information 7-1
Ordering Information 7-2
Packaging Diagrams 7-3
Application Notes 7-13
Conversion Tables 7-14
Representative/Distributor Listing 7-17

Numerical Index

Page Page 3-5 2-9 2-9 2-9 2-25 2-33 2-37
SY2149HL 2-45
SY2149HL-3
SY2149HL-3 2-45 2-45
SY2158A-2
SY2158A-2 2-49 2-49
Y2158A-4 2-49 2-49
SY2158B-2
SY2158B-2 2-49 2-49
SY2158B-3
SY2158B-3 2-49 2-49
Y2158B-4
Y2158B-4 2-49 2-49
2159A-2
2159A-2 2-53 2-53
SY2159A-3
SY2159A-3 2-53 2-53
SY2159A-4
SY2159A-4 2-53 2-53
SY2159B-2
SY2159B-2 2-53 2-53
SY2159B-3
SY2159B-3 2-53 2-53
SY2159B-4
SY2159B-4 2-53 2-53
SY2167
SY2167 2-57 2-57
SY2167-3
SY2167-3 2-57 2-57
SY2168
SY2168 2-61 2-61
SY2168-3
SY2168-3 2-61 2-61
SY2169
SY2169 2-65 2-65
SY2169-3
SY2169-3 2-65 2-65
SY21D1
SY21D1 2-69 2-69
SY2316B
SY2316B 2-73 2-73
SY2316B-2
SY2316B-2 2-73 2-73
SY2316B-3
SY2316B-3 2-73 2-73
SY2332
SY2332 2-76 2-76
SY2332-2
SY2332-2 2-76 2-76
SY2332-3
SY2332-3 2-76 2-76
SY2333
SY2333 2-76 2-76
SY2333-2
SY2333-2 2-76 2-76
SY2333-3
SY2333-3 2-76 2-76
SY2364
SY2364 2-79 2-79
Y2364-2
Y2364-2 2-79 2-79
Y2364-3
Y2364-3 2-79 2-79
2364A
2364A 2-79 2-79
64-2
64-2 2-79 2-79
4
4 2-79 2-79
SY2365
SY2365 2-82 2-82
SY2365-2
SY2365-2 2-82 2-82
SY2365-3
SY2365-3 2-82 2-82
SY2365A
SY2365A 2-82 2-82
SY2365A-2
SY2365A-2 2-82 2-82
SY2365A-3
SY2365A-3 2-82 2-82
SY2661
SY2661 3-21 3-21
SY2801A
SY2801A 2-111 2-111
SY2802E
SY2802E 2-115 2-115
SY3308
SY3308 2-91 2-91
SY3308R
SY3308R 2-97 2-97
SY3316
SY3316 2-94 2-94
SY3316A
SY3316A 2-94 2-94
3-303
3-303
Z8 ${ }^{\text {mw }}$
SY2101-1
SY2101A
SY2101A-2
SY2101A-4 2-9 2-9
SY2111-1 2-14 2-14
SY2111A 2-14 2-14
SY2111A-2 2-14 2-14
Y2111A-4 2-14 2-14
SY2112-1 2-19 2-19
SY2112A 2-19 2-19
SY2112A-2 2-19 2-19
SY2112A-4 2-19 2-19SY2114AL-1
SY2114AL-2 2-25 2-25
SY2114AL-3 2-25 2-25
SY2114AL-4 2-2 2-2
SY2114AL-5 2-25 2-25
SY2128-1 2-29 2-29
SY2128-2 2-29 2-29
SY2128-3 2-2 2-2
SY2128-4 2-2 2-2
SY2128L-1 2-29 2-29
SY2128L-2 2-29 2-29
SY2128L-3 2-29 2-29
SY2128L-4 2-29 2-29
SY2129-1 2-33 2-33
SY2129-2 2-33 2-33
SY2129-3 2-33 2-33
SY2129-4 2-33 2-33SY2129L-1 .. 2-33
SY2129L-2 2-33 2-33
SY2129L-3 2-33 2-33
SY2129L-4 2-33 2-33SY2147H
SY2147H-1 2-37 2-37
SY2147H-2 2-37 2-37
SY2147H-3 2-37 2-37
SY2147HL 2-37 2-37
SY2147HL-3 2-37 2-37
SY2148H 2-41 2-41
SY2148H-2 2-41 2-41
SY2148H-3 2-41 2-41
SY2148HL 2-41 2-41
SY2148HL-3 2-41 2-41
SY2149H 2-45 2-45
SY2149H-2 2-45 2-45
SY2149H-3 2-45 2-45

Numerical Index (Contd.)

	Page		Page
SY3316R	2-101	Z8 ${ }^{\text {™ }}$	3-303
SY6364	2-105	Z8S MCU	3-261
SY6365	2-105	Z8590	3-279
SY6500	3-35	Z8601	3-224
SYE6500/6500A	3-48	Z8602	3-224
SY6520/6520A		Z8603	3-240
SY6820/68B20	3-50	Z8611	3-242
SYE6520/6820		Z8612	3-242
SYE6520A/68B20	3-62	Z8613	3-242
SY6521/6821		Z8681	3-276
SY6521A/68B21	3-64	Z86C01	3-299
SYE6521/6821			
SYE6521A/68B21	3-76	Military Grade	
SY6522/6522A	3-79	SYM2114A-3	4-3
SYE6522/6522A	3-99	SYM2114A-4	. 4-3
SY6530	. 3-101	SYM2114A-5	. 4-3
SY6532	.3-112	SYM2114AL-3	4-3
SYE6532/6532A	3-120	SYM2114AL-4	. 4-3
SY6545-1	.3-122	SYM2114AL-5	. 4-3
SY6545R	. 3-160	SYM2128-3	. 4-7
SY6545E	. 3-148	SYM2128-4	. 4-7
SY6551	. 3-177	SYM2129-3	4-11
SYE6551/6551A	.3-177	SYM2129-4	4-11
SY6591/6591A	.3-187	SYM2147H	4-15
SY65C00	.3-216	SYM2147H-2	4-15
SY65C20	. 3-219	SYM2147H-3	4-15
SY65C22	. 3-220	SYM2148H-3	4-19
SY65C32	. 3-221	SYM2148H	4-19
SY65C51	. 3-223	SYM2148H-6	4-19
SY6845R	. 3-136	SYM2149H-3	4-23
SY23128	2-85	SYM2149H	4-23
SY23128-2	. 2-85	SYM2149H-6	4-23
SY23128-3	. 2-85	SYM2167	4-27
SY23128A	. 2-85	SYM2168	4-28
SY23128A-2	. 2-85	SYM2169	4-29
SY23128A-3	. 2-85	SYM2332	4-30
SY23256	2-88	SYM2333	4-30
SY23256-2	. 2-88	SYM2364	4-33
SY23256-3	. 2-88	SYM2364-3	4-33
SY23256A	2-88	SYM2364A	4-33
SY23256A-2	. 2-88	SYM2364A-3	4-33
SY23256A-3	. 2-88	SYM2365	4-36
SY66016	. 3-307	SYM2365-3	4-36
SY66450	. 3-309	SYM2365A	4-36
SY66550	. 3-310	SYM2365A-3	4-36
SY68045	. 3-201	SYM23128	4-42
SY68C40	. 3-222	SYM23128-3	4-42

Numerical Index (Conta.)

Page Page
SYM3316 4-39 MBC01A2-1 5-15
SYM3316A 4-39 MBC016 5-17
SYM23128A 4-42
MBC016D 5-18
SYM23128A-3 4-42
MBC032D 5-18
SYM23256 4-44 MBC048D 5-18
SYM23256-3 4-44 MBC064D 5-18
SYM23256A 4-44 MBC081 5-19
SYM23256A-3 4-44 MBC091 5-19
MBC092 5-19
Systems
BAS-1 5-7
MBC093 5-19CP1105-10 MBC5105-20EPS-15-8 MDT 20005-20FOR-15-8 MOD-68; MOD-695-21KTM-25-11 RAE-15-5KTM-35-12 SRM-1; SRM-35-7MBC0085-17 SYM-15-6MBC0105-13
5-13 SYM100 MBC020 5-6
SYM-1/68; SYM-69 5-45-3
MBC01A2 5-15 SYM-2 - 5-5

Page Number

Why Go Custom $1-3$
Classic Custom Design 1-4
Customer Design Teams 1-5
Customer Owned Tooling ${ }^{\text {™ }}$ 1-6
The Cell Library ${ }^{\text {tm }}$ $1-8$
SY7110 1-9
SY7111 1-9
SY7100 1-17

Why Go Custom and Why Use Synertek?

Your decision to use a Custom circuit rests basically on the requirements of your system. You'll want to consider the alternatives available to you:

- Standard circuits are off-the-shelf products designed for general product applications. If your yearly system volume will be less than 10,000, SSI (small scale integration) and MSI (medium scale integration) circuits may be your best solution.
- Microprocessors may fill your need if your application requires great flexibility and cost is not an overriding factor. They are most practical when total circuit volume does not exceed 50,000.

Advantages of Custom Circuits

A Custom circuit is an exclusive proprietary design built specifically to meet your product requirements. Its advantages are:

- Reduced system cost - Through circuit integration the total number of discrete and integrated components can be cut by $75-90 \%$. This dramatically reduces component inventory, PC board assembly, and power supply costs.
- Increased reliability - As circuit device count and total system size is reduced, system reliability increases. For you, the more reliable a system you sell to your customers, the less you will have to expend on warranty costs.
- Features - Special features not available in standard circuits or microprocessors can be cost-effectively designed into a Custom circuit.
- Market leadership - CUSTOM MOS/LSI technology can revolutionize a product. It enables new features to be built which would otherwise be unavailable or too expensive to implement. When your product is manufac-

Custom Costs vs. Other Alternatives

tured with a proprietary design, competitors have a more difficult time copying it. As a result, you can enjoy longer periods of market leadership and penetration.

Why Use Synertek?

You don't want just anyone to develop your Custom design. You want a company with experience, skill and an understanding of how important your design is to you. As a major supplier of Custom circuits, we fulfill those requirements and offer competitive design and process solutions.

Our ability to develop sophisticated technologies insures our market leadership position in custom integrated circuits. We currently offer silicon gate HMOS, NMOS, and HCMOS technologies. Our advanced computer-aided design facilities, projection alignment equipment, 4 -inch wafer fabrication lines, and VLSI testing equipment further demonstrate Synertek's commitment to state-of-the-art technology. Your choice depends on your need.

- Classic Custom Design - We will design your circuit from concept. You may initially provide us with a written explanation of the function you want, or with a logic diagram of the circuit, or with just a specification. We will create your work-of-art from beginning to full production.
- Customer Design Teams (C.D.T.) - We will train your engineers to do their own custom design. The full spectrum of design capability can be approached: classic custom hand-drawn circuits, designs using The Cell Library ${ }^{\text {™ }}$, or seminars for C.O.T. ${ }^{\text {r" }}$ customers. Your systems knowledge is combined with our IC design capability for optimum circuits.
- C.O.T. ${ }^{\text {TM }}$ - Synertek will become the manufacturing arm of your in-house design group or your consulting design house. By providing you with process design rules, parameters, computer simulation programs and, most of all, our total cooperation, we can assure you the manufacturing capability you want.
- Standard Products - The Logic Products Group has developed, with the cooperation of some of our customers, circuits which fulfill the needs of the marketplace. We continue to search for unique designs which expand our ability to serve our customers' requirements.
We advocate a firm policy of partnership in all three of these circuit production services. Your success is directly related to ours, and a close working relationship promotes understanding and efficiency between us. It also insures that the Custom circuit is produced exactly to your specifications. This spirit of cooperation and teamwork will heighten your feeling of ownership for your proprietary Custom circuit.

Classic

Custom Design

A masterpiece is never developed overnight. An artist needs time to think, plan, and create. At Synertek, the average length of time needed to bring a circuit from the concept stage to prototype production is 6-9 months. Depending on the complexity of the device, this may be longer or shorter. Simple circuits can be completed within 3-4 months. All circuits, however are subjected to the same stringent testing, quality control, and verifications checks.
Keeping with our philosophy of partnership, our engineers will confer with you often throughout the design and development phases.

The Custom Design and Development Process

- System definition - Synertek and the customer establish block diagrams, flow charts, and mechanical and electrical specifications. A program milestone schedule is confirmed.
- Logic design and computer simulation - Our design engineers convert system functions to MOS logic. Computer simulations of critical logic design characteristics are done in our DA (design automation) center. SCEPT ${ }^{\text {M }}$ (Synertek Circuit Emulation Program and Test) is a conventionally designed breadboard which duplicates MOS logic. We consider SCEPT ${ }^{T M}$ an indispensible tool for verifying the functionality of the design. It also gives you your first opportunity for handson verification of the actual logic functions. Once approved by you, SCEPT ${ }^{T M}$ is used to write and debug a test program. From this point, SCEPT ${ }^{\text {TM }}$ is the functional reference for the remaining design steps.

1-10 wks.

- Circuit design and analysis - Individual transistors are laid out to implement the SCEPT ${ }^{\text {TM }}$ logic. Particular attention is paid to critical speed paths. Additional computer-aided circuit simulation information is analyzed and incorporated into the actual circuit design.
1-4 wks.
- Composite layout design - A layout of the circuit design, called a composite, is hand drawn to minimize final chip size. Composites are drawn at 500 to 2000 times the size of the finished chip.
- Digitizing - The composite drawing is converted in our CAD (Computer Aided Design) center to a database tape using a Calma interactive graphic system. This digitized information is used to generate plots of each circuit layer. The plots are compared to the original composite and editing changes are made. Editing and checking continues until the database tape is approved for the
entire composite. Design rule checks (DRCs), electrical rule checks (ERCs), and network continuity checks (NECs) are accomplished by our CAD system using the database tape.
4-14 wks.
- Mask generation - Once the database tape is approved, a PG (pattern generation) tape is produced. This tape is used to create each mask level.

We use three methods in mask making photolithography, E-beam and a combination of both.

In the photolithographic process the 10X reticles are created on a pattern generator. These reticles are photo reduced to the actual 1 X mask size and reproduced by a step-and-repeat camera.
With E-beam technology, the PG tape is converted to Ebeam format. The full array is then written directly at the 1X mask size.

In the combination method, 10X reticles are generated from the E-beam-formatted tape. As in the photolithographic process, these reticles are then photo reduced to the actual 1 X mask size and reproduced by a step-and-repeat camera.
Which method should be used is determined by device complexity, die size, and the process chosen for wafer fabrication.
4-9 wks.

- Prototype wafer fabrication - During prototype fabrication, numerous quality and electrical inspections are performed to assure that every wafer lot meets our specifications.
- First samples - These are untested devices commonly referred to as "Cut \& Go's." They are placed in ceramic packages, assembled, and sent to you for initial evaluation.

2-3 wks.

- Test generation - The Cut \& Go's play an essential role in the completion of the test program, which was initiated during the circuit design stage. The test program must be verified with the Cut \& Go's before it is finalized.
- Prototype production - After fully tested samples are approved, prototype production begins.
- Full production - Scheduled delivery commences after prototype qualification and test verification are completed.

Customer Design Teams (C.D.T.)

C.D.T. is a program by which customers can be trained to do their own IC designs. It encompases the full spectrum of custom design from the classical, hand-drawn approach, with Synertek's engineers doing the full design, to the customer owned tooling program. CDT's are designed to take advantage of the customer's system knowledge and Synertek's IC design and production capabilities. The customer has access to our facilities, design courses, The Cell Library ${ }^{\top M}$, advanced CAD tools, processes, design expertise, and on-going support.
The CDT design course is approximately ten weeks long and is based upon the structured design methodology. The major portion of the course demonstrates how to use The Cell Library ${ }^{\text {TM }}$, with hands-on experience using our CAD tools to complete a simple design. Very little time is spent on design physics. As an on-going project we are continually developing additional short courses as updates as well as video tapes on specific topics.

Our CAD tools revolve around our mainframe computer, a VAX $11 / 780$, to enable our customers to use commercially available software written for the VAX. NCA corporation's software is used for layout verification, including Design Rule Check, Electrical Rule Check and Network Continuity Check. The Network Continuity Check compares the layout data to the Netlist derived from schematic entry. Other services, such as sizing and PG tape generation, can also be performed on the VAX.

Silvar-Lisco's SOS package including CASS and CAL-MP is installed on the VAX. CASS is used for schematic entry via a Genisco 1000 or other graphics terminals. Once the
schematic has been entered, a design database is created from which several output data formats can be generated. The following outputs are presently available: Netlist, TEGAS for logic generation and test verification, SPICE for circuit simulation, Network Continuity Checker and CAL-MP.

CAL-MP is used for automatic placement and routing of the cells in The Cell Library ${ }^{\text {TM }}$. All cells are designed to take advantage of the CAL-MP program capability. The program can handle up to 1800 cells (not gates) with 3600 cell capability to be installed soon. Chips of larger size can be created by assemblying partitioned sections of up to 3600 cells each.

We are constantly updating and improving our software. Any improvements in the NCA or Silvar-Lisco software will be installed so that design capability and turn-around times can constantly be improved. Dial-up facilities to the VAX are available enabling our CDT customers to access the above software via remote terminals.

As an important part of the CDT program Synertek provides support in the form of helping with the design, instruction in the use of our CAD equipment, providing updates in the course, and providing advancements in our process capabilities. Synertek's CDT team is organized to assist the customer in all the crucial steps of the design. Once the customer reaches design proficiency, we have a separate Customer Owned Tooling (C.O.T. ${ }^{\text {TM }}$) team to move designs quickly into production. As a customer's needs or designs change, CDT's are flexible enough to tailor on-going support to the specific requirements of the customer.

C.O.T. ${ }^{\text {TM }}$

Perhaps you have your own MOS design group, or have chosen to have your circuit designed by a consulting firm. Or maybe another MOS supplier designed the chip and you want to tool-up a second-source supplier. Whatever your design source, we can produce your circuit on a customer owned tooling (C.O.T. ${ }^{\text {TM }}$) basis.

Because of our extensive experience with MOS/LSI technology, we understand your reasons for going C.O.T. ${ }^{\text {rm. }}$. You want to minimize design cost and production time while maximizing proprietary design control. We guarantee that your Custom circuit will receive the same confidential, proprietary treatment as our own in-house designed circuits.

You may enter the production cycle at a number of various stages. We'll accept your design on a database tape, a pattern generator tape, or working plate. You'll be given an initial documentation package that includes an overview of design rules and parameters for our MOS processes.
C.O.T. ${ }^{\text {TM }}$ customers provide Synertek's Product Engineering with their chosen form of tooling along with the test tape and specifications for testing the customer's circuit.

Synertek maintains a policy of requiring characterization data for all circuits prior to transfer to production. This measure enables Synertek to do further studies on yield enhancements and correlation. Synertek strives to maximize yields at final test and ultimately reduce circuit costs to the customer. We view C.O.T. ${ }^{\text {TM }}$ as a joint effort on the part of vendor and customer. Our goal is to work with the customer's design group, to lend the necessary technical support and to build a successful working relationship.

Again, we will meet with you as early in the program as possible to establish a close working relationship. If you wish to design your own proprietary circuit, our engineering staff is available for design aid and general program guidance. We take measures to enhance a smooth product flow. Our program managers monitor your circuit from our CAD center through production. We also have a back-log control system that continually updates you on product schedules and shipments.

As a C.O.T. ${ }^{\mathrm{TM}}$ customer, you have access to our extensive manufacturing and assembly facilities in addition to our advanced processes.

MOS Processes

SILICON GATE NMOS

SILICON GATE CMOS

Process	Channel	$\mathrm{V}_{\text {TFO }}$	$\mathrm{V}_{\text {TO }}$	Beta UA/V ${ }^{2}$	$\mathrm{B}_{\text {vDSs }}$	Gamma	pNopP $\Omega 1 \square$	pPoly ®/	Channel Length μ	
CPN5	P	-16	-0.9	5.5	-19	0.7	50	20	3μ	
	N	+10	+0.9	17	+ 17	0.5	25	15	$3 v$	
CA72	P	-16	-0.9	5.5	-19	0.7	50	$\begin{gathered} \text { 1) } 20 \\ 15 \end{gathered}$	2μ	
	N	+ 10	+0.9	17	+ 17	0.5	25	$\begin{array}{r} 2)<100 \\ <100 \end{array}$	2μ	

A Process for Every Masterpiece

Selecting the right process for your Custom circuit is one of your most important decisions in the design cycle.

Synertek's offering of fully proven manufacturing processes has the right answer for you. It includes state-of-the-art HMOS, HCMOS and EEPROM in addition to the industry standard NMOS silicon gate technology.
The chart on these pages contains conservative data on Process Characteristics and Topology. This data is provided only as a guideline to help you determine the general "fit" to new circuits and those already in production. Detailed Electrical and Topological Design Rules are available under a non-disclosure agreement.

Again, we encourage potential C.O.T. ${ }^{\text {rm }}$ customers to notify us at the early stages of the program so that we can provide the necessary guidance to your designers to ensure process compatibility with circuit performance. You may find the process requirements for your circuit differ from what is shown on our chart. If so, be assured that our process engineers will work with you to determine any needed variations for your circuit.

	$\begin{gathered} \mathrm{C}_{\mathrm{DA}} \\ \mathrm{~F} / \mathrm{cm}^{2} \times 10^{-8} \end{gathered}$	$\begin{gathered} \mathrm{pN} \\ \Omega / \square \end{gathered}$	$\begin{gathered} \mathbf{p P} \\ \Omega / \square \end{gathered}$	X_{j}	Channel Length μ	Topological Pitch			Comments
						Poly w/s μ	$\begin{gathered} \hline \text { Diff } \\ \mathbf{w} / \mathbf{s} \end{gathered}$	$\begin{gathered} \hline \mathrm{Al}-\mathrm{Al} \\ \mathbf{w} / \mathbf{s} \\ \mu \\ \hline \end{gathered}$	
	1.5	20	45	1.1	6	6/7	6/7	7/7	Shrinkable by 16% for low voltage Applications
	0.7	15	60	1.5	6	6/6	6/6	6/6	Planox, 2 poly process, switched capacitor techniques for analog circuits
	1.6	15	45	1.2	6	6/6	6/6	7/7	Planox; shrinkable by 16%
	1.5	12	45	1.1	5	5/5	5/5	5/5	Process has an intrinsic transistor mask option. High speed applications.
	0.7	27	30	0.45	$\begin{gathered} \hline 3 \text { (E \& D) } \\ 4(1) \\ \hline \end{gathered}$	4/5	5/5	5/5	HMOSI. Dual implants for each ENH and DEP transistor (optional)*.
	0.8	24	27	0.35	3	3/3	5/4	5/5	Planox; 2 poly HMOS.
	0.8	24	27	0.35	$\begin{aligned} & 2(\mathrm{O}) \\ & 3.5(\mathrm{I}) \end{aligned}$	3/3	3.5/3.5	3.5/3	Planox; single poly. Stepper technology and all dry etch process.
	0.7	15	65	1.2	5	5/4	5/5	5/5	Planox; ${ }^{2}$ PROM process

*Also available with dry etch processing at contact.

	Topological Pitch				
	Poly w/s	N-Well w/s	Diff. w/s	AI-AI w/s	Comments
	$3 / 3.5$	$3.5 / 14$	$3 / 5$	$4 / 5$	Single poly, n-well process.
	$3 / 3.5$		$3 / 5$	$4 / 5$	Available up to 12V. ${ }^{*}$
	$2 / 2.5$	$2.5 / 10$	$2 / 3.5$	$3 / 3.5$	Double poly, high voltage.
	$2 / 25$		$2 / 3.5$	$3 / 3.5$	

*Also available using stepper technology.

The Cell Library ${ }^{\text {TM }}$

The Cell Library ${ }^{\text {™ }}$ evolves around our N -well, single poly, single metal 3 micron HCMOS process. The cells developed are the basic cells required to do random logic design. We will continue to design increasingly complex cells, such as multi-stage counters, voltage comparators, microprocessor cores, ALU's, etc. Customers have the option of designing and using any additional cells required in their system. These cells should conform to our format requirements, and the customer has the option of including them in The Cell Library ${ }^{\text {TM }}$ user group.
Designs can be done on any graphics system with the interface preferably using GDSII formatted tapes. All cells are fully characterized over the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ range. Each cell has its own data sheet, with all the electrical and topological parameters. The Cell Library ${ }^{\text {TM }}$ manual is a TTL type book containing all the information on the cells.
Almost all cells are of constant height and variable width, however some cells are of different height to improve layout efficiency. For example, there is a tall and narrow flipflop that will be used for long chains of ripple counters. Some of the basic cells, such as inverters, NOR gates, NAND gates, are of two different heights to optimize the auto-router.
Each cell has inputs at both the top and the bottom with two power lines running horizontally through the cell. The cells are self-contained, so that no external connections will be required to complete them. For most of the cells, connections are made by either poly or metal. Production type cells, such as alignment marks, CD's, etc. are also available as part of The Cell Library ${ }^{\text {™ }}$.

The Cell Library ${ }^{\text {™ }}$ is designed using the Avera IC Designer, a low cost system capable of doing an hierarchical IC design. Each cell can be represented in three progressively complex ways. The first is a simple outline of the cell boundaries with a symbol indicating the orientation, the second is the outline with the logic symbol and the third is the complete topographical layout.

Today's Tradeoff Curve

UNIT VOLUME (K)

The Cell Library ${ }^{\text {Tw }}$ is available to our classic custom, CDT, and C.O.T. ${ }^{\text {™ }}$ customers. Synertek's engineers will design a circuit for you or teach your engineers to do their own designs using The Cell Library ${ }^{\text {Tw }}$. C.O.T. ${ }^{\text {™ }}$ customers may purchase The Cell Library ${ }^{\text {™ }}$ with or without a production commitment.
Training for C.O.T. ${ }^{\text {r" }}$ customers is also available for a nominal fee.

The Cell Library ${ }^{\text {TM }}$

Functions

Inverter
2, 3, 4 Input NOR
2, 3, 4 Input NAND
XOR, XNOR
ROM, RAM bit
F/F with/without SET, RESET (3 cells)
F/F with/without SET, RESET for ripple counters (3 cells) Latch
Output buffer CMOS to CMOS. Pad included Output buffer CMOS to TWO LPS TTL. Pad included Input buffers CMOS to CMOS Input buffers LPS TTL to CMOS Input with HYSTERESIS
Expandable PLA
RC Oscillator
XTAL Oscillator
CD Cells
Alignment Marks, Logos, etc.
Primitative Cells (Butting contracts, etc.)
Pass-Through
Transmission Gate
Future Enhancements
Z-8 Microprocessor Core
A/D Converter
Counter
ALU
User Library

Typical Cell Library Design Cycle
(1,000 Gate-Equivalaent HCMOS)

Features

- Bell System 103 or CCITT v. 21 types
- Phase Coherent FSK Modulation
- No External Filters Needed
- Minimal External Components Required
- Uses Low-Cost TV Color Burst Crystal (3.579545 MHz)
- Low Distortion Signal Generation (5\%)
- Highly Sensitive Receiver (-50 dBm)
- Automatic Answer and Disconnect
- Fully Automatic Handshake Operation
- RS-232C Interface Signals
- Local and Remote Loop-Back Test Capabilities
- $0-70^{\circ} \mathrm{C}$ Operating Range

Pin Configuration

-	1	24	v_{ss}
RCV	2	23	$\square \mathrm{AGND}$
$\overline{\text { RTS }}$	3	22	$\square \mathrm{XMT}$
-	4	21	\square
O/A	5	20	$\square \overline{A B T D}$
ता	6	19	$\square \overline{\text { DTR }}$
$\overline{\mathrm{SH}}$	7	18	TxD
V_{DD}	8	17	\square mode2
APH	9	16	MODE1
CTS	10	15	$\square \mathrm{xtaL} 1$
RxD	11	14	\square xtal2
$\overline{\text { DCD }}$	12	13	Dognd

(TENTATIVE)

Description

The SY7110 and SY7111 are modem devices intended to provide for data communications over the switched telephone network or via dedicated private lines. Complete analog and digital functions are incorporated on a single monolithic sub-

FIGURE 1. BLOCK DIAGRAM

General Description

There are two basic system modes. The first mode permits operation over the switched telephone network and utilizes the APH, $\overline{\mathrm{RI}}$, and $\overline{\mathrm{SH}}$ pins to control the connection and mode selection. The second mode is for applications with dedicated lines. In this case, there is no requirement to control the connection, since it is always in place.

Switched Network

Operation is initiated by means of the $\overline{\mathrm{SH}}$ and $\overline{\mathrm{RI}}$ input pins. If $\overline{\mathrm{SH}}$ is activated, this signals the originate mode and the required frequencies are thereby selected. If $\overline{\mathrm{RI}}$ is activated, this causes the answer mode to be selected along with the appropriate frequency selections. One exception to this exists, however. This occurs if the $0 / \bar{A}$ pin is driven to a low level and the $\overline{\mathrm{SH}}$ pin initiates the call. In this case, answer mode is forced, overriding the usual operation to select originate mode.

Dedicated Lines

For this application, $\overline{\mathrm{SH}}, \overline{\mathrm{RI}}$, and APH are not used and are to be unconnected. Instead, operation is initiated by means of the $\overline{\mathrm{RTS}}$ input pin and the originate/answer mode selection is determined by the O/ $\overline{\mathrm{A}}$ mode pin. (Note that $\overline{\mathrm{RTS}}$ is not used for the switched network case and must be unconnected to prevent improper operation.)

Pin Functions

TxD

Transmit Data. TTL-Compatible, high impedance input pin used to modulate the transmitter carrier frequency when the device is active. A high level represents a MARK, and a low level a SPACE.

RxD

Receive Data. TTL-Compatible, push/pull output pin which is the de-modulated received carrier frequency. A high level is a MARK condition and a low level, a SPACE.

$\overline{\text { DTR }}$

Data Terminal Ready. TTL-Compatible, negative-true input (with internal pull-up resistor) used to activate/de-activate the modem.

RTS

Request To Send. TTL-Compatible, negative-true input (with internal pull-up resistor) used to activate the transmitter section of the modem. When driven to the active (low) state, it signifies a request to transmit. When the transmission path is established, $\overline{\text { CTS }}$ is activated, completing the handshake.

$\overline{\text { CTS }}$

Clear To Send. TTL-Compatible, negative-true, push/pull output used to indicate that the transmitter is currently active.

$\overline{\mathrm{DCD}}$

Data Carrier Detect. TTL-Compatible, negative-true, push/pull output used to indicate that a valid carrier signal is being received and that the receiver is currently active.

XTAL1, XTAL2

Crystal Pins. Color burst TV crystal (3.579545 MHz). Must be attached to these pins to set the frequency of the internal clock oscillator. No other components are needed. Alternately, the oscillator may be driven from an external source. In this case, XTAL1 is the clock input pin (high impedance) and XTAL2 must be unconnected (cannot drive any substantial load).

XMT

Transmitter Output. This is the carrier frequency output signal used to drive the phone line. It is a fixed amplitude sinusoidal signal of very high purity.

RCV

Receiver Input. High-impedance input for the incoming carrier frequency signal from the phone line.

$\overline{\mathbf{R I}}$

Ring Indication. TTL-Compatible, negative-true input with internal pull-up resistor. An active (low) level signifies that a ringing condition exists. The low-to-high transition initiates automatic answer sequencing.

$\overline{S H}$

Switch-Hook. TTL-Compatible, negative-true input with internal pull-up resistor. An active (low) level signifies that the off-hook condition exists for the phone line. The low-to-high transition initiates automatic call origination sequencing.

APH

Answer Phone. Positive-true output with active pull-down device and passive pull-up resistor. The active (high) level of this pin is used to drive the phone line to its off-hook state for both call origination and answering.
O/ \bar{A}
Originate/Answer. TTL-Compatible input pin with internal pull-up resistor. This pin is used to control the operating mode of the modem, except in those cases wherein the mode is selected automatically.

MODE 1, MODE 2

Mode Controls. TTL-Compatible inputs with internal pull-up resistors. Used to select operating modes, as follows:

Mode 1	Mode 2	Function
H	H	Normal Operation
H	H	Special Tests
L	L	Digital Loop Test
L	H	Analog Loop Test

$\overline{\text { ABTD }}$

Abort Timer Disable. TTL-Compatible input with internal pull-up resistor. When active (low) the abort disconnect timer is disabled.

Power and Ground Pins.
$V_{D D}$
$V_{\text {SS }}$
DGND
AGND SY7110/SY7111

FIGURE 2. ESTABLISHING THE CONNECTION (SWITCHED NETWORK)

Establishing a Connection

Figure 2 illustrates the timing sequence to establish a call connection between an originating modem and an answering modem. The items referred to in Figure 2 are detailed, as follows:

1. Originating end goes off-hook to place call.
2. Delay from $\overline{\mathrm{SH}}$ input to the activation of APH output (less than $100 \mu \mathrm{sec}$). Note that $\overline{\mathrm{SH}}$ is an edge-sensitive input.
3. APH is activated, causing the off-hook relay in the DAA to be energized.
4. Dialing of the far-end modem commences and the call is established.
5. Ringing occurs at the called station.
6. Delay for the answering modem to recognize and respond to $\overline{\mathrm{RI}}$ ringing indication signal (less than 100 $\mu \mathrm{sec})$.
7. APH is activated to answer the phone.
8. Delay from the activation of APH until answer tone (2225 Hz) is sent back to the originating modem. This is the "billing delay" required by the common carrier (phone company) and is 2 sec .
9. Answer tone sent back.
10. Delay from receipt of answer tone at originating modem until the RxD clamp is removed ($150-200 \mathrm{msec}$).
11. RxD clamp is removed and the $R \times D$ pin now follows the received carrier frequency. Simultaneously, $\overline{\mathrm{DCD}}$ is activated.
12. Delay from the receipt of answer tone until the transmit tone (1270 Hz) is applied. This delay is required by the common carrier in order to disable the echo suppression circuits in the phone network and, in this way, permit full-duplex operation. The delay is 250 msec .
13. Transmit tone sent to answering modem.
14. Delay from transmit tone being sent until TxD is enabled (300 msec).
15. TxD clamp is removed and the transmit frequency now follows the level on the TxD input pin. CTS is activated.
16. Delay in the answering modem from receipt of 1270 Hz transmit tone until RxD clamp is removed and $\overline{D C D}$ is activated ($150-200 \mathrm{msec}$).
17. RxD clamp is removed and the RxD level now follows the incoming carrier frequency. TxD clamp is removed and transmit frequency follows the level on the TxD input pin. $\overline{\mathrm{CTS}}$ is activated and full duplex operation is achieved.

FIGURE 3. $\overline{\text { DTR }}$ INITIATED DISCONNECT SEQUENCE.

DTR Initiated Disconnect

An irreversible disconnect sequence may be initiated by means of the $\overline{D T R}$ input pin. This signal, which is normally active (low) when the modem is operating, may be pulsed high in order to start the disconnect sequence. A minimum pulse width of 10 msec is required to start the sequence. A shorter pulse width will not be sufficient to achieve this. Figure 3 shows the detailed timings involved for the disconnect operation.
Note in Figure 3 that a continuous Space frequency $(1070 \mathrm{~Hz}$ for Originate mode and 2025 Hz for Answer mode) is automatically sent for a period of 3 seconds during the disconnect operation. This is sometimes used by the far-end modem to detect that a disconnect is in progress.

$\overline{\mathrm{RIS}}$ and O//̄ Considerations

Normally, $\overline{\mathrm{RTS}}$ is not used in switched network applications. Hence, it is assumed to be unconnected. An internal pull-up resistor causes the logic level to be inactive. $\overline{\mathrm{RTS}}$ is used in applications for dedicated lines however, and a full explanation of these cases is covered elsewhere.

FIGURE 4. SWITCHED NETWORK CASE WITH ANSWER MODE FORCED.

FIGURE 5. ESTABLISHING A DATA CONNECTION FOR DEDICATED LINE CASE.

Dedicated Lines Connection

Figure 5 illustrates the timing sequence used to establish the data connection for applications which use dedicated lines. The items in Figure 5 are described below:

1. Originating modem initiates the sequence. O / \bar{A} must be high (originate mode) before $\overline{\mathrm{RTS}}$ is activated. When $\overline{\mathrm{RTS}}$ is activated, the transmit carrier is turned on to the Mark frequency condition (1270 Hz).
2. Delay from $\overline{\mathrm{RTS}}$ activation until $\overline{\mathrm{CTS}}$ activation (300-350 msec).
3. $\overline{\mathrm{CTS}}$ is activated and TxD Mark clamp is removed. Transmitter is now active and the transmit frequency follows the level on the TxD input pin.
4. Delay from the carrier being received at the answering modem until $\overline{\mathrm{DCD}}$ is activated ($150-200 \mathrm{msec}$).
5. $\overline{\mathrm{DCD}}$ is activated and RxD Mark clamp is removed. At this point, the receiver is active and the RxD output pin follows the received carrier frequency.
6. Some time later (determined by the response of the answering end data terminal equipment), the $\overline{\mathrm{RTS}}$ input of the answer modem is activated. O / \bar{A} must be low to enable the answer mode. This causes the transmit carrier frequency to be turned on to the Mark frequency (2225 Hz).
7. Delay from $\overline{\mathrm{RTS}}$ activation until $\overline{\text { CTS }}$ activation (300-350 msec).
8. $\overline{\mathrm{CTS}}$ is activated and TxD Mark clamp is removed, causing the transmitter to be activated.
9. Delay from the receive carrier arriving at the originating modem until the $\overline{D C D}$ output is activated ($150-200 \mathrm{msec}$).
10. $\overline{\mathrm{DCD}}$ is activated and the R×D Mark clamp is removed. At this point, the receiver is active and $\mathrm{R} \times \mathrm{D}$ output follows the received carrier frequency.
11. Full-duplex operation is achieved.

FIGURE 6. $\overline{R T S}$ INITIATED SHUTDOWN SEQUENCE FOR DEDICATED LINE CASE.

Shutdown Sequence

Either the originating or the receiving end may initiate a shutdown sequence by means of the $\overline{\mathrm{RTS}}$ input pin. Figure 6 illustrates the timings and the following points describe the operation:

1. $\overline{\mathrm{RTS}}$ is de-activated to initiate the shutdown. Transmit carrier turns off, CTS is de-activated, and TxD Mark clamp is applied.
2. Delay for $\overline{D C D}$ to respond to loss of carrier at far-end modem (10-12 msec).
3. $\overline{\mathrm{DCD}}$ is de-activated and RxD Mark clamp is applied.
4. Delay for data terminal equipment to respond to loss of carrier with de-activation of RTS.
5. $\overline{\mathrm{RTS}}$ de-activated, transmit carrier turns off, $\overline{\mathrm{CTS}}$ deactivated, and TxD Mark clamp is applied.
6. Delay for $\overline{\mathrm{DCD}}$ to respond to loss of carrier at originate modem (10-12 msec).
7. $\overline{\mathrm{DCD}}$ turns off and RxD Mark clamp is applied.
8. Shutdown is accomplished.

A special note is that $\overline{D T R}$ is not used for dedicated line applications. As a result, the user must be certain that DTR is held active (low) throughout to be certain that no inadvertent effects are caused.

DCD Operation

Some special requirements also effect the operation of $\overline{D C D}$ (data carrier detect). Two operating conditions are paramount:

- The detection of a valid carrier signal occurs when 150200 msec of uninterrupted carrier frequency, whose amplitude is at least -50 dBm , exists. An interruption of more than 12 msec causes the $150-200 \mathrm{msec}$ time interval to restart.
- Once a valid carrier is detected, $\overline{\mathrm{DCD}}$ goes low and stays active until the carrier is lost for at least 12 msec . Any loss for less than this does not cause loss of carrier and $\overline{\mathrm{DCD}}$ level does not change. The carrier can be lost either if the amplitude drops below -53 dBm or if the frequency shifts out of the valid range or both.

System Interconnnections

Figure 7 illustrates a typical system connection. For the purpose of this example, the SY6551 ACIA device performs the UART function.

FIGURE 7. TYPICAL SYSTEM INTERCONNECTIONS.

Interface Specifications

Description	Min.	Max.	Unit
Logic Input Low Level ($\overline{\mathrm{RTS}}, \overline{\mathrm{DTR}}, \mathrm{T} \times \mathrm{D}, \overline{\mathrm{RI}}, \overline{\mathrm{SH}}, \mathrm{O} / \overline{\mathrm{A}}$, MODE1, MODE2, $\overline{\text { ABTD }}$)	0.0	0.8	V
Logic Input High Level ($\overline{\mathrm{RTS}}, \overline{\mathrm{DTR}}, \mathrm{TxD}, \overline{\mathrm{RI}}, \overline{\mathrm{SH}}, \mathrm{O} / \overline{\mathrm{A}}$, MODE1, MODE2, $\overline{\text { ABTD }}$	2.0	Vcc	V
Logic Output Low Level ($\mathrm{loL}=1.6 \mathrm{~mA}$) (RxD, $\overline{C T S}, \overline{D C D}, ~ A P H)$	0.0	0.4	V
Logic Output High Level $\begin{aligned} & (\mathrm{IOH}=-100 \mu \mathrm{~A}) \\ & (\mathrm{RxD}, \overline{\mathrm{CTS}}, \overline{\mathrm{DCD}}) \end{aligned}$	2.4	-	V
Input Pull-Up Resistance ($\overline{\mathrm{SH}}, \overline{\mathrm{RI}}, \overline{\mathrm{DTR}}, \overline{\mathrm{RTS}}, \mathrm{O} / \overline{\mathrm{A}}, \overline{\mathrm{ABTD}}$, MODE1, MODE2)	100K	500K	ohms
Output Pull-Up Resistance (APH)	5 K	10K	ohms
Input Hysteresis ($\overline{\mathbf{S H}}, \overline{\mathrm{RI}}$)			V
$\mathrm{V}_{\text {DD }}$ Power Supply Level	4.75	5.25	V
$\mathrm{V}_{\text {SS }}$ Power Supply Level	-4.75	-5.25	V
$\mathrm{l}_{\text {DD }}$ Current Drain	-	40	mA
Iss Current Drain	-	30	mA

Analog Specifications

Transmitter Section

- Frequencies -

Signal	Mode	
	Originate	Answer
$\frac{\text { Bell-103 }}{\text { Mark }}$	1270 Hz	2225 Hz
Space	1070 Hz	2025 Hz
CCITT v.21		
Mark	1180 Hz	1850 Hz
Space	980 Hz	1650 Hz

- Frequency Accuracy: $\pm 0.25 \%$.
- Output Signal Amplitude: $+6 \mathrm{dBm} \pm 1 \mathrm{dBm}$.
- Output Amplitude Distortion: $\pm 1 \mathrm{~dB}$.
- 2nd Harmonic Amplitude: -60 dBm (below carrier).

Receiver Section

- Frequencies -

Signal	Mode	
	Originate	Answer
$\frac{\text { Bell-103 }}{\text { Mark }}$	2225 Hz	1270 Hz
Space	2025 Hz	1070 Hz
CCITT v.21 Mark Space	1850 Hz	1180 Hz
1650 Hz	980 Hz	

- Bandwidth: TBD.
- Sensitivity: $-50 \mathrm{dBm} \pm 1.5 \mathrm{dBm}$.
- Peak Distortion: $\pm 17 \%$
- Maximum 2nd Harmonic Amplitude: -60 dBm.
- Carrier Detect Sensitivity: $-50 \mathrm{dBm} \pm 1.5 \mathrm{dBm}$.
- Carrier Detect Hysteresis: $3 \mathrm{~dB} \pm 0.1 \mathrm{~dB}$.
- Carrier Detect Bandwidth: TBD.
- Dynamic Range: TBD.

Features

- No External Filters Required
- TTL-Compatible Three-State Outputs
- Uses Low Cost 3.579545 MHz Crystal
- Fully Immune to Normal Noise Conditions
- Excellent Speech Immunity
- 18-Pin Package for Low Cost
- +5 V and -5 V Power Supplies

Pin Configuration

Description

The SY7100 is a fully monolithic Dual-Tone Multi-Frequency (DTMF) Receiver intended for use in a wide variety of telephone applications. Standard Bell System tone frequencies are automatically decoded into a 4-bit binary coded
output. No external band-separation filters are required and, in fact, only a small number of external components are needed. The device is fabricated using NMOS switched capacitor technology to optimize cost and performance.

Block Diagram

Condensed Specifications

- Power Supplies: $+5 \mathrm{~V} \pm 5 \%,-5 \mathrm{~V} \pm 5 \%$
- Power Dissipation: 250 mW (max, total)
- Adjacent Band Attenuation: 40 dB
- Dynamic Input Range: +6 dBm to -30 dBm
- Precise Dial Tone Attenuation: 50 dB
- Digital I/O are TTL- compatible
- Detection Time: 40 msec (max)
- Inter-tone Time: $40 \mathrm{msec}(\mathrm{min})$

DTMF Tone Matrix

Pin Functions

T, R, GC Tip, Ring, and Gain Control inputs. T and R are derived from Tip and Ring from telephone line. GC is used to control gain of input amplifier, permitting operation with a variety of input signal amplitudes.

XTAL1, Crystal pins and Clock output. 3.579545 MHz crystal connected to XTAL1 and XTAL2 to control internal XTAL2, clock oscillator. Clock output is a low-level 3.579545 MHz square-wave to drive other devices located CLOCK within the same system.
DO-D3 Binary-encoded ($0-15$) digital outputs with 3-state capability for bus-oriented applications.
$\overline{\text { STB }} \quad$ Negative-true, TTL-compatible output which is active when a valid DTMF signal is detected.
$\overline{E N} \quad$ Negative-true, TTL-compatible input signal which turns on the output buffers (DO-D3).
MODE TTL-compatible input used to select either Local or End-to-End mode of operation, defined below:

MODE	FREQUENCY DETECT BANDWIDTH
Local End-to-End	$\pm(1.5 \%+2 \mathrm{~Hz})$ $\pm(1.7 \%+5 \mathrm{~Hz})$

Synertek: The Artist for your Custom Circuit

As artisans of technology, we are deeply dedicated to the success of your product. We support this dedication by offering you:

- Synertek's experience and proven technologies
- our in-house design, manufacturing and assembly facilities
- a working partnership with our engineers
- the latest in CAD and test equipment
- flexibility in circuit design and manufacturing
- dedicated manufacturing capacity for volume production
- state-of-the art MOS processes
- commitment to quality

We're ready to put our experience to work for you. If you'd like to learn more about our CUSTOM MOS/LSI capabilities, just call the Synertek office nearest you (refer to the General Information section of this data book for a complete listing of sales offices). We'll be glad to arrange a preliminary design consultation meeting to discuss how we can help you with your program. Because your success is our goal, we'll dedicate our many resources to your needs. Give us a call now!

Memories.

Page Number

Random Access Memories (RAMs) 2-7
Read Only Memories (ROMs) 2-71
Electrically Erasable Programmable ROMs (EEPROMs) 2-109

Commercial $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$)

Part Number	Oryanization	$\begin{gathered} \hline \text { Aceess } \\ \text { Time } \\ \text { [ns) } \\ \hline \end{gathered}$	Maximum Current (mA)		Power Supply [Volts]	Number of Pins	Package Type (Note 1)	Page ${ }^{\text {No. }}$
			Operating	Standby				
SY2101-1	256×4	500	70	--	+5	22	C. P	2-9
SY2101A	256×4	350	55	--	+5	22	C. P	2-9
SY2101A-2	256×4	250	55	--	+5	22	C. P	2-9
SY2101A-4	256×4	450	55	--	+5	22	C. P	2-9
SY2111-1	256×4	500	70	-	+5	18	C. D. P	2-14
SY2111A	256×4	350	55	--	+5	18	C. D. P	2-14
SY2111A-2	256×4	250	55	--	+5	18	C. D. P	2-14
SY2111A-4	256×4	450	55	--	+5	18	C. D. P	2-14
SY2112-1	256×4	500	70	--	+5	16	C. D. P	2-19
SY2112A	256×4	350	55	--	+5	16	C. D. P	2-19
SY2112A-2	256×4	250	55	--	+5	16	C. D. P	2-19
SY2112A-4	256×4	450	55	--	+5	16	C. D. P	2-19
SY2114AL-1	1024×4	100	40	--	+5	18	C. D. P	2-25
SY2114AL-2	1024×4	120	40	--	+5	18	C. D. P	2-25
SY2114AL-3	1024×4	150	40	--	+5	18	C. D. P	2-25
SY2114AL-4	1024×4	200	40	--	+5	18	C. D. P	2-25
SY2114A-4	1024×4	200	70	--	+5	18	C. D. P	2-25
SY2114A-5	1024×4	250	70	--	+5	18	C. D. P	2-25
SY2148H	1024×4	70	150	30	+5	18	C. D	2-41
SY2148H-2	1024×4	45	150	30	+5	18	C. D	2-41
SY2148H-3	1024×4	55	150	30	+5	18	C. D	2-41
SY2148HL	1024×4	70	125	20	+5	18	C. D	2-41
SY2148HL-3	1024×4	55	125	20	+5	18	C. D	2-41
SY2149H	1024×4	70	150	--	+5	18	C. D	2-45
SY2149H-2	1024×4	45	150	--	+5	18	C. D	2-45
SY2149H-3	1024×4	55	150	--	+5	18	C. D	2-45
SY2149HL	1024×4	70	125	--	+5	18	C. D	2-45
SY2149HL-3	1024×4	55	125	--	+5	18	C. D	2-45
SY2147H-1	4096×1	35	180	30	+5	18	C, D	2-37
SY2147H-2	4096×1	45	180	30	+5	18	C, D	2-37
SY2147H-3	4096×1	55	180	30	+5	18	C. D	2-37
SY2147H	4096×1	70	160	20	+5	18	C. D	2-37
SY2147HL-3	4096×1	55	125	15	+5	18	C, D	2-37
SY2147HL	4096×1	70	140	10	+5	18	C. D	2-37
SY2158-?	1024×8	120	100	30	+5	24	P	2-49
SY2158-3	1024×8	150	100	30	+5	24	P	2-49
SY2158-4	1024×8	200	100	30	+5	24	P	2-49
SY2159-2	1024×8	120	100	--	+5	24	P	2-56
SY2159-3	1024×8	150	100	--	+5	24	P	2-56
SY2159-4	1024×8	200	100	--	+5	24	P	2-56
SY2128-1	2048×8	100	100	20	+5	24	K, C, D, P	2-29
SY2128-2	2048×8	120	100	20	+5	24	K, C, D, P	2-29
SY2128-3	2048×8	150	100	20	+5	24	K, C, D, P	2-29
SY2128-4	2048×8	200	100	20	+5	24	K, C, D, P	2-29
SY2128L-1	2048×8	100	80	15	+5	24	K, C, D, P	2-29
SY2128L-2	2048×8	120	80	15	+5	24	K, C, D, P	2-29
SY2128L-3	2048×8	150	80	15	+5	24	K, C, D, P	2-29
SY2128L-4	2048×8	200	80	15	+5	24	K, C, D, P	2-29
SY2129-1	2048×8	100	100	.-	+5	24	K, C, D, P	2-33
SY2129-2	2048×8	120	100	--	+5	24	K, C, D, P	2-33
SY2129-3	2048×8	150	100	--	+5	24	K, C, D, P	2-33
SY2129-4	2048×8	200	100	--	+5	24	K, C, D, P	2-33
SY2129L-1	2048×8	100	80	--	+5	24	K, C, D, P	2-33
SY2129L-2	2048×8	120	80	-	+5	24	K, C, D, P	2-33
SY2129L-3	2048×8	150	80	--	+5	24	K, C, D, P	2-33
SY2129L-4	2048×8	200	80	..	+5	24	K, C, D, P	2-33
SY2168 [2]	4096×4	70	120	30	+5	20	C, D, P	2-61
SY2168-3 [2]	4096×4	55	120	30	+5	20	C, D, P	2-61
SY2169 [2]	4096×4	70	120	--	+5	20	C, D, P	2-65
SY2169-3[2]	4096×4	55	120	--	+5	20	C, D, P	2-65
SY2167 [2]	16,384 x 1	70	120	30	+5	20	C, D, P	2-57
SY2167-3 [2]	$16,384 \times 1$	55	120	30	+5	20	C, D, P	2-57
SY2101[3]	1024×8	[4]	[4]	[4]	+5	48	C	2-69

NOTES:

1. $C=$ Ceramic, $D=$ Cerdip, $P=$ Plastic, $K=$ Leadless Chip Carrier.
2. Preliminary Information.
3. Advanced Information.
4. Not available.

ROM Selection Guide

Commercial $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$)

Part Number	Organization	Access Time Ins) Max.	Maximum Current (mA)		Power Supply (Volts)	Number of Pins	Package Type (Note II	Compatible EPROM/PROM	$\begin{aligned} & \text { Page } \\ & \text { No. } \end{aligned}$
			Operating	Standby					
$\begin{aligned} & \text { SY } 3308 \\ & \text { SY3308R[2] } \end{aligned}$	$\begin{aligned} & 1024 \times 8 \\ & 1024 \times 8 \end{aligned}$	$\begin{aligned} & 70 \\ & 35[3] \end{aligned}$	$\begin{aligned} & 120 \\ & 130 \end{aligned}$	$-$	$\begin{aligned} & +5 \\ & +5 \end{aligned}$	$\begin{aligned} & 24 \\ & 24 \end{aligned}$	$\begin{gathered} C . D . P \\ C . D . P, K \end{gathered}$	$\begin{gathered} \hline 82 \mathrm{~S} 181 \\ 27 \mathrm{~S} 35 \end{gathered}$	$\begin{aligned} & 2-91 \\ & 2-91 \end{aligned}$
SY2316B SY2316B-2 SY2316B-3	$\begin{aligned} & 2048 \times 8 \\ & 2048 \times 8 \\ & 2048 \times 8 \end{aligned}$	$\begin{aligned} & 450 \\ & 200 \\ & 300 \end{aligned}$	$\begin{aligned} & 98 \\ & 98 \\ & 98 \end{aligned}$	--	+5 +5 +5	24 24 24	C. D. P C. D. P C. D. P	2716 2716 2716	$\begin{aligned} & 2-73 \\ & 2-73 \\ & 2-73 \end{aligned}$
SY3316	2048×8	80	120	--	+5	24	C. D.P	$82 \mathrm{S191}$	2-94
SY3316A	2048×8	80	120	20	+5	24	C. D. P	$82 S 191$	2-94
SY.3316R[2]	2048×8	$3513]$	130	-	+5	24	C. D. P. K	27 S45	2-94
SY2332	4096×8	450	100	--	+5	24	C. D.P	TMS2532	2-76
SY2332-2	4096×8	200	100	--	+5	24	C. D. \bar{P}	TMS2532	2-76
SY2332.3	4096×8	300	100	-.	+5	24	C. D. P	TMS2532	2-76
SY2333	4096×8	450	100	--	+5	24	C. D. P	2732/A	2-76
SY2333-2	4096×8	200	100	--	+5	24	C. D. P	2732/A	2-76
SY2333-3	4096×8	300	100	.-	+5	24	C. D. P	2732/A	2-76
SY2364	8192×8	450	100	-	+5	24	C. D. P	TMS2564	2-79
SY2364-2	8192×8	200	100	-	+5	24	C. D. P	TMS2564	2-79
SY2364.3	8192×8	300	100	-	+5	24	C. D. P	TMS2564	2-79
SY2364A	8192×8	450	100	12	+5	24	C. D. P	TMS2564	2-79
SY2364A-2	8192×8	200	100	12	+5	24	C. D. P	TMS2564	2-79
SY2364A-3	8192×8	300	100	12	+5	24	C. D. P	TMS2564	2-79
SY2365	8192×8	450	100	--	+5	28	C. D. P	2764	2-82
SY2365-2	8192×8	200	100	--	+5	28	C. D. P	2764	2-82
SY2365-3	8192×8	300	100	-	+5	28	C. D. P	2764	2-82
SY2365A	8192×8	450	100	12	+5	28	C. D. P	2764	2-82
SY2365A-2	8192×8	200	100	12	+5	28	C. D. P	2764	2-82
SY2365A-3	8192×8	300	100	12	+5	28	C. D. P	2764	2-82
SY23128-2 [2]	$16,384 \times 8$	200	100	--	+5	28	C, D, P	27128	2-85
SY23128-3 [2]	$16,384 \times 8$	300	100	--	+5	28	C, D, P	27128	2-85
SY23128 [2]	$16,384 \times 8$	450	100	--	+5	28	C, D, P	27128	2-85
SY23128A-2[2]	$16,384 \times 8$	200	100	10	+5	28	C, D, P	27128	2-85
SY23128A-3[2]	$16,384 \times 8$	300	100	10	+5	28	C, D, P	27128	2-85
SY23128A [2]	$16,384 \times 8$	450	100	10	+5	28	C, D, P	27128	2-85
SY23256-2[2]	$32 \mathrm{~K} \times 8$	200	100	--	+5	28	C, D, P	27128	2-88
SY23256-3[2]	$32 \mathrm{~K} \times 8$	300	100	--	+5	28	C, D, P	27128	2-88
SY23256[2]	$32 \mathrm{~K} \times 8$	450	100	--	+5	28	C, D, P	27128	2-88
SY23256A-2[2]	$32 \mathrm{~K} \times 8$	200	100	10	+5	28	C, D, P	27128	2-88
SY23256A-3[2]	$32 \mathrm{~K} \times 8$	300	100	10	+5	28	C, D, P	27128	2-88
SY23256A [2]	$32 \mathrm{~K} \times 8$	450	100	10	+5	28	C, D, P	27128	2-88
SY6364[5]	8192×8	450	70	$1 \mathrm{~mA} / 10 \mu \mathrm{~A}{ }^{[4]}$	+5	24	C		2-105
SY6365 [5]	8192×8	450	70	$1 \mathrm{~mA} / 10 \mu \mathrm{~A}[4]$	+5	28	C		2-105

EEPROM Selection Guide

$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$]

SY2801A[5]	64×4	450	20	-	+5	16	D, P		$2-111$
SY2802E [5]	256×8	$350[6]$	70	-	+5	18	D, P		

NOTES:

1. $C=$ Ceramic, $D=$ Cerdip, $P=$ Plastic, $K=$ Leadless Chip Carrier.
2. Preliminary Information.
3. Effective Access Time ($\mathrm{t}_{\mathrm{CPA}}$).
4. $\overline{\mathrm{CE}} @ 2 \mathrm{~V} / \overline{\mathrm{CE}} @ \mathrm{~V}_{\mathrm{CC}}$.
5. Advanced Information.
6. Cycle time.

RAM Cross Reference Guide

Synertek	SY2101	SY2111	SY2112	SY2114A	SY2128/ SY2129	SY2147H	SY2148H/ SY2149H	SY2158/ SY2159	SY2167	SY2168/ SY2169
AMD	AM9101	AM9111	AM9112	AM9114E	AM9128	AM2147	AM2148/ AM2149			
Fujitsu				MB8114E	MB8128	MBM2147H	MBM2148/ MBM2149		MB8167A	MB8168
Intel				2114		2147	$2148 /$ 2149		2167	2168
Mostek						MK4104		MK4118A/ MK4801A		
Motorola				MCM2114						
National				MM2114	NMC2116	NMC2147H	NMC2148H			
NEC				μ PD2114	μ PD446	μ PD2147				
Toshiba				TMM314AP	TMM2016	TMM315				
Hitachi				HM472114A	HM6116		HM6148		HM6167	
T.I.				TMS2114	TMS4016	TMS2147H	TMS2149		TMS2167	TMS2168/
TMS2169										
Mitsubishi					M5L2114	M58725				

ROM Cross Reference Guide

Synertek	SY23168	SY2332	SY2333	SY2364	SY2365	SY23128	SY23256	SY3308	SY3316	SY3308R	SY3316R
AMD	AM9218	AM9232	AM9233	AM9264	AM9265	AM92128					
AMI	$\begin{aligned} & \text { S68A316 } \\ & \text { S6831B } \end{aligned}$	S68332	S2333	S68A364	S2364	S23128					
G.I.	R0-3-9316	R0-3-9332	R0-3-9333	R0-3-9364	R03-9365	RO-9128					
mostek	MK34000			MK36000	MK37000		MK38000				
Motorola	MCM68316E	MCM68A332		MCM68364 MCM68365 MCM68366			MCM63256	MCM68B308			
National	MM52116	MM52132		MM52164							
NEC	${ }_{\mu \text { PD2316E }}$	$\mu \mathrm{PD} 2332$		${ }_{\mu} \mathrm{PD} 2364$							
Signetics	2616	2632		${ }_{2664}^{2664} \text { or }$		26128A					
Toshiba	TMM334	TMM333 TMM2332			TMM2364P		TMM23256				
Rockwell	R-03-1316										
EA	EA8316	EA8332	EA8333								
Tl		TMS4732		TMS4764							
Fairchild	3516										
Hitachi		HN46332		HN48364							
Intel	2316 E	2332			2364A						
Mitsubishi		M58333		M58334							
OKI	MSM3870										
Panasonic		MN2332									
Siemens	SAB8316	SAB8332									

RAMs.

Product
Number
Page
Number
SY2101 2-9
SY2111 2-14
SY2112 2-19
SY2114A 2-25
SY2128 2-29
SY2129 2-33
SY2147H 2-37
SY2148H 2-41
SY2149H 2-45
SY2158 2-49
SY2159 2-53
SY2167 2-57
SY2168 2-61
SY2169 2-65
SY21D1 2-69

SY2101
256×4 Static Random Access Memory

Features

- 256x4 Organization to Meet Needs For Small System Memories
- Access Time - 250/350/450/500/ns
- Single +5 V Supply Voltage
- Directly TTL Compatible - All Inputs and Outputs
- Static MOS - No Clocks or Refreshing Required
- Simple Memory Expansion - Two Chip Enable Inputs
- Inputs Protected - All Inputs Have Protection Against Static Charge
- Low Cost Packaging - 22 Pin Plastic Dual-In-Line Configuration
- Low Power - Typically 150 mW
- Three-State Output - OR-Tie Capability
- Output Disable Provided For Ease of Use in Common Data Bus Systems

Description

The SY2101 is a 256 word by 4 bit static random access memory element using N-channel MOS devices integrated on a monolithic array. It uses fully DC stable (static) circuitry and therefore requires no clocks or refreshing to operate. The data is read out nondestructively and has the same polarity as the input data.
The SY2101 is designed for memory applications where high performance, low cost, large bit storage, and simple interfacing are important design objectives.
It is directly TTL compatible in all respects: inputs, outputs, and a single +5 V supply. Two Chip Enables allow easy selection of an individual package when outputs are OR-tied. An output disable is provided

Pin Configuration

$\mathrm{A}_{3} \sqrt{1}$	22
$\mathrm{A}_{2} \square_{2}$	21
$\mathrm{A}_{1} \square^{3}$	20
A0 \square_{4}	19
A5-5	18
A6 \square^{6}	17
A7 H_{7}	16
GND 8	15
$\mathrm{Di}_{1} \mathrm{C}^{9}$	14
D01 10	13
$\mathrm{DI} 2^{2} 11$	12

Pin Names

DIN	DATA INPUT	OD	OUTPUT DISABLE
$A_{0}-A 7$	ADDRESS INPUTS	DOUT	DATA OUTPUT
R/W	READ/WRITE INPUT	VCC	POWER (+5V)
$\overline{\text { CE1, CE2 }}$	CHIP ENABLE		

so that data inputs and outputs can be tied for common I/O systems. Output disable is then used to eliminate any bi-directional logic.

The SY2101 is fabricated with N -channel ion implanted silicon gate technology. This technology allows the design and production of high-performance, easy-to-use MOS circuits and provides a higher functional density on a monolithic chip than either conventional MOS technology or N -channel silicon gate technology.

Synertek's ion implanted silicon gate technology also provides excellent protection against contamination. This permits the use of low cost plastic packaging.

Block Diagram

Absolute Maximum Ratings*

Temperature Under Bias
Storage Temperature Voltage On Any Pin With

Respect to Ground
Power Dissipation
$-10^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
-0.5 V to +7 V
1 Watt

Comment*

Stresses above those listed under "Absolute Maximum Rating' may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or at any other condition above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
D.C. and Operating Characteristics $T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%$ unless otherwise specified.

Symbol	Parameter	2101-1			$\begin{gathered} \text { 2101A-2 } \\ 2101 \mathrm{~A}, 2101 \mathrm{~A}-4 \end{gathered}$			Unit	Test Conditions
		Min.	Typ. (1)	Max.	Min.	Typ. (1)	Max.		
ILI	Input Current			10			10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=0$ to 5.25 V
ILOH	I/O Leakage Current(2)			15			10	$\mu \mathrm{A}$	$\overline{\mathrm{CE}}=2.2 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=4.0 \mathrm{~V}$
ILOL	1/O Leakage Current(2)			-50			-10	$\mu \mathrm{A}$	$\overline{\mathrm{CE}}=2.2 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=0.45 \mathrm{~V}$
ICC1	Power Supply Current		30	60		30	50	mA	$\begin{aligned} & \mathrm{V}_{I N}=5.25 \mathrm{~V}, 1 \mathrm{O}=0 \mathrm{~mA} \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$
ICC2	Power Supply Current			70			55	mA	$\begin{aligned} & V_{I N}=5.25 \mathrm{~V}, 1 \mathrm{O}=0 \mathrm{~mA} \\ & T_{A}=0^{\circ} \mathrm{C} \end{aligned}$
$\mathrm{V}_{\text {IL }}$	Input Low Voltage	-0.5		+0.65	-0.5		+0.8	V	
$\mathrm{V}_{\text {IH }}$	Input High Voltage	2.2		V_{CC}	2.0		V_{CC}	V	
VOL	Output Low Voltage			+0.45			+0.4	v	$\begin{aligned} & \mathrm{I}_{\mathrm{OL}}=3.2 \mathrm{~mA} \\ & \left(\mathrm{I}_{\mathrm{OL}}=2.0 \mathrm{~mA} 2101-1\right) \end{aligned}$
V_{OH}	Output High Voltage	2.2			2.4			V	$\mathrm{I}^{\mathrm{OH}}=-150 \mu \mathrm{~A}$

NOTE: 1. Typical Values are for $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and nominal supply voltage.
2. Input and Output tied together.

Capacitance $T_{A}=25^{\circ} \mathrm{C}, \mathrm{f}=, \mathrm{MHz}$

Symbol	Test	Typ.	Max.	Unit
CIN $^{\prime \prime}$	Input Capacitance (All Input Pins) $V_{I N}=0 V$	4	8	pF
COUT	Output Capacitance $V_{\text {OUT }}=0 \mathrm{~V}$	8	12	pF

A.C. Characteristics - SY2101-1 $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V} \mathrm{CC}=5 \mathrm{~V} \pm 5 \%$ unless otherwise specified.

Symbol	Parameter	Min.	Max.	Unit
READ CYCLE				
trey	Read Cycle	500		ns
tA	Access Time		500	ns
tco	Chip Enable To Output		350	ns
tod	Output Disable To Output		300	ns
$\mathrm{tDF}^{[1]}$	Data Output to High 2 State	0	150	ns
tor	Previous Data Read Valid after change of Address	0		ns

WRITE CYCLE

tWCY	Write Cycle	500		ns
tAW	Write Delay	100		ns
tCW	Chip Enable To Write	400		ns
tDW	Data Setup	280		ns
tDH	Data Hold	100		ns
tWP	Write Pulse	300		ns
tWR	Write Recovery	50		ns

A.C. Characteristics - SY2101A-2 $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%$ unless otherwise specified.

Symbol	Parameter	Min.	Max.	Unit	
READ CYCLE					
tRCY	Read Cycle	250		ns	
tA	Access Time		250	ns	
tCO	Chip Enable To Output		180	ns	
tOD	Output Disable To Output		130	ns	
tDF $\left.{ }^{\prime \prime}\right]$	Data Output to High Z State	0	180	ns	
tOH	Previous Data Read Valid after change of Address	40		ns	
WRITE CYCLE					
tWCY	Write Cycle	250		ns	
tAW	Write Delay	20		ns	
tCW	Chip Enable To Write	150		ns	
tDW	Data Setup	150		ns	
tDH	Data Hold	0		ns	
tWP	Write Pulse	150		ns	
tWR	Write Recovery	0		ns	
tDS	Output Disable Setup	20		ns	

A.C. Characteristics - SY2101A $\quad T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%$ unless otherwise specified.

Symbol	Parameter	Min.	Max.	Unit
READ CYCLE				
trcy	Read Cycle	350		ns
${ }^{\text {t }}$ A	Access Time		350	ns
${ }^{\text {t }} \mathrm{CO}$	Chip Enable To Output		240	ns
tod	Output Disable To Output		180	ns
$\mathrm{tDF}^{[1]}$	Data Output to High Z State	0	150	ns
${ }^{\text {toH }}$	Previous Data Read Valid after change of Address	40		ns

WRITE CYCLE

tWCY	Write Cycle	350		ns
taW	Write Delay	20		ns
t $C W$	Chip Enable To Write	200		ns
tDW	Data Setup	200		ns
tDH	Data Hold	0		ns
tWP	Write Pulse	200		ns
tWR	Write Recovery	0		ns
tDS	Output Disable Setup	20		ns

NOTE: $1 t_{\mathrm{DF}}$ is with respect to the trailing edge of $\overline{\mathrm{CE}}, \mathrm{CE} 2$, or OD, whichever occurs first.
A.C. Characteristics - SY2101A-4 $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%$ unless otherwise specified.

Symbol	Parameter	Min.	Max.	Unit
READ CYCLE				
${ }_{\text {trey }}$	Read Cycle	450		ns
${ }^{t}$ A	Access Time		450	ns
tCO	Chip Enable To Output		310	ns
tod	Output Disable To Output		250	ns
${ }_{\text {tDF }}{ }^{[1]}$	Data Output to High Z State	0	200	ns
${ }^{\text {tor }}$	Previous Data Read Valid after change of Address	40		ns
WRITE CYCLE				
twCY	Write Cycle	450		ns
${ }^{\text {t }}$ AW	Write Delay	20		ns
tCW	Chip Enable To Write	250		ns
tDW	Data Setup	250		ns
tDH	Data Hold	0		ns
tWP	Write Pulse	250		ns
tWR	Write Recovery	0		ns
${ }^{\text {t }}$ DS	Output Disable Setup	20		ns

Timing Diagrams

READ CYCLE

WRITE CYCLE

A.C. Testing Input, Output Waveform

A.C. Testing Load Circuit

Ordering Information

Order Number	Package Type	Access Time	Temperature Range
SYP2101-1	Plastic DIP	500 ns	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
SYC2101-1	Ceramic DIP	500 ns	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
SYP2101A-2	Plastic DIP	250 ns	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
SYC2101A-2	Ceramic DIP	250 ns	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
SYP2101A	Plastic DIP	350 ns	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
SYC2101A	Ceramic DIP	350 ns	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
SYP2101A-4	Plastic DIP	450 ns	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
SYC2101A-4	Ceramic DIP	450 ns	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$

256×4 Static Random Access Memory

Features

- Organization 256 Words By 4 Bits
- Common Data Input And Output
- Single +5 V Supply Voltage
- Directly TTL Compatible - All Inputs and Outputs
- Static MOS - No Clocks or Refreshing Required
- Access Time - 250/350/450/500ns
- Simple Memory Expansion - 2 Chip Enable Inputs
- Fully Decoded - On-Chip Address Decode
- Inputs Protected - All Inputs have Protection Against Static Charge
- Low Cost Packaging - 18 Pin Plastic Dual-In-Line Configuration
- Low Power - Typically 150 mW
- Three - State Output - OR - Tie Capability

Description

The SY2111 is a 256 by 4 bit static random access memory element using N -channel MOS devices integrated on a monolithic array. It uses fully DC stable (static) circuitry and therefore requires no clocks or refreshing to operate. The data is read out nondestructively and has the same polarity as the input data. Common input/output pins are provided.

The SY2111 is designed for memory applications in small systems where high performance, low cost, large bit storage, and simple interfacing are important design objectives.
It is directly TTL compatible in all respects: inputs,

Pin Configuration

Pin Names

$A_{0}-A_{7}$	ADDRESS INPUTS	$\overline{C E}_{1}$	CHIP ENABLE 1
OD	OUTPUT DISABLE	$\overline{\mathrm{CE}}_{2}$	CHIP ENABLE 2
R/W	READ/WRITE INPUT	$1 / \mathrm{O}_{1}-1 / \mathrm{O}_{4}$	DATA INPUT/OUTPUT

outputs, and a single +5 V supply. Separate Chip Enable leads allow easy selection of an individual package when outputs are OR-tied.

The SY2111 is fabricated with N -channel ion-implanted silicon gate technology, which allows the design and production of high performance, easy-to-use MOS circuits and provides a higher functional density on a monolithic chip than either conventional MOS technology or N-channel silicon gate technology.
Synertek's silicon gate technology also provides excellent protection against contamination. This permits the use of low cost plastic packaging.

Block Diagram

Absolute Maximum Ratings*

Temperature Under Bias
Storage Temperature
Voltage on Any Pin
With Respect to Ground
Power Dissipation
$-10^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}$ $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
-0.5 V to +7 V
1 Watt

Comment*

Stresses above those listed under "Absolute Maximum Rating" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or at any other condition above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
D.C. and Operating Characteristics $T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%$, unless otherwise specified.

Symbol	Parameter	2111-1			$\begin{gathered} 2111 A \\ 2111 A-2,2111 A-4 \end{gathered}$			Unit	Test Conditions
		Min.	Typ. ${ }^{(1)}$	Max.	Min.	Typ. ${ }^{(1)}$	Max.		
ILI	Input Load Current			10			10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=0$ to 5.25 V
ILOH	I/O Leakage Current			15			10	$\mu \mathrm{A}$	$\overline{C E}=2.2 \mathrm{~V}, \mathrm{~V}_{1 / \mathrm{O}}=4.0 \mathrm{~V}$
ILOL	I/O Leakage Current			-50			-10	$\mu \mathrm{A}$	$\overline{C E}=2.2 \mathrm{~V}, \mathrm{~V}_{1 / \mathrm{O}}=0.45 \mathrm{~V}$
ICC1	Power Supply Current		30	60		30	50	mA	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=5.25 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{I} / \mathrm{O}}=0 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$
ICC2	Power Supply Current			70			55	mA	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=5.25 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{I} / \mathrm{O}}=0 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \end{aligned}$
VIL	Input Low Voltage	-0.5		+0.65	-0.5		+0.8	V	
VIH	Input High Voltage	2.2		VCC	2.0		VCC	V	
VOL	Output Low Voltage			0.45			0.4	V	$\begin{aligned} & \mathrm{TOL}=3.2 \mathrm{~mA} \\ & (1 \mathrm{OL}=2.0 \mathrm{~mA}-2111-1) \end{aligned}$
VOH	Output High Voltage	2.2			2.4			V	$\mathrm{IOH}=-150 \mu \mathrm{~A}$

NOTES: 1 . Typical values are for $\mathrm{T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$ and nominal supply voltage.
A.C. Characteristics - SY2111-1 $\quad T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{C C}=5 \mathrm{~V} \pm 5 \%$, unless otherwise specified.

Symbol	Parameter	Min.	Max.	Unit
READ CYCLE	500		ns	
$\mathrm{t}_{\text {RCY }}$	Read Cycle		500	ns
t_{A}	Access Time		350	ns
tCO	Chip Enable To Output		300	ns
toD	Output Disable To Output	0	150	ns
tDF[1]	Data Output To High Z State	0		ns
toH	Previous Data Read Valid After Change Of Address			

WRITE CYCLE

tWCY	Write Cycle	500		ns
tAW	Write Delay	100		ns
t CW	Chip Enable To Write	400		ns
tDW	Data Setup	280		ns
tDH	Data Hold	100		ns
tWP	Write Pulse	300		ns
tWR	Write Recovery	50		ns
tDS	Output Disable Setup	20		ns

NOTE: 1. tDF is with respect to the trailing edge of CE1, CE2, or OD, whichever comes first.
A.C. Characteristics - SY2111A-2 $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%$, unless otherwise specified.

Symbol	Parameter	Min.	Max.	Unit
READ CYCLE				
tRCY	Read Cycle	250		ns
tA	Access Time		250	ns
tco	Chip Enable To Output		180	ns
toD	Output Disable To Output		130	ns
tDF[1]	Data Output To High Z State	0	180	ns
toH	Previous Data Read Valid After Change Of Address	40		

WRITE CYCLE

twCY	Write Cycle	250		ns
tAW	Write Delay	20		ns
t$C W$	Chip Enable To Write	150		ns
tDW	Data Setup	150		ns
tDH	Data Hold	0		ns
tWP	Write Pulse	150		ns
tWR	Write Recovery	0		ns
tDS	Output Disable Setup	20		ns

A.C. Characteristics - SY2111A $T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%$, unless otherwise specified.

Symbol	Parameter	Min.	Max.	Unit
READ CYCLE				
${ }_{\text {trey }}$	Read Cycle	350		ns
${ }^{t}$ A	Access Time		350	ns
tco	Chip Enable To Output		240	ns
tOD	Output Disable To Output		180	ns
tDF [1]	Data Output To High Z State	0	150	ns
${ }^{\text {toh }}$	Previous Data Read Valid After Change Of Address	40		ns

WRITE CYCLE

twCY	Write Cycle	350		ns
taW	Write Delay	20		ns
tCW	Chip Enable To Write	200		ns
tDW	Data Setup	200		ns
tDH	Data Hold	0		ns
tWP	Write Pulse	200		ns
tWR	Write Recovery	0		ns
tDS	Output Disable Setup	20		ns

NOTE: 1. t_{DF} is with respect to the trailing edge of $\overline{\mathrm{CE} 1}, \overline{\mathrm{CE} 2}$, or OD , whichever comes first.
A.C. Characteristics - SY2111A-4 $T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%$, unless otherwise specified.

Symbol	Parameter	Min.	Max.	Unit
READ CYCLE	450		ns	
$\mathrm{t}_{\mathrm{RCY}}$	Read Cycle		450	ns
t A	Access Time		310	ns
t CO	Chip Enable To Output		250	ns
tOD	Output Disable To Output	0	200	ns
$\mathrm{t}_{\mathrm{DF}}[1]$	Data Output To High Z State	40		
toH	Previous Data Read Valid After Change Of Address			

WRITE CYCLE

twCy	Write Cycle	450	ns
${ }^{\text {t }}$ AW	Write Delay	20	ns
t CW	Chip Enable To Write	250	ns
tDW	Data Setup	250	ns
${ }^{\text {t }} \mathrm{DH}$	Data Hold	0	ns
tWP	Write Pulse	250	ns
tWR	Write Recovery	0	ns
tDS	Output Disable Setup	20	ns

Capacitance $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$

Symbol	Test	Typ.	Max	Unit
$\mathrm{C}_{\text {IN }}$	Input Capacitance (All Input Pins) $\mathrm{VIN}_{\text {IN }}=0 \mathrm{~V}$	4	8	pF
$\mathrm{C}_{\text {OUT }}$	Output Capacitance $\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$	10	15	pF

Timing Diagrams

READ CYCLE

NOTE: 1. ${ }^{t}$ DF is with respect to the trailing edge of CE1, CE2 or OD, whichever comes first.

WRITE CYCLE

A.C. Testing Input, Output Waveform

A.C. Testing Load Circuit

C_{L} INCLUDES JIG CAPACITANCE

Ordering Information

Order Number	Package Type	Access Time	Temperature Range
SYP2111-1	Plastic DIP	500 ns	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
SYD2111-1	Cerdip	500 ns	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
SYP2111A-2	Plastic DIP	250 ns	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
SYD2111A-2	Cerdip	250 ns	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
SYP2111A	Plastic DIP	350 ns	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
SYD2111A	Cerdip	350 ns	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
SYP2111A-4	Plastic DIP	450 ns	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
SYD2111A-4	Cerdip	450 ns	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$

SY2112

Features

- Organization 256 Words by 4 Bits
- Common Data Input and Output
- Single +5 V Supply Voltage
- Directly TTL Compatible - All Inputs and Outputs
- Static MOS - No Clocks or Refreshing Required
- Access Time - 250/350/450/500 ns
- Simple Memory Expansion - Chip Enable Input
- Fully Decoded - On-Chip Address Decode
- Inputs Protected - All Inputs Have Protection Against Static Charge
- Low Cost Packaging - 16 Pin Plastic Dual-In-Line Configuration
- Low Power - Typically 150 mW
- Three-State Output - OR-tie Capability

Description

The SY2112 is a 256 word by 4 bit static random access memory element using N -channel MOS devices integrated on a monolithic array. It uses fully DC stable (static) circuitry and therefore requires no clocks or refreshing to operate. The data is read out nondestructively and has the same polarity as the input data. Common input/output pins are provided.
The SY2112 is designed for memory applications in small systems where high performance, low cost, large bit storage, and simple interfacing are important design objectives.
It is directly TTL compatible in all respects: inputs, outputs, and a single +5 V supply. A separate Chip

Pin Configuration

Pin Names

$A_{0}-A_{7}$	ADDRESS INPUTS
R / W	READ/WRITE INPUT
$\overline{\mathrm{CE}}$	CHIP ENABLE INPUT
$\mathrm{I} / \mathrm{O}_{1}-1 / \mathrm{O}_{4}$	DATA INPUT/OUTPUT
V_{CC}	POWER $(+5 \mathrm{~V})$

Enable lead allows easy selection of an individual package when outputs are OR-tied.

The SY2112 is fabricated with ion implanted Nchannel silicon gate technology. This technology allows the design and production of high performance, easy-to-use MOS circuits and provides a higher functional density on a monolithic chip than either conventional MOS technology or N -channel silicon gate technology.

Synertek's ion implanted silicon gate technology also provides excellent protection against contamination. This permits the use of low cost plastic packaging.

Block Diagram

Absolute Maximum Ratings*

Temperature Under Bias
Storage Temperature
Voltage On Any Pin
With Respect to Ground Power Dissipation
$-10^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}$ $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
-0.5 V to +7 V
1 Watt

Comment*

Stresses above those listed under "Absolute Maximum Rating" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or at any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
D.C. and Operating Characteristics - SY2112A, SY2112A-2, SY2112A-4
$T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, V_{C C}=5 \mathrm{~V} \pm 5 \%$ unless otherwise specified.

Symbol	Parameter	Min.	Typ. (1)	Max.	Unit	Test Conditions
ILI	Input Current			10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=0$ to 5.25 V
ILOH	I/O Leakage Current			10	$\mu \mathrm{A}$	$\overline{\mathrm{CE}}=2.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{I} / \mathrm{O}}=4.0 \mathrm{~V}$
ILOL	I/O Leakage Current			-10	$\mu \mathrm{A}$	$\overline{\mathrm{CE}}=2.2 \mathrm{~V}, \mathrm{~V}_{1 / \mathrm{O}}=0.45 \mathrm{~V}$
ÍCC1	Power Supply Current		30	50	mA	$\begin{aligned} & \mathrm{V}_{1 \mathrm{~N}}=5.25 \mathrm{~V}, I_{I / O}=0 \mathrm{~mA} \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$
ICC2	Power Supply Current			55	mA	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=5.25 \mathrm{~V}, \mathrm{I}_{\mathrm{I} / \mathrm{O}}=0 \mathrm{~mA} \\ & \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \end{aligned}$
VIL	Input "Low" Voltage	-0.5		+0.8	V	
VIH	Input "High" Voltage	2.0		V_{CC}	V	
V_{OL}	Output "Low" Voltage			+0.4	V	$1 \mathrm{OL}=3.2 \mathrm{~mA}$
V_{OH}	Output "High" Voltage	2.4			V	$1 \mathrm{OH}=-150 \mu \mathrm{~A}$

NOTES: 1. Typical values are for $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and nominal supply voltage.

D.C. and Operating Characteristics - SY2112-1

$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{C}}=5 \mathrm{~V} \pm 5 \%$ unless otherwise specified.

Symbol	Parameter	Min.	Typ. (1)	Max.	Unit	Test Conditions
I_{LI}	Input Current			10	$\mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{IN}}=0$ to 5.25 V
$\mathrm{I}_{\mathrm{LOH}}$	I/O Leakage Current			15	$\mu \mathrm{~A}$	$\overline{\mathrm{CE}}=2.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{I} / \mathrm{O}}=4.0 \mathrm{~V}$
$\mathrm{I}_{\mathrm{LOL}}$	I / O Leakage Current			-50	$\mu \mathrm{~A}$	$\overline{\mathrm{CE}}=2.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{I} / \mathrm{O}}=0.45 \mathrm{~V}$
I_{CC}	Power Supply Current		30	60	mA	$\mathrm{V}_{\mathrm{IN}}=5.25 \mathrm{~V}, \mathrm{I}_{\mathrm{I} / \mathrm{O}}=0 \mathrm{~mA}$ $\mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
I_{CC}	Power Supply Current			70	mA	$\mathrm{V}_{\mathrm{IN}}=5.25 \mathrm{~V}, \mathrm{I}_{\mathrm{I} / \mathrm{O}}=0 \mathrm{~mA}$ $\mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$
V_{IL}	Input "Low" Voltage	-0.5		+0.65	V	
$\mathrm{~V}_{\mathrm{IH}}$	Input "High" Voltage	2.2		$\mathrm{~V}_{\mathrm{CC}}$	V	
V_{OL}	Output "Low" Voltage			+0.45	V	$\mathrm{I}_{\mathrm{OL}}=2 \mathrm{~mA}$
$\mathrm{~V}_{\mathrm{OH}}$	Output "High" Voltage	2.2			V	$\mathrm{I}_{\mathrm{OH}}=-150 \mu \mathrm{~A}$

NOTES: 1 . Typical values are for $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and nominal supply voltage.

A.C. Characteristics - SY2112A-2

READ CYCLE $T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%$ unless otherwise specified.

Symbol	Parameter	Min.	Max.	Unit
$\mathrm{t}_{\mathrm{RCY}}$	Read Cycle	250		ns
t_{A}	Access Time		250	ns
t_{CO}	Chip Enable to Output Time		180	ns
t_{CD}	Chip Enable to Output Disable Time	0	120	ns
t_{OH}	Previous Read Data Valid After Change	40		ns
	of Address			

WRITE CYCLE NO. $1 \mathrm{TA}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%$

Symbol	Parameter	Min.	Max.	Unit
tWCY1	Write Cycle	250		ns
taW1	Address to Write Setup Time	20		ns
tDW1	Write Setup Time	180		ns
tWP1	Write Pulse Width	180		ns
tCS1	Chip Enable Setup Time	0	100	ns
${ }^{\text {t }} \mathrm{CH} 1$	Chip Enable Hold Time	0		ns
tWR1	Write Recovery Time	0		ns
tDH1	Data Hold Time	0		ns
t ${ }^{\text {ch }} 1$	Chip Enable to Write Setup Time	180		ns

WRITE CYCLE NO. $2 \mathrm{TA}^{\prime}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%$

Symbol	Parameter	Min.	Max.	Unit
twCY2	Write Cycle	250		ns
tAW2	Address to Write Setup Time	20		ns
tDW2	Write Setup Time	180		ns
tWD2	Write To Output Disable Time	120	100	ns
tCS2	Chip Enable Setup Time	0		ns
tCH2	Chip Enable Hold Time	0		ns
tWR2	Write Recovery Time	0		ns
tDH2	Data Hold Time	0		ns

A.C. Characteristics - SY2112A

READ CYCLE $T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{C}}=5 \mathrm{~V} \pm 5 \%$ unless otherwise specified.

Symbol	Parameter	Min.	Max.	Unit
$\mathrm{t}_{\mathrm{RCY}}$	Read Cycle	350		ns
t_{A}	Access Time		350	ns
t_{CO}	Chip Enable to Output Time		240	ns
t_{CD}	Chip Enable to Output Disable Time	0	200	ns
t_{OH}	Previous Read Data Valid After Change	40		ns
	of Address			

A.C. Characteristics - SY2112A (Cont.)

WRITE CYCLE NO. $1 \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%$

Symbol	Parameter	Min.	Max.	Unit
tWCY1	Write Cycle	350		ns
tAW1	Address to Write Setup Time	20		ns
tDW1	Write Setup Time	250		ns
tWP1	Write Pulse Width	250		ns
tCS1	Chip Enable Setup Time	0	100	ns
tCH1	Chip Enable Hold Time	0		ns
tWR1	Write Recovery Time	0		ns
tDH1	Data Hold Time	0		ns
tCW1	Chip Enable to Write Setup Time	250		ns

WRITE CYCLE NO. $2 \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%$

Symbol	Parameter	Min.	Max.	Unit
tWCY2	Write Cycle	350		ns
tAW2	Address to Write Setup Time	20		ns
tDW2	Write Setup Time	250		ns
tWD2	Write To Output Disable Time	200	130	ns
tCS2	Chip Enable Setup Time	0		ns
tCH2	Chip Enable Hold Time	0		ns
tWR2	Write Recovery Time	0		ns
tDH2	Data Hold Time	0		ns

A.C. Characteristics - SY2112A-4

READ CYCLE $T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%$ unless otherwise specified.

Symbol	Parameter	Min.	Max.	Unit
$\mathrm{t}_{\mathrm{RCY}}$	Read Cycle	450		ns
t_{A}	Access Time		450	ns
t_{CO}	Chip Enable to Output Time		200	ns
t_{CD}	Chip Enable to Output Disable Time	0	150	ns
t_{OH}	Previous Read Data Valid After Change	0		ns
	of Address	40	260	

WRITE CYCLE NO. $1 \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%$

Symbol	Parameter	Min.	Max.	Unit
tWCY1	Write Cycle	450		ns
tAW1	Address to Write Setup Time	20		ns
tDW1	Write Setup Time	300		ns
tWP1	Write Pulse Width	300		ns
tCS1	Chip Enable Setup Time	0	100	ns
tCH1	Chip Enable Hold Time	0		ns
tWR1	Write Recovery Time	0		ns
tDH1	Data Hold Time	0		ns
tCW1	Chip Enable to Write Setup Time	300		ns

A.C. Characteristics - SY2112A-4 (Cont.)

WRITE CYCLE NO. $2 \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%$

Symbol	Parameter	Min.	Max.	Unit
tWCY2	Write Cycle	450		ns
${ }^{\text {t }}$ AW2	Address to Write Setup Time	0		ns
tDW2	Write Setup Time	250		ns
tWD2	Write To Output Disable Time		150	ns
${ }^{\text {t CS2 }}$	Chip Enable Setup Time	0		ns
${ }^{\text {t }} \mathrm{CH} 2$	Chip Enable Hold Time	0		ns
tWR2	Write Recovery Time	0		ns
${ }^{\text {t }} \mathrm{H} 2$	Data Hold Time	0		ns

A.C. Characteristics - SY2112-1

READ CYCLE $T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%$, unless otherwise specified.

Symbol	Parameter	Min.	Max.	Unit	Test Conditions
$\mathrm{t}_{\mathrm{R} C \mathrm{Y}}$	Read Cycle	500		ns	$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}} \leqslant 20 \mathrm{~ns}$
t_{A}	Access Time		500	ns	$0.65 \mathrm{~V} \geqslant \mathrm{~V}_{\mathrm{IN}} \geqslant 2.2 \mathrm{~V}$
$\mathrm{t}_{\mathrm{C}} \mathrm{CD}$	Chip Enable To Output Time		350	ns	Timing Reference $=1.5 \mathrm{~V}$
t_{CD}	Chip Enable To Output Disable Time	0	150	ns	Load $=1 \mathrm{TTL}$ Gate
t_{OH}	Previous Read Data Valid After Change of Address	0		ns	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$

WRITE CYCLE NO. $1 \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%$

Symbol	Parameter	Min.	Max.	Unit	Test Conditions
tWCY1	Write Cycle	500		ns	$\mathrm{tr}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}} \leqslant 20 \mathrm{~ns}$
tAW1	Address To Write Setup Time	100		ns	$0.65 \mathrm{~V} \geqslant \mathrm{~V}_{\text {IN }} \geqslant 2.2 \mathrm{~V}$
tDW1	Write Setup Time	200		ns	Timing Reference $=1.5 \mathrm{~V}$
tWP1	Write Pulse Width	300		ns	Load $=1$ TTL Gate
tCS1	Chip Enable Setup Time	0	100	ns	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$
tCH1	Chip Enable Hold Time	0		ns	
tWR1	Write Recovery Time	50		ns	
tDH1	Data Hold Time	100		ns	
tCW1	Chip Enable to Write Setup Time	200		ns	

WRITE CYCLE NO. $2 \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%$

Symbol	Parameter	Min.	Max.	Unit	Test Conditions
tWCY2	Write Cycle	500		ns	$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}} \leqslant 20 \mathrm{~ns}$
taW2	Address To Write Setup Time	100		ns	$0.65 \mathrm{~V} \geqslant \mathrm{~V}_{\mathrm{IN}} \geqslant 2.2 \mathrm{~V}$
tDW2	Write Setup Time	200		ns	Timing Reference $=1.5 \mathrm{~V}$
tWD2	Write To Output Disable Time	100		ns	Load $=1$ TTL Gate
tCS2	Chip Enable Setup Time	0		ns	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$
tCH2	Chip Enable Hold Time	0		ns	
tWR2	Write Recovery Time	50		ns	
tDH2	Data Hold Time	100		ns	

Read Cycle Waveforms

Write Cycle \#1 $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%$

NOTE 1. Data Hold Time. ($T_{D H}$) is reference to the trailing edge of CHIP ENABLE (CE)or READ/WRITE (R/W) whichever comes first.
A.C. Testing Input, Output Waveform

Capacitance

Symbol	Test		Limits (pF)	
		Typ.	Max.	
$C_{I N}$	Input Capacitance (All Input Pins) $V_{I N}=0 V$	4	8	
$C_{I / O}$	I/O Capacitance $V_{I / O}=0 \mathrm{~V}$	10	18	

Write Cycle \#2 $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%$

Package Availability 16 Pin Cerdip

 16 Pin PlasticA.C. Testing Load Circuit

C_{L} INCLUDES JIG CAPACITANCE

Ordering Information

Order Number	Package Type	Access Time	Temperature Range
SYP2112A-2	Plastic DIP	250nsec	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
SYD2112A-2	Cerdip	250 nsec	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
SYP2112A	Plastic DIP	350 nsec	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
SYD2112A	Cerdip	$350 n s e c$	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
SYP2112A-4	Plastic Dip	450 nsec	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
SYD2112A-4	Cerdip	450 nsec	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
SYP2112-1	Plastic DIP	500 nsec	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
SYD2112-1	Cerdip	500 nsec	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$

SY2114A
1024×4 Static Random Access Memory

Features

- 100ns Maximum Access
- Low Operating Power Dissipation $0.05 \mathrm{~mW} /$ Bit
- No Clocks or Strobes Required
- Identical Cycle and Access Times
- Single +5V Supply
- Totally TTL Compatible: All Inputs, Outputs, and Power Supply
- Common Data I/O
- 400 mv Noise Immunity
- High Density 18 Pin Package

Description

The SY2114A is a 4096-Bit static Random Access Memory organized 1024 words by 4 -bits and is fabricated using Synertek's N -channel Silicon-Gate MOS technology. It is designed using fully DC stable (static) circuitry in both the memory array and the decoding and therefore requires no clock or refreshing to operate. Address setup times are not required and the data is read out nondestructively with the same polarity as the input data. Common Input/Output pins are provided to simplify design of the bus oriented systems, and can drive 1 TTL load.

Pin Configuration

The SY2114A is designed for memory applications where high performance, low cost, large bit storage, and simple interfacing are important design objectives. It is totally TTL compatible in all respects: inputs, outputs, and the single +5 V supply. A separate Chip Select (CS) input allows easy selection of an individual device when outputs are or-tied.
The SY2114A is packaged in an 18-pin DIP for the highest possible density and is fabricated with N channel, Ion Implanted, Silicon-Gate technology - a technology providing excellent performance characteristics as well as improved protection against contamination.

Block Diagram

Absolute Maximum Ratings*

Temperature Under Bias
Storage Temperature Voltage on Any Pin with Respect to Ground
Power Dissipation
Electrostatic Discharge Rating (ESD)**
Inputs to Ground $\pm 2000 \mathrm{~V}$

Comment*

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
D.C. Characteristics $\quad T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%$ (Unless otherwise Specified)

Symbol	Parameter	$\begin{aligned} & \text { 2114AL-1/ } \\ & \text { L-2/L-3/L-4 } \end{aligned}$		$\begin{aligned} & 2114 A-4 \\ & 2114 A-5 \\ & \hline \end{aligned}$		Unit	Conditions
		Min	Max	Min	Max		
${ }_{\text {L }}$ I	Input Load Current (All input pins)		10		10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=0$ to 5.5 V
ILO	I/O Leakage Current		10		10	$\mu \mathrm{A}$	$\begin{aligned} & \overline{\mathrm{CS}}=2.0 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{I} / \mathrm{O}}=0.4 \mathrm{~V} \text { to } \mathrm{V} \mathrm{CC} \end{aligned}$
ICC1	Power Supply Current		35		65	mA	$\begin{aligned} & V_{C C}=5.5 \mathrm{~V}, I_{1 / O}=0 \mathrm{~mA}, \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$
ICC2	Power Supply Current		40		70	mA	$\begin{aligned} & V_{C C}=5.5 \mathrm{~V}, I_{I / O}=0 \mathrm{~mA} \\ & T_{A}=0^{\circ} \mathrm{C} \end{aligned}$
VIL	Input Low Voltage	-3.0	0.8	-3.0	0.8	V	
VIH	Input High Voltage	2.0	6.0	2.0	6.0	V	
V_{OL}	Output Low Voltage		0.4		0.4	V	$1 \mathrm{OL}=3.2 \mathrm{~mA}$
VOH	Output High Voltage	2.4	VCC	2.4	VCC	V	$\mathrm{IOH}=-1.0 \mathrm{~mA}$

Capacitance $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}$

Symbol	Test	Typ	Max	Units
$\mathrm{C}_{\mathrm{I} / \mathrm{O}}$	Input/Output Capacitance		5	pF
$\mathrm{C}_{\text {IN }}$	Input Capacitance		5	pF

NOTE: This parameter is periodically sampled and not 100% tested.
A.C. Characteristics $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%$ (Unless otherwise Specified)

Symbol	Parameter	2114 AL -1		2114 AL-2		2114 AL-3		2114A-4/L-4		2114A-5		Unit
		Min	Max									
Read Cycle tRC	Read Cycle Time	100		120		150		200		250		nsec
tA	Access Time		100		120		150		200		250	nsec
tCO	Chip Select to Output Valid		50		70		70		70		85	nsec
tCX	Chip Select to Output Enabled	10		10		10		10		10		nsec
tOTD	Chip Deselect to Output Off		30		35		40		50		60	nsec
tOHA	Output Hold From Address Change	15		15		15		15		15		nsec
Write Cycle tWC	Write Cycle Time	100		120		150		200		250		nsec
tAW	Address to Write Setup Time	0		0		0		0		0		nsec
IW	Write Pulse Width	50		75		90		120		135		nsec
tWR	Write Release Time	0		0		0		0		0		nsec
toTW	Write to Output Off		30		35		40		50		60	nsec
tow	Data to Write Overlap	50		70		90		120		135		nsec
tDH	Data Hold	0		0		0		0		0		nsec

A.C. Testing Input, Output Waveform

A.C. Testing Load Circuit

Timing Diagrams

READ CYCLE (note 1)

WRITE CYCLE

NOTES:

1. $\overline{W E}$ is high for a Read Cycle.
2. tw is measured from the latter of $\overline{C S}$ or $\overline{W E}$ going low to the earlier of $\overline{C S}$ or $\overline{W E}$ going high.
3. A minimum 0.5 ms time delay is required after application of $\mathrm{V}_{\mathrm{CC}}(+5 \mathrm{~V})$ before proper device operation is achieved.

Data Storage

When $\overline{W E}$ is high, the data input buffers are inhibited to prevent erroneous data from being written into the array. As long as $\overline{W E}$ remains high, the data stored cannot be affected by the Address, Chip Select, or

Data I/O logic levels or timing transitions.
Data storage also cannot be affected by $\overline{\mathrm{WE}}$; Addresses, or the I/O ports as long as $\overline{\mathrm{CS}}$ is high. Either $\overline{\mathrm{CS}}$ or $\overline{\mathrm{WE}}$ or both can prevent extraneous writing due to
signal transitions.
Data within the array can only be changed during Write time - defined as the overlap of CS low and $\overline{\mathrm{WE}}$ low. The addresses must be properly established during the entire Write time plus t_{WR}.
Internal delays are such that address decoding propagates ahead of data inputs and therefore no address
setup time is required. If the Write time precedes the addresses, the data in previously addressed locations, or some other location, may be changed. Addresses must remain stable for the entire Write cycle but the Data Inputs may change. The data which is stable for tDW at the end of the Write time will be written into the addressed location.

Typical Characteristics

Package Availability

18 Pin Cerdip 18 Pin Plastic

Ordering Information

Order Number	Access Time (Max)	Supply Current (Max)	Package Type
SYD2114AL-1	100 nsec	40 mA	Cerdip
SYP2114AL-1	100 nsec	40 mA	Plastic
SYD2114AL-2	120 nsec	40 mA	Cerdip
SYP2114AL-2	120 nsec	40 mA	Plastic
SYD2114AL-3	150 nsec	40 mA	Cerdip
SYP2114AL-3	150 nsec	40 mA	Plastic
SYD2114AL-4	200 nsec	40 mA	Cerdip
SYP2114AL-4	200 nsec	40 mA	Plastic
SYD2114A-4	200 nsec	70 mA	Cerdip
SYP2114A-4	200 nsec	70 mA	Plastic
SYD2114A-5	250 nsec	70 mA	Cerdip
SYP2114A-5	250 nsec	70 mA	Plastic

Features

- 100 nsec Maximum Access Time
- Fully Static Operation:

No Clocks or Strobes Required

- Automatic $\overline{C E}$ Power Down
- Identical Cycle and Access Times
- Single +5 V Supply ($\pm 10 \%$)
- Pin Compatible with 16 K ROMs, EPROMs, and EEPROMs
- Totally TIL Compatible: All Inputs and Outputs
- Common Data Input and Output
- Three-State Output
- JEDEC Approved Pinout

Description

The Synertek SY2128 is a 16,384 bit static Random Access Memory organized 2048 words by eight bits and is fabricated using Synertek's new scaled n-channel silicon gate technology. It is designed using fully static circuitry, therefore requiring no clock or refreshing to operate. The common data input and three-state output pins optimize compatibility with systems utilizing a bidirectional data bus.

The SY2128 offers an automatic power down feature under the control of the chip enable $(\overline{\mathrm{CE}})$ input. When $\overline{\mathrm{CE}}$ goes high, deselecting the
chip, the device will automatically power down and remain in a standby power mode as long as $\overline{\mathrm{CE}}$ remains high. This feature provides significant system level power savings.
The SY2128 is configured in the JEDEC approved pinout for 24 pin byte organized memories and is pin compatible with 16 K ROMs, EPROMs and EEPROMs. This offers the user the flexibility of being able to switch between RAM, ROM, EPROM, or EEPROM as his needs dictate with a minimum of board changes.

Block Diagram

Absolute Maximum Ratings*
Temperature Under Bias
Storage Temperature .
Voltage on Any Pin with
Respect to Ground

......

$-10^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ $65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
. -3.5 V to +7 V
Power Dissipation 1.0W
Electrostatic Discharge Rating (ESD)** Inputs to Ground $\pm 2000 \mathrm{~V}$

Comment*

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied
**Test Condition: MIL-STD-883B Method 3015.1
D.C. Characteristics $\quad T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%$ (Unless otherwise specified)

Symbol	Parameter	2128-1/-2/-3/-4		2128L-1/L-2/L-3/L-4		Unit	Conditions	
		Min.	Max.	Min.	Max.			
${ }_{\text {LII }}$	Input Load Current (All input pins)		10		10	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=$ Max, $\mathrm{V}_{\text {IN }}=$ Gnd to $\mathrm{V}_{\text {CC }}$	
'Lo	Output Leakage Current		10		10	$\mu \mathrm{A}$	$\begin{aligned} & \overline{\mathrm{CE}}=\mathrm{V}_{1 \mathrm{H}}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Max} \\ & \mathrm{~V}_{\mathrm{OUT}}=\mathrm{G}^{\prime} \text { to to } 4.5 \mathrm{~V} \end{aligned}$	
ICC	Power Supply Current		95		75	mA	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$V_{C C}=M a x, \overline{C E}=V_{I L}$ Outputs Open
			100		80	mA	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$	
$\mathrm{I}_{\text {SB }}$	Standby Current		20		15	mA	$\mathrm{V}_{\mathrm{CC}}=$ Min to Max, $\overline{\mathrm{CE}}=\mathrm{V}_{1} \mathrm{H}$	
IPO	Peak Power-on Current Note 6		40		30	mA	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Gnd} \text { to } \mathrm{V}_{\mathrm{CC}} \operatorname{Min} \\ & \mathrm{CE}=\text { Lower of } \mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{V}_{\mathrm{IH}} \mathrm{Min} . \end{aligned}$	
$V_{\text {IL }}$	Input Low Voltage	-3.0	0.8	-3.0	0.8	V		
$\mathrm{V}_{\text {IH }}$	Input High Voltage	2.0	6.0	2.0	6.0	V		
V_{OL}	Output Low Voltage		0.4		0.4	V	$\mathrm{IOL}=3.2 \mathrm{~m}$	
VOH	Output High Voltage	2.4		2.4		V	$\mathrm{I}^{\mathrm{OH}}=-1.0 \mathrm{~m}$	

Capacitance $T_{A}=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}$

Symbol	Test	Typ.	Max.	Unit
COUT	Output Capacitance		5	pF
CIN $_{\text {IN }}$	Input Capacitance		5	pF

NOTE: This parameter is periodically sampled and not 100% tested.
A.C. Characteristics $\quad \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%$ (Note 7)

READ CYCLE

Symbol	Parameter	2128-1/L-1		2128-2/L-2		2128-3/L-3		2128-4/L-4		Unit	Conditions
		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.		
${ }^{\text {tr }}$ C	Read Cycle Time	100		120		150		200		ns	
${ }^{\text {t }} \mathrm{A} A$	Address Access Time		100		120		150		200	ns	
${ }^{\text {t }}$ ACE	Chip Enable Access Time		100		120		150		200	ns	
taOE	Output Enable Access Time		35		50		60		70	ns	
${ }^{\text {t }} \mathrm{OH}$	Output Hold from Address Change	10		10		10		10		ns	
${ }^{\text {L L Z }}$	Output Low Z Time	10		10		10		10		ns	Note 5
${ }^{\mathrm{H}} \mathrm{HZ}$	Output High Z Time	0	35	0	40	0	50	0	60	ns	Note 5
tPu	Chip Enable to Power Up Time	0		0		0		0		ns	
tPD	Chip Disable to Power Down Time		50		60		80		100	ns	

WRITE CYCLE

twC	Write Cycle Time	100		120		150		200		ns	
${ }^{\mathrm{t}} \mathrm{CW}$	Chip Enable to End of Write	80		90		120		150		ns	
${ }^{\text {t }}$ AW	Address Valid to End of Write	80		90		120		150		ns	
${ }^{t}$ AS	Address Setup Time	0		0		0		0		ns	
tWP	Write Pulse Width	60		70		90		120		ns	
${ }^{\text {t }}$ WR	Write Recovery Time	0		0		0		0		ns	
${ }^{\text {t }}$ DW	Data Valid to End of Write	40		50		70		90		ns	
${ }^{\text {t }} \mathrm{DH}$	Data Hold Time	0		0		0		0		ns	
twz	Write Enabled to Output in High Z	0	35	0	40	0	50	0	60	ns	Note 5
tow	Output Active from End of Write	0		0		0		0		ns	Note 5

[^0]SY2128

Timing Diagrams

READ CYCLE NO. 1 (NOTES 1 and 2)

READ CYCLE NO. 2 (NOTES 1 and 3)

WRITE CYCLE NO. 1 (NOTE 4)

Notes:

1. $\overline{W E}$ is high for Read Cycles.
2. Device is continuously selected, $\overline{C E}=\overline{O E}=V_{I L}$.
3. Addresses valid prior to or coincident with $\overline{C E}$ transition low.
4. If $\overline{C E}$ goes high simultaneously with $\overline{W E}$ high, the outputs remain in the high impedance state.
5. Transition is measured $\pm 500 \mathrm{mV}$ from low or high impedance voltage with load B. This parameter is sampled and not 100% tested.
6. A pullup resistor to $V_{C C}$ on the $\overline{C E}$ input is required to keep the device deselected: otherwise, power-on current approaches ICC active.
7. A minimum 0.5 ms time delay is required after application of $V_{\mathrm{CC}}(+5 \mathrm{~V})$ before proper operation is achieved.

WRITE CYCLE NO. $2\left(\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IL}}\right)$ (NOTE 4)

A.C. Testing Input, Output Waveform

 24 Pin Plastic
A.C. Testing Load Circuit

Ordering Information

Order Number	Access Time (Max)	Operating Current (Max)	Standby Current (Max)	Package Type
SYD2128-1	100 ns	100 mA	20 mA	Cerdip
SYP2128-1	100 ns	100 mA	20 mA	Plastic
SYD2128-2	120 ns	100 mA	20 mA	Cerdip
SYP2128-2	120 ns	100 mA	20 mA	Plastic
SYD2128-3	150 ns	100 mA	20 mA	Cerdip
SYP2128-3	150 ns	100 mA	20 mA	Plastic
SYD2128-4	200 ns	100 mA	20 mA	Cerdip
SYP2128-4	200 ns	100 mA	20 mA	Plastic
SYD2128L-1	100 ns	80 mA	15 mA	Cerdip
SYP2128L-1	100 ns	80 mA	15 mA	Plastic
SYD2128L-2	120 ns	80 mA	15 mA	Cerdip
SYP2128L-2	120 ns	80 mA	15 mA	Plastic
SYD2128L-3	150 ns	80 mA	15 mA	Cerdip
SYP2128L-3	150 ns	80 mA	15 mA	Plastic
SYD2128L-4	200 ns	80 mA	15 mA	Cerdip
SYP2128L-4	200 ns	80 mA	15 mA	Plastic

2048×8 Static Random Access Memory

Features

- 100 nsec Maximum Access Time
- Fully Static Operation:

No Clocks or Strobes Required

- Fast Chip Select Access Time: 40 ns Max.
- Identical Cycle and Access Times
- Single +5 V Supply ($\pm 10 \%$)
- Pin Compatible with 16 K ROMs, EPROMs,
and EEPROMs
- Totally TTL Compatible:
All Inputs and Outputs
- Common Data Input and Output
Three-State Output
- JEDEC Approved Pinout

Description

The Synertek SY2129 is a 16,384 bit static Random Access Memory organized 2048 words by eight bits and is fabricated using Synertek's new scaled n-channel silicon gate technology. It is designed using fully static circuitry, therefore requiring no clock or refreshing to operate. The common data input and three-state output pins optimize compatibility with systems utilizing a bidirectional data bus.

The SY2129 offers a chip select access that is faster than its address access. In a typical application, the address access begins as soon as the address is valid. At this time, the high

Pin Configuration

order addresses are decoded and the desired memory is then selected. With the faster chip select access, this decode time will not add to the overall access time thus signiticantly improving system performance.

The SY2129 is configured in the JEDEC approved pinout for 24 pin byte organized memories and is pin compatible with 16 K ROMs, EPROMs and EEPROMs. This offers the user the flexibility of being able to switch between RAM, ROM, EPROM, or EEPROM as his needs dictate with a minimum of board changes.

Block Diagram

Absolute Maximum Ratings	
Temperature Under Bias	$-10^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Voltage on Any Pin with	
Respect to Ground	-3.5 V to +7 V
Power Dissipation	1.0W
Electrostatic Discharge Rating (ESD)**	
Inputs to Ground	$\pm 2000 \mathrm{~V}$

Comment*

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied
**Test Condition: MIL-STD-883B Method 3015.1
D.C. Characteristics $T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%$ (Unless otherwise specified)

Symbol	Parameter	2129-1/-2/-3/-4		2129L-1/L-2/L-3/L-4		Unit	Conditions	
		Min.	Max.	Min.	Max.			
$\mathrm{I}_{\text {LI }}$	Input Load Current (All input pins)		10		10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {CC }}=$ Max, $\mathrm{V}_{\text {IN }}=$ Gnd to $\mathrm{V}_{\text {CC }}$	
ILO	Output Leakage Current		10		10	$\mu \mathrm{A}$	$\begin{aligned} & \overline{\mathrm{CS}}=\mathrm{V}_{1 \mathrm{H}}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Max} \\ & \mathrm{~V}_{\text {OUT }}=\mathrm{G}^{\prime} \text { d to } 4.5 \mathrm{~V} \end{aligned}$	
Icc	Power Supply Current		95		75	mA	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \overline{\mathrm{CS}}=\mathrm{V}_{\mathrm{IL}} \\ & \text { Outputs Open } \end{aligned}$
			100		80	mA	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$	
$V_{\text {IL }}$	Input Low Voltage	-3.0	0.8	-3.0	0.8	V		
$\mathrm{V}_{\text {IH }}$	Input High Voltage	2.0	6.0	2.0	6.0	V		
V_{OL}	Output Low Voltage		0.4		0.4	V	$1 \mathrm{OL}=3.2 \mathrm{~mA}$	
VOH	Output High Voltage	2.4		2.4		V	$1 \mathrm{OH}=-1.0 \mathrm{~mA}$	

Capacitance $\quad T_{A}=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}$

Symbol	Test	Typ.	Max.	Unit
COUT $^{\text {OUP }}$	Output Capacitance		5	pF
$\mathrm{C}_{\text {IN }}$	Input Capacitance		5	pF

NOTE: This parameter is periodically sampled and not 100% tested.
A.C. Characteristics $\quad T_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%$ (Note 5)
read cycle

Symbol	Parameter	2129-1/L-1		2129-2/L-2		2129-3/L-3		2129-4/L-4		Unit	Conditions
		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.		
${ }^{\text {tr }}$ C	Read Cycle Time	100		120		150		200		ns	
${ }^{t} \mathrm{AA}$	Address Access Time		100		120		150		200	ns	
${ }^{t} \mathrm{ACS}$	Chip Select Access Time		40		50		60		70	ns	
${ }_{\text {t }}$ AOE	Output Enable Access Time		35		50		60		70	ns	
${ }^{\text {t }} \mathrm{OH}$	Output Hold from Address Change	10		10		10		10		ns	
${ }_{\text {t }}^{L} \mathrm{Z}$	Output Low Z Time	10		10		10		10		ns	Note 4
${ }^{\text {t }} \mathrm{HZ}$	Output High Z Time	0	35	0	40	0	50	0	60	ns	Note 4

WRITECYCLE

twC	Write Cycle Time	100		120		150		200		ns	
${ }^{\text {t }} \mathrm{CW}$	Chip Select to End of Write	60		70		90		120		ns	
${ }^{\text {t }}$ AW	Address Valid to End of Write	80		90		120		150		ns	
${ }^{\text {t }}$ AS	Address Setup Time	0		0		0		0		ns	
tWP	Write Pulse Width	60		70		90		120		ns	
tWR	Write Recovery Time	0		0		0		0		ns	
${ }^{\text {t DW }}$	Data Valid to End of Write	40		50		70		90		ns	
tDH	Data Hold Time	0		0		0		0		ns	
tWZ	Write Enabled to Output in High Z	0	35	0	40	0	50	0	60	ns	Note 4
tow	Output Active from End of Write	0		0		0		0		ns	Note 4

[^1]
Synertek.

Timing Diagrams

READ CYCLE NO. 1 (NOTES 1 and 2)

READ CYCLE NO. 2 (NOTE 1)

WRITE CYCLE NO. 1 (NOTE 3)

Notes:

1. W苂 is high for Read Cycles.
2. Device is continousiy selected, $\overline{\mathrm{CS}}=\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IL}}$.
3. If $\overline{\mathrm{CS}}$ goes high simultaneously with $\overline{\mathrm{WE}}$ high, the outputs remain in the high impedance state.
4. Transition is measured $\pm 500 \mathrm{mV}$ from low or high impedance voltage with load B . This parameter is sampled and not 100% tested.
5. A minimum 0.5 ms time delay is required after the application of $\mathrm{V}_{\mathrm{CC}}(+5 \mathrm{~V})$ before proper operation is achieved.

A.C. Testing Input, Output Waveform

Package Availability

24 Pin Cerdip 24 Pin Plastic
A.C. Testing Load Circuit

Ordering Information

Order Number	Access Time (Max)	Operating Current (Max)	Package Type
SYD2129-1	100 ns	100 mA	Cerdip
SYP2129-1	100 ns	100 mA	Plastic
SYD2129-2	120 ns	100 mA	Cerdip
SYP2129-2	120 ns	100 mA	Plastic
SYD2129-3	150 ns	100 mA	Cerdip
SYP2129-3	150 ns	100 mA	Plastic
SYD2129-4	200 ns	100 mA	Cerdip
SYP2129-4	200 ns	100 mA	Plastic
SYD2129L-1	100 ns	80 mA	Cerdip
SYP2129L-1	100 ns	80 mA	Plastic
SYD2129L-2	120 ns	80 mA	Cerdip
SYP2129L-2	120 ns	80 mA	Plastic
SYD2129L-3	150 ns	80 mA	Cerdip
SYP2129L-3	150 ns	80 mA	Plastic
SYD2129L-4	200 ns	80 mA	Cerdip
SYP2129L-4	200 ns	80 mA	Plastic

Features

- 35 ns Maximum Access Time
- No Clocks or Strobes Required
- Automatic $\overline{C E}$ Power Down
- Identical Cycle and Access Times
- Single +5 V Supply ($\pm 10 \%$)
- Pinout and Function Compatible to SY2147

Description

The Synertek SY2147H is a 4096 -Bit Static Random Access Memory organized 4096 words by 1 -bit and is fabricated using Synertek's new scaled n-channel silicon gate technology. It is designed using fully static circuitry, therefore requiring no clock or refreshing to operate. Address set-up times are not required and the data is read out non-destructively with the same polarity as the input data. Separate data input and output pins provide maximum design flexibility. The threestate output facilitates memory expansion by allowing the outputs to be OR-tied to other devices.

- Direct Performance Upgrade For SY2147
- Totally TTL Compatible All Inputs and Outputs
- Separate Data Input and Output
- High Density 18-Pin Package
- Three-State Output

Pin Configuration

Block Diagram

The SY2147H offers an automatic power down feature. Power down is controlled by the Chip Enable input. When Chip Enable ($\overline{\mathrm{CE}}$) goes high, thus deselecting the SY2147H, the device will automatically power down and remain in a standby power mode as long as $\overline{\mathrm{CE}}$ remain high. This unique feature provides system level power savings as much as 80%.
The SY2147H is packaged in an 18-pin DIP for the highest possible density. The device is fully TTL compatible and has a single +5 V power supply.

Absolute Maximum Ratings

Temperature Under Bias $-10^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
Storage Temperature $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Voltage on Any Pin with
Respect to Ground -3.5 V to +7 V
Power Dissipation
1.2 W

Electrostatic Discharge Rating (ESD)**
Inputs to Ground $\pm 2000 \mathrm{~V}$

Comment*

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
**Test Condition: MIL-STD-883B Method 3015.1
D.C. Characteristics $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%$ (Unless otherwise specified) (Note 8)

Symbol	Parameter	2147HL/L-3		2147H/-1/-2/-3		Unit	Conditions	
		Min.	Max.	Min.	Max.			
'LI	Input Load Current (All input pins)		10		10	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\text {IN }}=$ Gnd to V_{CC}	
$\mid \mathrm{l}$ Lo\|	Output Leakage Current		50		50	$\mu \mathrm{A}$	$\begin{aligned} & \overline{\mathrm{CE}}=\mathrm{V}_{1 \mathrm{H}}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Max} \\ & \mathrm{~V}_{\mathrm{OUT}}=\mathrm{Gnd} \text { to } 4.5 \mathrm{~V} \end{aligned}$	
Icc	Power Supply Current		115		150	mA	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\text { Max } \overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}} \\ & \text { Outputs Open } \end{aligned}$
			125		160	mA	$\mathrm{T}^{\prime}=0^{\circ} \mathrm{C}$	
${ }_{\text {ISB }}$	Standby Current		10		20	mA	$\mathrm{V}_{\mathrm{CC}}=$ Min to Max, $\overline{\mathrm{CE}}=\mathrm{V}_{1 H}$	
IPO	Peak Power-on Current (Note 9)		30		50	mA	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Gnd} \text { to } \mathrm{V}_{\mathrm{CC}} \mathrm{Min} \\ & \mathrm{CE}=\text { Lower of } \mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{V}_{\mathrm{IH}} \mathrm{Min} \end{aligned}$	
$V_{\text {IL }}$	Input Low Voltage	-3.0	0.8	-3.0	0.8	V		
V_{IH}	Input High Voltage	2.0	6.0	2.0	6.0	v		
V_{OL}	Output Low Voltage		0.4		0.4	V	$\mathrm{I}^{\mathrm{OL}}=8 \mathrm{~mA}$	
VOH	Output High Voltage	2.4		2.4		V	$\mathrm{IOH}^{\prime}=-4.0 \mathrm{~mA}$	

Capacitance $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}$

Symbol	Test	Typ.	Max.	Unit
COUT	Output Capacitance		6	pF
$\mathrm{C}_{\text {IN }}$	Input Capacitance		5	pF

NOTE: This parameter is periodically sampled and not 100% tested.
A.C. Characteristics $\quad T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{C C}=5 \mathrm{~V} \pm 10 \%$ (Unless otherwise specified) (Notes 8, 10) READ CYCLE

Sy mbol	Parameter	2147H-1		2147H-2		2147H-3/HL-3		2147H/HL		Unit	Notes
		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.		
${ }_{\text {tre }}$	Read Cycle Time	35		45		55		70		ns	
${ }^{\text {t }}$ A A	Address Access Time		35		45		55		70	ns	
tACE1	Chip Enable Access Time		35		45		55		70	ns	1
tACE2	Chip Enable Access Time		35		45		65		80	ns	2
${ }^{\text {tor }}$	Output Hold from Address Change	5		5		5		5		ns	
${ }_{\text {t }}$	Chip Selection to Output in Low Z	5		5		10		10		ns	7
${ }_{\text {thz }}$	Chip Deselection to Output in High Z	0	30	0	30	0	30	0	40	ns	7
tpu	Chip Selection to Power Up Time	0		0		0		0		ns	
tPD	Chip Deselection to Power Down Time		20		20		20		30	ns	

WRITE CYCLE

twc	Write Cycle Time	35		45		55		70		ns	
tcw	Chip Enabled to End of Write	35		45		45		55		ns	
${ }^{\text {t }}$ AW	Address Valid to End of Write	35		45		45		55		ns	
$t_{\text {taS }}$	Address Setup Time	0		0		0		0		ns	
twp	Write Pulse Width	20		25		25		40		ns	
twr	Write Recovery Time	0		0		10		15		ns	
tow	Data Valid to End of Write	20		25		25		30		ns	
tD	Data Hold Time	10		10		10		10		ns	
twz	Write Enabled to Output in High Z	0	20	0	25	0	25	0	35	ns	7
tow	Output Active from End of Write	0		0		0		0		ns	7

(See following page for notes)

Timing Diagrams

READ CYCLE NO. 1 (NOTES 3 AND 4)

READ CYCLE NO. 2 (NOTES 3 AND 5)

WRITE CYCLE NO. 1 (WE CONTROLLED) (NOTE 6)

NOTES:

1. Chip deselected for greater than 55 ns prior to selection.
2. Chip deselected for a finite time that is less than 55 ns prior to selection. (If the deselect time is Ons, the chip is by definition selected and access occurs according to Read Cycle No. 1.).
3. $\overline{W E}$ is high for Read Cycles.
4. Device is continuously selected, $\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}}$.
5. Addresses valid prior to or coincident with $\overline{\mathrm{CE}}$ transition low.
6. If $\overline{\mathrm{CE}}$ goes high simultaneously with $\overline{\mathrm{WE}}$ high, the outputs remain in the high impedance state.
7. Transition is measured $\pm 500 \mathrm{mV}$ from low or high impedance voltage with load B. This parameter is sampled and not 100% tested.
8. The operating ambient temperature range is guaranteed with transverse air flow exceeding 400 linear feet per minute.
9. A pullup resistor to $V_{C C}$ on the $\overline{C E}$ input is required to keep the device deselected: otherwise, power-on current approaches ICC active.
10. A minimum 0.5 ms time delay is required after application of $\mathrm{V}_{\mathrm{CC}}(+5 \mathrm{~V})$ before proper device operation is achieved.

WRITE CYCLE NO. 2 ($\overline{C E}$ CONTROLLED) (NOTE 6)

A.C. Testing Input, Output Waveform

A.C. Testing Load Circuit

Package Availibility 18 Pin Cerdip
 18 Pin Ceramic 18 Pin Plastic

Ordering Information

Order Number	Access Time (Max)	Operating Current (Max)	Standby Package (Max)	*Package Type
SYC2147H-1	35 ns	180 mA	30 mA	Ceramic
SYD2147H-1	35 ns	180 mA	30 mA	Cerdip available in plastic
SYC2147H-2	45 ns	180 mA	30 mA	Ceramic
SYD2147H-2	45 ns	180 mA	30 mA	Cerdip
SYC2147H-3	55 ns	180 mA	30 mA	Ceramic
SYD2147H-3	55 ns	180 mA	30 mA	Cerdip
SYC2147HL-3	55 ns	125 mA	15 mA	Ceramic
SYD2147HL-3	55 ns	125 mA	15 mA	Cerdip
SYC2147H	70 ns	160 mA	20 mA	Ceramic
SYD2147H	70 ns	160 mA	20 mA	Cerdip
SYC2147HL	70 ns	140 mA	10 mA	Ceramic
SYD2147HL	70 ns	140 mA	10 mA	Cerdip

1024×4 Static Random Access Memory

Features

- 45 ns Maximum Access Time
- No Clocks or Strobes Required
- Automatic CE Power Down
- Identical Cycle and Access Times
- Single +5 V Supply ($\pm 10 \%$)
- Pinout and Function Compatible to SY2148
- Performance Upgrade for SY2148
- Industry Standard 2114 Pinout
- Totally TTL Compatible All Inputs and Outputs
- Common Data Input and Output
- High Density 18-Pin Package
- Three-State Output

Description

The Synertek SY2148H is a 4096-Bit Static Random Access Memory organized 1024 words by 4 bits and is fabricated using Synertek's new scaled n-channel silicon gate technology. It is designed using fully static circuitry, therefore requiring no clock or refreshing to operate. Address set-up times are not required and the data is read out non-destructively with the same polarity as the input data. Common data input and output pins provide maximum design flexibility. The three-state output facilitates memory expansion by allowing the outputs to be OR-tied to other devices.

The SY2148H offers an automatic power down feature. Power down is controlled by the Chip Enable input. When Chip Enable ($\overline{\mathrm{CE}}$) goes high, thus deselecting the SYM 2148 H , the device will automatically power down and remain in a standby power mode as long as $\overline{C E}$ remains high. This unique feature provides system level power savings as much as 85%.

The SY2148H is packaged in an 18 -pin DIP for the highest possible density. The device is fully TTL compatible and has a single +5 V power supply.

Pin Configuration

Block Diagram

Absolute Maximum Ratings*

Temperature Under Bias $-10^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ Storage Temperature $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ Voltage on Any Pin with

Respect to Ground -3.5 V to +7 V
Power Dissipation
. 1.0 W
Electrostatic Discharge Rating (ESD)**
Inputs to Ground $\pm 2000 \mathrm{~V}$

Comment*

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
**Test Condition: MIL-STD-883B Method 3015.1
D.C. Characteristics $\quad \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%$ (Unless otherwise specified) (note 8)

Symbol	Parameter	2148H/H-2/H-3		2148HL/HL-3		Unit	Conditions
		Min.	Max.	Min.	Max.		
'LI	Input Load Current (All input pins)		10		10	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\text {IN }}=$ Gnd to V_{CC}
$\|1 \mathrm{LO}\|$	Output Leakage Current		50		50	$\mu \mathrm{A}$	$\begin{aligned} & \overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IH}}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Max} \\ & \mathrm{~V}_{\mathrm{OUT}}=\mathrm{G}_{\text {nd }} \text { to } 4.5 \mathrm{~V} \end{aligned}$
${ }^{\prime} \mathrm{Cc}$	Power Supply Current		140		115	mA	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\text { Max, } \overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}} \\ & \text { Outputs Open } \end{aligned}$
			150		125	mA	
$I_{\text {SB }}$	Standby Current		30		20	mA	$\mathrm{V}_{\mathrm{CC}}=$ Min to Max, $\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IH}}$
IPO	Peak Power-on Current (Note 9)		50		30	mA	$\begin{aligned} & V_{C C}=G n d \text { to } V_{C C} \operatorname{Min} \\ & C E=\text { Lower of } V_{C C} \text { or } V_{I H} \operatorname{Min} \end{aligned}$
$V_{\text {IL }}$	Input Low Voltage	-3.0	0.8	-3.0	0.8	V	
V_{IH}	Input High Voltage	2.0	6.0	2.0	6.0	V	
V_{OL}	Output Low Voltage		0.4		0.4	V	$\mathrm{I}^{\mathrm{OL}}=8 \mathrm{~mA}$
VOH	Output High Voltage	2.4		2.4		V	$1 \mathrm{OH}^{\prime}=-4 \mathrm{~mA}$

Capacitance $\quad T_{A}=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}$

Symbol	Test	Typ.	Max.	Unit
$\mathrm{C}_{\text {OUT }}$	Output Capacitance		7	pF
$\mathrm{C}_{\text {IN }}$	Input Capacitance		5	pF

NOTE: This parameter is periodically sampled and not 100% tested.
A.C. Characteristics
$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%$ (Unless otherwise specified) (note 8)

READ CYCLE

Symbol	Parameter	2148H-2		2148H-3/HL-3		2148H/HL		Unit	Conditions
		Min.	Max.	Min.	Max.	Min.	Max.		
${ }^{\text {tra }}$	Read Cycle Time	45		55		70		ns	
${ }^{\text {t }} \mathrm{AA}$	Address Access Time		45		55		70	ns	
tACE1	Chip Enable Access Time		45		55		70	ns	Note 1
tACE2	Chip Enable Access time		55		65		80	ns	Note 2
${ }^{\text {toH }}$	Output Hold from Address Change	5		5		5		ns	
${ }^{\text {t }}$ L	Chip Selection to Output in Low Z	10		10		10		ns	Note 7
thz	Chip Deselection to Output in High Z	0	20	0	20	0	20	ns	Note 7
tPU	Chip Selection to Power Up Time	0		0		0		ns	
tPD	Chip Deselection to Power Down Time		30		30		30	ns	

WRITE CYCLE

tWC	Write Cycle Time	45		55		70		ns	
t CW	Chip Enabled to End of Write	40		50		65		ns	
taW	Address Valid to End of Write	40		50		65		ns	
tAS	Address Setup Time	0		0		0		ns	
tWP	Write Pulse Width	35		40		50		ns	
tWR	Write Recovery Time	5		5		5		ns	
tDW	Data Valid to End of Write	20		20		25		ns	
tDH	Data Hold Time	0		0		0		ns	
tWZ	Write Enabled to Output in High Z	0	15	0	20	0	25	ns	Note 7
tOW	Output Active from End of Write	0		0		0		ns	Note 7

[^2]
Timing Diagrams

READ CYCLE NO. 1 (NOTES 3 AND 4)

READ CYCLE NO. 2 (NOTES 3 AND 5)

WRite cycle no. 1 ($\overline{W E}$ CONTROLLED) (NOTE 6)

NOTES:

1. Chip deselected for greater than 55 ns prior to selection.
2. Chip deselected for a finite time that is less than 55 ns prior to selection. (If the deselect time is Ons, the chip is by definition selected and access occurs according to Read Cycle No. 1.).
3. WE is high for Read Cycles.
4. Device is continuously selected, $\overline{C E}=V_{I L}$.
5. Addresses valid prior to or coincident with $\overline{\mathrm{CE}}$ transition low.
6. If $\overline{C E}$ goes high simultaneously with $\overline{W E}$ high, the outputs remain in the high impedance state.
7. Transition is measured $\pm 500 \mathrm{mV}$ from low or high impedance voltage with load B. This parameter is sampled and not 100% tested.
8. The operating ambient temperature range is guaranteed with transverse air flow exceeding 400 linear feet per minute.
9. A pullup resistor to $V_{C C}$ on the $\overline{C E}$ input is required to keep the device deselected: otherwise, power-on current approaches $I_{C C}$ active.
10. A minimum 0.5 ms time delay is required after application of $\mathrm{V}_{\mathrm{CC}}(+5 \mathrm{~V})$ before proper device operation is achieved.

WRITE CYCLE NO. 2 ($\overline{\mathrm{CE}}$ CONTROLLED) (NOTE 6)

A.C. Testing Input, Output Waveform

A.C. Testing Load Circuif

LOAD A.

Package Availability

18 Pin Ceramic 18 Pin Cerdip 18 Pin Plastic

Ordering Information

Order Number	Access Time (Max)	Operating Current (Max)	Standby Current (Max)	*Package Type
SYC2148H	70 ns	150 mA	30 mA	Ceramic
SYD2148H	70 ns	150 mA	30 mA	Cerdip
SYC2148H-2	45 ns	150 mA	30 mA	Ceramic
SYD2148H-2	45 ns	150 mA	30 mA	Cerdip
SYC2148H-3	55 ns	150 mA	30 mA	Ceramic
SYD2148H-3	55 ns	150 mA	30 mA	Cerdip
SYC2148HL	70 ns	125 mA	20 mA	Ceramic
SYD2148HL	70 ns	125 mA	20 mA	Cerdip
SYC2148HL-3	55 ns	125 mA	20 mA	Ceramic
SYD2148HL-3	55 ns	125 mA	20 mA	Cerdip

*Also available in plastic
Also avallable in plastic

Features

- 45 ns Maximum Address Access
- Fully Static Operation:

No Clocks or Strobes Required

- Fast Chip Select Access Time: 20ns Max.
- Identical Cycle and Access Times
- Single +5 V Supply
- Industry Standard 2114 Pinout
- Totally TTL Compatible: All Inputs and Outputs
- Common Data Input and Outputs
- High Density 18-Pin Package
- Three-State Output

Description

The Synertek SY2149H is a 4096-Bit Static Random Access Memory organized 1024 words by 4 bits and is fabricated using Synertek's new N-Channel SiliconGate HMOS technology. It is designed using fully static circuitry, therefore requiring no clock or refreshing to operate. Address set-up times are not required and the data is read out non-destructively with the same polarity as the input data. Common data input and output pins provide maximum design flexibility. The three-state output facilitates memory expansion by allowing the outputs to be OR-tied to other devices.

The SY2149H offers a chip select access that is faster than its address access. In a typical application, the address access begins as soon as the address is valid. At this time, the high order addresses are decoded and the desired memory is then selected. With the faster chip select access, this decode time will not add to the overall access time thus significantly improving system performance.
The SY2149H is packaged in an 18-pin DIP for the highest possible density. The device is fully TTL compatible and has a single +5 V power supply.

Block Diagram

Pin Configuration

Absolute Maximum Ratings*

Temperature Under Bias $-10^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
Storage Temperature $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Voltage on Any Pin with
Respect to Ground -3.5 V to +7 V
Power Dissipation
. 1.0 W
Electrostatic Discharge Rating (ESD)** Inputs to Ground

Comment*

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
**Test Condition: MIL-STD-883B Method 3015.1
D.C. Characteristics $\quad T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%$ (Unless otherwise specified) (Note 6)

Symbol	Parameter	2149HL-3, 2149HL		$\begin{gathered} 2149 \mathrm{H}-2,2149 \mathrm{H}-3, \\ 2149 \mathrm{H} \end{gathered}$		Unit	Conditions
		Min.	Max.	Min.	Max.		
ILI	Input Load Current (All input pins).		10		10	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\text {IN }}=$ Gnd to $\mathrm{V}_{\text {CC }}$
$\mid \mathrm{l}$ Lo\|	Output Leakage Current		50		50	$\mu \mathrm{A}$	$\begin{aligned} & \overline{\mathrm{CS}}=\mathrm{V}_{1 \mathrm{H}}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Max} \\ & \mathrm{~V}_{\text {OUT }}=\mathrm{Gnd} \text { to } 4.5 \mathrm{~V} \end{aligned}$
ICc	Power Supply Current		115		140	mA	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \overline{\mathrm{CS}}=\mathrm{V}_{I L} \\ & \text { Outputs Open } \end{aligned}$
			125		150	mA	
$\mathrm{V}_{\text {IL }}$	Input Low Voltage	-3.0	0.8	-3.0	0.8	V	
V_{IH}	Input High Voltage	2.0	6.0	2.0	6.0	v	
V_{OL}	Output Low Voltage		0.4		0.4	V	$\mathrm{I}^{\mathrm{OL}}=8 \mathrm{~mA}$
V_{OH}	Output High Voltage	2.4		2.4		V	$\mathrm{I}^{\mathrm{OH}}=-4.0 \mathrm{~mA}$
los	Output Short Circuit Current		± 200		± 200	mA	$\begin{aligned} & \text { VOUT }=\text { GND to } V_{C C} \\ & \text { (Note 7) } \end{aligned}$

Capacitance $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}$

Symbol	Test	Typ.	Max.	Unit
COUT	Output Capacitance		7	pF
$\mathrm{C}_{\text {IN }}$	Input Capacitance		5	pF

NOTE: This parameter is periodically sampled and not 100% tested.
A.C. Characteristics $\quad T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%$ (Unless otherwise specified) (Notes 6, 8) READ CYCLE

Symbol	Parameter	2149H-2		$\begin{gathered} 2149 \mathrm{HL}-3 \\ 2149 \mathrm{H}-3 \end{gathered}$		$\begin{gathered} 2149 \mathrm{HL} \\ 2149 \mathrm{H} \end{gathered}$		Unit	Conditions
		Min.	Max.	Min.	Max.	Min.	Max.		
$\mathrm{t}_{\mathrm{R}} \mathrm{C}$	Read Cycle Time	45		55		70		ns	
${ }^{\text {t }}$ AA	Address Access Time		45		55		70	ns	
${ }^{\text {t } A C S}$	Chip Select Access Time		20		25		30	ns	
${ }^{\text {toH }}$	Output Hold from Address Change	5		5		5		ns	
${ }^{\text {t }}$ L Z	Chip Selection to Output in Low Z	5		5		5		ns	Note 5
${ }^{\text {th }} \mathrm{L}$	Chip Deselectio to Output in High Z	0	15	0	15	0	15	ns	Note 5

WRITE CYCLE

twC	Write Cycle Time	45		55		70		ns	
${ }^{\text {t }}$ W	Chip Selection to End of Write	40		50		65		ns	
${ }^{\text {t }}$ AW	Address Valid to End of Write	40		50		65		ns	
${ }^{t} A S$	Address Setup Time	0		0		0		ns	
tWP	Write Pulse Width	35		40		50		ns	
tWR	Write Recovery Time	5		5		5		ns	
${ }^{\text {t DW }}$	Data Valid to End of Write	20		20		25		ns	
${ }^{\text {t }}$ DH	Data Hold Time	0		0		0		ns	
twZ	Write Enabled to Output in High Z	0	15	0	20	0	25	ns	Note 5
tow	Output Active from End of Write	0		0		0		ns	Note 5

(See following page for notes)

Synertek.

