LINEAR LSI

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>ix</td>
</tr>
<tr>
<td>Product status definitions</td>
<td>x</td>
</tr>
<tr>
<td>Contents</td>
<td>xi</td>
</tr>
</tbody>
</table>

Section 1 — Selection guide

- Index: 1-1
- Cross reference by part number: 1-3
- Cross reference by company: 1-5
- Applications by part number: 1-6
- Applications by product groups: 1-7
- SO package availability: 1-9
- Ordering information: 1-10

Section 2 — Quality and Reliability

- Quality and Reliability: 2-3

Section 3 — Military

- Index: 3-1
- Military products/process levels: 3-3

Section 4 — Interface/data conversion products

- Index: 4-1

Section 5 — Communication

- Index: 5-1

Section 6 — Amplifiers

- Index: 6-1

Section 7 — Power conversion and control

- Index: 7-1

Section 8 — Applications

- Index: 8-1

Section 9 — Package outlines

- Index: 9-1

Section 10 — Forthcoming new products and alphanumeric index

- Forthcoming new products: 10-1
- Alphanumeric index: 10-2
DATA HANDBOOK SYSTEM

Our Data Handbook System comprises more than 60 books with specifications on electronic components, subassemblies and materials. It is made up of four series of handbooks:

ELECTRON TUBES

SEMICONDUCTORS

INTEGRATED CIRCUITS

COMPONENTS AND MATERIALS

The contents of each series are listed on pages iv to viii.

The data handbooks contain all pertinent data available at the time of publication, and each is revised and reissued periodically.

When ratings or specifications differ from those published in the preceding edition they are indicated with arrows in the page margin. Where application information is given it is advisory and does not form part of the product specification.

Condensed data on the preferred products of Philips Electronic Components and Materials Division is given in our Preferred Type Range catalogue (issued annually).

Information on current Data Handbooks and on how to obtain a subscription for future issues is available from any of the Organizations listed on the back cover.

Product specialists are at your service and enquiries will be answered promptly.
The blue series of data handbooks comprises:

- **T1** Tubes for r.f. heating
- **T2a** Transmitting tubes for communications, glass types
- **T2b** Transmitting tubes for communications, ceramic types
- **T3** Klystrons, travelling-wave tubes, microwave diodes
- **ET3** Special Quality tubes, miscellaneous devices (will not be reprinted)
- **T4** Magnetrons for microwave heating
- **T5** Cathode-ray tubes
 - Instrument tubes, monitor and display tubes, C.R. tubes for special applications
- **T6** Geiger-Müller tubes
- **T7** Gas-filled tubes
 - Segment indicator tubes, indicator tubes, dry reed contact units, thytratrons, industrial rectifying tubes, ignitrons, high-voltage rectifying tubes, associated accessories
- **T8** Picture tubes and components
 - Colour TV picture tubes, black and white TV picture tubes, colour monitor tubes for data graphic display, monochrome monitor tubes for data graphic display, components for colour television, components for black and white television and monochrome data graphic display
- **T9** Photo and electron multipliers
 - Photomultiplier tubes, phototubes, single channel electron multipliers, channel electron multiplier plates
- **T10** Camera tubes and accessories
- **T11** Microwave semiconductors and components
- **T12** Vidicons and Newvicons
- **T13** Image intensifiers
- **T14** Infrared detectors
- **T15** Dry reed switches
- **T16** Monochrome tubes and deflection units
 - Black and white TV picture tubes, monochrome data graphic display tubes, deflection units

Data collations on these subjects are available now. Data Handbooks will be published in 1985.
SEMICONDUCTORS (RED SERIES)

The red series of data handbooks comprises:

S1 Diodes
Small-signal germanium diodes, small-signal silicon diodes, voltage regulator diodes (< 1.5 W),
voltage reference diodes, tuner diodes, rectifier diodes

S2a Power diodes

S2b Thyristors and triacs

S3 Small-signal transistors

S4a Low-frequency power transistors and hybrid modules

S4b High-voltage and switching power transistors

S5 Field-effect transistors

S6 R.F. power transistors and modules

S7 Surface mounted semiconductors

S8 Devices for optoelectronics
Photosensitive diodes and transistors, light-emitting diodes, displays, photocouplers, infrared
sensitive devices, photoconductive devices.

S9 Power MOS transistors

S10 Wideband transistors and wideband hybrid IC modules

S11 Microwave semiconductors (to be published in this series in 1985)
All present available in Handbook T11

S12 Surface acoustic wave devices

November 1984
INTEGRATED CIRCUITS (PURPLE SERIES)

The purple series of data handbooks comprises:

EXISTING SERIES

IC1 Bipolar ICs for radio and audio equipment
IC2 Bipolar ICs for video equipment
IC3 ICs for digital systems in radio, audio and video equipment
IC4 Digital integrated circuits
 CMOS HE4000B family
IC5 Digital integrated circuits — ECL (superseded by IC08N)
 ECL10000 (GX family), ECL100000 (HX family), dedicated designs
IC6 Professional analogue integrated circuits
IC7 Signetics bipolar memories
IC8 Signetics analogue circuits
IC9 Signetics TTL logic (superseded by IC09N and IC15N)
IC10 Signetics Integrated Fuse Logic (IFL)
IC11 Microprocessors, microcomputers and peripheral circuitry

February 1984
IC01N	Radio, audio and associated systems	Bipolar, MOS	(published 1985)
IC02N	Video and associated systems	Bipolar, MOS	
IC03N	Integrated circuits for telephony	Bipolar, MOS	
IC04N	HE4000B logic family	CMOS	
IC05N	HE4000B logic family uncased integrated circuits	CMOS	(published 1984)
IC06N	PC54/74HC/HCU/HCT logic families	HCMOS	
IC07N	PC54/74HC/HCU/HCT uncased integrated circuits	HCMOS	
IC08N	10K and 100K logic family	ECL	(published 1984)
IC09N	Logic series	TTL	(published 1984)
IC10N	Memories	MOS, TTL, ECL	
IC11N	Linear LSI		(published 1985)
IC12N	Semi-custom gate arrays & cell libraries	ISL, ECL, CMOS	
IC13N	Semi-custom integrated fuse logic	IFL series 20/24/28	
IC14N	Microprocessors, microcontrollers & peripherals	Bipolar, MOS	
IC15N	Logic series	FAST TTL	(published 1984)

Note

Books available in the new series are shown with their date of publication.
COMPONENTS AND MATERIALS (GREEN SERIES)

The green series of data handbooks comprises:

C1 Programmable controller modules
 PLC modules, PC20 modules
C2 Television tuners, video modulators, surface acoustic wave filters
C3 Loudspeakers
C4 Ferroxcube potcores, square cores and cross cores
C5 Ferroxcube for power, audio/video and accelerators
C6 Synchronous motors and gearboxes
C7 Variable capacitors
C8 Variable mains transformers
C9 Piezoelectric quartz devices
 Quartz crystal units, temperature compensated crystal oscillators, compact integrated oscillators,
 quartz crystal cuts for temperature measurements
C10 Connectors
C11 Non-linear resistors
 Voltage dependent resistors (VDR), light dependent resistors (LDR), negative temperature
 coefficient thermistors (NTC), positive temperature coefficient thermistors (PTC)
C12 Variable resistors and test switches
C13 Fixed resistors
C14 Electrolytic and solid capacitors
C15 Ceramic capacitors*
C16 Permanent magnet materials
C17 Stepping motors and associated electronics
C18 D.C. motors
C19 Piezoelectric ceramics
C20 Wire-wound components for TVs and monitors
C21 Assemblies for industrial use
 HNIL FZ/30 series, NORbits 60-, 61-, 90-series, input devices

* Film capacitors are included in Data Handbook C22 which will be published in 1985. The September
1982 edition of C15 should be retained until C22 is issued.
The Linear LSI Division, one of eight Signetics divisions, is a major supplier of a broad line of linear integrated circuits ranging from high-performance designs to many of the more popular industry standard devices and custom designs.

Employing Signetics' high quality processing and screening standards, the Linear LSI Division is dedicated to providing high quality Linear products to our worldwide customers. Our full product line addresses the needs of the EDP, Automotive, Military, Industrial, Consumer, and Communications markets.

The 1985 Linear LSI Data and Applications Manual provides complete technical data on our full line of interface, communications, amplifier, power conversion and control.

An applications section, selector guides, and cross reference guides are also included in this volume.

Although every attempt has been made to insure accuracy of information in this manual, Signetics assumes no liability for inadvertent errors.

Your suggestions for improvement in future editions are welcome.

Signetics Linear LSI Marketing
DEFINITION OF TERMS

<table>
<thead>
<tr>
<th>Data Sheet Identification</th>
<th>Product Status</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preview</td>
<td>Formative or In Design</td>
<td>This data sheet contains the design specifications for product development. Specifications may change in any manner without notice.</td>
</tr>
<tr>
<td>Advance Information</td>
<td>Sampling or Pre-Production</td>
<td>This data sheet contains advance information and specifications are subject to change without notice.</td>
</tr>
<tr>
<td>Preliminary</td>
<td>First Production</td>
<td>This data sheet contains preliminary data and supplementary data will be published at a later date. Signetics reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.</td>
</tr>
<tr>
<td>No Identification Noted</td>
<td>Full Production</td>
<td>This data sheet contains final specifications. Signetics reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.</td>
</tr>
</tbody>
</table>
SECTION 1 — SELECTION GUIDE

Cross Reference Guides ... 1-3
By Part Number .. 1-3
By Company .. 1-5

Index to Applications ... 1-6
By Part Number .. 1-6
By Product Groups ... 1-7

SO Package Availability .. 1-9
Ordering Information ... 1-10

SECTION 2 — QUALITY AND RELIABILITY

Quality and Reliability ... 2-1

SECTION 3 — MILITARY

Index .. 3-1
Military Products .. 3-3
Military Process Levels ... 3-3

SECTION 4 — INTERFACE/DATA CONVERSION PRODUCTS

Index .. 4-1
Data Converters ... 4-3
Symbols and Definitions ... 4-3
Selector Guide ... 4-4

Analog to Digital Converters
ADC0801/2/3/4/5/1 ... 4-5
NE5034 ... 4-11
NE5036 ... 4-17
NE5037 ... 4-23

Digital to Analog Converters
AM6012 .. 4-30
DAC08 Series ... 4-40
MC1508-8/1408-8/1408-7 ... 4-50
MC3410/3510/3410C ... 4-56
SE/NE5018 .. 4-63
SE/NE5019 .. 4-68
NE5020 .. 4-73
SE/NE5118 .. 4-81
SE/NE5119 .. 4-85
SE/NE5410 .. 4-89

Comparators
Selector Guide ... 4-98
LM111/211/311 ... 4-99
LM119/219/319 ... 4-101
LM139/A/239/A/339/A .. 4-106
LM193/A/293/A/393/A .. 4-111
LM2901 ... 4-106
LM2903 ... 4-111
MC3302 ... 4-106
SE/NE521 ... 4-116
SE/NE522 ... 4-120
SE/NE527 ... 4-124
SE/NE529 ... 4-128
CONTENTS

Drivers
Symbols and Definitions ... 4-132
MC1488
MC1489/A
NE5080
NE567
NE569
NE590
NE591
SA/NE594
ULN2003
ULN2004

Quad Line Driver ... 4-134
Quad Line Receiver ... 4-137
Addressable Relay Driver .. 4-139
LED Decoder/Driver ... 4-144
LED Decoder/Driver ... 4-152
Addressable Peripheral Driver .. 4-160
Addressable Peripheral Driver .. 4-160
Vacuum Fluorescent Display Driver .. 4-166
High Volt./Current Darlington Transistor Array 4-170
High Volt./Current Darlington Transistor Array 4-170

LVDT
NE5520
LVDT Signal Conditioner .. 4-174

Sample and Hold
Symbols and Definitions ... 4-178
LF196/298/398
SE/NE5537
Monolithic Sample and Hold Circuit ... 4-179
Sample and Hold Amplifier ... 4-183

SECTION 5 — COMMUNICATION

Index ... 5-1

Analog and Audio Processing

NE570
SA/NE571
SA/NE572
Componador .. 5-3
Componador .. 5-3
Programmable Analog Componador ... 5-9

Audio/Stereo

LM1670
NE542
SA/NE5602
SA/NE5604
NE645/646
NE648/649
NE650
NE660
µA758
Stereo Demodulator with Blend .. 5-15
Dual Low-Noise Preamplifier ... 5-19
Double Balanced Mixer and Oscillator .. 5-22
Low Power Narrow Band FM I.F. .. 5-24
Dolby-B Noise Reduction Circuit .. 5-26
Low Voltage Dolby-B Noise Reduction Circuit 5-30
Dolby B-Type Noise Reduction Circuit ... 5-34
Dolby B-Type Noise Reduction Circuit ... 5-38
FM Stereo Multiplex Decoder Phase Locked Loop 5-42

FM Radio

Consumer

CA3089
FM I.F. System .. 5-46

Professional

MC1496
MC1596
SA/NE602
SA/NE604
Balanced Modulator/Demodulator ... 5-51
Balanced Modulator/Demodulator ... 5-51
Double Balanced Mixer and Oscillator .. 5-22
Low Power Narrow Band FM I.F. ... 5-24

FSK Modems

NE5080
NE5061
2 Megabaud FSK Transmitter, IEEE 802.4 .. 5-54
FSK Receiver, IEEE 802.4 ... 5-58

Phase Locked Loops
Symbols and Definitions ... 5-62
SE/NE564
SE/NE565
SE/NE566
SE/NE567
High Frequency Phase Locked Loop .. 5-63
Phase Locked Loop ... 5-70
Function Generator ... 5-75
Tone Decoder/Phase Locked Loop .. 5-78

Timers

SE/NE555/SE555C
SA/SE/NE556/-1/SE556-1C
SA/SE/NE558
Timer ... 5-88
Dual Timer .. 5-93
Quad Timer with C BUS Interface .. 5-98
CONTENTS

SECTION 6 — AMPLIFIERS
Index ... 6-1

Companding
NE570 Compandor .. 5-3
SA/NE571 Compandor .. 5-3
SA/NE572 Programmable Analog Compandor .. 5-9

Operational
Symbols and Definitions .. 6-3
Selector Guide .. 6-4
LM124/224/324/SA534 Low Power Quad Op Amplifier 6-5
LM158/258/358 Low Power Dual Operational Amplifier 6-9
MC/SA1458/MC1558 General Purpose Operational Amplifier 6-13
MC3303/3403/3503 Quad Low Power Operational Amplifier 6-18
SA/SE/NE4558 Dual General Purpose Operational Amplifier 6-22
SE/NE530 High Slew Rate Operational Amplifier 6-26
SE/NE531 High Slew Rate Operational Amplifier 6-31
SE/NE532 Low Power Dual Operational Amplifier 6-9
SE/NE538 High Slew Rate Operational Amplifier 6-38
SE/NE5512 Dual High Performance Operational Amplifier 6-44
SE/NE5514 Quad High Performance Operational Amplifier 6-46
SE/NE5532/A Internally Compensated Dual Low Noise Operational Amplifier 6-48
NE5533/A/SA/SE/NE5534/A Single and Dual Low Noise Operational Amplifier 6-59
SE/NE5535 Dual High Slew Rate Operational Amplifier 6-65
µA741/741C/SA741C General Purpose Operational Amplifier 6-73
µA747/747C/SA747C Dual Operational Amplifier 6-78

Transconductance
NE5517/A Dual Operational Transconductance Amplifier 6-84

Video
SE/NE5539 Ultra High Frequency Operational Amplifier 6-96
NE5592 Video Amplifier ... 6-103
SE/NE592 Video Amplifier .. 6-108
µA733/C Differential Video Amplifier .. 6-115

SECTION 7 — POWER CONVERSION AND CONTROL
Index ... 7-1

Motor Control and Sensor Circuits
NE5044 Programmable 7-Channel RC Encoder 7-3
NE5045 Seven Channel RC Decoder ... 7-9
NE544 Servo Amplifier .. 7-14

Switched-Mode Power Supply Circuits
Symbols and Definitions .. 7-19
SE/NE5560 SMPS Single-Ended Monolithic Controller 7-20
SE/NE5561 SMPS Low Cost Controller ... 7-33
SE/NE5562 SMPS Control Circuit, Single Output 7-37
NE5568 SMPS Controller .. 7-41
SG1526A/2526A/3526A SMPS Control Circuits ... 7-43
SG3524 SMPS Push-Pull Controller ... 7-47
µA723/C/SA723C Precision Voltage Regulator ... 7-52

SECTION 8 — APPLICATIONS
Index ... 8-1

Interface
Data Conversion
AN100 An Overview of Data Converters ... 8-3
AN101 Basic DACs .. 8-8
AN105 Digital Attenuator .. 8-15
AN106 Using the DAC08 Without a Negative Supply 8-16
AN109 Microprocessor Compatible DACs ... 8-17

Drivers
AN112 LED Decoder Drivers: Using the NE587 and NE589 8-24
AN113 Applications Using the MC1488/1489 Line Drivers and Receivers 8-30
CONTENTS

Comparators
AN116

Signal Conditioner
AN118

Communications
Timers
AN170
AN171

Phase Locked Loops
AN177
AN178
AN179
AN180
AN181
AN182
AN183
AN184
AN185
AN186
AN187
AN188
AN189
AN190
AN191

Compendors
AN174
AN175
AN176

FSK Modems
AN195

Amplifiers
Operational Amplifiers
AN185
AN186
AN142
AN143
AN150
AN151
AN160
AN144
AN145
AN164

Video Amplifiers
AN141
AN140

Power Conversion and Control
Switched Mode Power Supplies (SMPS)
AN120
AN121
AN122
AN123
AN124
AN126

Control Circuits
AN131
AN132
AN133
AN134

Applications for the NE521/522/527/529 ... 8-33
LVDT Signal Conditioner: Applications Using the NE5520 8-41
NE555 and NE556 Applications ... 8-57
NE558 Applications ... 8-74
An Overview of Phase Locked Loops (PLL) ... 8-79
Modeling the PLL ... 8-84
Circuit Description of the NE564 ... 8-100
The NE564: Frequency Synthesis ... 8-105
A 6MHz FSK Converter Design Example for the NE564 8-110
Clock Regenerator with Crystal Controlled Phase Locked VCO 8-112
Circuit Description of the NE565 ... 8-121
Typical Applications with NE566 ... 8-125
Circuit Description of the NE566 ... 8-128
Waveform Generators with the NE566 .. 8-129
Circuit Description of the NE567 Tone Decoder 8-132
Selected Circuits Using the NE567 ... 8-137
Balanced Modulator/Demodulator Applications Using the MC1496/MC1596 .. 8-140
Applications of Low Noise Stereo Amplifiers: NE542 8-145
Stereo Decoder Applications Using the µA758 8-148
Applications for Compandors: NE570/571/SA571 8-166
Automatic Level Control: NE572 ... 8-165
Compandor Cookbook ... 8-166
Applications Using the NE5080, NE5081 ... 8-173
Integrated Operational Amplifier Theory .. 8-181
Basic Feedback Theory ... 8-188
Audio Circuits Using the NE5532/33/34 .. 8-192
Applications Using the SE/NE5535 ... 8-200
Applications for the NE538 ... 8-203
Applications for the NE531 ... 8-204
Applications for the MC3403 ... 8-205
Applications for the NE5512 and NE5514 ... 8-208
NE5517: General Description and Applications for Use with the
NE5517/A Transconductance Amplifier .. 8-214
Explanation of Noise ... 8-217
Using the NE592/5592 Video Amplifier .. 8-226
Compensation Techniques for Use with the SE/NE5539 8-231
An Overview of SMPS ... 8-237
Forward Converter Application Using the NE5560 8-242
NE5560 Push-Pull Regulation Application .. 8-243
NE5561 Applications ... 8-245
External Synchronization for the NE5561 ... 8-249
Applications Using the SG3524 .. 8-250
Applications Using the NE5044 Encoder .. 8-252
Applications Using the NE5045 Decoder .. 8-254
Applications Using the NE544 Servo Amplifier 8-256
Computer Controlled Robotics Applications 8-261
SECTION 9 | PACKAGE INFORMATION

<table>
<thead>
<tr>
<th>Index</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Package Outlines for product with prefixes: ADC, AM, CA, DAC, LF, LM, MC, NE, SA, SE, SG, µA, ULN</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>SO Plastic Dual-In-Line</td>
</tr>
<tr>
<td>E</td>
<td>Metal Headers</td>
</tr>
<tr>
<td>F</td>
<td>Hermetic Cerdip</td>
</tr>
<tr>
<td>H</td>
<td>Metal Headers</td>
</tr>
<tr>
<td>I</td>
<td>Hermetic Side Braze</td>
</tr>
<tr>
<td>N</td>
<td>Plastic Dual-In-Line</td>
</tr>
</tbody>
</table>
INDEX

