DATABOOK LINEAR INTEGRATED CIRCUITS $3^{\text {rid }}$ EDITION

ISSUED JUNE 1982

INTRODUCTION

This databook contains data sheets on the SGS-ATES range of linear integrated circuits for professional, industrial and consumer applications.
Selection guides are provided in the following pages to facilitate rapid identification of the most suitable device for the intended use.
The information on each product has been specially presented in order that the performance of the product can be readily evaluated within any required equipment design.

SGS-ATES GROUP OF COMPANIES

INTERNATIONAL HEADQUARTERS
SGS-ATES Componenti Elettronici SpA
Via C. Olivetti 2-20041 Agrate Brianza - Italy
Tel.: 039-65551
Telex: 330131-330141
BENELUX
SGS-ATES Componenti Elettronici SpA
Benelux Sales Office
B- 1180 Bruxelles
Winston Churchill Avenue, 122
Tel.: 02-3432439
Telex: 24149 B

DENMARK

SGS-ATES Scandinavia AB
Sales Office
2730 Herlev
Herlex Torv, 4
Tel.: 02-948533
Telex: 35411
EASTERN EUROPE
SGS-ATES Componenti Elettronici SpA
Export Sales Office
20041 Agrate Brianza - Itaiy
Via C. Olivetti, 2
Tel.: 039-6555287/6555207
Telex: 330131-330141

FINLAND

SGS-ATES Scandinavia AB
Sales Office
02210 Esbo 21
Kääntöpiiri, 2
Tel.: 90-881395/6
Telex: 123643
FRANCE
SGS-ATES France S.A.
75643 Paris Cedex 13
Résidence "Le Palatino"
17, Avenue de Choisy
Tel.: 01-5842730
Telex: 042-250938
WEST GERMANY
SGS-ATES Deutschland Halbleiter
Bauelemente GmbH
8018 Grafing bei München
Haidling, 17
Tel.: 08092-691
Telex: 0527378
Sales Offices:
3012 Langenhagen
Hubertusstrasse, 7
Tel.: 0511-772075/7
Telex: 0923195
8000 München 90
Tegernseer Landstr., 146
Tel.: 089-6925100
Telex: 05215784
8500 Nürnberg 30
Ostendstr., 204
Tel.: 0911-572977/78/79
Telex: 0626243
7000 Stuttgart 80
Kalifenweg, 45
Tel.: 0711-713091/2
Telex: 07255545

HONG KONG

SGS-ATES Singapore (Pte) Ltd.
9th Floor, Block N,
Kaiser Estate, Phase III,
11 Hok Yuen St.,
Hung Hom, Kowloon
Tel.: 3-644251/5
Telex: 63906 ESGIE HX

ITALY
SGS-ATES Componenti Elettronici SpA
Direzione Commerciale Italia
20149 Milano
Via Correggio, $1 / 3$
Tel.: 02-4695651
Sales Office :
00199 Roma
Piazza Gondar, 11
Tel.: 06 - 8392848/8312777

SINGAPORE

SGS-ATES Singapore (Pte) L.td.
Singapore 1231
Lorong 4 \& 6-Toa Payoh
Tel.: 2531411
Telex: ESGIES RS 21412

SWEDEN
SGS-ATES Scandinavia AB
19501 Märsta
Box 144
Tel.: 0760-40120
Telex: 042-10932

SWITZERLAND

SGS-ATES Componenti Elettronici SpA
Swiss Sales Offices
6340 Baar
Oberneuhofstrasse, 2
Tel.: 042-315955
Telex: 864915
1218 Grand-Saconnex (Geneve)
Chemin François-Lehmann 22
Tel.: 022-986462/3
Telex: 28895

UNITED KINGDOM
SGS-ATES (United Kindgom) Ltd.
Aylesbury, Bucks
Planar House, Walton Street
Tel.: 0296-5977
Telex: 041-83245
U.S.A.

SGS-ATES Seminconductor Corporation
Scottsdale, AZ 85251
7117, East 3rd Avenue
Tel.: (602) 990-9553
Telex: SGS ATES SCOT 165808
Waltham, MA 02154
240, Bear Hill Road
Tel.: (617) 890-6688
Telex: 923495 WHA
Des Plaines, IL 60018
2340, Des Plaines Ave Suite 309
Tel.: (312) 296-4035
Telex: 282547
Santa Clara, CA 95051
2700, Augustine Drive
Tel.: (408) 727-3404
Telex: 346402
Woodland Hills, CA 91367
6355, Topange Canyon Boulevard
Suite 220
Tel.: (213) 716-6600
Telex: 182863

TABLE OF CONTENTS

ALPHANUMERICAL INDEX
HANDLING OF POWER ICs 15
RELIABILITY (SURE III) 19
DATA SHEETS 33

ALPHANUMERICAL INDEX

Type Function Page
L120A TRIAC/SCR phase control 34
L121A TRIAC/SCR burst control 41
L123 High precision voltage regulator 49
L146 High precision, high voltage regulator 57
L149 High gain power output stage 68
L165 3A-Power operational amplifier 73
L194-5 5V-Positive voltage regulator with rectifying bridge 79
L194-12 12 V -Positive voltage regulator with rectifying bridge 79
L194-15 15V-Positive voltage regulator with rectifying bridge 79
L200 Adjustable voltage and current regulator 83
L201 High voltage, high current 7 darlington arrays 93
L202 High voltage, high current 7 darlington arrays 93
L203 High voltage, high current 7 darlington arrays 93
L204 High voltage, high current 7 darlington arrays 93
L290 Tachometer converter 98
L291 5 bit D/A converter and position amplifier 104
L292 Switch-mode driver for DC motors 110
L293 Push-pull four channel driver 122
L293E Push-pull four channel driver 122
L294 Switch-mode solenoid driver 130
L487 Low dropout 5 V regulator with reset 136
L601 High voltage, high current 8 darlington arrays 139
L602 High voltage, high current 8 darlington arrays 139
L603 High voltage, high current 8 darlington arrays 139
L604 High voltage, high current 8 darlington arrays 139
L702 Quad darlington switch 142
L2605 5 V -Positive voltage regulator for automotive 146
L2685 8.5V-Positive voltage regulator for automotive 146
L2610 10V-Positive voltage regulator for automotive 146
L3654 Printer solenoid driver 148
L7805 Positive voltage regulator (1A-5V) 153
L7806 Positive voltage regulator (1A-6V) 153
L7808 Positive voltage regulator ($1 \mathrm{~A}-8 \mathrm{~V}$) 153
L7812 Positive voltage regulator (1A-12V) 153
L7815 Positive voltage regulator (1A-15V) 153
L7818 Positive voltage regulator (1A-18V) 153
L7820 Positive voltage regulator (1A-20V) 153
L7824 Positive voltage regulator (1A-24V) 153
L78M05 Positive voltage regulator ($0.5 \mathrm{~A}-5 \mathrm{~V}$) 165
L78M06 Positive voltage regulator ($0.5 \mathrm{~A}-6 \mathrm{~V}$) 165
L78M08 Positive voltage regulator (0.5A-8V) 165
L78M12 Positive voltage regulator ($0.5 \mathrm{~A}-12 \mathrm{~V}$) 165
L78M15 Positive voltage regulator ($0.5 \mathrm{~A}-15 \mathrm{~V}$) 165
L78M18 Positive voltage regulator ($0.5 \mathrm{~A}-18 \mathrm{~V}$) 165
L78M20 Positive voltage regulator (0.5A-20V) 165
L78M24 Positive voltage regulator (0.5A-24V) 165

ALPHANUMERICAL INDEX (continued)

Type Function Page
L78S05 Positive voltage regulator (1.5A-5V) 175
L78S75 Positive voltage regulator (1.5A-7.5V) 175
L78S09 Positive voltage regulator ($1.5 \mathrm{~A}-9 \mathrm{~V}$) 175
L78S10 Positive voltage regulator (1.5A-10V) 175
L78S12 Positive voltage regulator (1.5A-12V) 175
L78S15 Positive voltage regulator (1.5A-15V) 175
L78S18 Positive voltage regulator (1.5A-18V) 175
L78S24 Positive voltage regulator (1.5A-24V) 175
L7905 Negative voltage regulator (1A-5V) 187
L7952 Negative voltage regulator (1A-5.2V) 187
L7908 Negative voltage regulator ($1 \mathrm{~A}-8 \mathrm{~V}$) 187
L7912 Negative voltage regulator ($1 \mathrm{~A}-12 \mathrm{~V}$) 187
L7915 Negative voltage regulator (1A-15V) 187
L7918 Negative voltage regulator ($1 \mathrm{~A}-18 \mathrm{~V}$) 187
L7920 Negative voltage regulator (1A-20V) 187
L7924 Negative voltage regulator (1A-24V) 187
LM117 1.2 V to 37 V adjustable regulator 192
LM217 1.2 V to 37 V adjustable regulator 192
LM317 1.2 V to 37 V adjustable regulator 192
LM324 Low power quad operational amplifier 198
LM324A Low power quad operational amplifier 198
LM339 Quad voltage comparator 205
LM339A Quad voltage comparator 205
LM2902 Low power quad operational amplifier 198
LS025 Balanced modulator 211
LS045 Channel amplifier 218
LS101 High performance operational amplifier 222
LS107 Frequency compensated operational amplifier 231
LS141 Frequency compensated operational amplifier 236
LS141A Frequency compensated operational amplifier 236
LS141C Frequency compensated operational amplifier 236
LS148 Operational amplifier 243
LS148A Operational amplifier 243
LS148C Operational amplifier 243
LS150 High performance 80 dB compandor 251
LS156 Telephone speech circuit 259
LS159 High reliability transistor array 271
LS201 High performance operational amplifier 222
LS204 High performance dual operational amplifier 276
LS204A High performance dual operational amplifier 276
LS204C High performance dual operational amplifier 276
LS207 Frequency compensated operational amplifier 231
LS285 Telephone speech circuit 284
LS285A Telephone speech circuit 284
LS288 Programmable telephone speech circuit 292
LS301 High performance operational amplifier 222

ALPHANUMERICAL INDEX (continued)

Type Function Page
LS307 Frequency compensated operational amplifier 231
LS342 Multifrequency to telephone line interface circuit 303
LS356 Telephone speech circuit 307
LS404 High performance quad operational amplifier 320
LS404C High performance quad operational amplifier 320
LS656 Telephone speech circuit 329
LS709 Operational amplifier 342
LS709A Operational amplifier 342
LS709C Operational amplifier 342
LS776 Programmable operational amplifier 347
LS776C Programmable operational amplifier 347
LS4558N Dual high performance operational amplifier 357
MC1458 Dual operational amplifier 364
MC1458C Dual operational amplifier 364
TAA550 TV voltage stabilizer 14
TAA611A $\quad 1.8 \mathrm{~W}$ audio amplifier 14
TAA611B $\quad 2.1 \mathrm{~W}$ audio amplifier 14
TAA611C 3.3W audio amplifier 14
TBA231A Dual audio preamplifier 367
TBA331 General purpose transistor array 371
TBA800 5 W audio amplifier 377
TBA810CB $\quad 7 \mathrm{~W}$ audio amplifier for CB radio 382
TBA810P 7 W audio amplifier 389
TBA810S 7 W audio amplifier 396
TBA820 2W audio amplifier 14
TBA820M Minidip 1.2W audio amplifier 402
TCA830S $\quad 3.4 \mathrm{~W}$ audio amplifier 14
TCA900 Motor speed regulator 409
TCA910 Motor speed regulator 409
TCA940N 10W audio amplifier 413
TCA $3089 \quad$ FM-IF radio system 420
TCA $3189 \quad$ FM-IF high quality radio system 427
TDA 440 S TV vision IF system 433
TDA1054M Preamplifier with ALC for cassette recorders 442
TDA1151 Motor speed regulator 453
TDA1170 TV vertical deflection system 459
TDA1170D Low-noise TV vertical deflection system 469
TDA1170N Low-noise TV vertical deflection system 475
TDA1170S TV vertical deflection system 481
TDA1180P TV horizontal processor 493
TDA1190Z Complete TV sound channel 506
TDA1200 FM-IF radio system 14
TDA1220A AM-FM radio 514
TDA1220B AM-FM quality radio 530
TDA1220L Low voltage AM-FM radio 535
TDA1410A Quasi-complementary dual darlington 14

ALPHANUMERICAL INDEX (continued)

Type Function Page
TDA1420A Quasi-complementary dual darlington 14
TDA1420L Quasi-complementary dual darlington 14
TDA1470 Vertical deflection system 540
TDA1670 Vertical deflection circuit 551
TDA1770 Vertical deflection circuit 563
TDA1904 4W audio amplifier 575
TDA1905 5W audio amplifier with muting 579
TDA1908 8W audio amplifier 592
TDA1910 10W audio amplifier with muting 603
TDA2002 8W car radio audio amplifier 616
TDA2003 10W car radio audio amplifier 623
TDA2004 $10+10 \mathrm{~W}$ stereo amplifier for car radio 632
TDA2005 20W bridge amplifier for car radio 642
TDA2006 10W audio amplifier 656
TDA2008 12W audio amplifier 666
TDA2009 $\quad 10+10 \mathrm{~W}$ Hi-Fi amplifier 672
TDA2010 12W Hi-Fi amplifier 683
TDA2020 20W Hi-Fi amplifier 691
TDA2020D 40W audio driver 700
TDA2030 14W Hi-Fi amplifier 711
TDA2030A 18W Hi-Fi amplifier 721
TDA2040 22W Hi-Fi amplifier 735
TDA2054M Preamplifier with ALC for cassette recorders 742
TDA2140 PAL Subcarrier Reference Oscillator for Colour TV 14
TDA2151 Luminance and Chrominance Amplifier for Colour TV 14
TDA2161 Synchronous Demodulator and RGB Matrix for Colour TV 14
TDA2170 TV vertical deflection output circuit 749
TDA2190 Complete TV sound channel with VCR and CCC 756
TDA2310 $\mathrm{Hi}-\mathrm{Fi}$ dual preamplifier 775
TDA2320 Preamplifier for infrared remote control systems 784
TDA2320A Minidip stereo preamplifier 790
TDA3190 Complete TV sound channel 800
TDA3310 Low noise NPN transistor array 14
TDA3410 Dual low noise tape preamplifier with autoreverse 809
TDA3420 Dual low noise tape preamplifier 817
TDA4092 5 bit binary to 7 segment decoder driver 824
TDA4420 Vision IF system with AFC 830
TDA4431 TV signal identif. and AFC interface 837
TDA4433 TV signal identif. and AFC interface 837
TDA7270S Multifunction system for tape players 845
TDA7770 Multifunction system for tape recorders 14

APPLICATION GUIDE: CONSUMER CIRCUITS

TV

FUNCTION		DEvice
Complete sound channel		$\begin{aligned} & \text { TDA1190Z } \\ & \text { TDA2190 } \\ & \text { TDA3190 } \end{aligned}$
	Horizontal	TDA1180P
	Vertical	TDA1170 TDA1170D TDA1170N TDA1170S TDA1470 TDA1670 TDA1770 TDA2170
Video IF system		$\begin{aligned} & \text { TDA440S } \\ & \text { TDA4420 } \end{aligned}$
	Oscillator Lumin. \& Chromin. Demodulator	$\begin{aligned} & \text { TDA2140 } \\ & \text { TDA2151 } \\ & \text { TDA2161 } \end{aligned}$
TV signal identification		TDA4431 TDA4433
Varicap supply		$\begin{aligned} & \text { TAA550A } \\ & \text { TAA550B } \\ & \text { TAA550C } \end{aligned}$
TV channels display driver		TDA4092

Preamplifiers

FUNCTION	DEVICE
General purpose	TBA231A
Tape	TDA1054M TDA2054M TDA3410 TDA3420
Hi-Fi	TDA2310
Infrared receiver	TDA2320
Stereo preamplifier	TDA2320A

Tape Recorders

FUNCTION	DEVICE
	TCA900
DC Motor Regulators	TCA910
	TDA1151
Iultifunction	TDA7270S

Audio Power Amplifiers

APPLICATION	OEVICE
	TBA810P
Car radio	TBA810S
	TBA810CB
	TDA2002
	TDA2003
	TDA2004
	TDA2005
	TAA611A
Portable radio	TAA611B
	TAA611C
	TBA820
	TBA820M
	TDA1904
	TDA1905
	TBA800
	TCA940N
	TDA1904
	TDA1905
	TDA1908
	TDA2006
	TDA2008
	TDA2009
	TDA1910
	TDA2009
	TDA2010
	TDA2020
	TDA2030
	TDA2030A
	TDA2040
	TDA2020D
	TDA2030A

Radio

FUNCTION	DEVICE
IF/FM radio system	TCA3089
	TCA3189
	TDA1200
	TDA1220A
	TDA1220B
	TDA1220L

Transistor Array

FUNCTION	DEVICE
NPN array	LS159
	TBA331

APPLICATION GUIDE: PROFESSIONAL CIRCUITS

Operational Amplifiers

FUNCTION	DEVICE
Single general purpose	LS107/207/307 LS141/A/C LS148/A/C LS709/A/C
Single high performance	LS101/201/301
Programmable	LS776/C
Dual general purpose	MC1458/C
Dual high performance	LS204/A/C LS4558N
Quad general purpose	LM324/A LM2902
Quad high performance	LS404/C

Telecommunications Circuits

FUNCTION	DEVICE
Balanced modulator	LSO25
Channel amplifier	LSO45
Compandor	LS150
	LS156 LS285/A LS288
Telephone speech circuit	LS356 LS656
Multifrequency interface	LS342
Op-amps for active filter	LS204

Positive Voltage Regulators

FUNCTION	DEVICE
Positive fixed	L7800 series L78M00 series L78S00 series
Negative fixed	L7900 series
With integrated bridge	L194 series
	L123
Adjustable	L146
	L200
	LM117/217/317
Automotive	L2600 series
Very low drop	L487

Industrial Circuits

FUNCTION	DEVICE
Power operational amplifier	L165
DC motor positioning system	L290 L291 L292
DC and stepping motor driver	L293 L293E
Switch-mode solenoid driver	L294
Printer solenoid driver	L3654
Quad comparator	LM339
Darlington array	L201/2/3/4 L601/2/3/4 L702
Current boosters	L149 TDA1410A TDA1420A TDA1420L
Triac/SCR control	L120A L121A

AUDIO POWER AMPLIFIERS

Selection table (test conditions; $d=10 \%, f=1 \mathrm{kHz}$)

Supply (V)	Device		Output Power (W)		
		$\mathrm{R}_{\mathrm{L}}=2 \Omega$	$\mathrm{R}_{\mathrm{L}}=4 \Omega$	$\mathrm{R}_{\mathrm{L}}=8 \Omega$	$\mathbf{R}_{L}=\ldots \ldots$
4	TBA820M		0.35		
6	TAA611A TBA810S TBA820M TDA1904		$\begin{aligned} & 0.5 \\ & 1 \\ & 0.75 \\ & 0.8 \end{aligned}$	$\begin{aligned} & 0.35 \\ & 0.45 \end{aligned}$	
9	TAA611A TAA611B TBA810P TBA820 TBA820M TDA1904 TDA1905	3.4	$\begin{aligned} & 1.8 \\ & 1.8 \\ & 2.5 \\ & 1.6 \\ & 1.6 \\ & 2.2 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 1.15 \\ & 1.15 \\ & 1.2 \\ & 1.2 \\ & 1.3 \end{aligned}$	
12	$\begin{aligned} & \text { TAA611B } \\ & \text { TAA611C } \\ & \text { TBA820 } \end{aligned}$		3	2.1 2.1 2	
14.4	TBA810CB TBA810P TDA1904 TDA1905 TDA1908 TDA2002 TDA2003 TDA2004 TDA2005	$\begin{array}{r} 7 \\ 7 \\ \\ \\ 8 \\ 8 \\ 10 \\ 2 \times 10 \\ 2 \times 10 \end{array}$	$\begin{array}{r} 6 \\ 6 \\ 4.5 \\ 5.4 \\ 5.8 \\ 5.2 \\ 6 \\ 2 \times 6.5 \\ 2 \times 6.5\left(^{\circ}\right) \end{array}$	$\begin{aligned} & 3 \\ & 3 \end{aligned}$	$\left.\begin{array}{l} 12 \\ 2 \times 11 \\ 2 \times 11 \end{array}\right\} R_{L}=1.6 \Omega$
18	TBA800 TCA940N TDA1905 TDA1908		$\begin{aligned} & 9 \\ & 9 \end{aligned}$	$\begin{array}{r} 4.5 \\ 5 \\ 5.5 \\ 5 \end{array}$	
22	TDA2008		12	8	
23	TDA2009		2×10	$\left({ }^{\circ}\right)$	
24	$\begin{aligned} & \text { TBA800 } \\ & \text { TDA1905 } \\ & \text { TDA1908 } \\ & \text { TDA2006 } \end{aligned}$		12	8	$\left.\begin{array}{l} 5 \\ 5.3 \\ 5 \end{array}\right\} \quad R_{L}=16 \Omega$
28	$\begin{aligned} & \text { TDA2010* } \\ & \text { TDA2030* } \end{aligned}$		12 14	9 9	
32	$\begin{aligned} & \text { TDA2030A* } \\ & \text { TDA2040* } \end{aligned}$		$\begin{aligned} & 18 \\ & 22 \end{aligned}$	$\begin{aligned} & 12 \\ & 12 \end{aligned}$	
36	TDA2020*		20	-	

$\left(^{\circ}\right) 20 \mathrm{~W}$ in Bridge
(*) $d=0,5 \%, f=1 \mathrm{KHz}$.

OPERATIONAL AMPLIFIERS

Device	Temperature Range (C)	Frequency compensat.	CMRR (dB)	Input Bias Curr. $\|n A\|$	Slew Rate ($\mathrm{V} / \mathrm{\mu} \mathrm{~s}$)	Max supply Voltage (V)	Package
LS101T	-55 to 125		90	120	10	± 22	TO-99
LS101AT	-55 to 125		96	30	10	± 22	
LS107T	-55 to 125	-	96	30	0.7	± 22	
LS141T	-55 to 125	-	90	80	0.5	± 22	
LS141AT	-55 to 125	-	95	30	0.7	± 22	
LS141CT	0 to 70	\bullet	90	80	0.5	± 18	
LS148T	-55 to 125		90	80	5.5	± 22	
LS148AT	-55 to 125		95	20	5.5	± 22	
LS148CT	0 to 70		90	80	5.5	± 22	
LS201T	0 to 70		90	250	10	± 22	
LS201AT	-25 to 85		96	30	10	± 22	
LS207T	-25 to 85	-	96	30	0.7	± 22	
LS301AT	0 to 70		90	70	10	± 18	
LS307T	0 to 70	-	90	70	0.5	± 18	
LS709T	-55 to 125		90	200	0.25	± 18	
LS709AT	-55 to 125		110	100	0.25	± 18	
LS709CT	0 to 70		90	300	0.25	± 18	
LS776T	-55 to 125	\bullet	90	15	0.35	± 18	
LS776CT	0 to 70	\bullet	90	15	0.8	± 18	
LS204T*	-25 to 85	\bullet	100	50	1.5	± 18	
LS204AT**	-55 to 125	\bullet	100	50	1.5	± 18	
LS204CT*	0 to 70	-	95	80	1	± 18	
LS141CM.	0 to 70	-	90	80	0.5	± 18	Minidip
LS148CB	0 to 70		90	80	5.5	± 22	
LS201B	0 to 70		90	250	10	± 22	
LS301AB	0 to 70		90	70	10	± 18	- 5
LS307B	0 to 70	-	90	70	0.5	± 18	
LS776CB	0 to 70	-	90	15	0.8	± 18	gogos
LS204CB*	0 to 70	\bullet	95	80	1	± 18	
LS4558NB*	0 to 70	-	90	50	1.5	± 18	
MC1458P1*	0 to 70	-	90	80	0.5	± 18	
MC1458CP1*	0 to 70	-	90	80	0.5	± 18	
LS141CM	0 to 70	-	90	80	0.5	± 18	SO-8
LS148CM	0 to 70		90	80	5.5	± 22	
LS201M	0 to 70		90	250	10	± 22	
LS301AM	0 to 70		90	70	10	± 18	
LS307M	0 to 70	-	90	70	0.5	± 18	
LS776CM	0 to 70	-	90	15	0.8	± 18	\%碞
LS204M*	-25 to 85	-	100	50	1.5	± 18	
LS204CM*	0 to 70	-	95	80	1	± 18	
LS4558NM*	0 to 70	-	90	50	1.5	± 18	
MC1458M*	0 to 70	-	90	80	0.5	± 18	
MC1458CM*	0 to 70	-	90	80	0.5	± 18	
LM324N**	-25 to 85	-	70				
LM324AN**	-55 to 125	-	85	45		32	
LM2902N**	0 to 70	-	70	45		32	7060-5
LS709CB	0 to 70		90	300	0.25	± 18	Fopogogsongor Dr
LS404CB**	0 to 70	-	90	100	1	± 18	
LM324CM**	-25 to 85	\bullet	70	45		32	SO-14
LM2902CM**	0 to 70	\bullet	70	45		32	
LS404M ${ }^{* *}$	-25 to 85	-	94	50	1	± 18	JWIMSI 8
LS404CM**	0 to 70	-	90	100	1	± 18	

* Dual
** Quad

POSITIVE VOLTAGE REGULATORS

I_{0} max (A)	Device	Regulated output voltage (V)												Package
		5	6	7.5	8	8.5	9	10	12	15	18	20	24	
2	$\begin{aligned} & \text { L200CH/CV } \\ & \text { L200CT/T } \\ & \text { L78S00CV } \\ & \text { L78S00CT/T } \end{aligned}$													```Pentawatt }\mp@subsup{}{}{\circledR TO-3 (4-lead) Versawatt TO-3```
1.5	LM117K LM217K LM317K LM317T													TO-3 TO-3 TO-3 Versawatt
1	$\begin{aligned} & \text { L7800CV } \\ & \text { L7800CT/T } \end{aligned}$	$\bullet \bullet \quad \bullet$											\bullet	$\begin{aligned} & \text { Versawatt } \\ & \text { TO-3 } \end{aligned}$
0.5	L2600V L78M00CV L194-5V* L194-12V* L194-15V* L487											${ }^{\bullet}$	\bullet	Versawatt Versawatt Pentawatt ${ }^{\circledR}$ Pentawatt ${ }^{\circledR}$ Pentawatt ${ }^{\circledR}$ Pentawatt ${ }^{\circledR}$
0.15	$\begin{aligned} & \text { L123CB } \\ & \text { L123CT/T } \\ & \text { L146CB } \\ & \text { L146CT/T } \end{aligned}$	$\begin{aligned} & 2 \\ & 2+ \\ & 2 \\ & 2 \end{aligned}$			ADJUSTABLE $\longrightarrow 36$ ADJUSTABLE ADJUSTABLE 36 ADJUSTABLE									$\begin{aligned} & \text { P001-A } \\ & \text { TO-100 } \\ & \text { P001-L } \\ & \text { TO-100 } \end{aligned}$

* With integrated rectifying bridge.

NEGATIVE VOLTAGE REGULATORS

NOT FOR NEW DESIGN

Device	Function	Package	$\begin{gathered} V_{\text {S MAX }} \\ (V) \end{gathered}$	NOTES
TAA 550	TV VOLTAGE STABILIZER	TO-18	-	$\mathrm{V}_{\mathrm{Z}}=30 \mathrm{~V}$ to $36 \mathrm{~V}, \mathrm{I}_{\mathrm{Z}(\text { max })}=20 \mathrm{~mA}$
TAA 611A TAA 611B TAA 611C TBA 820 TCA 830S	1.8W AUDIO AMPLIFIER 2.1W AUDIO AMPLIFIER 3.3W AUDIO AMPLIFIER 2W AUDIO AMPLIFIER 3,4W AUDIO AMPLIFIER	$\begin{gathered} \text { 14-DIP/TO-100 } \\ \text { 14-DIP } \\ \text { 14-DIP } \\ \text { 14-DIP } \\ \text { FIN-DIP } \end{gathered}$	$\begin{aligned} & 12 \\ & 15 \\ & 22 \\ & 16 \\ & 20 \end{aligned}$	$\begin{array}{ll} \mathrm{P}_{\mathrm{O}}=1.8 \mathrm{~W}(9 \mathrm{~V}-4 \Omega), & \mathrm{P}_{\mathrm{O}}=1.15 \mathrm{~W}(9 \mathrm{~V}-8 \Omega) \\ \mathrm{P}_{\mathrm{O}}=2.1 \mathrm{~W}(12 \mathrm{~V}-8 \Omega), & \mathrm{P}_{\mathrm{O}}=1.15 \mathrm{~W}(9 \mathrm{~V}-8 \Omega) \\ \mathrm{P}_{\mathrm{O}}=3.3 \mathrm{~W}(15 \mathrm{~V}-8 \Omega), & \mathrm{P}_{\mathrm{O}}=1.7 \mathrm{~W}(12 \mathrm{~V}-8 \Omega) \\ \mathrm{P}_{\mathrm{O}}=2 \mathrm{~W}(12 \mathrm{~V}-8 \Omega), & \mathrm{P}_{\mathrm{O}}=1.2 \mathrm{~W}(9 \mathrm{~V}-8 \Omega) \\ \mathrm{P}_{\mathrm{O}}=3.4 \mathrm{~W}(12 \mathrm{~V}-4 \Omega), & \mathrm{P}_{\mathrm{O}}=2.3 \mathrm{~W}(12 \mathrm{~V}-8 \Omega) \end{array}$
TDA 1200	FM-IF RADIO SYSTEM	16-DIP	16	See TCA 3089
TDA 1410A TDA 1420A TDA 1420L	QUASI COMPLEMENTARY DUAL DARLINGTON	PENTAWATT ${ }^{\circledR}$ PENTAWATT ${ }^{\circledR}$ PENTAWATT ${ }^{\circledR}$	$\begin{aligned} & 36 \\ & 44 \\ & 40 \end{aligned}$	$\begin{aligned} & h_{F E}>800 @ 2 A \\ & h_{F E}>500 @ 3 A \\ & h_{F E}>800 @ 2 A \end{aligned}$
TDA 2140 TDA 2151 TDA 2161	KIT CHROMA	$\begin{aligned} & 16 \text {-DIP } \\ & 16 \text {-DIP } \\ & 16 \text {-DIP } \end{aligned}$	$\begin{aligned} & 15 \\ & 15 \\ & 15 \end{aligned}$	
TDA 3310	LOW-NOISE NPN TRANSISTORS ARRAY	14-DIP	20	$\mathrm{h}_{\text {FE }}>300 @ 100 \mu \mathrm{~A}, \mathrm{NF}=0.5 \mathrm{~dB}$
TDA 7770	MULTIFUNCTION SYSTEM FOR TAPE RECORDERS	FIN-DIP	20	Motor speed regulator,Bias Oscillator, DC recordplay switching, Automatic stop.

PRECAUTIONS FOR PHYSICAL HANDLING OF POWER LINEAR ICs

When mounting power ICs certain precautions must be taken in operations such as bending of leads, mounting of heatsink, soldering and removal of flux residue. If these operations are not carried out correctly, the device can be damaged or reliability compromised.

1. Bending and cutting leads

The bending or cutting of the leads requires the following precautions:
1.1 When bending the leads they must be clamped tightly between the package and the bending point to avoid strain on the package (in particular in the area where the leads enter the resin) (fig. 1). This also applies to cutting the leads (fig. 2).
1.2. The leads must be bent at a minimum distance of 3 mm from the package (fig. 3a).
1.3. The leads should not be bent at an angle of more than 90° and they must be bent only once (fig. 3b).
1.4. The leads must never be bent laterally (fig. 3c).
1.5. Check that the tool used to cut or form the leads does not damage them or ruin their surface.

Fig. 1 - Bending the leads

Fig. 2 - Lead forming or cutting mechanism

Fig. 3 - Angles for lead wire bending

2. Mounting on printed circuit

During mounting operations be careful not to apply stress to the integrated circuit.
2.1. Adhere strictly to the pin spacing of the IC to avoid forcing the leads.
2.2. Leave a suitable space between printed circuit and integrated circuit, if necessary use a spacer.
2.3. When fixing the device to the printed circuit do not put mechanical stress on the IC. For this purpose the device should be soldered to the printed circuit board after the IC has been fixed to the heatsink and the heatsink to the printed circuit board.
3. Soldering

In general an IC should never be exposed to high temperatures for any length of time. It is therefore preferable to use soldering methods where the IC is exposed to the lowest possible temperatures for a short time.
3.1. Tolerable conditions are $260^{\circ} \mathrm{C}$ for 10 sec or $350^{\circ} \mathrm{C}$ for 3 sec . The graphs in fig. 4 give an idea of the excess junction temperature during the soldering process for a TO-220 (Versawatt). It is also important to use suitable fluxes for the tin baths to avoid deterioration of the leads or of the package resin.
3.2. An excess of residual flux between the pins of the integrated circuit or in contact with the resin can reduce the long-term reliability of the device. The solvent for removing excess flux must be chosen with care.
The use of solvents derived from trichloroethylene is not recommended on plastic packages because the residue can cause corrosion.

Fig. 4 - Junction temperatures during soldering

4. Mounting of heatsink

To exploit best the performance of power ICs a heatsink with R_{th} suitable for the power that the IC will dissipate must be used.
4.1. The plastic packages used by SGS for its linear ICs (Pentawatt, Multiwatt, Versawatt) provide for the use of a single screw to fix the package to the heatsink. A compression spring (clip) can be sufficient as an alternative (fig. 5).

Fig. 5 - MULTIWATT ${ }^{\circledR}$ mounting examples

Fig. 6 - Contact thermal resistance
The screw should be properly tightered to ensure good contact between the back of the package and the heatsink but should not be too tight to avoid deformation of the copper part (tab) of the package causing breaking of the die or separation of the resin from the tab (fig. 6).
4.2. The suggested tightening torques with a 3 MA screw are:

Versawatt $6 \mathrm{Kg} / \mathrm{cm}$
Pentawatt $6 \mathrm{Kg} / \mathrm{cm}$
Multiwatt $8 \mathrm{Kg} / \mathrm{cm}$
vs. tightening torque

If different screws are used the force transmitted to the tab must not exceed that encountered in the above conditions.
When fixing the device avoid bumping or stressing the resin and pins with the tools used for this operation (pneumatic screw drivers, tweezers etc.).
4.3. The contact R_{th} between device and heatsink can be improved by inserting a thin layer of silicone grease with fluidity sufficient to guarantee perfectly uniform distribution on the surface of the tab. The thermal resistance with and without silicone grease is given in fig. 7. An excessively thick layer or an excessive viscosity of the silicone grease can be damaging for the R_{th} and for any tab deformations.

5. Heatsink problems

The most important aspect from the point of view of reliability of a power IC is that the heatsink should be dimensioned to keep the T_{j} of the device as low as possible. From the mechanical point of view, however, the heatsink must be realized so that it does not damage the integrated circuit.

Fig. 7 - Contact thermal resistance vs. insulator thickness

5.1. The planarity of the contact surface between device and heatsink must be $<10 \mu \mathrm{~m}$ for Pentawatt and Versawatt and $<20 \mu \mathrm{~m}$ for Multiwatt.
5.2. If self threading screws are used there must be an outlet for the material that is deformed during formation of the thread. The diameter $\phi 1$ (fig. 8) must be large enough to avoid distortion of the

Fig. 8 - Device mounting

WRONG

RIGHT
tab during tightening. For this purpose it may be useful to insert a washer or use screws of the type shown in fig. 9 where the pressure on the tab is distributed on a much larger surface. Sometimes when the hole in the heatsink is formed with a punch, around the hole or hollow there may be a ring which is lower than the heatsink surface. This is dangerous because it may lead to distortion of the tab as mentioned before.
5.3. A very serious problem is that of the rigidity between heatsink, device and printed circuit board. When mounting the heatsink, device (which may be fixed to frame of apparatus) and printed circuit board are

Fig. 9 - Suggested screw
 bound together by the leads of the device. A solution of this type is extremely dangerous, especially if the equipment is subjected to vibrations.

SEMICONDUCTOR USERS RELIABILITY EVALUATION

SGS SURE III programme is an important improvement of SURE II programme obtained with tightened quality levels. Moreover there are many level's options to satisfy various customer's requests.

SGS SURE III programme aims to inform customers of basic production operations and internal quality and reliability assurance procedures, paying particular attention to the tests and guarantees on the finished product.
This programme covers the set of 100% operations, controls and testing operations undergone by the devices produced to standard specification, i.e. without any special customer requirements.
In other words, unless special co-produced specifications are used, the majority of SGS customers in the professional, consumer and industrial markets buy products tested according to the SURE III programme.
The programme thus fully meets the requirements of almost all applications.
Moreover, since the programme offers more options, the customer can request the product with certain supplementary screenings, while the entire production process, apart from the optional operations indicated in the programme, remains identical to that of the standard product.

General Information

This information is valid for all products ordered from SGS or which are ordered to one of the SURE Programme options.

Marking

Each device will be marked in a contrasting ink with the following standard information (if sufficient space is available);
1 - SGS logo
2 - Device type as shown in the detail specification
3 - Manufacturing plant number
4 - Lot code (Production lot)

Packing

Device will be packed in the SGS standard package.
The following information will be marked on the primary package.
1 - SGS logo
2 - Device type as shown on the order confirmation
3 - Quantity in the package
4 - SGS order confirmation
5 - Warning label on Mos products

Testing and finishing

1 - Screenings according to MIL or CECC or however to this programme
$2-100 \%$ electrical testing according to SGS data sheet
3 - Temperature acceptance
When an extended temperature range is guaranteed SGS Outgoing QC may carry out the test at temperatures other than those shown on the data sheet on the basis of temperature correlation of the parameters.
SGS, guarantees the applicability of the AQL levels at the temperature limits and will accepts any lot rejected as a consequence.

External visual and Mechanical Inspection Criteria (group A Acceptance)

- Inoperative mechanical defects (critical):
e.g. wrong pin indication, wrong marking or splitting, broken or weakened leads, short circuits between leads, missing or partially detached cap, mixed package, cap and frame not aligned at the same side, catastrophic bent leads.
- Major defects (significant mechanical defects, but not functional defects): e.g. open packages, deformed leads, unmarked packages or with illegible marking, deep cracks on packages, incomplete tinning or with bubbles - roughness - blackenings, lead straightness and position not in accordance with relevant drawing.
- Minor defects:

Reference specification

a) Basic Sampling Procedures and tables for inspection by attributes: MIL-STD-105D, IEC 410. In general the single sampling plan will be used but it is acceptable for the customer to use double or multiple sampling (with, naturally, the same AOLs and inspection levels).
Similarly Q.C. managers can also use double or multiple sampling.
b) The Sure III Programme has been prepared considering the following specs: IEC 68-2, MIL-STD883B, CECC 50000, MIL-STD-38510 D and IEC 147-5.
It should be noted that conformance with these specs should be assumed only where specifically stated in this programme.

Precedence of documents

For the purpose of contractual interpretation in case of conflict, documents shall take the following order of precedence:

1 - Purchase order or contract. The text of the order or contract prevails over any other specification.
2 - Detail specification. The detail specification agreed between customer and vendor prevails over this present specification and any other reference specification.

3 - Generic specification. The generic specification (including this programme) prevails over all reference specifications.
4 - Relevarit specification. All reference documents apply only to the extent defined here in.

Essential terms and definitions

For the purpose of interpretation of this general specification the following terms and definitions are applied:

Detail/relevant/blank specification
A specification which covers a particular component or range of components, and which describes that component including rated and/or limiting values and characteristics. The detail specification will also give the inspection requirements or appropriate reference to this general specification.

Inspection lot
A quantity of components presented together for inspection from which a sample is to be drawn and inspected to determine conformance with the acceptance criteria of the specification.

Production lot

Consists of one lot of devices sealed within a period not exceeding six weeks.
Delivery lot
A quantity of components delivered to an order at one time. One delivery lot may consist of one or more inspection lots or parts thereof.

Structurally similar devices
Structurally similar devices are those devices produced concurrently through final seal by the same fabrication techniques, using the same type of machines and apparatus and having the same basic design rules and the same packaging.
Details of structural similarity for various components will be defined, when required, by the SGS Quality Assurance Mgr (s).

Certificate of Conformance
A document issued with a delivery lot stating that the components have been taken from one or more inspection lots accepted under the requirements of the particular specification.

Standard production process flow chart

HERMETIC PACKAGE
MOLDED PACKAGE PROCESS
PROCESS

Standard production process flow chart (continued)
HERMETIC PACKAGE
PROCESS

Production quality tests description and screenings

TABLE I

Process steps	Tests	Description
10	DIE-ATTACH CONTROL	MIL STD 883B Mth 2010 cond. B (internal visual) and Mth 2019 (die shear strength).
12	BONDING CONTROL	MIL STD 883B Mth 2010 cond. B (internal visual) and Mth 2011 cond. C (bond strength).
14	PRECAP INSPECTION	MIL STD 883B Mth 2010 cond. B (internal visual)
17	SEALING ATMOSPHERE CONTROL	Moisture content: $<50 \mathrm{ppm}$ for Ceramic packages < $\mathbf{1 2 0}$ ppm for Metal Can packages
18	SEAL CONTROL	- Fine Leak: - Metal can packages IEC 68-2-17 test OK (CECC 50000 para 4.4.10) Helium leak detector after pressurization in He for 16 hrs at 5 atm. Limiti $5 \cdot 10^{-7} \mathrm{cc} / \mathrm{s}$ - Ceramic packages MIL STD 883B Mth 1014 cond. A1 Helium leak detector after pressurization in He for 2 hrs at 4 atm. Limit: $5 \cdot 10^{-8} \mathrm{cc} / \mathrm{s}$ for I.C.V. ${ }^{*}<0.4 \mathrm{cc}$ $5 \cdot 10^{-7} \mathrm{cc} / \mathrm{s} \text { for I.C.V. } \geqslant 0.4 \mathrm{cc}$ * (I.C.V. = internal cavity volume). - Gross Leak: - Metal Can packages IEC 68-2-17 test Oc Mth 2 (CECC 50000 para 4.4.10). Bubble test in mineral oil at $\mathrm{T}_{\mathrm{amb}}=125^{\circ} \mathrm{C}$ after pressurization in He for 16 hrs at 5 atm. - Ceramic packages MIL STD 883B Mth 1014 cond. C.
	LID TORQUE TEST (CONTROL)	- Ceramic Packages only - MIL STD 883B Mth 2024.
19	TEMPERATURE CYCLING	- From $-25^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C} ; 30 \mathrm{~min}$ at extreme temperatures; 5 minutes transfer time; $\mathrm{n}^{\circ} 5$ cycles
20-21-24	CROPPING	Not for Metal Can packages.
23	SOLDERABILITY INSPECTION	- IEC 68-2-20 Test TA (bath method) - CECC 50000 para 4.4.7-230 $\pm 5^{\circ} \mathrm{C}$ with preconditioning for 16 hrs at $155^{\circ} \mathrm{C}$.
25	INTERNAL WATER VAPOR CONTENT CONTROL	Dew Point method MIL STD 883B Mth 1018 procedure 3-5000 ppm max. (dew point temperature less than $-15^{\circ} \mathrm{C}$).
26	HIGH IMPACT SHOCK	Metal Can packages only except TO-3 and TO-66. 20000 Gmin .; $\mathrm{T}=25 \mu \mathrm{sec} \mathrm{min}$; Y1 axis only.
27	RAW LINE INSPECTION	- External Visual - MIL STD 883B Mth 2009. - Lid torque test: as per step 18. - Centrifuge (ceramic packages only) MIL STD 883B Mth 2001 - High Impact Shock: as per step 26 - Seal control: as per step 18

Available class options (*)

(*) SGS-ATES will also supply devices to CECC specifications when these are issued.

Quality \& reliability tests

GROUPS	MIL classes	STD and Others
A	Each lot	Each lot
B	Each lot	See group C
C	3 months	3 months
D	6 months	6 months

Quality class options

B1

(Hermetic packages only)
100% electrical test
Group A acceptance (STD)
Marking
Burn-in 160 H
100% electrical test
Group A acceptance (B1)

Pack
Pack and documentation acc.
Ship

B2
(Hermetic packages only)
Reduced electrical test

Marking
Burn-in 48 H
100% electrical test
Group A acceptance (B2)

Pack
Pack and documentation acc.
Ship

B3, B4, STD
(Hermetic and molded packages) 100% electrical test

Marking

Group A acceptance (B3 or B4 or STD)

Pack
Pack and documentation acc.
Ship

Group A acceptance (*)

Subgroup	Parameters	Temp. ${ }^{\circ} \mathrm{C}$	Insp. level	Acceptable quality level (AOL)							
				Molded packages			Hermetic packages				
				83*	B4	STD ${ }^{\text {a }}$	81	82	B3*	B4	STD ${ }^{\circ}$
A1	Visual and mechanical insp. Major Minor		1	$\begin{gathered} 0.25 \\ 1 \end{gathered}$	$\begin{gathered} 0.25 \\ 1 \end{gathered}$	$\begin{gathered} 0.25 \\ 1 \end{gathered}$	0.25 1	0.25 1	0.25 1	0.25 1	$\begin{gathered} 0.25 \\ 1 \end{gathered}$
A2	Inoperative failure (electrical and mechanical) over guaranteed temperature range	$\begin{aligned} & T_{\max } \\ & 25^{\circ} \mathrm{C} \end{aligned}$ $T_{\min }$	11	0.15	0.15 -	0.15	0.065	0.1	0.1	0.1 -	-
A3	DC parameters and main AC parameters over guaranteed temperature range	$\begin{aligned} & T_{\text {max }} \\ & 25^{\circ} \mathrm{C} \\ & T_{\text {min }} \end{aligned}$	11	0.65	0.65 -	- 0.65 -	0.25	0.25	0.4	0.4 -	0.4
A4	Other AC parameters	$25^{\circ} \mathrm{C}$	S4	1	1	1	0.65	0.65	0.65	0.65	0.65

[^0]TABLE III - Group C tests - every 3 months on raw line material (\uparrow)

Tests	MIL-STD-883B		LTPD	Max. Acc. N°
	Method	Condition		
Subgroup 1 Physical dimensions	2016		2 devices (no failure)	
Subgroup 2 (1) Resistance to solvent	2015	- Ceramic packages - Molded packages: solvent solution 2.1A only - Metal can packages	4 devices (no failure)	
Subgroup 3 (1) Solderability (2)	2003	- Soldering temperature of $260+10^{\circ} \mathrm{C}$ or IEC method 68-2-20 test $\mathrm{T}_{\mathrm{A}}\left(230 \pm 5^{\circ} \mathrm{C}\right)$	15	2
Subgroup 4 Steady state and operating life test or Intermittent life test End-point electrical parameters	1005	- 1000 hrs ; according to device spec. type - 5000 cycles Key parameters (Table V); measurements at 0,168, 500 and 1000 hrs.	5	2
Subgroup 5 (Hermetic packages only) Temperature cycling Constant acceleration Seal (4) a) fine b) gross Find-point electrical paramet.	$\begin{aligned} & 1010 \\ & 2001 \\ & 1014 \end{aligned}$	- Test condition $\mathrm{C}\left(10\right.$ cycles $-65^{\circ} \mathrm{C}$ to $\left.+150^{\circ} \mathrm{C}\right)$ - Test condition E (30000 G) Y1 orientation only (3) - Test condition A1 or IEC 68-2-17 method, test Q_{k} - Test condition C or IEC 68-2-17 method, test O_{c} (Mth 2-mineral oil at $\mathrm{T}=125^{\circ} \mathrm{C}$) Key parameters (Table V)	15	2
Subgroup 6 (1) (Moldel packages only) Pressure pot End-point electrical		$121^{\circ} \mathrm{C}, 2 \mathrm{~atm}$, for 48 to 96 hrs , according to package type Key parameters (Table V)	15	2

(1) Performed weekly on finished products.
(2) According to IEC Mth 68-2-20 test T_{A}
(3) 20000 G for packages with cavity perimeter of 2 inches or more and/or with a mass of 5 grams or more.
(4) Metal can packages: according to IEC 68-2-17 tests Q_{k} and Q_{c}

Ceramic packages : according to MIL-STD-883B Mth 1014.
(*) For MIL class B/C and ESA/SCCG products see relevant SGS-ATES documents.

TABLE IV - Group D tests - every 6 months on raw line material (\uparrow)

		MLL STD 883B		
	Method	Condition		N°
Subgroup 1 Design and temperature electrical characteristics		This subgroup comprises those parameters complementary to group A parameters. As alternative to LTPD sampling plan. X-R charts may be used to keep the process under control.	30	2
Subgroup 2 Lead integrity Seal (hermetic packages only) a) fine b) gross Lid torque (2) (hermetic packages only)	$\begin{aligned} & 2004 \\ & 1014 \\ & 2024 \end{aligned}$	Test condition B2 (lead fatigue) Test condition A1 or IEC 68-2-17 method, test Q_{k} Test condition C or IEC 68-2-17 method, test O_{c} (method 2, mineral oil at $\mathrm{T}=125^{\circ} \mathrm{C}$)	15	2
Subgroup 3 Thermal shock Temperature cycling Moisture resistance Seal (hermetic packages only) a) fine. b) gross Visual examination End-point electrical paramet.	$\begin{align*} & 1011 \\ & 1010 \\ & 1004 \\ & \tag{1}\\ & 1014 \end{align*}$	Test condition B, 15 cycles $\left(-55^{\circ} \mathrm{C}\right.$ to $+125^{\circ} \mathrm{C}$ Test condition C, 100 cycles ($-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$) 10 cycles of 24 h ; $\mathrm{T}=25^{\circ} \mathrm{C}$ to $65^{\circ} \mathrm{C}, \mathrm{RH}=90 \%$ five 3 h cycles at $-10^{\circ} \mathrm{C}$ Test condition A1 or IEC 68-2-17 method, test Q_{k} Test condition C or IEC 68-2-17 method, test Q_{c} (Method 2, mineral oil at T $=125^{\circ} \mathrm{C}$) Per visual criteria of method 1004 and 1010. Key parameters (Table V)	15	2
Subgroup 4 (hermetic packages only) Mechanical shock Vibration, variable frequency Constant acceleration (3) Seal (1) a) fine b) gross Visual examination End-point electrical paramet.	$\begin{aligned} & 2002 \\ & 2007 \\ & 2001 \\ & 1014 \end{aligned}$	Test condition B; $1500 \mathrm{G}-0.5 \mathrm{~ms}-5$ blows in each of the 6 orientations - non operating. Test condition A; $20 \mathrm{G}-3$ orientations - $\mathrm{F}=20$ to 2000 cps ; four 4 minutes cycles, 48 minutes total non operating. Test condition E (30000 G), Y1 orientation only. Test condition A1 or IEC 68-2-17 method, test Q_{k} Test condition C or IEC 68-2-17 method, test Q_{c} (Method 2; mineral oil at $\mathrm{T}=125^{\circ} \mathrm{C}$) Per visual criteria of method 1010 or 1010. Key parameters (Table V)	15	2
Subgroup 5 Salt atmosphere Seal (hermetic packages only) (1) a) fine b) gross Visual examination	$\begin{aligned} & 1009 \\ & 1014 \end{aligned}$	Test condition $\mathrm{A} ; 10$ to 50 gr of NaCl per square meter per day for 23 hrs at $\mathrm{T}_{\mathrm{A}}=35^{\circ} \mathrm{C}$. Test condition A1 or IEC 68-2-17 method, test Q_{k} Test condition C or IEC 68-2-17 method, test Q_{c} (Method 2; mineral oil at $\mathrm{T}=125^{\circ} \mathrm{C}$) Per visual criteria of method 1009.	15	2
Subgroup 6 (molded packages only) Humidity test End-point electrical parameters		$85^{\circ} \mathrm{C} / 85 \%$ RH with bias, $\mathrm{t}=1000 \mathrm{hrs}$. For linear ICs with or without bias according to device specification. Key parameters (Table V); measurements at 0, 198, 500 and 1000 hrs .	15	2

TABLE IV (continued)

Tests	MIL STD 883B		LTPD	Max. Acc. N°
	Method	Conditions		
Subgroup 7 (hermetic packages only) Internal water-vapor content	1018	Dew point method-procedure 3 (5000 ppm max)		
Subgroup 8 Adhesion of lead finish	2025		15	2

(1) Metal can packages: according to IEC 68-2-17 tests Q_{k} and Q_{c}. Ceramic packages : according to MIL-STD-883B method 1014.
(2) Lid torque test shall apply only to packages which use a glass-frit-seal to lead frame, lead or package body (I.E. wherever frit seal establishes hermeticity or package integrity).
(3) 20000 G for packages with cavity perimeter of 2 inches or more and/or with a mass of 5 grams or more.
(4) Test three devices; if one fails, test two additional devices with no failure. At the manufacturer's option, if the initial test sample (I.E. 3 or 5 devices) fails a second complete sample may be tested at an alternative laboratory that has been issued suitability by the qualifying activity. If this sample passes the lot shall be accepted provided the devices and data from both submissions is submitted to the qualifying activity along with five additional devices from the same lot.
$(*)$ For MIL class B/C and ESA/SCCG products see relevant SGS-ATES documents.

Post test end point

When conducting reliability tests, the definition of the failure, i.e. the determination whether a semiconductor device is good or bad by means of a precisely established failure criteria is required.
Thus care must be taken establishing failure criteria items, since results of failure assessment will depend on such criteria.
During the internal qualification phase, at the various steps of each life and environmental tests, an electrical characterization with electrical parameters recording and Δ calculation on all the samples involved is performed.
On the other hand, on the running products the electrical measurements at the end of the reliability tests are performed according to the data sheets and parameters recording on all failed devices is required.
Table \vee gives a list of basic failure criteria
TABLE V

Parameters at $T_{\text {amb }}=25^{\circ} \mathrm{C}$		Post test end points
Tests	Symbol	
Voltage Regulator Reference voltage Quiescent current drain Load regulation	$\begin{gathered} V_{\text {ref }} \\ I_{d} \\ \Delta V_{o} \end{gathered}$	$\begin{aligned} & \pm 10 \% \text { spec. limit } \\ & \pm 20 \% \text { spec. limit } \\ & \pm 20 \% \text { spec. limit } \end{aligned}$
Operational Amplifier Input offset voltage Voltage gain (closed loop)	$\begin{gathered} \mathrm{IVI}_{\mathbf{V}} \\ \mathrm{G}^{\prime} \end{gathered}$	$+20 \%$ spec. limit $\pm 20 \%$ spec. limit
Audio Amplifier Quiescent output voltage Output power ($\mathrm{d}=10 \%$) Input resistance Quiescent current drain	$\begin{aligned} & \mathrm{V}_{\mathrm{o}} \\ & \mathrm{P}_{\mathrm{o}} \\ & \mathrm{R}_{\mathrm{j}} \\ & \mathrm{I}_{\mathrm{d}} \end{aligned}$	$\pm 10 \%$ spec. limit -10% spec. limit -20% spec. limit $+25 \%$ spec. limit or $+100 \%$ initial value whichever is greater
Other Linear I.C.		All other end points parameters shall be referred to our internal programs.

Sample size code letters (group A tests)

Lot	batc	size		cial	on le			spec	
			S-1	S-2	S3	S 4	1	II	III
2	to	8	A	A	A	A	A	A	B
9	to	15	A	A	A	A	A	B	C
16	to	25	A	A	B	B	B	C	D
26	to	50	A	B	B	C	C	D	E
51	to	90	B	B	C	C	C	E	F
91	to	150	B	B	C	D	D	F	G
151	to	280	B	C	D	E	E	G	H
281	to	500	B	C	D	E	F	H	J
501	to	1200	C	C	E	F	G	J	K
1201	to	3200	C	D	E	G	H	K	L
3201	to	10000	C	D	F	G	J	L	M
10001	to	35000	C	D	F	H	K	M	N
35001	to	150000	D	E	G	J	L	N	P'
150001	to	500000	D	E	G	J	M	P	Q
500001	and	over	D	E	H	K	N	Q	R

Single sampling plans for normal inspection (group A tests)

[^1]
Sampling plan for "LTPD" Method (group B and C tests)

(as presented in MIL-S-19500E. MIL-STD-883, NEPR 61, and similar specifications).
Poisson sampling plans for lot sizes greater than 200.
Minimum size of sample to be tested to assure, with 90 percent confidence, a lot tolerance percent defective or λ no greater than the LTPD specified.

Max. Percent Defective (LTPD) or λ	50	30	20	15	10	7	5	3	2	1.5	1	0.7	0.5	0.3	0.2	0.15	0.1
Acceptance Number (a) $(r=a+1)$	Minimum Sample Sizes																
0	$\begin{gathered} 5 \\ (1.03) \end{gathered}$	$\begin{array}{c\|} 8 \\ (0.64) \end{array}$	$\begin{gathered} 11 \\ (0.46) \end{gathered}$	$\begin{gathered} 15 \\ (0.34) \end{gathered}$	$\begin{gathered} 22 \\ (0.23) \end{gathered}$	$\begin{gathered} 32 \\ (0.16) \end{gathered}$	$\begin{gathered} 45 \\ (0.11) \end{gathered}$	$\begin{array}{r} 76 \\ (0.07) \end{array}$	$\left\lvert\, \begin{gathered} 116 \\ (0.04) \end{gathered}\right.$	$\begin{gathered} 153 \\ (0.03) \end{gathered}$	$\begin{array}{r} 231 \\ (0.02) \end{array}$	$\begin{gathered} 328 \\ (0.02) \end{gathered}$	$\begin{gathered} 461 \\ (0.01) \end{gathered}$	$\begin{array}{r} 767 \\ (0.007) \end{array}$	$\left\|\begin{array}{r} 1152 \\ (0.005) \end{array}\right\|$	$\begin{array}{r} 1534 \\ (0.003) \end{array}$	$\begin{array}{r} 2303 \\ (0.002) \end{array}$
1	$\begin{gathered} 8 \\ (4.4) \end{gathered}$	$\begin{gathered} 13 \\ (2.7) \end{gathered}$	$\begin{array}{r} 18 \\ (2.0) \end{array}$	$\begin{array}{r} 25 \\ (1.4) \end{array}$	$\begin{gathered} 38 \\ (0.94) \end{gathered}$	$\begin{gathered} 55 \\ (0.65) \end{gathered}$	$\begin{gathered} 77 \\ (0.46) \end{gathered}$	$\begin{array}{r} 129 \\ (0.28) \end{array}$	$\begin{array}{\|c\|} 195 \\ (0.18) \end{array}$	$\begin{gathered} 258 \\ (0.14) \end{gathered}$	$\begin{array}{r} 390 \\ (0.09) \end{array}$	$\begin{gathered} 555 \\ (0.06) \end{gathered}$	$\left\|\begin{array}{c} 778 \\ (0.045) \end{array}\right\|$	$\begin{array}{r} 1296 \\ (0.027) \end{array}$	$\begin{array}{r} 1946 \\ (0.018) \end{array}$	$\left(\begin{array}{r} 2592 \\ (0.013) \end{array}\right.$	$\begin{array}{r} 3891 \\ (0.009) \end{array}$
2	$\begin{gathered} 11 \\ (7.4) \end{gathered}$	$\begin{gathered} 18 \\ (4.5) \end{gathered}$	$\begin{array}{r} 25 \\ (3.4) \end{array}$	$\begin{gathered} 34 \\ (2.24) \end{gathered}$	$\begin{array}{r} 52 \\ (1.6) \end{array}$	$\begin{array}{r} 75 \\ (1.1) \end{array}$	$\begin{gathered} 105 \\ (0.78) \end{gathered}$	$\begin{array}{r} 176 \\ (0.47) \end{array}$	$\begin{gathered} 266 \\ (0.31) \end{gathered}$	$\begin{gathered} 354 \\ (0.23) \end{gathered}$	$\begin{array}{r} 533 \\ (0.15) \end{array}$	$\begin{gathered} 759 \\ (0.11) \end{gathered}$	$\begin{gathered} 1065 \\ 10.080) \end{gathered}$	$\begin{gathered} 1773 \\ (0.045) \end{gathered}$	$\begin{array}{r} 2662 \\ (0.031) \end{array}$	$\begin{array}{r} 3547 \\ (0.022) \end{array}$	$\begin{array}{r} 5323 \\ (0.015) \end{array}$
3	$\begin{gathered} 13 \\ (10.5) \end{gathered}$	$\begin{gathered} 22 \\ (6.2) \end{gathered}$	$\begin{array}{r} 32 \\ (4.4) \end{array}$	$\begin{array}{r} 43 \\ (3.2) \end{array}$	$\begin{array}{r} 65 \\ (2.1) \end{array}$	$\begin{array}{r} 94 \\ (1.5) \end{array}$	$\begin{aligned} & 132 \\ & (1.0) \end{aligned}$	$\begin{array}{r} 221 \\ (0.62) \end{array}$	$\left\lvert\, \begin{gathered} 333 \\ (0.41) \end{gathered}\right.$	$\begin{gathered} 444 \\ (0.31) \end{gathered}$	$\begin{array}{r} 668 \\ (0.20) \end{array}$	$\begin{gathered} 953 \\ (0.14) \end{gathered}$	$\begin{gathered} 1337 \\ (0.10) \end{gathered}$	$\begin{array}{\|c\|c} 2226 \\ (0.062) \end{array}$	$\left\|\begin{array}{r} 3341 \\ (0.041) \end{array}\right\|$	$\begin{array}{r} 4452 \\ (0.031) \end{array}$	$\left\|\begin{array}{r} 6681 \\ (0.018) \end{array}\right\|$
4	$\begin{gathered} 16 \\ (12.3) \end{gathered}$	$\begin{gathered} 27 \\ (7.3) \end{gathered}$	$\begin{array}{r} 38 \\ (5.3) \end{array}$	$\begin{array}{r} 52 \\ (3.9) \end{array}$	$\begin{gathered} 78 \\ (2.6) \end{gathered}$	$\begin{array}{r} 113 \\ (1.8) \end{array}$	$\begin{aligned} & 158 \\ & (1.3) \end{aligned}$	$\begin{array}{r} 265 \\ (0.75) \end{array}$	$\begin{array}{\|c\|} 398 \\ (0.50) \end{array}$	$\begin{gathered} 531 \\ (0.37) \end{gathered}$	$\begin{array}{r} 798 \\ (0.25) \end{array}$	$\begin{aligned} & 1140 \\ & (0.17) \end{aligned}$	$\begin{array}{r} 1599 \\ (0.12) \end{array}$	$\begin{gathered} 2663 \\ (0.074) \end{gathered}$	$\begin{array}{r} 3997 \\ (0.049) \end{array}$	$\begin{array}{r} 5327 \\ (0.037) \end{array}$	$\begin{array}{r} 7994 \\ (0.025) \end{array}$
5	$\begin{gathered} 19 \\ (13.8) \end{gathered}$	$\begin{gathered} 31 \\ (8.4) \end{gathered}$	$\begin{array}{r} 45 \\ (6.0) \end{array}$	$\begin{array}{r} 60 \\ (4.4) \end{array}$	$\begin{array}{r} 91 \\ (2.9) \end{array}$	$\begin{gathered} 131 \\ (2.0) \end{gathered}$	$\begin{aligned} & 184 \\ & (1.4) \end{aligned}$	$\begin{array}{\|r} 308 \\ (0.85) \end{array}$	$\begin{array}{\|c\|} \hline 462 \\ 10.57) \\ \hline \end{array}$	$\begin{gathered} 617 \\ (0.42) \end{gathered}$	$\begin{array}{r} 927 \\ (0.28) \end{array}$	$\begin{aligned} & 1323 \\ & (0.20) \end{aligned}$	$\begin{gathered} 1855 \\ (0.14) \end{gathered}$	$\begin{gathered} 3090 \\ (0.085) \end{gathered}$	$\begin{array}{r} 4638 \\ (0.056) \end{array}$	$\begin{array}{r} 6181 \\ (0.042) \end{array}$	$\begin{array}{r} 9275 \\ (0.028) \end{array}$
6	$\begin{gathered} 21 \\ (15.6) \end{gathered}$	$\begin{gathered} 35 \\ (9.4) \end{gathered}$	$\begin{array}{r} 51 \\ (6.6) \end{array}$	$\begin{array}{r} 68 \\ (4.9) \end{array}$	$\begin{gathered} 104 \\ (3.2) \end{gathered}$	$\begin{gathered} 149 \\ (2.2) \end{gathered}$	$\begin{aligned} & 209 \\ & (1.6) \end{aligned}$	$\begin{array}{r} 349 \\ (0.94) \end{array}$	$\begin{gathered} 528 \\ (0.62) \end{gathered}$	$\begin{gathered} 700 \\ (0.47) \end{gathered}$	$\begin{array}{r} 1054 \\ (0.31) \end{array}$	$\begin{aligned} & 1503 \\ & (0.22) \end{aligned}$	$\begin{gathered} 2107 \\ (0.155) \end{gathered}$	$\begin{array}{r} 3509 \\ (0.093) \end{array}$	$\left\|\begin{array}{r} 5267 \\ (0.062) \end{array}\right\|$	$\begin{array}{\|r\|} 7019 \\ (0.047) \end{array}$	$\begin{array}{r} 10533 \\ (0.031) \end{array}$
7	$\stackrel{24}{(16.6)}$	$\begin{gathered} 39 \\ (10.2) \end{gathered}$	$\begin{array}{r} 57 \\ (7.2) \end{array}$	$\begin{array}{r} 77 \\ (5.3) \end{array}$	$\begin{array}{r} 116 \\ (3.5) \end{array}$	$\begin{gathered} 166 \\ (2.4) \end{gathered}$	$\begin{aligned} & 234 \\ & (1.7) \end{aligned}$	$\begin{array}{r} 390 \\ (1.0) \end{array}$	$\begin{array}{\|c\|} \hline 589 \\ (0.67) \end{array}$	$\begin{gathered} 783 \\ (0.51) \end{gathered}$	$\begin{array}{r} 1178 \\ (0.34) \end{array}$	$\begin{aligned} & 1680 \\ & (0.24) \end{aligned}$	$\begin{array}{r} 2355 \\ (0.17) \end{array}$	$\begin{array}{\|c} 3922 \\ (0.101) \end{array}$	$\begin{array}{r} 5886 \\ (0.067) \end{array}$	$\begin{array}{r} 7845 \\ (0.051) \end{array}$	$\left\|\begin{array}{c} 11771 \\ (0.034) \end{array}\right\|$
8	$\stackrel{26}{(18.1)}$	$\begin{gathered} 43 \\ (10.9) \end{gathered}$	$\begin{gathered} 63 \\ (7.7) \end{gathered}$	$\begin{array}{r} 85 \\ (5.6) \end{array}$	$\begin{array}{r} 128 \\ (3.7) \end{array}$	$\begin{array}{r} 184 \\ (2.6) \end{array}$	$\begin{aligned} & 258 \\ & (1.8) \end{aligned}$	$\begin{aligned} & 431 \\ & (1.1) \end{aligned}$	$\begin{gathered} 648 \\ (0.72) \end{gathered}$	$\begin{gathered} 864 \\ (0.54) \end{gathered}$	$\begin{array}{r} 1300 \\ 10.36) \end{array}$	$\begin{aligned} & 1854 \\ & (0.25) \end{aligned}$	$\begin{array}{r} 2599 \\ (0.18) \end{array}$	$\begin{gathered} 4329 \\ (0.108) \end{gathered}$	$\begin{array}{r} 6498 \\ (0.072) \end{array}$	$\left(\begin{array}{r} 8660 \\ (0.054) \end{array}\right.$	$\begin{gathered} 12995 \\ (0.036) \end{gathered}$
9	$\begin{gathered} 28 \\ (19.4) \end{gathered}$	$\begin{gathered} 47 \\ (11.5) \end{gathered}$	$\begin{array}{r} 69 \\ (8.1) \end{array}$	$\begin{array}{r} 93 \\ (6.0) \end{array}$	$\begin{array}{r} 140 \\ (3.9) \end{array}$	$\begin{gathered} 201 \\ (2.7) \end{gathered}$	$\begin{aligned} & 282 \\ & (1.9) \end{aligned}$	$\begin{array}{r} 471 \\ (1.2) \end{array}$	$\begin{array}{\|c\|} \hline 709 \\ 10.77) \\ \hline \end{array}$	$\begin{gathered} 945 \\ (0.58) \end{gathered}$	$\begin{array}{r} 1421 \\ (0.38) \end{array}$	$\begin{aligned} & 2027 \\ & (0.27) \end{aligned}$	$\begin{array}{r} 2842 \\ (0.19) \end{array}$	$\begin{gathered} 4733 \\ (0.114) \end{gathered}$	$\begin{array}{\|r\|} 7103 \\ (0.077) \end{array}$	$\begin{gathered} 9468 \\ (0.057) \end{gathered}$	$\begin{gathered} 14206 \\ (0.038) \end{gathered}$
10	$\begin{gathered} 31 \\ (19.9) \end{gathered}$	$\begin{gathered} 51 \\ (12.1) \end{gathered}$	$\begin{array}{r} 75 \\ (8.4) \end{array}$	$\begin{aligned} & 100 \\ & (6.3) \end{aligned}$	$\begin{gathered} 152 \\ (4.1) \end{gathered}$	$\begin{gathered} 218 \\ (2.9) \end{gathered}$	$\begin{aligned} & 306 \\ & (2.0) \end{aligned}$	$\begin{array}{r} 511 \\ (1.2) \end{array}$	$\begin{gathered} 770 \\ (0.80) \end{gathered}$	$\begin{aligned} & 1025 \\ & (0.60) \end{aligned}$	$\begin{array}{r} 1541 \\ (0.40) \end{array}$	$\begin{aligned} & 2199 \\ & (0.28) \end{aligned}$	$\begin{array}{r} 3082 \\ (0.20) \end{array}$	$\begin{array}{r} 5133 \\ (0.120) \end{array}$	$\left\|\begin{array}{r} 7704 \\ (0.080) \end{array}\right\|$	$\begin{gathered} 10268 \\ (0.060) \end{gathered}$	$\begin{gathered} 15407 \\ (0.040) \end{gathered}$
11	$\begin{gathered} 33 \\ (21.0) \end{gathered}$	$\begin{gathered} 54 \\ (12.8) \end{gathered}$	$\begin{array}{r} 83 \\ (8.3) \end{array}$	$\begin{gathered} 111 \\ (6.2) \end{gathered}$	$\begin{array}{r} 166 \\ (4.2) \end{array}$	$\begin{gathered} 238 \\ (2.9) \end{gathered}$	$\begin{aligned} & 332 \\ & (2.1) \end{aligned}$	$\begin{array}{r} 555 \\ (1.2) \end{array}$	$\begin{array}{\|c\|} 832 \\ (0.83) \end{array}$	$\begin{array}{r} 1109 \\ (0.62) \end{array}$	$\begin{array}{r} 1664 \\ (0.42) \end{array}$	$\begin{aligned} & 2378 \\ & (0.29) \end{aligned}$	$\begin{array}{r} 3323 \\ (0.21) \end{array}$	$\begin{array}{r} 5546 \\ (0.12) \end{array}$	$\begin{array}{r} 8319 \\ (0.083) \end{array}$	$\begin{gathered} 11092 \\ (0.062) \end{gathered}$	$\begin{gathered} 16638 \\ (0.042) \end{gathered}$
12	$\begin{gathered} 36 \\ (21.4) \end{gathered}$	$\begin{gathered} 59 \\ (13.0) \end{gathered}$	$\begin{array}{r} 89 \\ (8.6) \end{array}$	$\begin{array}{r} 119 \\ (6.5) \end{array}$	$\begin{gathered} 178 \\ (4.3) \end{gathered}$	$\begin{gathered} 254 \\ (3.0) \end{gathered}$	$\begin{aligned} & 356 \\ & (2.2) \end{aligned}$	$\begin{array}{r} 594 \\ (1.3) \end{array}$	$\begin{array}{\|c\|} \hline 890 \\ (0.86) \end{array}$	$\begin{array}{r} 1187 \\ (0.65) \end{array}$	$\begin{array}{r} 1781 \\ (0.43) \end{array}$	$\begin{gathered} 2544 \\ (0.3) \end{gathered}$	$\begin{array}{r} 3562 \\ (0.22) \end{array}$	$\begin{array}{r} 5936 \\ (0.13) \end{array}$	$\begin{array}{\|r\|} 8904 \\ (0.086) \end{array}$	$\begin{gathered} 1872 \\ (0.065) \end{gathered}$	$\begin{array}{r} 17808 \\ (0.043) \end{array}$
13	$\begin{gathered} 38 \\ (22.3) \end{gathered}$	$\begin{gathered} 63 \\ (13.4) \end{gathered}$	$\begin{array}{r} 95 \\ (8.9) \end{array}$	$\begin{array}{r} 126 \\ (6.7) \end{array}$	$\begin{array}{r} 190 \\ (4.5) \end{array}$	$\begin{array}{r} 271 \\ (3.1) \end{array}$	$\begin{gathered} 379 \\ (2.26) \end{gathered}$	$\begin{array}{r} 632 \\ (1.3) \end{array}$	$\begin{gathered} 948 \\ (0.89) \end{gathered}$	$\begin{gathered} 1264 \\ (0.67) \end{gathered}$	$\begin{array}{r} 1896 \\ (0.44) \end{array}$	$\begin{aligned} & 2709 \\ & (0.31) \end{aligned}$	$\begin{array}{r} 3793 \\ (0.22) \end{array}$	$\begin{array}{r} 6321 \\ (0.134) \end{array}$	$\begin{array}{r} 9482 \\ (0.089) \end{array}$	$\begin{gathered} 12643 \\ (0.067) \end{gathered}$	$\begin{gathered} 18964 \\ (0.045) \end{gathered}$
14	$\begin{gathered} 40 \\ (23.1) \end{gathered}$	$\begin{gathered} 67 \\ (13.8) \end{gathered}$	$\begin{gathered} 101 \\ (9.2) \end{gathered}$	$\begin{array}{r} 134 \\ (6.9) \end{array}$	$\begin{gathered} 201 \\ (4.6) \end{gathered}$	$\begin{gathered} 288 \\ (3.2) \end{gathered}$	$\begin{gathered} 403 \\ (2.3) \end{gathered}$	$\begin{gathered} 672 \\ (1.4) \end{gathered}$	$\begin{aligned} & 1007 \\ & (0.92) \end{aligned}$	$\begin{gathered} 1343 \\ (0.69) \end{gathered}$	$\begin{array}{r} 2015 \\ (0.46) \end{array}$	$\begin{aligned} & 2878 \\ & (0.32) \end{aligned}$	$\begin{array}{r} 4029 \\ (0.23) \end{array}$	$\begin{array}{r} 6716 \\ (0.138) \end{array}$	$\left\|\begin{array}{c} 10073 \\ 10.092) \end{array}\right\|$	$\begin{array}{r} 13431 \\ (0.069) \end{array}$	$\begin{gathered} 20146 \\ (0.046) \end{gathered}$
15	$\begin{gathered} 43 \\ (23.3) \end{gathered}$	$\begin{gathered} 71 \\ (14.1) \end{gathered}$	$\begin{gathered} 107 \\ (9.4) \end{gathered}$	$\begin{array}{r} 142 \\ (7.1) \end{array}$	$\begin{array}{r} 213 \\ (4.7) \end{array}$	$\begin{array}{r} 305 \\ (3.3) \end{array}$	$\begin{gathered} 426 \\ (2.36) \end{gathered}$	$\begin{array}{r} 711 \\ (1.41) \end{array}$	$\begin{aligned} & 1066 \\ & (0.94) \end{aligned}$	$\begin{array}{r} 1422 \\ (0.71) \end{array}$	$\begin{array}{r} 2133 \\ (0.47) \end{array}$	$\begin{aligned} & 3046 \\ & (0.33) \end{aligned}$	$\begin{gathered} 4265 \\ (0.235) \end{gathered}$	$\begin{array}{r} 7108 \\ (0.141) \end{array}$	$\left\|\begin{array}{r} 10662 \\ (0.094) \end{array}\right\|$	$\begin{gathered} 14216 \\ (0.070) \end{gathered}$	$\begin{gathered} 21324 \\ (0.047) \end{gathered}$
16	$\begin{gathered} 45 \\ (24.1) \end{gathered}$	$\begin{gathered} 74 \\ (14.6) \end{gathered}$	$\begin{array}{r} 112 \\ (9.7) \end{array}$	$\begin{array}{r} 150 \\ (7.2) \end{array}$	$\begin{aligned} & 225 \\ & (4.8) \end{aligned}$	$\begin{gathered} 321 \\ (3.37) \end{gathered}$	$\begin{gathered} 450 \\ (2.41) \end{gathered}$	$\begin{array}{r} 750 \\ (1.44) \end{array}$	$\begin{array}{\|l\|} \hline 1124 \\ (0.96) \end{array}$	$\begin{array}{r} 1499 \\ (0.72) \end{array}$	$\begin{array}{r} 2249 \\ (0.48) \end{array}$	$\begin{gathered} 3212 \\ (0.337) \end{gathered}$	$\begin{gathered} 4497 \\ (0.24 .1) \end{gathered}$	$\begin{array}{r} 7496 \\ (0.144) \end{array}$	$\left\|\begin{array}{c} 11244 \\ (0.096) \end{array}\right\|$	$\begin{gathered} 14992 \\ (0.072) \end{gathered}$	$\begin{gathered} 22487 \\ (0.048) \end{gathered}$
17	$\begin{gathered} 47 \\ (24.7) \end{gathered}$	$\begin{gathered} 79 \\ (14.7) \end{gathered}$	$\begin{gathered} 118 \\ (9.86) \end{gathered}$	$\begin{gathered} 158 \\ (7.36) \end{gathered}$	$\begin{gathered} 236 \\ (4.93) \end{gathered}$	$\begin{gathered} 338 \\ (3.44) \end{gathered}$	$\begin{gathered} 473 \\ (2.46) \end{gathered}$	$\begin{array}{r} 788 \\ (1.48) \end{array}$	$\begin{aligned} & 1182 \\ & (0.98) \end{aligned}$	$\begin{array}{r} 1576 \\ (0.74) \end{array}$	$\begin{array}{r} 2364 \\ (0.49) \end{array}$	$\begin{gathered} 3377 \\ (0.334) \end{gathered}$	$\begin{gathered} 4728 \\ (0.246) \end{gathered}$	$\begin{array}{r} 7880 \\ (0.148) \end{array}$	$\begin{array}{\|r\|} 11819 \\ (0.098) \\ \hline \end{array}$	$\begin{gathered} 15759 \\ (0.074) \end{gathered}$	$\begin{array}{r} 23639 \\ (0.049) \end{array}$
18	$\begin{gathered} 50 \\ (24.9) \end{gathered}$	$\left(\begin{array}{c} 83 \\ (15.0) \end{array}\right.$	$\begin{gathered} 124 \\ (10.0) \end{gathered}$	$\begin{gathered} 165 \\ (7.54) \end{gathered}$	$\begin{gathered} 248 \\ (5.02) \end{gathered}$	$\begin{gathered} 354 \\ (3.51) \\ \hline \end{gathered}$	$\begin{gathered} 496 \\ (2.51) \end{gathered}$	$\begin{array}{r} 826 \\ (1.51) \end{array}$	$\begin{aligned} & 1239 \\ & (1.0) \end{aligned}$	$\begin{array}{r} 1652 \\ (0.75) \end{array}$	$\begin{array}{r} 2478 \\ (0.50) \end{array}$	$\begin{gathered} 3540 \\ (0.351) \end{gathered}$	$\left\lvert\, \begin{gathered} 4956 \\ (0.251) \end{gathered}\right.$	$\begin{array}{r} 8260 \\ (0.151) \end{array}$	$\left(\begin{array}{c} 12390 \\ (0.100) \end{array}\right.$	$\begin{gathered} 16520 \\ (0.075) \end{gathered}$	$\begin{array}{r} 24780 \\ (0.050) \end{array}$
19	$\stackrel{52}{(25.5)}$	$\begin{gathered} 86 \\ (15.4) \end{gathered}$	$\begin{gathered} 130 \\ (10.2) \end{gathered}$	$\begin{gathered} 173 \\ (7.76) \end{gathered}$	$\begin{array}{\|c} 259 \\ (5.12) \end{array}$	$\begin{gathered} 370 \\ (3.58) \end{gathered}$	$\begin{gathered} 518 \\ (2.56) \end{gathered}$	$\begin{array}{r} 864 \\ (1.53) \end{array}$	$\begin{aligned} & 1296 \\ & (1.02) \end{aligned}$	$\begin{array}{r} 1728 \\ (0.77) \end{array}$	$\begin{array}{r} 2591 \\ (0.52) \end{array}$	$\begin{gathered} 3702 \\ (0.358) \end{gathered}$	$\left\|\begin{array}{c} 5183 \\ (0.256) \end{array}\right\|$	$\begin{array}{r} 8638 \\ (0.153) \end{array}$	$\left\|\begin{array}{c} 12957 \\ (0.102) \end{array}\right\|$	$\begin{gathered} 17276 \\ (0.077) \end{gathered}$	$\begin{aligned} & 25914 \\ & (0.051) \end{aligned}$
20	$\begin{gathered} 54 \\ (26.1) \end{gathered}$	$\begin{gathered} 90 \\ (15.6) \end{gathered}$	$\begin{gathered} 135 \\ (10.4) \end{gathered}$	$\begin{gathered} 180 \\ (7.82) \end{gathered}$	$\left\lvert\, \begin{gathered} 271 \\ (5.19) \end{gathered}\right.$	$\begin{gathered} 386 \\ (3.65) \end{gathered}$	$\begin{gathered} 541 \\ (2.60) \end{gathered}$	$\begin{array}{r} 902 \\ (1.56) \end{array}$	$\begin{aligned} & 1353 \\ & (1.04) \end{aligned}$	$\begin{gathered} 1803 \\ (0.78) \end{gathered}$	$\begin{array}{r} 2705 \\ (0.52) \end{array}$	$\begin{gathered} 3864 \\ (0.364) \end{gathered}$	$\left\|\begin{array}{c} 5410 \\ (0.260) \end{array}\right\|$	$\left(\begin{array}{r} 9017 \\ (0.156) \end{array}\right.$	$\left\|\begin{array}{r} 13526 \\ (0.104) \end{array}\right\|$	$\begin{array}{r} 18034 \\ (0.078) \end{array}$	$\begin{gathered} 27051 \\ (0.052) \end{gathered}$
25	$\begin{gathered} 65 \\ (27.0) \end{gathered}$	$\begin{aligned} & 109 \\ & (16.1) \end{aligned}$	$\begin{gathered} 163 \\ (10.8) \end{gathered}$	$\begin{gathered} 217 \\ (8.08) \end{gathered}$	$\begin{gathered} 326 \\ (5.38) \end{gathered}$	$\begin{gathered} 466 \\ (3.76) \end{gathered}$	$\begin{gathered} 652 \\ (2.69) \end{gathered}$	$\begin{gathered} 1086 \\ (1.61) \end{gathered}$	$\left\|\begin{array}{l} 1629 \\ (1.08) \end{array}\right\|$	$\begin{array}{\|c\|} \hline 2173 \\ (0.807) \\ \hline \end{array}$	$\begin{array}{\|r\|} 3259 \\ (0.538) \end{array}$	$\left\|\begin{array}{c} 4656 \\ (0.376) \end{array}\right\|$	$\begin{array}{\|c\|} \hline 6518 \\ (0.269) \\ \hline \end{array}$	$\begin{gathered} 10863 \\ (0.161) \end{gathered}$	$\begin{array}{\|c\|} \hline 16295 \\ (0.108) \end{array}$	$\begin{gathered} 21726 \\ (0.081) \end{gathered}$	$\begin{gathered} 32589 \\ (0.054) \end{gathered}$

[^2]The life test failure rate lambda λ shall be defined as the LTPD per 1000 hours.
The minimum quality (approximate $\hat{A} Q L$) required to accept (on the average) 19 of 20 lots is shown in parenthesis for information only.

Conversion between LTPD and AOL Systems

The following table gives a practical method for conversion between the two systems. This conversion is applicable for lot sizes used in practice.
The table has been recommended by the IEC.

AQL	0.10	0.15	0.25	0.40	0.65	1.0	1.5	2.5	4.0	6.5
LTPD	0.7	1.0	2.0	3	5	7	10	20	30	50

AQL and LTPD definitions

The availability of suitable sampling plan in various military specifications has led to a general use of AQL and LTPD plans.
The assumptions of a certain sample size (n) and of an acceptance number (c) together with the use of typical distributions (Binomial and Poisson) generate an Operating Characteristic Curve (OC) as shown in fig. 10.

Fig. 10 - Probability of lot acceptance vs. percent defective

The AQL (Acceptable Quality level) is the percentage of defects defined at about 95\% probability of lot acceptance, while the LTPD (Lot tolerance percent defective) is the percentage of defects defined at the 10% probability of acceptance.
In other words a sampling plan with 1% AQL passes (accepts) lots will 1% defective about 95% of the time and when a sampling plan with 5% LTPD is used a lot which is trully 5% defective is rejected 90% of the time.
The AQL points defines the Producer's Risk of rejecting a good lot ($\sim 5 \%$) while the LTPD point defines the Consumer's Risk of accepting a bad lot (10%).

DATA SHEETS

LINEAR INTEGRATED CIRCUIT

TRIAC/SCR PHASE CONTROL

The L 120A is a monolithic integrated circuit in 16-lead dual in-line plastic package. It incorporates the following functions:

- AC supply $50 / 60 \mathrm{~Hz}$
- Zero-voltage and zero-current detector
- Ramp generator
- Inhibition of casual firing pulses
- Stabilization of the internal positive DC supply
- High gain operational amplifier
- Output short-circuit protection

The L 120A is intended for use as a phase controller in industrial and consumer applications.

ABSOLUTE MAXIMUM RATINGS

I_{9}	AC peak supply current	60	mA
I_{14}	Max input current (pin 14)	20	mA
$\mathrm{I}_{\mathrm{D} 1}, \mathrm{I}_{\mathrm{D} 2}$	Input diodes peak current	1	A
$\mathrm{~V}_{8-12}$	Positive clamp voltage	15	V
$\mathrm{~V}_{10-12}$	Negative clamp voltage	15	V
$\mathrm{~V}_{1-2}$	Differential input voltage	± 7	V
$\mathrm{~V}_{3-5}$	Differential input voltage	± 8	V
$\mathrm{P}_{\text {tot }}$	Total power dissipation at $\mathrm{T}_{\mathrm{amb}}=85^{\circ} \mathrm{C}$	800	mW
$\mathrm{~T}_{\text {stg }}$	Storage temperature	-55 to 150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {op }}$	Operating junction temperature	-25 to 150	${ }^{\circ} \mathrm{C}$

ORDERING NUMBER: L 120AB

CONNECTION DIAGRAM (top view)

BLOCK DIAGRAM

L120A

TEST CIRCUIT

THERMAL DATA

| $\mathrm{R}_{\text {th j-amb }} \quad$ Thermal resistance junction-ambient | $\max \quad 80 \quad{ }^{\circ} \mathrm{C} / \mathrm{W}$ |
| :--- | :--- | :--- | :--- | :--- |

ELECTRICAL CHARACTERISTICS $\left(\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}\right.$, refer to the test circuit unless otherwise specified)

	Parameter	Test conditions	Min.	Typ.	Max.
Unit					
V_{8-12}	Positive clamp voltage		10	11.5	13
V_{10-12}	Negative clamp voltage		10	11.5	13
V_{8-12}	External DC supply voltage		10.5		
V_{10-12}	External DC supply voltage		-10.5		V
$\mathrm{~V}_{9-12}$	Sync input threshold		± 8.8	± 10	± 11.2
$\mathrm{~V}_{14-12}$	Zero current threshold		V		

L120A

ELECTRICAL CHARACTERISTICS (continued)

Parameter		Test conditions		Min.	Typ.	Max.	Unit
$\begin{aligned} & V_{10-14} \\ & V_{8-14} \end{aligned}$	Zero current threshold			1.2			V
I_{14}	Operative input current to avoid inibition (pin 14)			0.4			mA
V_{1-12}	Ramp discharge level					1.1	V
V_{1-12}	Maximum ramp level			7.2			V
V_{1-2}	Comparat. differential trigger level				70	100	mV
G_{v}	Amplifier voltage gain (open loop)	V_{2} (peak to peak)	$=6 \mathrm{~V}$	60	70		dB
V_{2-13}	Max output voltage			7			V
V_{2-13}	Min output voltage					0.9	V
$\begin{aligned} & v_{3-13} \\ & v_{5-13} \end{aligned}$	Input offset voltage	$\mathrm{R}_{3-13}=\mathrm{R}_{5-13}$			3	6	mV
I_{b}	Input bias current (pin 3, 5)				0.1	1	$\mu \mathrm{A}$
V_{3-5}	Differential input voltage					± 7	V
$\begin{aligned} & V_{3-13} \\ & V_{5-13} \end{aligned}$	Input voltage range			0.5		7.5	V
CMR	Common mode rejection	$\mathrm{R}_{3-13}=\mathrm{R}_{5-13}$	$1 \mathrm{k} \Omega$		60		dB
V_{6-13}	Regulator output voltage			8.3		9.5	V
I_{6}	Max regulator output current			3			mA
$\frac{\Delta V_{6}}{V_{6}}$	Load regulation	$\mathrm{I}_{6}=0$ to 3 mA			0.5	2	\%
$\frac{\Delta \mathrm{V}_{6}}{\Delta \mathrm{~V}_{8}}$	Line regulation	$V_{8}=12$ to 14 V	$I_{6}=0$		46		dB
SVR	Supply voltage rejection	$V_{8}=12 \mathrm{~V}$ $V_{\text {ripple }}$ (peak	$\begin{aligned} & \text { ple }=50 \mathrm{~Hz} \\ & \text { eak }=4 \mathrm{~V} \end{aligned}$		46		dB
V_{4}	Reference voltage	$\mathrm{I}_{4}=10 \mu \mathrm{~A}$			1.5		V
V_{7-12}	Firing pulse amplitude		positive	4.5	5.5		V
			negative	8	9.5		V
${ }^{17}$	Maximum output current	$\mathrm{R}_{7-12}=10 \Omega$		80			mA
${ }_{\text {tpw }}$	Output pulse width				200		$\mu \mathrm{s}$
t_{r}	Output pulse rise time	12			200		ns

Fig. 1 - Peak supply current vs. dropping resistor $\mathrm{R}_{\mathbf{S}}$

Fig. 2 - Maximum allowable average supply current vs. ambient temperature

Fig. 3 - Gate pulse amplitude vs. gate resistance

Fig. 4 - Gate current variation vs. ambient temperature

Fig. 5 - Gate pulse width vs. C_{11-15}

Fig. 6 - Alternative system for reduction of power dissipation

APPLICATION INFORMATION

Fig. 7 - Application circuit for AC motor speed regulators

Fig. 8-3 to 30V adjustable power supply with preregulation

NOTE - For a more detailed description of the L120A and its applications refer to SGSDESIGN NOTE - DN 382.

LINEAR INTEGRATED CIRCUIT

L121A

TRIAC/SCR BURST CONTROL

The L 121A is a monolithic integrated circuit in 16-lead dual in-line plastic package. It incorporates the following functions:

- AC supply $50 / 60 \mathrm{~Hz}$
- Zero-voltage detector
- Ramp generator
- Inhibition of casual firing pulses
- Stabilization of the internal positive DC supply
- High gain operational amplifier
- Output short-circuit protection

The L 121A is intended for use as a burst controller in industrial and consumer applications.

ABSOLUTE MAXIMUM RATINGS

19	AC Peak supply current		60	mA
$\mathrm{I}_{\mathrm{D} 1}, \mathrm{I}_{\mathrm{D} 2}$	Input diodes peak current		1	A
V_{14}	Maximum voltage (pin 14)		20	V
V_{8-12}	Positive clamp voltage		15	V
V_{10-12}	Negative clamp voltage		15	V
V_{1-2}	Differential input voltage		± 7	V
V_{3-5}	Differential input voltage		± 8	V
$\mathrm{P}_{\text {tot }}$	Total power dissipation at $\mathrm{Tamb}=85^{\circ} \mathrm{C}$		800	mW
$\mathrm{T}_{\text {stg }}$	Storage temperature		-55 to 150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {op }}$	Operating junction temperature		-25 to 150	${ }^{\circ} \mathrm{C}$

ORDERING NUMBER: L 121AB

MECHANICAL DATA

Dimensions in mm

CONNECTION DIAGRAM (top view)

RAMP VOLTAGE
AMPLIFIER OUTPUT
NON INV. AMPLIF. INPUT
DC REFERENCE VOLTAGE
INV. AMPLIFIER INPUT
STABILIZED DC SUPPLY
POSITIVE RECTIFIER SUPPLY

BLOCK DIAGRAM

SCHEMATIC DIAGRAM

TEST CIRCUIT

THERMAL DATA

| $\mathrm{R}_{\text {th } \mathrm{j} \text {-amb }} \quad$ Thermal resistance junction-ambient | \max | 80 | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |
| :--- | :--- | :--- | :--- | :--- |

ELECTRICAL CHARACTERISTICS $\left(T_{a m b}=25^{\circ} \mathrm{C}\right.$, refer to the test circuit unless otherwise specified)

	Parameter	Test conditions	Min.	Typ.	Max.	Unit
V_{8-12}	Positive clamp voltage		10	11.5	13	V
$\mathrm{~V}_{10-12}$	Negative clamp voltage		10	11.5	13	V
$\mathrm{~V}_{8-12}$	External DC supply voltage		10.5			V
$\mathrm{~V}_{10-12}$	External DC supply voltage		-10.5			V
$\mathrm{~V}_{9-12}$	Sync input threshold			± 12.5		V

ELECTRICAL CHARACTERISTICS (continued)

Parameter		Test conditions		Min.	Typ.	Max.	Unit
V_{14-12}	Minimum input voltage	(pin 9 open)		± 2.5			V
V_{1-12}	Ramp discharge level					1.2	V
V_{1-12}	Maximum ramp level			5.2			V
V_{1-2}	Comparator differential trigger level				70	100	mV
G_{v}	Amplifier voltage gain (open loop)	V_{2} (peak to peak) $=6 \mathrm{~V}$		60	70		dB
V_{2-13}	Max output voltage			7			V
V_{2-13}	Min output voltage					0.9	V
$\begin{aligned} & V_{3-13}, \\ & V_{5-13} \end{aligned}$	Input offset voltage	$R_{3-13}=R_{5-13}=50 \Omega$			3	6	mV
I_{b}	Input bias current				0.1	1	$\mu \mathrm{A}$
V_{3-5}	Differential input voltage					± 7	V
$\begin{aligned} & V_{3-13}, \\ & V_{5-13} \end{aligned}$	Input voltage range			0.5		7.5	V
CMR	Common mode rejection	$\mathrm{R}_{3-13}=\mathrm{R}_{5-13}$	$1 \mathrm{k} \Omega$		60		dB
V_{6-13}	Regulator output voltage			8.3		9.5	V
I_{6}	Max regulator output current			3			mA
$\frac{\Delta V_{6}}{V_{6}}$	Load regulation	$\mathrm{I}_{6}=0$ to 3 mA			0.5	2	\%
$\frac{\Delta \mathrm{V}_{6}}{\Delta \mathrm{~V}_{8}}$	Line regulation	$\mathrm{V}_{8}=12$ to 14 V	$I_{6}=0$		46		dB
SVR	Supply voltage rejection	$\begin{aligned} & V_{8}=12 \mathrm{~V} \\ & V_{\text {ripple }}(\text { peak } \end{aligned}$	$\begin{aligned} & \text { ple }=50 \mathrm{~Hz} \\ & \text { eak) }=4 \mathrm{~V} \end{aligned}$		46		dB
V_{4}	Reference voltage	$\mathrm{I}_{4}=10 * \mu \mathrm{~A}$			1.5		V
V_{7-12}	Firing pulse amplitude	$\mathrm{R}_{7-12}=1 \mathrm{k} \Omega$	positive	4.5	5.5		V
			negative	8	9.5		V
l_{7}	Maximum output current	$\mathrm{R}_{7-12}=10 \Omega$		80			mA
Jw	Output pulse width	$\mathrm{R}_{7-12}=50 \Omega$			200		$\mu \mathrm{s}$
	Output pulse rise time				200		ns

Fig. 1 - Peak supply current vs. dropping resistor R_{S}

Fig. 4 - Gate current variation vs. ambient temperature

Fig. 2 - Maximum allowable average supply current vs. ambient temperature

Fig. 5 - Gate pulse width vs. C_{11-15}

Fig. 3-Gate pulse amplitude vs. gate resistance

Fig. 6 - Ramp width vs. external time constant $\mathrm{R}_{16} \cdot \mathrm{C}_{1}$

Fig. 7 - Alternative system for reduction of power dissipation

APPLICATION INFORMATION

Fig. 8 - Application circuit for temperature control (proportional type)

Fig. 9 - Application circuit for temperature control (ON-OFF type)

Fig. 10 - Application circuit for low AC supply voltage (by using pin 14)

S-3519/2

Fig. 11 - Cimate control for car.

* Protection against overvoltages.
P_{1} : system hysteresis setting
P_{2} : temperature setting

NOTE - For a more detailed description of the L120A and its applications refer to SGSDESIGN NOTE - DN 382.

LINEAR INTEGRATED CIRCUIT

HIGH PRECISION VOLTAGE REGULATOR

- INPUT VOLTAGE UP TO 40V
- OUTPUT VOLTAGE ADJUSTABLE FROM 2 TO 37V
- POSITIVE OR NEGATIVE SUPPLY OPERATION
- SERIES, SHUNT, SWITCHING OR FLOATING OPERATION
- OUTPUT CURRENT TO 150 mA WITHOUT EXTERNAL PASS TRANSISTOR
- ADJUSTABLE CURRENT LIMITING

The L123 is a monolithic integrated programmable voltage regulator, assembled in 14-lead dual in-line plastic package and 10 -lead Metal Can (TO-100 type). The circuit provides internal current limiting. When the output current excedes 150 mA an external NPN or PNP pass element may be used. Provisions are made for adjustable current limiting and remote shut-down.

ABSOLUTE		MAXIMUM RATINGS	L123
V_{i}	Input voltage	40 V	40 V
$\Delta \mathrm{~V}_{\text {i-o }}$	Dropout voltage	40 V	40 V
I_{o}	Output current	150 mA	150 mA
$\mathrm{I}_{\text {ref }}$	Current from $\mathrm{V}_{\text {ref }}$	15 mA	25 mA
$\mathrm{P}_{\text {tot }}$	Power dissipation (at $\mathrm{T}_{\text {amb }}=70^{\circ} \mathrm{C}$) Plastic DIP	TO-100	-
$\mathrm{T}_{\text {op }}$	Operating junction temperature	520 mW	520 mW
$\mathrm{~T}_{\text {stg }}$	Storage temperature	-25 to $150^{\circ} \mathrm{C}$	0 to $70^{\circ} \mathrm{C}$

MECHANICAL DATA

Dimensions in mm

CONNECTION DIAGRAM AND ORDERING NUMBERS (top views)

Type	TO-100	Plastic DIP
L123	L123T	-
L123C	L123CT	L123CB

BLOCK DIAGRAM

TEST CIRCUIT

(Pin configuration relative to the Plastic package)

THERMAL DATA	TO-100	Plastic DIP	
$R_{\text {th j-amb }}$ Thermal resistance junction-ambient	\max	$155^{\circ} \mathrm{C} / \mathrm{W}$	$80^{\circ} \mathrm{C} / \mathrm{W}$

ELECTRICAL CHARACTERISTICS (Refer to the test circuit, $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ unless otherwise specified)

	Parameter	Test conditions	L123C			L123			Unit
			Min.	Typ.	Max.	Min.	Typ.	Max.	
$\frac{\Delta V_{0}}{\Delta V_{i}}$	Line regulation	$\begin{aligned} & V_{i}=12 \text { to } 15 \mathrm{~V} \\ & V_{i}=12 \text { to } 40 \mathrm{~V} \end{aligned}$		$\begin{array}{\|c\|} \hline 0.01 \\ 0.1 \\ \hline \end{array}$	$\begin{aligned} & 0.1 \\ & 0.5 \\ & \hline \end{aligned}$		$\begin{aligned} & 0.01 \\ & 0.02 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.2 \\ & \hline \end{aligned}$	$\begin{aligned} & \% \\ & \% \end{aligned}$
		$\begin{aligned} & V_{i}=12 \text { to } 15 \mathrm{~V} \\ & T_{\min } \leqslant T_{a \operatorname{mb}} \leqslant T_{\max } \end{aligned}$			0.3			0.3	\%
$\frac{\Delta V_{0}}{V_{0}}$	Load regulation	$\mathrm{I}_{\mathrm{o}}=1$ to 50 mA		0.03	0.2		0.03	0.15	\%
		$\begin{aligned} & T_{\min } \leqslant T_{a m b} \leqslant T_{\max } \\ & I_{0}=1 \text { to } 10 \mathrm{~mA} \end{aligned}$			0.6			0.6	\%
$V_{\text {ref }}$	Reference voltage	$\mathrm{I}_{\text {ref }}=160 \mu \mathrm{~A}$	6.8	7.15	7.5	6.95	7.15	7.35	V
SVR	Ripple rejection	$\begin{aligned} & \mathrm{f}=100 \mathrm{~Hz} \text { to } 10 \mathrm{KHz} \\ & \mathrm{C}_{\mathrm{ref}}=0 \\ & \mathrm{C}_{\mathrm{ref}}=5 \mu \mathrm{~F} \end{aligned}$		$\begin{aligned} & 74 \\ & 86 \end{aligned}$			$\begin{aligned} & 74 \\ & 86 \end{aligned}$		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
$\frac{\Delta V_{o}}{\Delta T}$	Output voltage drift				150			150	$\frac{\mathrm{ppm}}{{ }^{\circ} \mathrm{C}}$
$\mathrm{I}_{\text {Sc }}$	Short circuit current limiting	$\mathrm{R}_{\mathrm{sc}}=10 \Omega \quad \mathrm{~V}_{\mathrm{o}}=0$		65			65		mA
v_{i}	Input voltage range		9.5		40	9.5		40	V
V_{0}	Output voltage range		2		37	2		37	V
$V_{i}-V_{0}$			3		38	3		38	V
I_{d}	Quiescent drain current	$\begin{aligned} & \mathrm{I}_{\mathrm{O}}=0 \\ & \mathrm{~V}_{\mathrm{i}}=30 \mathrm{~V} \end{aligned}$		2.3	4		2.3	5	mA
	Long term stability			0.1			0.1		$\frac{\%}{\substack{1000 \\ \text { hrs }}}$
e_{N}	Output noise voltage	$\begin{aligned} & \mathrm{BW}=100 \mathrm{~Hz} \text { to } 10 \mathrm{KHz} \\ & \mathrm{C}_{\mathrm{ref}}=0 \\ & \mathrm{C}_{\mathrm{ref}}=5 \mu \mathrm{~F} \end{aligned}$		$\begin{aligned} & 20 \\ & 2.5 \end{aligned}$			$\begin{array}{r} 20 \\ 2.5 \end{array}$		$\begin{aligned} & \mu \vee \\ & \mu \vee \end{aligned}$
V_{z}	Output zener voltage (for plastic package only)	$\mathrm{I}_{\mathrm{z}}=1 \mathrm{~mA}$	6.9		7.7				V

Note: $\mathrm{T}_{\text {min }}=0^{\circ} \mathrm{C}$ (L123C); $-25^{\circ} \mathrm{C}$ (L123).
$T_{\text {max }}=70^{\circ} \mathrm{C}$ (L123C); $150^{\circ} \mathrm{C}$ (L123).

111
 L123

Fig. 1 - Maximum output current vs. voltage drop

Fig. 4 - Load regulation characteristics without current limiting

Fig. 7 - Line regulation vs. voltage drop

Fig. 2 - Current limiting characteristics

Fig. 5 - Load regulation characteristics with current limiting

Fig. 8 - Load regulation vs. voltage drop

Fig. 3 - Current limiting characteristics vs. junction temperature

Fig. 6 - Load regulation characteristics with current limiting

Fig. 9 - Quiescent drain current vs. input voltage

Fig. 10 - Line transient
response

Fig. 11 - Load transient response

Fig. 12 - Output impedance vs. frequency

Table 1 - Resistor values ($\mathrm{K} \Omega$) for standard output voltages

Output Voltage	Applicable Figures	Fixed Output$\pm \mathbf{5 \%}$		Output Adjustable $\pm 10 \%\left({ }^{\circ}\right)$			Output Voltage	Applicable Figures	Fixed Output$\pm \mathbf{5 \%}$		$\begin{aligned} & \text { Output Adjustable } \\ & \pm \mathbf{1 0 \%}\left({ }^{\circ}\right) \end{aligned}$		
		R_{1}	R_{2}	R_{1}	P_{1}	R_{2}			\mathbf{R}_{1}	R_{2}	R_{1}	P_{1}	\mathbf{R}_{2}
+ 3	$\begin{aligned} & 13,16,17 \\ & 18,21,23 \end{aligned}$	4.12	3.01	1.8	0.5	1.2	+100	19	3.57	102	2.2	10	91
$+5$	$\begin{aligned} & 13,16,17 \\ & 18,21,23 \end{aligned}$	2.15	4.99	0.75	0.5	2.2	+250	19	3.57	255	2.2	10	240
+ 6	$\begin{aligned} & 13,16,17 \\ & 18,21,23 \end{aligned}$	1.15	6.04	0.5	0.5	2.7	$-6(\circ 0)$	15	3.57	2.43	1.2	0.5	0.75
+ 9	$\begin{aligned} & 14,16,17 \\ & 18,21,23 \end{aligned}$	1.87	7.15	0.75	1	2.7	- 9	15	3.48	5.36	1.2	0.5	2
+12	$\begin{aligned} & 14,16,17 \\ & 18,21,23 \end{aligned}$	4.87	7.15	2	1	3	- 12	15	3.57	8.45	1.2	0.5	3.3
+15	$\begin{aligned} & 14,16,17 \\ & 18,21,23 \end{aligned}$	7.87	7.15	3.3	1	3	- 15	15	3.65	11.5	1.2	0.5	4.3
+28	$\begin{aligned} & 14,16,17 \\ & 18,21,23 \end{aligned}$	21	7.15	5.6	1	2	- 28	15	3.57	24.3	1.2	0.5	10
+45	19	3.57	48.7	2.2	10	39	- 45	20	3.57	41.2	2.2	10	33
+75	19	3.57	78.7	2.2	10	68	-100	20	3.57	97.6	2.2	10	91
							-250	20	3.57	249	2.2	10	240

Note: (${ }^{\circ}$) Replace R_{1} / R_{2} divider with the circuit of fig. 24.
(oo) V^{+}must be connected to a +3 V or greater supply.
Table II - Formulae for intermediate output voltages

Outputs from +2 to +7 volts Fig. 13, 17, 18, 21, 23, 16 $v_{\mathrm{O}}=\left[\mathrm{V}_{\mathrm{ref}} \times \frac{R_{2}}{R_{1}+R_{2}}\right]$	Outputs from +4 to +250 volts Fig. 19 $V_{O}=\left[\frac{V_{\text {ref }}}{2} \times \frac{R_{2}-R_{1}}{R_{1}}\right] ; R_{3}=R_{4}$	Current Limiting $I_{\text {LIMIT }}=\frac{V_{\text {SENSE }}}{R_{\text {SC }}}$
Outputs from +7 to +37 volts Fig. 14, 16, 17, 18, 21, 23 $v_{O}=\left[v_{\text {ref }} \times \frac{R_{1}+R_{2}}{R_{2}}\right]$	Output from -6 to -250 volts Fig. 15, 20 $V_{O}=\left[\frac{v_{\text {ref }}}{2} \times \frac{R_{1}+R_{2}}{R_{1}}\right] ; R_{3}=R_{4}$	Foldback Current Limiting $\begin{gathered} I_{\text {KNEE }}=\left[\frac{V_{O} R_{3}}{R_{S C} R_{4}}+\frac{V_{\text {SENSE }}\left(R_{3}+R_{4}\right)}{R_{5 C} R_{4}}\right] \\ \text { ISHORT CKT }=\left[\frac{V_{S E N S E}}{R_{S C}} \times \frac{R_{3}+R_{4}}{R_{4}}\right] \end{gathered}$

APPLICATION INFORMATION (Pin numbers relative to the plastic package)

Fig. 13 - Basic low voltage regulator ($\mathrm{V}_{\mathrm{o}}=2$ to 7 V)

R3 may be eliminated for minimum component count.

Typical performance

Regulated Output Voltage
Line Regulation $\left(\Delta V_{i}=3 \mathrm{~V}\right)$. 0.5 mV
Load Regulation ($\Delta \mathrm{I}_{\mathrm{O}}=50 \mathrm{~mA}$) . . . 1.5 mV

Fig. 15 - Negative voltage regulator

Typical performance
Regulated Output Voltage $\ldots \ldots \ldots-15 \mathrm{~V}$
Line Regulation $\left(\Delta \mathrm{V}_{\mathrm{i}}=3 \mathrm{~V}\right) \ldots \ldots \ldots 1 \mathrm{mV}$
Load Regulation $\left(\Delta \mathrm{I}_{\mathrm{O}}=100 \mathrm{~mA}\right) \ldots .2 \mathrm{mV}$

Regulated Output Voltage -15V
Load Regulation ($\Delta \mathrm{I}_{\mathrm{O}}=100 \mathrm{~mA}$) . . . 2 mV

Fig. 14 - Basic high voltage regulator
($\mathrm{V}_{\mathrm{o}}=7$ to 37 V)

NOTE: $\frac{\mathrm{R} 1 \cdot \mathrm{R} 2}{\mathrm{R} 1+\mathrm{R} 2}$ for minimum temperature drift.
R3 may be eliminated for minimum component count.

Typical performance

Regulated Output Voltage 15V
Line Regulation ($\Delta \mathrm{V}_{\mathrm{i}}=3 \mathrm{~V}$) 1.5 mV
Load Regulation ($\Delta \mathrm{I}_{\mathrm{O}}=50 \mathrm{~mA}$) . . . 4.5 mV

Fig. 16 - Positive voltage regulator (External NPN Pass Transistor)

Typical performance

Regulated Output Voltage
Line Regulation ($\Delta V_{i}=3 \mathrm{~V}$) 1.5 mV
Load Regulation ($\Delta \mathrm{I}_{\mathrm{O}}=1 \mathrm{~A}$) $\ldots . . .15 \mathrm{mV}$

APPLICATION INFORMATION (continued)

Fig. 17 - Positive voltage regulator (External PNP Pass Transistor)

Typical performance

Regulated Output Voltage $+5 \mathrm{~V}$
Line Regulation ($\Delta \mathrm{V}_{\mathrm{i}}=3 \mathrm{~V}$) 0.5 mV
Load Regulation ($\Delta \mathrm{I}_{\mathrm{O}}=1 \mathrm{~A}$) 5 mV

Fig. 19 - Positive floating regulator

Typical performance

Regulated Output Voltage + 100V
Line Regulation ($\Delta \mathrm{V}_{\mathrm{i}}=20 \mathrm{~V}$) 15 mV
Load Regulation ($\Delta \mathrm{I}_{\mathrm{O}}=50 \mathrm{~mA}$) . . . 20 mV

Fig. 18 - Foldback current limiting

Typical performance

Regulated Output Voltage +5 V
Line Regulation ($\Delta \mathrm{V}_{\mathrm{i}}=3 \mathrm{~V}$) 0.5 mV
Load Regulation ($\Delta \mathrm{I}_{\mathrm{O}}=10 \mathrm{~mA}$) 1 mV
Current Limit Knee 20 mA

Fig. 20 - Negative floating regulator

Typical performance

Regulated Output Voltage -100V
Line Regulation ($\Delta \mathrm{V}_{\mathrm{i}}=20 \mathrm{~V}$) 30 mV
Load Regulation ($\Delta \mathrm{I}_{\mathrm{O}}=100 \mathrm{~mA}$) . . 20 mV

APPLICATION INFORMATION (continued)

Fig. 21 - Positive switching regulator

Typical performance

Regulated Output voltage +5 V
Line Regulation $\left(\Delta V_{i}=30 \mathrm{~V}\right) \ldots . . .10 \mathrm{mV}$
Load Regulation ($\Delta \mathrm{I}_{\mathrm{O}}=2 \mathrm{~A}$) 80 mV

Fig. 23 - Shunt regulator

Typical performance

Regulated Output Voltage
Line Regulation ($\Delta \mathrm{V}_{\mathrm{i}}=10 \mathrm{~V}$) 2 mV
Load Regulation ($\Delta \mathrm{I}_{\mathrm{O}}=100 \mathrm{~mA}$) . . . 5 mV

Fig. 22 - Remote shutdown regulator with current limiting

Typical performance

Regulated Output Voltage +5 V
Line Regulation ($\Delta \mathrm{V}_{\mathrm{i}}=3 \mathrm{~V}$) 0.5 mV
Load Regulation ($\Delta \mathrm{I}_{\mathrm{O}}=50 \mathrm{~mA}$) . . . 1.5 mV

NOTE: Current limit transistor may be used for shutdown if current limiting is not required.

Fig. 24 - Output voltage adjust

LINEAR INTEGRATED CIRCUIT

HIGH PRECISION HIGH VOLTAGE REGULATOR

- INPUT VOLTAGE UP TO 80V
- OUTPUT VOLTAGE ADJUSTABLE FROM 2 TO 77V
- POSITIVE OR NEGATIVE SUPPLY OPERATION
- SERIES. SHUNT, SWITCHING OR FLOATING OPERATION
- OUTPUT CURRENT UP TO 150 mA WITHOUT EXTERNAL PASS TRANSISTOR
- ADJUSTABLE CURRENT LIMITING
- THERMAL PROTECTION

The L146 is a monolithic integrated programmable voltage regulator in 14-lead dual in-line plastic package and 10 -lead Metal Can (TO-100 type). It is made with high voltage technology and provides internal current limiting and thermal shut down protection; when current exceeds 150 mA an external NPN or PNP pass element may be used. Provisions are made for adjustable current limiting and remote shut down. The L146 is intended to widen the application range of L123 up to 80V.

ABSOLUTE MAXIMUM RATINGS

V_{1}	Input voltage	80	V
$V_{i}-V_{0}$	Voltage drop	78	V
I_{0}	Output current	150	mA
$I_{\text {ref }}$	Current from $\mathrm{V}_{\text {ref }}$	8	mA
$P_{\text {tot }}$	Power dissipation (at $\mathrm{T}_{\mathrm{amb}}=70^{\circ} \mathrm{C}$) Plastic DIP TO-100	520	W mW
$\mathrm{T}_{\text {op }}$	Operating junction temperature L146	-25 to +85	${ }^{\circ} \mathrm{C}$
	L146C	0 to +70	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	Storage temperature	-65 to +150	${ }^{\circ} \mathrm{C}$

MECHANICAL DATA
Dimensions in mm

TO-100

L146

CONNECTION DIAGRAMS

(top view)

Type	TO-100	Plastic DIP
L146	L146 T	
L146 C	L146 CT	L146 CB

BLOCK DIAGRAM

	TO-100	Plastic DIP
\max	$155^{\circ} \mathrm{C} / \mathrm{W}$	$80^{\circ} \mathrm{C} / \mathrm{W}$

SCHEMATIC DIAGRAM (pin number relative to the plastic package)

TEST CIRCUIT

ELECTRICAL CHARACTERISTICS (Refer to the test circuit, $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ unless otherwise specified)

Fig. 1 - Maximum output current vs. voltage drop

Fig. 4-Load regulation vs.
output current (without current limiting)

Fig. 7 - Line transient response

Fig. 2 - Load regulation vs.
output current (with current limiting)

Fig. 5 - Current limiting characteristics

Fig. 8 -- Load transient response

Fig. 3 - Load regulation vs. output current (with current limiting)

Fig. 6 -- Current limiting characteristics vs. junction temperature

Fig. 9 - Output impedance vs. frequency

Table I -- Resistor values (K_{Ω}) for standard output voltage

Positive output voltage	Applicable figures	Fixed output$\pm 5 \%$	
		\mathbf{R}_{1}	\mathbf{R}_{2}
+6	$\begin{gathered} 10,13,14 \\ 18,20 \end{gathered}$	2.4	6.8
+12	$\begin{aligned} & 11,13,14, \\ & 15,18,20 \end{aligned}$	3.2	6.8
+30		15	5.6
+50		24	47
+70		30	39
+100	16	2.7	68
+250		4.7	120

Negative output voltage	Applicable figures	Fixed output$\pm \mathbf{5 \%}$	
		R_{1}	R_{2}
-9	12	2.2	2.7
-12		1.5	3
-30		4.7	30
-50		2.7	30
-100	17	2	47
-250		2	120

Table II - Formulae for intermediate output voltages

Outputs from +2 to +7 volts Fig. $10,13,14,15,18,20$ $V_{\text {OUT }}=\left[V_{\text {REF }} \times \frac{R_{2}}{R_{1}+R_{2}}\right]$	Outputs from +4 to +250 volts Fig. 16 $V_{\text {OUT }}=\left[-\frac{V_{R E F}}{2} \times \frac{R_{2}-R_{1}}{R_{1}}\right] ; R_{3}=R_{4}$	Current Limiting $I_{\text {LIMIT }}=\frac{V_{\text {SENSE }}}{R_{\text {SC }}}$
Outputs from +7 to +77 volts Fig. 11, 13, 14, 15, 18, 20 $V_{\text {OUT }}=\left[V_{\text {REF }} \times \frac{R_{1}+R_{2}}{R_{2}}\right]$	Output from -6 to -250 volts Fig. 12, 17 $V_{\text {OUT }}=\left[\frac{V_{\text {REF }}}{2} \times \frac{R_{1}+R_{2}}{R_{1}}\right] ; R_{3}=R_{4}$	$\begin{gathered} \text { Foldback Current Limiting } \\ I_{\text {KNEE }}=\left[\frac{V_{\text {OUT }} R_{3}}{R_{S C} R_{4}}+\frac{V_{\text {SENSE }}\left(R_{3}+R_{4}\right)}{R_{S C} R_{4}}\right] \\ \text { ISHORT CKT }=\left[\frac{V_{\text {SENSE }}}{R_{\text {SC }}} \times \frac{R_{3}+R_{4}}{R_{4}}\right] \end{gathered}$

APPLICATION CIRCUITS (continued)

Fig. 10 - Basic low voltage regulator ($\mathrm{V}_{\text {OUT }}=2$ to 7 V)

NOTE: $R 3=\frac{R 1 \cdot R 2}{R 1+R 2} \quad \begin{aligned} & \text { for minimum } \\ & \text { temperature drift. }\end{aligned}$
R3 may be eliminated for minimum component count.

Typical performance

Regulated Output Voltage .5V
Line Regulation ($\Delta \mathrm{V}_{\mathrm{i}}=3 \mathrm{~V}$) 0.5 mV
Load Regulation ($\Delta \mathrm{I}_{\mathrm{o}}=50 \mathrm{~mA}$) . . . 1.5 mV

Fig. 12 - Negative voltage regulator

Typical performance

Regulated Output Voltage
Line Regulation ($\Delta \mathrm{V}_{\mathrm{i}}=3 \mathrm{~V}$) 1.5 mV
Load Regulation ($\Delta \mathrm{I}_{\mathrm{o}}=1 \mathrm{~A}$) 15 mV

Fig. 11 - Basic high voltage regulator ($\mathrm{V}_{\text {OUT }}=7$ to 77 V)

NOTE: $R 3=\frac{R 1 \cdot R 2}{R 1+R 2} \quad \begin{aligned} & \text { for minimum } \\ & \text { temperature drift }\end{aligned}$
R3 may be eliminated for minimum component count.

Typical performance

Regulated Output Voltage 15V
Line Regulation ($\Delta \mathrm{V}_{\mathrm{i}}=3 \mathrm{~V}$) 1.5 mV
Load Regulation ($\Delta \mathrm{I}_{\mathrm{o}}=50 \mathrm{~mA}$) . . . 4.5 mV

Fig. 13 - Positive voltage regulator (External NPN Pass Transistor)

Typical performance

Regulated Output Voltage 15V
Line Regulation ($\Delta \mathrm{V}_{\mathrm{i}}=3 \mathrm{~V}$) 1 mV
Load Regulation ($\Delta \mathrm{I}_{\mathrm{o}}=100 \mathrm{~mA}$) ... 2 mV

APPLICATION CIRCUITS (continued)

Fig. 14 - Positive voltage regulator (External PNP Pass Transistor)

Typical performance

Regulated Output Voltage $+5 \mathrm{~V}$
Line Regulation ($\Delta V_{i}=3 V$) 0.5 mV
Load Regulation ($\Delta \mathrm{I}_{\mathrm{o}}=1 \mathrm{~A}$) 5 mV

Fig. 16 - Positive floating regulator

Typical performance

Regulated Output Voltage $+100 \mathrm{~V}$
Line Regulation ($\Delta V_{i}=20 \mathrm{~V}$) 15 mV
Load Regulation ($\Delta \mathrm{I}_{\mathrm{o}}=50 \mathrm{~mA}$) . . . 20 mV

Fig. 15 - Foldback current limiting

Typical performance
Regulated Output Voltage
Line Regulation ($\Delta V_{i}=3 V$) 0.5 mV
Load Regulation ($\Delta \mathrm{I}_{\mathrm{o}}=10 \mathrm{~mA}$) 1 mV
Current Limit Knee 20 mA

Fig. 17 - Negative floating regulator

Typical performance

Regulated Output Voltage -100V
Line Regulation ($\Delta \mathrm{V}_{\mathrm{i}}=20 \mathrm{~V}$) 30 mV
Load Regulation ($\Delta I_{o}=100 \mathrm{~mA}$) . . 20 mV

APPLICATION CIRCUITS (continued)

Fig. 18 - Positive switching regulator

Typical performance

Regulated Output Voltage +5 V
Line Regulation ($\Delta \mathrm{V}_{\mathrm{i}}=30 \mathrm{~V}$) 10 mV
Load Regulation ($\Delta \mathrm{I}_{\mathrm{o}}=2 \mathrm{~A}$) 80 mA

Typical performance

Regulated Output Voltage +5 V
Line Regulation ($\Delta \mathrm{V}_{\mathrm{i}}=10 \mathrm{~V}$) 2 mV
Load Regulation ($\Delta \mathrm{I}_{\mathrm{o}}=100 \mathrm{~mA}$) . . . 5 mV

Fig. 20 - Shunt regulator

Fig. 19 - Remote shutdown regulator with current limiting

Typical performance

Regulated Output Voltage5V
Line Regulation ($\Delta \mathrm{V}_{\mathrm{i}}=3 \mathrm{~V}$) 0.5 V
Load Regulation ($\Delta \mathrm{I}_{\mathrm{o}}=50 \mathrm{~mA}$) . . . 1.5 mV
NOTE: Current limit transistor may be used for shutdown if current limiting is not required.

APPLICATION CIRCUITS (continued)

Fig. 21 - 60V voltage regulator with foldback characteristic

$\mathrm{I}_{2}=\frac{\mathrm{V}_{0} \frac{\mathrm{R}_{4}}{R_{5}}+\mathrm{V}_{2-3}}{\mathrm{R}_{\mathrm{SC}}} ; \quad \mathrm{I}_{1}=\frac{\mathrm{V}_{2-3}}{\mathrm{R}_{\mathrm{SC}}}\left(1+\frac{\mathrm{R}_{4}}{\mathrm{R}_{5}}\right) ; \quad \mathrm{V}_{2-3} \cong 0.7 \mathrm{~V}$

Fig. 23 - Motor speed control

1146

APPLICATION CIRCUITS (continued)

Fig.24-Step-down switching regulator for 12 V car radio

Performance:

Output voltage 13.5V
Max output current. 3A
Input voltage range 20 to 30 V
Line regulation $50 \mathrm{~dB}\left(\mathrm{I}_{\mathrm{o}}=2 \mathrm{~A}\right) \Delta \mathrm{V}_{\mathrm{i}}=10 \mathrm{~V}$
Load regulation $0.1 \%\left(\Delta I_{o}=3 A\right)$
Ripple 100 mVpp
Efficiency 75% ($\mathrm{I}_{\mathrm{o}}=3 \mathrm{~A}$)
Switching frequency 25 KHz

Fig. 25-30W motor speed regulator with tacho adjustment and speed change-over switch

NOTE - For a more detailed description of the L146 and its applications, refer to SGS-
TECHNICAL NOTE TN. 150 .

LINEAR INTEGRATED CIRCUIT

MONOLITHIC HIGH GAIN POWER OUTPUT STAGE

The L149 is a general purpose power booster in Pentawatt ${ }^{\circledR}$ package consisting of a quasi-complementary darlingtons output stage with the associated biasing system and inhibit facility.
The circuit features are:

- High output current (4A peak)
-- High current gain (10 000 typ.)
- Operation up to $\pm 20 \mathrm{~V}$
- Thermal protection

The device is particularly suited for use with an operational amplifier inside a closed loop configuration to increase output current ($\mathrm{P}_{\mathrm{o}}=20 \mathrm{~W}, \mathrm{~d}=0.5 \%, \mathrm{R}_{\mathrm{L}}=4 \Omega, \mathrm{~V}_{\mathrm{s}}= \pm 16 \mathrm{~V}$).

ABSOLUTE MAXIMUM RATINGS

$\mathrm{V}_{\mathbf{s}}$	Supply voltage	± 20	V
$\mathrm{~V}_{\mathrm{i}}$	Input voltage	V_{s}	
I_{o}	DC output current	3	A
I_{o}	Peak output current (internally limited)	4	A
$\mathrm{~V}_{\text {INH }}$	Input inhibit voltage	$-\mathrm{V}_{\mathrm{s}}+5$	V
		$-\mathrm{V}_{\mathrm{s}}-1.5$	V
$\mathrm{P}_{\text {tot }}$	Power dissipation at $\mathrm{T}_{\text {case }}=75^{\circ} \mathrm{C}$	25	W
$\mathrm{~T}_{\text {stg }}, \mathrm{T}_{\mathrm{j}}$	Storage and junction temperature	-40 to 150	${ }^{\circ} \mathrm{C}$

ORDERING NUMBER: L149V

MECHANICAL DATA
Dimensions in mm

CONNECTION DIAGRAM (top view)

SCHEMATIC DIAGRAM

THERMAL DATA

$\mathrm{R}_{\text {th j-case }}$	Thermal resistance junction-case	\max	3	${ }^{\circ} \mathrm{C} / \mathrm{W}$

ELECTRICAL CHARACTERISTICS $\left(T_{\text {amb }}=25^{\circ} \mathrm{C}\right)$

Parameter		Test conditions	Min.	Typ.	Max.	Unit
V_{5}	Supply voltage				± 20	\checkmark
I_{d}	Quiescent drain current	$\mathrm{V}_{\mathrm{s}}= \pm 16 \mathrm{~V}$		30		mA
$I_{\text {in }}$	Input current	$\mathrm{V}_{\mathrm{s}}= \pm 16 \mathrm{~V} \quad \mathrm{~V}_{\mathrm{i}}=0 \mathrm{~V}$		200	400	$\mu \mathrm{A}$
$\mathrm{h}_{\text {FE }}$	DC current gain	$\mathrm{V}_{\mathrm{s}}= \pm 16 \mathrm{~V} \quad \mathrm{I}_{0}=3 \mathrm{~A}$	6000	10000		-
G_{v}	Voltage gain	$\mathrm{V}_{\mathrm{s}}= \pm 16 \mathrm{~V} \quad \mathrm{I}_{\mathrm{O}}=1.5 \mathrm{~A}$		1		-
$V_{\text {CEsat }}$	Saturation voltage (for each transistor)	$\mathrm{I}_{0}=3 \mathrm{~A}$			3.5	V
$\mathrm{V}_{\text {os }}$	Input offset voltage	$V_{s}= \pm 16 \mathrm{~V}$			0.3	V
$\mathrm{V}_{\text {INH }}$	Inhibit input voltage	ON condition			± 0.3	
		OFF condition	± 1.2			
RINH	Inhibit input resistance	$\mathrm{f}=1 \mathrm{KHz}$		2.0		K Ω
SR	Slew rate			30		$\mathrm{V} / \mu \mathrm{s}$
B	Power bandwidth	$\mathrm{V}_{\mathrm{s}}= \pm 18 \mathrm{~V}, \mathrm{~d}=1 \%, \quad \mathrm{R}_{\mathrm{L}}=8 \Omega$		200		KHz

TEST CIRCUIT

Fig. 1 - Maximum saturation voltage vs. output current

Fig. 2 - Current limiting characteristics

Fig. 3 - Supply voltage rejection vs. frequency

APPLICATION INFORMATION

Fig. 4 - High power amplifier with single power supply ($\mathrm{G}_{\mathrm{v}}=30 \mathrm{~dB}$)

Fig. 5 - Distortion vs. output power ($f=1 \mathrm{KHz}$)

Fig. 6 - Distortion vs. output power ($f=10 \mathrm{KHz}$)

Fig. 7 - Output power vs. supply voltage

APPLICATION INFORMATION (continued)

Fig. 8 - High slew-rate power operational amplifier

Fig. 9 - Electronic potentiometer (short-circuit protected)

Fig. 10-720W Switch-Mode Power Supply using the L149 as driver stage for the power transistors

NOTE - For a more detailed description of the L149 and its applications, refer to SGSTECHNICAL NOTE TN. 150.

L165

LINEAR INTEGRATED CIRCUIT

3A POWER OPERATIONAL AMPLIFIER

The L165 is a monolithic integrated circuit in Pentawatt ${ }^{\circledR}$ package, intended for use as power operational amplifier in a wide range of applications, including servo amplifiers and power supplies. The high gain and high output power capability provide superior performance wherever an operational amplifier/ power booster combination is required,

- Output current up to 3A.
- Large common-mode and differential mode ranges.
- SOA protection.
- Thermal protection.

ABSOLUTE MAXIMUM RATINGS

V_{s}	Supply voltage	± 18	V
$\mathrm{~V}_{\mathrm{i}}$	Input voltage	V_{s}	
V_{i}	Differential input voltage	± 15	V
I_{o}	Peak output current (internally limited)	3.5	A
$\mathrm{P}_{\text {tot }}$	Power dissipation at $\mathrm{T}_{\text {case }}=90^{\circ} \mathrm{C}$	20	W
$\mathrm{~T}_{\text {stg }}, \mathrm{T}_{\mathrm{j}}$	Storage and junction temperature	-40 to 150	${ }^{\circ} \mathrm{C}$

ORDERING NUMBER: L165V

CONNECTION DIAGRAM

 (top view)

SCHEMATIC DIAGRAM

THERMAL DATA

| $\mathrm{R}_{\text {th } \mathrm{j} \text {-case }}$ Thermal resistance junction-case | $\max \quad 3 \quad{ }^{\circ} \mathrm{C} / \mathrm{W}$ |
| :--- | :---: | :---: | :---: |

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{s}}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}\right.$ unless otherwise specified)

$\left({ }^{\circ}\right)$ Circuit of fig. 8.

Fig. 1 -Open loop frequency response

Fig. 4 - Maximum output current vs. voltage [V_{CE}] across each output transistor

Fig. 7 - Application circuit $\left(G_{V}>10\right)$

Fig. 2 - Closed-loop frequency response (circuit of fig. 8)

Fig. 5 - Safe operating area and collector characteristics of the protected power transistor

Fig. 3 - Large signal frequency response

Fig. 6 - Maximum allowable power dissipation vs. ambient temperature

Fig. 8 - Unity gain configuration

Fig. 9 - Motor current control circuit with external power transistors ($I_{\text {motor }}>3.5 \mathrm{~A}$)

Note: The input voltage level is compatible with L291 (5-BIT D/A converter)

Fig. 10 - High current tracking regulator

Fig. 11 - Bidirectional speed control of DC motor

A: for $\pm 18 \leqslant V_{i} \leqslant \pm 32$
Note $-V_{z}$ must be chosen in order to verify $2 V_{i}-V_{z} \leqslant 36 \mathrm{~V}$
B : for $V_{1} \leqslant \pm 18 V$

Fig. 12 - Split power supply

Fig. 13 - Power squarewave oscillator with independent adjustments for frequency and duty-cycle.

P1 : duty-cycle adjust
P2 : frequency adjust ($f=700 \mathrm{~Hz}$ with $\mathrm{C} 1=10 \mathrm{nF}, \mathrm{P} 2=100 \mathrm{~K} \Omega, \mathrm{f}=25 \mathrm{~Hz}$ with $\mathrm{C} 1=10 \mathrm{nF}, \mathrm{P} 2=0$)

Fig. 14 - Bidirectional DC motor control with TTL/C-MOS $/ \mu \mathrm{P}$ compatible inputs

$\mathrm{V}_{\mathrm{S} 1}=$ logic supply voltage
Must be $\mathrm{V}_{\mathrm{S} 2} \geqslant \mathrm{~V}_{\mathrm{S} 1}$
E1, E2 = logic inputs

NOTE - For a more detailed description of the L165 and its applications, refer to SGSTECHNICAL NOTE TN. 150.

LINEAR INTEGRATED CIRCUITS

POSITIVE VOLTAGE REGULATORS WITH RECTIFYING BRIDGE

- OUTPUT VOLTAGE: 5V, 12V AND 15V
- OUTPUT CURRENT UP TO 500 mA
- SHORT CIRCUIT PROTECTION
- thermal overload protection
- OVERVOLTAGE PROTECTION (60V - 10 ms)

The L194-5, L194-12 and L194-15 are fixed voltage regulators assembled in Pentawatt ${ }^{\circledR}$ package. They incorporate a rectifying diode bridge with 7A surge current capability.

ABSOLUTE MAXIMUM RATINGS

V_{i}	Peak input voltage (10ms)	60	V
$\mathrm{~V}_{\mathrm{i}}$	DC input voltage (at pin 2)	40	V
$\mathrm{~V}_{\mathrm{i}}$	AC input voltage (rms)	28	V
$\mathrm{~V}_{\mathrm{R}}$	Peak reverse voltage across each diode	80	V
I_{D}	Input diode repetitive current	2	A
I_{DS}	Input diode surge current (10 ms)	7	A
I_{o}	Output current		
$\mathrm{P}_{\text {tot }}$	Power dissipation	Internally limited	
$\mathrm{T}_{\text {stg }}$	Storage temperature	Internally limited	
T_{j}	Operating junction temperature	-65 to +150	${ }^{\circ} \mathrm{C}$

ORDERING NUMBERS: L194-5V $\left(\mathrm{V}_{\mathrm{o}}=5 \mathrm{~V}\right)$
L194-12V ($\left.\mathrm{V}_{\mathrm{o}}=12 \mathrm{~V}\right)$
L194-15V ($\left.\mathrm{V}_{\mathrm{o}}=15 \mathrm{~V}\right)$

MECHANICAL DATA
Dimensions in mm

CONNECTION DIAGRAM

(top view)

BLOCK DIAGRAM

THERMAL DATA

$R_{\text {th j-case }}$	Thermal resistance junction-case	\max	4	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{\text {th j-amb }}$	Thermal resistance junction-ambient	\max	50	${ }^{\circ} \mathrm{C} / \mathrm{W}$

ELECTRICAL CHARACTERISTICS ($\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$)

Parameter		Test conditions		Min.	Typ.	Max.	Unit
I_{d}	Quiescent drain current	$\mathrm{I}_{\mathrm{O}}=0$	$V_{i}(\operatorname{pin} 2)=28 \mathrm{~V}$		5	14	mA
V_{0}	Output voltage	$\mathrm{I}_{0}=100 \mathrm{~mA}$	$\begin{aligned} & V_{i}=15 \mathrm{~V}(\mathrm{~L} 194-5) \\ & V_{i}=22 \mathrm{~V}(\mathrm{~L} 194-12) \\ & V_{i}=25 \mathrm{~V}(\mathrm{~L} 194-15) \end{aligned}$	$\begin{gathered} 4.75 \\ 11.4 \\ 14.25 \end{gathered}$	$\begin{gathered} 5 \\ 12 \\ 15 \end{gathered}$	$\begin{gathered} 5.25 \\ 12.6 \\ 15.75 \end{gathered}$	V
ΔV_{0}	Line Regulation	$\mathrm{I}_{0}=100 \mathrm{~mA}$	$\begin{aligned} & V_{i}=8 \text { to } 18 \mathrm{~V}(\mathrm{~L} 194-5) \\ & V_{i}=15 \text { to } 25 \mathrm{~V}(\mathrm{~L} 194-12) \\ & V_{i}=18 \text { to } 28 \mathrm{~V}(\mathrm{~L} 194-15) \end{aligned}$		$\begin{gathered} 5 \\ 10 \\ 15 \end{gathered}$		mV

ELECTRICAL CHARACTERISTICS (continued)

Parameter		Test conditions		Min.	Typ.	Max.	Unit
$\frac{\Delta V_{0}}{V_{0}}$	Load Regulation	$\begin{aligned} & \mathrm{I}_{\mathrm{O}}= 10 \text { to } \\ & 250 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & V_{i}=15 \mathrm{~V}(\mathrm{~L} 194-5) \\ & \mathrm{V}_{\mathrm{i}}=22 \mathrm{~V}(\mathrm{~L} 194-12) \\ & \mathrm{V}_{\mathrm{i}}=25 \mathrm{~V}(\mathrm{~L} 194-15) \end{aligned}$		1 1 1		\%
$V_{\text {i-o }}$	Dropout voltage (pin 2-4)	$\mathrm{I}_{0}=300 \mathrm{~mA}$			2	3	V
$\frac{\Delta V_{o}}{\Delta T}$	Output voltage drift	$\mathrm{I}_{\mathrm{O}}=100 \mathrm{~mA}$	$\begin{aligned} & V_{i}=15 \mathrm{~V}(\mathrm{~L} 194-5) \\ & \mathrm{V}_{\mathrm{i}}=22 \mathrm{~V}(\mathrm{~L} 194-12) \\ & \mathrm{V}_{\mathrm{i}}=25 \mathrm{~V}(\mathrm{~L} 194-15) \end{aligned}$		$\begin{aligned} & 0.3 \\ & 0.6 \\ & 0.8 \end{aligned}$		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
Io	Output current	$\frac{\Delta V_{0}}{V_{0}} \leqslant 1 \%$	$\begin{aligned} & \text { L194-5/12 } \\ & \text { L194-15 (*) } \end{aligned}$	$\begin{aligned} & 500 \\ & 300 \end{aligned}$			mA
$\mathrm{I}_{\text {sc }}$	Short-circuit current		$\begin{aligned} & V_{i}=15 V(L 194-5) \\ & V_{i}=22 V(L 194-12) \\ & V_{i}=25 V(\text { L194-15 }) \end{aligned}$		$\begin{aligned} & 700 \\ & 500 \\ & 400 \\ & \hline \end{aligned}$		mA
	Peak output current			0.7		1.4	A
SVR	Supply voltage Rejection	$\begin{aligned} & f=100 \mathrm{~Hz} \\ & \mathrm{I}_{\mathrm{O}}=200 \mathrm{~mA} \\ & \Delta \mathrm{~V}_{\mathrm{i}}=10 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { L194-5/12 } \\ & \text { L194-15 } \end{aligned}$		$\begin{aligned} & 46 \\ & 40 \end{aligned}$		dB
R_{0}	Output Resistance	$\mathrm{f}=1 \mathrm{kHz}$	$\mathrm{I}_{0}=100 \mathrm{~mA}$		80		$\mathrm{m} \Omega$
V_{d}	Diode Forward Voltage	$\begin{aligned} & \mathrm{I}_{\mathrm{f}}=1 \mathrm{~A} \\ & \mathrm{I}_{\mathrm{f}}=5 \mathrm{~A} \end{aligned}$			$\begin{aligned} & 1.6 \\ & 4.5 \end{aligned}$		V

(*) See diagram of fig. 1.

APPLICATION CIRCUIT

In the design of power supplies using the L194, it must be always verified that:

$$
I_{\text {peak }}=\frac{\sqrt{2} V_{s}}{R_{s}}<7 A
$$

where R_{s} is the sum of the transformer resistance, the equivalent diode resistance and external resistors.

APPLICATION INFORMATION

The Absolute Maximum Ratings guarantee a max of 40 V at pin 2 with max peak current of 7 A in the rectifying diodes.
To avoid to damage the device, a suitable transformer secondary must be used so that even when there are network variations the limits set are always respected during operation.
For example, with a nominal voltage of $24 \mathrm{~V}_{\mathrm{rms}}$ the maximum variations due to the transformer tolerance are $\pm 20 \%$.
In order to limit (to the maximum value allowed) the current peak, which occurs in diodes during switch-on, an external resistance R_{E}, in series with the secondary of the transformer, must be introduced. Supposing that the capacitor of the filter is discharged at switch-on, the following equivalent circuit can be drawn:

$\mathrm{V}_{\mathrm{s}}=$ Secondary voltage.
$R_{T}=$ Secondary resistances of transformer.
$\mathrm{R}_{\mathrm{D}}=$ Resistance produced by the diode pair involved in conduction.

If values R_{T} and R_{D} are known R_{E} is calculated in such a way that the peak current at switch-on does not exceed 7A.

$$
R_{E} \geqslant \frac{V_{S \text { peak }}-7\left(R_{T}+R_{D}\right)}{7}
$$

For the 5 V , with the nominal voltage of the 10 VA transformer at 12 V and with a total voltage variation of $\pm 15 \%$, the transformer secondary is connected directly to pins 1 and 5 .
For correct use of the device at 15 V the graph in fig. 1 gives the max output current.

Fig. 1 - Guaranteed output current vs. secondary voltage

Note:

V_{s} nom $=24.6 V_{r m s}$ for $220 \mathrm{~V} \pm 15 \%$.
V_{s} nom $^{\prime}=23.55 V_{r m s}$ for $220 \mathrm{~V} \pm 20 \%$.

LINEAR INTEGRATED CIRCUIT

ADJUStABLE VOLTAGE AND CURRENT REGULATOR

- ADJUSTABLE OUTPUT CURRENT UP TO 2A (GUARANTEED UP TO $\mathrm{T}_{\mathrm{j}}=150^{\circ} \mathrm{C}$)
- ADJUSTABLE OUTPUT VOLTAGE DOWN TO 2.85 V
- INPUT OVERVOLTAGE PROTECTION (UP TO 60V, 10 ms)
- SHORT CIRCUIT PROTECTION
- output transistor s.o.a. PROTECTION
- THERMAL OVERLOAD PROTECTION
- LOW BIAS CURRENT ON REGULATION PIN
- LOW STANDBY CURRENT DRAIN

The L200 is a monolithic integrated circuit for voltage and current programmable regulation. It is available in Pentawatt ${ }^{\circledR}$ package or 4-lead TO-3 metal case. Current limiting, power limiting, thermal shutdown and input overvoltage protection (up to 60V) make the L200 virtually blowout proof. The L200 can be used to replace fixed voltage regulators when high output voltage precision is required and eliminates the need to stock a range of fixed voltage regulators.

ABSOLUTE MAXIMUM RATINGS

V_{i}	DC input voltage	40	V
V_{i}	Peak input voltage (10 ms)	60	V
ΔV_{i-o}	Dropout voltage	32	V
I_{o}	Output current	internally limited	
$\mathrm{P}_{\text {tot }}$	Power dissipation	internally limited	
$\mathrm{T}_{\text {stg }}$	Storage temperature	-55 to 150	
$\mathrm{~T}_{\text {op }}$	Operating junction temperature for L200C	-25 to 150	${ }^{\circ} \mathrm{C}$
		for L200	-55 to 150
			${ }^{\circ} \mathrm{C}$

CONNECTION DIAGRAMS AND ORDERING NUMBERS (top views)

Type	Pentawatt ${ }^{\circledR}$	TO-3
L 200		L 200 T
L 200 C	$\begin{aligned} & \text { L } 200 \mathrm{CH} \\ & \mathrm{~L} 200 \mathrm{CV} \end{aligned}$	L 200 CT

BLOCK DIAGRAM

SCHEMATIC DIAGRAM

THERMAL DATA			TO-3	Pentawatt ${ }^{\circledR}$
$\mathrm{R}_{\text {th j-case }}$	Thermal resistance junction-case	max	$4^{\circ} \mathrm{C} / \mathrm{W}$	$3^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{\text {th } \mathrm{j} \text {-amb }}$	Thermal resistance junction-ambient	max	$35^{\circ} \mathrm{C} / \mathrm{W}$	$50^{\circ} \mathrm{C} / \mathrm{W}$

ELECTRICAL CHARACTERISTICS ($\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$, unless otherwise specified)

Parameter	Test conditions	Min.	Typ.	Max.	Unit

VOLTAGE REGULATION LOOP

I_{d}	Quiescent drain current (pin 3)	$V_{i}=20 \mathrm{~V}$		4.2	9.2	mA
e_{N}	Output noise voltage	$\begin{array}{ll} V_{o}=V_{\text {ref }} & I_{o}=10 \mathrm{~mA} \\ B=1 \mathrm{MHz} \end{array}$		80		$\mu \mathrm{V}$
V_{0}	Output voltage range	$\mathrm{I}_{\mathrm{o}}=10 \mathrm{~mA}$	2.85		36	V
$\frac{\Delta V_{0}}{V_{o}}$	Voltage load regulation (note 1)	$\begin{aligned} & \Delta I_{0}=2 \mathrm{~A} \\ & \Delta I_{0}=1.5 \mathrm{~A} \end{aligned}$		$\begin{gathered} 0.15 \\ 0.1 \end{gathered}$	$\begin{gathered} 1 \\ 0.9 \end{gathered}$	$\begin{aligned} & \% \\ & \% \end{aligned}$
$\frac{\Delta V_{i}}{\Delta V_{o}}$	Line regulation	$\begin{aligned} & V_{0}=5 \mathrm{~V} \\ & V_{i}=8 \text { to } 18 \mathrm{~V} \end{aligned}$	48	60		dB
SVR	Supply voltage rejection	$\begin{aligned} & V_{o}=5 \mathrm{~V} \quad \mathrm{I}_{\mathrm{o}}=500 \mathrm{~mA} \\ & \Delta V_{i}=10 \mathrm{~V}_{\mathrm{pp}} \\ & \mathrm{f}=100 \mathrm{~Hz} \text { (note 2) } \end{aligned}$	48	60		dB

ELECTRICAL CHARACTERISTICS (continued)

Parameter		Test conditions		Min.	Typ.	Max.	Unit
$\Delta \mathrm{V}_{\mathrm{i}-\mathrm{o}}$	Droupout voltage between pins 1 and 5	$\mathrm{I}_{\mathrm{O}}=1.5 \mathrm{~A}$	$\Delta V_{0} \leqslant 2 \%$		2	2.5	V
$V_{\text {ref }}$	Reference voltage (pin 4)	$V_{i}=20 \mathrm{~V}$	$\mathrm{I}_{\mathrm{o}}=10 \mathrm{~mA}$	2.64	2.77	2.86	V
$\Delta V_{\text {ref }}$	Average temperature coefficient of reference voltage	$V_{i}=20 \mathrm{~V}$	$\begin{gathered} \mathrm{I}_{\mathrm{O}}=10 \mathrm{~mA} \\ \mathrm{j}^{2}=-25 \text { to } 125^{\circ} \mathrm{C} \\ \mathrm{j}=125 \text { to } 150^{\circ} \mathrm{C} \end{gathered}$		$\begin{gathered} -0.25 \\ -1.5 \end{gathered}$		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$ $\mathrm{mV} /{ }^{\circ} \mathrm{C}$
I_{4}	Bias current at pin 4				3	10	$\mu \mathrm{A}$
$\frac{\Delta I_{4}}{\Delta T \cdot I_{4}}$	Average temperature coefficient (pin 4)				-0.5		\%/ ${ }^{\circ} \mathrm{C}$
Z_{0}	Output impedance	$\begin{aligned} & V_{i}=10 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{o}}=0.5 \mathrm{~A} \end{aligned}$	$\begin{aligned} & V_{o}=V_{\text {ref }} \\ & f=100 \mathrm{~Hz} \end{aligned}$		1.5		$\mathrm{m} \Omega$

CURRENT REGULATION LOOP

$\mathrm{V}_{\text {SC }}$	Current limit sense voltage between pins 5 and 2	$\begin{array}{ll} V_{i}=10 \mathrm{~V} & V_{0}=V_{r e f} \\ I_{5}=100 \mathrm{~mA} & \end{array}$	0.38	0.45	0.52	V
$\frac{\Delta V_{s c}}{\Delta T \cdot V_{s c}}$	Average temperature coefficient of $V_{S C}$			0.03		$\% /{ }^{\circ} \mathrm{C}$
$\frac{\Delta I_{0}}{I_{0}}$	Current load regulation	$\begin{array}{ll} V_{i}=10 \mathrm{~V} & \Delta V_{0}=3 \mathrm{~V} \\ \mathrm{I}_{0}=0.5 \mathrm{~A} & \\ \mathrm{I}_{\mathrm{O}}=1 \mathrm{~A} & \\ \mathrm{I}_{0}=1.5 \mathrm{~A} & \end{array}$		$\begin{gathered} 1.4 \\ 1 \\ 0.9 \end{gathered}$		\% $\%$
$I_{\text {sc }}$	Peak short circuit current	$V_{i}-V_{0}=14 V$ (pins 2 and 5 short circuited)			3.6	A

Note 1): A load step of 2 A can be applied provided that input-output differential voltage is lower than 20 V (see fig. 1).
Note 2): The same performance can be maintained at higher output levels if a bypassing capacitor is provided between pins 2 and 4.

Fig. 1 - Typical safe operating area protection

Fig. 4 - Quiescent current vs. output current

Fig. 7 - Reference voltage vs. junction temperature

Fig. 2 - Quiescent current vs. supply voltage

Fig. 5-Output noise voltage vs. output voltage

Fig. 8 - Voltage load regulation vs. junction temperature

Fig. 3 - Quiescent current vs. junction temperature

Fig. 6 - Output noise voltage vs. frequency

Fig. 9 - Supply voltage rejection vs. frequency

Fig. 10 - Dropout voltage
vs. junction temperature

Fig. 13 - Voltage transient response

Fig. 11 - Output impedance vs. frequency

Fig. 12 - Output impedance vs. output current

Fig. 14 -- Load transient response

Fig. 16 - Current limit sense voltage . vs. junction temperature

APPLICATION CIRCUITS

Fig. 17 - Programmable voltage regulator

Fig. 18 - P.C. board and components layout of fig. 17 (1: 1 scale)

Fig. 19 - Programmable voltage regulator with current limiting

Fig. 21 - High current voltage regulator with short circuit protection

Fig. 20 - Programmable current regulator

Fig. 22 - Digitally selected regulator with inhibit

APPLICATION CIRCUITS

Fig. 23-Tracking voltage regulator

A: $V_{i(\max)} \leqslant \pm 34 \mathrm{~V} ; 3<\mathrm{V}_{\mathrm{o}}<30$.
$B: V_{i(\max)} \leqslant \pm 22 \mathrm{~V} ; 3<\mathrm{V}_{\mathrm{o}}<18$.

Fig. 25- High current tracking regulator

A: for $\pm 18 \leqslant V_{i} \leqslant \pm 32$
Note $-V_{z}$ must be chosen in order to verify $2 V_{i}-V_{z} \leqslant 36 V$
B : for $V_{i} \leqslant \pm 18 V$

Fig. 24 - High current regulator with NPN pass transistor

Fig. 26 - High input and output voltage

APPLICATION CIRCUITS (continued)

Fig. 27 - Constant current battery charger

The resistors R_{1} and R_{2} determine the final charging voltage and $R_{\text {sc }}$ the initial charging current. D_{1} prevents discharge of the battery throught the regulator.
The resistor R_{L} limits the reverse currents through the regulator (which should be 100 $\mathrm{mA} \max$) when the battery is accidentally reverse connected. If R_{L} is in series with a bulb of $12 \mathrm{~V} / 50 \mathrm{~mA}$ rating this will indicate incorrect connection.

Fig. 29 - Low turn on

Fig. 28-30W Motor speed control

$\mathrm{R}_{3}=\frac{\mathrm{R}_{1}}{\mathrm{R}_{2}} \cdot \mathrm{R}_{\mathrm{M}}$
$\mathrm{V}_{\mathrm{M}}=\mathrm{V}_{\text {ref }} \cdot\left(1+\frac{\mathrm{R}_{2}}{\mathrm{R}_{1}}\right)$

Fig. 30-Light controller

APPLICATION CIRCUITS (continued)

Fig. 31 - Programmable voltage and current regulator

Note: Connecting point A to a negative voltage (for example $-3 \mathrm{~V} / 10 \mathrm{~mA}$) it is possible to extend the output voltage range down to OV and to obtain the current limiting down to this level (output short-circuit condition).

NOTE - For a more detailed description of the L200 and its applications refer to SGSTECHNICAL NOTES TN146 and TN150.

LINEAR INTEGRATED CIRCUITS

HIGH-VOLTAGE, HIGH-CURRENT 7 DARLINGTON ARRAYS

These high-voltage, high-current Darlington transistor arrays comprise seven NPN Darlington pairs on a common monolithic substrate. All units feature open collector outputs and integral suppression diodes for inductive loads. Peak currents of 600 mA can be withstood, making them ideal for driving tungsten filament lamps.
The L 201 is a general-purpose array wich may be used with DTL, TTL, PMOS, CMOS, etc. It is pinned with inputs opposite outputs to facilitate circuit board layout and is priced to compete directly with discrete transistor alternatives.
The L 202 was specifically designed for use with 14 to 25 V PMOS devices.
Each input has a Zener diode and resistor in series in order to limit the input current to a safe value.
The L203 has a series base resistor to each Darlington pair allowing operation directly with TTL or CMOS operating at a supply voltage of 5 V .
The L204 has a series base resistor to each Darlington pair, allowing operation directly with PMOS or CMOS utilizing supply voltage of 6 to 15 V .
In all cases, the individual Darlington pair collector current rating is 500 mA . However, outputs may be paralleled for higher load current capability. The devices are supplied in a 16 -lead dual in-line plastic package with copper frame.

ABSOLUTE MAXIMUM RATINGS

V_{i}	Input voltage (for L 202, L 203 and L 204)	30	V
V_{0}	Output voltage (collector-emitter)	50	V
$\mathrm{V}_{\text {CEO (sus) }}$	Collector-emitter sustaining voltage	36	V
I_{C}	Collector current	500	mA
I_{B}	Base current (for L 201 only)	25	mA
$\mathrm{P}_{\text {tot }}$	Total power dissipation at $\mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C}$	1.8	W
$\mathrm{T}_{\text {op }}$	Operating junction temperature	-25 to 150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	Storage temperature	-55 to 150	${ }^{\circ} \mathrm{C}$

ORDERING NUMBERS: L201B, L203B
L202B, L204B
MECHANICAL DATA

CONNECTION DIAGRAM (top view)

SCHEMATIC DIAGRAM

For L 201

For L 203

For L 202

For L 204

THERMAL DATA

$\mathrm{R}_{\mathrm{th} \text { j-amb }}$	Thermal resistance junction-ambient	\max.

ELECTRICAL CHARACTERISTICS ($\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$, unless otherwise specified)

	Parameter	Test conditions	Min.	Typ.	Max.	Unit	Fig. No.
ICEX	Collector cutoff current	$\begin{aligned} & \text { for } L 201 \\ & V_{C E}=50 \mathrm{~V} \\ & \text { for } L 202 \\ & V_{C E}=50 \mathrm{~V} \quad V_{i}=7 \mathrm{~V} \\ & \text { for } L 203, L 204 \\ & V_{C E}=50 \mathrm{~V} \quad I_{i}=0 \end{aligned}$		$\begin{aligned} & 0.2 \\ & 0.2 \\ & 0.2 \end{aligned}$	$\begin{aligned} & 3 \\ & 3 \\ & 3 \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$	$\begin{aligned} & 1 \\ & 2 \\ & 1 \end{aligned}$
$V_{\text {CE(sat) }}$	Collector-emitter saturation voltage	$\begin{array}{ll} I_{C}=350 \mathrm{~mA} & I_{B}=500 \mu \mathrm{~A} \\ I_{C}=200 \mathrm{~mA} & I_{B}=350 \mu \mathrm{~A} \\ I_{C}=100 \mathrm{~mA} & I_{B}=250 \mu \mathrm{~A} \end{array}$		$\begin{gathered} 1.25 \\ 1 \\ 0.85 \end{gathered}$	$\begin{aligned} & 1.6 \\ & 1.3 \\ & 1.1 \end{aligned}$	$\begin{aligned} & V \\ & v \\ & v \end{aligned}$	3
I_{i}	Input current	$\begin{aligned} & \text { for } L 202 \\ & V_{i}=17 \mathrm{~V} \\ & \text { for } L 203 \\ & V_{i}=3.85 \mathrm{~V} \\ & \text { for } L 204 \\ & V_{i}=5 \mathrm{~V} \\ & V_{i}=12 \mathrm{~V} \end{aligned}$		$\begin{gathered} 0.75 \\ 0.9 \\ 0.35 \\ 1.1 \end{gathered}$	$\begin{gathered} 1.3 \\ 1.35 \\ \\ 0.5 \\ 1.45 \end{gathered}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \end{aligned}$	5
${ }^{1} \mathrm{C}$ (off)		$\mathrm{V}_{\text {CE }}=50 \mathrm{~V} \quad \mathrm{I}_{\mathrm{i}}=25 \mu \mathrm{~A}$			25	$\mu \mathrm{A}$	4
V_{i}	Input voltage	$\begin{array}{ll} \text { for } L 202 & \\ I_{C}=300 \mathrm{~mA} & V_{C E}=2 \mathrm{~V} \\ \text { for } L 203 & \\ I_{C}=300 \mathrm{~mA} & V_{C E}=2 \mathrm{~V} \\ I_{C}=250 \mathrm{~mA} & V_{C E}=2 \mathrm{~V} \\ \text { for } L 204 & \\ V_{C E}=2 \mathrm{~V} & I_{C}=200 \mathrm{~mA} \\ V_{C E}=2 \mathrm{~V} & I_{C}=350 \mathrm{~mA} \end{array}$		$\begin{gathered} 10.5 \\ 1.8 \\ 1.7 \\ 4.5 \\ 5 \end{gathered}$	$\begin{gathered} 13 \\ \\ 3 \\ 2.4 \\ 6 \\ 8 \end{gathered}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \\ & \mathrm{v} \\ & \mathrm{~V} \end{aligned}$	7
$h_{\text {FE }}$	DC current gain (for L 201 only)	$\mathrm{I}_{\mathrm{C}}=350 \mathrm{~mA} \quad \mathrm{~V}_{C E}=2 \mathrm{~V}$	1000	3000		-	3
I_{R}	Parallel diode reverse current	$\mathrm{V}_{\mathrm{R}}=50 \mathrm{~V}$		0.5	50	$\mu \mathrm{A}$	6
V_{F}	Parallel diode forward voltage	$\mathrm{I}_{\mathrm{F}}=350 \mathrm{~mA}$		1.4	2	V	8
${ }^{\text {PLLH }}$	Turn-on delay time	$0.5 \mathrm{~V}_{\mathrm{i}}$ to $0.5 \mathrm{~V}_{0}$			5	$\mu \mathrm{s}$	-
${ }^{\text {tPHL }}$	Turn-off delay time	$0.5 \mathrm{~V}_{\mathrm{i}}$ to $0.5 \mathrm{~V}_{\mathrm{o}}$			5	$\mu \mathrm{s}$	-

TEST CIRCUITS

Fig 1 - For L 201, L 203 and L 204

Fig. 4 - For L 201, L 202, L 203 and L 204

Fig. 7 - For L 202, L 203, and L 204

Fig. 2 - For L 202

Fig. 3 - For L 201, L 202, L 203 and L 204

Fig. 6 - For L 201, L 202, L 203 and L 204

Fig. 8 - For L 201, L 202, L 203 and L 204

APPLICATION CIRCUITS

PMOS to load
(L 202 and L 204)

Fig. 9 - DC current gain. vs. collector current (for L 201)

Fig. 12 - Input current vs. input voltage (for L 202 and L 204)

Buffer for high current load (L 203 and L 204)

Fig. 10 - Collector current vs. collector emitter saturation voltage

Fig. 13 - Input current vs. input voltage (L 203)

TTL to load (L 203)

Fig. 11 - Peak collector current as a function fo duty cycle and number of outputs

Fig. 14 - Power rating chart

LINEAR INTEGRATED CIRCUIT

TACHOMETER CONVERTER

The L290, a monolithic LSI circuit in a 16-lead dual in-line plastic package, is intended for use with the L291 and L292 which together form a complete 3-chip DC motor positioning system for applications such as carriage/daisy-wheel position control in typewriters.
The L290/1/2 system can be directly controlled by a microprocessor. The L290 integrates the following functions:

- tacho voltage generator (F/V converter)
- reference voltage generator
- position pulse generator.