Timing Diagrams

READ CYCLE NO. 1 (Notes 1 and 2)

READ CYCLE NO. 2 (Notes 1 and 3)

WRITE CYCLE NO. 1 ($\overline{W E}$ controlled) (Note 4)

NOTES:

1. $\overline{W E}$ is high for Read Cycles.
2. Device is continuously selected, $\overline{\mathrm{CS}}=\mathrm{V}_{\mathrm{IL}}$.
3. Addresses valid.
4. If $\overline{C S}$ goes high simultaneously with $\overline{W E}$ high, the outputs remain in the high impedance state.
5. Transition is measured $\pm 500 \mathrm{mV}$ from low or high impedance voltage with load B. This parameter is sampled and not 100% tested.
6. The operating ambient temperature range is guaranteed with transverse air flow exceeding 400 linear feet per minute.
7. Duration not to exceed one minute.
8. A minimum 0.5 ms time delay is required after application of $\mathrm{V}_{\mathrm{CC}}(+5 \mathrm{~V})$ before proper device operation is achieved.

WRITE CYCLE NO. 2 ($\overline{\text { CS }}$ controlled) (Note 4)

A.C. Testing Input, Output Waveform

A.C. Testing Load Circuit

Package Availability 18 Pin Cerdip 18 Pin Ceramic DIP 18 Pin Plastic

Ordering Information

Order Number	Access Time (Max)	Supply Current (Max)	*Package Type
SYC2149H-2	45 nsec	150 mA	Ceramic
SYD2149H-2	45 nsec	150 mA	Cerdip
SYC2149H-3	55 nsec	150 mA	Ceramic
SYD2149H-3	55 nsec	150 mA	Cerdip
SYC2149HL-3	$55 n s e c$	125 mA	Ceramic
SYD2149HL-3	55 nsec	125 mA	Cerdip
SYC2149H	7Onsec	150 mA	Ceramic
SYD2149H	7Onsec	150 mA	Cerdip
SYC2149HL	7Onsec	125 mA	Ceramic
SYD2149HL	7Onsec	125 mA	Cerdip

*Also available in plastic

SY2158

Features

- 120nsec Maximum Access Time
- Fully Static Operation:

No Clocks or Strobes Required

- Automatic $\overline{C E}$ Power Down
- Identical Cycle and Access Times
- Single +5 V Supply ($\pm 10 \%$)

\author{

- Pin Compatible with 2716 16K EPROM
 - Totally TTL Compatible:
 All Inputs and Outputs
 - Common Data Input and Output
 - Three-State Output
 - Output Enable Function ($\overline{\mathrm{OE}})$
}

Description

The Synertek SY2158 is a 8192 bit static Random Access Memory organized 1024 words by eight bits and is fabricated using Synertek's new scaled n-channel silicon gate technology. It is designed using fully static circuitry, therefore requiring no clocks or refreshing to operate. The common data input and three-state output pins optimize compatibility with systems utilizing a bidirectional data bus.

The SY2158 offers an automatic power down feature under the control of the chip enable ($\overline{\mathrm{CE}}$) input. When $\overline{\mathrm{CE}}$ goes high, deselecting the chip, the device will automatically power down and remain in a standby power mode as long
as $\overline{\mathrm{CE}}$ remains high. This feature provides significant system level power savings.
The SY2158 is available in two versions. For the " A " version, the select reference input (A_{R}) must be at $V_{I L}$ and for the " B " version A_{R} must be at $V_{1 H}$.
The SY2158 is pin compatible with 16 K ROMs, EPROMs and E^{2} PROMs thus offering the user the flexibility of switching between RAM, ROM, EPROM, and E2PROM with a minimum of board layout changes.

Block Diagram

Absolute Maximum Ratings*

Temperature Under Bias $-10^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
Storage Temperature $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Voltage on Any Pin with
Respect to Ground -3.5 V to +7 V
Power Dissipation 1.0W
Electrostatic Discharge Rating (ESD)**
Inputs to Ground
$\pm 2000 \mathrm{~V}$

Comment*

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied
**Test Condition: MIL-STD-883B Method 3015.1
D.C. Characteristics $\quad T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%$ (Unless otherwise specified)

Symbol	Parameter	2158-2/-3/-4		Unit	Conditions	
		Min.	Max.			
I_{L}	Input Load Current (All input pins)		10	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\text {IN }}=\mathrm{Gnd}$ to V_{CC}	
$\mathrm{I}_{\text {Lo }}$	Output Leakage Current		10	$\mu \mathrm{A}$	$\begin{aligned} & \overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{H}}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Max} \\ & \mathrm{~V}_{\text {OUT }}=\mathrm{G} \text { nd to } 4.5 \mathrm{~V} \end{aligned}$	
I_{cc}	Power Supply Current		95	mA	$\mathrm{T}_{A}=25^{\circ} \mathrm{C}$ $\mathrm{T}_{A}=0^{\circ} \mathrm{C}$	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=\text { Max, } \overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}} \\ & \text { Outputs Open } \end{aligned}$
			100	mA	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$	
$\mathrm{I}_{\text {SB }}$	Standby Current		20	mA	$\mathrm{V}_{\mathrm{CC}}=$ Min to Max, $\overline{\mathrm{EE}}=\mathrm{V}_{\mathrm{IH}}$	
$\mathrm{I}_{\text {PO }}$	Peak Power-on Current Note 6		40	mA	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Gnd} \text { to } \mathrm{V}_{\mathrm{CC}} \mathrm{Min} \\ & \mathrm{CE}=\text { Lower of } \mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{V}_{\mathrm{IH}} \mathrm{Min} . \end{aligned}$	
$\mathrm{V}_{\text {IL }}$	Input Low Voltage	-3.0	0.8	V		
V_{IH}	Input High Voltage	2.0	6.0	V		
V_{OL}	Output Low Voltage		0.4	V	$\mathrm{I}_{\mathrm{OL}}=3.2 \mathrm{~m}$	
V_{OH}	Output High Voltage	2.4		V	$\mathrm{I}_{\mathrm{OH}}=-1.0 \mathrm{~mA}$	

Capacitance $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}$

Symbol	Test	Typ.	Max.	Unit
C OUT $^{\text {Output Capacitance }}$	Input Capacitance		5	pF
$\mathrm{C}_{\text {IN }}$	UF		5	pF

NOTE: This parameter is periodically sampled and not 100% tested.
A.C. Characteristics $\quad T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%$ (Note 7)

READ CYCLE

Symbol	Parameter	2158-2		2158-3		2158-4		Unit	Conditions
		Min.	Max.	Min.	Max.	Min.	Max.		
${ }^{\text {tr }}$ C	Read Cycle Time	120		150		200		ns	
${ }^{\text {t }} \mathrm{A} A$	Address Access Time		120		150		200	ns	
${ }^{\text {t }}$ ACE	Chip Enable Access Time		120		150		200	ns	
taOE	Output Enable Access Time		50		60		70	ns	
${ }^{\text {toH }}$	Output Hold from Address Change	10		10		10		ns	
${ }_{\text {t }}$ L	Output Low Z Time	10		10		10		ns	Note 5
t_{HZ}	Output High Z Time	0	40	0	50	0	60	ns	Note 5
tPU	Chip Enable to Power Up Time	0		0		0		ns	
tPD	Chip Disable to Power Down Time		60		80		100	ns	

WRITE CYCLE

twC	Write Cycle Time	120		150		200		ns	
${ }^{\text {t }}$ CW	Chip Enable to End of Write	90		120		150		ns	
${ }^{\text {t }}$ AW	Address Valid to End of Write	90		120		150		ns	
${ }^{t}$ AS	Address Setup Time	0		0		0		ns	
tWP	Write Pulse Width	70		90		120		ns	
tWR	Write Recovery Time	0		0		0		ns	
tDW	Data Valid to End of Write	50		70		90		ns	
${ }^{\text {t }}$ H	Data Hold Time	0		0		0		ns	
tWZ	Write Enabled to Output in High Z	0	40	0	50	0	60	ns	Note 5
tow	Output Active from End of Write	0		0		0		ns	Note 5

Timing Diagrams

READ CYCLE NO. 1 (NOTES 1 and 2)

READ CYCLE NO. 2 (NOTES 1 and 3)

WRITE CYCLE NO. 1 (NOTE 4)

Notes:

1. $\overline{W E}$ is high for Read Cycles.
2. Device is continuously selected, $\overline{C E}=\overline{O E}=V_{I L}$.
3. Addresses valid prior to or coincident with $\overline{C E}$ transition low.
4. If $\overline{C E}$ goes high simultaneously with $\overline{W E}$ high, the outputs remain in the high impedance state.
5. Transition is measured $\pm 500 \mathrm{mV}$ from low or high impedance voltage with load B. This parameter is sampled and not 100% tested.
6. A pullup resistor to $V_{C C}$ on the $\overline{C E}$ input is required to keep the device deselected: otherwise, power-on current approaches ICC active.
7. A minimum 0.5 ms time delay is required after application of $\mathrm{V}_{\mathrm{CC}}(+5 \mathrm{~V})$ before proper device operation is achieved.

WRITE CYCLE NO. $2\left(\overline{O E}=V_{I L}\right)$ (NOTE 4)

A.C. Testing Input, Output Waveform

A.C. Testing Load Circuit

Package Availability 24 Pin Plastic

Ordering Information

Order Number	Access Time (Max)	Operating Current (Max)	Standby Current (Max)	Package Type	\mathbf{A}_{R}
SYP2158A-2	120 nsec	100 mA	20 mA	Plastic	V_{IL}
SYP2158A-3	150 nsec	100 mA	20 mA	Plastic	V_{IL}
SYP2158A-4	200 nsec	100 mA	20 mA	Plastic	V_{IL}
SYP2158B-2	120 nsec	100 mA	20 mA	Plastic	$\mathrm{V}_{1 \mathrm{H}}$
SYP2158B-3	150 nsec	100 mA	20 mA	Plastic	V_{IH}
SYP2158B-4	200nsec	100 mA	20 mA	Plastic	V_{IH}

Features

- 120nsec Maximum Access Time
- Fully Static Operation:

No Clocks or Strobes Required

- Fast Chip Select Access: 50 ns Max.
- Identical Cycle and Access Times
- Single +5 V Supply ($\pm 10 \%$)
- Pin Compatible with 2716 16K EPROM
- Totally TTL Compatible:

All Inputs and Outputs

- Common Data Input and Output
- Three-State Output
- Output Enable Function ($\overline{\mathrm{OE}})$

Description

The Synertek SY2159 is s 8192 bit static Random Access Memory organized 1024 words by eight bits and is fabricated using Synertek's new scaled n-channel silicon gate technology. It is designed using fully static circuitry, therefore requiring no clock or refreshing to operate. The common data input and three-state output pins optimize compatibility with systems utilizing a bidirectional data bus.

The SY2159 offers a chip select access that is faster than its address access. In a typical application, the address access begins as soon as the address is valid. At this time, the high order addresses are decoded and the desired
memory is then selected. With the faster chip select access, this decode time will not add to the overall access time thus significantly improving system performance.

The SY2159 is offered in two versions. For the " A " version, the select reference input (A_{R}) must be at $V_{I L}$ and for the " B " version, A_{R} must be at $V_{\text {IH }}$.

The SY2159 is pin compatible with 16 K ROMs, EPROMs, and E2PROMs thus offering the user the flexibility of switching between RAM, ROM, EPROM and E ${ }^{2}$ with a minimum of board layout changes.

Block Diagram

Absolute Maximum Ratings*

Temperature Under Bias $-10^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
Storage Temperature $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Voltage on Any Pin with
Respect to Ground -3.5 V to +7 V
Power Dissipation 1.0W
Electrostatic Discharge Rating (ESD)**
Inputs to Ground
$\pm 2000 \mathrm{~V}$

Comment*

Stresses above those listed under "Absolute Maximum Ratings": may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied
**Test Condition: MIL-STD-883B Method 3015.1
D.C. Characteristics $\quad T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%$ (Unless otherwise specified)

Symbol	Parameter	2159-2/-3/-4		Unit	Conditions
		Min.	Max.		
$I_{L I}$	Input Load Current (All input pins)		10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {CC }}=$ Max, $\mathrm{V}_{\text {IN }}=$ Gnd to V_{CC}
$\mathrm{I}_{\text {LO }}$	Output Leakage Current		10	$\mu \mathrm{A}$	$\begin{aligned} & \overline{\mathrm{CS}}=\mathrm{V}_{\text {HH }}, \mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \\ & \mathrm{~V}_{\text {OUT }}=\mathrm{G} \text { nd to } 4.5 \mathrm{~V} \end{aligned}$
I_{CC}	Power Supply Current		95	mA	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\text { Max, } \overline{\mathrm{CS}}=\mathrm{V}_{\mathrm{IL}} \\ & \text { Outputs Open } \end{aligned}$
			100	mA	
$\mathrm{V}_{\text {IL }}$	Input Low Voltage	-3.0	0.8	V	
$\mathrm{V}_{\text {IH }}$	Input High Voltage	2.0	6.0	V	
V_{OL}	Output Low Voltage		0.4	V	$\mathrm{I}_{\mathrm{OL}}=3.2 \mathrm{~mA}$
V_{OH}	Output High Voltage	2.4		V	$\mathrm{I}_{\mathrm{OH}}=-1.0 \mathrm{~mA}$

Capacitance $T_{A}=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}$

Symbol	Test	Typ.	Max.	Unit
C	Output Capacitance	Input Capacitance		5
$\mathrm{C}_{\text {IN }}$			5 pF	

NOTE: This parameter is periodically sampled and not 100% tested.
A.C. Characteristics $\quad T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%$ (Note 5) READ CYCLE

Symbol	Parameter	2159-2		2159-3		2159-4		Unit	Conditions
		Min.	Max.	Min.	Max.	Min.	Max.		
${ }^{\text {tr }}$ C	Read Cycle Time	120		150		200		ns	
${ }^{t} A A$	Address Access Time		120		150		200	ns	
${ }^{\text {t }}$ ACS	Chip Select Access Time		50		60		70	ns	
${ }_{\text {t }}$ AOE	Output Enable Access Time		50		60		70	ns	
${ }^{t} \mathrm{OH}$	Output Hold from Address Change	10		10		10		ns	
t LZ	Output Low Z Time	10		10		10		ns	Note 4
${ }^{\text {t }} \mathrm{HZ}$	Output High Z Time	0	40	0	50	0	60	ns	Note 4

WRITE CYCLE

twC	Write Cycle Time	120		150		200		ns	
${ }^{\text {t }} \mathrm{CW}$	Chip Select to End of Write	70		90		120		ns	
${ }^{\text {t }}$ AW	Address Valid to End of Write	90		120		150		ns	
${ }^{\text {t }}$ AS	Address Setup Time	0		0		0		ns	
tWP	Write Pulse Width	70		90		120		ns	
tWR	Write Recovery Time	0		0		0		ns	
tDW	Data Valid to End of Write	50		70		90		ns	
tDH	Data Hold Time	0		0		0		ns	
tWZ	Write Enabled to Output in High Z	0	40	0	50	0	60	ns	Note 4
tow	Output Active from End of Write	0		0		0		ns	Note 4

[^3]
Timing Diagrams

READ CYCLE NO. 1 (NOTES 1 and 2)

READ CYCLE NO. 2 (NOTE 1)

WRITE CYCLE NO. 1 (NOTE 3)

Notes:

1. $\overline{W E}$ is high for Read Cycles.
2. Device is continuously selected, $\overline{\mathrm{CS}}=\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IL}}$.
3. If $\overline{\mathrm{CS}}$ goes high simultaneously with $\overline{\mathrm{WE}}$ high, hte outputs remain in the high impedance state.
4. Transition is measured $\pm 500 \mathrm{mV}$ from low or high impedance voltage with load B. This parameter is sampled and not 100% tested.
5. A minimum 0.5 ms time delay is required after application of $\mathrm{V}_{\mathrm{CC}}(+5 \mathrm{~V})$ before proper device operation is achieved.

WRITE CYCLE NO. $2\left(\overline{\mathrm{OE}}+\mathrm{V}_{\mathrm{IL}}\right)$ (NOTE 3)

A.C. Testing Input, Output Waveform

AC TESTING: INPUTS ARE DRIVEN AT 2.4V FOR A LOGIC " 1 " AND 0.4 V FOR A LOGIC " 0 ". TIMING MEASUREMENTS ARE MADE AT 2.0 V FOR A LOGIC " 1 " AND 0.8 V FOR A LOGIC " 0 ". INPUT PULSE RISE AND FALL TIMES ARE 5 ns .
A.C. Testing Load Circuit

Package Availability 24 Pin Plastic

Ordering Information

Order Number	Access Time (Max)	Operating Current (Max)	Package Type	$\mathbf{A}_{\mathbf{R}}$
SYP2159A-2	120 ns	100 mA	Plastic	V_{IL}
SYP2159A-3	150 ns	100 mA	Plastic	V_{IL}
SYP2159A-4	200 ns	100 mA	Plastic	V_{IL}
SYP2159B-2	120 ns	100 mA	Plastic	V_{IH}
SYP2159B-3	150 ns	100 mA	Plastic	V_{IH}
SYP2159B-4	200ns	100 mA	Plastic	V_{IH}

ADVANCED INFORMATION

Features

- 55 ns Maximum Access
- No Clocks or Strobes Required
- Automatic $\overline{C E}$ Power Down
- Identical Cycle and Access Times
- Single +5 V Supply
- Totally TTL Compatible All Inputs and Outputs
- Separate Data Input and Output
- High Density 20 Pin Package
- Three-State Output

Description

The Synertek SY2167 is a 16,384-Bit Static Random Access Memory organized 16,384 words by 1 -bit and is fabricated using Synertek's new N -Channel Double Polysilicon Gate HMOS technology. It is designed using fully static circuitry, therefore requiring no clock or refreshing to operate. Address set-up times are not required and the data is read out nondestructively with the same polarity as the input data. Separate data input and output pins provide maximum design flexibility. The three-state output facilitates memory expansion by allowing the outputs to be OR-tied to other devices.

The SY2167 offers an automatic power down feature. Power down is controlled by the Chip Enable input. When Chip Enable ($\overline{\mathrm{CE}}$) goes high, thus de-selecting the SY2167, the device will automatically power down and remain in a standby power mode as long as $\overline{\mathrm{CE}}$ remains high. This unique feature provides system level power savings as much as 80%.

The SY2167 is packaged in a 20 -pin DIP for the highest possible density. The device is fully TTL compatible and has a single +5 V power supply.

Block Diagram

Pin Configuration

Absolute Maximum Ratings*
Temperature Under Bias $-10^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
Storage Temperature $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Voltage on Any Pin with
Respect to Ground
\qquad
Electrostatic Discharge Rating (ESD)**
Inputs to Ground

Comment *

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
**Test Condition: MIL-STD-883B Method 3015.1
D.C. Characteristics $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%$ (Unless otherwise specified) (Note 6)

Symbol	Parameter	Min.	Max.	Unit	Conditions	
'LI	Input Load Current (All input pins)		10	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\text {IN }}=$ Gnd to $\mathrm{V}_{\text {CC }}$	
\mid 'Lod	Output Leakage Current		50	$\mu \mathrm{A}$	$\begin{aligned} & \overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IH}}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Max} . \\ & \mathrm{V}_{\mathrm{OUT}}=\mathrm{G} \text { nd to } 4.5 \mathrm{~V} \end{aligned}$	
Icc	Power Supply Current		110	mA	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$V_{C C}=\text { Max., } \overline{C E}=V_{I L}$ Outputs Open
			120	mA	$\mathrm{T}^{\text {A }}=0^{\circ} \mathrm{C}$	
${ }^{\text {S }}$ S	Standby Current		20	mA	$\mathrm{V}_{\mathrm{CC}}=$ Min. to Max., $\overline{\mathrm{CE}}=\mathrm{V}_{1} \mathrm{H}$	
Ipo	Peak Power-on Current (Note 7)		50	mA	$\begin{aligned} & V_{\mathrm{CC}}=G \text { gnd to } V_{\mathrm{CC}} \mathrm{Min} \\ & \mathrm{CE}=\text { Lower of } V_{\mathrm{CC}} \text { or } V_{I H} \text { Min. } \end{aligned}$	
$\mathrm{V}_{\text {IL }}$	Input Low Voltage	-3.0	0.8	V		
V_{IH}	Input High Voltage	2.0	6.0	V		
VOL	Output Low Voltage		0.4	v	$\mathrm{I}_{\mathrm{OL}}=16 \mathrm{~m}$	
$\mathrm{VOH}^{\text {O }}$	Output High Voltage	2.4		V	$\mathrm{I}_{\mathrm{OH}}=-4.0$	
Ios	Output Short Circuit Current (Note 8)	-120	120	mA	$\mathrm{V}_{\text {OUT }}=\mathrm{G}$	to V_{CC}

Capacitance $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}$

Symbol	Test	Typ.	Max.	Unit
$\mathrm{C}_{\text {OUT }}$	Output Capacitance		6	pF
$\mathrm{C}_{\text {IN }}$	Input Capacitance		5	pF

NOTE: This parameter is periodically sampled and not 100% tested.
A.C. Characteristics $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%$ (Unless otherwise specified) (Notes 6, 9) READ CYCLE

Symbol	Parameter	2167		2167-3		Unit	Conditions
		Min.	Max.	Min.	Max.		
${ }^{t} \mathrm{RC}$	Read Cycle Time	65		50		ns	
${ }^{\text {t }} \mathrm{AA}$	Address Access Time		65		50	ns	
${ }^{\text {t }}$ ACE	Chip Enable Access Time		70		55	ns	
${ }^{\text {t }} \mathrm{OH}$	Output Hold from Address Change	5		5		ns	
${ }^{\text {t }}$ LZ	Chip Selection to Output in Low Z	5		5		ns	Note 5
${ }^{\text {t }} \mathrm{HZ}$	Chip Deselection to Output in High \mathbf{Z}	0	40	0	30	ns	Note 5
tpu	Chip Selection to Power Up Time	0		0		ns	
tPD	Chip Deselection to Power Down Time		70		55	ns	

WRITE CYCLE

twc	Write Cycle Time	65		50		ns	
${ }^{\text {t }} \mathrm{CW}$	Clinp Enabled to End of Write	65		50		ns	
${ }^{\text {t }}$ AW	Address Valid to End of Write	65		50		ns	
${ }^{\text {t }}$ AS	Address Setup Time	0		0		ns	
tWP	Write Pulse Width	35		25		ns	
tWR	Write Recovery Time	0		0		ns	
${ }^{\text {t }}$ DW	Data Valid to End of Write	30		20		ns	
t DH	Data Hold Time	0		0		ns	
twZ	Write Enabled to Output in High Z	0	35	0	25	ns	Note 5
tow	Output Active from End of Write	0	40	0	30	ns	Note 5
(See following page for notes)							

Timing Diagrams
READ CYCLE NO. 1 (Notes 1 and 2)

READ CYCLE NO. 2 (Notes 1 and 3)

WRITE CYCLE NO. 1 ($\overline{\mathrm{WE}}$ Controlled) (Note 4)

1. $\overline{W E}$ is high for Read Cycles.
2. Device is continuously selected, $\overline{C E}=\mathrm{V}_{\mathrm{IL}}$.
3. Addresses valid prior to or coincident with CE transition low.
4. If $\overline{C E}$ goes high simultaneously with $\overline{W E}$ high, the outputs remain in the high impedance state.
5. Transition is measured $\pm 500 \mathrm{mV}$ from low or high impedance voltage with load B. This parameter is sampled and not 100% tested.
6. The operating ambient temperature range is guaranteed with transverse air flow exceeding 400 linear feet per minute.
7. A pullup resistor to $V_{C C}$ on the $\overline{C E}$ input is required to keep the device deselected: otherwise, power-on current approaches $I_{C C}$ active.
8. Duration not to exceed one minute.
9. A minimum 0.5 ms time delay is required after application of $\mathrm{V}_{\mathrm{CC}}(+5 \mathrm{~V})$ before proper device operation is achieved.

WRITE CYCLE NO. 2 (CE Controlled) (Note 4)

A.C. Testing Input, Output Waveform

A.C. Testing Load Circuit

Package Availability
20 Pin Ceramic
20 Pin Cerdip
Ordering Information

Order Number	Access Time (Max)	Operating Current (Max)	Standby Current (Max)	Package Type
SYC2167	70 ns	120 mA	20 mA	Ceramic
SYD2167	70 ns	120 mA	20 mA	Cerdip
SYC2167-3	55 ns	120 mA	20 mA	Ceramic
SYD2167-3	55 ns	120 mA	20 mA	Cerdip

4096×4 Static Random Access Memory

ADVANCED INFORMATION

Features

- 55 ns Maximum Access Time
- No Clocks or Strobes Required
- JEDEC Standard Pinout
- Automatic CE Power Down
- Identical Cycle and Access Times
- Single +5 V Supply $(\pm 10 \%$)
- Totally TTL Compatible All Inputs and Outputs
- Common Data Input and Output
- High Density 20-Pin Package
- Three-State Output

Description

The Synertek SY2168 is a 16,384-Bit Static Random Access Memory organized 4096 words by 4 bits and is fabricated using Synertek's scaled n-channel double poly silicon gate technology. It is designed using fully static circuitry, therefore requiring no clock or refreshing to operate. Address set-up times are not required and the data is read out nondestructively with the same polarity as the input data. Common data input and output pins provide maximum design flexibility. The three-state output facilitates memory expansion by allowing the outputs to be OR-tied to other devices.

The SY2168 offers an automatic power down feature. Power down is controlled by the Chip Enable input. When Chip Enable ($\overline{\mathrm{CE}}$) goes high, thus de-selecting the SY2168, the device will automatically power down and remain in a standby power mode as long as $\overline{\mathrm{CE}}$ remains high. This unique feature provides system level power savings as much as 85%.
The SY2168 is packaged in a 20 -pin DIP for the highest possible density. The device is fully TTL compatible and has a single +5 V power supply.

Pin Configuration

Block Diagram

Absolute Maximum Ratings*

Temperature Under Bias $-10^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
Storage Temperature $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Voltage on Any Pin with
Respect to Ground -3.5 V to +7 V
Power Dissipation 1.0W

Electrostatic Discharge Rating (ESD)**
Inputs to Ground
$\pm 2000 \mathrm{~V}$

Comment*

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
**Test Condition: MIL-STD-883B Method 3015.1
D.C. Characteristics $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%$ (Unless otherwise specified) (Note 6)

Symbol	Parameter	Min.	Max.	Unit	Conditions	
I_{LI}	Input Load Current (All input pins)		10	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\text {IN }}=\mathrm{Gnd}$ to V_{CC}	
$\left\|\mathrm{L}_{\mathrm{LO}}\right\|$	Output Leakage Current		50	$\mu \mathrm{A}$	$\begin{aligned} & \widehat{\mathrm{CE}}=\mathrm{V}_{1 \mathrm{H}}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Max} \\ & \mathrm{~V}_{\text {OUT }}=\mathrm{G} \text { nd to } 4.5 \mathrm{~V} \end{aligned}$	
I_{cc}	Power Supply Current		110	mA	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=\text { Max, } \overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}} \\ & \text { Outputs Open } \end{aligned}$
			120	mA	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$	
$\mathrm{I}_{\text {SB }}$	Standby Current		30	mA	$\mathrm{V}_{\mathrm{CC}}=$ Min to Max, $\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IH}}$	
$\mathrm{IPO}_{\text {P }}$	Peak Power-on Current (Note 7)		50	mA	$\begin{aligned} & V_{C C}=G n d \text { to } V_{C C} \operatorname{Min} \\ & C E=\text { Lower of } V_{C C} \text { or } V_{I H} M i n \end{aligned}$	
$\mathrm{V}_{\text {IL }}$	Input Low Voltage	-3.0	0.8	v		
V_{IH}	Input High Voltage	2.0	6.0	v		
$\mathrm{V}_{\text {OL }}$	Output Low Voltage		0.4	V	$\mathrm{l}_{\mathrm{OL}}=8 \mathrm{~mA}$	
V_{OH}	Output High Voltage	2.4		v	$\mathrm{l}_{\mathrm{OH}}=-4 \mathrm{~mA}$	

Capacitance $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}$

Symbol	Test	Typ.	Max.	Unit
C OUT	Output Capacitance		7	pF
$\mathrm{C}_{\text {IN }}$	Input Capacitance		5	pF

NOTE: This parameter is periodically sampled and not 100% tested.
A.C. Characteristics $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%$ (Unless otherwise specified) (Notes 6, 8) READ CYCLE

Symbol	Parameter	2168-3		2168		Unit	Conditions
		Min.	Max.	Min.	Max.		
t_{RC}	Read Cycle Time	50		65		ns	
t_{AA}	Address Access Time		50		65	ns	
${ }^{\text {tace }}$	Chip Enable Access Time		55		70	ns	
t_{OH}	Output Hold from Address Change	5		5		ns	
tLz	Chip Selection to Output in Low Z	20		20		ns	Note 5
t_{Hz}	Chip Deselection to Output in High Z	0	25	0	30	ns	Note 5
t_{PU}	Chip Selection to Power Up Time	0		0		ns	
$t_{\text {PD }}$	Chip Deselection to Power Down Time		55		70	ns	

WRITE CYCLE

Symbol	Parameter	Min.	Max.	Min.	Max.	Unit	Conditions
t_{WC}	Write Cycle Time	50		65		ns	
t_{CW}	Chip Enabled to End of Write	45		60		ns	
t_{AW}	Address Valid to End of Write	45		60		ns	
t_{AS}	Address Setup Time	0		0		ns	
t_{WP}	Write Pulse Width	45		60		ns	
t_{WR}	Write Recovery Time	5		5		ns	
t_{DW}	Data Valid to End of Write	20		25		ns	
t_{DH}	Data Hold Time	0		0		ns	
t_{WZ}	Write Enabled to Output in High Z	0	25	0	30	ns	Note 5
t_{OW}	Output Active from End of Write	0		0		ns	Note 5

Timing Diagrams

READ CYCLE NO. 1 (Notes 1 and 2)

READ CYCLE NO. 2 (Notes 1 and 3)

WRITE CYCLE NO. 1 (WE Controlled) (Note 4)

NOTES:

1. $\overline{W E}$ is high for Read Cycles.
2. Device is continuously selected, $\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}}$.
3. Addresses valid prior to or coincident with $\overline{C E}$ transition low.
4. If $\overline{C E}$ goes high simultaneously with $\overline{W E}$ high, the outputs remain in the high impedance state.
5. Transition is measured $\pm 500 \mathrm{mV}$ from low or high impedance voltage with load B. This parameter is sampled and not 100% tested.
6. The operating ambient temperature range is guaranteed with transverse air flow exceeding 400 linear feet per minute.
7. A pullup resistor to $V_{C C}$ on the $\overline{C E}$ input is required to keep the device deselected: otherwise, power-on current approaches $I_{C C}$ active.
8. A minimum 0.5 ms time delay is required after application of $\mathrm{V}_{\mathrm{Cc}}(+5 \mathrm{~V})$ before proper device operation is achieved.

WRITE CYCLE NO. 2 ($\overline{\mathrm{CS}}$ Controlled) (Note 4)

A.C. Testing Input, Output Waveform

A.C. Testing Load Circuit

Package Availability 20 Pin Ceramic 20 Pin Cerdip

Ordering Information

Order Number	Access Time (Max)	Operating Current (Max)	Standby Current (Max)	Package Type
SYC2168	70 ns	120 mA	30 mA	Ceramic
SYD2168	70 ns	120 mA	30 mA	Cerdip
SYC2168-3	55 ns	120 mA	30 mA	Ceramic
SYD2168-3	55 ns	120 mA	30 mA	Cerdip

4096×4 Static Random Access Memory

ADVANCED INFORMATION

Features

- 50 ns Maximum Address Access Times
- Fully Static Operation: No Clocks or Strobes Required
- Fast Chip Select Access Time: 40 ns Max.
- Identical Cycle and Access Times
- Single +5 V Supply
- JEDEC Standard Pinout
- Totally TTL Compatible: All Inputs and Outputs
- Common Data Input and Outputs
- High Density 20-Pin Package
- Three-State Output

Description

The Synertek SY2169 is a 16,384 -Bit Static Random Access Memory organized 4096 words by 4 bits and is fabricated using Synertek's N-Channel double poly silicon gate HMOS technology. It is designed using fully static circuitry, therefore requiring no clock or refreshing to operate. Address set-up times are not required and the data is read out nondestructively with the same polarity as the input data. Common data input and output pins provide maximum design flexibility. The three-state output facilitates memory expansion by allowing the outputs to be OR-tied to other devices.

The SY2169 offers a chip select access that is faster than its address access. In a typical application, the address access begins as soon as the address is valid. At this time, the high order addresses are decoded and the desired memory is then selected. With the faster chip select access, this decode time will not add to the overall access time thus significantly improving system performance.
The SY2169 is packaged in a 20-pin DIP for the highest possible density. The device is fully TTL compatible and has a single +5 V power supply.

Pin Configuration

Block Diagram

Absolute Maximum Ratings*

Comment*

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
**Test Condition: MIL-STD-883B Method 3015.1
D.C. Characteristics $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%$ (Unless otherwise specified) (Note 6)

Symbol	Parameter	Min.	Max.	Unit	Conditions	
IL_{L}	Input Load Current (All input pins).		10	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\text {IN }}=\mathrm{Gnd}$ to V_{CC}	
$\mathrm{l}_{\text {LO }}$	Output Leakage Current		50	$\mu \mathrm{A}$	$\begin{aligned} & \overline{\mathrm{CS}}=\mathrm{V}_{\mathrm{IH}}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Max} \\ & \mathrm{~V}_{\text {OUT }}=\mathrm{G}_{\text {nd }} \text { to } 4.5 \mathrm{~V} \\ & \hline \end{aligned}$	
I_{cc}	Power Supply Current		110	mA	$T_{A}=25^{\circ} \mathrm{C}$	$V_{C C}=M a x, \overline{C S}=V_{I L}$ Outputs Open
			120	mA	$\mathrm{T}_{\mathrm{A}}=\mathrm{O}^{\circ} \mathrm{C}$	
V_{lL}	Input Low Voltage	-3.0	0.8	V		
$\mathrm{V}_{1 H}$	Input High Voltage	2.0	6.0	V		
V_{OL}	Output Low Voltage		0.4	V	$\mathrm{I}_{\mathrm{OL}}=8 \mathrm{~mA}$	
V_{OH}	Output High Voltage	2.4		V	$\mathrm{I}_{\mathrm{OH}}=-4 \mathrm{~mA}$	
I_{os}	Output Short Circuit Current		± 200	mA	$\mathrm{V}_{\text {OUT }}=$ Gnd to $\mathrm{V}_{\text {CC }}$ (Note 7)	

Capacitance $T_{A}=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}$

Symbol	Test	Typ.	Max.	Unit
COUT	Output Capacitance		7	pF
$\mathrm{C}_{\text {IN }}$	Input Capacitance		5	pF

NOTE: This parameter is periodically sampled and not 100% tested.
A.C. Characteristics $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%$ (Unless otherwise specified) (Notes 6, 8) read cycle

Symbol	Parameter	SY2169-3		SY2169		Unit	Conditions
		Min.	Max.	Min.	Max.		
$\mathrm{t}_{\text {RC }}$	Read Cycle Time	50		70		ns	
t_{AA}	Address Access Time		50		70	ns	
$\mathrm{t}_{\text {ACS }}$	Chip Select Access Time		40		50	ns	
t_{OH}	Output Hold from Address Change	5		5		ns	
t_{LZ}	Chip Selection to Output in Low Z	20		20		ns	Note 5
t_{Hz}	Chip Deselection to Output in High Z	0	25	0	25	ns	Note 5

WRITE CYCLE

Symbol	Parameter	SY2169-3		SY2169		Unit	Conditions
		Min.	Max.	Min.	Max.		
$t_{\text {wc }}$	Write Cycle Time	50		70		ns	
t_{cw}	Chip Selection to End of Write	40		60		ns	
t_{AW}	Address Valid to End of Write	45		65		ns	
$\mathrm{t}_{\text {AS }}$	Address Setup Time	0		0		ns	
$\mathrm{t}_{\text {wp }}$	Write Pulse Width	45		60		ns	
$\mathrm{t}_{\text {WR }}$	Write Recovery Time	5		5		ns	
t_{DW}	Data Valid to End of Write	20		25		ns	
t_{DH}	Data Hold Time	0		0		ns	
t_{wz}	Write Enabled to Output in High Z	0	25	0	25	ns	Note 5
${ }^{\text {tow }}$	Output Active from End of Write	0		0		ns	Note 5

(see following page for notes)

Timing Diagrams

READ CYCLE NO. 1 (Notes 1 and 2)

READ CYCLE NO. 2 (Notes 1 and 3)

WRITE CYCLE NO. 1 ($\overline{\mathrm{WE}}$ controlled) (Note 4)

NOTES:

1. $\overline{W E}$ is high for Read Cycles.
2. Device is continuously selected, $\overline{\mathrm{CS}}=\mathrm{V}_{\mathrm{IL}}$.
3. Addresses valid.
4. If $\overline{\mathrm{CS}}$ goes high simultaneously with $\overline{\mathrm{WE}}$ high, the outputs remain in the high impedance state.
5. Transition is measured $\pm 500 \mathrm{mV}$ from low or high impedance voltage with load B. This parameter is sampled and not 100% tested.
6. The operating ambient temperature range is guaranteed with transverse air flow exceeding 400 linear feet per minute.
7. Duration not to exceed one minute.
8. A minimum 0.5 ms time delay is required after application of $\mathrm{V}_{\mathrm{CC}}(+5 \mathrm{~V})$ before proper device operation is achieved.

WRITE CYCLE NO. 2 ($\overline{C S}$ controlied) (Note 4)

A.C. Testing Input, Output Waveform

A.C. Testing Load Circuit

Package Availability

20 Pin Ceramic 20 Pin Cerdip

Ordering Information

Order Number	Access Time (Max)	Operating Current (Max)	Standby Current (Max)	Package Type
SYC2169	70 ns	120 mA	20 mA	Ceramic
SYD2169	70 ns	120 mA	20 mA	Cerdip
SYC2169-3	50 ns	120 mA	20 mA	Ceramic
SYD2169-3	50 ns	120 mA	20 mA	Cerdip

SY21D1
 1024×8 Dual Port Random Access Memory

ADVANCED INFORMATION

Features

- 100 ns Address Access Time - Easy Microprocessor Interface
- Fully Static Operation
- Transparent Power Down
- Full TTL Compatibility
- Output Enable Function ($\overline{\mathrm{OE}})$
- Interrupt Function (INT)
- Total Left and Right Separation

Description

The Synertek SY21D1 is an 8192 Bit Dual Port Random Access Memory organized 1024 words by 8 bits and is fabricated using Synertek's n-channel double poly silicon gate technology. It is designed using fully static circuitry, requiring no clock or refreshing to operate.

The SY21D1 is a true dual port allowing each side independent access for read or write asynchronously. The dual port function is enhanced by the use of onboard control circuitry including Busy, Interrupt, Output Enable and Chip Enable. In the case where address " R " and address " L " are identical, $\overline{B U S Y}$ goes low. This allows the processor to stop with the address intact. The interrupt function (INT) acts like a writable flag. When the flag's location is written to from one side, the
other side's $\overline{\mathrm{NT}}$ pin goes low. This pin stays low until the interrupted side reads the flag location.

The SY21D1 offers a chip select access that is faster than its address access. In a typical application, the address access begins as soon as the address is valid. At this time, the high order addresses are decoded and the desired memory is then selected. With the faster chip select access, this decode time will not add to the overall access time thus significantly improving system performance.

The SY21D1 is packaged in a 48 -pin DIP for the highest possible density. This device is fully TTL compatible and has a single +5 V power supply.

Pin Configuration

$\overline{C S}_{L} \square_{1}$	48	vcc
$\mathrm{R} / \bar{W}_{\mathrm{L}} \mathrm{H}_{2}$	47	$\mathrm{CSS}_{\mathrm{R}}$
$\overline{\text { BUSY }}_{\text {L }} \square_{3}$	46	R / \bar{W}_{R}
$\overline{\mathrm{INT}}_{\mathrm{L}} \mathrm{C}_{4}$	45	$\overline{\square S U S Y}_{\text {B }}$
$\overline{O E}_{L}$ ¢ $_{5}$	44	$\mathrm{T} \mathrm{NT}_{\mathrm{R}}$
$A_{0} 06$	43	$\overline{O E}_{R}$
$\mathrm{A}_{1} \mathrm{C}_{7}$	42	A_{0}
$\mathrm{A}_{2} \mathrm{O}_{8}$	41	A_{1}
$\mathrm{A}_{3} \mathrm{C}_{9}$	40	A_{2}
$\mathrm{A}_{4} \mathrm{O} 10$	39	A_{3}
$\mathrm{A}_{5} \mathrm{C}_{6} 11$	38	A_{4}
$\mathrm{A}_{6}[12$	37	A_{5}
$\mathrm{A}_{7} \mathrm{~A}_{8} 13$	36	A_{6}
A_{8}	35	T_{7}
$\mathrm{Ag}_{9} 15$	34	A_{8}
$1 / O_{0} ¢ 16$	33	JA9
$1 / \mathrm{O}_{1}$ O 17	32	$\mathrm{I} / \mathrm{O}_{0}$
$1 / \mathrm{O}_{2} \mathrm{Cl}_{18}$	31	I/ 0_{1}
$1 / \mathrm{O}_{3}$ ¢ 19	30	$1 / \mathrm{O}_{2}$
$1 / \mathrm{O}_{4}$ ¢ 20	29	$1 / O_{3}$
$1 / \mathrm{O}_{5} \mathrm{C}_{21}$	28	$\mathrm{J}^{1 / O_{4}}$
$1 / 0_{6} ¢ 22$	27	$1 / 0_{5}$
$1 / 0_{7}$ ¢ 23	26	$1 / 0_{6}$
GND 24	25	$\mathrm{J}_{1 / O_{7}}$

Block Diagram

Product
Number
Page
Number
SY2316B 2-73
SY2332 2-76
SY2333 2-76
SY2364 2-79
SY2365 2-82
SY23128 2-85
SY23256 2-88
SY3308 2-91
SY3316 2-96
SY3308R 2-97
SY3316R 2-101
SY6364 2-105
SY6365 2-105
Programming Instructions 2-106

2048×8 Static Read Only Memory

Features

- Access Time 200/300/450 ns (max)
- Completely TTL Compatible
- 2048×8 Bit Organization
- Three-State Outputs for Wire-OR Expansion
- Single +5 Volt Supply
- Three Programmable Chip Selects
- Totally Static Operation
- Pin Compatible with 2716 EPROM
- JEDEC Approved Pinout
- Replacement for Two 2708s

Description

The SY2316B high performance Read Only Memories are organized 2048 words by 8 bits with access times from 200 to 450 ns . The ROMs are designed to be compatible with all microprocessor and similar applications where high performance, large bit storage and simple interfacing are important design considerations. This device offers TTL input and output levels with a minimum of 0.4 Volt noise immunity in conjunction with a +5 Volt power supply.

The SY2316B operates totally asynchronously. No clock input is required. The three programmable Chip Select inputs allow eight 16 K ROMs to be OR-tied without external decoding. The device offers three-state output buffers for memory expansion.
Designed to replace the 2716 EPROM, the SY2316B can eliminate the need to redesign printed circuit boards for volume mask programmed ROMs after prototyping with EPROMs.

Pin Configuration

Block Diagram

*CHIP SELECTS (CS) ARE PROGRAMMABLE LOW ACTIVE, HIGH ACTIVE, OR DON'T CARE.

Absolute Maximum Ratings*

Temperature Under Bias
Storage Temperature Voltage on Any Pin with Respect to Ground
Power Dissipation
$-10^{\circ} \mathrm{C}$ to $80^{\circ} \mathrm{C}$ $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
-0.5 V to +7 V
1.0W

Comment*

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only. Functional operation of this device at these or any other conditions above those indicated in the operational sections of this specification is not implied and exposure to absolute maximum rating conditions for extended periods may affect device reliability.

D.C. Characteristics

$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \%$ (unless otherwise specified)

Symbol	Parameter	Min.	Max.	Units	Test Conditions
VOH	Output HIGH Voltage	2.4	Vcc	Volts	$\mathrm{VCC}=4.75 \mathrm{~V}, 1 \mathrm{OH}=-200 \mu \mathrm{~A}$
Vol	Output LOW Voltage		0.4	Volts	$\mathrm{VCC}=4.75 \mathrm{~V}, \mathrm{IOL}=2.1 \mathrm{~mA}$
V IH	Input HIGH Voltage	2.0	Vcc	Volts	
VIL	Input LOW Voltage	-0.5	0.8	Volts	See Note 1
ILI	Input Load Current		10	uA	$\mathrm{Vcc}=5.25 \mathrm{~V}, 0 \mathrm{~V} \leqslant \mathrm{~V}_{\text {in }} \leqslant 5.25 \mathrm{~V}$
ILO	Output Leakage Current		10	uA	Chip Deselected
Icc	Power Supply Current		98	mA	Vout $=+0.4 \mathrm{~V}$ to Vcc Output Unloaded $\mathrm{Vcc}=5.25 \mathrm{~V}, \mathrm{~V}_{\text {in }}=\mathrm{Vcc}$

A.C. Characteristics

$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \%$ (uniess otherwise specified) (Note 3)

Symbol	Parameter	2316B-2		2316B-3		2316B		Test Conditions
		Min.	Max.	Min.	Max.	Min.	Max.	
$\mathbf{t}_{\text {AcC }}$	Address Access Time		200		300		450	Output Load: 1 TLL load
t_{CO}	Chip Select Delay		100		130		150	and 100 pF
t_{DF}	Chip Deselect Delay		100		100		150	Input transition time: 20 ns
$\mathbf{t o H}^{\text {O }}$	Previous Data Valid After Address Change Delay	10		10		10		Timing reference levels: Input: 1.5V Output: 0.8 V and 2.0 V

Capacitance

$t_{A}=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}$, See Note 2

Symbol	Parameter	Min.	Max.	Units	Test Conditions
\mathbf{C}_{1}	Input Capacitance		7	pF	All pins except pin under
\mathbf{C}_{0}	Output Capacitance		10	pF	test tied to $A C$ ground

1. Input levels that swing more negative than -0.5 V will be clamped and may cause damage to the device.
2. This parameter is periodically sampled and is not 100% tested.
3. A minimum 0.5 ns time delay is required after application of $\mathrm{V}_{\mathrm{CC}}(+5 \mathrm{~V})$ before proper device operation is achieved.

Timing Diagram

Typical Characteristics

Programming Instructions

All Synertek Read Only Memories (ROM) utilize computer aided techniques to manufacture and test custom bit patterns. The customer's bit pattern and address information can be supplied to Synertek in a number of different ways. Synertek can process customer inputs in EPROM, ROM, PROM, paper tape, and computer punched cards. Contact your Synertek sales representative for complete details on each of the various data input formats.
Programming instructions are listed at the end of the Memory Section.

Package Availability 24 Pin Cerdip 24 Pin Plastic

Ordering Information

Order Number	Access Time (Max)	Operating Current (Max)	Package Type
SYD2316B	450 ns	98 mA	Cerdip
SYP2316B	450 ns	98 mA	Plastic
SYD2316B-2	200 ns	98 mA	Cerdip
SYP2316B-2	200 ns	98 mA	Plastic
SYD2316B-3	300 ns	98 mA	Cerdip
SYP2316B-3	300 ns	98 mA	Plastic

SY2332/SY2333 4096×8 Static Read Only Memory

Features

- SY2332 is 2532 EPROM Pin Compatible
- 4096×8 Bit Organization
- Single +5 Volt Supply ($\pm 10 \%$)
- Access Time 200/300/450 ns (max.)
- Totally Static Operation
- Completely TTL Compatible
- SY2333 is 2732 EPROM Pin Compatible
- Three-State Outputs for Wire-OR Expansion
- Two Programmable Chip Selects
- EPROMS Accepted as Program Data Inputs
- JEDEC Approved Pinouts

Description

The SY2332 and SY2333 high performance read only memories are organized 4096 words by 8 bits with access times from 200 ns to 450 ns . They are designed to be compatible with all microprocessor and similar applications where high performance, large bit storage and simple interfacing are important design considerations. These devices offer TTL input and output levels with a minimum of 0.4 Volt noise immunity in conjunction with a +5 Volt power supply.

Pin Configurations

The SY2332 and SY2333 operate totally asynchronously. No clock input is required. The two programmable Chip Select inputs allow four 32 K ROMs to be OR-tied without external decoding. Both devices offer three-state output buffers for memory expansion.
Designed to replace 32 K EPROMs, the SY2332 and SY2333 can eliminate the need to redesign printed circuit boards for volume mask programmed ROMs after prototyping with EPROMs.

Block Diagram

[^4]| Absolute Maximum Ratings* | |
| :---: | :---: |
| Temperature Under Bias | $-10^{\circ} \mathrm{C}$ to $80^{\circ} \mathrm{C}$ |
| Storage Temperature | $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ |
| Voltage on Any Pin with | |
| Respect to Ground | -3.5 V to +7 V |
| Power Dissipation | 1.0 W |

Comment*

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only. Functional operation of this device at these or any other conditions above those indicated on the operational sections of this specification is not implied and exposure to absolute maximum rating conditions for extended periods may affect device reliability.

D.C. Characteristics

$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \%$ (unless otherwise specified)

Symbol	Parameter	Min.	Max.	Units	Test Conditions
V_{OH}	Output HIGH Voltage	2.4	V_{CC}	Volts	$\mathrm{VCC}=4.5 \mathrm{~V}, \mathrm{IOH}=-400 \mu \mathrm{~A}$
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage		0.4	Volts	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{OL}}=2.1 \mathrm{~mA}$
$V_{\text {IH }}$	Input HIGH Voltage	2.0	V_{CC}	Volts	
VIL	Input LOW Voltage	-3.0	0.8	Volts	
ILI	Input Load Current		10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {CC }}=5.5 \mathrm{~V}, 0 \mathrm{~V} \leqslant \mathrm{~V}_{\text {IN }} \leqslant 5.5 \mathrm{~V}$
ILO	Output Leakage Current		10	$\mu \mathrm{A}$	Chip Deselected
ICC	Power Supply Current		100	mA	$\mathrm{V}_{\text {OUT }}=+0.4 \mathrm{~V}$ to V_{CC} Output Unloaded, Chip Enabled $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=\mathrm{V}_{\mathrm{CC}}$

A.C. Characteristics

$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \%$ (unless otherwise specified) (Note 1)

Symbol	Parameter	$\begin{aligned} & \text { SY2332-2 } \\ & \text { SY2333-2 } \end{aligned}$		$\begin{aligned} & \text { SY2332-3 } \\ & \text { SY2333-3 } \end{aligned}$		$\begin{aligned} & \hline \text { SY2332 } \\ & \text { SY2333 } \end{aligned}$		Units
		Min.	Max.	Min.	Max.	Min.	Max.	
${ }^{\text {t }}$ CC	Address Access Time		200		300		450	ns
${ }^{\text {t }} \mathrm{CO}$	Chip Select Delay		100		100		150	ns
${ }^{t}{ }_{\text {DF }}$	Chip Deselect Delay		100		100		150	ns
${ }^{\text {t }} \mathrm{OH}$	Previous Data Valid After							
	Address Change Delay	20		20		20		ns

Capacitance

$t_{A}=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}$ (Note 2)

Symbol	Parameter	Min.	Max.	Units	Test Conditions
C_{I}	Input Capacitance		7	pF	All pins except pin under
C_{O}	Output Capacitance		10	pF	test tied to $A C$ ground

1. A minimum 0.5 mstime delay is required after application of $\mathrm{V}_{\mathrm{CC}}(+5 \mathrm{~V})$ before proper device operation is achieved.
2. This parameter is periodically sampled and is not 100% tested.

Timing Diagram

Typical Characteristics

NORMALIZED ACCESS TIME vs. CAPACITIVE LOAD

NORMALIZED SUPPLY CURRENT vs. AMBIENT TEMPERATURE

T_{A} - AMBIENT TEMPERATURE - ${ }^{\circ} \mathrm{C}$

A.C. Testing Input, Output Waveform

Programming Instructions

All Synertek Read Only Memories (ROM) utilize computer aided techniques to manufacture and test custom bit patterns. The customer's bit pattern and address information can be supplied to Synertek in a number of different ways. Synertek can process customer inputs in EPROM, ROM, PROM, paper tape, and computer punched cards. Contact your Synertek sales representative for complete details on each of the various data input formats.

Programming instructions are listed at the end of the Memory Secton.

Package Availability 24 Pin Plastic 24 Pin Cerdip

NORMALIZED SUPPLY CURRENT vs. SUPPLY VOLTAGE

A.C. Testing Load Circuit

C_{L} INCLUDES SCOPE AND JIG $\overline{\mathrm{C}}$ APACITANCE

Ordering Information

Order Number	Access Time	Operating Current	Package Type
SYD2332	450 ns	100 mA	Cerdip
SYP2332	450 ns	100 mA	Plastic
SYD2332-2	200 ns	100 mA	Cerdip
SYP2332-2	200 ns	100 mA	Plastic
SYD2332-3	300 ns	100 mA	Cerdip
SYP2332-3	300 ns	100 mA	Plastic
SYD2333	450 ns	100 mA	Cerdip
SYP2333	450 ns	100 mA	Plastic
SYD2333-2	200 ns	100 mA	Cerdip
SYP2333-2	200 ns	100 mA	Plastic
SYD2333-3	300ns	100 mA	Cerdip
SYP2333-3	300 ns	100 mA	Plastic

A custom number will be assigned by Synertek.

Features

- 8192×8 Bit Organization
- Single +5 Volt Supply
- Access Time - 200/300/450 ns (max)
- Totally Static Operation
- Completely TTL Compatible
- 24 Pin JEDEC Approved Pinout
- SY2364A - Automatic Power Down ($\overline{\mathrm{CE}}$)
- SY2364 - Non Power Down Version
- Programmable Chip Select (CS)
- Three State Outputs for Wire-OR Expansion
- EPROMs Accepted as Program Data Input
- 2564 EPROM Compatible

Description

The SY2364 and SY2364A high performance Read Only Memories are organized 8192 words by 8 bits with access times from 200 ns to 450 ns . The ROMs are designed to be compatible with all microprocessor and similar applications where high performance, large bit storage and simple interfacing are important design considerations. Both ROMs conform to the JEDEC approved pinout for 24 pin 64 K ROMs.
The SY2364 offers the simplest operation (no power down.) Its programmable chip select allows two 64 K ROMs to be OR-tied without external decoding.

Pin Configurations

The SY2364A offers an automatic power down feature. Power down is controlled by the Chip Enable ($\overline{\mathrm{CE}}$) input. When $\overline{\mathrm{CE}}$ goes high, the device will automatically power down and remain in a low power standby mode as long as $\overline{\mathrm{CE}}$ remains high. This unique feature provides system level power savings as much as 90%.
Both the SY2364 and SY2364A are pin compatible with the 2564 EPROM thus eliminating the need to redesign printed circuit boards for volume mask programmed ROMs after prototyping with EPROMs.

Block Diagram

*CHIP SELECT (CS) IS PROGRAMMABLE LOW ACTIVE, HIGH ACTIVE OR DON'T CARE.

Absolute Maximum Ratings*

Temperature Under Bias	$-10^{\circ} \mathrm{C}$ to $80^{\circ} \mathrm{C}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Voltage on Any Pin with	-0.5 V to +7 V
Respect to Ground	1.0 W

Comment*

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only. Functional operation of this device at these or any other conditions above those indicated on the operational sections of this specification is not implied and exposure to absolute maximum rating conditions for extended periods may affect device reliability.

D.C. Characteristics

$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 10 \%$

Symbol	Parameter	Min.	Typ.	Max.	Unit	Conditions
V_{OH}	Output HIGH Level	2.4		$\mathrm{~V}_{\mathrm{CC}}$	V	$\mathrm{I}_{\mathrm{OH}}=-1.0 \mathrm{~mA}$
$\mathrm{~V}_{\mathrm{OL}}$	Output LOW Level			0.4	V	$\mathrm{I}_{\mathrm{OL}}=3.2 \mathrm{~mA}$
$\mathrm{~V}_{\mathrm{IH}}$	Input HIGH Level	2.0		$\mathrm{~V}_{\mathrm{CC}}$	V	
V_{IL}	Input LOW Level	-0.5		0.8	V	
I_{LI}	Input Leakage Current			10	$\mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V}$ to V_{CC}
I_{LO}	Output Leakage Current			10	$\mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{OUT}}=0 \mathrm{~V}$ to V_{CC}
I_{CC}	Operating Supply Current			100	mA	Note 1
I_{SB}	Standby Supply Current			12	mA	Note 2
I_{OS}	Output Short Circuit Current			90	mA	Note 3

Capacitance

$T_{A}=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz} \quad$ Note: This parameter is periodically sampled and is not 100% tested.

Symbol	Parameter	Min.	Max.	Unit	Conditions
C_{I}	Input Capacitance		5	pf	$\mathrm{V}_{\text {IN }}=\mathrm{OV}$
C_{O}	Output Capacitance		5	pf	$\mathrm{V}_{\text {OUT }}=\mathrm{OV}$

A.C. Characteristics

$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 10 \%$ (Note 7)

Symbol	Parameter	$\begin{gathered} \hline 2364-2 \\ 2364 A-2 \end{gathered}$		$\begin{gathered} 2364-3 \\ 2364 A-3 \end{gathered}$		$\begin{gathered} \hline 2364 \\ 2364 A \end{gathered}$		Unit	Conditions
		Min.	Max.	Min.	Max.	Min.	Max.		
${ }^{\text {chec }}$	Cycle Time	200		300		450		ns	
$t_{A A}$	Address Access Time		200		300		450	ns	
${ }^{\text {toH }}$	Output Hold After Address Change	10		10		10		ns	
$\mathrm{t}_{\text {ACE }}$	Chip Enable Access Time		200		300		450	ns	Note 4
$\mathrm{t}_{\text {ACS }}$	Chip Select Access Time		85		100		150	ns	
t_{Lz}	Ouput LOW Z Delay	10		10		10		ns	Note 5
t_{HZ}	Output HIGH Z Delay		85		100		150	ns	Note 6
t_{PU}	Power Up Time	0		0		0		ns	Note 4
$\mathrm{t}_{P D}$	Power Down Time		85		100		150	ns	Note 4

Notes:

1. Measured with device selected and outputs unloaded.
2. Applies to " A " versions only and measured with $\overline{C E}=2.0 \mathrm{~V}$.
3. For a duration not to exceed one second.
4. Applies to " A " versions (power down) only.
5. Output low impedance delay ($t_{L Z}$) is measured from $\overline{C E}$ going low or CS going active.
6. Output high impedance delay ($t_{H Z}$) is measured from $\overline{C E}$ going high or $C S$ going inactive.
7. A minimum 0.5 ms time delay is required after application of $\mathrm{V}_{\mathrm{CC}}(+5 \mathrm{~V})$ before proper device operation is achieved.

Timing Diagrams

Propagation Delay from Address ($\overline{\mathrm{CE}}$ LOW or CS = Active)

Propagation Delay from Chip Enable, Chip Select (Address Valid)

A.C. Testing Input, Output Waveform

Programming Instructions

All Synertek Read Only Memories (ROM) utilize computer asided techniques to manufacture and test custom bit patterns. The customer's bit pattern and address information can be supplied to Synertek in a number of different ways. Synertek can process customer inputs in EPROM, ROM, PROM, paper tape, and computer punched cards. Contact your Synertek sales representative for complete details on each of the various data input formats.
Programming instructions are listed at the end of the Memory Section.

A.C. Testing Load Circuit

Package Availability 24 Pin Cerdip 24 Pin Plastic DIP

Ordering Information

Order Number	Access Time	Operating Current	Standby Current	Package Type
SYD2364	450 ns	100 mA	N.A.	Cerdip
SYP2364	450 ns	100 mA	N.A.	Plastic
SYD2364-3	300 ns	100 mA	N.A.	Cerdip
SYP2364-3	300 ns	100 mA	N.A.	Plastic
SYD2364-2	200 ns	100 mA	N.A.	Cerdip
SYP2364-2	200 ns	100 mA	N.A.	Plastic
SYD2364A	450 ns	100 mA	12 mA	Cerdip
SYP2364A	450 ns	100 mA	12 mA	Plastic
SYD2364A-3	300 ns	100 mA	12 mA	Cerdip
SYP2364A-3	300 ns	100 mA	12 mA	Plastic
SYD2364A-2	200 ns	100 mA	12 mA	Cerdip
SYP2364A-2	200 ns	100 mA	12 mA	Plastic

*Not Applicable.

SY2365/SY2365A 8192×8 Static Read Only Memory

Features

- 2764 EPROM Pin Compatible
- 8192×8 Bit Organization
- Single +5 Volt Supply
- Access Time - 200/300/450 ns (max)
- Totally Static Operation
- Completely TTL Compatible
- 28 Pin JEDEC Approved Pinout
- SY2365A - Automatic Power Down ($\overline{\mathrm{CE}}$)
- Output Enable Function ($\overline{\mathrm{OE}})$
- Two Programmable Chip Selects (CS)
- SY 2365 - Non Power Down Version
- Four Programmable Chip Selects (CS)
- Three State Outputs for Wire-OR Expansion
- EPROMs Accepted as Program Data Input

Description

The SY2365 and SY 2365A high performance Read Only Memories are organized 8192 words by 8 bits with access times from 200 ns to 450 ns . The ROMs are designed to be compatible with all microprocessor and similar applications where high performance, large bit storage and simple interfacing are important design considerations. Both ROMs conform to the JEDEC approved pinout for 28 pin 64K ROMs.
The SY 2365 offers the simplest operation (no power down.) Its four programmable chip selects allow up to sixteen 64 K ROMs to be OR-tied without external decoding.
The SY 2365A offers an automatic power down feature. Power down is controlled by the Chip Enable ($\overline{\mathrm{CE}}$) input. When $\overline{C E}$ goes high, the device will automatically power down and remain in a low power standby mode as long as $\overline{\mathrm{CE}}$ remains high. This unique feature provides system level power savings as much as 90%. An additional feature of the SY 2365A is the Output Enable ($\overline{\mathrm{OE}}$) function. This

Pin Configurations

eliminates bus contention in multiple bus microprocessor systems. The two programmable Chip Selects (CS) allow up to four 64 K ROMs to be OR-tied without external decoding.

Both the SY 2365 and SY 2365A are pin compatible with the 2764 EPROM thus eliminating the need to redesign printed circuit boards for volume mask programmed ROMs after prototyping with EPROMs.

Block Diagram

[^5]\author{

Absolute Maximum Ratings*
 | Temperature Under Bias | $-10^{\circ} \mathrm{C}$ to $80^{\circ} \mathrm{C}$ |
| :--- | ---: |
| Storage Temperature | $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ |
| Voltage on Any Pin with | |
| Respect to Ground | -0.5 V to +7 V |
| Power Dissipation | 1.0 W |

}

Comment*

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only. Functional operation of this device at these or any other conditions above those indicated on the operational sections of this specification is not implied and exposure to absolute maximum rating conditions for extended periods may affect device reliability.

D.C. Characteristics

$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 10 \%$

Symbol	Parameter	Min.	Typ.	Max.	Units	Conditions
V_{OH}	Output HIGH Level	2.4		$\mathrm{~V}_{\mathrm{CC}}$	V	$\mathrm{I}_{\mathrm{OH}}=-1.0 \mathrm{~mA}$
$\mathrm{~V}_{\mathrm{OL}}$	Output LOW Level			0.4	V	$\mathrm{I}_{\mathrm{OL}}=3.2 \mathrm{~mA}$
$\mathrm{~V}_{\mathrm{IH}}$	Input HIGH Level	2.0		$\mathrm{~V}_{\mathrm{CC}}$	V	
V_{IL}	Input LOW Level	-0.5		0.8	V	
I_{LI}	Input Leakage Current			10	$\mu \mathrm{~A}$	$\mathrm{~V}_{\text {IN }}=0 \mathrm{~V}$ to V_{CC}
$\mathrm{I}_{\text {LO }}$	Output Leakage Current			10	$\mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{OUT}}=0 \mathrm{~V}$ to V_{CC}
I_{CC}	Operating Supply Current			100	mA	Note 1
I_{SB}	Standby Supply Current			12	mA	Note 2
I_{OS}	Output Short Circuit Current			70	mA	Note 3

Capacitance

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz} \quad$ Note: This parameter is periodically sampled and is not 100% tested.

Symbol	Parameter	Min.	Max.	Unit	Conditions
C_{1}	Input Capacitance		5	pf	$\mathrm{V}_{\text {IN }}=\mathrm{OV}$
C_{O}	Output Capacitance		5	pf	$\mathrm{V}_{\text {OUT }}=\mathrm{OV}$

A.C. Characteristics

$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 10 \%$ (Note 7)

Symbol	Parameter	$\begin{gathered} 2365-2 \\ 2365 A-2 \end{gathered}$		$\begin{gathered} 2365-3 \\ 2365 A-3 \end{gathered}$		$\begin{gathered} 2365 \\ 2365 A \end{gathered}$		Unit	Condition
		Min.	Max.	Min.	Max.	Min.	Max.		
$\mathrm{t}_{\mathrm{CYC}}$	Cycle Time	200		300		450		ns	
t_{AA}	Address Access Time		200		300		450	ns	
${ }^{\text {toH }}$	Output Hold After Address Change	10		10		10		ns	
$\mathrm{t}_{\text {ACE }}$	Chip Enable Access Time		200		300		450	ns	Note 4
$\mathrm{t}_{\text {ACS }}$	Chip Select Access Time		85		100		150	ns	
$\mathrm{t}_{\text {AOE }}$	Output Enable Access Time		85		100		150	ns	Note 4
t_{Lz}	Ouput LOW Z Delay	10		10		10		ns	Note 5
$t_{H Z}$	Output HIGH Z Delay		85		100		150	ns	Note 6
t_{PU}	Power Up Time	0		0		0		ns	Note 4
$\mathrm{t}_{\text {PD }}$	Power Down Time		85		100		150	ns	Note 4

Notes:

1. Measured with device selected and outputs unloaded.
2. Applies to " A " versions only and measured with $\overline{C E}=2.0 \mathrm{~V}$.
3. For a duration not to exceed one second.
4. Applies to " A " versions (power down) only.
5. Output low impedance delay $\left(t_{L Z}\right)$ is measured from $\overline{C E}$ and $\overline{O E}$ going low and $C S$ going active, whichever occurs last.
6. Output high impedance delay ($t_{H Z}$) is measured from either $\overline{C E}$ or $\overline{O E}$ going high or CS going inactive, whichever occurs first.
7. A minimum 0.5 ms time delay is required after application of $V_{C C}(+5 \mathrm{~V})$ before proper device operation is achieved.

Timing Diagrams

Propagation Delay from Address ($\overline{\mathrm{CE}}=\overline{\mathrm{OE}}=\mathrm{LOW}, \mathrm{CS} / \overline{\mathrm{CS}}=$ Active)

Propagation Delay from Chip Enable, Chip Select(Address Valid)

Programming Instructions

All Synertek Read Only Memories (ROM) utilize computer aided techniques to manufacture and test custom bit patterns. The customer's bit pattern and address information can be supplied to Synertek in a number of different ways. Synertek can process customer inputs in EPROM, ROM, PROM, paper tape, and computer punched cards. Contact your Synertek sales representative for complete details on each of the various data input formats.
Programming instructions are listed at the end of the Memory Section.

A.C. Testing Input, Output Waveform

INPUT
OUTPUT

AC TESTING: INPUTS ARE DRIVEN AT $2.4 V$ FOR A LOGIC " 1 " AND 0.4 V FOR A LOGIC " 0 ". TIMING MEASUREMENTS ARE MADE AT 2.0V FOR A LOGIC " 1 " AND 0.8 V FOR A LOGIC " 0 ". INPUT PULSE RISE AND FALL TIMES ARE 5 ns .

A.C. Testing Load Circuit

Package Availability 28 Pin Cerdip 28 Pin Ceramic DIP

Ordering Information

Order Number	Access Time	Operating Current	Standby Current	Package Type
SYD2365	450 ns	100 mA	N.A.	Cerdip
SYP2365	450 ns	100 mA	N.A.	Plastic
SYD2365-3	300 ns	100 mA	N.A.	Cerdip
SYP2365-3	300 ns	100 mA	N.A.	Plastic
SYD2365-2	200 ns	100 mA	N.A.	Cerdip
SYP2365-2	200 ns	100 mA	N.A.	Plastic
SYD2365A	450 ns	100 mA	12 mA	Cerdip
SYP2365A	450 ns	100 mA	12 mA	Plastic
SYD2365A-3	300 ns	100 mA	12 mA	Cerdip
SYP2365A-3	300 ns	100 mA	12 mA	Plastic
SYD2365A-2	200 ns	100 mA	12 mA	Cerdip
SYP2365A-2	200 ns	100 mA	12 mA	Plastic

[^6]
PRELIMINARY

Features

- EPROM Pin Compatible
- $16,384 \times 8$ Bit Organization
- Single +5 Volt Supply
- Access Time - 200/300/450 ns (max)
- Totally Static Operation
- Completely TTL Compatible
- 28 Pin JEDEC Approved Pinout
- SY23128A- Automatic Power Down ($\overline{C E}$)
- Output Enable Function ($\overline{\mathrm{OE}}$)
- One Programmable Chip Select (CS)
- SY23128 - Non Power Down Version
- Three Programmable Chip Selects (CS)
- Three State Outputs for Wire-OR Expansion
- EPROMS Accepted as Program Data Input

Description

The SY23128 and SY23128A high performance Read Only Memories are organized 16,384 words by 8 bits with access times from 200 ns to 450 ns . The ROMs are designed to be compatible with all microprocessor and similar applications where high performance, large bit storage and simple interfacing are important design considerations. Both ROMs conform to the JEDEC approved pinout for 28 pin 128K ROMs.
The SY23128 offers the simplest operation (no power down.) Its three programmable chip selects allow up to eight 128 K ROMs to be OR-tied without external decoding.
The SY23128A offers an automatic power down feature. Power down is controlled by the Chip Enable ($\overline{\mathrm{CE}}$) input. When $\overline{\mathrm{CE}}$ goes high, the device will automatically power down and remain in a low power standby mode as long as $\overline{\mathrm{CE}}$ remains high. This unique feature provides system level power savings as much as 90%. An additional feature of the SY23128A is the Output Enable ($\overline{\mathrm{OE}}$) function. This

Pin Configurations

SY23128A

eliminates bus contention in multiple bus microprocessor systems. The programmable chip select allows two 128 K ROMs to be OR-tied without external decoding.
Both the SY23128 and SY23128A are pin compatible with EPROMs thus eliminating the need to redesign printed circuit boards for volume mask programmed ROMs after prototyping with EPROMs.

Block Diagram

*CHIP SELECTS (CS) ARE PROGRAMMABLE LOW ACTIVE, HIGH ACTIVE, OR DON'T CARE.

D.C. Characteristics

$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 10 \%$

Symbol	Parameter	Min.	Typ.	Max.	Units	Conditions
V_{OH}	Output HIGH Level	2.4		$\mathrm{~V}_{\mathrm{CC}}$	V	$\mathrm{I}_{\mathrm{OH}}=-1.0 \mathrm{~mA}$
$\mathrm{~V}_{\mathrm{OL}}$	Output LOW Level			0.4	V	$\mathrm{I}_{\mathrm{OL}}=3.2 \mathrm{~mA}$
$\mathrm{~V}_{\mathrm{IH}}$	Input HIGH Level	2.0		$\mathrm{~V}_{\mathrm{CC}}$	V	
V_{IL}	Input LOW Level	-3.0		0.8	V	
I_{LI}	Input Leakage Current			10	$\mu \mathrm{~A}$	$\mathrm{~V}_{\text {IN }}=0 \mathrm{~V}$ to V_{CC}
$\mathrm{I}_{\text {LO }}$	Output Leakage Current			10	$\mu \mathrm{~A}$	$\mathrm{~V}_{\text {OUT }}=0 \mathrm{~V}$ to V_{CC}
I_{CC}	Operating Supply Current			100	mA	Note 1
I_{SB}	Standby Supply Current			10	mA	Note 2
$\mathrm{I}_{\text {OS }}$	Output Short Circuit Current			90	mA	Note 3

Capacitance

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}$
Note: This parameter is periodically sampled and is not 100% tested.

Symbol	Parameter	Min.	Max.	Unit	Conditions
C_{I}	Input Capacitance		5	pf	$\mathrm{V}_{\text {IN }}=\mathrm{OV}$
C_{O}	Output Capacitance		5	pf	$\mathrm{V}_{\text {OUT }}=\mathrm{OV}$

A.C. Characteristics

$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 10 \%$ (Note 7)

Symbol	Parameter	$\begin{gathered} 23128-2 \\ 23128 A-2 \end{gathered}$		$\begin{gathered} 23128-3 \\ 23128 A-3 \end{gathered}$		$\begin{gathered} 23128 \\ 23128 A \end{gathered}$		Unit	Condition
		Min.	Max.	Min.	Max.	Min.	Max.		
$\mathrm{t}_{\mathrm{CYC}}$	Cycle Time	200		300		450		ns	
t_{AA}	Address Access Time		200		300		450	ns	
t_{OH}	Output Hold After Address Change	10		10		10		ns	
$\mathrm{t}_{\text {ACE }}$	Chip Enable Access Time		200		300		450	ns	Note 4
$t_{\text {ACS }}$	Chip Select Access Time		85		100		150	ns	
$\mathrm{t}_{\text {AOE }}$	Output Enable Access Time		85		100		150	ns	Note 4
tLz	Ouput LOW Z Delay	10		10		10		ns	Note 5
$t_{H Z}$	Output HIGH Z Delay		85		100		150	ns	Note 6
$t_{\text {PU }}$	Power Up Time	0		0		0		ns	Note 4
$t_{\text {PD }}$	Power Down Time		100		120		150	ns	Note 4

Notes:

1. Measured with device selected and outputs unloaded.
2. Applies to " A " versions only and measured with $\overline{C E}=2.0 \mathrm{~V}$.
3. For a duration not to exceed one second with $\mathrm{V}_{\mathrm{OUT}}=0 \mathrm{~V}$.
4. Applies to " A " versions (power down) only.
5. Output low impedance delay $\left(t_{\mathrm{Lz}}\right)$ is measured from $\overline{\mathrm{CE}}$ and $\overline{\mathrm{OE}}$ going low and CS going active, whichever occurs last.
6. Output high impedance delay (t_{HZ}) is measured from either $\overline{C E}$ or $\overline{\mathrm{OE}}$ going high or CS going inactive, whichever occurs first.
7. A minimum 0.5 ms time delay is required after application of $\mathrm{V}_{\mathrm{CC}}(+5 \mathrm{~V})$ before proper device operation is achieved.

Timing Diagrams

Propagation Delay from Address ($\overline{\mathrm{CE}}=\overline{\mathrm{OE}}=\mathrm{LOW}, \mathrm{CS} / \overline{\mathrm{CS}}=$ Active)

Propagation Delay from Chip Enable, Chip Select (Address Valid)

A.C. Testing Input, Output Waveform
AC TESTING: INPUTS ARE DRIVEN AT 2.4V FOR A LOGIC " " $1 "$
AND 0.4V FOR A LOGIC "0". TIMING MEASUREMENTS ARE
MADE AT 2.OV FOR A LOGIC "1" AND O.8V FOR A LOGIC " 0 ".
INPUT PULSE RISE AND FALL TIMES ARE 5 ns.

Programming Instructions

All Synertek Read Only Memories (ROM) utilize computer asided techniques to manufacture and test custom bit patterns. The customer's bit pattern and address information can be supplied to Synertek in a number of different ways. Synertek can process customer inputs in EPROM, ROM, PROM, paper tape, and computer punched cards. Contact your Synertek sales representative for complete details on each of the various data input formats.
Programming instructions are listed at the end of the Memory Section.

A.C. Testing Load Circuit

Package Availability 28 Pin Cerdip Dual In-Line 28 Pin Plastic Dual In-Line

Ordering Information

Order Number	Access Time	Operating Current	Standby Current	Package Type
SYD23128	450 ns	100 mA	N.A.*	Cerdip
SYP23128	450 ns	100 mA	N.A.	Plastic
SYD23128-3	300 ns	100 mA	N.A.	Cerdip
SYP23128-3	300 ns	100 mA	N.A.	Plastic
SYD23128-2	200 ns	100 mA	N.A.	Cerdip
SYP23128-2	200 ns	100 mA	N.A.	Plastic
SYD23128A	450 ns	100 mA	10 mA	Cerdip
SYP23128A	450 ns	100 mA	10 mA	Plastic
SYD23128A-3	300 ns	100 mA	10 mA	Cerdip
SYP23128A-3	300 ns	100 mA	10 mA	Plastic
SYD23128A-2	200 ns	100 mA	10 mA	Cerdip
SYP23128A-2	200 ns	100 mA	10 mA	Plastic

[^7]
PRELIMINARY

Features

- EPROM Pin Compatible
- $32,768 \times 8$ Bit Organization
- Single +5 Volt Supply
- Access Time - 200/300/450 ns (max)
- Totally Static Operation
- Completely TTL Compatible
- 28 Pin JEDEC Approved Pinout
- SY23256A- Automatic Power Down ($\overline{\mathrm{CE}}$)
- Output Enable Function ($\overline{\mathrm{OE}})$
- SY23256 - Non Power Down Version
- Two Programmable Chip Selects (CS)
- Three State Outputs for Wire-OR Expansion
- EPROMs Accepted as Program Data Input

Description

The SY23256 and SY23256A high performance Read Only Memories are organized 32,768 words by 8 bits with access times from 200 ns to 450 ns . The ROMs are designed to be compatible with all microprocessor and similar applications where high performance, large bit storage and simple interfacing are important design considerations. Both ROMs conform to the JEDEC approved pinout for 28 pin 256K ROMs.

The SY23256 offers the simplest operation (no power down.) Its two programmable chip selects allow up to four 256K ROMs to be OR-tied without external decoding.
The SY23256A offers an automatic power down feature. Power down is controlled by the Chip Enable ($\overline{\mathrm{CE}}$) input. When $\overline{\mathrm{CE}}$ goes high, the device will automatically power down and remain in a low power standby mode as long as $\overline{\mathrm{CE}}$ remains high. This unique feature provides system level power savings as much as 90%. An additional feature of

Pin Configurations

the SY23256A is the Output Enable ($\overline{\mathrm{OE}}$) function. This eliminates bus contention in multiple bus microprocessor systems.

Both the SY23256 and SY23256A are pin compatible with EPROMs thus eliminating the need to redesign printed circuit boards for volume mask programmed ROMs after prototyping with EPROMs.

Block Diagram

[^8]

Comment*

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only. Functional operation of this device at these or any other conditions above those indicated on the operational sections of this specification is not implied and exposure to absolute maximum rating conditions for extended periods may affect device reliability.
**Test Condition: MIL-STD-883B Method 3015.1

D.C. Characteristics

$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 10 \%$

Symbol	Parameter	Min.	Typ.	Max.	Units	Conditions
V_{OH}	Output HIGH Level	2.4		$\mathrm{~V}_{\mathrm{CC}}$	V	$\mathrm{I}_{\mathrm{OH}}=-1.0 \mathrm{~mA}$
$\mathrm{~V}_{\mathrm{OL}}$	Output LOW Level			0.4	V	$\mathrm{I}_{\mathrm{OL}}=3.2 \mathrm{~mA}$
$\mathrm{~V}_{\mathrm{IH}}$	Input HIGH Level	2.0		$\mathrm{~V}_{\mathrm{CC}}$	V	
V_{IL}	Input LOW Level	-3.0		0.8	V	
I_{LI}	Input Leakage Current			10	$\mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V}$ to V_{CC}
I_{LO}	Output Leakage Current			10	$\mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{OUT}}=0 \mathrm{~V}$ to V_{CC}
I_{CC}	Operating Supply Current			100	mA	Note 1
I_{SB}	Standby Supply Current			10	mA	Note 2
I_{OS}	Output Short Circuit Current			90	mA	Note 3

Capacitance

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}$
Note: This parameter is periodically sampled and is not 100% tested.

Symbol	Parameter	Min.	Max.	Unit	Conditions
C_{1}	Input Capacitance		5	pf	$\mathrm{V}_{\text {IN }}=\mathrm{OV}$
C_{O}	Output Capacitance		5	pf	$\mathrm{V}_{\text {OUT }}=\mathrm{OV}$

A.C. Characteristics

$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 10 \%$ (Note 7)

Symbol	Parameter	$\begin{gathered} 23256-2 \\ 23256 A-2 \end{gathered}$		$\begin{gathered} 23256-3 \\ 23256 A-3 \end{gathered}$		$\begin{gathered} 23256 \\ 23256 A \end{gathered}$		Unit	Condition
		Min.	Max.	Min.	Max.	Min.	Max.		
$\mathrm{t}_{\mathrm{CrC}}$	Cycle Time	200		300		450		ns	
t_{AA}	Address Access Time		200		300		450	ns	
t_{OH}	Output Hold After Address Change	10		10		10		ns	
$t_{\text {ACE }}$	Chip Enable Access Time		200		300		450	ns	Note 4
$t_{\text {ACS }}$	Chip Select Access Time		85		100		150	ns	
$\mathrm{t}_{\mathrm{AOE}}$	Output Enable Access Time		85		100		150	ns	Note 4
thz	Ouput LOW Z Delay	10		10		10		ns	Note 5
$t_{H Z}$	Output HIGH Z Delay		85		100		150	ns	Note 6
tpu	Power Up Time	0		0		0		ns	Note 4
$t_{\text {PD }}$	Power Down Time		100		120		150	ns	Note 4

Notes:

1. Measured with device selected and outputs unloaded
2. Applies to " A " versions only and measured with $\overline{C E}=2.0 \mathrm{~V}$.
3. For a duration not to exceed one second with $\mathrm{V}_{\mathrm{OUT}}=0 \mathrm{~V}$.
4. Applies to " A " versions (power down) only.
5. Output low impedance delay $\left(\mathrm{t}_{2}\right)$ is measured from $\overline{\mathrm{CE}}$ and $\overline{\mathrm{OE}}$ going low and CS going active, whichever occurs last.
6. Output high impedance delay ($t_{H Z}$) is measured from either $\overline{C E}$ or $\overline{O E}$ going high or CS going inactive, whichever occurs first.
7. A minimum 0.5 ms time delay is required after application of $V_{C C}(+5 \mathrm{~V})$ before proper device operation is achieved.

Timing Diagrams

Propagation Delay from Address ($\overline{\mathrm{CE}}=\overline{\mathrm{OE}}=\mathrm{LOW}, \mathrm{CS} / \overline{\mathrm{CS}}=$ Active)

Propagation Delay from Chip Enable, Chip Select (Address Valid)

A.C. Testing Input, Output Waveform

AC TESTING: INPUTS ARE DRIVEN AT $2.4 V$ FOR A LOGIC " 1 " AND 0.4V FOR A LOGIC " 0 ". TIMING MEASUREMENTS ARE MADE AT 2.0V FOR A LOGIC " 1 " AND 0.8V FOR A LOGIC " 0 ". INPUT PULSE RISE AND FALL TIMES ARE 5 ns.

Programming Instructions

All Synertek Read Only Memories (ROM) utilize computer aided techniques to manufacture and test custom bit patterns. The customer's bit pattern and address information can be supplied to Synertek in a number of different ways. Synertek can process customer inputs in EPROM, ROM, PROM, paper tape, and computer punched cards. Contact your Synertek sales representative for complete details on each of the various data input formats.
Programming instructions are listed at the end of the Memory Section.
A.C. Testing Load Circuit
Figure 1.

Package Availability 28 Pin Cerdip Dual In-Line 28 Pin Plastic Dual In-Line

Ordering Information

Order Number	Access Time	Operating Current	Standby Current	Package Type
SYD23256	450 ns	100 mA	N.A. ${ }^{*}$	Cerdip
SYP23256	450 ns	100 mA	N.A.	Plastic
SYD23256-3	300 ns	100 mA	N.A.	Cerdip
SYP23256-3	300 ns	100 mA	N.A.	Plastic
SYD23256-2	200 ns	100 mA	N.A.	Cerdip
SYP23256-2	200 ns	100 mA	N.A.	Plastic
SYD23256A	450 ns	100 mA	10 mA	Cerdip
SYP23256A	450 ns	100 mA	10 mA	Plastic
SYD23256A-3	300 ns	100 mA	10 mA	Cerdip
SYP23256A-3	300 ns	100 mA	10 mA	Plastic
SYD23256A-2	200 ns	100 mA	10 mA	Cerdip
SYP23256A-2	200 ns	100 mA	10 mA	Plastic

*Not applicable.

Features

- Access Time - 70 ns (max)
- Single +5 Volt Supply
- Contact Programming
- Four Week Prototype Turnaround
- Completely TTL Compatible
- Totally Static Operation
- Pin Compatible with 8 K Bipolar PROMs Replaces 7681 or 82S181
- Three-State Outputs for Wire-OR Expansion
- Four Programmable Chip Selects
- 8K Bipolar PROMs Accepted as Program Data Inputs

Description

The Synertek SY3308 is a high speed 8192-bit static mask programmable Read Only Memory organized 1024 words by 8 bits. Designed to be compatible with industry standard 8 K bipolar PROMs, it eliminates the need to redesign printed circuit boards for volume production after prototyping with PROM's. The device offers full TTL compatibility on all inputs and outputs and operates on a single +5 V power supply. The three-state output buffers facilitate system expansion by allowing outputs to be wire-ORed together. These features, combined with a maximum access time of 70 nsec , make the SY3308 suitable for application where high performance, large bit storage
and simple interface are important design considerations.
The SY3308 utilizes fully static circuitry and operates asynchronously so no clocks are required. The four chip select buffers are mask programmable to be any combination of high active, low active or don't care that is desired. This allows up to sixteen ROM's to be OR-tied without external decoding.

The SY3308 is fabricated using Synertek's scaled, high performance N-channel MOS technology, This, combined with innovative design techniques, provides the high performance and ease-of-use features associated with non-clocked static memories.

Block Diagram

Pin Configuration

*CHIP SELECT (CS) ARE PROGRAMMABLE LOW ACTIVE, HIGH ACTIVE OR DON'T CARE.

Absolute Maximum Ratings*

Temperature Under Bias
Storage Temperature
Voltage on Any Pin with
Respect to Ground -3.5V to +7 V
Power Dissipation 1.0W

Comment*

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only. Functional operation of this device at these or any other conditions above those indicated in the operational sections of this specification is not implied and exposure to absolute maximum rating conditions for extended periods may affect device reliability.

D.C. Characteristics

$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \%$ (unless otherwise specified) (Note 1)

Symbol	Parameter	Min.	Typ.	Max.	Units	Test Conditions
V OH	Output HIGH Voltage	2.4		Vcc	Volts	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{OH}}=-2.4 \mathrm{~mA}$
Vol	Output LOW Voltage			0.45	Volts	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{OL}}=10 \mathrm{~mA}$
VIH	Input HIGH Voltage	2.0		Vcc	Volts	
VIL	Input LOW Voltage	-0.5		0.8	Volts	
ILI	Input Load Current			10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {cC }}=5.5 \mathrm{~V}, 0 \mathrm{~V} \leqslant \mathrm{~V}_{\text {in }} \leqslant \mathrm{V}_{\text {cC }}$
Ios	Output Leakage Current	-10		10	$\mu \mathrm{A}$	Chip Deselected, $\mathrm{V}_{\text {out }}=0 \mathrm{~V}$ to V_{CC}
Isc	Output Short Circuit Current	-100			mA	Note 2
Icc	Power Supply Current			120	mA	Output Unloaded
						$V_{C C}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {in }}=\mathrm{V}_{\text {cC }}$

A.C. Characteristics

$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \%$ (unless otherwise specified) (Notes 1,3)

Symbol	Parameter	Min.	Max.	Units	Test Conditions
$\mathbf{t}_{\text {Acc }}$	Address Access Time		70	ns	
tco	Chip Select Delay		40	ns	
tDF	Chip Deselect Delay	0	40	ns	See A.C. Test Conditions
toH	Previous Data Valid Aiter	5		ns	
	Address Change Delay				

Capacitance

$\mathbf{t}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}$ (Note 4)

Symbol	Parameter	Min.	Max.	Units	Test Conditions
\mathbf{C}_{l}	Input Capacitance		5	pF	$\mathrm{V}_{\text {in }}=0 \mathrm{~V}$
Co	Output Capacitance		8	pF	$\mathrm{V}_{\text {out }}=0 \mathrm{~V}$

NOTES:

1. The operating ambient temperature range is guaranteed with transverse air flow exceeding 400 linear feet per minute.
2. Duration not to exceed one second with $\mathrm{V}_{\mathrm{OUT}}=0 \mathrm{~V}$.
3. A minimum 0.5 ns time delay is required after application of $\mathrm{V}_{\mathrm{CC}}(+5 \mathrm{~V})$ before proper device operation is achieved.
4. This parameter is periodically sampled and is not 100% tested.

Timing Diagram

(See following page for notes.)

A.C. Testing Input, Output Waveform

Programming Instructions

All Synertek Read Only Memories (ROM) utilize computer aided techniques to manufacture and test custom bit patterns. The customer's bit pattern and address information can be supplied to Synertek in a number of different ways. Synertek can process customer inputs in EPROM, ROM, PROM, paper tape, and computer punched cards. Contact your Synertek sales representative for complete details on each of the various data input formats.
Programming instructions are listed at the end of the Memory Section.

A.C. Testing Load Circuit

Ordering Information

Order Number	Access Time	Operating Current	Package Type
SYC3308	70 ns	120 mA	Ceramic
SYD3308	70 ns	120 mA	Cerdip

A custom number will be assigned by Synertek.

SY3316/SY3316A

2048×8 High Speed Read Only Memory

Features

- Access Time - 80ns (max.)
- Single +5 Volt Supply
- Contact Programming
- Four Week Prototype Turnaround
- Completely TTL Compatible
- Totally Static Operation
- SY3316A - Automatic Power Down ($\overline{\mathrm{CE}}$)
- Pin Compatible with 16K Bipolar PROMs Replaces 3636 or 82S191
- Three-State Outputs for Wire-OR Expansion
- Three Programmable Chip Selects (two on SY3316A)
- 16 K Bipolar PROMs Accepted as Program Data Inputs

Description

The SY3316 and SY3316A are high speed 16,384 bit static mask programmable Read Only Memories organized 2048 words by 8 bits. Designed to be pin compatible with 16 K bipolar PROMs, they eliminate the need to redesign printed circuit boards for volume production after prototyping with PROMs.
The SY3316A offers an automatic power down feature. Power down is controlled by the Chip Enable ($\overline{\mathrm{CE}}$) input. When $\overline{\mathrm{CE}}$ goes high, the device will automatically power down and remain in a standby power mode as long as $\overline{\mathrm{CE}}$ remains high. This unique feature provides system level

Pin Configurations

power savings of as much as 80%. The two programmable chip selects (CS) allow as many as four ROMs to be OR-tied without external decoding.
The SY3316 offers somewhat simpler operation than the SY3316A. It's three programmable chip selects allow up to eight ROMs to be OR-tied without external decoding.
Both devices are fabricated using Synertek's scaled high performance N -channel MOS technology. This, combined with innovative design techniques, provides the high performance and ease-of-use features associated with static memories.

Block Diagram

[^9]| Absolute Maximum Ratings* | |
| :---: | :---: |
| Temperature Under Bias | $-10^{\circ} \mathrm{C}$ to $80^{\circ} \mathrm{C}$ |
| Storage Temperature | $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ |
| Voltage on Any Pin with | |
| Respect to Ground (under bias) | -3.5 V to +7 V |
| Power Dissipation | 1.0 W |

Temperature Under Bias Voltage on Any Pin with
Respect to Ground (under bias) Power Dissipation

Comment*

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only. Functional operation of this device at these or any other conditions above those indicated in the operational sections of this specification is not implied and exposure to absolute maximum rating conditions for extended periods may affect device reliability.
D.C. Characteristics $T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \%$ (Note 1)

Symbol	Parameter	Min.	Typ.	Max.	Units	Test Conditions
VOH	Output HIGH Voltage	2.4		Vcc	Volts	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{OH}}=-2.4 \mathrm{~mA}$
Vol	Output LOW Voltage			0.45	Volts	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{OL}}=10 \mathrm{~mA}$
$V_{\text {IH }}$	Input HIGH Voltage	2.0		Vcc	Volts	
VIL	Input LOW Voltage	-0.5		0.8	Volts	
ILI	Input Load Current			10	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, 0 \mathrm{~V} \leqslant \mathrm{~V}_{\text {in }} \leqslant \mathrm{V}_{\text {CC }}$
ILO	Output Leakage Current	-10		10	$\mu \mathrm{A}$	Chip Deselected, $\mathrm{V}_{\text {out }}=0 \mathrm{~V}$ to $\mathrm{V}_{C \mathrm{CC}}$
I_{OS}	Output Short Circuit Current	-100			mA	Note 5
Icc	Power Supply Current			150	mA	Note 2
$\mathrm{I}_{\text {SB }}$	Standby Supply Current			30	mA	Note 3

A.C. Characteristics $\quad \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \%$ (Note 1)

Symbol	Parameter	Min.	Typ.	Max.	Units	Test Conditions
\mathbf{t}_{AA}	Address Access Time			80	ns	
$\mathrm{t}_{\mathrm{ACE}}$	Chip Enable Access Time			80	ns	Note 4
$\mathbf{t}_{\mathrm{ACS}}$	Chip Select Access Time			40	ns	
\mathbf{t}_{HZ}	Output High Z Delay			40	ns	Note 6
t_{LZ}	Output Low Z Delay	0				Note 7
\mathbf{t}_{OH}	Output Hold Time After Address Change	5			ns	
t_{PU}	Power Up Time	0			ns	Note 4
$\mathbf{t}_{\text {PD }}$	Power Down Time			40	ns	Note 4

Capacitance $t_{A}=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}$

Symbol	Parameter	Min.	Max.	Units	Test Conditions
\boldsymbol{C}	Input Capacitance		5	pF	$\mathrm{V}_{\text {tn }}=0 \mathrm{~V}$
Co $_{\mathrm{o}}$	Output Capacitance		8°	pF	$\mathrm{V}_{\text {out }}=0 \mathrm{~V}$

NOTE: This parameter is periodically sampled and is not 100% tested.
NOTES:

1. The operating ambient temperature range is guaranteed with transverse air flow exceeding 400 linear feet per minute.
2. Device selected with outputs unloaded and $\overline{\mathrm{CE}} \leq \mathrm{V}_{\mathrm{IL}}$ Max.
3. Applies to SY3316A only with $\overline{C E} \geq$ VIL Min.
4. Applies to SY3316A only.
5. Output short circuit is measured with $\mathrm{V}_{\mathrm{OUT}}=\mathrm{OV}$, one output at a time with a maximum duration of one second.
6. t_{HZ} is measured from $\overline{\mathrm{CE}}$ going high or CS going invalid whichever occurs last.
7. $t_{L Z}$ is measured from $\overline{C E}$ going low or CS going valid whichever occurs first.
8. A minimum 0.5 ms time delay is required after application of $\mathrm{V}_{\mathrm{CC}}(+5 \mathrm{~V})$ before proper device operation is achieved.

Timing Diagrams

Address to Output Delay (CS Active and $\overline{\mathrm{CE}}$ Low)

Chip Enable/Chip Select to Output Delay (Address Valid)

A.C. Testing Load Circuit

Programming Instructions

All Synertek Read Only Memories (ROM) utilize computer aided techniques to manufacture and test custom bit patterns. The customer's bit pattern and address information can be supplied to Synertek in a number of different ways. Synertek can process customer inputs in EPROM, ROM, PROM, paper tape, and computer punched cards. Contact your Synertek sales representative for complete details on each of the various data input formats.

Programming instructions are listed at the end of the Memory Section.
A.C. Testing Input, Output Waveform

Package Availability 24 Pin Cerdip 24 Pin Ceramic

Ordering Information

Order Number	Access Time	Operating Current	Standby Current	Package Type
SYC3316	80 ns	120 mA	N.A.	Ceramic
SYD3316	80 ns	120 mA	N.A.	Cerdip
SYC3316A	80 ns	120 mA	20 mA	Ceramic
SYD3316A	80 ns	120 mA	20 mA	Cerdip

A custom number will be assigned by Synertek.

PRELIMINARY

Features

- Effective Access Time $\left(\mathrm{t}_{\text {CPA }}\right)=35 \mathrm{~ns}$
- Single +5 Volt Supply
- Contact Programming
- Four Week Prototype Turnaround
- Completely TTL Compatible
- Totally Static Operation
- Pin Compatible with 8K Bipolar PROMs Replaces 27S35
- Output Data Registers
- 8 K Bipolar PROMs Accepted as Program Data Inputs

Description

The Synertek SY3308R is a high speed 8192-bit static mask programmable Read Only Memory organized 1024 words by 8 bits. Designed to be compatible with industry standard 8 K bipolar PROMs, with data output registers, it eliminates the need to redesign printed circuit boards for volume produciton after prototyping PROMs. The device offers full TTL compatibility on all inputs and outputs and operates on a single +5 V power supply. The SY3308R have registered outputs that allow pipelining. It's synchronous enable (\bar{E}_{S}) and asynchronous enable (\bar{E}) along with an initialize function (INIT) offers system design flexibility. These features, combined with an effective access time of 35 nsec, make the

Pin Configuration

SY3308R suitable for applications where high performance, large bit storage and simple interface are important design considerations.

The SY3308R has a latch in each output that allows the memory to stack data so that the effective access time ($\mathrm{t}_{\mathrm{CPA}}$) (time from clock to data out) is 35 ns .

The SY3308R is fabricated using Synertek's scaled, high performance N -channel MOS technology. This, combined with innovative design techniques, provides the high performance and ease-of-use features associated with nonclocked static memories.

Block Diagram

Absolute Maximum Ratings*
Temperature Under Bias
$-10^{\circ} \mathrm{C}$ to $80^{\circ} \mathrm{C}$
Storage Temperature
Voltage on Any Pin with
Respect to Ground
Power Dissipation
-3.5 V to +7 V
$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
1.0W

Comment*

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only. Functional operation of this device at these or any other conditions above those indicated in the operational sections of this specification is not implied and exposure to absolute maximum rating conditions for extended periods may affect device reliability.
D.C. Characteristics $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \%$ (unless otherwise specified) (Note 2,3)

Symbol	Parameter	Min.	Typ.	Max.	Units	Test Conditions
VOH	Output HIGH Voltage	2.4		Vcc	Volts	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{OH}}=-2.4 \mathrm{~mA}$
Vol	Output LOW Voltage			0.45	Volts	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{OL}}=10 \mathrm{~mA}$
VIH	Input HIGH Voltage	2.0		Vcc	Volts	
VIL	Input LOW Voltage	-3.0		0.8	Volts	
IIL	Input Leakage Current			10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {CC }}=5.5 \mathrm{~V}, 0 \mathrm{~V} \leqslant \mathrm{~V}_{\text {in }} \leqslant \mathrm{V}_{\text {CC }}$
ILo	Output Leakage Current	-50		50	$\mu \mathrm{A}$	Chip Deselected, $\mathrm{V}_{\text {out }}=0 \mathrm{~V}$ to $\mathrm{V}_{\text {CC }}$
$\mathrm{I}_{\text {SC }}$	Output Short Circuit Current	-80			mA	Duration not to exceed 30 sec .
Icc	Power Supply Current			130	mA	Output Unloaded $V_{C C}=5.5 \mathrm{~V}, V_{\text {in }}=V_{C C}$

A.C. Characteristics $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 10 \%$ (Notes 1, 2, 4)

Symbol	Parameter	Min.	Type	Max	Units	Notes
$t_{\text {AS }}$	Address Setup Time	40			ns	
$t_{\text {AH }}$	Address Hold Time	5		-	ns	
$\mathrm{t}_{\mathrm{CPH}}$	CP Pulse Width (HIGHi)	20			ns	
${ }_{\text {t }}^{\text {CPL }}$	CP Pulse Width (LOW)	20			ns	
$\mathrm{t}_{\mathrm{CPA}}$	CP Access Time			35	ns	
$\mathrm{t}_{\text {EA }}$	\bar{E} to Output Valid			35	ns	
$\mathrm{t}_{\text {ES }}$	\bar{E}_{S} Setup Time	10			ns	
t_{EH}	$\bar{E}_{\text {S }}$ Hold Time	10			ns	
$\mathrm{t}_{\text {INIT }}$	INIT Recovery Time (CP HIGH)			35	ns	
$\mathrm{t}_{\text {R }}$	INIT Recovery Time (CP HIGH)	15			ns	
$\mathrm{t}_{\text {IP }}$	INIT Pulse Width	15			ns	
$\mathrm{t}_{\text {CPLZ }}$	CP to Outputs LOW Z	5			ns	
$\mathrm{t}_{\text {CPHZ }}$	CP to Outputs HIGH Z	5		35	ns	
$\mathrm{t}_{\mathrm{E} \text { I } \mathrm{Z}}$	$\overline{\mathrm{E}}$ to Outputs LOW Z	5			ns	
$\mathrm{t}_{\mathrm{EH} Z}$	$\overline{\text { E }}$ to Outputs HIGH Z	5		35	ns	

Capacitance $t_{A}=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}$ (Note 5)

Symbol	Parameter	Min.	Max.	Units	Test Conditions
\mathbf{C}_{1}	Input Capacitance		5	pF	$\mathrm{V}_{\text {in }}=0 \mathrm{~V}$
Co	Output Capacitance		8	pF	$\mathrm{V}_{\text {out }}=0 \mathrm{~V}$

Notes:

1. A minimum $500 \mu \mathrm{sec}$ time delay is required after application of $\mathrm{V}_{\mathrm{CC}}(+5 \mathrm{~V})$ before proper device operation can be achieved.
2. The operating ambient temperature range is guarantedd with transverse air flow exceeding 400 linear feet per minute.
3. For a duration not to exceed one second with $\mathrm{V}_{\mathrm{OUT}}=0 \mathrm{~V}$.
4. A minimum 0.5 ms time delay is required after application of $\mathrm{V}_{\mathrm{CC}}(+5 \mathrm{~V})$ before proper device operation is achieved.
5. This parameter is periodically sampled and is not 100% tested.

Timing Diagrams
CP TIMING (INIT $=$ HIGH, $\bar{E}=$ LOW $)$

$\overline{\mathrm{E}}$ TIMING ($\bar{E}_{\text {s }}$ LATCHED LOW)

INIT TIMING

A.C. Testing Input, Output Waveform

Programming Instructions

All Synertek Read Only Memories (ROM) utilize computer aided techniques to manufacture and test custom bit patterns. The customer's bit pattern and address information can be supplied to Synertek in a number of different ways. Synertek can process customer inputs in EPROM, ROM, PROM, paper tape, and computer punched cards. Contact your Synertek sales representative for complete details on each of the various data input formats.
Programming instructions are listed at the end of the Memory Section.

A.C. Testing Load Circuit

Package Availability
24 Pin Cerdip
24 Pin Ceramic
Ordering Information

Order Number	Package Type	Effective Access Time	Temperature Range
SYC3308R	Ceramic	35 ns	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$
SYD3308R	Cerdip	35 ns	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$

A custom number will be assigned by Synertek.

PRELIMINARY

Features

- Effective Access Time ($\mathrm{t}_{\mathrm{CPA}}$) $=35 \mathrm{~ns}$
- Single +5 V Supply
- Contact Programming
- Four Week Prototype Turnaround
- Completely TTL Compatible
- Totally Static Memory
- Pin Compatible with 16 K Bipolar PROMs Replaces 27S45
- Three-State Outputs for Wire-OR Expansion
- 16K Bipolar PROMs Accepted as Program Data Inputs
- Output Data Registers

Description

The SY316R is a high speed 16,384 bit static mask programmable Read Only Memory organized 2048 words by 8 bits. Designed to be pin compatible with 16 K bipolar PROMs, it eliminates the need to redesign printed circuit boards for volume production after prototyping with PROMs.
The device offers full TTL compatibility on all inputs and outputs and operates on a single +5 V power supply.
The SY3316R have registered outputs that allow pipelining. It's synchronous enable (\bar{E}_{S}) and asynchronous enable ($\overline{\mathrm{E}}$) along with an initialize function (INIT) offers system design flexibility. These features, combined with an effective access
time of 35 ns , makes the SY3316R suitable for applications where high performance, large bit storage, and simple interface are important design considerations.
The SY3316R has a latch in each output that allows the memory to stack data so that the effective access time (time from clock to data out) is 35 ns .
The device is fabricated using Synertek's scaled high performance N -channel MOS technology. This, combined with innovative design techniques, provides the high performance and ease-of-use features associated with static memories.

Pin Configuration

Block Diagram

Absolute Maximum Ratings*

Temperature Under Bias	$-10^{\circ} \mathrm{C}$ to $80^{\circ} \mathrm{C}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Voltage on Any Pin with	
Respect to Ground Power Dissipation	-3.5 V to +7 V
	1.0 W

Comment*

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only. Functional operation of this device at these or any other conditions above those indicated in the operational sections of this specification is not implied and exposure to absolute maximum rating conditions for extended periods may affect device reliability.

D.C. Characteristics $\quad T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \%$ (Note 1)

Symbol	Parameter	Min.	Typ.	Max.	Units	Test Conditions
VOH	Output HIGH Voltage	2.4		Vcc	Volts	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{OH}}=-2.4 \mathrm{~mA}$
Vol	Output LOW Voltage			0.45	Volts	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{OL}}=10 \mathrm{~mA}$
VIH	Input HIGH Voltage	2.0		Vcc	Volts	
VIL	Input LOW Voltage	-3.0		0.8	Volts	
IIL	Input Leakage Current			10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {CC }}=5.5 \mathrm{~V}, 0 \mathrm{~V} \leqslant \mathrm{~V}_{\text {in }} \leqslant \mathrm{V}_{\text {cc }}$
Ilo	Output Leakage Current	-50		50	$\mu \mathrm{A}$	Chip Deselected, $\mathrm{V}_{\text {out }}=0 \mathrm{~V}$ to $\mathrm{V}_{\text {cc }}$
Isc	Output Short Circuit Current	-100			mA	Note 3
Icc	Power Supply Current			130	mA	Note 2

A.C. Characteristics $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 10 \%$ (Notes 1, 4)

Symbol	Parameter	Min.	Type	Max	Units	Notes
$\mathrm{t}_{\text {AS }}$	Address Setup Time	40			ns	
$t_{\text {AH }}$	Address Hold Time	5			ns	
$\mathrm{t}_{\text {CPH }}$	CP Pulse Width (HIGH)	20			ns	
$\mathrm{t}_{\text {cPL }}$	CP Pulse Width (LOW)	20			ns	
$\mathrm{t}_{\text {CPA }}$	CP Access Time			35	ns	
$t_{\text {EA }}$	\bar{E} to Output Valid			35	ns	
$\mathrm{t}_{\text {ES }}$	$\bar{E}_{\text {S }}$ Setup Time	10			ns	
$t_{\text {EH }}$	$\bar{E}_{\text {S }}$ Hold Time	10			ns	
tinit	$\overline{\text { INIT Recovery Time (CP HIGH) }}$			35	ns	
$\mathrm{tiR}^{\text {R }}$	$\overline{\text { INIT Recovery Time (CP HIGH) }}$	15			ns	
$\mathrm{tIP}^{\text {P }}$	INIT Pulse Width	15			ns	
$\mathrm{t}_{\text {CPLZ }}$	CP to Outputs LOW Z	5			ns	
${ }^{\text {t }}$ PPHZ	CP to Outputs HIGH Z	5		35	ns	
$\mathrm{t}_{\text {ELI }}$	$\overline{\mathrm{E}}$ to Outputs LOW Z	5			ns	
$\mathrm{t}_{\text {EHZ }}$	$\overline{\mathrm{E}}$ to Outputs HIGH Z	5		35	ns	

Capacitance $t_{A}=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}$ (Note 5)

Symbol	Parameter	Min.	Max.	Units	Test Conditions
\mathbf{C}_{1}	Input Capacitance		5	pF	$\mathrm{V}_{\text {in }}=0 \mathrm{~V}$
\mathbf{C}_{0}	Output Capacitance		8	pF	$\mathrm{V}_{\text {out }}=0 \mathrm{~V}$

Notes:

1. The operating ambient temperature range is guarantedd with transverse air flow exceeding 400 linear feet per minute.
2. Device selected with outputs unloaded.
3. For a duration not to exceed one second with $\mathrm{V}_{\text {OUT }}=O \mathrm{~V}$.
4. A minimum 0.5 ms time delay is required after application of $\mathrm{V}_{\mathrm{CC}}(+5 \mathrm{~V})$ before proper device operation is achieved.
5. This parameter is periodically sampled and is not 100% tested.

Timing Diagrams

\bar{E} TIMING (\bar{E}_{s} LATCHED LOW)

INIT TIMING

A.C. Testing Input, Output Waveform

Programming Instructions

All Synertek Read Only Memories (ROM) utilize computer aided techniques to manufacture and test custom bit patterns. The customer's bit pattern and address information can be supplied to Synertek in a number of different ways. Synertek can process customer inputs in EPROM, ROM, PROM, paper tape, and computer punched cards. Contact your Synertek sales representative for complete details on each of the various data input formats.

Programming instructions are listed at the end of the Memory Section.

A.C. Testing Load Circuit

Figure 1.

Package Availability

24 Pin Ceramic 24 Pin Cerdip

Ordering Information

Order Number	Effective Access Time	Operating Current	Package Type
SYC3316R	35 ns	120 mA	Ceramic
SYD3316R	35 ns	120 mA	Cerdip

A custom number will be assigned by Synertek.

ADVANCED INFORMATION

Features

- EPROM Pin Compatible
- 8192×8 Bit Organization
- Single +5 Volt Supply
- Access Time - 200 ns (max)
- Totally Static Operation
- Completely TTL Compatible
- SY6364
- 24 Pin JEDEC Standard Pinout
- Automatic Power Down ($\overline{\mathrm{CE}}$)
- SY6365
- 28 Pin JEDEC Standard Pinout
- Automatic Power Down ($\overline{\mathrm{CE}}$)
- Output Enable Function ($\overline{\mathrm{OE}}$)
- Two Programmable Chip Selects
- Three State Outputs for Wire-OR Expansion
- EPROMs Accepted as Program Data Input
- Electrostatic Discharge Rating (E.S.D.)
- Inputs > 2000 Volts

Description

The SY6364 and SY6365 high performance CMOS Read Only Memories are organized 8192 words by 8 bits with an access time of 200 ns . The ROMs are designed to be compatible with all microprocessor and similar applications where high performance, large bit storage and simple interfacing are important design considerations. Both ROMs conform to the JEDEC approved pinouts for 64 K ROMs.
The SY6364 and SY6365 both offer an automatic power down feature controlled by the Chip Enable ($\overline{\mathrm{CE}}$) input. When $\overline{\mathrm{CE}}$ goes high, the device will automatically power-down and remain in a low power standby mode as long as $\overline{\mathrm{CE}}$ remains high. This feature provides significant system level power savings.

Pin Configurations

SY6364

	SY6364		
A_{7}		24	v_{cc}
A_{6}	2	23	A_{8}
A_{5}	3	22	A_{9}
A_{4}	4	21	A_{12}
A_{3}	5	20	$\overline{\mathrm{CE}}$
A_{2}	6	19	A_{10}
A_{1}	7	18	$\square \mathrm{A}_{11}$
A_{0}	8	17	O_{8}
O_{1}	9	16	$\square \mathrm{O}_{7}$
O_{2}	10	15	O_{6}
O_{3}	11	14	O_{5}
GND	12	13	O_{4}

	SY6365		
NC	$1 \cdot$	28	v_{cc}
A_{12}	2	27	$\mathrm{Cs}_{1 *}$
$\mathrm{A}_{7} \mathrm{C}$	3	26	CS_{2}
A_{6}	4	25	A_{8}
A_{5}	5	24	$\square \mathrm{A}_{9}$
A_{4}	6	23	A_{11}
A_{3}	7	22	万 $\overline{\mathrm{O}}$
A_{2}	8	21	$\square \mathrm{A}_{10}$
A_{1}	9	20	$\square \overline{C E}$
A_{0}	10	19	O_{8}
O_{1} -	11	18	\square_{7}
O_{2}	12	17	O_{6}
0_{3}	13	16	D_{5}
GND	14	15	O_{4}

Ordering Information

Order Number	Access Time	$\begin{gathered} \text { Operating } \\ \text { Current } \\ (f=5.0 \mathrm{MHz}) \end{gathered}$	Standby Current		Package Type
			$\overline{\mathrm{CE}}=2.0 \mathrm{~V}$	$\overline{\mathbf{C E}}=\mathrm{V}_{\mathbf{C C}}$	
SYD6364	200 ns	70 mA	1 mA	$10 \mu \mathrm{~A}$	Cerdip
SYP6364	200 ns	70 mA	1 mA	$10 \mu \mathrm{~A}$	Plastic
SYD6365	200 ns	70 mA	1 mA	$10 \mu \mathrm{~A}$	Cerdip
SYP6365	200 ns	70 mA	1 mA	$10 \mu \mathrm{~A}$	Plastic

The SY6365 offers three additional control signals over the SY6364. The Output Enable ($\overline{\mathrm{OE}}$) function eliminates bus contention in multiple bus microprocessor systems. The two programmable Chip Selects (CS) allow up to four 64 K ROMs to be OR-tied without external decoding.
Both the SY6364 and SY6365 are pin compatible with EPROMs thus eliminating the need to redesign printed circuit boards for volume mask programmed ROMs after prototyping with EPROMs.

Block Diagram

[^10]
Programming Instructions

All Synertek Read Only Memories utilize computer aided techniques to manufacture and test custom bit patterns. The custom bit pattern and address information are supplied on standard 80 column computer cards in the format described below.
All addresses and related output patterns must be completely defined. Each deck of cards defining a specific ROM bit pattern consists of: 1) four Title Cards and 2) address and bit pattern Data Cards. Positive logic is generally used on all input cards: a logic " 1 " is the most positive or HIGH level, and a logic " 0 " is the most negative or LOW level. Synertek can also accept ROM data in other formats, compatible with most microprocessors and PROMs. Consult your Synertek representative for details.

Title Cards

A set of four Title Cards should accompany each data deck. These cards give our computer programs additional information necessary to accurately produce high density ROMs. These four Title Cards must contain the following information:

	Column	Information
First Card	$1-30$	Customer name
	$31-50$	Customer part number
	$60-72$	Synertek part number
Second Card	$1-30$	Customer contact (name)
	$31-50$	Customer telephone number

Third Card	1-6	Leave blank - pattern number to be assigned by Synertek
	29	CS chip select logic level (if LOW selects

CS chip select logic level.
CS chip select logic level.
CS chip select logic level.
Fourth Card \quad 1-8 Data Format. Synertek, or Intel data card format may be used. Specify format by punching "Synertek," or "Intel" starting in column one.
15-28 Logic format, punch "POSITIVE LOGIC" or "NEGATIVE LOGIC."
35-57 Truth table verification code; punch either "VERIFICATION HOLD" (manufacturing starts after customer approval of bit pattern data supplied by Synertek) or "VERIFICATION NOT NEEDED" (manufacturing starts immediately upon receipt of customer card deck)

Synertek Data Card Format

All addresses are coded in decimal form (0 through 2047). All output words are coded both in binary and octal forms. Output $8\left(\mathrm{O}_{8}\right)$ is the MSB, and Output $1\left(\mathrm{O}_{1}\right)$ is the LSB.

	Column	Information
Data Cards	$1-4$	Decimal address
	$6-13$	Output (MSB-LSB)
	$15-17$	Octal equivalent of output data
	$22-25$	Decimal address
	$27-34$	Output (MSB-LSB)
	$36-38$	Octal equivalent of output data
	$43-46$	Decimal address
	$48-55$	Output (MSB-LSB)
	$57-59$	Octal equivalent of output data
	$64-67$	Decimal address
	$69-76$	Output (MSB-LSB)
	$78-80$	Octal equivalent of output data

Intel Data Card Format

Output data is punched as either a " P " or an " N "; a " P " is defined as a HIGH, and an " N " is defined as a LOW. Output 8 $\left(\mathrm{O}_{8}\right)$ is the MSB and Output $1\left(\mathrm{O}_{1}\right)$ is the LSB. The four Title Cards listed above must accompany the Intel card deck.

	Column	Information
Data Cards	1-5	Punch the 5-digit decimal equivalent of the binary coded address which begins each card. This is the initial input address. The address is right justified, i.e. 00000, 00008, 00016, etc.
	7-14	Output data (MSB-LSB) for initial input address.
	16-23	Output data for initial input address +1 .
	25-32	Output data for initial input address +2 .
	34-41	Output data for initial input address +3 .
	43-50	Output data for initial input address +4 .
	52-59	Output data for initial input address +5 .
	61-68	Output data for initial input address +6 .
	70-77	Output data for initial input address +7 .
	79-80	ROM pattern number (may be left blank)

Send bit pattern data to the following special address:
Synertek - ROM
P.O. Box 552

Santa Clara, CA 95052

Third Card Chip Select Setups

Column	SY2316B	SY2332/3	SY2364	SY2365/A	SY23128	SY23256	SY3308	SY3316
29					CS3/ CS3 *	CS1/ $\overline{\mathrm{CS1}}$	CS4/ $\overline{\text { CS4 }}$	
30	CS3/ $\overline{\mathrm{CS3}}$	CS2/ $\overline{\mathrm{CS} 2}$		cs3/ СS3 *	CS2/ $\overline{\mathrm{CS} 2}$	CS2/ $\overline{\mathrm{CS2}}^{*}$	CS3/ $\overline{\mathrm{CS} 3}$	CS3/ $\overline{\mathrm{CS} 3}$
31	CS2/ES2	CS1/ट51		CS2/ $\overline{\mathrm{CS} 2}$	CS1/ट्टs1		CS2/CS2	CS2/ $\overline{\mathrm{CS} 2}$
32	CS1/ट्र1		CS/ $\overline{\mathrm{CS}}$	CS1/ट51			CS1/ $\overline{\mathrm{CS} 1}$	CS1/ $\overline{\mathrm{CS} 1}$

[^11]
Programming Instructions (cont.)

Intel Paper Tape Format

The paper tape which should be used is $1^{\prime \prime}$ wide paper tape using 7 or 8 bit ASCII code, such as a model 33 ASR teletype produces.

BPNF Format

The format requirements are as follows:

1. All word fields are to be punched in consecutive order, starting with word field 0 (all addresses low). There must be exactly N word fields for the $N \times 8$ ROM organization.
2. Each word field must begin with the start character B and end with the stop character F. There must be exactly 8 data characters between the B and F for the $\mathrm{N} \times 8$ organization. NO OTHER CHARACTERS, SUCH AS RUBOUTS, ARE ALLOWED ANYWHERE IN A WORD FIELD. If in preparing a tape, an error is made, the entire word field, including the B and F must be rubbed out. Within the word field, a P results in a high tape level output, and an N results in a low level output.
3. Preceding the first word field and following the last word field, there must be a leader/trailer length of at least 25 characters. This should consist of rubout punches (letter key for Telex tapes)
4. Between word fields, comments not containing Bs or Fs may be inserted. Carriage return and line feed characters should be inserted (as a "comment") just before each word field (or at least between every four word fields). When these carriage returns, etc. are inserted, the tape may be easily listed on the teletype for purposes of error checking. The customer may also find it helpful to insert the word number (as a comment) at least every four word fields.
5. Included in the tape before the leader should be the customer's complete Telex or TWX number and if more than one pattern is being transmitted, the ROM pattern number.
6. MSB and LSB are the most and least significant bit of the device outputs. Refer to the data sheet for the pin numbers.

Hexadecimal Program Tape Format

The hexadecimal tape format used by the INTELLEC 8 system is a modified memory image, blocked into discrete records. Each record contains record length, record type, memory address, and checksum information in addition to data. A frame by frame description is as follows:

Frame 0

Frames 1,2
(0-9, A-F)

Frames 3 to 6

Frames 7,8

Frames 9 to $9+2^{*}$
(Record Length) -1

Frames 9+2*
(Record Length) to 9+2* (Record Length) +1

Record mark. Signals the start of a record. The ASCII character colon (":" HEX 3A) is used as the record mark. Record length. Two ASCII characters representing a hexadecimal number in the range 0 to ' FF ' $(0$ to 255). This is the count of the actual data bytes in the record type or checksum. A record length of 0 indicates end of file.
Load Address. Four ASCII characters that represent the initial memory will be loaded. The first data byte is stored in the location pointed to by the load address, succeeding data bytes are loaded into ascending addresses.
Record type. Two ASCII characters. Currently all records are type 0, this field is reserved for future expansion. Data. Each 8 bit memory word is represented by two frames containing the ASCII characters (0 to 9 , A to F) to represent a hexadecimal value 0 to 'FF' (0 to 255).
Checksum. The checksum is the negative of the sum of all 8 bit bytes in the record since the record mark (":") evaluated modulus 256. That is, if you add together all the 8 bit bytes, ignoring all carries out of an 8 -bit sum, then add the checksum, the result is zero.

Example: If memory locations 1 through 3 contain 53F8EC, the format of the hex file produced when these locations are punched is:

:0300010053F8ECC5

Send bit pattern data to the following special address: Synertek - ROM
P.O. Box 552

Santa Clara, CA 95052

EEPROMs.

Product Number	Page Number
SY2801A	2-111
SY2802E	.. 2-115

64×4 Electrically Erasable Programmable ROM

ADVANCED INFORMATION

Features

- 450 ns Address Access Time
- Fully Static Operation
- Low Power Dissipation 110 mW Max.
- Full TTL Compatibility: All Inputs and Outputs
- Three State Outputs
- Endurance: 1×10^{4} Write Cycles (Min.)
- Single +5 V Operation: Both Read and Program Modes
- Single Word Erase/Write Capability
- 10 ms Word Erase/Write Time
- Chip Erase Time of 10 ms
- Erase/Write Specifications Guaranteed $0-70^{\circ} \mathrm{C}$
- Data Retention: 10 Years (Min.)

Description

The Synertek SY2801A is a 256 bit electrically erasable programmable read only memory ($E^{2} P R O M$) organized 64 words by four bits and is fabricated using Synertek's double poly silicon gate n-channel technology. The device can be easily erased and reprogrammed on a word basis. A chip erase function is also provided. The SY2801A utilizes an on-board high voltage generator to provide all the internal voltages necessary to program and erase the chip. The single +5 V power supply is the only power supply required.

The in-system erase/write capability of the SY2801A makes it suitable for a wide variety of applications requiring a small
amount of alterable, non-volatile storage. Any word can be erased or programmed in 10 ms without affecting the rest of the memory. Alternatively, the entire memory can be erased in 10 ms . Both the erase and write operations are accomplished with the applications of a single TTL level pulse.

The SY2801A utilizes fully static circuitry and is completely TTL compatible. The common data input/outputs with threestate output drivers greatly simplifies interface with systems utilizing a bidirectional data bus. The device is packaged in a 16-pin DIP for optimum density.

Pin Configuration

Block Diagram

Absolute Maximum Ratings*Temperature Under Bias $-10^{\circ} \mathrm{C}$ to $80^{\circ} \mathrm{C}$
Storage Temperature $-65^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
Voltage on Any Pin with
Respect to Ground -0.5 V to +7 V

Comment*

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
D.C. Characteristics $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 10 \%$, Test $=+5 \mathrm{~V}$

Symbol	Parameter	Min.	Typ.	Max.	Units	Conditions
ILI	Input Leakage Current			10	$\mu \mathrm{A}$	VIN $=$ GND to VCC
ILO	Output Leakage Current			10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=$ GND to VCC
ICC	$V_{\text {CC }}$ Current			50	mA	Outputs Open
VIL	Input LOW Voltage	-0.3		0.8	V	
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage	2.0		$\mathrm{V}_{\mathrm{CC}}+1$	V	
VOL	Output LOW Voltage			0.4	V	$\mathrm{IOL}=2.1 \mathrm{~mA}$
VOH	Output HIGH Voltage	2.4			V	$\mathrm{IOH}=-400 \mathrm{uA}$

Capacitance $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}$

Symbol	Test	Typ.	Max.	Unit
COUT	Output Capacitance		5	pF
CIN	Input Capacitance		5	pF

NOTE: This parameter is periodically sampled and not 100% tested.
A.C. Characteristics $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 10 \%$, Test $=+5 \mathrm{~V}$

READ OPERATION

Symbol	Parameter	Min.	Typ.	Max.	Units	Conditions
$t_{\text {RC }}$	Read Cycle Time	450			ns	
tAA	Address Access Time			450	ns	
tOH	Output Hold from Address Change	10			ns	
tOE	Output Enable Access Time			250	ns	
t_{LZ}	Output Enable to Output LOW Z	10			ns	
tHZ	Output Enable to Output HIGH Z			150	ns	

WRITE OPERATION

Symbol	Parameter	Min.	Typ.	Max.	Units	Conditions
${ }_{\text {t }}$ AS	Address Setup Time	50			ns	
${ }_{\text {taH }}$	Address Hold Time	50			ns	
tDS	Data Setup Time	50			ns	
tDH	Data Hold Time	50			ns	
tPGM	Program Pulse Width	9	10	15	ms	
tCLR	Clear Pulse Width	9	10	15	ms	

Note:

1. A minimum 0.5 ms time delay is required after application of $V_{C C}(+5 \mathrm{~V})$ before proper device operation is achieved.

Timing Diagrams

READ CYCLE NO. $1\left(\overline{\mathrm{PGM}}=\mathrm{V}_{\mathrm{IH}}, C L R=\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IL}}\right)$

READ CYCLE NO. 2 ($\overline{\mathrm{PGM}}=\mathrm{V}_{\mathrm{IH}}$, CLR $=\mathrm{V}_{\mathrm{IL}}$, ADDRESS VALID $)$

BYTE ERASE OR WRITE ($\overline{O E}=V_{I H}$, CLR $=V_{I L}$)

CHIP ERASE ($\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IH}}, \overline{\mathrm{PGM}}=\mathrm{V}_{\mathrm{IH}}$, ADDRESS = DON'T CARE, DATA $\mathrm{IN}=\mathrm{DON}$ 'T CARE $)$

A.C. Testing Input, Output Waveform

A.C. Testing Load Circuit

Device Operation

The SY2801A has five modes of operation as listed in Table 1.

Read Mode

The read operation is very straightforward as illustrated in the timing diagrams. Both Program ($\overline{\mathrm{PGM}}$) and Clear (CLR) must be held inactive during the read or deselect modes to prevent accidental program or erase. The only control signal for the read mode is Output Enable ($\overline{\mathrm{OE}})$ which enables the output drivers. Pin 1 on the SY2801A is a test pin and should be tied to $\mathrm{V}_{\mathrm{CC}}(+5 \mathrm{~V})$ during device operation.

Write Mode

The write operation is under the control of $\overline{\mathrm{PGM}}$. To write a particular location, that word must first be erased. This is accomplished by writing all ones. Once the address is valid and all ones are applied to the data input pins, $\overline{\text { PGM }}$ is pulsed low ($\mathrm{V}_{\text {IL }}$) for 10 ms . Once erased, the same operation is repeated for the data write. The data inputs now reflect the word to be stored. The $\overline{\mathrm{OE}}$ pin must be held high during the erase/program operation.

A characteristic of $E^{2} P R O M s$ is that the number of erase/write cycles is limited. The SY2801 has been designed to meet applications where up to 1×10^{4} erase/write cycles per word are required. The erase/write cycling is completely word independent. Adjacent words are not affected during the erase/write cycling.

Chip Erase Mode

The entire chip is erased by pulsing CLR high $\left(\mathrm{V}_{\mathrm{IH}}\right)$ for 10 ms . All 64 words will be returned to a logic one state.

Table 1. Mode Selection ($\mathrm{V}_{\mathbf{C C}}=+5 \mathrm{~V}$, Test $=+5 \mathrm{~V}$)

Mode Pin	$\overline{\mathrm{OE}}$	$\overline{\text { PGM }}$	CLR	Inputs/Outputs
Read	V_{IL}	V_{IH}	V_{IL}	$\mathrm{D}_{\mathrm{OuT}}$
Deselect	V_{IH}	V_{IH}	V_{IL}	High Z
Word Erase	V_{IH}	V_{IL}	V_{IL}	$\mathrm{D}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}$
Word Write	V_{IH}	V_{IL}	V_{IL}	D_{IN}
Chip Erase	V_{IH}	V_{IH}	V_{IH}	Don't Care

Ordering Information

Order Number	Access Time (Max)	$\mathbf{V}_{\text {cc }}{ }^{+5 \mathrm{~V}}$) Current (Max)	Package Type
SYD2801	450 nsec	50 mA	Cerdip
SYP2801	450 nsec	50 mA	Plastic

ADVANCED INFORMATION

Features

- Reliable Floating Gate Technology
- Microprocessor Compatible Architecture
- On-Chip Address/Data Latches
- Single Cycle Byte Erase/Write Capability
- Fully TTL Compatible
- Endurance: 1×10^{4} Write Cycles (Min.)
- Single +5 V Operation
- Erase/Write Specifications Guaranteed $0-70^{\circ} \mathrm{C}$
- Low Power Dissipation: 385 mW Max.
- On-Cip ERASE/WRITE Timing and Control
- Both BUSY Signal and Status Register
- Data Retention: 10 Years (Min.)

Description

The SY2802E is a 2048 bit electrically erasable programmable read-only memory (E^{2} PROM) organized as 256 words by eight bits. Fabricated using Synertek's double poly silicon gate n-channel technology, the device utilizes a novel memory architecture that results in the memory operating as a nonvolatile register file. A single bidirectional eight bit data port is used for transmitting the address, data and status information. Both address and input data are latched into onboard registers eliminating the need to hold them valid during the long erase/write operation. In addition, all the erase/write control logic is incorporated on chip completely freeing the microprocessor once the erase/write cycle has been initiated. Both a $\overline{B U S Y}$ signal and status register are available to facili-

Pin Configuration

tate easy interface in a wide variety of microprocessor based systems.

The in-system erase/write capability of the SY2802E make it suitable for a wide variety of applications requiring a small amount of alterable, non-volatile storage. Any byte can be erased and written without affecting the rest of memory. Alternatively, the entire memory can be erased.

The SY2802E utilizes fully static circuitry and is completely TTL compatible in the read and erase/write modes. The device has an on-chip high voltage generator eliminating the need for any high voltage pulses or power supplies. The single +5 V power supply is all that is required for any operation.

Block Diagram

Absolute Maximum Ratings

Temperature Under Bias $\ldots \ldots \ldots \ldots .-10^{\circ} \mathrm{C}$ to $+80^{\circ}$
Storage Temperature $\ldots \ldots \ldots . .-65^{\circ} \mathrm{C}$ to 125°
Voltage on Any Pin with
\quad Respect to Ground $\ldots \ldots \ldots \quad-0.5 \mathrm{~V}$ to +7 V

Comment

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

DC Characteristics $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 10 \%$ (Note 1)
Read Operation

Symbol	Parameter	Min.	Typ.	Max.	Units	Conditions
I_{LI}	Input Leakage Current			10	$\mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{IN}}=\mathrm{GND}$ to V_{CC}
I_{LO}	Output Leakage Current			10	$\mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{IN}}=\mathrm{GND}$ to V_{CC}
I_{CC}	V_{CC} Current			70	mA	Outputs Open
V_{IL}	Input LOW Voltage	-0.3		0.8	V	
$\mathrm{~V}_{\mathrm{IH}}$	Input HIGH Voltage	2.0		$\mathrm{~V}_{\mathrm{CC}}+1$	V	
$\mathrm{~V}_{\mathrm{OL}}$	Output LOW Voltage			0.4	V	$\mathrm{I}_{\mathrm{OL}}=3.2 \mathrm{~mA}$
$\mathrm{~V}_{\mathrm{OH}}$	Output HIGH Voltage	2.4			V	$\mathrm{I}_{\mathrm{OH}}=-1.0 \mathrm{~mA}$

Capacitance $T_{A}=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}$

Symbol	Test	Typ.	Max.	Unit
$\mathrm{C}_{\mathrm{OUT}}$	Output Capacitance		5	pF
C_{IN}	Input Capacitance		5	pF

NOTE: This parameter is periodically sampled and not 100% tested.

AC Characteristics $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 10 \%$ (Note 1)

Symbol	Parameter	Min.	Typ.	Max.	Units	Conditions
$\mathrm{t}_{\mathrm{CYC}}$	Cycle Time	350			ns	
t_{CS}	Select Access Time			110	ns	
t_{SA}	Valid Data from Strobe			350	ns	
t_{LZ}	Select to Output LOW Z	10			ns	
t_{HZ}	Select to Output HIGH Z	10		50	ns	

Symbol	Parameter	Min.	Typ.	Max.	Units	Conditions
t_{WS}	Write Setup Time	85			ns	
t_{WH}	Write Hold Time	0			ns	
t_{DS}	Data Setup Time	60			ns	
t_{DH}	Data Hold Time	0			ns	
t_{SH}	Strobe Pulse Width High	85			ns	
t_{SL}	Strobe Pulse Width Low	85			ns	
t_{BA}	BUSY Active From Strobe	30		100	ns	
t_{BL}	$\overline{B U S Y}$ Low Pulse Width			TBD		
$\mathrm{t}_{\mathrm{SCY}}$	Busy HIGH to Cycle Start	100			ns	
t_{BH}	Busy Hold from Clear			100	ns	

Notes:

1. Both test (pin 10) and TC (pin 17) are only used during device testing and are to be left floating during device operation.
2. A minimum 0.5 ms time delay is required after application of $\mathrm{V}_{\mathrm{CC}}(+5 \mathrm{~V})$ before proper device operation is achieved.

Timing Diagrams

Data Fetch $(\overline{C L R}=$ HIGH, $\overline{B U S Y}=$ HIGH $) \quad($ Note 1)

Data Store $(\overline{\mathrm{CLR}}=\mathrm{HIGH}) \quad($ Note 1)

Read Status Register ($\overline{\mathrm{CLR}}=$ HIGH, $\overline{\mathrm{BUSY}}=$ Don't Care) (Note 1)

Clear Cycle (Data $=$ Don't Care) $($ Note 1)

A.C. Testing Input, Output Waveform

A.C. Testing Load Circuit

Device Operation

The SY2802E has seven modes of operation as listed in Table 1. All the modes of the SY2802E involve reading or loading registers. This eliminates any timing problems associated with interfacing to a wide variety of microprocessors and microcomputers.

Data Fetch

Reading the SY2802E involves two cycles as shown in the timing diagram. First the address pointer is loaded and then the data from the selected location can be read. Both the address and data are transmitted through the same eight bit port.

Data Store

Writing the device requires two cycles as shown in the timing diagram. As with the read operation, first the address pointer must be loaded. Loading the data input register then initiates the byte erase/write operation and the microprocessor is free to do other tasks. The timing interface with the microprocessor is handled with both a $\overline{B U S Y}$ signal and a status register. Loading the data in register causes the open-drain $\overline{B U S Y}$ signal to be set LOW and bit seven (pin 1) of the status register to be set HIGH for the duration of the byte erase/write operation. Once complete, these two signals are reset to their inactive states. Note that it is not necessary for the microprocessor to erase the location prior to writing new data. This is automatically done by the memory itself.

Once the erase/write operation has been initiated, the SY2802E doesn't allow access to address pointer, data input register or data output drivers.

Read Status Register

To facilitate interfacing the SY2802E in microprocessor based systems, a status register has been provided that is accessible at all times including during the erase/write operation. This allows a polling routine to be used to determine if the SY2802E is busy. If bit 7 (pin 1) is a logic " 1 ", the device is in the erase/ write operation and if it is a logic " 0 " it is available for normal operation.

Clear Cycle

The SY2802E can be block cleared to all zeros as shown in the timing diagram. As with the data store operation, this cycle only needs to be initiated, all the timing is controlled internally. On initiating the clear cycle, $\overline{B U S Y}$ and bit 7 (pin 1) are set active and remain so until the operation is com plete. During the clear cycle, only the status register is accessible.

Endurance Characteristic

A characteristic of E2PROMs is that the number of erase/write cycles is limited. The SY2802E has been designed to meet applications where up to 1×10^{4} erase/write cycles per word are required. The erase/write cycling is completely word independent. Adjacent words are not affected during the erase/write cycling.

Table 1. Mode Selection $V_{c c}=+5 V$ (Note 1)

Mode	Pin						Data Input/ Outputs (0-7)
	$\begin{gathered} \overline{C S} \\ (12) \end{gathered}$	$\begin{aligned} & R / \bar{W} \\ & (16) \end{aligned}$	$\begin{gathered} \text { RS } \\ (15) \end{gathered}$	STRB (13)	$\begin{aligned} & \overline{\text { BUSY }} \\ & (14) \end{aligned}$	$\begin{aligned} & \overline{C L R} \\ & (11) \end{aligned}$	
Read Register File	0	1	0	X	1	1	Data Out
Read Status Register	0	1	1	X	X	1	Data Out
Write Address Pointer	0	0	0	7	1	1	Data In
Write Data In Latch	0	0	1	1	2	1	Data In
Deselected	1	X	X	X	X	X	High Z
Write Inhibited	0	0	X	2	0	1	X
Block Clear	0	1	1	2	2	0	High Z

X = Don't Care
$\downarrow=$ Negative Transition
Ordering Information

Order Number	Select Access Time	Cycle Time (Min)	Supply Current (Max)	Package Type
SYD2802E	110 ns	350	70 mA	Cerdip
SYP2802E	110 ns	350	70 mA	Plastic

Microprocessors.

3

Product	Page
Number	Number

SY1791-02/SY1793-02 3-5
SY2661 3-21
SY6500 3-35
SYE6500/SYE6500A 3-48
SY6520/SY6520A 3-50
SY6820/SY68B20
SYE6520/SYE6820
SYE6520A/SYE68B20 3-62
SY6521/SY6821
SY6521A/SY68B21 3-64
SYE6521/SYE6521
SYE6821A/SYE68B21 3-76
SY6522/SY6522A 3-79
SYE6522/SYE6522A 3-99
SY6530 3-101
SY6532 3-112
SYE6532/SYE6532A 3-120
SY6545-1 3-122
SY6845R 3-136
SY6545R 3-148
SY6545E 3-160
SY6551 3-177ProductNumber
Page
Number
SYE6551/SYE6551A 3-185
SY6591/SY6591A 3-187
SY68045 3-201
SY65C00 3-216
SY65C20 3-219
SY65C22 3-220
SY65C32 3-221
SY68C40 3-222
SY65C51 3-223
Z8601/Z8602 3-224
Z8603 3-240
Z8611/Z8612 3-242
Z8613 3-259
Z8S MCU 3-261
28681 3-276
28590 3-279
286C01 3-299
Z8 ${ }^{\text {Tu }}$ (Development Module) 3-303
SY66016 3-307
SY66450 3-309
SY66550 3-310

Microprocessor
 Cross Reference Guide

Synertek Part Number	Rockwell	Motorola	MOSTEC	Zilog	SGS	Sharpe	Siemens	Fujitsu
SY6502-7	$6502-7$		$6502-7$					
SY6512	6512		6512					
SY6520	6520	6820	6520					
SY6521		6821						
SY6522	6522		6522					
SY6530			6530					
SY6532	6532		6532					
SY6551	6551		6551					
SY6545-1	$6545-1$							
SY6545E								
SY6545R		$6845 R$						
SY68045		6835						
SY1791-02							$1791-02[1]$	8876
SY1793-02							$1793-02[1]$	8877
SY6591								
SY2661-1		68661 A						
SY2661-2		$68661 B$						
SY2661-3		$68661 C$						
SYZ8601								
SYZ8602								
SYZ8603								
SYZ8681								
SYZ8611								

Note 1: Requires +12 Volt Supply.

