SIGNETICS
MICRO ASSEMBLER

REFERENCE
MANUAL

SIGNETICS MICRO ASSEMBLER REFERENCE MANUAL

PREFACE

The Signetics Micro Assembler is a FORTRAN program that has been developed as a design tool for writing microprograms.
The Micro Assembler frees the microprogrammer from the tedium of keeping track of individual bits within the micro-
instruction as the microprogram is being written. Instead of hand coding binary digits, the Micro Assembler allows the
microprogrammer to define his own assembler, tailored to the specific needs of his microprogrammed system. Once the
microprogrammer has defined his own assembly language, the microprogram can be written in that language. The Micro
Assembler then assembles the microprogram and generates paper tapes that can be used to program PROMs or load RAMs. In
addition to producing PROM programming tapes, the Micro Assembler also generates listings that can serve as the micro-
program’s primary documentation.

The Micro Assembler has been developed to support Signetics’ expanding bipolar microprocessor product line. Devices
directly supported are the:

@ 38XO02 control store sequencer
e N3002 two-bit RALU (Register Arithmetic Logic Unit) slice
e N2901-1 four bit RALU slice

Data sheets on the above products are available from Signetics.

Although specifically intended for use with Signetics’ bipolar microprocessor products, the flexibility of the Micro Assembler
enables it to handle virtually all microprogrammed applications.

SIGNETICS MICRO ASSEMBLER REFERENCE MANUAL

TABLE OF CONTENTS

Page

Preface i

PART ONE — INTRODUCTION TO THE
MICRO ASSEMBLER

Microprogramming.« v v v i e e e 1.1
The Power of Mnemonics nnn 1.1
The Signetics Micro Assembler 1.2
Basic Statements of the Micro Assembler 1.3

Designing a Microprogram with the Micro Assembler 1.4

PART TWO — THE LANGUAGE

Language Elements 2.1
CharaCters vue i nenns 2.1
Symbols. e 2.1
Self-Defining Constants. 2.2
Expressions 2.3

Language Statements 2.4
Statement Labels 2.4
The StatementBody 2.5
CommENTS . . v it e e 2.5
Statement Description Format 2.5

Specifying a Custom Assembler — The

Microinstruction Definition Section. 2.6
Microinstruction Definition 2.6

The INSTRUCTION Statement 2.6
The FIELD Statement 2.6
Field Placement within the Microinstruction . 2.7
END INSTRUCTION Statement. 2.7
Microinstruction Definition Summary 2.8
Microp Definition 2.8
The MICROP Statement 2.8
Intrinsic Microps . . . v o v oo vt i i i 2.8
The INTRINSIC Statement 2.9

Writing a Microprogram — The Microprogram

SeCtioN . .. e e 2.9
The PROGRAM Statement 2.10
Microinstruction Statements 2.10
The END Statement, 2.11

Directives to the Micro Assembler 2.11
Assembly Directives 2.1

The EQU (Equate) Statement. 2.1

Page

The SET Statement 2.12
The ORG Statement. 2.13
Listing Directives.o v i i e 2.14
The LIST Statement. 2.14
The OBJECT Statement 2.14
The SPACE Statement 2.15
The EJECT Statement 2.15
The TITLE Statement 2.15

PART THREE — EXTENDED FEATURES

Expression Extensions 3.1
Logical Operatorsc.ouuunun 3.1
Shift Operators« oo v it i e s 3.1
Arithmetic Comparison Operators 3.1
Operator Evaluation Hierarchy. 3.2

Multiple Memory Blocks 3.2
The DCL (Declare) Statement 3.2
Absolute Location Labels 3.3

Microp EXtensions . - « « v v v v v v i i i 3.3
Microp Defaults 3.3
Microp Arguments . « « v v v v v v v 34
Microps within Microps . . .« .. .o oo 3.6
The IF Clause « « « v v v v v v e e e e e e e s 3.7

The IF Operand + .+« v v v v v i i oo us 3.7
The THEN Operando oo vt 3.7
The ELSEOperando v oo vt 3.8

Multiple Microinstruction Formats 3.8

INtrinsic MiCropS « + « v« v v v i e i e 3.10
BXO2 MIiCropsS.: « « v v v v i et 3.1
N3002 MiCrops « « « v v v v vt e 3.13
N2901-1 Microps .« « v v v v v i e e e s 3.18

Basic Architecture« .« o oo oo 3.19
The Microps . « v v v v v v i e e e s 3.20
The Op-Code and Source Operands. . - - - . 3.22
The Destination Operand « .« « . v« oo v 3.24

PART FOUR — THE MICRO ASSEMBLER'S

OUTPUT
The Listing File., 4.1
Source/Object Listing 4.1
Cross Reference Listing 4.2

TABLE OF CONTENTS (Continued)

Intermediate Object Text
F Record Format
P Record Format
| Record Format
D Record Format
E Record Format

PART FIVE — THE MICRO FORMAT
PROGRAM

The Micro Format Program — An Overview.
Placing the Microprogram in PROMs
The MEMORY Statement
The OUTPUT Statement
The SELECT Statement
Formatting the Paper Tape Output
The FORMAT Statement
The INSERT Statement
The END Statement.
The Micro Format Program Listings

APPENDICES

A. Source Toggles — Setting Program
Parameters
Micro Assembler Toggles
Micro Format Toggles.

Page

4.3
4.3
4.3
4.3
4.3
4.3

5.1
5.1
5.1
5.2
5.2
5.5
5.5
5.6
5.6
5.7

A1
A1l
A.2

IIom

. Intrinsic Microp Equivalent Source Input . ..
8X02 Microps . « v v v v e e
N3002 Microps - . « . v v v v i
N2901-1 Microps. i i i,
. Installation Considerations
Compilation
Execution — Micro Assembly Program
Source File
Object File.o ..
Listing File.
Work Fileso

Execution — Micro Format Program
Command File.
Intermediate Object File
ListingFile o ...
Object Output File

. Reserved Words of the Micro
Assembler Language -,
. 2650 Absolute Object Format
Introduction.
Format
Example of Object Format
. ASCll Character Set.
. Powers of Two Table
. Micro Assembly Program Summary

The Basic Language

Extensions to the Basic Language
. Micro Assembler Error Messages

Page

B.1
B.1
B.1
B.2
C.1
C.1
C.1
C.1
C.1
C.1
C.1
C.1
C.1
C1
C1
C.1
C.1

D.1
E.1
E.1
E.1
E.1
F.1
G.1
H.1
H.1
H.2

PART ONE — INTRODUCTION TO THE MICRO ASSEMBLER

MICROPROGRAMMING

Since its introduction by Wilkes in 19511, microprogram-
ming has been praised in the literature as a powerful alter-
native to random logic CPU design. The basic concept, as
outlined by Wilkes, is to have the instruction (which has
been fetched from program storage) address a micro control
memory. This memory, called Micro Control Store, then
outputs a control word (the microinstruction) which deter-
mines the operation of each functional block of the CPU.
This control memory approach contrasts with the rather ad
hoc approach of random logic instruction decoding, where
each CPU control signal is the result of a complex logical
equation implemented with simple SSt (Small Scale Inte-
gration) gates.

Placing the CPU’s control logic in memory (usually firm-
ware: PROMs or ROMs), provides many advantages over
the random logic approach. The entire design process
benefits from the orderly structure of the Micro Control
Store instruction decode. Each control field is generated
independently of the other control fields. Hence, the
various functional blocks can be developed separately and
need not be combined until the final phase of system
development. The microprogrammed system’s final con-
figuration is also much more flexible than its random logic
counterpart. Since the control logic is essentially stored in
memory, radical changes in system operation may be imple-
mented by changing just a few words of the microprogram
(residing in Micro Control Store). Likewise, a system’s over-
all performance can easily be enhanced by adding a few bits
to the Micro Control Store’s output (that is, by adding a
new control field to the microinstruction) with minimum
impact on the existing hardware. These features simplify
both the design and production phases of a micropro-
grammed system’s development cycle.

With all of its advantages, microprogramming would be
used extensively were it not for two serious drawbacks. The
first is the cost of the Micro Control Store memory. Since
system throughput is directly related to system speed, most
applications require that the Micro Control Store be
extremely fast. This requirement, when coupled with the
fact that a microprogram can be fairly large (a medium size
CPU requiring a 512 microinstruction by 48 control bit
Micro Control Store memory) has restricted micropro-
grammed applications to systems that could absorb the high
cost of fast Micro Control Store memory. However, this
situation is changing rapidly. The cost of high speed ROMs

1Wilkes, M.V., “The Best Way To Design An Automatic Calculating

Machine,”” Manchester U. Computer Inaugural Conference, Pg. 16,
1951.

and PROMs is dropping at an ever increasing rate. As the
price of solid state memory continues to drop, micropro-
grammed techniques will find increasing use not only in
CPU designs but in sequential state machines as well.

The second drawback is the availability of software support
for writing microprograms. Historically, only the large
main-frame computer manufacturers could afford the
development costs associated with developing a special pur-
pose micro assembler. But this situation has also changed.
With its new Micro Assembler, Signetics provides the small
manufacturer with a cost effective microprogram develop-
ment tool. The Micro Assembler is a Fortran program avail-
able either from the time-sharing services or as a tape that
can be run directly on the user’s computing facility. The
Micro Assembler allows the microprogrammer to first
define his own specialized assembler, and then assemble his
microprogram into PROM programming paper tapes. These
paper tapes can then be used to program Micro Control
Store PROMs or load Control Store RAM (in the case of
writable Micro Control Store).

THE POWER OF MNEMONICS

Simply stated, a microprogram is a collection of micro-
instructions stored in some form of memory (usually ROM
or PROM). Each address of this memory or Micro Control
Store represents a machine state as determined by the
microinstruction stored at that address. The microinstruc-
tion is a group of control fields, each field controlling some
aspect of the machine’s operation. For example, one con-
trol field might define the logical or arithmetic operation
performed by the system ALU (Arithmetic Logic Unit);
another control field might determine the source of the
ALU’s operands; and yet another the destination of the
ALU results.

The output of the Micro Control Store is a collection of
binary control bits. Therefore, the state of each control
field can be expressed as a binary value, and in this manner
each microinstruction can be formed. Using this technique,
the microprogrammer would lay out a large sheet of paper
and list the address of each microinstruction in a column.
Then, each control field is assigned a binary value at each
microinstruction address. This method is feasible and has
been used extensively in the past. However, assuming even a
relatively small microprogram consisting of 128 microin-
structions, each 24 bits wide, the programming sheet would
appear as an array of 3,968 binary digits. Clearly, this
format is cumbersome at best and very confusing at worst.

The task of writing a microprogram would be far easier if
the microprogrammer could use an assembler. An assembler
would allow each control field to be given a symbolic name.

1.1

Likewise, each individual control field state could be
assigned a symbolic name that would reflect its function.
With this approach, each microinstruction could be written
as a sequence of micro-function mnemonics. With this for-

Address Function SourceA SourceB

010 0011 00110 1110
010 0100 11100 0001

we would have something like,

MULT SHIFTR (REG2, NOP,
MULT+1 ADD (REG2, REGS,

There is no question that an assembler would significantly
decrease the amount of energy required to both compose
and read a microprogram.

Between descending PROM prices and the availability of a
cheap microprogram assembler, microprogramming should
become a cost effective solution to many logic design prob-
lems that have been the exclusive domain of SSI and MSI
(Medium Scale Integration) TTL logic.

THE SIGNETICS MICRO ASSEMBLER

The Signetics Micro Assembler operates just like a conven-
tional assembler in that it reads source statements written
in a symbolic assembly language, and processes the state-
ments to produce a machine language representation for
each microinstruction. The machine language microinstruc-
tion is output as a binary word that can be stored in the
Micro Control Store memory.

The major difference between the Micro . Assembler and
other assemblers is that the Micro Assembler allows the
microprogrammer to design his own special purpose
assembly language before he begins writing the micropro-
gram. Assembler features that can be defined by the micro-
programmer are listed in Table 1.1.

1.2

the microinstruction would read almost like a

sentence, its operation easily analyzed by reading the

symbolic function of each control field. Instead of,

Destination

10101
00000

REG2) “BEGIN MULTIPLY"
REG2)

TABLE 1.1

USER DEFINABLE FEATURES OF THE
MICRO ASSEMBLER
The number of bits in the microinstruction (Micro
Control Store width).

The number of microinstructions in the micro-
program (Micro Control Store length).

Control Field placement within the
microinstruction.

The mnemonic name and size (in bits) of each
control field.

The mnemonic name for each control field value
(generally suggestive of the field value’s function).

The organization of Micro Control Store as
physical PROM modules (e.g., six 512x8 PROMs
for 512x48 microprogram).

The mapping of the assembled microprogram into
Micro Control Store PROM modules.

The format of the PROM programming tapes
punched at the end of the assembly and PROM
assignment processes.

The Micro Assembler consists of two separate programs.
These are the Micro Assembly Program and the Micro
Format Program. The Micro Assembly Program assembles
the user source representation of the microprogram and
generates an intermediate object text. This intermediate
object text is then input to the Micro Format Program. The
Micro Format Program partitions the machine language
microprogram into PROM modules. Once the micropro-
gram has been assigned to Control Store PROM modules,
the Micro Format Program punches paper tapes that can be
used to program the Micro Control Store PROMs.

Both the Micro Assembly Program and the Micro Format
Program are subdivided into two sections. The first section
in each case is a command file that defines how each pro-
gram will operate. For the Micro Assembly Program, the
first section is called the Microinstruction Definition
Section. This section allows the user to define the exact
nature of his assembler (as outlined in Table 1.1). The
second section of the Micro Assembly Program’s input is
the user’s microprogram assembly source, written in the
assembly language defined by the Microinstruction Defini-
tion Section.

The first section input to the Micro Format Program is
called the Format Command File. In the Format Command
File, the user specifies how the microprogram will be parti-
tioned in Micro Control Store PROM modules. The Format
Command File also allows the microprogrammer to specify
the format of the PROM programming tapes output by the
Micro Format Program. The second section input to the
Micro Format Program is the intermediate object text
generated by the Micro Assembly Program.

BASIC STATEMENTS OF THE MICRO
ASSEMBLER

User input to the Micro Assembler is divided into three
of the four sections previously mentioned: the Micro-
instruction Definition Section, the Program Section and the
Format Command File. Each section is written as a series of
statements to the Micro Assembler. With each statement,
the microprogrammer requests some action to be per-
formed by the Micro Assembler (e.g., name and assign a
control field to the microinstruction, assemble a micro-
instruction, etc.). What follows is a summary of the basic
statements with which the microprogrammer communicates
to the Micro Assembler. The statements appear under the
input section where they may be used.

Microinstruction Definition Section Statements (Input to
Micro Assembly Program)

1. The INSTRUCTION Statement
The INSTRUCTION Statement specifies the horizontal
width of the Micro Control Store (i.e., the number of
bits in the microinstruction).

2. The FIELD Statement
The FIELD Statement names a control field and assigns
it a location in the microinstruction.

3. The MICROP Statement
The MICROP Statement defines a Microp for the Micro
Assembler. A Microp is a symbol that represents the
value assigned to one or more control fields. The
MICROP Statement assigns a symbolic name to a microp
and defines field assignments that will be made when the
microp is encountered in a Microinstruction Statement.

4. The INTRINSIC Statement
The INTRINSIC Statement includes predefined microps
in the wuser’s Microinstruction Definition Section.
Intrinsic microps supporting Signetics LSI micro-
processor elements N3002, 2901 and 8X02 are available.

Program Section Statements (Input to Micro Assembly
Program)

1. The PROGRAM Statement
The PROGRAM Statement defines the physical size of
the Micro Control Store where the microprogram is to
reside. It specifies the width and length of the Micro
Control Store (i.e., the number of bits in the micro-
instruction and the number of microinstructions
respectively).

2. The Microinstruction Statement .
The Microinstruction Statement assigns values to each
control field of the microinstruction. The microprogram
is input to the Micro Assembler as a sequence of Micro-
instruction Statements.

3. The DCL (Declare) Statement
The DCL Statement allows the microprogrammer to
specify literal data values as microinstructions. This
statement is useful for building PROM look-up tables
and other auxiliary PROMs that might be included in a
microprogrammed application.

Format Command File Statements (Input to the Micro
Format Program)

The Format Command File partitions the microprogram
into PROM modules and produces a PROM programming
tape for each PROM of the Micro Control Store memory.
Each PROM requires four statements to generate its pro-
gramming tape. These are the FORMAT Statement, the
MEMORY Statement, the OUTPUT Statement and the
SELECT Statement.

1. The FORMAT Statement

The FORMAT Statement specifies the paper tape format
of the PROM programming tapes generated by the Micro
Format Program. The FORMAT Statement’s format
remains in effect until the Micro Format Program en-
counters another FORMAT Statement. Hence, a
FORMAT statement must precede the definition of all
PROM modules with its format.

1.3

2. The MEMORY Statement
The MEMORY Statement specifies the bit dimensions of
the PROM module (e.g., the Signetics 825115 is 512x8).

3. The OUTPUT Statement
The OUTPUT Statement directs the Micro Format Pro-
gram to output a section of the microprogram (coded as
the intermediate object text) into the PROM module
specified by the preceding MEMORY Statement.

4. The SELECT Statement
The SELECT Statement assigns specific microinstruction
bits to a PROM module. It allows arbitrary placement
for PCB (Printed Circuit Board) layout considerations.

Micro Assembler Directives (Input to the Micro Assembly
Program).

The Micro Assembler Directives are a group of statements
that allow the microprogrammer to define the value of
symbols, force the program counter to a non-sequential
value and control the generation of the program listings.
The ORG statement may only be used in the Program
Section. All other directives may be freely interspersed
throughout both the Microinstruction Definition Section
and the Program Section.

1. The EQU (Equate) Statement
The EQU Statement assigns a value to a mnemonic name
(symbol).

2. The SET Statement
The SET Statement, like the EQU Statement, assigns a
numeric value to a symbol. However, unlike the EQU

Statement, Symbols defined with the SET Statement
may be later redefined with another SET Statement.

3. The ORG (Origin) Statement
The ORG Statement relocates the Micro Assembly Pro-
gram'’s location counter.

4. The LIST Statement
The LIST Statement specifies which listings will be
produced.

5. The OBJECT Statement
The OBJECT Statement controls the generation of the
intermediate object text as an output listing.

6. The SPACE Statement
The SPACE Statement produces blank lines in the
output listings.

7. The EJECT Statement
The EJECT Statement terminates the listing output on
any given listing page.

DESIGNING A MICROPROGRAM WITH THE
MICRO ASSEMBLER

Designing a microprogram begins by defining the hardware
environment that will execute the microprogram. The hard-
ware will naturally group into functional blocks (e.g., the
ALU section, the next address section, 1/0 structures), that
will require a control field to determine their function
during any given microcycle. The microinstruction word is
then assembled as a collection of the necessary control
fields. A typical microinstruction is presented in Figure 1.1.

USER-DEFINABLE FUNCTION FIELDS

|

STANDARD FUNCTION FIELDS
|

BIT # |39 36 |35 32|31 28|27 24|23 20]19 16]15 12|11 8|7 4|3 0
FLAG
USER C.P.E. Jump LOGIC
CONTROL FIELD | DEFINED MASK OR OPTIONAL FUNCTION | FUNCTION | o O
FUNCTIONS | PROCESSOR FUNCTIONS | (FoFg) | (ACG-ACE) | (k¢ ey

FIGURE 1.1

Once the hardware architecture and its resulting micro-
instruction have been defined, the microprogrammer may
begin to prepare his input to the Micro Assembler. The
microprogram object (PROM programming tapes) is
produced in three steps. These steps are listed below:

1. Define the Assembly Language: The Microinstruction
Definition Section. This section defines all of the
symbols that will be used to write the microprogram

1.4

assembly source. This includes naming all of the control
fields and defining the microps that will make particular
value assignments to the control fields.

2. Write the Microprogram: The Program Section. The

microprogram is written in the assembly language
defined in the Microinstruction Definition Section. The
microprogram consists of a sequence of Microinstruction
Statements. Each Microinstruction Statement specifies
the state of each control field in the microinstruction by

referencing microps defined in the Microinstruction
Definition Section. The Microinstruction Definition
Section and the Program Section are input to the Micro
Assembly Program.

. Assign the Assembled Microprogram to PROMs: The
Format Command File. The Micro Format Program
accepts as input the assembled microprogram from the
Micro Assembly Program (output as the intermediate
object text) and the Format Command File written by
the microprogrammer. By interpreting the Format
Command File, the Micro Format Program partitions the

microprogram (which has been assembled into a binary
array) into PROM modules. The Micro Format Program
generates a PROM programming tape for each PROM
module. The format of the PROM programming tapes
can also be specified in the Format Command File.

Figure 1.2 presents a diagram of the interaction between
the microprogrammer and the Micro Assembler in the
process of assembling a microprogram and generating
PROM programming tapes for the Micro Control Store
PROM:s.

USER INPUT

PROGRAM ACTION

N\

e

WRITE

I

WRITE
PROGRAM
SECTION

SOURCE FILE

MICROINSTRUCTION MICRO ASSEMBLY
DEFINITION
SECTION MICRO
ASSEMBLY
PROGRAM

INTERMEDIATE
OBJECT
TEXT
FILE

N\

LISTINGS

~

WRITE
EORMAT FORMAT COMMAND
FILE SOURCE
comvand A

MICRO FORMAT
PROGRAM
PUNCHED

PAPER TAPE __ }

(=S

:

LISTINGS

CONTROL STORE

PROM

S

FIGURE 1.2

PART TWO — THE LANGUAGE

LANGUAGE ELEMENTS

The microprogrammer communicates with the Micro
Assembler by writing a sequence of logical statements
which the Micro Assembler can interpret in a meaningful
way. These statements (the source input) are formed by
combining language elements according to certain rules.
This section will present the language elements. The re-
mainder of the Reference Manual will be devoted to the
rules concerning their use.

Characters

The basic atom of the Micro Assembler language is a char-
acter. The supported characters are listed in Table 2.1.

TABLE 2.1
Alphabetic Characters: A through Z
Numeric Characters: 0 through 9
Special Characters: Blank

" Double Quote
$ Dollar Sign
" Quote
(Left Parenthesis
) Right Parenthesis
+ Plus Sign
~, Comma
- Minus Sign
Colon
; Semicolon
= Equal Sign
@ At Sign

— Underline

The remaining ASCIl characters may only be used in
quoted strings of characters (character constants or in
comments. Actually the character set available to the
user may be limited by the FORTRAN 1/O facility of the
host machine where the Micro Assembler resides.

