DIGITAL

 integrated circuitdatabook

PLESSEY SEMICONDUCTOR PRODUCTS

DIGITAL

integrated circuil databook

august 1975

product index

DIGITAL INTEGRATED CIRCUITS
 Page

Process Control Circuits

SP520 Gray code counter 3
SP521 Binary rate multiplier 7
SP522 Phase lock, divider and comparator 11
Interface Circuits

SP705
SP721
SP722
SP723
SP724
SP761B
SP762B
SP763B
SP764B
SP765B

Crystal oscillator circuit 17
Balanced line driver 20
Balanced line receiver 20
Balanced line receiver with complementary O/Ps 20
Dual balanced line receiver 20
5 relay drivers, 150 mA 24
5 relay drivers, $200 \mathrm{~mA} \quad 24$
10 relay drivers, 50 mA 28
10 relay drivers, $150 \mathrm{~mA} \quad 28$
10 relay drivers, $200 \mathrm{~mA} \quad 28$
PECL II
SP1001B
SP1004B
SP1007B
SP1010B
SP1013B
SP1014B
SP1020B
SP1023B
SP1026B
SP1027B
SP1030B
SP1032B
SP1033B
SP1034B
SP1035B
SP1039B
SP1048B
PECL III
SP1648B
SP1650B
SP1651B
SP1658B
SP1660B
SP1661B
SP1662B
SP1663B
SP1664B
SP1665B
SP1666B
SP1667B
SP1668B
SP1669B
SP1670B
SP1671B
SP1672B
SP1673B
SP1674B
SP1675B
SP1690B
SP1692B
Single 6-1/P gate 35
Dual 4-I/P gate 35
Triple 3-1/P gate 35
Quad 2-1/P gate 35
AC coupled J-K Flip Flop (85 MHz) 35
Dual R-S Flip Flop (positive clock) 35
Quad line receiver 35
Dual 4-I/P OR/NOR clock driver 35
Dual 3/4-I/P transmission line and clock driver 35
AC coupled J-K Flip Flop (120 MHz) 35
Quad exclusive OR gate 35
AC coupled dual J-K Flip Flop 100 MHz clock 36
Dual R-S Flip Flop (single rail, positive clock 36
Type D Flip Flop 36
Triple line receiver 36
Quad level translator (PECL to saturated logic) 36
Quad 2-I/P NAND gates 36

Voltage controlled oscillator 45
Dual A/D comparator 53
Dual A/D comparator 53
Voltage controlled mulivibrator 65
Dual 4-I/P OR/NOR gate Hi-Z 69
Dual 4-I/P OR/NOR gate Lo-Z 44
Quad 2-1/P NOR gate HI-Z 73
Quad 2-1/P NOR gate Lo-Z 44
Quad 2-1/P OR gate $\mathrm{Hi}-\mathrm{Z}$
Quad 2-1/P OR gate Lo-Z 44
Dual clocked R-S Flip Flop Hi-Z 81
Dual clocked R-S Flip Flop Lo-Z 44
Dual clock latch $\mathrm{Ht}-\mathrm{Z} \quad 85$
Dual clock latch Lo-Z 44
Master slave D Flip Flop Hi-Z 89
Master slave D Flip Flop Lo-Z 44
Triple 2-1/P exclusive OR gate $\mathrm{Hi}-\mathrm{Z} \quad 97$
Triple 2-1/P exclusive OR gate Lo-Z 44
Triple 2-1/P exclusive NOR gate $\mathrm{Hi}-\mathrm{Z}$
Triple 2-1/P exclusive NOR gate Lo-Z 44
UHF prescaler type D Flip Flop 105
Quad line receiver 111111
SP8000 SERIES HIGH SPEED DIVIDERS Page
SP8600 $250 \mathrm{MHz} \div 4$ 115
SP8601 $150 \mathrm{MHz} \div 4$ 119
SP8602 $500 \mathrm{MHz} \div 2$ 123
SP8603 $400 \mathrm{MHz} \div 2$ 123
SP8604 $300 \mathrm{MHz} \div 2$ 123
SP8613 $700 \mathrm{MHz} \div 4$ 127
$800 \mathrm{MHz} \div 4$ 127
$900 \mathrm{MHz} \div 4$ 127
SP8615 SP8616B
$1 \mathrm{GHz} \div 4$
$1 \mathrm{GHz} \div 4$ 127 127
SP8616DSP8621
$950 \mathrm{MHz} \div 4$ 127
$300 \mathrm{MHz} \div 5$ 131
SP8622 $200 \mathrm{MHz} \div 5$ 131
$600 \mathrm{MHz} \div 10$ 133
$500 \mathrm{MHz} \div 10$ 133
SP863
$400 \mathrm{MHz} \div 10$ 133
SP8632
$700 \mathrm{MHz} \div 10$ (BDC) 137
$600 \mathrm{MHz} \div 10$ (BDC) 137
SP8635
$500 \mathrm{MHz} \div 10$ (BDC) 137
$400 \mathrm{MHz} \div 10$ (BDC) 137
$200 \mathrm{MHz} \div 10 / 11$ 141
$250 \mathrm{MHz} \div 10 / 11$ 141
$300 \mathrm{MHz} \div 10 / 11$ 141
$350 \mathrm{MHz} \div 10 / 11$ 141
$600 \mathrm{MHz} \div 16$ 147
$500 \mathrm{MHz} \div 16$ 147
$400 \mathrm{MHz} \div 16$ 147
$200 \mathrm{MHz} \div 32$ 151
$200 \mathrm{MHz} \div 20$ 151
$200 \mathrm{MHz} \div 16$ 151
$1 \mathrm{GHz} \div 10$ 153
$1.1 \mathrm{GHz} \div 10$ 153
$1.2 \mathrm{GHz} \div 10$ 153
$500 \mathrm{MHz} \div 10 / 11$
$500 \mathrm{MHz} \div 10 / 11$ 153 153
$200 \mathrm{MHz} \div 10 / 11$ Low power, AC input
$200 \mathrm{MHz} \div 10 / 11$ Low power, AC input 155 155
SP8685
SP8685
SP8690B
SP8690B
200 MHz : 0 IT Low power, Ac input
200 MHz : 0 IT Low power, Ac input 157
MOS
MP1013A Universal asynchronous receiver/transmitter 165
MP3409B Quad 80-BIT dynamic shift register 173
MP3417B Quad 64-BIT dynamic shift register 173
MP9100 Push button telephone dialer 177
MP9200 Repertory telephone store 181
MNOS (NON-VOLATILE MEMORY ELEMENTS)
NOM201 Single MNOS transistor 187
NOM202 Dual MNOS transistor 187
NOM204 Quad MNOS transistor 187
NOM401C 8×8 MNOS array 193

digital

Process control circuits Interface circuits

SP520SERIES
 PROCESS CONTROL CIRCUITS

SP520B

GRAY CODE COUNTER

The SP520 digital integrated circuit is an RTL 5-bit up/down counter in positive logic with both Gray code and natural binary code TTL-compatible outputs. Other inputs and outputs use modified RTL to give improved noise immunity.

SP520 counters can be cascaded by suitable external connections to give a counter with any multiple of 5 bits. The counter is of a non-overflow design and will operate with an input frequency in excess of $\mathbf{1 M H z}$. It can be reset to the $\mathbf{0 0 0 0 0}$ state and the Gray O/Ps can be inhibited for "wired OR" applications.

Fig. 1 Logic diagrams

Pin No.	Function	Pin No.	Function
1	Common rail (0V)	14	Inhibit carry O/P to 1st flip-flop of next
2	Common rail (0V)		counter (C_{01})
3	Counter external direction control (Logic ' 0 ' =up)	15	Enable carry O / P to gate chain of next counter (C_{02})
4	Binary code O/P direction (D_{0})	16	Inhibit I/P for all Gray O/Ps except auxiliary
5	Binary code O/P Bit 1 (B1)		Gray code O/P Bit 5 (INH)
6	Binary code O/P Bit 2 (B2)	17	Gray code O/P Bit 5 (G5)
7	Binary code O/P Bit 3 (B3)	18	Gray code O/P Bit 4 (G4)
8	Binary code O/P Bit 4 (B4)	19	Gray code O/P Bit 3 (G3)
9	Binary code I/P Bit 5 (B5I)	20	Gray code O/P Bit 2 (G2)
10	Positive supply rail (VCC)	21	Gray code O/P Bit 1 (G1)
11	Auxiliary Gray code O/P Bit 5 (05)	22	Enable gate chain $1 / \mathrm{P}\left(\mathrm{Cl}_{2}\right)$
12	Reset I/P for all flip-flop stages (forces 00000 state)	$\begin{aligned} & 23 \\ & 24 \end{aligned}$	Inhibit I/P to 1 st flip-flop $\left(\mathrm{Cl}_{1}\right)$ No connection
13	Clock I/P		

ELECTRICAL CHARACTERISTICS

Test conditions (unless otherwise stated)
$T_{\text {amb }}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$V_{C C}=5.0 \mathrm{~V} \pm 0.25 \mathrm{~V}$

Characteristic	Value			Units	Conditions
	Min	Typ	Max		
INPUT REQUIREMENTS					
Counter external direction control (pin 3), Binary code I/P bit 5 (pin 9), and Enable gate chain I/P (pin 22):					
Input voltage 'High'	3.0			V	
Input voltage 'Low'			1.0	V	
Input current			25	$\mu \mathrm{A}$	$\mathrm{V}_{\text {in }}=3.0 \mathrm{~V}$
Inhibit I/P for Gray O/Ps (pin 16)					
Input voltage 'High'	3.0			V	
Input voltage 'Low'			1.0	V	
Input current 'High'			250	$\mu \mathrm{A}$	$\mathrm{V}_{\text {in }}=3.0 \mathrm{~V}$
Input current 'Low'			50	$\mu \mathrm{A}$	$V_{\text {in }}=1.0 \mathrm{~V}$
Reset I/P for all flip-flops (pin 12)					
Input voltage 'High'	2.3			V	
Input voltage 'Low'			0.8	V	with voltage drive
Input current			3.5	mA	
Input current 'High'	1.0			mA	With current drive
Clock I/P (pin 13)					
Input voltage 'High'	3.0			V	See note 1
Input voltage 'Low'			1.0	v	
Input current			200	$\mu \mathrm{A}$	$\mathrm{V}_{\text {in }}=3.0 \mathrm{~V}$
Input clock frequency			1	MHz	1:1 mark = space ratio
Input slew rate	20			$\mathrm{V} / \mu \mathrm{s}$	See note 2
Inhibit I/P to 1st flip-flop (pin 23)					
Input voltage 'High'	2.3			V	See note 3
Input voltage 'Low'			0.8	v	
Input current			2.0	mA	$\mathrm{T}_{\mathrm{amb}}=+70^{\circ} \mathrm{C}, \mathrm{V}_{\text {in }}=2.3 \mathrm{~V}$
Input slew rate	20			$\mathrm{V} / \mu \mathrm{s}$	See note 2
OUTPUT CHARACTERISTICS					
Binary code O/P bits 1-4 (pins 5-8)					
Output voltage 'Low'			0.4	V	Sink current $=6.4 \mathrm{~mA}$
Output voltage 'High'		VCC		V	$\mathrm{I}_{\text {out }}=0 \mathrm{~mA}$
Output impedance in 'High' state		6.0	8.0	$k \Omega$	
Binary code O/P direction (pin 4)					
Output voltage 'Low'			0.4	v	Sink current $=6.4 \mathrm{~mA}$
Output voltage 'High'		$V_{C C}$		V	$\mathrm{l}_{\text {out }}=0 \mathrm{~mA}$
Output impedance in 'High' state			2.6	k Ω	
Aux. Gray code O/P bit 5 (pin 11)					
Output voltage 'Low'			0.4	V	Sink current $=3.2 \mathrm{~V}$
Output voltage 'High'		V_{CC}		V	$\mathrm{l}_{\text {out }}=0 \mathrm{~mA}$
Output impedance in 'High' state			8.0	k Ω	
Gray code O/Ps bits 1.5 (pins 17-21)					
Output voltage 'Low'			0.4	v	Sink current $=8.0 \mathrm{~mA}$
Output voltage 'High'		4.2		V	$\mathrm{I}_{\text {out }}=0 \mathrm{~mA}$
Output impedance in 'High' state			3.4	$k \Omega$	
Output leakage to earth in inhibited state			20	$\mu \mathrm{A}$	$T_{\text {chip }}=100^{\circ} \mathrm{C}$

Characteristic	Value			Units	Conditions
	Min	Typ	Max		
Inhibit carry O / P to 1 st flip-flop of next counter Output voltage 'Low' (pin 14) Output voltage 'High'	2.4	2.75	$\begin{aligned} & 0.4 \\ & 3.2 \end{aligned}$	$\begin{aligned} & v \\ & v \end{aligned}$	$R_{\text {pd }}=4 \mathrm{k} \Omega$ (see notes 4 and 5)
Enable carry O / P to gate chain of next counter Output voltage 'Low' (pin 15) Output voltage 'High' Output impedance in 'High' state		VCC	$\begin{aligned} & 0.4 \\ & 4.8 \end{aligned}$	$\begin{gathered} v \\ v \\ k \Omega \end{gathered}$	Sink current $=3.2 \mathrm{~mA}$ $\mathrm{l}_{\text {out }}=0 \mathrm{~mA}$
Power supply drain current (pin 10)		70	96	mA	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$, clock $\mathrm{I} / \mathrm{P}=0 \mathrm{~V}$

notes

1. In the high state the input level affects the overall power consumption. The chip power consumption increases by approximately 12.5 mW and it might therefore be desirable to limit the clock input voltage with, say, a zener diode.
2. The flip-flops need fast edges for reliable toggling.
3. In the high state the input current is directly proportional to the input voltage and increases at approximately imA/V. It might therefore be desirable to limit the maximum input voltage.
4. An emitter foliower output will not sink current and is not therefore suitable for interfacing directly with TTL or DTL.
5. This output is an emitter follower with no internal pulldown resistor - when counters are cascaded the emitter follower pulldown is provided by the next stage.

Fig. 2 SP520 connected as a 5-bit counter

ABSOLUTE MAXIMUM RATINGS

Continuous +ve
supply voltage +7 V

Continuous +ve input voltage

Max. operating
junction temp Storage Temperature $\quad-50^{\circ} \mathrm{C}$ to $+175^{\circ} \mathrm{C}$

Fig. 3 Two SP520s connected as a 10-bit counter

SP521B

BINARY RATE MULTIPLIER

A binary rate multiplier (BRM) is a form of programmable divider in which the number of pulses appearing at the output for each full period of the counter is equal to the value of the binary number present on the binary inputs. Thus, if the binary word input to a BRM is, say, $10101(=21)$ then, for every 32 clock pulses counted only 21 will be gated onto the output.

The SP521 is a binary rate multiplier with two sets of binary control inputs, each associated with its own clock
phase. The phase 1 controls operate in conjunction with the counter chain clock ($\dot{\varphi} 1$). The phase 2 controls operate in conjunction with a separate clock ($\varphi 2$) which can be antiphase with $\dot{\psi} 1$ clock and interlaced with it. Phase 1 and phase 2 outputs can be combined by wiring them together.

The operating temperature range of the SP521 is $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ and the nominal supply voltages are OV and +5 V . The device, is available in 24-lead D.I.L 0.6 inch spacing ceramic packages.

Fig. 1 Logic Diagram

OPERATING NOTES

The phase 1 controls operate in conjunction with the master clock pulses of the BRM counter chain ($\varphi \mathbf{1}$ clock). The inputs operate with true positive logic and have CCSL-compatible input requirements. The phase 2 controls have standard RTL type inputs and operate with inverse positive logic in conjunction with the $\phi 2$ clock.

Phase 1 and phase 2 outputs are emitter followers with non-standard logic levels - the logic levels being set by
the logic levels of the phase 1 inputs and the $\varphi 2$ clock input respectively. In a multiple-package BRM (i.e. >5 bits) the phase 1 outputs are wired together to give the required output. If the $\dot{\varphi} 2$ clock input is interlaced with the $\psi 1$ clock, the phase 2 outputs can be wire-ORed with the phase 1 outputs to give a continuous pulse train. The maximum $\phi 1$ and $\phi 2$ clock input frequency is in excess of 1 MHz

PIN CONNECTIONS

Pin No.	Function	Pin No.	Function
1	No connection	14	Inhibit I/P to 1st flip-flop (Cl_{1})
2	Clock 1/P 91 (BRM drive)	15	Enable gate chain $\mathrm{I} / \mathrm{P}\left(\mathrm{Cl}_{2}\right)$
3	Positive supply rail (V_{CC})	16	Phase $10 / \mathrm{P}$ ($\phi 1$ OUT)
4	Clock I/P ¢ 2	17	Phase 1 Binary Control Input (true) Bit 5
5	Phase 2 Binary control input (inverse) Bit 1 ($\overline{\mathrm{S}} 1 \phi 2$)	18	```(S5\phi1) Phase 1 Binary Control Input (true) Bit 4```
6	Phase 2 Binary control input (inverse) Bit 2 ($\overline{\mathrm{S}} \dot{\varphi} \dot{\varphi} 2$)	19	
7	Phase 2 Binary control input (inverse) Bit 3 ($\overline{\mathrm{S}}{ }^{2} \phi 2$)	20	```(S3%1)```
8	Phase 2 Binary control input (inverse) Bit 4 $(\overline{\mathbf{S} 4} \dot{\psi} \mathbf{2})$	21	
9	Phase 2 Binary control input (inverse) Bit 5 ($\overline{5} 542$)	22	($\mathrm{S} 1 \phi 1$) Enable carry O/P to gate chain of next BRM
10	Phase 2 O/P (L_{2} OUT)		$\left(\mathrm{CO}_{2}\right)$ (
11	Common Rail, 0 volts	23	Inhibit carry O/P to 1st flip-flop of next BRM
12	No connection		$\left(\mathrm{CO}_{1}\right)$
13	No connection	24	No connection

ELECTRICAL CHARACTERISTICS

Test conditions (unless otherwise stated)
Tamb $=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 0.25 \mathrm{~V}$

Characteristic	Value			Units	Conditions
	Min.	Typ.	Max.		
INPUT CONDITIONS					
Clock $\dot{\psi 1} 1 / \mathrm{P}$ pin 2					
Input voltage 'high'	3.0			V	See note 1
Input voltage 'low'			1.0	V	
Input current			200	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=3.0 \mathrm{~V}$
Input slew rate	20			$V / \mu \mathrm{S}$	See note 2
Clock $\dot{\varphi} 21 / P(\operatorname{pin} 4)$					
Input voltage 'high'	3.1			V	
Input voltage 'low'			T. 0	V	
Input current			150	$\mu \mathrm{A}$	$V_{\text {IN }}=3.1 \mathrm{~V}$
Binary phase 1 control inputs, bits 1 to 5 (pins 17 to 21)					
Input voltage 'high'	3.1			V	See note 3
Input voltage 'low'			1.0	V	
Input current			20	$\mu \mathrm{A}$	$V_{\text {IN }}=3.1 \mathrm{~V}$
Phase 2 Binary control inputs, bits 1 to 5 (pins 5 to 9)					
Input voltage 'high'	1.0				
Input voltage 'low'			0.5	V	drive
Input current			0.5	mA	$V_{I N}=1 \mathrm{~V}$)
Input base resistor	1.0			$k \Omega$	
Input current 'high'	200			$\mu \mathrm{A}$	Current drive
Inhibit I/P to 1st flip-flop (pin 14)					
Input voltage 'high'	2.0			v	See note 1
Input voltage 'low'			1.0	v	
Input current			2.0	mA	$\mathrm{V}_{\text {IN }}=2.0 \mathrm{~V}$
Input slew rate	20			$\mathrm{V} / \mu \mathrm{S}$	See note 2

1. In the high state these inputs affect the overall chip power consumption. In the case of the clock $\phi 1$ input the power consumption increases with increasing input voltage level at approximately $\mathbf{1 2 . 5} \mathbf{~ m W} / \mathrm{V}$. In the case of the Inhibit I/P to 1 st flip flop the input current is directly proportional to the input voltage in the high state, and increases at approximately $1 \mathrm{~mA} / \mathrm{V}$.
2. The flip-flops need fast input edges for reliable toggling.
3. The voltage levels of the high states of the phase 1 and phase 2 outputs depend on the input voltages of the phase 1 binary inputs and the clock $\phi 2$ input respectively. In each case the output voltage level will be approximately $\mathbf{2} \mathrm{V}_{\mathrm{BE}}$ more positive than the appropriate input. voltage. These outputs have no internal pulldown resistors.
4. An emitter follower output will not sink current and is not therefore suitable for interfacing directly with TTL or DTL.

ABSOLUTE MAXIMUM RATINGS

$\left.\begin{array}{llll}\text { Continuous +ve supply } & & \text { Operating ambient } \\ \text { voltage }\left(\mathrm{V}_{\mathrm{CC}}\right) & +7 \mathrm{~V} & \text { temperature }\end{array}\right) \quad 0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.

Fig. 2 Two SP521s connected as a 10-bit BRM (packages viewed from above)

Fig. 3 SP521 logic states (5-bit BRM). Enable gate chain input held at logic '1', Inhibit 1st flip-flop held at logic ' 0 '.

SP520 SERIES
 PROCESS CONTROL CIRCUITS

SP522B
 PHASE LOCK, DIVIDER \& COMPARATOR

The SP522B is the most specialised of the Sr52U series of RTL argitai integratea circuits. It contains a frequency divide-byeight and interlacing circuit, a frequency comparator and digital filter, and an input phase-locking circuit.

Frequency divider

The clock input frequency of the dividing circuit is referred to as 8 f . An output is provided at a quarter of the clock frequency (2f), and 2 interlaced outputs are provided at one eighth of the clock frequency, $1 \mathrm{f} \phi 1$ and $1 \mathrm{f} \phi 2$. The maximum clock frequency of the divider chain is in excess of 2 MHz .

Frequency comparator and filter

The frequency comparator is a five-state up/down counter which can be reset to the central symmetrical state. The reset input to the comparator is NORed with the $1 \mathrm{f} \phi 1$ signal. There is one count up input to the counter and two alternative count down inputs, one of which is compatible with CCSL logic. Two direction outputs are provided and one difference frequency output.

When the counter has been set into the central state
by the reset there must be a difference of three pulses between the count up and count down inputs before there is a pulse in the difference frequency output. This means that a small amount of jitter in one input relative to the other will not appear at the output.

Phase lock circuit

The phase lock circuit accepts a random phase input (e.g. from a flowmeter transducer) and locks it to the phase of the master clock ($8 f$ input). The maximum frequency at which the phase lock circuit will work satisfactorily is 3.2 f . A race condition can occur on switching on, but if the master clock and the input signal are phase independent it clears itself very quickly. The phase-locked output at pin 3 is intended to be used as the count up input to the frequency comparator, and is then connected externally to pin 10.

Fig. 1 SP522B Logic diagram

PIN CONNECTIONS

Pin No.	Function	Pin No.	Function
1	No connection	13	No connection
2	Input frequency signal (inverse phase)	14	Additional comparator count down I/P for
3	Phase lock O/P (inverse phase)		CCSL logic
4	Positive supply rail $+\mathrm{V}_{\text {CC }}$	15	Master clock I/P (8f)
5	Direction control O/P (logic ' 0 ' = down)	16	$2 \mathrm{f} \phi 1 \mathrm{O} / \mathrm{P}$
6	Direction control O/P (logic ' 0 ' = up)	17	$1 \mathrm{f} \phi 2 \mathrm{O} / \mathrm{P}$
7	No connection	18	Common rail OV
8	No connection	19	Positive supply rail $+\mathrm{V}_{\mathrm{CC}}$
9	Difference frequency - comparator O/P	20	$1 \mathrm{f} \phi 10 / \mathrm{P}$
	(inverse phase)	21	Common rail OV
10	Comparator count up I/P (inverse phase)	22	No connection
11	Comparator count down I/P	23	Reset comparator I/P (true)
12	No connection	24	No connection

ELECTRICAL CHARACTERISTICS

Test conditions (unless otherwise stated):
$\mathrm{T}_{\mathrm{amb}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 0.25 \mathrm{~V}$

Characteristic	Value			Units	Conditions
	Min.	Typ.	Max.		
INPUT CONDITIONS					
Input frequency signal (pin 2)					See note 1
Input voltage 'high'	2.7			V	
Input voltage 'low'			1.0	V	
Input current			20	$\mu \mathrm{A}$	$\mathrm{V}_{1 \mathrm{~N}}=2.7 \mathrm{~V}$
Input slew rate	1			$\mathrm{V} / \mu \mathrm{S}$	See note 2
Comparator count-up input (pin 10)					
Input voltage 'high'	0.95			v	Voitage
Input voltage 'low'				v	drive
Input current		0.75	1.0	mA	$V_{\text {IN }}=0,95 \mathrm{~V}$
Input base resistor	420			Ω	
I/P current 'high'	150			$\mu \mathrm{A}$	Current drive
Comparator count-down I/P (pin 11)					
Input voltage 'high'	1.0			v	Voltage
Input voltage 'low'				V	$\mathrm{V}_{\text {IN }}=1.0 \mathrm{~V}$ drive
Input current		1.0	2.0	mA	$\begin{aligned} & V_{1 N}=1.0 \mathrm{~V} \\ & T_{\mathrm{amb}}=70^{\circ} \mathrm{C} \end{aligned}$
Input base resistor	350			Ω	
Input current 'high'	900			$\mu \mathrm{A}$	Current drive

Characteristic	Value			Units	Conditions
	Min.	Typ.	Max.		
Additional count down I/P (pin 14)					
Input voltage 'high'	2.2			V	
Input voltage 'low'			1.0	V	
Input current			30	$\mu \mathrm{A}$	$\mathrm{V}_{1} \mathrm{~N}=2.2 \mathrm{~V}$
Master clock I/P (pin 15)					
inpur voitage nign	2.1			iv	
Input voltage 'low'			1.0	V	
Input current			20	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$
Input slew rate	1			$\mathrm{V} / \mu \mathrm{S}$	See note 2
Reset comparator 1/P (pin 23)					
Input voltage 'high'	2.7			V	
Input voltage 'low'			1.0	V	
Input current			20	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$
OUTPUT CHARACTERISTICS					
Phase Lock O/P (pin 3)					See note 4
Output 'low'			0.4	v	Sink current $=1.6 \mathrm{~mA}$
Output 'high'	1.1			V	IOUT $=0 \mathrm{~mA}$
Output impedance in high state			7.2	$k \Omega$	
Direction controll O/PS (Pins 5 \& 6)					
Output 'low:			0.4	V	Sink current $=1.6 \mathrm{~mA}$
Output 'high'		V_{Cc}		V	IOUT $=0 \mathrm{~mA}$
Output impedance in high state			6.5	$k \Omega$	
Difference frefeency-comparator O/P (pin 9)					
Output voltage 'high'	3.1	3.5	3.8	V	
Output voltage 'low'		0.0	0.4	V	See note 5
$2 f$ ¢ $10 / \mathrm{P}$ (pin 16)					
Output voltage 'low'			0.4	V	Sink current $=1.6 \mathrm{~mA}$
Output voltage 'high'		V_{CC}		V	IOUT $=0 \mathrm{~mA}$
Output impedance in high state			5.2	$k \Omega$	
$1 \mathrm{f} \mathbf{~} 2 \mathrm{O} / \mathrm{P}$ (pin 17)					
Output voltage 'high'	3.5			V	
Output voltage 'low'			1.0	v	See note 5
$\overline{19} \boldsymbol{\phi 1} 0 / P(\operatorname{pin} 20)$					
Output voltage 'high'	3.1		3.8	V	
Output voltage 'low'		0.0	0.4	V	See note 5
Power supply drain current		70	82	mA	$V_{C C}=5 \mathrm{~V}$

[^0]

Fig. 2 Frequency divider logic timing

Fig. 3 Phase lock timing, illustrating recovery from race condition

Fig. 4 Frequency comparator and filter timing

ABSOLUTE MAXIMUM RATINGS

$$
\begin{array}{ll}
\text { Continuous +ve supply voltage } & +7 \mathrm{~V} \\
\text { Continuous +ve input voltage } & \text { not greater than the supply voltage in use } \\
\text { Operating ambient temperature } & 0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\
\text { Storage temperature } & -50^{\circ} \mathrm{C} \text { to }+175^{\circ} \mathrm{C}
\end{array}
$$

APPLICATION NOTES

Fig. 5 shows a 10 -bit frequency-to-digital encoder using the SP522B together with other elements of the SP520 series. The encoder provides continuous parallel digital output in non-ambiguous Gray code, and is capable of giving an immediate correct response to an interrogation signal at any time. This application note should be read in coniunction with the SP520B and SP521B data sheets.

The encoder employs the continuous feedback principle. The input frequency is first phased-locked to the master clock input to the SP522B then applied, together with the feedback frequency from the binary rate multiplier (SP521B), to the frequency comparator in the SP522B. Any difference frequency that results is applied to the clock inputs of the SP520B Gray code counter. A direction control signal is also applied to one SP520B (least significant 5 bits) to determine the up/down mode of the counter.

Binary-coded outputs from the SP520B's form the numerical multipliers that determine the number of output pulses in each cycle (i.e. the feedback frequency) of the binary rate multipliers.

The feedback frequency is taken from pin 16 of each SP521B to pin 14 of the SP522B and is in phase with the $1 \mathrm{f} \phi 1$ clock signal. The phase 2 outputs of the SP521B's (pin 10) are in phase with $1 f \phi 2$ clock and are interlaced with the main feedback frequency signal when pins 10 and pins 16 are wired-ORed. Negative binary inputs (pins 5 to 9 on each SP521B) determine the number of pulses in this stream and can therefore be used to provide a zero elevation facility.

The Gray code outputs of each SP520B are interrogated by taking the 'inhibit Gray output' (pin 14) to logic ' 0 '; the outputs can, however, be continuously displayed using the binary-coded outputs (pins 5 to 9) to drive numerical indicators via a suitable interface.

Fig. 5 Frequency-to-digital encoder

PROVISIONAL DATA

SPĪ05B
 CRYSTAL CONTROLLED INTEGRATED CIRCUIT OSCILLATOR

The SP705B is a square wave oscillator circuit designed to operate in conjunction with an AT cut quartz crystal of effective series resistance less than 300 ohms. Four TTL outputs are provided, related in frequency to the crystal frequency f as follows: $f / 2, f / 4, \overline{f / 2}$ and $\overline{f / 4}$. The SP705B is therefore ideally suited to either single or multi-phase TTL clock applications

FEATURES

- Operating Frequency up to 10 MHz
- $f / 2$ and $f / 4$ outputs
- 4 TTL Level outputs
- Operates from +5 V TTL Supply

ELECTRICAL CHARACTERISTICS

Test conditions (unless otherwise stated):
$\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}$

Characteristic	Symbol	Value		Units	Conditions
		Min.	Max.		
High state output voltage	V_{OH}	2.6		V	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V} \\ & \mathrm{IOH}_{\mathrm{OH}}=0.2 \mathrm{~mA} \end{aligned}$
Low state output voltage	V_{OL}		0.4	V	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{OL}}=8 \mathrm{~mA} \end{aligned}$
Supply current	Icc		35	mA	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$
Output rise time (10\% to 90\%)	t_{R}		20	ns	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$
Output fall time (90\% to 10\%)	t_{F}		20	ns	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$
Operating frequency (f)			10	MHz	
Operating temp range		0	70	${ }^{\circ} \mathrm{C}$	

Fig. 2 SP705B block diagram

CIRCUIT DESCRIPTION

The crystal maintaining circuit consists of an emitter-coupled oscillator, with the emitter resistors replaced by constant-current generators. The crystal is connected, usually in series with a 20 pF capacitor, between pins 5 and 6 . The 20 pF capacitor can be replaced with a mechanical trimmer to allow small changes in frequency to be made, as shown in Fig. 3.

The circuit is designed to provide low crystal drive levels - typically, less than 0.15 mW at 5 MHz . This is well within crystal manufacturers' limit of 0.5 mW .

The compensation point, pin 4 is made available so that the compensation capacitance can be increased if necessary. However the 14pF capacitor included on the chip is usually sufficient to prevent spurious oscillation at high frequencies.

Fig. 3 Circuit diagram of SP705B oscillator

Fig. 4 Deviation from nominal crystal frequency

PACKAGE DETAILS

Dimensions are shown thus: mm (in)

SP720 SERIES
 interface circuits

SP721B BALANCED LINE DRIVER SP722B BALANCED LINE RECEIVER
 SP723B BALANCED LINE RECEIVER WITH COMPLEMENTARY OUTPUTS

SP724B DUAL BALANCED LINE RECEIVER

The SP721B, SP722B, SP723B and SP724B circuits are designed for interfacing between TTL/DTL logic and balanced transmission lines. The SP721B line driver produces an output which is essentially a current sink into one of the two lines. The magnitude of the current is nominally twice that of an externally programmed source current. The receiver circuits will accept antiphase signals from a line with a d.c. level several volts remote from earth potential.

Fig. 1 Logic and dual-in-line package connection diagrams. Connections for package options shown thus: $\mathrm{O}=\mathrm{Flatpack}, \mathrm{O}=$ TO-5.