SMC	Fairchild	National	AMI	Signetics	W.D.	Hitachi
	6820		6820			6820
	6821		6821			6821
			6551			
						6845R
			68045			
1791-02[1]					1791-02 ${ }^{[1]}$	
1793-02[1]					1793-02 ${ }^{[1]}$	
2661-1				2661A		
2661-2				2661B		
2661-3				2661C		

Features

- Pin and function compatible with Western-Digital FD1791-02 and FD1793-02
- Single 5-volt power supply
- Accommodates both single-density (FM) and doubledensity (MFM) formats
- IBM format compatibility:

IBM 3740 single-density
IBM System-34 double-density

- Numerous automatic control functions

Description

The SY1791-02/SY1793-02 Floppy Disk Controller is a fully programmable device intended for microprocessor based systems. Autonomous operation permits complete control of floppy disk functions with minimum CPU intervention required. Programmability is provided to allow
either single-density (FM) or double-density (MFM) formats compatible with IBM standards, or formats uniquely defined by the user. The SY1791-02 uses negative-true data bus logic; the SY1793-02 uses positive-true.

Pin Configuration

Block Diagram

[^12]**NC PINS ARE INTERNALLY OPEN CIRCUITED. VOLTAGES APPLIED TO THESE PINS HAVE NO AFFECT.

Detailed List of Features

- Replaces Western-Digital FD1791-02 and FD1793-02
- Single 5-volt power supply
- 40-pin DIP package
- Automatic track seek with verification
- Accommodates single-density (FM) and double-density (MFM) formats
- Soft-sector format compatibility
- IBM 3740 (single-density) and System 34 (double-density) compatible
- Single or multiple record read with automatic sector search or entire track read
- Selectable record length (128, 256,512, 1024 bytes)
- Single or multiple record write with automatic sector search
- Entire track write for initialization
- Programmable Controls Selectable track-to-track stepping time
Selectable head settling and engage times
Head position verification
Side verification
- Double-buffered read and write data flow
- DMA or programmed data transfers
- TTL-compatible inputs and outputs
- Write precompensation (FM and MFM)
- Comprehensive Status Register

1.0 GENERAL DESCRIPTION

1.1 Functional Blocks in the SY1791-02/SY1793-02

The SY1791-02/SY1793-02 Floppy Disk Controller (FDC) consists of several functional sections, as shown in Figure 1. Detailed operation of each section is described below.

- DATA REGISTER(DR) - This 8-bit read/write register is used as a holding register during Disk Read and Write operations. During Disk Read operations, serial data is assembled in the Data Shift Register then transferred in parallel to the DR, where it is made available to the data bus. In a Disk Write operation, parallel data is transferred from the data bus to the DR to await transfer to the Data Shift Register. The DR is also used, while executing a Seek command, to hold the Track address.
- TRACK REGISTER (TR) - This 8-bit read/write register holds the track number of the current Read/Write head position. It can be incremented (decremented) by one each time the head is stepped in (out), toward track 76 (00). The TR's contents are compared with the track number (recorded in the disk's ID field) during Read, Write, or Verify operations. This register should not be loaded when the device is busy.
- SECTOR REGISTER (SR) - This 8-bit read/write register holds the address of the desired sector position. The contents of the register are compared with the recorded sector number in the ID field during disk Read or Write operations. This register should not be loaded when the device is busy.
- COMMAND REGISTER (CR) - This 8-bit write only register holds the command which is being executed. This register should not be loaded when the device is busy unless the execution of the current command is to be overridden. This is accomplished with the Interrupt command.
- STATUS REGISTER (STR) - This 8-bit read only register holds device status information. The meaning of the STR bits is a function of the contents of the Command Register.
- DATA SHIFT REGISTER (DSR) - As part of the Disk Interface Logic and Control, this 8-bit register assembles serial data from $\overline{\text { RAW READ input during READ opera- }}$ tions, prior to transfer to the DR. During WRITE operations it accepts parallel data from the DR and serially transfers it to the Write Data output.
- CRC LOGIC - This logic, part of Disk Interface Logic and Control, does the checking or the generating of the 16bit Cyclic Redundancy Check (CRC). The polynominal is: $G(X)=X^{16}+X^{12}+X^{5}+1$. The CRC logic checks all information, starting with the address mark, up to the CRC characters. The CRC register is preset to ones before data is shifted through the circuit.
- ARITHMETIC/LOGIC UNIT (ALU) - A part of Disk Interface Logic and Control, the ALU does serial comparisons, increments, and decrements. It is used for register modification and comparisons with the ID field recorded on the disk.
- TIMING AND CONTROL - All Processor and Floppy Disk interface controls are generated through this logic. The internal device timing is generated from an external clock.
- AM DETECTOR - The Address Mark Detector, part of Disk Interface Logic and Control, detects ID, Data and Index Address Marks during read and write operations.

1.2 MPU Interface Pin Functions

- MASTER RESET ($\overline{\mathrm{MR}}$) - A low on this input resets the device and loads hex 03 into the command register. The Not Ready status bit (status bit 7) is reset during $\overline{\mathrm{MR}}$ low. When $\overline{M R}$ is driven high, a Restore command is executed regardless of the state of the Ready signal, and hex 01 is loaded into the Sector Register.
- CHIP SELECT $(\overline{\mathrm{CS}})$ - A low level on this input selects the FDC and enables processor communications with the FDC.
- DATA BUS LINES ($\overline{\mathrm{DBO}}-\overline{\mathrm{DB7}}$ on SY1791-02 and DBODB7 on SY1793-02) - Bi-directional data bus used for transfer of data between the system MPU and the FDC (negative-true for the SY1791-02, positive-true for the SY1793-02).
- REGISTER ADDRESS LINES (AO-A1) - These inputs address the internal registers for access by the Data Bus lines under $\overline{R E}$ and $\overline{W E}$ control.

REGISTER ADDRESS CODES

A1	A0	READ	WRITE
0	0	STATUS	COMMAND
0	1	TRACK	
1	0	SECTOR	
1	1	DATA	

- READ ENABLE ($\overline{\mathrm{RE}})$ - If $\overline{\mathrm{CS}}$ is low, a low on this input enables the addressed internal register to output data onto the data bus.
- WRITE ENABLE ($\overline{\mathrm{WE}})$ - If $\overline{\mathrm{CS}}$ is low, then a low on this input gates data from the data bus into the addressed register.
- INTERRUPT REQUEST(INTRQ) - This open drain output is set high at the completion or termination of any operation and is reset when a new command is loaded into the Command Register or when the Status Register is read. Use $10 K \Omega$ pull-up resistor to Vcc.
- DATA REQUEST (DRQ) - DRQ is an open drain output. DRQ high during read operations indicates that the Data Register (DR) contains data. When high during write operations, DRQ indicates that the DR is empty and ready to be loaded. DRQ is reset by reading or loading the DR during read or write operations, respectively. Use 10K pull-up resistor to Vcc.
- CLOCK (CLK) - This input requires a square wave clock for internal timing reference (2 MHz for 8 -inch drives, 1 MHz for 5 -inch drives).

1.3 Floppy Disk Interface Pin Functions

- READ GATE (RG) - A high on this output indicates that a field of zeroes (zeroes or ones) has been detected in FM (MFM) encoded information. This can be used to indicate to a data separator that a sync field has been found.
- WRITE DATA (WD) - This output to the disk drive electronics supplies one pulse per required flux transition.
- READ CLOCK (RCLK) - The RCLK input is a nominal square-wave clock signal derived from the data stream. Phasing (RCLK relative to RAW READ) is important, but polarity (RCLK high or low) is not.
- RAW READ ($\overline{\text { RAW READ }}$ - This is the data input to the FDC from the drive. This input must be a negative pulse for each recorded flux transition.
- HEAD LOAD (HLD) - The HLD output notifies the drive to engage the Read/Write head against the medium.
- HEAD LOAD TIMING (HLT) - The HLT input, which is generated by external logic, indicates that a sufficient time has elapsed for the head to have engaged.
- STEP - The step output provides a pulse to the disk drive electronics to cause each incremental head movement.
- DIRECTION (DIRC) - The DIRC output defines the direction of the step. It is high for stepping the head in towards track 76, and low for stepping the head out towards track 0 .
- EARLY - A high EARLY output indicates to external circuitry that the WD pulse should be shifted early for write precompensation.
- LATE - A high LATE output indicates to external circuitry that the WD pulse should be shifted late for write precompensation.
- TRACK GREATER THAN 43 (TG43) - This output informs the drive that the Read/Write head is positioned between tracks 44-255 inclusive. This output is valid during Read and Write commands.
- WRITE GATE (WG) - The WG output is set high when writing to the disk if all the Write prerequisites have been met. WG is used to enable the drive's write circuitry.
- READY - This input indicates disk readiness to perform any Read or Write command. READY must he high for a Read or Write command to be accepted. If READY is low and the FDC receives any such command, the command is not executed and an interrupt is generated if the Not-Ready status bit is set.
- WRITE FAULT ($\overline{\mathrm{WFF}}) /$ VFO ENABLE ($\overline{\mathrm{VFOE}})$ - This pin is used as both an input and output. During Write operations after WG is high, this pin acts as an input to sense a negative transition indicating a Write Fault. If a Write Fault is detected, the Write command is terminated, the Write Fault status bit is set, and INTRQ goes high.
During Read operations, $\overline{\mathrm{WF}} / \overline{\mathrm{VFOE}}$ is an output used to 'synchronously control external RCLK circuitry. VFOE will go true (low) when the following are all true:

1. HLD and HLT are true;
2. settling time, if programmed, has expired;
3. the SY1791-02/SY1793-02 is inspecting data from the disk.

- TRACK 00 (TROO) - This input, when low, indicates to the FDC that the Read/Write head is positioned over track \emptyset.
- INDEX PULSE $(\overline{\mathrm{P}})$ - This input is generated by the drive electronics to indicate the start of a track.
- WRITE PROTECT ($\overline{\mathrm{WPRT}}$) - This input is sampled whenever a Write command is received. A low terminates the command and sets the Write Protect status bit.
- DOUBLE DENSITY ($\overline{\mathrm{DDEN}}$) - This input selects either single or double density operation. When $\overline{\mathrm{DDEN}}$ is low, double density is selected. When $\overline{\text { DDEN }}$ is high, single density is selected.
- TEST (TEST) - This input is used for testing purposes and should be tied to +5 V , or left open, by the user unless interfacing to voice coil motors. When low, the motor stepping rate is increased (see Figure 3b).

2.0 FUNCTIONAL OPERATION

2.1 Single/Double Density Selection

The SY1791-02/SY1793-02 has two selectable data densities, determined by input $\overline{\mathrm{DDEN}}$.

2.2 Clock Selection

In addition to $\overline{D D E N}$, the CLK input determines overall circuit timings, and must be properly selected. A 1 MHz CLK input is normally used for 5 " mini-diskette drives and 2 MHz for standard $8^{\prime \prime}$ drives.

2.3 DRQ Operation

The DRQ output indicates that a data transfer operation is required. For disk read operations, DRQ signifies that the Data Register needs to be read so that the next data byte can be received. For disk write operations, DRQ signifies that a data byte has been transmitted and another must be entered. DRQ may be used as a "handshake" control signal in a DMA based system.

2.4 DMA Sequences

In disk read operations, DRQ goes high when a serial data byte is assembled in the Data Register. DRQ is reset when the byte is read by the DMA controller (or system processor). If a newly assembled byte is transferred into the DR (from the DSR) before the DR has been read, then the overwritten byte in the DR is lost. Furthermore, the Lost Data status bit in the Status Register is set, to indicate this condition. Read operations continue until the end of sector is encountered.
Disk write operations are similar. DRQ is activated when the data byte is transferred from the Data Register to the Data Shift Register, indicating that the DR is ready to be loaded with another byte. It is cleared when the new byte is loaded by the DMA controller (or system processor). However, if the new byte is not loaded by the time the prior byte is shifted out, then a byte of all zeroes is written on the diskette and the Lost Data status bit in the Status Register is set.

2.5 Disk Read Operations

For disk read operations, the FDC requires RAW READ and RCLK inputs. $\overline{\text { RAW READ }}$ is a low going pulse for each flux transition. The FDC detects the rising and falling edges of RCLK and uses these edges to frame RAW READ data/ clock inputs. RCLK is provided by some drives, but if not it must be provided externally (phase-lock-loops, one-shots, counters, etc.) To assist in generating RCLK, the FDC has a RG (Read Gate) output, which may be used to acquire synchronization. Whenever two bytes of zeroes are detected in read operations (in single-density mode), RG is activated (high) and the FDC must find a valid AM (Address Mark) within the next 10 bytes. If the AM is not found, RG is deactivated (low) and the search for two bytes of zeroes is re-started. If the AM is found, RG remains active as long as the FDC is deriving data from the diskette. For double-density mode, RG is activated when 4 bytes of hex $\emptyset \emptyset$ or hex FF are detected and the FDC must find the AM within 16 bytes.

2.6 Disk Write Operations

The fundamental signals in write operations are: WD (Write Data) output, WG (Write Gate) output, $\overline{\text { WPRT }}$ (Write Protect) input, and $\overline{W F}$ (Write Fault) input. When writing to the diskette, WG goes high enabling the disk drive write electronics. However, WG will not be activated until the first data byte has been loaded in the Data Register. This ensures that false writing will not occur. Writing is inhibited when WPRT is low. This sets the Write Protect status bit and an interrupt (INTRQ) is generated.
The $\overline{\mathrm{WF}}$ input signifies a fault condition at the disk drive. When low, it causes the current command to terminate, sets the Write Fault bit in the Status Register, and generates the INTRQ interrupt.

2.7 Write Precompensation

EARLY and LATE are two additional signals which are generated by the SY1791-02/SY1793-02 during write operations. They are used for write precompensation functions. Both signals are active-high. The EARLY signal is active when the WD pulse is to be written early; the LATE signal is active when WD is to be written late. If neither signal is active, then WD is to be written at its normal time. EARLY and LATE are valid for both single and double density modes.

3.0 Command Words

The FDC accepts eleven commands. Command words should be loaded in the Command Register only when the Busy status bit (status bit \emptyset) is low. The sole exception is the Force Interrupt command. Whenever a command is being executed, the Busy status bit is set. When a command is completed, an interrupt is generated and the Busy status bit is reset. The Status Register indicates whether the completed command encountered an error or was fault free. For ease of discussion, commands are divided into four types. Commands and types are summarized in Figure 2.

TYPE	COMMAND	BIT							
		7	6	5	4	3	2	1	0
I	RESTORE	0	0	0	0	h	V	r_{1}	r_{0}
	SEEK	0	0	0	1	h	V	r_{1}	r_{0}
	STEP	0	0	1	0	h	V	r_{1}	r_{0}
	STEP IN	0	1	0	u	h	V	r_{1}	r_{0}
	STEP OUT	0	1	1	u	h	V	r_{1}	r_{0}
11	READ SECTOR	1	0	0	m	S	E	C	0
	WRITE SECTOR	1	0	1	m	S	E	C	a_{0}
III	READ ADDRESS	1	1	0	0	0	E	0	0
	READ TRACK	1	1	1	0	0	E	0	0
	WRITE TRACK	1	1	1	1	0	E	0	0
IV	FORCE INTERRUPT	1	1	0	1	I_{3}	I_{2}	l_{1}	I_{0}

Figure 2. Command Summary

3.1 Type I Commands

The Type I commands are Restore, Seek, Step, Step-In, and Step-Out.

- RESTORE - The RESTORE command is used to position the Read/Write head to track \emptyset of the diskette. Upon the receipt of this command, the TROO input is sampled. If $\overline{\text { TROO }}$ is low, indicating the Read/Write head is positioned over track \emptyset, the Track Register is loaded with zeroes and an interrupt is generated. If TROO is not low, step pulses at a rate specified by the $r_{1} r_{0}$ field are issued until the TROO input is asserted. At this time, the TR is loaded with zeroes and an interrupt is generated. If the $\overline{\mathrm{TROO}}$ input does not go low after 255 stepping pulses, the FDC terminates operation, interrupts and sets the Seek Error status bit. A verification operation takes place if the V bit is set. The h bit allows the head to be loaded at the start of the command. Note that the Restore command is executed when $\overline{M R}$ goes from low (true) to high (false).
- SEEK - This command assumes that the Track Register contains the track number of the current position of the Read/Write head and the Data Register contains the desired track number. The FDC will update the Track Register and issue stepping pulses until the contents of the Track Register are equal to the contents of the Data Register (the desired track location). A verification operation takes place if the V bit is on. The h bit allows the head to be loaded at the start of the command. An interrupt is generated at the completion of the command.
- STEP - Upon receipt of this command, the FDC issues one stepping pulse to the disk drive. The stepping motor direction is the same as in the previous step command. After a delay determined by the $r_{1} r_{0}$ field, a verification takes place if the V bit is on. If the u bit is on, the TR is updated. The h bit allows the head to be loaded at the start of the command. An interrupt is generated at the completion of the command.
- STEP-IN - Upon receipt of this command, the FDC sets DIRC high and issues one stepping pulse. If the u bit is on, the Track Register is incremented. After a delay determined by the $r_{1} r_{0}$ field, a verification takes place if the V bit is on. The h bit allows the head to be loaded at the start of the command. An interrupt is generated at the completion of the command.
- STEP-OUT - This command is identical to the Step-In command, except that DIRC is set low and the Track Register is decremented for each step pulse if the u bit is high.

3.1.1 Type I Command Option Bits

The operation of the option determining bits for Type I commands is summarized in Figures 3a and 3b.

The detailed descriptions of the Type I option bits follow.

- $r_{1} r_{0}$ (Step Rate) - These bits select the rate at which step pulses are issued. Note that the stepping rates are independent of $\overline{\mathrm{DDEN}}$ select. Both single and doubledensity modes step at the same rate.
- V(VERIFY) - This bit is used to select track verification at the end of the stepping sequence. During verification, the head is loaded and after an internal head settling time delay* (TEST $=1$), the HLT input is sampled. When HLT is true, the first encountered ID field is read from the disk. The track address of the ID field is then compared to the Track Register. If there is a match and a valid ID CRC, the verification is complete, an interrupt is generated and the Busy status bit is reset. If there is not a match, but there is a valid ID CRC, an interrupt is generated, the Seek Error status bit (status bit 4) is set, and the Busy status bit is reset. If there is a match but not a valid CRC, the CRC Error status bit (status bit 3) is set, and the next encountered ID field is read from the disk for the verification operation. If an ID field with a valid CRC cannot be found after four revolutions of the disk, the FDC terminates the operation and generates an interrupt.
- h (Head Load) - This bit determines if the head is to be loaded at the beginning of the command. If so, the HLD output goes high (active) and remains in this state until

(See Table of Figure 3b)

UPDATE $-\left\{\begin{array}{l}0=\text { No update of Track Register } \\ 1=\text { Update Track Register }\end{array}\right.$ each step pulse

Figure 3a. Type I Command Option Bit

	TEST		STEPPING RATE	
			CLK $=1 \mathrm{MHz}$	CLK $=2 \mathrm{MHz}$
H	0	0	6 ms	3 ms
H	0	1	12 ms	6 ms
H	1	0	20 ms	10 ms
H	1	1	30 ms	15 ms
L	-	-	$\sim 400 \mu \mathrm{~s}$	$\sim 200 \mu \mathrm{~s}$

Figure 3b. Stepping Motor Rates
the FDC receives a command to disengage the head. If the FDC is idle (not Busy) for 15 disk revolutions, then the head is automatically disengaged (HLD goes low). If track verification is selected $(V=" 1$ "), then the head loading is affected, as follows:
$-h=0, V=1$
HLD is activated near the end of the sequence, an internal head settling time delay* occurs, and the FDC waits for the HLT input to go active (high) before verifying track identification.
$-h=1, V=1$
HLD is activated at the start of the sequence. At the end, an internal head settling time delay* occurs and the FDC waits for HLT to go active before verification.
*Head settling time delay is 15 msec for 2 MHz clock, 30 msec for 1 MHz clock.

- u (Update) - With Update selected ($u={ }^{\prime \prime} 1$ "), the Track Register is updated at each step pulse. The update operation increments the Track Register for stepping in toward track 76 and decrements it for stepping out toward track 0 .

3.2.1 Type I Command Signals

Type I commands control the operation of the STEP and DIRC (Direction) output signals of the FDC.

- STEP - A 2μ s (MFM) or $4 \mu \mathrm{~s}$ (FM) positive-true output pulse is generated at a rate determined by the $r_{1} r_{0}$ field of the command (see Figure 3b). Each step pulse moves the Read/Write head one track location in a direction controlleci by the DIRC output.
- DIRC - The DIRC output determines the direction of the track stepping. A high level indicates step direction IN towards track 76, a low level indicating direction OUT towards track \emptyset.

In addition, the Type I commands use the following signals:

- HLD (Head Load) - This output is used to control movement of the Read/Write head against the recording medium. HLD is set at the beginning of a Type I command if $h=" 1$ ", near the end of a Type I command if $V=$ " 1 " and $h=$ " 0 ", or immediately when a TYPE II or TYPE III command is executed. Once HLD is set it remains high until a subsequent Type I command with $h=$ " 0 " and $V=$ " 0 " is loaded, or until the FDC goes into its non-busy state after 15 index pulses.
- HLT (Head Load Timing) - The low to high transition of this input indicates that a sufficient time has elapsed for the drive's head to become engaged. It typically follows HLD going high, by a time delay which is dependent on the particular drive's characteristics. If not available from the drive electronics, this input must be generated by the user (typically by means of one-shot timers). Figure 4 illustrates an example of HLD and HLT timing.

The logical AND of HLD and HLT is status bit 5 for Type I commands, and it controls the operation of the disk read and write functions.

Figure 4. HLD/HLT Timing Example

3.2 Type II Commands

The Type II commands, Read Sector and Write Sector, permit actual data to be read from or written onto the diskette. Before the command is entered, it is necessary for the processor to have loaded the Sector Register with the number of the desired sector. Figure 5 is useful for understanding the operation of Type II commands.

3.2.1 Type II Command Basic Operation Sequence

The basic operation of Type II commands is outlined as the following sequence:

- The ID field is located by the detection of the ID AM (ID Address Mark).
- The Track Number in the ID field is compared to the contents of the Track Register. If it does not match, then the ID AM search begins again.
- As a selectable option, the Side Number is checked for a match. If selected, a failure to match again causes the ID AM search to re-start.
- The Sector Number is compared to the contents of the Sector Register. If there is not a match, the ID AM search is again begun.
- The Sector Length field is entered into the FDC and stored internally for use in Read or Write operations. The value of the Sector Length byte is determined when the diskette is formatted (initialized) and must have one of the values in the table of Figure 6.
- The ID field CRC1 and CRC2 bytes are checked with internally generated CRC. If they match, then the command (Read or Write) is permitted; if not, the CRC Error status bit is set and the search for the ID AM is begun again.

If the Track Number, Side Number, Sector Number, and CRC all check properly within 4 disk revolutions (5 index pulses), then the command continues; otherwise the Record-Not-Found status bit is set and the command is terminated with an interrupt (INTRO).

SECTOR LENGTH FIELD (hex)	NUMBER OF BYTES IN SECTOR
00	128
01	256
02	512
03	1024

Figure 6. Sector Length Field Codes

Figure 5. General Track Format

Figure 7. Type II Command Option Bits

3.2.2 Type II Command Option Bits

Several bits in the Type II command words are used to select various options. Figure 7 summarizes the special control bits which are outlined, as follows:

- a_{0} (Data AM) - The a_{0} bit is used to select which of two Data Address Mark bytes is to be stored in the Data AM field for Write Sector operations. A " 1 " in ao causes hex F8 to be stored, indicating that the data field is actually deleted data. A " 0 " in a_{0} causes hex FB to be stored, indicating undeleted data.
- S (Side) - The S bit is compared with the LSB of the Side Number (in the ID field), if the side number compare option has been enabled by the C bit.
- C(Compare) - This bit enables the comparison of the Side Number (in the ID field) with the S bit of the Type II command.
- E (Delay) - The E bit causes the internally generated head settling delay to be inserted between the time the HLD (Head Load) output is activated and the time the HLT (Head Load Timing) input is strobed and checked.
- m (multiple Records) - This bit is used to select whether one sector ($\mathrm{m}={ }^{\prime} \mathrm{O}^{\prime}$ ") or more than one sector ($m=" 1$ ") is to be read or written. For single sector operation, the interrupt is generated and the command is terminated immediately after the sector operation is complete. Multiple sector operation, however, is somewhat different. After the first sector operation is complete, the FDC Sector Register is incremented and the sequence is re-started. In this way, the next sequential sector number is read or written. Likewise, after it is complete, the Sector Register is again updated and the sequence re-started. This continues until the Sector Register has incremented to a number higher than any sector on the current track. At this point, the sequence terminates.

3.2.3 Type II Command Operation

The specific operation of the Read Sector and Write Sector commands, once the ID field is properly encountered, is outlined below:

- READ SECTOR - When the correct Track Number, Side Number (if selected), Sector Number, and CRC have been identified, the Data Field check commences. The Data AM must be found within 30 bytes for single-density (or 43 bytes for double-density) from the time the last CRC byte for the ID field was encountered. If not, the Record-Not-Found bit in the Status Register is set and the command is terminated. After the Data AM is found, the data bytes are entered through the internal Data Shift Register and transferred to the Data Register. Each byte transferred results in a DRQ. The Data Register must be unloaded (read) by the MPU or DMA controller before the next byte is fully received. If not, then the new byte is written over the previous byte in the Data Register, the previous byte is lost, and the Lost Data status bit is set. At the end of the Data Field, the CRC bytes are compared to the internal CRC generated by the FDC. If they do not match, the CRC Error status bit is set and the command is terminated, even if it is a multiplerecord command ($m={ }^{\prime \prime} 1$ "). At the end of the sequence, the Data AM encountered in the Data Field determines bit 5 of the Status Register. If the Data AM was hex FB (undeleted), then bit 5 is set to " 0 "; hex F8 (deleted data) causes bit 5 to be set to " 1 ".
- WRITE SECTOR - The Write Sector command operates in a fashion very similar to Read Sector. When the correct Track Number, Side Number (if selected), Sector Number, and CRC have been identified, a DRQ is generated, requesting the first data byte which is to be written on the diskette. The FDC then counts 11 bytes for single-density (or 22 bytes for doubledensity) to account for part of the gap between the ID
and DATA fields (Gap 2 in Figure 5). At this point, if the DRQ has been serviced and a data byte stored in the Data Register, the WG output goes true (high) and 6 bytes of zeroes for single-density (12 bytes for double-density) are written on the diskette. This accounts for the remainder of Gap 2. (If the DRQ had not been serviced, the Lost Data status bit would have been set and the command terminated). Following Gap 2, the Data AM is written. This byte is either hex FB (undeleted data) or hex F8 (deleted data) and is determined by the state of the a_{0} bit in the command byte, (see Figure 7). Finally, the data is written on the diskette, starting with the byte already loaded in the Data Register. As each byte is transferred from the Data Register to the Data Shift Register to be stored on the diskette, a DRQ is generated to the MPU or DMA control unit requesting the next data. If any DRQ is not serviced in time, the Lost Data status bit is set and a byte of zeroes is stored on the diskette, but the command is not terminated. After the last data byte is stored on the diskette, the two-byte CRC (generated in the FDC) is then stored on the diskette. Finally, after the CRC bytes, the FDC stores one more byte (hex FF), the WG output goes low (false), and the command is terminated.

3.3 Type III Commands

There are three Type III Commands:

- READ ADDRESS - Read the next ID field (6 bytes) into the FDC.
- READ TRACK - Read all bytes of the entire track, including gaps.
- WRITE TRACK - Write all bytes to the entire track, including gaps.

3.3.1 Type III Command Option Bit

There is one option bit for Type III commands.

- E (DELAY) - This option bit acts the same for Type III commands as it does for Type II commands. See section 3.2.2 for further information.

3.3.2 Type III Command Operation

- READ ADDRESS - When this command is issued, the head is loaded (HLD high) and the Busy status bit is set. The next ID field encountered on the diskette is then read a byte at a time, using DRQ initiated data transfers to the MPU or DMA controller. Six bytes are entered, comprising the entire ID field. They are: Track Number (1 byte); Side Number (1 byte); Sector Number (1 byte); Sector Length (1 byte); and CRC (2 bytes). Although the CRC bytes are passed unaltered, the FDC checks their validity and sets the CRC Error status bit accordingly. Part of the operation of this command causes the Track Number to be stored in the Sector Register of the FDC. The command ends with the generation of an interrupt (INTRQ) and the clearing of the Busy status bit.
- READ TRACK - The initiation of this command causes the head to be loaded (HLD active) and the

Busy status bit to be set. Reading of the track starts with the next encountered Index pulse and continues until the following Index Pulse. Each byte is assembled and transferred to the Data Register. As in any normal read operation, a DRQ output is generated with each byte, signalling to the MPU or DMA control unit that the byte is ready. CRC and Gap bytes are treated as any other byte. No CRC checking is performed. When all bytes are transferred, the Busy status bit is cleared, and INTRO goes high.

- WRITE TRACK - The start of this command causes the head to be loaded (HLD active) and the Busy status bit to be set. Data is written onto the track when the first Index pulse is encountered, and terminated at the subsequent Index Pulse. DRQ is activated immediately after the command is issued to permit adequate time for the first byte to be made available before the Index is found. If this time is not enough and the Index Pulse occurs before the Data Register is loaded, then the command is terminated. Once the data transfers begin, the DRQ is generated for each byte as needed. Any byte which is not transferred into the FDC in time causes a byte of all zeroes to be stored on the diskette instead. Address Marks and CRC bytes are generated by the FDC in response to format control bytes supplied by the system MPU or DMA control unit. When all bytes are transferred, the command is terminated, the Busy status bit is cleared, and INTRQ is set high.

3.4 Type IV Command

Force Interrupt is the only Type IV command. This command permits the MPU to terminate (abort) any command in progress. Figure 8 tabulates the Type IV command option bits.

The four bits, $\mathrm{I}_{0}-\mathrm{I}_{3}$, are used to select the condition of the interrupt occurrence. Regardless of which bit is set, any command currently being executed is immediately terminated and the Busy status bit is cleared, indicating "Not Busy". Then, when the condition is met, INTRO goes high, causing the required interrupt.
If $\mathrm{I}_{0}-\mathrm{I}_{3}$ are all " 0 ", no interrupt occurs, but any currently executing command is immediately terminated. If more than one condition is selected, then the interrupt occurs when any of the conditions is met.

To clear the interrupt, it is necessary to read the Status Register or to write the Command Register. An exception, however, is for $I_{3}=1$ (Immediate Interrupt). For this case, the interrupt is cleared with another Force Interrupt command with lo-l3 all 0.

3.5 Status Register

The Status Register permits the MPU to monitor a variety of conditions in the FDC. For each command, the individual status bits have their own meaning. When a command is initiated (except for the Force Interrupt command), the Busy status bit is set and the others are cleared or updated. If the Force Interrupt command is entered when another command is in progress, the Busy status bit is cleared, but the others remain unaffected. However, if the Force Interrupt command is initiated

Figure 8. Force Interrupt Command Flags

COMMAND											STATUS	
	7	6	5	4	3	2	1	0				
ALL TYPE I	Not Ready	Write Protect	Head Loaded	Seek Error	CRC Error	Track 0	Index	Busy				
READ SECTOR	Not Ready	0	Record Type	Rec not Found	CRC Error	Lost Data	DRQ	Busy				
WRITE SECTOR	Not Ready	Write Protect	Write Fault	Rec not Found	CRC Error	Lost Data	DRQ	Busy				
READ ADDRESS	Not Ready	0	0	Rec not Found	CRC Error	Lost Data	DRQ	Busy				
READ TRACK	Not Ready	0	0	0	0	Lost Data	DRQ	Busy				
WRITE TRACK	Not Ready	Write Protect	Write Fault	0	0	Lost Data	DRQ	Busy				

Figure 9. Status Register Summary
when there is not another command in progress, the other status bits are cleared or updated and represent the Type I Command status. Figure 9 illustrates the meaning of the status bits for each command.

Detailed descriptions of each status bit function follow:

- NOT READY
$0=$ Drive is Ready
$1=$ Drive is Not Ready
- WRITE PROTECT
$0=\overline{\text { WPRT }}$ input is high (unprotected)
$1=\overline{\text { WPRT input is low (protected) }}$
- HEAD LOADED
$0=$ Head is not currently loaded
$1=$ Head is loaded and engaged (both HLD and HLT are active)
- SEEK ERROR
$0=$ Desired track was found. Updating clears this bit
1 = Desired track was not found
- TRACK 0
$0=\overline{\text { TROO }}$ input is high
$1=\overline{\text { TROO }}$ input is low (Read/Write head is on Track Ø)
- INDEX
$0=\overline{\mathbb{P}}$ input is high (no index mark)
$1=\overline{I P}$ input is low (index mark)
- BUSY
$0=$ Not Busy
1 = Busy (Command sequence in progress)
- RECORD TYPE
$0=$ Non-deleted data mark
1 = Deleted data mark
- WRITE FAULT
$0=$ No write fault
1 = Write fault has occurred
- RECORD NOT FOUND
$0=$ Desired track and sector properly found. Updating clears this bit
$1=$ Desired track and sector not found
- CRC ERROR
$0=$ No CRC error. Updating clears this bit
$1=$ CRC check error encountered
- LOST DATA
$0=$ No data lost. Updating clears this bit
1 = MPU did not respond to DRQ. Data was lost
- DATA REQUEST (DRQ)
$0=$ DRQ not in progress. Updating clears this bit.
$1=$ DRQ currently in progress

*3 bytes of A1 for MFM synchronization.
Figure 10. IBM Compatible Sector/Track Format

4.0 Disk Formatting

Disk formatting (initialization) is accomplished by the Write Track command. Each byte for the entire track must be provided for proper formatting. This includes gap as well as data bytes.
The sequence required to format a diskette begins with positioning the Read/Write head at the desired track. Once this has been done, it is necessary to perform a Write Track command to store all the information on a track. The Write Track command uses DRO to request each byte from the system MPU, starting with the byte at the beginning of the physical Index Pulse and ending
with the last gap bytes at the end of the track. Figure 10 illustrates the IBM standard for track formatting.
Normally, each data byte stored on the diskette must be generated by the system MPU and passed into the FDC Data Register. However, there are exceptions to this rule. If a data byte of hex F5 through FE is entered into the Data Register, then the FDC recognizes this as Data AM with missing clocks or CRC generation code. Consequently, F5 through FE must not be used in gaps, data fields, or ID fields, as this will disrupt normal operation of the FDC during formatting.

4.1 IBM 3740 Format

This single-density (FM) format utilizes 128 bytes/ sector. The bytes to be generated by the system MPU for use in the execution of the Write Track command are shown in Figure 11.

4.2 IBM System 34 Format

This double-density (MFM) format utilizes 256 bytes/ sector. The bytes to be generated by the system MPU for use in the execution of the Write Track command are shown in Figure 12.

4.3 Non-IBM Formats

Unique (non-IBM) formats are permissible providing the following restrictions are understood.

- Sector length may only be $128,256,512$, or 1024 bytes.
- Gap sizes must conform to Figure 13.

	DATA BYTE (hex)	NO. OF BYTES	COMMENTS
	FF	40	$\begin{aligned} & \text { Gap 5 } \\ & \text { (Post Index) } \end{aligned}$
	00	$6]$	
	FC	1	Index AM
	FF	26	-Gap 1
	00	$6]$	
	FE	1	ID AM
	XX	1	Track Number (00-4A)
	0x	1	Side Number (00 or 01)
	XX	1	Sector Number (01-1A)
	00	1	Sector Length (128 bytes)
$\begin{gathered} \text { ONE } \\ \text { SECTOR } \\ \text { (1) } \end{gathered}$	F7	1	Causes 2-Byte CRC to be Written
	FF	117	- Gap 2 (ID Gap)
	00	$6]$	
	FB	1	Data AM
	E5	128	Data Field
	F7	1	Causes 2-Byte CRC to be Written
	FF	27 (2)	Part of Gap 3 (Data Gap)
	FF	247	Gap 4 (Pre Index)

NOTES: 1. THIS PATTERN MUST BE WRITTEN 26 TIMES PER TRACK.
2. CONTINUE WRITING HEX FF UNTIL FDC COMPLETES SEQUENCE AND GENERATES INTRQ INTERRUPT

Figure 12. Byte Sequence for IBM System-34 Formatting

GAP	SINGLE DENSITY (FM)	DOUBLE DENSITY (MFM)	NOTE
Gap 1	16 bytes FF	16 bytes $4 E$	2
Gap 2	11 bytes FF 6 bytes 00	22 bytes $4 F$ 12 bytes 00 3 bytes A1	1
Gap 3	10 bytes FF 4 bytes 00	16 bytes $4 E$ 8 bytes 00 3 bytes A1	2
Gap 4	16 bytes FF	16 bytes $4 E$	2

notes: 1. these bytes counts are exact.
2. THESE BYTES COUNTS ARE MINIMUM EXCEPT FOR 3 BYTES A1, WHICH IS EXACT.

Figure 11. Byte Sequence for IBM 3740 Formatting
Figure 13. Gap Size Limitations

Electrical Specifications

Absolute Maximum Ratings*

Rating	Symbol	Allowable Range
Supply Voltage	V_{CC}	-0.3 V to +7.0 V
Input/Output Voltage	$\mathrm{V}_{\text {IN }}$	-0.3 V to +7.0 V
Operating Temp.	T_{OP}	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage Temp.	$\mathrm{T}_{\mathrm{STG}}$	$-55^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$

Comment*

All inputs contain protection circuitry to prevent damage to high static charges. Care should be exercised to prevent unnecessary application of voltages in excess of the allowable limits.

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
D.C. Characteristics $\left(V_{C C}=5 \mathrm{~V} \pm 5 \%, T_{A}=0-70^{\circ} \mathrm{C}\right)$

CHARACTERISTIC	SYMBOL	MIN	MAX	UNIT
Input High Voltage	V_{IH}	2.6	-	V
Input Low Voltage	V_{IL}	-	0.8	V
Input Leakage Current, $\mathrm{O} \leqslant \mathrm{V}_{\text {IN }} \leqslant \mathrm{V}_{\mathrm{CC}}$	I_{IL}	-	± 10	$\mu \mathrm{~A}$
Output High Voltage, $\mathrm{I}_{\text {LOAD }}=-100 \mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{OH}}$	2.8	-	V
Output Low Voltage, $\mathrm{I}_{\text {LOAD }}=1.6 \mathrm{~mA}$	$\mathrm{~V}_{\mathrm{OL}}$	-	0.45	V
Output Leakage Current, $\mathrm{V}_{\mathrm{OUT}}=\mathrm{V}_{\mathrm{CC}}$	I_{OL}	-	10	$\mu \mathrm{~A}$
Power Dissipation $\left(\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}\right)$	P_{D}	-	525	mW

Test Load

OPEN COLLECTOR OUTPUT TEST LOAD

MPU Read Cycle Timing

MPU Write Cycle Timing

MPU Read Cycle Requirements ($\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=0-70^{\circ} \mathrm{C}$)

CHARACTERISTIC	SYMBOL	MIN	MAX	UNIT	NOTE
Address and $\overline{\text { CS Setup Time }}$	$\mathrm{T}_{\text {SET }}$	50	-	ns	
$\overline{\text { RE Pulse Width }}$	$\mathrm{T}_{\text {RE }}$	400	-	ns	
Address and $\overline{\mathrm{CS}}$ Hold Time	$\mathrm{T}_{\text {HLD }}$	10	-	ns	
Data Access Time	$\mathrm{T}_{\mathrm{DACC}}$	-	300	ns	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$
Data Hold Time	$\mathrm{T}_{\text {DOH }}$	50	150	ns	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$
DRQ Reset Delay	$\mathrm{T}_{\text {DRR }}$	-	500	ns	
INTRQ Reset Delay	$\mathrm{T}_{\text {IRR }}$	-	3000	ns	1

1. Timing shown is for 2 MHz CLK frequency. For 1 MHz , this parameter is doubled.

MPU Write Cycle Characteristics ($\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=0-70^{\circ} \mathrm{C}$)

CHARACTERISTIC	SYMBOL	MIN	MAX	UNIT	NOTE
Address and $\overline{\text { CS Setup Time }}$	$\mathrm{T}_{\text {SET }}$	50	-	ns	
$\overline{\text { WE Pulse Width }}$	$\mathrm{T}_{\text {WE }}$	350	-	ns	
Address and $\overline{\mathrm{CS}}$ Hold Time	$\mathrm{T}_{\text {HLD }}$	10	-	ns	
Data Setup Time	$\mathrm{T}_{\text {DS }}$	250	-	ns	
Data Hold Time	$\mathrm{T}_{\text {DH }}$	20	-	ns	
DRQ Reset Delay	$\mathrm{T}_{\text {DRR }}$	-	500	ns	
INTRQ Rest Delay	$\mathrm{T}_{\text {IRR }}$	-	3000	ns	$\mathbf{1}$

1. Timing shown is for 2 MHz CLK frequency. For 1 MHz , this parameter is doubled.

System Clock Reference

Index Pulse Input

Write Fault Input

Master Reset Input

Miscellaneous Timings $\quad\left(V_{C C}=5 \mathrm{~V} \pm 5 \%, T_{A}=0-70^{\circ} \mathrm{C}\right)$

CHARACTERISTIC	SYMBOL	MIN	MAX	UNIT	NOTE
Clock Low Time	TCD1	230	20000	ns	2
Clock High Time	TCD2	200	20000	ns	2
DIRC Setup Time	TDIR	12	-	$\mu \mathrm{s}$	2
STEP Pulse Width	TSTP	2,4 or 8	-	$\mu \mathrm{s}$	1
Index Pulse Width	$\mathrm{T}_{1 \mathrm{P}}$	10	-	$\mu \mathrm{s}$	2
Write Fault Pulse Width	TWF	10	-	$\mu \mathrm{s}$	2
Master Reset Pulse Width	$\mathrm{T}_{\text {MR }}$	50	-	$\mu \mathrm{s}$	2

1. Depends upon FM/MFM mode and CLK frequency. See timing figure below.
2. Timing shown is for 2 MHz clock: Minimum time doubles for 1 MHz clock.

Step and Direction Motor Control Timing

T $_{\text {STP }}$ PULSE WIDTH

CLK	MODE	
FREQ.	MFM	FM
$1 M H z$	$4 \mu \mathrm{~s}$	$8 \mu \mathrm{~s}$
$2 M \mathrm{MHz}$	$2 \mu \mathrm{~s}$	$4 \mu \mathrm{~s}$

Input Data Timing Characteristics

Diskette Data Timing Characteristics

WRITE ENABLE TIMING

CLK FREQ.	MODE	$T_{\text {DR }}$ nom.	$T_{\text {RD }}$ max.	$T_{\text {DW }}$ nom.	$T_{W D}$ max.	UNIT
1 MHz	MFM	32	27.0	32	23.0	$\mu \mathrm{~s}$
	FM	64	55.0	64	47.0	$\mu \mathrm{~s}$
2 MHz	MFM	16	13.5	16	11.5	$\mu \mathrm{~s}$
	FM	32	27.5	32	23.5	$\mu \mathrm{~s}$

WRITE DATA TIMING

WRITE GATE TIMING

CLK FREQ	MODE	$T_{\text {wp }}$ min.		$T_{\text {s }}$ max.	T_{h} min.	$T_{\text {wg }}$ nom.	$T_{\text {wf }}$ nom.	UNIT
1 MHz	MFM	300	500	250	250	2000	2000	nsec
	FM	900	1100	-	-	4000	4000	nsec
2 MHz	MFM	150	250	125	125	1000	1000	nsec
	FM	450	550	-	-	2000	2000	nsec

Package Availability
40 Pin Ceramic 40 Pin Cerdip 40 Pin Plastic

Ordering Information

PART NUMBER	PACKAGE	DATA BUS LOGIC
SYC1791-02	CERAMIC	NEGATIVE-TRUE
SYD1791-02	CERDIP	NEGATIVE-TRUE
SYP1791-02	PLASTIC	NEGATIVE-TRUE
SYC1793-02	CERAMIC	POSITIVE-TRUE
SYD1793-02	CERDIP	POSITIVE-TRUE
SYP1793-02	PLASTIC	POSITIVE-TRUE

Enhanced Programmable Communications Interface

Features

SYNCHRONOUS OPERATION

- 5 to 8 -bit characters plus parity
- Single or double SYN operation
- Internal or external character synchronization
- Transparent or non-transparent mode
- Transparent mode DLE stuffing (Tx) and detection (Rx)
- Automatic SYN or DLE-SYN insertion
- SYN, DLE and DLE-SYN stripping
- Odd, even, or no parity
- Local or remote maintenance loop back mode
- Baud rate: dc to 1 M bps (1X clock)

ASYNCHRONOUS OPERATION

- 5 to 8 -bit characters plus parity
- $1,11 / 2$ or 2 stop bits transmitted
- Odd, even, or no parity
- Parity, overrun and framing error detection
- Line break detection and generation
- False start bit detection
- Automatic serial echo mode (echoplex)
- Local or remote maintenance loop back mode
- Baud rate: dc to 1 M bps (1X clock)
- dc to 62.5 K bps (16X clock)
- dc to 15.625 K bps (64 X clock)

OTHER FEATURES

- Internal or external baud rate clock
- 3 baud rate sets (2661-1, -2, -3)
- 16 internal rates for each set
- Double buffered transmitter and receiver
- Dynamic character length switching
- Full or half duplex operation
- TTL compatible inputs and outputs
- RxC and TxC pins are short circuit protected
- 3 open drain MOS outputs can be wire-ORed
- Single 5 V power supply
- No system clock required
- 28-pin dual-in-line package

Block Diagram

Table 1 Baud Rate Generator Characteristics
2661-1 (BRCLK = 4.9152 MHz)

MR 2				Baud Rate	Actual Frequency 16X Clock (KHz)	Percent Error	Divisor
3	2	1	0				
0	0	0	0	50	0.8	-	6144
0	0	0	1	75	1.2	-	4096
0	0	1	0	110	1.7598	-0.01	2793
0	0	1	1	134.5	2.152	-	2284
0	1	0	0	150	2.4	-	2048
0	1	0	1	200	3.2	-	1536
0	1	1	0	300	4.8	-	1024
0	1	1	1	600	9.6	-	512
1	0	0	0	1050	16.8329	0.196	292
1	0	0	1	1200	19.2	-	256
1	0	1	0	1800	28.7438	-0.19	171
1	0	1	1	2000	31.9168	-0.26	154
1	1	0	0	2400	38.4	-	128
1	1	0	1	4800	76.8	-	64
1	1	1	0	9600	153.6	-	32
1	1	1	1	19200	307.2	-	16

2661-2 (BRCLK $=4.9152 \mathrm{MHz}$)

MR 2							
$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$	Baud Rate	Actual Frequency $\mathbf{1 6 X}$ Clock (KHz)	Percent Error	Divisor
0	0	0	0	45.5	0.7279	0.005	6752
0	0	0	1	50	0.8	-	6144
0	0	1	0	75	1.2	-	4096
0	0	1	1	110	1.7598	-	2793
0	1	0	0	134.5	2.152	-	2284
0	1	0	1	150	2.4	2048	
0	1	1	0	300	4.8	-	1024
0	1	1	1	600	9.6	512	
1	0	0	0	1200	19.2	-	256
1	0	0	1	1800	28.7438	-0.19	171
1	0	1	0	2000	31.9168	-0.26	154
1	0	1	1	2400	38.4	-	128
1	1	0	0	4800	76.8	-	34
1	1	0	1	9600	153.6	-	16
1	1	1	0	19200	307.2	-	8
1	1	1	1	38400	614.4		

2661-3 (BRCLK $=5.0688 \mathrm{MHz}$)

MR 2				Baud Rate	Actual Frequency 16X Clock (KHz)	Percent Error	Divisor
3	2	1	0				
0	0	0	0	50	0.8	-	6336
0	0	0	1	75	1.2	-	4224
0	0	1	0	110	1.76	-	2880
0	0	1	1	134.5	2.1523	0.016	2355
0	1	0	0	150	2.4	-	2112
0	1	0	1	300	4.8	-	1056
0	1	1	0	600	9.6	-	528
0	1	1	1	1200	19.2	-	264
1	0	0	0	1800	28.8	-	176
1	0	0	1	2000	32.081	0.253	158
1	0	1	0	2400	38.4	-	132
1	0	1	1	3600	57.6	-	88
1	1	0	0	4800	76.8	-	66
1	1	0	1	7200	115.2	-	44
1	1	1	0	9600	153.6	-	33
1	1	1	1	19200	316.8	3.125	16

Note: 16 X CLK is used in asynchronous mode. In synchronous mode, clock multiplier is 1 X and BRG can be used only for TxC.

Signal Descriptions

CPU Interface

RESET (Reset)
A high on this input performs a master reset on the SY2661. This signal asynchronously terminates any device activity and clears the mode, command and status registers. The device assumes the idle state and remains there until initialized with the appropriate control words.
$\mathrm{A}_{0}, \mathrm{~A}_{1}$ (Address 0,1)
Address lines used to select the internal registers.
$\overline{\mathrm{R}} / \mathrm{W}$ (Read/Write)
The direction of data transfers between the EPCI and the CPU is controlled by the \bar{R} / W input. When $\overline{C E}$ and \bar{R} / W are both low the contents of the selected registers will be transferred to the data bus. With $\overline{\mathrm{CE}}$ low and $\overline{\mathrm{R}} / \mathrm{W}$ high a write to the selected register is performed.
$\overline{C E}$ (Chip Enable)
When low, the selected register will be accessed. When high the $D_{0}-D_{7}$ lines will be placed in the high impedance state.
$\mathrm{DB}_{0}-\mathrm{DB}_{7}$ (Data Bus)
An 8-bit three-state positive true data bus used to transfer commands, data and status between the EPCI and the CPU.

$\overline{\text { TxRDY }}$ (Transmitter Ready)

This output is the complement of status register bit SRO. When low, it indicates that the transmit data holding register (TxHR) is ready to accept a data character from the CPU. It goes high when the data character is loaded. This output is valid only when the transmitter is enabled. It is an open drain output which can be "wire-ORed" to the CPU interrupt.

$\overline{\mathrm{RxRDY}}$ (Receiver Ready)

This output is the complement of status register bit SR1. When low, it indicates that the receive data holding register (RxHR) has a character ready for input to the CPU. It goes high when the RxHR is read by the CPU and also when the receiver is disabled. It is an open drain output which can be "wire-ORed" to the CPU interrupt line.

$\overline{T x E M T} / \overline{\mathrm{DSCHG}}$

This output is the complement of status register bit SR2. When low, it indicates that the transmitter has completed serialization of the last character loaded by the CPU, or that a change of state of the $\overline{\mathrm{DSR}}$ or $\overline{\mathrm{DCD}}$ inputs has occurred. This output goes high when the status register is read by the CPU if the TxEMT condition does not exist. Otherwise, the TxHR must be loaded by the CPU for this line to go high. It is an open drain output which can be "wire OR-ed" to the CPU interrupt line.

Transmitter/Receiver Signals

BRCLK (Baud Rate Clock)

Clock input to the internal baud rate generator. This is not required when external receiver and transmitter clocks are used.

$\overline{\mathrm{RXC}} / \mathrm{BKDET}$ (Receiver Clock, Break Detect)

When the EPCI is programmed for External Receiver Clock, this pin will act as an input and control the rate at which a character is received. The frequency is programmed in Mode Register 1 and may be 1X, 16X or 64X the baud rate. Data
are sampled on the rising edge. If internal Receiver Clock is programmed this pin will provide an output, either a $1 \mathrm{X} / 16 \mathrm{X}$ clock or Break Detect signal determined by programming Mode Register 2.

$\overline{\mathrm{TxC}} / \mathrm{XSYNC}$ (Transmitter Clock/External SYNC)

When the EPCI is programmed for External Transmitter clock, this pin will act as an input and control the rate at which the character is transmitted. The frequency is programmed in Mode Register 1 and may be 1X, 16X or 64X the baud rate. Data changes on the falling edge of this clock. If the UPCI is programmed for Internal Transmitter clock, this pin can be either an output providing a $1 \mathrm{X} / 16 \mathrm{X}$ clock or an input for External Synchronization determined by Mode Register 2 programming.
RxD (Receive Data)
$R \times D$ is the serial data input to the receiver.
TxD (Transmit Data)
TxD is the serial data output from the transmitter. When the transmitter is disabled the output will be in the high, "Mark", state.

$\overline{\mathrm{DSR}}$ (Data Set Ready)

$\overline{\mathrm{DSR}}$ is an input that can be used to indicate to the UPCI Data Set Ready or Ring Indicator. Its complement appears in the Status Register as bit SR7. A change of state on $\overline{\mathrm{DSR}}$ will cause $\overline{\mathrm{TxEMT}} / \overline{\mathrm{DSCHG}}$ to go low if either CRO or $\mathrm{CR2}=1$.
$\overline{\mathrm{DCD}}$ (Data Carrier Detect)
The $\overline{D C D}$ input must be low for the receiver to operate. If $\overline{D C D}$ goes high while receiving, the RxC is internally inhibited. The complement of $\overline{\mathrm{DCD}}$ appears in the Status Register as bit SR6. A change of state in $\overline{D C D}$ will cause $\overline{\mathrm{TxEMT}} / \overline{\mathrm{DSCHG}}$ to go low if either CRO or CR2 $=1$.

$\overline{\mathrm{CTS}}$ (Clear To Send)

The $\overline{\mathrm{CTS}}$ input must be low for the transmitter to operate. If $\overline{\text { CTS }}$ goes high while transmitting, the character currently in the Transmit Shift Register will be transmitted before termination TxD will then go to the high level (Mark).

$\overline{\mathrm{DTR}}$ (Data Terminal Ready)

The $\overline{\mathrm{DTR}}$ output is the complement of CR1. It is normally used to indicate Data Terminal Ready.

$\overline{\mathrm{RTS}}$ (Request To Send)

The $\overline{\mathrm{RTS}}$ output is the complement of CR5. If the Transmit Shift Register is not empty when CR5 is reset, $\overline{\mathrm{RTS}}$ will not go high until one TxC after the last serial bit is transmitted.

Functional Description

The internal organization of the EPCI consists of six major blocks, (see Fig. 1). These are the Transmitter, Receiver, Clock Control, Operation Control, Modem Control and SYN/DLE Control. These blocks internally communicate over common data and control buses. The data bus is also linked to the CPU via a bi-directional three-state interface.
Briefly, these blocks perform the following functions:

Transmitter

The Transmitter receives parallel data from the CPU and converts it to a serial bit stream, inserting Start, Stop, and Parity bits, as selected by the user, and outputs a composite serial data stream.

Receiver

The Receiver accepts serial data from the sending device, converts it to a parallel format checking for appropriate Start, Stop and Parity bits and Control Characters, as selected by the user, and sends the assembled character to the CPU.

Timing Control

The Timing Control block contains a programmable Baud Rate Generator (BRG) which is able to accept external Transmit ($\overline{\mathrm{T} \times \mathrm{C}}$) or Receive ($\overline{\mathrm{RXC}}$) clocks or to divide external clock (BRCLK) for controlling data transfers. The BRCLK input allows the user to program one of 16 commonly used baud rates.

Operating Control

The Operation Control block contains four registers; Mode Registers 1 and 2, (MR1, MR2) the Command Register (CR) and Status Register (SR). These registers are used to store configuration and operation commands from the CPU. They generate the necessary internal control signals for proper device operation, and maintain status information for the CPU.

Modem Control

The modem control section provides interfacing for three input signals and three output signals used for "handshaking" and status indication between the CPU and a modem.

SYN/DLE Control

This section contains control circuitry and three 8-bit registers storing the SYN1, SYN2, and DLE character provided by the CPU. These registers are used in the synchronous mode of operation to provide the characters required for synchronization, idle fill and data transparency.

Operation

The EPCl's operation is determined by programming the Mode and Command Registers. Baud rate, asynchronous or synchronous communication, and SYN characters are determined before enabling the transmitter or receiver.

Asynchronous Receiver Operation

After the Mode Registers are configured the receiver is enabled when the RxEN bit in the Command Register (CR2) is set to a 1 and $\overline{D C D}$ is low. The EPCl then monitors the RxD input waiting for a high to low transition. If a transition is detected, the R×D input is again sampled one-half bit time later. If RxD is now high, a search for a valid start bit is begun again. If $R \times D$ is still low a valid start bit is assumed and the receiver continues to sample the RxD input at one bit time intervals until the correct number of data bits, parity bit and one stop bit have been assembled. The character is then transferred to the Receive Data Holding Register (RxHR); RxRDY in the status Register is set (SR1); the $\overline{\text { RxRDY output }}$ goes low. If the character length is less than 8 bits, the high order unused bits in the holding register are set to zero. The parity error, framing error, and overrun error status bits are strobed into the status register on the positive going edge of $\overline{\mathrm{RxC}}$ corresponding to the received character boundry. See Figure 6 and 8.
If the stop bit is present, the receiver will immediately begin its search for the next start bit. If the stop bit is absent (fram-
ing error), the receiver will interpret a space bit if it persists into the next bit time interval. If a break condition is detected (RxD is low for the entire character as well as the stop bit), only one character consisting of all zeros (with the FE status bit set) will be transferred to the holding register. The R×D input must return to a high condition before a search for the next start bit begins. See Figure 9.
Pin 25 can be programmed as a Break Detect (BKDET) output by setting both bits 4 and 7 of Mode Register 2 (MR2). When these bits are set and a break is detected, the BKDET output will go high. If RxD returns high for at least one RxD time, BKDET will return low.

Synchronous Receiver Operation

When the EPCI is programmed for synchronous operation the receiver will remain idle until the receiver enable bit (CR2) is set. At this time the EPCl enters the hunt mode. Data are shifted into the receive data shift register (RxSR) one bit at a time. The contents of RxSR are then compared to the contents of the SYN1 register. If the two are not equal, the next bit is shifted in and the comparison is repeated. When the two registers match, the hunt mode is terminated and character assembly mode begins. If single SYN operation is programmed, the SYN DETECT status bit is set. If double SYN operation is programmed, the first character assembled after SYN1 must be SYN2 in order for the SYN DETECT bit to be set. Otherwise the EPCI returns to the hunt mode. (Note that the sequence SYNi-SYNi-SYN2 will not achieve synchronization). See Figure 6.
When synchronization has been achieved, the EPCI continues to assemble characters and transfer them to the holding register, setting the RxRDY status bit and asserting the $\overline{\mathrm{RxRDY}}$ output each time a character is transferred. The PE and OE status bits are set as appropriate. Further receipt of the appropriate SYN sequence sets the SYN DETECT status bit. If the SYN stripping mode is commanded, SYN characters are not transferred to the holding register. Note: the SYN characters used to establish initial synchronization are not transferred to the holding register in any case.
By setting MR24 (MR2 bit 4) and MR27 = 1 pin 9 ($\overline{\mathrm{RxC}} / \mathrm{XSYNC}$) will be programmed as an external jam synchronization input. When XSYNC is selected internal SYN1, SYN1-SYN2 and DLE-SYN1 detection is disabled. Each positive going signal on XSYNC will cause the receiver to establish synchronization on the rising edge of the next RxC pulse. Character assembly will start with the RxD input at this edge. XSYNC must be lowered prior to the next rising edge of RxC. This external synchronization will cause the SYN DETECT status bit to be set until the status register is read. Refer to XSYNC timing diagram.

Asynchronous Transmitter Operation

When the EPCI is programmed to transmit the transmitter will remain idle until $\overline{\mathrm{CTS}}$ is low and the TXEN bit (CRO) is set. The EPCI will respond by setting status register (SR) bit 0 and asserting the TxRDY output. When the CPU writes a character into the transmit data holding register (TxHR), SRO is reset and $\overline{T \times R D Y}$ returns high. The character is then transferred to the transmit shift register (TxSR) when it is idle or has completed transmission of the previous character. SRO is again set, and $\overline{T x R D Y}$ goes low. See Figure 7.

Abstract

In the asynchronous mode, the transmitter automatically sends a start bit followed by the programmed number of data bits, the least significant bit being sent first. It then appends an optional odd or even parity bit and the programmed number of stop bits. If, following transmission of the data bits, a new character is not available in the transmit holding register, the TxD output remains in the marking (high) condition and the TxEMT/DSCHG output and its corresponding status bit are asserted. Transmission resumes when the CPU loads a new character into the holding register. The transmitter can be forced to output a continuous low (BREAK) condition by setting CR3.

Synchronous Transmitter Operation

When the EPCI is initially programmed for synchronous transmission it will remain in the idle state (RxD high) until TxEN is set. At this point TxD remains high, $\overline{T x R D Y}$ will go low and both will stay in this state until the first character (usually a SYN character) is written into the TxHR. This starts transmission, with $\overline{T x R D Y}$ going low each time a character is shifted from the TxHR to the TxSR. If $\overline{T x R D Y}$ is not serviced before the previous character is shifted out of the TxSR, the TxEMT output will go low and the EPCI will automatically fill the pending gap with SYN1, SYN1, SYN2 doublets, or DLESYN1 doublets, depending on the state of MR6 and MR17. Transmission will be continuous until TxFN is reset to 0 . See Figure 7.

If the send DLE bit (CR3) is set, the DLE character is automatically transmitted prior to the transmission of any character stored in the TxHR. Since this is a one time command, CR3 does not have to be reset.

EPCI Programming

Before data communications can be started the EPCI must be programmed by writing to its mode and command registers. Additionally, if synchronous communication has been selected the appropriate SYN1, SYN2 and DLE registers must be loaded. Reference the Register Addressing Table and Initialization Flow Chart for address requirements and programming procedure.

The Register Addressing table shows MR1 and MR2 at the same address. The EPCI has an internal pointer that initially directs the first read or write to MR1, then on the next access at that same address the pointer directs the operation to MR2. A similar sequence occurs for the SYN and DLE registers; first SYN1 then SYN2 then DLE. If more than the required number of accesses are made the internal pointer resets to the first register. The pointer is also reset to MR1 and SYN1 by a RESET input or a read of the Command Register, but unaffected by any other read or write operation.

Register Formats

The register formats are summarized in Figures 2 through 5. MR1 and MR2 define the general operating characteristics. The Command Register controls the basic operation defined by MR1 and MR2. The Status Register indicates the EPCl operating status and the condition of external inputs. These registers are cleared by a RESET input (SR6 and SR7 excepted).

Mode Register 1 (MR1)

MR11 and MR10 select the communication mode and baud rate multiplier. Note: the multiplier in asynchronous mode applies only if the external input option is selected by MR24 and MR25.
MR13 and MR12 select Character length. Character length does not include the parity bit, when selected, and does not include the start and stop bits in asynchronous operation.
MR14, when set, selects parity. A parity bit will be transmitted with each character, and a parity check will be performed on each character received.

MR15 selects either odd or even parity.
In the asynchronous mode MR16 and MR17 select the number of stop bits; $1,1.5$ or 2 . If 1 X baud rate is programmed 1.5 stop bits defaults to 1 on transmit.
In the synchronous mode MR17 controls the number of SYN characters used to establish synchronization, and the number of fill characters to be transmitted when $\overline{T x R D Y}$ and $\overline{\text { TxEMT }}$ are 0.
MR16 controls selection of the transparent mode. When MR16 is set (transparent selected) DLE-SYN1 is used for character fill and SYN detect (SR 5), but the normal synchronization sequence is used to establish character sync. When transmitting. in the synchronous transparent mode, a DLE character in the TxHR will cause a second DLE character to be transmitted. Note: if the send DLE command (CR3) is active when a DLE character is in the TxHR only one additional DLE will be transmitted.
The bits in the mode register affecting character assembly and disassembly (MR12-MR16) can be changed dynamically (during active receive/transmit operation). The character mode register affects both the transmitter and receiver; therefore in synchronous mode, changes should be made only in half duplex mode (RxEN $=1$ or TxEN =1, but not both simultaneously $=1$). In asynchronous mode, character changes should be made when RxEN and TxEN $=0$ or when TxEN = 1 and the transmitter is marking in half duplex mode (RxEN = 0).
To effect assembly/disassembly of the next received/transmitted character, MR12-15 must be changed within n bit times of the active going state of $\overline{R x R D Y} / \overline{T x R D Y}$. Transparent and non-transparent mode changes (MR16) must occur within $n-1$ bit times of the character to be affected when the receiver or transmitter is active. ($n=$ smaller of the new and old character lengths.)

Mode Register 2 (MR2)

MR20 through MR23 select the internal Baud Rate Generator (BRG). There are sixteen selectable rates for each version as outlined in Table 1.
MR24 through MR27 define the receive and transmit clock source and the function of pins 9 and 25. Reference Figure 3.

Table 2 SY2661 Register Addressing

$\overline{\mathbf{C E}}$	\mathbf{A}_{1}	$\mathbf{A}_{\mathbf{0}}$	$\overline{\mathbf{R}} / \mathbf{W}$	Function
1	X	X	X	Three-state Data Bus
0	0	0	0	Read Receive Holding Register (RxHR)
0	0	0	1	Write Transmit Holding Register (TxHR)
0	0	1	0	Read Status Register (SR)
0	0	1	1	Write SYN1/SYN2/DLE Registers
0	1	0	0	Read Mode Registers (MR1, MR1/MR2)
0	1	0	1	Write Mode Registers (MR1, MR1/MR2)
0	1	1	0	Read Command Register
0	1	1	1	Write Command Register

EPCI Initialization Flow Chart

Figure 2. Mode Register 1

7	6	5	4	3	2	0		
SEE BAUD RATE TABLES								
7	6	5	4	TxC	RxC	PIN9	PIN25	MODE
0	0	0	0	E	E	TxC	RxC	SYNC/ASYNC
0	0	0	1	E	1	T×C	$1 \times$	SYNC/ASYNC
0	0	1	0	1	E	$1 \times$	RxC	SYNC/ASYNC
0	0	1	1	1	1	$1 \times$	1x	SYNC/ASYNC
0	1	0	0	E	E	TxC	RxC	SYNC/ASYNC
0	1	0	1	E	I	TxC	16x	SYNC/ASYNC
0	1	1	0	1	E	16x	RxC	SYNC/ASYNC
0	1	1	1	1	1	16x	16x	SYNC/ASYNC
1	0	0	0	1	E	XSYNC	RxC	SYNC
1	0	0	1	E	I	TxC	BKDET	ASYNC
1	0	1	0	1	E	XSYNC	$\mathrm{R} \times \mathrm{C}$	SYNC
1	0	1	1	1	1	$1 \times$	BKDET	ASYNC
1	1	0	0	1	E	XSYNC	RxC	SYNC
1	1	0	1	E	1	TxC	BKDET	ASYNC
1	1	1	0	1	E	XSYNC	RxC	SYNC
1	1	1	1	1	I	16x	BKDET	ASYNC

Figure 3. Mode Register 2

Command Register (CR)

CRO (TxEN) will enable or disable the transmitter. When TxEN $=0, T x D, \overline{T x R D Y}$ and $\overline{T x E M T}$ are all high, the transmitter is disabled. When TxEN goes active, $\overline{T x R D Y}$ will go low requesting the first character to be written to the TxHR, and the TxD output will be enabled to transmit. When TxEN goes inactive, the UPCI will complete transmission of any charac-
ter still in the TxSR. TxD will then go to the marking state and $\overline{\text { TxRDY }}$ and TxEMT will go high. Refer to Transmit timing diagram.
CR1 controls the $\overline{\text { DTR }}$ output. The $\overline{\text { DTR }}$ output is a logical complement of CR1.
CR2 (RxEN) will enable or disable the receiver. When RxEN = 0 , the receiver is in an idle mode with $\overline{R x R D Y}$ high. A 0 to 1 transition of RxEN will initiate a start bit search in asynchronous mode or initiate the hunt mode in synchronous transmission. A 1 to 0 transition of RxEN immediately terminates receiver operation.
In the asynchronous mode setting CR3 will force the TxD output low (break condition) at the end of the current transmitted character. TxD will then remain low until CR3 is cleared; at that time TxD will go high for a minimum 1 bit time before resuming normal transmission.
In the synchronous mode setting CR3 will force the transmission of the DLE character prior to sending the character in the TxHR. Because this is a one-time command, bit 3 will automatically reset.
CR5 controls the state of the $\overline{R T S}$ output. When CR5 $=1$, $\overline{R T S}$ will go low and the transmit logic will be enabled. A 1 to 0 transition of CR5 will cause $\overline{R T S}$ to go high one TxC time after the last serial bit is transmitted, (if the TxSR was not already empty).
CR7 and CR6 provide four alternate modes of operation in both synchronous and asynchronous operation. When both bits are 0 normal operation is selected.
In the asynchronous mode, when only CR6 is set automatic echo mode is selected. Clocked, regenerated received data are automatically directed to the TxD line while normal receiver operation continues. The receiver must be enabled
(CR2 $=1$), but the transmitter need not be enabled. CPU to receiver communications continues normally, but the CPU to transmitter link is disabled. Only the first character of a break condition is echoed. The TxD output will go high until the next valid start is detected. The following conditions are true while in automatic echo mode:

1. Data assembled by the receiver are automatically placed in the transmit holding register and retransmitted by the transmitter on the TxD output.
2. Transmit clock $=$ receive clock.
3. $\overline{\text { TxRDY }}$ output $=1$.
4. The $\overline{\text { TXEMT }} / \overline{\overline{D S C H G}}$ pin will reflect only the data set change condition.
5. The TxEN command (CRO) is ignored.

In the synchronous mode, when only CR6 is set automatic SYN/DLE stripping is performed. The state of MR17 and MR16 controls which characters are stripped. Reference Figure 6 for a detailed example of the characters stripped. Note: automatic stripping does not affect setting of the SYN and DLE detect status bits.

Two diagnostic modes are achievable in both synchronous and asynchronous operation; local loop back with CR7 $=1$ and CR6 $=0$, and remote loopback with both bits $=1$.

Local Loop Back

1. The transmitter output is connected to the receiver input.
2. $\overline{\mathrm{DTR}}$ is connected to $\overline{\mathrm{DCD}}$ and $\overline{\mathrm{RTS}}$ is connected to $\overline{\mathrm{CTS}}$.
3. Transmit clock is connected to the receive clock.
4. The $\overline{\mathrm{DTR}}, \overline{\mathrm{RTS}}$ and $\overline{\mathrm{TxD}}$ outputs are held high.
5. The $\overline{C T S}, \overline{D C D}, \overline{\mathrm{DSR}}$ and RxD inputs are ignored.

Note: CR bits 0,1 and 5 must be set, CR2 is a don't care.

Remote Loop Back

1. Data assembled by the receiver are automatically placed in the transmit holding register and retransmitted by the transmitter on the TxD output.
2. Receive clock is connected to the transmit clock.
3. No data are sent to the local CPU, but the error status conditions (PE, OE, FE) are set.
4. The $\overline{\mathrm{RxRDY}}, \overline{\mathrm{TxRDY}}$, and $\overline{\mathrm{TxEMT}} / \overline{\mathrm{DSCHG}}$ outputs are held high.
5. CR1 (TXEN) is ignored.
6. All other signals operate normally.

Status Register

SRO is the transmitter ready (TxRDY) status, it is the logical complement of the TxRDY output. This bit indicates the state of the TxHR when the transmitter is enabled ($\mathrm{TxEN}=1$). A 0 indicates TxHR is full, a 1 indicates TxHR is empty and requires servicing by the CPU. This bit is cleared by writing to TxHR or by disabling the transmitter ($\mathrm{TxEN}=0$). Note: SRO is not set in either the auto echo or remote loop back modes.
SR1 is the receiver ready (RxRDY) status, it is the logical complement of the $\overline{\mathrm{RxRDY}}$ output. This bit indicates the state of the RxHR when the receiver is enabled ($\mathrm{RxEN}=1$). A 0 indicates the RxHR is empty, a 1 indicates the RxHR is full and requires servicing by the CPU. This bit is cleared by writing to the TxHR or by disabling the receiver. ($\mathrm{R} \times \mathrm{EN}=0$).
SR2 indicates a change of state of either $\overline{D S R}$ or $\overline{D C D}$ or that the TxSR is empty. This bit is the logical complement of the $\overline{\mathrm{TxEMT}} / \overline{\mathrm{DSCHG}}$ output. A read of the status register will clear bit 2 if a state change on $\overline{\mathrm{DSR}}$ or $\overline{\mathrm{DCD}}$ has occurred. If a

Figure 4. Command Register
second successive read of the status register indicates bit 2 $=0$, then $\overline{D C D}$ or $\overline{D S R}$ changed. If bit 2 is still set, then the TxSR is empty. Because the transmitter does not start until the first character has been written to the TxHR, TxEMT status will not be reflected until transmission of the first character is complete, $\overline{T x E M T}$ status is cleared by writing to the TxHR or disabling the transmitter. Note: TxEMT status will be set in synchronous mode even though "fill" characters are being transmitted.
SR3 when set reflects a parity error when parity checking is enabled in both the synchronous and asynchronous modes. In the synchronous transparent mode, (MR16 = 1) and the parity enable bit (MR14) is 0, SR3 will then indicate DLE detect when set. This indicates that a character matching DLE register was received and the present character is neither SYN1 nor DLE. This bit is cleared when the next character following the above sequence is loaded into the RxHR, when the receiver is disabled or by a reset error command.

SR4 indicates an overrun error when set. An overrun condition exists when the CPU does not read the RxHR before the next received character is transferred to it. (The previous character is lost.) SR4 is cleared by the reset error command and when the receiver is disabled.
In the asynchronous mode SR5 indicates that the received character was not framed by a stop bit. If the RxHR is all 0 's when bit 5 is set, a break condition was present. In synchronous non-transparent mode, it indicates receipt of the SYN1 character in single SYN mode or the SYN1-SYN2 pair in double SYN mode. In synchronous transparent mode this bit is set upon detection of the initial synchronizing characters (SYN1 or SYN1-SYN2) and after synchronization has been achieved, when a DLE-SYN1 pair is received. The bit is reset when the receiver is disabled, when the reset error command is given in asynchronous mode, and when the status register is read by the CPU in the synchronous mode.
SR6 and SR7 reflect the condition of the $\overline{D C D}$ and $\overline{D S R}$ inputs respectively. Their state is the logical complement of their respective inputs.

Figure 5. Status Register

Absolute Maximum Ratings*

Rating	Symbol	Allowable Range
Supply Voltage	V_{CC}	-0.3 V to +7.0 V
Input/ Output Voltage	V_{IN}	-0.3 V to +7.0 V
Operating Temperature	T_{OP}	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage Temperature	$\mathrm{T}_{\text {STG }}$	$-55^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$

Comment*

All inputs contain protection circuitry to prevent damage to high static charges. Care should be exercised to prevent unnecessary application of voltages in excess of the allowable limits

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
D.C. Characteristics $\quad V_{C C}=5.0 \mathrm{~V} \pm 5 \%, T_{A}=0-70^{\circ} \mathrm{C}$, unless otherwise noted

Characteristic	Symbol	Min.	Typ.	Max.	Unit
Input High Voltage	V_{IH}	2.0		$\mathrm{~V}_{\mathrm{CC}}$	V
Input Low Voltage	V_{IL}			0.8	V
Input Leakage Current $\mathrm{V}_{\mathrm{IN}}=0$ to 5.5V	I IN			10	$\mu \mathrm{~A}$
Input Leakage Current for High Impedance State	ITSI			10	$\mu \mathrm{~A}$
Output High Voltage: ILOAD $=-400 \mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{OH}}$	2.4			V
Output Low Voltage: $\mathrm{I}_{\text {LOAD }}=2.2 \mathrm{~mA}$	$\mathrm{~V}_{\mathrm{OL}}$			0.4	V
Input Capacitance: $\mathrm{f}=1 \mathrm{MHz}$	C_{IN}			20	pF
Output Capacitance	$\mathrm{C}_{\mathrm{OUT}}$			20	pF
Power Dissipation $\left(\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}\right)$	P_{D}			650	mW

Receiver/Transmitter Signal Timing

Clocks

Transmit Timing

Receive Timing

Symbol	Characteristic	MIN	TYP	MAX	UNIT
$\mathrm{T}_{\mathrm{R}} / \mathrm{TH}$	$\overline{\mathrm{TxC}}$ or $\overline{\mathrm{RxC}} \mathrm{HIGH}$	500			ns
$T_{R} / T L$	$\overline{T \times C}$ or $\overline{\mathrm{RxC}}$ LOW	500		1.0	ns
f R/T	$\overline{\mathrm{T} \times \mathrm{C}}$ or $\overline{\mathrm{R} \times \mathrm{C}}$ freq.	DC		1.0	MHz
TBRH	BRCLK HIGH	70			ns
TBRL	BRCLK LOW	70			ns
f BRG	BRCLK freq. [1]		4,9152		MHz
$\mathrm{T}_{\mathrm{RxS}}$	R×D SETUP	300			ns
$\mathrm{T}_{\mathrm{R} \times \mathrm{H}}$	RxD HOLD	350			ns
TTxD	TxD DELAY FROM TxC $C_{L}=150 \mathrm{pF}$			650	ns
TTCS	SKEW TxD vs TxC $C_{L}=150 \mathrm{pF}$		0		ns

Note:

1. $F_{B R G}=4.9152$ applicable for -1 and $-2, F_{B R G}=5.0688$ for -3 .

Read/Write Timing Characteristics

$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=0-70^{\circ} \mathrm{C}$, unless otherwise noted

Symbol	Characteristic	MIN	MAX	UNIT
TCE	$\overline{\mathrm{CE}}$ Pulse Width	250		ns
TCED	$\overline{\mathrm{CE}}$ to $\overline{\mathrm{CE}}$ Delay	600		ns
TSET	Address and $\overline{\mathrm{R}} / \mathrm{W}$ Set Up	10		ns
THLD	Address and $\overline{\mathrm{R}} / \mathrm{W}$ Hold	10		ns
TDS	Write Data Set Up	150		ns
TDH	Write Data Hold	0		ns
TDD	Read Data Delay $C_{L}=150 \mathrm{pF}$		200	ns
TDF	READ DATA HOLD $C_{L}=150 \mathrm{pF}$	10	100	ns

Table 3 Effect of MR17 and MR16 on Character Fill and Character Stripping (Synchronous Mode)

MR17	MR16	Mode	Synchronizing Sequence	Character Fill	Character(s) Stripped CR7 $=0$, CR6 $=1$
0	0	Double SYN Normal	SYN1-SYN2	SYN1-SYN2	SYN1 SYN1-SYN2 ${ }^{[1]}$
1	0	Single SYN Normal	SYN1	SYN1	SYN1[1]
0	1	Double SYN Transparent	SYN1-SYN2	DLE-SYN1	DLE-SYN1 ${ }^{[1]}$ SYN1-SYN2 ${ }^{[1]}$ (Only Initial Synchronizing Sequence) DLE (also Sets SR3 if Parity Disabled and it is not Following a DLE or SYN1) In a DLE-DLE Sequence Only the First DLE is Stripped
1	1	Single SYN Transparent	SYN1	DLE-SYN1	DLE-SYN1 ${ }^{[1]}$ SYN1 (only Initial Synchronizing Sequence) DLE and DLE-DLE same as Double SYN Transparent

Note:

1. Symbol indicates SYN DET status set upon detection of initial synchronizing characters and after SYNC has been achieved by detection of a DLE-SYN1 pair.

Test Load

SYNCHRONOUS MODE 7-BIT CHARACTER, NO PARITY

हTS \longrightarrow
$\overline{\mathrm{CTS}}$

Figure 7. Transmitter Operation Timing Diagram

Figure 9. Framing Error and Break Detection Timing

Package Availability 40 Pin Ceramic 40 Pin Cerdip 40 Pin Plastic

Ordering Information

Part No.	Package
SYP2661-X	Plastic
SYD2661-X	Cerdip
SYC2661-X	Ceramic

$X=1,2$ or 3
(See Table 1)

8-Bit Microprocessor Family

Features

- Single $5 \mathrm{~V} \pm 5 \%$ power supply
- N channel, silicon gate, depletion load technology
- Eight bit parallel processing
- 56 Instructions
- Decimal and binary arithmetic
- Thirteen addressing modes
- True indexing capability
- Programmable stack pointer
- Variable length stack
- Interrupt capability
- Non-maskable interrupt
- Use with any type or speed memory
- Bi-directional Data Bus
- Instruction decoding and control
- Addressable memory range of up to 65 K bytes
- "Ready" input
- Direct memory access capability
- Bus compatible with MC6800
- Choice of external or on-board clocks
- $1 \mathrm{MHz}, 2 \mathrm{MHz}, 3 \mathrm{MHz}$ and 4 MHz operation
- On-chip clock options
* External single clock input
* Crystal time base input
- 40 and 28 pin package versions
- Pipeline architecture

Description

The SY6500 Series Microprocessors represent the first totally software compatible microprocessor family. This family of products includes a range of software compatible microprocessors which provide a selection of addressable memory range, interrupt input options and on-chip clock oscillators and drivers. All of the microprocessors in the SY6500 family are software compatible within the group and are bus compatible with the MC6800 product offering.
The family includes six microprocessors with on-board clock oscillators and drivers and four microprocessors driven by external clocks. The on-chip clock versions are aimed at high performance, low cost applications where single phase inputs or crystals provide the time base. The external clock versions are geared for the multi-processor system applications where maximum timing control is mandatory. All versions of the microprocessors are available in $1 \mathrm{MHz}, 2 \mathrm{MHz}, 3 \mathrm{MHz}$ and 4 MHz maximum operating frequencies.

Members of the Family

$\begin{array}{\|c\|} \hline \text { PART } \\ \text { NUMBERS } \end{array}$	CLOCKS	PINS	$\overline{\text { IRO }}$	$\overline{\text { NMI }}$	RYD	ADDRESSING
SY6502	On-Chip	40	\checkmark	\checkmark	\checkmark	64 K
SY6503		28	\checkmark	\checkmark		4 K
SY6504	"	28	\checkmark			8 K
SY6505	"	28	\checkmark		\checkmark	4 K
SY6506	"	28	\checkmark			4 K
SY6507	"	28			\checkmark	8 K
SY6512	External	40	\checkmark	\checkmark	\checkmark	64 K
SY6513		28	\checkmark	\checkmark		4 K
SY6514	"	28	\checkmark			8 K
SY6515	"	28	$\sqrt{ }$		\checkmark	4 K

Ordering Information

Only 6502 and 6512 are available in 3 and 4 MHz

Comments on the Data Sheet

The data sheet is constructed to review first the basic "Common Characteristics" - those features which are common to the general family of microprocessors. Subsequent to a review of the family characteristics will be sections devoted to each member of the group with specific features of each.

SY6500 Internal Architecture

NOTE:

1. CLOCK GENERATOR IS NOT INCLUDED ON SY651X.
2. ADDRESSING CAPABILITY AND CONTROL OPTIONS VARY WITH EACH OF THE SY6500 PRODUCTS.

SY6500

Absolute Maximum Ratings*

Rating	Symbol	Value	Unit
Supply Voltage	V_{CC}	-0.3 to +7.0	V
Input Voltage	$\mathrm{V}_{\text {in }}$	-0.3 to +7.0	V
Operating Temperature	T_{A}	0 to +70	${ }^{\circ} \mathrm{C}$
Storage Temperature	$\mathrm{T}_{\mathrm{STG}}$	-55 to +150	${ }^{\circ} \mathrm{C}$

Comment*

This device contains input protection against damage due to high static voltages or electric fields; however, precautions should be taken to avoid application of voltages higher than the maximum rating.
D.C. Characteristics $\quad\left(V_{C C}=5.0 \mathrm{~V} \pm 5 \%, T_{A}=0-70^{\circ} \mathrm{C}\right)$
$\left(\emptyset_{1}, \emptyset_{2}\right.$ applies to SY651X, $\emptyset_{0}($ in $)$ applies to SY 650 X$)$

Symbol	Characteristic	Min.	Max.	Unit
V_{IH}	$\left.\begin{array}{l}\text { Input High Voltage } \\ \text { Logic and } \emptyset_{0} \text { (in) for } \\ \text { all } 650 X \text { devices }\end{array}\right\}$$\left.\begin{array}{l}\emptyset_{1} \text { and } \emptyset_{2} \text { only for } \\ \text { all } 651 X \text { devices. Logic } \\ \text { as } 650 X\end{array}\right\}$$\quad$$1,2,3 \mathrm{MHz}$ 4 MHz	$\begin{aligned} & +2.0 \\ & +3.3 \end{aligned}$ $V_{C C}-0.5$	$\begin{gathered} V_{C c} \\ V_{c C} \\ V_{C C}+0.25 \end{gathered}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$
$\mathrm{V}_{\text {IL }}$	Input Low Voltage Logic, $\emptyset_{\text {o (in) }}$ $(650 \mathrm{X})$ $\emptyset_{1}, \emptyset_{2}$ $(651 \mathrm{X})$	$\begin{aligned} & -0.3 \\ & -0.3 \end{aligned}$	$\begin{aligned} & +0.8 \\ & +0.2 \end{aligned}$	V
$I_{\text {IL }}$	Input Loading $\begin{gathered} \left(\mathrm{V}_{\text {in }}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{cc}}=5.25 \mathrm{~V}\right) \\ \mathrm{RDY} \text {, S.O. } \end{gathered}$	-10	-300	$\mu \mathrm{A}$
$\mathrm{I}_{\text {in }}$	Input Leakage Current $\begin{aligned} \left(\mathrm{V}_{\text {in }}=\right. & \left.0 \text { to } 5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{cc}}=0\right) \\ & \operatorname{Logic}(\text { Excl. RDY, S.O. }) \\ \emptyset_{1}, \emptyset_{2} & (651 \mathrm{X}) \\ \emptyset_{\mathrm{o}(\text { in })} & (650 \mathrm{X}) \end{aligned}$	-	$\begin{gathered} 2.5 \\ 100 \\ 10.0 \end{gathered}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$
${ }^{\text {TSI }}$	Three-State (Off State) Input Current $\begin{gathered} \left(\mathrm{V}_{\mathrm{in}}=0.4 \text { to } 2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{cc}}=5.25 \mathrm{~V}\right) \\ \text { DB0-DB7 } \end{gathered}$	-	± 10	$\mu \mathrm{A}$
V_{OH}	Output High Voltage $\begin{array}{rrr} \left(I_{\text {LOAD }}=\right. & \left.-100 \mu \mathrm{Adc}, \mathrm{~V}_{\mathrm{CC}}=4.75 \mathrm{~V}\right) & 1,2,3 \mathrm{VHz} \\ \text { SYNC, DBO-DB7, A0-A } 15, R / \bar{W} & 4 \mathrm{MHz} \\ \hline \end{array}$	$\begin{aligned} & 2.4 \\ & 2.0 \\ & \hline \end{aligned}$	$-$	$\begin{aligned} & \text { V } \\ & \mathrm{V} \end{aligned}$
V_{OL}	$\begin{aligned} & \text { Output Low Voltage } \\ & \quad\left(I_{\text {LOAD }}=1.6 \mathrm{mAdc}, \mathrm{~V}_{\mathrm{CC}}=4.75 \mathrm{~V}\right) \\ & \text { SYNC, DBO-DB7, A0-A } 15, \mathrm{R} / \overline{\mathrm{W}} \end{aligned} \quad 1,2,3 \mathrm{MHz}, 4 \mathrm{MHz} .$	-	$\begin{aligned} & 0.4 \\ & 0.8 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
P_{D}	Power Dissipation 1 MHz and 2 MHz $(\mathrm{VCC}=5.25 \mathrm{~V})$ 3 MHz 4 MHz	-	$\begin{aligned} & 700 \\ & 800 \\ & 900 \\ & \hline \end{aligned}$	mW mW mW
C $C_{\text {in }}$ $C_{\text {out }}$ $C_{\emptyset_{0 \text { (in) }}}$ $C_{\emptyset_{1}}$ $C_{\emptyset_{2}}$	Capacitance $\left(\mathrm{V}_{\mathrm{in}}=0, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}\right)$ $\overline{R E S}, \overline{N M I}, ~ R D Y, \overline{I R Q}, S . O ., ~ D B E$ DB0-DB7 A0-A15, R/W, SYNC	$\begin{aligned} & - \\ & - \\ & - \\ & - \end{aligned}$	$\begin{aligned} & 10 \\ & 15 \\ & 12 \\ & 15 \\ & 50 \\ & 80 \end{aligned}$	pF

Dynamic Operating Characteristics

$\left(\mathrm{V}_{\mathrm{CC}}=5.0 \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=0^{\circ}\right.$ to $70^{\circ} \mathrm{C}$)

Parameter	Symbol	1 MHz		2 MHz		3 MHz		4 MHz		Units
		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
651X Cycle Time	Tcyc	1.00	40	0.50	40	0.33	40	0.25	40	$\mu \mathrm{S}$
\emptyset_{1} Pulse Width	$\mathrm{T}_{\text {PWH0 }}{ }_{1}$	430	-	215	-	150	-			ns
\emptyset_{2} Pulse Width	$\mathrm{T}_{\mathrm{PWH} \emptyset_{2}}$	470	-	235	-	160	-			ns
Delay Between \emptyset_{1} and \emptyset_{2}	TD	0	-	0	-	0	-			ns
\emptyset_{1} and \emptyset_{2} Rise and Fall Times ${ }^{11]}$	T_{R}, T_{F}	0	25	0	20	0	15			ns
650X Cycle Time $\emptyset_{\text {o(IN) }}$ Low Time ${ }^{[2]}$ $\emptyset_{\text {o(IN) }}$ High Time ${ }^{[2]}$ \emptyset_{0} Neg to \emptyset_{1} Pos Delay ${ }^{[5]}$ \emptyset_{0} Neg to \emptyset_{2} Neg Delay ${ }^{[5]}$ \emptyset_{0} Pos to \emptyset_{1} Neg Delay ${ }^{[5]}$ \emptyset_{0}^{*} Pos to \emptyset_{2} Pos Delay ${ }^{[5]}$ $\emptyset_{\text {o(IN) }}$ Rise and Fall Time ${ }^{[1]}$ \emptyset_{1} (out) Pulse Width $\emptyset_{2 \text { (OUT) }}$ Pulse Width Delay Between \emptyset_{1} and \emptyset_{2} \emptyset_{1} and \emptyset_{2} Rise and Fall Times ${ }^{[1,3]}$										
	$\mathrm{T}_{\mathrm{CYC}}$	1.00	40	0.50	40	0.33	40	0.25	40	$\mu \mathrm{s}$
	$\mathrm{T}_{\mathrm{L} \emptyset_{\mathrm{O}}}$	480	-	240	-	160	-	110	-	ns
	$\mathrm{T}_{\mathrm{H} \emptyset_{0}}$	460	-	240	-	160	-	115	-	ns
	T_{01+}	10	70	10	70	10	70	10	70	ns
	T_{02}	5	65	5	65	5	65	5	65	ns
	T01-	5	65	5	65	5	65	5	65	ns
	T_{02+}	15	75	15	75	15	75	15	75	ns
	$\mathrm{T}_{\text {RO }}, \mathrm{T}_{\text {FO }}$	0	30	0	20	0	15	0	10	ns
	$\mathrm{T}_{\text {PWH0 }} 1$	$T_{L ம_{0}}-20$	$\mathrm{T}_{\mathrm{L} \emptyset_{\text {o }}}$	$T_{L 0_{0}}-20$	$\mathrm{T}_{\mathrm{L} \emptyset_{\mathrm{o}}}$	$T_{L \emptyset_{0}}-20$	$\mathrm{T}_{\mathrm{L} \emptyset \text { O}}$	$T_{L \emptyset_{0}}-20$	$\mathrm{T}_{\mathrm{L} \theta \text { o }}$	ns
	$\mathrm{T}_{\mathrm{PWH0}}^{2}$	$T_{L \emptyset_{0}}-40$	$T_{L \emptyset_{0}}-10$	$T \mathrm{~L}_{0}-40$	$T_{L \emptyset_{0}}-10$	$\mathrm{T}_{\mathrm{L} \emptyset_{0}}-40$	$T_{L \emptyset_{0}}-10$	$T_{L \emptyset_{0}}-40$	$\mathrm{T}_{\mathrm{L} 0_{0}}-10$	ns
	T_{D}	5	-	5	-	5	-	5	-	ns
	$\mathrm{T}_{\mathrm{R}}, \mathrm{T}_{\mathrm{F}}$	-	25	-	25	-	15	-	15	ns
$\begin{aligned} & 650 X, 651 X \\ & R / \bar{W} \text { Setup Time } \end{aligned}$										
	$T_{\text {RWS }}$	-	225	-	140	-	110	-	90	ns
R/ \bar{W} Hold Time	$\mathrm{T}_{\text {RWH }}$	30	-	30	-	15	-	10	-	ns
Address Setup Time	$\mathrm{T}_{\text {ADS }}$	-	225	-	140	-	110	-	90	ns
Address Hold Time	$\mathrm{T}_{\text {ADH }}$	30	-	30	-	15	-	10	-	ns
Read Access Time	$\mathrm{T}_{\text {ACC }}$	-	650	-	310	-	170	-	110	ns
Read Data Setup Time	$\mathrm{T}_{\text {DSU }}$	100	-	50	-	50	-	50	-	ns
Read Data Hold Time	$\mathrm{T}_{H R}$	10	-	10	-	10	-	10	-	ns
Write Data Setup Time	$\mathrm{T}_{\text {MDS }}$	20	175	20	100	20	75	-	70	ns
Write Data Hold Time	T_{HW}	60	150	60	150	30	130	20	-	ns
Sync Setup Time	$\mathrm{T}_{\text {SYS }}$	-	350	-	175	-	100	-	90	ns
Sync Hold Time	$\mathrm{T}_{\text {SYH }}$	30	-	30	-	15	-	15	-	ns
RDY Setup Time ${ }^{[4]}$	$\mathrm{T}_{\text {RS }}$	200	-	200	-	150	-	120	-	ns

NOTES:

1. Measured between 10% and 90% points.
2. Measured at 50% points.
3. Load $=1$ TTL load +30 pF .
4. RDY must never switch states within $T_{R S}$ to end of \emptyset_{2}.
5. \quad Load $=100 \mathrm{pF}$.
6. The 2 MHz devices are identified by an " A " suffix.
7. The 3 MHz devices are identified by a " B " suffix.
8. The 4 MHz devices are identified by a " C " suffix.

TIMING DIAGRAM NOTE:

Because the clock generation for the SY650X and SY651X is different, the two clock timing sections are referenced to the main timing diagram by three reference lines marked REF ' A ', REF ' B ' and REF ' C '. Reference between the two sets of clock timings is without meaning. Timing parameters are referred to these lines and scale variations in the diagrams are of no consequence.

Pin Functions

Clocks $\left(\emptyset_{1}, \emptyset_{2}\right)$

The SY651X requires a two phase non-overlapping clock that runs at the V_{cc} voltage level.
The SY650X clocks are supplied with an internal clock generator. The frequency of these clocks is externally controlled. Clock generator circuits are shown elsewhere in this data sheet.

Address Bus ($\mathbf{A}_{\mathbf{0}}-\mathbf{A}_{\mathbf{1 5}}$) (See sections on each micro for respective address lines on those devices.)

These outputs are TTL compatible, capable of driving one standard TTL load and 130 pF .

Data Bus ($\mathrm{DB}_{0}-\mathrm{DB}_{7}$)

Eight pins are used for the data bus. This is a bi-directional bus, transferring data to and from the device and peripherals. The outputs are three-state buffers, capable of driving one standard TTL load and 130 pF .

Data Bus Enable (DBE)

This TTL compatible input allows external control of the three-state data output buffers and will enable the microprocessor bus driver when in the high state. In normal operation DBE would be driven by the phase two $\left(\emptyset_{2}\right)$ clock, thus allowing data output from microprocessor only during \emptyset_{2}. During the read cycle, the data bus drivers are internally disabled, becoming essentially an open circuit. To disable data bus drivers externally, DBE should be held low. This signal is available on the SY6512, only.

Ready (RDY)

This input signal allows the user to halt the microprocessor on all cycles except write cycles. A negative transition to the low state during or coincident with phase one $\left(\emptyset_{1}\right)$ will halt the microprocessor with the output address lines reflecting the current address being fetched. This condition will remain through a subsequent phase two $\left(\emptyset_{2}\right)$ in which the Ready signal is low. This feature allows microprocessor interfacing with low speed PROMS as well as fast (max. 2 cycle) Direct Memory Access (DMA). If ready is low during a write cycle, it is ignored until the following read operation. Ready transitions must not be permitted during \emptyset_{2} time.

Interrupt Request (IRQ)

This TTL level input requests that an interrupt sequence begin within the microprocessor. The microprocessor will complete the current instruction being executed before recognizing the request. At that time, the interrupt mask bit in the Status Code Register will be examined. If the interrupt mask flag is not set, the microprocessor will begin an interrupt sequence. The Program Counter and Processor Status Register are stored in the stack. The microprocessor will then set the interrupt mask flag high so that no further interrupts may occur. At the end of this cycle, the program counter low will be loaded from address FFFE, and program counter high from location FFFF, therefore transferring program control to the memory vector located at these addresses. The RDY signal must be in the high state for any interrupt to be recognized. A $3 \mathrm{~K} \Omega$ external resistor should be used for proper wire-OR operation.

Non-Maskable Interrupt ($\overline{\mathrm{NMI})}$

A negative going transition on this input requests that a non-maskable interrupt sequence be generated within the microprocessor.
$\overline{\mathrm{NMI}}$ is an unconditional interrupt. Following completion of the current instruction, the sequence of operations defined for IRQ will be performed, regardless of the state interrupt mask flag. The vestor address loaded into the program counter, low and high, are locations FFFA and FFFB respectively, thereby transferring program control to the memory vector located at these addresses. The instructions loaded at these locations cause the microprocessor to branch to a non-maskable interrupt routine in memory.
$\overline{\mathrm{NMI}}$ also requires an external $3 \mathrm{~K} \Omega$ resistor to $V_{c c}$ for proper wire-OR operations.
Inputs $\overline{\mathrm{RQ}}$ and $\overline{\mathrm{NMI}}$ are hardware interrupts lines that are sampled during \emptyset_{2} (phase 2) and will begin the appropriate interrupt routine on the \emptyset_{1} (phase 1) following the completion of the current instruction.

Set Overflow Flag (S.O.)

A NEGATIVE going edge on this input sets the overflow bit in the Status Code Register. This signal is sampled on the trailing edge of \emptyset_{1}.

SYNC

This output line is provided to identify those cycles in which the microprocessor is doing an OP CODE fetch. The SYNC line goes high during \emptyset_{1} of an OP CODE fetch and stays high for the remainder of that cycle. If the RDY line is pulled low during the \emptyset_{1} clock pulse in which SYNC went high, the processor will stop in its current state and will remain in the state until the RDY line goes high. In this manner, the SYNC signal can be used to control RDY to cause single instruction execution.

Reset ($\overline{\mathrm{RES}}$)

This input is used to reset or start the microprocessor from a power down condition. During the time that this line is held low, writing to or from the microprocessor is inhibited. When a positive edge is detected on the input, the microprocessor will immediately begin the reset sequence.

After a system initialization time of six clock cycles, the mask interrupt flag will be set and the microprocessor will load the program counter from the memory vector locations FFFC and FFFD. This is the start location for program control.

After $V_{c c}$ reaches 4.75 volts in a power up routine, reset must be held low for at least two clock cycles. At this time the R/W and SYNC signal will become valid.

When the reset signal goes high following these two clock cycles, the microprocessor will proceed with the normal reset procedure detailed above.

Read/Write ($\mathrm{R} / \overline{\mathrm{W}}$)

This output signal is used to control the direction of data transfers between the processor and other circuits on the data bus. A high level on R / \bar{W} signifies data into the processor; a low is for data transfer out of the processor.

Programming Characteristics

INSTRUCTION SET - ALPHABETIC SEQUENCE

ADC Add Memory to Accumulator with Carry	LDA Load Accumulator with Memory
AND "AND" Memory with Accumulator	LDX Load Index X with Memory
ASL Shift left One Bit (Memory or Accumulator)	LDY Load Index Y with Memory
BCC Branch on Carry Clear	LSR Shift One Bit Right (Memory or Accumulator)
BCS Branch on Carry Set	NOP No Operation
BEO Branch on Result Zero	ORA "OR" Memory with Accumulator
BIT Test Bits in Memory with Accumulator	ORA 'OR" Memory with Accumulator
BMI Branch on Result Minus	PHA Push Accumulator on Stack
BNE Branch on Result not Zero	PHP Push Processor Status on Stack
BPL Branch on Result Plus	PLA Pull Accumulator from Stack
BRK Force Break	PLP Pull Processor Status from Stack
BVC Branch on Overflow Clear	ROL Rotate One Bit Left (Memory or Accumulator)
BVS Branch on Overflow Set	ROR Rotate One Bit Right (Memory or Accumulator)
CLC Clear Carry Flag	RTI Return from Interrupt
CLD Clear Decimal Mode	RTS Return from Subroutine
CLI Clear Interrupt Disable Bit	SBC Subtract Memory from Accumulator
CLV Clear Overflow Flag	with Borrow
CMP Compare Memory and Accumulator	SEC Set Carry Flag
CPX Compare Memory and Index X	
CPY Compare Memory and Index Y	SED Set Decimal Mode
DEC Decrement Memory by One	SEI Set Interrupt Disable Status
DEX Decrement Index X by One	STA Store Accumulator in Memory
DEY Decrement Index Y by One	STX Store Index X in Memory
EOR "Exclusive-or" Memory with Accumulator	STY Store Index Y in Memory
INC Increment Memory by One	TAX Transfer Accumulator to Index X
INX Increment Index X by One	TAY Transfer Accumulator to Index Y
INX Increment Index X by One	TSX Transfer Stack Pointer to Index X
INY Increment Index Y by One	TXA Transfer Index X to Accumulator
JMP Jump to New Location	TXS Transfer Index X to Stack Pointer
JSR Jump to New Location Saving Return Address	TYA Transfer Index Y to Accumulator

ADDRESSING MODES

Accumulator Addressing

This form of addressing is represented with a one byte instruction, implying an operation on the accumulator.

Immediate Addressing

In immediate addressing, the operand is contained in the second byte of the instruction, with no further memory addressing required.

Absolute Addressing

In absolute addressing, the second byte of the instruction specifies the eight low order bits of the effective address while the third byte specifies the eight high order bits. Thus, the absolute addressing mode allows access to the entire 65 K bytes of addressable memory.

Zero page Addressing

The zero page instructions allow for shorter code and execution times by only fetching the second byte of the instruction and assuming a zero high address byte. Careful use of the zero page can result in significant increase in code efficiency.

Indexed Zero Page Addressing - (\mathbf{X}, Y indexing)

This form of addressing is used in conjunction with the index register and is referred to as "Zero Page, X " or "Zero

Page, Y." The effective address is calculated by adding the second byte to the contents of the index register. Since this is a form of "Zero Page" addressing, the content of the second byte references a location in page zero. Additionally due to the "Zero Page" addressing nature of this mode, no carry is added to the high order 8 bits of memory and crossing of page boundaries does not occur.

Indexed Absolute Addressing - (X, Y indexing)

This form of addressing is used in conjunction with X and Y index register and is referred to as "Absolute, X," and "Absolute, Y ." The effective address is formed by adding the contents of X or Y to the address contained in the second and third bytes of the instruction. This mode allows the index register to contain the index or count value and the instruction to contain the base address. This type of indexing allows any location referencing and the index to modify multiple fields resulting in reduced coding and execution time.

Implied Addressing

In the implied addressing mode, the address containing the operand is implicitly stated in the operation code of the instruction.

Relative Addressing

Relative addressing is used only with branch instructions and establishes a destination for the conditional branch.
The second byte of the instruction becomes the operand which is an "Offset" added to the contents of the lower eight bits of the program counter when the counter is set at the next instruction. The range of the offset is -128 to +127 bytes from the next instruction.

Indexed Indirect Addressing

In indexed indirect addressing (referred to as (Indirect, X$)$), the second byte of the instruction is added to the contents of the X index register, discarding the carry. The result of this addition points to a memory location on page zero whose contents is the low order eight bits of the effective address. The next memory location in page zero contains the high order eight bits of the effective address. Both memory locations specifying the high and low order bytes of the effective address must be in page zero.

Programming Characteristics

PROGRAMMING MODEL

INSTRUCTION SET - OP CODES, EXECUTION TIME, MEMORY REQUIREMENTS

SY6502-40 Pin Package

Features

- 65K Addressable Bytes of Memory
- IRQ Interrupt - $\overline{N M I}$ Interrupt
- On-the-chip Clock
\checkmark TTL Level Single Phase Input
\checkmark Crystal Time Base Input
- SYNC Signal
(can be used for single instruction execution)
- RDY Signal
(can be used for single cycle execution)
- Two Phase Output Clock for Timing of Support Chips

SY6503 - 28 Pin Package

RES 1	28	\square_{2} (OUT)
$\mathrm{vss}^{\text {C }}$	27	$\square \varnothing_{0}(1 \mathrm{~N})$
IROC ${ }^{\text {a }}$	26	R / \bar{W}
तला 4	25	
$\mathrm{vcc}^{\text {co }} 5$	24]DB1
ABO 6	23]DB2
AB1- 7	22]DB3
$A B 2$	21	$\square \mathrm{DB4}$
$\mathrm{AB3}^{-1}$	20]DB5
AB4 10	19]DB6
AB5 11	18	D887
AB6 12	17	$\square \mathrm{AB} 11$
$A B 713$	16	$\square A B 10$
AB8 14	15	- ${ }^{\text {ab9 }}$

Features

- 4K Addressable Bytes of Memory (AB00-AB11)
- On-the-chip Clock
- $\overline{\text { ROQ }}$ Interrupt
- $\overline{\text { NMI }}$ Interrupt
- 8 Bit Bi-Directional Data Bus

SY6504 \& SY6507 - 28 Pin Package

RES ${ }^{1}$	1 28	Da_{2} (OUT)
$\mathrm{vss}^{\text {L }}$	27	$\square^{g_{0}}$ (IN)
* $\overline{\mathrm{RO}}$ or RDY ${ }^{3}$	$3 \quad 26$	$\square \mathrm{R} / \overline{\mathrm{w}}$
$\mathrm{V}_{\mathrm{cc}} \square^{4}$	425	$\square \mathrm{DBO}$
ABO 5	$5 \quad 24$	-DB1
$A B 1 \square 6$	$6 \quad 23$	$\square \mathrm{DB2}$
$A B 2{ }^{\text {a }}$	722	万ов3
${ }_{\text {AB3 }} 8$	$8 \quad 21$	$\square \mathrm{J}^{\text {b }}$
$A B 4$ -	$9 \quad 20$	-DB5
AB5 10	$10 \quad 19$	- ${ }^{\text {d }}$
AB6 1	$11 \quad 18$	$\square \square^{\text {D }} 7$
$A B 712$	$12 \quad 17$	-AB12
$A B 8$	$13 \quad 16$	ПAB11
AB9 1	$14 \quad 15$	$\square \mathrm{AB} 10$

Features

- $\overline{\mathrm{RQ}}$ Interrupt (6504 only)
- RDY Signal (6507 only)
- 8K Addressable Bytes of Memory (AB00-AB12)
- On-the-chip Clock
- 8 Bit Bi-Directional Data Bus

SY6505 - 28 Pin Package

RES 1	28	\square_{2} (OUT)	Features
$\mathrm{v}_{\text {ss }} \mathrm{C}_{2}$	27	$\square g_{0}(1 N)$	
ROY 3	26	-R/W	
\स्प 4	25	$\square \mathrm{DBO}$	- 4 K Addressable Bytes of Memory (AB00-AB11)
$\mathrm{v}_{\mathrm{cc}} \mathrm{C}_{5}$	24	-DB1	
$A B 0 \square^{6}$	23]DB2	- On-the-chip Clock
${ }^{\text {AB1 }} 7$	22	$\square \mathrm{DB3}$	
$A B 28$	21	-DB4	- IRQ Interrupt
$A B 3 \square^{9}$	20	[ob5	
$A B 410$	19	7DB6	- RDY Signal
$A B 5 \square 11$	18	$\square^{\text {DB7 }}$	-8 Bit Bi-Directional Data Bus
A86 12	17	ПAB11	
AB7 13	16	-ab10	
AB8 14	15	$\square \mathrm{AB9}$	

SY6506 - 28 Pin Package

SY6512 - 40 Pin Package

SY6513-28 Pin Package

Features

- 4K Addressable Bytes of Memory (AB00-AB11)
- Two phase clock input
- $\overline{\text { RO }}$ Interrupt
- $\overline{\text { NMI }}$ Interrupt
- 8 Bit Bi-Directional Data Bus

SY6514-28 Pin Package

Features

- 8K Addressable Bytes of Memory (AB00-AB12)
- Two phase clock input
- $\overline{\mathrm{RQ}}$ Interrupt
- 8 Bit Bi-Directional Data Bus

SY6515 - 28 Pin Package

Features

- 4 K Addressable Bytes of Memory (AB00-AB11)
- Two phase clock input
- $\overline{\mathrm{RQ}}$ Interrupt
- 8 Bit Bi-Directional Data Bus

Clock Generation Circuits*

*For further details refer to Synertek SY6500 Applications Information Note AN2. Crystals used are CTS Knight MP Series or equivalents. (Series Mode)

$\left.\begin{array}{|c|c|c|}\hline \text { CRYSTAL } \\ \text { FREQUENCY }\end{array}\right)$

Extended Temperature Range $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$

Features

- Single $5 \mathrm{~V} \pm 5 \%$ power supply
- N channel, silicon gate, depletion load technology
- Eight bit parallel processing
- 56 Instructions
- Decimal and binary arithmetic
- Thirteen addressing modes
- True indexing capability
- Programmable stack pointer
- Variable length stack
- Interrupt capability
- Non-maskable interrupt
- Use with any type or speed memory
- Bi-directional Data Bus
- Instruction decoding and control
- Addressable memory range of up to 65 K bytes
- "Ready" input
- Direct memory access capability
- Bus compatible with MC6800
- Choice of external or on-board clocks
- 1 MHz and 2 MHz operation
- On-chip clock options
* External single clock input
* Crystal time base input
- 40 and 28 pin package versions
- Pipeline architecture
- Operation over wide temperature range $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$

Description

The SYE6500 Series Microprocessors represent the first totally software compatible microprocessor family. This family of products includes a range of software compatible microprocessors which provide a selection of addressable memory range, interrupt input options and on-chip clock oscillators and drivers. All of the microprocessors in the SYE6500 family are software compatible within the group and are bus compatible with the MC6800 product offering.
The family includes six microprocessors with on-board clock oscillators and drivers and four microprocessors driven by external clocks. The on-chip clock versions are aimed at high performance, low cost applications where single phase inputs or crystals provide the time base. The external clock versions are geared for the multi-processor system applications where maximum timing control is mandatory. All versions of the microprocessors are available in 1 MHz and 2 MHz maximum operating frequencies.

Members of the Family

PART NUMBERS			CLOCKS	PINS	$\overline{\text { IRO }}$	$\overline{\text { NMI }}$	RDY	ADDRESSING
Plastic	Cerdip	Ceramic						
SYEP6502	SYED6502	SYEC6502	On-Chip	40	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	16 (64 K)
SYEP6503	SYED6503	SYEC6503	"	28	$\sqrt{ }$	\checkmark		12 (4 K)
SYEP6504	SYED6504	SYEC6504	"	28	$\sqrt{ }$			13 (8 K)
SYEP6505	SYED6505	SYEC6505	"	28	$\sqrt{ }$		$\sqrt{ }$	12 (4 K)
SYEP6506	SYED6506	SYEC6506	"	28	$\sqrt{ }$			12 (4 K)
SYEP6507	SYED6507	SYEC6507	"	28			$\sqrt{ }$	13 (8 K)
SYEP6512	SYED6512	SYEC6512	External	40	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	16 (64 K)
SYEP6513	SYED6513	SYEC6513	"	28	$\sqrt{ }$	$\sqrt{ }$		12 (4 K)
SYEP6514	SYED6514	SYEC6514	"	28	$\sqrt{ }$			13 (8K)
SYEP6515	SYED6515	SYEC6515	"	28	$\sqrt{ }$		\checkmark	12 (4 K)

SYE6500/SYE6500A

Absolute Maximum Ratings*

Rating	Symbol	Value	Unit
Supply Voltage	V_{cC}	-0.3 to +7.0	V
Input Voltage	V_{in}	-0.3 to +7.0	V
Operating Temperature	T_{A}	-40 to +85	${ }^{\circ} \mathrm{C}$
Storage Temperature	$\mathrm{T}_{\text {STG }}$	-55 to +150	${ }^{\circ} \mathrm{C}$

Comment*

This device contains input protection against damage due to high static voltages or electric fields; however, precautions should be taken to avoid application of voltages higher than the maximum rating.
D.C. Characteristics $\left(V_{C C}=5.0 \mathrm{~V} \pm 5 \%, T_{A}=-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$
(ϕ_{1}, ϕ_{2} applies to SYE651X, ϕ_{0} (in) applies to SYE650X)

Symbol	Characteristic	Min.	Max.	Unit
V_{IH}	 Input High Voltage Logic, $\emptyset_{\text {o (in) }}$ $(650 \mathrm{X})$ $\emptyset_{1}, \emptyset_{2}$ $(651 \mathrm{X})$	$\begin{gathered} 2.0 \\ \mathrm{v}_{\mathrm{cc}}-0.5 \end{gathered}$	$\begin{gathered} v_{c c} \\ v_{c c}+0.25 \end{gathered}$	v
$V_{\text {IL }}$	Input Low Voltage Logic, $\emptyset_{0 \text { (in) }}$ $(650 \mathrm{X})$ $\emptyset_{1}, \emptyset_{2}$ $(651 \mathrm{X})$	$\begin{array}{r} -0.3 \\ -0.3 \\ \hline \end{array}$	$\begin{aligned} & +0.8 \\ & +0.2 \end{aligned}$	v
IIL	Input Loading $\begin{gathered} \left(\mathrm{V}_{\text {in }}=0 \mathrm{~V}, \mathrm{~V}_{\text {cc }}=5.25 \mathrm{~V}\right) \\ \text { RDY, S.O. } \end{gathered}$	-10	-300	$\mu \mathrm{A}$
$I_{\text {in }}$	Input Leakage Current $\begin{aligned} \left(\mathrm{V}_{\text {in }}=0\right. & \text { to } \left.5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{cc}}=0\right) \\ & \text { Logic (Excl.RDY, S.O.) } \\ \emptyset_{1}, \emptyset_{2} & (651 \mathrm{X}) \\ \emptyset_{\text {o (in) }} & (650 \mathrm{X}) \end{aligned}$	$\begin{aligned} & - \\ & \text { - } \end{aligned}$	$\begin{gathered} 2.5 \\ 100 \\ 10.0 \end{gathered}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \\ & \mu \mathrm{~A} \end{aligned}$
${ }^{\text {TSI }}$	Three-State (Off State) Input Current $\begin{gathered} \left(\mathrm{V}_{\mathrm{in}}=0.4 \text { to } 2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{cc}}=5.25 \mathrm{~V}\right) \\ \text { DB0-DB7 } \end{gathered}$	-	10	$\mu \mathrm{A}$
V_{OH}	Output High Voltage (LOAD $=-100 \mu \mathrm{Adc}, \mathrm{V}_{\text {cC }}=4.75 \mathrm{~V}$) SYNC, DBO-DB7, AO-A15, R/W	2.4	-	v
$\mathrm{V}_{\text {OL }}$	Output Low Voltage ($1_{\text {LOAD }}=1.6 \mathrm{mAdc}, \mathrm{V}_{\mathrm{cc}}=4.75 \mathrm{~V}$) SYNC, DBO-DB7, AO-A15, R/W	-	0.4	V
P_{D}	Power Dissipation 1 MHz and 2 MHz $\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}$	-	700	mW
$\begin{aligned} & \mathrm{C} \\ & \mathrm{C}_{\text {in }} \\ & \mathrm{C}_{\text {out }} \\ & \mathrm{C}_{\boldsymbol{\emptyset}_{\text {o(in) }}} \\ & \mathrm{C}_{\emptyset_{1}} \\ & \mathrm{C}_{\boldsymbol{\theta}_{2}} \\ & \hline \end{aligned}$	Capacitance $\left(V_{\text {in }}=0, T_{A}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}\right)$ RES, $\overline{N M I T}$, RDY, $\overline{\mathrm{IRO}}, \mathrm{S} . \mathrm{O} ., \mathrm{DBE}$ DB0-DB7 A0-A15, R/W, SYNC		$\begin{aligned} & 10 \\ & 15 \\ & 12 \\ & 15 \\ & 50 \\ & 80 \end{aligned}$	pF

Note: $\overline{\mathrm{RQ}}$ and $\overline{\mathrm{NMI}}$ require 3 K pull-up resistors.

SY6520/SY6520A
 SY6820/SY68B20 Peripheral Interface Adapter (PIA)

Features

- Direct Replacement for MC6820
- Automatic "Handshake" Control of Data Transfers
- Single +5 V Power Supply
- Two 8-bit Bi-directional I/O Ports with Individual
- Programmable Interrupt Capability
- Automatic Initialization on Power Up Data Direction Control
- CMOS-Compatible Peripheral Port A Lines

Description

The SY6520 Peripheral Interface Adapter (PIA) is designed to provide a broad range of peripheral control to microcomputer systems. Control of peripheral devices is accomplished through two 8 -bit bi-directional

I/O ports. Each I/O line may be programmed to be either an input or an output. In addition, four peripheral control lines are provided to perform "handshaking" during data transfers.

Pin Configuration

Basic SY6520 Interface Diagram

Absolute Maximum Ratings*

Rating	Symbol	Value	Unit
Supply Voltage	V_{CC}	-0.3 to +7.0	V
Input Voltage	$\mathrm{V}_{\text {in }}$	-0.3 to +7.0	V
Operating Temperature Range	T_{A}	0 to +70	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\mathrm{stg}}$	-55 to +150	${ }^{\circ} \mathrm{C}$

Comment*

This device contains circuitry to protect the inputs against damage due to high static voltages, however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this circuit.
D.C. Characteristics $\quad\left(V_{C C}=5.0 \mathrm{~V} \pm 5 \%, V_{S S}=0, T_{A}=0-70^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Characteristic	Symbol	Min.	Max.	Unit
Input High Voltage	$\mathrm{V}_{1 \mathrm{H}}$	+2.0	V_{CC}	V
Input Low Voltage	$V_{\text {IL }}$	-0.3	+0.8	V
Input Leakage Current $\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=0 \text { to } 5.0 \mathrm{~V} \\ & \mathrm{R} / \overline{\mathrm{W}, \text { Reset, }} \mathrm{RS}_{0}, \mathrm{RS}_{1}, \mathrm{CS}_{0}, \mathrm{CS}_{1}, \overline{\mathrm{CS}_{2}}, \mathrm{CA}_{1}, \mathrm{CB}_{1}, \phi_{2} \end{aligned}$	I_{IN}	-	± 2.5	$\mu \mathrm{A}$
Three-State (Off State Input Current) $\begin{aligned} & \left(\mathrm{V}_{\mathrm{IN}}=0.4 \text { to } 2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\max \right), \mathrm{D}_{0}-\mathrm{D}_{7}, \mathrm{~PB}_{0}-\mathrm{PB}_{7}, \\ & \mathrm{CB}_{2} \end{aligned}$	${ }^{\text {ITSI }}$	-	± 10	$\mu \mathrm{A}$
Input High Current $\left(\mathrm{V}_{\mathrm{IH}}=2.4 \mathrm{~V}\right), \mathrm{PA}_{0}-\mathrm{PA}_{7}, \mathrm{CA}_{2}$	$1_{\text {IH }}$	-100	-	$\mu \mathrm{A}$
Input Low Current $\left(\mathrm{V}_{\mathrm{IL}}=0.4 \mathrm{~V}\right), \mathrm{PA}_{0}-\mathrm{PA}_{7}, \mathrm{CA}_{2}$	IIL	-	1.6	mA
$\begin{aligned} & \text { Output High Voltage } \\ & \qquad\left(\mathrm{V}_{\mathrm{CC}}=\min , \mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A}\right) \end{aligned}$	V_{OH}	2.4	-	V
Output Low Voltage $\left(\mathrm{V}_{\mathrm{CC}}=\min , \mathrm{I}_{\mathrm{OL}}=1.6 \mathrm{~mA}\right)$	V ${ }_{\text {OL }}$	-	+0.4	V
Output High Current (Sourcing) $\left(\mathrm{V}_{\mathrm{OH}}=2.4 \mathrm{~V}\right)$ ($\mathrm{V}_{\mathrm{O}}=1.5 \mathrm{~V}$, the current for driving other than TTL, e.g., Darlington Base), $\mathrm{PB}_{0}-\mathrm{PB}_{7}, \mathrm{CB}_{2}$	${ }^{\mathrm{OH}}$	$\begin{aligned} & -100 \\ & -1.0 \\ & \hline \end{aligned}$	-10	$\mu \mathrm{A}$ mA
Output Low Current (Sinking) $\left(\mathrm{V}_{\mathrm{OL}}=0.4 \mathrm{~V}\right)$	${ }^{\text {OL }}$	1.6	-	mA
Output Leakage Current (Off-State), $\overline{\mathrm{IRQA}}, \overline{\mathrm{IRQB}}$	IOFF	-	10	$\mu \mathrm{A}$
Power Dissipation ($\left.\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}\right)$	P_{D}	-	500	mW
Input Capacitance $\begin{aligned} & \left(\mathrm{V}_{\mathrm{IN}}-0, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}\right) \\ & \mathrm{D}_{0}-\mathrm{D}_{7}, \mathrm{PA}_{0}-\mathrm{PA}_{7}, \mathrm{~PB}_{0}-\mathrm{PB}_{7}, \mathrm{CA}_{2}, \mathrm{CB}_{2} \\ & \mathrm{R} / \mathrm{W}, \text { Reset, } \mathrm{RS}_{0}, \mathrm{RS}_{1}, \mathrm{CS}_{0}, \mathrm{CS}_{1}, \mathrm{CS}_{2}, \\ & \mathrm{CA}_{1}, \mathrm{CB}_{1}, \phi_{2} \end{aligned}$	$\mathrm{C}_{\text {IN }}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\begin{array}{r} 10 \\ 7.0 \\ 20 \\ \hline \end{array}$	pF
Output Capacitance $\left(V_{I N}-0, T_{A}=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}\right)$	Cout	-	10	pF

[^13]

Figure 1. Read Timing Characteristics

Figure 2. Write Timing Characteristics

Switching Characteristics $\left(\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=0-70^{\circ} \mathrm{C}\right.$, unless otherwise noted)

Characteristic	Symbol	$\begin{aligned} & \text { SY6520 } \\ & \text { (1 MHz) } \\ & \hline \end{aligned}$		$\begin{gathered} \text { SY6520A } \\ (2 \mathrm{MHz}) \\ \hline \end{gathered}$		Unit
		Min.	Max.	Min.	Max.	
READ TIMING CHARACTERISTICS						
Delay Time, Address Valid to ϕ_{2} Positive Transition	$\mathrm{T}_{\text {AEW }}$	180	-	90	-	ns
Delay Time, ϕ_{2} Positive Transition to Data Valid on Bus	TEDR	-	395	-	190	ns
Peripheral Data Setup Time	TPDSU	300	-	150	-	ns
Data Bus Hold Time	THR	10	-	10	-	ns
Delay Time, ϕ_{2} Negative Transition to CA2 Negative Transition	$\mathrm{T}_{\text {CA2 }}$	-	1.0	-	0.5	$\mu \mathrm{s}$
Delay Time, ϕ_{2} Negative Transition to CA2 Positive Transition	$\mathrm{T}_{\mathrm{RS} 1}$	-	1.0	-	0.5	$\mu \mathrm{s}$
Rise and Fall Time for CA1 and CA2 Input Signals	t_{r}, t_{f}	-	1.0	-	0.5	$\mu \mathrm{s}$
Delay Time from CA1 Active Transition to CA2 Positive Transition	$\mathrm{T}_{\text {RS2 }}$	-	2.0	-	1.0	$\mu \mathrm{s}$
Rise and Fall Time for ϕ_{2} Input	$\mathrm{t}_{\mathrm{EE}}, \mathrm{t}_{\mathrm{fE}}$	-	25	-	25	ns
WRITE TIMING CHARACTERISTICS						
ϕ_{2} Pulse Width	T_{E}	0.440	-	0.200	-	$\mu \mathrm{s}$
Delay Time, Address Valid to ϕ_{2} Positive Transition	TAEW	180	-	90	-	ns
Delay Time, Data Valid to ϕ_{2} Negative Transition	TDSU	300	-	150	-	ns
Delay Time, Read/Write Negative Transition to ϕ_{2} Positive Transition	Twe	130	-	65	-	ns
Data Bus Hold Time	T_{HW}	10	-	10	-	ns
Delay Time, ϕ_{2} Negative Transition to Peripheral Data Valid	TPDW	-	1.0	-	0.5	$\mu \mathrm{s}$
Delay Time, ϕ_{2} Negative Transition to Peripheral Data Valid CMOS ($\mathrm{V}_{\mathrm{CC}}-30 \%$) PA0-PA7, CA2	Tcmos	-	2.0	-	1.0	$\mu \mathrm{s}$
Delay Time, ϕ_{2} Positive Transition to CB2 Negative Transition	$\mathrm{T}_{\mathrm{CB} 2}$	-	1.0	-	0.5	$\mu \mathrm{s}$
Delay Time, Peripheral Data Valid to CB2 Negative Transition	T_{DC}	0	1.5	0	0.75	$\mu \mathrm{s}$
Delay Time, ϕ_{2} Positive Transition CB2 Positive Transition	$\mathrm{T}_{\text {RS1 }}$	-	1.0	-	0.5	$\mu \mathrm{s}$
Rise and Fall Time for CB1 and CB2 Input Signals	t_{r}, t_{f}	-	1.0	-	0.5	$\mu \mathrm{s}$
Delay Time, CB1 Active Transition to CB2 Positive Transition	$\mathrm{T}_{\mathrm{RS} 2}$	-	2.0	-	1.0	$\mu \mathrm{s}$
Delay Time, ϕ_{2} Negative Transition to Read/Write Positive Transition	T_{RW}	50	-	25	-	ns

Test Load

Interface Signal Description

$\overline{\mathrm{RES}}$ (Reset)
This signal is used to initialize the PIA. A low signal on the $\overline{\mathrm{RES}}$ input causes all internal registers to be cleared.

ϕ_{2} (Input Clock)

This input is the system ϕ_{2} clock and is used to trigger all data transfers between the microprocessor and the PIA.
R/W (Read/Write)
This signal is generated by the microprocessor and is used to control the direction of data transfers. A high on the R / \bar{W} signal permits the processor to read data supplied by the PIA; a low on the R / \bar{W} signal permits the processor to Write into the PIA.

$\overline{\mathrm{IROA}}, \overline{\mathrm{IROB}}$ (Interrupt Requests)

$\overline{I R Q A}$ and $\overline{\mathrm{IROB}}$ are interrupt lines generated by the PIA for ports A and B respectively. These signals are active low signals and have open-drain outputs, thus allowing multiple IRQ signals from multiple PIA's to be wire-ORed together before connecting to the processor IRQ signal input.

$D_{0}-D_{7}$ (Data Bus)

These eight data bus lines are used to transfer data information between the processor and the PIA. These signals are bi-directional and are normally highimpedance except when selected for a read operation.

CS0, CS1, $\overline{\mathrm{CS} 2}$ (Chip Selects)

The PIA is selected when CS0 and CS1 are high and $\overline{\mathrm{CS} 2}$ is low. These three chip select lines are normally connected to the processor address lines either directly or through external decoder circuits.

RS0, RS1 (Register Selects)
These two signals are used to select the various registers inside the PIA.

Internal Architecture

The SY6520 is organized into two independent sections referred to as the "A Side" and the "B Side." Each section consists of a Control Register (CRA, CRB), Data Direction Register (DDRA, DDRB), Output Register (ORA, ORB), Interrupt Status Control and the buffers necessary to drive the Peripheral Interface buses. Figure 3 is a block diagram of the SY 6520.

Figure 3. SY 6520 Block Diagram

CRA	7	6	5	4	3	2	1	0
	IRQA1	IRQA2	CA2 Control			DDRA Access		
	7	6	5	4	3	2	1	0
CRB	IRQB1	IRQB2	CB2 Control			DDRB Access	CB1 Control	

Figure 4. Control Registers

Data Input Register
When the microprocessor writes data into the SY6520, the data which appears on the data bus during the Phase Two clock pulse is latched into the Data Input Register. It is then transferred into one of six internal registers of the SY6520 after the trailing edge of Phase Two. This assures that the data on the peripheral output lines will make smooth transitions from high to low or from low to high and the voltage will remain stable except when it is going to the opposite polarity.

Control Registers (CRA and CRB)

Figure 4 illustrates the bit designation and functions in the Control Registers. The Control Registers allow the microprocessor to control the operation of the Interrupt Control inputs (CA1, CA2, CB1, CB2), and Peripheral Control outputs (CA2, CB2). Bit 2 in each register controls the addressing of the Data Direction Registers (DDRA, DDRB) and the Output Registers (ORA, ORB). In addition, two bits (bit 6 and 7) are provided in each control register to indicate the status of the interrupt input lines (CA1, CA2, CB1, CB2). These interrupt status bits (IROA1, IRQB1) are normally interrogated by the microprocessor during the interrupt service routine to determine the source of an active interrupt. These are the interrupt lines which drive the interrupt input ($\overline{\mathrm{RQ}}, \overline{\mathrm{NMI}}$) of the microprocessor.

Data Direction Registers (DDRA, DDRB)

The Data Direction Registers allow the processor to program each line in the 8-bit Peripheral I/O port to be either an input or an output. Each bit in DDRA controls the corresponding line in the Peripheral A
port and each bit in DDRB controls the corresponding line in the Peripheral B port. Placing a " 0 " in a bit position in the Data Direction Register causes the corresponding Peripheral I/O line to act as an input; a " 1 " causes it to act as an output.

Peripheral Output Registers (ORA, ORB)

The Peripheral Output Registers store the output data which appears on the Peripheral I/O port. Writing a " 0 " into a bit in ORA causes the corresponding line on the Peripheral A port to go low $(<0.4 \mathrm{~V})$ if that line is programmed to act as an output. A " 1 " causes the corresponding output to go high. The lines of the Peripheral B port are controlled by ORB in the same manner.

Interrupt Status Control

The four interrupt/peripheral control lines (CA1, CA2, CB1, CB2) are controlled by the Interrupt Status Control logic (A, B). This logic interprets the contents of the corresponding Control Register, detects active transitions on the interrupt inputs and performs those operations necessary to assure proper operation of these four peripheral interface lines.

Peripheral Interface Buffers (A, B) and Data Bus

 Buffers (DBB)These Buffers provide the necessary current and voltage drive on the peripheral I/O ports and data bus to assure proper system operation and to meet the device specifications.

Functional Description

Bit 2 (DDR) in each Control Register (CRA and CRB) controls the accessing to the Data Direction Register or the Peripheral interface. If bit 2 is a " 1 ", a Peripheral Output register (ORA, ORB) is selected, and if bit 2 is a " 0 ", a Data Direction Register (DDRA, DDRB) is selected. The Data Direction Register Access Control bit, together with the Register Select lines (RSO, RS1) selects the various internal registers as shown in Figure 5.

In order to write data into DDRA, ORA, DDRB, or ORB registers, bit 2 in the proper Control Register must first be set. The desired register may then be accessed with the address determined by the address interconnect technique used.
Register Select Lines (RSO), (RS1)
These two register select lines are used to select the various registers inside the SY6520. These input lines are used in conjunction with internal control registers to select a particular register that is to be accessed by the microprocessor. These lines are normally connected to microprocessor address output lines. These lines operate in conjunction with the chip-select inputs to allow the microprocessor to address a single 8 -bit register within the microprocessor address space. This register may be an internal register (CRA, ORA, etc.) or it may be a Peripheral I/O port.
The processor may write directly into the Control Registers (CRA, CRB), the Data Direction Registers (DDRA, DDRB) and the Peripheral Output Registers (ORA, ORB). In addition, the processor may directly read the contents of the Control Registers and the Data Direction Registers. Accessing the Peripheral Output Register for the purpose of reading data back into the processor operates differently on the ORA and the ORB registers and therefore are discussed separately below.

Reading the Peripheral A I/O Port

The Peripheral A I/O port consists of 8 lines which can be programmed to act as inputs or outputs. When programmed to act as outputs, each line reflects the contents of the corresponding bit in the Peripheral Output Register. When programmed to act as inputs, these lines will go high or low depending on the input data. The Peripheral Output Register (ORA) has no effect on those lines programmed to act as inputs. The eight lines of the Peripheral A I/O port therefore contain either input or output data depending on whether the line is programmed to act as an input or an output.

Performing a Read operation with RS1 $=0$, RSO $=0$ and the Data Direction Register Access Control bit (CRA-2) $=1$, directly transfers the data on the Peripheral A I/O lines into the processor (via the data bus). This will contain both the input and output data. The processor must be programmed to recognize and interpret only those bits which are important to the particular peripheral operation being performed.

Since the processor always reads the Peripheral A I/O port pins instead of the actual Peripheral Output Register (ORA), it is possible for the data read into the processor to differ from the contents of the Peripheral Output Register for an output line. This is true when the $1 / \mathrm{O}$ pin is not allowed to go to a full +2.4 V DC when the Peripheral Output register contains a logic 1. In this case, the processor will read a 0 from the Peripheral A pin, even though the corresponding bit in the Peripheral Output register is a 1.

Reading the Peripheral B I/O Port

Reading the Peripheral B I/O port yields a combination of input and output data in a manner similar to the Peripheral A port. However, data is read directly from the Peripheral B Output Register (ORB) for

Register Select Pin		Data Direction Register Access Control Bit		
RS1	RSO	CRA-2	CRB-2	Register Selected
0	0	1	-	
0	0	0	-	Data Direction Register A
0	1	-	-	Control Register A
1	0	-	1	Peripheral Interface B
1	0	-	0	Data Direction Register B
1	1	-	-	Control Register B

Figure 5. Register Addressing
those lines programmed to act as outputs. It is therefore possible to load down the Peripheral B Output lines without causing incorrect data to be transferred back into the processor on a Read operation.

Interrupt Request Lines ($\overline{\mathrm{IRQA}}, \overline{\mathrm{IRQB})}$
The active low Interrupt Request lines (IRQA and (RQB) act to interrupt the microprocessor either directly or through external interrupt priority circuitry. These lines are "open drain" and are capable of sinking 1.6 milliamps from an external source. This permits all interrupt request lines to be tied together in a "wired-OR" configuration. The " A " and " B " in the titles of these lines correspond to the " A " peripheral port and the " B " peripheral port. Hence each interrupt request line services one peripheral data port.
Each Interrupt Request line has two interrupt flag bits which can cause the Interrupt Request line to go low. These flags are bits 6 and 7 in the two Control Registers. These flags act as the link between the peripheral interrupt signals and the microprocessor interrupt inputs. Each flag has a corresponding interrupt disable bit which allows the processor to enable or disable the interrupt from each of the four interrupt inputs (CA1, CA2, CB1, CB2).

The four interrupt flags are set by active transitions of the signal on the interrupt input (CA1, CA2, CB1, CB2).

Control of $\overline{\text { RQA }}$
Control Register A bit 7 is always set by an active transition of the CA1 interrupt input signal. Interrupting from this flag can be disabled by setting bit 0 in the Control Register A (CRA) to a logic 0 . Likewise, Control Register A bit 6 can be set by an active transition of the CA2 interrupt input signal. Interrupting from this flag can be disabled by setting bit 3 in the Control Register to a logic 0.

Both bit 6 and bit 7 in CRA are reset by a "Read Peripheral Output Register A" operation. This is defined as an operation in which the proper chip-select and register-select signals are provided to allow the processor to read the Peripheral A I/O port.

Control of $\overline{\overline{1 R O B}}$

Control of $\overline{\mathrm{RQB}}$ is performed in exactly the same manner as that described above for $\overline{\mathrm{RQA}}$. Bit 7 in CRB is set by an active transition on CB1; interrupting from this flag is controlled by CRB bit 0 . Likewise, bit 6 in CRB is set by an active transition on CB2; interrupting from this flag is controlled by CRB bit 3.

Also, both bit 6 and bit 7 are reset by a "Read Peripheral B Output Register" operation.

SUMMARY:
$\overline{\text { IRQA }}$ goes low when CRA-7 $=1$ and $C R A-0=1$ or when CRA-6 $=1$ and CRA-3 $=1$
$\begin{aligned} \overline{\mathrm{RQB}} \text { goes low when } \mathrm{CRB}-7 & =1 \text { and } C R B-0=1 \text { or } \\ \text { when } \mathrm{CRB}-6 & =1 \text { and } C R B-3=1 \end{aligned}$

It should be stressed at this point that the flags act as the link between the peripheral interrupt signals and the processor interrupt inputs. The interrupt disable bits allow the processor to control the interrupt function.

Interface Between SY6520 and Peripheral Devices

The SY6520 provides two 8-bit bi-directional ports and 4 interrupt/control lines for interfacing to peripheral devices. These ports and the associated interrupt/ control lines are referred to as the " A " side and the " B " side. Each side has its own unique characteristics and will therefore be discussed separately below.

Peripheral I/O Ports

The Peripheral A and Peripheral BI/O ports allow the microprocessor to interface to the input lines on the peripheral device by loading data into the Peripheral Output Register. They also allow the processor to interface with the peripheral device output lines by reading the data on the Peripheral Port input lines directly onto the data bus and into the internal registers of the processor.

Peripheral A I/O Port (PAO-PA7)

Each of the Peripheral I/O lines can be programmed to act as an input or an output. This is accomplished by setting a " 1 " in the corresponding bit in the Data Direction Register for those lines which are to act as outputs. A " 0 " in a bit of the Data Direction Register causes the corresponding Peripheral I/O lines to act as an input.
The buffers which drive the Peripheral A I/O lines contain "passive" pull-ups as shown in Figure 6. These pull-up devices are resistive in nature and therefore allow the output voltage to go to V_{CC} for a logic 1. The switches can sink a full 1.6 mA , making these buffers capable of driving one standard TTL load.

In the input mode, the pull-up devices shown in Figure 6 are still connected to the I/O pin and still supply current to this pin. For this reason, these lines represent one standard TTL load in the input mode.

Peripheral B I/O Port (PB0-PB7)

The Peripheral B I/O port duplicates many of the functions of the Peripheral A port. The process of programming these lines to act as an input or an out-
put has been discussed previously. Likewise, the effect of reading or writing this port has been discussed. However, there are several characteristics of the buffers driving these lines which affect their use in peripheral interfacing.