Symbols

A symbol is a group of characters that is used as a name.
Typical symbols are:

@ Mnemonic names for numerical values

® Symbolic addresses

® Mnemonic names for microinstruction fields

® Reserved words (Statement Op-Codes, Keywords and
Expression Operators)

Rules governing the construction of symbols:

1. Symbols may consist of the alphabetic characters, the
numeric characters and the ““at sign’ (@).

2. Symbols can be from 1 to 28 characters long.

3. The first character of a symbol must be an alphabetic
character or the “‘at sign.”

4. Symbols must be contained entirely on one line of
source (i.e., symbols may not be split between lines).

5. Blanks may not be embedded within a symbol.

The special character, underline (_), may be embedded
within a symbol to improve readability. The underline does
not affect the meaning of the symbol and is removed when
the Micro Assembler collects the symbol (it is, however,
reproduced on the source listing). Underlines may not begin
or end a symbol.

Table 2.2 lists examples of both valid and invalid symbols.

TABLE 2.2

VALID SYMBOLS

A

MOVE

LONG_SYMBOL_NAME (= LONGSYMBOLNAME)
VERY@LONG@SYMBOL@NAME

FIELD7
@45

INVALID SYMBOLS Reason
2Y First character is not an

alphabetic character or @.

_ADDR First character is underline.
AB CD Embedded blank.
DATA/LIST Embedded delimiter (illegal

character)

TOO@MANY@CHARACTERS@IN@SYMBOL
More than 28 characters.

2.1

Self-Defining Constants

A self-defining constant is a group of characters that speci-
fies a constant value. The value of a self-defining constant is
implicit in its representation. The Micro Assembler supports
two types of self-defining constants: numeric constants and
ASCII character constants.

Numeric Constants. Numeric constants are used to assign a
numerical value to a symbolic name (e.g., when specifying a
Field value for a Microp), as terms of an expression or
anywhere a numerical value is appropriate. Numeric
constants have the following format:

nnnnR

Where:

n is a numeric character,

and

R is the radix of the numeric constant.

The radix, R, is an alphabetic character that specifies the
base of the numeric constant, and hence, the valid char-
acters for “nnnn.” The Micro Assembler recognizes the
radixes presented in Table 2.3.

TABLE 2.3
Radix Valid Characters for “nnnn”
B — Binary Oand 1
O or Q — Octal 0 through 7
D — Decimal 0 through 9

0 through 9, A through F (A
through F represent decimal
10 through 15, respectively)

H — Hexadecimal

If “R" is omitted from a numerical constant, the radix is
assumed to be D (decimal).

Rules governing the construction of numeric constants:

1. The maximum number of characters is set with the "M
toggle.” (Various Micro Assembler parameters are set by
special assembler commands called toggles — see
Appendix A). If the M toggle is not set by the user, the
default value for maximum number of bits in a numeric
constant is 128 bits.

2. The first character of a numeric constant must be a
numeric character. (For hexadecimal constants this re-
quirement can be met by adding a leading zero. The
Micro Assembler ignores leading zeros.)

2.2

3. A numeric constant must be contained entirely on one
line of source.

4. A blank may not be embedded within a numeric
constant.

As with symbols, the underline may be embedded within a
numeric constant to improve readability. The underline is
reproduced on the source listing but is ignored during the
assembly process. Numeric constants may not begin or end
with an underline.

Table 2.4 lists examples of valid and invalid numeric
constants.

TABLE 2.4
VALID NUMERIC
CONSTANTS
13
1101B
150 Each example has a decimal
value of 13.
001_-101B
13D
ODH
INVALID NUMERIC
CONSTANTS Reason
12B 2 is an invalid character for
the binary radix.
12 34Q Embedded blank.
19.95 Embedded delimiter (illegal
character).
FB5AH First character is not
numeric.
3F25DA70FH Exceeds maximum word size
(assuming maximum word
size of 32 bits set by M
toggle).

ASCII Character Constants. Occasionally, it is necessary to
store the binary form of an ASCII character in memory. An
example of this requirement might be the storage of human
interface messages in PROM. So that the microprogram
designer need not burden himself with the tedious task of
converting ASCIIl characters into their binary code, the
Micro Assembler has provisions for accepting ASCII char-
acter strings in the form of self-defining constants. When
the Micro Assembler detects a character constant string, it
converts each character into an 8-bit ASCIl byte (7-bit

ASCIll with high-order zero appended). This conversion is
independent of the internal FORTRAN character represen-
tation of the host machine.

Rules governing the construction of character constants:

1. The maximum number of characters is determined by
the value of the M toggle. The default value is 128 bits
(16 characters).

2. Character constants must begin and end with a single
quote (apostrophe). Within the single quotes, any
supported ASCII character may be used. (A single quote
within the character constant may be specified by using
two adjacent single quotes. The Micro Assembler will
discard one of the two.)

3. A character constant must be entirely contained on one
line of source.

The following list shows some representative character
constants and their equivalent numerical values.

‘A" = 41H
‘7" = 37H
‘$" = 24H
123" = 313233H
‘DON’ ‘T’ = 444F4E2754H

Table 2.5 lists examples of valid and invalid ASCII char-
acter constants.

TABLE 2.5

VALID CHARACTER
CONSTANTS

%7

‘ABCDEFG’
‘FILE NAME'

1 ’

(blanks)

‘MARY"'SPROGRAM’ (=MARY’'S PROGRAM)

'$2.49'

INVALID CHARACTER
CONSTANTS Reason
DON’ ‘T DO THIS’ Does not begin with single

quote.

‘DON’" ‘T DO THIS
EITHER

‘0123456789ABCDEFG’ Too many characters
(assuming maximum word
size of 128 bits).

Doesn’t end with single
quote.

Expressions

Self-defining constants and symbolic names that represent
numerical values may be combined with operators to com-
pute values. These combinations are called expressions. An
expression may. be used anywhere a numerical value is
required in the user’s source.

The expression operators are the special characters: + (add)
and - (subtract). Subtraction is performed by two’s com-
plement addition.

Expressions are evaluated left to right. Should the micro-
program designer wish to implement a more complex
expression format, he may use parenthesis to group sub-
expressions. The following illustrates expression calculation
priority:

Expression Order of Calculation
A+B-C+D A+B, (A+B)-C, ((A+B)-C)+D
(A+B) - (C+D) A+B, C+D, (A+B)-(C+D)

Rules governing the construction of expressions:

1. Calculations are performed at the maximum word size of
the Micro Assembler (set by the M toggle — default 128
bits). Carry out of the most significant bit is ignored.

2. The expression operators must be between two
operands. (An operand is a self-defining constant, a
symbol that can be resolved to a numerical value, or a
parenthesized sub-expression.)

3. The subtract operator (-) may be used with a single
operand at the beginning of an expression or sub-
expression. In this instance, the first character of the
expression must be the subtract operator ().

4. A single operand expression without an operator is valid.

5. Expressions may be split between two or more lines of
source.

6. Blanks and comments may be placed between operands
and operators within an expression.

Within the Microprogram Section of the user’s source, the
current value of the location counter may be used as an
operand in an expression. The location counter points to
the microprogram address that will be assigned to the
current microinstruction being written. The location
counter is referenced with the special character ‘‘dollar

sign’ ($).

Table 2.6 lists some examples of both valid and invalid
expressions.

2.3

TABLE 2.6

VALID EXPRESSIONS

A+B+1

A+B+1

END — (OVER — 8)
— DISPLACEMENT

TABLE + ‘A’ (Character constant ‘A’ =
65D)
$+ 0A3H
BUF + (-5DH)
INVALID
EXPRESSIONS Reason

Q++9 Operand is missing
between the two add
operators.

BUS +-6 Subtract operator with
single operand only valid
at beginning of expression
or sub-expression.

X+Y(2) Last two operands are not

separated by an operator.

LANGUAGE STATEMENTS

In the preceding section, the basic language elements of
the Micro Assembler were described. These language ele-
ments are combined by the microprogram designer to form
statements which can be interpreted by the Micro
Assembler.

Each statement is a command to the Micro Assembler. The
Micro Assembler reads a statement, interprets its meaning,
and performs the specific action requested by the
statement.

The source input to the Micro Assembler is a sequence of
statements. The ultimate purpose of the source statements
is to direct the Micro Assembler in the production of the
various program listings (both source and object) and in the
generation of intermediate output object code, which,
when input to the Micro Format program, is translated into
output suitable for loading into the user’s Control Store
memory. '

The source input to the Micro Assembler is organized into
lines of 80 characters. All 80 character positions may be
used for source text. The Micro Assembler processes the
user’s source without regard to line boundaries. Hence, a
single statement may utilize several adjacent lines. Also,

2.4

blanks may be inserted anywhere within statements to
improve readability and to accommodate source line
boundaries. (The only exception to the above are symbols
and self-defining constants which may not cross source line
boundaries nor contain embedded blanks.)

A statement is terminated by a semicolon (;). The first
statement of the user’s source program begins at the first
character of the first source line and is terminated by a
semicolon. Thereafter, all succeeding statements begin after
the semicolon terminating the previous statement. Properly
terminated, multiple statements are allowed on one line of
user source. A null statement consists of zero or more
blanks followed by a semicolon. (The null statement per-
forms no action.)

Each statement is divided into three logical segments:

a. statement label (optional except for EQU and SET

statements)
b. statement body

c. comment (optional)

A thorough description of the three statement segments is
provided in the following sections.

Statement Labels

Excepting the SET and EQU statements, a statement label
is used to give a mnemonic name to a microinstruction’s
address. (For the SET and EQU statements, the statement
label is used as the symbolic name to which a numerical
value will be assigned.)

As a symbolic address, a statement label is assigned the
current value of the location counter. This feature allows
the microprogrammer to reference a labeled microinstruc-
tion elsewhere in his microprogram.

The statement label (when present) is the first segment of a
statement. It is terminated by a colon (:). Multiple state-
ment labels are allowed provided each is followed by a
colon.

Examples of statement labels:

BEGIN: STATEMENT

BODY
“COMMENT" : sFatement label
BRANCH: JUMP: STATEMENT given value of lo-
BODY cation counter
“COMMENT" ;
ZERO: EQU 0B ; ZERO given value
of binary zero.
STAR: EQU “*"; STAR given value

of decimal 42.

The Statement Body

The statement body contains the information that requests
a specific action to be performed by the Micro Assembler.
The first language element the Micro Assembler finds in a
statement body must be a symbol. The symbol must be a
statement Op-Code such as INSTRUCTION or EQU, or it
must be a mnemonic name for a microinstruction Field or
Microp. After the first symbol, the format of the remainder
of the statement body is determined by the type of state-
ment being written. Examples of valid statements will be
given in the description of each statement.

Comments
Every statement may contain a comment to help document

the user’s source program. A comment is reproduced in the
source listing but is not processed during the assembly.

Comments must begin and end with a double quote ().
Any supported character except the double quote may be
used inside a comment. Several lines of source may be used
for a single comment. Although generally placed at the end
of a statement, a comment may be placed anywhere within
a statement where a blank is valid.

Statement Description Format

A good deal of the rest of this manual will be concerned
with presenting and describing the Micro Assembler’s state-
ments. To ease the task of describing the various statements
and provide a logical framework from which the particular
aspects of each statement may be discussed, the following
statement description format will be adapted.

Statement Description Format

[label:] . .. OP-CODE { nameg} KEYWORD= ¢ § [namee] ... [“COMMENT"] :

S

e

Where: designating the language element

that may be used for the

OP-CODE The Op-Code will always appear operand.
unenclosed and capitalized. s Stacked elements indicate that a

{ } Braces indicate an operand that selection is possible. Any
is required by the Op-Code. element may be chosen.

[] Brackets indicate an operand or s An underline means the element
some other part of the statement must have been previously
that is optional. defined in the user’s source.

KEYWORD Keywords will always be Three dots following an operand
enclosed and capitalized. A indicate that the operand may
keyword is a reserved word that be repeated any number of
indicates to the Micro Assembler times.
that a specific parameter is to label: KEYWORD= Where required, delimiters will
follow. be shown.

name The name of the operand
enclosed by braces or brackets is Language Element
given in lower case letters. Variables: s — symbol

name e Following the name of an ¢ — self-defining constant
operand is a small letter e — expression

FIGURE 2.1

2.5

SPECIFYING A CUSTOM ASSEMBLER — THE
MICROINSTRUCTION DEFINITION SECTION

Once the microprogram designer has decided on the format
of his microinstruction, he is ready for the first phase of his
microprogram development cycle: writing the Microinstruc-
tion Definition Section. The Microinstruction Definition
Section lays the groundwork for the microprogram to
follow. In this section, the microprogram designer com-
municates to the Micro Assembler all of the pertinent infor-
mation about the microinstruction that will be necessary to
assemble the microprogram. This information includes:

® The width (in bits) of the microinstruction.

® The mnemonic name for each Field within the

microinstruction.
@ The width (in bits) and position of each Field.
e Mnemonic names for specific values of Fields (Microps).

® Default values for the Fields.

® Request of Intrinsic Microps available with the Micro
Assembler.

The remainder of this chapter provides a detailed descrip-

tion of how to communicate this information to the Micro

Assembler.

Microinstruction Definition

The definition of a microinstruction is accomplished with a
sequence of statements that specify the microinstruction’s
width, and stipulate the name, width and location of each
Field within the microinstruction. The microinstruction
definition begins with an INSTRUCTION statement. The
INSTRUCTION statement is followed by FIELD state-
ments. The microinstruction definition is terminated by an
END INSTRUCTION statement. Listing directives may be
interspersed within the microinstruction definition.

The INSTRUCTION Statement

The INSTRUCTION statement specifies the number of bits
in the microinstruction. The INSTRUCTION Statement has
the format illustrated in Figure 2.2.

INSTRUCTION { WIDTH

o

¢ ¢ [“COMMENT"] ;

FIGURE 2.2

This statement begins with the INSTRUCTION Op-Code.
The INSTRUCTION Op-Code is followed by the width
operand which consists of the keyword WIDTH and its
argument.

Symbols used in the width operand must have been pre-
viously defined. (The phrase “‘must have been previously
defined”” will appear frequently throughout the remainder
of this manual. Previously defined refers specifically to the
EQU and SET statements and statement labels that assign a
numerical value to a symbol. Hence, the phrase “‘must not
have been previously defined” doesn’t mean that the
symbol may not have been used in a previous statement’s
operand such as a default operand. It means simply that the
symbol must not have been previously assigned a numerical

value with either the EQU or the SET statement or a state-
ment label address assignment.)

Examples of INSTRUCTION statements:

INSTRUCTION WIDTH 48 “8080 EMULATOR" ;
INSTRUCTION WIDTH WORD _SIZE ;

The FIELD Statement

The FIELD statement assigns a mnemonic name to a
specific Field and stipulates the number of bits in the Field.
Optionally, a default value for the Field may be specified.
The FIELD statement’s format is illustrated in Figure 2.3.

S

S

FIELD {fieldname s} WIDTH ¢ | | DEFAULT ¢ [[“COMMENT"] ;
e e
FIGURE 2.3

2.6

The FIELD statement begins with the FIELD Op-Code.
Next, the Field is assigned a mnemonic name by the field
name operand (the symbolic name must not have been used
before).

Following the Field's name is the width operand. The width
operand consists of the keyword WIDTH and a language
element that the Micro Assembler can resolve to a numeri-
cal value. If a symbol is used in the width operand, it must
have been previously defined in the user’s source by an
EQU or SET statement.

The optional default operand specifies a default value for
the Field. If this option is exercised, the microprogram
designer is freed from the responsibility of specifying the
Field’s value in every microinstruction. When the Micro
Assembler assembles a microinstruction for which the Field
value is not stipulated, the default value i$ placed in the
microinstruction’s object output. If the default option is
not exercised, a value for the Field must be specified in
each microinstruction of the microprogram.

The default operand consists of the keyword DEFAULT
and a default operand. If the default operand contains
symbols, the symbols need not have been previously
defined (i.e., the symbol may be assigned a value later in
the user’s source).

Examples of FIELD statements:

FIELD OPWIDTH 7 DEFAULT NO_OP
“FUNCTION FIELD FOR 3002 ;

FIELD DATAWIDTH OFH DEFAULT 0000H ;
FIELD BUFFER WIDTH BUFL ;
FIELD ADDRWIDTH 16 DEFAULT START+1
“MICROPROGRAM ADDRESS" ;
Field Placement Within the Microinstruction
The Fields are placed in the microinstruction according to

the order they are listed in the user’s source. The first Field
in the microinstruction is assigned to the high order bits of

the microinstruction. Each successive Field is assigned to
the highest order bits in the microinstruction not already
used.

An example of Field placement for a 16-bit microinstruc-
tion is presented in Figure 2.4.

User Microinstruction Definition Source

INSTRUCTION WIDTH 16;
FIELD OP WIDTH 6;
FIELD R WIDTH 2;
FIELD DATA WIDTH 8;

Diagram of Resulting Microinstruction

bit# 15 09 87 0
) 1T 1T | R
Field oP R DATA

Name [< < >

1 1 T N T I I O I I |

16 Bit Microinstruction

FIGURE 2.4

The total number of bits assigned to the various Fields must
not exceed the microinstruction width. It is, however, per-
missible to leave bits allocated for the microinstruction un-
assigned to any Field. Microinstruction bits not assigned are
unprogrammed. The Micro Format Program can set any
unprogrammed bits in the microinstruction to default
values.

END INSTRUCTION Statement

The END INSTRUCTION statement terminates the defini-
tion of a microinstruction. It consists of the reserved
words: END INSTRUCTION. The END INSTRUCTION
statement’s format is given in Figure 2.5.

END INSTRUCTION

[“COMMENT"] ;

FIGURE 2.5

2.7

Microinstruction Definition Summary

The Microinstruction Definition portion of the micro-
program designer’s source contains three types of state-
ments (INSTRUCTION, FIELD and END INSTRUCTION)
which characterize the microinstruction and its composite
Fields. An example of a complete Microinstruction Defini-
tion is presented in Figure 2.6.

INSTRUCTION WIDTH 16 “PRINTER
CONTROLLER MICROINSTRUCTION" ;

FIELD OP WIDTH 14 “FUNCTION CONTROL
FIELD" ;

FIELD RWIDTH 2 “DATA PORT SELECT
FIELD" ;

END INSTRUCTION;
FIGURE 2.6

Microp Definition

Once the Microinstruction Definition portion of the source
program has been written, it is possible to immediately

begin the task of writing the microprogram itself. With the
various Fields defined, a microinstruction can be sym-
bolically represented as a sequence of Field names, each
with an operand specifying its value for the microinstruc-
tion being written. This method is permissible and perfectly
valid. However, the Micro Assembler provides another level
of microprogramming convenience that makes the micro-
program easier to write as well as easier to read. This
extended level of microprogramming convenience is called
the Microp.

A Microp is a mnemonic name for a specific value of a
specific Field. Generally, the mnemonic name for a Microp
relates to the Field’s function when it contains the Microp’s
value. This feature not only lightens the burden of associat-
ing a Field’s function with a numeric value; it also greatly
enhances the readability of the microprogram source. The
Microp is a powerful tool in the microprogram designer’s
arsenal of design techniques, and its utilization is strongly
encouraged.

The MICROP Statement

A Microp is defined with the MICROP statement. The for-
mat of the MICROP statement is presented in Figure 2.7.

MICROP {microp name s} ASSIGN

fieldname s=c¢

s
... ["COMMENT"] ;

e

FIGURE 2.7

The MICROP statement begins with the MICROP Op-Code.
This is followed by the Microp’s symbolic name. The
symbol used to name a Microp cannot have been previously
defined. The Microp’s name is followed by the keyword
ASSIGN and the assign operand. The assign operand makes
the actual Field value assignment. The Field referenced in
the ASSIGN operand must have been defined in the Micro-
instruction Definition. If symbols are used to designate the
Field's value, they need not have been previously defined.
(Note the use of the “‘equal sign’’ (=) as a delimiter separat-
ing the Field name and Field value representation.)

When the Micro Assembler encounters a Microp in the
microprogram source, it substitutes the entire ASSIGN
operand for the Microp.

2.8

Examples of the MICROP Statements:

MICROP ADDI ASSIGN OP=21H “ADD IMMEDIATE
FUNCTION

MICROP MEMW ASSIGN BUS=MEMORY WRITE =
TRUE

MICROP RESET ASSIGN ADDR=00H “JUMP TO
START OF RST ROUTINE" ;

Intrinsic Microps

The primary purpose of the Signetics Micro Assembler is to
support design efforts that include members of the
Signetics bipolar Microprocessor Bit Slice family. Towards

that end, Microps that support the control fields for the
N3002 Central Processing Element, the 8X02 Control Store
Sequencer, and the N2901-1 Four-Bit Microprocessor Slice
have been included as an intrinsic’ part of the Micro
Assembler. These intrinsic Microps can be made part of the
microprogram designer’s Microinstruction Definition
Section with the INTRINSIC Statement.

The INTRINSIC Statement

The INTRINSIC Statement requests that the Micro Assem-
bler include the predefined Microps for a particular device
in the user's Microinstruction Definition Section. The
format of the INTRINSIC statement is given in Figure 2.8.

INTRINSIC {intrinsic group name ¢ } [“COMMENT"] ;

FIGURE 2.8

The INTRINSIC statement consists of the INTRINSIC
Op-Code followed by a self-defining character constant that
specifies the requested intrinsic group. As of this writing,
three intrinsic groups are available:

e 3002

e 8X02

e 2901
As Signetics announces new bipolar Microprocessor devices,
intrinsic groups of Microps supporting them will be made

available to Micro Assembler users.

A full description of the intrinsic groups can be found in
the Intrinsic Microp Section.

Examples of the INTRINSIC statement:

INTRINSIC ‘3002 ;
INTRINSIC '8X02" ;
INTRINSIC ‘2901" ;

WRITING A MICROPROGRAM — THE
MICROPROGRAM SECTION

Once the microprogram designer has defined the micro-
inctruction, he is ready to write the microprogram itself.
The microprogram is incorporated in the second major
section of the source program, the Microprogram Section.
The Microprogram Section first specifies the dimensions of
the Control Store Memory where the microprogram will
ultimately reside, and then lists the microprogram as a
sequence of Microinstruction statements.

A Microinstruction statement specifies a value for each
Field in the microinstruction. Utilizing the definitions
provided in the Microinstruction Definition Section, the

Micro Assembler assembles each Microinstruction statement
and produces a line of intermediate object text. When the
Micro Assembler has assembled the entire Microprogram
Section, it generates the following outputs:

® The assembled microprogram as intermediate object
text.

® A formatted listing of the source and object.

® A cross reference listing of all of the symbols used in the
source.

The intermediate object text is used as source input to the
Micro Format Program. The Micro Format Program
processes the intermediate object text and outputs the final
object output of the assembled microprogram. This object
output is suitable for direct loading into the Control Store
Memory.

As the Micro Assembler assembles the microprogram, it
maintains the microprogram location counter. The location
counter is initialized to zero by the first statement of the
Microprogram Section. Thereafter it is incremented with
each Microinstruction statement. The current value of the
location counter is assigned to any address labels that occur
within the microprogram source. The current value of the
location counter also replaces the location counter refer-
ence symbol ($) when it is encountered by the Micro
Assembler.