ABSOLUTE MAXIMUM RATINGS

V_{s} Supply voltage	± 15	V	
$\mathrm{~V}_{\mathrm{i}}$ (FTA,	FTB, FTF) Input signals	± 7	V
$P_{\text {tot }}$	Total power dissipation $\mathrm{T}_{\text {amb }}=70^{\circ} \mathrm{C}$	1	W
$\mathrm{~T}_{\text {stg }}, T_{j}$	Storage and junction temperature	-40 to +150	${ }^{\circ} \mathrm{C}$

ORDERING NUMBER: L290 B

CONNECTION DIAGRAM

(top view)

BLOCK DIAGRAM

$114 \quad 1290$

TEST CIRCUIT

THERMAL DATA

$R_{\text {th } \mathrm{j}-\mathrm{amb}}$	Thermal resistance junction-ambient	\max	80	${ }^{\circ} \mathrm{C} / \mathrm{W}$

ELECTRICAL CHARACTERISTICS (Refer to the test circuit, S in (A), $\mathrm{V}_{\mathrm{s}}= \pm 12 \mathrm{~V}, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ unless otherwise specified)

Parameters	Test conditions	Min.	Typ.	Max.	Unit	
V_{s}	Supply voltage		± 10		± 15	V
l_{d}	Quiescent drain current	$\mathrm{V}_{\mathrm{s}}= \pm 15 \mathrm{~V}$		13	20	mA

INPUT AMPLIFIERS (A_{1} and A_{2})

FTA, FTB	Input signal from encoder (pin 1, 16)	$f_{\max }=20 \mathrm{KHz}$	± 0.4		± 0.6	V_{p}
$\mathrm{V}_{\text {os }}$	Output offset voltage (pin 2, 15)	$F T A=F T B=0 V$			± 55	mV
I_{b}	Input bias current (pin 1, 16)			0.15		$\mu \mathrm{A}$
G_{v}	Voltage gain	$\mathrm{f}=10 \mathrm{KHz} \mathrm{FTA}=\mathrm{FTB}= \pm 0.6 \mathrm{~V}_{\mathrm{p}}$	22	23	24	dB
V_{0}	Output voltage swing (pin 2, 15)	$\mathrm{FTA}=\mathrm{FTB}= \pm 1 \mathrm{~V}$	± 9.5			V

ELECTRICAL CHARACTERISTICS (continued)

Parameters	Test conditions	Min.	Typ.	Max.	Unit

COMPARATORS WITH HYSTERESIS ($\mathrm{C}_{1}, \mathrm{C}_{2}$ and C_{3})

$\mathrm{V}_{\text {THP }}\left({ }^{\circ}\right)$	Positive Threshold voltage (pin 2, 12, 15)	C_{1} and C_{2}	550		850	mV
		C_{3}	700		900	mV
$\mathrm{V}_{\text {THN }}\left({ }^{(\circ)}\right.$	Negative Threshold voltage (pin 2, 12, 15)	C_{1} and C_{2}	55		175	mV
		C_{3}	570		830	mV
V_{L}	Output voltage (low level) (pin 10, 13, 14)	$\begin{aligned} & \mathrm{I}_{\mathrm{O}}=2 \mathrm{~mA} \\ & \text { FTA }=\mathrm{FTB}=\mathrm{FTF}=0 \mathrm{~V} \end{aligned}$		0.2	0.4	V
$l_{\text {leak }}$	(pins 10, 13, 14)	$\begin{aligned} & \mathrm{FTA}=\mathrm{FTB}=0.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V} \quad F T F=1 \mathrm{~V} \end{aligned}$			1	$\mu \mathrm{A}$

REFERENCE GENERATOR

$V_{\text {ref }}$	DC reference voltage (pin 3)	FTA= FTB $= \pm 0.5 \mathrm{~V}_{\mathrm{p}}$ (*) $\mathrm{I}_{\text {ref }}=1 \mathrm{~mA}$	4.5	5	5.5
$\mathrm{I}_{\text {ref }}$	Output current $(\operatorname{pin} 3)$				1.4

"TACHO" AMPLIFIER (A_{3})

$\mathrm{V}_{\text {os }}$	Output offset voltage (pin 4)	$\mathrm{FTA}= \pm 15 \mathrm{mV}$ FTB $=0.5 \mathrm{~V}$					± 80	mV
	DC output voltage (pin 4)	$\begin{aligned} & \text { FTA }=\mathrm{FTB}= \pm 0.5 \mathrm{Vp} \\ & \mathrm{~V}_{\mathrm{MA}}=\mathrm{V}_{\mathrm{MB}}= \pm 1.25 \mathrm{~V}_{\mathrm{p}} \end{aligned}$		$\begin{aligned} & \left({ }^{* *}\right) \\ & V_{o l} \end{aligned}$	5.4	6	6.6	
				$\begin{aligned} & \left({ }^{* * *}\right) \\ & V_{02} \end{aligned}$	-5.4	-6	-6.6	
ΔV_{0}		$\mathrm{V}_{\mathrm{o} 1}+\mathrm{V}_{\mathrm{o} 2}$			-150		+150	mV
V_{0}	Output voltage swing (pin 4)	S in (B)	$\mathrm{FTA}=\mathrm{FTB}=0.5 \mathrm{~V}$		9			V
			$\mathrm{FTA}=\mathrm{FTB}=$	-0.5V	-9			
$\begin{aligned} & \mathrm{V}_{\mathrm{MA}} \\ & \mathrm{~V}_{\mathrm{MB}} \end{aligned}$	Multiplier input voltage (pin 7, 8)					± 1.25	± 1.7	Vp
$V_{\text {bias }}$	Bias voltage (pin 6)	FTA and FTB floating			-6.5		-8	V

(0): FTA $=$ FTB $=$ FTF $=0 \Gamma^{1 V}(\circ 0):$ FTA $=F T B=F T F={ }^{1 V} L_{0}$

Note : Phase relationship between the signals:

* FTA: 0°
** FTA 0°
*** FTA: 0° FTB: -90°
$\begin{array}{ll}V_{M A}=90^{\circ} & V_{M B}=0^{\circ} \\ V_{M A}=90^{\circ} & V_{M B}=180^{\circ}\end{array}$

WAVEFORMS (Neglecting threshold voltage level of the comparators)

Fig. 1 - Complete application circuit

LINEAR INTEGRATED CIRCUIT

5 BIT - D/A CONVERTER AND POSITION AMPLIFIER

The L291, a monolithic LSI circuit in a 16-lead dual in-line plastic package, is intended for use with the L290 and L292 to form a complete 3 chip DC motor positioning system for applications such as carriage/ daisy-wheel position control in typewriters.
The L290/1/2 system can be directly controlled by a microprocessor.
The L291 integrates the following functions:

- 5 bit D/A converter ($\frac{1}{2}$ LSB max linearity error)
- error amplifier
- position amplifier

ABSOLUTE MAXIMUM RATINGS

V_{s}	Supply voltage	± 15	V
$\mathrm{P}_{\text {tot }}$	Total power dissipation $\mathrm{T}_{\text {amb }}=70^{\circ} \mathrm{C}$	1	W
$\mathrm{~T}_{\text {stg }}$,	T_{j}	Storage and junction temperature	-40 to 150

ORDERING NUMBER: L291 B

MECHANICAL DATA
Dimensions in mm

6/82

CONNECTION DIAGRAM

(top view)

BLOCK DIAGRAM

TEST CIRCUIT

THERMAL DATA

| $R_{\text {th j-amb }}$ | Thermal resistance junction-ambient | \max | $80 \quad{ }^{\circ} \mathrm{C} / \mathrm{W}$ |
| :--- | :--- | :--- | :--- | :--- |

ELECTRICAL CHARACTERISTICS (Refer to the circuit, $S 1$ and $S 2$ in (a), $V_{s}= \pm 12 \mathrm{~V}$, $T_{\text {amb }}=25^{\circ} \mathrm{C}$, unless otherwise specified)

Parameters	Test conditions	Min.	Typ.	Max.	Unit	
V_{s}	Supply voltage		± 10		± 15	V
I_{d}	Quiescent drain current	$\mathrm{V}_{\mathrm{s}}= \pm 15 \mathrm{~V}$		6.5	10	mA

POSITION AMPLIFIER

[^3]
ELECTRICAL CHARACTERISTICS (continued)

Parameter	Test conditions	Min.	Typ.	Max.	Unit

D/A CONVERTER

$\mathrm{I}_{\text {ref }}$	Current reference input range (pin 9)			0.3		1.2	mA
$\mathrm{V}_{\text {os }}$	Current reference offset voltage (pin 9)	$I_{\mathrm{ref}}=0.3 \text { to } 1.2 \mathrm{~mA}$ All inputs high				± 20	mV
	Output current range (pin 12)					1.4	mA
I_{0}	Output current (pin 12)	$\begin{aligned} & I_{\mathrm{ref}}=0.722 \mathrm{~mA} \\ & \mathrm{SC} 1 \text { to } \mathrm{SC} 5=\mathrm{L} \end{aligned}$	$\text { SIGN }=L\left(I_{\mathrm{O} 1}\right)$	-1.358	-1.4	-1.442	mA
			SIGN $=\mathrm{H}\left(\mathrm{I}_{\mathrm{O} 2}\right)$	+1.358	+1.4	+1.442	
ΔI_{0}		$\mathrm{I}_{01}+\mathrm{I}_{02}$		-21		+21	$\mu \mathrm{A}$
Linearity error		$\mathrm{I}_{\mathrm{ref}}=0.722 \mathrm{~mA}$				1.61	\%FS
los	Pin 12 output offset current (including Error Amplifier bias current)	All inputs high				± 0.4	$\mu \mathrm{A}$
V_{L}	Low voltage level (digital inputs)	$\begin{aligned} & S C 1=L S B \\ & S C 5=M S B \end{aligned}$		0		0.8	V
V_{H}	High voltage level (digital inputs)			2.4		+ V_{s}.	V
	Digital inputs current (low state)		$V_{L}=0.4 \mathrm{~V}$			-50	$\mu \mathrm{A}$
I_{H}	Digital inputs current (high state)		$\mathrm{V}_{\mathrm{H}}=+\mathrm{V}_{\mathrm{S}}$			1	$\mu \mathrm{A}$

ERROR AMPLIFIER

$V_{\text {os }}$	Output offset voltage (pin 1)	$I_{\text {ref }}=0.5 \mathrm{~mA} ;$ All inputs high $G_{v}=40 \mathrm{~dB}$			± 200
I_{0}	Output current (pin 1)			mV	
V_{o}	Output voltage swing (pin 1)	All inputs high S1 in (b); $R_{L}=10 \mathrm{~K} \Omega$	± 7.4	± 5	mA

D/A Converter

The L291 contains a 5-bit D/A converter accepting a binary code and generating a bipolar output current, the polarity of which depends on the SIGN input. The amplitude of the output current is a multiple of a reference current $I_{\text {ref }}$.
The maximum output current is

$$
I_{\mathrm{FS}}= \pm \frac{31}{16} I_{\mathrm{ref}}
$$

The following table shows the value of I_{0} for different input codes. Note that the input bits are active low.

DIGITAL INPUT WORD						Output Current Io
SIGN	SC5	SC4	Sc3	SC2	SC1	
L	L	L	L	L	L	$-\frac{31}{16} I_{\text {ref }}$
L	H	H	H	H	L	$-\frac{1}{16} I_{\text {ref }}$
x	H	H	H	H	H	0
H	H	H	H	H	L	$+\left.\frac{1}{16}\right\|_{\text {ref }}$
H	L	L	L	L	L	$+\frac{31}{16} I_{\text {ref }}$

$X=$ indifferent
$L=$ low
$H=$ high

This D/A converter has a maximum linearity error equal to $\pm 1 / 2$ LSB (or $\pm 1.61 \%$ Full Scale); that guarantees its monotonicity.

Error Amplifier

In order to have a good stability, the Error Amplifier must work with a closed loop gain greater or equal than 20 dB .

Position Amplifier

It is inserted by means of the strobe signal, TTL and microprocessor compatible. Its output is connected to pin 16 when $\mathrm{V}_{\text {strobe }}=$ Low; pin 16 is grounded for $\mathrm{V}_{\text {strobe }}=$ High.

SYSTEM DESCRIPTION: refer to the L292 data sheet.

Fig. 1 - Complete application circuit

LINEAR INTEGRATED CIRCUIT

SWITCH-MODE DRIVER FOR DC MOTORS

The L292 is a monolithic LSI circuit in 15-lead MULTIWATT ${ }^{\circledR}$ package. It is intended for use, together with L290 and L291, as a complete 3-chip DC motor positioning system for applications such as car-riage/daisy-wheel position control in typewriters.
The L290/1/2 system can be directly controlled by a microprocessor. The outstanding characteristics of the L292 are:

- Driving capability: $2 \mathrm{~A}, 36 \mathrm{~V}, 30 \mathrm{KHz}$.
- 2 Logic chip enable.
- External loop gain adjustment.
- Single power supply (18 to 36 V).
- Input signal symmetric to ground.
- Thermal protection.

ABSOLUTE MAXIMUM RATINGS

V_{s}	Power supply	36	V
$\mathrm{~V}_{1}$	Input voltage	-15 to $+\mathrm{V}_{\mathrm{s}}$	V
$\mathrm{V}_{\text {inhibit }}$	Inhibit voltage	0 to V_{s}	V
$\mathrm{P}_{\text {tot }}$	Total power dissipation $\left(\mathrm{T}_{\text {case }}=75^{\circ} \mathrm{C}\right)$	25	W
$\mathrm{~T}_{\text {stg }}$	Storage and junction temperature	-40 to +150	${ }^{\circ} \mathrm{C}$

ORDERING NUMBER: L292

MECHANICAL DATA
Dimensions in mm

CONNECTION DIAGRAM

(top view)

BLOCK DIAGRAM

$D_{1} \cdot D_{2} \cdot D_{3} \cdot D_{4}=$ High speed diodes (BYW 72 or equivalent)

THERMAL DATA

$\mathrm{R}_{\text {th j-case: }} \quad$ Thermal resistance junction-case

ELECTRICAL CHARACTERISTICS ($\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}, \mathrm{f}_{\mathrm{osc}}=20 \mathrm{KHz}$ unless otherwise specified)

TRUTH TABLE

Vinhibit		Output stage condition
Pin 12	Pin 13	
L	L	Disabled L
H	L	Nismal operation H

SYSTEM DESCRIPTION

The L290, L291 and L292 are intended to be used as a 3-chip microprocessor controlled positioning system. These devices may be used separately - particularly the L292 motor driver - but since they will usually be used together, a description of a typical L290/1/2 system follows.

Fig. 1 - System block diagram

The system operates in two modes to achieve high-speed, high-accuracy positioning.
Speed commands for the system originate in the microprocessor. It is continuously updated on the motor position by means of pulses from the L290 tachometer chip, which in turn gets its information from the optical encoder. From this basic input, the microprocessor computes a 5-bit control word that sets the system speed dependent on the distance to travel.
When the motor is stopped and the microprocessor orders it to a new position, the system operates initially in an open-loop configuration as there is no feedback from the tachometer generator. Therefore maximum current is fed to the motor. As maximum speed is reached, the tachometer chip output backs off the processor signal thus reducing accelerating torque.
The motor continues to run at top speed but under closed-loop control.
As the target position is approached, the microprocessor lowers the value of the speed-demand word; this reduces the voltage at the main summing point, in effect braking the motor. The braking is applied progressively until the motor is running at minimum speed.
At that time, the microprocessor orders a switch to the position mode, (strobe signal at pin 8 of L291) and within 3 to 4 ms the L292 drives the motor to a null position, where it is held by electronic "detenting".

SYSTEM DESCRIPTION (continued)

The mechanical/electrical interface consists of an optical encoder which generates two sinusoidal signals 90° out of phase (leading or lagging according to the motor direction) and proportional in frequency to the speed of rotation. The optical encoder also provides an output at one position on the disk which is used to set the initial position.
The opto encoder signals, FTA and FTB are filtered by the networks $\mathrm{R}_{2} \mathrm{C}_{2}$ and $\mathrm{R}_{3} \mathrm{C}_{3}$ (referring to Fig. 4) and are supplied to the FTA/FTB inputs on the L290.
The main function of the L290 is to implement the following expression:

$$
\text { Output signal }(T A C H O)=\frac{d V_{A A}}{d t} \cdot \frac{F T B}{|F T B|}-\frac{d V_{A B}}{d t} \cdot \frac{F T A}{|F T A|}
$$

Thus the mean value of TACHO is proportional to the rotation speed and its polarity indicates the direction of rotation.
The above function is performed by amplifying the input signals in A_{1} and A_{2} to obtain $V_{A A}$ and $V_{A B}$ (typ. $7 \mathrm{~V}_{\mathrm{p}}$). From $\mathrm{V}_{A A}$ and $\mathrm{V}_{A B}$ the external differentiator $R C$ networks $R_{5} C_{6}$ and $R_{4} C_{4}$ give the signals $V_{M A}$ and $V_{M B}$ which are fed to the multipliers.
The second input to each multiplier consists of the sign of the first input of the other multiplier before differentiation, these are obtained using the comparators $\mathrm{C}_{\mathrm{S} 1}$ and $\mathrm{C}_{\mathrm{S} 2}$. The multiplier outputs, C_{SA} and C_{SB}, are summed by A_{3} to give the final output signal TACHO. The peak-to-peak ripple signal of the TACHO can be found from the following expression:

$$
V_{\text {ripple } p-p}=\frac{\pi}{4}(\sqrt{2}-1) \cdot V_{\text {thaco } D C}
$$

The max value of TACHO is:

$$
V_{\text {tacho }} \max =\frac{\pi}{4} \sqrt{2} \cdot V_{\text {thaco }} \mathrm{DC}
$$

Using the comparators C_{1} and C_{2} another two signals from $V_{A A}$ and $V_{A B}$ are derived - the logic signals STA and STB.
These signals are used by the microprocessor to determine the position by counting the pulses.
The L290 internal reference voltage is also derived from $V_{A A}$ and $V_{A B}$:

$$
V_{r e f} \equiv\left|V_{A A}\right|+\left|V_{A B}\right|
$$

This reference is used by the D/A converter in the L291 to compensate for variations in input levels, temperature changes and ageing.
The "one pulse per rotation" opto encoder output is connected to pin 12 of the L290 (FTF) where it is squared to give the STF logic output for the microprocessor.
The TACHO signal and $V_{\text {ref }}$ are sent to the $L 291$ via filter networks $R_{8} C_{8} R_{9}$ and $R_{6} C_{7} R_{7}$ respectively. Pin 12 of this chip is the main summing point of the system where TACHO and the D/A converter output are compared.
The input to the D/A converter consists of 5 bit word plus a sign bit supplied by the microprocessor. The sign bit represents the direction of motor rotation. The (analogue) output of the D/A converter DAC/OUT - is compared with the TACHO signal and the resulting error signal is amplified by the error amplifier, and subsequently appears on pin 1.

SYSTEM DESCRIPTION (continued)

The ERRV signal (from pin 1, L291) is fed to pin 6 of the final chip, the L292 H-bridge motor-driver. This input signal is bidirectional so it must be converted to a positive signal because the L292 uses a single supply voltage. This is accomplished by the first stage - the level shifter, which uses an internally generated 8 V reference.
This same reference voltage supplies the triangle wave oscillator whose frequency is fixed by the external $R C$ network ($\mathrm{R}_{20}, \mathrm{C}_{17}$ - pins 11 and 10) where:

$$
\left.f_{\text {osc }}=\frac{1}{2 R C} \quad \text { (with } R \geqslant 8.2 K \Omega\right)
$$

The oscillator determines the switching frequency of the output stage and should be in the range 1 to 30 KHz .
Motor current is regulated by an internal loop in the $L 292$ which is performed by the resistors R_{18}, R_{19} and the differential current sense amplifier, the output of which is filtered by an external RC network and fed back to the error amplifier.
The choice of the external components in these RC network (pins 5, 7, 9) is determined by the motor type and the bandwidth requirements. The values shown in the diagram are for a $5 \Omega, 5 \mathrm{mH}$ motor. (See L292 Transfer Function Calculation in Application Information).
The error signal obtained by the addition of the input and the current feedback signals (pin 7) is used to pulse width modulate the oscillator signal by means of the comparator. The pulse width modulated signal controls the duty cycle of the H -bridge to give an output current corresponding to the L292 input signal.
The interval between one side of the bridge switching off and the other switching on, τ, is programmed by C_{17} in conjunction with an internal resistor R_{τ}.
This can be found from:

$$
\tau=\mathrm{R}_{\tau} \cdot \mathrm{C}_{\mathrm{pin} 10} \cdot\left(\mathrm{C}_{17} \text { in the diagram }\right)
$$

Since R_{τ} is approximately $1.5 \mathrm{~K} \Omega$ and the recommended τ to avoid simultaneous conduction is $2.5 \mu \mathrm{~s}$ $\mathrm{C}_{\text {pin } 10}$ should be around 1.5 nF .
The current sense resistors R_{18} and R_{19} should be high precision types (maximum tolerance $\pm 2 \%$) and the recommended value is given by:

$$
\mathrm{R}_{\max } \cdot \mathrm{I}_{\mathrm{o} \max } \leqslant 0.44 \mathrm{~V}
$$

It is possible to synchronize two L292's, if desired, using the network shown in fig. 2.
Fig. 2

Finally, two enable inputs are provided on the L292 (pins 12 and 13-active low and high respectively).

SYSTEM DESCRIPTION (continued)

Thus the output stage may be inhibited by taking pin 12 high or by taking pin 13 low. The output will also be inhibited if the supply voltage falls below 18 V .
The enable inputs were implemented in this way because they are intended to be driven directly by a microprocessor. Currently available microprocessors may generates spikes as high as 1.5 V during powerup. These inputs may be used for a variety of applications such as motor inhibit during reset of the logical system and power-on reset (see fig. 3).

Fig. 3

Fig. 4 - Application circuit

APPLICATION INFORMATION

This section has been added in order to help the designer for the best choise of the values of external components.

The schematic diagram used for the Laplace analysis of the system is shown in fig. 6.
Fig. 6

$\mathrm{R}_{\mathrm{S} 1}=\mathrm{R}_{\mathrm{S} 2}=\mathrm{R}_{\mathrm{S}}$ (sensing resistors)
$\frac{1}{R_{4}}=0.005 \Omega^{-1}$ (current sensing amplifier transconductance)
$L_{M}=$ Motor inductance
$\mathrm{R}_{\mathrm{M}}=$ Motor resistance
$\mathrm{I}_{\mathrm{M}}=$ Motor current
$G_{m o}=\left.\frac{I_{M}}{V_{T H}}\right|_{S=0}$
(DC transfer function from the input of the comparator $\left(V_{T H}\right)$ to the motor current (I_{M})).

APPLICATION INFORMATION (continued)

Neglecting the $\mathrm{V}_{\text {CEsat }}$ of the bridge transistors and the V_{BE} of the diodes:

$$
\begin{equation*}
G_{m o}=\frac{1}{R_{M}} \frac{2 V_{s}}{V_{R}} \tag{1}
\end{equation*}
$$

$$
\text { where: } \begin{aligned}
& \mathrm{V}_{\mathrm{s}}=\text { supply voltage } \\
\mathrm{V}_{\mathrm{R}} & =8 \mathrm{~V} \text { (reference voltage) }
\end{aligned}
$$

DC transfer function

In order to be sure that the current loop is stable the following condition is imposed:

$$
\begin{equation*}
1+s R C=1+s \frac{L_{M}}{R_{M}} \quad \quad \text { (pole cancellation) } \tag{2}
\end{equation*}
$$

from which $R C=\frac{L_{M}}{R_{M}} \quad$ (Note that in practice R must be greater than $5.6 \mathrm{~K} \Omega$)
The transfer function is then,

$$
\begin{equation*}
\frac{I_{M}}{V_{1}}(s)=\frac{R_{2} R_{4}}{R_{1} R_{3}} G_{m o} \frac{1+s R_{F} C_{F}}{G_{m o} R_{s}+s R_{4} C+s^{2} R_{F} C_{F} R_{4} C} \tag{3}
\end{equation*}
$$

In DC condition, this is reduced to

$$
\begin{equation*}
\frac{I_{M}}{V_{1}}(0)=\frac{R_{2} R_{4}}{R_{1} R_{3}} \cdot \frac{1}{R_{s}}=\frac{0.044}{R_{s}}\left[\frac{A}{V}\right] \tag{4}
\end{equation*}
$$

Open-loop gain and stability criterion

For $R C=L_{M} / R_{M}$, the open loop gain is:

$$
\begin{equation*}
A \beta=\frac{1}{s R_{F} C} \cdot G_{m \circ} \frac{R_{s}}{R_{4}} \frac{R_{F}}{1+s R_{F} C_{F}}=\frac{G_{m o} R_{s}}{R_{4} C} \frac{1}{s\left(1+s R_{F} C_{F}\right)} \tag{5}
\end{equation*}
$$

In order to achieve good stability, the phase margin must be greater than 45° when $|A \beta|=1$.
That means that, at $f_{F}=\frac{1}{2 \pi R_{F} C_{F}}$, must be $|A \beta|<1$ (see fig. 7), that is

$$
\begin{equation*}
|A \beta|_{f=\frac{1}{}}^{2 \pi R_{F} C_{F}}=\frac{G_{m o} R_{S}}{R_{4} C} \frac{R_{F} C_{F}}{\sqrt{2}}<1 \tag{6}
\end{equation*}
$$

Fig. 7 - Open-loop frequency response

APPLICATION INFORMATION (continued)

Closed-loop system step response

a) Small-signals analysis.

The transfer function (3) can be written as follows:

$$
\begin{equation*}
\frac{I_{M}}{V_{1}}(s)=\frac{0.044}{R_{s}} \frac{1+\frac{s}{2 \xi \omega_{0}}}{1+\frac{2 \xi s}{\omega_{0}}+\frac{s^{2}}{\omega_{o}^{2}}} \tag{7}
\end{equation*}
$$

where: $\quad \omega_{o}=\sqrt{\frac{G_{m o} R_{s}}{R_{4} C R_{F} C_{F}}} \quad$ is the cutoff frequency

$$
\xi=\sqrt{\frac{R_{4} C}{4 R_{F} C_{F} G_{m o} R_{s}}} \text { is the dumping factor }
$$

By choosing the ξ value, it is possible to determine the system response to an input step signal. Examples:

Fig. 8 - Small signal step response (normalized amplitude vs. $\mathrm{t} / \mathrm{R}_{\mathrm{F}} \mathrm{C}_{\mathrm{F}}$)

Fig. 9 - Motor current and pin 7 voltage waveforms (application of fig. 5). Small signal response

1) $\xi=1 \quad$ from which

$$
I_{M}(t)=\frac{0.044}{R_{S}}\left[1-e^{-\frac{t}{2 R_{F} C_{F}}}\left(1+\frac{t}{4 R_{F} C_{F}}\right)\right] \cdot V_{i}
$$

(where V_{i} is the amplitude of the input step).
2) $\xi=\frac{1}{\sqrt{2}}$ from which

$$
I_{M}(t)=\frac{0.044}{R_{S}}\left(1-\cos \frac{t}{2 R_{F} C_{F}} e^{-\frac{t}{2 R_{F} C_{F}}}\right) V_{i}
$$

From fig. 9, it is possible to verify that the L292 works in "closed-loop" conditions during the entire motor current rise-time: the voltage at pin 7 (inverting input of the error amplifier) is locked to the reference voltage V_{R}, present at the non-inverting input of the same amplifier.
The previous linear analysis is correct for this example.
Decreasing the ξ value, the rise-time of the current decreases. But for a good stability, from relationship (6), the minimum value of ξ is:

$$
\xi_{\min }=\frac{1}{2 \sqrt[4]{2}}
$$

$$
\left(\text { phase margin }=45^{\circ}\right)
$$

APPLICATION INFORMATION (continued)

b) Large signal response

The large step signal response is limited by slew-rate and inductive load.
In this case, during the rise-time of the motor current, the L292 works in open-loop condition, as can be seen from the photograph of fig. 10.

Fig. 10 - Motor current and pin 7 voltage waveforms (application of fig. 5) Large signal response.
$\mathrm{V}_{7}=1 \mathrm{~V} / \mathrm{div}$.
$I_{M}=0.5 A / d i v$.
$\mathrm{t}=500 \mu \mathrm{~s} / \mathrm{div}$.

The voltage at pin 7 (inverting input of the error amplifier) departs from the reference voltage V_{R} present at the non-inverting input and the feedback loop is open.
The fedback loop is on when the motor current reaches its steady-state value (2A).

Closed loop system bandwidth

A good choice for ξ is the value $1 / \sqrt{2}$. In this case:

$$
\begin{equation*}
\frac{I_{M}}{V_{I}}(s)=\frac{0.044}{R_{s}} \frac{1+s R_{F} C_{F}}{1+2 s R_{F} C_{F}+2 s^{2} R_{F}^{2} C_{F}^{2}} \tag{8}
\end{equation*}
$$

The module of the transfer function is:

$$
\begin{equation*}
\left|\frac{I_{M}}{V_{I}}\right|=\frac{0.044}{R_{S}} \frac{2 \sqrt{1+\omega^{2} R_{F}{ }^{2} C_{F}{ }^{2}}}{\sqrt{\left[\left(1+2 \omega R_{F} C_{F}\right)^{2}+1\right] \cdot\left[\left(1-2 \omega R_{F} C_{F}\right)^{2}+1\right]}} \tag{9}
\end{equation*}
$$

The cutoff frequency is derived by the expression (9) by putting $\left|\frac{I_{M}}{V_{1}}\right|=0.707(-3 \mathrm{~dB})$, from which:

$$
\omega_{T}=\frac{0.9}{R_{F} C_{F}} \quad f_{T}=\frac{0.9}{2 \pi R_{F} C_{F}}
$$

APPLICATION INFORMATION (continued)

Example:

a) Data

- Motor characteristics: $L_{M}=5 \mathrm{mH}$

$$
\mathrm{R}_{\mathrm{M}}=5 \Omega \mathrm{~L}_{\mathrm{M}} / \mathrm{R}_{\mathrm{M}}=1 \mathrm{msec}
$$

- Voltage and current characteristics:

$$
\begin{array}{lll}
\mathrm{V}_{\mathrm{s}}=20 \mathrm{~V} & \mathrm{I}_{\mathrm{M}}=2 \mathrm{~A} & \mathrm{~V}_{1}=9.1 \mathrm{~V}
\end{array}
$$

- Closed loop bandwidth: 6 KHz .
b) Calculation - From relationship (4):

$$
R_{\mathrm{s}}=\frac{0.044}{I_{\mathrm{M}}} \quad V_{1}=0.2 \Omega
$$

and from (1):

$$
G_{m o}=\frac{2 V_{s}}{R_{M} V_{R}}=1 \Omega^{-1}
$$

- $\mathrm{RC}=1 \mathrm{msec} \quad[$ from expression (2)].
- Assuming $\quad \xi=1 / \sqrt{2}$; from (7) follows:

$$
\xi^{2}=\frac{1}{2}=\frac{200 \mathrm{C}}{4 \mathrm{R}_{\mathrm{F}} \mathrm{C}_{F} \cdot 0.2}
$$

- The cutoff frequency is:

$$
f_{T}=\frac{143 \cdot 10^{-3}}{R_{F} C_{F}}=6 \mathrm{KHz}
$$

c) Summarising - $\mathrm{RC}=1 \cdot 10^{-3} \mathrm{sec}$
$-\frac{500 C}{R_{F} C_{F}}=1$
$-\mathrm{R}_{\mathrm{F}} \mathrm{C}_{\mathrm{F}} \cong 24 \mu \mathrm{sec}$

$$
\begin{aligned}
& \mathrm{C}=47 \mathrm{nF} \\
& \mathrm{R}=22 \mathrm{~K} \Omega \\
& \text { For } \mathrm{R}_{\mathrm{F}}=510 \Omega \rightarrow \mathrm{C}_{\mathrm{F}}=47 \mathrm{nF} .
\end{aligned}
$$

NOTE - For a more detailed description of the L290-L291-L292 and its applications refer to SGS - TECHNICAL NOTES TN149 and TN150.

LINEAR INTEGRATED CIRCUITS

PUSH-PULL FOUR CHANNEL DRIVERS

PRELIMINARY DATA

The L293 and the L293E are monolithic integrated high voltage, high current four channel drivers in dual in-line plastic package with 16 leads and 20 leads respectively. They are designed to accept standard DTL or TTL input logic levels and drive inductive loads (such as relays, solenoids, DC and stepping motors) and switching power transistors.
Both are provided of complementary push-pull output stage, two inhibit inputs (which disable two channels each), and an additional supply inputs so that the logic circuitry may run at a lower voltage to reduce power dissipation.
In the L293E the emitters of the lower transistors of each push-pull stage are not internally grounded and the corresponding pins can be used for the connection of an external sensing resistor, making very easy switch-mode current control.
The main features of the L293 and of the L293E are:

- 1A output current capability per channel
- 2A peak output current (non-repetitive) per channel
- Inhibit facility
- Overtemperature protection
- Logical " O^{\prime} " input voltage up to 1.5 V (high noise immunity).

The devices are assembled in new packages which have the four central pins connected together and used for heatsinking and grounding.

ABSOLUTE MAXIMUM RATINGS

V_{5}	Supply voltage	36	V
$\mathrm{V}_{\text {ss }}$	Logic supply voltage	36	V
V_{i}	Input voltage	7	V
$V_{\text {inh }}$	Inhibit voltage	7	V
Iout	Peak output current (non-repetitive)	2	A
$\mathrm{P}_{\text {tot }}$	Total power dissipation at $\mathrm{T}_{\text {ground-pins }}=80^{\circ} \mathrm{C}$	5	W
$\mathrm{T}_{\text {stg }}, \mathrm{T}_{\mathrm{j}}$	Storage and junction temperature	-40 to 150	${ }^{\circ} \mathrm{C}$

ORDERING NUMBERS: L293B (16 leads)

L293E (20 leads)

MECHANICAL DATA

Dimensions in mm

CONNECTION AND BLOCK DIAGRAM (L293)
(top view)

CONNECTION AND BLOCK DIAGRAM (L293E)

(top view)

(*) In the L293 these points are not externally available. They are internally connected to the ground (substrate).
○ Pins of L. 293
() Pins of L293E

THERMAL DATA

$\mathrm{R}_{\text {th } \mathrm{j} \text {-case }}$	Thermal resistance junction-case	max	14	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{\text {th } \mathrm{j} \text {-amb }}$	Thermal resistance junction-ambient	max	80	${ }^{\circ} \mathrm{C} / \mathrm{W}$

ELECTRICAL CHARACTERISTICS (For each channel, $\mathrm{V}_{\mathrm{S}}=24 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$, unless otherwise specified)

	Parameter	Test conditions	Min.	Typ.	Max.	Unit
V_{s}	Supply voltage				36	V
$\mathrm{V}_{\text {ss }}$	Logic supply voltage		4.5		36	V
I_{5}	Total quiescent supply current	$V_{i}=L \quad I_{0}=0 \quad V_{\text {inh }}=H$		2	6	mA
		$V_{i}=H \quad \mathrm{I}_{0}=0 \quad V_{i n h}=H$		16	24	
		$\mathrm{V}_{\text {inh }}=\mathrm{L}$			4	
$\mathrm{I}_{5 S}$	Total quiescent logic supply current	$\begin{array}{lll}V_{i}=L & I_{0}=0 & V_{i n h}=H\end{array}$		44	60	mA
		$\mathrm{V}_{\mathrm{i}}=\mathrm{H} \quad \mathrm{I}_{\mathrm{o}}=0 \quad \mathrm{~V}_{\text {inh }}=\mathrm{H}$		16	22	
		$V_{\text {inh }}=L$		16	24	
$V_{\text {iL }}$	Input low voltage		-0.3		1.5	V
V_{iH}	Input high voltage	$\mathrm{V}_{\text {ss }} \leqslant 7 \mathrm{~V}$	2.3		$\mathrm{V}_{\text {ss }}$	V
		$\mathrm{V}_{\text {ss }}>7 \mathrm{~V}$	2.3		7	
I_{iL}.	Low voltage input current	$V_{i}=L$			-10	$\mu \mathrm{A}$
I_{iH}	High voltage input current	$\mathrm{V}_{\mathrm{i}}=\mathrm{H}$		30	100	$\mu \mathrm{A}$
$V_{\text {inhL }}$	Inhibit low voltage		-0.3		1.5	V
$\mathrm{V}_{\text {inhH }}$	Inhibit high voltage	$\mathrm{V}_{\text {ss }} \leqslant 7 \mathrm{~V}$	2.3		$\mathrm{V}_{\text {ss }}$	V
		$\mathrm{V}_{\text {ss }}>7 \mathrm{~V}$	2.3		7	
$\mathrm{I}_{\text {inhL }}$	Low voltage inhibit current			-30	-100	$\mu \mathrm{A}$
$\mathrm{I}_{\text {inhH }}$	High voltage inhibit current				± 10	$\mu \mathrm{A}$
$\mathrm{V}_{\text {CEsat }}$	Source output saturation voltage	$\mathrm{I}_{\mathrm{o}}=1 \mathrm{~A}$		1.4	1.8	V
$V_{\text {CEsatL }}$	Sink output saturation voltage	$\mathrm{I}_{\mathrm{O}}=-1 \mathrm{~A}$		1.2	1.8	V
$V_{\text {SENS }}$	Sensing Voltage (pins 4, 7, 14, 17) (**)				2	V
t_{r}	Rise time	0.1 to $0.9 \mathrm{~V}_{0}\left({ }^{*}\right)$		250		ns
t_{f}	Fall time	0.9 to $0.1 \mathrm{~V}_{0}{ }^{*}{ }^{*}$		250		ns
$\mathrm{t}_{\text {on }}$	Turn-on delay	$0.5 \mathrm{~V}_{\mathrm{i}}$ to $0.5 \mathrm{~V}_{0}\left({ }^{*}\right)$		450		ns
$\mathrm{t}_{\text {off }}$	Turn-off delay	$0.5 \mathrm{~V}_{\mathrm{i}}$ to $0.5 \mathrm{~V}_{\mathrm{o}}\left({ }^{*}\right)$		200		ns

(*) See fig. 1.
(**) Referred to L293E.

TRUTH TABLE

Fig. 1 - Switching times

V_{i} (each channel)	V_{o}	$V_{\text {inh. }}\left({ }^{\circ} \circ\right)$
H	H	H
L	L	H
H	$X\left({ }^{\circ}\right)$	L
L	$X\left({ }^{\circ}\right)$	L

(${ }^{\circ}$) High output impedance.
$(\circ \circ)$ Relative to the considerate channel.

Fig. 2 - Saturation voltage vs. output current

Fig. 5 - Quiescent logic supply current vs. logic supply voltage

Fig. 3 - Source saturation voltage vs. ambient temperature

Fig. 6 - Output voltage vs. input voltage

Fig. 4 - Sink saturation voltage vs. ambient temperature

Fig. 7 - Output voltage vs. inhibit voltage

APPLICATION INFORMATION

Fig. 8 - DC motor controls (with connection to ground and to the supply voltage)

$\mathbf{V}_{\text {inh }}$	A	M1	B	M2
H	H	Fast motor stop	H	Run
H	L	Run	L	Fast motor stop
L	X	Free running motor stop	X	Free running motor stop

$L=$ Low $\quad H=$ High $X=$ Don't care

Fig. 9 - Bidirectional DC motor control

INPUTS		FUNCTION
$V_{i n h}=H$	$C=H ; \quad D=L$	Turn right
	$C=L ; \quad D=H$	Turn left
	$C=D$	Fast motor stop
$V_{i n h}=L$	$C=X ; \quad D=X$	Free running motor stop

$L=$ Low
$H=H i g h$
$X=$ Don't care

Fig. 10 - Bipolar stepping motor control

D1-D8 = 1N4001

APPLICATION INFORMATION (continued)
Fig. 11 - Stepping motor driver with phase current control and short circuit protection

D1 \div D8: 0.5A fast diodes (1N4001 or equivalent).

NOTE - For a more detailed description of the L293/L293E and its applications, refer to SGS-TECHNICAL NOTE TN. 150.

MOUNTING INSTRUCTIONS

The $\mathrm{R}_{\mathrm{thj}-\mathrm{amb}}$ of the L293 and the L293E can be reduced by soldering the GND pins to a suitable copper area of the printed circuit board or to an external heatsink.
The diagram of fig. 13 shows the maximum dissipable power $P_{\text {tot }}$ and the $R_{\text {thj-amb }}$ as a function of the side " ℓ " of two equal square copper areas having a thickness of 35μ (see fig. 12). In addition, it is possible to use an external heatsink (see fig. 14).
During soldering the pins temperature must not exceed $260^{\circ} \mathrm{C}$ and the soldering time must not be longer than 12 seconds.
The external heatsink or printed circuit copper area must be connected to electrical ground.

Fig. 12 - Example of P.C. board copper area which is used as heatsink

Fig. 14 - External heatsink mounting example ($\mathrm{R}_{\mathrm{th}}=30^{\circ} \mathrm{C} / \mathrm{W}$)

Fig. 13 - Max. dissipable power and junction to ambient thermal resistance vs. size " ℓ "

Fig. 15 - Maximum allowable power dissipation vs. ambient temperature

LINEAR INTEGRATED CIRCUIT

SWITCH MODE SOLENOID DRIVER

The L294 is a monolithic integrated circuit in an 11-lead MULTIWATT ${ }^{\circledR}$ package. It is particularly suited for solenoid driving, such as hammers and needles in printers and computer hard-copy peripherals. The switch-mode control of the output current allows electromechanical actuators with high working speed to be driven (switch ON/switch OFF time is very short) and to reduce the power dissipation compared to standard solutions.
Furthermore, the L294 incorporates a diagnostic circuit with latched output which points out any malfunction (for instance electromagnet coil in short circuit).
The L294 main features are:

- high voltage operation (up to 50V)
- high output current capability (up to 4A)
- low saturation voltage
- $\mu \mathrm{P}$ compatible input

It also includes the following protections:

- output short circuit to ground, to supply voltage and across the load
- thermal shut down
- load overdriving protection

ABSOLUTE MAXIMUM RATING

V_{s}	Power supply voltage	50	V
$\mathrm{~V}_{\text {ss }}$	Logic supply voltage	7	V
$\mathrm{~V}_{\mathrm{EN}}$	Enable voltage	7	V
$\mathrm{~V}_{\mathrm{i}}$	Input voltage	7	V
I_{p}	Peak output current (repetitive)	4.5	A
$\mathrm{P}_{\text {tot }}$	Total power dissipation (at $\mathrm{T}_{\text {case }}=75^{\circ} \mathrm{C}$)	25	W
$\mathrm{~T}_{\text {stg }}, \mathrm{T}_{\mathrm{j}}$	Storage and junction temperature	-40 to 150	${ }^{\circ} \mathrm{C}$

ORDERING NUMBER: L294
MECHANICAL DATA
Dimensions in mm

CONNECTION DIAGRAM

(top view)

BLOCK DIAGRAM

$\mathbb{C B} \quad \mathrm{bax}$

THERMAL DATA

$\mathrm{R}_{\text {th j-case }}$ Thermal resistance junction-case
max
$3{ }^{\circ} \mathrm{C} / \mathrm{W}$

ELECTRICAL CHARACTERISTICS (Refer to the test circuit, $\mathrm{V}_{\mathrm{s}}=40 \mathrm{~V}, \mathrm{~V}_{\mathrm{ss}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$, unless otherwise specified).

	Parameter	Test conditions	Min.	Typ.	Max.	Unit
v_{s}	Power supply voltage (pin 1)	Operative condition	12		46	v
I_{d}	Quiescent drain current (pin 1)	$\mathrm{V}_{\text {ENABLE }}=\mathrm{H}$		20	30	mA
		$\mathrm{V}_{\mathrm{i}} \geqslant 0.6 \mathrm{~V} ; \mathrm{V}_{\text {ENABLE }}=\mathrm{L}$		70		
$\mathrm{V}_{\text {ss }}$	Logic supply voltage (pin 4)		4.5		7	V
$\mathrm{I}_{\text {ss }}$	Quiescent logic supply current	$\mathrm{V}_{\text {DIAG }}=\mathrm{L}$		5	8	mA
		DIAG output at high impedance		10	100	$\mu \mathrm{A}$
v_{i}	Input voltage (pin 7)	Operating output	0.6			v
		Non-operative output			0.45	
I_{i}	Input current (pin 7)	$\mathrm{V}_{\mathrm{i}} \geqslant 0.6 \mathrm{~V}$		-1		$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{i}} \leqslant 0.45 \mathrm{~V}$		-3		
$\mathrm{V}_{\text {ENABLE }}$	Enable input voltage (pin 9)	Low level	-0.3		0.8	v
		High level	2.4			
Ienable	Enable input current (pin 9)	$\mathrm{V}_{\text {ENABLE }}=\mathrm{L}$			-100	$\mu \mathrm{A}$
		$\mathrm{V}_{\text {ENABLE }}=\mathrm{H}$			100	
$\mathrm{I}_{\text {load }} / \mathrm{V}_{\mathrm{i}}$	Transconductance	$\mathrm{R}_{\mathrm{s}}=0.2 \Omega \quad \mathrm{~V}_{\mathrm{i}}=1 \mathrm{~V}$	0.95	1	1.05	A/V
		$\mathrm{V}_{\mathrm{i}}=4 \mathrm{~V}$	0.97	1	1.03	
$\mathrm{V}_{\text {sat H }}$	Source output saturation voltage	$\mathrm{I}_{\mathrm{p}}=4 \mathrm{~A}$		1.7		v
$\mathrm{V}_{\text {sat }} \mathrm{L}$	Sink output saturation voltage	$\mathrm{I}_{\mathrm{p}}=4 \mathrm{~A}$		2		V
$\mathrm{V}_{\text {sat } \mathrm{H}^{+} \mathrm{V}_{\text {sat }} \mathrm{L} \text { Total saturation voltage }}$		$\mathrm{I}_{\mathrm{p}}=4 \mathrm{~A}$			4.5	V
${ }_{\text {leakage }}$	Output leakage current	$\mathrm{R}_{\mathrm{s}}=0.2 \Omega ; \quad \mathrm{V}_{\mathrm{i}} \leqslant 0.45 \mathrm{~V}$		1		mA
K	On time limiter constant (${ }^{\circ}$)	$\mathrm{V}_{\text {ENABLE }}=\mathrm{L}$		120		$\mathrm{K} \Omega$
$V_{\text {DIAG }}$	$\begin{aligned} & \text { Diagnostic output voltage } \\ & \text { (pin 5) } \end{aligned}$	${ }^{\text {DIAG }}=10 \mathrm{~mA}$			0.4	V
${ }^{\text {DIIAG }}$	Diagnostic leakage current (pin 5)	$\mathrm{V}_{\text {DIAG }}=40 \mathrm{~V}$			10	$\mu \mathrm{A}$
$V_{\text {pin } 8}$	OP AMP and OTA DC voltage gain (${ }^{\circ} \circ$)	$V_{\text {pin } 10}=100$ to 800 mV		5		
$V_{\text {pin } 10}$						
$\mathrm{V}_{\text {SENS }}$	Sensing voltage (pin 10) $\left(^{(000)}\right.$				0.9	V

$\left({ }^{\circ}\right)$ After a time interval $\mathrm{t}_{\text {max }}=\mathrm{KC}_{2}$, the output stages are disabled.
($0 \circ$) See the block diagram.
${ }^{(000)}$) Allowed range of $\mathrm{V}_{\text {SENS }}$ without the intervention of the short circuit protection.

CIRCUIT OPERATION

The L294 works as a transconductance amplifier: it can supply an output current directly proportional to an input voltage level $\left(\mathrm{V}_{\mathrm{i}}\right)$. Furthermore, it allows complete switching control of the output current waveform (see fig. 1).
The following explanation refers to the Block Diagram, to fig. 1 and to the typical application circuit of fig. 3.
The $t_{\text {on }}$ time is fixed by the width of the Enable input signal (TTL compatible): it is active low and enables the output stages "source" and "sink". At the end of $t_{\text {on }}$, the load current $\mathrm{I}_{\text {load }}$ recirculates through D1 and D2, allowing fast current turn-off.
The rise time t_{r} depends on the load characteristics, on V_{i} and on the supply voltage value ($\left.V_{s}, \operatorname{pin} 1\right)$. During the $t_{\text {on }}$ time, $I_{\text {load }}$ is converter into a voltage signal by means of the external sensing resistance R_{s} connected to pin 10. This signal, amplified by the op amp and converted by the transconductance amplifier OTA, charges the external RC network at pin 8 (R1, C1). The voltage at this pin is sensed by the inverting input of a comparator. The voltage on the non-inverting input of this one is fixed by the external voltage V_{i} (pin 7).
After t_{r}, the comparator switches and the output stage "source" is switched off. The comparator output is confirmed by the voltage on the non-inverting input, which decreases of a constant fraction of V_{i} (1/10), allowing hysteresis operation. The current in the load now flows through D1.
Two cases are possible: the time constant of the recirculation phase is higher than R1. C1; the time constant is lower than R1.C1. In the first case, the voltage sensed on the non-inverting input of the comparator is just the value proportional to $I_{\text {load }}$. In the second case, when the current decreases too quickly, the comparator senses the voltage signal stored in the R1 C1 network.
In the first case t_{1} depends on the load characteristics, while in the second case it depends only on the value of R1.C1.
In other words, R1.C1 fixes the minimum value of $\mathrm{t}_{1}\left(\mathrm{t}_{1} \geqslant 1 / 10 \mathrm{R} 1 . \mathrm{C} 1\right.$. Note that C 1 should be chosen in the range 2.7 to 10 nF for stability reasons of the OTA).
After t_{1}, the comparator switches again: the output is confirmed by the voltage on the non-inverting input, which reaches V_{i} again (hysteresis).
Now the cycle starts again: t_{2}, t_{4} and t_{6} have the same characteristics as t_{r}, while t_{3} and t_{5} are similar to t_{1}. The peak current I_{p} depends on V_{i} as shown in the typical transfer function of fig. 2.
It can be seen that for V_{i} lower than 450 mV the device is not operating.
For V_{i} greater than 600 mV , the L294 has a transconductance of $1 \mathrm{~A} / \mathrm{V}$ with $R_{s}=0.2 \Omega$. For V_{i} included between 450 and 600 mV , the operation is not guaranteed.
The other parts of the device have protection and diagnostic functions. At pin 3 is connected an external capacitor C2, charged at constant current when the Enable is low.
After a time interval equal to K-C2 (K is defined in the table of Electrical Characteristics and has the dimensions of ohms) the output stages are switched off independently by the Input signal.
This avoids the load being driven in conduction for an excessive period of time (overdriving protection). The action of this protection is shown in fig. 1b. Note that the voltage ramp at pin 3 starts whenever the Enable signal becomes active (low state), regardless of the Input signal. To reset pin 3 and to restore the normal conditions, pin 9 must return high.
This protection can be disabled by grounding pin 3.
The thermal protection included in the L294 has a hysteresis.
It switches off the output stages whenever the junction temperature increases too much. After a fall of about $20^{\circ} \mathrm{C}$, the circuit starts again.
Finally, the device is protected against any type of short circuit at the outputs: to ground, to supply and across the load.
When the source stage current is higher than 5 A and/or when the pin 10 voltage is higher then 1 V (i.e. for a sink current greater than $1 \mathrm{~V} / \mathrm{R}_{\mathrm{s}}$) the output stages are switched off and the device is inhibited.
This condition is indicated at the open-collector output DIAG (pin 5); the internal flip-flop F/F changes and forces the output transistor into saturation. The F/F must be supplied independently through V_{ss} (pin 4). The DIAG signal is reset and the output stages are still operative by switching off the supply

CIRCUIT OPERATION (continued)

voltage at pin 1 and then by switching the device on again. After that, two cases are possible: the reason for the "bad operation" is still present and the protection acts again; the reason has been removed and the device starts to work properly.

Fig. 1 - Output current waveforms

Fig. 3 - Test and typical application circuit

Fig. 5 - Safe operating areas

Fig. 2 - Peak output current
vs. input voltage

Fig. 4 - Output saturation voltages vs. peak output

Fig. 6 - Turn-off phase

8 1294

CALCULATION OF THE SWITCHING TIMES

Referring to the block diagram and to the waveforms of fig. 1, it is possible to calculate the switching times by means of the following relationships.

$$
\begin{aligned}
& t_{r}=-\frac{L}{R_{L}} \ln \left(1-\frac{R_{L}}{V 1} \cdot I_{p}\right) \\
& t_{f}=-\frac{L}{R_{L}} \ln \frac{V 2}{V 2+R_{L} \cdot I_{o}}
\end{aligned}
$$

where: $\quad \mathrm{V} 1=\mathrm{V}_{\mathrm{s}}-\mathrm{V}_{\text {sat } \mathrm{L}}-\mathrm{V}_{\text {sat } \mathrm{H}}-\mathrm{V}_{\mathrm{R} \text { sens }}$
where: $\mathrm{V} 2=\mathrm{V}_{\mathrm{s}}+\mathrm{V}_{\mathrm{D} 1}+\mathrm{V}_{\mathrm{D} 2}$
$I_{K} \leqslant I_{o} \leqslant I_{p}$
I_{0} is the value of the load current at the end of $t_{\text {on }}$.

$$
t_{1}=t_{3}=t_{5}=\ldots \quad= \begin{cases}\text { a) }-\frac{L}{R_{L}} \ln \frac{0.9 I_{D} \cdot R_{L}+V 3}{I_{p} R_{L}+V 3} & \begin{array}{l}
\text { where } \\
V 3=V_{\text {sat } L}+V_{R \text { sens }}+V_{D 1}
\end{array} \\
\text { b) }-R 1 C 1 \ln 0.9 \cong \frac{1}{10} R 1 C 1 & \end{cases}
$$

$$
t_{2}=t_{4}=t_{6}=\ldots \quad=-\frac{L}{R_{L}} \ln \left(\frac{V 1-I_{p} R_{L}}{V 1-I_{K} R_{L}}\right)
$$

Note that the time interval $t_{1}=t_{3}=t_{5}=\ldots$ takes the ionger value between case a) and case b). The switching frequency is always:

$$
f_{\text {switching }}=\frac{1}{t_{1}+t_{2}}
$$

In the case a) the main regulation loop is always closed and it forces:

In the case b), the same loop is open in the recirculation phase and I_{K}, which is always lower than $0.9 I_{p}$, is obtained by means of the following relationship.

$$
I_{K}=I_{p} e^{-\frac{t_{1} R_{L}}{L}}-\frac{V 3}{R_{L}}\left(1-e^{-\frac{t_{1} R_{L}}{L}}\right)
$$

With the typical application circuit, in the conditions $V_{s}=40 \mathrm{~V}, I_{p}=4 \mathrm{~A}$, the following switching times result:
$\mathrm{t}_{\mathrm{r}}=255 \mu_{\mathrm{s}} \quad \mathrm{t}_{\mathrm{f}}=174 \mu_{\mathrm{s}}$ @ $\mathrm{I}_{\mathrm{o}}=\mathrm{I}_{\mathrm{p}}$
$t_{1}=\quad$ a) $70 \mu \mathrm{~s}$
b) $16 \mu \mathrm{~s}$
$\mathrm{t}_{2}=29 \mu \mathrm{~s}$
$f=10.2 \mathrm{KHz}$

$$
\begin{aligned}
& I_{K}=(0.9 \pm S) I_{p} \\
& \text { where: } \begin{array}{lll}
S=3 \% & @ V_{i}=1 V \\
S=1.5 \% & @ V_{i}=4 V
\end{array}
\end{aligned}
$$

LINEAR INTEGRATED CIRCUIT

VERY LOW DROP 5V VOLTAGE REGULATOR

- PRECISE OUTPUT VOLTAGE (5V $\pm 2.5 \%$)
- VERY LOW DROPOUT VOLTAGE
- OUTPUT CURRENT IN EXCESS OF 500 mA
- POWER-ON, POWER-OFF INFORMATION (RESET FUNCTION)
- +100/-100V LOAD DUMP PROTECTION
- OVERVOLTAGE AND REVERSE VOLTAGE PROTECTIONS
- SHORT CIRCUIT PROTECTION AND THERMAL SHUT-DOWN

The L487 is a monolithic integrated circuit in Pentawatt package specially designed to provide a stabilized supply voltage for automotive and industrial electronic systems. Thanks to its very low voltage drop, in automotive applications the L487 can work correctly even during the cranking phase, when the battery voltage could fall as low as 6 V . Furthermore, it incorporates a complete range of protection circuits against the dangerous overvoltages always present on the battery rail of the car. The reset function makes the device particularly suited to supply microprocessor based systems: a pulse is available (after an externally programmable delay) to reset the microprocessor at power-on phase; at poweroff, this pulse becomes low inhibiting the microprocessor.

ABSOLUTE MAXIMUM RATINGS

V_{i}	Forward input voltage	30	V
V_{i}	Reverse input voltage	-18	V
	Positive transient peak voltage $(\mathrm{t}=300 \mathrm{~ms})$	100	V
	Negative transient peak voltage $(\mathrm{t}=100 \mathrm{~ms})$	-100	V
$\mathrm{~T}_{\mathrm{op}}$	Operating junction temperature	-40 to 150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	Storage temperature	-55 to 150	${ }^{\circ} \mathrm{C}$

ORDERING NUMBER: L487B

ADVANCE DATA

HIGH CURRENT SWITCHING REGULATOR

- 5.1V TO 40V OUTPUT
- 4A OUTPUT CURRENT
- UP TO 160W OUTPUT POWER
- PROGRAMMABLE CURRENT LIMITER
- SOFT START
- RESET OUTPUT
- PRECISE ($\pm 2 \%$) ON-CHIP REFERENCE
- VERY FEW COMPONENTS
- SWITCHING FREQUENCY TO 200 kHz
, VERY HIGH EFFICIENCY (UP TO 90\%)
- THERMAL SHUTDOWN
- REMOTE INHIBIT AND SYNC INPUT
- CONTROL CIRCUIT FOR CROWBAR SCR

The L296 is a monolithic power switching regulator delivering 4A at a voltage variable from 5.1 V to 40 V in step down configurations. Features of the device include programmable current limiting, soft start, remote inhibit, thermal protection, a reset output for microprocessors and a synchronisation input for multichip configurations. The L296 is mounted in a 15-lead MULTIWATT plastic power package and requires very few external components. Efficient operation at switching frequencies up to 200 kHz allows a reduction in the size and cost of external filter components. A voltage sense input and SCR drive output are provided for optional crowbar overvoltage protection with an external SCR.
ABSOLUTE MAXIMUM RATINGS

V_{i}	Input voltage	50	
I_{o}	Output current	V	
I_{R}	Reset output current	internally limited	
V_{R}	Reset output voltage	50	
$V_{i n h}$	Inhibit voltage	50	
P_{d}	Power dissipation at $T_{\text {case }}<90^{\circ} \mathrm{C}$	15	V
$\mathrm{~T}_{\mathrm{j}}$	Junction temperature range	20	W
$\mathrm{~T}_{\text {stg }}$	Storage temperature range	-25 to +150	${ }^{\circ} \mathrm{C}$

ORDERING NUMBER: L296
MECHANICAL DATA
Dimensions in mm

CONNECTION DIAGRAM

(top view)

BLOCK DIAGRAM

THERMAL DATA

| $R_{\text {th } j \text {-case }}$ | Thermal resistance junction-case | $\max ^{\circ}$ | $3{ }^{\circ} \mathrm{C} / \mathrm{W}$ |
| :--- | :--- | :--- | ---: | :--- |
| $R_{\text {th } j \text {-amb }}$ | Thermal resistance junction-ambient | \max | $35^{\circ} \mathrm{C} / \mathrm{W}$ |

PIN FUNCTIONS

${ }^{\circ}$	NAME	FUNCTION
1	CROWBAR INPUT	Voltage sense input for crowbar overvoltage protection. Normally connected to the feedback input thus triggering the SCR when $V_{\text {out }}$ exceeds nominal by 20%. May also monitor the input and a voltage divider can be added to increase the threshold. Connected to ground when SCR not used.
2	OUTPUT	Regulator output.
3	SUPPLY VOLTAGE	Unregulated voltage input. An internal regulator powers the L296's internal logic.
4	CURRENT LIMITER	A resistor connected between this terminal and ground sets the current limiter threshold (1.5 to 5A). If this terminal is left unconnected the threshold will be 5A.
5	SOFT START	Soft start time constant. A capacitor is connected between this terminal and ground to define the soft start time constant. This capacitor also determines the average short circuit output current.
6	INHIBIT INPUT	TTL - level remote inhibit. A logic high level on this input disables the L296.
7	SYNC INPUT	Multiple L296s are synchronised by connecting the sync inputs together and omitting the oscillator RC network on all but one device.

8 GROUND Common ground terminal.

9 FREQUENCY COMPENSATION A series RC network connected between this terminal and ground determines the regulation loop gain characteristics.

FEEDBACK INPUT	The feedback terminal of the regulation loop. The out- put is connected directly to this terminal for 5.1 V oper- ation; it is connected via a divider for higher voltages.
11	A parallel RC network connected to this terminal deter- mines the switching frequency. This pin must be connec- ted to the sync ingut when the internal oscillator is used.

PIN FUNCTIONS (continued)

$N^{\circ} \quad$ NAME

FUNCTION

12 RESET INPUT
This input fixes the threshold of the reset signal generator. It may be connected to the feedback point or via a divider to the input.

13 RESET DELAY
A capacitor connected between this terminal and ground determines the reset signal delay time.

14 RESET OUTPUT
Open collector reset signal output. This output is ON when the supply is safe.

15 CROWBAR OUTPUT
SCR gate drive output of the crowbar circuit.

CIRCUIT OPERATION

The L296 is a monolithic stepdown switching regulator providing output voltages from 5.1 V to 40 V and delivering 4A.
The regulation loop consists of a sawtooth oscillator, error amplifier, comparator and the output stage. An error signal is produced by comparing the output voltage with a precise 5.1 V on-chip reference (zener zap trimmed to $\pm 2 \%$). This error signal is then compared with the sawtooth signal to generate the fixed frequency pulse width modulated pulses which drive the output stage.
The precision and frequency stability of the loop can be adjusted by an external RC network connected to pin 9 . Closing the loop directly gives an output voltage of 5.1 V . Higher voltages are obtained by inserting a voltage divider.
Output overcurrents at switch on are prevented by the soft start function. The error amplifier output is initially clamped by the external capacitor C_{s} and allowed to rise, linearly, as this capacitor is charged by a constant current source.

Output overload protection is provided in the form of a current limiter. The load current is sensed by an internal metal resistor connected to a comparator. When the load current exceeds a preset threshold this comparator sets a flip flop which disables the output stage and discharges the soft start capacitor. A second comparator resets the flip flop when the voltage across the soft start capacitor has fallen to 0.4 V . The output stage is thus re-enabled and the output voltage rises under control of the soft start network. If the overload condition is still present the limiter will trigger again when the threshold current is reached. The average short circuit current is limited to a safe value by the dead time introduced by the soft start network.

The reset circuit generates an output signal when the supply voltage exceeds a threshold programmed by an external divider. The reset signal is generated with a delay time programmed by an external capacito When the supply falls below the threshold the reset output goes low immediately. The reset output is an open collector.

The crowbar circuit senses the output voltage and the crowbar output can provide a current of 100 mA to switch on an external SCR. This SCR is triggered when the output voltage exceeds the nominal by 20%. There is no internal connection between the output and crowbar sense input therefore the crowbar can monitor either the input or the output.

CIRCUIT OPERATION (continued)

A TTL - level inhibit input is provided for applications such as remote on/off control. This input is activated by high logic level and disables circuit operation. After an inhibit the L296 restarts under control of the soft start network.

The thermal overload circuit disables circuit operation when the junction temperature reaches $150^{\circ} \mathrm{C}$ and has a hysteresis of $20^{\circ} \mathrm{C}$.

Fig. 1 - Reset output waveforms

Fig. 2 - Soft start waveforms

Fig. 3 - Current limiter waveforms

ELECTRICAL CHARACTERISTICS (Refer to the test circuit, $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ unless otherwise specified)

Parameter		Test conditions		Min.	Typ.	Max.	Unit
V_{0}	Output voltage range			5.1		40	V
V_{i}	Supply voltage range			8		50	V
I_{0} max	Output current			4			A
'ol	Current limit	Pin 4 open			5		A
		$\mathrm{R}_{\text {lim }}=33 \mathrm{~K} \Omega$			2.5		A
$V_{\text {sat }}$	Output transistor saturation voltage	$\begin{aligned} & I_{0}=4 \mathrm{~A} \\ & \mathrm{I}_{0}=2 \mathrm{~A} \end{aligned}$			$\begin{gathered} 2 \\ 1.3 \end{gathered}$		V
f_{5}	Switching frequency	$\mathrm{R}_{\mathrm{osc}}=4.7 \mathrm{~K} \Omega$	$\mathrm{Cosc}_{\text {osc }}=2.2 \mathrm{nF}$		100		kHz
	Efficiency	$\begin{aligned} & f=100 \mathrm{KHz} \\ & V_{i}=35 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{O}}=3 \mathrm{~A} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{o}}=5.1 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{o}}=12 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 75 \\ & 85 \end{aligned}$		$\begin{aligned} & \% \\ & \% \end{aligned}$
V_{0}	Line regulation	$\begin{aligned} & \mathrm{V}_{\mathrm{i}}=10 \text { to } 40 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{o}}=5.1 \mathrm{~V} \end{aligned}$	$\mathrm{I}_{0}=2 \mathrm{~A}$		20		mV
V_{0}	Load regulation	$\begin{array}{ll} V_{i}=15 \mathrm{~V} & V_{o}=5.1 \mathrm{~V} \\ I_{0}=2 A \text { to } 4 \mathrm{~A} & \\ I_{0}=0.5 A \text { to } 4 \mathrm{~A} & \end{array}$			$\begin{aligned} & 10 \\ & 15 \end{aligned}$		$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
SVR	Supply voltage rejection	$f=100 \mathrm{~Hz}$			60		dB
$V_{\text {Ré }}$	Internally reference voltage	$V_{i}=8$ to 50 V		5	5.1	5.2	V
$V_{\text {REF }}$	Average temperature coeff. of reference voltage				0.2		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
$\mathrm{t}_{\text {ss }}$	Stoft start time	$\mathrm{C}_{\text {S }}=2.2 \mu \mathrm{~F}$			20		ms
I_{SH}	Output average current with short circuit output				0.5		A
RESET SECTION							
$\mathrm{V}_{\mathrm{RTi}}$	Reset threshold voltage (pin 12)	$V_{i}=8$ to 50 V		-10\%	$\begin{gathered} V_{\text {ref }} \\ -100 \mathrm{mV} \end{gathered}$	+10\%	V
$V_{\text {RTo }}$	Reset out low voltage (pin 14)	$\mathrm{I}_{\mathrm{L}}=16 \mathrm{~mA}$				0.2	V
	Delay time (pin 13)	$\mathrm{C}_{\text {reset }}=2.2 \mu \mathrm{~F}$			100		ms
CROWBAR SECTION							

Threshold voltage (pin 12)		$+12 \%$	$V_{\text {ref }}$ $+20 \%$	$+23 \%$	
I source	Pin 15			100	
Isink			5	mA	
Delay time			10	mA	

ELECTRICAL CHARACTERISTICS (continued)

Parameter		Test conditions	Min.	Typ.	Max.	Unit
INHIBIT SECTION						
VINHL	Low input voltage				1.2	V
V INHH	High input voltage		2.2			V
IINHL	Input current with low input voltage				100	$\mu \mathrm{A}$
IINHH	Input current with high input voltage				10	$\mu \mathrm{A}$
ERROR	AMPLIFIER SECTION					
$\mathrm{V}_{\text {os }}$	Input offset voltage			2		mV
Ios	Input offset current			25		nA
I_{b}	Input bias current			0.2		$\mu \mathrm{A}$
G_{v}	Large signal open loop gain		60			dB
Ioe	Out sink current			200		$\mu \mathrm{A}$
	Out source current			200		$\mu \mathrm{A}$

Fig. 4 - Test circuit

Fig. 5 - P.C. board and component layout of the circuit of fig. 4 (1:1 scale)

SELECTION OF COMPONENT VALUES

Component	Recommended Value	Purpose	Allowed Range Min.		Max.

Fig. 6 - Efficiency vs. output current

Fig. 9 - Efficiency vs. out-

Fig. 7 - Dissipated Power vs. output current (L296 only)

Fig. 10 - Operating frequency vs. R3 and C3

Fig. 8 - Efficiency vs. output current

Fig. 11 - Power dissipation derating curve

Fig. 12 - Voltage sensing for remote load

Fig. 13 - Typical application

$\mathrm{V}_{\mathrm{o}}=5.1$ to 15 V
$\mathrm{I}_{\mathrm{o}}=4 \mathrm{~A}$ max. $(\mathrm{min}$. load current $=100 \mathrm{~mA})$
ripple $\leqslant 20 \mathrm{mV}$
load regulation (1 A to 4 A) $=10 \mathrm{mV}\left(\mathrm{V}_{0}=5.1 \mathrm{~V}\right)$
line regulation $\left(220 \mathrm{~V} \pm 15 \%\right.$ and to $\left.\mathrm{I}_{0}=3 \mathrm{~A}\right)=15 \mathrm{mV}\left(\mathrm{V}_{0}=5.1 \mathrm{~V}\right)$

Fig. 14 - Preregulator for distributed supplies

Fig. 15 - Multiple supply

Information furnished is believed to be accurate and reliable. However, no responsibility is assumed for the consequences of its use nor for a infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-ATES. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and substitutes all information previously supplied.

SGS-ATES GROUP OF COMPANIES
Italy - France - Germany - Malta - Malaysia - Singapore - Sweden - Switzerland - United Kingdom - U.S.A. © SGS-ATES Componenti Elettronici SpA, 1983 - Printed in Italy

DESIGNING WITH THE L296 POWER SWITCHING REGULATOR

The L296 Power Switching Regulator is a cost-effective replacement for hybrid switching regulators and can also be used in place of conventional series regulators to improve efficiency. This design guide presents application circuits for the L296 and useful design rules 'or the choice of support components.

The L296 is a monolithic power switching regulator designed for use in stepdown cónfigurations. It supplies an output current up to 4A and an output voltage variable from 5.1 V to 40 V . In a single plastic-packaged chip it includes all the regulator control circuitry, a power stage handling. 160 W and many special features that reduce the cost of external components. These features include soft start, programmable current limiting, remote inhibit, a reset output for microprocessors and an overvoltage protection circuit for use with an external SCR. The device operates efficiently at frequencies to 200 kHz , reducing the size of the output filter components, and a zener-zap trimmed precise reference avoids the need for trimmers in most applications. The L296 is packaged in a 15-lead Multiwatt plastic power package.
Reducing the cost of switchmode supplies, the L296 can replace linear regulators in many applications where switching techniques have been ex-
cluded in the past for reasons of cost. It also offers an alternative to more expensive hybrid switching regulators without sacrificing performance.

OUTPUT VOLTAGE PROGRAMMING

The output voltage can be varied from 5.1 V to 40 V and is set by the divider connected between the output and the feedback input (R6 and R7 in figure 1). The divider ratio is given by:

$$
\frac{R 6}{R 7}=\frac{V_{o}-V_{r e f}}{V_{\text {ref }}}
$$

($\mathrm{V}_{\text {ref }}$ is the reference voltage, nominally 5.1 V). R7 should not be greater than $51 \mathrm{k} \Omega$ or the feedback input leakage current will load the divider. For an output voltage of 5.1 V the divider is omitted.

Fig. 1 - Test and evaluation circuit of the L296. All the features are used in this circuit; components can be omitted in many applications.

CURRENT LIMIT SETTING

A resistor connected to pin 4 sets the current limit threshold. If this resistor is omitted, and pin 4 left open circuit, the limit threshold is $5 A$. The threshold can be varied from 0.5 to 4 A . For a threshold of 2.5 A the resistor is about $33 \mathrm{k} \Omega$.

THE LC FILTER

The LC filter converts the pulse output of the L296's power stage into a continuous output voltage with a superimposed ripple, ΔV. The inductor determines the voltage ripple on the capacitor.
The ripple ΔI_{L} is generally chosen to be twice the minimum load current to avoid periods when the transistor and diode are both non-conducting.

The formulae used to calculate LC as a function of ΔI_{L} and ΔV are:

$$
\begin{aligned}
& L=\frac{V_{0}\left(V_{i}-V_{0}\right)}{V_{i} f \Delta I_{L}} \\
& C=\frac{V_{0}\left(V_{i}-V_{0}\right)}{8 L f^{2} \Delta V}
\end{aligned}
$$

For example, for the test circuit (figure 5) the LC filter was calculated from the following data:

$$
\begin{array}{cc}
V_{i}=35 \mathrm{~V} & V_{O}=5 \mathrm{~V} \\
\Delta I_{\mathrm{L}}=150 \mathrm{~mA} & f=100 \mathrm{kHz} \\
\Delta V=3 \mathrm{mV} &
\end{array}
$$

Therefore $L=\frac{5(35-5)}{35 \times 100000 \times 150 \times 10^{-3}} \cong 300 \mu \mathrm{H}$ and
$\mathrm{C}=\frac{5(35-5)}{8 \times 300 \times 10^{-6} \times\left(100 \times 10^{3}\right)^{2} \times 30 \times 10^{-3}} \cong 220 \mu \mathrm{~F}$
In practice the ripple depends on the quality of the filter capacitor. With standard components the ripple will be roughly twice the value implied by this calculation. In this example the actual ripple is about 5 mV .

A multiple capacitor - two or more connected in parallel with a total capacity of C - is recommended. Smaller electrolytics have a lower inductance - important at high frequencies - and handle higher peak currents.

COMPENSATION AND STABILITY

The system is non linear because the output stage operates in switchmode. However, in certain conditions the system can be represented as linear blocks. Delays are introduced by the output stage which can contribute to instability of the system.

When the switching frequency is at least ten times greater than the frequency at which the open loop gain is unity, the system can be approximated to a linear system. The PWM block can then be characterised as a linear block with gain independent of frequency.
Compensating the system with a series RC network on the output of the error amplifier (pin 9), we obtain:

$$
z=\frac{1+s R C}{s C}
$$

Placing the zero introduced by the error amplifier at the resonance frequency of the LC output filter $\left(\omega_{0}=1 / \sqrt{\text { LC }}\right)$ we obtain the Bode plot shown in figure 2.
The slope when it crosses the frequency axis at 0 $d B$ is roughly $40 \mathrm{~dB} /$ decade. In practice the LC filter contains parasitic elements which give a lower slope.
The series resistance of the capacitor (ESR) in troduces a zero at high frequencies, guaranteeing stability of the system.

Fig. 2 - Bode plot of regulation loop.

DIODE

The diode should be a fast type to avoid high current peaks in the output transistor. The choice is therefore between Schottky diodes and fast diodes with a Trr of less than 35 ns.
These diodes cost roughly the same. The only significant difference is the lower forward voltage of Schottky diodes. At low output voltages - around 5 V - a Schottky diode therefore improves the efficiency of the system.

SWITCHING FREQUENCY

The choice of switching frequency depends on the inductor chosen (a smaller inductor can be used at higher frequencies), the power dissipation and desired efficiency. It should not exceed 200 kHz or efficiency will be reduced; the lower limit is set
only by the maximum acceptable dimensions of the output filter.
The chosen frequency is set by the RC network connected to pins 7 and 11 (OSC and SYNC). Suitable values can be found from the nomogram, figure 3. The capacitor must be in the range $1 \mathrm{nF}-$ 3.3 nF and the resistor in the range $1 \mathrm{k} \Omega$ to $100 \mathrm{k} \Omega$.

Fig. 3 - Nomogram to find the values of the oscillator components.

SYNCHRONISATION

When several L296s are used in a multiple supply the switching frequencies should be synchronised to avoid interference propagated on the ground plane.

This is done by connecting the SYNC pins together and omitting the oscillator components on all but the first device. The OSC pins of the subsequent devices are left open, as shown in figure 4.

Fig. 4 - In multiple supplies several L296s can be synchronised as shown here to reduce interference on the ground plane.

LAYOUT

In view of the high currents (5A peak) and fast risetimes involved, care is necessary in the printed circuit layout to avoid problems. In particular, the tracks connecting the L296 output, recirculation diode and LC filter must be short to reduce voltage drop and avoid stray coupling.
It is also important to connect the input filter capacitor, the recirculation diode and output capacitor to the same ground point. A separate ground should be used for the signal processing circuit grounds, connected to the power ground at the negative output terminal.
Figure 5 shows a suitable layout for the test and evaluation circuit of figure 1.
To guarantee good load regulation the two sensing terminals, pin 8 and 10, should be connected directly to the load as shown in figure 6. The two ten ohm resistors shown in this circuit are necessary to ensure that feedback will still be supplied to the L296 even when the sensing wires are disconnected.

Fig. 5 - PC board layout for the test and evaluation circuit of figure 1.

Fig. 6 - When the load is some distance away this four wire connection should be used to ensure good regulation.

SOFT START

The soft start risetime is set by the capacitor on pin 5 . This capacitor must be in the range $1 \mu \mathrm{~F}$ to $4.7 \mu \mathrm{~F}$; The suggested value, $2.2 \mu \mathrm{~F}$, gives a risetime of 100 ms ; the time for other values is easily calculated bearing in mind that the capacitor is charged by a $100 \mu \mathrm{~A}$ constant current source (figure 7). Note that this capacitor also affects the average current in short circuit conditions.

Fig. 7 - The soft start capacitor clamps the output of the L296's error amplifier and is charged by a $100 \mu \mathrm{~A}$ current source.

RESET CIRCUIT

The reset circuit has three connections: the reset signal output, the sense input and a connection for the capacitor that sets the delay.
The reset delay capacitor must be in the range $1 \mu \mathrm{~F}$ to $4.7 \mu \mathrm{~F}$. A delay of about 100 ns given by the recommended value of $2.2 \mu \mathrm{~F}$.

The sense input, pin 14, may be connected directly to the feedback point (pin 10) or, with a suitable
divider, to the unregulated input (figure 8).
The internal threshold of the reset circuit is $\mathrm{V}_{\text {ref }}$ --100 mV (roughly 5V). Therefore the divider for the second case is found from:

$$
\frac{R 1}{R 2}=\frac{V_{i \min }}{V_{\text {ref }}-100 \mathrm{mV}}
$$

R2 should not exceed $200 \mathrm{k} \Omega$.
The reset output is open collector and the maximum allowed collector current is 50 mA .

Fig. 8-The reset circuit's sense input can be connected to the feedback point (a) or to the input via a divider (b).

INHIBIT INPUT

The inhibit input, pin 6, is TTL, NMOS and CMOScompatible. It disables the L296 when high and must be connected to ground if not used. When the inhibit signal goes from high to low the circuit restarts softly.

CROWBAR PROTECTION

The crowbar overvoltage protection block has tw connections: a voltage sense input and an SCR gate drive output. The SCR is triggered when the voltage on the sense input exceeds the voltage reference by about 20%, i.e. the voltage sense input has a threshold of about 6 V .

Normally the sense input is connected directly to the feedback point, pin 10. It can, however, be
used to monitor the input voltage, adding a suitable voltage divider to set the threshold.

The gate drive output supplies up to 100 mA and connects directly to the gate of the SCR. The SCR must be able to withstand the peak discharge current of the output capacitor and the short circuit current of the device.

HEATSINK

The choice of heatsink depends on the power dissipated in the device and the desired operating junction temperature. Figure 9 shows the power dissipation derating curves for typical heatsinks.

Fig. 9 - Derating curve for package power dissipation.

Silicone grease is often used to improve the contact thermal resistance. The grease should not be too thick or viscous - the thermal resistance may be worsened or the tab deformed.

Care should also be taken when mounting the device on the heatsink. To avoid deforming the tab, which can affect reliability, the mounting screw should be tightened to roughly $8 \mathrm{~kg} / \mathrm{cm}$ and the heatsink surface should have a planarity no worse than $20 \mu \mathrm{~m}$. A washer on the screw helps spread the load on the tab and minimize distortion.

RFI/EMI SUPPRESSION

Electromagnetic interference generated by a high current switching regulatar can affect sensitive circuitry. Metal shielding of the regulator is the simple solution. Since the L296 circuit is very compact the board can be housed in the L296's heatsink.

EFFICIENCY

The efficiency of a complete regulator depends on many factors including the switching frequency, the recirculation diode, the input/output differential, and the output current.

In applications where very high efficiency is required, a lower switching frequency must be chosen. Efficiency is also improved by choosing an input voltage not too high.

APPLICATION CIRCUITS

Figure 10 shows a complete 5.1 V - $15 \mathrm{~V} / 4 \mathrm{~A}$ regulator. This circuit gives a ripple lower than 20 mV , load regulation (about 3 A) of 10 mV and line regulation of 15 mV (at $220 \mathrm{~V} \pm 15 \% \mathrm{in} ; 3 \mathrm{~A}$ out). The crowbar protection is not used in this circuit. Note in particular the ground connections.

Fig. 10 - A complete 5.1-15V/4A supply.

A multiple supply, $5.1 \mathrm{~V} / 15 \mathrm{~V} / 24 \mathrm{~V}$, is shown in figure 11. This example shows how several L296s can be synchronised and indicates suitable values for the voltage programming divider.
Figure 12 shows a minimal 5.1 V fixed regulator circuit. Using the 5A current limit default and omitting the crowbar gives an extremely low component count. Soft start still operates and the reset
circuit can be used if a suitable collector load is connected to the reset output.
The L296 is also useful as a preregulator in distributed supply systems (figure 13). With very low drop linear regulators on each card the overall efficiency of sych a system is very high. Recommended types are the $L 4800$ series very low drop regulators or $L 7800$ series standard regulators.

Fig. 11 - A 5.1V/15V/24V multiple supply. Note the synchonisation of the three L296s.

Fig. 12 - A minimal 5.1V fixed regulator. Very few components are required.

Fig. 13 - The L296 is also useful as a preregulator in distributed supply systems. Using low drop series regulators as shown in here, the overall efficiency is very high.

Information furnished is believed to be accurate and reliable. However, no responsibility is assumed for the consequences of its use nor for infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise u, any patent or patent rights of SGS-ATES. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and substitutes all information previously supplied.

SGS-ATES GROUP OF COMPANIES

Italy - France - Germany - Malta - Malaysia - Singapore - Sweden - Switzerland - United Kingdom - U.S.A. © SGS-ATES Componenti Elettronici SpA, 1983 - Printed in Italy

Sin

INTRODUCING THE L296:
 THE WORLD'S FIRST MONOLITHIC POWER SWITCHING REGULATOR

Supplying 4A at 5.1V to 40V, the L296 power switching regulator challenges both costly hvbrid switching regulators and the much less efficient high current linear regulators. This ticle explains how the device operates and highlights its advantages.

The key advantage of a switchmode regulator is high efficiency. In practical terms this means that very little power is dissipated in the supply so less power is consumed, a smaller transformer can be used, the supply is more compact and there is less heat to be dissipated. With all these benefits it's not surprising that more and more designers are turning to switchmode supplies - even for applications traditionally the realm of linear regulators.

But up to now high current switching regulators have always been realized with discrete components, an IC controller with external power transistors or hybrids - all of which are expensive solutions.
The L296 offers a new alternative: a high power monolithic switching regulator. Combining a new ion-implanted bipolar process with power package know-how, SGS has packed a full-feature 4A/

Fig. 1 - With a few external components the L296 forms a very compact 4A/5.1-40V switching regulator. Many of the components shown here may be omitted.

$5.1-40 \mathrm{~V}$ switching regulator onto a single chip. Further, since this chip is mounted in a Multiwatt ${ }^{\circledR}$ plastic package the cost-per watt is very low.
Complementing the low cost of the device, the L296 is designed to minimize the cost of external component support. This has been achieved in a number of ways. Firstly, the device is capable of operating at switching frequencies up to 200 kHz without sacrificing efficiency. Consequently, the output filter components - an inductor and a capacitor - can be very small and relatively expensive. Second, as much as possible has been integrated - all the standard power supply features are included on the chip and it even incorporates the load current sense resistor. Third, a high precision zener-zap trimmed voltage reference eliminates the need for a trimmer in most applications. Finally, all the extra features are designed so that components can be omitted if the feature is not required.
These features include soft start, programmable current limiting, thermal shutdown, remote inhibit, a reset output for microprocessors and a voltage sense/SCR driver circuit for crowbar overvoltage protection with an external SCR.
The soft start circuit slows down the risetime of the output voltage when power is applied. It thus eliminates power-on transients which can damage sensitive components. An external capacitor sets the risetime so that it can be tailored to suit specific requirements.
Output current limiting protects the device from short circuits of the load and, since the limit threshold is adjustable, can be used to protect the
load itself. The limit threshold can be varied from 0.5 A to 5 A with an external resistor. If this resistor is omitted the L296 assumes a limit of 5A, thus protecting itself.
Intended for microprocessor systems, the reset circuit provides a logic signal when the output voltage is above a preset threshold. The threshold can be adjusted externally and the reset signal is delayed to prevent false starts. Coupled to the reset input of a micro, the signal inhibits operation whenever the supply is unsafe.
The overvoltage protection circuit is of the crowbar type and operates with an external SCR connected across the output. It provides direct gate drive for the SCR and has an external voltage sense input so that either the input voltage or output voltage can be monitored.
The L296 is also protected by a thermal shutdown circuit which disables the output stage when the junction temperature exceeds $150^{\circ} \mathrm{C}$. Norr operation is restored when the temperature fa: below $130^{\circ} \mathrm{C}$.

TYPICAL CIRCUITS

Figure 2 shows a regulator that uses all the features of the L296. Even in this example few external components are needed. This circuit delivers up to 4A at a voltage set by the divider in the feedback loop. The current limit is adjusted by a resistor and the reset delay is set by a capacitor. Additionally, the reset threshold can be adjusted. The small size of this regulator can be judged from the photograph, figure 1.

Fig. 2 - This application circuit uses all the features of the L296.

Taking away all the optional components gives the even simpler configuration of figure 3 . This circuit provides 4 A at 5.1 V , soft start, thermal shutdown and current limiting with the default 5A threshold.

The L296 is also ideal for use as a preregulator in distributed supply systems. Combined with low drop series regulators such as the $L 4800$ series, an L296 gives extremely high efficiency plus very good regulation (figure 4).

Fig. 3 - Many components can be omitted as shown here. This is a 4A/5.1 V supply.

Fig. 4 - The L296 is ideal for use as a preregulator in distributed supply systems. Efficiency is very high and regulation is excellent.

LOOKING INSIDE

Looking at the simplified block diagram, figure 5, the main regulation loop can be identified quite easily; it consists of a 5.1 V reference, loop error amplifier, PWM modulator (sawtooth oscillator is comparator), power stage and an external LC er.

Voltage feedback from the output is compared with the 5.1 V reference in the error amplifier. The output of this amplifier sets the threshold of the PWM comparator and thus controls the duty cycle of the switching pulses. These pulses drive the output stage, producing the desired output voltage with the help of the LC filter. If the output is con-
nected to the feedback point directly the regulated output voltage is 5.1 V ; a divider is added to the feedback loop to produce higher voltages. The loop gain characteristics can be adjusted by the external RC network, RgCg , to give the required stability, ripple rejection at twice the mains frequency and immunity against supply and load variations.

The output of the oscillator is not connected internally to the PWM comparator. This is done deliberately so that several L296s can be synchronised, avoiding interference and switching noise on the ground plane in multiple supplies. The SYNC pins of all the devices to be synchronised are connected together and only one is equipped with the oscillator components, as shown in figure 6.

Fig. 5 - Simplified block diagram of the L296.

SWITCHING vs LINEAR

How much do you gain?

It's a well known fact that switching regulators are more efficient than linear types so the transformer and heatsink can be smaller and cheaper. But how mych can you gain? We can estimate the savings by comparing equivalent linear and switching regulators. For example, suppose that we want a 4A/5V supply.

Linear

For a good linear regulator the minimum dropout will be at least $4 V$ at 4A. The minimum input voltage is given by:

$$
V_{1 \text { min }}=V_{\mathrm{O}}+V_{\text {DROP }}+1 / 2 V_{\text {ripple }}
$$

where $V_{\text {ripple }} \cong \frac{I_{\mathrm{O}} T 1}{C}=\frac{4 \times 8 \times 10^{-3}}{10 \times 10^{-3}}=3.2 \mathrm{~V}$ la good approximation is 8 ms for t_{i} (at mains frequency of 50 Hz) and $1000 \mu \mathrm{~F}$ for C, the filter capacitor after the bridge).

Therefore $V_{\mathrm{i} \min } \cong 10.6 \mathrm{~V}$
$\xrightarrow{\text { (simin) }}$
Since operation must be guaranteed even when the mains voltage falls 20%, the nominal voltage on load at the terminals of the regulator must be:

$$
v_{\mathrm{nom}}=\frac{v_{\mathrm{i} \mathrm{~min}}}{0.8}=\frac{10.6}{0.8}=13.25 \mathrm{~V}
$$

To allow even a small margin we have to choose.

$$
V_{\text {nom }}=14 \mathrm{~V}
$$

The power that the series element must dissipate is therefore:

$$
P_{\mathrm{d}}=\left(V_{\mathrm{nom}}-V_{\mathrm{O}}\right) I_{\mathrm{O}}=36 \mathrm{~W}
$$

Fig. 6 - Several L296s can be synchronised easily to avoid switching noise and save components.

SOFT START AND CURRENT LIMITING

The soft start is produced by the diode, D , an external capacitor, CSS, and a constant current source.
'Then power is applied, after an inhibit, or after a
current limit, the voltage across C_{SS} is zero, clamping the error amplifier output to zero via the diode D. The capacitor is charged by the constant current generator, thereby allowing the error amplifier output - and hence the output voltage - to rise (figure 7).

Fig. 7 - Waveforms showing the soft start.

and the transformer must supply a power of:

$$
P_{\text {diss }}=14 \times 4=56 \mathrm{~W}
$$

It must therefore be dimensioned for:

$$
P_{\mathrm{D}}=\frac{56}{0.9}=62 \mathrm{VA}
$$

and a heatsink will be necessary with a thermal resistance of:

$$
R_{\text {th heats. }}=0.8^{\circ} \mathrm{CM}
$$

Switching (L296)

Assuming the same nominal voltage (14V), the L296 data sheet indicates that the power dissipated in this case is only 7W. And this power is dissipated in two elements; the $L 296$ itself and the recirculation diode.

It follows that the transformer must be roughly 30 VA and the heatsink thermal resistance about $11^{\circ} \mathrm{CW}$.

	Linear	Switching
Transformer	62 VA	30 VA
Heatsink	$0.8^{\circ} \mathrm{CM}$	$11^{\circ} \mathrm{CM}$

This comparison shows that the L296 switching regulator allows a saving of roughly 50% on the cost of the transformer and an impressive 80-90\% on the cost of the heatsink. Considering also the extra functions integrated by the L296 the total cost of active \& passive components is roughly the same for both types.
If for some reason it is necessary to use higher supply voltages the switching technique, and hence the L296, becomes even more advantageous.

Current limiting is more complex and involves two comparators, a flip flop, an AND gate, an OR gate and the transistor Q_{r}. A comparator compares the output current, sensed by an on-chip metal resistor, with the limit threshold preset by an external resistor.
As soon as the current tops the threshold, this comparator switches, setting the flip flop which disables the output stage and shorts the soft start capacitor via Q_{r}.
A second comparator resets the flip flop when the voltage across $C_{S S}$ has fallen below 0.4 V , re-enabling the output stage. With the usual slow ramp, the output current rises again and if the cause of the excess current is still present the whole process is repeated.
This cycle continues until the fault condition is removed (figure 8). Thanks to the dead time and the soft start ramp the average current in this condition is not high enough to damage the device.

Fig. 8 - Waveforms illustrating the action of the current limiter.

ION-IMPLANTED ISOLATION

The L296 is one of the first products to exploit an
advanced bipolar process which allows the combination of fast-switching high power devices and dense control circuitry on the same chip. One of the key features of this process is the use of a two-step ion-implantation technique to form the isolation wells.
Normally this isolation is created by diffusing p-type impurities from above. The result is a bowl-like cross section which wastes silicon area (figure 9). Moreover, since prolonged high temperature processing is needed to perform this diffusion, the $n+$ buried layer spreads, reducing the breakdown voltage.
In the new process a heavy $\mathrm{p}+$ implant is made before the n -epitaxial collector growth, followed by a further implant from above. When the wafer is heated both implants diffuse, joining in the middle to create a narrow but deep isolation well (figure 10). Since high temperature processing is much reduced the $\mathrm{n}+$ buried layer spreads verv little and the resulting NPN transistor has a brea' down voltage in excess of 50 V .
The narrower isolation results in an increased density, with minimal geometry transistors reduced to a compact $18 \mathrm{mil}^{2}$. Speed is correspondingly increased.

Teamed with the Multiwatt plastic package, this process allows the integration of complex devices handling in excess of 200W. Other devices already introduced include the L295 dual solenoid driver (220W), the L294 switchmode driver (180 W) and the L298 dual bridge driver (200 W).

Fig. 9 - Diffusing the isolation from above gives the familiar bowl-shaped cross section which wastes spaces.

Fig. 10 - The above/below two-step implanted isolation is more compact and results in an increased n thickness between base and buried layer. raising the breakdown voltage.

$\sqrt{4}$

Information furnished is believed to be accurate and reliable. However, no responsibility is assumed for the consequences of its use nor for infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise un any patent or patent rights of SGS-ATES. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and substitutes all information previously supplied.

SGS-ATES GROUP OF COMPANIES

Italy - France - Germany - Malta - Malaysia - Singapore - Sweden - Switzerland - United Kingdom - U.S.A. © SGS-ATES Componenti Elettronici SpA, 1983 - Printed in Italy

CONNECTION DIAGRAM (top view)

BLOCK DIAGRAM

TEST CIRCUIT

THERMAL DATA

| $R_{\text {th }}$ j-case | Thermal resistance junction-case | $\max \quad 3 \quad{ }^{\circ} \mathrm{C} / \mathrm{W}$ |
| :--- | :--- | :--- | :--- |

4487

ELECTRICAL CHARACTERISTICS (Refer to the test circuit, $\mathrm{V}_{\mathrm{i}}=14.4 \mathrm{~V}, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$, unless otherwise specified)

	Parameter	Test conditions	Min.	Typ.	Max.	Unit
V_{0}	Output voltage	$\mathrm{I}_{0}=5 \mathrm{~mA}$ to 500 mA	4.80	5	5.20	\checkmark
V_{i}	Operating input voltage				28	V
$\Delta V_{\text {o }}$	Line regulation	$\mathrm{V}_{\mathrm{i}}=6$ to $26 \mathrm{~V} \quad \mathrm{I}_{\mathrm{o}}=5 \mathrm{~mA}$		5		mV
ΔV_{0}	Load regulation	$\mathrm{I}_{0}=5$ to 500 mA		15		mV
$V_{i}-V_{0}$	Dropout voltage	$\mathrm{I}_{0}=500 \mathrm{~mA}$		0.6		V
I_{d}	Quiescent current	$\begin{aligned} & I_{0}=0 \mathrm{~mA} \\ & i_{0}=150 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{O}}=500 \mathrm{~mA} \end{aligned}$		$\begin{gathered} 5 \\ 20 \\ 100 \end{gathered}$		mA
$\frac{\Delta V_{o}}{\Delta T}$	Temperature output voltage drift			0.5		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
SVR	Supply voltage rejection	$\begin{array}{lr} \mathrm{I}_{\mathrm{O}}=350 \mathrm{~mA} & \mathrm{f}=120 \mathrm{~Hz} \\ \mathrm{C}_{\mathrm{O}}=10 \mu \mathrm{~F} & V_{\mathrm{i}}=12 \mathrm{~V} \pm 5 \mathrm{Vpp} \end{array}$		60		dB
$I_{\text {sc }}$	Output short circuit current			0.8		A
V_{R}	Reset output voltage	$\mathrm{I}_{\mathrm{R}}=16 \mathrm{~mA} \quad \mathrm{~V}_{\mathrm{o}} \leqslant 4.75 \mathrm{~V}$			0.8	V
I_{R}	Reset output leakage current	V_{0} in regulation			50	$\mu \mathrm{A}$
t_{d}	Delay time for reset output	$\mathrm{Cd}=100 \mathrm{nF}$		30		ms
$\mathrm{V}_{\text {RT }}$	Reset threshold		4.75	$\mathrm{V}_{0}-0.15$		V
$V_{\text {RTH }}$	Threshold hysteresis			10		mV

Fig. 1 - Timing diagram for reset function

LINEAR INTEGRATED CIRCUITS

HIGH-VOLTAGE, HIGH-CURRENT 8 DARLINGTON ARRAYS

These high-voltage, high-current Darlington transistor arrays comprise eight NPN Darlington on a common monolithic substrate. All units feature open collector outputs and integral suppression diodes for inductive loads. Peak currents of 500 mA can be withstood. They are pinned with inputs opposite outputs to facilitate circuit board layout.

- The L601 is a general-purpose array wich may be used with DTL, TTL, PMOS, CMOS, etc.
- The L602 is specifically designed for use with 14 to 25V PMOS devices. Each input has a Zener diode and resistor in series in order to limit the input current to a safe value.
- The L603 has a series base resistor to each Darlington pair, and thus allows operation directly with TTL or CMOS operating at a supply voltage of 5 V .
- The L604 has a series base resistor to each Darlington pair, and thus allows operation directly with PMOS or CMOS utilizing supply voltage of 6 to 15 V .
In all cases, the individual Darlington collector current rating is 400 mA . However, outputs may be paralleled for higher load current capability. The devices are supplied in a 18 -lead dual in-line plastic package with copper frame.

ABSOLUTE MAXIMUM RATINGS

$V_{\text {CEX }}$	Collector emitter voltage (input open)	90	V
I_{C}	Collector current	0.4	A
I_{C}	Collector peak current	0.5	A
$\mathrm{~V}_{\mathrm{i}}$	Input voltage (for L602, L603 and L604)	30	V
I_{i}	Input current (for L601 only)	25	mA
$\mathrm{P}_{\text {tot }}$	Total power dissipation a $\mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C}$	1.8	W
$\mathrm{~T}_{\text {op }}$	Operating junction temperature	-25 to 150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	Storage temperature	-55 to 150	${ }^{\circ} \mathrm{C}$

ORDERING NUMBERS: L601B, L602B, L603B, L604B
MECHANICAL DATA

CONNECTION DIAGRAM

(top view)

SCHEMATIC DIAGRAMS

L601

L603

L602

L604

THERMAL DATA

| $R_{\text {th j-amb }}$ Thermal resistance junction-ambient | $\max \quad 70 \quad{ }^{\circ} \mathrm{C} / \mathrm{W}$ |
| :--- | :--- | :--- | :--- |

ELECTRICAL CHARACTERISTICS ($\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$, unless otherwise specified)

	Parameter	Test conditions	Min.	Typ.	Max.	Unit
${ }^{\text {I CEX }}$	Output leakage current	$\mathrm{V}_{\text {CE }}=90 \mathrm{~V}$			10	$\mu \mathrm{A}$
$V_{\text {CE(sat) }}$	Collector emitter saturation voltage	$\begin{array}{ll} I_{C}=300 \mathrm{~mA} & I_{B}=500 \mu \mathrm{~A} \\ I_{C}=200 \mathrm{~mA} & I_{B}=350 \mu \mathrm{~A} \\ I_{C}=100 \mathrm{~mA} & I_{B}=250 \mu \mathrm{~A} \end{array}$			$\begin{gathered} 2 \\ 1.7 \\ 1.2 \end{gathered}$	V V V
$h_{\text {FE }}$	DC forward current gain (L601 only)	$V_{C E}=3 \mathrm{~V} \quad \mathrm{I}_{\mathrm{C}}=300 \mathrm{~mA}$	1000			-
V_{i}	Minimum input voltage (ON condition)	$\begin{aligned} & V_{C E}=3 V \quad I_{C}=300 \mathrm{~mA} \\ & \text { for } L 602 \\ & \text { for } L 603 \\ & \text { for } L 604 \end{aligned}$			$\begin{gathered} 11.5 \\ 2.5 \\ 2.5 \end{gathered}$	V V V
V_{i}	Maximum input voltage (OFF condition)	$\begin{aligned} & V_{C E}=90 \mathrm{~V} \quad \mathrm{I}_{\mathrm{C}}=25 \mu \mathrm{~A} \\ & \text { for L601 } \\ & \text { for L602 } \\ & \text { for L603 } \\ & \text { for L604 } \end{aligned}$	$\begin{gathered} 0.55 \\ 7 \\ 0.75 \\ 1 \end{gathered}$			V V V V
I_{R}	Clamp diode reverse current	$\mathrm{V}_{\mathrm{R}}=90 \mathrm{~V}$			50	$\mu \mathrm{A}$
V_{F}	Clamp diode forward voltage	$\mathrm{I}_{\mathrm{F}}=300 \mathrm{~mA}$		2	2.4	V
$\mathrm{t}_{\text {on }}$	Turn-on delay	$0.5 \mathrm{~V}_{\mathrm{i}}$ to $0.5 \mathrm{~V}_{0}$		0.4		$\mu \mathrm{s}$
$\mathrm{t}_{\mathrm{off}}$	Turn-off delay	$0.5 \mathrm{~V}_{\text {i }}$ to $0.5 \mathrm{~V}_{0}$		0.4		$\mu \mathrm{s}$

LINEAR INTEGRATED CIRCUIT

QUAD DARLINGTON SWITCH

- SUSTAINING VOLTAGE: MIN. 70V
- 2A OUTPUT
- HIGH CURRENT GAIN

The L 702 is a monolithic integrated circuit for high current and high voltage switching applications. It comprises four darlington transistors with common emitter and open collector, suitable for current sinking applications, mounted on the new Powerdip and Multiwatt packages.
This circuit reduces components, sizes and costs; it can provide direct interface between low level logic and a variety of high current applications.

ABSOLUTE MAXIMUM RATINGS

$V_{\text {CEX }}$	Collector-emitter voltage (input open)		90
V_{i}	Input voltage	30	V
I_{C}	Collector current	2	A
I_{C}	Collector peak current (repetitive)	3	A
$\mathrm{P}_{\text {tot }}$	Total power dissipation at $\mathrm{T}_{\text {pin }} 9$ to $16 \leqslant 90^{\circ} \mathrm{C}$		
	Total power dissipation at $\mathrm{T}_{\text {amb }} \leqslant 70^{\circ} \mathrm{C}$		4
W			
	Total power dissipation at $\mathrm{T}_{\text {case }} \leqslant 90^{\circ} \mathrm{C}$	Powerdip	Multiwatt
$T_{\text {stg }}$	Storage temperature	1.1	W
$\mathrm{~T}_{\mathrm{j}}$	Operating junction temperature		20
W			

ORDERING NUMBER: L 702B - Powerdip
L 702N - Multiwatt

MECHANICAL DATA
Dimensions in mm

CONNECTION DIAGRAMS (top view)

Powerdip

Multiwatt

SCHEMATIC DIAGRAM (each Darlington)

THERMAL DATA

$\mathrm{R}_{\text {th } \mathrm{j} \text {-amb }}$	Thermal resistance junction ambient		max	70	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{\text {th j-pins 9/16 }}$	Thermal resistance junction pins 9 to 16$\}$	Powerdip	max	14	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{\text {th }} \mathrm{j}$-case	Thermal resistance junction-case	Multiwatt	max	3	${ }^{\circ} \mathrm{C} / \mathrm{W}$

ELECTRICAL CHARACTERISTICS ($T_{\text {case }}=25^{\circ} \mathrm{C}$ unless otherwise specified)

Parameter		Test conditions	Min.	Typ.	Max.	Unit
ICEX	Output leakage current	$\mathrm{V}_{\text {CE }}=90 \mathrm{~V}$		10	50	$\mu \mathrm{A}$
$\mathrm{V}_{\text {CE }}$ (sust)	Collector emitter (${ }^{\circ}$) sustaining voltage	$\mathrm{I}_{\mathrm{C}}=100 \mathrm{~mA}$	70			V
$V_{\text {CE (sat) }}$	Collector emitter saturation voltage	$\begin{aligned} & I_{C}=1.25 A \\ & I_{i}=2 \mathrm{~mA} \end{aligned}$		1.3	1.9	V
$h_{\text {FE }}$	DC forward current gain	$\begin{aligned} & \mathrm{I}_{\mathrm{C}}=1 \mathrm{~A} \\ & \mathrm{~V}_{C E}=3 \mathrm{~V} \end{aligned}$	1000	4000		
I_{i}	Input current	$\begin{aligned} & V_{i}=3.75 \mathrm{~V} \\ & V_{i}=2.4 \mathrm{~V} \\ & \text { open collector } \end{aligned}$		$\begin{aligned} & 7 \\ & 3 \end{aligned}$	$\begin{array}{r} 11 \\ 6 \end{array}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
v_{i}	Input voltage off condition	$\begin{array}{ll} V_{C E}=70 \mathrm{~V} & I_{C} \leqslant 0.1 \mathrm{~mA} \\ \hline V_{C E}=3 \mathrm{~V} & I_{C} \geqslant 1 \mathrm{~A} \end{array}$	2.4		0.4	V
$\mathrm{t}_{\text {on }}$	Turn on time	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}=12 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=10 \Omega \end{aligned}$		0.3		$\mu \mathrm{s}$
$\mathrm{t}_{\text {off }}$	Turn off time			1		$\mu \mathrm{s}$

$\left({ }^{\circ}\right)$ Pulsed: pulse duration $=300 \mu \mathrm{~s}$, duty cycle $=1.5 \%$.

Fig. 1 - Switching time

Fig. $2-t_{\text {on }}$ and $t_{\text {off }}$ test circuit

Fig. 3 - Peak collector current vs. duty cycle and number of outputs(L702B only)

Fig. 4 - Collector emitter saturation voltage vs. collector current

Fig. 7 - Safe operating areas (L702B)

Fig. 10 - Stepping motor buffer

Fig. 8 - Safe operating areas (L702N)

Fig. 6 - Input current vs. input voltage

0

Fig. 5 - Collector current vs. input voltage

Fig. 9 - DC current gain vs. collector current (*)

(*) Pulse width $=300 \mu \mathrm{~s}$, duty cycle 1.5%.

PRELIMINARY DATA

POSITIVE VOLTAGE REGULATORS FOR AUTOMOTIVE

- OUTPUT VOLTAGE OF 5,8.5 AND 10V
- OUTPUT CURRENT UP TO 500 mA
- NO EXTERNAL COMPONENTS
- LOW DROP-OUT VOLTAGE
- LOAD DUMP VOLTAGE SURGE PROTECTION
- REVERSE Voltage protection
- SHORT CIRCUIT PROTECTION
- CURRENT LIMITING
- THERMAL SHUTDOWN

The L2600 series of three therminal positive regulators is specially designed to stabilize power supplies for car instrumentation in vehicles with 12 V battery. They can supply an output current up to 500 mA .

ABSOLUTE MAXIMUM RATINGS

V_{i}	DC input voltage	35	V
V_{i}	DC input reverse voltage	-28	V
V_{d}	Positive transient peak voltage $(\mathrm{t}=40 \mathrm{~ms}$, duty cycle $=1 \%)$	120	V
$\mathrm{~V}_{d}$	Negative transient peak voltage $(\mathrm{t}=30 \mathrm{~ms}$, duty cycle $=1 \%)$	-90	V
$\mathrm{~T}_{\text {op }}$	Operating temperature	-40 to 150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	Storage temperature	-65 to 150	
$\mathrm{P}_{\text {tot }} \mathrm{C}$	Power dissipation	Internally limited	

ORDERING NUMBERS: L2605V ($\mathrm{V}_{\mathrm{o}}=5 \mathrm{~V}$)
L2685V ($\left.\mathrm{V}_{\mathrm{o}}=8.5 \mathrm{~V}\right)$
L2610V ($\mathrm{V}_{\mathrm{o}}=10 \mathrm{~V}$)
MECHANICAL DATA Dimensions in mm

CONNECTION AND BLOCK DIAGRAMS
(top view)

S-2568/1

THERMAL DATA

$R_{\text {th j-case }}$	Thermal resistance junction-case	\max.

ELECTRICAL CHARACTERISTICS ($\mathrm{T}_{\mathrm{amb}}=25^{\circ}$)

	Parameter	Test conditions		Min.	Typ.	Max.	Unit
V_{0}	Output voltage	$\mathrm{I}_{\mathrm{o}}=500 \mathrm{~mA}$	$\begin{aligned} & V_{i}=12 \text { to } 16 \mathrm{~V}(\mathrm{~L} 2605) \\ & V_{i}=12 \text { to } 16 \mathrm{~V}(\mathrm{~L} 2685) \\ & V_{i}=12 \text { to } 16 \mathrm{~V}(\mathrm{~L} 2610) \end{aligned}$	$\begin{gathered} 4.8 \\ 8.15 \\ 9.55 \end{gathered}$	$\begin{gathered} 5 \\ 8.5 \\ 10 \end{gathered}$	$\begin{gathered} 5.2 \\ 8.85 \\ 10.45 \end{gathered}$	V
V_{i}	Operating input voltage	see note (${ }^{\circ}$)				28	V
ΔV_{0}	Line regulation	$\mathrm{I}_{\mathrm{O}}=50 \mathrm{~mA}$	$V_{i}=12$ to 16 V		2		mV
$\frac{\Delta V_{0}}{V_{0}}$	Load regulation	$\mathrm{V}_{\mathrm{i}}=14 \mathrm{~V}$	$\mathrm{I}_{\mathrm{O}}=50$ to 500 mA		0.3		\%
$\Delta \mathrm{V}_{\mathrm{i}-\mathrm{o}}$	Dropout voltage	$\mathrm{I}_{\mathrm{o}}=500 \mathrm{~mA}$				1.8	V
$\frac{\Delta V_{o}}{\Delta T}$	Output voltage drift	$\begin{aligned} & \mathrm{I}_{\mathrm{o}}=50 \mathrm{~mA} \quad \mathrm{~V}_{\mathrm{i}}=14 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{amb}}=-12 \text { to } 80^{\circ} \mathrm{C} \end{aligned}$			-1		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
$I_{\text {sc }}$	Output short circuit current	$V_{i}=14 \mathrm{~V}$			900		mA
SVR	Supply voltage rejection	$\begin{aligned} & V_{i}=16 \mathrm{~V} \\ & f=100 \mathrm{~Hz} \end{aligned}$	$\begin{aligned} & \Delta V_{i}=2 V \\ & \mathrm{I}_{\mathrm{O}}=500 \mathrm{~mA} \end{aligned}$		60		dB
R_{o}	Output resistance	$\mathrm{I}_{0}=500 \mathrm{~mA}$			0.05		Ω
e_{N}	Output noise voltage	$\mathrm{BW}=100 \mathrm{~Hz}$ to 10 KHz			20		$\mu \mathrm{V}$

(${ }^{\circ}$) Note: For a DC input voltage $28 \mathrm{~V}<\mathrm{V}_{\mathrm{i}}<35 \mathrm{~V}$ the device is not operating

LINEAR INTEGRATED CIRCUIT

PRELIMINARY DATA

PRINTER SOLENOID DRIVER

The L3654 is a printer solenoid driver containing ten open-collector driver outputs and a ten-bit serialin, parallel-out shift register.
Data is clocked into the shift register serially and transferred to the open-collector outputs by an enable input. Serial input data is loaded by the rising edge of the clock. A serial output from the tenth bit is provided which changes at the falling edge of the clock. This output is not controlled by the enable input and remains active at all time.
Output stages are inhibited when the logic supply voltage falls below 6 V .
Each output is rated at 250 mA (sink) and is clamped to ground internally at 50 V to dissipate stored energy in inductive loads.
The L3654 is supplied in a 16 lead dual in-line plastic package, and its main fields of application comprise thermal printers, cash registers and printing pocket calculators.

ABSOLUTE MAXIMUM RATINGS

V_{s}	Supply voltage	9.5	V
$\mathrm{~V}_{\mathrm{i}}$	Input voltage	9.5	V
$\mathrm{~V}_{\mathrm{E}}$	External supply voltage	45	V
I_{o}	Output current (single output)	0.4	A
I_{g}	Ground current	4.0	A
$\mathrm{P}_{\text {tot }}$	Total power dissipation $\left(\mathrm{T}_{\mathrm{amb}}=70^{\circ} \mathrm{C}\right)$	1	W
$\mathrm{~T}_{\text {stg }}, \mathrm{T}_{\mathrm{j}}$	Storage and junction temperature	-65 to 150	${ }^{\circ} \mathrm{C}$

ORDERING NUMBER: L3654 B

MECHANICAL DATA

Dimensions in mm

6/82

CONNECTION DIAGRAM

(top view)
OUTPUT ENABLE 1 OUTPUT 6
OUTPUT 7
OUTPUT 8
OUTPUT 9
OATA OUTPUT 10
GND
OLOCK

LOGIC DIAGRAM

THERMAL DATA

$\mathrm{R}_{\text {th j-amb }}$	Thermal resistance junction-ambient	\max	80

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{s}}=8.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{ss}}=30 \mathrm{~V}, \mathrm{~T}_{\mathrm{amb}}=0^{\circ}\right.$ to $70^{\circ} \mathrm{C}$, unless otherwise specified)

Parameter		Test conditions		Min.	Typ.	Max.	Unit
V_{5}	Supply voltage			7.5		9.5	V
Is	Supply current	$\begin{aligned} & \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{s}}=9.5 \mathrm{~V} \end{aligned}$	$V_{E N}=0 \mathrm{~V} ; \mathrm{V}_{\mathrm{DO}}=0 \mathrm{~V}$		27	40	mA
			$\begin{aligned} & V_{E N}=2.6 \mathrm{~V} \\ & I_{O}=250 \mathrm{~mA} \text { (each bit) } \end{aligned}$		55	70	mA
V_{E}	External operating supply voltage					40	V
I leak	Output leakage current (each output)	$\mathrm{V}_{5 S}=40 \mathrm{~V}$				1	mA
V_{z}	Internal clamp voltage	$\mathrm{I}_{\mathrm{z}}=0.3 \mathrm{~A} \quad \mathrm{~V}_{\mathrm{EN}}=0 \mathrm{~V}$		45	50	65	V
$V_{\text {CE sat }}$	Output saturation voltage	$\mathrm{I}_{\mathrm{O}}=250 \mathrm{~mA} \quad \mathrm{~V}_{\mathrm{EN}}=2$.				1.6	V
$V_{\text {DI }}$ $V_{\text {CLK }}$ $V_{E N}$	Input logic levels (pins 1, 9, 10)	Low State (L)				0.8	V
		High state (H)		2.6			
IDI	Data input current	$\mathrm{V}_{\text {DI }}=2.6 \mathrm{~V}$	$\mathrm{Tamb}=70^{\circ} \mathrm{C}$	0.3	0.57		mA
			$\mathrm{Tamb}=0^{\circ} \mathrm{C}$		0.57	0.75	
		$\mathrm{V}_{\text {DI }}=1 \mathrm{~V}$			220		$\mu \mathrm{A}$
${ }^{\text {I CLK }}$	Clock input current	$\mathrm{V}_{\text {CLK }}=2.6 \mathrm{~V}$	$\mathrm{T}_{\mathrm{amb}}=70^{\circ} \mathrm{C}$	0.2	0.33		A
			$\mathrm{Tamb}=0^{\circ} \mathrm{C}$		0.33	0.5	
		$\mathrm{V}_{\text {CLK }}=1 \mathrm{~V}$	$\mathrm{T}_{\mathrm{amb}}=70^{\circ} \mathrm{C}$		125		$\mu \mathrm{A}$
${ }^{\text {I EN }}$	Enable input current	$\mathrm{V}_{\mathrm{EN}}=2.6 \mathrm{~V}$	$\mathrm{T}_{\mathrm{amb}}=70^{\circ} \mathrm{C}$	0.2	0.33		mA
			$\mathrm{T}_{\mathrm{amb}}=0^{\circ} \mathrm{C}$		0.33	0.5	mA
		$V_{E N}=1 \mathrm{~V}$	$\mathrm{T}_{\mathrm{amb}}=70^{\circ} \mathrm{C}$		125		$\mu \mathrm{A}$
$R_{1 N}$	Input pull-down resistance Clock input	$\mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C}$	$\mathrm{V}_{\text {CLK }}<\mathrm{V}_{\text {S }}$		8		
	Enable input	$\mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C}$	$\mathrm{V}_{\mathrm{EN}}<\mathrm{V}_{\text {S }}$		8		$K \Omega$
	Data input	$\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$	$\mathrm{V}_{\mathrm{DI}}<\mathrm{V}_{\mathrm{S}}$		4.5		
$V_{\text {DO }}$	Output logic levels (pin 7)	Low state (L) $V_{D I}=0 V$	$\mathrm{I}_{\text {DO }}(\operatorname{pin} 7)=0$		0.01	0.5	V
		$\begin{aligned} & \text { High state }(\mathrm{H}) \\ & \mathrm{V}_{\mathrm{DI}}=2.6 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{DO}}(\operatorname{pin} 7)=-0.75 \mathrm{~mA} \end{aligned}$		2.6	3.4		V
$\mathrm{R}_{\text {DO }}$	Output pull-down resistance (pin 7)	$\mathrm{V}_{\text {DI }}=0 \mathrm{~V}$	$V_{\text {DO }}=1 \mathrm{~V}$		14		$\mathrm{K} \Omega$

Fig. 1 - Timing diagram

ELECTRICAL CHARACTERISTICS (see fig. 1 and the section "definition of terms")

Parameter		Test conditions	Min.	Typ.	Max.	Unit
Clock, data and enable input	${ }^{t}$ CLK		4			$\mu \mathrm{s}$
	$\overline{t^{\text {chK }}}$		5.5			
	tset-UP		1			
	$\mathrm{t}_{\text {HOLD }}$		3			
Clock to enable delay ${ }^{\text {t CLK EN }}$			$2 \mathrm{t}_{\text {BIT }}$			
Enable to clock delay teN CLK			${ }^{\text {t BIT }}$			
Data output delay	${ }^{\text {PPDH }},{ }^{\text {t }}$ PDL	$R_{L}=5 \mathrm{~K} \Omega, \quad C_{L} \leqslant 10 \mathrm{pF}$		0.8	2.5	$\mu \mathrm{s}$
Output delay	tPDEL			3		$\mu \mathrm{s}$
	tPDEH			3.5		
Output rise time		$\mathrm{R}_{\mathrm{L}}=100 \Omega, \mathrm{C}_{\mathrm{L}}<100 \mathrm{pF}$		1.2		$\mu \mathrm{s}$
Output fall time		$\mathrm{R}_{\mathrm{L}}=100 \Omega, \mathrm{C}_{\mathrm{L}}<100 \mathrm{pF}$		1.2		$\mu \mathrm{s}$
$V_{\text {Do }}$ rise time				0.4		$\mu \mathrm{s}$
$V_{\text {DO }}$ fall time				0.4		$\mu \mathrm{s}$

13654

DEFINITION OF TERMS

$\mathrm{V}_{\mathrm{ss}} \quad$: External power supply voltage. The return for open-collector relay driver outputs.
$\mathrm{V}_{\mathrm{DI}}, \mathrm{V}_{\mathrm{CLK}}, \mathrm{V}_{\mathrm{EN}}$: The voltages at the data, clock and enable inputs respectively.
$\mathrm{V}_{\mathrm{DO}} \quad$: The voltage at data output.
$\mathrm{t}_{\mathrm{BIT}} \quad:$ Period of the incoming clock.
${ }^{t_{C L K}} \quad:$ The portion of $t_{B I T}$ when $V_{C L K} \geqslant 2.6 \mathrm{~V}$.
$\overline{\mathrm{t}_{\mathrm{CLK}}} \quad$: The portion of $\mathrm{t}_{\mathrm{BIT}}$ when $\mathrm{V}_{\mathrm{CLK}} \leqslant 0.8 \mathrm{~V}$.
$\mathrm{t}_{\text {HOLD }} \quad:$ The time following the start of $\mathrm{t}_{\text {CLK }}$ required to transfer data within the shift register.
$\mathrm{t}_{\text {SET-UP }} \quad:$ The time prior to the end of $\overline{\mathrm{t}_{\mathrm{CLK}}}$ required to insure valid data at the shift register input for subsequent clock transitions.

LINEAR INTEGRATED CIRCUITS

17800 Series

3-TERMINAL POSITIVE VOLTAGE REGULATORS

- OUTPUT CURRENT UP TO 1.5A
- OUTPUT VOLTAGES OF 5; 6; 8; 12; 15; 18; 20; 24V
- THERMAL OVERLOAD PROTECTION
- SHORT CIRCUIT PROTECTION
- OUTPUT TRANSISTOR SOA PROTECTION

The L7800 series of three-terminal positive regulators is available in TO-220 and TO-3 packages and with several fixed output voltages, making it useful in a wide range of applications. These regulators can provide local on-card regulation, eliminating the distribution problems associated with single point regulation. Each type employs internal current limiting, thermal shut-down and safe area protection, making it essentially indestructible. If adequate heat sinking is provided, they can deliver over 1A output current. Although designed primarily as fixed voltage regulators, these devices can be used with external components to obtain adjustable voltages and currents.

ABSOLUTE MAXIMUM RATINGS

V_{i}	$\begin{aligned} \text { DC input voltage } & \left(\text { for } \mathrm{V}_{\mathrm{o}}=5 \text { to } 18 \mathrm{~V}\right. \text {) } \\ & \text { (for } \mathrm{V}_{\mathrm{o}}=20,24 \mathrm{~V} \text {) } \end{aligned}$	35 40	V
I_{0}	Output current	internally limited	
$\mathrm{P}_{\text {tot }}$	Power dissipation	internally limited	
$\mathrm{T}_{\text {op }}$	Operating junction temperature (for L7800)	-55 to +150	${ }^{\circ} \mathrm{C}$
	(for L7800C)	0 to +150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	Storage temperature	-65 to +150	${ }^{\circ} \mathrm{C}$

TO-3

17800 Series

CONNECTION DIAGRAMS AND ORDERING NUMBERS

(top views)

Type	TO-220	TO-3	Output voltage
L 7805	-	L 7805T	5 V
L 7805C	L 7805CV	L 7805 CT	5 V
L 7806	-	L 7806T	6 V
L 7806C	L 7806 CV	L 7806CT	6 V
L 7808C	-	L 7808T	8 V
L 7812	L 7808 CV	L 7808CT	8 V
L 7812C	-	L 7812CT	12 V
L 7815	L 7812CV	L 7815T	12 V
L 7815C	-	L 7815CT	15 V
L 7818	L 7815CV	L 7818T	15 V
L 7818C	L 7818CV	L 7818CT	18 V
L 7820C	-	L 7820T	18 V
L 7824	L 7820CV	L 7820CT	20 V
L 7824C	L 7824CV	L 7824TCT	20 V

BLOCK DIAGRAM

SCHEMATIC DIAGRAM

TEST CIRCUITS

Fig. 1 - DC parameters

Fig. 2 - Load regulation

Fig. 3 - Ripple rejection

THERMAL DATA

	TO-220	TO-3
\max	$3^{\circ} \mathrm{C} / \mathrm{W}$	$4^{\circ} \mathrm{C} / \mathrm{W}$
\max	$50^{\circ} \mathrm{C} / \mathrm{W}$	$35^{\circ} \mathrm{C} / \mathrm{W}$

ELECTRICAL CHARACTERISTICS L 7800 (Refer to the test circuits, $T_{j}=-55$ to $150^{\circ} \mathrm{C}$, $\mathrm{I}_{\mathrm{o}}=500 \mathrm{~mA}, \mathrm{C}_{\mathrm{i}}=0.33 \mu \mathrm{~F}, \mathrm{C}_{\mathrm{o}}=0.1 \mu \mathrm{~F}$ unless otherwise specified)

ELECTRICAL CHARACTERISTICS L 7800 (continued)

OUTPUT VOLTAGE			15	18	20	24	Unit
INPUT VOLTAGE (Unless otherwise specified)			23	26	28	33	
	ameter	Test conditions	Min. Typ. Max.	Min. Typ. Max.	Min. Typ. Max.	Min. Typ. Max.	
V_{0}	Output voltage	$\mathrm{T}_{\mathrm{j}}=25^{*} \mathrm{C}$	$14.4 \quad 15 \quad 15.6$	17.31818 .7	$19.2 \quad 20 \quad 20.8$	$23 \quad 24$	V
		$\begin{aligned} & I_{0}=5 \mathrm{~mA} \text { to } 1 \mathrm{~A} \\ & P_{0} \leqslant 15 \mathrm{~W} \end{aligned}$	$\begin{gathered} 14.25 \quad 15 \quad 15.75 \\ \left(V_{i}=18.5 \text { to } 30 \mathrm{~V}\right) \end{gathered}$	$\begin{gathered} 17.1 \quad 18 \quad 18.9 \\ \left(V_{i}=22 \text { to } 33 V\right) \end{gathered}$	${ }^{19}\left(\mathrm{~V}_{\mathrm{i}}=24 \text { to } 35 \mathrm{~V}\right)^{21}$	$\begin{gathered} 22.8 \\ \left(V_{i}=24\right. \end{gathered} \quad 25.2$	
ΔV_{0}	Line regulation	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$	$\left(\mathrm{V}_{\mathrm{i}}=17.5\right.$ to 30 V$)$	$\left(\mathrm{V}_{\mathrm{i}}=21 \text { to } 33 \mathrm{~V}\right)$	$\left(\mathrm{V}_{\mathrm{i}}=22.5 \text { to } 35 \mathrm{~V}\right)$	$\left(V_{i}=27 \text { to } 38 \mathrm{~V}\right)$	mV
			$\left(V_{j}=20 \text { to } 26 \mathrm{~V}\right)^{75}$	$\left(V_{i}=24 \text { to } 30 \mathrm{~V}\right)^{90}$	$\left(V_{i}=26 \text { to } 32 \mathrm{~V}\right)^{100}$	$\left(V_{i}=30 \text { to } 36 \mathrm{~V}\right)^{120}$	
ΔV_{0}	Load regulation	$\begin{aligned} & \mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C} \\ & \mathrm{I}_{\mathrm{o}}=5 \mathrm{~mA} \text { to } 1.5 \mathrm{~A} \end{aligned}$	150	180	200	240	mV
		$\begin{aligned} & \mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C} \\ & \mathrm{I}_{\mathrm{o}}=250 \text { to } 750 \mathrm{~mA} \end{aligned}$	75	90	100	120	
Id_{d}	Quiescent current	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$	6	6	6	6	mA
Δl_{d}	Quiescent current change	$\mathrm{I}_{\mathrm{O}}=5 \mathrm{~mA}$ to 1 A	0.5	0.5	0.5	0.5	mA
			$\left(\mathrm{V}_{\mathrm{i}}=18.5 \text { to } 30 \mathrm{~V}\right)^{0.8}$	$\left(V_{i}=22 \text { to } 33 V\right)^{0.8}$	$\left(V_{i}=24 \text { to } 35 \mathrm{~V}\right)$	$\left(V_{i}=28 \text { to } 38 \mathrm{~V}\right)^{0.8}$	
$\frac{\Delta V_{o}}{\Delta T}$	Output voltage drift	$\mathrm{I}_{0}=5 \mathrm{~mA}$	1.8	2.3	2.5	3	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
${ }^{\text {en }}$	output noise voltage	$\begin{aligned} & \mathrm{B}=10 \mathrm{~Hz} \text { to } 100 \mathrm{KHz} \\ & \mathrm{~T}_{\mathrm{j}}=25^{\circ} \mathrm{C} \end{aligned}$	40	40	40	40	$\frac{\mu V}{V_{o}}$
SVR	Supply voltage rejection	$f=120 \mathrm{~Hz}$	$\begin{aligned} & 60 \\ & \left(V_{i}=18.5 \text { to } 28.5 \mathrm{~V}\right) \end{aligned}$	$59\left(V_{i}=22 \text { to } 32 \mathrm{~V}\right)$	$58\left(V_{i}=24 \text { to } 35 \mathrm{~V}\right)$	56	dB
V_{d}	Dropout voltage	$\begin{aligned} \mathrm{I}_{\mathrm{O}} & =1 \mathrm{~A} \\ \mathrm{~T}_{\mathrm{j}} & =25^{\circ} \mathrm{C} \end{aligned}$	$2 \quad 2.5$	$2 \quad 2.5$	22.5	22.5	V
R_{0}	Output resistance	$f=1 \mathrm{KHz}$	19	22	24	28	$m \Omega$
$\mathrm{I}_{\text {sc }}$	Short circuit current	$\begin{aligned} & V_{i}=35 \mathrm{~V} \\ & T_{j}=25^{\circ} \mathrm{C} \end{aligned}$	$0.75 \quad 1.2$	$0.75 \quad 1.2$	$0.75 \quad 1.2$	$0.75 \quad 1.2$	A
$\mathrm{I}_{\text {scp }}$	Short circ. peak current	. $\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$	$\begin{array}{lll}1.3 & 2.2 & 3.3\end{array}$	$1.3 \quad 2.23 .3$	$1.3 \quad 2.2 \quad 3.3$	$\begin{array}{lll}1.3 & 2.2 & 3.3\end{array}$	A

ELECTRICAL CHARACTERISTICS L 7800C (Refer to the test circuits, $\mathrm{T}_{\mathrm{j}}=0$ to $125^{\circ} \mathrm{C}$, $\mathrm{I}_{\mathrm{o}}=500 \mathrm{~mA}, \mathrm{C}_{\mathrm{i}}=0.33 \mu \mathrm{~F}, \mathrm{C}_{\mathrm{o}}=0.1 \mu \mathrm{~F}$ unless otherwise specified)

OUTPUT VOLTAGE				5			6			8			12		Unit
INPUT VOLTAGE (Unless otherwise specified)			10			11			14			19			
Párameter		Test conditions	Min.	Typ.	Max.										
V_{0}	Output voltage	$T_{j}=25^{\circ} \mathrm{C}$	4.8	5	5.2	5.75	6	6.25	7.7	8	8.3	11.5	12	12.5	
		$\begin{aligned} & I_{0}=5 \mathrm{~mA} \text { to } 1 \mathrm{~A} \\ & P_{\mathrm{O}} \leqslant 15 \mathrm{~W} \end{aligned}$	$\begin{array}{r} 4.75 \\ 1 \mathrm{~V} \end{array}$	$\begin{gathered} 5 \\ 7 \text { to } 20 \end{gathered}$	$\begin{aligned} & 5.25 \\ & \mathrm{pv}) \end{aligned}$	5.7 $\left(V_{i}\right.$	$\begin{gathered} 6 \\ =8 \text { to } 21 \end{gathered}$	$\text { v) }{ }^{6.3}$		$\begin{gathered} 8 \\ 0.5 \text { to } 2 \end{gathered}$	$\begin{gathered} 8.4 \\ 5 \mathrm{~V}) \end{gathered}$	$\begin{array}{r} 11.4 \\ \left(V_{i}=\right. \end{array}$	$\begin{gathered} 12 \\ 14.5 \text { to } 2 \end{gathered}$	$\begin{aligned} & 12.6 \\ & 7 \mathrm{~V}) \end{aligned}$	V
ΔV_{0}	Line regulation	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$		$\begin{gathered} 3 \\ 7 \text { to } 25 \end{gathered}$	$\begin{aligned} & 100 \\ & 5 \mathrm{~V}) \end{aligned}$		$=8 \text { to } 25$	120		$0.5 \text { to } 2$	$\begin{gathered} 160 \\ 25 \mathrm{~V}) \end{gathered}$		$4.5 \text { to }$	240	
				$\begin{gathered} 1 \\ 8 \text { to } 12 \end{gathered}$	$2 \mathrm{~V})^{50}$		$=9 \text { to } 13$	$3 \mathrm{~V})$		$11 \text { to } 17$	$\begin{gathered} 80 \\ 7 V) \end{gathered}$		$16 \text { to } 2$	$\begin{aligned} & 120 \\ & 2 \mathrm{~V}) \end{aligned}$	
ΔV_{0}	Load regulation	$\begin{aligned} & T_{j}=25^{\circ} \mathrm{C} \\ & \mathrm{I}_{\mathrm{O}}=5 \mathrm{~mA} \text { to } 1.5 \mathrm{~A} \end{aligned}$			100			120			160			240	
		$\begin{aligned} & \mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C} \\ & \mathrm{I}_{\mathrm{O}}=250 \text { to } 750 \mathrm{~mA} \end{aligned}$			50			60			80			120	
l_{d}	Quiescent current	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$			8			8			8			8	mA
ΔI_{d}	Quiescent current change	$\mathrm{I}_{0}=5 \mathrm{~mA}$ to 1 A			0.5			0.5			0.5			0.5	mA
				$\left(\mathrm{V}_{\mathrm{i}}=7\right.$ to 25 V$)$	V) 1.3		$\left(V_{i}=8\right.$ to 25 V$)$	$5 \mathrm{~V})^{1.3}$		$\left(\mathrm{V}_{\mathrm{i}}=10.5\right.$ to 25 V$)$	5V) ${ }^{1}$	$\left(V_{i}=14.5\right.$ to 30 V$)$			
$\frac{\Delta V_{0}}{\Delta T}$	Output voltage drift	$\mathrm{I}_{0}=5 \mathrm{~mA}$	-1.1			-0.8			-0.8			-1			$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
${ }^{\mathrm{e}} \mathrm{N}$	Output noise voltage	$\begin{aligned} & \mathrm{B}=10 \mathrm{~Hz} \text { to } 100 \mathrm{KHz} \\ & \mathrm{~T}_{\mathrm{j}}=25^{\circ} \mathrm{C} \end{aligned}$	40			45			52			75			$\mu \mathrm{V}$
SVR	Supply voltage rejection	$\mathrm{f}=120 \mathrm{~Hz}$	62			59			56			$55\left(V_{i}=15 \text { to } 25 \mathrm{~V}\right)$			dB
V_{d}	Dropout voltage	$t_{0}=1 \mathrm{~A}$	2			2			2			2			V
R_{0}	Output resistance	$f=1 \mathrm{KHz}$	17			19			16			18			$\mathrm{m} \Omega$
l_{sc}	Short circuit current	$\begin{aligned} V_{i} & =35 \mathrm{~V} \\ T_{j} & =25^{\circ} \mathrm{C} \end{aligned}$	750			550			450			350			mA
$t_{\text {scp }}$	Short circ. peak current	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$	2.2			2.2			2.2			2.2			A

ELECTRICAL CHARACTERISTICS L 7800C (continued)

OUTPUT VOLTAGE			15	18	20	24	
INPUT VOLTAGE (Unless otherwise specified)			23	26	28	33	Unit
Parameter		Test conditions	Min. Typ. Max.	Min. Typ. Max.	Min. Typ. Max.	Min. Typ. Max.	
V_{0}	Output voltage	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$	$14.4 \quad 15 \quad 15.6$	$\begin{array}{lll}17.3 & 18 & 18.7\end{array}$	$19.2 \quad 2020.8$	23	
		$\begin{aligned} & \mathrm{I}_{\mathrm{O}}=5 \mathrm{~mA} \text { to } 1 \mathrm{~A} \\ & \mathrm{P}_{\mathrm{O}} \leqslant 15 \mathrm{~W} \end{aligned}$	$\begin{gathered} 14.25 \quad 15 \quad 15.75 \\ \left(V_{i}=17.5 \text { to } 30 \mathrm{~V}\right) \end{gathered}$	$\begin{gathered} 17.1 \quad 18 \quad 18.9 \\ \left(V_{i}=21 \text { to } 33 V\right) \end{gathered}$	${ }^{19}\left(V_{i}=23 \text { to } 35 V\right)^{21}$	$\begin{gathered} 22.8 \quad 24 \quad 25.2 \\ \left(V_{i}=27 \text { to } 38 V\right) \end{gathered}$	V
ΔV_{0}	Line regulation	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$	$\left(\mathrm{V}_{\mathrm{i}}=17.5 \text { to } 30 \mathrm{~V}\right)^{300}$	$\left(V_{i}=21 \text { to } 33 \mathrm{~V}\right)^{360}$	$\left(\mathrm{V}_{\mathrm{i}}=22.5 \text { to } 35 \mathrm{~V}\right)$	480 $\left(\mathrm{V}_{\mathrm{i}}=27 \text { to } 38 \mathrm{~V}\right)$	
			$\left(V_{i}=20 \text { to } 26 \mathrm{~V}\right)^{150}$	$\left(\mathrm{V}_{\mathrm{i}}=24 \text { to } 30 \mathrm{~V}\right)^{180}$	$\left(V_{i}=26 \text { to } 32 \mathrm{~V}\right)^{200}$	$\left(\mathrm{V}_{\mathrm{i}}=30 \text { to } 36 \mathrm{~V}\right)^{240}$	
ΔV_{0}	Load regulation	$\begin{aligned} & \mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C} \\ & \mathrm{I}_{\mathrm{O}}=5 \mathrm{~mA} \text { to } 1.5 \mathrm{~A} \end{aligned}$	300	360	400	480	
		$\begin{aligned} & \mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C} \\ & \mathrm{I}_{\mathrm{o}}=250 \text { to } 750 \mathrm{~mA} \end{aligned}$	150	180	200	240	
I_{d}	Quiescent current	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$	8	8	8	8	mA
Δl_{d}	Quiescent current change	$\mathrm{I}_{0}=5 \mathrm{~mA}$ to 1 A	0.5	0.5	0.5	0.5	
			$\left(V_{i}=17.5 \text { to } 30 \mathrm{~V}\right)^{1}$	$\left(V_{i}=21 \text { to } 33 \mathrm{~V}\right)^{1}$	$\left(V_{i}=23 \text { to } 35 \mathrm{~V}\right)^{1}$	$\left(V_{i}=27 \text { to } 38 \mathrm{~V}\right)^{1}$	
$\frac{\Delta V_{0}}{\Delta T}$	Output voltage drift	$\mathrm{I}_{\mathrm{O}}=5 \mathrm{~mA}$	-1	-1	-1	-1.5	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
e_{N}	Output noise voltage	$\begin{aligned} & \mathrm{B}=10 \mathrm{~Hz} \text { to } 100 \mathrm{KHz} \\ & \mathrm{~T}_{\mathrm{j}}=25^{\circ} \mathrm{C} \end{aligned}$	90	110	150	170	$\mu \mathrm{V}$
SVR	Supply voltage rejection	$f=120 \mathrm{~Hz}$	54	53	52	50	dB
V_{d}	Dropout voltage	$\mathrm{I}_{0}=1 \mathrm{~A}$	2	2	2	2	V
R_{0}	Output resistance	$f=1 \mathrm{KHz}$	19	22	24	28	$m \Omega$
I_{sc}	Short circuit current	$\begin{aligned} & V_{i}=35 \mathrm{~V} \\ & T_{j}=25^{\circ} \mathrm{C} \end{aligned}$	230	200	180	150	mA
$I_{\text {scp }}$	Short circ. peak current	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$	2.1	2.1	2.1	2.1	A

Fig. 4 - Dropout voltage vs. junction temperature

Fig. 7 - Output voltage vs. junction temperature

Fig. 10 - Load transient response

Fig. 5 - Peak output current vs. input/output differential voltage

Fig. 8 - Output impedance vs. frequency

Fig. 11 - Line transient response

Fig. 6 - Supply voltage rejection vs. frequency

Fig. 9 - Quiescent current vs. junction temperature

Fig. 12 - Quiescent current vs. input voltage

APPLICATION INFORMATION (continued)

Fig. 13 - Fixed output regulator

Notes:

(1) To specify an output voltage, substitute voltage value for " X X".
(2) Although no output capacitor is needed for stability, it does improve transient response.
(3) Required if regulator is located an appreciable distance from power supply filter.

Fig. 15 - Circuit for increasing output voltage

Fig. $17-0.5$ to 10 V regulator

$$
v_{o}=v_{x \times} \frac{R_{4}}{R_{1}}
$$

Fig. 14 - Costant current regulator

$$
I_{o}=\frac{V_{x x}}{R_{1}}+I_{d}
$$

IFig. 16 - Adjustable output regulator (7 to 30V)

Fig. 18 - Hiah current voltage regulator

$$
\begin{aligned}
& \mathrm{R}_{1}=\frac{\mathrm{V}_{\mathrm{BEQ}_{1}}}{\mathrm{I}_{\mathrm{REG}}-\frac{I_{\mathrm{Q}_{1}}}{\beta_{\mathrm{Q}_{1}}}} \\
& \mathrm{I}_{\mathrm{o}}=\mathrm{I}_{\mathrm{REG}}+\beta_{\mathrm{Q}_{1}}\left[\mathrm{I}_{\mathrm{REG}}-\frac{\mathrm{V}_{\mathrm{BEQ}_{1}}}{\mathrm{R}_{1}}\right]
\end{aligned}
$$

APPLICATION INFORMATION (continued)

Fig. 19 - High output current with short circuit protection

$$
\mathrm{R}_{\mathrm{SC}}=\frac{\mathrm{V}_{\mathrm{BEQ}_{2}}}{I_{\mathrm{SC}}}
$$

Fig. 21 - Split power supply ($\pm 15 \mathrm{~V}-1 \mathrm{~A}$)

* Against potential latch-up problems

Fig. 23 - Switching regulator

Fig. 20 - Tracking voltage regulator

Fig. 22 - Negative output voltage circuit

Fig. 24 - High input voltage circuit

$V_{I N}=V_{i}-\left(V_{Z}+V_{B E}\right)$

APPLICATION INFORMATION (continued)

Fig. 25 - High input voltage circuit

$$
V_{I N}=V_{Z}-V_{B E}
$$

Fig. 27 - High input and output voltage

$v_{o}=v_{x x}+v_{z_{1}}$

Fig. 26 - High output voltage regulator

Fig. 28- Reducing power dissipation with dropping resistor

$R=\frac{V_{i(\min)}-V_{x x}-V_{D R O P(\max)}}{I_{o(\max)}+I_{d(\max)}}$

Fig. 29 - Remote shuntdown

APPLICATION INFORMATION (continued)

Fig. 30 - Power AM modulator (unity voltage gain, $\mathrm{I}_{\mathrm{o}} \leqslant 1 \mathrm{~A}$)

Note: The circuit performs well up to 100 KHz .

Fig. 31 - Adjustable output voltage with temperature compensation

Note: $\quad \mathrm{Q}_{2}$ is connected as a diode in order to compensate the variation of the Q_{1} $V_{B E}$ with the temperature. C allows a slow rise-time of the V_{0}

$$
v_{0}=v_{X X}\left(1+\frac{R_{2}}{R_{1}}\right)+v_{B E}
$$

Fig. 32 - Light controllers $\left(\mathrm{V}_{\mathrm{omin}}=\mathrm{V}_{\mathrm{XX}}+\mathrm{V}_{\mathrm{BE}}\right)$

(a)

V_{o} falis when the light qoes up
(b)

V_{o} rises when the light goes up

Fig. 33 - Protection against input short-circuit with high capacitance loads

Applications with high capacitance loads and an output voltage greater than 6 volts need an external diode (see fig. 33) to protect the device against input short circuit. In this case the input voltage falls rapidly while the output voltage decreases showly. The capacitance discharges by means of the Base-Emitter junction of the series pass transistor in the regulator. If the energy is sufficiently high, the transistor may be destroyed. The external diode by-passes the current from the IC to ground.

LINEAR INTEGRATED CIRCUITS

3-TERMINAL POSITIVE VOLTAGE REGULATORS

- OUTPUT CURRENT UP TO 0.5A
- OUTPUT VOLTAGES OF $5 ; 6 ; 8 ; 12 ; 15 ; 18 ; 20 ; 24 V$
- THERMAL OVERLOAD PROTECTION
- SHORT CIRCUIT PROTECTION
- OUTPUT TRANSISTOR SOA PROTECTION

The L78M00 series of three-terminal positive regulators is available in TO-220 package and with several fixed output voltages, making it useful in a wide range of applications. These regulators can provide local on-card regulation, eliminating the distribution problems associated with single point regulation. Each type employs internal current limiting, thermal shut-down and safe area protection, making it essentially indestructible. If adequate heat sinking is provided, they can deliver over 0.5 A output current. Although designed primarily as fixed voltage regulators, these devices can be used with external components to obtain adjustable voltages and currents.

ABSOLUTE MAXIMUM RATINGS

V_{i}	DC input voltage(for $\mathrm{V}_{\mathrm{o}}=5$ to 18 V) (for $\left.\mathrm{V}_{\mathrm{o}}=20,24 \mathrm{~V}\right)$ I_{o}	Output current
$\mathrm{P}_{\text {tot }}$	Power dissipation	35 V
$\mathrm{~T}_{\text {stg }}$	Storage temperature	$40 \quad \mathrm{~V}$
$\mathrm{~T}_{\text {op }}$	Operating junction temperature	Internally limited

MECHANICAL DATA

CONNECTION DIAGRAM AND ORDERING NUMBERS

(top view)

S-2568/1

Ordering Numbers	Output Voltage
L78M05CV	5 V
L78M06CV	6 V
L78M08CV	8 V
L78M12CV	12 V
L78M15CV	15 V
L78M18CV	18 V
L78M20CV	20 V
L78M24CV	24 V

BLOCK DIAGRAM

4 Ll L78м00 Series

SCHEMATIC DIAGRAM

TEST CIRCUITS

Fig. 1 - DC parameters
Fig. 2 - Load regulation
Fig. 3 - Ripple rejection

THERMAL DATA

$R_{\text {th j-case }}$	Thermal resistance junction-case	\max	3	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$R_{\text {th } \mathrm{j} \text {-amb }}$	Thermal resistance junction-ambient	\max	50	${ }^{\circ} \mathrm{C} / \mathrm{W}$

111 L78М00 Series

ELECTRICAL CHARACTERISTICS L78M00C (Refer to the test circuits, $\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{o}}=350 \mathrm{~mA}$ unless otherwise specified, $\mathrm{C}_{\mathrm{i}}=0.33 \mu \mathrm{~F}, \mathrm{C}_{\mathrm{o}}=0.1 \mu \mathrm{~F}$)

OUTPUT VOLTAGE			5	6	8	12	
input voltage (Unless otherwise specified)			10	11	14	19	Unit
Parameter		Test conditions	Min. Typ. Max.	Min. Typ. Max.	Min. Typ. Max.	Min. Typ. Max.	
v_{0}	Output voltage		$4.8 \quad 5 \quad 5.2$	$5.75 \quad 6 \quad 6.25$	$\begin{array}{lll}7.7 & 8 & 8.3\end{array}$	$11.5 \quad 12 \quad 12.5$	V
		$\mathrm{I}_{\mathrm{o}}=5$ to 350 mA	$\begin{gathered} 4.75 \quad 5 \quad 5.25 \\ \left(\mathrm{~V}_{\mathrm{i}}=7 \text { to } 20 \mathrm{~V}\right) \end{gathered}$	$\begin{aligned} & 5.7 \\ & \left(V_{i}=8\right. \\ & \text { to } 21 \mathrm{~V}) \end{aligned}$	$\begin{array}{lrr} 7.6 & 8 & 8.4 \\ \left(V_{i}=\right. & =10.5 & \text { to } \\ 23 V) \end{array}$	$\begin{array}{llr} 11.4 & 12 & 12.6 \\ \left(V_{i}=\right. & 14.5 & \text { to } \\ 27 V) \end{array}$	
ΔV_{0}	Line regulation	$\mathrm{I}_{\mathrm{o}}=200 \mathrm{~mA}$	$\left(\mathrm{V}_{\mathrm{i}}=7 \text { to } 25 \mathrm{~V}\right)$	$\left(\mathrm{V}_{\mathrm{i}}=8 \text { to } 25 \mathrm{~V}\right)$	$\begin{array}{r} 100 \\ \left(V_{i}=10.5 \text { to } 25 \mathrm{~V}\right) \end{array}$	$\begin{array}{r} 100 \\ \left(V_{i}=14.5 \text { to } 30 \mathrm{~V}\right) \end{array}$	mV
			$\left(\mathrm{V}_{\mathrm{i}}=8 \text { to } 25 \mathrm{~V}\right)^{50}$	$\left(V_{i}=9 \text { to } 25 \mathrm{~V}\right)^{50}$	$\left(\mathrm{V}_{\mathrm{i}}=11 \text { to } 25 \mathrm{~V}\right)$	$\begin{array}{r} 50 \\ \left(V_{i}=16 \text { to } 30 \mathrm{~V}\right) \end{array}$	
ΔV_{0}	Load regulation	$\mathrm{I}_{0}=5 \mathrm{~mA}$ to 0.5 A	100	120	160	240	mV
		$\mathrm{I}_{\mathrm{o}}=5 \mathrm{~mA}$ to 200 mA	50	60	80	120	
l_{d}	Quiescent current		6	6	6	6	mA
Δl_{d}	Quiescent current change	$\mathrm{I}_{\mathrm{o}}=5 \mathrm{~mA}$ to 350 mA	0.5	0.5	0.5	0.5	
		$\mathrm{I}_{\mathrm{o}}=200 \mathrm{~mA}$	$\left(\mathrm{V}_{\mathrm{i}}=8 \text { to } 25 \mathrm{~V}\right)^{0.8}$	$\left(V_{i}=9 \text { to } 25 \mathrm{~V}\right)^{0.8}$	$\begin{array}{r} 0.8 \\ \left(\mathrm{~V}_{\mathrm{i}}=10.5 \text { to } 25\right) \end{array}$	$\begin{array}{r} 0.8 \\ \left(V_{i}=14.5 \text { to } 30 \mathrm{~V}\right) \end{array}$	mA
$\frac{\Delta V_{o}}{\Delta T}$	Output Voltage drift	$\begin{aligned} & \mathrm{I}_{\mathrm{o}}=5 \mathrm{~mA} \\ & \mathrm{~T}_{\mathrm{j}}=0 \text { to } 125^{\circ} \mathrm{C} \end{aligned}$	-0.5	-0.5	-0.5	-1.0	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
e_{N}	Output noise voltage	$\mathrm{B}=10 \mathrm{~Hz}$ to 100 KHz	40	45	52	75	$\mu \mathrm{V}$
SVR	Supply voltage rejection	$\begin{aligned} & f=120 \mathrm{~Hz} \\ & \mathrm{I}_{\mathrm{o}}=300 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 62 \\ & \left(V_{i}=8 \text { to } 18 \mathrm{~V}\right) \end{aligned}$	59	56 $\left(\mathrm{V}_{\mathrm{i}}=11.5 \text { to } 21.5 \mathrm{~V}\right)$	$\begin{aligned} & 55 \\ & \left(V_{i}=15 \text { to } 25 \mathrm{~V}\right) \end{aligned}$	dB
v_{d}	Dropout voltage		2	2	2	2	V
$I_{\text {sc }}$	Short circuit current	$\mathrm{V}_{\mathrm{i}}=35 \mathrm{~V}$	300	270	250	240	mA
$I_{\text {scp }}$	Short circ. peak current		700	700	700	700	mA

ELECTRICAL CHARACTERISTICS L78M00C (continued)

OUTPUT VOLTAGE			15	18	20	24	Unit
InPUT VOLTAGE (Unless otherwise specified)			23	26	29	33	
Parameter		Test conditions	Min. Typ. Max.	Min. Typ. Max.	Min. Typ. Max.	Min. Typ. Max.	
v_{0}	Output Voltage		$14.4 \quad 15 \quad 15.6$	$\begin{array}{lll}17.3 & 18 & 18.7\end{array}$	$\begin{array}{lll}19.2 & 20 \quad 20.8\end{array}$	$23 \quad 24 \quad 25$	v
		$\mathrm{I}_{0}=5$ to 350 mA	$\begin{array}{llr} 14.25 & 15 & 15.75 \\ \left(V_{i}=17.5\right. & \text { to } 30 \mathrm{~V}) \end{array}$	$\begin{array}{lrr} 17.1 & 18 & 18.9 \\ \left(\mathrm{~V}_{\mathrm{i}}=20.5\right. & \text { to } 33 \mathrm{~V}) \end{array}$	$\begin{aligned} & 19 \quad 20 \quad 21 \\ & \left(\mathrm{~V}_{\mathrm{i}}=23 \text { to } 35 \mathrm{~V}\right) \end{aligned}$	$\begin{array}{ccc} 22.8 & 24 & 25.2 \\ \left(V_{i}=27\right. & \text { to } 38 \mathrm{~V}) \end{array}$	
$\Delta V_{\text {o }}$	Line regulation	$\mathrm{I}_{0}=200 \mathrm{~mA}$	$\begin{array}{r} 100 \\ \left(V_{i}=17.5 \text { to } 30 \mathrm{~V}\right) \end{array}$	$\left(\mathrm{V}_{\mathrm{i}}=21 \text { to } 33 \mathrm{~V}\right)$	$\left(\mathrm{V}_{\mathrm{i}}=23 \text { to } 35 \mathrm{~V}\right)$	$\begin{array}{r} 100 \\ \left(\mathrm{~V}_{\mathrm{i}}=27 \text { to } 38 \mathrm{~V}\right) \end{array}$	mV
			$\left(\mathrm{V}_{\mathrm{i}}=20 \text { to } 30 \mathrm{~V}\right)$	$\left(V_{i}=24 \text { to } 33 \mathrm{~V}\right)$	$\left(\mathrm{V}_{\mathrm{i}}=24 \text { to } 35 \mathrm{~V}\right)$	$\left(\mathrm{V}_{\mathrm{i}}=28 \text { to } 38 \mathrm{~V}\right)$	
ΔV_{0}	Load regulation	$\mathrm{I}_{0}=5 \mathrm{~mA}$ to 0.5 A	300	360	400	480	mV
		$\mathrm{I}_{0}=5 \mathrm{~mA}$ to 200 mA	150	180	200	240	
I_{d}	Quiescent current		6	6	6	6	mA
Δl_{d}	Quiescent current change	$\mathrm{I}_{0}=5 \mathrm{~mA}$ to 350 mA	0.5	0.5	0.5	0.5	mA
		$\mathrm{I}_{\mathrm{O}}=200 \mathrm{~mA}$	$\begin{array}{r} 0.8 \\ \left(V_{i}=17.5 \text { to } 30 \mathrm{~V}\right) \end{array}$	$\left(\mathrm{V}_{\mathrm{i}}=21 \text { to } 33 \mathrm{~V}\right)$	$\left(\mathrm{V}_{\mathrm{i}}=23 \text { to } 35 \mathrm{~V}\right)$	$\begin{array}{r} 0.8 \\ \left(\mathrm{~V}_{\mathrm{i}}=27 \text { to } 38 \mathrm{~V}\right) \end{array}$	
$\frac{\Delta V_{0}}{\Delta T}$	Output voltage drift	$\begin{aligned} & I_{\mathrm{o}}=5 \mathrm{~mA} \\ & T_{\mathrm{amb}}=0 \text { to } 125^{\circ} \mathrm{C} \end{aligned}$	-1	-1.1	-1.1	-1.2	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
e_{N}	Output noise voltage	$\mathrm{B}=10 \mathrm{~Hz}$ to 100 KHz	90	100	110	170	$\mu \mathrm{V}$
SVR	Supply voltage rejection	$\begin{aligned} & f=120 \mathrm{~Hz} \\ & \mathrm{I}_{\mathrm{o}}=300 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 54 \\ & \left(\mathrm{~V}_{\mathrm{i}}=18.5 \text { to } 28.5 \mathrm{~V}\right) \end{aligned}$	$\begin{aligned} & 53 \\ & \left(V_{i}=22 \text { to } 32 \mathrm{~V}\right) \end{aligned}$	$\begin{aligned} & 53 \\ & \left(V_{i}=24 \text { to } 34 V\right) \end{aligned}$	$\begin{aligned} & 50 \\ & \left(\mathrm{~V}_{\mathrm{i}}=28 \text { to } 38 \mathrm{~V}\right) \end{aligned}$	dB
v_{d}	Dropout Voltage		2	2	2	2	V
$\mathrm{I}_{\text {sc }}$	Short circuit current	$V_{i}=35 \mathrm{~V}$	240	240	240	240	mA
$I_{\text {scp }}$	Short circ. peak current		700	700	700	700	mA

414 L78м00

Fig. 4 - Dropout voltage vs. junction temperature

Fig. 7 - Output voltage vs. junction temperature

Fig. 5 - Dropout characteristics

Fig. 8 - Supply voltage rejection vs. frequency

Fig. 6 - Peak output current vs. input-output differential voltage

Fig. 9 - Quiescent current vs. junction temperature

Fig. 10 - Load transient

Fig. 11 - Line transient response

Fig. 12 - Quiescent current vs. input voltage

APPLICATION INFORMATION (continued)

Fig. 13 - Fixed output regulator

Notes:
(1) To specify an output voltage, substitute voltage value for " $X X$ "'.
(2) Although no output capacitor is needed for stability, it does improve transient response.
(3) Required if regulator is located an appreciable distance from power supply filter.