Absolute Maximum Ratings (all devices unless otherwise stated)

Storage temperature range	$-55^{\circ} \mathrm{C}$ to $+175^{\circ} \mathrm{C}$	Line input excursion (receivers)	$\pm 5 \mathrm{~V}$, or power
Operating temperature range	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$		supply rail values,
Dissipation (at $\mathrm{Tamb}^{\text {amb }} 70^{\circ} \mathrm{C}$)			whichever are the
(SP721B)	300 mW		lower
Positive supply	$+6.5 \mathrm{~V}$	Line output excursion (SP721B)	+5 V to neg. supply
Negative supply	1-6.5V	Line input differential voltage	
Logic input excursion	+5 V to -0.5 V	(receivers)	6 V
		Source current input (SP721B)	20 mA

Characteristic	Value			Units	Test conditions
	Min.	Typ.	Max.		
'Input voltage for logic ' O ' O / P	0		800	$m V$	-
Input current for logic ' O ' O/P			$1 \cdot 6$	mA (neg.)	$V_{\text {IN }}=0.4 \mathrm{~V}$
Input voltage for logic '1' O/P	2.0			v	-
Input current for logic '1' O/P			40	$\mu \mathrm{A}$	$V_{1 N}=2.4 \mathrm{~V}$
Output current at pin 5 for logic ' 0 ' O/P			1.0	$\mu \mathrm{A}$	
Output current at pin 14 for logic ' 0 ' O/P	1.4	2.0	$2 \cdot 6$	/unit source current	Note 1
Output current at pin 14 for logic '1' O/P			1.0	$\mu \mathrm{A}$	Note 1
Output current at pin 5 for logic '1' O/P	1.4	2.0	$2 \cdot 6$	/unit source current	Note 1
Output current difference between logic ' O ' and logic ' 1 '			100	$\mu \mathrm{A}$	Note 1
Permissible output voltage excursion	-3		+3	V	Notes 1 and 2
Mean propagation delay $\left(t_{p u}+t_{p d}\right) / 2$		15		nS	Note 3
Propagation delay skew			5	nS	Note 4
Dissipation		150	260	mW	Note 5
Supply current (+5 V)		$5 \cdot 5$	7.0	mA) 1
Supply current (-5V)		33	45	mA	$\}$ SOURCE ${ }^{-10 \mathrm{~mA}}$

SP721B Test Notes (D.I.L. package pins quoted)

1. This result holds for the source current in the range 1 to 10 mA (pin 2) and this current is normally determined by a resistor from pin 2 to ground (see fig. 2).
2. The voltage indicated is an absolute voltage and to determine the common mode value, the signal voltage must be subtracted from the absolute voltage. The maximum signal voltage $=2.6 \times$ source current \times effective load resistor.
3. The time period measured, is from the time when the input passes through the threshold of the circuit, until the output currents at pins 14 and 5 , are equal.
4. The propagation delay skew is the time for which the sum of the current at pins 14 and 5 differs from the d.c. value by more than 50% on switching the output state.
5. A duty cycle of 50% is assumed, but if the output is permanently in the logic ' 1 ' state the dissipation will be 10 mW higher. The source current is set at 10 mA .

Fig. 2 Output current v. resistance between pin 2 and OV, assuming 5\% tolerance on resistance

Electrical Characteristics (SP722/3/4B) @ $\mathrm{V}_{\mathrm{cc}}=+5 \mathrm{~V} \pm 5 \%, \mathrm{Vee}_{\mathrm{ee}}=-5 \mathrm{~V} \pm 5 \%, \mathrm{~T}=0$ to $70^{\circ} \mathrm{C}$.

Characteristic	Circuit	Value			Units	Test conditions
		Min.	Typ.	Max.		
Input voltage (common mode)	All	-3	0	+3	V	-
Input offset	$\begin{gathered} \text { SP722 } \\ \text { SP723/724 } \end{gathered}$	5	$\begin{gathered} 4.5 \\ 10 \end{gathered}$	$\begin{aligned} & 15 \\ & 15 \end{aligned}$	$\begin{aligned} & m V \\ & m V \end{aligned}$	$V_{\text {OUT }}=1.5 \mathrm{~V}$
Input threshold	All		4.5		mV	Note 1
Input current	All			100	$\mu \mathrm{A}$	-
Input capacitance	All		1	2	pF	Note 2
Input current for logic 'O' I/P	All			$1 \cdot 6$	mA (neg.)	$V_{\text {IN }}=0.4 \mathrm{~V}$
Input current for logic '1' I/P	All			120	$\mu \mathrm{A}$	$V_{1 N}=2.4 \mathrm{~V}$
Output voltage for logic ' 0 ' O/P	All			400	$m V$	$\mathrm{I}_{0}=0$ to 16 mA
Output voltage for logic '1' O/P	All	2.4			v	$\mathrm{I}_{0}=0$ to $400 \mu \mathrm{~A}$
Mean propagation delay	All		20		nS	-
Dissipation	SP722 SP723 SP724		170	145 155 230	mW mW mW	-
Short circuit output current	All	18		55	mA	Note 3
Supply current (+5 V)	$\begin{aligned} & \text { SP722 } \\ & \text { SP723 } \\ & \text { SP724 } \end{aligned}$		$\begin{aligned} & 12 \\ & 13 \\ & 19 \end{aligned}$	$\begin{aligned} & 16 \\ & 18 \\ & 27 \end{aligned}$	$\begin{aligned} & m A \\ & m A \\ & m A \end{aligned}$	-
Supply current (-5 V)	All		9	12.5	mA	-

SP722B, SP723B and SP724B Test Notes

1. Measured from offset to give full logic ' O ' or logic ' 1 ' at output.
2. As input passes through threshold, capacitance temporarily rises to 10 pF .
3. Not more than one output should be shorted at any one time. This parameter is measured at the maximum recommended supply voltage.

Operating Notes

The SP721B Balanced line driver, accepts TTL logic inputs, and its output to line is in the form of a differential current sink. The current flows from the line into one of the two output terminals, setting up a differential voltage on the line. The magnitude of this current sink is determined by the value of external programming resistor between pins 7 and 2 (Fig. 1), and is nominally twice the current flowing into pin 2. The size of the differential voltage produced on the line, is dependent on the current chosen and the differential impedance of the line.

A recommended standard is 8 mA (minimum) into a 100Ω line giving an 800 mV differential signal.

The line receivers will accept up to a 3 V common mode input without being affected, responding only to differential signals producing TTL compatible outputs.

Point to Point Working

Fig. 3 shows a typical configuration with balanced matched lines terminated at both ends. It is possible to match only the differential impedance, but problems may arise from reflected common mode signals which may then exceed the 3 V limit. To overcome this problem, the network shown gives a common mode termination of
about 60Ω, corresponding to a typical screened sheath pair cable. Using low loss cable in this way, signals can be transmitted a distance of at least 150 metres, at clock rates up to 5 MHz .

The common mode line figure of 3 V can be improved by attenuating the cable signals to the receiver, at the expense of differential sensitivity. Typically an attenuation up to 5 times (14 dB) may be used before the differential error becomes excessive.

When more than one receiver or transmitter are used it is important that all transmitters and receivers connected to a line are always connected to common power supplies.
continued...

NOTE: THIS TERMINATION NETWORK CORRESPONDS TO A TWISTED PAIR TRANSMISSION LINE WITH A 100Ω DIFFERENTIAL CHARACTERISTIC IMPEDANCE AND AN APPROXIMATELY 60Ω COMMON MODE CHARACTERISTIC IMPEDANCE.

Distribution of Multiple Receivers

Each receiver has only a small disturbing influence, so several receivers may be connected on to one line at different points. However it is possible that common mode problems may be accentuated, so it is often advisable to carry out attenuation as suggested in the paragraph on point to point working.

Multiple Transmitters for Highway Working

By strobing the programming current supplied to pin 2 of the SP721B, the output from that transmitter can be switched on or off. This however produces a large common mode shock which takes time to decay, the decay time depending on the line length and line characteristics. Thus the SP721B can be used for block data transfer, provided sufficient time is allowed between blocks, for the common mode shocks to decay.

NEW PRODUCT DATA

SP761B

12V POWER INTERFACE CIRCUIT

SP762B

5V POWER INTERFACE CIRCUIT

The SP761B and SP762B are bipolar integrated circuits, each incorporating five current amplifiers for interfacing between MOS/TTL devices and loads requiring high drive currents. The SP761B is designed to operate from a +12 V supply rail and the SP762B from +5 V .

Both types are provided with a strobe input which drives two of the amplifiers so that their outputs may be connected in parallel for higher output current capability.

The circuits operate over a temperature range of $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ and are mounted in 14 -lead ceramic DIL package.

Although primarily designed to drive printing solenoids in calculators, these circuits can be used in a variety of applications requiring high drive currents.

Fig. 1 Pin connections (top)

APPLICATIONS

ABSOLUTE MAXIMUM RATINGS

Output collector voltage	$\mathbf{2 6 V}$
Supply voltage, SP761B	+15 V
Supply voltage ,SP762B	$+\mathbf{+ V}$
Storage temp.	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Chip operating temp.	$+125^{\circ} \mathrm{C}$
Ambient operating temp.	$\mathbf{0}^{\circ} \mathrm{C}$ to $+\mathbf{7 0 ^ { \circ } \mathrm { C }}$

ELECTRICAL CHARACTERISTICS

Characteristic	Type	Value (note 1)			Units	Conditions
		Min.	Typ.	Max.		
Supply voltage $\mathrm{V}_{\text {cc }}$	SP761B	11	12	13	V	See note 2
	SP762B	4.5	5	5.5	V	See note 2
Quiescent supply current	SP761B		8		mA	All inputs low
	SP762B		10		mA	All inputs low
On state supply current, per element	Both		12		mA	$l_{1 H}=1 \mathrm{~mA}$
i..ت̈ut cuirent inh Input voltage $\mathrm{V}_{1 \mathrm{H}}$;		+	ma	$\text { iout }=\text { iouma }$
Input voltage $\mathrm{V}_{1 \mathrm{H}}$ Input current $I_{I L}$	$\begin{aligned} & \text { SP761B } \\ & \text { SP761B } \end{aligned}$		4	50	V $\mu \mathrm{A}$	$I_{I H}=1 \mathrm{~mA}$
Input voltage $\mathrm{V}_{1 / \mathrm{H}}$	SP762B	2.7		5.5	V	$\mathrm{I}_{\text {out }}=200 \mathrm{~mA}$
Input current $I_{I H}$	SP762B		1		mA	$\mathrm{V}_{1 \mathrm{H}}=2.7 \mathrm{~V}$
Input voltage V_{1} L	SP762B			1	V	
Output current $\mathrm{I}_{\text {out }}$	SP761B			150	mA	$l_{1 H}=1 \mathrm{~mA}$
	SP762B			200	mA	$\mathrm{V}_{1 H}=2.7 \mathrm{~V}$
Output voltage V_{OL}	SP761B		1.0	1.2	V	$\mathrm{I}_{\text {out }}=150 \mathrm{~mA}$
	SP762B		1.3	1.6	V	$\mathrm{l}_{\text {out }}=200 \mathrm{~mA}$
Output voltage V_{OH}	Both			26	V	
Output breakdown voltage	Both	26			V	See note 3
Duty cycle	SP761B					All outputs at
On time	SP762B			33 2	\%	$I_{\text {out }}$ max.

NOTES

1. Both $O V$ supply pins 1 and 7 must be connected at all times.
2. Min. and max. limits apply to the temperature range $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$. All typical values are quoted for $\mathrm{V}_{\mathrm{CC}}=T$ Typical and $\mathrm{T}_{\mathrm{amb}}=+25^{\circ} \mathrm{C}$.
3. External clamping diodes must be used when driving inductive loads.

Fig. 3 Input characteristic (including strobe) $T_{a m b}=+25^{\circ} \mathrm{C}$

Fig. 4 Output characteristic

Fig. 5 Operating characteristics

Fig. 6 Operating characteristics at $+70^{\circ} \mathrm{C}$

OPERATING NOTES

Interfacing

The SP761B is designed to interface directly with MOS devices, accepting free drain input currents in the range 1 mA to 4 mA . Current limiting input resistors are incorporated on-chip to reduce power dissipation in the MOS circuit. The resistor is approximately $2 \mathrm{k} \Omega$, giving an input voltage of 4 V at 1 mA .

Fig. 8 shows (i) a direct interface to MOS and (ii) an interface using an external resistor to further limit input current when driven from a high voltage source.

The SP762B will interface directly with standard TTL over the temperature range $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$, a TTL logic ' 1 ' making current available at the SP762B output. Although TTL is not specified to source more than $400 \mu \mathrm{~A}$ at logic ' 1 ' level, the majority of gates will in fact supply approximately 5 mA and still maintain a logic ' 1 ' level in excess of 2.7 V . Since the input resistors of the SP762B are approximately 600Ω, then one TTL output is capable of driving up to 5 SP762B inputs. When driving only one input of an SP762B, the input current will limit at approximately 2 mA at 3.4 V . Open-collector TTL gates can also be used to drive the SP762B, provided that each TTL output has an external load resistor, the value of which will depend on the fanout required.

The characteristics of the strobe input are the same as for the individual inputs and therefore the above comments also apply to this input.

Fig. 7 On state supply current drain per element

Unused Inputs

When using the strobe input, inputs $\mathbf{1}$ and $\mathbf{2}$ must be left floating. However, inputs 1 and 2 can be used completely independently in the same way as the other inputs. Any other unused inputs can either be left floating or tied to the negative supply rail.

Output Capability

The output capability of each channel is 150 mA for the SP761B and 200 mA for the SP762B. With all five drivers operating at these current levels, a duty cycle of 40% for the SP761B and 33\% for the SP762B will allow operation over the temperature range $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.

If the device is to be operated at a lower ambient temperature, or at a lower output current, then the duty cycle may be increased as shown in Fig. 6 and.7. Likewise, if some of the outputs are unused the duty cycle of the remaining outputs may be proportionally increased provided that the drivers are used symmetrically within the package.

The package has a thermal time constant such that the chip temperature will rise above the permitted maximum of $+125^{\circ} \mathrm{C}$ if all the drivers are allowed to remain on at maximum output current for more than 2 seconds.

The drivers will operate at up to 1 MHz but at such frequencies the input mark/space ratio will have to be modified because the effective output duty cycle is higher than that at the inputs due to stored charge in the output transistors.

Fig. 8 Interfacing to MOS

PACKAGE DETAILS

Dimensions are shown thus: mm (in.)

NEW PRODUCT DATA

SP763 B SP764 B SP765 B

POWER INTERFACE CIRCUITS

The SP763/4/5 are bipolar integrated circuits each incorporating 10 current amplifiers for interfacing between MOS/TTL devices and loads requiring high drive currents. The SP763 and SP764 are designed to operate from an MOS compatible supply of typically +12 V whereas the SP765 is designed for a TTL supply rail of +5 V .

The SP764/5 are provided with a strobe input which drives two of the amplifiers so that their outputs can be connected in parallel for higher output current capability.

The circuits operate over a temperature range of $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ and are available in 24 -lead DIL ceramic package or $\mathbf{2 4 - l e a d ~ D I L ~ p l a s t i c ~ s t u d ~ (S P 7 6 4 B ~ a n d ~ S P 7 6 5 B ~ o n l y) , ~}$ for applications requiring higher dissipation.

Although primarily designed to drive printing solenoids in calculators, these circuits can be used in a variety of applications - including driving filament lamps, L.E.D.s, relays, cores and other devices requiring high drive currents e.g., power transistors.

FEATURES

- 200 mA Output Capability
- MOS/TTL Compatible
- On-Chip Input Current Limiting Resistors
- Zero Standby Power
- Direct interface to Seiko and similar printers

Fig. 1 One driver element

APPLICATIONS

Driving Solenoids
Driving Relays
Driving L.E.D.s
Driving Filament Lamps
Driving Cores
TTL-to-MOS Translator

ABSOLUTE MAXIMUM RATINGS

Supply voltage, $V_{C C}$ SP763B \& SP764B	+15 V
SP765B	+7 V
Storage temperature	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Chip operating temperature	$+125^{\circ} \mathrm{C}$
Ambient operating temperature	$\mathbf{0}^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS

Characteristic	Type	Value (note 1)			Units	Conditions
		Min.	Typ.	Max.		
Operating supply voltage, V_{CC}	SP763B					
	SP764B	11.0	12.0	13.0	V	Note 2
Operating supply voltage, V_{CC}	SP765B	4.5	5.0	5.5	V	
Supply current per element	SP764/765B		12.0		mA	$\mathrm{I}_{\text {in }}=1 \mathrm{~mA}$
Supply current per element	SP763B		5		mA	${ }_{\text {l }}^{\text {: }}$: $=1 \mathrm{~mA}$
input current, $I_{\text {IH }}$	SP763/764B	1		4	mA	
Input voltage, $\mathrm{V}_{1 / \mathrm{H}}$	SP763/764B		4		V	$\mathrm{I}_{\text {in }}=1 \mathrm{~mA}$
Input current, IIL	SP763/764B			50	$\mu \mathrm{A}$	
Input voltage, $\mathrm{V}_{1 \mathrm{H}}$	SP765B	2.7		5.5	V	
Input current, $I_{\text {IH }}$	SP765B		1		mA	$V_{\text {in }}=2.7 \mathrm{~V}$
Input voltage, $\mathrm{V}_{1 \mathrm{~L}}$	SP765B			1	V	
Strobe high input current, $\mathrm{I}_{\text {SH }}$	SP764/765B	1		4	mA	
Strobe high input voltage, $\mathrm{V}_{\text {SH }}$	SP764/765B		4		V	$\mathrm{I}_{\mathrm{SH}}=1 \mathrm{~mA}$
Output current, Iout	SP763B			50	mA	$\mathrm{l}_{\text {in }}=1 \mathrm{~mA}$
Output current, Iout	SP764B			150	mA	$\mathrm{l}_{\text {in }}=1 \mathrm{~mA}$
Output current, Iout	SP765B			200	mA	$\mathrm{I}_{\text {in }}=1 \mathrm{~mA}$
Output voltage low, $\mathrm{V}_{\text {OL }}$	SP764B		1.0	1.2	V	$\mathrm{l}_{\text {out }}=150 \mathrm{~mA}$
(saturation voltage)	SP765B		1.3	1.6	V	$\mathrm{I}_{\text {out }}=200 \mathrm{~mA}$
Output breakdown	SP763B	12			V	Note 3
voltage, BVo	SP764/765B	26			V	Note 3
Duty cycle Ceramic package	SP763B			100	\%	$\mathrm{I}_{\text {out }}=$ Max.
Ceramic package	SP764B			25	\%	At $\mathrm{I}_{\text {out }}=$ Max.
Ceramic package	SP765B			25	\%	$\mathrm{I}_{\text {in }}=1 \mathrm{~mA}$
Plastic package	SP764B			40	\%	$\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$
Plastic package	SP765B			40	\%	$V_{C O}=$ Typ.
ON time	SP764/765B			2	sec.	

NOTES

1. Min. and Max. limits apply to the guaranteed temperature range of $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ unless otherwise specified. All typical values are quoted for $V_{C C}=$ Typ. and $T_{A}=+25^{\circ} \mathrm{C}$.
2. Both $0 V$ supply pins 1 and 12 must be connected at all times.
3. External clamping diodes must be used when driving inductive loads.

Typical Performance Characteristics

In the following characteristics (Figs. 3 to 10), $\mathrm{V}_{\mathrm{cc}}=$ +12 V (SP763, SP764B) or +5V (SP765B).

Fig. 3 Input characteristics $\left(T_{A}=+25^{\circ} \mathrm{C}\right)$

Fig. 5 Output characteristics $\left(T_{A}=+25^{\circ} \mathrm{C}\right)$

Fig. 7 SP764 operating characteristics $\left(T_{A}=+70^{\circ} \mathrm{C}\right.$ max.)

Fig. 9 Operating characteristics, stud package with heatsink $I T_{A}=$ $+70^{\circ} \mathrm{C}$ max.)

Fig. 6 Operating characteristics $\left(T_{A}=+25^{\circ} \mathrm{C}\right.$ to $+70^{\circ} \mathrm{C}$)

Fig. 8 SP765 operating characteristics ($T_{A}=+70^{\circ} \mathrm{C}$ max.)

Fig. 10 Current drain per element $\left(T_{A}=+70^{\circ} \mathrm{C}\right.$ max.)

PACKAGE DETAILS

Dimensions are shown thus: mm (in)

OPERATING NOTES

Interfacing

The SP763/764 are designed to interface directly with MOS devices, accepting free drain input currents in the range 1 mA to 4 mA . Current-limiting input resistors are incorporated on-chip to reduce power dissipation in the MOS circuit. The rēsistor is approximately $2 \mathrm{k} \Omega$ giving an input voltage of 4 V at 1 mA (see Figs. 3 and 4).

Fig. 11 shows (i) a direct interface to MOS and (ii) an interface using an external resistor to further limit input current when driven from a high voltage source.

The SP765B will interface directly with standard TTL over the temperature range $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$, a TTL logic 1^{\prime} making current available at the SP765 driver output. Although TTL is not specified to source more than $400 \mu \mathrm{~A}$ at the logic ' 1 ' level, a typical gate will in fact supply approximately 5 mA and still maintain a logic ' 1 ' level of about +2.7 V . Since the input current - limiting resistors on the SP765 are approximately 700Ω (giving an input voltage of +2.7 V at 1 mA) then one TTL output is capable of driving up to 5 SP765 inputs. If, however, a TTL gate is used to drive only one SP765 input, then the current will limit at approximately 2 mA , corresponding to an input voltage of +3.4 V . Open-collector TTL gates can also be used to drive SP765s but in such cases each TTL output must have an external load resistor, the value of which will depend on the fanout required.

Fig. 11 Interfacing SP763/SP764 to MOS

Strobe Input

A positive voltage (as defined in the Electrical Characteristics) applied to the strobe input (pin 24) enables drivers 1 and 2 simultaneously. Thus, using this input
permits output current sinking of up to 300 mA (SP764B) and 400 mA (SP765B) by connecting together outputs 1 and 2 (pins 2 and 3).

No current limiting resistor is provided at the strobe input as the input voltage at 1 mA is 4 V on all circuit variants (see Fig.4). When using the SP765B, therefore, the strobe input must be driven either from an open-collector TTL gate with an appropriate load resistor or from a normal TTL gate with an external $1 \mathrm{k} \Omega$ resistor between its output and V_{CC} as shown in Fig. 12.

Fig. 12 TTL interface to SP765 strobe input

Unused Inputs

When using the strobe input, inputs 1 and 2 must be left floating. However, inputs 1 and 2 can be used completely independently, in the same way as the other inputs. Any other unused inputs can either be left floating or tied to the negative supply rail.

Output Capability

The SP763B has an output rating for each driver of 50 mA and may be used over the full temperature range of $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ at 100% duty cycle.

The SP764B has an output rating of 150 mA for each driver and the SP765B a rating of 200 mA . With all ten drivers operating at these current levels a duty cycle of 25% for the ceramic package and 40% for the plastic stud package will allow operation over the temperature range $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.

If a lower ambient operating temperature can be tolerated, then the duty cycle may be increased up to a maximum of 40% (ceramic) and 80% (plastic stud) at $+25^{\circ} \mathrm{C}$. Operation of the drivers at lower output currents will also allow the duty cycle to be increased, as shown in Figs.6, 7, 8 and 9. In addition, if some of the outputs are unused, then the duty cycle of the remaining outputs may be increased, provided that the drivers are used symmetrically within the package. For example, if outputs 5 and 6 are not used, then the duty cycle of the remaining 8 outputs can be increased in the ratio 10:8.
The drivers will operate at up to 1 MHz but at such frequencies the input signal mark/space ratio will have to be modified because the effective output duty cycle is higher than that of the inputs due to charge storage in the output transistors.

Because of the high current levels which the drivers are capable of making it is essential that both the O_{V} pins should be connected. The track resistance to each pin should be approximately equal to ensure equal current sharing.

Plastic Stud Package

With the addition of a heat risk of thermal resistance not greater than $12^{\circ} \mathrm{C} /$ Watt, operation at up to 100% duty cycle (i.e. D.C. operation at maximum output current) can be achieved over the full temperature range $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$. A suitable heat sink consists of $25 \mathrm{~cm}^{2}$ ($4 \mathrm{in}^{2}$) of 16 SWG Aluminium folded as shown in Fig. 13.
Note: On the stud package, the stud is connected to the negative rail.
(189mm(0.75in)

Fig. 13 Heatsink details for stud package

Typical Application

A typical calculator application for SP764/SP765 devices is shown in Fig.14. In this, two packages are required to drive the 18 printing solenoids and the paper/ribbon feed solenoid. The 10 drivers in one package are used to drive 10 printing solenoids and the remaining 8 solenoids are driven by outputs 3 to 10 of the second package. The paper/ribbon feed solenoid is controlled by the strobe input of the second package and driven by the parallel outputs 1 and 2.

Fig. 14 Typical printing calculator application

ORDERING INFORMATION

The type number, for ordering purposes, consists of the basic number SP763B, SP764B or SP765B followed by /E for ceramics DIL or /S for the plastic stud package, e.g. SP765B/S.

The package code is for ordering purposes only and does not appear on the device itself.

PECL II

FEATURES

*	Propagation typically $4 n s$ per logic
decision.	

The PECL II series of monolithic integrated logic circuits are a cirrect seconn source vi ine iníutor via ivicill $:$: series. The family has been designed as a non-saturating form of logic so as to eliminate transistor storage time as a speed limiting characteristic and permits high speed operation.

PECL II circuits feature fast propagation delay times with commensurate rise and fall times, simultaneous complementary outputs, and excellent noise immunity as a result of near constant power supply drain.

FUNCTIONS AND CHARACTERISTICS @ $V_{C C}=O V, V_{E E}=-5.2 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$

$\begin{aligned} & 0^{\circ} \mathrm{C} \text { to } \\ & +75^{\circ} \mathrm{C} \end{aligned}$	$\begin{gathered} -55^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$	Function	D.C. output loading factor, each output	Propagation delay ns typ.	Total power dissipation mW typ.
SP1001	SP1201	Single $6 \mathrm{I} / \mathrm{P}$ gate, 3 OR O / P with pulldowns 3 NOR O/P with pulldowns	${ }^{25}$	4.0	115
SP1002	SP1202	Single $6 \mathrm{I} / \mathrm{P}$ gate, 3 OR O / P with pulldowns $3 \mathrm{NOR} O / \mathrm{P}$ without pulldowns			80
SP1003	SP1203	Single $6 \mathrm{I} / \mathrm{P}$ gate, 3 OR O / P without pulldowns 3 NOR O / P without pulldowns			40
SP1004	SP1204	Dual 4-1/P gate, 2 OR with pulldowns 2 NOR with pulldowns			95
SP1005	SP1205	Dual 4-I/P gate, 2 OR with pulldowns 2 NOR without pulldowns			65
SP1006	SP1206	Dual 4-1/P gate, 2 OR without pulldowns 2 NOR without pulldowns			45
SP1007	SP1207	Triple 3-1/P gate, 3 NOR with pulldowns			110
SP1008	SP1208	$\begin{array}{rl}\text { Triple 3-1/P gate, } 1 & \text { NOR with pulldowns } \\ 2 & 2 \text { NOR without pulldowns }\end{array}$			75
SP1009	SP1209	Triple 3-1/P gate, 3 NOR without pulldowns		\dagger	60
SP1010	SP1210	Quad 2-1/P gate, 4 NOR with pulldowns		4.5	115
SP1011	SP1211	$\begin{array}{rl}\text { Quad 2-1/P gate, } 2 & 2 \text { NOR with pulldowns } \\ & 2 \text { NOR without pulldowns }\end{array}$			95
SP1012	SP1212	Quad 2-1/P gate, 4 NOR without pulldowns		\dagger	65
SP1013	SP1213	85 MHz a.c. coupled J-K flip-flop		6.0	125
SP1014	SP1214	Dual R-S flip-flop (+ve clock)			140
SP1015	SP1215	Dual R-S flip-flop (-ve clock)			
SP1016	SP1216	Dual R-S flip-flop (single rail, +ve clock)		V	V
SP1020	SP1220	Quad line receiver		4.0	115
SP1023	SP1223	Dual 4-1/P OR/NOR clock driver		2.0	250
SP1026	SP1226	Dual 3-41/P Transmission line and clock driver		2.0	140
SP1027	SP1227	120 MHz a.c. coupled J-K flip-flop		4.0	250
SP1030	SP1230	Quad exclusive OR gate		5.0	130
SP1031	SP1231	Quad exclusive NOR gate	1	5.0	130

FUNCTIONS AND CHARACTERISTICS @ $\mathrm{V}_{\mathrm{Cc}}=\mathrm{OV}, \mathrm{V}_{\mathrm{EE}}=-5.2 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (continued)

$\begin{aligned} & 0^{\circ} \mathrm{C} \text { to } \\ & +75^{\circ} \mathrm{C} \end{aligned}$	Type	Function	D.C. output		
	$\begin{gathered} -55^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$		factor, each output	delay ns typ.	dissipation mW typ.
SP1032*	SP 1232*	100 MHz a.c. coupled Dual J-K flip-flop	25	4.5	180
SP1033	SP1233	Dual R-S flip-flop (single rail, -ve clock)		6.0	140
SP1034	SP1234	Type D flip-flop		4.0	185
SP1035	SP1235	Triple line receiver	\dagger	5.0	140
SP1039*	SP1239*	Quad level translator (PECL to saturated logic)	7 (DTL)	12	200
SP1040	SP1240	Quad latch with pulldowns	25	8.0	250
SP1047	SP1247	Quad 2.1/P AND gate		5.0	130
SP1048	SP1248	Quad 2.1/P NAND gate		5.0	130
SP1062*	SP1262*	Quad 2.1/P NOR gate		2.0	320
SP1063	SP1263	Quad 2-1/P NOR gate		2.0	320
SP1070	SP1270	Quad latch without pulkdowns	\dagger	8.0	200

* In 16- lead D.I.L. All other types are in 14- lead D.I.L.

General Parameters

COMMON CHARACTERISTICS

Characteristic	-55°		$\underline{+25}{ }^{\circ} \mathrm{C}$		$+125^{\circ} \mathrm{C}$		$0^{\circ} \mathrm{C}$		SP1 +2	$+25^{\circ} \mathrm{C}$	$+75^{\circ} \mathrm{C}$	
	Min.	Max.										
Input current $\mathrm{l}_{\text {in }}$	$100 \mu \mathrm{~A}$						$100 \mu \mathrm{~A}$					
Input leakage 1 R				$0.2 \mu \mathrm{~A}$		$1 \mu \mathrm{~A}$				$0.2 \mu \mathrm{~A}$		$1 \mu \mathrm{~A}$
Output voltage ${ }^{2}$												-
Logic '1' $(\mathrm{V} \mathrm{OH})$	$-0.990-0.825$		-0.85	$-0.70-0.70$		-0.53	$-0.895-0.74$		-0.85	-0.70	$-0.775-0.615$	
Logic '0' ($\mathrm{VOL}^{\text {) }}$	-1.89	-1.58	-1.8	-1.5	-1.72	-1.38	-1.83	-1.525	-1.8	-1.5	-1.76	-1.435

NOTES 1. The above characteristics apply unless otherwise stated under individual product information.
2. Outputs without pulldown resistors are tested with $1.5 \mathrm{k} \Omega$ resistor to V_{ee} and V_{OH} limits apply from no load (0 mA) to full load (-2.5 mA).
3. General parameters only apply to basic gates and flip-flops.

TEST CONDITIONS

Test Voltage/Current Values							
Test Temp. ${ }^{\circ} \mathrm{C}$	$V_{\text {IL }}(\mathrm{V})$		$\mathrm{V}_{\mathbf{1 H}}(\mathrm{V})$		$V_{I H} \text { (max.) }$(V)	Vee (V)	$\begin{gathered} \mathrm{IL}_{\mathrm{L}} \\ \text { (m.Ad.c.) } \end{gathered}$
	Min.	Max.	Min.	Max.			
-55	-5.2 to -1.405		-1.165 to -0.825		-	-5.2	-2.5
+25		to -1.325	-1.025	-0.700	-0.700		
+125		to -1.205	-0.875	-0.530	--		
0		to -1.350	-1.070	-0.740	-		
+25		to -1.325	-1.025	-0 700	-0.700		
+75		to -1.260	-0.950	-0.615	-	\checkmark	\checkmark

Logic Diagrams

The logic diagrams describe the circuits of the PECL II series and permit quick selection of those circuits required to implement a particular logic system. The Logic equations and truth tables shown with the logic diagrams, together with typical propagation delay times ($\mathbf{t p d}$) and typical power dissipation per package given in the characteristics table demonstrate series compatibility.

Package pin numbers are identified by numbers directly adjacent to the device terminals, whereas the numbers in parentheses indicate d.c. loading factors at each terminal. PECL II circuits contain internal bias networks, ensuring that the

$V_{C C}=$ pin 14 and $V_{E E}=$ pin 7 for all devices (14. lead D.I.L.) except SP1032/1232, SP 1039/1239 and SP 1062/1262. where $V_{C C}=p$ in 16 and $V_{E E}=\operatorname{pin} 8$ (16- lead D.I.L.)

GATES

| SP1007, SP1008, SP1009 |
| :---: | :---: |
| SP1207, SP1208, SP1209 |
| Triple 3- Input Gate |

GATES (continued)

FLIP-FLOPS

SP1013, SP1213

A.C. - Coupled J-K Flip-Flop
(85 MHz typ.)

SP1027, SP1227

A.C. - Coupled J-K Flip-Flop

(127 MHz typ.)

CLOCKED J-K			
OPERATION			
\bar{J}	\bar{K}	$\overline{\mathrm{C}}_{\mathrm{D}}$	Q^{n+1}
Δ	Δ	0	\bar{Q}^{n}
0	0	1	$\overline{\mathrm{Q}}^{n}$
0	1	1	1
1	0	1	0
1	1	1	Q^{n}

$\Delta=$ Either logic level

The \bar{J} and \bar{K} inputs refer to logic levels whereas the $\bar{C}_{\underline{D}}$ input refers to dynamic logic swings. The \bar{J} and \bar{K} inputs should be changed to logic ' 1 ' only while $\overline{\mathrm{C}}_{\mathrm{D}}$ is in the logic ' 1 ' state. (\bar{C}_{D} maximum ' 1 ' level $=V_{C C}$ -0.6 V . Clock \bar{C}_{D} is obtained by tying one \bar{J} and one
\bar{K} input together.

R-S OPERATION		
R	S	Q^{n+1}
0	1	1
1	0	0
0	0	Q^{n}
1	1	N.D.