SECTION 1 – SELECTION GUIDE

Cross Reference Guides ... 1-3
 By Part Number .. 1-3
 By Company .. 1-5

Index to Applications .. 1-6
 By Part Number .. 1-6
 By Product Groups .. 1-7

SO Package Availability .. 1-9

Ordering Information ... 1-10
<table>
<thead>
<tr>
<th>PART NUMBER</th>
<th>COMPANY</th>
<th>SIGNETICS</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAC 08</td>
<td>PMI</td>
<td>DAC08E, N</td>
</tr>
<tr>
<td>DAC 0800LCN</td>
<td>NSC</td>
<td>MC1408-8N</td>
</tr>
<tr>
<td>AMDAC 08</td>
<td>AMD</td>
<td>DAC08C, E</td>
</tr>
<tr>
<td>LMDAC 08</td>
<td>NSC</td>
<td>DAC08</td>
</tr>
<tr>
<td>LM 1011/1111</td>
<td>NSC</td>
<td>NE645/646</td>
</tr>
<tr>
<td>LF 111</td>
<td>NSC</td>
<td>LM111</td>
</tr>
<tr>
<td>LM 111</td>
<td>AMD, MOTO, NSC, Ti</td>
<td>LM111</td>
</tr>
<tr>
<td>µA 111</td>
<td>FSC</td>
<td>LM111</td>
</tr>
<tr>
<td>LM 119</td>
<td>AMD, MOTO, NSC, Ti</td>
<td>LM119</td>
</tr>
<tr>
<td>LM 124</td>
<td>MOTO, NSC, Ti</td>
<td>LM124</td>
</tr>
<tr>
<td>µA 124</td>
<td>FSC</td>
<td>LM124</td>
</tr>
<tr>
<td>LM 13600</td>
<td>NSC</td>
<td>LM13600</td>
</tr>
<tr>
<td>LM 13600A</td>
<td>NSC</td>
<td>LM13600A</td>
</tr>
<tr>
<td>LM 139</td>
<td>AMD, MOTO, NSC, Ti</td>
<td>LM139</td>
</tr>
<tr>
<td>µA 139</td>
<td>FSC</td>
<td>LM139</td>
</tr>
<tr>
<td>DAC 1408</td>
<td>MOTO</td>
<td>MC1408-8</td>
</tr>
<tr>
<td>MC 1408-8</td>
<td>MOTO</td>
<td>MC1408-8</td>
</tr>
<tr>
<td>MC 1413</td>
<td>NSC</td>
<td>ULN2003</td>
</tr>
<tr>
<td>MC 1416</td>
<td>NSC</td>
<td>ULN2004</td>
</tr>
<tr>
<td>MC 1455</td>
<td>MOTO</td>
<td>NE555</td>
</tr>
<tr>
<td>AM 1458</td>
<td>NSC</td>
<td>TC1488</td>
</tr>
<tr>
<td>LM 1458</td>
<td>NSC</td>
<td>MC1458</td>
</tr>
<tr>
<td>MC 1458</td>
<td>MOTO, NSC, Ti</td>
<td>MC1458</td>
</tr>
<tr>
<td>µA 1458</td>
<td>FSC</td>
<td>MC1458</td>
</tr>
<tr>
<td>µPC 1458</td>
<td>NEC</td>
<td>MC1458</td>
</tr>
<tr>
<td>DS 1488</td>
<td>NSC</td>
<td>MC1488</td>
</tr>
<tr>
<td>MC 1488</td>
<td>MOTO, NSC, Ti</td>
<td>MC1488</td>
</tr>
<tr>
<td>µA 1488</td>
<td>FSC</td>
<td>MC1488</td>
</tr>
<tr>
<td>DS 1489/A</td>
<td>NSC</td>
<td>MC1489/A</td>
</tr>
<tr>
<td>MC 1489/A</td>
<td>MOTO</td>
<td>MC1489/A</td>
</tr>
<tr>
<td>µA 1489/A</td>
<td>FSC</td>
<td>MC1489/A</td>
</tr>
<tr>
<td>LM 1496</td>
<td>NSC</td>
<td>MC1496</td>
</tr>
<tr>
<td>MC 1496</td>
<td>MOTO</td>
<td>MC1496</td>
</tr>
<tr>
<td>SSS 1508A</td>
<td>AMD</td>
<td>MC1508</td>
</tr>
<tr>
<td>AM 1508-8</td>
<td>AMD</td>
<td>MC1508-8</td>
</tr>
<tr>
<td>LM 1508-8</td>
<td>NSC</td>
<td>MC1508-8</td>
</tr>
<tr>
<td>MC 1508-8</td>
<td>MOTO</td>
<td>MC1508-8</td>
</tr>
<tr>
<td>LM 1558</td>
<td>NSC</td>
<td>MC1558</td>
</tr>
<tr>
<td>MC 1558</td>
<td>MOTO, NSC, Ti</td>
<td>MC1558</td>
</tr>
<tr>
<td>PM 1558</td>
<td>MOTO</td>
<td>MC1558</td>
</tr>
<tr>
<td>µA 1558</td>
<td>FSC</td>
<td>MC1558</td>
</tr>
<tr>
<td>LM 158</td>
<td>MOTO, NSC, Ti</td>
<td>LM158</td>
</tr>
<tr>
<td>LM 1596</td>
<td>NSC</td>
<td>MC1596</td>
</tr>
<tr>
<td>LM 161</td>
<td>NSC</td>
<td>SE529</td>
</tr>
<tr>
<td>MC 1596</td>
<td>MOTO</td>
<td>MC1596</td>
</tr>
<tr>
<td>MC 1723/C</td>
<td>MOTO</td>
<td>µA723/C</td>
</tr>
<tr>
<td>MC 1733</td>
<td>MOTO</td>
<td>µA733</td>
</tr>
<tr>
<td>MC 1747/C</td>
<td>MOTO</td>
<td>µA747/C</td>
</tr>
<tr>
<td>LM 1870</td>
<td>NSC</td>
<td>LM1870</td>
</tr>
<tr>
<td>LM 193</td>
<td>NSC, MOTO, NSC, Ti</td>
<td>LM193</td>
</tr>
<tr>
<td>µA 193</td>
<td>FSC</td>
<td>LM139</td>
</tr>
</tbody>
</table>
CROSS REFERENCE BY PART NUMBER Continued

<table>
<thead>
<tr>
<th>PART NUMBER</th>
<th>COMPANY</th>
<th>SIGNETICS</th>
</tr>
</thead>
<tbody>
<tr>
<td>SE/NE 5534/A</td>
<td>TI</td>
<td>SE/NE5534/A</td>
</tr>
<tr>
<td>NE 555</td>
<td>INTERSIL, MOTO, TI</td>
<td>NE555</td>
</tr>
<tr>
<td>LM 555/C</td>
<td>NSC</td>
<td>NE555</td>
</tr>
<tr>
<td>µA 555</td>
<td>FSC</td>
<td>NE555</td>
</tr>
<tr>
<td>LM 556</td>
<td>NSC</td>
<td>NE556</td>
</tr>
<tr>
<td>NE 556</td>
<td>INTERSIL, MOTO, TI</td>
<td>NE556</td>
</tr>
<tr>
<td>µA 556</td>
<td>FSC</td>
<td>NE556</td>
</tr>
<tr>
<td>µPC 558</td>
<td>NEC</td>
<td>NE558</td>
</tr>
<tr>
<td>LM 565</td>
<td>MOTO, NSC</td>
<td>NE565</td>
</tr>
<tr>
<td>LM 566</td>
<td>NSC</td>
<td>NE566</td>
</tr>
<tr>
<td>µPC 566</td>
<td>NEC</td>
<td>NE566</td>
</tr>
<tr>
<td>LM 567</td>
<td>NSC</td>
<td>NE567</td>
</tr>
<tr>
<td>NE 592</td>
<td>MOTO</td>
<td>NE592</td>
</tr>
<tr>
<td>TL 594</td>
<td>TI</td>
<td>NE594</td>
</tr>
<tr>
<td>AM 6012</td>
<td>AMD</td>
<td>AM6012</td>
</tr>
<tr>
<td>µPC 6012</td>
<td>NEC</td>
<td>AM6012</td>
</tr>
<tr>
<td>UDN 6116-2</td>
<td>SPRAGUE</td>
<td>SA594</td>
</tr>
<tr>
<td>UDN 6126</td>
<td>SPRAGUE</td>
<td>NE594</td>
</tr>
<tr>
<td>LM 723/C</td>
<td>MOTO, NSC</td>
<td>µA723/C</td>
</tr>
<tr>
<td>µA 723</td>
<td>INTERSIL, FSC, TI</td>
<td>µA723</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PART NUMBER</th>
<th>COMPANY</th>
<th>SIGNETICS</th>
</tr>
</thead>
<tbody>
<tr>
<td>LM 733</td>
<td>NSC</td>
<td>µA733</td>
</tr>
<tr>
<td>µA 733/C</td>
<td>INTERSIL, FSC, TI</td>
<td>µA733/C</td>
</tr>
<tr>
<td>ICL 741</td>
<td>INTERSIL</td>
<td>µA741C</td>
</tr>
<tr>
<td>LM 741</td>
<td>MOTO, NSC</td>
<td>µA741</td>
</tr>
<tr>
<td>PM 741/C</td>
<td>PMI</td>
<td>µA741/C</td>
</tr>
<tr>
<td>µPC 741</td>
<td>NEC</td>
<td>µA741</td>
</tr>
<tr>
<td>µA 741</td>
<td>FSC, TI</td>
<td>µA741</td>
</tr>
<tr>
<td>SSS 741</td>
<td>AMD</td>
<td>µA741</td>
</tr>
<tr>
<td>LM 747</td>
<td>NSC</td>
<td>µA747</td>
</tr>
<tr>
<td>PM 747/C</td>
<td>PMI</td>
<td>µA747C</td>
</tr>
<tr>
<td>SSS 747</td>
<td>AMD</td>
<td>µA747</td>
</tr>
<tr>
<td>µA 747</td>
<td>FSC, MOTO, TI</td>
<td>µA747</td>
</tr>
<tr>
<td>LM 748</td>
<td>NSC</td>
<td>µA748</td>
</tr>
<tr>
<td>µA 748</td>
<td>FSC, TI</td>
<td>µA748</td>
</tr>
<tr>
<td>µA 758</td>
<td>MOTO, NSC</td>
<td>µA758</td>
</tr>
<tr>
<td>ULN 8160</td>
<td>SPRAGUE</td>
<td>NE5560</td>
</tr>
<tr>
<td>ULN 8161</td>
<td>SPRAGUE</td>
<td>NE5561</td>
</tr>
<tr>
<td>SN 7588</td>
<td>TI</td>
<td>MC1488</td>
</tr>
<tr>
<td>SN 7589/A</td>
<td>TI</td>
<td>MC1489/A</td>
</tr>
<tr>
<td>SN 76689</td>
<td>TI</td>
<td>CA3089</td>
</tr>
</tbody>
</table>
LINEAR LSI PRODUCTS

CROSS REFERENCE BY COMPANY

AMO
AM
AM
AMDAC
LF
LM
LM
LM
LM
LM
LM
SSS
SSS
SSS
SSS

SIGNETICS

SIGNETICS

NATIONAL

SIGNETICS

SPRAGUE

LM
MC
MC
MC
MC

741C
1408
1413
1416
1455

µA 741C
MC 1408
ULN 2003
ULN 2004
NE 555

LM
LM
LM
LM
LM

1B70
193
211
219
224

LM
LM
LM
LM
LM

1B70
193
211
219
224

TCA
UDN
ULN
ULN
ULN

30B9
6116-2
6128
2003
2004

CA 30B9
SA 594
NE 594
ULN 2003
ULN 2004

119
139
211
311
319

LM
LM
LM
LM
LM

MC
MC
MC
MC
MC

145B
14BB
1489
1489A
150B

MC
MC
MC
MC
MC

LM
LM
LM
LM
LM

239
258
2901
2903
2904

LM
LM
LM
LM
SA

239
25B
2901
2903
532

ULN
ULN
ULN
ULN

2151
3304
8160
8161

µA
NE
NE
NE

1408A
1508A
741
747

MC 1408
MC 1508
µA 741
µA 747

MC
MC
MC
MC
MC

155B
1596
1723
1723C
1733

MC 155B
MC 1596
µA 723
µA 723C
µA 733

LM
LM
LM
LM
LM

293
3089
311
319
324

LM
CA
LM
LM
LM

293
30B9
311
319
324

MC
MC
MC
MC
MC

1747
1747C
3302
3303
3403

µA 747
µA 747C
MC 3302
MC 3303
MC 3403

LM
LM
LM
LM
LM

339
3524
35B
361
387

LM
SG
NE
NE
NE

339
3524
532
529
542

MC
MC
MC
MC
NE

3410
3456
3503
3510
555

MC 3410
NE 556
MC 3503
MC 3510
NE 555

LM
MC
LM
LM
LM

393
555
555C
556
565

LM
NE
NE
NE
NE

393
555
555
556
565

NE
NE
NE
SE
TL

556
565
592
592
494

NE
NE
NE
SE
NE

556
565
592
592
5561

LM
LM
LM
LM
LM

566
567
723
733
741

NE
NE
µA
µA
µA

566
567
723
733
741

µA
µA
µA
µA

723
741
747
75B

µA
µA
µA
µA

723
741
747C
75B1A

LM
LM
LMDAC
µA

747
748
OB
758

µA 747
µA 74B
DAC OB
µA 7581A

119
139
211
311
319

SIGNETICS

µA
µA
µA
µA
µA

111
124
139
1458
1488

LM 111
LM 124
LM 139
MC 145B
MC 14B8

µA

155B
193
2901
2903
301A
311
324
3303
339
398

MC 1558
LM 193
LM 2901
LM 2903
LM 301A
LM 311
LM 324
MC 3303
LM 339
LF 398

µA
µA
µA
µA
µA

494
555
556
723
733

NE
NE
NE
µA
µA

5561
555
556
723
733

µA
µA
µA
µA
µA

741
747
748
758
F111

µA
µA
µA
µA
LM

741
747
748
758
111

µA F211
µA F311

INTERSIL
741
311
324
555
556

MOTOROLA

LM 211
LM 311

SIGNETICS
µA
LM
LM
NE
NE

741C
311
324
555
556

SIGNETICS

LM
LM
LM
LM
LM

111
124
139
158
211

LM
LM
LM
LM
LM

111
124
139
15B
211

LM
LM
LM
LM
LM

224
239
25B
2901
311

LM
LM
LM
LM
LM

224
239
258
2901
311

LM
LM
LM
LM
LM

324
339
358
565
723C

LM
LM
LM
NE
µA

324
339
358
565
723C

NATIONAL

1458
14B8
14B9
1489A
1508

SIGNETICS

DAC OBOOLCN

DAC OSEN

DAC
DAC
DAC
DAC
DS

OB07
OSOB
OBOBCN
OSOBLD
1488

MC
MC
MC
MC
MC

1489
111
211
311
39B

MC 1489
LM 111
LM 211
LM 311
LF 3981
NE 5537

DS
LF
LF
LF
LF

1408-7
1408-8
1408-BN
1508
1488

LM 10111
1111
LM 111
LM 119
LM 124
LM 13600

NE 645'646

LM
LM
LM
LM
LM

13700
139
140B
1458
1496

NE 5517
LM 139
MC 1408
MC 1458
MC 1496

LM
LM
LM
LM
LM

1508
1558
15B
1596
161

MC 1508
MC 1558
LM 15B
MC 1596
SE 529

LM
LM
LM
LM

111
119
124
13600

Tl

SIGNETICS

39B
111
124
139
145B

LF 398
LM 111
LM 124
LM 139
MC 1458

LM
LM
LM
tM
LM

158
193
211
224
239

LM
LM
LM
LM
LM

158
193
211
224
239

LM
LM
LM
LM
LM

25B
2901
2903
293
311

LM
LM
LM
LM
LM

258
2901
2903
293
311

LM
LM
LM
LM
LM

324
339
358
393
1458

LM 324
LM 339
LM 358
LM 393
MC 1458

SIGNETICS

MC
NE
NE
NE
NE

155B
5532
5532A
5534
5534A

MC 1558
NE 5532
NE 5532A
NE 5534
NE 5534A

MC 1458
NE 555
LM 311
LM 324
LM 339

NE
NE
RC
SE
SE

555
556
4558
5534
5534A

NE
NE
NE
SE
SE

µPC 4558
µPC 558

LM358
LM 393
LF 39Bi
NE 5537
NE 455B
NE 558

SE
SE
SG
SN
SN

555
556
3524
5520
7588

SE 555
SE 556
SG 3524
NE 5520
MC 1488

µPC
µPC
µPC
µPC

NE 566
AM 6012
DAC OSC,E
µA 741C

SN
SN
SN
TL
TL

7589
7589A
766B9
311
494

MC 1489
MC 1489A
CA 3089
LM 311
NE 5561

TL
µA
µA
µA
µA

594
723
733
741
747

NE
µA
µA
µA
µA

NEC
1458
1555
311
324
339

µPC 35B
µPC 393
µPC 39B

566
6012
624
741

PMI
CMP
DAC
DAC
DAC
OP
PM
PM
PM
PM

SIGNETICS

04FP
08
140BA
312
220

LM 339
DAC 08C,E
MC 1408
AM 6012
LM 358

155B
239/A
741C
747C

MC 1558
LM 239 1A
µA 741C
µA 747C

µA 748
ULN 2003A
ULN 2004A

1
............

741
555
5560
5561

LF
LM
LM
LM
LM

µPC
µPC
µPC
µPC
µPC

=

SIGNETICS

MC 1508
AM 6012
DAC-08C.E
NE 5537
LM 111

FAIRCHILD

ICL
LM
LM
NE
NE

MOTOROLA

1508
6012
08
39B
111

555
556
4558
5534
5534A

594
723
733
741
747

µA 748
ULN 2003
ULN 2004

1-5


LINEAR LSI PRODUCTS

APPLICATIONS BY PART NUMBER

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAC 08</td>
<td>AN106: Using the DAC 08 without a Negative Supply</td>
</tr>
<tr>
<td>MC 1488/1489</td>
<td>AN113: Applications Using the MC1488/1489 Line Drivers and Receivers</td>
</tr>
<tr>
<td>MC 1496/1596</td>
<td>AN189: Balanced Modulator/Demodulator Applications Using the MC1496/MC1596</td>
</tr>
<tr>
<td>MC 3403</td>
<td>AN160: Applications for the MC3403</td>
</tr>
<tr>
<td>SG 3524</td>
<td>AN126: Applications Using the SG3524</td>
</tr>
<tr>
<td>NE 5080/5081</td>
<td>AN195: Applications Using the NE5080, NE5081</td>
</tr>
<tr>
<td>NE 521</td>
<td>AN116: Applications for the NE521/522/527/529</td>
</tr>
<tr>
<td>NE 522</td>
<td>AN116: Applications for the NE521/522/527/529</td>
</tr>
<tr>
<td>NE 527</td>
<td>AN116: Applications for the NE521/522/527/529</td>
</tr>
<tr>
<td>NE 529</td>
<td>AN116: Applications for the NE521/522/527/529</td>
</tr>
<tr>
<td>NE 531</td>
<td>AN151: Applications for the NE531</td>
</tr>
<tr>
<td>NE 538</td>
<td>AN150: Applications for the NE538</td>
</tr>
<tr>
<td>NE 542</td>
<td>AN190: Applications of Low Noise Stereo Amplifiers: NE542</td>
</tr>
<tr>
<td>NE 544</td>
<td>AN133: Applications Using the NE544 Servo Amplifier</td>
</tr>
<tr>
<td>NE 555</td>
<td>AN170: NE555 and NE556 Applications</td>
</tr>
<tr>
<td>NE 556</td>
<td>AN170: NE555 and NE556 Applications</td>
</tr>
<tr>
<td>NE 558</td>
<td>AN171: NE558 Applications</td>
</tr>
<tr>
<td>NE 564</td>
<td>AN179: Circuit Description of the NE564</td>
</tr>
<tr>
<td>NE 565</td>
<td>AN180: The NE564: Frequency Synthesis</td>
</tr>
<tr>
<td>NE 566</td>
<td>AN182: Clock Regenerator with Crystal Controlled Phase Locked VCO</td>
</tr>
<tr>
<td>NE 567</td>
<td>AN181: A 6MHz FSK Converter Design Example for the NE564</td>
</tr>
<tr>
<td>NE 570/571/SA571</td>
<td>AN193: Circuit Description of the NE565</td>
</tr>
<tr>
<td>NE 572</td>
<td>AN184: FSK Demodulator with NE565</td>
</tr>
<tr>
<td>NE 587/589</td>
<td>AN185: Circuit Description of the NE556</td>
</tr>
<tr>
<td>NE 592/5592</td>
<td>AN186: Waveform Generators with the NE586</td>
</tr>
<tr>
<td>NE 592/5592</td>
<td>AN187: Circuit Description of the NE567 Tone Decoder</td>
</tr>
<tr>
<td>NE 592/5592</td>
<td>AN188: Selected Circuits Using the NE567</td>
</tr>
<tr>
<td>NE 592/5592</td>
<td>AN174: Applications for Compandors: NE570/571/SA571</td>
</tr>
<tr>
<td>NE 592/5592</td>
<td>AN175: Automatic Level Control: NE572</td>
</tr>
<tr>
<td>NE 592/5592</td>
<td>AN112: LED Decoder Drivers: Using the NE587 and NE589</td>
</tr>
<tr>
<td>NE 592/5592</td>
<td>AN141: Using the NE592/5592 Video Amplifier</td>
</tr>
<tr>
<td>NE 5044</td>
<td>AN131: Applications Using the NE5044 Encoder</td>
</tr>
<tr>
<td>NE 5045</td>
<td>AN132: Applications Using the NE5045 Decoder</td>
</tr>
<tr>
<td>NE 5512/5514</td>
<td>AN144: Applications for the NE5512 and NE5514</td>
</tr>
<tr>
<td>NE 5517</td>
<td>AN145: NE5517: General Description and Applications for Use with the NE5517/A Transconductance Amplifier</td>
</tr>
<tr>
<td>NE 5520</td>
<td>AN118: LVDT Signal Conditioner: Applications Using the NE5520</td>
</tr>
<tr>
<td>NE 5532/33/34</td>
<td>AN142: Audio Circuits Using the NE5532/33/34</td>
</tr>
<tr>
<td>NE 5535</td>
<td>AN143: Applications Using the SE/NE5535</td>
</tr>
<tr>
<td>NE 5539</td>
<td>AN140: Compensation Techniques for Use with the SE/NE5539</td>
</tr>
<tr>
<td>NE 5560</td>
<td>AN121: Forward Converter Application Using the NE5560</td>
</tr>
<tr>
<td>NE 5561</td>
<td>AN122: NE5560 Push-Pull Regulator Application</td>
</tr>
<tr>
<td>µA 758</td>
<td>AN123: NE5561 Applications</td>
</tr>
<tr>
<td>µA 758</td>
<td>AN124: External Synchronization for the NE5561</td>
</tr>
</tbody>
</table>

1-6
INTERFACE

Data Conversion
- AN100: An Overview of Data Converters
- AN101: Basic DACs
- AN105: Digital Attenuator
- AN106: Using the DAC-08 without a Negative Supply
- AN109: Microprocessor Compatible DACs

Drivers
- AN112: LED Decoder Drivers: Using the NE587 and NE589
- AN113: Applications Using the MC1488/1489 Line Drivers and Receivers

Comparators
- AN116: Applications for the NE521/522/527/529

Signal Conditioner
- AN118: LVDT Signal Conditioner: Applications Using the NE5520

COMMUNICATIONS

Timers
- AN170: NE555 and NE556 Applications
- AN171: NE558 Applications

Phase Locked Loops
- AN177: An Overview of Phase Locked Loops (PLL)
- AN178: Modeling the PLL
- AN179: Circuit Description of the NE564
- AN180: The NE564: Frequency Synthesis
- AN181: A 6MHz FSK Converter Design Example for the NE564
- AN182: Clock Regenerator with Crystal Controlled Phase Locked VCO
- AN183: Circuit Description of the NE565
- AN184: FSK Demodulator with NE565
- AN185: Circuit Description of the NE566
- AN186: Waveform Generators
- AN187: Circuit Description of the NE567 Tone Decoder
- AN188: Selected Circuits Using the NE567
- AN189: Balanced Modulator/Demodulator Applications Using the MC1496/MC1596
- AN190: Applications of Low Noise Stereo Amplifiers: NE542
- AN191: Stereo Decoder Applications Using the µA758

Compandors
- AN174: Applications for Compandors: NE570/571/SA571
- AN175: Automatic Level Control: NE572
- AN176: Compador Cookbook

FSK Modems
- AN195: Applications Using the NE5080, NE5081

AMPLIFIERS

Operational Amplifiers
- AN165: Integrated Operational Amplifier Theory
- AN166: Basic Feedback Theory
- AN142: Audio Circuits Using the NE5532/33/34
- AN143: Applications Using the SE/NE5535
- AN150: Applications for the NE538
- AN151: Applications for the NE531
- AN160: Applications for the MC3403
- AN144: Applications for the NE5512 and NE5514
- AN145: NE5517: General Description and Applications for Use with the NE5517/A
- AN164: Transconductance Amplifier
- AN146: Explanation of Noise

Video Amplifiers
- AN141: Using the NE592/5592 Video Amplifier
- AN140: Compensation Techniques for Use with the SE/NE5539
POWER CONVERSION AND CONTROL

Switched Mode Power Supplies (SMPS)

AN120	An Overview of SMPS
AN121	Forward Converter Application Using the NE5560
AN122	NE5560 Push-Pull Regulator Application
AN123	NE5561 Applications
AN124	External Synchronization for the NE5561
AN126	Applications Using the SG3524

Control Circuits

AN131	Applications Using the NE5044 Encoder
AN132	Applications Using the NE5045 Decoder
AN133	Applications Using the NE544 Servo Amplifier
AN134	Computer Controlled Robotics Applications
LINEAR LSI DEVICES CURRENTLY AVAILABLE IN S.O. PACKAGE

For information regarding additional SO products released since the publication of this document, contact your local Signetics sales office.