The current value of the location counter may be altered by
the ORG statement. (The ORG statement will be described
in the section dealing with directive statements.)

Directive statements may be freely interspersed with
Microinstruction statements in the Microprogram Section.
With the notable exception of the ORG statement, they
have no effect on the location counter.

2.9

The PROGRAM Statement

The first statement of the Microprogram Section must be
the PROGRAM statement. The PROGRAM statement
specifies the length and width of the microprogram and

hence the length and width of the Control Store Memory
where it will reside. The PROGRAM statement also
initializes the location counter to zero.

Figure 2.9 illustrates the PROGRAM statement’s format.

) s
PROGRAM {name s} WIDTH ¢ LENGTH ¢ | [“COMMENT"] ;
e e
FIGURE 2.9

The PROGRAM statement consists of the PROGRAM
Op-Code, a symbolic name, a width operand and an
optional length operand.

The symbol used to define the PROGRAM statement must
not have been previously used in the source program nor
may it be used again (i.e., the symbolic name must be
unique to the PROGRAM statement).

The width operand specifies the width of the Control Store
Memory. The value it specifies is normally the same value
assigned to the microinstruction with the INSTRUCTION
statement. The width operand consists of the keyword
WIDTH and a language element that is resolvable to a
numerical value. If symbols are used to specify the width
value, they must have been previously defined in the source
program.

The length operand specifies the number of microinstruc-
tions that may be stored in the Control Store Memory (the
length of the microprogram). The length operand consists
of the keyword LENGTH and a language element represent-
ing the length value. If the length value is specified by a
symbolic name, it must have been previously defined. When
the length operand is omitted, the Micro Assembler assumes
a length of 65,536 (16-bit address).

If the number of Microinstruction statements in the
Microinstruction Section exceeds the value of the length
operand, the Micro Assembler gives a memory overflow
indication.

Examples of PROGRAM statements:

PROGRAM EMULATOR_8080 WIDTH 48 LENGTH
512

PROGRAM DISC_CONTROLLER WIDTH 24
LENGTH 128;

PROGRAM LONG_PROGRAM WIDTH 32;

Microinstruction Statements

The microprogram is written as a sequence of Microinstruc-
tion statements. For each microinstruction desired, there
must be a corresponding Microinstruction statement.
Clearly, the greatest amount of energy spent preparing the
source program for the Micro Assembler will be spent
writing Microinstruction statements.

The Microinstruction statement’s format is presented in
Figure 2.10.

[address label s:] ...

S

fieldname s= ¢

e
. [“COMMENT" ;]

micropname §

FIGURE 2.10

2.10

The Microinstruction statement has no Op-Code. The Micro
Assembler recognizes a statement as a Microinstruction
when it encounters a Field name or a Microp name.

If the microprogrammer wishes to do so, he may begin a
Microinstruction statement with one or more address labels.
Symbols used as address labels must not have been
previously defined.

Following the address label (if one is used) is a list of Field
assign operands and Microps that specify the value of each
Field in the microinstruction. The Microinstruction state-
ment must assign a value to every Field allocated in the
Microinstruction Definition Section. Field values are deter-
mined by Field assign operands, Microps and default values
specified by FIELD statements in the Microinstruction
Definition Section. If a Field without a default value is not
assigned, the Micro Assembler will give an error indication.
An error indication is also given if the same Field within a
Microinstruction statement is assigned more than one value.

Symbols used in Field assign operands need not have been
previously defined.

Field assign operands and Microps may be listed in any
order. However, it is strongly suggested that the micro-
program designer select a format for Microinstruction
statements and use it for each microinstruction. This
approach greatly enhances the microprogram documenta-
tion value of the source listing.

Examples of Microinstruction Specification statements:

ADD_R1_ACC: FUNCTION=ADD REG=R1
KBUS=NOP INCREMENT;

FETCH: F=NOP MEM=REG RCV=LATCH
NEXT_OP_CODE;
The END Statement
The END statement terminates the Microprogram Section

and hence the source input to the Micro Assembler. The
END statement format is illustrated in Figure 2.11.

END

[“COMMENT"] ;

FIGURE 2.11

The END statement consists of the END Op-Code.
Example of the END statement:
END;
DIRECTIVES TO THE MICRO ASSEMBLER
The Micro Assembler directive statements are provided to

both ease the task of writing a microprogram and improve
the readability of the microprogram’s documentation.

Assembly Directives

The EQU (Equate) Statement

The EQU statement equates a number to its symbolic
name. EQU’s format is illustrated in Figure 2.12.

The statement label is equated to the equate operand. The
following statements are given as examples:

TRUE:ONE:HIGH: EQU 1B;
FALSE:ZERO:LOW: EQU 0B;

FIRST _ADDRESS: EQU FIVE_BITS;
BUFFEND: EQU BUFFER + BUFSIZE;

{Iabel:}

l»n

EQU!{ ¢ [“COMMENT"] ;
e
FIGURE 2.12

The EQU statement consists of one or more statement
labels, the EQU Op-Code, and the equate operand. The
statement label is the symbol to be given a numerical value.
The label must not have been used before.

The equate operand is resolved to determine the label’s
numerical value. Any symbol used in an equate operand
must have been previously defined. The equate operand
may not reference the label it is defining (i.e., BUF: EQU
BUF+1; is unacceptable).

The EQU statement makes a permanent value assignment.
Any label defined by the EQU statement retains its assigned
value for the entire assembly.

The SET Statement ‘

In contrast to the EQU statement, the SET statement
makes a value assignment that may be changed during the
microprogram’s assembly. Differing only in that aspect, the
SET statement’s function and format are identical to the
EQU statement, as illustrated in Figure 2.13.

v

{Iabel :} .. seT! ¢

[“COMMENT"] ;

FIGURE 2.13

The SET statement consists of the symbolic label(s), the
SET Op-Code and the set operand.

Unlike the EQU statement, the label of the SET statement
may have been defined earlier in the source text. Previous
definition must be made by another SET statement
however.

Symbols used in the SET operand must have been
previously defined and be resolvable to a numerical value.

Figure 2.14 illustrates an example of SET’s utility. Control

Field A and Control Field B have functions that are
mutually exclusive in time. This situation permits saving

2.12

microinstruction bits without affecting the horizontal
nature of the microprogram, by demultiplexing a Field
within the microinstruction (Figure 2.14 B). The one bit
control field SEL determines which control field is active.

In microcode, this scheme is implemented by dividing the
microprogram into two sections: one section servicing
Control Field A and another section servicing Control Field
B. It is quite likely that the two control fields have
different default codes. The Micro Assembler will support
both default conditions if the Field called CONTROL is
given a symbolic default (e.g., NOP) and if NOP is assigned
different values in each section of the microprogram with
the SET statement (Figure 2.14 A).

FIELD CONTROL WIDTH 4 DEFAULT NOP ;
FIELD DEFINITION LINE IN SOURCE

ADDRESS
NOP: SET OEH; MICROCODE DEALING
WITH CONTROL
FIELD A
NOP: SET 5H; MICROCODE DEALING
WITH CONTROL
/ FIELD B
MICROPROGRAM
2.14(A)

MICROINSTRUCTION LATCH

The ORG Statement

| | | | | 1l
I 1 SEL
{<—— CONTROL —|
(A/B)!
]] |]] |
> SEL A1 b—>
A2 ——> CONTROL
> 1 A3 ——— FIELDA
Ad —>
>l 2
B1 f——s
> 3
B2 |——> CONTROL
> 4 B3 ——> FIELDB
B4 |
2.14(B) '
4TO8
DEMUX
FIGURE 2.14

format. The ORG statement provides this flexibility by
assigning a new value to the current program location

The ORG statement allows the microprogrammer to counter. The ORG statement’s format is given in Figure
organize his microprogram source in a non-sequential 2.15.
S
ORG{ ¢ [“COMMENT”] ;
e
FIGURE 2.15

2.13

The ORG statement consists of the ORG Op-Code followed
by the ORG operand. The ORG operand represents the new
location counter value that is to be substituted for the
current one. Symbols used in the ORG operand must have
been previously defined.

It is. permissible to reference the current value of the
location counter within the ORG operand. This is done in
the normal way, by using the ($) symbol.

Examples of the ORG Statement:
ORG 40H “BEGIN MULTIPLY SEQUENCE" ;
ORG START “PROGRAM ORIGIN" ;
ORG $+2 “SKIP TWO WORDS"” ;

Listing Directives

The second type of assembler directive allows the micro-
programmer to control the format of the Micro Assembler’s
output listings.

The LIST Statement

The LIST statement controls the listing output produced
by the Micro Assembler after the microprogram has been
assembled. Figure 2.16 presents the LIST statement format.

OFF
LIST { SOURCE

SOURCE OBJECT

[“COMMENT"] ;

FIGURE 2.16

The LIST statement begins with the LIST Op-Code and
ends with one or two reserved words as the LIST operand.
The reserved words instruct the Micro Assembler as to
which listings should be generated during the assembly
process. The reserved words and their respective functions
are listed below.

List Operand Function
OFF Suppresses the source/object listing
from line where LIST statement

appears.

SOURCE Permits the generation of the
source listing without accompany-
ing object code from line where

LIST statement appears.

List Operand Function

SOURCE OBJECT Allows the source/object listing to
be produced beginning at line
where LIST statement appears.

.

If the LIST statement is not included in the user’s source,
the Micro Assembler assumes a default of SOURCE
OBJECT.

The OBJECT Statement

The OBJECT statement controls the generation of the
intermediate object text. The format of the OBJECT
statement is given in Figure 2.17.

ON
OFF

OBJECT

[“COMMENT"] ;

FIGURE 2.17

2.14

The OBJECT statement consists of the OBJECT Op-Code
followed by a reserved word. The reserved word may be
either ON or OFF. Their respective meanings are as follows:

As within the LIST statement, the OBJECT statement may
be interspersed throughout the source program. |f the
OBJECT statement is not included in the source, it defaults
to ON.

ON Indicates that the intermediate object text should The SPACE Statement
be produced.
The SPACE statement produces blank lines in the source
OFF Indicates that the intermediate object text is to be and object listing. The SPACE statement has the following
suppressed. format.
]
SPACE c [“COMMENT"] ;
e
FIGURE 2.18

The SPACE statement consists of the SPACE Op-Code and
the space operand which the Micro Assembler resolves to a
numerical value. This numerical value is the number of
blank lines inserted in the source/object listing. Symbols
used in the space operand need not have been previously
defined. If the space operand is omitted, only one blank

line is produced. The SPACE statement is not reproduced
in the source/object listing.

THE EJECT Statement

The EJECT statement terminates the listing output on a
given page and ejects the remainder of the page. Its format
is illustrated in Figure 2.19.

EJECT

[“COMMENT"] ;

FIGURE 2.19

The EJECT statement consists only of the EJECT Op-Code
itself.

When the Micro Assembler encounters the EJECT state-
ment, it ejects the remainder of the current listing page and

begins the next page with the normal source/object listing

page heading. The EJECT statement is not reproduced in
the source/object listing.

The TITLE Statement

The TITLE statement places text in the user defined
portion of the source/object listing page heading. Figure
2.20 presents the TITLE statement’s format.

TITLE [¢]

[“COMMENT"] ;

FIGURE 2.20

2.15

The TITLE statement consists of the TITLE Op-Code and
an optional character constant. The user text portion of the
source/object listing heading is limited to 28 characters (in
this instance, the character constant size is not limited by
the M toggle). If the optional character constant is omitted,

2.16

the user text is filled with blanks. When the Micro
Assembler encounters a TITLE statement, it defines (or
redefines) the user text in the heading, and ejects the
remainder of the current listing page. The TITLE statement
is not reproduced on the source/object listing.

PART THREE — EXTENDED FEATURES

The power of the Micro Assembler as a microprogramming
tool is greatly enhanced by the extended features. The
extended features include:

® Additional logical and relational expression operators

® Facilities for programming non-microinstruction PROMs
(e.g., Field expansion, mask generation and look-up
table PROM:s)

Microp defaults

Microp arguments

An IF, THEN, ELSE clause for Microps
Sub-Field definition *
Multiple Field definition

Multiple Microinstruction format definition

EXPRESSION EXTENSIONS

The set of operators that may be used in expressions is
expanded to include logical, shift and arithmetic compari-
son operations.

Logical Operators

The logical operators perform Boolean functions on the
operands within an expression. With the exception of the
logical not function, all of the logical operators require two
operands. The name and function of the logical operators is
given below:

TABLE 3.1
Name (reserved word) Function
OR Inclusive OR of two operands.
XOR Exclusive OR of two operands.
AND Logical AND of two operands.
NOT Complements the operand it

precedes.*

*Note: (If the number of bits in the operand is less
than the maximum word size of the Micro
Assembler (set by M toggle), high order
zeros are appended to the operand until it is
the maximum word size. This expanded
value is then complemented. High order bits
are then truncated when the complemented
value is assigned to a Field of fewer bits than
the maximum word size.)

Shift Operators

The shift operators shift an operand by a number of bits
specified by the user. The shift operator names and
functions are listed in Table 3.2 below.

TABLE 3.2

Name (reserved word) Function

SHL Shift Left shifts' the first
operand left by the number
of bits specified with the
second operand. Zeros are
shifted into the low order
bits. Bits shifted out of the
most significant bit are
discarded. (The most
significant bit is determined
by the maximum word size
set by the M toggle.)

SHR Shift Right shifts the first
operand right by the number
of bits specified with the
second operand. Low order
bits shifted out are discarded.
Zeros are shifted into the
high order bits.

Shift Examples:

1000_1001B SHL 2 resultsin ...10-0010-0100B

1000—-1001B SHR 3 resultsin ...00-0001_-00018

Arithmetic Comparison Operators

The arithmetic comparison operators compare the arith-
metic values of two operands (negative numbers are in
two’s complement form). If the comparison is true, the
result is all ones (arithmetic negative one). Conversely, if
the comparison is false, the result is all zeros. The
arithmetic comparison operators are used in conjunction
with IF THEN ELSE statements to be discussed later.
The following table names the arithmetic comparison oper-
ators and describes their operation.

3.1

TABLE 3.3

Name (reserved word) Function

EQ Equal — The results of this
operation are true if the two
operands are equal.

NE Not Equal — The results of
this operation are true if the
two operands are not equal.

GT Greater Than — The results of
this comparison are true if
the first operand is greater
than the second operand.

GE Greater Than or Equal — The
results of this operation are
true if the first operand is
greater than or equal to the
second operand.

LT Less Than — The results of
this comparison are true if
the first operand is less than
the second operand.

LE Less Than or Equal — The
results of this operation are
true if the first operand is less
than or equal to the second
operand.

Operator Evaluation Hierarchy

When added to the basic operators, the extended operators
have the following evaluation hierarchy:

. SHL, SHR

+, -

. EQ, NE, GT, GE, LT, LE
NOT

AND

OR, XOR

o o Hw N =

Operators are evaluated from the top of the list (i.e., the
shift operators are evaluated first, the add and subtract
operators second, etc.). Operators on the same line are
evaluated left to right as they appear in an expression. As
with the basic assembler, this hierarchy can be modified
with parentheses.

Examples of expressions with the extended operators:
Expression Order of Evaluation

BUF GT B + 4
REG GE 0 AND REG

BUF GT (B+4)
(REG GE 0) AND (REG

LE 11 LE 11)
1H OR INPUT AND 1H OR (INPUT AND
1FOH 1FOH)

(BUF+1) SHL 3 + BASE ((BUF+1) SHL 3) +

BASE

MULTIPLE MEMORY BLOCKS

The Micro Assembler supports assembly of data fields for
control PROMs that the microprogram designer may wish
to add to his basic microprogram based system. Additional
control PROM Program Sections (such as mask tables, jump
address tables and character tables), share symbol refer-
ences with the main microprogram. For example, a
symbolic address for a control PROM may be assigned as a
field value in the microprogram.

Additional Program Sections are included in the user’s
source with the same format as the original microprogram
Program Section. An additional memory block begins with
a PROGRAM statement, and is terminated with the next
PROGRAM statement. The last memory block is
terminated with an END statement.

Depending on the complexity of the Program Section, it
may require a Microinstruction Definition Section, or
simply be assembled with DCL statements.

The DCL (Declare) Statement

The DCL statement specifies data for an auxiliary memory
block. The format of the DCL statement is presented in
Figure 3.1.

S

(absolute location c) :

[labels:] -

e

DCL|data operand c

s s
,width operand ¢ | [“COMMENT"] ;

e e

FIGURE 3.1

3.2

Figure 3.1 introduces a new language element, the absolute
location label. The absolute location label overrides the
microprogram location counter with a specified numerical
value. A full discussion of the rules governing the use of the
absolute location label is presented in the next section.

The DCL statement begins with optional statement labels.
If the statement does not have an absolute location label, it
is given the current value of the location counter as an
address. Following the statement label(s) is the DCL
Op-Code. The DCL Op-Code precedes the data value
operand. The data value operand is resolved by the Micro
Assembler into object data that will be placed in the
control PROM. Symbols used in the data value operand
need not be previously defined. Character constants used as
data values may exceed the M toggle. Following the data
operand is the optional width operand. Symbols used in the
width operand must have been previously defined. If the
width operand is included, it must be separated from the
data operand by a comma. If the width operand is omitted,
the data width is defaulted to WIDTH value specified in the
PROGRAM statement. If the data width specified is wider
than the PROGRAM WIDTH, it is divided into multiple
words. Zeros are inserted into the high order bits of the
most significant word to form a complete data word. If,
however, the data value is wider than the width operand,
the high order bits are truncated with no error indication.

The data value operand is optional. |f the data value is
omitted, no data is placed in the memory location. In this
case, the DCL statement acts as a space reservation.

Examples of the DCL Statement:

BEGIN: DCL ‘ERROR’, 40 “ERROR MESSAGE
HEADER" ;
(OFH): DCL5H “REGISTER MASK"" ;

DCL , 16 “RESERVE TWO
BYTES" ;

Absolute Location Labels

Absolute location labels allow the microprogrammer to
override the location counter assignment as a micro-
instruction or DCL statement address. Statements with
absolute location labels do not affect (increment) the
program counter. The Micro assembler places the object
data at the location specified.

As the location counter is not affected by absolute location
address assignments, care must be taken not to assign two
microinstructions to the same Control Store address.

When the absolute location label is used, it must be the first
language element in the statement. It is preceded by a left

parenthesis and is terminated by a right parenthesis
followed by a colon. One or more symbolic name labels
may follow the absolute location label and they are
assigned the value of the absolute location label.

The absolute location label may be a symbol, a self-defining
constant or an expression. If symbols are used in the label,
they must have been previously defined.

Absolute location labels may only be used with a Micro-
instruction statement or a DCL statement.

" Examples of Absolute Location Labels:

(80H):

(512):
(MOVE):
(MOVE + 40H):

MICROP EXTENSIONS

In Part Two, a Microp was defined as a symbolic name for a
specific Field value. In this section we will expand that
definition to include multiple Field assignments, Microp
default assignments, conditional Field value assignments,
Field value assignment validation and Microp arguments.
Clearly, the Microp extensions provide the micropro-
grammer with powerful microprogramming facilities.

Microp Defaults

Remember that a microinstruction control Field may be
assigned a default value in the defining FIELD statement.
This default value will be assigned to the Field in those
Microinstruction statements that make no specific reference
to the Field.

The Microp DEFAULT operand allows the micropro-
grammer to temporarily change a Field’s default value as
the microprogram is being assembled. When the DEFAULT
operand is specified, it is appended to a normal MICROP
statement. The DEFAULT operand consists of the keyword
DEFAULT and one or more Field assign operands. Microp
DEFAULT Field assign operands do not assign values to
Fields as does the ASSIGN operand. When a Microp with
DEFAULT operands is included in a Microinstruction
specification statement, the default Field assign operands
temporarily override the normal default value of the
referenced Field.

The default operates when a microinstruction contains its
defining Microp. If the microinstruction contains no other
reference to a Microp defaulted Field, it is assigned the
temporary default value.

3.3

The following Figure illustrates the use of Microp defaults.

Statements in the Microinstruction Definition Section
INSTRUCTION WIDTH 5 ;
FIELD X WIDTH 2 ;

FIELD Y WIDTH 3 DEFAULT 100B “NORMAL
DEFAULTFOR Y IS4";

END INSTRUCTION ;

MICROP SETX ASSIGN X=11B DEFAULT Y=001B
“TEMPORARY Y DEFAULT=1";

MICROP SETY ASSIGN Y=0108B ;

Statements in the Program Section

PROGRAM CONTROL _TABLEWIDTH 5 ;

X=0 “X=00B, Y=100B"" ;

SETX “X=11B, Y=001B" ;

SETX Y=111B “X=11B, Y=111B" ;

SETXSETY “X=11B, Y=010B"" ;
END;

FIGURE 3.2

If two Microps which have DEFAULT Field assignments
for the same Field are used in the same microinstruction,
and the field is otherwise unreferenced in that microinstruc-
tion, an error indication will be given.

Microp Arguments

The MICROP statement is extended to allow definition of
Microp arguments. Microp arguments allow the micro-
programmer to pass values to the Microp when it is used in
a Microinstruction statement. The referenced Microp uses
the values to compute Field values and make the proper
Field assignments.

When a Microp includes arguments, the Microp name is
followed by one or more arguments separated by commas
and enclosed in parentheses. The arguments may be
symbols or expressions. Once arguments have been
associated with a Microp, any Microinstruction statement
may reference the Microp with a list of values that are

3.4

substituted for the arguments. The form of the Microp used
in a Microinstruction statement is similar to the format of
the MICROP statement that originally specified the argu-
ments. The Microp name is followed by a left parenthesis,
and a list of values to be substituted for the arguments. The
argument value assignment is made by positional corre-
spondence (i.e., the first value is assigned to the first
argument named in the defining MICROP statement, the
second value to the second argument named and so on).
The argument values are separated by commas and are
terminated by a right parenthesis.

The following is given as an example:

Defining MICROP Statement

MICROP MOVE (REG _SOURCE, REG _DEST)
ASSIGN OP=20H SOURCE=REG _SOURCE
DEST=REG _DEST ;

Microinstruction Utilizing MOVE Microp
MOVE (2,11) ""ASSIGNS OP=20H, SOURCE=2
& DEST=11";

Symbols used as argument names may not be used as value
symbols or statement labels elsewhere in the user’s source.
However, argument symbols are local to their associated
Microp and can therefore be used in more than one Microp.

Arguments may have default values. Default values are
specified in the MICROP statement that defines the
argument. An argument is assigned a default by following
the argument name with an equal sign (=) and the desired
default values. If the Microp is used in a Microinstruction
statement without specifying a value for the argument, the
default value is substituted for the argument name in the
Microp.