N.D. = Not defined

FLIP-FLOPS (continued)

SP1016, SP1033
 SP 1216, SP 1233
 Dual Clocked, Single Rail, R-S Flip-Flop

$s p 1033 / 1233$		
C	0	$Q^{n}+1$
1	0	Q^{n}
1	1	Q^{n}
0	0	0
Z		0

$S P 1016 / 1216$		
C	D	Q^{n+1}
0	0	Q^{n}
0	1	Q^{n}
1	0	0
1	1	.

SP1034, SP1234
 Type D Flip-Flop

$P_{D}=185 \mathrm{~mW}$ using external 600Ω pulldown resistors $=240 \mathrm{~mW}$ using internal pulldown resistors.

N.D = Not defined

- A 1 ' or clock input is defined for this flip-flop as a change in level from low to high

SP1032, SP1232
100 MHz AC-Coupled Dual J-K Flip-Fiop

All $\bar{J}-\bar{K}$ inputs and Clock inputs are static N.D. = Output stare not defined

CLOCKED $\bar{J}-\bar{K}$ TRUTH TABLE			
\bar{J}	\bar{K}	Clock	Q^{n}
\cdot	\cdot	$4 \& 12$	1815
Δ	Δ	0	\bar{Q}^{n}
0	0	1	\bar{Q}^{n}
0	1	1	1
1	0	1	0
1	1	1	\bar{Q}^{n}

- Any J or \bar{K} input

All other $\bar{J}-\bar{K}$ inputs and the $R-S$ inputs are at a ' 0 ' Level
$\Delta=$ Either logic level will result in the desired output.

The \bar{J} and \bar{K} inputs refer to logic levels while the clock input refers to dynamic logic swings. The \bar{J} and \bar{K} inputs should be changed to a logic ' 1 ' only while the clock input is in a logic ' 1 ' state (Clock maximum' 1 ' leval $=V_{C C}-0.7 \mathrm{~V}$).

TRIPLE LINE RECEIVER

LATCH

DRIVERS

SP1023, SP1223

Dual 4- Input Clock Driver

$$
\begin{aligned}
& 6=\overline{2+3+4+5} \\
& 1=2+3+4+5
\end{aligned}
$$

(3)
 (25)
(3)
131.9

31 10 -
 -8 (25)
(3)
(3) 12

SP1026, SP1226
Dual 3-4 Input Transmizsion Line and Clock Driver
$3=\overline{4+5+6}$
$2=4+5+6$

$$
\begin{array}{ll}
\text { (3) } & 5 \text { — } \\
\text { (3) } & 6 \text { an } \\
\text { (3) }
\end{array}
$$

$1-2(25)$
(3) 8
(3) 9 (25)
(3) 10
$11=$

SP1039, SP1239
Ousd Level Translator

$$
\begin{aligned}
2 & =3+4 \\
\text { or } 2 & =3+4
\end{aligned}
$$

(PECL 15) $11 \rightarrow$ (11 (12017 DTL)

CIRCUIT DESCRIPTION

The PECL II line of monolithic integrated logic circuits was designed as a non-saturating form of logic which eliminates transistor storage time as a speed limiting characteristic, and permits extremely high-speed operation.

The typical PECL II circuit comprises a differential-amplifier input with internal bias reference and with emitter-follower output to restore dc levels. High fan-out operation is possible because of the high input impedance of the differential amplifier and the low output impedance of the emitter followers Power-supply noise is virtually eliminated by the nearly constant current drain of the differential amplifier, even during the transition period. Basic gate design provides fo: simultaneous output of both the function and its complement.

POWER-SUPPLY CONNECTIONS

As shown in the schematic diagram above, it is recommended that -5.2 V be applied at $V_{E E}$ with $V_{C C}=$ Gnd.

SYSTEM LOGIC SPECIFICATIONS

The nominal output logic swing of 0.85 V then varies from a low state of $\mathrm{VL}_{\mathrm{L}}=-1.60 \mathrm{~V}$ to a high state of $\mathrm{V}_{\mathrm{H}}=-0.75 \mathrm{~V}$ with respect to ground.

If Positive logic is used when reference is made to logical zeros or ones then

$$
\begin{aligned}
\mathrm{C}^{\prime} & =-1.60 \mathrm{~V} \text { typical } \\
\mathrm{A}^{\prime} & =-0.75 \mathrm{~V}
\end{aligned}
$$

Dynamic logic refers to a change of logic states. Dynamic ' 0 ' is a negative going voltage excursion and a dynamic ' 1 ' is a positive going voltage excursion.

CIRCUIT OPERATION

An internal bias of -1.175 V is applied to the 'bias input' of the differential amplifier and the logic signals are applied to the 'signal input'. If a logical ' 0 ' is applied, the current througt. RE is supplied by the internally biased transistor. A drop of 0.85 V occurs across $\mathrm{R}_{\mathrm{C} 2}$. The OR output then is -1.60 V , or one V_{BE} drop below 0.85 V . Since no current flows in the 'signal input' transistor, the NOR output is a $V_{B E}$ drop below ground, or -0.75 V . When a logical ' 1 ' level is applied to the 'signal input' the current through $\mathrm{R}_{\mathrm{C} 2}$ is switched to the 'signal input' transistor and a drop of 0.85 V occurs across R_{C}. The OR output then goes to -0.75 V and the NOR output goes to -1.60 V .
Note: Any unused input should be connected to VEE. BIAS VOLTAGE SOURCE

The bias voltage applied to the bias input is obtained from an internal regulated, temperature compensated bias network. The temperature characteristics of the bias network compensate for any variations in circuit operating point over the temperature-range or supply voltage changes, and ensure that the threshold point is always in the centre of the transfer characteristic curves.

MAXIMUM RATINGS

Ratings above which device life may be impaired

Characteristic	Symbol	Rating
Power supply voltage $\left(\mathrm{V}_{\mathrm{CC}}=0\right)$	V_{ee}	-10 V d.c.
Input voltage $\left(\mathrm{V}_{\mathrm{CC}}=0\right)$	$\mathrm{V}_{\text {in }}$	0 to V_{ee}
Output source current	10	20 mA d.c.
Storage temperature range	$\mathrm{T}_{\text {stg }}$	$-65^{\circ} \mathrm{C}$ to $+175^{\circ} \mathrm{C}$

Recommended Maximum ratings above which performance may be degraded

Characteristic	Rating
Operating temperature range	
SP1000	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$
A.C. fanout ${ }^{\text {S }}$ (gates and flip-flops)	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

*Minimum d.c. fanout is guaranieed at 25; an a.c. fanout of 15 is recommended for high-speed operation.

PACKAGE OUTLINES AND DIMENSIONS

Note: Dimensions are shown thus: mm (inches).

The Plessey Company Ltd. reserve the right to amend this information without prior notice.

PECL III

LOW Z DEVICES ALSO AVAILABLE ARE: SP1661

SP 1663
SP1665
SP1667
SP1669
SP1671
SP1673
SP1675

VOLTAGE-CONTROLLED
 OSCILLATOR

SP1648

(5)

The SP1648 is an emitter-coupled oscillator. constructed on a singre monolithic silcon chip. Output levels are compatible with PECL III logic levels. The oscillator requires an external parallel tank circuit consisting of the inductor (L) and capacitor (C).

A varactor diode may be incorporated into the tank circuit to provide a voltage variable input for the oscillator (VCO). The SP1648 is used in the Phase-Locked Loop shown in Figure 9. This device may be used in many applications requiring a fixed or variable frequency clock source of high spectral purity (See figure 2).

The SP1648 may be operated from a +5.0 Vdc supply or a -5.2 Vdc supply, depending upon system requirements.

Input Capacitance $=6$ pF typ
Maximum Series Resistance for $L($ External Inductance) $=50 \Omega 2$ typ
Power Dissipation $=150 \mathrm{~mW}$ typ/pkg (+5.0 Vdc Supply)
Maximum Output Frequency : 225 MHz typ

SUPPLY VOLTAGE	GND PINS	SUPPLY PINS
+5.0 Vdc	7.8	1,14
-5.2 Vdc	1.14	7.8

FIGURE 1 - CIRCUIT SCHEMATIC

FIGURE 2 - SPECTRAL PURITY OF SIGNAL AT OUTPUT

B. W. $=10 \mathrm{kHz}$

Scan Width - $50 \mathrm{kHz} /$ div
Center Frequency $=100 \mathrm{MHz}$ Vertical Scale $=10 \mathrm{~dB} / \mathrm{div}$

- The 1200 ohm resistor and the scope termination impedance constitute a $25: 1$ attenuator probe. Coax shall be CT-070-50 or equivalent.

ELECTRICAL CHARACTERISTICS

Supply Voltage $=\boldsymbol{+ 5 . 0}$ volts

(5)

			$\begin{array}{r} +25^{\circ} \mathrm{C} \\ +85^{\circ} \mathrm{C} \\ \hline \end{array}$										$\begin{array}{r} +1800 \\ +1680 \\ \hline \end{array}$	+1300	50	-50	$\stackrel{V}{\mathrm{VEE}}$									
			+1180	50	- 50																					
Characterssuc	Symbol	$\begin{aligned} & P_{\mathrm{in}} \\ & \text { Under } \\ & \text { Test } \end{aligned}$											SP1648 Test Limits										TEST VOLTAGE/CURRENT APPLIED TO PINS LISTED BELOW			
			$-30^{\circ} \mathrm{C}$			$+25^{\circ} \mathrm{C}$			*85 ${ }^{\circ} \mathrm{C}$			Unit														
			Min		Max	Min		Max	Min		Max		$\mathrm{V}_{\text {IH }}$ max	$V_{1 L}$ min	${ }^{\text {cc }}$	12										
Power Supply Drain Current	'E	8	-		-	-		40	-	-		madc	-	-	114	-		78								
Logic " 1 " Outoul Voltage	$\mathrm{v}_{\mathrm{O}:-1}$	3	394		418	404		425	411	436		vdc	-	12	114	3	7.8									
$\begin{array}{\|l\|} \hline \text { Logic } 0 \\ \text { Output Votrage } \end{array}$	v_{OL}	3	316		3.40	3.20		3.43	3.23	3.46		Vdc	12	-	1.14	3	7.8									
Bias Voltage	$\mathrm{v}^{\text {Bias }}{ }^{\circ}$	10	151		186	140		170	128	158		voc	See Figure 3	-	114	-	7.8									
		-	Man	Typ.	Max	Min	Typ Max		Mn	Typ	Max	$m \mathrm{~m}$		-	114	3	7.8									
Peak to Peak Tank Voltage	$V_{p . p}$	12	-	-	-	-	500	-	-	-	-															
Output Duty Crcle	$V_{D C}$	3	-	-	-	-	50	-	-	-	-	\%	See Figure 3	-	1.14	3	7.8									
Oscillation Frequency	$f_{\text {max }}$	-	-	-	-	200	225	-	-	-	-	MH:	See Figure 3	-	114	3	78									

This measurement guarantess the de potential at the bias soint for purnoses of incornorating a varactor tuning ctiode at this poins

ELECTRICAL CHARACTERISTICS

Supply Voltage $=\mathbf{- 5 . 2}$ volts

$\begin{aligned} & \text { @ Test } \\ & \text { Temperature } \end{aligned}$		test voltageicuraent values				Vcc(Gmd)
			$v_{1 L \text { min }}$	$\mathrm{V}_{\mathbf{E E}}$	made 4	
		$\mathrm{V}_{1 H_{\text {max }}}$				
$\begin{aligned} & \begin{array}{l} 30^{\circ} \mathrm{C} \\ +25^{\circ} \mathrm{C} \\ +85^{\circ} \mathrm{C} \end{array} \end{aligned}$		${ }^{3} 3300$	-3800	52	. 50	
		. 3400	-3900	-52	-50	
		-3500	4000	-52	-50	
Unit		test voltage/current applied to PINS LISTED BELOW				
		V_{1+4} max	V_{12} min	$\mathrm{V}_{\text {EE }}$	I	
	madc	-	-	7.8	-	1. 14
0	vac	-	12	1.8	3	1.14
5	vac	12	-	7.8	3	1. 14
0	vdc	-	-	7.8	-	t. 14
-	mv	Seer Figure 3	-	7.8	3	1.14
-	\%	See Figure 3	-	7.8	3	1.14
-	M Hz^{2}	See Figure 3	-	1.8	3	1.14

This measurement guarantees the oc potential at the biss point for purposes of incorporating a varactor tuning diode at this point

FIGURE 3 - TEST CIRCUIT AND WAVEFORMS
(20)

URE゙スAIIIVG CTAHAC゙ERISIICD

Figure 1 illustrates the circuit schematic for t：：SP1648． The oscillator incorporates positive feedback by coupling the base of transistor Q7 to the collector of Q8．An auto－ matic gain control（AGC）is incorporated to limit the cur－ rent through the emitter－coupled pair of transistors（Q7 and Q8）and allow optimum frequency response of the uscillator．

In order to maintain the high Q of the oscillator，and pro－ vide high spectral purity at the output，a cascode transistor （Q4）is used to translate from the emitter follower（Q5）to the output differential pair Q2 and Q3．Q2 and Q3，in conjunction with output transistor Q1，provide a highly buffered output which produces a square wave．Transistors Q10 thru Q14 provide the bias drive for the oscillator and output buffer．Figure 2 indicates the high spectral purity of the oscillator output（pin 3）．

When operating the oscillator in the voltage controlled mode（Figure 4），it should be noted that the cathode of the varactor diode（ D ）should be biased at least $2 \mathrm{~V}_{\mathrm{BE}}$ above $V_{E E}(\approx 1.4 \mathrm{~V}$ for positive supply operation）．

FIGURE 4 －THESP1648 OPERATING IN THE VOLTAGE CONTROLLED MODE

When the SP1648 is used with a constant dc voltage to the vatactor diode，the output frequency will vary slightly because of internal noise．This variation is plotted versus operating frequency in Figure 5.

FIGURE 5 －NOISE DEVIATION TEST CIRCUIT AND WAVEFORM

TRANSFER CHARACTERISTICS IN THE VOLTAGE CONTROLLED MODE USING EXTERNAL VARACTOR DIODE AND COIL. $T_{A}=25^{\circ} \mathrm{C}$

FIGURE 6

FIGURE 7

FIGURE 8

Typical transfer characteristics for the oscillator in the unttige enntrolled mode are shown in Ficures 67 and R Figures 6 and 8 show transfer characteristics employing only the capacitance of the varactor diode (pluse the input capacitance of the oscillator, 6 pF typical). Figure 7 illustrates the oscillator operating in a voltage controlled mode with the output frequency range limited. This is achieved by adding a capacitor in parallel with the tank circuit as shown. The $1 \mathrm{k} \Omega$ resistor in Figures 6 and 7 is used to protect the varactor diode during testing. It is not necessary as long as the dc input voltage does not cause the diode to become forward biased. The larger-valued resistor ($51 \mathrm{k} \Omega$) in Figure 8 is required to provide isolation for the highimpedance junctions of the two varactor diodes.

The tuning range of the oscillator in the voltage controlled mode may be calculated as:

$$
\begin{aligned}
& \qquad \frac{f_{\text {max }}}{f_{\min }}=\frac{\sqrt{C_{D}(\max)+C_{S}}}{\sqrt{C_{D}(\min)+C_{S}}} \\
& \text { where } f_{\min }=\frac{1}{2 \pi \sqrt{L_{\left(C_{D}(\max)+C_{S}\right)}}} \\
& C_{S}=\text { shunt capacitance (input plus external } \\
& \quad \text { capacitance). } \\
& C_{D}=\text { varactor capacitance as a function of } \\
& \text { bias voltage. }
\end{aligned}
$$

Good RF and low-frequency bypassing is necessary on the power sunnlv dins (see Fiaure $\boldsymbol{1}$.

Capacitors (C1 and C2 of Figure 4) should be used to bypass the AGC point and the VCO input (varactor diode), guaranteeing only dc levels at these points.

For output frequency operation between 1 MHz and 50 MHz a $0.1 \mu \mathrm{~F}$ capacitor is sufficient for C 1 and C 2 . At higher frequencies, smaller values of capacitance should be used; at lower frequencies, larger values of capacitance. At higher frequencies the value of bypass capacitors depends directly upon the physical layout of the system. All bypassing should be as close to the package pins as possible to minimize unwanted lead inductance.

The peak-to-peak swing of the tank circuit is set internally by the AGC circuitry. Since voltage swing of the tank circuit provides the drive for the output buffer, the AGC potential directly affects the output waveform. If it is desired to have a sine wave at the output of the SP1648, a series resistor is tied from the AGC point to the most negative power potential (ground if +5.0 volt supply is used, -5.2 volts if a negative supply is used) as shown in Figure 10.

At frequencies above 100 MHz typ, it may be necessary to increase the tank circuit peak-to-peak voltage in order to maintain a square wave at the output of the SP1648. This is accomplished by tying a series resistor ($1 \mathrm{k} \Omega$ minimum) from the AGC to the most positive power potential $(+5.0$ volts if a +5.0 volt supply is used, ground if a -5.2 volt supply is used). Figure 11 illustrates this principle.

APPLICATIONS INFORMATION

The phase locked loop shown in Figure 9 illustrates the use of the SP1648 as a voltage controlled oscillator. The figure illustrates a frequency synthesizer useful in tuners for FM broadcast, general aviation, maritime and landmobile communications, amateur and CB receivers. The system operates from a single +5.0 Vdc supply, and requires no internal translation, since all components are compatible.

Frequency generation of this type offers the advantages of single crystal operation, simple channel selection, and elimination of special circuitry to prevent harmonic lockup. Additional features include dc digital switching (pref-
erable over RF switching with a multiple crystal system), and a broad range of tuning (up to 150 MHz , the range being set by the varactor diode).

The output frequency of the synthesizer loop is determined by the reference frequency and the number programmed at the programmable counter; $f_{\text {out }}=N f_{\text {ref }}$. The channel spacing is equal to frequency ($f_{\text {ref }}$).

FIGURE 9 - TYPICAL FREQUENCY SYNTHESIZER APPLICATION

Figure 10 shows the SP1648 in the variable frequency mode operating from $a+5.0 \mathrm{Vdc}$ supply. To obtain a sine wave at the output, a resistor is added from the AGC circuit (pin 5) to VEE.

Figure 11 shows the SP1648 in the variable frequency mode operating from a +5.0 Vdc supply. To extend the useful range of the device (maintain a square wave output above 175 MHz), a resistor is added to the AGC circuit at pin 5 (1k-ohm.minimum).

FIGURE 10 - METHOD OF OBTAINING A SINE-WAVE OUTPUT

Figure 12 shows the SP1648 operating from +5.0 Vdc and +9.0 Vdc power supplies. This permits a higher voltage swing and higher output power than is possible from the PECL output (pin 3). Plots of output power versus total collector load resistance at pin 1 are given in Figures 13 and 14 for 100 MHz and 10 MHz operation. The total collector load includes R in parallel with Rp of $L 1$ and C 1 at resonance. The optimum value for R at 100 MHz is approximately 850 ohms.

FIGURE 11 - METHOD OF EXTENDING THE USEFUL RANGE OF THE ISP1648(SQUARE WAVE OUTPUT)

FIOIIRF 17 - CIOCUIT SCHEMATIC USED FOR COILECTOR OUTPUT OPERATION

FIGURE 13 - POWER OUTPUT versus COLLECTOR LOAD

FIGURE 14 - POWER OUTPUT versus COLLECTOR LOAD

ELECTRICAL CHARACTERISTICS
ThisPECL III circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The package should be housed in a suitable heat sink (IERC-LIC214A2WCB or equivalent) or a transverse air flow greater than 500 linear fpm should be maintained while the circuit is either in a test socket or is mounted on a printed circun board. Test procedures a phowts The selected inputs and selected output similar manner. Outputs are tested with 50 -ohm resistor to -20 Vdc See general information section for complete thermal
data

CERAMIC PACKAGE
E

information section for complete thermal data.								$\begin{aligned} & -30^{\circ} \mathrm{C} \\ & +25^{\circ} \mathrm{C} \\ & +85^{\circ} \mathrm{C} \end{aligned}$		-0.875	-1.890	-1.180	-1.515	+0.020	-0.020	See Note (4)				+5.0	-5.2	Ond		
								-0.810	-1.850	-1.095	-1.485	+0.020	-0.020	+5.0	-5.2									
										-0 100	-1.830	-1025	-1440	+0.020	-0.020					+5.0	-5.2			
Characteristic	Sy mbol	$\begin{array}{\|c\|} \hline \text { Pin } \\ \text { Under } \\ \text { Test } \\ \hline \end{array}$	SP165G/5P1651 ${ }^{\text {est Limits (1) }}$							TEST VOLTAGE APPLIED TO PINS LISTED BELOW														
			$-30^{\circ} \mathrm{C}$		$\underline{+25^{\circ} \mathrm{C}}$		$+85^{\circ} \mathrm{C}$		Unit				VII Amax	VAI	V_{42}	V^{43}	$V_{\text {A }}$							
			Min	Max	Min	Max	Min				Max	$\mathrm{V}_{\text {IH max }}$	$\mathrm{V}_{1 \text { L min }}$	$\mathrm{V}_{\text {inamin }}$	$V_{\text {ILAmax }}$	$\mathrm{V}_{\text {A1 }}$	$\mathrm{V}_{\text {A2 }}$	$\mathrm{V}_{\text {A }}$	$V_{\text {A }}$	$V_{\text {A }}$	$\mathrm{V}_{\text {A6 }}$		Vcc	$\mathrm{V}_{\mathbf{E E}}$
Power Supply Drain Current Positive Negative	$\begin{gathered} 1 \mathrm{Cc} \\ \hline \mathrm{E} \end{gathered}$	$\begin{gathered} 7.10 \\ 8 \\ \hline \end{gathered}$	\bar{Z}	$\stackrel{-}{-}$	$\overline{-}$	$\begin{aligned} & 25^{\circ} \\ & 55^{\circ} \\ & \hline \end{aligned}$	\because	-	$\begin{array}{\|c\|} \hline \mathrm{mAdc} \\ \mathrm{mAdC} \\ \hline \end{array}$	4.13	4.13	$-$	\because	6.12 6.12	-	-	-	-	-	7.10 7.10	8	$\begin{array}{r} 1.5 .11 .16 \\ 1,5,11,16 \\ \hline \end{array}$		
Input Current SP1650 SP1651	1 n	$\begin{aligned} & 6 \\ & 6 \end{aligned}$	-	-	-	$\begin{aligned} & 10 \\ & 40 \end{aligned}$	\because	\cdots	$\left\|\begin{array}{l} \mu \mathrm{Adc} \\ \mu \mathrm{Adc} \end{array}\right\|$	$\begin{aligned} & 4 \\ & 4 \end{aligned}$	$\begin{aligned} & 13 \\ & 13 \end{aligned}$	-	-	$\begin{aligned} & 12 \\ & 12 \end{aligned}$	-	$\begin{aligned} & 6 \\ & 6 \end{aligned}$	-	-	-	7.10 7.10	8	$\begin{aligned} & 1.5,11,16 \\ & 1,5,11,16 \\ & \hline \end{aligned}$		
	'R	$\begin{aligned} & 6 \\ & 6 \end{aligned}$	-	$-$	-	$\begin{gathered} 7 \\ 10 \\ \hline \end{gathered}$	-	-	$\begin{array}{\|l\|} \mu \mathrm{Adc} \\ \mu \mathrm{Adc} \\ \hline \end{array}$	$\begin{aligned} & 4 \\ & 4 \end{aligned}$	$\begin{aligned} & 13 \\ & 13 \\ & \hline \end{aligned}$	-	-	$\begin{aligned} & 12 \\ & 12 \end{aligned}$	-	-	-	$\begin{aligned} & 6 \\ & 6 \\ & \hline \end{aligned}$	-	7.10 7.10	8	$\begin{aligned} & 1,5,11,16 \\ & 1,5,11,16 \\ & \hline \end{aligned}$		
Input Clock Current	${ }_{1, n}$	4	-	-	-	350	-	-	$\mu \mathrm{Adc}$	4	13	-	-	6.12	-	-	-	-	-	7.10	8	1.5.11.16		
	lin ${ }^{\text {L }}$	4	-	-	0.5	-	-	-	$\mu \mathrm{AdC}$	-	13	-	-	6.12	-	-	-	-	-	7.10	4.8	1,5.11.16		
Logic "1' Output Voltage	V_{OH}	$\begin{aligned} & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \end{aligned}$	$\underbrace{-1.045}_{1}$						$\left.\right\|_{1} ^{v d c}$	1				$\begin{gathered} \hline 6.12 \\ - \\ - \\ - \\ 5: 11 \\ - \\ - \end{gathered}$	5.11 - 6.12 -	$\begin{gathered} - \\ 6.12 \\ - \\ - \\ 5.11 \end{gathered}$	$\begin{gathered} - \\ 5,11 \\ - \\ - \\ 6,12 \end{gathered}$	$\begin{gathered} - \\ - \\ 5.11 \\ - \\ - \\ \hline .12 \end{gathered}$	$\begin{gathered} - \\ - \\ -\overline{12} \\ - \\ - \\ 5.11 \\ \hline \end{gathered}$	1		1.5 .11 .16 1.6 .12 .16 1.16 1.16 $1.5,11.16$ 1.6 .12 .16 1.16 1.16 1.16		
Logic "0" Output Voitage	$\mathrm{V}_{\text {OL }}$	$\begin{aligned} & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \end{aligned}$						0.1575	$\left.\right\|_{1} ^{\text {vac }}$	$\int_{1}^{4.13}$	- - - - -			$\begin{gathered} 5.11 \\ - \\ 6.12 \end{gathered}$	$\begin{gathered} \hline 6.12 \\ - \\ - \\ - \\ 5.11 \end{gathered}$	$\begin{gathered} \overline{-} \\ 5.11 \\ 5 \\ - \\ 6.12 \end{gathered}$	$\begin{gathered} - \\ \overline{-12} \\ - \\ - \\ 5.11 \end{gathered}$	$\begin{gathered} - \\ - \\ - \\ 6.12 \\ - \\ - \\ 5.11 \end{gathered}$	$\begin{gathered} - \\ \overline{-} \\ 5.11 \\ - \\ - \\ 6.12 \end{gathered}$	1	${ }_{1}^{8}$	$1,5.11 .16$ $1.6,12.16$ 1.16 1.16 $1.5,11.16$ $1 ., 612,16$ 1.16 1.16		
Logic "1" Thieshidid Voitage $\left.\right\|_{2} ^{1}$ ${ }^{(2)} 1_{4}^{3}$	VOHA	$\begin{aligned} & \hline 2 \\ & 2 \\ & 3 \\ & 3 \\ & \hline \end{aligned}$		-		- - -		-	vdc	-	1	4 4 4	- 	6 6	- 6 6	- - -	- - -	- $=$ -	- - -	$\begin{gathered} 7.10 \\ 1 \end{gathered}$	1	1		
	VOLA	$\begin{aligned} & 3 \\ & 3 \\ & 2 \\ & 2 \end{aligned}$	-		- -		-	$\begin{gathered} -1555 \\ 1 \end{gathered}$	$\stackrel{\text { vac }}{\text { val }}$	-	1	4	$\frac{-}{4}$	6 - 6	- 6	-	- -	$=$ -	- - -		1	$\begin{gathered} 1.5 .16 \\ p \end{gathered}$		

OTES: (1) All data is for is SP1650 or SP1651, except data marked ($^{\circ}$) which refers to the entire package (2) These resss ciocin in order indicated. See Figure 4
(3) Mart num ? phet Supeiv Voltages (beyond which device life may be impared

1res

All Temperatures	$\mathrm{V}_{\mathrm{A} 3}$	$\mathrm{~V}_{\mathrm{AA}}$	V_{AS}	V_{AB}
SP1650	+3.000	+2.980	-2.500	-2.480
SP1651	+2.500	+2.480	-3.000	-2.980

50 -ohm termination to ground located
in each scope channel input
All input and output cables to the scope
are equal lengths of $50-\mathrm{hm}$ coaxial cable.

* Complement of output under test should
always be loaded with $\mathbf{5 0}$-ohms to ground.

FIGURE 2 - SWITCHING AND PROPAGATION WAVEFORMS @ $25^{\circ} \mathrm{C}$

The puise levels shown are used to check ac parameters over the full common-mode range.

V - Input to Output

Test pulses: $\begin{aligned} t_{+}, t_{-} & =1.5 \pm 0.2 \mathrm{~ns}(10 \% \text { to } 90 \%) \\ f & =5.0 \mathrm{MHz} \\ 50 \% & \text { Duty } \mathrm{Cycle} \\ \mathrm{V}_{1} \mathrm{H} & \text { is applied to } \overline{\mathrm{C}} \text { during tests. }\end{aligned}$

TEST PULSE LEVELS

	Pulse 1		Pulse 2		Pulse 3	
	SP1650	SP1651	SP1650	SP1651	SP1650	SP1651
$\mathrm{V}_{1 H}$	+2.100 V	+2.100 V	+5.000 V	+4.500 V	-0.300 V	-0.800 V
$\mathrm{~V}_{\mathrm{R}}$	+2.000 V	+2.000 V	+4.900 V	+4.400 V	-0.400 V	-0.900 V
$\mathrm{~V}_{1 \mathrm{~L}}$	+1.900 V	+1.900 V	+4.800 V	+4.300 V	-0.500 V	-1.000 V

FIGURE 3 - PROPAGATION DELAY ($t_{\text {pd }}$) versus INPUT PULSE AMPLITUDE AND CONSTANT OVERDRIVE

Negative Pulse Diagram

Input switching time is constant at $1.5 \mathrm{~ns}(10 \%$ to $90 \%)$.

Propagation Delay versus Pulse Amplitude

FIGURE 4 - LOGIC THRESHOLD TESTS (WAVEFORM SEQUENCE DIAGRAM)

The enable gate chain output is normally in the ' 0 ' state and goes to the ' 1 ' state only when all the Gray outputs are low and the enable input high.

Test Configuration

Typical Transfer Curves

$V_{\text {in }}$, DIFFERENTIAL INPUT VOLTAGE (m VOLTS)

FIGURE 6 - OUTPUT VOLTAGE SWING versus FREQUENCY

(B) Typical Output Logic Swing versus Frequency

FIGURE 7 - INPUT CURRENT versus INPUT VOLTAGE

$50-0 h m$ termination to ground located
in each scope channel input.
All input and output cables to the scope are equal lengths of $\mathbf{5 0} \mathbf{0} \mathbf{~ h m}$ coaxial cable.

Analog Signal Positive and Negative Slew Case

- Clock enable time $=$ minimum time between analog and clock signal such that output switches, and tpd (analog to Q) is not degraded by more than 200 ps.
Clock aperture time $=$ time difference between clock enable time and time that output does not switch and V is less than 150 mV .

VOLTAGE-CONTROLLED MULTIVIBRATOR

SP1658

The SP1658 is a voltage-controlled multivibrator which provides appropriate level shifting to produce an output
 Frequency control is accomplished through. the use of voltage-variable current sources which control the slew rate of a single external capacitor.

The bias filter may be used to help eliminate ripple on the output voltage levels at high frequencies and the input filter may be used to decouple noise from the analog input signal.

The 'SP1658i is useful in phase-locked loops, frequency synthesizer and clock signal generation applications for instrumentation, communication, and computer systems.

FIGURE 1 - CIRCUIT SChematic

ELECTRICAL CHARACTERISTICS

This PECL IH circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit 500 linear fpm is maintained. Outputs are terminated through a 50 -ohm resistor to -2.0 volts.

0

FIGURE 3 - OUTPUT FREQUENCY versus CAPACITANCE FOR VARIOUS VALUES OF INPUT VOLTAGE

FIGURE 4 - RMS NOISE DEVIATION versus OPERATING FREQUENCY

FIGURE 5 - FREQUENCY-CAPACITANCE PRODUCT versus CONTROL VOLTAGE ($V_{C X}$)

VCX.INPUT VOLTAGE (Vdc)

SP1660

CIRCUIT SCHEMATIC

ELECTRICAL CHARACTERISTICS
This PECL III circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has
been established. The package should be housed in a suitable heat sink (LIC21 4A2WCB or equivalent) or a transverse air flow greater than 500 linear $\mathbf{f p m}$ should be maintained while the circuit is either in a test socket or is mounted on a printed circuit board. Test procedures are shown for only one input and one output. The other inputs and outputs are tested in a similar manner. Outputs are tested with a $50-\mathrm{hmm}$ resistor to -2.0 Vdc. See general information section for complete thermal data.

[^1]

CERAMIC PACKAGE E

The electrical specifications shown above apply to the SP1660 The electricallowing cations sho

1. The package is housed in a suitable heat sink.t
2. Air is blown transversely over the package. See genera information section for more details.

SP1660 (continued)

SWITCHINS TIME TEST CIRCUIT AND WAVEFORMS © $\mathbf{2 5}^{\circ} \mathrm{C}$

Unused outputs connected to a 50 ohm resistor to ground

PROPAGATION DELAY

SP1662

CIRCUIT SCHEMATIC

ELECTRICAL CHARACTERISTICS

This PECL III circuit has been designed to meet the dc specifications shown in the meet the dc specifications shown in the been established. The package should be housed in a suitable heat sink(IERC-21 4 A2WCB or equivalent) or a transverse air flow greater than 500 linear fpm should be maintained while the circuit is either in a test socket or is mounted on a printed circuit board. Test procedures are shown for only one input and one output. The other inputs and outputs are tested in a similar manner. Outputs are tested with a 50 -ohm resistor to $\mathbf{- 2 . 0} \mathrm{Vdc}$. See genera information section for complete therma data.