<table>
<thead>
<tr>
<th>Device Code</th>
<th>Package Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>3DAC-08E</td>
<td>SO-16</td>
</tr>
<tr>
<td>3LF398</td>
<td>SO-14</td>
</tr>
<tr>
<td>LM18700D</td>
<td>SO-20</td>
</tr>
<tr>
<td>LM311</td>
<td>SO-8</td>
</tr>
<tr>
<td>LM319</td>
<td>SO-14</td>
</tr>
<tr>
<td>LM324</td>
<td>SO-14</td>
</tr>
<tr>
<td>LM339</td>
<td>SO-14</td>
</tr>
<tr>
<td>LM358</td>
<td>SO-8</td>
</tr>
<tr>
<td>LM393</td>
<td>SO-8</td>
</tr>
<tr>
<td>3MC1408-8</td>
<td>SO-16</td>
</tr>
<tr>
<td>MC1458</td>
<td>SO-8</td>
</tr>
<tr>
<td>MC1488</td>
<td>SO-14</td>
</tr>
<tr>
<td>MC1489</td>
<td>SO-14</td>
</tr>
<tr>
<td>MC1489A</td>
<td>SO-14</td>
</tr>
<tr>
<td>MC3302</td>
<td>SO-14</td>
</tr>
<tr>
<td>MC3403</td>
<td>SO-14</td>
</tr>
<tr>
<td>NE4558</td>
<td>SO-8</td>
</tr>
<tr>
<td>3NE5018</td>
<td>SOL-24</td>
</tr>
<tr>
<td>3NE5036</td>
<td>SO-14</td>
</tr>
<tr>
<td>NE5037</td>
<td>SO-16</td>
</tr>
<tr>
<td>NE5044</td>
<td>SO-16</td>
</tr>
<tr>
<td>NE5045</td>
<td>SO-16</td>
</tr>
<tr>
<td>1NE5090</td>
<td>SOL-16</td>
</tr>
<tr>
<td>NE521</td>
<td>SO-14</td>
</tr>
<tr>
<td>NE522</td>
<td>SO-14</td>
</tr>
<tr>
<td>NE527</td>
<td>SO-14</td>
</tr>
<tr>
<td>NE529</td>
<td>SO-14</td>
</tr>
<tr>
<td>NE532</td>
<td>SO-8</td>
</tr>
<tr>
<td>1NE5512</td>
<td>SO-8</td>
</tr>
<tr>
<td>3NE5514</td>
<td>SOL-16</td>
</tr>
<tr>
<td>NE5517</td>
<td>SO-16</td>
</tr>
<tr>
<td>1NE5520</td>
<td>SOL-16</td>
</tr>
<tr>
<td>1NE5532</td>
<td>SOL-16</td>
</tr>
<tr>
<td>NE5534A</td>
<td>SO-8</td>
</tr>
<tr>
<td>NE5534</td>
<td>SO-8</td>
</tr>
<tr>
<td>3NE5537</td>
<td>SO-14</td>
</tr>
<tr>
<td>NE5539</td>
<td>SO-14</td>
</tr>
<tr>
<td>NE555</td>
<td>SO-8</td>
</tr>
<tr>
<td>NE556</td>
<td>SO-14</td>
</tr>
<tr>
<td>NE5560</td>
<td>SO-16</td>
</tr>
<tr>
<td>NE5561</td>
<td>SO-8</td>
</tr>
<tr>
<td>NE5568</td>
<td>SO-8</td>
</tr>
<tr>
<td>1NE558</td>
<td>SOL-16</td>
</tr>
<tr>
<td>NE5592</td>
<td>SO-14</td>
</tr>
<tr>
<td>NE564</td>
<td>SO-16</td>
</tr>
<tr>
<td>3NE565</td>
<td>SO-14</td>
</tr>
<tr>
<td>NE566</td>
<td>SO-8</td>
</tr>
<tr>
<td>NE567</td>
<td>SO-8</td>
</tr>
<tr>
<td>1NE571</td>
<td>SOL-16</td>
</tr>
<tr>
<td>NE572</td>
<td>SO-16</td>
</tr>
<tr>
<td>2NE587</td>
<td>SOL-20</td>
</tr>
<tr>
<td>1NE592</td>
<td>SO-8</td>
</tr>
<tr>
<td>NE592</td>
<td>SO-14</td>
</tr>
<tr>
<td>NE592H</td>
<td>SO-8</td>
</tr>
<tr>
<td>1NE592H</td>
<td>SO-14</td>
</tr>
<tr>
<td>NE594</td>
<td>SOL-20</td>
</tr>
<tr>
<td>NE602</td>
<td>SO-8</td>
</tr>
<tr>
<td>NE604</td>
<td>SO-16</td>
</tr>
<tr>
<td>1NE660</td>
<td>SOL-20</td>
</tr>
<tr>
<td>SA571</td>
<td>SO-16</td>
</tr>
<tr>
<td>SA572</td>
<td>SO-16</td>
</tr>
<tr>
<td>SA602</td>
<td>SO-8</td>
</tr>
<tr>
<td>SA604</td>
<td>SO-16</td>
</tr>
<tr>
<td>SG3524</td>
<td>SO-16</td>
</tr>
<tr>
<td>T723C</td>
<td>SO-14</td>
</tr>
<tr>
<td>T741C</td>
<td>SO-8</td>
</tr>
<tr>
<td>T747C</td>
<td>SO-14</td>
</tr>
<tr>
<td>ULN2003</td>
<td>SO-16</td>
</tr>
<tr>
<td>ULN2004</td>
<td>SO-16</td>
</tr>
</tbody>
</table>

NOTES:
1. SOL released in large SO package only.
2. SOL and non-standard pinout.
3. SO and non-standard pinout.
ORDERING INFORMATION

For Prefixes AM, CA, DAC, LF, LM, MC, NE, SA, SE, SG, µA and ULN

ORDERING INFORMATION

Signetics' Linear LSI integrated circuit products may be ordered by contacting either the local Signetics sales office, Signetics representatives and/or Signetics authorized distributors. A complete listing is located in the back of this manual.

Minimum Factory Order:
Commercial Product:
$1000 per order
$250 per line item per order

Military Product:
$250 per line item per order

Table 1 provides part number information concerning Signetics originated products. Table 2 is a cross reference of both the old and new package suffixes for all presently existing types, while Tables 3 and 4 provide appropriate explanations on the various prefixes employed in the part number descriptions.

As noted in Table 3, Signetics defines device operating temperature range by the appropriate prefix. It should be noted, however, that devices with a SE prefix (−55°C to +125°C) indicates only its operating temperature range and not its military qualification status. The military qualification status of any Linear LSI product can be determined by either looking in the Military Section in this manual and/or contacting your local sales office.

Table 1 PART NUMBER DESCRIPTION

<table>
<thead>
<tr>
<th>PART NUMBER</th>
<th>CROSS REF PART NO.</th>
<th>PRODUCT FAMILY</th>
<th>PRODUCT DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>NE5537N</td>
<td>LF398</td>
<td>LIN</td>
<td>Sample & Hold Amp</td>
</tr>
</tbody>
</table>

Product Family
- LIN Analog Products
- MIL Military Products

Package Descriptions—See Table 2

Device Number

Device Family and Temperature Range Prefix—See Tables 3 & 4

Table 2 PACKAGE DESCRIPTIONS

<table>
<thead>
<tr>
<th>Old Designator</th>
<th>New Designator</th>
<th>Old Package Description</th>
<th>New Package Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A,AA</td>
<td>N</td>
<td>14-lead plastic DIL</td>
<td>14-lead plastic DIL</td>
</tr>
<tr>
<td>A</td>
<td>N-14</td>
<td>14-lead plastic DIL (Selected Analog products only)</td>
<td>14-lead plastic DIL</td>
</tr>
<tr>
<td>B,BA</td>
<td>N</td>
<td>16-lead plastic DIL</td>
<td>16-lead plastic DIL</td>
</tr>
<tr>
<td>D</td>
<td>F</td>
<td>Microminiature package (SO)</td>
<td>14, 16, 18, 22 and 24-lead ceramic (Cerdipl DIL</td>
</tr>
<tr>
<td>F</td>
<td></td>
<td></td>
<td>14, 16, 18, 22 and 24-lead ceramic DIL</td>
</tr>
<tr>
<td>I,IK</td>
<td>I</td>
<td></td>
<td>14, 16, 18, 22 and 4-lead ceramic DIL</td>
</tr>
<tr>
<td>K</td>
<td>H</td>
<td>10-lead TO-100</td>
<td>10-lead ceramic TO-100 can</td>
</tr>
<tr>
<td>L</td>
<td>H</td>
<td>10-lead high-profile TO-100 can</td>
<td>14-lead ceramic TO-100 can</td>
</tr>
<tr>
<td>NA, NX</td>
<td>N</td>
<td>24-lead plastic DIL</td>
<td>10, 14, 16 and 24-lead ceramic DIL</td>
</tr>
<tr>
<td>Q, R</td>
<td>Q</td>
<td>14-lead plastic DIL</td>
<td>8-lead TO-99</td>
</tr>
<tr>
<td>T, TA</td>
<td>H</td>
<td>18-lead plastic DIL</td>
<td>18-lead plastic DIL</td>
</tr>
<tr>
<td>U</td>
<td>U</td>
<td>20-lead plastic DIL</td>
<td>20-lead plastic DIL</td>
</tr>
<tr>
<td>V</td>
<td>N</td>
<td>22-lead plastic DIL</td>
<td>22-lead plastic DIL</td>
</tr>
<tr>
<td>WA</td>
<td>N</td>
<td>26-lead plastic DIL</td>
<td>26-lead plastic DIL</td>
</tr>
</tbody>
</table>

Table 3 SIGNETICS PREFIX AND DEVICE TEMPERATURE

<table>
<thead>
<tr>
<th>PREFIX</th>
<th>DEVICE FAMILY</th>
<th>TEMPERATURE RANGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>0° to + 70°C</td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>−55° to + 125°C</td>
<td></td>
</tr>
<tr>
<td>NE</td>
<td>0° to + 70°C</td>
<td></td>
</tr>
<tr>
<td>SE</td>
<td>−55° to + 125°C</td>
<td></td>
</tr>
<tr>
<td>SA</td>
<td>−40° to + 85°C</td>
<td></td>
</tr>
</tbody>
</table>

Table 4 INDUSTRY STANDARD PREFIX

<table>
<thead>
<tr>
<th>PREFIX</th>
<th>DEVICE FAMILY</th>
</tr>
</thead>
<tbody>
<tr>
<td>AM</td>
<td>Linear Industry Standard</td>
</tr>
<tr>
<td>CA</td>
<td>Linear Industry Standard</td>
</tr>
<tr>
<td>DAC</td>
<td>Linear Industry Standard</td>
</tr>
<tr>
<td>JB</td>
<td>Mil Rel—Jan Qualified—Old Designator</td>
</tr>
<tr>
<td>JM</td>
<td>Mil Rel—Jan Qualified—New Designator</td>
</tr>
<tr>
<td>LF</td>
<td>Linear Industry Standard</td>
</tr>
<tr>
<td>LM</td>
<td>Linear Industry Standard</td>
</tr>
<tr>
<td>M</td>
<td>Mil Rel—Jan Processed</td>
</tr>
<tr>
<td>MC</td>
<td>Linear Industry Standard</td>
</tr>
<tr>
<td>NE</td>
<td>Linear Industry Standard</td>
</tr>
<tr>
<td>SA</td>
<td>Linear Industry Standard</td>
</tr>
<tr>
<td>SE</td>
<td>Linear Industry Standard</td>
</tr>
<tr>
<td>SG</td>
<td>Linear Industry Standard</td>
</tr>
<tr>
<td>µA</td>
<td>Linear Industry Standard</td>
</tr>
<tr>
<td>ULN</td>
<td>Linear Industry Standard</td>
</tr>
</tbody>
</table>
QUALITY AND RELIABILITY

Quality and reliability are two important measures of a product's merit. Quality is a measure of an integrated circuit's conformance to agreed-upon criteria at a given time, while Reliability is a measure of the circuit's ability to continue to conform over a period of time.

Quality

The quality of an integrated circuit is appraised by the user based on the ability of the circuit to meet the specified electrical criteria and external visual appearance. Linear LSI Division focuses on supplying to the user a product that has a high probability of meeting the user's needs through the sampling plans defined in MIL-STD-105D and the quality levels (AQLs) stated in Table II. Many of the inspection methods at critical process steps are now based on MIL-STD-883 criteria in order to build, rather than test, quality into the product.

Reliability

System performance over a period of time is the user's measure of an integrated circuit's reliability. The SUPR II Program improves system reliability by building quality into the product via additional manufacturing inspections and the offering of a burn-in screen. In addition to the SUPR II Program, Signetics performs periodic reliability testing via the SUREll/883A Program to assure continuing uniformity and long-term reliability of all product lines. This data base is updated quarterly and is available upon request from the Linear LSI OR manager.

How Do Integrated Circuit Failures Occur?

Results from the Signetics Failure Analysis Lab over a three-year period on product returned from board checkout, system checkout, field usage and accelerated life testing are graphically presented in Figure 1. Under typical system operating conditions, random manufacturing defects, as outlined in Table 1, are the primary cause of true device failure. Also shown in Table 1 are the process controls that have been added via the SUPR II Program to minimize these defects prior to shipment to the customer. The device failure models are categorized as:

- Fabrication Related
- Assembly Related
- Test Related

Devices damaged by electrical over-stress account for 25% of the failures. Typical causes for electrical over-stress are incorrect board insertion, board shorts between device pins, power supply transients, and poor handling techniques.

The remaining 25% were verified to be true failures which occurred as a result of an in-process manufacturing defect or test escape.

Improve Quality Benefits

From the user's point of view, improved integrated circuit quality from the supplier means a lower cost of ownership. This cost saving can be effected through the reduction or elimination of involved incoming inspection testing, reduced PC board rework, simplified system checkout, reduced in-line inventories, and less complicated part tracking by Purchasing Management.

The SUPR II Program is Corporate in scope and covers Logic (Standard TTL, Schottky TTL, Low Power Schottky TTL, ECL, 8T Interface), Analog (Industrial, Consumer, Interface), Bipolar Memories (RAMs, ROMs, PROMs), and MOS Memories (RAMs, ROMs, Shift Registers). All package options are also available.

The SUPR II flow is detailed in Figure 5, including the test methods and Quality acceptance levels (Table 2 provides the electrical/mechanical finished product AQLs). Highlights of the flow are visual inspections, hermeticity, and burn-in, all based on MIL-STD-883 criteria.

A good example of the savings which can be achieved by purchasing tighter inspection levels is given in Figure 2. Here we are comparing the various levels of inspection (AQLs) available for device functionality and its impact on the number of PC boards which must be reworked during system manufacturing.

<table>
<thead>
<tr>
<th>Failure Mechanisms</th>
<th>Causes</th>
<th>Process Controls</th>
</tr>
</thead>
<tbody>
<tr>
<td>Die Fabrication Related</td>
<td>Metalization</td>
<td>SEM Monitor</td>
</tr>
<tr>
<td></td>
<td>Oxide Defects</td>
<td>Visual</td>
</tr>
<tr>
<td></td>
<td>Mechanical</td>
<td>Stabilization Brake</td>
</tr>
<tr>
<td></td>
<td>Scratches</td>
<td>Burn-In</td>
</tr>
<tr>
<td></td>
<td>Contamination</td>
<td></td>
</tr>
<tr>
<td>Assembly Related</td>
<td>Bonding, Wire,</td>
<td>Preseal Visual</td>
</tr>
<tr>
<td></td>
<td>Package and</td>
<td>Stabilization Bake</td>
</tr>
<tr>
<td></td>
<td>Seal Defects</td>
<td>Hermeticity</td>
</tr>
<tr>
<td>Test Related</td>
<td>Test Escapes</td>
<td>Tightened AQL Guarantees</td>
</tr>
<tr>
<td></td>
<td></td>
<td>High Temperature Testing</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Product Characterization</td>
</tr>
</tbody>
</table>
LEVEL B
Removal of Infant Mortality Failures

Failure rates are most severe during the first few months of operating life. This is known as the "infant mortality" phase. A system manufacturer has various options to solve problems arising from infant failures. He can ship his system to the end customer and repair field failures as they occur. He can operate the system in-house for this period and repair failures. Or he can purchase devices which have already been preconditioned to eliminate the early failures. Each customer must choose the most cost-effective method for his particular business. A considerable number of the reliability defects which cause early failures are eliminated by the manufacturing control and preconditioning steps of SUPR II Level A processing. More persistent defects can be removed by the use of "burn-in" techniques. The "burn-in" processing of SUPR II Level B effectively allows the system manufacturer to ship his equipment at Point 3 on the failure rate curve in Figure 3.

Burn-In Conditions
MIL-STD-883A, Method 1015 describes a number of different conditions for integrated circuit burn-in. For SUPR II Level B, Signetics has selected Condition F. This is the accelerated burn-in method derived from MIL-STD-883A, utilizing a high temperature reversed bias condition. This bias scheme is preferred for infant mortality screening, while operating conditions are generally utilized for internal reliability programs oriented toward generating MTBF data for the system designer.

Integrated Burn-In Flow
Signetics SUPR II Level B burn-in is performed to provide reliability assurance equivalent to a 150-hour/125°C screen. This process has been integrated into the standard manufacturing flow to provide the customer with the most cost effective screen and significantly reduced delivery times.

<table>
<thead>
<tr>
<th>DC PARAMETRIC/FUNCTIONAL</th>
<th>MIN/MAX RATED OVER TEMP 25°C (Combined)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC PARAMETRIC</td>
<td>0.1</td>
</tr>
<tr>
<td>MECHANICAL</td>
<td>0.4</td>
</tr>
</tbody>
</table>
| SEAL TESTS (CERAMIC/METAL CANS ONLY) | FINE LEAK 5 x 8^{-6} cc/s GROSS LEAK (Combined) | 0.4 | 1000

Table 2 SUPR II AQL GUARANTEE

The 24-hour/155°C accelerated burn-in is well controlled to provide maximum screening effectiveness without damaging good devices.

SURE III/883B
RELIABILITY PROGRAM

Definition
Signetics is recognized as a manufacturer of reliable integrated circuits. Signetics realized long ago the need for a comprehensive reliability program to provide timely data representative of the entire
Signetics product line. Thus the establishment of a Systematic and Uniform Reliability Evaluation program, known as SURE, which provides this data in a manner unique to the industry. Furthermore, this program is provided at no cost to customers.

The SURE Program is a Signetics in-house Qualification Test Program which has been in existence since 1963. The SURE Program is designed to monitor the continuing uniformity of all Signetics products and to demonstrate via periodic qualifications that Signetics products meet or exceed the stringent long-term reliability requirements of their intended applications.

The SURE Program is reviewed and modified annually to incorporate appropriate changes in military microelectronic test programs, products and demonstrated product capabilities, and market requirements. The 1978 SURE/III/883A Reliability Program contains minor changes to the 1975 SURE/III/883A Program, most significant of which is the inclusion of recent changes in military microelectronic test programs (i.e., inclusion of MIL-STD-883B, Method 5005.4 and MIL-M-38510D). The SURE/III/883B Program continues to incorporate additional environmental tests to fulfill the need for special reliability assurance of plastic products.