Example of MICROP Statement with Argument Default

MICROP OP (OP _SELECT=08H) ASSIGN
FUNCTION=0OP_SELECT “OP DEFAULT=NOP” ;

If the following microinstruction is specified,

OP R(ACC,ACC) MEMOFF
IS NOP™ ;

“THIS INSTRUCTION

the OP Microp assigns 08H to the microinstruction Field
FUNCTION.

The argument structure of Microps allows the Micro
Assembler to be used as a meta assembler. Toward that end,
additional argument syntaxes are supported. There are two
basic argument formats. The form discussed so far is a
subset of one of these formats.

Argument Format One

The first argument format looks very much like a Field
assign operand. It consists of the Microp name followed by
an equal sign (=) and a single argument. Within a defining
MICROP statement, argument Format One would be
expressed as follows:

MICROP TERM=FACTOR
(FACTOR SHL 1) ;

ASSIGN FIELD _1=

Microinstruction statements including the Microp TERM
would have the corresponding formats illustrated below:

ADD(R2, R5) TERM=0EH ADDRESS(NEXT);

ADD(R2, R5) TERM=(0FF H AND MASK)
ADDRESS(NEXT) ;

In the above examples, the Microp ADD and ADD RESS has
the argument format described in the beginning of this
section and the Microp TERM has argument Format One.

Argument Format One does not allow Microp default
operands.

Argument Format Two

Argument Format Two allows argument lists in several
forms. These forms are listed below.

1. microp-name (operand-list)

2. microp-name operand list

3. microp-name (operand-list) operand-list

The operand list in the above forms is one or more

argument operands separated by commas. The argument
format first presented in this section was number (1) above.

An argument operand has the following formats:
a. argument
b. argument (operand-list)

c. (operand-list)

The basic element of an argument operand is an argument.
In the defining MICROP statement this is the argument
name and in a referencing microinstruction it is the value
being passed to the Microp. Note that form (c) above
implies recursive argument definition. That is, an argument
operand in an argument list may itself be an argument list.
There is no theoretical limit to argument recursion. '

When Microps defined with argument Format Two are
referenced, argument operands may be omitted. If the
omitted arguments are within a list, their place must be
kept by commas. If, however, all of the omitted arguments
are at the end of an argument list, the place-keeping
commas may also be omitted.

When an argument list is enclosed by parentheses and either
the entire list or all but the first argument are omitted, the
parentheses may also be omitted. The only exception to
this rule is with form (3) above. When form (3) is used, the
parentheses enclosing the first operand-list must be
included even if the operand-list is omitted.

Examples of Argument Format Two

Defining MICROP Statement Format
MICROP ADD(R1, R2) 1-c¢
MICROP ADD R1,ADDR(LENG,INDEX) 2-b
MICROP ADD(R1, R2) CARRY(IN,OUT),0OVF 3-b&c

Arguments defined for a Microp may be used in that
Microp as elements of value expressions in ASSIGN
operands and Microp default operands. Argument Format
Two allows the arguments themselves to have defaults as
described in the beginning of the Microp argument discus-
sion. Figure 3.3 presents some examples of Microp
arguments.

3.5

Examples of Microp Argument Defining MICROP Statements

‘2650 MICROPS”

MICROP STRZ REG ASSIGN OP1=60Q RV1=REG;
MICROP SUBI(REG) LITERAL ASSIGN OP2=510 RV2=REG OPND2=LITERAL;
I: EQU 1B “INDIRECT ADDRESSES”;
MICROP BSTA(CC) ADDR(INDIRECT=0)
ASSIGN OP3=17Q RV3=CC INDIR3=INDIRECT ADD3=ADDR;
INCR: EQU01B “INDEX CONTROL: AUTO-INCREMENT";

DECR: EQU 10B “INDEX CONTROL:

AUTO-DECREMENT";

MICROP IORA(REG) ADDR(INDIRECT=0),INDEX=-1,CTL=0
ASSIGN IF INDEX EQ -1 THEN RV3=REG XCTL=0
ELSE IF CTL GT O THEN XCTL=CTL

ELSE XCTL=11B FI
RV3=INDEX FI

OP3=33Q INDIR3=INDIRECT XADD=ADDR;
PROGRAM MEM WIDTH 8 LENGTH 256 “2650 PROM"’;

ORG 0;

RO: EQU 0;

R1: EQU 1;

R2: EQU 2;

R3: EQU 3;

CEQ: EQU 0;

CLT: EQU 1;

CGT: EQU 2;

CUN: EQU 3;

START: STRZ R2;
SUBI(R2) 1;
BSTA(CEQ) RETADDR(I);
IORA(RO) DATA,R3,INCR;

FIGURE 3.3

Microps within Microps

Microps may be nested. That is, a Microp may reference
other Microps. This feature allows a Microp to be used in a
variety of ways. Not only may a Microp be used as a
mnemonic name for a specific Field value, but it may
define values for a number of Fields. In fact, a Microp may
specify Field values for an entire microinstruction.

3.6

If a Microp is being defined with other Microps, the
referenced Microps must have been defined earlier in the
source program with MICROP statements. When a Microp is
referenced in the ASSIGN operand of another Microp, it is
equivalent to including the Field assignments of the
referenced Microp in the ASSIGN operand of the refer-
encing Microp. Likewise, the Default operand of the
referenced Microp is included in the DEFAULT operand of
the referencing Microp.

The following example illustrates a nested Microp.

Statements from the Microinstruction Section

MICROP MEMON(DIRECTION)
ASSIGN MEM=DIRECTION ;

MICROP DBUSON(DIRECTION)
ASSIGN DB=DIRECTION ;

IN: EQU 01B ;
OUT: EQU 10B ;

MICROP FETCH ASSIGN MEMON(OUT)
DBUSON(IN) ;

In the above example, the Microp FETCH assigns a value of
10B to the control Field MEM and a value of 01B to the
control Field DB. (Note: The Micro Assembler suffers no
confusion over the multiple use of the symbol DIREC-
TION. Microp argument symbols are defined locally to the
Microp that references them.)

When a Microp is referenced in the DEFAULT operand of
another Microp, both the ASSIGN and DEFAULT operands
of the referenced Microp are included in the DEFAULT
operand of the referencing Microp. In the following
example, FETCH5 and FETCH6 produce identical results.

Microinstruction Definition Section Statements

MICROP FETCH5 ASSIGN A=FETCH DEFAULT
BRT NOP;

MICROP BRANCH ASSIGN BRT DEFAULT
NOP ;

MICROP FETCHG6 ASSIGN A=FETCH DEFAULT
BRANCH ;

The I F Clause

As defined so far, the ASSIGN and DEFAULT operands of
MICROP statements are comprised of a list of Field assign
operands and Microp references. This sub-section will
introduce one last language element that may be included
in Microp ASSIGN and DEFAULT operands: the |F clause.

The IF clause provides conditional Field assignment and
Microp referencing. This facility may be used to actually
compose microinstructions or to test the validity of Field
assignments.

The |F clause begins with the keyword IF, and is
terminated by the keyword Fl. Following the IF keyword

is. the IF operand, the THEN operand, an optional ELSE
operand and finally, the terminating keyword Fl.

The IF Operand

The IF operand is resolved to a number. The number is
then compared to zero. If the value is non-zero, the testis
considered true and the IF clause proceeds with the THEN
operand. If, on the other hand, the Micro Assembler
resolves the |F operand to zero, the test is considered false
and the IF clause continues with the ELSE operand. This
action is illustrated in Figure 3.4.

IF NO
operand # 0
Y
THEN ELSE
Evaluate THEN Evaluate ELSE
operand operand
\j
CONTINUE
FIGURE 3.4

The IF operand value is usually the result of relational
operations or of logical operations on relational results.

Typical |F Operands

“IF REGISTER IS GREATER
THAN OR EQUAL TO 10"

(If REG> 10, the result is non-zero
and the test is true.)

IF ADDRESS LT 128 ‘“IF ADDRESS IS LESS THAN
128"

IF REG GE 10

The THEN Operand

The THEN Operand must follow the IF Operand. The
THEN Operand consists of the keyword THEN and a list of
Field assignments and possibly nested Microps. A further
level of testing may occur in a THEN operand by including
another |F clause (either directly or with another Microp).

3.7

Typical THEN Operands

"“MICROINSTRUCTION ADDS
R3 TO R7"

“MICROINSTRUCTION
NOP”'

THEN ADDRESS_TEST “MICRO ASSEMBLER EVAL-
UATES ADDRESS_TEST"”

THEN ADD(R3, R7)

THEN NOP IS

The ELSE Operand

The optional ELSE operand consists of the keyword ELSE,
and Field assignments, Microps or further IF clauses. If the
ELSE Operand is omitted and the |IF Operand comparison
is false, an error message will be generated indicating an
invalid reference (e.g., assigning five bits to a 2-bit field).

Typical IF Clauses

IF REG GE 10 THEN F = 22H+REG
ELSE F=20H + REG FI

IF(R EQ AC)OR(REQT)
“ERROR IF NOT AC, T"

THEN F=74H + R
Fl

MULTIPLE MICROINSTRUCTION
FORMATS

The Micro Assembler as described so far has emphasized a
horizontal approach to microprogramming. Each statement

described has had as its ultimate goal the generation of
specific bit patterns for specific fields. This subsection will
present features that support a vertical approach by
allowing Micro Control Store bits to service more than one
control Field. The trade-offs between horizontal and
vertical microprogramming techniques have been discussed
at length in the literature and will not be considered here.
Our aim is simply to provide the microprogrammer with the
alternative of selecting either technique.

Vertical microprogramming is supported with multiple
microinstruction formats. Multiple microinstruction for-
mats may be accomplished in one of two ways. The first
way is by defining sub-Fields. The other way is to define
more than one microinstruction by writing multiple Micro-
instruction Definition Sections in the source program. Both
of these methods will be discussed.

Sub-Field Definition

Any Field within a microinstruction may be divided into
sub-Fields. Sub-Fields are defined with FORMAT state-
ments. The procedure is to define the major Field with a
FIELD statement and then define the sub-Fields with a
FORMAT statement followed by FIELD statements that
define the sub-Fields, and finally terminate the major Field
definition with the END FORMAT statement. This proce-
dure is illustrated in Figure 3.5.

Microinstruction Definition Section Statements

FIELD N3002_ARRAY _FUNCTION WIDTH 15

FORMAT;
FIELD KB WIDTH 8
FIELD F WIDTH 7

“CPE ARRAY HAS FOUR 30028";

“FOUR 3002S REQUIRE 8 K-BUS INPUTS";
“CPE ARRAY SHARES COMMON F-BUS";

FORMAT "“SUB FIELDS OF F";
FIELD F_GROUP WIDTH 3;
FIELD R_GROUP WIDTH 4;

END FORMAT;
END FORMAT;

PORTION OF THE MICROINSTRUCTION

bit n+14

! | | | |

| |
| N3002 ARRAY FUNCTION |

T

| | ! 1 1 |

Yy VV =8
/ {7

- I

Dl KB (K BUS) | F (MICRO FUNCTION BUS) |

| "I _F_GROUP | R_GROUP |

| I o |

I L1 1 1 1 | |1 | | I | |]
FIGURE 3.5

3.8

As can be seen in Figure 3.5, sub-Fields are assigned within
a Field from left to right. The first sub-Field defined going
in the highest-order bits of the major Field, and so on.

Returning to the concept of vertical microprogramming, a
Field may have more than one set of sub-Fields. This is

accomplished by including more than one sub-Field defini-
tion section. Each sub-Field definition section is bounded
by a FORMAT statement and an END FORMAT state-
ment. An example of multiple sub-Field definitions is
presented in Figure 3.6.

FIELD FUNCTION WIDTH 11

FORMAT

FIELD F WIDTH 7
FIELD KB WIDTH 3

Portion of Microinstruction Definition Section

“MAJOR FIELD DEFINITION";

“THIS IS FOR N3002 FUNCTION CONTROL" ;
“N3002 MICRO FUNCTION CONTROL FIELD";
K BUS PROM ADDRESS";

FIELD CLKWIDTH 1 DEFAULT 1 “ENABLE N3002 CLK";
END FORMAT;
FORMAT “THIS IS FOR 8X02 BRANCHES"';

FIELD A WIDTH 10

“8X02 ADDRESS INPUT";

FIELD NO_CLK WIDTH 1 DEFAULT O “INHIBIT N3002 CLK";
END FORMAT;

FIGURE 3.6

In the case of a multiple format Field, the Micro Assembler
selects the Field's format on the basis of the sub-Fields
referenced in the Microinstruction statement. If sub-Fields
from more than one format are used in a single micro-
instruction, an error indication is given.

As with normal Fields, sub-Fields without default values
must be assigned a value every time their format is used.

In a Microinstruction statement, an instruction field with
sub-Fields may also be assigned a value using the Field
name. In this case, the sub-Field names may not be
referenced. When neither the Field name nor the sub-Field
names are referenced in a Microinstruction statement, the
Field default is used.

Multiple Microinstruction Formats

More than one microinstruction may be defined in the
Microinstruction Definition Section of the source. Each

microinstruction defined requires an INSTRUCTION state-
ment, associated FIELD statements and a terminating END
INSTRUCTION statement. MICROP and directive state-
ments may be included within instruction definitions.

This feature allows more than one format for a micro-
instruction. It also allows the width of the microinstruction
to vary according to the format chosen. A given Micro-
instruction statement may use any one of the formats
defined. The format chosen is determined by the Field
names referenced. If Field names from different formats are
used in the same microinstruction, an error indication is
given.

An example of multiple microinstruction definition is given
in Figure 3.7 (MICROPS defined in Figure 3.3).

3.9

2650 INSTRUCTIONS"
INSTRUCTION WIDTH 8; “ONE BYTE INSTRUCTIONS"”
FIELD OP1 WIDTH 6;
FIELD RV1 WIDTH 2;
END INSTRUCTION;
INSTRUCTION WIDTH 16; “TWO BYTE INSTRUCTIONS"
FIELD OP2 WIDTH 6;
FIELD RV2 WIDTH 2;
FIELD OPND2 WIDTH 8;
FORMAT;
FIELD INDIR2 WIDTH 1;
FIELD ADD2 WIDTH 7;
END FORMAT;
END INSTRUCTION;
INSTRUCTION WIDTH 24; “THREE BYTE INSTRUCTIONS"”
FIELD OP3WIDTH 6;
FIELD RV3WIDTH 2;
FIELD OPND3 WIDTH 16;
FORMAT;
FIELD INDIR3WIDTH 1;
FIELD ADD3 WIDTH 15;
FORMAT;
FIELD XCTL WIDTH 2;
FIELD XADD WIDTH 13;

END FORMAT;
END FORMAT;
END INSTRUCTION;
FIGURE 3.7

INTRINSIC MICROPS

The Micro Assembler supports Signetics’ bipolar LSI micro-
processor elements by providing predefined intrinsic
microps for the LSI elements’ control fields. As of this
writing, three devices are supported with intrinsic microps.
These are the 8X02 microprogram sequencer, the N2901-1
4-bit RALU (Register Arithmetic Logic Unit) slice and the
N3002 2-bit RALU slice. The intrinsic microps for each

3.10

device are included in the microprogrammer’s Microinstruc-
tion Definition Section with an INTRINSIC Statement.

The intrinsic microps provide both value symbols (defined
with EQU Statements) and predefined microps for use in
writing the Microprogram Section. The microps make value
assignments to undefined fields. That is, they make value
assignments to field names but the intrinsic definitions do

not include FIELD Statements defining those fields. This
has been left to the microprogrammer so that the fields
may be assigned anywhere within the microinstruction.
However, the fields must be defined prior to the
INTRINSIC Statement that references them and they must
be defined with the same mnemonic names defined in the
following intrinsic microp descriptions. To avoid conflict

with user mnemonics, all symbols internal to the intrinsic
microps begin with the at sign (@).

8X02 Microps

The Signetics 8X02 is a microprogram sequencer capable of
addressing 1,024 microinstructions. A block diagram of the
device is presented in Figure 3.8.

(12)
(13)

(10)
(11 (9)

(8)
(6)

(5)

AgAg A7 AgA5A4A3A2 A1 Ag

1T

(3)
(4)

-~

L

S e O N I I |
(2) O O— OUTPUT BUFFER 7 |
| A 10 |
| > +1, +2 LOGIC |
10 v !
(1) ACo ‘IO/ % /10> wox 11
(28) ACq DECODE ADDRESS REGISTER |
O— LOGIC
(27) ACy O—— A o STACK I
| <
(25) CLK o—l RE'C:SIEEER . :
(22) Vee O—
oc +2y y+1 A |
(7) GNDO— 10 s, —O TEST
26
ADDRESS MULTIPLEXER | (26)

STACK POINTER

Sy prans

(24) (21)
(23) (20

(19) (17
(18)

Bg Bg B; Bg B B4 B3 By B1Bg

(16)

Pui— :

(15)
(14)

FIGURE 3.8

3.1

The 8X02's function is selected with a 3-bit control field
called the Address Control

3.12

Function input. Table 3.2 each Address Control Function.

TABLE 3.2

MNEMONIC

FUNCTION DESCRIPTION

TSK

INC

BLT

POP

BSR

PLP

BRT

RST

AC,.,=000: TEST & SKIP
Performteston TEST INPUT LINE.
If test is Next Address = Current Address + 1
FALSE (LOW): Stack Pointer unchanged
If test is Next Address = Current Address + 2
TRUE (HIGH) (i.e. Skip next microinstruction)
Stack Pointer unchanged

AC,.,=001:INCREMENT
Next Address = Current Address + 1
Stack Pointer unchanged

AC,.,=-010. BRANCH TO LOOP
IFTEST CONDITION TRUE.

Performteston TEST INPUT LINE.
If test is Next Address = Current Address + 1
FALSE (LOW): Stack Pointer decremented by 1
If test is Next Address = Address from Stack
TRUE (HIGH): Register File (POP)

Stack Pointer decremented by 1

AC,,=011: POPSTACK
Next Address = Address from Stack Register File (POP)
Stack Pointerdecremented by 1

AC,.,=100: BRANCHTO SUBROUTINE
IF TEST CONDITION TRUE.
Performteston TEST INPUT LINE.
If test is Next Address = Current Address + 1
FALSE (LOW): Stack Pointer unchanged
If test is Next Address = Branch Address Input (Bg.g)
TRUE (HIGH): Stack Pointer incremented by 1
PUSH (write) Current Address + 1 — Stack Register File

AC,,=101: PUSHFORLOOPING
Next Address = Current Address + 1
Stack Pointerincremented by 1
PUSH (write) Current Address — Stack Register File

AC,.,=110: BRANCHON TEST CONDITION TRUE
Performteston TEST INPUT LINE.
If test is Next Address = Current Address + 1
FALSE (LOW): Stack Pointer unchanged
If test is Next Address = Branch Address Input (Bg g)
TRUE (HIGH): Stack Pointer unchanged

AC,,=111:RESET TO ZERO
Next Address = 0
Stack Pointerunchanged

presents the mnemonic name and describes the operation of

TABLE 3.3

Microp Mnemonic Value Assigned to ACF
TSK 000B
INC 001B
BLT 010B
POP 011B
BSR 100B
PLP 101B
BRT 110B
RST 111B

The intrinsic microps for the 8X02 provide values for the
Address Control Function (ACF) field. When the 8X02
intrinsic microps are used, a 3-bit field, ACF, must be

defined in the Microinstruction Definition Section. The
8X02 microps make value assignments to the ACF field as
specified in Table 3.3.

The 8X02 microps only affect the ACF input to the 8X02.
Other control inputs such as Chip Enable and the Branch
Address inputs must be assigned separately.

N3002 Microps

The N3002 Central Processing Element (CPE) is a data
processing module designed as a 2-bit CPU slice. A CPU of
2n-bit word width can be constructed by combining n CPEs
into a CPE array. To the microprogrammer, a 2n-bit CPE
array is treated as a single data processing unit with twelve
2n-bit registers and a 2n-bit Arithmetic Logic Unit (ALU).
A block diagram of a CPE array is presented in Figure 3.9

8 (%]
a]
& 2
— = _—— o - _
OUTPUT OUTPUT |
EA O|’ BUFFER BUFFER | 1'[) ED
MEMORY [
ADDRESS
E
| REGISTER AC REGISTER
| j—l = -

L —O

ARITHMETIC AND —

LOGIC UNIT |

cLk —O

i

T

MULTIPLEXER

MULTIPLEXER
B

ST TAT

=%

CPE
FUNCTION
FUNCTION SCRATCHPAD
DECODER
BUS REGISTERS
RoRg T

|
|
|
|
—B—ro
|
|
|
|
|
|
|
|

[_vﬂ}tﬁv_ -

M-BUS

—

1-BUS
K-BUS

FIGURE 3.9

3.13

The function performed by the CPE array during any
given microinstruction cycle is determined by a 7-bit
control field presented to each CPE of the array by the CPE
Function Bus. The N3002 intrinsic microps provide values
for this 7-bit control field. Before the N3002 intrinsic
microps are used, the microprogrammer must define a 7-bit
field named F in the Microinstruction Definition Section.

The function performed by the CPE array (as determined
by the F control field) can be modified by the K-Bus input
to the array. Hence, some N3002 microps also provide a
mask value for the K-Bus. The microprogrammer must
therefore also define a K-Bus control field called KB in the
Microinstruction Definition Section. The F field is divided
into two groups: the F-Group and the R-Group. The
F-Group consists of the three high order bits and specifies
the general class of microfunction to be executed. The
R-Group consists of the four low order bits and specifies
the registers involved in the microfunction. Table 3.4 lists
the binary values for the two groups.

The binary values listed in Table 3.4 are assigned to the
control field F according to the intrinsic microp referenced
in the Microinstruction Statement. Table 3.5 presents the
general case N3002 microps. The general case microps make
no assignments to the KB field.

TABLE 3.4

FUNCTION
GROUP Fe Fs F,
0 0 0 0
1 0 0 1
2 0 1 0
3 0 1 1
4 1 0 0
5 1 0 1
6 1 1 0
7 1 1 1
REGISTER
GROUP |REGISTER | F, F, F, F,
Ro 0 00O
R, 0 0 0 1
R, 00 1 0
Rs 00 1 1
R, 01 0 0
Rs 0 1 0 1
Rs 01 1 0
R, 01 1 1
Rs 1 00 0
Re 1 0 0 1
T 110 0
AC 11 0 1
| T 10 1 0
AC 10 1 1
" T 1110
AC 11 1 1

TABLE 3.5
F-Group R-Group Microp Micro-Function
I ARAMAC R, + (ACA K) +Cl—>R,, AC
0 1 AMAM M+ (ACA K) +Cl > AT
| MARK Kv R,>MAR R'n+C|+K—>Rn
1 1 MAMK Kv M- MAR M+ Cl + K= AT
I ACAKAM (AT v K) + (ATA K) +Cl = AT
I ASAM (AC A K) = 1+Cl— R (see Note 1)
2 I ASAMX (ACAK)-1+Cl—>AT
Il ASIM (IAK)=1+Cl—>AT
| ARAM Rn+(AC/\K) +Cl >R,
3 I AMAMX M+ (AC AK) + Cl = AT
I AAIM AT + (I AK) +Cl = AT
| NRAM CIv(Rn/\AC/\K)—>CO RnA(AC/\K)-*Rn
4 I NMAM Clv (MAACAK)—>CO MA (AC AK) > AT
Il NAIM Clv (ATA I AK)—=>CO AT A (I AK) > AT
| LTRM Clv (R, AK)—>CO KAR,~>R,
5 I LTMM Clv (M AK)—CO KAM-—>AT
I LTAM Clv (AT A K)—~>CO KA AT = AT

3.14

=

TABLE 3.5 (cont.)