Fig. 15 - Circuit for increasing output voltage

Fig. 17-0.5 to 10 V regulator

$$
v_{o}=v_{x \times} \frac{R_{4}}{R_{1}}
$$

Fig. 14 - Costant current regulator

$$
I_{0}=\frac{v_{x x}}{R_{1}}+I_{d}
$$

Fig. 16 - Adjustable output regulator (7 to 30V)

Fig. 18 - Hiah current voltage regulator

$R_{1}=\frac{V_{B E Q_{1}}}{I_{\mathrm{REG}}-\frac{I_{Q_{1}}}{\beta_{Q_{1}}}}$
$I_{o}=I_{R E G}+\beta_{Q_{1}}\left[I_{R E G}-\frac{V_{B E Q_{1}}}{R_{1}}\right]$

APPLICATION INFORMATION (continued)

Fig. 19 - High output current with short circuit protection

$$
\mathrm{R}_{\mathrm{SC}}=\frac{\mathrm{V}_{\mathrm{BEQ}_{2}}}{I_{\mathrm{SC}}}
$$

Fig. 21 - Positive and negative regulator

(*) D_{1} and D_{2} are necessary if the load is connected between $+V_{0}$ and $-V_{0}$

Fig. 23 - High input voltage circuit

$V_{I N}=V_{i}-\left(V_{Z}+V_{B E}\right)$

Fig. 20 - Tracking voltage regulator

Fig. 22 - Negative output voltage circuit

Fig. 24-High input voltage circuit

$V_{I N}=V_{Z}-V_{B E}$

APPLICATION INFORMATION (continued)

Fig. 25 - High output voltage regulator

Fig. 27- Reducing power dissipation with dropping resistor

$R=\frac{V_{i(\min)}-V_{x x}-V_{D R O P(\max)}}{I_{0(\max)}+I_{d(\max)}}$

Fig. 29 - Power AM modulator (unity voltage gain, $I_{0} \leqslant 0.5$)

Note: The circuit performs well up to 100 KHz .

Fig. 26 - High input and output voltage

$$
V_{O}=V_{x \times}+V_{z 1}
$$

Fig. 28 - Remote shuntdown

Fig. 30 - Adjustable output voltage with temperature compensation

Note: $\quad \mathrm{Q}_{2}$ is connected as a diode in order to compensate the variation of the Q_{1} V_{BE} with the temperature. C allows a slow rise-time of the $\mathrm{V}_{\text {。 }}$

$$
v_{o}=v_{X X}\left(1+\frac{R_{2}}{R_{1}}\right)+v_{B E}
$$

APPLICATION INFORMATION (continued)

Fig. 31 - Light controllers $\left(\mathrm{V}_{\mathrm{omin}}=\mathrm{V}_{\mathrm{XX}}+\mathrm{V}_{\mathrm{BE}}\right)$
(a)

V_{0} falls when the light qoes up
(b)

V_{o} rises when the light goes up

Fig. 32 - Protection against input short-circuit with high capacitance loads

Applications with high capacitance loads and an output voltage greater than 6 volts need an external diode (see fig. 32) to protect the device against input short circuit. In this case the input voltage falls rapidly while the output voltage decreases showly. The capacitance discharges by means of the Base-Emitter junction of the series pass transistor in the regulator. If the energy is sufficiently high, the transistor may be destroyed. The external diode by-passes the current from the IC to ground.

LINEAR INTEGRATED CIRCUITS

3-TERMINAL POSITIVE VOLTAGE REGULATORS

- OUTPUT CURRENT UP TO 2A
- OUTPUT VOLTAGES OF 5; 7.5; $9 ; 10 ; 12 ; 15 ; 18 ; 24 \mathrm{~V}$
- thermal overload protection
- SHORT CIRCUIT PROTECTION
- OUTPUT TRANSISTOR SOA PROTECTION

The L78S00 series of three-terminal positive regulators is available in TO-220 and TO-3 packages and with several fixed output voltages, making it useful in a wide range of applications. These regulators can provide local on-card regulation, eliminating the distribution problems associated with single point regulation. Each type employs internal current limiting, thermal shut-down and safe area protection, making it essentially indestructible. If adequate heat sinking is provided, they can deliver over 2A output current. Although designed primarily as fixed voltage regulators, these devices can be used with external components to obtain adjustable voltages and currents.

ABSOLUTE MAXIMUM RATINGS

v_{i}	$\begin{aligned} D C \text { input voltage } & \left(\text { for } V_{o}=5 \text { to } 18 \mathrm{~V}\right) \\ & \left(\text { for } \mathrm{V}_{\mathrm{o}}=24 \mathrm{~V}\right) \end{aligned}$	35 40	V
I_{0}	Output current	internally limited	
$\mathrm{P}_{\text {tot }}$	Power dissipation	Internally limited	
$\mathrm{T}_{\text {stg }}$	Storage temperature	-65 to +150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {op }}$	Operating junction temperature (for L78500)	-55 to +150	${ }^{\circ} \mathrm{C}$
	(for L78S00C)	0 to +150	${ }^{\circ} \mathrm{C}$

MECHANICAL DATA

CONNECTION DIAGRAMS AND ORDERING NUMBERS

(top views)

5-2568/1

Type	TO-220	TO-3	Output voltage
L 78S05	-	L 78S05T	5 V
L 78S05C	L 78S05CV	L 78S05CT	5 V
L 78S75	-	L 78S75T	7.5 V
L 78S75C	L 78S75CV	L 78S75CT	7.5 V
L 78S09	-	L 78S09T	9 V
L 78S09C	L 78S09CV	L 78S09CT	9 V
L 78S10C	L 78S10CT	L 78S10T	10 V
L 78S12	-	L 78S12CT	10 V
L 78S12C	L 78S12CV	L 78S12CT	12 V
L 78S15	-	L 78S15T	12 V
L 78S15C	L 78S15CV	L 78S15CT	15 V
L 78S18	-	L 78S18T	15 V
L 78S18C	L 78S18CV	L 78S18CT	18 V
L 78S24C	L 78S24CV	L 78S24T	18 V

BLOCK DIAGRAM

SCHEMATIC DIAGRAM

TEST CIRCUITS

Fig. 1 - DC parameters
Fig. 2 - Load regulation
Fig. 3 - Ripple rejection

THERMAL	DATA	TO-220	TO-3	
$R_{\text {th }} j$-case	Thermal resistance junction-case		$3^{\circ} \mathrm{C} / \mathrm{W}$	$4^{\circ} \mathrm{C} / \mathrm{W}$
$R_{\text {th }} j$-amb	Thermal resistance junction-ambient		\max	$50^{\circ} \mathrm{C} / \mathrm{W}$

ELECTRICAL CHARACTERISTICS L78S00 (Refer to the test circuits, $\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{o}}=500 \mathrm{~mA}$ unless otherwise specified)

ELECTRICAL CHARACTERISTICS L78S00 (continued)

output voltage			12	15	18	24	Unit
INPUT VOLTAGE (Unless otherwise specified)			19	23	26	33	
Parameter		Test conditions	Min. Typ. Max.	Min. Typ. Max.	Min. Typ. Max.	Min. Typ. Max.	
v_{0}	Output voltage		$\begin{array}{lll}11.5 & 12 & 12.5\end{array}$	$\begin{array}{llll}14.4 & 15 & 15.6\end{array}$	$17.1 \quad 18 \quad 18.9$	$23 \quad 24 \quad 25$	v
		$\mathrm{I}_{0}=1 \mathrm{~A}$	$\begin{gathered} 11.4 \quad 12 \quad 12.6 \\ \left(V_{i}=14.5 \mathrm{~V}\right) \end{gathered}$	$\begin{gathered} 14.25 \quad 15 \quad 15.75 \\ \left(\mathrm{~V}_{\mathrm{i}}=17.5 \mathrm{~V}\right) \end{gathered}$	$17 \begin{gathered} 18 \\ \left(V_{i}=20.5 V\right)^{19} \end{gathered}$	$\begin{gathered} 22.8 \quad 24 \quad 25.2 \\ \left(v_{i}=27 V\right) \end{gathered}$	
$\therefore \mathrm{V}_{0}$	Line regulation		$\left(V_{i}=14.5\right.$ to 30 V$)$	$\left(\mathrm{V}_{\mathrm{i}}=17.5\right.$ to 30 V$)$	$\left(\mathrm{V}_{\mathrm{i}}=20.5\right.$ to 30 V$)$	$\left(\mathrm{V}_{\mathrm{i}}=27\right.$ to 38 V$)$	mV
			$\left(\mathrm{V}_{\mathrm{i}}=16 \text { to } 22 \mathrm{~V}\right)$	$\begin{array}{r} 150 \\ \left(\mathrm{~V}_{\mathrm{i}}=20 \text { to } 26 \mathrm{~V}\right) \end{array}$	$\begin{array}{r} 180 \\ \left(\mathrm{~V}_{\mathrm{i}}=22 \text { to } 28 \mathrm{~V}\right) \end{array}$	$\begin{array}{r} 240 \\ \left(\mathrm{~V}_{\mathrm{i}}=30 \text { to } 36 \mathrm{~V}\right) \end{array}$	
ΔV_{0}	Load regulation	$\mathrm{I}_{\mathrm{o}}=20 \mathrm{~mA}$ to 2 A	160	180	200	250	mV
t_{d}	Quiescent current		8	8	8	8	mA
Δl_{d}	Quiescent	$\mathrm{I}_{\mathrm{o}}=20 \mathrm{~mA}$ to 1 A	0.5	0.5	0.5	0.5	
	change	$\mathrm{I}_{0}=20 \mathrm{~mA}$	$\left(\mathrm{V}_{\mathrm{i}}=14.5 \text { to } 30 \mathrm{~V}\right)^{1}$	$\left(\mathrm{V}_{\mathrm{i}}=17.5 \text { to } 30 \mathrm{~V}\right)^{1}$	$\left(V_{i}=22 \text { to } 33 \mathrm{~V}\right)^{1}$	$\left(v_{i}=28 \text { to } 38 \mathrm{~V}\right)^{1}$	mA
$\frac{\Delta V_{0}}{\Delta T}$	Output voltage drift	$\begin{aligned} & I_{0}=5 \mathrm{~mA} \\ & T_{\mathrm{amb}}=0 \text { to } 70^{\circ} \mathrm{C} \end{aligned}$	-1	-1	-1	-1.5	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
e_{N}	Output noise vol tage	$B=10 \mathrm{~Hz}$ to 100 KHz	75	90	110	170	$\mu \mathrm{V}$
SVR	Supply voltage rejection	$f=120 \mathrm{~Hz}$	53	52	49	48	dB
v_{i}	Operating input voltage	$\mathrm{I}_{0} \leqslant 1.5 \mathrm{~A}$	15	18	21	27	V
R_{0}	Output resistance	$f=1 \mathrm{KHz}$	18	19	22	23	$\mathrm{m} \Omega$
I_{sc}	Short circuit current	$V_{i}=27 \mathrm{~V}$	500	500	500	500	mA
I_{scp}	Short circ. peak current		3.5	3.5	3.5	3.5	A

ELECTRICAL CHARACTERISTICS L78S00C(Refer to the test circuits, $\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{o}}=500 \mathrm{~mA}$ unless otherwise specified)

OUTPUT VOLTAGE			5	7.5	9	10	
INPUT VOLTAGE (Unless otherwise specified)			10	12.5	14	15	Unit
Parameter		Test conditions	Min. Typ. Max.	Min. Typ. Max.	Min. Typ. Max.	Min. Typ. Max.	
$\mathrm{v}_{\text {o }}$	Output voltage		$\begin{array}{lll}4.8 & 5 & 5.2\end{array}$	$\begin{array}{lll}7.15 & 7.5 & 7.9\end{array}$	$8.65 \quad 9 \quad 9.35$	$\begin{array}{lll}9.5 & 10 & 10.5\end{array}$	v
		$I_{0}=1 \mathrm{~A}$	$\begin{gathered} 4.75 \quad 5 \\ \left(V_{i}=7 V\right)^{5.25} \end{gathered}$	$\begin{gathered} 7.1 \begin{array}{c} 7.5 \\ \left(V_{i}=9.5 V\right) \end{array} 7.95 \end{gathered}$	$\begin{gathered} 8.6 \underset{\left(V_{i}=11 \mathrm{~V}\right)}{9} 9.4 \end{gathered}$	$\begin{aligned} & 9.4 \quad 10 \quad 10.6 \\ & \left(v_{i}=12.5 \mathrm{~V}\right) \end{aligned}$	
$\Delta \mathrm{V}_{\text {o }}$	Line regulation		$\left(\mathrm{V}_{\mathrm{i}}=7 \text { to } 25 \mathrm{~V}\right)$	$\left(V_{i}=9.5 \text { to } 25 \mathrm{~V}\right)$	$\left(\mathrm{V}_{\mathrm{i}}=11 \text { to } 25 \mathrm{~V}\right)$	($\mathrm{V}_{\mathrm{i}}=12.5$ to 30 V$)$	mV
			$\left(\mathrm{V}_{\mathrm{i}}=8 \text { to } 12 \mathrm{~V}\right)^{50}$	$\begin{array}{r} 60 \\ \left(\mathrm{~V}_{\mathrm{i}}=10.5 \text { to } 20 \mathrm{~V}\right) \end{array}$	$\left(v_{i}=11\right.$ to 20 V$)$	$\begin{array}{r} 100 \\ \left(V_{i}=14 \text { to } 22 \mathrm{~V}\right) \end{array}$	
ΔV_{0}	Load regulation	$\mathrm{I}_{\mathrm{o}}=20 \mathrm{~mA}$ to 2 A	100	140	170	240	mV
l_{d}	Quiescent current		8	8	8	8	mA
Δl_{d}	Quiescent	$\mathrm{I}_{0}=20 \mathrm{~mA}$ to 1 A	0.5	0.5	0.5	0.5	
		$\mathrm{I}_{0}=20 \mathrm{~mA}$	$\left(V_{i}=7 \text { to } 25 \mathrm{~V}\right)$	$\begin{array}{r} 1.3 \\ \left(\mathrm{~V}_{\mathrm{i}}=9.5 \text { to } 25 \mathrm{~V}\right) \end{array}$	$\left(V_{i}=11 \text { to } 25 \mathrm{~V}\right)$	$\begin{array}{r} 1.0 \\ \left(V_{i}=12.5 \text { to } 30 \mathrm{~V}\right) \end{array}$	mA
$\frac{\Delta V_{0}}{\Delta T}$	Output voltage drift	$\begin{aligned} & I_{o}=5 \mathrm{~mA} \\ & T_{\mathrm{amb}}=0 \text { to } 70^{\circ} \mathrm{C} \end{aligned}$	-1.1	-0.8	-1	-1	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
${ }^{e_{N}}$	Output noise voltage	$\mathrm{B}=10 \mathrm{~Hz}$ to 100 KHz	40	52	60	65	$\mu \mathrm{V}$
SVR	Supply voltage rejection	$\mathrm{f}=120 \mathrm{~Hz}$	54	48	47	47	dB
v_{i}	Operating input voltage	$\mathrm{I}_{0} \leqslant 1.5 \mathrm{~A}$	8	10.5	12	13	v
R_{0}	Output resistance	$f=1 \mathrm{KHz}$	17	16	17	17	ms 2
$i_{s c}$	Short circuit current	$\mathrm{V}_{\mathrm{i}}=27 \mathrm{~V}$	500	500	500	500	mA
$\mathrm{I}_{\text {scp }}$	Short circ. peak current		3.5	3.5	3.5	3.5	A

ELECTRICAL CHARACTERISTICS L78S00C (continued)

OUTPUT VOLTAGE			12	15	18	24	Unit
INPUT VOLTAGE (Unless otherwise specified)			19	23	26	33	
Parameter		Test conditions	Min. Typ. Max.	Min. Typ. Max.	Min. Typ. Max.	Min. Typ. Max.	
$\mathrm{v}_{\text {o }}$	Output voltage		$\begin{array}{lll}11.5 & 12 & 12.5\end{array}$	$\begin{array}{lll}14.4 & 15 & 15.6\end{array}$	$\begin{array}{lll}17.1 & 18 & 18.9\end{array}$	$23 \quad 24 \quad 25$	V
		$\mathrm{I}_{\mathrm{o}}=1 \mathrm{~A}$	$\begin{gathered} 11.4 \quad 12 \quad 12.6 \\ \left(V_{i}=14.5 \mathrm{~V}\right) \end{gathered}$	$\begin{gathered} 14.25 \quad 15 \quad 15.75 \\ \left(\mathrm{~V}_{\mathrm{i}}=17.5 \mathrm{~V}\right) \end{gathered}$	${ }^{17}{ }_{\left(V_{i}=20.5 \mathrm{~V}\right)^{19}}^{18}$	$\begin{gathered} 22.8 \quad 2425.2 \\ \left(V_{i}=27 V\right) \end{gathered}$	
ΔV_{0}	Line regulation		$\left(V_{i}=14.5\right.$ to 30 V$)$	($\mathrm{V}_{\mathrm{i}}=17.5$ to 300 V$)$	$\left(V_{i}=20.5\right.$ to 300)	($\mathrm{V}_{\mathrm{i}}=27$ to 38 V$)$	mV
			$\left(\mathrm{V}_{\mathrm{i}}=16 \text { to } 22 \mathrm{~V}\right)^{120}$	$\left(\mathrm{V}_{\mathrm{i}}=20 \text { to } 26 \mathrm{~V}\right)$	$\begin{array}{r} 180 \\ \left(\mathrm{~V}_{\mathrm{i}}=22 \text { to } 28 \mathrm{~V}\right) \end{array}$	$\begin{array}{r} 240 \\ \left(\mathrm{~V}_{\mathrm{i}}=30 \text { to } 36 \mathrm{~V}\right) \end{array}$	
$\Delta \mathrm{V}_{\text {o }}$	Load regulation	$\mathrm{I}_{0}=20 \mathrm{~mA}$ to 2 A	240	300	360	480	mV
$l_{\text {d }}$	Quiescent current		8	8	8	8	mA
Δl_{d}	Quiescent	$\mathrm{I}_{\mathrm{o}}=20 \mathrm{~mA}$ to 1 A	0.5	0.5	0.5	0.5	
	change	$\mathrm{I}_{\mathrm{o}}=20 \mathrm{~mA}$	$\begin{array}{r} 1.0 \\ \left(V_{i}=14.5 \text { to } 30 \mathrm{~V}\right) \end{array}$	$\left(v_{i}=17.5 \text { to } \begin{array}{r} 1.0 \\ 30 \mathrm{~V} \end{array}\right.$	$\left(\begin{array}{r} 1.0 \\ \left(v_{i}=20.5 \text { to } 30 \mathrm{~V}\right) \end{array}\right.$	$\begin{array}{r} 1.0 \\ \left(\mathrm{~V}_{\mathrm{i}}=27 \text { to } 38 \mathrm{~V}\right) \end{array}$	mA
$\frac{\Delta V_{0}}{\Delta T}$	Output voltage drift	$\begin{aligned} & \mathrm{I}_{\mathrm{o}}=5 \mathrm{~mA} \\ & \mathrm{~T}_{\mathrm{amb}}=0 \text { to } 70^{\circ} \mathrm{C} \end{aligned}$	-1	-1	-1	-1.5	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
e_{N}	Output noise voltage	$B=10 \mathrm{~Hz}$ to 100 KHz	75	90	110	170	$\mu \mathrm{V}$
SVR	Supply voltage rejection	$\mathrm{f}=120 \mathrm{~Hz}$	47	46	43	42	dB
v_{i}	Operating input voltage	$\mathrm{t}_{\mathrm{o}} \leqslant 1.5 \mathrm{~A}$	15	18	21	27	v
R_{o}	Output resistance	$\mathrm{f}=1 \mathrm{KHz}$	18	19	22	28	ms 2
$\mathrm{I}_{\text {sc }}$	Short circuit current	$V_{i}=27 \mathrm{~V}$	500	500	500	500	mA
I_{scp}	Short circ. peak current		3.5	3.5	3.5	3.5	A

Fig. 4 - Dropout voltage vs. junction temperature

Fig. 7 - Output voltage vs. junction temperature

Fig. 10 - Load transient response

Fig. 5 - Peak output current vs. input/output differential voltage

Fig. 8 - Output impedance vs. frequency

Fig. 11 - Line transient response

Fig. 6 - Supply voltage rejection vs. frequency

Fig. 9 - Quiescent current vs. junction temperature

Fig. 12 - Quiescent current vs. input voltage

APPLICATION INFORMATION (continued)

Fig. 13 - Fixed output regulator

Notes:
(1) To specify an output voltage, substitute voltage value for " $X X$ ".
(2) Although no output capacitor is needed for stability, it does improve transient response.
(3) Required if regulator is located an appreciable distance from power supply filter.

Fig. 15 - Circuit for increasing output voltage

Fig. $17-0.5$ to 10 V regulator

$$
v_{o}=v_{x x} \frac{R_{4}}{R_{1}}
$$

Fig. 14 - Costant current regulator

$$
I_{o}=\frac{V_{x \times}}{R_{1}}+I_{d}
$$

Fig. 16 - Adjustable output regulator (7 to 30V)

Fig. 18 - Hiah current voltage regulator

$R_{1}=\frac{V_{B E Q_{1}}}{I_{R E G}-\frac{I_{Q_{1}}}{\beta_{Q_{1}}}}$
$I_{o}=I_{R E G}+\beta_{Q_{1}}\left[I_{R E G}-\frac{V_{B E Q_{1}}}{R_{1}}\right]$

110
 L78500 Series

APPLICATION INFORMATION (continued)

Fig. 19 - High output current with short circuit protection

$$
\mathrm{R}_{\mathrm{SC}}=\frac{\mathrm{V}_{\mathrm{BEQ}_{2}}}{\mathrm{I}_{\mathrm{SC}}}
$$

Fig. 21 - Positive and negative regulator

(*) D_{1} and D_{2} are necessary if the load is connected between $+\mathrm{V}_{\mathrm{o}}$ and $-\mathrm{V}_{\mathrm{o}}$

Fig. 23 - Switching regulator

Fig. 20 - Tracking voltage regulator

Fig. 22 - Negative output voltage circuit

Fig. 24-High input voltage circuit

$V_{I N}=V_{i}-\left(V_{Z}+V_{B E}\right)$

APPLICATION INFORMATION (continued)

Fig. 25 - High input voltage circuit

$$
V_{I N}=V_{Z}-V_{B E}
$$

Fig. 27 - High input and output voltage

$V_{o}=V_{X x}+V_{Z_{1}}$

Fig. 26 - High output voltage regulator

Fig. 28 - Reducing power dissipation with dropping resistor

$R=\frac{V_{i(\min)}-V_{x X}-V_{D R O P(\max)}}{I_{o(\max)}+I_{d(\max)}}$

Fig. 29 - Remote shuntdown

APPLICATION INFORMATION (continued)

Fig. 30 - Power $A M$ modulator oscillator (unity voltage gain, $I_{0} \leqslant 1.5 \mathrm{~A}$)

Note: The circuit performs well up to 100 KHz .

Fig. 31 - Adjustable output voltage with temperature compensation

Note: $\quad \mathrm{Q}_{2}$ is connected as a diode in order to compensate the variation of the Q_{1} V_{BE} with the temperature. C allows a slow rise-time of the V_{o}

$$
v_{o}=v_{X \times}\left(1+\frac{R_{2}}{R_{1}}\right)+v_{B E}
$$

Fig. 32 - Light controllers $\left(\mathrm{V}_{\mathrm{omin}}=\mathrm{V}_{\mathrm{XX}}+\mathrm{V}_{\mathrm{BE}}\right)$
(a)

V_{0} falls when the light qoes up
(b)

V_{o} rises when the light goes up

Fig. 33 - Protection against input short-circuit with high capacitance loads

Applications with high capacitance loads and an output voltage greater than 6 volts need an external diode (see fig. 33) to protect the device against input short circuit. In this case the input voltage falls rapidly while the output voltage decreases showly. The capacitance discharges by means of the Base-Emitter junction of the series pass transistor in the regulator. If the energy is sufficiently high, the transistor may be destroyed. The external diode by-passes the current from the IC to around.

LINEAR INTEGRATED CIRCUITS

PRELIMINARY DATA

3-TERMINAL NEGATIVE VOLTAGE REGULATORS

- OUTPUT CURRENT UP TO 1.5A
- OUTPUT VOLTAGES OF -5; -5.2; $-8 ;-12 ;-15 ;-18 ;-20 ;-24 V$
- THERMAL OVERLOAD PROTECTION
- SHORT CIRCUIT PROTECTION
- OUTPUT TRANSISTOR SOA PROTECTION

The L7900 series of three-terminal negative regulators is available in TO-220 and TO-3 packages and with several output voltages. They can provide local on-card regulation, eliminating the distribution problems associated with single point regulation; furthermore, having the same voltage options as the L7800 positive standard series, they are particularly suited for split power supplies. In addition, the -5.2 V is also available for ECL system.
If adeguate heatsinking is provided, the L7900 series can deliver an output current in excess of 1.5A. Although designed primarly as fixed voltage regulators, these devices can be used with external components to obtain adjustable voltages and currents.

ABSOLUTE MAXIMUM RATINGS

V_{i}	DC input voltage (for $\mathrm{V}_{\mathrm{o}}=-5$ to -18 V)	
	(for $\left.\mathrm{V}_{\mathrm{o}}=-20,-24 \mathrm{~V}\right)$	-35 V
I_{o}	Output current	$-40 \quad \mathrm{~V}$
$\mathrm{P}_{\text {tot }}$	Total power dissipation	Internally limited
T_{op}	Operating junction temperature	Internally limited
$\mathrm{T}_{\text {stg }}$	Storage temperature	0 to $+150 \quad{ }^{\circ} \mathrm{C}$

TO-3

1/1 17900
 11 Series

CONNECTION DIAGRAMS AND ORDERING NUMBERS

(top views)

Type	TO-220	TO-3	Output Voltage
L7905C	L7905CV	L7905CT	-5 V
L7952C	L7952CV	L7952CT	-5.2 V
L7908C	L7908CV	L7908CT	-8 V
L7912C	L7912CV	L7912CT	-12 V
L7915C	L7915CV	L7915CT	-15 V
L7918C	L7920CV	L7918CT	-20 V
L7920C	L7924CV	L7920CT	-24 V

SCHEMATIC DIAGRAM

THERM	L DATA		TO-220	TO-3
$\mathrm{R}_{\text {th } \mathrm{j} \text {-case }}$	Thermal resistance junction-case	max	$3^{\circ} \mathrm{C} / \mathrm{W}$	$4^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{\text {th } \mathrm{j} \text {-amb }}$	Thermal resistance junction-ambient	max	$50^{\circ} \mathrm{C} / \mathrm{W}$	$35^{\circ} \mathrm{C} / \mathrm{W}$

$1 / 417900$
 Series

ELECTRICAL CHARACTERISTICS L7900C $\left(\mathrm{C}_{\mathrm{i}}=2.2 \mu \mathrm{~F}, \mathrm{C}_{\mathrm{o}}=1 \mu \mathrm{~F}, \mathrm{~T}_{\mathrm{j}}=0\right.$ to $125^{\circ} \mathrm{C}$,
$I_{0}=500 \mathrm{~mA}$ unless otherwise specified)

OUTPUT VOLTAGE				-5			-5.2			-8			-12		Unit
INPUT VOLTAGE (Unless otherwise specified)			-10			-10			-14			-19			
Parameter		Test conditions	Min.	Typ.	Max.										
V_{0}	Output voltage	$\mathrm{T}_{\mathrm{i}}=25^{\circ} \mathrm{C}$	-4.8	-5	-5.2	-5	-5.2	-5.4	-7.7	-8	-8.3	-11.5	-12	-12.5	V
		$\begin{aligned} & \mathrm{I}_{\mathrm{O}}=5 \mathrm{~mA} \text { to } 1 \mathrm{~A} \\ & \mathrm{P}_{\mathrm{O}}<15 \mathrm{~W} \end{aligned}$		$\begin{gathered} -5 \\ -8 \text { to }-2 \end{gathered}$	$\begin{aligned} & -5.25 \\ & (0 \mathrm{~V}) \end{aligned}$	$\begin{array}{r} -4.95 \\ \\ \mathrm{~V}_{\mathrm{i}}= \end{array}$	$\begin{gathered} -5.2 \\ -9 \text { to }-2 \end{gathered}$	$\begin{aligned} & -5.45 \\ & 1 \mathrm{~V}) \end{aligned}$		$\stackrel{-8}{-11.5} \text { to }$	$\begin{array}{r} -8.4 \\ -23 V) \end{array}$	$\begin{gathered} -11.4 \\ \left(V_{i}=.\right. \end{gathered}$	$\begin{gathered} -12 \\ 5.5 \text { to } \end{gathered}$	$\begin{gathered} -12.6 \\ -27 V) \end{gathered}$	
ΔV_{0}	Line regulation	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$	$\left(V_{i}=-7 \text { to }-25 \mathrm{~V}\right)$			$\left(V_{i}=-8 \text { to }-25 V\right)$			$\left(V_{i}=-10.5\right.$ to $\left.-25 \mathrm{~V}\right)$			$\left(V_{i}=-14.5\right.$ to $\left.-30 \mathrm{~V}\right)$			mV
			$\left(V_{i}=-8 \text { to }-12 \mathrm{~V}\right)$			$\left(V_{i}=-9 \text { to }-13 V\right)^{52}$			$\left(V_{i}=-11\right.$ to -17V) ${ }^{80}$			$\left(\mathrm{V}_{\mathrm{i}}=-16 \text { to }-22 \mathrm{~V}\right)$			
ΔV_{0}	Load regulation	$\begin{aligned} & T_{j}=25^{\circ} \mathrm{C} \\ & \mathrm{I}_{\mathrm{o}}=5 \mathrm{~mA} \text { to } 1.5 \mathrm{~A} \end{aligned}$	100			105			160			240			mV
		$\begin{aligned} & \mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C} \\ & \mathrm{I}_{\mathrm{O}}=250 \text { to } 750 \mathrm{~mA} \end{aligned}$			50			52			80			120	
I_{d}	Quiescent current	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$			2			2			2			3	mA
ΔI_{d}	Quiescent current change	$\mathrm{I}_{0}=5 \mathrm{~mA}$ to 1 A	0.5			0.5			0.5			0.5			mA
			$\left(V_{i}=-8 \text { to }-25 V\right)^{1.3}$			$\left(\mathrm{V}_{\mathrm{i}}=-9 \text { to }-25 \mathrm{~V}\right)^{1.3}$			$\left(V_{i}=-11.5 \text { to }-25 V\right)^{1}$			$\left(V_{i}=-15 \text { to }-30 \mathrm{~V}\right)^{1}$			
$\frac{\Delta V_{0}}{\Delta T}$	Output voltage drift	$\mathrm{I}_{0}=5 \mathrm{~mA}$	-0.4			-0.5			-0.6			-0.8			$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
e_{N}	Output noise voltage	$\begin{aligned} & \mathrm{B}=10 \mathrm{~Hz} \text { to } 100 \mathrm{KHz} \\ & \mathrm{~T}_{\mathrm{j}}=25^{\circ} \mathrm{C} \end{aligned}$	100			125			175			200			$\mu \mathrm{V}$
SVR	Supply voltage rejection	$\begin{aligned} & f=120 \mathrm{~Hz} \\ & \Delta V_{i}=10 \mathrm{~V} \end{aligned}$	54	60		5460			54	60		5460			dB
V_{i-o}	Dropout voltage	$\begin{aligned} & \mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C} \\ & \mathrm{I}_{\mathrm{O}}=1 \mathrm{~A} \\ & \Delta \mathrm{~V}_{\mathrm{O}}=100 \mathrm{mV} \end{aligned}$	2			1.8			1.1			1.1			V
I_{sc}	Short circuit current		2.1			2			1.5			1.5			A
$I_{\text {scp }}$	Short circ. peak current	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$	2.5			2.5			2.5			2.5			A

ELECTRICAL CHARACTERISTICS L7900 (continued)

APPLICATION INFORMATION

Fig. 1 - Fixed output regulator

Notes:
(1) To specify an output voltage, substitute voltage value for " XX ".
(2) Required for stability. For value given, capacitor must be solid tantalum. If aluminium electrolitics are used, at least ten times value shown should be selected. C_{i} is required if regulator is located an appreciable distance from power supply filter.
(3) To improve transient response. If large capacitors are used, a high current diode from input to output (1N4001 or similar) should be introduced to protect the device from momentary input short circuit.

Fig. 2 - Split power supply ($\pm 15 \mathrm{~V} / 1 \mathrm{~A}$)

* Against potential latch-up problems.

Fig. 4 - High current negative regulator ($-5 \mathrm{~V} / 4 \mathrm{~A}$ with 5 A current limiting)

Fig. 3 - Circuit for increasing output voltage

$V_{o} \cong V_{x x} \cdot \frac{R 1+R 2}{R 2} \quad \frac{V_{x x}}{R 2}>3 I_{d}$

* C3 optional for improved transient response and ripple rejection.

Fig. 5 - Typical ECL system power supply (-5.2V/4A)

* Optional dropping resistor to reduce the power dissipated in the boost transistor.

LINEAR INTEGRATED CIRCUITS

PRELIMINARY DATA

1.2V to 37V ADJUSTABLE VOLTAGE REGULATOR

The LM 117/LM 217/LM 317 are monolithic integrated circuits in TO-220 and TO-3 packages intended for use as positive adjustable voltage regulator.
They are designed to supply more than 1.5 A of load current with an output voltage adjustable over a 1.2 to 37 V range.

The nominal output voltage is selected by means of only a resistive divider, making the device exceptionally easy to use and eliminating the stocking of many fixed voltage regulators.
Their main features are:

- Output voltage range: 1.2 to 37 V
- Output current in excess of 1.5A
- 0.1% line and load regulation
- Floating operation for high voltages
- Complete series of protections: current limiting, thermal shut-down and SOA control.

ABSOLUTE MAXIMUM RATINGS

V_{i-0}	Input-output differential voltage		40 V	
I_{0}	Output current		Internally limited	
$\mathrm{T}_{\text {op }}$	Operating junction temperature for:	LM 117	-55 to 150	${ }^{\circ} \mathrm{C}$
		LM 217	-25 to 150	${ }^{\circ} \mathrm{C}$
		LM 317	0 to 125	${ }^{\circ} \mathrm{C}$
$\mathrm{P}_{\text {tot }}$	Power dissipation		Internally limited	
$\mathrm{T}_{\text {stg }}$	Storage temperature		-65 to $150{ }^{\circ} \mathrm{C}$	

MECHANICAL DATA

TO-220

TO-3

CONNECTION DIAGRAMS AND ORDERING NUMBERS
(top views)

Type	TO-220	TO-3
LM 117	-	LM 117K
LM 217	-	LM 217K
LM 317	LM 317T	LM 317K

SCHEMATIC DIAGRAM

THERMAL DATA

	TO-3	TO-220	
$R_{\text {th } j \text {-case }}$	Thermal resistance junction-case	\max	$4^{\circ} \mathrm{C} / \mathrm{W}$
$R_{\text {th }} \mathrm{j}$-amb	Thermal resistance junction-ambient	$3^{\circ} \mathrm{C} / \mathrm{W}$	

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{i}}-\mathrm{V}_{0}=5 \mathrm{~V}, \mathrm{I}_{0}=500 \mathrm{~mA}\right.$, unless otherwise specified)

(*) $\mathrm{C}_{\mathrm{ADJ}}$ is connected between pin 1 and ground.
Note - Unless otherwise specified the above specs, apply over the following conditions: LM $117 \mathrm{~T}_{\mathrm{j}}=-55$ to $150^{\circ} \mathrm{C}$; LM $217 \mathrm{~T}_{\mathrm{J}}=-25$ to $150^{\circ} \mathrm{C}$; LM $317 \mathrm{~T}_{\mathrm{j}}=0$ to $125^{\circ} \mathrm{C}$.

Fig. 1 - Output current vs. input-output differential voltage

Fig. 2 - Dropout voltage vs. junction temperature

Fig. 3 - Reference voltage vs. junction temperature

APPLICATION INFORMATION

The LM 117/LM 217/LM 317 provides an internal reference voltage of 1.25 V between the output and adjustment terminals. This is used to set a constant current flow across an external resistor divider (see fig. 4), giving an output voltage V_{o} of:

$$
V_{o}=V_{R E F}\left(1+\frac{R 2}{R 1}\right)+I_{\text {ADJ }} R 2
$$

Fig. 4 - Basic adjustable regulator

The device was designed to minimize the term $\mathrm{I}_{\mathrm{ADJ}}(100 \mu \mathrm{~A} \max)$ and to maintain it very constant with line and load changes. Usually, the error term $I_{A D J}$ R2 can be neglected. To obtain the previous requirement, all the regulator quiescent current is returned to the output terminal, imposing a minimum load current condition. If the load is insufficient, the output voltage will rise.
Since the LM 117/LM 217/LM 317 is a floating regulator and "sees" only the input-to-output differential voltage, supplies of very high voltage with respect to ground can be regulated as long as the maximum input-to-output differential is not exceeded. Furthermore, programmable regulator are easily obtainable and, by connecting a fixed resistor between the adjustment and output, the device can be used as a precision current regulator.
In order to optimise the load regulation, the current set resistor R1 (see fig. 4) should be tied as close as possible to the regulator, while the ground terminal of R2 should be near the ground of the load to provide remote ground sensing.
No external capacitors are required, but performance may be improved with added capacitance as follows:

- An input bypass capacitor of $0.1 \mu \mathrm{~F}$.
- An adjustment terminal to ground $10 \mu \mathrm{~F}$ capacitor to improve the ripple rejection of about 15 dB ($\mathrm{C}_{\mathrm{ADJ}}$).
- An $1 \mu \mathrm{~F}$ tantalum capacitor on the output to improve transient response.

APPLICATION INFORMATION (continued)

In additional to external capacitors, it is good practice to add protection diodes, as shown in fig. 5.
Fig. 5 - Voltage regulator with protection diodes.

D1 protects the device against input short circuit, while D2 protects against output short circuit for capacitors discharging.

Fig. 6 - Slow turn-on 15 V regulator

Fig. 8-5V electronic shut-down regulator

Fig. 7 - Current regulator

Fig. 9 - Digitally selected outputs

APPLICATION INFORMATION (continued)

Fig. 10 - Battery charger (12V).

* R_{S} sets output impedance of charger

$$
Z_{o}=R_{s}\left(1+\frac{R 2}{R 1}\right)
$$

Use of R_{S} allows low charging rates with fully charged battery.

Fig. 11 - Current limited 6V charger.

* R3 sets peak current (0.6A for 1Ω).
** C1 recommended to filter out input transients.

LINEAR INTEGRATED CIRCUITS

LOW POWER QUAD OPERATIONAL AMPLIFIERS

- SINGLE OR SPLIT POWER SUPPLY
- VERY LOW POWER CONSUMPTION
- INPUT COMMON-MODE RANGE INCLUDING GROUND
- LARGE DC VOLTAGE GAIN (100 dB)

The LM 324 consists of four indipendent, high gain, internally frequency compensated opamps specifically designed to operate from a single power supply over a wide range of voltages. Botn in split and in single supply the current drain is independent of the magnitude of the power supply voltage.
In the linear mode the input common-mode voltage range includes ground and the output voltage can also swing to ground, even though operating from only a single power supply voltage.
The LM 324 is available in a standard 14 -lead dual in-line plastic package and in a 14-lead micropackage version for thick or thin film hybrid circuits.

ABSOLUTE MAXIMUM RATINGS

$\mathrm{V}_{\text {s }}$	Supply voltage		32	V
V_{i}	Input voltage (single supply)		-0.3 to 26	V
V_{i}	Differential input voltage		32	V
$\mathrm{P}_{\text {tot }}$	Total power dissipation		400	mW
$\mathrm{T}_{\text {op }}$	Operating temperature for:	LM 2902	0 to 70	${ }^{\circ} \mathrm{C}$
		LM 324	-25 to 85	${ }^{\circ} \mathrm{C}$
		LM 324A	-55 to 125	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	Storage temperature		-65 to 150	${ }^{\circ} \mathrm{C}$

MECHANICAL DATA

CONNECTION DIAGRAM AND ORDERING NUMBERS

(top view)

Type	DIP-14	SO-14
LM 324	LM 324N	LM 324CM
LM 324A	LM 324AN	-
LM 2902	LM 2902N	LM 2902CM

SCHEMATIC DIAGRAM

(one section)

THERMAL DATA	DIP 14	SO 14
$R_{\text {th } j \text {-amb }}$ Thermal resistance junction-ambient	\max	$200^{\circ} \mathrm{C} / \mathrm{W}$

* Measured with the device mounted on a ceramic substrate ($25 \times 16 \times 0.6 \mathrm{~mm}$).

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{s}}=+5 \mathrm{~V}, \mathrm{~T}_{\text {amb }}=-55\right.$ to $125^{\circ} \mathrm{C}$ for the LM 324A, $\mathrm{T}_{\text {amb }}=-25$ to $85^{\circ} \mathrm{C}$ for the LM 324 and $\mathrm{T}_{\mathrm{amb}}=0$ to $70^{\circ} \mathrm{C}$ for the LM 2902, unless otherwise specified)

Parameter		Test conditions		LM 324			LM 324A			LM 2902			Unit		
		Min.	Typ.	Max.	Min.	Typ.	Max.	Min.	Typ.	Max.					
Is	Supply current			$R_{L}=\infty$	$\mathrm{V}_{\mathrm{s}}=30 \mathrm{~V}$		1.5	3		1.5	3		1.5	3	mA
					0.7	1.2		0.7	1.2		0.7	1.2			
	Input bias current	$\mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C}$			45	250		45	100		45	250	nA		
						500			200			500			
$\mathrm{V}_{\text {os }}$	Input offset voltage	$\begin{aligned} & \mathrm{R}_{\mathrm{g}}=0 \\ & \mathrm{~V}_{\mathrm{s}}=5 \mathrm{~V} \text { to } 30 \mathrm{~V} \end{aligned}$	$\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$		± 2	± 7		± 2	± 3		± 2	± 7	mV		
						± 9			± 5			± 10			
$\frac{\Delta V_{\text {os }}}{\Delta T}$	Input offset voltage drift	$\mathrm{R}_{\mathrm{g}}=0$			7			7	30		7		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$		
Ios	Input offset current	$\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$			± 5	± 50		± 5	± 30		± 5	± 50	nA		
						± 150			± 75			± 200			
$\frac{\Delta \mathrm{I}_{\mathrm{os}}}{\Delta \mathrm{~T}}$	Input offset current drift				10			10	300		10		$\mathrm{pA}^{\circ} \mathrm{C}$		
$\mathrm{I}_{\text {sc }}$	Output short circuit to ground current	$\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ (*)			40	60		40	60		40	60	mA		
G_{v}	Large signal open loop voltage gain	$\begin{aligned} & V_{s}=15 \mathrm{~V} \\ & R_{L} \geqslant 2 \mathrm{~K} \Omega \end{aligned}$	$\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$	88	100		88	100			100		dB		
				83			83			83					
	Input common-mode voltage range	$\mathrm{V}_{5}=30 \mathrm{~V}$	$\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$	0		$\mathrm{V}_{5}-1.5$	0		$\mathrm{V}_{\mathrm{s}}-1.5$	0		$\mathrm{V}_{5}-1.5$	V		
				0		$\mathrm{V}_{\mathrm{s}}-2$	0		$V_{5}-2$	0		$\mathrm{V}_{5}-2$			
Vo	Output voltage swing	$\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{~K} \Omega$			$\mathrm{V}_{\mathrm{s}}-1.5$			$\mathrm{v}_{5}-1.5$				v		
			$\mathrm{R}_{\mathrm{L}} \geqslant 10 \mathrm{~K} \Omega$									$\mathrm{V}_{5}-1.5$			
		$\mathrm{V}_{5}=30 \mathrm{~V}$	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{~K} \Omega$	26			26			22			V		
			$\mathrm{R}_{\mathrm{L}} \geqslant 10 \mathrm{~K} \Omega$	27	28		27	28		23	24				
V_{0} sat	Output saturation voltage to ground	$\mathrm{R}_{\mathrm{L}} \leqslant 10 \mathrm{~K} \Omega$			5	20		5	20		5	100	mV		
CMR	Common mode rejection	$\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$		65	70		65	85		50	70		dB		
SVR	Supply voltage rejection	$\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$		65	70		65	100		50	70		dB		
CS	Channel separation	$\begin{aligned} & \mathrm{f}=1 \mathrm{KHz} \text { to } 20 \mathrm{KHz} \\ & \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} \\ & \text { (Input referred) } \end{aligned}$			120			120			120		dB		
$\mathrm{I}_{0}+$	Output source current	$\begin{aligned} & V_{s}=15 \mathrm{~V} \\ & \mathrm{~V}_{1}+1 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{i}}-=0 \mathrm{~V} \end{aligned}$	$\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$	20	40		20	40		20	40		mA		
				10	20		10	20		10	20				
$1_{0}{ }^{-}$	Output sink current	$\begin{array}{ll} \mathrm{V}_{\mathrm{i}^{+}}=0 \mathrm{~V} & \\ \mathrm{~V}_{\mathrm{i}}=1 \mathrm{~V} & \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{o}}=200 \mathrm{mV} & \end{array}$		12	50		12	50					$\mu \mathrm{A}$		
		$\begin{aligned} & V_{i}=1 \mathrm{~V} \\ & V_{i}+=0 \mathrm{~V} \\ & V_{s}=15 \mathrm{~V} \end{aligned}$	$\mathrm{Tamb}=25^{\circ} \mathrm{C}$	10	20		10	20		10	20		mA		
				5	8		5	8		5	8				

[^4]Fig. 1 - Supply current vs. supply voltage

Fig. 4-Open loop frequency response

Fig. 2 - Input voltage range vs. supply voltage

Fig. 5 - Large signal frequency response

Fig. 3 - Output short circuit current vs. ambient temperature

Fig. 6 - Voltage follower pulse response (small signal)

APPLICATION INFORMATION

The LM 324 can operate with a single power supply voltage, has true-differential inputs and remains in the linear mode with an input common-mode voltage of 0 V . The four included op amps work over a wide range of power supply voltage with little change in performance characteristics. At $25^{\circ} \mathrm{C}$ operation is possible down to a minimum supply voltage of 2.3 V .
The input common-mode voltage or either input signal voltage should not be allowed to go negative by more than 0.3 V . The upper end of the common-mode voltage range is $\mathrm{V}_{\mathrm{s}}-1.5 \mathrm{~V}$, but either or both inputs can go to +32 V without damage.
If the voltage at any of the input leads is driven negative ($\mathrm{V}_{\text {in }}<-0.3 \mathrm{~V}$), the collector-base junction of the input PNP transitor becomes forward biased and thereby acts as an input diode clamps (max current: 50 mA). In addition to this diode action, there is also lateral NPN parasitic transistor action on the IC chip. This can cause the output voltage to go to the positive supply voltage level (or to ground for a large overdrive) for the time duration that an input is driven negative. This is not destructive and normal output states will re-establish when the input voltage again returns positive ($\mathrm{V}_{\text {in }}>-0.3 \mathrm{~V}$). The output stage design allows the amplifiers to both source and sink large output currents.
Therefore both NPN and PNP external current boost transistors can be used to extend the power capa-

APPLICATION INFORMATION (continued)

bility of the basic amplifiers. The output voltage needs to raise approximately 1 diode drop above ground to bias the on-chip vertical PNP transistor for output current sinking applications.
Output short circuits either to ground or to the positive power supply should be of short time duration. Units can be destroyed, not as a result of the short circuit current causing metal fusing, but rather due to the large increase in IC chip dissipation which will cause eventual failure due to excessive junction temperature. Putting direct short-circuits on more than one amplifier at a time, the total IC power dissipation will increase to destructive levels, if not properly protected with external dissipation limiting resistors in series with the output leads of the amplifiers. The larger value of output source current which is available at $25^{\circ} \mathrm{C}$ provides a larger output current capability at elevated temperatures (see typical performance characteristics) than a standard IC op amp.
The circuits presented in the following section emphasize operation on a single power supply voltage. If split supplies are used, all the standard op amps configuration can be realised.

TYPICAL SINGLE SUPPLY APPLICATION CIRCUITS $\left(\mathrm{V}_{\mathbf{s}}=5 \mathrm{~V}\right)$

Fig. 7 - DC summing amplifier

where: $\mathrm{V}_{\mathrm{o}}=\mathrm{V}_{1}+\mathrm{V}_{2}-\mathrm{V}_{3}-\mathrm{V}_{4}$ $\left(V_{1}+V_{2}\right)^{\prime} \geqslant\left(V_{3}+V_{4}\right)$ to keep $V_{0}>0 V$

Fig. 8 - Power amplifier

Fig. 9 - LED driver

Fig. 10 - Lamp driver

Fig. 11 - Fixed current sources

TYPICAL SINGLE SUPPLY APPLICATION CIRCUITS (continued)

Fig. 12 - Comparator with Hysteresis

$V_{\text {in } L}=\frac{R 1}{R 1+R 2}\left(V_{O L}-V_{\text {REF }}\right)+V_{\text {REF }}$
$V_{\text {in }} H=\frac{R 1}{R 1+R 2}\left(V_{O H}-V_{\text {REF }}\right)+V_{\text {REF }}$
Hysteresis $=\frac{R 1}{R 1+R 2}\left(V_{O H}-V_{O L}\right)$

Fig. 14 - Driving TTL

Fig. 16 - High input Z, DC differential amplifier

For $\frac{R 1}{R 2}=\frac{R 4}{R 3} \underset{\text { ratio match) }}{(\mathrm{CMRR} \text { depends on this resistor }}$
$V_{O}=1+\frac{R 4}{R 3}\left(V_{2}-V_{1}\right)$

Fig. 13 - Ground referencing a differential input signal

$$
V_{\mathrm{O}}=\mathrm{V}_{\mathrm{R}}
$$

Fig. 15 - Squarewave oscillator

Fig. 17 - Wien bridge oscillator

$$
f_{o}=\frac{1}{2 \pi R C}
$$

TYPICAL SINGLE SUPPLY APPLICATION CIRCUITS (continued)

Fig. 18 - Function generator

$$
f=\frac{R 1+R_{C}}{4 C R_{f} R 1}: R 3=\frac{R 2 R 1}{R 2+R 1}
$$

Fig. 19 - Bi -Quad filter

$f_{o}=\frac{1}{2 \pi R C} ; R 1=Q R ; R 2=\frac{R 1}{G_{B P}} ;$
$V_{\text {ref }}=\frac{1}{2} \quad V_{s} ; \quad R 3=G_{N} R 2 ; C 1=10 C$
Example:
$\begin{array}{ll}\mathrm{f}_{\mathrm{O}}=1 \mathrm{KHz} & \mathrm{R}=160 \mathrm{~K} \Omega \\ \mathrm{Q}=10 & \mathrm{C}=1 \mathrm{nF} \\ \mathrm{G}_{\mathrm{BP}}=1 & \mathrm{R} 1=1.6 \mathrm{M} \Omega \\ \mathrm{G}_{\mathrm{N}}=1 & \mathrm{R} 2=1.6 \mathrm{M} \Omega \\ & \\ \text { Where: } & \mathrm{G}_{\mathrm{BP}}=\text { Center Frequency Gain } \\ & \mathrm{G}_{\mathrm{N}}=\text { Passband Notch Gain }\end{array}$

LINEAR INTEGRATED CIRCUITS

PRELIMINARY DATA

QUAD VOLTAGE COMPARATOR

The LM 339 and the LM 339A are monolithic integrated circuits in a 14-lead dual in-line plastic package and in a 14-lead micropackage. They consists of four independent precision voltage comparators and are specially designed to offer a versatility as high as possible; application areas include limit comparators, A/D converters, waveforms generators, high voltage logic gates and so on. Furthermore, the open collector output stage provides easy interfacing with all types of logic circuitry.
The LM 339/LM 339A main features are:

- Wide supply range (2 to 36 V)
- Single or split supply operation
- Very low current consumption (0.8 mA , regardless of supply voltage)
- Ground input compatibility
- Output voltage compatible with TTL, DTL, ECL, MOS and CMOS logic systems
- Output short circuit to ground continuous

ABSOLUTE MAXIMUM RATINGS

	Supply voltage	± 18 or +36	V
$\mathrm{~V}_{\mathrm{s}}$	Input voltage range	-0.3 to 36	V
$\mathrm{~V}_{1}$	Differential input voltage	36	V
$\mathrm{~V}_{\mathrm{i}}$	Input current $\left(\mathrm{V}_{\text {in }}<-0.3 \mathrm{~V}_{\text {dc }}\right)$	50	mA
I_{i}	In	600	mW
$\mathrm{P}_{\text {tot }}$	Total power dissipation at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$	0 to 70	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {op }}$	Operating temperature	-65 to 150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	Storage and junction temperature		

MECHANICAL DATA
Dimensions in mm

SO-14

CONNECTION DIAGRAM AND ORDERING NUMBERS

(top view)

Type	DIP14	SO-14
LM 339	LM 339N	LM 339CM
LM 339A	LM 339AN	-

SCHEMATIC DIAGRAM

(each section)

THERMAL DATA	DIP-14	SO-14	
$\mathrm{R}_{\text {th j-amb }}$ Thermal resistance junction-ambient	\max	$200^{\circ} \mathrm{C} / \mathrm{W}$	$200^{\circ} \mathrm{C} / \mathrm{W}^{*}$

[^5]ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{s}}=+5 \mathrm{~V}\right.$ for the LM 339; $\mathrm{V}_{\mathrm{s}}=+15 \mathrm{~V}$ for the LM 339A; $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$, unless otherwise specified)

Parameter		Test conditions		LM 339A			L339			Unit		
		Min.	Typ.	Max.	Min.	Typ.	Max.					
$\mathrm{V}_{\text {os }}$	Input offset voltage			At out.switch point, $V_{0} \cong 1.4 \mathrm{~V} ; \mathrm{R}_{\mathrm{g}}=0$ $\mathrm{V}_{\mathrm{REF}}=1.4 \mathrm{~V}_{\mathrm{dc}}$			± 1	± 2		± 2	± 5	mV
		$\mathrm{T}_{\mathrm{amb}}=0$ to $70^{\circ} \mathrm{C}$				± 4			± 9			
I_{b}	Input bias current (1)	Output in linear range			25	250		25	250	nA		
			$\mathrm{T}_{\mathrm{amb}}=0$ to $70^{\circ} \mathrm{C}$			400			400			
Ios	Input offset current				± 5	± 50		± 5	± 50	$n \mathrm{~A}$		
			$\mathrm{T}_{\mathrm{amb}}=0$ to $70^{\circ} \mathrm{C}$			± 150			± 150			
Input CommonMode voltage range (2)(2)				0		$\mathrm{V}_{5}-1.5$	0		$\mathrm{V}_{\mathrm{s}}-1.5$	V		
			$\mathrm{T}_{\mathrm{amb}}=0$ to $70^{\circ} \mathrm{C}$	0		$\mathrm{V}_{\mathrm{s}}-2$	0		$\mathrm{V}_{\mathrm{s}}-2$			
I_{5}	Supply current	$\mathrm{R}_{\mathrm{L}}=\infty$			0.8	2		0,8	2	mA		
G_{v}	Voltage gain	$\mathrm{R}_{\mathrm{L}} \geqslant 15 \mathrm{~K} \Omega$		94	106			106		dB		
	Large signal response time	$\begin{aligned} & V_{I N}=\text { TTL logic swing; } \\ & V_{R E F}=+1.4 \mathrm{~V} ; R_{L}=5.1 \mathrm{~K} \Omega \\ & V_{R L}=5 \mathrm{~V} \end{aligned}$			300			300		nsec		
	Response time (3)	$\mathrm{V}_{\mathrm{RL}}=5 \mathrm{~V} ; \quad \mathrm{R}_{\mathrm{L}}=5.1 \mathrm{~K} \Omega$			1.3			1.3		$\mu \mathrm{sec}$		
Io	Output sink current	$\begin{aligned} & V_{I N(-) \geqslant 1 \mathrm{~V} ; \quad V_{1 N(+)}=0 \mathrm{~V} ;}^{V_{0} \leqslant 1.5 \mathrm{~V}} \end{aligned}$		6	16		6	16		mA		
$\mathrm{V}_{\text {sat }}$	Output saturation voltage	$\begin{aligned} & V_{\text {IN }(-) \geqslant 1 \mathrm{~V}} \\ & V_{1 N(+)}=0 \mathrm{~V} \\ & \mathrm{I}_{\sin k} \leqslant 4 \mathrm{~mA} \\ & \hline \end{aligned}$			250	500		250	500	mV		
			$\mathrm{T}_{\mathrm{amb}}=0$ to $70^{\circ} \mathrm{C}$			700			700			
Io leak	Output leakage current	$\begin{aligned} & V_{(N(+)} \geqslant 1 \mathrm{~V} \\ & V_{\text {(N }(-)}=0 \mathrm{~V} \end{aligned}$	$\mathrm{V}_{\mathrm{O}}=5 \mathrm{~V}$		0.1			0.1		$n A$		
			$\begin{aligned} & T_{\mathrm{amb}}=0 \text { to } 70^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{o}}=30 \mathrm{~V} \end{aligned}$			1			1	$\mu \mathrm{A}$		
	Differential input voltage	All $\mathrm{V}_{\text {IN }} \geqslant 0 \mathrm{~V}$ (or $-\mathrm{V}_{\mathrm{s}}$ if split supply is used); $\mathrm{T}_{\mathrm{amb}}=0$ to $70^{\circ} \mathrm{C}$				36			36	V		

Notes: (1) The direction of the current is out of the IC due to the PNP input stage. This current is essentially constant, independent of the state of the output, so no loading change exists on the reference or input lines.
(2) If either input of any comparators goes more negative than 0.3 V below ground, a parasitic transistor turns on causing high input current and possible faulty outputs. This condition is not destructive providing the input current is limited to less than 50 mA .
(3) The response time specified is for a 100 mV input step with 5 mV overdrive. For larger overdrive signals 300 nsec can be obtained.

APPLICATION INFORMATION

The LM 339 includes four high gain, wide bandwidth devices which, like most comparators, can easily oscillate if the output is inadvertently allowed to capacitively couple to the inputs via stray capacitance. That occurs during the output voltage transitions, when the comparator changes state.
To minimize this problem, PC board layout should be designed to reduce stray input-output coupling; reducing the input resistors to less than $10 \mathrm{~K} \Omega$ reduces the feedback signal levels and finally, adding even a small amount (1 to 10 mV) of positive feedback (hysteresis) causes such a rapid transition that oscillations due to stray feedback are not possible.
It is good design practice to ground all unused pins.
The differential input voltage may be larger than positive supply without damaging the device. Note that voltages more negative than -0.3 V should not be used: an input clamping diode can be used as protection.

The output of the LM 339 is the uncommitted collector of a NPN transistor with grounded emitter. This allows the device to be used like any open-collector gate providing the OR-wide facility.
The output sink current capability is approximately 16 mA ; if this limit is exceeded, the output transistor will come out of saturation and the output voltage will rise very rapidly.
Under this limit, the output saturation voltage is limited by the approximatively $60 \Omega r_{\text {sat }}$ of the output transistor.

Fig. 1 - Basic comparator

Fig. 2 - Non-inverting comparator with Hysteresis

Fig. 3 - Inverting comparator with Hysteresis

Fig. 4 - Driving C/MOS

Fig. 5 - Driving TTL

APPLICATION INFORMATION (continued)

Fig. 6 - AND gate

Fig. 8 - Large fan-in AND gate

Fig. 10 - Time delay generator

Fig. 7 - OR gate

Fig. 9 - Squarewave oscillator

Fig. 11 - ORing the outputs

APPLICATION INFORMATION (continued)

Fig. 12 - Peak audio level display

Fig. 14 - Zero crossing detector (single supply)

D1 prevents input from going negative by more than 0.6 V :

$$
R 1+R 2=R 3
$$

$$
R 3 \leqslant \frac{R 5}{10} \text { for smaller error in zero crossing }
$$

Fig. 13 - PC Board and component layout of the circuit of fig. 12

Fig. 15 - Zero crossing detector (split supplies)

LINEAR INTEGRATED CIRCUIT

BALANCED MODULATOR

- SINGLE OR DUAL SUPPLY OPERATION
- LOW POWER CONSUMPTION
- LOW CARRIER LEAKAGE
- LOW DISTORTION
- LOW NOISE

The LSO25 is a low noise linear integrated circuit, intended for use as a channel modulator and demodulator in FDM telephone equipments and as analogue AC and DC multiplier in industrial and professional applications. It features low quiescent power consumption, low distortion and intermodulation. It shows a typical carrier leakage better than 85 dB throughtout the audio bandwidth. The LSO25 is available in TO-100 metal case, while the hermetic gold chip (8000 series) is available in SO-14 (14-lead plastic micropackage). This last version is particularly suitable for professional and telecom applications wherever very high MTBF are required.

ABSOLUTE	MAXIMUM RATINGS	TO-100	μ package
V_{s}	Supply voltage	30 V	
$\triangle V_{i}$	Differential input voltage	$\pm 5 \mathrm{~V}$	
$\mathrm{~T}_{\mathrm{op}}$	Operating temperature	-25 to $85^{\circ} \mathrm{C}$	
$\mathrm{P}_{\text {tot }}$	Power dissipation at $\mathrm{T}_{\mathrm{amb}}=70^{\circ} \mathrm{C}$	520 mW	400 mW
$\mathrm{~T}_{\text {stg }}$	Storage temperature	-65 to $150^{\circ} \mathrm{C}$	-55 to $150^{\circ} \mathrm{C}$

MECHANICAL DATA

TO-100

SO-14

CONNECTION DIAGRAMS AND ORDERING NUMBERS

(top views)

Type	TO-100	SO-14
LS 025	LS 025T	LS025M
LS 8025		LS 8025M

SCHEMATIC DIAGRAM (The pin numbers refer to the μ package version, while the numbers in brackets refer to the TO-100 version)

THERMAL DATA	TO-100	SO-14	
$R_{\text {th j-amb }}$ Thermal resistance junction ambient	\max	$155^{\circ} \mathrm{C} / \mathrm{W}$	$200^{*}{ }^{\circ} \mathrm{C} / \mathrm{W}$

[^6]ELECTRICAL CHARACTERISTICS (Referred to the circuit of fig. $1 ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ unless otherwise specified. The pins correspond to the μ package version)

	Parameter	Test conditions	Min.	Typ.	Max.	Unit
$V_{\text {s }}$	Supply voltage range		-12		-30	V
I_{s}	Supply current			2	2.5	mA
I_{b}	Input bias current	Pins 14-1 Pins 14-2 Pins 8-9		0.7 0.7 1.4	2 2 4	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \\ & \mu \mathrm{~A} \end{aligned}$
ΔI	Input offset current	Pins 14-1 Pins 14-2 Pins 8-9		$\begin{gathered} 50 \\ 70 \\ 100 \end{gathered}$		nA nA nA
	Positive input common mode voltage			4.5		V
	Negative input common mode voltage			-8		V
V_{0}	DC output voltage (pin 12)		-3.2	-3.8	-4.6	V
ΔV_{0}	Differential output voltage (pins 11-12)			25	100	mV
$V_{\text {ref }}$	Input biasing reference voltage (pin 6)			-7.5		V
$\mathrm{R}_{\mathbf{i}}$	Input resistance	Pins 14-1 Pins 14-2 Pins 8-9		$\begin{gathered} 30 \\ 300 \\ 150 \end{gathered}$		k Ω $k \Omega$ $k \Omega$
R_{0}	Output resistance	$\mathrm{f}=1 \mathrm{kHz}$		3	10	Ω
V_{0}	Output voltage swing		1	1.3		Vpp
CMR	Common mode rejection	$\begin{aligned} & \text { CM signal (pins 14-1) } \\ & V=700 \mathrm{mVrms} \mathrm{f}_{1}=10 \mathrm{kHz} \\ & \text { Diff. signal (pins } 8-9 \text {) } \\ & V=350 \mathrm{mVrms} \mathrm{f}_{2}=40 \mathrm{kHz} \end{aligned}$		98		dB
		CM signal (pins 14-2) $V=700 \mathrm{mVrms} \mathrm{f}_{1}=10 \mathrm{kHz}$ Diff. signal (pins 8-9) $\mathrm{V}=350 \mathrm{mVrms} \mathrm{f}_{2}=40 \mathrm{kHz}$		86		dB
		CM signal (pins 8-9) $V=350 \mathrm{mVrms} f_{1}=10 \mathrm{kHz}$ Diff. signal (pins 14-1) $V=175 \mathrm{mVrms} f_{2}=40 \mathrm{kHz}$		80		dB
SVR	Positive supply voltage rejection	$\mathrm{f}=1 \mathrm{kHz}$		33		dB
SVR	Negative supply voltage rejection			80		dB

ELECTRICAL CHARACTERISTICS (continued)

	Parameter	Test conditions	Min.	Typ.	Max.	Unit
K	Scale factor			3.2		V^{-1}
G_{c}	Conversion gain		4.5	5	5.5	dB
$\Delta \mathrm{G}_{\mathrm{c}}$	Conversion gain change	$\mathrm{T}_{\mathrm{amb}}=10$ to $50^{\circ} \mathrm{C}$		± 0.1		dB
	Carrier leakage	$\mathrm{V}_{\mathrm{m}}=0$	-35	-50		dBv
$\frac{V_{f m}}{\left.V_{\left(f_{c^{ \pm}}\right.} f_{m}\right)}$	Modulating signal leakage		-35	-50		dBmo
$\frac{V_{\left(2 f_{m}\right)}}{V_{\left(f_{c^{ \pm}} f_{m}\right)}}$	2nd harmonic modulating signal leakage			-75		dBmo
$\frac{V_{\left(f_{c^{ \pm 2}} f_{m}\right)}}{\left.V_{\left(f_{c^{ \pm f}}\right.}\right)}$	2nd harmonic distortion		-60	-75		dBmo
$\frac{\left.V_{2(f} c^{ \pm f} m\right)}{\left.V_{\left(f_{c} \pm f m\right.}\right)}$	2nd harmonic distortion		-55	-80		dBmo
$\frac{V_{\left(f_{c} \pm 3 f_{m}\right)}}{\left.V_{\left(f_{c} c^{ \pm f}\right.}\right)}$	3rd harmonic distortion		-60	-79		dBmo
	Low frequency thermal noise	$\begin{array}{ll} V_{\mathrm{m}}=0 \\ =100 \mathrm{~Hz} \end{array} \quad \mathrm{f}=1 \mathrm{kHz}$	-115	-125		dBv
	High frequency thermal noise	$\begin{array}{ll} V_{m}=0 & f=30 \mathrm{kHz} \\ B=100 \mathrm{~Hz} & \end{array}$		-127		dBv

Fig. 1 - Test and application circuit of modulator with single supply voltage

Working conditions

$V_{s}=-20 \mathrm{~V}$
$\mathrm{f}_{\mathrm{c}}=130 \mathrm{kHz}$
$f_{m}=25 \mathrm{kHz}$
$V_{o}=-15 d B v\left(f_{c} \pm f_{m}\right)$
$V_{c}=-13 \mathrm{dBv}$
$R_{L} \equiv 600 \Omega$

Fig. 2 - Carrier leakage vs. modulation signal input offset

Fig. 3 - Conversion gain vs. frequency

Fig. 4 - Distortion vs. output level

Fig. 6 - Carrier leakage vs. frequency

APPLICATION INFORMATION

Fig. 7 - DC multiplier

Application diagram of DC multiplier, have a scale factor $K=0.1$. Typical linearity and leakage errors are less than 1%.
The input voltage range is $\pm 10 \mathrm{~V}$.

Definition of units

dBm : power level ($10 \lg \frac{P_{2}}{P_{1}}$) is expressed in dBm when P_{1} is 1 mW , therefore $0 \mathrm{dBm}=1 \mathrm{~mW}$.
dBmo : the power is expressed in dBmo when referred to an established power level in the circuit, generally the output signal level.
e.g.: if the output level is -15 dBm and this level is chosen as reference, then $0 \mathrm{dBmo}=-15$ dBm ; if another signal, i.e. the distortion measured at the same point of the circuit, is -90 dBm , then the distortion is $\mathbf{- 7 5} \mathrm{dBmo}$.
$\mathrm{dBv} \quad: 20 \lg \frac{\mathrm{~V}_{2}}{\mathrm{~V}_{1}}$ when $\mathrm{V}_{1}=775 \mathrm{mVrms}$.

Definition of terms

Common mode rejection: $\mathrm{CMR}=20 \lg \frac{\mathrm{~V}_{\mathrm{CM}} \mathrm{G}}{\mathrm{V}_{\mathrm{O}}}$
ratio

Scale factor

$$
\text { with } \begin{aligned}
G & =\text { Conversion gain with specified circuit conditions } \\
V_{C M} & =\text { Common mode signal level } \\
V_{0} & =\text { Output signal level at frequency }=f_{2} \pm f_{1}
\end{aligned}
$$

$: K=\frac{V_{o}}{V_{x} \cdot V_{y}}$
with $V_{x}=$ voltage input (pins 14-2)
$V_{y}=$ voltage input (pins 8-9)

APPLICATION INFORMATION (continued)

Conversion gain
$: G_{c}=20 \lg \frac{V_{o}\left(f_{c} \pm f_{m}\right)}{V_{i}\left(f_{m}\right)}$
Carrier leakage \quad : is defined as the output voltage at carrier frequency with only the carrier applied to the input (modulating voltage $=0$)
Modulating signal leakage: is defined as the output voltage, at modulating frequency, referred to fundamental carrier sidebands
M.S.L. $=20 \lg \frac{V_{o}\left(f_{m}\right)}{V_{o}\left(f_{c} \pm f_{m}\right)}$

Output spectrum vs. frequency

LINEAR INTEGRATED CIRCUIT

CHANNEL AMPLIFIER

The LS 045 is a monolithic integrated circuit intended for use as channel amplifier in FDM and PCM telephone equipment. It features low quiescent power consumption, low distortion, high gain. The LS 045 is available in TO-99 metal case, while the hermetic gold chip (8000 series) is available in SO-8 (8-lead plastic micropackage). This last version is particularly suitable for professional and telecom applications wherever very high MTTF are required.

(1) For supply voltages less than $\pm 12 \mathrm{~V}$, input voltage is equal to supply voltage.
(2) The short circuit duration is limited by thermal dissipation.

MECHANICAL DATA
Dimensions in mm

CONNECTION DIAGRAMS AND ORDERING NUMBERS (top views)

Type	TO-99	SO-8
LS 045	LS 045T	LS045M
LS 8045		LS 8045M

SCHEMATIC DIAGRAM

THERMAL DATA	TO-99	SO-8	
$R_{\text {th j-amb }}$ Thermal resistance junction-ambient	\max	$155^{\circ} \mathrm{C} / \mathrm{W}$	$200^{*}{ }^{\circ} \mathrm{C} / \mathrm{W}$

* The thermal resistance is measured with the device mounted on a ceramic substrate ($25 \times 16 \times 0.6 \mathrm{~mm}$).

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{s}}=-20 \mathrm{~V}, \mathrm{~V}_{\mathrm{bal}}=-10 \mathrm{~V}, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}\right.$ unless otherwise specified. For $\mathrm{V}_{\text {bal }}$ see fig. 7)

Parameter		Test conditions		Min.	Typ.	Max.	Unit
$\mathrm{V}_{\text {os }}$	Input offset voltage	$\mathrm{R}_{\mathrm{g}}=10 \mathrm{k} \Omega$			± 1.5	± 10	mV
I_{b}	Input bias current				100	750	nA
$\mathrm{R}_{\mathbf{i}}$	Input resistance				2		$\mathrm{M} \Omega$
R_{0}	Output resistance				75		Ω
G_{V}	Open loop voltage gain	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$	$f=10 \mathrm{~Hz}$	83	105		dB
d	Distortion	$\begin{aligned} & f=1 \mathrm{kHz} \\ & \mathrm{Z}_{\mathrm{L} \text { eq }}=470 \Omega \end{aligned}$	$\begin{aligned} & \mathrm{G}_{\mathrm{V}}=40 \mathrm{~dB} \\ & \mathrm{P}_{\mathrm{o}}=-5 \mathrm{dBm} \\ & \mathrm{P}_{\mathrm{O}}=8 \mathrm{dBm} \end{aligned}$		$\begin{aligned} & 0.15 \\ & 0.15 \end{aligned}$	$\begin{aligned} & 0.3 \\ & 0.3 \end{aligned}$	$\begin{aligned} & \% \\ & \% \end{aligned}$
$P_{\text {tot }}$	Quiescent power dissipation	$\mathrm{P}_{\mathrm{o}}=0$			20	30	mW
P_{0}	Maximum output power	$\begin{aligned} & d=1 \% \\ & G_{V}=40 \mathrm{~dB} \end{aligned}$	$Z_{\text {Leq }}=470 \Omega$	14	16		dBm
P_{n}	Noise power referred to input	$\begin{aligned} & \mathrm{R}_{\mathrm{g}} \leqslant 1.5 \mathrm{k} \Omega \\ & \mathrm{G}_{\mathrm{V}}=40 \mathrm{~dB} \end{aligned}$	$\begin{aligned} & f=1 \mathrm{kHz} \\ & B=100 \mathrm{~Hz} \end{aligned}$			-120.5	dBm
SVR	Supply voltage rejection referred to output	$\mathrm{f}=1 \mathrm{kHz}$	$\mathrm{G}_{\mathrm{V}}=40 \mathrm{~dB}$	30	36		dB

THE FOLLOWING SPECIFICATION APPLY FOR $\mathbf{T}_{\text {amb }}=\mathbf{- 2 5}$ to $85^{\circ} \mathbf{C}$

$V_{o s} \quad$ Input offset voltage	$R_{g}=10 \mathrm{k} \Omega$			± 15	mV
$\mathrm{I}_{\mathrm{b}} \quad$ Input bias current				1.5	$\mu \mathrm{~A}$
$\mathrm{G}_{\mathrm{V}} \quad$ Open loop voltage gain	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$	78		dB	

Fig. 1 - Quiescent power dissipation vs. ambient temperature

Fig. 2 -Quiescent power dissipation vs. supply voltage

Fig. 3 - Voltage gain (open loop) vs. frequency

Fig. 4 - Maximum output power vs. load resistance

Fig. 5 - Distortion vs. output power

Fig. 6 - Transient response (unity gain)

APPLICATION INFORMATION

Fig. 7 - Channel amplifier circuit

Fig. 8 - Return loss vs. frequency

Fig. 9 - Return loss vs. voltage gain

LINEAR INTEGRATED CIRCUITS

HIGH PERFORMANCE OPERATIONAL AMPLIFIERS

- GUARANTED DRIFT CHARACTERISTICS
- SLEW RATE OF 10V $/ \mu \mathrm{s}$ AS A SUMMING AMPLIFIER
- UNITY GAIN PHASE COMPENSATION WITH A SINGLE 30 pF CAPACITOR
- 3 mV MAX OFFSET VOLTAGE OVER TEMPERATURE RANGE
- 100 nA MAX INPUT BIAS CURRENT OVER TEMPERATURE RANGE

The LS 101 series consists of high performance operational amplifiers, intended for a wide range of analog applications, where tailoring of frequency characteristics is desirable. The LS 101 series is short circuit protected and has the same pin configuration as the LS 141 and LS 148. Absence of latch-up and high common mode voltage range make the LS 101 series ideal for use as voltage followers. In addition, the LS 101 series provides better accuracy and lower noise in high impedance circuitry: the low input current also makes it particularly well suited for long interval integrators, timers, sample and hold circuits and low frequency generators. The LS 101 series is also available with hermetic gold chip (8000 series), particularly suitable for professional and telecom applications, wherever very high MTBF are required.

ABSOLUTE MAXIMUM RATINGS		TO-99	Minidip	μ package
V_{5}	Supply voltage for LS 101/101A/201/201A for LS 301A		$\begin{aligned} & \pm 22 \mathrm{~V} \\ & \pm 18 \mathrm{~V} \end{aligned}$	
$V_{i}(1)$	Input voltage		$\pm 15 \mathrm{~V}$	
ΔV_{i}	Differential input voltage		$\pm 30 \mathrm{~V}$	
$\mathrm{T}_{\text {op }}$	Operating temperature for LS 101/LS 101A for LS 201A		$\begin{aligned} & -55 \text { to } 125^{\circ} \mathrm{C} \\ & -25 \text { to } 85^{\circ} \mathrm{C} \end{aligned}$	
	for LS 201/LS 301A Output short circuit duration (2)		0 to $70^{\circ} \mathrm{C}$ indefinite	
$\mathrm{P}_{\text {tot }}$	Power dissipation at $\mathrm{Tamb}^{\text {a }}=70^{\circ} \mathrm{C}$	520 mW	665 mW	400 mW
$\mathrm{T}_{\text {stg }}$	Storage temperature	-65 to $150{ }^{\circ} \mathrm{C}$	-55 to $150^{\circ} \mathrm{C}$	-55 to $150^{\circ} \mathrm{C}$

(1) For supply voltage less than $\pm 15 \mathrm{~V}$, input voltage is equal to the supply voltage.
(2) The short circuit duration is limited by thermal dissipation.

MECHANICAL DATA

CONNECTION DIAGRAMS AND ORDERING NUMBERS

 (top views)

Type	TO-99	Minidip	SO-8
LS 101	LS 101T	-	-
LS 101A	LS 101AT	-	-
LS 201	LS 201T	LS 201B	LS 201M
LS 201A	LS 201AT	-	-
LS 301A	LS 301AT	LS 301AB	LS 301AM
LS 8101	-	-	LS 8101M
LS 8101A	-	-	LS 8101AM
LS 8201	-	-	LS 8201M
LS 8201A	-	-	LS 8201AM
LS 8301A	-	-	LS 8301AM

SCHEMATIC DIAGRAM

THERMAL DATA	TO-99	Minidip	SO-8	
$\mathrm{R}_{\text {th j-amb }}$ Thermal resistance junction-ambient	\max	$155^{\circ} \mathrm{C} / \mathrm{W}$	$120^{\circ} \mathrm{C} / \mathrm{W}$	$200^{*}{ }^{\circ} \mathrm{C} / \mathrm{W}$

* Measured with the device mounted on a ceramic substrate ($25 \times 16 \times 0.6 \mathrm{~mm}$)

ELECTRICAL CHARACTERISTICS* for LS 101 and LS 201

	Parameter	Test conditions	LS 101			LS 201			Unit
			Min.	Typ.	Max.	Min.	Typ.	Max.	
$\mathrm{V}_{\text {os }}$	Input offset voltage	$\begin{aligned} & \mathrm{R}_{\mathrm{g}} \leqslant 10 \mathrm{k} \Omega \\ & \mathrm{R}_{\mathrm{g}} \leqslant 10 \mathrm{k} \Omega \quad \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} \end{aligned}$		1	$\begin{aligned} & 6 \\ & 5 \end{aligned}$		2	$\begin{aligned} & 10 \\ & 7.5 \end{aligned}$	$\begin{aligned} & m V \\ & m V \end{aligned}$
$\frac{\Delta V_{\text {os }}}{\Delta T}$	Average temperat. coefficient of input offset voltage	$\begin{aligned} & R_{g} \leqslant 10 \mathrm{k} \Omega \\ & R_{\mathrm{g}} \leqslant 50 \Omega \end{aligned}$		6 3			$\begin{gathered} 10 \\ 6 \end{gathered}$		$\begin{aligned} & \mu \mathrm{V} /{ }^{\circ} \mathrm{C} \\ & \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \end{aligned}$
Ios	Input offset current	$\begin{aligned} & T_{a m b}=25^{\circ} C \\ & T_{a m b}=T_{\max } \\ & T_{a m b}=T_{\min } \end{aligned}$		$\begin{gathered} 40 \\ 10 \\ 100 \end{gathered}$	$\begin{aligned} & 200 \\ & 200 \\ & 500 \end{aligned}$		$\begin{gathered} 100 \\ 50 \\ 150 \end{gathered}$	$\begin{aligned} & 500 \\ & 400 \\ & 750 \end{aligned}$	nA nA nA
I_{b}	Input bias current	$\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$		0.12	$\begin{aligned} & 1.5 \\ & 0.5 \end{aligned}$		0.25	$\begin{gathered} 2 \\ 1.5 \end{gathered}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$
R_{i}	Input resistance	$\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$	0.3	0.8		0.1	0.4		$\mathrm{M} \Omega$
V_{i}	Input voltage range	$\mathrm{V}_{\mathrm{s}}= \pm 15 \mathrm{~V}$	± 12			± 12			V
G_{v}	Large signal voltage gain	$\begin{aligned} & V_{s}= \pm 15 \mathrm{~V} \quad V_{0}= \pm 10 \mathrm{~V} \\ & R_{\mathrm{L}} \geqslant 2 \mathrm{k} \Omega \end{aligned}$	88			83			dB
		$\begin{array}{ll} V_{\mathrm{s}}= \pm 15 \mathrm{~V} & \mathrm{~V}_{\mathrm{o}}= \pm 10 \mathrm{~V} \\ \mathrm{R}_{\mathrm{L}} \geqslant 2 \mathrm{k} \Omega & \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} \end{array}$	94	104		86	103		dB
CMR	Common mode rejection	$\mathrm{R}_{\mathrm{g}} \leqslant 10 \mathrm{k} \Omega$	70	90		65	90		dB
SVR	Supply voltage rejection	$\mathrm{R}_{\mathrm{g}} \leqslant 10 \mathrm{k} \Omega$	70	90		70	90		dB
V_{0}	Output voltage swing	$\begin{aligned} & V_{\mathrm{s}}= \pm 15 \mathrm{~V} \\ & R_{\mathrm{L}}=10 \mathrm{k} \Omega \\ & R_{\mathrm{L}}=2 \mathrm{k} \Omega \end{aligned}$	$\begin{aligned} & \pm 12 \\ & \pm 10 \end{aligned}$	$\begin{aligned} & \pm 14 \\ & \pm 13 \end{aligned}$		$\begin{aligned} & \pm 12 \\ & \pm 10 \end{aligned}$	$\begin{aligned} & \pm 14 \\ & \pm 13 \end{aligned}$		$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
I_{s}	Supply current	$\mathrm{V}_{\mathrm{s}} \pm 20 \mathrm{~V}$		1.8	3		1.8	3	mA

* These specifications, unless otherwise specified, apply for $\mathrm{C}_{1}=30 \mathrm{pF}, \mathrm{V}_{\mathrm{s}}= \pm 5$ to $\pm 20 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{amb}}=-55$ to $125^{\circ} \mathrm{C}$ (LS 101/LS 101A), $\mathrm{T}_{\mathrm{amb}}=-25$ to $85^{\circ} \mathrm{C}$ (LS 201A) and $\mathrm{T}_{\mathrm{amb}}=0$ to $70^{\circ} \mathrm{C}$ (LS 201); $\mathrm{V}_{\mathrm{s}}= \pm 5$ to $\pm 15 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{amb}}=0$ to $70^{\circ} \mathrm{C}$ (LS 301A).

ELECTRICAL CHARACTERISTICS* for LS 101A, LS 201A and LS 301A

Parameter		Test conditions	LS 101A/LS 201A			LS 301A			Unit	
		Min.	Typ.	Max.	Min.	Typ.	Max.			
$V_{\text {os }}$	Input offset voltage		$\begin{aligned} & \mathrm{R}_{\mathrm{g}} \leqslant 10 \mathrm{k} \Omega \\ & \mathrm{R}_{\mathrm{g}} \leqslant 10 \mathrm{k} \Omega \quad \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} \end{aligned}$		0.7	$\begin{aligned} & 3 \\ & 2 \end{aligned}$		2	$\begin{aligned} & 10 \\ & 7.5 \end{aligned}$	$\begin{aligned} & m V \\ & m V \end{aligned}$
$\frac{\Delta V_{\mathrm{os}}}{\Delta T}$	Average temperat. coefficient of input offset voltage	$\mathrm{R}_{\mathrm{g}} \leqslant 10 \mathrm{k} \Omega$		3	15		6	30	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$	
los	Input offset current	$\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$		1.5	$\begin{aligned} & 20 \\ & 10 \end{aligned}$		3	$\begin{aligned} & 70 \\ & 50 \end{aligned}$	$\begin{aligned} & \mathrm{nA} \\ & \mathrm{nA} \end{aligned}$	
$\frac{\Delta I_{\text {os }}}{\Delta T}$	Average temperat. coefficient of input offset current	$\begin{aligned} & \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} \text { to } \mathrm{T}_{\max } \\ & \mathrm{T}_{\mathrm{amb}}=\mathrm{T}_{\min } \text { to } 25^{\circ} \mathrm{C} \end{aligned}$		$\begin{aligned} & 0.01 \\ & 0.02 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.2 \end{aligned}$		$\begin{aligned} & 0.01 \\ & 0.02 \end{aligned}$	$\begin{aligned} & 0.3 \\ & 0.6 \end{aligned}$	$\begin{aligned} & \mathrm{nA} /{ }^{\circ} \mathrm{C} \\ & \mathrm{nA} \mathrm{l}^{\circ} \mathrm{C} \end{aligned}$	
I_{b}	Input bias current	$\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$		30	$\begin{aligned} & 0.1 \\ & 75 \end{aligned}$		70	$\begin{aligned} & 0.3 \\ & 250 \end{aligned}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mathrm{nA} \end{aligned}$	
$\mathrm{R}_{\mathbf{i}}$	Input resistance	$\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$	1.5	4		0.5	2		$\mathrm{M} \Omega$	
V_{i}	Input voltage range	$\begin{aligned} & V_{s}= \pm 20 \mathrm{~V} \\ & V_{\mathrm{s}}= \pm 15 \mathrm{~V} \end{aligned}$	± 15			± 12			$\begin{aligned} & v \\ & v \end{aligned}$	
G_{v}	Large signal voltage gain	$\begin{array}{ll} V_{s}= \pm 15 \mathrm{~V} & V_{0}= \pm 10 \mathrm{~V} \\ R_{\mathrm{L}} \geqslant 2 \mathrm{k} \Omega & \end{array}$	88			83			dB	
		$\begin{array}{ll} V_{\mathrm{S}}= \pm 15 \mathrm{~V} & \mathrm{~V}_{\mathrm{o}}= \pm 10 \mathrm{~V} \\ R_{\mathrm{L}} \geqslant 2 \mathrm{k} \Omega & \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} \end{array}$	94	104		86	104		dB	
CMR	Common mode rejection	$\mathrm{R}_{\mathrm{g}} \leqslant 10 \mathrm{k} \Omega$	80	96		70	90		dB	
SVR	Supply voltage rejection	$\mathrm{R}_{\mathrm{g}} \leqslant 10 \mathrm{k} \Omega$	80	96		70	96		dB	
V_{0}	Output voltage swing	$\begin{aligned} & V_{S}= \pm 15 \mathrm{~V} \\ & R_{L}=10 \mathrm{k} \Omega \\ & R_{L}=2 \mathrm{k} \Omega \end{aligned}$	$\begin{aligned} & \pm 12 \\ & \pm 10 \end{aligned}$	$\begin{aligned} & \pm 14 \\ & \pm 13 \end{aligned}$		$\begin{aligned} & \pm 12 \\ & \pm 10 \end{aligned}$	$\begin{aligned} & \pm 14 \\ & \pm 13 \end{aligned}$		$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$	
$l_{\text {s }}$	Supply current	$\mathrm{V}_{s}= \pm 20 \mathrm{~V} \quad \mathrm{~T}_{\mathrm{amb}}=\mathrm{T}_{\text {max }}$		1.2	2.5				mA	
		$\begin{aligned} & \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{s}}= \pm 20 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{s}}= \pm 15 \mathrm{~V} \end{aligned}$		1.8	3		1.8	3	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$	

* These specifications, unless otherwise specified, apply for $\mathrm{C}_{1}=30 \mathrm{pF}, \mathrm{V}_{\mathrm{s}}= \pm 5$ to $\pm 20 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{amb}}=-55$ to $125^{\circ} \mathrm{C}$ (LS 101/LS 101A), $T_{a m b}=-25$ to $85^{\circ} \mathrm{C}$ (LS 201A) and $T_{a m b}=0$ to $70^{\circ} \mathrm{C}$ (LS 201); $V_{s}= \pm 5$ to $\pm 15 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{amb}}=0$ to $70^{\circ} \mathrm{C}$ (LS 301A).

Guaranteed characteristics (LS 101/LS 201)

Fig. 1 - Input voltage range vs. supply voltage

Fig. 2 - Output voltage swing vs. supply voltage

Fig. 3 -- Voltage gain vs. supply voltage

Fig. 6 - Voltage gain vs. supply voltage

Guaranteed characteristics (LS 301A)

Fig. 7 - Input voltage range vs. supply voltage

Fig. 8-Output voltage swing vs. supply voltage

Fig. 9 - Voltage gain vs. supply voltage

Fig. 10 - Input bias current vs. ambient temperature (for LS 101A/201A/301A)

Fig. 13 - Input offset current vs. ambient temperature (for LS 101/201)

Fig. 16 - Output voltage swing vs. output current

Fig. 11 - Input offset current vs. ambient temperature (for LS 101A/201A/301A)

Fig. 14 - Supply current vs. supply voltage

Fig. 17 - Input noise voltage vs. frequency

Fig. 12 - Input bias current vs. ambient temperature (for LS 101/201)

Fig. 15 - Voltage gain vs. supply voltage

Fig. 18 - Input noise current vs. frequency

OPERATIONAL AMPLIFIER COMPENSATION

SINGLE POLE

Fig. 19

TWO POLE

Fig. 22

FEED FORWARD

Fig. 25

$$
\begin{array}{ll}
C 2=\frac{1}{2 \pi f_{0} R Z} & S-2603 \\
f_{0}=3 \mathrm{MHz} &
\end{array}
$$

Fig. 20 - Open loop frequency response

Fig. 23 - Open loop frequency response

Fig. 26 - Open loop frequency response

Fig. 21 - Large signal frequency response

Fig. 24 - Large signal frequency response

Fig. 27 - Large signal frequency response

Fig. 28 - Single pole compensation pulse response

Fig. 29 - Two pole compensation pulse response

Fig. 30 - Feed forward pulse response

TYPICAL APPLICATIONS

Fig. 31 - Inverting amplifier with balancing circuit

Fig. 33 - Standard compensation and offset balancing circuit

Fig. 32 - Integrator with bias current compensation

Fig. 34 - Compensation for stray input capacitances or large feedback resistor

TYPICAL APPLICATIONS (continued)

Fig. 35 - Protecting against gross fault conditions

Fig. 36 - Bilateral current source

Fig. 37 - Power operational amplifier ($\mathrm{G}_{\mathrm{v}}=40 \mathrm{~dB}$)

LINEAR INTEGRATED CIRCUITS

FREQUENCY COMPENSATED OPERATIONAL AMPLIFIERS

- LOW OFFSET CURRENT AND VOLTAGE
- LOW INPUT CURRENT
- GUARANTEED DRIFT CHARACTERISTICS

The LS 107 series consists of general purpose operational amplifiers, with the frequency compensation built into the chip. They replace pin-to-pin the LS 709, LS 101, LS 141 and LS 148.
The LS 107 series offers features similar to the LS 101A, providing better accuracy and lower noise in high impedance circuits. The low input currents allow the device to be used in slow charge applications, such as long interval integrators, slow ramps, sample and hold circuits.
The LS 107 series is available with hermetic gold chip (8000 series), particularly suitable for professional and telecom applications, wherever very high MTBF are required.

ABSO	UTE MAXIMUM RATINGS	TO-99	Minidip	μ package
$V_{\text {s }}$	Supply voltage for LS 107 and LS 207 for LS 307		$\begin{aligned} & \pm 22 \mathrm{~V} \\ & \pm 18 \mathrm{~V} \end{aligned}$	
$V_{1}(1)$	Input voltage		$\pm 15 \mathrm{~V}$	
ΔV_{i}	Differential input voltage		$\pm 30 \mathrm{~V}$	
$\mathrm{T}_{\text {op }}$	Operating temperature for LS 107		-55 to $125^{\circ} \mathrm{C}$	
	for LS 207		-25 to $85{ }^{\circ} \mathrm{C}$	
	for LS 307		0 to $70{ }^{\circ} \mathrm{C}$	
	Output short circuit duration (2)		indefinite	
$\mathrm{P}_{\text {tot }}$	Power dissipation at $\mathrm{Tamb}=70^{\circ} \mathrm{C}$	520 mW	665 mW	400 mW
$\mathrm{T}_{\text {stg }}$	Storage temperature	-65 to $150{ }^{\circ} \mathrm{C}$	-55 to $150{ }^{\circ} \mathrm{C}$	-55 to $150{ }^{\circ} \mathrm{C}$
	Lead soldering temperature	$300^{\circ} \mathrm{C}$ (10s)	$260^{\circ} \mathrm{C}$ (12s)	$260^{\circ} \mathrm{C}$ (5s)
				$2.35{ }^{\circ} \mathrm{C}$ (11s)

1) For supply voltages less than $\pm 15 \mathrm{~V}$, input voltage is equal to the supply voltage
2) The short circuit duration is limited by thermal dissipation

CONNECTION DIAGRAMS AND ORDERING NUMBERS

NC
INVERTING
INPUT-
NON INVER.
INPUT:
$-V_{S}$
2

SO-8

Type	TO-99	Minidip	SO-8
LS 107	LS 107T	-	-
LS 207	LS 207T	-	-
LS 307	LS 307T	LS 307B	LS 307M
LS 8107	-	-	LS 8107M
LS 8207	-	-	LS 8207M
LS 8307	-	-	LS 8307M

SCHEMATIC DIAGRAM

THERMAL DATA	TO-99	Minidip	SO-8	
$R_{\text {th } \mathrm{j}-\mathrm{amb}}$	Thermal resistance junction-ambient	\max	$155^{\circ} \mathrm{C} / \mathrm{W}$	$120^{\circ} \mathrm{C} / \mathrm{W}$

* Measured with the device mounted on a ceramic substrate ($25 \times 16 \times 0.6 \mathrm{~mm}$)

ELECTRICAL CHARACTERISTICS (see note)

Parameter		Test conditions		LS 107/LS 207			LS 307			Unit		
		Min.	Typ.	Max.	Min.	Typ.	Max.					
$\mathrm{V}_{\text {os }}$	Input offset voltage			$\begin{aligned} & R_{\mathrm{g}} \leqslant 10 \mathrm{k} \Omega \\ & \mathrm{R}_{\mathrm{g}} \leqslant 10 \mathrm{k} \Omega \end{aligned}$	$\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$		0.7	3 2		2	$\begin{array}{r} 10 \\ 7.5 \end{array}$	$\begin{aligned} & m V \\ & m V \end{aligned}$
$\frac{\Delta V_{\text {os }}}{\Delta T}$	Average temperature coefficient of input offset voltage				3	15		6	30	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$		
los	Input offset current	$\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$			1.5	$\begin{aligned} & 20 \\ & 10 \end{aligned}$		3	$\begin{aligned} & 70 \\ & 50 \end{aligned}$	nA nA		
$\frac{\Delta I_{\text {os }}}{\text { (}}$	Average temperature coefficlent of input offset current	$\begin{aligned} & T_{a m b}=25^{\circ} \mathrm{C} \text { to } T_{\max } \\ & T_{\mathrm{amb}}=T_{\min } \text { to } 25^{\circ} \mathrm{C} \end{aligned}$			$\begin{aligned} & 0.01 \\ & 0.02 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.2 \end{aligned}$		$\begin{aligned} & 0.01 \\ & 0.02 \end{aligned}$	$\begin{aligned} & 0.3 \\ & 0.6 \end{aligned}$	$\begin{aligned} & n \mathrm{n} /{ }^{\circ} \mathrm{C} \\ & \mathrm{nA} /{ }^{\circ} \mathrm{C} \end{aligned}$		
I_{b}	Input bias current	$\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$			30	$\begin{array}{r} 100 \\ 75 \end{array}$		70	$\begin{aligned} & 300 \\ & 250 \end{aligned}$	$\begin{aligned} & \mathrm{nA} \\ & \mathrm{nA} \end{aligned}$		
R_{i}	Input resistance	$\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$		1.5	4		0.5	2		M Ω		
G_{v}	Large signal voltage gain	$\begin{aligned} & V_{S}= \pm 15 \mathrm{~V} \\ & R_{\mathrm{L}} \geqslant 2 \mathrm{k} \Omega \\ & \hline \end{aligned}$	$V_{0}= \pm 10 \mathrm{~V}$	88			84			dB		
		$\begin{aligned} & \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}} \geqslant 2 \mathrm{k} \Omega \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{o}}= \pm 10 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} \end{aligned}$	94	104		88	104		dB		
v_{i}	Input voltage range	$\begin{aligned} & V_{\mathrm{s}}= \pm 20 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{s}}= \pm 15 \mathrm{~V} \end{aligned}$		± 15			± 12			$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$		
V_{0}	Output voltage swing	$\begin{aligned} & V_{\mathrm{s}}= \pm 15 \mathrm{~V} \\ & V_{\mathrm{s}}= \pm 15 \mathrm{~V} \end{aligned}$	$\begin{aligned} & R_{\mathrm{L}}=10 \mathrm{k} \Omega \\ & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \end{aligned}$	$\begin{aligned} & \pm 12 \\ & \pm 10 \end{aligned}$	$\begin{aligned} & \pm 14 \\ & \pm 13 \end{aligned}$		$\begin{aligned} & \pm 12 \\ & \pm 10 \end{aligned}$	$\begin{aligned} & \pm 14 \\ & \pm 13 \end{aligned}$		$\begin{aligned} & V \\ & v \end{aligned}$		
CMR	Common mode rejection	$\mathrm{Rg}_{\mathrm{g}} \leqslant 10 \mathrm{k} \Omega$		80	96		70	90		dB		
SVR	Supply voltage rejection	$\mathrm{Rg}_{\mathrm{g}} \leqslant 10 \mathrm{k} \Omega$		80	96		70	96		dB		
I_{5}	Supply current	$\begin{aligned} & \mathrm{V}_{\mathrm{s}}= \pm 20 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{amb}}=125^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{s}}= \pm 15 \mathrm{~V} \end{aligned}$	$\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$		$\begin{aligned} & 1.8 \\ & 1.2 \end{aligned}$	$\begin{array}{r} 3 \\ 2.5 \end{array}$		1.8	3	mA mA mA		

Note: These specifications, unless otherwise specified, apply for $V_{s}= \pm 5 \mathrm{~V}$ to $\pm 20 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{amb}}=-55$ to $125^{\circ} \mathrm{C}$ for LS 107; $\mathrm{V}_{\mathrm{s}}= \pm 5 \mathrm{~V}$ to $\pm 20 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{amb}}=-25$ to $85^{\circ} \mathrm{C}$ for LS $207 ; \mathrm{V}_{\mathrm{s}}= \pm 5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{amb}}=0$ to $70^{\circ} \mathrm{C}$ for LS 307.

Fig. 1 - Supply current vs. supply voltage

Fig. 4 - Current limiting vs. output current

Fig. 7 - Open loop frequency response

Fig. 2 - Voltage gain vs. supply voltage

Fig. 5 - Input noise voltage vs. frequencv

Fig. 8 - Large signal frequency response

Fig. 3 - Input current vs. ambient temp.

Fig. 6 - Input noise current vs. frequency

Fig. 9 - Voltage follower pulse response

Guaranteed performance characteristics (LS 107/LS 207)

Fig. 10 - Input voltage range vs. supply voltage

Fig. 11-Output voltage swing vs. supply voltage

Fig. 12 - Voltage gain vs.supply voltage

Fig. 15 - Voltage gain vs.supply voltage

Fig. 18 - Non-inverting amplifier

LINEAR INTEGRATED CIRCUITS

FREQUENCY COMPENSATED OPERATIONAL AMPLIFIERS

- NO FREQUENCY COMPENSATION REQUIRED
- SHORT CIRCUIT PROTECTION
- OFFSET VOLTAGE NULL CAPABILITY
- LARGE COMMON MODE AND DIFFERENTIAL VOLTAGE RANGE
- NO LATCH-UP

The LS 141 series consists of general purpose operational amplifiers, intended for a wide range of analog applications. High common mode voltage range and absence of "latch-up" tendencies make the LS 141 series ideal for use as a voltage follower. The high gain and wide range of operating voltage provide superior performance in integrators, summing amplifiers, and general feedback applications. The LS 141 series is available with hermetic gold chip (8000 series). This is particularly suitable for professional and telecom applications, wherever very high MTBF are required.

ABSO	UTE MAXIMUM RATINGS	TO-99	Minidip	μ package
$\mathrm{V}_{\text {s }}$	$\begin{array}{ll} \text { Supply voltage } & \text { for LS 141/LS 141A } \\ & \text { for LS 141C } \end{array}$		$\begin{aligned} & \pm 22 \mathrm{~V} \\ & \pm 18 \mathrm{~V} \end{aligned}$	
$V_{i}(1)$	Input voltage		$\pm 15 \mathrm{~V}$	
ΔV_{i}	Differential input voltage		$\pm 30 \mathrm{~V}$	
$\mathrm{T}_{\text {op }}$	Operating temperature for LS 141/LS 141A for LS 141C		$\begin{gathered} -55 \text { to } 125^{\circ} \mathrm{C} \\ 0 \text { to } 70^{\circ} \mathrm{C} \end{gathered}$	
	Output short circuit duration(2)		indefinite	
$\mathrm{P}_{\text {tot }}$	Power dissipation at $\mathrm{Tamb}=70^{\circ} \mathrm{C}$	520 mW	665 mW	400 mW
$\mathrm{T}_{\text {stg }}$	Storage temperature	-65 to $150^{\circ} \mathrm{C}$	-55 to $150^{\circ} \mathrm{C}$	-55 to $150^{\circ} \mathrm{C}$
	Lead soldering temperature	$300^{\circ} \mathrm{C}$ (10s)	$260^{\circ} \mathrm{C}$ (12s)	$260^{\circ} \mathrm{C}$ (5s)
				$235^{\circ} \mathrm{C}$ (11s)

1) For supply voltage less than $\pm 15 \mathrm{~V}$, input voltage is equal to the supply voltage
2) The short circuit duration is limited by thermal dissipation

MECHANICAL DATA

Dimensions in mm

CONNECTION DIAGRAMS AND ORDERING NUMBERS

Type	T0-99	Minidip	S0-8
LS 141	LS 141T	-	-
LS 141A	LS 141 AT	-	-
LS 141C	LS 141 CT	LS 141 CB	LS 141 CM
LS 8141	-	-	LS 8141M
LS 8141A	-	-	LS 8141 AM
LS 8141C	-	-	LS 8141 CM

SCHEMATIC DIAGRAM

THERMAL DATA	TO-99	Minidip	SO-8	
$\mathrm{R}_{\text {th } j \text {-amb }}$	Thermal resistance junction ambient	\max	$155^{\circ} \mathrm{C} / \mathrm{W}$	$120^{\circ} \mathrm{C} / \mathrm{W}$

[^7]ELECTRICAL CHARACTERISTICS (see note)

Parameter		Test conditions	LS 141			LS 141A			LS 141C			Unit	
		Min.	Typ.	Max.	Min.	Typ.	Max.	Min.	Typ.	Max.			
$\mathrm{V}_{\text {os }}$	Input offset voltage		$\begin{aligned} & \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} \\ & \mathrm{R}_{\mathrm{g}} \leqslant 10 \mathrm{k} \Omega \\ & \mathrm{R}_{\mathrm{g}} \leqslant 50 \Omega \end{aligned}$		1	5		0.8	3		2	6	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
		$\begin{aligned} & \mathrm{T}_{\mathrm{amb}}=\mathrm{T}_{\min } \text { to } \mathrm{T}_{\max } \\ & \mathrm{R}_{\mathrm{g}} \leqslant 10 \mathrm{k} \Omega \\ & \mathrm{R}_{\mathrm{g}} \leqslant 50 \Omega \end{aligned}$			6			4			7.5	$\begin{aligned} & m V \\ & m V \end{aligned}$	
$\Delta V_{\text {os }}$	Input offset voltage adjust. range	$\begin{aligned} & \mathrm{V}_{\mathrm{s}}= \pm 20 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{s}}= \pm 15 \mathrm{~V} \quad \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} \end{aligned}$		± 15		± 10				± 15		$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$	
$\frac{\Delta V_{\text {os }}}{\Delta T}$	Average input offset voltage drift							15				$\frac{\mu \mathrm{V}}{{ }^{\circ} \mathrm{C}}$	
los	Input offset current	$\begin{aligned} & T_{a m b}=25^{\circ} C \\ & T_{a m b}=T_{\min } \text { to } T_{\max } \end{aligned}$		$\begin{aligned} & 20 \\ & 85 \end{aligned}$	$\begin{aligned} & 200 \\ & 500 \end{aligned}$		3	$\begin{aligned} & 30 \\ & 70 \end{aligned}$		20	$\begin{aligned} & 200 \\ & 300 \end{aligned}$	$\begin{aligned} & \mathrm{nA} \\ & \mathrm{nA} \end{aligned}$	
$\frac{\Delta I_{\text {os }}}{\Delta T}$	Average input offset current drift							0.5				$\frac{n A}{{ }^{\circ} \mathrm{C}}$	
I_{b}	Input bias current	$\begin{aligned} & T_{a m b}=25^{\circ} \mathrm{C} \\ & T_{a m b}=T_{\min } \text { to } T_{\max } \end{aligned}$		80	$\begin{array}{r} 500 \\ 1.5 \end{array}$		30	$\begin{array}{r} 80 \\ 0.21 \end{array}$		80	$\begin{array}{r} 500 \\ 0.8 \end{array}$	$\begin{aligned} & \mathrm{nA} \\ & \mu \mathrm{~A} \end{aligned}$	
R_{i}	Input resistance	$\begin{aligned} & T_{\mathrm{amb}}=25^{\circ} \mathrm{C} \\ & T_{\mathrm{amb}}=T_{\min } \text { to } T_{\max } \end{aligned}$	0.3	2		$\begin{array}{l\|l\|} \hline 1 \\ 0.5 \end{array}$	6		0.3	2		$\mathrm{M} \Omega$ M Ω	
v_{i}	Input voltage range	$\mathrm{T}_{\mathrm{amb}}=\mathrm{T}_{\text {min }}$ to $T_{\text {max }}$	± 12	± 13		± 12	± 13		± 12	± 13		V	
G_{v}	Large signal voltage gain	$\begin{array}{ll} T_{a m b}=25^{\circ} \mathrm{C} & R_{L} \geqslant 2 \mathrm{k} \Omega \\ V_{\mathrm{s}}= \pm 15 \mathrm{~V} & V_{\mathrm{o}}= \pm 10 \mathrm{~V} \end{array}$	94	106		94			86	106		dB	
		$\begin{array}{ll} T_{a m b}=T_{\min } & \text { to } T_{\max } \\ R_{\mathrm{L}} \geqslant 2 \mathrm{k} \Omega & \\ V_{s}= \pm 15 \mathrm{~V} & V_{o}= \pm 10 \mathrm{~V} \\ V_{s}= \pm 5 \mathrm{~V} & V_{o}= \pm 2 \mathrm{~V} \end{array}$	88			$\begin{aligned} & 90 \\ & 80 \end{aligned}$			84			dB	
V_{0}	Output voltage swing	$\begin{aligned} & V_{s}= \pm 15 \mathrm{~V} \\ & R_{\mathrm{L}} \geqslant 10 \mathrm{k} \Omega \\ & \mathrm{R}_{\mathrm{L}} \geqslant 2 \mathrm{k} \Omega \end{aligned}$	$\begin{aligned} & \pm 12 \\ & \pm 10 \end{aligned}$	$\begin{aligned} & \pm 14 \\ & \pm 13 \end{aligned}$		$\left\lvert\, \begin{aligned} & \pm 12 \\ & \pm 10 \end{aligned}\right.$	$\begin{aligned} & \pm 14 \\ & \pm 13 \end{aligned}$		$\begin{aligned} & \pm 12 \\ & \pm 10 \end{aligned}$	$\begin{aligned} & \pm 14 \\ & \pm 13 \end{aligned}$		$\begin{aligned} & V \\ & V \end{aligned}$	
I_{sc}	Output short circuit current	$\begin{aligned} & T_{a m b}=25^{\circ} \mathrm{C} \\ & T_{a m b}=T_{\min } \text { to } T_{\max } \end{aligned}$		25		$\begin{aligned} & 10 \\ & 10 \end{aligned}$	25	$\begin{aligned} & 35 \\ & 40 \end{aligned}$		25		$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$	
CMR	Common mode rejection	$\begin{array}{ll} \mathrm{V}_{\mathrm{s}}= \pm 20 \mathrm{~V} & \\ \mathrm{R}_{\mathrm{g}} \leqslant 10 \mathrm{k} \Omega & \mathrm{~V}_{\mathrm{CM}}= \pm 12 \mathrm{~V} \end{array}$	70	90		80	95		70	90		dB	
SVR	Supply voltage rejection	$\begin{array}{ll} \mathrm{R}_{\mathrm{g}} \leqslant 50 \Omega & \mathrm{~V}_{\mathrm{s}}= \pm 5 \text { to } \pm 20 \mathrm{~V} \\ \mathrm{R}_{\mathrm{g}} \leqslant 10 \mathrm{k} \Omega & \mathrm{~V}_{\mathrm{s}}= \pm 5 \text { to } \pm 15 \mathrm{~V} \end{array}$	77	96		86	96		77	96		dB dB	

ELECTRICAL CHARACTERISTICS (continued)

	Parameter	Test conditions	LS 141			LS 141A			LS 141C			Unit
			Min.	Typ.	Max.	Min.	Typ.	Max.	Min.	Typ.	Max.	
	Transient respon. (unity gain) Rise time Overshoot	$\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$		$\begin{aligned} & 0.3 \\ & 5 \end{aligned}$			$\begin{gathered} 0.25 \\ 6 \end{gathered}$	$\begin{array}{r} 0.8 \\ 20 \end{array}$		$\begin{aligned} & 0.3 \\ & 5 \end{aligned}$		${ }_{\text {M }} \mathrm{s}$
B	Bandwidth	$\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$				0.437	1.5					MHz
SR	Slew rate	$\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$		0.5		0.3	0.7			0.5		$\mathrm{V} / \mu \mathrm{s}$
I_{5}	Supply current	$T_{\text {amb }}=25^{\circ} \mathrm{C}$		1.7	2.8					1.7	2.8	mA
$P_{\text {tot }}$	Power consumption	$\begin{aligned} & \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{s}}= \pm 20 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{s}}= \pm 15 \mathrm{~V} \end{aligned}$		50	85		80	150		50	85	mW mW
		$\begin{aligned} & V_{s}= \pm 20 \mathrm{~V} \\ & T_{\mathrm{amb}}=T_{\min } \\ & T_{a m b}=T_{\max } \end{aligned}$						$\begin{aligned} & 165 \\ & 135 \end{aligned}$				$\begin{aligned} & \mathrm{mW} \\ & \mathrm{~mW} \end{aligned}$
		$\begin{aligned} & V_{s}= \pm 15 \mathrm{~V} \\ & T_{a m b}=T_{\min } \\ & T_{a m b}=T_{\max } \end{aligned}$		$\begin{aligned} & 60 \\ & 45 \end{aligned}$	$\begin{array}{r} 100 \\ 75 \\ \hline \end{array}$							$\begin{aligned} & \mathrm{mW} \\ & \mathrm{~mW} \end{aligned}$

Note: These specifications, unless otherwise specified, apply for $V_{s}= \pm 15 \mathrm{~V}$ and $T_{a m b}=-55$ to $125^{\circ} \mathrm{C}$ for LS 141 and LS 141 A . For the LS 141C these specifications apply for $\mathrm{T}_{\mathrm{amb}}=0$ to $70^{\circ} \mathrm{C}$

Fig. 1 - Open loop voltage gain vs. supply volt-

Fig. 2 - Output voltage swing vs. supply voltage

Fig. 3 - Power consumption
vs. supply voltage

Fig. 4 - Open loop voltage gain vs. frequency

Fig. 7 - Input resistance and capacitance vs. frequency (for LS 141 and LS 141C)

Fig. 10 - Output voltage swing vs. frequency

Fig. 5 - Open loop phase response vs. frequency

Fig. 8 - Output resistance vs. frequency

Fig. 11 - Input noise voltage vs. frequency

Fig. 6 - Input offset current vs. supply voltage (for LS 141 and LS 141C)

Fig. 9 - Output voltage swing vs. load resistance

Fig. 12 - Input noise current vs. frequency

Fig. 13-Transient response

Fig. 14 - Common mode rejection ratio vs. frequency

Fig. 15 - Voltage follower large signal pulse response

Typical performance curves for LS 141 and LS 141A

Fig. 16 - Input bias current vs. ambient temperature

Fig. 19- Output short-circuit current vs. ambient temperature

Fig. 17 - Input resistance vs. ambient temperature

Fig. 20 - Power consumption vs. ambient temperature

Fig. 18 - Input offset current vs. ambient temperature

Fig. 21 - Frequency characteristics vs. ambient temperature

Typical performance curves for LS 141C

Fig. 22-Input bias current vs. ambient temperature

Fig. 25-Output short circuit current vs. ambient temperature

TYPICAL APPLICATIONS

Fig. 28-Clipping amplifier

$$
\begin{array}{r}
\frac{v_{0}}{v_{i}}=\frac{R 2}{R 1} \text { if }\left|v_{0}\right|=v_{z}+0.29 v \\
\text { where } v_{Z}=\text { Zener breakdown voltage }
\end{array}
$$

Fig. 24 - Input offset current vs. ambient temperature

Fig. 27-Frequency characteristics vs.ambient temperature

Fig. 30 - Simple differentiator

LINEAR INTEGRATED CIRCUITS

OPERATIONAL AMPLIFIERS

- SHORT CIRCUIT PROTECTION
- OFFSET VOLTAGE NULL CAPABILITY
- LARGE COMMON MODE AND DIFFERENTIAL VOLTAGE RANGE
- NO LATCH-UP
- SLEW-RATE $=5.5 \mathrm{~V} / \mu \mathrm{s}\left(\mathrm{G}_{\mathrm{v}}=10, \mathrm{C}_{\mathrm{C}}=3.5 \mathrm{pF}\right)$

The LS 148 series consists of general purpose operational amplifiers, intended for a wide range of analog applications where tailoring of frequency characteristics is desirable. High common mode voltage range and absence of "Latch-up" tendencies make the LS 148 series ideal for use as a voltage follower. The high gain and wide range of operating voltage provide superior performance in integrators, summing amplifiers and general feedback applications. Unity gain frequency compensation is achieved by means of a single 30 pF capacitor. The LS 148 series is available with hermetic gold chip (8000 series). This is particularly suitable for professional and telecom applications, wherever very high MTBF are required.

ABSO	UTE MAXIMUM RATINGS	TO-99	Minidip	$\mu \mathrm{package}$
V_{s}	Supply voltage		$\pm 22 \mathrm{~V}$	
$V_{i}(1)$	Input voltage		$\pm 15 \mathrm{~V}$	
$\Delta \mathrm{V}_{\mathrm{i}}$	Differential input voltage		$\pm 30 \mathrm{~V}$	
$\mathrm{T}_{\text {op }}$	Operating temperature for LS 148/LS 148A for LS 148C		$\begin{gathered} -55 \text { to } 125^{\circ} \mathrm{C} \\ 0 \text { to } 70^{\circ} \mathrm{C} \end{gathered}$	
	Output short circuit duration (2)		indefinite	
$\mathrm{P}_{\text {tot }}$	Power dissipation at $\mathrm{T}_{\mathrm{amb}}=70^{\circ} \mathrm{C}$	$520 \mathrm{~mW}$	665 mW	400 mW
$\underline{\mathrm{T}_{\text {stg }}}$	Storage temperature	$-65 \text { to } 150^{\circ} \mathrm{C}$	-55 to $150{ }^{\circ} \mathrm{C}$	-55 to $150^{\circ} \mathrm{C}$

1) For supply voltage less than $\pm 15 \mathrm{~V}$, input voltage is equal to the supply voltage
2) The short circuit duration is limited by thermal dissipation.

MECHANICAL DATA Dimensions in mm

CONNECTION DIAGRAMS AND ORDERING NÚMBERS

(top views)

Type		Minidip	
LS 148	LS 148T	-	-
LS 148A	LS 148 AT	-	-
LS 148C	LS 148 CT	LS 148 CB	LS 148 CM
LS 8148	-	-	LS 8148M
LS 8148A	-	-	LS 8148 AM
LS 8148C	-	-	LS 8148 CM

SCHEMATIC DIAGRAM

THERMAL DATA	TO-99	Minidip	SO-8	
$\mathrm{R}_{\text {th }}$ j-amb	Thermal resistance junction-ambient	\max	$155^{\circ} \mathrm{C} / \mathrm{W}$	$120^{\circ} \mathrm{C} / \mathrm{W}$

[^8]
ELECTRICAL CHARACTERISTICS (see note)

ELECTRICAL CHARACTERISTICS (continued)

	Parameter	Test conditions	LS 148			LS 148A			LS 148C			Unit
			Min.	Typ.	Max.	Min.	Typ.	Max.	Min.	Typ.	Max.	
	Transient respon. (unity gain) Rise time Overshoot	$\begin{array}{ll} \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} & \\ \mathrm{~V}_{\mathrm{i}}=20 \mathrm{mV} & \mathrm{C}_{\mathrm{c}}=30 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega & \mathrm{C}_{\mathrm{L}} \leqslant 100 \mathrm{pF} \end{array}$		$\begin{gathered} 0.2 \\ 5 \end{gathered}$			$\begin{array}{\|c} 0.2 \\ 5 \end{array}$			0.2 5		$\mu \mathrm{S}$ $\%$
I_{s}	Supply current	$\mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C}$		1.9	2.8		1.9	2.8		1.9	2.8	mA
P_{S}	Power consumption	$\begin{aligned} & \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{s}}= \pm 20 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{s}}= \pm 15 \mathrm{~V} \end{aligned}$		60	85		60	85		60	85	$\begin{aligned} & \mathrm{mW} \\ & \mathrm{~mW} \end{aligned}$
		$\begin{aligned} & V_{\mathrm{s}}= \pm 15 \mathrm{~V} \\ & T_{\mathrm{amb}}=T_{\min } \\ & T_{\mathrm{amb}}=T_{\max } \end{aligned}$		$\begin{aligned} & 60 \\ & 45 \end{aligned}$	100 75		60 40	100 75		60	100	$\begin{aligned} & \mathrm{mW} \\ & \mathrm{~mW} \end{aligned}$

Note: These specifications, unless otherwise specified, apply for $V_{s}= \pm 15 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{amb}}=-55$ to $125^{\circ} \mathrm{C}$ for LS 148 and LS 148A. For LS 148 C these specifications apply for $\mathrm{T}_{\mathrm{amb}}=0$ to $70^{\circ} \mathrm{C}\left(\mathrm{C}_{\mathrm{c}}=30 \mathrm{pF}\right)$.

Fig. 1 - Voltage offset null circuit

Fig. 2 - Gain test circuit

Typical performance curves for LS 148

Fig. 3 - Input bias current vs. ambient temperature

Fig. 6 - Input offset current vs. ambient tem-
perature

Fig. 4- Input resistance vs. ambient temperature

Fig. 7 - Power consumption vs. ambient tem-
perature

Fig. 5 - Output short-circuit current vs. ambient temperature

Fig. 8 - Frequency characteristics vs. ambient temperature

Typical performance curves for LS 148C

Fig. 9 - Input bias current vs. ambient temperature

Fig. 10-Input resistance vs. ambient temperature

Fig. 11-Output short-circuit current vs. ambient temperature

Fig. 12-Input offset current vs. ambient temperature

Fig. 13 - Power consumption vs. ambient temperature

Fig. 14 - Frequency characteristics vs. ambient temperature

Typical performance curves for LS 148 and LS 148C

Fig. 15-Open loop voltage gain vs. supply voltage

Fig. 18-Output voltage swing vs. load resistance

Fig. 16-Output voltage swing vs. supply voltage

Fig. 19-Input offset current vs. supply voltage

Fig. 17 - Power consumption vs. supply voltage

Fig. 20-Input common mode voltage range vs. supply voltage

Fig. 21 - Input noise voltage vs. frequency

Fig. 24 -Open loop frequency and phase response vs. frequency

Fig. 27 - Compensation capacitance vs. closed loop voltage gain

Fig. 22 - Input noise current vs. frequency

Fig. 25-Output voltage swing vs. frequency

Fig. 28-Input resistance and input capacitance vs. frequency

Fig. 23-Broadband noise for various bandwidths

Fig. 26 - Slew-rate

Fig. 29-Output resistance vs. frequency

Fig. 30-Frequency characteristics vs. supply voltage

Fig. 33-Voltage follower large-signal pulse response

Fig. 31 - Voltage follower transient response (unity gain)

Fig. 34 - Feed forward compensation

TYPICAL APPLICATIONS

Fig. 36 - Pulse width modulator

LINEAR INTEGRATED CIRCUIT

HIGH PERFORMANCE 80 dB COMIPANDOR

The LS150 is a monolithic integrated circuit in 14-lead dual in-line ceramic and plastic packages; it performs signal level expansion in an $80-\mathrm{dB}$ range [with an overall accuracy of $\pm 0.2 \mathrm{~dB}$ in a 60 dB range] and, when used in the feedback path of an operational amplifier, it performs complementary signal compression. The LS150 has been designed to improve audio channel signal-to-noise ratio according to CCITT recommendations which require an unaffected reference level of- 14 dBm across 600Ω. The device can also be used to reduce crosstalk and may be converted into a unity gain amplifier for data transmission links by means of a simple switch without affecting output and input impedance levels. Another possible application is as a noise reducer and dynamic range expandor in cassette tape recorders and intercoms.

ABSOLUTE MAXIMUM RATINGS

V_{s}	Supply voltage	24	V
I_{5-6}	Differential current between pins 5 and 6	20	mA
$\mathrm{~V}_{\mathrm{i}}$	Common mode input voltage	V_{5}	
$\mathrm{~T}_{\text {stg }}, \mathrm{T}_{\mathrm{j}}$	Storage and junction temperature	-65 to 150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {op }}$	Operating temperature	-20 to 85	${ }^{\circ} \mathrm{C}$

ORDERING NUMBERS: LS150 CD (Ceramic package)
LS150 CB (Plastic package)

MECHANICAL DATA

LS 150 CB

CONNECTION DIAGRAM (top view)

BLOCK DIAGRAM

LS150

THERMAL DATA	Plastic	Ceramic	
$\mathrm{R}_{\mathrm{th} \text { j-amb }}$ Thermal resistance junction-ambient	\max	$100^{\circ} \mathrm{C} / \mathrm{W}$	$120^{\circ} \mathrm{C} / \mathrm{W}$

ELECTRICAL CHARACTERISTICS (Refer to the test circuit of fig. $1,-\mathrm{V}_{\mathrm{s}}=-12 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ unless otherwise specified)

	Parameter	Test conditions	Min.	Typ.	Max.	Unit
I_{s}	Supply current			5	8	mA
R_{7}	Input dynamic biasing resistance (pin 7)	$L_{i}=-14 \mathrm{dBv} \quad f=800 \mathrm{~Hz}$ External time constant $2 \mathrm{R} 1 \cdot \mathrm{C} 1=20 \mathrm{~ms}$		60	90	Ω
G_{v}	Gain		-1	0	+1	dB
$\Delta \mathrm{G}_{\mathrm{v}}$	Gain variation	$\begin{aligned} & \mathrm{T}_{\mathrm{amb}}=5 \text { to } 55^{\circ} \mathrm{C} \\ & \Delta \mathrm{~V}_{\mathrm{s}}= \pm 2 \% \end{aligned}$		$\begin{gathered} \pm 0.2 \\ \pm 0.03 \end{gathered}$		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
B	Bandwith (-3 dB)			500		KHz
R_{0}	Output resistance	$\begin{aligned} & L_{i}=-14 \mathrm{dBv} \\ & \mathrm{f}=800 \mathrm{~Hz} \end{aligned}$		25	60	Ω
R_{i}.	Input resistance (pin 5)			100		$K \Omega$
d	Distortion			0.7		\%
d_{3}	Two-tone third order intermodulation	$\begin{aligned} & f_{1}=900 \mathrm{~Hz} \quad f_{2}=1020 \mathrm{~Hz} \\ & \mathrm{~V}_{1}=\mathrm{V}_{2}=88 \mathrm{mV} \end{aligned}$		0.5		\%
e_{N}	Output noise in psophometric band			-100		dBm
$\Delta\|G\|$	Expansion accuracy after balancing	$\begin{aligned} & L_{i}=-40 \text { to }-10 \mathrm{dBv}, \mathrm{f}=800 \mathrm{~Hz} \\ & \mathrm{~T}_{\mathrm{amb}}=5 \text { to } 55^{\circ} \mathrm{C}, \mathrm{f}=800 \mathrm{~Hz} \end{aligned}$		$\begin{aligned} & 0.1 \\ & 0.2 \end{aligned}$	$\begin{aligned} & 0.2 \\ & 0.3 \end{aligned}$	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
$l_{\text {off }}$	Inhibit current consumption (pin 2)			0.3	1	mA
G	Amplifier gain	Inhibit ON (pin 2 grounded) $f=800 \mathrm{~Hz}$	-1.5	0	+1.5	dB

TEST AND APPLICATION CIRCUITS

Fig. 1 - Expandor circuit

(*) S closed: unity gain amplifier.
S open : expandor.

Fig. 2 - Compressor circuit

Fig. 4 - Comparison between LS150 performance (curve A) and limits from CCITT recommendation (curve B) - Green Book Geneva 1972 - G162.

Fig. 5 - Expandor gain vs. temperature

Fig. 6 - Transient response

APPLICATION INFORMATION

The fig. 7 shows the basic configuration (with relative signal levels) of a compandorized system. It is clear the action against the line noise: the system using a compressor in sending and an expandor in receiving can improve very much the signal-to-noise ratio, especially with very high noise lines. By using the LS150 it is possible to built both the compressor and the expandor blocks.

Fig. 7 - Compandorized system.

APPLICATION INFORMATION (continued)

The basic block diagram of an expandor is shown in fig. 8. The product of the input voltage V_{i} and its mean value \bar{V}_{i} (obtained from the rectifier with time constant τ) is supplied at the output of an "ideal" multiplier.
Fig. 8 - Basic expandor circuit.

The output voltage V_{o} is proportional to the product of V_{i} and $\overline{\mathrm{V}_{\mathrm{i}}}$:

$$
V_{o}=K V_{i} \times \overline{V_{i}}
$$

where K is a factor that defines a level for unity gain.
For a constant input level,

$$
\overline{V_{o}}=K \overline{V_{i}} \times \overline{V_{i}}=K \bar{V}_{i}^{2}
$$

Expressing all levels in decibels relative to a reference level:

$$
\overline{V_{o}}(d B)=20 \log _{10}{\overline{V_{i}}}^{2}=2 \overline{V_{i}}(d B) .
$$

Signals with an input level equal to the reference level are unaffected by the expandor while higher levels are raised and lower levels attenuated. It is recommended by CCITT, and practically advantageous, that the unaffected level be -14 dBv , a voltage corresponding to -14 dBm across 600Ω. A time constant for the average rectifier of 20 ms is also recommended, giving "syllabic" operation of the compandor.
Fig. 9 - Basic compressor circuit.

A compressor can easily be implemented with an expandor in the feedback path of an operational amplifier (Fig. 9). Assuming infinite gain for the amplifier:

$$
\begin{aligned}
& V_{i}=K V_{o} \times \bar{V}_{o} \\
& \overline{V_{o}}=\sqrt{\frac{\overline{V_{i}}}{K}}
\end{aligned}
$$

In decibels, with respect to the unaffected level,

$$
\overline{V_{o}}(d B)=20 \log _{10}\left(\overline{V_{i}}\right)^{1 / 2}=\frac{1}{2} \bar{V}_{i}(d B) .
$$

LS150

APPLICATION INFORMATION (continued)

Design Constraints

There are several constraints on the design of a compandor to be used in telecommunication equipment.
 multiplexer transmission systems between exchanges, and expansion accuracy better than 0.2 dB in the same range (+40 to -25 dBmo) considered by CCITT for all operating conditions is required. These parameters had to be compatible with mass production manufacturing techniques. Particularly when taking into account the low signal levels, this requirement is very demanding. It was the main target in designing the device and had a strong influence on the fabrication process, circuit configurations, and layout.
Power Supply: The circuit has to operate with a single 12 V negative supply, unregulated, and with relatively high noise.
Input Impedance: This has to be precisely defined by an external resistor, which is the passive termination of an LC filter before the expandor. Thus the input impedance of the IC must be very high. A differential input stage is preferable to reduce ground loop noise.
Gain: The expandor (or compressor) shall not modify the level diagram of existing channel modems, already optimized for crosstalk and noise. This means that the gain at the unaffected level shall be 0 dB , with small spread.

Inhibition: It must be possible to inhibit the operation of the compandor for testing and maintenance purpose, and to allow the transmission of telegraph channels.

Definition of units

dBmo : power level $\left(10 \log \frac{P_{2}}{P_{1}}\right)$ is expressed in dBm when P_{1} is 1 mW , therefore $0 \mathrm{dBm}=1 \mathrm{~mW}$.
dBm : the power is expressed in dBmo when referred to an established power level in the circuit, generally the output signal level.
e.g.: if the output level is -15 dBm and this level is chosen as reference, then $0 \mathrm{dBmo}=-15$ dBm ; if another signal, i.e. the distortion measured at the same point of the circuit, is -90 dBm , then the distortion is -75 dBmo .
$\mathrm{dBv} \quad: \quad 20 \log \frac{\mathrm{~V}_{2}}{\mathrm{~V}_{1}}$ when $\mathrm{V}_{1}=775 \mathrm{mVrms}$.

PRELIMINARY DATA

TELEPHONE SPEECH CIRCUIT WITH MULTIFREQUENCY TONE GENERATOR INTERFACE

The LS156 is a monolithic integrated circuit in 16-lead dual in-line plastic package to replace the hybrid circuit in telephone set. It works with the same type of transducers for both transmitter and receiver (typically piezoceramic capsules, but the device can work also with dynamic ones). Many of its electrical characteristics can be controlled by means of external components to meet different specifications. In addition to the speech operation, the LS156 acts as an interface for the MF tone signal (particularly for M761 C/MOS frequency synthesizer).
The LS156 basic functions are the following:

- It presents the proper DC path for the line current.
- It handles the voice signal, performing the $2 / 4$ wires interface and changing the gain on both sending and receiving amplifiers to compensate for line attenuation by sensing the line length through the line current.
- It acts as linear interface for MF, supplying a stabilized voltage to the digital chip and delivering to the line the MF tones generated by the M761.

ABSOLUTE MAXIMUM RATINGS

V_{L}	Line voltage (3ms pulse duration)	22	V
I_{L}	Forward line current	150	mA
I_{L}	Reverse line current	-150	mA
$\mathrm{P}_{\text {tot }}$	Total power dissipation at $\mathrm{T}_{\text {amb }}=70^{\circ} \mathrm{C}$	1	W
$\mathrm{~T}_{\text {op }}$	Operating temperature	-45 to	70
$\mathrm{~T}_{\text {stg }} \mathrm{T}_{\mathrm{j}}$	Storage and junction temperature	-65 to 150	${ }^{\circ} \mathrm{C}$

ORDERING NUMBER: LS 156B

MECHANICAL DATA Dimensions in mm

CONNECTION DIAGRAM

(top view)

MIC. INPUT	1	16	MIC.INPUT
+ LINE	2	15	$V_{D D}$
MUTing	3	14	MF INPUT
BIAS ADJ.	4	13	RECEIVER OUTPUT
SHUNT REG. BYPASS	5	12	RECEIVER OUTPUT
D.C.REGULATOR	6	11	INPUT*(REC.AMP)
LINE CURRENT SENSING	7	10	INPUT-(REC.AMP)
$Z_{\text {BAL }}$ SWITCH	8	9	-LINE

BLOCK DIAGRAM

LS156

TEST CIRCUITS

Fig. 1

$$
V=0,5 V ; C M R R
$$

Fig. 2

Side tone $=\frac{\mathrm{V}_{\mathrm{RO}}}{\mathrm{V}_{\mathrm{MI}}} ; \quad \mathrm{G}_{\mathrm{s}}=\frac{\mathrm{V}_{\mathrm{SO}}}{\mathrm{V}_{\mathrm{MI}}}$

Fig. 3

$\mathrm{G}_{\mathrm{R}}=\frac{\mathrm{V}_{\mathrm{RO}}}{\mathrm{V}_{\mathrm{RI}}}$

THERMAL DATA

$\mathrm{R}_{\text {th }}$ j-amb			
Thermal resistance junction-ambient	\max	80	${ }^{\circ} \mathrm{C} / \mathrm{W}$

ELECTRICAL CHARACTERISTICS (Refer to the test circuits, S 1 and S 2 in (a), $\mathrm{T}_{\mathrm{amb}}=-25$ to $+50^{\circ} \mathrm{C}, \mathrm{f}=200$ to 3400 Hz , unless otherwise specified)

| Parameter | Test condition | Min. | Typ. | Max. | Unit |
| :--- | :--- | :--- | :--- | :--- | :--- | Fig. | F |
| :--- |

SPEECH OPERATION

V_{L}	Line voltage	$\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$		$\begin{aligned} & l_{\mathrm{L}}=12 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{L}}=20 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{L}}=80 \mathrm{~mA} \end{aligned}$		3.9		4.7 5.5 12.2	V	-
CMRR	Common mode rejection	$f=1 \mathrm{KHz}$		$\mathrm{I}_{\mathrm{L}}=12$ to 80 mA		50			dB	1
G_{5}	Sending gain	$\begin{aligned} & \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} \quad \mathrm{f}=1 \mathrm{KHz} \\ & \mathrm{~V}_{\mathrm{MI}}=2 \mathrm{mV} \end{aligned}$			$\begin{aligned} & I_{L}=52 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{L}}=25 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 44 \\ & 48 \end{aligned}$	$\begin{aligned} & 45 \\ & 49 \end{aligned}$	46 50	dB	2
	Sending gain flatness	$\mathrm{V}_{M I}=2 \mathrm{mV}$		$\begin{aligned} & \mathrm{f}_{\mathrm{ref}}=1 \mathrm{KHz} \\ & \mathrm{I}_{\mathrm{L}}=12 \mathrm{to} 80 \mathrm{~mA} \end{aligned}$				± 1	dB	2
	Sending distortion	$\begin{aligned} & f=1 \mathrm{KHz} \\ & \mathrm{I}_{\mathrm{L}}=12 \text { to } 80 \mathrm{~mA} \end{aligned}$		$\begin{aligned} & \mathrm{V}_{\mathrm{so}}=1 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{so}}=1.3 \mathrm{~V} \end{aligned}$				2	\%	2
	Sending noise	$\mathrm{V}_{\mathrm{MI}}=0 \mathrm{~V}$		$\mathrm{I}_{\mathrm{L}}=40 \mathrm{~mA}$			-70		dBmp	2
	Microphone input impedance pin 1-16	$\mathrm{V}_{\mathrm{MI}}=2 \mathrm{mV}$		$\mathrm{I}_{\mathrm{L}}=12$ to 80 mA		40			$K \Omega$	
	Sending loss in MF operation	$\begin{aligned} & V_{M 1}=2 \mathrm{mV} \\ & \mathrm{~S}_{2} \text { in (b) } \end{aligned}$		$\begin{aligned} & I_{L}=52 \mathrm{~mA} \\ & I_{L}=25 \mathrm{~mA} \end{aligned}$		$\begin{aligned} & -30 \\ & -30 \end{aligned}$			dB	2
G_{R}	Receiving gain	$\begin{aligned} & V_{R 1}=0.3 \mathrm{~V} \\ & f=1 \mathrm{KHz} \\ & T_{\mathrm{amb}}=25^{\circ} \mathrm{C} \end{aligned}$		$\begin{aligned} & I_{L}=52 \mathrm{~mA} \\ & I_{L}=25 \mathrm{~mA} \end{aligned}$		$\begin{aligned} & 3 \\ & 7 \end{aligned}$	$\begin{aligned} & 4 \\ & 8 \end{aligned}$	$\begin{aligned} & 5 \\ & 9 \end{aligned}$	dB	3
	Receiving gain flatness	$V_{R I}=0.3 \mathrm{~V}$		$\begin{aligned} & \mathrm{f}_{\mathrm{ref}}=1 \mathrm{KHz} \\ & \mathrm{I}_{\mathrm{L}}=12 \mathrm{to} 80 \mathrm{~mA} \end{aligned}$				± 1	dB	3
	Receiving distortion							2 10 2 10	\%	3
	Receiving noise	$\mathrm{V}_{\mathrm{RI}}=0 \mathrm{~V}$		$\mathrm{I}_{\mathrm{L}}=12$ to 80 mA			150		$\mu \mathrm{V}$	3
	Receiver output impedance pin 12-13	$\mathrm{V}_{\mathrm{RO}}=50 \mathrm{mV}$		$\mathrm{I}_{\mathrm{L}}=40 \mathrm{~mA}$				100	Ω	
	Sidetone	$\begin{aligned} & \mathrm{f}=1 \mathrm{KHz} \\ & \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} \\ & \mathrm{~S}_{1} \text { in (b) } \end{aligned}$		$\begin{aligned} & \mathrm{I}_{\mathrm{L}}=52 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{L}}=25 \mathrm{~mA} \end{aligned}$				$\begin{aligned} & 36 \\ & 36 \end{aligned}$	dB	2
Z_{ML}	Line matching impedance	$V_{\mathrm{RI}}=0.3 \mathrm{~V}$		$\begin{aligned} & \mathrm{f}=1 \mathrm{KHz} \\ & \mathrm{I}_{\mathrm{L}}=12 \mathrm{to} 80 \mathrm{~mA} \end{aligned}$		500	600	700	Ω	3

ELECTRICAL CHARACTERISTICS (continued)

Parameter	Test condition	Min.	Typ.	Max.	Unit	Fig.

MULTIFREQUENCY SYNTHESIZER INTERFACE

$V_{\text {DD }}$	MF supply voltage Stand by	$\mathrm{I}_{\mathrm{L}}=12$ to 80 mA	2.4	2.5		V	-
$I_{\text {DD }}$	MF supply current Stand by Operation	$\begin{aligned} & I_{L}=12 \text { to } 80 \mathrm{~mA} \\ & I_{L}=12 \text { to } 80 \mathrm{~mA} ; \mathrm{S}_{2} \text { in (b) } \end{aligned}$	$\begin{gathered} 0.5 \\ 2 \end{gathered}$			mA	-
	MF amplifier gain	$\begin{aligned} & \mathrm{I}_{\mathrm{L}}=12 \text { to } 80 \mathrm{~mA} \\ & \mathrm{f}_{\mathrm{MF} \text { in }}=1 \mathrm{KHz} \\ & \mathrm{~V}_{\mathrm{MF} \text { in }}=80 \mathrm{mV} \end{aligned}$	15		17	dB	4
V_{i}	DC input voltage level (pin 14)	$\mathrm{V}_{\mathrm{M} \mathrm{Fin}}=80 \mathrm{mV}$. $3 \mathrm{~V}_{\text {DD }}$		V	-
R_{i}	Input impedance (pin 14)	$\mathrm{V}_{\mathrm{M} \mathrm{Fin}}=80 \mathrm{mV}$	60			K Ω	-
d	Distortion	$\begin{aligned} & V_{M ~ F i n}=110 \mathrm{mV} \\ & I_{L}=12 \text { to } 80 \mathrm{~mA} \end{aligned}$			2	\%	4
	Starting delay time	$\mathrm{I}_{\mathrm{L}}=12$ to 80 mA			5	ms	-
Muting threshold voltage (pin 3)	Muting threshold voltage (pin 3)	Speech operation			1	V	-
		MF Operation	1.6			V	-
	Muting stand by current (pin 3)	$\mathrm{I}_{\mathrm{L}}=12$ to 80 mA			-10	$\mu \mathrm{A}$	-
	Muting operating current (pin 3)	$\mathrm{I}_{\mathrm{L}}=12$ to $80 \mathrm{~mA} \mathrm{~S}_{2}$ in (b)			+10	$\mu \mathrm{A}$	-

CIRCUIT DESCRIPTION

1. DC characteristic

In accordance with CCITT recommendations, any device connected to a telephone line must exhibit a proper DC characteristics V_{L}, I_{L}.
The DC characteristic of the LS 156 it is determined by the shunt regulator (block 2) together with two series resistors R_{1} and R_{3}. The equivalent circuit of the total system is shown in fig. 5 .

Fig. 5 - Equivalent DC load to the line

A fixed amount I_{o} of the total available current I_{L} is drained for the proper operation of the circuit. The value of I_{0} can be programmed externally by changing the value of the bias resistor connected to pin 4 (see block diagram).
The recommended minimum of I_{0} is 7.5 mA .
The voltage $\mathrm{V}_{0} \cong 3.8 \mathrm{~V}$ of the shunt regulator is independent of the line current.
The shunt regulator (2) is controlled by a temperature compensated voltage reference (1) (see the block diagram).
Fig. 6 shows a more detailed circuit configuration of the shunt regulator.

Fig. 6 - Circuit configuration of the shunt regulator

LS156

CIRCUIT DESCRIPTION (continued)

The difference $I_{L}-I_{0}$ flows through the shunt regulator being I_{b} negligible. I_{a} is an internal constant current generator; hence $V_{o}=V_{B E D 1}+I_{a} \cdot R_{a} \cong 3.8 \mathrm{~V}$. The V_{L}, I_{L} characteristic of the device is therefore similar to a pure resistance in series to a battery.
It is important to note that the DC voltage at pin 5 is proportional to the line current $\left(\mathrm{V}_{5}=\mathrm{V}_{7}+\mathrm{V}_{\text {BED1 }} \cong\right.$ $\left.\left(I_{L}-I_{o}\right) R_{3}+V_{B E D I}\right)$.

2. 2/4 wires conversion

The LS156 performs the two wires (line) to four wires (microphone, earphone) conversion by means of a Wheatstone bridge configuration so obtaining the proper decoupling between sending and receiving signals (see fig. 7).

Fig. 7-Two to four wires conversion

For a perfect balancing of the bridge $\frac{Z_{L}}{Z_{B}}=\frac{R_{1}}{R_{2}}$.
The AC signal from the microphone is sent to one diagonal of the bridge ($\operatorname{pin} 6$ and 9). A small percentage of the signal power is lost on Z_{B} (being $Z_{B}>Z_{L}$); the main part is sent to the line via R_{1}.
In receiving mode, the AC signal coming from the line is sensed across the second diagonal of the bridge (pin 11 and 10). After amplification it is applied to the receiving capsule.
The impedance Z_{M} is simulated by the shunt regulator that is also intended to work as a transconductance amplifier for the transmission signal.

The impedance Z_{M} is defined as $\frac{\Delta V_{6-9}}{\Delta I_{6-9}}$.
From fig. 6, considering C_{1} as a short circuit for $A C$ signal, any variation ΔV_{6} generates a variation.

$$
\Delta \mathrm{V}_{7}=\Delta \mathrm{V}_{\mathrm{A}}=\Delta \mathrm{V}_{6} \cdot \frac{\mathrm{R}_{\mathrm{b}}}{\mathrm{R}_{\mathrm{a}}+\mathrm{R}_{\mathrm{b}}}
$$

CIRCUIT DESCRIPTION (continued)

The corresponding current change is

$$
\Delta I=\frac{\Delta V_{7}}{R_{3}}
$$

Therefore

$$
Z_{M}=\frac{\Delta V_{6}}{\Delta I}=R_{3}\left(1+\frac{R_{a}}{R_{b}}\right)
$$

The total impedance across the line connections (pin 11 and 9) is given by

$$
Z_{M L}=R_{1}+Z_{M} / /\left(R_{2}+Z_{B}\right)
$$

By choosing $Z_{M} \gg R_{1}$ and $Z_{B} \gg Z_{M}$

$$
Z_{M L} \cong Z_{M}=R_{3}\left(1+\frac{R_{a}}{R_{b}}\right)
$$

The received signal amplitude across pin 11 and 10 can be changed using different values of R_{1} (of course the relationship $\frac{Z_{L}}{Z_{B}}=\frac{R_{1}}{R_{2}}$ must be always valid).
The received signal is related to R_{1} value according to the approximated relationship

$$
V_{R}=2 \cdot V_{R I} \frac{R_{1}}{R_{1}+Z_{M}}
$$

Note that by changing the value of R_{1}, the transmission signal current is not changed, being the microphone amplifier a transconductance amplifier.

3. Automatic gain control

The LS156 automatically adjusts the gain of the sending and receiving amplifiers to compensate for line attenuation by sensing the line length through the line current.
The line current is sensed across R_{3} (see fig. 6) and transferred to pin 5 by the regulator.

$$
V_{5}=V_{B E D 1}+V_{7} \cong V_{B E D 1}+\left(I_{L}-I_{0}\right) \cdot R_{3}
$$

The pin $5 \mathrm{~V}_{5}$ voltage, after a comparison with an internal reference $\mathrm{V}_{\text {REFG }}$ (see the block diagram) is used to modify the gain of the amplifiers (4) and (5) on both the sending and receiving path.
The starting point of the automatic level control is obtained at $I_{L}=25 \mathrm{~mA}$ when the drain current $\mathrm{I}_{\mathrm{o}}=7.5 \mathrm{~mA}$.
Minimum gain is reached for a line current of about 52 mA for the same drain current $\mathrm{I}_{0}=7.5 \mathrm{~mA}$. When I_{0} is increased by means of the external resistor connected to pin 4, the two above mentioned values of the line current for the starting point and for the minimum gain increase accordingly.
Automatic switching of the balance network Z_{B} for a better sidetone is performed by the LS156 through V_{5} information. This information, proportional to the line length, drives the comparator (7b) (see the block diagram).
For long lines, the impedance level of Z_{B} is high (pin 8 open) and the additional +1 dB gain is added to the receiving amplifier chain.

CIRCUIT DESCRIPTION (continued)

For short lines, the impedance level of Z_{B} is automatically switched to a lower value (pin 8 shorted to ground) and the additional +1 dB block is bypassed by the received signal.
A built in hysteresis circuit avoids uncertain operation of the comparator.

4. Transducers interfacing

The microphone amplifier (3) has a differential input stage with high impedance ($\cong 40 \mathrm{~K} \Omega$) so allowing a good matching to the microphone by means of external resistors without affecting the sending gain. The receiving output stage (6) is particularly intended to drive piezoceramic capsules. [Low output impedance (100Ω max); high voltage swing (close to V_{L}); current capability of 1.8 mAp].
When a dynamic capsule is used, it is useful to decrease the receiving gain by decreasing R_{1} value (see the relationship for V_{R}).
With very low impedance transducer. DC decoupling by an external capacitor must be provided to prevent a large DC current flow across the transducer itself due to the receiving output stage offset.

5. Multifreyuency interfacing

The LS156 acts as a linear interface for the Multifrequency synthesizer M761 according to a logical signal (mute function) present on pin 3.
When no key of the keyboard is pressed the mute state is low and the LS156 feeds the M761 through pin 15 with low current (standby operation of the M761). The oscillator of the M761 is not operating. When one key is pressed, the M761 sends a "high state" mute condition to the LS156. A voltage comparator (9) of LS156 drives internal electronic switches: the current delivered by the voltage supply (10) is increased to allow the operation of the oscillator. This extra current is diverted by the receiving and sending section of the LS156 and during this operation the receiving output stage is partially inhibited and the input stages of sending and receiving amplifiers are switched OFF.
A controlled amount of the signalling is allowed to reach the earphone to give a feedback to the subscriber; the MF amplifier (11) delivers the dial tones to the sending paths.
The application circuit shown in fig. 9 fulfils the EUROPE II standard ($-6,-8 \mathrm{dBm}$). If the EUROPE I levels are required ($-9,-11 \mathrm{dBm}$), an external divider must be used (fig. 11).
The mute function can be used also when a temporary inhibition of the output signal is requested.

APPLICATION INFORMATION

Fig. 8 - Application circuit with multifrequency (EUROPE II std.)

APPLICATION INFORMATION (continued)

Fig. 9 - Application circuit with multifrequency (EUROPE I std.)
Fig. 10 - External mute function

without MF

Fig. 11 - Application circuit without multifrequency.

The circuits shown in fig. 8 and fig. 11 are referred to the Italian standard. The fig. 10 shows the connection for mute function (inhibition of the output stage when it is requested) by using an external switch at pin 3.
Different values for the external components can be used in order to satisfy different requirements. The following table can help the designer.

APPLICATION INFORMATION (continued)

Component	Value	Purpose	Note
R_{1}	68Ω	Bridge Resistors	R_{1} controls the receiving gain. The ratio R_{2} / R_{1} fixes the amount of signal delivered to the line. R_{1} helps in fixing the DC characteristic (see R_{3} note).
R_{2}	330Ω		
R_{3}	30Ω	Line current sensing. Fixing DC characteristic.	The relationships involving R_{3} are: - $Z_{M L}=\left(20 R_{3} / / Z_{B}\right)+R_{1}$ - $G_{S}=K \cdot \frac{Z_{L} / / Z_{M L}}{R_{3}}$ - $V_{L}=\left(I_{L}-I_{0}\right)\left(R_{3}+R_{1}\right)+V_{o} ; V_{0}=3.8 V$. Without any problem it is possible to have a $Z_{M L}$ ranging from 500 up to 900Ω.
R_{4}	$13 \mathrm{~K} \Omega$	Bias Resistor	The suggested value assures the minimum operating current. It is possible to increase the supply current by decreasing R_{4} (they are inversely proportional), in order to achieve the shifting of the AGC starting point. (See fig. 12).
R_{5}	$7.5 \mathrm{~K} \Omega$	Balance Network	The balance network has two possible impedance levels, selected by the circuit referring to the line current (i.e. to the line length) in order to optimize the sidetone. It's possible to change $\mathrm{R}_{5}, \mathrm{R}_{6}, \mathrm{R}_{7}$ values in order to improve the matching to different lines; in any case:$\begin{aligned} & \frac{Z_{B}}{Z_{L}}=\frac{R_{2}}{R_{1}} \text { with the two possible values for } Z_{B} \text { : } \\ & Z_{B(1)}=R_{7}+R_{6} / / C_{4} \text { (long lines) } \\ & Z_{B(2)}=R_{7}+\left(R_{6} / / R_{5}\right) / / C_{4} \text { (short lines) } \\ & \text { (see fig. 13). } \end{aligned}$
R_{6}	$5.1 \mathrm{~K} \Omega$		
R_{7}	$1 \mathrm{~K} \Omega$		
$\mathrm{R}_{8}-\mathrm{R}_{8}{ }^{\prime}$	$1.8 \mathrm{~K} \Omega$	Receiver impedance matching	R_{8} and $R_{8}{ }^{\prime}$ must be equal; the suggested value is good for matching to piezoceramic capsule; there is no problem in increasing and decreasing (down to 0Ω) this value, but when low resistance levels are used a DC decoupling must be inserted to stop the current due to the receiver output offset voltage ($\max 400 \mathrm{mV}$).
R_{9}	$3.6 \mathrm{~K} \Omega$	Microphone impedance matching	The suggested value is typical for a piezoceramic microphone, but it is possible to choose R_{9} in a wide range.
C_{1}	$10 \mu \mathrm{~F}$	Regulator AC bypass	A value greater than $10 \mu \mathrm{~F}$ gives a system start time too high for low current line during MF operation; a lower value gives an alteration of the AC line impedance at low frequency.
C_{2}	47 nF	Matching to a capacitive line	C_{2} changes with the characteristics of the transmission line.

APPLICATION INFORMATION (continued)

Component	Value	Purpose	Note
C_{3}	82 nF	Receiving gain flatness.	C_{3} depends on balancing and line impedance versus frequency.
C_{4}	22 nF	Balance network.	See note for R_{7}, R_{6}, R_{5}. C_{5}
$0.33 \mu \mathrm{~F}$	DC filtering	The C_{5} range is from $0.1 \mu \mathrm{~F}$ to $0.47 \mu \mathrm{~F}$. The lowest value is ripple limited, the higher value is starting up time limited.	
$\mathrm{C}_{6}-\mathrm{C}_{7}$	1000 pF	RF bypass.	
C_{8}	$1 \mu \mathrm{~F}$	DC decoupling for receiving input.	

Fig. 12 - Sending and receiving gain vs. line current

Fig. 13 - Balance network impedance vs. line current

LINEAR INTEGRATED CIRCUIT

HIGH RELIABILITY TRANSISTOR ARRAY

The LS159 is an array of 5 NPN transistors on a common monolithic substrate in an SO-14 (14-lead plastic micropackage). This package is easily mounted on thick and thin film hybrid circuits. Two transistors are internally connected to form a differential amplifier. The transistors of the LS159 are well suited to low noise general purposes and to a wide variety of applications in low power systems in the DC through VHF range. They may be used as discrete components in conventional circuits; in addition they provide the very significant inherent integrated circuit advantages of close electrical and thermal matching. The device is also available with a ermetic goldchip (LS8159M) that is particularly suitable for professional and telecom applications, wherever very high MTBF are required. This performance is guaranteed by silicon nitride sealing of chip surface and Ti-Pt-Au metallization, protected with a double passivated layer, providing resistance against contamination, electrolytic corrosion and electromigration.

ABSOLUTE MAXIMUM RATINGS	Each transistor	Total package	
$\mathrm{V}_{\text {CBO }}$	Collector-base voltage $\left(I_{\mathrm{E}}=0\right)$	20 V	-
$\mathrm{V}_{\mathrm{CEO}}$	Collector-emitter voltage $\left(\mathrm{I}_{\mathrm{B}}=0\right)$	15 V	-
$\mathrm{V}_{\mathrm{CSS}}$	Collector--substrate voltage	20 V	-
$\mathrm{V}_{\text {EBO }}$	Emitter-base voltage $\left(\mathrm{I}_{\mathrm{C}}=0\right)$	5 V	-
I_{C}	Collector current	-	
$\mathrm{P}_{\text {tot }}$	Total power dissipation at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$	50 mA	-
$\mathrm{T}_{\text {stg }}, \mathrm{T}_{\mathrm{j}}$	Storage, and junction temperature	250 mW	500 mW
	Soldering dip or wave at 5 s		
	11 s	$-55 \mathrm{to} 150^{\circ} \mathrm{C}$	
		$260^{\circ} \mathrm{C}$	
		$235^{\circ} \mathrm{C}$	

[^9]ORDERING NUMBERS: LS 159M - LS 8159M
MECHANICAL DATA
Dimensions in mm

SCHEMATIC DIAGRAM

THERMAL DATA

$\mathrm{R}_{\text {th } \mathrm{j} \text {-amb }}$	Thermal resistance junction-ambient	\max	250

ELECTRICAL CHARACTERISTICS $\left(\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}\right.$ unless otherwise specified)

Parameter		Test conditions	Min.	Typ.	Max.	Unit	Fig.
${ }^{\text {CBO }}$	Collector cutoff current ($I_{E}=0$)	$\mathrm{V}_{\mathrm{CB}}=10 \mathrm{~V}$		0.002	40	nA	1
$I_{\text {CEO }}$	Collector cutoff current $\left(I_{B}=0\right)$	$\mathrm{V}_{\mathrm{CE}}=10 \mathrm{~V}$		see curve	0.5	$\mu \mathrm{A}$	2
$\left\|I_{B 1}{ }^{-1} \mathrm{~B}_{2}\right\|$	Input offset current	$\mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA} \quad \mathrm{~V}_{C E}=3 \mathrm{~V}$		0.3	2	$\mu \mathrm{A}$	7
$V_{\text {CBO }}$	Collector-base voltage $\left(I_{E}=0\right)$	$\mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{~A}$	20	60		V	-
$V_{\text {CEO }}$	Collector-emitter voltage ($\mathrm{I}_{\mathrm{B}}=0$)	$\mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}$	15	24		V	-
$\mathrm{V}_{\text {css }}$	Collector-substrate voltage ($\mathrm{I}_{\mathrm{CSS}}=0$)	$\mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{~A}$	20	60		V	-
$V_{\text {CE (sat) }}$	Collector-emitter saturation voltage	$\mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA} \quad \mathrm{I}_{\mathrm{B}}=1 \mathrm{~mA}$		0.23		V	-

ELECTRICAL CHARACTERISTICS (continued)

Parameter		Test conditions		Min.	Typ.	Max.	Unit	Fig.
$V_{\text {Ebo }}$	Emitter-base voltage $\left(I_{C}=0\right)$	$\mathrm{I}_{\mathrm{E}}=10 \mu \mathrm{~A}$		5	7		V	-
$V_{\text {BE }}$	Base-emitter voltage	$\begin{aligned} & I_{E}=1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{E}}=10 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & V_{C E}=3 V \\ & V_{C E}=3 V \end{aligned}$		$\begin{gathered} 0.71 \\ 0.8 \end{gathered}$		V	4
$\left\|\mathrm{V}_{\mathrm{BE1}}-\mathrm{V}_{\mathrm{BE} 2}\right\|$ Input offset voltage		$\mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}$	$V_{C E}=3 V$		0.45	5	mV	4-6
$\left\|V_{\text {BE3 }}-V_{\text {BE4 }}\right\|$	Input offset voltage							
$\left\|V_{B E 4}-V_{\text {BE5 }}\right\|$	Input offset voltage							
$\left\|V_{\text {BE5 }}-V_{\text {BE4 }}\right\|$	Input offset voltage							
$\frac{\Delta V_{\mathrm{BE}}}{\Delta \mathrm{~T}}$	Base-emitter voltage temperature coefficient	$\mathrm{I}_{\mathrm{C}}=1$	$\mathrm{V}_{C E}=3 \mathrm{~V}$		-1.9		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	5
$\frac{\left\|V_{B E 1}-V_{B E 2}\right\|}{\Delta T}$	Input offset voltage temperature coefficient	${ }^{\prime} \mathrm{C}=1 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{CE}}=3 \mathrm{~V}$		1.1		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$	6
$\mathrm{h}_{\text {FE }}$	DC current gain	$\begin{aligned} & I_{C}=10 \mathrm{~mA} \\ & I_{C}=1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & V_{C E}=3 V \\ & V_{C E}=3 V \\ & V_{C E}=3 V \end{aligned}$	40	$\begin{aligned} & 100 \\ & 100 \\ & 54 \end{aligned}$		-	3
${ }_{\mathrm{f}}$	Transition frequency	$\mathrm{I}_{\mathrm{C}}=3 \mathrm{~mA}$	$\mathrm{V}_{\text {CE }}=3 \mathrm{~V}$	300	550		MHz	14
NF	Noise figure	$\begin{aligned} & \mathrm{I}_{\mathrm{C}}=100 \mu \mathrm{~A} \\ & \mathrm{R}_{\mathrm{g}}=1 \mathrm{k} \Omega \end{aligned}$	$\begin{aligned} & V_{C E}=3 V \\ & f=1 \mathrm{kHz} \end{aligned}$		3.25		dB	8
$\mathrm{h}_{\text {ie }}$	Input impedance	$\begin{gathered} \mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA} \quad V_{C E}=3 \mathrm{~V} \\ f=1 \mathrm{KHz} \end{gathered}$			3.5		$k \Omega$	9
h_{fe}	Forward current transfer ratio				110		-	
h_{re}	Reverse voltage transfer ratio				1.8×10^{-4}		-	
$\mathrm{h}_{\text {oe }}$	Output admittance				15.6		$\mu \mathrm{S}$	
$y_{\text {ie }}$	Input admittance	$\begin{gathered} \mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA} \quad V_{C E}=3 \mathrm{~V} \\ \mathrm{f}=1 \mathrm{MHz} \end{gathered}$			0.3+j0.04		mS	11
$y_{\text {fe }}$	Forward transadmittance				31-j 1.5		mS	10
$y_{\text {re }}$	Reverse transadmittance				see curve		mS	13
Yoe	Output admittance			$0.001+\mathrm{j} 0.03$			mS	12
$\mathrm{C}_{\text {EBO }}$	Emitter-base capacitance	$\mathrm{I}_{\mathrm{C}}=0$	$V_{E B}=3 V$		0.6		pF	-
$\mathrm{C}_{\text {CBO }}$	Collector-base capacitance	$\mathrm{I}_{\mathrm{E}}=0$	$\mathrm{V}_{\mathrm{CB}}=3 \mathrm{~V}$		0.58		pF	-
$\mathrm{C}_{\text {css }}$	Collector-substrate capacitance	${ }^{\mathrm{I}} \mathrm{C}=0$	$\mathrm{V}_{\text {css }}=3 \mathrm{~V}$		2.8		pF	-

Fig. 1 - Collector cutoff current vs. ambient temperature

Fig. 4 - Input voltage and input offset voltage vs. emitter current

Fig. 7 - Input offset current for matched transistor pair

Fig. 2 - Collector cutoff current vs. ambient temperature

Fig. 5 - Input characteristics for each transistor

Fig. 8 - Noise figure vs. collector current

Fig. 3 - DC current gain

Fig. 6 - Input offset voltage vs. ambient temperature

Fig. 9 - Normalized h parameters vs. collector current

Fig. 10 - Forward admittance vs. frequency

Fig. 13-Reverse admittance vs. frequency

Fig. 12 - Output admittance vs. frequency

Fig. 14 - Transition frequency vs. collector current

LINEAR INTEGRATED CIRCUITS

HIGH PERFORMANCE DUAL OPERATIONAL AMPLIFIER

- SINGLE OR SPLIT SUPPLY OPERATION
- LOW POWER CONSUMPTION
- SHORT CIRCUIT PROTECTION
- LOW DISTORTION, LOW NOISE
- HIGH GAIN-BANDWIDTH PRODUCT
- HIGH CHANNEL SEPARATION

The LS 204 is a high performance dual operational amplifier with frequency and phase compensation built into the chip. The internal phase compensation allows stable operation as voltage follower in spite of its high gain-bandwidth products. The circuit presents very stable electrical characteristics over the entire supply voltage range, and it is particularly intended for professional and telecom applications (active filters, etc.). The LS 204 series is available with hermetic gold chip (8000 series).