Data generated from this program is updated quarterly and is available from the Linear LSI Division QA manager. Both quality and reliability have recently received major corporate focus at Signetics through the application—in all departments—of the Signetics 14-step Quality Improvement Program.

SUPR II PROCESS FLOW

- **SCANNING ELECTRON MICROSCOPE CONTROL (SEM)**
 - Wafer sampling daily by the Quality Control Laboratory from each fabrication area and subjected to SEM analysis.
 - The process control reveals manufacturing defects such as contact and oxide step coverage in the metallization process which may result in early failures.

- **DIE SORT VISUAL ACCEPTANCE**
 - Criteria based on MIL-STD-883, Method 2010, Condition B, are employed to detect defects caused during fabrication, wafer testing, or the mechanical scribe and break operation. Critical defects such as scratches, smears, and glassvated bonding pads are inspected to a 1% AQL. Lot acceptance for noncritical defects is to 4% AQL.

- **PRE-SEAL VISUAL ACCEPTANCE**
 - Criteria based on MIL-STD-883, Method 2010, Condition B, are employed to detect any damage incurred at the die attach and wire bonding stations. Critical defects such as scratches, contamination and smeared ball bonds are inspected to a 0.65% AQL. Lot acceptance is to 2.5% AQL.

- **STABILIZATION BAKE PRECONDITIONING**
 - Plastic molded devices are baked to stress wire and die bonds and help eliminate marginal devices. It also ensures an optimum plastic seal to enhance moisture resistance.

- **SEAL TESTS**
 - Package seal integrity is ensured by 100% gross leak testing per MIL-STD-883, Method 1014, Condition C and fine leak sampling per Condition A or B.

- **BURN-IN (LEVEL B OPTION)**
 - Devices are burned in for the equivalent of 888 hours at 125°C in accordance with MIL-STD-883A, Method 1015, Condition F.
 - Every device is tested for functional and DC parameters at 25°C, room ambient.

- **QA GUARANTEES**
 - A final QA inspection step guarantees the mechanical and electrical AQL's of Table III. Every shipment is sealed and identified by QA personnel.

Figure 5
INDEX

SECTION 3 — MILITARY

 Index .. 3-1
 Military Products ... 3-3
 Military Process Levels .. 3-3
MILITARY PRODUCTS/PROCESS LEVELS

The Signetics MIL 38510/883 Program is organized to provide a broad selection of processing options, structured around the most commonly requested customer flows. The program is designed to provide our customers:

• Fully compliant 883B flows on all products.
• Standard processing flows to help minimize the need for custom specs.
• Cost savings realized by using standard processing flows in lieu of custom flows.
• Better delivery lead times by minimizing spec negotiation time, plus allow customers to buy product off-the-shelf or in various stages of production rather than waiting for devices started specifically to custom specs.

The following explains the different processing options available to you. Special device marking clearly distinguishes the type of screening performed.

JAN QUALIFIED (JS and JB)

JAN Qualified product is designed to give you the optimum in quality and reliability. The JAN processing level is offered as the result of the government's product standardization programs, and is monitored by the Defense Electronic Supply Center (DESC), through the use of industry-wide procedures and specifications.

JAN Qualified products are manufactured, processed and tested in a government certified facility to Mil-M-38510, and appropriate device slash sheet specifications. Design documentation, lot sampling plans, electrical test data and qualification data for each specific part type has been approved by the Defense Electronic Supply Center (DESC) and appears on the DESC Qualified Products List (QPL 38510).

Quality conformance inspection testing, per MIL-STD-883, Method 5005, is performed according to Mil-M-38510 as follows:

• Group A; each sublot.
• Group B; one sublot for each package type every week.
• Group C; one sublot for each microcircuit group every 13 weeks.
• Group D; one sublot for each package type every 26 weeks.

NOTE: This category of part conforms to Quality Level B (α = 1.0) of MIL-HDBK-217D.

In addition to the common specs used throughout the industry for processing and testing, JAN Qualified products also possess a requirement for a standard marking used throughout the IC industry.

By implementing this space-oriented government standardization program, Signetics complies with the trend of reducing the numerous similar Source Control Drawings (SCD's). This standardized trend results in a single complete and comprehensive specification, a single product flow, and a single administrative effort—for both the aerospace community and for Signetics. This effort will also result in a single lower price. Because the list of Signetics' qualified products will change periodically, you may wish to contact your nearest Signetics' Sales Office or refer to the Products Qualified under Military Specification from DESC for our current update.

JAN Class S orders will be quoted with unit price only (similar to present Class B programs). There will be no lot charges for SEM inspection, electrical testing, or Group B or D qualification. All additional charges are amortized in the unit price.

Package types currently qualified are:

1) Cerdip—ceramic dual-in-line
2) Cercap—ceramic flat pack

Government Source Inspection (GSI) is a required portion of the JAN 38510 Class S specification. No alterations to this specification may be instituted. Therefore, the only customer source inspection option is at pre-ship (verification only).

Additional program data options (such as wafer lot acceptance, attributes, Group B, D, and others) are available upon request for a nominal fee.

MIL-STD-883, LEVEL B

Processing to this option is ideal when no JAN slash sheets are released on devices required. Product is processed to MIL-STD-883 Method 5004, and is 100% electrically tested to Signetics data sheets.

Quality conformance inspection per MIL-STD-883, Method 5005, Group A, is performed on each sublot. Group A subgroup electrical parameters are those included in the detailed Signetics data book. Contact the factory for parametric subgroup assignments.

Generic quality conformance data per method 5005, Groups B, C and D, is generally available on popular device types and packages, but availability is not guaranteed. The factory must be consulted prior to ordering generic data. When available, generic data is defined as follows:

• Group B; Performed once per package type every six weeks of seal.
• Group C; Performed once per microcircuit group every 52 weeks of seal.

<table>
<thead>
<tr>
<th>JAN CASE OUTLINE AND LEAD FINISH</th>
<th>SIGNETICS MILITARY PACKAGE TYPES</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CERAMIC</td>
</tr>
<tr>
<td></td>
<td>8-PIN</td>
</tr>
<tr>
<td>PB</td>
<td>FE</td>
</tr>
<tr>
<td>CB</td>
<td>-</td>
</tr>
<tr>
<td>EB</td>
<td>-</td>
</tr>
<tr>
<td>JB</td>
<td>-</td>
</tr>
<tr>
<td>DB</td>
<td>-</td>
</tr>
<tr>
<td>FB</td>
<td>-</td>
</tr>
<tr>
<td>RB</td>
<td>-</td>
</tr>
<tr>
<td>VB</td>
<td>-</td>
</tr>
</tbody>
</table>

All products listed are also available in Die form.

Table 1: MILITARY PACKAGE AVAILABILITY

<table>
<thead>
<tr>
<th>JS</th>
<th>JB</th>
<th>RB</th>
</tr>
</thead>
<tbody>
<tr>
<td>JAN Qualified</td>
<td>883B</td>
<td></td>
</tr>
<tr>
<td>54</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>54LS</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>54S</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>82</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>8T</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>93XX</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>96XX</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Analog</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bipolar Memory</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Microprocessor</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2: MILITARY SUMMARY
LINEAR LSI PRODUCTS

MILITARY PRODUCTS/PROCESS LEVELS

- Group D: Performed once per package type every 52 weeks of seal. Quality conformance endpoint electrical parameters for Groups C and D are the Group A subgroups 1, 2, and 3.

Copies of generic data, Groups A, B, C and D, may be ordered by customers at a nominal charge.

<table>
<thead>
<tr>
<th>PROCESS LEVEL AND MARKING</th>
<th>PRE-CAP VISUAL</th>
<th>BURN IN</th>
<th>FUNCTIONAL TEST</th>
<th>DC/AC @ 25°C</th>
<th>DC @ TEMP</th>
<th>QPL</th>
<th>OFFSHORE</th>
</tr>
</thead>
<tbody>
<tr>
<td>JS/JB</td>
<td>2010, Cond. B</td>
<td>Yes</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>JM38510XXXXX</td>
<td>2010, Cond. B</td>
<td>Yes</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>RB SXXXXXX883B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTE: This category of part conforms to Quality Level B-2 (\(\sigma = 6.5 \)) of MIL-HDBK-217D.

The Signetics' JAN Class S inventory program will reduce delivery time and shipment delinquencies. As continuing orders from customers are processed to this specification, inventories will be established for products in the form of pre-qualified wafers and finished parts. As the program matures, this will allow immediate delivery of JAN Class S parts.

JAN Class S Product Flow

- Product Screening
- JAN Group A
- JAN Qual Holding
- Qual Test Sample (GSI)
- Qual Pass
- Ship (GSI)

- PIND Testing M2020
- Read and Record on Extended Burn-in (240 Hours)
- Tightened PDA's (Ref. Class B)
- Catastrophic Failure Analysis Requirements
- GSI

JAN Class S Product Inventory

Wafer Lot

= 24 Wafers

Wafer Lot Acceptance
(Includes SEM and GSI)

Wafers Required for Purchase Order

+Inventory Overbuild

Wafer Bank:
1 or 2 Wafers
(Wafer Lot Accepted)

Balance to Support JAN Class "B" Production

Contractor

Field Sales

Marketing Review

Order Entry/Audit

Wafer Fabrication

Product Assembly

- Agency Certification
- Wafer Lot Acceptance (GSI)
- Baseline Flow
- Traceability to Silicon

- Agency Certification
- Tightened Lot Control (Ref. Class B)
- Wirebond and Die Sheer Monitor
- Condition "A" Pre-cap (GSI)
- 100% Non-Destructive Bond Pull

Ship Purchase Order

Balance to Finished Goods Inventory

Marketing

Review

Order

Entry/Audit

Wafer

Fabrication

Product

Assembly

- Agency Certification
- Tightened Lot Control (Ref. Class B)
- Wirebond and Die Sheer Monitor
- Condition "A" Pre-cap (GSI)
- 100% Non-Destructive Bond Pull

JAN Qual

Holding

Qual Pass

Ship (GSI)
DESCRIPTION OF REQUIREMENTS AND SCREENS

<table>
<thead>
<tr>
<th>General Mil-M-38510</th>
<th>MIL-M-38510 and MIL-STD-883 REQUIREMENTS, METHODS AND TEST CONDITIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Pre-Certification</td>
<td>The Manufacturer shall establish and implement a Products Assurance Program Plan and provide for a manufacturer survey by the qualifying activity, Para. 3.4.1.1</td>
</tr>
<tr>
<td>A. Product Assurance Program</td>
<td></td>
</tr>
<tr>
<td>B. Manufacturer’s Certification</td>
<td></td>
</tr>
<tr>
<td>2. Certification</td>
<td>Received after manufacturer has completed a successful survey, Para. 3.4.1.2</td>
</tr>
<tr>
<td>3. Device Qualification</td>
<td>Device qualification shall consist of subjecting the desired device to groups A, B, C & D of method 5005, Para. 3.4.1.2</td>
</tr>
<tr>
<td>4. Traceability</td>
<td>Traceability maintained back to a production lot, Para. 3.4.6</td>
</tr>
<tr>
<td>5. Country of Origin</td>
<td>Devices must be manufactured, assembled, and tested within the U.S. or its territories, Para. 3.2.1</td>
</tr>
</tbody>
</table>

SCREENING PER METHOD 5004 OF MIL-STD-883

<table>
<thead>
<tr>
<th></th>
<th>REQUIREMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>6. Non-Destructive Bond Pull</td>
<td>2023</td>
</tr>
<tr>
<td>7. Internal Visual (Precap)</td>
<td>2010, Cond. A or B</td>
</tr>
<tr>
<td>8. Stabilization Bake</td>
<td>1008, Cond. C Min</td>
</tr>
<tr>
<td>9. Temperature Cycling</td>
<td>1010, cond. C; (10 cycles, −65°C to +150°C)</td>
</tr>
<tr>
<td>10. Constant Acceleration</td>
<td>2001, Cond. E; (30kg in YI Plane)</td>
</tr>
<tr>
<td>11. Visual Inspection</td>
<td>There is no test method for this screen; it is intended only for the removal of "Catastrophic Failures" defined as "Missing Leads, Broken Packages or Lids Off."</td>
</tr>
<tr>
<td>12. Seal (Hermeticity)</td>
<td></td>
</tr>
<tr>
<td>A. Fine</td>
<td>Cond. A or B (5.0 x 10⁻⁸CC/Sec)</td>
</tr>
<tr>
<td>B. Gross</td>
<td>Cond. C Min.</td>
</tr>
<tr>
<td>13. Marking</td>
<td>Fungus inhibiting ink</td>
</tr>
<tr>
<td>14. Particle Impart Noise Test</td>
<td>2020, Cond. A; per Paragraph 4.6.3 of MIL-M-38510</td>
</tr>
<tr>
<td>15. Radiographic</td>
<td>2012; two views</td>
</tr>
<tr>
<td>16. Interim Electricals (Pre Burn-In)</td>
<td>Per applicable Device Specification</td>
</tr>
<tr>
<td>17. Burn-in</td>
<td>1015, Cond. as specified (160 hrs. Min at 125°C)</td>
</tr>
</tbody>
</table>

PROCESSING LEVELS

<table>
<thead>
<tr>
<th>REQUIREMENT</th>
<th>CLASS S</th>
<th>JAN QUALIFIED (JB)</th>
<th>883B (RB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Mil-M-38510</td>
<td>—</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>1. Pre-Certification</td>
<td>—</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>A. Product Assurance Program</td>
<td>—</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>B. Manufacturer’s Certification</td>
<td>—</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>2. Certification</td>
<td>—</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>3. Device Qualification</td>
<td>—</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>4. Traceability</td>
<td>—</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>5. Country of Origin</td>
<td>—</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>6. Non-Destructive Bond Pull</td>
<td>100%</td>
<td>x</td>
<td>N/A</td>
</tr>
<tr>
<td>7. Internal Visual (Precap)</td>
<td>100%</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>8. Stabilization Bake</td>
<td>100%</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>9. Temperature Cycling</td>
<td>100%</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>10. Constant Acceleration</td>
<td>100%</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>11. Visual Inspection</td>
<td>100%</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>12. Seal (Hermeticity)</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>A. Fine</td>
<td>100%</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>B. Gross</td>
<td>100%</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>13. Marking</td>
<td>100%</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>14. Particle Impart Noise Test</td>
<td>100%</td>
<td>x</td>
<td>N/A</td>
</tr>
<tr>
<td>15. Radiographic</td>
<td>100%</td>
<td>x</td>
<td>N/A</td>
</tr>
<tr>
<td>16. Interim Electricals (Pre Burn-In)</td>
<td>100%</td>
<td>x</td>
<td>Optional</td>
</tr>
<tr>
<td>17. Burn-in</td>
<td>100%</td>
<td>240 hrs.</td>
<td>x</td>
</tr>
</tbody>
</table>
MILITARY PRODUCTS/PROCESS LEVELS

<table>
<thead>
<tr>
<th>DESCRIPTION OF REQUIREMENTS AND SCREENS</th>
<th>MIL-M-38510 AND MIL-STD-883 REQUIREMENTS, METHODS AND TEST CONDITIONS</th>
<th>PROCESSING LEVELS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18. Final Electricals</td>
<td>Per applicable Device Specification</td>
<td>100%</td>
</tr>
<tr>
<td>a. Static Tests @ 25°C</td>
<td>Sub Group 1</td>
<td>100% Read & Record</td>
</tr>
<tr>
<td>b. Static Tests @ + 125°C</td>
<td>Sub Group 2</td>
<td>x</td>
</tr>
<tr>
<td>c. Static Tests @ - 55°C</td>
<td>Sub Group 3</td>
<td>x</td>
</tr>
<tr>
<td>d. Dynamic Tests @ 25°C</td>
<td>Sub Group 4 (for Linear Products mainly)</td>
<td>x</td>
</tr>
<tr>
<td>e. Functional Test @ 25°C</td>
<td>Sub Group 7</td>
<td>x</td>
</tr>
<tr>
<td>f. Switching Test @ 25°C</td>
<td>Sub Group 9</td>
<td>x</td>
</tr>
<tr>
<td>g. Switching Tests @ -55°C</td>
<td>Sub Groups 10, 11 (as applicable)</td>
<td>N/A</td>
</tr>
<tr>
<td>19. Percent Defective Allowable (PDA)</td>
<td>A PDA of 10% is a normal requirement applied against the static tests @25°C (A-1). This is controlled by the slash sheets for JAN products. For RB 10% is standard.</td>
<td>10%</td>
</tr>
<tr>
<td>20. External Visual</td>
<td>2009</td>
<td>100%</td>
</tr>
</tbody>
</table>

ATTRIBUTE DATA ONLY

<table>
<thead>
<tr>
<th>ATTRIBUTE DATA ONLY</th>
</tr>
</thead>
<tbody>
<tr>
<td>21. Group A</td>
</tr>
<tr>
<td>22. Group B</td>
</tr>
<tr>
<td>23. Group C</td>
</tr>
<tr>
<td>24. Group D.</td>
</tr>
</tbody>
</table>

Table 5 REQUIREMENTS AND SCREENING FLOWS FOR STANDARD PRODUCTS (Cont'd)
LINEAR DEVICES

<table>
<thead>
<tr>
<th>DEVICE</th>
<th>DESCRIPTION</th>
<th>PACKAGE</th>
<th>DIP</th>
</tr>
</thead>
<tbody>
<tr>
<td>LH2101A</td>
<td>Dual Op Amp</td>
<td></td>
<td>F</td>
</tr>
<tr>
<td>LM101A</td>
<td>Hi Perf Op Amp</td>
<td>F, FE</td>
<td></td>
</tr>
<tr>
<td>LM124</td>
<td>Quad Op Amp</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>SE5532</td>
<td>Dual Op Amp</td>
<td>FE</td>
<td></td>
</tr>
<tr>
<td>SE5532A</td>
<td>Dual Op Amp</td>
<td>FE</td>
<td></td>
</tr>
<tr>
<td>SE5534</td>
<td>Low Noise Op Amp</td>
<td>FE</td>
<td></td>
</tr>
<tr>
<td>SE5534A</td>
<td>Low Noise Op Amp</td>
<td>FE</td>
<td></td>
</tr>
<tr>
<td>SE5537</td>
<td>Sample and Hold Amp</td>
<td>FE</td>
<td></td>
</tr>
<tr>
<td>SE5539</td>
<td>High Freq Op Amp</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>SE521</td>
<td>Dual Differential Comparator</td>
<td></td>
<td>F</td>
</tr>
<tr>
<td>SE527</td>
<td>Voltage Comparator</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>SE529</td>
<td>Voltage Comparator</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>LM139/A</td>
<td>Quad Voltage Comparator</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>SE592</td>
<td>Video Amplifier</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>µA733</td>
<td>Video Amplifier</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>SE567</td>
<td>Tone Decoder PLL</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>SE555</td>
<td>Timer</td>
<td>F, FE</td>
<td></td>
</tr>
<tr>
<td>SE556</td>
<td>Dual Timer</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>SE5018</td>
<td>8-Bit µP-Comp DAC</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>SE5560</td>
<td>SMPS Controller</td>
<td>F</td>
<td></td>
</tr>
</tbody>
</table>

JAN M—38510

<table>
<thead>
<tr>
<th>DEVICE</th>
<th>SLASH SHEET</th>
<th>PKG</th>
<th>QUAL STATUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>SE555</td>
<td>10903BCB</td>
<td>F</td>
<td>QPL 1</td>
</tr>
<tr>
<td>SE555</td>
<td>10903BPB</td>
<td>FE</td>
<td>QPL 1</td>
</tr>
<tr>
<td>SE556-1</td>
<td>10902BCB</td>
<td>F</td>
<td>QPL 1</td>
</tr>
<tr>
<td>LH2101A</td>
<td>10105BEB</td>
<td>F</td>
<td>QPL 1</td>
</tr>
<tr>
<td>LM101A</td>
<td>10103BCB</td>
<td>F</td>
<td>QPL 1</td>
</tr>
<tr>
<td>LM101A</td>
<td>10103BPB</td>
<td>FE</td>
<td>QPL 1</td>
</tr>
</tbody>
</table>
Section 4
Interface Data
Conversion Products

INDEX

SECTION 4 — INTERFACE/DATA CONVERSION PRODUCTS

Index ... 4-1
Data Converters ... 4-3
Symbols and Definitions .. 4-3
Selector Guide ... 4-4

Analog to Digital Converters

ADC0801/2/3/4/5-1 8-Bit CMOS A/D Converter .. 4-5
NE5034 8-Bit Hi-Speed A/D Converter ... 4-11
NE5036 6-Bit A/D Converter, Serial Output .. 4-17
NE5037 6-Bit A/D Converter, Parallel Output .. 4-23

Digital to Analog Converters

AM6012 12-Bit Hi-Speed Multiplying D/A Converter ... 4-30
DAC08 Series 8-Bit Hi-Speed Multiplying D/A Converter 4-40
MC1508-8/1408-8/1408-7 8-Bit Multiplying D/A Converter 4-50
MC3410/3510/3410C 10-Bit Hi-Speed Multiplying D/A Converter 4-56
SE/NE5018 8-Bit Microprocessor-Compatible D/A Converter 4-63
SE/NE5019 8-Bit Microprocessor-Compatible D/A Converter 4-68
NE5020 10-Bit Microprocessor-Compatible D/A Converter 4-73
SE/NE5118 8-Bit Micro-Compatible D/A Converter—Current Output 4-81
SE/NE5119 8-Bit Micro-Compatible D/A Converter—Current Output 4-85
SE/NE5410 10-Bit Hi-Speed Multiplying D/A Converter ... 4-89

Comparators

Selector Guide ... 4-98

LM111/211/311 Voltage Comparator ... 4-99
LM119/219/319 Dual Voltage Comparator ... 4-101
LM/139/A/239/A/339/A Quad Voltage Comparator ... 4-106
LM193/A/293/A/393/A Low Power Dual Voltage Comparator 4-111
LM2901 Quad Voltage Comparator ... 4-106
LM2903 Low Power Dual Voltage Comparator .. 4-111
MC3302 Quad Voltage Comparator ... 4-106
SE/NE521 Hi-Speed Dual Dif Comparator/Sense Amp 4-116
SE/NE522 Hi-Speed Dual Dif Comparator/Sense Amp 4-120
SE/NE527 Voltage Comparator ... 4-124
SE/NE529 Voltage Comparator ... 4-128

4-1
INDEX

Drivers

<table>
<thead>
<tr>
<th>Symbols and Definitions</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>MC1488</td>
<td>4-132</td>
</tr>
<tr>
<td>MC1489/A</td>
<td>4-133</td>
</tr>
<tr>
<td>NE5090</td>
<td>4-134</td>
</tr>
<tr>
<td>NE587</td>
<td>4-135</td>
</tr>
<tr>
<td>NE589</td>
<td>4-136</td>
</tr>
<tr>
<td>NE590</td>
<td>4-137</td>
</tr>
<tr>
<td>NE591</td>
<td>4-138</td>
</tr>
<tr>
<td>SA/NE594</td>
<td>4-139</td>
</tr>
<tr>
<td>ULN2003</td>
<td>4-140</td>
</tr>
<tr>
<td>ULN2004</td>
<td>4-141</td>
</tr>
</tbody>
</table>

LVDT

| NE5520 | 4-142|
| LVDT Signal Conditioner | 4-143|

Sample and Hold

<table>
<thead>
<tr>
<th>Symbols and Definitions</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>LF198/298/398</td>
<td>4-144</td>
</tr>
<tr>
<td>SE/NE5537</td>
<td>4-145</td>
</tr>
</tbody>
</table>

| Monolithic Sample and Hold Circuit | 4-146|
| Sample and Hold Amplifier | 4-147|

4-2
Absolute Accuracy Error
Absolute Accuracy Error is the difference between the theoretical analog input required to produce a given output code and the actual analog input required to produce the same code. The actual input is a range and the error is the midpoint of the measured band and the theoretical band.