Characteristic			$+85^{\circ} \mathrm{C}$							-0.700	-1.830	-1.025	-1.440	-5.2	Gnd	
	Symbol	$\begin{gathered} \text { Pin } \\ \text { Under } \\ \text { Test } \\ \hline \end{gathered}$	SP1662 Test Limits								test Voltage applied to pins listed below:					
			$-30^{\circ} \mathrm{C}$		$+25^{\circ} \mathrm{C}$		$\underline{+85^{\circ} \mathrm{C}}$		Unit							
			Min	Max	Min	Max	Min'	Max		$\mathrm{V}_{1 \mathrm{H}_{\text {max }}}$	$V_{1 L}{ }_{\text {min }}$	$V_{\text {IHA }}$ min	$V_{\text {ILA }}$ max	$\mathbf{V}_{\mathbf{E E}}$		
Power Supply Drain Current	1 E	8	-	--	-	56	-	-	mAdc	-	-	-	-	8		1.16
Input Current	$\operatorname{lin} \mathrm{H}$	-	$\stackrel{-}{-}$	-	-	350	-	-	$\mu \mathrm{Adc}$	-	-	-	-	8	1,16	
	1 inL	-	-	-	0.5	-	-	-	$\mu \mathrm{Adc}$	-	-	-	-	8	1.16	
Logic "1" Output Voltage	V_{OH}	$\begin{aligned} & \hline 2 \\ & 2 \end{aligned}$	$\begin{array}{\|l\|} \hline-1.045 \\ -1.045 \\ \hline \end{array}$	$\begin{aligned} & -0.875 \\ & -0.875 \end{aligned}$	$\begin{aligned} & -0.960 \\ & -0.960 \end{aligned}$	$\begin{aligned} & -0.810 \\ & -0.810 \end{aligned}$	$\begin{aligned} & -0.890 \\ & -0.890 \end{aligned}$	$\begin{aligned} & -0.700 \\ & -0.700 \end{aligned}$	$\begin{aligned} & \text { Vdc } \\ & \text { Vdc } \end{aligned}$	-	$\begin{aligned} & \hline 4 \\ & 5 \end{aligned}$	-	-	$\begin{aligned} & \hline 8 \\ & 8 \end{aligned}$	$\begin{aligned} & \mathbf{1 . 1 6} \\ & \mathbf{1 , 1 6} \end{aligned}$	
$\begin{aligned} & \hline \text { Logic " } 0 \text { " } \\ & \text { Output Voitage } \end{aligned}$	$\mathrm{VOL}_{\text {O }}$	$\begin{aligned} & \hline 2 \\ & 2 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline-1.890 \\ -1.890 \\ \hline \end{array}$	$\begin{aligned} & -1.650 \\ & -1.650 \\ & \hline \end{aligned}$	$\begin{array}{r} -1.850 \\ -1.850 \\ \hline \end{array}$	$\begin{aligned} & -1.620 \\ & -1.620 \\ & \hline \end{aligned}$	$\begin{array}{r} -1.830 \\ -1.830 \\ \hline \end{array}$	$\begin{aligned} & -1.575 \\ & -1.575 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Vdc } \\ & \text { Vdc } \end{aligned}$	$\begin{aligned} & 4 \\ & 5 \\ & \hline \end{aligned}$	-	-	-	$\begin{aligned} & \hline 8 \\ & 8 \\ & \hline \end{aligned}$	1,16 1,16	
$\begin{aligned} & \text { Logic "1" } \\ & \text { Threshold Voltage } \\ & \hline \end{aligned}$	VOHA	$\begin{aligned} & \hline 2 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & -1.065 \\ & -1.065 \\ & \hline \end{aligned}$	-	$\begin{aligned} & -0.980 \\ & -0.980 \\ & \hline \end{aligned}$	-	$\begin{array}{\|l\|} \hline-0.910 \\ -0.910 \\ \hline \end{array}$	-	$\begin{aligned} & \hline \mathrm{Vdc} \\ & \mathrm{Vdc} \\ & \hline \end{aligned}$	-	-	-	$\begin{aligned} & 4 \\ & 5 \end{aligned}$	$\begin{array}{\|r\|} \hline 8 \\ \hline \quad 8 \\ \hline \end{array}$	$\begin{aligned} & 1.16 \\ & 1.16 \\ & \hline \end{aligned}$	
Logic "0" Threshold Voltage	Vola	$\begin{aligned} & \hline 2 \\ & 2 \\ & \hline \end{aligned}$	-	$\begin{aligned} & \hline-1.630 \\ & -1.630 \\ & \hline \end{aligned}$	-	$\begin{aligned} & -1.600 \\ & -1.600 \\ & \hline \end{aligned}$	-	$\begin{aligned} & \hline-1.555 \\ & -1.555 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Vdc } \\ & \text { Vdc } \\ & \hline \end{aligned}$	-	-	$\begin{aligned} & \hline 4 \\ & 5 \\ & \hline \end{aligned}$	-	$\begin{aligned} & \hline 8 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 1,16 \\ & 1,16 \end{aligned}$	
Switching Times (50Ω Load)										Puise in	Pulse Out			-3.2V	+2.0V	
Propagation Delay	$\begin{aligned} & \mathbf{t} \mathbf{4 + 2 +} \\ & \mathbf{4} \mathbf{4 - 2 -} \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \\ & \hline \end{aligned}$	-	$\begin{aligned} & 1.6 \\ & 1.8 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.1 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.7 \end{aligned}$	-	$\begin{aligned} & 1.7 \\ & 1.9 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	$\begin{aligned} & 4 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 2 \\ & 2 \\ & \hline \end{aligned}$	-	\cdots	$\begin{aligned} & 8 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.16 \\ & 1,16 \end{aligned}$	
Rise Time	t_{2+}	2	-	2.2	1.4	2.1	-	2.3	ns	4	2	-	-	8	1,16	
Fall Time	t_{2}	2	-	2.2	1.2	2.1	-	2.3	ns	4	2	-	-	8	1.16	

tividualiy test each input applying $V_{I H}$ or $V_{I L}$ to input under test.

SP1662 (continued)

SWITCHING TIME TEST CIRCUIT AND WAVEFORMS @ $25^{\circ} \mathrm{C}$

Input Pulse $t_{+}=t_{-}=1.5(\pm 0.2) \mathrm{ns}$
Unused outputs connected to a $\mathbf{5 0}$-ohm resistor to ground.

SP1664

Four 2-input OR or AND gating functions

CIRCUIT SCHEMATIC

ELECTRICAL CHARACTERISTICS

This PECL III circuit has been designed to meet the dc epecifications shown in the test table, after thermal equilibrium has been established. The package should be housed in a suitable heat sink(IERC-21 4 A2WCB or equivalent) or a transverse air flow greater than 500 linear fpm should be maintained while the circuit is either in test socket or is mounted on a printed sircuit board. Test procedures are shown for only one input and one output. The other inputs and outputs are sested in a similar manner. Outputs are tested with a $50-$ ohm resistor to -2.0 Vdc. See general information section for complete thermal data.

CERAMIC PACKAGE E
∞

@ Test Temperature		test voltage values					Gnd
		(Volts)					
		$\mathrm{V}_{1 \mathrm{H} \text { max }}$	V_{IL} min	$\mathrm{V}_{\mathbf{I H A} \text { min }}$	$V_{\text {ILA }}$ max	VeE	
$\begin{aligned} & -30^{\circ} \mathrm{C} \\ & +25^{\circ} \mathrm{C} \\ & +85^{\circ} \mathrm{C} \end{aligned}$		-0.875	-1.890	-1.180	-1.515	-5.2	
		-0.810	-1.850	-1.095	-1.485	-5.2	
		-0.700	-1.830	-1.025	-1.440	-5.2	
Max Unit		TEST VOLTAGE APPLIED TO PINS LISted below:					
		$\mathrm{V}_{1} \mathrm{H}_{\text {max }}$	$\mathrm{V}_{1 \mathrm{~L} \text { min }}$	$\mathbf{V}_{\mathbf{1 H A} \text { min }}$	$V_{\text {ILA }}$ max	$V_{\text {EE }}$	
-	mAdc	-	-	-	-	8	1,16
-	μ Adc	-	-	-	-	8	1,16
-	μ Adc	-	-	-	-	8	1,16
700	Vdc	4	-	-	-	8	1,16
700	Vdc	5	-	-	-	8	1,16
575	Vdc	-	4	-	-	8	1,16
575	Vdc	-	5	-	-	8	1,16
	Vdc	-	-	4	-	8	1.16
-	Vdc	-	-	5	-	8	1,16
555	Vdc	-	-	-	4	8	1,16
555	Vdc	-	-	-	5	8	1,16
		Pulse in	Pulse Out			-3.2 V	+2.0V
7	ns	4	2	-	-	8	1.16 1.16
3	ns	4	2	-	-	8	1,16
. 3	ns	4	2	-	-	8	1,16

Characteristic	Symbol	$\begin{gathered} \text { Pin } \\ \text { Under } \\ \text { Test } \end{gathered}$	SP1664 Test Limits							TEST VOLTAGE APPLIED TO PINS LISTED BELOW:					Gnd
			$-30^{\circ} \mathrm{C}$		$+25^{\circ} \mathrm{C}$		$+85^{\circ} \mathrm{C}$		Unit						
			Min	Max	Min	Max	Min	Max		$V_{\text {IH max }}$	$v_{\text {IL }}$ min	$V_{\text {IHA }}$ min	$V_{\text {ILA max }}$	V_{EE}	
Power Supply Drain Current	'E	8	-	-	-	56	-	-	mAdc	-	-	-	-	8	1,16
Input Current	Iin H	-	-	-	-	350	-	-	μ Adc	-	-	-	-	8	1,16
	In L	*	-	-	0.5	-	-	-	$\mu \mathrm{Adc}$	-	-	-	-	8	1,16
$\begin{aligned} & \hline \text { Logic " } 1 \text { " } \\ & \text { Output Voltage } \\ & \hline \end{aligned}$	VOH	$\begin{aligned} & \hline 2 \\ & 2 \\ & \hline \end{aligned}$	$\begin{array}{r} -1.045 \\ -1.045 \\ \hline \end{array}$	$\begin{aligned} & -0.875 \\ & -0.875 \\ & \hline \end{aligned}$	$\begin{aligned} & -0.960 \\ & -0.960 \\ & \hline \end{aligned}$	$\begin{array}{r} -0.810 \\ -0.810 \\ \hline \end{array}$	$\begin{array}{r} -0.890 \\ -0.890 \\ \hline \end{array}$	$\begin{array}{r} -0.700 \\ -0.700 \\ \hline \end{array}$	$\begin{aligned} & \hline \mathrm{Vdc} \\ & \mathrm{Vdc} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 4 \\ & 5 \\ & \hline \end{aligned}$	-	-	-	$\begin{aligned} & \hline 8 \\ & 8 \end{aligned}$	$\begin{aligned} & 1,16 \\ & 1,16 \\ & \hline \end{aligned}$
$\begin{aligned} & \text { Logic " } 0 \text { " } \\ & \text { Output Voltage } \end{aligned}$	V_{OL}	$\begin{aligned} & 2 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & -1.890 \\ & -1.890 \\ & \hline \end{aligned}$	$\begin{array}{r} -1.650 \\ -1.650 \\ \hline \end{array}$	$\begin{aligned} & -1.850 \\ & -1.850 \\ & \hline \end{aligned}$	$\begin{array}{r} -1.620 \\ -1.620 \\ \hline \end{array}$	$\begin{array}{r} -1.830 \\ -1.830 \\ \hline \end{array}$	$\begin{array}{r} -1.575 \\ -1.575 \\ \hline \end{array}$	$\begin{aligned} & \hline \mathrm{Vdc} \\ & \mathrm{Vdc} \\ & \hline \end{aligned}$	-	$\begin{aligned} & \hline 4 \\ & 5 \\ & \hline \end{aligned}$	-	-	$\begin{aligned} & \hline 8 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 1,16 \\ & 1,16 \\ & \hline \end{aligned}$
$\begin{aligned} & \text { Logic " } 1 \text { " } \\ & \text { Threshold Voltage } \end{aligned}$	VOHA	$\begin{aligned} & 2 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & -1.065 \\ & -1.065 \end{aligned}$	-	$\begin{aligned} & -0.980 \\ & -0.980 \\ & \hline \end{aligned}$	-	$\begin{aligned} & -0.910 \\ & -0.910 \\ & \hline \end{aligned}$	--	$\begin{aligned} & \mathrm{Vdc} \\ & \mathrm{Vdc} \end{aligned}$	-	-	$\begin{aligned} & \hline 4 \\ & 5 \\ & \hline \end{aligned}$	-	$\begin{aligned} & 8 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.16 \\ & 1,16 \end{aligned}$
Logic " 0 " Threshold Voltage	VOLA	$\begin{array}{r} 2 \\ 2 \\ \hline \end{array}$	-	$\begin{array}{r} -1.630 \\ -1.630 \\ \hline \end{array}$	-	$\begin{array}{r} -1.600 \\ -1.600 \\ \hline \end{array}$	-	$\begin{aligned} & -1.555 \\ & -1.555 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Vdc } \\ & \text { Vdc } \end{aligned}$	-	-	\square	$\begin{aligned} & \hline 4 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 8 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 1,16 \\ & 1.16 \end{aligned}$
Switching Times (50Ω Load)					.					Pulse in	Pulse Out			-3.2V	+2.0 ${ }^{\text {V }}$
Propagation Delay	$\begin{aligned} & 14+2+ \\ & 4-2- \\ & \hline \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \\ & \hline \end{aligned}$	-	$\begin{array}{r} 1.6 \\ 1.8 \\ \hline \end{array}$	-	$\begin{array}{r} 1.5 \\ 1.7 \\ \hline \end{array}$	-	$\begin{aligned} & 1.7 \\ & 1.9 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \hline \end{aligned}$	$\begin{aligned} & 4 \\ & 4 \\ & \hline \end{aligned}$	2^{2}	-	-	$\begin{aligned} & 88 \\ & 8 \\ & \hline \end{aligned}$	$\begin{array}{r} 1,16 \\ 1,16 \\ \hline \end{array}$
Rise Time	$12+$	2	-	2.2	.	2.1	-	2.3	ns	4	2	-	-	8	1,16
Fall Time	t_{2}	2	-	2.2	-	2.1	-	2.3	ns	4	,	-	-	8	1,16

- Individually test each input applying $V_{1 H}$ or V_{11} to input under test.

SWITCHING TIME TEST CIRCUIT AND WAVEFORMS © $25^{\circ} \mathrm{C}$

SP1666

POSITIVE LOGIC

This device consists of two Set-Reset flip-flops in a single package which require a clock input to enable the set-reset inputs. Internal input pull-down resistors eliminate the need to return unused inputs to a negative voltage:

I ne device is useriul as a mign-spreeu cinai sovaye cione.i.

$$
\begin{aligned}
t_{p d} & =1.6 \mathrm{~ns} \text { typ (} 510-0 \mathrm{hm} \text { load) } \\
& =1.8 \mathrm{~ns} \text { typ (} 50-0 \mathrm{hm} \text { load) } \\
P_{D} & =220 \mathrm{~mW} \text { typ/pkg (No Load) }
\end{aligned}
$$

S	R	C	Q_{n+1}
ϕ	ϕ	0	Q_{n}
0	0	1	O_{n}
1	0	1	1
0	1	1	0
1	1	1	$\mathrm{~N} . \mathrm{D}$.

N.D. $=$ Don't Care
Not Defined

$$
\begin{aligned}
V_{C C 1} & =P \text { in } 1 \\
V_{C C 2} & =P \text { in } 16 \\
V_{E E} & =P \text { in } 8
\end{aligned}
$$

CIRCUIT SCHEMATIC

ELECTRICAL CHARACTERISTICS
This PECL III circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The package should be housed in a suitable heat sinmlERC. 21 442 WCB Ber equivalent) or a transverse air flow greater than 500 linear fpm should flow greater than 500 linear fom should a test socket or is mounted on a printed a test socket or is mounted on a printed for only one input and one output. The other inputs and outputs are tested in a similar manner. Outputs are tested with $50-\mathrm{hmm}$ resistor to -2.0 Vdc . See genera information section for complete thermal data.

Character istic	Symbol	$\begin{aligned} & \text { Pin } \\ & \text { Under } \\ & \text { Test } \end{aligned}$	SP1666 Test Limits ${ }^{+85^{\circ} \mathrm{C}}$							-0700	-1830	-1025	-1.440	-5.2	$\left(v_{c c}\right)$Gnd
										TEST VOLTAGE APPLIED TO PINS LISTED BELOW:					
			$-30^{\circ} \mathrm{C}$		$+25^{\circ} \mathrm{C}$		+85		Unit						
			Min	Max	Min	Max	Min	Max		$V_{\text {IHmax }}$	$V_{\text {ILmin }}$	$\mathrm{V}_{\text {IHAmin }}$	$\mathrm{V}_{\text {ILAmax }}$	$V_{\text {EE }}$	
Power Supply Drain Current	'E (1)	8	-	-	-	55	-	-	madc	7.9	-	-	-	8	1.16
Inpu: Current	${ }^{1} \mathrm{inH}$	$\begin{gathered} 12 \\ 13 \\ 9 \end{gathered}$	$\begin{aligned} & \overline{-} \\ & \text { - } \end{aligned}$			$\begin{aligned} & 0.370 \\ & 0.370 \\ & 0.225 \end{aligned}$	$\overline{-}$		mAdc mAdc mAdc	$\begin{gathered} 9.12 \\ 9.13 \\ 9 \end{gathered}$				$\begin{aligned} & 8 \\ & 8 \\ & 8 \end{aligned}$	$\begin{aligned} & \begin{array}{l} 1.16 \\ 1.16 \\ 1.16 \end{array} \end{aligned}$
	${ }^{1 . n L}$	$\begin{gathered} 12 \\ 9.13 \end{gathered}$	-	-	$\begin{aligned} & 0500 \\ & 0500 \end{aligned}$	-	-	-	$\mu \mathrm{Adc}$ uAdc	-	$\begin{gathered} 12 \\ 9 .: 3 \end{gathered}$	-	-	$\begin{aligned} & \hline 8 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.16 \\ & 1.16 \end{aligned}$
O Logic 1" Outout Vortage	VOH	$\begin{array}{r} 15(2) \\ 15(3) \\ \hline \end{array}$	$\begin{array}{r} -1.045 \\ -1045 \\ \hline \end{array}$	$\begin{aligned} & -0875 \\ & -0875 \\ & \hline \end{aligned}$	$\begin{aligned} & -0.960 \\ & -0.960 \end{aligned}$	$\begin{aligned} & -0.810 \\ & -0.810 \end{aligned}$	$\begin{array}{r} \hline-0.890 \\ -0.890 \\ \hline \end{array}$	$\begin{aligned} & -0.700 \\ & -0.700 \\ & \hline \end{aligned}$	$V \mathrm{dc}$ $V d c$	$\overline{9}$	13	-	-	$\begin{aligned} & 8 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.16 \\ & 1.16 \\ & \hline \end{aligned}$
O" Logre "0" Outpu: Voltage	V_{OL}	$\begin{aligned} & 15 \text { (4) } \\ & 15 \\ & \hline \end{aligned}$	$\begin{aligned} & -1890 \\ & -1890 \end{aligned}$	$\begin{array}{r} -1.650 \\ -1.650 \end{array}$	$\begin{aligned} & -1.850 \\ & -1.850 \end{aligned}$	$\begin{aligned} & -1620 \\ & -1.620 \end{aligned}$	$\begin{aligned} & -1830 \\ & -1830 \end{aligned}$	$\begin{aligned} & -1575 \\ & -1575 \end{aligned}$	$\begin{aligned} & \text { vdc } \\ & \text { vdc } \end{aligned}$	$\overline{9}$	${ }^{12}$	-	-	$\begin{aligned} & \hline 8 \\ & 8 \end{aligned}$	$\begin{aligned} & 1.16 \\ & 1.16 \\ & \hline \end{aligned}$
$\overline{\mathrm{O}}$ Logic "1" Output Votage	V_{OH}	$\begin{aligned} & 14 \text { (9) } \\ & 14 \text { (5) } \end{aligned}$	$\begin{aligned} & -1.045 \\ & -1045 \end{aligned}$	$\begin{aligned} & -0.875 \\ & -0.875 \end{aligned}$	$\begin{aligned} & -0.960 \\ & -0960 \end{aligned}$	$\begin{aligned} & -0.810 \\ & -0.810 \end{aligned}$	$\begin{aligned} & -0.890 \\ & -0.890 \end{aligned}$	$\begin{aligned} & -0.700 \\ & -0.700 \end{aligned}$	$\begin{aligned} & \text { vac } \\ & \text { vdc } \end{aligned}$	$\overline{9}$	12	-	-	$\begin{aligned} & 8 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 1.16 \\ & 1.16 \\ & \hline \end{aligned}$
$\overline{\text { O. Logic "0" Output Votage }}$	V_{OL}	$\begin{aligned} & 14 \text { (2) } \\ & 14 \text { (3) } \end{aligned}$	$\begin{array}{r} -1890 \\ -1.890 \\ \hline \end{array}$	$\begin{aligned} & -1.650 \\ & -1.650 \\ & \hline \end{aligned}$	$\begin{aligned} & -1.850 \\ & -1850 \end{aligned}$	$\begin{aligned} & -1.620 \\ & -1620 \end{aligned}$	$\begin{aligned} & -1.830 \\ & -1830 \end{aligned}$	$\begin{aligned} & -1.575 \\ & -1.575 \end{aligned}$	Vdc Vdc	$\overline{9}$	13	-	-	$\begin{aligned} & 8 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.16 \\ & 1.16 \end{aligned}$
O Log.c 1 " Outpu: Threstold Voltage	Voha	$\begin{aligned} & 156 \\ & 158 \\ & \hline \end{aligned}$	$\begin{array}{r} -1.065 \\ -1.065 \end{array}$	-	$\begin{aligned} & -0.980 \\ & -0.980 \end{aligned}$	-	$\begin{aligned} & -0910 \\ & -0910 \end{aligned}$	-	$\begin{aligned} & \text { Vdc } \\ & \text { Vdc } \end{aligned}$	-	13	$\begin{gathered} 12 \\ 9 \end{gathered}$	13	$\begin{aligned} & \hline 8 \\ & 8 \end{aligned}$	$\begin{aligned} & 1.16 \\ & 1.16 \end{aligned}$
O" Logic 0 Output Threshold Voltage	VOLA	15 (6)	-	-1630	-	-1600	-	-1 555	vdc	-	-	13	12	8	1.16
区" Logic " 1 " OutDut Threshold Voltage	$\mathrm{V}_{\mathrm{OHA}}$	14 (6)	-1.065	-	-0.980	-	-0.910	-	Vdc	-	-	13	12	8	1.16
" " Logic "0" Output Threshold Voltage	vola	$\begin{aligned} & 146 \\ & 148 \\ & \hline \end{aligned}$	-	$\begin{aligned} & -1630 \\ & -1630 \\ & \hline \end{aligned}$	-	$\begin{array}{r} -1600 \\ -1600 \\ \hline \end{array}$	-	$\begin{aligned} & -1.555 \\ & -1.555 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Vac } \\ & \text { Vd } \end{aligned}$	$\overline{-}$	$\overline{13}$	$\begin{gathered} 12 \\ 9 \\ \hline \end{gathered}$	13	$\begin{aligned} & 8 \\ & 8 \end{aligned}$	$\begin{aligned} & 1.16 \\ & 1.16 \\ & \hline \end{aligned}$
Switching Times 150 :? Load) enck Im	$\begin{aligned} & \operatorname{tg}+15- \\ & 99-15- \\ & \operatorname{tg} 14- \\ & \operatorname{ta+14-} \\ & \hline \end{aligned}$	$\begin{aligned} & 15 \\ & 15 \\ & 14 \\ & 14 \end{aligned}$	1	${ }_{1}^{2.7}$	10	2.5	1	2.8	1	Pulse in 9 1	Pulse Out 15 15 14 14		- - -	$\begin{array}{\|c} \hline-3.2 v \\ \hline 8 \\ 1 \end{array}$	$\begin{gathered} +2.0 \mathrm{~V} \\ 1.16 \\ 1 \end{gathered}$
Set Input Reset Input	$\begin{aligned} & t 12+15+ \\ & t 12+14- \\ & t 13-14- \\ & t_{13+15+} \\ & \hline \end{aligned}$	$\begin{aligned} & 15 \\ & 14 \\ & 14 \\ & 15 \\ & \hline \end{aligned}$	10	$1_{1}^{2.5}$	1_{1}^{10}	$1^{2,3}$	1	$1_{1}^{2.7}$	$\begin{aligned} & \hline \mathrm{ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \\ & \hline \end{aligned}$	$\begin{aligned} & 12 \\ & 12 \\ & 13 \\ & 13 \\ & \hline \end{aligned}$	$\begin{aligned} & 15 \\ & 14 \\ & 14 \\ & 15 \\ & \hline \end{aligned}$		-	$\begin{aligned} & 8 \\ & 8 \\ & 8 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 1.16 \\ & 1.16 \\ & 1.16 \\ & 1.16 \\ & \hline \end{aligned}$
Rise Time	$\stackrel{-}{-}$	14.15	0.8	2.8	08	2.5	0.9	2.9	ns	9	14.15	-	-	8	1.16
Fal: Time	$t-$	14.15	0.5	2.4	05	22	05	2.6	ns	9	14.15	-	-	8	1.16

O votes appear on page following Electr cal Character istics tables

(1) I E is measured with no output pull-down resistors.
(2) Apply Sequentially: $V_{i n 1}$ to $C\left(V_{1 H}\right.$ to $\left.V_{I L}\right)$ $V_{\text {in2 }}$ to $S\left(V_{I H}\right.$ to $\left.V_{I L}\right)$
(3) Apply Sequentially: $V_{i n 1}$ to $R\left(V_{I H}\right.$ to $\left.V_{I L}\right)$ $V_{\text {in2 }}$ to $S\left(V_{I H}\right.$ to $\left.V_{I L}\right)$
(4) Apply Sequentially: $V_{\text {in } 1}$ to $C\left(V_{1 H}\right.$ to $\left.V_{I L}\right)$ $V_{\text {in2 }}$ to $R\left(V_{I H}\right.$ to $\left.V_{I L}\right)$
(5) Apply Sequentially: $\begin{aligned} & V_{\text {in1 }} \text { to } S\left(V_{1 H} \text { to } V_{1 L}\right) \\ & \\ & V_{\text {in2 }} \text { to } R\left(V_{1 H} \text { to } V_{1 L}\right)\end{aligned}$
(6) Apply $V_{\text {in3 }}$ to $C\left(V_{I H}\right.$ to $\left.V_{I L}\right)$
(7) Apply $V_{i n 3}$ to $S\left(V_{1 H}\right.$ to $\left.V_{I L}\right)$

SWITCHING TIME TEST CIRCUIT AND WAVEFORMS @ $\mathbf{2 5}^{\mathbf{\circ}} \mathrm{C}$

SP1668

CIRCUIT SCHEMATIC

ELECTRICAL CHARACTERISTICS
This PECL III circuit has been designed to weet the dc specifications shown in the ast table, after thermal equilibrium has been established. The package should be housed in a suitable heat sink (IERC-LIC214A2WCB or equivalent) or a transverse air flow greater than $\mathbf{5 0 0}$ linear fpm should be maintained while the circuit is either in a test socket or is mounted on a printed circuit board. Test procedures are shown for selected inputs and selected outputs. The other inputs and outputs are tested in a similar manner. Outputs are tested with a 50 -ohm resistor to $\mathbf{- 2 . 0} \mathbf{V d c}$. See general information section for complete thermal data.

CERAMIC PACKAGE E

data.									$+85^{\circ} \mathrm{C}$	-0.700	-1.830		-1.440	-5.2	$\begin{gathered} \left(V_{c c c}\right) \\ \mathbf{G G d} \end{gathered}$
Characteristic	Symbol	$\begin{aligned} & \text { Pin } \\ & \text { Under } \\ & \text { Test } \end{aligned}$	SP1668.. Test Limits						Unit	test voltage applied to pins listed below:					
				${ }^{\circ} \mathrm{C}$		$5^{\circ} \mathrm{C}$		$5^{\circ} \mathrm{C}$							
			Min	Max	Min	Max	Min	Max		$\mathrm{V}_{\text {IH max }}$	$V_{\text {IL }}$ min	$\mathrm{V}_{\text {IHA }}$ min	$V_{\text {ILA }}$ max	V_{EE}	
Power Supply Drain Current	IE (Hi I Z$)$!	8	.		-	55	-	-	madc	7.9	-	-	-	8	1,16
Input Current	$\mathrm{I}_{\text {in }} \mathrm{H}$	11,12,13(2)	-	-	-	0.370	-	-	madc	11,12.13	-		--	8	1,16
				-	-	0.225	-	-	mAdc	9	--	-		8	1,16
	$\mathrm{I}_{\text {in }} \mathrm{L}$	$\begin{gathered} 11,12,13(2) \\ 9 \end{gathered}$	-	-	$\begin{aligned} & 0.500 \\ & 0.500 \end{aligned}$	$\ddot{-}$	-	\bar{Z}	$\mu \mathrm{Adc}$ $\mu \mathrm{Adc}$	-	$\begin{gathered} 11,12,13 \\ 9 \end{gathered}$	-	-	$\begin{aligned} & \hline 8 \\ & 8 \end{aligned}$	$\begin{aligned} & 1,16 \\ & 1.16 \\ & \hline \end{aligned}$
$\begin{array}{\|c\|} \hline \text { " } Q^{\prime} \text { Logic " } 1 \text { "' } \\ \text { Output Voltage } \end{array}$	V_{OH}	$\begin{aligned} & 15(3) \\ & 15(4) \end{aligned}$	$\begin{array}{\|l\|} \hline-1.045 \\ -1.045 \\ \hline \end{array}$	$\begin{aligned} & -0.875 \\ & -0.875 \end{aligned}$	$\begin{aligned} & -0.960 \\ & -0.960 \end{aligned}$	$\begin{array}{\|l\|} \hline-1.810 \\ -1.810 \\ \hline \end{array}$	$\begin{aligned} & \hline-0.890 \\ & -0.890 \\ & \hline \end{aligned}$	$\begin{aligned} & -0.700 \\ & -0.700 \end{aligned}$	$\begin{aligned} & \mathrm{Vdc} \\ & \mathrm{Vdc} \end{aligned}$	$\overline{9}$	13	-	$\stackrel{-}{-}$	$\begin{aligned} & \hline 8 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 1,16 \\ & 1,16 \end{aligned}$
$\begin{array}{\|c\|} \hline \text { "Q Logic "0" } \\ \text { Output Logic } \end{array}$	$\mathrm{v}_{\text {OL }}$	$\begin{aligned} & 15(5) \\ & 15(6) \\ & \hline \end{aligned}$	$\begin{aligned} & -1.890 \\ & -1.890 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline-1.650 \\ -1.650 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline-1.850 \\ -1.850 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline-1.620 \\ -1.620 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline-1.830 \\ -1.830 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline-1.575 \\ -1.575 \\ \hline \end{array}$	$\begin{aligned} & \text { Vdc } \\ & \text { Vdc } \end{aligned}$	9	12	-	-	$\begin{aligned} & 8 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 1,16 \\ & 1,16 \end{aligned}$
$\begin{array}{\|c\|} \hline " \overline{\mathrm{a}} " \text { Logic "1" } \\ \text { Output Voltage } \end{array}$	V_{OH}	$\begin{aligned} & 14 \text { } \\ & 14 \text { (6) } \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline-1.045 \\ -1.045 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline-0.875 \\ -0.875 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline-0.960 \\ -0.960 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline-0.810 \\ -0.810 \\ \hline \end{array}$	$\begin{array}{r} -0.890 \\ -0.890 \\ \hline \end{array}$	$\begin{aligned} & -0.700 \\ & -0.700 \end{aligned}$	Vdc Vdc	$\overline{9}$	$\stackrel{12}{-}$	-	-	8	$\begin{aligned} & 1,16 \\ & 1.16 \end{aligned}$
$\begin{gathered} " \overline{\mathrm{Q}} " \text { Logic "0" } \\ \text { Output Voltage } \end{gathered}$	V_{OL}	$\begin{aligned} & 14(3) \\ & 14(4) \\ & \hline \end{aligned}$	$\begin{aligned} & -1.890 \\ & -1.890 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline-1.650 \\ -1.650 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline-1.850 \\ -1.850 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline-1.620 \\ -1.620 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline-1.830 \\ -1.830 \end{array}$	$\begin{aligned} & -1.575 \\ & -1.575 \end{aligned}$	$\begin{aligned} & \mathrm{Vdc} \\ & \mathrm{Vdc} \end{aligned}$	$\overline{9}$	${ }^{13}$	-	-	8 8 8	$\begin{aligned} & 1,16 \\ & 1,16 \end{aligned}$
$\begin{gathered} \text { " }{ }^{\prime \prime} \text { Logic " } 1 \text { " Output } \\ \text { Threshold Voltage } \end{gathered}$	VOHA	$\begin{aligned} & 15 \\ & 15 \text { (1) } \\ & 15 \text { (5) } \end{aligned}$		-		-		-		11	-	$\begin{aligned} & 12 \\ & 11 \\ & 9 \\ & \hline \end{aligned}$	13	1	1.16
"O" Logic "0" Output Threshold Voltage	Vola	$\begin{aligned} & 15 \\ & 15(6) \\ & 15(3) \\ & \hline \end{aligned}$	-	$\begin{gathered} -1.630 \\ 1 \end{gathered}$	-		-			-	$\begin{aligned} & - \\ & \overline{11} \\ & \hline \end{aligned}$	$\begin{aligned} & 13 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & 12 \\ & 11 \\ & \hline \end{aligned}$		1.16
" $\overline{\mathrm{a}}$ " Logic " 1 " Output Threshold Voltage	Vola	$\begin{aligned} & 14 \\ & 14 \text { (6) } \\ & 14 \text { (3) } \\ & \hline \end{aligned}$		-	-0.980	-		-		-	$\begin{aligned} & - \\ & \overline{11} \end{aligned}$	$\begin{aligned} & 13 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & 12 \\ & 11 \\ & - \end{aligned}$		$\stackrel{1.16}{1}$
" $\overline{\mathrm{a}} "$ Logic " 0 " Output Threshold Voltage	VOLA	$\begin{aligned} & 14 \\ & 14 \\ & 14(5) \\ & \hline \end{aligned}$	-	$\begin{gathered} -1.630 \\ 1 \end{gathered}$	-		-			-	-	$\begin{aligned} & \hline 12 \\ & 11 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & 13 \\ & - \end{aligned}$		$\stackrel{1.16}{1}$
Switching Times (50Ω Load) Clock Input										Pulse in	Pulse Out			-3.2 V	+2.0
		$\begin{aligned} & 15 \\ & 15 \\ & 14 \\ & 14 \\ & \hline \end{aligned}$	10	2.7		${ }^{2.5}$	1	1	1_{1}^{ns}	1	$\begin{aligned} & 15 \\ & 15 \\ & 14 \\ & 14 \end{aligned}$	- -	- - -	8	
Rise Time	${ }^{\text {t }}$	14,15	0.8	2.8	0.9	2.5	0.9	2.9	ns	9	14,15	-	-		1,16
Fall Time	t-	14,15	0.5	2.4	0.5	2.2	0.5	2.6	ns	9	14,15	-	-	8	1,16
Set Input	$\begin{aligned} & t_{12+15+} \\ & t_{12+14-} \\ & \hline \end{aligned}$	$\begin{aligned} & 15 \\ & 14 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 1.1 \\ & 1.1 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.3 \\ & 2.3 \end{aligned}$	$\begin{aligned} & 1.1 \\ & 1.1 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.7 \\ & 2.7 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	$\begin{aligned} & 12 \\ & 12 \end{aligned}$	$\begin{aligned} & 15 \\ & 14 \\ & \hline \end{aligned}$	\cdots	-	$\begin{aligned} & \hline 8 \\ & 8 \end{aligned}$	$\begin{aligned} & 1,16 \\ & 1,16 \end{aligned}$
Reset Input	$\begin{aligned} & \mathrm{t}_{1} 3+14+ \\ & \mathrm{t}_{1} 13+15- \end{aligned}$	$\begin{aligned} & 14 \\ & 15 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 1.1 \\ & 1.1 \end{aligned}$	$\begin{aligned} & 2.3 \\ & 2.3 \end{aligned}$	$\begin{aligned} & 1.1 \\ & 1.1 \end{aligned}$	$\begin{aligned} & \hline 2.7 \\ & 2.7 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	$\begin{aligned} & 13 \\ & 13 \end{aligned}$	$\begin{aligned} & 14 \\ & 15 \end{aligned}$	-	-	$\begin{aligned} & 8 \\ & 8 \end{aligned}$	$\begin{aligned} & 1,16 \\ & 1,16 \end{aligned}$

ONotes appear on page following Electrical C'haracter istics tables.