	UTE MAXIMUM RATINGS	TO-99	Minidip	μ package
V_{5}	Supply voltage	$\pm 18 \mathrm{~V}$		
V_{i}	Input voltage	$\begin{gathered} \pm V_{s} \\ \pm\left(V_{c}-1\right) \end{gathered}$		
V ;	Differential input voltage			
$\mathrm{T}_{\text {op }}$	Operating temperature for LS 204LS 204ALS 204C			
			-55 to $125^{\circ} \mathrm{C}$	
			0 to $70{ }^{\circ} \mathrm{C}$	
$\mathrm{P}_{\text {to }}$	Power dissipation at $\mathrm{Tamb}=70^{\circ} \mathrm{C}$	520 mW	665 mW	400 mW
T_{j}	Junction temperature	$150^{\circ} \mathrm{C}$	$150^{\circ} \mathrm{C}$	$150^{\circ} \mathrm{C}$
Tst	Storage temperature	-65 to $150^{\circ} \mathrm{C}$	-55 to $150^{\circ} \mathrm{C}$	-55 to $150^{\circ} \mathrm{C}$

MECHANICAL DATA

Dimensions in mm

CONNECTION DIAGRAMS AND ORDERING NUMBERS
(top views)

Type	TO-99	Minidip	SO-8
LS 204	LS 204 T	-	LS 204 M
LS 204 A	LS 204 AT	-	-
LS 204 C	LS 204 CT	LS 204 CB	LS 204 CM
LS 8204	-	-	LS 8204 M
LS 8204 A	-	-	LS 8204 AM
LS 8204 C	-		LS 8204 CM

SCHEMATIC DIAGRAM (one section)

THERMAL DATA	TO-99	Minidip	SO-8	
$R_{\text {th j-amb }}$ Thermal resistance junction-ambient	\max	$155^{\circ} \mathrm{C} / \mathrm{W}$	$120^{\circ} \mathrm{C} / \mathrm{W}$	$200^{*}{ }^{\circ} \mathrm{C} / \mathrm{W}$

* Measured with the device mounted on a ceramic substrate ($25 \times 16 \times 96 \mathrm{~mm}$)

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{s}}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}\right.$, unless otherwise specified)

Parameter		Test conditions	LS 204/LS204A			LS 204C			Unit	
		Min.	Typ.	Max.	Min.	Typ.	Max.			
I_{s}	Supply current				0.7	1		0.8	1.5	mA
I_{b}	Input bias current	$T_{\text {min }}<T_{\text {op }}<T_{\text {max }}$		50	150		100	300	nA	
					300			700	nA	
R_{i}	Input resistance	$\mathrm{f}=1 \mathrm{KHz}$		1			0.5		$\mathrm{M} \Omega$	
$\mathrm{V}_{\text {os }}$	Input offset voltage	$\mathrm{R}_{\mathrm{g}} \leqslant 10 \mathrm{~K} \Omega$		0.5	2.5		0.5	3.5	mV	
		$\begin{aligned} & \mathrm{R}_{\mathrm{g}} \leqslant 10 \mathrm{~K} \Omega \\ & \mathrm{~T}_{\min }<\mathrm{T}_{\mathrm{op}}<\mathrm{T}_{\max } \end{aligned}$			3.5			5	mV	
$\frac{\Delta V_{\text {OS }}}{\Delta T}$	Input offset voltage drift	$\begin{aligned} & \mathrm{R}_{\mathrm{g}}=10 \mathrm{~K} \Omega \\ & \mathrm{~T}_{\min }<\mathrm{T}_{\mathrm{op}}<\mathrm{T}_{\max } \end{aligned}$		5			5		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$	
Ios	Input offset current			5	20		12	50	nA	
		$\mathrm{T}_{\text {min }}<\mathrm{T}_{\text {op }}<\mathrm{T}_{\text {max }}$			40			100	$n \mathrm{~A}$	
$\frac{\Delta I_{\mathrm{os}}}{\Delta \mathrm{~T}}$	Input offset current drift	$\mathrm{T}_{\text {min }}<\mathrm{T}_{\text {op }}<\mathrm{T}_{\text {max }}$		0.08			0.1		$\frac{n}{}{ }^{\circ} \mathrm{C}$	
$\mathrm{I}_{\text {sc }}$	Output short circuit current			23			23		mA	
G_{v}	Large signal open loop voltage gain	$\begin{aligned} T_{\min }<T_{o p} & <T_{\max } \\ R_{\mathrm{L}}=2 K \Omega V_{\mathrm{s}} & = \pm 15 \mathrm{~V} \\ V_{\mathrm{s}} & = \pm 4 \mathrm{~V} \end{aligned}$	90	$\begin{aligned} & 100 \\ & 95 \end{aligned}$		86	$\begin{gathered} 100 \\ 95 \end{gathered}$		dB	
B	Gain-bandwidth product	$\mathrm{f}=20 \mathrm{KHz}$	1.8	3		1.5	2.5		MHz	
e_{N}	Total input noise voltage	$\begin{aligned} & \mathrm{f}=1 \mathrm{KHz} \\ & \mathrm{R}_{\mathrm{g}}=50 \Omega \\ & \mathrm{R}_{\mathrm{g}}=1 \mathrm{~K} \Omega \\ & \mathrm{R}_{\mathrm{g}}=10 \mathrm{~K} \Omega \\ & \hline \end{aligned}$		$\begin{gathered} 8 \\ 10 \\ 18 \end{gathered}$	15		10 12 20		$\frac{n V}{\sqrt{H z}}$	
d	Distortion	$\begin{aligned} & \mathrm{G}_{\mathrm{v}}=20 \mathrm{~dB} \quad \mathrm{R}_{\mathrm{L}}=2 \mathrm{~K} \Omega \\ & \mathrm{~V}_{\mathrm{O}}=2 \mathrm{Vpp} \mathrm{f}=1 \mathrm{KHz} \end{aligned}$		0.03	0.1		0.03	0.1	\%	
V_{0}	DC output voltage swing	$\begin{aligned} & R_{\mathrm{L}}=2 \mathrm{~K} \Omega \mathrm{~V}_{\mathrm{s}}= \pm 15 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{s}}= \pm 4 \mathrm{~V} \end{aligned}$	± 13	± 3		± 13	± 3		V	
V_{0}	Large signal voltage swing	$\begin{aligned} & R_{\mathrm{L}}=10 \mathrm{~K} \Omega \\ & \mathrm{f}=10 \mathrm{KHz} \end{aligned}$		28			28		Vpp	
SR	Slew rate	unity gain $R_{\mathrm{L}}=2 \mathrm{~K} \Omega$	0.8	1.5			1		$\mathrm{V} / \mu \mathrm{s}$	
CMR	Common mode rejection	$\begin{aligned} & \mathrm{V}_{\mathrm{i}}=10 \mathrm{~V} \\ & \mathrm{~T}_{\min }<\mathrm{T}_{\mathrm{op}}<\mathrm{T}_{\max } \\ & \hline \end{aligned}$	90			86			dB	
SVR	Supply voltage rejection	$\begin{aligned} & \mathrm{V}_{\mathrm{i}}=1 \mathrm{~V} \quad \mathrm{f}=100 \mathrm{~Hz} \\ & \mathrm{~T}_{\min }<\mathrm{T}_{\text {op }}<\mathrm{T}_{\max } \\ & \hline \end{aligned}$	90			86			dB	
CS	Channel separation	$\mathrm{f}=1 \mathrm{KHz}$	100	120			120		dB	

Note: | | LS 204 | LS 204A | LS 204C |
| :--- | :---: | :---: | :---: |
| $\mathrm{T}_{\text {min. }}$ | $-25^{\circ} \mathrm{C}$ | $-55^{\circ} \mathrm{C}$ | $0^{\circ} \mathrm{C}$ |
| $\mathrm{T}_{\text {max }}$ | $+85^{\circ} \mathrm{C}$ | $+125^{\circ} \mathrm{C}$ | $+70^{\circ} \mathrm{C}$ |

Fig. 1 - Supply current vs. supply voltage

Fig. 4 - Open loop frequency and phase response

Fig. 7 - Large signal frequency response

Fig. 2 - Supply current vs. ambient temperature

Fig. 5 - Open loop gain vs. ambient temperature

Fig. 8 - Output voltage swing vs. load resistance

Fig. 3 - Output short circuit current vs. ambient temperature

Fig. 6 - Supply voltage rejection vs. frequency

Fig. 9 - Total input noise vs. frequency

APPLICATION INFORMATION

Active low-pass filter:

BUTTERWORTH

The Butterworth is a "maximally flat" amplitude response filter. Butterworth filters are used for filtering signals in data acquisition systems to prevent aliasing errors in sampled-data applications and for general purpose low-pass filtering.
The cutoff frequency, f_{c}, is the frequency at which the amplitude response is down 3 dB . The attenuation rate beyond the cutoff frequency is -n 6 dB per octave of frequency where n is the order (number of poles) of the filter.
Other characteristics:

- Flattest possible amplitude response.
- Excellent gain accuracy at low frequency end of passband

BESSEL

The Bessel is a type of "linear phase" filter. Because of their linear phase characteristics, these filters approximate a constant time delay over a limited frequency range. Bessel filters pass transient waveforms with a minimum of distortion. They are also used to provide time delays for low pass filtering of modulated waveforms and as a"running average" type filter.
The maximum phase shift is $\frac{-n \pi}{2}$ radians where n is the order (number of poles) of the filter. The cutoff frequency, f_{c}, is defined as the frequency at which the phase shift is one half of this value. For accurate delay, the cutoff frequency should be twice the maximum signal frequency. The following table can be used to obtain the -3 dB frequency of the filter.

	2 pole	4 pole	$\mathbf{6}$ pole	$\mathbf{8}$ pole
-3 dB frequency	$0.77 \mathrm{f}_{\mathrm{c}}$	$0.67 \mathrm{f}_{\mathrm{c}}$	$0.57 \mathrm{f}_{\mathrm{c}}$	$0.50 \mathrm{f}_{\mathrm{c}}$

Other characteristics:

- Selectivity not as great as Chebyschev or Butterworth.
- Very little overshoot response to step inputs
- Fast rise time.

CHEBYSCHEV

Chebyschev filters have greater selectivity than either Bessel or Butterworth at the expense of ripple in the passband.
Chebyschev filters are normally designed with peak-to-peak ripple values from $\pm 0.2 \mathrm{~dB}$ to $\pm 2 \mathrm{~dB}$.
Increased ripple in the passband allows increased attenuation above the cutoff frequency.
The cutoff frequency is defined as the frequency at which the amplitude response passes through the specified maximum ripple band and enters the stop band.
Other characteristics:

- Greater selectivity
- Very nonlinear phase response
- High overshoot response to step inputs

Fig. 10 -Amplitude response

Fig. 11 -Amplitude response

Fig. 12 -Amplitude response

APPLICATION INFORMATION (continued)

The table below shows the typical overshoot and settling, time response of the low pass filters to a step input.

	NUMBER OF POLES	PEAK OVERSHOOT	SETTLING TIME (\% of final value)		
		\% Overshoot	$\pm 1 \%$	\pm 0.1\%	\pm 0.01\%
BUTTERWORTH	$\begin{aligned} & 2 \\ & 4 \\ & 6 \\ & 8 \end{aligned}$	$\begin{array}{r} 4 \\ 11 \\ 14 \\ 16 \end{array}$	$\begin{aligned} & 1.1 / f_{\mathrm{c}} \mathrm{sec} . \\ & 1.7 / \mathrm{f}_{\mathrm{c}} \\ & 2.4 / \mathrm{f}_{\mathrm{c}} \\ & 3.1 / \mathrm{f}_{\mathrm{c}} \end{aligned}$	$\begin{aligned} & 1.7 / f_{\mathrm{c}} \mathrm{sec} . \\ & 2.8 / \mathrm{f}_{\mathrm{c}} \\ & 3.9 / \mathrm{f}_{\mathrm{c}} \\ & 5.1 \mathrm{f}_{\mathrm{c}} \end{aligned}$	$\begin{aligned} & 1.9 / \mathrm{f}_{\mathrm{c}} \mathrm{sec} . \\ & 3.8 / \mathrm{f}_{\mathrm{c}} \\ & 5.0 / \mathrm{f}_{\mathrm{c}} \\ & 7.1 / \mathrm{f}_{\mathrm{c}} \end{aligned}$
BESSEL	$\begin{aligned} & 2 \\ & 4 \\ & 6 \\ & 8 \end{aligned}$	$\begin{aligned} & 0.4 \\ & 0.8 \\ & 0.6 \\ & 0.3 \end{aligned}$	$\begin{aligned} & 0.8 / f_{c} \\ & 1.0 / f_{c} \\ & 1.3 / f_{c} \\ & 1.6 / f_{c} \end{aligned}$	$\begin{aligned} & 1.4 / \mathrm{f}_{\mathrm{c}} \\ & 1.8 / \mathrm{f}_{\mathrm{c}} \\ & 2.1 / \mathrm{f} \mathrm{c} \\ & 2.3 / \mathrm{f}_{\mathrm{c}} \end{aligned}$	$\begin{aligned} & 1.7 / \mathrm{f}_{\mathrm{c}} \\ & 2.4 / \mathrm{f}_{\mathrm{c}} \\ & 2.7 / \mathrm{f}_{\mathrm{c}} \\ & 3.2 / \mathrm{c}_{\mathrm{c}} \end{aligned}$
CHEBYSCHEV (RIPPLE $\pm 0.25 \mathrm{~dB}$)	$\begin{aligned} & 2 \\ & 4 \\ & 6 \\ & 8 \end{aligned}$	$\begin{aligned} & 11 \\ & 18 \\ & 21 \\ & 23 \end{aligned}$	$\begin{aligned} & 1.1 / \mathrm{f}_{\mathrm{c}} \\ & 3.0 / \mathrm{f}_{\mathrm{c}} \\ & 5.9 / \mathrm{f}_{\mathrm{c}} \\ & 8.4 / \mathrm{c}_{\mathrm{c}} \end{aligned}$	$\begin{aligned} & 1.6 / \mathrm{f}_{\mathrm{c}} \\ & 5.4 / \mathrm{f}_{\mathrm{c}} \\ & 10.4 / \mathrm{f}_{\mathrm{c}} \\ & 16.4 / \mathrm{f}_{\mathrm{c}} \end{aligned}$	
CHEBYSCHEV (RIPPLE $\pm 1 \mathrm{~dB}$)	$\begin{aligned} & 2 \\ & 4 \\ & 6 \\ & 8 \end{aligned}$	$\begin{aligned} & 21 \\ & 28 \\ & 32 \\ & 34 \end{aligned}$	$\begin{array}{r} 1.6 / f_{c} \\ 4.8 / f_{c} \\ 8.2 / f_{c} \\ 11.6 / f_{c} \end{array}$	$\begin{aligned} & 2.7 / \mathrm{f}_{\mathrm{c}} \\ & 8.4 / \mathrm{f}_{\mathrm{c}} \\ & 16.3 / \mathrm{c}_{\mathrm{c}} \\ & 24.8 / \mathrm{c}^{2} \end{aligned}$	

Design of $2^{\text {nd }}$ order active low pass filter

(Sallen and Key configuration unity gain op-amp)
Fig. 13 - Filter configuration

$\frac{V_{o}}{V_{i}}=\frac{1}{1+2 \xi \frac{S}{\omega_{c}}+\frac{S^{2}}{\omega_{c}{ }^{2}}}$
where:
$\omega_{c}=2 \pi f_{c} \quad$ with $f_{c}=$ cutoff frequency
$\xi=$ damping factor.

APPLICATION INFORMATION (continued)

Three parameters are needed to characterise the frequency and phase response of a $2^{\text {nd }}$ order active filter: the gain (G_{v}), the damping factor (ξ) or the Q -factor $\left(\mathrm{Q}=(2 \xi)^{-1}\right)$, and the cutoff frequency (f_{c}).
The higher order responses are obtained with a series of $2^{\text {nd }}$ order sections. A simple RC section is introduced when an odd filter is required.
The choice of ' ξ ' (or 0 -factor) determines the filter response (see table).

Tab. 1

Filter response	$\boldsymbol{\xi}$	\mathbf{Q}	Cutoff frequency $\mathbf{f}_{\mathbf{c}}$
Bessel	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{3}}$	Frequency at which phase shift is -90°
Butterworth	$\frac{\sqrt{2}}{2}$	$\frac{1}{\sqrt{2}}$	Frequency at which $\mathrm{G}_{\mathrm{v}}=-3 \mathrm{~dB}$
Chebyschev	$<\frac{\sqrt{2}}{2}$	$>\frac{1}{\sqrt{2}}$	Frequency at which the amplitude response passes through specified max. ripple band and enters the stop band

Fig. 14 - Filter response vs. damping factor

Fixed $R=R_{1}=R_{2}$, we have (see fig. 13)
$\mathrm{C}_{1}=\frac{1}{\mathrm{R}} \frac{\xi}{\omega_{\mathrm{c}}}$
$C_{2}=\frac{1}{R} \frac{1}{\xi \omega_{c}}$
The diagram of fig. 14 shows the amplitude response for different values of damping factor ξ in $2^{\text {nd }}$ order filters.

EXAMPLE:

Fig. $15-5^{\text {th }}$ order low pass filter (Butterworth) with unity gain configuration.

APPLICATION INFORMATION (continued)

In the circuit of fig. 15, for $\mathrm{f}_{\mathrm{c}}=3.4 \mathrm{KHz}$ and $R_{i}=R_{1}=R_{2}=R_{3}=R_{4}=10 \mathrm{~K} \Omega$, we obtain:
$C_{i}=1.354 \cdot \frac{1}{R} \cdot \frac{1}{2 \pi f_{c}}=6.33 \mathrm{nF}$
$C_{1}=0.421 \cdot \frac{1}{R} \cdot \frac{1}{2 \pi f_{c}}=1.97 \mathrm{nF}$
$\mathrm{C}_{2}=1.753 \cdot \frac{1}{\mathrm{R}} \cdot \frac{1}{2 \pi \mathrm{f}_{\mathrm{c}}}=8.20 \mathrm{nF}$
$C_{3}=0.309 \cdot \frac{1}{R} \cdot \frac{1}{2 \pi f_{c}}=1.45 \mathrm{nF}$
$\mathrm{C}_{4}=3.325 \cdot \frac{1}{\mathrm{R}} \cdot \frac{1}{2 \pi \mathrm{f}_{\mathrm{c}}}=15.14 \mathrm{nF}$
The attenuation of the filter is 30 dB at 6.8 KHz and better than 60 dB at 15 KHz .

The same method, referring to Tab. II and fig. 16, is used to design high-pass filter. In this case the damping factor is found by taking the reciprocal of the numbers in Tab. II. For f_{c} $=5 \mathrm{KHz}$ and $\mathrm{C}_{\mathrm{i}}=\mathrm{C}_{1}=\mathrm{C}_{2}=\mathrm{C}_{3}=\mathrm{C}_{4}=1 \mathrm{nF}$ we obtain:

$$
R_{i}=\frac{1}{1.354} \cdot \frac{1}{C} \cdot \frac{1}{2 \pi f_{c}}=23.5 \mathrm{~K} \Omega
$$

Tab. II
Damping factor for low-pass Butterworth filters

Order	$\mathbf{C}_{\mathbf{i}}$	$\mathbf{C}_{\mathbf{1}}$	$\mathbf{C}_{\mathbf{2}}$	$\mathbf{C}_{\mathbf{3}}$	$\mathbf{C}_{\mathbf{4}}$	$\mathbf{C}_{\mathbf{5}}$	$\mathbf{C}_{\mathbf{6}}$	$\mathbf{C}_{\mathbf{7}}$	$\mathbf{C}_{\mathbf{8}}$
2		0.707	1.41						
3	1.392	0.202	3.54						
4		0.92	1.08	0.38	2.61				
5	1.354	0.421	1.75	0.309	3.235				
6		0.966	1.035	0.707	1.414	0.259	3.86		
7	1.336	0.488	1.53	0.623	1.604	0.222	4.49		
8		0.98	1.02	0.83	1.20	0.556	1.80	0.195	5.125

$$
\begin{aligned}
& \mathrm{R}_{1}=\frac{1}{0.421} \cdot \frac{1}{\mathrm{C}} \cdot \frac{1}{2 \pi \mathrm{f}_{\mathrm{c}}}=75.6 \mathrm{~K} \Omega \\
& \mathrm{R}_{2}=\frac{1}{1.753} \cdot \frac{1}{\mathrm{C}} \cdot \frac{1}{2 \pi \mathrm{f}_{\mathrm{c}}}=18.2 \mathrm{~K} \Omega \\
& \mathrm{R}_{3}=\frac{1}{0.309} \cdot \frac{1}{\mathrm{C}} \cdot \frac{1}{2 \pi \mathrm{f}_{\mathrm{c}}}=103 \mathrm{~K} \Omega \\
& \mathrm{R}_{4}=\frac{1}{3.325} \cdot \frac{1}{\mathrm{C}} \cdot \frac{1}{2 \pi \mathrm{f}_{\mathrm{c}}}=9.6 \mathrm{~K} \Omega
\end{aligned}
$$

Fig. 16-5 $5^{\text {th }}$ order high-pass filter (Butterworth) with unity gain configuration.

LINEAR INTEGRATED CIRCUITS

TELEPHONE SPEECH CIRCUITS

The LS285 and LS285A are monolithic integrated circuits for replacement of the hybrid circuit (2-4 wire interface) in conventional telephones interfacing the two transducers to the line and providing a controlled amount of sidetone.
The same type of transducer can be used for both transmitter and receiver, usually a 350Ω dynamic type.
By sensing the line current, LS285 and LS285A adjust the gain in both directions to compensate for line attenuation.
Output impedance can be matched to the line, independent of transducer impedance.
The LS285 and LS285A are packaged in a 14 lead dual in-line plastic package.

ABSOLUTE MAXIMUM RATINGS

V_{L}	Line voltage (3 ms pulse duration)	22	V
I_{L}	Forward current	120	mA
I_{L}	Reverse current	-150	mA
$P_{\text {tot }}$	Total power dissipation at $T_{a m b}=70^{\circ} \mathrm{C}$	1	W
$\mathrm{~T}_{\text {stg }}$	Storage and junction temperature	-55 to 150	${ }^{\circ} \mathrm{C}$
$T_{\text {op }}$	Operating temperature	-40 to 70	${ }^{\circ} \mathrm{C}$

ORDERING NUMBERS: LS285 B
LS285 AB

MECHANICAL DATA

CONNECTION DIAGRAM (top view)

BLOCK DIAGRAM

DESCRIPTION

The LS285 and the LS285A are based on a bridge configuration. They contain a regulator block, a sending amplifier and a receiver amplifier.
The regulator monitors the line current and adjusts the amplifier gain to compensate for the line length. It provides DC characteristics in line with CEPT standards.
The transmit/receiver amplifiers are connected to the line via an external bridge to provide sidetone attenuation.
The line current compensation ensures that when the subscriber is talking, the signal delivered to the line is increased in according to the line lenght. When he is hearing, the signal level on the reçeiver capsule is constant.
The amplifiers can also be matched to different transducers simply by varying external components. Gain variation over the operating temperature range is less than $\pm 1 \mathrm{~dB}$.
The impedance to the line can be adjusted; without any change in circuit parameters; by changing an external resistor ($6.8 \mathrm{~K} \Omega$ at pin 2).

Basic circuit configuration

Fig. 1 - Test circuit

Fig. 2 - Sending gain

$$
G_{S}=\frac{v_{\mathrm{SO}}}{V_{\mathrm{MI}}}
$$

Fig. 4 - Sidetone

Sidetone $=\frac{\mathrm{V}_{\mathrm{RO}}}{\mathrm{V}_{\mathrm{MI}}}$

Fig. 3 - Receiving gain

S-5010
$G_{R}=\frac{V_{R O}}{V_{R I}}$

Fig. 5 - Return loss

$R_{L}=\frac{V_{S}}{2 V_{M}}$

THERMAL DATA

$R_{\text {th j-amb }}$	Thermal resistance junction-ambient	\max	80

ELECTRICAL CHARACTERISTICS(Refer to the test circuits, $T_{a m b}=-15$ to $+45^{\circ} \mathrm{C}, \mathrm{f}=300 \mathrm{~Hz}$ to 3400 Hz ; unless otherwise specified)

($)$ This output is limited to allow for input overvoltages.

ELECTRICAL CHARACTERISTICS (continued)

Parameter	Test conditions		Min.	Typ.	Max.	Unit	Fig.
Receiving distortion	LS 285	$\begin{aligned} & I_{L}=10 \text { to } 15 \mathrm{~mA} \\ & V_{R O}=350 \mathrm{mVp} \end{aligned}$			2	\%	3
		$\begin{aligned} & \mathrm{I}_{\mathrm{L}}=15 \text { to } 80 \mathrm{~mA} \\ & \mathrm{~V}_{R O}=600 \mathrm{mVp} \end{aligned}$			2		
	LS 285A	$\begin{aligned} & \mathrm{I}_{\mathrm{L}}=15 \text { to } 80 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{RO}}=500 \mathrm{mVp} \end{aligned}$			2	\%	3
Receiving noise	$\begin{aligned} & \mathrm{V}_{\mathrm{RI}}=0 \mathrm{~V} \\ & \text { psophometric } \end{aligned} \quad \mathrm{I}_{\mathrm{L}}=60 \mathrm{~mA}$				100	$\mu \mathrm{V}$	3
Receiving amplifier output impedance (pin 1-14)			60		100	Ω	1
Max receiving output current	$\begin{aligned} & \mathrm{I}_{\mathrm{L}}=10 \text { to } 80 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{RI}}=10 \mathrm{~V} \end{aligned}$				2	mA	3
Sidetone	$\begin{aligned} & \mathrm{f}=1 \mathrm{KHz} \\ & \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} \end{aligned}$	$\mathrm{I}_{\mathrm{L}}=20 \mathrm{~mA}$		7		dB	4
		$\mathrm{I}_{\mathrm{L}}=60 \mathrm{~mA}$		0		dB	
Return loss	S_{2} in a		12			dB	5
	S_{2} in b		12			dB	

Fig. 6 - Typical application circuit

APPLICATION INFORMATION

The following table shows the recommended values for the typical application circuit of fig. 6. Different values can be used and notes are added in order to help designer.

Component	Recommended Value	Purpose	Note
R1	75Ω	Bridge resistors	The ratio R2/R1 fixes the amount of the signal delivered to the line. (see fig. 7)
R2	536Ω		
R3	16.2 K Ω	Bias resistor	Changing R3 value it is possible to shift the gain characteristics. The value can be chosen from $15 \mathrm{~K} \Omega$ to 20 $K \Omega$. The recommended value assures the maximum swing (see fig. 9).
R4	$2.05 \mathrm{~K} \Omega$	Balance network	In order to optimize the sidetone it is possible to change R4 and R5 values. In any case:$\frac{Z_{B}}{Z_{L}}=\frac{R 2}{R 1} \text { where } Z_{B}=R 4+R 5 / / C 4$
R5	$9.09 \mathrm{~K} \Omega$		
R6 and R6'	250Ω	Microphone impedance matching	R6 and R6' must be equal; 250Ω is a typical value for dynamic capsules. Furthermore, they determine a sending gain variation according to: $\Delta G_{S}=20 \log \frac{R x}{850 \Omega}$ where $R x=R 6+R 6^{\prime}+R_{\text {mike }}$. The trend of ΔG_{5} as a function of $R x$ value is shown in fig.8.
R7 and R7'	100Ω	Receiver impedance matching	R7 and R7' must be equal; 100Ω is a typical value for dynamic capsules
C1	$10 \mu \mathrm{~F}$	AC loop opening	Ensures a high regulator impedance for AC signals ($\cong 20 \mathrm{~K} \Omega$). This capacitor should not be higher than 10 $\mu \mathrm{F}$ in order to have a short response time of the system.
C2	22 nF	Matching to a capacitive line	C2 changes with the characteristics of the transmission line.
C3	82 nF	High frequency roll-off	C3 determines the high frequency response of the circuit. It also acts as RF bypass.
C4	22 nF	Balance network	See note for R4 and R5.
C5	$1 \mu \mathrm{~F}$	DC decoupling for receiving input	
C6 and C7	1000 pF	RF bypass	

APPLICATION INFORMATION (continued)

Fig. 7 - Receiving gain variation vs. R1 value (with fixed R1/R2 ratio)

Fig. 8 - Sending gain variation vs. Rx value (see note for R6 and R6')

Fig. 9 - Sending and receiving gain variation vs. line current

LINEAR INTEGRATED CIRCUIT

PROGRAMMABLE TELEPHONE SPEECH CIRCUIT

The LS288 is a monolithic integrated circuit in 16 lead dual in-line plastic package. Designed as a replacement for the hybrid circuit in telephone sets it performs all the functions previously carried out by this circuit.
With the LS288 it is possible to select the operating mode (fixed or variable gain). The device works with both piezoceramic and dynamic transducers and therefore its gain, both in sending and receiving paths, can be preset by means of two external resistors. This feature can also be obtained in AGC operating mode, when the device automatically adjusts the $\mathrm{Rx} / \mathrm{Tx}$ gains to compensate for the line attenuation by sensing the line current.
The LS288 can supply the decoupling FET when working with an electret microphone. Output impedance can be matched to the line independently of transducer impedance.

ABSOLUTE MAXIMUM RATINGS

V_{L}	Line voltage (3 ms pulse duration)	22	V
I_{L}	Forward line current	150	mA
I_{L}	Reverse line current	-150	mA
$\mathrm{P}_{\text {tot }}$	Total power dissipation at $\mathrm{T}_{\mathrm{amb}}=70^{\circ} \mathrm{C}$	1	W
$\mathrm{~T}_{\mathrm{op}}$	Operating temperature	-45 to	70
$\mathrm{~T}_{\text {stg }}, T_{j}$	Storage and junction temperature	${ }^{\circ} \mathrm{C}$	

ORDERING NUMBER : LS288 B

MECHANICAL DATA
Dimensions in mm

CONNECTION DIAGRAM

(top view)

BLOCK DIAGRAM

TEST CIRCUITS

Fig. 1 - Test Circuit

Fig. 2

CMRR

Fig. 3

Side tone $=\frac{\mathrm{V}_{\mathrm{RO}}}{\mathrm{V}_{\mathrm{MI}}} ; \mathrm{G}_{\mathrm{S}}=\frac{\mathrm{V}_{\mathrm{SO}}}{\mathrm{V}_{\mathrm{MI}}}$

Fig. 4

$G_{R}=\frac{V_{R O}}{V_{R I}}$

THERMAL DATA

| $R_{\text {th j-amb }}$ Thermal resistance junction-ambient | $\max 80 \quad{ }^{\circ} \mathrm{C} / \mathrm{W}$ |
| :--- | :--- | :--- |

ELECTRICAL CHARACTERISTICS (Refer to the test circuits, $\mathrm{T}_{\mathrm{amb}}=-25$ to $+50^{\circ} \mathrm{C}, \mathrm{f}=200$ to $3400 \mathrm{~Hz}, \mathrm{I}_{\mathrm{L}}=12$ to 120 mA , unless otherwise specified)

| Parameter | Test conditions | Min. | Typ. | Max. | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | Fig.

AGC off (pin 1 floating)

V_{L}	Line voltage	$\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$	$\begin{aligned} & I_{L}=15 \mathrm{~mA} \\ & L_{L}=22 \mathrm{~mA} \\ & I_{L}=60 \mathrm{~mA} \\ & I_{L}=120 \mathrm{~mA} \end{aligned}$	4.1	4.5	$\begin{gathered} 4.9 \\ 5.4 \\ 10 \\ 14 \end{gathered}$	V	1
CMRR	Common mode rejection	$\mathrm{f}=1 \mathrm{KHz}$			50		dB	2
G_{S}	Sending gain (*)	$\begin{aligned} & \mathrm{I}_{\mathrm{L}}=15 \mathrm{~mA} \\ & \mathrm{Tamb}=25^{\circ} \mathrm{C} \\ & \mathrm{f}=1 \mathrm{KHz} \\ & \mathrm{R}_{8}=17 \mathrm{~K} \Omega \\ & \mathrm{~V}_{\mathrm{MI}}=3 \mathrm{mV} \end{aligned}$	$\begin{aligned} & \mathrm{R}_{7}=8 \mathrm{~K} \Omega \\ & \mathrm{R}_{7}=29 \mathrm{~K} \Omega \\ & \mathrm{R}_{7}=47 \mathrm{~K} \Omega \end{aligned}$	40	$\begin{aligned} & 26 \\ & 41 \\ & 51 \end{aligned}$	42	dB	3
$\Delta \mathrm{G}_{\mathrm{S}}$	Sending gain flatness (vs. freq.)	$\begin{aligned} & V_{M I}=3 \mathrm{mV} \\ & f_{r e f}=1 \mathrm{KHz} \end{aligned}$	$\mathrm{I}_{\text {Lref }}=60 \mathrm{~mA}$			± 0.5	dB	3
$\Delta \mathrm{G}_{\mathrm{S}}$	Sending gain flatness (vs. current)					± 0.5	dB	
d_{S}	Sending distortion	$\begin{aligned} & f=1 \mathrm{KHz} \\ & \mathrm{G}_{\mathrm{S}}=42 \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{SO}}=450 \mathrm{mV} \\ & \mathrm{~V}_{\mathrm{SO}}=775 \mathrm{mV} \end{aligned}$			$\begin{aligned} & 2 \\ & 5 \end{aligned}$	\%	3
	Sending noise	$\mathrm{G}_{\mathrm{S}}=42 \mathrm{~dB}$	$\mathrm{V}_{\mathrm{MI}}=0$			-72	dBmp	3
R_{2-3}	Microphone input impedance pin 2-3	$\mathrm{V}_{\mathrm{MI}}=3 \mathrm{mV}$		11	15		$K \Omega$	3
G_{R}	Receiving gain (*)	$\begin{aligned} & I_{\mathrm{L}}=15 \mathrm{~mA} \\ & T_{a m b}=25^{\circ} \mathrm{C} \\ & \mathrm{f}=1 \mathrm{KHz} \\ & \mathrm{R}_{7}=29 \mathrm{KV} \\ & \mathrm{~V}_{\mathrm{RI}}=0.3 \mathrm{~V} \end{aligned}$	$\begin{aligned} & R_{8}=8 \mathrm{~K} \Omega \\ & R_{8}=17 \mathrm{~K} \Omega \\ & \mathrm{R}_{8}=23 \mathrm{~K} \Omega \end{aligned}$	4	$\begin{array}{r} -6 \\ 5 \\ 14 \end{array}$	6	dB	4
$\Delta \mathrm{G}_{\mathrm{R}}$	Receiving gain flatness (vs. freq.)	$\begin{aligned} & V_{R 1}=0.3 \mathrm{~V} \\ & f_{\mathrm{ref}}=1 \mathrm{KHz} \end{aligned}$	$I_{\text {Lref }}=60 \mathrm{~mA}$			± 0.5	dB	4
ΔG_{R}	. Receiving gain flatness (vs. current)					± 0.5	dB	
d_{R}	Receiving distortion	$\begin{aligned} & f=1 \mathrm{KHz} \\ & G_{R}=-3 \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{RI}}=570 \mathrm{mV} \\ & \mathrm{~V}_{\mathrm{RI}}=1.2 \mathrm{~V} \end{aligned}$			$\begin{aligned} & 2 \\ & 5 \end{aligned}$	\%	4
	Receiving noise	$\begin{aligned} & \mathrm{G}_{\mathrm{R}}=0 \mathrm{~dB} \\ & \mathrm{~V}_{\mathrm{RI}}=0 \end{aligned}$			250		$\mu \mathrm{V}$	4
R_{9-10}	Receiver output impedance (pin 9 and 10)	$\mathrm{V}_{\mathrm{RO}}=50 \mathrm{mV}$			20		Ω	4
	Sidetone	$\begin{aligned} & \mathrm{f}=1 \mathrm{KHz} \\ & \mathrm{G}_{\mathrm{S}}=42 \mathrm{~dB} \\ & \mathrm{G}_{\mathrm{R}}=-3 \mathrm{~dB} \\ & \hline \end{aligned}$			15		dB	3
Z_{ML}	Line matching impedance	$\mathrm{V}_{\mathrm{RI}}=0.3 \mathrm{~V}$	$\mathrm{f}=1 \mathrm{KHz}$	650	750	850	Ω	4
	Max receiving output (click suppressor)	$\begin{aligned} & \mathrm{V}_{\mathrm{RI}}=2 \mathrm{~V} \\ & \mathrm{G}_{\mathrm{R}}=0 \mathrm{~dB} \end{aligned}$			2.3		Vp	4
$\mathrm{V}_{\text {SM }}$	Microphone supply voltage (pin 11)	$\mathrm{I}_{\text {SM }}=0.8 \mathrm{~mA}$		1.9		2.1	V	1

(*) The sending and receiving gains are not completely independent but the variation in sending gain over the whole range of receiving gain (and vice-versa) is less than 0.5 dB .

LS288

ELECTRICAL CHARACTERISTICS (continued)

| Parameter | Test condition | Min. | Typ. | Max. | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | Fig. | (|
| :--- |

AGC on (pin 1 grounded)

ΔG_{S} and Sending and receiving gain $\Delta G_{R} \quad$ variation (**)	$\begin{aligned} & T_{a m b}=25^{\circ} \mathrm{C} \\ & f=1 \mathrm{KHz} \end{aligned}$	$\begin{aligned} & I_{L}=25 \mathrm{~mA} \\ & I_{L}=50 \mathrm{~mA} \\ & I_{L}=110 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & -1 \\ & -6 \\ & -7 \end{aligned}$	+1 -4 -5	dB	3-4

(**) Referred to any value fixed by means of R_{7} and R_{8}.

CIRCUIT DESCRIPTION

1. DC Characteristic

In accordance with CCITT recommendations, any device connected to a telephone line must exhibit a proper DC characteristic V_{L}, I_{L}.
The DC characteristics of the LS288 is determined by the shunt regulator (block 2) together with two series resistors R_{1} and R_{3} (see the block diagram). The equivalent circuit is shown in fig. 5 .

Fig. 5 - Equivalent DC load to the line

A fixed amount, I_{0}, of the total available current, I_{L}, is drained to allow the circuit to operate correctly. The value of I_{0} can be programmed externally by changing the value of the bias resistor connected to pin 12.

CIRCUIT DESCRIPTION (continued)

The recommended minimum value of I_{0} is 7.5 mA with R pin $12=13 \mathrm{~K} \Omega$.
The voltage $\mathrm{V}_{0} \cong 3.8 \mathrm{~V}$ of the shunt regulator is independent of the line current.
The shunt regulator (block 2) is controlled by a temperature compensated voltage reference (block 1).
Fig. 6 shows a more detailed circuit configuration of the shunt regulator.
Fig. 6 - Circuit configuration of the shunt regulator

The difference $I_{L}-I_{0}$ flows through the shunt regulator since I_{b} is negligible.
I_{a} is an internal constant current generator; hence $V_{o}=V_{B}+I_{a} \cdot R_{a}=3.8 \mathrm{~V}$.
The V_{L}, I_{L} characteristic of the device is therefore similar to a pure resistance in series with a battery. It is important to note that the DC voltage at pin 16 is proportional to the line current $\mathrm{V}_{16}=\mathrm{V}_{15}+\mathrm{V}_{\mathrm{B}}=$ $\left(I_{L}-I_{0}\right) R_{3}+V_{B}$.

2. Two to four wires conversion

The LS288 performs the two wire (line) to four wire (microphone, earphone) conversion by means of a Wheatstone bridge configuration thus obtaining the proper decoupling between sending and receiving signals (see fig. 7).
For a perfect balancing of the bridge $\frac{Z_{L}}{Z_{B}}=\frac{R_{1}}{R_{2}}$
The AC signal from the microphone is sent to one diagonal of the bridge (pin 8 and 14). A small percentage of the signal power is lost on Z_{B} (since $Z_{B}>Z_{L}$); the main part is sent to the line via R_{1}.
In receiving mode, the AC signal coming from the line is sensed across the second diagonal of the bridge (pin 6 and 7). After amplification it is applied to the receiving capsule.
The impedance Z_{M} is simulated by the shunt regulator which also acts as a transconductance amplifier for the transmission signal.
The impedance Z_{M} is defined as $\frac{\Delta V_{(14-8)}}{\Delta I_{(14-8)}}$.

CIRCUIT DESCRIPTION (continued)

Fig. 7 - Two to four wires conversion

From fig. 6, considering C_{1} as a short circuit to the AC signal, any variation in $\Delta \mathrm{V}_{14}$ generates a variation as follows:

$$
\Delta V_{15}=\Delta V_{A}=\Delta V_{14} \frac{R_{b}}{R_{a}+R_{b}}
$$

The corresponding current change is:

$$
\Delta I=\frac{\Delta V_{15}}{R_{3}}
$$

therefore

$$
Z_{M}=\frac{\Delta V_{14}}{\Delta I}=R_{3}\left(1+\frac{R_{a}}{R_{b}}\right)
$$

The total impedance across the line connections (pin 13 and 8) is given by

$$
Z_{M L}=R_{1}+Z_{M} / /\left(R_{2}+Z_{B}\right)
$$

By choosing $Z_{M} \gg R_{1}$ and $Z_{B} \gg Z_{M}$

$$
Z_{M L} \cong Z_{M}=R_{3}\left(1+\frac{R_{a}}{R_{b}}\right)
$$

The amplitude of the signal received across pins 6 and 7 can be changed using different values of R_{1}. (Of course the relationship $\frac{Z_{L}}{Z_{B}}=\frac{R_{1}}{R_{2}}$ must always be valid).

The received signal is related to the value of R_{1} according to the approximated relationship:

$$
v_{R}=V_{R 1} 2 \frac{R_{1}}{R_{1}+Z_{M}}
$$

Note that if the value of R_{1} is changed the transmission signal current is not changed, since the microphone amplifier is a transconductance amplifier.

3. Input and output amplifiers

The microphone amplifier (4) has a differential input stage with high impedance ($\min 11 \mathrm{~K} \Omega$) so allowing a good matching to the microphone by means of an external resistor without affecting the sending gain.
The receiving output stage (8) is intended to drive both piezoceramic and dynamic capsules. It has low output impedance, a maximum voltage swing greater than $2 \mathrm{~V}_{\mathrm{p}}$ and a peak current of 2 mA .
With very low impedance transducers, DC decoupling by an external capacitor must be provided to prevent a large DC current flow across the transducer itself due to the receiving output stage offset.

4. Gain Control

It is possible to set the LS288 gain characteristics by means of one pin (pin 1).
When the pin 1 is floating, the gains of the sending and receiving amplifiers do not depend on the line current (AGC off). When the pin 1 is grounded the LS288 automatically changes the gain to compensate for line attenuation (AGC on).

4.1. AGC OFF

In this conditions, as already mentioned, both the sending and the receiving gain are fixed. Their values are determined, independently for the two paths, by the two external resistors R_{7} (for T_{x}, between pin 4 and ground) and R_{8} (for R_{x}, between pin 5 and ground). R_{7} values ranging from $8 \mathrm{~K} \Omega$ up to $50 \mathrm{~K} \Omega$ giving sending gains from 26 dB to 51 dB . R_{8} values range from $8 \mathrm{~K} \Omega$ to $23 \mathrm{~K} \Omega$ giving receiving gains from -6 dB to +14 dB (see fig. 9 and 10).
This allows the LS288 to be used with a variety of different transducers.

Fig. 9 - Sending gain vs.
R_{7} value (AGC off)

Fig. 10 - Receiving gain vs.
R_{8} value (AGC off)

DESCRIPTION CIRCUIT (continued)

4.2. AGC ON

Starting from any couple of gain values, fixed by the appropriate values of R_{7} and R_{8}, the LS288 can automatically change the sending and receiving gains depending on the line current.
The line current is sensed across R_{3} (see fig. 7) and transferred to pin 16 by the regulator.

$$
V_{16}=V_{B}+V_{15}=V_{B}+\left(I_{L}-I_{0}\right) \cdot R_{3}
$$

Following comparison with an internal reference $\mathrm{V}_{\text {REFG }}$ (see the block diagram) the voltage at pin 16 is used to modify the gain of the amplifiers (5) and (7) on both the sending and receiving paths.
The starting point of the automatic level control is obtained at $I_{L}=25 \mathrm{~mA}$ when the drain current $\mathrm{I}_{\mathrm{o}}=7.5 \mathrm{~mA}$.
The external resistors R_{7} and R_{8} fix the maximum value for the gains.
Minimum gain is reached for a line current of about 110 mA when the same drain current I_{0} of 7.5 mA is used.
When I_{0} is increased by means of the external resistor connected to pin 12 the two above mentioned line current values for the starting point and for the minimum gain increase accordingly.

5. DC Shunt Regulator

The LS288 has built into the chip a DC shunt regulator intended to supply the coupling FET when an electret microphone is used. It delivers 1 mAp current with a voltage of 2 Volts (typ) regardless of the line current.

CIRCUIT DESCRIPTION (continued)

The following table can be helpful to the designer when choosing different values for the external components; it refers to the typical application circuit of fig. 11.

Component	Value	Function	Note

APPLICATION INFORMATION (continued)

Component	Value	Function	Note
R_{6}	$13 \mathrm{~K} \Omega$	Bias Resistor	The suggested value assures the minimum operating current. It is possible to increase the supply current by decreasing R_{6} (they are inversely proportional), in order to achieve the shifting of the AGC starting point
R_{7}	8 to $50 \mathrm{~K} \Omega$	Sending gain programming Resistor	
R_{8}	8 to $23 \mathrm{~K} \Omega$	Receiving gain programming Resistor	
$\mathrm{R}_{9}, \mathrm{R}_{9}{ }^{\prime}$	$1.8 \mathrm{~K} \Omega$	Receiver impedance matching	R_{9} and $R_{9}{ }^{\prime}$ must be equal; the suggested value is good for matching to piezoceramic capsule; there is no problem in increasing and decreasing (down to $O \Omega$) this value, but when low resistance levels are used DC decoupling must be inserted to stop the current due to the receiver output offset voltage ($\max 400 \mathrm{mV}$).
R_{10}	$4 K \Omega$	Microphone impedance matching	The suggested value is typical for a piezoceramic microphone, but it is possible to choose R_{10} from a wide range of values: $R_{\text {Mike }}=R_{10} / / R_{\text {pin 2-3. }}$.
C_{1}	$10 \mu \mathrm{~F}$	Regulator AC bypass	A value greater than $10 \mu \mathrm{~F}$ gives a system start time too high for low line current. A lower value gives an alteration of the $A C$ line impedance at low frequency.
C_{2}	$1 \mu \mathrm{~F}$	DC decoupling for receiving input	
C_{3}	10 nF	Balance network	See note for R_{4} and R_{5}.
C4	47 nF	Matching to a capacitive line	C_{4} must be chosen according to the characteristics of the transmission line.
C_{5}	82 nF	Receiving gain flattness	C_{5} depends on balancing and line impedance versus frequency.
$\mathrm{C}_{6}, \mathrm{C}_{7}$	1000 pF	RF bypass	

LINEAR INTEGRATED CIRCUIT

MULTIFREQUENCY TO TELEPHONE LINE INTERFACE CIRCUIT

The LS342 is a monolithic integrated circuit in dual in-line minidip plastic package. It interfaces the multifrequency tone diallers M751 and M761/761A to the line in telephone sets, performing the following functions:

- Adjustment of the DC current/voltage characteristic and AC input line impedance by means of an external resistor (R_{E}).
- Sending to the line of the multifrequency signal.
- Adjustment of the signal level by means of an external resistor (R_{T}).
- Stabilized supply voltage to the tone dialler.

ABSOLUTE MAXIMUM RATINGS

V_{L}	Maximum line voltage (pulse duration $\leqslant 10 \mathrm{~ms}$)	22	V
I_{L}	Maximum forward current	155	mA
I_{L}	Maximum reverse current	-150	mA
$\mathrm{P}_{\text {tot }}$	Total power dissipation at $\mathrm{T}_{\mathrm{amb}}=70^{\circ} \mathrm{C}$	800	mW
$\mathrm{~T}_{\mathrm{op}}$	Operating temperature	-40 to 70	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}, T_{\mathrm{j}}$	Storage and junction temperature	-55 to 150	${ }^{\circ} \mathrm{C}$

ORDERING NUMBER: LS342D

CONNECTION DIAGRAM

(top view)

BLOCK DIAGRAM

DESCRIPTION

The LS342 interface the M751 and M761/761A tone diallers with the telephone line. Power is only applied to the system when the handset is lifted and a key pressed. At this time S1 is also switched (see fig. 2) disconnecting the speech circuit from the line and connecting the dialling circuit.
In the dialling condition the LS342 performs 3 functions:

1) D.C. and A.C. line termination
2) Tone dialler power supply
3) Amplification and transmission of tone pairs.

In the initial stage of switch-on the supply voltage V_{DD} is regulated at $\cong 4$ volt. This overdrives the M751/761/761A internal oscillator causing a rapid start-up and therefore rapid generation of output tones.
When the system reaches its normal operating point the supply voltage V_{DD} is stabilized at $2.5 \mathrm{~V} \pm 4 \%$.

THERMAL DATA

$R_{\text {thj-amb }}$	Thermal resistance junction-ambient	\max	$100{ }^{\circ} \mathrm{C} / \mathrm{W}$

ELECTRICAL CHARACTERISTICS $\left(I_{L}=10\right.$ to $100 \mathrm{~mA} ; \mathrm{T}_{\mathrm{amb}}=-25$ to $+60^{\circ} \mathrm{C} ; f=1 \mathrm{KHz} ; \mathrm{S}$ in (b), unless otherwise specified).

Parameter		Test conditions		Min.	Typ.	Max.	Unit
V_{L}	Line voltage	$E_{i}=0$	$\begin{aligned} & I_{L}=10 \mathrm{~mA} \\ & I_{L}=17 \mathrm{~mA} \\ & I_{L}=60 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{L}}=150 \mathrm{~mA} \end{aligned}$		$\begin{aligned} & 4.2 \\ & 4.6 \\ & 6.3 \\ & 9.8 \end{aligned}$	$\begin{gathered} 4.5 \\ 5 \\ 6.8 \\ 11.5 \end{gathered}$	V
G_{s}	Sending gain	$\begin{aligned} & T_{a m b}=25^{\circ} \mathrm{C} \quad E_{i}=50 \mathrm{mV} \\ & f=500 \mathrm{~Hz} \text { to } 2 \mathrm{KHz} \end{aligned}$		12.4		14	dB
$\Delta \mathrm{G}_{\mathrm{s}}$	Sending gain spread over temperature					± 0.2	dB
THD*	Distortion	S in (a) $E_{i}=120 \mathrm{mV}{ }^{* *}$				2	\%
		S in (c) $\mathrm{E}_{\mathrm{i}}=95 \mathrm{mV}{ }^{* *}$				2	
A_{R}	Return loss	$\begin{aligned} & \mathrm{Z}_{\text {REF }}=600 \Omega \\ & \mathrm{f}=300 \mathrm{~Hz} \text { to } 3.4 \mathrm{KHz} \end{aligned}$		14			dB
ZOUT	Output impedance (pins 6, 4)	$\mathrm{C}_{\mathrm{E}}=2.2 \mu \mathrm{~F}$	$R_{E}=39 \Omega$		750		Ω
$V_{\text {DD }}$	Supply voltage for digital device	$\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$		2.4	2.5	2.6	V
IDD	Supply current for digital device	$\mathrm{V}_{\text {DD }}=2.4 \mathrm{~V}$		1.8			mA
$\mathrm{t}_{\mathrm{s}}{ }^{* * *}$	Start-up time					5	msec
$Z_{\text {IN }}$	Input impedance (pin 1)			4			$\mathrm{M} \Omega$

* The distortion of the device is not affected by a signal coming from the line with the following levels: -13 dBm if $\mathrm{I}_{\mathrm{L}}=10 \mathrm{~mA},-8 \mathrm{dBm}$ if $\mathrm{I}_{\mathrm{L}}=20 \mathrm{~mA}$.
** The different AC and DC levels are intended to simulate the limit working operation of the digital devices M751, M761, M761A.
*** The time necessary because the $A C$ signal is varying within $\pm 1 \mathrm{~dB}$ of its steady-state value.

Fig. 1 - Test circuit

APPLICATION INFORMATION

The table shows the recommended values for the circuit of fig. 2.

Component	Recomm. value	Purpose	Note
R_{E}	39Ω	DC characteristic AC impedance adjustment	The relationships involving R_{E} are: - $V_{L}=\left(I_{L}-I_{O}\right) R_{E}+V_{O}$ where $I_{0} \cong 6 \mathrm{~mA}$ and $V_{0} \cong 4 \mathrm{~V}$ - $Z_{o}=22 R_{E}(f=1 \mathrm{KHz})$ The following relationship must be always verified $R_{E} \geqslant \frac{V p \cdot Z_{L}}{\left(I_{L}-I_{0}\right) Z_{L}-22 V p}$ where $V p$ is the maximum peak value of the $M F$ signal in the line and Z_{L} is the line impedance.
R_{p}	$5.6 \mathrm{~K} \Omega$	Bias resistor	R_{p} can be reduced in order to increase the output current from pin 3 ($V_{D D}$). In this case, the total current consumption is increased.
R_{T}	71.5Ω	Signal level adjustment	The MF gain is: $\mathrm{G}_{\mathrm{MF}}=0.97 \frac{\mathrm{Z}_{\mathrm{L}} / / \mathrm{Z}_{\mathrm{o}}}{\mathrm{R}_{\mathrm{T}}}$ The recommended value for R_{T} is good to set the Europe I standard ($-9 \mathrm{dBm},-11 \mathrm{dBm}$). If the Europe II or the American Standard is required, R_{T} must be decreased. In the mean time, the minimum operation current will increase because the pin 8 voltage is fixed by an internal reference (190 mV typ.).
C_{E}	$2.2 \mu \mathrm{~F}$	Regulator AC bypass	A value greater than $2.2 \mu \mathrm{~F}$ gives a system start time too high when line current is between 10 mA and 17 mA . A value less than $2.2 \mu \mathrm{~F}$ gives an alteration of the AC line impedance because its reactance is not negligible at low frequencies.
C_{f}	$0.33 \mu \mathrm{~F}$	DC filtering	The C_{f} range is from $0.33 \mu \mathrm{~F}$ to $0.47 \mu \mathrm{~F}$. The lowest values is ripple limited, the higher values is starting up time limited.
C_{L}	30 nF	Matching to a capacitive line	This is needed with a capacitive line because the output impedance of the LS342 is essentially resistive. The range of C_{L} is between 30 and 60 nF .

Fig. 2 - Application circuit with M751/M761A.

LINEAR INTEGRATED CIRCUIT

TELEPHONE SPEECH CIRCUIT WITH MULTIFREQUENCY TONE GENERATOR INTERFACE

The LS356 is a monolithic integrated circuit in 16-lead dual in-line plastic package to replace the hybrid circuit in telephone set. It works with the same type of transducers for both transmitter and receiver (typically dynamic capsules, but the device can also work with piezoceramic ones). Many of its electrical characteristics can be controlled by means of external components to meet different specifications.
In addition to the speech operation, the LS356 acts as an intertace for the MF tone signal (particularly for M761 C/MOS frequency synthesizer).
The LS356 basic functions are the following:

- It presents the proper DC path for the line current.
- It handles the voice signal, performing the $2 / 4$ wires interface and changing the gain on both sending and receiving amplifiers to compensate for line attenuation by sensing either the line current or the line voltage. In addition, the LS356 can also work in fixed gain mode.
- It acts as linear interface for MF, supplying a stabilized voltage to the digital chip and delivering to the line the MF tones generated by the M761.

ABSOLUTE MAXIMUM RATINGS

V_{L}	Line voltage (3 ms pulse duration)	22	V
I_{L}	Forward line current	150	mA
I_{L}	Reverse line current	-150	mA
$P_{\text {tot }}$	Total power dissipation at $\mathrm{T}_{\mathrm{amb}}=70^{\circ} \mathrm{C}$	1	W
$\mathrm{~T}_{\mathrm{op}}$	Operating temperature		-45 to
$T_{\text {stg }}, T_{j}$	Storage and junction temperature	${ }^{\circ} \mathrm{C}$	

ORDERING NUMBER: LS356B
MECHANICAL DATA Dimensions in mm

CONNECTION DIAGRAM

(top view)

BLOCK DIAGRAM

TEST CIRCUITS

Fig. 1

CMRR

Fig. 3

$$
G_{R}=\frac{V_{R O}}{V_{R I}}
$$

Fig. 2

$$
G_{M F}=\frac{v_{M O}}{v_{M F}}
$$

LS356

THERMAL DATA

| $\mathrm{R}_{\text {th j-amb }}$ Thermal resistance junction-ambient | $\max 80 \quad{ }^{\circ} \mathrm{C} / \mathrm{W}$ |
| :--- | :---: | :---: | :---: |

ELECTRICAL CHARACTERISTICS (Refer to the test circuits, $\mathrm{V}_{\mathrm{G}}=1$ to $2 \mathrm{~V}, \mathrm{I}_{\mathrm{L}}=12$ to $80 \mathrm{~mA}, \mathrm{~S} 1$ and S 2 in (a), $\mathrm{T}_{\mathrm{amb}}=-25$ to $+50^{\circ} \mathrm{C}, \mathrm{f}=200$ to 3400 Hz , unless otherwise specified)

| Parameter | Test conditions | Min. | Typ. | Max. | Unit |
| :---: | :---: | :---: | :--- | :--- | :--- | Fig. | (|
| :--- |

SPEECH OPERATION

* Fixed gain mode.

ELECTRICAL CHARACTERISTICS (continued)

| Parameter | Test conditions | Min. | Typ. | Max. | Unit |
| :---: | :---: | :--- | :--- | :--- | :--- | Fig. | (|
| :--- |

MULTIFREQUENCY SYNTHESIZER INTERFACE

$V_{D D}$	MF supply voltage (Standby and operation)	S2 in (b)	2.4	2.5		V	-
${ }^{1} \mathrm{DD}$	MF supply current $\begin{aligned} & \text { Standby } \\ & \text { Operation }\end{aligned}$	S2 in (b)	$\begin{gathered} 0.5 \\ 2 \end{gathered}$			mA	-
	MF amplifier gain	$\begin{aligned} & f_{M F ~ i n}=1 \mathrm{KHz} \\ & V_{M F \text { in }}=80 \mathrm{mV} \end{aligned}$	15		17	dB	4
V_{1}	DC input voltage level (pin 14)	$\mathrm{V}_{\mathrm{MF} \mathrm{in}}=80 \mathrm{mV}$		$\stackrel{0.3}{V_{D D}}$		V	-
R_{1}	Input impedance (pin 14)	$\mathrm{V}_{\mathrm{MF} \text { in }}=80 \mathrm{mV}$	60			$K \Omega$	-
d	Distortion	$\mathrm{V}_{\text {MF in }}=110 \mathrm{mV}$			2	\%	4
	Starting delay time				5	ms	-
Muting threshold voltage (pin 3)	Muting threshold voltage (pin 3)	Speech operation			1	V	-
		MF operation	1.6			V	-
	Muting standby current (pin 3)				-10	$\mu \mathrm{A}$	-
	Muting operating current (pin 3)	S2 in (b)			+10	$\mu \mathrm{A}$	-

CIRCUIT DESCRIPTION

1. DC characteristic

The fig. 5 shows the DC equivalent circuit of the LS356.
Fig. 5 - Equivalent DC load to the line

A fixed amount I_{0} of the total available current I_{L} is drained for the proper operation of the circuit. The value of I_{0} can be programmed externally by changing the value of the bias resistor connected to pin 4 (see block diagram).
The minimum value of I_{o} is 7.5 mA .
The voltage $\mathrm{V}_{\mathrm{o}}=3.8 \mathrm{~V}$ of the shunt regulator is independent of the line current.
The shunt regulator (2) is controlled by a temperature compensated voltage reference (1) (see the block diagram).
Fig. 6 shows a more detailed circuit configuration of the shunt regulator.
Fig. 6 - Circuit configuration of the shunt regulator

The difference $I_{L}-I_{0}$ flows through the shunt regulator being I_{b} negligible.
I_{a} is an internal constant current generator; hence $V_{o}=V_{B}+i_{a} \cdot R_{a}=3.8 \mathrm{~V}$.
The V_{L}, I_{L} characteristic of the device is therefore similar to a pure resistance in series to a battery. It is important to note that the DC voltage at pin 5 is proportional to the line current $\left(\mathrm{V}_{5}=\mathrm{V}_{7}+\mathrm{V}_{\mathrm{B}}=\right.$ $\left.\left(I_{L}-I_{0}\right) R 3+V_{B}\right)$.

CIRCUIT DESCRIPTION (continued)

2. Two to four wires conversion

The LS356 performs the two wires (line) to four wires (microphone, earphone) conversion by means of a Wheatstone bridge configuration so obtaining the proper decoupling between sending and receiving signals (see fig. 7).

Fig. 7 - Two to four wires conversion

For a perfect balancing of the bridge $\frac{\mathrm{Z}_{\mathrm{L}}}{\mathrm{Z}_{\mathrm{B}}}=\frac{\mathrm{R} 1}{\mathrm{R} 2}$.
The AC signal from the microphone is sent to one diagonal of the bridge (pin 6 and 9). A small percentage of the signal power is lost on Z_{B} (being $Z_{B}>Z_{L}$); the main part is sent to the line via $R 1$.
In receiving mode, the AC signal coming from the line is sensed across the second diagonal of the bridge (pin 11 and 10). After amplification it is applied to the receiving capsule.
The impedance Z_{M} is simulated by the shunt regulator that is also intended to work as a transconductance amplifier for the transmission signal.
The impedance Z_{M} is defined as $\frac{\Delta V_{6-9}}{\Delta I_{6-9}}$.
From fig. 6 considering $C 1$ as a short circuit for $A C$ signal, any variation ΔV_{6} generates a variation:

$$
\Delta \mathrm{V}_{7}=\Delta \mathrm{V}_{\mathrm{A}}=\Delta \mathrm{V}_{6} \cdot \frac{\mathrm{R}_{\mathrm{b}}}{\mathrm{R}_{\mathrm{a}}+\mathrm{R}_{\mathrm{b}}}
$$

The corresponding current change is

$$
\Delta I=\frac{\Delta V_{7}}{R 3}
$$

Therefore

$$
Z_{M}=\frac{\Delta V_{6}}{\Delta I}=R 3\left(1+\frac{R_{a}}{R_{b}}\right)
$$

CIRCUIT DESCRIPTION (continued)

The total impedance across the line connections (pin 11 and 9) is given by

$$
Z_{M L}=R 1+Z_{M} / /\left(R 2+Z_{B}\right)
$$

By choosing $Z_{M} \gg R 1$ and $Z_{B} \gg Z_{M}$

$$
Z_{M L} \cong Z_{M}=R 3\left(1+\frac{R_{a}}{R_{b}}\right)
$$

The received signal amplitude across pin 11 and 10 can be changed using different values of R1 (of course the relationship $Z_{L} / Z_{B}=R 1 / R 2$ must be always valid).
The received signal is related to R1 value according to the approximated relationship:

$$
V_{R}=2 V_{R 1} \frac{R 1}{R 1+Z_{M}}
$$

Note that by changing the value of R 1 , the transmission signal current is not changed, being the microphone amplifier a transconductance amplifier.

3.Automatic gain control

The LS356 automatically adjusts the gain of the sending and receiving amplifiers to compensate for line attenuation.
This function is performed by the circuit of fig. 8.
Fig. 8

The differential stage is progressively unbalanced by changing V_{G} in the range 1 to $2 \mathrm{~V}\left(\mathrm{~V}_{\mathrm{REFG}}\right.$ is an internal reference voltage, temperature compensated).
It changes the current I_{G}, and this current is used as a control quantity for the variable gain stages (amplifier (4) and (5) in the block diagram). The voltage V_{G} can be taken:
a) from the LS356 itself (both in variable and in fixed mode) and
b) from a resistive divider, directly at the end of the line.
a) In the first case, connecting $\mathrm{V}_{\mathrm{G}}(\operatorname{pin} 8)$ to the regulator bypass (pin 5) it is possible to obtain a gain characteristic depending on the current.
In fact (see fig. 6):

$$
v_{5}=V_{B}+V_{7} \cong V_{B}+\left(I_{L}-I_{0}\right) R 3
$$

The starting point of the automatic level control is obtained at $\mathrm{I}_{\mathrm{L}}=25 \mathrm{~mA}$ when the drain current $\mathrm{I}_{\mathrm{o}}=7.5 \mathrm{~mA}$.

CIRCUIT DESCRIPTION (continued)

Minimum gain is reached for a line current of about 52 mA for the same drain current $\mathrm{I}_{0}=7.5 \mathrm{~mA}$. When I_{0} is increased by means of the external resistor connected to pin 4 , the two above mentioned values of the line current for the starting point and for the minimum gain increase accordingly.
It is also possible to change the starting point without changing I_{0} by connecting pin 8 to the centre of a resistive divider placed between pin 5 and ground (the total resistance seen by pin 5 must be at least $100 \mathrm{~K} \Omega$). In this case, the AGC range increases too; for example using a division $1: 1$ (50K/50K) the AGC starting point shifts to about $I_{L}=40 \mathrm{~mA}$, and the minimum gain is obtained at $I_{L}=95 \mathrm{~mA}$. In addition to this operation mode, the V_{G} voltage can be maintained constant thus fixing the gain values ($R x, T x$) independently of the line conditions.
For this purpose the V_{DD} voltage, available for supplying the MF generator, can be used.
b) When gains have to be related to the voltage at the line terminals of the telephone set, it is necessary to obtain V_{G} from a resistive divider directly connected to the end of the line.
This type of operation meets for istance the requirements of the French standard. (See the application circuit of fig. 12).

4. Transducers interfacing

The microphone amplifier (3) has a differential input stage with high impedance ($\cong 40 \mathrm{~K} \Omega$) so allowing a good matching to the microphone by means of external resistor without affecting the sending gain. The receiving output stage (6) is particularly intended to drive dynamic capsules. (Low output impedance, 100Ω max; high current capability, 3 mAp).
When a piezoceramic capsule is used, it is useful to increase the receiving gain by increasing R1 value (see the relationship for V_{R}).
With very low impedance transducer, DC decoupling by an external capacitor must be provided to prevent a large DC current flow across the transducer itself due to the receiving output stage offset.

5. Multifrequency interfacing

The LS356 acts as a linear interface for the Multifrequency synthesizer M761 according to a logical signal (mute function) present on pin 3.
When no key of the keyboard is pressed the mute state is low and the LS356 feeds the M761 through pin 15 with low voltage and low current (standby operation of the M761). The oscillator of the M761 is not operating.
When one key is pressed, the M761 sends a "high state" mute condition to the LS 356. A voltage comparator (8) of LS356 drives internal electronic switches: the voltage and the current delivered by the voltage supply (9) are increased to allow the operation of the oscillator.
This extra current is diverted by the receiving and sending section of the LS356 and during this operation the receiving output stage is partially inhibited and the input stages of sending and receiving amplifiers are switched OFF.
A controlled amount of the signalling is allowed to reach the earphone to give a feedback to the subscriber; the MF amplifier (10) delivers the dial tones to the sending paths.
The application circuit shown in fig. 9 fulfils the EUROPE II standard ($-6,-8 \mathrm{dBm}$). If the EUROPE I levels are required ($-9,-11 \mathrm{dBm}$) an external divider must be used (fig. 10).
The mute function can be used also when a temporary inhibition of the output signal is requested.

APPLICATION INFORMATION

Fig. 9 - Application circuit with multifrequency (EUROPE II STD)

Fig. 10 - Application circuit with multifrequency (EUROPE I)

APPLICATION INFORMATION (continued)

Fig. 11 - Sending and receiving gain vs. line current (application circuit of
fig. 13)

Fig. 12 - Application circuit without multifrequency

Fig. 13 - Application circuit with gain controlled by line voltage (French standard)

APPLICATION INFORMATION (continued)

Fig. 14 - Application circuit with fixed gain operation

$\begin{array}{ll}\mathrm{R}_{\mathrm{y}}=0 & \text { Max gain condition } \\ \mathrm{R}_{\mathrm{x}}=0 & \text { Min gain condition }\end{array}$

Fig. 15 - External mute function

a) with multifrequency

b) without multifrequency

In addition to the above mentioned applications, different values for the external components can be used in order to satisfy different requirements.
The following table (refer to the application circuit of fig. 9) can help the designers.

Component	Value	Purpose	Note
R1	39.2Ω	Bridge Resistors	R1 controls the receiving gain. When high current values are allowed, R1 must be able to dissipate up to 1 W . The ratio R2/R1 fixes the amount of signal delivered to the line. R1 helps in fixing the DC characteristic (see R3 note).
R2	392Ω		
R3	33Ω	Line current sensing. Fixing DC characteristic	The relationships involving R3 are: $\begin{aligned} & -Z_{M L}=\left(20 R 3 / / Z_{B}\right)+R 1 \\ & -G_{s}=K \cdot \frac{Z_{L} / / Z_{M L}}{R 3} \\ & -V_{L}=\left(I_{L}-I_{0}\right)(R 3+R 1)+V_{o} ; \\ & V_{o}=3.8 V . \end{aligned}$ Without any problem it is possible to have a $Z_{M L}$ ranging from 600 up to 900Ω. As far as the power dissipation is concerned, see R1 note.

APPLICATION INFORMATION (continued)

Component	Value	Purpose	Note
R4	$13 \mathrm{~K} \Omega$	Bias Resistor	The suggested value assures the minimum operating current. It is possible to increase the supply current by decreasing R4 (they are inversely proportional), in order to achieve the shifting of the AGC starting point.
R5	$2.2 \mathrm{~K} \Omega$	Balance Network	It is possible to change R5 and R6 values in order to improve the matching to different lines; in any case:
R6	$10 \mathrm{~K} \Omega$		$\frac{Z_{B}}{Z_{L}}=\frac{R 2}{R 1}$
			$\mathrm{Z}_{\mathrm{B}}=\mathrm{R} 5+\mathrm{R} 6 / / \mathrm{X}_{\mathrm{C} 4}$
R7-R7'	100Ω	Receiver impedance matching	R7 and R7' must be equal; the suggested value is good for matching to dynamic capsule; there is no problem in increasing and decreasing (down to 0Ω) this value. A DC decoupling must be inserted when low resistance levels are used to stop the current due to the receiver output offset voltage (max 200 mV).
R8	200Ω	Microphone impedance matching	The suggested value is typical for a dynamic microphone, but it is possible to choose R8 in a wide range.
C1	$10 \mu \mathrm{~F}$	Regulator AC bypass	A value greater than $10 \mu \mathrm{~F}$ gives a system start time too high for low current line during MF operation; a lower value gives an alteration of the AC line impedance at low frequency.
C2	47 nF	Matching to a capacitive line	C2 changes with the characteristics of the transmission line.
C3	82 nF	Receiving gain flatness	C3 depends on balancing and line impedance versus frequency
C4	10 nF	Balance, network	See note for R5, R6
C5	$0.33 \mu \mathrm{~F}$	DC filtering	The C5 range is from $0.1 \mu \mathrm{~F}$ to $0.47 \mu \mathrm{~F}$. The lowest value is ripple limited, the higher value is starting up time limited.
C6-C7	1000 pF	RF bypass	
C8	$10 \mu \mathrm{~F}$	Receiving output DC decoupling	See note for R7, R7'.
C9	$1 \mu \mathrm{~F}$	Receiving input DC decoupling	

HIGH PERFORMANCE OUAD OPERATIONAL AMPLIFIERS

- SINGLE OR SPLIT SUPPLY OPERATION
- VERY LOW POWER CONSUMPTION
- SHORT CIRCUIT PROTECTION
- LOW DISTORTION, LOW NOISE
- HIGH GAIN-BANDWIDTH PRODUCT
- HIGH CHANNEL SEPARATION

The LS 404 is a high performance quad operational amplifier with frequency and phase compensation built into the chip. The internal phase compensation allows stable operation as voltage follower in spite of its high gain-bandwidth product. The circuit presents very stable electrical characteristics over the entire supply voltage range, and it is particularly intended for professional and telecom applications (active filters, etc.).
The patented input stage circuit allows small input signal swings below the negative supply voltage and prevents phase inversion when the input is over driven.
The LS 404 is available with hermetic gold chip (8000 series).

ABSOLUTE MAXIMUM RATINGS

V_{5}	Supply voltage		± 18	V
V_{i}	Input voltage	(positive) (negative)	$\begin{array}{r} +v_{s} \\ -V_{\mathrm{s}}-0.5 \end{array}$	V
V_{i}	Differential input voltage		$\pm\left(V_{s}-1\right)$	
$\mathrm{T}_{\text {op }}$	Operating temperature	$\begin{aligned} & \text { LS } 404 \\ & \text { LS 404C } \end{aligned}$	$\begin{array}{r} -25 \text { to }+85 \\ 0 \text { to }+70 \end{array}$	${ }^{\circ} \mathrm{C}$
$\mathrm{P}_{\text {tot }}$	Power dissipation	($\mathrm{Tamb}=70^{\circ} \mathrm{C}$)	400	mW
$\mathrm{T}_{\text {stg }}$	Storage temperature		-55 to +150	${ }^{\circ} \mathrm{C}$

MECHANICAL DATA
Dimensions in mm

DIP-14

SO-14

CONNECTION DIAGRAM AND ORDERING NUMBERS

(top view)

Type	DIP 14	SO-14
LS 404	-	LS 404M
LS 404C	LS 404CB	LS 404CM
LS 8404	-	LS 8404M
LS 8404C	-	LS 8404CM

OUTPUT A

SCHEMATIC DIAGRAM (one section)

THERMAL DATA

Thermal resistance junction-ambient	DIP 14	SO-14	
$R_{\text {thj-amb }}$	Thax	$200^{\circ} \mathrm{C} / \mathrm{W}$	$200^{\circ} \mathrm{C} / \mathrm{W}^{*}$

(*) Measured with the device mounted on a ceramic substrate ($25 \times 16 \times 0.6 \mathrm{~mm}$.)

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{s}}= \pm 12 \mathrm{~V}, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}\right.$, unless otherwise specified)

	Parameter	Test conditions		LS 404			LS 404C			Unit
				Min.	Typ.	Max.	Min.	Typ.	Max.	
I_{5}	Supply current				1.3	2		1.5	3	mA
I_{b}	Input bias current				50	200		100	300	nA
R_{i}	Input resistance	$f=1 \mathrm{KHz}$			0.7			0.5		$\mathrm{M} \Omega$
$\mathrm{V}_{\text {os }}$	Input offset voltage	$\mathrm{R}_{\mathrm{g}}=10 \mathrm{~K} \Omega$			1	2.5		1	5	mV
$\frac{\Delta V_{\mathrm{os}}}{\Delta T}$	Input offset voltage drift	$\begin{aligned} & \mathrm{R}_{\mathrm{g}}=10 \mathrm{~K} \Omega \\ & \mathrm{~T}_{\min }<\mathrm{T}_{\mathrm{of}} \end{aligned}$	$<T_{\text {max }}$		5			5		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Ios	Input offset current				10	40		20	80	nA
$\frac{\Delta \mathrm{I}_{\mathrm{os}}}{\Delta \mathrm{~T}}$	Input offset current drift	$\mathrm{T}_{\text {min }}<\mathrm{T}_{\text {op }}<\mathrm{T}_{\text {max }}$			0.08			0.1		$\frac{\mathrm{nA}}{{ }^{\circ} \mathrm{C}}$
$\mathrm{I}_{\text {sc }}$	Output short circuit current				23			23		mA
G_{v}	Large signal open loop voltage gain	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{~K} \Omega$	$\begin{aligned} & V_{s}= \pm 12 \mathrm{~V} \\ & V_{s}= \pm 4 \mathrm{~V} \end{aligned}$	90	$\begin{gathered} 100 \\ 95 \end{gathered}$		86	$\begin{aligned} & 100 \\ & 95 \end{aligned}$		dB
B	Gain-bandwidth product	$\mathrm{f}=20 \mathrm{KHz}$		1.8	3		1.5	2.5		MHz
e_{N}	Total input noise voltage	$\begin{aligned} & \mathrm{f}=1 \mathrm{KHz} \\ & \mathrm{R}_{\mathrm{g}}=50 \Omega \\ & \mathrm{R}_{\mathrm{g}}=1 \mathrm{~K} \Omega \\ & \mathrm{R}_{\mathrm{g}}=10 \mathrm{~K} \Omega \end{aligned}$			8 10 18	15		10 12 20		$\frac{n V}{\sqrt{\mathrm{~Hz}}}$
d	Distortion	unity gain $\begin{aligned} & \mathrm{R}_{\mathrm{L}}=2 \mathrm{~K} \Omega \\ & \mathrm{~V}_{\mathrm{O}}=2 \mathrm{Vpp} \end{aligned}$	$\begin{aligned} & f=1 \mathrm{KHz} \\ & f=20 \mathrm{KHz} \end{aligned}$		$\begin{aligned} & 0.01 \\ & 0.03 \end{aligned}$	0.04		$\begin{aligned} & 0.01 \\ & 0.03 \end{aligned}$		\%
V_{0}	DC output voltage swing	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{~K} \Omega$	$\begin{aligned} & V_{s}= \pm 12 V \\ & V_{s}= \pm 4 V \end{aligned}$	± 10	± 3		± 10	± 3		V
Vo	Large signal voltage swing	$f=10 \mathrm{KHz}$	$\begin{aligned} & R_{L}=10 \mathrm{~K} \Omega \\ & R_{L}=1 \mathrm{~K} \Omega \end{aligned}$		$\begin{aligned} & 22 \\ & 20 \end{aligned}$			22 20		Vpp
SR	Slew rate	unity gain$R_{L}=2 K \Omega$		0.8	1.5			1		$\mathrm{V} / \mu \mathrm{s}$
CMR	Comm. mode rejection	$\mathrm{V}_{\mathrm{i}}=10 \mathrm{~V}$		90	94		80	90		dB
SVR	Supply voltage rejection	$\mathrm{V}_{\mathrm{i}}=1 \mathrm{~V}$	$f=100 \mathrm{~Hz}$	90	94		86	90		dB
CS	Channel separation	$\mathrm{f}=1 \mathrm{KHz}$		100	120			120		dB

Fig. 1 - Supply current vs. supply voltage

Fig. 4 - Open loop frequency and phase response

Fig. 7 - Large signal frequency response

Fig. 2 - Supply current vs. ambient temperature

Fig. 5 - Open loop gain vs. ambient temperature

Fig. 8 - Output voltage swing vs. load resistance

Fig. 3 - Output short circuit current vs. ambient temperature

Fig. 6 - Supply voltage rejection vs. frequency

Fig. 9 - Total input noise vs. frequency

APPLICATION INFORMATION

Active low-pass filter:

BUTTERWORTH

The Butterworth is a "maximally flat" amplitude response filter. Butterworth filters are used for filtering signals in data acquisition systems to prevent aliasing errors in sampled-data applications and for general purpose low-pass filtering.
The cutoff frequency, f_{c}, is the frequency at which the amplitude response in down 3 dB . The attenuation rate beyond the cutoff frequency is -n 6 dB per octave of frequency where n is the order (number of poles) of the filter.
Other characteristics:

- Flattest possible amplitude response.
- Excellent gain accuracy at low frequency end of passband.

BESSEL

The Bessel is a type of "linear phase" filter. Because of their linear phase characteristics, these filters approximate a constant time delay over a limited frequency range. Bessel filters pass transient waveforms with a minimum of distortion. They are also used to provide time delays for low pass filtering of modulated waveforms and as a "running average" type filter.
The maximum phase shift is $\frac{-\mathrm{n} \pi}{2}$ radians where n is the order (number of poles) of the filter. The cutoff frequency, f_{c}, is defined as the frequency at which the phase shift is one half to this value. For accurate delay, the cutoff frequency should be twice the maximum signal frequency. The following table can be used to obtain the -3 dB frequency of the filter.

	2 pole	4 pole	6 pole	8 pole
-3 dB frequency	$0.77 \mathrm{f}_{\mathrm{c}}$	$0.67 \mathrm{f}_{\mathrm{c}}$	$0.57 \mathrm{f}_{\mathrm{c}}$	$0.50 \mathrm{f}_{\mathrm{c}}$

Other characteristics:

- Selectivity not as great as Chebyschev or Butterworth.
- Very small overshoot response to step inputs
- Fast rise time.

CHEBYSCHEV

Chebyschev filters have greater selectivity than either Bessel or Butterworth at the expense of ripple in the passband.
Chebyschev filters are normally designed with peak-to-peak ripple values from 0.2 dB to 2 dB .
Increased ripple in the passband allows increased attenuation above the cutoff frequency.
The cutoff frequency is defined as the frequency at which the amplitude response passes through the specified maximum ripple band and enters the stop band.
Other characteristics:

- Greater selectivity
- Very nonlinear phase response
- High overshoot response to step inputs.

Fig. 10 - Amplitude response

Fig. 11 - Amplitude response

Fig. 12 - Amplitude response ($\pm 1 \mathrm{~dB}$ ripple)

APPLICATION INFORMATION (continued)

The table below shows the typical overshoot and settling time response of the low pass filter to a step input.

	NUMBER OF POLES	PEAK OVERSHOOT	SETTLING TIME (\% of final value)		
		\% Overshoot	$\pm 1 \%$	\pm 0.1\%	\pm 0.01\%
BUTTERWORTH	$\begin{aligned} & 2 \\ & 4 \\ & 6 \\ & 8 \end{aligned}$	$\begin{array}{r} 4 \\ 11 \\ 14 \\ 16 \end{array}$	$\begin{aligned} & 1.1 / \mathrm{f}_{\mathrm{c}} \text { sec. } \\ & 1.7 / \mathrm{f}_{\mathrm{c}} \\ & 2.4 / \mathrm{f}_{\mathrm{c}} \\ & 3.1 / \mathrm{f}_{\mathrm{c}} \end{aligned}$	$\begin{aligned} & 1.7 / \mathrm{f}_{\mathrm{c}} \text { sec. } \\ & 2.8 / \mathrm{f}_{\mathrm{c}} \\ & 3.9 / \mathrm{f}_{\mathrm{c}} \\ & 5.1 / \mathrm{f}_{\mathrm{c}} \end{aligned}$	$\begin{aligned} & 1.9 / f_{c} \text { sec. } \\ & 3.8 / f_{c} \\ & 5.0 / f_{c} \\ & 7.1 / f_{c} \end{aligned}$
BESSEL	$\begin{aligned} & 2 \\ & 4 \\ & 6 \\ & 8 \end{aligned}$	$\begin{aligned} & 0.4 \\ & 0.8 \\ & 0.6 \\ & 0.3 \end{aligned}$	$\begin{aligned} & 0.8 / \mathrm{f}_{\mathrm{c}} \\ & 1.0 / \mathrm{f}_{\mathrm{c}} \\ & 1.3 / \mathrm{f}_{\mathrm{c}} \\ & 1.6 / \mathrm{f}_{\mathrm{c}} \end{aligned}$	$\begin{aligned} & 1.4 / \mathrm{f}_{\mathrm{c}} \\ & 1.8 / \mathrm{f}_{\mathrm{c}} \\ & 2.1 / \mathrm{f}_{\mathrm{c}} \\ & 2.3 / \mathrm{f}_{\mathrm{c}} \end{aligned}$	$\begin{aligned} & 1.7 / f_{c} \mathrm{c} \\ & 2.4 / \mathrm{f}_{\mathrm{c}} \\ & 2.7 / \mathrm{f}_{\mathrm{c}} \\ & 3.2 / \mathrm{f}_{\mathrm{c}} \end{aligned}$
CHEBYSCHEV (RIPPLE $\pm 0.25 \mathrm{~dB}$)	$\begin{aligned} & 2 \\ & 4 \\ & 6 \\ & 8 \end{aligned}$	$\begin{aligned} & 11 \\ & 18 \\ & 21 \\ & 23 \end{aligned}$	$\begin{aligned} & 1.1 / \mathrm{f}_{\mathrm{c}} \\ & 3.0 / \mathrm{f}_{\mathrm{c}} \\ & 5.9 / \mathrm{f}_{\mathrm{c}} \\ & 8.4 / \mathrm{f}_{\mathrm{c}} \end{aligned}$	$\begin{array}{r} 1.6 / \mathrm{f}_{\mathrm{c}} \\ 5.4 / \mathrm{f}_{\mathrm{c}} \\ 10.4 / \mathrm{f}_{\mathrm{c}} \\ 16.4 / \mathrm{f}_{\mathrm{c}} \end{array}$	-
CHEBYSCHEV (RIPPLE $\pm 1 \mathrm{~dB}$)	$\begin{aligned} & 2 \\ & 4 \\ & 6 \\ & 8 \end{aligned}$	$\begin{aligned} & 21 \\ & 28 \\ & 32 \\ & 34 \end{aligned}$	$\begin{array}{r} 1.6 / f_{c}{ }_{c} \\ 4.8 / f_{c} \\ 8.2 / f_{c} \\ 11.6 / f_{c} \end{array}$	$\begin{array}{r} 2.7 / \mathrm{f}_{\mathrm{c}} \\ 8.4 / \mathrm{f}_{\mathrm{c}} \\ 16.3 / \mathrm{f}_{\mathrm{c}} \\ 24.8 / \mathrm{f}_{\mathrm{c}} \end{array}$	-

Design of $2^{\text {nd }}$ order active low pass filter

(Sallen and Key configuration unity gain op-amp)

Fig. 13 - Filter configuration

$\frac{V_{o}}{V_{i}}=\frac{1}{1+2 \xi \frac{S}{\omega_{c}}+\frac{S^{2}}{\omega_{c}{ }^{2}}}$
where:
$\omega_{\mathrm{c}}=2 \pi \mathrm{f}_{\mathrm{c}} \quad$ with $\mathrm{f}_{\mathrm{c}}=$ cutoff frequency
ξ = damping factor.

APPLICATION INFORMATION (continued)

Three parameters are needed to characterize the frequency and phase response of a $2^{\text {nd }}$ order active filter: the gain (G_{v}), the damping factor (ξ) or the Q-factor $\left(Q=(2 \xi)^{-1}\right)$, and the cutoff frequency (f_{c}).
The higher order responses are obtained with a series of $2^{\text {nd }}$ order sections. A simple RC section is introduced when an odd filter is required.
The choice of ' ξ ' (or Q -factor) determines the filter response (see table).

TAB. 1

Filter response	$\boldsymbol{\xi}$	\mathbf{Q}	Cutoff frequency $\mathbf{f}_{\mathbf{c}}$
Bessel	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{3}}$	Frequency at which phase shift is -90°
Butterworth	$\frac{\sqrt{2}}{2}$	$\frac{1}{\sqrt{2}}$	Frequency at which $\mathbf{G}_{\mathrm{v}}=-3 \mathrm{~dB}$
Chebyschev	$<\frac{\sqrt{2}}{2}$	$>\frac{1}{\sqrt{2}}$	Frequency at which the amplitude response passes through specified max. ripple band and enters the stop band

Fig. 14 - Filter response vs. damping factor

Fixed $\mathrm{R}=\mathrm{R}_{1}=\mathrm{R}_{2}$, we have (see fig. 13)

$$
\begin{aligned}
\mathrm{C}_{1} & =\frac{1}{\mathrm{R} \omega_{\mathrm{c}}} \\
\mathrm{C}_{2} & =\frac{1}{\mathrm{R}} \frac{1}{\xi \omega_{\mathrm{c}}}
\end{aligned}
$$

The diagram of fig. 14 shows the amplitude response for different values of damping factor ξ in $2^{\text {nd }}$ order filters.

EXAMPLE:

Fig. $15-5^{\text {th }}$ order low pass filter (Butterworth) with unity gain configuration.

APPLICATION INFORMATION (continued)

In the circuit of fig. 15 , for $f_{c}=3.4 \mathrm{KHz}$ and $\mathrm{R}_{\mathrm{i}}=\mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{R}_{3}=\mathrm{R}_{4}=10 \mathrm{~K} \Omega$, we obtain:
$C_{i}=1.354 \cdot \frac{1}{R} \cdot \frac{1}{2 \pi f_{c}}=6.33 \mathrm{nF}$
$C_{1}=0.421 \cdot \frac{1}{\mathrm{R}} \cdot \frac{1}{2 \pi f_{c}}=1.97 \mathrm{nF}$
$\mathrm{C}_{2}=1.753 \cdot \frac{1}{\mathrm{R}} \cdot \frac{1}{2 \pi \mathrm{f}_{\mathrm{c}}}=8.20 \mathrm{nF}$
$C_{3}=0.309 \cdot \frac{1}{R} \cdot \frac{1}{2 \pi f_{c}}=1.45 \mathrm{nF}$
$\mathrm{C}_{4}=3.325 \cdot \frac{1}{\mathrm{R}} \cdot \frac{1}{2 \pi \mathrm{f}_{\mathrm{c}}}=15.14 \mathrm{nF}$
The attenuation of the filter is 30 dB at 6.8 KHz and better than 60 dB at 15 KHz .

Tab. II
Damping factor for low-pass Butterworth filters

Order	$\mathbf{C}_{\mathbf{i}}$	$\mathbf{C}_{\mathbf{1}}$	$\mathbf{C}_{\mathbf{2}}$	$\mathbf{C}_{\mathbf{3}}$	$\mathbf{C}_{\mathbf{4}}$	$\mathbf{C}_{\mathbf{5}}$	$\mathbf{C}_{\mathbf{6}}$	$\mathbf{C}_{\mathbf{7}}$	$\mathbf{C}_{\mathbf{8}}$
2		0.707	1.41						
3	1.392	0.202	3.54						
4		0.92	1.08	0.38	2.61				
5	1.354	0.421	1.75	0.309	3.235				
6		0.966	1.035	0.707	1.414	0.259	3.86		
7	1.336	0.488	1.53	0.623	1.604	0.222	4.49		
8		0.98	1.02	0.83	1.20	0.556	1.80	0.195	5.125

The same method, referring to Tab. II and fig. 16, is used to design high-pass filter. In this case the damping factor is found by taking the reciprocal of the numbers in Tab. II. For f_{c} $=5 \mathrm{KHz}$ and $\mathrm{C}_{\mathrm{i}}=\mathrm{C}_{1}=\mathrm{C}_{2}=\mathrm{C}_{3}=\mathrm{C}_{4}=1 \mathrm{nF}$ we obtain:
$R_{i}=\frac{1}{1.354} \cdot \frac{1}{C} \cdot \frac{1}{2 \pi f_{c}}=23.5 \mathrm{~K} \Omega$

$$
\begin{aligned}
& \mathrm{R}_{1}=\frac{1}{0.421} \cdot \frac{1}{\mathrm{C}} \cdot \frac{1}{2 \pi \mathrm{f}_{\mathrm{c}}}=75.6 \mathrm{~K} \Omega \\
& \mathrm{R}_{2}=\frac{1}{1.753} \cdot \frac{1}{\mathrm{C}} \cdot \frac{1}{2 \pi \mathrm{f}_{\mathrm{c}}}=18.2 \mathrm{~K} \Omega \\
& \mathrm{R}_{3}=\frac{1}{0.309} \cdot \frac{1}{\mathrm{C}} \cdot \frac{1}{2 \pi \mathrm{f}_{\mathrm{c}}}=103 \mathrm{~K} \Omega \\
& \mathrm{R}_{4}=\frac{1}{3.325} \cdot \frac{1}{\mathrm{C}} \cdot \frac{1}{2 \pi \mathrm{f}_{\mathrm{c}}}=9.6 \mathrm{~K} \Omega
\end{aligned}
$$

Fig. $16-5^{\text {th }}$ order high-pass filter (Butterworth) with unity gain configuration.

APPLICATION INFORMATION (continued)

Fig. 17 - Multiple feedback 8-pole bandpass filter.

$\mathrm{f}_{\mathrm{c}}=1.180 \mathrm{~Hz} ; \mathrm{A}=1 ; \mathrm{C}_{2}=\mathrm{C}_{3}=\mathrm{C}_{5}=\mathrm{C}_{6}=\mathrm{C}_{8}=\mathrm{C}_{9}=\mathrm{C}_{10}=\mathrm{C}_{11}=3.300 \mathrm{pF}$;
$\mathrm{R}_{1}=\mathrm{R}_{6}=\mathrm{R}_{9}=\mathrm{R}_{12}=160 \mathrm{~K} \Omega ; \mathrm{R}_{5}=\mathrm{R}_{8}=\mathrm{R}_{11}=\mathrm{R}_{14}=330 \mathrm{~K} \Omega ; \mathrm{R}_{4}=\mathrm{R}_{7}=\mathrm{R}_{10}=\mathrm{R}_{13}=5.3 \mathrm{~K} \Omega$

Fig. 18 - Frequency response of band-pass filter

Fig. 19 - Bandwidth of bandpass filter

LINEAR INTEGRATED CIRCUIT

TELEPHONE SPEECH CIRCUIT WITH MULTIFREQUENCY TONE GENERATOR INTERFACE

The LS656 is a monolithic integrated circuit in 16-lead plastic package to replace the hybrid circuit in telephone set. It works with the same type of transducers for both transmitter and receiver (typically dynamic capsules). Many of its electrical characteristics can be controlled by means of external components to meet different specifications.
In addition to the speech operation, the LS656 acts as an interface for the MF tone signal (particularly for M761 C/MOS frequency synthesizer).
The LS656 basic functions are the following:

- It presents the proper DC path for the line current, particular care being paid to have low voltage drop.
- It handles the voice signal, performing the $2 / 4$ wires interface and changing the gain on both sending and receiving amplifiers to compensate for line attenuation by sensing either the line current or the line voltage. In addition, the LS656 can also work in fixed gain mode.
- It acts as linear interface for MF, supplying a stabilized voltage to the digital chip and delivering to the line the MF tones generated by the M761.

ABSOLUTE MAXIMUM RATINGS

V_{L}	Line voltage (3 ms pulse duration)	22	V
I_{L}	Forward line current	150	mA
I_{L}	Reverse line current	-150	mA
$\mathrm{P}_{\text {tot }}$	Total power dissipation at $\mathrm{Tamb}=70^{\circ} \mathrm{C}$	1	W
Top	Operating temperature	-45 to 70	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}, \mathrm{T}_{\mathrm{j}}$	Storage and junction temperature	-65 to 150	${ }^{\circ} \mathrm{C}$

ORDERING NUMBER: LS656B
MECHANICAL DATA

CONNECTION DIAGRAM

(top view)

BLOCK DIAGRAM

TEST CIRCUITS

Fig. 1

$$
V=0.1 V \quad \text { CMRR }
$$

Fig. 3

$G_{R}=\frac{V_{R O}}{V_{R I}}$

Fig. 2

Fig. 4

$$
\mathrm{G}_{\mathrm{MF}}=\frac{\mathrm{V}_{\mathrm{MO}}}{\mathrm{~V}_{\mathrm{MF}}}
$$

LS656

THERMAL DATA

| $R_{\text {th } j-a m b}$ Thermal resistance junction-ambient | $\max \quad 80$ | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |
| :--- | :---: | :---: | :---: |

ELECTRICAL CHARACTERISTICS (Refer to the test circuits, $\mathrm{V}_{\mathrm{G}}=1$ to $2 \mathrm{~V}, \mathrm{I}_{\mathrm{L}}=12$ to 80 mA , S1, S2 and S3 in (a), $\mathrm{T}_{\mathrm{amb}}=25$ to $+50^{\circ} \mathrm{C}, \mathrm{f}=200$ to 3400 Hz , unless otherwise specified).

| Parameter | Test conditions | Min. | Typ. | Max. | Unit |
| :--- | :--- | :--- | :--- | :--- | :--- | Fig. | (|
| :--- |

SPEECH OPERATION

V_{L}	Line voltage	$\begin{array}{ll} T_{a m b}=25^{\circ} \mathrm{C} & I_{L}=12 \mathrm{~mA} \\ & I_{L}=30 \mathrm{~mA} \\ & I_{L}=60 \mathrm{~mA} \end{array}$			4 5 6.9	V	-
CMRR	Common mode rejection	$\mathrm{f}=1 \mathrm{KHz}$	50			dB	1
G_{s}	Sending gain	$\begin{array}{lll} \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} & \mathrm{f}=1 \mathrm{KHz} & \mathrm{I}_{\mathrm{L}} 25 \mathrm{~mA} \\ \mathrm{~V}_{\mathrm{LI}^{\prime}}=3 \mathrm{mV} & & \mathrm{~L}_{\mathrm{L}}=50 \mathrm{~mA} \end{array}$	$\begin{aligned} & 48 \\ & 44 \end{aligned}$		$\begin{aligned} & 50 \\ & 46 \end{aligned}$	dB	2
	Sending gain flatness (vs. freq.)	$\mathrm{V}_{\mathrm{MI}}=3 \mathrm{mV} \quad \mathrm{f}_{\text {ref }}=1 \mathrm{KHz}$			± 1	dB	2
	Sending gain flatness* (vs. current)	$\begin{aligned} & \mathrm{V}_{\mathrm{MI}}=3 \mathrm{mV} \\ & \mathrm{~S} 3 \text { in (b) } \end{aligned}$			± 0.5	dB	2
	Sending distortion	$\mathrm{f}=1 \mathrm{KHz}$ $\mathrm{V}_{\text {so }}=700 \mathrm{mV}$ $\mathrm{I}_{\mathrm{L}}=15 \mathrm{~mA}$ $\mathrm{~V}_{\text {so }}=800 \mathrm{mV}$			$\begin{gathered} 2 \\ 10 \end{gathered}$	$\begin{aligned} & \% \\ & \% \end{aligned}$	2
	Sending noise	$\mathrm{V}_{\mathrm{MI}}=0 \mathrm{~V} ; \mathrm{V}_{\mathrm{G}}=1 \mathrm{~V}$		-70		dBmp	2
	Microphone input impedance (pin-16)	$\mathrm{V}_{\mathrm{MI}}=3 \mathrm{mV}$	40			$K \Omega$	-
	Sending gain in MF operation	$\begin{aligned} & \mathrm{V}_{\mathrm{M1}}=3 \mathrm{mV} \\ & \mathrm{~S} 2 \text { in (b) } \end{aligned}$	-30			dB	2
G_{R}	Receiving gain	$V_{R I}=0.3 \mathrm{~V}$ $I_{\mathrm{L}}=25 \mathrm{~mA}$ $\mathrm{f}=1 \mathrm{KHz}$ $\mathrm{I}_{\mathrm{L}}=50 \mathrm{~mA}$ $\mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$	$\begin{aligned} & -4 \\ & -8 \end{aligned}$		$\begin{aligned} & -2 \\ & -6 \end{aligned}$	dB	3
	Receiving gain flatness (vs. freq.)				± 1	dB	3
	Receiving gain flatness* (vs. current)				± 0.5	dB	3
	Receiving distortion	$\begin{array}{ll} f=1 \mathrm{KHz} & V_{R O}=440 \mathrm{mV} \\ \mathrm{I}_{\mathrm{L}}=15 \mathrm{~mA} & V_{R O}=480 \mathrm{mV} \end{array}$			$\begin{gathered} 2 \\ 10 \end{gathered}$	$\begin{aligned} & \% \\ & \% \\ & \hline \end{aligned}$	3
	Receiving noise	$\mathrm{V}_{\mathrm{RI}}=0 \mathrm{~V} ; \mathrm{V}_{\mathrm{G}}=1 \mathrm{~V}$		150		$\mu \mathrm{V}$	3
	Receiver output impedance (pin 12-13)	$\mathrm{V}_{\mathrm{RO}}=50 \mathrm{mV}$		30		Ω	-
	Sidetone	$\begin{aligned} & \mathrm{f}=1 \mathrm{KHz} \\ & \mathrm{~T} a m b=25^{\circ} \mathrm{C} \\ & \text { si in (b) } \end{aligned}$			36	dB	2
Z_{ML}	Line matching impedance	$V_{R I}=0.3 V \quad f=1 \mathrm{KHz}$	500	600	700	Ω	3
I_{8}	Input current for gain control (pin 8)				-10	$\mu \mathrm{A}$	-

[^10]
ELECTRICAL CHARACTERISTICS (continued)

Parameter	Test conditions	Min.	Typ.	Max.	Unit	Fig.

MULTIFREQUENCY SYNTHESIZER INTERFACE

$V_{\text {DD }}$	MF supply voltage Stand by and Operation	S2 in (b)	2.4	2.5		V	-
${ }^{\text {IDD }}$	MF supply current Stand by Operation	S2 in (b)	$\begin{gathered} 0.5 \\ 2 \end{gathered}$			$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$	-
	MF amplifier gain	f_{MF} in $=1 \mathrm{KHz}$ $V_{M F \text { in }}=80 \mathrm{mV}$	15		17	dB	4
V_{1}	DC input voltage level (pin 14)	$\mathrm{V}_{\mathrm{MF} \text { in }}=80 \mathrm{mV}$		$3 \mathrm{~V}_{\mathrm{DD}}$		V	-
R_{1}	Input impedance (pin 14)	$\mathrm{V}_{\text {MF in }}=80 \mathrm{mV}$	60			$K \Omega$	-
d	Distortion	$\begin{aligned} & V_{M F i n}=150 \mathrm{mVp} \\ & I_{L}>15 \mathrm{~mA} \end{aligned}$			2	\%	4
	Starting delay time				5	ms	-
Muting threshold voltage (pin 3)	Muting threshold voltage (pin 3)	Speech operation			1	\checkmark	-
		MF operation	1.6			V	-
	Muting stand by current (pin 3)				-10	$\mu \mathrm{A}$	-
	Muting operating current (pin 3)	S2 in (b)			+10	$\mu \mathrm{A}$	-

CIRCUIT DESCRIPTION

1. DC characteristic

The fig. 5 shows the DC equivalent circuit of the LS656.
Fig. 5 - Equivalent DC load to the line

A fixed amount I_{D} of the total available current I_{L} is drained for the proper operation of the circuit. The value of I_{0} can be programmed externally by changing the value of the bias resistor connected to pin 4 (see block diagram).
The minimum value of I_{o} is 7.5 mA .
The voltage $\mathrm{V}_{0}=37 \mathrm{~V}$ of the shunt regulator is independent of the line current.
The shunt regulator (2) is controlled by a temperature compensated voltage reference (1) (see the block diagram).
Fig. 6 shows a more detailed circuit configuration of the shunt regulator.
Fig. 6 - Circuit configuration of the shunt regulator

The difference $I_{L}-I_{0}$ flows through the shunt regulator being I_{b} negligible. I_{a} is an internal constant current generator; hence $\mathrm{V}_{\mathrm{o}}=\mathrm{V}_{\mathrm{B}}+\mathrm{I}_{\mathrm{a}} \cdot \mathrm{R}_{\mathrm{a}}=3.7 \mathrm{~V}$.
The V_{L}, I_{L} characteristic of the device is therefore similar to a pure resistance in series to a battery.

LS656

It is important to note that the DC voltage at pin 5 is proportional to the line current $\left(V_{5}=V_{7}+V_{B}=\left(I_{L}-I_{0}\right) R 3+V_{B}\right)$. The DC characteristic of the LS656 is shown in fig. 7.

Fig. 7 - DC characteristic

2. Two to four wires conversion

The LS656 performs the two wires (line) to four wires (microphone, earphone) conversion by means of a Wheatstone bridge configuration so obtaining the proper decoupling between sending and receiving signals (see fig. 8).

Fig. 8 - Two to four wires conversion

For a perfect balancing of the bridge $\frac{Z_{L}}{Z_{B}}=\frac{R 1}{R 2}$.
The AC signal from the microphone is sent to one diagonal of the bridge (pin 6 and 9). A small percentage of the signal power is lost on Z_{B} (being $Z_{B}>Z_{L}$); the main part is sent to the line via $R 1$. In receiving mode, the AC signal coming from the line is sensed across the second diagonal of the bridge (pin 11 and 10). After amplification it is applied to the receiving capsule.
The impedance Z_{M} is simulated by the shunt regulator that is also intended to work as a transconductance amplifier for the transmission signal.

APPLICATION INFORMATION (continued)

The impedance Z_{M} is defined as $\frac{\Delta V_{6-9}}{\Delta I_{6-9}}$.
From fig. 6 considering C 1 as a short circuit for $A C$ signal, any variation ΔV_{6} generates a variation:

$$
\Delta V_{7}=\Delta V_{A}=\Delta V_{6} \cdot \frac{R_{b}}{R_{a}+R_{b}}
$$

The corresponding current change is

$$
\Delta \mathrm{I}=\frac{\Delta \mathrm{V}_{7}}{\mathrm{R} 3}
$$

Therefore

$$
\mathrm{Z}_{\mathrm{M}}=\frac{\Delta \mathrm{V}_{6}}{\Delta \mathrm{I}}=\mathrm{R} 3\left(1+\frac{\mathrm{R}_{\mathrm{a}}}{\mathrm{R}_{\mathrm{b}}}\right)
$$

The total impedance across the line connections (pin 11 and 9) is given by

$$
Z_{M L}=R 1+Z_{M} / /\left(R 2+Z_{B}\right)
$$

By choosing $Z_{M} \gg R 1$ and $Z_{B} \gg Z_{M}$

$$
Z_{M L} \cong Z_{M}=R 3\left(1+\frac{R_{a}}{R_{b}}\right)
$$

The received signal amplitude across pin 11 and 10 can be changed using different values of R1 (of course the relationship $Z_{L} / Z_{B}=R 1 / R 2$ must be always valid).
The received signal is related to R 1 value according to the approximated relationship:

$$
V_{R}=2 V_{R I} \frac{R 1}{R 1+Z_{M}}
$$

Note that by changing the value of R1, the transmission signal current is not changed, being the microphone amplifier a transconductance amplifier.

3. Automatic gain control

The LS656 automatically adjusts the gain of the sending and receiving amplifiers to compensate for line attenuation.
This function is performed by the circuit of fig. 9.
Fig. 9

The differential stage is progressively unbalanced by changing V_{G} in the range 1 to $2 \mathrm{~V}\left(\mathrm{~V}_{\mathrm{REFG}}\right.$ is an internal reference voltage, temperature compensated).
It changes the current I_{G}, and this current is used as a control quantity for the variable gain stages (amplifier (4) and (5) in the block diagram). The voltage V_{G} can be taken:
a) from the LS656 itself (both in variable and in fixed mode) and.
b) from a resistive divider, directly at the end of the line.
a) In the first case, connecting V_{G} (pin 8) to the regulator bypass ($\operatorname{pin} 5$) it is possible to obtain a gain characteristic depending on the current.
In fact (see fig. 6)

$$
V_{5}=V_{B}+V_{7} \cong V_{B}+\left(I_{L}-I_{0}\right) R 3
$$

The starting point of the automatic level control is obtained at $I_{L}=25 \mathrm{~mA}$ when the drain current $\mathrm{I}_{\mathrm{o}}=7.5 \mathrm{~mA}$.
Minimum gain is reached for a line current of about 50 mA for the same drain current $\mathrm{I}_{\mathrm{o}}=7.5 \mathrm{~mA}$. When I_{0} is increased by means of the external resistor connected to pin 4, the two above mentioned values of the line current for the starting point and for the minimum gain increase accordingly.
It is also possible to change the starting point without changing I_{0} by connecting pin 8 to the centre of a resistive divider placed between pin 5 and ground (the total resistance seen by pin 5 must be at least $100 \mathrm{~K} \Omega$). In this case, the AGC range increases too; for example using a division 1:1 (50K/50K) the AGC starting point shifts to about $I_{L}=40 \mathrm{~mA}$, and the minimum gain is obtained at $I_{L}=95 \mathrm{~mA}$. In addition to this operation mode, the V_{G} voltage can be maintained constant thus fixing the gain values ($R x, T x$) independently of the line conditions.
For this purpose the $\mathrm{V}_{D D}$ voltage, available for supplying the MF generator, can be used.
b) When gains have to be related to the voltage at the line terminals of the telephone set, it is necessary to obtain V_{G} from a resistive divider directly connected to the end of the line.
This type of operation meets the requirements of the French standard. (See the application circuit of fig. 13).

4. Transducer interfacing

The microphone amplifier (3) has a differential input stage with high impedance ($\cong 40 \mathrm{~K} \Omega$) so allowing a good matching to the microphone by means of external resistor without affecting the sending gain. The receiving output stage (6) is particularly intended to drive dynamic capsules. (Low output impedance ($100 \Omega \mathrm{max}$); high current capability 3 mAp).
When a piezoceramic capsule is used, it is useful to increase the receiving gain by increasing R1 value (see the relationship for V_{R}).
Whit very low impedance transducer, DC decoupling by an external capacitor must be provided to prevent a large DC current flow across the transducer itself due to the receiving output stage offset.

5. Multifrequency interfacing

The LS656 acts as a linear interface for the Multifrequency synthesizer M761 according to a logical signal (mute function) present on pin 3.
When no key of the keyboard is pressed the mute state is low and the LS656 feeds the M761 through pin 15 with low voltage and low current (standby operation of the M761). The oscillator of the M761 is not operating.

When one key is pressed, the M761 sends a "high state" mute condition to the LS656. A voltage comparator (8) of LS656 drives internal electronic switches; the voltage and the current delivered by the voltage supply (9) are increased to allow the operation of the oscillator.
This extra current is diverted by the receiving and sending section of the LS656 and during this operation the receiving output stage is partially inhibited and the input stages of sending and receiving amplifiers are switched OFF.
A controlled amount of the signalling is allowed to reach the earphone to give a feedback to the subscriber; the MF amplifier (10) delivers the dial tones to the sending paths.
The mute function can be used also when a temporary inhibition of the output signal is requested. The application circuit shown in fig. 10 fulfils the EUROPE II standard ($-6,-8 \mathrm{dBm}$). If the EUROPE I levels are required ($-9,-11 \mathrm{dBm}$) an external divider must be used (see fig. 11).

APPLICATION INFORMATION

Fig. 10 - Application circuit with multifrequency (EUROPE II STD)

Fig. 11 - Application circuit with multifrequency (EUROPE I STD)

APPLICATION INFORMATION (continued)

Fig. 12 - Sending and receiving gain vs. line current (application circuit of fig.10)

Fig. 13 - Application circuit without multifrequency

Fig. 14 - Application circuit with gain controlled by line voltage (French standard)

APPLICATION INFORMATION (continued)

Fig. 15 - Application circuit with fixed gain operation

Fig. 16 - External mute function

a) with multifrequency
b) without multifrequency

$R_{y}=0 \quad$ Main gain condition
$R_{x}=0 \quad$ Main gain condition
In addition to the above mentioned applications, different values for the external components can be used in order to satisfy different requirements.
The following table (refer to the application circuit of fig. 10) can help the designers.

Component	Value	Purpose	Note
R1 R2	30Ω 330Ω	Bridge Resistors	R1 controls the receiving gain. When high current values are allowed, R1 must be able to dissipate up to 1 W . The ratio R2/R1 fixes the amount of signal delivered to the line. R1 helps in fixing the DC characteristics (see R3 note).
R3	30Ω	Line current sensing. Fixing DC characteristic.	The relationships involving R3 are: $\begin{aligned} & -Z_{N I L}=\left(20 R 3 / / Z_{B}\right)+R 1 \\ & -G_{S}=K \cdot \frac{Z_{L} / / Z_{M L}}{R 3} \\ & -V_{L}=\left(I_{L}-I_{0}\right)(R 3+R 1)+V_{O} ; V_{O}=3.7 V \end{aligned}$ Without any problem it is possible to have a $Z_{M L}$ ranging from 600 up to 900Ω. As far as the power dissipation is concerned, see R1 note.
R4	$13 \mathrm{~K} \Omega$	Bias Resistor	The suggested value assures the minimum operating current. It is possible to increase the supply current by decreasing R4 (they are inversely proportional), in order to achieve the shifting of the AGC starting point. (See fig. 16). After R4 changement, some variations could be found also in other parameters, i.e. line voltage.

Component	Value	Purpose	Note
R5	$2.2 \mathrm{~K} \Omega$	Balance Network	It's possible to change R5 and R6 values in order to improve the matching to different lines; in any case:$\begin{aligned} & \frac{Z_{B}}{Z_{L}}=\frac{R 2}{R 1} \\ & \quad Z_{B}=R 5+R 6 / / X_{C 4} \end{aligned}$
R6	$6.8 \mathrm{~K} \Omega$		
R7-R7'	100Ω	Receiver impedance matching	R7 and R7', must be equal; the suggested value is good for matching to dynamic capsule; there is no problem in increasing and decreasing (down to $O \Omega$) this value. A DC decoupling must be inserted when low resistance levels are used to stop the current due to the receiver output offset voltage ($\max 200 \mathrm{mV}$).
R8	200Ω	Microphone impedance matching	The suggested value is typical for a dynamic microphone, but it is possible to choose R8 in a wide range.
C1	$10 \mu \mathrm{~F}$	Regulator AC bypass	A value greater than $10 \mu \mathrm{~F}$ gives a system start time too high for low current line during MF operation; a lower value gives an alteration of the $A C$ line impedance at low frequency.
C2	47 nF	Matching to a capacitive line	C2 changes with the characteristics of the transmission line.
C3	82 nF	Receiving gain flatness	C3 depends on balancing and line impedance versus frequency.
C4	15 nF	Balance network	See note for R5, R6.
C5	$0.33 \mu \mathrm{~F}$	DC filtering	The C5 range is from $0.1 \mu \mathrm{~F}$ to $0.47 \mu \mathrm{~F}$. The lowest value is ripple limited, the higher value is starting up time limited.
C6-C7	1000 pF	RF bypass	
C8	$100 \mu \mathrm{~F}$	Receiving output DC decoupling	See note for R7, R7.
C9	$1 \mu \mathrm{~F}$	Receiving input DC decoupling	

LINEAR INTEGRATED CIRCUITS

OPERATIONAL AMPLIFIERS

The LS 709 series features low offset, high input impedance, large input common mode range, high output voltage swing. The amplifier is intended for use in D.C. servosystems, high impedance analog computer, low level instrumentation applications, and for the generation of special linear and non linear transfer functions.

1) For supply voltages less than $\pm 10 \mathrm{~V}$ maximum input voltage is equal to the supply voltage.

MECHANICAL DATA

TO-99

Dimensions in mm

DIP

CONNECTION DIAGRAMS AND ORDERING NUMBERS

(top views)

Type	TO-99	DIP
LS 709	LS 709T	-
LS 709A	LS 709 AT	-
LS 709C	LS 709 CT	LS 709 CB

SCHEMATIC DIAGRAM (pin numbers are referred to the TO-99 version)

THERMAL DATA	TO-99	DIP	
$R_{\text {th } j \text {-amb }}$ Thermal resistance junction-ambient	\max	$155^{\circ} \mathrm{C} / \mathrm{W}$	$200^{\circ} \mathrm{C} / \mathrm{W}$

ELECTRICAL CHARACTERISTICS (see note)

Parameter		Test conditions	LS 709A			LS 709			LS 709C			Unit	
		Min.	Typ.	Max.	Min.	Typ.	Max.	Min.	Typ.	Max.			
$\mathrm{V}_{\text {os }}$	Input offset voltage		$\begin{aligned} & \mathrm{R}_{\mathrm{g}} \leqslant 10 \mathrm{k} \Omega \\ & \mathrm{R}_{\mathrm{g}} \leqslant 10 \mathrm{k} \Omega \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} \end{aligned}$		0.6	$\begin{aligned} & 3 \\ & 2 \end{aligned}$		1	$\begin{aligned} & 6 \\ & 5 \end{aligned}$		2	$\begin{aligned} & 10 \\ & 7.5 \end{aligned}$	$\begin{aligned} & m V \\ & m V \end{aligned}$
I_{b}	Input bias current	$\begin{aligned} & T_{a m b}=T_{\min } \\ & T_{a m b}=25^{\circ} \mathrm{C} \end{aligned}$		$\begin{aligned} & 0.3 \\ & 100 \end{aligned}$	$\begin{array}{r} 0.6 \\ 200 \end{array}$		$\begin{aligned} & 0.5 \\ & 200 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 500 \end{aligned}$		$\begin{array}{r} 0.36 \\ 300 \end{array}$	$\begin{gathered} 2 \\ 1500 \end{gathered}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mathrm{nA} \end{aligned}$	
los	Input offset current	$\begin{aligned} & T_{a m b}=T_{\max } \\ & T_{a m b}=T_{\min } \\ & T_{a m b}=25^{\circ} \mathrm{C} \end{aligned}$		$\begin{aligned} & \hline 3.5 \\ & 40 \\ & 10 \end{aligned}$	$\begin{array}{\|c\|} \hline 50 \\ 250 \\ 50 \\ \hline \end{array}$		$\begin{gathered} \hline 20 \\ 100 \\ 50 \\ \hline \end{gathered}$	$\begin{aligned} & \hline 200 \\ & 500 \\ & 200 \end{aligned}$		$\begin{gathered} 75 \\ 125 \\ 100 \end{gathered}$	$\begin{array}{\|l\|} \hline 400 \\ 750 \\ 500 \\ \hline \end{array}$	$\begin{aligned} & \text { nA } \\ & \text { nA } \\ & \text { nA } \end{aligned}$	
R_{i}	Input resistance	$\begin{aligned} & T_{a m b}=T_{\min } \\ & T_{a m b}=25^{\circ} \mathrm{C} \end{aligned}$	$\begin{gathered} 85 \\ 350 \end{gathered}$	$\begin{aligned} & 170 \\ & 700 \end{aligned}$		$\begin{gathered} 40 \\ 150 \end{gathered}$	$\begin{aligned} & 100 \\ & 400 \end{aligned}$		$\begin{aligned} & 50 \\ & 50 \end{aligned}$	$\begin{aligned} & 250 \\ & 250 \end{aligned}$		$\begin{aligned} & \mathrm{k} \Omega \\ & \mathrm{k} \Omega \end{aligned}$	
R_{o}	Output resistance	$\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$		150			150			150		Ω	
I_{5}	Supply current	$\mathrm{V}_{\mathrm{s}}= \pm 15 \mathrm{~V} \quad \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$		2.5	3.6		2.6	5.5		2.6	6.6	mA	
	Transient response Risetime Overshoot	$\begin{aligned} & V_{\mathrm{i}}=20 \mathrm{mV} \mathrm{C}_{\mathrm{L}} \leqslant 100 \mathrm{pF} \\ & \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} \end{aligned}$			$\begin{aligned} & 1.5 \\ & 30 \end{aligned}$		$\begin{aligned} & 0.3 \\ & 10 \end{aligned}$	$\begin{gathered} 1 \\ 30 \end{gathered}$		$\begin{gathered} 0.3 \\ 10 \end{gathered}$	$\begin{gathered} 1 \\ 30 \end{gathered}$	$\begin{gathered} \mu \mathrm{s} \\ \% \end{gathered}$	
SR	Slew rate	$\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$		0.25			0.25			0.25		$\mathrm{V} / \mu \mathrm{s}$	
$\frac{\Delta V_{\text {os }}}{\Delta T}$	Average temperature coefficient of input offset voltage	$\mathrm{R}_{\mathrm{g}}=50 \Omega$ $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ to $\mathrm{T}_{\text {max }}$ $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ to $\mathrm{T}_{\text {min }}$ $\mathrm{R}_{\mathrm{g}}=10 \mathrm{k} \Omega$ $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ to $\mathrm{T}_{\text {max }}$ $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ to $\mathrm{T}_{\text {min }}$		$\begin{gathered} 1.8 \\ 1.8 \\ \\ 2 \\ 4.8 \end{gathered}$	$\begin{aligned} & 10 \\ & 10 \\ & \\ & 15 \\ & 25 \end{aligned}$		$\begin{aligned} & 3 \\ & 6 \end{aligned}$			$\begin{gathered} 6 \\ 12 \end{gathered}$		$\begin{aligned} & \mu \mathrm{V} /{ }^{\circ} \mathrm{C} \\ & \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \\ & \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \\ & \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \end{aligned}$	
G_{v}	Large signal voltage gain	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V} \quad \mathrm{R}_{\mathrm{L}} \geqslant 2 \mathrm{k} \Omega \\ & \mathrm{~V}_{\mathrm{O}}= \pm 10 \mathrm{~V} \end{aligned}$	88	93	97	88	93	97	83	93		dB	
V_{0}	Output voltage swing	$\begin{array}{ll} V_{S}= \pm 15 \mathrm{~V} & R_{\mathrm{L}}=10 \mathrm{k} \Omega \\ V_{\mathrm{S}}= \pm 15 \mathrm{~V} & R_{\mathrm{L}}=2 \mathrm{k} \Omega \end{array}$	$\begin{aligned} & \pm 12 \\ & \pm 10 \end{aligned}$	$\begin{aligned} & \pm 14 \\ & \pm 13 \end{aligned}$		$\begin{aligned} & \pm 12 \\ & \pm 10 \end{aligned}$	$\begin{aligned} & \pm 14 \\ & \pm 13 \end{aligned}$		$\begin{aligned} & \pm 12 \\ & \pm 10 \end{aligned}$	$\begin{aligned} & \pm 14 \\ & \pm 13 \end{aligned}$		V	
V_{i}	Input voltage range	$\mathrm{V}_{\mathrm{s}}= \pm 15 \mathrm{~V}$	± 8			± 8	± 10		± 8	± 10		V	
CMR	Common mode rejection	$\mathrm{R}_{\mathrm{g}} \leqslant 10 \mathrm{k} \Omega$	80	110		70	90		65	90		dB	
SVR	Supply voltage rejection	$\mathrm{R}_{\mathrm{g}} \leqslant 10 \mathrm{k} \Omega$	80	88		76	92		74	92		dB	

Note: These specifications, unless otherwise specified, apply for $\mathrm{T}_{\mathrm{amb}}=-55$ to $125^{\circ} \mathrm{C}$ for LS 709/LS 709A and $\mathrm{T}_{\mathrm{amb}}=0$ to $70^{\circ} \mathrm{C}$ for LS 709 C with the following conditions: $\mathrm{V}_{\mathrm{s}}= \pm 9 \mathrm{~V}$ to $\pm 15 \mathrm{~V}, \mathrm{C} 1=5000 \mathrm{pF}, \mathrm{R} 1=1.5 \mathrm{k} \Omega$, $\mathrm{C} 2=200 \mathrm{pF}$ and R2 $=51 \Omega$. (See fig. 8 and fig. 17).

Fig. 1 - Voltage gain vs. supply voltage (for 709A)

Fig. 4 - Power consumption vs. supply voltage (for 709A)

Fig. 7 - Input offset current vs. ambient temperature (for 709A)

Fig. 2 - Output voltage swing vs. supply voltage (for 709A)

Fig. 5-Output voltage swing vs. load resistance(for 709A)

Fig. 8 - Transient response test circuit

Fig. 3 - Input common mode voltage range vs. supply voltage (for 709A)

Fig. 6 - Input bias current vs. ambient temperature (for 709A)

Fig. 9 - Transient response (for 709A)

Fig. 10 - Slew rate vs. closed loop gain using recommended compensation networks (for 709A)

Fig. 13 - Voltage gain vs. supply voltage (for 709C)

Fig. 11 - Voltage gain vs. suplply voltage (for 709)

Fig. 14 - Input bias current vs. ambient temperature (for 709C)

Fig. 12-Output voltage swing vs. supply voltage (for 709 and 709C)

Fig. 15 - Input offset current vs.ambient temperature (for 709C)

Fig. 18 - Frequency response for various closed loop gains

LINEAR INTEGRATED CIRCUITS

PROGRAMMABLE OPERATIONAL AMPLIFIER

- MICROPOWER CONSUMPTION
- INTERNALLY FREQUENCY COMPENSATION
- OFFSET NULL CAPABILITY
- SHORT CIRCUIT PROTECTION
- LOW INPUT BIAS CURRENTS
- LOW NOISE

The LS 776 is a programmable operational amplifier available in three different packages (TO-99, Minidip and SO-8 micropackage). High input impedance, low supply currents and low input noise over a wide range of operating supply voltages coupled with programmable electrical characteristics, make it an extremely versatile amplifier for use in high accuracy, low power consumption analog applications. Input noise voltage and current, power consumption and input current can be optimized by a single resistor cf current source that sets the quiescent current for nanowatt power consumption or for characteristics similar to the LS 141. Internal frequency compensation, absence of "latch-up", high slew rate and short circuit current protection assure ease of use in long interval integrators, active filters and sample and hold circuits. The LS 776 is available with hermetic gold chip (8000 Series).

1) For supply voltage less than $\pm 15 \mathrm{~V}$, input voltage is equal to the supply voltage
2) The short circuit duration is limited by thermal dissipation

MECHANICAL DATA

TO-99

\%

CONNECTION DIAGRAMS AND ORDERING NUMBERS

 (top views)

Type	TO-99
LS 776	LS 776T
LS 776C	LS 776CT
LS 8776	-
LS 8776C	-

Minidip	SO-8
-	-
LS 776 CB	LS 776CM
-	LS 8776M
-	LS 8776CM

SCHEMATIC DIAGRAM

THERMAL DATA		TO-99	Minidip	SO-8
$R_{\text {th j-amb }}$	Thermal resistance junction-ambient	\max.	$155^{\circ} \mathrm{C} / \mathrm{W}$	$120^{\circ} \mathrm{C} / \mathrm{W}$

[^11]
ELECTRICAL CHARACTERISTICS for LS 776

($\mathrm{V}_{\mathrm{s}}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ unless otherwise specified)

Parameter		Test conditions	$\mathrm{I}_{\text {SET }}=1.5 \mu \mathrm{~A}$			$\mathrm{I}_{\text {SET }}=15 \mu \mathrm{~A}$			Unit	
		Min.	Typ.	Max.	Min.	Typ.	Max.			
$\mathrm{V}_{\text {OS }}$	Input offset voltage		$\mathrm{R}_{\mathrm{g}} \leqslant 10 \mathrm{k} \Omega$		2	5		2	5	mV
Ios	Input offset current	$\mathrm{R}_{\mathrm{g}} \leqslant 10 \mathrm{k} \Omega$		0.7	3		2	15	nA	
I_{b}	Input bias current			2	7.5		15	50	nA	
R_{i}	Input resistance			50			5		$\mathrm{M} \Omega$	
C_{i}	Input capacitance			2			2		pF	
$\Delta \mathrm{V}_{\text {OS }}$	Input offset voltage adjustment range			9			18		mV	
G_{v}	Large signal voltage gain	$\mathrm{R}_{\mathrm{L}} \geqslant 75 \mathrm{k} \Omega \quad \mathrm{V}_{0}= \pm 1.0 \mathrm{~V}$	106	112					dB	
		$\mathrm{R}_{\mathrm{L}} \geqslant 5 \mathrm{k} \Omega \quad \mathrm{V}_{\mathrm{O}}= \pm 10 \mathrm{~V}$				100	112		dB	
R_{0}	Output resistance			5			1		k Ω	
$\mathrm{I}_{\text {sc }}$	Output short-circuit current			3			12		mA	
I_{s}	Supply current			20	25		160	180	$\mu \mathrm{A}$	
P_{S}	Power consumption				0.75			5.4	mW	
	Transient response (unity gain) Rise time t_{r} Overshoot ΔV_{0}	$\begin{aligned} & V_{i}=20 \mathrm{mV} \quad R_{L} \geqslant 5 \mathrm{k} \Omega \\ & C_{L}=100 \mathrm{pF} \end{aligned}$		$\begin{gathered} 1.6 \\ 0 \end{gathered}$			$\begin{gathered} 0.35 \\ 10 \\ \hline \end{gathered}$		$\mu \mathrm{s}$. \%	
SR	Slew rate	$\mathrm{R}_{\mathrm{L}} \geqslant 5 \mathrm{k} \Omega$		0.1			0.8		$\mathrm{V} / \mu \mathrm{s}$	
V_{0}	Output voltage swing	$\mathrm{R}_{\mathrm{L}} \geqslant 75 \mathrm{k} \Omega$	± 12	± 14					V	
		$\mathrm{R}_{\mathrm{L}} \geqslant 5 \mathrm{k} \Omega$				± 10	± 13		V	

The following specifications apply for $\mathrm{T}_{\mathrm{amb}}=-55$ to $125{ }^{\circ} \mathrm{C}$

$\mathrm{V}_{\text {OS }}$	Input offset voltage	$\mathrm{R}_{\mathrm{g}} \leqslant 10 \mathrm{k} \Omega$			6			6	mV
Ios	Input offset current	$\mathrm{T}_{\mathrm{amb}}=125^{\circ} \mathrm{C}$			5			15	nA
		$\mathrm{T}_{\mathrm{amb}}=-55^{\circ} \mathrm{C}$			10			40	$n \mathrm{~A}$
I_{b}	Input bias current	$\mathrm{T}_{\mathrm{amb}}=125^{\circ} \mathrm{C}$			7.5			50	nA
		$\mathrm{T}_{\mathrm{amb}}=-55^{\circ} \mathrm{C}$			20			120	nA
V_{i}	Input voltage range		± 10			± 10			V
CMR	Common mode rejection	$\mathrm{R}_{\mathrm{g}} \leqslant 10 \mathrm{k} \Omega$	70	90		70	90		dB
SVR	Supply voltage rejection	$\mathrm{R}_{\mathrm{g}} \leqslant 10 \mathrm{k} \Omega$	76	92		76	92		dB
G_{v}	Large signal voltage gain	$\mathrm{R}_{\mathrm{L}} \geqslant 75 \mathrm{k} \Omega \quad \mathrm{V}_{0}= \pm 10 \mathrm{~V}$	100			98			dB
V_{0}	Output voltage swing	$\mathrm{R}_{\mathrm{L}} \geqslant 75 \mathrm{k} \Omega$	± 10			± 10			V
I_{5}	Supply current				30			200	$\mu \mathrm{A}$
P_{S}	Power consumption				0.9			6	mW

ELECTRICAL CHARACTERISTICS for LS 776
$\left(\mathrm{V}_{\mathrm{s}}= \pm 3 \mathrm{~V}, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}\right.$ unless otherwise specified)

Parameter		Test conditions		$\mathrm{I}_{\mathrm{SET}}=1.5 \mu \mathrm{~A}$			$\mathrm{I}_{\mathrm{SET}}=15 \mu \mathrm{~A}$			Unit		
		Min.	Typ.	Max.	Min.	Typ.	Max.					
$\mathrm{v}_{\text {OS }}$	Input offset voltage			$\mathrm{R}_{\mathrm{g}} \leqslant 10 \mathrm{k} \Omega$			2	5		2	5	mV
Ios	Input offset current				0.7	3		2	15	nA		
I_{b}	Input bias current				2	7.5		15	50	nA		
R_{i}	Input resistance				50			5		$\mathrm{M} \Omega$		
C_{i}	Input capacitance				2			2		pF		
$\Delta \mathrm{V}_{\text {OS }}$	Input offset voltage adjustment range				9			18		mV		
G_{v}	Large signal voltage gain	$\mathrm{R}_{\mathrm{L}} \geqslant 75 \mathrm{k} \Omega$	$\mathrm{V}_{0}= \pm 1 \mathrm{~V}$	94	106					dB		
		$\mathrm{R}_{\mathrm{L}} \geqslant 5 \mathrm{k} \Omega$	$\mathrm{V}_{0}= \pm 1 \mathrm{~V}$				94	106		dB		
R_{0}	Output resistance				5			1		$\mathrm{k} \Omega$		
$\mathrm{I}_{\text {sc }}$	Output short-circuit current				3			5		mA		
$\mathrm{I}_{\text {s }}$	Supply current				13	20		130	160	$\mu \mathrm{A}$		
P_{S}	Power consumption				78	120		780	960	$\mu \mathrm{W}$		
	Transient response (unity gain) Rise time t_{r} Overshoot ΔV_{0}	$\begin{aligned} & V_{i}=20 \mathrm{mV} \\ & C_{L} \leqslant 100 \mathrm{pF} \end{aligned}$	$R_{L} \geqslant 5 \mathrm{k} \Omega$		3			$\begin{gathered} 0.6 \\ 5 \end{gathered}$		$\begin{gathered} \mu \mathrm{s} \\ \% \end{gathered}$		
SR	Slew rate	$R_{L} \geqslant 5 \mathrm{k} \Omega$			0.03			0.35		$\mathrm{V} / \mu \mathrm{s}$		

The following specifications apply for $\mathrm{T}_{\mathrm{amb}}=-55$ to $125^{\circ} \mathrm{C}$

V Os	Input offset voltage	$\mathrm{R}_{\mathrm{g}} \leqslant 10 \mathrm{k} \Omega$			6			6	mV
Ios	Input offset current	$\mathrm{T}_{\mathrm{amb}}=125^{\circ} \mathrm{C}$			5			15	nA
		$\mathrm{T}_{\mathrm{amb}}=-55^{\circ} \mathrm{C}$			10			40	nA
I_{b}	Input bias current	$\mathrm{T}_{\mathrm{amb}}=125^{\circ} \mathrm{C}$			7.5			50	nA
		$\mathrm{T}_{\mathrm{amb}}=-55^{\circ} \mathrm{C}$			20			120	$n \mathrm{~A}$
V_{i}	Input voltage range		± 1			± 1			V
CMR	Common mode rejection	$\mathrm{R}_{\mathrm{g}} \leqslant 10 \mathrm{k} \Omega$	70	86		70	86		dB
SVR	Supply voltage rejection	$\mathrm{R}_{\mathrm{g}} \leqslant 10 \mathrm{k} \Omega$	76	92		76	92		dB
G_{v}	Large signal voltage gain	$\mathrm{R}_{\mathrm{L}} \geqslant 75 \mathrm{k} \Omega \quad \mathrm{V}_{0}= \pm 1 \mathrm{~V}$	88						dB
		$\mathrm{R}_{\mathrm{L}} \geqslant 5 \mathrm{k} \Omega \quad \mathrm{V}_{\mathrm{O}}= \pm 1 \mathrm{~V}$				88			dB
V_{0}	Output voltage swing	$R_{L} \geqslant 75 \mathrm{k} \Omega$	± 2	± 2.4					V
		$R_{L} \geqslant 5 \mathrm{k} \Omega$				± 1.9	± 2.1		V
I_{5}	Supply current				25			180	$\mu \mathrm{A}$
$\mathrm{P}_{\text {S }}$	Power consumption				150			1080	$\mu \mathrm{W}$

ELECTRICAL CHARACTERISTICS for LS 776C
($\mathrm{V}_{\mathrm{s}}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ unless otherwise specified)

Parameter,		Test conditions	$\mathrm{I}_{\text {SET }}=1.5 \mu \mathrm{~A}$			$\mathrm{I}_{\text {SET }}=15 \mu \mathrm{~A}$			Unit	
		Min.	Typ.	Max.	Min.	Typ.	Max.			
$\mathrm{v}_{\text {OS }}$	Input offset vol tage		$\mathrm{R}_{\mathrm{g}} \leqslant 10 \mathrm{k} \Omega$		2	6		2	6	mV
Ios	Input offset current			0.7	6		2	25	nA	
I_{b}	Input bias current			2	10		15	50	nA	
R_{i}	Input resistance			50			5		$\mathrm{M} \Omega$	
C_{i}	Input capacitance			2			2		pF	
$\Delta V_{\text {OS }}$	Input offset voltage adjustment range			9			18		mV	
G_{v}	Large signal voltage gain	$\mathrm{R}_{\mathrm{L}} \geqslant 75 \mathrm{k} \Omega \quad \mathrm{V}_{\mathrm{O}}= \pm 10 \mathrm{~V}$	94	- 112					dB	
		$\mathrm{R}_{\mathrm{L}} \geqslant 5 \mathrm{k} \Omega \quad \mathrm{V}_{\mathrm{O}}= \pm 10 \mathrm{~V}$				94	112		dB	
R_{o}	Output resistance			5			1		k Ω	
I_{sc}	Output short-circuit current			3			12		mA	
$\mathrm{I}_{\text {s }}$	Supply current			20	30		160	190	$\mu \mathrm{A}$	
P_{S}	Power consumption				0.9			5.7	mW	
	Transient response (unity gain) Rise time t_{r} Overshoot ΔV_{0}	$\begin{array}{ll} V_{i}=20 \mathrm{mV} & R_{\mathrm{L}} \geqslant 5 \mathrm{k} \Omega \\ C_{L} \leqslant 100 \mathrm{pF} & \end{array}$		$\begin{gathered} 1.6 \\ 0 \end{gathered}$			$\begin{gathered} 0.35 \\ 10 \end{gathered}$		$\begin{aligned} & \mu \mathrm{S} \\ & \% \end{aligned}$	
SR	Slew rate	$\mathrm{R}_{\mathrm{L}} \geqslant 5 \mathrm{k} \Omega$		0.1			0.8		$\mathrm{V} / \mu \mathrm{s}$	
V_{0}	Output voltage swing	$R_{L} \geqslant 75 \mathrm{k} \Omega$	± 12	± 14					V	
		$R_{L} \geqslant 5 \mathrm{k} \Omega$				± 10	± 13		V	
The following specifications apply for $\mathrm{T}_{\mathrm{amb}}=0$ to $70^{\circ} \mathrm{C}$										
$\mathrm{V}_{\text {OS }}$	Input offset voltage	$\mathrm{R}_{\mathrm{g}} \leqslant 10 \mathrm{k} \Omega$			7.5			7.5	mV	
Ios :	Input offset current	$\mathrm{T}_{\mathrm{amb}}=70^{\circ} \mathrm{C}$			6			25	nA	
		$\mathrm{T}_{\mathrm{amb}}=0^{\circ} \mathrm{C}$			10			40	nA	
I_{b}	Input bias current	$\mathrm{T}_{\mathrm{amb}}=70^{\circ} \mathrm{C}$			10			50	nA	
		$\mathrm{T}_{\mathrm{amb}}=0^{\circ} \mathrm{C}$			20		.	100	nA	
V_{i}	Input voltage range		± 10			± 10			V	
CMR	Common mode rejection	$\mathrm{R}_{\mathrm{g}} \leqslant 10 \mathrm{k} \Omega$	70	90		70	90		dB	
SVR	Supply voltage rejection	$\mathrm{R}_{\mathrm{g}} \leqslant 10 \mathrm{k} \Omega$	74	92		74	92		dB	
G_{v}	Large signal voltage gain	$\mathrm{R}_{\mathrm{L}} \geqslant 75 \mathrm{k} \Omega \quad \mathrm{V}_{\mathrm{O}}= \pm \pm 10 \mathrm{~V}$.	94			94			dB	
V_{0}	Output voltage swing	$\mathrm{R}_{\mathrm{L}} \geqslant 75 \mathrm{k} \Omega$	± 10			± 10			V	
I_{s}	Supply current				35			200	$\mu \mathrm{A}$	
P_{S}	Power consumption				1.05			6	mW	

ELECTRICAL CHARACTERISTICS for LS 776C
($\mathrm{V}_{\mathrm{s}}= \pm 3 \mathrm{~V}, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ unless otherwise specified)

Parameter		Test conditions	$\mathrm{I}_{\text {SET }}=1.5 \mu \mathrm{~A}$			$\mathrm{I}_{\text {SET }}=15 \mu \mathrm{~A}$			Unit	
		Min.	Typ.	Max.	Min.	Typ.	Max.			
$\mathrm{V}_{\text {OS }}$	Input offset voltage		$\mathrm{R}_{\mathrm{g}} \leqslant 10 \mathrm{k} \Omega$		2	6		2	6	mV
'OS	Input offset current			0.7	6		2	25	nA	
I_{b}	Input bias current			2	10		15	50	nA	
R_{i}	Input resistance			50			5		$\mathrm{M} \Omega$	
C_{i}	Input capacitance			2			2		pF	
$\Delta V_{\text {Os }}$	Input offset voltage adjustment range			9			18		mV	
G_{v}	Large signal voltage gain	$\mathrm{R}_{\mathrm{L}} \geqslant 75 \mathrm{k} \Omega \quad \mathrm{V}_{\mathrm{O}}= \pm 1 \mathrm{~V}$	88	106					dB	
		$\mathrm{R}_{\mathrm{L}} \geqslant 5 \mathrm{k} \Omega \quad \mathrm{V}_{0}= \pm 1 \mathrm{~V}$				88	106		dB	
R_{o}	Output resistance			5			1		$\mathrm{k} \Omega$	
I_{sc}	Output short-circuit current			3			5		mA	
I_{5}	Supply current			13	20		130	170	$\mu \mathrm{A}$	
P_{S}	Power consumption			78	120		780	1020	$\mu \mathrm{W}$	
	Transient response (unity gain) Rise time t_{r} Overshoot ΔV_{o}	$\begin{aligned} & V_{i}=20 \mathrm{mV} \quad R_{L} \geqslant 5 \mathrm{k} \Omega \\ & C_{L} \leqslant 100 \mathrm{pF} \end{aligned}$		3			$\begin{gathered} 0.6 \\ 5 \end{gathered}$		$\begin{aligned} & \mu \mathrm{s} \\ & \% \end{aligned}$	
SR	Slew rate	$\mathrm{R}_{\mathrm{L}} \geqslant 5 \mathrm{k} \Omega$		0.03			0.35		$\mathrm{V} / \mu \mathrm{s}$	
The following specifications apply for $\mathrm{T}_{\mathrm{amb}}=0$ to $70^{\circ} \mathrm{C}$										
$\mathrm{V}_{\text {OS }}$	Input offset voltage	$\mathrm{R}_{\mathrm{g}} \leqslant 10 \mathrm{k} \Omega$			7.5			7.5	mV	
'os	Input offset current	$\mathrm{T}_{\mathrm{amb}}=70^{\circ} \mathrm{C}$			6			25	nA	
		$\mathrm{T}_{\mathrm{amb}}=0^{\circ} \mathrm{C}$			10			40	nA	
I_{b}	Input bias current	$\mathrm{T}_{\mathrm{amb}}=70^{\circ} \mathrm{C}$			10			50	nA	
		$\mathrm{T}_{\mathrm{amb}}=0^{\circ} \mathrm{C}$			20			100	nA	
V_{i}	Input voltage range		± 1			± 1			V	
CMR	Common mode rejection	$\mathrm{R}_{\mathrm{g}} \leqslant 10 \mathrm{k} \Omega$	70	86		70	86		dB	
SVR	Supply voltage rejection	$\mathrm{Rg} \leqslant 10 \mathrm{k} \Omega$	74	92		74	92		dB	
G_{v}	Large signal voltage gain	$\mathrm{R}_{\mathrm{L}} \geqslant 75 \mathrm{k} \Omega \quad \mathrm{V}_{\mathrm{O}}= \pm 1 \mathrm{~V}$	88						dB	
		$\mathrm{R}_{\mathrm{L}} \geqslant 5 \mathrm{k} \Omega \quad \mathrm{V}_{\mathrm{O}}= \pm 1 \mathrm{~V}$				88			dB	
V_{0}	Output voltage swing	$\mathrm{R}_{\mathrm{L}} \geqslant 75 \mathrm{k} \Omega$	± 2	± 2.4					V	
		$\mathrm{R}_{\mathrm{L}} \geqslant 5 \mathrm{k} \Omega$				± 2	± 2.1		V	
I_{5}	Supply current				25			180	$\mu \mathrm{A}$	
P_{S}	Power consumption				150			1080	$\mu \mathrm{W}$	

Fig. 1 - Input bias current vs. set current

Fig. 4 - Change in input offset voltage vs. set current

Fig. 7 - Input noise voltage and current vs. frequency

Fig. 2 - Input bias current vs. ambient temperature

Fig. 5 - Change in input offset voltage vs. ambient temperature (unnulled)

Fig. 8 - Input noise current vs. set current

Fig. 3 - Input offset current

Fig. 6 - Input noise voltage vs. set current

vs. ambient temperature

Fig. 9 - Optimum source resistance for minimum noise vs. set current.

Fig. 10-Output voltage swing vs. load resistance

Fig. 13- Open loop voltage gain vs. ambient temperature

Fig. 16-Common mode rejection vs. set current

Fig. 11-Output voltage swing vs. supply voltage

Fig. 14-Open loop voltage gain vs. ambient temperature

Fig. 17- Supply voltage rejection vs. set current

Fig. 12-Gain bandwidth product vs. set current

Fig. 15-Open loop voltage gain vs. set current

Fig. 18 - Supply current vs. ambient temperature

Fig. 19-Standby supply current vs. set current

Fig. 20-Slew rate vs. set current

Fig. 21 - Voltage follower transient response (unity gain)

TYPICAL APPLICATIONS

Fig. 22 - High accuracy sample and hold

Fig. 23-Nanowatt amplifier

Fig. 24-High input impedance amplifier

TYPICAL APPLICATIONS (continued)

Fig. 25 - Multiplexing and signal conditioning

Fig. 26 - Multiple feedback bandpass filter

Fig. 27 - Gated amplifier

LINEAR INTEGRATED CIRCUIT

PRELIMINARY DATA

DUAL HIGH PERFORMANCE OPERATIONAL AMPLIFIER

- SINGLE OR SPLIT SUPPLY OPERATION
- LOW POWER CONSUMPTION
- HIGH UNITY GAIN BANDWIDTH
- NO CROSSOVER DISTORTION
- NO POP NOISE
- SHORT CIRCUIT PROTECTION
- HIGH CHANNEL SEPARATION

The LS 4558 N is a high performance dual operational amplifier with frequency and phase compensation built into the chip. The internal phase compensation allows stable operation as voltage follower in spite of its high gain-bandwidth products. The circuit presents very stable electrical characteristics over the entire supply voltage range and the specially designed input stage allow the LS 4558 N to be used in low noise audio signal processing application. The optimized class $A B$ output stage completely eliminates crossover distortion, under any load conditions, has large source and sink capacity and is short circuit protected.

ABSOLUTE MAXIMUM RATINGS

V_{5}	Supply voltage		± 18	V
V_{1}	Input voltage		$\pm \mathrm{V}_{5}$	
V_{i}	Differential input voltage 70°		$\pm\left(\mathrm{V}_{\mathrm{s}}-1\right)$	V
$\mathrm{P}_{\text {tot }}$	Power dissipation at $\mathrm{T}_{\mathrm{amb}}=70^{\circ} \mathrm{C}$	Minidip	665	mW
		Micropackage	400	mW
$\mathrm{T}_{\text {op }}$	Operating temperature		0 to 70	${ }^{\circ} \mathrm{C}$
T_{j}	Junction temperature		150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	Storage temperature		-55 to 150	${ }^{\circ} \mathrm{C}$

ORDERING NUMBER: LS 4558 NB (Minidip)
LS 4558 NM (Micropackage)
MECHANICAL DATA
Dimensions in mm

Minidip

CONNECTION DIAGRAM

(top view)

SCHEMATIC DIAGRAM

(one section)

THERMAL DATA	Minidip	SO-8
$\mathrm{R}_{\text {th j-amb }} \quad$ Thermal resistance junction-ambient	$120^{\circ} \mathrm{C} / \mathrm{W}$	$200^{*}{ }^{\circ} \mathrm{C} / \mathrm{W}$

(*) Measured with the device mounted on a ceramic substrate ($25 \times 16 \times 0.6 \mathrm{~mm}$).

ELECTRICAL CHARACTERISTICS $\left(V_{s}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}\right.$, unless otherwise specified)

(*) Both amplifiers.

41
 LS4558N

Fig. 1-Open loop frequency and phase response

Fig. 4 - Large signal frequency response

Fig. 7 - Channel separation

Fig. 2 - Open loop gain vs. ambient temperature

Fig. 5 - Output voltage swing vs. load resistance

Fig. 8 - Transient response

Fig. 3 - Supply voltage rejection vs. frequency

Fig. 6 - Total input noise vs. frequency

Fig. 9 - Voltage follower large-signal pulse response

LS4558N

APPLICATION INFORMATION

Fig. 10 - Mike/Line preamplifier for audio mixers (0 dB to 60 dB continuously variable gain)

Note - The particular characteristics of the circuit of fig. 10 is that using a linear potentiometer, the gain is continuously variable in a logarithmic mode from 0 dB to $\mathbf{6 0 ~ d B}$ in the audio band.

Fig. 11 - Microphones nomograph

Fig. 12 - Very Low-Noise mike preamplifier ($\mathrm{G}_{\mathrm{v}}=40 \mathrm{~dB}$)

Fig. 13 - Balanced input audio preamplifier

O
 LS4558N

APPLICATION INFORMATION (continued)

Fig. $14-20 \mathrm{~Hz}$ to 200 Hz variable High-pass
filter ($\mathrm{G}_{\mathrm{v}}=3 \mathrm{~dB}$)

Fig. 15 - Frequency response of the High-pass filter of fig. 14

Fig. 16 - DC coupled low-pass active filter ($f=1 \mathrm{KHz}, \mathrm{G}_{\mathrm{v}}=6 \mathrm{~dB}$)

Fig. 17 - Switchable HP-LP audio filter

$5-4801 / 2$

Fig. 18 - Subsonic or rumble filter ($\mathrm{G}_{\mathrm{v}}=0 \mathrm{~dB}$)

$\mathbf{f}_{\mathbf{c}}(\mathrm{Hz})$	$\mathbf{C}(\mu \mathrm{F})$
15	0.68
22	0.47
30	0.33
55	0.22
100	0.1

Fig. 19 - High-cut filter ($\mathrm{G}_{\mathrm{v}}=0 \mathrm{~dB}$)

$\mathbf{f}_{\mathbf{c}}(\mathrm{KHz})$	$\mathbf{C 1}(\mathbf{n F})$	$\mathbf{C} \mathbf{(n F)}$
3	3.9	6.8
5	2.2	4.7
10	1.2	2.2
15	0.68	1.5

LS4558N

APPLICATION INFORMATION (continued)

Fig. 20 - Fifth order 3.4 KHz low-pass Butterworth filter

For $\mathrm{f}_{\mathrm{c}}=3.4 \mathrm{KHz}$ and $\mathrm{R}_{\mathrm{i}}=\mathrm{R} 1=\mathrm{R} 2=\mathrm{R} 3=\mathrm{R} 4=10 \mathrm{~K} \Omega$, we obtain:
$\mathrm{C} 1=1.354 \cdot \frac{1}{\mathrm{R}} \cdot \frac{1}{2 \pi \mathrm{f}_{\mathrm{c}}}=6.33 \mathrm{nF}$
$\mathrm{C} 3=0.309 \cdot \frac{1}{\mathrm{R}} \cdot \frac{1}{2 \pi \mathrm{f}_{\mathrm{c}}}=1.45 \mathrm{nF}$
$\mathrm{C} 1=0.421 \cdot \frac{1}{\mathrm{R}} \cdot \frac{1}{2 \pi \mathrm{f}_{\mathrm{c}}}=1.97 \mathrm{nF}$
$\mathrm{C} 4=3.325 \cdot \frac{1}{\mathrm{R}} \cdot \frac{1}{2, \pi \mathrm{f}_{\mathrm{c}}}=15.14 \mathrm{nF}$
$\mathrm{C} 2=1.753 \cdot \frac{1}{\mathrm{R}} \cdot \frac{1}{2 \pi \mathrm{f}_{\mathrm{c}}}=8.20 \mathrm{nF}$
The attenuation of the filter is 30 dB at 6.8 KHz and better than 60 dB at 15 KHz .

Fig. 21 - Six-pole 355 Hz low-pass filter (Chebychev type)

This is a 6- pole Chebychev type with $\pm 0.25 \mathrm{~dB}$ ripple in the passband. A decoupling stage is used to avoid the influence of the input impedance on the filter's characteristics. The attenuation is about 55 dB at 710 Hz and reaches 80 dB at 1065 Hz . The in band attenuation is limited in practice to the $\pm 0.25 \mathrm{~dB}$ ripple and does not exceed 0.5 dB at 0.9 fc .

LINEAR INTEGRATED CIRCUITS

PRELIMINARY DATA

DUAL OPERATIONAL AMPLIFIERS

- INTERNALLY COMPENSATED
- SHORT-CIRCUIT PROTECTED
- LOW POWER CONSUMPTION
- WIDE COMMON-MODE AND DIFFERENTIAL VOLTAGE RANGES
- NO LATCH-UP

The MC 1458 is a dual operational amplifier with frequency and phase compensation built into the chip, available in 8 -lead minidip package and in 8 -lead micropackage. It is intended for a wide range of applications where space and cost saving are the main goals. In spite of that, the MC 1458 offers good performance and absence of latch-up makes the device ideal for use as voltage follower, integrator, summing amplifier and general feedback applications.

ABSOLUTE MAXIMUM RATINGS

V	Supply voltage		± 18	V
V_{i}	Input voltage (*)		± 15	V
V_{i}	Differential input voltage		± 30	V
$\mathrm{P}_{\text {tot }}$	Power dissipation at $\mathrm{T}_{\mathrm{amb}}=70^{\circ} \mathrm{C}$	Minidip	665	mW
		Micropackage	400	mW
$\mathrm{T}_{\text {op }}$	Operating temperature		0 to 70	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	Storage temperature		-55 to 150	${ }^{\circ} \mathrm{C}$

(*) For V_{s} lower than $\pm 15 \mathrm{~V}$, the absolute maximum input voltage is equal to the supply voltage.

Minidip
SO-8

CONNECTION DIAGRAM AND ORDERING NUMBERS (top view)

Type	Minidip	SO-8
MC 1458	MC 1458 P1	MC 1458 M
MC 1458C	MC 1458 CP1	MC 1458 CM

SCHEMATIC DIAGRAM (one section)

THERMAL DATA	Minidip	SO-8	
$\mathrm{R}_{\text {th } \mathrm{j} \text {-amb }} \quad$ Thermal resistance junction-ambient	\max	$120^{\circ} \mathrm{C} / \mathrm{W}$	$200^{*}{ }^{\circ} \mathrm{C} / \mathrm{W}$

* Measured with the device mounted on a ceramic substrate ($25 \times 16 \times 0.6 \mathrm{~mm}$.) .

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{s}}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}\right.$, unless otherwise specified)

	Parameter	Test conditions		MC 1458			MC 1458C			Unit
				Min.	Typ.	Max.	Min.	Typ.	Max.	
I_{5}	Supply current (both amplifiers)		-			5.6			8	mA
	Input bias current					0.5			0.7	$\mu \mathrm{A}$
		$0^{\circ} \mathrm{C}<\mathrm{T}_{\text {op }}<70^{\circ} \mathrm{C}$				0.8			1	
$V_{\text {os }}$	Input offset voltage	$\mathrm{R}_{\mathrm{g}} \leqslant 10 \mathrm{~K} \Omega$			2	6		2	10	mV
		$\begin{aligned} & \mathrm{R}_{\mathrm{g}} \leqslant 10 \mathrm{~K} \Omega \\ & 0^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{op}}<70^{\circ} \mathrm{C} \end{aligned}$				7.5			12	
$\frac{\Delta V_{\mathrm{os}}}{\Delta T}$	Input offset voltage drift	$\begin{aligned} & \mathrm{R}_{\mathrm{g}}=10 \mathrm{~K} \Omega \\ & 0^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{op}}<70^{\circ} \mathrm{C} \end{aligned}$			6			6		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
	Input offset current				20	200		20	300	nA
		$0^{\circ} \mathrm{C}<\mathrm{T}_{\text {op }}<70^{\circ} \mathrm{C}$				300			400	
$\frac{\Delta I_{\text {os }}}{\Delta T}$	Input offset current drift	$0^{\circ} \mathrm{C}<\mathrm{T}_{\text {op }}<70^{\circ} \mathrm{C}$			0.5			0.5		$n \mathrm{~A} /{ }^{\circ} \mathrm{C}$
I_{sc}	Output short circuit current				20			20		mA
G_{v}	Large signal open loop voltage gain	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{~K} \Omega$	$\begin{array}{r} \mathrm{T}_{\mathrm{amb}}=0 \text { to } \\ 70^{\circ} \mathrm{C} \end{array}$	83						dB
				86	106					
		$\mathrm{R}_{\mathrm{L}}=10 \mathrm{~K} \Omega$	$\begin{array}{r} \mathrm{T}_{\mathrm{amb}}=0 \text { to } \\ 70^{\circ} \mathrm{C} \end{array}$				83			dB
							86	106		
B	Unity gain bandwidth				0.8			0.8		MHz
e_{N}	Input noise voltage	$\begin{aligned} & \mathrm{B}=10 \mathrm{~Hz} \\ & \text { to } 10 \mathrm{KHz} \end{aligned}$	$\mathrm{R}_{\mathrm{g}}=1 \mathrm{~K} \Omega$		3			3		$\mu \mathrm{V}$
			$\mathrm{R}_{\mathrm{g}}=500 \mathrm{~K} \Omega$		25			25		
V 。	Output voltage swing	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{~K} \Omega$		± 10	± 13		± 9	± 13		V
		$\mathrm{R}_{\mathrm{L}}=10 \mathrm{~K} \Omega$		± 12	± 14		± 11	± 14		
SR	Slew Rate			0.3			0.3			$\mathrm{V} / \mu \mathrm{s}$
CMR	Common mode rejection			70	90		60	90		dB
SVR	Supply voltage rejection			76	90			90		dB
	Common mode input voltage range			± 12	± 13		± 11	± 13		V

LINEAR INTEGRATED CIRCUIT

TBA231A

DUAL AUDIO PREAMPLIFIER

- SINGLE OR DUAL SUPPLY OPERATION
- LOW NOISE FIGURE
- HIGH GAIN
- LARGE input Voltage range
- EXCELLENT GAIN STABILITY VERSUS SUPPLY VOLTAGE
- NO LATCH UP
- OUTPUT SHORT CIRCUIT PROTECTED

The TBA 231A is a monolithic integrated dual operational amplifier in a 14 -lead dual in-line plastic package.
These low-noise, high-gain amplifiers show extremely stable operating characteristics over a wide range of supply voltage and temperatures.
The device is intended for a variety of applications requiring two high performance operational amplifiers, such as phono and tape stereo preamplifier, TV remote control receiver, etc.