1. 2's complement arithmetic adds 111 ... 11 to perform subtraction of 000 . .. 01.

F-Group R-Group Microp Micro-Function
[ORAM Clv (ACA K) =~ CO Rnv (ACAK) >R
6 I OMAM Clv (AC AK)—>CO Mv (ACA K) — AT
11 OAIM Clv (IAK)=>CO ATV (I AK) = AT
I XRAM Clv (R,AACAK)>CO R, ®(ACAK)~>R,
7 I XMAM CIV (MA AC AK) > CO M@ (ACA K) = AT
i XAIM Clv (ATA1AK)—>CO AT® (IAK) > AT
NOTE:

Symbol Meaning

I, K, M Data on the |, K, and M busses, respectively
Rn Contents of register n (R-Group 1)

AC Contents of the accumulator

AT Contents of AC or T, as specified

Cl Data on the carry input

CcO Data on the carry output

L, H As subscripts, designate low and high order bit, respectively
+ 2's complement addition

- 2's complement subtraction

A Logical AND

\ Logical OR

® Exclusive-NOR

- Deposit into

The microfunctions listed in Table 3.5 allow the micropro-
grammer to specify any mask value for the KB field. The
general case microps are greatly simplified if the K-Bus
value presented to the CPE array is forced to all zeros or all

ones. The intrinsic N3002 microps include microps

that

assign all zeros or all ones to the KB field. These microps
and the resulting microfunctions are listed in Table 3.6.

3.15

TABLE 3.6

F-Group F Field R-Group KB Field Microp Functional Equation
0 | all zeros ILR Rn + Cl = Rn, AC
all ones ALR AC + Rn+ Cl—> Rn, AC
0 1 all zeros AM M+ Cl—> AT
all ones AMA M+ AC + Cl = AT
0 11 all zeros SRA ATL - RO ATH - ATL LI~ ATH
all ones —
1 | all zeros MINR Rn > MAR Rn + Cl > Rn
all ones MARS 11> MAR Rn-1+Cl—=>Rn
1 I all zeros MAM M- MAR Rn + ClI > AT
all ones MAMS 11 - MAR M-1+Cl—>AT
1 i all zeros ACA AT + Cl > AT
all ones AAS AT-1+Cl—> AT
2 | all zeros CSR Cil-1->Rn
all ones ASA AC-1+Cl—Rn
2 I all zeros —
all ones —
) 11 all zeros —
all ones ASI I-1+Cl—>AT
3 | all zeros INR Rn + Cl—= Rn
all ones ARA AC+ Rn+ Cl—> Rn
3 H all zeros —
all ones —
3 Il all zeros —
all ones AAl |+ AT+ Cl = AT
4 | all zeros CLR Cl—CO 0—> Rn
all ones NRA Clv (RhAAC)=>CO RnAAC—Rn
4 1l all zeros —
all ones NMA CIVIMAAC)=>CO MAAC—AT
4 1 all zeros —
all ones NAI COv (ATAl)=CO ATAI=>AT

3.16

TABLE 3.6 (cont.)

F Field
F-Group R-Group KB Field Microp Functional Equation

b | all zeros —

all ones LTR Clv Rn—~>CO Rn - Rn
5 1 all zeros —

all ones LTM ClvM-CO M= AT
5 1 all zeros —

all ones —
6 | all zeros NOP Cl—>CO Rn —> Rn

all ones ORA ClvAC—CO Rnv AC— Rn
6 I all zeros LM Cl—->CO M= AT

all ones OMA Clv AC—>CO MV AC—~> AT
6 1 all zeros -

all ones OAl Clvi—CO v AT = AT
7 I all zeros LCR Cl—>CO Rn - Rn

all ones XRA Clv(RnAAC)—>CO RneAC- AT
7 " all zeros LCM Cl-Co M- AT

all ones XMA Clv(MAAC)~>CO M@&AC->AT
7 HI all zeros —

all ones XAl Clv (ATA I)>CO |® AT - AT

NOTE:

1. 2's complement arithmetic adds 111 ... 11 to perform subtraction of 000 . .. 01.

Symbol Meaning

I, K, M Data on the |, K, and M busses, respectively

Rn Contents of register n (R-Group |)

AC Contents of the accumulator

AT Contents of AC or T, as specified

Cl Data on the carry input

CcO Data on the carry output

L, H As subscripts, designate low and high order bit, respectively
+ 2's complement addition

2's complement subtraction

3.17

TABLE 3.6 (cont.)

Symbol Meaning
A Logical AND
v Logical OR
® Exclusive-NOR
- Deposit into
TABLE 3.7 The N3002 microps require a single argument enclosed in
- parentheses. This argument specifies the register to be used
Register Name Value in the microfunction. The argument may be an expression,
but intrinsic value symbols are provided when the N3002
RO 00008 intrinsic microps are used. The N3002 value symbols
R1 00018 represent register names, as defined in Table 3.7. The actual
R2 00108 value assigned to F(0_3) is determined by the R-Group of
22 8(1):)(1)2 the microp.
R5 0101B . .
R6 01108 Table 3.8 presents some examples of N3002 microps, their
R7 0111B resulting functions and the F field and KB field values they
RS 10008 produce.
R9 1001B .
T 1010B N2901-1 Microps
AC 1011B _ _)))
Register names — RO through R9 may only be used Th.e N2991-1 |s‘a hngh. spee.d bipolar 4-bit RAL‘U (Begu;ter/
with microps from R Group I. Register names T and Arithmetic Logic Unit) slice. The N2901-1 is micropro-
AC may be used with any 3002 microp. grammable and the Micro Assembler intrinsic microps ~
simplify the task of programming the device.

TABLE 3.8

Microp Specification
ARAM(RB6)

LTAM(T)

NOP(RO)

XRA(R5)

Functional Equation(s)
R6 + (AC AK)+ Cl— R6

Clv (TA K)=CO
KAT=>T

Cl-CO RO—RO

Clv (R5 A AC) = CO
R5® AC > R5

F Field Value KB Field Value
011 0110B default

101 1110B default

110 0000B all zeros
111 0101B all ones

3.18

e —

Basic Architecture

The N2901-1 consists of a high speed ALU, a 16 register
dual port RAM, a 4-bit Q Register and a powerful data

routing structure for moving data between the ALU and the
internal registers. The basic organization of these circuit

presented in Figure 3.10.

elements is illustrated in the block diagram of the N2901-1

L

8|7I6 5|4|3 2]1]0
DESTINATION ALU ALU
CONTROL FUNCTION SOURCE
MICROINSTRUCTION DECODE
RO/LI g
LO/RI ~<——» RAM3 RAM SHIFT RAMg |<—>]
LO/RI RO/LI
J l <> Q3 Qg
CLOCK Li Q-SHIFT
‘B’ DATA IN
‘A’ (READ) :> A
ADDRESS A’ ADDRESS cp
RAM F a
16 ADDRESSABLE REGISTERS
B —N QREGISTER
(READ/WRITE) ‘B’ ADDRESS
ADDRESS ~ ——y
‘Al B’ L] cP a
DATA DATA
ouT ouT
1]
LOGIC
DIRECT ‘o’
DATA IN {}
D A B [} Q
ALU DATA SOURCE
SELECTOR
R s
R S +—— G
CARRY IN Cin —_——
8-FUNCTION ALU > Cn+a
L » F3(SIGN)
> OVERFLOW
> F=o0000
l I
- A F
OUTPUT
QUTFUT OUTPUT DATA SELECTOR

Y

U DATA OUT

FIGURE 3.10

3.19

Dual Port RAM — The N2901-1 contains a 16-word by
4-bit dual port register array. The two ports, the A-port and
B-port, are controlled by two 4-bit address fields input to
the device. These two input fields, the A-address and
B-address, are control fields generated by the N2901-1
microps. Data in any register can be accessed by either port.
The two ports operate independently, and hence if the
same value is input to the two address fields, the same data
will appear at both ports. Data written into the RAM is
always written into the address defined by the B-Address
input field. The two address fields must be defined before
the N2901-1 intrinsic microps are selected. The field names
are A and B.

ALU — The high speed ALU performs three binary
arithmetic and five logic functions on two source operands.
The two source operands are called the R-operand and the
S-operand. The R-operand is driven by a two input multi-
plexer that selects either the 4-bit data field (direct data
input to the device), or the A-port of the register array. The
S-operand is driven by a three input multiplexer that selects
either the A-port of the register array, the B-port of the
register array, or the Q-register. Both R + S inputs can be
forced to all zeros.

Shift Logic — The input to the 16 register RAM is driven by
a three input multiplexer. This multiplexer provides a
means of shifting data output from the ALU before it is
written into the RAM. A similar shift multiplexer drives the
Q-register input. The shift multiplexers provide shift-left,
shift-right and no-shift operations on data written into the
RAM and the Q-register. Separate bi-directional pins, RAMg,
RAM3, Qg and Qg are provided for shifting data between
N2901-1s.

Data Out (Y-outputs) — Data out of the device appears on
the Y-outputs. The Y-outputs are driven by a two input
multiplexer that selects either the A-port or the ALU
results.

The preceding functional blocks are more clearly illustrated
in the detailed block diagram of the N2901, presented in
Figure 3.12.

In addition to the two RAM address fields, the N2901-1
microps also generate a 9-bit Microfunction input field for
the RALU. The Microfunction field (lg.g), determines the
function that will be performed during a microcycle (the
time required to execute one microinstruction). It specifies
the source operands, the destination of the ALU results and
the shift operation performed on the ALU results prior to
storage in the destination register. The Microfunction input
field is subdivided into three 3-bit subfields that must be

3.20

defined with FIELD Statements before the N2901 microps
are called with an INTRINSIC Statement. The Micro-
function subfields are listed below:

Con.trol Field Name Field Function
Bits
I(0_2) SRC Determines the source operands.
(Source)
I(3_5) FUN Determines the operation to be
(Function) performed.
'(6-8) DST Determines the destination of
(Destination) the ALU data output and the
shift operation performed on
the data prior to storage.
The Microps

The N2901-1 microps are included in the Microinstruction
Definition Section with an INTRINSIC Statement. Once
the N2901-1 microps have been included in the Micro-
instruction Definition Section, they may be referenced in
Microinstruction Statements within the Program Section.
The intrinsic N2901-1 microps may be located anywhere
within a Microinstruction Statement. The basic format for
the N2901-1 microps is illustrated in Figure 3.11.

OP-CODE source —operand [destination —operand]

FIGURE 3.11

Registers assigned in the source and destination operands
have been predefined in the intrinsic N2901 microps with
the following symbols:

RO, R1, R2, R3, R4, R5, R6, R7,
R8, R9, R10, R11, R12, R13, R14, R15, and Q

RO through R15 specify RAM addresses accessed via the
A-address and B-address input fields to the N2901. Q
specifies the Q-register.

The N2901-1 microps will be presented in two sections.
First, the source operands and the Op-Codes will be
presented by functional groups, and then the destination
operand will be described.

8

9 >—]

4]

N LA CA €A
10
+ + + T0HLNOD
31V1S
% k 338HL
| xnw XN XOW Xnw _
& 0/0) NI NI _ _ NIZ NIZ
0-4 I I
| I
N
: *1
T
[] "
HAO <& 0y Ly 24 €4 2
v+ Uy <] < g
d <] (NTV) LINN 21907 J1LAWHLIHY A 3g093a
° o L z & 0 L 2y £y NOILONNAH—< ¥}
9<% 0g s S ol H n1v
| _ [&
a 3a093a
ANVH3dO
b> 304N0S
o Y XN XN o XOW Xxnw XNW XN XN
1> NIE NI-E NI NIE NIZ NIZ NIZ NIZ
I _ [€a
zg(sindni
L V1Va
ot BEEEEL
0a
0o 1o 20 o al_
N 3a023a €gcg —ma..mm Eyly —(aM o
OILVNILS3a 0
nv nNao H3Ls1934 0 4 HOlv1d HOLY1V 00712
0g la Za £q
N3
XN XNW XNW xnu | wwunm__mmﬁ gg>—| %atecats N IM OvlyZyey |Aw<
NIE NI-E NI€ Ni€ | zg>—] | <2y(ssavaav
8
f I T T \%M‘ . g- WYY 1HOd Z L19 v Ag 118 9L iyl auomv
T I ‘— ° 0g>—1 oq lg zq eg [<oy
XN XNIW XNW Xnw
NI-€ NI NI€ NI
| b [
Owvy H Envy

FIGURE 3.12

3.21

The Op-Code and Source Operands

The Op-Codes are divided into four groups. The groups are
organized by the possible source operands. Tables 3.9 and
3.101list the Op-Code mnemonics and define their functions.

TABLE 3.9
GROUP |
Mnemonic ‘ Function
AR Add Register
SR Subtract Register
RSR Reverse Subtract Register
ORR OR Register
NR AND Register
NCR AND Complemented Register
XR Exclusive OR Register
XCR Exclusive OR Complemented Register
TABLE 3.10
GROUP 11
Mnemonic Function
IR Increment Register
DR Decrement Register
LNR Load Negative Register
LR Load Register
LCR Load Complemented Register
GROUP 1l
AD Add Data-in
SD Subtract Data-in
RSD Reverse Subtract Data-in
oD OR Data-in
ND AND Data-in
NCD AND Complemented Data-in
XD Exclusive OR Data-in
XCR Exclusive OR Complemented Data in
GROUP IV
ID Increment Data-in
LND Load Negative Data-in
DD Decrement Data-in
LD Load Data-in
LZ Load Zero
LCD Load Complemented Data-in

Figure 3.13 presents the general format for Group |
microps.

OP-CODE (r,s) [destination _operand]

FIGURE 3.13

The source operand for Group | requires that the source for
both the r and s inputs to the ALU be specified. For this
group, the source for the r input is always the A-port, and
hence, the r value must be a register number. The source for
the s input can be either the B-port or the Q-register. A
register number specifies the B-port and Q specifies the
Q-register. Table 3.11 lists the Group | Op-Codes, their
respective functions and the resulting SRC and FUN field
values.

TABLE 3.11

Group | Microps

SRC Value 0 1
FUN 0,2
Val
laue (I‘,S)
(3,5) (A, Q) (A, B)
Op-Code
0 AR A+Q+Cl A+B+Cl
1 SR Q-A-Cl B-A-Cl
2 RSR A-Q-Cl A-B-Cl
3 ORR Av Q Av B
4 NR AAQ AAB
5 NCR AAQ AAB
6 XR AxQ Ay B
7 XCR A¥Q A¥B

*Notes: v = OR

A = AND
¥ = Exclusive OR
Cl=Carry In

SRC and FUN value given in octal

3.22

The general format of Group Il microps is presented in
Figure 3.14.

Figure 3.15 presents the general format for the Group 111
microps.

OP-CODE(s) [destination —operand]

OP-CODE(s) [destination —operand]

FIGURE 3.14

The source operand for Group |l microps requires that only
one source register be specified. For the Group Il microps
the r input to the ALU is forced to all zeros. The register
specified is therefore the s input to the ALU. RAM data
(RO-R15) or the Q-register may be specified as the source
operand. Table 3.12lists the group Il Op-Codes, their respec-
tive functions and the resulting SRC and FUN field values.

FIGURE 3.15

Like Group Il, Group Il1 requires only one source operand.
In this case, however, the r input to the ALU is driven by
the data-in inputs. The source operand specifies the s
input to the ALU. This may be RAM data accessed by the
A-port or the Q-register. Table 3.13 lists the Group I Op-
Codes, their functions and the resulting SRC and FUN field
values.

TABLE 3.12 TABLE 3.13
Group Il Microps Group 11 Microps
SRIC Value 2 3 4 SRC Value 5 6
FUN (0,2) FUN l(0,2)
:/alue (r.s) \l/alue (r.s)
(3,5) 0,Q 0,B 0,A (3,5) D, A D, Q
Op-Code Op-Code
0 IR Q+Cl B+ CI A+ ClI 0 AD D+A+Cl D+Q+Cl
1 DR Q-Cl B-ClI A-Cl 1 SD A-D-CI Q-D-CI
2 LNR -Q-Cl| -B-ClI | ~A-ClI 2 RSD D-A-ClI D-Q-Cl
3 LR Q B A 3 oD Dv A DvQ
4 — - - — 4 ND DAA DAQ
5 — - - ~ 5 NCD DA A DAQ
6 — - — — 6 XD Dv A D¥Q
7 LCR Q B A 7 XCD D¥ A D¥ Q
* . = A= ¥ = i
*Notes: Cl = Carry In Notes C\/I - &iry N AND Exclusive OR
SRC and FUN values given in octal. SCR and FUN values given in octal.

3.23

Figure 3.16 presents Group IV's format.

OP-CODE [destination _ operand]

FIGURE 3.16

Group 1V microps require no source operand. The r input
to the ALU is driven by the data-in inputs and the s input is
forced to all zeros. Table 3.14 lists the Group IV Op-codes,
their functions and the resulting SRC and FUN field values.

store —function [(destination _register)]

FIGURE 3.17

The store function is specified by the store function
mnemonics. These mnemonics and their full names are
given in Table 3.15.

TABLE 3.15

Mnemonic Store Function
TABLE 3.14
STR STore in RAM
Group IV Microps STQ STore in Q-register
SLR Shift Left and store in RAM
SRC Value 7 SLRQ Shift Left and store in RAM and Q-register
FUN L0,2) I .
SRR Shift Right and store in RAM
Val
Ia ue (r,s) SRRQ Shift Right and store in RAM and Q-register
(3,5) D,0
Op-Code
0 ID D+ Cl
1 LND -D-_CI
9 DD D-Cl When the destination register specified is a RAM location,
the ALU results are stored in the RAM location pointed to
3 LD D by the B-address. If the B-port address is specified by the
4 LZ 0 source operand, the destination register portion of the
5 _ _ destination operand may be omitted. (If the B-port address
is specified in the source operand, and a different B-port
6 - _ - address is specified by the destination operand, the source
7 LCD D operand B-port address is used. No error indication is
given.)

*Notes: Cl = Carry In
SRC and FUN values are given in octal

The Destination Operand

The results of the various Op-Code Groups are stored in
RAM or in the Q-register specified by the destination
operand. The destination operand also specifies the shift
operation performed on the ALU output prior to its being
stored in the destination register. The format of the destina-
tion operand is illustrated in Figure 3.17.

3.24

A special case of the destination operand is when the data
outputs (Y-Outputs) of the N2901-1 are driven by the
A-port. (Normally the Y-Outputs are driven by the ALU
results.) This special case is implemented with the STR
store function. The format of this operation is presented in
Figure 3.18.

STR [(destination-register)] , Y [(A-port-address)]

FIGURE 3.18

The A-port address need only be included in the destination
operand if no A-port address is specified in the source
operand. Note the use of a comma as a delimiter. Figure
3.19 summarizes the possible forms of the destination

operand.

STR)
STQ
SLR [(b)]
\ stLro
SRR
LSRRO

{STR }

*Note: b=B-port address
a=A-port address

()] [Y[(a)]]

The entire destination operand is enclosed in brackets
because it may be omitted. The default for the destination
operand is a NOP (No-OPeration; in this case, no data is
stored).

Table 3.16 lists the store functions and their resulting DST
field values.

Note the RAM Shifter and Q Shifter columns in Table 3.16.
They describe the interaction between the store function
and the cascade shift pins. RAMg, RAM3, Qg and Qg3 are
bidirectional signal lines that facilitate shifts between two
or more N2901s. Figure 3.20 presents some representative
microps and the operations they produce.

AR(R2, R7) STR
SR(R9,Q) STQ
XCR(R0,Q) STR(R11)
IR(R6) STR(R13), Y
LCD STQ,Y(R1)
ND(R14) SRR(R6)

R2+R7+Cl—> R7,Y
Q-R9+ClI—>QY
RO%¥ Q- R11,Y

R6 + Cl > R13, R6 > Y

D->Q, R1>Y

DAR14-Y, (DAR14)/2-> R6

FIGURE 3.19 FIGURE 3.20
TABLE 3.16
. . Q Register . .
Micro Code RAM Function F . RAM Shifter Q Shifter
unction Y
Store Function Output
Octal RAMg | RAM Q (o]
Ig 15 1 Shift Load i 0 3 0 3
8 17 16 | code | SN oa Shift | Load LO/RI |LI/RO |LO/RI |LI/RO
STQ L LL|] O X None None F->Q F X X X X
L L H 1 X None None F X X X X
STR, Y L HL None F-B None A X X X X
STR L HH None F-B None F X X X X
Right Right
SRRQ H L L 4 F/2-B (0] IN
(Down) (Down) Q/2~0 F Fo N3 0 3
Right
SRR H L H 5 (Down) F/2-B None F FO IN3 QO X
stRa |H H L] 6 | YT | 2FrsB F o
(Up) 20->0Q F |N0 3 |N0 3
Left
SLR H H H 7 (Up) 2F >B None F |N0 F3 X 03

impedance state.

X = Don’t care Electrically, the shift pin is a TTL input internally connected to a three-state output which is in the high-

3.25

PART FOUR — THE MICRO ASSEMBLER’S OUTPUT

As the Micro Assembler assembles the source, it produces
two output files. These are the listing file and the object
file. The listing file can be used to completely documenta
microprogram as it contains both source and object
information. The object file is the Intermediate Object Text
to be input to the Micro Format Program.

THE LISTING FILE

The listing file is generated in two different sections. The
first section is the source/object listing and the second is
the cross reference listing.

The listing file is formatted for hard copy terminals and
printers. The listings are formatted in 80 character lines
grouped into pages. Each page begins with a page heading.
Output to the listing file can be controlled with the listing
directive statements embedded in the source.

. The page heading begins with the following record:
SIGNETICS BIPOLAR MICRO ASSEMBLER (A)

FEFXXAERFRE XXX XRX XXX RHE XK PAGE 00000

The asterisks indicate user text defined with a TITLE
statement. The TITLE statement defines a 28 character
title heading. The page heading contains two lines, the
second depending on which listing is being produced.

Source/Object Listing

This section of the listing has two types of records, the
formatted source and the formatted object. The formatted
source listing records consist of a source line number
followed by the first 72 positions of a source line. The
source line number is a count of source lines maintained by
the micro assembly program.