SP1668 (continued)

NOTES

(1) ${ }^{\prime} E$ is measured with no output pulldown resistors.
(2) Test voltage applied to pin under test.

(3) Apply $V_{\text {in } 1}$ to $S\left(V_{I H}\right.$ to $\left.V_{I L}\right)$.
(4) Apply Sequentially: $V_{\text {in } 1}$ to $R\left(V_{1 H}\right.$ to $\left.V_{I L}\right)$
$V_{\text {in2 }}$ to $C\left(V_{1 H}, V_{I L}\right)$
$V_{\text {in3 }}$ to $D\left(V_{\text {IH }}\right.$ to $\left.V_{\text {IL }}\right)$
(5) Apply $V_{\text {in } 1}$ to $R\left(V_{1 H}\right.$ to $\left.V_{I L}\right)$
(6) Apply Sequentially: $V_{\text {in } 1}$ to $S\left(V_{I H}\right.$ to $\left.V_{I L}\right)$
$v_{\text {in2 }}$ to $C\left(V_{I H}, V_{I L}\right)$
(7) Apply Sequentially: $V_{\text {in } 1}$ to $R\left(V_{1 H}\right.$ to $\left.V_{I L}\right)$
$V_{\text {in2 }}$ to $C\left(V_{1 H}, V_{1 L}\right)$

SWITCHING TIMES TEST CIRCUIT AND WAVEFORMS @ $25^{\circ} \mathrm{C}$

SET/RESET TO Q/ $\overline{\mathbf{Q}}$ (Switch S1 in position shown)

CLOCK TO Q/ة̈
(Switch S1 in opposite position)

MASTER-SLAVE TYPE D FLIP-FLOP

SP1670

The SP1670, is a Type D Master-Slave Flip-Flop designed tor use in high speed digital applications. Master slave construction renders the SP1670i relatively insensitive to the shape of the clock waveform, since only the voltage levels at the clock inputs control the transfer of information from data input (D) to output.

When both clock inputs (C 1 and C 2) are in the low state, the data input affects only the "Master" portion of the flip-flop. The data present in the "Master" is transferred to the "Slave" when clock inputs (C 1 " $O R^{\prime \prime} \mathrm{C} 2$) are
taken from a low to a high level. In other words, the output state of the flip-flop changes on the positive transition of the clock pulse.

While either C1 "OR" C2 is in the high state, the "Master" (and data input) is disabled.

Asynchronous Set (S) and Reset (R) override Clock (C) and Data (D) inputs.

Input pulldown resistors eliminate the need to tie unused inputs to $V_{E E}$.

ELECTRICAL CHARACTERISTICS
This PECL III circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The package should be housed in a suitable heat sink (IERC-- 214 A 2 WCB or equivalent) or a transverse air flow greater than 500 linear fpm should be maintained while the circuit is either in a test socket or is mounted on a printed circuit board. Test procedures are shown for only one input and one output. The other inputs and outputs are tested in a similar manner. Outputs are tested with a $50-\mathrm{hm}$ resistor to $\mathbf{- 2 . 0} \mathrm{Vdc}$. See general information section for complete thermal deta.

CERAMIC PACKAGE E

SP1670 (continued)

FIGURE 1 - PROPAGATION DELAY TEST CIRCUIT

FIGURE 2 - SET-RESET DELAY WAVEFORMS @ $25^{\circ} \mathrm{C}$

FIGURE 3 - SET UP AND HOLD TIME TEST CIRCUIT

SET UP TIME WAVEFORMS @ $25^{\circ} \mathrm{C}$

TPout Q Output

Set up time is the minimum time before the positive transition of the clock pulse (C) that information must be present at the data (D) input.

Hold time is the minimum time after the positive transition of the clock pulse (C) that information must remain unchanged at the data (D) input.

SP1670 (continued)

FIGURE 4 - TOGGLE FREQUENCY TEST CIRCUIT

FIGURE 5 - TOGGLE FREQUENCY WAVEFORMS

FIGURE 6 - MAXIMUM TOGGLE FREQUENCY (TYPICAL)

Figure 6 illustrates the variation in toggle frequency with the dc offset voltage (V_{Bi}) of the input clock signal. $\mathrm{V}_{\text {Bias }}$ is defined by the test circuit in Figure 4, and waveform Figure 5.

Figures 8 and 9 illustrate minimum clock pulse width recommended for reliable operation of the SP1670.

FIGURE 8 - MINIMUM "DOWN TIME" TO CLOCK OUTPUT LOAD $=50 \Omega$

FIGURE 9 - MINIMUM "UP TIME" TO CLOCK OUTPUT LOAD $=50 \Omega$

TRIPLE 2-INPUT

EXCLUSIVE-OR GATE

SP1672

CIRCUIT SCHEMATIC

ELECTRICAL CHARACTERISTICS

This PECL 111 circuit has been designed to This the do specifications shown in the meet the dc specifications shown in the test table, after thermal equilibrium has been established. The package should be
housed in a suitable heat sink (IERC-LIChoused in a suitable heat sink (IERC-LIC214A2WCB or equivalent) or a transverse
air flow greater than 500 linear fpm should air flow greater than test socket or is mounted on a printed circuit board. Test procedures are shown for selected inputs and selected outputs. The other inputs and outputs are tested in a similar manner. Outputs are tested with a 50 -ohm resistor to $\mathbf{- 2 . 0} \mathrm{Vdc}$. See general data.

SWITCHING TIME TEST CIRCUIT AND WAVEFORMS @ $25^{\circ} \mathrm{C}$

TRIPLE 2-INPUT EXCLUSIVE-NOR GATE

SP1674

CIRCUIT SCHEMATIC

ELECTRICAL CHARACTERISTICS
This PECL III circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium ha been established. The package seld be housed in a suitable heat sink (IERC-LIC 214A2WCB or equivalent) or a transverse air flow greater than 500 linear fpm should be maintained while the circuit on is mounted on printed test socket ircuit moard Test procedures are shown circuit board. Test procedures are shown for selected inputs and selected outputs. a similar manner. Outputs are tested with a 50 -ohm resistor to -2.0 Vdc . See general information section for complete thermal data.

CERAMIC PACKAGE E

Characteristic	Symbol	Pin Under Test	SP1674. Test Limits							TEST VOLTAGE APPLIED TO PINS LISTED BELOW					$\begin{gathered} \left(\begin{array}{c} \mathbf{V}_{\mathbf{c c}} \\ \text { Gnd } \end{array}\right. \\ \hline \end{gathered}$
			$-30^{\circ} \mathrm{C}$		$+25^{\circ} \mathrm{C}$		$+85^{\circ} \mathrm{C}$		Unit						
			Min	Max	Min	Max	Min	Max		$\mathrm{V}_{1} \mathrm{H}$ max	$V_{\text {IL min }}$	$\mathrm{V}_{\text {IHAmin }}$	$V_{\text {ILAmax }}$	VEE	
Power Supply Drain Current	IE	8	-	-	-	55	-	-	mAdc	All Inputs	-	-	-	8	1,16
Input Current	1 inH	3,11,13	-	-	-	350	-	-	μ Adc	*	-	-	-	8	1,16
	$0.75 \mathrm{I}_{\mathrm{inH}}$	5,6,7	-	-	-	270	-	-	μ Adc	*	-	-	-	8	1,16
	$\mathrm{I}_{\mathrm{inL}}$	*	-	-	0.5	-	-	-	$\mu \mathrm{Adc}$	-	*	-	-	8	1,16
Logic "1" Output Voltage	${ }^{\text {OH }}$ ¢	$\begin{aligned} & 2 \\ & 2 \\ & \hline \end{aligned}$	$\begin{array}{r} -1.045 \\ -1.045 \\ \hline \end{array}$	$\begin{aligned} & -0.875 \\ & -0.875 \\ & \hline \end{aligned}$	$\begin{array}{r} \hline-0.960 \\ -0.960 \\ \hline \end{array}$	$\begin{aligned} & -0.810 \\ & -0.810 \\ & \hline \end{aligned}$	$\begin{aligned} & -0.890 \\ & -0.890 \\ & \hline \end{aligned}$	$\begin{aligned} & -0.700 \\ & -0.700 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \mathrm{Vdc} \\ & \mathrm{Vdc} \\ & \hline \end{aligned}$	$3,5$	$3,5$	-	-	$\begin{aligned} & 8 \\ & 8 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 1.16 \\ 1,16 \end{array}$
Logic " 0 " Output Voltage	${ }^{\text {VOL } \phi}$	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & \hline-1.890 \\ & -1.890 \\ & \hline \end{aligned}$	$\begin{array}{r} -1.650 \\ -1.650 \\ \hline \end{array}$	$\begin{aligned} & \hline-1.850 \\ & -1.850 \\ & \hline \end{aligned}$	$\begin{aligned} & -1.620 \\ & -1.620 \\ & \hline \end{aligned}$	$\begin{aligned} & -1.830 \\ & -1.830 \\ & \hline \end{aligned}$	$\begin{array}{r} -1.575 \\ -1.575 \\ \hline \end{array}$	Vdc Vdc	$\begin{aligned} & 3 \\ & 5 \end{aligned}$	$\begin{aligned} & 5 \\ & 3 \end{aligned}$	-	-	$\begin{aligned} & 8 \\ & 8 \end{aligned}$	$\begin{aligned} & 1,16 \\ & 1,16 \end{aligned}$
Logic "1" Threshold Voltage	${ }^{\text {OHA }}$ ($\begin{aligned} & \hline 2 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & -1.065 \\ & -1.065 \\ & \hline \end{aligned}$	-	$\begin{aligned} & -0.980 \\ & -0.980 \\ & \hline \end{aligned}$	-	$\begin{array}{r} -0.910 \\ -0.910 \\ \hline \end{array}$	-	Vdc Vdc	-	-	3,5	$3,5$	$\begin{aligned} & 8 \\ & 8 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 1,16 \\ 1,16 \\ \hline \end{array}$
Logic '0" Threshold Voltage	$\mathrm{V}_{\text {OLA }}$ ($\begin{aligned} & 2 \\ & 2 \\ & \hline \end{aligned}$	-	$\begin{array}{r} -1.630 \\ -1.630 \\ \hline \end{array}$	-	$\begin{aligned} & \hline-1.600 \\ & -1.600 \end{aligned}$	-	$\begin{aligned} & -1.555 \\ & -1.555 \end{aligned}$	Vdc Vdc	-	-	$\begin{aligned} & 3 \\ & 5 \end{aligned}$	$\begin{aligned} & 5 \\ & 3 \end{aligned}$	$\begin{aligned} & 8 \\ & 8 \\ & \hline \end{aligned}$	$\begin{array}{\|l} 1,16 \\ 1,16 \\ \hline \end{array}$
Switching Times (50Ω Load) Propagation Delay	$\begin{aligned} & t_{3+2+} \\ & t_{3-2+} \\ & t_{3+2-} \\ & t_{3-2-} \\ & t_{5+2+} \\ & t_{5-2+} \\ & t_{5+2-} \\ & t_{5-2-} \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \end{aligned}$	- - - - - -	$\begin{aligned} & 2.0 \\ & 2.0 \\ & 2.1 \\ & 2.1 \\ & 2.5 \\ & \hline \end{aligned}$	- - - - - -	$\begin{aligned} & 1.8 \\ & 1.8 \\ & 1.9 \\ & 1.9 \\ & 2.3 \\ & \hline \end{aligned}$	- - - - -		$\underbrace{n s}$	$\begin{aligned} & \text { - } \\ & \text { - } \\ & \text { - } \\ & - \\ & - \\ & - \end{aligned}$	- - - - - -	Pulse In 3 1 5 1	Pulse Out 2	${ }_{8}^{8}$	$\underbrace{1,16}$
Rise Time	t6+	2	-	2.7	-	2.5	-	2.9	ns	-	-	3	2	8	1,16
Fall Time	${ }_{6} 6$	2	-	2.4	-	2.2	-	2.6	ns	-	-	3	2	8	1,16

*Individually test each inpüt applying V_{IH} or V_{IL} to input under test.

Unused outputs connected to a $\mathbf{5 0}$-ohm resistor to ground.

PROPAGATION DELAY

UHF PRESCALER TYPE D FLIP.FLOP

SP1690

ELECTRICAL CHARACTERISTICS

This PECL III circuit has been designed to meet the de specifications shown in the test table, after thermal equilibrium has test table, after thermal equilibrium has housed in a suitable heat sink (IERC-LIC214A2WCB or equivalent) or a transverse air flow greater than 500 linear fpm should be maintained while the circuit is either in a test socket or is mounted on a printed circuit board. Test procedures are shown for selected inputs and selected outputs. The other inputs and outputs are tested in a similar manner. Outputs are tested with a $50-\mathrm{ohm}$ resistor to $\mathbf{- 2 . 0} \mathrm{Vdc}$. See general information section for complete thermal data.

CERAMIC PACKAGE E

CLOCK DELAY WAVEFORMS @ $25^{\circ} \mathrm{C}$

FIGURE 2 - SETUP AND HOLD TIME TEST CIRCUIT

SETUP TIME WAVEFORMS @ $25^{\circ} \mathrm{C}$

Q Output

Setup time is the minimum time before the positive transition of the clock pulse (C) that information must be present at the data (D) input.

Hold time is the minimum time after the positive transition of the clock pulse (C) that information must remain unchanged at the data (D) input.

EInine 3 - TOGGI F FREQUENCY TEST CIRCUIT

FIGURE 4 - TOGGLE FREQUENCY WAVEFORMS

QUAD LINE RECEIVER

SP1692

CIRCUIT SCHEMATIC

See General Information section for packaging information.

ELECTRICAL CHARACTERISTICS

This PECL III circuit has been designed to meet the dc specifications shown in the test table, af ter thermal equilibrium has been established. The package should be been established. The package should be housed in a suitable heat sink (IERC-LIC
214A2WCB or equivalent) or a transverse 214A2WCB or equivalent) or a transverse
air flow greater than 500 linear fpm should air flow greater than 500 linear fpm should
be maintained while the circuit is either in a test socket or is mounted on a printed circuit board. Test procedures are shown for selected inputs and selected outputs. The other inputs and outputs are tested in a similar manner. Outputs are tested with a $50-\mathrm{ohm}$ resistor to $\mathbf{- 2 . 0} \mathbf{~ V d c}$. See genera information section for complete therma data.

$\begin{aligned} & \text { Test } \\ & \text { Temperature } \end{aligned}$		TESt VOLTAGE VALUES						Gnd
		$\mathrm{V}_{\text {IH }}$ max	$V_{\text {IL }}$ min	$\mathrm{V}_{\text {IHA }}$ min	$V_{\text {ILA }}$ max	$V_{\text {BB }}$	VEE	
$\begin{aligned} & -30^{\circ} \mathrm{C} \\ & +25^{\circ} \mathrm{C} \\ & +85^{\circ} \mathrm{C} \end{aligned}$		-0.875	-1.890	-1.180	-1.515	$\begin{gathered} \text { From } \\ \hline \text { Pin } \\ 9 \end{gathered}$	-5.2	
		-0.810	-1.850	-1.095	-1.485		-5.2	
		-0.700	-1.830	-1.025	-1.440		-5.2	
	Unit	TEST VOLTAGE APPLIED TO PINS LISTED BELOW:						
Max		$\mathrm{V}_{\text {IH }}$ max	$\mathrm{V}_{\text {IL }}$ min	$\mathrm{V}_{1 \mathrm{IHA}_{\text {min }}}$	$V_{\text {ILA }}$ max	$\mathrm{V}_{\text {BB }}$	$\mathbf{V}_{\mathbf{E E}}$	
-	madc	-	4,7,10,13	-	-	5,6,11,12	8	1.16
-	MAdc	4	7.10,13	-	-	5,6,11,12	8	1.16
-	$\mu \mathrm{Adc}$	-	7,10,13	-	-	5,6,11,12	8.4	1.16
0.700	Vdc	7.10,13	4	-	-	5,6,11,12	8	1,16
1.575	Vdc	4	7.10 .13	-	-	5,6,11.12	8	1.16
-	Vdc	-	7.10 .13	-	4	5,6,11,12	8	1.16
1.555	Vdc	-	7.10.13	4	-	5,6,11,12	8	1.16
1.20	Vdc	-	-	-	-	5,6.11.12	8	1.16
Max					Out			
$\begin{aligned} & 1.7 \\ & 1.9 \\ & 2.3 \\ & 2.3 \\ & \hline \end{aligned}$	$\left.\right\|^{n s}$						1	${ }^{1,16}$

The SP1692 quad line receiver is used primarily to receive data from balanced twisted pair lines, as indicated in Figure 1. The line is driven with a SP1660 OR/NOR gate. The SP1660 is terminated with 50 ohm resistors to -2.0 volts. At the end of the twisted pair a 100 ohm termination resistor is placed across
the differential line receiver inputs of the SP1692. Illustrated in Figure 2 is the sending and receiving waveforms at a data rate of 400 megabits per second over an 18 foot twisted pair cable. The waveform picture of Figure 3 shows a 5 nanosecond pulse being propagated down the 18 foot line. The delay time for the line $\therefore 102.014$ n..

The SP 1692: may also be applied as a high frequency schmitt trigger as illustrated in Figure 4 This circuit has been used in excess of 200 MHz . The SP1692 when loaded into 50 ohms will produce an output rising edge of about 1.5 nanoseconds.

FIGURE 1 - LINE DRIVER/RECEIVER

FIGURE 2 - 400 MBS WAVEFORMS

figure 3 - PULSE PROPAGATION WAVEFORMS

FIGURE 4-200 MHz SCHMITT TRIGGER

SP8000 SERIES
 HIGH SPEED DIVIDERS

SP8600A \& B

The SP8600 is a fixed ratio emitter coupled logic $\div 4$ counter with a specified input frequency range of 15250 MHz . The operating temperature range is specified by the device code suffix letter: ' A ' denotes $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, ' B ' denotes $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ operation.

Intended for use with an external bias arrangment and capacitive coupling to the signal source, the SP8600 can be either single driven, or double driven with two complimentary input signals.

The outputs are complementary free collectors that can have their load resistors taken to any bias voltage up to 12 V more positive than V_{EE}.

FEATURES

Low Power

Free Collector Outputs to Interface to TTL $250 \mathrm{MHz} \div 4$ Over Full Military Temp. Range

Fig. 1 Pin connections (viewed from beneath)

APPLICATIONS

Fig. 2 Circuit diagram

ELECTRICAL CHARACTERISTICS

Test conditions (unless otherwise stated):
$T_{\text {amb }}$ ' A ' Types
Tamb 'B' Types
Supply voltage V_{CC}
$V_{E E}$
Input voltage (single driven -
other input decoupled to ground plane)
Input voltage (double complementary input drive)
Input bias voltage
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
0 V
$-5.2 \mathrm{~V} \pm 0.5 \mathrm{~V}$

400 to 800 mV p-p
250 to 800 mV p-p
Bias chain as in
test circuit (see Fig. 3
and OPERATING NOTES)

Characteristic	Value			Units	Conditions
	Min.	Typ.	Max.		
Max. input frequency Min. input frequency with sinusoidal input Min. slew rate of square wave input for correct operation Output current Power supply drain current	250	390^{*}			MHz

*At $+25^{\circ} \mathrm{C}$

Fig. 3 Test circuit

Fig. 4 Maximum input frequency v. power supply voltage (typical)

Fig. 5 Maximum input frequency v. temperature

OPERATING NOTES

The circuit performance obtained from the SP8600 is optimized if normal high frequency rules for circuit layout are obeyed - leads should be kept short, capacitors and resistors should be of non-inductive types, etc.

The signal source is normally AC coupled to one of the inputs or, if complementary signals are available, to both inputs. The inputs require an external bias chain to set the DC potential on the inputs (see Fig.3). No appreciable change in performance is observed over a range of DC bias from -2.5 V to -3.5 V .

Any tendency for the circuit to self-oscillate in the absence of input signal (or when the input signal is very small) can be overcome by offsetting the two inputs by approximately 40 mV , using, for example, the bias arrangement shown in Fig.6. The input wave form may be sinusoidal, but below 25 MHz incorrect operation may occur because of the limited slew rate of the input signal. A square wave input with a slew rate greater than $20 \mathrm{~V} / \mu \mathrm{s}$ ensures correct operation down to DC.

The output is in the form of complementary free collectors with at least 2 mA available from them. For satisfactory high frequency interfacing to ECL or Schottky TTL the circuit techniques illustrated in Fig. 7 are recommended.

For maximum frequency operation, it is essential that the output load resistor values be such that the output transistors do not saturate. If the load resistors are connected to the OV rail, then saturation can occur with resistance values greater than 600Ω. Of course, if the load resistors are taken to a more positive potential, then higher values can be used. N.B. If only one output is used, the other output should be connected to OV.

Fig. 6 Bias arrangement to prevent self-oscillation under no-signal conditions.

Fig. 7 ECL and Schottky TTL interfacing

ABSOLUTE MAXIMUM RATINGS

Power supply voltage $\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}$ 10V
Input voltage $V_{\text {IN }}$
Not greater than supply voltage
in use
Bias voltage on o/p's VOUT -

VEE
Operating junction temperature
Storage temperature 14V
$+175^{\circ} \mathrm{C}$ max.
$-55^{\circ} \mathrm{C}$ to $+175^{\circ} \mathrm{C}$

SP8000 SERIES HIGH SPEED DIVIDERS

SP8601A \& B ${ }^{\text {150Mトг }} \div 4$

GENERAL DESCRIPTION

The SP8601 is a fixed ratio emitter coupled logic $\div 4$ counter with a maximum specified input frequency of 150 MHz . but with a typical maximum operating frequency well in excess of this (see Typical Operating Characteristics). The operating temperature range is specified by the final coding letter: A denotes $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, and B denotes $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.

The SP8601 can be operated with single input drive or with double, complementary, I/P drive. It can be driven with direct coupling from ECL II levels (or from an SP8602 device), or it can be capacitively coupled to the signal source if an external bias is provided.

There are complementary free collector outputs that can have their external load resistor connected to any bias up to 12 volts more positive than VEE.

Fig. 1 Circuit diagram

ELECTRICAL CHARACTERISTICS

Test conditions (unless otherwise stated)
$T_{\text {amb }}: \begin{gathered}A \text { variant } \\ B \\ \text { variant }\end{gathered}$
Operating supply voltage $V_{C C}$
$V_{E E}$
Input voltage (single drive - other input decoupled to ground plane) Input voltage (double drive)
Bias voltage
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{E}$
OV.
$-5.2 \mathrm{~V} \pm 0.5 \mathrm{~V}$
400 to 800 mV (p-p)
250 to 800 mV (p-p)
Bias chain as in test circuit (see Fig.2)

Characteristic	Value			Units	Conditions
	Min.	Typ.	Max.		
Max. input frequency	150			MHz .	
Min. input freq. with sinusoidal input.			10	MHz .	
Min. slew rate of square wave input for correct operation			20	$\mathrm{V} / \mu \mathrm{s}$	Single input drive
Output current	2			mA	$\begin{aligned} & \text { Input freq. }=150 \mathrm{MHz} \\ & R_{\text {load }}=50 \Omega \end{aligned}$
Power supply drain current		18	23	mA	$V_{E E}=-5.2 \mathrm{~V}$

OPERATING NOTES

Circuit performance obtained from the SP8601 is optimised if normal high frequency rules for circuit layout are obeyed - leads should be kept short, capacitors and resistors should be of non-inductive types, etc.

The signal source is normally directly coupled into the device, which will tolerate a wide range of input bias voltages, but was designed for inputs from ECL II levels and can therefore be satisfactorily driven from SP8602 range of counters. The bias voltage on the input marginally affects the overall power consumption of the device (For typical operating characteristics with varying bias voltages see Fig. 3).

If it is not practicable to directly couple the input signal, then a bias chain similar to the one shown in Fig. 2 can be used.

The input waveform may be sinusoidal, but below about 10 MHz incorrect operation may occur because of the limited slew rate of the input signal. A square wave input with a slew rate of greater than $20 \mathrm{~V} / \mu \mathrm{s}$ ensures correct operation down to DC.

The output is in the form of complementary free collectors with 2 mA min . available from them. The output voltage swing obviously depends on the value of load resistor used and also the frequency of operation. The following table gives some typical examples of output voltage for different load resistors. With careful board layout to minimise capacitance these figures can easily be exceeded.

Min. Output Voltage	Load Resistor	Input Frequency
1.5 V	$1 \mathrm{k} \Omega$	120 MHz
400 mV	200Ω	150 MHz
100 mV	50Ω	180 MHz

NOTE: The value of the coupling and decoupling capacitors used are uncritical but they should be of a type and value suitable for the frequencies involved.

Fig.? Test circuit

Typical Operating Characteristics

Fig. 3 Maximum input frequency v. bias voltage at single input drive levels of 400,600 and 800 mV (typical device)

Fig. 4 Maximum input frequency v. power supply voltage at single input drive levels of 400,600 and 800 mV (typical device)

Fig. 5 Maximum input frequency v. temperature at single input drive levels of 400, 600 and 800 mV (typical device)

Fig. 6 Minimum single input drive level for correct operation v. input frequency (typical device)

APPLICATION NOTES

The SP8601 used with two SP8602 series $\div 2$ counters to give a 500 MHz divide-by-sixteen prescaler is shown in Fig.7. Capacitors marked thus * may need to be increased in value for low frequency operation.

For correct operation when interfacing with TTL and ECLII the circuits shown in Figs.8, 9 and 10 are recommended.

Fig. 7 Divide-by-sixteen prescaler

Fig. 8 TTL interface (fanout $=1$ TTL gate)

Fig. 9 High fanout TTL interface

Fig. 10 ECLII interface

ABSOLUTE MAXIMUM RATINGS

Power supply voltage $\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}$
Input voltage $\mathrm{V}_{\text {in }}$
Bias voltage on outputs $\mathrm{V}_{\text {out }}-\mathrm{V}_{\mathrm{EE}}$
(see Operating Notes)
Operating junction temperature $\quad+175^{\circ} \mathrm{C}$
Storage temperature

10 V
Not greater than the supply voltage in use 14 V

$$
+175^{\circ} \mathrm{C}
$$

$$
-55^{\circ} \mathrm{C} \text { to }+175^{\circ} \mathrm{C}
$$

SP8000 SERIES HIGH SPEED DIVIDERS

SP8602A \& B SP8603A \& B SP8604A \& B
 $500 \mathrm{MHz} \div 2$
 $400 \mathrm{MHz} \div 2$
 300MH +2

PIN CONNECTIONS (BOTTOM VIEW)

GENERAL DESCRIPTION

The SP8602, SP8603 and SP8604 are fixed ratio ECL $\div 2$ counters with maximum specified I/P frequencies of 500,400 and 300 MHz , respectively. The operating temperature range is specified by the final coding letter: A denotes $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ and B denotes $\mathbf{0}^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.

The devices can be operated with single input drive or with double, complementary, input drive; in both cases the input is normally capacitively coupled to the signal source. Two complementary emitter follower outputs are provided.

Fig. 1 Circuit diagram (all resistor values are nominal)

ELECTRICAL CHARACTERISTICS

Test conditions (unless otherwise stated)
$T_{\text {amb }}: \begin{gathered}\text { A variant } \\ B \\ \text { variant }\end{gathered}$
Operating supply voltage: $V_{\mathbf{c c}}$
Input voltage (single drive- other input and bias decoupled to ground plane)
Input voltage (double drive-bias decoupled to ground plane)
Output load
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
OV
$-5.2 \mathrm{~V} \pm 0.5 \mathrm{~V}$
400 to 800 mV p-p
250 to 800 mV p-p
500Ω and 3 pF

Characteristic	Type	Value				Conditions
		Min.	Typ.	Max.	Units	
Max. input freq.	SP8602A, B	500			MHz	$V_{\text {ee }}=-5.2 \mathrm{~V}$
	SP8603A, B	400			MHz	$\mathrm{V}_{\text {ee }}=-5.2 \mathrm{~V}$
	SP8604A, B	300			MHz	$\mathrm{V}_{\mathrm{ee}}=-5.2 \mathrm{~V}$
Min. input freq. with sinusoidal input	All		20	40	MHz	
Min. slew rate of square wave input for correct operation	All		30	100	$\mathrm{V} / \mu \mathrm{S}$	single input drive
Output voltage swing	All	400			mV	$\begin{aligned} & \mathrm{V}_{\text {ee }}=-5.2 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{amb}}=-55^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{aligned}$
Output voltage swing	SP8602A	350			$m V$	$\begin{aligned} & V_{e e}=-5.2 \mathrm{~V} \\ & T_{\mathrm{amb}}=+125^{\circ} \mathrm{C} \\ & \mathrm{I} / \mathrm{P} \text { freq. }=500 \mathrm{MHz} \end{aligned}$
Power supply drain current	All		12	18	mA	$V_{\text {ee }}=-5.2 \mathrm{~V}$

Note: The values of the coupling and decoupling capacitors used are uncritical but they should be of a type and value suitable for the frequencies involved.

Fig. 2 Test circuit

ABSOLUTE MAXIMUM RATINGS

Power supply voltage $\mathrm{V}_{\mathrm{cc}}-\mathrm{V}_{\mathrm{ee}} 8 \mathrm{~V}$
Input voltage $\mathrm{V}_{\text {in }}$
Output current lout Operating junction

Not greater than the supply voltage in use 10 mA temperature
Storage temperature $\quad-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
range

OPERATING NUTES

It is recommended that a positive earth plane be used for the circuit layout, thus preventing damage if the output emitter followers are inadvertently shorted to ground. All components used in the circuit layout should be suitable for the frequencies involved, and outside a controlled impedance environment, leads and connections should be kept short to minimise stray inductance.

The signal source is normally capacitively coupled to the input. A 1000 pF capacitor is usually sufficient. If the input signal is likely to be interrupted a $10 \mathrm{~K} \Omega$ resistor should be connected between the input and the negative rail. In the single drive case it is preferable to connect the resistor to the input not in use - in the double drive case either input can be used. The addition of the input pulldown resistor causes a slight loss of input sensitivity,
but it prevents circuit oscillation under no-signal conditions.

The input waveform may be sinusoidal, but below about 40 MHz the operation of the circuit becomes dependent on the slew rate of the input rather than the amplitude. A square wave input with a slew rate of more than $100 \mathrm{~V} / \mu \mathrm{S}$ will permit correct operation down to DC .

The output voltage swing can be increased by the addition of a DC load to the output emitter followers. Pulldown resistors of 1.5 K to the negative rail provide an increase of typically 25% in the output voltage swing.

ADDI! AT! ANM MINTES

SP8602B and SP8604B interfacing to ECL 10000 and E C L III

By increasing the output voltage swing using external pulldown resistors (see operating notes), the SP 8604B canbe coupled directly into an E C L III or E C L 10000 gate, but there is a reduction of the noise immunity. Where noise immunity is important the device can be connected to an ECL 10000 or ECLIII line receiver.

Divide-by-16 frequency scaler.

The SP8602B and SP8604B interfacing with the SP8601B and high-speed TTL to give a divide-by-16 frequency scaler is shown in Fig. 3.

Fig. 3 Divide-by-16 frequency scaler

SP8000 SERIES

SP8615B 900мнъ 4 SP8614B 8оомнz 74 SP8613B тоомнz_4

The SP8616 series of UHF counters are fixed ratio $\div 4$ asynchronous emitter coupled logic counters with, in the case of the SP616B a maximum operating frequency in excess of 1 GHz , over a temperature range of $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$. The input is normally capacitively coupled to the signal source but can be DC coupled if it is required. The two complementary emitter follower outputs are capable of driving 100Ω lines and interfacing to ECL with the same positive supply. The SP8616 series require supplies of OV and $-7.4 \mathrm{~V}(\pm 0.4 \mathrm{~V})$.