ABSOLUTE MAXIMUM RATINGS

V_{s}	Supply voltage	± 18	V
V_{i}	Differential input voltage	± 5	V
$V_{\text {CM }}$	${ }^{*}$ Common mode input voltage	± 15	V
$P_{\text {tot }}$	Power dissipation at $\mathrm{T}_{\text {amb }} \leqslant 60^{\circ} \mathrm{C}$	500	mW
$\mathrm{~T}_{\text {stg }}$	Storage temperature	-40 to 150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {op }}$	Operating temperature	0 to	70

* For $\mathrm{V}_{\mathrm{s}} \leqslant \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM} \max }=\mathrm{V}_{\mathrm{s}}$.

ORDERING NUMBER: TBA 231A
MECHANICAL DATA

CONNECTION DIAGRAM

(top view)

TEST CIRCUIT

SCHEMATIC DIAGRAM

THERMAL DATA

$R_{\text {th } j \text {-amb }} \quad$ Thermal resistance junction-ambient	\max	180	${ }^{\circ} \mathrm{C} / \mathrm{W}$

ELECTRICAL CHARACTERISTICS $\left(T_{a m b}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=50 \mathrm{k} \Omega\right.$ to pin 7, unless otherwise specified, $\mathrm{V}_{\mathrm{s}}= \pm 15 \mathrm{~V}$)

	Parameter	Test conditions	Min.	Typ.	Max.	Unit
$l_{\text {d }}$	Quiescent drain current	$\mathrm{V}_{\mathrm{o}}=0$		9	14	mA
V os	Input offset voltage	$\mathrm{R}_{\mathrm{g}}=200 \Omega$		1	6	mV
Ios	Input offset current			50	1000	nA
I_{b}	Input bias current			250	2000	nA
V_{CM}	Common mode input voltage range		± 10	± 11		V
R_{i}	Input resistance	$\mathrm{f}=1 \mathrm{kHz}$	37	150		$k \Omega$
G_{v}	Voltage gain	$\mathrm{V}_{0}= \pm 5 \mathrm{~V}$	6500	20000		-
V_{0}	Positive output voltage swing		+12	+13		V
V_{0}	Negative output voltage swing		-14	-15		V
R_{o}	Output resistance	$\mathrm{f}=1 \mathrm{kHz}$		5		k Ω
CMR	Common mode rejection	$\mathrm{R}_{\mathrm{g}}=200 \Omega$	70	90		dB
SVR	Supply voltage rejection	$\mathrm{R}_{\mathrm{g}}=200 \Omega$		50		$\mu \mathrm{V} / \mathrm{V}$
SR	Slew rate	Unity gain $\mathrm{C}_{1}=0.1 \mu \mathrm{~F} \quad \mathrm{R}_{1}=4.7 \Omega$		1		$\mathrm{V} / \mu \mathrm{s}$
CS	Channel separation	$\mathrm{R}_{\mathrm{g}}=10 \mathrm{k} \Omega \quad \mathrm{f}=10 \mathrm{kHz}$		140		dB
NF	Noise figure	$\begin{aligned} & \mathrm{R}_{\mathrm{g}}=10 \mathrm{k} \Omega \\ & \mathrm{~B}=10 \mathrm{~Hz} \text { to } 10 \mathrm{kHz} \end{aligned}$		1.5		dB

Fig. 1 - Output voltage swing vs. supply voltage

Fig. 2 - Quiescent drain current vs. supply voltage

Fig. 3 - Open loop voltage gain vs. supply voltage

(1) TBA231A

Fig. 4 - Open loop frequency response using recommeded compensation networks

Fig. 7 - Input noise current
vs. frequency

Fig. 5 - Output voltage swing vs. frequency for various compensation networks

Fig. 8 - Closed loop gain vs. frequency

Fig. 6 - Input noise voltage vs. frequency

Fig. 9 - Open loop voltage gain vs. temperature

APPLICATION INFORMATION

Fig. 10 - TV remote control receiver

LINEAR INTEGRATED CIRCUIT

GENERAL PURPOSE TRANSISTOR ARRAY

The TBA 331 is an array of 5 monolithic NPN transistors in a 14-lead dual in-line plastic package. Two transistors are internally connected to form a differential amplifier.
The transistors of the TBA 331 are well suited to low noise general purpose and to a wide variety of applications in low power systems in the DC through VHF range. They may be used as discrete components in conventional circuits; in addition, they provide the very significant inherent integrated circuit advantages of close electrical and thermal matching.

ABSOLUTE MAXIMUM RATINGS

		Each	
	Total		
$V_{\text {CBO }}$	Collector-base voltage $\left(I_{\mathrm{E}}=0\right)$	transistor	
$\mathrm{V}_{\text {package }}$			

* The collector of each transistor of the TBA 331 is isolated from the substrate by an integrated diode. The substrate (pin 13) must be connected to the most negative point in the external circuit to maintain isolation between transistors and to provide for normal transistor action.

SCHEMATIC DIAGRAM

ELECTRICAL CHARACTERISTICS ($\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ unless otherwise specified)

	Parameter	Test conditions	Min.	Typ.	Max.	Unit	Fig.	
$\mathrm{I}_{\mathrm{CBO}}$	Collector cutoff current ($I_{E}=0$)	$V_{C B}=10 \mathrm{~V}$		0.002	40	$n \mathrm{~A}$	1	
$I_{\text {CEO }}$	Collector cutoff current ($\mathrm{I}_{\mathrm{B}}=0$)	$\mathrm{V}_{C E}=10 \mathrm{~V}$		see curve	0.5	$\mu \mathrm{A}$	2	
$\left\|\\|_{B 1}\right\|^{-1}{ }^{\text {2 }}$	Input offset current	$\begin{aligned} & \mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{CE}}=3 \mathrm{~V} \end{aligned}$		0.3	2	$\mu \mathrm{A}$	7	

ELECTRICAL CHARACTERISTICS (continued)

	Parameter	Test conditions	Min.	Ṫyp.	Max.	Unit	Fig.
$V_{\text {cBO }}$	Collector-base voltage ($I_{E}=0$)	${ }^{\prime} \mathrm{C} \quad=10 \mu \mathrm{~A}$	20	60		V	-
$V_{\text {CEO }}$	Collector-emitter voltage ($\mathrm{I}_{\mathrm{B}}=0$)	$\mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}$	15	24		V	-
$\mathrm{V}_{\text {css }}$	collector-substrate voltage ($I_{\text {CSS }}=0$)	$\mathrm{I}_{\mathrm{C}} \quad=10 \mu \mathrm{~A}$	20	60		V	-
$V_{\text {CE (sat) }}$	Collector-emitter saturation voltage	$\begin{array}{ll} I_{B} & =1 \mathrm{~mA} \\ I_{C} & =10 \mathrm{~mA} \end{array}$		0.23		V	-
$V_{\text {EBO }}$	Emitter-base voltage ($\mathrm{I}_{\mathrm{C}}=0$)	${ }^{\prime} \mathrm{E}=10 \mu \mathrm{~A}$	5	7		V	-
$V_{B E}$	Base-emitter voltage	$\begin{array}{ll} \mathrm{I}_{\mathrm{E}} & =1 \mathrm{~mA} \\ \mathrm{~V}_{\mathrm{CE}} & =3 \mathrm{~V} \\ \mathrm{I}_{\mathrm{E}} & =10 \mathrm{~mA} \\ \mathrm{~V}_{\mathrm{CE}} & =3 \mathrm{~V} \end{array}$		$\begin{gathered} 0.715 \\ 0.8 \end{gathered}$		$\begin{aligned} & v \\ & v \end{aligned}$	$\begin{aligned} & 4 \\ & 4 \end{aligned}$
$\left\|V_{B E 1}-V_{B E 2}\right\|$	Input offset voltage	$\begin{array}{ll} \mathrm{I}^{\mathrm{C}} & =1 \mathrm{~mA} \\ \mathrm{~V}_{\mathrm{CE}} & =3 \mathrm{~V} \end{array}$		0.45	5	mV	4-6
$\left\|V_{\text {BE3 }}-V_{\text {BE4 }}\right\|$	Input offset voltage	$\begin{array}{ll} \mathrm{I}_{\mathrm{C}} & =1 \mathrm{~mA} \\ \mathrm{~V}_{\mathrm{CE}} & =3 \mathrm{~V} \end{array}$		0.45	5	mV	4-6
$\left\|V_{\text {BE4 }}-\mathrm{V}_{\text {BE5 }}\right\|$	Input offset voltage	$\begin{aligned} & \mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{CE}}=3 \mathrm{~V} \end{aligned}$		0.45	5	mV	4-6
$\left\|V_{\text {BE5 }}-V_{\text {BE4 }}\right\|$	Input offset voltage	$\begin{array}{ll} \mathrm{I}_{\mathrm{C}} & =1 \mathrm{~mA} \\ \mathrm{~V}_{\mathrm{CE}} & =3 \mathrm{~V} \end{array}$		0.45	5	mV	4-6
$\frac{\Delta V_{B E}}{\Delta T}$	Base-emitter voltage temperature coefficient	$\begin{array}{ll} \mathrm{I}_{\mathrm{C}} & =1 \mathrm{~mA} \\ \mathrm{~V}_{\mathrm{CE}} & =3 \mathrm{~V} \end{array}$		-1.9		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	5
$\frac{\left\|V_{B E 1}-V_{B E 2}\right\|}{\Delta T}$	Input offset voltage temperature coefficient	$\begin{aligned} & \mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{CE}}=3 \mathrm{~V} \end{aligned}$		1.1		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$	6

ELECTRICAL CHARACTERISTICS (continued)

	Parameter	Test conditions	Min.	Typ.	Max.	Unit.	Fig.
$h_{\text {FE }}$	DC current gain	$\begin{aligned} & \mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{CE}}=3 \mathrm{~V} \end{aligned}$		100		-	3
		$\begin{aligned} & \mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{CE}}=3 \mathrm{~V} \end{aligned}$	40	100		-	3
		$\begin{aligned} & \mathrm{T}_{\mathrm{C}}=10 \mu \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{CE}}=3 \mathrm{~V} \end{aligned}$		54		-	3
f_{T}	Transition frequency	$\begin{aligned} { }^{\prime} \mathrm{C} & =3 \mathrm{~mA} \\ \mathrm{~V}_{\mathrm{CE}} & =3 \mathrm{~V} \end{aligned}$	300	550		MHz	14
NF	Noise figure	$\begin{aligned} & \mathrm{I}_{\mathrm{C}}=100 \mu \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{CE}}=3 \mathrm{~V} \\ & \mathrm{f}=1 \mathrm{KHz} \\ & \mathrm{R}_{\mathrm{g}}=1 \mathrm{k} \Omega \end{aligned}$		3.25		dB	8
H_{ie}	Input impedance	$\begin{aligned} \mathrm{I}_{\mathrm{C}} & =1 \mathrm{~mA} \\ \mathrm{~V}_{\mathrm{CE}} & =3 \mathrm{~V} \\ \mathrm{f} & =1 \mathrm{kHz} \end{aligned}$		3.5		$k \Omega$	9
$h_{\text {fe }}$	Forward current transfer ratio	$\begin{aligned} \mathrm{I}_{\mathrm{C}} & =1 \mathrm{~mA} \\ \mathrm{~V}_{\mathrm{CE}} & =3 \mathrm{~V} \\ \mathrm{f} & =1 \mathrm{kHz} \end{aligned}$		110		-	9
$h_{\text {re }}$	Reverse voltage transfer ratio	$\begin{aligned} \mathrm{I}_{\mathrm{C}} & =1 \mathrm{~mA} \\ \mathrm{~V}_{\mathrm{CE}} & =3 \mathrm{~V} \\ \mathrm{f} & =1 \mathrm{kHz} \end{aligned}$		1.8×10^{-4}		-	9
h_{oe}	Output admittance	$\begin{aligned} \mathrm{I}_{\mathrm{C}} & =1 \mathrm{~mA} \\ \mathrm{~V}_{\mathrm{CE}} & =3 \mathrm{~V} \\ \mathrm{f} & =1 \mathrm{kHz} \end{aligned}$		15.6		$\mu \mathrm{S}$	9
$y_{\text {ie }}$	Input admittance	$\begin{aligned} \mathrm{I}_{\mathrm{C}} & =1 \mathrm{~mA} \\ \mathrm{~V}_{\mathrm{CE}} & =3 \mathrm{~V} \\ \mathrm{f} & =1 \mathrm{MHz} \end{aligned}$		$0.3+\mathrm{j} 0.04$		mS	11
y_{fe}	Forward transadmittance	$\begin{aligned} \mathrm{I}_{\mathrm{C}} & =1 \mathrm{~mA} \\ \mathrm{~V}_{\mathrm{CE}} & =3 \mathrm{~V} \\ \mathrm{f} & =1 \mathrm{MHz} \end{aligned}$		$\left.\right\|_{31-\mathrm{j} 1.5}$		mS	10
$y_{\text {re }}$	Reverse transadmittance	$\begin{aligned} \mathrm{I}_{\mathrm{C}} & =1 \mathrm{~mA} \\ \mathrm{~V}_{\mathrm{CE}} & =3 \mathrm{~V} \\ \mathrm{f} & =1 \mathrm{MHz} \end{aligned}$		see curve		mS	13

ELECTRICAL CHARACTERISTICS (continued)

	Parameter	Test Conditions	Min.	Typ.	Max.	Unit.	Fig.
	Output admittance						

Fig. 1 - Collector cutoff current vs ambient tempera-

Fig. 4 - Input characteristic for each transistor

Fig. 2 - DC current gain vs. emitter current.

Fig. 5 - Input offset voltage vs. ambient temperature

Fig. 3 - Input voltage and input offset voltage vs.emitter current

Fig. 6 - Input offset current for matched transistor pair

Fig. 7 - Noise figure vs collector current

Fig. 10 - Output admittance

Fig. 8 - Forward admittance

Fig. 11 - Reverse admittance

Fig. 9 - Input admittance

Fig. 12 - Transition frequency

LINEAR INTEGRATED CIRCUIT

5W AUDIO AMPLIFIER

The TBA 800 is a monolithic integrated power amplifier in a 12 -lead quad in-line plastic package. The external cooling tabs enable 2.5 W output power to be achieved without external heatsink and 5W output power using a small area of the P.C. board copper as a heatsink. It is intended for use as a low frequency Class B amplifier.

ABSOLUTE MAXIMUM RATINGS

V_{s}	Supply voltage	30	V
I_{0}	Peak output current (non repetitive)	2	A
I_{0}	Peak output current (repetitive)	1.5	A
$\mathrm{P}_{\text {tot }}$	Power dissipation at $\mathrm{T}_{\text {amb }}=80^{\circ} \mathrm{C}$	1	W
	at $T_{\text {tab }}=90^{\circ} \mathrm{C}$	5	W

$\mathrm{T}_{\text {stg }}, \mathrm{T}_{\mathrm{j}}$ Storage and junction temperature
-40 to $150 \quad{ }^{\circ} \mathrm{C}$

ORDERING NUMBER: TBA 800

MECHANICAL DATA

CONNECTION AND SCHEMATIC DIAGRAMS

(top view)

TEST CIRCUIT

* C3, C7 see fig. 5 .

THERMAL DATA

$\mathrm{R}_{\text {th } j-\operatorname{tab}}$	Thermal resistance junction-tab	\max	12	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{\text {th } \mathrm{j}-\mathrm{amb}}$	Thermal resistance junction-ambient	\max	70^{*}	${ }^{\circ} \mathrm{C} / \mathrm{W}$

* Obtained with tabs soldered to printed circuit with minimized copper area.

ELECTRICAL CHARACTERISTICS(Refer to the test circuit, $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{s}}=24 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=16 \Omega$, unjess otherwise specified)

	Parameter	Test conditions	Min.	Typ.	Max.	Unit
V_{0}	Quiescent output voltage (pin 12)		11	12	13	V
I_{d}	Quiescent drain current			9	20	mA
$l_{\text {b }}$	Input bias current (pin 8)			1	5	$\mu \mathrm{A}$
P_{o}.	Output power	$\mathrm{d}=10 \% \quad \mathrm{f}=1 \mathrm{kHz}$	4.4	5		W
$V_{i(m)}$	Input saturation voltage		220			mV
$V_{i}{ }^{*}$	Input sensitivity	$\mathrm{P}_{\mathrm{o}}=5 \mathrm{~W} \quad \mathrm{f}=1 \mathrm{kHz}$		80		mV
R_{i}	Input resistance (pin 8)	$f=1 \mathrm{KHz}$		5		$\mathrm{M} \Omega$
B	Frequency response (-3 dB)	$\mathrm{C} 3=330 \mathrm{pF}$	40 to 20,000			Hz
d	Distortion	$\begin{aligned} & \mathrm{P}_{\mathrm{o}}=50 \mathrm{~mW} \text { to } 2.5 \mathrm{~W} \\ & \mathrm{f}=1 \mathrm{kHz} \end{aligned}$		0.5		\%
G_{v}	Voltage gain (open loop)	$\mathrm{f}=1 \mathrm{kHz}$		80		dB
G_{v}	Voltage gain (closed loop)	$\mathrm{f}=1 \mathrm{kHz}$	39	42	45	dB
e_{N}	Input noise voltage	$\mathrm{B}=22 \mathrm{~Hz}$ to 22 KHz		5		$\mu \mathrm{V}$
i_{N}	Input noise current			0.2		nA
η	Efficiency	$P_{0}=5 W \quad f=1 \mathrm{kHz}$		75		\%
SVR	Supply voltage rejection	$\begin{aligned} & \mathrm{f}_{\text {ripple }}=100 \mathrm{~Hz} \\ & \mathrm{C} 5=25 \mu \mathrm{~F} \\ & \mathrm{C} 5=100 \mu \mathrm{~F} \end{aligned}$		35 38		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
I_{d}	Drain current	$\mathrm{P}_{0}=5 \mathrm{~W}$		280		mA

[^12]
10
 TBA800

Fig. 1 - Output power vs. supply voltage

Fig. 4 - Distortion vs. frequency

Fig. 7 - Power dissipation and efficiency vs. output power

Fig. 2 - Maximum power dissipation vs. supply voltage

Fig. 5 - Value of C3 vs. R_{f} for various values of B

Fig. 8 - Quiescent output voltage (pin 12) vs. supply voltage

Fig. 3 - Distortion vs. output power

Fig. 6 - Voltage gain (closed loop) and input voltage vs. R_{f}

Fig. 9 - Supply voltage rejection vs. R_{f}.

APPLICATION INFORMATION

Fig. 10 -- Circuit with the load connected to the supply voltage

Compared with the other circuits, this configuration entails a lower number of external components and can be used at low supply voltages.

Fig. 11 - Circuit with load connected to ground without bootstrap.

This circuit is only for use at high voltages. The pin 3 is left open circuit, this automatically inserts diodes D2-D3 (see schematic diagram) and this enables a symmetrical wave to be obtained at the output.

LINEAR INTEGRATED CIRCUIT

FULLY-PROTECTED 7W AUDIO AMPLIFIER FOR CB RADIO

- HIGH OUTPUT POWER (7W AT $16 \mathrm{~V} / 4 \Omega ; 14.4 \mathrm{~V} / 2 \Omega$)
- HIGH OUTPUT CURRENT (3A REPETITIVE)
- LOAD DUMP PROTECTION UP TO 40V
- LOAD SHORT CIRCUIT PROTECTION UP TO $V_{s}=15 \mathrm{~V}$
- POLARITY INVERSION PROTECTION
- THERMAL PROTECTION

The TBA 810CB is a monolithic integrated circuit in a 12-lead quad in-line plastic package, expressly designed for use as a power audio amplifier in CB radios.
The TBA 810 ACB has the same electrical characteristics as the TBA 810CB but its cooling tabs are flat and pierced so that an external heatsink can be easily attached.

ABSOLUTE MAXIMUM RATINGS

$\mathrm{V}_{\text {(peak) }}$	Peak supply voltage (50 ms)	40	V
$V_{\text {s }}$	DC supply voltage	28	V
V_{5}	Operating supply voltage	20	V
I_{0}	Output peak current (non repetitive)	4	A
$\mathrm{I}^{\text {o }}$	Output peak current (repetitive)	3	A
$\mathrm{P}_{\text {tot }}$	Power dissipation at $T_{\text {amb }} \leqslant 80^{\circ} \mathrm{C}$ (for TBA 810CB)	5	W W
$\mathrm{T}_{\text {stg }}, \mathrm{T}_{\mathrm{j}}$	Storage and junction temperature	-40 to 150	${ }^{\circ} \mathrm{C}$

ORDERING NUMBER: TBA 810CB
TBA 810ACB

MECHANICAL DATA
Dimensions in mm

TBA810CB

CONNECTION AND SCHEMATIC DIAGRAMS

(top view)

TEST AND APPLICATION CIRCUIT

*C3,C7 SEE FIG. 6

THERMAL	DATA	TBA 810CB	TBA 810ACB
$R_{\text {th }} j$-tab	Thermal resistance junction-tab	\max	$12^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{\text {th }} \mathrm{j}$-amb	Thermal resistance junction-ambient	$10^{\circ} \mathrm{C} / \mathrm{W}$	

[^13]
твав10Св

ELECTRICAL CHARACTERISTICS (Refer to the test circuit; $\mathrm{V}_{\mathrm{s}}=14.4 \mathrm{~V}, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ unless otherwise specified)

	Parameter	Test conditions	Min.	Typ.	Max.	Unit
V_{s}	Supply voltage (pin 1)		4		20	V
V_{0}	Quiescent output voltage (pin 12)		6.4	7.2	8	V
I_{d}	Quiescent drain current			12	20	mA
$l_{\text {b }}$	Input bias current (pin 8)			0.4		$\mu \mathrm{A}$
P_{o}	Output power	$\begin{array}{ll} d=10 \% & f=1 \mathrm{kHz} \\ R_{L}=4 \Omega & \\ R_{L}=2 \Omega & \end{array}$	$\begin{aligned} & 5.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 6 \\ & 7 \end{aligned}$		$\begin{aligned} & \text { W } \\ & \text { w } \end{aligned}$
$V_{\text {i }}$ (rms)	Input saturation voltage		220			mV
v_{i}	Input sensitivity	$\begin{array}{ll} \mathrm{f}=1 \mathrm{kHz} & \\ \mathrm{P}_{\mathrm{o}}=6 \mathrm{~W} & \mathrm{R}_{\mathrm{L}}=4 \Omega \\ \mathrm{R}_{\mathrm{f}}=56 \Omega & \\ \mathrm{R}_{\mathrm{f}}=22 \Omega & \\ \mathrm{P}_{\mathrm{o}}=7 \mathrm{~W} & \mathrm{R}_{\mathrm{L}}=2 \Omega \\ \mathrm{R}_{\mathrm{f}}=56 \Omega & \\ \mathrm{R}_{\mathrm{f}}=22 \Omega & \end{array}$		$\begin{aligned} & 75 \\ & 30 \\ & 55 \\ & 20 \end{aligned}$		$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \\ & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
R_{i}	Input resistance (pin 8)			5		$\mathrm{M} \Omega$
B	Frequency response $(-3 d B)$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=4 \Omega / 2 \Omega \\ & \mathrm{C}_{3}=820 \mathrm{pF} \\ & \mathrm{C}_{3}=1500 \mathrm{pF} \end{aligned}$	40 to 20000 40 to 10000			$\begin{aligned} & \mathrm{Hz} \\ & \mathrm{~Hz} \end{aligned}$
d	Distortion	$\begin{aligned} & P_{\mathrm{O}}=50 \mathrm{~mW} \text { to } 2.5 \mathrm{~W} \\ & \mathrm{R}_{\mathrm{L}}=4 \Omega / 2 \Omega \\ & \mathrm{f}=1 \mathrm{kHz} \end{aligned}$.	0.3		\%
G_{v}	Voltage gain (open loop)	$R_{L}=4 \Omega \quad f=1 \mathrm{kHz}$		80		dB
G_{v}	Voltage gain (closed loop)	$R_{L}=4 \Omega / 2 \Omega \quad f=1 \mathrm{kHz}$	34	37	40	dB
e_{N}.	Input noise voltage	$\begin{aligned} & V_{\mathrm{S}}=16 \mathrm{~V} \\ & \mathrm{~B}(-3 \mathrm{~dB})=40 \text { to } 15000 \mathrm{~Hz} \end{aligned}$		2		$\mu \mathrm{V}$
${ }^{\text {in }}$	Input noise current			80		pA
η	Efficiency	$\begin{array}{ll} P_{o}=6 W & R_{L}=4 \Omega \\ f=1 \mathrm{kHz} & \end{array}$		75		\%
SVR	Supply voltage rejection	$\begin{aligned} & R_{L}=4 \Omega \quad V_{\text {ripple }}=1 \mathrm{~V}_{\mathrm{rms}} \\ & \mathrm{f}_{\text {ripple }}=100 \mathrm{~Hz} \end{aligned}$	40	48		dB

Fig. 1 - Output power vs. supply voltage

Fig. 4 - Distortion vs. frequency ($\mathrm{R}_{\mathrm{L}}=2 \Omega$)

Fig. 7 - Relative voltage gain (closed loop) and input voltage vs. feedback resistance

Fig. 2 - Maximum power dissipation vs. supply voltage (sine wave operation)

Fig. 5 - Distortion vs. output power

Fig. 8 - Relative voltage gain (closed loop) and input voltage vs. feedback resistance

Fig. 3 - Distortion vs. frequency ($\mathrm{R}_{\mathrm{L}}=4 \Omega$)

Fig. 6 - Value of C3 vs. feedback resistance for various values of B

Fig. 9 - Power dissipation and efficiency vs. output power

Fig. 10 - Quiescent output voltage (pin 12) vs. supply voltage

Fig. 11 - Quiescent drain current vs. supply voltage

Fig. 12 - Supply voltage rejection vs. feedback resistance

BUILT-IN PROTECTION SYSTEMS

L oad dump protection

The load dump case occurs in a car when the engine is running and the battery is disconnected: voltage spikes on the power line are supplied by the alternator since there is no clamping effect due to battery capacitance.
The TBA 810CB was designed to withstand a pulse train on pin 1, of the type shown in Fig. 13. Providing an LC filter is included, as shown in Fig. 14, a much higher pulse train amplitude (up to $100 \mathrm{~V}_{\text {peak }}$) is allowed on the supply line with no damage to the device.

Fig. 13

Fig. 14

-

Short-circuit protection

The TBA 810CB can withstand a permanent short circuit across the load for a supply voltage up to 15 V .

Polarity inversion protection

High current (up to 5A) can be handled by the device with no damage for a longer period than the blow-out time of a quick 1A fuse (normally connected in series with the supply).
This feature is added to avoid destruction if, during fitting to the car, a mistake on the connection of the supply is made.

BUILT-IN PROTECTION SYSTEMS(continued)

Open ground protection

When the radio is in the ON condition and the ground is accidentally opened, a standard audio amplifier will be damaged. On the TBA 810CB, protection diodes are included to avoid any damage.

Inductive load protection

A protection diode is provided between pin 12 and pin 1 (see the internal schematic diagram) to allow use of the TBA 810CB with inductive loads.
In particular, the TBA 810CB can drive the coupling transformer for audio modulation in CB transmitters.

DC voltage protection

The maximum operating DC voltage on the TBA 810CB is 20 V .
However the device can withstand a DC voltage up to 28 V with no damage. This could occur during winter if two batteries were series connected to crank the engine.

Thermal protection

A thermal limiting circuit is internally provided on TBA 810CB to prevent chip temperature exceeding $150^{\circ} \mathrm{C}$. This protection offers the following advantages:

1. An overload on the output (even if permanent), or an abovelimit ambient temperature can be withstood.
2. The heatsink can be designed with smaller safety margins compared with that of a conventional power audio amplifier.

The TBA 810CB will remain undamaged in the event of excessive junction temperature: all that happens is that P_{o} (and therefore $\mathrm{P}_{\text {tot }}$) are reduced (Fig. 15).

Fig. 15 - Output power and drain current vs. package temperature

MOUNTING INSTRUCTIONS

The thermal power dissipated in the circuit may be removed by connecting the tabs to an external heatsink (Fig. 16) or by soldering them to an area of copper on the printed circuit board (Fig. 17). During soldering, tab temperature must not exceed $260^{\circ} \mathrm{C}$ and the soldering time must not be longer than 12 seconds.

Fig. 16 - TBA 810 ACB mounting example

MOUNTING INSTRUCTIONS (continued)

Fig. 17 - TBA 810CB mounting example

RELIABILITY

The reliability of the TBA 810CB is very high thanks to the Fin-Dip package and assembly process. A CB radio is switched ON and OFF many thousands of times during the lifetime of the car. This causes thermal fatigue of the device and if suitable package and assembly processes were not used, failure of the die or wire bonding would be probable. Thanks to the particular process adopted for the TBA 810CB, the device can easily withstand the following stresses:

- thermal fatigue: more than 10^{4} cycles with $\Delta T_{\text {case }}=100^{\circ} \mathrm{C}$
- thermal cycling: more than 10^{3} cycles between $-55^{\circ} \mathrm{C}$ and $+125^{\circ} \mathrm{C}$
- thermal shocks: more than 10^{3} cycles between $-55^{\circ} \mathrm{C}$ and $+125^{\circ} \mathrm{C}$
- relative humidity of 85% at $85^{\circ} \mathrm{C}$ is resisted for more than 10^{3} hours.

Fig. 18 - P.C. board and component layout for the test and application circuit (1:1 scale)

LINEAR INTEGRATED CIRCUIT

TBA810P

7W AUDIO AMPLIFIER

The TBA 810P is an improvement of TBA 810S.

It offers:

- Higher output power ($\mathrm{R}_{\mathrm{L}}=4 \Omega$ and 2Ω)
- Lower noise
- Polarity inversion protection
- Fortuitous open ground protection
- Higher supply voltage rejection (40 dB min.)

The TBA 810P is a monolithic integrated circuit in a 12-lead quad in-line plastic package, intended for use as a low frequency class B amplifier.
The TBA 810 P provides $7-\mathrm{W}$ output power at $16 \mathrm{~V} / 4 \Omega ; 7-\mathrm{W}$ at $14.4 \mathrm{~V} / 2 \Omega$.
It gives high output current (up to 3A), high efficiency (75% at 6 W output), very low harmonic and crossover distortion. The circuit is provided with a thermal limiting circuit and can withstand a shortcircuit on the load for supply voltages up to 15 V .
The TBA 810AP has the same electrical characteristics as the TBA 810P, but its cooling tabs are flat and pierced so that an external heatsink can easily be attached.

ABSOLUTE MAXIMUM RATINGS

V_{s}	Supply voltage	20	V
I_{o}	Output peak current (non repetitive)	4	A
I_{o}	Output peak current (repetitive)	3	A
$\mathrm{P}_{\text {tot }}$	Power dissipation at $T_{\text {amb }} \leqslant 80^{\circ} \mathrm{C}$ (for TBA 810P)	1	W
$\mathrm{~T}_{\text {stg }}, T_{j}$	Storage and junction temperature	5	W

ORDERING NUMBERS: TBA 810P

TBA 810AP

MECHANICAL DATA

CONNECTION DIAGRAM (top view)

SCHEMATIC DIAGRAM

TEST AND APPLICATION CIRCUIT

*C3.C7 SEE FIG. 6

THERMAL DATA	TBA 810P	TBA 810AP	
$R_{\text {th } j \text {-tab }}$	Thermal resistance junction-tab	\max	$12^{\circ} \mathrm{C} / \mathrm{W}$
$R_{\text {th } j \text {-amb }}$	Thermal resistance junction-ambient	$10^{\circ} \mathrm{C} / \mathrm{W}$	

* Obtained with tabs soldered to printed circuit with minimized copper area

ELECTRICAL CHARACTERISTICS

(Refer to the test circuit; $\mathrm{V}_{\mathrm{s}}=14.4 \mathrm{~V}, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ unless otherwise specified)

	Parameter	Test conditions	Min.	Typ.	Max.	Unit
V_{5}	Supply voltage (pin 1)		4		20	V
V_{0}	Quiescent output voltage (pin 12)		6.4	7.2	8	V
I_{d}	Quiescent drain current			12	20	mA
I_{b}	Input bias current			0.4		$\mu \mathrm{A}$
P_{0}	Output power	$\begin{aligned} & \mathrm{d}=10 \% \quad \mathrm{f}=1 \mathrm{kHz} \\ & \mathrm{R}_{\mathrm{L}}=4 \Omega \\ & \mathrm{R}_{\mathrm{L}}=2 \Omega \end{aligned}$	$\begin{aligned} & 5.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 6 \\ & 7 \end{aligned}$		$\begin{aligned} & \text { W } \\ & \text { W } \end{aligned}$
$\mathrm{V}_{\mathrm{i}(\mathrm{rms})}$	Input saturation voltage		220			mV

ELECTRICAL CHARACTERISTICS (continued)

	Parameter	Test conditions	Min.	Typ.	Max.	Unit
V_{i}	Input sensitivity	$\begin{array}{ll} \mathrm{f}=1 \mathrm{kHz} & \\ \mathrm{P}_{\mathrm{o}}=6 \mathrm{~W} & \mathrm{R}_{\mathrm{L}}=4 \Omega \\ \mathrm{R}_{\mathrm{f}}=56 \Omega & \\ \mathrm{R}_{\mathrm{f}}=22 \Omega & \\ \mathrm{P}_{\mathrm{o}}=7 \mathrm{~W} & \mathrm{R}_{\mathrm{L}}=2 \Omega \\ \mathrm{R}_{\mathrm{f}}=56 \Omega & \\ \mathrm{R}_{\mathrm{f}}=22 \Omega & \end{array}$		$\begin{aligned} & 75 \\ & 30 \\ & \\ & 55 \\ & 20 \end{aligned}$		$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \\ & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
R_{i}	Input resistance (pin 8)			5		$\mathrm{M} \Omega$
B	Frequency response (-3 dB)	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=4 \Omega / 2 \Omega \\ & \mathrm{C}_{3}=820 \mathrm{pF} \\ & \mathrm{C}_{3}=1500 \mathrm{pF} \end{aligned}$	$\begin{aligned} & 40 \text { to } 20000 \\ & 40 \text { to } 10000 \end{aligned}$			$\begin{aligned} & \mathrm{Hz} \\ & \mathrm{~Hz} \end{aligned}$
d	Distortion	$\begin{aligned} & \mathrm{P}_{\mathrm{O}}=50 \mathrm{~mW} \text { to } 2.5 \mathrm{~W} \\ & \mathrm{R}_{\mathrm{L}}=4 \Omega / 2 \Omega \quad \mathrm{f}=1 \mathrm{kHz} \end{aligned}$		0.3		\%
G_{v}	Voltage gain (open loop)	$\mathrm{R}_{\mathrm{L}}=4 \Omega \quad \mathrm{f}=1 \mathrm{kHz}$		80		dB
G_{v}	Voltage gain (closed loop)	$\mathrm{R}_{\mathrm{L}}=4 \Omega / 2 \Omega \quad \mathrm{f}=1 \mathrm{kHz}$	34	37	40	dB
e_{N}	Input noise voltage	$\begin{aligned} & V_{S}=16 \mathrm{~V} \\ & B(-3 \mathrm{~dB})=40 \text { to } 15000 \mathrm{~Hz} \end{aligned}$		2		$\mu \mathrm{V}$
i_{N}	Input noise current			80		pA
η	Efficiency	$\begin{array}{ll} \mathrm{P}_{\mathrm{o}}=6 \mathrm{~W} & \mathrm{R}_{\mathrm{L}}=4 \Omega \\ \mathrm{f}=1 \mathrm{kHz} & \end{array}$		75		\%
SVR	Supply voltage rejection	$\begin{aligned} & R_{L}=4 \Omega \quad V_{\text {ripple }}=1 \mathrm{~V}_{\mathrm{rms}} \\ & \mathrm{f}_{\text {ripple }}=100 \mathrm{~Hz} \end{aligned}$	40	48		dB
I_{d}	Drain current	$\mathrm{P}_{\mathrm{O}}=6 \mathrm{~W} \quad \mathrm{R}_{\mathrm{L}}=4 \Omega$		600		mA

Fig. 1 - Output power vs. supply voltage

Fig. 2 - Maximum power dissipation vs. supply voltage (sine wave operation)

Fig. 3 - Distortion vs. frequency ($R_{L}=4 \Omega$)

Fig. 4 - Distortion vs. frequency ($\mathrm{R}_{\mathrm{L}}=2 \Omega$)

Fig. 7 - Relative voltage gain (closed loop) and input voltage vs. feedback resistance

Fig. 10 - Quiescent output voltage (pin 12) vs. supply voltage

Fig. 5 - Distortion vs. output power

Fig. 8 - Relative voltage gain (closed loop) and input voltage vs. feedback resistance

Fig. 11 - Quiescent drain current vs. supply voltage

Fig. 6 - Value of C3 vs. feedback resistance for various values of B

Fig. 9 - Total power dissipation and efficiency vs. output power

Fig. 12 - Supply voltage rejectioh vs. feedback resitance

MOUNTING INSTRUCTIONS

The thermal power dissipated in the circuit may be removed by connecting the tabs to an external heatsink (TBA 810 AP see figs. 13 and 14), or by soldering them to an area of copper on the printed circuit board (TBA 810P see fig. 15). During soldering, tab temperature must not exceed $260^{\circ} \mathrm{C}$ and the soldering time must not be longer than 12 seconds.

Fig. 14 - Mounting example of the TBA 810 AP

Fig. 13 - Maximum power dissipation vs. ambient temperature (TBA810AP only)

Fig. 15 - Maximum power dissipation vs. cooper area of the P.C. board (TBA 810P only)

THERMAL SHUTDOWN

The presence of a thermal limiting circuit offers the following advantages:

1) An overload on the output (even if it is permanent), or an above-limit ambient temperature can be easily withstood.
2) The heatsink can have a smaller factor of safety compared with that of a conventional circuit. There is no device damage in the event of excessive junction temperature: all that happens is that P_{o}, (and therefore $\mathrm{P}_{\text {tot }}$) are reduced.

Fig. 16 - Output power and drain current vs. package temperature

Fig. 17 - P.C. board and component layout for the test and application circuit ($1: 1$ scale)

LINEAR INTEGRATED CIRCUIT

7 W AUDIO AMPLIFIER

The TBA 810 S is a monolithic integrated circuit in a 12 lead quad in-line plastic package, intended for use as a low frequency class B amplifier.
The TBA 810 S provides 7 W power output at $16 \mathrm{~V} / 4 \Omega, 6 \mathrm{~W}$ at $14.4 \mathrm{~V} / 4 \Omega, 2.5 \mathrm{~W}$ at $9 \mathrm{~V} / 4 \Omega, 1 \mathrm{~W}$ at $6 \mathrm{~V} / 4 \Omega$ and works with a wide range of supply voltages (4 to 20 V); it gives high output current (up to 2.5 A), high efficiency (75% at 6 W output), very low harmonic and cross-over distortion. In addition, the circuit is provided with a thermal protection circuit.
The TBA 810 AS has the same electrical characteristics as the TBA 810S, but its cooling tabs are flat and pierced so that an external heatsink can easily be attached.

ABSOLUTE MAXIMUM RATINGS

V_{s}	Supply voltage	20	V
I_{o}	Output peak current (non-repetitive)	3.5	A
I_{o}	Output current (repetitive)	2.5	A
$\mathrm{P}_{\text {tot }}$	Power dissipation: at $\mathrm{T}_{\mathrm{amb}}=70^{\circ} \mathrm{C}$	1	W
at $\mathrm{T}_{\text {tab }}=100^{\circ} \mathrm{C}$	5	W	
$\mathrm{~T}_{\text {stg }} \mathrm{T}_{\mathrm{j}}$	Storage and junction temperature		-40 to 150

ORDERING NUMBERS: TBA 810 S
TBA 810 AS

MECHANICAL DATA
Dimensions in mm

TBA 810 S

6/82

TBA810S

CONNECTION AND SCHEMATIC DIAGRAM

(top view)

TEST AND APPLICATION CIRCUIT

THERMAL DATA

	TBA810S	TBA810AS
\max	$12^{\circ} \mathrm{C} / \mathrm{W}$	$10^{\circ} \mathrm{C} / \mathrm{W}$
\max	$70^{* \circ} \mathrm{C} / \mathrm{W}$	$80^{\circ} \mathrm{C} / \mathrm{W}$

* Obtained with tabs soldered to printed circuit with minimized copper area.

0
 TBA810S

ELECTRICAL CHARACTERISTICS (Refer to the test circuit; $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$)

	Parameter	Test conditions	Min.	Typ.	Max.	Unit
V_{5}	Supply voltage (pin 1)		4		20	V
V_{o}	Quiescent output voltage (pin 12)	$\mathrm{V}_{\mathrm{S}}=14.4 \mathrm{~V}$	6.4	7.2	8	V
I_{d}	Quiescent drain current			12	20	mA
I_{b}	Bias current (pin 8)			0.4		$\mu \mathrm{A}$
P_{O}	Power output	$\begin{aligned} & \mathrm{d}=10 \% \\ & \mathrm{R}_{\mathrm{L}}=4 \Omega \\ & \mathrm{f}=1 \mathrm{kHz} \\ & \mathrm{~V}_{\mathrm{S}}=16 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}=14.4 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}=9 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}=6 \mathrm{~V} \end{aligned}$	5.5	$\begin{array}{r} 7 \\ 6 \\ 2.5 \\ 1 \end{array}$		$\begin{aligned} & w \\ & w \\ & w \\ & w \end{aligned}$
$V_{i(r m s)}$	Input voltage				220	mV
V_{i}	Input sensitivity	$\begin{aligned} & \mathrm{P}_{\mathrm{o}}=6 \mathrm{~W} \\ & \mathrm{~V}_{\mathrm{s}}=14.4 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=4 \Omega \\ & \mathrm{f}=1 \mathrm{kHz} \\ & \mathrm{R}_{\mathrm{f}}=56 \Omega \\ & \mathrm{R}_{\mathrm{f}}=22 \Omega \end{aligned}$		$\begin{aligned} & 80 \\ & 35 \end{aligned}$		$\begin{aligned} & m V \\ & m V \end{aligned}$
R_{i}	Input resistance (pin 8)			5		$\mathrm{M} \Omega$
B	Frequency response (-3 dB)	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}=14.4 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=4 \Omega \\ & \mathrm{C} 3=820 \mathrm{pF} \\ & \mathrm{C} 3=1500 \mathrm{pF} \end{aligned}$		to 20, to 10,		$\begin{aligned} & \mathrm{Hz} \\ & \mathrm{~Hz} \end{aligned}$
d	Distorsion	$\begin{aligned} & \mathrm{P}_{\mathrm{O}}=50 \mathrm{~mW} \text { to } 3 \mathrm{~W} \\ & \mathrm{~V}_{\mathrm{S}}=14.4 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=4 \Omega \\ & \mathrm{f}=1 \mathrm{kHz} \end{aligned}$		0.3		\%
G_{v}	Voltage gain (open loop)	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}=14.4 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=4 \Omega \\ & \mathrm{f}=1 \mathrm{kHz} \end{aligned}$		80		dB
G_{v}	Voltage gain (closed loop)	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}=14.4 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=4 \Omega \\ & \mathrm{f}=1 \mathrm{kHz} \end{aligned}$	34	37	40	dB
e_{N}	Input noise voltage	$\begin{aligned} & V_{s}=14.4 \mathrm{~V} \\ & R_{g}=0 \\ & B(-3 \mathrm{~dB})=20 \mathrm{~Hz} \text { to } \\ & 20,000 \mathrm{~Hz} \end{aligned}$		2		$\mu \mathrm{V}$
i_{N}	Input noise current	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}=14.4 \mathrm{~V} \\ & \mathrm{~B}(-3 \mathrm{~dB})=20 \mathrm{~Hz} \text { to } \\ & 20,000 \mathrm{~Hz} \end{aligned}$		0.1		nA
η	Efficiency	$\begin{aligned} & \mathrm{P}_{\mathrm{O}}=5 \mathrm{~W} \\ & \mathrm{~V}_{\mathrm{s}}=14.4 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=4 \Omega \\ & \mathrm{f}=1 \mathrm{kHz} \end{aligned}$		70		\%
SVR	Supply voltage rejection	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}=14.4 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=4 \Omega \\ & \mathrm{f}_{\text {ripple }}=100 \mathrm{~Hz} \\ & \hline \end{aligned}$		38		dB

4A tbab1os

Fig. 1 - Power output versus supply voltage

Fig. 4 - Distorsion versus frequency

Fig. 7 - Quiescent output voltage (pin 12) versus supply voltage

Fig. 2 - Maximum power dissipation versus supply voltage (sine wave operation)

Fig. 5 - Value of C3 versus R_{f} for various values of B

Fig. 8 - Quiescent current versus supply voltage

Fig. 3 - Distorsion versus output power

Fig. 6 - Power dissipation and efficiency versus output power

Fig. 9 - Supply voltage rejection

TBA810S

For portable equipment the circuit in Fig. 10 has the advantages of fewer external components and a better behaviour at low supply voltages (down to 4 V).

Fig. 10 - Application circuit with load connected to the supply voltage

Fig. 11 - Supply voltage rejection versus R_{f} (circuit of fig. 10)

* C3,C7 see fig. 5

MOUNTING INSTRUCTIONS

The thermal power dissipated in the circuit may be removed by connecting the tabs to an external heat sink (TBA 810 AS - fig. 12) or by soldering them to an area of copper on the printed circuit board (TBA 810 S - fig. 13).

Fig. 12 - Maximum power dissipation versus ambient temperature (for TBA 810 AS only)

Fig. 13 - Maximum power dissipation versus copper area of the P.C. board (for TBA 810 S only)

During soldering the tabs temperature must not exceed $260^{\circ} \mathrm{C}$ and the soldering time must not be longer than 12 seconds.
Fig. 14a and 14 b show two ways that can be used for mounting the device.
Fig. 14a shows a method of mounting the TBA 810 S , that is satisfactory both from the point of view of heat dissipation and from mechanical considerations. For TBA 810 AS the desired thermal resistance is obtained by fixing the elements shown in fig. 14b, to a suitably dimensioned plate. This plate can also act as a support for the whole printed circuit board; the mechanical stresses do not damage the integrated circuit. This is firmly fixed to the element, in fig. 14b.

Fig. 14a

THERMAL SHUT-DOWN

The presence of a thermal limiting circuit offers the following advantages:

1) An overload on the output (even if it is permanent), or an above-limit ambient temperature can be easily supported.
2) The heat sink can have a smaller factor of safety compared with that of a conventional circuit. There is no device damage in the case of too high a junction temperature: all that happens is that P_{o} (and therefor $P_{\text {tot }}$) and I_{d} are reduced (fig. 15).

Fig. 14b

Fig. 15 - Output power and drain current versus package temperature

LINEAR INTEGRATED CIRCUIT

MINIDIP 1.2W AUDIO AMPLIFIER

The TBA 820M is a monolithic integrated audio amplifier in a 8 lead dual in-line plastic package. It is intended for use as low frequency class B power amplifier with wide range of supply voltage: 3 to 16 V , in portable radios, cassette recorders and players etc. Main features are: minimum working supply voltage of 3 V , low quiescent current, low number of external components, good ripple rejection, no crossover distortion, low power dissipation.
Output power: $\mathrm{P}_{\mathrm{o}}=2 \mathrm{~W}$ at $12 \mathrm{~V} / 8 \Omega, 1.6 \mathrm{~W}$ at $9 \mathrm{~V} / 4 \Omega$ and 1.2 W at $9 \mathrm{~V} / 8 \Omega$.

ABSOLUTE MAXIMUM RATINGS

V_{s}	Supply voltage	16	V
I_{o}	Output peak current	1.5	A
$\mathrm{P}_{\text {tot }}$	Power dissipation at $\mathrm{T}_{\text {amb }}=50^{\circ} \mathrm{C}$	1	W
$\mathrm{~T}_{\text {stg }}, T_{j}$	Storage and junction temperature	-40 to	150

ORDERING NUMBER: TBA 820M

MECHANICAL DATA

CONNECTION DIAGRAM

(top view)

SCHEMATIC DIAGRAM

TEST AND APPLICATION CIRCUITS

Fig. 1 - Circuit diagram with load connected to the supply voltage.

Fig. 2 - Circuit diagram with load connected to ground.

[^14]
0
 TBAB20M

THERMAL DATA

$R_{\text {th j-amb }}$	Thermal resistance junction-ambient	\max	100	${ }^{\circ} \mathrm{C} / \mathrm{W}$

ELECTRICAL CHARACTERISTICS (Refer to the test circuits $\mathrm{V}_{\mathrm{s}}=9 \mathrm{~V}, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ unless otherwise specified)

Parameter		Test conditions		Min.	Typ.	Max.	Unit
$\mathrm{V}_{\text {s }}$	Supply voltage			3		16	V
V_{0}	Quiescent output voltage (pin 5)			4	4.5	5	V
I_{d}	Quiescent drain current				4	12	mA
l_{b}	Bias current (pin 3)		.		0.1		$\mu \mathrm{A}$
P_{0}	Output power	$\begin{aligned} & d=10 \% \\ & R_{f}=120 \Omega \\ & V_{s}=12 \mathrm{~V} \\ & V_{s}=9 \mathrm{~V} \\ & V_{s}=9 \mathrm{~V} \\ & V_{s}=6 \mathrm{~V} \\ & V_{\mathrm{s}}=3.5 \mathrm{~V} \\ & V_{\mathrm{s}}=3 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{f}=1 \mathrm{kHz} \\ & \mathrm{R}_{\mathrm{L}}=8 \Omega \\ & \mathrm{R}_{\mathrm{L}}=4 \Omega \\ & \mathrm{R}_{\mathrm{L}}=8 \Omega \\ & \mathrm{R}_{\mathrm{L}}=4 \Omega \\ & \mathrm{R}_{\mathrm{L}}=4 \Omega \\ & \mathrm{R}_{\mathrm{L}}=4 \Omega \end{aligned}$	0.9	$\begin{gathered} 2 \\ 1.6 \\ 1.2 \\ 0.75 \\ 0.25 \\ 0.20 \end{gathered}$		$\begin{aligned} & w \\ & w \\ & w \\ & w \\ & w \end{aligned}$ w
V_{i} (rms)	Input sensitivity	$\begin{aligned} & P_{\mathrm{O}}=1.2 \mathrm{~W} \\ & \mathrm{R}_{\mathrm{L}}=8 \Omega \\ & \mathrm{f}=1 \mathrm{kHz} \end{aligned}$	$\mathrm{R}_{\mathrm{f}}=33 \Omega$		16		mV
			$\mathrm{R}_{\mathrm{f}}=120 \Omega$		60		
		$\begin{aligned} & \mathrm{P}_{\mathrm{O}}=50 \mathrm{~mW} \\ & \mathrm{R}_{\mathrm{L}}=8 \Omega \\ & \mathrm{f}=1 \mathrm{kHz} \end{aligned}$	$\mathrm{R}_{\mathrm{f}}=33 \Omega$		3.5		mV
			$R_{f}=120 \Omega$		12		
R_{i}	Input resistance (pin 3)	$\mathrm{f}=1 \mathrm{kHz}$			5		$\mathrm{M} \Omega$
B	Frequency response (-3 dB)	$\begin{aligned} & R_{L}=8 \Omega \\ & C_{5}=1000 \mu \mathrm{~F} \\ & \mathrm{R}_{\mathrm{f}}=120 \Omega \end{aligned}$	$\mathrm{C}_{\mathrm{B}}=680 \mathrm{pF}$	25 to 7,000			Hz
			$\mathrm{C}_{\mathrm{B}}=220 \mathrm{pF}$	25 to 20,000			
d	Distortion *	$\begin{aligned} & \mathrm{P}_{\mathrm{O}}=500 \mathrm{~mW} \\ & \mathrm{R}_{\mathrm{L}}=8 \Omega \\ & \mathrm{f}=1 \mathrm{kHz} \end{aligned}$	$\mathrm{R}_{\mathrm{f}}=33 \Omega$		0.8		\%
			$\mathrm{R}_{\mathrm{f}}=120 \Omega$		0.4		
G_{v}	Voltage gain (open loop)	$\mathrm{f}=1 \mathrm{kHz}$	$\mathrm{R}_{\mathrm{L}}=8 \Omega$		75		dB

ELECTRICAL CHARACTERISTICS (continued)

	Parameter	Test conditions		Min.	Typ.	Max.	Unit
G_{v}	Voltage gain (closed loop)	$\begin{aligned} & R_{L}=8 \Omega \\ & f=1 \mathrm{kHz} \end{aligned}$	$\mathrm{R}_{\mathrm{f}}=33 \Omega$		45		dB
			$\mathrm{R}_{\mathrm{f}}=120 \Omega$		34		
e_{N}	Input noise voltage (*)				3		$\mu \mathrm{V}$
i_{N}	Input noise current (*)	.			0.4		$n \mathrm{~A}$
$\frac{S+N}{N}$	Signal to noise ratio (*)	$\begin{aligned} & \mathrm{P}_{\mathrm{O}}=1.2 \mathrm{~W} \\ & \mathrm{R}_{\mathrm{L}}=8 \Omega \\ & \mathrm{G}_{\mathrm{v}}=34 \mathrm{~dB} \end{aligned}$	$R 1=10 K \Omega$		80		dB
			$\mathrm{R} 1=50 \mathrm{k} \Omega$		70		
SVR	Supply voltage rejection (test circuit of fig. 2)	$\begin{aligned} & R_{\mathrm{L}}=8 \Omega \\ & \mathrm{f} \text { (ripple) }=100 \mathrm{~Hz} \\ & \mathrm{C}=47 \mu \mathrm{~F} \\ & \mathrm{R}_{\mathrm{f}}=120 \Omega \end{aligned}$			42		dB

(*) $B=22 \mathrm{~Hz}$ to 22 KHz

Fig. 3 - Output power vs.
supply voltage

Fig. 4 - Harmonic distortion
vs. output power

Fig.5-Power dissipation and efficiency vs. output power

Fig. 6 - Maximum power dissipation (sine wave operation)

Fig. 9 - input sensitivity vs.

Fig. 12 - Supply voltage rejection (fig. 2 circuit)

Fig. 7 - Suggested value of C_{B} vs. R_{f}

Fig. 10 - Voltage gain (closed loop) vs. R_{f}

Fig. 13 - Quiescent output voltage at pin 5 vs. supply voltage

Fig. 8 - Frequency response

Fig. 11 - Harmonic distortion vs. frequency

Fig. 14 - Quiescent current vs. supply voltage

TBA820M

APPLICATION INFORMATION

Fig. 15 - Low cost toy AM radio (0,5 to $1,5 \mathrm{MHz}$)

Fig. 16-1.5W DC/DC converter ($f=40 \mathrm{KHz}$)

LINEAR INTEGRATED CIRCUITS

MOTOR SPEED REGULATORS

The TCA 900 and TCA 910 are monolithic integrated circuits in Jedec TO-126 plastic package. They are designed for use as speed regulators for DC motors of record players, cassette recorders and players. The TCA 900 is particularly suitable for battery operated portable equipments, and the TCA 910 for car-battery and mains operations.

ABSOLUTE MAXIMUM RATINGS

ABSOLUTE MAXIMUM RATINGS	TCA 900	TCA 910	
V_{s}	Supply voltage	14 V	20 V
$\mathrm{P}_{\text {tot }}$	Total power dissipation at $\mathrm{T}_{\text {amb }}=70^{\circ} \mathrm{C}$	0.8 W	
	at $\mathrm{T}_{\text {case }}=100^{\circ} \mathrm{C}$	5 W	
$\mathrm{~T}_{\text {stg }}$	Storage temperature		
T_{j}	Junction temperature	-55 to $150^{\circ} \mathrm{C}$	

ORDERING NUMBERS: TCA 900
TCA 910

MECHANICAL DATA

CONNECTION AND SCHEMATIC DIAGRAMS

THERMAL DATA

$R_{\text {th } j \text {-case }}$ $R_{\text {th } j-a m b}$	Thermal resistance junction-case Thermal resistance junction-ambient	Typ. Typ.	100	${ }^{\circ} \mathrm{C} / \mathrm{W}$
${ }^{\circ} \mathrm{C} / \mathrm{W}$				

ELECTRICAL CHARACTERISTICS (Refer to the test circuit, $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ unless otherwise specified)

Parameter		Test conditions	Min.	Typ.	Max.	Unit
$V_{\text {ref }}$	Reference voltage (between pins 2 and 3)	$\begin{aligned} & V_{s}=5.5 \mathrm{~V} \\ & I_{m}=70 \mathrm{~mA} \\ & R_{T}=0 \end{aligned}$		2.6		V
$l_{\text {d }}$	Quiescent current (at pin 3)	$\begin{aligned} & V_{\mathrm{s}}=5.5 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{m}}=0 \\ & \mathrm{R}_{\mathrm{T}}=0 \end{aligned}$		2.6		mA
V_{m}	Output voltage (for TCA 900 only)	$\begin{aligned} & V_{\mathrm{s}}=5.5 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{m}}=70 \mathrm{~mA} \\ & \mathrm{R}_{\mathrm{T}}=91 \Omega \end{aligned}$		3.6	3.9	V
V_{m}	Output voltage (for TCA 910 only)	$\begin{aligned} & \mathrm{V}_{\mathrm{s}}=9 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{m}}=70 \mathrm{~mA} \\ & \mathrm{R}_{\mathrm{T}}=270 \Omega \end{aligned}$		5.6	6.3	V

41 теА900 tca910

ELECTRICAL CHARACTERISTICS (continued)

	Parameter	Test conditions	Min.	Typ.	Max.	Unit
V_{1-2}	Dropout voltage	$\begin{aligned} & \Delta V_{m} / V_{m}=-1 \% \\ & I_{m}=70 \mathrm{~mA} \\ & R_{T}=91 \Omega \end{aligned}$		1.2		V
	Limiting output current (at pin 2)	$\begin{aligned} & V_{s}=5.5 \mathrm{~V} \\ & v_{2-3}=0 \end{aligned}$		400		mA
$k=\Delta I_{2} / \Delta I_{3}$		$\begin{aligned} & \mathrm{V}_{\mathrm{s}}=5.5 \mathrm{~V} \\ & \mathrm{I}_{2}=70 \mathrm{~mA} \\ & \Delta \mathrm{I}_{2}= \pm 10 \mathrm{~mA} \\ & \mathrm{R}_{\mathrm{T}}=0 \end{aligned}$		8.5		-
$\frac{\Delta V_{m}}{V_{m}} / \Delta V_{s}$	Line regulation (for TCA 900 only)	$\begin{aligned} & \mathrm{V}_{\mathrm{s}}=5.5 \mathrm{~V} \text { to } 12 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{m}}=70 \mathrm{~mA} \\ & \mathrm{R}_{\mathrm{T}}=91 \Omega \end{aligned}$		0.1		\%/V
$\frac{\Delta V_{m}}{V_{m}} / \Delta V_{s}$	Line regulation (for TCA 910 only)	$\begin{aligned} & \mathrm{V}_{\mathrm{s}}=10 \mathrm{~V} \text { to } 16 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{m}}=70 \mathrm{~mA} \\ & \mathrm{R}_{\mathrm{T}}=270 \Omega \end{aligned}$		0.1		\%/V
$\frac{\Delta V_{m}}{V_{m}} / \Delta I_{m}$	Load regulation	$\begin{aligned} & V_{\mathrm{s}}=5.5 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{m}}=40 \text { to } 100 \mathrm{~mA} \\ & \mathrm{R}_{\mathrm{T}}=0 \end{aligned}$		0.005		\%/mA
$\frac{\Delta V_{\text {ref }}}{V_{\text {ref }}} / \Delta T_{\text {amb }}$	Temperature coefficient	$\begin{aligned} & V_{1-3}=5.5 \mathrm{~V} \\ & \mathrm{I}_{2}=70 \mathrm{~mA} \\ & \mathrm{~T}_{\mathrm{amb}}=-20 \text { to } 70^{\circ} \mathrm{C} \end{aligned}$		0.01		\%/ ${ }^{\circ} \mathrm{C}$

Fig. 1 - Test circuit.

Fig. 2 - Typical application circuit.

Fig. 3 - Normalized k vs. I_{2}.

Fig. 4 - Dropout voltage vs. output current

Fig. 5 - Maximum allowable power dissipation vs. ambient temperature

APPLICATION INFORMATION

The regulator supplies the motor in such a way as to keep its speed constant, independent of supply voltage, applied torque and ambient temperature variations.
The basic equation for the motor is:

$$
V_{m}=E_{0}+R_{m} I_{m}=a_{1} n+a_{2} c
$$

Where: $\quad V_{m}=$ supply voltage applied to the motor
$E_{0}=$ back electromotive force
$\mathrm{n}=$ motor speed (r.p.m.)
$R_{m}=$ internal resistance (of the motor)
$I_{m}=$ current absorbed (by the motor)
a_{1} and $\mathrm{a}_{2}=$ constants
c $\quad=$ drive torque
A voltage supply with the following characteristics
$\begin{array}{ll}E=E_{0} & E=\text { electromotice force } \\ R_{0}=-R_{m} & R_{0}=\text { output resistance }\end{array}$
gives performance required.

Fig. 6 - Minimum E_{0} allow-
able vs. $\mathbf{R}_{\mathbf{T}}$

This means that a variation in current absorbed by the motor, due to a variation in torque applied, causes a proportional variation in regulator output voltage. In fig. 6 is shown the minimum allowable E_{0} vs. R_{T}. The TCA 900 and TCA 910 give a reference constant voltage $\mathrm{V}_{\text {ref }}$ (between pins 2 and 3) independent of variations of $\mathrm{V}_{5}, \mathrm{I}_{2}$ and ambient temperature.
They also give: $\quad I_{3}=I_{d 3}+I_{2} / k$
Where: $\quad I_{3}=$ total current at pin 3

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{d3}}=\text { quiescent current at pin } 3\left(\mathrm{I}_{2}=0\right) \\
& \mathrm{I}_{2}=\text { current at pin } 2 \\
& \mathrm{k}=\text { constant }
\end{aligned}
$$

The output voltage V_{m}, applied to the motor has the following value:

$$
V_{m}=\underbrace{V_{\text {ref }}+R_{T}\left[\frac{V_{\text {ref }}}{R_{s}}\left(1+\frac{1}{k}\right)+I_{d 3}\right]}_{\text {Term } 1}+\underbrace{\frac{I_{m}}{k} R_{T}}_{\text {Term } 2}
$$

Term 1 equals E_{0} and fixes the motor speed by means of the variable resistor R_{s};
Term $2 \frac{I_{m}}{k} . R_{T}$ equals the term $R_{m} \cdot I_{m}$ and, therefore, compensates variations of torque applied.
Complete compensation is achieved when:

$$
\mathrm{R}_{\mathrm{T}}=\mathrm{k} \mathrm{R}_{\mathrm{m}}
$$

$I_{f} R_{T \text { max }}>\mathrm{k}_{\mathrm{m} \text { min }}$ instability may occur.

LINEAR INTEGRATED CIRCUIT

10W AUDIO POWER AMPLIFIER

The TCA 940 N is a monolithic integrated circuit in a 12 -lead quad in-line plastic package, intended for use as a low frequency class B amplifier. The TCA 940N provides 10 W output power @ 20V/4s , 7W @ $16 \mathrm{~V} / 4 \Omega$ and $6.5 \mathrm{~W} @ 20 \mathrm{~V} / 8 \Omega$. It gives high output current (up to 3 A), very low harmonic and cross-over distortion. Besides the thermal shut-down, the device contains a current limiting circuit which restricts the operation within the safe operating area of the power transistors. The TCA 940 N is pin to pin equivalent to the TBA 810 AS.

ABSOLUTE MAXIMUM RATINGS

V_{s}	Supply voltage	28	V
I_{o}	Output peak current (non-repetitive)	3.5	A
I_{o}	Output peak current (repetitive)	3	A
$\mathrm{P}_{\text {tot }}$	Power dissipation: at $\mathrm{T}_{\text {amb }}=50^{\circ} \mathrm{C}$	1.25	W
at $\mathrm{T}_{\text {tab }}=70^{\circ} \mathrm{C}$	8	W	
$\mathrm{~T}_{\text {stg }}, \mathrm{T}_{\mathrm{j}}$	Storage and junction temperature	-40 to 150	${ }^{\circ} \mathrm{C}$

ORDERING NUMBER: TCA 940N

TCA940N

CONNECTION AND SCHEMATIC DIAGRAMS

(top view)

TEST AND APPLICATION CIRCUIT

* $=$ C3.C7 SEE FIG. 7

THERMAL DATA

$\mathrm{R}_{\text {th j-tab }}$	Thermal resistance junction-tab	\max	10	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{\text {th j-amb }}$	Thermal resistance junction-ambient	\max	80	${ }^{\circ} \mathrm{C} / \mathrm{W}$

ELECTRICAL CHARACTERISTICS (Refer to the test circuit, $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$)

	Parameter	Test conditions	Min.	Typ.	Max.	Unit
V_{s}	Supply voltage (pin 1)		6		28	V
V_{0}	Quiescent output voltage (pin 12)	$\mathrm{V}_{\mathrm{s}}=18 \mathrm{~V}$	8.2	9	9.8	\checkmark
l_{d}	Quiescent drain current	$\begin{aligned} & V_{s}=12 V \\ & V_{s}=24 V \end{aligned}$		$\begin{aligned} & 13 \\ & 20 \end{aligned}$		$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
I_{b}	Input bias current (pin 8)	$\mathrm{V}_{\mathrm{s}}=18 \mathrm{~V}$		0.5		$\mu \mathrm{A}$
P_{0}	Output power	$\begin{array}{ll} d=10 \% & f=1 \mathrm{kHz} \\ \mathrm{~V}_{\mathrm{s}}=20 \mathrm{~V} & \mathrm{R}_{\mathrm{L}}=4 \Omega \\ \mathrm{~V}_{\mathrm{S}}=18 \mathrm{~V} & \mathrm{R}_{\mathrm{L}}=4 \Omega \\ \mathrm{~V}_{\mathrm{S}}=16 \mathrm{~V} & \mathrm{R}_{\mathrm{L}}=4 \Omega \\ \mathrm{~V}_{\mathrm{S}}=20 \mathrm{~V} & R_{\mathrm{L}}=8 \Omega \\ \mathrm{~V}_{\mathrm{s}}=18 \mathrm{~V} & R_{\mathrm{L}}=8 \Omega \end{array}$	7	$\begin{gathered} 10 \\ 9 \\ 7 \\ 6.5 \\ 5 \end{gathered}$		$\begin{aligned} & w \\ & w \\ & w \\ & w \\ & w \end{aligned}$
$\mathrm{V}_{\mathrm{i}(\mathrm{rms})}$	Voltage for input saturation		250			mV
v_{i}	Input sensitivity	$\begin{array}{ll} P_{0}=9 \mathrm{~W} & V_{\mathrm{s}}=18 \mathrm{~V} \\ R_{\mathrm{L}}=4 \Omega & f=1 \mathrm{kHz} \end{array}$		90		mV
B	Frequency response (-3 dB)	$\begin{array}{ll} \mathrm{V}_{\mathrm{S}}=18 \mathrm{~V} & \mathrm{R}_{\mathrm{L}}=4 \Omega \\ \mathrm{C}_{3}=1000 \mathrm{pF} & \end{array}$	40 Hz to 20 KHz			
d	Distortion	$\begin{array}{lr} \mathrm{P}_{\mathrm{O}}=50 \mathrm{~mW} \text { to } 5 \mathrm{~W} \\ \mathrm{~V}_{\mathrm{s}}=18 \mathrm{~V} \\ \mathrm{f}=1 \mathrm{kHz} & R_{\mathrm{L}}=4 \Omega \end{array}$		0.3		\%
R_{i}	Input resistance (pin 8)			5		$\mathrm{M} \Omega$
G_{v}	Voltage gain (open loop)	$\begin{array}{ll} V_{S}=18 \mathrm{~V} & R_{L}=4 \Omega \\ f=1 \mathrm{kHz} & \end{array}$		75		dB
G_{v}	Voltage gain (closed loop)	$\begin{array}{ll} V_{S}=18 \mathrm{~V} & R_{L}=4 \Omega \\ f=1 \mathrm{kHz} & \end{array}$	34	37	40	dB
e_{N}	Input noise voltage	$\mathrm{V}_{\mathrm{s}}=18 \mathrm{~V}$		3		$\mu \mathrm{V}$
i_{N}	Input noise current	$\mathrm{V}_{\mathrm{s}}=18 \mathrm{~V}$		0.15		nA

ELECTRICAL CHARACTERISTICS (continued)

	Parameter	Test conditions	Min.	Typ.	Max.	Unit
η	Efficiency	$\begin{aligned} & \mathrm{P}_{\mathrm{O}}=9 \mathrm{~W} \\ & \mathrm{R}_{\mathrm{L}}=4 \Omega \\ & \mathrm{f}=1 \mathrm{kHz} \end{aligned}$		65		\%
SVR	Supply voltage rejection	$\begin{array}{ll} V_{S}=24 V & R_{\mathrm{L}}=4 \Omega \\ f_{\text {ripple }}=100 \mathrm{~Hz} & \end{array}$		45		dB
I_{d}	Drain current	$\begin{array}{ll} \mathrm{P}_{\mathrm{O}}=9 \mathrm{~W} & \mathrm{~V}_{\mathrm{S}}=18 \mathrm{~V} \\ \mathrm{R}_{\mathrm{L}}=4 \Omega & \end{array}$		770		mA
$\mathrm{T}_{\text {sd }}$	Thermal shut-down (*) Case temperature	$\mathrm{P}_{\text {tot }}=4.8 \mathrm{~W}$		110		${ }^{\circ} \mathrm{C}$

(*) See fig. 15.

Fig. 1 - Output power vs. supply voltage.

Fig. 2 - Maximum power dissipation vs. supply voltage (sine wave operation)

Fig. 3-Distortion vs. output power.

Fig. 4 - Voltage gain and input sensitivity vs. feedback resistance (R_{f})

Fig. 7 - Value of C3 vs. R_{f} for different bandwidths

Fig. 10 - Power dissipation and efficiency vs. output power ($R_{L}=8 \Omega$)

Fig. 5 - Distortion vs. frequency ($\mathrm{R}_{\mathrm{L}}=4 \Omega$)

Fig. 8 - Supply voltage rejection vs. feedback .resistance (R_{f})

Fig. 11 - Quiescent output voltage (pin 12) vs. supply voltage

- $0 \cdot 1261^{1}$

Fig. 6 - Distortion vs. frèquency ($\mathrm{R}_{\mathrm{L}}=8 \Omega$)

Fig. 9 - Power dissipation and efficiency vs. output power ($\mathrm{R}_{\mathrm{L}}=4 \Omega$)

Fig. 12 - Quiescent current vs. supply voltage

SHORT CIRCUIT PROTECTION

The most important innovation in the TCA 940N is an original circuit which limits the current of the output transistors. Fig. 13 shows that the maximum output current is a function of the collector-emitter voltage; hence the circuit works within the safe operating area of the output power transistors. This can therefore be considered as being power limiting rather than simple current limiting. The TCA 940N is thus protected against temporary overloads or short circuit by the above circuit. Should the short circuit exists for a longer time, the thermal shut-down comes into action and keeps the junction temperature within safe limits.

Fig. 13 - Maximum output current vs. voltage (V_{CE}) across each output transistor

Fig. 14 - Test circuit for the limiting characteristics

THERMAL SHUT-DOWN

The presence of a thermal limiting circuit offers the following advantages:

1) an overload on the output (even if it is permanent), or an above-limit ambient temperature can be easily supported.
2) the heatsink can have a smaller factor of safety compared with that of a conventional circuit. There is no device damage in the case of too high a junction temperature: all that happens is that P_{o} (and therefore $P_{\text {tot }}$) and I_{d} are reduced (fig. 15).

Fig. 15 - Output power and drain current vs. case tem-

0 TCA940N

MOUNTING INSTRUCTION

The power dissipated in the circuit may be removed by connecting the tabs to an external heatsink according to fig. 16. The desired thermal resistance may be obtained by fixing the TCA 940N to a suitably dimensioned plate as shown in fig. 17. This plate can also act as a support for the whole printed circuit board; the mechanical stresses do not damage the integrated circuit. During soldering the tabs temperature must not exceed $260^{\circ} \mathrm{C}$ and the soldering time must not be longer than 12 seconds.

Fig. 16 - Maximum allowable power dissipation vs. ambient temperature

Fig. 18 - P.C. board and components layout of the test and application circuit (1:1 Scale).

CS-0033/1

LINEAR INTEGRATED CIRCUIT

FM-IF RADIO SYSTEM

- HIGH LIMITING SENSITIVITY
- HIGH AMR
- HIGH RECOVERED AUDIO
- good capture ratio
- LOW DISTORTION
- MUTING CAPABILITY

The TCA 3089 is a monolithic integrated circuit in a 16 -lead dual in-line plastic package. It provides a complete subsystem for amplification of FM signals.
The functions incorporated are:

- FM amplification and detection
- Interchannel controlled muting
- AFC and delayed AGC for FM tuner
- Switching of stereo decoder
- Driver of a field strength meter

The TCA 3089 can be used for FM-IF amplifier application in $\mathrm{Hi}-\mathrm{Fi}$, car-radios and communication receivers.

ABSOLUTE MAXIMUM RATINGS

V_{s}	Supply voltage	16	V
I_{o}	Output current (from pin 15)	2	mA
$\mathrm{P}_{\text {tot }}$	Total power dissipation at $\mathrm{T}_{\text {amb }} \leqslant 70^{\circ} \mathrm{C}$	800	mW
$T_{\text {stg }}$	Storage temperature	-55 to 150	${ }^{\circ} \mathrm{C}$
$T_{\text {op }}$	Operating temperature	-25 to	70

ORDERING NUMBER: TCA 3089

MECHANICAL DATA
Dimensions in mm

CONNECTION DIAGRAM

(top view)

S-0398/1

BLOCK DIAGRAM

TEST CIRCUIT

THERMAL DATA

$R_{\text {th j-amb }} \quad$ Thermal resistance junction-ambient	\max	100	${ }^{\circ} \mathrm{C} / \mathrm{W}$

ELECTRICAL CHARACTERISTICS (Refer to the test circuit; $\mathrm{V}_{\mathrm{s}}=12 \mathrm{~V}, \mathrm{f}_{\mathrm{o}}=10.7 \mathrm{MHz}$, $\mathrm{V}_{5}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$)

| Parameter | Test conditions | Min. | Typ. | Max. |
| :---: | :---: | :---: | :--- | :--- | Unit

DC CHARACTERISTICS

I_{s}	Supply current		16	23	30	mA
$\mathrm{~V}_{\mathrm{i}}$	Voltage at the IF amplifier input		1.2	1.9	2.4	V
$\mathrm{~V}_{2}, \mathrm{~V}_{3}$	Voltage at the input bypassing		1.2	1.9	2.4	V
$\mathrm{~V}_{6}$	Voltage at the audio output		5	5.6	6	V
$\mathrm{~V}_{10}$	Reference bias voltage		5	5.6	6	V

ELECTRICAL CHARACTERISTICS (continued)

| Parameter | Test conditions | Min. | Typ. | Max. |
| :--- | :--- | :--- | :--- | :--- | Unit | (|
| :--- |

AC CHARACTERISTICS

$V_{i(\text { threshold })}$	Input limiting voltage (-3 dB) at pin 1	$\begin{aligned} & f_{m}=1 \mathrm{kHz} \\ & \Delta f= \pm 75 \mathrm{kHz} \end{aligned}$		12	25	$\mu \mathrm{V}$
V_{0}	Recovered audio voltage (pin 6)	$\begin{aligned} & V_{i} \geqslant 100 \mu \mathrm{~V} \\ & f_{m}=1 \mathrm{kHz} \\ & \Delta f= \pm 75 \mathrm{kHz} \end{aligned}$	300	400	500	mV
V_{7}	Recovered audio voltage (pin 7)		200	350	500	mV
d	Distortion	$\begin{aligned} & V_{i} \geqslant 1 \mathrm{mV} \\ & f_{m}=1 \mathrm{kHz} \\ & \Delta f= \pm 75 \mathrm{kHz} \end{aligned}$		0.5	1	\%
$\frac{S+N}{N}$	Signal to noise ratio		60	67		dB
AMR	Amplitude modulation rejection	$\begin{aligned} & V_{i}=100 \mathrm{mV} \\ & f_{m}=1 \mathrm{kHz} \\ & \Delta f= \pm 75 \mathrm{kHz} \\ & m=0.3 \end{aligned}$	45	55		dB
V_{i}	Input voltage for delayed AGC action (pin 1)			10		mV
V_{15}	AGC output	$V_{i}=100 \mathrm{mV}$			0.5	V
$\frac{\Delta I_{7}}{\delta f}$	AFC control slope (note 1)	$\mathrm{V}_{\mathrm{i}}=10 \mathrm{mV}$		1.2		$\frac{\mu \mathrm{A}}{\mathrm{kHz}}$
V_{13}	Field strength meter output sensitivity	$V_{i}=0.5 \mathrm{mV}$		1.5		V
	No signal mute (note 2)	muting: ON	55			dB

Note: 1) $\Delta I_{7}=\frac{\Delta V_{7,10}}{R_{7,10}}$
2) No signal mute $=20 \log \frac{\mathrm{~V}_{0} @ \mathrm{~V}_{\mathrm{i}} \geqslant 100 \mu \mathrm{~V}}{\mathrm{~V}_{\mathrm{o}} @ \mathrm{~V}_{\mathrm{i}}=0}$

41 теаз089

Fig. 1 - Relative recovered audio and noise output vs. input voltage

Fig. 4 - AFC output current vs. change in tuning frequency

Fig. 2 - Capture ratio vs. input voltage

Fig. 5 - Amplitude modulation rejection vs. input 10

Fig. 3 - AGC $\left(\mathrm{V}_{15}\right)$ and field strength meter output $\left(\mathrm{V}_{13}\right)$ vs. input voltage

Fig. 6 - AMR vs. change in tuning frequency

APPLICATION INFORMATION

Fig. 7 - P.C. board and component layout of the circuit of fig. 8 (1:1 scale)

CS-0087

Fig. 8 - Typical application circuit

Notes (1): When V_{s} is less than 12 V , a resistor $R 8=12 \mathrm{k} \Omega$ must be connected between audio output and ground, and the integrator capacitor C 5 must be changed to 10 nF , as follows:

$\mathrm{S}-\mathrm{CLO} 3$

* Dependent on field strength meter sensitivity.
** Dependent on the tuner's AFC circuit.
*** L2 tunes with 100 pF at $10.7 \mathrm{MHz}\left(\mathrm{Q}_{\mathrm{o}}=75\right)$

LINEAR INTEGRATED CIRCUIT

FM-IF HIGH QUALITY RADIO SYSTEM

- EXCEPTIONAL LIMITING SENSITIVITY
- VERY LOW DISTORTION (0.1% - DOUBLE TUNED DETECTOR COIL)
- ImPROVED S/N RATIO
- EXTERNALLY PROGRAMMABLE AUDIO LEVEL
- ON CHANNEL STEP FOR SEARCH CONTROL
- PROGRAMMABLE AGC VOLTAGE AND AFC FOR TUNER
- INTERCHANNEL MUTING (SQUELCH)
- DEVIATION MUTING
- direct drive of tuning meter
- DIRECT DRIVE OF FIELD STRENGTH METER

The TCA 3189 is a monolithic integrated circuit in a 16-lead dual in-line plastic package, which provides a complete subsystem for amplification of 10.7 MHz FM signal in $\mathrm{Hi}-\mathrm{Fi}$, car-radios and communications receivers.

ABSOLUTE MAXIMUM RATINGS

V_{s}	Supply voltage	16	V
I_{o}	Output current (from pin 15)	2	mA
$\mathrm{P}_{\text {tot }}$	Total power dissipation at $\mathrm{T}_{\text {amb }} \leqslant 70^{\circ} \mathrm{C}$	800	mW
$\mathrm{~T}_{\text {stg }}$	Storage temperature	-55 to 150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {op }}$	Operating temperature	-25 to 85	${ }^{\circ} \mathrm{C}$

ORDERING NUMBER: TCA 3189
MECHANICAL DATA
Dimensions in mm

CONNECTION DIAGRAM

(top view)

S-3286

BLOCK DIAGRAM

TCA3189

THERMAL DATA

$R_{\text {th } j \text {-amb }}$	Thermal resistance junction-ambient	\max.	$100 \quad{ }^{\circ} \mathrm{C} / \mathrm{W}$

ELECTRICAL CHARACTERISTICS (Refer to the test circuit, $\mathrm{V}_{\mathrm{s}}=12 \mathrm{~V}, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$)

Parameter		Test conditions		Min.	Typ.	Max.	Unit
V_{5}	Supply voltage range	No signal input, non muted		9		16	V
I_{5}	Supply current			20	31	44	mA
V_{1}	Voltage at the IF amplifier input			1.2	1.9	2.4	V
$\mathrm{V}_{2}, \mathrm{~V}_{3}$	Voltage at the input bypass			1.2	1.9	2.4	V
V_{15}	Voltage at the pin 15 (RF AGC)			7.5	9.5	11	V
V_{10}	Reference bias voltage			5	5.6	6	V
V_{i}	Input limiting voltage (-3 dB) at pin 1	$\begin{aligned} & \mathrm{f}_{\mathrm{o}}=10.7 \mathrm{MHz} \\ & \mathrm{f}_{\mathrm{m}}=1 \mathrm{KHz} \\ & \Delta \mathrm{f}= \pm 75 \mathrm{KHz} \end{aligned}$			12	25	$\mu \mathrm{V}$
V_{0}	Recovered audio voltage (pin 6)	$\begin{aligned} & \mathrm{V}_{\mathrm{i}} \geqslant 50 \mu \mathrm{~V} \\ & \mathrm{f}_{\mathrm{O}}=10.7 \mathrm{MHz} \\ & \mathrm{f}_{\mathrm{m}}=1 \mathrm{KHz} \\ & \Delta \mathrm{f}= \pm 75 \mathrm{KHz} \end{aligned}$		325	500	650	mV
d	Distortion (single tuned)	$\begin{aligned} & v_{i} \geqslant 1 \mathrm{mV} \\ & f_{o}=10.7 \mathrm{MHz} \\ & f_{m}=1 \mathrm{KHz} \\ & \Delta f= \pm 75 \mathrm{KHz} \end{aligned}$			0.5	1	\%
d	Distortion (double tuned)				0.1		\%
$\frac{S+N}{N}$	Signal to noise ratio			65	72		dB
AMR	Amplitude modulation rejection	$\begin{aligned} & V_{i}=100 \mathrm{mV} \\ & f_{\mathrm{o}}=10.7 \mathrm{MHz} \\ & \mathrm{f}_{\mathrm{m}}=1 \mathrm{KHz} \\ & \Delta \mathrm{f}= \pm 75 \mathrm{KHz} \\ & A M \bmod .30 \% \end{aligned}$		45	55		dB
V_{16}	RF AGC threshold				1.25		V
$\frac{\Delta l_{7}}{\Delta f}$	AFC control slope				1.9		$\frac{\mu \mathrm{A}}{\mathrm{KHz}}$
V_{12}	On channel step (deviation mute)	$\begin{aligned} & \mathrm{V}_{\mathrm{i}}=100 \mathrm{mV} \\ & \mathrm{f}_{\mathrm{o}}=10.7 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & f_{\mathrm{DEV}}< \\ & \pm 40 \dot{\mathrm{~K}} \mathrm{~Hz} \end{aligned}$		0	-	V
			$\begin{aligned} & \text { fDEV. }> \\ & \pm 40 \dot{K} H z \end{aligned}$		5.6		V

TEST CIRCUITS

Single tuned detector coil
Double tuned detector coil

Fig. 1 - P.C. board and component layout of the single tuned circuit (1:1 scale)

mis TCA3189

Fig. 2 - Limiting and noise characteristics

Fig. 5 - AFC characteristics

Fig. 3 - Deviation mute threshold vs. R_{7-10}

Fig. 6 - AGC voltage for FM tuner vs. input level

Fig. 4 - Recovered audio and muting action vs. input level

Fig. 7 - Field strength and tuning meter output vs. input level

FEATURES	TCA 3189	TCA 3089
Low Limiting Sensitivity (25 $\mu \mathrm{V}$ max.)	Yes	Yes
Low Distortion (< 1%)	Yes	Yes
Single-coil Tuning Capability	Yes	Yes
Programmable Audio Level	Yes	No
S/N Mute	Yes	Yes
Deviation Mute	Yes	No
AFC and delayed AGC	Yes	Yes
Programmable AGC Threshold and Voltage	Yes	No
Typical S + N/N > 70 dB	Yes	No
Typical S + N/N >60 dB	Yes	Yes
Meter Drive Voltage Depressed at Very-Low Signal Levels	Yes	No
On-Channel Step Control Voltage	Yes	No

LINEAR INTEGRATED CIRCUIT

TDA440S

TV VISION IF SYSTEM

The TDA 440S is a monolithic integrated circuit in a 16-lead dual in-line plastic package. The functions incorporated are:

- Gain controlled vision IF amplifier
- Synchronous detector
- AGC detector with gating facility
- AGC amplifier for PNP tuner drive with variable delay
- Video preamplifier with positive and negative outputs.

It is intended for use in black and white and colour TV receivers.

ABSOLUTE MAXIMUM RATINGS

V_{s}	Supply voltage (pin 13)	15	V
$\mathrm{~V}_{5}$	Voltage at pin 5		
$\mathrm{~V}_{10}$	Voltage at pin 10	15	V
$\mathrm{~V}_{11}$	Voltage at pin 11 (with load connected to V_{s})	-1	V
$\mathrm{I}_{11}, \mathrm{I}_{12}$	Output current	3	V
$\mathrm{P}_{\text {tot }}$	Total power dissipation at $\mathrm{T}_{\mathrm{amb}} \leqslant 70^{\circ} \mathrm{C}$	8	V
$\mathrm{~T}_{\text {stg }}$	Storage temperature	5	mA
$\mathrm{~T}_{\text {op }}$	Operating temperature	800	mW

ORDERING NUMBER: TDA 440S

MECHANICAL DATA

Dimensions in mm

CONNECTION DIAGRAM (top view)

BLOCK DIAGRAM

THERMAL DATA

$R_{\text {th j-amb }}$	Thermal resistance junction-ambient	$\max \quad 100 \quad{ }^{\circ} \mathrm{C} / \mathrm{W}$

ELECTRICAL CHARACTERISTICS (Refer to fig. 1 test circuit, $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$)

Parameter	Test conditions	Min.	Typ.	Max.	Unit	Fig.

DC CHARACTERISTICS

V_{s}	Supply voltage range (pin 13)			10	12	15	V	
I_{s}	Supply current (pin 13)	$\mathrm{V}_{\mathrm{s}}=12 \mathrm{~V}$			50		mA	1a
${ }^{-1} 11{ }^{(1)}$	Output current	$\mathrm{V}_{\mathrm{s}}=15 \mathrm{~V}$	$\mathrm{V}_{11}=8 \mathrm{~V}$		1.6		mA	1b
$V_{11}{ }^{(2)}$	Output voltage	$\mathrm{V}_{5}=12 \mathrm{~V}$	$\mathrm{R}_{5}=\infty$			4.5	V	1a
			$\mathrm{R}_{5}=0$	7				
$\mathrm{V}_{12}{ }^{(2)}$	Output voltage	$\mathrm{V}_{5}=12 \mathrm{~V} \quad \mathrm{~V}_{11}=5.5 \mathrm{~V}$			5.6		V	1a
$\frac{\Delta V_{11}}{\Delta V_{5}}$	Output voltage drift	$V_{S}=11$ to 14 V			3.5		\%	1b

AC CHARACTERISTICS (Refer to fig. 2 test circuit, $\mathrm{V}_{\mathrm{s}}=12 \mathrm{~V}, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$)

$\mathrm{I}_{5}{ }^{(3)}$	Tuner AGC current	$\begin{array}{ll} \mathrm{V}_{7}=0 & \mathrm{R}_{4}=2.5 \mathrm{~K} \Omega \\ \mathrm{f}_{0}=38.9 \mathrm{MHz} & \end{array}$	6	9.5		mA	3c
V_{7}	AGC gating pulse input peak voltage	$\mathrm{f}=15.6 \mathrm{kHz}$	-1.5		-5	V	-
$V_{i}{ }^{(4)}$	Input sensitivity	$\begin{aligned} & V_{7}=0 \quad f_{0}=38.9 \mathrm{MHz} \\ & V_{11}=3.3 \mathrm{~V} \text { peak to peak } \end{aligned}$	100	150	220	$\mu \mathrm{V}$	3c
ΔV_{i}	AGC range	$\begin{aligned} & V_{7}=0 \quad \Delta V_{0}=1 \mathrm{~dB} \\ & \mathrm{f}_{0}=38.9 \mathrm{MHz} \\ & \mathrm{~V}_{11}=3.3 \mathrm{~V} \text { peak to peak } \end{aligned}$	50	60		dB	
V_{0}	Peak to peak output voltage at pin 11	$\begin{aligned} & V_{7}=0 \quad V_{11}=5.5 \mathrm{~V} \\ & f_{0}=38.9 \mathrm{MHz} \\ & V_{i}=\text { see note }(5) \end{aligned}$	3.3	3.5	3.7	V	

ELECTRICAL CHARACTERISTICS (continued)

	Parameter	Test conditions	Min.	Typ.	Max.	Unit	Fig.
$\Delta \mathrm{V}_{\text {o }}$	Video output variation over the AGC range (0 to 5.5 MHz)	$\begin{aligned} & \mathrm{V}_{7}=0 \quad \Delta \mathrm{~V}_{\mathrm{i}}=50 \mathrm{~dB} \\ & \mathrm{~V}_{11}=3.3 \mathrm{~V} \text { peak to peak } \\ & \mathrm{f}_{0}=38.9 \mathrm{MHz} \\ & \mathrm{f}_{\mathrm{m}}=0 \text { to } 5.5 \mathrm{MHz} \end{aligned}$		1	2	dB	3b
$\mathrm{V}_{11}, \mathrm{~V}_{12}$	Sound IF at video outputs (5.5 MHz)	$\begin{aligned} & V_{7}=0 \quad V_{i}=\text { see note (5) } \\ & f_{0}(\text { vision })=38.9 \mathrm{MHz} \\ & f_{0}(\text { sound })=33.4 \mathrm{MHz} \end{aligned}$	30			mV	3d
	Differential error of the output voltage (B \& W)	$\begin{aligned} & \mathrm{V}_{7}=0 \quad \mathrm{f}_{0}=38.9 \mathrm{MHz} \\ & \mathrm{~V}_{11}=3.3 \mathrm{~V} \text { peak to peak } \end{aligned}$			15	\%	-
$\mathrm{V}_{11}, \mathrm{~V}_{12}$	Video carrier and video carrier $2^{\text {nd }}$ harmonic leakage at video outputs	$\begin{aligned} & V_{7}=0 \\ & V_{i}=\text { see note }(5) \\ & f_{0}=38.9 \mathrm{MHz} \end{aligned}$		15		mV	3c
$\mathrm{V}_{11}, \mathrm{~V}_{12}$	Video carrier leakage at video outputs			5		mV	
B	Frequency response (-3 dB)		8	10		MHz	3d
d_{im}	Intermodulation products at video outputs	$\begin{array}{ll} V_{7}=0 & V_{i}=\text { see note }(5) \\ f_{0} \text { (vision) } & =38.9 \mathrm{MHz} \\ f_{0} \text { (sound) }=33.4 \mathrm{MHz} \\ f_{0} \text { (chroma) }=34.5 \mathrm{MHz} \end{array}$		-50	-40	dB	3a
R_{i}	Input resistance (between pins 1 and 16)	$\begin{aligned} & V_{7}=0 \\ & V_{i}=\text { see note }(5) \\ & f_{0}=38.9 \mathrm{MHz} \end{aligned}$		1.4		k Ω	-
C_{i}	Input capacitance (between pins 1 and 16)			2		pF	-

NOTES: (1) Current flowing out from pin 11 with the load connected to $V=8 \mathrm{~V}$.
(2) V_{11} and V_{12} are adjustable simultaneously by means of the resistance, or by a variable voltage $\leqslant 0.6 \mathrm{~V}$, connected between pin 10 and ground.
(3) Measured with an input voltage 10 dB higher than the V_{i} at which the tuner AGC current starts.
(4) RMS values of the unmodulated video carrier (modulation down).
(5) The input voltage V_{i} can have any value with in the AGC range.

Fig. 1a-Test circuit for measurement of I_{S}, V_{11}, V_{12}

Fig. 1b - Test circuit for measurement of $-\mathrm{I}_{11}$ and $\Delta \mathrm{V}_{11} / \Delta \mathrm{V}_{\mathrm{s}}$

TO A FOR $\frac{\Delta V_{11}}{\Delta V_{S}}$ TEST ; TO B FOR $-\mathrm{I}_{11}$ TEST

Fig. 2 - AC test circuit

Note: $T_{1}=50 / 200 \Omega$ Balun transformer.
$V_{i}=$ Input voltage between pins 1 and 16.

Fig. 3a-Set-up for measurement of $d_{i m}$

Fig. 3b-Set-up for measurement of ΔV_{o}

Fig. 3c-Set-up for measurement of $\mathrm{I}_{5}, \mathrm{~V}_{\mathrm{i}}, \Delta \mathrm{V}_{\mathrm{i}}, \mathrm{V}_{\mathrm{o}}, \mathrm{V}_{11}$ and V_{12}

Fig. 3d - Set-up for measurement of B, V_{11} and V_{12}

Fig. 4 - AGC voltage vs. input voltage variation

Fig. 5 - Tuner AGC output current vs. IF gain variation

Fig. 6 - Output black level vs. supply voltage

APPLICATION INFORMATION

The TDA 440S enables very compact IF amplifiers to be designed and provides the performance demanded by high quality receivers.
The input tuning-trapping circuitry and the detector network can be aligned independently with respect to each other.
The value of Q for the parallel tuned circuit between pin 8 and 9 is not critical, although the higher it is, the better is the chroma-sound beat rejection, but the tuning is more critical. Values of Q from 30 to 50 give good rejection with non-critical tuning.
The LC circuit between pins 8 and 9 is tuned to the vision carrier thus appreciably attenuating the sidebands. Hence a small amount of signal can be removed whose amplitude is almost constant over the whole working range of the AGC and it can be used to drive an AFC circuit.
The black level at the output is very stable against variations of V_{s} and of temperature: this enables the contrast control to be kept simple. The AGC is of the gated type and can take the top of the synchronism or the black level (back porch) as its reference: when the latter is used, the output black level is particularly stable.

Fig. 8 - Typical application circuit.

Typical performance of the Fig. 8 circuit

Frequency response (f_{0} vision $=38.9 \mathrm{MHz}, f_{0}$ sound $=33.4 \mathrm{MHz}$) standard CCIR
Sound carrier attenuation 28 dB
31.9 MHz trap attenuation
40.4 MHz trap attenuation
41.4 MHz trap attenuation

AGC range
Overall gain including IF filter and trap circuits (note 1)
$\geqslant 60 \quad \mathrm{~dB}$
$2, L 3, L 7=0.3 \mu \mathrm{H}-Q_{0}=110-5.5$ turns $\varnothing=0.22 \mathrm{~mm}$ (close wound)
L4 $=0.22 \mu \mathrm{H}-Q_{0}=110-4.5$ turns $\varnothing=0.22 \mathrm{~mm}$ (close wound) $L 5, L 6=1 \mu H-Q_{0}=110-10$ turns $\varnothing=0.22 \mathrm{~mm}$ (close wound) $\mathrm{L} 8=1.2 \mu \mathrm{H}-Q_{0}=110-10$ turns $\varnothing=0.22 \mathrm{~mm}$ (close wound) $L 1$ to L7 : coil former BR $27 /$ P, core GW $4 \times 0.5 \times 13$ F100 Neosid, screening can BR 10/ST

Intermodulation products over the whole
AGC range (note 2)
$-55 d B$

NOTES: (1) The gain is measured at video output 3.3 V peak to peak and is defined as peak to peak output voltage to RMS input voltage (modulation down).
(2) Measured at 1.07 MHz , vision carrier level $=0 \mathrm{~dB}$, chroma carrier level $=-6 \mathrm{~dB}$, sound carrier level $=-6 \mathrm{~dB}$.

Fig. 9 - Overall frequency response of the fig. 8 circuit

Fig. 10 - Circuit options for tuner AGC driving

LINEAR INTEGRATED CIRCUIT

PREAMPLIFIER WITH ALC FOR CASSETTE RECORDERS

- EXCELLENT VERSATILITY in USE (V_{s} from 4 to 20V)
- HIGH OPEN LOOP GAIN
- LOW DISTORTION
- LOW NOISE
- LARGE AUTOMATIC LEVEL CONTROL RANGE
- GOOD SUPPLY RIPPLE REJECTION
- STEREO MATCHING BETTER THAN 3 dB

The TDA 1054M is a monolithic integrated circuit in a 16 -lead dual in-line plastic package. The functions incorporated are:

- Low noise preamplifier
- Automatic level control system (ALC)
- High gain equalization amplifier
- Supply voltage rejection facility (SVRF).

It is intended as preamplifier in cassette tape recorders and players, dictaphones, compressor and expander in industrial equipments, $\mathrm{Hi}-\mathrm{Fi}$ preamplifiers and in wire diffusion receivers; for stereo applications the ALC matching is better than 3 dB .

ABSOLUTE MAXIMUM RATINGS

V_{s}	Supply voltage	20	V
$P_{\text {tot }}$	Total power dissipation at $T_{\text {amb }} \leqslant 50^{\circ} \mathrm{C}$	500	mW
$\mathrm{~T}_{\text {stg }}, T_{j}$	Storage and junction temperature	-40 to 150	${ }^{\circ} \mathrm{C}$

ORDERING NUMBERS: TDA 1054M mono applications 2 TDA 1054M stereo applications

MECHANICAL DATA
Dimensions in mm

CONNECTION AND SCHEMATIC DIAGRAMS

(top view)

TEST CIRCUIT

THERMAL DATA

$\mathrm{R}_{\text {th } j \text {-amb }}$	Thermal resistance junction-ambient		\max	200

ELECTRICAL CHARACTERISTICS

(Refer to the test circuit, $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$)

	Parameter	Test conditions	Min.	Typ.	Max.	Unit
$V_{\text {s }}$	Supply voltage		4		20	V
I_{d}	Quiescent drain current	$\begin{aligned} & V_{S}=9 V \\ & S 1=S 2=S 3=B \end{aligned} \quad R_{L}=\infty$		6		mA
$h_{\text {FE }}$	DC current gain	$\mathrm{I}_{\mathrm{C}}=0.1 \mathrm{~mA} \quad \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V}$	300	500		-
${ }^{e_{N}}$	Input noise voltage (Q1)	$\begin{aligned} \mathrm{I}_{\mathrm{C}} & =0.1 \mathrm{~mA} \quad \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V} \\ \mathrm{f} & =1 \mathrm{kHz} \end{aligned}$		2		$\frac{\mathrm{nV}}{\sqrt{\mathrm{Hz}}}$
i_{N}	Input noise current (Q1)			0.5		$\frac{\mathrm{pA}}{\sqrt{\mathrm{Hz}}}$
NF	Noise figure (Q1)	$\begin{aligned} & \mathrm{I}_{\mathrm{C}}=0.1 \mathrm{~mA} \quad \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{g}}=4.7 \mathrm{k} \Omega \\ & \mathrm{~B}(-3 \mathrm{~dB})=20 \text { to } 10,000 \mathrm{~Hz} \end{aligned}$		0.5	4	dB
G_{V}	Open loop voltage gain (for equalization amplifier)	$\mathrm{V}_{\mathrm{s}}=9 \mathrm{~V} \quad \mathrm{f}=1 \mathrm{kHz}$		60		dB
V_{0}	Output voltage with A.L.C.	$\begin{array}{lr} V_{s}=9 \mathrm{~V} & V_{i}=100 \mathrm{mV} \\ \mathrm{f} & =1 \mathrm{kHz} \mathrm{~S} 1=\mathrm{S} 2=\mathrm{S} 3=\mathrm{A} \end{array}$		1.1		V
R1	(for SVRF system)	see schematic diagram		7.5		k Ω
R2	(for SVRF system)			120		Ω
${ }^{e} N$	Input noise voltage (for equalization amplifier pin 11)	$\begin{array}{ll} \mathrm{V}_{\mathrm{s}}=9 \mathrm{~V} & \mathrm{R}_{\mathrm{g}}=4.7 \mathrm{k} \Omega \\ \mathrm{G}_{\mathrm{V}}=40 \mathrm{~dB} & \mathrm{~S} 1=\mathrm{B} \\ \mathrm{~B}(-3 \mathrm{~dB})=22 \mathrm{~Hz} & \text { to } 22 \mathrm{KHz} \end{array}$		1.3		$\mu \mathrm{V}$
$V_{\text {DR }}$	Drop-out (between pins 14 and 2)	$\mathrm{V}_{\mathrm{s}}=9 \mathrm{~V} \quad \mathrm{l}_{\mathrm{d}}=6 \mathrm{~mA}$		0.8		V

Fig. 1 - Equivalent input spot voltage and noise current vs. bias current (input transistor Q_{L})

Fig. 4 - Noise figure vs. bias current (input transistor Q_{1})

Fig. 2 - Equivalent input noise current vs. frequency (input transistor Q_{1})

Fig. 5 - Optimum source resistance and minimum NF vs. bias current (input transistor Q_{1})

Fig. 3 - Equivalent input noise voltage vs. frequency (input transistor Q_{1})

Fig. 6 - Current gain vs. collector current (input transistor Q_{1})

Fig. 7 - Open loop gain vs. frequency (equalization amplifier)

Fig. 8 - Open loop phase response vs. frequency (equalization amplifier)

0
 TDA1054M

APPLICATION INFORMATION

Fig. 9 - Application circuit for battery/mains cassette player and recorder

Fig. 10 - P.C. board and component layout for the circuit fig. 9 (1:1 scale)

CS-0061/1

Typical performance of circuit in fig. 9

($\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{s}}=9 \mathrm{~V}$)

	Parameter	Test conditions	Min.	Typ.	Max.	Unit
PLAYBACK						
G_{v}	Voltage gain (open loop)	$f=20$ to $20,000 \mathrm{~Hz}$		110		dB
G_{v}	Voltage gain (closed loop)	$\mathrm{f}=1 \mathrm{kHz}$		57		dB
$\left\|z_{i}\right\|$	Input impedance	$\begin{aligned} & f=100 \mathrm{~Hz} \\ & \mathrm{f}=1 \mathrm{kHz} \\ & \mathrm{f}=10 \mathrm{kHz} \end{aligned}$		10 41 43		$\begin{aligned} & \mathrm{k} \Omega \\ & \mathrm{k} \Omega \\ & \mathrm{k} \Omega \end{aligned}$
$\left\|Z_{0}\right\|$	Output impedance	$\mathrm{f}=1 \mathrm{kHz}$		12	35	Ω
B	Frequency response		see fig. 12			
d	Distortion	$\mathrm{V}_{\mathrm{o}}=1 \mathrm{~V} \quad \mathrm{f}=1 \mathrm{kHz}$		0.1		\%
	Output background noise	$\begin{aligned} & \mathrm{Z}_{\mathrm{g}}=300 \Omega+120 \mathrm{mH} \\ & \text { (DIN } 45405 \text {) } \end{aligned}$		1.3		mV
***	Output weighted background noise			1.3		mV
$\frac{S+N}{N}$	Signal to noise ratio	$\begin{aligned} & \mathrm{V}_{\mathrm{o}}=1.3 \mathrm{~V} \\ & \mathrm{Z}_{\mathrm{g}}=300 \Omega+120 \mathrm{mH} \end{aligned}$		60		dB
SVR	Supply voltage ripple rejection at the output	$f_{\text {ripple }}=100 \mathrm{~Hz}$		30		dB
$\mathrm{t}_{\text {on }}{ }^{*}$	Switch-on time	$\mathrm{V}_{\mathrm{o}}=1 \mathrm{~V}$		500		ms
RECORDING						
G_{v}	Voltage gain (open loop)	f $=20$ to $20,000 \mathrm{~Hz}$		110		dB
G_{v}	Voltage gain (closed loop)	$\mathrm{f}=1 \mathrm{kHz}$		70		dB
B	Frequency response		see fig. 14			
d^{*}	Distortion without ALC	$\mathrm{V}_{\mathrm{o}}=1.1 \mathrm{~V} \quad \mathrm{f}=.1 \mathrm{kHz}$		0.3		\%
d	Distortion with ALC	$\mathrm{V}_{\mathrm{o}}=1.1 \mathrm{~V} \quad \mathrm{f}=10 \mathrm{kHz}$		0.4		\%
ALC	Automatic level control range (for 3 dB of output voltage variation)	$\mathrm{V}_{\mathrm{i}} \leqslant 40 \mathrm{mV} \quad \mathrm{f}=10 \mathrm{kHz}$		54		dB
V_{0}	Output voltage before clipping without ALC	$\mathrm{f}=1 \mathrm{kHz}$		2.3		V
v_{0}	Output voltage with ALC	$\mathrm{V}_{\mathrm{i}}=30 \mathrm{mV} \quad \mathrm{f}=10 \mathrm{kHz}$		1.1		V

TDA1054M

Typical performance of circuit in fig. 9 (continued)

	Parameter	Test conditions ${ }^{\text {- }}$		Min.	Typ.	Max.	Unit
$\mathrm{t}^{*}{ }^{*}$	Limiting time (see fig. 11)	$\Delta V_{i}=+40 \mathrm{~dB} \quad \mathrm{f}=1 \mathrm{kHz}$			75		ms
$\mathrm{t}_{\text {set }}{ }^{* *}$	Level setting time (see fig. 11)				300		ms
$\mathrm{t}_{\text {rec }}{ }^{* *}$	Recovery time (see fig. 11)	$\Delta V_{i}=-40$	$\mathrm{f}=1 \mathrm{kHz}$		150		s
$\mathrm{t}_{\text {on }}{ }^{*}$	Switch-on time	$\mathrm{V}_{\mathrm{o}}=1.1 \mathrm{~V}$			500		ms
$\frac{\mathrm{S}+\mathrm{N}}{\mathrm{N}}$ ****	Signal to noise ratio with ALC	$\mathrm{V}_{\mathrm{o}}=1.1 \mathrm{~V}$	$\mathrm{R}_{\mathrm{g}}=470 \Omega$		64		dB

* Measured with selective voltmeter
** This value depends on external network
*** When the DIN 45511 norm for frequency response is not mandatory the equalization peak at 10 kHz can be avoided - so halving the output noise
**** Weighted noise measurement (DIN 45405)
Fig. 11 - Limiting, level setting, recovery time

Fig. 12 - Relative frequency response for the circuit in fig. 9 (playback)

Fig. 13 - Distortion vs. frequency for the circuit in fig. 9 (playback)

Fig. 14 - Relative frequency response for the circuit in fig. 9 (recording)

Fig. 15 - Output voltage variation and distortion with ALC vs. input voltage for the circuit in fig. 9 (recording)

Fig. 16 - Distortion vs. frequency with ALC for the circuit in fig. 9 (recording)

Fig. 17 - Limiting and level setting time vs. input signal variation

Fig. 18 - Low cost application circuit

0 TDA1054M

Fig. 19 - P.C. board and component layout for the circuit in fig. 18 (1:1 scale)

Typical performance of circuit in fig. 18
$\left(\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{s}}=9 \mathrm{~V}\right.$)

	Parameter	Test conditions	Min.	Typ.	Max.	Unit
PLAYBACK						
V_{5}	Supply voltage		5		12	V
$l_{\text {d }}$	Quiescent drain current			18		mA
G_{v}	Voltage gain (closed loop)	$\mathrm{f}=1 \mathrm{kHz}$		54		dB
B	Frequency response	$\begin{aligned} f & =100 \mathrm{~Hz} \\ f & =1 \mathrm{kHz} \\ \mathrm{f} & =6 \mathrm{kHz} \\ \mathrm{f} & =10 \mathrm{kHz} \\ \mathrm{f} & =60 \mathrm{kHz} \end{aligned}$		$\begin{gathered} 12 \\ 0 \\ 5 \\ 11 \\ 10 \end{gathered}$		dB dB dB dB dB
d	Distortion	$\mathrm{V}_{\mathrm{o}}=1 \mathrm{~V} \quad \mathrm{f}=1 \mathrm{kHz}$		0.6		\%
e_{N}	Output weighted background noise	$\begin{aligned} & \mathrm{Z}_{\mathrm{g}}=300 \Omega+120 \mathrm{mH} \\ & \text { (DIN } 45405 \text {) } \end{aligned}$		1.3		mV

Typical performance of circuit in fig. 18 (continued)

	Parameter	Test conditions	Min.	Typ.	Max.	Unit
RECORDING						
G_{v}	Voltage gain (closed loop)	$\mathrm{f}=1 \mathrm{kHz}$		70		dB
B	Frequency response	$\begin{aligned} f & =140 \mathrm{~Hz} \\ \mathrm{f} & =1 \mathrm{kHz} \\ \mathrm{f} & =10 \mathrm{kHz} \end{aligned}$		-3 0 4		$d B$ $d B$ $d B$
d	Distortion	$\mathrm{V}_{\mathrm{o}}=1.1 \mathrm{~V} \quad \mathrm{f}=10 \mathrm{kHz}$		0.7		\%
ALC	Range for 3 dB of output voltage variation	$\mathrm{V}_{\mathrm{i}} \leqslant 40 \mathrm{mV} \quad \mathrm{f}=10 \mathrm{kHz}$		54		dB

Fig. 20 - Typical stereo application circuit for battery/mains cassette player and recorder

515 musam

Fig. 21 - Complete cassette player and recorder

Fig. 22 - P.C. board and component layout for the circuit in fig. 21 (1:1 scale)

TDA1151

LINEAR INTEGRATED CIRCUIT

MOTOR SPEED REGULATOR

- EXCELLENT VERSATILITY IN USE
- HIGH OUTPUT CURRENT (UP TO 800 mA)
- LOW QUIESCENT CURRENT (1.7 mA)
- LOW REFERENCE VOLTAGE (1.2V)
- EXCELLENT PARAMETERS STABILITY VERSUS TEMPERATURE

The TDA 1151 is a monolithic integrated circuit in Jedec TO-126 plastic package. It is intended for use as speed regulator for DC morors of record players, tape and cassette recorders, movie cameras, toys etc.

ABSOLUTE MAXIMUM RATINGS

		Supply voltage	20
V_{s}	Total power dissipation at $T_{\text {amb }}=70^{\circ} \mathrm{C}$		
$P_{\text {tot }}$	at $T_{\text {case }}=100^{\circ} \mathrm{C}$	0.8	W
	Storage and junction temperature	5	W
$T_{\text {stg }}, T_{j}$	Sto	-40 to 150	${ }^{\circ} \mathrm{C}$

ORDERING NUMBER: TDA 1151

MECHANICAL DATA

Dimensions in mm

(1) With in this region the cross-section of the leads is uncontrolled

CONNECTION AND SCHEMATIC DIAGRAMS

TEST CIRCUIT

THERMAL DATA

$\mathrm{R}_{\text {th } \mathrm{j} \text {－case }}$	Thermal resistance junction－case	\max	10	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{\text {th } \mathrm{j} \text {－amb }}$	Thermal resistance junction－ambient	\max	100	${ }^{\circ} \mathrm{C} / \mathrm{W}$

ELECTRICAL CHARACTERISTICS（Refer to the test circuit， $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ ）

	Parameter	Test conditions	Min．	Typ．	Max．	Unit
$\mathrm{V}_{\text {ref }}$	Reference voltage （between pins 1 and 2）	$\mathrm{V}_{\mathrm{S}}=6 \mathrm{~V} \quad \mathrm{I}_{\mathrm{M}}=0.1 \mathrm{~A}$	1.1	1.2	1.3	V
I_{d}	Quiescent drain current	$\mathrm{V}_{\mathrm{s}}=6 \mathrm{~V} \quad \mathrm{I}_{\mathrm{M}}=100 \mu \mathrm{~A}$		1.7		mA
IMS	Starting current	$V_{\text {S }}=5 \mathrm{~V} \quad \Delta \mathrm{~V}_{\text {ref }} / \mathrm{V}_{\text {ref }}=-50 \%$	0.8			A
V_{1-3}	Minimum supply voltage	$\mathrm{I}_{\mathrm{M}}=0.1 \mathrm{~A} \quad \Delta \mathrm{~V}_{\text {ref }} / \mathrm{V}_{\text {ref }}=-5 \%$			2.5	V
$K=I_{M} / I_{T}$	Reflection coefficient	$\mathrm{V}_{5}=6 \mathrm{~V} \quad \mathrm{I}_{\mathrm{M}}=0.1 \mathrm{~A}$	18	20	22	－
$\frac{\Delta \mathrm{K}}{\mathrm{K}} / \Delta \mathrm{V}_{\mathrm{s}}$		$\mathrm{V}_{\mathrm{S}}=6 \mathrm{~V}$ to $18 \mathrm{~V} \mathrm{I}_{\mathrm{M}}=0.1 \mathrm{~A}$		0.45		\％／V
$\frac{\Delta K}{K} / \Delta I_{M}$		$\mathrm{V}_{5}=6 \mathrm{~V} \quad \mathrm{I}_{\mathrm{M}}=25$ to 400 mA		0.005		\％／mA
$\frac{\Delta K}{K} / \Delta T$		$\begin{aligned} & \mathrm{V}_{\mathrm{s}}=6 \mathrm{~V} \quad \mathrm{I}_{\mathrm{M}}=0.1 \mathrm{~A} \\ & \mathrm{~T}_{\mathrm{amb}}=-20 \text { to } 70^{\circ} \mathrm{C} \end{aligned}$		0.02		\％／${ }^{\circ} \mathrm{C}$
$\frac{\Delta V_{\text {ref }}}{V_{\text {ref }}} / \Delta V_{s}$	Line regulation	$\mathrm{V}_{5}=6 \mathrm{~V}$ to $18 \mathrm{~V} \mathrm{I}_{\mathrm{M}}=0.1 \mathrm{~A}$		0.02		\％／V
$\frac{\Delta V_{\text {ref }}}{V_{\text {ref }}} / \Delta I_{\text {m }}$	Load regulation	$\mathrm{V}_{\mathrm{s}}=6 \mathrm{~V} \quad \mathrm{I}_{\mathrm{M}}=25$ to 400 mA		0.009		\％／mA
$\frac{\Delta V_{\text {ref }}}{V_{\text {ref }}} \backslash \Delta T$	Temperature coefficient	$\begin{aligned} & \mathrm{V}_{\mathrm{s}}=6 \mathrm{~V} \quad \mathrm{I}_{\mathrm{M}}=0.1 \mathrm{~A} \\ & \mathrm{~T}_{\mathrm{amb}}=-20 \text { to } 70^{\circ} \mathrm{C} \end{aligned}$		0.02		\％／${ }^{\circ} \mathrm{C}$

Fig. 1 - Quiescent drain current vs. power supply

Fig. 4 - Reference voltage vs. motor current

Fig. 7 - Reflection coefficient vs. motor current

Fig. 2 - Quiescent drain current vs. ambient temperature

Fig. 5 - Reference voltage vs. ambient temperature

Fig. 8 - Reflection coefficient vs. ambient tem-

Fig. 3 - Reference voltage vs. supply voltage

Fig. 6 - Reflection coefficient vs. supply voltage

Fig. 9 - Typical minimum supply voltage vs. motor

APPLICATION INFORMATION

$\mathrm{I}_{\mathrm{M}}=$ Motor current at rated speed
$\mathrm{R}_{\mathrm{M}}=$ Motor resistance
$\mathrm{E}_{\mathrm{g}}=$ Back electromotive force

$$
R_{S \text { min }}=\frac{V_{\text {ref }} \cdot R_{T}}{E_{g}-\left(V_{r e f}-I_{d} \cdot R_{T}\right)}
$$

$$
\mathrm{R}_{\mathrm{T}}=K_{\mathrm{K}} \cdot \mathrm{R}_{\mathrm{M}}
$$

$$
\mathrm{R}_{\mathrm{T}}=\mathrm{K}_{\text {typ }} \cdot \mathrm{R}_{\mathrm{M} \text { typ }}
$$

$$
\text { If } R_{T \max }>\mathrm{Styp}_{\mathrm{M} \text { min }} \text { instability may occur }
$$

Application circuit

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{s}}=+9 \mathrm{~V} \\
& \mathrm{R}_{\mathrm{M}}=14.2 \Omega \\
& \mathrm{R}_{\mathrm{T}}=280 \Omega \\
& \mathrm{R}_{\mathrm{S}}=1 \mathrm{k} \Omega \\
& \mathrm{E}_{\mathrm{g}}=2.9 \mathrm{~V} \\
& \mathrm{I}_{\mathrm{M}}=150 \mathrm{~mA} \\
& \mathrm{~V}_{\mathrm{M}}=\mathrm{R}_{\mathrm{M}} \cdot \mathrm{I}_{\mathrm{M}}+\mathrm{E}_{\mathrm{g}}=5.03 \mathrm{~V}
\end{aligned}
$$

Note: A ceramic capacitor of 10 nF between pins, 1 and 2 improves stability in some applications.

Fig. 10 - Speed variation vs. supply voltage

Fig. 11 - Speed variation vs.
motor current

Fig. 12 - Speed variation vs.
ambient temperature

APPLICATION INFORMATION (continued)

Low cost application circuit

Fig. 13 - Speed variation vs.
supply voltage

Fig. 14 - Speed variation vs.
motor current

Fig. 15 - Speed variation vs.
ambient temperature

LINEAR INTEGRATED CIRCUIT

TV VERTICAL DEFLECTION SYSTEM

The TDA 1170 is a monolithic integrated circuit in a 12-lead quad in-line plastic package. It is designed mainly for use in large and small screen black and white TV receivers.
The functions incorporated are:

- oscillator
- voltage ramp generator
- high power gain amplifier
- flyback generator

ABSOLUTE MAXIMUM RATINGS

$\mathrm{V}_{\text {s }}$	Supply voltage (pin 2)	27	V
$\mathrm{V}_{4}-\mathrm{V}_{5}$	Flyback peak voltage	58	V
V_{8}	Sync. input voltage	± 12	V
V_{10}	Power amplifier input voltage	$\left\{\begin{array}{r}10 \\ -0.5\end{array}\right.$	V
I_{0}	Output peak current (non-repetitive) @ t= 2 ms	2	A
I_{0}	Output peak current ${ }_{\text {a }}^{@} \mathrm{f}=50 \mathrm{~Hz}, \mathrm{t} \leqslant 10 \mu \mathrm{~s}$	2.5	A
$\mathrm{P}_{\text {tot }}$	$\begin{aligned} \text { Power dissipation: } & \text { at } T_{\text {tab }} \\ \text { at } & =90^{\circ} \mathrm{C} \\ \text { at } T_{\text {amb }} & =80^{\circ} \mathrm{C} \text { (free air) } \end{aligned}$	5 1	W
$\mathrm{T}_{\text {stg }}, \mathrm{T}_{\mathrm{j}}$	Storage and junction temperature	-40 to 150	${ }^{\circ} \mathrm{C}$

ORDERING NUMBER: TDA 1170

MECHANICAL DATA

41 TDA1170

CONNECTION AND BLOCK DIAGRAM

(top view)

SCHEMATIC DIAGRAM

THERMAL DATA

$R_{\text {th } j \text {-tab }}$	Thermal resistance junction-tab		\max	12
$\mathbf{R}_{\text {th j-amb }}$	Thermal resistance junction-ambient	${ }^{\circ} \mathrm{C} / \mathrm{W}$		
\max	70^{*}	${ }^{\circ} \mathrm{C} / \mathrm{W}$		

* Obtained with tabs soldered to printed circuit with minimized area.

ELECTRICAL CHARACTERISTICS (Refer to the test circuits, $\mathrm{V}_{\mathrm{s}}=25 \mathrm{~V}, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ unless otherwise specified)

Parameter	Test conditions	Min.	Typ.	Max.	Unit	Fig.

DC CHARACTERISTICS

- $\mathbf{I}_{9} \quad$ Oscillator bias current	$\mathrm{V}_{9}=1 \mathrm{~V}$		0.2	1	$\mu \mathrm{A}$	1a
${ }^{-1} 10 \quad \begin{aligned} & \text { Amplifier input bias } \\ & \text { current }\end{aligned}$	$\mathrm{V}_{10}=1 \mathrm{~V}$		0.15	1	$\mu \mathrm{A}$	1b
$-I_{12} \quad$ Ramp generator bias current			0.05	0.5	$\mu \mathrm{A}$	1a
$V_{\text {s }} \quad$ Supply voltage		10			V	-
$\mathrm{V}_{4} \quad$ Quiescent output vol tage	$\begin{array}{ll} \mathrm{R} 2=10 \mathrm{k} \Omega & \\ \mathrm{~V}_{\mathrm{s}}=25 \mathrm{~V} & \mathrm{R} 1=30 \mathrm{k} \Omega \\ \mathrm{~V}_{\mathrm{S}}=10 \mathrm{~V} & \mathrm{R} 1=10 \mathrm{k} \Omega \end{array}$	$\begin{aligned} & 8 \\ & 4 \end{aligned}$	$\begin{aligned} & 8.8 \\ & 4.4 \end{aligned}$	$\begin{aligned} & 9.6 \\ & 4.8 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$	1a
$\mathrm{V}_{6}, \mathrm{~V}_{7} \quad$ Regulated voltage		6	6.5	7	V	
$\frac{\Delta V_{6}}{\Delta V_{5}} \frac{\Delta V_{7}}{\Delta V_{5}}$ Line regulation	$\mathrm{V}_{\mathrm{s}}=10$ to 27 V		1.5		mV / V	1b

AC CHARACTERISTICS $(f=50 \mathrm{~Hz})$

I_{S}	Supply current	$I_{Y}=1 \mathrm{~A}$		140		mA	
I_{Y}	Peak to peak yoke current (pin 4)			1.6	A		
V_{4}	Flyback voltage	$I_{Y}=1 \mathrm{~A}$		51		V	2
V_{8}	Peak sync. input voltage (positive or negative)		1			V	

ELECTRICAL CHARACTERISTICS (continued)

	Parameter	Test conditions	Min.	Typ.	Max.	Unit	Fig.
V_{9}	Peak to peak oscillator sawtooth voltage			2.4		V	
R_{8}	Sync. input resistance	$\mathrm{V}_{8}=1 \mathrm{~V}$		3.5		k Ω	
$\mathrm{t}_{\text {fly }}$	Flyback time	$I_{Y}=1 \mathrm{~A}$		0.6	0.8	ms	
$\delta \mathrm{f}$	Pull-in range (below 50 Hz)			7		Hz	2
$\frac{\delta \mathrm{f}}{\Delta \mathrm{~V}_{\mathrm{s}}}$	Oscillator frequency drift with supply voltage	$V_{5}=10$ to 27 V		0.01		$\frac{\mathrm{Hz}}{\mathrm{V}}$	
$\frac{\delta \mathrm{f}}{\Delta \mathrm{~T}_{\mathrm{tab}}}$	Oscillator frequency drift with tab temperature	$\mathrm{T}_{\text {tab }}=40$ to $120^{\circ} \mathrm{C}$		0.015		$\frac{\mathrm{Hz}}{{ }^{\circ} \mathrm{C}}$	

Fig. 1a - DC test circuit for measurement of $-I_{9},-I_{12}$ and V_{4}

Fig. 1b - DC test circuit for measurement of $-\mathrm{I}_{10}, \mathrm{~V}_{6}, \mathrm{~V}_{7}, \Delta \mathrm{~V}_{6} / \Delta \mathrm{V}_{5}$ and $\Delta \mathrm{V}_{7} / \Delta \mathrm{V}_{5}$

Fig. 2 - AC test circuit

Fig. 3 - Relative quiescent voltage variation vs. supply voltage

Fig. 4 - Relative quiescent voltage variation vs. tab temperature

Fig. 5 - Regulated voltage vs. supply voltage

Fig. 6 - Regulated voltage vs. tab temperature

Fig. 7 - Frequency variation of unsynchronized oscillator
vs. supply voltage

Fig. 8 - Frequency variation of unsynchronized oscillator vs. tab temperature

APPLICATION INFORMATION

The thermistor in series to the yokè is not required because the current feedback enables the yoke current to be independent of yoke resistance variations due to thermal effects. The oscillator is directly synchonized by the sync. pulses (positive or negative), therefore its free frequency must be lower than the sync. frequency. The flyback generator applies a voltage, about twice the supply voltage, to the yoke. This produces short flyback time together with a high useful power to dissipated power ratio.

The flyback time is:
$t_{\text {fly }} \cong \frac{2}{3} \frac{L_{Y} I_{Y}}{V_{S}}$
where: $\quad L_{Y}=$ Yoke inductance
$\mathrm{V}_{\mathrm{s}}=$ Supply voltage
$I_{Y}=$ Peak to peak yoke current
The supply current is:

$$
I_{s} \cong \frac{I_{Y}}{8}+0.02(A)
$$

It does not depend on the value of V_{s} but only on yoke characteristics. The minimum value of V_{s} necessary for the required output current permits the maximum efficiency.
The quiescent output voltage (pin 4) is fixed by the voltage feedback network R7, R8 and R9 (refer to fig. 2) according to:

$$
V_{4}=v_{10} \frac{R 7+R 8+R 9}{R 7}
$$

Pin 10 is the inverting input of the amplifier and its voltage is $\mathrm{V}_{10} \cong 2 \mathrm{~V}$.

Fig. 9 - Typical application circuit for B \& W $24^{\prime \prime} 110^{\circ}$ TV sets

Typical performance $\left(\mathrm{V}_{\mathrm{s}}=22 \mathrm{~V} ; \mathrm{I}_{\mathrm{Y}}=1 \mathrm{~A} ; \mathrm{R}_{\mathrm{Y}}=10 \Omega ; \mathrm{L}_{\mathrm{Y}}=20 \mathrm{mH}\right)$

I_{s}	Supply current	140	mA
$\mathrm{t}_{\text {fly }}$	Flyback time	0.75	ms
I_{Y}	Maximum scanning current (peak to peak)	1.2	A
$\mathrm{~V}_{\mathrm{s}}$	Operating supply voltage	20 to 24	V
$P_{\text {tot }}$	TDA 1170 power dissipation	2.2	W

For safe working up to $\mathrm{T}_{\mathrm{amb}}=50^{\circ} \mathrm{C}$ a heatsink of $\mathrm{R}_{\mathrm{th}}=40^{\circ} \mathrm{C} / \mathrm{W}$ is required and each tab of TDA 1170 must be soldered to $1 \mathrm{~cm}^{2}$ copper area of the printed circuit board.

TDA1170

Fig. 10 - Typical application circuit for B \& W small screen TV sets

Typical performance $\left(\mathrm{V}_{\mathrm{s}}=10.8 \mathrm{~V} ; \mathrm{I}_{\mathrm{Y}}=1 \mathrm{~A} ; \mathrm{R}_{\mathrm{Y}}=4 \Omega ; \mathrm{L}_{\mathrm{Y}}=7.5 \mathrm{mH}\right)$

I_{5}	Supply current	150	mA
$\mathrm{t}_{\text {fly }}$	Flyback time	0.7	ms
I_{Y}	Maximum scanning current (peak to peak)	1.15	A
V_{5}	Operating supply voltage	10.8	V
$\mathrm{P}_{\text {tot }}$	TDA 1170 power dissipation	1.3	W

For safe working up to $\mathrm{T}_{\mathrm{amb}}=50^{\circ} \mathrm{C}$ a heatsink of $\mathrm{R}_{\mathrm{th}}=30^{\circ} \mathrm{C} / \mathrm{W}$ is required and each tab of the TDA 1170 must be soldereb to $1 \mathrm{~cm}^{2}$ copper area of the printed circuit board.

Fig. 11 - P.C. board and component layout for the circuit of fig. 9 and fig. 10 (1:1 scale)

C9 is not mounted on the P.C. board.

MOUNTING INSTRUCTIONS

The junction to ambient thermal resistance of the TDA 1170 can be reduced by soldering the tabs to a suitable copper area of the printed circuit board (fig. 12) or to an external heatsink (fig. 13).
The diagram of fig. 16 shows the maximum dissipable power $P_{\text {tot }}$ and the $R_{\text {th }} j$-amb as a function of the side "s" of two equal square copper areas having a thickness of $35 \mu(1.4 \mathrm{mil})$.
During soldering the tab temperature must not exceed $260^{\circ} \mathrm{C}$ and the soldering time must not be longer than 12 seconds.
The external heatsink or printed circuit copper area must be connected to electrical ground.

Fig. 12 - Example of P.C. board copper area used as heatsink

Fig. 14 - Maximum power dissipation and junction-ambient thermal resistance vs. "s"

Fig. 13- Example of TDA 1170 with external heatsink

Fig. 15 - Maximum allowable power dissipation vs. ambient temperature

TDA1170D

LINEAR INTEGRATED CIRCUIT

LOW-NOISE TV VERTICAL DEFLECTION SYSTEM

The TDA 1170 D is a monolithic integrated circuit in a 16-lead dual in-line plastic package. It is intended for use in black and white and colour TV receivers. Low-noise meakes this device particularly suitable for use in monitors. The functions incorporated are:

- synchronization circuit
- oscillator and ramp generator
- high power gain amplifier
- flyback generator
- voltage regulator

ABSOLUTE MAXIMUM RATINGS

$V_{\text {s }}$	Supply voltage at pin 2	35	V
V6, V7	Flyback peak voltage	60	V
V14	Power amplifier input voltage	$\left\{\begin{array}{c}+10 \\ -0.5\end{array}\right.$	V
I_{0}	Output peak current (non repetitive) at $\mathrm{t}=2 \mathrm{msec}$	2	A
I_{0}	Output peak current at $\mathrm{f}=50 \mathrm{~Hz} \mathrm{t} \leqslant 10 \mu \mathrm{sec}$	2.5	A
I_{0}	Output prak current at $\mathrm{f}=50 \mathrm{~Hz} \mathrm{t}>10 \mu \mathrm{sec}$	1.5	A
I_{3}	Pin 3 DC current at V6 $<\mathrm{V} 2$	100	mA
I_{3}	Pin 3 peak to peak flyback current for $f=50 \mathrm{~Hz}, \mathrm{t}_{\text {fly }} \leqslant 1.5 \mathrm{msec}$	1.8	A
I_{10}	Pin 10 current	± 20	mA
$\mathrm{P}_{\text {tot }}$	Power dissipation: at $\mathrm{T}_{\text {tab }}=90^{\circ} \mathrm{C}$	4.3	W
	at $\mathrm{Tamb}=70^{\circ} \mathrm{C}$ (free air)	1	W
$\mathrm{T}_{\text {stg }}, \mathrm{T}_{\mathrm{j}}$	Storage and junction temperature	-40 to 150	${ }^{\circ} \mathrm{C}$

ORDERING NUMBER: TDA 1170D

MECHANICAL DATA

Dimensions in mm

TDA1170D

CONNECTION DIAGRAM

BLOCK DIAGRAM

THERMAL DATA

$R_{\text {th } j \text {-tab }}$	Thermal resistance junction-pins		$\max ^{14}$
$R_{\text {th } j-a m b}$	Thermal resistance junction-ambient	W	

$\left({ }^{\circ}\right)$ Obtained with pins $4,5,12,13$ soldered to printed circuit with minimized copper area.

ELECTRICAL CHARACTERISTICS (Refer to the test circuits, $\mathrm{V}_{\mathrm{s}}=35 \mathrm{~V}, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$, unless otherwise specified)

| Parameter | Test conditions | Min. | Typ. | Max. | Unit |
| :--- | :--- | :--- | :--- | :--- | :--- | Fig. | (|
| :--- |

DC CHARACTERISTICS

I_{2}	Pin 2 quiescent current	$1_{3}=0$		7	14	mA	1b
17	Pin 7 quiescent current	$\mathrm{I}_{4}=0$		8	15	mA	1b
-111	Oscillator bias current	$\mathrm{V} 11=1 \mathrm{~V}$		0.1	1	$\mu \mathrm{A}$	1a
-112	Amplifier input bias current	$\mathrm{V} 12=1 \mathrm{~V}$		1	7	$\mu \mathrm{A}$	1b
${ }^{-1} 16$	Ramp generator bias current	$V 16=0$		0.02	0.3	$\mu \mathrm{A}$	1 a
-1_{16}	Ramp generator current	$\mathrm{I}_{7}=20 \mu \mathrm{~A} \quad \mathrm{~V} 16=0$	19	20	24	$\mu \mathrm{A}$	1b
$\frac{\Delta \mathrm{I}_{16}}{\mathrm{I}_{16}}$	Ramp generator non-linearity	$\begin{aligned} & \Delta V 16=0 \text { to } 12 \mathrm{~V} \\ & \mathrm{I}_{9}=20 \mu \mathrm{~A} \end{aligned}$		0.2	1	\%	1b
V_{s}	Supply voltage range		10		35	V	-
V1	Pin 1 saturation voltage to ground	$\mathrm{I}_{1}=1 \mathrm{~mA}$		1	1.4	V	-
V3	Pin 3 saturation voltage to ground	$\mathrm{I}_{3}=10 \mathrm{~mA}$		1.7	2.6	V	1a
V6	Quiescent output voltage	$\begin{array}{ll} V_{\mathrm{s}}=10 \mathrm{~V} & \mathrm{R} 1=10 \mathrm{~K} \Omega \\ \mathrm{R} 2=10 \mathrm{~K} \Omega & \end{array}$	4.17	4.4	4.63	V	1a
		$\begin{array}{ll} V_{\mathrm{s}}=35 \mathrm{~V} \\ \mathrm{R} 2=10 \mathrm{~K} \Omega & \mathrm{R} 1=30 \mathrm{~K} \Omega \\ \end{array}$	8.35	8.8	9.25	V	1 a
V6L	Output saturation voltage to ground	$-1_{6}=0.1 \mathrm{~A}$		0.9	1.2	V	1c
		$-1_{6}=0.8 \mathrm{~A}$		1.9	2.3	V	1c
V6H	Output saturation voltage to supply	$\mathrm{I}_{6}=0.1 \mathrm{~A}$		1.4	2.1	V	1d
		$\mathrm{I}_{6}=0.8 \mathrm{~A}$		2.8	3.2	V	1d
V8	Regulated voltage at pin 6		6.1	6.5	6.9	V	1b
V9	Regulated voltage at pin 7	$\mathrm{I}_{9}=20 \mu \mathrm{~A}$	6.2	6.6	7	V	1b
$\frac{\Delta \mathrm{V} 8}{\Delta \mathrm{~V}_{\mathrm{s}}} ;$	Regulated voltage drift with supply voltage	$\Delta V_{s}=10$ to 35 V		1		mV / V	1b
V14	Amplifier input reference voltage		2.07	22	2.3	V	--
R10	Pin 10 input resistance	$\mathrm{V} 10 \leqslant 0.4 \mathrm{~V}$	1			$\mathrm{M} \Omega$	1 a

Fig. 1 - DC test circuit

Fig. 1a

Fig. 1c

Fig. 1b

Fig. 1d

ELECTRICAL CHARACTERISTICS (Refer to the AC test circuit, $\mathrm{V}_{\mathrm{s}}=25 \mathrm{~V}$; $\mathrm{f}=50 \mathrm{~Hz}$; $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$, unless otherwise specified)

Parameter	Test conditions	Min.	Typ.	Max.	Unit

AC CHARACTERISTICS

I_{5}	Supply current	$\mathrm{I}_{\mathrm{y}}=1 \mathrm{App}$		140		mA
l_{10}	Sync. input current (positive or negative)		500			$\mu \mathrm{A}$
V6	Flyback voltage	$\mathrm{I}_{\mathrm{y}}=1 \mathrm{App}$		51		V
$\mathrm{t}_{\mathrm{fly}}$	Flyback time	$\mathrm{I}_{\mathrm{y}}=1 \mathrm{App}$		0.7		ms
$\mathrm{V}_{\text {ON }}$	Peak to peak output noise	$\mathrm{Bw}=20 \div 20.000 \mathrm{~Hz}$			50	mV
f_{0}	Free running frequency	$\begin{aligned} & (\mathrm{P} 1+\mathrm{R} 1)=260 \mathrm{~K} \Omega \\ & \mathrm{C} 2=0.1 \mu \mathrm{~F} \end{aligned}$		52.4		Hz
		$\begin{aligned} & (\mathrm{P} 1+\mathrm{R} 1)=300 \mathrm{~K} \Omega \\ & \mathrm{C} 2=100 \mathrm{nF} \end{aligned}$		43.7		Hz
Δf	Synchronization range	$\mathrm{I}_{8}=0.5 \mathrm{~mA}$	14			Hz
$\frac{\Delta f}{\Delta V_{S}}$	Frequency drift with supply voltage	$V_{5}=10$ to 35 V		0.005		Hz / V
$\frac{\Delta f}{\Delta T_{\text {pins }}}$	Frequency drift vs. pins $4,5,12$ and 13 temp.	$T_{\text {tab }}=40$ to $120^{\circ} \mathrm{C}$		0.01		$\mathrm{Hz} /^{\circ} \mathrm{C}$

Fig. 2 - AC test circuit

Fig. 3 - P.C. board and components layout of the $A C$ test circuit.

LINEAR INTEGRATED CIRCUIT

LOW-NOISE TV VERTICAL DEFLECTION SYSTEM

The TDA 1170 N is a monolithic integrated circuit in a 12 -lead quad in-line plastic package. It is intended for use in black and white and colour TV receivers. Low-noise meakes this device particularly suitable for use in monitors. The functions incorporated are:

- synchronization circuit
- oscillator and ramp generator
- high power gain amplifier
- flyback generator
- voltage regulator

ABSOLUTE MAXIMUM RATINGS

CONNECTION AND BLOCK DIAGRAMS

THERMAL DATA

$\mathrm{R}_{\text {th j-tab }}$	Thermal resistance junction-tab	\max	12	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{\text {th } \mathrm{j} \text {-amb }}$	Thermal resistance junction-ambient	\max	70	${ }^{\circ} \mathrm{C} / \mathrm{W}\left({ }^{\circ}\right)$

(०) Obtained with tabs soldered to printed circuit with minimized copper area.

ELECTRICAL CHARACTERISTICS (Refer to the test circuits, $\mathrm{V}_{\mathrm{s}}=35 \mathrm{~V}, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$, unless otherwise specified)

| Parameter | Test conditions | Min. | Typ. | Max. | Unit |
| :--- | :--- | :--- | :--- | :--- | :--- | Fig. | (|
| :--- |

DC CHARACTERISTICS

I_{2}	Pin 2 quiescent current	$I_{3}=0$		7	14	mA	1b
I_{5}	Pin 5 quiescent current	$\mathrm{I}_{4}=0$		8	15	mA	1b
-1_{9}	Oscillator bias current	$V 9=1 \mathrm{~V}$		0.1	1	$\mu \mathrm{A}$	1 a
${ }^{-1} 10$	Amplifier input bias current	$\mathrm{V} 10=1 \mathrm{~V}$		1	7	$\mu \mathrm{A}$	1b
$-_{12}$	Ramp generator bias current	$V 12=0$		0.02	0.3	$\mu \mathrm{A}$	1a
-1_{12}	Ramp generator current	$\mathrm{I}_{7}=20 \mu \mathrm{~A} \quad \mathrm{~V} 12=0$	19	20	24	$\mu \mathrm{A}$	1b
$\frac{\Delta I_{12}}{I_{12}}$	Ramp generator non-linearity	$\begin{aligned} & \Delta V 12=0 \text { to } 12 \mathrm{~V} \\ & \mathrm{I}_{7}=20 \mu \mathrm{~A} \end{aligned}$		0.2	1	\%	1b
V_{s}	Supply voltage range		10		35	V	-
V1	Pin 1 saturation voltage to ground	$\mathrm{I}_{1}=1 \mathrm{~mA}$		1	1.4	V	-
V3	Pin 3 saturation voltage to ground	$\mathrm{I}_{3}=10 \mathrm{~mA}$		1.7	2.6	V	1a
V4	Quiescent output voltage	$\begin{array}{ll} V_{\mathrm{s}}=10 \mathrm{~V} & \mathrm{R} 1=10 \mathrm{~K} \Omega \\ \mathrm{R} 2=10 \mathrm{~K} \Omega & \end{array}$	4.17	4.4	4.63	V	1a
		$\begin{array}{ll} V_{s}=35 \mathrm{~V} \\ \mathrm{R} 2=10 \mathrm{~K} \Omega & \mathrm{R} 1=30 \mathrm{~K} \Omega \\ \end{array}$	8.35	8.8	9.25	V	1a
V4L	Output saturation voltage to ground	$-1_{4}=0.1 \mathrm{~A}$		0.9	1.2	V	1c
		$-\mathrm{I}_{4}=0.8 \mathrm{~A}$		1.9	2.3	V	1c
V 4 H	Output saturation voltage to supply	$\mathrm{I}_{4}=0.1 \mathrm{~A}$		1.4	2.1	V	1d
		$\mathrm{I}_{4}=0.8 \mathrm{~A}$		2.8	3.2	V	1d
V6	Regulated voltage at pin 6		6.1	6.5	6.9	\checkmark	1b
V7	Regulated voltage at pin 7	$\mathrm{I}_{7}=20 \mu \mathrm{~A}$	6.2	6.6	7	V	1b
$\frac{\Delta \mathrm{V} 6}{\Delta \mathrm{~V}_{\mathrm{s}}} ; \frac{\Delta \mathrm{V} 7}{\Delta \mathrm{~V}_{\mathrm{s}}}$	Regulated voltage drift with supply voltage	$\Delta V_{s}=10$ to 35 V		1		mV / N	1b
V10	Amplifier input reference voltage		2.07	2.2	2.3	V	-
R8	Pin 8 input resistance	$V 8 \leqslant 0.4 \mathrm{~V}$	1			$\mathrm{M} \Omega$	1a

Fig. 1 - DC test circuits

Fig. 1a

Fig. 1c

Fig. 1b

Fig. 1d

ELECTRICAL CHARACTERISTICS (Refer to the AC test circuit, $\mathrm{V}_{\mathrm{S}}=25 \mathrm{~V} ; \mathrm{f}=50 \mathrm{~Hz}$; $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$, unless otherwise specified)

Parameter	Test conditions	Min.	Typ.	Max.	Unit

AC CHARACTERISTICS

I_{5}	Supply current	$\mathrm{I}_{\mathrm{y}}=1 \mathrm{App}$		140		mA
I_{8}	Sync. input current (positive or negative)		500			$\mu \mathrm{A}$
V4	Flyback voltage	$\mathrm{I}_{\mathrm{y}}=1 \mathrm{App}$		51		V
$\mathrm{t}_{\text {fly }}$	Flyback time	$\mathrm{I}_{\mathrm{y}}=1 \mathrm{App}$		0.7		ms
V_{ON}	Peak to peak output noise	$\mathrm{Bw}=20 \div 20.000 \mathrm{~Hz}$			50	mV
f_{0}	Free running frequency	$\begin{aligned} & (\mathrm{P} 1+\mathrm{R} 1)=300 \mathrm{~K} \Omega \\ & \mathrm{C} 2=0.1 \mu \mathrm{~F} \end{aligned}$		52.4		Hz
		$\begin{aligned} & (P 1+R 1)=360 \mathrm{~K} \Omega \\ & C 2=100 \mathrm{nF} \end{aligned}$		43.7		Hz
Δf	Synchronization range	$\mathrm{I}_{8}=0.5 \mathrm{~mA}$	14			Hz
$\frac{\Delta f}{\Delta V_{s}}$	Frequency drift with supply voltage	$\mathrm{V}_{\mathrm{s}}=10$ to 35 V		0.005		Hz/V
$\left\|\frac{\Delta f}{\Delta T_{\mathrm{tab}}}\right\|$	Frequency drift with tab temperature	$\mathrm{T}_{\text {tab }}=40$ to $120^{\circ} \mathrm{C}$		0.01		$\mathrm{Hz}{ }^{\circ} \mathrm{C}$

Fig. 2 - AC test circuit

Fig. 3 - PC board and component layout of the AC test circuit (1:1 scale)

CS-0165/1

TDA1170S

LINEAR INTEGRATED CIRCUIT

TV VERTICAL DEFLECTION SYSTEM

The TDA 1170 S is a monolithic integrated circuit in a 12-lead quad in-line plastic package. It is intended for use in black and white and colour TV receivers.
The functions incorporated are:

- synchronization circuit
- oscillator and ramp generator
- high power gain amplifier
- flyback generator
- voltage regulator

ABSOLUTE MAXIMUM RATINGS

$V_{\text {s }}$	Supply voltage at pin 2	35	V
V_{4}, V_{5}	Flyback peak voltage	60	V
V_{10}	Power amplifier input voltage	$\begin{array}{r} 10 \\ +\quad 0.5 \end{array}$	V
I_{0}	Output peak current (non repetitive) at $\mathrm{t}=2 \mathrm{msec}$	2	A
I_{0}	Output peak current at $\mathrm{f}=50 \mathrm{~Hz} \mathrm{t} \leqslant 10 \mu \mathrm{sec}$	2.5	A
I_{0}	Output peak current at $\mathrm{f}=50 \mathrm{~Hz} \mathrm{t}>10 \mu \mathrm{sec}$	1.5	A
I_{3}	Pin 3 DC current at $\mathrm{V}_{4}<\mathrm{V}_{2}$	100	mA
I_{3}	Pin 3 peak to peak flyback current for $\mathrm{f}=50 \mathrm{~Hz}, \mathrm{t}_{\text {fly }} \leqslant 1.5 \mathrm{msec}$	1.8	A
I_{8}	Pin 8 current	± 20	mA
$\mathrm{P}_{\text {tot }}$	$\left.\begin{array}{rl}\text { Power dissipation: at } T_{\text {tab }} & =90^{\circ} \mathrm{C} \\ \text { at } T_{\text {amb }}=80^{\circ} \mathrm{C}\end{array}\right\}$ TDA1170S	5 1	W
$\mathrm{T}_{\text {stg }}, \mathrm{T}_{\mathrm{j}}$	Storage and junction temperature	-40 to 150	${ }^{\circ} \mathrm{C}$

ORDERING NUMBERS: TDA 1170 S

$$
\text { TDA } 1170 \mathrm{SH}
$$

MECHANICAL DATA

TDA $1170 \mathbf{~ S H}$

41 TDA1170S

CONNECTION AND BLOCK DIAGRAMS

SCHEMATIC DIAGRAM

THERMAL DATA

$R_{\text {th } j \text {-tab }}$	Thermal resistance junction-tab	$\max 12^{\circ} \mathrm{C} / \mathrm{W}$	$\max 10^{\circ} \mathrm{C} / \mathrm{W}$
$R_{\text {th } j \text {-amb }}$	Thermal resistance junction-ambient		

(0) Obtained with tabs soldered to printed circuit with minimized copper area.

ELECTRICAL CHARACTERISTICS (Refer to the test circuits, $\mathrm{V}_{\mathrm{s}}=35 \mathrm{~V}, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$, unless otherwise specified)

Parameter	Test conditions	Min.	Typ.	Max.	Unit	Fig.

DC CHARACTERISTICS

I_{2}	Pin 2 quiescent current	$\mathrm{I}_{3}=0$		7	14	mA	1b
I_{5}	Pin 5 quiescent current	$\mathrm{I}_{4}=0$		8	15	mA	1b
${ }^{-1} 9$	Oscillator bias current	$\mathrm{V}_{9}=1 \mathrm{~V}$		0.1	1	$\mu \mathrm{A}$	1a
-1_{10}	Amplifier input bias current	$\mathrm{V}_{10}=1 \mathrm{~V}$		0.1	1	$\mu \mathrm{A}$	1b
${ }^{-1} 12$	Ramp generator bias current	$\mathrm{V}_{12}=0$		0.02	0.3	$\mu \mathrm{A}$	1a
-1_{12}	Ramp generator current	$\mathrm{I}_{7}=20 \mu \mathrm{~A} \quad \mathrm{~V}_{12}=0$	19	20	24	$\mu \mathrm{A}$	1b
$\frac{\Delta I_{12}}{I_{12}}$	Ramp generator non-linearity	$\begin{aligned} & \Delta V_{12}=0 \text { to } 12 \mathrm{~V} \\ & \mathrm{I}_{7}=20 \mu \mathrm{~A} \end{aligned}$		0.2	1	\%	1b
V_{s}	Supply voltage range		10		36	V	-
V_{1}	Pin 1 saturation voltage to ground	$\mathrm{I}_{1}=1 \mathrm{~mA}$		1	1.4	V	-
V_{3}	Pin 3 saturation voltage to ground	$\mathrm{I}_{3}=10 \mathrm{~mA}$		1.7	2.6	V	1a
V_{4}	Quiescent output voltage	$\begin{array}{ll} V_{s}=10 \mathrm{~V} & \mathrm{R}_{1}=10 \mathrm{~K} \Omega \\ \mathrm{R}_{2}=10 \mathrm{~K} \Omega \end{array}$	4.17	4.4	4.63	V	1a
		$\begin{aligned} & V_{s}=35 \mathrm{~V} \quad \mathrm{R}_{1}=30 \mathrm{~K} \Omega \\ & \mathrm{R}_{2}=10 \mathrm{~K} \Omega \end{aligned}$	8.35	8.8	9.25	V	1a
$V_{4 L}$	Output saturation voltage to ground	$-I_{4}=0.1 \mathrm{~A}$		0.9	1.2	V	1c
		$-I_{4}=0.8 \mathrm{~A}$		1.9	2.3	V	1c
$\mathrm{V}_{4 \mathrm{H}}$	Output saturation voltage to supply	$\mathrm{I}_{4}=0.1 \mathrm{~A}$		1.4	2.1	V	1d
		$\mathrm{I}_{4}=0.8 \mathrm{~A}$		2.8	3.2	V	1d
V_{6}	Regulated voltage at pin 6		6.1	6.5	6.9	V	1b
V_{7}	Regulated voltage at pin 7	$\mathrm{I}_{7}=20 \mu \mathrm{~A}$	6.2	6.6	7	V	1b
$\frac{\Delta \mathrm{V}_{6}}{\Delta \mathrm{~V}_{\mathrm{s}}} ; \frac{\Delta \mathrm{V}_{7}}{\Delta \mathrm{~V}_{\mathrm{s}}}$	Regulated voltage drift with supply voltage	$\Delta \mathrm{V}_{\mathrm{s}}=10$ to 35 V		1		mV / V	1b
V_{10}	Amplifier input reference voltage		2.07	2.2	2.3	V	-
R_{8}	Pin 8 input resistance	$\mathrm{V}_{8} \leqslant 0.4 \mathrm{~V}$	1			$\mathrm{M} \Omega$	1a

Fig. 1 - DC test circuits

Fig. 1a

Fig. 1c

Fig. 1b

Fig. 1d

TDA1170S

AC CHARACTERISTICS (Refer to the test circuit, $V_{S}=25 \mathrm{~V} ; \mathrm{f}=50 \mathrm{~Hz} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$, unless otherwise specified)

	Parameter	Test conditions	Min.	Typ.	Max.	Unit	Fig.
I_{5}	Supply current	$\mathrm{I}_{\mathrm{y}}=1 \mathrm{App}$		140		mA	2
I_{8}	Sync. input current (positive or negative)		500			$\mu \mathrm{A}$	2
V_{4}	Flyback voltage	$\mathrm{I}_{\mathrm{y}}=1 \mathrm{App}$		51		V	2
V_{9}	Peak to peak oscillator sawtooth voltage			2.4		V	2
$\mathrm{t}_{\text {fil }}$	Flyback time	$\mathrm{I}_{\mathrm{y}}=1 \mathrm{App}$		0.7		ms	2
f_{o}	Free running frequency	$\begin{aligned} & \left(\mathrm{P}_{1}+\mathrm{R}_{1}\right)=300 \mathrm{~K} \Omega \\ & \mathrm{C}_{2}=100 \mathrm{nF} \end{aligned}$		44		Hz	2
		$\begin{aligned} & \left(\mathrm{P}_{1}+\mathrm{R}_{1}\right)=260 \mathrm{~K} \Omega \\ & \mathrm{C}_{2}=100 \mathrm{nF} \end{aligned}$		52		Hz	2
$\Delta \mathrm{f}$	Synchronization range	$\mathrm{I}_{8}=0.5 \mathrm{~mA}$	14			Hz	2
$\frac{\Delta f}{\Delta V_{s}}$	Frequency drift with supply voltage	$\mathrm{V}_{\mathrm{s}}=10$ to 35 V		0.005		Hz / V	2
$\left\|\frac{\Delta \mathrm{f}}{\Delta \mathrm{~T}_{\mathrm{tab}}}\right\|$	Frequency drift with tab temperature	$T_{\text {tab }}=40$ to $120^{\circ} \mathrm{C}$		0.01		$\mathrm{Hz} /{ }^{\circ} \mathrm{C}$	2

Fig. 2 - AC test circuit

TDA1170S

Fig. 3 - Typical application circuit for small screen $B / W T V$ set ($R_{y}=2.9 \Omega, L_{y}=6 \mathrm{mH} ; \mathrm{I}_{\mathrm{y}}=1.1 \mathrm{App}$)

Typical performance

V_{s}	Operating supply voltage	10.8	V
I_{s}	Supply current	155	mA
$\mathrm{t}_{\text {fly }}$	Flyback time	0.5	ms
$P_{\text {tot }}$	TDA 1170S power dissipation	1.35	W
I_{y}	Maximum scanning current (peak to peak)	1.30	A

For safe working up to $\mathrm{T}_{\mathrm{amb}}=60^{\circ} \mathrm{C}$ a heatsink of $\mathrm{R}_{\mathrm{th}}=30^{\circ} \mathrm{C} / \mathrm{W}$ is required.

Fig. 4 - Typical application circuit for small screen 90° PIL TVC set ($R_{y}=12.5 \Omega ; L_{y}=31 \mathrm{mH} ; \mathrm{I}_{\mathrm{y}}=0.8$ App)

Typical performance

V $_{s}$	Operating supply voltage	22	V
I_{s}	Supply current	120	mA
$\mathrm{t}_{\text {fly }}$	Flyback time	0.8	ms
$\mathrm{P}_{\text {tot }}$	TDA 1170 位 power dissipation	1.95	W
I_{y}	Maximum scanning current (peak to peak)	1.0	A

For safe working up to $T_{a m b}=60^{\circ} \mathrm{C}$ a heatsink of $\mathrm{R}_{\mathrm{th}}=18^{\circ} \mathrm{C} / \mathrm{W}$ is required.

Fig. 5 - Typical application circuit for large screen $B / W T V$ set ($R_{y}=10 \Omega ; L_{y}=20 \mathrm{mH} ; I_{y}=1$ App)

Typical performance

V_{s}	Operating supply voltage	22	V
I_{s}	Supply current	145	mA
$\mathrm{t}_{\text {fly }}$	Flyback time	0.7	ms
$P_{\text {tot }}$	TDA 1170S power dissipation	2.3	W
I_{y}	Maximum scanning current (peak to peak)	1.2	A

For safe working up to $T_{a m b}=60^{\circ} \mathrm{C}$ a heatsink of $R_{t h}=14^{\circ} \mathrm{C} / \mathrm{W}$ is required.

Fig. 6 - Typical application circuit for large screen 110° PIL TVC set $\left(R_{y}=10 \Omega ; L_{y}=25 \mathrm{mH} ; \mathrm{I}_{\mathrm{y}}=1.25\right.$ App)

Typical performance

V_{s}	Operating supply voltage	25	V
I_{s}	Supply current	175	mA
$\mathrm{t}_{\text {fly }}$	Flyback time	1	ms
$P_{\text {tot }}$	TDA 1170SH power dissipation	3.25	W
I_{y}	Maximum scanning current (peak to peak)	1.4	A

For safe working up to $\mathrm{T}_{\mathrm{amb}}=60^{\circ} \mathrm{C}$ a heatsink of $\mathrm{R}_{\mathrm{th}}=8.5^{\circ} \mathrm{C} / \mathrm{W}$ is required.

Fig. 7 - P.C. board and component layout of the circuit of fig. 6 (1:1 scale)

Note: For the heatsink (1170 S and 1170 SH) see mounting instructions

MOUNTING INSTRUCTIONS

During soldering the tab temperature must not exceed $260^{\circ} \mathrm{C}$ and the soldering time must not be longer than 12 seconds.
The external heatsink or printed circuit copper area must be connected to electrical ground.

TDA 1170S

The junction to ambient thermal resistance of the TDA 1170 can be reduced by soldering the tabs to a suitable copper area of the printed circuit board (fig. 8) or to an external heatsink (fig. 9).
The diagram of fig. 10 shows the maximum dissipable power $P_{\text {tot }}$ and the $R_{\text {th } j \text {-amb }}$ as a function of the side "s" of two equal square copper areas having a thickness of 35μ (1.4 mil).

MOUNTING INSTRUCTIONS (continued)

Fig. 8 - Example of P.C. board copper area used as heatsink.

Fig. 9 - Example of TDA 1170 S with external heatsink.

Fig. 10 - Maximum Power dissipation and junctionalambient thermal resistance vs. "S"

Fig. 11 - Maxim. allowable power dissipation vs. ambient temp. (TDA1170S)

Fig. 12 - Maxim. allowable power dissipation vs. ambient temp. (TDA1170SH)

TDA 1170SH

The power dissipated in the circuit may be removed by connecting the tabs to an external heatsink according to fig. 12. The desired thermal resistance may be obtained by fixing the TDA1170SH to a suitable dimensioned plate as shown in fig. 13.

TDA1170S

MOUNTING INSTRUCTIONS (continued)

Fig. 13 - Mounting example.