The Peripheral B I/O port buffers are push-pull devices as shown in Figure 7. The pull-up devices are switched "OFF" in the " 0 " state and "ON" for a logic 1. Since these pull-ups are active devices, the logic " 1 " voltage is not guaranteed to go higher than +2.4 V . They are TTL compatible but are not CMOS compatible.

However, the active pull-up devices can source up to

1 mA at 1.5 V . This current drive capability is provided to allow direct connection to Darlington transistor switches. This allows very simple control of relays, lamps, etc.

Because these outputs are designed to drive transistors directly, the output data is read directly from the Peripheral Output Register for those lines programmed to act as inputs.

The final characteristic which is a function of the Peripheral B push-pull buffers is the high-impedance input state. When the Peripheral B I/O lines are programmed to act as inputs, the output buffer enters the high impedance state.

Figure 6. Port A Buffer Circuit ($\mathrm{PA}_{0}-\mathrm{PA}_{7}$)

Figure 7. Port B Buffer Circuit ($\mathrm{PB}_{0}-\mathrm{PB}_{7}$)

Interrupt Input/Peripheral Control Lines (CA1, CA2, CB1, CB2)
The four interrupt input/peripheral control lines provide a number of special peripheral control functions. These lines greatly enhance the power of the two general purpose interface ports (PAO-PA7, PBO-PB7). Figure 8 summarizes the operation of these control lines.

Peripheral A Interrupt Input/Peripheral Control Lines (CA1, CA2)
CA1 is an interrupt input only. An active transition of the signal on this input will set bit 7 of the Control Register A to a logic 1. The active transition can be programmed by setting a " 0 " in bit 1 of the CRA if the interrupt flag (bit 7 of CRA) is to be set on a negative transition of the CA1 signal or a " 1 " if it is to be set on a positive transition.

NOTE: A negative transition is defined as a transition from a high to a low, and a positive transition is defined as a transition from a low to a high voltage.
Setting the interrupt flag will interrupt the processor through $\overline{\operatorname{RQA}}$ if bit 0 of CRA is a 1 as described previously.
CA2 can act as a totally independent interrupt input or as a peripheral control output. As an input (CRA, bit $5=0$) it acts to set the interrupt flag, bit 6 of CRA, to a logic 1 on the active transition selected by bit 4 of CRA.

These control register bits and interrupt inputs serve the same basic function as that described above for CA1. The input signal sets the interrupt flag which serves as the link between the peripheral device and the processor interrupt structure. The interrupt disable bit allows the processor to exercise control over the system interrupts.

In the Output mode (CRA, bit $5=1$), CA2 can operate independently to generate a simple pulse each time the microprocessor reads the data on the Peripheral A I/O port. This mode is selected by setting CRA, bit 4 to a " 0 " and CRA, bit 3 to a " 1 ". This pulse output can be used to control the counters, shift registers, etc. which make sequential data available on the Peripheral input lines.
A second output mode allows CA2 to be used in conjunction with CA1 to "handshake" between the processor and the peripheral device. On the A side, this technique allows positive control of data transfers from the peripheral device into the microprocessor. The CA1 input signals the processor that data is available by interrupting the processor. The processor reads the data and sets CA2 low. This signals the peripheral device that it can make new data available.

The final output mode can be selected by setting bit 4 of CRA to a 1 . In this mode, CA2 is a simple peripheral control output which can be set high or low by setting bit 3 of CRA to a 1 or a 0 respectively.

Peripheral B Interrupt Input/Peripheral Control Lines (CB1, CB2)
CB1 operates as an interrupt input only in the same manner as CA1. Bit 7 of CRB is set by the active transition selected by bit 0 of CRB. Likewise, the CB2 input mode operates exactly the same as the CA2 input modes. The CB2 output modes, CRB bit $5=1$, differ somewhat from those of CA2. The pulse output occurs when the processor writes data into the Peripheral B Output Register. Also, the "handshaking" operates on data transfers from the processor into the peripheral device.

CA1/CB1 Control

CRA (CRB)		Active Transition of Input Signal*	IRQA (IRQB) Interrupt Outputs
Bit $\mathbf{1}$	Bit 0		Disable - remain high
0	0	Negative	Enable - goes low when bit 7 in CRA (CRB) is set by active transition of signal on CA1 (CB1)
0	1	Positive	Disable - remain high
1	0	Positive	Enable - as explained above
1	1		

*Note: Bit 7 of CRA (CRB) will be set to a logic 1 by an active transition of the CA1 (CB1) signal. This is independent of the state of Bit 0 in CRA (CRB).

CA2/CB2 Input Modes

CRA (CRB)			Active Transition of Input Signal*	IRQA (IRQB) Interrupt Outputs
Bit 5	Bit 4	Bit 3		Disable - remains high
0	0	0	Negative	Enable - goes low when bit 6 in CRA (CRB) is set by active transition of signal on CA2 (CB2)
0	0	1	Positive	Disable - remains high
0	1	0	Positive	Enable - as explained above
0	1	1		

*Note: Bit 6 of CRA (CRB) will be set to a logic 1 by an active transition of the CA2 (CB2) signal. This is independent of the state of Bit 3 in CRA (CRB).

CB2 Output Modes

CRA				
Bit 5	Bit 4	Bit 3	Mode	Description
1	0	0	"Handshake" on Read	CA2 is set high on an active transition of the CA1 interrupt input signal and set low by a microprocessor "Read A Data" operation. This allows positive control of data transfers from the peripheral device to the microprocessor.
1	0	1	Pulse Output	CA2 goes low for one cycle after a "Read A Data" operation. This pulse can be used to signal the peripheral device that data was taken.
1	1	0	Manual Output	CA2 set low
1	1	1	Manual Outiput	CA2 set high

CA2 Output Modes

CRB				
Bit 5	Bit 4	Bit 3	Mode	Description
1	0	0	"Handshake" on Write	CB2 is set low on microprocessor "Write B Data" operation and is set high by an active transition of the CB1 interrupt input signal. This allows positive control of data transfers from the microprocessor to the peripheral device.
1	0	1	Pulse Output	CB2 goes low for one cycle after a microprocessor "Write B Data" operation. This can be used to signal the peripheral device that data is available.
1	1	0	Manual Output	CB2 set low
1	1	1	Manual Output	CB2 set high

Figure 8. Summary of Operation of Control Lines

Package Availability 40 Pin Ceramic 40 Pin Cerdip
40 Pin Plastic

Ordering Information

Part Number	Package	Speed
SYC6520/6820	Ceramic	1 MHz
SYD6520/6820	Cerdip	1 MHz
SYP6520/6820	Plastic	1 MHz
SYC6520A/68B20	Ceramic	2 MHz
SYD6520A/68B20	Cerdip	2 MHz
SYP6520A/68B20	Plastic	2 MHz

Features

- Direct Replacement for MC6820
- Single +5 V Power Supply
- Two 8-bit Bi-directional I/O Ports with Individual Data Direction Control
- CMOS-Compatible Peripheral Port A Lines
- Automatic "Handshake" Control of Data Transfers
- Programmable Interrupt Capability
- Automatic Initialization on Power Up
- 1 and 2 MHz Versions
- Operation over wide temperature range $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$

Description

The SYE6520 Peripheral Interface Adapter (PIA) is designed to provide a broad range of peripheral control to microcomputer systems. Control of peripheral devices is accomplished through two 8-bit bi-directional

I/O ports. Each I/O line may be programmed to be either an input or an output. In addition, four peripheral control lines are provided to perform "handshaking" during data transfers.

Pin Configuration

Basic SY6520 Interface Diagram

Synertek.

Absolute Maximum Ratings*

Rating	Symbol	Value	Unit
Supply Voltage	V_{CC}	-0.3 to +7.0	V
Input Voltage	$\mathrm{V}_{\text {in }}$	-0.3 to +7.0	V
Operating Temperature Range	T_{A}	-40 to +85	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-55 to +150	${ }^{\circ} \mathrm{C}$

Comment*

This device contains circuitry to protect the inputs against damage due to high static voltages, however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this circuit.
D.C. Characteristics $\quad\left(V_{C C}=5.0 \mathrm{~V} \pm 5 \%, V_{S S}=0, T_{A}=-40^{\circ} \mathrm{C}\right.$ to $+85^{\circ} \mathrm{C}$ unless otherwise noted)

Characteristic	Symbol	Min.	Max.	Unit
Input High Voltage	$\mathrm{V}_{\text {IH }}$	2.0	V_{CC}	V
Input Low Voltage	$V_{\text {IL }}$	-0.3	0.8	V
Input Leakage Current $\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=0 \text { to } 5.0 \mathrm{~V} \\ & \mathrm{R} / \overline{\mathrm{W}}, \text { Reset, } \mathrm{RS}_{0}, \mathrm{RS}_{1}, \mathrm{CS}_{0}, \mathrm{CS}_{1}, \overline{\mathrm{CS}_{2}}, \mathrm{CA}_{1}, \mathrm{CB}_{1}, \phi_{2} \end{aligned}$	IN	-	± 2.5	$\mu \mathrm{A}$
Three-State (Off State Input Current) $\begin{aligned} & \left(\mathrm{V}_{\mathrm{IN}}=0.4 \text { to } 2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\max \right), \mathrm{D}_{0}-\mathrm{D}_{7}, \mathrm{~PB}_{0}-\mathrm{PB}_{7}, \\ & \mathrm{CB}_{2}, \end{aligned}$	${ }^{\text {TSS }}$	-	± 10	$\mu \mathrm{A}$
Input High Current $\left(\mathrm{V}_{\mathrm{IH}}=2.4 \mathrm{~V}\right), \mathrm{PA}_{0}-\mathrm{PA}_{7}, \mathrm{CA}_{2}$	$1_{\text {IH }}$	-100	-	$\mu \mathrm{A}$
Input Low Current $\left(\mathrm{V}_{\mathrm{IL}}=0.4 \mathrm{~V}\right), \mathrm{PA}_{0}-\mathrm{PA}_{7}, \mathrm{CA}_{2}$	$I_{\text {IL }}$	-	1.6	mA
Output High Voltage $\left(\mathrm{V}_{\mathrm{CC}}=\min , \mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A}\right)$	V_{OH}	2.4	-	V
Output Low Voltage $\left(\mathrm{V}_{\mathrm{CC}}=\min , \mathrm{I}_{\mathrm{OL}}=1.6 \mathrm{~mA}\right)$	$\mathrm{V}_{\text {OL }}$	-	+0.4	V
Output High Current (Sourcing) $\begin{aligned} & \left(\mathrm{V}_{\mathrm{OH}}=2.4 \mathrm{~V}\right) \\ & \left(\mathrm{V}_{\mathrm{O}}=1.5 \mathrm{~V} \text {, the current for driving other than } \mathrm{TTL}\right. \text {, } \\ & \quad \text { e.g., Darlington Base), } \mathrm{PB}_{0}-\mathrm{PB}_{7}, \mathrm{CB}_{2} \end{aligned}$	IOH	$\begin{aligned} & -100 \\ & -1.0 \\ & \hline \end{aligned}$	-10	$\mu \mathrm{A}$ mA
Output Low Current (Sinking) $\left(\mathrm{V}_{\mathrm{OL}}=0.4 \mathrm{~V}\right)$	I_{OL}	1.6	-	mA
Output Leakage Current (Off-State), $\overline{\mathrm{IRQA}}, \overline{\mathrm{IRQB}}$	IOFF	-	10	$\mu \mathrm{A}$
Power Dissipation $\quad \mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}$	P_{D}	-	500	mW
Input Capacitance $\begin{aligned} & \left(\mathrm{V} \mathrm{IN}-0, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}\right) \\ & \mathrm{D}_{0}-\mathrm{D}_{7}, \mathrm{PA}_{0}-\mathrm{PA}_{7}, \mathrm{~PB}_{0}-\mathrm{PB}_{7}, \mathrm{CA}_{2}, \mathrm{CB}_{2} \\ & \mathrm{R} / \mathrm{W}, \overline{\text { Reset, }} \mathrm{RS}_{0}, \mathrm{RS}_{1}, \mathrm{CS}_{0}, \mathrm{CS}_{1}, \mathrm{CS}_{2}, \\ & \mathrm{CA}, \mathrm{CB}_{1}, \phi_{2} \end{aligned}$	$\mathrm{C}_{\text {IN }}$	$\begin{aligned} & - \\ & - \end{aligned}$	$\begin{array}{r} 10 \\ 7.0 \\ 20 \\ \hline \end{array}$	pF
Output Capacitance $\left(\mathrm{V}_{\mathbb{I N}}-0, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}\right)$	Cout	-	10	pF

[^14]
Features

- Extended Performance Version of SY6520
- Programmable Interrupt Capability
- Single +5 V Power Supply
- Automatic Initialization on Power Up
- Two 8-bit Bi-directional I/O Ports with
- 1 and 2 MHz Versions Individual Data Direction Control
- Direct Replacement for MC6821
- CMOS-Compatible Peripheral Port A lines
- Automatic "Handshake" Control of Data Transfers

Description

The SY6521 Peripheral Interface Adapter (PIA) is designed to provide a broad range of peripheral control to microcomputer systems. It is functionally compatible with the SY6520, but with more drive capability and improved performance. Control of peri-

Pin Configuration

pheral devices is accomplished through two 8 -bit bidirectional I/O ports. Each I/O line may be programmed to be either an input or an output. In addition, four peripheral control lines are provided to perform 'handshaking"' during data transfers.

Basic SY6521 Interface Diagram

Absolute Maximum Ratings*

RATING	SYMBOL	VALUE	UNIT
Supply Voltage	V_{CC}	-0.3 to +7.0	V
Input Voltage	V_{IN}	-0.3 to +7.0	V
Operating Temperature Range	T_{A}	0 to +70	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\mathrm{STG}}$	-55 to +150	${ }^{\circ} \mathrm{C}$

Comment*

This device contains circuitry to protect the inputs against damage due to high static voltages, however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this circuit.
D.C. Characteristics $\quad\left(V_{C C}=5.0 \mathrm{~V} \pm 5 \%, V_{S S}=0, T_{A}=0^{\circ} \mathrm{C}\right.$ to $70^{\circ} \mathrm{C}$ unless otherwise noted)

Symbol	Characteristic	Min.	Max.	Unit
$\mathrm{V}_{\text {IH }}$	Input High Voltage	+2.0	V_{CC}	V
$\mathrm{V}_{\text {IL }}$	Input Low Voltage	-0.3	+0.8	V
I_{IN}	Input Leakage Current $\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=0 \text { to } 5.0 \mathrm{~V} \\ & \mathrm{R} / \overline{\mathrm{W}}, \text { Reset, }, \mathrm{RS}_{0}, \mathrm{RS}_{1}, \mathrm{CS}_{0}, \mathrm{CS}_{1}, \overline{\mathrm{CS}}_{2}, \mathrm{CA}_{1}, \mathrm{CB}_{1}, \phi_{2} \end{aligned}$	-	± 2.5	$\mu \mathrm{A}$
${ }^{\text {TSI }}$	Three-State (Off-State Input Current) $\left(\mathrm{V}_{\mathrm{IN}}=0.4 \text { to } 2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\max \right), \mathrm{D}_{0}-\mathrm{D}_{7}, \mathrm{~PB}_{0}-\mathrm{PB}_{7}, \mathrm{CB}_{2}$	-	± 10	$\mu \mathrm{A}$
I_{IH}	Input High Current $\left(\mathrm{V}_{\mathrm{IH}}=2.4 \mathrm{~V}\right), \mathrm{PA}_{0}-\mathrm{PA}_{7}, \mathrm{CA}_{2}$	-200	-	$\mu \mathrm{A}$
I_{IL}	Input Low Current $\left(\mathrm{V}_{\mathrm{IL}}=0.4 \mathrm{~V}\right), \mathrm{PA}_{0}-\mathrm{PA}_{7}, \mathrm{CA}_{2}$	-	2.4	mA
V_{OL}	Output Low Voltage $\left(I_{L}=3.2 \mathrm{~mA}\right), \overline{\mathrm{IRQA}}, \overline{\mathrm{IRQB}}$	-	0.4	V
V_{OH}	Output High Voltage $\left(I_{L}=-205 \mu \mathrm{~A}\right), D_{0}-D_{7}$	2.4	-	V
V_{OL}	Output Low Voltage $\left(I_{L}=3.2 \mathrm{~mA}\right), \mathrm{PA}_{0}-\mathrm{PA}_{7}, \mathrm{~PB}_{0}-\mathrm{PB}_{7}, \mathrm{CA}_{2}, \mathrm{CB}_{2}$	-	0.4	V
V_{OH}	Output High Voltage $\left(I_{H}=-200 \mu \mathrm{~A}\right), \mathrm{PA}_{0}-\mathrm{PA}_{7}, \mathrm{~PB}_{0}-\mathrm{PB}_{7}, \mathrm{CA}_{2}, \mathrm{CB}_{2}$	2.4	-	V
${ }^{1} \mathrm{OH}$	Output High Current (Direct Transistor Drive Outputs) ($\mathrm{V}_{\text {OUT }}=1.5 \mathrm{~V}$), $\mathrm{PB}_{0}-\mathrm{PB}_{7}, \mathrm{CB}_{2}$	-1.0	-10.0	mA
IOFF	Output Leakage Current (Off-State), $\overline{\mathrm{IRQA}}, \overline{\mathrm{IRQB}}$	-	10	$\mu \mathrm{A}$
P_{D}	Power Dissipation ($\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}$)	-	500	mW
$\mathrm{C}_{\text {IN }}$	Input Capacitance $\begin{aligned} & \left(\mathrm{V}_{\mathrm{IN}}=0, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}\right) \\ & \mathrm{D}_{0}-\mathrm{D}_{7}, \mathrm{PA}_{0}-\mathrm{PA}_{7}, \mathrm{~PB}_{0}-\mathrm{PB}_{7}, \mathrm{CA}_{2}, \mathrm{CB}_{2} \\ & \mathrm{R} / \mathrm{W}, \overline{\text { Reset, }} \mathrm{RS}_{0}, \mathrm{RS}_{1}, \mathrm{CS}_{0}, \mathrm{CS}_{1}, \overline{\mathrm{CS}_{2}} \\ & \mathrm{CA}_{1}, \mathrm{CB}_{1}, \phi_{2} \end{aligned}$	-	$\begin{array}{r} 10 \\ 7.0 \\ 20 \end{array}$	pF pF pF
Cout	Output Capacitance $\left(\mathrm{V}_{\mathrm{IN}}=0, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}\right)$	-	10	pF

Note: Negative sign indicates outward current flow, positive indicates inward flow.

Figure 1. Read Timing Characteristics

Figure 2. Write Timing Characteristics

Figure 3. Peripheral Data Setup Time

Figure 4. CA_{2} Timing

Figure 5. $\mathrm{CA}_{1} / \mathrm{CA}_{2}$ Timing

Figure 6. CB_{2} Timing

Figure 7. $\mathrm{CB}_{1} / \mathrm{CB}_{2}$ Handshake Timing

Figure 8. PA Port Delay Time

Figure 9. PB Port Delay Time

Figure 10. Interrupt Timing

Figure 11. Interrupt Clear Timing

Processor Interface Timing $\quad\left(\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}\right.$ to $70^{\circ} \mathrm{C}$ unless otherwise noted)

Symbol	Parameter	SY6521		SY6521A		Unit
		Min.	Max.	Min.	Max.	
${ }^{t_{C Y}}$	Cycle Time	1000	-	500	-	ns
t_{EH}	ϕ_{2} Pulse Width	440	-	200	-	ns
t_{EL}	ϕ_{2} Pulse Delay	430	-	210	-	ns
${ }^{\text {A }}$ S	CS, RS, R/W Setup Time	160	-	70	-	ns
${ }^{\text {t }}{ }^{\text {H }}$	CS, RS, R/ \bar{W} Hold Time	10	-	10	-	ns
$\mathrm{t}_{\text {DDR }}$	Data Delay Time, Read Cycle	-	320	-	180	ns
$\mathrm{t}_{\text {DHR }}$	Data Hold Time, Read Cycle	10	-	10	-	ns
$t_{\text {DSW }}$	Data Setup Time, Write Cycle	195	-	60	-	ns
$t_{\text {DHW }}$	Data Hold Time, Write Cycle	10	-	10	-	ns

Peripheral Interface Timing $\quad\left(V_{C C}=5 \mathrm{~V} \pm 5 \%, T_{A}=0^{\circ} \mathrm{C}\right.$ to $70^{\circ} \mathrm{C}$ unless otherwise noted)

Symbol	Parameter	SY6521		SY6521A		Unit
		Min.	Max.	Min.	Max.	
tpdsu $^{\text {d }}$	Peripheral Data Setup Time	200	-	100	-	ns
${ }_{\text {t }}$ A2	CA_{2} Delay Time, High-to-Low	-	1.0	-	0.5	$\mu \mathrm{s}$
$\mathrm{t}_{\mathrm{RS} 1}$	CA_{2} Delay Time, Low-to-High	-	1.0	-	0.5	$\mu \mathrm{s}$
$\mathrm{t}_{\mathrm{RS} 2}$	CA_{2} Delay Time, Handshake Mode	-	2.0	-	1.0	$\mu \mathrm{s}$
${ }^{\text {t }}$ CB2	CB_{2} Delay Time, High-to-Low	-	1.0	-	0.5	$\mu \mathrm{s}$
$t_{\text {RS1 }}$	CB_{2} Delay Time, Low-to-High	-	1.0	-	0.5	$\mu \mathrm{s}$
$t_{\text {RS2 }}$	CB_{2} Delay Time, Handshake Mode	-	2.0	-	1.0	$\mu \mathrm{s}$
tPDW	Peripheral Port Delay Time	-	1.0	-	0.5	$\mu \mathrm{s}$
$\mathrm{t}_{\text {cmos }}$	Peripheral Port Delay Time (CMOS)	-	2.0	-	1.0	$\mu \mathrm{s}$
${ }_{\text {t }}$ C	CB_{2} Delay Time from Data Valid	20	-	20	-	ns
$\mathrm{P}_{\text {WI }}$	Interrupt Input Pulse Width	500	-	500	-	ns
$t_{\text {RS3 }}$	Interrupt Response Time	-	1.0	-	1.0	$\mu \mathrm{s}$
$\mathrm{t}_{\text {IR }}$	Interrupt Clear Delay	-	1.6	-	0.85	$\mu \mathrm{s}$
t_{R}, t_{F}	Rise and Fall Times - $\mathrm{CA}_{1}, \mathrm{CA}_{2}, \mathrm{CB}_{1}, \mathrm{CB}_{2}$	-	1.0	-	1.0	$\mu \mathrm{s}$

Test Load

Interface Signal Description

$\overline{\mathrm{RES}}$ (Reset)
This signal is used to initialize the PIA. A low signal on the $\overline{\mathrm{RES}}$ input causes all internal registers to be cleared.

ϕ_{2} (Input Clock)

This input is the system ϕ_{2} clock and is used to trigger all data transfers between the microprocessor and the PIA.

R/W (Read/Write)

This signal is generated by the microprocessor and is used to control the direction of data transfers. A high on the R / \bar{W} signal permits the processor to read data supplied by the PIA; a low on the R/W signal permits the processor to Write into the PIA.
$\overline{\mathrm{IROA}}, \overline{\mathrm{IROB}}$ (Interrupt Requests)
$\overline{I R Q A}$ and $\overline{\mathrm{IROB}}$ are interrupt lines generated by the PIA for ports A and B respectively. These signals are active low signals and have open-drain outputs, thus allowing multiple IRQ signals from multiple PIA's to be wire-ORed together before connecting to the processor IRQ signal input.

$\mathrm{D}_{0}-\mathrm{D}_{7}$ (Data Bus)

These eight data bus lines are used to transfer data information between the processor and the PIA. These signals are bi-directional and are normally highimpedance except when selected for a read operation.

CSO, CS1, $\overline{\mathrm{CS} 2}$ (Chip Selects)

The PIA is selected when CSO and CS1 are high and $\overline{\mathrm{CS} 2}$ is low. These three chip select lines are normally connected to the processor address lines either directly or through external decoder circuits.

RS0, RS1 (Register Selects)

These two signals are used to select the various registers inside the PIA.

Internal Architecture

The SY6520 is organized into two independent sections referred to as the "A Side" and the "B Side." Each section consists of a Control Register (CRA, CRB), Data Direction Register (DDRA, DDRB), Output Register (ORA, ORB), Interrupt Status Control and the buffers necessary to drive the Peripheral Interface buses. Figure 12 is a block diagram of the SY6521.

Figure 12. SY6521 Block Diagram

CRA	7	6	5	4	3	2	1	0
	IRQA1	IRQA2	CA 2 Control			DDRA Access		
	7	6	5	4	3	2	1	0
CRB	IRQB1	IRQB2	CB2 Control			DDRB Access	CB1 Control	

Figure 13. Control Registers

Data Input Register
When the microprocessor writes data into the SY6521 the data which appears on the data bus during the Phase Two clock pulse is latched into the Data Input Register. It is then transferred into one of six internal registers of the SY6521 after the trailing edge of Phase Two. This assures that the data on the peripheral output lines will make smooth transitions from high to low or from low to high and the voltage will remain stable except when it is going to the opposite polarity.

Control Registers (CRA and CRB)

Figure 4 illustrates the bit designation and functions in the Control Registers. The Control Registers allow the microprocessor to control the operation of the Interrupt Control inputs (CA1, CA2, CB1, CB2), and Peripheral Control outputs (CA2, CB2). Bit 2 in each register controls the addressing of the Data Direction Registers (DDRA, DDRB) and the Output Registers (ORA, ORB). In addition, two bits (bit 6 and 7) are provided in each control register to indicate the status of the interrupt input lines (CA1, CA2, CB1, CB2). These interrupt status bits (IRQA1, IRQB1) are normally interrogated by the microprocessor during the interrupt service routine to determine the source of an active interrupt. These are the interrupt lines which drive the interrupt input ($\overline{\mathrm{RQ}}, \overline{\mathrm{NMI}}$) of the microprocessor.

Data Direction Registers (DDRA, DDRB)

The Data Direction Registers allow the processor to program each line in the 8 -bit Peripheral I/O port to be either an input or an output. Each bit in DDRA controls the corresponding line in the Peripheral A
port and each bit in DDRB controls the corresponding line in the Peripheral B port. Placing a " 0 " in a bit position in the Data Direction Register causes the corresponding Peripheral I/O line to act as an input; a " 1 " causes it to act as an output.

Peripheral Output Registers (ORA, ORB)

The Peripheral Output Registers store the output data which appears on the Peripheral I/O port. Writing a " 0 " into a bit in ORA causes the corresponding line on the Peripheral A port to go low $(<0.4 \mathrm{~V})$ if that line is programmed to act as an output. A " 1 " causes the corresponding output to go high. The lines of the Peripheral B port are controlled by ORB in the same manner.

Interrupt Status Control

The four interrupt/peripheral control lines (CA1, CA2, CB1, CB2) are controlled by the Interrupt Status Control logic (A, B). This logic interprets the contents of the corresponding Control Register, detects active transitions on the interrupt inputs and performs those operations necessary to assure proper operation of these four peripheral interface lines.

Peripheral Interface Buffers (A, B) and Data Bus Buffers (DBB)
These Buffers provide the necessary current and voltage drive on the peripheral $1 / 0$ ports and data bus to assure proper system operation and to meet the device specifications.

Functional Description

Bit 2 (DDR) in each Control Register (CRA and CRB) controls the accessing to the Data Direction Register or the Peripheral interface. If bit 2 is a " 1 ", a Peripheral Output register (ORA, ORB) is selected, and if bit 2 is a " 0 ", a Data Direction Register (DDRA, DDRB) is selected. The Data Direction Register Access Control bit, together with the Register Select lines (RSO, RS1) selects the various internal registers as shown in Figure 14.

In order to write data into DDRA, ORA, DDRB, or ORB registers, bit 2 in the proper Control Register must first be set. The desired register may then be accessed with the address determined by the address interconnect technique used.
Register Select Lines (RSO), (RS1)
These two register select lines are used to select the various registers inside the SY6521. These input lines are used in conjunction with internal control registers to select a particular register that is to be accessed by the microprocessor. These lines are normally connected to microprocessor address output lines. These lines operate in conjunction with the chip-select inputs to allow the microprocessor to address a single 8 -bit register within the microprocessor address space. This register may be an internal register (CRA, ORA, etc.) or it may be a Peripheral I/O port.
The processor may write directly into the Control Registers (CRA, CRB), the Data Direction Registers (DDRA, DDRB) and the Peripheral Output Registers (ORA, ORB). In addition, the processor may directly read the contents of the Control Registers and the Data Direction Registers. Accessing the Peripheral Output Register for the purpose of reading data back into the processor operates differently on the ORA and the ORB registers and therefore are discussed separately below.

Reading the Peripheral A I/O Port

The Peripheral A I/O port consists of 8 lines which can be programmed to act as inputs or outputs. When programmed to act as outputs, each line reflects the contents of the corresponding bit in the Peripheral Output Register. When programmed to act as inputs, these lines will go high or low depending on the input data. The Peripheral Output Register (ORA) has no effect on those lines programmed to act as inputs. The eight lines of the Peripheral A I/O port therefore contain either input or output data depending on whether the line is programmed to act as an input or an output.

Performing a Read operation with RS1 $=0$, RSO $=0$ and the Data Direction Register Access Control bit (CRA-2) $=1$, directly transfers the data on the Peripheral A I/O lines into the processor (via the data bus). This will contain both the input and output data. The processor must be programmed to recognize and interpret only those bits which are important to the particular peripheral operation being performed.

Since the processor always reads the Peripheral A I/O port pins instead of the actual Peripheral Output Register (ORA), it is possible for the data read into the processor to differ from the contents of the Peripheral Output Register for an output line. This is true when the I/O pin is not allowed to go to a full +2.4 V DC when the Peripheral Output register contains a logic 1. In this case, the processor will read a 0 from the Peripheral A pin, even though the corresponding bit in the Peripheral Output register is a 1.

Reading the Peripheral B I/O Port

Reading the Peripheral B I/O port yields a combination of input and output data in a manner similar to the Peripheral A port. However, data is read directly from the Peripheral B Output Register (ORB) for

Register Select Pin		Data Direction Register Access Control Bit		
RS1	RSO	CRA-2	CRB-2	Register Selected
0	0	1	-	
0	0	0	-	Data Direction Register A
0	1	-	-	Control Register A
1	0	-	1	Peripheral Interface B
1	0	-	0	Data Direction Register B
1	1	-	-	Control Register B

Figure 14. Register Addressing
those lines programmed to act as outputs. It is therefore possible to load down the Peripheral B Output lines without causing incorrect data to be transferred back into the processor on a Read operation.

Interrupt Request Lines ($\overline{\mathrm{RQA}}, \overline{\mathrm{IRQB})}$
The active low Interrupt Request lines (IROA and $\overline{\mathrm{ROB}})_{\text {act }}$ act interrupt the microprocessor either directly or through external interrupt priority circuitry. These lines are "open drain" and are capable of sinking 1.6 milliamps from an external source. This permits all interrupt request lines to be tied together in a "wired-OR" configuration. The " A " and " B " in the titles of these lines correspond to the " A " peripheral port and the " B " peripheral port. Hence each interrupt request line services one peripheral data port.

Each Interrupt Request line has two interrupt flag bits which can cause the Interrupt Request line to go low. These flags are bits 6 and 7 in the two Control Registers. These flags act as the link between the peripheral interrupt signals and the microprocessor interrupt inputs. Each flag has a corresponding interrupt disable bit which allows the processor to enable or disable the interrupt from each of the four interrupt inputs (CA1, CA2, CB1, CB2).

The four interrupt flags are set by active transitions of the signal on the interrupt input (CA1, CA2, CB1, CB2).

Control of $\overline{\mathrm{RQAA}}$

Control Register A bit 7 is always set by an active transition of the CA1 interrupt input signal. Interrupting from this flag can be disabled by setting bit 0 in the Control Register A (CRA) to a logic 0 . Likewise, Control Register A bit 6 can be set by an active transition of the CA2 interrupt input signal. Interrupting from this flag can be disabled by setting bit 3 in the Control Register to a logic 0.

Both bit 6 and bit 7 in CRA are reset by a "Read Peripheral Output Register A" operation. This is defined as an operation in which the proper chip-select and register-select signals are provided to allow the processor to read the Peripheral A I/O port.

Control of $\overline{\mathrm{IRQB}}$

Control of $\overline{\mathrm{RQB}}$ is performed in exactly the same manner as that described above for $\overline{\mathrm{RQA}}$. Bit 7 in CRB is set by an active transition on CB1; interrupting from this flag is controlled by CRB bit 0 . Likewise, bit 6 in CRB is set by an active transition on CB2; interrupting from this flag is controlled by CRB bit 3.

Also, both bit 6 and bit 7 are reset by a "Read Peripheral B Output Register" operation.

SUMMARY:
$\overline{\mathrm{IOA}}$ goes low when CRA $-7=1$ and CRA $-0=1$ or
when CRA $-6=1$ and $C R A-3=1$
$\overline{\mathrm{IROB}}$ goes low when CRB- $7=1$ and $C R B-0=1$ or
when CRB- $6=1$ and CRB-3 $=1$

It should be stressed at this point that the flags act as the link between the peripheral interrupt signals and the processor interrupt inputs. The interrupt disable bits allow the processor to control the interrupt function.

Interface Between SY6521 and Peripheral Devices

The SY6521 provides two 8-bit bi-directional ports and 4 interrupt/control lines for interfacing to peripheral devices. These ports and the associated interrupt/ control lines are referred to as the " A " side and the " B " side. Each side has its own unique characteristics and will therefore be discussed separately below.

Peripheral I/O Ports

The Peripheral A and Peripheral B I/O ports allow the microprocessor to interface to the input lines on the peripheral device by loading data into the Peripheral Output Register. They also allow the processor to interface with the peripheral device output lines by reading the data on the Peripheral Port input lines directly onto the data bus and into the internal registers of the processor.

Peripheral A I/O Port (PAO-PA7)

Each of the Peripheral I/O lines can be programmed to act as an input or an output. This is accomplished by setting a " 1 " in the corresponding bit in the Data Direction Register for those lines which are to act as outputs. A " 0 " in a bit of the Data Direction Register causes the corresponding Peripheral I/O lines to act as an input.

The buffers which drive the Peripheral A I/O lines contain "passive" pull-ups as shown in Figure 15. These pull-up devices are resistive in nature and therefore allow the output voltage to go to $V_{C C}$ for a logic 1. The switches can sink a full 1.6 mA , making these buffers capable of driving one standard TTL load.

In the input mode, the pull-up devices shown in Figure 15 are still connected to the I/O pin and still supply current to this pin. For this reason, these lines represent one standard TTL load in the input mode.

Peripheral B I/O Port (PBO-PB7)

The Peripheral B I/O port duplicates many of the functions of the Peripheral A port. The process of programming these lines to act as an input or an out-
put has been discussed previously. Likewise, the effect of reading or writing this port has been discussed. However, there are several characteristics of the buffers driving these lines which affect their use in periph eral interfacing.

The Peripheral B I/O port buffers are push-pull devices as shown in Figure 16. The pull-up devices are switched "OFF" in the " 0 " state and "ON" for a logic 1. Since these pull-ups are active devices, the logic " 1 " voltage is not guaranteed to go higher than +2.4 V . They are TTL compatible but are not CMOS compatible.

However, the active pull-up devices can source up to

1 mA at 1.5 V . This current drive capability is provided to allow direct connection to Darlington transistor switches. This allows very simple control of relays, lamps, etc.

Because these outputs are designed to drive transistors directly, the output data is read directly from the Peripheral Output Register for those lines programmed to act as inputs.

The final characteristic which is a function of the Peripheral B push-pull buffers is the high-impedance input state. When the Peripheral B I/O lines are programmed to act as inputs, the output buffer enters the high impedance state.

Figure 15. Port A Buffer Circuit ($\mathrm{PA}_{0}-\mathrm{PA}_{7}$)

Figure 16. Port B Buffer Circuit $\left(\mathrm{PB}_{0}-\mathrm{PB}_{7}\right)$

Interrupt Input/Peripheral Control Lines (CA1, CA2, CB1, CB2)

The four interrupt input/peripheral control lines provide a number of special peripheral control functions. These lines greatly enhance the power of the two general purpose interface ports (PAO-PA7, PB0-PB7). Figure 17 summarizes the operation of these control lines.

Peripheral A Interrupt Input/Peripheral Control Lines (CA1, CA2)
CA1 is an interrupt input only. An active transition of the signal on this input will set bit 7 of the Control Register A to a logic 1. The active transition can be programmed by setting a " 0 " in bit 1 of the CRA if the interrupt flag (bit 7 of CRA) is to be set on a negative transition of the CA1 signal or a " 1 " if it is to be set on a positive transition.

NOTE: A negative transition is defined as a transition from a high to a low, and a positive transition is defined as a transition from a low to a high voltage.
Setting the interrupt flag will interrupt the processor through $\overline{I R Q A}$ if bit 0 of CRA is a 1 as described previously.
CA2 can act as a totally independent interrupt input or as a peripheral control output. As an input (CRA, bit $5=0$) it acts to set the interrupt flag, bit 6 of CRA, to a logic 1 on the active transition selected by bit 4 of CRA.

These control register bits and interrupt inputs serve the same basic function as that described above for CA1. The input signal sets the interrupt flag which serves as the link between the peripheral device and the processor interrupt structure. The interrupt disable bit allows the processor to exercise control over the system interrupts.

In the Output mode (CRA, bit $5=1$), CA2 can operate independently to generate a simple pulse each time the microprocessor reads the data on the Peripheral A $1 / O$ port. This mode is selected by setting CRA, bit 4 to a " 0 " and CRA, bit 3 to a " 1 ". This pulse output can be used to control the counters, shift registers, etc. which make sequential data available on the Peripheral input lines.

A second output mode allows CA2 to be used in conjunction with CA1 to "handshake" between the processor and the peripheral device. On the A side, this technique allows positive control of data transfers from the peripheral device into the microprocessor. The CA1 input signals the processor that data is available by interrupting the processor. The processor reads the data and sets CA2 low. This signals the peripheral device that it can make new data available.
The final output mode can be selected by setting bit 4 of CRA to a 1 . In this mode, CA2 is a simple peripheral control output which can be set high or low by setting bit 3 of CRA to a 1 or a 0 respectively.

Peripheral B Interrupt Input/Peripheral Control Lines (CB1, CB2)
CB1 operates as an interrupt input only in the same manner as CA1. Bit 7 of CRB is set by the active transition selected by bit 0 of CRB. Likewise, the CB2 input mode operates exactly the same as the CA2 input modes. The CB2 output modes, CRB bit $5=1$, differ somewhat from those of CA2. The pulse output occurs when the processor writes data into the Peripheral B Output Register. Also, the "handshaking" operates on data transfers from the processor into the peripheral device.

CA1/CB1 Control

CRA (CRB)		Active Transition of Input Signal*	
Bit 1	Bit 0	IRQA (IRQB) Interrupt Outputs	
0	0	Negative	Disable - remain high
0	1	Negative	Enable - goes low when bit 7 in CRA (CRB) is set by active transition of signal on CA1 (CB1)
1	0	Positive	Disable - remain high
1	1	Positive	Enable - as explained above

*Note: Bit 7 of CRA (CRB) will be set to a logic 1 by an active transition of the CA1 (CB1) signal. This is independent of the state of Bit 0 in CRA (CRB).

CA2/CB2 Input Modes

CRA (CRB)			Active Transition of Input Signal*	IRQA (IRQB) Interrupt Outputs
Bit 5	Bit 4	Bit 3		Disable - remains high
0	0	0	Negative	Enable - goes low when bit 6 in CRA (CRB) is set by active transition of signal on CA2 (CB2)
0	0	1		Positive
0	1	0	Disable - remains high	
0	1	1	Positive	Enable - as explained above

*Note: Bit 6 of CRA (CRB) will be set to a logic 1 by an active transition of the CA2 (CB2) signal. This is independent of the state of Bit 3 in CRA (CRB).

CA2 Output Modes

CRA				
Bit 5	Bit 4	Bit 3	Mode	Description

CB2 Output Modes

CRB				
Bit 5	Bit 4	Bit 3	Mode	Description
1	0	0	"Handshake" on Write	CB2 is set low on microprocessor "Write B Data" operation and is set high by an active transition of the CB1 interrupt input signal. This allows positive control of data transfers from the microprocessor to the peripheral device.
1	0	1	Pulse Output	CB2 goes low for one cycle after a microprocessor "Write B Data" operation. This can be used to signal the peripheral device that data is available.
1	1	0	Manual Output	CB2 set low
1	1	1	Manual Output	CB2 set high

Figure 17. Summary of Operation of Control Lines

40 Pin Ceramic
40 Pin Cerdip
40 Pin Plastic

Ordering Information

Part Number	Package	Speed
SYC6521	Ceramic	1 MHz
SYD6521	Cerdip	1 MHz
SYP6521	Plastic	1 MHz
SYC6521A	Ceramic	2 MHz
SYD6521A	Cerdip	2 MHz
SYP6521A	Plastic	2 MHz
SYC6821	Ceramic	1 MHz
SYD6821	Cerdip	1 MHz
SYP6821	Pastic	1 MHz
SYC68B21	Ceramic	2 MHz
SYD68B21	Cerdip	2 MHz
SYP68B21	Plastic	2 MHz

Extended Temperature Range $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$

Features

- Extended Performance Version of SY6520
- Single +5 V Power Supply
- Two 8-bit Bi-directional I/O Ports with Individual Data Direction Control
- CMOS-Compatible Peripheral Port A lines
- Automatic "Handshake" Control of Data Transfers
- Programmable Interrupt Capability
- Automatic Initialization on Power Up
- 1 and 2 MHz Versions
- Direct Replacement for MC6821
- Operation over wide temperature range $\left(-40^{\circ} \mathrm{C}\right.$ to $+85^{\circ} \mathrm{C}$)

Description

The SYE6521 Peripheral Interface Adapter (PIA) is designed to provide a broad range of peripheral control to microcomputer systems. It is functionally compatible with the SYE6520, but with more drive capability and improved performance. Control of peri-
pheral devices is accomplished through two 8-bit bidirectional I/O ports. Each I/O line may be programmed to be either an input or an output. In addition, four peripheral control lines are provided to perform "handshaking" during data transfers.

Absolute Maximum Ratings*

RATING	SYMBOL	VALUE	UNIT
Supply Voltage	V $_{\text {CC }}$	-0.3 to +7.0	V
Input Voltage	$\mathrm{V}_{\text {IN }}$	-0.3 to +7.0	V
Operating Temperature Range	TA_{A}	-40 to +85	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	TSTG	-55 to +150	${ }^{\circ} \mathrm{C}$

Comment*

This device contains circuitry to protect the inputs against damage due to high static voltages, however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this circuit.
D.C. Characteristics $\quad\left(V_{C C}=5.0 \mathrm{~V} \pm 5 \%, V_{S S}=0, T_{A}=-40^{\circ} \mathrm{C}\right.$ to $+85^{\circ} \mathrm{C}$ unless otherwise noted)

Symbol	Characteristic	Min.	Max.	Unit
$\mathrm{V}_{\text {IH }}$	Input High Voltage	+2.0	V_{CC}	V
$V_{\text {IL }}$	Input Low Voltage	-0.3	+0.8	V
IIN	Input Leakage Current $\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=0 \text { to } 5.0 \mathrm{~V} \\ & \mathrm{R} \overline{\mathrm{~W}}, \text { Reset, } \mathrm{RS}_{0}, \mathrm{RS}_{1}, \mathrm{CS}_{0}, \mathrm{CS}_{1}, \overline{\mathrm{CS}}_{2}, \mathrm{CA}_{1}, \mathrm{CB}_{1}, \phi_{2} \end{aligned}$	-	± 2.5	$\mu \mathrm{A}$
${ }^{\text {TSSI }}$	Three-State (Off-State Input Current) $\left(\mathrm{V}_{\mathrm{IN}}=0.4 \text { to } 2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\max \right), \mathrm{D}_{0}-\mathrm{D}_{7}, \mathrm{~PB}_{0}-\mathrm{PB}_{7}, \mathrm{CB}_{2}$	-	± 10	$\mu \mathrm{A}$
I_{IH}	Input High Current $\left(\mathrm{V}_{\mathrm{IH}}=2.4 \mathrm{~V}\right), \mathrm{PA}_{0}-\mathrm{PA}_{7}, \mathrm{CA}_{2}$	-200	-	$\mu \mathrm{A}$
$I_{\text {IL }}$	Input Low Current $\left(\mathrm{V}_{\mathrm{IL}}=0.4 \mathrm{~V}\right), \mathrm{PA}_{0}-\mathrm{PA}_{7}, \mathrm{CA}_{2}$	-	2.4	mA
V_{OL}	Output Low Voltage $\left(I_{L}=3.2 \mathrm{~mA}\right), \overline{\operatorname{IRQA}}, \overline{\mathrm{IRQB}}$	-	0.4	V
V_{OH}	Output High Voltage $\left(I_{L}-205 \mu \mathrm{~A}\right), D_{0}-D_{7}$	2.4	-	V
V_{OL}	Output Low Voltage $\left(I_{\mathrm{L}}=3.2 \mathrm{~mA}\right), \mathrm{PA}_{0}-\mathrm{PA}_{7}, \mathrm{~PB}_{0}-\mathrm{PB}_{7}, \mathrm{CA}_{2}, \mathrm{CB}_{2}$	-	0.4	V
V_{OH}	Output High Voltage $\left(I_{\mathrm{H}}=-200 \mu \mathrm{~A}\right), \mathrm{PA}_{0}-\mathrm{PA}_{7}, \mathrm{~PB}_{0}-\mathrm{PB}_{7}, \mathrm{CA}_{2}, \mathrm{CB}_{2}$	2.4	-	V
IOH	Output High Current (Direct Transistor Drive Outputs) ($\mathrm{V}_{\text {OUT }}=1.5 \mathrm{~V}$), $\mathrm{PB}_{0}-\mathrm{PB}_{7}, \mathrm{CB}_{2}$	-1.0	-10.0	mA
IOFF	Output Leakage Current (Off-State), $\overline{\mathrm{IRQA}}, \overline{\mathrm{IRQB}}$	-	10	$\mu \mathrm{A}$
$P_{\text {D }}$	Power Dissipation ($\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}$)	-	500	mW
C_{IN}	Input Capacitance $\begin{aligned} & \left(\mathrm{V}_{\mathrm{IN}}=0, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}\right) \\ & \mathrm{D}_{0}-\mathrm{D}_{7}, \mathrm{PA}_{0}-\mathrm{PA}_{7}, \mathrm{~PB}_{0}-\mathrm{PB}_{7}, \mathrm{CA}_{2}, \mathrm{CB}_{2} \\ & \mathrm{R} / \mathrm{W}, \overline{\text { Reset, }}, \mathrm{RS}_{0}, \mathrm{RS}_{1}, \mathrm{CS}_{0}, \mathrm{CS}_{1}, \overline{\mathrm{CS}_{2}}, \\ & \mathrm{CA}_{1}, \mathrm{CB}_{1}, \phi_{2} \end{aligned}$	-	$\begin{aligned} & 10 \\ & 7.0 \\ & 20 \end{aligned}$	pF pF pF
Cout	Output Capacitance $\left(V_{I N}=0, T_{A}=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}\right)$	-	10	pF

Note: Negative sign indicates outward current flow, positive indicates inward flow.

Package Availability 40 Pin Cerdip
40 Pin Ceramic 40 Pin Plastic

Ordering Information

Part Number	Package	Clock Frequency
SYEC6521	Ceramic	1 MHz
SYED6521	Cerdip	1 MHz
SYEP6521	Plastic	1 MHz
SYEC6521A	Ceramic	2 MHz
SYED6521A	Cerdip	2 MHz
SYEP6521A	Plastic	2 MHz
SYEC6821	Ceramic	1 MHz
SYED6821	Cerdip	1 MHz
SYEP6821	Plastic	1 MHz
SYEC68B21	Ceramic	2 MHz
SYED68B21	Cerdip	2 MHz
SYEP68B21	Plastic	2 MHz

Features

- Two 8-Bit Bidirectional I/O Ports
- Two 16-Bit Programmable Timer/Counters
- Serial Data Port
- Single +5 V Power Supply
- TTL Compatible
- CMOS Compatible Peripheral Port A lines

\author{

- Expanded "Handshake" Capability Allows Positive Control of Data Transfers Between Processor and Peripheral Devices
 - Latched Output and Input Registers
 - 1 MHz and 2 MHz Operation
}

Description

The SY6522 Versatile Interface Adapter (VIA) is a very flexible I/O control device. In addition, this device contains a pair of very powerful 16 -bit interval timers, a serial-to-parallel/parallel-to-serial shift register and input data latching on the peripheral ports. Expanded handshaking capability allows control of bi-directional data transfers between VIA's in multiple processor systems.
Control of peripheral devices is handled primarily through two 8-bit bi-directional ports. Each line can
be programmed as either an input or an output. Several peripheral I/O lines can be controlled directly from the interval timers for generating programmable frequency square waves or for counting externally generated pulses. To facilitate control of the many powerful features of this chip, an interrupt flag register, an interrupt enable register and a pair of function control registers are provided.

Figure 1. SY6522 Block Diagram

Absolute Maximum Ratings*

Rating	Symbol	Value	Unit
Supply Voltage	V_{CC}	-0.3 to +7.0	V
Input Voltage	V_{IN}	-0.3 to +7.0	V
Operating Temperature Range	T_{A}	0 to +70	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\mathrm{stg}}$	-55 to +150	${ }^{\circ} \mathrm{C}$

Comment*

This device contains circuitry to protect the inputs against damage due to high static voltages. However, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages.

Electrical Characteristics
$\left(V_{C C}=5.0 \mathrm{~V} \pm 5 \%, T_{A}=0-70^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Symbol	Characteristic	Min.	Max.	Unit
$\mathrm{V}_{1 \mathrm{H}}$	Input High Voltage (all except ϕ 2)	2.4	V_{CC}	V
$\mathrm{V}_{\text {CH }}$	Clock High Voltage	2.4	V_{CC}	V
VIL	Input Low Voltage	-0.3	0.4	V
IIN	Input Leakage Current $-\mathrm{V}_{\mathrm{IN}}=0$ to 5 Vdc R/ $\bar{W}, \overline{R E S}, ~ R S 0, ~ R S 1, ~ R S 2, ~ R S 3, ~ C S 1, ~ \overline{C S 2}, ~$ CA1, $\Phi 2$	-	± 2.5	$\mu \mathrm{A}$
${ }^{\text {ITSI }}$	$\begin{aligned} & \text { Off-state Input Current }-\mathrm{V}_{\mathrm{IN}}=.4 \text { to } 2.4 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=\text { Max, } \mathrm{D} 0 \text { to } \mathrm{D} 7 \end{aligned}$	-	± 10	$\mu \mathrm{A}$
I_{IH}	Input High Current $-\mathrm{V}_{\mathrm{IH}}=2.4 \mathrm{~V}$ PA0-PA7, CA2, PB0-PB7, CB1, CB2	-100	-	$\mu \mathrm{A}$
IIL	Input Low Current $-\mathrm{V}_{\mathrm{IL}}=0.4 \mathrm{Vdc}$ PA0-PA7, CA2, PB0-PB7, CB1, CB2	-	-1.6	mA
V_{OH}	Output High Voltage $\begin{aligned} & V_{\mathrm{CC}}=\min , I_{\text {load }}=-100 \mu \mathrm{Adc} \\ & \mathrm{PA} 0-\mathrm{PA} 7, \mathrm{CA} 2, \mathrm{~PB} 0-\mathrm{PB} 7, \mathrm{CB} 1, \mathrm{CB} 2 \end{aligned}$	2.4	-	V
V_{OL}	Output Low Voltage $V_{C C}=\min , I_{\text {load }}=1.6 \mathrm{mAdc}$	-	0.4	V
IOH	Output High Current (Sourcing) $\begin{aligned} & \mathrm{V}_{\mathrm{OH}}=2.4 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{OH}}=1.5 \mathrm{~V}(\mathrm{PBO}-\mathrm{PB} 7) \end{aligned}$	$\begin{array}{r} -100 \\ -1.0 \end{array}$	-	$\begin{array}{r} \mu \mathrm{A} \\ \mathrm{~mA} \\ \hline \end{array}$
$\mathrm{IOL}^{\text {l }}$	Output Low Current (Sinking) $\mathrm{V}_{\mathrm{OL}}=0.4 \mathrm{Vdc}$	1.6	-	mA
IOFF	Output Leakage Current (Off state) $\overline{\mathrm{RQ}}$	-	10	$\mu \mathrm{A}$
$\mathrm{ClN}_{\text {IN }}$	Input Capacitance $-\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$ ($\mathrm{R} / \overline{\mathrm{W}}, \overline{\mathrm{RES}}, \mathrm{RS} 0, \mathrm{RS} 1, \mathrm{RS} 2, \mathrm{RS} 3, \mathrm{CS} 1, \overline{\mathrm{CS} 2}$, D0-D7, PAO-PA7, CA1, CA2, PB0-PB7) (CB1, CB2) ($\Phi 2$ Input)		$\begin{aligned} & 7.0 \\ & 10 \\ & 20 \end{aligned}$	pF pF pF
Cout	Output Capacitance $-\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$	-	10	pF
$P_{\text {D }}$	Power Dissipation ($\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}$)	-	700	mW

Test Load

OPEN COLLECTOR OUTPUT TEST LOAD

Figure 2. Test Load (for all Dynamic Parameters)

Figure 3. Read Timing Characteristics

Read Timing Characteristics (Figure 3)

Symbol	Parameter		SY6522		SY6522A	
		Min.	Max.	Min.	Max.	Unit
T_{CY}	Cycle Time	1	50	0.5	50	$\mu \mathrm{~s}$
$\mathrm{~T}_{\text {ACR }}$	Address Set-Up Time	180	-	90	-	ns
$\mathrm{T}_{\text {CAR }}$	Address Hold Time	0	-	0	-	ns
$\mathrm{T}_{\text {PCR }}$	Peripheral Data Set-Up Time	300	-	300	-	ns
$\mathrm{T}_{\text {CDR }}$	Data Bus Delay Time	-	340	-	200	ns
$\mathrm{~T}_{\text {HR }}$	Data Bus Hold Time	10	-	10	-	ns

NOTE: $\mathrm{tr}, \mathrm{tf}=10$ to 30 ns .

Figure 4. Write Timing Characteristics

Write Timing Characteristics (Figure 4)

Symbol	Parameter	SY6522		SY6522A		Unit
		Min.	Max.	Min.	Max.	
T_{CY}	Cycle Time	1	50	0.50	50	$\mu \mathrm{s}$
T_{C}	$\phi 2$ Pulse Width	0.44	25	0.22	25	$\mu \mathrm{s}$
$\mathrm{T}_{\text {ACW }}$	Address Set-Up Time	180	-	90	-	ns
TCAW	Address Hold Time	0	-	0	-	ns
TWCW	R/WW Set-Up Time	180	-	90	-	ns
TCWW	R/W Hold Time	0	-	0	-	ns
TDCW	Data Bus Set-Up Time	300	-	150	-	ns
THW	Data Bus Hold Time	10	-	10	-	ns
TCPW	Peripheral Data Delay Time	-	1.0	-	1.0	$\mu \mathrm{s}$
TCMOs	Peripheral Data Delay Time to CMOS Levels	-	2.0	-	2.0	$\mu \mathrm{s}$

NOTE: $\mathrm{tr}, \mathrm{tf}=10$ to 30 ns .

Peripheral Interface Characteristics

Symbol	Characteristic	Min.	Max.	Typ.	Unit	Figure
$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	Rise and Fall Time for CA1, CB1, CA2, and CB2 Input Signals	-	1.0		$\mu \mathrm{s}$	-
$\mathrm{T}_{\text {CA2 }}$	Delay Time, Clock Negative Transition to CA2 Negative Transition (read handshake or pulse mode)	-	1.0		$\mu \mathrm{S}$	$5 \mathrm{a}, 5 \mathrm{~b}$
$\mathrm{T}_{\text {RS }}$	Delay Time, Clock Negative Transition to CA2 Positive Transition (pulse mode)	-	1.0		$\mu \mathrm{S}$	5a
$\mathrm{T}_{\mathrm{RS} 2}$	Delay Time, CA1 Active Transition to CA2 Positive Transition (handshake mode)	-	2.0		$\mu \mathrm{S}$	5b
TWHS	Delay Time, Clock Positive Transition to CA2 or CB2 Negative Transition (write handshake)	0.05	1.0		$\mu \mathrm{S}$	$5 \mathrm{c}, 5 \mathrm{~d}$
T_{DS}	Delay Time, Peripheral Data Valid to CB2 Negative Transition	0.20	1.5		$\mu \mathrm{s}$	$5 \mathrm{c}, 5 \mathrm{~d}$
$\mathrm{T}_{\text {RS3 }}$	Delay Time, Clock Transition to CA2 or CB2 Positive Transition (pulse mode)	-	1.0		$\mu \mathrm{S}$	5c
$\mathrm{T}_{\text {RS4 }}$	Delay Time, CA1 or CB1 Active Transition to CA2 or CB2 Positive Transition (handshake mode)	-	2.0		$\mu \mathrm{s}$	5d
T_{21}	Delay Time Required from CA2 Output to CA1 Active Transition (handshake mode)	400	-		ns	5d
TIL	Set-up Time, Peripheral Data Valid to CA1 or CB1 Active Transition (input latching)	300	-		ns	5 e
$\mathrm{T}_{\text {SR1 }}$	Shift-Out Delay Time - Time from ϕ_{2} Falling Edge to CB2 Data Out	-	300		ns	$5 f$
$\mathrm{T}_{\text {SR2 }}$	Shift-In Setup Time - Time from CB2 Data in to ϕ_{2} Rising Edge	300	-		ns	5 g
$T_{\text {SR3 }}$	External Shift Clock (CB1) Setup Time Relative to ϕ_{2} Trailing Edge	100	T_{CY}		ns	5 g
TIPW	Pulse Width - PB6 Input Pulse	$2 \times \mathrm{T}_{\text {CY }}$	-			$5 i$
Ticw	Pulse Width - CB1 Input Clock	$2 \times \mathrm{T}_{C Y}$	-			5h
TIPS	Pulse Spacing - PB6 Input Pulse	$2 \times T_{C Y}$	-			$5 i$
$\mathrm{T}_{\text {ICS }}$	Pulse Spacing - CB1 Input Pulse	$2 \times \mathrm{T}_{C Y}$	-			5 h
T_{AL}	CA1, CB1 Set Up Prior to Transition to Arm Latch	$\mathrm{T}_{\mathrm{C}}+50$	-		ns	5 e
$\mathrm{T}_{\text {PDH }}$	Peripheral Data Hold After CA1, CB1 Transition	150	-		ns	5 e
$\mathrm{T}_{\text {PWI }}$	Set Up Required on CA1, CB1, CA2 or CB2 Prior to Triggering Edge	$\mathrm{T}_{\mathrm{C}}+50$	-		ns	5 j
TDPR $\mathrm{T}_{\mathrm{DPL}}$	Shift Register Clock - Delay from ϕ_{2} to CB1 Rising Edge to CB1 Falling Edge			$\begin{array}{r} 200 \\ 125 \\ \hline \end{array}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \hline \end{aligned}$	$\begin{aligned} & 5 k \\ & 5 \mathrm{k} \\ & \hline \end{aligned}$

Figure 5a. CA2 Timing for Read Handshake, Pulse Mode

Figure 5b. CA2 Timing for Read Handshake, Handshake Mode

Figure 5c. CA2, CB2 Timing for Write Handshake, Pulse Mode

Figure 5d. CA2, CB2 Timing for Write Handshake, Handshake Mode

Figure 5e. Peripheral Data Input Latching Timing

Figure 5f. Timing for Shift Out with Internal or External Shift Clocking

Figure 5g. Timing for Shift In with Internal or External Shift Clocking

Figure 5h. External Shift Clock Timing

INPUT

Figure 5i. Pulse Count Input Timing

Figure 5j. Setup Time to Triggering Edge

Figure 5k. Shift-in/out with Internal Clock Delay CD2 to CB1 Edge

Pin Descriptions

$\overline{\text { RES (Reset) }}$

The reset input clears all internal registers to logic 0 (except T1 and T2 latches and counters and the Shift Register). This places all peripheral interface lines in the input state, disables the timers, shift register, etc. and disables interrupting from the chip.

$\phi 2$ (Input Clock)

The input clock is the system $\phi 2$ clock and is used to trigger all data transfers between the system processor and the SY6522.

$\mathrm{R} / \overline{\mathrm{W}}$ (Read/Write)

The direction of the data transfers between the SY6522 and the system processor is controlled by the R / W line. If R / \bar{W} is low, data will be transferred out of the processor into the selected SY6522 register (write operation). If R / \bar{W} is high and the chip is selected, data will be transferred out of the SY6522 (read operation).

DB0-DB7 (Data Bus)

The eight bi-directional data bus lines are used to transfer data between the SY6522 and the system processor. During read cycles, the contents of the selected SY6522 register are placed on the data bus lines and transferred into the processor. During write cycles, these lines are high-impedance inputs and data is transferred from the processor into the selected register. When the SY6522 is unselected, the data bus lines are high-impedance.

CS1, CS2 (Chip Selects)

The two chip select inputs are normally connected to processor address lines either directly or through decoding. The selected SY6522 register will be accessed when CS1 is high and $\overline{\mathrm{CS} 2}$ is low.

RSO-RS3 (Register Selects)

The four Register Select inputs permit the system processor to select one of the 16 internal registers of the SY6522, as shown in Figure 6.

Register Number	RS Coding				Register Desig.	Description	
	RS3	RS2	RS1	RSO		Write	Read
0	0	0	0	0	ORB/IRB	Output Register "B"	Input Register "B"
1	0	0	0	1	ORA/IRA	Output Register " A^{\prime} "	Input Register " A "
2	0	0	1	0	DDRB	Data Direction Register "B"	
3	0	0	1	1	DDRA	Data Direction Register " $\mathrm{A}^{\prime \prime}$	
4	0	1	0	0	T1C-L	T1 Low-Order Latches	T1 Low-Order Counter
5	0	1	0	1	T1C-H	T1 High-Order Counter	
6	0	1	1	0	T1L-L	T1 Low-Order Latches	
7	0	1	1	1	T1L-H	T1 High-Order Latches	
8	1	0	0	0	T2C-L	T2 Low-Order Latches	T2 Low-Order Counter
9	1	0	0	1	T2C-H	T2 High-Order Counter	
10	1	0	1	0	SR	Shift Register	
11	1	0	1	1	ACR	Auxiliary Control Register	
12	1	1	0	0	PCR	Peripheral Control Register	
13	1	1	0	1	IFR	Interrupt Flag Register	
14	1	1	1	0	IER	Interrupt Enable Register	
15	1	1	1	1	ORA/IRA	Same as Reg 1 Except No "Handshake"	

Figure 6. SY6522 Internal Register Summary

$\overline{\text { IRO }}$ (Interrupt Request)

The Interrupt Request output goes low whenever an internal interrupt flag is set and the corresponding interrupt enable bit is a logic 1 . This output is "opendrain" to allow the interrupt request signal to be "wire-or'ed" with other equivalent signals in the system.

PAO-PA7 (Peripheral A Port)

The Peripheral A port consists of 8 lines which can be individually programmed to act as inputs or outputs under control of a Data Direction Register. The polarity of output pins is controlled by an Output Register and input data may be latched into an internal register under control of the CA1 line. All of these modes of operation are controlled by the system processor through the internal control registers. These lines represent one standard TTL load in the input mode and will drive one standard TTL load in the output mode. Figure 7 illustrates the output circuit.

CA1, CA2 (Peripheral A Control Lines)

The two Peripheral A control lines act as interrupt inputs or as handshake outputs. Each line controls an internal interrupt flag with a corresponding interrupt enable bit. In addition, CA1 controls the latching of data on Peripheral A port input lines. CA1 is a highimpedance input only; while CA2 represents one standard TTL load in the input mode. CA2 will drive one standard TTL load in the output mode.

Figure 7. Peripheral A Port Output Circuit

PB0-PB7 (Peripheral B Port)

The Peripheral B port consists of eight bi-directional lines which are controlled by an output register and a data direction register in much the same manner as the

PA port. In addition, the PB7 output signal can be controlled by one of the interval timers while the second timer can be programmed to count pulses on the PB6 pin. Peripheral B lines represent one standard TTL load in the input mode and will drive one standard TTL load in the output mode. In addition, they are capable of sourcing 1.0 mA at 1.5 VDC in the output mode to allow the outputs to directly drive Darlington transistor circuits. Figure 8 is the circuit schematic.

CB1, CB2 (Peripheral B Control Lines)

The Peripheral B control lines act as interrupt inputs or as handshake outputs. As with CA1 and CA2, each line controls an interrupt flag with a corresponding interrupt enable bit. In addition, these lines act as a serial port under control of the Shift Register. These lines represent one standard TTL load in the input mode and will drive one standard TTL load in the output mode. Unlike PB0-PB7, CB1 and CB2 cannot drive Darlington transistor circuits.

Figure 8. Peripheral B Port Output Circuit

FUNCTIONAL DESCRIPTION

Port A and Port B Operation
Each 8-bit peripheral port has a Data Direction Register (DDRA, DDRB) for specifying whether the peripheral pins are to act as inputs or outputs. A 0 in a bit of the Data Direction Register causes the corresponding peripheral pin to act as an input. A 1 causes the pin to act as an output.
When programmed as an output each peripheral pin is also controlled by a corresponding bit in the Output Register (ORA, ORB). A 1 in the Output Register causes the output to go high, and a " 0 " causes the output to go low. Data may be written into Output Register bits corresponding to pins which are pro-
grammed as inputs. In this case, however, the output signal is unaffected.

Reading a peripheral port causes the contents of the Input Register (IRA, IRB) to be transferred onto the Data Bus. With input latching disabled, IRA will always reflect the levels on the PA pins. With input latching enabled and the selected active transition on CA1 having occurred, IRA will contain the data present on the PA lines at the time of the transition. Once IRA is read, however, it will appear transparent, reflecting the current state of the PA lines until the next "latching" transition.

The IRB register operates similar to the IRA register. However, for pins programmed as outputs there is a difference. When reading IRA, the level on the pin determines whether a 0 or a 1 is sensed. When reading IRB, however, the bit stored in the output register, ORB, is the bit sensed. Thus, for outputs which have large loading effects and which pull an output " 1 " down or which pull an output " 0 " up, reading IRA may result in reading a " 0 " when a " 1 " was actually programmed, and reading a " 1 " when a " 0 " was programmed. Reading IRB, on the other hand, will read the " 1 " or " 0 " level actually programmed, no matter what the loading on the pin.
Figures 9,10 , and 11 illustrate the formats of the port registers. In addition, the input latching modes are selected by the Auxiliary Control Register (Figure 16.)

Handshake Control of Data Transfers

The SY6522 allows positive control of data transfers between the system processor and peripheral devices

REG 0 - ORB/IRB

OUTPUT REGISTER "B" (ORB) or
INPUT REGISTER "B" (ORB)

Pin Data Direction Selection	WRITE	READ
DDRE $=$ "1" (OUTPUT)	MPU writes Output Level (ORB)	MPU reads output register bit in ORB. Pin level has no affect.
DDRB = " 0 " (INPUT) (Input latching disabled)	MPU writes into ORB, but no effect on pin level, until	MPU reads input level on PB pin.
$\begin{array}{\|l\|} \hline \text { DDRB }=" 0 " \text { (INPUT) } \\ \text { (Input latching enabled) } \end{array}$		MPU reads IRB bit, which is the level of the PB pin at the time of the last CB1 active transition.

Figure 9. Output Register B (ORB), Input Register B (IRB)

REG 1 - ORA/IRA

Figure 10. Output Register A (ORA), Input Register A (IRA)

REG 2 (DDRB) AND REG 3 (DDRA)

"0" ASSOCIATED PB/PA PIN IS AN INPUT (HIGH-IMPEDANCE)
"1" ASSOCIATED PB/PA PIN IS AN OUTPUT, WHOSE LEVEL IS DETERMINED BY ORB/ORA REGISTER BIT.

Figure 11. Data Direction Registers (DDRB, DDRA)
through the operation of "handshake" lines. Port A lines (CA1, CA2) handshake data on both a read and a write operation while the Port B lines (CB1, CB2) handshake on a write operation only.

Read Handshake

Positive control of data transfers from peripheral devices into the system processor can be accomplished very effectively using Read Handshaking. In this case, the peripheral device must generate the equivalent of a "Data Ready" signal to the processor signifying that valid data is present on the peripheral port. This signal normally interrupts the processor, which then reads the data, causing generation of a "Data Taken" signal. The peripheral device responds by making new data available. This process continues until the data transfer is complete.

Figure 12. Read Handshake Timing (Port A, Only)

Figure 13. Write Handshake Timing

In the SY6522, automatic "Read" Handshaking is possible on the Peripheral A port only. The CA1 interrupt input pin accepts the "Data Ready" signal and CA2 generates the "Data Taken" signal. The "Data Ready" signal will set an internal flag which may interrupt the processor or which may be polled under program control. The "Data Taken" signal can either be a pulse or a level which is set low by the system processor and is cleared by the "Data Ready" signal. These options are shown in Figure 12 which illustrates the normal Read Handshaking sequence.

Write Handshake

The sequence of operations which allows handshaking data from the system processor to a peripheral device is very similar to that described for Read Handshaking. However, for Write Handshaking, the SY6522 generates the "Data Ready" signal and the peripheral device must respond with the "Data Taken" signal. This can be accomplished on both the PA port and the PB port on the SY6522. CA2 or CB2 act as a "Data Ready" output in either the handshake mode or pulse mode and CA1 or CB1 accept the "Data Taken" signal from the peripheral device, setting the interrupt flag and cleaning the "Data Ready" output. This sequence is shown in Figure 13.

Selection of operating modes for CA1, CA2, CB1, and CB2 is accomplished by the Peripheral Control Register (Figure 14).

Timer Operation

Interval Timer T1 consists of two 8-bit latches and a 16 -bit counter. The latches are used to store data which is to be loaded into the counter. After loading, the counter decrements at $\phi 2$ clock rate. Upon reaching zero, an interrupt flag will be set, and $\overline{\mathrm{RQ}}$ will go low if the interrupt is enabled. The timer will then disable any further interrupts, or (when programmed to) will automatically transfer the contents of the latches into the counter and begin to decrement again. In addition, the timer may be programmed to invert the output signal on a peripheral pin each time it "times-out". Each of these modes is discussed separately below.
The T1 counter is depicted in Figure 15 and the latches in Figure 16.

REG 12 - PERIPHERAL CONTROL REGISTER

Figure 14. CA1, CA2, CB1, CB2 Control

Two bits are provided in the Auxiliary Control Register (bits 6 and 7) to allow selection of the T1 oper-

REG 4 - TIMER 1 LOW-ORDER COUNTER

WRITE - 8 BITS LOADED INTO T1 LOW-ORDER LATCHES. LATCH CONTENTS ARE COUNTER AT THE TIME THE HIGH ORDER COUNTER IS LOADED (REG 5).
READ - 8 BITS FROM T1 LOW-ORDER COUNTER TRANSFERRED TO MPU. IN ADDITION T1 IN IN INTERRUPT FLAG REGISTER)
ating modes. The four possible modes are depicted in Figure 17.

REG 5 - TIMER 1 HIGH-ORDER COUNTER

WRITE - 8 BITS LOADED INTO T1 HIGH-ORDER LATCHES. ALSO, AT THIS TIME BOTH TRANSFERRED INTO T1 COUNTER AND INITIATES COUNTDOWN T1, INTERRUPT FLAG ALSO IS RESET.
READ - 8 BITS FROM T1 HIGH-ORDER COUNTER TRANSFERRED TO MPU.

Figure 15. T1 Counter Registers

REG 6 - TIMER 1 LOW-ORDER LATCHES

WRITE - 8 BITS LOADED INTO T1 LOW-ORDER
LATCHES. THIS OPERATION IS NO
DIFFERENT THAT A WRITE INTO REG 4.
READ - 8 BITS FROM T1 LOW-ORDER LATCHES
TRANSFERRED TO MPU. UNLIKE REG 4
OPERATION, THIS DOES NOT CAUSE
OPERATION, THIS DOES NOT CAU
RESET OF T1 INTERRUPT FLAG.

REG 7 - TIMER 1 HIGH-ORDER LATCHES

WRITE - 8 BITS LOADED INTO T1 HIGH-ORDER LATCHES. UNLIKE REG 4 OPERATION NO LATCH-TO-COUNTER TRANSFERS TAKE PLACE.
READ - 8 BITS FROM T1 HIGH-ORDER LATCHES TRANSFERRED TO MPU.

Figure 16. T1 Latch Registers

REG 11 - AUXILIARY CONTROL REGISTER

Figure 17. Auxiliary Control Register
Note: The processor does not write directly into the low order counter (T1C-L). Instead, this half of the counter is loaded automatically from the low order latch when the processor writes into the high order counter. In fact, it may not be necessary to write to the low order counter in some applications since the timing operation is triggered by writing to the high order counter.

Figure 18. Timer 1 and Timer 2 One-Shot Mode Timing

Timer 1 One-Shot Mode

The interval timer one-shot mode allows generation of a single interrupt for each Timer load operation. In addition, Timer 1 can be programmed to produce a single negative pulse on PB7.

To generate a single interrupt ACR bits 6 and 7 must be 0 then either TIL-L or TIC-L must be written with the low-order count value. (A write to TIC-L is effectively a Write to TIL-L). Next the high-order count value is written to TIC-H, (the value is simultaneously written into TIL-H), and TIL-L is transferred to TIC-L. Countdown begins on the ϕ_{2} following the write TIC-H and decrements at the ϕ_{2} rate. T1 interrupt occurs when the counters reach 0 . Generation of a negative pulse on PB7 is done in the same manner except ACR bit 7 must be a one. PB7 will go low after a Write TIC-H and go high again when the counters reach 0.

The T1 interrupt flag is reset by either writing TIC-H (starting a new count) or by reading TIC-L.

Timing for the one-shot mode is illustrated in Figure 18.

Timer 1 Free-Run Mode

The most important advantage associated with the latches in T1 is the ability to produce a continuous series of evenly spaced interrupts and the ability to produce a square wave on PB7 whose frequency is not affected by variations in the processor interrupt response time. This is accomplished in the "freerunning" mode.

In the free-running mode, the interrupt flag is set and the signal on PB7 is inverted each time the counter reaches zero. However, instead of continuing to decrement from zero after a time-out, the timer automatically transfers the contents of the latch into the counter (16 bits) and continues to decrement from there. It is not necessary to rewrite the timer to enable setting the interrupt flag on the next time-out. The interrupt flag can be cleared by reading TIC-L, by writing directly into the flag as described later, or if a new count value is desired by a write to TIC-H.

All interval timers in the SY6522 are "re-triggerable". Rewriting the counter will always re-initialize the time-out period. In fact, the time-out can be prevented completely if the processor continues to rewrite the timer before it reaches zero. Timer 1 will operate in this manner if the processor writes into the high order counter (T1C-H). However, by loading the latches only, the processor can access the timer during each down-counting operation without affecting the time-out in process. Instead, the data loaded into the latches will determine the length of the next timeout period. This capability is particularly valuable in the free-running mode with the output enabled. In this mode, the signal on PB7 is inverted and the interrupt flag is set with each time-out. By responding to the interrupts with new data for the latches, the processor can determine the period of the next half cycle during each half cycle of the output signal on PB7. In this manner, very complex waveforms can be generated. Timing for the free-running mode is shown in Figure 19.

Note: A precaution to take in the use of PB7 as the timer output concerns the Data Direction Register contents for PB7. Both DDRB bit 7 and ACR bit 7 must be 1 for PB7 to function as the timer output. If either is a 0 , then PB7 functions as a normal output pin, controlled by ORB bit 7.

Figure 19. Timer 1 Free-Run Mode Timing

Timer 2 Operation

Timer 2 operates as an interval timer (in the "oneslot" mode only), or as a counter for counting negative pulses on the PB6 peripheral pin. A single control bit is provided in the Auxiliary Control Register to select between these two modes. This timer is comprised of a "write-only" low-order latch (T2L-L), a "read-only" low-order counter and a read/write high order counter. The counter registers act as a 16 -bit counter which decrements at $\Phi 2$ rate. Figure 20 illustrates the T2 Counter Registers.

Timer 2 One-Shot Mode

As an interval timer, T2 operates in the "one-shot" mode similar to Timer 1 . In this mode, T2 provides a single interrupt for each "write T2C-H" operation. After timing out, (reading 0) the counters "roll-over" to all 1 's (FFFF_{16}) and continue decrementing, allowing the user to read them and determine how long T2 interrupt has been set. However, setting of the interrupt flag will be disabled after initial time-out so that it will not be set by the counter continuing to decrement through zero. The processor must rewrite T2C-H to enable setting of the interrupt flag. The interrupt flag is cleared by reading T2C-L or by writing T2C-H. Timing for this operation is shown in Figure 18.

REG 8 - TIMER 2 LOW-ORDER COUNTER

WRITE - 8 BITS LOADED INTO T2 LOW-ORDER LATCHES.
READ - 8 BITS FROM T2 LOW-ORDER COUNTER TRANSFERRED TO MPU. T2̇ INTERRUPT FLAG IS RESET.

REG 9 - TIMER 2 HIGH-ORDER COUNTER

WRITE - 8 BITS LOADED INTO T2 HIGH-ORDER
COUNTER. ALSO, LOW-ORDER LATCHES TRANSFERRED TO LOW-ORDER COUNTER. IN ADDITION, T2 INTERRUPT FLAG IS RESET.
READ - 8 BITS FROM T2 HIGH-ORDER COUNTER TRANSFERRED TO MPU.

Figure 20. T2 Counter Registers

Timer 2 Pulse Counting Mode

In the pulse counting mode, T2 serves primarily to count a predetermined number of negative-going pulses on PB6. This is accomplished by first loading a number into T2. Writing into T2C-H clears the interrupt flag and allows the counter to decrement each time a pulse is applied to PB6. The interrupt flag will be set when T2 reaches zero. At this time the counter will continue to decrement with each pulse on PB6. However, it is necessary to rewrite T2C-H to allow the interrupt flag to set on subsequent down-counting operations. Timing for this mode is shown in Figure 21. The pulse must be low on the leading edge of $\Phi 2$.

Shift Register Operation

The Shift Register (SR) performs serial data transfers into and out of the CB2 pin under control of an internal modulo- 8 counter. Shift pulses can be applied to the CB1 pin from an external source or, with the proper mode selection, shift pulses generated internally will appear on the CB1 pin for controlling external devices.

The control bits which select the various shift register operating modes are located in the Auxiliary Control Register. Figure 22 illustrates the configuration of the SR data bits and the SR control bits of the ACR.

Figures 23 and 24 illustrate the operation of the various shift register modes.

Interrupt Operation

Controlling interrupts within the SY6522 involves three principal operations. These are flagging the interrupts, enabling interrupts and signaling to the processor that an active interrupt exists within the chip. Interrupt flags are set by interrupting conditions which exist within the chip or on inputs to the chip. These flags normally remain set until the interrupt has been serviced. To determine the source of an interrupt, the microprocessor must examine these flags in order from highest to lowest priority. This is accomplished by reading the flag register into the processor accumulator, shifting this register either right or left and then using conditional branch instructions to detect an active interrupt.

Associated with each interrupt flag is an interrupt enable bit. This can be set or cleared by the processor to enable interrupting the processor from the corresponding interrupt flag. If an interrupt flag is set to a logic 1 by an interrupting condition, and the corresponding interrupt enable bit is set to a 1, the Interrupt Request Output (IRQ) will go low. $\overline{\mathrm{IRO}}$ is an "open-collector" output which can be "wire-or'ed" with other devices in the system to interrupt the processor.

In the SY6522, all the interrupt flags are contained in one register. In addition, bit 7 of this register will be read as a logic 1 when an interrupt exists within the chip. This allows very convenient polling of several devices within a system to locate the source of an interrupt.

Figure 21. Timer 2 Pulse Counting Mode

REG 10 - SHIFT REGISTER

NOTES:

1. WHEN SHIFTING OUT. BIT 7 IS THE FIRST BIT OUT AND SIMULTANEOUSLY IS ROTATED BACK INTO BIT 0 .
2. WHEN SHIFTING IN, BITS INITIALLY ENTER BIT 0 AND ARE SHIFTED TOWARDS BIT 7.

REG 11 - AUXILIARY CONTROL REGISTER

4	3	2	OPERATION
0	0	0	DISABLED
0	0	1	SHIFT IN UNDER CONTROL OF T2
0	1	0	SHIFT IN UNDER CONTROL OF Φ_{2}
0	1	1	SHIFT IN UNDER CONTROL OF EXT CLK
1	0	0	SHIFT OUT FREE-RUNNING AT T2 RATE
1	0	1	SHIFT OUT UNDER CONTROL OF T2
1	1	0	SHIFT OUT UNDER CONTROL OF Φ_{2}
1	1	1	SHIFT OUT UNDER CONTROL OF EXT CLK

Figure 22. SR and ACR Control Bits

SR Disabled (000)

The 000 mode is used to disable the Shift Register. In this mode the microprocessor can write or read the SR, but the shifting operation is disabled and operation of CB1 and CB2 is controlled by the appropriate bits in the Peripheral Control Register (PCR). In this mode the SR Interrupt Flag is disabled (held to a logic 0).

Shift in Under Control of T2 (001)

In the 001 mode the shifting rate is controlled by the low order 8 bits of T2. Shift pulses are generated on the CB1 pin to control shifting in external devices. The time between transitions of this output clock is a function of the system clock period and the contents of the low order T2 latch (N).

The shifting operation is triggered by writing or reading the shift register. Data is shifted first into the low order bit of SR and is then shifted into the next higher order bit of the shift register on the negative-going edge of each clock pulse. The input data should change before the positive-going edge of the CB1 clock pulse. This data is shifted into the shift register during the ϕ_{2} clock cycle following the positive-going edge of the CB1 clock pulse. After 8 CB1 clock pulses, the shift register interrupt flag will be set and $\overline{\mathrm{RO}}$ will go low.

Shift in Under Control of $\phi_{\mathbf{2}}$ (010)

In mode 010 the shift rate is a direct function of the system clock frequency. CB1 becomes an output which generates shift pulses for controlling external devices. Timer 2 operates as an independent interval timer and has no effect on SR. The shifting operation is triggered by reading or writing the Shift Register. Data is shifted first into bit 0 and is then shifted into the next higher order bit of the shift register on the trailing edge of each ϕ_{2} clock pulse. After 8 clock pulses, the shift register interrupt flag will be set, and the output clock pulses on CB1 will stop.

Shift in Under Control of External CB1 Clock (011)
In mode 011 CB1 becomes an input. This allows an external device to load the shift register at its own pace. The shift register counter will interrupt the processor each time 8 bits have been shifted in. However, the shift register counter does not stop the shifting operation; it acts simply as a pulse counter. Reading or writing the Shift Register resets the Interrupt flag and initializes the SR counter to count another 8 pulses.
Note that the data is shifted during the first system clock cycle following the positive-going edge of the CB1 shift pulse. For this reason, data must be held stable during the first full cycle following CB1 going high.

Figure 23. Shift Register Input Modes

Shift Out Free-Running at T2 Rate (100)
Mode 100 is very similar to mode 101 in which the shifting rate is set by T2. However, in mode 100 the SR Counter does not stop the shifting operation. Since the Shift Register bit 7 (SR7) is recirculated back into bit 0, the 8 bits loaded into the shift register will be clocked onto CR2 repetitively. In this mode the shift register counter is disabled, and $\overline{\mathrm{RO}}$ is never set.

Shift Out Under Control of T2 (101)
In mode 101 the shift rate is controlled by T2 (as in the previous mode). However, with each read or write of the shift register the SR Counter is reset and 8 bits are shifted onto CB2. At the same time, 8 shift pulses are generated on CB1 to control shifting in external devices. After the 8 shift pulses, the s'ifting is disabled, the SR Interrupt Flag is set and CB2 remains at the last data level.

Shift Out Under Control of ϕ_{2} (110)
In mode 110, the shift rate is controlled by the ϕ_{2} system clock.

Shift Out Under Control of External CB1 Clock (111)
In mode 111 shifting is controlled by pulses applied to the CB1 pin by an external device. The SR counter sets the SR Interrupt flag each time it counts 8 pulses but it does not disable the shifting function. Each time the microprocessor writes or reads the shift register, the SR Interrupt flag is reset and the SR counter is initialized to begin counting the next 8 shift pulses on pin CB1. After 8 shift pulses, the interrupt flag is set. The microprocessor can then load the shift register with the next byte of data.

Figure 24. Shift Register Output Modes

The Interrupt Flag Register (IFR) and Interrupt Enable Register (IER) are depicted in Figures 25 and 26, respectively.
The IFR may be read directly by the processor. In addition, individual flag bits may be cleared by writing a " 1 " into the appropriate bit of the IFR. When the proper chip select and register signals are applied to the chip, the contents of this register are placed on the data bus. Bit 7 indicates the status of the IRQ output. This bit corresponds to the logic function: $I R Q=$ IFR6 \times IER6 + IFR5 \times IER5 + IFR4 \times IER4 + IFR3 \times IER3 + IFR2 \times IER2 + IFR1 \times IER1 + IFR0 \times IER0. Note: $\mathrm{X}=$ logic AND, $+=$ Logic OR.
The IFR bit 7 is not a flag. Therefore, this bit is not directly cleared by writing a logic 1 into it. It can only be cleared by clearing all the flags in the register or by disabling all the active interrupts as discussed in the next section.

REG 13 - INTERRUPT FLAG REGISTER

* IF THE CA2/CB2 CONTROL IN THE PCR IS SELECTED AS "INDEPENDENT" INTERRUPT INPUT, THEN READING OR WRITING THE OUTPUT REGISTER ORA/ORB WILL NOT CLEAR THE FLAG BIT. INSTEAD, THE BIT MUST BE CLEARED BY WRITING INTO THE IFR, AS DESCRIBED PREVIOUSLY.

Figure 25. Interrupt Flag Register (IFR)

For each interrupt flag in !FR, there is a corresponding bit in the Interrupt Enable Register. The system processor can set or clear selected bits in this register to facilitate controlling individual interrupts without affecting others. This is accomplished
by writing to address 1110 (IER address). If bit 7 of the data placed on the system data bus during this write operation is a 0 , each 1 in bits 6 through 0 clears the corresponding bit in the Interrupt Enable Register. For each zero in bits 6 through 0 , the corresponding bit is unaffected.
Setting selected bits in the Interrupt Enable Register is accomplished by writing to the same address with bit 7 in the data word set to a logic 1 . In this case, each 1 in bits 6 through 0 will set the corresponding bit. For each zero, the corresponding bit will be unaffected. This individual control of the setting and clearing operations allows very convenient control of the interrupts during system operation.

In addition to setting and clearing IER bits, the processor can read the contents of this register by placing the proper address on the register select and chip select inputs with the R / \bar{W} line high. Bit 7 will be read as a logic 1 .

REG 14 - INTERRUPT ENABLE REGISTER

NOTES:

1. IF BIT 7 IS A " 0 ", THEN EACH "1" IN BITS 0-6 DISABLES THE CORRESPONDING INTERRUPT.
2. IF BIT 7 IS A " 1 ", THEN EACH " 1 " IN BITS 0-6 ENABLES THE CORRESPONDING INTERRUPT.
3. IF A READ OF THIS REGISTER IS DONE, BIT 7 WILL BE " 1 " AND ALL OTHER BITS WILL REFLECT THEIR ENABLE/DISABLE STATE.

Figure 26. Interrupt Enable Register (IER)

Pin Configuration

VSS 1	40	$\square \mathrm{CA} 1$
$P A O-2$	39	$\square \mathrm{CA2}$
PA1 ${ }^{1}$	38	RSO
PA2 \square^{4}	37	RS1
PA3 $\square 5$	36	RS2
PA4 $\square 6$	35	RS3
PA5 $\square 7$	34	$\overline{\text { RES }}$
PA6 \square^{8}	33	D0
PA7 $\square 9$	32	D1
PBO $\square 10$	31	D2
PB1 $\square 11$	30	D3
PB2 \square_{12}	29	D4
PB3 \square^{13}	28	D5
PB4 \square^{14}	27	D6
PB5 15	26	D7
PB6 $\square 16$	25	d 2
PB7 17	24	CS1
CB1 18	23	$\square \overline{\mathrm{CS} 2}$
CB2 $\square 19$	22	R / \bar{W}
$v_{\text {CC }} \square_{20}$	21	$\square \mathrm{I} \overline{\mathrm{R}}$

Ordering Information

Order Number	Package Type	Frequency Option
SYP 6522	Plastic	1 MHz
SYP 6522A	Plastic	2 MHz
SYC 6522	Ceramic	1 MHz
SYC 6522A	Ceramic	2 MHz

Extended Temperature Range $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$

Features

- Two 8-Bit Bidirectional I/O Ports
- Two 16-Bit Programmable Timer/Counters
- Serial Data Port
- Single $+5 V$ Power Supply
- TTL Compatible
- CMOS Compatible Peripheral Port A Lines
- Expanded "Handshake" Capability Allows Positive

Control of Data Transfers Between Processor and Peripheral Devices

- Latched Output and Input Registers
- 1 MHz Operation
- Operation over wide temperature range $\left(-40^{\circ} \mathrm{C}\right.$ to $+85^{\circ} \mathrm{C}$)

Description

The SYE6522 Versatile Interface Adapter (VIA) is a very flexible I/O control device. In addition, this device contains a pair of very powerful 16 -bit interval timers, a serial-to-parallel/parallel-to-serial shift register and input data latching on the peripheral ports. Expanded handshaking capability allows control of bi-directional data transfers between VIA's in multiple processor systems.

Control of peripheral devices is handled primarily through two 8-bit bi-directional ports. Each line can
be programmed as either an input or an output. Several peripheral I/O lines can be controlled directly from the interval timers for generating programmable frequency square waves or for counting externally generated pulses. To facilitate control of the many powerful features of this chip, an interrupt flag register, an interrupt enable register and a pair of function control registers are provided.

Figure 1. SYE6522 Block Diagram

Absolute Maximum Ratings

Rating	Symbol	Value	Unit
Supply Voltage	V_{CC}	-0.3 to +7.0	V
Input Voltage			
Operating Temperature \quad Range Storage Temperature \quad Range	V_{IN}	-0.3 to +7.0	V

This device contains circuitry to protect the inputs against damage due to high static voltages. However, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages.
Ordering Information

Part Number	Package	Clock Frequency
SYEC6522	Ceramic	1 MHz
SYED6522	Cerdip	1 MHz
SYEP6522	Plastic	1 MHz

D.C. Characteristics $\quad\left(V_{C C}=5.0 \mathrm{~V} \pm 5 \%, T_{A}=-40^{\circ} \mathrm{C}\right.$ to $+85^{\circ} \mathrm{C}$ unless otherwise noted)

Symbol	Characteristic	Min.	Max.	Unit
V_{IH}	Input High Voltage (all except $\phi 2$)	2.4	$V_{\text {CC }}$	V
$\mathrm{V}_{\text {CH }}$	Clock High Voltage	2.4	V_{CC}	V
$V_{\text {IL }}$	- Input Low Voltage	-0.3	0.4	V
IIN	Input Leakage Current $-\mathrm{V}_{\mathrm{IN}}=0$ to 5 Vdc R/ $\bar{W}, \overline{R E S}, R S 0, R S 1, R S 2, R S 3, C S 1, \overline{C S} 2$, CA1, Ф2	-	± 2.5	$\mu \mathrm{A}$
$\mathrm{I}_{\text {TSI }}$	Off-state Input Current - $\mathrm{V}_{\mathrm{IN}}=.4$ to 2.4 V $\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{D} 0$ to D 7	-	± 10	$\mu \mathrm{A}$
I_{IH}	Input High Current $-\mathrm{V}_{1 \mathrm{H}}=2.4 \mathrm{~V}$ PA0-PA7, CA2, PB0-PB7, CB1, CB2	-100	-	$\mu \mathrm{A}$
$I_{\text {IL }}$	Input Low Current $-\mathrm{V}_{\mathrm{IL}}=0.4 \mathrm{Vdc}$ PA0-PA7, CA2, PB0-PB7, CB1, CB2	-	-1.6	mA
V_{OH}	$\begin{aligned} & \text { Output High Voltage } \\ & V_{C C}=\min , I_{\text {toad }}=-100 \mu \mathrm{Adc} \\ & \text { PA0-PA7, CA2, PB0-PB7, CB1, CB2 } \end{aligned}$	2.4	-	V
V_{OL}	$\begin{aligned} & \text { Output Low Voltage } \\ & \qquad V_{\mathrm{CC}}=\mathrm{min}, \mathrm{I}_{\text {load }}=1.6 \mathrm{mAdc} \end{aligned}$	-	0.4	V
IOH	Output High Current (Sourcing) $\begin{aligned} & \mathrm{V}_{\mathrm{OH}}=2.4 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{OH}}=1.5 \mathrm{~V}(\mathrm{~PB} 0-\mathrm{PB} 7) \end{aligned}$	$\begin{array}{r} -100 \\ -1.0 \end{array}$	$\begin{aligned} & - \\ & - \end{aligned}$	$\begin{array}{r} \mu \mathrm{A} \\ \mathrm{~mA} \\ \hline \end{array}$
$\mathrm{I}_{\text {OL }}$	Output Low Current (Sinking) $\mathrm{V}_{\mathrm{OL}}=0.4 \mathrm{Vdc}$	1.6	-	mA
IOFF	Output Leakage Current (Off state) IRO	-	10	$\mu \mathrm{A}$
$\mathrm{C}_{1 \mathrm{~N}}$	Input Capacitance $-\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$ (R/W, $\overline{\text { RES }}$, RS0, RS1, RS2, RS3, CS1, $\overline{\mathrm{CS}} 2$, D0-D7, PAO-PA7, CA1, CA2, PB0-PB7) (CB1, CB2) ($\Phi 2$ Input)	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\begin{aligned} & 7.0 \\ & 10 \\ & 20 \\ & \hline \end{aligned}$	pF pF pF
Cout	Output Capacitance $-\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$	-	10	pF
$P_{\text {D }}$	Power Dissipation $V_{C C}=5.25 \mathrm{~V}$	-	750	mW

Features

- 8 bit bi-directional Data Bus for direct communication with the microprocessor
- 1024×8 ROM
- 64×8 static RAM
- Two 8 bit bi-directional data ports for interface to peripherals
- Two programmable I/O Peripheral Data Direction Registers
- Programmable Interval Timer
- Programmable Interval Timer Interrupt
- TTL \& CMOS compatible peripheral lines
- Peripheral pins with Direct Transistor Drive Capability
- High Impedance Three-State Data Pins
- Allows up to 7K contiguous bytes of ROM with no external decoding

Description

The SY6530 is designed to operate in conjunction with the SY6500 microprocessor Family. It is comprised of a mask programmable 1024×8 ROM, a 64×8 static RAM, two software controlled 8 bit bi-directional data
ports allowing direct interfacing between the microprocessor unit and peripheral devices, and a software programmable interval timer with interrupt, capable of timing in intervals from 1 to 262,144 clock periods.

Figure 1. SY6530 Block Diagram

Absolute Maximum Ratings*

Supply Voltage (V_{CC}) -.3 to +7.0 V
Input/Output Voltage (V_{IN}) -.3 to +7.0 V
Operating Temperature (T_{OP}) 0 to $70^{\circ} \mathrm{C}$
Storage Temperature Range ($\mathrm{T}_{\text {STG }}$) -55 to $+150^{\circ} \mathrm{C}$

Comment*

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

D.C. Characteristics $\quad\left(V_{C C}=5.0 \mathrm{~V} \pm 5 \%, V_{S S}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}\right.$ to $\left.70^{\circ} \mathrm{C}\right)$

	Symbol	Min.	Typ.	Max.	Unit
Input High Voltage	$\mathrm{V}_{\text {IH }}$	2.4		V_{CC}	V
Input Low Voltage	VIL	-0.3		0.4	V
Input Leakage Current; $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{SS}}+5 \mathrm{~V}$ $\mathrm{A} \emptyset$-A9, RS, $\mathrm{R} / \overline{\mathrm{W}}, \overline{\mathrm{RES}}, ~ \emptyset 2, \mathrm{PB6}{ }^{*}, \mathrm{PB5} 5^{*}$	IIN		1.0	2.5	$\mu \mathrm{A}$
Input Leakage Current for High Impedence State (Three State); V IN $=.4 \mathrm{~V}$ to 2.4 V ; $\mathrm{D} \emptyset-\mathrm{D} 7$	ITSI		± 1.0	± 10.0	$\mu \mathrm{A}$
Input High Current; $\mathrm{V}_{\mathrm{IN}}=2.4 \mathrm{~V}$ PAØ-PA7, PB $\emptyset-P B 7$	IIH	-100.	-300.		$\mu \mathrm{A}$
Low Input Current; $\mathrm{V}_{\text {IN }}=.4 \mathrm{~V}$ PAØ-PA7, PBØ-PB7	IIL		1.0	1.6	mA
Output High Voltage $\begin{gathered} V_{C C}=M I N, I_{L O A D} \leqslant-100 \mu A(P A \emptyset-P A 7, P B \emptyset-P B 7, D \emptyset-D 7) \\ \text { ILOAD } \leqslant-3 \mathrm{~mA}(P A \emptyset, P B \emptyset) \end{gathered}$	V_{OH}	$\begin{aligned} & 2.4 \\ & 1.5 \end{aligned}$			V
Output Low Voltage $V_{C C}=M I N, I_{L O A D} \leqslant 1.6 \mathrm{~mA}$	V_{OL}			0.4	V
Output High Current (Sourcing); $\begin{aligned} \mathrm{VOH} & \geqslant 2.4 \mathrm{~V}(\mathrm{PA} \emptyset-\mathrm{PA} 7, \mathrm{~PB} \emptyset-\mathrm{PB} 7, \mathrm{D} \emptyset-\mathrm{D} 7) \\ & \geqslant 1.5 \mathrm{~V} \text { Available for other than } \mathrm{TTL} \\ & \text { (Darlingtons) }(\mathrm{PA} \mathrm{\emptyset,} \mathrm{~PB} \emptyset) \end{aligned}$	${ }^{\mathrm{I} \mathrm{OH}}$	$\begin{aligned} & -100 \\ & -3.0 \end{aligned}$	$\begin{gathered} -1000 \\ -5.0 \end{gathered}$		$\mu \mathrm{A}$ mA
Output Low Current (Sinking); $\mathrm{V}_{\mathrm{OL}} \leqslant .4 \mathrm{~V}$	IOL	1.6			mA
Clock Input Capacitance	$\mathrm{C}_{\text {CLK }}$			30	pF
Input Capacitance	CIN			10	pF
Output Capacitance	COUT			10	pF
Power Dissipation ($\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}$)	PD			700	mW

*When Programmed as address pins All values are D.C. readings

Write Timing Characteristics

Characteristic	Symbol	Min.	Typ.	Max.	Unit
Clock Period	TCYC	1		10	$\mu \mathrm{s}$
Rise \& Fall Times	$\mathrm{T}_{\mathrm{R},} \mathrm{T}_{\mathrm{F}}$			25	ns
Clock Pulse Width	TC	470			ns
$\mathrm{R} / \overline{\mathrm{W}}$ valid before positive transition of clock	TWCW	180			ns
Address valid before positive transition of clock	TACW	180			ns
Data bus valid before negative transition of clock	TDCW	300			ns
Data Bus Hold Time	THW	10			ns
Peripheral data valid after negative transition of clock	TCPW			1	$\mu \mathrm{s}$
Peripheral data valid after negative transition of clock driving CMOS $\left(\text { Level }=V_{C C}-30 \%\right)$	TCMOS			2	$\mu \mathrm{s}$
$\mathrm{R} / \overline{\mathrm{W}}$ hold time after negative clock transition	TCWW ${ }^{\prime}$	0			ns
Address hold time	TCAH	0			ns

Figure 2. Write Timing Characteristics

Figure 3. Read Timing Characteristics

Test Load

Read Timing Characteristics

Characteristic	Symbol	Min.	Typ.	Max.	Unit
R/ \bar{W} valid before positive transition of clock	TWCR	180			ns
Address valid before positive transition of clock	TACR	180			ns
Peripheral data valid before positive transition of clock	TPCR	300			ns
Data bus valid after positive transition of clock	TCDR			395	ns
Data Bus Hold Time	THR	10			ns
$\overline{\operatorname{RO}(\text { Interval Timer Interrupt) valid before positive transition of clock }}$	TIC	200			ns
R/W hold time after negative clock transition	TCWR	0			ns
Address hold time	TCAH	0			ns

Loading $=30 \mathrm{pF}+1$ TTL load for PA $\emptyset-\mathrm{PA} 7, \mathrm{~PB} \emptyset-\mathrm{PB} 7$

$$
=130 \mathrm{pF}+1 \text { TTL load for D } \emptyset-D 7
$$

Interface Signal Description

Reset ($\overline{\mathrm{RES}}$)

During system initialization a low ($\leqslant 0.4 \mathrm{~V}$) on the $\overline{\mathrm{RES}}$ input will cause a zeroing of all four $1 / O$ registers. This in turn will cause all I/O buses to act as inputs, protecting external components from possible damage and erroneous data while the system is being configured under software control. The Data Bus Buffers are put into an OFF-STATE during reset. Interrupt capability is disabled with the $\overline{\mathrm{RES}}$ signal. The $\overline{\operatorname{RES}}$ signal must be held low for at least one clock period when reset is required.

Input Clock (ϕ 2)
The input clock is a system Phase Two clock.

Read/Write (R/W)

R / \bar{W} is supplied by the microprocessor and is used to control the transfer of data to and from the SY6530. A high on the R / \bar{W} pin allows the processor to read(with proper addressing) the SY6530. A low on the R/W pin allows a write (with proper addressing) to the SY6530.

Interrupt Request ($\overline{\mathbf{R Q}}$)

The $\overline{\mathrm{RQ}}$ output is derived from the interval timer. The same line, if not used as an interrupt, can be used as a
peripheral I/O (PB7). When used as an interrupt, the pin should be set to an input in the data direction register. As $\overline{\mathrm{RQ}}$ the output will be normally high with a low indicating an interrupt from the SY6530. An external pull-up device is not required; however, if collector-OR'd with other devices, the internal pull-up may be omitted with a mask option.

Data Bus (DO-D7)

The SY6530 has eight bi-directional data lines (DOD7). These lines connect to the system's data bus and allow transfer of data to and from the microprocessor. The output buffers remain in the off state except when a Read operation occurs.

Peripheral Data Ports (PAO-PA7, PB0-PB7)
The SY6530 has two 8-bit peripherall/O ports, Port A (lines PAO-PA7) and Port B (lines PBO-PB7). Each line is individually software programmable as either an input or an output. By writing a " 0 " to any bit position of the Data Direction Register (DDRA or DDRB) the corresponding line will be programmed as an input. Likewise, by writing " 1 " to any bit position in the DDR will cause the corresponding line to act as an output.

When the Ports are programmed as inputs and their output registers (ORA and ORB) are read by the MPU, the level on the port lines will be transferred to the Data Bus. When the ports are programmed as outputs the lines will reflect the data written by the MPU into the output registers.

PAO and PBO are capable of direct transistor drive (source 3 mA at 1.5 V).

Address and Select Lines (A0-A9, RS, PB5 and PB6) AO-A9 and ROM SELECT (RS) are always used as addressing lines. There are 2 additional lines which are mask programmable and can be used either individually or together as CHIP SELECTS. They are PB5 and PB6. When used as peripheral datalines they cannot be used as chip selects.

Internal Organization

A block diagram of the internal architecture is shown in Figure 1. The SY6530 is divided into four basic sections, RAM, ROM, I/O and TIMER. The RAM and ROM interface directly with the microprocessor through the system data bus and address lines. The I/O section consists of two 8 -bit halves. Each half contains a Data Direction Register (DDR) and an I/O Register.

ROM 1 K Byte (8 K Bits)

The 8 K ROM is in a 1024×8 configuration. Address lines A0-A9, as well as RS are needed to address the entire ROM. With the addition of CS1 and CS2, seven SY6530's may be addressed, giving 7168×8 bits of contiguous ROM.

RAM-64 Bytes (512 Bits)

A 64×8 static RAM is contained on the SY6530. It is addressed by A0-A5 (Byte Select), RS, A6, A7, A8, A9, and, depending on the number of chips in the system, CS1 and CS2.

Internal Peripheral Registers

There are four 8 -bit internal registers, two data direction registers (DDRA and DDRB) and two peripheral I/O data registers (ORA and ORB). The two data direction registers control the direction of the data into and out of the peripheral line. A " 1 " written into the Data Direction Register sets up the corresponding peripheral buffer line as an output. Therefore, anything then written into thel/O Register willappear on that corresponding peripheral pin. A " 0 " written into the DDR inhibits the output buffer from transmitting data to or from the I/O Register. For example, a " 1 " loaded into data direction A, position 3, sets up peripheral line PA3 as an output. If a " 0 " had been loaded, PA3 would be configured as an input and remain in the high state. The two datal/O registers are used to latch data from the Data Bus during a Write operation until the peripheral device can read the data supplied by the microprocessor.

During a read operation by the microprocessor the SY6530 transfers the TTL level on the peripheral data lines to the data bus. For the peripheral data lines which are programmed as outputs the microprocessor
will read the corresponding data bits of the 1/O Register. The only way the I/O Register data can be changed is by a microprocessor Write operation. The 1/O Register is not affected by a Read of the data on the peripheral lines.

Interval Timer

The Timer section of the SY6530 contains three basic parts: preliminary divide down register, programmable 8 -bit register and interrupt logic. These are illustrated in Figure 4.

The Interval Timer can be programmed to count up to 256 time intervals. Each time interval can be either 1T, $8 \mathrm{~T}, 64 \mathrm{~T}$ or 1024 T increments, where T is the system clock period. When a full count is reached, the interrupt flag is set to a logic " 1 ". After the interrupt flag is set the internal clock continues counting down at a 1 T rate to a maximum of -255 T . This allows the user to read the counter and then determine how long the interrupt has been set.

The 8-bit system Data Bus is used to transfer data to and from the Interval Timer. If a count of 52 time intervals were to be counted, the pattern 00110100 would be put on the Data Bus and written into the Interval Time register.

At the same time that data is being written into the IntervalTimer, the counting intervals of 1,8,64,1024T are decoded from address lines A0 and A1. During a Read or Write operation address line A3 controls the interrupt capability of PB7, i.e., $\mathrm{A} 3=1$ enables $\overline{\mathrm{RQ}}$ on PB7, A3 $=0$ disables $\overline{\mathrm{RO}}$ on PB7. When PB7 is used as $\overline{\mathrm{IRO}}$ with the Interval Timer it should be programmed as an input. If PB7 is enabled by A3 and an interrupt occurs PB7 will go low. When the Timer is read prior to the interrupt flag being set, the number of time intervals remaining will be read, i.e., $51,50,49$, etc.

When the Timer has counted down to 00000000 an interrupt will occur on the next count and the counter will read 1111111111 . After interrupt, the timer register decrements at a divide by " 1 " rate of the system clock. If after interrupt, the Timer is read and a value of 11100111 is read, the time since interrupt is 28T. The value read is in two's complement.

```
Value Read = 11100100
Complement = 00011011
ADD 1 = 00011100=28.
```

Thus, to arrive at the total elapsed time, merely do a two's complement and add to the original time written into the Timer. Again, assume time written as 00110 $100(=52)$. With a divide by 8 , total time to interrupt is $(52 \times 8)+1=417 \mathrm{~T}$. Total elapsed time would be $416 \mathrm{~T}+28 \mathrm{~T}=444 \mathrm{~T}$, assuming the value read after interrupt was 11100100 .

After an interrupt, whenever the Timer is written or read the interrupt is reset. However, the reading of the Timer at the same time the interrupt occurs will not reset the interrupt flag.

Figure 5 illustrates an example of interrupt.

Figure 4. Basic Elements of Interval Timer

Figure 5. Timer Interrupt Timing

1. Data written into Interval Timer is $00110100=52_{10}$
2. Data in Interval Timer is $00011001=25_{10}$

$$
52-\frac{213}{8}-1=52-26-1=25
$$

3. Data in Interval Timer is $00000000=0_{10}$

$$
52-\frac{415}{8}-1=52-51-1=0
$$

4. Interrupt has occured at ϕ_{2} pulse \#416

Data in Interval Timer = 11111111
5. Data in Interval Timer is 10101100

$$
\begin{aligned}
& \text { two's complement is } 01010100=8410 \\
& 84+(52 \times 8)=50010
\end{aligned}
$$

When reading the Timer after an interrupt, A3 should be low so as to disable the $\overline{\mathrm{RO}}$ output. This is done so as to avoid future interrupts until another Write timer operation.

Addressing

Because the address decode matrix is maskable the SY6530 offers many variations to the user. RAM, ROM and the I/O - Interval Timer block may be enabled individually by any combination of A6-A9 plus RS, CS1 and CS2 (refer to Figure 6 for a typical configuration). Because CS1 and CS2 are mask
options and act independently neither, either, or both may be masked as Chip Selects or Port B lines.

One-Chip Addressing

Figure 6 illustrates a 1 -chip system for the SY6530, and Figure 8 details address decoding.

Figure 6. SY6530 One Chip Address Encoding Scheme

Seven Chip Addressing

In the 7-chip system the objective would be to have 7K of contiguous ROM, with RAM in low order memory. The 7K of ROM could be placed between addresses 65,535 and 1024. For this case, assume A13, A14, and A15 are all 1 when addressing ROM, and 0 when addressing RAM or I/O. This would place the 7 K ROM between addresses 65,535 and 58,367 . The 2 lines designated as chip-select or 1/O would be mask programmed as chip select. RS would be connected to address line A10. CS1 and CS2 would be connected to address lines A11 and A1 2 respectively. See Figure 7.

I/O Register - Timer Addressing

The previous two examples have illustrated how to address the ROM, RAM and the general I/O Register

- Timer Block. A0 thru A3 specify which of the four I/O registers are selected and select the modes of operation for the Timer. Figure 8 illustrates the internal decoding of these address bits and their function.

Address line A2 selects I/O or Timer. If I/O-Timer Select is enabled and A2 is low the I/O registers are selected and bits AO and A1 are decoded to select the individual register.

During a write when I/O-Timer Select is enabled and A2 is high the Timer is selected. Bits A0 and A1 select the \div by rate (the data lines should at this time have the count value to be written), and A3 determines if PB7 is to act as an IRQ output.

The addressing of the ROM select, RAM select and I/O timer select lines would be as follows:
Figure 7. SY6530 Seven Chip Addressing Scheme

		$\begin{aligned} & \text { CS2 } \\ & \text { A12 } \end{aligned}$	$\begin{aligned} & \text { CS1 } \\ & \text { A11 } \end{aligned}$	$\begin{aligned} & \text { RS } \\ & \text { A10 } \end{aligned}$	A9	A8	A7	A6
SY6530 \#1,	ROM SELECT	0	0	1	X	X	X	X
	RAM SELECT	0	0	0	0	0	0	0
	I/O TIMER	0	0	0	1	0	0	0
SY6530 \#2,	ROM SELECT	0	1	0	X	X	X	X
	RAM SELECT	0	0	0	0	0	0	1
	I/O TIMER	0	0	0	1	0	0	1
SY6530 \#3,	ROM SELECT	0	1	1	X	X	X	X
	RAM SELECT	0	0	0	0	0	1	0
	I/O TIMER	0	0	0	1	0	1	0
SY6530 \#4,	ROM SELECT	1	0	0	X	X	X	X
	RAM SELECT	0	0	0	0	0	1	1
	I/O TIMER	0	0	0	1	0	1	1
SY6530 \#5,	ROM SELECT	1	0	1	x	X	X	X
	RAM SELECT	0	0	0	0	1	0	0
	I/O TIMER	0	0	0	1	1	0	0
SY6530 \#6,	ROM SELECT	1	1	0	X	X	X	X
	RAM SELECT	0	0	0	0	1	0	1
	I/O TIMER	0	0	0	1	1	0	1
SY6530 \#7,	ROM SELECT	1	1	1	X	X	X	X
	RAM SELECT	0	0	0	0	1	1	0
	I/O TIMER	0	0	0	1	1	1	0

* RAM select for SY6530 \#5 would read $=\overline{\mathrm{A} 12} \bullet \overline{\mathrm{~A} 11} \bullet \overline{\mathrm{~A} 10} \bullet \overline{\mathrm{~A} 9} \bullet \mathrm{~A} 8 \cdot \overline{\mathrm{~A} 7} \bullet \overline{\mathrm{~A} 6}$

Figure 8. Addressing Decode for I/O Register and Timer
ADDRESSING DECODE

	ROM SELECT	RAM SELECT	I/O-TIMER SELECT	R/W	A3	A2	A1	A0
READ ROM	1	0	0	1	X	x	X	X
WRITE RAM	0	1	0	0	X	X	X	X
READ RAM	0	1	0	1	X	X	X	X
WRITE DDRA	0	0	1	0	X	0	0	1
READ DDRA	0	0	1	1	X	0	0	1
WRITE DDRB	0	0	1	0	X	0	1	1
READ DDRB	0	0	1	1	X	0	1	1
WRITE ORA	0	0	1	0	X	0	0	0
READ ORA	0	0	1	1	X	0	0	0
WRITE ORB	0	0	1	0	X	0	1	0
READ ORB	0	0	1	1	X	0	1	0
WRITE TIMER								
$\div 1 \mathrm{~T}$	0	0	1	0	*	1	0	0
$\div 8 \mathrm{~T}$	0	0	1	0	*	1	0	1
$\div 64 \mathrm{~T}$	0	0	1	0	*	1	1	0
$\div 1024 \mathrm{~T}$	0	0	1	0	*	1	1	1
READ TIMER	0	0	1	1	*	1	x	0
READ INTERRUPT FLAG	0	0	1	1	X	1	X	1

$X=$ Don't care condition

* $A_{3}=1$ Enables IRQ to PB7
$A_{3}=0$ Disables IRO to PB7

Pin Configuration

Programming Instructions

The SY6530 utilizes computer aided techniques to manufacture and test custom ROM patterns. The pattern and address coding is supplied to Synertek in any of several formats.

1) 2708 -type EPROMs.
2) Synertek data card formats.
3) Other input formats, providing they can be translated into one of the above.

Synertek Data Card Format

A. The format for the first and all succeeding records, except for the last record in a file is as follows:
; $\mathrm{N}_{1} \mathrm{~N}_{0}$
$\mathrm{A}_{3} \mathrm{~A}_{2} \mathrm{~A}_{1} \mathrm{~A}_{0}$
$\left(D_{1} D_{0}\right)_{1}$
$\left(D_{1} D_{0}\right)_{2}$
$x_{3} x_{2} x_{1} x_{0}$
where:

1. All characters (N, A, D, X) are the ASCII characters 0 through F, each representing a hexadecimal digit.
2. ; is a record mark indicating the start of a record.
3. $N_{1} N_{0}=$ the number of bytes of data in this record (in hexadecimal). Each pair of hexadecimal characters ($D_{1} D_{0}$) represents a single byte in the record.
4. $A_{3} A_{2} A_{1} A_{0}=$ the hexadecimal starting address for the record. A_{3} represents address bits 15 through 12 , etc. The 8 -bit byte represented by $\left(D_{1} D_{0}\right) 1$ is stored in address $A_{3} A_{2} A_{1} A_{0} ;\left(D_{1} D_{0}\right)_{2}$ is stored in $\left(A_{3} A_{2} A_{1} A_{0}\right)$ +1 , etc.
5. $\left(D_{1} D_{0}\right)=$ two hexadecimal digits representing an 8 -bit byte of data. $\left(D_{1}=\right.$ high order 4 binary bits and $D_{0}=$ low-order 4 bits). A maximum of 18 (Hex) or 24 (decimal) bytes of data per record is permitted.
6. $X_{3} X_{2} X_{1} X_{0}=$ record check sum. This is the hexadecimal sum of all characters in the record, including $N_{1} N_{0}$ and $A_{3} A_{2} A_{1} A_{0}$ but exclucing the record mark and the check sum characters. To generate the check sum, each byte of data (represented by two ASCII characters), is treated as 8 binary bits. The binary sum of these 8 -bit bytes is truncated to 16 binary bits (4 hexadecimal digits) and is then represented in the record as four ASCII characters $\left(\mathrm{X}_{3} \mathrm{X}_{2} \mathrm{X}_{1} \mathrm{X}_{0}\right)$.
B. The format for the last record in a file is as follows:
; $00 \quad \mathrm{C}_{3} \mathrm{C}_{2} \mathrm{C}_{1} \mathrm{C}_{0} \quad \mathrm{X}_{3} \mathrm{X}_{2} \mathrm{X}_{1} \mathrm{X}_{0}$
7. $00=$ zero bytes of data in this record. This identifies this as the final record in a file.
8. $\mathrm{C}_{3} \mathrm{C}_{2} \mathrm{C}_{1} \mathrm{C}_{0}=$ the total number of records (in hexadecimal) in this file, including the last record.
9. $X_{3} X_{2} X_{1} X_{0}=$ check sum for this record.
C. Example

The following example illustrates the exact format of the hex interface file in both listing and punched paper tape form.
; 18 F000CA8 6004 C00F0FDF9 212 D21FF292DBF2161F5F7FF657D677D0D40 ; 18 F0 18 E5 64672 DFD7575E50000CF4112F800925198D200539192F20C9 8 ; 18 F0 3008 DB0 2880810 DE12D894189AC2830E9800FBB6232F087F650AA5 ; 18 F0 48036 E20EF2FA5 8 D4465E8FDF9 3 DE7 75 EF257FB5 20 ED64657CODEB ; 18 F0607F11 D05A1EDF0250B0DAFE009252909912DB108A0298DE080C0D ; 18 F078 D95058DF82D2D79A00ED65E68724EE05212764A5F5BDA9050E2C ; 18F090EC20FF652525246933213F20FF31293B7E18D65042DE40500A92 ; 18 F0A8 1 E5E5B02534A53DE4A9B189259969F589E5E92DF52DE9E9AOCA2 ; 18 F0 CO 00B3 268 D2400EF6765E7A0B5606725217D20AF35EDF5 202 F0C0 8 ; 18 F0 D8 692525342 B 35256 CDF12F2785FFF547FD2E2D6525BDF5A720D26 ; 10 F0F0 12 DB 020 F1A1ABF86D2DA9 ADAC8 DECA1B0A12 ;00000B000B

Additional Pattern Information

In addition to the ROM data patterns, it is necessary to provide the information outlined below.

```
CUSTOMER NAME
CUSTOMER PART NO.
CUSTOMER CONTACT (NAME)
CUSTOMER TELEPHONE NO.
CS1/PB6 (ENTER "CS1' OR "PB6")
CS2/PB5 (ENTER "CS2" OR "PB5")
PULL-UP RESISTOR ON PB7 ("YES" OR "NO")
LOGIC FORMAT ("POS" OR "NEG")
DEVICE ADDRESSING (Enter " \(H\) " for High, " \(L\) " for Low, or " \(N\) " for don't care)
```

	RS	CS1	CS2	A9	A8	A7	A6
ROM SELECT							
RAM SELECT							
I/O TIMER SELECT							

Send Information To:
Synertek - ROM
P.O. Box 552

Santa Clara, CA 95052

SY6530 Customer Specification Form

1. Date.
2. Customer name.
3. Customer part no.
(maximum 10 digits)
4. Synertek "C" number.
5. Customer Contact.
6. Customer phone number
7. Chip Select Code
(Check one square in each block)

CS1	
PB6	

8. ROM/RAM/I-O SELECTS (Specify H or L or N (don't care) in each box.

	RS	CS1	CS2	A9	A8	A7	A6
ROM SELECT				N	N	N	N
RAM SELECT							
I/O SELECT							

9. Customer's Input

Punched Cards
Punched Tape
10. Data Format

MOS Technology
Intel Hex
Intel BPNF
Binary
11. Logic Format

Positive
Negative
12. Verification Status

Hold
Not Required

Features

- 8 bit bi-directional Data Bus for direct communication with the microprocessor
- Programmable edge-sensitive interrupt
- 128×8 static RAM
- Two 8 bit bi-directional data ports for interface to peripherals
- Two programmable I/O Peripheral Data Direction Registers
- Programmable Interval Timer
- Programmable Interval Timer Interrupt
- TTL \& CMOS compatible peripheral lines
- Peripheral pins with Direct Transistor Drive Capability
- High Impedance Three-State Data Pins

Description

The SY6532 is designed to operate in conjunction with the SY6500 Microprocessor Family. It is comprised of a 128×8 static RAM, two software controlled 8 bit bi-directional data ports allowing direct interfacing between the microprocessor unit and peripheral devices, a software programmable interval timer with interrupt capable of timing in various intervals from 1 to 262,144 clock periods, and a programmable edge-detect interrupt circuit.

Block Diagram

Maximum Ratings

RATING	SYMBOL	VOLTAGE	UNIT
Supply Voltage	V_{CC}	-.3 to +7.0	V
Input/Output Voltage	$\mathrm{V}_{\text {IN }}$	-.3 to +7.0	V
Operating Temperature Range	T_{OP}	0 to 70	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {STG }}$	-55 to +150	${ }^{\circ} \mathrm{C}$

D.C. Characteristics $\quad\left(V_{C C}=5.0 \mathrm{~V} \pm 5 \%, V_{S S}=0 \mathrm{~V}, T_{A}=0-70^{\circ} \mathrm{C}\right)$

CHARACTERISTIC	SYMBOL	MIN.	TYP.	MAX.	UNIT
Input High Voltage	$\mathrm{V}_{\text {IH }}$	2.4		V_{CC}	V
Input Low Voltage	$\mathrm{V}_{\text {IL }}$. 3		. 4	V
Input Leakage Current; $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{SS}}+5 \mathrm{~V}$ $\mathrm{A} \emptyset$ - $\mathrm{A} 6, \overline{\mathrm{RS}}, \mathrm{R} / \mathrm{W}, \overline{\mathrm{RES}}, \emptyset 2, \mathrm{CS} 1, \overline{\mathrm{CS} 2}$	IIN		1.0	2.5	$\mu \mathrm{A}$
Input Leakage Current for High Impedance State (Three State) $; \mathrm{V}_{\mathrm{IN}}=.4 \mathrm{~V}$ to $2.4 \mathrm{~V} ; \mathrm{D} \emptyset-\mathrm{D} 7$	ITSI		± 1.0	± 10.0	$\mu \mathrm{A}$
Input High Current; $\mathrm{V}_{\mathrm{IN}}=2.4 \mathrm{~V}$ РА $\emptyset-\mathrm{PA} 7, \mathrm{~PB} \emptyset-\mathrm{PB} 7$	IIH	-100.	-300.		$\mu \mathrm{A}$
Input Low Current; $\mathrm{V}_{\mathrm{IN}}=.4 \mathrm{~V}$ PA \emptyset-PA7, PB \emptyset-PB7	IIL		1.0	1.6	mA
$\begin{aligned} & \text { Output High Voltage } \\ & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{LOAD}} \leqslant-100 \mu \mathrm{~A}(\mathrm{PA} \emptyset-\mathrm{PA} 7, \mathrm{~PB} \emptyset-\mathrm{PB} 7, \mathrm{D} \emptyset-\mathrm{D} 7) \\ & \qquad \mathrm{I}_{\mathrm{LOAD}} \leqslant 3 \mathrm{MA}(\mathrm{~PB} \emptyset-\mathrm{PB} 7) \end{aligned}$	V_{OH}	$\begin{aligned} & 2.4 \\ & 1.5 \end{aligned}$			V
$\begin{aligned} & \text { Output Low Voltage } \\ & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{LOAD}} \leqslant 1.6 \mathrm{MA} \\ & \hline \end{aligned}$	VOL			. 4	V
Output High Current (Sourcing); $\begin{aligned} & \mathrm{V} \mathrm{OH} \geqslant 2.4 \mathrm{~V}(\mathrm{PA} \emptyset-\mathrm{PA} 7, \mathrm{~PB} \emptyset-\mathrm{PB} 7, \mathrm{D} \emptyset-\mathrm{D} 7) \\ & \geqslant 1.5 \mathrm{~V} \text { Available for direct transistor } \\ & \text { drive }(\mathrm{PB} \emptyset-\mathrm{PB} 7) \end{aligned}$	IOH	$\begin{array}{r} -100 \\ 3.0 \end{array}$	$\begin{gathered} -1000 \\ 5.0 \end{gathered}$		$\begin{aligned} & \mu \mathrm{A} \\ & \mathrm{~mA} \end{aligned}$
Output Low Current (Sinking); $\mathrm{V}_{\mathrm{OL}} \leqslant .4 \mathrm{~V}$	IOL	1.6			mA
Clock Input Capacitance	$\mathrm{C}_{\text {Clk }}$			30	pf
Input Capacitance	$\mathrm{C}_{\text {IN }}$			10	pf
Output Capacitance	COUT			10	pf
Power Dissipation ($\left.\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}\right)$	P_{D}			680	mW

All inputs contain protection circuitry to prevent damage due to high static charges. Care should be exercised to prevent unnecessary application of voltage outside the specification range.

Test Load

Write Timing Characteristics

Read Timing Characteristics

SY6532

Write Timing Characteristics

Symbol	Parameter	SY6532		SY6532A		Unit
		Min.	Max.	Min.	Max.	
T_{CY}	Cycle Time	1	50	0.50	50	$\mu \mathrm{s}$
T_{C}	$\phi 2$ Pulse Width	0.44	25	0.22	25	$\mu \mathrm{s}$
$\mathrm{T}_{\text {ACW }}$	Address Set-Up Time	180	-	90	-	ns
TCAW	Address Hold Time	0	-	0	-	ns
Twew	R/W్W Set-Up Time	180	-	90	-	ns
TCWw	R/ \bar{W} Hold Time	0	-	0	-	ns
TDCW	Data Bus Set-Up Time	265	-	100	-	ns
THW	Data Bus Hold Time	10	-	10	-	ns
$\mathrm{T}_{\text {CPW }}$	Peripheral Data Delay Time	-	1.0	-	1.0	$\mu \mathrm{s}$
TCMOS	Peripheral Data Delay Time to CMOS Levels	-	2.0	-	2.0	$\mu \mathrm{s}$

NOTE: $\mathrm{tr}, \mathrm{tf}=10$ to 30 ns .

Read Timing Characteristics

Symbol	Parameter		SY6532		SY6532A	
		Min.	Max.	Min.	Max.	Unit
$T_{C Y}$	Cycle Time	1	50	0.5	50	$\mu \mathrm{~s}$
$\mathrm{~T}_{\text {ACR }}$	Address Set-Up Time	180	-	90	-	ns
$\mathrm{T}_{\text {CAR }}$	Address Hold Time	0	-	0	-	ns
$\mathrm{T}_{\text {PCR }}$	Peripheral Data Set-Up Time	300	-	300	-	ns
$\mathrm{T}_{\text {CDR }}$	Data Bus Delay Time	-	340	-	200	ns
$\mathrm{~T}_{\text {HR }}$	Data Bus Hold Time	10	-	10	-	ns

NOTE: $\mathrm{tr}, \mathrm{tf}=10$ to 30 ns .

Interface Signal Description

Reset ($\overline{\mathrm{RES}}$)

During system initialization a Logic " 0 " on the $\overline{\operatorname{RES}}$ input will cause a zeroing of all four I / O registers. This in turn will cause all I/O buses to act as inputs thus protecting external components from possible damage and erroneous data while the system is being configured under software control. The Data Bus Buffers are put into an OFF-STATE during Reset. Interrupt capability is disabled with the $\overline{\mathrm{RES}}$ signal. The $\overline{\mathrm{RES}}$ signal must be held low for at least one clock period when reset is required.

Input Clock

l'he input clock is a system Phase Two clock which can be either a low level clock ($\mathrm{V}_{\mathrm{IL}}<0.4, \mathrm{~V}_{\mathrm{IH}}>2.4$) or high level clock ($\mathrm{V}_{\mathrm{IL}}<0.2, \mathrm{~V}_{\mathrm{IH}}=\mathrm{Vcc}_{-.2}^{+}$).

Read/Write ($\mathrm{R} / \overline{\mathrm{W}}$)

The R / \bar{W} signal is supplied by the microprocessor and is used to control the transfer of data to and from the SY6532. A high on the R / \bar{W} pin allows the processor to read (with proper addressing) the SY6532. A low on the R / \bar{W} pin allows a write (with proper addressing) to the SY6532.

Interrupt Request ($\overline{\mathrm{RO}}$)

The $\overline{I R Q}$ output is derived from the interrupt control logic. It will normally be high with a low indicating an interrupt from the SY6532. $\overline{\text { IRQ }}$ is an open-drain output, permitting several units to be wire-or'ed to the common $\overline{\text { IRQ }}$ microprocessor input pin. The $\overline{I R Q}$ output may be activated by a transition on PA7 or timeout of the Interval Timer.

Data Bus (D0-D7)

The SY6532 has eight bi-directional data lines (D0-D7). These lines connect to the system's data bus and allow transfer of data to and from the microprocessor. The output buffers remain in the off state except when a Read operation occurs.

Peripheral Data Ports (PA0-PA7, PB0-PB7)

The SY6532 has two 8-bit peripheral I/O Ports, Port A (lines PA0-PA7) and Port B (lines PB0-PB7). Each line is individually programmable as either an input or an output. By writing a " 0 " to any bit position of the Data Direction Register (DDRA or DDRB) the corresponding line will be programmed as an input. Likewise, by writing a " 1 " to any bit position in DDRA or DDRB will cause the corresponding line to act as an output.

When a Port line is programmed as an input and its ouput register (ORA or ORB) is read by the MPU, the TTL level on the Port line will be transferred to the data bus. When the Port lines are programmed as outputs, the lines will reflect the data written by the MPU into the output registers. See Edge Sense Interrupt Section for an additional use of PA7.

Address and Select Lines (A0-A6, $\overline{\mathbf{R S}}, \mathbf{C S 1}$ and $\overline{\mathbf{C S} 2}$)

A0-A6 and $\overline{\mathrm{RS}}$ are used to address the RAM, I/O registers, Timer and Flag register. CS1 and $\overline{\mathrm{CS} 2}$ are used to select (enable access to) the SY6532.

Internal Organization

A block diagram of the internal architecture is shown in Figure 1. The SY6532 is divided into four basic sections: RAM, I/O, Timer, and Interrupt Control. The RAM interfaces directly with the microprocessor through the system data bus and address lines. The I/O section consists of two 8-bit halves. Each half contains a Data Direction Register (DDR) and an I/O register.
RAM 128 Bytes (1024 Bits)
A 128×8 static RAM is contained on the SY6532. It is addressed by A0-A6 (Byte Select), $\overline{\mathrm{RS}}, \mathrm{CS} 1$, and $\overline{\mathrm{CS} 2}$.

Internal Peripheral Registers

There are four 8 -bit internal registers: two data direction registers and two output registers. The two data direction registers (A side and B side) control the direction of the data into and out of the peripheral I/O. A logic zero in a bit of the data direction register (DDRA and DDRB) causes the corresponding line of the I/O port to act as an input. A logic one causes the corresponding line to act as an output. The voltage on any line programmed as an output is determined by the corresponding bit in the output register (ORA and ORB).
Data is read directly from the PA lines during a peripheral read operation. For a PA pin programmed as an output, the data transferred into the processor will be the same as the data in the ORA only if the voltage on the line is allowed to be $\geqslant 2.4$ volts for a logic one and $\leqslant 0.4$ volts for a zero. If the loading on the line does not allow this, then the data resulting from the read operation may not match the contents of ORA.
The output buffers for the PB lines are somewhat different from the PA buffers. The PB buffers are push-pull devices which are capable of sourcing 3 mA at 1.5 volts. This allows these lines to directly drive transistor circuits. To assure that the processor will read the proper data when performing a peripheral read operation, logic is provided in the peripheral B port to permit the processor to read the contents of ORB, instead of the PB lines.

Interval Timer

The Timer section of the SY6532 contains three basic parts: preliminary divide down register, programmable 8-bit register and interrupt logic. These are illustrated in Figure 2.

The Interval Timer can be programmed to count up to 256 time intervals. Each time interval can be either 1T, $8 \mathrm{~T}, 64 \mathrm{~T}$, or 1024 T increments, where T is the system clock period. When a full count is reached, the interrupt flag is set to a logic " 1 ". After the interrupt flag is set the internal clock continues counting down, but at a 1 T rate to a maximum of -255 T . This allows the user to read the counter and then determine how long the interrupt has been set.
The 8 -bit system Data Bus is used to transfer data to and from the Interval Timer. If a count of 52 time intervals were to be counted, the pattern 00110100 would be put on the Data Bus and written into the Interval Time register.

At the same time that data is being written to the Interval Timer, the counting intervals of $1,8,64,1024 \mathrm{~T}$ are decoded from address lines A0 and A1. During a Read or Write operation address line A3 controls the interrupt capability of $\overline{\mathrm{IRQ}}$, i.e., $\mathrm{A}_{3}=1$ enables $\overline{\mathrm{IRQ}}, \mathrm{A}_{3}=0$ disables $\overline{\mathrm{IRQ}}$. In either case, when timeout occurs, bit 7 of the Interrupt Flag Register is set. This flag is cleared when the Timer register is either read from or written to by the processor. If $\overline{\operatorname{IRQ}}$ is enabled by A3 and an interrupt occurs IRQ will go low. When the Timer is read prior to the interrupt flag being set, the number of time intervals remaining will be read, i.e., $51,50,49$, etc.
When the Timer has counted down to 00000000 an interrupt will occur on the next count time and the counter will read 11111111 . After interrupt, the Timer register decrements at a divide by " 1 " rate of the system clock. If after interrupt, the Timer is read and a value of 11100100 is read, the time since interrupt is 28 T . The value read is in two's complement.

$$
\begin{array}{ll}
\text { Value read } & =11111001100 \\
\text { Complement } & =0000111011 \\
\text { Add } 1 & =0000111100=28 .
\end{array}
$$

Figure 2. BASIC ELEMENTS OF INTERVAL TIMER

Thus, to arrive at the total elapsed time, merely do a two's complement and add to the original time written into the Timer. Again, assume time written as $00110100(=52)$. With a divide by 8 , total time to interrupt is $(52 \times 8)+1=417 \mathrm{~T}$. Total elapsed time would be $416 \mathrm{~T}+28 \mathrm{~T}=444 \mathrm{~T}$, assuming the value read after interrupt was 11100100 .
After an interrupt, whenever the Timer is written or read the interrupt is reset. However, the reading of the Timer at the same time the interrupt occurs will not reset the interrupt flag.

Figure 3 illustrates an example of interrupt.

Figure 3. TIMER INTERRUPT TIMING

1. Data written into Interval Timers is $00110100=5210$
2. Data in Interval timer is $00011001=2510$

$$
52-\frac{213}{8}-1=52-26-1=25
$$

3. Data in Interval Timer is $00000000=010$

$$
52-815-1=52-51-1=0
$$

4. Interrupt has occurred at $\emptyset 2$ pulse \#416

Data in Interval Timer = 11111111
5. Data in Interval Timer is 10101100
two's complement is $01010100=8410$ $84+(52 \times 8)=500_{10}$

When reading the Timer after an interrupt, A 3 should be low so as to disable the $\overline{\mathrm{IRQ}}$ pin. This is done so as to avoid future interrupts until after another Write operation.

Interrupt Flag Register

The Interrupt Flag Register consists of two bits: the timer interrupt flag and the PA7 interrupt flag. When a read operation is performed on the Interrupt Flag Register, the bits are transferred to the processor on the data bus, as the diagram below, indicates.

Figure 4. INTERRUPT FLAG REGISTER

The PA7 flag is cleared when the Interrupt Flag Register is read. The timer flag is cleared when the timer register is either written or read.

Addressing

Addressing of the SY6532 is accomplished by the 7 address inputs, the $\overline{\mathrm{RS}}$ input and the two chip select inputs CS1 and $\overline{\mathrm{CS} 2}$. To address the RAM, CS1 must be high with $\overline{\mathrm{CS} 2}$ and $\overline{\mathrm{RS}}$ low. To address the I/O and Interval Timer CS1 and $\overline{\mathrm{RS}}$ must be high with $\overline{\mathrm{CS} 2}$ low. As can be seen to access the chip CS1 is high and $\overline{\mathrm{CS} 2}$ is low. To distinguish between RAM or I/O-Timer Section the $\overline{\mathrm{RS}}$ input is used. When this input is low the RAM is addressed, when high the I/O Interval Timer section is addressed. To distinguish between Timer and I/O, address line A2 is utilized. When A2 is high the Interval Timer is accessed. When A2 is low the I/O section is addressed. Table 1 illustrates the chip addressing.

Edge Sense Interrupt

In addition to its use as a peripheral I/O line, PA7 can function as an edge sensitive input. In this mode, an active transition on PA7 will set the internal interrupt flag (bit 6 of the Interrupt Flag Register). When this occurs, and providing the PA7 interrupt is enabled, the $\overline{I R Q}$ output will go low.
Control of the PA7 edge detecting logic is accomplished by performing a write operation to one of four addresses. The data lines for this operation are "don't care" and the addresses to be used are found in Table 1.

The setting of the internal interrupt flag by an active transition on PA7 is always enabled, whether PA7 is set up as an input or an output.
The $\overline{\mathrm{RES}}$ signal disables the PA7 interrupt and sets the active transition to the negative edge-detect state. During the reset operation, the interrupt flag may be set by a negative transition. It may, therefore, be necessary to clear the flag before its normal use as an edge detecting input is enabled. This can be achieved by reading the Interrupt Flag Register.

I/O Register - Timer Addressing

Table 1 illustrates the address decoding for the internal elements and timer programming. Address line A2 distinguishes I/O registers from the Timer. When A2 is low and $\overline{\mathrm{RS}}$ is high, the I/O registers are addressed. Once the I/O registers are addressed, address lines Al and A 0 decode the desired register.
When the timer is selected A1 and A0 decode the "divide-by" matrix. This decoding is defined in Table 1. In addition, Address A3 is used to enable the interrupt flag to $\overline{\mathrm{IRQ}}$.