FEATURES

- DC to 1 GHz operation.
- $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ operation guaranteed at maximum specified frequency and over a wide dynamic input range.
- Complementary emitter follower O/Ps, ECL compatible.

Fig. 1 Pin connections

APPLICATIONS

UHF Instrumentation, Including Counters and Timers
Prescaling for UHF Synthesisers.

ABSOLUTE MAXIMUM RATINGS

Power supply voltage	$\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\text {EE }}$	10 volts
Input voltage	$\mathrm{V}_{\text {INac }}$	2.5 volts p -p
Output current		15 mA
Storage temperature range	$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	
Maximum operating function temperature	$+150^{\circ} \mathrm{C}$	

Fig. 3 Specified range of operation

ELECTRICAL CHARACTERISTICS

Test conditions (unless otherwise stated).
$T_{\text {amb }}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Supply voltage

$$
\begin{aligned}
& V_{C C}=0 \mathrm{~V} \\
& V_{E E}=-7.4 \mathrm{~V} \pm 0.4 \mathrm{~V}
\end{aligned}
$$

Characteristic	Type	Value			Units	Conditions
		Min.	Typ.	Max.		
Max.toggle frequency	SP8616B	1000			MHz	$\begin{aligned} & V_{\text {IN }}=600 \mathrm{mV} \text { to } 1.2 \mathrm{Vp}-\mathrm{p} \\ & \text { (see Fig. 3) } \end{aligned}$
	SP8616D	950			MHz	
	SP8615B	900			MHz	$\mathrm{V}_{\text {IN }}=400 \mathrm{MHz}$ to 1.2 V p-p
	SP8614B	800			MHz	$V_{\text {IN }}=400 \mathrm{MHz}$ to 1.2 V p-p
	SP8613B	700			MHz	$V_{\text {IN }}=400 \mathrm{MHz}$ to 1.2 V p-p
Min.toggle frequency for correct operation with sine wave input ALL 200 MHz $V_{I N}=400 \mathrm{mV}$ to 1.2 V p-p.						
Min.toggle frequency for correct operation with sine wave input						
operation with sine wave input Min slew rate for square wave input	ALL			100	MHz	$V_{\text {IN }}=600 \mathrm{mV}$ to 1.2 V p-p
to guarantee operation to OHz	ALL			200	$\mathrm{V} / \mu \mathrm{s}$	
Output voltage swing	ALL	500	700		mV	
Power supply drain current	ALL		45	60	mA	$V_{E E}=-7.4 \mathrm{~V}$

Toggle Frequency Test Board Layout

1. All connections to the device are kept short.
2. The capacitors are leadless ceramic types.
3. In practice, the device is tested in an Augat 14 lead DIL socket which degrades the performance slightly. If the device is mounted in a low profile socket or soldered into a printed circuit board, the specified performance will be exceeded.

OPERATING AND APPLICATION NOTE

The SP8616 series of dividers are very simple to use but normal high frequency rules should be followed for optimum performance, for example, all connections should be kept short, the capacitors and resistors should be types suitable for the frequencies involved, etc.

The input is normally capacitively coupled to the signal source. There is an internal 500Ω resistor connecting the input to a reference voltage; this biases the input in the middle of the transfer characteristic. The reference voltage is brought out onto pin 6, which should be decoupled to the earth plane.

The sensitivity of the device can be increased by DC coupling the input signal about earth (see Fig. 5).
$\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}$ should be kept inside the specified 7.4 volts ± 0.4 volts but the actual value of V_{Cc} relative to earth is not very critical and can be varied between 4.0 V and 6.0 V with only a small effect on performance. $A V_{C C}$ of about 5.2 V is the optimum for full temperature range operation.

Fig. 4 Toggle frequency test circuit

Fig. 5 Circuit for using the input signal about earth potential

In the absence of an input signal both the DC coupled and the capacitively coupled circuits will self oscillate with an output frequency of approximately 200 MHz . This can be prevented by connecting a $10 \mathrm{k} \Omega$ resistor between the input and the negative rail. This offsets the input sufficiently to stop the oscillation but it also reduces the input sensitivity by approximately 100 mV .

The SP8616 will miscount with low frequency sinewave inputs or slow ramps. A slew rate of $200 \mathrm{~V} / \mu \mathrm{s}$ or greater is necessary for safe operation at low frequencies.

The output can be interfaced to ECL II directly and to

Fig. 6 Interfacing SP8616 series to ECL |/ and ECL I/I

The input impedance of the SP8616 is a function of frequency and minimises at about the same frequency as the maximum input sensitivity, so, although it can load the signal source significantly there is usually enough signal to operate the device satisfactorily when the input impedance is at a minimum inpút signal requirement. The worst case occurs at the maximum frequency because this is where the input sensitivity is worst.

A commercially available hybrid amplifier can be used to drive the SP8616 (see Fig. 7).

Fig. 7 The SP8616 driven by a commercially available nyoric amplifier. The Amperex ATF 417 output is internally capacitively coupled.

Note: The Amperex ATF 417 output is internally capacitively coupled.

Fig. 8 A 1 GHz synthesiser loop

The SP8616 series can be used in instrumentation for direct counting applications up to 1 GHz and in frequency synthesisers.

In a frequency synthesiser, the SP8616 and the SP8641 can be used together (see Fig. 8).

$\div 5$ COUNTERS

SPRE21B (3поми_) SP8622B (200мнz)

The SP8621B and SP8622B are fixed-ratio emitter-coupled logic $\div 5$ counters with specified input frequency ranges of DC to 300 MHz (SP8621B) and 200 MHz (SP8622B). The operating temperature range is from $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.

The counter is normally capacitively coupled to the signal source and is specified with an input signal range of $400-800 \mathrm{mv} \mathrm{p}-\mathrm{p}(-4 \mathrm{dBm}$ to $+22 \mathrm{dBm})$. There are two bias points on the circuit that should be capacitively decoupled to the ground plane.

Fig. 2 Functional diagram

ELECTRICAL CHARACTERISTICS

Test Conditions (unless otherwise stated)

$\mathrm{T}_{\mathrm{amb}}$	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Supply voltage V_{CC}	0 V
	$\mathrm{~V}_{\mathrm{EE}}$
	$-5.2 \mathrm{~V} \pm 0.25 \mathrm{~V}$
Input voltage	400 to 800 mV p-p

Fig. 1 Pin connections

FEATURES

- D.C. to 400 MHz Operation.
- $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ Over Full Specified Input Range and Frequency

APPLICATIONS

- Frequency Counters and Timers
- Frequency Synthesisers

ABSOLUTE MAXIMUM RATINGS

Power supply voltage $\mathrm{i} \mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}} \mid$	8 V
Input voltage $\mathrm{V}_{\text {IN }}$	Not greater than supply
	15 mA
Output current IOUT	$+150^{\circ} \mathrm{C}$
Operating junction temperature	-55° to $+150^{\circ} \mathrm{C}$

Characteristic	Type	Value			Units	Conditions
		Min.	Typ.	Max.		
Max. input frequency	$\begin{aligned} & \text { SP8621 } \\ & \text { SP8622 } \end{aligned}$	$\begin{aligned} & 300 \\ & 200 \end{aligned}$			$\begin{aligned} & \mathrm{MHz} \\ & \mathrm{MHz} \end{aligned}$	
Min. input frequency with sinusoidal input	All		20	40	MHz	
Min. slew rate of square wave input for correct operation	All		30	100	$\mathrm{V} / \mu \mathrm{S}$	
Output voltage swing	All	400	800		$m \mathrm{~V}$	$V_{E E}=-5.2 \mathrm{~V}$
Power supply drain current	All		55		mA	$V_{E E}=-5.2 \mathrm{~V}$

OPERATING NOTES

It is recommended that a positive earth plane is used for the circuit layout, thus preventing damage if the output is short-circuited to earth.

The signal source is normally capacitively coupled to the input (see Fig. 3). A 1000pF capacitor is suitable at high frequencies, but if lower frequency operation is also required, say below 10 MHz , then an additional capacitor should be connected in parallel. The device can be DC coupled if it is required - see Fig. 4.

Fig. 3 Test circuit

Fig. 4 Directly connecting the input signal (a useful technique at low frequencies)

The circuit may self oscillate when there is no input signal or when the input signal is well below the specified input signal. This can be prevented by connecting a $15 \mathrm{k} \Omega$ resistor between the input and the negative rail. This causes a loss in sensitivity of up to 100 mV p-p.

The input waveform may be sinusoidal, but below about 20 MHz the circuit tends to malfunction on minimum amplitude input signals and the condition becomes worse as the frequency is decreased. This is because correct operation of the circuit depends on the slew rate of the input signal. A square wave input with a slew rate greater than $100 \mathrm{~V} / \mu \mathrm{S}$ ensures correct operation down to $D C$.

The output swing of the devices can be significantly increased by the addition of a DC load on the emitter follower output. For instance, the maximum DC load of $1.5 \mathrm{k} \Omega$ will give an increase of typically 50% in output swing with no effect on input drive level or maximum operating frequency. This allows the SP8620 devices to interface directly to ECL II devices with no loss in noise immunity. If the devices are required to interface to ECL III or ECL 10,000 then an interface similar to Fig. 5 should be used.

The values of the decoupling capacitors are not critical, but they should be of a type suitable for the frequencies involved.

Fig. 5 Interfacing to ECL /// or ECL 10,000

SP8000 SERIES

SP8630B

600MHz DECADE COUNTER

SPOE312

SP8632B

400MHz DECADE COUNTER

GENERAL DESCRIPTION

The SP8630/1/2 counters are fixed ratio $\div 10$ circuits using emitter coupled logic, with maximum specified counting frequencies of 600,500 and $\mathbf{4 0 0} \mathrm{MHz}$ respectively, over a temperature range of $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$. A 6:4 mark/space square wave is provided at the emitter follower output. The input is normally single driven and capacitively coupled to the signal source. There are two bias points on the circuit which should be capacitively decoupled to the ground plane.

Fig. 1 Block diagram.

ELECTRICAL CHARACTERISTICS

Test conditions (unless stated otherwise):
$\mathrm{T}_{\text {amb }} \quad 0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

Operating supply voltage
$V_{C C} \quad 0 V$
VEE $\quad-5.2 \mathrm{~V} \pm 0.25 \mathrm{~V}$
Input voltage $\quad 400$ to 800 mV ($\mathrm{p}-\mathrm{p}$)
Output load

NOTE: The maximum input frequency is guaranteed at $\mathrm{V}_{\mathrm{EE}}=-5.2 \mathrm{~V}$. For typical operating characteristics with power supply variations see Fig.5, which shows that the maximum operating frequency of a typical device increases with increasing power supply voltage

Characteristic	Type	Value			Units	Conditions
		Min	Typ	Max		
Max input freq.	SP8630B	600			MHz	
	SP8631B	500			MHz	
	SP8632B	400			MHz	
Min input freq. with sinusoidal input	All		20	40	MHz	
Min. slew rate of square wave I/P for correct operation	All		30	100	$\mathrm{V} / \mathrm{\mu s}$	
Output voltage swing	All	400	600		$m V$	$\mathrm{V}_{\mathrm{EE}}=-5.2 \mathrm{~V}$
Power supply drain current			70		mA	$V_{E E}=-5.2 \mathrm{~V}$

Fig. 2 Circuit diagram of 1 st element $(\div 2)$ showing input biassing arrangement.

OPERATING NOTES

It is recommended that a positive earth plane be used for the circuit layout, thus preventing damage if the emitter follower outputs are inadvertantly shorted to ground.

The signal source is normally capacitively coupled to the input: 1000 pF is usually sufficient. If the input signal is likely to be interrupted a 15 k ohm resistor should be connected between the input pin and the negative rail to prevent circuit oscillation under no-signal conditions. The addition of the pulldown resistor causes a slight loss of sensitivity of the device, but this does not normally cause problems in practice.

The input waveform may be sinusoidal, but below 40 MHz the operation of the circuit becomes dependent on the slew rate of the waveform rather than the amplitude. A square wave input with a slew rate of $100 \mathrm{~V} / \mu \mathrm{s}$ will allow correct operation down to DC. At high frequencies, increasing drive level above minimum typically increases the max. operating frequency by up to 25%

The output swing of the device can be significantly increased by the addition of a DC load on the emitter follower output. For instance, the maximum DC load of 1.5 k ohms will give an increase of typically 50% in output swing with no effect on input drive level or maximum operating frequency. This allows the SP8630 series devices to drive directly into ECL II devices with no loss in noise immunity.

The value of capacitance needed for the decoupling capacitors is not critical. Values down to 15 pF have been found satisfactory in practice.

Fig. 3 Test circuit.

Test Circuit Notes

The values of the coupling and decoupling capacitors are uncritical but they should be of a type and value suitable for the frequencies involved.

All connections should be physically short when not in a 50Ω environment to minimise reflections due to mismatching.

The +ve pin should be connected to a low impedance earth plane to minimise feed-through of the input signal to the output.

Typical Operating Characteristics

Fig. 4 Minimum drive level v. I/P' frequency at $+25^{\circ} \mathrm{C}$.

Fig. 5 Max. operating frequency v. power supply voltage for a typical SP8631B.

APPLICATION NOTES

Direct coupling to the SP8630 series.

It can be seen from the circuit diagram that the input arrangement of the SP8630 series is not compatible with the normal ECL logic levels. The input reference level is approximately -3.2 volts but it is not well defined and has a temperature coefficient of approximately $-1.6 \mathrm{mV} /{ }^{\circ} \mathrm{C}$. If DC coupling is required, the input would have to be larger than would be the case with capacitive coupling.

Fig. 6 Max. operating frequency v. ambient temperature for a typical SP8631B(VCC $=-5.2 V)$.

ABSOLUTE MAXIMUM RATINGS

Power supply voltage

$$
V_{C C}-V_{E E}
$$

Input voltage $V_{I N}$
Output current IOUT
Operating junction temperature
Storage temperature

8 V .
Not greater than the supply voltage in use 15 mA
$+150^{\circ} \mathrm{C}$ $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

SP8000 SERIES

HIGH SPEED DIVIDERS

SP8634B : 10700 MHz SP8636B - 10500 MHz

 divide-by-ten circuits with binary coded decimal outputs for operation from DC up to specified input frequencies of $700,600,500$ and 400 MHz , respectively, over a guaranteed temperature range of $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.

These devices, optimised for counter applications in systems using both ECL and TTL, are intended to be operated between $O V$ and -5.2 V power rails and to

FEATURES

- Direct gating capability at up to 700 MHz
- TTL- compatible BCD outputs
- TTL- and ECL-compatible carry outputs
- Power consumption less than 500 mW
- Wide dynamic input range

APPLICATIONS

- Counters
- Timers
- Synthesisers

SP8635B : 10600 MHz SP8637B $\div 10400$ MHz

 BCD outputs and one of two carry outputs are TTL-compatible, while the second carry output is ECL-compatible. The clock input, which is normally capacitively coupled to the signal source, is gated by an ECL III/ECL 10k-compatible input. The TTL-compatible reset forces the 0000 state regardless of the state of the other inputs.

Fig. 1 Pin connections (top)

Fig. 2 Logic diagram
QUICK REFERENCE DATA

ELECTRICAL CHARACTERISTICS (All types except where otherwise stated)

Test Conditions (unless otherwise stated)

$\mathrm{T}_{\text {amb }}$		$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Power Supplies	V_{CC}	OV
	V_{EE}	$-5.2 \mathrm{~V} \pm 0.25 \mathrm{~V}$

Characteristic	Value			Units	Conditions		
	Min.	Typ.	Max.				
Clock Input (pin 14)							
Max. input frequency							
SP8634B	700			MHz			
SP8635B	600			MHz	(Input voltage		
SP8636B	500			MHz	400.800 mV p-p		
SP8637B	400			MHz			
Min. input frequency with sinusoidal I/P			40	MHz			
Min. slew rate of square wave for			100	V/ $\mu \mathrm{s}$			
correct operation							
Clock inhibit input							
(pin 16)	,						
Logic levels							
High (inhibit)	-0.960			V	$\mathrm{T}_{\text {amb }}=+25^{\circ} \mathrm{C}$		
Low			-1.650	V	(see Note 1)		
Edge speed for correct operation at maximum clock I/P frequency			2.5	ns	10\%-90\%		
Reset input ($\operatorname{pin} 3$)							
Logic levels							
High (reset)	See Note 2						
Low			+0.4	V			
Reset ON time	100			ns			
TTL outputs ABCD (pins $\mathbf{2 , 7 , 8 , 1 0}$)							
Output Voltage							
High	+2.4			V	10k Ω resistor and		
					TTL gate from 0/P		
Low			+0.4	V	to +5 V rail		
TTL carry output (pin 11)							
Output Voltage							
High state	+2.4			V	$5 \mathrm{k} \Omega$ resistor and 3		
Low			+0.4	V	TTL gates from o/p to 5 V rail		
ECL carry output (pin 9)							
Output Voltage							
High	-0.975			V	$\mathrm{T}_{\text {amb }}=+25^{\circ} \mathrm{C}$		
					External current		
Low			-1.375	V	$=0 \mathrm{~mA}$ (See Note 4)		
Power supply drain current		75	90	mA	$\mathrm{V}_{\mathrm{EE}}=5.2 \mathrm{~V}$		

NOTES

1. The clock inhibit input levels are compatible with ECL III and ECL. 10000 levels throughout the temperature range $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.
2. For a high state, the reset input requires a more positive input level than the specified worst case $\mathrm{TTL} \mathrm{VOH}_{\mathrm{OH}}$ of +2.4 V . Resetting should be done by connecting a $1.8 \mathrm{k} \Omega$ resistor from the output of the driving TTL gate and only fanning out to the reset input of the SP8000 series device.
3. These outputs are current sources which can be readily made TTL-compatible voltages by connecting them to +5 V via $10 \mathrm{k} \Omega$ resistors.
4. The ECL carry output is compatible with ECL II throughout the temperature range but can be made compatible with ECL III using the simple interface shown in Fig. 3.

Fig. 3 ECL III/ECL 10000 interfacing

OPERATING NOTES

The devices are intended to be used with TTL and ECL in a counting system - the ECL and the decade counter being connected between voltage rails of $O \mathrm{~V}$ and -5.2 V and the TTL between voltage rails of $O \mathrm{~V}$ and +5.2 V . Provided that this is done ECL and TTL compatibility is achieved (see Fig. 4).

The clock is normally capacitively coupled to the signal source: a 1000 pF UHF capacitor is normally adequate. If low frequency operation is required the 1000 pF capacitor should be connected in parallel with a higher value capacitor. The bias decoupling (pin 1) should be connected to earth via a capacitor - preferably a chip type - but in any case a low inductance type suitable for UHF applications. The devices normally have an input amplitude operating range far greater than the specified 400 to $800 \mathrm{mV} \mathrm{pk} / \mathrm{pk}$. However, if the decoupling capacitor is not of a UHF type, or it is connected to an earth point that has a significant impedance between the capacitor and the V_{CC} connection, then the input dynamic range will suffer and the maximum signal for correct operation will be reduced.

Under certain conditions, the absence of an input signal may cause the device to self-oscillate. This can be prevented (while still maintaining the specified input sensitivity) by connecting a $68 \mathrm{k} \Omega$ resistor between the clock input and the
negative supply. If the transition of either the clock input or the clock inhibit input is slow the device may start to self-oscillate during the transition. For this reason; the input slew rates should be greater than $100 \mathrm{~V} / \mu \mathrm{s}$. It should also be noted that a positive-going transition on either the clock input or the clock inhibit input will clock the device, provided that the other input is in the low state.

The BCD outputs give TTL-compatible outputs (fanout $=1)$ when a $10 \mathrm{k} \Omega$ resistor is connected from the output to the +5 V rail. In this configuration the outputs will be very slow compared with the clocking rate of the decade and so the state on the BCD outputs can only be determined when

The fan out capability of the TTL carry output can be increased by buffering it with a PNP emitter follower. The interface is shown in Fig. 4.

Fig. 4 Typical application configuration

Fig. 5 Decade counter timing diagram

ABSOLUTE MAXIMUM RATINGS

Power supply voltage $\left|V_{C C}-V_{E E}\right|$
Clock inhibit voltage
Clock input voltage
Bias voltage ($\mathrm{V}_{\text {OUT }}$) on BCD outputs,
$V_{\text {OUT }}-\mathrm{V}_{\text {EE }}$ (10k Ω resistor in series with output)
Bias voltage ($\mathrm{V}_{\mathrm{OUT}}$) on TTL carry
output, $\mathrm{V}_{\text {OUT }}-\mathrm{V}_{\mathrm{EE}}(1.2 \mathrm{k} \Omega$ resistor in series with output)
Output current from ECL carry output (lout) (Note: the device will be destroyed if the ECL output is shorted to the negative rail)
Operating junction temperature
Storage temperature range

8 V
Not greater than the supply
voltage in use
2V pk/pk

11V

11 V

10 mA
$+150^{\circ} \mathrm{C}$
$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

UHF PROGRAMMABLE DIVIDERS $\div 10 / 11$

SP8642A \& B зоомнд

In frequency synthesis it is desirable to start programmable division at as high a frequency as possible, because this raises the comparison frequency and so improves the overall synthesiser performance.

The SP8640 series are UHF integrated circuits that can be logically programmed to divide by either 10 or 11 , with input frequencies up to 350 MHz . The design of very fast fully programmable dividers is therefore greatly simplified by the use of these devices and makes them particularly useful in frequency synthesisers operating in the UHF band.

All inputs and outputs are ECL-compatible throughout the temperature range: the clock inputs and programming inputs are ECL III-compatible while the two complementary outputs are ECL II-compatible to reduce power consumption in the output stage. ECL III output compatibility can be achieved very simply, however (see Operating Notes).

The division ratio is controlled by two $\overline{\mathrm{PE}}$ inputs. The counter will divide by 10 when either $\overline{P E}$ input is in the high state and by 11 when both inputs are in the low state. Both the $\overline{\mathrm{PE}}$ inputs and the clock inputs have nominal 4.3 k Ω pulldown resistors to $V_{E E}$ (negative rail).

Fig. 2 Logic diagram (positive logic)

ABSOLUTE MAXIMUM RATINGS

Supply voltage $\left\|V_{C C}-V_{E E}\right\|$	8 V
Input voltage $V_{\text {in (d.c.) }}$	Not greater than the
	supply voltage in use.
Output current $I_{\text {out }}$	20 mA
Max. junction temperature	$+150^{\circ} \mathrm{C}$
Storage temperature range	$-55^{\circ} \mathrm{C}$ to $+175^{\circ} \mathrm{C}$

SP8643B з50Mнz

NOTE: UNUSED PINS (EXCEPT 8 AND 9) MAY BE CONNECTED TO VEE; THIS WILL REDUCE CLOCK BREAKTHROUGH ON THE OUTPUTS. PINS 8 AND 9 SHOULD BE LEFT OPEN-CIRCUIT WHEN NOT IN USE. PIN 11 IS INTERNALLY CONNECTED AND MUST ALWAYS BE LEFT OPEN-CIRCUIT.

Fig. 1 Pin connections (top)

FEATURES

- Military and Industrial Variants.
- 350 MHz Toggle Frequency
- Low Power Consumption
- ECL Compatibility on All I/Ps \& O/Ps
- Low Propagation Delay
- True and Inverse Outputs

QUICK REFERENCE DATA

- Temperature Ranges:

$$
{ }^{\prime} \mathrm{A}^{\prime} \text { Variant }-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C}
$$

' B^{\prime} Variant $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

- Supply Voltáge

$$
V_{C C}-V_{E E} \mid 5.2 \mathrm{~V}
$$

- Power Consumption 250 mW Typ.
- Propagation Delay 3ns Typ.

Clock Pulse	Q_{1}	Q_{2}	\mathbf{Q}_{3}	Q_{4}
1	L	H	H	H
2	L	L	H	H
3	L	L	L	H
4	H	L	L	H
5	H	H	L	H
6	L	H	H	L
7	L	L	H	L
8	L	L	L	L
9	H	L	L	L
10	H	H	-L	L
11	H	-H	-H	H

$\overline{\mathbf{P E}_{1}}$	$\overline{\mathbf{P E}_{2}}$	Div Ratio
L	L	11
H	L	10
L	H	10
H	H	10

Table 2 Truth table for control inputs
The maximum possible loop delay for control is obtained if the $L \rightarrow H$ transition from Q_{4} or the $H \rightarrow L$ transition from $\overline{\mathrm{Q}}_{4}$ is used to clock the stage controlling the $\div 10 / 11$. The loop delay is 10 clock periods minus the internal delays of the $\div 10 / 11$ circuit.

ELECTRICAL CHARACTERISTICS

Test conditions (unless otherwise stated):
$T_{\text {amb }}$: ' A ' Variant $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ ' B ' Variant $\quad 0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Supply voltage (see note 1): $\mathrm{V}_{\mathrm{CC}} \mathrm{OV}$

$$
V_{\mathrm{EE}} \quad-5.2 \mathrm{~V}
$$

Static Characteristics (all SP8640 series devices)

Characteristic	Value			Units	Conditions
	Min.	Typ.	Max.		
Clock and $\overline{\mathrm{PE}}$ input voltage levels					
VINH	-1.10		-0.81	V	$\mathrm{T}_{\mathrm{amb}}=+25^{\circ} \mathrm{C}$,
$V_{\text {INL }}$	-1.85		-1.50	V	see Note 2
Input pulldown resistance, between pins 1, 2, 3, and 16 and V_{EE} (pin 12)		4.3		$K \Omega$	
Output voltage levels					
V_{OH}	-0.85			V	$\mathrm{T}_{\mathrm{amb}}=+25^{\circ} \mathrm{C},$
V_{OL}			-1.50	v	see Note 3 .
					(There is an internal circuit equivalent to a $2 \mathrm{k} \Omega$ pulldown resistor on each output)
Power supply drain current		50	65	mA	

NOTES

1. The devices are specified for operation with the power supplies of $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{EE}}=-5.2 \mathrm{~V} \pm 0.25 \mathrm{~V}$, which are the normal ECL supply rails. They will also operate satisfactorily with $T T L$ rails of $V_{C C}=+5 \mathrm{~V} \pm 0.25 \mathrm{~V}$ and $\mathrm{V}_{E E}=0 \mathrm{~V}$.
2. The input reference voltage has the same temperature coefficient as ECL HI and ECL 10K.
3. The output voltage levels have the same temperature coefficients as ECL II output levels.

Dynamic Characteristics

Characteristic	Type	Value			Units	Conditions
		Min.	Typ.	Max.		
Clock input voltage levels						
$V_{\text {INH }}$	All	-1.10		-0.90	V	$\mathrm{T}_{\text {amb }}=+25^{\circ} \mathrm{C}$,
$V_{\text {INL }}$	All	-1.70		-1.50	V	see Note 4
Max. toggle frequency	SP8643	350			MHz	
	SP8642	300			MHz	
	SP8641	250			MHz	
	crgsin	20n			MH	
Min. frequency with sinewave clock input	All			50	MHz	
Min. slew rate of square wave input for correct operation down to OMHz	All			100	V/ $/$ s	
Propagation delay (clock input to device output)	All		3		ns	
Set-up time	All		1.5		ns	See note 5
Release time	All		1.5		ns	See note 6

NOTES

4. The devices are dynamically tested using the circuit shown in Fig. 5. The bias chain has the same temperature coefficient as ECL III and ECL 10K, and therefore tracks the imput reference throughout the temperature range. The devices are tested with input amplitudes of 400 and 800 mV p-p about that reference, over the full temperature range.
5. Set-up time is defined as the minimum time that can elapse between a $L \rightarrow H$ transition of a control input and the next $L \rightarrow H$ clock pulse transition to ensure that the $\div 10$ mode is forced bv that clock pulse (see Fig. 3).
6. Release time is defined as the mimimum time that can elapse between a $H \rightarrow L$ transition of a control input and the next $L \rightarrow H$ clock pulse transition to ensure that the $\div 11$ mode is forced by that clock pulse (see Fig. 4).

Fig. 3 Set-up timing diagram

Fig. 4 Release timing diagram

Fig. 5 Test circuit for dynamic measurements

OPERATING NOTES

The SP8640 range of devices are designed to operate in the UHF band and therefore PCB layouts should comply with normal UHF rules, e.g. non-inductive resistors and capacitors should be used, power supply rails decoupled, etc.

All clock and control imputs are compatible with ECL III and ECL 10K throughout the temperature range. However, it is often desirable to capacitively-couple the signal source to the clock, in which case an external bias network is required as shown in Fig. 6.

Fig. 6 Recommended input bias configuration for capacitive coupling to a continuous 50Ω signal source.

The $\div 10 / 11$ can be controlled by a TTL fully-programmable counter, provided that delays within the loop are kept to a minimum. The outputs and control inputs must therefore interface to TTL. The input TTL to ECL interface is accomplished with two resistors as shown in Fig. 7. The output ECL to TTL interface requires some gain and therefore uses a transistor. This interface as shown on Fig. 7, gives the true output; the inverse can be obtained by interchanging the Q_{4} and $\overline{\mathrm{Q}}_{4}$ outputs. The output interface will operate satisfactorily over the full military temperature range ($-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$) at frequencies in excess of 35 MHz . It has a fan out of one and the propagation delay through the divider plus the interface and one Schottky TTL gate is approximately 10ns. At an input frequency of 350 MHz this would only leave about 16 ns for the fully-programmable counter to control the $\div 10 / 11$. The loop delay can be increased by extending the $\div 10 / 11$ function to, say, $\div \mathbf{2 0} / 21$ or $\div 40 / 41$ (see Application Notes).

Fig. 7 TTL to ECL and ECL/TTL interfaces (for SP8640 devices and TTL operating from the same supply rails)

The SP8640 device O/Ps are compatible with ECL II levels when there is no external load. They can be made compatible with ECL III and ECL 10K with a simple potential dividing network as șhown in Fig. 8.

The control and clock inputs are already compatible with ECL III and ECL 10K. The interface circuit of Fig. 8 can also be used to increase noise immunity when interfacing from ECL III and ECL 10K outputs at low current levels to ECL III and ECL 10K inputs.

Fig. 8 ECL // to ECL /// interface

APPLICATION NOTES

In the divider chain of a frequency synthesiser it is desirable to start programmable division at as high a frequency as possible. The $\div 10 / 11$ function permits programmable division to begin at a higher frequency than would be possible with a fully programmable divider. It also means that high frequency prescaling occurs without any reduction in comparison frequency, since it is no longer necessary to divide the reference frequency by the modulus of the prescaler. The disadvantages of the technique are that a fully programmable divider is required to control the $\div 10 / 11$, and that a minimum limit is set on the division ratio possible - although the latter is not a serious problem in a practical loop.

Using the $\div \mathbf{1 0} / 11$

Consider the system shown in Fig. 9. If the $\div \mathrm{P} / \mathrm{P}+1$ is a $\div 10 / 11$, the $\div \mathrm{A}$ counter counts the units and the $\div \mathrm{M}$ counter counts the tens.

The mode of operation depends on the type of programmable counter used, but the system might operate as follows. If the number loaded in \mathbf{A} is greater than zero then the $\div \mathrm{P} / \mathrm{P}+1$ counter is set up to divide by $\mathrm{P}+1$ at the start of the cycle. The output from the $\div P / P+1$ counter clocks both A and M. When A is full it ceases counting and sets the $\div P / P+1$ into the $\div P$ mode. Only M is then clocked and when it is full it resets both A and M and the cycle re-starts.

The divider chain therefore divides by:-

$$
\begin{aligned}
& (M-A) P+A(P+1) \\
& =M P+A \\
\therefore f_{\text {out }} & =(M P+A) f_{\text {ref }}
\end{aligned}
$$

Fig. 9 synthesiser block diagram isimplitieal
Therefore, if A is incremented by one, the output frequency changes by $f_{\text {ref }}$. In other words, the channel spacing $=f_{\text {ref }}$. This is the channel spacing that would be obtained with a fully-programmable divider operating at the same frequency as the $\div \mathrm{P} / \mathrm{P}+1$.

For this system to work, the $\div \mathrm{A}$ counter must fill up before the $\div \mathrm{M}$ counter, otherwise the $\div \mathrm{P} / \mathrm{P}+1$ will stay permanently in the $\div \mathrm{P}+1$ mode. There is therefore a minimum system division ratio below which the $\div \mathrm{P} / \mathrm{P}+1$ system will not function. In order to find that minimum ratio, consider the following argument.

The \div A counter must be capable of counting all numbers up to and including $\mathrm{P}-1$ if every division ratio is to be possible, or:

$$
\begin{aligned}
& A_{\max }=P-1 \\
& M_{\min }=P \text {, since } M>A
\end{aligned}
$$

The divider chain divides by MP + A,

$$
\begin{aligned}
\therefore \text { Min. division ratio } & =M_{\min } P+A_{\min } \\
& =P . P+0 \\
& =P^{2}
\end{aligned}
$$

Using a $\div 10 / 11$, therefore, the minimum practical division ratio of the system is 100 , which would not normally be an embarassment.

In the system shown in Fig. 9, the fully programmable counter A has to be quite fast. With a 350 MHz clock to the $\div 10 / 11$, there is only about 23 ns available for counter A to control the $\div 10 / 11$. For cost reasons it would be desirable to use a TTL fully programmable counter but when the delays through the ECL to TTL translators have been taken into account there is very little time left for the fully programmable counter. The $\div 10 / 11$ function can be extended easily, however, to give a $\div \mathrm{N} / \mathrm{N}+1$ counter with a longer control time for a given input frequency, as shown in Figs. 10 and 11. Using the $\div 20 / 21$ system shown in Fig. 10, the time available to control $\div 20 / 21$ is typically 87 ns at 200 MHz and 44 ns at 350 MHz . The time available to control the $\div 40 / 41$ (Fig. 11) is approximately 180 ns at 200 MHz and 95 ns at 350 MHz .