LINEAR INTEGRATED CIRCUIT

TV HORIZONTAL PROCESSOR

The TDA 1180P is a horizontal processor circuit for b.w. and colour television receiver. It is a monolithic integrated circuit encapsulated in 16-lead dual in-line plastic package. The TDA 1180P combines the following functions:

- Noise gated horizontal sync separator.
- Noise gated vertical sync separator.
- Horizontal oscillator with frequency range limiter.
- Phase comparator between sync pulses and oscillator pulses (PLL).
- Phase comparator between flyback pulses and oscillator pulses (PLL).
- Loop gain and time constant switching (VCR).
- Composite blanking and key pulse generator.
- Protection circuits.
- Output stages with high current capability.

ABSOLUTE MAXIMUM RATINGS

V_{5}	Supply voltage (pin 1)	15	V
V_{2}	Voltage at pin 2	18	V
V_{4}	Voltage at pin 4	V_{s}	
V_{8}	Voltage at pin 8	$\left\{\begin{array}{l}\mathrm{V}_{5} \\ -6\end{array}\right.$	V
V_{9}	Voltage at pin 9	$\left\{\begin{array}{l}+6 \\ -6\end{array}\right.$	V
V_{11} I_{2}	Voltage at pin 11 Pin 2 peak current	V ${ }_{\text {s }}$	A
13	Pin 3 peak current	0.5	A
I_{6}	Pin 6 current	30	mA
17	Pin 7 current	20	mA
I_{10}	Pin 10 current	30	mA
$\mathrm{P}_{\text {tot }}$	Total power dissipation at $\mathrm{Tamb} \leqslant 70^{\circ} \mathrm{C}$	1	W
$\mathrm{T}_{\text {stg }}, \mathrm{T}_{\mathrm{j}}$	Storage and junction temperature	-40 to 150	${ }^{\circ} \mathrm{C}$

ORDERING NUMBER: TDA 1180P
MECHANICAL DATA
Dimensions in mm

TDA1180P

CONNECTION DIAGRAM

(top view)

BLOCK DIAGRAM

TDA1180P

TEST CIRCUIT

THERMAL DATA

| $R_{\text {th j-amb }}$ Thermal resistance junction-ambient | $\max \quad 80 \quad{ }^{\circ} \mathrm{C} / \mathrm{W}$ |
| :--- | :--- | :--- | :--- |

ELECTRICAL CHARACTERISTICS (Refer to the test circuit, $\mathrm{V}_{\mathrm{s}}=12 \mathrm{~V}, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ unless otherwise specified)

Parameter	Test conditions	Min.	Typ.	Max.	Unit
V_{s}	Supply voltage		10	12	13.2
I_{s}	Supply current	$\mathrm{I}_{3}=0$		40	52
$\mathrm{~V}_{5}$	Supply voltage at which the output pulses (at pin2and 3)are switched off				4 A

HORIZONTAL SYNC. SEPARATOR AND NOISE GATE

V_{i}	Peak to peak input signal		1	3	6	V
$\mathrm{~V}_{8}$	Input switching voltage	$\mathrm{I}_{8}=80 \mu \mathrm{~A}$		1.5		V
I_{8}	Input switching current	$\mathrm{V}_{8}=1.4 \mathrm{~V}$		10		$\mu \mathrm{~A}$
I_{8}	Input blocking current for noise suppression			0.9		mA
$\mathrm{~V}_{8}$	Input switching voltage for noise suppression		2.1		V	
I_{8}	Leakage current	$\mathrm{V}_{8}=-5 \mathrm{~V}$			1	$\mu \mathrm{~A}$

TDA1180P

ELECTRICAL CHARACTERISTICS (continued)

| Parameter | Test conditions | Min. | Typ. | Max. |
| :---: | :---: | :--- | :--- | :--- | Unit | (|
| :--- |

VERTICAL SYNC. SEPARATOR

V_{1}	Peak to peak input signal		1	3	6	V
V_{9}	Input switching voltage	$\mathrm{I}_{9}=80 \mu \mathrm{~A}$		1.5		V
I_{9}	Input switching current	$\mathrm{V}_{9}=1.4 \mathrm{~V}$		5		$\mu \mathrm{A}$
I_{9}	Leakage current	$\mathrm{V}_{9}=-5 \mathrm{~V}$			1	$\mu \mathrm{A}$
V_{10}	Vertical sync. pulse output voltage	No load at pin 10	11			V
R_{10}	Output resistance			10		$K \Omega$
t LV	Delay between leading edge of input and output signals			17		$\mu \mathrm{s}$
t T V	Delay between trailing edge of input and output signals			50		$\mu \mathrm{S}$
	Vertical sync pulse duration			190		$\mu \mathrm{s}$

PROTECTION CIRCUIT

V_{4}	Input voltage for switching off the output pulses	Output pulses OFF			0.5	V
		Output pulses ON	1			
R_{4}	Input resistance			200		$K \Omega$
I_{4}	Input current		5			$\mu \mathrm{A}$

FLYBACK PULSE

V_{6}	Input threshold voltage of blanking generator			1.5	
$\mathrm{~V}_{6}$	Input threshold voltage of phase comparator			V	
$\mathrm{I}_{6} \quad$ Input switching current	$\mathrm{V}_{6} \geqslant 1.7 \mathrm{~V}$		0.23	V	

OUTPUT PULSE

V_{3}	Peak to peak output voltage	$\mathrm{I}_{3}=150 \mathrm{mApp}$		10		V
I_{3}	Output current	$\mathrm{V}_{3}=5 \mathrm{~V}$		500		mA
R_{3}	Output resistance	at leading edge of output pulse		3		Ω
		at trailing edge of output pulse		20		
t_{p}	Output pulse duration		20	22	26	$\mu \mathrm{s}$

COMPOSITE BLANKING AND KEY PULSE

$\mathrm{V}_{7 \mathrm{~K}}$	Key pulse output peak voltage		9	11		V
$\mathrm{~V}_{7 B}$	Blanking pulse output voltage		4.2	4.5	4.8	V
R_{7}	Output resistance			100		Ω
t_{SK}	Phase relation between trailing edge of key pulse and middle of sync input pulse			2.7		$\mu \mathrm{~s}$
t_{K}	Key pulse duration		3.5	3.8		$\mu \mathrm{~s}$
t_{fb}	Delay between flyback pulse and blanking pulse	$\mathrm{V}_{6}=1.7 \mathrm{~V}$			0.2	$\mu \mathrm{~s}$

ELECTRICAL CHARACTERISTICS (continued)

Parameter	Test conditions	Min.	Typ.	Max.

INTERNAL GATING PULSE

t_{g}	Gating pulse duration		7.5		$\mu \mathrm{~s}$
t	Phase relation between middle of sync pulse and trailing and leading edge of gating pulse		3.75		$\mu \mathrm{~s}$

COINCIDENCE DETECTOR

V_{11}	Output voltage	with coincidence		6.8		V
		without coincidence			4	
I_{11}	Peak output current			0.5		mA

VCR SWITCH

V_{11}	Input voltage		0 to 4 or 8.5 to 12			V
$-\mathrm{I}_{11}$	Output current		35			$\mu \mathrm{~A}$
I_{11}	Output current		0.4			mA

TIME CONSTANT SWITCH

V_{12}	Output voltage			3		V
R_{12}	Output resistance	$4.5 \mathrm{~V}<\mathrm{V}_{11}<8 \mathrm{~V}$		100		Ω
		$\mathrm{~V}_{11}>8.5 \mathrm{~V}$ or $\mathrm{V}_{11}<4 \mathrm{~V}$		40		$\mathrm{~K} \Omega$

OSCILLATOR

V_{14}	Low level threshold voltage			5.4	
$\mathrm{~V}_{14}$	High level threshold voltage			8.2	V
I 14	Charge current			0.6	
I_{14}	Discharge current			0.3	mA
$\mathrm{~V}_{15}$	Current source supply voltage			3	mA
I_{15}	Current source supply current			0.3	
f_{O}	Free running frequency			V	
$\frac{\Delta \mathrm{f}_{\mathrm{o}}}{\mathrm{f}_{\mathrm{o}}}$	Adjustment range			mA	
$\frac{\Delta \mathrm{f}_{\mathrm{O}}}{\Delta \mathrm{I}_{15}}$	Frequency control sensitivity			52	
$\Delta \mathrm{f}_{\mathrm{O}}$	Frequency change when V_{s} drops to 4 V			Hz	

ELECTRICAL CHARACTERISTICS (continued)

| Parameter | Test conditions | Min. | Typ. | Max. |
| :--- | :--- | :--- | :--- | :--- | Unit | Uner |
| :--- |

OSCILLATOR-FLYBACK PULSE PHASE COMPARATOR

V_{5}	Control voltage range		9.4 to 8.2		V	
I_{5}	Peak control current				± 0.5	mA
I_{5}	Input current (blocked phase detector)			5	$\mu \mathrm{~A}$	
t_{d}	Permissible delay between output pulse leading edge and flyback pulse leading edge			$\mathrm{t}_{\mathrm{p}}-\mathrm{t}_{\mathrm{f}}$		$\mu \mathrm{s}$
$\frac{\Delta \mathrm{t}}{\mathrm{Dt}_{\mathrm{d}}}$	Static control error				0.2	$\%$

SYNC PULSE-OSCILLATOR PHASE COMPARATOR

V_{13}	Control voltage range		4.6 to 1.4		V	
I_{13}	Control peak current			± 2		mA
$\frac{\Delta \mathrm{f}}{\Delta \mathrm{t}}$	Phase lock loop gain			2		$\frac{\mathrm{KHz}}{\mu \mathrm{s}}$
f	Catching and holdirg range			± 700		Hz

OVERALL PHASE RELATIONSHIP

t_{O}	Phase relation between middle of flyback pulse and middle of sync pulse			2.6	
$\frac{\Delta \mathrm{~V}_{5}}{\Delta \mathrm{t}_{\mathrm{o}}}$	Adjustment sensitivity			s	
$\frac{\Delta \mathrm{I}_{5}}{\Delta \mathrm{t}_{\mathrm{O}}}$	Adjustment sensitivity			$\frac{\mathrm{mV}}{\mu \mathrm{s}}$	

Fig. 1 - Vertical sync. output pulse

Fig. 2 - Relationship of main waveform phases

Fig. 3 - Free running frequency vs. supply voltage

Fig. 4 - Overall phase rela-
tion vs. supply voltage

Fig. 5 - Loop gain

APPLICATION INFORMATION

Pin 1 - Positive supply

The operating supply voltage of the device ranges from 10 V to 13.2 V .

Pin 2 and 3 - Output

The outputs of TDA 1180P are suitable for driving transistor output stages, they deliver positive pulse at pin 3 and negative pulse at pin 2.
The negative pulse is used for direct driving of the output stage, while positive pulse is useful when a driver stage is required.
The rise and fall times of the output pulses are about 150 ns so that interference due to radiation are avoided.
Furthermore the output stages are internally protected against short circuit.

Pin 4 - Protection circuit input

By connecting pin 4 of the IC to earth the output pulses at pin 2 and 3 are shut off; this function has been introduced to protect the final stages from overloads.
The same pulses are also shut off when the supply voltage falls below 4 V .

Pin 5 - Phase shifter filter

To compensate for the delay introduced by the line final stages, the flyback pulses to pin 6 and the oscillator waveform are compared in the oscillator-flyback pulse phase comparator.
The result of the comparison is a control current which, after it has been filtered by the external capacitor connected to pin 5 , is sent to a phase shifter which adequately regulates the phase of the output pulses.
The maximum phase shift allowed is:

$$
t_{d}=t_{p}-t_{f}
$$

where t_{f} is the flyback pulse duration.
Pin 5 has high input and output resistance (current generator).

APPLICATION INFORMATION (continued)

Pin 6 - Flyback input

The flyback pulse drives the high impedance input through a resistor in order to limit the input current to suitable maximum values.
The flyback input pulses are processed by a double threshold circuit; this generates the blanking pulses by sensing low level flyback voltage and the pulses to drive the phase comparator by sensing high level flyback voltage, therefore phase jitter caused by ringing normally associated with the flyback pulse, is avoided.

Pin 7 - Key and blanking pulse output

The key pulse for taking out the burst from the chrominance signal is generated from the oscillator ramp and has therefore a fixed phase position with respect to the sync.
The key pulse is then added internally to the blanking pulse obtained by correctly forming the flyback pulse present at pin 6.
The sum of the two signals (sandcastle pulse) is available on low impedance at output pin 7.

Pin 8 and 9 - Sync separators inputs

The video signal is applied by means of two distinct biasing networks to pins 8 and 9 of the IC and therefore to the respective vertical and horizontal sync separators.
The latter take the sync pulses out of the video signal and make them available to the rest of the circuit for further processing.
An amplitude detector also connected to pin 8, blocks operation of the sync separators when interference or noise peaks exceed a certain preset value.

Pin 10 - Vertical sync output

The vertical sync pulse, obtained by internal integration of the synchronizing signal, is available at this pin.
The output impedance is typically $10 \mathrm{~K} \Omega$ and the lowest amplitude without load is 11 V .

Pin 11 - Coincidence detector

From the oscillator waveform a gate pulse $7 \mu \mathrm{~s}$ wide is taken whose phase position is centered on the horizontal syncronism.
The gate pulse not only controls a logic block which permits the sync to reach the oscillator-sync phase comparator only for as long as its duration, but also allows the latching and de-latching conditions of the oscillator to be established.
This function is obtained by a coincidence detector which compares the phase of the gate pulses with that of the sync.
When the two signals are not accurately aligned in time it means that the oscillator is not synchronized. In this case the detector acts on the logic block to eliminate its filtering effect and on the time constant switching block to establish a high impedance on pin 12 (small time constant of low-pass filter).
This latter block also acts on the oscillator-sync phase detector to increase its sensitivity and with it the loop gain of the synchronizing system.
In this conditions the phase lock has low noise immunity (wide equivalent noise bandwidth) and rapid pull-in time which allows fairly short synchronization times.

APPLICATION INFORMATION (continued)

Once locking has taken place the coincidence detector enables the logic block, causes a low impedance on pin 12 and reduces the sensitivity of the phase comparator.
In these conditions the phase lock has high noise immunity (narrow equivalent noise bandwidth) due to the complete elimination of interference which occurs during the scanning period and the greater inertia with which the oscillator can change its frequency.
To optimize the behaviour of the IC if a video recorder is used, the state of the detector can be forced by connecting pin 11 to earth or to $+\mathrm{V}_{\mathrm{s}}$. The characteristics of the phase lock thus correspond to the lack of synchronization.

Pin 12 - Time constant switch, (see pin 11)

Pin 13 - Control current output

The oscillator is synchronized by comparing the phase of its waveform with that of the sync pulses in the oscillator-sync phase comparator and sending its output current I_{13} (proportional to the phase difference between the two signals) to pin 15 of the oscillator after it has been filtered properly with an external low-pass circuit.
The time constant of the filter can be switched between two values according to the impedance presented by pin 12.
The voltage limiter at the output of the phase comparator limits the voltage excursion on pin 13 and therefore the frequency range in which the oscillator remains held-in.
The output resistance of pin 13 is :

> low when $\mathrm{V}_{13}>4.3 \mathrm{~V}$ or $\mathrm{V}_{13}<1.6 \mathrm{~V}$
> high when $1.6 \mathrm{~V}<\mathrm{V}_{13}<4.3 \mathrm{~V}$

To prevent the vertical sync from reaching the oscillator-sync phase comparator along with the horizontal sync, a signal which inhibits the phase detector during the vertical interval is taken from the vertical output stage; inhibition remains even if the video signal is not present.
The free running frequency of the oscillator is determined by the values of the capacitor and of the resistor connected to pins 14 and 15 respectively.
To generate the line frequency output pulses, two thresholds are fixed along the fall ramp of the triangular waveform of the oscillator.

Pin 14 - Oscillator (see pin 13)
Pin 15 - Oscillator control current input (see pin 13)

Pin 16 - Ground

410
 TDA1180P

Fig. 6 - Application circuit for large screen b.w. and colour TV

Fig. 7 - P.C. board and component layout for the circuit in fig. 6 (1:1 scale)

Fig. 8 - Application circuit for small screen b.w. TV.

Fig. 9 Application circuit for Darlington output stage

LINEAR INTEGRATED CIRCUIT

COMPLETE TV SOUND CHANNEL

The TDA 11902 is a monolithic integrated circuit in a 12 -lead quad in-line plastic package. It performs all the functions needed for the TV sound channel:

- IF limiter-amplifier
- Active low-pass filter
- FM detector
- DC volume control
- AF preamplifier
- AF output stage

The TDA 1190 Z can give an output power of $4.2 \mathrm{~W}\left(\mathrm{~d}=10 \%\right.$) into a 16Ω load at $\mathrm{V}_{\mathrm{s}}=24 \mathrm{~V}$, or 1.5 W ($\mathrm{d}=10 \%$) into an 8Ω load at $\mathrm{V}_{\mathrm{s}}=12 \mathrm{~V}$. This performance, together with the FM-IF section characteristics of high sensitivity, high AM rejection and low distortion, enables the device to be used in almost every type of television receivers.
The device has no irradiation problems, hence no external screening is needed.

ABSOLUTE MAXIMUM RATINGS

V_{s}	Supply voltage (pin 10)	28	V
$\mathrm{~V}_{\mathrm{i}}$	Input signal voltage (pin 1)	1	V
I_{o}	Output peak current (non-repetitive)	2	A
I_{o}	Output peak current (repetitive)	1.5	A
$\mathrm{P}_{\text {tot }}$	Power dissipation: at $\mathrm{T}_{\text {tab }}=90^{\circ} \mathrm{C}$	5	W
$\mathrm{~T}_{\text {stg }}, \mathrm{T}_{\mathrm{j}}$	at $\mathrm{T}_{\text {amb }}=80^{\circ}$ (free air)	1	W

ORDERING NUMBER: TDA 11902

MECHANICAL DATA
Dimensions in mm

TDA1190Z

CONNECTION AND BLOCK DIAGRAM
(top view)

SCHEMATIC DIAGRAM

TDA1190Z

TEST CIRCUIT

THERMAL DATA

| $R_{\text {th } j \text {-tab }}$ | Thermal resistance junction-tab
 $R_{\text {th }- \text { amb }}$ | Thermal resistance junction-ambient |
| :--- | :--- | :--- | :---: | :---: |\quad| max. |
| :---: |
| ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |

* Obtained with tabs soldered to printed circuit with minimized copper area.

ELECTRICAL CHARACTERISTICS

(Refer to the test circuit, $\mathrm{V}_{\mathrm{s}}=24 \mathrm{~V}, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ unless otherwise specified)

	Parameter	Test conditions	Min.	Typ.	Max.	Unit
V_{s}	Supply voltage (pin 10)		9		28	V
v_{0}	Quiescent output voltage (pin 9)	$\begin{aligned} & V_{s}=24 V \\ & V_{s}=12 V \end{aligned}$	$\begin{aligned} & 11 \\ & 5.1 \end{aligned}$	$\begin{gathered} 12 \\ 6 \end{gathered}$	$\begin{array}{r} 13 \\ 6.9 \end{array}$	$\begin{aligned} & V \\ & v \end{aligned}$
I_{d}	Quiescent drain current	$\begin{aligned} & \mathrm{P}_{1}=22 \mathrm{~K} \Omega \\ & \mathrm{~V}_{\mathrm{S}}=24 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{s}}=12 \mathrm{~V} \end{aligned}$	11	$\begin{aligned} & 22 \\ & 19 \end{aligned}$	$\begin{aligned} & 45 \\ & 40 \end{aligned}$	$\frac{\mathrm{mA}}{\mathrm{~mA}}$
P_{0}	Output power	$\begin{array}{ll} \mathrm{d}=10 \% & \mathrm{f}_{\mathrm{m}}=400 \mathrm{~Hz} \\ \mathrm{f}_{\mathrm{O}}=4.5 \mathrm{MHz} & \Delta \mathrm{f}= \pm 25 \mathrm{kHz} \\ \mathrm{~V}_{\mathrm{S}}=24 \mathrm{~V} & \mathrm{R}_{\mathrm{L}}=16 \Omega \\ \mathrm{~V}_{\mathrm{s}}=12 \mathrm{~V} & \mathrm{R}_{\mathrm{L}}=8 \Omega \end{array}$		$\begin{aligned} & 4.2 \\ & 1.5 \end{aligned}$		$\begin{aligned} & w \\ & w \end{aligned}$

ELECTRICAL CHARACTERISTICS (continued)

	Parameter	Test conditions		Min.	Typ.	Max.	Unit
P_{0}	Output power	$\begin{aligned} & \mathrm{d}=2 \% \\ & \mathrm{f}_{\mathrm{O}}=4.5 \mathrm{MHz} \\ & \mathrm{~V}_{\mathrm{s}}=24 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{s}}=12 \mathrm{~V} \end{aligned}$	$\begin{aligned} & f_{m}=400 \mathrm{~Hz} \\ & \Delta f= \pm 25 \mathrm{kHz} \\ & R_{L}=16 \Omega \\ & R_{L}=8 \Omega \end{aligned}$		$\begin{aligned} & 3.5 \\ & 1.4 \end{aligned}$		W
v_{i}	Input limiting voltage $(-3 \mathrm{~dB})$ at pin 1	$\begin{aligned} & \mathrm{f}_{\mathrm{o}}=4.5 \mathrm{MHz} \\ & \mathrm{f}_{\mathrm{m}}=400 \mathrm{~Hz} \\ & \mathrm{P}_{1}=0 \end{aligned}$	$\Delta \mathrm{f}= \pm 7.5 \mathrm{kHz}$		40	100	$\mu \mathrm{V}$
d	Distortion	$\begin{aligned} & \mathrm{P}_{\mathrm{O}}=50 \mathrm{~mW} \\ & \mathrm{f}_{\mathrm{O}}=4.5 \mathrm{MHz} \\ & \mathrm{~V}_{\mathrm{s}}=24 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{s}}=12 \mathrm{~V} \end{aligned}$	$\begin{aligned} & f_{m}=400 \mathrm{~Hz} \\ & \Delta f= \pm 7.5 \mathrm{kHz} \\ & R_{L}=16 \Omega \\ & R_{L}=8 \Omega \end{aligned}$		$\begin{gathered} 0.75 \\ 1 \end{gathered}$		$\begin{aligned} & \% \\ & \% \end{aligned}$
B	Frequency response of audio amplifier (-3 dB)	$\begin{aligned} & R_{\mathrm{L}}=16 \Omega \\ & \mathrm{C}_{12}=470 \mathrm{pF} \\ & R_{\mathrm{f}}=82 \Omega \\ & R_{\mathrm{f}}=47 \Omega \end{aligned}$	$\begin{aligned} & \mathrm{C}_{10}=120 \mathrm{pF} \\ & \mathrm{P}_{1}=22 \mathrm{k} \Omega \end{aligned}$		to 120 to 700		$\begin{aligned} & \mathrm{Hz} \\ & \mathrm{~Hz} \end{aligned}$
V_{0}	Recovered audio voltage (PIN. 12)	$\begin{aligned} & V_{i} \geqslant 1 \mathrm{mV} \\ & f_{m}=400 \mathrm{~Hz} \\ & P_{1}=0 \end{aligned}$	$\begin{aligned} & \mathrm{f}_{\mathrm{O}}=4.5 \mathrm{MHz} \\ & \Delta \mathrm{f}= \pm 7.5 \mathrm{kHz} \end{aligned}$		120		mV
AMR	Amplitude modulation rejection	$\begin{aligned} & V_{i} \geqslant 1 \mathrm{mV} \\ & f_{m}=400 \mathrm{~Hz} \\ & m=0.3 \end{aligned}$	$\begin{aligned} & \mathrm{f}_{\mathrm{o}}=4.5 \mathrm{MHz} \\ & \Delta \mathrm{f}= \pm 25 \mathrm{kHz} \end{aligned}$		55		dB
$\frac{S+N}{N}$	Signal to noise ratio	$\begin{aligned} & V_{i} \geqslant 1 \mathrm{mV} \\ & f_{0}=4.5 \mathrm{MHz} \\ & \Delta f= \pm 25 \mathrm{kHz} \end{aligned}$	$\begin{aligned} & V_{o}=4 \mathrm{~V} \\ & f_{m}=400 \mathrm{~Hz} \end{aligned}$	50	65		dB
R_{f}	External feedback resistance (between pins 7 and 9)				.	25	$k \Omega$
R_{i}	Input resistance (pin 1)				30		$k \Omega$
C_{i}	Input capacitance (pin 1)	$\mathrm{f}_{\mathrm{o}}=4.5 \mathrm{MHz}$			5		pF
SVR	Supply voltage rejection	$\begin{aligned} & R_{\mathrm{L}}=16 \Omega \\ & f_{\text {ripple }}=120 \mathrm{~Hz} \\ & \mathrm{P}_{1}=22 \mathrm{k} \Omega \end{aligned}$			46		dB
A	DC volume control attenuation	$\mathrm{P}_{1}=12 \mathrm{k} \Omega$			90		dB

Fig. 1 - Relative audio output voltage and output noise vs. input signal

Fig. 4 - \triangle AivR vs. tuning frequency change

Fig. 7 - Distortion vs. frequency deviation

Fig. 2 - Output voltage attenuation vs. DC volume control resistance

Fig. 5 - Recovered audio voltage vs. unloaded Q factor of the detector coil

Fig. 8 - Distortion vs. tuning frequency change

Fig. 3 - Amplitude modulation rejection vs. input signal

Fig. 6 - Distortion vs. output power

Fig. 9 - Audio amplifier frequency response

Fig. 10 - Supply voltage ripple rejection vs. ripple frequency

Fig. 13 - Maximum power dissipation vs. supply voltage (sine wave operation)

Fig. 11 - Supply voltage ripple rejection vs. volume control attenuation

Fig. 14 - Power dissipation and efficiency vs. output power

Fig. 12 - Output power vs. supply voltage

Fig. 15 - Quiescent output voltage (pin 9) vs. supply voltage

APPLICATION INFORMATION

The electrical characteristics of the TDA $1190 Z$ remain almost constant over the frequency range of 4.5 to 6 MHz , therefore it can be used in all television standard (FM mod.). The TDA 1190 Z has a high input impedance, so it can function with a ceramic filter or with a tuned circuit that provide the necessary input selectivity.
The value of the resistors connected to pin 7, determine the AC gain of the audio frequency amplifier. This enables the desired gain to be selected in relation to the frequency deviation at which the output stage of the AF amplifier must enter into clipping.
The capacitor connected between pins 9 and 8 determines the upper cut-off frequency of the audio band. If larger bandwidth is required $\mathrm{C}_{10}, \mathrm{C}_{12}$ must be reduced keeping $\mathrm{C}_{12} / \mathrm{C}_{10}$ as in Fig. 16.
The capacitor connected between pin 12 and ground, toghether with the internal resistor of $10 \mathrm{~K} \Omega$, forms the de-emphasis network. The Boucherot cell eliminates the high frequency oscillations caused by inductive load and the wires connecting the loudspeaker.

4U tDA1190z

APPLICATION INFORMATION (continued)

Fig. 16 - Typical application circuit

Fig. 17 - P.C. board and component layout of the circuit shown in Fig. 16

TDA1190Z

MOUNTING INSTRUCTION

The $R_{\text {in } \mathrm{j} \text {-amb }}$ of the TDA 1190 Z can be reduced by soldering the tabs to a suitable copper area of the printed circuit board (Fig. 18) or to an external heatsink (Fig. 19).
The diagram of figure 20 shows the maximum dissipable power $P_{\text {tot }}$ and the $R_{\text {th } j \text {-amb }}$ as a function of the side " ℓ " of two equal square copper areas having a thickness of 35μ (1.4 mils).
During soldering the tab temperature must not exceed $260^{\circ} \mathrm{C}$ and the soldering time must not be longer than 12 seconds.
The external heatsink or printed circuit copper area must be connected to electrical ground.

Fig. 18 - Example of P.C. board copper area which is used as heatinsk

Fig. 20 - Maximum dissipable power and junction to ambient thermal resistance vs. side " ℓ "

Fig. 19 - External heatsink mounting example

Fig. 21 - Maximum allowable power dissipation vs. ambient temperature

LINEAR INTEGRATED CIRCUIT

AM-FM RADIO

The TDA 1220A is a monolithic integrated circuit in a 16-lead dual in-line plastic package designed for use in portable and home AM-FM radio sets as well as in industrial communication systems.
The functions incorporated are:

AM SECTION

- Preamplifier and double balanced mixer
- Local oscillator
- IF amplifier with internal AGC
- Balanced detector
- AF preamplifier

FM SECTION

- IF amplifier
- Quadrature detector
- AF preamplifier

The TDA 1220A is suitable for all AM and FM broadcasting bands and it features:

- Very low noise
- High sensitivity
- Wide supply voltage range $(2.8 \div 16 \mathrm{~V})$)
- Low quiescent current (9 mA)
- Very simple DC switching of AM-FM sections
- Minimized number of external components
- Local oscillator up to 30 MHz

ABSOLUTE MAXIMUM RATINGS

V_{s}	Supply voltage	16	V
$P_{\text {tot }}$	Total power dissipation at $\mathrm{T}_{\text {amb }} \leqslant 110^{\circ} \mathrm{C}$	400	mW
$\mathrm{~T}_{\text {op }}$	Operating temperature	${ }^{\circ} \mathrm{C}$	
$\mathrm{T}_{\text {stg }}, \mathrm{T}_{\mathrm{j}}$	Storage and junction temperature	-20 to 85	${ }^{\circ} \mathrm{C}$

ORDERING NUMBER: TDA 1220A
MECHANICAL DATA

TDA1220A

CONNECTION DIAGRAM (top view)

BLOCK DIAGRAM

0 TDA1220A

SCHEMATIC DIAGRAM

THERMAL DATA

ELECTRICAL CHARACTERISTICS $\left(T_{a m b}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{s}}=9 \mathrm{~V}\right.$ unless otherwise specified, refer to test circuit)

Parameter	Test condition	Min.	Typ.	Max.	Unit

DC CHARACTERISTICS

V_{s}	Supply Voltage		2.8		16	V
I_{d}	Drain current	AM section		9	15	mA
		FM section		9	15	

AC CHARACTERISTICS

AM SECTION ($\mathrm{f}_{\mathrm{O}}=1 \mathrm{MHz}$; $\mathrm{f}_{\mathrm{m}}=1 \mathrm{KHz}$)						
V_{i}	Input sensitivity	$\mathrm{S} / \mathrm{N}=26 \mathrm{~dB} \quad \mathrm{~m}=0.3$		12	25	$\mu \mathrm{V}$
S / N	Ultimate quieting	$V_{i}=10 \mathrm{mV} \quad \mathrm{m}=0.3$	50	60		dB
$\Delta \mathrm{V}_{\mathrm{i}}$	AGC range	$\Delta \mathrm{V}_{\text {out }}=10 \mathrm{~dB} \quad \mathrm{~m}=0.3$	80			dB
V_{0}	Recovered audio signal (pin 9)	$\mathrm{V}_{\mathrm{i}}=1 \mathrm{mV} \quad \mathrm{m}=0.3$	40	80	160	mV
d	Distortion	$\mathrm{V}_{\mathrm{i}}=1 \mathrm{mV} \quad \mathrm{m}=0.8$		1	3	\%
d	Distortion	$V_{i}=1 \mathrm{mV} \quad \mathrm{m}=0.3$		0.4	1	\%
V_{H}	Max input signal handling capability	$m=0.8 \quad d=10 \%$		80		mV
R_{i}	Input resistance between pins 2 and 4	$\mathrm{m}=0$		7.5		K Ω
C_{i}	Input capacitance between pins 2 and 4	$\mathrm{m}=0$		18		pF
R_{0}	Output resistance (pin 9)			7		$K \Omega$
FM SECTION ($\mathrm{f}_{\mathrm{o}}=10.7 \mathrm{MHz}$; $\mathrm{f}_{\mathrm{m}}=1 \mathrm{KHz}$)						
V_{i}	Input limiting voltage	-3 dB limiting point			36	$\mu \mathrm{V}$
AMR	Amplitude modulation rejection	$\begin{aligned} & \Delta f= \pm 22.5 \mathrm{KHz} \\ & \mathrm{~V}_{\mathrm{i}}=3 \mathrm{mV} \end{aligned}$	35	48		dB
S/N	Ultimate quieting	$\Delta f= \pm 22.5 \mathrm{KHz} \quad V_{i}=1 \mathrm{mV}$	55	70		dB
d	Distortion (single tuned)	$\Delta f= \pm 75 \mathrm{KHz} \quad \mathrm{V}_{\mathrm{i}}=1 \mathrm{mV}$		0.7	3	\%
d	Distortion (double tuned)	$\Delta f= \pm 22.5 \mathrm{KHz} \quad \mathrm{V}_{\mathrm{i}}=1 \mathrm{mV}$		0.2		
V_{o}.	Recovered audio signal (pin 9)	$\Delta f= \pm 22.5 \mathrm{KHz} \quad \mathrm{V}_{\mathrm{i}}=1 \mathrm{mV}$	40	80	160	mV
R_{i}	Input resistance between pin 16 and ground	$\Delta f=0$		6.5		K Ω
C_{i}	Input capacitance between pin 16 and ground	$\Delta f=0$		14		pF
R_{0}	Output resistance (pin 9)			7		K Ω

TDA1220A

TEST CIRCUIT

Fig. 1 - PC board and component layout (1:1 scale) of the test circuit

31
 TDA1220A

Fig. 2 - Drain current vs. supply voltage.

Fig. 5 - Distorsion vs. input signal (AM section)

Fig. 8 - Audio output vs. supply voltage with DC level shift resistor (AM section)

Fig. 3 - Audio output and signal to noise ratio vs. input signal (AM section)

Fig. 6 - Distortion vs. modulation index (AM section)

Fig. 9 - Audio output vs. supply voltage (AM section)

Fig. 4 - Audio output and signal to noise ratio vs. input signal (AM section)

Fig. 7 - Amplified AGC voltage (pin 4) vs. input signal (AM section)

Fig. $10-\triangle \mathrm{DC}$ voltage (pin 9) vs. ambient temperature (FM section)

$-20-10 \quad 0 \quad+10+20+30+40+50 \quad \mathrm{Tamb}^{\circ}\left({ }^{\circ} \mathrm{C}\right)$

Fig. 11 - Audio output and signal to noise ratio vs. input signal (FM section)

Fig. 14 - Amplitude modulation rejection vs. input signal (FM section)

Fig. 17- $\triangle \mathrm{DC}$ output voltage (pin 9) vs. frequency shift (FM section)

Fig. 12 - Distorsion vs. frequency deviation (FM section)

Fig. 15 - Audio output vs. supply voltage (FM section)

Fig. 18 -- DC output voltage (pin 9) vs. supply voltage (FM section)

Fig. 13 - Distortion vs. input signal (FM section)

Fig. 16 - Audio output vs. supply voltage with DC level shift resistor (FM section)

Fig. 19 - DC output voltage (pin 9) with DC level shift resistor vs. supply voltage (FM section)

TDA1220A

APPLICATION INFORMATION

FM Section

IF Amplifier and limiter

The 10.7 MHz IF signal from the ceramic filter is amplified and limited by a chain of four differential stages.
Pin 16 is the amplifier input and has a typical input impedance of $6.5 \mathrm{~K} \Omega$ in parallel with 14 pF at 10.7 MHz .

Bias for the first stage is available at pin 14 and provides 100% DC feedback for stable operating conditions. Pin 15 is the second input to the amplifier and is decoupled to pin 14 , which is grounded by a 20 nF capacitor.
An RLC network is connected to the amplifier output and gives a 90° phase shift (at the IF centre frequency) between pins 13 and 12. The signal level at pin 13 is about 150 mV rms .

FM Detector

The circuit uses a quadrature detector and the choise of component values is determined by the acceptable level of distortion at a given recovered audio level.
With a double tuned network the linearity improves (distortion is reduced) and the phase shift can be optimized; however this leads to a reduction in the level of the recovered audio. A satisfactory compromise for most FM receiver applications is shown in the test circuit.

Care should be taken with the physical layout
The main recommandations are:

- Locate the phase shift coil as near as possible to pin 13.
- Shunt pins 14 and 16 with a low value resistor (between 56Ω and 330Ω).
- Ground the decoupling capacitor of pin 14 and the 10.7 MHz input filter at the same point.

If the supply voltage goes under 6 V add a DC level shift resistor of $18 \mathrm{~K} \Omega$ from pin 9 to ground and change C11 to 8 nF .

AM-FM Switching

AM-FM switching is achieved by applying a DC voltage at pin 13 , to switch the internal reference.

Typical DC Voltages (refer to the test circuit)

Pins	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	9	$\mathbf{1 0}$	$\mathbf{1 1}$	12	13	14	15	16	Unit
AM	9	1.3	9	1.3	1.3	9	9	0.7	2	9	0	0	0	8.4	8.4	8.4	V
FM	9	0.4	9	0.4	0	9	9	0	2.6	9	0	9	9	8.1	8.1	8.1	V

APPLICATION INFORMATION (continued)

AM Section

RF Amplifier and mixer stages

The RF amplifier stage (pin 2) is connected directly to the secondary winding of the ferrite rod antenna or input tuned circuit. Bias is provided at pin 4 which must be adequately decoupled. The RF amplifier provides stable performance extending beyond 30 MHz .
The Mixer employed is a double - balanced multiplier and the IF output at pin 3 is connected directly to the IF filter coil.

Local oscillator

The local oscillator is a cross coupled differential stage which oscillates as the frequency determined by the load on pin 1.
The oscillator resonant circuit is transformer coupled to pin 1 to improve the \mathbf{Q} factor and frequency stability.
The oscillator level at pin 1 is about 100 mV rms and the performance extends beyond 30 MHz , however to enhance the stability and reduce to a minimum pulling effects of the AGC operation or supply voltage variations, a high C/L ratio should be used above 10 MHz .
An external oscillator can be injected at pin 1 . The level should be 50 mV rms and pin 1 should be connected to the supply via a 100Ω resistor.

IF Amplifier Detector

The IF amplifier is a wide band amplifier with a tuned output stage.
The outputs are at pins 6 and 7 which drive the balanced load and the differential positive peak AM detector, which is biased to reduce distortion at high modulation levels. At the output of balanced detectors of this type there is a low level signal at double the IF frequency (about 920 KHz). To avoid feedback of this signal by radiation from the detector coil, the shield around this coil must be grounded and the ferrite antenna placed in a suitable position.
The Audio output is at pin 9 (for either AM or FM); the IF frequency is filtered by an external capacitor which is also used as the FM mono de-enphasis network. The audio output impedance is about $7 \mathrm{~K} \Omega$ and a high impedance load ($\sim 50 \mathrm{~K} \Omega$) must be used.

AGC

Both the RF and the first IF amplifiers have the same differential amplifier circuit configuration. The AGC action is obtained by control of the collector current of these stages.
At pin 8 there is a carrier envelope signal which is filtered by an external capacitor to remove the Audio and RF content and obtain a mean DC signal to drive the AGC circuit.

APPLICATION INFORMATION (continued)

Fig. 20 - Low cost AM-FM radio
(a)

(b) FM front end

C5-C6-C7-C8-C9-C10-C11-C $12=T O K O$ CY2-22124FT VARIABLE CAPACITOR

COILS
L1 FM Antenna coil - 6 Turns copper wire 0.9 mm diameter. Inner diameter 4 mm . Winding pitch 1 mm .
L2 FM Tuning coil - 5 Turns copper wire 0.9 mm diameter. Inner diameter 4 mm Winding pitch 0.5 mm .
L4-18 Turns copper wire 0.6 mm diameter. Inner diameter 2.5 mm . Closely wound.
L5 MW Antenna coil - Televox.
L3 FM osc. coil - 4 Turns copper wire 0.9 mm diameter. Inner diameter 4 mm . Winding pitch 2 mm .
APPLICATION INFORMATION (continued)
Fig. 21 - PC board and component layout (1:1 scale) of the low cost AM-FM radio in fig. 20.

TDA1220A

APPLICATION INFORMATION (continued)

Low cost receiver performance ($\mathrm{V}_{\mathrm{s}}=9 \mathrm{~V}$)

Parameter	Test conditions				Value
Wavebands	FM				$87.5 \div 108 \mathrm{MHz}$
	AM				$510 \div 1620 \mathrm{KHz}$
Sensitivity	$\mathrm{FM}: 75 \Omega(\mathrm{~S}+\mathrm{N} / \mathrm{N})=26 \mathrm{~dB} \quad \Delta \mathrm{f}=22.5 \mathrm{KHz}$				$\leqslant 2 \mu \mathrm{~V}$
	AM	$(S+N / N)=6 d B$		$\mathrm{m}=0.3$	$1 \mu \mathrm{~V}$
	AM	$(S+N / N)=26 \mathrm{~dB}$		$\mathrm{m}=0.3$	$10 \mu \mathrm{~V}$
Distortion $\mathrm{f}_{\mathrm{m}}=1 \mathrm{KHz}$	FM	$\mathrm{V}_{\mathrm{i}}=100 \mu \mathrm{~V}$	$\Delta \mathrm{f}=22.5 \mathrm{KHz}$	$\mathrm{P}=0.5 \mathrm{~W}$	$\leqslant 0.25$ \%
	FM	$\mathrm{V}_{\mathrm{i}}=100 \mu \mathrm{~V}$	$\Delta f=75 \mathrm{KHz}$	$\mathrm{P}=0.5 \mathrm{~W}$	$\leqslant 1 \%$
	AM	$V_{i}=100 \mu \mathrm{~V}$	$m=0.3$	$\mathrm{P}=0.5 \mathrm{~W}$	$\leqslant 0.6$ \%
	AM	$\mathrm{V}_{\mathrm{i}}=100 \mu \mathrm{~V}$	$\mathrm{m}=0.8$	$\mathrm{P}=0.5 \mathrm{~W}$	$\leqslant 1 \%$
${ }_{\text {S }+\mathrm{N}}^{\mathrm{N}} \quad f_{m}=1 \mathrm{KHz}$	FM	$\mathrm{V}_{\mathrm{i}}=100 \mu \mathrm{~V}$	$\Delta f=22.5 \mathrm{KHz}$	$\mathrm{P}=0.5 \mathrm{~W}$	$\geqslant 70 \mathrm{~dB}$
	AM	$\mathrm{V}_{\mathrm{i}}=1000 \mu \mathrm{~V}$	$m=0.3$	$P=0.5 W$	$\geqslant 55 \mathrm{~dB}$
Input limiting voltage	FM	-3 dB point			$\leqslant 1.5 \mu \mathrm{~V}$
A M R	FM $\quad \mathrm{V}_{\mathrm{i}}=100 \mu \mathrm{~V} \quad \Delta \mathrm{f}=22.5 \mathrm{KHz} \quad \mathrm{m}=0.3$				$\geqslant 45 \mathrm{~dB}$
IF	FM				10.7 MHz
	AM				460 KHz
Quiescent current	FM				23 mA
	AM				15 mA
Supply voltage range	FM				$3 \div 12 \mathrm{~V}$
	AM				$3 \div 12 \mathrm{~V}$

APPLICATION INFORMATION (continued)

Fig. 23 - PC board and component layout of the four band radio (fig. 22)

APPLICATION INFORMATION (continued)

FOUR BAND RADIO PERFORMANCE

Parameter	Test conditions	Values

AM SECTION (*)

$\|$$\mathrm{S}+\mathrm{N}$ N	$\mathrm{V}_{\mathrm{i}}=10 \mu \mathrm{~V}$	$\mathrm{~m}=0.3$	26 dB
	$\mathrm{~V}_{\mathrm{i}}=1 \mathrm{mV}$	$\mathrm{m}=0.3$	55 dB
	-3 dB	10 KHz	
	$\mathrm{V}_{\mathrm{i}}=20 \mu \mathrm{~V}$	$\mathrm{~m}=0.3$	0.5%
	$\mathrm{~V}_{\mathrm{i}}=100 \mu \mathrm{~V}$	$\mathrm{~m}=0.3$	0.5%
	$\mathrm{~V}_{\mathrm{i}}=1 \mathrm{mV}$	$\mathrm{m}=0.3$	0.5%
	$\mathrm{~V}_{\mathrm{i}}=20 \mu \mathrm{~V}$	$\mathrm{~m}=0.8$	0.9%
	$\mathrm{~V}_{\mathrm{i}}=1 \mathrm{mV}$	$\mathrm{m}=0.8$	1%

FM SECTION

AMR	$\mathrm{V}_{\mathrm{i}}=30 \mu \mathrm{~V}$	$\Delta \mathrm{f}=22.5 \mathrm{KHz}$	$\mathrm{m}=0.3$	$\mathrm{f}_{\mathrm{m}}=1 \mathrm{KHz}$	45 dB
	$\mathrm{V}_{\mathrm{i}}=100 \mu \mathrm{~V}$	$\Delta f=22.5 \mathrm{KHz}$	$\mathrm{m}=0.3$	$\mathrm{f}_{\mathrm{m}}=1 \mathrm{KHz}$	47 dB
Distortion	$\mathrm{V}_{\mathrm{i}}=10 \mu \mathrm{~V}$	$\Delta \mathrm{f}=22.5 \mathrm{KHz}$			0.3 \%
	$\mathrm{V}_{\mathrm{i}}=100 \mu \mathrm{~V}$	$\Delta \mathrm{f}=22.5 \mathrm{KHz}$			0.2 \%
	$\mathrm{V}_{\mathrm{i}}=1 \mathrm{mV}$	$\Delta \mathrm{f}=22.5 \mathrm{KHz}$			0.2 \%
	$\mathrm{V}_{\mathrm{i}}=10 \mu \mathrm{~V}$	$\Delta \mathrm{f}=75 \mathrm{KHz}$			1 \%
	$\mathrm{V}_{\mathrm{i}}=100 \mu \mathrm{~V}$	$\Delta \mathrm{f}=75 \mathrm{KHz}$			1 \%
$\left\|\frac{S+N}{N}\right\|$	$\mathrm{V}_{\mathrm{i}}=10 \mu \mathrm{~V}$	$\Delta f=22.5 \mathrm{KHz}$			60 dB
	$\mathrm{V}_{\mathrm{i}}=100 \mu \mathrm{~V}$	$\Delta \mathrm{f}=22.5 \mathrm{KHz}$			70 dB
	$\mathrm{V}_{\mathrm{i}}=1 \mathrm{mV}$	$\Delta \mathrm{f}=22.5 \mathrm{KHz}$			70 dB
Input limiting voltage	-3 dB				$1 \mu \mathrm{~V}$

(*) The performance remains substantially the same over LW, MW and SW bands.

$100 \mathrm{KHz} /$ div.
Fig. 24 - FM-SECTION S curve response

$5 \mathrm{KHz} /$ div.
Fig. 25 - AM-SECTION
Band pass IF filter response at AGC starting point.

TDA 1220A

APPLICATION INFORMATION (continued)

Fig. 26 - Low cost 27 MHz receiver

Sensitivity: $10 \mu \mathrm{~V}$ for $\left(\frac{\mathrm{S}+\mathrm{N}}{\mathrm{N}}\right)=26 \mathrm{~dB}$

Fig. 27 - PC board and component layout of the low cost 27 MHz receiver (1:1 scale)

NOTE - For a more detailed description of the TDA 1220A and its applications refer to SGSTECHNICAL NOTE TN. 148.

Fig. 28 - L2 Oscillator Coil

Coil support: Toko 10K.
Primary winding: 10 Turns of enamelled copper wire 0.16 mm diameter (pins 3-1).
Secondary winding: 4 Turns copper wire 0.16 mm diameter (pins 6-4).

Fig. 29-L1 Antenna Coil

Coil support: Toko 10K.
Primary winding: as L2 (pins 3-1)
Secondary winding: 2 Turns copper wire 0.16 mm diameter (pins 6-4).

LINEAR INTEGRATED CIRCUIT

AM-FM QUALITY RADIO

The TDA 1220 B is a monolithic integrated circuit in a 16 -lead dual in-line plastic package designed as an improved version of the TDA 1220A.
It is intended for quality receivers produced in large quantities.
The functions incorporated are:

AM SECTION

- Preamplifier and double balanced mixer (1)
- One pin local oscillator
- IF amplifier with internal AGC
- Detector and audio preamplifier

FM SECTION

- IF amplifier and limiter
- Quadrature detector
- Audio preamplifier

The TDA 1220B is suitable up to $30 \mathrm{MHz}\left(^{*}\right) \mathrm{AM}$ and for FM bands (including 450 KHz narrow band) and features:

- Very constant characteristics (3V to 16V)
- High sensitivity and low noise
- Very low tweet
- High recovered audio signal (100 mV) suited for stereo decoders and radio recorders
- Very high signal handling (1V)
- Very simple DC switching of AM-FM
- Sensitivity regulation facility
- Low current drain
(1) Patent pending.
* Up to 50 MHz with external cristal oscillator.
** Maximum AM sensitivity can be reduced by mean of a resistor (5 to $12 \mathrm{~K} \Omega$) between pin 4 and ground.

ABSOLUTE MAXIMUM RATINGS

$V_{\text {s }}$	Supply voltage	16	V
$P_{\text {tot }}$	Total power dissipation at $T_{\text {amb }}<110^{\circ} \mathrm{C}$	400	mW
$T_{\text {op }}$	Operating temperature	-30 to	85
${ }^{\circ} \mathrm{C}$			
$T_{\text {stg }}, T_{j}$.	Storage and junction temperature	-55 to 150	${ }^{\circ} \mathrm{C}$

ORDERING NUMBER: TDA 1220B
MECHANICAL DATA

CONNECTION DIAGRAM

BLOCK DIAGRAM

TDA1220B

THERMAL DATA

| $R_{\text {th } j-a m b} \quad$ Thermal resistance junction-ambient | $\max \quad 100 \quad{ }^{\circ} \mathrm{C} / \mathrm{W}$ |
| :--- | :--- | :--- | :--- |

ELECTRICAL CHARACTERISTICS $\left(T_{a m b}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{s}}=9 \mathrm{~V}\right.$ unless otherwise specified, refer to test circuit)

Parameter	Test conditions	Min.	Typ.	Max.
	Unit			
V_{s}	Supply voltage		3	
I_{d}	Drain current			10

AM SECTION $\left(\mathrm{f}_{\mathrm{o}}=1 \mathrm{MHz} ; \mathrm{f}_{\mathrm{m}}=1 \mathrm{KHz}\right.$)

V_{i}	Input sensitivity	$\mathrm{S} / \mathrm{N}=26 \mathrm{~dB}$	$\mathrm{m}=0.3$		12	25	$\mu \mathrm{V}$
S / N		$\mathrm{V}_{\mathrm{i}}=10 \mathrm{mV}$	$\mathrm{m}=0.3$		52		dB
V_{i}	AGC eange	$\Delta V_{\text {out }}=10 \mathrm{~dB}$	$m=0.8$		100		dB
V_{c}	Recovered audio signal (pin 9)	$V_{i}=1 \mathrm{mV}$	$m=0.3$	65	120		mV
d	Distortion				0.4		\%
V_{H}	Max input signal handling capability	$\mathrm{m}=0.8$	d < 10\%		1		V
R_{i}	Input resistance between pins 2 and 4	$\mathrm{m}=0$			7.5		$K \Omega$
C_{i}	Input capacitance between pins 2 and 4	$\mathrm{m}=0$			18		pF
R_{o}	Output resistance (pin 9)				7		$K \Omega$
	Tweet 2 IF	$m=0.3$	$V_{i}=1 \mathrm{mV}$		38		dB
	Tweet 3 IF				55		dB

FM SECTION ($f_{o}=10.7 \mathrm{MHz} ; f_{m}=1 \mathrm{KHz}$)

V_{i}	Input limiting voltage	-3 dB lir, iting point			22	$\mu \mathrm{V}$
AMR	Amplitude modulation rejection	$\begin{aligned} & \Delta \mathrm{f}= \pm 22.5 \mathrm{KHz} \\ & \mathrm{~V}_{\mathrm{i}}=3 \mathrm{mV} \end{aligned}$	$m=0.3$		52	dB
S/N	Ultimate quieting	$\Delta \mathrm{f}= \pm$? 2.5 KHz	$\mathrm{V}_{\mathrm{i}}=1 \mathrm{mV}$		64	dB
d	Distortion	$\Delta \mathrm{f}= \pm 75 \mathrm{KHz}$	$\mathrm{V}_{\mathrm{i}}=1 \mathrm{mV}$		0.7	\%
d	Distortion	$\Delta f= \pm 22.5$	$\mathrm{V}_{\mathrm{i}}=1 \mathrm{mV}$		0.25	\%
d	Distortion (double tuned)				0.1	\%
V_{0}	Recovered audio signal (pin 9)	$\Delta f= \pm 22.5 \mathrm{KHz}$	$V_{i}=1 \mathrm{mV}$	65	100	mV
R_{i}	Input resistance between pin 16 and ground	$\Delta f=0$			6.5	$\mathrm{K} \Omega$
C_{i}	Input capacitance between pin 16 and ground	$\Delta f=0$			14	pF
R_{0}	Output resistance (pin 9)				7	$K \Omega$

Fig. 1 - Test circuit

Fig. 2 - PC board and component layout (1:1 scale) of the test circuit.

0
 TDA1220B

Fig. 3 - Suggestion for $7 \times 7 \mathrm{~mm}$ "LC" conventional filter use.

Fig. 4 - Suggestion for "coil block" use.

LINEAR INTEGRATED CIRCUIT

LOW VOLTAGE AM-FM RADIO

The TDA 1220 L is a monolithic integrated circuit in a 16 -lead dual in-line plastic package designed for use in 3V-4.5V-6V portable AM-FM radio receivers.
The functions incorporated are:

AM SECTION

- Preamplifier and double balanced mixer*
- One pin local oscillator
- IF amplifier with internal AGC
- Detector and audio preamplifier

FM SECTION

- IF amplifier and limiter
- Quadrature detector
- Audio preamplifier

The TDA 1220 L is suitable up to 30 MHz AM and for FM bands and features:

- High sensitivity and low noise
- Very low tweet
- High signal handling (1V)
- Low battery drain
* Patent pending.
- AM sensitivity regulation facility
- High stability of electrical characteristics from 2 V to 9 V
- Very simple DC switching of AM-FM

ABSOLUTE MAXIMUM RATINGS

	Supply voltage	12	V
$\mathrm{~V}_{\mathrm{s}}$	Total power dissipation at $\mathrm{T}_{\text {amb }}<110^{\circ} \mathrm{C}$	400	mW
$\mathrm{P}_{\text {tot }}$	Operating temperature	-20 to 85	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {op }}$	O	-55 to 150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }} \mathrm{T}_{\mathrm{j}}$	Storage and junction temperature		

ORDERING NUMBER: TDA 1220 L

MECHANICAL DATA
Dimensions in mm

CONNECTION DIAGRAM

BLOCK DIAGRAM

THERMAL DATA

| $\mathrm{R}_{\text {th } \mathrm{j} \text {-amb }} \quad$ Thermal resistance junction-ambient | \max | 100 | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |
| :--- | :--- | :--- | :--- | :--- |

ELECTRICAL CHARACTERISTICS $\left(\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{s}}=4.5 \mathrm{~V}\right.$ unless otherwise specified, refer to test circuit)

Parameter	Test conditions	Min.	Typ.	Max.
	Unit			
V_{s}	Operating supply voltage		2	
I_{d}	Drain current			10

AM SECTION ($\mathrm{f}_{\mathrm{o}}=1 \mathrm{MHz} ; \mathrm{f}_{\mathrm{m}}=1 \mathrm{KHz}$)

V_{i}	Input sensitivity	$\mathrm{S} / \mathrm{N}=26 \mathrm{~dB}$	$\mathrm{m}=0.3$	15	$\mu \mathrm{V}$
S/N		$\mathrm{V}_{\mathrm{i}}=10 \mathrm{mV}$	$\mathrm{m}=0.3$	52	dB
V_{i}	AGC range	$\Delta V_{\text {out }}=10 \mathrm{~dB}$	$\mathrm{m}=0.8$	100	dB
V_{0}	Recovered audio signal (pin 9)	$V_{i}=1 \mathrm{mV}$	$\mathrm{m}=0.3$	80	mV
d	Distortion			0.4	\%
V_{H}	Max input signal handling capability	$\mathrm{m}=0.8$	d < 10\%	1	V
R_{i}	Input resistance between pins 2 and 4	$\mathrm{m}=0$		7.5	$K \Omega$
C_{i}	Input capacitance between pins 2 and 4	$\mathrm{m}=0$		18	pF
R_{0}	Output resistance (pin 9)			5	$\mathrm{K} \Omega$
	Tweet 2 IF	$\mathrm{m}=0,3$	$\mathrm{V}_{\mathrm{i}}=1 \mathrm{mV}$	40	dB
	Tweet 3 IF			55	dB

FM SECTION ($\mathrm{f}_{\mathrm{o}}=10.7 \mathrm{MHz} ; \mathrm{f}_{\mathrm{m}}=1 \mathrm{KHz}$)

Fig. 1 - Test circuit

Fig. 2 - PC board and component layout (1:1 scale) of the test circuit.

Fig. 3 - Suggestion for varicap tuned receiver.

Fig. 4 - Suggestion for "coil block" use

LINEAR INTEGRATED CIRCUIT

TV VERTICAL DEFLECTION SYSTEM

The TDA 1470 is a monolitic integrated circuit in a 16-lead dual in-line plastic package with or without external bar. It is intended for direct driving of colour TV yokes, but it offers a wide application range also in BW TVs, monitors and displays.
The functions incorporated are:

- Synchronization circuit
- Oscillator and ramp generator
- Power amplifier with high current capability
- Flyback generator
- Voltage regulator

ABSOLUTE MAXIMUM RATINGS

V_{5}	Supply voltage at pin 3	35	V
$\mathrm{V}_{14}, \mathrm{~V}_{16}$	Flyback peak voltage	60	V
V_{7}, V_{8}	Power amplifier input voltage	+10	V
10	Output peak current (non repetitive) at $\mathrm{t}=2 \mathrm{~ms}$	-0.5 3	A
10	Output peak current at $\mathrm{f}=50 \mathrm{~Hz}, \mathrm{t} \leqslant 10 \mu \mathrm{~s}$	3.5	A
10	Output peak current at $\mathrm{f}=50 \mathrm{~Hz}, \mathrm{t}>10 \mu \mathrm{~s}$	2	A
I_{2}	Pin 2 D.C. current at $\mathrm{V}_{16}<\mathrm{V}_{3}$	100	mA
I_{2}	Pin 2 peak to peak flyback current for $f=50 \mathrm{~Hz}, \mathrm{t}_{\text {fly }} \leqslant 1.5 \mathrm{~ms}$	3	A
I_{11}	Pin 11 current	20	mA
$\mathrm{P}_{\text {tot }}$	Maximum power dissipation at $\mathrm{T}_{\text {case }} \leqslant 75^{\circ} \mathrm{C}$	25	W
$\mathrm{T}_{\text {stg }}, \mathrm{T}_{\mathrm{j}}$	Storage and junction temperature	-40 to 150	${ }^{\circ} \mathrm{C}$

ORDERING NUMBER: TDA 1470

MECHANICAL DATA

CONNECTION AND BLOCK DIAGRAMS

(top view)

The copper slug is electrically connected to pin 9 (substrate)

SCHEMATIC DIAGRAM

THERMAL DATA

$R_{\text {th j-case }}$	Thermal resistance junction-case	\max	3	${ }^{\circ} \mathrm{C} / \mathrm{W}$

DC ELECTRICAL CHARACTERISTICS (Refer to the DC test circuits, $\mathrm{V}_{\mathrm{s}}=35 \mathrm{~V}, \mathrm{~T}_{\text {amb }}=25^{\circ} \mathrm{C}$, unless otherwise specified)

	Parameter	Test conditions	Min.	Typ.	Max.	Unit	Fig.
13	Pin 3 quiescent current	$I_{2}=0$		7		mA	1b
I_{14}	Pin 14 quiescent current	$\mathrm{I}_{16}=0$		10		mA	1b
${ }^{-1} 10$	Oscillator bias current	$V_{10}=1 \mathrm{~V}$		0.1		$\mu \mathrm{A}$	1a
-18	Amplifier input bias current	$\mathrm{V}_{8}=1 \mathrm{~V}$		1		$\mu \mathrm{A}$	1b
$-I_{5}$	Ramp generator bias current	$V_{5}=0 \mathrm{~V}$		0.02		$\mu \mathrm{A}$	1a
$-I_{5}$	Ramp generator current	$V_{5}=0 \mathrm{~V} \quad \mathrm{I}_{12}=20 \mu \mathrm{~A}$		20		$\mu \mathrm{A}$	1b
$\frac{\Delta I_{5}}{I_{5}}$	Ramp generator linearity	$\begin{aligned} & \Delta \mathrm{V}_{5}=0 \text { to } 12 \mathrm{~V} \\ & \mathrm{I}_{12}=20 \mu \mathrm{~A} \end{aligned}$		0.2	1	\%	1b
V_{5}	Supply voltage range(pin3)		10		35	V	-
V_{4}	Pin 4 saturation voltage to ground	$\mathrm{I}_{4}=1 \mathrm{~mA}$		1	1.4	V	-
V_{2}	Pin 2 saturation voltage to ground	$\mathrm{I}_{2}=10 \mathrm{~mA}$		0.5		V	1a
V_{16}	Quiescent output voltage	$\begin{array}{ll} V_{s}=10 \mathrm{~V} & \mathrm{R}_{1}=10 \mathrm{~K} \Omega \\ \mathrm{R}_{2}=10 \mathrm{~K} \Omega & \end{array}$	4.15	4.45	4.73	V	1a
		$\begin{array}{ll} \mathrm{V}_{\mathrm{s}}=35 \mathrm{~V} \\ \mathrm{R}_{2}=10 \mathrm{~K} \Omega & \mathrm{R}_{1}=30 \mathrm{~K} \Omega \\ \end{array}$	8.3	8.9	9.45	V	1a
$\mathrm{V}_{16 \mathrm{~L}}$	Output saturation voltage to ground	$\mathrm{-l}_{16}=0.8 \mathrm{~A}$		1.3		V	1c
		$-176=1.5 \mathrm{~A}$		1.7		V	1c

D.C. ELECTRICAL CHARACTERISTICS (continued)

	Parameter	Test conditions	Min.	Typ.	Max.	Unit	Fig.
$\mathrm{V}_{16 \mathrm{H}}$	Output saturation voltage to supply	$\mathrm{I}_{16}=0.8 \mathrm{~A}$		1.9		V	1d
		$\mathrm{I}_{16}=1.5 \mathrm{~A}$		2.3		V	1d
V_{13}	Regulated voltage at pin 13		6.1	6.5	6.9	V	1b
V_{12}	Regulated voltage at pin 12	$\mathrm{I}_{12}=20 \mu \mathrm{~A}$	6.2	6.5	7	V	1b
$\frac{\Delta \mathrm{V}_{13}}{\Delta \mathrm{~V}_{\mathrm{s}}}$	12 Regulated voltages V_{s} drift	$\Delta V_{s}=10$ to 35 V		1		mV / V	1b
V_{7}	Amplifier input reference voltage		2.07	2.2	2.3	V	

Fig. 1 - DC test circuits

\mathbb{M}
 TDA1470

AC ELECTRICAL CHARACTERISTICS (Refer to the AC test circuit $f=50 \mathrm{~Hz}, \mathrm{~V}_{\mathrm{s}}=24 \mathrm{~V}$, unless otherwise specified)

	Parameter	Test conditions	Min .	Typ.	Max.	Unit
V_{s}	Operating supply voltage	$I_{y ~ m a x ~}^{\text {max }}=2.2 \mathrm{App}$		24		V
I_{s}	Supply current	$\mathrm{I}_{\mathrm{y}}=2 \mathrm{App}$		270		mA
I_{11}	Sync. input current		500			$\mu \mathrm{A}$
V_{16}	Flyback voltage	$\mathrm{I}_{\mathrm{y}}=2 \mathrm{App}$		49		V
V_{10}	Peak to peak oscillator sawtooth voltage			2.4		V
$\mathrm{t}_{\text {fly }}$	Flyback time	$\mathrm{I}_{\mathrm{y}}=2 \mathrm{App}$		0.6		ms
f_{o}	Free running frequency	$\begin{aligned} & \mathrm{R}_{1}+\mathrm{P}_{1}=300 \mathrm{~K} \Omega \\ & \mathrm{C}_{2}=100 \mathrm{nF} \end{aligned}$		44		Hz
		$\begin{aligned} & R_{1}+P_{1}=260 \mathrm{~K} \Omega \\ & \mathrm{C}_{2}=100 \mathrm{nF} \end{aligned}$		52		Hz
Δf	Synchronization range	$\mathrm{I}_{11}=500 \mu \mathrm{~A}$	14			Hz
$\frac{\Delta f}{\Delta V_{s}}$	Frequency drift vs. supply voltage	$\mathrm{V}_{\mathrm{s}}=10$ to 35 V		0.005		Hz / V
$\frac{\Delta f}{\Delta T_{\mathrm{tab}}}$	Frequency drift vs. tab temperature	$\mathrm{T}_{\mathrm{amb}}=40$ to $120^{\circ} \mathrm{C}$		0.01		$\mathrm{Hz} /{ }^{\circ} \mathrm{C}$

Fig. 2 - AC Test circuit

Fig. 3 - Relative output voltage drift vs. supply voltage

Fig. 4 - Relative output voltage drift vs. case temperature

Fig. 5 - Output saturation voltage vs. output current

Fig. 6 - Application circuit for large screen 110° TVC set ($\mathrm{R}_{\mathrm{y}}=5.9 \Omega ; \mathrm{L}_{\mathrm{y}}=10 \mathrm{mH} ; \mathrm{I}_{\mathrm{y}}=1.95 \mathrm{App}$)

Typical performance

V_{s}.	Operating supply voltage	24	V
I_{s}	Supply current	300	mA
$\mathrm{t}_{\mathrm{fly}}$	Flyback time	0.7	ms
P_{d}	TDA 1470 power dissipation	4	W
I_{y}	Maximum scanning current	2.3	App

For safe operation up to $\mathrm{T}_{\mathrm{amb}}=60^{\circ} \mathrm{C}$ a heatsink of $\mathrm{R}_{\mathrm{th}}=7^{\circ} \mathrm{C} / \mathrm{W}$ is required.

TDA1470

Fig. 7-Application circuit for PIL 26" -110° parallel connected ($R_{y}=2.5 \Omega ; L_{y}=6.6 \mathrm{mH} ; I_{y}=2.36 \mathrm{App}$)

Typical performance

V_{s}	Operating supply voltage	16	V
I_{s}	Supply current	345	mA
$\mathrm{t}_{\mathrm{fly}}$	Flyback time	0.85	ms
P_{d}	TDA 1470 power dissipation	3.5	W
I_{y}	Maximum scanning current	2.5	App

For safe operation up to $\mathrm{T}_{\mathrm{amb}}=60^{\circ} \mathrm{C}$ a heatsink of $\mathrm{R}_{\mathrm{th}}=8^{\circ} \mathrm{C} / \mathrm{W}$ is required.

Fig. 8 - Application circuit for PIL 26" -110° series connected ($R_{y}=9.7 \Omega ; L_{y}=26.4 \mathrm{mH} ; I_{y}=1.18$ App)

Typical performance

V_{s}	Operating supply voltage	23	V
I_{s}	Supply current	185	mA
$\mathrm{t}_{\text {fly }}$	Flyback time	1	ms
P_{d}	TDA 1470 power dissipation	2.8	W
I_{y}	Maximum scanning current	1.4	App

For safe operation up to $\mathrm{T}_{\mathrm{amb}}=60^{\circ} \mathrm{C}$ a heatsink of $\mathrm{R}_{\mathrm{th}}=10^{\circ} \mathrm{C} / \mathrm{W}$ is required.

4

Fig. 9 - P.C. board and component layout (Application circuits of fig. 6, 7 and 8)

MOUNTING INSTRUCTIONS

The power dissipated in the circuit must be removed by adding an external heatsink as shown in fig. 10. The system for attaching the heatsink is very simple; it uses a plastic spacer which is supplied with the device on request (TDA 1470 F2).
Thermal contact between the copper slug (of the package) and the heatsink is guaranteed by the pressure which the screws exert via the printed circuit board; this is due to the particular shape of the spacer.

Note: The most negative supply voltage is connected to the copper slug, hence to the heatsink (because it is in contact with the slug).

Fig. 10 - Mounting system example (TDA 1470)

LINEAR INTEGRATED CIRCUIT

PRELIMINARY DATA

VERTICAL DEFLECTION CIRCUIT

The TDA 1670 is a monolithic integrated circuit in 15 -lead Multiwatt ${ }^{\circledR}$ package. It is a full performance and very efficient vertical deflection circuit intended for direct drive of the yoke of 110° colour TV picture tubes. It offers a wide range of applications also in portable CTVs, BW TVs, monitors and displays. The functions incorporated are.

- Synchronization circuit
- Precision oscillator and ramp generator
- Power output amplifier with high current capability
- Flyback generator
- Voltage regulator
- Precision blanking pulse generator
- Thermal shut down protection
- CRT screen protection circuit which blanks the beam current in the event of loss of vertical deflection current.

ABSOLUTE MAXIMUM RATINGS

V_{5}	Supply voltage at pin 14	35	V
$\mathrm{V}_{1}, \mathrm{~V}_{2}$	Flyback peak voltage	60	V
V_{5}	Sync. input voltage	20	V
$\mathrm{V}_{11}, \mathrm{~V}_{12}$	Power amplifier input voltage	$\left\{\begin{array}{c}V_{5} \\ -10\end{array}\right.$	V
V_{13}	Voltage at pin 13	$V_{\text {s }}$	
I_{0}	Output current (non repetitive) at $\mathrm{t}=2 \mathrm{msec}$	3	A
I_{0}	Output peak current at $\mathrm{f}=50 \mathrm{~Hz} \mathrm{t}>10 \mu \mathrm{sec}$	2	A
1 o	Output peak current at $\mathrm{f}=50 \mathrm{~Hz} \mathrm{t} \leqslant 10 \mu \mathrm{sec}$	3.5	A
15	Pin 15 peak to peak flyback current at $\mathrm{f}=50 \mathrm{~Hz}, \mathrm{t}_{\text {fly }} \leqslant 1.5 \mathrm{msec}$	3	A
I_{15}	Pin 15 DC current at $\mathrm{V}_{1}<\mathrm{V}_{14}$	100	mA
$\mathrm{P}_{\text {tot }}$	Maximum power dissipation at $\mathrm{T}_{\text {case }} \leqslant 60^{\circ} \mathrm{C}$	30	W
$\mathrm{T}_{\text {stg }}, \mathrm{T}_{\mathrm{j}}$	Storage and junction temperature	-40 to 150	${ }^{\circ} \mathrm{C}$

ORDERING NUMBER: TDA 1670
MECHANICAL DATA
Dimensions in mm

TDA1670

CONNECTION DIAGRAM

(top view)

BLOCK DIAGRAM

THERMAL DATA

$R_{\text {th } \mathrm{j} \text {-case }}$	Thermal resistance junction-case	\max	3	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{\text {th } \mathrm{j} \text {-amb }}$	Thermal resistance junction-ambient	\max	40	${ }^{\circ} \mathrm{C} / \mathrm{W}$

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{s}}=35 \mathrm{~V}, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}\right.$, unless otherwise specified)

| Parameter | Test conditions | Min. | Typ. | Max. | Unit |
| :--- | :--- | :--- | :--- | :--- | :--- | Fig. | (|
| :--- |

DC CHARACTERISTICS

I_{2}	Pin 2 quiescent current	$\mathrm{I}_{1}=0$			18	30	mA	1b
-19	Ramp generator bias current	$\mathrm{V}_{9}=0$			0.02	1	$\mu \mathrm{A}$	1b
-19	Ramp generator current	$\mathrm{V}_{9}=0 ;$	$-I_{7}=20 \mu \mathrm{~A}$	18.5	20	21.5	$\mu \mathrm{A}$	1b
$\left\|\frac{\Delta l_{9}}{I_{9}}\right\|$	Ramp generator non linearity	$\begin{aligned} & \Delta V_{9}=0 \text { to } 15 \mathrm{~V} \\ & -I_{7}=20 \mu \mathrm{~A} \end{aligned}$			0.2	1	\%	1b
l_{14}	Pin 14 quiescent current				25	50	mA	1b
V_{1}	Quiescent output voltage	$\begin{aligned} & V_{s}=35 \mathrm{~V} \\ & R_{b}=1 \mathrm{~K} \Omega \end{aligned}$	$\mathrm{R}_{\mathrm{a}}=2.2 \mathrm{~K} \Omega$	16.8	17.8	18.6	V	1a
		$\mathrm{V}_{5}=15 \mathrm{~V}$;	$\begin{aligned} & \mathrm{R}_{\mathrm{a}}=390 \Omega \\ & \mathrm{R}_{\mathrm{b}}=1 \mathrm{~K} \Omega \end{aligned}$	7	7.5	8	V	
$\mathrm{V}_{1} \mathrm{~L}$	Output saturation voltage to ground	$\mathrm{I}_{1}=1.2 \mathrm{~A}$			1	1.4	V	1c
$\mathrm{V}_{1} \mathrm{H}$	Output saturation voltage to supply	$-\mathrm{I}_{1}=1.2 \mathrm{~A}$			1.6	2.2	V	1d
V_{4}	Oscillator virtual ground				0.45		V	1b
V_{7}	Regulated voltage at pin 7	$-1_{7}=20 \mu \mathrm{~A}$		6.3	6.6	7.1	V	1b
$\frac{\Delta V_{7}}{\Delta V_{5}}$	Regulated voltage drift with supply voltage	$\Delta V_{s}=15$ to 35 V			1		$\frac{\mathrm{mV}}{\mathrm{V}}$	1b
V_{11}	Amplifier input (+) reference voltage			4.2	4.4	4.6	V	1b
V_{13}	Blanking output saturation voltage	$\mathrm{I}_{13}=10 \mathrm{~mA}$			0.35		V	1a
V_{15}	Pin 15 saturation voltage to ground	$\mathrm{t}_{15}=20 \mathrm{~mA}$			1	1.3	V	1a

+ TDA1670

Fig. 1 - DC test circuit

Fig. 1a

Fig. 1b

Fig. 1d

ELECTRICAL CHARACTERISTICS(Refer to the A.C. test circuit of fig. 2, $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$, $V_{s}=24 \mathrm{~V}, \mathrm{f}=50 \mathrm{~Hz}$, unless otherwise specified)

Parameter	Test conditions	Min.	Typ.	Max.	Unit

AC CHARACTERISTICS

I_{s}	Supply current	$\mathrm{I}_{\mathrm{y}}=2 \mathrm{App}$			295	mA
I_{5}	Sync input current required to sync.			100		$\mu \mathrm{A}$
v_{1}	Flyback voltage	$\mathrm{I}_{\mathrm{y}}=2 \mathrm{App}$			50	V
v_{3}	Peak to peak oscillator sawtooth voltage	$\mathrm{I}_{5}=0$			3.6	V
		$\mathrm{I}_{5}=100 \mu \mathrm{~A}$			3.4	V
$V_{10 \text { thL }}$	Start scan level of the input ramp				1.85	V
$\mathrm{t}_{\mathrm{fly}}$	Flyback time	$\mathrm{I}_{\mathrm{y}}=2 \mathrm{App}$			0.6	ms
$\mathrm{t}_{\text {blank }}$	Blanking pulse duration	$\mathrm{f}_{\mathrm{o}}=50 \mathrm{~Hz}$	$\mathrm{T}_{\mathrm{j}}=75^{\circ} \mathrm{C}$		1.4	ms
		$\mathrm{f}_{\mathrm{O}}=60 \mathrm{~Hz}$	$\mathrm{T}_{\mathrm{j}}=75^{\circ} \mathrm{C}$		1.17	ms
f_{0}	Free running frequency	$\begin{aligned} & \mathrm{R}_{\mathrm{o}}=7.5 \mathrm{~K} \Omega \\ & \mathrm{C}_{\mathrm{o}}=330 \mathrm{nF} \end{aligned}$	$\mathrm{T}_{\mathrm{j}}=75^{\circ} \mathrm{C}$		43.5	Hz
		$\begin{aligned} & \mathrm{R}_{\mathrm{o}}=6.2 \mathrm{~K} \Omega \\ & \mathrm{C}_{\mathrm{o}}=330 \mathrm{nF} \end{aligned}$	$\mathrm{T}_{\mathrm{j}}=75^{\circ} \mathrm{C}$		52.5	Hz
$\triangle \mathrm{f}$	Synchronization range	$\mathrm{I}_{5}=100 \mu \mathrm{~A}$	$\mathrm{T}_{\mathrm{j}}=75^{\circ} \mathrm{C}$		16	Hz
T_{j}	Junction temperature for thermal shut-down				145	${ }^{\circ} \mathrm{C}$

Fig. 2 - AC test circuit

TDA1670

Fig. 3 - Application circuit for small screen 90° TVC set ($R y=15 \Omega ; L y=30 \mathrm{mH} ; I y=0.82 \mathrm{App}$)

* The value depends on the characteristics of the CRT. The value shown is indicative only.

Typical performance

$V_{\text {s }}$	Minimum supply voltage	25	V
I_{s}	Supply current	140	mA
$\mathrm{t}_{\text {fily }}$	Flyback time	0.7	msec
$\mathrm{t}_{\text {bikg }}$	Blanking time	1.4	msec
$\mathrm{f}_{\text {。 }}$	Free running frequency	43.5	Hz
$\mathrm{P}_{\text {tot }}$	Power dissipation	2.4	W
$\mathrm{R}_{\text {th }}$ neatsink	Thermal resistance of the heatsink for $T_{a m b}=60^{\circ} \mathrm{C}$ and $\mathrm{T}_{\mathrm{jmax}}=110^{\circ} \mathrm{C}$ for $\mathrm{T}_{\text {amb }}=60^{\circ} \mathrm{C}$ and $\mathrm{T}_{\mathrm{i} \text { max }}=120^{\circ} \mathrm{C}$	13 16	${ }^{\circ} \mathrm{C} / \mathrm{W}$

TDA1670

Fig. 4 - Application circuit for 110° TVC set ($\left.R y=9.6 \Omega ; L y=27 \mathrm{mH} ; l y=1.17 \mathrm{App}\right)$

* The value depends on the characteristics of the CRT. The value shown is indicative only.

Typical performance

V_{s}	Minimum supply voltage	22.5	V
I_{5}	Supply current	185	mA
$\mathrm{t}_{\text {fly }}$	Flyback time	1	msec
$\mathrm{t}_{\text {blkg }}$	Blanking time	1.4	msec
f_{o}	Free running frequency	43.5	Hz
$\mathrm{P}_{\text {tot }}$	Power dissipation	2.7	W
$\mathrm{R}_{\text {th }}$ heatsink	Thermal resistance for the heatsink for $T_{a m b}=60^{\circ} \mathrm{C}$ and $\mathrm{T}_{\mathrm{j}} \mathrm{max}=110^{\circ} \mathrm{C}$	11.5	${ }^{\circ} \mathrm{C} / \mathrm{W}$
	for $\mathrm{T}_{\mathrm{amb}}=60^{\circ} \mathrm{C}$ and $\mathrm{T}_{\mathrm{jax}}=120^{\circ} \mathrm{C}$	14.5	${ }^{\circ} \mathrm{C} / \mathrm{W}$

TDA1670

Fig. 5 - Application circuit for 110° TVC set ($R y=5.9 \Omega ; L y=10 \mathrm{mH} ; \mathrm{ly}=1.95 \mathrm{App}$)

* The value depends on the characteristics of the CRT. The value shown is indicative only.

Typical performance

V_{5}	Minimum supply voltage	24	V
I_{5}	Supply current	285	mA
$\mathrm{t}_{\text {fly }}$	Flyback time	0.6	msec
$\mathrm{t}_{\text {blkg }}$	Blanking time	1.4	msec
f_{o}	Free running frequency	43.5	Hz
$\mathrm{P}_{\text {tot }}$	Power dissipation	4.3	W
$\mathrm{R}_{\text {th }}$ heatink	Thermal resistance of the heatsink for $T_{a m b}=60^{\circ} \mathrm{C}$ and $T_{j \max }=110^{\circ} \mathrm{C}$	6.5	${ }^{\circ} \mathrm{C} / \mathrm{W}$
	Sor $\mathrm{Tamb}^{\text {a }}=60^{\circ} \mathrm{C}$ and $\mathrm{T}_{\mathrm{j} \text { max }}=120^{\circ} \mathrm{C}$	8.5	${ }^{\circ} \mathrm{C} / \mathrm{W}$

Fig. 6 - PC board and components layout for the application circuits of fig. 3, 4 and 5 ($1: 1$ scale)

APPLICATION INFORMATION (Refer to the block diagram)

Oscillator and Sync gate (Clock generation)

The oscillator is obtained by means of an integrator driven by a two threshold circuit that switches R_{o} high or low so allowing the charge or the discharge of C_{o} under constant current conditions.
The Sync input pulse at the Sync gate lowers the level of the upper threshold and than it controls the period duration. A clock pulse is generated.

Pin 4 is the inverting input of the amplifier used as integrator.
Pin 6 is the output of the switch driven by the internal clock pulse generated by the threshold circuits.
Pin 3 is the output of the amplifier.
Pin 5 is the input for sync pulses (positive)

Ramp generator and buffer stage

A current mirror, the current intensity of which can be externally adjusted, charges one capacitor producing a linear voltage ramp.
The internal clock pulse stops the ramp increasing by a very fast discharge of the capacitor; a new voltage ramp is immediately allowed.
The required value of the capacitance is obtained by means of the series of two capacitors, Ca and Cb , which allow the linearity control by applying a feedback between the output of the buffer and the tapping from Ca and Cb .

Pin 7 The resistance between pin 7 and ground defines the current mirror current and than the height of the scanning.
Pin 9 is the output of the current mirror that charges the series of Ca and Cb . This pin is also the input of the buffer stage.
Pin 10 is the output of the buffer stage and it is internally coupled to the inverting input of the power amplifier through R1.

Power amplifier

This amplifier is a voltage-to-current power converter, the transconductance of which is externally defined by means of a negative current feedback.
The output stage of the power amplifier is supplied by the main supply during the trace period, and by the flyback generator circuit during the most of the duration of the flyback time. The internal clock turns off the lower power output stage to start the flyback.
The power output stage is thermally protected by sensing the junction temperature and then by putting off the current sources of the power stage.

Pin 12 is the inverting input of the amplifier. An external network, Ra and Rb, defines the DC level across Cy so allowing a correct centering of the output voltage. The series network Rc and Cc, in conjunction with Ra and Rb, applies at the feedback input pin 12 a small part of the parabola, available across Cy, and the AC feedback voltage, taken across Rf. The external components Rc, Ra and Rd, produce the linearity correction on the output scanning current ly and their values must be optimized for each type of CRT.
Pin 11 is the non-inverting input and it is not used. At this pin the non-inverting input reference voltage supplied by the voltage regulator can be measured. This pin is only used on a quasi-bridge configuration.
Pin 1 is the output of the power amplifier and it drives the yoke by a negative slope current ramply. Re and the Boucherot cell are used to stabilize the power amplifier.
Pin 2 The supply voltage of the power output stage is forced at this pin. During the trace time the supply voltage is obtained from the main supply voltage V_{s} by a diode, while during the retrace time this pin is supplied from the flyback generator.

Flyback generator

This circuit supplies both the power amplifier output stage and the yoke during the most of the duration of the flyback time (retrace).
The internal clock opens the loop of the amplifier and lets pin 1 floating so allowing the rising of the flyback. Crossing the main supply voltage at pin 14, the flyback pulse front end drives the flyback
generator in such a way allowing its output to reach and overcome the main supply voltage, starting from a low condition forced during the trace period.
An integrated diode stops the rising of this output increase and the voltage jump is transferred by means of capacitor Cf at the supply voltage pin of the power stage (pin 2).
When the current across the yoke changes its direction, the output of the flyback generator falls down to the main supply voltage and it is stopped by means of the saturated output darlington at a high level. At this time the flyback generator starts to supply the power amplifier output stage by a diode inside the device. The flyback generator supplies the yoke too.
Later, the increasing flyback current reaches the peak value and then the flyback time is completed: the trace period restarts. The output of the power amplifier (pin 1) falls under the main supply voltage and the output of the flyback generator is driven for a low state so allowing the flyback capacitor Cf to restore the energy lost during the retrace.

Pin 15 is the output of the flyback generator that, when driven, jumps from low to high condition. An external capacitor Cf transfers the jump to pin 2 (see pin 2).

Blanking generator and CRT protection

This circuit is a pulse shaper and its output goes high during the blanking period or for CRT protection. The input is internally driven by the clock pulse that defines the width of the blanking time when a flyback pulse has been generated. If the flyback pulse is absent (short circuit or open circuit of the yoke), the blanking output remains high so allowing the CRT protection.

Pin 13 is an open collector output where the blanking pulse is available.

Voltage regulator

The main supply voltage V_{s} is lowered and regulated internally to allow the required reference voltages for all the above described blocks.

Pin 14 is the main supply voltage input V_{s} (positive).
Pin 8 is the GND pin or the negative input of V_{s}.

Fig. 7 - Output saturation voltage to ground vs. peak output current
$v_{1 L}$
(v)
1.5
0.5
0

Fig. 8 - Output saturation voltage to supply vs. output peak current

Fig. 9 - Maximum allowable power dissipation vs. ambient temperature

MOUNTING INSTRUCTIONS

The power dissipated in the circuit must be removed by adding an external heatsink.
Thanks to the MULTIWATT ${ }^{\circledR}$ package attaching the heatsink is very simple, a screw or a compression spring (clip) being sufficient. Between the heatsink and the package it is better to insert a layer of silicon grease, to optimize the thermal contact; no electrical isolation is needed between the two surfaces.

Fig. 10 - Mounting example

LINEAR INTEGRATED CIṘCUIT

PRELIMINARY DATA

VERTICAL DEFLECTION CIRCUIT

The TDA 1770 is a monolithic integrated circuit in 20-lead plastic package. It is a full performance and very efficient vertical deflection circuit intended for direct drive of the yoke.
It offers a wide range of applications in portable CTVs, BW TVs, monitors and displays. The functions incorporated are:

- synchronization circuit.
- precision oscillator and ramp generator
- power output amplifier
- flyback generator
- voltage regulator
- precision blanking pulse generator
- thermal shut down protection
- CRT screen protection circuit which blanks the beam current in the event of loss of vertical deflection current.
The TDA 1770 is assembled in a new 20-lead plastic package which has 4 centre pins connected together and used for heatsinking.

ABSOLUTE MAXIMUM RATINGS

$V_{\text {s }}$	Supply voltage at pin 2	35	V
$\mathrm{V}_{7}, \mathrm{~V}_{8}$	Flyback peak voltage	60	V
V_{11}	Sync. input voltage	20	V
$\mathrm{V}_{19}, \mathrm{~V}_{20}$	Power amplifier input voltage	$\left\{\begin{array}{r}\mathrm{V}_{5} \\ -10\end{array}\right.$	V
V_{1}	Voltage at pin 1	V_{5}	
10	Output current (non repetitive) at $\mathrm{t}=2 \mathrm{msec}$	2	A
I_{0}	Output peak current at $\mathrm{f}=50 \mathrm{~Hz} \mathrm{t}>10 \mu \mathrm{sec}$	1.2	A
I_{0}	Output peak current at $\mathrm{f}=50 \mathrm{~Hz} \mathrm{t} \leqslant 10 \mu \mathrm{sec}$	2.2	A
13	Pin 3 peak to peak flyback current at $\mathrm{f}=50 \mathrm{~Hz}, \mathrm{t}_{\text {fly }} \leqslant 1.5 \mathrm{msec}$	2	A
I_{3}	Pin 3 DC current at $\mathrm{V}_{7}<\mathrm{V}_{2}$	50	mA
$\mathrm{P}_{\text {tot }}$	Maximum power dissipation: at $\mathrm{T}_{\text {pins }} \leqslant 90^{\circ} \mathrm{C}$	4.3 1	W
$\mathrm{T}_{\text {stg }}, \mathrm{T}_{\mathrm{j}}$	Storage and junction temperature ${ }^{\text {amb }}$	-40 to 150	${ }^{\circ} \mathrm{C}$

ORDERING NUMBER: TDA 1770
MECHANICAL DATA
Dimensions in mm

CONNECTION DIAGRAM

(top view)

BLOCK DIAGRAM

THERMAL DATA

$\mathrm{R}_{\text {th } \mathrm{j} \text {-pins }}$	Thermal resistance junction-pins	$\max ^{2}$	14	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{\text {th } \mathrm{j} \text {-amb }}$	Thermal resistance junction-ambient	$\max ^{\circ}$	80	${ }^{\circ} \mathrm{C} / \mathrm{W}$

ELECTRICAL CHARACTERISTICS $\left(V_{s}=35 \mathrm{~V}, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}\right.$, unless otherwise specified)

| Parameter | Test conditions | Min. | Typ. | Max. | Unit |
| :--- | :--- | :--- | :--- | :--- | :--- | Fig. | (|
| :--- |

DC CHARACTERISTICS

I_{2}	Pin 2 quiescent current			30	50	mA	1b
I_{8}	Pin 8 quiescent current	$1_{7}=0$		18	30	mA	1b
-177^{17}	Ramp generator bias current	$\mathrm{V}_{17}=0$		0.02	1	$\mu \mathrm{A}$	1a
${ }^{-1} 17$	Ramp generator current	$V_{17}=0 ; \quad-1_{14}=20 \mu \mathrm{~A}$	18.5	20	21.5	$\mu \mathrm{A}$	1b
$\left\|\frac{\Delta I_{17}}{I_{17}}\right\|$	Ramp generator non linearity	$\begin{aligned} & \Delta V_{17}=0 \text { to } 15 \mathrm{~V} \\ & -1_{14}=20 \mu \mathrm{~A} \end{aligned}$		0.2	1	\%	1b
V_{1}	Blanking output saturation voltage	$\mathrm{I}_{1}=10 \mathrm{~mA}$		0.35		V	1b
V_{3}	Pin 3 saturation voltage to ground	$\mathrm{I}_{3}=20 \mathrm{~mA}$		1	1.3	V	1a
V_{7}	Quiescent output voltage	$\begin{array}{ll} \mathrm{V}_{\mathrm{s}}=35 \mathrm{~V} ; & \mathrm{R}_{\mathrm{a}}=2.2 \mathrm{~K} \Omega \\ \mathrm{R}_{\mathrm{b}}=1 \mathrm{~K} \Omega & \end{array}$	16.8	17.8	18.6	V	1a
		$\begin{array}{ll} \mathrm{V}_{\mathrm{s}}=15 \mathrm{~V} ; & \mathrm{R}_{\mathrm{a}}=390 \Omega \\ & \mathrm{R}_{\mathrm{b}}=1 \mathrm{~K} \Omega \end{array}$	7.1	7.5	8	V	
$V_{7 L}$	Output saturation voltage to ground	$\mathrm{I}_{7}=0.7 \mathrm{~A}$		0.7	1	V	1c
$\mathrm{V}_{7 \mathrm{H}}$	Output saturation voltage to supply	$-I_{7}=0.7 \mathrm{~A}$		1.3	1.8	V	1d
V_{10}	Oscillator virtual ground			0.45		V	1a
V_{14}	Regulated voltage at pin 14	$-174=20 \mu \mathrm{~A}$	6.3	6.6	7.1	V	1b
$\frac{\Delta V_{14}}{\Delta V_{s}}$	Regulated voltage drift with supply voltage	$\Delta V_{s}=15$ to 35 V		1		$\frac{\mathrm{mV}}{\mathrm{V}}$	1b
V_{19}	Amplifier input (+) reference voltage		4.2	4.4	4.6	V	1b

Fig. 1 - DC test circuit

Fig. 1a

Fig. 1c

Fig. 1b

Fig. 1d

ELECTRICAL CHARACTERISTICS (Refer to the A.C. test circuit of fig. 2, $\mathrm{V}_{\mathrm{s}}=20 \mathrm{~V}, \mathrm{f}=50 \mathrm{~Hz}$, $T_{\text {amb }}=25^{\circ} \mathrm{C}$, unless otherwise specified)

Parameter	Test conditions	Min.	Typ.	Max.

AC CHARACTERISTICS

I_{s}	Supply current	$\mathrm{I}_{\mathrm{y}}=1 \mathrm{App}$		160	mA
I_{11}	Sync. input current		100		$\mu \mathrm{A}$
V_{7}	Flyback voltage	$\mathrm{I}_{\mathrm{y}}=1 \mathrm{App}$		42	V
V_{9}	Peak to peak oscillator sawtooth voltage	$\mathrm{I}_{11}=0$		3.6	V
		$\mathrm{I}_{11}=100 \mu \mathrm{~A}$		3.4	V
$\mathrm{V}_{18 \mathrm{thL}}$	Start scan level of the input ramp			1.85	V
$\mathrm{t}_{\text {fly }}$	Flyback time	$\mathrm{I}_{\mathrm{y}}=1 \mathrm{App}$		0.75	msec
$\mathrm{t}_{\text {blank }}$	Blanking pulse duration	$\mathrm{f}_{\mathrm{o}}=50 \mathrm{~Hz}$		1.4	ms
		$\mathrm{f}_{\mathrm{o}}=60 \mathrm{~Hz}$		1.17	ms
$\mathrm{f}_{\mathrm{o}}{ }^{-}$	Free running frequency	$\begin{aligned} & \mathrm{R}_{\mathrm{o}}=7.5 \mathrm{~K} \Omega \\ & \mathrm{C}_{\mathrm{O}}=330 \mathrm{nF} \end{aligned}$		43.5	Hz
		$\begin{aligned} & \mathrm{R}_{\mathrm{o}}=6.2 \mathrm{~K} \Omega \\ & \mathrm{C}_{\mathrm{O}}=330 \mathrm{nF} \end{aligned}$		52.5	Hz
$\Delta \mathrm{f}$	Synchronization range	$\mathrm{I}_{11}=100 \mu \mathrm{~A}$		16	Hz
T ${ }_{\text {j }}$	Junction temperature for thermal shut-down			145	${ }^{\circ} \mathrm{C}$

Fig. 2 - AC test circuit

Fig. 3 - Typical application circuit for small screen 90° TVC set ($\mathrm{Ry}=15 \Omega$; Ly=30 mH; ly=0.82 App)

* The value depends on the characteristics of the CRT. The value shown is indicative only.

Typical performance

V_{s}	Minimum supply voltage	25	V
I_{s}	Supply current	140	mA
$\mathrm{t}_{\text {fly }}$	Flyback time	0.7	msec
$\mathrm{t}_{\text {blkg }}$	Blanking time	1.4	msec
f_{o}	Free running frequency	43.5	Hz
$\mathrm{P}_{\text {tot }}$	Total dissipation	2.4	W
$\mathrm{R}_{\text {th neatsink }}{ }^{* *}$	Thermal resistance of the heatsink		8
	for $\mathrm{T}_{\text {amb }}=60^{\circ} \mathrm{C}$ and $\mathrm{T}_{\mathrm{j} \text { max }}=130^{\circ} \mathrm{C}$	${ }^{\circ} \mathrm{C} / \mathrm{W}$	

** See "Thermal considerations".

Fig. 4 - Typical application circuit for B / W TV set ($R y=10 \Omega ; L y=20 \mathrm{mH} ; \mathrm{ly}=1 \mathrm{App}$)

* The value depends on the characteristics of the CRT. The value shown is indicative only.

Typical performance

$\mathrm{V}_{\text {s }}$	Minimum supply voltage	20	V
I_{5}	Supply current	160	mA
$\mathrm{t}_{\text {fly }}$	Flyback time	0.75	msec
$\mathrm{t}_{\text {blkg }}$	Blanking time	1.4	msec
f_{o}	Free running frequency	43.5	Hz
$\mathrm{P}_{\text {tot }}$	Power dissipation	2.1	W
$\mathrm{R}_{\text {th heatsink }}{ }^{* *}$	Thermal resistance of the heatsink for $\mathrm{T}_{\mathrm{amb}}=60^{\circ} \mathrm{C}$ and $\mathrm{T}_{\mathrm{j} \text { max }}=130^{\circ} \mathrm{C}$	11	${ }^{\circ} \mathrm{C} / \mathrm{W}$

[^15]Fig. 5 - Typical application circuit for small screen $(\mathrm{Ry}=2.9 \Omega ; \mathrm{Ly}=6 \mathrm{mH} ; \mathrm{ly}=1.1 \mathrm{App})$

* The value depends on the characteristics of the CRT. The value shown is indicative only.

Typical performance

V_{s}	Minimum supply voltage	10.5	V
I_{5}	Supply current	170	mA
$\mathrm{t}_{\text {fly }}$	Flyback time	0.45	msec
$t_{\text {blkg }}$	Blanking time	1.4	msec
f_{o}	Free running frequency	43.5	Hz
$\mathrm{P}_{\text {tot }}$	Power dissipation	1.25	W
$\mathrm{R}_{\text {th heatsink }}{ }^{* *}$	Thermal resistance of the heatsink for $\mathrm{T}_{\mathrm{amb}}=60^{\circ} \mathrm{C}$ and $\mathrm{T}_{\mathrm{j} \text { max }}=130^{\circ} \mathrm{C}$	28	${ }^{\circ} \mathrm{C} / \mathrm{W}$

** See "Thermal considerations".

Fig. 6 - PC board and components layout for the application circuits of fig. 3, 4 and 5 ($1: 1$ scale)

CS-0161

APPLICATION INFORMATION (Refer to the block diagram)

Oscillator and Sync gate (Clock generation)

The oscillator is obtained by means of an integrator driven by a two threshold circuit that switches Ro high or low so allowing the charge or the discharge of Co under constant current conditions.
The Sync input pulse at the Sync gate lowers the level of the upper threshold and than it controls the period duration. A clock pulse is generated.

Pin 10 is the inverting input of the amplifier used as integrator.
Pin 12 is the output of the switch driven by the internal clock pulse generated by the threshold circuits.
Pin 9 is the output of the amplifier.
Pin 11 is the input for sync pulses (positive).

Ramp generator and buffer stage

A current mirror, the current intensity of which can be externally adjusted, charges one capacitor producing a linear voltage ramp.
The internal clock pulse stops the ramp increasing by a very fast discharge of the capacitor; a new voltage ramp is immediately allowed.
The required value of the capacitance is obtained by means of the series of two capacitors, Ca and Cb , which allow the linearity control by applying a feedback between the output of the buffer and the tapping from Ca and Cb .

Pin 14 The resistance between pin 7 and ground defines the current mirror current and than the height of the scanning.
Pin 17 is the output of the current mirror that charges the series of Ca and Cb . This pin is also the input of the buffer stage.
Pin 18 is the output of the buffer stage and it is internally coupled to the inverting input of the power amplifier through R1.

APPLICATION INFORMATION (continued)

Power amplifier

This amplifier is a voltage-to-current power converter, the transconductance of which is externally defined by means of a negative current feedback.
The output stage of the power amplifier is supplied by the main supply during the trace period, and by the flyback generator circuit during the most of the duration of the flyback time. The internal clock turns off the lower power output stage to start the flyback.
The power output stage is thermally protected by sensing the junction temperature and then by putting off the current sources of the power stage.

Pin 20 is the inverting input of the amplifier. An external network, Ra and Rb, defines the DC level across Cy so allowing a correct centering of the output voltage. The series network Rc and Cc, in conjunction with Ra and Rb, applies at the feedback input pin 20 a small part of the parabola, available across Cy , and the AC feedback voltage, taken across Rf. The external components Rc, Ra and Rd, produce the linearity correction on the output scanning current ly and their values must be optimized for each type of CRT.
Pin 19 is the non-inverting input. At this pin the non-inverting input reference voltage supplied by the voltage regulator can be measured.
This pin is used on a quasi-bridge configuration or on portable TVS.
Pin 7 is the output of the power amplifier and it drives the yoke by a negative slope current ramp ly. Re and the Boucherot cell are used to stabilize the power amplifier.
Pin 8 the supply voltage of the power output stage is forced at this pin. During the trace time the supply voltage is obtained from the main supply voltage V_{s} by a diode, while during the retrace time this pin is supplied from the flyback generator.

Flyback generator

This circuit supplies both the power amplifier output stage and the yoke during the most of the duration of the flyback time (retrace).
The internal clock opens the loop of the amplifier and lets pin 1 floating so allowing the rising of the flyback. Crossing the main supply voltage at pin 2 , the flyback pulse front end drives the flyback generator in such a way allowing its output to reach and overcome the main supply voltage, starting from a low condition forced during the trace period.
An integrated diode stops the rising of this output increase and voltage jump is transferred by means of capacitor Cf at the supply voltage pin of the power stage (pin 8).
When the current across the yoke changes its direction, the output of the flyback generation falls down to the main supply voltage and it is stopped by means of the saturated output darlington at a high level. At this time the flyback generator starts to supply the power amplifier output stage by a diode inside the device. The flyback generator supplies the yoke too.
Later, the increasing flyback current reaches the peak value and then the flyback time is completed: the trace period restarts. The output of the power amplifier (pin 7) falls under the main supply voltage and the output of the flyback generator is driven for a low state so allowing the flyback capacitor Cf to restore the energy lost during the retrace.

Pin 3 is the output of the flyback generator that, when driven, jumps from low to high condition. An external capacitor Cf transfers the jump to pin 8 (see pin 8).

Blanking generator and CRT protection

This circuit is a pulse shaper and its output goes high during the blanking period or for CRT protection.

APPLICATION INFORMATION (continued)

The input is internally driven by the clock pulse that defines the width of the blanking time when a flyback pulse has been generated. If the flyback pulse is absent (short circuit or open circuit of the yoke), the blanking output remains high so allowing the CRT protection.

Pin 1 is an open collector output where the blanking pulse is available.

Voltage regulator

The main supply voltage V_{s} is lowered and regulated internally to allow the required reference voltages for all the above described blocks.

Pin 2 is the main supply voltage input V_{s} (positive).
Pin 5, 6, 15, 16 are the GND pins or the negative input of V_{s}.

THERMAL CONSIDERATIONS (a note referred to Fig. 3, 4 and 5)

The shown value of case to ambient thermal resistance is the equivalent to three thermal resistances that are:

R1 - Thermal resistance junction to ambient of the device.
R2 - Thermal resistance of the p.c. copper side.
R3 - Thermal resistance of the auxiliary heatsink.
The circuit that contains these thermal resistances is shown on fig. 7 where R 3 is the thermal resistance junction to pins of the device and Pd is the maximum dissipated power.

Fig. 7 - Semiconductor heatsink thermal circuit.

Since the thermal resistance R3 of the heatsink is defined from its physical and mechanical characteristics, it is necessary to define the required copper side on the p.c. board for the necessary R 2 value. For instance, let's consider the application for the 90° yoke.
It is known:
$T_{j \max }=130^{\circ} \mathrm{C} ; \mathrm{T}_{\text {amb } \max }=60^{\circ} \mathrm{C} ; R_{\text {th } c-a m b}=8^{\circ} \mathrm{C} / \mathrm{W} ; R_{\text {th } j-\text { pins }}($ or $R 4)=14^{\circ} \mathrm{C} / \mathrm{W} ; R_{\text {th } j-a m b}=80^{\circ} \mathrm{C} / \mathrm{W}$.
It can be calculated:

$$
P_{d}=\frac{T_{j \max }-T_{\mathrm{amb} \max }}{R_{\mathrm{th} \mathrm{c}-\mathrm{amb}}+R_{\mathrm{th} j-\mathrm{pins}}-}=\frac{130-60}{8+14}=3.18 \mathrm{~W}
$$

Using an auxiliary heatsink of a thermal resistance $\mathrm{R} 3=20^{\circ} \mathrm{C} / \mathrm{W}$ (including some losses), it can be easily calculated (see fig. 7): R2 $=94^{\circ} \mathrm{C} / \mathrm{W}$.
From fig. 9, it can be found: $\ell \geqslant 21 \mathrm{~mm}$.

iA tDA1TTO

MOUNTING INSTRUCTIONS

The $R_{\text {th } \mathrm{j} \text {-amb }}$ of the TDA 1770 can be reduced by soldering the GND pins to a suitable copper area of the printed circuit board (Fig. 8) or to an external heatsink.
The diagram of figure 9 shows the R_{th} as a function of the side " ℓ " of two equal square copper areas having a thickness of 35μ (1.4 mils).
During soldering the pins temperature must not exceed $260^{\circ} \mathrm{C}$ and the soldering time must not be longer than 12 seconds.
The external heatsink or printed circuit copper area must be connected to electrical ground.
Fig. 8 - Example of P.C. board copper area which is used as heatsink.

Fig. 9 - Thermal resistance of the P.C. copper side vs. side " ℓ "

Fig. 10 - Maximum allowable power dissipation vs. ambient temperature

LINEAR INTEGRATED CIRCUIT

4W AUDIO AMPLIFIER

The TDA 1904 is a monolithic integrated circuit in POWERDIP package intended for use as low-frequency power amplifier in a wide range of applications in portable radio and TV sets.
Its main features are:

- High output current capability (up to 2A)
- Protection against chip overtemperature
- Low noise
- High supply voltage rejection
- Supply voltage range: 4V to 20V

ABSOLUTE MAXIMUM RATINGS

V_{s}	Supply voltage		20
I_{o}	Peak output current (non repetitive)	2.5	A
I_{o}	Peak output current (repetitive)	2	A
$\mathrm{P}_{\text {tot }}$	Total power dissipation at $\mathrm{T}_{\mathrm{amb}}=80^{\circ} \mathrm{C}$	1	W
	$\mathrm{~T}_{\text {case }}=60^{\circ} \mathrm{C}$	6	W
$\mathrm{~T}_{\text {stg }}, \mathrm{T}_{\mathrm{j}}$	Storage and junction temperature	-40 to 150	${ }^{\circ} \mathrm{C}$

ORDERING NUMBER: TDA 1904

CONNECTION DIAGRAM

(top view)

SCHEMATIC DIAGRAM

THERMAL DATA

$\mathrm{R}_{\text {th } \mathrm{j} \text {-case }}$	Thermal resistance junction-pins	\max	15	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{\text {th } \mathrm{j} \text {-amb }}$	Thermal resistance junction-ambient	\max	70	${ }^{\circ} \mathrm{C} / \mathrm{W}$

TEST CIRCUIT

ELECTRICAL CHARACTERISTICS (refer to the test circuit, $\mathrm{G}_{\mathrm{v}}=40 \mathrm{~dB}, \mathrm{R}_{\mathrm{L}}=4 \Omega, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ unless otherwise specified)

	Parameter	Test conditions	Min.	Typ.	Max.	Unit
V_{s}	Supply voltage		4		20	V
l_{d}	Quiescent drain current	$\begin{aligned} & V_{s}=9 V \\ & V_{S}=14 V \end{aligned}$		16 19		$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
P_{0}	Output power	$\begin{array}{ll} \mathrm{d}=10 \% & \mathrm{f}=1 \mathrm{KHz} \\ \mathrm{~V}_{\mathrm{s}}=9 \mathrm{~V} & \\ \mathrm{~V}_{\mathrm{s}}=12 \mathrm{~V} & \\ \mathrm{~V}_{\mathrm{s}}=6 \mathrm{~V} & \end{array}$		2 3.5 0.8		W W W
d	Distortion	$\begin{aligned} & \mathrm{V}_{\mathrm{s}}=9 \mathrm{~V} \quad \mathrm{f}=1 \mathrm{KHz} \\ & \mathrm{P}_{\mathrm{O}}=50 \mathrm{~mW} \text { to } 1.2 \mathrm{~W} \\ & \mathrm{~V}_{\mathrm{s}}=14 \mathrm{~V} \\ & \mathrm{P}_{\mathrm{O}}=50 \mathrm{~mW} \text { to } 2 \mathrm{~W} \end{aligned}$		$\begin{aligned} & 0.1 \\ & 0.1 \end{aligned}$		$\begin{aligned} & \% \\ & \% \end{aligned}$
R_{i}	Input resistance (pin 8)			150		K Ω
B	Frequency response		40 to 40000			Hz
G_{v}	Voltage gain (open loop)			80		dB
G_{v}	Voltage gain (closed loop)			40		dB
e_{N}	Total input noise voltage	$\mathrm{R}_{\mathrm{g}}=10 \mathrm{~K} \Omega ; \quad \mathrm{B}=22 \mathrm{~Hz}$ to 22 KHz		3		$\mu \mathrm{V}$
		$\mathrm{R}_{\mathrm{g}}=10 \mathrm{~K} \Omega ; \quad \mathrm{B}=$ curve A		2	4	
η	Efficiency	$\begin{array}{ll} V_{s}=9 \mathrm{~V} & \mathrm{P}_{\mathrm{O}}=2 \mathrm{~W} \\ \mathrm{~V}_{\mathrm{s}}=12 \mathrm{~V} & \mathrm{P}_{\mathrm{O}}=3.5 \mathrm{~W} \end{array}$		70 65		\%
SVR	Supply voltage rejection	$\begin{array}{ll} V_{s}=12 \mathrm{~V} \\ f_{\text {ripple }}=100 \mathrm{~Hz} \end{array} \quad \mathrm{R}_{\mathrm{g}}=10 \mathrm{~K} \Omega$		50		dB

Fig. 1 - Application circuit

Fig. 2 - P.C. board and components layout of fig. 1 (1:1 scale)

CS-0163

LINEAR INTEGRATED CIRCUIT

5W AUDIO AMPLIFIER WITH MUTING

The TDA 1905 is a monolithic integrated circuit in POWERDIP package, intended for use as low frequency power amplifier in a wide range of applications in radio and TV sets.
Its main features are:

- muting facility
- protection against chip over temperature
- very low noise
- high supply voltage rejection
- low "switch-on" noise
- voltage range 4 V to 30 V

The TDA 1905 is assembled in a new plastic package, the POWERDIP, that offers the same assembly ease, space and cost saving of a normal dual in-line package but with a power dissipation of up to 6 W and a thermal resistance of $15^{\circ} \mathrm{C} / \mathrm{W}$ (junction to pins).

ABSOLUTE MAXIMUM RATINGS

V_{5}	Supply voltage	30	V
$1{ }_{0}$	Output peak current (non repetitive)	3	A
1 o	Output peak current (repetitive)	2.5	A
V_{i}	Input voltage	0 to $+\mathrm{V}_{5}$	V
V_{i}	Differential input voltage	± 7	V
V_{11}	Muting thresold voltage	V_{5}	V
$P_{\text {tot }}$	Power dissipation at $\mathrm{T}_{\text {amb }}=80^{\circ} \mathrm{C}$	1	W
	$\mathrm{T}_{\text {case }}=60^{\circ} \mathrm{C}$	6	W
$\mathrm{T}_{\text {stg }}, \mathrm{T}_{\mathrm{j}}$	Storage and junction temperature	-40 to 150	${ }^{\circ} \mathrm{C}$

ORDERING NUMBER: TDA 1905
MECHANICAL DATA
Dimensions in mm

TDA 1905

CONNECTION DIAGRAM

(Top view)

SCHEMATIC DIAGRAM

THERMAL DATA

$\mathrm{R}_{\text {thj-case }}$	Thermal resistance junction-pins	\max	15	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{\text {thj-amb }}$	Thermal resistance junction-amb	\max	70	${ }^{\circ} \mathrm{C} / \mathrm{W}$

TEST CIRCUIT

MUTING CIRCUIT

TDA 1905

ELECTRICAL CHARACTERISTICS (Refer to the test circuit, $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{th}}$ (heatsink) $=$ $20^{\circ} \mathrm{C} / \mathrm{W}$, unless otherwise specified)

	Parameter	Test conditions	Min.	Typ.	Max.	Unit
V_{s}	Supply voltage		4		30	V
$\mathrm{V}_{\text {o }}$	Quiescent output voltage	$\begin{aligned} & V_{\mathrm{S}}=4 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}=14 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}=30 \mathrm{~V} \end{aligned}$	$\begin{gathered} 1.6 \\ 6.7 \\ 14.4 \end{gathered}$	$\begin{gathered} 2.1 \\ 7.2 \\ 15.5 \end{gathered}$	$\begin{gathered} 2.5 \\ 7.8 \\ 16.8 \end{gathered}$	V
I_{d}	Quiescent drain current	$\begin{aligned} & \mathrm{V}_{\mathrm{s}}=4 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{s}}=14 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{s}}=30 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 15 \\ & 17 \\ & 21 \end{aligned}$	35	mA
$V_{\text {CE sat }}$	Output stage saturation voltage	$\begin{aligned} & I_{C}=1 A \\ & I_{C}=2 A \end{aligned}$		$\begin{gathered} 0.5 \\ 1 \end{gathered}$		V
P_{O}	Output power	$\begin{array}{ll} d=10 \% & f=1 \mathrm{KHz} \\ V_{s}=9 \mathrm{~V} & R_{L}=4 \Omega \\ V_{s}=14 \mathrm{~V} & R_{L}=4 \Omega \\ V_{S}=18 \mathrm{~V} & R_{L}=8 \Omega \\ V_{S}=24 \mathrm{~V} & R_{L}=16 \Omega \end{array}$	$\begin{gathered} 2.2 \\ 5 \\ 5 \\ 4.5 \end{gathered}$	$\begin{aligned} & 2.5 \\ & 5.5 \\ & 5.5 \\ & 5.3 \end{aligned}$		W
d	Harmonic distortion	$\begin{aligned} & \mathrm{f}=1 \mathrm{KHz} \quad \\ & V_{\mathrm{S}}=9 \mathrm{~V} \quad \mathrm{R}_{\mathrm{L}}=4 \Omega \\ & \mathrm{P}_{\mathrm{O}}=50 \mathrm{~mW} \text { to } 1.5 \mathrm{~W} \\ & \mathrm{~V}_{\mathrm{S}}=14 \mathrm{~V} \quad \mathrm{R}_{\mathrm{L}}=4 \Omega \\ & \mathrm{P}_{\mathrm{O}}=50 \mathrm{~mW} \text { to } 3 \mathrm{~W} \\ & \mathrm{~V}_{\mathrm{S}}=18 \mathrm{~V} \quad \mathrm{R}_{\mathrm{L}}=8 \Omega \\ & \mathrm{P}_{\mathrm{O}}=50 \mathrm{~mW} \text { to } 3 \mathrm{~W} \\ & V_{\mathrm{S}}=24 \mathrm{~V} \quad \mathrm{R}_{\mathrm{L}}=16 \Omega \\ & \mathrm{P}_{\mathrm{O}}=50 \mathrm{~mW} \text { to } 3 \mathrm{~W} \end{aligned}$		$\begin{aligned} & 0.1 \\ & 0.1 \\ & 0.1 \\ & 0.1 \end{aligned}$		\%
V_{i}	Input sensitivity	$\begin{array}{lll} f=1 \mathrm{KHz} & & \\ V_{\mathrm{s}}=9 \mathrm{~V} & R_{\mathrm{L}}=4 \Omega & \mathrm{P}_{\mathrm{O}}=2.5 \mathrm{~W} \\ \mathrm{~V}_{\mathrm{s}}=14 \mathrm{~V} & \mathrm{R}_{\mathrm{L}}=4 \Omega & \mathrm{P}_{\mathrm{O}}=5.5 \mathrm{~W} \\ \mathrm{~V}_{\mathrm{s}}=18 \mathrm{~V} & R_{\mathrm{L}}=8 \Omega & \mathrm{P}_{\mathrm{O}}=5.5 \mathrm{~W} \\ \mathrm{~V}_{\mathrm{S}}=24 \mathrm{~V} & \mathrm{R}_{\mathrm{L}}=16 \Omega & \mathrm{P}_{\mathrm{O}}=5.3 \mathrm{~W} \end{array}$		$\begin{gathered} 37 \\ 49 \\ 73 \\ 100 \end{gathered}$		mV
V_{i}	Input saturation voltage (rms)	$\begin{aligned} & V_{s}=9 \mathrm{~V} \\ & V_{s}=14 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{s}}=18 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{s}}=24 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0.8 \\ & 1.3 \\ & 1.8 \\ & 2.4 \end{aligned}$			V
R_{i}	Input resistance (pin 8)	$\mathrm{f}=1 \mathrm{KHz}$	60	100		$K \Omega$
I_{d}	Drain current	$\begin{array}{lll} \mathrm{f}=1 \mathrm{KHzz} & & \\ \mathrm{~V}_{\mathrm{s}}=9 \mathrm{~V} & \mathrm{R}_{\mathrm{L}}=4 \Omega & \mathrm{P}_{\mathrm{O}}=2.5 \mathrm{~W} \\ \mathrm{~V}_{\mathrm{s}}=14 \mathrm{~V} & \mathrm{R}_{\mathrm{L}}=4 \Omega & \mathrm{P}_{\mathrm{O}}=5.5 \mathrm{~W} \\ \mathrm{~V}_{\mathrm{S}}=18 \mathrm{~V} & \mathrm{R}_{\mathrm{L}}=8 \Omega & \mathrm{P}_{\mathrm{O}}=5.5 \mathrm{~W} \\ \mathrm{~V}_{\mathrm{s}}=24 \mathrm{~V} & \mathrm{R}_{\mathrm{L}}=16 \Omega & \mathrm{P}_{\mathrm{O}}=5.3 \mathrm{~W} \end{array}$		$\begin{aligned} & 380 \\ & 550 \\ & 410 \\ & 295 \end{aligned}$		mA
η	Efficiency	$\begin{array}{lll} \mathrm{f}=1 \mathrm{KHz} & & \\ \mathrm{~V}_{\mathrm{S}}=9 \mathrm{~V} & \mathrm{R}_{\mathrm{L}}=4 \Omega & \mathrm{P}_{\mathrm{O}}=2.5 \mathrm{~W} \\ \mathrm{~V}_{\mathrm{s}}=14 \mathrm{~V} & \mathrm{R}_{\mathrm{L}}=4 \Omega & \mathrm{P}_{\mathrm{O}}=5.5 \mathrm{~W} \\ \mathrm{~V}_{\mathrm{s}}=18 \mathrm{~V} & \mathrm{R}_{\mathrm{L}}=8 \Omega & \mathrm{P}_{\mathrm{O}}=5.5 \mathrm{~W} \\ \mathrm{~V}_{\mathrm{s}}=24 \mathrm{~V} & \mathrm{R}_{\mathrm{L}}=16 \Omega & \mathrm{P}_{\mathrm{O}}=5.3 \mathrm{~W} \end{array}$		$\begin{aligned} & 73 \\ & 71 \\ & 74 \\ & 75 \end{aligned}$		\%

(*) With an external resistor of 100Ω between pin 3 and $+V_{5}$.

ELECTRICAL CHARACTERISTICS (continued)

Parameter		Test conditions			Min.	Typ.	Max.	Unit
BW	Small signal bandwidth (-3 dB)	$\mathrm{V}_{\mathrm{S}}=14 \mathrm{~V}$	$R_{L}=4 \Omega$		40 to 40,000			Hz
G_{v}	Voitage gain (open loop)	$\begin{aligned} & V_{\mathrm{s}}=14 \mathrm{~V} \\ & \mathrm{f}=1 \mathrm{KHz} \end{aligned}$				75		dB
G_{v}	Voltage gain (closed loop)	$\begin{aligned} & V_{\mathrm{s}}=14 \mathrm{~V} \\ & \mathrm{f}=1 \mathrm{KHz} \end{aligned}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=4 \Omega \\ & \mathrm{P}_{\mathrm{O}}=1 \mathrm{~W} \end{aligned}$		39.5	40	40.5	dB
e_{N}	Total input noise		$\begin{aligned} & \mathrm{R}_{\mathrm{g}}=50 \Omega \\ & \mathrm{R}_{\mathrm{g}}=1 \mathrm{~K} \Omega \\ & \mathrm{R}_{\mathrm{g}}=10 \mathrm{~K} \Omega \end{aligned}$	$\left({ }^{\circ}\right)$		1.2 1.3 1.5	4.0	$\mu \mathrm{V}$
			$\begin{aligned} & \mathrm{R}_{\mathrm{g}}=50 \Omega \\ & \mathrm{R}_{\mathrm{g}}=1 \mathrm{~K} \Omega \\ & \mathrm{R}_{\mathrm{g}}=10 \mathrm{~K} \Omega \end{aligned}$	(00)		2.0 2.0 2.2	6.0	$\mu \mathrm{V}$
S/N	Signal to noise ratio	$\begin{aligned} & \mathrm{V}_{\mathrm{s}}=14 \mathrm{~V} \\ & \mathrm{P}_{\mathrm{O}}=5.5 \mathrm{~W} \\ & \mathrm{R}_{\mathrm{L}}=4 \Omega \end{aligned}$	$\begin{aligned} & \mathrm{R}_{\mathrm{g}}=10 \mathrm{~K} \Omega \\ & \mathrm{R}_{\mathrm{g}}=0 \end{aligned}$			$\begin{aligned} & 90 \\ & 92 \end{aligned}$		dB
			$\begin{aligned} & \mathrm{R}_{\mathrm{g}}=10 \mathrm{~K} \Omega \\ & \mathrm{R}_{\mathrm{g}}=0 \end{aligned}$	$(\circ \circ)$		87 87		dB
SVR	Supply voltage rejection	$\begin{array}{ll} V_{\mathrm{s}}=18 \mathrm{~V} \quad R_{\mathrm{L}}=8 \Omega \\ f_{\text {ripple }}=100 \mathrm{~Hz} & R_{\mathrm{g}}=10 \mathrm{~K} \Omega \\ V_{\text {ripple }}=0.5 \mathrm{Vrms} & \end{array}$			40	50		dB
$\mathrm{T}_{\text {sd }}$	Thermal shut-down case temperature	$\mathrm{P}_{\text {tot }}=2.5 \mathrm{~W}$				115		${ }^{\circ} \mathrm{C}$

MUTING FUNCTION (Refer to Muting circuit)

$\mathrm{V}_{\text {TOFF }}$	Muting-off threshold voltage (pin 4)		1.9		4.7	V
$\mathrm{V}_{\text {TON }}$	Muting-on threshold voltage (pin 4)		0		1.3	V
			6.2		V_{s}	
R_{5}	Input resistance (pin 5)	Muting off	80	200		$K \Omega$
		Muting on		10	30	Ω
R_{4}	Input resistance (pin 4)		150			$K \Omega$
A_{T}	Muting attenuation	$\mathrm{R}_{\mathrm{g}}+\mathrm{R}_{1}=10 \mathrm{~K} \Omega$	50	60		dB

Note:

$\left({ }^{\circ}\right)$ Weighting filter = curve A .
$\left({ }^{\circ}\right)$ Filter with noise bandwidth: 22 Hz to 22 KHz .
(*) See fig. 30 and fig. 31

Fig. 1 - Quiescent output voltage vs. supply voltage

Fig. 4 - Distortion vs. output power ($R_{L}=16 \Omega$)

Fig. 7 - Distortion vs. frequency ($\mathrm{R}_{\mathrm{L}}=16 \Omega$)

Fig. 2 - Quiescent drain current vs. supply voltage

Fig. 5 - Distortion vs. output power ($R_{L}=8 \Omega$)

Fig. 8 - Distortion vs. frequency $\left(R_{L}=8 \Omega\right)$

Fig. 3 - Output power vs. supply voltage

Fig. 6 - Distortion vs. output power ($R_{L}=4 \Omega$)

Fig. 9 - Distortion vs. frequency ($\mathrm{R}_{\mathrm{L}}=4 \Omega$)

TDA 1905

Fig. 10 - Open loop frequency response

Fig. 13-Supply voltage rejection vs. voltage gain (ref. to the Muting circuit)

Fig. 16 - Power dissipation and efficiency vs. output power

Fig. 11 - Output power vs. input voltage

Fig. 14 - Supply voltage rejection vs: source resistance

Fig. 17 - Power dissipation and efficiency vs. output power

Fig. 12 - Value of capacitor Cx vs. bandwidth (BW) and gain (Gv)

Fig. 15 - Max power dissipation vs. supply voltage (sine wave operation)

Fig. 18 - Power dissipation and efficiency vs. output power

APPLICATION INFORMATION

Fig. 19 - Application circuit without muting

Fig. 21 - Application circuit with muting

Fig. 20 - PC board and components lay-out of the circuit of fig. 19 ($1: 1$ scale)

Fig. 22 - Delayed muting circuit

TDA1905

APPLICATION INFORMATION (continued)

Fig. 23 - Low-cost application circuit without bootstrap.

Fig. 25 - Two position DC tone control using change of pin 5 resistance (muting function)

Fig. 27 - Bass Bomb tone control using change of pin 5 resistance (muting function)

Fig. 24 - Output power vs. supply voltage (circuit of fig. 23)

Fig. 26 - Frequency response of the circuit of fig. 25

Fig. 28 - Frequency response of the circuit of fig. 27

MUTING FUNCTION

The output signal can be inhibited applying'a $D C$ voltage V_{T} to pin 4, as shown in fig. 29

Fig. 29

The input resistance at pin 5 depends on the threshold voltage V_{T} at pin 4 and is typically:

$$
\begin{array}{lll}
\mathrm{R}_{5}=200 \mathrm{~K} \Omega & @ 1.9 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{T}} \leqslant 4.7 \mathrm{~V} & \text { muting-off } \\
\mathrm{R}_{5}=10 \Omega & @ & 0 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{T}} \leqslant 1.3 \mathrm{~V} \\
6 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{T}} \leqslant \mathrm{~V}_{\mathrm{s}} & \text { muting-on }
\end{array}
$$

Referring to the following input stage, the possible attenuation of the input signal and therefore of the output signal can be found using the following expression:

Considering $R_{g}=10 \mathrm{~K} \Omega$ the attenuation in the muting-on condition is typically $A_{T}=60 \mathrm{~dB}$. In the muting-off condition, the attenuation is very low, tipically 1.2 dB .
A very low current is necessary to drive the threshold voltage V_{T} because the input resistance at pin 4 is greater than $150 \mathrm{~K} \Omega$. The muting function can be used in many cases, when a temporary inhibition of the output signal is requested, for example:

- in switch-on condition, to avoid preamplifier power-on transients (see fig. 22)
- during switching at the input stages.
- during the receiver tuning.

The variable impedance capability at pin 5 can be useful in many application and two examples are shown in fig. 25 and 27, where it has been used to change the feedback network, obtaining 2 different frequency response.

APPLICATION SUGGESTION

The recommended values of the external components are those shown on the application circuit of fig. 21. When the supply voltage V_{s} is less than 10 V , a 100Ω resistor must be connected between pin 2 and pin 3 in order to obtain the maximum output power.
Different values can be used. The following table can help the designer.

Component	Raccom value	Purpose	Larger than recommended value	Smaller than recommended value	Allowe Min.	d range Max.
$\mathrm{R}_{\mathrm{g}}+\mathrm{R}_{1}$	$10 \mathrm{~K} \Omega$	Input signal imped. for muting operation	Increase of the attenuation in muting-on condition. Decrease of the input sensitivity.	Decrease of the attenuation in muting on condition.		
R_{2}	$10 \mathrm{~K} \Omega$	Feedback resistors	Increase of gain.	Decrease of gain. Increase quiescent current.	$9 \mathrm{R}_{3}$	$1 \mathrm{~K} \Omega$
R_{3}	100Ω		Decrease of gain.	Increase of gain.		
R_{4}	1Ω	Frequency stability	Danger of oscillation at high frequencies with inductive loads.			
R_{5}	100Ω	Increase of the output swing with low supply voltage.			47	330
P_{1}	$20 \mathrm{~K} \Omega$	Volume potentiometer	Increase of the switch-on noise.	Decrease of the input impedance and of the input level.	$10 \mathrm{~K} \Omega$	$100 \mathrm{~K} \Omega$
$\begin{aligned} & \mathrm{C}_{1} \\ & \mathrm{C}_{2} \\ & \mathrm{C}_{3} \end{aligned}$	$0.22 \mu \mathrm{~F}$	Input DC decoupling.	Higher cost lower noise.	Higher low frequency cutoff. Higher noise		
C_{4}	$2.2 \mu \mathrm{~F}$	Inverting input DC decoupling.	Increase of the switch-on noise.	Higher low frequency cutoff.	$0.1 \mu \mathrm{~F}$	
C_{5}	$0.1 \mu \mathrm{~F}$	Supply voltage bypass.		Danger of oscillations.		
C_{6}	$10 \mu \mathrm{~F}$	Ripple rejection	Increase of SVR increase of the switch-on time	Degradation of SVR	$2.2 \mu \mathrm{~F}$	$100 \mu \mathrm{~F}$
C_{7}	$47 \mu \mathrm{~F}$	Bootstrap.		Increase of the distortion at low frequency.	$10 \mu \mathrm{~F}$	$100 \mu \mathrm{~F}$
C_{8}	$0.22 \mu \mathrm{~F}$	Frequency stability.		Danger of oscillation.		
C_{9}	$1000 \mu \mathrm{~F}$	Output DC decoupling.		Higher low frequency cutoff.		

THERMAL SHUT-DOWN

The presence of a thermal limiting circuit offers the following advantages:

1) An overload on the output (even if it is permanent), or an above limit ambient temperature can be easily tolerated since the T_{j} cannot be higher than $150^{\circ} \mathrm{C}$.
2) The heatsink can have a smaller factor of safety compared with that of a conventional circuit. There is no possibility of device damage due to high junction temperature.
If for any reason, the junction temperature increases up to $150^{\circ} \mathrm{C}$, the thermal shut-down simply reduces the power dissipation and the current consumption.

The maximum allowable power dissipation depends upon the size of the external heatsink (i.e. its thermal resistance); fig. 32 shows this dissipable power as a function of ambient temperature for different thermal resistance.

Fig. 30 - Output power and drain current vs. case temperature.

Fig. 31 - Output power and drain current vs. case temperature

Fig. 32 - Maximum allowable power dissipation vs. ambient temperature.

MOUNTING INSTRUCTION

The TDA 1905 is assembled in a new plastic package, the Powerdip, in which 8 pins (from 9 to 16) are attached to the frame and remove the heat produced by the chip.

Figure 33 and 34 show two ways of heatsinking. In the first case, a PC board copper area is used as a heatsink $I=65 \mathrm{~mm}$. while in the second case, the device is soldered to an external heatsink. In both examples, the thermal resistance junction-ambient is $35^{\circ} \mathrm{C} / \mathrm{W}$.

Fig. 33 - Example of heatsink using PC board copper ($1=65 \mathrm{~mm}$)

COPPER AREA 35μ THICKNESS

Fig. 34 - Example of an external heatsink

LINEAR INTEGRATED CIRCUIT

8W AUDIO AMPLIFIER

The TDA 1908 is a monolithic integrated circuit in 12 lead quad in-line plastic package intended for low frequency power applications. The mounting is compatible with SGS TBA 800, TBA 810S, TCA 830S and TCA940N. Its main features are:

- flexibility in use with a max output current of 3 A and an operating supply voltage range of 4 V to 30 V
- protection against chip overtemperature
- soft limiting in saturation conditions
- low "switch-on" noise
- low number of external components
- high supply voltage rejection
- very low noise

ABSOLUTE MAXIMUM RATINGS

V_{s}	Supply voltage	30	V
I_{o}	Output peak current (non repetitive)	3.5	A
I_{o}	Output peak current (repetitive)	3	A
$\mathrm{P}_{\text {tot }}$	Power dissipation: at $\mathrm{T}_{\text {amb }}=80^{\circ} \mathrm{C}$ (TDA 1908)	1	W
$\mathrm{~T}_{\text {stg }}, \mathrm{T}_{\mathrm{j}}$	at $\mathrm{T}_{\text {tab }}=100^{\circ} \mathrm{C}$ (TDA 1908A)	5	W

ORDERING NUMBERS: TDA 1908, TDA 1908A

MECHANICAL DATA

TDA 1908

Dimensions in mm

TDA 1908A

CONNECTION DIAGRAM

(top view)

SCHEMATIC DIAGRAM

TEST CIRCUIT

* See fig. 12.

THERMAL DATA			TDA 1908	TDA 1980A
$\mathrm{R}_{\text {th } \mathrm{j}-\mathrm{tab}}$	Thermal resistance junction-tab	max	$12^{\circ} \mathrm{C} / \mathrm{W}$	$10^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{\text {th } \mathrm{j} \text {-amb }}$	Thermal resistance junction-amb	max	(${ }^{\circ}$) $70^{\circ} \mathrm{C} / \mathrm{W}$	$80^{\circ} \mathrm{C} / \mathrm{W}$

${ }^{\circ}$) Obtained with tabs soldered to printed circuit board with min copper area.

ELECTRICAL CHARACTERISTICS (Refer to the test circuit, $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{tn}}$ (heatsink) $=$ $8^{\circ} \mathrm{C} / \mathrm{W}$, unless otherwise specified)

	Parameter	Test condition	Min.	Typ.	Max.	Unit
V_{s}	Supply voltage		4		30	V
V_{0}	Quiescent output voltage	$\begin{aligned} & V_{\mathrm{S}}=4 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}=18 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{s}}=30 \mathrm{~V} \end{aligned}$	$\begin{gathered} 1.6 \\ 8.2 \\ 14.4 \end{gathered}$	$\begin{gathered} 2.1 \\ 9.2 \\ 15.5 \end{gathered}$	$\begin{gathered} 2.5 \\ 10.2 \\ 16.8 \end{gathered}$	V
I_{d}	Quiescent drain current	$\begin{aligned} & V_{S}=4 \mathrm{~V} \\ & V_{S}=18 \mathrm{~V} \\ & V_{S}=30 \mathrm{~V} \end{aligned}$		$\begin{gathered} 15 \\ 17.5 \\ 21 \end{gathered}$	35	mA
$V_{\text {CEsat }}$	Output stage saturation voltage (each output transistor)	$\begin{aligned} & I_{C}=1 \mathrm{~A} \\ & I_{C}=2.5 \mathrm{~A} \end{aligned}$		$\begin{aligned} & 0.5 \\ & 1.3 \end{aligned}$		V
P_{0}	Output power	$\begin{array}{rl} d=10 \% & f=1 \mathrm{KHz} \\ V_{S} & =9 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{S}}=14 \mathrm{~V} & R_{\mathrm{L}}=4 \Omega \\ \mathrm{~V}_{\mathrm{S}}=18 \mathrm{~V} & R_{\mathrm{L}}=4 \Omega \\ \mathrm{~V}_{\mathrm{S}}=22 \mathrm{~V} & R_{\mathrm{L}}=8 \Omega \\ \mathrm{~V}_{\mathrm{S}}=24 \mathrm{~V} & R_{\mathrm{L}}=16 \Omega \end{array}$	$\begin{gathered} 7 \\ 6.5 \\ 4.5 \end{gathered}$	$\begin{gathered} 2.5 \\ 5.5 \\ 9 \\ 8 \\ 5.3 \end{gathered}$		W

ELECTRICAL CHARACTERISTICS (continued)

Parameter		Test condition		Min.	Typ.	Max	Unit
d	Harmonic distortion	$\begin{aligned} & \mathrm{f}=1 \mathrm{KHz} \\ & \mathrm{~V}_{\mathrm{S}}=9 \mathrm{~V} \quad \mathrm{R}_{\mathrm{L}}=4 \Omega \\ & \mathrm{P}_{\mathrm{O}}=50 \mathrm{~mW} \text { to } 1.5 \mathrm{~W} \\ & \mathrm{~V}_{\mathrm{S}}=18 \mathrm{~V} \quad \mathrm{R}_{\mathrm{L}}=4 \Omega \\ & \mathrm{P}_{\mathrm{O}}=50 \mathrm{~mW} \text { to } 4 \mathrm{~W} \\ & \mathrm{~V}_{\mathrm{S}}=24 \mathrm{~V} \quad \mathrm{R}_{\mathrm{L}}=16 \Omega \\ & \mathrm{P}_{\mathrm{O}}=50 \mathrm{~mW} \text { to } 3 \mathrm{~W} \end{aligned}$			$\begin{aligned} & 0.1 \\ & 0.1 \\ & 0.1 \end{aligned}$		\%
V_{i}	Input sensitivity	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}=9 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}=14 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{s}}=18 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}=22 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}=24 \mathrm{~V} \end{aligned}$			$\begin{gathered} 37 \\ 52 \\ 64 \\ 90 \\ 110 \end{gathered}$		mV
V_{i}	Input saturation voltage (rms)	$\begin{aligned} & V_{s}=9 \mathrm{~V} \\ & V_{s}=14 \mathrm{~V} \\ & V_{s}=18 \mathrm{~V} \\ & V_{s}=24 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 0.8 \\ & 1.3 \\ & 1.8 \\ & 2.4 \end{aligned}$			V
R_{i}	Input resistance (pin 8)	$f=1 \mathrm{KHz}$		60	100		$K \Omega$
$I_{\text {s }}$	Drain current	$\begin{aligned} & \mathrm{f}=1 \mathrm{KHz} \\ & \mathrm{~V}_{\mathrm{s}}=14 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{s}}=18 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{s}}=22 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{s}}=24 \mathrm{~V} \end{aligned}$	$\begin{aligned} & =4 \Omega \mathrm{P}_{\mathrm{O}}=5.5 \mathrm{~W} \\ & =4 \Omega \mathrm{P}_{\mathrm{O}}=9 \mathrm{~W} \\ & =8 \Omega \mathrm{P}_{\mathrm{O}}=8 \mathrm{~W} \\ & =16 \Omega \mathrm{P}_{\mathrm{O}}=5.3 \mathrm{~W} \end{aligned}$		$\begin{aligned} & 570 \\ & 730 \\ & 500 \\ & 310 \end{aligned}$.	mA
η	Efficiency	$\begin{array}{r} V_{S}=18 \mathrm{~V} \\ R_{L} \end{array}=$	$\underset{2}{f=} \underset{P_{0}=9 W}{1 \mathrm{KHz}}$		72		\%
BW	Small signal bandwidth (-3 dB)	$\mathrm{V}_{\mathrm{s}}=18 \mathrm{~V}$	$=4 \Omega \quad \mathrm{P}_{\mathrm{O}}=1 \mathrm{~W}$		to 400		Hz
G_{v}	Voltage gain (open loop)	$f=1 \mathrm{KHz}$			75		dB
G_{v}	Voltage gain (closed loop)	$\begin{aligned} & V_{\mathrm{s}}=18 \mathrm{~V} \\ & \mathrm{f}=1 \mathrm{KHz} \end{aligned}$	$\begin{aligned} & R_{L}=4 \Omega \\ & P_{O}=1 \mathrm{~W} \end{aligned}$	39.5	40	40.5	dB
e_{N}	Total input noise		$\begin{aligned} & \mathrm{R}_{\mathrm{g}}=50 \Omega \\ & \mathrm{R}_{\mathrm{g}}=1 \mathrm{~K} \Omega \\ & \mathrm{R}_{\mathrm{g}}=10 \mathrm{~K} \Omega \end{aligned}$		$\begin{aligned} & 1.2 \\ & 1.3 \\ & 1.5 \end{aligned}$	4.0	$\mu \mathrm{V}$
		(00)	$\begin{aligned} & \mathrm{R}_{\mathrm{g}}=50 \Omega \\ & \mathrm{R}_{\mathrm{g}}=1 \mathrm{~K} \Omega \\ & \mathrm{R}_{\mathrm{g}}=10 \mathrm{~K} \Omega \end{aligned}$		2.0 2.0 2.2	6.0	$\mu \mathrm{V}$
S / N	Signal to noise ratio	$\begin{align*} & V_{S}=18 \mathrm{~V} \\ & P_{\mathrm{O}}=9 \mathrm{~W} \\ & \mathrm{R}_{\mathrm{L}}=4 \Omega \end{align*}$	$\begin{aligned} & \mathrm{R}_{\mathrm{g}}=10 \mathrm{~K} \Omega \\ & \mathrm{R}_{\mathrm{g}}=0 \end{aligned}$		$\begin{aligned} & 92 \\ & 94 \end{aligned}$		dB
			$\begin{aligned} & \mathrm{R}_{\mathrm{g}}=10 \mathrm{~K} \Omega \quad(\circ \circ) \\ & \mathrm{R}_{\mathrm{g}}=0 \end{aligned}$		$\begin{aligned} & 88 \\ & 90 \end{aligned}$		dB
SVR	Supply voltage rejection	$\begin{aligned} & V_{5}=18 \mathrm{~V} \\ & \mathrm{f}_{\text {ripple }}=10 \end{aligned}$	$\begin{aligned} & R_{\mathrm{L}}=4 \Omega \\ & \mathrm{R}_{\mathrm{g}}=10 \mathrm{~K} \Omega \end{aligned}$	40	50		dB
$T_{\text {sd }}$	Thermal shut-down case temperature		$\mathrm{P}_{\text {tot }}=4 \mathrm{~W}$		110		${ }^{\circ} \mathrm{C}$

Note:

(ㅇ) Weighting filter = curve A.
(o०) Filter with noise bandwidth: 22 Hz to 22 KHz .
(*) See fig. 24 and fig. 25.

Fig. 1 - Quiescent output voltage vs. supply voltage

Fig. 4 - Distortion vs. output power ($R_{L}=16 \Omega$)

Fig. 7 - Distortion vs. frequency ($\mathrm{R}_{\mathrm{L}}=16 \Omega$)

Fig. 2 - Quiescent drain current vs. supply voltage

Fig. 5 - Distortion vs. output power ($\mathrm{R}_{\mathrm{L}}=8 \Omega$)

Fig. 8 - Distortion vs. frequency ($\mathrm{R}_{\mathrm{L}}=8 \Omega$)

Fig. 3 - Output power vs. supply voltage

Fig. 6 - Distortion vs. output power ($\mathrm{R}_{\mathrm{L}}=4 \Omega$)

Fig. 9 - Distortion vs. frequency ($R_{L}=4 \Omega$)

TDA 1908

Fig. 10 - Open loop frequency response
0.4269

Fig. 13 - Supply voltage rejection vs. voltage gain G-4266/2

Fig. 16 - Power dissipation and efficiency vs. output power ($\mathrm{V}_{\mathrm{s}}=14 \mathrm{~V}$)

G-4263

Fig. 11 - Output power vs. input voltage

Fig. 14 - Supply voltage rejection vs. source resistance

Fig. 17 - Power dissipation and efficiency vs. output power ($\mathrm{V}_{\mathrm{s}}=18 \mathrm{~V}$)

Fig. 12 - Values of capacitor C_{x} versus gain and B_{w}

Fig. 15 - Max power dissipation vs. supply voltage

Fig. 18 - Power dissipation and efficiency vs. output power ($\mathrm{V}_{\mathrm{s}}=24 \mathrm{~V}$)

TDA1908

APPLICATION INFORMATION

Fig. 19 - Application circuit with bootstrap

* R4 is necessary when V_{s} is less than 10 V .

Fig. 20 - P.C. board and component lay-out of the circuit of fig. 19 (1:1 scale)

APPLICATION INFORMATION (continued)

Fig. 21 - Application circuit without bootstrap

Fig. 22 - Output power vs. supply voltage (circuit of fig. 21)

Fig. 23 - Position control for car headlights

APPLICATION SUGGESTION

The recommended values of the external components are those shown on the application circuit of fig. 19.
When the supply voltage V_{s} is less than 10 V , a 100Ω resistor must be connected between pin 1 and pin 4 in order to obtain the maximum output power.
Different values can be used. The following table can help the designer.

Component	Raccom. value	Purpose	Larger than raccomanded value	Smaller than raccomanded value	Allowed range	
					Min.	Max.
R_{1}	$10 \mathrm{~K} \Omega$	Close loop gain setting.	Increase of gain.	Decrease of gain. Increase quiescent current.	$9 \mathrm{R}_{2}$	
R_{2}	100Ω	Close loop gain setting.	Decrease of gain.	Increase of gain.		$\mathrm{R}_{1} / 9$
R_{3}	1Ω	Frequency stability	Danger of oscillation at high frequencies with inductive loads.			
R_{4}	100Ω	Increasing of output swing with low V_{s}.			47Ω	330Ω
C_{1}	$2.2 \mu \mathrm{~F}$	Input DC decoupling.	Lower noise	Higher low frequency cutoff. Higher noise.	$0.1 \mu \mathrm{~F}$	
C_{2}	$0.1 \mu \mathrm{~F}$	Supply voltage bypass.		Danger of oscillations.		
C_{3}	$2.2 \mu \mathrm{~F}$	Inverting input DC decoupling.	Increase of the switch-on noise	Higher low frequency cutoff.	$0.1 \mu \mathrm{~F}$	
C4	$10 \mu \mathrm{~F}$	Ripple Rejection.	Increase of SVR. Increase of the switch-on time.	Degradation of SVR.	$2.2 \mu \mathrm{~F}$	$100 \mu \mathrm{~F}$
C_{5}	$47 \mu \mathrm{~F}$	Bootstrap		Increase of the distortion at low frequency	$10 \mu \mathrm{~F}$	$100 \mu \mathrm{~F}$
C_{6}	$0.22 \mu \mathrm{~F}$	Frequency stability.		Danger of oscillation.		
C_{7}	$1000 \mu \mathrm{~F}$	Output DC decoupling.		Higher low frequency cutoff.		

THERMAL SHUT-DOWN

The presence of a thermal limiting circuit offers the following advantages:

1) An overload on the output (even if it is permanent), or an above limit ambient temperature can be easily supported since the T_{j} cannot be higher than $150^{\circ} \mathrm{C}$.
2) The heatsink can have a smaller factor of safety compared with that of a conventional circuit. There is no possibility of device damage due to high junction temperature.
If, for any reason,, the junction temperature increases up to $150^{\circ} \mathrm{C}$, the thermal shut-down simply reduces the power dissipation and the current consumption.

The maximum allowable power dissipation depends upon the size of the external heatsink (i.e. its thermal resistance); fig. 26 shows this dissipable power as a function of ambient temperature for different thermal resistance.

Fig. 24 - Output power and drain current vs. case temperature

Fig. 25 - Output power and drain current vs. case temperature

Fig. 26 - Maximum power dissipation vs. ambient temperature

MOUNTING INSTRUCTIONS

The thermal power dissipated in the circuit may be removed by connecting the tabs to an external heatsink (TDA 1908A see fig. 27), or by soldering them to a copper area on the PC board (TDA 1908 see fig. 28). During soldering, tab temperature must not exceed $260^{\circ} \mathrm{C}$ and the soldering time must not be longer than 12 seconds.

Fig. 27

MOUNTING INSTRUCTIONS (continued)

Fig. 28 - Mounting example (TDA 1908)

Fig. 29 - Maximum power dissipation and thermal resistance vs. side " ℓ " (TDA 1908)

TDA1910

LINEAR INTEGRATED CIRCUIT

\qquad

10W AUDIO AMPLIFIER WITH MUTING

The TDA 1910 is a monolithic integrated circuit in MULTIWATT ${ }^{\circledR}$ package, intended for use in $\mathrm{Hi}-\mathrm{Fi}$ audio power applications, as high quality TV sets.
The TDA 1910 meets the DIN $45500(\mathrm{~d}=0.5 \%)$ guaranteed output power of 10 W when used at 24 V / 4Ω. At $24 \mathrm{~V} / 8 \Omega$ the output power is 7 W min . Features:

- muting facility
- protection against chip over temperature
- very low noise
- high supply voltage rejection
- low "switch-on" noise.

The TDA 1910 is assembled in MULTIWATT ${ }^{\circledR}$ package that offers:

- easy assembly
- simple heatsink
- space and cost saving
- high reliability.

ABSOLUTE MAXIMUM RATINGS

V_{s}	Supply voltage	30	V
Io $_{\mathrm{o}}$	Output peak current (non repetitive)	3.5	A
I_{o}	Output peak current (repetitive)	3.0	A
$\mathrm{~V}_{i}$	Input voltage	0 to $+\mathrm{V}_{\mathrm{s}}$	V
V_{i}	Differential input voltage	± 7	V
$\mathrm{~V}_{11}$	Muting thresold voltage	V_{s}	V
$\mathrm{P}_{\text {tot }}$	Power dissipation at $\mathrm{T}_{\text {case }}=90^{\circ} \mathrm{C}$	20	W
$\mathrm{~T}_{\text {stg }}, \mathrm{T}_{\mathrm{j}}$	Storage and junction temperature	-40 to 150	${ }^{\circ} \mathrm{C}$

41 TDA1910

CONNECTION DIAGRAM (Top view)

tab connected to pin 6

SCHEMATIC DIAGRAM

TDA1910

TEST CIRCUIT

MUTING CIRCUIT

THERMAL DATA

| $R_{\text {th j-c }} \quad$ Thermal resistance junction-case | $\max \quad 3$ | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |
| :--- | :--- | :--- | :--- |

ELECTRICAL CHARACTERISTICS (Refer to the test circuit, $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{th}}$ (heatsink) $=$ $4^{\circ} \mathrm{C} / \mathrm{W}$, unless otherwise specified)

	Parameter	Test condition	Min.	Typ.	Max.	Unit
V_{s}	Supply voltage		8		30	V
V_{0}	Quiescent output voltage	$\begin{aligned} & V_{\mathrm{S}}=18 \mathrm{~V} \\ & V_{\mathrm{s}}=24 \mathrm{~V} \end{aligned}$	$\begin{gathered} 8.3 \\ 11.5 \end{gathered}$	$\begin{gathered} 9.2 \\ 12.4 \end{gathered}$	$\begin{gathered} 10 \\ 13.4 \end{gathered}$	V
I_{d}	Quiescent drain current	$\begin{aligned} & V_{\mathrm{S}}=18 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}=24 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 19 \\ & 21 \end{aligned}$	$\begin{aligned} & 32 \\ & 35 \end{aligned}$	mA
$V_{\text {CE sat }}$	Output stage saturation voltage	$\mathrm{I}_{\mathrm{C}}=2 \mathrm{~A}$		1		V
		$\mathrm{I}_{\mathrm{C}}=3 \mathrm{~A}$		1.6		
Po	Output power	$\begin{array}{cc} d=0.5 \% & f=40 \text { to } 15,000 \mathrm{~Hz} \\ V_{S}=18 \mathrm{~V} & R_{L}=4 \Omega \\ V_{S}=24 \mathrm{~V} & R_{L}=4 \Omega \\ V_{S}=24 \mathrm{~V} & R_{L}=8 \Omega \end{array}$	$\begin{gathered} 6.5 \\ 10 \\ 7 \end{gathered}$	$\begin{gathered} 7 \\ 12 \\ 7.5 \end{gathered}$		W
		$\begin{array}{ll} d=10 \% & f=1 \mathrm{KHz} \\ V_{S}=18 \mathrm{~V} & R_{\mathrm{L}}=4 \Omega \\ V_{S}=24 \mathrm{~V} & R_{\mathrm{L}}=4 \Omega \\ \mathrm{~V}_{\mathrm{S}}=24 \mathrm{~V} & R_{\mathrm{L}}=8 \Omega \end{array}$	$\begin{gathered} 8.5 \\ 15 \\ 9 \end{gathered}$	$\begin{aligned} & 9.5 \\ & 17 \\ & 10 \end{aligned}$		W
d	Harmonic distortion	$\begin{array}{cc} \mathrm{f}=40 \text { to } 15,000 \mathrm{~Hz} \\ \mathrm{~V}_{\mathrm{S}}=18 \mathrm{~V} & \mathrm{R}_{\mathrm{L}}=4 \Omega \\ & \mathrm{P}_{\mathrm{O}}=50 \mathrm{~mW} \text { to } 6.5 \mathrm{~W} \\ \mathrm{R}_{\mathrm{L}}=4 \Omega \\ & \mathrm{P}_{\mathrm{O}}=50 \mathrm{~mW} \text { to } 10 \mathrm{~W} \\ \mathrm{R}_{\mathrm{L}}=8 \Omega \\ \mathrm{~V}_{\mathrm{S}}=24 \mathrm{~V} \\ \mathrm{P}_{\mathrm{O}}=50 \mathrm{~mW} \text { to } 7 \mathrm{~W} \end{array}$		$\begin{aligned} & 0.2 \\ & 0.2 \\ & 0.2 \end{aligned}$	$\begin{aligned} & 0.5 \\ & 0.5 \\ & 0.5 \end{aligned}$	\%
d	Intermodulation distortion	$\begin{aligned} & V_{\mathrm{S}}=24 \mathrm{~V} \quad R_{\mathrm{L}}=4 \Omega \quad \mathrm{P}_{\mathrm{O}}=10 \mathrm{~W} \\ & \mathrm{f}_{1}=250 \mathrm{~Hz} \quad \begin{array}{l} \mathrm{f}_{2}=8 \mathrm{KHz} \\ \\ \\ \text { (DIN 45500) } \end{array} \end{aligned}$		0.2		\%
V_{i}	Input sensitivity	$\begin{array}{lll} f=1 \mathrm{KHz} & & \\ V_{\mathrm{S}}=18 \mathrm{~V} & \mathrm{R}_{\mathrm{L}}=4 \Omega & \mathrm{P}_{\mathrm{O}}=7 \mathrm{~W} \\ \mathrm{~V}_{\mathrm{S}}=24 \mathrm{~V} & \mathrm{R}_{\mathrm{L}}=4 \Omega & \mathrm{P}_{\mathrm{O}}=12 \mathrm{~W} \\ \mathrm{~V}_{\mathrm{S}}=24 \mathrm{~V} & R_{\mathrm{L}}=8 \Omega & \mathrm{P}_{\mathrm{O}}=7.5 \mathrm{~W} \end{array}$		$\begin{aligned} & 170 \\ & 220 \\ & 245 \end{aligned}$		mV
V_{i}	Input saturation voltage (rms)	$\begin{aligned} & V_{\mathrm{S}}=18 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{s}}=24 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 1.8 \\ & 2.4 \end{aligned}$			V
$\mathrm{R}_{\mathbf{i}}$	Input resistance (pin 5)	$f=1 \mathrm{KHz}$	60	100		$K \Omega$
Id_{d}	Drain current	$\begin{array}{rr} V_{S}=24 \mathrm{~V} & f=1 \mathrm{KHz} \\ R_{\mathrm{L}}=4 \Omega & \mathrm{P}_{\mathrm{O}}=12 \mathrm{~W} \\ R_{\mathrm{L}}=8 \Omega & \mathrm{P}_{\mathrm{O}}=7.5 \mathrm{~W} \end{array}$		$\begin{aligned} & 820 \\ & 475 \end{aligned}$		mA

ELECTRICAL CHARACTERISTICS (continued)

Parameter		Test condition	Min.	Typ.	Max.	Unit
η	Efficiency	$\begin{array}{rl} V_{S}=24 \mathrm{~V} & f=1 \mathrm{KHz} \\ R_{L}=4 \Omega & P_{O}=12 \mathrm{~W} \\ R_{L}=8 \Omega & P_{O}=7.5 \mathrm{~W} \end{array}$		62 65		\%
BW	Small signal bandwidth	$\mathrm{V}_{\mathrm{S}}=24 \mathrm{~V} \quad \mathrm{R}_{\mathrm{L}}=4 \Omega \quad \mathrm{P}_{\mathrm{O}}=1 \mathrm{~W}$		- 120		Hz
BW	Power bandwidth	$\begin{array}{ll} V_{S}=24 V & R_{L}=4 \Omega \\ P_{O}=12 W & d \leqslant 0.5 \% \end{array}$		to 15		Hz
G_{v}	Voltage gain (open loop)	$\mathrm{f}=1 \mathrm{KHz}$		75		dB
G_{v}	Voltage gain (closed loop)	$\begin{array}{ll} V_{S}=24 \mathrm{~V} & R_{L}=4 \Omega \\ f=1 \mathrm{KHz} & P_{\mathrm{O}}=1 \mathrm{~W} \end{array}$	29.5	30	30.5	dB
e_{N}	Total input noise	$\begin{aligned} & \mathrm{R}_{\mathrm{g}}=50 \Omega \\ & \mathrm{R}_{\mathrm{g}}=1 \mathrm{~K} \Omega(\circ) \\ & \mathrm{R}_{\mathrm{g}}=10 \mathrm{~K} \Omega \end{aligned}$		1.2 1.3 1.5	$\begin{aligned} & 3.0 \\ & 3.2 \\ & 4.0 \end{aligned}$	$\mu \mathrm{V}$
		$\begin{aligned} & R_{g}=50 \Omega \\ & R_{g}=1 \mathrm{~K} \Omega(00) \\ & R_{g}=10 \mathrm{~K} \Omega \end{aligned}$		2.0 2.0 2.2	$\begin{aligned} & 5.0 \\ & 5.2 \\ & 6.0 \end{aligned}$	$\mu \mathrm{V}$
S/N	Signal to noise ratio	$\begin{array}{l\|l} \mathrm{V}_{\mathrm{s}}=24 \mathrm{~V} & \mathrm{R}_{\mathrm{g}}=10 \mathrm{~K} \Omega \\ \mathrm{P}_{\mathrm{O}}=12 \mathrm{~W} & \mathrm{R}_{\mathrm{g}}=0 \end{array}$	97	$\begin{aligned} & 103 \\ & 105 \end{aligned}$		dB
		$\begin{aligned} & \mathrm{R}_{\mathrm{g}}=10 K \Omega \\ & \mathrm{R}_{\mathrm{g}}=0 \end{aligned}$	93	$\begin{aligned} & 100 \\ & 100 \end{aligned}$		dB
SVR	Supply voltage rejection	$\begin{aligned} & V_{\mathrm{s}}=24 \mathrm{~V} \quad R_{\mathrm{L}}=4 \Omega \\ & \mathrm{f}_{\text {ripple }}=100 \mathrm{~Hz} \quad R_{\mathrm{g}}=10 \mathrm{~K} \Omega \end{aligned}$	50	60		dB
$\mathrm{T}_{\text {sd }}$	Thermal shut-down case temperature	$\mathrm{P}_{\text {tot }}=8 \mathrm{~W}$	110	125		${ }^{\circ} \mathrm{C}$

MUTING FUNCTION (Refer to Muting circuit)

V_{T}	Muting-off threshold voltage (pin 11)		1.9		4.7	V
$\mathrm{~V}_{\mathrm{T}}$	Muting-on threshold voltage (pin 11)		0		1.3	V
		Muting off	6		$\mathrm{~V}_{\mathrm{s}}$	V
R_{1}	Input resistance (pin 1)	Muting on	80	200		$\mathrm{~K} \Omega$
			150	10	30	Ω
R_{11}	Input resistance (pin 11)		50	60		dB
$\mathrm{~A}_{\mathrm{T}}$	Muting attenuation	$\mathrm{R}_{\mathrm{g}}+\mathrm{R}_{1}=10 \mathrm{~K} \Omega$	$\mathrm{~K} \Omega$			

Note:

(0) Weighting filter $=$ curve A.
(००) Filter with noise bandwidth: 22 Hz to 22 KHz .
(*) See fig. 29 and fig. 30.