Absolute Maximum Ratings
The Absolute Maximum Ratings are the operating safe zones. Exceeding these limits could cause permanent damage to the device. The device is NOT guaranteed to operate at these limits.

Conversion Speed
Conversion Speed is the speed at which a converter can make repetitive conversions.

Conversion Time
Conversion time is the time required for a complete conversion cycle of an ADC. Conversion time is a function of the number of bits and the clock frequency.

Differential Non-Linearity (DNL)
Differential Non-Linearity of a DAC is the deviation of the measured output step size from the ideal step size. In an ADC it is the deviation in the range of inputs from 1 LSB that causes the output to change from one given code to the next code. Excessive DNL gives rise to non-monotonic behavior in a DAC and missing codes in an ADC.

Differential Non-Linearity Tempco
Differential Non-Linearity Tempco is the temperature coefficient of DNL and specifies how DNL changes with temperature.

Full Scale Tempco
Full Scale Tempco in a DAC is the change of full scale output with a change of temperature. In an ADC it is the change in the input required to cause full scale transition. Expressed in ppm/degree C.

Gain Error
Gain Error is the error of the slope of the line drawn through the midpoints of the steps of the transfer function as compared to the ideal slope. It is usually measured by determining the error of the analog input voltage to cause a full scale output word with the ideal value that should cause this full scale output. This gain error is usually expressed in LSB or in percent of full scale range.

Hysteresis Error
Hysteresis Error is the code transition voltage dependence relative to the direction from which the transition is approached.

Integral Non-Linearity
Integral Non-Linearity is the difference between the ideal transfer characteristic and the actual characteristic.

Least Significant Bit (LSB)
The Least Significant Bit is the lowest order bit, or the bit with the least weight.

Missing Code
A Missing Code is a code combination that does not appear in the ADC's output range.

Monotonicity
A DAC is monotonic if its output either increases or remains the same when the input code is incremented from any code to the next higher code.

Most Significant Bit (MSB)
The Most Significant Bit is the highest order bit, or the one with the most weight.

Offset Error
Offset error is the constant error or shift from the ideal transfer characteristic of a converter. In a DAC it is the output obtained when that output should be zero. In an ADC it is the difference between the input level that causes the first code transition and what that input level should be.

Output Voltage Compliance
Output Voltage Compliance of a current output DAC is the range of acceptable voltages at the DAC output for the DAC output current to remain within its specified limits.

Power Supply Sensitivity
Power Supply Sensitivity of a DAC is the change of output current or voltage with changes in the power supply voltage. In an ADC, it is the change in the transition points from code to code with changes in the power supply voltage.

Quantizing Error
In an A/D converter there is an infinite number of possible input levels, but only 2^n output codes ($n =$ number of bits). There will, therefore, be an error in the output code that could be as great as $\frac{1}{2}$ LSB because of this quantizing effect. The greatest error occurs at the transition point where the output state changes.

Relative Accuracy
Relative Accuracy is a measure of the difference of the theoretical output value with a given input after any offset and gain errors have been nulled out.

Resolution
Resolution is the number of bits at the input or output of an ADC or DAC. It is the number of discrete steps or states at the output and is equal to 2^n where n is the resolution of the converter. However, n bits of resolution does not guarantee n bits of accuracy.

Setting Time
Setting Time is the delay in a DAC from the 50 percent point on the change in the input digital code to the effed change in the output signal. It is expressed in terms of how long it takes the output to settle to and remain within a certain error band around the final value and is usually specific for full scale range changes.

Transfer Characteristic
The Transfer Characteristic is the relationship of the output to the input.

NOTE:
Refer to Section 9 (Interface Circuits) for an in-depth explanation of data converters and their applications.
D/A CONVERTERS

<table>
<thead>
<tr>
<th>DEVICE</th>
<th>BITS</th>
<th>ACC. %</th>
<th>CONV. SPEED (µs)</th>
<th>OUTPUT</th>
<th>INT. REF.</th>
<th>INT. LATCH</th>
<th>PACKAGE</th>
<th>TEMPERATURE RANGE</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>MC1408-7</td>
<td>8</td>
<td>0.39</td>
<td>0.07</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MC1408-8</td>
<td>8</td>
<td>0.19</td>
<td>0.07</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MC1508-8</td>
<td>8</td>
<td>0.19</td>
<td>0.07</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DAC08</td>
<td>8</td>
<td>0.19</td>
<td>0.07</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DAC08A</td>
<td>8</td>
<td>0.10</td>
<td>0.07</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DAC08C</td>
<td>8</td>
<td>0.39</td>
<td>0.07</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DAC08E</td>
<td>8</td>
<td>0.19</td>
<td>0.07</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DAC08H</td>
<td>8</td>
<td>0.10</td>
<td>0.07</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NE5018</td>
<td>8</td>
<td>0.19</td>
<td>0.2</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SE5018</td>
<td>8</td>
<td>0.19</td>
<td>0.2</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NE5019</td>
<td>8</td>
<td>0.10</td>
<td>0.2</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SE5019</td>
<td>8</td>
<td>0.10</td>
<td>0.2</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NE5118</td>
<td>8</td>
<td>0.19</td>
<td>2.3</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SE5118</td>
<td>8</td>
<td>0.19</td>
<td>2.3</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NE5119</td>
<td>8</td>
<td>0.10</td>
<td>2.3</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SE5119</td>
<td>8</td>
<td>0.10</td>
<td>2.3</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NE5020</td>
<td>10</td>
<td>0.10</td>
<td>5.0</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>± 1/2 LSB DNL</td>
<td></td>
</tr>
<tr>
<td>NE5410</td>
<td>10</td>
<td>0.05</td>
<td>0.25</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>± 1/2 LSB DNL</td>
<td></td>
</tr>
<tr>
<td>SE5410</td>
<td>10</td>
<td>0.05</td>
<td>0.25</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>± 1/2 LSB DNL</td>
<td></td>
</tr>
<tr>
<td>MC3410</td>
<td>10</td>
<td>0.05</td>
<td>0.25</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>± 1/2 LSB DNL</td>
<td></td>
</tr>
<tr>
<td>MC3510</td>
<td>10</td>
<td>0.05</td>
<td>0.25</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>± 1/2 LSB DNL</td>
<td></td>
</tr>
<tr>
<td>AM6012</td>
<td>12</td>
<td>0.05</td>
<td>0.25</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>± 1/2 LSB DNL</td>
<td></td>
</tr>
<tr>
<td>TDA1540D</td>
<td>14</td>
<td>0.012</td>
<td>0.5</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>Serial Input ± 1/2 LSB DNL</td>
<td></td>
</tr>
</tbody>
</table>

A/D CONVERTERS

<table>
<thead>
<tr>
<th>DEVICE</th>
<th>BITS</th>
<th>ACC.%</th>
<th>CONV. SPEED (µs)</th>
<th>INPUT</th>
<th>THREE-STATE OUTPUT</th>
<th>INT. REF.</th>
<th>INT. CLOCK</th>
<th>PACKAGE</th>
<th>TEMPERATURE RANGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>NE5034</td>
<td>8</td>
<td>0.19</td>
<td>17</td>
<td>V</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>NE5036</td>
<td>6</td>
<td>0.78</td>
<td>23</td>
<td>V</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>NE5037</td>
<td>6</td>
<td>0.78</td>
<td>9</td>
<td>V</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>FE</td>
<td></td>
</tr>
<tr>
<td>TDA1534</td>
<td>14</td>
<td>0.012</td>
<td>8.5</td>
<td>V</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>ADC0801-1</td>
<td>8</td>
<td>0.10</td>
<td>73</td>
<td>V</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>ADC0802-1</td>
<td>8</td>
<td>0.19</td>
<td>73</td>
<td>V</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>ADC0803-1</td>
<td>8</td>
<td>0.19</td>
<td>73</td>
<td>V</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>ADC0804-1</td>
<td>8</td>
<td>0.39</td>
<td>73</td>
<td>V</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>ADC0805-1</td>
<td>8</td>
<td>0.39</td>
<td>73</td>
<td>V</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

Note:
1. Automotive temperature range: -40 to +85°C
DESCRIPTION
The ADC0801 family is a series of five CMOS 8-bit successive approximation A/D converters using a resistive ladder and capacitive array together with an auto-zero comparator. These converters are designed to operate with microprocessor controlled buses using a minimum of external circuitry. The three-state output data lines can be connected directly to the data bus.

The differential analog voltage input allows for increased common-mode rejection and provides a means to adjust the zero scale offset. Additionally, the voltage reference input provides a means of encoding small analog voltages to the full 8 bits of resolution.

FEATURES
- Compatible with most microprocessors
- Differential inputs
- Three-state outputs
- Logic levels TTL and MOS compatible
- Can be used with internal or external clock
- Analog input range 0V to VCC
- Single 5V supply
- Guaranteed specification with 1MHz clock

APPLICATIONS
- Transducer to microprocessor interface
- Digital thermometer
- Digitally-controlled thermostat
- Microprocessor-based monitoring and control systems

ABSOLUTE MAXIMUM RATINGS

<table>
<thead>
<tr>
<th>SYMBOL & PARAMETER</th>
<th>RATING</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>VCC Supply Voltage</td>
<td>6.5</td>
<td>V</td>
</tr>
<tr>
<td>Logic Control Input Voltages</td>
<td>−0.3 to +16</td>
<td>V</td>
</tr>
<tr>
<td>All Other Input Voltages</td>
<td>−0.3 to (VCC +0.3)</td>
<td>V</td>
</tr>
<tr>
<td>TA Operating Temperature Range</td>
<td>−55 to +125</td>
<td>°C</td>
</tr>
<tr>
<td>ADC0801/02/03-1 F</td>
<td>−40 to +85</td>
<td>°C</td>
</tr>
<tr>
<td>ADC0801/02/03-1 LCF</td>
<td>−40 to +85</td>
<td>°C</td>
</tr>
<tr>
<td>ADC0804-1 CN</td>
<td>0 to +70</td>
<td>°C</td>
</tr>
<tr>
<td>TSSTG Storage Temperature</td>
<td>−65 to +150</td>
<td>°C</td>
</tr>
<tr>
<td>TSOLD Lead Soldering Temperature (10 seconds)</td>
<td>300</td>
<td>°C</td>
</tr>
<tr>
<td>PD Package Power Dissipation at TA = 25°C</td>
<td>875</td>
<td>mW</td>
</tr>
</tbody>
</table>

ORDER NUMBERS
ADC0801/02-1 F
ADC0801/02/03-1 LCF
ADC0801/02/03/04/05-1 LCN
ADC0804-1 CN
DC ELECTRICAL CHARACTERISTICS

ADC0801/2/3/4/5

<table>
<thead>
<tr>
<th>SYMBOL & PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>ADC0801/2/3/4/5</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADC0801 Relative Accuracy Error (Adjusted)</td>
<td>Full Scale Adjusted</td>
<td>Min Typ Max</td>
<td>LSB</td>
</tr>
<tr>
<td>ADC0802 Relative Accuracy Error (Unadjusted)</td>
<td>$\frac{V_{REF}}{2} = 2.500 V_{DC}$</td>
<td></td>
<td>LSB</td>
</tr>
<tr>
<td>ADC0803 Relative Accuracy Error (Adjusted)</td>
<td>Full Scale Adjusted</td>
<td></td>
<td>LSB</td>
</tr>
<tr>
<td>ADC0804 Relative Accuracy Error (Unadjusted)</td>
<td>$\frac{V_{REF}}{2} = 2.500 V_{DC}$</td>
<td></td>
<td>LSB</td>
</tr>
<tr>
<td>ADC0805 Relative Accuracy Error (Unadjusted)</td>
<td>$\frac{V_{REF}}{2}$ has no connection</td>
<td></td>
<td>LSB</td>
</tr>
<tr>
<td>$\frac{V_{REF}}{2}$ Input Resistance</td>
<td></td>
<td>400 640</td>
<td>Ω</td>
</tr>
<tr>
<td>Analog Input Voltage Range</td>
<td>Over Analog Input Voltage Range</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DC Common Mode Error</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power Supply Sensitivity</td>
<td>$V_{CC} = 5V \pm 10%$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CONTROL INPUTS

<table>
<thead>
<tr>
<th>SYMBOL & PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>ADC0801/2/3/4/5</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{IH} Logical “1” Input Voltage</td>
<td>$V_{CC} = 5.25V_{DC}$</td>
<td>2.0 15</td>
<td>V_{DC}</td>
</tr>
<tr>
<td>V_{IL} Logical “0” Input Voltage</td>
<td>$V_{CC} = 4.75V_{DC}$</td>
<td>0.8</td>
<td>V_{DC}</td>
</tr>
<tr>
<td>I_{IH} Logical “1” Input Current</td>
<td>$V_{IN} = 5V_{DC}$</td>
<td>0.005 1</td>
<td>µA_{DC}</td>
</tr>
<tr>
<td>I_{IL} Logical “0” Input Current</td>
<td>$V_{IN} = 0V_{DC}$</td>
<td>-1 -0.005</td>
<td>µA_{DC}</td>
</tr>
</tbody>
</table>

CLOCK IN AND CLOCK R

<table>
<thead>
<tr>
<th>SYMBOL & PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>ADC0801/2/3/4/5</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{T+} Clk In Positive-Going Threshold Voltage</td>
<td>$V_{OL} = 360µA, V_{CC} = 4.75 V_{DC}$</td>
<td>2.7 3.1 3.5</td>
<td>V_{DC}</td>
</tr>
<tr>
<td>V_{T-} Clk In Negative-Going Threshold Voltage</td>
<td>$V_{OH} = -360µA, V_{CC} = 4.75 V_{DC}$</td>
<td>1.5 1.8 2.1</td>
<td>V_{DC}</td>
</tr>
<tr>
<td>V_{H} Clk In Hysteresis $(V_{T+}) - (V_{T-})$</td>
<td>$I_{OL} = 1.6mA, V_{CC} = 4.75 V_{DC}$</td>
<td>0.6 1.3 2.0</td>
<td>V_{DC}</td>
</tr>
<tr>
<td>V_{OH} Logical “1” Clk R Output Voltage</td>
<td>$I_{OH} = -360µA, V_{CC} = 4.75 V_{DC}$</td>
<td>1.0 3.5</td>
<td>V_{DC}</td>
</tr>
<tr>
<td>I_{OL} 3-State Output Leakage</td>
<td>$I_{OL} = 1.0mA, V_{CC} = 4.75 V_{DC}$</td>
<td>0.4</td>
<td>V_{DC}</td>
</tr>
<tr>
<td>I_{OZH} 3-State Output Leakage</td>
<td>$I_{OZH} = 5V_{DC}, CS = Logical "1"$</td>
<td>0.4</td>
<td>V_{DC}</td>
</tr>
<tr>
<td></td>
<td>$V_{OUT} = OV_{DC}, CS = Logical "10"$</td>
<td>3</td>
<td>µA_{DC}</td>
</tr>
<tr>
<td>I_{SC} - Output Short Circuit Current</td>
<td>$V_{OUT} = V_{VCC}, T_A = 25°C$</td>
<td>4.5</td>
<td>mA_{DC}</td>
</tr>
<tr>
<td>I_{SC} - Output Short Circuit Current</td>
<td>$V_{OUT} = V_{VCC}, T_A = 25°C$</td>
<td>9.0</td>
<td>mA_{DC}</td>
</tr>
<tr>
<td>I_{PC} Power Supply Current</td>
<td>$I_{CLK} = 1MHz, V_{REF2} = Open$</td>
<td>3.0 3.5</td>
<td>mA</td>
</tr>
</tbody>
</table>

NOTE:

1. Analog inputs must remain within the range: $-0.05 \leq V_{IN} \leq V_{CC} + 0.05V$.
AC ELECTRICAL CHARACTERISTICS

<table>
<thead>
<tr>
<th>SYMBOL & PARAMETER</th>
<th>TO</th>
<th>FROM</th>
<th>TEST CONDITIONS</th>
<th>ADC0801/2/3/4/5</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Min</td>
<td>Typ</td>
</tr>
<tr>
<td>Conversion Time</td>
<td></td>
<td></td>
<td>$f_{\text{CLK}} = 1\text{MHz}$'</td>
<td>66</td>
<td>73</td>
</tr>
<tr>
<td>f_{CLK}</td>
<td></td>
<td></td>
<td>Clock Frequency</td>
<td>See Note 1.</td>
<td>0.1</td>
</tr>
<tr>
<td>Clock Duty Cycle</td>
<td></td>
<td></td>
<td>See Note 1.</td>
<td>40</td>
<td>60</td>
</tr>
<tr>
<td>CR</td>
<td></td>
<td></td>
<td>Free-Running Conversion Rate</td>
<td>$CS = 0$, $f_{\text{CLK}} = 1\text{MHz}$</td>
<td>INTR Tied To WR</td>
</tr>
<tr>
<td>t_{WRWR}</td>
<td></td>
<td></td>
<td>Start Pulse Width</td>
<td>$CS = 0$</td>
<td>30</td>
</tr>
<tr>
<td>t_{ACC}</td>
<td>Access Time</td>
<td>Output</td>
<td>RD</td>
<td>$CS = 0$, $C_L = 100 \text{ pF}$</td>
<td>75</td>
</tr>
<tr>
<td>$t_{\text{H-H}}$, t_{OH}</td>
<td>Three-State Control</td>
<td>Output</td>
<td>RD</td>
<td>$CL = 10 \text{ pF}$, $RL = 10K$</td>
<td>See Three-State Test Circuit</td>
</tr>
<tr>
<td>t_{INTR}, t_{RI}</td>
<td>INTR Delay</td>
<td>INTR</td>
<td>WD or RD</td>
<td>100</td>
<td>150</td>
</tr>
<tr>
<td>C_{IN}</td>
<td>Logic Input = Capacitance</td>
<td></td>
<td></td>
<td>5</td>
<td>7.5</td>
</tr>
<tr>
<td>C_{OUT}</td>
<td>Three-State Output Capacitance</td>
<td></td>
<td></td>
<td>5</td>
<td>7.5</td>
</tr>
</tbody>
</table>

NOTE:
1. Accuracy is guaranteed at $f_{\text{CLK}} = 1\text{MHz}$. Accuracy may degrade at higher clock frequencies.
FUNCTIONAL DESCRIPTION

The ADC0801 through ADC0805 series of A/D converters are successive approximation devices with 8-bit resolution and no missing codes. The most significant bit is tested first and after 64 clock cycles a digital 8-bit binary word is transferred to an output latch and the INTR pin goes low, indicating that conversion is complete. A conversion in progress can be interrupted by issuing another start command. The device may be operated in a continuous conversion mode by connecting the INTR and WR pins together and holding the CS pin low. To insure start-up when connected this way, an external WR pulse is required at power-up.

As the WR input goes low, when CS is low, the SAR is cleared and remains so as long as these two inputs are low. Conversion begins between 1 and 8 clock periods after at least one of these inputs goes high. As the conversion begins, the INTR line goes high. Note that the INTR line will remain low until 1 to 8 clock cycles after either the WR or the CS input (or both) goes high.

When the CS and RD inputs are both brought low to read the data, the INTR line will go low and the three-state output latches are enabled.

THREE-STATE TEST CIRCUITS AND WAVEFORMS

The digital control lines (CS, RD, and WR) operate with standard TTL levels and have been renamed when compared with standard A/D Start and Output Enable labels. For non-microprocessor based applications, the CS pin can be grounded, the WR pin can be interpreted as a START pulse pin, and the RD pin performs the OE (Output Enable) function.

The V\textsubscript{IN}(−) input can be used to subtract a fixed voltage from the input voltage. Because there is a time interval between sampling the V\textsubscript{IN}(+) and the V(−) inputs, it is important that these inputs remain constant, during the entire conversion cycle.
TIMING DIAGRAMS (All timing is measured from the 50% voltage points)

Note: Read strobe must occur 8 clock periods (8/fCLK) after assertion of interrupt to guarantee reset of INTR.
LINEAR LSI PRODUCTS

8-BIT HI-SPEED A/D CONVERTER

DESCRIPTION
The NE5034 is a high-speed microprocessor-compatible 8-bit Analog-to-Digital converter. It uses the successive approximation conversion technique, and includes the comparator, reference DAC, SAR, an internal clock and three-state buffers all on the same chip.