The formatted object listing records consist of the memory
block address of the data (in hexadecimal) followed by the
object data in binary with blanks between microinstruction
fields. |f the object data is from a DCL statement, blanks
are placed between successive memory block words. As
required, the object fields or words may be continued on
successive object listing records. The object listing records
follow the source listing records of the statement which
produced the object data. Source statements which produce
no object data (such as directive statements) are not
followed by object listing records. Error messages, should
there be any, are listed below the line they reference.

The second line in the source/object heading is a list of the
microinstruction’s Fields. In the event of multiple micro-
instructions, the first one defined provides the field names
for the heading.

An Example of Source/Object Listing

SIGNETICS BIPOLAR MICRO ASSEMBLER(A)

ADDR: F K8 ACF A
00032
00033 ORG 3DH3
00034 GOD: LM(AC) BLT "SAVE M BUS" ;

003D: 1101011 00000000 010 0000111110

00035 AAI(T) BRT A=GO;

003E: 0111110 11111111 110 0000111101

ALR(R9) BRT A=FETCH;
SYMBOL ERROR 01 &&&x&&

00036

EE 22 2

00037 ILR(AC)

0040: 0001101 00000000 001 0001000001

EXPERIMENTAL DISK CUNTROLLER

PAGE 00002

PROGRAM DISK_CONTROLLER WIDTH 28 LENGTH 5123

FETCH
NO03F: 0001001 11111111 110 0000000000

FIGURE 4.1

4.1

Cross Reference Listing

This section of the listing file is an alphabetic list of all
symbols (except reserved words) defined in the assembly.
The second heading line labels information in the listing.
For each symbol the following information is listed:

+ Symbol type, a single letter code defining the type

of symbol; as follows,

D — Label of Microinstruction or DCL statement.

E — Label of EQU statement
S — Label of SET statement.

+ + + 4+

> 2 M ©

Program symbol, memory block name.

Field name.

Microp name.

Microp argument name.

Symbol value, if type is D, E or S, in hexadecimal.

Symbol name.

Source line number of definition.

A list of source line numbers of references to the

symbol.

An Example of a Cross Reference Listing

=N

TMMTTIMTMIMTAITMIZNEODCIMUOTIIZTITNMMIMIZIZIDPEDEDDODDBDD K~

oD

NAME OF REFERENCING MICROP

NETICS BIPOLAR/MICRO ASSEMBLER(4)
E VALUE SYMROL
;ggg%’;‘ @c‘lp OP USED AS ARGUMENT IN
#@RCITI* ecp | THREE DIFFERENT MICROPS
@RGI @R
$@RGII* @R
$@RGII[* @P
* ARAMAC* @R
* [LR* @R
* Al R* @R
% LM% @p
HAMTX @R
gPGI
epill, DECIMAL
0010 ﬁA[VALUE
NNOR AC INDENTED
0003 ACF
ALR
ARAMAC
BLT
BRT
0028 DISKCONTRCLLER
00Cc7 F
FETCH
70730 GC
fLR
NCC8 KP
LM
0000 RO
C001 R1
nnn2 R?2
0003 R3
0004 R4
0008 RS
Q00€ RE
coe? R7
NN08 R8
0009 R9
nNNoA T

FNC OF ASSEMBL Y

SOLRCE LINES COC39

EXPERINENTAL

slzigioiplelgigioisisipisiplisisinielolnlinlsinivinlsinlninleisinivisivieoInlnIoIn)

[elelplolslolololelslololalolololololslolololoolplololvlololglololololololeto e

OO0 OONOMNODOODNONOON

et = et = = = D QN ORI W W O WWWNIN O =N O NN NN NN NN N NN NN
ONOVBWNFOVORPOHRTWNONSNVIVOVORWNOVDNCVWNOWNG

3% 36 3 2% 4 %

R

QOQ0O O 00 OLO00ODOODODOOOCOODO MDD
QUOC © VO O0O0QUOCLIOCOLOVODVOOOTOD e

QOO0 O OO0 O00O0OOODO0O0OCOOOLOOD Mwn

EE R X B R E X E NS EEEE R E EX E R E X EE R EE R X R

}

ERRCR LINES 00001

00036
00021

00022

NOTE: VALUE FOR FIELD NAMES AND PROGRAM NAME SPECIFIES WIDTH.

00023

K CCNTRCULL ER PAGE 00004
RENCES

21 00021

22

24

2C 0002€ 20021 920021
22 00022 00022

23 00023 00024

25

26

27

28

29

25 0002¢ 00027

28

29

gg 00036

20 00022 100023 00034
30 00031

36

34

35 00036

21 00021 00022 00024
35

37

%2 20027 00028 00029

ASTERISK DENOTES LINE
WHERE SYMBOL IS DEFINED

00035

CBJECT LINES 00002

00021

00037

4.2

FIGURE 4.2

INTERMEDIATE OBJECT TEXT

The micro assembly program produces an object file that is
used as input to the micro format program. This object file,
called the Intermediate Object Text, consists of object data
and object format information. This information is for-
matted into a set of logical object records; each logical
record is separated by a semicolon. The first data character
of each logical record defines the type of record. The
following types are used:

F — Microinstruction format information.
P
|
D
E

Program block information.

Microinstruction object data.

Object data from DCL statements.

Obiject file terminator.

The object file organization follows the source input
organization. The F records are produced by the definition
block and precede all other records. Each program block in
the source input produces a P record followed by multiple
D and | records. The logical object records express al/
numeric values in hexadecimal format.

F Record Format

The first F record defines the microinstruction format and
the following F records define fields in the microinstruction
format. The first F record has the following format:

Fnnggg;
where nn is the format number and ggg is the micro-

instruction width.

For the basic micro assembly language, nn is a constant
“01". The remaining F records define fields and have the
following format:
Fnndddgggsss. . .;

where nn is the format number. ddd and ggg are the
displacement and width respectively of the field. sss. . . is
the field name. The field records follow the order of field
definition in the source definition block.

P Record Format

The P record heads a program block in the object file. It has
the following format:

Pwwwbbbsss. . .;

where www is the word size of the program block in bits
and bbb is the number of bits required to address this
program block. sss. . . is the name of the program block.

| Record Format

The | record contains the object data for one micro-
instruction and has the following format:
Innaaaattt . . . ;

where nn is the format number and aaaa is the address in
the program block for this microinstruction. aaaa is variable
length. The length of aaaa in hexadecimal digits is the
minimum number of digits required to represent an address
in the current memory module. The number of digits in
aaaa is equal to the integer portion of (bbb + 3)/4 where
bbb is from the last P card. tttt. . . is the object data text.

The object text (ttt. . .) consists of a list of numeric values
without separators. Each numeric value corresponds to a
field in the microinstruction format. The field values are in
the same order as the F records. The number of hexa-
decimal digits in each value is determined by the field
length. The number of digits in a field value is equal to the
integer portion of (ggg + 3)/4 where ggg is from the appro-
priate F record. There are no separators between the field
valtues; the first digit of a field value immediately follows
the last-digit of the previous field value in ttt. . .

D Record Format

The D record contains the object data from a source DCL
statement and has the following format;

Daaaaggggtt. . .;

where aaaa is the address in the memory block for the DCL
data and gggg is the number of bits in the data value. aaaa
has the same format as in the | record, and gggg is always
four hexadecimal digits. ttt. . . is the object data text. The
number of hexadecimal digits in ttt. . . is equal to the integer
portion of (gggg + 3)/4.

E Record Format

The E record terminates the micro assembly program ob-

ject text and has the following format: ’
Eaaaa;

where aaaa is the execution address and may be omitted.

The optional expression in the source input terminating
END statement supplies the value for aaaa.

An Example of Intermediate Object Text

FOLOLCSFNL10L5007F;F0L00000BKB;FOLO0AVO3ACF;FOL0000NAA;POLCOOIDISKCUNTRULLERSIOL
UU3D6BUV02000;1U1003E3EFF60305;101003FU9FF600051010040000000005E5

FIGURE 4.3

4.3

PART FIVE — THE MICRO FORMAT PROGRAM

THE MICRO FORMAT PROGRAM — AN
OVERVIEW

The final phase of microprogram development is to take the
microprogram (as assembled into intermediate object text),
and place it in Firmware. This task is accomplished by the
Micro Format Program. The Micro Format Program takes
the intermediate object text and partitions the
microprogram into PROM data fields. The PROM data
fields are then formatted onto paper tapes that can be read
by PROM programmers. Once the microprogrammer has
obtained PROM programming tapes, the job of the Micro
Assembler is finished and the microprogrammer is well on
his way to delivering a microprogrammed system.

The Micro Format Program requires as input the
intermediate object text and a command file of statements
that describe the Control Store PROMs, assign
microinstruction bits to the PROMs, and describe the
format of the output paper tapes. The microinstruction bits
may be arbitrarily assigned to the Control Store PROMs.
This feature allows the microprogrammer to alter the
Field-PROM assignments for PCB layout convenience. Bits
assigned to PROMs may be inverted for negative true logic
implementations. The Micro Format Program supports
three paper tape formats intrinsically. Optionally, the
microprogrammer may specify other paper tape formats.

The Micro Format Program also generates a listing. The
listing is produced in two sections. The first section lists the

command file and any errors encountered. The second
section provides a summary listing of the microinstruction
bit assignments to PROM modules.

PLACING THE MICROPROGRAM IN PROMs

The Micro Format Program divides the microprogram into
PROM modules under direction of the command file. The
command file is built with Micro Format statements. These
statements are constructed from the same basic language
elements and syntax as the Micro Assembly Program.

The command file consists of groups of statements that
completely describe each PROM module. Each group
contains three kinds of statements. These are:

1. The MEMORY Statement which specifies the size of the
PROM module (e.g., 512 X 8 is the size of the 825115).

2. The OUTPUT Statement which directs the Micro
Format Program to output a section of the intermediate
object text into a PROM module.

3. The SELECT Statement which specifies which Fields or
bits of Fields are to be placed in the PROM module.

Each PROM module requires a combination of the above
statements.

The MEMORY Statement

The format of the MEMORY statement is presented in
Figure 5.1.

MEMORY {WIDTH ¢}

{LENGTH ¢}

[“COMMENT"];

FIGURE 5.1

The statement consists of the MEMORY opcode followed
by the memory word width specification and a number of
memory words specification. The PROM dimensions
specified by the MEMORY statement are used for
subsequent object output by OUTPUT statements. The
initial PROM dimensions are a word width of 8 bits and a
memory size of 512 words.

The width specification consists of the keyword — WIDTH
followed by a numeric constant. It must immediately
follow the MEMORY opcode. The numeric constant
specifies the memory word width in bits.

The memory size specification consists of the keyword —
LENGTH followed by a numeric constant. The length
operand must immediately follow the width specification.
The numeric constant is the number of words in a PROM
module (memory length).

Examples: MEMORY Statements.

MEMORY WIDTH 8 LENGTH 512
“MICROINSTRUCTION PROM" ;

MEMORY WIDTH 4 LENGTH 256
"825226 256x4 ROM" ;
5.1

The OUTPUT Statement

The OUTPUT Statement is used in conjunction with a
MEMORY Statement to create a PROM module. The
OUTPUT Statement selects the Program Section from
which the PROM module (defined by the MEMORY
Statement) will be taken. This might be a portion of the

microprogram or a control PROM built entirely from DCL
Statements. If the OUTPUT Statement is subdividing the
microprogram, its FROM and TO operands select the
vertical boundaries of the microprogram that is to be placed
into the PROM module (e.g., from 0 to 255 of a
microprogram containing 512 instructions). The format of
the OUTPUT Statement is given in Figure 5.2.

OUTPUT {FROMc} [TOc]

{OF program section name s }

[“COMMENT"];

FIGURE 5.2

The FROM operand selects the beginning address of the
intermediate object Program Section for output. The
operand consists of the FROM keyword followed by a
numeric constant. The numeric constant becomes the
beginning address value. When the intermediate object is
processed to produce the PROM module, only Program
Section object data with addresses equal or greater than this
value are selected for output. Addresses of a PROM module
always begin at address zero, and the intermediate object
addresses are adjusted to relative zero. Object data with an
address equal to the from value is placed at PROM module
address zero, object data with an address equal to the from
value plus one is placed at PROM module address one, and
so forth. The FROM operand must immediately follow the
OUTPUT opcode and may not be omitted.

The TO operand selects the ending address of the Program
Section object data that will be placed in the PROM
module. The TO operand consists of the keyword TO and a
numeric constant. The numeric constant is the address of
the last microinstruction or DCL data word to be placed in
the PROM module. The address area selected by the FROM
and TO operands must not be larger than the PROM
module defined by the MEMORY Statement.

The assignment of PROM addresses to individual PROM
words need not be in ascending order. If the FROM value is

greater than the TO value, address assignments will be made
in descending order.

The TO operand may be omitted. If the TO operand is
omitted, the default TO value is calculated by adding the
PROM module length minus one to the FROM operand
value.

The next language element in the OUTPUT Statement is
the Program Section specification operand. The Program
Section operand selects which of the assembled Program
Sections will provide the object data for the PROM module.
The specification consists of the keyword OF and a symbol.
The symbol must be the name of a Program Section in the
intermediate object text output by the Micro Assembly
Program. Program Sections were named with PROGRAM
statements in the Micro Assembly source.

The SELECT Statement

If a microprogram is over 8 bits wide, it will require more
than one PROM for its Control Store firmware. This
requires that the microinstruction’s Fields be subdivided
into individual bits before they can be assigned to multiple
PROMs. The selection of which bits are to be placed in
which PROM is made with a SELECT Statement. The
format of the SELECT statement is illustrated in Figure
5.3.

SELECT {[INVERT]
{e)

{Fieldname s (bit number c)}

. ["COMMENT"];

FIGURE 5.3

5.2

The SELECT statement consists of the SELECT opcode
followed by a Field operand list. The Field operand list
describes how the microinstruction fields are formatted
into words in the PROM module. The PROM module to
which the SELECT statement applies must be requested
with a preceding OUTPUT statement. No statements may
be placed between a SELECT statement and its associated
OUTPUT statement except other SELECT statements.

The field operand list is a sequence of Field operands which
select bits from microinstruction Fields. A Field operand
consists of a symbol followed by a numeric constant. The

numeric constant must be enclosed in parentheses. The
symbol is a microinstruction Field name used in the

assembly. Sub-field names may not be used. The numeric
constant specifies a bit to be selected from the field. The
bits of a field are numbered right to left. Bit zero is the low
order bit of the Field. Each Field operand selects a single
bit from the microinstruction

The microinstruction bits selected by the Field operands
are placed in the PROM module word in the order of the
Field operand list. The bit from the first Field operand is
placed in the leftmost (high order) bit position of the
PROM module word. Normally the number of Field
operands must equal the PROM module word width
(defined by a previous MEMORY statement).

Unprogrammed bits may be assigned constant values with
the SELECT statements. This is accomplished by using a
numeric constant in place of a Field operand to set the
value of a bit in the PROM module word. The value of the
numeric constant must be zero or one. A ‘constant bit
specification can be used in the same manner as a Field
operand.

The SELECT statement may also specify that the bit value
of a Field operand be inverted when it is placed in the
object word. This is specified by preceding the Field
operand with the keyword — INVERT. If a group of
contiguous Field operands (perhaps all Field operands in
the SELECT statement) are to be inverted, they are
enclosed in parentheses following the INVERT keyword.
All bits in the group are inverted including constant bit
specifications and already inverted Field operands (or
groups). Parentheses may also be used without the INVERT
keyword to group Field operands for readability.

Examples: Inverted Fields.

SELECT OP(4) OP(3) OP(2) OP(1) OP(0)
INVERT KB(0);

SELECT INVERT (R(2) R(1) R(0) 1
“UNPROGRAMMED");

When the extended feature of multiple microinstruction
formats is used, a SELECT statement must be included for
each microinstruction format which occurs in the object
module. All field names in a SELECT statement must be
from the same microinstruction format.

When the microinstruction format occupies more than one
word in an assembly memory block, all words of the
multiple word format must be specified in the SELECT
statement. In this case, the number of Field operands is a
multiple of the PROM module word width. Multiple words
are specified in a left to right manner with the Field
operands for the first word specified first followed
immediately by the Field operands for the second word and
so forth.

In the case of a look-up table PROM or a Field expansion
PROM, where the Program Section contains data for only
one PROM, the SELECT Statement must request all of the
bits in the Program Section.

Occasionally, the microprogram will contain fewer
instructions than the length of the PROM module. Since
the Micro Format Program must output data to every
PROM address, a default value for non-programmed
locations may be defined. This is done by including an
additional SELECT statement with the desired default
value as the statement’s only operand. If an additional
default SELECT statement is not included, un-programmed
locations will be filled with zeros.

Example of Default SELECT Statement:

SELECT
(11111111)

“DEFAULT ALL ONES LEAVES
PROM UN-PROGRAMMED" ;

As an example of assigning a microprogram to firmware,
consider a microprogram that consists of 512
microinstructions, each 24 bits wide. A logical choice of
Control Store PROMs would be three 825115s which are
512 x 8 bipolar PROMs. In this case, a nine-bit address
shared by the three PROMs would produce 512 24-bit
microinstruction words.

Figure 5.4 illustrates a possible solution to the above
problem of assigning a 512 x 24-bit microprogram to
Control Store PROMs. The control Field FUNCTION has
been vertically divided into two 256 x 8 PROM modules. A
section of the command file assigning PROM modules one
and two are presented in the figure.

5.3

MICROINSTRUCTION

BIT = My3 MieMis Mia MiMyg Mg » Mg
1 1 1 1T 1111 rr 111+ 117 17 17 17 17T 17 1"/
I | |
~<—FUNCTION ——-——»I‘* BUS l NEXT ADDRESS
_
| CONTROL ™ Caray |
| CONTROL
1 T (NS N A N (N N N (N N O N N S |
FIGURE 5.4(A)
PROM MODULES
ADDRESS ADDRESS ADDRESS
FFie IFF g IFF o

—_—— -

PROM MODULE 2

MW
(256 X 8)

00,4 KZSP"ZZIM21I""20’:"19:V'18:"'17I""16

FF

PROM MODULE 3

>
N\

PROM MODULE 4

L
—

16
PROM MODULE 1
825115 825115
\/__N (512 X 8) (512 X 8)
825114
(256 X 8)
ﬂ"—z;"-"z_zm—z1-“—"zo_“"1—dw1_8w17ﬁ1a 00 ["T15—M1:M1_3M1_2“’W1M_1_0 Mg Mg | M, Mg Mg M, My M My M|
00,2329 °) <5 % Y Tqoo, 15191312 1, 19 9, 8j00 700 08 4 3 2 Y
FIGURE 5.4 (B)
MEMORY WIDTHS8 LENGTH 256 “PROM MODULE ONE" ;
OUTPUT FROMO TO 255 OF MICROPROGRAM ;
SELECT FUNCTION(7) FUNCTION(6) FUNCTION(5) FUNCTION(4)
FUNCTION(3) FUNCTION(2) FUNCTION(1) FUNCTION(O) ;
MEMORY WIDTHS8 LENGTH 256 “PROM MODULE TWO" ;
OUTPUT FROM 256 TO 511 OF MICROPROGRAM ;
SELECT FUNCTION(7) FUNCTION(6) FUNCTION(5) FUNCTION(4)

FUNCTION(3)

FUNCTION(2) FUNCTION(1) FUNCTION(O) ;

FIGURE 5.4 (C)

5.4

FIGURE 5.4

FORMATTING THE PAPER TAPE OUTPUT

When the microprogram and any auxiliary PROM programs
have been properly assigned to PROM modules, the Micro
Format Program needs only to know how the object data
should be formatted to punch the PROM programming
tapes. The PROM modules are formatted with two state-
ments: the FORMAT Statement and the INSERT State-
ment. The FORMAT Statement specifies how each word of
a PROM module is formatted on the output tape. The
INSERT Statement allows the microprogrammer to punch

tape beginning and ending control characters as well as
intersperse comments within the tape output (the latter
only if comment characters won’t confuse the PROM
programmer).

The FORMAT Statement

The FORMAT Statement specifies the format of the PROM
module words (either binary or hexadecimal) and specifies
optional framing characters if they are required. The format
of the FORMAT Statement is presented in Figure 5.5.

WORD [HEADER=cl {DATA= 5'ENXARY fe, °)} [TRAILER= cl
FORMAT) ‘2650’ ;
FIGURE 5.5

Output formats are selected with the keyword — WORD. In
word format, no addresses are used. Intermediate object
text is formatted into PROM module words (word width is
defined by the MEMORY statement). The PROM module
words are output starting at word address zero. Each data
word may be formatted in hexadecimal or binary and may
have framing characters. Additionally, in binary, arbitrary
characters can be chosen to represent zero and one. Using
the word format options, several common object output
formats can be built, including SMS format and BNPF
code.

Following the WORD keyword is a specification of the
output format for memory words. This specification must
be enclosed in parentheses. Within the parentheses is a
sequence of one to three operands. Each operand consists
of a keyword followed by an equal (=) followed by a value.
The operands are as follows:

HEADER — This operand specifies the beginning frame
characters on each word.
DATA — This operand specifies the output format of

the object word.

TRAILER — This operand specifies the ending frame
characters for each word.

The HEADER operand consists of HEADER= followed by
a quoted string. The characters in the string will be placed
in the front of each output word. If present, the HEADER
operand must be the first operand. If the HEADER
operand is omitted, no characters will be placed in front.

The DATA operand consists of DATA= followed by a
format description. It may not be omitted. The description
may be the keyword — HEX alone, indicating hexadecimal
format. In HEX format, O through 9, A through F represent
0 through 9, 10 through 15, respectively. The description
may also be the keyword — BINARY. When BINARY
format is selected, the output characters for zero and one
must be specified. These are specified with two quoted
strings separated by a comma. The quoted string list must
follow the BINARY keyword and be enclosed in paren-
theses. The first string will be used for zero, the second for
1. Each string must specify a single character.

In BINARY format, the number of characters output for a
word is equal to the memory word width. In HEX format,
the number of hexadecimal digits output for a word is
computed from the memory word length. For example, if
the memory word width is 8, two hexadecimal digits are
used; if the width is 4, one is used.

The TRAILER operand consists of TRAILER= followed by
a quoted string. The characters in the string will be placed
after each output word. If present, the TRAILER must be
the last operand (follows the DATA operand). If omitted,
no characters will be placed after the output word.

The output words are arranged on object output records
according to the length of the output word format. This
width is equal to the number of characters (if any) in the
header and trailer plus the number of characters in the data
format. Using this length and the object output file record
length, the number of words placed on each record is

5.6

determined. The number of words per record is always a
power of two (2, 4, 8, 16, etc.). For example, an 8-bit word
in SMS format (see the examples below) would be
formatted 16 words per record with a record size of 80. In
BNPF format, it would be formatted 8 words per record.
The remaining portion (if any) of each record is left blank.
If blanks are desired between words, they should be
included in the header or trailer strings.