Fig. 1 - Quiescent output voltage vs. supply voltage

Fig. 4 - Output power vs. supply voltage

Fig. 7 - Distortion vs. output power

Fig. 2 - Quiescent drain current vs. supply voltage

Fig. 5 - Output power vs. supply voltage

Fig. 8 - Output power vs. frequency

Fig. 3 -Open loop frequency response

Fig. 6 - Distortion vs. output power

Fig. 9 - Output power vs. frequency

Fig. 10 - Output power vs. input voltage

Fig. 13 - Values of capacitor C_{X} vs. bandwidth (BW) and gain $\left(G_{v}\right)$

Fig. 16 - Power dissipation and efficiency vs. output power

Fig. 11 - Output power vs. input voltage

Fig. 14 - Supply voltage rejection vs. voltage gain

Fig. 17 - Power dissipation and efficiency vs. output power

Fig. 12 - Total input noise vs. source resistance

Fig. 15 - Supply voltage rejection vs. source resitance

Fig. 18 - Max power dissipation vs. supply voltage

0
 TDA 1910

APPLICATION INFORMATION

Fig. 19 - Application circuit without muting

Fig. 20 - PC board and component lay-out of the circuit of fig. 19 ($1: 1$ scale)

Fig. 21 - Application circuit with muting

Performance (circuits of fig. 19 and 21)
$P_{o}=12 W$ (40 to $15000 \mathrm{~Hz}, \mathrm{~d} \leqslant 0.5 \%$)
$\mathrm{V}_{\mathrm{s}}=24 \mathrm{~V}$
$\mathrm{I}_{\mathrm{d}}=0.82 \mathrm{~A}$
$\mathrm{G}_{\mathrm{v}}=30 \mathrm{~dB}$

TDA 1910

APPLICATION INFORMATION (continued)

Fig. 22 - Two position DC tone control (10 dB boost 50 Hz and 20 KHz) using change of pin 1 resistance (muting function)

Fig. $24-10 \mathrm{~dB} 50 \mathrm{~Hz}$ boost tone control using change of pin 1 resistance (muting function)

Fig. 26 - Squelch function in TV applications

MUTING FUNCTION

The output signal can be inhibited applying a $D C$ voltage V_{T} to pin 11 , as shown in fig. 28
Fig. 28

The input resistance at pin 1 depends on the threshold voltage V_{T} at pin 11 and is typically.

$$
\begin{array}{lll}
\mathrm{R}_{1}=200 \mathrm{~K} \Omega & \text { @ } 1.9 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{T}} \leqslant 4.7 \mathrm{~V} & \text { muting-off } \\
\mathrm{R}_{1}=10 \Omega & @ & 0 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{T}} \leqslant 1.3 \mathrm{~V} \\
6 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{T}} \leqslant \mathrm{~V}_{5} & \text { muting-on }
\end{array}
$$

Referring to the following input stage, the possible attenuation of the input signal and therefore of the output signal can be found using the following expression.

Considering $R_{g}=10 \mathrm{~K} \Omega$ the attenuation in the muting-on condition is typically $A_{T}=60 \mathrm{~dB}$. In the muting-off condition, the attenuation is very low, typically 1.2 dB .
A very low current is necessary to drive the threshold voltage V_{T} because the input resistance at pin 11 is greater than $150 \mathrm{~K} \Omega$. The muting function can be used in many cases, when a temporary inhibition of the output signal is requested, for example:

- in switch-on condition, to avoid preamplifier power-on transients (see fig. 27)
- during commutations at the input stages.
- during the receiver tuning.

The variable impedance capability at pin 1 can be useful in many applications and we have shown 2 examples in fig. 22 and 24 , where it has been used to change the feedback network, obtaining 2 different frequency responses.

APPLICATION SUGGESTION

The recommended values of the components are those shown on application circuit of fig. 21. Different values can be used.
The following table can help the designer.

Component	Recomm. value	Purpose	Larger than recommended value	Smaller than recommended value	Allowed range	
					Min.	Max.
$\mathrm{R}_{\mathrm{g}}+\mathrm{R}_{1}$	$10 \mathrm{~K} \Omega$	Input signal imped. for muting operation	Increase of the attenuation in muting-on condition. Decrease of the input sensitivity.	Decrease of the attenuation in muting on condition.		
R_{2}	$3.3 \mathrm{~K} \Omega$	Close loop gain setting.	Increase of gain.	Decrease of gain. Increase quiescent current.	$9 \mathrm{R}_{3}$	
R_{3}	100Ω	Close loop gain setting.	Decrease of gain.	Increase of gain.		$\mathrm{R}_{2} / 9$
R_{4}	1Ω	Frequency stability	Danger of oscillation at high frequencies with inductive loads.			
P_{1}	$20 \mathrm{~K} \Omega$	Volume potentiometer.	Increase of the switch-on noise.	Decrease of the input impedance and the input level.	$10 \mathrm{~K} \Omega$	$100 \mathrm{~K} \Omega$
$\begin{aligned} & \mathrm{C}_{1} \\ & \mathrm{C}_{2} \\ & \mathrm{C}_{3} \end{aligned}$	$\begin{gathered} 1 \mu \mathrm{~F} \\ 1 \mu \mathrm{~F} \\ 0.22 \mu \mathrm{~F} \end{gathered}$	Input DC decoupling.		Higher low frequency cutoff.		
C_{4}	$2.2 \mu \mathrm{~F}$	Inverting input DC decoupling.	Increase of the switch-on noise.	Higher low frequency cutoff.	$0.1 \mu \mathrm{~F}$	
C_{5}	$0.1 \mu \mathrm{~F}$	Supply voltage bypass.		Danger of oscillations.		
C_{6}	$10 \mu \mathrm{~F}$	Ripple Rejection.	Increase of SVR. Increase of the switch-on time.	Degradation of SVR.	$2.2 \mu \mathrm{~F}$	$100 \mu \mathrm{~F}$
C_{7}	$47 \mu \mathrm{~F}$	Bootstrap.		Increase of the distortion at low frequency.	$10 \mu \mathrm{~F}$	$100 \mu \mathrm{~F}$
C_{8}	$0.22 \mu \mathrm{~F}$	Frequency stability.		Danger of oscillation.		
C_{9}	$\begin{gathered} 2200 \mu \mathrm{~F} \\ \left(\mathrm{R}_{\mathrm{L}}=4 \Omega\right) \\ 1000 \mu \mathrm{~F} \\ \left(\mathrm{R}_{\mathrm{L}}=8 \Omega\right) \end{gathered}$	Output DC decoupling.		Higher low frequency cutoff.		

$\mathscr{C N}$ TDA 1910

THERMAL SHUT-DOWN

The presence of a thermal limiting circuit offers the following advantages:

1) An overload on the output (even if it is permanent), or an above limit ambient temperature can be easily supported since the T_{j} cannot be higher than $150^{\circ} \mathrm{C}$.
2) The heatsink can have a smaller factor of safety compared with that of a conventional circuit. There is no possibility of device damage due to high junction temperature.
If for any reason, the junction temperature increases up to $150^{\circ} \mathrm{C}$, the thermal shut-down simply reduces the power dissipation and the current consumption.

The maximum allowable power dissipation depends upon the size of the external heatsink (i.e. its thermal resistance); fig. 31 shows this dissipable power as a function of ambient temperature for different thermal resistance.

Fig. 29 - Output power and drain current vs. case tem perature

Fig. 30 - Output power and drain current vs. case temperature

Fig. 31 - Maximum allowable power dissipation vs. ambient temperature

MOUNTING INSTRUCTIONS

The power dissipated in the circuit must be removed by adding an external heatsink.
Thanks to the Multiwatt ${ }^{\circledR}$ package attaching the heatsink is very simple, a screw or a compression spring (clip) being sufficient. Between the heatsink and the package it is better to insert a layer of silicon grease, to optimize the thermal contact; no electrical isolation is needed between the two surfaces. .

Fig. 34 - Mounting examples

LINEAR INTEGRATED CIRCUIT

8W CAR RADIO AUDIO AMPLIFIER

The TDA 2002 is a class B audio power amplifier in Pentawatt ${ }^{\circledR}$ package designed for driving low impedance loads (down to 1.6Ω). The device provides a high output current capability (up to 3.5 A), very low harmonic and cross-over distortion. In addition, the device offers the following features:

- very low number of external components
- assembly ease, due to Pentawatt ${ }^{\circledR}$ power package with no electrical insulation requirement
- space and cost saving
- high reliability
- flexibility in use
- complete safety during operation due to protection against:
a) short circuit; b) thermal over range; c) fortuitous open ground; d) polarity inversion (V_{s} max $=12 \mathrm{~V}$);
e) load dump voltage surge.

ABSOLUTE MAXIMUM RATINGS

V_{s}	Peak supply voltage (50 ms)	40	V
$\mathrm{~V}_{\mathrm{s}}$	DC supply voltage	28	V
$\mathrm{~V}_{\mathrm{s}}$	Operating supply voltage	18	V
I_{o}	Output peak current (repetitive)	3.5	A
I_{o}	Output peak current (non repetitive)	4.5	A
$\mathrm{P}_{\text {tot }}$	Power dissipation at $\mathrm{T}_{\text {case }}=90^{\circ} \mathrm{C}$	15	W
$\mathrm{~T}_{\text {stg }}, \mathrm{T}_{\mathrm{j}}$	Storage and junction temperature	-40 to 150	${ }^{\circ} \mathrm{C}$

ORDERING NUMBERS: TDA 2002 H TDA 2002 V

MECHANICAL DATA

Dimensions in mm

CONNECTION DIAGRAM

(top view)

SCHEMATIC DIAGRAM

DC TEST CIRCUIT

AC TEST CIRCUIT

TDA2002

THERMAL DATA

$R_{\text {th } j \text {-case }}$	Thermal resistance junction-case	$\max \quad 4 \quad{ }^{\circ} \mathrm{C} / \mathrm{W}$

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{s}}=14.4 \mathrm{~V}, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}\right.$ unless otherwise specified)

Parameter	Test conditions	Min.	Typ.	Max.

DC CHARACTERISTICS (Refer to DC test circuit)

V_{s}	Supply voltage		8		18	V
V_{o}	Quiescent output voltage (pin 4)		6.4	7.2	8	V
I_{d}	Quiescent drain current $(\operatorname{pin} 5)$			45	80	mA

AC CHARACTERISTICS (Refer to AC test circuit, $\mathrm{G}_{\mathrm{v}}=40 \mathrm{~dB}$)

P_{0}	Output power	$\begin{array}{ll} \mathrm{d}=10 \% & \mathrm{f}=1 \mathrm{kHz} \\ & \mathrm{R}_{\mathrm{L}}=4 \Omega \\ \mathrm{~V}_{\mathrm{s}}=16 \mathrm{~V} & \mathrm{R}_{\mathrm{L}}=2 \Omega \\ & \mathrm{R}_{\mathrm{L}}=4 \Omega \\ & \mathrm{R}_{\mathrm{L}}=2 \Omega \end{array}$	4.8	$\begin{gathered} 5.2 \\ 8 \\ 6.5 \\ 10 \end{gathered}$		$\begin{aligned} & w \\ & w \\ & w \\ & w \end{aligned}$
$V_{i(r m s)}$	Input saturation voltage		600			mV
V_{i}	Input sensitivity	$f=1 \mathrm{kHz}$ $\mathrm{P}_{\mathrm{O}}=0.5 \mathrm{~W}$ $\mathrm{R}_{\mathrm{L}}=4 \Omega$ $\mathrm{P}_{\mathrm{O}}=0.5 \mathrm{~W}$ $\mathrm{R}_{\mathrm{L}}=2 \Omega$ $\mathrm{P}_{\mathrm{O}}=5.2 \mathrm{~W}$ $\mathrm{R}_{\mathrm{L}}=4 \Omega$ $\mathrm{P}_{\mathrm{O}}=8 \mathrm{~W}$ $\mathrm{R}_{\mathrm{L}}=2 \Omega$		$\begin{aligned} & 15 \\ & 11 \\ & 55 \\ & 50 \end{aligned}$		$\begin{aligned} & m V \\ & m V \\ & m V \\ & m V \end{aligned}$
B	Frequency response (-3 dB)	$\mathrm{R}_{\mathrm{L}}=4 \Omega \quad \mathrm{P}_{\mathrm{O}}=1 \mathrm{~W}$	40 to 15000			Hz
d	Distortion	$\begin{array}{ll} & f=1 \mathrm{kHz} \\ \mathrm{P}_{\mathrm{O}}=0.05 \text { to } 3.5 \mathrm{~W} & \mathrm{R}_{\mathrm{L}}=4 \Omega \\ \mathrm{P}_{\mathrm{O}}=0.05 \text { to } 5 \mathrm{~W} & \mathrm{R}_{\mathrm{L}}=2 \Omega \end{array}$		$\begin{aligned} & 0.2 \\ & 0.2 \end{aligned}$		\%
R_{i}	Input resistance (pin 1)	$\mathrm{f}=1 \mathrm{kHz}$	70	150		k Ω
G_{V}	Voltage gain (open loop)	$\mathrm{R}_{\mathrm{L}}=4 \Omega \quad \mathrm{f}=1 \mathrm{kHz}$		80		dB
G_{V}	Voltage gain (closed loop)	$\mathrm{R}_{\mathrm{L}}=4 \Omega \quad \mathrm{f}=1 \mathrm{kHz}$	39.5	40	40.5	dB
e_{N}	Input noise voltage (*)			4		$\mu \mathrm{V}$
i_{N}	Input noise current (*)			60		pA
η	Efficiency	$\begin{array}{ll} & f=1 \mathrm{kHz} \\ \mathrm{P}_{\mathrm{O}}=5.2 \mathrm{~W} & \mathrm{R}_{\mathrm{L}}=4 \Omega \\ \mathrm{P}_{\mathrm{O}}=8 \mathrm{~W} & \mathrm{R}_{\mathrm{L}}=2 \Omega \end{array}$		$\begin{aligned} & 68 \\ & 58 \end{aligned}$		\%
SVR	Supply voltage rejection	$\begin{aligned} & R_{\mathrm{L}}=4 \Omega \\ & R_{\mathrm{g}}=10 \mathrm{k} \Omega \\ & \mathrm{f}_{\text {ripple }}=100 \mathrm{~Hz} \end{aligned}$	30	35		dB

(*) Filter with noise bandwidth: 22 Hz to 22 KHz .

Fig. 1 - Quiescent output voltage vs. supply voltage

Fig. 4 - Output power vs. load resistance R_{L}

Fig. 7 - Distortion vs. output power

Fig. 2 - Quiescent drain current vs. supply voltage

Fig. 5 - Input voltage vs. voltage gain ($R_{L}=4 \Omega$)

Fig. 8 - Distortion vs. frequency

Fig. 3 - Output power vs. supply voltage

Fig. 6 - Input voltage vs. voltage gain ($R_{L}=2 \Omega$)

Fig. 9 -Supply voltage rejection vs. voltage gain

Fig. 10 - Supply voltage rejection vs. frequency

Fig. 13 - Maximum power dissipation vs. supply voltage (sine wave operation)

Fig. 11 - Power dissipation and efficiency vs. output power ($R_{L}=4 \Omega$)

Fig. 14 - Maximim allowable power dissipation vs. ambient temperature

Fig. 12 - Power dissipation and efficiency vs. output power ($\mathrm{R}_{\mathrm{L}}=2 \Omega$)

Fig. 15 - Values of capacitor (C_{x}) for different values of frequency response (B)

APPLICATION INFORMATION

Fig. 16 - Application circuit

Fig. 17 - P.C. board and component layout for the circuit of fig. 16 (1:1 scale)

LOAD DUMP VOLTAGE SURGE PROTECTION

Fig. 18
The TDA 2002 has a circuit which enables it to withstand a voltage pulse train, on pin 5, of the type shown in fig. 18. If the supply voltage peaks to more than 40 V , then an LC filter must be inserted between the supply and pin 5 , in order to assure that the pulses at pin 5 will be held within the limits shown in fig. 18.
A suggested LC network is shown in fig. 19. With this network, a train of pulses with amplitude up to 120 V and width of 2 ms can be applied at point A. This type of protection is ON when the supply voltage (pulsed or DC) exceeds 18 V . For this reason the maximum operating supply voltage is 18 V .

Fig. 19

THERMAL SHUT-DOWN

The presence of a thermal limiting circuit offers the following advantages:

1) an overload on the output (even if it is permanent), or an excessive ambient temperature can be easily withstood
2) the heat-sink can have a smaller factor of safety compared with that of a conventional circuit. There is no device damage in the case of excessive junction temperature: all that happens is that P_{o} (and therefore $P_{\text {tot }}$) and I_{d} are reduced (figs. 20 and 21)

Fig. 20 - Output power and drain current vs. case temperature ($\mathrm{R}_{\mathrm{L}}=4 \Omega$)

Fig. 21 - Output power and drain current vs. case temperature ($\mathrm{R}_{\mathrm{L}}=2 \Omega$)

PRACTICAL CONSIDERATIONS

Printed circuit board

The layout shown in fig. 17 is recommended. If different layouts are used, the ground points of input 1 and input 2 must be well decoupled from the ground of the output through which a rather high current flows.

Assembly suggestion

No electrical insulation is needed between the package and the heat-sink. Pin length should be as short as possible. The soldering temperature must not exceed $260^{\circ} \mathrm{C}$ for 12 seconds.

Application suggestions

The recommended component values are those shown in the application circuits of fig. 16. Different values can be used. The following table is intended to aid the car-radio designer.

Component	$\begin{aligned} & \text { Recommended } \\ & \text { value } \end{aligned}$	Purpose	Larger than recommended value	Smaller than recommended value
C1	$2.2 \mu \mathrm{~F}$	Input DC decoupling		Noise at switch-on, switch-off
C2	$470 \mu \mathrm{~F}$	Ripple rejection		Degradation of SVR
C3	$0.1 \mu \mathrm{~F}$	Supply bypassing		Danger of oscillation
C4	$1000 \mu \mathrm{~F}$	Output coupling to load		Higher low frequency cutoff
C5	$0.1 \mu \mathrm{~F}$	Frequency stability		Danger of oscillation at high frequencies with inductive loads
$c^{\text {x }}$	$\cong \frac{1}{2 \pi \mathrm{BR1}}$	Upper frequency cutoff	Lower bandwidth	Larger bandwidth
R1	$\left(\mathrm{G}_{\mathrm{V}-1)}\right.$ • R2	Setting of gain		Increase of drain current
R2	2.2Ω	Setting of gain and SVR	Degradation of SVR	
R3	1Ω	Frequency stability	Danger of oscillation at high frequencies with inductive loads	
R_{X}	$\cong 20 \mathrm{R} 2$	Upper frequency cutoff	Poor high frequency attenuation	Danger of oscillation

TDA2003

LINEAR INTEGRATED CIRCUIT

10W CAR RADIO AUDIO AMPLIFIER

The TDA 2003 has improved performance with the same pin configuration as the TDA 2002. The additional features of TDA 2002, very low number of external components, ease of assembly, space and cost saving, are maintained.
The device provides a high output current capability (up to 3.5 A) very low harmonic and cross-over distortion.
Completely safe operation is guaranteed due to protection against DC and AC short circuit between all pins and ground, thermal over-range, load dump voltage surge up to 40 V , polarity inversion and fortuitous open ground.

ABSOLUTE MAXIMUM RATINGS

V_{s}	Peak supply voltage (50 ms)	40	V
$\mathrm{~V}_{\mathrm{s}}$	DC supply voltage	28	V
$\mathrm{~V}_{\mathrm{s}}$	Operating supply voltage	18	V
I_{o}	Output peak current (repetitive)	3.5	A
I_{O}	Output peak current (non repetitive)	4.5	A
$\mathrm{P}_{\text {tot }}$	Power dissipation at $\mathrm{T}_{\text {case }}=90^{\circ} \mathrm{C}$	20	W
$\mathrm{~T}_{\text {stg }}, \mathrm{T}_{\mathrm{j}}$	Storage and junction temperature	-40 to 150	${ }^{\circ} \mathrm{C}$

CONNECTION DIAGRAM

(top view)

S-1894/1

SCHEMATIC DIAGRAM

THERMAL DATA

DC TEST CIRCUIT

AC TEST CIRCUIT

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{s}}=14.4 \mathrm{~V}, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}\right.$ unless otherwise specified)

| Parameter | Test conditions | Min. | Typ. | Max. |
| :---: | :---: | :---: | :---: | :---: | Unit | (|
| :--- |

DC CHARACTERISTICS (Refer to DC test circuit)

V_{s}	Supply voltage		8		18	V
V_{o}	Quiescent output voltage (pin 4)		6.1	6.9	7.7	V
I_{d}	Quiescent drain current (pin 5)			44	50	mA

AC CHARACTERISTICS (Refer to AC test circuit, $\mathrm{G}_{\mathrm{v}}=40 \mathrm{~dB}$)

P_{0}	Output power	$\begin{aligned} & d=10 \% \\ & f=1 \mathrm{kHz} \end{aligned}$	$\begin{aligned} & R_{\mathrm{L}}=4 \Omega \\ & \mathrm{R}_{\mathrm{L}} \equiv 2 \Omega \\ & \mathrm{R}_{\mathrm{L}}=3.2 \Omega \\ & \mathrm{R}_{\mathrm{L}}=1.6 \Omega \end{aligned}$	$\begin{gathered} 5.5 \\ 9 \end{gathered}$	$\begin{gathered} 6 \\ 10 \\ 7.5 \\ 12 \end{gathered}$	w w w w
$\mathrm{V}_{\mathrm{i} \text { (rms) }}$	Input saturation voltage			300		mV
v_{i}	Input sensitivity	$\begin{aligned} & f=1 \mathrm{kHz} \\ & P_{\mathrm{O}}=0.5 \mathrm{~W} \\ & \mathrm{P}_{\mathrm{O}}=6 \mathrm{~W} \\ & \mathrm{P}_{\mathrm{O}}=0.5 \mathrm{~W} \\ & \mathrm{P}_{\mathrm{O}}=10 \mathrm{~W} \end{aligned}$	$\begin{aligned} & R_{\mathrm{L}}=4 \Omega \\ & \mathrm{R}_{\mathrm{L}}=4 \Omega \\ & \mathrm{R}_{\mathrm{L}}=2 \Omega \\ & \mathrm{R}_{\mathrm{L}}=2 \Omega \end{aligned}$		14 55 10 50	$m V$ $m V$ $m V$ $m V$

ELECTRICAL CHARACTERISTICS (continued)

Parameter		Test conditions	Min.	Typ.	Max.	Unit
B	Frequency response (-3 dB)	$\begin{aligned} & \mathrm{P}_{\mathrm{O}}=1 \mathrm{~W} \\ & \mathrm{R}_{\mathrm{L}}=4 \Omega \end{aligned}$	40 to 15,000			Hz
d	Distortion	$\begin{array}{ll} f=1 \mathrm{kHz} & \\ \mathrm{P}_{\mathrm{O}}=0.05 \text { to } 4.5 \mathrm{~W} & R_{\mathrm{L}}=4 \Omega \\ \mathrm{P}_{\mathrm{O}}=0.05 \text { to } 7.5 \mathrm{~W} & R_{\mathrm{L}}=2 \Omega \end{array}$		$\begin{aligned} & 0.15 \\ & 0.15 \end{aligned}$		$\begin{aligned} & \% \\ & \% \end{aligned}$
R_{i}	Input resistance (pin 1)	$\mathrm{f}=1 \mathrm{kHz}$	70	150		$k \Omega$
G_{v}	Voltage gain (open loop)	$\begin{aligned} & f=1 \mathrm{kHz} \\ & f=10 \mathrm{kHz} \end{aligned}$		$\begin{aligned} & 80 \\ & 60 \end{aligned}$		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
G_{v}	Voltage gain (closed loop)	$\begin{aligned} & f=1 \mathrm{kHz} \\ & R_{L}=4 \Omega \end{aligned}$	39.5	40	40.5	dB
e_{N}	Input noise voltage (0)			1	5	$\mu \mathrm{V}$
i_{N}	Input noise current (0)			60	200	pA
η	Efficiency	$\begin{array}{ll} f=1 \mathrm{kHz} & \\ \mathrm{P}_{\mathrm{O}}=6 \mathrm{~W} & R_{\mathrm{L}}=4 \Omega \\ \mathrm{P}_{\mathrm{O}}=10 \mathrm{~W} & \mathrm{R}_{\mathrm{L}}=2 \Omega \end{array}$		$\begin{aligned} & 69 \\ & 65 \end{aligned}$		$\begin{aligned} & \% \\ & \% \end{aligned}$
SVR	Supply voltage rejection	$\begin{array}{ll} \mathrm{f}=100 \mathrm{~Hz} & \\ \mathrm{~V}_{\text {ripple }}=0.5 \mathrm{~V} & \\ \mathrm{R}_{\mathrm{g}}=10 \mathrm{k} \Omega & \mathrm{R}_{\mathrm{L}}=4 \Omega \\ \hline \end{array}$	30	36		dB

(0) Filter with noise bandwidth: 22 Hz to 22 kHz

Fig. 1 - Quiescent output voltage vs. supply voltage

Fig. 2 - Quiescent drain current vs. supply voltage

Fig. 3 - Output power vs. supply voltage

Fig. 4 - Output power vs. load resistance R_{L}

Fig. 7 - Distortion vs. output power

Fig. 10 - Supply voltage rejection vs. frequency

Fig. 5 - Gain vs. input sensitivity

Fig. 8 - Distortion vs. frequency

Fig. 11 - Power dissipation and efficiency vs. output power ($\mathrm{R}_{\mathrm{L}}=4 \Omega$)
$P_{\text {tot }}$
(W)
6
5
4
3
2
1
0

Fig. 6 - Gain vs. input sensitivity

Fig. 9 - Supply voltage rejection vs. voltage gain

Fig. 12 - Power dissipation and efficiency vs. output power ($R_{L}=2 \Omega$)

Fig. 13 - Maximum power dissipation vs. supply voltage (sine wave operation)

Fig. 14 - Maximum allowable power dissipation vs. ambient temperature

Fig. 15 - Typical values of capacitor (C_{X}) for different values of frequency response

APPLICATION INFORMATION

Fig. 16 - Typical application circuit

Fig. 18-20W bridge configuration application circuit (*)

(*) The values of the capacitors C3 and C4 are different to optimize the SVR (Typ. $=40 \mathrm{~dB}$)

Fig. 17 - P.C. board and component layout for the circuit of fig. 16 (1:1 scale)

Fig. 19 - P.C. board and component layout for the circuit of fig. 18 (1:1 scale)

58
 TDA2003

APPLICATION INFORMATION (continued)

Fig. 20 - Low cost bridge configuration application circuit $\left(^{*}\right)\left(P_{o}=18 \mathrm{~W}\right)$

(*) In this application the device can support a short circuit between every side of the loudspeaker and ground.

Fig. 21 - P.C. board and component layout for the circuit of fig. 20 (1:1 scale)

Fig. 22 - P.C. board and component layout for the low-cost bridge amplifier of fig. 20, in stereo version (1:1 scale)

BUILT-IN PROTECTION SYSTEMS

Load dump voltage surge

The TDA 2003 has a circuit which enables it to withstand a voltage pulse train, on pin 5, of the type shown in fig. 23.
If the supply voltage peaks to more than 40 V , then an LC filter must be inserted between the supply and pin 5 , in order to assure that the pulses at pin 5 will be held within the limits shown in fig. 23. A suggested LC network is shown in fig. 24. With this network, a train of pulses with amplitude up to 120 V and width of 2 ms can be applied at point A . This type of protection is ON when the supply voltage (pulsed or DC) exceeds 18 V . For this reason the maximum operating supply voltage is 18 V .

Fig. 23

Fig. 24

Short-circuit (AC and DC conditions)

The TDA 2003 can withstand a permanent short-circuit on the output for a supply voltage up to 16 V .

Polarity inversion

High current (up to 5A) can be handled by the device with no damage for a longer period than the blow-out time of a quick 1A fuse (normally connected in series with the supply).
This feature is added to avoid destruction if, during fitting to the car, a mistake on the connection of the supply is made.

Open ground

When the radio is in the ON condition and the ground is accidentally opened, a standard audio amplifier will be damaged. On the TDA 2003 protection diodes are included to avoid any damage.

Inductive load

A protection diode is provided between pin 4 and 5 (see the internal schematic diagram) to allow use of the TDA 2003 with inductive loads.
In particular, the TDA 2003 can drive a coupling transformer for audio modulation.

DC voltage

The maximum operating DC voltage on the TDA 2003 is 18 V .
However the device can withstand a DC voltage up to 28 V with no damage. This could occur during winter if two batteries were series connected to crank the engine.

Thermal shut-down

The presence of a thermal limiting circuit offers the following advantages:

1) an overload on the output (even if it is permanent), or an excessive ambient temperature can be easily withstood.
2) the heat-sink can have a smaller factor of safety compared with that of a conventional circuit. There is no device damage in the case of excessive junction temperature: all that happens is that P_{0} (and therefore $P_{\text {tot }}$) and I_{d} are reduced (figs. 25 and 26).

Fig. 25 - Output power and drain current vs. case temperature ($R_{L}=4 \Omega$)

Fig. 26 - Output power and drain current vs. case tem-

PRATICAL CONSIDERATIONS

Printed circuit board

The layout shown in fig. 17 is recommended. If different layouts are used, the ground points of input 1 and input 2 must be well decoupled from the ground of the output through which a rather high current flows.

Assembly suggestion

No electrical insulation is required between the package and the heat-sink. Pin length should be as short as possible. The soldering temperature must not exceed $260^{\circ} \mathrm{C}$ for 12 seconds.

Application suggestions

The recommended component values are those shown in the application circuits of fig. 16. Different values can be used. The following table is intended to aid the car-radio designer.

Component	Recommended value	Purpose	Larger than recommended value	Smaller than recommended value
C1	$2.2 \mu \mathrm{~F}$	Input DC decoupling		Noise at switch-on, switch-off
C2	$470 \mu \mathrm{~F}$	Ripple rejection		Degradation of SVR
C3	$0.1 \mu \mathrm{~F}$	Supply bypassing		Danger of oscillation
C4	$1000 \mu \mathrm{~F}$	Output coupling to load		Higher low frequency cutoff
C5	$0.1 \mu \mathrm{~F}$	Frequency stability		Danger of oscillation at high frequencies with inductive loads
C_{x}	$\cong \frac{1}{2 \pi \mathrm{BR1}}$	Upper frequency cutoff	Lower bandwidth	Larger bandwidth
R1	$\left(\mathrm{G}_{\mathrm{v}}-1\right) \cdot \mathrm{R} 2$	Setting of gain		Increase of drain current
R2	2.2Ω	Setting of gain and SVR	Degıadation of SVR	
R3	1Ω	Frequency stability	Danger of oscillation at high frequencies with inductive loads	
R_{\times}	$\cong 20 \mathrm{R} 2$	Upper frequency cutoff	Poor high frequency attenuation	Danger of oscillation

LINEAR INTEGRATED CIRCUIT

10 + 10W STEREO AMPLIFIER FOR CAR RADIO

The TDA 2004 is a class B dual audio power amplifier in MULTIWATT ${ }^{\circledR}$ package specifically designed for car radio applications: stereo amplifiers are easily designed using this device that provides a high current capability (up to 3.5 A) and that can drive very low impedance loads (down to 1.6Ω).
Its main features are:

Low distortion.

Low noise.
High reliability of the chip and of the package with additional complete safety during operation thanks to protections against:

- output AC short circuit to ground
- very inductive loads
- overrating chip temperature
- load dump voltage surge
- fortuitous open ground
- polarity inversion

Space and cost saving: very low number of external components, very simple mounting system with no electrical isolation between the package and the heatsink (one screw only).

ABSOLUTE MAXIMUM RATINGS

V_{s}	Operating supply voltage	18	V
$\mathrm{~V}_{\mathrm{s}}$	DC supply voltage	28	V
$\mathrm{~V}_{\mathrm{s}}$	Peak supply voltage (for 50 ms$)$	40	V
$\mathrm{I}_{\mathrm{o}}\left({ }^{*}\right)$	Output peak current (non repetitive $\mathrm{t}=0.1 \mathrm{~ms}$)	4.5	A
$\mathrm{I}_{\mathrm{o}}\left({ }^{*}\right)$	Output peak current (repetitive $\mathrm{f} \geqslant 10 \mathrm{~Hz})$	3.5	A
$\mathrm{P}_{\mathrm{tot}}$	Power dissipation at $\mathrm{T}_{\text {case }}=60^{\circ} \mathrm{C}$	30	W
$\mathrm{~T}_{\mathrm{j}}, \mathrm{T}_{\text {stg }}$	Storage and junction temperature	-40 to 150	${ }^{\circ} \mathrm{C}$

(*) The max. output current is internally limited.
ORDERING NUMBER: TDA 2004

MECHANICAL DATA

CONNECTION DIAGRAM

 (top view)

SCHEMATIC DIAGRAM

THERMAL DATA

$R_{\text {th } j \text {-case }}$	Thermal resistance junction-case	\max	$3{ }^{\circ} \mathrm{C} / \mathrm{W}$

40 TDA 2004

Fig. 1 - Test and application circuit

Fig. 2 - PC board and components layout (scale 1:1)

TDA2004

ELECTRICAL CHARACTERISTICS (Refer to the test circuit, $T_{a m b}=25^{\circ} \mathrm{C}, \mathrm{G}_{\mathrm{v}}=50 \mathrm{~dB}$, $R_{\text {th (neatsink) }}=4^{\circ} \mathrm{C} / \mathrm{W}$, unless otherwise specified)

	Parameter	Test conditions	Min.	Typ.	Max.	Unit
$V_{\text {s }}$	Supply voltage		8		18	V
V_{0}	Quiescent output voltage	$\begin{aligned} & V_{5}=14.4 \mathrm{~V} \\ & V_{5}=13.2 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 6.6 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 7.2 \\ & 6.6 \end{aligned}$	$\begin{aligned} & 7.8 \\ & 7.2 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
I_{d}	Total quiescent drain current	$\begin{aligned} & V_{\mathrm{s}}=14.4 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{s}}=13.2 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 65 \\ & 67 \end{aligned}$	$\begin{aligned} & 120 \\ & 120 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
$I_{\text {SB }}$	Stand-by current	Pin 3 grounded		5		mA
P_{0}	Output power (each channel)	$\begin{array}{ll} \hline \mathrm{f}=1 \mathrm{KHz} & \mathrm{~d}=10 \% \\ \mathrm{~V}_{\mathrm{S}}=14.4 \mathrm{~V} & \\ & \mathrm{R}_{\mathrm{L}}=4 \Omega \\ & \mathrm{R}_{\mathrm{L}}=3.2 \Omega \\ & \mathrm{R}_{\mathrm{L}}=2 \Omega \\ & \mathrm{R}_{\mathrm{L}}=1.6 \Omega \\ \mathrm{~V}_{\mathrm{S}}=13.2 \mathrm{~V} & \\ & \mathrm{R}_{\mathrm{L}}=3.2 \Omega \\ \mathrm{~V}_{\mathrm{S}}=16 \mathrm{~V} & \mathrm{R}_{\mathrm{L}}=1.6 \Omega \\ & \mathrm{R}_{\mathrm{L}}=2 \Omega \end{array}$	$\begin{gathered} 6 \\ 7 \\ 9 \\ 10 \end{gathered}$	$\begin{aligned} & 6.5 \\ & 8 \\ & 10(*) \\ & 11 \\ & \\ & 6.5 \\ & 10 \\ & 12 \end{aligned}$		$\begin{aligned} & w \\ & w \end{aligned}$
d	Distortion (each channel)	$\begin{aligned} & \mathrm{f}=1 \mathrm{KHz} \\ & \mathrm{~V}_{\mathrm{S}}=14.4 \mathrm{~V} \quad \mathrm{R}_{\mathrm{L}}=4 \Omega \\ & \mathrm{P}_{\mathrm{O}}=50 \mathrm{~mW} \text { to } 4 \mathrm{~W} \\ & \mathrm{~V}_{\mathrm{S}}=14.4 \mathrm{~V} \quad \mathrm{R}_{\mathrm{L}}=2 \Omega \\ & \mathrm{P}_{\mathrm{O}}=50 \mathrm{~mW} \text { to } 6 \mathrm{~W} \\ & \mathrm{~V}_{\mathrm{S}}=13.2 \mathrm{~V} \text { R } \mathrm{R}_{\mathrm{L}}=3.2 \Omega \\ & \mathrm{P}_{\mathrm{O}}=50 \mathrm{~mW} \text { to } 3 \mathrm{~W} \\ & \mathrm{~V}_{\mathrm{S}}=13.2 \mathrm{~V} \quad \mathrm{R}_{\mathrm{L}}=1.6 \Omega \\ & \mathrm{P}_{\mathrm{O}}=50 \mathrm{~mW} \text { to } 6 \mathrm{~W} \end{aligned}$		$\begin{aligned} & 0.2 \\ & 0.3 \\ & 0.2 \\ & 0.3 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \% \\ & \% \\ & \% \\ & \% \end{aligned}$
CT	Cross talk	$\begin{array}{ll} V_{S}=14.4 \mathrm{~V} & \\ V_{o}=4 V \mathrm{Vms} & R_{L}=4 \Omega \\ f=1 \mathrm{KHz} & \\ f=10 \mathrm{KHz} & \end{array}$	$\begin{aligned} & 50 \\ & 40 \end{aligned}$	$\begin{aligned} & 60 \\ & 45 \end{aligned}$		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
v_{i}	Input sensitivity	$\begin{aligned} & f=1 \mathrm{KHz} \\ & \mathrm{P}_{\mathrm{O}}=1 \mathrm{~W} \\ & \mathrm{R}_{\mathrm{L}}=4 \Omega \\ & \mathrm{R}_{\mathrm{L}}=3.2 \Omega \end{aligned}$		$\begin{gathered} 6 \\ 5.5 \end{gathered}$		$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
V_{i}	Input saturation voltage		300			mV
R_{i}	Input resistance (non inverting input)	$\mathrm{f}=1 \mathrm{KHz}$	70	200		K Ω
R_{i}	Input resistance (inverting input)	$\mathrm{f}=1 \mathrm{KHz}$		10		K Ω
f_{L}	Low frequency roll off (-3 dB)	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=4 \Omega \\ & \mathrm{R}_{\mathrm{L}}=2 \Omega \\ & \mathrm{R}_{\mathrm{L}}=3.2 \Omega \\ & \mathrm{R}_{\mathrm{L}}=1.6 \Omega \end{aligned}$			$\begin{aligned} & 35 \\ & 50 \\ & 40 \\ & 55 \end{aligned}$	Hz Hz Hz Hz
f_{H}	High frequency roil off (-3 dB)	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=4 \Omega \\ & \mathrm{R}_{\mathrm{L}}=2 \Omega \\ & \mathrm{R}_{\mathrm{L}}=3.2 \Omega \\ & \mathrm{R}_{\mathrm{L}}=1.6 \Omega \end{aligned}$	15 15 15 15			$\begin{aligned} & \mathrm{KHz} \\ & \mathrm{KHz} \\ & \mathrm{KHz} \\ & \mathrm{KHz} \end{aligned}$

TDA2004

ELECTRICAL CHARACTERISTICS (continued)

Parameters		Test conditions	Min.	Typ.	Max.	Unit
G_{v}	Voltage gain (open loop)	$\mathrm{f}=1 \mathrm{KHz}$		90		$\overline{\mathrm{dB}}$
G_{v}	Voltage gain (closed loop)	$\mathrm{f}=1 \mathrm{KHz}$	48	50	51	dB
	Closed loop gain matching			0.5		dB
e_{N}	Total input noise voltage	$\mathrm{R}_{\mathrm{g}}=10 \mathrm{~K} \Omega\left({ }^{\circ}\right)$		1.5	5	$\mu \mathrm{V}$
SVR	Supply voltage rejection	$\begin{aligned} & \mathrm{f}_{\text {ripple }}=100 \mathrm{~Hz} \mathrm{R}_{\mathrm{g}}=10 \mathrm{~K} \Omega \\ & \mathrm{C}_{3}=10 \mu \mathrm{~F} \quad \mathrm{~V}_{\text {ripple }}=0.5 \mathrm{~V}_{\mathrm{rms}} \end{aligned}$	35	45		dB
η	Efficiency	$V_{S}=14.4 \mathrm{~V}$ $f=1 \mathrm{KHz}$ $R_{\mathrm{L}}=4 \Omega$ $\mathrm{P}_{\mathrm{O}}=6.5 \mathrm{~W}$ $R_{\mathrm{L}}=2 \Omega$ $\mathrm{P}_{\mathrm{O}}=10 \mathrm{~W}$ $V_{\mathrm{S}}=13.2 \mathrm{~V}$ $f=1 \mathrm{KHz}$ $R_{\mathrm{L}}=3.2 \Omega$ $\mathrm{P}_{\mathrm{O}}=6.5 \mathrm{~W}$ $R_{\mathrm{L}}=1.6 \Omega$ $\mathrm{P}_{\mathrm{O}}=10 \mathrm{~W}$		$\begin{aligned} & 70 \\ & 60 \\ & 70 \\ & 60 \end{aligned}$		$\begin{aligned} & \% \\ & \% \\ & \% \\ & \% \end{aligned}$
$\mathrm{T}_{\text {sd }}$	Thermal shut down case temperature	$\begin{array}{ll} V_{\mathrm{s}}=14.4 \mathrm{~V} & \mathrm{R}_{\mathrm{L}}=4 \Omega \\ \mathrm{f}=1 \mathrm{KHz} \\ \mathrm{P}_{\text {tot }}=5.5 \mathrm{~W} & \end{array}$	125	135		${ }^{\circ} \mathrm{C}$

(*) 9.3 W without bootstrap.
(०) Bandwidth filter: 22 Hz to 22 KHz .

Fig. 3 - Quiescent output voltage vs. supply voltage

Fig. 6 - Output power vs. supply voltage 0.4300

Fig. 4 - Quiescent drain current vs. supply voltage

Fig. 7 - Output power vs. supply voltage

Fig. 5 - Distortion vs. output power

Fig. 8 - Distortion vs. frequency

Fig. 9 - Distortion vs. frequency

Fig. 12 - Supply voltage rejection vs. values of capacitors C_{2} and C_{3}

Fig. 15 - Gain vs. input sensitivity

Fig. 10 - Supply voltage rejection vs. C_{3}

Fig. 13 - Supply voltage rejection vs. values of capacitors C_{2} and C_{3}

Fig. 16 - Total power dissipation and efficiency vs. output power

0-4310/1

Fig. 11 - Supply voltage rejection vs. frequency

Fig. 14 - Gain vs. input sensitivity

Fig. 17 - Total power dissipation and efficiency vs. output power

6-431/1

APPLICATION SUGGESTION

The recommended values of the components are those shown on application circuit of fig. 1 . Different values can be used; the following table can help the designer.

Component	Recomm. value	Purpose	Larger than	Smaller than
R_{1}	$120 \mathrm{~K} \Omega$	Optimisation of the output signal simmetry	Smaller P_{o} max	Smailer $\mathrm{P}_{\text {o max }}$
R_{2} and R_{4}	$1 \mathrm{~K} \Omega$	Close loop gain setting	Increase of gain	Decrease of gain
R_{3} and R_{5}	3.3Ω		Decrease of gain	Increase of gain
R_{6} and R_{7}	1Ω	Frequency stability	Danger of oscillation at high frequency with inductive load	
C_{1} and C_{2}	$2.2 \mu \mathrm{~F}$	Input DC decoupling	High turn-on delay	High turn-on pop Higher low frequency cutoff. Increase of noise.
C_{3}	$10 \mu \mathrm{~F}$	Ripple rejection	Increase of SVR. Increase of the switch-on time.	Degradation of SVR.
C_{4} and C_{6}	$100 \mu \mathrm{~F}$	Bootstrapping		Increase of distortion at low frequency.
C_{5} and C_{7}	$100 \mu \mathrm{~F}$	Feedback Input DC decoupling.		
C_{8} and C_{9}	$0.1 \mu \mathrm{~F}$	Frequency stability.		Danger of oscillation.
$\begin{gathered} \mathrm{C}_{10} \text { and } \\ \mathrm{C}_{11} \end{gathered}$	$\begin{aligned} & 1000 \mu \mathrm{~F} \text { to } \\ & 2200 \mu \mathrm{~F} \end{aligned}$	Output DC decoupling.		Higher low-frequency cut-off.

BUILT-IN PROTECTION SYSTEMS

Load dump voltage surge

The TDA 2004 has a circuit which enables it to withstand a voltage pulse train, on pin 9 , of the type shown in fig. 19.
If the supply voltage peaks to more than 40 V , then an LC filter must be inserted between the supply and pin 9, in order to assure that the pulses at pin 9 will be held within the limits shown.
A suggested LC network is shown in fig. 18. With this network, a train of pulses with amplitude up to 120 V and width of 2 ms can be applied to point A. This type of protection is ON when the supply voltage (pulse or DC) exceeds 18 V . For this reason the maximum operating supply voltage is 18 V .

Fig. 18

Fig. 19

Short circuit (AC conditions)

The TDA 2004 can withstand a permanent short-circuit on the output for a supply voltage up to 16 V .

Polarity inversion

High current (up to 10A) can be handled by the device with no damage for a longer period than the blow-out time of a quick 2A fuse (normally connected in series with the supply). This feature is added to avoid destruction, if during fitting to the car, a mistake on the connection of the supply is made.

Open ground

When the radio is the ON condition and the ground is accidentally opened, a standard audio amplifier will be damaged. On the TDA 2004 protection diodes are included to avoid any damage.

Inductive load

A protection diode is provided to allow use of the TDA 2004 with inductive loads.

DC voltage

The maximum operating DC voltage on the TDA 2004 is 18 V.
However the device can withstand a DC voltage up to 28 V with no damage. This could occur during winter if two batteries are series connected to crank the engine.

BUILD-IN PROTECTION SYSTEMS (continued)

Thermal shut-down

The presence of a thermal limiting circuit offers the following advantages:

1) an overload on the output (even if it is permanent), or an excessive ambient temperature can be easily withstood.
2) the heatsink can have a smaller factor of safety compared with that of a conventional circuit. There is no device damage in the case of excessive junction temperature: all that happens is that P_{\circ} (and therefore $\mathrm{P}_{\text {tot }}$) and I_{d} are reduced.
The maximum allowable power dissipation depends upon the size of the external heatsink (i.e. its thermal resistance); fig. 20 shows this dissipable power as a function of ambient temperature for different thermal resistance.

Fig. 20 - Maximum allowable power dissipation vs. ambient temperature

Fig. 21 - Output power and drain current vs. case temperature

Fig. 22 - Output power and drain current vs. case temperature

MOUNTING INSTRUCTIONS

The power dissipated in the circuit must be removed by adding an external heatsink.
Thanks to the MULTIWATT ${ }^{\circledR}$ package attaching the heatsink is very simple, a screw or a compression spring (clip) being sufficient. Between the heatsink and the package it is better to insert a layer of silicon grease, to optimize the thermal contact; no electrical isolation is needed between the two surfaces.

MOUNTING INSTRUCTIONS (continued)

Fig. 23 - Mounting examples

LINEAR INTEGRATED CIRCUIT

20 W BRIDGE AMPLIFIER FOR CAR RADIO

The TDA 2005 is a class B dual audio power amplifier in MULTIWATT ${ }^{\circledR}$ package specifically designed for car radio application: power booster amplifiers are easily designed using this device that provides a high current capability (up to 3.5A) and that can drive very low impedance loads (down to 1.6Ω in stereo applications) obtaining an output power of more than 20W (bridge configuration).
High output power: $P_{o}=10+10 \mathrm{~W} @ R_{L}=2 \Omega, d=10 \% ; P_{o}=20 W @ R_{L}=4 \Omega, d=10 \%$
High reliability of the chip and package with additional complete safety during operation thanks to protection against:

- output DC and AC short circuit to ground.
- overrating chip temperature $\left(150^{\circ} \mathrm{C}\right)$
- load dump voltage surge.
- fortuitous open ground.
- polarity inversion.
- very inductive loads.

Flexibility in use: bridge or stereo booster amplifiers with or without bootstrap and with programmable gain and bandwidth.

Space and cost saving: very low number of external components, very simple mounting system with no electrical isolation between the package and the heatsink (one screw only).
In addition, the circuit offers loudspeaker protection during short circuit for one wire to ground.

ABSOLUTE MAXIMUM RATINGS

V_{s}	Operating supply voltage	18	V
$\mathrm{~V}_{\mathrm{s}}$	DC supply voltage	28	V
$\mathrm{~V}_{\mathrm{s}}$	Peak supply voltage (for 50 ms)	40	V
$\mathrm{I}_{\mathrm{o}}\left({ }^{*}\right)$	Output peak current (non repetitive $\mathrm{t}=0.1 \mathrm{~ms})$	4.5	A
$\mathrm{I}_{\mathrm{o}}\left({ }^{*}\right)$	Output peak current (repetitive $\mathrm{f} \geqslant 10 \mathrm{~Hz}$)	3.5	A
$\mathrm{P}_{\mathrm{tot}}$	Power dissipation at $\mathrm{T}_{\text {case }}=60^{\circ} \mathrm{C}$	30	W
$\mathrm{~T}_{\text {stg }}, T_{\mathrm{j}}$	Storage and junction temperature	-40 to	150°

(*) The max. output current is internally limited
ORDERING NUMBERS: TDA 2005 M - Bridge application
TDA 2005 S - Stereo application,
MECHANICAL DATA

CONNECTION DIAGRAM

(top view)

SCHEMATIC DIAGRAM

THERMAL DATA

| $R_{\text {th j-case }}$ Thermal resistance junction-case | $\max \quad 3 \quad{ }^{\circ} \mathrm{C} / \mathrm{W}$ |
| :--- | :--- | :--- | :--- |

TDA2005

BRIDGE AMPLIFIER APPLICATION (TDA 2005M)

Fig. 1 - Test and application circuit (Bridge amplifier)

Fig. 2 - P.C. board and component layout (scale 1:1)

TDA2005

ELECTRICAL CHARACTERISTICS (Refer to the bridge application circuit, $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$, $G_{v}=50 \mathrm{~dB}, \mathrm{R}_{\mathrm{th} \text { (heatsink) }}=4 \mathrm{C} / \mathrm{W}$, unless otherwise specified).

Parameters		Test conditions		Min.	Typ.	Max.	Unit
V_{s}	Supply voltage			8		18	\checkmark
$\mathrm{V}_{\text {OS }}$	Output offset voltage (${ }^{\circ}$) (between pin 8 and 10)	$\begin{aligned} & V_{\mathrm{S}}=14.4 \mathrm{~V} \\ & V_{\mathrm{S}}=13.2 \mathrm{~V} \end{aligned}$				$\begin{aligned} & 150 \\ & 150 \end{aligned}$	$\begin{aligned} & m V \\ & m V \end{aligned}$
$I_{\text {d }}$	Total quiescent drain current	$\mathrm{V}_{\mathrm{s}}=14.4 \mathrm{~V}$	$R_{L}=4 \Omega$		75	150	mA
		$\mathrm{V}_{\mathrm{s}}=13.2 \mathrm{~V}$	$\mathrm{R}_{\mathrm{L}}=3.2 \Omega$		70	160	mA
P_{0}	Output power	$\begin{aligned} & d=10 \% \\ & V_{s}=14.4 V \\ & V_{S}=13.2 V \end{aligned}$	$\begin{aligned} & \mathrm{f}=1 \mathrm{KHz} \\ & \mathrm{R}_{\mathrm{L}}=4 \Omega \\ & \mathrm{R}_{\mathrm{L}}=3.2 \Omega \\ & \mathrm{R}_{\mathrm{L}}=3.2 \Omega \end{aligned}$	$\begin{aligned} & 18 \\ & 20 \\ & 17 \end{aligned}$	$\begin{aligned} & 20 \\ & 22 \\ & 19 \end{aligned}$		$\begin{aligned} & w \\ & w \\ & w \end{aligned}$
d	Distortion	$\begin{aligned} & f=1 \mathrm{KHz} \\ & V_{\mathrm{S}}=14.4 \mathrm{~V} \\ & \mathrm{P}_{\mathrm{O}}=50 \mathrm{~mW} \\ & \mathrm{~V}_{\mathrm{s}}=13.2 \mathrm{~V} \\ & \mathrm{P}_{\mathrm{O}}=50 \mathrm{~mW} \end{aligned}$	$\begin{aligned} & R_{L}=4 \Omega 2 \\ & 15 W \\ & R_{L}=3.2 \Omega \\ & 13 W \end{aligned}$			$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \% \\ & \% \end{aligned}$
V_{i}.	Input sensitivity	$\begin{aligned} & f=1 \mathrm{KHz} \\ & P_{o}=2 \mathrm{~W} \\ & P_{o}=2 W \end{aligned}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=4 \Omega \\ & \mathrm{R}_{\mathrm{L}}=3.2 \Omega \end{aligned}$		$\begin{aligned} & 9 \\ & 8 \end{aligned}$		$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
R_{i}	Input resistance	$f=1 \mathrm{KHz}$		70			$K \Omega$
f_{L}	Low frequency roll off (-3 dB)	$\mathrm{R}_{\mathrm{L}}=3.2 \Omega$				40	Hz
${ }^{\text {f }} \mathrm{H}$	High frequency roll off (-3 dB)	$\mathrm{R}_{\mathrm{L}}=3.2 \Omega$		20			KHz
G_{v}	Closed loop voltage gain	$f=1 \mathrm{KHz}$			50		dB
e_{N}	Total input noise voltage	$\mathrm{R}_{\mathrm{g}}=10 \mathrm{~K} \Omega$			3	10	$\mu \mathrm{V}$
SVR	Supply voltage rejection	$\begin{aligned} & \mathrm{R}_{\mathrm{g}}=10 \mathrm{~K} \Omega \\ & \mathrm{f}_{\text {ripple }}=100 \\ & \mathrm{~V}_{\text {ripple }}=0.5 \\ & \hline \end{aligned}$	$\mathrm{C}_{4}=10 \mu \mathrm{~F}$	45	55		dB
η	Efficiency	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}=14.4 \mathrm{~V} \\ & \mathrm{P}_{\mathrm{O}}=20 \mathrm{~W} \\ & \mathrm{P}_{\mathrm{O}}=22 \mathrm{~W} \\ & \mathrm{~V}_{\mathrm{s}}=13.2 \mathrm{~V} \\ & \mathrm{P}_{\mathrm{O}}=19 \mathrm{~W} \end{aligned}$	$\begin{aligned} & f=1 \mathrm{KHz} \\ & R_{\mathrm{L}}=4 \Omega \\ & \mathrm{R}_{\mathrm{L}}=3.2 \Omega \\ & \mathrm{f}=1 \mathrm{KHz} \\ & \mathrm{R}_{\mathrm{L}}=3.2 \Omega \end{aligned}$		$\begin{aligned} & 60 \\ & 60 \\ & 58 \end{aligned}$		\%
$\mathrm{T}_{\text {sd }}$	Thermal shut-down case temperature	$\begin{aligned} & V_{\mathrm{s}}=14.4 \mathrm{~V} \\ & \mathrm{f}=1 \mathrm{KHz} \end{aligned}$	$\begin{aligned} & R_{L}=4 \Omega \\ & P_{\text {tot }}=13 W \end{aligned}$	100	110		${ }^{\circ} \mathrm{C}$
$\mathrm{V}_{\mathrm{OSH}}$	Output voltage with one side of the speaker shorted to ground	$\begin{aligned} & V_{s}=14.4 \mathrm{~V} \\ & V_{5}-13.2 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=4 \Omega \\ & \mathrm{R}_{\mathrm{L}}=3.2 \Omega \end{aligned}$			2	V

(1) For TDA 2005M only.
(00) Bandwidth filter: 22 Hz to 22 KHz .

Fig. 3-Output offset voltage vs. supply voltage

Fig. 4 - Distortion vs. output power (Bridge amplifier)

Fig. 5 - Distorsion vs. output power (Bridge amplifier)

BRIDGE AMPLIFIER DESIGN

The following considerations can be useful when designing a bridge amplifier.

Parameter		Single ended	Bridge
$V_{0 \text { max }}$	Peak output voltage (before clipping)	$\frac{1}{2}\left(V_{s}-2 V_{\text {CE sat }}\right)$	$\mathrm{V}_{\mathrm{s}}-2 \mathrm{~V}_{\text {CE sat }}$
I_{0} max	Peak output current (before clipping)	$\frac{1}{2} \frac{\left(V_{s}-2 V_{C E ~ s a t}\right)}{R_{L}}$	$\frac{V_{s}-2 V_{C E ~ s a t}}{R_{L}}$
$P_{\text {o max }}$	rms output power (before clipping)	$\frac{1}{4} \frac{\left(V_{S}-2 V_{\text {CE sat }}\right)^{2}}{2 R_{L}}$	$\frac{\left(V_{s}-2 V_{C E ~ s a t}\right)^{2}}{2 R_{L}}$

where: $V_{\text {CE sat }}=$ output transistors saturation voltage
$V_{S}=$ allowable supply voltage
$R_{L}=$ load impedance.

Voltage and current swings are twice for a bridge amplifier in comparison with single ended amplifier. In other words, with the same R_{L} the bridge configuration can deliver an output power that is four times the output power of a single ended amplifier, while, with the same max output current the bridge configuration can deliver an output power that is twice the output power of a single ended amplifier. Care must be taken when selecting V_{s} and R_{L} in order to avoid an output peak current above the absolute maximum rating.
From the expression for $\mathrm{I}_{\mathrm{o} \text { max }}$, assuming $\mathrm{V}_{\mathrm{s}}=14.4 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{CE} \text { sat }}=2 \mathrm{~V}$, the minimum load that can be driven by TDA 2005 in bridge configuration is:

$$
R_{L \min }=\frac{V_{s}-2 V_{C E s a t}}{I_{0 \max }}=\frac{14.4-4}{3.5}=2.97 \Omega
$$

BRIDGE AMPLIFIER DESIGN (continued)

Fig. 6 - Bridge configuration.

The voltage gain of the bridge configuration is given by (see fig. 6):

$$
G_{v}=\frac{V_{0}}{V_{i}}=1+\frac{R_{1}}{\left(\frac{R_{2} \cdot R_{4}}{R_{2}+R_{4}}\right)}+\frac{R_{3}}{R_{4}}
$$

For sufficiently high gains ($40 \div 50 \mathrm{~dB}$) it is possible to put $R_{2}=R_{4}$ and $R_{3}=2 R_{1}$, simplifing the formula in:

$$
\mathrm{G}_{\mathrm{v}}=4 \frac{\mathrm{R}_{1}}{\mathrm{R}_{2}}
$$

$\mathbf{G}_{\mathrm{v}}(\mathbf{d B})$	$\mathbf{R}_{1}(\Omega)$	$\mathbf{R}_{2}=\mathbf{R}_{4}(\Omega)$	$\mathbf{R}_{3}(\Omega)$
40	1000	39	2000
50	1000	12	2000

STEREO AMPLIFIER APPLICATION (TDA 2005S)

Fig. 7 - Typical application circuit

TDA2005

ELECTRICAL CHARACTERISTICS (Refer to the stereo application circuit, $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$, $G_{v}=50 \mathrm{~dB}, R_{\text {th (heatsink) }}=4^{\circ} \mathrm{C} / \mathrm{W}$, unless otherwise specified).

Parameters		Test conditions		Min.	Typ.	Max.	Unit
V_{5}	Supply voltage			8		18	V
V_{0}	Quiescent output voltage	$\begin{aligned} & V_{\mathrm{S}}=14.4 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}=13.2 \mathrm{~V} \end{aligned}$		6.6	$\begin{aligned} & 7.2 \\ & 6.6 \end{aligned}$	$\begin{aligned} & 7.8 \\ & 7.2 \end{aligned}$	$\begin{aligned} & V \\ & V \end{aligned}$
I_{d}	Total quiescent drain current	$\begin{aligned} & \mathrm{V}_{\mathrm{s}}=14.4 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{s}}=13.2 \mathrm{~V} \end{aligned}$			$\begin{aligned} & 65 \\ & 62 \end{aligned}$	$\begin{aligned} & 120 \\ & 120 \end{aligned}$	$\begin{aligned} & m A \\ & m A \end{aligned}$
P_{0}	Output power (each channel)	$\begin{array}{ll} \mathrm{f}=1 \mathrm{KHz} & \mathrm{~d}=10 \% \\ \mathrm{~V}_{\mathrm{S}}=14.4 \mathrm{~V} & \mathrm{R}_{\mathrm{L}}=4 \Omega \\ & \mathrm{R}_{\mathrm{L}}=3.2 \Omega \\ & \mathrm{R}_{\mathrm{L}}=2 \Omega \\ & \mathrm{R}_{\mathrm{L}}=1.6 \Omega \\ \mathrm{~V}_{\mathrm{S}}=13.2 \mathrm{~V} & \mathrm{R}_{\mathrm{L}}=3.2 \Omega \\ & \mathrm{R}_{\mathrm{L}}=1.6 \Omega \\ \mathrm{~V}_{\mathrm{S}}=16 \mathrm{~V} & \mathrm{R}_{\mathrm{L}}=2 \Omega \end{array}$		$\begin{gathered} 6 \\ 7 \\ 9 \\ 10 \\ 6 \\ 9 \end{gathered}$	$\begin{gathered} 6.5 \\ 8 \\ 10 \\ 11 \\ 6.5 \\ 10 \\ 12 \end{gathered}$		$\begin{aligned} & W \\ & W \end{aligned}$
d	Distortion (each channel)	$\begin{aligned} & \mathrm{f}=1 \mathrm{KHz} \\ & \mathrm{~V}_{\mathrm{s}}=14.4 \mathrm{~V} \quad \mathrm{R}_{\mathrm{L}}=4 \Omega \\ & \mathrm{P}_{\mathrm{O}}=50 \mathrm{~mW} \text { to } 4 \mathrm{~W} \\ & \mathrm{~V}_{\mathrm{s}}=14.4 \mathrm{~V} \text { R } \mathrm{R}_{\mathrm{L}}=2 \Omega \\ & \mathrm{P}_{\mathrm{O}}=50 \mathrm{~mW} \text { to } 6 \mathrm{~W} \\ & \mathrm{~V}_{\mathrm{s}}=13.2 \mathrm{~V} \text { t } \mathrm{R}_{\mathrm{L}}=3.2 \Omega \\ & \mathrm{P}_{\mathrm{O}}=50 \mathrm{~mW} \text { to } 3 \mathrm{~W} \\ & \mathrm{~V}_{\mathrm{s}}=13.2 \mathrm{~V} \quad \mathrm{R}_{\mathrm{L}}=1.6 \Omega \\ & \mathrm{P}_{\mathrm{O}}=40 \mathrm{~mW} \text { to } 6 \mathrm{~W} \end{aligned}$			$\begin{aligned} & 0.2 \\ & 0.3 \\ & 0.2 \\ & 0.3 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	\% \% \% \%
CT	Cross talk (${ }^{\circ}$)	$\begin{aligned} & \mathrm{V}_{\mathrm{s}}=14.4 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=4 \Omega \\ & \mathrm{~V}_{\mathrm{o}}=4 \mathrm{~V} \text { rms } \\ & \mathrm{R}_{\mathrm{g}}=10 \mathrm{~K} \Omega \end{aligned}$	$\mathrm{f}=1 \mathrm{KHz}$		60		dB
			$\mathrm{f}=10 \mathrm{KHz}$		45		dB
V_{i}	Input saturation voltage			300			mV
V_{i}	Input sensitivity	$f=1 \mathrm{KHz}$	$\begin{aligned} & \mathrm{P}_{\mathrm{O}}=1 \mathrm{~W} \\ & \mathrm{R}_{\mathrm{L}}=4 \Omega \\ & \mathrm{R}_{\mathrm{L}}=3.2 \Omega \end{aligned}$		$\begin{gathered} 6 \\ 5.5 \end{gathered}$		mV
R_{i}	Input resistance	$\mathrm{f}=1 \mathrm{KHz}$	non inverting input	70	200		$K \Omega$
			inverting input		10		$\mathrm{K} \Omega$
f_{L}	Low frequency roll off (-3 dB)	$\mathrm{R}_{\mathrm{L}}=2 \Omega$				50	Hz
f_{H}	High frequency roll off (-3 dB)	$\mathrm{R}_{\mathrm{L}}=2 \Omega$		15			KHz
G_{v}	Voltage gain (open loop)	$\mathrm{f}=1 \mathrm{KHz}$			90		dB
G_{v}	Voltage gain (closed loop)	$\mathrm{f}=1 \mathrm{KHz}$		48	50	51	dB
ΔG_{v}	Closed loop gain matching				0.5		dB
e_{N}	Total input noise voltage	$\mathrm{R}_{\mathrm{g}}=10 \mathrm{~K} \Omega$	($\circ 0$)		1.5	5	$\mu \mathrm{V}$

(${ }^{\circ}$) For TDA 2005 S only.
(\circ) Bandwidth filter: 22 Hz to 22 KHz .

ELECTRICAL CHARACTERISTICS (continued)

Parameters		Test conditions	Min.	Typ.	Max.	Unit
SVR	Supply voltage rejection	$\begin{aligned} & \mathrm{R}_{\mathrm{g}}=10 \mathrm{~K} \Omega \quad \mathrm{f}_{\text {ripple }}=100 \mathrm{~Hz} \\ & \mathrm{C}_{3}=10 \mu \mathrm{~F} \quad \mathrm{~V}_{\text {ripple }}=0.5 \mathrm{~V} \end{aligned}$	35	45		dB
η	Efficiency	$V_{S}=14.4 \mathrm{~V}$ $f=1 \mathrm{KHz}$ $R_{\mathrm{L}}=4 \Omega$ $\mathrm{P}_{\mathrm{O}}=6.5 \mathrm{~W}$ $R_{\mathrm{L}}=2 \Omega$ $\mathrm{P}_{\mathrm{O}}=10 \mathrm{~W}$ $V_{\mathrm{S}}=13.2 \mathrm{~V}$ $f=1 \mathrm{KHz}$ $R_{\mathrm{L}}=3.2 \Omega$ $\mathrm{P}_{\mathrm{O}}=6.5 \mathrm{~W}$ $R_{\mathrm{L}}=1.6 \Omega$ $\mathrm{P}_{\mathrm{O}}=10 \mathrm{~W}$		$\begin{aligned} & 70 \\ & 60 \\ & 70 \\ & 60 \end{aligned}$		$\begin{aligned} & \% \\ & \% \\ & \% \\ & \% \end{aligned}$
$\mathrm{T}_{\text {sd }}$	Thermal shut-down case temperature	$\begin{array}{ll} V_{\mathrm{s}}=14.4 \mathrm{~V} & R_{\mathrm{L}}=2 \Omega \\ \mathrm{P}_{\text {tot }}=6.6 \mathrm{~W} & \end{array}$	120	130		${ }^{\circ} \mathrm{C}$

Fig. 8 - Quiescent output voltage vs. supply voltage

Fig. 11 - Output power vs. supply voltage

Fig. 9 - Quiescent drain current vs. supply voltage

Fig. 12 - Output power vs. supply voltage
6.4301/1

Fig. 10 - Distortion vs. output power

Fig. 13 - Distortion vs. frequency

Fig. 14 - Distorsion vs. frequency

Fig. 17 - Supply voltage rejection vs. values of capacitors C_{2} and C_{3}

Fig. 20 - Gain vs. input sensitivity

Fig. 15 - Supply voltage rejection vs. C_{3}

Fig. 18 - Supply voltage rejection vs. values of capacitors C_{2} and C_{3}

Fig. 21 - Total power dissipation and efficiency vs. output power (bridge)
1.6.430,

Fig. 16 - Supply voltage rejection vs. frequency

Fig. 19 - Gain vs. input sensitivity

Fig. 22 - Total power dissipation and efficiency vs. output power

APPLICATION INFORMATION

Fig. $23-10+10 \mathrm{~W}$ stereo amplifier with tone balance and loudness control

Fig. 24 - Tone control response (circuit of fig. 23)

Fig. 25-20W Bus amplifier

111
 TDA2005

Fig. 26 - Simple 20W two way amplifier ($\mathrm{f}_{\mathrm{c}}=2 \mathrm{KHz}$)

Fig. 27 - Bridge amplifier circuit suited for low-gain applications ($G_{v}=34 \mathrm{~dB}$)

APPLICATION SUGGESTION

The recommended values of the components are those shown on Bridge application circuit of fig. 1. Different values can be used, the following table can help the designer.

Component	Recommended Value	Purpose	Larger than	Smaller than
R_{1}	$120 \mathrm{~K} \Omega$	Optimization of the output symmetry	Smaller $\mathrm{P}_{\text {O max }}$	Smaller $\mathrm{P}_{\text {o max }}$
R_{2}	$1 \mathrm{~K} \Omega$	Closed loop gain setting (see BRIDGE AMPLIFIER DESIGN)		
R_{3}	$2 K \Omega$			
R_{4} and R_{5}	12Ω			
R_{6} and R_{7}	1Ω	Frequency stability	Danger of oscillation at high frequency with inductive loads	
C_{1}	$2.2 \mu \mathrm{~F}$	Input DC decoupling	High turn on delay	Higher turn on pop. Higher low frequency cutoff. Increase of noise.
C_{2}	$2.2 \mu \mathrm{~F}$	Optimization of turn on pop and turn on delay.		
C_{3}	$0.1 \mu \mathrm{~F}$	Supply by pass		Danger of oscillation.
C_{4}	$10 \mu \mathrm{~F}$	Ripple Rejection	Increase of SVR. Increase of the switch-on time.	Degradation of SVR.
C_{5} and C_{7}	$100 \mu \mathrm{~F}$	Bootstrapping		Increase of distortion at low frequency.
C_{6} and C_{8}	$220 \mu \mathrm{~F}$	Feedback input DC decoupling, low frequency cutoff.		Higher low frequency cutoff.
C_{9} and C_{10}	$0.1 \mu \mathrm{~F}$	Frequency stability.		Danger of oscillation.

BUILT-IN PROTECTION SYSTEMS

Load dump voltage surge

The TDA 2005 has a circuit which enables it to withstand a voltage pulse train, on pin 9, of the type shown in fig. 29.
If the supply voltage peaks to more than 40 V , then an LC filter must be inserted between the supply and pin 9 , in order to assure that the pulses at pin 9 will be held within the limits shown.
A suggested LC network is shown in fig. 28. With this network, a train of pulses with amplitude up to 120 V and width of 2 ms can be applied at point A . This type of protection is ON when the supply voltage (pulse or DC) exceeds 18 V . For this reason the maximum operating supply voltage is 18 V .

Fig. 28

Fig. 29

Short circuit (AC and DC conditions)

The TDA 2005 can withstand a permanent short-circuit on the output for a supply voltage up to 16 V .

Polarity inversion

High current (up to 10A) can be handled by the device with no damage for a longer period than the blow-out time of a quick 2A fuse (normally connected in series with the supply). This feature is added to avoid destruction, if during fitting to the car, a mistake on the connection of the supply is made.

Open ground

When the radio is in the ON condition and the ground is accidentally opened, a standard audio amplifier will be damaged. On the TDA 2005 protection diodes are included to avoid any damage.

Inductive load

A protection diode is provided to allow use of the TDA 2005 with inductive loads.

DC voltage

The maximum operating DC voltage for the TDA 2005 is 18 V .
However the device can withstand a DC voltage up to 28 V with no damage. This could occur during winter if two batteries are series connected to crank the engine.

Thermal shut-down

The presence of a thermal limiting circuit offers the following advantages:

1) an overload on the output (even if it is permanent), or an excessive ambient temperature can be easily withstood.
2) the heatsink can have a smaller factor of safety compared with that of a conventional circuit. There is no device damage in the case of excessive junction temperature: all that happens is that P_{o} (and therefore $\mathrm{P}_{\text {tot }}$) and I_{d} are reduced.
The maximum allowable power dissipation depends upon the size of the external heatsink (i.e. its thermal resistance); fig. 30 shows this dissipable power as a function of ambient temperature for different thermal resistance.

Fig. 30 - Maximum allowable power dissipation vs. ambient temperature

Fig. 31 - Output power and drain current vs. case temperature

Fig. 32 - Output power and drain current vs. case temperature

Loudspeaker protection

The circuit offers loudspeaker protection during short circuit for one wire to ground.

MOUNTING INSTRUCTIONS

The power dissipated in the circuit must be removed by adding an external heatsink.
Thanks to the MULTIWATT ${ }^{\circledR}$ package attaching the heatsink is very simple, a screw or a compression spring (clip) being sufficient. Between the heatsink and the package it is better to insert a layer of silicon grease, to optimize the thermal contact; no electrical isolation is needed between the two surfaces.

Fig. 33 - Mounting examples

LINEAR INTEGRATED CIRCUIT

10W AUDIO AMPLIFIER

The TDA 2006 is a monolithic integrated circuit in Pentawatt ${ }^{\circledR}$ package, intended for use as a low frequency class "AB" amplifier. At $\pm 12 \mathrm{~V}, \mathrm{~d}=10 \%$ typically it provides 12 W output power on a 4Ω load and 8 W on a 8Ω. The TDA 2006 provides high output current and has very low harmonic and cross-over distortion. Further the device incorporates an original (and patented) short circuit protection system comprising an arrangement for automatically limiting the dissipated power so as to keep the working point of the output transistors within their safe operating area. A conventional thermal shutdown system is also included. The TDA 2006 is pin to pin equivalent to the TDA 2030.

ABSOLUTE MAXIMUM RATINGS

V_{s}	Supply voltage	± 15	V
V_{i}	Input voltage	V_{s}	
V_{i}	Differential input voltage	± 12	V
I_{o}	Output peak current (internally limited)	3	A
$\mathrm{P}_{\text {tot }}$	Power dissipation at $\mathrm{T}_{\text {case }}=90^{\circ} \mathrm{C}$	20	W
$\mathrm{~T}_{\text {stg }}, \mathrm{T}_{\mathrm{j}}$	Storage and junction temperature	-40 to	150

ORDERING NUMBERS: TDA 2006H; TDA 2006V

MECHANICAL DATA
Dimensions in mm

TDA2006

CONNECTION DIAGRAM

SCHEMATIC DIAGRAM

TEST AND APPLICATION CIRCUIT

THERMAL DATA

| $R_{\text {th-j case }}$ | Thermal resistance junction-case | \max | $3 \quad{ }^{\circ} \mathrm{C} / \mathrm{W}$ |
| :--- | :--- | :--- | :--- | :--- |

ELECTRICAL CHARACTERISTICS (Refer to the test circuit; $\mathrm{V}_{\mathrm{s}}= \pm 12 \mathrm{~V}, \mathrm{~T}_{\text {amb }}=25^{\circ} \mathrm{C}$ unless otherwise specified)

	Parameters	Test conditions	Min.	Typ.	Max.	Unit
$v_{\text {s }}$	Supply voltage		± 6		± 15	V
I_{d}	Quiescent drain current	$V_{s}= \pm 15 \mathrm{~V}$		40	80	mA
I_{b}	Input bias current			0.2	3	$\mu \mathrm{A}$
$\mathrm{V}_{\text {OS }}$	Input offset voltage			± 8		mV
los	Input offset current			± 80		nA
$\mathrm{V}_{\text {OS }}$	Output offset voltage			± 10	± 100	mV
P_{0}	Output power	$\begin{aligned} & d=10 \% \\ & f=1 \mathrm{KHz} \\ & R_{L}=4 \Omega \\ & R_{L}=8 \Omega \end{aligned}$	6	$\begin{gathered} 12 \\ 8 \end{gathered}$		$\begin{aligned} & \text { w } \\ & \text { w } \end{aligned}$

ELECTRICAL CHARACTERISTICS (continued)

Parameter		Test conditions		Min.	Typ.	Max.	Units
d	Distortion	$\begin{aligned} & \mathrm{P}_{\mathrm{O}}=0.1 \text { to } 8 \mathrm{~W} \\ & \mathrm{R}_{\mathrm{L}}=4 \Omega \\ & \mathrm{f}=1 \mathrm{KHz} \end{aligned}$			0.2		\%
		$\begin{aligned} & \mathrm{P}_{\mathrm{O}}=0.1 \text { to } 4 \mathrm{~W} \\ & \mathrm{R}_{\mathrm{L}}=8 \Omega \\ & \mathrm{f}=1 \mathrm{KHz} \end{aligned}$			0.1	1	\%
V_{i}	Input sensitivity	$\begin{aligned} & P_{\mathrm{O}}=10 \mathrm{~W} \\ & \mathrm{P}_{\mathrm{O}}=6 \mathrm{~W} \end{aligned}$	$\begin{aligned} & \mathrm{f}=1 \mathrm{KHz} \\ & \mathrm{R}_{\mathrm{L}}=4 \Omega \\ & \mathrm{R}_{\mathrm{L}}=8 \Omega \end{aligned}$		$\begin{aligned} & 200 \\ & 220 \end{aligned}$		$\begin{aligned} & m V \\ & m V \end{aligned}$
B	Frequency response (-3 dB)	$\mathrm{P}_{\mathrm{o}}=8 \mathrm{~W}$	$R_{L}=4 \Omega$	10 to 140,000			Hz
R_{i}	Input resistance (pin 1)	$f=1 \mathrm{KHz}$		0.5	5		$\mathrm{M} \Omega$
G_{v}	Voltage gain (open loop)				75		dB
G_{v}	Voltage gain (closed loop)			29.5	30	30.5	dB
${ }^{\mathrm{e}} \mathrm{N}$	Input noise voltage	$\begin{array}{r} B(-3 \mathrm{~dB})=22 \mathrm{~Hz} \text { to } 22 \mathrm{kHz} \\ R_{\mathrm{L}}=4 \Omega \end{array}$			3	10	$\mu \mathrm{V}$
${ }^{i} \mathrm{~N}$	Inpult noise current				80	200	pA
SVR	Supply voltage rejection	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=4 \Omega \\ & \mathrm{R}_{\mathrm{g}}=22 \mathrm{~K} \Omega \\ & \mathrm{f}_{\text {ripple }}=100 \mathrm{~Hz} \end{aligned}$	(*)	40	50		dB
I_{d}	Drain current	$\begin{aligned} & \mathrm{P}_{\mathrm{O}}=12 \mathrm{~W} \\ & \mathrm{P}_{\mathrm{O}}=8 \mathrm{~W} \end{aligned}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=4 \Omega \\ & \mathrm{R}_{\mathrm{L}}=8 \Omega \end{aligned}$		$\begin{aligned} & 850 \\ & 500 \end{aligned}$		$\begin{aligned} & m A \\ & m A \end{aligned}$
T_{j}	Thermal shut down junction temperature				145		${ }^{\circ} \mathrm{C}$

(*) Referring to fig. 15 , single supply.

410 TDA2006

Fig. 1 - Output power vs. supply voltage

Fig. 4 - Distortion vs. frequency

Fig. 7 - Frequency response with different values of the rolloff capacitor C_{8} (see fig. 13)

Fig. 2 -Distortion vs. output power

Fig. 5-Sensitivity vs. output power

Fig. 8 - Value of C_{8} vs. voltage gain for different bandwidths (see fig. 13)

Fig. 3 - Distortion vs. frequency

Fig. 6-Sensitivity vs. output power

Fig. 9 - Quiescent current vs. supply voltage

TDA2006

Fig. 10 - Supply voltage rejection vs. voltage gain

Fig. 11 - Power dissipation and efficiency vs. output power

Fig. 12 - Maximum power dissipation vs. supply voltage (sine wave operation)

Fig. 13 - Application circuit with split power supply

Fig. 14 - P.C. board and component layout for the circuit of fig. 13

Fig. 15 - Application circuit with single power supply

Fig. 16 - P.C. board and component layout for the circuit of fig. 15

Fig. 17 - Bridge amplifier configuration with split power supply ($\mathrm{Po}=24 \mathrm{~W}, \mathrm{~V}_{\mathrm{S}}= \pm 12 \mathrm{~V}$)

TDA2006

PRACTICAL CONSIDERATION

Printed circuit board

The layout shown in fig. 14 should be adopted by the designers. If different layout are used, the ground points of input 1 and input 2 must be well decoupled from ground of the output on which a rather high current flows.

Assembly suggestion

No electrical isolation is needed between the package and the heat-sink with single supply voltage configuration.

Application suggestion

The recommended values of the components are the ones shown on application circuits of fig. 13. Different values can be used. The following table can help the designers.

Component	Recommended value	Purpose	Larger than recommended value	Smaller than recommended value
R_{1}	$22 \mathrm{~K} \Omega$	Closed loop gain setting	Increase of gain	Decrease of gain
R_{2}	680Ω	Closed loop gain setting	Decrease of gain	Increase pf gain
R_{3}	$22 \mathrm{~K} \Omega$	Non inverting input biasing	Increase of input impedance	Decrease of input impedance
R_{4}	1Ω	Frequency stability	Danger of oscillation at high frequencies with inductive loads	
R_{5}	$3 \mathrm{R}_{2}$	Upper frequency cutoff	Poor high frequencies attenuation	Danger of oscillation
C_{1}	$2.2 \mu \mathrm{~F}$	Input DC decoupling		Increase of low freqencies cut off
C_{2}	$22 \mu \mathrm{~F}$	Inverting input DC. decoupling	Increase of low frequencies cutoff	
$\mathrm{C}_{3} \mathrm{C}_{4}$	$0.1 \mu \mathrm{~F}$	Supply voltage by pass		Danger of oscillation
$\mathrm{C}_{5} \mathrm{C}_{6}$	$100 \mu \mathrm{~F}$	Supply voltage by pass		Danger of oscillation
C_{7}	$0.22 \mu \mathrm{~F}$	Frequency stability		Danger of oscillation
C_{8}	$\frac{1}{2 \pi \mathrm{BR}}$	Upper frequency cutoff	Lower bandwidth	Larger bandwidth
$\mathrm{D}_{1} \mathrm{D}_{2}$	1 N 4001	To protect the device against output voltage spikes.		

SHORT CIRCUIT PROTECTION

The TDA 2006 has an original circuit which limits the current of the output transistors. Fig. 18 shows that the maximum output current is a function of the collector emitter voltage; hence the output transistors work within their safe operating area (fig. 19).
This function can therefore be considered as being peak power limiting rather than simple current limiting. The TDA 2006 is thus protected against temporary overloads or short circuit. Should the short circuit exist for a longer time, the thermal shutdown protection keeps the junction temperature within safe limits.

Fig. 18 - Maximum output current vs. voltage $\mathrm{V}_{\text {Ce(sat) }}$ across each output transistor

Fig. 19 - Safe operating area and collector characteristics of the protected power transistor

THERMAL SHUT-DOWN

The presence of a thermal limiting circuit offers the following advantages:

1) An overload on the output (even if it is permanent), or an above limit ambient temperature can be easily supported since the T_{j} cannot be higher than $150^{\circ} \mathrm{C}$.
2) The heatsink can have a smaller factor of safety compared with that of a conventional circuit. There is no possibility of device damage due to high junction temperature.
If for any reason, the junction temperature increases up to $150^{\circ} \mathrm{C}$, the thermal shutdown simply reduces the power dissipation and the current consumption.

Fig. 20 - Output power and drain current vs. case temperature ($\mathrm{R}_{\mathrm{L}}=4 \Omega$)

Fig. 21 - Output power and drain current vs. case temperature ($\mathrm{R}_{\mathrm{L}}=8 \Omega$)

The maximum allowable power dissipation depends upon the size of the external heatsink (i.e. its thermal resistance); fig. 22 shows this dissipable power as a function of ambient temperature for different thermal resistances.

Fig. 22 - Maximum allowable power dissipation vs. ambient temperature

Dimension suggestion

The following table shows the lenght of the heatsink in fig. 23 for several values of $P_{\text {tot }}$ and $R_{\text {th }}$.

Fig. 23 - Example of heatsink

$P_{\text {tot }}(W)$	12	8	6
Lenght of heatsink (mm)	60	40	30
R_{th} of heatsink $\left(^{\circ} \mathrm{C} / \mathrm{W}\right)$	4.2	6.2	8.3

LINEAR INTEGRATED CIRCUIT

12W AUDIO AMPLIFIER ($\mathrm{V}_{\mathrm{s}}=22 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=4 \Omega$)
The TDA 2008 is a monolithic class B audio power amplifier in Pentawatt ${ }^{\circledR}$ package designed for driving low impedance loads (down to 3.2Ω). The device provides a high output current capability (up to 3A), very low harmonic and crossover distortion.
In addition, the device offers the following features:

- very low number of external components
- assembly ease, due to Pentawatt ${ }^{\circledR}$ power package with no electrical insulation requirement
- space and cost saving
- high reliability
- flexibility in use
- thermal protection

ABSOLUTE MAXIMUM RATINGS

V_{s}	DC supply voltage	28	V
I_{o}	Output peak current (repetitive)	3	A
I_{o}	Output peak current (non repetitive)	4	A
$\mathrm{P}_{\text {tot }}$	Power dissipation at $\mathrm{T}_{\text {case }}=90^{\circ} \mathrm{C}$	20	W
$\mathrm{~T}_{\text {stg }}, T_{j}$	Storage and junction temperature	-40 to 150	${ }^{\circ} \mathrm{C}$

ORDERING NUMBERS: TDA 2008V

MECHANICAL DATA

CONNECTION DIAGRAM (top view)

SCHEMATIC DIAGRAM

DC TEST CIRCUIT

AC TEST CIRCUIT

TDA2008

THERMAL DATA

$R_{\text {th j-case }}$	Thermal resistance junction-case	$\max \quad 3 \quad{ }^{\circ} \mathrm{C} / \mathrm{W}$

ELECTRICAL CHARACTERISTICS (Refer to the test circuits, $\mathrm{V}_{\mathrm{s}}=22 \mathrm{~V}, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ unless otherwise specified)

Parameter		Test conditions		Min.	Typ.	Max.	Unit
V_{s}	Supply voltage			10		28	V
v_{0}	Quiescent output voltage (pin 4)				10.5		V
I_{d}	Quiescent drain current (pin 5)				65	115	mA
P_{0}	Output power	$\begin{aligned} & d=10 \% \\ & f=1 K H z \end{aligned}$	$\mathrm{R}_{\mathrm{L}}=8 \Omega$		8		W
			$\mathrm{R}_{\mathrm{L}}=4 \Omega$	10	12		W
V_{i} (RMS) Input saturation voltage				300			mV
V_{i}	Input sensitivity	$\begin{aligned} & f=1 \mathrm{KHz} \\ & \mathrm{P}_{\mathrm{O}}=0.5 \mathrm{~W} \\ & \mathrm{P}_{\mathrm{O}}=8 \mathrm{~W} \\ & \mathrm{P}_{\mathrm{O}}=0.5 \mathrm{~W} \\ & \mathrm{P}_{\mathrm{O}}=12 \mathrm{~W} \end{aligned}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=8 \Omega \\ & \mathrm{R}_{\mathrm{L}}=8 \Omega \\ & \mathrm{R}_{\mathrm{L}}=4 \Omega \\ & \mathrm{R}_{\mathrm{L}}=4 \Omega \end{aligned}$		20 80 14 70		$\begin{aligned} & m V \\ & m V \\ & m V \\ & m V \end{aligned}$
B	Frequency response (-3 dB)	$\begin{aligned} & \mathrm{P}_{\mathrm{O}}=1 \mathrm{~W} \\ & \mathrm{R}_{\mathrm{L}}=4 \Omega \end{aligned}$		40 to 15000			Hz
d	Distortion	$\begin{aligned} & f=1 \mathrm{KHz} \\ & \mathrm{P}_{\mathrm{O}}=0.05 \text { to } 4 \mathrm{~W} \mathrm{R}_{\mathrm{L}}=8 \Omega \\ & \mathrm{P}_{\mathrm{O}}=0.05 \text { to } 6 \mathrm{~W} \mathrm{R}_{\mathrm{L}}=4 \Omega \end{aligned}$			$\begin{aligned} & 0.15 \\ & 0.15 \end{aligned}$		$\begin{aligned} & \% \\ & \% \end{aligned}$
R_{i}	Input resistance (pin 1)	$f=1 \mathrm{KHz}$		70	150		$\mathrm{K} \Omega$
G_{v}	Voltage gain (open loop)	$f=1 \mathrm{KHz}$	$\mathrm{R}_{\mathrm{L}}=8 \Omega$		80		dB
G_{v}	Voltage gain (closed loop)			39.5	40	40.5	dB
e_{N}	Input noise voltage	$\mathrm{BW}=22 \mathrm{~Hz}$ to 22 KHz			1	5	$\mu \mathrm{V}$
i_{N}	Input noise current				60	200	pA
SVR	Supply voltage rejection	$\begin{aligned} & V_{\text {ripple }}=0.5 \mathrm{~V} \\ & R_{\mathrm{g}}=10 \mathrm{~K} \Omega \\ & R_{\mathrm{L}}=4 \Omega \end{aligned}$	$\mathrm{f}=100 \mathrm{~Hz}$	30	36		dB
			$\mathrm{f}=15 \mathrm{KHz}$		36		dB

0
 TDA2008

APPLICATION INFORMATION

Fig. 1 - Typical application circuit

Fig. 2 - P.C. board and component layout for the circuit of fig. 1 ($1: 1$ scale)

Fig. 3-25W bridge configuration application circuit (${ }^{\circ}$)

Fig. 4 - P.C. board and component layout for the circuit of fig. 3 (1:1 scale)

$\left({ }^{\circ}\right)$ The value of the capacitors C3 and C4 are different to optimize the SVR (Typ. $=40 \mathrm{~dB}$)

Fig. 5 - Vertical deflection for count-down circuits

LINEAR INTEGRATED CIRCUIT

10 + 10W HIGH QUALITY STEREO AMPLIFIER

The TDA 2009 is class AB dual Hi-Fi Audio power amplifier assembled in Multiwatt ${ }^{\circledR}$ package, specially designed for high quality stereo applications as $\mathrm{Hi}-\mathrm{Fi} \mathrm{TV}$ and music centers. Its main features are:

- High output power ($10+10 \mathrm{~W} \min . @ d=0.5 \%)$
- High current capability (up to 3.5A)
- Thermal overload protection
- Space and cost saving: very low number of external components and simple mounting thanks to the Multiwatt ${ }^{\circledR}$ package.

ARSOIIITE MAXIMMM RATINICS

V_{s}	Supply voltage	28	V
I_{o}	Output peak current (repetitive $\mathrm{f} \geqslant 20 \mathrm{~Hz}$)	3.5	A
I_{o}	Output peak current (non repetitive, $\mathrm{t}=100 \mu \mathrm{~s}$)	4.5	A
$\mathrm{P}_{\text {tot }}$	Power dissipation at $\mathrm{T}_{\text {case }}=90^{\circ} \mathrm{C}$	20	W
$\mathrm{~T}_{\text {stg }}, \mathrm{T}_{\mathrm{j}}$	Storage and junction temperature	-40 to 150	${ }^{\circ} \mathrm{C}$

ORDERING NUMBER: TDA 2009

TDA2009

CONNECTION DIAGRAM

(top view)

SCHEMATIC DIAGRAM

THERMAL DATA

$\mathrm{R}_{\mathrm{th}} \mathrm{j}$-case	Thermal resistance junction-case	\max	3	${ }^{\circ} \mathrm{C} / \mathrm{W}$

0 TDA2009

Fig. 1 - Test circuit ($\mathrm{G}_{\mathrm{v}}=36 \mathrm{~dB}$)

Fig. 2 - P.C. board and components layout of the circuit of fig. 1 (1:1 scale)

ELECTRICAL CHARACTERISTICS (Refer to the stereo application circuit, $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$, $\mathrm{G}_{\mathrm{v}}=36 \mathrm{~dB}$, unless otherwise specified)

Parameters		Test conditions			Min.	Typ.	Max.	Unit
V_{s}	Supply voltage				8		28	V
V_{0}	Quiescent output voltage	$V_{5}=23 \mathrm{~V}$				11		V
I_{d}	Total quiescent drain current	$\mathrm{V}_{\mathrm{S}}=23 \mathrm{~V}$				80	120	mA
P_{0}	Output power (each channel)	$\begin{array}{ll} \mathrm{f}=40 \mathrm{~Hz} \text { to } 16 \mathrm{KHz} \\ \mathrm{~d}=0.5 \% & \\ \mathrm{~V}_{\mathrm{S}}=23 \mathrm{~V} & \mathrm{R}_{\mathrm{L}}=4 \Omega \\ & \mathrm{R}_{\mathrm{L}}=8 \Omega \\ \mathrm{~V}_{\mathrm{S}}=18 \mathrm{~V} & \mathrm{R}_{\mathrm{L}}=4 \Omega \\ & \mathrm{R}_{\mathrm{L}}=8 \Omega \end{array}$			10 5.5	$\begin{array}{r} 12 \\ 7 \\ 7 \\ 4 \end{array}$		W W W W
d	Distortion (each channel)	$\begin{aligned} & f=1 \mathrm{KHz} \\ & V_{\mathrm{s}}=23 \mathrm{~V} \\ & P_{\mathrm{O}}=100 \mathrm{~m} \\ & V_{\mathrm{s}}=23 \mathrm{~V} \\ & P_{\mathrm{O}}=100 \mathrm{~m} \end{aligned}$		$\begin{aligned} & L=4 \Omega \\ & 3 W \\ & L=8 \Omega \\ & 3 W \end{aligned}$		$\begin{gathered} 0.1 \\ 0.05 \end{gathered}$		\%
CT	Cross talk (000)	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=\infty \\ & \mathrm{R}_{\mathrm{g}}=10 \mathrm{~K} \Omega \end{aligned}$		$\mathrm{f}=1 \mathrm{KHz}$		60		dB
				$\mathrm{f}=10 \mathrm{KHz}$		50		dB
V_{i}	Input saturation voltage (rms)				300			mV
R_{i}	Input resistance	$\mathrm{f}=1 \mathrm{KHz}$	non inverting input		70	200		$K \Omega$
				inverting input		10		$\mathrm{K} \Omega$
	Low frequency roll off (-3 dB)	$R_{L}=4 \Omega$				15		Hz
f_{H}	High frequency roll off (-3 dB)					80		KHz
G_{v}	Voltage gain (open loop)	$f=1 \mathrm{KHz}$				85		dB
G_{v}	Voltage gain (closed loop)	$\mathrm{f}=1 \mathrm{KHz}$			35.5	36	36.5	dB
$\Delta \mathrm{G}_{\mathrm{v}}$	Closed loop gain matching					0.5		dB
e_{N}	Total input noise voltage	$\mathrm{R}_{\mathrm{g}}=10 \mathrm{~K} \Omega\left({ }^{\circ}\right)$				1.5		$\mu \mathrm{V}$
		$\mathrm{R}_{\mathrm{g}}=10 \mathrm{~K} \Omega(\circ \circ)$				2		$\mu \mathrm{V}$
SVR	Supply voltage rejection (each channel)	$\begin{aligned} & \mathrm{R}_{\mathrm{g}}=10 \mathrm{~K} \Omega \\ & \mathrm{f}_{\text {ripple }}=100 \mathrm{~Hz} \\ & \mathrm{~V}_{\text {ripple }}=0.5 \mathrm{~V} \end{aligned}$				55		dB
TJ	Thermal shut-down junction temperature					145		${ }^{\circ} \mathrm{C}$

$\left({ }^{\circ}\right)$ Curve A.
$\left(^{\circ}\right)^{\circ} 22 \mathrm{~Hz}$ to 22 KHz .
$\left(^{\circ 00}\right)$ Optimized test box.

Fig. 3 - Output power vs. supply voltage

Fiy. 0 - Disiuriiur vs. fiequency

Fig. 9 - Supply voltage rejection vs. frequency

Fig. 4 - Output power vs. supply voltage

 vs. supply voltage

Fig. 10 - Total power dissipation an efficiency vs. output power

Fig. 5 - Distortion vs. output power

Fig. 9 Supply voltage rejection vs. value of capacitor C3

Fig. 11 - Total power dissipation and efficiency vs. output power

TDA2009

APPLICATION INFORMATION

Fig. 12 - Typical application circuit

Fig. $13-10+10 \mathrm{~W}$ stereo amplifier with tone balance and loudness control

Fig. 14 - Tone control response (circuit of fig. 13)

APPLICATION INFORMATION (continued)

Fig. 15-10 +10 W high quality cassette player

Fig. 16-20W Hi-Fi TV two way amplifier ($\mathrm{f}_{\mathrm{c}}=2 \mathrm{KHz}$)

APPLICATION INFORMATION (continued)

Fig. 17 - High quality $20+20 \mathrm{~W}$ two way amplifier for stereo music center

APPLICATION INFORMATION (continued)

Fig. 18-18W bridge amplifier ($\mathrm{d}=0.5 \%, \mathrm{G}_{\mathrm{v}}=42 \mathrm{~dB}$)

Fig. 19 - P.C. board and components layout of the circuit of fig. 18 (1: 1 scale)

APPLICATION SUGGESTION

The recommended values of the components are those shown on application circuit of fig. 12. Different values can be used; the following table can help the designer.

Component	Recomm. value	Purpose	Larger than	Smaller than
R1 and R3	$1.2 \mathrm{~K} \Omega$	Close loop gain setting	Increase of gain	Decrease of gain
R2 and R4	18Ω		Decrease of gain	Increase of gain
R5 and R6	1Ω	Frequency stability	Danger of oscillation at high frequency with inductive load	
C1 and C2	$2.2 \mu \mathrm{~F}$	Input DC decoupling	High turn-on delay	High turn-on pop Higher low frequency cutoff. Increase of noise
C3	$22 \mu \mathrm{~F}$	Ripple rejection	Better SVR. Increase of the switch-on time	Degradation of SVR.
C6 and C7	$220 \mu \mathrm{~F}$	Feedback Input DC decoupling.		
C8 and C9	$0.1 \mu \mathrm{~F}$	Frequency stability.		Danger of oscillation.
C10 and C11	$\begin{aligned} & 1000 \mu \mathrm{~F} \text { to } \\ & 2200 \mu \mathrm{~F} \end{aligned}$	Output DC decoupling.		Higher low-frequency cut-off.

MOUNTING INSTRUCTIONS

The power dissipated in the circuit must be removed by adding an external heatsink.
Thanks to the MULTIWATT ${ }^{\circledR}$ package attaching the heatsink is very simple, a screw or a compression spring (clip) being sufficient. Between the heatsink and the package it is better to insert a layer of silicon grease, to optimize the thermal contact; no electrical isolation is needed between the two surfaces.

Fig. 20 - Mounting examples

LINEAR INTEGRATED CIRCUIT

TDA2010

12W Hi-Fi AUDIO AMPLIFIER

The TDA 2010 is a monolithic integrated operational amplifier in a 14 -lead quad in-line plastic package, inteded for use as a low frequency class B power amplifier. Typically it provides 12 W output power ($\mathrm{d}=1 \%$) at $\pm 14 \mathrm{~V} / 4 \Omega$; at $\mathrm{V}_{\mathrm{s}}= \pm 14 \mathrm{~V}$ the guaranteed output power is 10 W on a 4Ω load and 8 W on a 8Ω load (DIN norm 45500). The TDA 2010 provides high output current (up to 3.5 A) and has very low harmonic and cross-over distortion. Further, the device incorporates an original (and patented) short circuit protection system, comprising an arrangement for automatically limiting the dissipated power so as to keep to working point of the output transistors within their safe operating area. A conventional thermal shut-down system is also included. The TDA 2010 is pin to pin equivalent to TDA 2020.

ABSOLUTE MAXIMUM RATINGS

V_{s}	Supply voltage	± 18	V
$\mathrm{~V}_{\mathrm{i}}$	Input voltage	V_{s}	
V_{i}	Differential input voltage	± 15	V
I_{0}	Output peak current (internally limited)	3.5	A
$\mathrm{P}_{\text {tot }}$	Power dissipation at $\mathrm{T}_{\text {case }} \leqslant 95^{\circ} \mathrm{C}$	18	W
$\mathrm{~T}_{\text {stg }} \mathrm{T}_{\mathrm{j}}$	Storage and junction temperature	-40 to 150	${ }^{\circ} \mathrm{C}$

ORDERING NUMERS: TDA 2010 B82
TDA 2010 B92
TDA 2010 BC2
TDA 2010 BD2
dual in-line plastic package quad in-line plastic package dual in-line plastic package with spacer quad in-line plastic package with spacer

MECHANICAL DATA
Dimensions in mm

418 TDA2010

CONNECTION AND SCHEMATIC DIAGRAMS

(top view)

The copper slug is electrically connected to pin 5 (substrate)

TEST CIRCUIT

THERMAL DATA

| $R_{\text {th j-case }}$ | Thermal resistance junction-case | \max | $3{ }^{\circ} \mathrm{C} / \mathrm{W}$ |
| :--- | :--- | :--- | :--- | :--- |

ELECTRICAL CHARACTERISTICS

(Refer to the test circuit, $\mathrm{V}_{\mathrm{s}}= \pm 14 \mathrm{~V}, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ unless otherwise specified)

	Parameter	Test conditions	Min.	Typ.	Max.	Unit
V_{s}	Supply voltage		± 5		± 18	V
I_{d}	Quiescent drain current	$V_{\text {S }}= \pm 18 \mathrm{~V}$		45		mA
t_{b}	Input bias current	$V_{s}= \pm 17 \mathrm{~V}$		0.15		$\mu \mathrm{A}$
$\mathrm{V}_{\text {os }}$	Input offset voltage			5		mV
Ios	Input offset current			0.05		$\mu \mathrm{A}$
$\mathrm{V}_{\text {os }}$	Output offset voltage			10	100	mV
P_{0}	Output power	$\begin{aligned} & \mathrm{d}=1 \% \\ & \mathrm{~T}_{\text {case }} \leqslant 70^{\circ} \mathrm{C} \\ & \mathrm{f}=40 \text { to } 15000 \mathrm{~Hz} \\ & \mathrm{R}_{\mathrm{L}}=4 \Omega \\ & \mathrm{R}_{\mathrm{L}}=8 \Omega \end{aligned}$	$\begin{array}{r} 10 \\ 8 \end{array}$	$\begin{array}{r} 12 \\ 9 \end{array}$		$\begin{aligned} & w \\ & w \end{aligned}$
		$\begin{aligned} & \mathrm{d}=10 \% \\ & \mathrm{~T}_{\text {case }} \leqslant 70^{\circ} \mathrm{C} \quad \mathrm{f}=1 \mathrm{kHz} \\ & \mathrm{R}_{\mathrm{L}}=4 \Omega \\ & \mathrm{R}_{\mathrm{L}}=8 \Omega \end{aligned}$		$\begin{aligned} & 15 \\ & 12 \end{aligned}$		$\begin{aligned} & \text { W } \\ & \text { W } \end{aligned}$
V_{i}	Input sensitivity	$\begin{array}{ll} & f=1 \mathrm{kHz} \\ \mathrm{P}_{\mathrm{o}}=10 \mathrm{~W} & \mathrm{R}_{\mathrm{L}}=4 \Omega \\ \mathrm{P}_{\mathrm{o}}=8 \mathrm{~W} & \mathrm{R}_{\mathrm{L}}=8 \Omega \end{array}$		$\begin{aligned} & 220 \\ & 250 \end{aligned}$		$\begin{aligned} & m V \\ & m V \end{aligned}$
B	Frequency response (-3dB)	$\mathrm{R}_{\mathrm{L}}=4 \Omega \quad \mathrm{C} 4=68 \mathrm{pF}$	10 to 160000			Hz
d	Distortion	$\begin{aligned} & \mathrm{P}_{\mathrm{O}}=100 \mathrm{~mW} \text { to } 10 \mathrm{~W} \\ & \mathrm{R}_{\mathrm{L}}=4 \Omega \\ & \mathrm{~T}_{\text {case }} \leqslant 70^{\circ} \mathrm{C} \\ & \mathrm{f}=1 \mathrm{kHz} \\ & \mathrm{f}=40 \text { to } 15000 \mathrm{~Hz} \end{aligned}$		$\begin{aligned} & 0.1 \\ & 0.3 \end{aligned}$	1	\%
		$\begin{aligned} & \mathrm{P}_{\mathrm{O}}=100 \mathrm{~mW} \text { to } 8 \mathrm{~W} \\ & \mathrm{R}_{\mathrm{L}}=8 \Omega \\ & \mathrm{~T}_{\text {case }} \leqslant 70^{\circ} \mathrm{C} \\ & \mathrm{f}=1 \mathrm{kHz} \\ & \mathrm{f}=40 \text { to } 15000 \mathrm{~Hz} \end{aligned}$		$\begin{aligned} & 0.1 \\ & 0.2 \end{aligned}$	1	\%
$\mathrm{R}_{\mathbf{i}}$	Input resistance (pin 7)			5		$\mathrm{M} \Omega$
G_{v}	Voltage gain (open loop)	$\mathrm{R}_{\mathrm{L}}=4 \Omega \quad \mathrm{f}=1 \mathrm{kHz}$		100		dB
G_{v}	Voltage gain (closed loop)		29.5	30	30.5	dB
e_{N}	Input noise voltage	$\begin{aligned} & R_{L}=4 \Omega \\ & B(-3 \mathrm{~dB})=22 \mathrm{~Hz} \text { to } 22 \mathrm{KHz} \end{aligned}$		4		$\mu \mathrm{V}$
i_{N}	Input noise current			0.1		nA

410 tDA2010

ELECTRICAL CHARACTERISTICS (continued)

	Parameter	Test conditions	Min.	Typ.	Max.	Unit
SVR	Supply voltage rejection	$\begin{aligned} & \mathrm{R}_{1}=4 \Omega \\ & \mathrm{f}_{\text {ripple }}=100 \mathrm{~Hz} \end{aligned}$		50		dB
I_{d}	Drain current	$\begin{array}{ll} \mathrm{P}_{\mathrm{o}}=12 \mathrm{~W} & \mathrm{R}_{\mathrm{L}}=4 \Omega \\ \mathrm{P}_{\mathrm{O}}=9 \mathrm{~W} & \mathrm{R}_{\mathrm{L}}=8 \Omega \end{array}$		$\begin{aligned} & 0.8 \\ & 0.5 \end{aligned}$		$\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$
Tsd	Thermal shut-down junction temperature			145		${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {sd }}$	(*) Thermal shut-down case temperature	$\mathrm{P}_{\text {tot }}=10.5 \mathrm{~W}$		120		${ }^{\circ} \mathrm{C}$

(*) See fig. 14.

Fig. 1 - Output power vs. supply voltage

Fig. 4 - Distortion vs. output power ($\mathrm{R}_{\mathrm{L}}=4 \Omega$)

Fig. 2 - Output power vs. supply voltage

Fig. 5 - Distortion vs. output power ($\mathrm{R}_{\mathrm{L}}=8 \Omega$)

Fig. 3 - Distortion vs. output power

Fig. 6 - Distortion vs. frequency

TDA2010

Fig. 7 - Output power vs. frequency

Fig. 10 - Open loop frequency response with different values of the rolloff capacitor C4

Fig. 13 - Supply voltage rejection vs. voltage gain

Fig. 8 - Sensitivity vs. output power ($R_{L}=4 \Omega$)

Fig. 11 - Value of C4 vs. voltage gain for different bandwidths

Fig. 14 - Power dissipation and efficiency vs. output power

Fig. 9 - Sensitivity vs. output
power ($\mathrm{R}_{\mathrm{L}}=8 \Omega$)

Fig. 12 - Quiescent current vs. supply voltage

Fig. 15 - Maximum power dissipation vs. supply voltage (sine wave operation)

APPLICATION INFORMATION

Fig. 16 - Application circuit with split power supply

Fig. 17 - P.C. board and component layout for the circuit of fig. 16 (1:1 scale)

SHORT CIRCUIT PROTECTION

The most important innovation in the TDA 2010 is an original circuit which limits the current of the output transistors. Fig. 18 shows that the maximum output current is a function of the collectoremitter voltage; hence the output transistors work within their safe operating area (fig. 19). This function can therefore be considered as being peak power limiting rather than simple current limiting. The TDA 2010 is thus protected against temporary overloads or short circuit. Should the short circuit exists for a longer time, the thermal shut-down comes into action and keeps the junction temperature within safe limits.

Fig. 18 - Maximum output current vs. voltave (V_{CE}) across each output transistor

Fig. 19 - Safe operating area and collector characteristics of the protected power transistor.

THERMAL SHUT-DOWN

The presence of a thermal limiting circuit offers the following advantages:

1) an overload on the output (even if it is permanent), or an above-limit ambient temperature can be easily supported since the T_{j} cannot be higher than $150^{\circ} \mathrm{C}$
2) the heatsink can have a smaller factor of safety compared with that of a conventional circuit. There is no possibility of device damage due to high junction temperature.
If, for any reason, the junction temperature increases up to $150^{\circ} \mathrm{C}$, the thermal shut-down simply reduces the power dissipation and the current consumption.

Fig. 20 - Output power and drain current vs. case tempe-

Fig. 21 - Output power and drain current vs. case tempe-

1 TDA2010

MOUNTING INSTRUCTIONS

The power dissipated in the circuit must be removed by adding an external heatsink as shown in figs. 22 and 23.
The system for attaching the heatsink is very simple: it uses a plastic spacer which is supplied with the device.
Thermal contact between the copper slug (of the package) and the heatsink is guaranteed by the pressure which the screws exert via the spacer and the printed circuit board; this is due to the particular shape of the spacer.

Note: The most negative supply voltage is connected to the copper slug, hence to the heatsink (because it is in contact with the slug).

Fig. 23 - Cross-section of mounting system

The maximum allowable power dissipation depends upon the size of the external heatsink (i.e. its thermal resistance); fig. 24 shows this dissipable power as a function of ambient temperature for different thermal resistance.

Fig. 22 - Mounting system of TDA 2010

Fig. 24 - Maximum allowable power dissipation vs. ambient temperature

LINEAR INTEGRATED CIRCUIT

20W Hi-Fi AUDIO AMPLIFIER

The TDA 2020 is a monolithic integrated operational amplifier in a 14 -lead quad in-line plastic package, intended for use as a low frequency class B power amplifier. Typically it provides 20W output power ($d=1 \%$) at $\pm 18 \mathrm{~V} / 4 \Omega$; the guaranteed output power at $\pm 17 \mathrm{~V} / 4 \Omega$ is 15 W (DIN norm 45500). The TDA 2020 provides high output current (up to 3.5 A) and has very low harmonic and cross-over distortion. Further, the device incorporates an original (and patented) short circuit protection system, comprising an arrangement for automatically limiting the dissipated power so as to keep to working point of the output transistors within their safe operating area. A conventional thermal shut-down system is also included.

ABSOLUTE MAXIMUM RATINGS

V_{s}	Supply voltage	± 22	V
V_{i}	Input voltage	V_{s}	
V_{i}	Differential input voltage	± 15	V
I_{o}	Output peak current (internally limited)	3.5	A
$\mathrm{P}_{\text {tot }}$	Power dissipation at $T_{\text {case }} \leqslant 75^{\circ} \mathrm{C}$	25	W
$\mathrm{~T}_{\text {stg }}, \mathrm{T}_{\mathrm{j}}$	Storage and junction temperature	-40 to 150	${ }^{\circ} \mathrm{C}$

ORDERING NUMBERS: TDA 2020 A82 TDA 2020 A92 TDA 2020 AC2 TDA 2020 AD2
dual in-line plastic package quad in-line plastic package dual in-line plastic package with spacer quad in-line plastic package with spacer

M
 TDA2O20

CONNECTION AND SCHEMATIC DIAGRAMS

(top view)

TEST CIRCUIT

THERMAL DATA

$R_{\text {th j-case }}$	Thermal resistance junction-case	$\max \quad 3$	${ }^{\circ} \mathrm{C} / \mathrm{W}$

ELECTRICAL CHARACTERISTICS

(Refer to the test circuit, $\mathrm{V}_{\mathrm{s}}= \pm 17 \mathrm{~V}, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ unless otherwise specified)

ELECTRICAL CHARACTERISTICS (continued)

	Parameter	Test conditions	Min.	Typ.	Max.	Unit
e_{N}	Input noise voltage	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=4 \Omega \\ & \mathrm{~B}(-3 \mathrm{~dB})=10 \text { to } 20,000 \mathrm{~Hz} \end{aligned}$		4		$\mu \mathrm{V}$
i_{N}	Input noise current			0.1		nA
SVR	Supply voltage rejection	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=4 \Omega \quad \mathrm{G}_{\mathrm{v}}=30 \mathrm{~dB} \\ & \mathrm{f}_{\text {ripple }}=100 \mathrm{~Hz} \end{aligned}$		50		dB
I_{d}	Drain current	$\mathrm{P}_{\mathrm{O}}=18.5 \mathrm{~W} \quad \mathrm{R}_{\mathrm{L}}=4 \Omega$		1		A
		$\begin{array}{ll} \mathrm{P}_{\mathrm{O}}=16.5 \mathrm{~W} & \mathrm{~V}_{\mathrm{S}}= \pm 18 \mathrm{~V} \\ \mathrm{R}_{\mathrm{L}}=8 \Omega \end{array}$		0.7		A
$\mathrm{T}_{\text {sd }}$	Thermalshut-down junction temperature			140		${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {sd }}$	Thermal shut-down case temperoture	$P_{\text {tot }}=15.5!9$		105		${ }^{\circ} \mathrm{C}$

Fig. 1 - Output power vs. supply voltage

Fig. 2 - Output power vs. supply voltage

Fig. 3 - Distortion vs. output power

TDA2020

Fig. 4 - Distortion vs. output
$\operatorname{power}\left(R_{L}=4 \Omega\right)$

Fig. 7 - Output power vs. frequency

Fig. 10 - Open loop frequency response with different values of the rolloff capacitor C4

Fig. 5 - Distortion vs. output power ($\mathrm{R}_{\mathrm{L}}=8 \Omega$)

Fig. 8 - Sensitivity vs. output power ($R_{L}=4 \Omega$)

Fig. 11 - Value of C4 vs. voltage gain for different bandwidths

Fig. 6 - Distortion vs. frequency

Fig. 9 - Sensitivity vs. output power ($\mathrm{R}_{\mathrm{L}}=8 \Omega$)

Fig. 12 - Quiescent current vs. supply voltage

Fig. 13 - Supply voltage rejection vs. voltage gain

Fig. 14 - Power dissipation and efficiency vs. output power

Fig. 15 - Maximum power dissipation vs. supply voltage (sine wave operation)

APPLICATION INFORMATION

Fig. 16 - Application circuit with split power supply

Fig. 17 - P.C. Board and component layout for the circuit of fig. 16 (1:1 scale)

Fig. 18 - 30W bridge amplifier configuration with split power supply ($\mathrm{R}_{\mathrm{L}}=8 \Omega \mathrm{~d} \leqslant 1 \% ; \mathrm{V}_{\mathrm{s}}= \pm 17 \mathrm{~V}$)

[^16]
SHORT CIRCUIT PROTECTION

The most important innovation in the TDA 2020 is an original circuit which limits the current of the output transistors. Fig. 19 shows that the maximum output current is a function of the collector-emitter voltage; hence the output transistors work within their safe operating area (fig. 20). This function can therefore be considered as being peak power limiting rather than simple current limiting. The TDA 2020 is thus protected against temporary overloads or short circuit. Should the short circuit exists for a longer time, the thermal shut-down comes into action and keeps the junction temperature within safe limits.

Fig. 19 - Maximum output current vs. voltage (V_{CE}) across each output transistor

Fig. 20 - Safe operating area and collector characteristics of the protected power transistor

THERMAL SHUT-DOWN

The presence of a thermal limiting circuit offers the following advantages:

1) an overload on the output (even if it is permanent), or an above-limit ambient temperature can be easily supported since the T_{j} cannot be higher than $150^{\circ} \mathrm{C}$
2) the heatsink can have a smaller factor of safety compared with that of a conventional circuit. There is no possibility of device damage due to high junction temperature.
If, for any reason, the junction temperature increases up to $150^{\circ} \mathrm{C}$, the thermal shut-down simply reduces the power dissipation and the current consumption.

4) tDAzozo

Fig. 21 - Output power and drain current vs. case temperature ($\mathrm{R}_{\mathrm{L}}=8 \Omega$)

Fig. 22 - Output power and drain current vs. case temperature ($\mathrm{R}_{\mathrm{L}}=4 \Omega$)

Fig. 23 - Maximum allowable power dissipation vs. ambient temperature

MOUNTING INSTRUCTIONS

The power dissipated in the circuit must be removed by adding an external heatsink as shown in figs. 24 and 25.
The system for attaching the heatsink is very simple: it uses a plastic spacer which is supplied with the device.
Thermal contact between the copper slug (of the package) and the heatsink is guaranteed by the pressure which the screws exert via the spacer and the printed circuit board; this is due to the particular shape of the spacer.
Note: the most negative supply voltage is connected to the copper slug, hence to the heatsink (because it is in contact with the slug).

Fig. 25 - Cross-section of mounting system

Fig. 24 - Mounting system of TDA 2020

LINEAR INTEGRATED CIRCUIT

40W AUDIO DRIVER

- HIGH SUPPLY VOLTAGE: $\pm 25 \mathrm{~V}$
- HIGH SUPPLY REJECTION: 80 dB
- PROGRAMMABLE SOA PROTECTION
- LOW DISTORTION (0.05\% TYP.)
- LOW INPUT NOISE VOLTAGE (4 $\mu \mathrm{V}$ TYP.)

The TDA 2020D is a monolithic integrated operational amplifier in a 14 lead quad in-line plastic-package, intended for driving external power transistors in Hi-Fi amplifier (30 to 100W). This device incorporates an original (and patented) short circuit protection system, comprising an arrangement for automatically limiting the dissipated power so as to keep the working point of the external transistors within their safe operating area. A thermal shut-down system is also included. This thermal shut-down can also protect the external power transistors.

ABSOLUTE MAXIMUM RATINGS

V_{s}	Supply voltage	± 25	V
$\mathrm{~V}_{i}$	Input voltage	V_{s}	
V_{i}	Differential input voltage	± 15	V
I_{o}	Output peak current	1	A
$\mathrm{P}_{\text {tot }}$	Power dissipation at $T_{\text {case }} \leqslant 75^{\circ} \mathrm{C}$	25	W
$\mathrm{~T}_{\text {stg }}, \mathrm{T}_{\mathrm{j}}$	Storage and junction temperature	-40 to 150	${ }^{\circ} \mathrm{C}$

MECHANICAL DATA
Dimensions in mm

CONNECTION AND SCHEMATIC DIAGRAMS

 (top view)

TEST CIRCUIT

THERMAL DATA

$R_{\text {th j-case }}$	Thermal resistance junction-case	$\max \quad 3$	${ }^{\circ} \mathrm{C} / \mathrm{W}$

ELECTRICAL CHARACTERISTICS (Refer to the test circuit, $\mathrm{V}_{\mathrm{s}}= \pm 20 \mathrm{~V}, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ unless otherwise specified)

	Parameter	Test conditions	Min.	Typ.	Max.	Unit
v_{s}	Supply voltage		± 5		± 25	\checkmark
l_{d}	Quiescent drain current	$\mathrm{V}_{\mathrm{s}}= \pm 25 \mathrm{~V}$		40	80	mA
I_{b}	Input bias current			0.15		$\mu \mathrm{A}$
$\mathrm{V}_{\text {os }}$	Input offset voltage			5		mV
los	Input offset current			0.05		$\mu \mathrm{A}$
$\mathrm{V}_{\text {os }}$	Output offset voltage			10	100	mV
$V_{\text {CE(sat) }}$	Output saturation voltage	$\mathrm{I}_{0}=0.5 \mathrm{~A}$		± 1.7	± 2	v
B	-requency response (-3 dB)	$\mathrm{I}_{0}=0.5 \mathrm{~A}$	10 to 160000			Hz
d	Distortion	$\begin{aligned} & \mathrm{G}_{\mathrm{v}}=30 \mathrm{~dB} \quad \mathrm{I}_{\mathrm{o}}=0.5 \mathrm{~A} \\ & \mathrm{f}=1 \mathrm{kHz} \\ & \mathrm{f}=40 \text { to } 15000 \mathrm{~Hz} \end{aligned}$		$\begin{gathered} 0.05 \\ 0.2 \end{gathered}$	0.3	$\begin{aligned} & \% \\ & \% \end{aligned}$
	Intermodulation	DIN 45500		0.2		\%
R_{i}	Input resistance (pin 7)			5		$\mathrm{M} \Omega$
G_{v}	Voltage gain (open loop)	$\mathrm{f}=1 \mathrm{kHz}$		100		dB
G_{v}	Voltage gain (closed loop)		29.5	30	30.5	dB
e_{N}	Input noise voltage	B $(-3 \mathrm{~dB})=10$ to 20000 Hz		4		$\mu \mathrm{V}$
i_{N}	Input noise current			0.1		nA
SVR	Supply voltage rejection	$\mathrm{f}_{\text {ripple }}=100 \mathrm{~Hz} \mathrm{G} \mathrm{v}_{\mathrm{v}}=30 \mathrm{~dB}$	35	50		dB
Id_{d}	Drain current	$\begin{array}{ll} \mathrm{P}_{\mathrm{O}}=4.5 \mathrm{~W} & \mathrm{R}_{\mathrm{L}}=36 \Omega \\ \mathrm{P}_{\mathrm{O}}=2 \mathrm{~W} & \mathrm{R}_{\mathrm{L}}=36 \Omega \end{array}$		$\begin{aligned} & 160 \\ & 100 \end{aligned}$		$\begin{gathered} \mathrm{mA} \\ \mathrm{~mA} \end{gathered}$
$\mathrm{T}_{\text {sd }}$	Thermal shut-down junction temperature			145		${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {sd }}$	Thermal shut-down case temperature	$\mathrm{P}_{\text {tot }}=5 \mathrm{~W}$		135		${ }^{\circ} \mathrm{C}$

Fig. 1 - Quiescent current vs. supply voltage

Fig. 4 - Open loop frequency response with different values of the rolloff capacitor

Fig. 2 - Output current vs.

Fig. 5 - Value of rolloff capacitor vs. voltage gain for different bandwidths

Fig. 3 - Power dissipation vs. supply voltage

Fig. 6 - Supply voltage rejection vs. voltage gain

Fig. 7 - Transient response

Fig. 8 - Output current vs.
case temperature

APPLICATION INFORMATION

Fig. 9 - Application circuit for $\mathrm{P}_{\mathrm{o}}=30$ to 50 W

Note:
Resistors R9, R310, R11 and R12 are optional. Their puipose is to change the allowable operating area of the output transistors (see fig, 23).
The designer can choose different values according to working conditions $\left(V_{s}\right.$, R_{L}) and to the SOA of the external transistors. When these resistors are not used the application circuit is modified as follows:
a) R7, R8 are changed to $25 \mathrm{~m} \Omega$.
b) R10, R12 are substituted by a short circuit.

Fig. 10 - P.C. board and component layout for the circuit of fig. 9 (1:1 scale)

$\begin{gathered} \mathrm{P}_{\mathrm{o}} \\ \mathrm{R}_{\mathrm{L}}=4 \Omega \end{gathered}$	30W	40W
$\pm \mathrm{V}_{\mathrm{s}}$	18V	20 V
R9/R11	-	$2.2 \mathrm{k} \Omega$
R10/R12	4.7Ω	4.7Ω
Q1	$\begin{gathered} \text { BD707 } \\ \text { or } \\ \text { BDW21A } \end{gathered}$	$\begin{gathered} \text { BD907 } \\ \text { or } \\ \text { BDW21A } \end{gathered}$
Q2	$\begin{gathered} \text { BD708 } \\ \text { or } \\ \text { BDW22A } \end{gathered}$	$\begin{gathered} \text { BD908 } \\ \text { or } \\ \text { BDW22A } \end{gathered}$

Note:
If resistors R9, R10, R11 and R12 are not used, R7 and R8 must be $25 \mathrm{~m} \Omega$. The following table shows what length of wire (copper and constantan) is required to obtain a resistor of $25 \mathrm{~m} \Omega$ for different values of ϕ.

$\phi(\mathrm{mm})$	1	0.8	0.7	0.5	0.4	0.3
I (mm) copper	-	-	570	290	180	100
I (mm) constantan	40	25	20	10	6.5	-

Application suggestions

The recommended values of the components are those shown in application circuit of fig. 9, although different values can be used. The following table may help the amplifier designers.

Component	Recomm. value	Purpose	Larger than recommended value	Smaller than recommended value
C1	$0.1 \mu \mathrm{~F}$	Elimination of DC current on volume control	Reduced lower cutoff frequency	Increased lower cutoff frequency
C2	$10 \mu \mathrm{~F}$	To obtain DC gain equal to 1	Reduced lower cutoff frequency	Increased lower cutoff frequency
C3 and C4	$0.1 \mu \mathrm{~F}$	Frequency stabilization		Danger of oscillations
C5	15 pF	Upper frequency cutoff	Reduced upper cutoff frequency	Increased upper cutoff frequency
c6	$0.1 \mu \mathrm{~F}$	Frequency stabilization		Danger of oscillation
C7	270 pF	Compensation		Danger of oscillations
R1	$100 \mathrm{k} \Omega$	Closed loop gain determination	Larger closed loop gain	Smaller closed loop gain
R2	$3.3 \mathrm{k} \Omega$	Closed loop gain determination	Smaller closed loop gain	Larger closed loop gain
R3	R1	Input bias	Output DC offset variation	Output DC offset variation
R4	3.9 ת	External power transistor driving	Danger of distortion	Increased load for the driver
R5	1Ω	Frequency stabilization	Danger of oscillations	Danger of oscillations
R6	390 ת	Compensation		
R7 and R8	$50 \mathrm{~m} \Omega$	Current protection sensing	Reduced maximum output current value	Increased maximum output current value
R9, R10, R11, R12	see Fig. 23			
O1-02	BD 707 - BD 708 or BD 907 - BD 908 or BDW 21A - BDW 22A			
D1	BA 128	Short circuit prot.		

Fig. 11 - Output power vs. supply voltage

Fig. 14 - Distortion vs. output power

Fig. 12 - Output power vs. supply voltage

Fig. 15 - Distortion vs. irequency

Fig. 13 - Distortion vs. output power

Fig. 16 - Input sensitivity vs. output power

Fig. 17 - Maximum power dissipation vs. supply voltage (sine wave operation)

Fig. 18 - Power dissipation and efficiency vs. output power

Fig. 19-60W to 100 W bridge configuration application circuit

Note: With a bridge configuration the output power is increased while the other performances are the same as that of the application in fig. 9. The table shows the output power that can be obtained using different power transistor pairs.
$A\left\{\begin{array}{l}\mathrm{Q} 1=B D W 21 \mathrm{~A} \\ \mathrm{Q} 2=\mathrm{BDW} 22 \mathrm{~A} ; \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=4 \Omega \cdot 60 \mathrm{~W}\end{array}\right.$
$\mathrm{B}\left\{\begin{array}{l}\mathrm{Q} 1=\mathrm{BD} 707 \\ \mathrm{Q} 2=\mathrm{BD} 708 ; \mathrm{V}_{\mathrm{S}}= \pm 20 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=8 \Omega \cdot 80 \mathrm{~W}\end{array}\right.$
$\mathrm{C}\left\{\begin{array}{l}\mathrm{Q} 1=B D W 51 \mathrm{~A} \\ \mathrm{Q} 2=B D W 52 A ; V_{s}= \pm 18 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=4 \Omega \cdot 100 \mathrm{~W}\end{array}\right.$

Fig. 20-80W Hi-Fi amplifier

For this application the maximum value of V_{s} in no-load condition is $\pm 45 \mathrm{~V}$.

0 TDA2020D

Application suggestions for circuit in fig. 20

Using the two circuits shown in fig. 21 and fig. 22 it is possible to use a transformer with a large spread of output voltage between load and no-load condition.
The voltage on pins 1 and 5 follows V_{o} according to the equations:
$V_{1}=V_{o}+\left(V_{s}-V_{0}\right) \cdot \frac{R 2}{R 1+R 2}-2 V_{B E}$
$\mathrm{V}_{5}=\mathrm{V}_{\mathrm{o}}-\left(\mathrm{V}_{\mathrm{s}}+\mathrm{V}_{\mathrm{o}}\right) \cdot \frac{\mathrm{R} 2}{\mathrm{R} 1+\mathrm{R} 2}+2 \mathrm{~V}_{\mathrm{BE}}$
while the voltage between pins 1 and 5 is a constant. In fact:
$\mathrm{V}_{1-5}=\mathrm{V}_{1}-\mathrm{V}_{5}=\mathrm{V}_{\mathrm{s}} \cdot \frac{2 \mathrm{R} 2}{\mathrm{R} 1+\mathrm{R} 2}-4 \mathrm{~V}_{\mathrm{BE}}$
V_{1-5} must not exceed 50 V and then the maximum value of V_{s} in no-load condition will be:
$\mathrm{V}_{\mathrm{s} \text { max }}=\left(50+4 \mathrm{~V}_{\mathrm{BE}}\right) \cdot \frac{\mathrm{R} 1+\mathrm{R} 2}{2 \mathrm{R} 2}$

The minimum value of V_{s} depends on the output power requested and will be:
$V_{s(\text { min })}=V_{L}+V_{C E(\text { sat })}$ with $V_{L}=\sqrt{2 P_{o} R_{L}}$
Resistance R2 must be greater than R1 to guarantee a positive voltage on pin 1 and a negative voltage on pin 5 for correct working of TDA 2020D.

Note 1 - Between pins 1 and 5 a ceramic capacitor must be inserted to guarantee good stability.
Note 2 - It is possible to insert an electrolytic capacitor ($10 \mu \mathrm{~F}$) between pin 1 and GND and between pin 5 and GND, but in this case the maximum output voltage must be $\mathrm{V}_{\text {peak }}=23 \mathrm{~V}$.

With the circuit in fig. 22 the voltage at pins 1 and 5 is kept constant by two zener diodes. In load conditions a current equal to $I_{0}=I / \beta$ flows in R; the value of R is then given by $\mathrm{R}=\frac{\left(\mathrm{V}_{\mathrm{CE}}-\mathrm{V}_{\mathrm{BE}}\right)}{\mathrm{I}} \beta$. In no-load condition, if $\Delta \mathrm{V}$ is the increase in the supply voltage, the zener diodes dissipate a power depending on ΔV and β according to the equation:
$P_{z}=V_{z} \cdot I_{z}=V_{z} \cdot \frac{\Delta V}{R}=V_{z} \cdot \frac{\Delta V \cdot I}{\beta\left(V_{C E}-V_{B E}\right)}$

Fig. 21

Fig. 22

SHORT CIRCUIT PROTECTION

The most important innovation in the TDA 2020D is an original circuit which limits the current of the output transistors. Fig. 23 shows that the maximum output current is a function of the collector-emitter voltage; hence the output transistors work within their safe operating area (fig. 24). This function can therefore be considered as being peak power limiting rather than simple current limiting.
By choosing the appropriate values for R9, R10, R11, R12, (fig. 9) the maximum output current can be established as a function of the SOA of the output parameters being used.

Fig. 23 - Maximum output current vs. voltage [$\mathrm{V}_{\text {Ce(sat) }}$] across one output transistor, for different values of R10 (typical application circuit)

Fig. 24 - Safe operating area and collector characteristics of the protected power transistor

THERMAL SHUT-DOWN

The presence of a thermal limiting circuit offers the following advantages:

1) An overload on the output (even if it is permanent) or an above-limit ambient temperature can be easily withstood since the T_{j} cannot be higher than $150^{\circ} \mathrm{C}$.
2) The heatsink can have a smaller safety factor than a conventional circuit. There is no possibility of device damage due to high junction temperature.
If, for any reason, the junction temperature increases up to $150^{\circ} \mathrm{C}$, the thermal shut-down simply reduces the power dissipation and the current consumption.
The thermal protection unit of the TDA 2020D will also provide thermal protection of the output transistors if they are mounted on the same heatsink as the I.C.

MOUNTING INSTRUCTIONS

Fig. 25 - Mounting system of TDA 2020D

The power dissipated in the circuit must be removed by adding an external heatsink as shown in figs. 25 and 26.
The system for attaching the heatsink is very simple: it uses a plastic spacer which is supplied with the-device.
Thermal contact between the copper slug (of the package) and the heatsink is guaranteed by the pressure which the screws exert via the spacer and the printed circuit board; this is due to the special shape of the spacer.

Note: The most negative supply voltage is connected to the copper slug, hence to the heatsink (because it is in contact with the slug).

Fig. 26 - Cross-section of mounting system

Fig. 27 - Maximum allowable power dissipation vs. ambient temperature

LINEAR INTEGRATED CIRCUIT

14W Hi-Fi AUDIO AMPLIFIER

The TDA 2030 is a monolithic integrated circuit in Pentawatt ${ }^{\circledR}$ package. intended for use as a low frequency class $A B$ amplifier. Typically it provides 14 W output power ($d=0.5 \%$) at $\pm 14 \mathrm{~V} / 4 \Omega$; at $\pm 14 \mathrm{~V}$ the guaranteed output power is 12 W on a 4Ω load and 8 W on a 8Ω (DIN 45500). The TDA 2030 provides high output current and has very low harmonic and cross-over distortion. Further the device incorporates an original (and patented) short circuit protection system comprising an arrangement for automatically limiting the dissipated power so as to keep the working point of the output transistors within their safe operating area. A conventional thermal shut-down system si also included.

ABSOLUTE MAXIMUM RATINGS

V_{s}	Supply voltage	± 18	V
$\mathrm{~V}_{\mathrm{i}}$	Input voltage	V_{s}	
V_{i}	Differential input voltage	± 15	V
I_{o}	Output peak current (internally limited)	3.5	A
$P_{\text {tot }}$	Power dissipation at $T_{\text {case }}=90^{\circ} \mathrm{C}$	20	W
$\mathrm{~T}_{\text {stg }}, T_{j}$	Storage and junction temperature	-40 to 150	${ }^{\circ} \mathrm{C}$

ORDERING NUMBERS: TDA 2030 H; TDA 2030 V

MECHANICAL DATA

Dimensions in mm

CONNECTION DIAGRAM

(top view)

SCHEMATIC DIAGRAM

TEST CIRCUIT

THERMAL DATA

$R_{\text {th } j \text {-case }}$	Thermal resistance junction-case	\max	3	${ }^{\circ} \mathrm{C} / \mathrm{W}$

ELECTRICAL CHARACTERISTICS (Refer to the test circuit; $\mathrm{V}_{\mathrm{s}}= \pm 14 \mathrm{~V}, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ unless otherwise specified)

Parameter		Test conditions	Min.	Typ.	Max.	Unit
V_{5}	Supply voltage		± 6		± 18	V
I_{d}	Quiescent drain current	$V_{5}= \pm 18 \mathrm{~V}$		40	60	mA
I_{b}	Input bias current			0.2	2	$\mu \mathrm{A}$
$\mathrm{V}_{\text {os }}$	Input offset voltage			± 2	± 20	mV
Ios	Input offset current			± 20	± 200	nA
P_{0}	Output power	$\begin{aligned} & \mathrm{d}=0.5 \% \quad \mathrm{G}_{\mathrm{v}}=30 \mathrm{~dB} \\ & \mathrm{f}=40 \text { to } 15000 \mathrm{~Hz} \\ & \mathrm{R}_{\mathrm{L}}=4 \Omega \\ & \mathrm{R}_{\mathrm{L}}=8 \Omega \end{aligned}$	12 8	14 9		W
		$\begin{aligned} & d=10 \% \\ & f=1 \mathrm{kHz} \\ & R_{L}=4 \Omega \\ & R_{L}=8 \Omega \end{aligned}$		$\begin{aligned} & 18 \\ & 11 \end{aligned}$		W
d	Distortion	$\begin{aligned} & \mathrm{P}_{\mathrm{o}}=0.1 \text { to } 12 \mathrm{~W} \\ & \mathrm{R}_{\mathrm{L}}=4 \Omega \quad \mathrm{G}_{\mathrm{v}}=30 \mathrm{~dB} \\ & \mathrm{f}=40 \text { to } 15000 \mathrm{~Hz} \end{aligned}$		0.2	0.5	\%
		$\begin{aligned} & \mathrm{P}_{\mathrm{o}}=0.1 \text { to } 8 \mathrm{~W} \\ & \mathrm{R}_{\mathrm{L}}=8 \Omega \\ & \mathrm{f}=40 \text { to } 15000 \mathrm{~Hz}=30 \mathrm{~dB} \end{aligned}$		0.1	0.5	\%
B	Power Bandwidth (-3 dB)	$\begin{array}{ll} \mathrm{G}_{\mathrm{V}}=30 \mathrm{~dB} & \\ \mathrm{P}_{\mathrm{O}}=12 \mathrm{~W} & \mathrm{R}_{\mathrm{L}}=4 \Omega \end{array}$	10 to 140000			Hz
R_{i}	Input resistance (pin 1)		0.5	5		$\mathrm{M} \Omega$
G_{v}	Voltage gain (open loop)			90		dB
G_{v}	Voltage gain (closed loop)	$f=1 \mathrm{kHz}$	29.5	30	30.5	dB
e_{N}	Input noise voltage	$\begin{aligned} & B=22 \mathrm{~Hz} \text { to } 22 \mathrm{KHz} \\ & R_{\mathrm{L}}=4 \Omega \end{aligned}$		3	10	$\mu \mathrm{V}$
i_{N}	Input noise current			80	200	pA
SVR	Supply voltage rejection	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=4 \Omega \\ & \mathrm{R}_{\mathrm{g}}=22 \mathrm{k} \Omega \\ & \mathrm{~V}_{\text {ripple }}=0.5 \mathrm{~V}_{\text {eff }} \\ & \mathrm{f}_{\text {ripple }}=100 \mathrm{~Hz} \end{aligned}$	40	50		dB
I_{d}	Drain current	$\begin{array}{ll} \mathrm{P}_{\mathrm{O}}=14 \mathrm{~W} & \mathrm{R}_{\mathrm{L}}=4 \Omega \\ \mathrm{P}_{\mathrm{O}}=9 \mathrm{~W} & \mathrm{R}_{\mathrm{L}}=8 \Omega \end{array}$		$\begin{aligned} & 900 \\ & 500 \end{aligned}$		$\begin{aligned} & m A \\ & m A \end{aligned}$
T_{j}	Thermal shut-down junction temperature			145		${ }^{\circ} \mathrm{C}$

410 TDA2030

Fig. 1 - Output power vs. supply voltage

Fig. 4 - Distortion vs. output power

Fig. 7 - Distortion vs. frequency

Fig. 2 - Output power vs. supply voltage

Fig. 5 - Distortion vs. output power

Fig. 8 - Frequency response with different values of the rolloff capacitor C8 (see fig. 13)

Fig. 3 - Distortion vs. output power

Fig. 6 - Distortion vs. frequency

Fig. 9 - Quiescent current vs. supply voltage

Fig. 10 - Supply voltage rejection vs. voltage gain

Fig. 11 - Power dissipation and efficiency vs. output power

Fig. 12 - Maximum power dissipation vs. supply voltage (sine wave operation)

APPLICATION INFORMATION

Fig. 13 - Typical amplifier with split power supply

Fig. 14 - P.C. board and component layout for the circuit of fig. 13 ($1: 1$ scale)

APPLICATION INFORMATION (continued)

Fig. 15 - Typical amplifier with single power supply

Fig. 16 - P.C. board and component layout for the circuit of fig. 15 ($1: 1$ scale)

Fig. 17 - Bridge amplifier configuration with split power supply ($\mathrm{P}_{\mathrm{o}}=28 \mathrm{~W}, \mathrm{~V}_{\mathrm{s}}= \pm 14 \mathrm{~V}$)

APPLICATION INFORMATION (continued)

Fig. 18 - P.C. board and component layout for the circuit in fig. 17 (1: 1 scale)

Fig. 19 - Two-way 22W Hi-Fi active-box

PRACTICAL CONSIDERATIONS

Printed circuit board

The layout shown in fig. 16 should be adopted by the designers. If different layouts are used, the ground points of input 1 and input 2 must be well decoupled from the ground return of the output in which a high current flows.

Assembly suggestion

No electrical isolation is needed between the package and the heatsink with single supply voltage configuration.

Application suggestions

The recommended values of the components are those shown on application circuit of fig. 13. Different values can be used. The following table can help the designer.

Component	Recomm. value	Purpose	Larger than recommended value	Smaller than recommended value
R1	$22 \mathrm{k} \Omega$	Closed loop gain setting	Increase of gain	Decrease of gain
R2	680Ω	Closed loop gain setting	Decrease of gain	Increase of gain
R3	$22 \mathrm{k} \Omega$	Non inverting input biasing	Increase of input impedance	Decrease of input impedance
R4	1Ω	Frequency stability	Danger of oscillat. at high frequencies with induct. loads	
R5	$\cong 3 \mathrm{R} 2$	Upper frequency cutoff	Poor high frequen- cies attenuation	Danger of oscillation
C1	$1 \mu \mathrm{~F}$	Input DC decoupling	Increase of low fre- quencies cutoff	
C2	$22 \mu \mathrm{~F}$	Inverting DC decoupling	Increase of low fre- quencies cutoff	
$\mathrm{C} 3, \mathrm{C} 4$	$0.1 \mu \mathrm{~F}$	Supply voltage bypass	Danger of oscil- lation	
$\mathrm{C} 5, \mathrm{C} 6$	$100 \mu \mathrm{~F}$	Supply voltage bypass		Danger of oscil- lation
C 7	$0.22 \mu \mathrm{~F}$	Frequency stability		Danger of oscillat.
C 8	$\cong \frac{1}{2 \pi \mathrm{~B} \mathrm{R1}}$	Upper frequency cutoff	Smaller bandwidth	Larger bandwidth
D1,D2	1 N 4001	To protect the device against output voltage spikes		

SHORT CIRCUIT PROTECTION

The TDA 2030 has an original circuit which limits the current of the output transistors. Fig. 20 shows that the maximum output current is a function of the collector emitter voltage; hence the output transistors work within their safe operating area (fig. 21). This function can therefore be considered as being peak power limiting rather than simple current limiting. The TDA 2030 is thus protected against temporary overloads or short circuit. Should the short circuit exist for a longer time, the thermal shut-down protection keeps the junction temperature within safe limits.

Fig. 20 - Maximum output current vs. voltage [$\mathrm{V}_{\text {CEsat }}$] across each output transitor

Fig. 21 - Safe operating area and collector characteristics of the protected power transistor

THERMAL SHUT-DOWN

The presence of a thermal limiting circuit offers the following advantages:

1) An overload on the output (even if it is permanent), or an above limit ambient temperature can be easily supported since the T_{j} cannot be higher than $150^{\circ} \mathrm{C}$.
2) The heatsink can have a smaller factor of safety compared with that of a conventional circuit. There is no possibility of device damage due to high junction temperature. If for any reason, the junction temperature increases up to $150^{\circ} \mathrm{C}$, the thermal shut-down simply reduces the power dissipation and the current consumption.

The maximum allowable power dissipation depends upon the size of the external heatsink (i.e. its thermal resistance); fig. 24 shows this dissipable power as a function of ambient temperature for different thermal resistance.

TDA2030

Fig. 22 - Output power and drain current vs. case temperature ($R_{L}=4 \Omega$)

Fig. 23 - Output power and drain current vs. case temperature ($\mathrm{R}_{\mathrm{L}}=8 \Omega$)

Fig. 24 - Maximum allowable power dissipation vs. ambient temperature

Fig. 25 - Example of heat-sink

Dimension : suggestion.
The following table shows the length that the heatsink in fig. 25 must have for several values of $P_{\text {tot }}$ and $R_{\text {th }}$.

$\mathrm{P}_{\text {tot }}(\mathrm{W})$	12	8	6
Length of heatsink $_{(\mathrm{mm})}$	60	40	30
$\mathrm{R}_{\text {th }}$ of heatsink	$\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)$	4.2	6.2

LINEAR INTEGRATED CIRCUIT

PRELIMINARY DATA

18W Hi-Fi AMPLIFIER AND 30W DRIVER

The TDA 2030A is a monolithic IC in Pentawatt ${ }^{\circledR}$ package intended for use as low frequency class $A B$ amplifier.
With $\mathrm{V}_{5 \text { max }}=44 \mathrm{~V}$ it is particularly suited for more reliable applications without regulated supply and for 30W driver circuits using low-cost complementary pairs.
The TDA 2030A provides high output current and has very low harmonic and cross-over distortion. Further the device incorporates a short circuit protection system comprising an arrangement for automatically limiting the dissipated power so as to keep the working point of the output transistors within their safe operating area. A conventional thermal shut-down system is also included.

ABSOLUTE MAXIMUM RATINGS

V_{s}	Supply voltage	± 22	V
$\mathrm{~V}_{\mathrm{i}}$	Input voltage	V_{s}	
V_{i}	Differential input voltage	± 15	V
I_{o}	Peak oùtput current	3.5	A
$\mathrm{P}_{\text {tot }}$	Total power dissipation at $\mathrm{T}_{\text {case }}=90^{\circ} \mathrm{C}$	20	W
$\mathrm{~T}_{\text {stg }}, \mathrm{T}_{\mathrm{j}}$	Storage and junction temperature	-40 to 150	${ }^{\circ} \mathrm{C}$

ORDERING NUMBER: TDA 2030AV

TDA2030A

CONNECTION DIAGRAM
(top view)

TEST CIRCUIT

THERMAL DATA

| $R_{\text {th j-case }}$ | Thermal resistance junction-case | $\max \quad 3 \quad{ }^{\circ} \mathrm{C} / \mathrm{W}$ |
| :--- | :--- | :--- | :--- |

ELECTRICAL CHARACTERISTICS (Refer to the test circuit, $\mathrm{V}_{\mathrm{s}}= \pm 16 \mathrm{~V}, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ unless otherwise specified)

Parameter		Test conditions		Min.	Typ.	Max.	Unit
	Supply voltage			± 6		± 22	V
l_{d}	Quiescent drain current				50	80	mA
I_{b}	Input bias current	$\mathrm{V}_{\mathrm{S}}= \pm 22 \mathrm{~V}$			0.2	2	$\mu \mathrm{A}$
$\mathrm{V}_{\text {os }}$	Input offset voltage				± 2	± 20	mV
los	Input offset current				± 20	± 200	nA
P_{0}	Output power	$\begin{aligned} & d=0.5 \% \\ & f=40 \text { to } 150 \end{aligned}$	$\begin{aligned} \mathrm{G}_{\mathrm{v}} & =26 \mathrm{~dB} \\ \mathrm{~Hz}_{\mathrm{L}} & =4 \Omega \\ \mathrm{R}_{\mathrm{L}} & =8 \Omega \end{aligned}$	$\begin{aligned} & 15 \\ & 10 \end{aligned}$	$\begin{aligned} & 18 \\ & 12 \end{aligned}$		W
		$\mathrm{V}_{\mathrm{s}}= \pm 19 \mathrm{~V}$	$\mathrm{R}_{\mathrm{L}}=8 \Omega$	13	16		
BW	Power bandwidth	$\mathrm{P}_{\mathrm{O}}=15 \mathrm{~W}$	$\mathrm{R}_{\perp}=4 \Omega$		100		KHz
SR	Slew Rate				8		$\mathrm{V} / \mu \mathrm{sec}$
G_{v}	Open loop voltage gain	$f=1 \mathrm{KHz}$			80		dB
G_{v}	Closed loop voltage gain			25.5	26	26.5	dB
d	Total harmonic distortion	$\begin{aligned} & P_{o}=0.1 \text { to } 14 W \\ & f=40 \text { to } 15000 \mathrm{R}_{\mathrm{L}}=4 \Omega \\ & f=1 \mathrm{KHz} \end{aligned}$			$\begin{aligned} & 0.08 \\ & 0.03 \end{aligned}$		\%
		$\begin{aligned} & P_{\mathrm{O}}=0.1 \text { to } 9 \mathrm{~W} \\ & \mathrm{f}=40 \text { to } 15000 \mathrm{~Hz} \end{aligned}$			0.05		\%
d_{2}	Second order CCIF intermodulation distortion	$\begin{aligned} & \mathrm{P}_{\mathrm{O}}=4 \mathrm{~W} \\ & \mathrm{R}_{\mathrm{L}}=4 \Omega \end{aligned}$	$\mathrm{f}_{2}-\mathrm{f}_{1}=1 \mathrm{KHz}$		0.03		\%
d_{3}.	Third order CCIF intermodulation distortion	$\begin{aligned} & f_{1}=14 \mathrm{KHz} \\ & \mathrm{f}_{2}=15 \mathrm{KHz} \end{aligned}$	$2 \mathrm{f}_{1}-\mathrm{f}_{2}=13 \mathrm{KHz}$		0.08		\%
e_{N}	Input noise voltage	$B=$ curve A			2		
		$\mathrm{B}=22 \mathrm{~Hz}$ to 22 KHz			3	10	
i_{N}	Input noise current	$B=$ curve A			50		
		$\mathrm{B}=22 \mathrm{~Hz}$ to 22 KHz			80	200	
S/N	Signal to noise ratio	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=4 \Omega \\ & \mathrm{R}_{\mathrm{g}}=10 \mathrm{~K} \Omega \\ & \mathrm{~B}=\text { curve } \mathrm{A} \end{aligned}$	$\mathrm{P}_{\mathrm{o}}=15 \mathrm{~W}$		106		dB
			$\mathrm{P}_{\mathrm{o}}=1 \mathrm{~W}$		94		

$\mathcal{O S}$ TDA2030A

ELECTRICAL CHARACTERISTICS (continued)

Parameter	Test conditions	Min.	Typ.	Max.	Unit	
R_{i}	Input resistance (pin 1)	(open loop) $\mathrm{f}=1 \mathrm{KHz}$	0.5	5		$\mathrm{M} \Omega$
SVR	Supply voltage rejection	$R_{\mathrm{L}}=4 \Omega$ $R_{\mathrm{g}}=22 \mathrm{~K} \Omega$$\quad$$\mathrm{G}_{\mathrm{v}}=26 \mathrm{~dB}$ $\mathrm{f}=100 \mathrm{~Hz}$				
$\mathrm{~T}_{\mathrm{j}}$	Thermal shut-down junction temperature			dB		

Fig. 1 - Sing!e supply amplific:

Fig. 2 - Open loop-frequency response

*) Test using noise filters.

Fig. 3 - Output power vs. supply voltage

Fig. 4 - Total harmonic distortion vs. output power(*)

TDA2030A

Fig. 5 - Two tone CCIF intermodulation distortion

Fig. 6 - Large signal frequency response

Fig. 7 - Maximum allowable power dissipation vs. am-

Fig. 8 - Split-supply high power amplifier (TDA 2030A + BD907/BD908)

Fig. 9 - Single supply high power amplifier (TDA 2030A + BD907/BD908)

Fig. 10 - P.C. board and component layout for the circuit of fig. 9 (1:1 scale)

Typical performance of the circuit of fig. 9

Fig. 11 - Output power vs. supply voltage

Fig. 12 - Total harmonic distortion vs. output power

Fig. 13 - Output power vs. input level

Fig. 14 - Power dissipation vs. output power

Fig. 15 - Typical amplifier whit split power supply

Fig. 16 - P.C. board and component layout for the circuit of fig. 15 (1: 1 scale)

Fig. 17 - Bridge amplifier whit split power supply $\left(\mathrm{P}_{\mathrm{o}}=34 \mathrm{~W}, \mathrm{~V}_{\mathrm{s}}= \pm 16 \mathrm{~V}\right)$

Fig. 18 - P.C. board and component layout for the circuit in fig. 17 (1:1 scale)

Multiway speaker systems and active boxes

Multiway loudspeaker systems provide the best possible acoustic performance since each loudspeaker is specially designed and optimized to handle a limited range of frequencies. Commonly, these loudspeaker systems divide the audio spectrum into two or three bands.
To maintain a flat frequency response over the $\mathrm{Hi}-\mathrm{Fi}$ audio range the bands covered by each loudspeaker must overlap slightly. Imbalance between the loudspeakers produces unacceptable results therefore it is important to ensure that each unit generates the correct amount of acoustic energy for its segment of the audio spectrum. In this respect it is also important to know the energy distribution of the music spectrum to determine the cutoff frequencies of the crossover filters (see fig. 19). As an example, a 100 W three-way system with crossover frequencies of 400 Hz and 3 KHz would require 50 W for the woofer, 35W for the midrange unit and 15W for the tweeter.
Both active and passive filters can be used for crossovers but today active filters cost significantly less than a good passive filter using air-cored inductors and non-electrolytic capacitors. In addition, active filters do not suffer from the typical defects of passive filters:

- power loss
- increased impedance seen by the loudspeaker (lower damping)
- difficulty of precise design due to variable loudspeaker impedance.

Fig. 19 - Power distribution vs. frequency

Fig. 20 - Active power filter

Obviously, active crossovers can only be used if a power amplifier is provided for each drive unit.
This makes it particularly interesting and economically sound to use monolithic power amplifiers.
In some applications, complex filters are not really necessary and simple RC low-pass and high-pass networks ($6 \mathrm{~dB} /$ octave) can be recommended.
The results obtained are excellent because this is the best type of audio filter and the only one free from phase and transient distortion.
The rather poor out of band attenuation of single RC filters means that the loudspeaker must operate linearly well beyond the crossover frequency to avoid distortion.
A more effective solution, named "Active Power Filter" by SGS is shown in fig. 20.
The proposed circuit can realize combined power amplifiers and $12 \mathrm{~dB} /$ octave or $18 \mathrm{~dB} /$ octave high-pass or low-pass filters.
In practice, at the input pins of the amplifier two equal and in-phase voltages are available, as required for the active filter operation.
The impedance at the pin (-) is of the order of 100Ω, while that of the pin $(+)$ is very high, which is also what was wanted.

The component values calculated for $\mathrm{f}_{\mathrm{c}}=900 \mathrm{~Hz}$ using a Bessel 3rd order Sallen and Key structure are:

$\mathbf{C}_{1}=\mathbf{C}_{2}=\mathbf{C}_{3}$	\mathbf{R}_{1}	\mathbf{R}_{2}	\mathbf{R}_{3}
22 nF	$8.2 \mathrm{~K} \Omega$	$5.6 \mathrm{~K} \Omega$	$33 \mathrm{~K} \Omega$

Using this type of crossover filter, a complete 3-way 60W active loudspeaker system is shown in fig. 21. It employs 2nd order Buttherworth filters with the crossover frequencies equal to 300 Hz and 3 KHz . The midrange section consists of two filters, a high pass circuit followed by a low pass network. With $\mathrm{V}_{\mathrm{s}}=36 \mathrm{~V}$ the output power delivered to the woofer is 25 W at $\mathrm{d}=0.06 \%$ (30 W at $\mathrm{d}=0.5 \%$). The power delivered to the midrange and the tweeter can be optimized in the design phase taking in account the louspeaker efficiency and impedance ($R_{L}=4 \Omega$ or 8Ω).
It is quite common that midrange and tweeter speakers have an efficiency 3 dB higher than woofers.

Fig. 21-3 way 60W active loudspeaker system ($\mathrm{V}_{\mathrm{s}}=36 \mathrm{~V}$)

TDA2030A

Musical instruments amplifiers

Another important field of application for active systems is music.
In this area the use of several medium power amplifiers is more convenient than a single high power amplifier, and it is also more reliable.
A typical example (see fig. 22) consist of four amplifiers each driving a low-cost, $4 \Omega, 12$ inch loudspeaker. This application can supply 80 to 160 W rms.
Similar output power can be obtained by a single amplifier using the "superbridge" circuit of fig.24.As shown in the diagram of fig. 16 this circuit can supply output power of 120 W and more.

Fig. 22 - High power active box for musical instrument

Fig. 23 - Output power vs. supply voltage (application circuit of fig. 24)

Fig. 24-120W "superbridge" power amplifier

Transient intermodulation distortion (TIM)

Transient intermodulation distortion is an unfortunate phenomen associated with negative-feedback amplifiers. When a feedback amplifier receives an input signal which rises very steeply, i.e. it contains high-frequency components, the feedback can arrive too late so that the amplifiers overloads and a burst of intermodulation distortion will be produced as in fig. 25. Since transients occur frequently in music this is obviously a problem for the designer of audio amplifiers. Unfortunately, heavy negative feedback is frequently used to reduce the total harmonic distortion of an amplifier, which tends to aggravate the transient intermodulation (TIM) situation. The best known method for the measurement of TIM consists of feeding sine waves superimposed onto square waves, into the amplifier under test. The output spectrum is then examined using a spectrum analyser and compared to the input. This method suffers from serious disadvantages: the accuracy is limited, the measurement is a rather delicate operation and an expensive spectrum analyser is essential. A new approach (see Technical Note 143) applied by SGS to monolithic amplifiers measurement is fast cheap-it requires nothing more sophisticated than an oscilloscope - and sensitive - and it can be used down to the values as low as 0.002% in high power amplifiers. The "inverting-sawtooth" method of measurement is based on the response of an amplifier to a 20 KHz sawtooth waveform. The amplifier has no difficulty following the slow ramp but it cannot follow the fast edge. The output will follow the upper line in fig. 26 cutting of the shaded area and thus increasing the mean level. If this output signal is filtered to remove the sawtooth, a direct voltage remains which indicaies títe anmunn of Tiivi uistorion, aithougn it is diíticuit to measure because it is indistinguishabie from the d.c. offset of the amplifier. This problem is neatly avoided in the IS-TIM method by periodically inverting the sawtooth waveform at a low audio frequency as shown in fig. 27. In the case of the sawtooth in fig. 26 the mean level was increased by the TIM distortion, for a sawtooth in the other direction the opposite is true.

Fig. 25 - Overshoot phenomenon in feedback amplifiers

Fig. 26-20 KHz sawtooth waveform

5.476

Fig. 27 - Inverting sawtooth waveform

The result is an a.c. signal at the output whose peak-to-peak value is the TIM voltage, which can be measured easily with an oscilloscope.
If the peak-to-peak value of the signal and the peak-to-peak of the inverting sawtooth are measured, the TIM can be found very simply from:

$$
\text { TIM }=\frac{V_{\text {out }}}{V_{\text {sawtooth }}} \cdot 100
$$

In fig. 28 the experimental results are shown for the 30W amplifier using the TDA2030A as a driver and a low-cost complementary pair.
The measured performances are perfectly suitable for $\mathrm{Hi}-\mathrm{Fi}$ systems.
A simple RC filter on the input of the amplifier to limit the maximum signal slope (SS) is an effective way to reduce TIM.
The diagram of fig. 29 originated by SGS can be used to find the Slew-Rate (SR) required for a given output power or voltage and a TIM design target.
For example if an anti-TIM filter with a cutoff at 30 KHz is used and the max. peak-to-peak output voltage is 20 V then, referring to the diagram, a Slew-Rate of $6 \mathrm{~V} / \mu \mathrm{S}$ is necessary for $0,1 \% \mathrm{TIM}$.
As shown Slew-Rates of above $10 \mathrm{~V} / \mu \mathrm{S}$ do not contribute to a further reduction in TIM.
Slew-Rates of $100 \mathrm{~V} / \mu \mathrm{S}$ are not only useless but also a disadvantage in $\mathrm{Hi}-\mathrm{Fi}$ audio amplifiers because they tend to turn the amplifier into a radio receiver.