The converter can accommodate a wide analog input voltage range, bipolar or unipolar, selectable through external input resistors. An external capacitor controls the internal clock frequency, providing conversion times down to 17μs. Faster conversion times are possible using an external clock.

Microprocessor interfacing requirements are simple, allowing analog-to-digital conversion with a minimum of external components.

FEATURES
- 8-bit resolution and accuracy
- Accepts unipolar or bipolar inputs
- Three-state output buffers for easy microprocessor interface
- Choice of internal or external clocking
- Short conversion time, 17μs typical using internal clock

APPLICATIONS
- All microprocessor-based monitoring and control systems requiring analog signal inputs.
- Typical applications include: Automated process control, machine tools, robots, test and measurement instruments, environmental controls
- Other applications include: Ratiometric A/D conversion, very high resolution A/D conversion systems requiring high speed 8-bit building blocks

ABSOLUTE MAXIMUM RATINGS

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>RATING</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>VCC+</td>
<td>0 to +6</td>
<td>V</td>
</tr>
<tr>
<td>VCC−</td>
<td>0 to −15</td>
<td>V</td>
</tr>
<tr>
<td>IREF</td>
<td>1.5</td>
<td>mA</td>
</tr>
<tr>
<td>IN</td>
<td>5.0</td>
<td>mA</td>
</tr>
<tr>
<td>VO</td>
<td>6.0</td>
<td>V</td>
</tr>
<tr>
<td>Analog GND to Digital GND</td>
<td>1.0</td>
<td>V</td>
</tr>
<tr>
<td>VL</td>
<td>−1 to VCC+</td>
<td>V</td>
</tr>
<tr>
<td>PD</td>
<td>1000</td>
<td>mW</td>
</tr>
<tr>
<td>TA</td>
<td>0 to +70</td>
<td>°C</td>
</tr>
<tr>
<td>TSTG</td>
<td>−65 to +150</td>
<td>°C</td>
</tr>
<tr>
<td>TSOLD</td>
<td>300</td>
<td>°C</td>
</tr>
</tbody>
</table>

BLOCK DIAGRAM

PIN CONFIGURATION

<table>
<thead>
<tr>
<th>PIN</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>DB0</td>
<td>LSB (LSB)</td>
</tr>
<tr>
<td>DB1</td>
<td></td>
</tr>
<tr>
<td>DB2</td>
<td></td>
</tr>
<tr>
<td>DB3</td>
<td></td>
</tr>
<tr>
<td>DB4</td>
<td></td>
</tr>
<tr>
<td>DB5</td>
<td></td>
</tr>
<tr>
<td>DB6</td>
<td></td>
</tr>
<tr>
<td>DB7</td>
<td></td>
</tr>
<tr>
<td>OE</td>
<td></td>
</tr>
</tbody>
</table>

ORDER NUMBERS
NE5034F
DC ELECTRICAL CHARACTERISTICS \(V_{CC} = 5.0\text{V}, V_{CC} = -12\text{V}, 0^\circ C < T_A < 70^\circ C \) unless otherwise specified

<table>
<thead>
<tr>
<th>SYMBOL AND PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resolution</td>
<td></td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>Bits</td>
</tr>
<tr>
<td>Relative accuracy error(^{1,2})</td>
<td></td>
<td>±1/2</td>
<td>LSB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(V_{CC+}) Positive supply range</td>
<td></td>
<td>4.75</td>
<td>5.0</td>
<td>5.25</td>
<td>V</td>
</tr>
<tr>
<td>(V_{CC-}) Negative supply range</td>
<td></td>
<td>-11.4</td>
<td>-12</td>
<td>-12.6</td>
<td>V</td>
</tr>
<tr>
<td>(E_{FS}) Full scale gain error</td>
<td>(I_{REF} = 1.0\text{mA}, T_A = 25^\circ C)</td>
<td>±2</td>
<td>±5</td>
<td>±1</td>
<td>LSB</td>
</tr>
<tr>
<td>(E_{ZS}) Zero scale offset error</td>
<td>(I_{REF} = 1.0\text{mA}, T_A = 25^\circ C)</td>
<td>0.5</td>
<td>1</td>
<td></td>
<td>LSB</td>
</tr>
<tr>
<td>(P_s) Power supply rejection(^3)</td>
<td>(I_{REF} = 1.0\text{mA}, V_{CC} + 4.75 \text{to} + 5.25\text{V}, V_{CC} - 11.4 \text{to} - 12.6\text{V})</td>
<td>±1/2</td>
<td>LSB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(V_{IH}) Logic 1 input voltage ((\text{STRT and OE}))</td>
<td></td>
<td>2.0</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>(V_{IL}) Logic 0 input voltage ext. clock</td>
<td></td>
<td>2.4</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>(V_{IL}) Logic 0 input voltage ((\text{STRT and OE}))</td>
<td></td>
<td>0.8</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>(I_{IH}) Logic 1 input current ((\text{STRT and OE}))</td>
<td>(V_{IN} = 2.4\text{V})</td>
<td>20</td>
<td></td>
<td></td>
<td>(\mu\text{A})</td>
</tr>
<tr>
<td>(I_{IH}) Logic 1 input current ext. clock</td>
<td>(V_{IN} = 2.4\text{V})</td>
<td>100</td>
<td></td>
<td></td>
<td>(\mu\text{A})</td>
</tr>
<tr>
<td>(I_{IL}) Logic 0 input current ((\text{STRT and OE}))</td>
<td>(V_{IN} = 0.4\text{V})</td>
<td>-20</td>
<td>-100</td>
<td></td>
<td>(\mu\text{A})</td>
</tr>
<tr>
<td>(I_{IL}) Logic 0 input current ext. clock</td>
<td>(V_{IN} = 0.7\text{V})</td>
<td>-100</td>
<td></td>
<td></td>
<td>(\mu\text{A})</td>
</tr>
<tr>
<td>(V_{OL}) Logic 0 output voltage</td>
<td>(I_{OL} = 1.6\text{mA}, \text{OE} = 0.8\text{V})</td>
<td>0.4</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>(V_{OH}) Logic 1 output voltage</td>
<td>(I_{OH} = 400\mu\text{A}, \text{OE} = 0.8\text{V})</td>
<td>2.4</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>(I_{OZ}) Three-state leakage</td>
<td>(\text{OE} = 2.0\text{V}, V_{OL} = 0\text{V}) or 5\text{V}</td>
<td>±10</td>
<td></td>
<td></td>
<td>(\mu\text{A})</td>
</tr>
<tr>
<td>(I_{CC+}) Positive supply current</td>
<td>(V_{CC} = 5\text{V}, V_{CC} = -12\text{V})</td>
<td>16</td>
<td>36</td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>(I_{CC-}) Negative supply current</td>
<td>(V_{CC} = 5\text{V}, V_{CC} = -12\text{V})</td>
<td>-11</td>
<td>-22</td>
<td></td>
<td>mA</td>
</tr>
</tbody>
</table>

NOTES
1. Relative accuracy is defined as the deviation at the code transition point from the ideal code transition point on a straight line drawn from zero scale to full scale of the device.
2. Specifications given in LSBs refer to the weight of the least significant bit at the 8-bit level which is 0.39\% of the full scale voltage.
3. MAX change in full scale.

AC ELECTRICAL CHARACTERISTICS \(V_{+} = +5\text{V}, V_{-} = -12\text{V}, T_A = 25^\circ C \)

<table>
<thead>
<tr>
<th>SYMBOL & PARAMETER</th>
<th>TO</th>
<th>FROM</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Internal clock frequency</td>
<td></td>
<td>(C_L = 60\text{pF}) (See Figure 1)</td>
<td>500</td>
<td></td>
<td></td>
<td>KHz</td>
<td></td>
</tr>
<tr>
<td>External clock frequency</td>
<td></td>
<td></td>
<td></td>
<td>700</td>
<td></td>
<td></td>
<td>KHz</td>
</tr>
<tr>
<td>(T_w) (\text{STRT}) pulse width</td>
<td></td>
<td></td>
<td>Clock freq. = 500KHz</td>
<td>400</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>External clock pulse width positive/negative</td>
<td></td>
<td></td>
<td></td>
<td>600</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>Set up time(^1)</td>
<td></td>
<td></td>
<td>See Figure 3</td>
<td>300</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>(t_{p}) (out data) propagation delay</td>
<td>data out</td>
<td>(\text{OE})</td>
<td>See Figure 2</td>
<td>50</td>
<td>200</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>(t_{p}) (out (\text{DR})) propagation delay</td>
<td>data ready out</td>
<td>8th clock</td>
<td>See Figure 3</td>
<td>700</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>(t_{p}) (3-state) propagation delay 3-state</td>
<td>high impedance o/p</td>
<td>(\text{OE})</td>
<td>See Figure 2</td>
<td>60</td>
<td>200</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>(t_{p}) (DB0) propagation delay</td>
<td>DB0</td>
<td>(\text{DR})</td>
<td>See Figure 3</td>
<td>500</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>(t_{p}) (SDR) (\text{STRT}) low to (\text{DR}) high</td>
<td>data ready high</td>
<td>(\text{STRT}) low</td>
<td>See Figure 3</td>
<td>700</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
</tbody>
</table>

NOTE
1. See description of "Set up time".
LINEAR LSI PRODUCTS

8-BIT HI-SPEED A/D CONVERTER NE5034

TYPICAL PERFORMANCE CHARACTERISTICS

INTERNAL CLOCK FREQUENCY vs EXTERNAL CAPACITOR (CL)

CONVERSION TIME vs CLOCK FREQUENCY

FIGURE 1

TEST LOAD CIRCUITS

DATA OUTPUT HIGH

DATA READY

5K (10.5V)

DATA (13·STATE)

Vcc = + 5V

5K (- 0.1V)

OE (TR LEVELS)

OE (3·STATE)

DATA OUTPUT LOW

DATA READY

5K (+ 5V)

DATA (13·STATE)

Vcc = + 5V

OE (3·STATE)

FIGURE 2
FUNCTIONAL PIN DEFINITIONS

DATA READY (DR)
This is an output pin used to indicate that a conversion is in progress. DR goes to a logic "1" when STRT is at a logic "0". At the completion of a conversion DR returns to a logic "0". There is a delay (MAX 0.5µs) from the time DR goes to "0" to the time DB0 data is valid.

DB0-DB7
Eight three-state data outputs each with a drive capability of one TTL load. DB0 is the LSB and DB7 is the MSB.

OE
Output enable input. When OE is at a logic "1" the data outputs assume a high impedance state. With OE at a logic "0", data is placed on the outputs. Data appearing on the outputs is only valid if both OE and DR are at logic "0" (see note on DR timing).

STRT
This pin is used to reset the converter and start a new conversion. A logic "0" applied to this pin for a minimum of 400ns will reset the converter to a condition with DB7 at a logic "1" and all other data outputs at logic "0". It will also cause DR to go to a logic "1" (see timing diagrams for delay times). Conversion will start with the 1st clock pulse after STRT returns to a logic "1" (see notes on set up time required). A STRT pulse while a conversion is taking place will cause the conversion to be aborted and the converter will reset. (See notes on short-cycle operation.)

CLK IN
An external capacitor between this pin and ground generates the internal clock pulses. (See diagram for clock frequency vs capacitor value). In order to synchronize the internal clock, to the start pulse A diode, (small signal type e.g., 1N914) should be connected between STRT and CLK IN (see Figures 4 and 5). Without this diode the start pulse could occur at a time which could cause one of the conditions described in the Note on "set up" time. Applying an external TTL-or MOS-compatible clock to this pin slavels the NE5034 to external clock frequency. In this case, the diode is not required but the "set up" time requirements should be noted.

BASIC CIRCUIT DESCRIPTION
The NE5034 is an 8-bit A/D converter which incorporates the successive-approximation conversion method. Upon receipt of the STRT pulse, successive bits, beginning with the MSB (DB7), are applied to the input of the Internal 8-bit current output DAC by the i'th successive-approximation register (SAR) (see Block Diagram).

The comparator determines whether the output current of the DAC is greater or less than the input current converted from the unknown analog input voltage through an external input resistor. If the DAC output current is greater, the data latch for the trial bit is reset to a '0'; if it is less, the trial data bit stays at '1'. After all the bits from DB7 to DB0 have been tried, the SAR contains a valid 8-bit binary output code which accurately represents the unknown analog input to within ±1/2 LSB (±0.2%). This binary output will now remain in the SAR until another STRT pulse is applied.

During the successive-approximation sequence, the DATA READY signal remains at '1'. Upon completion of the conversion, the signal goes to a '0', indicating that data is valid and ready. If the OE input is left at a '0' during the conversion, the DATA OUTPUT shows the conversion sequence (see short cycle section). When the OE line is made a logic '1', the output buffers will go to a high impedance state and will remain so until the OE is returned to a '0' state.

TIMING DESCRIPTION
The timing diagram shown in Figure 7 shows the successive trial and decisions for each data bit.

With STRT at a logic "0" the converter is reset to a condition with DB7 at a logic "1", DR at a logic "1" and DB0-DB6 at logic "0". Conversion starts after STRT returns to a logic "1". Starting with DB7 each bit is tried in turn, with the decision point being at the time of the positive going edge of the clock. Starting with the first positive edge after STRT returns to logic "1" (see note on "set up" time). The 8th positive going edge makes the decision on DB0 (LSB) and also causes DR to return to a logic "0" to indicate the conversion is complete. (See note on DR timing.)

SHORT-CYCLE OPERATION
In applications where less than 8 bits of resolution are required the NE5034 can be operated to achieve shorter conversion times. No hard wire changes are required to perform "short-cycling".

Conversion to X number of bits is completed at the end of X + 0.5 clock cycles (after a start pulse) DR will still be at a logic "1" state.

OE can be used to 3-state the outputs even during short-cycle operation.
BASIC SET-UP DIAGRAM
UNIPOLAR INPUT VALUES (0–10V)

EXTERNAL CLOCK (IF USED) STRAY DATA OUTPUT READY ENABLE

UNKNOWN ANALOG VOLTAGE INPUT

ANALOG GROUND + VCC - VCC

NE5034

FIGURE 4.

BASIC SET-UP DIAGRAM
BIPOLAR INPUT VALUES (± 10V RANGE)

EXTERNAL CLOCK (IF USED) STRAY DATA OUTPUT READY ENABLE

UNKNOWN ANALOG VOLTAGE INPUT

ANALOG GROUND + VCC - VCC

NE5034

FIGURE 5.

FIGURE 6. SUGGESTED ZERO/FULL SCALE ADJUST CIRCUIT
SET UP TIME
When using an external clock, the positive going edge of the start pulse must be synchronized to the clock pulse. There is a "set up" time of 300ns required between the time of the start pulse returning to a logic "1" and the next positive going edge of the clock.

If the positive edge of the start pulse occurs less than 300ns prior to the positive clock edge, one of the following conditions will occur:

a) The converter recognizes the clock pulse and converts as normal.
b) The conversion starts one clock pulse later.
c) The conversion never starts, this will be indicated by the fact that DR does not return to logic "0". In this case a new start pulse will be required.

DATA READY (DR) TIMING
After DR returns to a logic "0" indicating a conversion is complete there is a time delay of 500ns before the data at DBO output (the Least Significant Bit) is valid.

ZERO OFFSET (NEGATIVE FULL SCALE) CALIBRATION PROCEDURES
1. Apply continuous start pulses to the STRT input.
2. Apply 1/2 LSB in the case of unipolar operation, or 1/2 LSB above -FS in the case of bipolar operation to the analog input.
3. Observe all data outputs after each conversion has been completed.
4. Adjust the potentiometer connected to VREF IN until the LSB flickers between '0' and '1', and all other data outputs stay '0' following each conversion.

FULL SCALE (POSITIVE FULL SCALE) CALIBRATION:
1. Apply continuous start pulses to the STRT input.
2. Apply full scale minus 1/2 LSB to the analog input.
3. Observe all data outputs after each conversion is completed.
4. Adjust the voltage applied to VREF IN (Figure 4) until the LSB varies between '0' and '1', and all other data outputs stay '1' after each conversion.

UNIPOLAR BINARY OPERATION:
A standard connection for a 0 to 10V unipolar binary operation, with VREF IN equal to +5 volts, is shown in Figure 4. The NE5034 can quantize full scale ranges of 1V to 10V. It should be noted, however, that for smaller full scale ranges, the accuracy and speed will degrade.

The input voltage versus output code relationship for unipolar operation is shown in Table 1. The full scale range is 2 times VREF IN.

Table 1. Unipolar—Binary

<table>
<thead>
<tr>
<th>ANALOG INPUT</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOTES 1, 2, 3</td>
</tr>
<tr>
<td>MSB</td>
</tr>
<tr>
<td>FS-1 LSB</td>
</tr>
<tr>
<td>FS-2 LSB</td>
</tr>
<tr>
<td>3/4 FS</td>
</tr>
<tr>
<td>1/2 FS + 1 LSB</td>
</tr>
<tr>
<td>1/2 FS</td>
</tr>
<tr>
<td>1/2 FS - 1 LSB</td>
</tr>
<tr>
<td>1/4 FS</td>
</tr>
<tr>
<td>1 LSB</td>
</tr>
<tr>
<td>0</td>
</tr>
</tbody>
</table>

Table 2. Bipolar—Offset Binary

<table>
<thead>
<tr>
<th>ANALOG INPUT</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOTES 1, 3, 4</td>
</tr>
<tr>
<td>MSB</td>
</tr>
<tr>
<td>+ (FS - 1 LSB)</td>
</tr>
<tr>
<td>+ (FS - 2 LSB)</td>
</tr>
<tr>
<td>+ (1/2 FS)</td>
</tr>
<tr>
<td>+ (1 LSB)</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>- (1 LSB)</td>
</tr>
<tr>
<td>- (1/2 FS)</td>
</tr>
<tr>
<td>- (FS - 1 LSB)</td>
</tr>
<tr>
<td>- FS</td>
</tr>
</tbody>
</table>

BIPOLAR (OFFSET BINARY) OPERATION:
A standard connection for a -5 to +5V or -10 to +10V bipolar operation is shown in Figure 5.

NOTEs:
1. Analog inputs shown are nominal center values of code.
2. "FS" is full scale, i.e., 2XVREF IN (Unipolar mode).
3. 1 LSB equals (2 - 6) (FS).
4. "FS" is full scale, i.e., VREF IN (Bipolar mode).
DESCRIPTION
The NE5036 is an easy to use, low cost, successive approximation Analog to Digital converter, fabricated in Bipolar/LSI technology, and packaged in a convenient 8-pin mini dip package.

With an external reference voltage, the NE5036 will accept input voltages between 0V and VREF. Holding the START pin low for at least 8 clock pulses in duration will provide the 6-bit result of the conversion in a serial format.

FEATURES
- Three-state output buffer for easy µProcessor interfacing
- Fast successive approximation converter, 23µsec
- LSI compatible inputs and outputs
- Easy interface to CMOS µProcessors
- Guaranteed no missing codes over full operating range
- Single supply operation, + 5V
- High impedance analog inputs
- Positive true binary serial output

APPLICATIONS
- Temperature control
- µP-based appliances
- Light level monitor
- Electronic toys
- Joystick interface
- µP/Transducer interface

ABSOLUTE MAXIMUM RATINGS

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>RATING</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>VCC (Power supply voltage)</td>
<td>7</td>
<td>V</td>
</tr>
<tr>
<td>VREF (Reference voltage)</td>
<td>7</td>
<td>V</td>
</tr>
<tr>
<td>VIN (Analog) Digital input voltage (START & CLOCK)</td>
<td>7</td>
<td>V</td>
</tr>
<tr>
<td>DOUT (Data output pin) Three-state mode</td>
<td>7</td>
<td>V</td>
</tr>
<tr>
<td>DOUT (Enabled mode)</td>
<td>20</td>
<td>mA</td>
</tr>
<tr>
<td>AGND (Analog GND to digital GND)</td>
<td>± 1</td>
<td>V</td>
</tr>
<tr>
<td>TA (Operating temperature range)</td>
<td>0 to 70</td>
<td>°C</td>
</tr>
<tr>
<td>Tstg (Storage temperature range)</td>
<td>-65 to 150</td>
<td>°C</td>
</tr>
<tr>
<td>tSoid (Lead soldering temperature)</td>
<td>300</td>
<td>°C</td>
</tr>
<tr>
<td>PD (Power dissipation)</td>
<td>220</td>
<td>mW</td>
</tr>
<tr>
<td>N package</td>
<td>220</td>
<td>mW</td>
</tr>
</tbody>
</table>

NOTES:
1. SOL—Released in large SO package only
2. SOL and non-standard pinout.
3. SO and non-standard pinouts.

BLOCK DIAGRAM
DC Electrical Characteristics

$V_{CC} = 5.0V; V_{REF} = 2.0V; Clock = 350kHz; 0\degree C \leq T_A \leq 70\degree C$ unless otherwise specified. Typical values are specified at 25\degree C.