It may happen that more than one output format are
required. Since the Micro Format Program reads the
command file line by line, a new format defined by a
FORMAT statement begins when the FORMAT Statement
is encountered. Any PROM modules defined after a
FORMAT Statement follow the format it has defined.

The Micro Format Program has intrinsic mechanisms for
generating 2650 Absolute Object Code which can be read
by the Signetics TWIN (Test Ware Instrument — A
microprocessor system development instrument) when it is
used to program PROMs. The 2650 Absolute Object Code
format is selected by following the Op-Code FORMAT with
the character constant string, “2650.” (See Appendix D for
a full description of the 2650 Absolute Object Format.)
The 2650 Absolute Object Format may use an execution
address. This address is passed to the Micro Format
Program by the END Statement of the microprogram. In
this case, the terminating END Statement of the Micro-
program Section may have the execution address as an
operand.

When the 2650 format is used, the length specification in
the MEMORY Statement may be omitted. If the length
specification is omitted the FROM address must equal zero.
In this mode of operation, data will be placed in pro-
grammed addresses only.

Examples: FORMAT Statements.

FORMAT ‘2650" “2650 ABSOLUTE OBJECT
FORMAT"”;

FORMAT WORD (DATA=HEX TRAILER="""")
“SMS FORMAT"’;

FORMAT WORD (HEADER='B' DATA=BINARY
(‘N’, ‘P') TRAILER='F’) “BNPF CODE";

FORMAT WORD (HEADER= ‘B’ DATA=BINARY
(‘N’, ‘P') TRAILER=F’) “BNPF CODE WITH A
BLANK BETWEEN WORDS"’;

FORMAT WORD (DATA=HEX) “UNFRAMED
HEXADECIMAL OUTPUT";

The INSERT Statement

The INSERT Statement requests output of literal data onto
the PROM programming tape. The format of the INSERT
Statement is given in Figure 5.6.

INSERT {c}

[“COMMENT"] ;

FIGURE 5.6

The statement consists of the INSERT opcode followed by
a character constant. The characters of the constant are
output as a record in the object output file. If the number
of characters in the constant is not equal to the record
length of the object output file, it is blank-filled or
truncated, as necessary, on the right.

The INSERT Statement is used to generate literal object
records. These records may come before and after PROM
modules. They are used in the object output file to separate
and identify PROM modules and to provide framing
characters or records for PROM modules.

5.6

Examples:
INSERT 'EMULATOR MICRO PROGRAM’
“OBJECT TITLE";

INSERT "**#**¥***¥% nOBJECT MODULE
SEPARATOR";
The END Statement

The command file is terminated with the END Statement.
The END Statement’s format is illustrated in Figure 5.7.

The END Statement consists only of the END Op-Code.

END

[“COMMENT"];

FIGURE 5.7

THE MICRO FORMAT PROGRAM LISTINGS

The listing file for the Micro Format Program has the same
structure as the listing file of the Micro Assembly Program.
The first heading line has the following format:

SIGNETICS BIPOLAR MICRO FORMATTER(A)
T X KK KKK KX KK R KKK KR KKK KR KRKRX PAGE 00000

The row of asterisks contain the title of the listing section.
The second heading describes the information in the listing
and depends on the listing section.

The first section of the listing file is a formatted listing of
the command file input. The listing records consist of a
command file line number followed by the first 72
positions of a command file record. Error records may be
interspersed in the first listing section. The first heading line
contains — FORMAT CONTROL INPUT. The second
heading line is:

LINE IMAGE

The second section of the listing file is a summary listing.
The summary listing has two sub-sections, each beginning
on a new page. The first sub-section is a listing of the
PROM modules produced. Each PROM module is given a
number and the following information is listed — module
number, module word width, module length in words,
object format (2650, HEX or BINARY), beginning address
in the Program Section, Program Section name. In this
sub-section, the first heading line contains — OBJECT
MODULE SUMMARY. The second heading line is:

MODULE WIDTH LENGTH FORMAT FROM PROGRAM

The second sub-section of the summary listing lists allo-
cation of microinstruction fields to PROM modules. For
each bit of each field the following information is listed —
microinstruction format ID, field name and bit number of
the field, object number and bit number in the object word.
In this sub-section, the first heading line contains —
MICROINSTRUCTION FIELD SUMMARY. The second
heading is:

ID FIELD OBJECT MODULE

5.7

APPENDIX A

SOURCE TOGGLES — SETTING PROGRAM
PARAMETERS

The microprogrammer is given control of various program
parameters with source toggles. These parameters include
the Fortran device number of the Input/Output files, the
number of lines in a page of output listing, the maximum
word size (in bits) of numerical values and control of cross
reference listing (whether or not it is produced).

Most toggles may be set anywhere in the source input to
the two programs, even between lines of a single statement.
The exceptions are toggles that must be set before any
assembly language statement in the Micro Assembly
Program and toggles that must be set before any command
file statements in the Micro Format Program.

Source toggles are set with toggle operands. The format of
the toggle operands is given in Figure A.1.

%toggle —letter=toggle —value

FIGURE A.1

The first character of a source line containing a toggle
operand is a percent sign (%). The percent sign is followed
by a single letter which identifies the toggle being set. The
toggle letter is followed by an equal sign (=) delimiter and
the value that the toggle is to be set to. There may be no
embedded blanks in the toggle operand string. The toggle
value is set to a decimal numeric constant.

Multiple toggles may be set on a single line of source, as
each percent sign acts as a delimiter between adjacent
toggle operands.

If a toggle operand that must set before any source
statement is set after the first language element of the first
statement of the source, it is ignored and no error
indication is given. Other illegal toggle operands are also
ignored with no error indication.

Toggles are not reproduced on the source listings.

MICRO ASSEMBLER TOGGLES

The following Micro Assembler toggles may be set
anywhere in the source file:

Toggle Name Description
P Size in lines of a page in the listing file.
Default value is 60. The minimum value is
10.
X If the toggle is set to a non-zero value, the

symbol cross reference listing will be
generated for all of the source input
following the toggle. If the value is zero, no
cross reference listing will be produced.
Default value is 1. Thus, the X toggle
permits selective generation of the cross
reference listing.

S Fortran device number for source file.
Default value is 1.

0] Fortran device number for object file.
Default value is 2.

L Fortran device number for listing file.
Default value is 4.

| Fortran device number for instrinsic file. See
Appendix C for a description of the intrinsic
file. Default value is 3.

A

The following Micro Assembler toggles must be set before
any assembly language statement:

Toggle Name

AB

Examples:

Description

Fortran device numbers for two assembler
work files. See Appendix C. Default values
are 7 for A and 8 for B.

Maximum number of bits in a memory word
or instruction format in the current
assembly. The default value is 128. The
maximum value is 4095 and the minimum
value is 32.

Number of bits in the Fortran integer word
on the source machine. This will optimize
use of internal space within the micro
assembly program. The default value is 16.
The minimum value is 13. The Micro
Assembler assumes the maximum positive
integer value to be

2(%F=1)_4,

Micro Assembly toggle records (values are

default values).

%P=60

%A=7

%X=1

%B=8

%S=1 %0=2 %L=4 %I=3

%M=128 %F=16

MICRO FORMAT TOGGLES

The following Micro Format toggles may be set anywhere
in the format control file:

A.2

Toggle Name

P

Description

Size in lines of a page in the listing file.
Default value is 60. The minimum value is
10.

Fortran device number for the format
control file. Default value is 1.

Fortran device number for the loadable
object output file. Default value is 2.

Fortran device number for the intermediate
object input file. Default value is 3.

Fortran device number for the listing file.
Default value is 4.

The following Micro Format toggles must be set before any
command file statements:

Toggle Name

M

Description

Maximum number of bits in any object word
or micro instruction in the intermediate
object file. The default value is 128. The
maximum value is 4095 and the minimum
value is 32.

Number of bits in the Fortran integer word
on the format machine. Default value is 16.
The minimum value is 13.

Examples: Micro Format toggle records (values are default

values).

%P=60

%M=128

%C=1 %0=2 %I=3 %L=4

%F=16

APPENDIX B — INTRINSIC MICROP EQUIVALENT SOURCE INPUT

The following three figures present source input that if equivalent to calling the intrinsic microps with INTRINSIC
included in the user’s source, would produce results Statements.
SIGNETICS BIPOLAR MICRD ASSEMBLER(A) 8X02 INTRINSIC MICROPS. PAGE 00002
ADDR: ACF BA
00007 “8X02 INTRINSIC MICROPS™

00008 MICROP TSK ASSIGN ACF=0008B;
00009 MICROP INC ASSIGN ACF=001B;
00010 MICROP BLT ASSIGN ACF=0108;
00011 MICROP POP ASSIGN ACF=0118;3
00012 MICROP BSR ASSIGN ACF=1008B;
00013 MICROP PLP ASSIGN ACF=101B;
00014 MICROP BRT ASSIGN ACF=1108;
00015 MICROP RST ASSIGN ACF=1118;

FIGURE B.1

SIGNETICS BIPOLAR MICRO ASSEMBLER(A) 3002 INTRINSIC MICROPSe PAGE 00002

ADDR: F KB
00007 ®3002 INTRINSIC EQU°S®™
00008 RO : EQU 00; *3002 REGISTER 0O"
00009 - R1 = EQU O0Ol15 %3002 REGISTER O1™
00010 R2 = EQU 02; ®3002 REGISTER 02"
0001l R3 = EQU 035 %3002 REGISTER 03%
00012 R4 = EQU 04; “3002 REGISTER 04"
00013 RS5 : EQU 05; %3002 REGISTER 05"
00014 R6 : EQU 065 %3002 REGISTER 06"
00015 R7 = EQU 075 *3002 REGISTER O7"
00016 R8 : EQU 08; ™"3002 REGISTER 08"
00017 R9 : EQU 09; ™3002 REGISTER 09"
00018 T H EQU 105 %3002 REGISTER T*
00019 AC : EQU 115 *3002 REGISTER AC™
00020 %3002 INTRINSIC MICROPS®™
00021 “R GROUP I%

00022 MICROP ARAMAC(aAR) ASSIGN IF @R EQ AC OR aR EQ T THEN F=02H+aR ELSE F=00H+aR FI;
00023 MICROP ILR(aR) ASSIGN ARAMAC(aR) DEFAULT KB=03;

00024 MICROP ALR(3R) ASSIGN ARAMAC(aR) DEFAULT KB=-1;

00025 MICROP MARK(3R) ASSIGN IF 3R EQ AC OR @R EQ T THEN F=12H+aR ELSE F=10H+¢aR FI;
00026 MICROP MINR(3R) ASSIGN MARK(aR) DEFAULT KB=0j;

00027 MICROP MARS(aR) ASSIGN MARK(aR) DEFAULT KB=-1;

00028 MICROP ASAM(aR) ASSIGN IF @8R EQ AC OR aR EQ T THEN F=22H¢aR ELSE F=20H¢aR FI;
00029 MICROP CSR(®R) ASSIGN ASAM(@R) DEFAULT KB=0;

00030 MICROP ASA(@R) ASSIGN ASAM(@R) DEFAULT KB=-1j;

00031 MICROP ARAM(A@R) ASSIGN IF @R EQ AC OR @R EQ T THEN F=32H+aR ELSE F=30H+aR FI;
00032 MICROP INR(@R) ASSIGN ARAM(aR) DEFAULT KB=0;

00033 MICROP ARA(3R) ASSIGN ARAM(aR) DEFAULT KB=-1j;

00034 MICROP NRAM(aR) ASSIGN IF aR EQ AC OR aR EQ T THEN F=42H+a3R ELSE F=00H+aR FI;
00035 MICROP CLR(@R) ASSIGN NRAM(aR) DEFAULT KB=0;

00036 MICROP NRA(aR) ASSIGN NRAM(3R) DEFAULT KB=-13

00037 MICROP LTRM(aR) ASSIGN IF @R EQ AC OR 3R EQ T THEN F=52H¢aR ELSE F=50H¢aR FI;
00038 MICROP LTR(aR) ASSIGN LTRM(@R) DEFAULT KB=-1;

FIGURE B.2
B.1

00039 MICROP ORAM(2R) ASSIGN IF @R EQ AC OR @R EQ T THEN F=62H+aR ELSE F=60H+3R FI;
00040 MICROP NOP(2@R) ASSIGN ORAMIaR) DEFAULT KB=0;
00041 MICROP ORA(3R) ASSIGN ORAM(3R) DEFAULYT KB=-1j '
00042 MICROP XRAM(3R) ASSIGN IF 2R EQ AC OR @R EQ T THEN F=T2H¢aR ELSE F=T0H+aR FI;
00043 MICROP LCR(AR) ASSIGN XRAM(@R) DEFAULT KB=0;
00044 MICROP XRA(2R) ASSIGN XRAM{(aR) DEFAULT KB=-1j
00045 ®R GROUP II®
00046 MICROP AMAM(@R) ASSIGN IF @R EQ AC OR 2R EQ T THEN F=00H+®+aR FI;
00047 MICROP AM(@R) ASSIGN AMAM(a3R) DEFAULT KB=0;
00048 MICROP AMA(@R) ASSIGN AMAM(3@R) DEFAULT KB=-13
00049 MICROP MAMK(3R) ASSIGN IF @R EQ AC OR aR EQ T THEN F=10H+aR FI;
00050 MICROP MAM(@R) ASSIGN MAMK(3R) DEFAULT KB=03
00051 MICROP MAMS(3R) ASSIGN MAMK(a@R) DEFAULT KB=-13
00052 MICROP ASAMX(3R) ASSIGN IF aR EQ AC OR aR EQ T THEN F=20H+¢aR FIj;
00053 MICROP AMAMX(3R) ASSIGN IF 3R EQ AC OR @R EQ T THEN F=30H+3R FI;
00054 MICROP NMAM(3R) ASSIGN IF @R €Q AC OR @R EQ T THEN F=40H+aR FI;
00055 MICROP NMA(@R) ASSIGN NMAM(aR) DEFAULT KB=-13
00056 MICROP LTMM(aR) ASSIGN IFf 3R EQ AC OR @R EQ T THEN F=50H+3R FIj;
00057 MICROP LTM(@R) ASSIGN LTMM(a@R) DEFAULT KB=-13}
00058 MICROP OMAM(AR) ASSIGN IF @R EQ AC OR @R EQ T THEN F=60H¢aR FI;
00059 MICROP LM(@R) ASSIGN OMAM(aR) DEFAULT KB=0;
00060 MICROP OMA(@R) ASSIGN OMAM(3R) DEFAULT KB=-1;
00061 MICROP XMAM(AaR) ASSIGN IF 3R EQ AC OR aR EQ T THEN F=TO0H+#aR FI;
00062 MICROP LCM(@R) ASSIGN XMAM(3@R) DEFAULT KB=0;
00063 MICROP XMA(3R) ASSIGN XMAM(aR) DEFAULT KB=-13
SIGNETICS BIPOLAR MICRO ASSEMBLER(A) 3002 INTRINSIC MICROPS. PAGE 00003
ADDR: F KB
00064 “R GROUP III®
00065 MICROP SRA(3R) ASSIGN IF 3R EQ AC OR aR EQ T THEN F=04H+aR FI DEFAULT KB=0;
00066 MICROP ACAKAM(®R) ASSIGN IF 3R EQ AC OR aR EQ T THEN F=14H<+aR FI;
00067 MICROP ACA(3R) ASSIGN ACAKAM{aR) DEFAULT KB=0;
00068 MICROP AAS(@R) ASSIGN ACAKAM(@aR) DEFAULT KB=-1;
00069 MICROP ASIM(aR) ASSIGN IF @R EQ AC OR @R EQ T THEN F=24H*aR FI;
00070 MICROP ASI(a@R) ASSIGN ASIM(aR) DEFAULT KB=-13
00071 MICROP AAIM(@R) ASSIGN IF 3R EQ AC OR @R EQ T THEN F=34H*aR FI;
00072 MICROP AAI(3R) ASSIGN AAIM(@R) DEFAULT KB=-13;
00073 MICROP NAIM(aR) ASSIGN IF 3R EQ AC OR @R EQ T THEN F=44H+aR FI;
00074 MICROP NAI(@R) ASSIGN NAIM(aR) DEFAULT KB=-1;
00075 MICROP LTAM(@R) ASSIGN IF @R EQ AC OR @R EQ T THEN F=54H+8@R FI;
00076 MICROP DAIM(2R) ASSIGN IF @R EQ AC OR @R EQ T THEN F=64H+aR FI;
00077 MICROP OAI(@R) ASSIGN OAIM(aR) DEFAULT KB=-13%
00078 MICROP XAIM(@R) ASSIGN IF aR EQ AC OR @R EQ T THEN F=T4H+aR FI;
00079 MICROP XAI(@R) ASSIGN XAIM(@R) DEFAULT KB=-1;
FIGURE B.2 (continued)
SIGNETICS BIPOLAR MICRO ASSEMBLER(A) 2901 INTRINSIC MICROPSe PAGE 00002

ADDR: A B DST FUN SRC

00010 ©2901 INTRINSIC EQU®S*™

0ooollr RO = EQU 00; ®2901 REGISTER 00"
00012 Rl = EQU 013 ™2901 REGISTER OL"
00013 R2 = EQU 02; ®2901 REGISTER 02"
00014 R3 = EQU 03; %2901 REGISTER 03"
00015 R4 = EQU 045 %2901 REGISTER 04"
00016 RS = EQU 055 ®2901 REGISTER 05%
00017 R6 = EQU 0635 "2901 REGISTER 06"
00018 RT7T = EQU 075 *2901 REGISTER 07"
00019 R8 : EQU 08; ™2901 REGISTER 08"
00020 R9 = EQU 09; *2901 REGISTER 09"
00021 R10 = EQU 10; %2901 REGISTER 10%

FIGURE B.3

B.2

00022
00023
00024
00025
00026
00027
00028
00029
00030
00031
00032
00033
00034
00035
00036
00037
00038
00039
00040
00041
00042
00043
00044
00045
00046
00047
00048
00049
00050
00051
00052
00053
00054
00055
00056
00057
00058
00059
00060
00061
00062
00063
00064
00065
00066

SIGNETICS BIPOLAR MICRO ASSEMBLER(A)

ADDR:

00067
‘00068
00069
00070
00071
00072
00073
00074
00075

R11 = EQU 11; %2901 REGISTER 11*
R12 : EQU 12; "2901 REGISTER 12%
R13 : EQU 13; %2901 REGISTER 13"
R14 : EQU 14; %2901 REGISTER 14"
R1S5 : EQU 15; %2901 REGISTER 15"
Q H EQU -16; ®2901 REGISTER Q¥
STR = EQU 3; %2901 DESTINATION = STORE RAMY
sTQ = EQU 0; %2901 DESTINATION : STORE Q"
SLR 2 EQU 5; %2901 DESTINATION : SHIFT LEFT RAM®™
SLRQ: EQU 4; %2901 DESTINATION : SHIFT LEFT RAM <+ Q%
SRR 3 EQU T; #2901 DESTINATION = SHIFT RIGHT RAM®
SRRAQ: EQU 6; %2901 DESTINATION : SHIFT RIGHT RAM + Q%
Y H EQU 1; %2901 OESTINATION : STORE RAM ¢+ OUTPUT A REGISTER®
©2901 INTRINSIC MICROPS®™
n2 ADDRESS INSTRUCTIONS®™
MICROP @2R(3aRyaSeaMeaDsaY) ASSIGN A=aR IF @S NE Q
THEN SRC=1 B=aS ELSE SRC=0 B=aD FI IF @Y EQ 16 THEN DST=aM ELSE DST=2 FI;
MICROP AR(dR,3S) @aM=1(aD=3S)saY¥=16(@A) ASSIGN FUN=0 a2R(3RyaSyaMyaDsaY);
MICROP RSR(@Ry@S) aM=1(3D=aS)+3Y=16(aA) ASSIGN FUN=1 32R(8Rya@SyaMeaDyaY);
MICROP SR(3R»3S) aM=1(aD=aS)»3Y=16(3A) ASSIGN FUN=2 @2R(3Ry3SsaM,aDsaY);
MICROP ORR(2RyaS) aM=1(3D=aS)¢aY¥=16(3A) ASSIGN FUN=3 @2R(3Ry3S+38M9aD9adY);
MICROP NR(QR¢3S) aM=1(aD=aS)saY=16(3A) ASSIGN FUN=4 32R(3R,@S+3MyaD9a@Y) 3
MICROP NCR{3R¢3S) aM=1(20=aS)+3Y=16{3A) ASSIGN FUN=5 32R(3RyaSyaMyaByaY);
MICROP XR(@Ry2S) aM=1({aD=aS)»aY=16(3A) ASSIGN FUN=6 a2R(3Ry3S9aM¢aDsaY);
MICROP XCR(3R.2S) aM=1(@D=aS)saY=16(2A) ASSIGN FUN=7 a2R{(3R93Sy3aM9aD9aY)3
%] ADDRESS INSTRUCTIONS®™
MICROP @1R{@SsaMyaDyadY93A) ASSIGN B=aD IF aS NE Q
THEN IF @S EQ @D THEN SRC=3 A=3A ELSE SRC=4 A=3S FI ELSE SRC=2 A=aA FI

IF aY EQ 16 THEN DST=aM ELSE DST=2 FIj}

MICROP IR(aS) 3M=1(a8D=3S)yad¥=16(aA=3S) ASSIGN
MICROP OR(@S) aM=1(aD=aS)yaY=16(3A=aS) ASSIGN
MICROP LNR(@S) aM=1(3D=8S)saY¥=16(3A=aS) ASSIGN
MICROP LR(3S) 3M=1(3D=a3S)»@Y=16(3A=8S) ASSIGN
MICROP LCR(@S) 3M=1(aD=3S)9d¥Y=16(aA=aS) ASSIGN
%] ADDRESS INSTRUCTIONS®™
MICROP a1D(3RyaM9@DydYeadA) ASSIGN B=3D IF aR NE
THEN SRC=5 A=a3R ELSE SRC=6 A=3A FI IF aY EQ 16
MICROP AD(aR) aM=1(aD=aR)¢3Y=16(3A=aR) ASSIGN
MICROP RSD(@aR) aM=1(aD=aR)sa¥=16(@A=a3R) ASSIGN
MICROP SD(aR) aM=1(aD=3R)e¢a¥Y=16{3A=aR) ASSIGN
MICROP O0OD(aR) aM=1(3D=aR)sadY=16(3A=aR) ASSIGN
MICROP ND(aR) aM=1(3D=3R)yaY=16(3A=3R) ASSIGN
MICRDOP NCD(3R) aM=1(aD=aR)sadY=16(aA=aR) ASSIGN
MICROP XD(3R) 3M=1(aD=3R) ¢adY=16(a3A=aR) ASSIGN
MICROP XCD(3R) 3M=1(aD=3R)yaY¥=16(3A=aR) ASSIGN

A

B DST

FUN SRC

%0 ADDRESS INSTRUCTIONS®

MICROP 30D(3MyaD9eadYeadA)

ASSIGN SRC=7 B=aD

FUN=0
FUN=1
FUN=2
FUN=3
FUN=T7

Q

THEN
FUN=0
FUN=1
FUN=2
FUN=3
FUN=4
FUN=5
FUN=6
FUN=T

2901 INTRINSIC MICROPS.

alR(3S+3My@D9aYea@A) 3
3lR(3SyaMeaDsadYedA)§
3lR{3SeaMeaD9aY9edA) 3
AlR(3SsaM9a3DyaYeadA) 5
3lR(3SoaMe@DeadYeadA)§

DST=aM ELSE DST=2 FI
21D(AReaMeAD9@Y9aA) 3
@l0(aRe3M9@D9dY9aA) 3
@1D(AReAM9y@D9@Y93A) 5
31D{aR93M93D9AY93A) 5
@1D(aRy2M9aD9@Y9dA) 5
31D(aARoaM9aD9AV9dA) 5
@1D(3RydM9adD9AY @A) §
a1D(3Ry3M9aDs@YedA) 3}

PAGE 00003

A0D(3dMedDeadYedA) §
d0D(@Mea3D9a@YedA)§
300 (aMeaD9adYe@A);
300(aMs@D9@Y9dA)}
200(aMeaDedYeadA)§

IF @Y EQ 16 THEN DST=aM A=0 ELSE DST=2 A=3A FI;
MICROP ID 3M=1(3D=0)9@Y=16(3A=0) ASSIGN FUN=0
MICROP LND aM=1(3D=0)+@Y=16(3A=0) ASSIGN FUN=1
MICROP DD aM=1(3D=0)¢@Y=16(3A=0) ASSIGN FUN=2
MICROP LD 3M=1(aD=0),aY=16(adA=0) ASSIGN FUN=3
MICROP LZ 3M=1(aD=0)93Y=16(aA=0) ASSIGN FUN=4
MICROP LCD aM=1(aD=0)9dY=16(3A=0) ASSIGN FUN=7

?00(3Mea3DeaY9aAA) S

FIGURE B.3 (continued)

B.3

APPENDIX C — INSTALLATION CONSIDERATIONS

COMPILATION

The Fortran source deck for the Micro Assembly and Micro
Format Programs can be compiled with any standard ANSI
Fortran compiler. Prior to compilation, the defaults for
source toggles can be altered in the Fortran source. The
record lengths for each file may also be altered. This change
is described in the Installation Manual provided with Micro
Assembler Source decks (or tapes). The toggles and their
defaults are described in Appendix A.