Table 1 ADDRESSING DECODE

FUNCTION	$\overline{\mathrm{RS}}$	A6	A5	A4	A3	A2	A1	A0	WR	RD
RAM	L	X	X	X	x	X	X	x	\checkmark	\checkmark
ORA	H	-	-	-	-	L	L	L	\checkmark	\checkmark
DDRA	H	-	-	-	-	L	L	H	\checkmark	\checkmark
ORB	H	-	-	-	-	L	H	L	\checkmark	\checkmark
DDRB	H	-	-	-	-	L	H	H	\checkmark	\checkmark
Timer, $\div 1, \mathrm{IRQ}$ ON	H	-	-	H	H	H	L	L	\checkmark	
Timer, $\div 8, \mathrm{IRQ}$ ON	H	-	-	H	H	H	L	H	\checkmark	
Timer, $\div 64$, IRQ ON	H	-	-	H	H	H	H	L	\checkmark	
Timer, $\div 1024$, IRQ ON	H	-	-	H	H	H	H	H	\checkmark	
Timer, $\div 1$, IRQ OFF	H	-	-	H	L	H	L	L	\checkmark	
Timer, $\div 8$, IRQ OFF	H	-	-	H	L	H	L	H	\checkmark	
Timer, $\div 64$, IRQ OFF	H	-	-	H	L	H	H	L	\checkmark	
Timer, $\div 1024$, IRQ OFF	H	-	-	H	L	H	H	H	\checkmark	
Read Timer, IRQ ON	H	-	-	-	H	H	-	L		\checkmark
Read Timer, IRQ OFF	H	-	-	-	L	H	-	L		\checkmark
Read Interrupt Flags	H	-	-	-	-	H	-	H		\checkmark
$\underset{\text { EDGE }}{\text { PA7 IRQ OFF, NEG }}$	H	-	-	L	-	H	L	L	*	
PA7 IRQ OFF, POS EDGE	H	-	-	L	-	H	L	H	*	
PA7 IRQ ON, NEG EDGE	H	-	-	L	-	H	H	L	*	
$\underset{\text { EDGE }}{\text { PA7 IRQ ON, POS }}$	H	-	-	L	-	H	H	H	*	

NOTES: $\mathrm{X}=$ ADDRESS $-=$ ADDRESS BITS DON'T CARE $*=$ DATA BITS ARE "DON'T CARE"

Package Availability
40 Pin Ceramic 40 Pin Cerdip 40 Pin Plastic

Ordering Information

Part Number	Package	Speed
SYC6532	Ceramic	1 MHz
SYD6532	Cerdip	1 MHz
SYP6532	Plastic	1 MHz
SYC6532A	Ceramic	2 MHz
SYD6532A	Cerdip	2 MHz
SYP6532A	Plastic	2 MHz

Pin Configuration

Extended Temperature Range ($-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$)

Features

- 8 bit bi-directional Data Bus for direct communication with the microprocessor
- Programmable edge-sensitive interrupt
- 128×8 static RAM
- Two 8 bit bi-directional data ports for interface to peripherals
- Two programmable I/O Peripheral Data Direction Registers
- Progranmable Interval Timer
- Programmable Interval Timer Interrupt
- TTL \& CMOS compatible peripheral lines
- Peripheral pins with Direct Transistor Drive Capability
- High Impedance Three-State Data Pins
- Operation over wide temperature range $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$

Description

The SYE6532 is designed to operate in conjunction with the SYE6500 Microprocessor Family. It is comprised of a 128×8 static RAM, two software controlled 8 bit bi-directional data ports allowing direct interfacing between the microprocessor unit and peripheral devices, a software programmable interval timer with interrupt capable of timing in various intervals from 1 to 262,144 clock periods, and a programmable edge-detect interrupt circuit.

Block Diagram

Absolute Maximum Ratings*

RATING	SYMBOL	VOLTAGE	UNIT
Supply Voltage	V_{CC}	-.3 to +7.0	V
Input/Output Voltage	$\mathrm{V}_{\text {IN }}$	-.3 to +7.0	V
Operating Temperature Range	T_{OP}	-40 to +85	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {STG }}$	-55 to +150	${ }^{\circ} \mathrm{C}$

D.C. Characteristics ($\left.\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$

CHARACTERISTIC	SYMBOL	MIN.	TYP.	MAX.	UNIT
Input High Voltage	$\mathrm{V}_{\text {IH }}$	$\mathrm{V}_{\mathrm{SS}}+2.4$		V_{CC}	V
Input Low Voltage	VIL	-0.3		0.4	V
Input Leakage Current; $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{SS}}+5 \mathrm{~V}$ $\mathrm{A} \emptyset-\mathrm{A} 6, \overline{\mathrm{RS}}, \mathrm{R} / \mathrm{W}, \overline{\mathrm{RES}}, \emptyset 2, \mathrm{CS} 1, \overline{\mathrm{CS} 2}$	IIN		1.0	2.5	$\mu \mathrm{A}$
Input Leakage Current for High Impedance State (Three State); $\mathrm{V}_{\mathrm{IN}}=.4 \mathrm{~V}$ to $2.4 \mathrm{~V} ; \mathrm{D} \emptyset$-D7	ITSI		± 1.0	± 10.0	$\mu \mathrm{A}$
Input High Current; $\mathrm{V}_{\mathrm{IN}}=2.4 \mathrm{~V}$ PA \emptyset-PA7, PB \emptyset-PB7	IIH	-100.	-300.		$\mu \mathrm{A}$
Input Low Current; $\mathrm{V}_{\mathrm{IN}}=.4 \mathrm{~V}$ PA $\emptyset-\mathrm{PA} 7, \mathrm{~PB} \emptyset$-PB7	$\mathrm{I}_{\text {IL }}$		1.0	1.6	mA
Output High Voltage $\begin{gathered} \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{LOAD}} \leqslant-100 \mu \mathrm{~A}(\mathrm{PA} \emptyset-\mathrm{PA} 7, \mathrm{~PB} \emptyset-\mathrm{PB} 7, \mathrm{D} \emptyset-\mathrm{D} 7) \\ \mathrm{I}_{\mathrm{LOAD}} \leqslant 3 \mathrm{MA}(\mathrm{~PB} \emptyset-\mathrm{PB} 7) \end{gathered}$	VOH	$\begin{aligned} & \mathrm{V} S S^{\mathrm{SS}} 2.4 \\ & \mathrm{~V}_{\mathrm{SS}}+1.5 \end{aligned}$			V
Output Low Voltage $\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{LOAD}} \leqslant 1.6 \mathrm{MA}$	VOL			0.4	V
Output High Current (Sourcing); $\begin{aligned} & \mathrm{V} \mathrm{OH} \geqslant 2.4 \mathrm{~V}(\mathrm{PA} \emptyset-\mathrm{PA} 7, \mathrm{~PB} \emptyset-\mathrm{PB} 7, \mathrm{D} \emptyset-\mathrm{D} 7) \\ & \geqslant 1.5 \mathrm{~V} \text { Available for direct transistor } \\ & \text { drive }(\mathrm{PB} \emptyset-\mathrm{PB} 7) \end{aligned}$	IOH	$\begin{aligned} & -100 \\ & -3.0 \end{aligned}$	$\begin{gathered} -1000 \\ -5.0 \end{gathered}$		$\begin{aligned} & \mu \mathrm{A} \\ & \mathrm{~mA} \end{aligned}$
Output Low Current (Sinking); $\mathrm{V}_{\mathrm{OL}} \leqslant .4 \mathrm{~V}$	IOL	1.6			mA
Clock Input Capacitance	$\mathrm{C}_{\text {clk }}$			30	pf
Input Capacitance	CIN			10	pf
Output Capacitance	COUT			10	pf
Power Dissipation $\quad \mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}$	P_{D}			735	mW

All inputs contain protection circuitry to prevent damage due to high static charges. Care should be exercised to prevent unnecessary application of voltage outside the specification range.

Ordering Information

Part Number	Package	Clock Frequency
SYEC6532	Ceramic	1 MHz
SYED6532	Cerdip	1 MHz
SYEP6532	Plastic	1 MHz
SYEC6532A	Ceramic	2 MHz
SYED6532A	Cerdip	2 MHz
SYEP6532A	Plastic	2 MHz

SY6545-1 CRT Controller

Features

- Single +5 volt ($\pm 5 \%$) power supply.
- Alphanumeric and limited graphics capabilities.
- Fully programmable display (rows, columns, blanking, etc.).
- Non-interlaced scan.
- $50 / 60 \mathrm{~Hz}$ operation.
- Fully programmable cursor.
- External light pen capability.
- Capable of addressing up to 16 K character Video Display RAM.
- No DMA required.
- Pin-compatible with MC6845.
- Row/Column or straight-binary addressing for Video Display RAM.
- Internal status register.
- Video Display RAM may be configured as part of microprocessor memory field or independently slaved to 6545 (Transparent Addressing).

Description

The SY6545-1 is a CRT Controller intended to provide capability for interfacing any microprocessor to CRT or TV-type raster scan displays. A unique feature is the inclu-
sion of several modes of operation, so that the system designer can configure the system with a wide assortment of techniques.

Pin Configuration

Interface Diagram

Absolute Maximum Ratings*

Supply Voltage, V_{CC}
-0.3 V to +7.0 V
Input/Output Voltage, V_{IN}
Operating Temperature, TOP
Storage Temperature, $\mathrm{T}_{\text {STG }}$
-0.3 V to +7.0 V
$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
$-55^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$

All inputs contain protection circuitry to prevent damage due to high static discharges. Care should be exercised to prevent unnecessary application of voltages in excess of the allowable limits.

Comment*

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only. Functional operation of this device at these or any other conditions above those indicated in the operational sections of this specification is not implied and exposure to absolute maximum rating conditions for extended periods may affect device reliability.
D.C. Characteristics $\quad\left(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \%, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0-70^{\circ} \mathrm{C}\right.$, unless otherwise noted)

Symbol	Characteristic	Min.	Max.	Unit
$\mathrm{V}_{1 \mathrm{H}}$	Input High Voltage	2.4	V_{CC}	V
$V_{\text {IL }}$	Input Low Voltage	-0.3	0.4	V
IIN	Input Leakage ($\phi 2, \mathrm{R} / \overline{\mathrm{w}}, \overline{\mathrm{RES}}, \overline{\mathrm{CS}}, \mathrm{RS}$, LPEN, CCLK)	-	2.5	$\mu \mathrm{A}$
$I_{\text {TSI }}$	Three-State Input Leakage (DB0-DB7) $\mathrm{V}_{\mathrm{IN}}=0.4 \text { to } 2.4 \mathrm{~V}$	-	± 10.0	$\mu \mathrm{A}$
V_{OH}	$\begin{aligned} & \text { Output High Voltage } \\ & I_{\text {LOAD }}=-205 \mu \mathrm{~A} \text { (DB0-DB7) } \\ & I_{\text {LOAD }}=-100 \mu \mathrm{~A} \text { (all others) } \end{aligned}$	2.4	-	V
VOL	Output Low Voltage $I_{\text {LOAD }}=1.6 \mathrm{~mA}$	-	0.4	V
$P_{\text {D }}$	Power Dissipation ($\left.\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right), \mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}$	-	900	mW
$\mathrm{C}_{\text {IN }}$	```Input Capacitance \phi2, R/\overline{w},\overline{RES},\overline{CS}, RS, LPEN, CCLK DB0-DB7```		$\begin{aligned} & 10.0 \\ & 12.5 \end{aligned}$	$\begin{aligned} & \mathrm{pF} \\ & \mathrm{pF} \end{aligned}$
$\mathrm{C}_{\text {OUT }}$	Output Capacitance	-	10.0	pF

Test Load

[^15]
MPU Bus Interface Characteristics

READ CYCLE

Write Timing Characteristics $\left(V_{C C}=5.0 \mathrm{~V} \pm 5 \%, T_{A}=0-70^{\circ} \mathrm{C}\right.$, unless otherwise noted)

Symbol	Characteristic	SY6545-1		SY6545A-1		Unit
		Min.	Max.	Min.	Max.	
${ }^{\mathrm{t}} \mathrm{CrC}$	Cycle Time	1.0	-	0.5	-	$\mu \mathrm{s}$
${ }^{\text {t }}$ C	$\phi 2$ Pulse Width	440	-	200	-	ns
$\mathrm{t}_{\text {ACW }}$	Address Set-Up Time	180	-	90	-	ns
${ }^{\text {t }}$ CAH	Address Hold Time	0	-	0	-	ns
${ }^{\text {twCW }}$	R \bar{W} Set-Up Time	180	-	90	-	ns
${ }^{\text {t }}$ CWH	R//W Hold Time	0	-	0	-	ns
$\mathrm{t}_{\text {DCW }}$	Data Bus Set-Up Time	265	-	100	-	ns
${ }^{\text {HW }}$	Data Bus Hold Time	10	-	10	-	ns

(t_{r} and $\mathrm{t}_{\mathrm{f}}=10$ to 30 ns)

Read Timing Characteristics
$\left(V_{C C}=5.0 \mathrm{~V} \pm 5 \%, T_{A}=0-70^{\circ} \mathrm{C}\right.$, unless otherwise noted)

Symbol	Characteristic	SY6545-1		SY6545A-1		Unit
		Min.	Max.	Min.	Max.	
$\mathrm{t}_{\mathrm{CYC}}$	Cycle Time	1.0	-	0.5	-	$\mu \mathrm{s}$
${ }^{\text {t }}$	\$2 Pulse Width	440	-	200	-	ns
$\mathrm{t}_{\mathrm{ACR}}$	Address Set-Up Time	180	-	90	-	ns
tcar	Address Hold Time	0	-	0	-	ns
twCR	R/ \bar{W} Set-Up Time	180	-	90	-	ns
$\mathrm{t}_{\text {cDR }}$	Read Access Time (Valid Data)	-	340	-	150	ns
thr	Read Hold Time	10	-	10	-	ns
$\mathrm{t}_{\text {CDA }}$	Data Bus Active Time (Invalid Data)	40	-	40	-	ns

(t_{r} and $\mathrm{t}_{\mathrm{f}}=10$ to 30 ns)

Memory and Video Interface Characteristics

$\left(V_{C C}=5.0 \mathrm{~V} \pm 5 \%, T_{A}=0\right.$ to $70^{\circ} \mathrm{C}$, unless otherwise noted)

System Timing

Transparent Addressing
(ϕ_{1} / ϕ_{2} Interleaving)

Symbol	Characteristic	SY6545-1		SY6545A-1		Unit
		Min.	Max.	Min.	Max.	
${ }^{\text {t }} \mathrm{CCY}$	Character Clock Cycle Time	0.40	-	0.40	-	$\mu \mathrm{s}$
${ }^{\text {t }} \mathrm{CCH}$	Character Clock Pulse Width	200	-	200	-	ns
(X) $\mathrm{m}_{\text {MAD }}$	MA0-MA13 Propagation Delay	-	300	-	300	ns
(X) $\mathrm{t}_{\text {RAD }}$	RA0-RA4 Propagation Delay	-	300	-	300	ns
$(X) t_{\text {DTD }}$	DISPLAY ENABLE Propagation Delay	-	450	-	450	ns
(X) $\mathrm{H}_{\text {HSD }}$	HSYNC Propagation Delay	-	450	-	450	ns
(X) $\mathrm{t}_{\mathrm{VSD}}$	VSYNC Propagation Delay	-	450	-	450	ns
(X) $\mathrm{t}_{\text {CDD }}$	CURSOR Propagation Delay	-	450	-	450	ns
${ }^{\text {t TAD }}$	MA0-MA13 Switching Delay	-	200	-	200	ns

Light Pen Strobe Timing

NOTE: "Safe" time position for LPEN positive edge to cause
address $n+2$ to load into Light Pen Register
$\mathrm{t}_{\mathrm{LP} 2}$ and $\mathrm{t}_{\text {LP1 }}$ are time positions causing uncertain results.

Symbol		SY6545-1		SY6545A-1		
	Characteristic	Min.	Max.	Min.	Max.	Unit
$\mathrm{t}_{\text {LPH }}$	LPEN Hold Time	150	-	150	-	ns
$\mathrm{t}_{\text {LP1 }}$	LPEN Setup Time	20	-	20	-	ns
$\mathrm{t}_{\text {LP2 }}$	CCLK to LPEN Delay	0	-	0	-	ns

$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns}(\max)$

MPU Interface Signal Description

$\phi 2$ (Clock)

The input clock is the system $\phi 2$ clock and is used to trigger all data transfers between the system microprocessor and the SY6545. Since there is no maximum limit to the allowable $\phi 2$ cycle time, it is not necessary for it to be a continuous clock. This capability permits the SY6545 to be easily interfaced to non-6500-compatible microprocessors.

R/ \bar{W} (Read/Write)

The $\mathrm{R} \bar{W}$ signal is generated by the microprocessor and is used to control the direction of data transfers. A high on the $\mathrm{R} \overline{\mathrm{W}}$ pin allows the processor to read the data supplied by the SY6545; a low on the $\mathrm{R} \overline{\mathrm{W}}$ pin allows a write to the SY6545.

$\overline{\mathrm{CS}}$ (Chip Select)

The Chip Select input is normally connected to the processor address bus either directly or through a decoder. The SY6545 is selected when $\overline{\mathrm{CS}}$ is low.

RS (Register Select)

The Register Select input is used to access internal registers. A low on this pin permits writes into the Address Register and reads from the Status Register. The contents of the Address Register is the identity of the register accessed when RS is high.

$\mathrm{DB}_{0}-\mathrm{DB}_{7}$ (Data Bus)

The $\mathrm{DB}_{0}-\mathrm{DB}_{7}$ pins are the eight data lines used for transfer of data between the processor and the SY6545. These lines are bi-directional and are normally high-impedance except during read cycles when the chip is selected.

Video Interface Signal Description

HSYNC (Horizontal Sync)

The HSYNC signal is an active-high output used to determine the horizontal position of displayed text. It may drive a CRT monitor directly or may be used for composite video generation. HSYNC time position and width are fully programmable.

VSYNC (Vertical Sync)

The VSYNC signal is an active-high output used to determine the vertical position of displayed text. Like HSYNC, VSYNC may be used to drive a CRT monitor or composite video generation circuits. VSYNC position and width are both fully programmable.

DISPLAY ENABLE

The DISPLAY ENABLE signal is an active-high output and is used to indicate when the SY6545 is generating active display information. The number of horizontal displayed characters and the number of vertical displayed characters are both fully programmable and together are used to generate the DISPLAY ENABLE signal.

DISPLAY ENABLE may be delayed by one character time by setting bit 4 of R 8 to a " 1 ".

CURSOR

The CURSOR signal is an active-high output and is used to indicate when the scan coincides with the programmed cursor position. The cursor position may be programmed to be any character in the address field. Furthermore, within the character, the cursor may be programmed to be any block of scan lines, since the start scan line and the end scan line are both programmable. The CURSOR position may be delayed by one character time by setting bit 5 of R8 to a " 1 ".

LPEN

The LPEN signal is an edge-sensitive input and is used to load the internal Light Pen Register with the contents of the Refresh Scan Counter at the time the active edge occurs. The active edge of LPEN is the low-to-high transition.

CCLK

The CCLK signal is the character timing clock input and is used as the time base for all internal count/control functions.

RES

The $\overline{\mathrm{RES}}$ signal is an active-low input used to initialize all internal scan counter circuits. When $\overline{\mathrm{RES}}$ is low, all internal counters are stopped and cleared, all scan and video outputs are low, and control registers are unaffected. $\overline{R E S}$ must stay low for at least one CCLK period. All scan timing is initiated when $\overline{R E S}$ goes high. In this way, $\overline{\mathrm{RES}}$ can be used to synchronize display frame timing with line frequency.

Memory Address Signal Description

MA0-MA13 (Video Display RAM Address Lines)

These signals are active-high outputs and are used to address the Video Display RAM for character storage and display operations. The starting scan address is fully programmable and the ending scan address is determined by the total number of characters displayed, which is also programmable, in terms of characters/line and lines/ frame.

There are two selectable address modes for MA0-MA13:

- Binary

Characters are stored in successive memory locations. Thus, the software must be developed so that row and column co-ordinates are translated to sequentiallynumbered addresses for video display memory operations.

- Row/Column

In this mode, MAO-MA7 function as column addresses CC0-CC7, and MA8-MA13, as row addresses CR0CR5. In this case, the software may handle addresses in terms of row and column locations, but additional
address compression circuits are needed to convert CCO-CC7 and CRO-CR5 into a memory-efficient binary scheme.

RA0-RA4 (Raster Address Lines)

These signals are active-high outputs and are used to select each raster scan within an individual character row. The number of raster scan lines is programmable and determines the character height, including spaces between character rows.
The high-order line, RA4, is unique in that it can also function as a strobe output pin when the SY 6545 is programmed to operate in the "Transparent Address Mode". In this case the strobe is an active-high output and is true at the time the Video Display RAM update address is gated on to the address lines, MA0-MA13. In this way, updates and readouts of the Video Display RAM can be made under control of the SY6545 with only a small amount of external circuitry.

Description of Internal Registers

Figure 1 illustrates the format of a typical video display and is necessary to understand the functions of the various SY6545 internal registers. Figure 2 illustrates vertical and horizontal timing. Figure 3 summarizes the internal registers and indicates their address selection and read/write capabilities.

Address Register

This is a 5-bit register which is used as a "pointer" to direct SY6545 data transfers to and from the system MPU. Its contents is the number of the desired register (0-31). When RS is low, then this register may be loaded; when RS is high, then the register selected is the one whose identity is stored in this register.

Status Register

This 3-bit register is used to monitor the status of the

CRTC, as follows:

Horizontal Total (R0)

This 8-bit register contains the total of displayed and non-displayed characters, minus one, per horizontal line. The frequency of HSYNC is thus determined by this register.

Horizontal Displayed (R1)

This 8-bit register contains the number of displayed characters per horizontal line .

Horizontal Sync Position (R2)

This 8-bit register contains the position of the HSYNC on the horizontal line, in terms of the character location number on the line. The position of the HSYNC determines the left-to-right location of the displayed text on the video screen. In this way, the side margins are adjusted.

Figure 1. Video Display Format

Horizontal and Vertical SYNC Widths (R3)

This 8-bit register contains the widths of both HSYNC and VSYNC, as follows:

Control of these parameters allows the SY6545 to be
interfaced to a variety of CRT monitors, since the HSYNC and VSYNC timing signals may be accommodated without the use of external one-shot timing.

Vertical Total (R4)

The Vertical Total Register is a 7-bit register containing the total number of character rows in a frame, minus one. This register, along with R5, determines the overall frame rate, which should be close to the line frequency to ensure flicker-free appearance. If the frame time is adjusted to be longer than the period of the line frequency, then $\overline{\mathrm{RES}}$ may be used to provide absolute synchronism.

$\overline{\mathrm{CS}}$	RS	Address Reg.					Reg. No.	Register Name	Stored Info.	RD	WR	Register Bit						
		4	3	2	1	0						7	65	4	3	2	1	0
1	-	-	-	-	-	-	-					N1	14		V	,	1	
0	0	-	-	-	-	-	-	Address Reg.	Reg. No.		\checkmark	N		A_{4}	A_{3}	A_{2}	A_{1}	A_{0}
0	0	-	-	-	-	-	-	Status Reg.		\checkmark		U	L V	N	1	11	1	17
0	1	0	0	0	0	0	RO	Horiz. Total - 1	\# Charac.		\checkmark	-	-	-	-	-	-	\bullet
0	1	0	0	0	0	1	R1	Horiz. Displayed	\# Charac.		\checkmark	-	- -	-	-	-	-	-
0	1	0	0	0	1	0	R2	Horiz. Sync Position	\# Charac.		\checkmark	-	- -	-	-	-	-	-
0	1	0	0	0	1	1	R3	VSYNC, HSYNC Widths	\# Scan Lines and \# Char. Times		\checkmark	V_{3}	$V_{2} V_{1}$	$V_{1} V_{0}$	H_{3}	H_{2}	H_{1}	H_{0}
0	1	0	0	1	0	0	R4	Vert. Total - 1	\# Charac. Row		\checkmark	N	-	-	-	-	-	\bullet
0	1	0	0	1	0	1	R5	Vert. Total Adjust	\# Scan Lines		\checkmark			$1 \cdot$	-	-	\bullet	-
0	1	0	0	1	1	0	R6	Vert. Displayed	\# Charac. Rows		\checkmark	N		-	-	-	-	-
0	1	0	0	1	1	1	R7	Vert. Sync Position	\# Charac.Rows		\checkmark	N		-	-	-	-	-
0	1	0	1	0	0	0	R8	Mode Control			\checkmark	\bullet	$\bullet \cdot$	-	-	-	\bullet	\bullet
0	1	0	1	0	0	1	R9	Scan Lines - 1	\# Scan Lines		\checkmark			V-	-	-	-	-
0	1	0	1	0	1	0	R10	Cursor Start	Scan Line No.		\checkmark	N	$\mathrm{B}_{1} \mathrm{~B}_{0}$	-	-	-	-	-
0	1	0	1	0	1	1	R11	Cursor End	Scan Line No.		\checkmark	A	$x 1419$	-	-	-	-	\bullet
0	1	0	1	1	0	0	R12	Display Start Addr (H)			\checkmark			-	-	-	-	-
0	1	0	1	1	0	1	R13	Display Start Addr (L)			\checkmark	-	- -	-	-	-	-	-
0	1	0	1	1	1	0	R14	Cursor Position (H)		\checkmark	\checkmark	A以	y^{1}	-	-	-	-	-
0	1	0	1	1	1	1	R15	Cursor Position (L)		\checkmark	\checkmark	-	-	-	-	-	-	\bullet
0	1	1	0	0	0	0	R16	Light Pen Reg (H)		$\sqrt{ }$		N1	$1{ }^{1}$	-	-	-	-	\bullet
0	1	1	0	0	0	1	R17	Light Pen Reg (L)		$\sqrt{ }$		-	-	-	-	-	\bullet	-
0	1	1	0	0	1	0	R18	Update Address Reg (H)						-	-	-	-	-
0	1	1	0	0	1	1	R19	Update Address Reg (L)			\checkmark	-	- -	\bigcirc	-	-	\bullet	\bullet
0	1	1	1	1	1	1	R31	Dummy Location					1×1	H1	1.	17	NT	\cdots

Notes:

- Designates binary bit
$\$ 17$ Designates unused bit. Reading this bit is always " 0 ", except for R31, which does not drive the data bus at all, and for $\mathrm{CS}={ }^{\prime \prime} 1$ " which operates likewise.

Figure 3. Internal Register Summary

Vertical Total Adjust (R5)

The Vertical Total Adjust Register is a 5-bit write only register containing the number of additional scan !ines needed to complete an entire frame scan and is intended as a fine adjustment for the video frame time.

Vertical Displayed (R6)

This 7-bit register contains the number of displayed character rows in each frame. In this way, the vertical size of the displayed text is determined.

Vertical Sync Position (R7)

This 7-bit register is used to select the character row time at which the VSYNC pulse is desired to occur and, thus, is used to position the displayed text in the vertical direction.

Mode Control (R8)

This register is used to select the operating modes of the SY6545 and is outlined as follows:

Scan Line (R9)

This 5-bit register contains the number of scan lines per character row, including spacing, minus 1.

Cursor Start (R10) and Cursor End (R11)

These 5 -bit registers select the starting and ending scan lines for the cursor. In addition, bits 5 and 6 of R10 are used to select the cursor mode, as follows:

BIT		CURSOR MODE
6	5	
0	0	No Blinking
0	1	No Cursor
1	0	Blink at $1 / 16$ field rate
1	1	Blink at $1 / 32$ field rate

Note that the ability to program both the start and end scan line for the cursor enables either block cursor or underline to be accommodated. Registers R14 and R15 are used to control the character position of the cursor over the entire 16 K address field.

Display Start Address High (R12) and Low (R13)

These registers together comprise a 14-bit register whose contents is the memory address of the first character of the displayed scan (the character on the top left of the video display, as in Figure 1). Subsequent memory addresses are generated by the SY6545 as a result of CCLK input pulses. Scrolling of the display is accomplished by changing R12 and R13 to the memory address associated with the first character of the desired line of text to be displayed first. Entire pages of text may be scrolled or changed as well via R12 and R13.

Cursor Position High (R14) and Low (R15)

These registers together comprise a 14 -bit register whose contents is the memory address of the current cursor position. When the video display scan counter (MA lines) matches the contents of this register, and when the scan line counter (RA lines) falls within the bounds set by R10 and R11, then the CURSOR output becomes active. Bit 5 of the Mode Control Register (R8) may be used to delay the CURSOR output by a full CCLK time to accommodate slow access memories.

LPEN High (R16) and Low (R17)

These registers together comprise a 14-bit register whose contents is the light pen strobe position, in terms of the video display address at which the strobe occurred. When the LPEN input changes from low to high, then, on the next negative-going edge of CCLK, the contents of the internal scan counter is stored in registers R16 and R17.

Update Address High (R18) and Low (R19)

These registers together comprise a 14-bit register whose contents is the memory address at which the next read or update will occur (for transparent address mode, only). Whenever a read/update occurs, the update location automatically increments to allow for fast updates or readouts of consecutive character locations. This is described elsewhere in this document.

Dummy Location (R31)

This register does not store any data, but is required to detect when transparent addressing updates occur. This is necessary to increment the Update Address Register and to set the Update Ready bit in the status register.

Detailed Description of Operation

Register Formats

Register pairs R12/R13, R14/R15, R16/R17, and R18/ R19 are formatted in one of two ways:

1. Straight binary if register R 8 , bit 2 is a " 0 ".
2. Row/Column if register R8, bit 2 is a " 1 ". In this case the low byte is the Character Column and the high byte is the Character Row.

STRAIGHT BINARY ADDRESSING SEQUENCE

Figure 4 illustrates the address sequence for the video display control for each mode.

Note from Figure 4 that the straight-binary mode has the advantage that all display memory addresses are stored in a continuous memory block, starting with address 0 and ending at 1919. The disadvantage with this method is that, if it is desired to change a displayed character location, the row and column identity of the location must be converted to its binary address before the memory may be written. The row/column mode, on the other hand, does not need to undergo this conversion. However, memory is not used as efficiently, since the memory addresses are not continuous, but gaps exist. This requires that the system be equipped with more memory than is actually used and this extra memory is wasted. Alternatively, address compression logic may be employed to translate the row/column format into a continuous address block.

In this way, the user may select whichever mode is best for the given application. The trade-offs between the modes are software versus hardware. Straight-binary mode minimizes hardware requirements and row/column requires minimum software.

ROW/COLUMN ADDRESSING SEQUENCE

Figure 4. Display Address Sequences (with Start Address $=0$) for 80×24 Example

Video Display RAM Addressing

There are two modes of addressing for the video display memory:

1. Shared Memory

In this mode the memory is shared between the MPU address bus and the SY 6545 address bus. For this case, memory contention must be resolved by means of external timing and control circuits. Both the MPU and the SY 6545 must have access to the video display RAM and the contention circuits must resolve this
multiple access requirement. Figure 5 illustrates the system configuration.
2. Transparent Memory Addressing For this mode, the display RAM is not directly accessible by the MPU, but is controlled entirely by the SY6545. All MPU accesses are made via the SY6545 and a small amount of external circuits. Figure 6 shows the system configuration for this approach.

Figure 5. Shared Memory System Configuration

Figure 6. Transparent Memory Addressing System Configuration (Data Hold Latch needed for Horizontal/Vertical Blanking updates, only).

SY6545-1

Memory Contention Schemes for
 Shared Memory Addressing

From the diagram of Figure 5 , it is clear that both the SY6545 and the system MPU must be capable of addressing the video display memory. The SY6545 repetitively fetches character information to generate the video signals in order to keep the screen display active. The MPU occasionally accesses the memory to change the displayed information or to read out current data characters. Three ways of resolving this dual-contention requirement are apparent:

- MPU Priority

In this technique, the address lines to the video display memory are normally driven by the SY6545 unless the MPU needs access, in which case the MPU addresses immediately override those from the SY6545 and the MPU has immediate access.

- $\phi 1 / \phi 2$ Memory Interleaving

This method permits both the SY6545 and the MPU access to the video display memory by time-sharing via the system $\phi 1$ and $\phi 2$ clocks. During the $\phi 1$ portion of each cycle (the time when $\phi 2$ is low), the SY6545 address outputs are gated to the video display memory. In the $\phi 2$ time, the MPU address lines are switched in. In this way, both the SY6545 and the MPU have unimpeded access to the memory. Figure 7 illustrates the timings.

Figure 7. $\phi 1 / \phi 2$ Interleaving

- Vertical Blanking

With this approach, the address circuitry is identical to the case for MPU Priority updates. The only difference is that the Vertical Retrace status bit (bit 5 of the Status Register) is used by the MPU so that access to the video display memory is only made during vertical blanking time (when bit 5 is a " 1 "). In this way, no visible screen perturbations result.

Transparent Memory Addressing

In this mode of operation, the video display memory address lines are not switched by contention circuits, but are generated by the SY6545. In effect, the contention is handled by the SY6545. As a result, the schemes for accomplishing MPU memory access are different:

- $\phi 1 / \phi 2$ Interleaving

This mode is similar to the Interleave mode used with shared memory. In this case, however, the $\phi 2$ address is generated from the Update Address Register (Registers R18 and R19) in the SY6545. Thus, the MPU must first load the address to be accessed into R18/R19 and then this address is always gated onto the MA lines during $\phi 2$. Figure 8 shows the timing.

Figure 8. $\phi \mathbf{1} / \phi \mathbf{2}$ Transparent Interleaving

- Horizontal/Vertical Blanking

In this mode, the Update Address is loaded by the MPU, but is only gated onto the MA lines during horizontal or vertical blank times, so memory accesses do not interfere with the display appearance. To signal when the update address is on the MA lines, an update strobe (STB) is provided as an alternate function of pin 34. Data hold latches are necessary to temporarily retain the character to be stored until the retrace time occurs. In this way, the system MPU is not halted waiting for the blanking time to arrive. Figure 9 illustrates the address and strobe timing for this mode.

Transparent address modes are quite complex and offer significant advantages in system implementation. The details of their application are covered thoroughly in related Technical Notes available from Synertek.

Figure 9. Retrace Update Timings

Cursor and Display Enable Skew Control

Bits 4 and 5 of the Mode Control register (R8) are used to delay the Display Enable and Cursor outputs, respectively. Figure 10 illustrates the effect of the delays.

Figure 10. Cursor and Display Enable Skew

Figure 11. Operation of Vertical Blanking Status Bit

Package Availability

Ordering Information

Part Number	Package	
SYP6545-1	Plastic	1 MHz
SYC6545-1	Ceramic	1 MHz
SYD6545-1	Cerdip	1 MHz
SYP6545A-1	Plastic	2 MHz
SYC6545A-1	Ceramic	2 MHz
SYD6545A-1	Cerdip	2 MHz

Features

- Single +5 volt ($\pm 5 \%$) power supply.
- Alphanumeric and limited graphics capabilities.
- Fully programmable display (rows, columns, blanking, etc.).
- Interlaced or non-interlaced scan.
- $50 / 60 \mathrm{~Hz}$ operation.
- Fully programmable cursor.
- External light pen capability.
- Capable of addressing up to 16 K character Video Display RAM.
- No DMA required.
- Compatible with MC6845R.
- Straight-binary addressing for Video Display RAM.

Description

The SY6845 is a CRT Controller intended to provide capability for interfacing any microprocessor family to CRT or TV-type raster scan displays. A unique feature

Pin Designation

is the inclusion of several modes of operation, so that the system designer can configure the system with a wide assortment of techniques.

Interface Diagram

Absolute Maximum Ratings*

Supply Voltage, V_{CC}
-0.3 V to +7.0 V
Input/Output Voltage, VIN
Operating Temperature, T_{OP}
Storage Temperature, $\mathrm{T}_{\text {STG }}$
-0.3 V to +7.0 V
$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
$-55^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$

All inputs contain protection circuitry to prevent damage due to high static discharges. Care should be exercised to prevent unnecessary application of voltages in excess of the allowable limits.

Comments*

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only. Functional operation of this device at these or any other conditions above those indicated in the operational sections of this specification is not implied and exposure to absolute maximum rating conditions for extery ted periods may affect device reliability.

Electrical Characteristics $\left(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=0-70^{\circ} \mathrm{C}\right.$, unless otherwise noted)

Symbol	Characteristic	Min.	Typ.	Max.	Unit
$\mathrm{V}_{\text {IH }}$	Input High Voltage	2.0		V_{Cc}	V
$\mathrm{V}_{\text {IL }}$	Input Low Voltage	-0.3		0.8	V
IIN	Input Leakage ($\phi 2, \mathrm{R} / \overline{\mathrm{w}}, \overline{\mathrm{RES}}, \overline{\mathrm{CS}}, \mathrm{RS}, \mathrm{LPEN}, \mathrm{CCLK}$)	-		2.5	$\mu \mathrm{A}$
$\mathrm{I}_{\mathrm{TSI}}$	Three-State Input Leakage (DB0-DB7) $\mathrm{V}_{\mathrm{IN}}=0.4 \text { to } 2.4 \mathrm{~V}$	-		± 10.0	$\mu \mathrm{A}$
V_{OH}	$\begin{aligned} & \text { Output High Voltage } \\ & \text { I LOAD }^{\text {LOA }}=205 \mu \mathrm{~A}(\mathrm{DBO}-\mathrm{DB} 7) \\ & \text { I LOAD }=100 \mu \mathrm{~A} \text { (all others) } \end{aligned}$	2.4		-	V
VOL	Output Low Voltage $I_{\text {LOAD }}=1.6 \mathrm{~mA}$	-		0.4	V
$P_{\text {D }}$	Power Dissipation ($\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}$)	-	150	525	mW
$\mathrm{CIN}_{\text {IN }}$	```Input Capacitance \phi2, R/\overline{W},\overline{RES},\overline{CS}, RS, LPEN, CCLK DB0-DB7```	-		$\begin{array}{l\|l} 10.0 \\ 12.5 \end{array}$	$\begin{aligned} & \mathrm{pF} \\ & \mathrm{pF} \end{aligned}$
$\mathrm{C}_{\text {OUT }}$	Output Capacitance	-		10.0	pF

Test Load

$\mathrm{R}=11 \mathrm{~K} \Omega$ FOR $\mathrm{DB}_{0}-\mathrm{DB}_{7}$

$R=24 \mathrm{~K} \Omega$ FOR ALL OTHER OUTPUTS
$\mathrm{C}=130 \mathrm{pF}$ TOTAL FOR $\mathrm{D}_{0}-\mathrm{D}_{7}$
$\mathrm{C}=30 \mathrm{pF}$ ALL OTHER OUTPUTS

MPU Bus Interface Characteristics

Write Timing Characteristics ($\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=0-70^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Characteristic	SY6845		SY6845A		Unit
		Min.	Max.	Min.	Max.	
${ }^{\text {t }}{ }_{\text {CrC }}$	Cycle Time	1.0	-	0.5	-	$\mu \mathrm{s}$
${ }^{\text {t }}$ C	¢2 Pulse Width	440	-	200	-	ns
${ }^{\text {t }}$ ACW	Address Set-Up Time	80	-	40	-	ns
${ }^{\text {t }}$ CAH	Address Hold Time	0	-	0	-	ns
${ }^{\text {twCW }}$	$\mathrm{R} \overline{\bar{W}}$ Set-Up Time	80	-	40	-	ns
${ }^{\text {t }}$ CWH	R/ \bar{W} Hold Time	0	-	0	-	ns
${ }^{\text {t }}$ DCW	Data Bus Set-Up Time	165	-	60	-	ns
t_{HW}	Data Bus Hold Time	10	-	10	-	ns

(tr_{r} and $\mathrm{tf}_{\mathrm{f}}=10$ to 30 ns)

Read Timing Characteristics $V_{C C}=5.0 \mathrm{~V} \pm 5 \%, T_{A}=0-70^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Characteristic	SY6845		SY6845A		Unit
		Min.	Max.	Min.	Max.	
${ }_{\text {t }} \mathrm{CYC}$	Cycle Time	1.0	-	0.5	-	$\mu \mathrm{s}$
t_{C}	$\phi 2$ Pulse Width	440	-	200	-	ns
$\mathrm{t}_{\text {ACR }}$	Address Set-Up Time	80	-	40	-	ns
tcar	Address Hold Time	0	-	0	-	ns
twCR	R/ \bar{W} Set-Up Time	80	-	40	-	ns
$\mathrm{t}_{\text {cDR }}$	Read Access Time (Valid Data)	-	290	-	150	ns
t_{HR}	Read Hold Time	10	-	10	-	ns
${ }^{\text {t CDA }}$	Data Bus Active Time (Invalid Data)	40	-	40	-	ns

(t_{r} and $\mathrm{t}_{\mathrm{f}}=10$ to 30 ns)

Memory and Video Interface Characteristics $\left(V_{C C}=5.0 \mathrm{~V} \pm 5 \%, T_{A}=0\right.$ to $70^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Parameter	Min.	Typ.	Max.	Unit	Condition
$\mathrm{T}_{\mathrm{CCH}}$	Minimum Clock Pulse Width, High	130			ns	
$\mathrm{~T}_{\mathrm{CCV}}$	Clock Frequency			2.5	MHz	
$\mathrm{t}_{\mathrm{Cr}}, \mathrm{t}_{\mathrm{f}}$	Rise and Fall Time for Clock Input			20	ns	
$\mathrm{t}_{\mathrm{MAD}}$	Memory Address Delay Time		100	160	ns	
$\mathrm{t}_{\mathrm{RAD}}$	Raster Address Delay Time		100	160	ns	
$\mathrm{t}_{\mathrm{DrD}}$	Display Timing Delay Time		160	300	ns	
$\mathrm{t}_{\mathrm{HSD}}$	Horizontal Sync Delay Time		160	300	ns	
$\mathrm{t}_{\mathrm{VSD}}$	Vertical Sync Delay Time		160	300	ns	
$\mathrm{t}_{\mathrm{CDD}}$	Cursor Display Timing Delay Time		160	300	ns	

Light Pen Strobe Timing

NOTE:
"Safe" time position for LPEN positive edge to cause address $n+2$ to load into Light Pen Register. $\mathrm{t}_{\text {LP2 }}$ and $\mathrm{t}_{\text {LP1 }}$ are time positions causing uncertain results.
cclk

Symbol		SY6845		SY6845A		
	Characteristic	Min.	Max.	Min.	Max.	Unit
$\mathrm{t}_{\text {LPH }}$	LPEN Strobe Width	100	-	100	-	ns
$\mathrm{t}_{\text {LP1 }}$	LPEN to CCLK Delay	120	-	120	-	ns
$\mathrm{t}_{\text {LP2 }}$	CCLK to LPEN Delay	0	-	0	-	ns

[^16]
MPU Interface Signal Description

$\phi 2$ (Clock)

The input clock is the system $\phi 2$ clock and is used to trigger all data transfers between the system microprocessor and the SY6845. Since there is no maximum limit to the allowable $\phi 2$ cycle time, it is not necessary for it to be a continuous clock. This capability permits the SY6845 to be easily interfaced to non-6500-compatible microprocessors.

R/W (Read/Write)

The $R \bar{W}$ signal is generated by the microprocessor and is used to control the direction of data transfers. A high on the $R \bar{W}$ pin allows the processor to read the data supplied by the SY6845; a low on the R / \bar{W} pin allows a write to the SY6845.

$\overline{\mathrm{CS}}$ (Chip Select)

The Chip Select input is normally connected to the processor address bus either directly or through a decoder. The SY6845 is selected when $\overline{\mathrm{CS}}$ is low.

RS (Register Select)

The Register Select input is used to access internal registers. A low on this pin permits writes into the Address Registerand reads from the Status Register. The contents of the Address Register is the identity of the register accessed when RS is high.

$\mathrm{DB}_{0}-\mathrm{DB}_{7}$ (Data Bus)

The $\mathrm{DB}_{0}-\mathrm{DB}_{7}$ pins are the eight data lines used for transfer of data between the processor and the SY6545. These lines are bi-directional and are normally high-impedance except during read cycles when the chip is selected.

Video Interface Signal Description HSYNC (Horizontal Sync)

The HSYNC signal is an active-high output used to determine the horizontal position of displayed text. It may drive a CRT monitor directly or may be used for composite video generation. HSYNC time position and width are fully programmable.

VSYNC (Vertical Sync)

The VSYNC signal is an active-high output used to determine the vertical position of displayed text. Like HSYNC, VSYNC may be used to drive a CRT monitor or composite video generation circuits. VSYNC position and width are both fully programmable.

DISPLAY ENABLE

The DISPLAY ENABLE signal is an active-high output and is used to indicate when the SY6845 is generating active display information. The number of horizontal
displayed characters and the number of vertical displayed characters are both fully programmable and together are used to generate the DISPLAY ENABLE signal.

CURSOR

The CURSOR signal is an active-high output and is used to indicate when the scan coincides with the programmed cursor position. The cursor position may be programmed to be any character in the address field. Furthermore, within the character, the cursor may be programmed to be any block of scan lines, since the start scan line and the end scan line are both programmable.

LPEN

The LPEN signal is an edge-sensitive input and is used to load the internal Light Pen Register with the contents of the Refresh Scan Counter at the time the active edge occurs. The active edge of LPEN is the low-to-high transition.

CCLK

The CCLK signal is the character timing clock input and is used as the time base for all internal count/control functions.

$\overline{\text { RES }}$

The $\overline{\operatorname{RES}}$ signal is an active-low input used to initialize all internal scan counter circuits. When $\overline{\mathrm{RES}}$ is low, all internal counters are stopped and cleared, all scan and video outputs are low, and control registers are unaffected. $\overline{R E S}$ must stay low for at least one CCLK period. All scan timing is initiated when $\overline{\mathrm{RES}}$ goes high. In this way, $\overline{\mathrm{RES}}$ can be used to synchronize display frame timing with line frequency.

Memory Address Signal Description

MA0-MA13 (Video Display RAM Address Lines)

These signals are active-high outputs and are used to address the Video Display RAM for character storage and display operations. The starting scan address is fully programmable and the ending scan address is determined by the total number of characters displayed, which is also programmable, in terms of characters/line and lines/ frame.

- Binary Addressing

Characters are stored in successive memory locations. Thus, the software must be developed so that row and column co-ordinates are translated to sequentiallynumbered addresses for video display memory operations.

RA0-RA4 (Raster Address Lines)

These signals are active-high outputs and are used to select each raster scan within an individual character row. The number of raster scan lines is programmable and determines the character height, including spaces between character rows.

Description of Internal Registers

Figure 1 illustrates the format of a typical video display and is necessary to understand the functions of the various SY6845 internal registers. Figure 2 illustrates vertical and horizontal timing. Figure 3 summarizes the internal registers and indicates their address selection and read/write capabilities.

Address Register

This is a 5-bit register which is used as a "pointer" to direct SY6845 data transfers to and from the system MPU. Its contents is the number of the desired register (0-31). When RS is low, then this register may be loaded; when RS is high, then the register selected is the one whose identity is stored in this register.

Horizontal Total (R0)

This 8 -bit register contains the total of displayed and non-displayed characters, minus one, per horizontal line. The frequency of HSYNC is thus determined by this register.

Horizontal Displayed (R1)

This 8-bit register contains the number of displayed characters per horizontal line.

Horizontal Sync Position (R2)

This 8-bit register contains the position of the HSYNC on the horizontal line, in terms of the character location number on the line. The position of the HSYNC deter-
mines the left-to-right location of the displayed text on the video screen. In this way, the side margins are adjusted.

Horizontal and Vertical SYNC Widths (R3)

This 4-bit register programs the width of HSYNC.

VSYNC width is set to 16 scan line times.

Vertical Total (R4)

The Vertical Total Register is a 7-bit register containing the total number of character rows in a frame, minus one. This register, along with R5, determines the overall frame rate, which should be close to the line frequency to ensure flicker-free appearance. If the frame time is adjusted to be longer than the period of the line frequency, then $\overline{R E S}$ may be used to provide absolute synchronism.

Vertical Total Adjust (R5)

The Vertical Total Adjust Register is a 5-bit write only register containing the number of additional scan lines needed to complete an entire frame scan and is intended as a fine adjustment for the video frame time.

Vertical Displayed (R6)

This 7-bit register contains the number of displayed character rows in each frame. In this way, the vertical size of the displayed text is determined.

Figure 1. Video Display Format

Vertical Sync Position (R7)

This 7-bit register is used to select the character row time at which the VSYNC pulse is desired to occur and, thus, is used to position the displayed text in the vertical direction.

Mode Control (R8)

This register is used to select the operating modes of the SY6845 and is outlined as follows:

Scan Line (R9)

This 5-bit register contains the number of scan lines per character row, including spacing minus one.

Cursor Start (R10) and Cursor End (R11)

These 5 -bit registers select the starting and ending scan lines for the cursor. In addition, bits 5 and 6 of R10 are used to select the cursor mode, as follows:

BIT		CURSOR MODE
6	5	
0	0	No Blinking
0	1	No Cursor
.	0	Blink at $16 x$ field rate
1	1	Blink at $32 \times$ field rate

Note that the ability to program both the start and end scan line for the cursor enables either block cursor or underline to be accommodated. Registers R14 and R15 are used to control the character position of the cursor over the entire 16 K address field.

$\overline{\mathrm{CS}}$	RS	Address Reg.					Reg. No.	Register Name	Stored Info.	RD	WR	Register Bit					
		4	3	2	1	0						7	6	43	32	1	0
1		-	-	-	-	-	-					N以					
0		0	-	-	-	-	-	Address Reg.	Reg. No.		\checkmark	N	14	$\mathrm{A}_{4} \mathrm{~A}$	$\mathrm{A}_{3} \mathrm{~A}_{2}$	A_{1}	A_{0}
0	1	0	0	0	0	0	RO	Horiz. Total	\# Charac. -1		$\cdot \sqrt{ }$	\bullet	- -	-	- -	-	\bullet
0	1	0	0	0	0	1	R1	Horiz. Displayed	\# Charac.		\checkmark	-	-	-	- -	-	-
0	1	0	0	0	1	0	R2	Horiz. Sync Position	\# Charac.		\checkmark	-	-	-	- -	-	-
0	1	0	0	0	1	1	R3	VSYNC, HSYNC Widths	\neq Scan Lines and $=$ Char. Times						$\mathrm{H}_{3} \mathrm{H}_{2}$	H_{1}	H_{0}
0	1	0	0	1	0	0	R4	Vert. Total	\# Charac. Row-1		\checkmark	N			- -	-	\bullet
0	1	0	0	1	0	1	R5	Vert. Total Adjust	\# Scan Lines		\checkmark		141		- -	-	\bullet
0	1	0	0	1	1	0	R6	Vert. Displayed	\# Charac. Rows		\checkmark	A		-	- -	-	\bullet
0	1	0	0	1	1	1	R7	Vert. Sync Position	\# Charac. Rows		\checkmark	A		- \bullet	- \quad	-	-
0	1	0	1	0	0	0	R8	Mode Control					51	110	415	I_{1}	10
0	1	0	1	0	0	1	R9	Scan Line	\# Scan Lines -1		\checkmark				- -	-	-
0	1	0	1	0	1	0	R10	Cursor Start	Scan Line No.		\checkmark	A	$\mathrm{B}_{1} \mathrm{~B}_{0}$	-	- -	-	\bullet
0	1	0	1	0	1	1	R11	Cursor End	Scan Line No.		\checkmark			-	- -	-	\bullet
0	1	0	1	1	0	0	R12	$\begin{gathered} \text { Display Start } \\ \text { Addr }(H) \end{gathered}$						-	- -	-	\bullet
0	1	0	1	1	0	1	R13	Display Start Addr (L)			\checkmark	-	-	-	- -	-	-
0	1	0	1	1	1	0	R14	Cursor Position (H)		\checkmark	\checkmark	A 1		- \bullet	- -	-	\bullet
0	1	0	1	1	1	1	R15	Cursor Position (L)		\checkmark	\checkmark	-	-	-	- -	\bullet	\bullet
0	1	1	0	0	0	0	R16	Light Pen Reg (H)		\checkmark		N1	We	-	- -	-	\bullet
0	1	1	0	0	0	1	R17	Light Pen Reg (L)		\checkmark		\bullet	- \bullet	- \bullet	- -	\bullet	-
Notes: \square Designates binary-bit Designates unused bit. Reading this bit R31, which does not drive the data bu which operates likewise.																	

Figure 3. Internal Register Summary.

Display Start Address High (R12) and Low (R13)

These registers together comprise a 14-bit register whose contents is the memory address of the first character of the displayed scan (the character on the top left of the video display, as in Figure 1). Subsequent memory addresses are generated by the SY6845 as a result of CCLK input pulses. Scrolling of the display is accomplished by changing R12 and R13 to the memory address associated with the first character of the desired line of text to be displayed first. Entire pages of text may be scrolled or changed as well via R12 and R13.

Cursor Position High (R14) and Low (R15)

These registers together comprise a 14 -bit register whose contents is the memory address of the current cursor position. When the video display scan counter (MA lines) matches the contents of this register, and when the scan line counter (RA lines) falls within the bounds set by R10 and R11, then the CURSOR output becomes active. Bit 5 of the Mode Control Register (R8) may be used to delay the CURSOR output by a full CCLK time to accommodate slow access memories.

LPEN High (R16) and Low (R17)

These registers together comprise a 14 -bit register whose contents is the light pen strobe position, in terms of the
video display address at which the strobe occurred. When the LPEN input changes from low to high, then, on the next negative-going edge of CCLK, the contents of the internal scan counter is stored in registers R16 and R17.

STRAIGHT BINARY ADDRESSING SEQUENCE

Figure 4. Display Address Sequences (with Start Address $=0$) for 80×24 Example

Figure 5. Shared Memory System Configuration

Memory Contention Schemes for Shared Memory Addressing

From the diagram of Figure 5, it is clear that both the SY6845 and the system MPU must be capable of addressing the video display memory. The SY6845 repetitively fetches character information to generate the video signals in order to keep the screen display active. The MPU occasionally accesses the memory to change the displayed information or to read out current data characters. Three ways of resolving this dual-contention requirement are apparent:

- MPU Priority

In this technique, the address lines to the video display memory are normally driven by the SY6845 unless the MPU needs access, in which case the MPU addresses immediately override those from the SY6845 and the MPU has immediate access.

- $\phi 1 / \phi 2$ Memory Interleaving

This method permits both the SY6845 and the MPU access to the video display memory by time-sharing via the system $\phi 1$ and $\phi 2$ clocks. During the $\phi 1$ portion of each cycle (the time when $\phi 2$ is low), the SY6845 address outputs are gated to the video display memory. In the $\phi 2$ time, the MPU address lines are switched in. In this way, both the SY6845 and the MPU have unimpeded access to the memory. Figure 7 illustrates the timings.

Interlace Modes

There are three raster-scan display modes (see Figure 10).
a) Non-Interlaced Mode. In this mode each scan line is refreshed at the vertical field rate (50 or 60 Hz).
In the interlaced scan modes, even and odd fields alternate to generate frames. The horizontal and vertical timing relationship causes the scan lines in the odd fields to be displaced from those in the even fields. The two additional raster-scan display modes pertain to interlaced scans.
b) Interlace-Sync Mode. This mode is used when the same information is to be displayed in both odd and even fields. Enhanced readability results because the spaces between adjacent rows are filled and a higher quality character is displayed. This is achieved with only a slight alteration in the device operation: in alternate fields, the position of the VSYNC signal is delayed by $1 / 2$ of a scan line time. This is illustrated in Figure 11 and is the only difference in the SY6845 operation in this mode.
c) Interlaced Sync and Video Mode. This mode is used to double the character density on the screen by displaying the even lines in even fields and the odd lines in odd fields. As in the Interlace-Sync mode, the VSYNC position is delayed in alternate display fields. In addition, the address generation is altered. Figure 12 illustrates the timing.

Figure 7. $\phi 1 / \phi 2$ Interleaving.

Figure 10. Comparison of Display Modes.

Figure 11. Interlace-Sync Mode Timing

Figure 12. Interlace-Sync-and-Video Mode Timing

Package Availability 40 Pin Ceramic
40 Pin Cerdip
40 Pin Plastic

Ordering Information

Part Number	Package	CPU Clock Rate
SYC6845	Ceramic	1 MHz
SYD6845	Cerdip	1 MHz
SYP6845	Plastic	1 MHz
SYC6845A	Ceramic	2 MHz
SYD6845A	Cerdip	2 MHz
SYP6845A	Plastic	2 MHz

Features

- Single +5 volt ($\pm 5 \%$) power supply.
- Alphanumeric and limited graphics capabilities.
- Fully programmable display (rows, columns, blanking, etc.).
- Interlaced or non-interlaced scan.
- $50 / 60 \mathrm{~Hz}$ operation.
- Fully programmable cursor.
- External light pen capability.
- Capable of addressing up to 16 K character Video Display RAM.
- No DMA required.
- Compatible with MC6845R.
- Straight-binary addressing for Video Display RAM.
- Internal status register.
- 3.7 MHz Character Clock

Description

The SY6545 is a CRT Controller intended to provide capability for interfacing any microprocessor family to CRT or TV-type raster scan displays. A unique feature

Pin Designation

is the inclusion of several modes of operation, so that the system designer can configure the system with a wide assortment of techniques.

Interface Diagram

VIDEO DISPLAY RAM AND CHARACTER ROM

Absolute Maximum Ratings*

Supply Voltage, V_{CC} Input/Output Voltage, V_{IN} Operating Temperature, T_{OP} Storage Temperature, $\mathrm{T}_{\text {STG }}$
-0.3 V to +7.0 V
-0.3 V to +7.0 V
$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
$-55^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$

All inputs contain protection circuitry to prevent damage due to high static discharges. Care should be exercised to prevent unnecessary application of voltages in excess of the allowable limits.

Comments*

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only. Functional operation of this device at these or any other conditions above those indicated in the operational sections of this specification is not implied and exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Electrical Characteristics ($\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=0-70^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Characteristic	Min.	Typ.	Max.	Unit
$V_{\text {IH }}$	Input High Voltage	2.0		$V_{C C}$	V
VIL	Input Low Voltage	-0.3		0.8	V
1 IN	Input Leakage ($\phi 2, \mathrm{R} / \overline{\mathrm{w}}$, $\overline{\mathrm{RES}}, \overline{\mathrm{CS}}, \mathrm{RS}, \mathrm{LPEN}, \mathrm{CCLK}$)	-		2.5	$\mu \mathrm{A}$
$\mathrm{I}_{\text {TSI }}$	Three-State Input Leakage (DB0-DB7) $\mathrm{V}_{\mathrm{IN}}=0.4 \text { to } 2.4 \mathrm{~V}$	-		± 10.0	$\mu \mathrm{A}$
V_{OH}	Output High Voltage $\begin{aligned} & I_{\text {LOAD }}=205 \mu \mathrm{~A}(\mathrm{DBO}-\mathrm{DB} 7) \\ & I_{\text {LOAD }}=100 \mu \mathrm{~A} \text { (all others) } \end{aligned}$	2.4		-	V
VOL	Output Low Voltage $I_{\text {LOAD }}=1.6 \mathrm{~mA}$	-		0.4	V
P_{D}	Power Dissipation ($\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}$)	-	150	525	mW
$\mathrm{C}_{\text {IN }}$	Input Capacitance $\phi 2, \mathrm{R} / \overline{\mathrm{w}}, \overline{\mathrm{RES}}, \overline{\mathrm{CS}}, \mathrm{RS}$, LPEN, CCLK DB0-DB7	-		$\begin{aligned} & 10.0 \\ & 12.5 \end{aligned}$	$\begin{aligned} & \mathrm{pF} \\ & \mathrm{pF} \end{aligned}$
Cout	Output Capacitance	-		10.0	pF

Test Load

[^17]
MPU Bus Interface Characteristics

Write Timing Characteristics ($\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=0-70^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Characteristic	SY6545R		SY6545RA		Unit
		Min.	Max.	Min.	Max.	
${ }^{\text {t }}$ CYC	Cycle Time	1.0	-	0.5	-	$\mu \mathrm{s}$
${ }^{\text {t }}$ C	$\phi 2$ Pulse Width	440	-	200	-	ns
${ }_{\text {t }}^{\text {ACW }}$	Address Set-Up Time	80	-	40	-	ns
${ }^{\text {t }}$ CAH	Address Hold Time	0	-	0	-	ns
${ }^{\text {t }}$ WCW	R \bar{W} Set-Up Time	80	-	40	-	ns
${ }^{\text {c }}$ CWH	R/W Hold Time	0	-	0	-	ns
${ }^{\text {t }}$ DCW	Data Bus Set-Up Time	165	-	60	-	ns
t_{HW}	Data Bus Hold Time	10	-	10	-	ns

(t_{r} and $\mathrm{t}_{\mathrm{f}}=10$ to 30 ns)

Read Timing Characteristics $V_{C C}=5.0 \mathrm{~V} \pm 5 \%, T_{A}=0-70^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Characteristic	SY6545R		SY6545RA		Unit
		Min.	Max.	Min.	Max.	
${ }^{\text {t }} \mathrm{CrC}$	Cycle Time	1.0	-	0.5	-	$\mu \mathrm{s}$
${ }^{\text {t }}$ C	$\phi 2$ Pulse Width	440	-	200	-	ns
$t_{\text {ACR }}$	Address Set-Up Time	80	-	40	-	ns
${ }^{\text {t CAR }}$	Address Hold Time	0	-	0	-	ns
twCR	R/ \bar{W} Set-Up Time	80	-	40	-	ns
${ }_{\text {t }}$ CDR	Read Access Time (Valid Data)	-	290	-	150	ns
t_{HR}	Read Hold Time	10	-	10	-	ns
${ }^{\text {t CDA }}$	Data Bus Active Time (Invalid Data)	40	-	40	-	ns

(t_{r} and $\mathrm{t}_{\mathrm{f}}=10$ to 30 ns)

Memory and Video Interface Characteristics $\quad V_{C C}=5.0 \mathrm{~V} \pm 5 \%, T_{A}=0$ to $70^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Parameter	Min.	Typ.	Max.	Unit	Condition
$\mathrm{T}_{\mathrm{CCH}}$	Minimum Clock Pulse Width, High	130			ns	
$\mathrm{~T}_{\mathrm{CCV}}$	Clock Frequency			2.5	MHz	
$\mathrm{t}_{\mathrm{Cr}}, \mathrm{t}_{\mathrm{f}}$	Rise and Fall Time for Clock Input			20	ns	
$\mathrm{t}_{\text {MAD }}$	Memory Address Delay Time		100	160	ns	
$\mathrm{t}_{\text {RAD }}$	Raster Address Delay Time		100	160	ns	
$\mathrm{t}_{\mathrm{DTD}}$	Display Timing Delay Time		160	300	ns	
$\mathrm{t}_{\text {HSD }}$	Horizontal Sync Delay Time		160	300	ns	
$\mathrm{t}_{\text {VSD }}$	Vertical Sync Delay Time		160	300	ns	
$\mathrm{t}_{\mathrm{CDD}}$	Cursor Display Timing Delay Time		160	300	ns	

Light Pen Strobe Timing

NOTE:
"Safe" time position for LPEN positive edge to cause address $n+2$ to load into Light Pen Register.
 $\mathrm{t}_{\mathrm{LP} 2}$ and $\mathrm{t}_{\text {LP1 }}$ are time positions causing uncertain results.

Symbol		SY6545R		SY6545RA		
	Characteristic	Min.	Max.	Min.	Max.	Unit
$t_{\text {LPH }}$	LPEN Strobe Width	100	-	100	-	ns
$\mathrm{t}_{\text {LP1 }}$	LPEN to CCLK Delay	120	-	120	-	ns
$\mathrm{t}_{\text {LP2 }}$	CCLK to LPEN Delay	0	-	0	-	ns

$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns}(\mathrm{max})$

MPU Interface Signal Description

```
\(\phi 2\) (Clock)
```

The input clock is the system $\phi 2$ clock and is used to trigger all data transfers between the system microprocessor and the SY6545. Since there is no maximum limit to the allowable $\phi 2$ cycle time, it is not necessary for it to be a continuous clock. This capability permits the SY6545 to be easily interfaced to non-6500-compatible microprocessors.

R/W (Read/Write)

The $\mathrm{R} / \overline{\mathrm{W}}$ signal is generated by the microprocessor and is used to control the direction of data transfers. A high on the R / \bar{W} pin allows the processor to read the data supplied by the SY6545; a low on the R / \bar{W} pin allows a write to the SY6545.

$\overline{\mathrm{CS}}$ (Chip Select)

The Chip Select input is normally connected to the processor address bus either directly or through a decoder. The SY6545 is selected when $\overline{\mathrm{CS}}$ is low.

RS (Register Select)

The Register Select input is used to access internal registers. A low on this pin permits writes into the Address Registerand reads from the Status Register. The contents of the Address Register is the identity of the register accessed when RS is high.

$\mathrm{DB}_{0}-\mathrm{DB}_{7}$ (Data Bus)

The $\mathrm{DB}_{0}-\mathrm{DB}_{7}$ pins are the eight data lines used for transfer of data between the processor and the SY6545. These lines are bi-directional and are normally high-impedance except during read cycles when the chip is selected.

Video Interface Signal Description

 HSYNC (Horizontal Sync)The HSYNC signal is an active-high output used to determine the horizontal position of displayed text. It may drive a CRT monitor directly or may be used for composite video generation. HSYNC time position and width are fully programmable.

VSYNC (Vertical Sync)

The VSYNC signal is an active-high output used to determine the vertical position of displayed text. Like HSYNC, VSYNC may be used to drive a CRT monitor or composite video generation circuits. VSYNC position and width are both fully programmable.

DISPLAY ENABLE
The DISPLAY ENABLE signal is an active-high output and is used to indicate when the SY6545 is generating active display information. The number of horizontal displayed characters and the number of vertical displayed
characters are both fully programmable and together are used to generate the DISPLAY ENABLE signal.

CURSOR

The CURSOR signal is an active-high output and is used to indicate when the scan coincides with the programmed cursor position. The cursor position may be programmed to be any character in the address field. Furthermore, within the character, the cursor may be programmed to be any block of scan lines, since the start scan line and the end scan line are both programmable.

LPEN

The LPEN signal is an edge-sensitive input and is used to load the internal Light Pen Register with the contents of the Refresh Scan Counter at the time the active edge occurs. The active edge of LPEN is the low-to-high transition.

CCLK

The CCLK signal is the character timing clock input and is used as the time base for all internal count/control functions.

$\overline{\text { RES }}$

The $\overline{\mathrm{RES}}$ signal is an active-low input used to initialize all internal scan counter circuits. When $\overline{\mathrm{RES}}$ is low, all internal counters are stopped and cleared, all scan and video outputs are low, and control registers are unaffected. $\overline{R E S}$ must stay low for at least one CCLK period. All scan timing is initiated when $\overline{R E S}$ goes high. In this way, $\overline{\mathrm{RES}}$ can be used to synchronize display frame timing with line frequency.

Memory Address Signal Description

MA0-MA13 (Video Display RAM Address Lines)

These signals are active-high outputs and are used to address the Video Display RAM for character storage and display operations. The starting scan address is fully programmable and the ending scan address is determined by the total number of characters displayed, which is also programmable, in terms of characters/line and lines/ frame.

- Binary Addressing

Characters are stored in successive memory locations. Thus, the software must be developed so that row and column co-ordinates are translated to sequentiallynumbered addresses for video display memory operations.

RA0-RA4 (Raster Address Lines)

These signals are active-high outputs and are used to select each raster scan within an individual character row. The number of raster scan lines is programmable and determines the character height, including spaces between character rows.

Description of Internal Registers

Figure 1 illustrates the format of a typical video display and is necessary to understand the functions of the various SY6545 internal registers. Figure 2 illustrates vertical and horizontal timing. Figure 3 summarizes the internal registers and indicates their address selection and read/write capabilities.

Address Register

This is a 5-bit register which is used as a "pointer" to direct SY6545 data transfers to and from the system MPU. Its contents is the number of the desired register (0-31). When RS is low, then this register may be loaded; when RS is high, then the register selected is the one whose identity is stored in this register.

Status Register

This 3-bit register is used to monitor the status of the CRTC, as follows:

Horizontal Total (R0)

This 8-bit register contains the total of displayed and non-displayed characters, minus one, per horizontal line. The frequency of HSYNC is thus determined by this register.

Horizontal Displayed (R1)

This 8-bit register contains the number of displayed characters per horizontal line.

Horizontal Sync Position (R2)

This 8-bit register contains the position of the HSYNC on the horizontal line, in terms of the character location number on the line. The position of the HSYNC determines the left-to-right location of the displayed text on the video screen. In this way, the side margins are adjusted.

Horizontal and Vertical SYNC Widths (R3)

This 4-bit register programs the width of HSYNC.

VSYNC width is set to 16 scan line times.

Vertical Total (R4)

The Vertical Total Register is a 7-bit register containing the total number of character rows in a frame, minus one. This register, along with R5, determines the overall frame rate, which should be close to the line frequency to ensure flicker-free appearance. If the frame time is adjusted to be longer than the period of the line frequency, then $\overline{\mathrm{RES}}$ may be used to provide absolute synchronism.

Vertical Total Adjust (R5)

The Vertical Total Adjust Register is a 5-bit write only register containing the number of additional scan lines needed to complete an entire frame scan and is intended as a fine adjustment for the video frame time.

Vertical Displayed (R6)

This 7-bit register contains the number of displayed character rows in each frame. In this way, the vertical size of the displayed text is determined.

Figure 1. Video Display Format

Vertical Sync Position (R7)

This 7-bit register is used to select the character row time at which the VSYNC pulse is desired to occur and, thus, is used to position the displayed text in the vertical direction.

Mode Control (R8)

This register is used to select the operating modes of the SY6545 and is outlined as follows:

Scan Line (R9)

This 5-bit register contains the number of scan lines per character row, including spacing minus one.

Cursor Start (R10) and Cursor End (R11)

These 5 -bit registers select the starting and ending scan lines for the cursor. In addition, bits 5 and 6 of R10 are used to select the cursor mode, as follows:

BIT		CURSOR MODE
6	5	
0	0	No Blinking
0	1	No Cursor
1	0	Blink at $16 x$ field rate (fast)
1	1	Blink at $32 \times$ field rate (slow)

Note that the ability to program both the start and end scan line for the cursor enables either block cursor or underline to be accommodated. Registers R14 and R15 are used to control the character position of the cursor over the entire 16 K address field.

$\overline{\mathrm{CS}}$	RS	Address Reg.					Reg. No.	Register Name	Stored Info.	RD	WR	Register Bit					
		4	3	2	1	0						76	5	43	32	1	0
1		-	-	-	-	-	-					N1/	K	IM	W	1	
0		0	-	-	-	-	-	Address Reg.	Reg. No.		\checkmark		${ }^{2}$	$\mathrm{A}_{4} \mathrm{~A}^{4}$	$\mathrm{A}_{3} \mathrm{~A}_{2}$	A_{1}	A_{0}
0		0	-	-	-	-	-	Status Reg.		\checkmark		U	$\vee N$	N1	1 T		
0	1	0	0	0	0	0	RO	Horiz. Total	\# Charac. -1		\checkmark	\bullet	-	-	- \bullet	-	\bullet
0	1	0	0	0	0	1	R1	Horiz. Displayed	\pm Charac.		\checkmark	-	-	-	- -	-	\bullet
0	1	0	0	0	1	0	R2	Horiz. Sync Position	$=$ Charac.		\checkmark	-	-	- -	- -	-	-
0	1	0	0	0	1	1	R3	VSYNC, HSYNC Widths	$=$ Scan Lines and $=$ Char. Times						$\mathrm{H}_{3} \mathrm{H}_{2}$	H_{1}	H_{0}
0	1	0	0	1	0	0	R4	Vert. Total	= Charac. Row -1		\checkmark^{\prime}				- -	-	\bullet
0	1	0	0	1	0	1	R5	Vert. Total Adjust	\# Scan Lines		\checkmark		$x \sqrt{4}$		-	-	-
0	1	0	0	1	1	0	R6	Vert. Displayed	\# Charac. Rows		\checkmark			-	- -	-	\bullet
0	1	0	0	1	1	1	R7	Vert. Sync Position	\# Charac. Rows		\checkmark			- \bullet	,	-	-
0	1	0	1	0	0	0	R8	Mode Control						1110		${ }_{1}$	10
0	1	0	1	0	0	1	R9	Scan Line	\# Scan Lines -1		\checkmark				-	-	-
0	1	0	1	0	1	0	R10	Cursor Start	Scan Line No.		\checkmark	$A V B$	B_{0}	-	- -	-	-
0	1	0	1	0	1	1	R11	Cursor End	Scan Line No.		\checkmark			- -	- -	-	\bullet
0	1	0	1	1	0	0	R12	Display Start Addr (H)						- -	- -	-	-
0	1	0	1	1	0	1	R13	Display Start Addr (L)			\checkmark	- -	-	- -	- -	-	-
0	1	0	1	1	1	0	R14	Cursor Position (H)		\checkmark	\checkmark	11.1		-	- -	-	\bullet
0	1	0	1	1	1	1	R15	Cursor Position (L)		$\sqrt{ }$	\checkmark		-	- -	- -	-	\bullet
0	1	1	0	0	0	0	R16	Light Pen Reg (H)		$\sqrt{ }$		N11	-	- -	- -	-	-
0	1	1	0	0	0	1	R17	Light Pen Reg (L)		\checkmark		- -	-	-	- -	-	-

Figure 3. Internal Register Summary.

Display Start Address High (R12) and Low (R13)

These registers together comprise a 14 -bit register whose contents is the memory address of the first character of the displayed scan (the character on the top left of the video display, as in Figure 1). Subsequent memory addresses are generated by the SY6545 as a result of CCLK input pulses. Scrolling of the display is accomplished by changing R12 and R13 to the memory address associated with the first character of the desired line of text to be displayed first. Entire pages of text may be scrolled or changed as well via R12 and R13.

Cursor Position High (R14) and Low (R15)

These registers together comprise a 14 -bit register whose contents is the memory address of the current cursor position. When the video display scan counter (MA lines) matches the contents of this register, and when the scan line counter (RA lines) falls within the bounds set by R10 and R11, then the CURSOR output becomes active. Bit 5 of the Mode Control Register (R8) may be used to delay the CURSOR output by a full CCLK time to accommodate slow access memories.

LPEN High (R16) and Low (R17)

These registers together comprise a 14-bit register whose contents is the light pen strobe position, in terms of the
video display address at which the strobe occurred. When the LPEN input changes from low to high, then, on the next negative-going edge of CCLK, the contents of the internal scan counter is stored in registers R16 and R17.

STRAIGHT BINARY ADDRESSING SEQUENCE

Figure 4. Display Address Sequences (with Start
Address $=0$) for 80×24 Example

Figure 5. Shared Memory System Configuration

Memory Contention Schemes for Shared Memory Addressing

From the diagram of Figure 4, it is clear that both the SY6545 and the system MPU must be capable of addressing the video display memory. The SY6845 repetitively fetches character information to generate the video signals in order to keep the screen display active. The MPU occasionally accesses the memory to change the displayed information or to read out current data characters. Three ways of resolving this dual-contention requirement are apparent:

- MPU Priority

In this technique, the address lines to the video display memory are normally driven by the SY6545 unless the MPU needs access, in which case the MPU addresses immediately override those from the SY6545 and the MPU has immediate access.

- $\phi 1 / \phi 2$ Memory Interleaving

This method permits both the SY6845 and the MPU access to the video display memory by time-sharing via the system $\phi 1$ and $\phi 2$ clocks. During the $\phi 1$ portion of each cycle (the time when $\phi 2$ is low), the SY6545 address outputs are gated to the video display memory. In the $\phi 2$ time, the MPU address lines are switched in. In this way, both the SY6545 and the MPU have unimpeded access to the memory. Figure 7 illustrates the timings.

Interlace Modes

There are three raster-scan display modes (see Figure 10).
a) Non-Interlaced Mode. In this mode each scan line is refreshed at the vertical field rate (50 or 60 Hz).
In the interlaced scan modes, even and odd fields alternate to generate frames. The horizontal and vertical timing relationship causes the scan lines in the odd fields to be displaced from those in the even fields. The two additional raster-scan display modes pertain to interlaced scans.
b) Interlace-Sync Mode. This mode is used when the same information is to be displayed in both odd and even fields. Enhanced readability results because the spaces between adjacent rows are filled and a higher quality character is displayed. This is achieved with only a slight alteration in the device operation: in alternate fields, the position of the VSYNC signal is delayed by $1 / 2$ of a scan line time. This is illustrated in Figure 11 and is the only difference in the SY6545 operation in this mode.
c) Interlaced Sync and Video Mode. This mode is used to double the character density on the screen by displaying the even lines in even fields and the odd lines in odd fields. As in the Interlace-Sync mode, the VSYNC position is delayed in alternate display fields. In addition, the address generation is altered. Figure 12 illustrates the timing.

Figure 7. $\phi \mathbf{1} / \phi 2$ Interleaving.

Figure 10. Comparison of Display Modes.

Figure 11. Interlace-Sync Mode Timing

Figure 12. Interlace-Sync-and-Video Mode Timing

Figure 14. Operation of Vertical Blanking Status Bit

Package Availability 40 Pin Ceramic 40 Pin Cerdip 40 Pin Plastic

Ordering Information

Part Number	Package	CPU Clock Rate
SYC6545R	Ceramic	1 MHz
SYD6545R	Cerdip	1 MHz
SYP6545R	Plastic	1 MHz
SYC6545RA	Ceramic	2 MHz
SYD6545RA	Cerdip	2 MHz
SYP6545RA	Plastic	2 MHz

Features

- Single +5 volt ($\pm 5 \%$) power supply.
- Alphanumeric and limited graphics capabilities.
- Fully programmable display (rows, columns, blanking, etc.).
- Interlaced or non-interlaced scan.
- $50 / 60 \mathrm{~Hz}$ operation.
- Fully programmable cursor.
- External light pen capability.
- Capable of addressing up to 16 K character Video Display RAM.
- No DMA required.
- Pin-compatible with MC6845R.
- Row/Column or straight-binary addressing for Video Display RAM.
- Video Display RAM may be configured as part of microprocessor memory field or independently slaved to 6545 .
- Internal status register.
- 3.7 MHz Character Clock

Description

The SY6545E is a CRT Controller intended to provide capability for interfacing any 8 or 16 bit microprocessor family to CRT or TV-type raster scan displays. A unique

Pin Configuration

$\begin{aligned} \text { GND } \square & 39\end{aligned}$
feature is the inclusion of several modes of operation, so that the system designer can configure the system with a wide assortment of techniques.

Interface Diagram

Absolute Maximum Ratings*

Supply Voltage, V_{CC} Input/Output Voltage, VIN Operating Temperature, TOP $_{O P}$
Storage Temperature, $\mathrm{T}_{\text {STG }}$

$$
\begin{array}{r}
-0.3 \mathrm{~V} \text { to }+7.0 \mathrm{~V} \\
-0.3 \mathrm{~V} \text { to }+7.0 \mathrm{~V} \\
0^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C} \\
-55^{\circ} \mathrm{C} \text { to } 150^{\circ} \mathrm{C}
\end{array}
$$

All inputs contain protection circuitry to prevent damage due to high static discharges. Care should be exercised to prevent unnecessary application of voltages in excess of the allowable limits.

Comment*

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only. Functional operation of this device at these or any other conditions above those indicated in the operational sections of this specification is not implied and exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Electrical Characteristics ($\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=0-70^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Characteristic	Min.	Typ.	Max.	Unit
V_{IH}	Input High Voltage	2.0		$\mathrm{~V}_{\mathrm{CC}}$	V
V_{IL}	Input Low Voltage	-0.3		0.8	V
I_{IN}	Input Leakage ($\phi 2, \mathrm{R} / \mathrm{W}, \mathrm{RES}, \mathrm{CS}, \mathrm{RS}$, LPEN, CCLK)				

Test Load

$\mathrm{R}=11 \mathrm{~K} \Omega$ FOR $\mathrm{DB}_{0}-\mathrm{DB}_{7}$
$R=24 \mathrm{~K} \Omega$ FOR ALL OTHER OUTPUTS
$\mathrm{C}=130 \mathrm{pF}$ TOTAL FOR $\mathrm{D}_{0}-\mathrm{D}_{7}$
$\mathrm{C}=130 \mathrm{pF}$ ALL OTHER OUTPUTS
$\mathrm{C}=30 \mathrm{pF}$

MPU Bus Interface Characteristics

Write Timing Characteristics ($\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=0-70^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Characteristic	SY6545E		SY6545EA		Unit
		Min.	Max.	Min.	Max.	
${ }^{\text {t }}$ CYC	Cycle Time	1.0	-	0.5	-	$\mu \mathrm{s}$
${ }^{\text {t }}$ C	$\phi 2$ Pulse Width	440	-	200	-	ns
${ }^{\text {t }}$ ACW	Address Set-Up Time	80	-	40	-	ns
${ }^{\text {t }}$ CAH	Address Hold Time	0	-	0	-	ns
${ }^{\text {t }}$ WCW	R \bar{W} Set-Up Time	80	-	40	-	ns
${ }^{\text {t }}$ CWH	R/̄W Hold Time	0	-	0	-	ns
${ }^{\text {t }}$ DCW	Data Bus Set-Up Time	165	-	60	-	ns
t_{HW}	Data Bus Hold Time	10	-	10	-	ns

(tr_{r} and $\mathrm{t}_{\mathrm{f}}=10$ to 30 ns)

Read Timing Characteristics $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=0-70^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol		SY6545E		SY6545EA		
	Characteristic	Min.	Max.	Min.	Max.	Unit
$\mathrm{t}_{\mathrm{CYC}}$	Cycle Time	1.0	-	0.5	-	$\mu \mathrm{s}$
t_{C}	$\phi 2$ Pulse Width	440	-	200	-	ns
$\mathrm{t}_{\text {ACR }}$	Address Set-Up Time	80	-	40	-	ns
$\mathrm{t}_{\mathrm{CAR}}$	Address Hold Time	0	-	0	-	ns
$\mathrm{t}_{\mathrm{WCR}}$	R / \bar{W} Set-Up Time	80	-	40	-	ns
$\mathrm{t}_{\mathrm{CDR}}$	Read Access Time (Valid Data)	-	290	-	150	ns
t_{HR}	Read Hold Time	10	-	10	-	ns
$\mathrm{t}_{\mathrm{CDA}}$	Data Bus Active Time (Invalid Data)	40	-	40	-	ns

(t_{r} and $\mathrm{t}_{\mathrm{f}}=10$ to 30 ns)

Memory and Video Interface Characteristics ($V_{C C}=5.0 \mathrm{~V} \pm 5 \%, T_{A}=0$ to $70^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Parameter	Min.	Typ.	Max.	Unit	Condition
$\mathrm{T}_{\mathrm{CCH}}$	Minimum Clock Pulse Width, High	130			ns	
$\mathrm{~T}_{\mathrm{CCV}}$	Clock Frequency			3.7	MHz	
$\mathrm{t}_{\mathrm{Cr}}, \mathrm{t}_{\mathrm{f}}$	Rise and Fall Time for Clock Input			20	ns	
$\mathrm{t}_{\text {MAD }}$	Memory Address Delay Time		100	160	ns	
$\mathrm{t}_{\text {RAD }}$	Raster Address Delay Time		100	160	ns	
$\mathrm{t}_{\mathrm{DTD}}$	Display Timing Delay Time		160	300	ns	
$\mathrm{t}_{\text {HSD }}$	Horizontal Sync Delay Time		160	300	ns	
$\mathrm{t}_{\mathrm{VSD}}$	Vertical Sync Delay Time		160	300	ns	
$\mathrm{t}_{\mathrm{CDD}}$	Cursor Display Timing Delay Time		160	300	ns	

Light Pen Strobe Timing

NOTE:
"Safe" tume position for LPEN positive edge to cause address $n+2$ to load into Light Pen Register.
 $\mathrm{t}_{\mathrm{LP} 2}$ and $\mathrm{t}_{\text {LP1 }}$ are time positions causing uncertain results.

Symbol		SY6545E		SY6545EA		
	Characteristic	Min.	Max.	Min.	Max.	Unit
$t_{\text {LPH }}$	LPEN Strobe Width	100	-	100	-	ns
$\mathrm{t}_{\text {LP1 }}$	LPEN to CCLK Delay	120	-	120	-	ns
$\mathrm{t}_{\text {LP2 }}$	CCLK to LPEN Delay	0	-	0	-	ns

$t_{r}, t_{f}=20 \mathrm{~ns}(\max)$

MPU Interface Signal Description $\phi 2$ (Clock)

The input clock is the system $\phi 2$ clock and is used to trigger all data transfers between the system microprocessor and the SY6545. Since there is no maximum limit to the allowable $\phi 2$ cycle time, it is not necessary for it to be a continuous clock. This capability permits the SY6545 to be easily interfaced to non-6500-compatible microprocessors.

R/W (Read/Write)

The $R \bar{W}$ signal is generated by the microprocessor and is used to control the direction of data transfers. A high on the $\mathrm{R} / \overline{\mathrm{W}}$ pin allows the processor to read the data supplied by the SY6545; a low on the $\mathrm{R} \overline{\mathrm{W}}$ pin allows a write to the SY6545.

$\overline{\mathrm{CS}}$ (Chip Select)

The Chip Select input is normally connected to the processor address bus either directly or through a decoder. The SY6545 is selected when $\overline{\mathrm{CS}}$ is low.

RS (Register Select)

The Register Select input is used to access internal registers. A low on this pin permits writes into the Address Register and reads from the Status Register. The contents of the Address Register is the identity of the register accessed when RS is high.

$\mathrm{DB}_{0}-\mathrm{DB}_{7}$ (Data Bus)

The $\mathrm{DB}_{0}-\mathrm{DB}_{7}$ pins are the eight data lines used for transfer of data between the processor and the SY6545. These lines are bi-directional and are normally high-impedance except during read cycles when the chip is selected.

Video Interface Signal Description

HSYNC (Horizontal Sync)
The HSYNC signal is an active-high output used to determine the horizontal position of displayed text. It may drive a CRT monitor directly or may be used for composite video generation. HSYNC time position and width are fully programmable.

VSYNC (Vertical Sync)

The VSYNC signal is an active-high output used to determine the vertical position of displayed text. Like HSYNC, VSYNC may be used to drive a CRT monitor or composite video generation circuits. VSYNC position and width are both fully programmable.

DISPLAY ENABLE

The DISPLAY ENABLE signal is an active-high output and is used to indicate when the SY6545 is generating active display information. The number of horizontal displayed characters and the number of vertical displayed characters are both fully programmable and together are used to generate the DISPLAY ENABLE signal.

DISPLAY ENABLE may be delayed by one character time by setting bit 4 of R 8 to a " 1 ".

CURSOR

The CURSOR signal is an active-high output and is used to indicate when the scan coincides with the programmed cursor position. The cursor position may be programmed to be any character in the address field. Furthermore, within the character, the cursor may be programmed to be any block of scan lines, since the start scan line and the end scan line are both programmable. The CURSOR position may be delayed by one character time by setting bit 5 of R8 to a " 1 ".

LPEN

The LPEN signal is an edge-sensitive input and is used to load the internal Light Pen Register with the contents of the Refresh Scan Counter at the time the active edge occurs. The active edge of LPEN is the low-to-high transition.

CCLK

The CCLK signal is the character timing clock input and is used as the time base for all internal count/control functions.

$\overline{\text { RES }}$

The $\overline{R E S}$ signal is an active-low input used to initialize all internal scan counter circuits. When $\overline{\mathrm{RES}}$ is low, all internal counters are stopped and cleared, all scan and video outputs are low, and control registers are unaffected. $\overline{\mathrm{RES}}$ must stay low for at least one CCLK period. All scan timing is initiated when $\overline{\mathrm{RES}}$ goes high. In this way, $\overline{\mathrm{RES}}$ can be used to synchronize display frame timing with line frequency.

Memory Address Signal Description

MA0-MA13 (Video Display RAM Address Lines)
These signals are active-high outputs and are used to address the Video Display RAM for character storage and display operations. The starting scan address is fully programmable and the ending scan address is determined by the total number of characters displayed, which is also programmable, in terms of characters/line and lines/ frame.
There are two selectable address modes for MAO-MA13:

- Binary

Characters are stored in successive memory locations. Thus, the software must be developed so that row and column co-ordinates are translated to sequentiallynumbered addresses for video display memory operations.

- Row/Column

In this mode, MAO-MA7 function as column addresses CC0-CC7, and MA8-MA13, as row addresses CR0CR5. In this case, the software may handle addresses in terms of row and column locations, but additional
address compression circuits are needed to convert CCO-CC7 and CRO-CR5 into a memory-efficient binary scheme.

RA0-RA4 (Raster Address Lines)

These signals are active-high outputs and are used to select each raster scan within an individual character row. The number of raster scan lines is programmable and determines the character height, including spaces between character rows.
The high-order line, RA4, is unique in that it can also function as a strobe output pin when the SY 6545 is programmed to operate in the "Transparent Address Mode". In this case the strobe is an active-high output and is true at the time the Video Display RAM update address is gated on to the address lines, MAO-MA13. In this way, updates and readouts of the Video Display RAM can be made under control of the SY6545 with only a small amount of external circuitry.

Description of Internal Registers

Figure 1 illustrates the format of a typical video display and is necessary to understand the functions of the various SY6545 internal registers. Figure 2 illustrates vertical and horizontal timing. Figure 3 summarizes the internal registers and indicates their address selection and read/write capabilities.

Address Register

This is a 5-bit register which is used as a "pointer" to direct SY6545 data transfers to and from the system MPU. Its contents is the number of the desired register $(0-31)$. When RS is low, then this register may be loaded; when RS is high, then the register selected is the one whose identity is stored in this register.

Status Register

This 3-bit register is used to monitor the status of the

CRTC, as follows:

" 0 " Scan currently not in vertical blanking portion of its timing
" 1 " Scan currently is in its vertical blanking time.
LPEN REGISTER FULL
" 0 " This bit goes to " 0 " whenever either register
R16 or R17 is read by the MPU
" 1 " This bit goes to " 1 " whenever a LPEN strobe occurs.

UPDATE READY
" 0 " This bit goes to " 0 " when register R31 has been either read or written by the MPU.
" 1 " This bit goes to " 1 " when an Update Strobe occurs.

Horizontal Total (R0)

This 8-bit register contains the total of displayed and non-displayed characters, minus one, per horizontal line. The frequency of HSYNC is thus determined by this register.

Horizontal Displayed (R1)

This 8-bit register contains the number of displayed characters per horizontal line.

Horizontal Sync Position (R2)

This 8-bit register contains the position of the HSYNC on the horizontal line, in terms of the character location number on the line. The position of the HSYNC determines the left-to-right location of the displayed text on the video screen. In this way, the side margins are adjusted.

Figure 1. Video Display Format

Horizontal and Vertical SYNC Widths (R3)

This 8-bit register contains the widths of both HSYNC and VSYNC, as follows:

VSYNC WIDTH* HSYNC WIDTH
(NUMBER OF SCAN (NUMBER OF CHARACTER LINES) CLOCK TIMES)
*IF BITS 4-7 ARE ALL " 0 ", THEN VSYNC WILL BE 16 SCAN LINES WIDE.

Control of these parameters allows the SY6545 to be
interfaced to a variety of CRT monitors, since the HSYNC and VSYNC timing signals may be accommodated without the use of external one-shot timing.

Vertical Total (R4)

The Vertical Total Register is a 7-bit register containing the total number of character rows in a frame, minus one. This register, along with R5, determines the overall frame rate, which should be close to the line frequency to ensure flicker-free appearance. If the frame time is adjusted to be longer than the period of the line frequency, then $\overline{\mathrm{RES}}$ may be used to provide absolute synchronism.

Notes:
Designates binary bit
Designates unused bit. Reading this bit is always " 0 ", except for R31, which does not drive the data bus at all, and for $\overline{C S}=$ " 1 " which operates likewise.

Figure 3. Internal Register Summary

Vertical Total Adjust (R5)

The Vertical Total Adjust Register is a 5-bit write only register containing the number of additional scan lines needed to complete an entire frame scan and is intended as a fine adjustment for the video frame time.

Vertical Displayed (R6)

This 7-bit register contains the number of displayed character rows in each frame. In this way, the vertical size of the displayed text is determined.

Vertical Sync Position (R7)

This 7-bit register is used to select the character row time at which the VSYNC pulse is desired to occur and, thus, is used to position the displayed text in the vertical direction.

Mode Control (R8)

This register is used to select the operating modes of the SY6545 and is outlined as follows:

Scan Line (R9)

This 5-bit register contains the number of scan lines per character row, including spacing minus one.

Cursor Start (R10) and Cursor End (R11)

These 5 -bit registers select the starting and ending scan lines for the cursor. In addition, bits 5 and 6 of R10 are used to select the cursor mode, as follows:

BIT		CURSOR MODE
$\mathbf{6}$	$\mathbf{5}$	
0	0	No Blinking
0	1	No Cursor
1	0	Blink at $16 x$ field rate (fast)
1	1	Blink at $32 x$ field rate (slow)

Note that the ability to program both the start and end scan line for the cursor enables either block cursor or underline to be accommodated. Registers R14 and R15 are used to control the character position of the cursor over the entire 16 K address field.

Display Start Address High (R12) and Low (R13)

These registers together comprise a 14-bit register whose contents is the memory address of the first character of the displayed scan (the character on the top left of the video display, as in Figure 1). Subsequent memory addresses are generated by the SY6545 as a result of CCLK input pulses. Scrolling of the display is accomplished by changing R12 and R13 to the memory address associated with the first character of the desired line of text to be displayed first. Entire pages of text may be scrolled or changed as well via R12 and R13.

Cursor Position High (R14) and Low (R15)

These registers together comprise a 14-bit register whose contents is the memory address of the current cursor position. When the video display scan counter (MA lines) matches the contents of this register, and when the scan line counter (RA lines) falls within the bounds set by R10 and R11, then the CURSOR output becomes active. Bit 5 of the Mode Control Register (R8) may be used to delay the CURSOR output by a full CCLK time to accommodate slow access memories.

LPEN High (R16) and Low (R17)

These registers together comprise a 14-bit register whose contents is the light pen strobe position, in terms of the video display address at which the strobe occurred. When the LPEN input changes from low to high, then, on the next negative-going edge of CCLK, the contents of the internal scan counter is stored in registers R16 and R17.

Update Address High (R18) and Low (R19)

These registers together comprise a 14 -bit register whose contents is the memory address at which the next read or update will occur (for transparent address mode, only). Whenever a read/update occurs, the update location automatically increments to allow for fast updates or readouts of consecutive character locations. This is described elsewhere in this document.

Dummy Location (R31)

This register does not store any data, but is required to detect when transparent addressing updates occur. This is necessary to increment the Update Address Register and to set the Update Ready bit in the status register.

Description of Operation

Register Formats

Register pairs R12/R13, R14/R15, R16/R17, and R18/ R19 are formatted in one of two ways:

1. Straight binary if register R8, bit 2 is a " 0 ".
2. Row/Column if register R8, bit 2 is a " 1 ". In this case the low byte is the Character Column and the high byte is the Character Row.

STRAIGHT BINARY ADDRESSING SEQUENCE

Figure 4 illustrates the address sequence for the video display control for each mode.

Note from Figure 4 that the straight-binary mode has the advantage that all display memory addresses are stored in a continuous memory block, starting with address 0 and ending at 1919. The disadvantage with this method is that, if it is desired to change a displayed character location, the row and column identity of the location must be converted to its binary address before the memory may be written. The row/column mode, on the other hand, does not need to undergo this conversion. However, memory is not used as efficiently, since the memory addresses are not continuous, but gaps exist. This requires that the system be equipped with more memory than is actually used and this extra memory is wasted. Alternatively, address compression logic may be employed to translate the row/column format into a continuous address block.

In this way, the user may select whichever mode is best for the given application. The trade-offs between the modes are software versus hardware. Straight-binary mode minimizes hardware requirements and row/column requires minimum software.

ROW/COLUMN ADDRESSING SEQUENCE

Figure 4. Display Address Sequences (with Start Address $=0$) for 80×24 Example

Video Display RAM Addressing

There are two modes of addressing for the video display memory:

1. Shared Memory

In this mode the memory is shared between the MPU address bus and the SY6545 address bus. For this case, memory contention must be resolved by means of external timing and control circuits. Both the MPU and the SY 6545 must have access to the video display RAM and the contention circuits must resolve this
multiple access requirement. Figure 5 illustrates the system configuration.
2. Transparent Memory Addressing

For this mode, the display RAM is not directly accessible by the MPU, but is controlled entirely by the SY6545. All MPU accesses are made via the SY6545 and a small amount of external circuits. Figure 6 shows the system configuration for this approach.

Figure 5. Shared Memory System Configuration

Figure 6. Transparent Memory Addressing System Configuration
(Data Hold Latch needed for Horizontal/Vertical Blanking updates, only).

Memory Contention Schemes for Shared Memory Addressing

From the diagram of Figure 4, it is clear that both the SY6545 and the system MPU must be capable of addressing the video display memory. The SY6545 repetitively fetches character information to generate the video signals in order to keep the screen display active. The MPU occasionally accesses the memory to change the displayed information or to read out current data characters. Three ways of resolving this dual-contention requirement are apparent:

- MPU Priority

In this technique, the address lines to the video display memory are normally driven by the SY6545 unless the MPU needs access, in which case the MPU addresses immediately override those from the SY6545 and the MPU has immediate access.

- $\phi 1 / \phi 2$ Memory Interleaving

This method permits both the SY6545 and the MPU access to the video display memory by time-sharing via the system $\phi 1$ and $\phi 2$ clocks. During the $\phi 1$ portion of each cycle (the time when $\phi 2$ is low), the SY6545 address outputs are gated to the video display memory. In the $\phi 2$ time, the MPU address lines are switched in. In this way, both the SY6545 and the MPU have unimpeded access to the memory. Figure 7 illustrates the timings.

Figure 7. $\phi 1 / \phi 2$ Interleaving

- Vertical Blanking

With this approach, the address circuitry is identical to the case for MPU Priority updates. The only difference is that the Vertical Retrace status bit (bit 5 of the Status Register) is used by the MPU so that access to the video display memory is only made during vertical blanking time (when bit 5 is a " 1 "). In this way, no visible screen perturbations result.

Transparent Memory Addressing

In this mode of operation, the video display memory address lines are not switched by contention circuits, but are generated by the SY6545. In effect, the contention is handled by the SY6545. As a result, the schemes for accomplishing MPU memory access are different:

- $\phi 1 / \phi 2$ Interleaving

This mode is similar to the Interleave mode used with shared memory. In this case, however, the $\phi 2$ address is generated from the Update Address Register (Registers R18 and R19) in the SY6545. Thus, the MPU must first load the address to be accessed into R18/R19 and then this address is always gated onto the MA lines during $\phi 2$. Figure 8 shows the timing.

Figure 8. $\phi 1 / \phi 2$ Transparent Interleaving

- Horizontal/Vertical Blanking

In this mode, the Update Address is loaded by the MPU, but is only gated onto the MA lines during horizontal or vertical blank times, so memory accesses do not interfere with the display appearance. To signal when the update address is on the MA lines, an update strobe (STB) is provided as an alternate function of pin 34. Data hold latches are necessary to temporarily retain the character to be stored until the retrace time occurs. In this way, the system MPU is not halted waiting for the blanking time to arrive. Figure 9 illustrates the address and strobe timing for this mode.

Transparent address modes are quite complex and offer significant advantages in system implementation. The details of their application are covered thoroughly in a related Technical Note available from Synertek.

Figure 9. Retrace Update Timings

Interlace Modes

There are three raster-scan display modes (see Figure 10).
a) Non-Interlaced Mode. In this mode each scan line is refreshed at the vertical field rate (50 or 60 Hz).

In the interlaced scan modes, even and odd fields alternate to generate frames. The horizontal and vertical timing relationship causes the scan lines in the odd fields to be displaced from those in the even fields. The two additional raster-scan display modes pertain to interlaced scans.
b) Interlace-Sync Mode. This mode is used when the same information is to be displayed in both odd and even fields. Enhanced readability results because the
spaces between adjacent rows are filled and a higher quality character is displayed. This is achieved with only a slight alteration in the device operation: in alternate fields, the position of the VSYNC signal is delayed by $1 / 2$ of a scan line time. This is illustrated in Figure 11 and is the only difference in the SY6545 operation in this mode.
c) Interlaced Sync and Video Mode. This mode is used to double the character density on the screen by displaying the even lines in even fields and the odd lines in odd fields. As in the Interlace-Sync mode, the VSYNC position is delayed in alternate display fields. In addition, the address generation is altered. Figure 12 illustrates the timing.

Figure 10. Comparison of Display Modes.

Figure 11. Interlace-Sync Mode Timing

Figure 12. Interlace-Sync-and-Video Mode Timing

Cursor and Display Enable Skew Control

Bits 4 and 5 of the Mode Control register (R8) are used to delay the Display Enable and Cursor outputs, respectively. Figure 13 illustrates the effect of the delays.

Figure 13. Cursor and Display Enable Skew

Figure 14. Operation of Vertical Blanking Status Bit

Package Availability 40 Pin Ceramic 40 Pin Cerdip 40 Pin Plastic

Ordering Information

Part Number	Package	CPU Clock Rate
SYC6545E	Ceramic	1 MHz
SYD6545E	Cerdip	1 MHz
SYP6545E	Plastic	1 MHz
SYC6545EA	Ceramic	2 MHz
SYD6545EA	Cerdip	2 MHz
SYP6545EA	Plastic	2 MHz

CRIC Register Comparison

NON-INTERLACE

REGISTER	SY6545R	SY6845	$\begin{aligned} & \text { MC6845R } \\ & \text { HD6845R } \end{aligned}$	HD6845S	SY6545-1	SY6545E
RO HORIZONTAL TOT	TOT-1	TOT-1	TOT-1	TOT-1	TOT-1	TOT-1
R1 HORIZONTAL DISP	ACTUAL	ACTUAL	ACTUAL	ACTUAL	ACTUAL	ACTUAL
R2 HORIZONTAL SYNC	ACTUAL	ACTUAL	ACTUAL	ACTUAL	ACTUAL	ACTUAL
R3 HORIZ AND VERT SYNC WIDTH	HORIZONTAL	HORIZONTAL	HORIZONTAL	HORIZONTAL AND VERTICAL	HORIZONTAL AND VERTICAL	HORIZONTAL AND VERTICAL
R4 VERTICAL TOT	TOT-1	TOT-1	TOT-1	TOT-1	TOT-1	TOT-1
R5 VERTICAL TOT ADJ	ANY VALUE EXCEPT R5 $=(\mathrm{R9H}) \cdot \mathrm{X}$	ANY VALUE				
R6 VERTICAL DISP	ANY VALUE <R4	ANY VALUE <R4.	ANY VALUE <R4	ANY VALUE <R4	ANY VALUE <R4	ANY VALUE <R4
R7 VERTICAL SYNC POS	ACTUAL	ACTUAL	ACTUAL	ACTUAL	ACTUAL	ACTUAL
R8 MODE REG BITS 0 AND 1	INTERLACE MODE SELECT					
BITS 2	-	-	-	-	ROW/COLUMN OR STRAIGHT BINARY ADDRESSING	ROW/COLUMN OR STRAIGHT BINARY ADDRESSING
BITS 3	-	-	-	-	SHARED OR TRANSPARENT ADDR	SHARED OR TRANSPARENT ADDR
BITS 4	-	-	-	DISPEN SKEW	DISPEN SKEW	DISPEN SKEW
BITS 5	-	-	-	DISPEN SKEW	CURSOR SKEW	CURSOR SKEW
BITS 6	-	-	-	CURSORSKEW	RA4/UPSTB	RA4/UPSTB
BITS 7	-	-	-	CURSORSKEW	TRANSPARENT MODE SELECT	TRANSPARENT MODE SELECT
R9 SCAN LINES	TOT-1	TOT-1	TOT-1	TOT-1	TOT-1	TOT-1
R10 CURSOR START	ACTUAL	ACTUAL	ACTUAL	ACTUAL	ACATUAL	ACTUAL
R11 CURSOR END	ACTUAL	ACTUAL	ACTUAL	ACTUAL	ACATUAL	ACTUAL
R12/R13 DISP ADDR	WRITE ONLY	WRITE ONLY	WRITE ONLY	READ/WRITE	W.RITE ONLY	WRITE ONLY
R14/R15 CURSOR POS	READ/WRITE	READ/WRITE	WRITE ONLY	READ/WRITE	READ/WRITE	READ/WRITE
R16/R17 LPEN REG	READ ONLY					
R18/R19 UPDATE ADDR REG	N/A	N/A	N/A	N/A	TRANSPARENT MODE ONLY	TRANSPARENT MODE ONLY
R31 DUMMY REG	N/A	N/A	N/A	N/A	TRANSPARENT MODE ONLY	TRANSPARENT MODE ONLY
STATUS REG	YES	NO	NO	NO	YES	YES
INTERLACE SYNC						
R0	$\begin{aligned} & \text { TOT- } 1= \\ & \text { ODD OR EVEN } \end{aligned}$	$\begin{aligned} & \text { TOT-1 = } \\ & \text { ODD OR EVEN } \end{aligned}$	TOT-1 = ODD	TOT-1 = ODD	TOT-1 = ODD	$\begin{aligned} & \text { TOT-1 = } \\ & \text { ODD OR EVEN } \end{aligned}$
INTERLACE SYNC AND VIDEO						
R4 VERTICAL	TOT-1	TOT-1	TOT-1	TOT-2	TOT/2-1	TOT-1
R6 VERT DISP	TOT	TOT	TOT/2	TOT	TOT/2	TOT
R7 VERT SYNC	ACTUAL	ACTUAL	ACTUAL	ACTUAL	ACTUAL/2	ACTUAL
R10 CURSOR START R11 CURSOR END	ODD/EVEN ODD/EVEN	ODD/EVEN ODD/EVEN	BOTH ODD OR BOTH EVEN	ODD/EVEN ODD/EVEN	ODD/EVEN ODD/EVEN	ODD/EVEN ODD/EVEN
CCLK	3.7 MHz	2.5 MHz	2.5 MHz	3.7 MHz	2.5 MHz	3.7 MHz

Asynchronous Communication Interface Adapter

Features

- On-chip baud rate generator: 15 programmable baud rates derived from a standard 1.8432 MHz external crystal (50 to 19,200 baud).
- Programmable interrupt and status register to simplify software design.
- Single +5 volt power supply.
- Serial echo mode.
- False start bit detection.
- 8-bit bi-directional data bus for direct commu'nication with the microprocessor.
- External $16 x$ clock input for non-standard baud rates (up to 125 Kbaud).
- Programmable: word lengths; number of stop bits; and parity bit generation and detection.
- Data set and modem control signals provided.
- Parity: (odd, even, none, mark, space).
- Full-duplex or half-duplex operation.
- 5, 6, 7, 8 and 9 bit transmission.

Description

The SY6551 is an Asynchronous Communication Adapter (ACIA) intended to provide for interfacing the 6500/ 6800 microprocessor families to serial communication
data sets and modems. A unique feature is the inclusion of an on-chip programmable baud rate generator, with a crystal being the only external component required.

Pin Configuration

6551

Block Diagram

Absolute Maximum Ratings*

Rating	Symbol	Allowable Range
Supply Voltage	V_{CC}	-0.3 V to +7.0 V
Input/Output Voltage	V_{IN}	-0.3 V to +7.0 V
Operating Temperature	T_{OP}	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage Temperature	$\mathrm{T}_{\text {STG }}$	$-55^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$

All inputs contain protection circuitry to prevent damage to high static charges. Care should be exercised to prevent unnecessary application of voltages in excess of the allowable limits.

Comment*

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
D.C. Characteristics $\quad\left(V_{C C}=5.0 \mathrm{~V} \pm 5 \%, T_{A}=0-70^{\circ} \mathrm{C}\right.$, unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit
Input High Voltage	$V_{1 H}$	2.0	-	V_{cc}	V
Input Low Voltage	V_{IL}	-0.3	-	0.8	V
Input Leakage Current: $\mathrm{V}_{\text {IN }}=0$ to 5 V $\left(\phi 2, R / \bar{W}, \overline{R E S}, \mathrm{CS}_{0}, \overline{\mathrm{CS}}_{1}, \mathrm{RS}_{0} ; \mathrm{RS}_{1}, \overline{\mathrm{CTS}}, \mathrm{R} \times \mathrm{D}, \overline{\mathrm{DCD}}, \overline{\mathrm{DSR}}\right)$	IN	-	± 1.0	± 2.5	$\mu \mathrm{A}$
Input Leakage Current for High Impedance State (Three State)	${ }^{\text {TSI }}$	-	± 2.0	± 10.0	$\mu \mathrm{A}$
Output High Voltage: $I_{\text {LOAD }}=-100 \mu \mathrm{~A}$ $\left(\mathrm{DB}_{0}-\mathrm{DB}_{7}, T \times D, R \times C, \overline{R T S}, \overline{\mathrm{DTR}}\right.$)	V_{OH}	2.4	-	-	V
Output Low Voltage: $I_{\text {LOAD }}=1.6 \mathrm{~mA}$ ($\mathrm{DB}_{0}-\mathrm{DB}_{7}, \mathrm{~T} \times \mathrm{D}, \mathrm{RxC}, \overline{\mathrm{RTS}}, \overline{\mathrm{DTR}}, \overline{\mathrm{IRO}}$)	V_{OL}	-	-	0.4	V
Output High Current (Sourcing): $\mathrm{V}_{\mathrm{OH}}=2.4 \mathrm{~V}$ $\left(\mathrm{DB}_{0}-\mathrm{DB}_{7}, \mathrm{TxD}, \mathrm{RxC}, \overline{\mathrm{RTS}}, \overline{\mathrm{DTR}}\right.$)	${ }^{\prime} \mathrm{OH}$	-100	-	-	$\mu \mathrm{A}$
Output Low Current (Sinking): $\mathrm{V}_{\mathrm{OL}}=0.4 \mathrm{~V}$ $\left(\mathrm{DB}_{0}-\mathrm{DB}_{7}, \mathrm{TxD}, \mathrm{RxC}, \overline{\mathrm{RTS}}, \overline{\mathrm{DTR}}, \overline{\mathrm{IRO}}\right)$	I_{OL}	1.6	-	-	mA
Output Leakage Current (Off State): $\mathrm{V}_{\text {OUT }}=5 \mathrm{~V}$ ($\overline{\mathrm{RQ}}$)	Ioff	-	1.0	10.0	$\mu \mathrm{A}$
Clock Capacitance ($\phi 2$).	$\mathrm{C}_{\text {CLK }}$	-	-	20	pF
Input Capacitance (Except XTAL1 and XTAL2)	$\mathrm{C}_{\text {IN }}$	-	-	10	pF
Output Capacitance	$\mathrm{C}_{\text {OUT }}$	-	-	10	pF
Power Dissipation (See Graph) ($\left.\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}\right) \mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}$	P_{D}	-	170	300	mW

Power Dissipation vs. Temperature

Figure 2. Write Timing Characteristics

Write Cycle $\quad\left(V_{C C}=5.0 \mathrm{~V} \pm 5 \%, T_{A}=0\right.$ to $70^{\circ} \mathrm{C}$, unless otherwise noted)

Characteristic	Symbol	SY6551		SY6551A		Unit
		Min	Max	Min	Max	
Cycle Time	${ }^{\text {t }}$ CYC	1.0	-	0.5	-	$\mu \mathrm{s}$
$\phi 2$ Pulse Width	t_{C}	400	-	200	-	ns
Address Set-Up Time	${ }^{\text {t }}$ ACW	120	-	70	-	ns
Address Hold Time	${ }^{\text {t }}$ CAH	0	-	0	-	ns
R/W Set-Up Time	${ }^{\text {twCW }}$	120	-	70	-	ns
R/W Hold Time	$\mathrm{t}_{\text {CWH }}$	0	-	0	-	ns
Data Bus Set-Up Time	$\mathrm{t}_{\text {DCW }}$	150	-	60	-	ns
Data Bus Hold Time	t_{HW}	20	-	20	-	ns

(t_{r} and $\mathrm{t}_{\mathrm{f}}=10$ to 30 ns)

Crystal Specification

Clock Generation

1. Temperature stability $\pm 0.01 \% ~\left(0^{\circ}\right.$ to $70^{\circ} \mathrm{C}$)
2. Characteristics at $25^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$
a. Frequency (MHz)
1.8432
b. Frequency tolerance ($\pm \%$)
c. Resonance mode
d. Equivalent resistance (ohm)
e. Drive level mW
f. Shunt capacitance pF
g. Oscillation mode

No other external components should be in the crystal circuit

INTERNAL CLOCK

EXTERNAL CLOCK

Figure 3. Read Timing Characteristics

Read Cycle ($\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=0$ to $70^{\circ} \mathrm{C}$, unless otherwise noted)

Characteristic	Symbol	SY6551		SY6551A		Unit
		Min	Max	Min	Max	
Cycle Time	${ }^{\text {t }}{ }_{\text {cre }}$	1.0	-	0.5	-	$\mu \mathrm{s}$
Pulse Width ($\phi 2$)	${ }^{\text {t }}$ C	400	-	200	-	ns
Address Set-Up Time	$t_{\text {ACR }}$	120	-	70	-	ns
Address Hold Time	${ }^{\text {t CAR }}$	0	-	0	-	ns
R//̄ Set-Up Time	${ }^{\text {t }}$ WCR	120	-	70	-	ns
Read Access Time (Valid Data)	${ }^{\text {t }}$ CDR	-	200	-	150	ns
Read Data Hold Time	t_{HR}	20	-	20	-	ns
Bus Active Time (Invalid Data)	${ }^{\text {t }}$ CDA	40	-	40	-	ns

Test Load

Figure 4a. Transmit Timing with External Clock

Figure 4b. Interrupt and Output Timing

Figure 4c. Receive External Clock Timing

Transmit/Receive Characteristics

Characteristic	Symbol	SY6551		SY6551A		Unit
		Min	Max	Min	Max	
Transmit/Receive Clock Rate	${ }^{\text {t }}$ CCY	400*	-	400*	-	ns
Transmit/Receive Clock High Time	${ }^{\mathrm{t}_{\mathrm{CH}}}$	175	-	175	-	ns
Transmit/Receive Clock Low Time	${ }^{\text {t }} \mathrm{CL}$	175	-	175	-	ns
XTAL1 to TxD Propagation Delay	${ }_{\text {t }}$ D	-	500	-	500	ns
Propagation Delay ($\overline{\mathrm{RTS}}, \overline{\mathrm{DTR}}$)	${ }^{\text {t DLY }}$	-	500	-	500	ns
$\overline{\mathrm{RQQ}}$ Propagation Delay (Clear)	tira	-	500	-	500	ns

($\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}=10$ to 30 ns input clocks only)
${ }^{*}$ The baud rate with external clocking is: \quad Baud Rate $=\frac{1}{16 \times \mathrm{T}_{\mathrm{CCY}}}$

Interface Signal Description

$\overline{\mathrm{RES}}$ (Reset)

During system initialization a low on the $\overline{\operatorname{RES}}$ input will cause internal registers to be cleared.

$\phi 2$ (Input Clock)

The input clock is the system $\phi 2$ clock and is used to trigger all data transfers between the system microprocessor and the SY6551.

R/W (Read/Write)

The R / \bar{W} is generated by the microprocessor and is used to control the direction of data transfers. A high on the R / \bar{W} pin allows the processor to read the data supplied by the SY6551. A low on the $\mathrm{R} / \overline{\mathrm{W}}$ pin allows a write to the SY6551.

$\overline{\text { IRO }}$ (Interrupt Request)

The $\overline{\mathrm{RQ}}$ pin is an interrupt signal from the interrupt control logic. It is an open drain output, permitting
several devices to be connected to the common $\overline{\mathrm{RQ}}$ microprocessor input. Norma!ly a high level, $\overline{\mathrm{IRQ}}$ goes low when an interrupt occurs.

$\mathrm{DB}_{0}-\mathrm{DB}_{7} \quad$ (Data Bus)

The $\mathrm{DB}_{0}-\mathrm{DB}_{7}$ pins are the eight data lines used for transfer of data between the processor and the SY6551. These lines are bi-directional and are normally high-impedance except during Read cycles when selected.

$\mathrm{CS}_{\mathbf{0}}, \overline{\mathbf{C S}}_{\mathbf{1}}$ (Chip Selects)

The two chip select inputs are normally connected to the processor address lines either directly or through decoders. The SY6551 is selected when CS_{0} is high and $\overline{\mathrm{CS}}_{1}$ is low.

$\mathbf{R S}_{\phi}, \mathbf{R S}_{\mathbf{1}} \quad$ (Register Selects)

The two register select lines are normally connected to the processor address lines to allow the processor to select the various SY6551 internal registers. The following table indicates the internal register select coding:

$\mathbf{R S}_{\mathbf{1}}$	$\mathbf{R S}_{\mathbf{0}}$	Write	Read
0	0	Transmit Data Register	Receiver Data Register
0	1	Programmed Reset (Data is "Don't Care")	Status Register
1	0	Command Register	
1	1	Control Register	

The table shows that only the Command and Control registers are read/write. The Programmed Reset operation does not cause any data transfer, but is used to clear the SY6551 registers. The Programmed Reset is slightly different from the Hardware Reset ($\overline{\mathrm{RES}}$) and these differences are described in the individual register definitions.

ACIA/Modem Interface Signal Description

XTAL1, XTAL2 (Crystal Pins)

These pins are normally directly connected to the external crystal (1.8432 MHz) used to derive the various baud rates. Alternatively, an externally generated clock may be used to drive the XTAL1 pin, in which case the XTAL2 pin must float.

TxD (Transmit Data)

The TxD output line is used to transfer serial NRZ (non-return-to-zero) data to the modem. The LSB (least significant bit) of the Transmit Data Register is the first data bit transmitted and the rate of data transmission is determined by the baud rate selected.

RxD (Receive Data)

The RxD input line is used to transfer serial NRZ data into the ACIA from the modem, LSB first. The receiver data rate is either the programmed baud rate or the rate of an externally generated receiver clock. This selection is made by programming the Control Register.

RxC (Receive Clock)

The $\mathrm{R} \times \mathrm{C}$ is a bi-directional pin which serves as either the receiver $16 x$ clock input or the receiver $16 x$ clock output. The latter mode results if the internal baud rate generator is selected for receiver data clocking.

$\overline{R T S}$ (Request to Send)

The $\overline{\mathrm{RTS}}$ output pin is used to control the modem from the processor. The state of the $\overline{\mathrm{RTS}}$ pin is determined by the contents of the Command Register.

$\overline{\text { CTS }}$ (Clear to Send)

The $\overline{\mathrm{CTS}}$ input pin is used to control the transmitter operation. The enable state is with $\overline{\mathrm{CTS}}$ low. The transmitter is automatically disabled if $\overline{\mathrm{CTS}}$ is high.

$\overline{\text { DTR }}$ (Data Terminal Ready)

This output pin is used to indicate the status of the SY6551 to the modem. A low on $\overline{\text { DTR }}$ indicates the SY6551 is enabled and a high indicates it is disabled. The processor controls this pin via bit 0 of the Command Register.

$\overline{\text { DSR }}$ (Data Set Ready)

The $\overline{\mathrm{DSR}}$ input pin is used to indicate to the SY6551 the status of the modem. A low indicates the "ready" state and a high, "not-ready." $\overline{\mathrm{DSR}}$ is a high-impedance input and must not be a no-connect. If unused, it should be driven high or low, but not switched.
Note: If Command Register Bit $0=1$ and a change of state on $\overline{\mathrm{DSR}}$ occurs, $\overline{\mathrm{IRQ}}$ will be set, and Status Register Bit 6 will reflect the new level. The state of $\overline{\mathrm{DSR}}$ does not affect either Transmitter or Receiver operation.

$\overline{\mathrm{DCD}}$ (Data Carrier Detect)

The $\overline{D C D}$ input pin is used to indicate to the SY6551 the status of the carrier-detect output of the modem. A low indicates that the modem carrier signal is present and a high, that it is not. $\overline{\mathrm{DCD}}$, like $\overline{\mathrm{DSR}}$, is a highimpedance input and must not be a no-connect.
Note: If Command Register Bit $0=1$ and a change of state on $\overline{\mathrm{DCD}}$ occurs, $\overline{\mathrm{RO}}$ will be set, and Status Register Bit 5 will reflect the new level. The state of $\overline{D C D}$ does not affect Transmitter operation, but must be low for the Receiver to operate.

Internal Organization

The Transmitter/Receiver sections of the SY6551 are depicted by the block diagram in Figure 5.

Figure 5. Transmitter/Receiver Clock Circuits

Bits 0-3 of the Control Register select the divisor used to generate the baud rate for the Transmitter. If the Receiver clock is to use the same baud rate as the Transmitter, then RxC becomes an output pin and can be used to slave other circuits to the SY6551.

Control Register

The Control Register is used to select the desired mode for the SY6551. The word length, number of stop bits, and clock controls are all determined by the Control Register, which is depicted in Figure 6.

*This allows for 9-bit transmission (8 data bits plus parity).
HARDWARE RESET

PROGRAM RESET \quad| 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
0	0	0	0	0	0	0	0

Figure 6. Control Register Format

Command Register

The Command Register is used to control Specific Trans-
$\mathrm{mit} /$ Receive functions and is shown in Figure 7.
mode

FOR RECEIVER
$0=$ Normal $1=$ Echo (Bits 2 and 3 must be " 0 ")

DATA TERMINAL READY
PARITY CHECK CONTROLS

COMMAND REGISTER

PARITY CHECK CONTROLS
BIT OPERATION 7 6 5 - - 0 Parity Disabled - No Parity Bit Generated - No Parity Bit Received 0 0 1 Odd Parity Receiver and Transmitter 0 1 1 Even Parity Receiver and Transmitter 1 0 1 Mark Parity Bit Transmitted, Parity Check Disabled 1 1 1 Space Parity Bit Transmitted, Parity Check Disabled

Interrupts ($\overline{\text { DTR }}$ high)
1 = Enable Receiver and All
Interrupts ($\overline{\mathrm{DTR}}$ low)
RECEIVER INTERRUPT ENABLE
$0=\overline{\mathrm{TRQ}}$ Interrupt Enabled from Bit 3 of Status Register
$1=\overline{\mathrm{IRQ}}$ Interrupt Disabled

BIT		TRANSMIT INTERRUPT	$\overline{\text { RTS }}$ LEVEL	TRANSMITTER
3	2	High	Off	
0	0	Disabled	His	On
0	1	Enabled	Low	On
1	0	Disabled	Low	On
1	1	Disabled	Low	Transmit BRK

	7	6	5	4	3	2	1	0
HARDWARE RESET	0	0	0	0	0	0	0	0
PROGRAM RESET	-	-	-	0	0	0	0	0

Figure 7. Command Register Format

Status Register

The Status Register is used to indicate to the processor the status of various SY6551 functions and is outlined in Figure 8.

7 6 5 4 3 2 1 0

*NO INTERRUPT GENERATED FOR THESE CONDITIONS.
**CLEARED AUTOMATICALLY AFTER A READ OF RDR AND THE NEXT ERROR FREE RECEIPT OF DATA.

Figure 8. Status Register Format

Transmit and Receive Data Registers

These registers are used as temporary data storage for the 6551 Transmit and Receive circuits. The Transmit Data Register is characterized as follows:

- Bit 0 is the leading bit to be transmitted.
- Unused data bits are the high-order bits and are "don't care" for transmission.

The Receive Data Register is characterized in a similar fashion:

- Bit 0 is the leading bit received.
- Unused data bits are the high-order bits and are " 0 " for the receiver.
- Parity bits are not contained in the Receive Data Register, but are stripped-off after being used for external parity checking. Parity and all unused high-order bits are " 0 ".

Figure 9 illustrates a single transmitted or received data word, for the example of 8 data bits, parity, and 1 stop bit.

Figure 9. Serial Data Stream Example

Package Availability 28 Pin Ceramic 28 Pin Cerdip 28 Pin Plastic

Ordering Information

Part No.	Package	Clock Rate
SYC6551	Ceramic	1 MHz
SYD6551	Cerdip	1 MHz
SYP6551	Plastic	1 MHz
SYC6551A	Ceramic	2 MHz
SYD6551A	Ceramic	2 MHz
SYP6551A	Plastic	2 MHz

Features

- On-chip baud rate generator: 15 programmable baud rates derived from a standard 1.8432 MHz external crystal (50 to 19,200 baud).
- Programmable interrupt and status register to simplify software design.
- Single +5 volt power supply.
- Serial echo mode.
- False start bit detection.
- 8-bit bi-directional data bus for direct communication with the microprocessor.
- External $16 x$ clock input for non-standard baud rates (up to 125 Kbaud).
- Programmable: word lengths; number of stop bits; and parity bit generation and detection.
- Data set and modem control signals provided.
- Parity: (odd, even, none, mark, space).
- Full-duplex or half-duplex operation.
- 5, 6, 7, 8 and 9 bit transmission.
- Operation over wide temperature range $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$

Description

The SYE6551 is an Asynchronous Communication Adapter (ACIA) intended to provide for interfacing the 6500/ 6800 microprocessor families to serial communication
data sets and modems. A unique feature is the inclusion of an on-chip programmable baud rate generator, with a crystal being the only external component required.

Pin Configuration

Absolute Maximum Ratings*

Rating	Symbol	Allowable Range
Supply Voltage	V_{CC}	-0.3 V to +7.0 V
Input/Output Voltage	V_{IN}	-0.3 V to +7.0 V
Operating Temperature	T_{OP}	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature	$\mathrm{T}_{\mathrm{STG}}$	$-55^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$

All inputs contain protection circuitry to prevent damage to high static charges. Care should be exercised to prevent unnecessary application of voltages in excess of the allowable limits. Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operation sections of this specification is not implied.

Power Dissipation vs Temperature

D.C. Characteristics ($\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit
Input High Voltage	V_{IH}	2.0	-	V_{cc}	V
Input Low Voltage	$V_{\text {IL }}$	-0.3	-	0.8	\checkmark
Input Leakage Current: $\mathrm{V}_{\mathrm{IN}}=0$ to 5 V ($\phi 2, \mathrm{R} / \overline{\mathrm{W}}, \overline{\mathrm{RES}}, \mathrm{CS}_{0}, \overline{\mathrm{CS}}_{1}, \mathrm{RS}_{0} ; \mathrm{RS}_{1}, \overline{\mathrm{CTS}}, \mathrm{R} \times \mathrm{D}, \overline{\mathrm{DCD}}, \overline{\mathrm{DSR}}$)	IN	-	± 1.0	± 2.5	$\mu \mathrm{A}$
Input Leakage Current for High Impedance State (Three State)	${ }_{\text {I }}$ IS	-	± 2.0	± 10.0	$\mu \mathrm{A}$
Output High Voltage: $I_{\text {LOAD }}=-100 \mu \mathrm{~A}$. $\left(\mathrm{DB}_{0}-\mathrm{DB}_{7}, \mathrm{~T} \times \mathrm{D}, \mathrm{R} \times \mathrm{C}, \overline{\mathrm{RTS}}, \overline{\mathrm{DTR}}\right.$)	V_{OH}	2.4	-	-	V
Output Low Voltage: $I_{\text {LOAD }}=1.6 \mathrm{~mA}$ $\left(\mathrm{DB}_{0}-\mathrm{DB}_{7}, \mathrm{TxD}, \mathrm{RxC}, \overline{\mathrm{RTS}}, \overline{\mathrm{DTR}}, \overline{\mathrm{IRQ}}\right.$)	V_{OL}	-	-	0.4	V
Output High Current (Sourcing): $\mathrm{V}_{\mathrm{OH}}=2.4 \mathrm{~V}$ $\left(\mathrm{DB}_{0}-D B_{7}, T \times D, R \times C, \overline{R T S}, \overline{D T R}\right)$	I_{OH}	-100	-	-	$\mu \mathrm{A}$
Output Low Current (Sinking): $\mathrm{V}_{\mathrm{OL}}=0.4 \mathrm{~V}$ ($\mathrm{DB}_{0}-\mathrm{DB}_{7}, \mathrm{TxD}, \mathrm{RxC}, \overline{\mathrm{RTS}}, \overline{\mathrm{DTR}}, \overline{\mathrm{RO}}$)	${ }^{\prime} \mathrm{OL}$	1.6	-	-	mA
Output Leakage Current (Off State): $\mathrm{V}_{\text {OUT }}=5 \mathrm{~V}$ ($\overline{\mathrm{RQ}}$)	I OFF	-	1.0	10.0	$\mu \mathrm{A}$
Clock Capacitance ($\phi 2$)	$\mathrm{C}_{\text {CLK }}$	-	-	20	pF
Input Capacitance (Except XTAL1 and XTAL2)	C_{IN}	-	-	10	pF
Output Capacitance	$\mathrm{C}_{\text {OUT }}$	-	-	10	pF
Power Dissipation (See Graph) ($\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$) $\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}$	$P_{\text {D }}$	-	220	350	mW

Package Availability
28 Pin Ceramic 28 Pin Cerdip 28 Pin Plastic

Ordering Information

Part Number	Package	Clock Frequency
SYEC6551	Ceramic	1 MHz
SYED6551	Cerdip	1 MHz
SYEP6551	Plastic	1 MHz
SYEC6551A	Ceramic	2 MHz
SYED6551A	Cerdip	2 MHz
SYEP6551A	Plastic	2 MHz

Features

- Functionally compatible with SY1791-02/SY1793-02
- MPU bus interface directly compatible with SY6500 and MC6800 microprocessors.
- Single 5 volt power supply
- Accommodates both single-density (FM) and double-density (MFM) formats
- IBM format compatibility:
- IBM 3740 Single-Density
- IBM System-34 Double-Density

Description

The SY6591 Floppy Disk Controller is a fully programmable device intended for SY6500 or MC6800 microprocessorbased systems. The CPU bus interface is the only distin-
guishing difference between the 17XX series FDC and the 6591.

Pin Configuration

Block Diagram

Detailed List of Features

- Single 5 volt ($\pm 5 \%$) power supply
- 40-pin package
- Automatic track seek with verification
- Accommodates single-density (FM) and doubledensity (MFM) formats
- Soft-sector format compatibility
- IBM 3740 (single-density) and System-34 (double-density) compatible
- Single or multiple record read with automatic sector search or entire track read
- Selectable record length ($128,256,512$ or 1024 bytes)
- Single or multiple record write with automatic sector search
- Entire track write for initialization
- Programmable controls:
- Selectable track-to-track stepping time
- Selectable head settling and engage times
- Head position verification
- Side verification
- Double-buffered read and write data flow
- DMA or programmed data transfers
- TTL-compatible inputs and outputs
- Write precompensation (FM and MFM)
- Comprehensive status register

Processor Interface Signals

- $\phi 2(\phi 2)$ - The $\phi 2$ signal is combined with $\overline{\mathrm{CS}}$ to gate the processor interface signals $A 0, A 1$ and R / \bar{W} into the floppy disk controller (FDC).
- DATA BUS (DBO-DB7) - This 8-bit non-inverting bidirectional data bus is used for transferring data, control, and status words. The outputs are three-state buffers, capable of driving one standard TTL load and 130 pF.
- READ/WRITE (R/W) - This input signal is used to control the direction of data transfers. A high on the R / \bar{W} pin allows the processor to read data supplied by the FDC. A low on the R / \bar{W} pin allows data to be written to the FDC.
- INTERRUPT REQUEST ($\overline{\operatorname{RQ}}$) - The $\overline{\mathrm{RQ}}$ is an open drain output. This signal goes low at the completion or termination of any operation and is reset when a new command is loaded into the command register or when the status register is read. An external pull-up resistor to V_{cc} is required when using the SY6591 with a SY6500 or a MC6800 MPU.
- RESET ($\overline{\operatorname{RES}})$ - This signal is identical to $\overline{M R}$ on the SY1791-02/SY1793-02. A low on this input resets the device and loads hex03 into the command register. The Not Ready status bit (status bit 7) is reset during $\overline{R E S}$ low. When $\overline{R E S}$ is driven high, a Restore command is executed regardless of the state of the Ready signal, and hex 01 is loaded into the Sector Register.
- REGISTER ADDRESS LINES (AO-A1) - These inputs address the internal registers for access by the Data Bus lines under R / \bar{W} and $\phi 2$ control.
- READ/WRITE (R/倸) - If $\overline{\mathrm{CS}}$ is low, a highon this input enables the addressed internal register to output data onto the data bus when $\phi 2$ is high. If $\overline{C S}$ is low, then a low on this input gates data from the data bus into the addressed register when $\phi 2$ is high.
- CHIP SELECT ($\overline{\mathrm{CS}})$ - A low level on this input selects the FDC and enables processor communications with the FDC.
- DATA REQUEST(DRQ) - DRQ is a opendrainoutput. DRQ high during read operations indicates that the Data Register (DR) contains data. When high during write operations, DRO indicates that the DR is empty and ready to be loaded. DRQ is reset by reading or loading the DR during read or write operations, respectively. Use 10 K pull-up resistor to V_{CC}.
- CLOCK(CLK) - This input requires a square wave clock for internal timing reference (2 MHz for 8 -inch drives, 1 MHz for 5 -inch drives).

REGISTER ADDRESS CODES

A1	A0	READ	WRITE
0	0	STATUS	COMMAND
0	1	TRACK	
1	0	SECTOR	
1	1	DATA	

1.3 Floppy Disk Interface Pin Functions

- READ GATE (RG) - A high on this output indicates that a field of zeroes (zeroes or ones) has been detected in FM (MFM) encoded information. This can be used to indicate to a data separator that a sync field has been found.
- WRITE DATA (WD) - This output to the disk drive electronics supplies one pulse per required flux transition
- READ CLOCK (RCLK) - The RCLK input is a nominal square-wave clock signal derived from the data stream. Phasing (RCLK relative to RAW READ) is important, but polarity (RCLK high or low) is not.
- RAW READ (RAW READ) - This is the data input to the FDC from the drive. This input must be a negative pulse for each recorded flux transition.
- HEAD LOAD (HLD) - The HLD output notifies the drive to engage the Read/Write head against the medium.
- HEAD LOAD TIMING (HLT) - The HLT input, which is generated by external logic, indicates that a sufficient time has elapsed for the head to have engaged.
- STEP - The step output provides a pulse to the disk drive electronics to cause each incremental head movement.
- DIRECTION (DIRC) - The DIRC output defines the direction of the step. It is high for stepping the head in towards track 76, and low for stepping the head out towards track 0.
- EARLY - A high EARLY output indicates to external circuitry that the WD pulse should be shifted early for write precompensation.
- LATE - A high LATE output indicates to external circuitry that the WD pulse should be shifted late for write precompensation.
- TRACK GREATER THAN 43 (TG43) - This output informs the drive that the Read/Write head is positioned between tracks 44-255 inclusive. This output is valid during Read and Write commands.
- WRITE GATE (WG) - The WG output is set high when writing to the disk if all the Write prerequisites have been met. WG is used to enable the drive's write circuitry.
- READY - This input indicates disk readiness to perform any Read or Write command. READY must he high for a Read or Write command to be accepted. If READY is low and the FDC receives any such command, the command is not executed and an interrupt is generated if the Not-Ready status bit is set.
- WRITE FAULT $(\overline{\mathrm{WF}}) /$ VFO ENABLE $(\overline{\mathrm{VFOE}})$ - This pin is used as both an input and output. During Write operations after WG is high, this pin acts as an input to sense a negative transition indicating a Write Fault. If a Write Fault is detected, the Write command is terminated, the Write Fault status bit is set, and INTRQ goes high.

During Read operations, $\overline{W F} / \overline{\mathrm{VFOE}}$ is an output used to synchronously control external RCLK circuitry. $\overline{\mathrm{VFOE}}$ will go true (low) when the following are all true:

1. HLD and HLT are true;
2. settling time, if programmed, has expired;
3. the SY6591 is inspecting data from the disk.

- TRACK 00 (TROO) - This input, when low, indicates to the FDC that the Read/Write head is positioned over track \emptyset.
- INDEX PULSE (I®) - This input is generated by the drive electronics to indicate the start of a track.
- WRITE PROTECT ($\overline{\mathrm{WPRT}})$ - This input is sampled whenever a Write command is received. A low terminates the command and sets the Write Protect status bit.
- DOUBLE DENSITY ($\overline{\mathrm{DDEN}}$) - This input selects either single or double density operation. When $\overline{D D E N}$ is low, double density is selected. When $\overline{\mathrm{DDEN}}$ is high, single density is selected.
- TEST (TEST) - This input is used for testing purposes and should be tied to +5 V , or left open, by the user unless interfacing to voice coil motors. When low, the motor stepping rate is increased (see Figure 3b).

2.0 FUNCTIONAL OPERATION

2.1 Single/Double Density Selection

The SY6591 has two selectable data densities, determined byinput DDEN.

2.2 Clock Selection

In addition to $\overline{\text { DDEN, the CLK input determines overall }}$ circuit timings, and must be properly selected. A 1 MHz CLK input is normally used for $5^{\prime \prime}$ mini-diskette drives and 2 MHz for standard $8^{\prime \prime}$ drives.

2.3 DRQ Operation

The DRQ output indicates that a data transfer operation is required. For disk read operations, DRQ signifies that the Data Register needs to be read so that the next data byte can be received. For disk write operations, DRQ signifies that a data byte has been transmitted and another must be entered. DRQ may be used as a "handshake" control signal in a DMA based system.

2.4 DMA Sequences

In disk read operations, DRQ goes high when a serial data byte is assembled in the Data Register. DRQ is reset when the byte is read by the DMA controller (or system processor). If a newly assembled byte is transferred into the DR (from the DSR) before the DR has been read, then the overwritten byte in the DR is lost. Furthermore, the Lost Data status bit in the Status Register is set, to indicate this condition. Read operations continue until the end of sector is encountered.

Disk write operations are similar. DRQ is activated when the data byte is transferred from the Data Register to the Data Shift Register, indicating that the DR is ready to be loaded with another byte. It is cleared when the new byte is loaded by the DMA controller (or system processor). However, if the new byte is not loaded by the time the prior byte is shifted out, then a byte of all zeroes is written on the diskette and the Lost Data status bit in the Status Register is set.

2.5 Disk Read Operations

For disk read operations, the FDC requires $\overline{\text { RAW READ }}$ and RCLK inputs. $\overline{\text { RAW READ }}$ is a low going pulse for each flux transition. The FDC detects the rising and falling edges of RCLK and uses these edges to frame RAW READ data/ clock inputs. RCLK is provided by some drives, but if not it must be provided externally (phase-lock-loops, one-shots, counters, etc.) To assist in generating RCLK, the FDC has a RG (Read Gate) output, which may be used to acquire synchronization. Whenever two bytes of zeroes are detected in read operations (in single-density mode), RG is activated (high) and the FDC must find a valid AM (Address Mark) within the next 10 bytes. If the $A M$ is not found, RG is deactivated (low) and the search for two bytes of zeroes is re-started. If the AM is found, RG remains active as long as the FDC is deriving data from the diskette. For double-density mode, RG is activated when 4 bytes of hex $\emptyset \emptyset$ or hex FF are detected and the FDC must find the AM within 16 bytes.

2.6 Disk Write Operations

The fundamental signals in write operations are: WD (Write Data) output, WG (Write Gate) output, $\overline{\text { WPRT }}$ (Write Protect) input, and $\overline{W F}$ (Write Fault) input. When writing to the diskette, WG goes high enabling the disk drive write electronics. However, WG will not be activated until the first data byte has been loaded in the Data Register. This ensures that false writing will not occur. Writing is inhibited when WPRT is low. This sets the Write Protect status bit and an interrupt (INTRQ) is generated.
The $\overline{\mathrm{WF}}$ input signifies a fault condition at the disk drive. When low, it causes the current command to terminate, sets the Write Fault bit in the Status Register, and generates the INTRQ interrupt.

2.7 Write Precompensation

EARLY and LATE are two additional signals which are generated by the SY6591 during write operations. They are used for write precompensation functions. Both signals are active-high. The EARLY signal is active when the WD pulse is to be written early; the LATE signal is active when WD is to be written late. If neither signal is active, then WD is to be written at its normal time. EARLY and LATE are valid for both single and double density modes.