This technique can, of course, be extended to give $\div 80 / 81$, which would allow the control to be implemented with CMOS but which would increase the minimum division ratio to $6400\left(80^{2}\right)$. This is too large a ratio for many synthesiser applications but it can be reduced to 3200 by making the counter a $\div 80 / 81 / 82$. Similarly, a $\div 40 / 41$ can be extended to $\div 40 / 41 / 42$ as shown in Fig. 12

Fig. 11 A $\div 40 / 41$ system
to reduce the minimum division ratio from 1600 to 800 . The time available to control the $\div 40 / 41 / 42$ is a full 40 clock pulses, i.e. 200 ns at 200 MHz input clock or 110 ns at 350 MHz .

The principle of operation is as follows:
Min. division ratio $800=(20 \times 40)+(0 \times 41)+(0 \times 42)$
$801=(19 \times 40)+(1 \times 41)$
$802=(19 \times 40)+(2 \times 42)$

Fig. $12 \quad A \div 40 / 41 / 42$ system

SP8000 SERIES
 HIGH SPEED DIVIDERS

SP8650D 600MHz $\div 16$ SP8651B 500MHz $\div 16$

SP8652B 400MHz $\div 16$

The SP8650 series of UHF $\div 16$ counters are fixed ratio synchronous emitter coupled logic counters with, in the case of the SP8650B, a maximum operating frequency in excess of 600 MHz over a temperature range of $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$. The input is normally capacitively coupled to the signal source but the circuits can be DC driven if required. The inputs can be either single driven relative to the on-chip reference voltage or differentially driven.

There are two complementary emitter follower outputs.

Fig. 1 Pin connections

FEATURES

- Low Power - Typically 250 mW
- ECL II \& ECL III Output Compatibility

Easy Operation From UHF Signal Source

APPLICATIONS

- Prescaling for UHF Synthesisers

Instrumentation

Fig. 2 Functional diagram
QUICK REFERENCE DATA

- Power Supplies	$V_{C C}=0 \mathrm{~V}$
	$V_{E E}=-5.2 \mathrm{~V} \pm 0.25 \mathrm{~V}$
Temp Range	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Input Amplitude range	400 mV to 800 mV p-p
Output Voltage Swing	800 mV typ. p-p

ELECTRICAL CHARACTERISTICS

Test Conditions (unless otherwise stated):
$T_{\mathrm{amb}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Supply Voltage
$\mathrm{V}_{\mathrm{CC}}=\mathrm{OV}$
$V_{E E}=-5.2 \mathrm{~V} \pm 0.25 \mathrm{~V}$
Output load $=500 \Omega$ line in parallel with approx. 3 pF

Characteristic	Type	Value			Units	Conditions
		Min.	Typ.	Max.		
Max. Toggle frequency	$\begin{array}{\|l\|} \text { SP8650B } \\ \text { SP8651B } \\ \text { SP8652B } \end{array}$	$\begin{aligned} & 600 \\ & 500 \\ & 400 \end{aligned}$			MHz MHz MHz	Test circuit as in fig. 2 $\mathrm{V}_{\mathrm{IN}}=400$ to $800 \mathrm{mV} \mathrm{p}-\mathrm{p}$ $V_{\text {IN }}=400$ to 800 mV p-p $V_{\text {IN }}=400$ to $800 \mathrm{mV} \mathrm{p}-\mathrm{p}$
Min. toggle frequency for correct operation with a sinewave input Min. slew rate for square wave input to guarantee correct operation to	All			40	MHz	$\mathrm{V}_{\text {IN }}=400$ to $800 \mathrm{mV} \mathrm{p}-\mathrm{p}$
OHz	All			100	$\mathrm{V} / \mu \mathrm{s}$	
Input reference voltage	All		2.6		V	
Output voltage swing (dynamic)	All	500	800		mV	p-p
Output voltage (static) high state	All	-8.95		. 615	V	
Low state	All	-1.83		-1.435	V	
Power supply drain current	All		45	60	mA	

Toggle Frequency Test Circuit

1. All leads are kept short to minimise stray capacitance and induction.
2. Resistors and capacitors are non-inductive UHF types.
3. Device is tested in a 14 lead Augat socket type No. 314-AGGA-R

OPERATING NOTE

Normal UHF layout techniques should be used if the SP8650 series of dividers are to operate satisfactorily. If the positive supply is used as the earth connection, noise immunity is improved and the risk of damage due to inadvertently shorting the output emitter followers to the negative rail is reduced.

The circuit is normally capacitively coupled to the signal source. In the absence of an input signal the circuit will self-oscillate. This can be prevented by connecting a $10 \mathrm{~K} \Omega$ resistor between one of the inputs and the negative rail.

Fig. 4 SP8650 to ECL 10 K interface

The device will also miscount if the input transitions are slow - a slew rate of $100 \mathrm{~V} / \mu \mathrm{s}$ or greater is necessary for low frequency operation.

The outputs interface directly to ECL II or to ECL 10K with a potential divider (see Fig. 4).

A typical application of the SP8650 series devices would be in the divider chain of a synthesiser operating in the military frequency range 225 MHz to 512 MHz . A binary division rate is optimum where power is at a premium and so the SP8650 series would normally be used in low power applications.

ABSOLUTE MAXIMUM RATINGS

Power supply voltage $!\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}} \mid$	8 volts
Input voltage $\quad \mathrm{V}_{I N a c}$	2.5 V p-p
Output source curr Iout	10 mA
Storage temperature range	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Operating junction temperature	$150^{\circ} \mathrm{C}$ max.

Fig. 5 A low power synthesiser loop

SP8000 SERIES
 HIGH SPEED DIVIDERS

SP8655A \& B ($\div 32)$

The SP8655A \& B, SP8657A \& B and SP8659A \& B are fixed ratio (divide by 32,20 and 16) low power counters for operation at frequencies in excess of 100 MHz over the temperature ranges $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ (suffix ' A ' devices) and $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ (suffix ' B ' devices).

In all cases, the input can be either single or double driven and must be capacitively coupled to the signal source. If single drive is used, the unused input must be capacitively decoupled to the ground plane. There are two bias points, which should also be capacitively decoupled to the ground plane.

The free collector saturating output stage is capable of interfacing with TTL and CMOS.

FEATURES

\author{

- VHF Operation
 - Low Power Dissipation
 - Output TTL and CMOS Compatible
 - Military and Commercial Temperature Ranges
}

APPLICATIONS

- Low Power VHF Communications
 Portable Counters

Fig. 1 Logic diagrams

ABSOLUTE MAXIMUM RATINGS

Power supply voltage, $\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}$ Input voltage $\mathrm{V}_{\text {in }}$

Output sink current, I_{0} Operating junction temperature Storage temperature

8 V
Not greater than supply voltage in use 10 mA $+150^{\circ} \mathrm{C}$ $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

T3D

ELECTRICAL CHARACTERISTICS

Test Conditions (unless otherwise stated)

Operating ambient temperature T_{A}
' A^{\prime} Types: $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$; ' B ' Types: $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Operating supply voltages
$\mathrm{V}_{\mathrm{CC}}:+5.2 \mathrm{~V} \pm 0.25 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}: \mathrm{OV}$
Input voltage
Single drive: 400 mV to 800 mV p-p; double drive: 250 mV to 800 mV p-p Output load $3.3 \mathrm{k} \Omega$ to +10 V , in parallel with 7 pF .

Characteristic	Value			Units	Conditions
	Min.	Typ.	Max.		
Maximum input frequency	100	200		MHz	
Minimum sinusoidal input frequency		20	40	MHz	
Minimum slew rate of square wave input		30	100	$\mathrm{V} / \mu \mathrm{s}$	
Power supply drain current Output level (high)	9.0	10	13	$\stackrel{m A}{V}$	$\mathrm{V}_{\mathrm{CC}}=+5.2 \mathrm{~V}$
Output level (low)			400	mV	

OPERATING NOTES

Fig. 3 gives capacitor values for $A C$ and DC coupling of the input and bias points on the test circuit; these values are not critical and will depend on the operating frequency.

The devices will normally self-oscillate in the absence of an input signal. This can be easily prevented by connecting a $39 \mathrm{k} \Omega$ pulldown resistor from either input (double drive) to V_{EE}; if the device is single driven then it is recommended that the pulldown resistor be connected to the decoupled unused input. The slight loss of input
sensitivity resulting from this technique does not seriously affect the operation of the device.

The input waveform will normally be sinusoidal but below 40 MHz correct operation depends on the slew rate of the input signal. A slew rate of $100 \mathrm{~V} / \mu \mathrm{s}$ will enable the device to operate down to DC.

The output stage will drive three TTL gates without the addition of a pull-up resistor. Using a pull-up resistor of $3.3 \mathrm{k} \Omega$ (or less) to +10 V will allow the output to drive a CMOS binary counter at a frequency of up to 5 MHz .

PACKAGE DETAILS

Dimensions are shown thus: mm (in)

Fig. 3 Test circuit

UHF DECADE COUNTERS

SP8667B $1.2 \mathrm{GHz} \div 10$

The SP8665/6/7 high speed decade counters operating at an input frequency of up to 1 GHz over the temperature range $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.

The device has a typical power dissipation of 550 mW at the nominal supply voltage of 6.8 V .

The clock input is biased internally and is coupled to the signal source by a capacitor. The input signal path is completed by an input reference decoupling capacitor which is connected to earth. If no signal is present at the clock input the device will self-oscillate. If this is undesirable it may be prevented by connecting a $15 \mathrm{k} \Omega$ resistor from the input to V_{EE} (pin 10 to pin 7). This will reduce the input sensitivity of the device by approximately 100 mV .

The clock inhibit input is compatible with standard ECL III circuits using a common $V_{C C}$ to the SP8665/6/7. A $6 \mathrm{k} \Omega$ pulldown resistor is included on the chip. The input should be left open circuit when not in use. The SP8665/6/7 outputs are compatible with standard ECL II circuits. They may be used to drive ECL 10 K by the inclusion of two resistors as shown in Fig. 4.

Fig. 2 Logic diagram

Fig. 1 Pin connections

FEATURES

- Guaranteed operation over large temperature range $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
- Wide input dynamic range
- Self biasing clock input
- Clock inhibit input for direct gating capability

ABSOLUTE MAXIMUM RATINGS

Power supply voltage $V_{C C}-V_{E E}$	$O V$ to +10 V
Input voltage inhibit input	$V_{E E}$ to $V_{C C}$
Input voltage CP input	2.5 V p-p
Output current	20 mA
Operating junction temperature	$+150^{\circ} \mathrm{C}$
Storage temperature	$-55^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS

Test Conditions (unless otherwise stated):

Supply voltage	$6.8 \mathrm{~V} \pm 0.3 \mathrm{~V}$
Clock input	AC coupled, self-biasing
Clock inhibit input	ECL III compatible
Output	ECL II compatible
$\mathrm{T}_{\text {amb }}$	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Supply voltage	$\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V} \mathrm{~V}_{\mathrm{EE}}=-6.8 \mathrm{~V}$
Clock input voltage	400 mV to 1.2 V (peak to peak)

Characteristics		Value			Units	Conditions
		Min.	Typ.	Max.		
Max. i/p frequency	SP8665	1.0			GHz	400 mV to 1.2 V p.p
	SP8666	1.1			GHz	600 mV to 1.2 V p-p
	SP8667	1.2			GHz	600 mV to 1.2 V p-p
Min. i/p frequency				200	MHz	Sine wave input 400 mV p-p
Min. i/p frequency				100	MHz	Sine wave input 600 mV p-p
Min. slew rate for square wave input				200	$\mathrm{V} / \mu \mathrm{sec}$	
Clock i/p impedance			400		Ω	At low frequency
Inhibit input reference level			-1.3		\checkmark	At $25^{\circ} \mathrm{C}$ compatible with
						ECL III throughout the temperature range.
Inhibit input pulldown resistor (internal)			6		$\mathrm{k} \Omega$	
Output pulldown resistor (internal)Power supply drain current			3		$k \Omega$	
			80	105	mA	At $25^{\circ} \mathrm{C}$

Fig. 4 SP8665 to ECL 10K

Fig. 3 Test circuit

SP8685A \& B

UHF PROGRAMMABLE DIVDER $500 \mathrm{MHz} \div 10 / \mathrm{n}$

The SP8685 A \& B are high speed, programmable $\div 10 / 11$ counters operating at an input frequency of up to 500 MHz over the temperature ranges $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ and $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ respectively.

The clock input is biased internally and is coupled to the signal source by a capacitor. The input signal path is completed by an input reference decoupling capacitor which is connected to earth.

The division ratio is controlled by two $\overline{P E}$ inputs. The counter will divide by 10 when either input is in the high state, and by 11 when both inputs are in the low state. These inputs are compatible with standard ECL 10K inputs and have the same temperature characteristics. Both inputs have nominal $4.3 \mathrm{k} \Omega$ internal pulldown resistors.

The true and inverse outputs are compatible with standard ECL II outputs. They may be used to drive ECL 10K circuits by the inclusion of two resistors as shown in Fig. 4.

When using the device as a divide-by-ten prescaler the inverse output (o / p) should be connected to a PE input.

Clock Pulse	\mathbf{O}_{1}	$\mathbf{Q}_{\mathbf{2}}$	O_{3}	\mathbf{O}_{4}
1	L	H	H	H
2	L	L	H	H
3	L	L	L	H
4	H	L	L	H
5	H	H	L	H
6	L	H	H	L
7	L	L	H	L
8	L	L	L	L
9	H	L	L	L
10	$\sim^{\text {H }}$	H	L	L
11	L	H	H	H

Table 1 Count sequence

$\overline{\mathbf{P E}}_{1}$	$\overline{\mathbf{P E}}_{2}$	Div Ratio
L	L	11
H	L	10
L	H	10
H	H	10

[^2]

Fig. 1 Pin connections

Fig. 2 Logic diagram SP8685

FEATURES

- Full temperature range operation:
' A ' variant $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
' B^{\prime} variant $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Self Biasing CP Input
Wide Input Dynamic Range
Control Inputs ECL 10K - Compatible
Low. Propagation Delay
- True and Inverse Outputs Available

ABSOLUTE MAXIMUM RATINGS

Power supply voltage $\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}$	0 V to +8 V
Input voltage, PE inputs	0 V to V_{CC}
Input voltage, CP input	2 V peak-to-peak
Output current	20 mA
Operating junction temperature	$+150^{\circ} \mathrm{C}$
Storage temperature	$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS

$\overline{P E}$ inputs - ECL 10K compatible
Outputs - ECL II compatible
Test conditions (unless otherwise stated)
$\begin{array}{ll}\mathrm{T}_{\text {amb }} & \text { ' } \mathrm{A} \text { ' Type: }-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ & \text { ' } \mathrm{B} \text { Type: } 0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C}\end{array}$
Supply voltages: $V_{C C}=+5.2 \mathrm{~V} \pm 0.25 \mathrm{~V}$

$$
V_{E E}=0 V
$$

Clock input voltage: 400 mV to $800 \mathrm{mV}(\mathrm{p}-\mathrm{p})$

Characteristic	Value			Units	Conditions
	Min.	Typ.	Max.		
Max i/p frequency	500			MHz	$\mathrm{V}_{\mathrm{cc}}=+5.2 \mathrm{~V}$
Min i/p frequency			40		Sinewave Input
Min. slew rate for square wave input			100	$\mathrm{V} / \mu \mathrm{s}$	
Propogation delay					
(clock i/p to device o/p)		4		ns	
$\overline{P E}$ input reference level		+3.9		V	$\mathrm{V}_{\mathrm{cc}}=+5.2 \mathrm{~V}, 25^{\circ} \mathrm{C}$
Power supply drain current $\overline{\mathrm{PE}}$ input pulldown		45	60	mA	$\mathrm{V}_{\mathrm{cc}}=+5.2 \mathrm{~V}, 25^{\circ} \mathrm{C}$
Resistors		4.3		K Ω	
Clock i/p impedance (i/p to i/p ref low frequency)		400		Ω	

Fig. 3 Test circuit

APPLICATION NOTES

Fig. 4 SP8685 output - ECL 10K i/p and ECLI! lor ECL 10K o/ps unloaded) - ECL 10K i/p

Fig. 5 TTL o/p - SP8685 $\overline{P E}$ i/p; SL8685 o/p - TTL i/p. (Total delay from SP8685 clock i/p to Schottky gate $o / p=15 n s$, typ.)

At an input frequency of 500 MHz the control loop delay time (SP8685 o/p to PE i/p) is approximately 16 ns. This will be a severe problem if TTL is used in the control loop.

Fig. 6 Divide-by-20/22. Control loop delay time approximately 40ns.

Fig. 7 Divide-by-20/21. Control loop delay time approximately 30ns using SP1034.

VHF, LOW POWER, PROGRAMMABLE DIVIDERS, $\div \mathbf{1 0} / \mathbf{1 1}$
 SP8690 A\&B $100 \mathrm{MHz} ; \mathbf{1 0} / 11$

FEATURES

- Full temperature range operation
" A " variant $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
" B^{\prime} variant $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
- Toggle frequency $\boldsymbol{>} \mathbf{2 0 0} \mathbf{M H z}$ typical
- Power dessipation 70 mW typical
- Capacitively coupled clock input for synthesiser and counter applications
- ECL compatibility on the programming inputs.
- True and inverse outputṣ available with ECL compatibility
- Output available for driving TTL or CMOS

GENERAL DESCRIPTION

The SP8690 A\&B are divider circuits that can be logically programmed to divide by either 10 or 11.
The device is available over two temperature ranges, " A " variant is $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ and the " $\mathrm{B}^{\prime \prime}$ variant is $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.
The clock inputs can be either single or differentially driven and must be a.c. coupled to the signal source. If single driven, then the unused input must be decoupled to the earth plane. The device will self-oscillate if no input is present. To prevent this'a 68 K resistor should be connected from pins 1 or 16 to OV . This will reduce the sensitivity of the device by approximately 100MV peak to peak.
The division ratio is controlled by two PE inputs which are ECL II, 10 K compatible throughout the temperature range. The device will divide by ten when either input is high and by eleven when both inputs are low. These inputs may be interfaced to TTL and CMOS by the inclusion of two resistors as shown in Figure 3. There is a free collector saturating output stage for interfacing with either TTL or CMOS together with true and inverse outputs with ECL II compatible levels. These may be interfaced to ECL 10 K as shown in Figure 4.

The device may be used as a fixed $\div 10$ by connecting $\mathbf{Q 4}$ to one PE input.

If the $\mathrm{O} \rightarrow 1$ transition of $\mathbf{Q 4}$ or the $1 \rightarrow 0$ transition of the $\overline{\mathrm{Q4}}$ is used to clock the next stage, then this will give the maximum loop delay for control, i.e. 10 clock periods minus the internal delays.

ELECTRICAL CHARACTERISTICS

PIN CONNECTIONS - Figure 1

LOGIC DIAGRAM - Figure 2 (+ve logic)

COUNT SEQUENCE

	Q1	Q2	Q3	Q4
1	L	H	H	H
2	L	L	H	H
3	L	L	L	H
4	H	L	L	H
5	H	H	L	H
6	L	H	H	L
7	L	L	H	L
8	L	L	L	L
9	H	L	L	L
10	H	H	L	L
11	H	H	H	H
Hentra Slate				

Truth Table for Division Retic
$\overline{\text { PE1 }} \overline{\text { PE2 }}$ Div. Ratio
L L 1
H L 10
$\begin{array}{lll}\mathrm{L} & \mathrm{H} & 10\end{array}$
$\begin{array}{lll}\mathrm{H} & \mathrm{H} & 10\end{array}$

Note 1

The $\overline{P E}$ reference voltage level has the same temperature coefficient as ECL II and ECL 10K.

Note 2

The Q4 and $\overline{\mathrm{Q4}}$ output levels have the same temperature coefficient as ECL II and ECL 10 K .

Note 3

The TTL/CMOS output has a free collector, and the high slate output voltage will depend on the supply voltage that the collecter load is taken to. This should not exceed +12 V .
*Test conditions (unless stated otherwise).

Tamb

$$
\begin{aligned}
& " A \text { " variant }-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\
& \text { " } \mathrm{B}^{\prime} \text { variant } \quad 0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C}
\end{aligned}
$$

Supply voltage

$$
\begin{aligned}
& V_{c c}=+5 v \pm 0.25 v \\
& V_{E E}=O V
\end{aligned}
$$

Clock input voltage $\quad 400 \mathrm{mV}$ to 800 mV peak to peak
(Clock input decoupled to OV)

Interfaces

FIGURE 3

FIGURE 4
FIGURE 4

Absolute Maximum Rating

Supply voltage	Vcc - VEE
Input voltage	Vin d.c.
Output current \quad Iout	
Maximum junctic temperature	
Storage temperature range	

$8 v$
Not greater than the supply voltage in use
10 mA
$\sim 150^{\circ} \mathrm{C}$
$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Package details

16 lead black ceramic
Thermal resistance $90^{\circ} \mathrm{C} / \mathrm{W}$

mos

PROVISIONAL DATA

MP1013A

UNIVERSAL ASYNCHRONOUS RECEIVER/TRANSMITTER

The MP 1013A is a monolithic MOS/LSI integrated circuit UART subsystem using low threshold p-channel technology. Independent clocks are provided for receiver and transmitter, allowing simultaneous data reception and transmission at differing baud rates.

Transmitter data is input in parallel on the pins TD1-TD8 and output in serial form from the SO output, together with the start bit, parity bit (if required), and selected number of stop bits. The number of data bits is variable from 5 to 8, depending on the state of control input pins. Other control pins select the type of parity (or no parity if not required) and the number of stop bits. All control inputs are common to receiver and transmitter sections of the device.

Receiver data is input in serial form at SI and output in parallel at RD1-RD8. The received word is examined for correct parity and valid stop bits as selected by the control inputs. Error flag outputs indicate faults in parity and stop bits.

Double buffering of input and output data permits data to be loaded or read whilst another word is being sent or received. If a received word has not been read by the time another complete word has been received, an overrun error flag is enabled.

FEATURES

- Fully Programmable. External selection of word length (5, 6, 7 or 8 Bits), 1 or 2 stop bits, odd, even or no parity bits.
- Simple Interfacing Inputs and outputs fully TTL/DTL compatible
- Full or Half Duplex Operation Separate clocks permit transmission and reception at different baud rates simultaneously.
- Receiver Centre Sampling 46\% distortion immunity.
- Bus structure Capability Data outputs and status flags are tri-state
- External Reset

Resets error flags, clears shift registers

- High Speed Operation

40 kBaud Data Rate

- Double Buffered

Eliminates need for external synchronisation.

- Static Circuitry

Data stable with DC -640 KHz clocks

APPLICATIONS

Fig. 1 Pin connections

Fig. 2 Functional block diagram

PIN FUNCTIONS

Pin No.

1	$V_{\text {cc }}$	$V_{\text {cc }}$ power supply
2	$V_{G G}$	$\mathrm{V}_{\text {G G }}$ power supply
3	GND	Ground
4	$\overline{\text { RDE }}$	Received Data Enable
$5 \cdot 12$	RD8-RD1	Receiver Data outputs
13	PE	Parity Error
14	FE	Framing Error
15	OR	Overrun

Function

+5 V supply
-12V supply
Ground
Controls the tri-state outputs RD1-RD8. A low level will place the receiver buffer register contents on RD1-RD8.
These 8 tri-state outputs are enabled by $\overline{\mathrm{RDE}}$. Received characters always have the LSB on the RD1 output. If less than 8 digits are selected by NDB1 and NDB2, unused outputs are low.
Tri-state output enabled by $\overline{S W E}$. Goes high if the received character parity does not agree with that selected by SKP and OEP.

Tri-state output enabled by SWE. Goes high if the received character has no valid stop bit.
Tri-state output enabled by $\overline{S W E}$. Goes high if the previous character has not been read ($\overline{\mathrm{RDAV}}$ not strobed) before the current character is fed into the receiver buffer register.

A low level will enable the five tri-state outputs PE, FE, OR, DAV and TBMT.

17	RCP	Receiver Clock
18	$\overline{\text { RDAV }}$	Reset Data Available
19	DAV	Data Available
20	SI	Receiver Serial Input
21	MR	Master Reset.
22	TBMT	Transmitter Buffer Empty
23	$\overline{\text { TDS }}$	Transmitter Data Strobe.
24	EOC	End of Character
25	SO	Serial Output
26-33	TD1-TD8	Transmitter Data Inputs
34	CS	Control Strobe
35	SKP	Skip parity bit
36	NSB	Number of Stop Bits
37-38	NDB1 NDB2	Number of Data Bits per character
39	OEP	Odd/Even Parity
40	TCP	Transmitter Clock Pulse

The receiver clock frequency must be 16 times the desired receiver baud rate.
A low level input resets the DAV output.
Tri-state output enabled by SWE. Goes high when an entire character has been transferred to the receiver buffer register.
Accepts the serial input data stream. A high-to-low level (mark-to-space) transition will initiate data reception.
Should be pulsed high after power turnon. Sets SO, EOC and TBMT high, PE, FE, OR and DAV low. Clears input data h...ffers and resets shift registers.
Tri-state output enabled by $\overline{S W E}$. Goes high when the transmitter buffer may be loaded with a new character.
A low level strobe which enters the data bits into the holding register. Transmission is initiated on the rising edge of TDS.
Goes high whenever a complete character is transmitted, remains high until the start of the next character. In continuous transmission goes high for $1 / 2$ TCP period only.
Serially outputs the transmitted data. At a high level when no data is being transmitted.
The eight data input lines are strobed by $\overline{\text { TDS }}$. The LSB should always be placed on TD1. Unused data lines as selected by NDB1 and NDB2 may be in either logic state.
A high level strobe enters the control bits (NDB1, NDB2, NSB, SKP, OEP) into the holding register. May be hard-wired high if the control bits are constant.
A high level signal prevents the parity bit from being transmitted, i.e. the stop bit follows the last data bit. The receiver will look for the stop bit after the last data bit, and PE is forced to a low level.
This pin fixes the number of stop bits which are sent by the transmitter or detected by the receiver. A high level gives two stop bits, and a low level one.
These two pins select the number of data bits to be sent or received, as shown below:

NDB1	NDB2	Bits/character
L	L	5
H	L	6
L	H	7
H	H	8

The signal on this pin determines the type of parity which will be sent by the transmitter or checked by the receiver. A high level represents even parity and a low level odd parity.
The transmitter clock frequency must be 16 times the desired transmitter baud rate.

ELECTRICAL CHARACTERISTICS

Test Conditions (unless otherwise stated):
$\mathrm{V}_{\mathrm{GG}}=-12 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{cc}}=+5 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
All voltages are measured w.r.t. ground
Positive current is defined as that flowing into the pin under consideration.

DC Characteristics

Characteristic	Value			Units	Conditions
	Min.	Typ.	Max.		
Input voltage levels					
Low level, $\mathrm{V}_{\text {IL }}$ High level, $\mathrm{V}_{\text {IH }}$	$\begin{gathered} V_{D D} \\ V_{c c}-1.5 \end{gathered}$		$\begin{gathered} 0.8 \\ v_{c c}+0.3 \end{gathered}$	$\begin{aligned} & v \\ & v \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{IL}}=-1.6 \mathrm{~mA} \\ & \text { (Internal pull up resistor) } \end{aligned}$
Output voltage levels					
Low level, V_{OL} High level, V_{OH}	$\mathrm{V}_{\mathrm{cc}}-1$		0.4	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{OL}}=1.6 \mathrm{~mA}, \mathrm{~V}_{\text {cc }}=\text { Max. } \\ & \mathrm{I}_{\mathrm{OH}}=-300 \mu \mathrm{~A} \end{aligned}$
Output current					
Leakage, IOT (tri-state outputs) Shortcircuit, IOS	2.5		-1	$\mu \mathrm{A}$ mA	$\begin{aligned} & \overline{S W E}=\overline{R D E}=V_{1 H} \\ & V_{\text {out }}=O V(\text { Note } 1) \end{aligned}$
Power supply current					
ICC		16		mA	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$
$I_{\text {DD }}$		20		mA	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$

AC Characteristics

Characteristic	Value			Units	Condition
	Min.	Typ.	Max.		
Clock frequency	DC		640	kHz	TCP, RCP
Baud rate			40	K baud	
Pulse widths, $\mathrm{t}_{\text {pw }}$					
Clock (TCP, RCP)	780			ns	See Fig.. 3(a)
Reset (MR)	500			ns	See Fig. 3(b)
Control strobe (CS)	300			ns	See Fig. 3(c)
Data strobe ($\overline{\mathrm{TDS}}$)	200			ns	See Fig. 3(d)
Tri-state O/P enables ($\overline{\text { SWE }}, \overline{\mathrm{RWE}}$)	500			ns	See Fig. 3(e)
Data Available Reset ($\overline{\text { RDAV }}$)	250			ns	See Fig. 3(f)
Setup and hold times					
Data inputs	0			ns	See Fig. 3(d)
Control inputs	0			ns	See Fig. 3(c)
Propagation delays $\mathbf{t p d}^{\mathbf{1}}$ and $\mathrm{t}_{\mathbf{p d}} \mathbf{0}$					
Tri-state output enables to outputs			500	ns	See Fig. 3(f)
Input capacitance $\mathrm{C}_{\text {in }}$ (all inputs)			20	pF	Bias $=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$
Output capacitance C_{0} (all outputs)		10	15	pF	$\overline{\text { SWE }}=\overline{\text { RDE }}=V_{1 H}$

NOTES

1. Not more than one output should be shorted at a time.
2. If the transmitter is inactive ($T E O C=T B M T=V_{O H}$) the start bit will appear on the SO line within one transmitter clock period of the trailing edge of TDS
3. The start bit will always be detected within one receiver clock period. This will guarantee a maximum slippage of the start bit of one-sixteenth of a bit time.

(a) Clock pulse. TCP or RCP at maximum clock frequency $(640 \mathrm{kHz})$. At lower data rate, minimum positive or negative pulse width is 780 ns .

(c) Control strobe. Control input information need only be valid during the last $t_{p w}(\mathrm{~min})$ of the control strobe.

(e) Tri-state outputs, $t_{p w}$ (min.) is the shortest pulse
required to present valid data on the outputs. required to present valid data on the outputs.

MR

(b) Reset pulse

Fig. 3 Timing diagrams

TRANSMITTER OPERATION

After the power has been turned on and the clock (at a frequency of 16 X the desired baud rate) is applied, the Master Reset pin is pulsed, which sets TBMT, EOC and SO high.

When EOC and TBMT are high the control and data bits may be set up. It is normal procedure to strobe in the control bits prior to the data, but, if minimum pulse width specifications are observed, $\overline{\text { TDS }}$ and CS may occur simultaneously. TBMT goes low on the positive edge of $\overline{\text { TDS }}$, indicating that the buffer is full and not available to receive new data.

If, as in the case after reset, the transmitter shift register is empty, the buffer is read into this register within one clock cycle of the data strobe and data transmission commences. SO goes low (start bit), EOC goes low and TBMT goes high to indicate that a fresh character may now be loaded.

If new data is now loaded, TBMT will stax low until the current word has been completely read out, when EOC will go high for half a clock cycle, as the new data is immediately transferred from the buffer to the main register and transmission of the new word commenced.

The order of transmission of data is start bit - selected
number of data bits - parity bit (if required) and stop bit(s). When the last stop bit has been on the line for one bit-time, EOC goes high, and, providing TBMT is high, new control bits may be loaded.

RECEIVER OPERATION

After the power has been turned on and the 16X baud rate clock applied, the Master Reset pin is pulsed, which sets PE, FE, OR and DAV low. The control bits are common with the transmitter, and may now be set.

Data reception is initiated when the serial input changes from mark to space (high to low). Centre sampling of the start bit is then carried out. If the start bit is verified (by SI still being low at the centre sample point), reception of the data on SI proceeds.

The error flags PE, FE and OR go high, if errors are detected, after the centre sample pulse of the first stop-bit. DAV goes high after one more clock cycle to indicate that the received data may now be read out. It should be noted that DAV must be reset when the data is read out, otherwise an overrun will be detected after the next word is read in. A full character time is available to read out data due to the double buffering of the outputs.

Fig. 4 Transmitter timing

Fig. 5 Receiver timing

Fig. 6 Transmitter flow chart

Fig. 7 Receiver flow chart

ABSOLUTE MAXIMUM RATINGS

Operating temperature range $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage temperature range $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10 secs max.) $330^{\circ} \mathrm{C}$
Negative voltage on any pin (with respect to V_{cc}) $\mathbf{- 2 5 \mathrm { V }}$
Positive voltage on any pin (with respect to V_{cc}) +0.3 V

PACKAGE DETAILS

Dimensions are shown thus: mm (in)

PROVISIONAL DATA

MP3409B

QUAD 80-BIT DYNAMIC SHIFT REGISTER
 MP3417B

QUAD 64-BIT DYNAMIC SHIFT REGISTER

The MP3409B and MP3417B are p-channel MOS quad 80-bit (MP3409B) and 64-bit (MP3417B) dynamic shift registers.

The four registers have individually controlled logic for recirculating data in each register. A single clock generator provides two clock phases to all 4 registers. The Clock input, Recirculate Enable and Data inputs are all TTL compatible, and each output interfaces directly with TTL without the use of external circuitry.
The low threshold thick oxide MOS p-channel enhancement mode circuitry has been used to reduce power dissipation and permit easy interfacing between bipolar circuits.