<table>
<thead>
<tr>
<th>SYMBOL AND PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resolution</td>
<td></td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>Bits</td>
</tr>
<tr>
<td>Relative accuracy1,2</td>
<td></td>
<td>$1/4$</td>
<td>$1/2$</td>
<td>$1/2$</td>
<td>LSB</td>
</tr>
<tr>
<td>V_{CC} Positive supply voltage</td>
<td></td>
<td>$+4.75$</td>
<td>$+5.0$</td>
<td>$+5.50$</td>
<td>V</td>
</tr>
<tr>
<td>ϵ_{FS} Full scale gain error2,3,4</td>
<td>$V_{REF} = 2.0V, T_A = 25\degree C$</td>
<td>± 1</td>
<td>± 2</td>
<td>LSB</td>
<td></td>
</tr>
<tr>
<td>ϵ_{ZS} Zero scale offset error2</td>
<td>$V_{REF} = 2.0V, T_A = 25\degree C$</td>
<td>$\pm 1/2$</td>
<td>$1/2, +2$</td>
<td>LSB</td>
<td></td>
</tr>
<tr>
<td>P_{SR} Power supply rejection</td>
<td>Max change in full scale2</td>
<td>$V_{REF} = 2.0V$</td>
<td>$+1/2$</td>
<td>$+1$</td>
<td>LSB</td>
</tr>
<tr>
<td>I_{IN} Analog input bias current</td>
<td>$0 \leq V_{IN} \leq 2.5V$</td>
<td>1</td>
<td>10</td>
<td>μA</td>
<td></td>
</tr>
<tr>
<td>I_{REF} Reference bias current</td>
<td>$0 \leq V_{REF} \leq 2.5V$</td>
<td>1</td>
<td>10</td>
<td>μA</td>
<td></td>
</tr>
<tr>
<td>R_{IN} Analog input resistance</td>
<td>3</td>
<td>30</td>
<td>MO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_{IH} Logic '1' input voltage</td>
<td></td>
<td>2.0</td>
<td>0.8</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>I_{IL} Logic '0' input current</td>
<td></td>
<td>10</td>
<td>μA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{OH} Logic '1' output current</td>
<td></td>
<td>10</td>
<td>μA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{OL} Logic '0' output current</td>
<td></td>
<td>1.6</td>
<td>± 40</td>
<td>μA</td>
<td></td>
</tr>
<tr>
<td>I_{OZ} Three-state leakage current</td>
<td></td>
<td>14</td>
<td>24</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>I_{CC} Positive supply current</td>
<td></td>
<td>3.5</td>
<td>2.4</td>
<td>mA</td>
<td></td>
</tr>
</tbody>
</table>

AC Electrical Characteristics

$V_{CC} = 5.0V; V_{REF} = 2.0V; Clock = 350kHz; 0\degree C \leq T_A \leq 70\degree C$ unless otherwise specified. Typical values are specified at 25\degree C. (Refer to test figures.)

<table>
<thead>
<tr>
<th>SYMBOL AND PARAMETER</th>
<th>FROM</th>
<th>TO</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>f_{MAX} Max clock frequency</td>
<td>START</td>
<td>Clock</td>
<td>Clock cycles</td>
<td>350</td>
<td>8</td>
<td>kHz</td>
<td></td>
</tr>
<tr>
<td>f_{CONV} Conversion time</td>
<td>Data out</td>
<td>START</td>
<td>μS</td>
<td>1.3</td>
<td>500</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>t_W Clock pulse width</td>
<td>Data (3-State)</td>
<td>Clock</td>
<td>START</td>
<td>600</td>
<td>600</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>t_S Setup time, START to clock6</td>
<td>Data (3-State)</td>
<td>.Clock</td>
<td>START</td>
<td>600</td>
<td>600</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>$t_{P(OUT)}$ Propagation delay4</td>
<td>Data out</td>
<td>START</td>
<td>ns</td>
<td>600</td>
<td>600</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>$t_{P(STATE)}$ Propagation delay4</td>
<td>Data (3-State)</td>
<td>Clock</td>
<td>START</td>
<td>600</td>
<td>600</td>
<td>ns</td>
<td></td>
</tr>
</tbody>
</table>

NOTES

1. Relative accuracy is defined as the deviation of the code transition points from the ideal code transition points on the straight line drawn from zero scale to full scale of the device.

2. Specifications given in LSB's refer to the weight of the least significant bit at the bit level which is 1.56% of the full scale voltage.

3. Full scale gain error is the deviation of the code transition point (111110 to 111111) from its ideal value (accounting for offset error at 000000).

4. The analog input voltage (V_{IN}) range is from 0V to V_{REF} nominally, with the output remaining at 111111 even though the input may increase from V_{REF} to V_{CC}. (For optimum performance V_{REF} can be any value from 1.5V to 2.5V.)

5. The high to low transition of the START pulse should occur at least 500ns prior to the negative edge of the clock pulse to insure its recognition. The START pulse should stay high for at least 500ns between conversions to guarantee proper recognition.

4-18
6-BIT A/D CONVERTER (SERIAL OUTPUT) NE5036

CIRCUIT DESCRIPTION

NE5036 is a complete 6-bit, serial output, A/D converter which incorporates the successive approximation method. The chip includes the internal control logic, the successive approximation register (SAR), 6-bit DAC, comparator and the output buffer. An externally generated clock source (max freq = 350 kHz) must be provided to pin 6. An external reference voltage supplied to pin 2 sets the full scale range of the A/D converter as shown in the Block Diagram.

Upon the START pin going low, successive approximation conversion commences after the first low going edge of the clock pulse. Successive bits, beginning with the MSB (D5) are applied to the input of the internal 6-bit current output DAC by the \(12\) successive approximation register.

The comparator determines whether the output current of the DAC is greater or less than the input current, converted from the unknown analog input voltage through the \(\text{V}_{\text{I}}\) converter. If the DAC output is greater, that bit of the DAC is set to 0 and simultaneously the output buffer goes to 0. If it is less, that bit stays at 1 and the output buffer goes to 1. After the second high to low transition of the clock pulse, the MSB (D5) data is valid. On successive clock pulses, successive bits are tried and the output buffer represents that bit. START has to stay low for at least 8 clock pulses for the conversion to be completed and to access the 6-bit result of the conversion. A conversion in process can be interrupted by issuing another START pulse.

When START is in a high state, the output buffer is in a high impedance state.

The timing diagram for the device is shown in Figure 1.

TRANSFER CHARACTERISTICS

The NE5036 is designed to have a nominal 1/2 LSB offset, so that the code transition points are located 1/2 LSB on either side of the exact analog input for a given code. Thus the first transition (000000 to 000001) will occur at an input of 1/2 LSB (15.63mV with a \(V_{\text{REF}}\) of 2.0V), plus any offset. Subsequent transition (to full scale — 111111) will occur at 62.5 LSB (1.953V at \(V_{\text{REF}}\) of 2.0V).

The ideal transfer characteristic of NE5036 is shown in Figure 2.

LAYOUT PRECAUTIONS

Analog ground (pin 4) and Digital ground (pin 5) are not connected internally and should be connected together as close to the device as possible for optimum performance. The leads to the analog inputs should be kept as short as possible to minimize input noise pickup. Input bypass capacitors from the analog inputs to ground will eliminate noise pickup. Power supplies should be decoupled with at least 1uF and should be located close to the device to minimize the effects of noise spikes on \(V_{\text{CC}}\).

The reference input and the analog voltage input must both remain stable during conversion to insure accuracy and proper operation. This can be done by adequately bypassing these inputs and/or keeping the impedance at these inputs at or below 2K-ohms.
TYPICAL PERFORMANCE CHARACTERISTICS

ZERO SCALE OFFSET ERROR vs TEMPERATURE

ZERO SCALE OFFSET ERROR vs \(V_{CC} \)

ZERO SCALE OFFSET ERROR vs \(V_{REF} \)

FULL SCALE GAIN ERROR vs TEMPERATURE

FULL SCALE GAIN ERROR vs \(V_{CC} \)

FULL SCALE GAIN ERROR vs \(V_{REF} \)

\(I_{OL} \) vs TEMPERATURE (DATA OUTPUT)

\(I_{OH} \) vs TEMPERATURE (DATA OUTPUT)

\(I_{CC} \) vs TEMPERATURE
AC TEST CIRCUITS AND WAVEFORMS

PROPAGATION DELAY TIME t_p (DATA)

DATA OUTPUT (LOW TO HIGH)

<table>
<thead>
<tr>
<th>$V_{CC} = +5V$</th>
<th>$V_{REF} = +2V$</th>
</tr>
</thead>
<tbody>
<tr>
<td>START (TTL LEVELS)</td>
<td>350kHz CLOCK (TTL LEVELS)</td>
</tr>
</tbody>
</table>

DATA OUTPUT (HIGH TO LOW)

<table>
<thead>
<tr>
<th>$V_{CC} = +5V$</th>
<th>$V_{REF} = +2V$</th>
</tr>
</thead>
<tbody>
<tr>
<td>START (TTL LEVELS)</td>
<td>350kHz CLOCK (TTL LEVELS)</td>
</tr>
</tbody>
</table>

START

$T_p = T_f = 20\,\text{ns}$

CLOCK

DATA

HIGH "2" STATE

Invalid Data

Valid Data

T_{PLH} T_{PHL} $T_{P(3\text{-STATE})}$
TYPICAL APPLICATION

1. BASIC NE5036 CONFIGURATION

```
+5V
SERIAL DATA OUT

NE5036

VOLTAGE REFERENCE

ANALOG INPUT

4.22

1.0F

1.0F

4.7F

1.0F

Vcc

1.0F

1.0F

2.0F

+5V

START

EXTERNAL CLOCK
```

2. DIGITAL COMMUNICATIONS USING NE5036

```
TRANSDUCER

ANALOG INPUT

NE5036 A/D CONVERTER

SERIAL DATA OUTPUT

ENCODER/TRANSMITTER

ENCODED SIGNAL OUT

RECEIVER/DECODER

DECODED SIGNAL

SHIFT REGISTER

D/A CONVERTER NE5018

ANALOG OUTPUT

REGISTER ACCEPTS SERIAL INPUT DATA, FEED D/A IN PARALLEL
```
LINEAR LSI PRODUCTS

6-BIT A/D CONVERTER (PARALLEL OUTPUTS) NE5037

DESCRIPTION
The NE5037 is a low cost, complete successive approximation analog to digital (A/D) converter, fabricated in Bipolar/L2L technology. With an external reference voltage, the NE5037 will accept input voltages between 0V and VREF. An external START pulse of at least 300ns in duration will provide the 6-bit result of the conversion in parallel format. Full conversion with no missing codes occurs in 9μs.

APPLICATIONS
- Temperature control
- P-based appliances
- Level monitors
- Head position sensing
- Electronic toys
- Joystick interface

FEATURES
- T2L compatible inputs and outputs
- Three state output buffer
- Easy interface to CMOS μProcessors
- Fast conversion—9μs
- Guaranteed no missing codes over full temp range
- Single supply operation, +5V
- Positive true binary outputs
- High impedance analog inputs

ABSOLUTE MAXIMUM RATINGS

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>RATING</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>VCC</td>
<td>7</td>
<td>V</td>
</tr>
<tr>
<td>VREF</td>
<td>7</td>
<td>V</td>
</tr>
<tr>
<td>VIN (Analog)</td>
<td>7</td>
<td>V</td>
</tr>
<tr>
<td>VIN (Digital)</td>
<td>7</td>
<td>V</td>
</tr>
<tr>
<td>DOUT</td>
<td>7</td>
<td>V</td>
</tr>
<tr>
<td>EOC</td>
<td>5</td>
<td>mA</td>
</tr>
<tr>
<td>VCC</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>±1</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>0 to 70</td>
<td></td>
<td>°C</td>
</tr>
<tr>
<td>−65 to 150</td>
<td></td>
<td>°C</td>
</tr>
<tr>
<td>300</td>
<td></td>
<td>°C</td>
</tr>
<tr>
<td>F package</td>
<td>220</td>
<td>mW</td>
</tr>
<tr>
<td>N package</td>
<td>220</td>
<td>mW</td>
</tr>
</tbody>
</table>

BLOCK DIAGRAM
LINEAR LSI PRODUCTS

6-BIT A/D CONVERTER (PARALLEL OUTPUTS) NE5037

DC ELECTRICAL CHARACTERISTICS

<table>
<thead>
<tr>
<th>SYMBOL AND PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resolution</td>
<td></td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>Bit^n</td>
</tr>
<tr>
<td>Relative accuracy^1,2</td>
<td></td>
<td>1/4</td>
<td>1/2</td>
<td></td>
<td>LSB</td>
</tr>
<tr>
<td>V_CC</td>
<td>Positive supply voltage</td>
<td>+ 4.75</td>
<td>+ 5.0</td>
<td>+ 5.50</td>
<td>V</td>
</tr>
<tr>
<td>t_FS</td>
<td>Full scale gain error^2,3,4</td>
<td>V_REF = 2.0V, T_A = 25°C</td>
<td>± 1</td>
<td>± 2</td>
<td>LSB</td>
</tr>
<tr>
<td>t_ZS</td>
<td>Zero scale offset error^2</td>
<td>V_REF = 2.0V, T_A = 25°C</td>
<td>± 1/2</td>
<td>- 1/2, + 2</td>
<td>LSB</td>
</tr>
<tr>
<td>P_SR</td>
<td>Power supply rejection Max change in full scale^2</td>
<td>V_REF = 2.0V</td>
<td>± 1/2</td>
<td>± 1</td>
<td>LSB</td>
</tr>
<tr>
<td>l_IN</td>
<td>Analog input bias current</td>
<td>0 ≤ V_IN ≤ 2.5V</td>
<td>1</td>
<td>10</td>
<td>µA</td>
</tr>
<tr>
<td>l_REF</td>
<td>Reference bias current</td>
<td>0 ≤ V_REF ≤ 2.5V</td>
<td>1</td>
<td>10</td>
<td>µA</td>
</tr>
<tr>
<td>R_IN</td>
<td>Analog input resistance</td>
<td>3</td>
<td>30</td>
<td>300 Ω</td>
<td></td>
</tr>
<tr>
<td>V_H</td>
<td>Logic '1' input voltage</td>
<td>2.0</td>
<td>0.8</td>
<td>10</td>
<td>V</td>
</tr>
<tr>
<td>V_L</td>
<td>Logic '0' input voltage</td>
<td>0.8</td>
<td>10</td>
<td>µA</td>
<td></td>
</tr>
<tr>
<td>I_H</td>
<td>Logic '1' input current</td>
<td>1</td>
<td>10</td>
<td>µA</td>
<td></td>
</tr>
<tr>
<td>I_L</td>
<td>Logic '0' input current</td>
<td>1</td>
<td>10</td>
<td>µA</td>
<td></td>
</tr>
<tr>
<td>I_OH</td>
<td>Logic '1' output current^5</td>
<td>V_OH = 2.4V</td>
<td>300</td>
<td>± 0.1</td>
<td>µA</td>
</tr>
<tr>
<td>I_OC</td>
<td>Logic '0' output current^5</td>
<td>V_DL = 0.4V</td>
<td>300</td>
<td>± 0.1</td>
<td>µA</td>
</tr>
<tr>
<td>I_OZ</td>
<td>Three-state leakage current</td>
<td>± 0.1</td>
<td>± 40</td>
<td>40</td>
<td>mA</td>
</tr>
<tr>
<td>l_CC</td>
<td>Positive supply current</td>
<td>18</td>
<td>24</td>
<td>24</td>
<td>mA</td>
</tr>
</tbody>
</table>

AC ELECTRICAL CHARACTERISTICS

<table>
<thead>
<tr>
<th>SYMBOL AND PARAMETER</th>
<th>TO</th>
<th>FROM</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>f_MAX</td>
<td></td>
<td></td>
<td>Maximum clock frequency</td>
<td>1</td>
<td></td>
<td>MHz</td>
<td></td>
</tr>
<tr>
<td>t_W</td>
<td></td>
<td></td>
<td>Start pulse width</td>
<td>300</td>
<td></td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>t_CONV</td>
<td></td>
<td></td>
<td>Minimum positive/negative clock pulse width</td>
<td>300</td>
<td></td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>t_DOUT, DATA</td>
<td></td>
<td></td>
<td>Conversion time</td>
<td>300</td>
<td></td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>t_EOC</td>
<td></td>
<td></td>
<td>Propagation delay^6 EOC</td>
<td>Data out</td>
<td>ØE</td>
<td>T_A = 25°C, t_s = t_L = 20ns</td>
<td>9</td>
</tr>
<tr>
<td>t_EOC</td>
<td></td>
<td></td>
<td>Propagation delay^7 EOC</td>
<td>Clock</td>
<td>T_A = 25°C, t_s = t_L = 20ns</td>
<td>500</td>
<td>ns</td>
</tr>
<tr>
<td>t_OS, 3-STATE</td>
<td></td>
<td></td>
<td>Propagation delay, 3-state</td>
<td>3-State Data</td>
<td>ØE</td>
<td>T_A = 25°C, t_s = t_L = 20ns</td>
<td>500</td>
</tr>
</tbody>
</table>

NOTES

1. Resolution is defined as the deviation of the code transition points from the ideal code transition points on a straight line drawn from zero scale to full scale of the device.
2. Specifications given in LSB's refer to the weight of the least significant bit at the 6 bit level which is 1.56% of the full scale voltage.
3. Full scale gain error is the deviation of the full scale code transition point (111110 to 111111) from its ideal value.
4. The analog input voltage (V_IN) range is 0V to V_REF nominally, with the output remaining at 111111 even though the input may increase from V_REF to V_CC. (For optimum performance, V_REF can be any value from 1.5V to 2.5V.)
5. The data outputs have active pull-ups. The EOC line is open collector with a nominal 5kΩ internal pull-up resistor.
6. Propagation delay of data outputs is defined as the delay in the data outputs reading their final value after the low going edge of ØE.
7. Propagation delay of ØE is defined as the delay in ØE going low, following the low going edge of the 9th clock pulse after the start pulse.

CIRCUIT DESCRIPTION

NE5037 is a complete 6-bit, parallel output, microprocessor compatible, A/D converter which incorporates the successive approximation method. The chip includes the internal control logic, the successive approximation register (SAR), 6-bit DAC, comparator and output buffers. An externally generated clock source (max frequency = 1MHz) must be provided to pin 6. An external reference voltage supplied to pin 2 sets the full scale range of the A/D converter.

The CS pin must be at a low level prior to the start of the conversion process. Upon receipt of a START pulse the internal control logic resets the SAR. On the first low going edge of the clock pulse, successive approximation conversion commences. Successful bits beginning with the MSB (D5) are supplied to the input of the internal 6-bit current output DAC by the PL successive approximation register.

The comparator determines whether the output current of the DAC is greater or less than the input current, converted from the unknown analog input voltage through the V/I converter. If the DAC output is greater, that bit of the DAC is set to '0' and simultaneously the corresponding
output buffer goes to '0'. If it is less, that bit stays at '1' and the output buffer also stays at '1'. On successive clock pulses, successive bits of the DAC are tried and the corresponding output buffer represents the bits of the DAC. On the eighth low going edge of the clock pulse (after the receipt of the start pulse), the EOC pin goes low, thereby indicating that the conversion is complete. The output data is now valid. In order to access the result of the conversion, the OE pin must be set to a low level. EOC is reset to a high state when OE is low. When OE is in a '1' state, the output buffers are in a high impedance state.

Refer to Figure 1 for the timing diagram.

TRANSFER CHARACTERISTICS

The ideal transfer characteristic of the NE5037 is shown in Figure 2.

The NE5037 is designed to have a nominal 1/2 LSB offset so that the code transition points are located 1/2 LSB on either side of the exact analog inputs for a given code. Thus the first transition (000000 to 000001) will occur at an input of 1/2 LSB (15.63mV with a VREF of 2.0V). Subsequent transitions will occur at nominal increments of 1 LSB. The last transition (to full scale—111111) will occur at 62.5 LSB (1.953V at VREF of 2.0V).

LAYOUT PRECAUTIONS

Analog ground (pin 4) and Digital ground (pin 5) are not connected internally and should be connected together as close to the device as possible, for optimum performance. The circuit will operate with as much as ±200mV between the two grounds but some degradation will occur. The leads to the analog inputs should be kept as short as possible to minimize noise pickup. Input bypass capacitors from the analog inputs to ground will eliminate noise pickup. Power supplies should be decoupled with at least 1µF located close to the device to minimize the effects of noise spikes.

The reference input and the analog voltage input must both remain stable during conversion to insure accuracy and proper operation. This can be done by adequately bypassing these inputs and/or keeping the impedance of these inputs at or below 2K-ohms.
TYPICAL PERFORMANCE CHARACTERISTICS

ZERO SCALE OFFSET ERROR vs TEMP

- For $V_{CC} = 5.0V$, $V_{REF} = 2.0V$
- T_a in °C
- Error ±1
- Error ±0.75
- Error ±0.5
- Error ±0.25

FULL SCALE GAIN ERROR vs TEMP

- For $V_{CC} = 5.0V$, $V_{REF} = 2.0V$
- T_a in °C
- Error ±2
- Error ±1
- Error ±0.5

I_{OL} vs TEMP (DATA OUTPUTS)

- For $V_{CC} = 5.0V$
- $I_{OL} @ V_{OL} = 0.4V DC$
- T_a in °C
- I_{OL} in mA

I_{CC} vs TEMP

- For $V_{REF} = 2.0V$
- $V_{CC} = 5.0V$
- $V_{CC} = 5.5V$
- $V_{CC} = 4.75V$
- T_a in °C
- I_{CC} in mA

I_{OH} vs TEMP (EOC)

- For $V_{CC} = 5.0V$
- $I_{OH} @ V_{OH} = 2.4V DC$
- T_a in °C
- I_{OH} in mA

ZERO SCALE OFFSET ERROR vs V_{REF}

- For $V_{CC} = 5.0V$
- $T_a = 25°C$
- V_{REF} in V
- Error ±3
- Error ±1
- Error ±0.5

FULL SCALE GAIN ERROR vs V_{REF}

- For $V_{CC} = 5.0V$
- $T_a = 25°C$
- V_{REF} in V
- Error ±2
- Error ±1
- Error ±0.5

I_{OL} vs TEMP (EOC)

- For $V_{CC} = 5.0V$
- $I_{OH} @ V_{OH} = 2.4V DC$
- T_a in °C
- I_{OH} in mA

I_{OH} vs TEMP (DATA OUTPUTS)

- For $V_{CC} = 5.0V$
- $I_{OH} @ V_{OH} = 2.4V DC$
- T_a in °C
- I_{OH} in mA
AC TEST CIRCUITS AND WAVEFORMS

PROPAGATION DELAY TIME \(t_p (\text{DATA}) \) AND \(t_p (3\cdot\text{STATE}) \)

DATA OUTPUT HIGH

PROPAGATION DELAY TIME \(t_p (\text{EOC}) \)
APPLICATION

- 0 to 63°C Temperature Sensor

CIRCUIT DESCRIPTION

The temperature sensor of Figure 3A provides an input to Pin 3 of the NE5037 of 32 millivolts per degree Celsius. This 32mV is the value of one LSB for the NE5037. The LM334 is a three-terminal temperature sensor and provides a current of 1 microamp for each degree Kelvin. The 32K-ohm resistor provides the 32 millivolts for each microamp through it, while the transistor bleeds off 273 microamps of the temperature sensor (LM334) current, lowering the reading by 273 degrees Kelvin, thus converting from Kelvin to Celsius.