3.0 Command Words

The FDC accepts eleven commands. Command words should be loaded in the Command Register only when the Busy status bit (status bit \emptyset) is low. The sole exception is the Force Interrupt command. Whenever a command is being executed, the Busy status bit is set. When a command is completed, an interrupt is generated and the Busy status bit is reset. The Status Register indicates whether the completed command encountered an error or was fault free. For ease of discussion, commands are divided into four types. Commands and types are summarized in Figure 2.

TYPE	COMMAND	BIT							
		7	6	5	4	3	2	1	0
1	RESTORE	0	0	0	0	h	V	r_{1}	r_{0}
	SEEK	0	0	0	1	h	V	r_{1}	r_{0}
	STEP	0	0	1	u	h	V	r_{1}	r_{0}
	STEP IN	0	1	0	u	h	V	r_{1}	r_{0}
	STEP OUT	0	1	1	u	h	V	r_{1}	r_{0}
II	READ SECTOR	1	0	0	m	S	E	c	0
	WRITE SECTOR	1	0	1	m	S	E	C	a_{0}
111	READ ADDRESS	1	1	0	0	0	E	0	0
	READ TRACK	1	1	1	0	0	E	0	0
	WRITE TRACK	1	1	1	1	0	E	0	0
IV	FORCE INTERRUPT	1	1	0	1	I_{3}	I_{2}	t_{1}	10

Figure 2. Command Summary

3.1 Type I Commands

The Type I commands are Restore, Seek, Step, Step-In, and Step-Out.

- RESTORE - The RESTORE command is used to position the Read/Write head to track \emptyset of the diskette. Upon the receipt of this command, the $\overline{\mathrm{TROO}}$ input is sampled. If $\overline{\mathrm{TROO}}$ is low, indicating the Read/Write head is positioned over track \emptyset, the Track Register is loaded with zeroes and an interrupt is generated. If $\overline{T R O O}$ is not low, step pulses at a rate specified by the $r_{1} r_{0}$ field are issued until the TROO input is asserted. At this time, the TR is loaded with zeroes and an interrupt is generated. If the $\overline{\mathrm{TROO}}$ input does not go low after 255 stepping pulses, the FDC terminates operation, interrupts and sets the Seek Error status bit. A verification operation takes place if the V bit is set. The h bit allows the head to be loaded at the start of the command. Note that the Restore command is executed when $\overline{\mathrm{MR}}$ goes from low (true) to high (false).
- SEEK - This command assumes that the Track Register contains the track number of the current position of the Read/Write head and the Data Register contains the desired track number. The FDC will update the Track Register and issue stepping pulses until the contents of the Track Register are equal to the contents of the Data Register (the desired track location). A verification operation takes place if the V bit is on. The h bit allows the head to be loaded at the start of the command. An interrupt is generated at the completion of the command.
- STEP - Upon receipt of this command, the FDC issues one stepping pulse to the disk drive. The stepping motor direction is the same as in the previous step command. After a delay determined by the $r_{1} r_{0}$ field, a verification takes place if the V bit is on. If the u bit is on, the TR is updated. The h bit allows the head to be loaded at the start of the command. An interrupt is generated at the completion of the command.
- STEP-IN - Upon receipt of this command, the FDC sets DIRC high and issues one stepping pulse. If the u bit is on, the Track Register is incremented. After a delay determined by the $r_{1} r_{0}$ field, a verification takes place if the V bit is on. The h bit allows the head to be loaded at the start of the command. An interrupt is generated at the completion of the command.
- STEP-OUT - This command is identical to the Step-In command, except that DIRC is set low and the Track Register is decremented for each step pulse if the u bit is high.

3.1.1 Type I Command Option Bits

The operation of the option determining bits for Type I commands is summarized in Figures 3a and 3b.

The detailed descriptions of the Type I option bits follow.

- $r_{1} r_{0}$ (Step Rate) - These bits select the rate at which step pulses are issued. Note that the stepping rates are independent of $\overline{\text { DDEN }}$ select. Both single and doubledensity modes step at the same rate.
- V (VERIFY) - This bit is used to select track verification at the end of the stepping sequence. During verification, the head is loaded and after an internal head settling time delay* ($\overline{\mathrm{TEST}}=1$), the HLT input is sampled. When HLT is true, the first encountered ID field is read from the disk. The track address of the ID field is then compared to the Track Register. If there is a match and a valid ID CRC, the verification is complete, an interrupt is generated and the Busy status bit is reset. If there is not a match, but there is a valid ID CRC, an interrupt is generated, the Seek Error status bit (status bit 4) is set, and the Busy status bit is reset. If there is a match but not a valid CRC, the CRC Error status bit (status bit 3) is set, and the next encountered ID field is read from the disk for the verification operation. If an ID field with a valid CRC cannot be found after four revolutions of the disk, the FDC terminates the operation and generates an interrupt.
- h (Head Load) - This bit determines if the head is to be loaded at the beginning of the command. If so, the HLD output goes high (active) and remains in this state until

BIT								COMMAND	
7	6	5	4	3	2	1	0		
0	0	0	0	h	V	r_{1}	r_{0}	RESTORE	
0	0	0	1	h	V	r_{1}	r_{0}	SEEK	
0	0	1	u	h	V	r_{1}	r_{0}	STEP	
0	1	0	u	h	V	r_{1}	r_{0}	STEP-IN	
0	1	1	u	h	V	r_{1}	r_{0}	STEP-OUT	
					-	$-v$ AD E	VERI LO $\left[\begin{array}{l}0 \\ 1\end{array}\right.$	EPPING MO ee Table of F $\begin{aligned} & =y-\left\{\begin{array}{l} 0=\text { No } \\ 1=\text { Ver } \end{array}\right. \\ & \text { D- }-\begin{array}{l} 0=\text { HLD } \\ 1=\text { HLD } \end{array} \end{aligned}$ No update of Update Track each step puls	RR RATE re 3b) rification at destination track Reset et rack Register egister

Figure 3a. Type I Command Option Bit

		STEPPING RATE		
TEST			CLK $=1 \mathrm{MHz}$	CLK $=2 \mathrm{MHz}$
H	0	0	6 ms	3 ms
H	0	1	12 ms	6 ms
H	1	0	20 ms	10 ms
H	1	1	30 ms	15 ms
L	-	-	$\sim 400 \mu \mathrm{~s}$	$\sim 200 \mu \mathrm{~s}$

Figure 3b. Stepping Motor Rates
the FDC receives a command to disengage the head. If the FDC is idle (not Busy) for 15 disk revolutions, then the head is automatically disengaged (HLD goes low). If track verification is selected $\left(V={ }^{\prime \prime} 1\right.$ '), then the head loading is affected, as follows:
$-h=0, V=1$
HLD is activated near the end of the sequence, an internal head settling time delay* occurs, and the FDC waits for the HLT input to go active (high) before verifying track identification.
$-h=1, V=1$
HLD is activated at the start of the sequence. At the end, an internal head settling time delay* occurs and the FDC waits for HLT to go active before verification.
*Head settling time delay is 15 msec for 2 MHz clock, 30 msec for 1 MHz clock.

- u (Update) - With Update selected ($u=" 1$ "), the Track Register is updated at each step pulse. The update operation increments the Track Register for stepping in toward track 76 and decrements it for stepping out toward track 0 .

3.2.1 Type I Command Signals

Type I commands control the operation of the STEP and DIRC (Direction) output signals of the FDC.

- STEP - A $2 \mu \mathrm{~S}$ (MFM) or $4 \mu \mathrm{~S}$ (FM) positive-true output pulse is generated at a rate determined by the $r_{1} r_{0}$ field of the command (see Figure 3b). Each step pulse moves the Read/Write head one track location in a direction controlled by the DIRC output.
- DIRC - The DIRC output determines the direction of the track stepping. A high level indicates step direction IN towards track 76, a low level indicating direction OUT towards track \emptyset.

In addition, the Type I commands use the following signals:

- HLD (Head Load) - This output is used to control movement of the Read/Write head against the recording medium. HLD is set at the beginning of a Type I command if $h=$ " 1 ", near the end of a Type I command if $V=$ " 1 " and $h=$ " 0 ", or immediately when a TYPE II or TYPE III command is executed. Once HLD is set it remains high until a subsequent Type I command with $\mathrm{h}=$ " 0 " and $\mathrm{V}={ }^{\prime}{ }^{\prime} 0$ " is loaded, or untilthe FDC goes into its non-busy state after 15 index pulses.
- HLT (Head Load Timing) - The low to high transition of this input indicates that a sufficient time has elapsed for the drive's head to become engaged. It typically follows HLD going high, by a time delay which is dependent on the particular drive's characteristics. If not available from the drive electronics, this input must be generated by the user (typically by means of one-shot timers). Figure 4 illustrates an example of HLD and HLT timing.

The logical AND of HLD and HLT is status bit 5 for Type I commands, and it controls the operation of the disk read and write functions.

Figure 4. HLD/HLT Timing Example

3.2 Type II Commands

The Type II commands, Read Sector and Write Sector, permit actual data to be read from or written onto the diskette. Before the command is entered, it is necessary for the processor to have loaded the Sector Register with the number of the desired sector. Figure 5 is useful for understanding the operation of Type II commands.

3.2.1 Type II Command Basic Operation Sequence

The basic operation of Type II commands is outlined as the following sequence:

- The ID field is located by the detection of the ID AM (ID Address Mark).
- The Track Number in the ID field is compared to the contents of the Track Register. If it does not match, then the ID AM search begins again.
- As a selectable option, the Side Number is checked for a match. If selected, a failure to match again causes the ID AM search to re-start.
- The Sector Number is compared to the contents of the Sector Register. If there is not a match, the ID AM search is again begun.
- The Sector Length field is entered into the FDC and stored internally for use in Read or Write operations. The value of the Sector Length byte is determined when the diskette is formatted (initialized) and must have one of the values in the table of Figure 6.
- The ID field CRC1 and CRC2 bytes are checked with internally generated CRC. If they match, then the command (Read or Write) is permitted; if not, the CRC Error status bit is set and the search for the ID AM is begun again.
If the Track Number, Side Number, Sector Number, and CRC all check properly within 4 disk revolutions (5 index pulses), then the command continues; otherwise the Record-Not-Found status bit is set and the command is terminated with an interrupt (INTRQ).

SECTOR LENGTH FIELD (hex)	NUMBER OF BYTES IN SECTOR
00	128
01	256
02	512
03	1024

Figure 6. Sector Length Field Codes

Figure 5. General Track Format

Figure 7. Type II Command Option Bits

3.2.2 Type II Command Option Bits

Several bits in the Type II command words are used to select various options. Figure 7 summarizes the special control bits which are outlined, as follows:

- a_{0} (Data AM) - The a_{0} bit is used to select which of two Data Address Mark bytes is to be stored in the Data AM field for Write Sector operations. A " 1 " in ao causes hex F 8 to be stored, indicating that the data field is actually deleted data. A " 0 " in a_{0} causes hex FB to be stored, indicating undeleted data.
- S (Side) - The S bit is compared with the LSB of the Side Number (in the ID field), if the side number compare option has been enabled by the C bit.
- C(Compare) - This bit enables the comparison of the Side Number (in the ID field) with the S bit of the Type II command.
- E(Delay) - The E bit causes the internally generated head settling delay to be inserted between the time the HLD (Head Load) output is activated and the time the HLT (Head Load Timing) input is strobed and checked.
- m (multiple Records) - This bit is used to select whether one sector ($\mathrm{m}=$ " 0 ") or more than one sector ($m=" 1$ ") is to be read or written. For single sector operation, the interrupt is generated and the command is terminated immediately after the sector operation is complete. Multiple sector operation, however, is somewhat different. After the first sector operation is complete, the FDC Sector Register is incremented and the sequence is re-started. In this way, the next sequential sector number is read or written. Likewise, after it is complete, the Sector Register is again updated and the sequence re-started. This continues until the Sector Register has incremented to a number higher than any sector on the current track. At this point, the sequence terminates.

3.2.3 Type II Command Operation

The specific operation of the Read Sector and Write Sector commands, once the ID field is properly encountered, is outlined below:

- READ SECTOR - When the correct Track Number, Side Number (if selected), Sector Number, and CRC have been identified, the Data Field check commences. The Data AM must be found within 30 bytes for single-density (or 43 bytes for double-density) from the time the last CRC byte for the ID field was encountered. If not, the Record-Not-Found bit in the Status Register is set and the command is terminated. After the Data AM is found, the data bytes are entered through the internal Data Shift Register and transferred to the Data Register. Each byte transferred results in a DRQ. The Data Register must be unloaded (read) by the MPU or DMA controller before the next byte is fully received. If not, then the new byte is written over the previous byte in the Data Register, the previous byte is lost, and the Lost Data status bit is set. At the end of the Data Field, the CRC bytes are compared to the internal CRC generated by the FDC. If they do not match, the CRC Error status bit is set and the command is terminated, even if it is a multiplerecord command ($m=" 1$ "). At the end of the sequence, the Data AM encountered in the Data Field determines bit 5 of the Status Register. If the Data AM was hex FB (undeleted), then bit 5 is set to " 0 '; hex F8 (deleted data) causes bit 5 to be set to " 1 ".
- WRITE SECTOR - The Write Sector command operates in a fashion very similar to Read Sector. When the correct Track Number, Side Number (if selected), Sector Number, and CRC have been identified, a DRQ is generated, requesting the first data byte which is to be written on the diskette. The FDC then counts 11 bytes for single-density (or 22 bytes for doubledensity) to account for part of the gap between the ID
and DATA fields (Gap 2 in Figure 5). At this point, if the DRQ has been serviced and a data byte stored in the Data Register, the WG output goes true (high) and 6 bytes of zeroes for single-density (12 bytes for double-density) are written on the diskette. This accounts for the remainder of Gap 2. (If the DRO had not been serviced, the Lost Data status bit would have been set and the command terminated). Following Gap 2, the Data AM is written. This byte is either hex FB (undeleted data) or hex F8 (deleted data) and is determined by the state of the a_{0} bit in the command byte, (see Figure 7). Finally, the data is written on the diskette, starting with the byte already loaded in the Data Register. As each byte is transferred from the Data Register to the Data Shift Register to be stored on the diskette, a DRQ is generated to the MPU or DMA control unit requesting the next data. If any DRQ is not serviced in time, the Lost Data status bit is set and a byte of zeroes is stored on the diskette, but the command is not terminated. After the last data byte is stored on the diskette, the two-byte CRC (generated in the FDC) is then stored on the diskette. Finally, after the CRC bytes, the FDC stores one more byte (hex FF), the WG output goes low (false), and the command is terminated.

3.3 Type III Commands

There are three Type III Commands:

- READ ADDRESS - Read the next ID field (6 bytes) into the FDC.
- READ TRACK - Read all bytes of the entire track, including gaps.
- WRITE TRACK - Write all bytes to the entire track, including gaps.

3.3.1 Type III Command Option Bit

There is one option bit for Type III commands.

- E (DELAY) - This option bit acts the same for Type III commands as it does for Type II commands. See section 3.2.2 for further information.

3.3.2 Type III Command Operation

- READ ADDRESS - When this command is issued, the head is loaded (HLD high) and the Busy status bit is set. The next ID field encountered on the diskette is then read a byte at a time, using DRQ initiated data transfers to the MPU or DMA controller. Six bytes are entered, comprising the entire ID field. They are: Track Number (1 byte); Side Number (1 byte); Sector Number (1 byte); Sector Length (1 byte); and CRC (2 bytes). Although the CRC bytes are passed unaltered, the FDC checks their validity and sets the CRC Error status bit accordingly. Part of the operation of this command causes the Track Number to be stored in the Sector Register of the FDC. The command ends with the generation of an interrupt (INTRQ) and the clearing of the Busy status bit.
- READ TRACK - The initiation of this command causes the head to be loaded (HLD active) and the

Busy status bit to be set. Reading of the track starts with the next encountered Index pulse and continues until the following Index Pulse. Each byte is assembled and transferred to the Data Register. As in any normal read operation, a DRQ output is generated with each byte, signalling to the MPU or DMA control unit that the byte is ready. CRC and Gap bytes are treated as any other byte. No CRC checking is performed. When all bytes are transferred, the Busy status bit is cleared, and INTRQ goes high.

- WRITE TRACK - The start of this command causes the head to be loaded (HLD active) and the Busy status bit to be set. Data is written onto the track when the first Index pulse is encountered, and terminated at the subsequent Index Pulse. DRQ is activated immediately after the command is issued to permit adequate time for the first byte to be made available before the Index is found. If this time is not enough and the Index Pulse occurs before the Data Register is loaded, then the command is terminated. Once the data transfers begin, the DRQ is generated for each byte as needed. Any byte which is not transferred into the FDC in time causes a byte of all zeroes to be stored on the diskette instead. Address Marks and CRC bytes are generated by the FDC in response to format control bytes supplied by the system MPU or DMA control unit. When all bytes are transferred, the command is terminated, the Busy status bit is cleared, and INTRQ is set high.

3.4 Type IV Command

Force Interrupt is the only Type IV command. This command permits the MPU to terminate (abort) any command in progress. Figure 8 tabulates the Type IV command option bits.

The four bits, $\mathrm{I}_{0}-\mathrm{I}_{3}$, are used to select the condition of the interrupt occurrence. Regardless of which bit is set, any command currently being executed is immediately terminated and the Busy status bit is cleared, indicating "Not Busy". Then, when the condition is met, INTRQ goes high, causing the required interrupt.
If $\mathrm{I}_{0}-\mathrm{I}_{3}$ are all " 0 ", no interrupt occurs, but any currently executing command is immediately terminated. If more than one condition is selected, then the interrupt occurs when any of the conditions is met.
To clear the interrupt, it is necessary to read the Status Register or to write the Command Register. An exception, however, is for $\mathrm{I}_{3}=1$ (Immediate Interrupt). For this case, the interrupt is cleared with another Force Interrupt command with lo-l3 all 0 .

3.5 Status Register

The Status Register permits the MPU to monitor a variety of conditions in the FDC. For each command, the individual status bits have their own meaning. When a command is initiated (except for the Force Interrupt command), the Busy status bit is set and the others are cleared or updated. If the Force Interrupt command is entered when another command is in progress, the Busy status bit is cleared, but the others remain unaffected. However, if the Force Interrupt command is initiated

Figure 8. Force Interrupt Command Flags

COMMAND											STATUS	
	7	6	5	4	3	2	1	0				
ALL TYPE I	Not Ready	Write Protect	Head Loaded	Seek Error	CRC Error	Track 0	Index	Busy				
READ SECTOR	Not Ready	0	Record Type	Rec not Found	CRC Error	Lost Data	DRQ	Busy				
WRITE SECTOR	Not Ready	Write Protect	Write Fault	Rec not Found	CRC Error	Lost Data	DRQ	Busy				
READ ADDRESS	Not Ready	0	0	Rec not Found	CRC Error	Lost Data	DRQ	Busy				
READ TRACK	Not Ready	0	0	0	0	Lost Data	DRQ	Busy				
WRITE TRACK	Not Ready	Write Protect	Write Fault	0	0	Lost Data	DRQ	Busy				

Figure 9. Status Register Summary
when there is not another command in progress, the other status bits are cleared or updated and represent the Type I Command status. Figure 9 illustrates the meaning of the status bits for each command.

Detailed descriptions of each status bit function follow:

- NOT READY
$0=$ Drive is Ready
1 = Drive is Not Ready
- WRITE PROTECT
$0=\overline{\text { WPRT }}$ input is high (unprotected)
$1=\overline{\text { WPRT }}$ input is low (protected)
- HEAD LOADED
$0=$ Head is not currently loaded
$1=$ Head is loaded and engaged (both HLD and HLT are active)
- SEEK ERROR
$0=$ Desired track was found. Updating clears this bit
$1=$ Desired track was not found
- TRACK 0
$0=\overline{\text { TROO }}$ input is high
$1=\overline{\text { TROO }}$ input is low (Read/Write head is on Track ø)
- INDEX
$0=\overline{\bar{P}}$ input is high (no index mark)
$1=\overline{\mathbb{P}}$ input is low (index mark)
- BUSY
$0=$ Not Busy
$1=$ Busy (Command sequence in progress)
- RECORD TYPE
$0=$ Non-deleted data mark
1 = Deleted data mark
- WRITE FAULT
$0=$ No write fault
1 = Write fault has occurred
- RECORD NOT FOUND
$0=$ Desired track and sector properly found. Updating clears this bit
1 = Desired track and sector not found
- CRC ERROR
$0=$ No CRC error. Updating clears this bit
1 = CRC check error encountered
- LOST DATA
$0=$ No data lost. Updating clears this bit $1=$ MPU did not respond to DRQ. Data was lost
- DATA REQUEST (DRQ)
$0=$ DRQ not in progress. Updating clears this bit.
$1=$ DRQ currently in progress

Figure 10. IBM Compatible Sector/Track Format

4.0 Disk Formatting

Disk formatting (initialization) is accomplished by the Write Track command. Each byte for the entire track must be provided for proper formatting. This includes gap as well as data bytes.

The sequence required to format a diskette begins with positioning the Read/Write head at the desired track. Once this has been done, it is necessary to perform a Write Track command to store all the information on a track. The Write Track command uses DRQ to request each byte from the system MPU, starting with the byte at the beginning of the physical Index Pulse and ending
with the last gap bytes at the end of the track. Figure 10 illustrates the IBM standard for track formatting.
Normally, each data byte stored on the diskette must be generated by the system MPU and passed into the FDC Data Register. However, there are exceptions to this rule. If a data byte of hex F5 through FE is entered into the Data Register, then the FDC recognizes this as Data AM with missing clocks or CRC generation code. Consequently, F5 through FE must not be used in gaps, data fields, or ID fields, as this will disrupt normal operation of the FDC during formatting.

4.1 IBM 3740 Format

This single-density (FM) format utilizes 128 bytes/ sector. The bytes to be generated by the system MPU for use in the execution of the Write Track command are shown in Figure 11.

4.2 IBM System 34 Format

This double-density (MFM) format utilizes 256 bytes/ sector. The bytes to be generated by the system MPU for use in the execution of the Write Track command are shown in Figure 12.

4.3 Non-IBM Formats

Unique (non-IBM) formats are permissible providing the following restrictions are understood.

- Sector length may only be $128,256,512$, or 1024 bytes.
- Gap sizes must conform to Figure 13.

	DATA BYTE (hex)	NO. OF BYTES	COMMENTS
	FF	407	$\begin{aligned} & \text { Gap } 5 \\ & \text { (Post Index) } \end{aligned}$
	00	$6]$	
	FC	1	Index AM
	FF	267	-Gap 1
	00	$6]$	
	FE	1	ID AM
	XX	1	Track Number (00-4A)
	0X	1	Side Number (00 or 01)
	XX	1	Sector Number (01-1A)
	00	1	Sector Length (128 bytes)
$\begin{gathered} \text { ONE } \\ \text { SECTOR } \\ 1 \end{gathered}$	F7	1	Causes 2-Byte CRC to be Written
	FF	$11]$	Gap 2 (ID Gap)
	00	$6]$	
	FB	1	Data AM
	E5	128	Data Field
	F7	1	Causes 2-Byte CRC to be Written
	FF	$\begin{aligned} & 27 \\ & \\ & \hline \end{aligned}$	Part of Gap 3 (Data Gap)
	FF	247	Gap 4 (Pre Index)
NOTES: 1. THIS PATTERN MUST BE			
		WRITTEN 26	times Per track.
2. CONTINUE WRITING HEX FF UNTIL FDC COMPLETES			
INTRQ INTERRUPT			

Figure 11. Byte Sequence for IBM 3740 Formatting

Figure 12. Byte Sequence for IBM System-34 Formatting

GAP	SINGLE DENSITY (FM)	DOUBLE DENSITY (MFM)	NOTE
Gap 1	16 bytes FF	16 bytes 4E	2
Gap 2	11 bytes FF 6 bytes 00	22 bytes $4 F$ 12 bytes 00 3 bytes 41	1
Gap 3	10 bytes FF	16 bytes $4 E$ 8 bytes 00 3 bytes 41	2
Gap 4	16 bytes FF	16 bytes 4E	2

NOTES: 1. THESE BYTES COUNTS ARE EXACT.
2. THESE BYTES COUNTS ARE MINIMUM EXCEPT FOR 3 BYTES A1, WHICH IS EXACT.

Figure 13. Gap Size Limitations

Electrical Specifications

Absolute Maximum Ratings*

Rating	Symbol	Allowable Range
Supply Voltage	V_{CC}	-0.3 V to +7.0 V
Input/Output Voltage	$\mathrm{V}_{\text {IN }}$	-0.3 V to +7.0 V
Operating Temp.	T_{OP}	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage Temp.	$\mathrm{T}_{\text {STG }}$	$-55^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$

Comment*

All inputs contain protection circuitry to prevent damage to high static charges. Care should be exercised to prevent unnecessary application of voltages in excess of the allowable limits.

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
D.C. Characteristics $\left(V_{C C}=5 \mathrm{~V} \pm 5 \%, T_{A}=0-70^{\circ} \mathrm{C}\right)$

CHARACTERISTIC	SYMBOL	MIN	MAX	UNIT
Input High Voltage	V_{IH}	2.0	-	V
Input Low Voltage	V_{IL}	-	0.8	V
Input Leakage Current, $\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$ to V_{CC}	I_{IL}	-	± 10	$\mu \mathrm{~A}$
Output High Voltage, $\mathrm{I}_{\mathrm{LOAD}}=-100 \mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{OH}}$	2.4	-	V
Output Low Voltage, $\mathrm{I}_{\mathrm{LOAD}}=1.6 \mathrm{~mA}$	$\mathrm{~V}_{\mathrm{OL}}$	-	0.4	V
Output Leakage Current, $\mathrm{V}_{\mathrm{OUT}}=\mathrm{V}_{\mathrm{CC}}$	I_{OL}	-	10	$\mu \mathrm{~A}$
Power Dissipation $\left(\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}\right)$	P_{D}	-	525	mVI
Input Capacitance	C_{IN}	-	15	pF

Test Load

Read Cycle ($\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=0$ to $70^{\circ} \mathrm{C}$, unless otherwise noted)

Characteristic	Symbol	6591		6591A		Units
		Min.	Max.	Min.	Max.	
$\phi 2$ Pulse Width	${ }^{\mathrm{t}} \mathrm{C}$	470	-	235	-	ns
DRQ Reset From $\phi 2$	torR	-	500	-	500	ns
$\widehat{\text { RQ Reset From } \phi 2}$	$\mathrm{t}_{\text {IRR }}$	-	3	-	3	$\mu \mathrm{s}$
Address Setup Time	${ }^{t} A C R$	180	-	90	-	ns
Address Hold Time	${ }^{\text {t CAR }}$	0	-	0	-	ns
R / \bar{W} Setup Time	twCR	180	-	90	-	ns
R \bar{W} Hold Time	${ }^{\text {t }}$ CWH	0	-	0	-	ns
Data Bus Access Time	${ }^{\text {t }}$ CDR	-	395	-	200	ns
Data Bus Hold Time	t_{HR}	10	-	10	-	ns

$\left(\mathrm{t}_{\mathrm{r}}\right.$ and $\mathrm{t}_{\mathrm{f}}=10$ to 30 ns)

Read Timing

Write Cycle ($\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=0$ to $70^{\circ} \mathrm{C}$, unless otherwise noted)

Characteristic	Symbol	6591		6591A		Units
		Min.	Max.	Min.	Max.	
$\phi 2$ Pulse Width	${ }^{t}$	470	-	235	-	ns
DRQ Reset From $\phi 2$	$t_{\text {DRR }}$	-	500	-	500	ns
$\overline{\mathrm{RO}}$ Reset From $\phi 2$	$\mathrm{t}_{\text {IRR }}$	-	3	-	3	$\mu \mathrm{s}$
Address Setup Time	${ }^{\text {t }}$ ACW	180	-	90	-	ns
Address Hold Time	${ }_{\text {t }}$ CAH	0	-	0	-	ns
R/W Setup Time	twCW	180	-	90	--	ns
R/W Hold Time	${ }^{\text {t }}$ CWH	0	-	0	-	ns
Data Bus Setup Time	${ }^{\text {t }}$ DCW	300	-	150	-	ns
Data Bus Hold Time	$t_{\text {HW }}$	10	-	10	-	ns

(tr and $\mathrm{tf}_{\mathrm{f}}=10$ to 30 ns)

Write Timing

 40 Pin Plastic

Ordering Information

Part Number	Package	MPU Clock Rate
SYC6591	Ceramic	1 MHz
SYD6591	Cerdip	1 MHz
SYP6591	Plastic	1 MHz
SYC6591A	Ceramic	2 MHz
SYD6591A	Cerdip	2 MHz
SYP6591A	Plastic	2 MHz

SY68045

CRT Controller

Features

- Generates Refresh Addresses and Row Selects
- Generates Video Monitor Inputs: Horizontal and Vertical Sync and Display Enable
- Low Cost; MC6845, SY6545 Pin Compatible
- Text Can Be Scrolled on a Character, Line or Page Basis
- Addresses 16K Bytes of Memory
- Screen Can Be Up to 128 Characters Tall by 256 Wide
- Characters Can be 32 Lines High with any Width
- Two Complete ROM Programs
- Cursor and/or Display Can Be Delayed 0, 1 or 2 Clock Cycles
- Four Cursor Modes:
- Non-Blink
- Slow Blink
- Fast Blink
- Reverse Video With Addition of a Single TTL Gate
- Three Interlace Modes
- Normal Sync
- Interlace Sync
- Interlace Sync and Video
- Full Hardware Scrolling
- NMOS Silicon Gate Technology
- TTL-Compatible, Single +5 Volt Supply

Pin Configuration

Block Diagram

Maximum Ratings

Supply Voltage, V_{CC}
-0.3 V to +7.0 V Input/Output Voltage, VIN
Operating Temperature, TOP
-0.3 V to +7.0 V
$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage Temperature, TSTG
$-55^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
All inputs contain protection circuitry to prevent damage due to high static discharges. Care should be exercised to prevent unnecessary application of voltages in excess of the allowable limits.

Comment*

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only. Functional operation of this device at these or any other conditions above those indicated in the operational sections of this specification is not implied and exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Electrical Characteristics $\quad\left(V_{C C}=5.0 \mathrm{~V} \pm 5 \%, T_{A}=0-70^{\circ} \mathrm{C}\right.$, unless otherwise noted)

Symbol	Characteristic	Min.	Max.	Unit
$\mathrm{V}_{\text {IH }}$	Input High Voltage	2.0	V_{CC}	V
$\mathrm{V}_{\text {IL }}$	Input Low Voltage	-0.3	0.6	V
IIN	Input Leakage	-	2.5	$\mu \mathrm{A}$
${ }_{\text {ITSI }}$	Three-State Input Leakage (DBO-DB7) $\mathrm{V}_{\mathrm{IN}}=0.4 \text { to } 2.4 \mathrm{~V}$	-	10.0	$\mu \mathrm{A}$
V_{OH}	Output High Voltage $I_{\text {LOAD }}=-100 \mu \mathrm{~A}$	2.4	-	V
V_{OL}	Output Low Voltage $\mathrm{I}_{\text {LOAD }}=1.6 \mathrm{~mA}$	-	0.4	V
$P_{\text {D }}$	Power Dissipation ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)	-	600	mW
$\mathrm{C}_{\text {IN }}$	Input Capacitance $\phi 2, \mathrm{R} / \overline{\mathrm{W}}, \overline{\mathrm{RES}}, \overline{\mathrm{CS}}, \mathrm{RS}$, LPEN, CCLK DBO-DB7	-	$\begin{aligned} & 10.0 \\ & 12.5 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{pF} \\ & \mathrm{pF} \end{aligned}$
$\mathrm{C}_{\text {OUT }}$	Output Capacitance	-	10.0	pF

Test Load

MPU Bus Interface Characteristics
 Write Cycle

Bus Timing Characteristics ($\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \%, \mathrm{TA}_{\mathrm{A}}=0$ to $70^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Parameter	SY68045		SY68045A		SY68045B		Unit
		Min.	Max.	Min.	Max.	Min.	Max.	
$\mathrm{t}_{\text {c }} \mathrm{CCE}$	Enable Cycle Time	1000		666		500		ns
PWEH	Enable Pulse Width, High	450	25,000	280	25,000	220	25,000	ns
PWEL	Enable Pulse Width, Low	430		280		210		ns
$\mathrm{t}_{\text {AS }}$	Setup Time, CS and RS Valid to Enable Positive Transition	160		140		70		ns
t_{H}	Data Hold Time	10		10		10		ns
${ }^{\text {tah }}$	Address Hold Time	10		10		10		ns
$\mathrm{t}_{\mathrm{Er},} \mathrm{t}_{\text {Ef }}$	Rise and Fall for Enable Input		25		25		25	ns
$\mathrm{t}_{\text {DSW }}$	Data Setup Time	195		80		60		ns

Symbol	Parameter	Min.	Typ.	Max.	Unit	Condition
PWCL	Minimum Clock Pulse Width, Low	160			ns	
PWCH $^{f_{C}}$	Minimum Clock Pulse Width, High	200		10,000	ns	
$\mathrm{t}_{\mathrm{Cr}, \mathrm{t}_{\mathrm{Cf}}}$	Clock Frequency	Rise and Fall Time for Clock Input			2.5	MHz
$\mathrm{t}_{\mathrm{MAD}}$	Memory Address Delay Time		20	ns		
$\mathrm{t}_{\text {RAD }}$	Raster Address Delay Time			160	ns	
$\mathrm{t}_{\text {DTD }}$	Display Timing Delay Time			160	ns	
$\mathrm{t}_{\mathrm{HSD}}$	Horizontal Sync Delay Time			300	ns	
$\mathrm{t}_{\mathrm{VSD}}$	Vertical Sync Delay Time			300	ns	
$\mathrm{t}_{\mathrm{CDD}}$	Cursor Display Timing Delay Time			300	ns	

General Description

The SY68045 CRT Controller performs the complex interface between 6500/6800 family microprocessors and a raster scan display CRT system. The SY68045 is designed to be flexible yet low cost. It is configured to reduce the cost of equipment such as intelligent terminals, word processing, and information display devices.
The CRT Controller consists of both horizontal and vertical counting circuits, a linear address counter, and control registers. The horizontal and vertical counting circuits generate the Display Enable, HSYNC, VSYNC, and RAO-RA4 signals. The RAO-RA4 lines are scan line count signals to the external character generator ROM. The number of characters per character row, scan lines per character row, character rows per screen, and the horizontal and vertical SYNC position and width are all mask programmable. The SY68045 is capable of addressing 16 K of memory for display. The CRT may be scrolled or paged through the entire display memory under MPU control. The cursor control register determines the cursor location on the screen, and the cursor format can be programmed for fast blink, slow-blink, or nonblink appearance, with programmable size. By adding a single TTL gate, the cursor can be reverse video. The device features two complete, independent programs implemented in user-specified ROM. Either set of programmable variables ($50 / 60 \mathrm{~Hz}$ refresh rate, screen format, etc.) is available to the user at any time.
The SY68045 is pin compatible with the SY6545, AMI68045 and MC6845 and operates from a single 5 -volt supply.

Systems Operation

The SY68045 CRTC generates all of the signals needed for the proper operation of a CRT system including HSYNC, VSYNC, Display Enable, Cursor control signals (refer to Figure 1), the refresh memory addresses (MAO-MA13) and row addresses (RAO-RA4). The CRTC's timing is derived from the CLK input which is divided down from the dot rate counter.
The CRTC, which is compatible with 6500/6800 families, communicates with the MPU by means of the standard 8-bit data bus. This primary data bus uses a buffered interface for writing information to the display refresh RAM by means of a separate secondary data bus. This arrangement allows the MPU to forget about the display except for those time periods when data is actually being changed on the screen. The address bus for the refresh RAM is continuously multiplexed between the MPU and the CRTC.
Since the MPU is allowed transparent Read/Write access to the display memory, the refresh RAM appears as just another RAM to the processor. This means that the refresh memory can also be used for program storage. Care should be taken by the system designer, however, to insure that the portion of memory being used for program storage is not actively displayed.

Figure 1. Typical CRT Controller System

MPU Interface Signal Description

Processor Interface

All processor interface lines are three state, TLL/MOS compatible inputs.
Chip Select ($\overline{\mathbf{C S}}$) - The $\overline{\mathrm{CS}}$ line selects the CRTC when low to write to the internal Register File. This signal should only be active when there is a valid stable address being decoded from the processor.
Register Select - The RS line selects either the Address Register ($\mathrm{RS}=$ " 0 ") or one of the Data Registers ($\mathrm{RS}=$ " 1 ") of the internal Register File.
To address one of the software programmable registers (R12, R13, R14 or R15 in Table 1) first access the Address Register ($\overline{C S}=0, R S=0$) and write the number of the desired register. Then write into the actual register by addressing the data register section (CS = $0, \mathrm{RS}=1$) and enter the appropriate data.
Write (\bar{W}) - The \bar{W} line allows a write to the internal register file.
Data Bus (D0-D7) - The data bus lines (D0-D7) are write only and allow data transfers to the CRTC internal register file.
Enable (E) - The Enable signal enables the data bus input buffers and clocks data to the CRTC. This signal is usually derived from the processor clock, and the high to low transition is the active edge.
SY68045 Control Clock (CLK) - The clock signal is a high impedance, TTL/MOS compatible input which assures the CRTC is synchronized with the CRT. The CLK signal is divided down by external circuitry from the dot rate counter. The CLK frequency is equal to the dot rate frequency divided by the width of a single character block (including framing) expressed in dots; CLK is equal to the character rate.
Program (PROG) - The voltage on this pin determines whether the screen format in ROM 0 (PROG LOW) or ROM 1 (PROG HIGH) is being used.
Reset ($\overline{\operatorname{RES}}$) - The $\overline{\mathrm{RES}}$ input resets the CRTC. An (active) low input on this line forces these actions:
a) MAO-MA13 are loaded with the contents of R12/R13 (the start address register).
b) The horizontal, vertical, and raster address counter are reset to the first raster line of the first displayed character in the first row.
c) All other outputs go low.

Note that none of the internal registers are affected by $\overline{\mathrm{RES}}$.
$\overline{R E S}$ on the CRTC differs from the reset for the rest of the 6800 family in the following aspects.
a) MAO-MA13 and RAO-RA4 go to the start addresses, instead of FFFF.
b) Display recommences immediately after $\overline{\mathrm{RES}}$ goes high.

Video Interface Signal Description

Displayed Data Control
Display Refresh Memory Addresses (MAO-MA13) - 14 bits of address provide the CRTC with access of up to 16 K of memory for use in refreshing the screen.

Row Addresses (RAO-RA4) - 5 bits of data that provide the output from the CRTC to the character generator ROM. They allow up to 32 scan lines to be included in a character.
Cursor - This TTL compatible, active high output indicates to external logic that the cursor is being displayed.
The character address of the cursor is held in a register, so the cursor's position is not lost even when scrolled off the screen.

CRT Control

All three CRT control signals are TTL compatible, active high outputs.
Display Enable - Indicates that valid data is being clocked to the CRT for the active display area.
Vertical Sync (VSYNC) -- Makes certain the CRTC and the CRT's vertical timing are synchronized so the picture is vertically stable.

Horizontal Sync (HSYNC) - Makes certain the CRTC and the CRT's horizontal timing are synchronized so the picture is horizontally stable.

Description of Internal Registers

There is a bank of 15 control registers in the 68045 , most of which are mask programmed. The exceptions are the Address Register, the Start Address Registers (R12 \& R13) and the Cursor Location Registers (R14 \& R15). All software programmable registers are write only. The Address Register is 5 bits long. The software programmable registers are made available to the data lines whenever the chip select ($\overline{\mathrm{CS}}$) goes low. When $\overline{\mathrm{CS}}$ goes high, the data lines show a high impedance to the microprocessor.
Horizontal Total Register (RO) - The full horizontal period, expressed in character times, is masked in RO. (See Figure 2a.)
Horizontal Displayed Register (R1) - This mask programmed register contains the number of characters to be actually displayed in a row. (See Figure 2a.)
Horizontal SYNC Position Register (R2) - The contents of R2 (also in character times) should be slightly larger than the value in R1 to allow for a non-displayed right border. (See Figure 2a.)
Sync Width Register (R3) - The width of the HSYNC pulse expressed in character times is masked into the lower four bits of R3. The width of the HSYNC pulse has to be non-zero.
The width of the VSYNC pulse is masked into the upper four bits of R3 without any modification, with the exception that all zeros will make VSYNC 16 scan lines wide.
Vertical Total Register (R4) - This register contains the total number of character rows - both displayed and nondisplayed - per screen. This number is just the total number of scan lines used divided by the number of scan lines in a character row. If there is a remainder, it is placed in R5. (See Figure 2b).
Vertical Total Adjust Register (R5) - See description of R4. A fractional number of character row times is used to obtain a refresh rate which is exactly $50 \mathrm{~Hz}, 60 \mathrm{~Hz}$, or some other desired frequency. (See Figure 2b).

Table 1. CRTC Internal Register Assignment

X DON'T CARE

Vertical Displayed Register (R6) - This register contains the total number of character rows that are actually displayed on the CRT screen. (See Figure 2b).
Vertical SYNC Position (R7) - R7 contains the position of the vertical SYNC pulse in character row times with respect to the top character row. Increasing the value shifts the data up. (See Figure 2b).

Interlace Mode Register (R8) - R8 controls which of the three available raster scan modes will be used (See Figure 3).

- Non-interlace or Normal sync mode
- Interlaced sync mode
- Interlaced sync and Video mode

The cursor and Display Enable outputs can be delayed (skewed) 0, 1 or 2 clock cycles with respect to the refresh memory address outputs (MAO-MA13). The amount the cursor is delayed is independent of how much the Display Enable signal is delayed. This feature allows the system designer to account for memory address propagation delay through the RAM, ROM, etc.

Maximum Scan Line Register (R9) - Determines the number of scan lines per character row including top and bottom spacing.
Cursor Start Register (R10) - Contains the raster line where the cursor starts (see Figure 4). The cursor start line can be anywhere from line 0 to line 31.
The cursor can be in one of the following formats.

- Non-blinking
- Slow blinking ($1 / 16$ the vertical refresh rate)
- Fast blinking ($1 / 32$ the vertical refresh rate)
- Reverse video (non-blinking, slow blinking, or fast blinking)

The reverse video cursor needs an external TTL XOR gate to be placed in the video circuit.

To implement the reverse video cursor, the cursor start line (R10) should be set to line 0 and the cursor end line (R11) should be set to whatever is in R9 so that the cursor covers the entire block. On the circuit level, the output from the Cursor pin (pin 19) should be taken through the XOR gate along with the output from the shift register. (See Figure 5.) With this setup the character whose memory address is in the cursor register (R14/R15) will have its background high (because Cursor alone is high) but the character itself will be off (because both cursor and the character are high.)

Memory Start Address Register (R12/R13) - These two software programmable, write-only registers taken together contain the memory address of the first character displayed on the screen. Register R12 contains the upper six bits of the fourteen refresh memory address bits, while R13 contains the lower eight bits. The Linear Address Generator begins counting from the address in R12/R13. By changing the starting address, the display can be scrolled up or down through the 16 K memory block by character, line or page. If the value in R12/R13 is near the end of the 16 K block the display will wrap around to the front.
Cursor Address Register (R14/R15) - These two software programmable, write-only registers, taken together contain the address in memory of the cursor character.
Register R14 contains the upper six bits and register R15 contains the lower eight bits of the character. Cursor position is associated with an address in memory rather than with a position on the screen. This way cursor position is not lost when the display is scrolled.

Figure 2a. Approximate Horizontal Timing Diagram

For more exact diagrams refer to the back of the data sheet. The horizontal display enable is anded with the vertical display enable to produce the display enable at Pin 18. Note the (a) figure is timed in terms of individual characters, whereas the (b) figure is timed in terms of character rows.

Figure 2b. Approximate Vertical Timing Diagram

Address Register - The five bit address register is unique in that it does not store any CRT-related information, but is used as the address storage register in an indirect access of the other registers. When the Register Select pin (RS) is low, the address register is accessed by DO-D4. When RS is high, the register whose address is in the address register is accessed.

CRTC Internal Description

There are four counters which determine what the CRTC's output will be (see Block Diagram):

1) Horizontal Counter
2) Vertical Counter
3) Row Address Counter
4) Linear Address Counter

The first two counters, and to some extent the third, take care of the physical operation of the monitor. The Linear Address Counter, on the other hand, is responsible for the data that is displayed on the screen.
Surrounding these counters are the registers RO-R15. Coincidence logic continuously compares the contents of each counter with the contents of the register(s) associated with it. When a match is found, appropriate action is taken; the counter is reset to a fixed or dynamic value, or a flag (such as VSYNC) is set, or both.
Two sets of registers - The start Address Register (R12/R13) and the Cursor Position Register (R14/R15) -
are programmable via the Data lines (DO-D7). The other registers are all mask programmed. There are two ROM Programs available on each chip. Selection of which ROM program will be accessed is performed by the PROG pin.

Horizontal Counter

The Horizontal Counter produces four output flags: HSYNC, Horizontal Display Enable, Horizontal Reset to the Linear Address Counter, and the horizontal clock.
The Horizontal Counter is driven by the character rate clock, which was derived from the dot rate clock (see Table 2). Immediately after the valid display area is entered the Horizontal Counter is reset to zero but continues incrementing.
HSYNC is the only one of the four signals which is fed to an external device (the CRT). The Horizontal Counter is compared to registers RO, R2 and R3 to give an HSYNC of the desired frequency (RO), position (R2) and width (R3). (See Figure 2a.)
Horizontal Display Enable is an internal flag which, when ANDed with Vertical DE, is output at the Display Enable pin. The Horizontal Counter determines the proper frequency (RO), and width (R1).

The Horizontal Reset and the horizontal clock are actually identical signals: the only difference is the way they are used. Both are pulsed once for each scan line, so their frequency is equal to the character rate clock frequency divided by the entire horizontal period (display, non-display and retrace)

NORMAL SYNC MODE 1

SCAN LINE ADDRESS

SCAN LINE ADDRESS

INTERLACE MODE REGISTER R8

Bit 1	Bit 0	Mode
X	0	Normal Sync
0	1	Interlace Sync
1	1	Interlace Sync and Video

Figure 3. Interlace Control

CURSOR START REGISTER R10

Bit 6	Bit 5	Cursor Display Mode
0	0	Non-Blink
0	1	Cursor Non-Display
1	0	Blink, 1/16 Field Rate
1	1	Blink, 1/32 Field Rate

Figure 4. Cursor Control

Figure 5. Implementation of a Reversed Video Cursor
expressed in character times (which is stored in RO). The horizontal clock drives the Vertical and Row address Counters. The horizontal reset is discussed with the Linear Address Counter.

Vertical Counter

The Vertical Counter produces three output flags: VSYNC, Vertical Display Enable, and Vertical Reset to the Linear Address Counter. The Vertical Counter is driven by the horizontal clock. Immediately after vertical retrace the Vertical Counter is reset to zero but continues incrementing.
VSYNC is the only one of the three signals which is fed to an external device (the CRT). The Vertical Counter is compared to registers R3, R4, R5 and R7 to give a VSYNC of the desired frequency (R4, R5). postion (R7) and width (R3). (See Figure 2b.)
Vertical Display Enable is an internal flag which, when ANDed with Horizontal DE, is output at the Display Enable pin. The Vertical Counter determines the proper frequency (R4, R5) and width (R6).

Vertical Reset is pulsed once for each screen. The frequency of Vertical Reset is equal to the horizontal clock frequency divided by the total number of scan lines in a screen (which is equal to ($\mathrm{R} 4 \times \mathrm{R} 9$) + R5). It will be discussed with the Linear Address Counter.

Row Address Counter

The Row Address Counter produces three sets of output: the five Row Address lines (RAO-RA4), the Row Address Cursor Enable flag and the Row Address Reset flag. The Row Address Counter is driven by the horizontal clock. Immediately after a full character row has been completed by the Row Address Counter is reset to zero but continues incrementing. Note that the Row Address Counter actually counts scan lines, which are different from character rows. A full character row consists of however many scan lines are in register R9.

The Row Address Lines, RAO-RA4, are the only data lines from the Row Address Counter that are fed to an external device (the character generator ROM). The Row Address lines just carry the count that is currently in the Row Address Counter. The counter is reset whenever the count equals the
contents of the Maximum Scan Line Register (R9).
Row Address Cursor Enable is a flag going to the Cursor output AND gate. The Row Address Cursor Enable flag goes high whenever the count in the Row Address Counter is greater than or equal to the Cursor Start Register (R10) but less than or equal to the Cursor End Register (R11). The other input to the Cursor output AND gate goes high whenever the address in the Linear Address Counter is equal to the address in the Cursor Position Register (R14/R15).
Row Address Reset is pulsed whenever the Row Address Counter is reset. It will be discussed with the Linear Address Counter.

Linear Address Counter

The Linear Address Counter (LAC) produces only one set of outputs: The Refresh Memory Address lines (MAO-MA13). These fourteen bits are fed externally to the Refresh RAM and internally to the Cursor Position coincidence circuit. The LAC is driven by the character rate clock and continuously increments during the display, non-display and retrace portions of the screen. It contains an internal read/write register which stores the memory address of the first displayed character in the current row.
When any of the three Reset flags already mentioned (Horizontal, Row Address and Vertical) is pulsed, the value in the internal register is loaded into the counter. If the reset is a Horizontal Reset the value in the internal register is not modified before the load. If the reset is a Row Address Reset, the value in the internal "first character" register is first increased by the number of characters displayed on a single character row (register R1). The new contents of the internal register are then loaded into the Linear Address Counter.
If the reset is a Vertical Reset, the value in Start Address Register ($\mathrm{R} 12 / \mathrm{R13}$) is first loaded into the internal register, and then into the Linear Address Counter.

The fourteen output lines allow 16 K of memory to be accessed. By incrementing or decrementing the number in the Start Address Register, the screen can be scrolled forward or backward through Display Refresh RAM on a character, line, or page basis.

Table 2 Comparison of all CRTC Clocks

Name	Location of Clock	Divided By:	Controlling Register	Produces
Dot Rate Clock	External	Total width of a character block in dots	External	Character Rate Clock
Character Rate Clock	External Input	Total number of characters in a row	RO	Horizontal Clock
Horizontal Clock	Internal	Total number of scan lines in a character row	R9	Row Address Clock
Row Address Clock	Internal	Total number of character rows per screen	R4, R5	Vertical Clock

NOTE: 1. THE INITIAL MA IS DETERMINED BY THE CONTENTS OF START ADDRESS REGISTER,
R12/R13. TIMING IS SHOWN FOR R12/R13 $=\mathbf{0}$. ONLY NON-INTERLACE AND INTERLACE
SYNC MODES ARE SHOWN.

Figure 8. Refresh Memory Addressing (MAO-MA13) State Chart

*Timing is shown for first displayed scan row only. The initial MA is determined by the contents of Start Address Register, R12/R13. Timing is shown for R12/R13 = 0 .

Figure 9. CRTC Horizontal Timing

* N_{ht} - there must be an even number of character times for both interlace modes.
**Initial MA is determined by R12/R13 (Start Address Register), which is zero in this timing example.
*** $\mathrm{N}_{\text {Sl }}$ must be an even number of scan lines for interface Sync and Video Mode.

Figure 10. CRTC Vertical Timing

Figure 11. Cursor Timing

SY68045 ROM Program Worksheet

The value in each register of the MC6845 or SY6545 should be entered without any modifications, Synertek will take care of translating into the appropriate format.
\square All numbers are in decimal.
\square All numbers are in hex.

| ROM
 Program
 Zero | ROM
 Program
 One |
| :---: | :---: | :---: |
| RO | |
| R1 | |
| R2 | \square |

Which controller was used to develop the system?

Synertek SY6545 $\square \quad$ Rockwell $6545 \square$
Motorola MC6845 Original
R Version \square
S Version

Package Availability
40 Pin Plastic 40 Pin Ceramic 40 Pin Cerdip

Ordering Information

Part Number	Package	Clock Rate
SYP68045	Plastic	1 MHz
SYC68045	Ceramic	1 MHz
SYD68045	Cerdip	1 MHz
SYP68045A	Plastic	1.5 MHz
SYC68045A	Ceramic	1.5 MHz
SYD68045A	Cerdip	1.5 MHz
SYP68045B	Plastic	2 MHz
SYC68045B	Ceramic	2 MHz
SYD68045B	Cerdip	2 MHz

PRELIMINARY

Features

- High Performance 0 Hz to 4 MHz Operation
- Low Power, 8 mA at $4 \mathrm{MHz}, 10$ Micro Amp Standby at 5 Volts
- Memory Lock (ML) Output During Read-Modify-Write
- Single 3 to 6 Volt Power Supply
- On-Chip Oscillator
- 40 Pin or 28 Pin Versions
- Bus Enable (BE) Allows DMA Operations
- RDY Input to Extend Data Access Times for Use with Slow Memories
- Sync Output Indicating Opcode Fetch
- Improved Bus Timing
- Earlier Valid Address Allows Use of Slower Memories
- 27 New Instructions
- Plug Compatible with NMOS 6502

Description

The CMOS 65C00 microprocessor is compatible with the NMOS 6500 family of microprocessors. This 8-bit microprocessor unit designed in Synertek's proprietary high performance N -well silicon gate technology offers higher performance than the original NMOS 6502. The design allows for operating frequencies up to 4 MHz , and below 1 MHz further reducing its already low power consumption.

Not only is the 65C00 a low power version of the popular 6500 microprocessor, it also has these new features. Ability to tri-state the R/W line, address and data bus for DMA applications. Improved $T_{A C C}$ specs allowing use with slower memory devices. A new optional output enhancing multiprocessing capabilities. Two new addressing modes, and a larger instruction set providing the user with more compact programming capabilities.

Block Diagram

27 New Instructions

Hex	Mnemonic	Description
80	BRA	Branch Relative Always
3A	DEA	Decrement Accumulator
1A	INA	Increment Accumulator
DA	PHX	Push X on Stack
5A	PHY	Push Y on Stack
FA	PLX	Pull X from Stack
7A	PLY	Pull Y from Stack
9C	STZ	Store Zero (Absolute)
9E	STZ	Store Zero (Absolute, X) S4
Store Zero (Zero Page)		
T4	STZ	Store Zero (Zero Page, X)
1C	TRB	Test and Reset Memory Bits with Accumulator (Absolute) Test and Reset Memory Bits with Accumulator (Zero Page) T4
TRB	Test and Set Memory Bits with Accumulator (Absolute) Test and Set Memory Bits with	
OC	TSB	TSB
O4	Accumulator (Zero Page) Test Immediate with	
89	Bit	Accumulator Test Memory Bits with
3C	Bit	Accumulator (Absolute,X) Test Memory Bits with
Bit	Accumulator (Zero Page, X)	

New Addressing Modes		
$7 C$	JMP	Jump (Indirect Absolute, X)
72	ADC	Add Memory to Accumulator with Carry (Indirect)
32	AND	"AND" Memory with Accumulator (Indirect)
D2	CMP	Compare Memory and Accumulator (Indirect)
52	EOR	"Exclusive OR" Memory with Accumulator (Indirect)
B2	LDA	Load Accumulator with Memory (Indirect)
12	ORA	"OR" Memory with Accumulator (Indirect)
F2	SBC	Subtract Memory from Accumulator with Borrow (Indirect)
92	STA	Store Accumulator in Memory (Indirect)

Indexed Absolute Indirect (JUMP)

The contents of the second and third instruction bytes are added to the X register. The result is a 16 -bit memory address that contains the low-order eight bits of the effective address. The next memory location contains the high order eight bits of the effective address.

Indirect

In indirect addressing the second byte of the instruction points to a memory location on page zero whose contents is the low order byte of the effective address. The next location on page zero contains the high order byte of the effective address.

Miscellaneous Instruction Changes

Indexed Addressing across the page boundaries will retain the last byte of instruction address rather than an invalid page address.

Processor Hangup on certain invalid opcodes has been eliminated.

Jump Indirect across page boundaries will now increment the page address instead of wrapping around on itself. If a page boundary is crossed the instruction cycle time will increase by one.
Decimal operations involving addition and subtraction will take an additional cycle time. The NMOS Z,N and V flags were invalid, the CMOS flags will be valid.
Read-Modify-Write cycles will be flagged by the $\overline{M L}$ output.
RDY transitioning low will cause the CPU to halt even during write operations. The NMOS version allowed transitions only during read cycles.

DMA Operations on the CMOS 6502 are possible by pulling $B E$ low, thus tri-stating the address and data bus and R/W line.
Decimal Mode Flag condition defaults to the binary mode upon a reset. The NMOS version the flag was random.

New Signals

Memory Lock ($\overline{\mathrm{ML}}$) an output, active low, indicates the need to defer the rearbitration of the next bus cycle to insure integrity of read-modify-write cycles in a multiprocessor environment.
Bus Enable (BE) an input, when true allowing normal operation of the microprocessor, when low tri-states R/W, address and data lines, allowing true DMA operations. An improvement over the NMOS version, in that DBE when pulled low would only tri-state the data lines.

Applications Areas

The CMOS version of the 6502 is ideally suited for any low power application or application where noise immunity and potential swings on V_{CC} might occur. It is well suited for automotive, industrial, business, harsh environment (high temp) and communications markets. Not only does it fill the typical CMOS niche, it also is an upgraded version of the NMOS part, providing the new inputs and outputs, better bus timing and 27 new instructions.

Device Pinouts

The CMOS 65COO family offers the same full line of 10 microprocessor pin configurations as the NMOS family. In addition to those, the CMOS family offers user selectable metal mask options for selection of clock circuitry and bus control input options. Below are the various pin configurations and additional mask options available for all devices.

Optional Pull-Up for:

RDY, IRQ, NMI, S.O., RES and DBE/BE inputs, each individually selectable by user.

Pin Configurations

4X CLK/OSC

SY65C4X02

1X CLK/OSC

SY65CX02

v_{ss}	1	40	$]^{\overline{P E S S}}$	$\mathrm{v}_{\mathrm{ss}} \mathrm{C}$	1	40	$\square \overline{\mathrm{RES}}$
ROY	2	39	$\square \square_{2}$ (OUT)	ROY	2	39	\square_{2} (OUT)
\emptyset_{1} (OUT)	3	38	$\square \mathrm{s}$.	n.c.	3	38	S.O.
180	4	37	$\square \varnothing_{0}(\mathrm{IN})$	IRO-	4	37	$\square_{0}(1 \mathrm{~N})$
mL	5	36	dBe/be/n.c.	$\overline{M L}$ C	5	36	N.C.
तला \square	6	35	\square OSC (OUT)	तला	6	35	$\square \mathrm{DBE} / \mathrm{BE}$
SYNC	7	34	$\square \mathrm{R} / \overline{\mathrm{w}}$	SYNC	7	34	\square / \bar{W}
v_{cc}	8	33	$\square \mathrm{DB0}$	$\mathrm{v}_{\mathrm{cc}} \mathrm{C}$	8	33	$\square \mathrm{DBO}$
AB0	9	32	$\square \mathrm{DB1}$	ABO	9	32	$\square \mathrm{DB1}$
AB1	10	31	$\square \mathrm{DB2}$	AB1-	10	31	$\square \mathrm{DB} 2$
${ }^{\text {AB2 }}$	11	30	DB3	AB2	11	30	$\square \mathrm{DB3}$
AB3	12	29	$\square \mathrm{DB4}$	AB3	12	29	$\square \mathrm{DB4}$
AB4	13	28	$\square \mathrm{DB5}$	AB4	13	28	D85
AB5	14	27	$\square \mathrm{DB6}$	A85	14	27	- DB6
AB6	15	26	$\square \mathrm{DB7}$	AB6	15	26	$\square \mathrm{DB7}$
AB7 $\square^{\text {a }}$	16	25	$\square \mathrm{AB} 15$	${ }^{\text {AB7 }}$ -	16	25	$\square \mathrm{AB} 15$
AB8	17	24	$\square A B 14$	AB8	17	24	AB14
AB9	18	23	$\square \mathrm{AB} 13$	AB9	18	23	$\square A B 13$
AB10	19	22	$\square \mathrm{AB} 12$	AB10	19	22	$\square A B 12$
AB11-	20	21	v_{ss}	AB11	20	21	v_{ss}

SY65CX15

SY65C20
CMOS Peripheral
Interface Adapter

PRELIMINARY

Features

- Direct Replacement for the NMOS SY6520
- Single 3 to 6 Volt Power Supply
- Two 8-Bit Bi-Directional I/O Ports with Individual Data Direction Control
- Automatic "Handshake" Control of Data Transfers
- Programmable Interrupts
- Automatic Initialization on Power-Up

Description

The SY65C20 Peripheral Interface Adapter is designed to provide a broad range of peripheral control to microcomputer systems. Control of peripheral devices is
accomplished through two 8-bit I/O ports. Each I/O line is individually programmable as either an input or output.

Pin Configuration
Block Diagram

PRELIMINARY

Features

- Two 8-Bit Bi-Directional I/O Ports
- Two 16-Bit Programmable Timer/Counters

Two Clock Sources: Internal Phase Clock or External Clock for Event Counting

- 8-Bit Serial I/O Port

Three Clock Sources: Internal Phase Clock, Divide Down of Timer 2 or External Clock

- 7 Selectable Interrupt Sources
- Single 3 to 6 Volt Power Supply
- Handshake Capabilities Allow Positive Control of Data Transfers Between a Microprocessor and Peripherals
- Latched or Transparent Port Operation
through two 8-bit bi-directional ports. Each line can be programmed as either an input or an output. Several peripheral I/O lines can be controlled directly from the interval timers for generating programmable frequency square waves or for counting externally generated pulses. To facilitate control of the many powerful features of this chip, an interrupt flag register, an interrupt enable register and a pair of function control registers are provided.

Description

The SY65C22 Versatile Interface Adapter (VIA) is a very flexible I/O control device. In addition, this device contains a pair of very powerful 16-bit interval timers, a serial-to-parallel/parallel-to-serial shift register and input data latching on the peripheral ports. Expanded handshaking capability allows control of bidirectional data transfers between VIAs in multiple processor systems.
Control of peripheral devices is handled primarily

Pin Configuration

Block Diagram

$v_{S S} \sqrt{1}$	40	CA1
PAO \square_{2}	39	$\square \mathrm{CA} 2$
PAI \square_{3}	38	$\square \mathrm{RSO}$
PA2 \square_{4}^{4}	37	$\square \mathrm{RS} 1$
PA3 \square_{5}	36	RS2
PA4 \square^{6}	35	\square RS3
PA5 $\square 7$	34	$\square \mathrm{RES}$
PAE \square^{8}	33	DO
PA7 9	32	$\square \mathrm{D} 1$
PBO 10	31	D2
PB1 11	30	$\square \mathrm{D} 3$
PB2 \square_{12}	29	D4
PB3 $\square 13$	28	$\square \mathrm{D} 5$
PB4 \square_{14}^{14}	27	D6
PB5 \square_{15}	26	\square D7
PB6 16	25	的2
PB7 17	24	$\square \mathrm{CS} 1$
CB1 \square_{18}	23	$\square \mathrm{CS} 2$
CB2 \square_{19}	22	$\square \mathrm{R} / \overline{\mathrm{W}}$
vCC $\square 20$	21] IRO

PRELIMINARY

Features

- 2 8-Bit Fully Programmable Bi-Directional I/O Ports
- A Program Selectable Edge-Sensitive Interrupt Input
- An 8-Bit Timer/Counter with Prescaler Program Controlled Interrupt
- 128×8 Static RAM
- Single Power Supply, 3 to 6 VDC

DESCRIPTION

The SY65C32 is dual port interface primarily designed for use with the 6500,6800 and 68000 microprocessor families. It is comprised of two fully programmable 8 -bit ports for peripheral control. 128 bytes of static

RAM (convenient for zero page) and an interval tımer capable of counting intervals of 1 to 262.144 system clock periods.

Pin Configuration

Block Diagram

vSS^{1}	40	$\square \mathrm{A6}$
${ }^{55} \square^{2}$	39	口 02
A4 \square_{3}	38	CS1
${ }^{4} \square_{4}$	37	$\overline{\mathrm{cs} 2}$
A2 $\square 5$	36	$\overline{\mathrm{RS}}$
A1 \square_{6}	35	R / \bar{W}
A0 $\square 7$	34	$\square \overline{\mathrm{RES}}$
PAOL 8	33	D D
PA1 9	32	马 D1
PA2 \square_{10}	31	$\square \mathrm{D} 2$
PA3 11	30	D3
PA4 12	29	$\square \mathrm{D} 4$
PA5 13	28	D5
PA6 \square^{14}	27] 06
PA7 15	26	D7
${ }^{\text {PB7 }} \square^{16}$	25	$]^{\mathrm{I} Q}$
PB6 17	24	$\square \mathrm{PB} \emptyset$
PB5 18	23] PB 1
PB4 $\square 19$	22	$\square \mathrm{PB} 2$
VCCL 20	21	$]^{\mathrm{PB}} 3$

SY68C40
CMOS Programmable
Timer

PRELIMINARY

Features

- Single System Clock Required (Enable)
- Selectable Prescaler on Timer 3 Capable of 4 MHz for the SY68C40
- Programmable Interrupts ($\overline{\mathrm{RQ}})$ Output to MPU
- Readable Down Counter Indicates Count to Go to Time-Out
- Selectable Gating for Frequency or Pulse-Width Comparison
- RESET Input
- 3 Asynchronous External Clock and Gate/Trigger Inputs Internally Synchronized
- 3 Maskable Outputs
- Single Power Supply, +3 to $+6 V_{D C}$

Description

The SY68C40 is a programmable subsystem component designed to provide variable system time intervals for 6500,6800 and 68000 microprocessor families.
The SY68C40 has three 16-bit binary counters, three corresponding control registers and a status register. These counters are under software control and may be

Pin Configuration

used to cause system interrupts and/or generate output signals.
The SY68C40 may be utilized for such tasks as frequency measurements, event counting, interval measuring and similar tasks. The device may be used for square wave generation, gated delay signals, single pulses of controlled duration, and pulse width modulation as well as system interrupts.

Block Diagram

CMOS Asynchronous Communication Interface Adapter

PRELIMINARY

Features

- On-Chip Baud Rate Generator: 15 Programmable Baud Rates Derived from a Standard 1.8432 MHz External Crystal (50 to 19,200 Baud)
- Programmable Interrupt and Status Register to Simplify Software Design
- Single Power Supply, 3 to $6 V_{D C}$
- Serial Echo Mode
- False Start Bit Detection
- 8-Bit Bi-Directional Data Bus for Direct Communication with the Microprocessor
- External 16x Clock Input for Non-Standard Baud Rates (Up to 125 Kbaud)
- Programmable: Word Lengths; Number of Stop Bits; and Parity Bit Generation and Detection
- Data Set and Modem Control Signals Provided
- Parity: (Odd, Even, None, Mark, Space)
- Full-Duplex or Half Duplex Operation
- 5, 6, 7, 8 and 9 Bit Transmission

Description

The SY65C51 is a CMOS Asynchronous Communications Adapter. Its inherent low power requirements and noise immunity make it an ideal communications device for remote site monitoring installations, military, industrial and harsh environment applications. It

Pin Configuration

was initially intended for interfacing the 6500 and 6800 microprocessors to serial communication data sets and modems, but is easily interfaced to all popular microprocessors. A unique feature is the inclusion of an on-chip programmable baud rate generator, with a crystal being the only external component required.

Features

- Complete microcomputer with on-chip RAM, ROM and I/O
- 128 bytes of on-chip RAM
- 2K bytes of on-chip ROM
- 32 I/O lines
- Two programmable 8-bit counter/timers, each with a 6-bit programmable prescaler
- Full-duplex UART clocked by an internal timer
- 144-byte register file includes:
- 124 general-purpose registers, each of which can be used as an accumulator, index register, storage element, address register or part of the internal stack
- Four I/O port registers
- Sixteen status and control registers
- Register pointer permits shorter, faster instructions to access one of nine working-register groups
- Vectored, prioritized interrupts for 1/O, counter/timers and UART
- Expandable bus interfaces up to 62 K bytes each of external program memory and external data memory
- On-chip oscillator can be driven by a crystal, RC, LC or external clock source
- High-speed instruction execution
- Working-register operations $=1.5 \mu \mathrm{~s}$
- Average instruction execution $=2.2 \mu \mathrm{~s}$
- Longest instruction $=5 \mu \mathrm{~s}$
- Low-power standby mode retains contents of generalpurpose registers
- Single +5 V supply
- All I/O pins TTL compatible

Description

The $\mathbf{Z 8}$ microcomputer introduces a new level of sophistication to single-chip architecture. Compared to earlier single-chip microcomputers, the Z8 offers faster execution; more efficient use of memory; more sophisticated interrupt, input/output and bit-manipulation capabilities; and easier system expansion.

Figure 1. Block Diagram

Under program control, the Z8 can be tailored to the needs of its user. It can be configured as a stand-alone microcomputer with 2 K of internal ROM, a traditional microprocessor that manages up to 124 K of external memory, or a parallelprocessing element in a system with other processors and peripheral controllers linked by the Z-Bus. In all configurations, a large number of pins remain available for $1 / 0$.

Pin Description

$\mathrm{PO}_{0}-\mathrm{PO}_{7}, \mathrm{P1}_{0}-\mathrm{P} 1_{7}, \mathrm{P2}_{0}-\mathrm{P} 2_{7}, \mathrm{P3}_{0}-\mathrm{P} 3_{7}, 1 / O$ Port Lines (Input/Outputs, TTL compatible). These 32 lines are divided into four 8 -bit I/O ports that can be configured under program control for I/O or external memory interface.
$\overline{\mathbf{A S}}$. Address Strobe (output, active Low). Address Strobe is pulsed once at the beginning of each machin cycle. Addresses are output via Ports 0 and 1 for internal and external program fetches and external data memory transfers. The addresses for all external program or data memory transfers are valid at the trailing edge of $\overline{\mathrm{AS}}$. Under program control, $\overline{\mathrm{AS}}$ can be placed in the high-impedance state along with Ports 0 and 1, Data Strobe and Read/Write.
$\overline{\mathbf{D S}}$. Data Strobe (output, active Low). Data Strobe is activated once for each external memory transfer.
$\mathbf{R} / \overline{\mathbf{W}}$. Read/Write (output). R/ $\overline{\mathbf{W}}$ is Low when the $\mathbf{Z 8}$ is writing to external program or data memory.

[^18][^19]
Pin Description (Cont.)

XTAL1, XTAL2. Crystal 1, Crystal 2 (time-base input and output). These pins connect a series-resonant crystal (8 MHz maximum), LC network, RC network or an external single-phase clock (8 MHz maximum) to the on-chip clock oscillator and buffer.
$\overline{\operatorname{RESET}}$. Reset (input, active Low). $\overline{\operatorname{RESET}}$ initializes the Z8. When RESET is deactivated, the $\mathbf{Z 8}$ begins program execution from internal program location $000 \mathrm{C}_{\mathrm{H}}$.

$\mathrm{v}_{\mathrm{cc}} 1$	$\square^{40} \mathrm{P}_{6}$
XTAL2 2	$\square^{39} \mathrm{P}_{3}$
Xtali 3	$\square^{38} \mathrm{P}_{2}$
$\mathrm{P}_{3}{ }^{4}$	$7^{37} \mathrm{P}_{6}$
$\mathrm{P}^{\text {o }} 5$	- $36 \mathrm{P}_{5}$
RESET 6	$]^{35} \mathrm{P}_{4}$
R/W 7	$734 \mathrm{P}_{3}$
¢S 8	7 $33 \mathrm{P}_{2}$
AS 9	7 $32 \mathrm{Pr}{ }_{1}$
$\mathrm{P}_{3} 10$	$\square^{11} \mathrm{P}^{0}$
GND 11 -	$\square 30 \mathrm{P}_{3}$
$\mathrm{P}_{3} \mathrm{I}^{12}$	$\square^{29} \mathrm{P}_{4}$
$\mathrm{PO}_{0} 13$	$\square^{28} \mathrm{P}_{17}$
$\mathrm{PO}^{2} 14$	$7^{27} \mathrm{P}_{16}$
$\mathrm{PO}_{2} 15$	$\mathrm{H}^{26 \mathrm{P}_{1}}$
$\mathrm{PO}_{3} 16$	$7 \mathrm{CP}^{25} \mathrm{P}_{4}$
$\mathrm{PO}_{4} 17$	7 $24 \mathrm{Pr}_{3}$
$\mathrm{PO}_{5} 18$ -	$\square^{23} \mathrm{P}_{1}$
$\mathrm{PO}_{6} 19$	[72 ${ }^{2} \mathrm{P}_{1}$
$\mathrm{PO}_{7} 20$	[] ${ }^{21} \mathrm{P}_{1}$

Figure 2. Pin Assignments

Figure 3. Pin Functions

Architecture

Z8 architecture is characterized by a flexible I/O scheme, an efficient register and address space structure and a number of ancillary features that are heipful in many applications.

Microcomputer applications demand powerful I/O capabilities. The $\mathbf{Z 8}$ fulfills this with 32 pins dedicated to input and output. These lines are grouped into four ports of eight lines each and are configurable under software control to provide timing, status signals, serial or parallel I/O with or without handshake, and an address/data bus for interfacing external memory.
Because the multiplexed address/data bus is merged with the 1/O-oriented ports, the $\mathrm{Z8}$ can assume many different memory and I/O configurations. These configurations range from a self-contained microcomputer to a microprocessor that can address 120 K of external memory.
The $\mathbf{Z 8}$ offers three basic address spaces to support this wide range of configurations: program memory (internal and external), data memory (external) and the register file (internal). The 144-byte random-access register file is composed of 124 general-purpose registers, 4 I/O port registers, and 16 control and status registers.
To unburden the program from coping with real-time problems such as serial data communication and counting/timing, the $Z 8$ offers an on-chip asynchronous receiver/transmitter (UART), and two counter/timers with a large number of user-selectable modes. Hardware support for the UART is minimized because one of the on-chip timers supplies the bit clock with selectable baud rates.

Address Spaces

Program Memory. The 16 -bit program counter addresses 64 K bytes of program memory space. Program memory can be located in two areas: one internal and the other external (Figure 4). The first 2048 bytes consist of on-chip maskprogrammed ROM. At addresses 2048 and greater, the $Z 8$ executes external program memory fetches.

The first 12 bytes of program memory are reserved for the interrupt vectors. These locations contain six 16 -bit vectors that correspond to the six available interrupts.
Data Memory. The $\mathbf{Z 8}$ can address 62 K bytes of external data memory beginning at locations 2048 (Figure 5). External data memory may be included with or separated from the external program memory space. $\overline{\mathrm{DM}}$, an optional 1/O function that can be programmed to appear on pin $\mathrm{P} 3_{4}$, is used to distinguish between data and program memory space.

Register File. The 144-byte register file includes four I/O port registers (RO-R3), 124 general-purpose registers (R4R127) and sixteen control and status registers (R240-R255). These registers are assigned the address locations shown in Figure 6.

Address Spaces (Cont.)

Z8 instructions can access registers directly or indirectly with an 8-bit address field. The Z8 also allows short 4-bit register addressing using the register pointer (one of the control registers). In the 4-bit mode, the register file is divided into nine working-register groups, each occupying sixteen contiguous locations (Figure 7). The register pointer addresses the starting location of the active workingregister group.

Stacks. Either the internal register file or the external data memory can be used for the stack. A 16 -bit stack pointer (R254 and R255) is used for the external stack, which can reside anywhere in data memory between locations 2048 and 65535 . An 8 -bit stack pointer (R255) is used for the internal stack which resides within the 124 generalpurpose registers (R4-R127)

Figure 5. Data Memory Map

Figure 7. The Register Pointer

I/O Ports

The $\mathbf{Z 8}$ has 32 lines dedicated to input and output. These lines are grouped into four ports of eight lines each and are configurable as input, output or address/data. Under software control, the ports can be programmed to provide address outputs, timing, status signals, serial 1/O, and paralled I/O with or without handshake. All ports have active pull-ups and pull-downs compatible with TTL loads.

Port 1

Port 1 can be programmed as a byte 1/O port or as an address/data port for interfacing external memory. When used as an I/O port, Port 1 may be placed under handshake control. In this configuration, Port 3 lines P_{3} and P_{4} are used as the handshake controls RDY1 and DAV1 (Ready and Data Available).
Memory locations greater than 2048 are referenced through Port 1. To interface external memory, Port 1 must be programmed for the multiplexed address/data mode $\left(A D_{0}-A D_{7}\right)$. If more than 256 external locations are required, Port 0 must output the additional lines.
Port 1 can be placed in the high-impedance state along with Port $0, \overline{\mathrm{AS}}, \overline{\mathrm{DS}}$ and $\mathrm{R} / \overline{\mathrm{W}}$, allowing the $\mathrm{Z8}$ to share common resources in multiprocessor and DMA applications. Data transfers can be controlled by assigning P_{3} as a Bus Acknowledge input, and P_{4} as a Bus Request output.

PORT 1

Port 0

Port 0 can be programmed as a nibble 1/O port, or as an address port for interfacing external memory. When used as an $1 / \mathrm{O}$ port, Port 0 may be placed under handshake control. In this configuration, Port 3 lines P_{2} and P_{5} are used as the handshake controls $\overline{\mathrm{DAVO}}$ and RDYO.
For external memory references, Port 0 can provide address bits $\mathrm{A}_{8}-\mathrm{A}_{11}$ (lower nibble) or $\mathrm{A}_{8}-\mathrm{A}_{15}$ (lower and upper nibble) depending on the required address space. If the address range requires 12 bits or less, the upper nibble of Port 0 can be programmed independently as I/O while the lower nibble is used for addressing. When Port 0 nibbles are defined as address bits, they can be set to the high-impedance state along with Port 1 and the control signals $\overline{\mathrm{AS}}, \overline{\mathrm{DS}}$ and $\mathrm{R} / \overline{\mathrm{W}}$.

PORT 0

Port 2

Each bit of Port 2 can be programmed independently as an input or an output, and is always available for I/O operations. In addition, Port 2 can be configured to provide open-drain outputs.

Like Ports 0 and 1, Port 2 may also be placed under handshake control. In this configuration, Port 3 lines $\mathrm{P} 3_{1}$ and $\mathrm{P} 3_{6}$ are used as the handshake controls lines $\overline{\mathrm{DAV} 2}$ and RDY2. The handshake signal assignment for Port 3 lines P_{1} and P_{6} is dictated by the direction (input or output) assigned to bit 7 of Port 2.

PORT 2

Port 3

Port 3 lines can be configured as I/O or control lines. In either case, the direction of the eight lines is fixed as four input $\left(P 3_{0}-P 3_{3}\right)$ and four output ($\mathrm{P3}_{4}-\mathrm{P} 3_{7}$). For serial I/O, lines $\mathrm{P} 3_{0}$ and $\mathrm{P3}_{7}$ are programmed as serial in and serial out respectively.
Port 3 can also provide the following control functions: handshake for Ports 0,1 and $2(\overline{\mathrm{DAV}}$ and RDY); four external interrupt request signals (IRQO-IRO3); timer input and output signals (T_{IN} and $\mathrm{T}_{\mathrm{OUT}}$) and Data Memory Select ($\overline{\mathrm{DM}}$).

PORT 3

Serial Input/Output

Port 3 lines P_{0} and $\mathrm{P} 3_{7}$ can be programmed as serial I/O lines for full-duplex serial asynchronous receiver/transmitter operation. The bit rate is controlled by counter/timer 0 , with a maximum rate of 62.5 kilobits per second.
The $\mathbf{Z 8}$ automatically adds a start bit and two stop bits to transmitted data (Figure 8). The Z8 can also provide odd parity. Eight data bits are always transmitted, regardless of parity
selection. If parity is enabled, the eighth bit is the odd parity bit. An interrupt request (IRO4) is generated on all transmitted characters.

Received data must have a start bit, eight data bits and at least one stop bit. If parity is on, bit 7 of the received data is replaced by a parity error flag. Received characters generate the IRO3 interrupt request.

TRANSMITTED DATA - NO PARITY

TRANSMITTED DATA - WITH PARITY

RECEIVED DATA - NO PARITY

RECEIVED DATA - WITH PARITY

Figure 8. Serial Data Formats.

Counter/Timers

The Z8 contains two 8-bit programmable counter/timers (T_{0} and T_{1}), each driven by its own 6 -bit programmable prescaler. The T_{1} prescaler can be driven by internal or external clock sources; however, the T_{0} prescaler is driven by the internal clock only.
The 6-bit prescalers can divide the input frequency of the clock source by any number from 1 to 64 . Each prescaler drives its counter, which decrements the value (1 to 256) that has been loaded into the counter. When the counter reaches the end of count, a timer interrupt request - IRQ4 (T_{0}) or IRO5 (T_{1}) - is generated.
The counters can be started, stopped, restarted to continue, or restarted from the initial value. The counters can also be programmed to stop upon reaching zero (single-pass mode),
or to automatically reload the initial value and continue counting (modulo-n continuous mode). The counters, but not the prescalers, can be read any time without disturbing their value or count mode.
The clock source for T_{1} is user-definable and can be the internal microprocessor clock (4 MHz maximum) divided by four, or an external signal input via Port 3. The Timer Mode register configures the external timer input as an external clock (1 MHz maximum), a trigger input that can be retriggerable or non-retriggerable, or as a gate input for the internal clock. The counter/timers can be programmably cascaded by connecting the T_{0} output to the input of T_{1}. Port 3 line P_{6} also serves as a timer output ($\mathrm{T}_{\text {OUT }}$) through which T_{0}, T_{1} or the internal clock can be output.

Interrupts

The $\mathrm{Z8}$ allows six different interrupts from eight sources: the four Port 3 lines $\mathrm{P}_{\mathrm{O}}-\mathrm{P} 3_{3}$, Serial In, Serial Out, and the two counter/timers. These interrupts are both maskable and prioritized. The Interrupt Mask Register globally or individually enables or disables the six interrupt requests. When more than one interrupt is pending, priorities are resolved by a programmable priority encoder that is controlled by the Interrupt Priority Register.

All Z8 interrupts are vectored. When an interrupt request is granted, the $\mathbf{Z 8}$ enters an interrupt machine cycle that disables all subsequent interrupts, saves the program counter and status flags, and branches to the program memory vector location reserved for that interrupt. This memory location and the next byte contain the 16 -bit address of the interrupt service routine for that particular interrupt request.
The $\mathbf{Z 8}$ also supports polled systems. To accommodate a polled structure, any or all of the interrupt inputs can be masked and the Interrupt Request Register polled to determine which of the interrupt requests needs service.

Clock

The on-chip oscillator has a high-gain, series-resonant amplifier for connection to a crystal or to any suitable external clock source (XTAL1 $=$ Input, XTAL2 $=$ Output).

The crystal source is connected across XTAL1 and XTAL2, using the recommended capacitors ($C_{1}=15 \mathrm{pF}$) from each pin to ground. The specifications for the crystal are as follows:

- AT cut, series resonant
- Fundamental type, 8 MHz maximum
- Series resistance $R_{S} \leq 100 \Omega$

Power Down Standby Option

The low-power standby mode allows power to be removed without losing the contents of the 124 general-purpose registers. This mode is available to the user as a bonding option whereby pin 2 (normally XTAL2) is replaced by the $V_{M M}$ (standby) power supply input. This necessitates the use of an external clock generator (input $=$ XTAL1) rather than a crystal source.

The removal of power, whether intended or due to power failure, must be preceded by a software routine that stores the appropriate status into the register file. Figure 9 shows the recommended circuit for a battery back-up supply system.

Figure 9. Recommended Driver Circuit for Power Down Operation.

Z8602 Development Device

The 64-pin development version of the 40-pin maskprogrammed $Z 8$ allows the user to prototype the system in hardware with an actual $Z 8$ device, and develop the code that is eventually mask-programmed into the on-chip ROM of the Z8601.

The Z8602 is identical to the Z8601 with the following exceptions:

- The internal ROM has been removed.
- The ROM address lines and data lines are buffered and brought out to external pins.
- Control lines for the new memory have been added.

Z8602 Pin Description

The functions of the Z8602 I/O lines, $\overline{\mathrm{AS}}, \overline{\mathrm{DS}}, \mathrm{R} / \overline{\mathrm{W}}, \mathrm{XTAL1}$, XTAL2 and $\overline{\text { RESET }}$ are identical to those of their $Z 8601$ counterparts. The functions of the remaining 24 pins are as follows:
$\mathbf{A}_{\mathbf{0}}-\mathbf{A}_{11}$. Program Memory Address (outputs). $\mathrm{A}_{0}-\mathrm{A}_{11}$ access the first 2 K bytes of program memory.
$D_{0}-D_{7}$. Program Data (inputs). Program data from the first $4 K$ bytes of program memory is input through pins $D_{0}-D_{7}$.
$\overline{\text { MDS }}$. Program Memory Data Strobe (output, active Low). $\overline{M D S}$ is Low during an instruction fetch cycle when the first 2 K bytes of program memory are being accessed. MDS remains High during other program memory read cycles.
$\overline{\text { SYNC. Instruction Sync (output, active Low). This strobe out- }}$ put is forced Low during the internal clock period preceding the beginning of an opcode fetch.
SCLK. System Clock (output). SCLK is the internal clock output through a buffer. The clock rate is equal to one-half the crystal frequency.
IACK. Interrupt Acknowledge (output, active High). IACK is driven High in response to an interrupt during the interrupt machine cycle.

P3 ${ }_{6}$	64	V_{cc}
$\mathrm{P} 3_{1} \square_{2}$	63	XTAL2
P 27	62	XTAL1
$P 2_{6} \square_{4}$	61	P_{3}
$\mathrm{P2}_{5}$	60	P_{0}
$\mathrm{P2}_{4} \mathrm{P}^{4}$	59	RESET
$\mathrm{P}_{3}{ }^{-}$	58	R/W
$\mathrm{P2}_{2} \square_{8}$	57	$\square \overline{\mathrm{D} S}$
$\mathrm{P}_{2}{ }_{1}$	56	ĀS
$\mathrm{P2}_{0} \square 10$	55	P_{3}
$\mathrm{P}_{3}-11$	54	${ }^{\text {P3 }}$
$\mathrm{P}_{3} \square_{12}$	53	$\square \mathrm{PO}_{0}$
P1, 13	52	PO_{1}
$P 1_{6} \quad 14$	51	$\square \mathrm{PO}_{2}$
$\mathrm{P1}_{5} \mathrm{Cl}^{15}$	50	PO_{3}
$\mathrm{P} 14 . \square 16$	49	PO_{4}
$\mathrm{P1}_{3}$-17	48	GND
$\mathrm{P1}_{2} \square_{18}$	47	P PO_{5}
P1, 19	46	PO_{6}
$P 1_{0} \square^{20}$	45	PO_{7}
$\mathrm{D}_{7}-21$	44	IIACK
$\mathrm{D}_{6} \square 22$	43	$\overline{\text { SYNC }}$
$\mathrm{D}_{5}-23$	42	SCLK
$\mathrm{D}_{4} \square 24$	49	MDS
A_{0} - 25	40	D_{0}
$A_{1} \square 26$	39	D_{1}
$\mathrm{A}_{2}-27$	38	D_{2}
$\mathrm{A}_{3} \square 28$	37	D_{3}
$\mathrm{A}_{4}-29$	36	(1) A_{11}
$A_{5} \square 30$	35	A_{10}
$\mathrm{A}_{6} \mathrm{H}^{31}$	34	A_{9}
$\mathrm{A}_{7} \square 32$	33	A_{8}

Figure 10. 28602 Pin Assignments.

Addressing Modes

The following notation is used to describe the addressing modes and instruction operations as shown in the instruction summary.

IRR Indirect register pair or indirect working-register pair address

Irr Indirect working-register pair only
X Indexed address
DA Direct address
RA Relative address
IM Immediate
R Register or working-register address
r Working-register address only
IR Indirect-register or indirect working-register address
Ir Indirect working-register address only
RR Register pair or working register pair address

Symbols

dst Destination location or contents
src Source location or contents
cc \quad Condition code (see list)
@ Indirect address prefix
SP \quad Stack pointer (control registers 254-255)
PC Program counter
FLAGS Flag register (control register 252)
RP Register pointer (control register 253)
IMR Interrupt mask register (control register 251)

Assignment of a value is indicated by the symbol " \leftarrow ". For example,

$$
d s t-d s t+s r c
$$

indicates that the source data is added to the destination data and the result is stored in the destination location. The notation "addr(n)" is used to refer to bit " n " of a given location. For example,
dst (7)
refers to bit 7 or the destination operand.

Flags

Control Register R252 contains the following six flags:
C Carry flag
V Overflow flag
Z Zero flag
D Decimal-adjust flag
S Sign flag
H Half-carry flag

Affected flags are indicated by:

0 Cleared to zero
1 Set to one

* Set or cleared according to operation
- Unaffected

X Undefined

Condition Codes

Value	Codes Mnemonic	Meaning	Flags Set
1000		Always true	---
0111	C	Carry	$C=1$
1111	NC	No Carry	$\mathrm{C}=0$
0110	Z	Zero	$\mathrm{Z}=1$
1110	NZ	Not zero	$\mathrm{Z}=0$
1101	PL	Plus	$\mathrm{S}=0$
0101	MI	Minus	$\mathrm{S}=1$
0100	OV	Overflow	$V=1$
1100	NOV	No overflow	$V=0$
0110	EQ	Equal	$\mathrm{Z}=1$
1110	NE	Not equal	$\mathrm{Z}=0$
1001	GE	Greater than or equal	$(S X O R V)=0$
0001	LT	Less than	(S XOR V) $=1$
1010	GT	Greater than	$[Z O R(S X O R V)]=0$
0010	LE	Less than or equal	$[Z O R(S X O R V)]=1$
1111	UGE	Unsigned greater than or equal	$\mathrm{C}=0$
0111	ULT	Unsigned less than	$C=1$
1011	UGT	Unsigned greater than	$(\mathrm{C}=0$ and $\mathrm{Z}=0)=1$
0011 0000	ULE	Unsigned less than or equal Never true	$(C \text { or } Z)=1$

Instruction Formats

dst	OPC

ONE-BYTE INSTRUCTIONS

TWO-BYTE INSTRUCTIONS

THREE-BYTE INSTRUCTIONS

Figure 11. Instruction Formats.

*2-byte instruchon; fetch cycle appears as a 3 -byte instruction

Instruction
Summary

Instruction and Operation	$\underbrace{\text { dst }}_{\text {Addr }}$	Mode	Opcode Byte (Hex)	$\frac{\text { Flags Affected }}{\text { CZSVD }}$
$\begin{aligned} & \text { LDEI dst, src } \\ & \text { dst - src } \\ & \mathrm{r}-\mathrm{r}+1 ; \mathrm{rr}-\mathrm{rr} \end{aligned}$	$\begin{aligned} & \text { Ir } \\ & \mathrm{Irr}_{1} \end{aligned}$	$\begin{gathered} \mathrm{Irr} \\ \mathrm{Ir} \end{gathered}$	$\begin{aligned} & 83 \\ & 93 \end{aligned}$	- - -
NOP			FF	- - - -
OR dst,src dst - dst OR src			4 L :	- * * 0 - -
$\begin{aligned} & \text { POP dst } \\ & \text { dst }-@ S P \\ & S P-S P+1 \end{aligned}$	$\begin{gathered} \mathrm{R} \\ \mathrm{IR} \end{gathered}$		$\begin{aligned} & 50 \\ & 51 \end{aligned}$	- - - -
$\begin{aligned} & \text { PUSH src } \\ & S P-S P-1 ; @ S P \end{aligned}$		$\begin{gathered} \mathrm{R} \\ \mathrm{IR} \end{gathered}$	$\begin{aligned} & 70 \\ & 71 \end{aligned}$	- - -
$\begin{aligned} & \text { RCF } \\ & \mathrm{C}-0 \end{aligned}$			CF	0-. . -
$\begin{aligned} & \text { RET } \\ & P C-@ S P ; S P- \end{aligned}$	$5 P+2$		AF	- - - -
RL dst 回			$\begin{aligned} & 90 \\ & 91 \end{aligned}$	* * * * - -
RLC dst			$\begin{aligned} & 10 \\ & 11 \end{aligned}$	* * * * -
RR dst			$\begin{aligned} & \mathrm{EO} \\ & \mathrm{~F} \end{aligned}$	* * * * -
RRC dst 4			$\begin{aligned} & \mathrm{C} 0 \\ & \mathrm{Cl} \end{aligned}$	* * * * -
SBC dst, src dst - dst - src - C	$(\mathbb{N}$		3 L	* * * * 1 *
$\begin{aligned} & \mathbf{S C F} \\ & \mathrm{C}-1 \end{aligned}$			DF	1 . . -
SRA dst			$\begin{aligned} & \text { D0 } \\ & \text { D1 } \end{aligned}$	* * * 0 - -
$\begin{aligned} & \text { SRP src } \\ & \text { RP }- \text { src } \end{aligned}$		IM	31	- - - -
SUB dst,src dst - dst - src	(No		2 C	* * * * 1 *
SWAP dst			$\begin{aligned} & \text { F0 } \\ & \text { F1 } \end{aligned}$	X * * X - -
TCM dst,src (NOT dst) AND src			$6 \square$	- * * 0 - -
TM dst,src dst AND src			7口	- * * 0 - -
XOR dst,src dst - dst XOR src		1)	$\mathrm{B} \square$	- * * 0 - -

Note 1

These instructions have an identical set of addressing modes, which are encoded for brevity in this table. The higher opcode nibble is found in the instruction set table above. The lower nibble is expressed symbolically by a in the table above, and its value is found in the following table to the right of the applicable addressing mode pair.
For example, the opcode of an ADC instruction using the addressing modes r (destination) and Ir (source) is 13.

Addr Mode		Lower Opcode Nibble
dst	src	
r	r	(2)
r	Ir	3
R	R	4
R	IR	5
R	IM	6
IR	IM	[7]

Z8 Control Registers

R241 TMR TIMER MODE REGISTER
(F1 $_{H}$; READ/WRITE)

 $0=$ NO FUNCTION $1=\operatorname{LOAD} T_{0}$
$0=$ DISABLE T COUN $1=$ ENABLET,COUNT $0=$ NO FUNCTION $1=\operatorname{LOAD} \mathrm{T}_{1}$
位 $=1$
EXTERNAL CLOCK INPUT ${ }^{\text {TiN }}$ MODES GATE INPUT $=01$
TRIGGER INPUT $=10$ (NONRETRIGGERABLEI)

RETRIGGERABUT $=1$

R244 TO
COUNTER/TIMER O REGISTER (FA_{H}; READ/WRITE)
$\begin{array}{llllllll}\mathrm{D}_{3} & \mathrm{D}_{6} & \mathrm{D}_{5} & \mathrm{D}_{4} & \mathrm{D}_{3} & \mathrm{D}_{2} & \mathrm{D}_{1} & \mathrm{D}_{0}\end{array}$

TUINITIAL VALUE (WHEN WRITTEN) (RANGE 1256 DECIMAL 0100 HEX)
TO CURRENT VALUE (WHEN READ)

PRESCALER O REGISTER
(F5 $_{H}$; WRITE ONLY)

| D_{1} | D_{6} | D_{5} | D_{4} | D_{3} | D_{2} | D_{1} | D_{0} |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

COUNTER TIMER 1 REGISTER

T, INITIAL VALUE (WHEN WRITTEN)
(RANGE 1256 DECIMAL O1 OO HEX) T, CURRENT VALUE (WHEN READ)

R246 P2M
PORT 2 MODE REGISTER
(F6 $_{H}$; WRITE ONLY)

2_{0} P2, $1 /$ DEFINITION ODEFINES BIT AS OUTPUT
1 DEFINES BIT AS INPUT

(F3 $_{H}$; WRITE ONLY)

COUNT MODE
$0=T$, SINGLE.PASS
$1=T$, MODULO
$1=\mathrm{T}$, MODULO $\cdot \mathrm{N}$
CLOCK SOURCE
0 T, EXTERNAL TIMING INPUT (TIN) MODE
1 T, INTERNAL
PRESCALER MODULO
RANGE: 1-64 DECIMA
01-00 HEX)

R247 P3M PORT 3 MODE REGISTER
(F7 $_{H}$; WRITE ONLY)

Z8 Control Registers

R249 IPR
INTERRUPT PRIORITY REGISTER
($\mathrm{F9}_{\mathrm{H}}$; WRITE ONLY)

RQ1, IRQ4 PRIORITY (GROUP C)

R250 IRQ INTERRUPT REQUEST REGISTER (FA ${ }_{H} ;$ READ/WRITE)

Reserved
\qquad
 IRQ1 $=\mathrm{P}_{3}$ INPUT
IRO3 $=$ P3 IN INPUT, SERIAL INPUT IRQ44 $=T_{0}$. SERIAL OUTPUT
IRQ5 $=T_{1}$

R251 IMR
INTERRUPT MASK REGISTER
(FB $_{H} ;$ READ/WRITE)

D_{1}	D_{6}	D_{5}	D_{4}	D_{3}	D_{2}	D_{1}	D_{0}

R253 RP REGISTER POINTER (FD ${ }_{H}$; READ/WRITE)

REGISTER POINTE

Absolute Maximum Ratings*

Voltages on All Inputs and Outputs
with Respect to Ground $. \ldots$.
Operating Ambient Temperature $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Comment*

Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only; operation of the device at any condition above those indicated in the operational sections of these specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Standard Test Conditions

The characteristics below apply for the following standard test conditions, unless otherwise noted. All voltages are referenced to GND. Positive current flows into the reference pin. Standard conditions are as follows:
$-+4.75 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.25 \mathrm{~V}$
$-\mathrm{GND}=\mathrm{OV}$
$-0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$

DC Characteristics

Symbol	Parameter	Min.	Max.	Unit	Condition	Notes
V_{CH}	Clock Input High Voltage	3.8	$\mathrm{~V}_{\mathrm{CC}}$	V	Driven by Ext- ernal Clock Gen- erator	1
$\mathrm{~V}_{\mathrm{CL}}$	Clock Input Low Voltage	-0.3	0.8	V	Driven by Ext- ernal Clock Gen- erator	
V_{IH}	Input High Voltage	2.0	$\mathrm{~V}_{\mathrm{CC}}$	V		
V_{IL}	Input Low Voltage	-0.3	0.8	V		
$\mathrm{~V}_{\mathrm{RH}}$	Reset Input High Voltage	3.8	$\mathrm{~V}_{\mathrm{CC}}$	V		
V_{RL}	Reset Input Low Voltage	-0.3	0.8	V		
$\mathrm{~V}_{\mathrm{OH}}$	Output High Voltage	2.4		V	$\mathrm{I}_{\mathrm{OH}}=250 \mu \mathrm{~A}$	1
$\mathrm{~V}_{\mathrm{OL}}$	Output Low Voltage		0.4	V	$\mathrm{I}_{\mathrm{OL}}=+2.0 \mathrm{~mA}$	1
I_{IL}	Input Leakage		± 10	$\mu \mathrm{~A}$	$\mathrm{OV} \leq \mathrm{V}_{\mathrm{IN}} \leq+5.25 \mathrm{~V}$	
I_{OL}	Output Leakage		± 10	$\mu \mathrm{~A}$	$\mathrm{OV} \leq \mathrm{V}_{\mathrm{IN}} \leq+5.25 \mathrm{~V}$	
I_{IR}	Reset Input Current		-50	$\mu \mathrm{~A}$	$\mathrm{V}_{\mathrm{CC}}=+5.25 \mathrm{~V}$, $\mathrm{V}_{\mathrm{RL}}=0 \mathrm{~V}$	
I_{CC}	V_{CC} Supply Current		180	mA	$\mathrm{~V}_{\mathrm{CC}}=5.25 \mathrm{~V}$	
I_{MM}	V_{MM} Supply Current		10	mA	Power Down Mode	
V_{MM}	Backup Supply Voltage		V			

1. For $\mathrm{A}_{0}-\mathrm{A}_{11}, \overline{\mathrm{MDS}}, \overline{\mathrm{SYNC}}, \mathrm{SCLK}$ and IACK on the $Z 8602$ version, $\mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A}$ and $\mathrm{I}_{\mathrm{OL}}=1.0 \mathrm{~mA}$.

Test Load Circuits

TEST LOAD 1

TEST LOAD 2

EXTERNAL CLOCK INTERFACE CIRCUIT

External I/O or Memory Read and Write Cycle

Symbol	Parameter	8601/02		8601A/02A		Units	Notes
		Min.	Max.	Min.	Max.		
TdA(AS)	Address Valid to $\overline{\text { AS }} \uparrow$ Delay	50		35		ns	1,2
TdAS(A)	$\overline{\mathrm{AS}}$ t to Address Float Delay	60		45		ns	1,2
TdAS(DR)	$\overline{\mathrm{AS}} \dagger$ to Read Data Required Valid		320		220	ns	1,2,3,4
TwAS	$\overline{\overline{A S}}$ Low Width	80		55		ns	1,2
TdA(DI)	Address Float to $\overline{\mathrm{DS}}$!	0		0		ns	1
TwDS	$\overline{\text { DS }}$ (Read) Low Width	250		185		ns	1,2,3,4
TwDS	$\overline{\mathrm{DS}}$ (Write) Low Width	160		110		ns	1,2,3,4
TdDS(DI)	$\overline{\mathrm{DS}}$ t to Read Data Required Valid		200		130	ns	1,2,3,4
ThDS(DI)	Read Data to $\overline{\mathrm{DS}} \dagger$ Hold Time	0		0		ns	1
TdDS(A)	$\overline{\mathrm{DS}} \uparrow$ to Address Active Delay	70		45		ns	1,2,3
TdDS(AS)	$\overline{\mathrm{DS}}$ t to $\overline{\mathrm{AS}}$! Delay	70		55		ns	1,2,3
TdR/W(AS)	$\mathrm{R} / \overline{\mathrm{W}}$ Valid to $\overline{\mathrm{AS}}$! Delay	50		30		ns	1,2,3
TdDS(R/W)	$\overline{\mathrm{DS}}$ t to R/ \bar{W} Not Valid	60		35		ns	1,2,3
TdDO(DS)	Write Data Valid to $\overline{\mathrm{DS}}$ (Write) । Delay	50		35		ns	1,2,3
TdDS(DO)	$\overline{\overline{\mathrm{DS}} \text { t to Write Data Not Valid Delay }}$	70		45		ns	1,2,3
TdA(DR)	Address Valid to Read Data Required Valid		410		255	ns	1,2,3,4
TdAS(DS)	$\overline{\mathrm{AS}}$ to $\overline{\mathrm{DS}}$! Delay	80			55	ns	

Notes:

1. Test Load 1
2. Timing numbers given are for minimum TpC .
3. Also see Clock Cycle Time Dependent Characteristics Table
4. When using extended memory timing add 2 TpC
5. All timing references use 2.0 V for a logic " 1 " and 0.8 V for a logic " 0 ".

Handshake Timing

Symbol	Parameter	$\begin{gathered} \hline 28601 / \\ 02 \\ \hline \end{gathered}$		$\begin{gathered} \text { Z8601A/ } \\ 02 \mathrm{~A} \\ \hline \end{gathered}$		Units	Notes
		Min.	Max.	Min.	Max.		
TsDİ(DAV)	Data In Set Up Time	0		0		ns	
ThDI(DAV)	Data In Hold Time	230		160		ns	
TwDAV	Data Available Width	175		120		ns	
TdDAVIf(RDY)	\AV\ Input to RDY। Delay		175		120	ns	1,2
TdDAVOf(RDY)	$\overline{\text { DAV }}$ Output to RDY। Delay	0		0		ns	1,3
TdDAVIr(RDY)	$\overline{\text { DAV }}$ I Input to RDY ${ }^{\text {D }}$ Delay		175		120	ns	1,2
TdDAVOr(RDY)	DAV' Output to RDY! Delay	0		0		ns	1,3
TdDO(DAV)	Data Out to $\overline{\mathrm{DAV}}$! Delay	50		30		ns	1
TdRDY(DAV)	RDY। Input to $\overline{\mathrm{DAV}}$! Delay	0	200	0	140	ns	1

Notes:

. Test Load 1.
2. Input handshake.
. Output handshake
4. All timing references use 2.0 V for a logic " 1 " and 0.8 V for a logic " 0 ".

Memory Port Timing Z8602, Z8603

Symbol	Parameter	Z8602		Z8602A		Units	Notes
		Min.	Max.	Min.	Max.		
TdA(DI)	Address Valid to Data Input Delay		460		320	ns	1,2
ThDI(A)	Data In Hold Time	0		0		ns	1

Notes:

1. Test Load 2.
2. This is a clock cycle dependent parameter. For clock frequencies other than maximum frequency use the following formula: $Z 8602$ and $Z 8603=5 \mathrm{TpC}-165$.
$Z 8602 \mathrm{~A}$ and $Z 8603 \mathrm{~A}=5 \mathrm{TpC}-95$.

Ordering Information

Part Number	Temperature Range	Number of Pins	Package	Description
Z8601 PS	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	40	Plastic	8-Bit Single-Chip Microcomputer Circuit
Z8601 CS	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	40	Ceramic	8-Bit Single Chip Microcomputer Circuit Z8602 OS $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

Package Availability

40 Pin Ceramic 40 Pin Cerdip 40 Pin Plastic

Microcomputer Protopak/-Emulator

Features

- Prototyping version of Synertek Z8601
- Piggyback 2716 EPROM program memory.
- Pin-compatible with Z8601 masked-ROM for hardware debugging or low-volume production.
- Complete microcomputer on-chip

128 bytes of on-chip data RAM

32 I/O lines

Socket for $27164 \mathrm{~K} \times 8$ EPROM

- Two 14-bit counter/timers.
- Duplex UART and baud-rate generator.

Description

The Synertek Z8603 Microcomputer Protopak Emulator is a ROM-less version of the Synertek 2K Z8 single-chip microcomputer. A removable 2716 EPROM plugged into the 24-pin

Block Diagram

C

- Vectored priority interrupt system.
- Up to 62 K of external data memory.
- Up to 62 K of external program memory.
- On-chip cyrstal, RC, or LC oscillator.
- High-speed instruction execution.

Working-register operations $=1.5 \mu \mathrm{~s}$
Average instruction $=2.2 \mu \mathrm{~s}$

- Single +5 V supply voltage.
- All inputs/outputs TTL compatible.
"piggy-back" socket atop the Z8603 allows pin-compatible emulation of the $\mathbf{Z 8 6 0 1}$ masked-ROM version.

Package Drawing

[^20]28603

Ordering Information

Part Number	Temperature Range	Number of Pins	Package	Description
Z 8603	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	40	Ceramic	8-Bit Microcomputer Protopack Emulator

Features

- Complete microcomputer with on-chip RAM, ROM and 1/O
- 128 bytes of on-chip RAM
-4 K bytes of on-chip ROM
- $32 \mathrm{I} / \mathrm{O}$ lines
- Two programmable 8-bit counter/timers, each with a 6-bit programmable prescaler
- Full-duplex UART clocked by an internal timer
- 144-byte register file includes:
- 124 general-purpose registers, each of which can be used as an accumulator, index register, storage element, address register or part of the internal stack
- Four I/O port registers
- Sixteen status and control registers
- Register pointer permits shorter, faster instructions to access one of nine working-register groups
- Vectored, prioritized interrupts for I/O, counter/timers and UART
- Expandable bus interfaces up to 60K bytes each of external program memory and external data memory
- On-chip oscillator can be driven by a crystal, RC, LC or external clock source
- High-speed instruction execution
- Working-register operations $=1.5 \mu \mathrm{~s}$
- Average instruction execution $=2.2 \mu \mathrm{~s}$
- Longest instruction $=5 \mu \mathrm{~s}$
- Low-power standby mode retains contents of generalpurpose registers
- Single +5 V supply
- All I/O pins TTL compatible

Description

The Z8 microcomputer introduces a new level of sophistication to single-chip architecture. Compared to earlier single-chip microcomputers, the $\mathrm{Z8}$ offers faster execution; more efficient use of memory; more sophisticated interrupt, input/output and bit-manipulation capabilities; and easier system expansion.

Figure 1. Block Diagram

Under program control, the Z8 can be tailored to the needs of its user. It can be configured as a stand-alone microcomputer with 4 K of internal ROM, a traditional microprocessor that manages up to 120 K of external memory, or a parallelprocessing element in a system with other processors and peripheral controllers linked by the Z-Bus. In all configurations, a large number of pins remain available for $1 / 0$.

Pin Description

$\mathrm{PO}_{0}-\mathrm{PO}_{7}, \mathrm{P1}_{0}-\mathrm{P} 1_{7}, \mathrm{P2}_{0}-\mathrm{P2}_{7}, \mathrm{P3}_{0}-\mathrm{P} 3_{7}, 1 / O$ Port Lines (Input/Outputs, TTL compatible). These 32 lines are divided into four 8 -bit $1 / \mathrm{O}$ ports that can be configured under program control for 1/O or external memory interface.
$\overline{\text { AS }}$. Address Strobe (output, active Low). Address Strobe is pulsed once at the beginning of each machine cycle. Addresses are output via Ports 0 and 1 for internal and external program fetches and external data memory transfers. The addresses for all external program or data memory transfers are valid th the trailing edge of $\overline{\mathrm{AS}}$. Under program control, $\overline{\mathrm{AS}}$ can be placed in the high-impedance state along with Ports 0 and 1, Data Strobe and Read/Write.
$\overline{\mathbf{D S}}$. Data Strobe (output, active Low). Data Strobe is activated once for each external memory transfer.
$\mathbf{R} / \overline{\mathbf{W}}$. Read/Write (output). R/W is Low when the Z8 is writing to external program or data memory.

[^21]
Pin Description (Cont.)

XTAL1, XTAL2. Crystal 1, Crystal 2 (time-base input and output). These pins connect a series-resonant crystal (8 MHz maximum), LC network, RC network or an external single-phase clock (8 MHz maximum) to the on-chip clock oscillator and buffer.
 When $\overline{R E S E T}$ is deactivated, the $Z 8$ begins program execution from internal program location $000 C_{H}$.

$\mathrm{v}_{\text {cc }} 1$	-	$\mathrm{Cl}^{40} \mathrm{P}_{6}$
XtaL2 2		$]^{39} \mathrm{P}_{3}{ }_{1}$
XTAL1 3		$7{ }^{38} \mathrm{P}_{7}$
$\mathrm{P}_{3}{ }^{4}$		[${ }^{37} \mathrm{P}_{2}{ }_{6}$
$\mathrm{P}_{3} \mathrm{~S}^{5}$		[$36 \mathrm{P}_{5}$
RESET 6		$7{ }^{35} \mathrm{P}_{4}$
R/W 7		[$34 \mathrm{P}_{3}$
$\overline{\text { DS }} 8$		- $33 \mathrm{P}_{2}$
$\overline{\text { AS }} 9$		$\square 32 \mathrm{P} 2_{1}$
$\mathrm{P}_{5} 10$		$\square 31 \mathrm{P}_{2}$
GND 11		(7) $30 \mathrm{P}_{3}$
$\mathrm{P}_{2}{ }_{2} 12$		- $29 \mathrm{P3}_{4}$
$\mathrm{PO}_{0} 13$		$7^{28} \mathrm{P1}_{7}$
$\mathrm{PO}_{1} 14$		$\square^{27} \mathrm{Pr}_{16}$
$\mathrm{PO}_{2} 15$		$7{ }^{26} \mathrm{Pl}_{5}$
$\mathrm{PO}_{3} 16$		$\square^{7} 25 \mathrm{Pr}_{4}$
$\mathrm{PO}_{4} 17$		$\square 24 \mathrm{Pr}_{3}$
$\mathrm{PO}_{5} 18$		[$23 \mathrm{Pl}_{2}$
$\mathrm{PO}_{6} 19$		- ${ }^{22} \mathrm{P}_{1} \mathrm{P}_{1}$
$\mathrm{PO}_{7} 20$		[$21 \mathrm{Pr}_{0}$

Figure 2. Pin Assignments

Figure 3. Pin Functions

Architecture

Z8 architecture is characterized by a flexible I/O scheme, an efficient register and address space structure and a number of ancillary features that are helpful in many applications.

Microcomputer applications demand powerful I/O capabilities. The $\mathbf{Z 8}$ fulfills this with 32 pins dedicated to input and output. These lines are grouped into four ports of eight lines each and are configurable under software control to provide timing, status signals, serial or parallel I/O with or without handshake, and an address/data bus for interfacing external memory.
Because the multiplexed address/data bus is merged with the I/O-oriented ports, the $\mathrm{Z8}$ can assume many different memory and I/O configurations. These configurations range from a self-contained microcomputer to a microprocessor that can address 120 K of external memory.
The $Z 8$ offers three basic address spaces to support this wide range of configurations: program memory (internal and external), data memory (external) and the register file (internal). The 144-byte random-access register file is composed of 124 general-purpose registers, 4 I/O port registers, and 16 control and status registers.
To unburden the program from coping with real-time problems such as serial data communication and counting/timing, the $Z 8$ offers an on-chip asynchronous receiver/transmitter (UART), and two counter/timers with a large number of user-selectable modes. Hardware support for the UART is minimized because one of the on-chip timers supplies the bit clock with selectable baud rates.

Address Spaces

Program Memory. The 16-bit program counter addresses 64 K bytes of program memory space. Program memory can be located in two areas: one internal and the other external (Figure 4). The first 4096 bytes consist of on-chip maskprogrammed ROM. At addresses 4096 and greater, the $Z 8$ executes external program memory fetches.

The first 12 bytes of program memory are reserved for the interrupt vectors. These locations contain six 16 -bit vectors that correspond to the six available interrupts.
Data Memory. The 4 K Z8 can address 60 K bytes of external data memory beginning at locations 4096 (Figure 5). External data memory may be included with or separated from the external program memory space. $\overline{\mathrm{DM}}$, an optional 1/O function that can be programmed to appear on pin P_{4}, is used to distinguish between data and program memory space.

Register File. The 144-byte register file includes four 1/O port registers (RO-R3), 124 general-purpose registers (R4R127) and sixteen control and status registers (R240-R255). These registers are assigned the address locations shown in Figure 6.

Address Spaces (Cont.)

Z8 instructions can access registers directly or indirectly with an 8-bit address field. The $\mathrm{Z8}$ also allows short 4 -bit register addressing using the register pointer (one of the control registers). In the 4 -bit mode, the register file is divided into nine working-register groups, each occupying sixteen contiguous locations (Figure 7). The register pointer addresses the starting location of the active workingregister group.

Figure 4. Program Memory Map

Figure 6. The Register File

Stacks. Either the internal register file or the external data memory can be used for the stack. A 16-bit stack pointer (R254 and R255) is used for the external stack, which can reside anywhere in data memory between locations 4096 and 65535. An 8-bit stack pointer (R255) is used for the internal stack which resides within the 124 generalpurpose registers (R4-R127)

Figure 5. Data Memory Map

Figure 7. The Register Pointer

I/O Ports

The $\mathbf{Z 8}$ has 32 lines dedicated to input and output. These lines are grouped into four ports of eight lines each and are configurable as input, output or address/data. Under software control, the ports can be programmed to provide address outputs, timing, status signals, serial I/O, and paralled I/O with or without handshake. All ports have active pull-ups and pull-downs compatible with TTL loads.

Port 1

Port 1 can be programmed as a byte 1/O port or as an address/data port for interfacing external memory. When used as an I/O port, Port 1 may be placed under handshake control. In this configuration, Port 3 lines P_{3} and P_{4} are used as the handshake controls RDY1 and DAV1 (Ready and Data Available).

Memory locations greater than 4096 are referenced through Port 1. To interface external memory, Port 1 must be programmed for the multiplexed address/data mode $\left(A D_{0}-A D_{7}\right)$. If more than 256 external locations are required, Port 0 must output the additional lines.

Port 1 can be placed in the high-impedance state along with Port $0, \overline{\mathrm{AS}}, \overline{\mathrm{DS}}$ and $\mathrm{R} / \overline{\mathrm{W}}$, allowing the $\mathrm{Z8}$ to share common resources in multiprocessor and DMA applications. Data transfers can be controlled by assigning P_{3} as a Bus Acknowledge input, and $\mathrm{P3}_{4}$ as a Bus Request output.

PORT 1

Port 0

Port 0 can be programmed as a nibble 1/O port, or as an address port for interfacing external memory. When used as an I/O port, Port 0 may be placed under handshake control. In this configuration, Port 3 lines $\mathrm{P3}_{2}$ and $\mathrm{P3}_{5}$ are used as the handshake controls $\overline{\mathrm{DAVO}}$ and RDYO.

For external memory references, Port 0 can provide address bits $\mathrm{A}_{8}-\mathrm{A}_{11}$ (lower nibble) or $\mathrm{A}_{8}-\mathrm{A}_{15}$ (lower and upper nibble) depending on the required address space. If the address range requires 12 bits or less, the upper nibble of Port 0 can be programmed independently as I/O while the lower nibble is used for addressing. When Port 0 nibbles are defined as address bits, they can be set to the high-impedance state along with Port 1 and the control signals $\overline{\mathrm{AS}}, \overline{\mathrm{DS}}$ and $\mathrm{R} / \overline{\mathrm{W}}$.

PORT 0

Port 2

Each bit of Port 2 can be programmed independently as an input or an output, and is always available for 1/O operations. In addition, Port 2 can be configured to provide open-drain outputs.

Like Ports 0 and 1, Port 2 may also be placed under handshake control. In this configuration, Port 3 lines P_{1} and P_{6} are used as the handshake controls lines DAV2 and RDY2. The handshake signal assignment for Port 3 lines P_{3} and $\mathrm{P3}_{6}$ is dictated by the direction (input or output) assigned to bit 7 of Port 2.

PORT 2

Port 3

Port 3 lines can be configured as I/O or control lines. In either case, the direction of the eight lines is fixed as four input $\left(\mathrm{P3}_{0}-\mathrm{P} 3_{3}\right)$ and four output ($\mathrm{P3}_{4}-\mathrm{P} 3_{7}$). For serial I/O, lines $\mathrm{P} 3_{0}$ and P_{7} are programmed as serial in and serial out respectively.

Port 3 can also provide the following control functions: handshake for Ports 0,1 and $2(\overline{\mathrm{DAV}}$ and RDY); four external interrupt request signals (IRQO-IRQ3); timer input and output signals (T_{IN} and $\mathrm{T}_{\mathrm{OUT}}$) and Data Memory Select ($\overline{\mathrm{DM}}$).

PORT 3

Serial Input/Output

Port 3 lines P_{0} and P_{7} can be programmed as serial I/O lines for full-duplex serial asynchronous receiver/transmitter operation. The bit rate is controlled by counter/timer 0 , with a maximum rate of 62.5 kilobits per second.
The $\mathbf{Z 8}$ automatically adds a start bit and two stop bits to transmitted data (Figure 8). The Z8 can also provide odd parity. Eight data bits are always transmitted, regardless of parity
selection. If parity is enabled, the eighth bit is the odd parity bit. An interrupt request (IRQ4) is generated on all transmitted characters

Received data must have a start bit, eight data bits and at least one stop bit. If parity is on, bit 7 of the received data is replaced by a parity error flag. Received characters generate the IRQ3 interrupt request.

RECEIVED DATA - NO PARITY

RECEIVED DATA - WITH PARITY

Figure 8. Serial Data Formats.

Counter/Timers

The $\mathrm{Z8}$ contains two 8 -bit programmable counter/timers (T_{0} and T_{1}), each driven by its own 6 -bit programmable prescaler. The T_{1} prescaler can be driven by internal or external clock sources; however, the T_{0} prescaler is driven by the internal clock only.
The 6 -bit prescalers can divide the input frequency of the clock source by any number from 1 to 64 . Each prescaler drives its counter, which decrements the value (1 to 256) that has been loaded into the counter. When the counter reaches the end of count, a timer interrupt request - IRQ4 (T_{0}) or IRQ5 $\left(T_{1}\right)$ - is generated.
The counters can be started, stopped, restarted to continue, or restarted from the initial value. The counters can also be programmed to stop upon reaching zero (single-pass mode),
or to automatically reload the initial value and continue counting (modulo-n continuous mode). The counters, but not the prescalers, can be read any time without disturbing their value or count mode.

The clock source for T_{1} is user-definable and can be the internal microprocessor clock (4 MHz maximum) divided by four, or an external signal input via Port 3. The Timer Mode register configures the external timer input as an external clock (1 MHz maximum), a trigger input that can be retriggerable or non-retriggerable, or as a gate input for the internal clock. The counter/timers can be programmably cascaded by connecting the T_{0} output to the input of T_{1}. Port 3 line P_{6} also serves as a timer output ($\mathrm{T}_{\text {OUT }}$) through which T_{0}, T_{1} or the internal clock can be output.

Interrupts

The $\mathrm{Z8}$ allows six different interrupts from eight sources: the four Port 3 lines $\mathrm{P}_{0}-\mathrm{P}_{3}$, Serial In, Serial Out, and the two counter/timers. These interrupts are both maskable and prioritized. The Interrupt Mask Register globally or individually enables or disables the six interrupt requests. When more than one interrupt is pending, priorities are resolved by a programmable priority encoder that is controlled by the Interrupt Priority Register.

All Z8 interrupts are vectored. When an interrupt request is granted, the $\mathbf{Z 8}$ enters an interrupt machine cycle that disables all subsequent interrupts, saves the program counter and status flags, and branches to the program memory vector location reserved for that interrupt. This memory location and the next byte contain the 16 -bit address of the interrupt service routine for that particular interrupt request.
The $\mathbf{Z 8}$ also supports polled systems. To accommodate a polled structure, any or all of the interrupt inputs can be masked and the Interrupt Request Register polled to determine which of the interrupt requests needs service.

Clock

The on-chip oscillator has a high-gain, series-resonant amplifier for connection to a crystal or to any suitable external clock source (XTAL1 = Input, XTAL2 = Output).

The crystal source is connected across XTAL1 and XTAL2, using the recommended capacitors ($\mathrm{C}_{1}=15 \mathrm{pF}$) from each pin to ground. The specifications for the crystal are as follows:

- AT cut, series resonant
- Fundamental type, 12 MHz maximum
- Series resistance $R_{S} \leq 100 \Omega$

Power Down Standby Option

The low-power standby mode allows power to be removed without losing the contents of the 124 general-purpose registers. This mode is available to the user as a bonding option whereby pin 2 (normally XTAL2) is replaced by the V_{MM} (standby) power supply input. This necessitates the use of an external clock generator (input = XTAL1) rather than a crystal source.

The removal of power, whether intended or due to power failure, must be preceded by a software routine that stores the appropriate status into the register file. Figure 9 shows the recommended circuit for a battery back-up supply system.

Figure 9. Recommended Driver Circuit for Power Down Operation.

Z8612 Development Device

The 64-pin development version of the 4 K 40 -pin maskprogrammed $\mathrm{Z8}$ allows the user to prototype the system in hardware with an actual $Z 8$ device, and develop the code that is eventually mask-programmed into the on-chip ROM of the 28611 .

The Z 8612 is identical to the Z 8611 with the following exceptions:

- The internal ROM has been removed
- The ROM address lines and data lines are buffered and brought out to external pins.
- Control lines for the new memory have been added.

Z8612 Pin Description

The functions of the Z8612 I/O lines, $\overline{\mathrm{AS}}, \overline{\mathrm{DS}}, \mathrm{R} / \overline{\mathrm{W}}, \mathrm{XTAL1}$, XTAL2 and $\overline{\text { RESET }}$ are identical to those of their Z8611 counterparts. The functions of the remaining 24 pins are as follows:
$\mathrm{A}_{0}-\mathrm{A}_{11}$. Program Memory Address (outputs). $\mathrm{A}_{0}-\mathrm{A}_{11}$ access the first 4K bytes of program memory.
$D_{0}-D_{7}$. Program Data (inputs). Program data from the first $4 K$ bytes of program memory is input through pins $D_{0}-D_{7}$
$\overline{\text { MDS. }}$. Program Memory Data Strobe (output, active Low) $\overline{M D S}$ is Low during an instruction fetch cycle when the first 4 K bytes of program memory are being accessed. $\overline{\mathrm{MDS}}$ remains High during other program memory read cycles.
$\overline{\mathbf{S Y N C}}$. Instruction Sync (output, active Low). This strobe output is forced Low during the internal clock period preceding the beginning of an opcode fetch.
SCLK. System Clock (output). SCLK is the internal clock output through a buffer. The clock rate is equal to one-half the crystal frequency.
IACK. Interrupt Acknowledge (output, active High). IACK is driven High in response to an interrupt during the interrupt machine cycle.

$\mathrm{P}_{6}{ }_{6}$	1		64	v_{cc}
P_{1}, \square	2		63	\square XTAL2
$\mathrm{P}_{7}{ }^{-1}$	3		62	XTAL1
$\mathrm{P}_{26} \square$	4		61	$\square \mathrm{P}_{7}$
$\mathrm{P}_{5}{ }_{5}$	5		60	P_{3}
P24 \square	6		59	\square EESET
$\mathrm{P2}_{3}$	7		58	$7 \mathrm{R} / \overline{\mathrm{W}}$
$\mathrm{P2}_{2} \square$	8		57	$\square \overline{\mathrm{DS}}$
P2,	9		56	$\square \overline{\text { AS }}$
$\mathrm{P}_{2}{ }^{-}$	10		55	$\square \mathrm{P3}_{5}$
$\mathrm{P3}_{3}{ }^{-}$	11		54	$\square \mathrm{P}_{2}$
$\mathrm{P3}_{4} \square$	12		53	$\square \mathrm{PO}_{0}$
$\mathrm{P}_{7} \mathrm{C}_{4}$	13		52	$\square \mathrm{PO}_{1}$
$\mathrm{P1}_{6} \square^{-14}$	14		51	$\square \mathrm{PO}_{2}$
P_{15}	15		50	[] PO_{3}
$\mathrm{P1}_{4} \square$	16	28612	49	$\square \mathrm{PO}_{4}$
$\mathrm{P1}_{3}$	17		48	1 GND
$\mathrm{Pr}_{2} \square$	18		47	$\square \mathrm{PO}_{5}$
$\mathrm{P} 11_{1}$	19		46	$]^{\mathrm{PO}_{6}}$
$\mathrm{P} 10 \square$	20		45	PO_{7}
$\mathrm{D}_{7} \mathrm{C}^{-}$	21		44]IACK
$\mathrm{D}_{6} \square$	22		43	SYNC
D_{5}	23		42	7 sclk
$\mathrm{D}_{4} \square$	24		41	$\overline{\text { MDS }}$
A_{0}	25		40	D_{0}
$A_{1} \square$	26		39	D_{1}
A_{2}	27		38	$]^{D_{2}}$
$A_{3} \square$	28		37	D_{3}
A_{4}	29		36	A_{11}
A_{5}	30		35	- A_{10}
A_{6}	31		34	f^{\prime}
$\mathrm{A}_{7} \square$	32		33	A_{8}

Figure 10. Z8612 Pin Assignments.

Addressing Modes

The following notation is used to describe the addressing modes and instruction operations as shown in the instruction summary.

IRR Indirect register pair or indirect working-register pair address

Irr Indirect working-register pair only
X Indexed address
DA Direct address
RA Relative address
IM Immediate
R Register or working-register address
r Working-register address only
IR Indirect-register or indirect working-register address
Ir Indirect working-register address only
RR Register pair or working register pair address

Symbols

dst Destination location or contents
src Source location or contents
cc Condition code (see list)
@ Indirect address prefix
SP Stack pointer (control registers 254-255)
PC Program counter
FLAGS Flag register (control register 252)
RP Register pointer (control register 253)
IMR Interrupt mask register (control register 251)

Assignment of a value is indicated by the symbol " \leftarrow ". For example,

$$
d s t \leftharpoondown d s t+s r c
$$

indicates that the source data is added to the destination data and the result is stored in the destination location. The notation " $\operatorname{addr}(\mathrm{n})$ " is used to refer to bit " n " of a given location. For example,
dst (7)
refers to bit 7 or the destination operand.

Flags

Control Register R252 contains the following six flags:
C Carry flag
V Overflow flag
Z Zero flag
D Decimal-adjust flag
S Sign flag
H Half-carry flag

Affected flags are indicated by:
0 Cleared to zero
1 Set to one

* Set or cleared according to operation
- Unaffected

X Undefined

Condition Codes

Value	Codes Mnemonic	Meaning	Flags Set
1000		Always true	---
0111	C	Carry	$C=1$
1111	NC	No Carry	$\mathrm{C}=0$
0110	Z	Zero	$\mathrm{Z}=1$
1110	NZ	Not zero	$\mathrm{Z}=0$
1101	PL	Plus	$\mathrm{S}=0$
0101	MI	Minus	$\mathrm{S}=1$
0100	OV	Overflow	$\mathrm{V}=1$
1100	NOV	No overflow	$\mathrm{V}=0$
0110	EO	Equal	$\mathrm{Z}=1$
1110	NE	Not equal	$\mathrm{Z}=0$
1001	GE	Greater than or equal	$(\mathrm{SXOR} \mathrm{V})=0$
0001	LT	Less than	(S XOR V) $=1$
1010	GT	Greater than	$[\mathrm{Z} \mathrm{OR} \mathrm{(S} \mathrm{XOR} \mathrm{V)]}=0$
0010	LE	Less than or equal	$[\mathrm{Z} \mathrm{OR} \mathrm{(} \mathrm{~S} \mathrm{XOR} \mathrm{V})]=1$
1111	UGE	Unsigned greater than or equal	$\mathrm{C}=0$
0111	ULT	Unsigned less than	$\mathrm{C}=1$
1011	UGT	Unsigned greater than	$(\mathrm{C}=0$ and $\mathrm{Z}=0)=1$
0011	ULE	Unsigned less than or equal	$(\mathrm{C} \text { or } \mathrm{Z})=1$
0000		Never true	

Instruction Formats

CCF, DI, EI, IRET, NOP,
RCF, RET, SCF
INC r

ONE-BYTE INSTRUCTIONS

CLR, CPL, DA, DEC,
DECW, INC,
NCW
DECW, INC, INCW, POP,
RRC, SRA, SWAP

OR 1110 d dt
JP, CALL (Indirect)

\qquad

SRP ${ }^{C P}$, OR, SBC, SUB. TCM, TM, XOR
LD. LDE, LDEI. LDC, LDCI
LD
LD
DJNZ, JR
TWO-BYTE INSTRUCTIONS

Figure 11. Instruction Formats.

Sequence:

Opcode, First Operand, Second Operand
Note: The blank areas are reserved instructions.

Instruction Summary

Instruction and Operation	Addr Mode		Opcode Byte (Hex)	Flags Affected C Z S V D H
	dst	src		
ADC dst,src dst -- dst + src +	(Note 1)		$1 . .1$	* * * * 0
ADD dst,src dst - dst + src	(Note 1)		0	* * * * 0 *
AND dst,src dst - dst AND src	(Note 1)		51 !	- * * 0 -
CALL dst $\mathrm{SP}-\mathrm{SP}-2$ (1)SP-PC; PC.	$\begin{gathered} \text { DA } \\ \text { IRR } \\ \text { st } \\ \hline \end{gathered}$		$\begin{aligned} & \text { D6 } \\ & \text { D4 } \end{aligned}$	- - - -
$\begin{aligned} & \mathrm{CCF} \\ & \mathrm{C}-\mathrm{NOT} \mathrm{C} \end{aligned}$			EF	* - - -
$\begin{aligned} & \text { CLR dst } \\ & \mathrm{dst}-0 \end{aligned}$	$\begin{gathered} \mathrm{R} \\ \mathrm{IR} \end{gathered}$		$\begin{aligned} & \mathrm{BO} \\ & \mathrm{Bl} \end{aligned}$	- - - -
$\begin{aligned} & \text { COM dst } \\ & \text { dst - NOT dst } \end{aligned}$	$\begin{gathered} \mathrm{R} \\ \mathrm{IR} \\ \hline \end{gathered}$		$\begin{aligned} & 60 \\ & 61 \end{aligned}$	- * * 0 --
$\begin{aligned} & \text { CP dst, src } \\ & \text { dst - src } \end{aligned}$	(Note 1)		A \llcorner	* * * * -
$\begin{aligned} & \text { DA dst } \\ & \text { dst - DA dst } \end{aligned}$	$\begin{gathered} \mathrm{R} \\ \mathrm{IR} \\ \hline \end{gathered}$		$\begin{aligned} & 40 \\ & 41 \end{aligned}$	* * * X - -
DEC dst dst - dst - 1	$\begin{aligned} & \mathrm{R} \\ & \mathrm{IR} \\ & \hline \end{aligned}$		$\begin{aligned} & 00 \\ & 01 \end{aligned}$	- * * * -
DECW dst dst $-\mathrm{dst}-1$	$\begin{aligned} & \text { RR } \\ & \text { IR } \end{aligned}$		$\begin{aligned} & 80 \\ & 81 \end{aligned}$	- * * * -
$\begin{aligned} & \mathrm{DI} \\ & \mathrm{IMR}(7) \leftarrow 0 \end{aligned}$			8 F	- - - -
$\begin{aligned} & \text { DJNZ } \mathrm{r}, \mathrm{dst} \\ & \mathrm{r}-\mathrm{r}-1 \\ & \text { if } \mathrm{r} \neq 0 \mathrm{PC}-\mathrm{PC} \\ & \text { Range: }+127,-128 \end{aligned}$	RA dst		$\begin{gathered} r A \\ r=0-F \end{gathered}$	-- - - -
$\begin{aligned} & \operatorname{EI} \\ & \operatorname{IMR}(7)-1 \end{aligned}$			9F	- - - -
$\begin{aligned} & \text { INC dst } \\ & d s t-d s t+1 \end{aligned}$	$\begin{gathered} R \\ \mathrm{IR} \end{gathered}$		$\begin{gathered} \mathrm{rE} \\ \mathrm{r}=0-\mathrm{F} \\ 20 \\ 21 \\ \hline \end{gathered}$	- * * * -
INCW dst dst - dst +1	$\begin{aligned} & \mathrm{RR} \\ & \mathrm{IR} \end{aligned}$		$\begin{aligned} & \text { A0 } \\ & \text { Al } \end{aligned}$	- * * * - -
IRET FLAGS - @ SP; SP - SP + 1 $\mathrm{PC} \leftarrow @ \mathrm{SP} ; \mathrm{SP} \leftarrow \mathrm{SP}+2 ; \operatorname{IMR}(7)$			$\begin{array}{r} B F \\ -1 \\ \hline \end{array}$	* * * * *
JP cc,dst if CC is true PC - dst	DA IRR		$\begin{gathered} c D \\ c=0-F \\ 30 \end{gathered}$	- - - -
$\begin{aligned} & \text { JR cc, dst } \\ & \text { if cc is true, } \\ & \quad \text { PC }- \text { PC }+ \text { dst } \\ & \text { Range: }+127,-128 \\ & \hline \end{aligned}$	RA		$\begin{gathered} c B \\ c=0-F \end{gathered}$	- - - -
LD dst,src dst - src	$\begin{aligned} & \mathrm{r} \\ & \mathrm{R} \end{aligned}$ r X r r Ir r R R R IR IR	$\begin{gathered} \mathrm{IM} \\ \mathrm{R} \\ \mathrm{r} \\ \\ \mathrm{X} \\ \mathrm{r} \\ \mathrm{r} \\ \mathrm{Ir} \\ \mathrm{r} \\ \mathrm{R} \\ \mathrm{IR} \\ \mathrm{IM} \\ \mathrm{IM} \\ \mathrm{R} \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{rC} \\ \mathrm{r} 8 \\ \mathrm{r} 9 \\ \mathrm{r}=0-\mathrm{F} \\ \mathrm{C} 7 \\ \mathrm{D} 7 \\ \mathrm{E} 3 \\ \mathrm{~F} 3 \\ \mathrm{E} 4 \\ \mathrm{E} \\ \text { E6 } \\ \text { E7 } \\ \text { F5 } \\ \hline \end{gathered}$	- - . - -
LDC dst,src dst - src	$\begin{gathered} \mathrm{r} \\ \text { Irr } \\ \hline \end{gathered}$	$\begin{gathered} \operatorname{Irr} \\ \mathrm{r} \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{C} 2 \\ & \mathrm{D} 2 \end{aligned}$	- - - - -
$\begin{aligned} & \text { LDCI dst, src } \\ & \text { dst }-\mathrm{src} \\ & \mathrm{r}-\mathrm{r}+\mathrm{l} ; \mathrm{rr}-\mathrm{rr} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{Ir} \\ & \text { Ir } \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{Irr} \\ & \mathrm{Ir} \end{aligned}$	$\begin{aligned} & \text { C3 } \\ & \text { D3 } \end{aligned}$	--- - -
LDE dst,src dst - src	$\begin{gathered} \mathrm{r} \\ \mathrm{Irr} \end{gathered}$	$\begin{gathered} \mathrm{Irr} \\ \mathrm{r} \\ \hline \end{gathered}$	$\begin{aligned} & 82 \\ & 92 \end{aligned}$	- - - -

Note 1

These instructions have an identical set of addressing modes, which are encoded for brevity in this table. The higher opcode mbble is found in the instruction set table above. The lower nibble is expressed symbolically by a in the table above, and its value is found in the following table to the right of the applicable addressing mode pair.
For example, the opcode of an ADC instruction using the addressing modes r (destination) and Ir (source) is 13.