Fig. 1 Pin connections

Fig. 2 Functional block diagram

ABSOLUTE MAXIMUM RATINGS

Operating temperature Range $\cdot 25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage temperature Range $55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Negative voltage on any pin (with respect to V_{SS}) . 20 V
Positive voltage on any pin (with respect to $\mathrm{V}_{\text {SS }}$) . +0.3 V
Lead temperature (soldering, 10 secs max.) $330^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS

Unless otherwise stated, the electrical characteristics below apply for any combination of the following characteristics:
$V_{S S}=+5.0 \mathrm{~V} \pm 5 \%$
$V_{G G}=-12.0 \mathrm{~V} \pm 5 \%$
$V_{D D}=0 \mathrm{~V}$
Temperature range $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Maximum power dissipation $=300 \mathrm{~mW}$

All voltages are measured with respect to ground. Positive cur ent is defined as flowing into the pin under consideration.
DC Characteristics

Characteristic	Value			Units	Condition
	Min.	Typ.	Max.		
Input voltage levels					
Low level, $\mathrm{V}_{1 /}$	$V_{D D}$		+0.8	V	$I_{I L}=-1.6 \mathrm{~mA}$
High level, $\mathrm{V}_{1 H} \mathrm{~V}_{\text {SS }}$	$\mathrm{V}_{\text {SS }} \mathbf{- 1 . 3}$		$\mathrm{V}_{\text {SS }}$	V	
Clock low level, $\mathrm{V}_{\phi \mathrm{L}}$	$V_{D D}$		+0.4	V	
Clock high level, $\mathrm{V}_{\phi \mathrm{H}}$	$\mathrm{V}_{\text {SS }} \mathbf{- 1 . 3}$		V_{SS}	V	
Output voltage levels					
Low level, $\mathrm{V}_{\text {OL }}$	$V_{D D}$	+0.3	+0.4	V	$\mathrm{l}_{\text {sink }}=+1.6 \mathrm{~mA}$
High level, V_{OH}	$\mathrm{V}_{\text {SS }}-1.0$	$\mathrm{V}_{\text {SS }}-0.5$	Vss	V	$l_{\text {load }}=-0.5 \mathrm{~mA}$
Input current					
Inputs, IIL			100	nA	$V_{\text {in }}=O V$
Clocks, $\mathrm{I}_{\phi \text { L }}$			100	nA	$\mathrm{V}_{\phi}=O \mathrm{~V}$
Power supply current					
Substrate supply, Iss			35	mA	$f=1 \mathrm{MHz}$
Gate supply, IG G		10	25	mA	$f=1 \mathrm{MHz}$

AC Characteristics

Characteristic	Value			Units	Condition
	Min.	Typ.	Max.		
Clock frequency	0.01		3	MHz	
Data frequency	DC		3	MHz	
Output logic transitions					
Rise time tr_{r}		40	60	ns	TTL load + 10pF
Fall time t_{f}		30	50	ns	TTL load + 10pF
Output propagation delay					
Low-to-high level O/P t_{OH}		70	100	ns	TTL load + 10pF
High-to-low level O/P tol		70	100	ns ${ }^{\text {' }}$	TTL load + 10pF
Pulse timing (input)					
Clock pulse transition, $\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f} \phi}$		10	100	ns	
Clock pulse width high, $\mathrm{PW}_{\phi \mathrm{H}}$	0.125		50	$\mu \mathrm{s}$	
Clock pulse width tow, $\mathrm{PW}_{\phi \mathrm{L}}$	0.175		50	$\mu \mathrm{s}$	
$\mathrm{PW}_{\phi H} \div \mathrm{PW}_{\phi \mathrm{L}}$	0.02		50	ns	
Pulse spacing (input)					
Data setup, tos	100			ns	
Data hold, $\mathrm{t}_{\text {DH }}$	100				
Recirculate Enable setup, $\mathrm{t}_{\mathrm{R}} \mathrm{S}$	200			ns	
Recirculate Enable hold, t_{RH}	100			ns	
Input capacitance					
Inputs (Data + Recirc. Enb.), $\mathrm{C}_{\text {in }}$			10	pF	$V_{\text {in }}=V_{\text {SS }} f=1 \mathrm{MHz}$
Clocks, C_{ϕ}			10	pF	$\mathrm{V}_{\phi}=\mathrm{V}_{\text {SS }} f=1 \mathrm{MHz}$

OPERATION

Data is transferred into the register when the internal clock ϕ_{1} is on. This clock is on when the external clock is high, but the changes of level occur some 100 ns after the external drive. Data must be held true at least 100 ns after the external clock drive has changed state, for data to be entered.

The true output data becomes available about 100 ns after the TTL clock goes low.

During the recirculate mode, information in the register continues to be read out.

Fig. 3 Timing diagram and voltage wave forms

PACKAGE DETAILS

Dimensions are shown thus: mm (in)

NEW PRODUCT DATA

MP9100
 PUSH BUTTON TELEPHONE DIALLEK

The MP9100 is a p-channel low threshold MOS integrated circuit containing the logic required to interface between a keyboard and a Strowger-type telephone system.

Up to 20 digits and 'dial tone waits' can be stored dialled directly or re-dialled.

The use of 4 -phase dynamic logic minimises power consumption, thus allowing line-powered or battery operation.

FEATURES

- 20 Digit Capability
- Low Power Consumption
- Re-dialling Facility
- Direct Interface With Standard MF Keyboard
- Can Be Used With MP9200 To Form A Repertory Dialling System
- Dial Tone Wait Facility
- Programmable Dialling Speed, Dial Pulse Mark/Space Ratio, and Inter-Digit Pause

APPLICATIONS

- Telephones (Mains, Battery or Line-power)
- Repertory Diallers
- Automatic Security Alarms

Fig. 1 Pin connęctions (top)

QUICK REFERENCE DATA

- Clock Levels: $-15 \pm 2 \mathrm{~V}$ (2ø, 25\% Duty Cycle)
- Clock Rate: 18 kHz (Nominal)
- Free Drain Output Current: 1 mA (Min.)
- Power Consumption: 2 mW (Max.)

ABSOLUTE MAXIMUM RATINGS

```
Voltage on any pin w.r.t. V SS: +0.3V to -20V
Storage temperature: }\quad-5\mp@subsup{5}{}{\circ}\textrm{C}\mathrm{ to +125}\mp@subsup{}{}{\circ}\textrm{C
Ambient operating temperature: -55'⿳ C to +80 C
```


ELECTRICAL CHARACTERISTICS

Test conditions (unless otherwise stated)
$\mathrm{T}_{\mathrm{amb}}=-55^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}$
Clock frequency $=18 \mathrm{kHz}$
$\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$
Negative logic convention used

Characteristic	Value			Units	Conditions
	Min.	Typ.	Max.		
Inputs					
Logic '0' level	+0.3		-1	V	
Logic '1' level	-4		-17	v	
Data strobe pulse width	10			ms	
Reset pulse width	3			ms	After clocks reach full amplitude
Clocks					
Logic '0' level	+0.3		-1	V	Clocks must be matched
Logic '1' level	-13	-15	-17	V	to within 0.2 V
Frequency	10	18	30	kHz	
Edge time (t_{d})	0.1		4	$\mu \mathrm{s}$	
Width (t_{w})	5		40	$\mu \mathrm{s}$	See Fig. 3
Separation (t_{5})	5		40	$\mu \mathrm{s}$	
Capacitance		90	150	pF	Per clock phase
Leakage			30	$\mu \mathrm{A}$	$\mathrm{T}_{\mathrm{amb}}=80^{\circ} \mathrm{C}, \mathrm{V}_{\phi}=-17 \mathrm{~V}$
Outputs					
Logic ' 0 ' current Logic ' 1 ' current	1		10	$m A$ μA	$\begin{aligned} & V_{\text {out }}=-1 \mathrm{~V} \\ & V_{\text {out }}=-10 \mathrm{~V} \end{aligned}$
Power consumption		0.9	2	mW	

Fig. 3 Clock waveforms

OPERATING NOTES (See Fig. 2)

Keyboard Entry and Dialling Out

The MP9100 must be reset at power-on in order to clear the stores and reset all bistables. This is achieved by applying a logic ' 0 ' at the RESET pin for at least 3 ms after the clocks have reached full amplitude. Numbers may then be entered from a keyboard by applying the appropriate 4-bit code to the input pins $D_{0}-D_{3}$ (according to the code given in Table 1) and applying a logic ' 0 ' pulse to iNRUI DAIA STROBE. Inis struive iriput must de stavio for at least 10 ms , otherwise it will be rejected by the anti-bounce circuitry. After the required time has elapsed, the 4 -bit code is read into the recirculating stores, invalid codes being ignored.

DIGIT	D_{0}	D_{1}	D_{2}	D_{3}
1	1	1	1	1
2	1	1	1	0
3	1	1	0	1
4	1	0	1	1
5	1	0	1	0
6	1	0	0	1
7	0	1	1	1
8	0	1	1	0
9	0	1	0	1
0	1	1	0	0
DIAL TONE WAIT	0	0	1	1

Table 1 Keyboard input coding

Up to 20 digits may be entered, the control logic ensuring that each digit is placed sequentially in the store. In addition, DIAL TONE WAIT inputs can be entered between digits, being one of the valid keyboard codes but read into a separate store.

As soon as the first digit is entered, the MASK OUTPUT will go to logic ' 0 ', allowing external circuitry to mask the handset. An interdigit pause is then counted out, followed by the DIAL PULSE output going to logic ' 0 ' to produce a loop disconnect signal for the duration of the mark period of the programmed mark/space ratio (see Table 2). This is then repeated a number of times, corresponding to the value of the digit. Further digits may be entered at any time; the control logic aligns a pointer to indicate the next digit in the store to be dialled out, thus ensuring complete intput/output asynchronism.

If a DIAL TONE WAIT has been entered in the number sequence, the MASK OUTPUT will go to logic ' 1 ' and the DIAL TONE WAIT O/P will go to ' 0 ' as soon as the preceding digit has been dialled. DIAL TONE WAIT must, through external circuitry, cause the CONTROL INPUT to go to logic ' 1 ' to stop further dialling. When a dial tone has been detected, the CONTROL INPUT should be taken to logic ' 0 ': the remaining digits will then be dialled out (see Fig. 4).

FUNCTION	VALUE	REQUIRED INPUT
Pulse rate	600 i.p.s.	ϕ_{1}
	20 i.p.s.	ϕ_{3}
	10 i.p.s.	$V_{S S}$
Mark/Space	$70: 30$	ϕ_{1}
	$66^{2} / 3: 33^{1 / 3}$	$V_{S S}$
	$60: 40$	$V_{D D}$
	$50: 50$	ϕ_{3}
Interalyii	$i=0 \ldots:$	ϕ_{2}
Pause (at	800 ms	$V_{S S}$
10 i.p.s.)	1000 ms	ϕ_{1}

* V_{DD} is negative supply for external circuitry.

Table 2 Programmable input coding (at 18 kHz clock frequency)

Fig. 4 Waveforms

Redial Mode

If the CONTROL INPUT is taken to logic ' 1 ' together with a DATA STROBE pulse, the circuit will lock into the redial mode of operation, causing the REDIAL OUTPUT to go to logic ' 0 '. The same signals must be removed and re-applied in order to revert to normal operation.

Putting the circuit into redial mode while a number is being dialled out will cause dialling to cease after the current digit. When normal mode is restored, the remaining digits will be dialled out.

If redial mode is entered before any digits have been keyed, digits will be accepted into the store but will not be dialled out until normal operation is restored.

Finally, if redial mode is entered and then removed after a complete dialling sequence, the whole sequence will be repeated.

PACKAGE DETAILS

Dimensions are shown thus: mm (in.)

MOS CIRCUITS

NEW PRODUCT DATA

MP9200

REPEKTUKY TELÉpriúve STUÑ

The MP9200 is a p-channel low threshold MOS integrated circuit containing the logic and storage capability to form a self-contained repertory telephone number store of up to ten 22 -digit numbers.

The use of 4 -phase dynamic logic minimises power consumption, thus allowing stand-by battery operation.

FEATURES

Sṭores 10 Numbers Of Up To 22 Digits

- Low Power Consumption (5 mW Typ.)
- Can Be Used With MP9100 To Form A Repertory Dialling System
- Output Format Suitable For MF Signalling Systems
- Can Be Cascaded For Increased Storage
- Interfaces With Standard Keyboards

APPLICATIONS

- Domestic And Business Repertory Telephone Diallers
- General Purpose Numeric Code Storage

Fig. 1 Pin connections (top)

QUICK REFERENCE DATA

- Clock Levels: $-15 \mathrm{~V} \pm 2 \mathrm{~V}(20,25 \%$ Duty Cycle)
- Clock Rate: 18 kHz (Nominal)
- Free Drain output current: 1 mA (Min.)
- Power Consumption: 10 mW (Max.)

ABSOLUTE MAXIMUM RATINGS

$$
\begin{array}{ll}
\text { Voltage on any pin w.r.t. } \mathrm{V}_{\text {SS }}: & +0.3 \mathrm{~V} \text { to }-20 \mathrm{~V} \\
\text { Storage temperature: } & -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\
\text { Ambient operating temperature: }-55^{\circ} \mathrm{C} \text { to }+80^{\circ} \mathrm{C}
\end{array}
$$

ELECTRICAL CHARACTERISTICS

Test conditions (unless otherwise stated):
$\mathrm{T}_{\mathrm{amb}}=-55^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}$
Clock frequency: 18 kHz
$V_{S S}=0 \mathrm{~V}$
Negative logic convention used

Characteristic	Value			Units	Conditions
	Min.	Typ.	Max.		
Inputs					
Logic '0' level	+0.3		-1	v	
Logic ' 1 ' level	-4		-17	v	
Key depression time	40			ms	
Reset pulse width	5			ms	After clocks reach
					full amplitude
Clocks					
Logic 0 ' level	+0.3		-1	v	Clocks must be matched
Logic ' 1 ' level	-13	-15	-17	V	to within 0.2 V
Frequency	10	18	30	kHz	
Edge time (t_{d})	0.2			$\mu \mathrm{s}$	
Width (t_{w})	5		40	$\mu \mathrm{s}$	See Fig. 3
Separation (t_{s})	5		40	$\mu \mathrm{s}$	
Capacitance			500	pF	Per clock phase
Leakage			50	$\mu \mathrm{A}$	$\mathrm{T}_{\text {amb }}=80^{\circ} \mathrm{C}, \mathrm{V}_{\Phi}=-17 \mathrm{~V}$
Outputs					
Logic '0' current	1			mA	$\mathrm{V}_{\text {out }}=-1 \mathrm{~V}$
Logic ' 1 ' leakage			10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {out }}=-10 \mathrm{~V}$
Power consumption		5	10	mw	

Fig. 3 Clock waveforms

OPERATING NOTES (see Fig. 2)

The MP9200 must be reset at initial power-on in order to clear the counters and reset all bistables. This is achieved by applying a logic ' 0 ' at the RESET pin for at least 5 ms after the clocks reach full amplitude.

Address information and input/output data are fed through a 4 -bit bus $D_{0}-D_{3}$. The control logic, together with disadıng output signals ensure mat mere is no confliction of data.

Store Mode

STORE input must be held at logic ' 1 ' for the duration of the store operation. CHIP SELECT and LOGIC ENABLE must also be held at logic ' 1 ', the latter ensuring that data output strobes are inhibited. The appropriate address code (see Table 1) is applied to the 4-bit data bus and a logic ' 0 ' pulse applied to the DATA STROBE IN. This pulse must be stable for at least 40 ms . The address code, if valid, is then read into an address latch. The ADDRESS KEYBOARD DISABLE output will go to logic 0^{\prime} and thus, via external circuitry, prevent further address inputs. At the same time, the addressed store location is cleared.

Up to 22 4-bit numbers (i.e. digits and 'dial tone waits') may now be successively entered into the opened store location via the data bus, each digit having a corresponding DATA STROBE IN pulse. When the number sequence has been completed, the STORE, LOGIC ENABLE and CHIP SELECT inputs may be removed.

Fig. 4 Output timing Note: times specified are minimum.

ADDRESS	D_{0}	D_{1}	D_{2}	D_{3}
1	1	1	1	1
2	1	1	1	0
3	1	1	0	1
4	1	0	1	1
5	1	0	1	0
6	1	0	0	1
7	0	1	1	1
8	0	1	1	0
9	0	1	0	1
10	1	1	0	0

Retrieve Mode

LOGIC ENABLE must be at logic '1' for the duration of the 'retrieve' operation. The RETRIEVE and CHIP SELECT inputs must both be at a stable logic ' 1 ' for a minimum of 40 ms to ensure that the circuit is locked in the retrieve mode. These inputs may then be removed if required.

The appropriate address code is then applied to the data bus, together with a logic ' 0 ' DATA STROBE IN pulse of at least 40 ms duration. The valid code is latched in the same manner as in the 'store' operation and both the DIGIT KEYBOARD DISABLE and ADDRESS KEYBOARD DISABLE outputs will go to logic ' 0 '.

The circuit will then sequentially output the contents of the addressed store location on the data bus, together with a DATA STROBE OUT pulse for each new digit (see Fig. 4). The data and strobe pulse durations are suitable for direct interfacing with the Push Button Dialler circuit MP9100, or with an MF Tone Generator.

At the end of the data transfer, the digit and address keyboards are again enabled.

Erase Mode

Although it is not necessary to erase an old number before storing a new one in the same location, it can be achieved simply by performing a 'store' operation in the particular address but entering no digits.

Extended Storage

The storage capacity of any system can be increased in multiples of 10 numbers by using several MP9200 circuits in parallel, using the individual CHIP SELECT to address each store.

PACKAGE DETAILS

Dimensions are shown thus: mm (in.)

 and (haniess specifically agreed to the contrary by the contract or be regarded as a representation relating to the roducts or services concerned. We reserve the right to alter
without notice the specification, design, price or conditions

mnos

Non-volatile memory elements

NEW PRODUCT DATA

NOM 201C

NOM 204C

Plessey NOM 200C series Metal Nitride Oxide Silicon (MNOS) field effect transistors are specially designed for use in non-volatile data storage applications. The series comprises single, dual and quad groupings of the same basic MNOST, and replaces NOM 100 series devices.

The significant difference between the MNOS transistor and the conventional insulated gate FET is that the MNOST is fabricated with a sandwich gate dielectric which can retain an injected positive or negative charge for periods of up to several years. This extremely long retention time is due to the fact that the charge is held deep within the dielectric and is not affected by surface leakage. The presence of the stored charge modifies the transistor gate threshold voltage V_{T} to either a low negative level or a high negative level.

The low V_{T} state is defined as the logic ' O ' or erased state; conversely, the high V_{T} state is defined as logic ' 1 '. Writing/Erasing (charge injection) is accomplished by applying a gate voltage pulse with an amplitude considerably greater than the range of $\mathrm{V}_{\boldsymbol{T}}$ values. For example a +40 V pulse will inject a negative charge which shifts V_{T} to the erased level; conversely, the application of a -40 V pulse shifts V_{T} in the negative direction to its high (or logic '1') level.

The two states can be readily detected by the subsequent applications of a 'read' gate voltage lying between the two values of V_{T} : an MNOST with V_{T} set low is turned on, whereas one with V_{T} set high remains off. An MNOST therefore provides a one-bit memory element.

The physical mechanisms by which charge injection and reading are achieved are essentially non-destructive. An MNOST memory can be read an indefinite number of

Fig. 1 Transistor configurations
times, while the number of Write/Erase cycles that can be repeated without degradation of performance is conservatively rated at 10 million.

FEATURES

- Data Retention Without Power Supplies
- Total Electrical Control
- Non-Destructive Reading Ensures High Memory Integrity
- Guaranteed Useful Life of 10 Million Write/Erase Cycles

APPLICATIONS

Any situation requiring the storage of small quantities of data, where the retention of data is to be independent of power supplies, indicates an application for MNOS transistors. For example:

- Alternative for Latching Relays
- Storage of Running Totals in Cash Registers
- Numerical Control Parameter Storage
- Storing Aircraft and Weapons Systems Mission Data
- Storing Digital Set Point Information for Control Loops

Fig. 2 Pin connections (viewed from beneath)

QUICK REFERENCE DATA

[^3]- Minimum Data Retention Time: 1 Year

ELECTRICAL CHARACTERISTICS (TYPE C DEVICES)

Test Conditions

Ambient temperature $\quad+25^{\circ} \mathrm{C}$.
Threshold voltage V_{T} set with voltage pulse applied between gate and substrate.
Unless otherwise stated, threshold voltages are measured 1 sec. after the setting pulse, using source/drain voltage $=1 \mathrm{~V}$ and source/drain current $=25 \mu \mathrm{~A}$.

Characteristics	Symbol	Value				Conditions
		Min.	Typ.	Max.	Units	
Threshold voltage (Fig.3) High state						
	$V_{\text {TH }}$	13	14		-V	$V_{\text {TH }}$ set by $-40 \mathrm{~V}, 1 \mathrm{sec}$. gate pulse
		9	11		-V	$V_{T H}$ set by $-35 \mathrm{~V}, 100 \mu$ gate pulse
Low state	$V_{T L}$	1.5	2.5	3.5	-V	$V_{T L}$ set by $+40 \mathrm{~V}, 1 \mathrm{sec}$. gate pulse
		1.4	2.5	3.6	$-\mathrm{V}$	$V_{T L}$ set by $+35 \mathrm{~V}, 100 \mu$ s gate pulse
Threshold voltage decay (Fig.5) High state						
	$\frac{d V_{T H}}{d t}$		0.6		V/time decade	$V_{T H}$ set with $-40 \mathrm{~V}, 1 \mathrm{sec}$, and stored with zero gate/substrate voltage
Low state	$\frac{d V_{T L}}{d t}$					$V_{T L}$ set with $+40 \mathrm{~V}, 1 \mathrm{sec}$. and stored with zero gate/substrate voltage
			0			Up to 10^{7} sec. after gate.pulse
			0.6		- V/time decade	After $10{ }^{7} \mathrm{sec}$.
Logic window $\left\|V_{T H}-V_{T L}\right\|$	V_{w}	5.4	8.5		V	Set with $\pm 35 \mathrm{~V}, 100 \mu \mathrm{~s}$
		2.0	5.5		v	$10^{7} \mathrm{sec}$. after setting with $\pm 35 \mathrm{~V}, 100 \mu \mathrm{~s}$
Drain current v gate voltage (gain factor)	β	0.1		0.2	mA/V ${ }^{2}$	Source/drain voltage $=10 \mathrm{~V}$. See Note 1
Bulk effect coefficient	K		0.2		-V	See Note 2
Drain leakage	I DSUb		0.1	1	nA	Gate voltage $=0 \mathrm{~V}$, drain/substrate voltage $=-10 \mathrm{~V}$
Gate/substrate capacitance	CGSSOB		2		pF	
Gate/drain capacitance	$\mathrm{C}_{G D}$		<1		pF	

NOTES

1. An approximate relationship between gate voltage and drain current in the high impedance portion of the characteristic is given by:

$$
I_{D}=\frac{\beta}{2}\left(V_{G S}-V_{T}\right)^{2}
$$

2. A reverse bias between source and substrate increases the threshold voltage negatively according to:

$$
\Delta V_{T}=K \sqrt{V_{S U B S}}
$$

ABSOLUTE MAXIMUM RATINGS

The absolute maximum ratings are limiting values, above which operating life may be curtailed or satisfactory. performance impaired.

Voltage from any gate to any other terminal:	$\pm 45 \mathrm{~V}$
Voltage from source or drain to substràte:	-45 V
Operating temperature:	$-40^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$
Storage temperature (see Fig.6):	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Fig. 3 Gate characteristic

Fig. 4 Drain current V. drain/source voltage with V_{T} set low

Fig. 5 Threshold voltage retention at $\boldsymbol{T}_{A}=+25^{\circ} \mathrm{C}$

Fig. 6 Threshold voltage retention at high ambient temperatures

Fig. 7 Write/Erase switching speed characteristics

Fig. 8 Threshold voltage retention with continuously applied gate read voltages at $T_{A}=+25^{\circ} \mathrm{C}$

OPERATING NOTES

These notes briefly describe the operation of a memory using MNOS transistors.

Erasing

Before writing into an MNOS memory the previous contents must be erased; i.e. setzing the threshold voltage to its low extreme by applying a large pusitive gate voltage with respect to the substrate. A convenient method is to connect a large negative pulse to the substrate whilst holding the gate at OV. Care must be taken, however, to avoid forward-biasing the source/substrate or drain/ substrate junctions.

Writing

Writing is performed by applying a large negative puise to the gate with respect to the substrate. If. several MNOSTs were connected to form a word of memory, then all the gates would be driven negative simultaneously. The data to be written is applied as OV (write '1') or as a negative potential equal to the gate pulse amplitude (write ' 0 ') to either the source or drain while the other diffusion is left floating. The technique depends on the fact that a conduction channel is formed between the diffusions: if the channel is at the same potential as the gate then the effective potential across the dielectric is zero. The threshold voltage then remains at its previously erased level and logic ' 0 ' is retained. Logic ' 1 ' is written when the threshold voltage is raised to the high level, which is achieved by connecting the channel to the substrate potential.

Reading

The memory is read by applying a gate voltage lying between the upper and lower threshold voltage limits. The gate 'read' voltage is chosen to be as high as necessary to ensure that sufficient drain/source output current is available from a low set V_{T} transistor while leaving sufficient noise margin to ensure that a high set V_{T} transistor remains 'off'.

CIRCUIT DESIGN NOTES

The following step-by-step procedure describes how a non-volatile memory can be designed to suit individual requirements of data retention time, ambient temperature to be encountered, and output current.

1. Refer to Fig. 4 and determine a value of $V_{\text {Reff }}$ (The difference between gate read voltage and low threshold voltage, $V_{T L}$) that will give the required drain/source current.
2. Determine the minimum logic window (difference between upper and lower V_{T} extremes) that can be tolerated, by adding desired noise margin to $V_{\text {Reff }}$.
3. Refer to Fig.5, which shows the available range of logic window as a function of time, and check that the minimum logic window determined in (2) above can be accommodated at the end of the desired storage period. If elevated temperatures are anticipated, reference should also be made to Fig.6.
4. From Fig.5, establish worst case initial threshold voltages.
5. Refer to Fig. 7 and select a convenient compromise between pulse amplitude and width to give the initial threshold voltages established in (4) above.
NOTE:
Fig. 5 shows the minimum threshold voltage retention characteristic as being initially flat. In fact, the memory decay effect is masked by other factors. For example, if a write pulse were chosen to only just take the lower threshold to 4 V , then the threshold would begin to rise immediately. The difference between the $+35 \mathrm{~V}, 100 \mu \mathrm{~s}$ and $+40 \mathrm{~V}, 1$ sec. write pulse V_{TL} retention curves illustrate this. In practice, the erase pulse will therefore be chosen to be greater than that minimum.
6. Determine gate read voltage i.e. $\mathrm{V}_{\mathrm{Reff}}+$ worst case $V_{T L}$.

Design Example

The above design procedure can be illustrated by considering the following, fairly typical, application, in which it is required that data be retained for one week at an ambient temperature of $+25^{\circ} \mathrm{C}$, and that the output (drain/source) current available at the end of that period should be 0.3 mA .

Fig. 4 shows that an effective read voltage, $\mathbf{V}_{\text {Reff }}$ of -2.0 V is required to give an output current of 0.3 mA . If a noise margin of 1.0 V is assumed, therefore, the minimum logic window that can be tolerated is $3.0 \mathrm{~V}\left|\left|\mathrm{~V}_{\mathrm{Reff}}\right|+\right.$ noise margin), a value well within the logic window of 6.5 V (9.7V-3.2V) available at the 1 week intersects on Fig.5.

By interpolation Fig. 5 shows that initial threshold voltages of $V_{T L} \approx-3.5 \mathrm{~V}$ and $V_{T H} \approx-8.0 \mathrm{~V}$ will in one week provide a logic window of something over the 3.0 V required. Fig. 7 shows that these initial threshold voltages could be achieved with an erase pulse of $+25 \mathrm{~V}, 100 \mathrm{~ms}$ and a write pulse of $-30 \mathrm{~V}, 400 \mu \mathrm{~s}$.

Finally, a gate read voltage of -5.5 V is chosen to ensure that the worst case V_{TL} of -3.5 V is exceeded by the required $-2.0 \mathrm{~V} V_{R e f f}$.

Continuous Reading

If the read voltage is maintained on the gate of an MNOS transistor instead of being pulsed, then the $V_{T L}$ decay rate will be substantially increased as shown by Fig. 8. Sometimes it is convenient to operate a memory in this fashion, in which case the read voltage should be as low as possible, say, -5 V and the data will remain stored and detectable for a few days only.

APPLICATION EXAMPLE

Fig. 9 shows a TTL - compatible single - bit memory constructed from discrete components. The memory may be extended to an arbitrary number of bits simply by repeating the circuit enclosed by the chain dotted boundary. Resistor values may be calculated from following the procedure given in the design notes.

Data to be written should be steady state immediately before and after the write pulse to avoid false writing. The data output is disturbed during writing; if necessary, this disturbance may be masked by strobing the data output with the read command using conventional gating methods.

Fig. 9 TTL - compatible memory application

CAUTION

These devices have low input capacitance and extremely high input resistance. This means that a very small charge of static electricity can cause the gate voltage to exceed its absolute maximum rating, resulting in permanent damage to the device.

The leads of an MNOS device should be kept shorted together until the device is incorporated into its circuit. Care should be taken to prevent static charge build-up in a circuit during assembly, e.g. the soldering iron used should have an earthed bit.

To ensure no damage occurs during transit, the devices are supplied packed in conducting foam or other suitable carriers.

PLESSEY
 SEMICONDUCTORS

PLESSEY Semiconductors NOM 400 Series Nitride Oxide Memories

The NOM 401 is the simplest device in the Plessey NOM 400 series of undecoded MNOS (Metal-Nitride-Oxide-Semiconductor) transistor arrays. It is an 8×8 - bit electrically-alterable, NON-VOLATILE memory of particular use in applications where data retention is essential in unpowered equipment or during power interruptions in data processing systems.

PIN CONNECTIONS (TOP)

Fig. 1 NOM401C circuit and pin connections

PRODUCT IDENTIFICATION

Plessey MNOS devices are coded as shown in the following example:

The term performance range' refers to the relationship between storage time and writing conditions. All devices are available, as standard, in performance grade C, which provides a minimum storage time of 1 year with typical write conditions of 35 V for $100 \mu \mathrm{~s}$. Other performance grades offering 100 years minimum storage time or $1 \mu \mathrm{~s}$ write time can be made available to special order.

Fig. 2 Speed curves for positive values of V_{p}

Fig. 3 Speed curves for negative values of V_{p}

Fig. 4 Typical transfor characteristic

PACKAGE DETAILS

The NOM 401 is supplied in 24 lead DIL package. It can also be made available to special order in a 22 lead flatpack Dimensions are show thus: mm (in)

CAUTION

These devices have very low input capacitance, they also have an extremely high input resistance. A very small charge can therefore cause the gate voltage to exceed its absolute maximum rating and cause permanent damage to the device. When handling the device, the leads should at all times be shorted together until actually incorporated in the circuit in which the device is being used. Care should be taken to avoid static charges occurring in the circuit before completion and soldering should be carried out with an earthed bit.

To ensure no damage occurs during transit, the devices are supplied packed in conducting foam or other suitable carriers.

The publication of this data does not constitute an undertaking by the Plessey Company to maintain an indefinite source of supply. Customers are asked to consult Plessey Semiconductors before incorporating these devices into major systems. In addition, the Plessey Company Ltd. reserves the right to amend without prior notice the information given in this data sheet.

package

diagrams

package diagrams

Dimensioned outline diagrams of the packages currently available for standard products are given on this and the following pages. Whilst every effort is made to ensure that the packages offered conform to these diagrams, certain changes may occur from time to time dependent on the supplies of piece parts. However, Plessey Semiconductors will attempt to ensure that such changes, should they occur, shall be minimal.

Note: Dimensions are shown thus: $\mathbf{m m}$ (inches).

14 LEAD CERAMIC D.I.L.

16 LEAD CERAMIC D.IL.

24 LEAD CERAMIC D.I.L.

$7.62(0300)$
NOMINAL CRS

24 LEAD DILMON

28 LEAD DILMON

14 LEAD PLASTIC D.I.L.

14 LEAD FLAT PACK

14 LEAD (ZIG-ZAG) CERAMIC Q.I.L.

16 LEAD CERAMIC Q.IL.

16 LEAD (ZIG-ZAG) CERAMIC Q.I.L.

10 LEAD STUD D.I.L.

4 LEAD TO-5

8 LEAD TO-5 (5.84mmPC.D.) WITH STANDOFF

10 LEAD TO-5

10 LEAD TO-100(5. 84 mm P.C.D.) WITH STANDOFF

12 LEAD TO-5 (5.84mmP.C.D.) WITH STANDOFF
a division of Plessey Microsystems
1674 McGaw Avenue
Santa Ana, California 92705

[^0]: NOTES
 1 There is a 25% probability of a race condition occurring in the phase lock circuit when power is first applied. To ensure that the circuit is brought into its correct operating condition an input clock transition (' 1 ' \rightarrow ' 0 ') must occur while the $4 f(\phi 1$ clock is in the logic '1' state. In most systems, where the input clock and the master clock are not synchronous, this happens very quickly.
 2 The input flip-flops need fast edges for reliable toggling
 3 For the count-down input there is an option of an RTL input (pin 11) or a CCSL compatible input (pin 14). When the RTL input is used the CCSL input should be connected to the OV rail. When the CCSL input is used, the RTL input should be left open circuit.
 4 The logic ' 1 ' level of this output is very low and is only suitable for driving an RTL input directly. If required, however, special interface techniques (such as grounded base, emitter input cascode type circuit) can be used to extract the O / P from this pin without further loading the logic ' 1 ' level.
 5 Pins 9, 17 and 20 are emitter follower outputs and will not sink current. These outputs are not therefore suitable for interfacing directly with TTL or DTL.

[^1]: *Individually test each input applying $\mathrm{V}_{\mathbf{I H}}$ or V_{IL} to the input under test

[^2]: Table 2 Truth table for control inputs

[^3]: - Recommended Minimum Erase Pulse: +35 V for $100 \mu \mathrm{~s}$
 - Recommended Minimum Write Pulse: -35 V for $100 \mu \mathrm{~s}$
 - Max. Recommended Erase/Write Pulse Amplitude: $\pm 40 \mathrm{~V}$
 - Recommended Read Pulse Amplitude: - 6 V Gate/Source Voltage.
 - Output Current: 0.25 mA Min. Drain Current for Erased Condition, -6 V Read Voltage and 5V Min. Source/Drain Voltage.