EXECUTION — MICRO ASSEMBLY PROGRAM

During execution, the Micro Assembly Program utilizes
several 1/O files. All files are sequential and consist of 80
character fixed length records. Except for the work files,
each file is accessed as an input file or output file only. All
input files may be rewound and reread as required.

Source File

This file is an input only file which contains the source
input for the Micro Assembly Program. The toggle for this
file is %S.

Object File

This file is an output only file which contains the
intermediate object output of the Micro Assembly Program.
The toggle for this file is %0.

Listing File

This file is an output only file which contains the listing
output of the assembly. The toggle for this file is %L.

Work Files

There are two work files which are used to sort the symbol
cross reference information. Both files are used for input
and output. The toggles for these files are %A and %B.

Intrinsic File

The intrinsic file is an input only file which contains the
intrinsic microp definitions. The toggle for this file is %l.

This file contains the intrinsic microps for the 8XO02,
N3002 and the N2901-1. The intrinsic deck is available with
the Micro Assembler source.

Each intrinsic definition block consists of a header record
followed by statements that define the intrinsic microps
and value symbol assignments. The header record begins
with a percent sign (%). The percent sign is followed by a
self-defining-constant which identifies the intrinsic
definition block. The remainder of the header is available
for user comments. Each intrinsic definition block is
terminated by the header record of the next intrinsic
definition block. The last intrinsic definition block is
terminated by a record consisting of a single percent sign
followed by blanks. Intrinsic files may not contain toggle
records.

EXECUTION — MICRO FORMAT PROGRAM

During execution, the Micro Format Program utilizes
several 1/0 files. All files are sequential and consist of 80
character fixed length records. Each file is accessed as either
an input only file or an output only file. The intermediate
object file (input) may be rewound and reread as required.

Command File

This file is an input only file which contains the command
file for the Micro Format Program. The toggle for this file is
%C.

Intermediate Object File

This file is an input only file which contains the
intermediate object file output from the Micro Assembly
Program. The toggle for this file is %l.

Listing File

This file is an output only file which contains the listing
output of the Micro Format Program. The toggle for this
file is %L.

Object Output File

This is an output only file that contains the object output
(PROM programming tapes) from the Micro Format
Program. The toggle for this file is %0.

C.1

APPENDIX D — RESERVED WORDS OF THE
MICRO ASSEMBLER LANGUAGE

*MICRO ASSEMBLY PROGRAM RESERVED WORDS

Statement Op-Codes:

INSTRUCTION
END

FIELD

ORG

TITLE
FORMAT

Keywords:

LENGTH
WIDTH
SOURCE
ELSE

MICROP
INTRINSIC
PROGRAM
OBJECT
SPACE

DEFAULT
ON

IF

Fl

DCL
EQU
SET
LIST
EJECT

ASSIGN
OFF
THEN

Expression Operators:

NOT AND OR
XOR SHL SHR
EQ NE GT
LT GE LE

*MICRO FORMAT PROGRAM RESERVED WORDS

Statement Op-Codes:

FORMAT MEMORY OUTPUT
SELECT INSERT END
Keywords:

WORD HEADER DATA
TRAILER HEX BINARY
WIDTH LENGTH FROM
TO OF INVERT

D.1

APPENDIX E — 2650 ABSOLUTE OBJECT FORMAT
(From Applications Memo SS51)

INTRODUCTION

The format for absolute code produced for the 2650 is
described in this application note. The absolute object code
is formatted into blocks. The first character of every block
is a colon. Inside of a block, all the characters are
hexadecimal, i.e., 0 to 9 or A to F, inclusive. Only
non-printing ASCII control characters may occur within an
interblock gap. These are the characters in the first two
columns (columns 0 and 1) of the ASCII standard code
table. A CR/LF is used within the interblock gap to reset
the TTY or terminal after each block.

Each block is independent. For example, paper tape can be
positioned prior to any block and a load started. The
loading of absolute object code will be halted by:

A BCC error on the address + count fields

A BCC error on the data field

An incorrect block length

A non-hex character within the block

The block length field contains the number of bytes of
actual data which is half the number of hex characters in
the data field. While the size of the data field can range
from 2 to 510 characters, a standard size of 60 characters
has been established so that the tape may be easily
generated and read on a variety of terminals and systems. A
block length of zero indicates an End of File (EOF) block.
The address field of an EOF block contains the start
address of the loaded program.

The Block Control Character is 8 bits formed from the
actual bytes and not from the ASCII characters. The bytes
are in turn exclusive or’ed to the BCC byte, and then the
BCC byte is left rotated one bit. It appears as two hex
characters. Both the address and count fields and the data
field are followed by a BCC character pair. The BCC
prevents storing data at an invalid memory address or
storing bad data into memory.

EXAMPLE: An object tape that loads ten bytes starting
at location 500
:05000A3C0455B024FFF01F05040030

:000000

FORMAT

1. Interblock gap of any non-printing characters including
spaces

2. Start of block character;
a colon

3. Address field;
four hex characters

4. Count field;
two hex characters in range 0 to 1E

5. BCC for address and count fields;
two hex characters

6. Data field;
twice the value in the count field which is the number of
memory locations loaded by the current block

7. BCC for the data field;
two hex characters

EXAMPLE OF OBJECT FORMAT

:05000A3C0455B024FFF01F05040030

b bd

— Start of block character (colon)

— Starting address for block (H'0500’)

— Number of bytes in block (H'0A’ = 10)
— BCC byte for fields 3 and 4 (H'3C’)

— Data, two characters per byte

— BCC byte for field 6 (H'30’)

NO g~ ON

E.1

APPENDIX F — ASCIl CHARACTER SET

ACSII CHARACTER SET (7-BIT CODE)

A\
A

M.S.
CHAR | © 1 2 3 4 5 6 7
L.S. 000 | 001 | 010 | 011 | 100 | 101 | 110 | 111
CHAR

0 0000 |NUL |[DLE | SP | © @ P \ P
1 0001 |SOH |DC1 | 1 1 | A | a a q
2 0010 |STX |DC2 | * 2 B R b r
3 0011 |ETX |DC3 | # 3 C S c s
4 0100 |EOT |DC4 | $ 4 D T d t
5 0101 | ENQ |NAK | % 5 E U e u
6 0110 | ACK |SYN | & 6 F Vv f v
7 0111 |BEL |ETB | 7 G | w g w
8 1000 | BS |CAN | (8 H X h X
9 1001 | HT | EM |) 9 I Y i y
A 1010 | LF |suB | * J Z i z
B 1011 | VT |ESC | + ; K [k {
c 1100 | FF | FS , < L \ | !
D 1101 | CR | GS | — = M] m }
E 1110 | SO | RS | e > N | A n ~
F o111 | st | us | / ? 0 o | DEL

F.1

APPENDIX G — POWERS OF TWO TABLE

128

256
512
1024
2048

4 096
8192
16 384
32768

65 536
131 072
262 144
524 288

1048 576
2097 152
4 194 304
8 388 608

16 777 216
33 554 432
67 108 864
134 217 728

268 435 456
536 870 912
1073 741 824
2147 483 648

4 294 967 296
8 589 934 592
17 179 869 184
34 359 738 368

68719476 736
137 438 953 472
274 877 906 944
549 755 813 888

1099 511 627 776

00 ~NOoOOoTd WN-=0O0 3

-
- O ©

-
o wWwN

- e
© 00N>

NNNDN
wWN -0

NNNN
NOoO o b

W WNN
- O ©

W Wwww
P WN

W www
© 00N

N
o

2"n
1.0
0.5
0.25
0.125

0.062 5
0.031 25
0.015 625
0.007 8125

0.003 906 25
0.001 953 125
0.000 976 562 5
0.000 488 281 25

0.000 244 140 625
0.000 1220703125 -
0.000 061 035 156 25
0.000 030 517 578 125

0.000 015 258 789 062 5
0.000 007 629 394 531 25
0.000 003 814 697 265 625
0.000 001 907 348632812 5

0.000 000 953 674 316 406 25
0.000 000 476 837 158 203 125
0.000 000 238418 579 101 562 5
0.000 000 119 209 289 550 781 25

0.000 000 059 604 644 775 390 625
0.000 000 029 802 322 387 695 312 5°
0.000 000 014 901 161 193 847 656 25
0.000 000 007 450 580 596 923 828 125

0.000 000 003 725 290 298 461 914 062 5
0.000 000 001 862 645 149 230 957 031 45
0.000 000 000 931 322 574 615478 515 625
0.000 000 000 465 661 287 307 739 257 8125

0.000 000 000 232 830 643 653 869 628 906 25
0.000 000 000 116 415 321 826 934 814 453 125
0.000 000 000 058 207 660 913 467 407 226 562 5
0.000 000 000 029 103 830 456 733 703 613 281 25

0.000 000 000 014 551 915 228 366 851 806 640 625
0.000 000 000 007 275 957 614 183 425 903 3203125
0.000 000 000 003 637 978 807 091 712 951 660 156 25
0.000 000 000 001 818 989 403 545 856 475 830 078 125

0.000 000 000 000 909 494 701 772 928 237 915 039 062 5

G.1

T e kST

APPENDIX H— MICRO ASSEMBLY PROGRAM SUMMARY

This appendix presents a condensed description of the
Micro Assembly Program. It is included for quick reference
once the microprogrammer is familiar with the basic struc-
ture of the Micro Assembly language.

Statements consist of:

@ one or more labels, each followed by a colon (labels are
optional)

® an Op-Code that identifies the type of statement
@ one or more operands

® astatement terminator, the semicolon

The following is a generalized format for statements:
{ Op-Code }

[label:] . .. {operand };

Operands must be separated from the Op-Code and from
each other by blanks.

The following symbols are used to describe the language:

[1] Brackets enclose language elements that are
optional.

{ } Braces enclose language elements that are not
optional.

Ellipses (three periods) indicate that the preced-
ing language element may be repeated one or
more times.

A language element that is underlined must
have been previously defined.

Option A Two or more stacked elements indicate a

Option B choice. Any one of the stacked elements may
Option C be chosen.

UPPER Capitalized words are reserved words and must
CASE appear in the statement exactly as shown

lower case Lower case words represent language elements
that may be specified with expressions. All
symbols used in expressions must be defined in
the label field, (e.g., with an EQU statement).
Lower case words are also used to specify a
symbol used in the label field.

UPPER Words that begin with capital letter specify
and lower symbols that are not defined in a label field
case (e.g., a field name).

The following special characters are used in the source
code:

Indicates that the preceding symbol is a label or an
absolute address.

; Terminates a statement.

= Used in Microinstruction Statements to:
® assign a value to a field
® pass a parameter to a MICROP

® set a default value for a MICROP parameter
() Parenthesis are used for grouping language elements.

THE BASIC LANGUAGE

DEFINITION SECTION
{INSTRUCTION} { WIDTH numberofbits} ;

{FIELD Name} {WIDTH numberofbits}
[DEFAULT value] ;

{END INSTRUCTION } ;

{MICROP Name} { ASSIGN}
Fieldname=value ...;

{INTRINSIC} {'NAWE} ;

Il. PROGRAM SECTION

{PROGRAM Name} {WIDTH numberofbits }
[LENGTH numberofwords] ;

: Fieldname=value }
[label:] ... Micropname arguments L

{ORG address} ;
{EnD} ;

I1l. EITHER DEFINITION OR PROGRAM SECTION

{1abel:} ... {EQU value} ;
{tabels} ... {SETvalue} :
OFF
{LisT } SOURCE ;
SOURCE OBJECT
{oBJECT} {ON ‘ :
OFF
{SPACE | [value] ;
{EJECT} ;
{TTLe} [TEXTT ;

H.1

EXTENSIONS TO THE BASIC LANGUAGE
l. EXPRESSIONS
The following is the format of expressions:
operand operator operand

Operators are processed according to the following
evaluation hierarchy:

1) SHL, SHR

2) + -

3) EQ, NE, GT, GE, LT, LE
4) NOT

5) AND

6) OR, XOR

1. The DCL Statement

[(absolutelocation):] [label:] .. {DCL}
[value] [,width] ;

I1l. Extended MICROP Formats
1. MICROP Micropname [ASSIGN {operand} ..]

[DEFAULT {operand} ...1; in format 1,
“Micropname’’ can be of the following two forms:

H.2

2. Micropname=Arg
3. Micropname [(Arg, . .. ,Arg)] [Arg, ..., Arg]

Arguments in format 3 are recursive and can be ex-
panded as follows:
4. [Arg] [(Arg, ... ,Arg)]

Formats 3 and 4 can be expanded to assign each argument a
default value:
5. [Arg=default] [(Arg=default, ..., Arg=default)]

The operand of format one can have only one .of the
following formats:

6. Fieldname=value

7. IF booleanvalue THEN operand ELSE operand FI
8. Micropname=value

9. Micropname [(value, ..., value)] [value, ..., value]

Note that format 7 is recursive. Also note that formats 8
and 9 match formats 2 and 3.

Formats 2 and 3 define the microp called and 8 and 9
define the calling microp.

APPENDIX | — MICRO ASSEMBLER ERROR MESSAGES

FATAL ERROR 01

The Micro Assembly Program has insufficient internal work
space to assemble the source program. The assembly
process is terminated at this point.

FIELD ERROR 01

In the instruction format selected by a Microinstruction
statement, a field was not assigned a value and had no
default. The field is set to all zeros.

FIELD ERROR 02

(1) More than one value was assigned to a microinstruction
field, or (2) fields from conflicting formats were assigned
values. (1) The first value assigned is used, or (2) the first
format defined in the definition section is used.

FIELD ERROR 03

(1) More than one value was set by Microp DEFAULT to a
field, or (2) fields from conflicting formats were set by
Microp DEFAULT. Additionally, these defaults were not
overridden by a field assign. (1) The first value set is used,
or (2) the first format defined is used.

MICROP ERROR 01

In a microp, an argument was not assigned a value and had
no default. The argument is assigned the value of zero.

MICROP ERROR 02

In a microp, an argument was given an improper value. This
error is specified in a MICROP definition with an IF clause
without an ELSE clause.

MICROP ERROR 03

The operand specified in an INTRINSIC statement was not
found in the assembler intrinsic file. The statement is
ignored.

SYMBOL ERROR 01

A symbol was not defined in the assembly. A value of zero
is used.

SYMBOL ERROR 02

A symbol was not previously defined in the assembly. A
value of zero is used.

SYMBOL ERROR 03

An improper symbol was used in an expression. A value of
zero is used.

SYMBOL ERROR 04

A symbol has been previously defined and may not be
redefined by this statement. This definition of the symbol
is ignored.

SYMBOL ERROR 05

The micro assembler symbol table is full. This symbol
definition is ignored.

SYNTAX ERROR 01

(1) Invalid syntax — an improper sequence of language
elements (tokens) was found, (2) Invalid character — a
character not in the micro assembler character set was
found, or (3) Microp argument error — an invalid argument
operand was found. (1) One or more language elements are
ignored, (2) the character is ignored, or {3) the argument
operand is ignored.

SYNTAX ERROR 02

In a numeric constant, the final character indicating the
radix of the constant is invalid. A value of zero is used.

SYNTAX ERROR 03

In a numeric constant, invalid integers have been used for
the given radix. A value of zero is used.

SYNTAX ERROR 04

In a character constant, the ending single quote was
omitted. A value of zero is used.

SYNTAX ERROR 05

The value of a self-definining constant exceeds the
maximum allowable bit size (specified by the M toggle). A
value of zero is used.

SYNTAX ERROR 06

A location counter reference ($) was used improperly in the
definition section at the assembly. A value of zero is used.

SYNTAX ERROR 07

The syntax was too complicated to analyze. Probably, too
many levels of parentheses were used. One or more
language elements are ignored.

VALUE ERROR 01

The location counter has exceeded the PROGRAM length
value. High order address bits may be truncated in the
object file.

VALUE ERROR 02

The value of an ORG operand exceeds the program length
value. High order address bits may be truncated in the
object file.

VALUE ERROR 03

The PROGRAM word width may not be zero. A value of 8
bits is used.

VALUE ERROR 04

The combined widths of the fields in a format exceed the
width of the format.

VALUE ERROR 05

The value of a width operand is negative or exceeds the
maximum bit size (M toggle). A value of one is used.

VALUE ERROR 06

The value of a (1) DCL width or (2) SPACE operand is
negative or exceeds the host machine word size (F toggle).
The default value is used.

MICRO FORMAT PROGRAM ERROR
MESSAGES

FATAL ERROR 01

The Micro Format Program has insufficient internal work
space to produce the object output. The micro format
program is terminated at this point.

FORMAT ERROR 01

For object output, 2650 format wasn’t selected when the
LENGTH operand of the MEMORY statement was
omitted. OQutput is suppressed.

FORMAT ERROR 02

For object output, the FROM address of the OUTPUT
statement must be zero when the LENGTH operand of the
MEMORY statement is omitted. Output is suppressed.

FORMAT ERROR 03

For object output, the WIDTH operand of the MEMORY
statement must be less than or equal to eight when 2650
format is selected. Output is suppressed.

FORMAT ERROR 04

For object output, the size of each object output word for
the format selected exceeds the record length of the object
output file. Output is suppressed.

OBJECT ERROR 01

In the intermediate object file, multiple object words are
assigned to the same address. The last object value is used.

OBJECT ERROR 02

The program section name specified in the OF operand of
the OUTPUT statement was not found in the intermediate
object file. Output is suppressed.

OBJECT ERROR 03

A microinstruction was found in the intermediate object
file whose format was not specified with a SELECT state-
ment. The microinstruction is not placed in the object file.

OBJECT ERROR 04

The microinstruction format specified by a SELECT
statement was referenced in a previous SELECT statement.
The SELECT statement is ignored.

OBJECT ERROR 05

Field names from different microinstruction formats are
referenced in a SELECT statement. The first format
referenced is used, and the second field name is replaced by
a constant zero.

OBJECT ERROR 06

When DCL data occurs in a program section to be output,
the MEMORY WIDTH must equal the word width of the
program section specified in the PROGRAM statement. The
DCL data is not placed in the object output file.

OBJECT ERROR 07

The Micro Format Program symbol table is full. The
symbol table is used to store field and program section
names from the intermediate object file. Some names may
be undefined.

SYNTAX ERROR 01

(1) Invalid syntax — an improper sequence of language ele-
ments (tokens) was found. One or more language
elements are ignored.

(2) Invalid character — a character not in the Micro
Format Program character set was found. The
character is ignored.

SYNTAX ERROR 02

In a numeric constant, the final character indicating the
radix of the constant is invalid. A value of zero is used.

SYNTAX ERROR 03

In a numeric constant, a character invalid for the radix is
used. A value of zero is used.

SYNTAX ERROR 04
In a character constant, the ending single quote was

omitted. In this case the first character of the string is used
as a single character constant.

SYNTAX ERROR 05

The value of a self-defining constant exceeds the maximum
allowable bit size (specified by the M toggle). A value of
zero is used.

SYNTAX ERROR 06

The number of bits (select operands) in a SELECT
statement does not conform to the MEMORY WIDTH and
the instruction format width. The SELECT statement is
ignored.

SYNTAX ERROR 07

The syntax was too complicated to analyze. Usually, too
many levels of parentheses were used. One or more
language elements are ignored.

VALUE ERROR 01

The address range selected by the FROM and TO operands
of an OUTPUT statement is larger than the MEMORY
LENGTH. Data in higher addresses will not be output.

VALUE ERROR 02

The string operand of a FORMAT statement is not ‘2650'.
The FORMAT statement is ignored.

VALUE ERROR 03

The string values of the BINARY operand of a FORMAT
statement contain more than one character. The first
character of the string is used.

VALUE ERROR 04

In a SELECT statement, the bit selection constant of a field
name exceeds the length of the field. A constant zero is
used.

VALUE ERROR 05

The value of a width operand is negative or exceeds the
maximum bit size (M toggle). A value of one is used.

VALUE ERROR 06

In a SELECT statement, the value of a constant operand is
not zero or one. Zero is used.

VALUE ERROR 07

No object data was output in the address range selected by
the FROM and TO operands of an OUTPUT statement. All
words of the object output are left unprogrammed (default
values).

NOTES

NOTES

NOTES

SilNDLCS

a subsidiary of U.S. Philips Corporation

Signetics Corporation

PO. Box 9052

811East Arques Avenue
Sunnyvale, California 94086
Telephone 408/739-7700