	Addr Mode	
	dst	src

Opcode Nibble\end{array}\right]\)

Z8 Control Registers

R240 SIO

SERIALI/O REGISTER
(FO_{H}; READ/WRITE)

D_{1}	D_{6}	$\mathrm{~S}_{5}$	D_{4}	D_{3}	D_{2}	D_{1}	D_{0}

\square SERIAL DATA $\left(D_{0}=L S B\right.$

R241 TMR
TIMER MODE REGISTER
($\mathrm{F} 1_{\mathrm{H}} ;$ READ/WRITE)

T_{0} OUT $=$
T_{1} OUT $=$
INTERNAL CLOCK OUT $=11$
EXTERNAL CLOCK INPUT $\begin{aligned} & \mathrm{T}_{\text {IN }} \text { MODES } \\ & \text { INTM }\end{aligned}$ $\begin{aligned} \text { GLOCK INPUT } & =00 \\ \text { GATE INPUT } & =01\end{aligned}$ GATE INPUT $=01$
RIGGER INPUT $=10$ (NON RETRIGGERABLE)

TRIGGER INPUT
(RETRIGGERABLE)

R244 T0
COUNTER/TIMER O REGISTER
($\mathrm{F4}_{\mathrm{H}}$; READ/WRITE)

| D_{7} | D_{6} | D_{4} | D_{4} | D_{3} | D_{2} | D_{1} | D_{0} |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

To INITIAL VALUE (WHEN WRITTEN) RANGE. 1256 DECIMAL O1 00 HEX

R245 PREO
PRESCALER 0 REGISTER
(F5 $_{H}$; WRITE ONLY)

| D_{3} | D_{6} | D_{4} | D_{4} | D_{3} | D_{2} | D_{1} | D_{0} |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

COUNT MODE
$0=T_{0}$ SINGLEPASS
$1=T_{11}$ MODULON

- RESERVED

PRESCALER MODULO
RANGE 1-64 DECIMA
01.00 HEX)

R242 T1
COUNTER TIMER 1 REGISTER
(F2 ${ }_{H}$; READ/WRITE)

T, INITIAL VALUE (WHEN WRITTEN) TANGE 1256 DECIMAL 0100 HEX)
T, CURRENT VALUE (WHEN READ)

R246 P2M
PORT 2 MODE REGISTER
(F6 ${ }_{H}$; WRITE ONLY)

D_{7}	D_{6}	D_{5}	D_{4}	D_{3}	D_{2}	D_{1}	D_{0}

P2 2_{0} P2, IIO DEFINITION O DEFINES BIT AS OUTPUT
1 DEFINES BIT AS INPUT

R243 PRE1
PRESCALER 1 REGISTER
($\mathrm{F3}_{\mathrm{H}}$; WRITE ONLY)

COUNT MODE
$0=T$, SINGLE.PASS
$1=T$, MODULO.N CLOCK SOURCE CLOCK SOURCE

T, EXTERNAL TIMING INPUT (TiN) MODE
1 T, INTERNAL
PRESCALER MODULO (RANGE: 1-64 DECIMAL
01-00 HEX)

R247 P3M
PORT 3 MODE REGISTER

$$
\left(F 7_{H} ; \text { WRITE ONLY }^{\prime}\right.
$$

D_{7}	D_{6}	D_{5}	D_{4}	D_{3}	D_{2}	D_{1}	D_{0}

Z8 Control Registers

R248 P01M
PORT 0 AND 1 MODE REGISTER
(F8 ${ }_{H}$; WRITE ONLY)

R252 FLAGS
FLAG REGISTER
(FC $_{H}$; READ/WRITE)

R254 SPH
STACK POINTER
(FE $_{\mathrm{H}}$: READ/WRITE)

STACK POINTER UPPER
IRQO $=P_{3}$ INPUT
RO1 $=P 3_{3}$ INPUT
$\begin{aligned} & \text { IRQ1 }=\mathrm{P}_{3} \text { INPUT } \\ & \text { IRQ2 }\end{aligned}=\mathrm{P}_{1}$ INPUT
IRQ3 $=P 3_{0}$ INPUT, SERIAL INPUT
RROA $=T_{0}$. SERIAL OUTPUT
IROS $=T_{1}$

R251 IMR
INTERRUPT MASK REGISTER
(FB_{H}; READ/WRITE)

R255 SPL
STACK POINTER
(FF $_{H}$; READ/WRITE)

Absolute Maximum Ratings

Voltages on All Inputs and Outputs
with Respect to Ground $\ldots . . \ldots \quad-0.3 \mathrm{~V}$ to +7.0 V
Operating Ambient Temperature $\ldots \ldots . . .0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only; operation of the device at any condition above those indicated in the operational sections of these specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Standard Test Conditions

The characteristics below apply for the following standard test conditions, unless otherwise noted. All voltages are referenced to GND. Positive current flows into the reference pin. Standard conditions are as follows:
$-+4.75 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.25 \mathrm{~V}$
$-\mathrm{GND}=0 \mathrm{~V}$
$-0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$

DC Characteristics

Symbol	Parameter	Min.	Max.	Unit	Condition	Notes
V_{CH}	Clock Input High Voltage	3.8	$\mathrm{~V}_{\mathrm{CC}}$	V	Driven by Ext- ernal Clock Gen- erator	1
$\mathrm{~V}_{\mathrm{CL}}$	Clock Input Low Voltage	-0.3	0.8	V	Driven by Ext- ernal Clock Gen- erator	
V_{IH}	Input High Voltage					
V_{IL}	Input Low Voltage	-0.3	$\mathrm{~V}_{\mathrm{CC}}$	V		
V_{RH}	Reset Input High Voltage	0.8	V			
$\mathrm{~V}_{\mathrm{RL}}$	Reset Input Low Voltage	3.8	$\mathrm{~V}_{\mathrm{CC}}$	V		
V_{OH}	Output High Voltage	-0.3	0.8	V		
$\mathrm{~V}_{\mathrm{OL}}$	Output Low Voltage	2.4		V	$\mathrm{I}_{\mathrm{OH}}=250 \mu \mathrm{~A}$	1
I_{IL}	Input Leakage		0.4	V	$\mathrm{I}_{\mathrm{OL}}=+2.0 \mathrm{~mA}$	1
I_{OL}	Output Leakage		± 10	$\mu \mathrm{~A}$	$0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}} \leq+5.25 \mathrm{~V}$	
I_{IR}	Reset Input Current		± 10	$\mu \mathrm{~A}$	$0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}} \leq+5.25 \mathrm{~V}$	
I_{CC}	V_{CC} Supply Current		-50	$\mu \mathrm{~A}$	$\mathrm{V}_{\mathrm{CC}}=+5.25 \mathrm{~V}$, $\mathrm{V}_{\mathrm{RL}}=0 \mathrm{OV}$	
I_{MM}	V_{MM} Supply Current		180	mA	$\mathrm{~V}_{\mathrm{CC}}=5.25 \mathrm{~V}$	
$\mathrm{~V}_{\mathrm{MM}}$	Backup Supply Voltage		10	mA	Power Down Mode	

1. For $A_{0}-A_{11}, \overline{M D S}, \overline{S Y N C}, S C L K$ and IACK on the $Z 8612$ version, $I_{O H}=-100 \mu \mathrm{~A}$ and $I_{O L}=1.0 \mathrm{~mA}$.

Test Load Circuits

TEST LOAD 1

TEST LOAD 2

EXTERNAL CLOCK INTERFACE CIRCUIT

External I/O or Memory Read and Write Cycle

Symbol	Parameter	8611/2		8611A/2A		Units	Notes
		Min.	Max.	Min.	Max.		
TdA(AS)	Address Valid to $\overline{\text { AS }}$ ¢ Delay	50		35		ns	1,2
TdAS(A)	$\overline{\mathrm{AS}}$ t to Address Float Delay	70		45		ns	1,2
TdAS(DR)	$\overline{\mathrm{AS}}$ t to Read Data Required Valid		360		220	ns	1,2,3,4
TwAS	$\overline{\text { AS }}$ Low Width	80		55		ns	1,2
TdAz(DS)	Address Float to $\overline{\mathrm{DS}}$!	0		0		ns	1
TwDSR	$\overline{\text { DS }}$ (Read) Low Width	250		185		ns	1,2,3,4
TwDSW	$\overline{\mathrm{DS}}$ (Write) Low Width	160		110		ns	1,2,3,4
TdDSR(DR)	$\overline{\mathrm{DS}}$! to Read Data Required Valid		200		130	ns	1,2,3,4
ThDR(DS)	Read Data to $\overline{\text { SS }}$ Hold Time	0		0		ns	1
TdDS(A)	$\overline{\mathrm{DS}}$ t to Address Active Delay	70		45		ns	1,2,3
TdDS(AS)	$\overline{\mathrm{DS}} \uparrow$ to $\overline{\mathrm{AS}}$ D Delay	70		55		ns	1,2,3
TdR/W(AS)	$\mathrm{R} / \overline{\mathrm{W}}$ Valid to $\overline{\text { AS }}$! Delay	50		30		ns	1,2,3
TdDS(R/W)	$\overline{\mathrm{DS}}$ t to R/ \bar{W} Not Valid	60		35		ns	1,2,3
TdDW(DSW)	Write Data Valid to DS (Write) ! Delay	50		35		ns	1,2,3
TdDS(DW)	$\overline{\mathrm{DS}} \uparrow$ to Write Data Not Valid Delay	70		45		ns	1,2,3
TdA(DR)	Address Valid to Read Data Required Valid		410		255	ns	1,2,3,4
TdAS(DS)	$\overline{\mathrm{AS}}$ t to $\overline{\mathrm{DS}}$! 'Delay	80			55	ns	

Notes:

1. Test Load 1.
2. Timing numbers given are for minimum TpC .
3. Also see Clock Cycle Time Dependent Characteristics Table.
4. When using extended memory timing add 2 TpC.
5. All timing references use 2.0 V for a logic " 1 " and 0.8 V for a logic " 0 ".

Clock Cycle Dependent Characteristics

Symbol	$\mathbf{8} \mathbf{~ M H z}$	$\mathbf{1 2} \mathbf{~ M H z}$
$\mathrm{TdA}(\mathrm{AS})$	$\mathrm{TpC}-\mathbf{7 5}$	$\mathrm{TpC}-50$
$\mathrm{TdAS}(\mathrm{A})$	$\mathrm{TpC}-55$	$\mathrm{TpC}-\mathbf{4 0}$
$\mathrm{TdAS}(\mathrm{DR})$	$4 \mathrm{TpC}-140^{*}$	$4 \mathrm{TpC}-110^{*}$
TwAS	$\mathrm{TpC}-45$	$\mathrm{TpC}-30$
TwDSR	$3 \mathrm{TpC}-125^{*}$	$3 \mathrm{TpC}-65$
TwDSW	$2 \mathrm{TpC}-90^{*}$	$2 \mathrm{TpC}-55^{*}$
TdDSR(DR)	$3 \mathrm{TpC}-175^{*}$	$3 \mathrm{TpC}-120^{*}$
$\mathrm{Td}(D S) A$	$\mathrm{TpC}-55$	$\mathrm{TpC}-\mathbf{4 0}$

Symbol	$\mathbf{8} \mathbf{~ M H z}$	$\mathbf{1 2} \mathbf{M H z}$
$\mathrm{TdDS}(\mathrm{AS})$	$\mathrm{TpC}-55$	$\mathrm{TpC}-30$
$\mathrm{TdR} / \mathrm{W}(\mathrm{AS})$	$\mathrm{TpC}-75$	$\mathrm{TpC}-55$
$\mathrm{TdDS}(\mathrm{R} / \mathrm{W})$	$\mathrm{TpC}-65$	$\mathrm{TpC}-50$
$\mathrm{TdDW}(\mathrm{DSW})$	$\mathrm{TpC}-75$	$\mathrm{TpC}-50$
$\mathrm{TdDS}(\mathrm{DW})$	$\mathrm{TpC}-55$	$\mathrm{TpC}-40$
$\mathrm{TdA}(\mathrm{DR})$	$5 \mathrm{TpC}-215^{*}$	$5 \mathrm{TpC}-160^{*}$
$\mathrm{TdAS}(\mathrm{DS})$	$\mathrm{TpC}-\mathbf{4 5}$	$\mathrm{TpC}-30$

*Add $2 T p C$ when using extended memory timing.

Additional Timing Table

Symbol	Parameter	28611/12		Z8611A/12A		Units	Notes
		Min.	Max.	Min.	Max.		
TpC	Input Clock Period	125	1000	83	1000	ns	1
TrC, TfC	Clock Input Rise and Fall Times		25		15	ns	1
TwC	Input Clock Width	37		26		ns	1
TwT ${ }_{\text {IN }} \mathrm{L}$	Timer Input Low Width	100		70		ns	2
TwT ${ }_{\text {IN }} \mathrm{H}$	Timer Input High Width	3 TpC		3 TpC		ns	2
$\mathrm{TpT}^{\text {IN }}$	Timer Input Period	$\frac{\mathrm{TpC}}{8}$		$\frac{\mathrm{TpC}}{8}$		ns	2
Tr $\mathrm{T}_{\text {IN }}$, Tf $\mathrm{T}_{\text {IN }}$	Timer Input Rise and Fall Times		100		100	ns	2
TwIL	Interrupt Request Input Low Time	100		70		ns	2,3
TwiH	Interrupt Request Input High Time	3 TpC		3 TpC		ns	2,3

Notes:

1. Clock timing reference uses 3.8 V for a logic " 1 " and 0.8 V for a logic " 0 ".
2. Timing reference uses 2.0 V for a logic " 1 " and 0.8 V for a logic " 0 ".
3. Interrupt request via Port 3.

Handshake Timing

Symbol	Parameter	$\begin{gathered} \text { Z8611/ } \\ 12 \end{gathered}$		$\begin{gathered} \text { Z8611A/ } \\ 12 \mathrm{~A} \end{gathered}$		Units	Notes
		Min.	Max.	Min.	Max.		
TsDI(DAV)	Data In Set Up Time	0		0		ns	
ThDI(DAV)	Data In Hold Time	230		160		ns	
TwDAV	Data Available Width	175		120		ns	
TdDAVIf(RDY)			175		120	ns	1,2
TdDAVOf(RDY)	$\overline{\text { DAV }}$ Output to RDY! Delay	0		0		ns	1,3
TdDAVIr(RDY)	$\overline{\text { DAV }}$ Input to RDYi Delay		175		120	ns	1,2
TdDAVOr(RDY)	$\overline{\text { DAV }}$ Output to RDY¢ Delay	0		0		ns	1,3
TdDO(DAV)	Data Out to $\overline{\mathrm{DAV}}$! Delay	50		30		ns	1
TdRDY(DAV)	RDY! Input to $\overline{\text { DAV }}$! Delay	0	200	0	140	ns	1

Notes:

1. Test Load 1.
2. Input handshake.
3. Output handshake
4. All timing references use 2.0 V for a logic " 1 " and 0.8 V for a logic " 0 ".

Memory Port Timing Z8612, $\mathbf{Z 8 6 1 3}$

Symbol	Parameter	Z8612		Z8612A		Units	Notes
		Min.	Max.	Min.	Max.		
TdA(DI)	Address Valid to Datalnput Delay		460		320	ns	1,2
ThDI(A)	Data In Hold Time	0		0		ns	1

Notes:

1. Test Load 2.
2. This is a clock cycle dependent parameter. For clock frequencies other than maximum frequency use the following formula: Z8612 and $\mathrm{Z8613}=5 \mathrm{TpC}-165$.
Z8612A and Z8613A $=5$ TpC -95 .

Package Availability 40 Pin Ceramic 40 Pin Plastic

Ordering Information

Part Number	Temperature Range	Number of Pins	Package	Description
Z8611 PS	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	40	Plastic	8 -Bit Single-Chip Microcomputer Circuit
Z8611 CS	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	40	Ceramic	8 -Bit Single Chip Microcomputer Circuit
Z8612 OS	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	64	Ceramic	$8-$-Bit Microcomputer Development Device
Z8611A PS	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	40	Plastic	12 MHz Single-Chip Microcomputer Circuit
Z8611A CS	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	40	Ceramic	12 MHz Single Chip Microcomputer Circuit
Z8612A QS	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	64	Ceramic	12 MHz Microcomputer Development Device

Microcomputer Protopak-Emulator

Features

- Prototyping version of Synertek 8611
- Piggyback 2732 EPROM program memory.
- Pin-compatible with Z8611 masked-ROM for hardware debugging or low-volume production.
- Complete microcomputer on-chip

128 bytes of on-chip data RAM
32 I/O lines
Socket for $27324 \mathrm{~K} \times 8$ EPROM

- Two 14-bit counter/timers.
- Duplex UART and baud-rate generator.

Description

The Synertek Z8613 Microcomputer Protopack Emulator is a ROM-less version of the Synertek 4K Z8 single-chip microcomputer. A removable 2732 EPROM plugged into the

Block Diagram

- Vectored priority interrupt system.
- Up to 60 K of external data memory.
- Up to 60 K of external program memory.
- On-chip cyrstal, RC, or LC oscillator.
- High-speed instruction execution.

Working-register operations $=1.5 \mu \mathrm{~s}$
Average instruction $=2.2 \mu \mathrm{~s}$

- Single +5 V supply voltage.
- All inputs/outputs TTL compatible.

24-pin "piggy-back" socket atop the 28613 allows pincompatible emulation of the Z8611 masked-ROM version.

Ordering Information

Part Number	Temperature Range	Number of Pins	Package	Description
Z8613	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	40	Ceramic	8 -Bit Microcomputer Protopack Emulator
Z 8613 A	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	40	Ceramic	12 MHz Microcomputer Protopack Emulator

Z8S MCU

Features

\square Complete microcomputer with on-chip RAM, ROM and I/O

- 64 bytes of on-chip RAM
- 1 K bytes of on-chip ROM
- $30 \mathrm{I} / \mathrm{O}$ lines
\square Subset of Z8 instruction set
\square Only 2 pins differ from those of Z 8 offering easy upgrade
\square One programmable 8-bit counter/timer with a 6-bit programmable prescaler
\square Ability to force all program memory fetches to reference external memory
75 -byte register file includes:
- 60 general-purpose registers, each of which can be used as an accumulator, index register, storage element, address register or part of the internal stack
o Four I/O port registers
o Eleven status and control registers for programming and polling the Z8S Microcomputer
\square Register pointer permits shorter, faster instructions to access one of five working-register groups
\square Vectored interrupts for I/O and counter/timers
\square Expandable bus interfaces up to 4 K bytes of external program memory and 3 K bytes of external data memory
\square On-chip oscillator can be driven by a crystal, RC, LC or external clock source

Figure 1. Z8S Block Diagram
\square High-speed instruction execution

- Working-register operations $=1.5 \mu \mathrm{~s}$
- Average instruction execution $=$ $2.2 \mu \mathrm{~s}$
- Longest instruction $=4.25 \mu \mathrm{~s}$
\square Optional low-power standby mode retains contents of general-purpose registers
\square Single +5 V supply
All pins TTL compatible

Description

The Z8S microcomputer introduces a new level of sophistication to low-end single-chip architecture. It retains the power and versatility of the Z8 architecture while halving the ROM and RAM. Compared to earlier low-end single-chip microcomputers, the Z8S offers faster execution, more efficient use of memory, more sophisticated I/O and bit-manipulation capabilities, and easier system expansion.

Under program control, the Z8S can be tailored to the needs of its user. It can be configured as a stand-alone
microcomputer with 1 k of ROM and 30 I/O lines. If the user needs more program or data memory, some of the I/O pins may be traded off as external address lines. Thus, the Z8S may also address up to an extra 3 k of external program or external data memory (or both for 6 external kilobytes). Programs that grow beyond these bounds are best served by the Z8. The Z8 and Z8S differ only in two pins, interrupt vectors, and some on-chip resources (memory, timer, UART, options).

Pin $\quad \mathrm{PO}_{0}-\mathrm{PO}_{7}, \mathrm{P1}_{\sigma}-\mathrm{P1}_{7}, \mathrm{P}_{2}-\mathrm{P}_{2}{ }_{7}, \mathrm{P}_{\boldsymbol{\sigma}}-\mathrm{P} 3_{5}$. I / O
Description Port Lines (Input/Outputs, TTL compatible). These 30 lines are divided into three 8 -bit I/O ports and one 6 -bit I/O port.
NOTE: Pin 4 may be bonded out as I/O port line P_{5} or register file back-up power supply Vmm at user option.
$\overline{\operatorname{AS}}$. Addrejs Strobe (output, active Low). Address Strobe is pulsed once for internal and external program fetches and external data memory transfers. The addresses for all external program or data memory transfers are valid at the trailing edge of $\overline{\text { AS. Under }}$ program control, $\overline{\mathrm{AS}}$ can be placed in the high-impedance state along with Ports 0 and 1, Data Strobe and Read/Write.
$\overline{\text { DS }}$. Data Strobe (output, active Low). Data Strobe is activated once for each external memory transfer.
EA. External Access (input, active High). Activating External Access forces all program fetches to come from

Figure 2. Pin Assignments
external memory. Port 1 and Port 0 (bits 0-3) forced into address/data mode and not available for I/O port operation.
INT. Interrupt (input, active Low). A high-to-low transition on INT generates an interrupt request.
R/W. Read/Write (output). R/W is Low when the Z8S is writing to external program or data memory.
XTAL1, XTAL2. Crystal 1, Crystal 2 (timebase input and output. These pins connect a series-resonant crystal (8 MHz maximum), LC network, RC network or an external single-phase clock (8 MHz maximum) to the on-chip clock oscillator and buffer.
$\overline{\text { RESET. Reset (input, active Low). }} \overline{\text { RESET }}$ initializes the Z8S. When RESET is deactivated, the Z8S begins program execution from internal program location 004_{H}.

Figure 3. Pin Functions

Architecture Z8S architecture is characterized by a flexible I/O scheme, an efficient register and address space structure and a number of ancillary features that are helpful in many applications.

Microcomputer applications demand powerful I/O capabilities. The Z8S fulfills this with 30 pins dedicated to input and output. These lines are grouped into three ports of eight lines each and one of 6 lines and are configurable under software control to provide timing, status signals, parallel I/O with or without handshake, and an address/data bus for interfacing external memory.

Because the multiplexed
address/data bus is merged with the I/O-oriented ports, the Z8S can assume many different memory and I/O configurations. These configurations range from a self-contained microcomputer to a microprocessor that can address 7 K of external memory.

The Z8S offers three basic address spaces to support this wide range of configurations: program memory (internal and external), data memory (external) and the register file (internal). The 75 byte random-access register file is composed of 60 generalpurpose registers, 4 I/O port registers, and 11 control and status registers.

Address
Spaces

Program Memory. The 12 -bit
program counter addresses 4 K bytes of program memory space. Program memory can be located in two areas: one internal and the other external (Figure 4). The first 1024 bytes consist of on-chip mask-programmed ROM. At addresses 1024 and greater, the Z8S executes external program memory fetches. Alternately, all 4 K bytes of program memory may be external.

The first 4 bytes of program memory are reserved for the interrupt vectors. These locations contain two 12 -bit vectors that correspond to the two available interrupts.
Data Memory. The Z8S can address 3 K bytes of external data memory beginning at locations 1024 (Figure 5). External data memory may be included with or separated from the external program memory space. $\overline{\mathrm{DM}}$, an optional I/O function that can be programmed to appear on pin P_{3}, is used to distinguish between data and program memory space.

Register File. The 75-byte register file includes four I/O port registers (ROR3), 60 general-purpose registers (R4-R63) and eleven control and status registers (R112-R127). These registers are assigned the address locations shown in Figure 6.

Z8S instructions can access registers directly or indirectly with an 8-bit address field. The Z8S allows fast 4-bit register addressing using the register pointer (one of the control registers). In the 4 -bit mode, the register file is divided into five working-register groups, each occupying sixteen contiguous locations, (Figure 7). The register pointer addresses the starting location of the active working-register group.
Stacks. The internal register file is used for the stack. A 6-bit stack pointer (Rl27) is used for the internal stack which resides within the 60 generalpurpose registers (R4-R63).

I/O
Ports

The Z8S has 30 lines dedicated to input and output. These lines are grouped into three ports of eight lines and one port of 6 lines and are configurable as input, output or address/data. Under software control, the ports can be programmed to provide address outputs, timing, status
signals, and parallel I/O with or without handshake. All ports have active pull-ups and pull-downs compatible with TTL loads.

In the following I/O port discussions, Port 1 is discussed before Port 0 because Port 1 outputs the lower eight address bits.

Figure 4. Program Memory Map

Figure 5. Data Memory Map

Figure 6. The Register File

Figure 7. The Register Pointer

Port 1

Port 1 can be used as a byte I/O port or as an address/data port for interfacing external memory.

In External Access mode, Port 1 has the lower eight bits of memory address Port 1

impedance state along with Port $0, \overline{\mathrm{AS}}$, $\overline{\mathrm{DS}}$ and $\mathrm{R} / \overline{\mathrm{W}}$, allowing the Z8S to share common resources in multiprocessor and DMA applications.

Port 0
Port O can be used as a nibble I/O port, or as an address/data port for interfacing external memory.

In External Access mode, $\mathrm{PO}_{0}-\mathrm{PO}_{3}$ has the upper four memory address bits at all times.

For external memory references, Port 0 provides address bits $A_{8}-A_{11}$ (lower nibble).

The upper nibble of Port 0 can be programmed independently as I/O while the lower nibble is used for addressing. When Port 0 nibble is

Port 0

defined as address bits, it can be set to the high-impedance state along with Port 1 and the control signals $\overline{A S}, \overline{\mathrm{DS}}$ and R / \bar{W}.

Port 2

Each bit of Port 2 can be programmed independently as an input or output.

Because all external memory addresses originate from Ports 0 and 1, Port 2 is always available for I/O operations. In addition, Port 2 can be configured to provide open drain outputs.

Port 2 may be placed under handshake control. In this configuration, Port 3 lines P_{0} and P_{4}

Port 2

are used as the handshake controls lines $\overline{D A V}$ and RDY.

Port 3
Port 3 lines are configured as 3 input lines and 3 output lines.

Port 3 provides the following control functions: handshake for Port 2 (DAV and RDY): timer input and output signals ($\mathrm{T}_{\text {IN }}$ and $\mathrm{T}_{\text {OUT }}$) and Data Memory Select ($\overline{\mathrm{DM}}$).

Port 3

Counter/ Timer

The Z8S contains an 8-bit programmable counter/timer (T_{1}), driven by its own 6 -bit programmable prescaler. The prescaler can be driven by internal or external clock sources.

The 6-bit prescaler divides the input frequency of the clock source by any number from 1 to 64 . The prescaler drives its counter, which decrements the value (1 to 256) that has been loaded into the counter. When the counter reaches the end of count, a timer interrupt request $-\operatorname{IRQ1}\left(\mathrm{T}_{1}\right)$ - is generated.

The counter can be started, stopped, restarted to continue, or restarted from the initial value. The counter can also be programmed to stop upon reaching zero (single-pass mode), or to automatically reload the initial value
and continue counting (modulo-n continuous mode). The counter, but not the prescaler, can be read any time without disturbing its value or count mode.

The clock source for T_{1} is userdefinable and can be the internal microprocessor clock (4 MHz maximum) divided by four, or an external signal input via Port 3. The Timer Mode register configures the external timer input as an external clock (1 MHz maximum), a trigger input that can be retriggerable or nonretriggerable, or as a gate input for the internal clock.

Port 3 line P_{4} also serves as a timer output ($\mathrm{T}_{\text {OUT }}$) through which T_{1} or the internal clock can be output.

Interrupts

The Z8S allows two different interrupts: external (INT pin goes to IRQO) and the counter/timer.

Z8S interrupts are vectored. When an interrupt request is granted, the Z8S enters an interrupt machine cycle that disables all subsequent interrupts,
saves the program counter and status flags, and branches to the program memory vector location reserved for that interrupt. This memory location and the next byte contain the 12 -bit address of the interrupt service routine for that particular interrupt request.

Addressing Modes

The following notation is used to describe the addressing modes and instruction operations as shown in the instruction summary.

IRR Indirect register pair or indirect working-register pair address
Irr Indirect working-register pair only
\mathbf{X} Indexed address
DA Direct address
RA Relative address

IM Immediate
R Register or working-register address
r Working-register address only
IR Indirect-register or indirect working-register address
Ir Indirect working-register address only RR Register pair or working register pair address
dst Destination location or contents
src Source location or contents
cc Condition code (see list)
@ Indirect address prefix
SP Stack pointer (control register 127)
PC Program counter
FLAGS Flag register (control register 124)
RP Register pointer (control register 125)
IMR Interrupt mask register (control register 123)

Assignment of a value is indicated by the symbol "-". For example,

$$
\mathrm{dst}-\mathrm{dst}+\mathrm{src}
$$

indicates that the source data is added to the destination data and the result is stored in the destination location. The notation "addr (n) " is used to refer to bit " n " of a given location. For example, dst (7)
refers to bit 7 of the destination operand.

Instruction

Formats

| OPC | |
| :--- | :--- | :--- |
| | |

One-Byte Instructions

Two-Byte Instructions
Three-Byte Instructions

Figure 4. Instruction Formats

Z8S Instruction Set

Note 1
These instructions have an identical set of addressing modes, which are encoded for brevity in this table. The higher opcode nibble is found in the instruction set table above. The lower nibble is expressed symbolically by a in the table above, and its value is found in the following table to the right of the applicable addressing mode pair.
For example, the opcode of an ADC instruction using the addressing modes r (destination) and lr (source) is 13 .

Addr Mode		Lower Opcode Nibble
dst	src	
r	r	2]
r	Ir	[3]
R	R	4]
R	IR	5
R	IM	6
IR	IM	7

R113 TMR Timer Mode Register ($7 l_{\text {H; Read/Write) }}$
 NTERNAL

EXTERNAL CLOCK INPUTT MODES $\begin{aligned} & \text { GATE INPUT }=01 \\ & \text { TRIGGER INPUT }\end{aligned}$ TRIGGER INPUT $=10$ (NONRETRIGGERABLE)
(RETRIGGERABLE)

R114 T1
Counter Timer 1 Register
(72H; Read/Write)

T1 INITIAL VALUE (WHEN WRITTEN) (RANGE 1-256 DECIMAL O1-00 HEX)
T_{1} CURRENT VALUE (WHEN READ)

R115 PRE1

Prescaler 1 Register
(73_{H}; Write Only)

R118 P2M

 Port 2 Mode Register ($76 \mathrm{H} ;$ Write Only)\section*{| D_{7} | D_{6} | D_{5} | D_{4} | D_{3} | D_{2} | D_{1} | D_{0} |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |}

22_{0} P2, I/O DEFINITION
O DEFINES BIT AS OUTPUT
1 DEFINES BITAS INPUT

R119 P3M
Port 3 Mode Register (77_{H}; Write Only)

R120 PO1M
Port 0 and 1 Mode Register
(78H; Write Only)

NOT USED-
$\mathrm{PO}_{4}-\mathrm{PO}$, MODE
$\begin{aligned} \text { OUTPUT } & =00 \\ \text { INPUT } & =01\end{aligned}$
not used \longrightarrow

R124 Flags

Flag Register
(7CH; Read/Write)

R125 RP
Register Pointer
(7D ${ }_{H}$; Read/Write)

REGISTER POINTER
DONT CARE
-dont care
DON T CARE
${ }^{1} 5$ \qquad
-DONT CARE
rs \qquad - DONT CARE

R123 IMR Interrupt Mask Register
(7BH; Read/Write)

R127 SPL

Stack Pointer
($7 \mathrm{~F}_{\mathrm{H}}$; Read/Write)

Absolute Maximum Ratings	Voltages on all inputs and outputs with respect to GND -0.3 V to +7.0 V Operating Ambient Temperature. $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$				Stresses greater than those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; operation of the device at any condition above those indicated in the operational sections of these specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.		
Standard Test Conditions	The characteristics below apply for the following standard test conditions, unless otherwise noted. All voltages are referenced to GND. Positive current flows into the reference pin. Standard conditions are as follows:				$\begin{aligned} & \square+4.75 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq+5.25 \mathrm{~V} \\ & \square \mathrm{GND}=0 \mathrm{~V} \\ & \square 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C} \end{aligned}$		
DC Charac teristics	Symbol	1 Parameter	Min	Max	Unit	Condition	Notes
	V_{CH}	Clock Input High Voltage	3.8	$\mathrm{V}_{\text {CC }}$	V	Driven by External Clock Generator	
	$\mathrm{V}_{C L}$	Clock Input Low Voltage	-0.3	0.8	V	Driven by External Clock Generator	
	V_{IH}	Input High Voltage	2.0	V_{CC}	V		
	$\mathrm{V}_{\text {IL }}$	Input Low Voltage	-0.3	0.8	V		
	$\mathrm{V}_{\text {RH }}$	Reset Input High Voltage	3.8	$\mathrm{V}_{\text {CC }}$	V		
	$\mathrm{V}_{\text {RL }}$	Reset Input Low Voltage	-0.3	0.8	V		
	V_{OH}	Output High Voltage	2.4		V	$\mathrm{I}_{\mathrm{OH}}=-250 \mu \mathrm{~A}$	
	$\mathrm{v}_{\text {OL }}$	Output Low Voltage		0.4	V	$\mathrm{I}_{\mathrm{OL}}=+2.0 \mathrm{~mA}$	
	$\mathrm{I}_{\text {IL }}$	Input Leakage		± 10	$\mu \mathrm{A}$	$\mathrm{OV} \leq \mathrm{V}_{\text {IN }} \leq+5.25 \mathrm{~V}$	
	$\mathrm{I}_{\text {OL }}$	Output Leakage		± 10	$\mu \mathrm{A}$	$\mathrm{OV} \leq \mathrm{V}_{\text {IN }} \leq+5.25 \mathrm{~V}$	
	$\mathrm{I}_{\text {IR }}$	Reset Input Current		-50	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=+5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{RL}}=0 \mathrm{~V}$	
	I_{CC}	$\mathrm{V}_{C C}$ Supply Current		180	mA	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}$	
	$\mathrm{I}_{\text {MM }}$	$\mathrm{V}_{\text {MM }}$ Supply Current		10	mA	Power Down Mode	
	$\mathrm{V}_{\text {MM }}$	Backup Supply Voltage	3.0	V_{CC}	V	Power Down Mode	

Test Load Circuits

Test Load 1

Test Load 2

External Clock Interface Circuit

Handshake Timing	Symbol	Parameter	Min	Max	Unit	Condition
	TsDI(DA)	Data In Setup Time	0		ns	
	ThDA(DI)	Data In Hold Time	230		ns	
	TwDA	Data Available Width	175		ns	Input Handshake Test Load 1
	TdDAL(RY)	Data Available Low to Ready Delay Time	20	175	ns	Input Handshake Test Load 1
			0		ns	Output Handshake Test Load 1
	TdDAH(RY)	Data Available High to Ready Delay Time		150	ns	Input Handshake Test Load 1
			0		ns	Output Handshake Test Load 1
	TdDO(DA)	Data Out to Data Available Delay Time	50		ns	Test Load 1
	TdRY(DA)	Ready to Data Available Delay Time	0	205	ns	Test Load 1

Output Handshake

Ordering Information	Part Number	Temperature Range	Number of Pins	Package	Description
	Z8S-01 MCC PS	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	40	Plastic	8-Bit Single-Chip Microcomputer Circuit
	Z8S-01 MCC CS	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	40	Ceramic	8-Bit Single-Chip Microcomputer Circuit

Note: The ordering procedure for the Z8S-01 MCC involves transferring the ROM code to Synertek. The details of this procedure are available from your Synertek Regional Sales Office.

Package Availability 40 Pin Plastic 40 Pin Ceramic

Features

- "ROMless" version of the Z8601 Single-Chip

Microcomputer, capable of Addressing up to 128 K Bytes of External Memory Space

- Up to 24 Programmable I/O Lines
- 40-pin Package, Single +5 V supply, all Pins TTL Compatible

Description

The Z8681 MCU is the "ROMless" version of the Z8601 single-chip microcomputer and offers all the outstanding features of the Z8 Family architecture. Using the Z8681, it is possible to design a powerful microprocessor system incorporating a minimum number of support devices.
Port 1 is configured to function as a multiplexed Address/ Data bus ($A D_{0}-A D_{7}$), while Port 0 is software configurable to output address bits $A_{8}-A_{15}$. This provides for program
memory and data memory space of up to 64 K bytes each. Located on-chip are 144 bytes of RAM, organized as a register file of 124 general-purpose registers, 16 control and status registers, and three I/O port registers. (Port 1 cannot be utilized as an I/O register.) This file is divided into groups of working registers in such a way that short format instructions may be used to quickly access a register within a certain group.

Pin Configuration

Figure 1. Pin Functions

Figure 2. Pin Assignments

Functional Description

Register File. The internal register organization of the Z8681 centers around a 144 -byte random-access register file composed of 124 general-purpose registers, 16 control registers, and the three I/O port registers. Any general-purpose register can be an accumulator, address pointer, index register, or part of the internal stack. The register file is divided into nine groups of 16 working registers. A register pointer uses shortformat instructions to quickly access any one of the nine groups, resulting in fast and easy task-switching.
1/O Ports. The I/O ports (Ports 0, 2, and 3) are software configurable as input, output, or additional address lines. These ports can also provide timing, status signals, and serial or parallel I/O (with or without handshake).

1/O port space is mapped into the register file, creating an efficient and convenient means of moving data.

Interrupts. The Z8681 can respond to six separate interrupts from eight sources. The interrupts are maskable and prioritized by software control, thus allowing greater design flexibility.
Using vectored interrupts, control is automatically passed to the appropriate service routine. The interrupts are organized as four external lines and four internal status signals. The internal interrupts control the serial port handshake and the two counter/timers.
UART. The Z8681 also offers the serial I/O capability of interfacing to asynchronous data communications. The onchip counter (TO) is used to supply the baud rate for the serial data transfer. The UART is capable of transferring data at a rate of up to $62.5 \mathrm{~K} \mathrm{~b} / \mathrm{s}$.

Counter/Timers. Also on-chip are two 8-bit programmable counter/timers (TO and T 1), each driven by its own 6 -bit programmable prescaler. Both counter/timers can operate independently of the processor instruction sequence, thereby unburdening the program from such time-critical operations as event-counting or elapsed-time calculations. The counters can be started, stopped, continued, or restarted from the initial value by program control.

Instruction Set for the $\mathbf{Z 8 6 8 1}$

The basic instruction set for the $\mathbf{Z 8 6 8 1}$ consists of 47 instruction types and utilizes seven addressing modes. The instructions can operate on several types of data elements, including individual bits, 4-bit BCD characters, bytes, or words.
All 124 general-purpose registers can be used as accumulators, address pointers, index registers, or as internal stack, resulting in fast data manipulation for real-time applications. The internal pipelining of instructions dramatically increases throughput by allowing instruction fetches during the previous instruction execution cycles.

Z8681 Applications

The Z 8681 is a Z-BUS-compatible device and can be interfaced to various Z-BUS peripherals such as the Z-CIO, Z-SCC, or FIO. Due to the flexibility of Port 0 and the data memory select feature, the Z8681 can also support a great variety of memory configurations. Figures 3 and 4 illustrate two design approaches using the Z 8681 .

Figure 3. 28681 Interfacing to External Memory.

Figure 4. Z8681 Interfacing to Memory-Mapped I/O.

Ordering Information

Product Number	Package/ Temp.	Speed	Description	Product Number	Package/ Temp.	Speed	Description
Z8681	CE	8.0 MHz	Z8 MCU (ROMIess, 40-pin)	Z8681	DS	8.0 MHz	Z8 MCU (ROMless, 40-pin)
Z8681	CS	8.0 MHz	Same as above	Z8681	PE	8.0 MHz	Same as above
Z8681	DE	8.0 MHz	Same as above	Z8681	PS	8.0 MHz	Same as above

Notes: $\mathrm{C}=$ Ceramic, $\mathrm{D}=$ Cerdip, $\mathrm{P}=$ Plastic; $\mathrm{E}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{S}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.

UPC Universal Peripheral Controller

Features

- Complete Slave Microcomputer, for Distributed Processing Use
- Unmatched Power of $\mathbf{Z 8}$ Architecture and Instruction Set
- Three Programmable I/O Ports, Two with Optional 2-Wire Handshake
- Six Levels of Priority Interrupts from Eight Sources: Six from External Sources and Two from Internal Sources
- Two Programmable 8-bit Counter/Timers each with a 6 -bit Prescaler. Counter/Timer TO is Driven by an Internal Source, and Counter/Timer T1 can be Driven by Internal or External Sources. Both Counter/Timers are Independent of Program Execution.
- 256-byte Register File, Accessible by both the Master CPU and UPC, as Allocated in the UPC Program
- 2 K bytes of On-chip ROM for Efficiency and Versatility

Description

The SY8590 Universal Peripheral Controller (UPC) is an intelligent peripheral controller for distributed processing applications (Figure 3). The UPC unburdens the host processor by assuming tasks traditionally done by the host (or by added hardware), such as performing arithmetic, translating or formatting data, and controlling I/O devices. Based on the Z8 microcomputer architecture and instruction set, the UPC contains 2 K bytes of internal program ROM, a 256-byte register file, three 8 -bit I/O ports, and two counter/timers.

The UPC offers fast execution time, an effective use of memory, and sophisticated interrupt, I/O, and bit manipulation. Using a powerful and extensive instruction set combined with an efficient internal addressing scheme, the UPC speeds program execution and efficiently packs program code into the on-chip ROM.

An important feature of the UPC is an internal register file containing I/O port and control registers accessed both by the UPC program and indirectly by its associated master CPU. This architecture results in both byte and programming efficiency, because UPC instructions can operate directly on I/O data without moving it to and from an accumulator. Such a structure allows the user to allocate as many general purpose registers as the application requires for data buffers between the CPU and peripheral devices. All generalpurpose registers can be used as address pointers, index registers, data buffers, or stack space.
The register file is logically divided into 16 groups, each consisting of 16 working registers. A Register Pointer is used in conjunction with short format instructions, resulting in tight, fast code and easy task switching.

Pin Configuration

Figure 1. SY8590 UPC Pin Functions

Figure 2. SY8590 UPC Pin Assignments

[^22]Communication between the master CPU and the register file takes place via one group of 19 interface registers addressed directly by both the master CPU and the UPC, or via a block transfer mechanism. Access by the master CPU is controlled by the UPC to allow independence between the master CPU and UPC software.
The UPC has 24 pins that can be dedicated to I/O functions. Grouped logically into three 8 -line ports, they can be programmed in many combinations of input or output lines, with or without handshake, and with push-pull or open-drain outputs. Ports 1 and 2 are bit-programmable; Port 3 has four fixed inputs and four outputs.
To relieve software from coping with real-time counting and timing problems, the UPC has two 8-bit hardware counter/ timers, each with a fixed divide-by-four, and a 6-bit programmable prescaler. Various counting modes may be selected.

In addition to the 40-pin standard configuration, the UPC is available in four special configurations:

- A 64-pin RAM development version with external interface for up to 4 K bytes of RAM and 36 bytes of internal ROM permitting down-loading from the master CPU.
- A Protopack RAM version with a socket for up to 2 K bytes of RAM, with 36 bytes of internal ROM permitting downloading from the master CPU.
- A 64-pin ROM development version with external interface for up to 4 K bytes of ROM and no internal ROM.
- A Protopack ROM version with a socket for 2K bytes of ROM and no internal ROM.

This range of versions and configurations makes the UPC compatible with most system peripheral device control considerations.

Figure 3. Functional Block Diagram

Pin Description

$\overline{\mathbf{A}} / \mathbf{D}$. Address/Data (input). A Low on this pin defines information on the data bus as an address. A High defines the information as data.
$\overline{\mathbf{C S}}$. Chip Select (input, active Low). A Low enables the UPC to accept address or data information from the master CPU during a write cycle or to transmit data to the master CPU during a read cycle. This line is usually generated from higher bits of the address lines.
$\mathrm{DB}_{\mathbf{0}}-\mathrm{DB}_{7}$. Data Bus (bidirectional). This bus is used to transfer address and data information between the master CPU and the UPC.
$\mathrm{P1}_{0}-\mathrm{P} 1_{7}, \mathrm{P}_{\mathbf{0}}-\mathrm{P}_{7}, \mathrm{P3}_{0}-\mathrm{P} 3_{7} . / / O$ Port Lines (bidirectional, TTL compatible). These 24 lines are divided into three 8 -bit I/O ports and may be configured in the following ways under program control:
$\mathbf{P 1}{ }_{\mathbf{0}}-\mathbf{P 1} \mathbf{7}_{7}$. Port 1 (input/output - as output it can be pushpull or open-drain). Bit programmable Parallel I/O.
$\mathbf{P 2}_{\mathbf{0}}-\mathbf{P} \mathbf{2}_{7}$. Port 2 (input/output - as output it can be pushpull or open-drain). Bit programmable Parallel I/O.
$\mathbf{P 3}_{\mathbf{0}}-\mathbf{P} 3_{7}$. Port 3 (four inputs, four outputs). Parallel I/O, handshake control, timer 1/O, or interrupt control.
PCLK. Clock (input). TTL-compatible clock input, 4 MHz maximum. This signal does not need to be related to the master CPU clock.
$\overline{\mathbf{R D}}$. Read (input, active Low). A Low enables the master CPU to read information from the UPC. Raising the voltage on this pin above $V_{D D}$ will force the UPC into test mode.
$\overline{\text { WAIT. Wait (output, active Low, open-drain). When the CPU }}$ accesses the UPC register file, this signal requests the master CPU to wait until the UPC can complete its part of the transaction.
$\overline{\text { WR }}$. Write (input, active Low). A Low on this pin enables the master CPU to write information to the UPC. A simultaneous Low on $\overline{R D}$ and $\overline{W R}$ resets the UPC. It is held in reset as long as $\overline{W R}$ is Low.

Functional Description

Address Space. On the 40-pin UPC, all address space is committed to on-chip memory. There are 2048 bytes of maskprogrammed ROM and 256 bytes of register file. I/O is memory-mapped to three registers in the register file. Only the Protopack and 64 -pin versions of the UPC can access external program memory. See the section entitled "Special Configurations" for complete descriptions of the Protopack and 64-pin versions.

Program Memory. Figure 4 is a map of the 2K on-chip program ROM. Even though the architecture allows addresses from 0 to 4 K behavior of the device above program address 2047 (7FFH) is not defined. The first 12 bytes of program memory are reserved for the UPC interrupt vectors. For the Protopack and 64-pin versions, the address space is extended to 4096 bytes. In the RAM versions, addresses 1 CH through 2 FH are reserved for on-chip ROM.

Register File. This 256-byte file includes three I/O port registers ($1-3 \mathrm{H}$), 234 general-purpose registers ($6-\mathrm{EEH}$), and 19 control, status and special I/O registers $(0 \mathrm{H}, 4 \mathrm{H}, 5 \mathrm{H}$, and FO-FFH). The functions and mnemonics assigned to these register address locations are shown in Figure 5. Of the 256 UPC registers, 19 can be directly accessed by the master CPU; the others are accessed indirectly via the block transfer mechanism.
$\left.\begin{array}{l}\text { LOCATION OF } \\ \text { FIRST BYTE OF } \\ \text { INSTRUCTION } \\ \text { EXECUTED AFTER } \\ \text { RESET }\end{array}\right)$

Figure 4. Program Memory Map

LOCATION		IDENTIFIER (UPC Sida)
ffr	STACK POINTEA	sp
FEH	MASTER CPU INTERRUPT CONTROL	mic
FDh	REGISTER POINTER	RP
FCH	PROGRAM CONTROL FLAGS	flags
FBH	UPC INTERRUPT MASK REGISTER	IMR
FAH	UPC INTERRUPT REQUEST REOISTER	iRO
$\mathrm{F9H}$	UPC INTERRUPT PRIORITY REQISTER	IPR
$\mathrm{F8H}$	PORT 1 MODE	PIM
F7H	PORT 3 MODE	P3M
F6H	PORT 2 MODE	P2M
F5H	To PRESCALER	PREO
F4H	TIMERICOUNTER 0	T_{0}
F3H	T, PRESCALER	PRE1
F2H	TIMER/COUNTER 1	T_{1}
FiH	TIMER MODE	tmp
FOH	MASTER CPU INTERRUPT VECTOR REG.	miv
EFH	GENERAL-PURPOSE REGISTERS	
${ }^{64}$		
5 H	DATA INDIRECTION REGISTER	dino
${ }^{4 H}$	LIMIT COUNT REGISTER	LC
${ }^{3 H}$	PORT 3	P3
2 H	PORT 2	P2
${ }^{1 H}$	PORT 1	P1
OH	DATA TRANSFER CONTROL REGISTER	DTC

Figure 5. Register File Organization

Functional Description (Cont.)

The I/O port and control registers are included in the register file without differentiation. This allows any UPC instruction to process I/O or control information, thereby eliminating the need for special I/O control instructions. All general-purpose registers can function as accumulators, address pointers, or index registers. In instruction execution, the registers are read when they are defined as sources and written when defined as destinations.

UPC instructions may access registers directly or indirectly using an 8-bit address mode or a 4-bit address mode and a Register Pointer. For the 4 -bit addressing mode, the file is divided into 16 working register groups, each occupying 16 contiguous locations (Figure 6). The Register Pointer (RP) addresses the starting point of the active working-register group, and the 4-bit register designator supplied by the instruction specifies the register within the group. Any instruction altering the contents of the register file can also alter the Register Pointer. The UPC instruction set has a special Set Register Pointer (SRP) instruction for initializing or altering the pointer contents.

Stacks. An 8-bit Stack Pointer (SP), register R255, is used for addressing the stack, residing within the 234 generalpurpose registers, address location 6 H through EFH. PUSH and POP instructions can save and restore any register in the register file on the stack. During CALL instructions, the Program Counter is automatically saved on the stack. During UPC interrupt cycles, the Program Counter and the Flag register are automatically saved on the stack. The RET and IRET instructions pop the saved values of the Program Counter and Flag register.
Ports. The UPC has 24 lines dedicated to input and output. These are grouped into three ports of eight lines each and can be configured under software control as inputs, outputs or

Figure 6. Register Pointer Mechanism
special control signals. They can be programmed to provide Parallell/O with or without handshake and timing signals. All outputs can have active pullups and pulldowns, compatible with TTL loads. In addition, they may be configured as opendrain outputs.
Port 1. Individual bits of Port 1 can be configured as input or output by programming Port 1 Mode register (P1M) F8H. This port is accessed by the UPC program as general register 1 H . It is written by specifying address 1 H as the destination of any instruction used to store data in the output register. The port is read by specifying address 1 H as the source of an instruction.

Port 1 may be placed under handshake control by programming Port 3 Mode register (P3M) F7H. This configures Port 3 pins $\mathrm{P3}_{3}$ and $\mathrm{P3}_{4}$ as handshake control lines $\overline{\mathrm{DAV}}_{1}$ and RDY 1 for input handshake, or RDY 1 and $\overline{\mathrm{DAV}}_{1}$ for output handshake, as determined by the direction (input or output) assigned to bit 7 of Port 1. The Port 3 Mode register also has a bit that programs Port 1 for open-drain output.

Port 2. Individual bits of Port 2 can be configured as inputs or outputs by programming Port 2 Mode register (P2M) F6H. This port is accessed by the UPC program as general register 2 H , and its functions and methods of programming are the same as those of Port 1. Port 3 pins $\mathrm{P} 3_{1}$ and P_{6} are the handshake lines $\overline{\mathrm{DAV}}_{2}$ and RDY_{2}, with the direction (input or output) determined by the state of bit 7 of the port. The Port 3 Mode register also has a bit used to program Port 2 for open-drain output.

Port 3. This port can be configured as I/O or control lines by programming the Port 3 Mode register. Port 3 is accessed as general register 3 H . The directions of the eight data lines are fixed. Four lines, P_{0} through $\mathrm{P3}_{3}$, are inputs, and the other four, P_{4} through $\mathrm{P} 3_{7}$, are outputs. The control functions performed by Port 3 are listed in Table 1.

Function	Line	Direction	Signal
Handshake	$\left[\mathrm{P} 3_{1}\right.$	In	$\overline{\mathrm{DAV}}_{2} / \mathrm{RDY}_{2}$
	P_{3}	In	$\overline{\mathrm{DAV}}_{1} / \mathrm{RDY}_{1}$
	P 34	Out	$\mathrm{RDY}_{1} / \overline{\mathrm{DAV}}_{1}$
	$\mathrm{P}^{\text {3 }} 6$	Out	$\mathrm{RDY}_{2} / \overline{\mathrm{DAV}}_{2}$
UPC Interrupt	$\left[\mathrm{P} 3_{0}\right.$	In	IRO_{3}
Request*	$\mathrm{P} 3_{1}$	In	IRO_{2}
	P_{3}	In	IRO_{1}
Counter/Timer	$-\mathrm{P} 3_{1}$	In	$\mathrm{T}_{7 \mathrm{~N}}$
	PP_{6}	Out	Tout
Master CPU	P_{5}	Out	$\overline{\text { INT }}$
		In	INTACK
	P_{3}	In	IEI
	PP_{7}	Out	IEO
Test Mode	P35	Out	$\overline{\mathrm{A}} / \mathrm{D}$

[^23]Table 1. Port 3 Control Functions

Functional Description (Cont.)

Counter/Timers. The UPC contains two 8-bit programmable counter/timers, each driven by an internal 6-bit programmable prescaler.

The T1 prescaler can be driven by internal or external clock sources. The TO prescaler is driven by an internal clock source. Both counter/timers operate independently of the processor instruction sequence to relieve the program from time-critical operations like event counting or elapsed-time calculation. TO Prescaler register (PREO) F5H and T1 Prescaler register (PRE1) F3H can be programmed to divide the input frequency of the source being counted by any number from 1 to 64 . A counter register (F 2 H or F 4 H) is loaded with a number from 1 to 256. The corresponding counter is decremented from this number each time the prescaler reaches end-of-count. When the count is complete, the counter issues a timer interrupt request; IRQ_{4} for TO or IRO_{5} for T1. Loading either counter with a number (n) results in the interruption of the UPC at the nth count.

The counters can be started, stopped, restarted to continue, or restarted from the initial value. They can be programmed to stop upon reaching end-of-count (Single-Pass mode) or to automatically reload the initial value and continue counting (Modulo-n Continuous mode). The counters and prescalers can be read at any time without disturbing their values or changing their counts. The clock sources for both timers can be defined as any one of the following:

- UPC internal clock (4 MHz maximum) divided by four
- External clock input to Counter/Timer T1 via P3 1 (1 MHz maximum)
- Retriggerable trigger input for the UPC internal clock divided by four
- Nonretriggerable trigger input for the UPC internal clock divided by four
- External gate input for the UPC internal clock divided by four

Interrupts. The UPC allows six interrupts from eight different sources as follows:

- Port 3 lines $\mathrm{P} 3_{0}, \mathrm{P} 3_{2}$, and $\mathrm{P} 3_{3}$
- The master CPU(3)
- The two counter/timers

These interrupts can be masked and globally enabled or disabled using Interrupt Mask Register (IMR) FBH. Interrupt Priority Register (IPR) F9H specifies the order of their priority. All UPC interrupts are vectored.
Table 2 lists the UPC's interrupt sources, their types, and their vector locations in program ROM. Interrupt Request IRO_{6} is dedicated to master CPU communications. Interrupt Requests $I \mathrm{RQ}_{1}, I \mathrm{IRQ}_{2}$, and IRQ_{3} are generated on the falling transitions of external inputs P_{3}, and $\mathrm{P} 3_{1}$, and $\mathrm{P} 3_{0}$. Interrupt Requests $I \mathrm{RQ}_{4}$ and $I \mathrm{RQ}_{5}$ are generated upon the timeout of the UPC's two counter/timers. When an interrupt request is granted, the UPC enters an interrupt machine cycle. This cycle disables all subsequent interrupts, saves the Program Counter and Status Flags, and branches to the program memory vector location reserved for that interrupt. This memory location and the next byte contain the 16 -bit address of the interrupt service routine for that particular interrupt request.
The UPC also supports polled systems. To accommodate a polled structure, any or all of the interrupt inputs can be masked and the Interrupt Request register polled to determine which of the interrupt requests needs service.
Following any hardware reset operation, an El instruction must be executed to enable the setting of any interrupt request bit in the IRQ register. Interrupts must be disabled prior to changing the content of either the IPR (F9H) or the IMR (FBH). DI is the only instruction that should be used to globally disable interrupts.

Name	Source	Vector Location	Comments
IRO_{0}	EOM, XERR, LERR	0,1	Internal (RO Bits 0, 1, 2)
IRO_{1}	$\overline{\mathrm{DAV}}_{1}, \mathrm{IRG}_{1}$	2,3	External (P_{3}) \downarrow Edge Triggered
IRO_{2}	$\overline{\mathrm{DAV}}_{2}, \mathrm{IRO}_{2}, \mathrm{~T}_{\text {IN }}$	4,5	External (P_{1}) \mid Edge Triggered
IRO_{3}	IRO_{3}, IEI	6,7	External (P_{3}) \mid Edge Triggered
IRO_{4}	T0	8,9	Internal
IRO_{5}	T1	10,11	Internal

Table 2. Interrupt Types, Sources, and Vector Locations

Functional Description (Cont.)

Master CPU Register File Access. There are two ways in which the master CPU can access the UPC register file: direct access and block access.

Direct Access. Three UPC registers - the Data Transfer Control (OH), the Master Interrupt Vector (FOH), and the Master Interrupt Control (FEH) - are mapped directly into the master CPU address space. The master CPU accesses these registers via the addresses shown in Table 3.
The master CPU also has direct access to 16 registers known as the DSC (Data, Status, Command) registers. The DSC registers are numbered 0 through F (DSCO-DSCF). These registers can be any 16 contiguous register file registers beginning on a 16-byte boundary. The base address of the DSC register group is designated by the IRP (I/O Register Pointer), which is bits $\mathrm{D}_{4}-\mathrm{D}_{7}$ of the Data Transfer Control register (OH). Figure 7 shows how the register address is made up of the 4-bit IRP field, concatenated with the low order 4-bits of the address from the master CPU.
Block Access. The master CPU may transmit or receive blocks of data via address xxx 11111 . When the master CPU accesses this address, the UPC register pointed to by the Data Indirection register is read or written. The Data Indirection register is incremented, and the Limit Count register is decremented, for example, when the master CPU issues a read or write to address xxx11111 while the Data Indirection register contains the value 33 H . The operation causes register 33 H to be

Figure 7. DSC Register Addressing Scheme
read or written and the Data Indirection register to be incremented to 34 H . This scheme is well suited to Block $1 / 0$ Instructions and allows the master CPU to efficiently read or write a block of data to or from the UPC.
The Limit Count register (04 H) is decremented and is used to control the number of bytes to be transferred by master CPU block accesses. If the master CPU attempts a read or write to the UPC after the Limit Count register reaches 0 , the access is not completed, the LERR bit $\left(D_{2}\right)$ of the Data Transfer Control register is set (indicating a limit error), and the LERR error causes an IRO_{0} interrupt request.
The IRP field of the Data Transfer Control register, the Data Indirection register, and the Limit Count register are not directly accessible to the master CPU and therefore must be set by the UPC. This allows the UPC to protect itself from master CPU errors and frees the master CPU from tracking the UPC's internal data layout.

UPC Address		Identifier	Address
Decimal	Hex		
0	OH	DTC	xxx11000
5	5H	DIND	
@ $5^{* *}$	@ ${ }^{* *}$		xxx11111
240	FOH	MIV	xxx10000
254	FEH	MIC	xxx11110
*n		DSCO	xxx00000
$n+1$		DSC1	xxx00001
$n+2$		DSC2	xxx00010
$\mathrm{n}+3$		DSC3	xxx00011
$n+4$		DSC4	xxx00100
$n+5$		DSC5	xxx00101
$n+6$		DSC6	xxx00110
$\mathrm{n}+7$		DSC7	xxx00111
$\mathrm{n}+8$		DSC8	xxx01000
$n+9$		DSC9	xxx01001
$n+10$		DSCA	xxx01010
$n+11$		DSCB	xxx01011
$n+12$		DSCC	xxx01100
$n+13$		DSCD	xxx01101
$n+14$		DSCE	xxx01110
$n+15$		DSCF	xxx01111

$x=$ don't care
${ }^{*} n$ is the value in the IRP $\times 16$
${ }^{* *}$ Master CPU accesses the register address in Register 5.

Table 3. Master CPU/UPC Register Map

Special Configurations

There are two Protopack and two 64-pin versions of the UPC. These versions are identical to the 40-pin UPC with the following exceptions:
-. Internal ROM is totally omitted from the 64-pin development and ROM Protopack versions

- All but 36 bytes of internal ROM are omitted from the 64-pin RAM and Protopack RAM versions
- The memory address and data lines are buffered and brought out to external pins or to the socket on the Protopack
- Control lines for the external memory are also provided

The 64-pin version of the UPC allows the user to prototype the system in hardware with an actual UPC device and to develop the code intended to be mask programmed into the on-chip ROM of the 40-pin UPC for the production system. The 64-pin or Protopack RAM versions of the UPC are extremely versatile parts. Memory space can be extended to 4 K bytes on the 64-pin version by using external RAM/ROM for all but 36 bytes of the UPC's memory space. This memory can then be down-loaded from the master CPU using a bootstrap program stored in the 36 bytes ($\mathrm{C}-2 \mathrm{~F}$). Figure 8 is a memory map for the 64-pin RAM version.

Figure 8. UPC RAM Version Memory Map

64-Pin and Protopack Pin Functions. Forty of the pins on the 64 -pin and Protopack versions have functions identical to those of the 40 -pin version. The remaining 24 pins have additional functions described below. (Figures 9 through 11 show the 64-pin and Protopack versions' pin functions and pin assignments.)
$\mathbf{A}_{0}-\mathbf{A}_{11}$. Program Memory Address Lines (output). These lines are identical in all 64-pin and RAM versions in the Protopack. They are used to address 4 K bytes of external UPC memory.
$\mathbf{D}_{\mathbf{0}}-\mathbf{D}_{7}$. Program Data (Input). Data is read in from the external memory on these lines. The RAM version also writes external memory through this bus.
IACK. Interrupt Acknowledge (output, active High). This signal is active whenever an internal UPC interrupt cycle is in process.

Figure 9. SY8591/SY8592 UPC Pin Functions

Special Configurations (Cont.)

$\overline{\text { MAS. Memory Address Strobe (output, active Low). This }}$ address strobe is pulsed once for each memory fetch to interface with quasistatic RAM.

	SY8593 SY8594 UPC		
$\mathrm{P}_{3}{ }_{1} \sqrt{1}$		64	+ 5 V
${ }^{8} 3_{6}{ }^{2}$		63	Prclk
$\mathrm{P}_{27} \mathrm{Cl}_{3}$		62	$\mathrm{P}^{\text {P7IIEO }}$
${ }^{P 26}{ }_{6}{ }^{4}$		61	$\square \mathrm{P} 301 \mathrm{EI}$
$\mathrm{P}_{25} \mathrm{~S}_{5}$		60	P3sint
$\mathrm{P}_{4} \mathrm{C}_{6}$		59	$\square \mathrm{P}$ ת IINTACK
$\mathrm{P}_{2} \mathrm{C}$		58	$\overline{\mathrm{RD}}$
$\mathrm{P}_{2}{ }^{-8}$		57	$\square \overline{\text { WR }}$
$\mathrm{P} 214^{1} 9$		56	万̄d
$\mathrm{P} 20^{0} 10$		55	$\square \overline{\text { cs }}$
$\mathrm{P3}_{3}{ }_{11}$		54	WAIT
P34 ${ }^{\text {P }} 12$		53	$\square \mathrm{DB}_{7}$
P1, 13		52	${ }^{\text {DB6 }}$
P16 14		51	DB_{5}
P15 15		50	${ }^{\text {DB4 }}$
P14. 16		49	DB_{3}
$\mathrm{P}_{13}{ }_{17}$		48	GND
$\mathrm{P}_{12}{ }_{18}$		47	DB_{2}
P1, 19		46	DB_{1}
$\mathrm{Pr}_{10}{ }^{20}$		45	DB_{0}
$\mathrm{D}_{7} \mathrm{O}_{21}$		44	SYNC
$\mathrm{D}_{6} \square^{22}$		43	$\square \overline{\text { MAS }}$
$\mathrm{D}_{5}{ }^{23}$		42	MDS
$\mathrm{D}_{4}{ }^{24}$		41	mr/wilack
$\mathrm{A}_{0}{ }^{25}$		40	D_{0}
$\mathrm{A}_{1} \square^{26}$		39	\square_{1}
$\mathrm{A}_{2}{ }^{27}$		38	$1 \mathrm{D}_{2}$
$\mathrm{A}_{3}{ }^{28}$		37	$\square \mathrm{D}_{3}$
$\mathrm{A}_{4} 29$		36	A_{11}
$\mathrm{A}_{5}{ }^{30}$		35	A_{10}
$\mathrm{A}_{6}{ }^{31}$		34	$\mathrm{I}^{\prime} 9$
$\mathrm{A}_{7} \square^{32}$		33	A_{B}

Figure 10. SY8591/SY8592 UPC Pin Assignments

Addressing Modes

The following notation is used to describe the addressing modes and instruction operations as shown in the instruction summary.

R	Register or working-register address
\mathbf{r}	Working-register address only
IR	Indirect-register or indirect working-register address
Ir	Indirect working-register address only
RR	Register pair or working-register pair address
IRR	Indirect register pair or indirect working-register pair
	address
Irr	Indirect working-register pair only
\mathbf{X}	Indexed address
DA	Direct address
RA	Relative address
IM	Immediate

$\overline{\text { MDS. }}$. Memory Data Strobe (output, active Low). This signal is Low during an instruction fetch or memory write.
MR/ $\overline{\mathbf{W}}$. Memory Read/Write (output RAM versions only). This signal is High when the UPC is fetching an instruction and Low when it is loading external memory.
$\overline{\text { SYNC. Instruction Sync (output, active Low). This signal is }}$ Low during the clock cycle just preceding an opcode fetch.

$$
\text { *SOCKET FOR } 2716 \text { EPROM }(2 K \times 8) \text { OR RAM }
$$

Figure 11. SY8593/SY8594 UPC Protopack Pin Assignments

Additional Symbols

dst Destination location or contents
src Source location or contents
cc Condition code (see list)
@ Indirect address prefix
SP Stack Pointer (control register FFH)
PC Program Counter
FLAGS Flag register (control register FCH)
RP Register Pointer (control register FDH)
IMR Interrupt Mask register (control register FBH)
Assignment of a value is indicated by the symbol " \leftarrow ". For example,

$$
\mathrm{dst}-\mathrm{dst}+\mathrm{src}
$$

indicates that the source data is added to the destination data and the result is stored in the destination location. The notation " $\operatorname{addr}(n)$ " is used to refer to bit " n " of a given location. For example,
dst (7)
refers to bit 7 of the destination operand.

Flags

Control Register FCH contains the following six flags:
C Carry flag
Z Zero flag
S Sign flag
V Overflow flag
D Decimal-adjust flag
H Half-carry flag

Affected flags are indicated by:
$0 \quad$ Cleared to zero
1 Set to one

* Set or cleared according to operation
- Unaffected

X Undefined

Condition Codes

Value	Mnemonic	Meaning	Flags Set
1000		Always true	---
0111	C	Carry	$C=1$
1111	NC	No Carry	$\mathrm{C}=0$
0110	Z	Zero	$\mathrm{Z}=1$
1110	NZ	Not zero	Z $=0$
1101	PL	Plus	$\mathrm{S}=0$
0101	MI	Minus	$\mathrm{S}=1$
0100	OV	Overflow	$V=1$
1100	NOV	No overflow	$V=0$
0110	EQ	Equal	$\mathrm{Z}=1$
1110	NE	Not equal	$\mathrm{Z}=0$
1001	GE	Greater than or equal	(S XOR V) $=0$
0001	LT	Less than	(S XOR V) $=1$
1010	GT	Greater than	$[Z O R(S X O R V)]=0$
0010	LE	Less than or equal	$[Z O R(S X O R V)]=1$
1111	UGE	Unsigned greater than or equal	$\mathrm{C}=0$
0111	ULT	Unsigned less than	$\mathrm{C}=1$
1011	UGT	Unsigned greater than	$(\mathrm{C}=0$ and $\mathrm{Z}=0)=1$
0011	ULE	Unsigned less than or equal	$(C O R Z)=1$
0000		Never true	---

Instruction Formats

CCF, DI, EI, IRET, NOP.
RCF, RET, SCF
inc r

ONE-BYTE INSTRUCTIONS

THREE-BYTE INSTRUCTIONS

Opcode Map

Registers

R248 P1M
PORT 1 MODE REGISTER UPC REGISTER ADDRESS (HEX): F8

D_{7}	D_{6}	D_{5}
D_{5}	D_{4}	$\left.D_{3}\right]$
D_{2}	$\left.D_{1}\right]$	D_{0}

P10-P17 I/O DEFINITION DEFINES BIT AS OUTPUT

R246 P2M
PORT 2 MODE REGISTER UPC REGISTER ADDRESS (HEX): F6

R247 P3M
PORT 3 MODE REGISTER UPC REGISTER ADDRESS (HEX): F7

Figure 12. Port Mode Registers

Figure 13. Interrupt Control Registers

R254 MIC

MASTER CPU INTERRUPT CONTROL REGISTER
UPC REGISTER ADDRESS (HEX): FE

D_{7}	D_{6}	D_{5}	D_{4}	D_{3}	D_{2}	D_{1}	D_{0}

Figure 14. Master CPU Interrupt Registers

Registers (Cont.)

R253 RP
REGISTER POINTER
UPC REGISTER ADDRESS (HEX): FD

R255 SP
STACK POINTER
UPC REGISTER ADDRESS (HEX): FF
$D_{1}\left[D_{6}\left[D_{5}\left[D_{4}\left|D_{3}\right| D_{2}\left|D_{1}\right| D_{0}\right.\right.\right.$

RO DTC
DATA TRANSFER CONTROL REGISTER
UPC REGISTER ADDRESS (HEX): 00

R4 LC
LIMIT COUNT REGISTER
UPC REGISTER ADDRESS (HEX): 04

R5 DIND
DATA INDIRECTION REGISTER UPC REGISTER ADDRESS (HEX): 05

Figure 16. Master CPU-UPC Data Transfer Registers

Figure 17. UPC Counter/Timer Registers

Registers (Cont.)

Control Register	D_{7}	D_{6}	D_{5}	D_{4}	D_{3}	D_{2}	D_{1}	D_{0}	Comments
00_{H} Data Transfer Control Register	X	X	X	X	0	0	0	0	Disable data transfer from master CPU
04_{H} Limit Count Register	Not Defined								
$\begin{aligned} & 05_{\mathrm{H}} \\ & \text { Data Indirection Register } \end{aligned}$	Not Defined								
FO_{H} Interrupt Vector Register	Not Defined								
$\mathrm{F} 1_{\mathrm{H}}$ Timer Mode	0	0	0	0	0	0	0	0	Stops T0 and T1
$\mathrm{F} 2 \mathrm{H}^{\mathrm{H}}$ TO Register	Not Defined								
$\begin{aligned} & \mathrm{F} 3_{\mathrm{H}} \\ & \text { TO Prescaler } \end{aligned}$	X	X	X	X	X	X	0	0	Single-Pass mode
$F 4_{\mathrm{H}}$ T1 Register	Not Defined								
$\mathrm{F5}_{\mathrm{H}}$ T1 Prescaler	X	X	X	X	X	X	0	0	Single-Pass mode External clock source
F_{H} Port 2 Mode	1	1	1	1	1	1	1	1	Port 2 lines defined as inputs
$\mathrm{F7}_{\mathrm{H}}$ Port 3 Mode	0	0	0	0	X	1	0	0	Port 1, 2 open drain; $\mathrm{P3}_{5}=\mathrm{INT} ; \mathrm{P} 3_{0}, \mathrm{P} 3_{1}, \mathrm{P} 3_{2}$, P_{3} defined as input; P_{4}, $P 3_{6}, P 3_{7}$ defined as output
FB_{H} Port 1 Mode	1	1	1	1	1	1	1	1	Port 1 lines defined as inputs
$\mathrm{F} 9_{\mathrm{H}}$ Interrupt Priority	Not Defined								
FA_{H} Interrupt Request	X	X	0	0	0	0	0	0	Reset Interrupt Request
FB_{H} Interrupt Mask	0	X	X	X	X	X	X	X	Interrupts disabled
$\begin{aligned} & \mathrm{FC}_{\mathrm{H}} \\ & \text { Flag Register } \end{aligned}$	Not Defined								-
$\begin{aligned} & \mathrm{FD}_{\mathrm{H}} \\ & \text { Register Pointer } \end{aligned}$	Not Defined								
FE_{H} Master CPU Interrupt Control Register	0	0	0	0	0	0	0	0	Master CPU interrupt disabled; wait enable when write; lower chain enabled
FF_{H} Stack Pointer	Not Defined								

Note: X means not defined.

Table 4. Control Register Reset Conditions

Absolute Maximum Ratings*

Voltages on all pins (except V_{BB})
with respect to GND \qquad -0.5 V to +7.0 V
Operating Ambient Temperature $\ldots \ldots . . .0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Comment*

Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only; operation of the device at any condition above those indicated in the operational sections of these specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Standard Test Conditions

The characteristics below apply for the following standard test conditions, unless otherwise noted. All voltages are referenced to GND. Positive current flows into the reference pin. Standard conditions are as follows:
$-+4.75 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq+5.25 \mathrm{~V}$
$-\mathrm{V}_{\mathrm{SS}}=\mathrm{GND}=0 \mathrm{~V}$
$-0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$

Figure 18. Test Load 1

Figure 19. Test Load 2

D.C. Characteristics

Symbol	Parameter	Min.	Max.	Unit	Condition	Notes
V_{CH}	Clock Input High Voltage	2.4	$\mathrm{~V}_{\mathrm{CC}}$	V		
V_{CL}	Clock Input Low Voltage	-0.3	0.8	V		
$\mathrm{~V}_{\mathrm{IH}}$	Input High Voltage	2.0	$\mathrm{~V}_{\mathrm{CC}}$	V		
V_{IL}	Input Low Voltage	-0.3	0.8	V		
$\mathrm{~V}_{\mathrm{OH}}$	Output High Voltage	2.4		V	$\mathrm{I}_{\mathrm{OH}}=-250 \mu \mathrm{~A}$	1
$\mathrm{~V}_{\mathrm{OL}}$	Output Low Voltage		0.4	V	$\mathrm{I}_{\mathrm{OL}}=+2.0 \mathrm{~mA}$	1
I_{IL}	Input Leakage	-10	10	$\mu \mathrm{~A}$	$0 \leq \mathrm{V}_{\mathrm{IN}} \leq+5.25 \mathrm{~V}$	
I_{OL}	Output Leakage	-10	10	$\mu \mathrm{~A}$	$0 \leq \mathrm{V}_{\mathrm{IN}} \leq+5.25 \mathrm{~V}$	
I_{CC}	V_{CC} Supply Current		180	mA		

Note: 1. For $A_{0}-A_{11}$ and $D_{0}-D_{7}, \overline{M D S}, \overline{S Y N C}, \overline{M A S}$, and $M R / \bar{W} / 1 A C K$ on the 64 -pin versions. $I_{O H}=100 \mu A$ and $I_{O L}=1.0 \mathrm{~mA}$.

Master CPU Interface Timing

Number	Symbol	Parameter	Min. (ns)	Max. (ns)	Notes*
1	TrC	Clock Rise Time		20	
2	TwCh	Clock High Width	105	1855	
3	TfC	Clock Fall Time		20	
4	TwCl	Clock Low Width	105	1855	
5	TpC	Clock Period	250	2000	
6	TsA/D(WR)	$\overline{\mathrm{A}} / \mathrm{D}$ to $\overline{\mathrm{WR}}$! Setup Time	80		
7	TsA/D(RD)	$\overline{\mathrm{A}} / \mathrm{D}$ to $\overline{\mathrm{RD}}$! Setup Time	80		
8	ThA/D(WR)	$\overline{\mathrm{A}} / \mathrm{D}$ to $\overline{\mathrm{WR}} \uparrow$ Hold Time	30		
9	ThA/D(RD)	$\overline{\mathrm{A}} / \mathrm{D}$ to $\overline{\mathrm{RD}} \uparrow$ Hold Time	30		
10	TsCSf(WR)	$\overline{\mathrm{CS}}$! to $\overline{\mathrm{WR}}$! Setup Time	0		
11	TsCSf(RD)	$\overline{\mathrm{CS}}$! to $\overline{\mathrm{RD}}$: Setup Time	0		
12	TsCSr(WR)	$\overline{\mathrm{CS}} \dagger$ to $\overline{\mathrm{WR}}$. Setup Time	60		
13	TsCSr(RD)	$\overline{\mathrm{CS}} \mid$ to $\overline{\mathrm{RD}}$! Setup Time	60		
14	ThCS(WR)	$\overline{\mathrm{CS}}$ to $\overline{\mathrm{WR}}$! Hold Time	0		
15	ThCS(RD)	$\overline{\mathrm{CS}}$ to $\overline{\mathrm{RD}}$! Hold Time	0		
16	TsDI(WR)	Data in to $\overline{W R}$! Setup Time	0		
17	Tw(WR)	$\overline{\text { WR Low Width }}$	390		
18	Tw(RD)	$\overline{\mathrm{RD}}$ Low Width	390		
19	ThWR(DI)	Data in to $\overline{\mathrm{WR}} \uparrow$ Hold Time	0		
20	TdRD(DI)	Data Valid from $\overline{\mathrm{RD}}$! Delay			1
21	ThRD(DI)	Data Valid to $\overline{\mathrm{RD}} \uparrow$ Hold Time	0		
22	$\operatorname{TdRD}\left(\mathrm{DI}_{\mathrm{z}}\right)$	Data Bus Float Delay from $\overline{\mathrm{RD}} \dagger$		70	
23	TdRD(DB_{A})	$\overline{\mathrm{RD}}$! to Read Data Active Delay	0		
24	TdWR(W)	$\overline{\text { WR } ~ 1 ~ t o ~ \overline{W A I T ~} ~+~ D e l a y ~}$		150	
25	TdRD(W)	$\overline{\mathrm{RD}}$! to $\overline{\text { WAIT } ~+~ D e l a y ~}$		150	
26	TdDIIW)	Data Valid to $\overline{\text { WAIT }}$! Delay	0		

Interrupt Acknowledge Transactions

Number	Symbol	Parameter	Min. (ns)	Max. (ns)	Notes*
27	TsACK(RD)	$\overline{\text { INTACK } ~+~ t o ~} \overline{\mathrm{RD}}$! Setup Time	90		2
28	TdRD(DI)	$\overline{\mathrm{RD}}$! to Vector Valid Delay		255	
29	ThRD(ACK)	$\overline{\mathrm{RD}} \dagger$ to $\overline{\mathrm{INTACK}}$; Hold Time	0		
30	ThiEl(RD)	IEI to $\overline{\mathrm{RD}}$! Hold Time	100		
31	TwRDI	$\overline{\mathrm{RD}}$ (Acknowledge) Low Width	255		
32	TdIEI(IEO)	IEI to IEO Delay		120	
33	TsIEl(RD)	IEl to $\overline{\mathrm{RD}}$ - Setup Time	150		
34	TdACK $_{\text {f }}(\mathrm{IEO})$	$\overline{\text { INTACK } ~+~ t o ~ I E O ~!~ D e l a y ~}$		250	
35	TdACK $_{\text {r }}(\mathrm{IEO})$	$\overline{\text { INTACK }}+$ to IEO \dagger Delay		250	

Notes:

1. This parameter is dependent on the state of the UPC at the time of master CPU access.
2. In case where delay chain is not used.
3. The timing characteristics given reference 2.0 V as High and 0.8 V as Low.
4. All output ac parameters use test load 1.
*Timings are preliminary and subject to change.

Master CPU Interface Timing

Interrupt Acknowledge Timing

Handshake Timing

Number	Symbol	Parameter	Min. (ns)	Max. (ns)	Notes* *
1	TsDI(DA)	Data In Setup Time	0		
2	ThDA(DI)	Data In Hold Time	230		
3	TwDA	Data Available Width	175		1,2
4	TdDAL(RY)	Data Available Low to Ready Delay Time	20	175	1,2
5	TdDAH(RY)	Data Available High to Ready Delay Time	0	2,3	
6	TdDO(DA)	Data Out to Data Available Delay Time	$\mathbf{0}$	150	1,2
2,3					
7	TdRY(DA)	Ready to Data Available Delay Time	0	205	2

Reset Timing

Number	Symbol	Parameter	Min. (ns)	Max. (ns)	Notes*
1	TdRDQ(WR)	Delay from $\overline{\mathrm{RD}}$ to $\overline{\mathrm{WR}} \downarrow$ for No Reset	40		
2	TdWRQ(RD)	Delay from $\overline{\mathrm{WR}}$! to $\overline{\mathrm{RD}}$! for No Reset	50		
3	TwRES	Minimum Width of $\overline{\mathrm{WR}}$ and $\overline{\mathrm{RD}}$ both Low for Reset	250		4

RAM Version Program Memory Timing

Number	Symbol	Parameter	Min. (ns)	Max. (ns)	Notes*
1	TwMAS	Memory Address Strobe Width	60		5
2	TdA(MAS)	Address Valid to Memory Address Strobe \dagger Delay	30		5
3	TdMR/W (MAS)	Memory Read/Write to Memory Address Strobe \dagger Delay	30		5
4	TdMDS(A)	Memory Data Strobe \dagger to Address Change Delay	60		
5	TdMDS (MR/W)	Memory Data Strobe \dagger to Memory Read/Write Not Valid Delay	80		
6	Tw(MDS)	Memory Data Strobe Width (Write Case)	160		6
7	TdDO(MDS)	Data Out Valid to Memory Data Strobe! Delay	30		5
8	TdMDS(D0)	Memory Data Strobe 1 to Data Out Change Delay	30		5
9	Tw(MDS)	Memory Data Strobe Width (Read Case)	230		6
10	TdMDS(DI)	Memory Data Strobe I to Data In Valid Delay		160	7
11	TdMAS(DI)	Memory Address Strobe ! to Data In Valid Delay		280	7
12	ThMDS(DI)	Memory Data Strobe 1 to Data In Hold Time	0		
13	TwSY	Instruction Sync Out Width	160		
14	TdSY(MDS)	Instruction Sync Out to Memory Data Strobe Delay	200		
15	Twl	Interrupt Request via Port 3 Input Width	100		

Note:

1. Input Handshake.
2. Test Load 1.
3. Output Handshake.
4. Internal reset signal is $1 / 2$ to 2 clock delays from external reset condition.
5. Delay times are specified for an input clock frequency of 4 MHz . When operating at a lower frequency, the increase in input clock period must be added to the specified delay time
6. Data strobe width is specified for an input clock frequency of 4 MHz . When operating at a lower frequency, the increase in three
input clock periods must be added to the specified width. Data Strobe width varies according to the instruction being executed.
7. Address strobe and data strobe to data in valid delay times represent memory system access times and are given for a 4 MHz input frequency.
8. All timing references assume 2.0 V for a logic " 1 " and 0.8 V for a logic " 0 ".
9. All output ac parameters use test load 2 .
*Timings are preliminary and subject to change.

Handshake Timing

OUTPUT HANDSHAKE
Reset Timing
$\overline{W R}$

RAM Version Program Memory Timing

Ordering Information

Product Number	Package/ Temp.	Speed	Description	Product Number	Package/ Temp.	Speed	Description
SY8590	CE	4.0 MHz	UPC (40-pin)	SY8592	OS	4.0 MHz	UPC External
SY8590	CS	4.0 MHz	Same as above				RAM-based
SY8590	DE	4.0 MHz	Same as above				(64-pin)
SY8590	DS	4.0 MHz	Same as above	SY8593	RS	4.0 MHz	UPC
SY8590	PE	4.0 MHz	Same as above				2716 EPROM
SY8590	PS	4.0 MHz	Same as above				Program Memory (40-pin)
SY8591	QS	4.0 MHz	UPC External ROM-based Program Memory (64-pin)	SY8594	RS	4.0 MHz	UPC RAM Program Memory (40-pin)

Notes: $\mathrm{C}=$ Ceramic, $\mathrm{D}=$ Cerdip, $\mathrm{P}=$ Plastic, $\mathrm{Q}=$ Quip, $\mathrm{R}=$ Protopack; $\mathrm{E}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{S}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.

FEATURES

- Complete CMOS microcomputer with on-chip RAM, ROM and I/O
- 128 bytes of on-chip RAM
- 4 K bytes of on-chip ROM
- 32 I/O lines
- Two programmable 8-bit counter/timers, each with a 6-bit programmable prescaler
- Full-duplex UART clocked by an internal timer
- 144-byte register file includes
- 124 general-purpose registers, each of which can be used as an accumulator, index register, storage element, address register or part of the internal stack
- Four I/O port registers
- Sixteen status and control registers
- Pin, function and object code compatible with Synertek
HMOS 28601 MCU
- Register pointer permits shorter, faster instructions to access one of nine working-register groups
- Vectored, prioritized interrupts for 1/O, counter/timers and UART
- Expandable bus interfaces up to 60 K bytes each of external program memory and external data memory
- On-chip oscillator can be driven by a crystal, RC, LC or external clock source
- High-speed instruction execution
- Working-register operations $=1.5 \mu \mathrm{~S}$
- Average instruction execution $=2.2 \mu \mathrm{~s}$
-- Longest instruction $=5 \mu \mathrm{~s}$
- Low-power standby mode retains contents of generalpurpose registers
- Single $+5 \vee$ supply
- All I/O pins TTL compatible

DESCRIPTION

The Z86C01 is an implementation of the powerful Z8 architecture in a high performance, N -well HCMOS process. The Z86C01 is capable of performing in the same socket as a $Z 8601$ with at least an order of magnitude savings in power consumption. It is the first
in a line of Synertek CMOS microcomputers based on the Z8 architecture. Future members of the family will have architectural enhancements in order to optimize speed/power performance, as well as different amounts of memory and I/O capabilities.

BLOCK DIAGRAM

[^24]
Absolute Maximum Ratings*

Voltages on All Inputs and Outputs with Respect to Ground OV to +6 V
Operating Ambient Temperature $\ldots \ldots . . .0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature................ $.65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Standard Test Conditions

The characteristics below apply for the following standard test conditions, unless otherwise noted. All voltages are referenced to GND. Positive current flows into the reference pin. Standard conditions are as follows:
$-V_{C C}=4.5 \mathrm{~V}$ to 5.5 V
$-\mathrm{GND}=0 \mathrm{~V}$
$-0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}$

Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only; operation of the device at any condition above those indicated in the operational sections of these specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ADVANCE INFORMATION

(Specifications and information subject to change without notice.)

D.C. Characteristics

Symbol	Parameter	Min.	Typ.	Max.	Unit	Condition	Notes
V_{CH}	Clock Input High Voltage		V_{CC}	V_{CC}	V	Driven by Ext. ernal Clock Gen- erator	$\mathbf{1}$
V_{CL}	Clock Input Low Voltage		0		V	Driven by Ext- ernal Clock Gen- erator	
V_{IH}	Input High Voltage	$0.7 \times \mathrm{V}_{\mathrm{CC}}$		V_{CC}	V		
V_{IL}	Input Low Voltage		0	0.8	V		
$\mathrm{~V}_{\mathrm{RH}}$	Reset Input High Voltage				V_{CC}	V	
V_{RL}	Reset Input Low Voltage			0	V		
$\mathrm{~V}_{\mathrm{OH}}$	Output High Voltage	2.4		$\mathrm{~V}_{\mathrm{CC}}$	V	$\mathrm{I}_{\mathrm{OH}}=250 \mu \mathrm{~A}$	1
$\mathrm{~V}_{\mathrm{OL}}$	Output Low Voltage	0		0.4	V	$\mathrm{I}_{\mathrm{OL}}=2 \mathrm{~mA}$	1
I_{IL}	Input Leakage				$\mu \mathrm{A}$		
I_{OL}	Output Leakage				$\mu \mathrm{A}$		
I_{IR}	Reset Input Current				$\mu \mathrm{A}$		
I_{CC}	V_{CC} Supply Current		25		mA	$@ \mathrm{f}$ (CLK) 8 MHz	
I_{MM}	V_{MM} Supply Current				mA	Power Down Mode	
V_{MM}	Back Supply Voltage	3.0		$\mathrm{~V}_{\mathrm{CC}}$	V	Power Down Mode	

External I/O or Memory Read and Write Cycle

Symbol	Parameter	8601/02		Units	Notes
		Min.	Max.		
TdA(AS)	Address Valid to $\overline{\text { AS }}$ 的 Delay	50		ns	1
TdAS(A)	$\overline{\text { AS }}$ t to Address Float Delay	60		ns	1
TdAS(DI)	$\overline{\mathrm{AS}}$ t to Read Data Required Valid		320	ns	1,2,3
TwAS	$\overline{\text { AS Low Width }}$	80		ns	1
TdA(DS)	Address Float to $\overline{\mathrm{DS}}$!	0		ns	
TwDS	$\overline{\mathrm{DS}}$ (Read) Low Width $\overline{\mathrm{DS}}$ (Write) Low Width	$\begin{aligned} & 250 \\ & 160 \\ & \hline \end{aligned}$		ns ns	$\begin{aligned} & 1,2,3 \\ & 1,2,3 \end{aligned}$
TdDS(DI)	$\overline{\mathrm{DS}} \cdot$ to Read Data Required Valid		200	ns	1,2,3
ThDS(DI)	Read Data to $\overline{\text { SS }} \uparrow$ Hold Time	0		ns	
TdDS(A)	$\overline{\mathrm{DS}} \mathfrak{1}$ to Address Active Delay	70		ns	1,2
TdDS(AS)	$\overline{\mathrm{DS}}$ t to $\overline{\text { AS }}$ Delay	70		ns	1,2
TdR/W(AS)	$\mathrm{R} / \overline{\mathrm{W}}$ Valid to $\overline{\mathrm{AS}}$ ¢ Delay	50		ns	1,2
TdDS(R/W)	$\overline{\mathrm{DS}}$ t to R/ $\overline{\mathrm{W}}$ Not Valid	60		ns	1,2
TdDO(DS)	Write Data Valid to $\overline{\text { SS }}$ (Write) ! Delay	50		ns	1,2
TdDS(DO)	$\overline{\text { DS }} \uparrow$ to Write Data Not Valid Delay	70		ns	1,2

Notes:

. Timing numbers given are for minimum $T p C$.
2. Also see Clock Cycle Time Dependent Characteristics Tabie
3. When using extended memory timing add 2 TpC .
4. All timing references use 2.0 V for a logic " 1 " and 0.8 V for a logic " 0 "

Clock Cycle Dependent Characteristics

Symbol	$\mathbf{8} \mathbf{M H z}$
$\operatorname{TdA}(\mathrm{AS})$	$\mathrm{TpC}-75$
$\mathrm{TdAS}(\mathrm{A})$	$\mathrm{TpC}-55$
$\mathrm{TdAS}(\mathrm{DR})$	$4 \mathrm{TpC}-140^{*}$
TwAS	$\mathrm{TpC}-45$
TwDSR	$3 \mathrm{TpC}-125^{*}$
TwDSW	$2 \mathrm{TpC}-90^{*}$
$\operatorname{TdDSR}(\mathrm{DR})$	$3 \mathrm{TpC}-175^{*}$
$\operatorname{Td}(\mathrm{DS}) \mathrm{A}$	$\mathrm{TpC}-55$

Symbol	$\mathbf{8} \mathbf{~ M H z}$
$\mathrm{TdDS}(\mathrm{AS})$	$\mathrm{TpC}-55$
$\mathrm{TdR} / \mathrm{W}(\mathrm{AS})$	$\mathrm{TpC}-75$
$\mathrm{TdDS}(\mathrm{R} / \mathrm{W})$	$\mathrm{TpC}-65$
$\mathrm{TdDW}(\mathrm{DSW})$	$\mathrm{TpC}-75$
$\mathrm{TdDS}(\mathrm{DW})$	$\mathrm{TpC}-55$
$\mathrm{TdA}(\mathrm{DR})$	$5 \mathrm{TpC}-215^{*}$
$\mathrm{TdAS}(\mathrm{DS})$	$\mathrm{TpC}-45$

Additional Timing Table

Symbol	Parameter	Z8611/12		Units	Notes
		Min.	Max.		
TpC	Input Clock Period	125	1000	ns	1
TrC, TfC	Clock Input Rise and Fall Times		25	ns	1
TwC	Input Clock Width	37		ns	1
TwTINL	Timer Input Low Wdith	100		ns	2
$\mathrm{TwT}_{\text {IN }} \mathrm{H}$	Timer Input High Width	3 TpC		ns	2
TpTIN	Timer Input Period	$\frac{T p C}{8}$		ns	2
Tr TIN, Tf $\mathrm{T}_{\text {IN }}$	Timer Input Rise and Fall Times		100	ns	2
TwIL	Interrupt Request Input Low Time	100		ns	2,3
TwiH	Interrupt Request Input High Time	3 TpC		ns	2,3

Notes:

1. Clock timing reference uses 3.8 V for a logic " 1 " and 0.8 V for a logic " 0 ".
2. Timing reference uses 2.0 V for a logic " 1 " and 0.8 V for a logic " 0 ".
3. Interrupt request via Port 3

Z8 Development Module

Features

- Two Z8602 devices offer complete configuration choice for any application.
- 2048 bytes static RAM for convenient execution and debug of user code.
- On-board 2716 socket to test user code in EPROM without additional hardware.
- As many as 2048 hardware breakpoints on address compare cover the entire internal ROM space.
- Versatile monitor software for debugging, register and memory manipulation, and file upload and download.
- 'Transparent' operation allows software development without disconnecting from CRT and host. Industrystandard interface compatible with most CRT terminals and development hosts.
- Wire-wrap area for prototyping.

Description

The Z8 Development Module is a single-board microcomputer system specifically designed to assist in the development and evaluation of hardware and software designs based on the $\mathbf{Z 8}$ microcomputer. It allows system prototyping in hardware with the Z8602 prototyping device, thereby developing code that will eventually be mask programmed into the Z8 on-chip ROM.

Two Z8602 devices on the Z8 Development Module provide flexibility: one serves as a controller while the
other is totally user-definable. All user ports on the second $\mathbf{Z 8 6 0 2}$ are unconfigured and available to suit any application.
To simulate the final mask-programmed version on which user code resides, 2048 bytes of high-speed static RAM are available for executing and debugging code. An on-board EPROM socket allows the user to substitute EPROM for static RAM. This enables the user to test PROM after software development and debug without building special hardware.

©1980 by Zilog, Inc. $\mathbf{Z 8}$ is a trademark of Zilog, Inc.

The EPROM-resident monitor software offers debugging features, register and memory manipulaiıon, as well as a convenient means to upload and download software between the host and user RAM space.
The Development Module connects to the CRT terminal and host system via two on-board standard RS232C serial ports and is physically located between the CRT and host. A simple command makes the Development Module transparent in the serial path to allow software development without disconnecting from the CRT and host.

The Development Module can operate stand-alone for simple debugging operations or it can interface directly to a host development system such as the Zilog ZDS-1 or PDS 8000 Series for software development and file storage.
Twenty square inches of wire-wrap area with conveniently located 5 V and ground points are provided near the user Z8602 for prototyping.

Z8 Development Module conveniently connects to both the CRT and MDT 2000 Development System.

Functional Description

Hardware

Two $\mathbf{Z 8}$ microcomputer units designated the Monitor MCU and User MCU are at the heart of the 28 Development Module. The Monitor MCU controls the operation of the User MCU and the monitor/debug software. The monitor/debugger resides in 4 K bytes of EPROM. Hardware breakpoint logic provides a maximum of 2048 breakpoints. Single stepping and software trace capabilities are also available.

The User MCU is a Z8602 controlled by the Monitor MCU via internal address/data and control lines brought out to external pins. This effectively leaves all ports on the User MCU unconfigured and available to the user. The 2 K bytes of static RAM on the 'internal' bus are for user code that may be executed by the User MCU. Execution is in real time at full processor speed. Both MCUs utilize 7.4 MHz crystal oscillators, the outputs of which are divided internally to provide 3.7 MHz clocks.
In addition to wire-wrap area, a 40-pin header (3M type 3495-1002) for the User Z8 can connect to a ribbon cable
with a 40-pin plug that may plug into a target system. Bus driver logic may be added on the wire-wrap area for basic emulation capability. Two switches, 'Mode' and 'Reset', provide a means to re-enter the Monitor and reinitialize the system, respectively. Baud rate from 110 to 19200 may be selected with an on-board 4 -element DIP switch.

Software

The monitor/debug program, residing in 4096 bytes of EPROM, includes debug, input/output, control and host interface commands. The commands are grouped into four major functional blocks: monitor, debug, manipulation and file commands.

Monitor Commands

This group of commands controls execution of the User MCU, monitors user interrupts and transfers control from the monitor to the host system.

GO<ADDRESS>
Causes User MCU to execute program disallowing further debug until a BREAK or HALT command is encountered.

HALT
Halts program execution of the User MCU
QUIT
Returns control to the host system and enters the 'transparent' mode.

INTERRUPTS [E/D]
Enables or disables all user generated interrupts. Note: All user interrupts are automatically disabled when a breakpoint is encountered. It is necessary to reenable such interrupts by this command.

Debug Commands

This group of commands allows the user to debug code by tracing through code and setting breakpoints and jumps to specified locations within the 'internal' ROM space.

BREAK <ADDRESS>

Sets a breakpoint at the specified address.
KILL [<ADDRESS>]
Clears the breakpoint at the specified address.
JUMP < ADDRESS >
Allows the User MCU to jump to a specified address anywhere within the internal ROM space, by changing the value of the program counter.

NEXT [< n >]

Causes execution of n instructions of the User MCU and then halts the User MCU.

TRACE

Causes single step execution of the User MCU. Every instruction executed is output to the console.

Manipulation Commands

The manipulation commands display and alter registers and memory. This group may be subdivided into two categories: register manipulation and memory manipulation.

REGISTER MANIPULATION

REGISTER [< REG NUMBER >]
[<NEW REG VALUE >]]
Allows examination and modification of the User MCU registers.

WORKING REGISTERS

Displays contents of the 16 working registers of the User MCU.

PHILL < STARTING REGISTER >
 <NUMBER OF REGISTERS>
 [<DATA BYTES>]

Stores the sequence of DATA BYTES into User MCU registers beginning at the STARTING REGISTER and is copied as many times as necessary for the NUMBER OF REGISTERS specified.

MEMORY MANIPULATION

DISPLAY [$<$ STARTING ADDRESS $>$ [$<n>$]]
Allows display and modification of user memory contents for n number of bytes.

SET<ADDRESS> <LENGTH>
 [<DATA BYTES >]

Allows a sequence of data bytes beginning at the ADDRESS specified to be written into user memory.

FILL <STARTING ADDRESS>
<LENGTH > [<DATA BYTES >]
Stores the sequence of DATA BYTES into user memory beginning at the starting ADDRESS and is copied as many times as necessary for the LENGTH specified.

MOVE < SOURCE ADDRESS >

<DESTINATION ADDRESS $>$ [<n>]
Moves contents of a user memory block from a source address to a destination address for a length of n bytes.
COMPARE <ADDRESS 1>
<ADDRESS 2> [<n>]
Compares two blocks of user memory data, one beginning at ADDRESS 1 and the other at ADDRESS 2 for n bytes.

File Commands

The file group the user to upload and download programs to and from the host system.
LOAD <FILE NAME>
Downloads a file to user memory starting at the low address of the file and continuing until the entire file is transferred.

UPLOAD <FILE NAME>

<ADDRESS $1><$ NUMBER OF
BYTES > [<ENTRY ADDRESS >]
Creates a RIO file image of user memory, beginning at ADDRESS 1, creating default length records, and imaging memory for the specified number of bytes.

Note: The following notation is used in the command description.
<> Enclose descriptive names for the quantities to be entered, and are not actually entered as part of the command.
[] Denote optional entries in the command syntax.
I Denotes "or."

Z8 Development Module Block Diagram

PRELIMINARY

Features

- High-Speed 16×16 Parallel Array Multiplier
- 100 nsec Typical Multiply Time
- Low Power ($\mathrm{I}_{\mathrm{CC}}=300 \mathrm{~mA}$ Typical)
- Full Product Multiplexed at Output
- 2's Complement, Unsigned or Mixed Operands
- Input/Output Latches Selectable for Clocked or Transparent Mode of operation
- Advanced HMOS Technology
- Input/Output Levels TTL Compatible
- Single +5 V Power Supply
- SY66016 Pin-for-Pin Functional Replacement for TRW MPY 16HJ and AMD 29516

Description

The SY66016 is a parallel array multiplier built using Synertek's advanced HMOS process technology. By use of a modified Booths algorithm and the state-of-the-art 2μ design rules, the SY66016 provides a performance comparable to existing bipolar TTL multipliers at less than half the power consumption ($\mathrm{I}_{\mathrm{CC}}=300 \mathrm{~mA}$ typical).
Input data is accepted in the form of 16 -bit 2's complement and unsigned magnitude or mixed operands. At the output of the array a format adjust control (FA) allow the user to select a full 32 -bit product or a left shifted 31-bit product suitable for 2's-complement only.
The two halves of the product may be routed to a 16 -bit three-state output port via a multiplexer. In addition the LSP is
connected to the Y -input through a separate three-state buffer.
Applications of the SY66016 multiplier include a variety of digital signal-processing systems including floating-point processors, FFT processors, array processors, image/video processors, speech recognition and synthesis, digital filtering, modems, missile guidance, etc.

In the SY66016 the X, Y, MSP and LSP registers have independent clocks (CLKX, CLKY, CLKM, CLKL). The output multiplexer control ($\overline{\mathrm{MSPSEL}}$) uses a pin which is a supply ground in the TRW MPY 16HJ. When this control is LOW the function is that of the MPY 16 HJ , thus allowing full compatibility.

Pin Configuration

X_{4}	1	64	X_{5}
X_{3}	42	63	X_{6}
x_{2}	4	62	x_{7}
x_{1}	04	61	x_{8}
X_{0}	9^{5}	60	$\square \mathrm{x}_{9}$
$\overline{\mathrm{OEL}}$	46	59	$\square \mathrm{x}_{10}$
CLKL	9^{7}	58	x_{11}
CLKY	8	57	$\square \mathrm{x}_{12}$
P_{0}, Y_{0}	99	56	x_{13}
$\mathrm{P}_{1}, \mathrm{Y}_{1}$	510	55	X_{14}
$\mathrm{P}_{2}, \mathrm{Y}_{2}$	511	54	X_{15}
$\mathrm{P}_{3}, \mathrm{Y}_{3}$	\square^{12}	53	\square CLKX
$\mathrm{P}_{4}, \mathrm{Y}_{4}$	13	52	$\square \mathrm{RND}$
P_{5}, Y_{5}	414	51	X_{M}
$\mathrm{P}_{6}, \mathrm{Y}_{6}$	-15	50	$\square \mathrm{Y}_{\mathrm{m}}$
$\mathrm{P}_{7}, \mathrm{Y}_{7}$	516	49	$\underline{+} \mathrm{V}_{\mathrm{cc}}$
$\mathrm{P}_{8}, \mathrm{Y}_{8}$	17	48	$\square+v_{c c}$
$\mathrm{P}_{9}, \mathrm{Y}_{9}$	018	47	\square GND
$\mathrm{P}_{10}, \mathrm{Y}_{10}$	\square^{19}	46	2 GND
$\mathrm{P}_{11}, \mathrm{Y}_{11}$	$\square 20$	45	$\square \mathrm{MSPSEL}$
$\mathrm{P}_{12}, \mathrm{Y}_{12}$	\square^{21}	44	\square FT
$\mathrm{P}_{13}, \mathrm{Y}_{13}$	$¢^{22}$	43	$\square \mathrm{RS}$
$\mathrm{P}_{14}, \mathrm{Y}_{14}$	\square^{23}	42	OEP
$\mathrm{P}_{15}, \mathrm{Y}_{15}$	¢24	41	$\square \mathrm{CLKM}$
$\mathrm{P}_{0}, \mathrm{P}_{16}$	\square^{25}	40	$\mathrm{P}_{31}, \mathrm{P}_{15}$
$\mathrm{P}_{1}, \mathrm{P}_{17}$	\square^{26}	39	$\mathrm{P}_{30}, \mathrm{P}_{14}$
$\mathrm{P}_{2}, \mathrm{P}_{18}$	\square^{27}	38	$\mathrm{P} \mathrm{P}_{29}, \mathrm{P}_{13}$
$\mathrm{P}_{3}, \mathrm{P}_{19}$	-28	37	$\square \mathrm{P}_{28}, \mathrm{P}_{12}$
$\mathrm{P}_{4}, \mathrm{P}_{20}$	529	36	P^{27}, P_{11}
$\mathrm{P}_{5}, \mathrm{P}_{21}$	30	35	$\mathrm{P}^{26}, \mathrm{P}_{10}$
$\mathrm{P}_{6}, \mathrm{P}_{22}$	31	34	${ }^{-1} \mathrm{P}_{25}, \mathrm{P}_{9}$
$\mathrm{P}_{7}, \mathrm{P}_{23}$	32	33	$] \mathrm{P}_{24}, \mathrm{P}_{8}$

Block Diagram

Definition of Signals

$\mathrm{X}_{15}-\mathrm{X}_{0}$	Multiplicand Data inputs.
$\mathrm{Y}_{15}-\mathrm{Y}_{0}$	Multiplier Data inputs or least significant product (LSP) output.
$\begin{aligned} & X_{M}, Y_{M} \\ & (T C X, T C Y)^{*} \end{aligned}$	Mode control inputs for each data word; LOW for unsigned data and HIGH for 2's complement data.
FA (RS)*	Format adjust control selects either a full 32 -bit product (HIGH) or a left shifted 31bit product with the sign bit replicated in the LSP (LOW). This control is normally high, except for certain fractional 2's complement applications.
FT	Feedthrough control (HIGH) makes both MSP and LSP registers transparent.

$\overline{\text { MSPSEL }}$	Selects either MSP (LOW) or LSP (HIGH) to be available at the product output port.
RND	Round control for the rounding of the MSP.
$\overline{\text { OEP }}$ (TRIM)*	Three-state enable for product output port.
$\overline{\text { OEL }}$ (TRIL)* *	Three-state enable for routing LSP through Y input/output port.
CLKX	Register Clock, X_{15-0}, X_{M}, RND
CLKY	Register Clock, Y_{15-0}, Y_{M}, RND
CLKM	MSP Register Clock
CLKL	LSP Register Clock

[^25]SY66450
Graphic Processor

PRELIMINARY

Features

- Interfaces to Any 8 or 16 Bit Processor
- Standard NMOS Technology
- 5V Supply
- Low Power
- 10 MHz Clock

Description

Graphic processor interfaces between host processor and screen bit mapped memory. Draws graphic symbols, lines, circles, arcs etc. Color capability. OFF-loads host processor to create high speed graphics system.

Pin Configuration

Block Diagram

SY66450 - GRAPHICS PROCESSOR (GPC) CHIP

PRELIMINARY

Features

- Interfaces to Any Dynamic Memory
- Standard NMOS Technology
- 5 V supply
- Low power
- 10 MHz clock

Description

Raster scanner interfaces between screen memory and CRT monitor. Outputs memory data in video format to CRT. Handles PAN, zoom and windowing functions.

Pin Configuration

Replaces 20-40 MSI devices.

Block Diagram

SY66550 RASTER SCANNER (RSC) CHIP
Product
Number
Page
Number
SYM2114A 4-3
SYM2128 4-7
SYM2129 4-11
SYM2147H 4-15
SYM2148H 4-19
SYM2149H 4-23
SYM2167 4-27
SYM2168 4-28
SYM2169 4-29
SYM2332 4-30
SYM2333 $4-30$
SYM2364 4-33
SYM2364A $4-33$
SYM2365 4-36
SYM2365A $4-36$
SYM23128 $4-39$
SYM23128A 4-39
SYM23256 4-41
SYM2325A6 4-41
SYM3316 $4-43$
SYM3316A 4-43

Military Selection Guide

Static Random Access Memories $\quad \mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$)

Part Number	Organization	$\begin{gathered} \hline \text { Access } \\ \text { Time } \\ \text { [ns) } \\ \hline \end{gathered}$	Maximum Current (mA]		Power Supply [Volts)	Number of Pins	Package Type [Note I]	Compatible EPROM/ PROM	Page No.
			Operating	Standby					
SYM2114A-3	1024×4	150	70	--	+5	18	C. D. F		4-3
SYM2114A-4	1024×4	200	70	--	+5	18	C. D. F		4-3
SYM2114A-5	1024×4	250	70	--	+5	18	C. D. F		4-3
SYM $2148 \mathrm{H}-3$	1024×4	55	150	30	+5	18	C, D, F, K		4-19
SYM2148H	1024×4	70	150	30	+5	18	C, D, F, K		4-19
SYM $2148 \mathrm{H}-6$	1024×4	85	150	30	+ 5	18	C, D, F, K		4-19
SYM2149H-3	1024×4	55	150	--	-5	18	C, D, F, K		4-23
SYM2149H	1024×4	70	150	--	- 5	18	C, D, F, K		4-23
SYM2149H-6	1024×4	85	150	-.	+5	18	C, D, F, K		4-23
SYM2147H-2	4096×1	45	180	35	+5	18	C, D, F K		4-11
SYM2147H-3	4096×1	55	160	30	. 5	18	C, D, F, K		4-11
SYM2147H	4096×1	70	160	30	. 5	18	C, D, F, K		4-11
SYM2128-3	2048×8	150	100	30	. 5	24	C, D, K		4-7
SYM2128-4	2048×8	200	100	30	. 5	24	C, D, K		4-7
SYM2129-3	2048×8	150	100	--	. 5	24	C, D, K		4-11
SYM2129-4	2048×8	200	100	--	5	24	C, D, K		4-11
SYM2168[2]	4096×4	70	[3]	[3]	+5	24	C, D, K		4-29
SYM2169[2]	4096×4	70	[3]	-	+5	24	C, D, K		4-27
SYM2167[2]	$16,384 \times 1$	70	[3]	[3]	+5	24	C, D, K		4-28

Read Only Memories (ROMs) $\quad T_{A}=-55^{\circ} \mathrm{C}$ to $\left.+125^{\circ} \mathrm{C}\right)$

$\begin{aligned} & \text { SYM3316 } \\ & \text { SYM3316A } \end{aligned}$	$\begin{aligned} & 2048 \times 8 \\ & 2048 \times 8 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 150 \\ & 150 \end{aligned}$	30	+5 +5	24 24	$\begin{aligned} & C, D \\ & C, D \end{aligned}$	$\begin{aligned} & 82 S 191 \\ & 82 S 191 \end{aligned}$	$\begin{aligned} & 4-43 \\ & 4-43 \end{aligned}$
SYM2332	4096×8	450	100	--	+5	24	C, D	TMS2532	4-30
SYM2333	4096×8	450	100	--	+5	24	C, D	2732/A	4-30
SYM2364	8192×8	450	100	--	+5	24	C, D	TMS2564	4-33
SYM2364-3	8192×8	300	100	--	+5	24	C, D	TMS2564	4-33
SYM2364A	8192×8	450	100	12	+5	24	C, D	TMS2564	4-33
SYM2364A-3	8192×8	300	100	12	+5	24	C, D :	TMS2564	4-33
SYM2365	8192×8	450	100	--	+5	28	C, D, K	2764	4-36
SYM $2365-3$	8192×8	300	100	--	+5	28	C, D, K	2764	4-36
SYM2365A	8192×8	450	100	12	+5	28	C, D, K	2764	4-36
SYM2365A-3	8192×8	300	100	12	+5	28	C, D, K	2764	4-36
SYM23128[4]	16,384 $\times 8$	450	100	--	+5	28	C, D, K	27.128	4-39
SYM23128-3[4]	16,384 $\times 8$	300	100	--	+5	28	C, D, K	27128	4-39
SYM23128A ${ }^{[4]}$	16,384 $\times 8$	450	100	10	+5	28	C, D, K	27128	4-39
SYM23128A-3[4]	16,384 $\times 8$	300	100	10	+5	28	C, D, K	27128	4-39
SYM23256[4]	$32,768 \times 8$	450	100	--	+5	28	C, D, K	[3]	4-41
SYM23256-3[4]	$32,768 \times 8$	300	100	--	+5	28	C, D, K	[3]	4-41
SYM23256A[4]	$32,768 \times 8$	450	100	10	+5	28	C, D, K	[3]	4-41
SYM23256A-3[4]	$32,768 \times 8$	300	100	10	+5	28	C, D, K	[3]	4-41

Notes:

1. $C=$ Ceramic, $D=$ Cerdip, $P=$ Plastic, $K=$ Leadless Chip Carrier.
2. Advanced Information.
3. Not Available.
4. Preliminary.

Military 1024×4 Static Random Access Memory Extended Temperature Range
 $\left(-55^{\circ} \mathrm{C}\right.$ to $\left.+125^{\circ} \mathrm{C}\right)$

Features

- 150ns Maximum Access
- Low Operating Power
- 385 mW Max.
- No Clocks or Strobes Required
- Identical Cycle and Access Times
- Single $+5 V$ Supply

Description

The SYM2114A is a 4096-Bit static Random Access Memory organized 1024 words by 4-bits and is fabricated using Synertek's N-channel Silicon-Gate MOS technology. It is designed using fully DC stable (static) circuitry in both the memory array and the decoding and therefore requires no clock or refreshing to operate. Address setup times are not required and the data is read out nondestructively with the same polarity as the input data. Common Input/Output pins are provided to simplify design of the bus oriented systems, and can drive 1 TL load.

The SYM2114A is designed for memory applications where high performance, low cost, large bit storage, and simple interfacing are important design objectives. It is totally TTL compatible in all respects: inputs, outputs, and the single +5 V supply. A separate Chip Select ($\overline{\mathrm{CS}}$) input allows easy selection of an individual device when outputs are or-tied.

The SYM2114A is packaged in an 18-pin DIP for the highest possible density and is fabricated with N -channel, lon Implanted, Silicon-Gate technology - a technology providing excellent performance characteristics as well as improved protection against contamination.

Block Diagram

Absolute Maximum Ratings*

Temperature Under Bias
Storage Temperature
Voltage on Any Pin with
Respect to Ground (under bias)
Power Dissipation
Electrostatic Discharge Rating (ESD)**
Inputs to Ground
$-65^{\circ} \mathrm{C}$ to $+135^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
-3.5 V to +7 V
1.0W
$\pm 2000 \mathrm{~V}$

Comment*

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
**Test Condition: MIL-STD-883B Method 3015.1
D.C. Characteristics $\quad T_{A}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%$ (Unless otherwise Specified)

Symbol	Parameter	M2114A-3/-4/-5		M2114AL-3/L-4/L-5		Units	Conditions
		Min.	Max.	Min.	Max.		
lıI	Input Load Current (All input pins)		10		10	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=0$ to 5.5 V
Lo	1/O Leakage Current		10		10	$\mu \mathrm{A}$	$\overline{\mathrm{CS}}=2.0 \mathrm{~V}, \mathrm{~V}_{1 / O}=0.4 \mathrm{~V}$ to $\mathrm{V}_{C C}$
ICC1	Power Supply Current		65		40	mA	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{I}_{\mathrm{I} / \mathrm{O}}=0 \mathrm{~mA}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$
Icc2	Power Supply Current		70		45	mA	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{I}_{1 / \mathrm{O}}=0 \mathrm{~mA}, \\ & \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \end{aligned}$
V_{IL}	Input Low Voltage	-3.0	0.8	-3.0	0.8	V	
$\mathrm{V}_{1 \text { H }}$	Input High Voltage	2.0	6.0	2.0	6.0	V	
VOL	Output Low Voltage		0.4		0.4	V	$\mathrm{I}_{\mathrm{OL}}=3.2 \mathrm{~mA}$
VOH	Output High Voltage	2.4	V_{CC}	2.4	V_{CC}	V	$\mathrm{I}_{\mathrm{OH}}=-1.0 \mathrm{~mA}$

Capacitance $T_{A}=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}$

Symbol	Test	Typ	Max	Units
$\mathrm{C}_{\mathrm{I} / \mathrm{O}}$	Input/Output Capacitance		5	pF
$\mathrm{C}_{I N}$	Input Capacitance		5	pF

NOTE: This parameter is periodically sampled and not 100% tested.
A.C. Characteristics $T_{A}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%$ (Unless otherwise Specified)

Symbol	Parameter	2114A-3		2114A-4		2114A-5		Unit
		Min.	Max.	Min.	Max.	Min.	Max.	
Read Cycle $t_{R C}$	Read Cycle Time	150		200		250		nsec
t_{A}	Access Time		150		200		250	nsec
t_{CO}	Chip Select to Output Valid		70		70		85	nsec
t_{CX}	Chip Select to Output Enabled	10		10		10		nsec
toti	Chip Deselect to Output Off		40		50		60	nsec
toha	Output Hold from Address Change	15		15		15		nsec
Write Cycle twc	Write Cycle Time	150		200		250		nsec
${ }_{\text {taw }}$	Address to Write Setup Time	0		0		0		nsec
${ }^{\text {tw }}$ w	Write Pulse Width	90		120		135		nsec
$t_{W R}$	Write Release Time	0		0		0		nsec
totw	Write to Output Off		40		50		60	nsec
$t_{\text {DW }}$	Data to Write Overlap	90		120		135		nsec
tD	Data Hold	0		0		0		nsec

A minimum of 0.5 ms time delay is required after application of $\mathrm{VCC}(+5 \mathrm{~V})$ before proper device operation is achieved.

Timing Diagrams

Read Cycle (note 1)

Write Cycle

Notes:

1. $\overline{W E}$ is high for a Read Cycle.
2. t_{W} is measured from the latter of $\overline{C S}$ or $\overline{W E}$ going low to the earlier of $\overline{C S}$ or $\overline{W E}$ going high.
3. A minimum 0.5 ms time delay is required after application of $\mathrm{V}_{\mathrm{CC}}(+5 \mathrm{~V})$ before proper device operation is achieved.

Data Storage

When $\overline{W E}$ is high, the data input buffers are inhibited to prevent erroneous data from being written into the array. As long as $\overline{W E}$ remains high, the data stored cannot be affected by the Address, Chip Select, or Data I/O logic levels or timing transitions.
Data storage also cannot be affected by $\overline{\mathrm{WE}}$, Addresses, or the I/O ports as long as $\overline{\mathrm{CS}}$ is high. Either $\overline{\mathrm{CS}}$ or $\overline{\mathrm{WE}}$. or both can prevent extraneous writing due to signal transitions.
Data within the array can only be changed during Write time - defined as the overlap of $\overline{\mathrm{CS}}$ low and $\overline{\mathrm{WE}}$ low. The
addresses must be properly established during the entire Write time plus t_{WR}.
Internal delays are such that address decoding propagates ahead of data inputs and therefore no address setup time is required. If the Write time precedes the addresses, the data in previously addressed locations, or some other location, may be changed. Addresses must remain stable for the entire Write cycle but the Data Inputs may change. The data which is stable for ${ }^{\text {D DW }}$ at the end of the Write time will be written into the addressed location.

Package Availability
 18 Pin Cerdip 18 Pin Ceramic 18 Pin Flatpak

Ordering Information

Order Number	Access Time	Supply Current	Package
SYMC2114A-3	150 ns	70 mA	Ceramic
SYMD2114A-3	150 ns	70 mA	Cerdip
SYMF2114A-3	150 ns	70 mA	Flatpak
SYMC2114A-4	200 ns	70 mA	Ceramic
SYMD2114A-4	200 ns	70 mA	Cerdip
SYMF2114A-4	200 ns	70 mA	Flatpak
SYMC2114A-5	250 ns	70 mA	Ceramic
SYMD2114A-5	250 ns	70 mA	Cerdip
SYMF2114A-5	250 ns	70 mA	Flatpak
SYMC2114AL-3	150 ns	50 mA	Ceramic
SYMD2114AL-3	150 ns	50 mA	Cerdip
SYMF2114AL-3	150 ns	50 mA	Flatpak
SYMC2114AL-4	200 ns	50 mA	Ceramic
SYMD2114AL-4	200 ns	50 mA	Cerdip
SYMF2114AL-4	200 ns	50 mA	Flatpak
SYMC2114AL-5	250 ns	50 mA	Ceramic
SYMD2114AL-5	250 ns	50 mA	Cerdip
SYMF2114AL-5	250 ns	50 mA	Flatpak

SYM2128

Military 2048×8 Static Random Access Memory Extended Temperature Range

Features

- 150 nsec Maximum Access Time
- Fully Static Operation:

No Clocks or Strobes Required

- Automatic CE Power Down
- Identical Cycle and Access Times
- Single +5 V Supply ($\pm 10 \%$)
- Pin Compatible with 2716 16K EPROM
- Totally TTL Compatible:

All Inputs and Outputs

- Common Data Input and Output
- Three-State Output
- JEDEC Approved Pinout

Description

The Synertek SYM2128 is a 16,384 bit static Random Access Memory organized 2048 words by eight bits and is fabricated using Synertek's new scaled n-channel silicon gate technology. It is designed using fully static circuitry, therefore requiring no clock or refreshing to operate. The common data input and three-state output pins optimize compatibility with systems utilizing a bidirectional data bus.

The SYM2128 offers an automatic power down feature under the control of the chip enable $(\overline{\mathrm{CE}})$ input. When $\overline{\mathrm{CE}}$ goes high, deselecting the

Pin Configuration

chip, the device will automatically power down and remain in a standby power mode as long as $\overline{\mathrm{CE}}$ remains high. This feature provides significant system level power savings.

The SYM2128 is configured in the JEDEC approved pinout for 24 pin byte organized memories and is pin compatible with 16 K ROMs, EPROMs and EEPROMs. This offers the user the flexibility of being able to switch between RAM, ROM, EPROM, or EEPROM ashis needs dictate with a minimum of board changes.

Block Diagram

Absolute Maximum Ratings*

Temperature Under Bias $-65^{\circ} \mathrm{C}$ to $+135^{\circ} \mathrm{C}$
Storage Temperature $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Voltage on Any Pin with
Respect to Ground (under bias) .. -3.5 V to +7 V
Power Dissipation 1.0W
Electrostatic Discharge Rating (ESD)**
Inputs to Ground........................$\pm 2000 \mathrm{~V}$
Characteristics

Comment*

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
**Test Condition: MIL-STD-883B Method 3015.1

Symbol	Parameter	SYM 2128-3/-4		Unit	Conditions
		Min.	Max.		
I_{LI}	Input Load Current (All input pins)		10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {CC }}=$ Max, $\mathrm{V}_{\text {IN }}=$ Gnd to $\mathrm{V}_{\text {CC }}$
$\|\mathrm{LLO}\|$	Output Leakage Current		10	$\mu \mathrm{A}$	$\begin{aligned} & \overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IH}}, V_{\mathrm{CC}}=\mathrm{Max} \\ & \mathrm{~V}_{\mathrm{OUT}}=\mathrm{G} \text { nd to } 4.5 \mathrm{~V} \end{aligned}$
ICC	Power Supply Current		95	mA	$\mathrm{V}_{\mathrm{CC}}=\operatorname{Max}, \overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}}$ Outputs Open
			100	mA	
$\mathrm{I}_{\text {SB }}$	Standby Current		30	mA	$\mathrm{V}_{\mathrm{CC}}=$ Min to Max, $\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IH}}$
IPO	Peak Power-on Current (Note 6)		40	mA	$\begin{aligned} & V_{\mathrm{CC}}=\operatorname{Gnd} \text { to } V_{\mathrm{CC}} \operatorname{Min} \\ & \mathrm{CE}=\text { Lower of } V_{\mathrm{CC}} \text { or } V_{I H} \text { Min. } \end{aligned}$
$V_{\text {IL }}$	Input Low Voltage	-3.0	0.8	V	
$\mathrm{V}_{\text {IH }}$	Input High Voltage	2.0	6.0	V	
V_{OL}	Output Low Voltage		0.4	V	$\mathrm{l}_{\mathrm{OL}}=3.2 \mathrm{~mA}$
V_{OH}	Output High Voltage	2.4		V	$\mathrm{l}_{\mathrm{OH}}=-1.0 \mathrm{~mA}$

Capacitance $\quad T_{A}=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}$

Symbol	Test	Typ.	Max.	Unit
COUT	Output Capacitance		5	pF
CIN	Input Capacitance		5	pF

NOTE: This parameter is periodically sampled and not 100% tested.
A.C. Characteristics $\quad T_{A}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%$

READ CYCLE

Symbol	Parameter	SYM2128-3		SYM2128-4		Unit	Conditions
		Min.	Max.	Min.	Max.		
t_{RC}	Read Cycle Time	150		200		ns	
$\mathrm{t}_{\text {A }}$	Address Access Time		150		200	ns	
$\mathrm{t}_{\text {ACE }}$	Chip Enable Access Time		150		200	ns	
${ }^{\text {t }} \mathrm{AOE}$	Output Enable Access Time		60		70	ns	
${ }_{\text {toh }}$	Output Hold from Address Change	10		10		ns	
$\mathrm{t}_{\text {LZ }}$	Output Low 2 Time	10		10		ns	Note 5
t_{Hz}	Output High Z Time	0	50	0	60	ns	Note 5
tpu	Chip Enable to Power Up Time	0		0		ns	
tPD	Chip Disable to Power Down Time		80		100	ns	

WRITE CYCLE

$t_{\text {WC }}$	Write Cycle Time	150		200		ns	
t_{CW}	Chip Enable to End of Write	120		150		ns	
$\mathrm{t}_{\text {AW }}$	Address Valid to End of Write	120		150		ns	
$\mathrm{t}_{\text {AS }}$	Address Setup Time	0		0		ns	
$\mathrm{t}_{\text {WP }}$	Write Pulse Width	90		120		ns	
$\mathrm{t}_{\text {WR }}$	Write Recovery Time	0		0		ns	
$\mathrm{t}_{\text {DW }}$	Data Valid to End of Write	70		90		ns	
$\mathrm{t}_{\text {DH }}$	Data Hold Time	0		0		ns	
$\mathrm{t}_{\text {WZ }}$	Write Enabled to Output in High Z	0	50	0	60	ns	Note 5
$\mathrm{t}_{\text {OW }}$	Output Active from End of Write	0		0		ns	Note 5

Timing Diagrams

READ CYCLE NO. 1 (NOTES 1 and 2)

READ CYCLE NO. 2 (NOTES 1 and 3)

WRITE CYCLE NO. 1 (NOTE 4)

Notes:

1. $\overline{W E}$ is high for Read Cycles.
2. Device is continuously selected, $\overline{C E}=\overline{O E}=V_{1} L$.
3. Addresses valid prior to or coincident with $\overline{C E}$ transition low.
4. If $\overline{\mathrm{CE}}$ goes high simultaneously with $\overline{W E}$ high, the outputs remain in the high impedance state.
5. Transition is measured $\pm 500 \mathrm{mV}$ from low or high impedance voltage with load B. This parameter is sampled and not 100% tested.
6. A pullup resistor to $V_{C C}$ on the $\overline{C E}$ input is required to keep the device deselected: otherwise, power-on current approaches ICC active.
7. A minimum 0.5 ms time delay is required after application of $\mathrm{V}_{\mathrm{CC}}(+5 \mathrm{~V})$ before proper operation is achieved.

WRITE CYCLE NO. $2\left(\overline{O E}=V_{I L}\right)$ (NOTE 4)

A.C. Testing Input, Output Waveform

A.C. Testing Load Circuit

Package Availability 24 Pin Cerdip 24 PinCeramic 24 Pin Leadless Chip Carrier

Ordering Information

Order Number	Access Time (Max)	Operating Current (Max)	Standby Current (Max)	Package Type
SYMD2128-3	150 ns	100 mA	30 mA	Cerdip
SYMC2128-3	150 ns	100 mA	30 mA	Ceramic
SYMK2128-3	150 ns	100 mA	30 mA	LCC
SYMD2128-4	200 ns	100 mA	30 mA	Cerdip
SYMC2128-4	200 ns	100 mA	30 mA	Ceramic
SYMK2128-4	200 ns	100 mA	30 mA	LCC

Features

- 150 nsec Maximum Access Time
- Fully Static Operation:

No Clocks or Strobes Required

- Fast Chip Select Address Time: 60 ns Max.
- Identical Cycle and Access Times
- Pin Compatible with 2716 16K EPROM
- Single +5 V Supply ($\pm 10 \%$)
- Totally TTL Compatible:

All Inputs and Outputs

- Common Data Input and Output
- Three-State Output
- JEDEC Approved Pinout

Description

The Synertek SYM2129 is a 16,384 bit static Random Access Memory organized 2048 words by eight bits and is fabricated using Synertek's new scaled n-channel silicon gate technology. It is designed using fully static circuitry, therefore requiring no clock or refreshing to operate. The common data input and three-state output pins optimize compatibility with systems utilizing a bidirectional data bus.
The SYM2129 offers a chip select access that is faster than its address access. In a typical application, the address access begins as soon as the address is valid. At this time, the high
order addresses are decoded and the desired memory is then selected. With the faster chip select access, this decode time will not add to the overall access time thus significantly improving system performance.

The SYM2129 is configured in the JEDEC approved pinout for 24 pin byte organized memories and is pin compatible with 16 K ROMs, EPROMs and EEPROMs. This offers the user the flexibility of being able to switch between RAM, ROM, EPROM, or EEPROM ashis needs dictate with a minimum of board changes.

Block Diagram

Absolute Maximum Ratings*	
Temperature Under Bias	$-65^{\circ} \mathrm{C}$ to $+135^{\circ} \mathrm{C}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Voltage on Any Pin with	
Respect to Ground (under Bias)	-3.5 V to +7 V
Power Dissipation	1.0W
Electrostatic Discharge Rating (ESD)*	
Inputs to Ground	. $\pm 2000 \mathrm{~V}$

Temperature Under Bias $-65^{\circ} \mathrm{C}$ to $+135^{\circ} \mathrm{C}$ Storage Temperature $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ Voltage on Any Pin with

Respect to Ground (under Bias) . . -3.5 V to +7 V
Power Dissipation 1.0 W
Inputs to Ground
...
D.C. Characteristics $\quad T_{A}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%$ (Unless otherwise specified)

Symbol	Parameter	SYM2129-3/-4		Unit	Conditions
		Min.	Max.		
I_{LI}	Input Load Current (All input pins)		10	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\text {IN }}=\mathrm{Gnd}$ to V_{CC}
$\|\mathrm{LLO}\|$	Output Leakage Current		10	$\mu \mathrm{A}$	$\begin{aligned} & C S=V_{I H}, V_{C C}=M a x \\ & V_{\text {OUT }}=G \text { nd to } 4.5 \mathrm{~V} \end{aligned}$
Icc	Power Supply Current		95	mA	$\mathrm{V}_{\mathrm{CC}}=\operatorname{Max}, \overline{\mathrm{CS}}=\mathrm{V}_{\mathrm{IL}}$ Outputs Open
			100	mA	
$\mathrm{V}_{\text {IL }}$	Input Low Voltage	-3.0	0.8	V	
V_{IH}	Input High Voltage	2.0	6.0	V	
V_{OL}	Output Low Voltage		0.4	V	$\mathrm{l}_{\mathrm{OL}}=3.2 \mathrm{~mA}$
V_{OH}	Output High Voltage	2.4		V	$\mathrm{IOH}=-1.0 \mathrm{~mA}$

Capacitance $T_{A}=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}$

Symbol	Test	Typ.	Max.
COUT	Output Capacitance	Unit	
$C_{\text {IN }}$	Input Capacitance	5	
NOTE: This parameter is periodically sampled and not 100% tested.	5		

A.C. Characteristics $\quad \mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%$

READ CyCLE

Symbol	Parameter	SYM2129-3		SYM2129-4		Unit	Conditions
		Min.	Max.	Min.	Max.		
t_{RC}	Read Cycle Time	150		200		ns	.
${ }^{\text {t }}$ A	Address Access Time		150		200	ns	
${ }^{\text {t }}$ ACS	Chip Select Access Time		60		70	ns	
$\mathrm{t}_{\text {AOE }}$	Output Enable Access Time		60		70	ns	
${ }^{\text {toh }}$	Output Hold from Address Change	10		10		ns	
t_{LZ}	Output Low Z Time	10		10		ns	Note 4
t_{Hz}	Output High Z Time	0	50	0	60	ns	Note 4

WRITE CYCLE

$\mathrm{t}_{\text {WC }}$	Write Cycle Time	150		200		ns	
t_{CW}	Chip Select to End of Write	90		120		ns	
$\mathrm{t}_{\text {AW }}$	Address Valid to End of Write	120		150		ns	
$\mathrm{t}_{\text {AS }}$	Address Setup Time	0		0		ns	
$\mathrm{t}_{\text {WP }}$	Write Pulse Width	90		120		ns	
t_{WR}	Write Recovery Time	0		0		ns	
t_{DW}	Data Valid to End of Write	70		90		ns	
$\mathrm{t}_{\text {DH }}$	Data Hold Time	0		0		ns	
t_{WZ}	Write Enabled to Output in High Z	0	50	0	60	ns	Note 4
$\mathrm{t}_{\text {OW }}$	Output Active from End of Write	0		0		ns	Note 4

(See following page for notes)

Timing Diagrams

READ CYCLE NO. 1 (NOTES 1 and 2)

READ CYCLE NO. 2 (NOTE 1)

WRITE CYCLE NO. 1 (NOTE 3)

Notes:

1. WE is high for Read Cycles.
2. Device is continously selected, $\overline{\mathrm{CS}}=\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IL}}$.
3. If $\overline{\mathrm{CS}}$ goes high simultaneously with $\overline{\mathrm{WE}}$ high, the outputs remain in the high impedance state.
4. Transition is measured $\pm 500 \mathrm{mV}$ from low or high impedance voltage with load B. This parameter is sampled and not 100% tested.
5. A minimum 0.5 ms time delay is required after application of $\mathrm{V}_{\mathrm{CC}}(+5 \mathrm{~V})$ before proper device operation is achieved.

WRITE CYCLE NO. 2 ($\overline{O E} \pm \mathrm{V}_{\mathrm{IL}}$) (NOTE 3)

A.C. Testing Input, Output Waveform

A.C. Testing Load Circuit

Package Availability

24 Pin Cerdip
24 Pin Ceramic
24 Pin Leadless Chip Carrier

Ordering Information

Order Number	Access Time (Max)	Operating Current (Max)	Package Type
SYMD2129-3	150 ns	100 mA	Cerdip
SYMC2129-3	150 ns	100 mA	Ceramic
SYMK2129-3	150 ns	100 mA	LCC
SYMD2129-4	200 ns	100 mA	Cerdip
SYMC2129-4	200 ns	100 mA	Ceramic
SYMK2129-4	200 ns	100 mA	LCC

Military 4096×1 Static Random Access Memory

 Extended Temperature Range $\left(-55^{\circ} \mathrm{C}\right.$ to $\left.+125^{\circ} \mathrm{C}\right)$
Features

- 55 ns Maximum Access
- No Clocks or Strobes Required
- Automatic $\overline{C E}$ Power Down
- Identical Cycle and Access Times
- Single +5 V Supply $(\pm 10 \%)$
- Totally TTL Compatible All Inputs and Outputs
- Separate Data Input and Output
- High Density 18-Pin Package
- Three-State Output

Description

The Synertek SYM2147H is a 4096-Bit Static Random Access Memory organized 4096 words by 1-bit and is fabricated using Synertek's new N-Channel SiliconGate HMOS technology. It is designed using fully static circuitry, therefore requiring no clock or refreshing to operate. Address set-up times are not required and the data is read out non-destructively with the same polarity as the input data. Separate data input and output pins provide maximum design flexibility. The three-state output facilitates memory expansion by allowing the outputs to be OR-tied to other devices.

Pin Configuration

The SYM2147H offers an automatic power down feature. Power down is controlled by the Chip Enable input. When Chip Enable ($\overline{\mathrm{CE}}$) goes high, thus deselecting the SYM2147H, the device will automatically power down and remain in a standby power mode as long as $\overline{C E}$ remains high. This unique feature provides system level power savings as much as 80%.

The SYM2147H is packaged in an 18-pin DIP for the highest possible density. The device is fully TTL compatible and has a single +5 V power supply.

Block Diagram

Absolute Maximum Ratings*

Temperature Under Bias $-65^{\circ} \mathrm{C}$ to $+135^{\circ} \mathrm{C}$
Storage Temperature. $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Voltage on Any Pin with
Respect to Ground (under bias) . . . -3.5 V to +7 V
Power Dissipation
. 1.2 W
Electrostatic Discharge Rating (ESD)**
Inputs to Ground
............................ $\pm 2000 \mathrm{~V}$

Comment*

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
**Test Condition: MIL-STD-883B Method 3015.1
D.C. Characteristics $\quad T_{A}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%$ (Unless otherwise specified) (Note 8)

Symbol	Parameter	M2147H-2		M2147H/-3		Unit	Conditions	
		Min.	Max.	Min.	Max.			
ILI	Input Load Current (All input pins)		10		10	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\text {IN }}=$ Gnd to V_{CC}	
\|LTO		Output Leakage Current		50		50	$\mu \mathrm{A}$	$\begin{aligned} & \overline{C S}=V_{I H}, V_{C C}=M a x \\ & V_{\text {OUT }}=G \text { nd to } 4.5 \mathrm{~V} \end{aligned}$
I_{CC}	Power Supply Current		160		140	mA	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \quad \mathrm{V}_{\mathrm{CC}}=$ Max, $\overline{C S}=\mathrm{V}_{\mathrm{IL}}$	
			180		160	mA	$\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ Outputs Open	
$\mathrm{I}_{\text {SB }}$	Standby Current		35		30	mA	$\mathrm{V}_{\mathrm{CC}}=$ Min to Max, $\overline{C S}=\mathrm{V}_{1 H}$	
Ipo	Peak Power-on Current (Note 9)		60		50	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Gnd}$ to $\mathrm{V}_{\mathrm{CC}} \mathrm{Min}$ $\overline{\mathrm{CS}}=$ Lower of V_{CC} or $\mathrm{V}_{\text {IH }}$ MIN	
$\mathrm{V}_{\text {IL }}$	Input Low Voltage	-3.0	0.8	-3.0	0.8	v		
$\mathrm{V}_{1 \mathrm{H}}$	Input High Voltage	2.0	6.0	2.0	6.0	v		
V_{OL}	Output Low Voltage		0.4		0.4	v	$\mathrm{I}_{\mathrm{OL}}=8 \mathrm{~mA}$	
V_{OH}	Output High Voltage	2.4		2.4		V	$\mathrm{I}_{\mathrm{OH}}=-4.0 \mathrm{~mA}$	

Capacitance $T_{A}=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}$ NOTE: This parameter is periodically sampled and not 100% tested.

Symbol	Test	Typ.	Max.	Unit
C OUT	Output Capacitance		6	pF
CIN	Input Capacitance		5	pF

A.C. Test Conditions $\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%$ (Unless otherwise specified) (Note 8) READ CYCLE

Symbol	Parameter	M2147H-2		M2147H-3		M2147H		Unit	Conditions
		Min.	Max.	Min.	Max.	Min.	Max.		
t_{RC}	Read Cycle Time	45		55		70		ns	
$t_{\text {AA }}$	Address Access Time		45		55		70	ns	
$t_{\text {ACE1 }}$	Chip Enable Access Time		45		55		70	ns	Note 1
$\mathrm{t}_{\text {ACE2 }}$	Chip Enable Access Time		55		65		80	ns	Note 2
t_{OH}	Output Hold from Address Change	5		5		5		ns	
t_{LZ}	Chip Enabled to Output in Low Z	10		10		10		ns	Note 7
t_{Hz}	Chip Disabled to Output in High Z	0	40	0	40	0	40	ns	Note 7
tPu	Chip Enabled to Power Up Time	0		0		0		ns	
$t_{\text {PD }}$	Chip Disabled to Power Down Time		30		30		30	ns	

WRITE CYCLE

$t_{\text {WC }}$	Write Cycle Time	45		55		70		ns	
$t_{\text {CW }}$	Chip Enabled to End of Write	45		45		55		ns	
$t_{\text {AW }}$	Address Valid to End of Write	45		45		55		ns	
$\mathrm{t}_{\text {AS }}$	Address Setup Time	0		0		0		ns	
$t_{\text {WP }}$	Write Pulse Width	30		35		40		ns	
$t_{\text {WR }}$	Write Recovery Time	5		10		15		ns	
$\mathrm{t}_{\text {DW }}$	Data Valid to End of Write	25		25		30		ns	
$t_{\text {DH }}$	Data Hold Time	10		10		10		ns	
$\mathrm{t}_{\text {WZ }}$	Write Enabled to Output in High Z	0	25	0	30	0	35	ns	Note 7
$\mathrm{t}_{\text {OW }}$	Output Active from End of Write	0		0		0		ns	Note 7

(See following page for notes)

Timing Diagrams

READ CYCLE NO. 1 (NOTES 3 AND 4)

READ CYCLE NO. 2 (NOTES 3 AND 5)

WRITE CYCLE NO. 1 ($\overline{W E}$ CONTROLLED) (NOTE 6)

NOTES:

1. Chip disabled for greater than 55 ns prior to selection.
2. Chip disabled for a finite time that is less than 55 ns prior to selection. (If the deselect time is Ons , the chip is by definition selected and access occurs according to Read Cycle No. 1.).
3. $\overline{W E}$ is high for Read Cycles.
4. Device is continuously selected, $\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}}$.
5. Addresses valid prior to or coincident with $\overline{C E}$ transition low.
6. If $\overline{C E}$ goes high simultaneously with $\overline{\mathrm{WE}}$ high, the outputs remain in the high impedance state.
7. Transition is measured $\pm 500 \mathrm{mV}$ from low or high impedance voltage with load B . This parameter is sampled and not 100% tested.
8. The operating ambient temperature range is guaranteed with transverse air flow exceeding 400 linear feet per minute.
9. A pullup resistor to V_{CC} on the $\overline{\mathrm{CE}}$ input is required to keep the device deselected: otherwise, power-on current approaches ICC active.
10. A minimum of 0.5 ms time delay is required after application of $\mathrm{V}_{\mathrm{CC}}(+5 \mathrm{~V})$ before proper device operation is achieved.