Fig. 28 - TIM distortion vs. output power

Fig. 29 - TIM design diagram ($\mathrm{f}_{\mathrm{C}}=30 \mathrm{KHz}$)

Power supply

Using monolithic audio amplifier with non-regulated supply voltage it is important to design the power supply correctly. In any working case it must provide a supply voltage less than the maximum value fixed by the IC breakdown voltage.
It is essential to take into account all the working conditions, in particular mains fluctuations and supply voltage variations with and without load.
The TDA 2030A ($\mathrm{V}_{\mathrm{s} \text { max }}=44 \mathrm{~V}$) is particularly suitable for substitution of the standard IC power amplifiers (with $\mathrm{V}_{\mathrm{s} \text { max }}=36 \mathrm{~V}$) for more reliable applications.
An example, using a simple full-wave rectifier followed by a capacitor filter, is shown in the table and in the diagram of fig. 30.
A regulated supply is not usually used for the power output stages because of its dimensioning must be done taking into account the power to supply in the signal peaks. They are only a small percentage of the total music signal, with consequently large overdimensioning of the circuit.
Even if with a regulated supply higher output power can be obtained (V_{s} is constant in all working conditions), the additional cost and power dissipation do not usually justify its use. Using non-regulated supplies, there are fewer design restriction. In fact, when signal peaks are present, the capacitor filter acts as a flywheel supplying the required energy.
In average conditions, the continuous power supplied is lower. The music power/continuous power ratio is greater in this case than for the case of regulated supplied, with space saving and cost reduction.

Mains $(220 \mathrm{~V})$	Secondary voltage	DC output voltage $\left(\mathrm{V}_{\mathrm{O}}\right)$		
		$\mathbf{I}_{\mathrm{O}}=\mathbf{0}$	$\mathbf{I}_{\mathrm{O}}=\mathbf{0 . 1 A}$	$\mathbf{I}_{\mathrm{O}}=\mathbf{1 A}$
$+20 \%$	28.8 V	43.2 V	42 V	37.5 V
$+15 \%$	27.6 V	41.4 V	40.3 V	35.8 V
$+10 \%$	26.4 V	39.6 V	38.5 V	34.2 V
-	24 V	36.2 V	35 V	31 V
-10%	21.6 V	32.4 V	31.5 V	27.8 V
-15%	20.4 V	30.6 V	29.8 V	26 V
-20%	19.2 V	28.8 V	28 V	24.3 V

Fig. 30 - DC characteristics of 50W non-regulated supply

SHORT CIRCUIT PROTECTION

The TDA 2030A has an original circuit which limits the current of the output transistors. This function can be considered as being peak power limiting rather than simple current limiting. The TDA 2030A is thus protected against temporary overloads or short circuit. Should the short circuit exist for a longer time, the thermal shut-down protection keeps the junction temperature within safe limits.

THERMAL SHUT-DOWN

The presence of a thermal limiting circuit offers the following advantages:

1) An overload on the output (even if it is permanent), or an above limit ambient temperature can be easily supported since the T_{j} cannot be higher than $150^{\circ} \mathrm{C}$.
2) The heatsink can have a smaller factor of safety compared with that of a conventional circuit. There is no possibility of device damage due to high junction temperature. If for any reason, the junction temperature increases up to $150^{\circ} \mathrm{C}$, the thermal shut-down simply reduces the power dissipation and the current consumption.

LINEAR INTEGRATED CIRCUIT

22W Hi-Fi AUDIO POWER AMPLIFIER

The TDA 2040 is a monolithic integrated circuit in Pentawatt ${ }^{\circledR}$ package, intended for use as an audio class AB amplifier. Typically it provides 22 W output power ($\mathrm{d}=0.5 \%$) at $\mathrm{V}_{\mathrm{s}}=32 \mathrm{~V} / 4 \Omega$. The TDA 2040 provides high output current and has very low harmonic and cross-over distortion. Further the device incorporates a patented short circuit protection system comprising an arrangement for automatically limiting the dissipated power so as to keep the working point of the output transistors within their safe operating area. A thermal shut-down system is also included.

ABSOLUTE MAXIMUM RATINGS

V_{s}	Supply voltage	± 20	V
$\mathrm{~V}_{i}$	Input voltage	V_{s}	
V_{i}	Differential input voltage	± 15	V
I_{0}.	Output peak current (internally limited)	4	A
$\mathrm{P}_{\text {tot }}$	Power dissipation at $\mathrm{T}_{\text {case }}=75^{\circ} \mathrm{C}$	25	W
$\mathrm{~T}_{\text {stg }}, T_{j}$	Storage and junction temperature	-40 to 150	${ }^{\circ} \mathrm{C}$

ORDERING NUMBER: TDA 2040V

MECHANICAL DATA
Dimensions in mm

CONNECTION DIAGRAM

(top view)

TEST CIRCUIT

THERMAL DATA

$R_{\text {th j-case }}$	Thermal resistance junction-case	\max	${ }^{\circ} \mathrm{C} / \mathrm{W}$

ELECTRICAL CHARACTERISTICS (Refer to the test circuit, $\mathrm{V}_{\mathrm{s}}= \pm 16 \mathrm{~V}, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ unless otherwise specified)

	Parameter	Test conditions	Min.	Typ.	Max.	Unit
V_{5}	Supply voltage		± 2.5			V
I_{d}	Quiescent drain current	$V_{s}= \pm 4.5 \mathrm{~V}$			30	mA
				45	100	mA
$l_{\text {b }}$	Input bias current			0.3	1	$\mu \mathrm{A}$
$\mathrm{V}_{\text {os }}$	Input offset voltage			± 2	± 20	mV
los	Input offset current				± 200	nA
P_{0}	Output power	$\begin{array}{ll} d=0.5 \% & T_{\text {case }}=60^{\circ} \mathrm{C} \\ f=1 \mathrm{KHz} & R_{\mathrm{L}}=4 \Omega \\ & R_{\mathrm{L}}=8 \Omega \end{array}$	20	$\begin{aligned} & 22 \\ & 12 \end{aligned}$		W
		$\mathrm{f}=15 \mathrm{KHz} \quad \mathrm{R}_{\mathrm{L}}=4 \Omega$	15	18		W
BW	Power bandwidth	$\mathrm{P}_{\mathrm{O}}=1 \mathrm{~W} \quad \mathrm{R}_{\mathrm{L}}=4 \Omega$		100		KHz
G_{v}	Open loop voltage gain	$\mathrm{f}=1 \mathrm{KHz}$		80		dB
G_{v}	Closed loop voltage gain		29.5	30	30.5	dB
d	Total harmonic distortion	$\begin{array}{ll} P_{\mathrm{O}}=0.1 \text { to } 10 \mathrm{~W} & R_{\mathrm{L}}=4 \Omega \\ & f=40 \text { to } 15000 \mathrm{~Hz} \\ & f=1 \mathrm{KHz} \end{array}$		$\begin{aligned} & 0.08 \\ & 0.03 \end{aligned}$		\%
e_{N}	Input noise voltage	$B=$ curve A		2		$\mu \mathrm{V}$
		$\mathrm{B}=22 \mathrm{~Hz}$ to 22 KHz		3		
i_{N}	Input noise current	$B=$ curve A		50		pA
		$\mathrm{B}=22 \mathrm{~Hz}$ to 22 KHz		80		
R_{i}	Input resistance (pin 1)		0.5	5		$\mathrm{M} \Omega$
SVR	Supply voltage rejection	$\begin{array}{lr} R_{\mathrm{L}}=4 \Omega & \mathrm{G}_{\mathrm{v}}=30 \mathrm{~dB} \\ \mathrm{R}_{\mathrm{g}}=22 \mathrm{~K} \Omega & \mathrm{f}=100 \mathrm{~Hz} \\ \mathrm{~V}_{\text {ripple }}=0.5 \mathrm{~V}_{\mathrm{rms}} & \end{array}$	40	48		dB
η	Efficiency	$\begin{array}{ll} \mathrm{f}=1 \mathrm{KHz} & \\ \mathrm{P}_{\mathrm{O}}=12 \mathrm{~W} & \mathrm{R}_{\mathrm{L}}=8 \Omega \\ \mathrm{P}_{\mathrm{O}}=22 \mathrm{~W} & \mathrm{R}_{\mathrm{L}}=4 \Omega \end{array}$		$\begin{aligned} & 66 \\ & 63 \end{aligned}$		\%
T_{j}	Thermal shut-down junction temperature			145		${ }^{\circ} \mathrm{C}$

0 TDA2040

APPLICATION INFORMATION

Fig. 1 - Amplifier with split power supply (*)

Fig. 2 - P.C. board and components layout of the circuit of fig. 1.

Fig. 4 - P.C. board and components layout of the
circuit of fig. 3.

Fig. 3 - Amplifier with single supply (${ }^{*}$)

APPLICATION INFORMATION (continued)

Fig. 5 - 30W Bridge amplifier with split power supply

Fig. 6 - P.C. board and components layout for the circuit of fig. 5.

APPLICATION INFORMATION (continued)

Multiway speaker systems and active boxes

Multiway loudspeaker systems provide the best possible acoustic performance since each lodspeaker is specially designed and optimized to handle a limited range of frequencies. Commonly, these loudspeaker systems divide the audio spectrum into two, three or four bands.
To maintain a flat frequency response over the HiFi audio range the bands covered by each loudspeaker must overlap slightly. Imbalance between the loudspeakers produces unacceptable results therefore it is important to ensure that each unit generates the correct amount of acoustic energy for its segment of the audio spectrum. In this respect it is also important to know the energy distribution of the music spectrum to determine the cutoff frequencies of the crossover filters (see fig. 7). As an example, a 100 W three-way system with crossover frequencies of 400 Hz and 3 KHz would require 50 W for the woofer, 35 W for the midrange unit and 15 W for the tweeter.
Both active and passive filters can be used for crossovers but today active filters cost significantly less than a good passive filter using air-cored inductors and non-electrolytic capacitors. In addition, active filters do not suffer from the typical defects of passive filters:

- power loss
- increased impedance seen by the loudspeaker (lower damping)
- difficulty of precise design due to variable loudspeaker impedance

Obviously, active crossovers can only be used if a power amplifier is provided for each drive unit.
This makes it particularly interesting and economically sound to use monolithic power amplifiers. In some applications, complex filters are not really necessary and simple RC low-pass and high-pass networks ($6 \mathrm{~dB} /$ octave) can be recommended.
The results obtained are excellent because this is the best type of audio filter and the only one free from phase and transient distortion.
The rather poor out of band attenuation of single RC filters means that the loudspeaker must operate linearly well beyond the crossover frequency to avoid distortion.
A more effective solution, named "Active Power Filter" by SGS is shown in fig. 8.
The proposed circuit can realize combined power amplifiers and 12 dB /octave or 18 dB /octave highpass or low-pass filters.
In practice, at the input pins of the amplifier two equal and in-phase voltages are available, as required for the active filter operation.
The impedance at the pin $(-)$ is of the order of 100Ω, while that of the pin $(+)$ is very high, which is also what was wanted.

TDA2040

The component values calculated for $\mathrm{f}_{\mathrm{c}}=900 \mathrm{~Hz}$ using a Bessel 3rd order Sallen and Key structure are:

$\mathbf{C 1}=\mathbf{C 2}=\mathbf{C} 3$	R1	R2	R3
$22 \mathbf{n F}$	$8.2 \mathrm{~K} \Omega$	$5.6 \mathrm{~K} \Omega$	$33 \mathrm{~K} \Omega$

In the block diagram of fig. 9 is represented an active loudspeaker system completely realized using power integrated circuits, rather than the traditional discrete transistors or hybrids, very high quality is obtained by driving the audio spectrum into three bands using active crossovers (TDA 2320A) and a separate amplifier and loudspeaker for each band.
A modern subwoofer/midrange/tweeter solution is used.

Fig. 9 - High power active loudspeaker system using TDA 2030A and TDA 2040

LINEAR INTEGRATED CIRCUIT

PREAMPLIFIER WITH ALC FOR $\mathrm{C}_{\mathrm{r}} \mathrm{O}_{2}$ CASSETTE RECORDERS

- EXCELLENT VERSATILITY IN USE (V V_{S} from 4 to 20V)
- HIGH OPEN LOOP GAIN
- LOW DISTORTION
- LOW NOISE
- LARGE AUTOMATIC LEVEL CONTROL RANGE
- STEREO MATCHING BETTER THAN 3 dB (matched pair)

The TDA 2054M is a monolithic integrated circuit in a 16-lead dual in-line plastic package.
The functions incorporated are:

- low noise preamplifier
- automatic level control system (ALC)
- high gain equalization amplifier

It is intended as preamplifier in tape and cassette recorders and players $\left(\mathrm{C}_{r} \mathrm{O}_{2}\right)$, dictaphones, compressor and expander in telephonic equipments, $\mathrm{Hi}-\mathrm{Fi}$ preamplifiers and in wire diffusion receivers; for stereo applications the ALC matching is better than 3 dB .

ABSOLUTE MAXIMUM RATINGS

V_{S}	Supply voltage	20	V
$P_{\text {tot }}$	Total power dissipation at $T_{\text {amb }}=50^{\circ} \mathrm{C}$	500	mW
$\mathrm{~T}_{\text {stg }}, T_{j}$	Storage and junction temperature	-40 to 150	${ }^{\circ} \mathrm{C}$

ORDERING NUMBERS: TDA 2054M mono applications
2 TDA 2054M stereo applications
MECHANICAL DATA
Dimensions in mm

CONNECTION DIAGRAM

SCHEMATIC DIAGRAM

1/1 тDa2054m

TEST CIRCUIT

THERMAL DATA

$R_{\text {th j-amb }}$	Thermal resistance junction-ambient	$\max \quad 200$	${ }^{\circ} \mathrm{C} / \mathrm{W}$

ELECTRICAL CHARACTERISTICS (Refer to the test circuit, $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$)

	Parameter	Test conditions	Min.	Typ.	Max.	Unit
$\mathrm{V}_{\text {s }}$	Supply voltage		4		20	V
$l_{\text {d }}$	Quiescent drain current	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}=9 \mathrm{~V} \\ & \mathrm{~S} 1=\mathrm{S} 2=\mathrm{S} 3=\text { at } \mathrm{B} \end{aligned}$		10		mA
$\mathrm{h}_{\text {FE }}$	DC current gain ($\mathrm{O} 1, \mathrm{Q} 2, \mathrm{Q} 3$)	$\mathrm{I}_{\mathrm{c}}=0.1 \mathrm{~mA} \quad \mathrm{~V}_{\text {CE }}=5 \mathrm{~V}$	- 300	500		-
e_{N}	Input noise voltage (Q1, Q2, Q3)	$\begin{aligned} & \mathrm{I}_{\mathrm{c}}=0.1 \mathrm{~mA} \quad V_{C E}=5 \mathrm{~V} \\ & \mathrm{f}=1 \mathrm{KHz} \end{aligned}$		2		$\frac{n V}{\sqrt{\mathrm{~Hz}}}$
i^{N}	Input noise current ($\mathrm{Q} 1, \mathrm{Q} 2, \mathrm{Q} 3$)			0.5		$\frac{\mathrm{pA}}{\sqrt{\mathrm{Hz}}}$
NF	Noise figure (Q1, Q2, Q3)	$\begin{array}{ll} \mathrm{I}_{\mathrm{C}}=0.1 \mathrm{~mA} & \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V} \\ R_{\mathrm{G}}=4.7 \mathrm{~K} \Omega \\ \mathrm{~B}(-3 \mathrm{~dB})=20 & \text { to } \\ 10000 \mathrm{~Hz} \end{array}$		0.5	4	dB
G_{v}	Open loop voltage gain(for equalization amplifier)	$\mathrm{V}_{\mathrm{s}}=9 \mathrm{~V} \quad \mathrm{f}=1 \mathrm{KHz}$		60		dB
V_{0}	Output voltage with A.L.C.	$\begin{array}{lr} \mathrm{V}_{\mathrm{S}}=9 \mathrm{~V} & \mathrm{~V}_{\mathrm{i}}=100 \mathrm{mV} \\ \mathrm{f}=1 \mathrm{KHz} & \mathrm{~S} 1=\mathrm{S} 2=\mathrm{S} 3 \mathrm{at} \mathrm{~A} \end{array}$		0.6		V
e_{N}	Equivalent input noise voltage (for equalization amplifier pin 11)	$\begin{aligned} & V_{s}=9 V \\ & G_{v}=40 \mathrm{~dB} \quad \mathrm{~S} 1 \text { at } B \\ & B(-3 \mathrm{~dB})=20 \text { to } 20000 \mathrm{~Hz} \end{aligned}$		1.3		$\mu \mathrm{V}$
R_{1}	Q3 emitter resistance		105	150	195	Ω

Fig. 1 - Equivalent input spot voltage and noise current vs. bias current (transistors Q1, Q2, Q3)

Fig. 4 - Noise figure vs. bias current (transistors Q1, Q2, Q3)

Fig. 7 - Open loop gain vs. frequency (equalization amplifier)

Fig. 2 - Equivalent input noise current vs. frequency (transistors Q1, Q2, O3)

Fig. 5 - Optimum source resistance and minimum NF
vs. bias current (transistors
Q1, Q2, Q3)

Fig. 8 - Open loop phase response vs. frequency (equalization amplifier)

Fig. 3 - Equivalent input noise voltage vs. frequency (transistors Q1, Q2, Q3)

Fig. 6 - Current gain vs. collector current (transistors Q1, 02, 03)

Fig. 9 - Dinamic resistance R_{1-9} vs. ALC voltage V_{16}

410
 TDA2054M

APPLICATION INFORMATION

Fig. 9 - Application circuit for $\mathrm{C}_{\mathrm{r}} \mathrm{O}_{2}$ cassette player and recorder

Fig. 10 - P.C. board and component layout for the circuit of Fig. 9 (1:1 scale)

CS-0105

TYPICAL PERFORMANCE OF CIRCUIT IN FIG. 9 ($\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{s}}=9 \mathrm{~V}$)

Parameter		Test conditions	Min.	Typ.	Max.	Unit
PLAYBACK						
G_{v}	Voltage gain (open loop)	$\mathrm{f}=20$ to 20000 Hz		134		dB
G_{v}	Voltage gain (closed loop)	$f=1 \mathrm{KHz}$		60		dB
Z_{i}	Input impedance	$\begin{aligned} & f=100 \mathrm{~Hz} \\ & f=1 \mathrm{KHz} \\ & f=10 \mathrm{KHz} \end{aligned}$		$\begin{aligned} & 10 \\ & 41 \\ & 43 \end{aligned}$		$\begin{aligned} & \mathrm{K} \Omega \\ & \mathrm{~K} \Omega \\ & \mathrm{~K} \Omega \end{aligned}$
Z_{o}	Output impedance	$\mathrm{f}=1 \mathrm{KHz}$		12	35	Ω
B .	Frequency response			see fig. 11		
d	Distortion	$V_{0}=1 \mathrm{~V} \quad \mathrm{f}=1 \mathrm{KHz}$		0.2		\%
	Output background noise	$\begin{aligned} \mathrm{Z}_{\mathrm{g}}= & 300 \Omega+120 \mathrm{mH} \\ & \text { (DIN 45405) } \end{aligned}$		1.5		mV
***	Output weighted background noise			1		mV
$\frac{S+N}{N}$	Signal to noise ratio	$\begin{aligned} & \mathrm{V}_{\mathrm{O}}=1.5 \mathrm{~V} \\ & \mathrm{Z}_{\mathrm{g}}=300 \Omega+120 \mathrm{mH} \end{aligned}$		60		dB
ton*	Switch-on time	$\mathrm{V}_{0}=1 \mathrm{~V}$		500		ms

RECORDING

G_{v}	Voltage gain (open loop)	$\mathrm{f}=20$ to 20000 Hz			134		dB
G_{v}	Voltage gain (closed loop)	$f=1 \mathrm{KHz}$			72		dB
B	Frequency response				see fig. 13		
d	Distortion with ALC	$\mathrm{V}_{\mathrm{o}}=1 \mathrm{~V}$	$\mathrm{f}=10 \mathrm{KHz}$		0.5		\%
ALC	Automatic level control range(for 3 dB of output voltage variation)	$\mathrm{V}_{\mathrm{i}} \leqslant 40 \mathrm{mV}$	$\mathrm{f}=10 \mathrm{KHz}$		54		dB
V_{0}	Output voltage before clipping without ALC	$\mathrm{f}=1 \mathrm{KHz}$			3		, V
V_{0}	Output voltage with ALC	$\mathrm{V}_{\mathrm{i}}=30 \mathrm{mV}$	$\mathrm{f}=1 \mathrm{KHz}$		1.1		V
$\mathrm{t}_{1}{ }^{\text {* }}$	Limiting time (see fig. 17)				75		ms
$\mathrm{t}_{\text {set }}{ }^{*}$	Level setting time (see fig. 17)				300		ms
trec^{*}	Recovery time (see fig. 17)	$\Delta V_{i}=-40 \mathrm{~dB}$	$\mathrm{f}=1 \mathrm{KHz}$		150		sec.
ton^{*}	Switch-on-time	$\mathrm{V}_{\mathrm{O}}=1 \mathrm{~V}$			500		ms
$\frac{\mathrm{S}+\mathrm{N}^{* * *}}{\mathrm{~N}}$	Signal to noise ratio with ALC	$\mathrm{V}_{\mathrm{O}}=1 \mathrm{~V}$	$\mathrm{R}_{\mathrm{g}}=470 \Omega$		64		dB

* This value depends on external network.
** When the DIN 45511 norm for frequency response is not mandatory the equalization peak at 15 KHz can be avoided - so halving the output noise.
*** Weighted noise measurement (DIN 45405).

Fig. 11 - Frequency response for the circuit in fig. 9 (playback)

Fig. 14 - Output voltage variation and distortion with ALC vs. input voltage for the circuit in fig. 9 (recording)

Fig. 12 - Distortion vs. frequency for the circuit in fig. 9 (playback)

Fig. 15 - Distortion vs. frequency with ALC for the circuit in fig. 9 (recording)

Fig. 13 - Frequency response for the circuit in fig. 9 (recording)

Fig. 16 - Limiting and level setting time vs. input signal variation

Fig. 17 - Limiting, level setting, recovery time

LINEAR INTEGRATED CIRCUIT

TV VERTICAL DEFLECTION OUTPUT CIRCUIT

The TDA 2170 is a monolithic integrated circuit in 11 -lead Multiwatt ${ }^{\circledR}$ package. It is a high efficiency power booster for direct driving of vertical windings of TV yokes. It is intended for use in Colour and B \& W television receivers as well as in monitors and displays. The functions incorporated are:

- power amplifier
- flyback generator
- reference voltage
- thermal protection

ABSOLUTE MAXIMUM RATINGS

V_{5}	Supply voltage (pin 4)	35	V
$\mathrm{V}_{7}, \mathrm{~V}_{8}$	Flyback peak voltage	60	V
V_{5},	Voltage at pin 5 ,	$+\mathrm{V}_{5}$	
$\mathrm{V}_{2}, \mathrm{~V}_{3}$	Amplifier input voltage	+ V_{5}	
I_{0}	Output peak current (non repetitive, $\mathrm{t}=2 \mathrm{msec}$)	$\left\{\begin{array}{r}-0.5 \\ 2.5\end{array}\right.$	V
I_{0}	Output peak current at $\mathrm{f}=50$ or $60 \mathrm{~Hz}, \mathrm{t} \leqslant 10 \mu \mathrm{sec}$	3	A
I_{0}	Output peak current at $\mathrm{f}=50$ or $60 \mathrm{~Hz}, \mathrm{t}>10 \mu \mathrm{sec}$	2	A
I_{5}	Pin 5 DC current at $\mathrm{V}_{7}<\mathrm{V}_{4}$	100	mA
I_{5}	Pin 5 peak to peak flyback current at $\mathrm{f}=50$ or $60 \mathrm{~Hz}, \mathrm{t}_{\mathrm{fly}} \leqslant 1.5 \mathrm{msec}$	3	A
$\mathrm{P}_{\text {tot }}$	Total power dissipation at $\mathrm{T}_{\text {case }}=60^{\circ} \mathrm{C}$	30	W
$\mathrm{T}_{\text {stg }}, \mathrm{T}_{\mathrm{j}}$	Storage and junction temperature	-40 to 150	${ }^{\circ} \mathrm{C}$

ORDERING NUMBER: TDA 2170
MECHANICAL DATA
Dimensions in mm

TDA2170

CONNECTION DIAGRAM

(top view)

BLOCK DIAGRAM

Fig. 1 - DC test circuits

Fig. 1a - Measurement of $I_{2} ; I_{3} ; I_{4} ; I_{8} ; V_{9} ;$ $\Delta \mathrm{V}_{9} / \Delta \mathrm{V}_{5} ; \mathrm{R} 9$

Fig. 1b - Measurement of $\mathrm{V} 7_{\mathrm{H}}$

$S_{1}:(a) I_{2}$; (b) I_{3}, I_{4} and I_{8}.
S_{2} : (a) I_{4} and I_{8}; (b) I_{3}; (c) I_{2}.
$S_{3}:$ (a) $I_{2}, I_{3}, I_{4}, I_{8}, I_{9}$ and V_{9}; (b) R9.

Fig. 1c - Measurement of $V_{5 L} ; V_{7 L}$

S1: (a) $V_{5 L}$; (b) $V_{7 L}$.

Fig. 1d - Measurement of V_{7}

TDA2170

THERMAL DATA

$\mathrm{R}_{\text {th j-case }}$	Thermal resistance junction-case	max	3	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{\text {th } \mathrm{j} \text {-amb }}$	Thermal resistance junction-ambient	max	40	${ }^{\circ} \mathrm{C} / \mathrm{W}$

ELECTRICAL CHARACTERISTICS (Refer to the test circuits, $\mathrm{V}_{\mathrm{s}}=35 \mathrm{~V}, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ unless otherwise specified)

	Parameter	Test conditions	Min.	Tvo.	Max.	Unit	Fia.
I_{4}	Pin 4 quiescent current	$I_{5}=0 ; \quad l_{7}=0 ; \quad V_{3}=3 \mathrm{~V}$		8		mA	1a
I_{8}	Pin 8 quiescent current	$I_{5}=0 ; \quad I_{7}=0 ; \quad V_{3}=3 \mathrm{~V}$		18		mA	1a
I_{3}	Amplifier input bias current	$\mathrm{V}_{3}=1 \mathrm{~V}$		-0.1	-1	$\mu \mathrm{A}$	1a
I_{2}	Amplifier input bias current	$\mathrm{V}_{2}=1 \mathrm{~V}$		-0.1	-1	$\mu \mathrm{A}$	1a
V_{9}	Reference voltage	$\mathrm{I}_{9}=0$		2.2		V	1a
$\frac{\Delta \mathrm{V}_{9}}{\Delta \mathrm{~V}_{\mathrm{s}}}$	Reference voltage drift vs. supply voltage	$V_{S}=15$ to 30 V		0.5		mV / V	1a
$V_{5 L}$	Pin 5 saturation voltage to GND	$\mathrm{I}_{5}=20 \mathrm{~mA}$		0.5		V	1 c
V_{7}	Quiescent output voltage	$\mathrm{V}_{\mathrm{s}}=35 \mathrm{~V} ; \quad \mathrm{R}_{\mathrm{a}}=39 \mathrm{~K} \Omega$		18		V	1d
		$\mathrm{V}_{\mathrm{s}}=15 \mathrm{~V} ; \quad \mathrm{R}_{\mathrm{a}}=13 \mathrm{~K} \Omega$		7.5		V	1d
$V_{7 L}$	Output saturation voltage to GND	$\mathrm{I}_{7}=1.2 \mathrm{~A}$		1		V	1c
		$\mathrm{I}_{7}=0.7 \mathrm{~A}$		0.6		V	1 c
V , H	Output saturation voltage to supply	$-1_{7}=1.2 \mathrm{~A}$		1.6		V	1b
		$-1_{7}=0.7 \mathrm{~A}$		1.2		V	1b
R9	Reference voltage output resistance			2.1		$K \Omega$	
T_{j}	Junction temperature for thermal shut down			140		${ }^{\circ} \mathrm{C}$	

Fig. 2 - AC test circuit

Fig. 3 - PC board and component layout (1:1 scale)

\mathcal{M}
 TDA2170

Components list for typical applications

Component	$\begin{gathered} 110^{\circ} \text { TVC } \\ 5.9 \Omega / 10 \mathrm{mH} \\ 1.95 \mathrm{App} \end{gathered}$	$\begin{gathered} 110^{\circ} \text { TVC } \\ 9.6 \Omega / 27 \mathrm{mH} \\ 1.17 \mathrm{App} \end{gathered}$	$\begin{gathered} 90^{\circ} \text { TVC } \\ 15 \Omega / 30 \mathrm{mH} \\ 0.82 \mathrm{App} \end{gathered}$	Unit
R1	24	18	12	$K \Omega$
R2	10	6.8	5.6	$K \Omega$
R3	39	22	22	$K \Omega$
R4	5.6	5.6	5.6	$K \Omega$
R5	0.82	1.2	2.2	Ω
R6	270	330	330	Ω
R7	1.5	1.5	1.5	Ω
D1	1 N 4001	1 N 4001	1 N 4001	-
C1	0.1	0.1	0.1	$\mu \mathrm{F}$
C2 el.	1000/25V	470/25V	470/25V	$\mu \mathrm{F}$
C3 el.	220/25V	220/25V	220/25V	$\mu \mathrm{F}$
C4	0.22	0.22	0.22	$\mu \mathrm{F}$
C5 el.	2200/25V	1500/25V	1000/16V	$\mu \mathrm{F}$
C6 el.	10/16V	10/16V	10/16V	$\mu \mathrm{F}$

Typical performances

Parameter	$\begin{gathered} 110^{\circ} \text { TVC } \\ 5.9 \Omega / 10 \mathrm{mH} \end{gathered}$	$\begin{gathered} 110^{\circ} \text { TVC } \\ 9.6 \Omega / 27 \mathrm{mH} \end{gathered}$	$\begin{gathered} 90^{\circ} \text { TVC } \\ 15 \Omega / 30 \mathrm{mH} \end{gathered}$	Unit
V_{s} - Supply voltage	24	22.5	25	V
I_{s} - Current	280	175	125	mA
$\mathrm{t}_{\text {fly }}$ - Flyback time	0.6	1	0.7	ms
$\mathrm{P}_{\text {tot }}$ - Power dissip.	4.2	2.5	2.05	W
$\mathrm{R}_{\text {th c-a }}$ - Heatsink	7	13	16	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{T}_{\mathrm{amb}}$	60	60	60	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{j} \text { max }}$	110	110	110	${ }^{\circ} \mathrm{C}$
To	20	20	20	ms
v_{i}	4	4	4	Vpp
v_{7}	50	47	52	Vp

MOUNTING INSTRUCTIONS

The power dissipated in the circuit must be removed by adding an external heatsink.
Thanks to the MULTIWATT ${ }^{\circledR}$ package attaching the heatsink is very simple, a screw or a compression spring (clip) being sufficient. Between the heatsink and the package it is better to insert a layer of silicon grease, to optimize the thermal contact; no electrical isolation is needed between the two surfaces.

Fig. 4 - Mounting examples

Fig. 5 - Maximum allowable power dissipation vs. ambient temperature

LINEAR INTEGRATED CIRCUIT

COMPLETE TV SOUND CHANNEL WITH V.C.R. AND C.C.C.

The TDA 2190 is a monolithic integrated circuit in 16-lead dual in-line power dip. It performs the following functions:

- IF limiter-amplifier and low-pass filter.
- FM detector.
- DC volume control.
- AF preamplifier and AF power amplifier with thermal shut-down protection and choice of class B or C.C.C. operation mode
- VCR facility with common pin for input and output (playback and recording).
- VCR input and FM Detector DC switching for recording and playback.

The main features of TDA 2190 are:

- Suitable for all TV standards with FM modulation.
- Class B or constant current consumption (C.C.C.) operation mode.
- Video cassette recorder (VCR) facility according to DIN norms.
- DC or AC volume control.
- Physiological volume and tone controls (AC volume control mode).
- LC or ceramic filters can be used for input and detector networks.
- High output power (10W) easily achieved by very simple external stage.

Peaformance

- Very low spread of DC volume control.
- DC volume control thermally compensated.
- Very low current ripple in C.C.C. operation mode.
- 4W output power.
- No radiation problem

Safetiy

- Thermal protection of AF output stage.
- Short-circuit protection of VCR input-output pin.

ABSOLUTE MAXIMUM RATINGS

V_{s}	Supply voltage (pins 14 and 15)	28
$\mathrm{~V}_{\mathrm{i}}$	Input peak voltage (pin 10)	V
V_{3}	Voltage at pin 3	V
I_{o}	Output peak current (non repetitive)	V_{S}
I_{0}	Output peak current (repetitive)	V
$\mathrm{P}_{\text {tot }}$	Power dissipation at $\mathrm{T}_{\text {case }}=75^{\circ} \mathrm{C}$	1.5
$\mathrm{~T}_{\text {stg }}, \mathrm{T}_{\mathrm{j}}$	Storage and junction temperature	A

ORDERING NUMBERS: TDA 2190
TDA 2190 F2

MECHANICAL DATA

Dimensions in mm

TDA 2190

TDA 2190 F2

CONNECTION DIAGRAM

AF OUTPUT
RIPPLE REJECTION
VCR SWITCH
DCR INPUTIOUTPUT
DETETECTOR
IF BY-PASS

BLOCK DIAGRAM

THERMAL DATA

$\mathrm{R}_{\text {th j-case }} \quad$ Thermal resistance junction-case	\max.	$5 \quad{ }^{\circ} \mathrm{C} / \mathrm{W}$

©
 TDA2190

ELECTRICAL CHARACTERISTICS (Refer to the test circuit, $\mathrm{V}_{\mathrm{s}}=24 \mathrm{~V}, \mathrm{f}_{\mathrm{o}}=5.5 \mathrm{MHz}, \mathrm{f}_{\mathrm{m}}=1 \mathrm{KHz}$, class $B, T_{\text {amb }}=25^{\circ} \mathrm{C}$, unless otherwise specified)

Parameter	Test conditions	Min.	Typ.	Max.	Unit

DC CHARACTERISTICS

$V_{\text {s }}$	Supply voltage (pins 14 and 15)			11		28	V
$\mathrm{V}_{\text {o }}$	Quiescent output voltage (pin 1)	$\mathrm{V}_{\mathrm{s}}=24 \mathrm{~V}$	$\mathrm{P}_{1}=0$	11	12	13	V
		$\mathrm{V}_{\mathrm{s}}=12 \mathrm{~V}$	$\mathrm{P}_{1}=0$	5.1	6	6.9	
V_{4}	Pin 4 DC voltage	Playback and recording		5	6	7	V
V_{11}	DC volume control reference voltage	$\mathrm{P}_{1}=0$ to $5 \mathrm{~K} \Omega$		4	4.7	5.5	V
V_{14-15}	C.C.C. reference voltage (between pins 14 and 15)			0.9	1.1	1.3	V
I_{d}	Quiescent drain current	$\mathrm{V}_{\mathrm{s}}=24 \mathrm{~V}$	$\mathrm{P}_{1}=0$	25	45	65	mA
		$\mathrm{V}_{\mathrm{s}}=12 \mathrm{~V}$	$\mathrm{P}_{1}=0$	20	35	50	

IF AMPLIFIER AND DETECTOR

V_{i} (threshold) Input limiting voltage at pin 10		$\mathrm{P}_{1}=0$	$\Delta \mathrm{f}= \pm 25 \mathrm{KHz}$		40	100	$\mu \mathrm{V}$
V_{5}	Recovered audio voltage	$\begin{aligned} & V_{i} \geqslant 1 \mathrm{mV} \\ & P_{1}=0 \end{aligned}$	$\Delta f= \pm 25 \mathrm{KHz}$	240	400	480	mV
AMR	Amplitude modulation rejection	$\begin{aligned} & V_{i}=1 \mathrm{mV} \\ & \mathrm{~m}=0.3 \end{aligned}$	$\Delta f=+50 \mathrm{KHz}$		62		dB
R_{i}	Input resistance (pin 10)	$\mathrm{V}_{\mathrm{i}}=1 \mathrm{mV}$			10		$K \Omega$
C_{i}	Input capacitance (pin 10)	$V_{i}=1 \mathrm{mV}$			5		pF

DC VOLUME CONTROL

A	Volume attenuation (resistance control)	$\begin{aligned} & \mathrm{P}_{1}=0 \Omega \\ & \mathrm{P}_{1}=2.3 \mathrm{~K} \Omega \\ & \mathrm{P}_{1}=5 \mathrm{~K} \Omega \end{aligned}$	$\begin{aligned} & 80 \\ & 22 \end{aligned}$	$\begin{gathered} 90 \\ 30 \\ 0 \end{gathered}$	38 3	dB $d B$ $d B$
V_{C}	Control voltage	$\begin{aligned} & A=90 \mathrm{~dB} \\ & A=30 \mathrm{~dB} \\ & A=0 \mathrm{~dB} \end{aligned}$		$\begin{gathered} 0 \\ 1.5 \\ 3 \end{gathered}$		V
$\frac{\Delta \mathrm{A}}{\Delta \mathrm{~T}_{\mathrm{tab}}}$	Volume attenuation thermal drift (resistance control)	$\begin{aligned} & \mathrm{T}_{\mathrm{tab}} 25 \text { to } 85^{\circ} \mathrm{C} \\ & \mathrm{P}_{1}=2.3 \mathrm{~K} \Omega \end{aligned}$		-0.05		$\frac{\mathrm{dB}}{{ }^{\circ} \mathrm{C}}$

AUDIO FREQUENCY AMPLIFIER

$\mathrm{P}_{\mathrm{o}} \quad$ Output power in class B mode	$\begin{aligned} & d=10 \% \\ & v_{s}=24 V \\ & v_{s}=12 V \\ & d^{-}=2 \% \\ & v_{s}-24 V \\ & v_{s} \quad 12 V \end{aligned}$	$\begin{aligned} & R_{L}-16 \Omega 2 \\ & R_{L}=8 \Omega 2 \\ & R_{L}=16 \Omega \Omega \\ & R_{L}=8 \Omega 2 \end{aligned}$	$\begin{gathered} 4.1 \\ 1.5 \\ 3 \\ 1.2 \end{gathered}$	W w w w

ELECTRICAL CHARACTERISTICS (continued)

Parameter	Test conditions	Min.	Typ.	Max.	Unit

AUDIO FREQUENCY AMPLIFIER (continued)

P_{0}	Output power in C.C.C. mode	$\begin{aligned} & d=10 \% \\ & V_{s}=24 V \\ & V_{s}=12 V \end{aligned}$	$\begin{aligned} & R_{\mathrm{L}}=16 \Omega \\ & \mathrm{R}_{\mathrm{L}}=8 \Omega \end{aligned}$	3.5 1.2	W
B	Frequency response of audio amplifier (-3 dB)	$\mathrm{P}_{\mathrm{O}}=1 \mathrm{~W}$	$R_{L}=16 \Omega$	$\begin{gathered} 50 \div \\ 10000 \end{gathered}$	Hz
SVR	Supply voltage rejection ratio	$\begin{aligned} & P_{1}=0 \\ & R_{L}=16 \Omega \end{aligned}$	$\mathrm{V}_{\mathrm{i}}=1 \mathrm{mV} \underset{\mathrm{f}_{\text {ripple }}}{ }=100 \mathrm{~Hz}$	50	dB

V.C.R.

V_{3}	Input switching voltage for recordina				2	V
V_{3}	Input switching voltage for playback		8.5			V
R_{3}	Input resistance	$\mathrm{V}_{3}=1$ to 10 V	50	100		$K \Omega$
$\mathrm{V}_{4 i}$	Input voltage (playback)	$\begin{array}{ll} V_{3} \geqslant 8.5 \mathrm{~V} \\ P_{\text {out }}=1 \mathrm{~W} \end{array} \quad P_{1}=5 \mathrm{~K} \Omega$	45	90	180	mV
$V_{\text {4out }}$	Output voltage (recording)	$\begin{array}{ll} V_{3} \leqslant 2 V & V_{i}=1 \mathrm{mV} \\ P_{1}=0 & \Delta f= \pm 25 \mathrm{KHz} \end{array}$	240	400	480	mV
$\mathrm{R}_{4 i}$	Input resistance (playback)	$\mathrm{V}_{3} \geqslant 8.5 \mathrm{~V}$	10	13		$K \Omega$
$\mathrm{R}_{4 \text { out }}$	Output resistance (recording)	$\mathrm{V}_{3} \leqslant 2 \mathrm{~V}$		140		Ω
d	Total harmonic distortion of pin 4 output signal	$\begin{array}{ll} P_{1}=0 & V_{i}=1 \mathrm{mV} \\ \Delta \mathrm{f}= \pm 25 \mathrm{KHz} & V_{3} \leqslant 2 \mathrm{~V} \end{array}$		0.5		\%
SVR	Supply voltage rejection at output pin 4			50		dB
$\frac{S+N}{N}$	Signal and noise to noise ratio (pin 4)	$\begin{aligned} & V_{3} \leqslant 2 V \\ & \Delta f= \pm 50 K H z \end{aligned} \quad V_{i} \geqslant 1 \mathrm{mV}$	50	67		dB

OVERALL CIRCUIT

$\frac{S+N}{N}$	Signal and noise to noise ratio	$\begin{aligned} & V_{i} \geqslant 1 \mathrm{mV} \\ & \Delta f= \pm 50 \mathrm{KHz} \end{aligned}$	$\mathrm{V}_{0}=4 \mathrm{~V}$	50	67	dB
d	Distortion	$\begin{aligned} & \mathrm{P}_{\mathrm{o}}=50 \mathrm{~mW} \\ & \mathrm{~V}_{\mathrm{s}}=24 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{s}}=12 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \Delta f= \pm 25 \mathrm{KHz} \\ & R_{\mathrm{L}}=16 \Omega \\ & \mathrm{R}_{\mathrm{L}}=8 \Omega \end{aligned}$		0.5 0.5	\%

TEST CIRCUIT

Fig. 1 - Relative audio output and signal to noise ratio vs. input signal

Fig. 2 - AM rejection vs. input signal

Fig. 3 - $\triangle A M$ rejection vs. tuning frequency change

Fig. 4 - Detected audio voltage (pin 5) vs. unloaded Qfactor of the detector coil

Fig. 7 - Distortion vs. frequency deviation

Fig. 10 - Overall frequency response

Fig. 5-Distortion of the detected signal (pin 5) vs. unloaded Q-factor of the detector coil

Fig. 8 - Distortion vs. tuning frequency change

Fig. 11 - Audio amplifier frequency response

Fig. 6 - Output voltage attenuation vs. DC volume control resistance (P1) and vs. DC volume control volt age (V_{C})

Fig. 9 - Switch-off attenuation of the VCR at pin 4 vs. switch-off voltage at pin3

Fig. 12 - Distortion vs. output power $\left(\mathrm{V}_{\mathrm{s}}=24 \mathrm{~V}\right.$ and $R_{L}=16 \Omega$)

Fig. 13 - Distortion vs. output power $\left(\mathrm{V}_{\mathrm{s}}=12 \mathrm{~V}\right.$ and $R_{L}=8 \Omega$)

Fig. 16 - Power dissipation and efficiency vs. output power (class B mode)

Fig. 19 - Current ripple vs. R-CCC value (C.C.C. mode only)

Fig. 14 - Output power vs. supply voltage (class B mode)

Fig. 17 - Output power vs. supply voltage (C.C.C. mode)

Fig. 20 - Current ripple vs. signal frequency (C.C.C. mode only)

Fig. 15 - Maximum power dissipation vs. supply voltage (sine wave operation; class B mode)

Fig. 18 - Power dissipation and efficiency vs. output power (C.C.C. mode)

Fig. 21 - Quiescent drain current vs. supply voltage (C.C.C. mode only).

Fig. 22 - Quiescent output voltage (pin 1) vs. supply voltage

Fig. 23 - Supply voltage ripple rejection vs. volume control attenuation

Fig. 24 - Supply voltage ripple rejection at the AF and VCR outputs vs. ripple frequency

APPLICATION INFORMATION (Refer to the block diagram)

IF amplifier and limiter

The IF sound signal is amplified and limited by a chain of 6 differential stages. To avoid the possibility of radiation problems an active low pass filter has been integrated to eliminate the high frequency harmonics from the signal sent to the detector.

Pin 10 is the non inverting input of the amplifier-limiter and it is used as input of the IF sound signal coming from the input network which can employ either LC or ceramic filters.
The typical input impedance of pin 10 is $10 \mathrm{~K} \Omega, 5 \mathrm{pF}$ at $\mathrm{f}_{\mathrm{o}}=5.5 \mathrm{MHz}$.
Pin 8 is the inverting input, of the amplifier-limiter. The DC negative feedback of the amplifier is applied internally to this pin which must therefore be decoupled by means of a by pass capacitor toward ground.

FM detector

Signal detection is obtained by means of a peak differential detector which enables radiation problems to be minimized.

Pin 7 is the first input of the peak differential detector and it is the output of the low pass filter. The typical output impedance is $2.7 \mathrm{~K} \Omega$.

Pin 6 is the second input of the peak differential detector. This pin must be supplied with the same DC voltage as the other input (pin 7) and this is done by coil L1.
External components L1 C3 and C5 transform the frequency variations into amplitude variations useful to drive the detector. Network L1 C3 C5 has two resonance frequencies:

$$
\begin{aligned}
& f_{1} \text { series resonance for } X_{C 5}=\frac{X_{L 1} \cdot X_{C 3}}{X_{C 3}+X_{L 1}} \\
& f_{2} \text { parallel resonance for } X_{L 1}=X_{C 3}
\end{aligned}
$$

APPLICATION INFORMATION (continued)

Coil L1 must be tuned at frequency $f_{o}=I F$ sound, equidistant from frequencies f_{1} and f_{2} to which the peaks of the " S " response of the detector correspond. The separation between the peaks is defined by the ratio $\frac{\mathrm{f}_{2}{ }^{2}}{\mathrm{f}_{1}{ }^{2}}=1+\frac{\mathrm{C} 5}{\mathrm{C} 3}$.
Network L1 C3 C5 can obviously be substituted by a ceramic filter.
Pin 5 is the output of the FM detector. Its output impedance of $20 \mathrm{~K} \Omega$, in combination with capacitor C 4 connected between pin 5 and ground, defines the time constant of the deemphasis. The detector "S" curve is visible at pin 5 . Improved AMR performance can be obtained by connecting a $10 \mathrm{~K} \Omega 10 \mu \mathrm{FRC}$ series network between pin 5 and ground.

VCR

This function, required by receivers capable of recording complete TV signals, is made in accordance with DIN Norms. A single pin (pin 4) acts both as output of the signal to be recorded and as input of the signal to be played back. The function of this pin is changed by means of a control, applied to pin 3, consisting of two different levels of DC voltage. The operating conditions of pins 3 and 4 are:

Mode	VCR Switch pin 3	Function of pin 4	Impedance of pin 4	Signal at pin 4
Recording	$V_{3} \leqslant 2 \mathrm{~V}$	Output	$R 4=140 \Omega$	$V_{4}=400 \mathrm{mV}$
Playback	$V_{3} \geqslant 8.5 \mathrm{~V}$	Input	$R 4=13 \mathrm{~K} \Omega$	$\mathrm{~V}_{4}=90 \mathrm{mV}$

In the recording state the output signal at pin 4 is independent of the volume control, while during playback the signal applied at pin 4 is regulated by the volume control before being sent to the audio amplifier.

Pin 3, input of the VCR switch, has an impedance greater than $50 \mathrm{~K} \Omega$ for any value of input voltage. Control pulses at pin 3 with very sharp edges cause temporary unbalancing of the circuit and produce audible signals. This effect is eliminated by means of R3 C8 which slows down the control edges. In the playback state the IF sound signal coming from the detector is automatically blocked by the VCR switch.

Pin 4, input-output of the audio signal, has a DC typical voltage of 6 V . C6 must therefore be used to decouple it from the VCR.
The output signal of pin 4 can be used to perform the AC volume control (fig. 31). The potentiometer must be connected between pin 4 and ground and the slider must be connected to pin 13 after DC decoupling.

DC volume control

The audio signal coming from the FM detector or from the VCR is adjusted in amplitude by means of a DC controlled active attenuator. The attenuation can be changed either by means of a potentiometer or by means of a DC voltage.

Pin 11 supplies the reference voltage for the volume control.
This voltage is between 4 V and 5.5 V and has a thermal coeff. of $+0.25 \% /{ }^{\circ} \mathrm{C}$. The maximum current which can be supplied by pin 11 is 10 mA .

APPLICATION INFORMATION (continued)

Pin 12 is the input of the DC volume control. To minimize the attenuation spreads, the volume control network R1, R2, P1 is supplied by the reference voltage of pin 11. The attenuation of the signal is inversely proportional to the voltage applied at pin 12; therefore maximum attenuation is for $\mathrm{V}_{12}=0$ or for $\mathrm{P} 1=0$. Capacitor C7, connected in parallel to the volume potentiometer, eliminates any signals or spikes picked up by the connection wires of the potentiometer. The volume control characteristic depends on the configuration and on the values of the components of the network connected to pins 11 and 12. The suggested values are: $\mathrm{R} 1=1 \mathrm{~K} \Omega \mathrm{R} 2=3.9 \mathrm{~K} \Omega$ and $\mathrm{P} 1=5 \mathrm{~K} \Omega$ with linear variation; with this network a linear variation of the output power is obtained. Different slopes of the volume control and relative networks are shown in figs. 25 and 26.

Fig. 25

Fig. 26

The volume can also be controlled by means of a DC voltage applied between resistor R2 and ground instead of potentiometer P1. Using this configuration, volume variation can be obtained by means of remote control as shown in fig. 36.

AF amplifier

The AF amplifier consists of an operational amplifier with thermally protected (thermal shut down) output stage. By using a simple external variant the power stage can be made to operate in class B or in costant current consumption.

Pin 1 is the output of the power amplifier. The network which defines the gain and the band of the audio amplifier is connected between pins 1,2 and 13 .
The input voltage of the amplifier is $I \cdot R 4$, where I is the signal output current of the DC volume control block. The closed loop gain of the amplifier is given by $G_{v}=R 5 / R 6$;
Therefore the output voltage is given by

$$
V_{0}=1 \cdot R 4 \cdot \frac{R 5}{R 6}
$$

Changing the values of these resistors, different output voltage (i.e. different closed loop gain) can be obtained.
When impedances, rather than pure resistors, are used, the closed loop gain is changed with frequency. In particular at high frequencies the gain is reduced by capacitor C11 and at low frequencies it is reduced by capacitor C13.
The Boucherot cell R7 C14 guarantees the stability of the circuit in all the operating conditions.
Pin 2, the non inverting input of the audio amplifier, is connected to an integrated voltage divider which fixes its DC voltage at $\mathrm{V}_{\mathrm{s}} / 2$.

APPLICATION INFORMATION (continued)

Since the voltage of pin 2 is the reference of the input differential stage of the audio amplifier, both the voltage of pin 13 and the voltage of pin 1 are equal to $\mathrm{V}_{\mathrm{s}} / 2$. Capacitor C 12 , connected between pin 2 and ground, has the dual function of eliminating the audio signals from pin 2 and providing the supply voltage ripple rejection.

Pin 13 is the inverting input of the audio preamplifier; the outoput of the DC volume control is also connected to this pin.

Supply

The device can operate either in class B or in C.C.C. mode. In class B the supply current is highly variable and depends on the power supplied to the load. The supply must therefore be well filtered to prevent modulation effects on the supply itself which may influence other circuits in the TV. In C.C.C. mode supply current is constant and the supply system can therefore be simplified; for example the sound channel can be supplied directly by the line transformer without problems of modulation of the picture size.

Pin 15 is the main supply of the device; when it is connected directly to the power supply and pin 14 is left open, the circuit operates in class B.

Pin 14 is the supply point for C.C.C. The reference system, connected between pin 14 and pin 15, determines a constant voltage of 1.1 V between the two pins. To make the device operate in C.C.C.mode, pin 14 must be connected to the supply and a resistor R-CCC must be connected between pin 14 and pin 15 ; the value of this resistor defines the quiescent current $\mathrm{I}_{\mathrm{CCC}}=1.1 \mathrm{~V} / \mathrm{R}-\mathrm{CCC}$.

Pin 9 is the main ground of the circuit.
Pin 16 is the ground of the power output stage only.

1/4 tDa2190

APPLICATION INFORMATION (continued)

Fig. 27 - Typical application circuit (class B mode)

Fig. 28 - P.C. board and component layout of the circuit shown in fig. 27 (1:1 scale)

Mis
 TDA2190

APPLICATION INFORMATION (continued)

Fig. 29 - Application using a ceramic discriminator and an LC network at the IF input (C.C.C. mode)

Fig. 30 - P.C. board and component layout of the circuit shown in fig. 29. (1:1 scale)

10 TDA2190

APPLICATION INFORMATION (continued)

Fig. 31 - Application circuit with AC volume control

Fig. 32 - Application circuit with tone controls

APPLICATION INFORMATION (continued)

Fig. 33 - Application circuit with physiological volume control

Fig. 34 - Application circuit with fixed bass and treble boost

APPLICATION INFORMATION (continued)

Fig. 35 - Application circuit for 10 W of output power when $\mathrm{V}_{\mathrm{s}}=22 \mathrm{~V}$ and $\mathrm{R}_{\mathrm{L}}=4 \Omega$

Fig. 36 - Remote volume control. The output of the sound channel increases when the duty-cycle at pin 2 of the I.C. M1025 decreases

NOTE:
RT1 must be set for the normalization of the output power ($\mathrm{P}_{\mathrm{o}}=100 \mathrm{~mW}$).
Procedure:

- IF input at pin 10 of the TDA 2190
$V_{\mathrm{s}}=24 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=16 \Omega ; \mathrm{V}_{\mathrm{i}}=1 \mathrm{mV} ; \mathrm{f}_{\mathrm{o}}=5.5 \mathrm{MHz} ; \Delta \mathrm{f}= \pm 25 \mathrm{KHz} ; \mathrm{f}_{\mathrm{m}}=1 \mathrm{KHz}$.
Whith the normalizated output of the I.C. M1025 (duty cycle of $10 / 31$), set RT1 for $1.26 \mathrm{~V}_{\mathrm{RMS}}$ across the load $R_{L}=16 \Omega$.

MOUNTING INSTRUCTIONS

The power dissipated in the circuit must be removed by adding an external heatsink as shown in figs. 37 and 38.
The system for attaching the heatsink is very simple: it uses a plastic spacer which is supplied with the device on request (TDA 2190 F2).
Thermal contact between the copper slug (of the package) and the heatsink is guaranteed by the pressure which the screws exert via the spacer and the printed circuit board; this is due to the particular shape of the spacer.

Note : The most negative supply voltage is connected to the copper slug, hence to the heatsink(because it is in contact with the slug).

Fig. 37 - Mounting system

MOUNTING INSTRUCTIONS (continued)

Fig. 38 - Cross-section of mounting system

The maximum allowable power dissipation depends upon the size of the external heatsink (i.e. its thermal resistance): fig. 39 shows this dissipable power as a function of ambient temperature for an heatsink having $5^{\circ} \mathrm{C} / \mathrm{W}$.

Fig. 39 - Maximum allowable power dissipation vs. ambient temperature

LINEAR INTEGRATED CIRCUIT

$\mathrm{Hi}-\mathrm{Fi}$ DUAL PREAMPLIFIER

The TDA2310 is a dual high quality class A preamplifier intended for extremely low distortion application in Hi-Fi systems.
The TDA2310 is a monolithic integrated circuit in a 14 -lead dual-in-line plastic package and its main features are:

- Very high dynamic range
- Very low distortion
- High open loop bandwidth
- Very low noise
- No pop-noise
- High slew-rate: $14 \mathrm{~V} / \mu \mathrm{s}\left(\mathrm{G}_{\mathrm{v}}=30 \mathrm{~dB}\right)-50 \mathrm{~V} / \mu \mathrm{s}\left(\mathrm{G}_{\mathrm{v}}=50 \mathrm{~dB}\right)$
- Large output voltage swing
- Single or split supply operation
- Output short circuit protection

ABSOLUTE MAXIMUM RATINGS

V_{s}	DC supply voltage	± 22	V
V_{s}	Operating supply voltage	± 20	V
$V_{\text {cm }}$	Common mode input voltage	± 15	V
V_{i}	Differential input voltage	± 5	V
$P_{\text {tot }}$	Total power dissipation at $T_{\text {amb }}<60^{\circ} \mathrm{C}$	500	mW
$T_{j}, T_{\text {stg }}$	Junction and storage temperature	-40 to 150	${ }^{\circ} \mathrm{C}$

ORDERING NUMBER: TDA2310

MECHANICAL DATA
Dimensions in mm

CONNECTION DIAGRAM

(top view)

BLOCK DIAGRAM

(one section)

TDA2310

THERMAL DATA

| $R_{\text {thj-amb }} \quad$ Thermal resistance junction-ambient | $\max . \quad 180 \quad{ }^{\circ} \mathrm{C} / \mathrm{W}$ |
| :--- | :--- | :--- |

Fig. 1 - Gain and distortion test

Fig. 2 - Noise test

ELECTRICAL CHARACTERISTICS (Refer to the Test circuit of fig. $1, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{s}}= \pm 15 \mathrm{~V}$, $G_{v}=30 \mathrm{~dB}, R_{L}=20 \mathrm{~K} \Omega$ unless otherwise specified)

	Parameter	Test conditions	Min.	Typ.	Max.	Unit
V_{s}	Supply voltage		± 5		± 20	V
I_{s}	Supply current			10	15	mA
I_{b}	Input bias current			0.2	1	$\mu \mathrm{~A}$
$\mathrm{I}_{\text {os }}$	Input offset current			50	300	nA
$\mathrm{V}_{\text {Os }}$	Input offset voltage			1	3	mV

TDA2310

ELECTRICAL CHARACTERISTICS (continued)

Parameter		Test conditions		Min.	Typ.	Max.	Unit
G_{v}	Voltage gain (open loop)	$\mathrm{f}=1 \mathrm{KHz}$	No compensation		85		dB
		$f=20 \mathrm{KHz}$			85		dB
$\Delta \mathrm{G}_{\mathrm{v}}$	Voltage gain spread (closed loop)	$\mathrm{f}=1 \mathrm{KHz}$			± 0.2		dB
		$\mathrm{f}=100 \mathrm{KHz}$			± 0.5		dB
R_{i}	Input resistance	$\mathrm{f}=1 \mathrm{KHz}$			5		$\mathrm{M} \Omega$
R_{0}	Output resistance				10		Ω
V_{pp}	Output voltage swing (peak to peak)	$d=1 \%$	$\mathrm{f}=1 \mathrm{KHz}$		24		V
			$\mathrm{f}=100 \mathrm{KHz}$		22		V
V_{0}	Output voltage (rms)	$\mathrm{R}_{\mathrm{x}}=8.2 \mathrm{~K} \Omega$	$\mathrm{f}=1 \mathrm{KHz}$	6	8		V
			$\mathrm{f}=20 \mathrm{KHz}$	6	8		V
RIN	Pronor handunidth	$Y_{u}=20 V_{p r}, R_{x}=8.2 K \Omega$			150		16:1z
SR	Slew rate	$\mathrm{G}_{\mathrm{v}}=30 \mathrm{~dB}$			14		
		$\begin{aligned} \mathrm{G}_{\mathrm{v}}=50 \mathrm{~dB}\left(\mathrm{C}_{3}\right. & =330 \mathrm{pF} \\ \mathrm{R}_{5} & =470 \Omega) \end{aligned}$			50		
d	Total harmonic distortion	$\mathrm{V}_{\mathrm{O}}=3 \mathrm{~V}$	$\mathrm{f}=1 \mathrm{KHz}$		0.035		\%
			$\mathrm{f}=20 \mathrm{KHz}$		0.035		\%
d_{2}	Second order CCIF intermodulation distortion	$\begin{aligned} & \mathrm{V}_{\mathrm{o} 1}=1 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{o} 2}=1 \mathrm{~V} \end{aligned}$$\begin{aligned} & f 1=14 \mathrm{KHz} \\ & \mathrm{f} 2=15 \mathrm{KHz} \end{aligned}$	$\mathrm{f} 2-\mathrm{f} 1=1 \mathrm{KHz}$		0.01	0.1	\%
d_{3}	Third order CCIF intermodulation distortion		$2 f_{1}-f_{2}=13 \mathrm{KHz}$		0.03	0.1	\%
${ }^{e} N$	Total input noise	$\begin{aligned} & \mathrm{R}_{\mathrm{g}}=600 \Omega \\ & \mathrm{R}_{\mathrm{g}}=3.3 \mathrm{~K} \Omega\left({ }^{\circ}\right) \end{aligned}$			$\begin{aligned} & 0.6 \\ & 1.0 \end{aligned}$	0.8	$\mu \mathrm{V}$
		$\begin{aligned} & \mathrm{R}_{\mathrm{g}}=600 \Omega \\ & \mathrm{R}_{\mathrm{g}}=3.3 \mathrm{~K} \Omega\left(^{\circ \circ}\right) \end{aligned}$			$\begin{gathered} 0.75 \\ 1.2 \end{gathered}$		$\mu \mathrm{V}$
S/N	Signal to noise ratio	$\mathrm{V}_{\mathrm{o}}=500 \mathrm{mV}$	$\begin{align*} & R_{\mathrm{g}}=3.3 \mathrm{~K} \\ & \mathrm{R}_{\mathrm{g}}=600 \\ & \mathrm{R}_{\mathrm{g}}=0 \end{align*}$		74 78 80		dB
			$\begin{align*} & R_{\mathrm{g}}=3.3 \mathrm{~K} \\ & \mathrm{R}_{\mathrm{g}}=600 \\ & \mathrm{R}_{\mathrm{g}}=0 \end{align*}$		72 76 78		dB
$\mathrm{C}_{\text {s }}$	Channel separation	$\begin{aligned} & f=20 \mathrm{KHz} \\ & \mathrm{R}_{\mathrm{g}}=600 \Omega \end{aligned}$			100		dB
CMR	Common mode rejection	$\mathrm{R}_{\mathrm{g}}=600 \Omega$			95		dB
SVR	Supply voltage rejection	$\mathrm{R}_{\mathrm{g}}=600 \Omega$			85		dB
$\mathrm{I}_{\text {sh }}$	Output short circuit current				15		mA

(*) Test circuit of fig. $2\left(\mathrm{G}_{\mathrm{v}}=40 \mathrm{~dB}\right)$
$\left({ }^{\circ}\right) \mathrm{BW}=$ curve A
(${ }^{\circ}$) $\mathrm{BW}=22 \mathrm{~Hz}$ to 22 KHz

4 TDA 2310

Fig. 3 - Harmonic distortion vs. output level.

Fig. 6 - Output voltage swing vs. load resistance.

Fig. 9 - Open loop frequency response.

Fig. 4 - Harmonic distortion vs. frequency.

Fig. 7 - Total input noise vs. source resistance.

Fig. 10 - Closed loop gain vs. frequency.

Fig. 5 - Output voltage swing vs. frequency.

Fig. 8 - Noise density vs. frequency.

Fig. 11 - Two tone CCIF intermod. distortion.

APPLICATION INFORMATION

Fig. 12 - Very low dynamic distortion stereo RIAA preamplifier.
$V_{s}= \pm 15 \mathrm{~V}$
RIAA frequency response $(20 \mathrm{~Hz}$ to 20 KHz$)= \pm 0.5 \mathrm{~dB}$
Harmonic distortion $=0.02 \%(f=20 \mathrm{KHz})$

Fig. 13 - RIAA preamplifier response.

Fig. 14 - Two tone intermodulation distortion vs. input level.

Fig. 15 - Maximum output level of high quality magnetic cartridge vs. frequency.

TDA 2310

APPLICATION INFORMATION (continued)

Fig. 16 - Dynamic range of disc music.

As shown in fig. 15 the maximum expected output level of an high quality magnetic cartridge playing modern discs is lower than 80 mV rms.
The dynamic range needed is about 70 dB (fig. 16).
The TDA2310 is perfectly suited to RIAA preamplifier applications due to the $\sim 100 \mathrm{~dB}$ dynamic range (150 mV input 0.1% distortion to $1 \mu \mathrm{~V}$ noise).

Fig. 17 - PC board and components layout of RIAA preamplifier (1:1 scale)

APPLICATION INFORMATION (continued)

Fig. 18 - Hi-Fi tape preamplifier (EQ. $=70 \mu \mathrm{~s}$).

Fig. 19 - Frequency response of graphic equalizer of fig. 20

* $18 \mathrm{~K} \Omega$ for $\mathrm{EQ}=120 \mu \mathrm{~s}$.

Fig. 20 - Four band graphic equalizer

BW1 $=30 \mathrm{~Hz}$ to 160 Hz
BW2 $=160 \mathrm{~Hz}$ to 800 Hz
$B W 3=800 \mathrm{~Hz}$ to 4 KHz
BW4 $=4 \mathrm{KHz}$ to 20 KHz

C18 тиазa

APPLICATION INFORMATION (continued)

The table shows the suggested compensation networks depending on the slew-rate and gain required is the application.

Slew-Rate ($\mathrm{V} / \mu \mathrm{s}$)	$\underset{(\mathrm{dB})}{\mathbf{G}_{\mathrm{v}} \min .}$	Compensation Network		Note
50	50		$\begin{aligned} & \mathrm{R}=470 \Omega \\ & \mathrm{C}=330 \mathrm{p} F \end{aligned}$	High gain Applications
14	30		$\begin{aligned} & \mathrm{R}=68 \Omega \\ & \mathrm{C}=3.3 \mathrm{nF} \end{aligned}$	RIAA Preamplifier
14	10	$R=68 \Omega$ $\mathrm{C}=3.3 \mathrm{nF}$	$\begin{aligned} & \mathrm{R}_{1}=56 \mathrm{~K} \Omega \\ & \mathrm{R}_{2}=180 \mathrm{~K} \Omega \\ & \mathrm{R}_{3}=680 \Omega \\ & \mathrm{C}_{1}=10 \mathrm{nF} \end{aligned}$	Inverting Configuration
	0		$\begin{aligned} & \mathrm{R}_{1}=\mathrm{R}_{2}=56 \mathrm{~K} \Omega \\ & \mathrm{R}_{3}=680 \Omega \\ & \mathrm{C}_{1}=10 \mathrm{nF} \end{aligned}$	
5	20		$\begin{aligned} & \mathrm{R}=33 \Omega \\ & \mathrm{C}=10 \mathrm{nF} \end{aligned}$	Low Slew-Rate Applications
2	6		$\begin{aligned} & R=10 \Omega \\ & C=47 \mathrm{nF} \end{aligned}$	

LINEAR INTEGRATED CIRCUIT

PRELIMINARY DATA

PREAMPLIFIER FOR INFRARED REMOTE CONTROL SYSTEMS

The TDA 2320 is a monolithic integrated circuit in Minidip package specially designed to amplify the IR signal in remote controlled TV or radio sets. It directly interfaces with the digital control circuitry.
The TDA 2320 incorporates a two stages amplifier with excellent sensitivity and high noise immunity. It can work with a single 5V supply voltage and "with" or "without" carrier transmission modes as provided for example by the M709/M710 C/MOS transmitter.
The TDA 2320 is particularly intended to be used in conjunction with the M103, M104 and M206 + M3870 remote control receivers.

ABSOLUTE MAXIMUM RATINGS

V_{s}	Supply voltage	20	V
$\mathrm{~T}_{\text {stg, } j}$	Storage and Junction temperature	-40 to 150	${ }^{\circ} \mathrm{C}$
$\mathrm{P}_{\text {tot }}$	Total power dissipation at $\mathrm{T}_{\mathrm{amb}}=70^{\circ} \mathrm{C}$	400	mW

ORDERING NUMBER: TDA 2320

MECHANICAL DATA

CONNECTION AND BLOCK DIAGRAM

(top view)

SCHEMATIC DIAGRAM

(one section)

THERMAL DATA

| $\mathrm{R}_{\text {th j-amb }}$ Thermal resistance junction-ambient | \max | 200 | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |
| :--- | :--- | :--- | :--- | :--- |

ELECTRICAL CHARACTERISTICS $\mathrm{V}_{\mathrm{s}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$, single amplifier, unless otherwise specified)

	Parameter	Test conditions	Min.	Typ.	Max.	Unit
V_{s}	Supply voltage		4		20	V
I_{5}	Total supply current	$\mathrm{V}_{5}=20 \mathrm{~V}$		0.8	2	mA
I_{b}	Input bias current			. 100	500	nA
$\mathrm{V}_{\text {os }}$	Input offset voltage	$\mathrm{R}_{\mathrm{g}}<10 \mathrm{~K} \Omega$		0.5		mV
Ios	Input offset current			15		nA
G_{v}	Open loop voltage gain	$\mathrm{f}=1 \mathrm{KHz}$	64	70		dB
		$\mathrm{f}=100 \mathrm{KHz}$		30		dB
B	Gain bandwidth product	$\mathrm{f}=40 \mathrm{KHz}$	1.5	3		MHz
SR	Slew rate	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{~K} \Omega$		1.5		$\mathrm{V} / \mathrm{\mu s}$
e_{N}	Total input noise voltage	$\begin{aligned} & f=40 \mathrm{KHz} \\ & \mathrm{Rg}=10 \mathrm{~K} \Omega \end{aligned}$		20		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
V_{0}.	DC output voltage swing			2.5		Vpp
SVR	Supply voltage rejection (*)	$\mathrm{f}=100 \mathrm{~Hz}$		80		dB

(*) Circuit of fig. 1.

APPLICATION INFORMATION

Fig. 1 - Application circuit with carrier

Fig. 2 - Alternative input stage

APPLICATION INFORMATION (continued)

The preamplifier shown in fig. 1 must be used with carrier mode transmission. It is particularly suitable for use with microprocessor decoding system (for instance with the M206 + M3870 or M3872 TV PLL frequency synthesizer).
The "with carrier" signal is sent as a burst ($\mathrm{f}_{\text {carr }}=38 \mathrm{KHz}$) to reduce power consumption at the transmitter (duty cycle $=1 \%$) and to allow the receiver to have some bandwidth limiting in the preamplifier to improve noise immunity ($50 / 100 \mathrm{~Hz}$ pulses from incandescent lighting).
The fig. 2 shows an alternative configuration for the input stage: this new circuit allows the correct operation of the preamplifier even when an incandescent lamp is very close to the IR diode.
Using this configuration, the circuit has only a slight degradation in the useful range.
Fig. 3 - Tuned amplifier application (with carrier)

Fig. 4 - Application circuit without carrier

APPLICATION INFORMATION (continued)

The circuit shown in fig. 4 works in transmission mode without carrier. The transmitted signal is sent as a series of single pulses (rather than bursts, as with the carrier solution).
The DC bias network formed by the $82 / 2.2 \mathrm{~K} \Omega$ divider and 1 N 4148 diode fixes the DC output voltage near the supply voltage (just under the saturation level). In this way it is possible to optimize the noise immunity of the receiver. The $2.2 \mathrm{~K} \Omega$ output resistance avoids turn-off problems in the final stage.

Performance

Supply voltage
Quiescent drain current
Supply voltage rejection ($\mathrm{f}=100 \mathrm{~Hz}$)
Useful range (using the transmitter of fig. 7)
4.5 V min; 5.5 V max 6 mA
greater than 50 dB 14 mt

With a incandescent light (75 W) as a noise source located at 1 mt from the receiver the useful range decreases to 10 mt .

Fig. 5 - Optimized preamplifier ("no carrier" mode)

Fig. 6 - P.C. and components layout of the circuit of fig. 5 (1:1 scale)

01
 TDA2320

APPLICATION INFORMATION (continued)

Fig. 7 - IR transmitter using M709 or M710

Fig. 8 - MMC II - PLL TV Frequency synthesizer

Fig. 9 - IR Preamplifier and Remote Control receiver for 32 channels voltage synthesizer (EPM - M293)

TDA2320A

LINEAR INTEGRATED CIRCUIT

PRELIMINARY DATA

MINIDIP STEREO PREAMPLIFIER

The TDA 2320A is a stereo class A preamplifier intended for application in portable cassette players and high quality audio systems.
The TDA 2320A is a monolithic integrated circuit in a 8 lead minidip which features:

- Wide supply voltage range (3 to 36 V)
- Single or split supply operation
- Very low current consumption (0.8 mA)
- Very low distortion
- No pop-noise
- Short circuit protection

ABSOLUTE MAXIMUM RATINGS

V_{s}	Supply voltage	36	V
$P_{\text {tot } \cdot}$	Total power dissipation at $T_{\text {amb }}=70^{\circ} \mathrm{C}$	400	mW
$\mathrm{~T}_{\text {stg }, \mathrm{j}}$	Storage and junction temperature	-40 to 150	${ }^{\circ} \mathrm{C}$

ORDERING NUMBER: TDA 2320A

MECHANICAL DATA

CONNECTION AND BLOCK DIAGRAM

(top view)

SCHEMATIC DIAGRAM

(one section)

TDA2320A

TEST CIRCUITS

Fig. 1

Fig. 2

TDA2320A

THERMAL DATA

| $\mathrm{R}_{\text {th j-amb }}$ Thermal resistance junction-ambient | \max | 200 | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |
| :--- | :--- | :--- | :--- | :--- |

ELECTRICAL CHARACTERISTICS (Refer to the test circuits, $\mathrm{V}_{\mathrm{s}}=15 \mathrm{~V}, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$, unless otherwise specified)

Parameter		Test conditions		Min.	Typ.	Max.	Unit
V_{s}	Supply voltage (*)			3		36	V
$\mathrm{I}_{\text {S }}$	Supply current (*)				0.8	2	mA
I_{b}	Input bias current				150	500	nA
$\mathrm{V}_{\text {os }}$	Input offset voltage	$\mathrm{R}_{\mathrm{g}}<10 \mathrm{~K} \Omega$			0.5	5	mV
$\mathrm{I}_{\text {os }}$	Input offset current				10	50	nA
G_{v}	Open loop voltage gain	$\mathrm{V}_{\mathrm{s}}=15 \mathrm{~V}$	$\mathrm{f}=333 \mathrm{~Hz}$		80		dB
			$\mathrm{f}=1 \mathrm{KHz}$		70		
			$\mathrm{f}=10 \mathrm{KHz}$		50		
		$\mathrm{V}_{\mathrm{s}}=4.5 \mathrm{~V}$	$f=1 \mathrm{KHz}$		70		
V_{0}	Output voltage swing (*)	$\mathrm{f}=1 \mathrm{KHz}$	$\mathrm{V}_{\mathrm{s}}=15 \mathrm{~V}$		13		Vpp
		$\mathrm{R}_{\mathrm{L}}=600 \Omega$	$\mathrm{V}_{\mathrm{S}}=4.5 \mathrm{~V}$		2.5		
$\begin{array}{\|l\|} \hline \text { B } \\ \text { BW } \end{array}$	Gain-bandwidth product Power bandwidth (*)	$\mathrm{f}=20 \mathrm{KHz}$		1.5	2.5		MHz
		$\begin{aligned} & V_{o}=5 \mathrm{Vpp} \\ & d=1 \% \end{aligned}$		40	70		KHz
SR	Slew rate (*)			1	1.6		$\mathrm{V} / \mu \mathrm{S}$
d	Distortion (*)	$\begin{aligned} & \mathrm{V}_{\mathrm{O}}=2 \mathrm{~V} \\ & \mathrm{G}_{\mathrm{v}}=20 \mathrm{~dB} \end{aligned}$	$f=1 \mathrm{KHz}$		0.03		\%
			$\mathrm{f}=10 \mathrm{KHz}$		0.08		
e_{N}	Total input noise voitage (**)	Curve A	$\mathrm{R}_{\mathrm{g}}=50 \Omega$		1		$\mu \mathrm{V}$
			$\mathrm{R}_{\mathrm{g}}=600 \Omega$		1.1	1.4	
			$\mathrm{R}_{\mathrm{g}}=5 \mathrm{~K} \Omega$		1.5		
		$\begin{aligned} & \mathrm{B}= 22 \mathrm{~Hz} \text { to } \\ & 22 \mathrm{KHz} \end{aligned}$	$\mathrm{R}_{\mathrm{g}}=50 \Omega$		1.3		$\mu \mathrm{V}$
			$\mathrm{R}_{\mathrm{g}}=600 \Omega$		1.5		
			$\mathrm{R}_{\mathrm{g}}=5 \mathrm{~K} \Omega$		2		
		$\mathrm{f}=1 \mathrm{KHz}$	$\mathrm{R}_{\mathrm{g}}=600 \Omega$		9		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
Cs	Channel separation (**)		$\mathrm{f}=1 \mathrm{KHz}$		100		dB
SVR	Supply voltage (**) rejection		$\mathrm{f}=100 \mathrm{~Hz}$		80		dB

(*) Test circuit of fig. 1.
(**) Test circuit of fig. 2.

10 TDA2320A

Fig. 3 - Supply current vs. supply voltage

									6.45	
$\begin{gathered} 1 \\ (\mathrm{~mA}) \end{gathered}$										
		.								
0.9										
0.8										
0.7										
				.						
	0	8	8		16		24	3	32	$v_{s}(\mathrm{v})$

Fiy. 0 - füviei Láinúviviùtín

Fig. 9 - Noise density vs. frequency

Fig. 4 - Supply current vs. ambient temperature

Fiy. 7 - Tuiai itanmunic distortion vs. output voltage

Fig. 10 - RIAA preamplifier response (circuit of fig. 12)

Fig. 5-Output voltage swing vs. load resistance

Fig. $\overline{\text { - }}$ - Tuiai inpui noise vs. source resistance

Fig. 11 - Tape preamplifier frequency response (circuit of fig. 14)

010
 TDA2320A

APPLICATION INFORMATION

Fig. 12 - Stereo RIAA preamplifier

Fig. 13 - P.C. board and components layout of the circuit of fig. 12

APPLICATION INFORMATION (continued)

Fig. 14 - Stereo preamplifier for Walkman cassette players

Fig. 15 - Second order 2 KHz Butterworth crossover filter for $\mathrm{Hi}-\mathrm{Fi}$ active boxes

Fig. 16 - Frequency response (circuit of fig. 15)

TDA2320A

APPLICATION INFORMATION (continued)

Fig. 17 - Third order 2.8 KHz Bessel crossover filter for $\mathrm{Hi}-\mathrm{Fi}$

Fig. 18 - Frequency response (circuit of fig. 17)

Fig. 19-200 Hz to 2 KHz Active Bandpass Filter for midrange speakers

Fig. 20 - Subsonic or rumble filter

Fig. 21 - High-cut filter

APPLICATION INFORMATION (continued)

Fig. 22 - Fifth order 3.4 KHz low-pass Butterworth filter

For $f_{c}=3.4 \mathrm{KHz}$ and $\mathrm{R}_{\mathrm{i}}=\mathrm{R} 1=\mathrm{R} 2=\mathrm{R} 3=\mathrm{R} 4=10 \mathrm{~K} \Omega$, we obtain:
$\mathrm{C} 1=1.354 \cdot \frac{\mathrm{i}}{\mathrm{R}} \cdot \frac{\mathrm{i}}{2 \pi \mathrm{f}_{\mathrm{c}}}=6.33 \mathrm{nF}$
$\mathrm{C} 3=0.309 \cdot \frac{\hat{i}}{\mathrm{R}} \cdot \frac{\hat{i}}{2 \pi \mathrm{f}_{\mathrm{c}}}=1.45 \mathrm{nF}$
$\mathrm{C} 1=0.421 \cdot \frac{1}{\mathrm{R}} \cdot \frac{1}{2 \pi \mathrm{f}_{\mathrm{c}}}=1.97 \mathrm{nF}$
$\mathrm{C} 4=3.325 \cdot \frac{1}{\mathrm{R}} \cdot \frac{1}{2, \pi \mathrm{f}_{\mathrm{c}}}=15.14 \mathrm{nF}$
$\mathrm{C} 2=1.753 \cdot \frac{1}{\mathrm{R}} \cdot \frac{1}{2 \pi \mathrm{f}_{\mathrm{c}}}=8.20 \mathrm{nF}$
The attenuation of the filter is 30 dB at 6.8 KHz and better than 60 dB at 15 KHz .

Fig. 23 - Sixth-pole 355 Hz low-pass filter (Chebychev type)

This is a 6- pole Chebychev type with $\pm 0.25 \mathrm{~dB}$ ripple in the passband. A decoupling stage is used to avoid the influence of the input impedance on the filter's characteristics. The attenuation is about 55 dB at 710 Hz and reaches 80 dB at 1065 Hz . The in band attenuation is limited in practice to the $\pm 0.25 \mathrm{~dB}$ ripple and does not exceed $1 / 2 \mathrm{~dB}$ at 0.9 fc .

APPLICATION INFORMATION (continued)

Fig. 24 - Three band tone control

Fig. 25 - Frequency response of the circuit of fig. 24.

A : all controls flat
B : bass \& treble boost, mid flat
C : bass \& treble cut, mid flat
D : mid boost, bass \& treble flat
E : mid cut, bass \& treble flat

LINEAR INTEGRATED CIRCUIT

COMPLETE TV SOUND CHANNEL

The TDA3190 is a monolithic integrated circuit in a 16-lead dual in-line plastic package. It performs all the functions needed for the TV sound channel:

- IF limiter--amplifier
- DC volume control
- Active low-pass filter
- AF preamplifier
- FM detector
- AF output stage

The TDA 3190 can give an output power of 4.2 W ($d=10 \%$) into a 16Ω load at $V_{s}=24 \mathrm{~V}$, or 1.5 W ($\mathrm{d}=10 \%$) into an 8Ω load at $\mathrm{V}_{\mathrm{s}}=12 \mathrm{~V}$. This performance, together with the FM-IF section characteristics of high sensitivity, high AM rejection and low distortion, enables the device to be used in almost every type of television receivers.
The device has no irradiation problems, hence no external screening is needed.
The TDA 3190 is a pin to pin replacement of TDA $1190 Z$.

ABSOLUTE MAXIMUM RATINGS

V_{s}	Supply voltage (pin 10)	28	V
$\mathrm{~V}_{\mathrm{i}}$	Input signal voltage (pin 1)	1	V
I_{o}	Output peak current (non-repetitive)	2	A
I_{o}	Output peak current (repetitive)	1.5	A
$\mathrm{P}_{\text {tot }}$	Power dissipation: at $\mathrm{T}_{\text {pins }}=90^{\circ} \mathrm{C}$	4.3	W
$\mathrm{~T}_{\text {stg }}, \mathrm{T}_{\mathrm{j}}$	Storage and junction temperature	1	W

ORDERING NUMBERS: TDA 3190

MECHANICAL DATA
Dimensions in mm

CONNECTION DIAGRAM

BLOCK DIAGRAM

TEST CIRCUIT

THERMAL DATA

$\mathrm{R}_{\text {th } \mathrm{j}-\mathrm{pins}}$	Thermal resistance junction-pins	\max	14	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{\text {th } \mathrm{j}-\mathrm{amb}}$	Thermal resistance junction-ambient			

* Obtained with the GND pins soldered to printed circuit with minimized copper area.

ELECTRICAL CHARACTERISTICS (Refer to the test circuit, $\mathrm{V}_{\mathrm{s}}=24 \mathrm{~V}, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ unless otherwise specified)

Parameter		Test conditions	Min.	Typ.	Max.	Unit
V_{s}	Supply voltage (pin 14)		9		28	V
V_{0}	Quiescent output voltage (pin 11)	$\begin{aligned} & V_{\mathrm{s}}=24 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{s}}=12 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 11 \\ & 5.1 \end{aligned}$	$\begin{gathered} 12 \\ 6 \end{gathered}$	$\begin{gathered} 13 \\ 6.9 \end{gathered}$	$\begin{aligned} & V \\ & v \end{aligned}$
I_{d}	Quiescent drain current	$\begin{aligned} & \mathrm{P}_{1}=22 \mathrm{~K} \Omega \\ & \mathrm{~V}_{\mathrm{s}}=24 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{s}}=12 \mathrm{~V} \end{aligned}$	11	$\begin{aligned} & 22 \\ & 19 \end{aligned}$	$\begin{aligned} & 45 \\ & 40 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
P_{0}	Output power	$\begin{array}{ll} d=10 \% & f_{m}=400 \mathrm{~Hz} \\ f_{o}=4.5 \mathrm{MHz} & \Delta f= \pm 25 \mathrm{KHz} \\ \mathrm{~V}_{\mathrm{S}}=24 \mathrm{~V} & \mathrm{R}_{\mathrm{L}}=16 \Omega \\ \mathrm{~V}_{\mathrm{s}}=12 \mathrm{~V} & R_{\mathrm{L}}=8 \Omega \end{array}$		$\begin{aligned} & 4.2 \\ & 1.5 \end{aligned}$		$\begin{aligned} & \text { W } \\ & \text { W } \end{aligned}$
		$\begin{array}{ll} d=2 \% & f_{m}=400 \mathrm{~Hz} \\ \mathrm{f}_{\mathrm{O}}=4.5 \mathrm{MHz} & \Delta \mathrm{f}= \pm 25 \mathrm{KHz} \\ \mathrm{~V}_{\mathrm{s}}=24 \mathrm{~V} & \mathrm{R}_{\mathrm{L}}=16 \Omega \\ \mathrm{~V}_{\mathrm{s}}=12 \mathrm{~V} & \mathrm{R}_{\mathrm{L}}=8 \Omega \end{array}$		$\begin{aligned} & 3.5 \\ & 1.4 \end{aligned}$		$\begin{aligned} & w \\ & w \end{aligned}$

ELECTRICAL CHARACTERISTICS (continued)

	Parameter	Test conditions	Min.	Typ.	Max.	Unit
V_{i}	Input limiting voltage (-3 dB) at pin 1	$\begin{aligned} & \mathrm{f}_{\mathrm{o}}=4.5 \mathrm{MHz} \quad \Delta \mathrm{f}= \pm 7.5 \mathrm{KHz} \\ & \mathrm{f}_{\mathrm{m}}=400 \mathrm{~Hz} \\ & \mathrm{P}_{1}=0 \end{aligned}$		40	100	$\mu \mathrm{V}$
d	Distortion	$\begin{array}{ll} \mathrm{P}_{\mathrm{O}}=50 \mathrm{~mW} & \mathrm{f}_{\mathrm{m}}=400 \mathrm{~Hz} \\ \mathrm{f}_{\mathrm{O}}=4.5 \mathrm{MHz} & \Delta \mathrm{f}= \pm 7.5 \mathrm{KHz} \\ \mathrm{~V}_{\mathrm{s}}=24 \mathrm{~V} & \mathrm{R}_{\mathrm{L}}=16 \Omega \\ \mathrm{~V}_{\mathrm{s}}=12 \mathrm{~V} & \mathrm{R}_{\mathrm{L}}=8 \Omega \end{array}$		$\begin{gathered} 0.75 \\ 1 \end{gathered}$		$\begin{aligned} & \% \\ & \% \end{aligned}$
B	Frequency response of audio amplifier (-3 dB)	$\begin{array}{ll} R_{L}=16 \Omega & C_{8}=120 \mathrm{pF} \\ C_{7}=470 \mathrm{pF} & P_{1}=22 \mathrm{~K} \Omega \\ R_{f}=82 \Omega & \\ R_{f}=47 \Omega & \end{array}$		$\begin{aligned} & 70 \text { to } 12000 \\ & 70 \text { to } 7000 \end{aligned}$		$\begin{aligned} & \mathrm{Hz} \\ & \mathrm{~Hz} \end{aligned}$
V_{0}	Recovered audio voltage (pin 16)	$\begin{array}{ll} V_{i} \geqslant 1 \mathrm{mV} & f_{o}=4.5 \mathrm{MHz} \\ f_{m}=400 \mathrm{~Hz} & \Delta f= \pm 7.5 \mathrm{KHz} \\ \mathrm{f}_{1}=\hat{\mathrm{u}} & \end{array}$		i20		" ${ }^{\text {V'v }}$
AMR	Ampliture modulation rejection	$\begin{array}{ll} V_{i} \geqslant 1 \mathrm{mV} & f_{o}=4.5 \mathrm{MHz} \\ f_{m}=400 \mathrm{~Hz} & \Delta f= \pm 25 \mathrm{KHz} \\ m=0.3 & \end{array}$		55		dB
$\frac{S+N}{N}$	Signal to noise ratio	$\begin{array}{ll} \mathrm{V}_{\mathrm{i}} \geqslant 1 \mathrm{mV} & \mathrm{~V}_{\mathrm{o}}=4 \mathrm{~V} \\ \mathrm{f}_{\mathrm{O}}=4.5 \mathrm{MHz} & \mathrm{f}_{\mathrm{m}}=400 \mathrm{~Hz} \\ \Delta \mathrm{f}= \pm 25 \mathrm{KHz} \end{array}$	50	65		dB
R_{3}	External feedback resistance (between pins 9 and 11)				25	$K \Omega$
R_{i}	Input resistance (pin 1)	$\begin{aligned} V_{i} & =1 \mathrm{mV} \\ f_{0} & =4.5 \mathrm{MHz} \end{aligned}$		30		$K \Omega$
C_{i}	Input capacitance (pin 1)			5		pF
SVR	Supply voltage rejection	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=16 \Omega \\ & \mathrm{f}_{\text {ripple }}=120 \mathrm{~Hz} \\ & \mathrm{P}_{1}=22 \mathrm{~K} \Omega \end{aligned}$		46		dB
A_{V}	DC volume control attenuation	$\mathrm{P}_{1}=12 \mathrm{~K} \Omega$		90		dB

41
 TDA3190

Fig. 1 - Relative audio output voltage and output noise vs. input signal.

Fig. $4-\triangle \mathrm{AMR}$ vs. tuning frequency change.

Fig. 7 - Distortion vs. frequency deviation

Fig. 2 - Output voltage attenuation vs. DC volume control resistance.

Fig. 5 - Recovered audio voltage vs. unloaded Q factor of the detector coil

Fig. 8 - Distortion vs. tuning frequency change

Fig. 3 - Amplitude modulation rejection vs. input signal

Fig. 6 - Distortion vs. output power

Fig. 9 - Audio amplifier frequency response

Fig. 10 - Supply voltage ripple rejection vs. ripple frequency

Fig. 13 - Maximum power dissipation vs. supply voltage (sine wave operation)

Fig. 11 - Supply voltage ripple rejection vs. volume control attenuation

Fig. 14 - Power dissipation and efficiency vs. output power

Fig. 12 - Output power vs. supply voltage

Fig. 15 - Quiescent output voltage (pin 11) vs. supply voltage

APPLICATION INFORMATION

The electrical characteristics of the TDA 3190 remain almost constant over the frequency range 4.5 to 6 MHz , therefore it can be used in all television standards (FM mod.). The TDA 3190 has a high input impedance, so it can function with a ceramic filter or with a tuned circuit that provide the necessary input selectivity.
The value of the resistors connected to pin 9, determine the AC gain of the audio frequency amplifier. This enables the desired gain to be selected in relation to the frequency deviation at which the output stage of the AF amplifier, must enter into clipping.
Capacitor C8, connected between pins 10 and 11, determines the upper cutoff frequency of the audio bandwidth. To increase the bandwidth the values of C8 and C7 must be reduced, keeping the ratio C7/C8 as shown in the table of fig. 16.
The capacitor connected between pin 16 and ground, together with the internal resistor of $10 \mathrm{~K} \Omega$ forms the de-emphasis network. The Boucherot cell eliminates the high frequency oscillations caused by the inductive load and the wires connecting the loudspeaker.

APPLICATION INFORMATION (continued)

Fig. 16 - Typical application circuit

Fig. 17 - P.C. board and component layout of the circuit shown in Fig. 16 (1:1 scale)

CS-0097/1

10 TDA3190

MOUNTING INSTRUCTIONS

The $R_{\text {th }}$ j-amb of the TDA 3190 can be reduced by soldering the GND pins to a suitable copper area of the printed circuit board (Fig. 18) or to an external heatsink (Fig. 19).
The diagram of figure 20 shows the maximum dissipable power $P_{\text {tot }}$ and the $R_{t h \mathrm{j}-\mathrm{amb}}$ as a function of the side " ℓ " of two equal square copper areas having a thickness of 35μ (1.4 mils).
During soldering the pins temperature must not exceed $260^{\circ} \mathrm{C}$ and the soldering time must not be longer than 12 seconds.
The external heatsink or printed circuit copper area must be connected to electrical ground.

Fig. 18 - Example of P.C.board copper area which is used as heatsink.

Fig. 19 - External heatsink mounting example

Fig. 20 - Maximum dissipable power and junction to ambient thermal resistance vs. side " ℓ "

Fig. 21 - Maximum allowable power dissipation vs. ambient temperature

LINEAR INTEGRATED CIRCUIT

DUAL LOW NOISE TAPE PREAMPLIFIER WITH AUTOREVERSE

The TDA 3410 is a dual preamplifier with tape autoreverse facility for the amplification of low level signals in applications requiring very low noise performance, as stereo cassette players. Each channel consists of two independent amplifiers. The first has a fixed gain of 30 dB while the second one is an operational amplifier optimized for high quality audio application.
The TDA 3410 is a monolithic integrated circuit in a 16 -lead dual in-line plastic package and its main features are:

- Very low noise
- High gain
- Low distortion
- Single supply operation
- Wide supply range
- SVR = 120 dB
- Large output voltage swing
- Tape autoreverse facility
- Short circuit protection

ABSOLUTE MAXIMUM RATINGS

V_{s}	Supply voltage	36	V
$P_{\text {tot }}$	Total power dissipation at $T_{\text {amb }}=60^{\circ} \mathrm{C}$	600	mW
$\mathrm{~T}_{\mathrm{j}}, \mathrm{T}_{\text {stg }}$	Storage and junction temperature	-40 to 150	${ }^{\circ} \mathrm{C}$

ORDERING NUMBER: TDA 3410

TDA3410

CONNECTION DIAGRAM (top view)

BLOCK DIAGRAM

THERMAL DATA

	Rermal resistance junction-ambient	\max	150	${ }^{\circ} \mathrm{C} / \mathrm{W}$

SCHEMATIC DIAGRAM

TDA3410

TEST CIRCUIT (Flat Gain $-\mathrm{G}_{\mathrm{v}}=60 \mathrm{~dB}$)

* Mylar or polycarbonate capacitors.

ELECTRICAL CHARACTERISTICS $\left(\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{s}}=14.4 \mathrm{~V}, \mathrm{G}_{\mathrm{v}}=60 \mathrm{~dB}\right.$, refer to the test circuit, unless otherwise specified)

	Parameter	Test conditions	Min.	Typ.	Max.	Unit
I_{s}	Supply current	$\mathrm{V}_{\mathrm{s}}=8 \mathrm{~V}$ to 30 V		10		mA
10	Output current (pins 1-15)	Source $V_{s}=8 \mathrm{~V} \text { to } 30 \mathrm{~V}$ Sink		$\begin{array}{r} 10 \\ 1 \end{array}$		$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
G_{v}	Closed loop gain	$f=20 \mathrm{~Hz}$ to 20 KHz		60		dB
$\mathrm{R}_{\mathbf{i}}$	Input resistance	$\mathrm{f}=1 \mathrm{KHz}$	50	80		$K \Omega$
R_{o}	Output resistance (pins 1-15)	$\mathrm{f}=1 \mathrm{KHz}$		50		Ω
THD	Total harmonic distortion	$\begin{array}{ll} V_{0}=300 \mathrm{mV} & f=1 \mathrm{KHz} \\ & f=10 \mathrm{KHz} \end{array}$		$\begin{aligned} & 0.05 \\ & 0.05 \end{aligned}$		\%

ELECTRICAL CHARACTERISTICS (continued)

	Parameter	Test conditions		Min.	Typ.	Max.	Unit
v_{0}	Output voltage swing (pins 1-15)	Peak to Peak	$\mathrm{V}_{\mathrm{s}}=14.4 \mathrm{~V}$ $\mathrm{~V}_{\mathrm{s}}=30 \mathrm{~V}$		$\begin{aligned} & 12 \\ & 28 \end{aligned}$. V
V_{0}	Output voltage (pins 1-15)	$\begin{aligned} & d=0.5 \% \\ & f=1 K H z \end{aligned}$	$\begin{aligned} & V_{\mathrm{s}}=14.4 \mathrm{~V} \\ & V_{\mathrm{s}}=30 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 4 \\ & 8 \end{aligned}$		$\begin{aligned} & V_{r m s} \\ & V_{r m s} \end{aligned}$
e_{n}	Total input noise (${ }^{\circ}$)	$\begin{aligned} & \mathrm{R}_{\mathrm{g}}=50 \Omega \\ & \mathrm{R}_{\mathrm{g}}=600 \Omega \\ & \mathrm{R}_{\mathrm{g}}=5 \mathrm{~K} \Omega \end{aligned}$			$\begin{gathered} 0.25 \\ 0.4 \\ 1.3 \end{gathered}$	0.6	$\begin{aligned} & \mu \mathrm{V} \\ & \mu \mathrm{~V} \\ & \mu \mathrm{~V} \end{aligned}$
S/N	Signal to noise ratio (${ }^{\circ}$)	$\begin{aligned} & V_{\text {in }}=0.3 \mathrm{mV} \\ & V_{\text {in }}=1 \mathrm{mV} \end{aligned}$	$\begin{aligned} & \mathrm{R}_{\mathrm{g}}=600 \Omega \\ & \mathrm{R}_{\mathrm{g}}=0 \end{aligned}$		$\begin{aligned} & 57 \\ & 73 \end{aligned}$		dB dB
CS	Channel separation	$f=1 \mathrm{KHz}$			60		dB
CT($\left.{ }^{(000}\right)$	Cross-talk (differential input)	$f=1 \mathrm{KHz}$			80		dB
SVR	Supply voltage rejection (${ }^{\circ}$)	$\mathrm{f}=1 \mathrm{KHz}$	$\mathrm{R}_{\mathrm{g}}=600 \Omega$		120		dB
SVR $\left(^{\circ}{ }^{\circ}\right)$	Of reference voltage (Pin 4)	$\begin{aligned} & f=1 \mathrm{KHz} \\ & R_{\mathrm{g}}=600 \Omega \end{aligned}$			100		dB
$V_{\text {ref }}$	Reference voltage (pin 4)				55		mV
$\mathrm{R}_{\text {ref }}$	Ref. voltage output resistance (pin 4)				100		Ω
$\frac{\Delta V_{\text {ref }}}{\Delta T}$	Voltage temperature coefficient				10		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$

$\left({ }^{\circ}\right)$ The weighting filter used for the noise measurement has a curve A frequency response.
$\left({ }^{\circ \circ}\right)$ Referred to the input.
$\left({ }^{\circ \circ}\right)$ Between a disabled input and an input ON.

$\mathcal{M O}$
 TDA3410

ELECTRICAL CHARACTERISTICS (Refer test circuit, $\mathrm{V}_{\mathrm{s}}=30 \mathrm{~V}$)
AMPLIFIER ${ }^{\circ} 1$

	Parameter	Test conditions	Min.	Typ.	Max.	Unit
G_{v}	Gain (pins 6 to 5)		29	30	30.5	dB
d	Distortion	$\begin{array}{ll} V_{o}=300 \mathrm{mV} & f=1 \mathrm{KHz} \\ & f=10 \mathrm{KHz} \end{array}$		$\begin{aligned} & 0.05 \\ & 0.05 \end{aligned}$		\%
e_{n}	Total input noise (${ }^{\circ}$)	$\mathrm{R}_{\mathrm{g}}=600 \Omega$		0.4		$\mu \mathrm{V}$
Z_{0}	Output impedance (pin 5)	$\mathrm{f}=1 \mathrm{KHz}$		100		Ω
I_{0}	Output current (pin 5)			1		mA
V_{5}	DC output voltage (pin 5)	$V_{s}=10 \mathrm{~V}$	1.3	2	2.7	V

AMPLIFIER $\mathbf{N}^{\circ} \mathbf{2}$

G_{v}	Open loop voltage gain (pins2to1)			100	dB
I_{B}	Input bias current			0.2	$\mu \mathrm{A}$
$\mathrm{V}_{\text {os }}$	Input offset voltage			2	mV
$\mathrm{I}_{\text {os }}$	Input offset current			0.05	$\mu \mathrm{A}$
BW	Small signal bandwidth	$\mathrm{G}_{\mathrm{v}}=30 \mathrm{~dB}$		150	KHz
e_{n}	Total input noise (${ }^{\circ}$)	$\mathrm{R}_{\mathrm{g}}=600 \Omega$		2	$\mu \mathrm{V}$
R_{i}	Input impedance	$f=1 \mathrm{KHz}$ (open loop)	150	500	$K \Omega$

AUTOREVERSE

$P_{\text {in }}$	$V_{12}<2 \mathrm{~V}$	$\mathrm{~V}_{12}>4.5 \mathrm{~V}$
$6-10$	OFF	ON
$7-9$	ON	OFF

$\left({ }^{\circ}\right)$ The weighting filter used for the noise measurement has a curve A frequency response.

Fig. 1 - Total input noise vs. source resistance (curve A)

Fig. 2 - Total input noise vs. source resistance ($\mathrm{BW}=$ 22 Hz to 22 KHz)

Fig. 6 - Very low noise stereo preamplifier for car cassette players (with Gap Loss Correction and autoreverse function)

Fig. 3 - Total harmonic distortion vs. output voltage

Fig. 5 - Frequency response

411
 TDA3410

Fig. 6 - P.C. board and component lay-out ($1: 1$ scale) for the circuit of fig. 4

Fig. 7 - Stereo preamplifier for car cassette players, with low value capacitors (Autoreverse function)

Fig. 8 - Frequency response

LINEAR INTEGRATED CIRCUIT

PRELIMINARY DATA

DUAL VERY LOW NOISE PREAMPLIFIER

The TDA 3420 is a dual preamplifier for applications requiring very low noise performance, as stereo cassette players and quality audio systems. Each channel consists of two independent amplifiers.
The first one has a fixed gain while the second one is an operational amplifier for audio application. The TDA 3420 is available in two packages: 16-lead daul in-line plastic and 16 lead micropackage. Its main features are:

- Very low noise
- High gain
- Low distortion
- Single supply operation
- Large output voltage swing
- Short circuit protection

ABSOLUTE MAXIMUM RATINGS

V_{s}	Supply voltage	20	V
$\mathrm{P}_{\text {tot }}$	Total power dissipation at $\mathrm{T}_{\mathrm{amb}}=70^{\circ} \mathrm{C}$ Dip	530	mW
$\mathrm{~T}_{\mathrm{j}}, \mathrm{T}_{\text {stg }}$.	Storage and junction temperature	SO-16	400
mW			

ORDERING NUMBERS: TDA 3420 (DIP)

> L 343M (SO-16)

MECHANICAL DATA
Dimensions in mm

DIP

CONNECTION DIAGRAMS

BLOCK DIAGRAM (Pin numbers refer to the DIP)

THERMAL DATA

	DIP	SO-16
\max	$150^{\circ} \mathrm{C} / \mathrm{W}$	$200^{\circ} \mathrm{C} / \mathrm{W} *$

[^17]Fig. 1 - Test circuit

Note: Pin numbers refer to DIP.

Fig. 2 - P.C. board and components layout of the circuit of fig. 1 (1:1 scale)

TDA3420

Fig. 3 - Test circuit without input capacitors

ELECTRICAL CHARACTERISTICS $\left(T_{\mathrm{amb}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{s}}=14.4 \mathrm{~V}, \mathrm{G}_{\mathrm{v}}=60 \mathrm{~dB}\right.$ refer to the test circuit of fig. 1, unless otherwise specified)

ELECTRICAL CHARACTERISTICS (continued)

Parameter			Test conditions		Min.	Typ.	Max.	Unit
V_{0}	Peak to peak output voltage		$\mathrm{f}=40 \mathrm{~Hz}$ to 15 KHz			12		V
e_{n}	Total input noise (0)		$\begin{aligned} & \mathrm{R}_{\mathrm{s}}=50 \Omega \\ & \mathrm{R}_{\mathrm{s}}=600 \Omega \\ & \mathrm{R}_{\mathrm{s}}=5 \mathrm{k} \Omega \end{aligned}$			$\begin{gathered} 0.25 \\ 0.4 \\ 1.3 \end{gathered}$	0.7	$\mu \mathrm{V}$ $\mu \mathrm{V}$ $\mu \mathrm{V}$
S / N	Signal to noise ratio	(0)	$\begin{aligned} & V_{\text {in }}=0.3 \mathrm{mV} \\ & V_{\text {in }}=1 \mathrm{mV} \end{aligned}$	$\begin{aligned} & \mathrm{R}_{\mathrm{s}}=600 \Omega \\ & \mathrm{R}_{\mathrm{s}}=0 \end{aligned}$		$\begin{aligned} & 57 \\ & 73 \end{aligned}$		dB
		(00)	$\begin{aligned} & V_{\text {in }}=0.3 \mathrm{mV} \\ & V_{\text {in }}=1 \mathrm{mV} \end{aligned}$	$\begin{aligned} & \mathrm{R}_{\mathrm{s}}=600 \Omega \\ & \mathrm{R}_{\mathrm{s}}=0 \end{aligned}$		$\begin{aligned} & 55 \\ & 71 \end{aligned}$		dB
CS	Channel separation		$f=1 \mathrm{KHz}$			60		dB
SVR	Supply voltage rejection	(000)	$f=1 \mathrm{KHz}$	$\mathrm{R}_{\mathrm{s}}=600 \Omega$		110		dB

(${ }^{\circ}$) Weighting filter: curve A.
(00) Weighting filter: Dolby CCIR/ARM.
(000) Referred to the input.

ELECTRICAL CHARACTERISTICS (Refer to the test circuit of fig. 1, $\mathrm{V}_{\mathrm{s}}=14.4 \mathrm{~V}$) AMPLIFIER ${ }^{\circ} 1$

Parameter		Test conditions		Min.	Typ.	Max.	Unit
G_{v}	Gain (pin 6 to pin 5)			27.5	28.5	29	dB
d	Distortion	$\mathrm{V}_{\mathrm{o}}=300 \mathrm{mV}$	$\begin{aligned} & f=1 \mathrm{KHz} \\ & f=10 \mathrm{KHz} \end{aligned}$		$\begin{aligned} & 0.05 \\ & 0.05 \end{aligned}$		\%
e_{n}	Total input noise (${ }^{\circ}$)	$\mathrm{R}_{\mathrm{S}}=600 \Omega$			0.4		$\mu \mathrm{V}$
Z_{0}	Output impedance (pin 5)	$f=1 \mathrm{KHz}$			100		Ω
'o	Output current (pin 5)				1		mA
V5	DC output voltage (pin 5)	Test circuit fig. 3			2.8		V
		Test circuit fig. 1		1.0	1.5		

(\circ) Weighting filter: curve A.

ELECTRICAL CHARACTERISTICS (continued)
 AMPLIFIER ${ }^{\circ} 2$

	Parameter	Test conditions	Min.	Typ.	Max.	Unit
G_{v}	Open loop voltage gain			100		dB
${ }^{\prime}{ }_{B}$	Input bias current			0.2		$\mu \mathrm{A}$
$\mathrm{V}_{\text {os }}$	Input offset voltage			2		mV
Ios	Input offset current			50		nA
e_{n}	Total input noise (${ }^{\circ}$)	$\mathrm{R}_{\mathrm{s}}=600 \Omega$		2		$\mu \mathrm{V}$
R_{i}	Input impedance	$\mathrm{f}=1 \mathrm{KHz}$ (open loop)	150	500		K Ω

(${ }^{\circ}$) Weighting filter: curve A.

Fig. 4 - Total input noise vs. source resistance (curve A)

Fig. 7 - Output voltage vs. frequency

Fig. 5 - Total input noise vs. source resistance ($\mathrm{BW}=22 \mathrm{~Hz}$ to 22 KHz)

Fig. 8 - Distortion vs. input level (test circuit of fig. 1)

Fig. 6 - Total harmonic distortion vs. output voltage

Fig. 9 - Frequency response of the circuit of fig. 10

410

Fig. 10 - Very low noise stereo preamplifier for cassette players

Fig. 11 - Complete $20+20 \mathrm{~W}$ stereo tape playback system

LINEAR INTEGRATED CIRCUIT

PRELIMINARY DATA

5 BIT BINARY TO 7-SEGMENT DECODER DRIVER

- ROM MASK OPTION

- STANDARD CONFIGURATION FOR 2 DIGIT 7-SEGMENT LED TO PRESENT THE NUMBERS 1 TO 32
- CONSTANT CURRENT OUTPUT STAGES FOR DIRECT DRIVING OF COMMON ANODE LEDs
- OUTPUT PROVIDED TO DISPLAY THE STAND-BY MODE
- $\overline{\text { AV OUTPUT ACTIVATED WHENEVER PROGRAM } 32 \text { IS SELECTED }}$
- TTL COMPATIBLE INPUTS
- 5V SUPPLY VOLTAGE

The TDA 4092 is a monolithic integrated circuit designed to display the program number (1 to 32) in TV or Radio sets in conjunction with voltage or frequency synthesizers. The inputs accept a 5 bit binary code with TTL levels and have internal pull-up.
The outputs can directly drive LED display elements with common anode.
One of these outputs is intended to display the stand-by mode of the set.
No external resistors are rogniured if the IENe are supplied at 5 U .
The LEDs can also be supplied with higher voltage (up to 18 V) but in this case a single resistor in series with the LED elements must be used in order to limit the power dissipation of the IC; moreover, a suitable $\mathrm{R}_{\text {ext }}$ must be chosen.
The circuit is produced in $I^{2} L$ technology and is available in a 24 pin dual in-line plastic package.

ABSOLUTE MAXIMUM RATINGS

V_{s}	Supply voltage	10	V
$\mathrm{~V}_{1}$	Input voltage	10	V
$\mathrm{~V}_{\mathrm{O} \text { (off) }}$	Off state output voltage	20	V
I_{OL}	Output current	22	mA
$\mathrm{P}_{\text {tot }}$	Total power dissipation at $\mathrm{T}_{\text {amb }}=55^{\circ} \mathrm{C}$	0.8	W
$\mathrm{~T}_{\text {stg }}, \mathrm{T}_{\mathrm{j}}$	Storage and junction temperature	-25 to	150
$\mathrm{~T}_{\text {op }}$	Operating temperature	${ }^{\circ} \mathrm{C}$	

ORDERING NUMBER: TDA 4092
MECHANICAL DATA

TDA4092

CONNECTION DIAGRAM (top view)

BLOCK DIAGRAM

APPLICATION CIRCUIT

(*) R is necessary only with V_{c} greater than 5.5 V .

THERMAL DATA

| $R_{\text {th j-amb }}$ Thermal resistance junction ambient | $\max \quad 120 \quad{ }^{\circ} \mathrm{C} / \mathrm{W}$ |
| :--- | :--- | :--- | :--- |

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{s}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}\right.$ unless otherwise specified)

Parameter		Test conditions		Min.	Typ.	Max.	Unit
V_{s}	Supply voltage			4.5		5.5	V
I_{5}	Quiescent supply current	$\mathrm{V}_{\mathrm{s}}=5.5 \mathrm{~V}$			20	28	mA
$V_{1 H}$	High level input voltage	$\mathrm{T}_{\mathrm{amb}}=0$ to $70^{\circ} \mathrm{C}$		2			V
$V_{\text {IL }}$	Low level input voltage	$\mathrm{T}_{\mathrm{amb}}=0$ to $70^{\circ} \mathrm{C}$				0.8	V
$\mathrm{I}_{1 H}$.	High level input current	$\mathrm{T}_{\mathrm{amb}}=0$ to $70^{\circ} \mathrm{C}$	$\mathrm{V}_{1 \mathrm{H}}=2 \mathrm{~V}$			100	nA
1 IL	Low level input current		$\mathrm{V}_{\text {IL }}=0.8 \mathrm{~V}$		-50	-200	$\mu \mathrm{A}$

ELECTRICAL CHARACTERISTICS (continued)

	Parameter	Test conditions	Min.	Typ.	Max.	Unit
$V_{\text {out }}$	Output voltage	$\mathrm{I}_{0}=15 \mathrm{~mA}$	2			V
$V_{\text {AVV }}$.	$A V$ output voltage (pin 20)	(All the binary inputs high) $I_{A V}=1.6 \mathrm{~mA}$		50	260	mV
${ }^{\prime} B$	Pin 23 input current (Brightness control)	$\mathrm{R}_{\text {ext }}=3.3 \mathrm{~K} \Omega$		-375		$\mu \mathrm{A}$
		$\mathrm{R}_{\text {ext }}=5.6 \mathrm{~K} \Omega$		-225		
I_{0}	Output current (*)	$\mathrm{R}_{\text {ext }}=3.3 \mathrm{~K}$	13.5	15	16.5	mA
		$\mathrm{R}_{\text {ext }}=5.6 \mathrm{~K}$	8	9	10	
${ }^{\text {DPP }}$	Output current for decimal point (pin 21)(**)			12.5		mA
$\frac{\Delta I_{0}}{I_{0}} / \Delta V_{s}$	Segment current stability	$\begin{aligned} & \mathrm{I}_{\mathrm{o}}=15 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{s}}=4.5 \text { to } 5.5 \mathrm{~V} \end{aligned}$		0.2		\%

(*) $I_{0}=40 \cdot I_{B}$
$\left({ }^{* *}\right)_{D P}$ is fixed and independent of $R_{\text {ext }}$ value.

FUNCTION TABLE

INPUTS		Number displayed	OUTPUTS			
A B C D E	Standby		$\begin{array}{lllll} & \text { ten's digit (MSD) } \\ \text { a } & \text { b } & \text { c } & \text { d } & \text { e } \end{array}$	$$	D P	$\overline{\mathbf{A V}}{ }^{*}$
$\begin{array}{lllll} L & L & L & L & L \\ H & L & L & L & L \\ L & H & L & L & L \\ H & H & L & L & L \\ L & L & H & L & L \\ H & L & H & L & L \\ L & H & H & L & L \\ H & H & H & L & L \\ L & L & L & H & L \\ H & L & L & H & L \\ L & H & L & H & L \\ H & H & L & H & L \\ L & L & H & H & L \\ H & L & H & H & L \\ L & H & H & H & L \\ H & H & H & H & L \\ L & L & L & L & H \\ H & L & L & L & H \\ L & H & L & L & H \\ H & H & L & L & H \\ L & L & H & L & H \\ H & L & H & L & H \\ L & H & H & L & H \\ H & H & H & L & H \\ L & L & L & H & H \\ H & L & L & H & H \\ L & H & L & H & H \\ H & H & L & H & H \\ L & L & H & H & H \\ H & L & H & H & H \\ L & H & H & H & H \\ H & H & H & H & H \end{array}$	L L L. L L			on		on
$\times \times \times \times$	H	none			on	**

$\mathrm{H}=\mathrm{High}$
L = Low
$\mathrm{X}=$ Don't care

* $\overline{\mathrm{AV}}$: open collector output.
** $\overline{A V}$ output is "on" whenever the input bits are all high, regardless of the standby input.

APPLICATION INFORMATION

Fig. 1 - Remote controlled voltage synthesizer (up to 32 stations) for TV and radio

When operating with a supply voltage higher than 5.5 V for LED elements, it is necessary to limit the IC power dissipation by means of one external resistance connected in series with the common point of the digits (R in fig. 2).
Unused outputs must be connected to V_{s} taking into account the additional power dissipation.
The value of R must be chosen taking into account the worst working conditions.
The maximum number of ON segments is 12 (number 28 displayed), so,

$$
R=\frac{V_{C}-V_{D}-V_{\text {out min }}}{12 \cdot I_{D}}
$$

I_{D}, depending on $R_{\text {ext }}$ (see Table of Electrical characteristics), can be fixed to the most suitable value to minimize the power dissipation in the IC. Since the worst condition for the device is with seven outputs active, it follows that:

$$
\begin{aligned}
& P_{d \text { out }}=7 \cdot I_{D}\left(V_{C}-V_{D}-7 R \cdot I_{D}\right) \\
& P_{d}=V_{s} \cdot I_{s \max } \\
& P_{\text {tot }}=P_{d \text { out }}+P_{D}
\end{aligned}
$$

Power dissipation in the output
stage stage

Fig. 2 - Schematic diagram for LED driving.
 Power drained from the supply
Total power dissipation
$P_{\text {tot }}$ must not exceed the Absolute Maximum Ratings of 800 mW , at $\mathrm{T}_{\mathrm{amb}}=55^{\circ} \mathrm{C}$.
Otherwise the maximum operating ambient temperature can be fixed by:

$$
T_{\text {amb max }}=T_{j \max }-R_{\text {th } j \text {-amb }} P_{\text {tot }}
$$

Example:

$V_{c}=18 \mathrm{~V} ; \quad \mathrm{I}_{\mathrm{D}}=10 \mathrm{~mA}$ (fixed by means of $\mathrm{R}_{\mathrm{ext}}=5.6 \mathrm{~K} \Omega$); $\quad \mathrm{V}_{\text {out } \min }=2 \mathrm{~V} ; \quad \mathrm{I}_{\mathrm{s} \max }=28 \mathrm{~mA}$;
$\mathrm{T}_{\mathrm{j} \text { max }}=150^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{D}}=2 \mathrm{~V} ; \mathrm{V}_{\mathrm{s}}=5.5 \mathrm{~V}$.
Applying the previous formulae, it follows that: $R \cong 120 \Omega$;
$P_{\text {d out }}=0.532 \mathrm{~W} ; \quad P_{d}=0.154 \mathrm{~W} ;$
$P_{\text {tot }}=0.686 \mathrm{~W}$; $\mathrm{T}_{\text {amb } \max } \cong 68^{\circ} \mathrm{C}$.

LINEAR INTEGRATED CIRCUIT

VISION IF SYSTEM WITH A.FC

- HIGH GAIN-HIGH STABILITY
- VERY LOW INTERMODULATION PRODUCTS
- MINIMUM DIFFERENTIAL ERROR
- CONSTANT INPUT IMPEDANCE INDEPENDENT OF AGC
- FAST AGC GATING-ACTION, LARGELY INDEPENDENT OF PULSE SHAPE AND AMPLITUDE
- ADJUSTABLE WHITE LEVEL
- LARGE AFC OUTPUT CURRENT SWING (PUSH-PULL OUTPUT)
- SWITCHABLE AFC

The TDA4420 is a monolithic integrated circuit in 18 lead dual in-line plastic package. The functions incorporated are:

- gain controlled vision IF amplifier
- video demodulator controlled by picture carrier
- AGC detector with gating facility
- AGC amplifier for tuner drive with variable delay
- phase comparator for AFC current generation
- electronic AFC switch, controlled by a DC threshold detector
- thermally compensated push-pull AFC output stage.

ABSOLUTE MAXIMUM RATINGS

V_{s}	Supply voltage (pin 15)	15	V
$\mathrm{~V}_{5}$	Voltage at pin 5	15	V
$\mathrm{I}_{13}, \mathrm{I}_{14}$	Video DC output current	5	mA
$\mathrm{P}_{\text {tot }}$	Total power dissipation at $\mathrm{T}_{\text {amb }} \leqslant 70^{\circ} \mathrm{C}$	1	W
$\mathrm{~T}_{\text {stg }}, \mathrm{T}_{\mathrm{j}}$	Storage and junction temperature	-40 to 150	${ }^{\circ} \mathrm{C}$

ORDERING NUMBER: TDA 4420

MECHANICAL DATA Dimensions in mm

CONNECTION DIAGRAM (top view)
INPUT

BIAS
OECOUPLING
AGC TIME
CONSTANT
TUNER AGC
OUTPUT

TUNER AGC
OELAY

FLYBACK
PULSE INPUT
CARRIER
TUNING

AFC

TUNING

BLOCK DIAGRAM

TEST CIRCUIT

Note: (*) C $\cong 1.5 \mathrm{pF}$ (pin and lead capacitance).

THERMAL DATA

$\mathrm{R}_{\text {th j-amb }}$	Thermal resistance junction-ambient	\max	80

ELECTRICAL CHARACTERISTICS (Refer to the test circuit; $\mathrm{V}_{\mathrm{s}}=12 \mathrm{~V}, \mathrm{f}_{\mathrm{o}}=38.9 \mathrm{MHz}$; $P_{1}=2.5 \mathrm{~K} \Omega$; pin 7 connected to GND; P_{2} adjusted for $\mathrm{V}_{13}=3.3 \mathrm{Vpp} ; \mathrm{AFC}$ off; $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ unless otherwise specified)

Parameter	Test conditions	Min.	Typ.	Max.	Unit

DC CHARACTERISTICS

V_{s}	Supply voltage range (pin 15)		10	12	15	V
I_{s}	Supply current (pin 15)			52		mA
$\mathrm{~V}_{14}$	Video output DC voltage	$\mathrm{V}_{13}=5.5 \mathrm{~V}(1)$		5.6		V
$\mathrm{~V}_{13}$	Video output DC voltage	pin 12 open (1)			4.5	V
	pin 12 grounded (1)	7			V	
$\mathrm{~V}_{13}$	Peak black clamping level at negative video output		1.75	1.9	2.15	V
I_{13}	Output DC current (pin 13)	$\mathrm{V}_{\mathrm{s}}=15 \mathrm{~V} \quad \mathrm{~V}_{13}=8 \mathrm{~V}$		1.6		mA
$\mathrm{I}_{9}, \mathrm{I}_{10}$	DC control current for AFC off		150	300		$\mu \mathrm{~A}$

ELECTRICAL CHARACTERISTICS (continued)

Parameter	Test conditions	Min.	Typ.	Max.

AC CHARACTERISTICS

I_{5}	Available tuner AGC current	(2)		10		mA
V_{7}	AGC gating pulse input peak voltage	f pulse $=15625 \mathrm{~Hz}$ (3)	-1.5	-3	-5	V
V_{0}	Peak to peak video output signal (pin 13)	$\mathrm{V}_{13}=5.5 \mathrm{~V}$ (4), (5)		3.3		V
		$\mathrm{V}_{13}=6.4 \mathrm{~V}$ (4), (5)		4.2		V
ΔV_{i}	AGC range	(6)	50	60		dB
B	Frequency response (-3 dB)	(4)	8	10		MHz
V_{i}	Input sensitivity	(7), (8)	100	150	200	$\mu \mathrm{V}$
$\mathrm{V}_{13}, \mathrm{v}_{14}$	Video carrier and video carrier 2nd harmonic leakage at video output	$\begin{array}{ll} V_{i}=30 \mathrm{~dB} & \mathrm{f}_{\mathrm{O}}=38.9 \mathrm{MHz} \\ \text { (4) } & 2 \mathrm{f}_{\mathrm{o}}=77.8 \mathrm{MHz} \end{array}$			$\begin{aligned} & 30 \\ & 50 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
V_{14}	Sound IF at positive video output (5.5 MHz)	(4), (9)	30			mV
d	Differential distortion of negative video output signal	$V_{i}=30 \mathrm{~dB}$ (standard staircase modulating signal)		3		\%
d_{im}	Intermodulation product at video outputs (1.07 MHz)	(4), (10)		-50		dB
R_{i}	Input resistance between pins 1 and 18	(4)		1.4		$K \Omega$
C_{i}	Input capacitance between pins 1 and 18			2		pF
V_{16}	AFC voltage range	(11)	1		$\mathrm{V}_{\mathrm{s}}-1.5$	V
I_{16}	Maximum available AFC current	(12)			± 3	mA
$\frac{\Delta l_{16}}{\Delta f}$	AFC slope	(13)		± 0.01		$\frac{\mathrm{mA}}{\mathrm{KHz}}$

Notes:

(1) V_{13} and V_{14} are simultaneously adjustable by means of the resistance connected between pin 12 and ground $\left(\mathrm{P}_{2}\right)$.
(2) $\Delta V_{i}=+60 \mathrm{~dB}$ (see note 7); $\mathrm{f}_{\mathrm{m}}=100 \mathrm{KHz} ; \mathrm{m}=0.82$.
(3) Input at pin 7 through C8.
(4) The input voltage V_{i} can have any value with in the AGC range.
(5) P_{2} adjusted for $V_{13}=5.5 \mathrm{~V}$ or $\mathrm{V}_{13}=6.4 \mathrm{~V} ; \mathrm{f}_{\mathrm{m}}=100 \mathrm{KHz} ; \mathrm{m}=0.82$.
(6) $\Delta V_{o}=1 \mathrm{~dB} ; f_{m}=100 \mathrm{KHz} ; m=0.82$.

TDA4420

(7) The measured amplitude is assumed as $0 d B$ reference level of V_{i} that is the rms value of the unmodulated video carrier (modulation down).
(8) P_{2} is adjusted in order to have $V_{13}=3 V p p$ at $V_{i}=4 \mathrm{mV}$, then the sensitivity is obtained as the minimum input voltage that maintains this output level. $f_{m}=100 \mathrm{KHz} ; m=82 \%$.
(9) $f_{o}=38.9 \mathrm{MHz}$ (video carrier); $\mathrm{f}_{\mathrm{a}}=33.4 \mathrm{MHz}$ (sound carrier); the amplitude of the sound carrier is 30 dB below the amplitude of the video carrier.
(10) V_{i} at $f_{o}=38.9 \mathrm{MHz}$ (video carrier); $f_{a}=33.4 \mathrm{MHz}, 6 \mathrm{~dB}$ below V_{i} (sound carrier); $f_{b}=34.47 \mathrm{MHz}, 24 \mathrm{~dB}$ below V_{i} (Chroma subcarrier).
(11) $V_{i}=40 \mathrm{~dB} ; \mathrm{R}_{5}=\mathrm{R}_{6}=5.1 \mathrm{~K} \Omega ; A F C$ on; $\mathrm{f}_{\mathrm{o}}=39.9 \mathrm{MHz} ; \mathrm{f}_{\mathrm{o}}=37.9 \mathrm{MHz}$.
(12) $\mathrm{V}_{\mathrm{i}}=40 \mathrm{~dB} ; \mathrm{f}_{\mathrm{o}}=39.2 \mathrm{MHz} ; A F C$ on; $\mathrm{V}_{16}=6 \mathrm{~V}$.
(13) $V_{i}=40 \mathrm{~dB} ; f_{o}=38.9 \mathrm{MHz} ; f_{2}=39.2 \mathrm{MHz} ; A F C$ on; $V_{16}=6 \mathrm{~V}$.

Fig. 1 - Set-up for measurement of $d_{i m}$

Fig. 2 - Set-up for measurement of $\Delta \mathrm{V}_{\text {。 }}$

APPLICATION INFORMATION

Fiq. 3- Application circuit

* $\mathrm{R}_{1} ; \mathrm{R}_{2} ; \mathrm{Ch}_{1}$, depend from the SAWF characteristics

Fig. 4 - TV Signal identification circuit

TV signal identification circuit:

The suggested application circuit is shown in fig. 4.
The passive components are chosen as follows:
R_{1} and R_{2} : these define the AFC response slope. For $R_{1}=R_{2}=5.1 \mathrm{~K} \Omega$, the typical slope is $750 / 11$ $\mathrm{KHz} / \mathrm{V}$ (with AFC output unloaded).
$\mathrm{S}_{1} \quad:$ switches between low slope (LS) and high slope (HS). The high slope is typically $88 / 11$ KHz/V.

TDA4420

APPLICATION INFORMATION (continued)

R_{3} and R_{4} : the ratio $\left(R_{3}+R_{4}\right) / R_{3}$ defines the digital AFC width (δf) calculated from the linear AFC width $(2 \Delta f)$. With $V_{s}=12 \mathrm{~V}$, the relation is:

$$
\delta f=0.036(2 \Delta f) \cdot \frac{R_{3}+R_{4}}{R_{3}}
$$

$\mathrm{R}_{\mathrm{T} 1} \quad$: by means of this trimmer it is possible to align the linear tuning with the digital one, at the same frequency. The typical relation is:

$$
R_{a}=33 R_{3}
$$

with $R_{3}=3.3 \mathrm{~K} \Omega, R_{a}$ can be a fixed resistor of $110 \mathrm{~K} \Omega$.

To make better sensitivity adjustment of trimmer $\mathrm{R}_{\mathrm{T} 2}$, it is necessary to use only a weak signal at the antonna The viden information must he a black nicture or a field of small white points on a black field. Furthermore, the action of the syncs separator must be as quick as possible.
In receivers with automatic program search, S1 should be in the HS position and then the components S1, R1 and R2 can be omitted completely.

Fig. 5 - Linear and digital AFC characteristics (TDA 4420 and TDA 4431)

LINEAR INTEGRATED CIRCUITS

TV SIGNAL IDENTIFICATION CIRCUIT AND AFC INTERFACE

The TDA4431 and the TDA4433 are monolithic integrated circuits in a 14 lead dual-in-line plastic package. They integrate the following functions:

- TV signal identificator - Sync. separator - Threshold detector - Digital Interface - Voltage regulator They are intended for use in Electronic Program Memory tuning systems, the TDA4431 in conjunction with M193B1, while the TDA4433 with M293B1. The circuits features are:
- Identification of true TV stations only.
- Low impedance output of the identification signal.
- Digital control signal for automatic search and AFC operation.
- Thermal compensation of the voltage regulator.

ABSOLUTE MAXIMUM RATINGS

V_{5}	Supply voltage (pin 1)	16	V
V_{3}	Voltage at pin 3	16	V
V_{13}	Voltage at pin 13	-5 to +6	V
I_{2}	Pin 2 current (TDA4431)	± 1	mA
$\mathrm{I}_{6} ; \mathrm{I}_{2}$	Pin 6 and pin 2 current (TDA4433)	1	mA
I_{10}	Pin 10 current	2	mA
111	Pin 11 current	2	mA
112	Pin 12 current	± 2	mA
$\mathrm{P}_{\text {tot }}$	Total power dissipation at $\mathrm{Tamb} \leqslant 70^{\circ} \mathrm{C}$	800	mW
$\mathrm{T}_{\text {stg }}, \mathrm{T}_{\mathrm{j}}$	Storage and junction temperature	-40 to 150	${ }^{\circ} \mathrm{C}$

ORDERING NUMBERS: TDA 4431
TDA 4433

CONNECTION AND BLOCK DIAGRAM (TDA4431)

(Top view)

CONNECTION AND BLOCK DIAGRAM (TDA4433)
(Top view)

(1) tDA4331 TDA4433

TEST CIRCUIT

S_{1} A: Static tests
B : Functional tests
S_{2} A : DC or pulses width
B : Functional tests
P_{1} Digital AFC perfect tuning
P_{2} Sensitivity control

THERMAL DATA

$R_{\text {th j-amb }}$	Thermal resistance junction-ambient	\max

ELECTRICAL CHARACTERISTICS (refer to the test circuit; $\mathrm{V}_{\mathrm{s}}=12 \mathrm{~V}, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$, unless otherwise specified)

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Parameter} \& Test conditions \& Min. \& Typ. \& Max. \& Unit \\
\hline \(\mathrm{V}_{\text {s }}\) \& Supply voltage range (pin 1) \& \& 10.8 \& \& 14.5 \& V \\
\hline \(\mathrm{I}_{5}\) \& Supply current (pin 1) \& \(\mathrm{V}_{\mathrm{s}}=14.5 \mathrm{~V}\) \& \& \& 30 \& mA \\
\hline \multirow[t]{3}{*}{\(\mathrm{V}_{2}\)} \& \multirow[t]{3}{*}{\begin{tabular}{l}
Output voltage: Iow \\
medium \\
high (TDA4431)
\end{tabular}} \& \(\mathrm{f}_{\text {tuning }}<\mathrm{f}_{\mathrm{o}}\) \& \& \& 0.8 \& V \\
\hline \& \& \[
\begin{aligned}
\& f_{\text {tuning }}=f_{o} \\
\& V_{s}=10.8 \text { to } 14.5
\end{aligned}
\] \& 5.5 \& \& 8.5 \& V \\
\hline \& \& \(\mathrm{f}_{\text {tuning }}>\mathrm{f}_{\mathrm{o}}\) \& \(\mathrm{V}_{5}-0.5\) \& \& \& V \\
\hline \multirow[t]{3}{*}{\(\mathrm{V}_{2}\)} \& \multirow[t]{3}{*}{Output voltage

(TDA4433)} \& $\mathrm{f}_{\text {tuning }}<\mathrm{f}_{\mathrm{o}} \quad \mathrm{I}_{2}=1 \mathrm{~mA}$ \& $\mathrm{V}_{5}-0.5$ \& \& \& V

\hline \& \& $\mathrm{f}_{\text {tuning }}=\mathrm{f}_{\mathrm{o}}$ \& \& \& 0.8 \& V

\hline \& \& $\mathrm{f}_{\text {tuning }}>\mathrm{f}_{0}$ \& \& \& 0.8 \& V

\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS (continued)

Parameter			Test conditions		Min.	Typ.	Max.	Unit
v_{6}	Output voltage		$\mathrm{f}_{\text {tuning }}<\mathrm{f}_{\mathrm{o}}$	$\mathrm{I}_{6}=1 \mathrm{~mA}$			0.8	V
			$\mathrm{f}_{\text {tuning }}=\mathrm{f}_{0}$	$\mathrm{I}_{6}=1 \mathrm{~mA}$			0.8	V
	(TDA4433)		$\mathrm{f}_{\text {tuning }}>\mathrm{f}_{\mathrm{o}}$		$\mathrm{V}_{5}-0.5$			V
I_{2}	Output current (TDA4431)						± 25	$\mu \mathrm{A}$
V_{3}	Input voltage range				4		8	V
V_{30}	Upper threshold voltage (see fig. 2)				$\mathrm{V}_{4}-25$	V_{4}	$V_{4}+25$	mV
$V_{3 L}$	Lower threshold voltage (see fig. 2)				$V_{4}-425$	$V_{4}-400$	$V_{4}-375$	mV
R_{3}	Input resistance		$V_{3}=V_{4}$		1.4			$\mathrm{M} \Omega$
V_{4}	Regulated voltage		$\mathrm{I}_{4}=1 \mathrm{~mA}$			6.6		V
I_{4}	Output current						1	mA
R_{4}	Output differential resistance					60		Ω
$\frac{\Delta \mathrm{V}_{4}}{\Delta \mathrm{~T}_{\mathrm{s}}}$	Regulated voltage thermal drift						± 2	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
V_{10}	Identification output voltage	no identification	$\mathrm{I}_{10}=1 \mathrm{~mA}$		$\mathrm{V}_{5}-1.3$			V
		identification					20	mV
R_{10}	Output resistance					100		Ω
V_{12}	Switch off threshold voltage						1	V
I_{12}	Input flyback current				0.5		1.5	mA
R_{12}	Input resistance		$\mathrm{V}_{12}=3 \mathrm{~V}$			10		$K \Omega$
$\mathrm{t}_{\text {fly }}$	Flyback pulse duration				10		17	$\mu \mathrm{sec}$.
t	Time delay between leading edges of flyback pulse and sync. pulse				0		3.5	$\mu \mathrm{sec}$.
V_{13}	Video input signal (peak to peak)				2.5		4.5	V
V_{13}	Sync. pulse amplitude (above black level)				0.52			V
R_{13}	Input resistance						1.5	$K \Omega$

Fig. 1 - Medium output voltage Vs. Supply voltage.

Fig. 2 - Digital AFC threshold voltage vs. frequency.

Input Voltage $\left(\mathrm{V}_{3}\right)$	TDA4431	TDA4433	
	Output voltage $\left(\mathrm{V}_{2}\right)$	Output voltage $\left(\mathrm{V}_{2}\right)$	Output voltage $\left(\mathrm{V}_{6}\right)$
$\mathrm{V}_{3}>\mathrm{V}_{4}$	Low level	High level	Low level
$\mathrm{V}_{4}-0.4 \mathrm{~V}<\mathrm{V}_{3}<\mathrm{V}_{4}$	Medium level	Low level	Low level
$\mathrm{V}_{3}<\mathrm{V}_{4}-0.4 \mathrm{~V}$	High level	Low level	High level

APPLICATION INFORMATION (refer to the block diagram)

TV signal identification circuit:

The circuit recognizes only TV signals by checking logically during one line the coincidence between the horizontal flyback pulse and the pulse detected by a sync. separator.
The signal identification is carried out by charging the capacitor connected to pin 5 ; when the capacitor voltage overcomes a fixed threshold voltage, a Schmitt trigger switches and enables the AFC control. If a TV signal is recognized, the capacitor is slightly charged every line and its voltage reaches the threshold after a number of line which is defined by the value of the capacitor itself. The sensitivity of the identification circuit, hence the number of lines required to charge the capacitor, can be adjusted by means of the resistor connected between pin 11 and ground.
When the identification has been made, a signal (level L) is available at pin 10.

Threshold circuit:

The circuit detects 3 ranges of AFC voltage and in combination with the TV signal identification circuit drives the electronic switches.
With a correct TV signal, the output levels corresponding to the 3 ranges are:

	TDA4431 $\left(V_{2}\right)$	TDA4433	
		$\left(\mathrm{V}_{2}\right)$	$\left(\mathrm{V}_{6}\right)$
$\mathrm{f}_{\mathrm{o}}-\delta \mathrm{f}$	L	H	L
f_{0}	M	L	L
$\mathrm{f}_{\mathrm{o}}+\delta \mathrm{f}$	H	L	H

$$
\begin{aligned}
\mathrm{L} & =\text { Low level } \\
\mathrm{M} & =\text { Medium level } \\
\mathrm{H} & =\text { High level }
\end{aligned}
$$

Note that the output levels are different for the two devices.
The TDA4431 provides three output levels: low (L), medium (M) and high (H). The output at pin 2 remains at medium level if no video signal is applied at the input or if a video signal is applied but is not identified as a true TV signal.
The TDA 4433 has two separate outputs which can have only two states, high (H) or low (L). The outputs at pin 2 and at pin 6 remain at a low level with no video signal input or with a video signal not identified as a true TV signal. Both pin 2 and pin 6 are open collector outputs and must be pulled-up to the positive supply voltage by external resistors.

Voltage Regulator

The circuit can deliver 1 mA and it can be used as D/A converter reference to supply fine tuning voltage.

Fig. 3 - Application circuit

The passive components should be chosen as follows:
R_{1} and R_{2} : these define the AFC response slope. For $R_{1}=R_{2}=5.1 \mathrm{~K} \Omega$, the typical slope is $750 / 11$ $\mathrm{KHz} / \mathrm{V}$ (with AFC output unloaded).
$\mathrm{S}_{1} \quad:$ switches between low slope (LS) and high slope (HS). The high slope is typically 88/11 KHz/V.
R_{3} and R_{4} : the ratio $\left(R_{3}+R_{4}\right) / R_{3}$ defines the digital AFC width (δ f) calculated from the linear AFC width ($2 \Delta \mathrm{f}$). With $\mathrm{V}_{\mathrm{s}}=12 \mathrm{~V}$, the relation is:

$$
\delta f=0.036(2 \Delta f) \frac{R_{3}+R_{4}}{R_{3}}
$$

$\mathrm{R}_{\mathrm{T} 1} \quad$: by means of this trimmer it is possible to align the linear tuning with the digital one, at the same frequency. The typical relation is:

$$
R_{a}=33 R_{3}
$$

with $R_{3}=3.3 \mathrm{~K} \Omega, \mathrm{R}_{\mathrm{a}}$ can be a fixed resistor of $110 \mathrm{~K} \Omega$.
$\mathrm{R}_{\mathrm{T} 2} \quad$: by means of this trimmer it is possible to choose the better sensitivity. It is possible to put a fixed resistor at pin 11 in the range of $68 \mathrm{~K} \Omega$ to $100 \mathrm{~K} \Omega$.

To make a better sensitivity adjustment of trimmer $\mathrm{R}_{\mathrm{T} 2}$, it is necessary to use only a weak signal at the antenna. The video information must be a black picture or a field of small white points on a black field. Furthermore, the action of the syncs separator must be as quick as possible.
In receivers with automatic program search, S1 should be in the HS position and then the components S1, R1 and R2 can be omitted completely.

Fig. 4 - Linear and digital AFC

EPM SYSTEM CONFIGURATIONS

1) For 16 channels

2) For 32 channels

3j vüitn microprocessor

LINEAR INTEGRATED CIRCUIT

MULTIFUNCTION SYSTEM FOR TAPE PLAYERS

The TDA 7270 S is a multifunction monolithic integrated circuit in a 16 -lead dual in-line plastic package specially designed for use in car radios cassette players, but suitable for all applications requiring tape playback.
It has the following functions:

- Motor speed regulator
- Automatic stop
- Manual stop
- Pause
- Cassette ejection
- Radio - Playback automatic switching.

The circuit incorporates also:

- Thermal protection
- Short circuit protection to ground (all the pins)

ABSOLUTE MAXIMUM RATINGS

V_{s}	Supply voltage	20	V
I_{1}	Sink peak current at pin 1	2	A
I_{5}	Sink peak current at pin 5	2	A
$P_{\text {tot }}$	Power dissipation at $T_{\text {amb }} \leqslant 80^{\circ} \mathrm{C}$	1	W
$T_{\text {stg } ;} T_{j}$	Storage and junction temperature	-40 to 150	${ }^{\circ} \mathrm{C}$

ORDERING NUMBER: TDA 7270 S

MECHANICAL DATA

CONNECTION DIAGRAM

(top view)

BLOCK DIAGRAM

TEST CIRCUIT

THERMAL DATA

$\mathbf{R}_{\text {th } \mathrm{j}}$-amb	Thermal resistance junction-ambient	\max	70	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathbf{R}_{\text {th } \mathrm{j} \text {-case }}$	Thermal resistance junction-pins	\max	15	${ }^{\circ} \mathrm{C} / \mathrm{W}$

ELECTRICAL CHARACTERISTICS (Refer to the test circuit; $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{s}}=14 \mathrm{~V} ; \mathrm{S}_{7}$ at B, unless otherwise specified)

	Parameter	Test conditions	Min.	Typ.	Max.	Unit
v_{s}	Supply voltage		6		18	V
I_{d}	Quiescent drain current	Automatic stop- S_{3} at B S_{4} at B		5	10	mA
		Pause - S_{3} at $A ; S_{4}$ at A		9	15	
I_{5}	Maximum outpuit current for relay driving		150			mA
$\mathrm{T}_{\text {sd }}$	Thermal shut-down case temperature	$\begin{aligned} & P_{\text {tot }}=1 W \\ & \left(\frac{\Delta V_{\text {ref }}}{V_{\text {ref }}}=-5 \%\right) \end{aligned}$	105	125		${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS (continued)

Parameter	Test conditions	Min.	Typ.	.$^{\text {Max. }}$	Unit
MOTOR SPEED CONTROL					
IMS Starting current (pin 1)		1			A
$\mathrm{V}_{\text {ref }} \quad$ Reference voltage ($\mathrm{pin} 2-3$)	$\mathrm{I}_{\mathrm{M}}=100 \mathrm{~mA}$	1.15	1.25	1.35	V
$\frac{\Delta V_{\text {ref }}}{V_{\text {ref }}} / \Delta V_{s}$	$\begin{aligned} & \mathrm{I}_{\mathrm{M}}=100 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{s}}=8 \text { to } 18 \mathrm{~V} \end{aligned}$		0.1	0.4	\%/V
$\frac{\Delta V_{\text {ref }}}{V_{\text {ref }}} / \Delta I_{\text {M }}$	$\mathrm{I}_{\mathrm{M}}=50$ to 400 mA		0.01	0.03	\%/mA
$\frac{\Delta V_{\text {ref }}}{V_{\text {ref }}} / \Delta T$	$\begin{aligned} & { }^{\prime} \mathrm{M}=100 \mathrm{~mA} \\ & \mathrm{~T}_{\mathrm{amb}}=-20 \text { to } 70^{\circ} \mathrm{C} \end{aligned}$		0.01		\%/ ${ }^{\circ} \mathrm{C}$
$\mathrm{V}_{2} \quad$ Operating voltage	$I_{M}=100 \mathrm{~mA} \quad \frac{\Delta V_{\text {ref }}}{V_{\text {ref }}}=-5 \%$	2.4			V
$K \quad$Reflection coeff. $\left(\mathrm{K}=\mathrm{I}_{\mathrm{M}} / \mathrm{I}_{\mathrm{T}}\right.$ see fig. 12)	$\mathrm{I}_{\mathrm{M}}=100 \mathrm{~mA}$	18	20	22	-
$\frac{\Delta K}{K}-/ \Delta V_{s}$	$\begin{aligned} & \mathrm{I}_{\mathrm{M}}=100 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{s}}=8 \mathrm{~V} \text { to } 18 \mathrm{~V} \end{aligned}$		0.3	1	\%/V
$\frac{\Delta K}{K} / \Delta I_{M}$	$\mathrm{I}_{\mathrm{M}}=50$ to 400 mA		0.005	0.02	\%/mA
$\frac{\Delta K}{K} / \Delta T$	$\begin{aligned} & \mathrm{I}_{\mathrm{M}}=100 \mathrm{~mA} \\ & \mathrm{~T}_{\mathrm{amb}}=-20 \text { to } 70^{\circ} \mathrm{C} \end{aligned}$		0.01		\%/ ${ }^{\circ} \mathrm{C}$

PAUSE

I_{3}	Current consumption	S_{4} at A	1.4		mA
$\mathrm{~V}_{8-1}$	$\mathrm{~S}_{4}$ at A			0.2	V

EJECTION

I_{7}		S in A	20			$\mu \mathrm{~A}$
$\mathrm{~V}_{5-8}$	Saturation voltage	$\mathrm{I}_{5}=100 \mathrm{~mA}$		2.1	3	V
$\mathrm{~V}_{5}$	Saturation voltage	$\mathrm{I}_{5-8}=1.5 \mathrm{~A}$		2.2	3	V
$\mathrm{~V}_{4}$	(Pause condition)	S_{1} at $\mathrm{A} \quad \mathrm{S}_{3}$ at $\mathrm{A} \quad \mathrm{S}_{4}$ at A	6			V
$\mathrm{~V}_{4}$	(Radio)	S_{1} at $\mathrm{A} \quad \mathrm{S}_{3}$ at $\mathrm{B} \quad \mathrm{S}_{4}$ at B	6	9		V
$\mathrm{~V}_{4}$	(Tape)	S_{1} at $\mathrm{A} \quad \mathrm{S}_{3}$ at $\mathrm{A} \quad \mathrm{S}_{4}$ at B			1.7	V
R_{0}	Output impedance at $\operatorname{pin} 4$	$\mathrm{~S}_{3}$ at B		16	22	$\mathrm{~K} \Omega$

AUTOMATIC STOP

V_{8-1}	Saturation voltage	S_{1} at $B \quad S_{2}$ at $B \quad S_{3}$ at B			1	$\mu \mathrm{~A}$	
I_{6}	Minimum current to avoid stop	S_{1} at C			1	$\mu \mathrm{~A}$	
I_{7-8}	Load current for delay circuit	$\mathrm{I}_{6}=0 \quad \mathrm{~S}_{7}$ at A	S_{2} at B	10.5	15	19.5	$\mu \mathrm{~A}$

\mathcal{M} TDA7270S

Fig. 1 - Reference voltage
vs. supply voltage.

rig. 4 - Saturation voitage (pins 5-8) vs. pin 5 current.

Fig. 2 - Reference voltage vs. motor current.

Fiy. 5 - Refilectioñ cuef-
ficient vs. supply voltage.

Fig. 3 - Reference voltage vs. ambient temperature.

$-20-10 \quad 0+10+20+30+40+50 \mathrm{Tamb}\left({ }^{\circ} \mathrm{C}\right)$

Fig. 7 - Reflection coefficient vs. ambient temperature.

Fig. 8 - Pin 1 saturation voltage vs. motor current.

APPLICATION INFORMATION

The TDA 7270S incorporates four different functional blocks:

1) Motor speed control.
2) Autostop circuit.
3) Radio/Playback switching
4) Relay driver.

The motor speed control is a conventional circuit providing correction for the internal losses of the motor. Fig. 9 shows the external circuit.
The values of R_{T}, R_{S} and R_{K} determine the regulation characteristics and motor speed.

$$
\mathrm{R}_{\mathrm{T}}=\mathrm{K} \cdot \mathrm{R}_{\mathrm{M}}
$$

where $K=$ the $I C$ regulator reflection coefficient and $R_{M}=$ motor internal resistance.
The following condition must be always satisfied

$$
R_{S} \leqslant 4 R_{T}
$$

Fig. 9

The voltage applied across the motor is given by

$$
V_{8-1}=V_{\text {ref }}\left[1+\frac{R_{T}}{R_{S}}\left(1+\frac{1}{K}\right)+\frac{R_{K}}{R_{S}}\right]
$$

and this is proportional to R_{K} which therefore adjusts the speed. The voltage between pin 2 and the supply must not fall below 0.3 V and so

$$
\left[V_{\text {ref } \min }\left(\frac{R_{T}}{R_{S}}\right)+I_{M \min }\left(\frac{R_{T}}{K_{\max }}\right)\right]>0.3 V
$$

The "pause" condition corresponds to $\mathrm{V}_{3}<50 \mathrm{mV}$; in this condition the motor will stop ($\mathrm{V}_{1-8}<0.2 \mathrm{~V}$), the capacitor C_{2} on the autostop circuit (see below) will no longer be charged and the pin 4 (cassette/ radio switch output) will be pulled high.

Nis
 TDA7270S

APPLICATION INFORMATION (continued)

The autostop circuit is shown in fig. 10.
In normal operation the capacitor $\mathrm{C}_{2}(22 \mu \mathrm{~F})$ is slowly charged by a constant current drawn by pin 7 of $15 \mu \mathrm{~A}$, and each time the pulser (a switch on the cassette take-up speed shaft) closes, C_{2} is discharged. If the cassette stops, and the pulse stops, the voltage on pin 7 falls.
This switches the power amplifier state and pin 5 goes low. Pin 5 can be used for one of two purposes:

1) to drive a stop warning light connected from pin 5 supply V_{s}.
2) to actuate a solenoid wired either to ground (to release the cassette) or to supply (to eject the cassette).

Fig. 10

The pause and/or cassette/radio switching shown in fig. 11 has an input/output on pin 4. If pin 4 is not used it should be grounded.

Fig. 11

This pin has the following logic.

Cass IN	Pause	Pin 4	Function
Open	Open	$>6 \mathrm{~V}$	motor off/radio on
Open	Close	$>6 \mathrm{~V}$	motor off/radio on
Close	Open	$<1.7 \mathrm{~V}$	motor on/cass. on
Close	Close	$>6 \mathrm{~V}$	pause/radio on

Fig. 12 - Application circuit

DESCRIPTION OF OPERATION (Refer to fig. 12)

When the cassette is introduced the switch T_{2} closes, the motor start to turn and the rotary switch generates the pulses which keep the levels of pin 5 and pin 7 high. A relay between pin 5 and ground holds the cassette. If there are no pulses at pin 6 (because tape stopped) or if the ejection switch T_{1} is closed, the voltages at pin 5 and pin 7 drop; the relay is thus de-energized and the cassette ejected; as soon as the cassette is ejected, the switch T_{2} opens and the motor stops. The capacitor at pin 7 discharges allowing the system to start again when another cassette is inserted. In other types of mechanical systems the cassette is ejected by energizing a relay; in this case the relay must be connected between pin 5 and the supply; the sequence of operations is then the same as described above. If the pause switch T_{3} is closed, the motor stops even though there are no pulses at pin 6 , the voltage levels at pins 7 and 5 remain high so the cassette is not ejected and the motor is ready to start again as soon as the pause key is released. A voltage for driving the radio-tape switching is available at pin 4 . This voltage level is high $(>6 \mathrm{~V})$ with stopped motor and is low ($<1.7 \mathrm{~V}$) with running motor.

APPLICATION SUGGESTION (See figure 12)

Component	$\underset{\text { value }}{\text { Recommended }}$	Purpose	Larger than recommended value	Smaller than recommended value	Allowe Min.	range Max.
R_{1}	$10 \mathrm{~K} \Omega$	Limits current from pin 7	Delayed ejection. Possibility that ejection does not work	High driving current at pin 7	0	$100 \mathrm{~K} \Omega$
R_{2}	$560 \mathrm{~K} \Omega$	By rotary switch it produces pulses which disable the automatic stop	Undesired operation of automatic switch	Possibility of audio interference spikes	$100 \mathrm{~K} \Omega$	$2 \mathrm{M} \Omega$
R_{3}	$10 \mathrm{~K} \Omega$	Limits the motor current during pause (T_{3} closed)	Reference voltage variation	Higher motor current during pause (T_{3} closed) with delayed stop of motor	$1 \mathrm{~K} \Omega$	$47 \mathrm{~K} \Omega$
R_{4}	$2.2 \mathrm{~K} \Omega$	Fixes voltage of pin 4 during pause and playback	Voltage at pin 4 increases	Voltage at pin 4 decreases. RadioPlayback switching could not work	$1.5 \mathrm{~K} \Omega$	$2.7 \mathrm{~K} \Omega$
R_{5}	$560 \mathrm{~K} \Omega$	Compensates for current loss between pin 6 and ground	Limited compensation	Necessity to increase C_{1} and decrease R_{2}	$100 \mathrm{~K} \Omega$	∞
R_{6}	$1 \mathrm{M} \Omega$	Compensates for current loss between pin 7 and ground. Also reduces recovery time	Limited compensation	Possibility that automatic stop will not work	$560 \mathrm{~K} \Omega$	∞
R_{T}	$\begin{gathered} K \cdot R_{M} \\ \text { (typical values) } \end{gathered}$	Compensates for voltage drops at motor terminals vs. ΔI_{M}	Danger of oscillations	Poor speed regulation versus ΔI_{M}	See note on next page	

APPLICATION SUGGESTION (continued)

Component	Recommended value	Purpose	Larger than recommended value	Smaller than recommended value	Allowed range Min. \quad Max.	
R_{S}	See Note (*)	Fixes the current value in R_{T} and and R_{K} for $I_{M}=0$	Danger of saturation of non inverting input of regulator (pin 2). Considerable speed variation for small variation of R_{K}	Impossibility to obtain a low motor speed		$4 \mathrm{R}_{T}$
R_{K}	See Note (*)	Fixes the requested V_{8-1}	Wide speed variation versus ΔR_{K}	Limited speed variation versus ΔR_{K}		
C_{1}	$0.1 \mu \mathrm{~F}$	DC isolation	Electrolytic capacitors cannot be used	Undesired automatic stop	$\begin{gathered} 0.047 \\ \mu \mathrm{~F} \end{gathered}$	
C_{2}	$22 \mu \mathrm{~F}$	Integrates the pulses of the rotary switch	High recovery time	Low recovery time. Undesired automatic stop	$3.3 \mu \mathrm{~F}$	
C_{3}	$10 \mu \mathrm{~F}$	By pass	Wow and flutter problems	Instability at low temperature	$5 \mu \mathrm{~F}$	$22 \mu \mathrm{~F}$
Rotary switch frequency	20 Hz	Keeps automatic stop off	Possibility of audio interference spikes	Necessity to increase C_{1} and C_{2}		

NOTE (*):
$-V_{8-1}=V_{\text {ref }}\left[1+\frac{R_{T}}{R_{S}}\left(1+\frac{1}{K}\right)+\frac{R_{K}}{R_{S}}\right]$ from which it can be seen that V_{8-1} varies linearly with R_{K}.

- The voltage between pin 2 and the supply must not fall below 0.5 V , so the following expression must be verified

$$
\left[V_{\text {ref } \min }\left(\frac{R_{T}}{R_{S}}\right)+I_{M \min }\left(\frac{R_{T}}{K_{\max }}\right)\right]>0.3 V
$$

- During the pause, the voltage between pin 3 and ground must be lower than 1.3 V .

Fig. 13 - Speed variation vs. supply voltage

$\begin{array}{lllllll}8 & 10 & 12 & 14 & 16 & 18 & 20\end{array}$

Fig. 14 - Speed variation vs. motor current

$\begin{array}{llllllllll}0 & 20 & 40 & 60 & 80 & 100 & 120 & 140 & 160 & \mathrm{I}_{\mathrm{M}}(\mathrm{mA})\end{array}$

Fig. 15 - Speed variation vs. ambient temperature

APPLICATION SUGGESTION (continued)

Fig. 16 - Delay time of the relay driver ($\mathrm{C}_{2}=2.2 \mu \mathrm{~F}$)

Fig. 17 - Low cost application circuit

The circuit shown in fig. 17 offers the following functions:

1) motor speed regulation
2) automatic stop
3) autostop warning light
4) pause.

The circuit incorporates an additional resistor/diode from pin 3 to pin 5. When the cassette stops, and the pulser no longer generates pulses, pin 5 falls to a low level and the stop indicator is on.
Pin 3 is pulled low through the $1 \mathrm{~K} \Omega$ resistor and the diode, however pin 3 must not be pulled lower than 1.3 V since this would cause pin 5 to go high again. The current of about 1 mA out of pin 3 causes V_{3-5} to be about 1.5 V .
In this way the motor remains stopped and pin 5 remains low.

MOUNTING INSTRUCTIONS

Fig. 18 - Example of heatsink using PC board copper

Fig. 19 - Example of external heatsink

Figures 18 and 19 show two ways to make the device dissipate. In both cases, $\mathrm{R}_{\mathrm{th}}=35^{\circ} \mathrm{C} / \mathrm{W}$.

Information furnished is believed to be accurate and reliable. However, no responsibility is assumed for the consequences of its use nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-ATES. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and substitutes all information previously supplied.

[^0]: ${ }^{\circ}$ Parameters are guaranteed within the temperature range by $25^{\circ} \mathrm{C}$ correlation measurements.

 * Automotive devices only.
 (*) For MIL class B/C and ESA/SCCG products see relevant SGS-ATES documents.

[^1]: Double and multiple sampling plan inspection may be used.
 5 = Use first sampling plan below arrow. If sample size equals, or exceeds, lot or batch size, do 100 percent inspection.
 O Use first sampling plan above arrow.
 $A c=$ Acceptance number.
 Rc $=$ Rejection number.

[^2]: Notes:

[^3]: * See block diagram and the note for Position Amplifier.

[^4]: (*) Short circuits from the output to positive supply voltage can cause excessive heating and eventual destruction. The maximum output current is 40 mA typ. independent of the magnitude of V_{s}. Destructive dissipation can result from simultaneous shorts on all amplifiers.

[^5]: * Measured with the device mounted on a ceramic substrate ($25 \times 16 \times 0.6 \mathrm{~mm}$).

[^6]: * The thermal resistance is measured with the device mounted on a ceramic substrate ($25 \times 16 \times 0.6 \mathrm{~mm}$).

[^7]: * Measured with the device mounted on a ceramic substrate ($25 \times 16 \times 0.6 \mathrm{~mm}$)

[^8]: * Measured with the device mounted on a ceramic substrate ($25 \times 16 \times 0.6 \mathrm{~mm}$)

[^9]: *) The collector of each transistor of the LS159 is isolated from the substrate by an integrated diode.
 The substrate (p in 13) must be connected to the most negative point in the external circuit to maintain isolation between transistors and to provide for normal transistor action.

[^10]: * Fixed gain mode.

[^11]: * The thermal resistance is measured with device mounted on a ceramic substrate ($25 \times 16 \times 0.6 \mathrm{~mm}$)

[^12]: * See fig. 6.

[^13]: * Obtained with tabs soldered to printed circuit with minimized copper area.

[^14]: * Capacitor C6 must be used when high ripple rejection is requested.

[^15]: ** See "Thermal considerations".

[^16]: *1N4001 OR EQUIVALENT

[^17]: * The thermal resistance is measured with the device mounted on a ceramic substrate ($25 \times 16 \times 0.6 \mathrm{~mm}$).