WRITE CYCLE NO. 2 ($\overline{\mathrm{CS}}$ CONTROLLED) (NOTE 6)

A.C. Testing Input, Output Waveform

A.C. Testing Load Circuit

Ordering Information

Order Number	Access Time (Max)	Operating Current (Max)	Standby Current (Max)	Package Type
SYMC2147H-2	45 ns	180 mA	30 mA	Ceramic
SYMD2147H-2	45 ns	180 mA	30 mA	Cerdip
SYMF2147H-2	45 ns	180 mA	30 mA	Flatpak
SYMK2147H-2	45 ns	180 mA	30 mA	LCC
SYMC2147H-3	55 ns	160 mA	30 mA	Ceramic
SYMD2147H-3	55 ns	160 mA	30 mA	Cerdip
SYMF2147H-3	55 ns	160 mA	30 mA	Flatpak
SYMK2147H-3	55 ns	160 mA	30 mA	LCC
SYMC2147H	70 ns	160 mA	30 mA	Ceramic
SYMD2147H	70ns	160 mA	30 mA	Cerdip
SYMF2147H	70ns	160 mA	30 mA	Flatpak
SYMK2147H	70ns	160 mA	30 mA	LCC

Features

- 55ns Maximum Access
- No Clocks or Strobes Required
- Automatic CE Power Down
- Identical Cycle and Access Times
- Single +5 V Supply $(\pm 10 \%$)
- Industry Standard 2114 Pinout
- Totally TTL Compatible All Inputs and Outputs
- Common Data Input and Output
- High Density 18-Pin Package
- Three-State Output

Description

The Synertek SYM2148H is a 4096-Bit Static Random Access Memory organized 1024 words by 4 bits and is fabricated using Synertek's new N-Channel SiliconGate HMOS technology. It is designed using fully static circuitry, therefore requiring no clock or refreshing to operate. Address set-up times are not required and the data is read out non-destructively with the same polarity as the input data. Common data input and output pins provide maximum design flexibility. The three-state output facilitates memory expansion by allowing the outputs to be OR-tied to other devices.

The SYM2148H offers an automatic power down feature. Power down is controlled by the Chip Enable input. When Chip Enable ($\overline{\mathrm{CE}}$) goes high, thus deselecting the SY 2148 H , the device will automatically power down and remain in a standby power mode as long as $\overline{\mathrm{CE}}$ remains high. This unique feature provides system level power savings as much as 85%.

The SYM2148H is packaged in an 18-pin DIP for the highest possible density. The device is fully TTL compatible and has a single +5 V power supply.

Pin Configuration

Block Diagram

Absolute Maximum Ratings*
Temperature Under Bias $-65^{\circ} \mathrm{C}$ to $+135^{\circ} \mathrm{C}$
Storage Temperature. $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Voltage on Any Pin with
Respect to Ground (under bias) -3.5 V to +7 V
Power Dissipation ...1.0w
Electrostatic Discharge Rating (ESD)**
Inputs to Ground \qquad SD)**
D.C. Characterisitcs
$\pm 2000 \mathrm{~V}$

Comment*

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied
**Test Condition: MIL-STD-883B Method 3015.1

Symbol	Parameter	Min.	Max.	Unit	Condition	
ILI	Input Load Current (All input pins)		10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {CC }}=\mathrm{Max}, \mathrm{V}_{\text {IN }}=$ Gnd to $\mathrm{V}_{\text {CC }}$	
$\|\mathrm{LLO}\|$	Output Leakage Current		50	$\mu \mathrm{A}$	$\begin{aligned} & \overline{\mathrm{CS}}=\mathrm{V}_{1 \mathrm{H}}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Max} \\ & \mathrm{~V}_{\mathrm{OUT}}=\mathrm{Gnd} \text { to } 4.5 \mathrm{~V} \end{aligned}$	
ICC	Power Supply Current		130	mA	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\text { Max, } \overline{\mathrm{CS}}=\mathrm{V}_{\mathrm{IL}} \\ & \text { Outputs Open } \end{aligned}$
			150	mA	$\mathrm{T}_{A}=-55^{\circ} \mathrm{C}$	
ISB	Standby Current		30	mA	$\mathrm{V}_{\mathrm{CC}}=$ Min to Max, $\overline{\mathrm{CS}}=\mathrm{V}_{1} \mathrm{H}$	
IPO	Peak Power-on Current (Note 9)		50	mA	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\text { Gnd to } \mathrm{V}_{\mathrm{CC}} \mathrm{Min} \\ & \overline{\mathrm{CS}}=\text { Lower of } \mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{V}_{\mathrm{IH}} \mathrm{Min} \end{aligned}$	
$V_{\text {IL }}$	Input Low Voltage	-3.0	0.8	V		
$\mathrm{V}_{\text {IH }}$	Input High Voltage	2.1	6.0	v		
V_{OL}	Output Low Voltage		0.4	v	$\mathrm{I}^{\mathrm{OL}}=8 \mathrm{~mA}$	
V_{OH}	Output High Voltage	2.4		v	$\mathrm{I}^{\mathrm{OH}}=-4 \mathrm{~m}$	

Capacitance $\quad T_{A}=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}$
NOTE: This parameter is periodically sampled and not 100% tested.

Symbol	Test	Typ.	Max.	Unit
COUT $_{\text {OUP }}$	Output Capacitance		7	pF
CIN \quad Input Capacitance		5	pF	

A.C. Characteristics $\quad T_{A}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%$ (Unless otherwise specified) (note 8) READ CYCLE

Symbol	Parameter	M2148H-3		M2148H		M2148H-6		Unit	Conditions
		Min.	Max.	Min.	Max.	Min.	Max.		
${ }^{\text {t }}$ RC	Read Cycle Time	55		70		85		ns	
${ }^{\text {t }}$ AA	Address Access Time		55		70		85	ns	
${ }_{\text {t }}$ ACE1	Chip Enable Access Time		55		70		85	ns	Note 1
t ACE2	Chip Enable Access Time		65		80		85	ns	Note 2
${ }^{\text {toh }}$	Output Hold from Address Change	5		5		5		ns	
tLZ	Chip Enabled to Output in Low Z	10		10		10		ns	Note 7
thz	Chip Disable to Output in High Z	0	20	0	20	0	20	ns	Note 7
tPu	Chip Enabled to Power Up Time	0		0		0		ns	
tPD	Chip Disable to Power Down Time		30		30		30	ns	

WRITECYCLE

twC	Write Cycle Time	55		70		85		ns	
${ }^{\text {t }}$ CW	Chip Enabled to End of Write	50		65		70		ns	
${ }^{\text {t }}$ AW	Address Valid to End of Write	50		65		70		ns	
${ }^{\text {t } A S}$	Address Setup Time	0		0		0		ns	
tWP	Write Pulse Width	40		50		60		ns	
tWR	Write Recovery Time	5		5		5		ns	
tDW	Data Valid to End of Write	20		25		30		ns	
tDH	Data Hold Time	0		0		0		ns	
twz	Write Enabled to Output in High Z	0	20	0	25	0	30	ns	Note 7
tow	Output Active from End of Write	0		0		0		ns	Note 7

Timing Diagrams

READ CYCLE NO. 1 (NOTES 3 AND 4)

READ CYCLE NO. 2 (NOTES 3 AND 5)

WRITE CYCLE NO. 1 ($\overline{W E}$ CONTROLLED) (NOTE 6)

NOTES: 1. Chip disabled for greater than 55 ns prior to selection.
2. Chip disabled for a finite time that is less than 55 ns prior to selection. (If the deselect time is Ons, the chip is by definition selected and access occurs according to Read Cycle No. 1.).
3. $\overline{W E}$ is high for Read Cycles.
4. Device is continuously selected, $\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}}$.
5. Addresses valid prior to or coincident with $\overline{C E}$ transition low.
6. If $\overline{\mathrm{CE}}$ goes high simultaneously with $\overline{\mathrm{WE}}$ high, the outputs remain in the high impedance state.
7. Transition is measured $\pm 500 \mathrm{mV}$ from low or high impedance voltage with load B. This parameter is sampled and not 100% tested.
8. The operating ambient temperature range is guaranteed with transverse air flow exceeding 400 linear feet per minute.
9. A pullup resistor to $V_{C C}$ on the $\overline{C E}$ input is required to keep the device deselected: otherwise, power-on current approaches ICC active.
10. A minimum of 0.5 ms time delay is required after application of $\mathrm{VCC}(+5 \mathrm{~V})$ before proper device operation is achieved.

WRITE CYCLE NO. 2 ($\overline{C E}$ CONTROLLED) (NOTE 6)

A.C. Testing Input, Output Waveform

Package Availability

18 Pin Flatpak
18 Pin Cerdip
18 Pin Ceramic
18 Pin Leadless Chip Carrier

A.C. Testing Load Circuit

Ordering Information

Order	Access Time (Max)	Operating Current (Max)	Standby Current (Max)	Package Type
SYMC2148H-3	55 ns	150 mA	30 mA	Ceramic
SYMD2148H-3	55 ns	150 mA	30 mA	Cerdip
SYMF2148H-3	55 ns	150 mA	30 mA	Flatpak
SYMK2148H-3	55 ns	150 mA	30 mA	LCC
SYMC2148H	70 ns	150 mA	30 mA	Ceramic
S'MD2148H	70 ns	150 mA	30 mA	Cerdip
SYMF2148H	70 ns	150 mA	30 mA	Flatpak
SYMK2148H	70 ns	150 mA	30 mA	LCC
SYMC2148H-6	85 ns	150 mA	30 mA	Ceramic
SYMD2148H-6	85 ns	150 mA	30 mA	Cerdip
SYMF2148H-6	85 ns	150 mA	30 mA	Flatpak
SYMK2148H-6	85 ns	150 mA	30 mA	LCC

Military 1024×4 Static Random Access Memory
 Extended Temperature Range

$\left(-55^{\circ} \mathrm{C}\right.$ to $+125^{\circ} \mathrm{C}$)

Features

- 55 ns Maximum Address Access
- Industry Standard 2114 Pinout
- Fully Static Operation:

No Clocks or Strobes Required

- Fast Chip Select Access Time: 25 ns Max.
- Identical Cycle and Access Times
- Totally TTL Compatible:

All Inputs and Outputs

- Single +5 V Supply ($\pm 10 \%$)
- Common Data Input and Outputs
- High Density 18-Pin Package
- Three-State Output

Description

The Synertek SYM2149H is a 4096-Bit Static Random Access Memory organized 1024 words by 4 bits and is fabricated using Synertek's new N-Channel SiliconGate HMOS technology. It is designed using fully static circuitry, therefore requiring no clock or refreshing to operate. Address set-up times are not required and the data is read out non-destructively with the same polarity as the input data. Common data input and output pins provide maximum design flexibility. The three-state output facilitates memory expansion by allowing the outputs to be OR-tied to other devices.

The SYM2149H offers a chip select access that is faster than its address access. In a typical application, the address access begins as soon as the address is valid. At this time, the high order addresses are decoded and the desired memory is then selected. With the faster chip select access, this decode time will not add to the overall access time thus significantly improving system performance.

The SYM 2149 H is packaged in an 18 -pin DIP for the highest possible density. The device is fully TTL compatible and has a single +5 V power supply.

Pin Configuration

Block Diagram

SYM2149H

Absolute Maximum Ratings*

Comment*

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
**Test Condition: MIL-STD-883B Method 3015.1
D.C. Characterisitcs $\quad T_{A}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%$ (Unless otherwise specified) (Note 6)

Symbol	Parameter	Min.	Max.	Unit	Conditions
${ }^{\prime} \mathrm{LI}$	Input Load Current (all input pins).		10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {CC }}=$ Max, $\mathrm{V}_{\text {IN }}=$ Gnd to $\mathrm{V}_{\text {CC }}$
'Lo	Output Leakage Current		50	$\mu \mathrm{A}$	$\begin{aligned} & \overline{\mathrm{CS}}=\mathrm{V}_{\mathrm{IH}}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Max} \\ & \mathrm{~V}_{\mathrm{OUT}}=\mathrm{G} \text { nd to } 4.5 \mathrm{~V} \end{aligned}$
ICC	Power Supply Current		130	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \overline{\mathrm{CS}}=\mathrm{V}_{\mathrm{IL}}$ Outputs Open
			150	mA	
$V_{\text {IL }}$	Input Low Voltage	-3.0	0.8	V	
$\mathrm{V}_{\text {IH }}$	Input High Voltage	2.0	6.0	V	
V_{OL}	Output Low Voltage		0.4	V	$1 \mathrm{OL}=8 \mathrm{~mA}$
V OH	Output High Voltage	2.4		V	$1 \mathrm{OH}=-4.0 \mathrm{~mA}$
los	Output Short Circuit Current		± 200	mA	$\mathrm{V}_{\text {OUT }}=$ GND to $\mathrm{V}_{\text {CC }}$ (Note 8)

Capacitance $\quad T_{A}=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}$

Symbol	Test	Typ.	Max.	Unit
$C_{\text {OUT }}$	Output Capacitance		7	pF
$\mathrm{C}_{\text {IN }}$	Input Capacitance		5	pF

NOTE: This parameter is periodically sampled and not 100% tested.
A.C. Characteristics $\quad T_{A}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%$ (Unless otherwise specified) (Note 6)
READ CYCLE

Symbol	Parameter	M2149H-3		M2149H		M2149H-6		Unit	Conditions
		Min.	Max.	Min.	Max.	Min.	Max.		
${ }^{\text {tR }} \mathrm{C}$	Read Cycle Time	55		70		85		ns	
${ }^{\text {t }}$ A A	Address Access Time		55		70		85	ns	
${ }^{\text {taCS }}$	Chip Select Access Time		25		30		35	ns	
${ }^{\text {toh }}$	Output Hold from Address Change	5		5		5		ns	
${ }_{\text {t }}$ L	Chip Selection to Output in Low Z	5		5		5		ns	Note 5
${ }_{\text {thz }}$	Chip Deselection to Output in High Z	0	15	0	15	0	15	ns	Note 5

WRITE CYCLE

twc	Write Cycle Time	55		70		85		ns	
${ }^{\text {t }}$ W W	Chip Selection to End of Write	50		65		75		ns	
${ }^{\text {t }}$ AW	Address Valid to End of Write	50		65		75		ns	
${ }^{\text {t }}$ AS	Address Setup Time	0		0		0		ns	
tWP	Write Pulse Width	40		50		60		ns	
tWR	Write Recovery Time	5		5		5		ns	
tDW	Data Valid to End of Write	20		25		30		ns	
tDH	Data Hold Time	0		0		0		ns	
twZ	Write Enabled to Output in High Z	0	20	0	25	0	30	ns	Note 5
tow	Output Active from End of Write	0		0		0		ns	Note 5

(See following page for notes)

Timing Diagrams

READ CYCLE NO. 1 (NOTES 1 AND 2)

READ CYCLE NO. 2 (NOTES 1 AND 3)

WRITE CYCLE NO. 1 (WE CONTROLLED) (NOTE 4)

NOTES:

1. WE is high for Read Cycles.
2. Device is continuously selected, $\overline{\mathrm{CS}}=\mathrm{V}_{\mathrm{IL}}$.
3. Addresses valid.
4. If $\overline{C S}$ goes high simultaneously with $\overline{W E}$ high, the outputs remain in the high impedance state.
5. Transition is measured $\pm 500 \mathrm{mV}$ from low or high impedance voltage with load B. This parameter is sampled and not 100\% tested.
6. The operating ambient temperature range is guaranteed with transverse air flow exceeding 400 linear feet per minute.
7. A minimum of 0.5 ms time delay is required after application of $\mathrm{V}_{\mathbf{C C}}(+5 \mathrm{~V})$ before proper device operation is achieved.
8. Duration not to exceed one minute.

WRITE CYCLE NO. 2 ($\overline{\mathrm{CS}}$ CONTROLLED) (NOTE 4)

A.C. Testing Input, Output Waveform

18 Pin Flatpak
18 Pin Cerdip 18 Pin Ceramic 18 Pin Leadless Chip Carrier
A.C. Testing Load Circuit

Ordering Information

Order Number	Access Time (Max)	Supply Current (Max)	Package Type
SYMC2149H-3	55 nsec	150 mA	Ceramic
SYMD2149H-3	55 nsec	150 mA	Cerdip
SYMF2149H-3	55 nsec	150 mA	Flatpak
SYMK2149H-3	55 nsec	150 mA	LCC
SYMC2149H	70 nsec	150 mA	Ceramic
SYMD2149H	70 nsec	150 mA	Cerdip
SYMF2149H	70 nsec	150 mA	Flatpak
SYMK2149H	70 nsec	150 mA	LCC
SYMC2149H-6	85 nsec	150 mA	Ceramic
SYMD2149H-6	85 nsec	150 mA	Cerdip
SYMF2149H-6	85 nsec	150 mA	Flatpak
SYMK2149H-6	85 nsec	150 mA	LCC

- Available in Ceramic (C), Cerdip (D), Flatpack (F), and Leadless Chip Carrier (K)
- Totally TTL Compatible All Inputs and Outputs
- Separate Data Input and Output
- High Density 20 Pin Package
- Three-State Output

Description

The Synertek SY2167 is a 16,384 -Bit Static Random Access Memory organized 16,384 words by 1 -bit and is fabricated using Synertek's new N-Channel Double Polysilicon Gate HMOS technology. It is designed using fully static circuitry, therefore requiring no clock or refreshing to operate. Address set-up times are not required and the data is read out nondestructively with the same polarity as the input data. Separate data input and output pins provide maximum design flexibility. The three-state output facilitates memory expansion by allowing the outputs to be OR-tied to other devices.

The SY2167 offers an automatic power down feature. Power down is controlled by the Chip Enable input. When Chip Enable ($\overline{\mathrm{CE}}$) goes high, thus de-selecting the SY2167, the device will automatically power down and remain in a standby power mode as long as $\overline{C E}$ remains high. This unique feature provides system level power savings as much as 80%.

The SY2167 is packaged in a 20-pin DIP for the highest possible density. The device is fully TTL compatible and has a single +5 V power supply.

Block Diagram

Pin Configuration

SYM2168
Military 4096×4 Static Random Access Memory Extended Temperature Range

Features

- 70 ns Maximum Access Time
- No Clocks or Strobes Required
- Automatic CE Power Down
- Identical Cycle and Access Times
- Single +5 V Supply ($\pm 10 \%$)

\author{

- Available in Ceramic (C), Cerdip (D), Flatpack (F), and Leadless Chip Carrier (K)
 - JEDEC Standard Pinout
 - Totally TTL Compatible All Inputs and Outputs
 - Common Data Input and Output
 - High Density 20-Pin Package
 - Three-State Output
}

Description

The Synertek SY2168 is a 16,384 -Bit Static Random Access Memory organized 4096 words by 4 bits and is fabricated using Synertek's scaled n-channel double poly silicon gate technology. It is designed using fully static circuitry, therefore requiring no clock or refreshing to operate. Address set-up times are not required and the data is read out nondestructively with the same polarity as the input data. Common data input and output pins provide maximum design flexibility. The three-state output facilitates memory expansion by allowing the outputs to be OR-tied to other devices.

The SY2168 offers an automatic power down feature. Power down is controlled by the Chip Enable input. When Chip Enable ($\overline{\mathrm{CE}}$) goes high, thus de-selecting the SY2168, the device will automatically power down and remain in a standby power mode as long as $\overline{\mathrm{CE}}$ remains high. This unique feature provides system level power savings as much as 85%.
The SY2168 is packaged in a 20-pin DIP for the highest possible density. The device is fully TTL compatible and has a single +5 V power supply.

Pin Configuration

Block Diagram

Features

- 70 ns Maximum Address Access Times
- Fully Static Operation:

No Clocks or Strobes Required

- Fast Chip Select Access Time: 50 ns Max.
- Identical Cycle and Access Times
- Single +5 V Supply
- Available in Ceramic (C), Cerdip (D), Flatpack (F), and Leadless Chip Carrier (K)
- JEDEC Standard Pinout
- Totally TTL Compatible: All Inputs and Outputs
- Common Data Input and Outputs
- High Density 20-Pin Package
- Three-State Output

Description

The Synertek SY2169 is a 16,384-Bit Static Random Access Memory organized 4096 words by 4 bits and is fabricated using Synertek's N-Channel double poly silicon gate HMOS technology. It is designed using fully static circuitry, therefore requiring no clock or refreshing to operate. Address set-up times are not required and the data is read out nondestructively with the same polarity as the input data. Common data input and output pins provide maximum design flexibility. The three-state output facilitates memory expansion by allowing the outputs to be OR-tied to other devices.

The SY2169 offers a chip select access that is faster than its address access. In a typical application, the address access begins as soon as the address is valid. At this time, the high order addresses are decoded and the desired memory is then selected. With the faster chip select access, this decode time will not add to the overall access time thus significantly improving system performance.

The SY2169 is packaged in a 20-pin DIP for the highest possible density. The device is fully TTL compatible and has a single +5 V power supply.

Pin Configuration

Block Diagram

Features

- SYM2333-273 EPROM Pin Compatible
- SYM2332-2532 EPROM Pin Compatible
- 4092×8 Bit Organizations
- Three-State Outputs for Wire-OR Expansion
- Single +5 Volt Supply ($\pm 10 \%$)
- Two Programmable Chip Selects (CS)
- Access Time - 450 ns (max.)
- EPROMS Accepted as Program Data Inputs
- Totally Static Operation
- Completely TTL Compatible

Description

The SYM2332 and SYM2333 high performance read only memories are organized 4096 words by 8 bits with access times of less than 450 ns . They are designed to be compatible with all microprocessor and similar applications where high performance, large bit storage and simple interfacing are important design considerations. These devices offer TTL input and output levels with a minimum of 0.4 Volt noise immunity in conjunction with a +5 Volt power supply.

Pin Configurations

The SYM2332 and SYM2333 operate totally asynchronously. No clock input is required. The two programmable Chip Select inputs allow four 32 K ROMs to be OR-tied without external decoding. Both devices offer three-state output buffers for memory expansion.
Designed to replace 32 K EPROMs, the SYM2332 and SYM2333 can eliminate the need to redesign printed circuit boards for volume mask programmed ROMs after prototyping with EPROMs.

Block Diagram

[^26]Absolute Maximum Ratings*
Temperature Under Bias $\quad-65^{\circ} \mathrm{C}$ to $+135^{\circ} \mathrm{C}$
Storage Temperature
Voltage on Any Pin with
Respect to Ground (under bias)
Power Dissipation $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
3.5 V to +7 V 1.0W

Comment*

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only. Functional operation of this device at these or any other conditions above those indicated on the operational sections of this specification is not implied and exposure to absolute maximum rating conditions for extended periods may affect device reliability.
D.C. Characteristics $\quad T_{A}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \%$ (unless otherwise specified)

Symbol	Parameter	Min.	Max.	Units	Test Conditions
VOH	Output HIGH Voltage	2.4	$\mathrm{V}_{\text {CC }}$	Volts	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, 1 \mathrm{OH}=-400 \mu \mathrm{~A}$
V_{OL}	Output LOW Voltage		0.4	Volts	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{IOL}=2.1 \mathrm{~mA}$
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage	2.0	$\mathrm{V}_{\text {CC }}$	Volts	
VIL	Input LOW Voltage	-3.0	0.8	Volts	See Note 1
ILI	Input Load Current		10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {CC }}=5.5 \mathrm{~V}, 0 \mathrm{~V} \leqslant \mathrm{~V}_{\text {IN }} \leqslant 5.5 \mathrm{~V}$
ILO	Output Leakage Current		10	$\mu \mathrm{A}$	Chip Deselected $\mathrm{V}_{\text {OUT }}=+0.4 \mathrm{~V}$ to V_{CC}
ICC	Power Supply Current		100	mA	Output Unloaded, Chip Enabled $V_{C C}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}}$

A.C. Characteristics $T_{A}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \%$ (unless otherwise specified) (Note 3)

Symbol	Parameter	SYM2332 and SYM2333		Units	Test Conditions
		Min.	Max.		
t ACC	Address Access Time		450	ns	Output load: 1 TTL load
${ }^{\text {t }} \mathrm{CO}$	Chip Select Delay		150	ns	and 100pF
tDF	Chip Deselect Delay			ns	Input transition time: 20ns
${ }^{\text {tor }}$	Previous Data Valid After Address Change Delay	20		ns	Timing reference levels: Input: 1.5V Output: 0.8 V and 2.0 V

Capacitance $t_{A}=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}$, (Note 2)

Symbol	Parameter	Min.	Max.	Units	Test Conditions
C_{1}	Input Capacitance		7	pF	All pins except pin under
C_{O}	Output Capacitance		10	pF	test tied to $A C$ ground

Notes:

1. Input levels that swing more negative than -3.0 V will be clamped and may cause damage to the device.
2. This parameter is periodically sampled and is not 100% tested.
3. A minimum of 0.5 ms time delay is required after application of $\mathrm{V}_{C C}(+5 \mathrm{~V})$ before proper device operation is achieved.

Timing Diagrams

Programming Instructions

All Synertek Read Only Memories (ROM) utilize computer aided techniques to manufacture and test custom bit patterns. The customer's bit pattern and address information can be supplied to Synertek in a number of different ways. Synertek can process customer inputs in EPROM, ROM, PROM, paper
tape, and computer punched cards. Contact your Synertek sales representative fo complete details on each of the various data input formats.
Programming instructions are listed at the end of the Memory Section.

Typical Characteristics

SUPPLY CURRENT VS. AMBIENT TEMPERATURE

A.C. Testing Input, Output Waveform

AC TESTING: INPUTS ARE DRIVEN AT 2.4V FOR A LOGIC " 1 " AND 0.4V FOR A LOGIC " 0 ". TIMING MEASUREMENTS ARE MADE AT 2.0V FOR A LOGIC "1" AND 0.8V FOR A LOGIC "0" INPUT PULSE RISE AND FALL TIMES ARE 5 ns .

A.C. Testing Load Circuit

Ordering Information

Order Number	Package Type	Access Time	Temperature Range
SYMD2332	Cerdip	450 ns	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
SYMC2332	Ceramic	450 ns	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
SYMD2333	Cerdip	450 ns	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
SYMC2333	Ceramic	450 ns	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

A custom number will be assigned by Synertek.

Features

- 2564 EPROM Pin Compatible
- 8192×8 Bit Organization
- Single +5 Volt Supply
- Access Time - 300 ns (max)
- Totally Static Operation
- Completely TTL Compatible
- 24 Pin JEDEC Approved Pinout
- SYM2364A - Automatic Power Down ($\overline{\mathrm{CE}}$)
- SYM2364 - Non Power Down Version
- Programmable Chip Select (CS)
- Three State Outputs for Wire-OR Expansion
- EPROMs Accepted as Program Data Input

Description

The SYM2364 and SYM2364A high performance Read Only Memories are organized 8192 words by 8 bits with an access time of 450 ns . The ROMs are designed to be compatible with all microprocessor and similar applications where high performance, large bit storage and simple interfacing are important design considerations. Both ROMs conform to the JEDEC approved pinout for 24 pin 64 K ROMs.

The SYM2364 offers the simplest operation (no power down.) Its programmable chip select allows two 64 K ROMs to be OR-tied without external decoding.

Pin Configurations

The SYM2364A offers an automatic power down feature. Power down is controlled by the Chip Enable ($\overline{\mathrm{CE}}$). input. When $\overline{C E}$ goes high, the device will automatically power down and remain in a low power standby mode as long as $\overline{\mathrm{CE}}$ remains high. This unique feature provides system level power savings as much as 90%.
Both the SYM2364 and SYM2364A are pin compatible with the 2564 EPROM thus eliminating the need to redesign printed circuit boards for volume mask programmed ROMs after prototyping with EPROMs.

Block Diagram

[^27]| Absolute Maximum Ratings* | |
| :--- | ---: |
| Ambient Operating Temperature | $-65^{\circ} \mathrm{C}$ to $+135^{\circ} \mathrm{C}$ |
| Storage Temperature | $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ |
| Voltage on any Pin with Respect to Ground | -0.5 V to +7.0 V |
| Power Dissipation | 1.0 W |

Absolute Maximum Ratings*
Ambient Operating Temperature
Storage Temperature
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Power Dissipation
Power Dissipation

Comment*

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only. Functional operation of this device at these or any other conditions above those indicated on the operational sections of this specification is not implied and exposure to absolute maximum rating conditions for extended periods may affect device reliability.

D.C. Characteristics $T_{A}=55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 10 \%$

Symbol	Parameter	Min.	Typ.	Max.	Unit	Conditions
V_{OH}	Output HIGH Level	2.4		$\mathrm{~V}_{\mathrm{CC}}$	V	$\mathrm{I}_{\mathrm{OH}}=-1.0 \mathrm{~mA}$
$\mathrm{~V}_{\mathrm{OL}}$	Output LOW Level			0.4	V	$\mathrm{I}_{\mathrm{OL}}=3.2 \mathrm{~mA}$
$\mathrm{~V}_{\mathrm{IH}}$	Input HIGH Level	2.0		$\mathrm{~V}_{\mathrm{CC}}$	V	
V_{IL}	Input LOW Level	-0.5		0.8	V	
I_{LI}	Input Leakage Current			10	$\mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V}$ to V_{CC}
I_{LO}	Output Leakage Current			10	$\mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{OUT}}=0 \mathrm{~V}$ to V_{CC}
I_{CC}	Operating Supply Current			100	mA	Note 1
I_{SB}	Standby Supply Current			12	mA	Note 2
I_{OS}	Output Short Circuit Current			90	mA	Note 3

Capacitance $T_{A}=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}$ (Note 8)

Symbol	Parameter	Min.	Max.	Unit	Conditions
C_{I}	Input Capacitance		5	pf	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$
C_{O}	Output Capacitance		5	pf	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$

A.C. Characteristics $\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 10 \%$ (Note 7)

Symbol	Parameter	$\begin{aligned} & \text { SYM2364-3 } \\ & \text { SYM2364A-3 } \end{aligned}$		$\begin{aligned} & \text { SYM2364 } \\ & \text { SYM2364A } \end{aligned}$		Unit	Conditions
		Min.	Max.	Min.	Max.		
${ }_{\text {t }}^{\text {cre }}$	Cycle Time	300		450		ns	
${ }^{\text {t }}$ A	Address Access Time		300		450	ns	
$\mathrm{tOH}^{\text {a }}$	Output Hold After Address Change	10		10		ns	
$t_{\text {ACE }}$	Chip Enable Access Time		300		450	ns	Note 4
$\mathrm{t}_{\text {ACS }}$	Chip Select Access Time		100		150	ns	
t_{LZ}	Output LOW Z Delay	10		10		ns	Note 5
t_{Hz}	Output HIGH Z Delay		100		150	ns	Note 6
tpu	Power Up Time	0		0		ns	Note 4
$t_{\text {PD }}$	Power Down Time		100		150	ns	Note 4

Notes:

1. Measured with device selected and outputs unloaded
2. Applies to " A " versions only and measured with $\overline{C E}=2.0 \mathrm{~V}$
3. For a duration not to exceed one second.
4. Applies to " A " versions (power down) only.
5. Output low impedance delay ($t_{L z}$) is measured from $\overline{C E}$ going low or CS going active
6. Output high impedance delay ($t_{H Z}$) is measured from $\overline{C E}$ going high or $C S$ going inactive
7. A minimum of 0.5 ms time delay is required after application of $\mathrm{V}_{\mathrm{CC}}(+5 \mathrm{~V})$ before proper device operation is achieved
8. This parameter is periodically sampled and is not 100% tested.

Timing Diagrams

Propagation Delay from Address ($\overline{\mathrm{CE}}$ LOW or CS $=$ Active)

Propagation Delay from Chip Enable, Chip Select or Output Enable (Address Valid)

A.C. Testing Input, Output Waveform

Programming Instructions

All Synertek Read Only Memories ($\mathrm{RO} \dot{M}_{\text {) }}$ utilize computer aided techniques to manufacture and test custom bit patterns. The customer's bit pattern and address information can be supplied to Synertek in a number of different ways. Synertek can process customer inputs in EPROM, ROM, PROM, paper tape, and computer punched cards. Contact your Synertek sales representative for complete details on each of the various data input formats.
Programming Instructions are listed at the end of the Memory Section.

A.C. Testing Load Circuit

Ordering Information

Order Number	Access Time	Operating Current	Standby Current	Package Type
SYMD2364	450 ns	100 mA	N.A.*	Cerdip
SYMC2364	450 ns	100 mA	N.A.	Ceramic
SYMD2364-3	300 ns	100 mA	12 mA	Cerdip
SYMC2364-3	300 ns	100 mA	12 mA	Ceramic
SYMD2364A	450 ns	100 mA	N.A.	Cerdip
SYMC2364A	450 ns	100 mA	N.A.	Ceramic
SYMD2364A-3	300 ns	100 mA	12 mA	Cerdip
SYMC2364A-3	300 ns	100 mA	12 mA	Ceramic

[^28]
Package Availability

24 Pin Ceramic DIP
 24 Pin Cerdip

Features

- 2764 EPROM Pin Compatible
- 8192×8 Bit Organization
- Single +5 Volt Supply
- Access Time - 300 ns (max)
- Totally Static Operation
- Completely TTL Compatible
- 28 Pin JEDEC Approved Pinout
- SYM2365A - Automatic Power Down ($\overline{\mathrm{CE}}$)
- Output Enable Function ($\overline{\mathrm{OE}})$
- Two Programmable Chip Selects (CS)
- SYM2365 - Non Power Down Version
- Four Programmable Chip Selects (CS)
- Three State Outputs for Wire-OR Expansion
- EPROMs Accepted as Program Data Input

Description

The SYM2365 and SYM2365A high performance Read Only Memories are organized 8192 words by 8 bits with an access time of 300 ns . The ROMs are designed to be compatible with all microprocessor and similar applications where high performance, large bit storage and simple interfacing are important design considerations. Both ROMs conform to the JEDEC approved pinout for 28 pin 64 K ROMs.
The SYM2365 offers the simplest operation (no power down.) Its four programmable chip selects allow up to sixteen 64 K ROMs to be OR-tied without external decoding.

The SYM2365A offers an automatic power down feature. Power down is controlled by the Chip Enable ($\overline{\mathrm{CE}}$) input.

Pin Configurations

SYM2365

SYM2365A

When $\overline{\mathrm{CE}}$ goes high, the device will automatically power down and remain in a low power standby mode as long as $\overline{\mathrm{CE}}$ remains high. This unique feature provides system level power savings as much as 90%. An additional feature of the SYM2365A is the Output Enable ($\overline{\mathrm{OE}}$) function. This eliminates bus contention in multiple bus microprocessor systems. The two programmable chip selects allow up to four 64 K ROMs to be OR-tied without external decoding.
Both the SYM2365 and SYM2365A are pin compatible with the 2764 EPROM thus eliminating the need to redesign printed circuit boards for volume mask programmed ROMs after prototyping with EPROMs.

Block Diagram

Absolute Maximum Ratings*

Temperature Under Bias
$-65^{\circ} \mathrm{C}$ to $+135^{\circ} \mathrm{C}$ $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
-0.5 to +7 V 1.0W

Comment*

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only. Functional operation of this device at these or any other conditions above those indicated on the operational sections of this specification is not implied and exposure to absolute maximum rating conditions for extended periods may affect device reliability.
D.C. Characteristics $T_{A}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 10 \%$

Symbol	Parameter	Min.	Typ.	Max.	Units	Conditions
V_{OH}	Output HIGH Level	2.4		$\mathrm{~V}_{\mathrm{CC}}$	V	$\mathrm{I}_{\mathrm{OH}}=-1.0 \mathrm{~mA}$
$\mathrm{~V}_{\mathrm{OL}}$	Output LOW Level			0.4	V	$\mathrm{I}_{\mathrm{OL}}=3.2 \mathrm{~mA}$
$\mathrm{~V}_{\mathrm{IH}}$	Input HIGH Level	2.0		$\mathrm{~V}_{\mathrm{CC}}$	V	
V_{IL}	Input LOW Level	-0.5		0.8	V	
I_{LI}	Input Leakage Current			10	$\mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V}$ to V_{CC}
I_{LO}	Output Leakage Current			10	$\mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{OUT}}=0 \mathrm{~V}$ to V_{CC}
I_{CC}	Operating Supply Current			100	mA	Note 1
I_{SB}	Standby Supply Current			12	mA	Note 2
I_{OS}	Output Short Circuit Current			70	mA	Note 3

Capacitance $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}$
Note: This parameter is periodically sampled and is not 100% tested.

Symbol	Parameter	Min.	Max.	Unit	Conditions
C_{I}	Input Capacitance		5	pf	$\mathrm{V}_{\mathrm{IN}}=\mathrm{OV}$
C_{O}	Output Capacitance		5	pf	$\mathrm{V}_{\mathrm{OUT}}=\mathrm{OV}$

A.C. Characteristics $\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 10 \%$ (Note 7)

Symbol	Parameter	$\begin{aligned} & \text { SYM2365-3 } \\ & \text { SYM2365A-3 } \end{aligned}$		$\begin{array}{r} \text { SYM2365 } \\ \text { SYM2365A } \end{array}$		Unit	Condition
		Min.	Max.	Min.	Max.		
$\mathrm{t}_{\mathrm{CYC}}$	Cycle Time	300		450		ns	
${ }_{\text {t }}$ A	Address Access Time		300		450	ns	
t_{OH}	Output Hold After Address Change	10		10		ns	
$\mathrm{t}_{\text {ACE }}$	Chip Enable Access Time		300		450	ns	Note 4
$t_{\text {ACS }}$	Chip Select Access Time		100		150	ns	
$\mathrm{t}_{\text {AOE }}$	Output Enable Access Time		100		150	ns	Note 4
t_{LZ}	Output LOW Z Delay	10		10		ns	Note 5
$t_{H Z}$	Output HIGH Z Delay		100		150	ns	Note 6
tPU	Power Up Time	0		0		ns	Note 4
t_{PD}	Power Down Time		100		150	ns	Note 4

Notes:

1. Measured with device selected and outputs unloaded.
2. Applies to " A " versions only and measured with $\overline{C E}=2.0 \mathrm{~V}$
3. For a duration not to exceed one second.
4. Applies to " A " versions (power down) only.
5. Output low impedance delay (t_{Lz}) is measured from $\overline{\mathrm{CE}}$ and $\overline{\mathrm{OE}}$ going low and CS going active, whichever occurs last.
6. Output high impedance delay ($t_{H Z}$) is measured from either $\overline{C E}$ or $\overline{O E}$ going high or $C S$ going inactive, whichever occurs first
7. A minimum of 0.5 ms time delay is required after application of $\mathrm{V}_{\mathrm{CC}}(+5 \mathrm{~V})$ before proper device operation is achieved.

Timing Diagrams

Propagation Delay from Address ($\overline{\mathrm{CE}}=\overline{\mathrm{OE}}=\mathrm{LOW}, \mathrm{CS} / \overline{\mathrm{CS}}=$ Active)

Propagation Delay from Chip Enable, Chip Select or Output Enable (Address Valid)

A.C. Testing Input, Output Waveform

Programming Instructions

All Synertek Read Only Memories (ROM) utilize computer aided techniques to manufacture and test custom bit patterns. The customer's bit pattern and address information can be supplied to Synertek in a number of different ways. Synertek can process customer inputs in EPROM, ROM, PROM, paper tape, and computer punched cards. Contact your Synertek sales representative fo complete details on each of the various data input formats.
Programming instructions are listed at the end of the Memory Section.

Package Availability

28 Pin Cerdip Dual In-Line
28 Pin Ceramic Dual In-Line
28 Pin Leadless Chip Carrier
A.C. Testing Load Circuit

Ordering Information

Order Number	Access Time	Operating Current	Standby Current	Package Type
SYMD2365	450 nsec	100 mA	N.A.*	Cerdip
SYMC2365	450 nsec	100 mA	N.A.	Ceramic
SYMK2365	450 nsec	100 mA	N.A.	LCC
SYMD2365-3	300 nsec	100 mA	12 mA	Cerdip
SYMC2365-3	300 nsec	100 mA	12 mA	Ceramic
SYMK2365A-3	300 nsec	100 mA	12 mA	LCC
SYMD2365A	450 nsec	100 mA	N.A.	Cerdip
SYMC2365A	450 nsec	100 mA	N.A.	Ceramic
SYMK2365-3	450 nsec	100 mA	N.A.	LCC
SYMD2365A-3	300 nsec	100 mA	12 mA	Cerdip
SYMC2365A-3	300 nsec	100 mA	12 mA	Ceramic
SYMK2365A-3	300 nsec	100 mA	12 mA	LCC

*Not Applicable

Features

- EPROM Pin Compatible
- 16,384 x 8 Bit Organization
- Single +5 - Volt Supply
- Access Time - 300/450 ns (max)
- Totally Static Operation
- Completely TTL Compatible
- 28 Pin JEDEC Approved Pinout
- SY23128A- Automatic Power Down ($\overline{\mathrm{CE}}$)
-- Output Enable Function (OE)
- One Programmable Chip Select
- SY23128 - Non Power Down Version
- Three Programmable Chip Selects
- Three State Outputs for Wire-OR Expansion
- EPROMS Accepted as Program Data Input

Description

The SY23128 and SY23128A high performance Read Only Memories are organized 16,384 words by 8 bits with access times from 300 ns to 450 ns . The ROMs are designed to be compatible with all microprocessor and similar applications where high performance, large bit storage and simple interfacing are important design considerations. Both ROMs conform to the JEDEC approved pinout for 28 pin 128 K ROMs

The SY23128 offers the simplest operation (no power down.) Its two programmable Chip Selects allow up to four eight 128 K ROMs to be OR-tied without external decoding.

The SY23128A offers an automatic power down feature Power down is controlled by the Chip Enable ($\overline{\mathrm{CE}}$) input When $\overline{\mathrm{CE}}$ goes high, the device will automatically power down and remain in a low power standby mode as long as $\overline{\mathrm{CE}}$ remains high. This unique feature provides system level power savings as much as 90%. An additional feature of the SY23128A is the Output Enable ($\overline{\mathrm{OE}})$ function. This

Pin Configurations

> SY23128A
eliminates bus contention in multiple bus microprocessor systems. The programmable chip select allows two 128 K ROMs to be OR-tied without external decoding.
Both the SY23128 and SY23128A are pin compatible with EPROMs thus eliminating the need to redesign printed circuit boards for volume mask programmed ROMs after prototyping with EPROMs.

Block Diagram

[^29]
Package Availability 28 Pin Cerdip
 28 Pin Plastic

Order Number	Access Time	Operating Current	Standby Current
SYM23128	450 ns	100 mA	N.A.*
SYM23128-3	300 ns	100 mA	N.A.
SYM23128A	450 ns	100 mA	10 mA
SYM23128A-3	300 ns	100 mA	10 mA

*Not Applicable

32,768 x 8 Static Read Only Memory Extended Temperature Range

Features

- EPROM Pin Compatible
- 32,768 x 8 Bit Organization
- Single +5 Volt Supply
- Access Time - 300/450 ns (max)
- Totally Static Operation
- Completely TTL Compatible
- 28 Pin JEDEC Approved Pinout
- SY23256A- Automatic Power Down ($\overline{\mathrm{CE}}$)
- Output Enable Function ($\overline{\mathrm{OE} \text {) }}$
- SY23256 - Non Power Down Version
- Two Programmable Chip Selects (CS)
- Three State Outputs for Wire-OR Expansion
- EPROMs Accepted as Program Data Input

Description

The SY23256 and SY23256A high performance Read Only Memories are organized 32,768 words by 8 bits with access times from 300 ns to 450 ns . The ROMs are designed to be compatible with all microprocessor and similar applications where high performance, large bit storage and simple interfacing are important design considerations. Both ROMs conform to the JEDEC approved pinout for 28 pin 256 K ROMs.

The SY23256 offers the simplest operation (no power down.) Its two programmable Chip Selects allow up to four 256K ROMs to be OR-tied without external decoding
The SY23256A offers an automatic power down feature. Power down is controlled by the Chip Enable ($\overline{\mathrm{CE}}$) input. When $\overline{\mathrm{CE}}$ goes high, the device will automatically power down and remain in a low power standby mode as long as $\overline{\mathrm{CE}}$ remains high. This unique feature provides system level power savings as much as 90%. An additional feature of

Pin Configurations

the SY23256A is the Output Enable ($\overline{\mathrm{OE}})$ function. This eliminates bus contention in multiple bus microprocessor systems.

Both the SY23256 and SY23256A are pin compatible with EPROMs thus eliminating the need to redesign printed circuit boards for volume mask programmed ROMs after prototyping with EPROMs.

Block Diagram

[^30]Package Availability 28 Pin Cerdip 28 Pin Plastic

Order Number	Access Time	Operating Current	Standby Current
SYM23256	450 ns	100 mA	N.A.. *
SYM23256-3	300 ns	100 mA	N.A.
SYM23256A	450 ns	100 mA	10 mA
SYM23256A-3	300 ns	100 mA	10 mA

*Not Applicable SYM3316/SYM3316A
2048×8 High Speed
Read Only Memory
Extended Temperature Range
$\left(-55^{\circ} \mathrm{C}\right.$ to $+125^{\circ} \mathrm{C}$)

Features

- Access Time - 100ns (max.)
- Single +5 Volt Supply ($\pm 10 \%$)
- Contact Programming
- Four Week Prototype Turnaround
- Completely TTL Compatible
- Totally Static Operation
- SYM3316A - Automatic Power Down ($\overline{C E}$)
- Pin Compatible with 16K Bipolar PROMs Replaces 3636 or 82S191
- Three-State Outputs for Wire-OR Expansion
- Three Programmable Chip Selects (two on SYM3316A)
- 16K Bipolar PROMs Accepted as Program Data Inputs

Description

The SYM3316 and SYM3316A are high speed 16,384 bit static mask programmable Read Only Memories organized 2048 words by 8 bits. Designed to be pin compatible with 16 K bipolar PROMs, they eliminate the need to redesign printed circuit boards for volume production after prototyping with PROMs.
The SYM3316A offers an automatic power down feature. Power down is controlled by the Chip Enable ($\overline{\mathrm{CE}}$) input. When $\overline{\mathrm{CE}}$ goes high, the device will automatically power down and remain in a standby power mode as long as $\overline{\mathrm{CE}}$ remains high. This unique feature provides system level

Pin Configurations

power savings of as much as 80%. The two programmable chip selects (CS) allow as many as four ROMs to be OR-tied without external decoding.
The SYM3316 offers somewhat simpler operation than the SYM3316A. It's three programmable chip selects allow up to eight ROMs to be OR-tied without external decoding.
Both devices are fabricated using Synertek's scaled high performance N -channel MOS technology. This, combined with innovative design techniques, provides the high performance and ease-of-use features associated with static memories.

Block Diagram

*CHIP SELECTS (CS) ARE PROGRAMMABLE LOW ACTIVE, HIGH ACTIVE OR DON'T CARE.

Absolute Maximum Ratings*

Temperature Under Bias
$-65^{\circ} \mathrm{C}$ to $+135^{\circ} \mathrm{C}$ $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Voltage on Any Pin with
Respect to Ground (under bias)
Power Dissipation

Comment*

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only. Functional operation of this device at these or any other condi tions above those indicated in the operational sections of this specification is not implied and exposure to absolute maximum rating conditions for extended periods may affect device reliability.
D.C. Characteristics $\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \%$ (Note 1)

Symbol	Parameter	Min.	Typ.	Max.	Units	Test Conditions
$\underline{\mathrm{VOH}}$	Output HIGH Voltage	2.4		Vcc	Volts	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{OH}}=-2.4 \mathrm{~mA}$
VoL	Output LOW Voltage			0.45	Volts	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{OL}}=10 \mathrm{~mA}$
$\underline{V_{1 H}}$	Input HIGH Voltage	2.0		Vcc	Volts	
VIL	Input LOW Voltage	-3.0		0.8	Volts	
ILI	Input Load Current			10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {CC }}=5.5 \mathrm{~V}, 0 \mathrm{~V} \leqslant \mathrm{~V}_{\text {in }} \leqslant \mathrm{V}_{\text {CC }}$
ILO	Output Leakage Current	-10		10	$\mu \mathrm{A}$	Chip Deselected, $\mathrm{V}_{\text {out }}=0 \mathrm{~V}$ to $\mathrm{V}_{\text {CC }}$
ISC	Output Short Circuit Current	-100			mA	Note 5
ICC	Power Supply Current			150	mA	Note 2
$\mathrm{I}_{\text {SB }}$	Standby Supply Current			30	mA	Note 3

A.C. Characteristics $T_{A}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 10 \%$ (Notes 1, 6)

Symbol	Parameter	Min.	Typ.	Max.	Units	Test Conditions
$\mathbf{t}_{A C C}$	Address Access Time			100	ns	
$\boldsymbol{t}_{\mathrm{ACE}}$	Chip Enable Access Time			100	ns	Note 4
$\mathrm{t}_{\mathrm{ACS}}$	Chip Select Access Time			50	ns	
$\boldsymbol{t}_{\mathrm{OFF}}$	Chip Deselect Time	0		50	ns	
t_{OH}	Output Hold Time	5			ns	
t_{tU}	Power Up Time	0			ns	Note 4
$\mathrm{t}_{\text {PD }}$	Power Down Time			50	ns	Note 4

Capacitance $t_{A}=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}$

Symbol	Parameter	Min.	Max.	Units	Test Conditions
$\mathbf{C l}_{\boldsymbol{l}}$	Input Capacitance		5	pF	$\mathrm{V}_{\text {in }}=0 \mathrm{~V}$
$\mathbf{C o}$	Output Capacitance		8°	pF	$\mathrm{V}_{\text {out }}=0 \mathrm{~V}$

NOTE: This parameter is periodically sampled and is not 100% tested.

NOTES:

1. The operating ambient temperature range is guaranteed with transverse air flow exceeding 400 linear feet per minute.
2. Device selected with outputs unloaded.
3. Applies to SY 3316 A only with $\overline{\mathrm{CE}}=2.0 \mathrm{~V}$.
4. Applies to SY3316A only.
5. Output short circuit current is measured with $\mathrm{V}_{\mathrm{OUT}}=O \mathrm{~V}$, one output at a time with a maximum duration of one second.
6. A minimum of 0.5 ms time delay is required after application of $\mathrm{V}_{\mathrm{CC}}(+5 \mathrm{~V})$ before proper device operation is achieved.

Timing Diagrams
Address to Output Delay (CS Active and $\overline{\mathrm{CE}}$ Low)

Chip Enable/Chip Select to Output Delay (Address Valid)

A.C. Testing Input, Output Waveform

Programming Instructions

All Synertek Read Only Memories (ROM) utilize computer aided techniques to manufacture and test custom bit patterns. The customer's bit pattern and address information can be supplied to Synertek in a number of different ways. Synertek can process customer inputs in EPROM, ROM, PROM, paper tape, and computer punched cards. Contact your Synertek sales representative fo complete details on each of the various data input formats.

Programming instructions are listed at the end of the Memory Section.

A.C. Testing Load Circuit

Ordering Information

Order Number	Access Time	Operating Current	Standby Current	Package Type
SYMC3316	100 ns	120 mA	N.A.	Ceramic
SYMD3316	100 ns	120 mA	N.A.	Cerdip
SYMC3316A	100 ns	120 mA	20 mA	Ceramic
SYMD3316A	100 ns	120 mA	20 mA	Cerdip

A custom number will be assigned by Synertek.

Package Availability

24 Pin Cerdip
24 Pin Ceramic

Systems.

Single Board Computer

Features

- Assembled, Tested and Ready to Use
- Full Documentation - Two Manuals
- SY6502 NMOS 8-Bit Microprocessor
- 51 I/O Lines, Expandable to 71
- Five On-Board Programmable Interval Timers
- 28 Key Keypad
- Six Digit Display
- 4K Byte ROM SUPERMON Resident Monitor, User Expandable
- 1 K Bytes of Static RAM provided, expandable to 4 K Bytes On-Board with Sockets Provided
- User PROM/ROM for up to 28K Bytes of User Program
- Application Port - 15 Bi-directional TTL Lines, with Expansion Capability
- Expansion Port for Add-On Modules
- Requires Single +5 V Supply
- Standard Interfaces:
- Audio Cassette Recorder with Remote Control
- Full Duplex 20 mA TTY
- System Expansion Bus
- RS-232-C Compatible Interface
- Four Strappable Relay Drivers or Input Buffers
- Applications in
- Training
- Engineering
- Prototyping
- Instrumentation
- Testing
- Experimentation
- Dimensions 8.25 in. $\times 10.72$ in.

Description

SYM-1 Versatile Interface Module is designed for future growth and expansion.

You can store your programs in the 1 K Static RAM and debug by simply using the single-step feature of the monitor. User static RAM is easily expandable to 4 K bytes on-board the basic unit. The 51 I/O lines which are available to control your
custom applications can be expanded to a total of $71 \mathrm{I} / \mathrm{O}$ lines via an additional socket provided for Synertek's Versatile Interface Adapter - SY6522. Connect the SYM-1 to our KTM-3 Keyboard Terminal Module and your home TV (using an RF adapter) or monitor and you have a complete computer system with keyboard entry and video display.

SYM-1/68, SYM-1/69 Single Board Computers

Features

- Features Popular 6802 8-bit NMOS Microprocessor (SYM-1/68) or New Powerful 6809 8-bit NMOS Microprocessor (SYM-1/69)
- Incorporates the Same Features and Capabilities as the Original SYM-1
- Includes New 4K Byte SUPERMON Monitors for Each New Microprocessor

Description

Now the highly popular SYM-1 Microcomputer is available with a choice of microprocessors; the 6802 or the 6809 as well as the original SY6502. New SUPERMON Monitors give the SYM-1/68 and SYM-1/69 all the commands and operating features of the original SYM-1. A newly written SYM-1 Reference Manual is supplied which includes special sections describing use of the SYM-1 using the new microprocessors.

Also available are adaptor boards which allow existing SYM-1 microcomputers to use one of the new microprocessors. Refer to MOD-68 and MOD-69 on the next page.

MOD-68,MOD-69
 Adapter Board

Features

- Adaptor Boards for SYM-1 Allow use of Popular 6802 or Powerful New 6809 8-bit NMOS Microprocessors
- New Microprocessor and Circuitry Included on Small 2" x 3" Circuit Board
- Includes New SUPERMON Monitor Firmware
- Full Instructions Supplied for Making the Simple Conversion

Description

The MOD-68 and MOD-69 provide a low-cost means of converting existing SYM-1 microcomputers to use either the 6802 or 6809 microprocessor. The simple conversion requires the removal of the old microprocessor and

SUPERMON chips, and insertion of one of the new adaptor boards.

Complete installation instructions are supplied as well as a newly written SYM-1 Reference Manual with special sections on the use of the SYM-1 with the new microprocessors.

Single Board Computer

Features

- Completely Assembled, Tested and Ready to Use
- Built-in Power Supply
- Full Documentation SYM Reference Manual Programming Manual
- SY6502 NMOS 8-Bit Microprocessor
- 28 Key Keypad
- Six Digit Display
- Eight Toggle Switches for User Input
- Eight LEDs for User Output
- Cassette Interface Jacks
- 4K Byte SUPERMON Resident Monitor, User Expandable
- 1 K Byte User RAM
- User ROM/EPROM Socket for BASIC (BAS-1), Resident Assembler/Editor (RAE-1) or Custom Firmware
- RS-232-C Compatible Serial Interface
- Designed Specifically for Applications in Education and Training
- Software Compatible with SYM-1

Description

The SYM-2 single-board microcomputer is based on and incorporates many of the most popular features of the SYM-1. In addition, some of the most requested features - built-in power supply, switches and LEDs for user I/O and cassette interface jacks - have been added to make the SYM-2 an ideal, cost effective single-board microcomputer for classroom and educational use.

So that the growing bank of user developed software will not be obsoleted, the new SYM-2 has full software compatibility with the SYM-1. This means that programs and firmware for the SYM-1, such as BASIC (BAS-1) and the assembler/editor (RAE-1), are immediately useable with the SYM-2.

Features

- Same Power, Features, and Performance as the SYM-1 Module at Lower Cost
- Additional Economies for O.E.M. Applications Achieved

Description

The SM100 is designed especially for OEM controller or other applications where the microcomputer board is an integral part of a user's system. All the power and flexibility of the
by Supplying Board without the Keyboard, Display, Speaker and Associated Electronics

SYM-1 is retained but without the overhead of on-board keyboard and display.

Static RAM Memory Kit

Features

- Expand SYM-1 Memory to 2 K Bytes (SRM-1) or to 4 K Bytes (SRM-3)
- Uses Synertek SY2114L Low Power Static RAMs

Description

The static RAM memory kits provide for expansion of the on-board memory in the SYM-1 to 2 K bytes or 4 K bytes. The SY2114L low power RAM devices are plugged into existing on-board sockets per the following table.

RAM Address	Sockets	Comments
0000-03FF	U12, U13*	Lowest 1 K bytes
0400-07FF	U14, U15	2nd 1 K bytes
0800-OBFF	U16, U17	3rd 1 K bytes
OC00-OFFF	U18, U19	4th 1 K bytes

*The SYM-1 microcomputer is shipped with 1 K bytes of RAM inserted in sockets U12 and U13.

Features

- Resides in ROM, Always Available
- I/O Supported by SUPERMON on SYM-1 or SM100
- Full Floating-Point 9-Digit, Extended BASIC
- Standard Dartmouth BASIC Statements

LET	READ	PRINT	DATA	IF
THEN	FOR	NEXT	DIM	END

GOTO

- Extended BASIC Statements

RESTORE	REM	STEP	GOSUB	DEF
RETURN	STOP		INPUT	FN
ON...GOTO	ON...GOSUB			

ON...GOSUB

- Scientific Functions

| SGN INT ABS | SQR
 LOG | RND
 EXP |
| :--- | :--- | :--- | :--- | :--- |

Description

BAS-1 is a full function BASIC developed for Synertek Systems by Microsoft Corporation. BASIC provides higher

- Logical Operators
AND OR NOT
- Operation Commands RUN NEW CLR LIST CONT FRE
- Formatting Functions (TAB, POS, SPC)
- Peek, Poke, JSR to Machine Code Subroutines
- String Functions
- Cassette SAVE and LOAD Statements
- Decimal, Hexadecimal and String Constants
- Real, Integer and String Variables
level language capabilities, always instantly available from ROM.

RAE-1
 Resident Assembler/ Editor/Loader

Features

- Compatible with SYM-1 or SM100
- Resides in ROM, always available
- I/O Supported by SUPERMON

Assembler

- Macro Capability
- Conditional Assembly
- Source Input from RAM or Tape
- Produces Relocatable Object Code
- Relocating Loader
- Assemble with Source Listing or Errors-Only Listing
- Hex, Binary, Decimal or Mixed Data Types
- 16 Assembler Pseudo-Ops
- 23 Error Codes
- Storage of Hex or ASCII Bytes

Text Editor

- Edits Line Numbered Text
- Upper and Lower Case
- Character String Search with Optional Replace, Display or Show Number of Occurrences
- Line Edit
- Block Insert
- Delete Line(s)
- Delete File
- Renumber Text File
- Tabbing
- Free Format Command Input
- Output to Hard Copy Device with or Without Line Numbers
- Load and Record in High Speed Format; Entire File or Range of Lines
- Automatic Cassette Motor Control or Manual Control through ON and OFF Commands

Description

RAE-1 is a full features Resident Assembler/Editor. Many powerful text editing functions are available with error messages giving error type and location. The user has complete control over all editor and assembler functions as well as editor controlled entry to SYM BASIC or SYM SUPERMON.

The user also has control over cassette recorders for file I/O; or control may be left to software. The relocating loader may store executable code in memory during assembly or may store object code offset from its proper execution address.

Features

- ROM-Based for Instant Availability
- Fully Extensible
- Subset of Forth-79 Standard
- Supplied with Full Glossary plus Tutorial Text
- Ideal for Control System and Instrumentation Applications

Description

FOR-1 is the ideal language for the SYM-1 and SYM-2 for all control-system and instrumentation applications. FOR-1 blends the functions of operating-system, high-level structured language and straight-forward hardware accessibility into a package of virtually endless power and flexibility.

FOR-1 includes words from the required word set of the Standard with provision for linking user-defined doublelength and disk I/O words into existing nucleus definitions. Additional words are included such as GET and PUT for cassette tape I/O, and MON for easy access to the SYM SUPERMON monitor.

FOR-1 is supplied in a 4K-byte ROM, with a complete glossary and the excellent tutorial text "Starting Forth" by Leo Brodie.

SYM-1 Diagnostic Program

Features

- Diagnostic/Test Program for SYM-1
- Supplied as a Pre-Programmed 2716 EPROM
- Function Test for On-Board RAM, ROM, Display LEDs, Keyboard, I/O Chips, TTY/CRT I/O, Cassette I/O, and Scope Output
- Modular Tests with Separate Error Messages
- Version Available for SUPERMON V1.0 or SUPERMON V1.1
- Useful for Receiving Inspection, Field Service, or SelfTest by User
- Complete with Manual Containing Instructions, Error Codes, Flow Charts, Trouble Shooting Aids and a Complete Test Program Listing

Description

The EPS-1 Diagnostic Program for SYM provides a valuable self-test capability to aid in any phase of test, trouble shooting or repair. Essentially all components of the SYM are functionally tested assuring a fully working unit.

Port Expansion and Connector Kit

Features

- Includes SY6522 Versatile Interface Adaptor
- Edge Connectors for Applications and Expansion Ports
- EIA Connector for RS-232-C Interface
- Phono Connectors for Cassette Interface

Description

The PEX-1 provides a SY6522 VIA which expands the SYM-1 I/O by an additional 20 lines. The SY6522 is plugged into socket U28 on the SYM-1 board.
Also provided are connectors to allow building a variety of
interfacing cables. Included in the PEX-1 kit is a diagram for a suggested cable assembly which will provide complete connection to an EIA (RS-232-C) terminal, an audio cassette recorder, and a TTY.

Features

- SY6502 NMOS 8-Bit Microprocessor
- 1 K Bytes of Static RAM Memory
- 64 Bytes of Interrupt Vector RAM
- 28 Bi -Directional Programmable I/O Lines
- 1 MHz Crystal Controlled Clock
- Interval Timer
- Four Interrupts, Including a Timer Interrupt and a NonMaskable Interrupt
- Three Serial Interfaces - 20 mA Current Loop, RS-232-C and TTL
- Buffered Address and Data Lines
- 1,024 Bytes of Resident ROM Program Memory Containing DEMON Debug Monitor Program
- Dimensions 4.25 in. x 7.00 in.

Description

The CP1 10 SUPER JOLT CPU board is the most versatile microcomputer on a single PC board. Connected to a terminal, the CP110 provides everything necessary to begin writing,
debugging and executing microcomputer programs. Standalone, the CP1 10 is a single board OEM microcomputer suited to a wide range of dedicated applications.

Keyboard Terminal Module

Features

- Choice of Character Screen Sizes: 24×80 Character Screen Size (KTM-2/80)
24×40 Character Screen Size (KTM-2/40)
- Full ASCII Upper and Lower Alphanumeric Character Set with Descenders
- Control and Special Characters
- 128 Graphics Characters
- Reverse Video
- Scrolling
- Blinking Cursor
- Full Cursor Control
- Absolute and Relative Cursor Addressing
- Auto CR at end of Line (Switch Selectable)
- 110 to 9600 Baud
- Even, Odd, or No Parity
- Complete RS-232-C Handshaking
- Auxilliary RS-232-C I/O Port
- Typewriter Style Keyboard 54 Keys
- Automatic Character Repeat
- Alpha Lock
- Erase - Partial Line, Partial Screen, Full Screen
- Programmable Bell Output
- Programmable Device Control Output
- Interlaced Screen (Switch Selectable)
- European (50 Hz) CompatibledSwitch Selectable)
- Requires Single +5 V Supply

Description

The KTM-2 provides a keyboard and all the logic circuitry for a full keyboard terminal. The display interface provides composite video for user provided monitor or for a standard TV set equipped with an RF modulator.

The design of the KTM-2 incorporates 8 MOS-LSI integrated circuit chips, including two dedicated microprocessors. Twenty TTL devices are used, resulting in a total chip count of 28 devices.

The use of standard LSI devices results in a highly cost effective design with great flexibility allowing modifications
for custom OEM applications. More features are available at lower cost than if a CRT controller chip or other approach had been used.

Custom

For large volume requirements, Synertek Systems has the capability to customize the keyboard terminal modules to meet OEM terminal subsystem requirements, offering flexibil ity over screen size, character size, scan rate, character set and keyboard function and definition

The Tubeless Terminal

Features

- New Design with
- Case
- Additional Keys
- Built-In Power Supply
- 110 to 19.2K Baud
- Choice of Character Screen Sizes:
24×80 Character Screen Size (KTM-3/80)
24×40 Character Screen Size (KTM-3/40)
- 7×9 Character Matrix in 8×10 Field
- Typewriter Style Keyboard - 58 Keys
- CAPS LOCK Key
- Upper and Lower Case Alphanumeric Character Set with Descenders
- Generates and Displays 128 ASCII Characters
- Full and Half Duplex with Modem Controls
- Built-In Power Includes On/Off Switch
- Scrolling
- Full Cursor Control
- Absolute and Relative Cursor Positioning
- Clear to End-of-Screen, End-of-Line
- Even, Odd, or No Parity
- One or Two Stop Bits
- Framing and Parity Errors Displayed
- Auto Key Repeat
- Debug Mode (Displays Control Characters)
- Cables Included
- Built-In Diagnostics
- KTM-3/40 Will Attach to Standard TV Set Using RF Modulator
- $50 / 60 \mathrm{~Hz}$ Operation
- 220 Volt Version Available

Description

Newly designed to incorporate the best features of the popular KTM-2 series, the KTM-3 uses the latest LSI technology with two microprocessors to provide a highly reliable, ready-to-use terminal minus the CRT monitor. The dual microprocessor design is highly cost-effective with great flexibility, providing more features at lower cost than other approaches used today. For volume usage, Synertek Systems can customize the KTM-3 to your O.E.M. specifications.

The display interface provides composite video output and complete video control including scrolling, full cursor control, and absolute and relative cursor positioning. A choice of screen sizes is offered - either 24×40 characters, or 24×80 characters.
The unit is now in stock and available from your local distributor.

MBC010/MBC020
 CPU/Video Board

Features

- Choice of Microprocessors - SY6512 (MBCO10-65; MBCO20-65) or MC6800 (MBC010-68; MBC020-68)
- Fully Buffered Data and Address lines
- 1024 bytes of User RAM
- SY6551 ACIA for RS-232-C Serial Interface with CrystalControlled Programmable Baud Rate
- SY6522 VIA Provides 20 I/O Lines (with 7 lines optionally buffered), and 2 16-Bit Counter/Timers
- Full 65K Programmable Memory Map in 2K Increments, using 32×8 Bipolar PROM
- Direct Memory Access (DMA) Controls
- Dynamic Memory Refresh Controls
- Power-on Reset
- MBCO2O Includes Complete Video Interface Circuitry for Direct Attachment to a CRT Monitor
- 1 or 2 MHz Versions

Video Features for MBC020

- Dual Intensity Video Levels
- SY6545 Programmable CRT Controller for User Definable Screen Formats
- Light Pen Input
- Composite or Separated Video Outputs

Description

From single board computers to single-purpose special usage boards. Synertek Systems offers a growing line of Micromodules that are Motorola EXORcisor ${ }^{\text {™ }}$ and Micromodule bus compatible. These boards provide high quality yet are low in cost for maximum utility in any microprocessor application.
Three types of boards are available: CPU and Single Board Computers, Memory Boards, and Peripheral Boards.

The MBCO10 and MBCO20 CPU Boards provide complete computers on a single board. Both are fully compatible with the Motorola EXORcisor ${ }^{\text {rw }} /$ Micromodule bus and support RAM, I/O, and analog boards in those families. Both offer a choice of microprocessors - either SY6512 or MC6800 - for use in a full range of systems or development applications.
The MBCO2O may be used as a cost-effective alternative single board computer, or, with the video circuitry, it can replace two or more boards and operate as the heart of a complete system.

Specifications

Power Requirements
+5 VDC @ 1.5 A (max) MBC010
+5 VDC @ 1.75 A (max) MBCO20
+12 VDC1 @ 50 mA (max)
-12 VDC @ 50 mA (max)

Bus Signals

ADDRESS BUS: Three-state TTL-compatible buffered outputs.
DATA BUS: TTL-compatible buffered inputs/outputs.
CONTROL BUS:
R/W, VMA, VUA: Three-state TTL-compatible buffered outputs
BA, REF GRANT, MEMCLK, SYNC, Baud Rate: TTLcompatible buffered outputs.
$\overline{\mathrm{RQ}}, \overline{\mathrm{NMI}}, \overline{\mathrm{RESET}}, \mathrm{HALT}, \overline{\mathrm{REF}}$ REQ$, ~ \overline{R D Y}, \overline{\mathrm{DMA}}$ TTL-
compatible buffered inputs with 3.3 K ohm pull-up resistors

Operating Temperature

$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$

Physical Characteristics

Width: 9.75 in.
Height: 6.00 in.
Board Thickness: . 0625 in.

Connectors

86 pins:
Stanford Applied Engineering
SAC-43 D/1-2
50 pins: 3 M type 3415-0001
20 pins: 3 M type 3461-0001

Block Diagram

MBC01A2, MBC01A2-1
 Single Board Computer Motorola Micromodule Replacement

Features

- Exact Replacement for Motorola M68MM01A2

Micromodule with additional RAM and ROM capacity

- EXORcisor ${ }^{\text {rm }} /$ Micromodule Bus Compatible
- Serial Communication Port using MC6850 ACIA with RS-232-C interface
- Four Parallel Ports using MC6821 PIAs
- 1 MHz operation (2 MHz available on special order)
- 1024 Bytes of Static RAM with Sockets for up to 4096 Bytes total
- Four ROM/EPROM/RAM Sockets for interfacing with $1 \mathrm{~K}-8 \mathrm{~K}$ ROM's; $1 \mathrm{~K}-4 \mathrm{~K}$ EPROMs; or compatible 1 K and 2 K RAM's
- Power-On Reset Circuitry
- Dynamic Memory Refresh Circuitry
- Four mating connectors supplied with MBCO1A2-1

Description

The MBC01A2 board is a direct replacement for Motorola's M68MM01A2 Micromodule. Additional ROM and RAM capacity has been added for increased system requirements. Up to 4096 bytes of static RAM and 32K bytes of ROM can be utilized on the MBCO1A2 Micromodule.

The MBCO1A2 Micromodule includes a serial communications interface using the MC6850 and two MC6821 PIA's for parallel interfacing.

Specifications

Power Requirements with 1 K of RAM and no EPROMs +5 VDC @ 1.1 A (max)
+12 VDC @ 25 mA (max)
-12 VDC @ 25 mA (max)
Bus Signals
ADDRESS BUS: Three-state TTL-compatible buffered outputs.
DATA BUS: TTL-compatible buffered inputs/outputs.
CONTROL BUS:
R/W, VMA, VUA: Three-state TTL-compatible buffered outputs
OTHERS:
TTL-compatible

Operating Temperature $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Physical Characteristics
Width: 9.75 in.
Height: 6.00 in.
Board Thickness: . 0625 in.
Connectors (supplied with MBCO1A2-1 only) 86 pins:
Stanford Applied Engineering
SAC-43 D/1-2
50 pins: 3M type 3415-0001
20 pins: 3 M type 3461-0001

Block Diagram

Features

- Two Speed Versions - 500 ns Access and 300 ns Access
- Two Power Versions - 3.5A max. and 2.5A max.
- MBC016 has 16K Bytes of Random Access Memory Address in 8K Sections

Description

The MBC008/MBC016 Static RAM Modules are directly compatible with Motorola EXORcisor'm/Micromodule bus. The modules include address decoding, write protection, and data buffering circuitry. The MBCOO8 contains 8 K bytes of read/write memory, implemented with 16 SY2114 1024×4 static RAM memory devices, while the MBC016 contains 16 K bytes of memory implemented with 32 SY2114 devices. Address select switches allow each 8 K memory section to be independently placed in any 8 K address range. On the MBCO16, each 8 K section can be independently writeprotected through the write-protect lines.

- Separate Write-Protect of Each 8K Section of Memory
- Static - No Clocks or Refresh Required
- Single +5 V Power Supply Required

Specifications
Power Requirements +5 VDC @ 3.5 A (max)
Low Power Version +5 VDC @ 2.5 A (max)
Operating Temperature $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$

Physical Characteristics
Width: 9.75 in.
Height: 6.00 in.
Thickness: . 0625 in.
Connectors
86 pins:
Stanford Applied Engineering SAC-43 D/1-2

Part Numbers

Power Consumption	Speed-nsec	
	$\mathbf{5 0 0}$	$\mathbf{3 0 0}$
2.5 Amps (Typ.)	MBC008	MBCO08-3
	MBC016	MBCO16-3
1.75 Amps (Typ.)	MBC008L	MBCO08L-3
	MBC016L	MBCO16L-3

Features

- Available in $16 \mathrm{~K}, 32 \mathrm{~K}, 48 \mathrm{~K}$, or 64 K Memory Arrays
- 1 or 2 MHz Versions
- Hidden Refresh (without processor interruption)
- Fully Buffered Address, Data, and Control Lines
- Any 4K Block Memory can be Deselected by Jumpers

Description

The Dynamic RAM Boards with hidden refresh are available in $16 \mathrm{~K}, 32 \mathrm{~K}, 48 \mathrm{~K}$, and 64 K memory arrays in either 1 or 2 MHz versions. Memory refresh is performed on-board during $\phi 1$ when the processor is not accessing memory. On-board circuitry generates and detects even parity through the use of an additional memory bit. Whenever a parity error is detected, a signal is output to the system which is jumper selectable as a parity error or non-maskable interrupt. The memory array can be deselected in 4096 byte blocks to meet any system requirements. As with all SSC Micromodules, the Dynamic RAM Boards are directly compatible with Motorola EXORcisor ${ }^{\text {TM }}$ /Micromodule bus.

- 20 Pin Header for Implementation of Priority Interrupts, Multi-Paged Memory, and I/O Systems
- Even Parity Error Checking with Jumper Selectable Output
- Power-Saving Selective Refresh During $\phi 1$ of Every Fourth Processor Cycle

Specifications

Power Requirements	Read Access Time
(64K of RAM)	2 MHz operation -
+5 VDC @ 0.7 A (max)	210 ns after leading edge of $\phi 2$
+12 VDC @ . 12 mA (max)	1 MHz operation -
-12 VDC @ 8 mA (max)	350 ns after leading edge of $\phi 2$
Operating Temperature	Write Data Available
$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	2 MHz operation -
Physical Characteristics	110 ns after leading edge of $\phi 2$
Width: 9.75 in.	1 MHz operation -
Height: 6.00 in .	220 ns after leading edge of $\phi 2$
Board Thickness: . 0625 in.	
Connectors	
86 pins:	
Stanford Applied Engineer	ring
SAC-43 D/1-2 or equivale	

(64K of RAM)
+5 VDC @ 0.7 A (max)
12VDC@. 12 mA(max)

Operating Temperature $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$

Physical Characteristics
Width: 9.75 in.
Height: 6.00 in.
Board Thickness: . 0625 in.
Connectors
86 pins:
SAC-43 D/1-2 or equivalent

Features

- Two EPROM Sockets, Each Capable of Programming 2716, 2532, and 2732 EPROMs
- On-Board DC to DC Converter Provides +25V Regulated Supply Voltage with Short Circuit Protection
- Address Switch Selectable in 256 Byte Blocks
- MBC081-1 includes special cable for installing board in MDT2000 Micro. Development System

MBC081, MBC081-1 Description

The MBC081 EPROM PROGRAMMER provides two EPROM sockets for copying one EPROM to another, verifying contents of one EPROM against another, or simultaneous programming of two EPROMs.

Programs 2716, 2532, or 2732 EPROMs.

MBC081

Features

- Provides Space for Developing Experimental or Custom Circuits
- Standard Spacing for Wirewrap IC Sockets
- One 20-Pin and Two 50-Pin Edge Finger Connectors are Provided at Top of Board
- All Wirewraping Hardware for Edge Finger Connectors is Provided

MBC091 Description

The MBC091 PROTOTYPING BOARD plugs directly into the standard Micromodule bus and provides space for prototyping user developed circuits. To aid prototyping, ground and power buses are provided with locations for decoupling capacitors.

MBC091

Features

- Useful for Troubleshooting and Testing
- Allows Access to all Points on Circuit Board
- Built-In Test Points and In-Line Switches
- Interfaces with all MBC Boards and Micromodules

MBC092, MBC093 Description

EXTENDER BOARDS are available in two versions. The MBCO92 is an extender only, allowing the user access to all points on the circuit board under test. The MBCO93, in addition to its role as an extender, also has switches in each line to allow opening selected lines between the board in test and the backplane bus. Labeled test points are also provided between the board in test and the backplane bus for monitoring system signals.

MBC093

Features

- Handles up to Four 8" Drives and Three 5" Mini Floppies
- Single or Double Sided
- Single or Double Density
- On-Board Processor Controller
- IBM Format Compatible
- On-Board Diagnostics
- Extensive Error/Status Reporting
- Self-Contained On-Board Disk Formatting Software
- Data Transfers, Control and Status Information Communicated through On-Board RAM Buffer/Status Block Providing Processor Independent Interface
- Interrupt and/or Status Bit Buffer Handshaking
- Address Space Switch Selectable on 2K Boundaries
- Simple "Daisy Chain" Drive Connection

Description

The MBC210 FLOPPY DISK CONTROLLER/FORMATTER is an intelligent interface between the Micromodule bus and up to seven floppy drives - four $8^{\prime \prime}$ drives and three $5^{\prime \prime}$ mini floppies. Sixteen RAM locations provide a control/status block for simplified processor independent interfacing to the MBC210.

MBC510 Combo I/O Board

Features

- Address Switch Selectable in 256 Byte Blocks
- Two 8-bit Parallel I/O Ports with Handshake using SY6522 VIAs
- Nibble Programmable with Buffer Option
- Expanded Handshake Capability for Positive and Negative Data Transfer Control
- Sockets for Terminators Provided
- Three Serial Ports using Crystal-Controlled SY6551 ACIAs
- 16 Programmable Baud Rates from 50 to 19.2K Baud
- Full RS-232-C Compatiblity

Description

The MBC510 COMBO I/O BOARD provides three serial ports using SY6551 ACIAs with complete RS-232-C compatiblity and two parallel ports with buffers and sockets for resistor terminators. The MBC510 also contains four 16-bit counter/ timers to provide several operating modes.

Features

- Supports both SY6500 and Z8 Microprocessors
- Supports Up to Three Debug Cards, Providing Four Breakpoint Registers and Trace
- Intelligent Floppy Disk Controller with Two 8" Drives
- Three Serial and One Parallel Interfaces
- PASCAL Disk-Based Operating System with Command Prompting
- Powerful CRT Screen-Oriented Editor
- Versatile Disk File Operations with "Ignore Character" Selection
- Optional PASCAL Compiler
- Optional Remote Communications Software
- ROM-Based RAM/Disk Diagnostics and Mini-Debugger
- Supports Disk Booting of User-Generated Operating Systems
- Supports Single or Double Density 8" Data Disks
- User Configuration of CRT Terminal/Printer Attributes
- PASCAL Access to Serial or Parallel Printer (mutually exclusive)
- Disk File Hexadecimal Patch Utility
- 230 Volt Option Available
- 2K User RAM (Expandable to 4 K) for 28 Internal ROM Emulation Option
- Screen Graphics Control of Emulation
- Optional EPROM Programmer Board
- Two Sockets for Programming 2716, 2732, 2532 EPROMs
- Optional Assemblers for 6800, 6809, 280, 8080, 9900, and LSI-11

Description

The MDT 2000 MICRO DEVELOPMENT SYSTEM provides the user with a flexible, powerful, development and emulation system for Z8, and development system for SY6500 series microprocessors. Debugging is facilitated with in-circuit emulation which provides a separate and non-conflicting execution environment. Optional Debug (Breakpoint/Trace) boards permit an execution halt, or real-time trace events to be qualified by complex breakpoint conditions. These events can include user-system status.
Emulation control is achieved with a screen-oriented Supervisor which provides various prompting background displays and parameter toggle fields.
Assembly language source and object program generation is supported with a PASCAL-Based Operating System (PBOS). PBOS provides a powerful screen-oriented editor and floppy
disk file manager with user-controlled operations on file name families (i.e., wildcards). User-adaptable CRT terminal and printer configuration utilities are available to tailor the system to various terminal and printer characteristics.

A versatile ROM Bootstrap provides power-up access to RAM and/or disk diagnostics, user-controlled booting of PBOS, and an elementary RAM-oriented debugger for pre-disk boot utilization. Remote Communications software (optional) provides access to other systems for terminal interaction or file transfer (binary/ASCII) with error detection and recovery capability.

The intelligent floppy disk controller maintains a log of soft (recoverable) disk errors for user request via a PBOS utility. Self-test of ROM and RAM is automatically performed at power-up and system reset time, and the results are reported.

Quality Assurance.

Synertek.

For detailed information on Synertek's Quality Program, contact your local Synertek Representative.

Standard Product Flow

General Information.

Page

 NumberOrdering Information 7-2
Packaging Diagrams 7-3
Application Notes 7-13
Conversion Tables 7-14
Representative/
Distributor Listing $7-17$

Ordering Information

Please make note of the Leadless Chip Carrier (LCC) designator.

Packaging Information

Plastic Dual In-Line-

 16 Leads
.032 REF.

Ceramic Dual In-Line -
16 Leads

CerDIP-

16 Leads

Packaging Information

Plastic Dual In-Line18 Leads

Ceramic Dual In-Line18 Leads

CerDIP-

18 Leads

Packaging Information

Flat Package -
18 Leads

DIMENSIONS IN INCHES AND (MILLIMETERS).

Chip Carrier -

18 Leads

Packaging Information

Plastic Dual In-Line-

20 Leads

CerDIP-
20 Leads

Packaging Information

Plastic Dual In-Line -

22 Leads

Ceramic Dual In-Line -

22 Leads

Packaging Information

Plastic Dual In-Line24 Leads

Ceramic Dual In-Line-
24 Leads

CerDIP_

24 Leads

Packaging Information

Plastic Dual In-Line-

28 Leads

Ceramic Dual In-Line -
28 Leads

CerDIP-

28 Leads

Packaging Information

Chip Carrier 32 Leads

NOTE:
THE 32 PIN LEADLESS CHIP CARRIER PACKAGE IS ALSO USED FOR THE 24 PIN AND 28 PIN PACKAGES.

Packaging Information

Plastic Dual In-Line40 Leads

Ceramic Dual In-Line-
40 Leads

CerDIP -
40 Leads

Packaging Information

Quad In-Line Package (OWIP) 64 Leads

Synertek Application Notes

Below is a listing of Synertek Applications Information available. These Notes are available in their entirety from your local Synertek Sales Office, nearest Sales Representative, or Distributor.

Microprocessor Application Notes

Application Note Number AN1	Title SY6551 Asynchronous Communications Interface
AN2	Adapter (ACIA) SY6500 Microprocessor Family SY6522 Versatile Interface Adapter (VIA)
AN5	SY6545 Smooth Scrolling with the 6545
AN7	SY6545 CRTC Design and Applications Manual SY1791 Write Precompensation
AN9	SY2 AN10
	SY2661 EPCI Implements
Binary Synchronous Protocol	

Memory Application Notes

Application Note

Number Title
AN6 SY2128/2129 2K x 8-Bit Static RAM Access Memory

Conversion Tables

1. Convert Hexadecimal to Decimal

$$
1 \mathrm{AF6}_{16}=1 \times 16^{3}+\mathrm{A} \times 16^{2}+\mathrm{F} \times 16^{1}+6 \times 16^{0}=4096+2560+240+6=6902_{10}
$$

2. Convert Octal to Decimal

$$
2147_{8}=2 \times 8^{3}+1 \times 8^{2}+4 \times 8^{1}+7 \times 8^{0}=1024+64+32+7=1127
$$

3. Convert Binary to Decimal

$$
101101_{2}=1 \times 2^{5}+0 \times 2^{4}+1 \times 2^{3}+1 \times 2^{2}+0 \times 2^{1}+1 \times 2^{0}=32+0+8+4+1=45_{10}
$$

4. Convert Decimal to Hexadecimal

$$
\frac{128}{25} \rightarrow 8^{1} \sqrt[3]{25}
$$

6. Convert Decimal to Binary

$$
\frac{24}{1} \rightarrow 8^{0}\left\lceil_{1}^{1}=231_{8}\right.
$$

Recommended Decimal Multiples and Submultiples

Multiples and Submultiples	Prefixes	Symbols
10^{18}	exa	E
10^{15}	pecta	P
10^{12}	tera	T
10^{9}	giga	G
10^{6}	mega	M
10^{3}	kilo	k
10^{2}	hecto	h
10^{2}	deca	da
10^{-1}	deci	d
10^{-2}	centi	c
10^{-3}	milli	m
10^{-6}	micro	$\mathrm{\mu}$
		(greek mu)
10^{-9}	nano	n
10^{-12}	pico	p
10^{-15}	femto	f
10^{-18}	atto	a

Conversion Tables ${ }_{\text {come })}$

Constants and Conversion Factors

Conversion Factors - General

To Obtain
Degree (angle)
Ergs
Feet
Feet of water @ $4^{\circ} \mathrm{C}$
Foot-pounds
Foot-pounds
Foot-pounds per min.
Horsepower
Inches of mercury
@ $0^{\circ} \mathrm{C}$
Joules
Joules
Kilowatts
Kilowatts
Kilowatts
Knots
Miles
Nautical miles
Radians
Square feet
Watts

Multiply	By
Radians	57.2958
Foot-pounds	1.356×10^{7}
Miles	5280
Atmospheres	33.90
Horsepower-hours	1.98×10^{6}
Kilowatt-hours	2.655×10^{6}
Horsepower	3.3×10^{4}
Foot-pounds per sec.	1.818×10^{-3}
Pounds per square inch	2.036
BTU	1054.8
Foot-pounds	1.35582
BTU per min.	1.758×10^{-2}
Foot-pounds per min.	2.26×10^{-5}
Horsepower	0.745712
Miles per hour	0.86897624
Feet	1.894×10^{-4}
Miles	0.86897624
Degrees	1.745×10^{-2}
Acres	43560
BTU per min.	17.5796

Temperature Factors

$$
{ }^{\circ} \mathrm{F}=9 / 5\left({ }^{\circ} \mathrm{C}\right)+32
$$

Fahrenheit temperature - 1.8 (temperature in kelvins) -459.67

$$
{ }^{\circ} \mathrm{C}=5 / 9\left[\left({ }^{\circ} \mathrm{F}\right)-32\right]
$$

Celsius temperature $=$ temperature in kelvins -273.15
Fahrenheit temperature $=1.8($ Celsius temperature $)+32$
*Boldface numbers are exact; others are given to ten significant figures where so indicated by the multiplier factor.

Conversion Factors - Metric to English

To Obtain	Multiply	By
Inches	Centimeters	0.3937007874
Feet	Meters	3.280839895
Yards	Meters	1.093613298
Miles	Kilometers	0.6213711922
Ounces	Grams	$3.527396195 \times 10-2$
Pounds	Kilograms	2.204622622
Gallons (U.S. Liquid)	Liters	0.2641720524
Fluid ounces	Milliliters (cc)	$3.381402270 \times 10^{-2}$
Square inches	Square centimeters	0.1550003100
Square feet	Square meters	10.76391042
Square yards	Square meters	1.195990046
Cubic inches	Milliliters (cc)	$6.102374409 \times 10-2$
Cubic feet	Cubic meters	35.31466672
Cubic yards	Cubic meters	1.307950619

Conversion Tables ${ }_{\text {coont }}$

Conversion Factors - English to Metric*

To Obtain
Microns
Centimeters
Meters
Meters
Kilometers
Grams
Kilograms
Liters
Milliliters (cc)
Square centimeters
Square meters
Square meters
Milliliters (cc)
Cubic meters
Cubic meters

Multiply By
Mils
Inches
Feet
Yards
Miles
Ounces
Pounds
Gallons (U.S. Liquid)
Fluid ounces
Square inches
Square feet
Square yards
Cubic inches
Cubic feet
Cubic yards
25.4
2.54
0.3048
0.9144
1.609344
28.34952313
0.45359237
3.785411784
29.57352956
6.4516
0.09290304
0.83612736
16.387064
$2.831684659 \times 10^{-2}$
0.764554858

Conversion Factors - General*

To Obtain	Multiply	By
Atmospheres	Feet of water @ $4^{\circ} \mathrm{C}$	2.950×10^{-2}
Atmospheres	Inches of mercury @ $0^{\circ} \mathrm{C}$	3.342×10^{-2}
Atmospheres	Pounds per square inch	6.804×10^{-2}
BTU	Foot-pounds	1.285×10^{-3}
BTU	Joules	9.480×10^{-4}
Cubic feet	Cords	$\mathbf{1 2 8}$

*Boldface numbers are exact; others are given to ten significant figures where so indicated by the multiplier factor.

Miscellaneous Constants

Physical Constants

Equatorial radius of the earth $=6378.388 \mathrm{~km}=3963.34$ miles (statute).
Polar radius of the earth, $6356.912 \mathrm{~km}=3949.99$ miles (statute).
1 degree of latitude at $40^{\circ}=69$ miles.
1 international nautical mile $=1.15078$ miles $($ statute $)=1852 \mathrm{~m}=6076.115 \mathrm{ft}$.
Mean density of the earth $=5.522 \mathrm{~g} / \mathrm{cm}^{3}=344.7 \mathrm{lb} / \mathrm{ft}^{3}$.
Constant of gravitation, $(6.673 \pm 0.003) \times 10^{-8} \mathrm{~cm}^{3} \mathrm{gm}^{-1} \mathrm{~S}^{-2}$.
Acceleration due to gravity at sea level, latitude $45^{\circ}=980.665 \mathrm{~cm} / \mathrm{s}^{2}=32.1740 \mathrm{ft} / \mathrm{sec}^{2}$.
Length of seconds pendulum at sea level, latitude $45^{\circ}=99.3574 \mathrm{~cm}=39.1171 \mathrm{in}$.
$1 \mathrm{knot}($ international $)=101.269 \mathrm{ft} / \mathrm{min}=1.6878 \mathrm{ft} / \mathrm{sec}=1.1508$ miles $($ statute $) / \mathrm{hr}$.
1 micron $=10^{-4} \mathrm{~cm}$.
1 angstrom $=10-8 \mathrm{~cm}$.
Mass of hydrogen atom $=(1.67339 \pm 0.0031) \times 10^{-24} \mathrm{~g}$.
Density of mercury at $0^{\circ} \mathrm{C}=13.5955 \mathrm{~g} / \mathrm{ml}$.
Density of water at $3.98^{\circ} \mathrm{C}=1.000000 \mathrm{~g} / \mathrm{ml}$.
Density, maximum, of water, at $3.98^{\circ} \mathrm{C}=0.999973 \mathrm{~g} / \mathrm{cm}^{3}$.
Density of dry air at $0^{\circ} \mathrm{C}, 760 \mathrm{~mm}=1.2929 \mathrm{~g} /$ liter.
Velocity of sound in dry air at $0^{\circ} \mathrm{C}=331.36 \mathrm{~m} / \mathrm{s}-1087.1 \mathrm{ft} / \mathrm{sec}$.
Velocity of light in vacuum $=(2.997925 \pm 0.000002) \times 10^{10} \mathrm{~cm} / \mathrm{s}$.
Heat of fusion of water $0^{\circ} \mathrm{C}=79.71 \mathrm{cal} / \mathrm{g}$.
Heat of vaporization of water $100^{\circ} \mathrm{C}=539.55 \mathrm{cal} / \mathrm{g}$.
Electrochemical equivalent of silver $0.001118 \mathrm{~g} / \mathrm{sec}$ international amp.
Absolute wave length of red cadmium light in air at $15^{\circ} \mathrm{C}, 760 \mathrm{~mm}$ pressure $=6438.4696 \mathrm{~A}$.
Wave length of orange-red line of krypton $86=6057.802 \mathrm{~A}$.

World Wide Sales and Marketing

Vice President Marketing/Sales
3001 Stender Way, M/S 30
Santa Clara, CA 95054
Tel: (408) 988-5607
TWX: 910-338-0135

Western Area Sales Office
150 So. Wolfe Road
Sunnyvale, CA 94086
Tel: (408) 735-0221
TWX: 910-339-9500

Central Area Sales Office

1821 Hicks Rd.
Rolling Meadows, IL 60008
Tel: (312) 991-4620
TWX: 910-687-0244

North Central Regional

Sales Office
1821 Hicks Rd.
Rolling Meadows, IL 60008
Tel: 1312) 991-4620
TWX: 910-687-0244

South Central
Regional
Sales Office
1101 E. Arapaho Rd. \#149
Richardson, TX 75081
Tel: (214) 235-1105

TWX: 910-867-4723

Eastern Area Sales Office

555 Broadhollow Rd.
Melville, NY 11747
Tel: (516) 752-0900
TWX: 510-224-6247

Northeast Regional

Sales Office
177 Worcester St.
Wellesley Hills, MA 02181
Tel: (617) 431-7630
TWX: 710-383-1582

Southwest Regional

Sales Office
4401 Atlantic Ave
Suite 101
Long Beach, CA 90807
Tel: (213) 428-8776
TWX: 910-341-7705

Southeast Regional
Sales Office
5600 Mariner St.
Suite \#219
Tampa, FL 33609
Tel: (813) 870-2222
TWX: 810-876-9148

Mid-Atlantic Regional Sales Office
555 Broadhollow Rd., Mellville, NY 11747
Tel: (516, 752-0900, TWX: 510-224-6247

U.S. Sales Representatives

Alabama
Electronic Marketing
Associates 500 Wynn Dr. P.O. Box 5306 Executive Plaza, Suite 304A
Huntsville, AL 35805
Tel: (205) 837-7363

Alaska

Vantage Corp.
300 120th Ave., N.E
BIdg. 7, Suite 207
Bellevue, WA 98005
Tel: (206) 455-3460
TWX: 910-443-2308

Arizona

MR Engineering Sales Co. P.O. Box 15270

3020 N. 44th St.
Phoenix, AZ 85018
Tel: (602) 956-4670
TWX: 910-950-1291

California

Brooks Technical Group 883 Stierlin Road
Mountain View, CA 94043 Tel: (415) 960-3880 TWX: 910-379-5061
Elsco Electronics Inc. 11562 Knott Street Suite \#3
Garden Grove, CA 92641
Tel: (714) 891-4621
TWX: 910-596-2400
Reider Associates 2660 Bernardo Ave. Escondido, CA 92025 Tel: \{619) 741-0496

Colorado

Checkmate Rep. Co. 8061 S. Kendall BIvd Littleton, CO 80123 Tel: (303) 973-6166

Connecticut
Dynasel Associates Inc 235 Bear Hill Rd. Waltham, MA 02154 Tel: (617) 890-6777 TWX: 710-324-0202 DYNASEL WAL

Delaware

Conroy Sales
26 W. Pennysylvania Ave.
Baltimore, MD 21204
Tel: (301) 296-2444
District of Columbia
Conroy Sales
26 W. Pennsylvania Ave
Baltimore, MD 21204
Tel: (301) 296-2444

Florida

Dyne-A-Mark Corp
300 Duncan Ave.
Suite 283
Clearwater, FL 33515
Tel: (813) 441-4702,3
TWX: 810-866-0438 DYNEMARK CWTR
Dyne-A-Mark Corp.
1001 N.W. 62 nd St.
Suite 107
Ft. Lauderdale, FL 33309
Tel: (305) 771-6501,2,3
TWX: 510-956-9872
DYNEMARK FTL
Dyne-A-Mark Corp
P.O. Box 33

Maitland, FL 32751
Tel: (305) 831-2097
TWX: 810-853-5039
DYNEMARK ALMS
Dyne-A-Mark Corp
P.O. Box 339

115 Palm Bay Rd., \#550-9
Palm Bay, FL 32905
Tel: (305) 727-0192
TWX: 510-959-6000

Georgia
Electronic Marketing
Associates
6695 Peach Tree
Industrial Blvd.
Atlanta, GA 30360
Tel: (404) 448-1215
TWX: 810-766-0483
Hawaii
Brooks Technical Group 8830 Stierlin Rd
Mountain View, CA 94303
Tel: (415) 960-3880
TWX:
Idaho
Vantage Corp.
300 120th Ave. N.E.
BIdg. 7. Suite 207
Bellevue, WA 98005
Tel: (206) 455-3460
TWX: 910-443-2308
Illinois (Northern)
Industrial Representatives Inc
5940 W. Touhy Ave.
Chicago, IL 60648
Tel: (312) 647-7755
Industrial Representatives Inc
631 N. Mayfair Rd
Milwaukee, WI 53226
Tel: (414) 259-0965
Illinois (Southern)
(See South Central
Regional Sales Office)

Indiana

MSI
RR2, Box 142
Greenfield, IN 46140
Têl: (317) 894-0377
lowa
Industrial Representatives Inc. 5940 W. Touhy Ave.
Chicago, IL 60648
Tel: (312) 647-7755
Industrial Representatives Inc.
631 N. Mayfair Rd.
Milwauke, WI 53226
Tel: (414) 259-0965

Kansas

(See South Central
Regional Sales Office)
Kentucky
MSI
RR2, Box 142.
Greenfield, IN 46140
Tel: (317) 894-0377

Louisiana

Ion Associates Inc
8705 Shoal Creek Blvd
Austin, TX 78758
Tel: $\langle 512\rangle 458-2108$
TWX: 910-874-1355
Ion Associates Inc.
1504 109th St.
Grand Prairie, TX 75050
Tel: (214) 647-8225
TWX: 910-866-4645
Ion Associates Inc.

1237 Blalock

Suite 109
Houston, TX 77055
Tel: (713) 461-5311
TWX: 910-881-3776
ION ASSOC HOU
Ion Associates Inc.
9726 E. 42nd St.
Suite 125
Tulsa, OK 74145
Tel: (918) 664-0186,7,8
TWX: 910-845-2276

Maine
Dynasel Associates Inc
235 Bear Hill Rd.
Waltham, MA 02154
Tel: (617) 890-6777
TWX: 710-324-0202 DYNASEL WAL

Maryland

Conroy Sales
26 W. Pennsylvania Ave.
Baltimore, MD 21204
Tel: (301) 296-2444

Massachusetts

Dynasel Associates
235 Bear Hill Road
Waltham, MA 02154
Tel: (617) 890-6777
TWX: 710-324-0202
DYNASEL WAL

Michigan

Rathsburg Associates
16621 E. Warren Ave
Detroit, MI 48224
Tel: (313) 882-1717
TWX: 235-229 RAI DET

Minnesota

Comprehensive Technical Sales
8053 Bloomington Fwy., Suite 140
Minneapolis, MN 55420
Tel: (612) 888-7011
TLX: 89-0766

Mississippi

Electronic Marketing
Associates
P.O. Box 5306

Executive Plaza, Suite 304A
Huntsville, AL 35805
Tel: (205) 837-7363
Missouri
(See South Central
Regional Sales Office)

Montana

Vantage Corp
300 120th Ave. N.E.
Bldg. 7, Suite 207
Bellevue, WA 98005
Tel: (206) 455-3460
TWX: 910-443-2308

Nebraska

(See South Central
Regional Sales Office)

Nevada

Brooks Technical Group 8830 Stierlin Rd
Mountain View, CA 94303
Tel: (415) 960-3880
TWX:

New Hampshire

Dynasel Associates
235 Bear Hill Rd.
Waltham, MA 02154
Tel: (617) 890-6777
TWX: 710-324-0202
DYNASEL WAL
New Jersey (Northern) Trionic Associates Inc. 320 Northern Blvd.
Great Neck, NY 11021
Tel: (516) 466-2300
TWX: 510-223-0834
New Jersey (Southern)
Sunday O'Brien
15 Potter St
Haddonfield, NJ 08033
Tel: (609) 429-4013 (215) 923-5195 TWX: 710-896-0679 SUN O'BRIEN

New Mexico
MR Engineering Sales Co
P.O. Box 15270

3020 N 44th St.
Phoenix, AZ 85018
Tel: (602) 956-4670
TWX: 910-950-1291
New York
Quality Components
116 E. Fayette St.
Manlius, NY 13104
Tel: (315) 682-8885
TWX: 710-545-0663
Quality Components
3343 Harlom Rd.
Buffalo, NY 14225
Tel: (716) 837-5430
Trionic Associates Inc.
320 Northern Blvd
Great Neck, NY 11021
Tel: (516) 466-2300
TWX: 510-223-0834

North Carolina

Electronic Marketing
Associates
9225 Honeycutt Creek Rd.
Raleigh, NC 27609
Tel: (919) 847-8800
TWX: (510) 928-0594
North Dakota
Comprehensive Technical Sales 8053 Bloomington Fwy.
Suite 140
Minneapolis, MN 55420
Tel: (612) 888-7011
TWX: 89-0766

Ohio

J.N. Bailey and

13071 Old Dayton Rd.
New Lebanon, OH 45345
Tel: (513) 226-0512

Oklahoma

Ion Associates Inc.
9726 E. 42nd St
Suite 125
Tulsa, OK 74145
Tel: (918) 664-0186,7,8
TWX: 910-845-2276
Pennsylvania (Eastern)
Sunday O'Brien
15 Potter St.
Haddonfield, NJ 08033
Tel: (609) 429-4013 (215) 923-5195

TWX: 710-896-0679 SUN O'BRIEN
Pennsylvania (Western)
J.N. Bailey and Assoc.

13071 Old Dayton Rd.
New Lebanon, OH 45345
Tel: (513) 226-0512
J.N. Bailey and Assoc. 5341 Windfall Rd Madina, OH 44256 Tel: (216) 723-6808
Rhode Island
Dynasel Associates Dynasel Associate
235 Bear Hill Rd. 235 Bear Hill Rd.
Waltham. MA 0215 Waltham, MA 02154
Tel: (617) 890-6777 TWX: 710-324-0202 DYNASEL WAL

South Carolina
Electronic Marketing
Associates
210 W. Stone Ave.
Greenville, SC 29609
Tel: (803) 233-4637, 4638
TWX: 810-281-2225

outh Dakota

Comprehensive-Technical Sales 8053 Bloomington Fwy
Suite 140
Minneapolis, MN 55420
Tel: (612) 888-7011
TWX: 89-0766

ennessee

Electronic Marketing
Associates
P.O. Box 5306

Executive Plaza, Suite 304A
Huntsville, AL 35805
Tel: (205) 837-7363

Texas

on Associates Inc.
3921 Steck Ave
Suite B121A
Austin, TX 78759
Tel: (512) 458-2108
TWX: 910-874-1355
Ion Associates Inc.
1504 109th St
Grand Prairie, TX 75050
Tel: (214) 647-8225
TWX: 910-866-4645
ION ASSOC DAL
Ion Associates Inc.
6300 Westpark Dr.
Suite 310
Houston, TX 77057
Tel: (713) 681-6266
TWX: 910-881-3776
ION ASSOC HOU

Utah
Checkmate Sales Inc
8000 E. Girard Ave.
Suite 604
Denver, CO 80231
Tel: (303) 752-2666
TWX: 910-320-2988

Vermont

Dynasel Associates
235 Bear Hill Rd.
Waltham, MA 02154
Tel: (617) 890-6777
TWX: 710-324-0202 DYNASEL WAL

Virginia

Conroy Sales
26 W. Pennsylvania Ave.
Baltimore, MD 21204
Tel: (301) 296-2444

Washington

Vantage Corp.
300 120th Ave. N.E.
Bldg. 7, Suite 207
Bellevue, WA 98005
Tel: (206) 455-3460 TWX: 910-443-2308

West Virginia

J.N. Bailey and Assoc 13071 Old Daytón Rd. New Lebanon, OH 45345
Tel: (513) 226-0512
J.N. Bailey and Assoc

5341 Windfall Rd.
Madina, OH 44256
Tel: (216) 723-6808

Wisconsin

Key Enterprises Inc 850 Elm Grove Rd. Elm Grove, WI 53122
Elm Grove, 414) $784-3390$

Canadian Sales Representatives
Byte Wide Marketing
P.O. Box 340

Montreal, Quebec
Canada, H4V 2 Y5
Tel: (514) 481-1167
TWX: 055-66206 BYTEWIDE MTL

U.S. Distributors

Director of Distribution
3001 Stender Way, M/S 30
Santa Clara, CA 95054
Tel: (408) 988-5607
TWX: 910-338-0135

Alaska

Western Electromotive
1046 Industry Dr.
Seattle, WA 98108
Tel: 206 575-1910
TWX: 910-444-4129

Alabama

Milgray Electronics
17 Dunwoody Park
Suite 102
Atlanta, GA 30338
Tel: (404) 393-9666

Arizona

Anthem Electronic, Inc.
1707-1 Weber Dr.
Tempe, AZ 85̌81
Tel: 602) 244-0900
TWX: 910-950-0110

Arizona (Cont.
Bell Industries 521 So. 48th St. BIdg. \#107
Tempe, AZ 85281
Tel: (602) 966-7800
TWX: 910-950-0133
Kierulff Electronics
4134 East Wood St Phoenix, AZ 85040 Tel: 602 243-4101 TWX: 910-951-1550 Kierulff Electronics 602 W. Grant Rd. Tucson, AZ 85703 Tel: (602) 624-9986

Arizona (Cont.)
Western Microtechnology
7740 E. Redfield Dr.
Suite 105
Scottsdale, AZ 85260
Tel: (602) 948-4240
TWX: 910-950-1188

Arkansas

Carlton Bates
3600 W. 69th St.
Little Rock, AR 72209
Tel: (501) 562-9100
California (Northern)
Anthem Electronics Inc 174 Component Dr. San Jose, CA 95131 Tel: (408) 946-8000 TWX: 910-338-2038

California (Northern) (Cont.) Jaco Electronics 2170 Paragon Dr. San Jose, CA 95131 Tel: (408) 263-1100 TWX: 910-338-0275
Kierulff Electronics, Inc.
3969 E. Bayshore Rd
Palo Alto, CA 94303
Tel: (415) 968-6292
TWX: 910-379-6430
Western Microtechnology 10040 Bubb Rd. Cupertino, CA 95014
Tel: (408) 725-1660 TWX: 910-338-0013

California (Southern)
Anthem Electronics
21730 Nordhoff St.
Chatsworth, CA 91311
Tel: (213) $700-1000$
Tel: (213) 700-1000
TWX: 910-493-2083
Anthem Electronics Inc. 4125 Sorrento Valley Blvd Suite A
San Diego, CA 92121
Tel: (619) 453-4871
TWX: 910-335-1515
Anthem Electronics Inc.
2661 Dow Ave.
Tustin, CA 92680
Tel: (714) 730-8000
TWX: 910-595-1583

California (Southern) (Cont.)
Jaco Electronics
20600 Plummer St
Chatsworth, CA 91311
Tel: (213) 998-2200
TWX: 910-494-4828
Jaco Electronics 17062 Murphy Ave. Irvine, CA 92714 Tel: (714) 540-5600 TWX: 910-595-2417 Kierulff Electronics, Inc 2585 Commerce Way Los Angeles, CA 90040
Tel: (213) 725-0325 TWX: 910-580-3106
Kierulff Electronics, Inc 8797 Balboa Ave.
San Diego, CA 92123 Tel: (619) 278-2112 TWX: 910-335-1182 Kierulff Electronics, Inc 14101 Franklin Ave.
Tustin, CA 92680
Tel: (714) 731-5711
TWX: 910-595-2599
Zebra Electronics
3621 McArthur Blva
Suite 121
Santa Ana, CA 92704
Tel: (714) 662-0358
Zeus Electronics
1130 Hawk Circle Anaheim, CA 92807
(714) 632-6880

Colorado

Industrial Electronics Inc. 8755 E. Orchard Rd Englewood, CO 80111 Tel: (303) 694-9444
Kierulff Electronics
7060 S. Tucson Way
Tel: (303) 371-6500
TWX• 910-932-0169

Connecticut

Kierulff Electronics 169 No. Plains Industrial Rd Wallingford, CT 06492 Tel: (203) 265-1115 TWX: 710-476-0450

Milgray Electronics 378 Boston Post Rd. Orange, CT 06477 Tel: (203) 795-0711

Delaware

Milgray Electronics 11820 Parklawn Dr. Rockville, MD 20852 Tel: (302) 468-6400
Zebra Electronics
2400 York Rd.
Suite 100
Timonium, MD 21093
Tel: (301) 252-6576
TWX: 710-232-9353

District of Columbia

Milgray Electronics
11820 Parklawn Dr.
Rockville, MD 20852
Tel: (301) 468-6400
Zebra Electronics
2400 York Rd.
Suite 100
Timonium, MD 21093
Tel: (301) 252-6576
TWX: 710-232-9353

Florida
Kierulff Electronics
4850 N. State Rd. 7 Suite E
Ft. Lauderdale, FL 33319
Tel: (305) 486-4004
TWX: 510-955-9801
Kierulff Electronics
3247 Tech Dr.
St. Petersburg, FL 32702
Tel: (813) 576-1966
TWX: 810-863-5625
Milgray Electronics 1850 Lee Road \#104 Winter Park, FL 32789
Tel: (305) 647-5747
TWX: 810-863-5625

Georgia

Kierulff Electronics
5824 E. Peachtree Corners E
Norcross, GA 30092
Tel: (404) 447-5252
TWX: 810-766-4527
Milgray Electronics
17 Dunwoody Park
Suite 102
Atlanta, GA 30338
Tel: (404) 393-9666

Hawaii

Kierulff Electronics
1005 Andover Park E.
Tukwila, WA 98188
Tel: (206) 575-4420
Western Electromotive
1046 Industry Dr. Seattle, WA 98108 Tel: (206) 575-1910
TWX: 910-444-4129

Idaho

Kierulff Electronics
1005 Andover Park E.
Tukwila, WA 98188
Tel: (206) 575-4420
Western Electromotive
1046 Industry Dr.
Seattle, WA 98108
Tel: (206) 575-1910
TWX: 910-444-4129

Illinois

GBL Goold Electronics
610 Bonnie Ln.
Elk Grove Vill., IL 60007
Tel: (312) 593-3220
Kierulff Electronics
1536 Landmeier Rd.
Elk Grove Vill., IL 60007
Tel: (312) 640-0200
TWX: 910-222-0351
Pioneer
1551 Carmen Dr.
Elk Grove Vill., IL 60007
Tel: (312) 437-9680
TWX: 910-222-1834
Indiana
Advent Electronics 8446 Moller Rd. Indianapolis, IN 46268
Tel: (317) 872-4910
TWX: 810-341-3228
Pioneer
8408 Castle Place Dr.
Indianapolis, IN 48250
Tel: (317) 849-7300
TWX: 810-260-1794
Iowa
Kierulff Electronics
7667 Cahill Rd.
Edina, MN 55435
Tel: (612) 941-7500
TWX: 910-576-2721

Kansas

Milgray Electronics
6901 W. 63rd St.
Suite 214
Overland Park, KS 66202
Tel: (913) 236-8800

Kentucky
Advent Electronics
8446 Moller Rd.
Indianapolis, IN 46268
Tel: (317) 872-4910
TWX: 810-341-3228

Louisiana

Cariton Bates
3600 W. 69th St
Little Rock, AR 72209
Tel: (501) 562-9100

Maine

Gerber Electronics
128 Carnegie Rd.
Norwood, MA 02062
Tel: (617) 769-6000
Kierulff Electronics
13 Fortune Dr.
Billerica, MA 01865
Tel. (617) 667-8331 TWX: 710-390-1449
Lionex Corp.
1 North Ave.
Burlington, MA 01803
Tel: (617) 272-9400
TWX: 710-332-1387
Milgray Electronics 79 Terrace Hall Ave. Burlington, MA 01803 Tel: (617) 272-6800 Zeus Electronics 25 Adams St. Burlington, MA 01803 Tel: (617) 273-0750

Maryland

Kierulff Electronics 202 Azar Ct. Baltimore, MD 21227
Tel: (301) 247-5020
TWX: 710-234-1971
Milgray Electronics 11820 Parklawn Dr. Rockville, MD 20852 Tel: (301) 468-6400
Zebra Electronics 2400 York Rd. Suite 100
Timonium, MD 21093
Tel: (301) 252-6576
TWX: 710-232-9353

Massachusetts

Gerber Electronics
128 Carnegie Row Norwood, MA 02062 Tel: (617) 769-6000 TWX: 710-336-1987 Kierulff Electronics 13 Fortune Dr Bitlerica, MA 01865 Tel: (617) 667-8331 TWX: 710-390-1449
Lionex Corp.
1 North Ave.
Burlington, MA 01803
Tel: (617) 272-9400 TWX: 710-332-1387
Milgray Electronics 79 Terrace Hall Ave. Burlington, MA 01803 Tel: (617) 272-6800
Zeus Electronics
378 Adams St
Burlington, MA 01803
Tel: (617) 273-0750

Michigan

RS Electronics
34443 Schoolcraft
Livonia, MI 48150
Tel: (313) 525-1155
TWX: 810-242-2996

Michigan (Cont.)
Pioneer
13485 Stamford
Livonia, MI 48150
Tel: (313) 525-1800
TWX: 810-242-3271
Ann Arbor (313) 525-1800

Minnesota

Kierulff Electronics
7667 Cahill Rd.
Edina, MN 5543
Tel: (612) 941-7500
TWX: 910-576-2721

Pioneer

10203 Bren Rd. E
Minnetonka, MN 55343
Tel: (612) 935-5444
TWX: 910-422-2210

Mississippi

Milgray Electronics
17 Dunwoody Park
Suite 102
Atlanta, GA 30338
Tel: (404) 393-9666

Missouri

Kierulff Electronics, Inc
2608 Metro Park Blvd
Maryland Heights, MO 63043
Tel: (314) 739-0855
Tel: (314) 739-0855
TWX: 910-762-0721

Montana

Kierulff Electronics
1005 Andover Park E.
Tukwila, WA 98188
Tel: (206) 575-4420
Western Electromotive
1046 Industry Dr.
Seattle, WA 98108
Tel: (206) 575-1910
TWX: 910-444-4129

Nevada

Anthem Electronics
174 Component Dr.
San Jose, CA 95131
Tel: (408) 946-8000
TWX: 910-338-2038
aco Electronics
2170 Paragon Dr.
San Jose, CA 95131
Tel: (408) 263-1100
TWX: 910-338-0275
Kierulff Electronics
3969 E. Bayshore Rd.
Palo Alto, CA 94303
Tel: (415) 968-6292
TWX: 910-379-6430
Western Microtechnology
10040 Bubb Rd
Cupertino, CA 95014
Tel: (408) 725-1660

New Jersey

General Radio \& Supply
600 Penn St
Camden, NJ 08102
Tel: (609) 964-8560
TWX: 710-891-1356
Kierulff Electronics
37 Kulick Rd.
Fairfield, N.J. 07006
Tel: (201) 575-6750
TWX: 710-734-4372
Lionex Corporation
23 Just Rd.
Fairfield, N.J. 07006
Tel: (201) 227-7960
TWX: 710-734-4312
Milgray Electronics
3002 Greentree Executive
Campus, Suite B
Marlton, NJ 07444
Tel: (609) 983-5010

New Jersey (Cont.)
Zebra Electronics
11 Kent PI.
Pompton Plains, NJ 07444
Tel: (201) 839-9040

New Mexico

Bell Industries
11728 Linn Ave., N.E
Albuquerque, NM 87123
Tel: (505) 292-2700
TWX: 910-989-0625
New York
Add Electronics
7 Adler Dr.
E. Syracuse, NY 13057

Tel: (315) 437-0300
Lionex Corp.
400 Oser Ave.
Hauppauge, NY 11787
Tel: Hauppauge, NY 16 273-1660
TWX: 510-227-1042
Milgray Electronics
191 Hanse Ave.
Freeport, NY 11520
Tel: (516) 546-5600
TWX: 510-225-3673
Zeus Components
100 Midiand Ave.
Port Chester, NY 10573
Tel: (914) 937-7400
TWX: 710-567-1248
North Carolina
Kierulff Electronics
1800 E. Fairfax Rd.
Greensboro, NC 27407
Tel: (919) 852-9440
TWX: 510-922-7284

North Dakota

Kierulff Electronics
7667 Cahill Rd.
Edina, MN 55435
Tel: (612) 941-7500
TWX: 910-576-2721

Synertek.

Pennsylvania (Eastern)
Milgray Electronics
3002 Greentree Executive Campus
Marlton, NJ 08053
Tel: (609) 983-5010
Zebra Electronics*
1465 Rose Lawn Dr.
Bethlehem, PA 18017
Tel: (215) 868-0685
Pennsylvania (Western)
Kierulff Electronics, Inc.
23060 Miles Rd.
Cleveland, OH 44128
Tel: (216) 587-6558
TWX: 810-427-2282
Milgray Electronics
6155 Rockside Rd
Cleveland, OH 44131
Tel: (216) 447-1520
Pioneer
259 Kappa Dr.
Pittsburgh, PA 15238
Tel: (412, 782-2300
Zebra Electronics
11 Kent PI.
Pompton Plains, NJ 07444
Tel: 1201 , 839-9040

Rhode Island

Gerber Electronics
128 Carnegie Rd.
Norwood, MA 02062
Tel: (617) 769-6000

Rhode Island (Cont.)
Kierulff Electronics 13 Fortune Dr.
Billerica, MA 01865 Tel: (617) 667-8331 TWX: 710-390-1449
Kierulff Electronics
165 No. Plains Industrial Rd.
Wallingford, CT 06492
Tel: (203) 265-1115
TWX: 710-476-0450
Lionex Corp.
1 North Ave.
Burlington, MA 01803
Tel: (617) 272-9400
TWX: 710-332-1387
Milgray Electronics 79 Terrace Hall Ave Burlington, MA 01803 Tel: (617) 272-6800
Zeus Electronics
25 Adams St.
Burlington, MA 01803
Tel: (617) 273-0750

South Carolina

Kierulff Electronics
1800 E. Fairfax Rd
Greensboro, NC 27407
Tel: (919) 852-9440
TWX:510-922-738

South Dakota

Kierulff Electronics
7667 Cahill Rd.
Edina, MN 55435
Tel: 612) 941-7500
TWX: 910-576-2721

Texas
Kierulff Electronics, Inc
3007 Longhorn Blvd.
Suite 105
Austin, TX 78758
Tel: 512 835-2090
Tel: (512) 835-2090
Kierulff Electronics, Inc.
9610 Skillman Ave.
Dallas, TX 75243
Tel: (214) 343-2400
TWX: 910-861-9149
Kierulff Electronics, Inc
10415 Landsbury Dr.
Suite 210
Houston, TX 77099
Tel: (713) 530-7030
TWX: 910-880-4057
Pioneer
9901 Burnett Rd
Austin, TX 78758
Tel: (512) 835-4000
Pioneer
13710 Omega Rd
Dallas, TX 75240
Tel: 1214 ! 386-7300
Zeus Electronics
14001 Goldmark
Suite 250
Dallas, TX 75240
Tel: (214) 783-7010

Texas (West)

Bell Industries
11728 Linn Ave., N.E.
Albuquerque, NM 87123
Tel: (505) 292-2700
TWX: 910-989-0625
Utah
Kierulff Electronics
2121 S. 3600 West
Salt Lake City, UT 84119
Tel: :801) 973-6913

Vermon
Gerber Electronics
128 Carnegie Rd.
Norwood, MA 02062
Tel: (617) 769-6000
Kierulff Electronics 13 Fortune Dr
Billerica, MA 01865
Tel: \{617, 667-8331
TWX: 710-332-1387
Lionex Corp
1 North Ave.
Burlington. MA 01803
Tel: (617) 272-9400
TWX: 710-332-1387
Milgray Electronics
79 Terrace Hall Ave. Burlington, MA 01803 Tel: 〈617) 272-6800
Zeus Electronics
25 Adams St.
Burlington, MA 01803
Tel: (617) 273-0750

Virginia

Milgray Electronics
11820 Parklawn Dr.
Rockville, MD 20852
Tel: (301) 468-6400
Zebra Electronics
2400 York Rd.
Suite 100
Timonium, MD 21093
Tel: (301) 252-6576
TWX: 710-232-9353

Washington
Kierulff Electronics, Inc.
1005 Andover Park E
Tukwila, WA 98188
Tel: (206) 575-4420
TWX: 910-444-2034
Western Electromotive 1046 Industry Dr
Seattle, WA 98108
Tel: (206) 575-1910
TWX: 910-444-4129
West Virginia
Kierulff Electronics, Inc. 23060 Miles Rd.
Cleveland, OH 44128
Tel: (216) 587-6558
TWX: 810-427-2282
Milgray Electronics
6155 Rockside Rd.
Cleveland, OH 44131
Tel: (216) 447-1520

Wisconsin

Kierulff Electronics, Inc 2212 E. Moreland Blvd
Waukesha, WI 53186
Tel: (414) 784-8160
TWX: 910-265-3653
Taylor Electric Co
P.O. Drawer 11 N

Milwaukee, WI 5320
Milwaukee, WI 5320
Tel: 414) $241-4321$
Tel: (414) 241-4321
TWX: 910-262-3414
Wyoming
Kierulff Electronics
10890 E. 47th Ave.
10890 E. 47 th Ave.
Denver, CO 80239
Denver, CO 80239
Tel: $(303) 371-6500$
TWX: 910-932-0169

Canadian Distributors

Future Electronics
237 Hymus Blvd.
Pointe Claire (Montreal)
Quebec
Canada H9R 5C7
Tel: (514) 694-7710
TWX: 610-421-3251
610-421-4437

Future Electronics 3070 Kingsway
Vancouver, B.C.
Canada V5R 5 J7
Tel: (604) 438-5545

International Sales Offices
 International Sales Manager
 3001 Stender Way, M/S 30
 Santa Clara, CA 95054
 Tel: (408) 988-5608
 TWX: 910-338-0135

Northern European
Zone Manager
Zone Manager
Honeywell House
Charles Square
Bracknell, Berkshire, U.K.
Rg 121 EB
Tel: Bracknell 24555
TWX: (815) 847064

Central European
Zone Manager
Freischuetzstrasse 92
D-8000 Muenchen 81
West Germany
Tel: |49| (089) 9597-0
TWX: (841) 5216884

Southern European
Zone Manager
Honeywell SA
Rue Emile Verhaeren 6
92210 St. Cloud
Paris, France
Tel: |33| (01) 7711071

Manager Director
 European Mkig.

Honeywell Europe SA
Avenue Henri Matisse 16
1140 Brussels, Belgium
Tel: | 32 | 02) 243-1450
HUN BEO2
TWX: 24535

To dial telephone numbers listed below,
Dial 011 (International Access Code) + |Country Code \mid + (City Code) + Local Number

Australia

Ampec Engineering Co
114 Terry St.
Rozelle, N.S.W. 2039
Australia
Tel: |61| (02) 818-1166 TLX: (790) 27136 Honeywell Pty. Ltd. Garden Grove Centre Garden Grove Parade Adamstown, N.S.W. 2289 Tel: (049) 52.4411 TWX: AA 28338 Honeywell Pty. Ltd. Units 8/9 Townsville St. Fyshwick, Australia Tel: (062) 80.5021 TWX: AA 61583
Honeywell Pty. Ltd. 62 Hopkins St Moonah, Tasmania Tel: (002) 28.0087 Honeywell Pty. Ltd. 150-151 Greenhill Rd. Parkside, S.A. 5063 Tel: (08) 271-5022 TWX: AA 89553 Honeywell Pty. Ltd. 27 Church St. Richmond, Victoria Tel: (03) 429.1933 TWX: AA 31805 Honeywell Pty. Ltd. 389 Stanley St. South Brisbane Tel: (07) 246-1255 TWX: AA 42630 Honeywell Pty. Ltd. Industrial Services Branch P.O. Box 102

Tamworth, N.S.W
Tel: (067) 67.3172
Honeywell Pty. Ltd.
1 Thorgood St. Victoria Park, W.A Tel: (09) 362.1577 TWX: AA 93063 Honeywell Pty. Ltd. 276 Cowper St. Warrawong, Australia Tel: (042) 74.0657

Australia (cont.)
Honeywell Pty. Ltd
Lot 1217 Winnellie Rd.
Winelli, N.T.
Tel: (089) 84.4492
Royel Micro Systems Pty. Ltd.
27 Normanby Rd.
Notting Hill, 3149
Australia
Tel: |61| (03) 543-5122
TWX: 790-32673
VSI Elec. (Austr.) Pty. Ltḍ.
21 Chandos St
P.O. Box 578

Crows Nest, N.S.W. 2065
Australia
Tel: |61| (02) 439-4655
TLX: (790) 22846
Energy Control
P.O. Box 6502

Goodna, 4200 Australia
Tel: (07) 288-2757

Austria

Bacher Elek. Gerate GmbH
Rotenmuhlgasse 26
1120 Wien
Austria
Tel: |43| (222) 835646
TWX: (847) 131532
Ing. Ernst Steiner Hummelgasse 14
A-1130 Vienna
Austria
Tel: |43| (222) 82-74-74
TWX: 847-135026

Belgium

Microtron
Tremelobaan 131
2850 Keerbergen
Belgium
Tel: (32) 016-60-05-86
TLX: (846) 22606

Denmark

C-88
Kokkedal Industrial Park 42A
DK-2980 Kokkedal
Denmark
Tel: |45| (02) 244-888
TLX: 855-41198 CEIGTY DK

England

Macro Marketing
Burnham Lane
Slough, Berkshire
England
Tel: Burnham $|44|$ (6) 936-4422
TWX: (851) 847945
Pronto Elec. Sys. Ltd. 466-478 Cranbrook Rd.
Gants Hill, Ilford Essex
1G2 6LE England
Tel: |44| (01) 5546222
TWX: (851) 8954213

England (Cont. Thame Components Ltd. Unit E, Bandet Way
Thame Park Industrial Estate
Thame, Oxon
England, OX9 3XD
Tel: $|44|(84) 421-3146$
TLX: (851) 837917

Finland

Saehkoelikkeiden OY
Saehkoemetsae
SF-01300 VANTAA 30
Finland
Tel: (358) 083-82201
TWX: 12-4431

France

Datadis
10-12, Rue Emile Landrin
92100 Boulogne, France
Tel: |33| (1) 605-6000
TWX: 201905

Germany

Astek GmbH
Carl-Zeiss-Strasse 3
D2085 Quickborn, W. German Tel: |04| (106) 71084
TLX: 0214082
Ditronic GmbH
1M Asenwald 48
7000 Stuttgart 70 W. Germany

Tel: |49| (711) 722079
TWX: 7255638
Electronic-2000 GmbH
Hirschlanderstrasse 2
7257 Ditzingen
West Germany
Tel: |49| (7156) 7083
TWX: 841-7245265
Electronic-2000 GmbH
Werftener Dorfstrasse 4000 Duesseldorf
West Germany
Tel: |49| (211) 767141
TWX: 841-8586810
Electronic 2000 GmbH
Langer Weg 18
6000 Frankfurt 90
W. Germany

Tel: $149 \mid$ (611) 784028
TWX: (841) 89486
Electronic-2000 GmbH
Meisenweg 10
3012 Hanover-Langenhagen 7
West Germany
Tel: |49| (511) 789878
TWX: 841-923430
Electronic-2000 GmbH
D-8000 Munchen 80
Neumarkter Str. 75
Munchen
West Germany
Tel: |49| (89) 434061
TLX: (841) 522561

Germany (cont.
Electronic-2000 GmbH
Vestner Torgraben 3 8500 Nuernberg
West Germany
Tel: 49 (911) 36739
TWX: 841-626495
Hilmar Frehsdorf GmbH
ECS Elec. Comp. Serv.
Carl-Zeiss-Strasse 3
2085 Quickborn
Hamburg, West Germany
Tel: |49| (40) 710 58/59
TWX: (841) 213693
Hilmar Frehsdorf GmbH
Schlueterstrasse 39
1000 W. Berlin 12
W. Germany

Tel: |49 (30) 8839040
TWX: 185418

Hong Kong

Conmos Products
Hay Mien Bldg., 11th Floor
Kwun Tong, Kowloon,
Hong Kong
Tel: | 852 (3) 420103
TLX: (780) 85448

Ireland

Neltronics Ltd.
John F. Kennedy Rd.
NAAS Road
Dublin 12, Ireland
Tel: (01) 501845
TLX: 852-4837

Israel

Aviv Electronics Ltd
Kehilet Venezia
Street 12
69010 Tel-Aviv
Israe!
Tel: |972| (3) 494450
TWX: 922-33572

Italy

Comprel S.R.L.
60025 Loreto
Via Dante Alighieri, 26/b
Ancona, Italy
Tel: (071) 977693
TLX: 332484 COMPRL
Comprel S.R.L.
40137 Bologna
Piazza Azzarita, 6
Bologna, Italy
Tel: (051) 551306
TLX: 332484 COMPRL
Comprel S.R.L.
50127 Firenze
Via T. Mabellini, 4
Firenze, Italy
Firenze, Italy
Tel: $(055) 412018$
TLX: 332484 COMPRL
Comprel S.R.L.
160043 Chiavari
Via S. Chiara, 22
Genova, Italy
Tel: 101 (85) 301100
TLX: 332484 COMPRL

Italy (cont.)
Comprel S.R.L
20092 Cinisell Balsamo
Milano, Italy
Tel: |39| (02) 6120641,2,3,4,5
TLX: (843) 332484
Comprel S.R.L.
00173 Roma Via
U. Comandini, 49

Roma, Italy
Tel: |06| (61) 33060
TLX: 332484 COMPRL
Comprel S.R.L.
10144 Torino
Via G. Fagnano, 10
Torino, Italy
Tel: (011) 489655
TLX: 332484 COMPRL
Comprel S.R.L.
36100 Vicenza
Via V. Veneo, 3
Vicenza, Italy
Tel: [04| (44) 26912
TLX: 332484 COMPRL

Japan

High Technology, Inc.
1-5-8, Yoyogi
1-5-8, Yoyogi
Shibuya-Ku,
Tokyo 151, Japan
Tel: |81| (03) 379-7621
TWX: (781) 232-2784
Synerdyne, Inc.
Ishibashi BIdg.
1-20-2 Dogenzaka
1-20-2 Dogenzaka
Shibuya-Ku
Shibuya-Ku
Tokyo 150, Japan
Tel: $181 \mid 03$) 461-9311
TLX: 781 J32457
TLX: (781) J32457
Teijin Advanced
Product Corp
1-1 Uchisawai-Cho
2 Chome, Chiyoda-Ku
2 Chome, Chiyoda-Ku
Tokyo 100 Japan
Tokyo 100, Japan
Tel: |86| (03) 506-4821
TLX: 781 32457
TLX: (781) 32457
Taiyo
Shin-Nanpeidai Tokyo
Bldg. 6F
1-21-2 Dougenzaka
Shibuya-Ku
Tokyo 150, Japan
Tel: |81| (03) 496-5711
TLX: (781) 26648 TASHCOJ
Unitek Co.
Shin-Nanpeidai Tokyo

Bldg.

1-21-2 Dougenzaka
Shibuya-Ku
Tokyo 150 Japan
TLX: 781-26648

Latin America, Mexico

Intectra
2629 Terminal Blvd.
Mountain View, CA $9404 ?$
U.S.A.

Tel: (415) 967-8818
TLX: 345545 INTECTRA MNTV

Synertek.

Luxembourg
 Microtron

Tremelobaan 131
2850 Keerbergen
Belgium
Tel: $|32|$ (01) 6600586
TWX: (846) 22606

Netherlands

Alcom Electronics Lapella
Hollandsche Diep 57
2904 E.P. Capelle A.D
Holland
Tel: (010) 519533
TLX: 84426161

New Zealand

E.C.S.
Div. of Airspares Ltd
P.O. Box 1048

Palmerston North
New Zealand
Tel: |64| (63) 77-407
TLX: 191 , 3766
Honeywell Control Systems Ltd
P.O. Box 2196

8 Monohan Rd
Auckland 6
New Zealand
Tel: 575.479
TWX: NZ 2487

New Zealand (cont.
Professional Electronics, Ltd
22 Milford Rd.
Milford, Auckland 9
New Zealand
Tel: 493-029
TWX: 791-21084
Southmark Electronics Ltd. 100 Anzac Ave
Auckland 1
P.O. Box 3407

Auckland, New Zealand
Tel: |64| 19| 798-005, 798-078
TLX: (791) 2838 BUREAUX NZ 2838
VSI Elec. Austr. Pty. Ltd. 21 Chandos St
P.O. Box 578

Crows Nest, NSW 2065 Australia

Norway

Elektronix A/S
P.O. Box 4329, Torshov

Sandakervn 72
Oslo 4, Norway
Tel: |47| (2) 229850
TWX: 72738
Portugal
Semiconductores S.A.
Clara Del Rey 39
Oficina 128
Madrid 2, Spain
Tel: |34| 1| 4164071
TWX: 47441

Singapore

Desner
Unit 01-09 Katong Plaza
1 Brooke Road
Singapore 1542
Tel: 65 ; 344-5354
TWX: 786-39191
South Africa
Radiokom (PTY, Ltd.
P.O. Box 56310

Johannesburg
South Africa
Tel: |27|111:789-1400
TWX: 960-424822

Spain
Semiconductores S.A
General Mitre, 240
Barcelona 6
Spain
Tel: |34| (3) 217-23-40
TWX: 1831,97787 SMCD E

Sweden

SATTCO AB
Dalvaegen 10
S-171 36 Solna
Sweden
Tel: |46| 08, 734-00-40
TLX: 854-11588

Switzerland

Datacomp AG
Zucherstrasse 20
$\mathrm{CH}-8952$ Zurich-Schlieren
CH-8952 Zur
Switzerland
Switzerland
Tel: $141 \mid 01,730-21-69$
Tel: |41|:01| 730-21
TWX: 53533 DACO

Switzerland cont.
Stolz AG
Taefernstrasse 15
CH-5404 Baden-Daettwil
Switzerland
Tel: |41| 056, 84-01-51
TWX: 845-54070
Stolz AG
Ave. Louis Casai 81
2116 Geneve
Switzerland
Tel: |41| 2 | 2987877
TLX: 854-54070

Taiwan

General Industries
P.O. Box 1076

Taipei, Taiwan, R.O.C.
Tel: |86| 02. 7645126-9
President Enterprises
SF, 66-1 Chung Ching S. Road
Sec. 1
Taipei, Taiwan 100, R.O.C

Notes

Notes

Notes

Notes

Notes

Notes

Notes

Synertek.

COPYRIGHT 1982 BY SYNERTEK

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photo copying, recording, or otherwise, without the prior written permission of Synertek.

The information contained herein is subject to change without notice. Synertek assumes no responsibility for the use of any circuitry other than circuitry embodied in a Synertek product.

No other circuit patent licenses are implied.

Synertek Inc.

A Subsidiary of Honeywell
3001 Stender Way, M/S 34
Santa Clara, CA 95054

[^0]: (See following page for notes)

[^1]: (See following page for notes)

[^2]: (See following page for notes)

[^3]: (See following page for notes)

[^4]: *CHIP SELECTS (CS) ARE PROGRAMMABLE LOW ACTIVE, HIGH ACTIVE OR DON'T CARE.

[^5]: *CHIP SELECTS CS: ARE PROGRAMMABLE LOW ACTIVE, HIGH ACTIVE OR DON'T CARE.

[^6]: *Not applicable.

[^7]: *Not applicable

[^8]: *CHIP SELECTS (CS) ARE PROGRAMMABLE LOW ACTIVE, HIGH ACTIVE, OR DON'T CARE.

[^9]: *CHIP SELECTS (CS) ARE PROGRAMMABLE LOW ACTIVE, HIGH ACTIVE OR DON'T CARE.

[^10]: *CHIP SELECTS (CS, ARE PROGRAMMABLE LOW ACTIVE, HIGH ACTIVE OR DON'T CARE.

[^11]: *For " A " version leave blank.

[^12]: *1793-02 HAS POSITIVE-TRUE DATA BUS LOGIC.

[^13]: Note: Negative sign indicates outward current flow, positive indicates inward flow.

[^14]: Note: Negative sign indicates outward current flow, positive indicates inward flow.

[^15]: $\mathrm{R}=11 \mathrm{~K} \Omega$ FOR $\mathrm{DB}_{0} \cdot \mathrm{DB}_{7}$
 $R=24 \mathrm{~K} \Omega$ FOR ALL OTHER OUTPUTS
 $\mathrm{C}=\mathbf{1 3 0} \mathrm{pF}$ TOTAL FOR $\mathrm{D}_{0}-\mathrm{D}_{7}$
 $\mathrm{C}=30 \mathrm{pF}$ ALL OTHER OUTPUTS

[^16]: $\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns}(\max)$

[^17]: $\mathrm{R}=11 \mathrm{~K} \Omega$ FOR DB $0_{0}-\mathrm{DB}_{7}$
 $R=24 K \Omega$ FOR ALL OTHER OUTPUTS
 $\mathrm{C}=130 \mathrm{pF}$ TOTAL FOR $\mathrm{D}_{0}-\mathrm{D}_{7}$
 $\mathrm{C}=30 \mathrm{pF}$ ALL OTHER OUTPUTS

[^18]: Copyright 1979 by Zilog, Inc. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of Zilog. Reproduced by permission.

[^19]: *Z8 is a trademark of Zilog Inc.

[^20]: *Z8 is a trademark of Zilog Inc.

[^21]: Copyright 1979 by Zilog, Inc. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of Zilog. Reproduced by permission.
 *Z8 is a trademark of Zilog Inc.

[^22]: *Z8 is a trademark of Zilog Inc.

[^23]: ${ }^{*}{ }^{P} 3_{0}, P 3_{1}$, and P_{3} can always be used as UPC interrupt request inputs regardless of the configuration programmed.

[^24]: *Z8 is a trademark of Zilog Inc.

[^25]: *TRW MPY 16 HJ pin designation.

[^26]: *CHIP SELECT (CS) IS PROGRAMMABLE LOW ACTIVE, HIGH ACTIVE OR DON'T CARE.

[^27]: CHIP SELECT (CS) IS PROGRAMMABLE LOW ACTIVE, HIGH ACTIVE OR DON'T CARE.

[^28]: *Not applicable.

[^29]: - CHIP SELECTS (CS) ARE PROGRAMMABLE LOW ACTIVE, HIGH ACTIVE, OR DON'T CARE

[^30]: *CHIP SELECTS (CS) ARE PROGRAMMABLE LOW ACTIVE, HIGH ACTIVE, OR DON'T CARE