To read temperature, conversion is started by sending a momentary low signal to Pin 7 of the NE5037. When Pin 10 of the NE5037 goes low, conversion is complete and a low is applied to Pin 9 of the NE5037 to read data on Pins 11 through 16. Note that this temperature data is in straight binary format.

The controller can be a microprocessor in a temperature control application, or discrete circuitry in a simple temperature reporting application. A temperature reporting (digital thermometer) circuit is shown in Figure 3B. The ROMs or PROMs...
must have the correct code for converting the data from the NE5037 (used as address for the ROMs or PROMs) to the appropriate segment driver codes.

The displayed output could easily be converted to degrees Fahrenheit by the controller of Figure 3A or through the (P)ROMs of Figure 3B. When doing this, a third (hundreds) digit (P)ROM and display will, of course, be needed for displaying temperatures above 99°F.

An inexpensive clock can be made from NAND gates or inverters, as shown in Figure 3C.

Circuit Adjustment

Adjust VR2 for about 1/4 of maximum resistance. With the sensor (LM334) stable at a known temperature near the lower end of the expected range of temperature readings, adjust VR1 for a drop of 2.73 volts across the (10K) emitter resistor of Q1. Set reference voltage at Pin 2 of the NE5037 for 2 volts and adjust VR2 for a digital reading corresponding to the known temperature.

Because high accuracy is not necessary in many applications, this is often all the adjustment necessary and yields an indicated temperature that is within 3 degrees Celsius of actual temperature. Should higher accuracy be required, adjustment of the NE5037 reference voltage at Pin 2 is needed. After performing the above adjustments, bring the sensor temperature to a value near the maximum expected reading (but not above 63 degrees Celsius) and adjust the reference voltage at Pin 2 of the NE5037 for a digital output indication of the known temperature. Then stabilize the sensor again at a temperature near the low end of the expected range of readings and adjust VR1 for a digital indication of that known temperature. This procedure will provide an accuracy of ±1 degree Celsius.

![Figure 3C. Simple Clock Circuit](image)
DESCRIPTION
The Am6012 12-Bit multiplying Digital-to-Analog converter provides high speed and 0.025% differential nonlinearity over its full commercial temperature range.

The D/A converter uses a 3-bit segment generator for the MSBs in conjunction with a 9-bit R-2R diffused resistor ladder to provide 12-bit resolution without costly trimming processes. This technique guarantees a very uniform step size (up to ± ½ LSB from the ideal), monotonicity to 12 bits and integral nonlinearity to 0.05% at its differential current outputs.

The dual complementary outputs of the Am6012 increase its versatility, and effectively double the peak-to-peak output swing. Digital inputs, in addition, can be configured to accept all popular logic families.

While the device requires a reference input of 1mA for a 4mA full scale current, operation is nearly independent of power supply voltage shifts. The power supply rejection ratio is ±0.001%FS/%ΔV. The devices will work from +5, −12V to ±18V rails, with as low as 230mW power consumption typical.

FEATURES
- 12-bit resolution
- Accurate to within ±0.05%
- Monotonic over temperature
- Fast settling time, 250ns typical
- Trimless design for low cost
- Differential current outputs
- High-speed multiplying capability
- Full scale current, 4mA (with 1mA reference)
- High output compliance voltage, −5 to +10V
- Low power consumption, 230mW

APPLICATIONS
- CRT displays, computer graphics
- Robotics, and machine tools
- Automatic test equipment
- Programmable power supplies
- CAD/CAM systems
- Data acquisition and control systems
- Analog-to-Digital converter systems

ABSOLUTE MAXIMUM RATINGS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating Temperature</td>
<td>0°C to +70°C</td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>−65°C to +150°C</td>
</tr>
<tr>
<td>Lead Temperature (Soldering, 60 sec)</td>
<td>300°C</td>
</tr>
<tr>
<td>Power Supply Voltage</td>
<td>±18V</td>
</tr>
<tr>
<td>Logic Inputs</td>
<td>−5V to +18V</td>
</tr>
<tr>
<td>Voltage Across Current Outputs</td>
<td>−8V to +12V</td>
</tr>
<tr>
<td>Reference Inputs V_{14}, V_{15}</td>
<td>V_- to V_+</td>
</tr>
<tr>
<td>Reference Input Differential Voltage (V_{14} to V_{15})</td>
<td>±18V</td>
</tr>
<tr>
<td>Reference Input Current (I_{+})</td>
<td>1.25mA</td>
</tr>
</tbody>
</table>

BLOCK DIAGRAM
12-BIT MULTIPLYING DIGITAL-TO-ANALOG CONVERTER

Am6012

ELECTRICAL CHARACTERISTICS: \(V_+ = +15V, V_- = -15V, I_{REF} = 1.0mA, 0^\circ C \leq T_A \leq 70^\circ C \)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Test Conditions</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resolution</td>
<td></td>
<td></td>
<td>12</td>
<td></td>
<td></td>
<td>Bits</td>
</tr>
<tr>
<td>Monotonicity</td>
<td></td>
<td></td>
<td>12</td>
<td></td>
<td></td>
<td>Bits</td>
</tr>
</tbody>
</table>
| D.N.L. | Differential Nonlinearity | \(V_{REF} = 10.000V \)
\(R_{14} - R_{15} = 10.000k\Omega \)
\(T_A = 25^\circ C \) | 3.995 | 3.999 | 4.063 | mA |
| N.L. | Nonlinearity | Deviation from ideal straight line | -- | -- | ±0.05 | %FS | |
| \(I_{FS} \) | Full Scale Current | \(I_{FS} = 1.0mA \) | 3.995 | 3.999 | 4.063 | mA |
| \(T_{Cl_{FS}} \) | Full Scale Tempco | | -- | ±10 | ±40 | ppm/°C |
| \(V_{OC} \) | Output Voltage Compliance | D.N.L. Specification guaranteed over compliance range | \(R_{OUT} > 10 \) megohms typ. | -- | 5 | 10 | Volts |
| \(I_{FBSS} \) | Symmetry | \(I_{FS} = 1.0mA \) | -- | ±0.4 | ±2.0 | μA |
| \(I_{ZS} \) | Zero Scale Current | | -- | 0.10 | | μA |
| \(t_s \) | Settling Time | To ±1/2 LSB, all bits ON or OFF, \(T_A = 25^\circ C \) | -- | 25 | 50 | nsec |
| \(t_{PLH} \) | Propagation Delay | 50% to 50% | | | | nsec |
| \(C_{OUT} \) | Output Capacitance | | | 20 | | pF |
| \(V_{IL} \) | Logic Input Levels | Logic "0" | -- | | 0.8 | Volts |
| \(V_{IH} \) | Logic Input Levels | Logic "1" | | | | |
| \(I_{IN} \) | Logic Input Current | \(V_{IN} = -5 \) to +18V | -- | | 40 | μA |
| \(V_{IS} \) | Logic Input Swing | \(V_- = -15V \) | -- | 5 | 18 | Volts |
| \(I_{REF} \) | Reference Current Range | | 0.2 | 1.0 | 1.1 | mA |
| \(I_{SB} \) | Reference Bias Current | | 0 | -0.5 | -2.0 | μA |
| \(dl/dt \) | Reference Input Slew Rate | \(R_{S(\text{eq})} = 8000\Omega \)
\(CC = 0pF \) | 4.0 | 8.0 | | mA/μs |
| \(PSSI_{FS+} \) | Power Supply Sensitivity | \(V_+ = +13.5V \) to +16.5V, \(V_- = -15V \) | -- | ±0.0005 | ±0.001 | %FS/°C |
| \(PSSI_{FS-} \) | Power Supply Sensitivity | \(V_- = -13.5V \) to -16.5V, \(V_+ = +15V \) | -- | ±0.00025 | ±0.001 | %FS/°C |
| \(V_- \) | Power Supply Range | \(V_{OUT} = 0V \) | 4.5 | | 18 | Volts |
| \(I_- \) | Power Supply Current | \(V_+ = +5V, V_- = -15V \) | 5.7 | 8.5 | | mA |
| \(I_+ \) | Power Supply Current | \(V_+ = +15V, V_- = -15V \) | | 5.7 | 8.5 | |
| \(I_- \) | Power Supply Current | \(V_+ = +15V, V_- = -15V \) | | 13.7 | 18.0 | |
| \(P_D \) | Power Dissipation | \(V_+ = +5V, V_- = -15V \) | | 234 | 312 | mW |
| | | \(V_+ = +15V, V_- = -15V \) | | 291 | 397 | |
CIRCUIT DESCRIPTION

The Am6012 is a 12-bit DAC which uses different resistor values and requires no trimming to guarantee monotonicity over the temperature range. A segmented DAC design guarantees a more uniform step size over the temperature range than is normally available with trimmed 12-bit converters. The converter features differential high compliance current outputs, wide supply range, and a multiplying reference input.

In many converter applications, uniform step size is more important than conformance to an ideal straight line. Many 12-bit converters are used for high resolution rather than high linearity, since few transducers are more linear than ±0.1%. All classic binary weighted converters require ±1/2 LSB (±0.012%) linearity in order to guarantee monotonicity, which requires very tight resistor matching and tracking. The Am6012 uses conventional bipolar processing to achieve high differential linearity and monotonicity without requiring correspondingly high linearity, or conformance to an ideal straight line.

One design approach which provides monotonicity without requiring high linearity is the MOS switch-resistor string. This circuit is actually a full complement to a current switched R-2R DAC since it is slower, has a voltage output, and if implemented at the 12-bit level would use 4096 low tolerance resistors rather than a minimum number of high tolerance resistors as in the R-2R network. Its lack of speed and density for 12 bits are its drawbacks.

With the segmented DAC approach, the 4096 required output levels are composed of 8 groups of 512 steps each. Each step group is generated by a 9-bit DAC, and each of the segment slopes is determined by one of 8 equal current sources. The resistors which determine monotonicity are in the 9-bit DAC. The major carry of the 9-bit DAC is repeated in each of the 8 segments, and requires eight times lower initial resistor accuracy and tracking to maintain a given differential nonlinearity over temperature.

The operation of the segmented DAC may be visualized by assuming an input code of all zeroes. The first segment current \(I_0 \) is divided into 512 levels by the 9-bit multiplying DAC and fed to the output \(I_{OUT} \). As the input code increases, a new segment current is selected for each 512 counts. The previous segment is fed to output \(I_{OUT} \) where the new step group is added to it, thus ensuring monotonicity independent of segment resistor values. All higher order segments feed \(I_{OUT} \).

With the segmented DAC approach, the precision of the 8 main resistors determines linearity only. The influence of each of these resistors on linearity is four times lower than that of the MSB resistor in an R-2R DAC. Hence, assuming the same resistor tolerances for both, the linearity of the segmented approach would actually be higher than that of an R-2R design.

The step generator or 9-bit DAC is composed of a master and a slave ladder. The slave ladder generates the four least significant bits from the remainder of the master ladder by active current splitting utilizing scaled emitters. This saves ladder resistors and greatly reduces the range of emitter scaling required in the 9-bit DAC. All current switches in the step generator are high speed fully differential switches which are capable of switching low currents at high speed. This allows the use of a binary scaled network all the way to the least significant bit which saves power and simplifies the circuitry.

Diffused resistors have advantages over thin film resistors beyond simple economy and bipolar process compatibility. The resistors are fabricated in single crystal rather than amorphous material which gives them better long term stability and tracking and much higher moisture resistance. They are diffused at 1000°C and so are resistant to changes in value due to thermal and chemical causes. Also, no burn-in is required for stability. The contact resistance between aluminum and silicon is more predictable than between aluminum and an amorphous thin film, and no sandwich metals are required to enhance or protect the contact or limit alloying. The initial match between two diffused resistors is similar to that of thin film since both are defined by photomasks and chemical etching. Since the resistors are not trimmed or altered after fabrication, their tracking and long term characteristics are not degraded.

DIFFERENTIAL vs INTEGRAL NONLINEARITY

Integral nonlinearity, for the purposes of the discussion, refers to the “straightness” of the line drawn through the individual response points of a data converter. Differential nonlinearity, on the other hand, refers to the deviation of the spacing of the adjacent points from a 1 LSB ideal spacing. Both may be expressed as either a percentage of full scale output or as fractional LSBs or both. The graphs in Figure 1 define the manner in which these parameters are specified. The left graph shows a portion of the transfer curve of a DAC with 1/2 LSB INL and the (implied) DNL spec of 1LSB. Below this is a graphic representation of the way this would appear on a CRT screen where the Am6012 is used as a display driver. On the right is a portion of the transfer curve of a DAC specified for 2LSB INL with 1/2 LSB DNL specified and the graphic display below it.

One of the characteristics of an R-2R DAC in standard form is that any transition which causes a zero LSB change (i.e. the same output for two different codes) will exhibit the same output each time that transition occurs. The same holds true for transitions causing a 2LSB change. These two problem transitions are allowable for the standard definition of monotonicity and also allow the device to be specified very tightly for INL. The major problem arising from this error type is in A/D converter implementations. Inputs producing the same output are now represented by ambiguous output codes for an identical input. Also, 2LSB gaps can cause large errors at those input levels (assuming 1/2 LSB quantizing levels). It can be seen from the two figures that the DNL specified for a DAC with 1/2 LSB INL and the (implied) DNL spec of 1LSB. Below this is a graphic representation of the way this would appear on a CRT screen where the Am6012 is used as a display driver. On the right is a portion of the transfer curve of a DAC specified for 2LSB INL with 1/2 LSB DNL specified and the graphic display below it.

ANALOG OUTPUT CURRENTS

Both true and complemented output sink currents are provided where \(I_{OUT} + I_{OUT}' = I_{F} \). Current appears at the “true” output when a “1” is applied to each logic input. As the binary count increases, the sink current at pin 18 increases proportionally, in the fashion of a “positive logic” D/A converter. When a “0” is applied to any input bit, that current is turned off at pin 18 and turned on at pin 19. A decreasing logic count increases \(I_{F} \) as in a negative or inverter logic D/A converter. Both outputs may be used simultaneously. If one of the outputs is not required it must still be connected to ground or to a point capable of sourcing \(I_{F} \); do not leave an unused output pin open.

Both outputs have an extremely wide voltage compliance enabling fast direct current-to-voltage conversion through a resistor tied to ground or other voltage source. Positive compliance is 25V above \(V^- \) and is independent of the positive supply. Negative compliance is +10V above \(V^+ \).
LINEAR LSI PRODUCTS

12-BIT MULTIPLYING DIGITAL-TO-ANALOG CONVERTER Am6012

DIFFERENTIAL LINEARITY COMPARISON

The dual outputs enable double the usual peak-to-peak load swing when driving loads in quasi-differential fashion. This feature is especially useful in cable driving, CRT deflection and in other balanced applications such as driving center-tapped coils and transformers.

POWER SUPPLIES
The Am6012 operates over a wide range of power supply voltages from a total supply of 20V to 36V. When operating with \(V \) supplies of -10V or less, \(I_{\text{REF}} \leq 1 \text{mA} \) is recommended. Low reference current operation decreases power consumption and increases negative compliance, reference amplifier negative common mode range, negative logic input range, and negative logic threshold range; consult the various figures for guidance. For example, operation at -9V with \(I_{\text{REF}} = 1 \text{mA} \) is not recommended because negative output compliance would be reduced to near zero. Operation from lower supplies is possible however at least 8V total must be applied to insure turn-on of the internal bias network.

Symmetrical supplies are not required, as the Am6012 is quite insensitive to variations in supply voltage. Battery operation is feasible as no ground connection is required; however, an artificial ground may be used to insure logic swings, etc. remain between acceptable limits.

TEMPERATURE PERFORMANCE
The nonlinearity and monotonicity specifications of the Am6012 are guaranteed to apply over the entire rated operating temperature range. Full scale output current drift is tight, typically \(\pm 10 \text{ppm/°C} \), with zero scale output current and drift essentially negligible compared to 1/2 LSB.

The temperature coefficient of the reference resistor R14 should match and track that of the output resistor for minimum overall full scale drift.

SETTLING TIME
The Am6012 is capable of extremely fast settling times, typically 250ns at
The Am6012 is a multiplying D/A converter in which the output current is the product of a digital number and the input reference current. The reference current may be fixed or may vary from nearly zero to +1.0mA. The full range output current is a linear function of the reference current and is given by:

\[I_{FR} = 4095 \times 4 \times (I_{REF}) = 3.999 \times I_{REF} \]

where \(I_{REF} = I_{14} \)

In positive reference applications, an external positive reference voltage forces current through R14 into the \(V_{REF(+)} \) terminal (pin 14) of the reference amplifier. Alternatively, a negative reference may be applied to \(V_{REF(-)} \) at pin 15. Reference current flows from ground through R14 into \(V_{REF(+)} \) as in the positive reference case. This negative reference connection has the advantage of a very high impedance presented at pin 15. The voltage at pin 14 is equal to and tracks the voltage at pin 15 due to the high gain of the internal reference amplifier. R15 (nominally equal to R14) is used to cancel bias current errors. (Figure 2a)

Bipolar references may be accommodated by offsetting \(V_{REF} \) or pin 15. The negative common-mode range of the reference amplifier is given by: \(V_{CM(-)} = V_{-} + (I_{REF} \times 3k\Omega) + 1.8V \). The positive common-mode range is \(V_{+} \) less 1.23V.

When a DC reference is used, a reference bypass capacitor is recommended. A 5V TTL logic supply is not recommended as a reference. If a regulated power supply is used as a reference, R14 should be split into two resistors with the junction bypassed to ground with a 0.1\(\mu \)F capacitor. (Figure 3)

For most applications the tight relationship between \(I_{REF} \) and \(I_{FR} \) will eliminate the need for trimming \(I_{REF} \). If required, full scale trimming may be accomplished by adjusting the value of R14, or by using a potentiometer for R14.

MULTIPLYING OPERATION

The Am6012 provides excellent multiplying performance with an extremely linear relationship between \(I_{REF} \) and \(I_{FR} \) over a range of 1mA to \(1\mu \)A. Monotonic operation is maintained over a typical range of \(I_{REF} \) from \(100\mu \)A to 1.0mA.

REFERENCE AMPLIFIER COMPENSATION FOR MULTIPLYING APPLICATIONS

AC reference applications will require the reference amplifier to be compensated using a capacitor from pin 16 to \(V_{-} \). The value of this capacitor depends on the impedance presented to pin 14. For \(R_{14} \) values of 1.0, 2.5 and 5.0k\(\Omega \); minimum values of \(C_{C} \) are 5, 12 and 25\(\mu \)F. Larger values of \(R_{14} \) require proportionately increased values of \(C_{C} \) for proper phase margin. (See Figure 2b)

For fastest response to a pulse, low values of \(R_{14} \) enabling small \(C_{C} \) values should be used. If pin 14 is driven by a high impedance such as a transistor current source, none of the above values will suffice and the amplifier must be heavily compensated which will decrease overall bandwidth and slew rate. For \(R_{14} = 1k\Omega \) and \(C_{C} = 5pF \), the reference amplifier slews at 4mA/ms enabling a transition from \(I_{REF} = 0 \) to \(I_{REF} = 1mA \) in 250ns.

Operation with pulse inputs to the reference amplifier may be accomplished by an alternate compensation scheme. This technique provides lowest full scale transition times. An internal clamp allows quick recovery of the reference amplifier from a cutoff \(I_{REF} = 0 \) condition. Full scale transition (0 to 1mA) occurs in 62.5ns when the equivalent impedance at pin 14 is 8000 and \(C_{C} = 0 \). This yields a reference slew rate of 8mA/µs which is relatively independent of \(R_{IN} \) and \(V_{IN} \) values.

LOGIC INPUTS

The Am6012 design incorporates a unique logic input circuit which enables direct interface to all popular logic families and provides maximum noise immunity. This feature is made possible by the large input swing capability, 40µA logic input current, and completely adjustable logic threshold voltage. For \(V_{-} = -15V \), the logic inputs may swing between -5 and +10V. This enables direct interface with +15V CMOS logic, even when the Am6012 is powered from a +5V supply. Minimum input logic swing and minimum logic threshold voltage are given by: \(V_{-} \) plus \((I_{REF} \times 3k\Omega) \) plus 1.8V. The logic threshold may be adjusted over a wide range by placing an appropriate voltage at the logic threshold control pin (pin 13, \(V_{LC} \)). For TTL interface, simply ground pin 13. When interfacing ECL, an \(I_{REF} \leq 1mA \) is recommended. For interfacing other logic families, see block titled “Interfacing With Various Logic Families.” For general setup of the logic control circuit, it should be noted that pin 13 will sink 1.1mA typical, external circuitry should be designed to accommodate this current (Figure 3).
12-BIT MULTIPLYING DIGITAL-TO-ANALOG CONVERTER

Reference Amplifier Biasing

Reference Configuration	R₁₄	R₁₅	Rₙ	Cᵢ	Iᵣₑᶠ
Positive Reference | Vᵣ⁺ | 0V | N/C | .₀₁μF | Vᵣ⁺/R₁₄
Negative Reference | 0V | Vᵣ⁻ | N/C | .₀₁μF | -Vᵣ⁻/R₁₄
Lo Impedance Bipolar Reference | Vᵣ⁺ | 0V | Vᵢn | (Note 1) | (Vᵣ⁺/R₁₄) + (Vᵢn/Rₙ) (Note 2)
Hi Impedance Bipolar Reference | Vᵣ⁺ | Vᵢn | N/C | (Note 1) | (Vᵣ⁺ - Vᵢn)/R₁₄ (Note 3)
Pulsed Reference (Note 4) | Vᵣ⁺ | 0V | Vᵢn | No Cap | (Vᵣ⁺/R₁₄) + (Vᵢn/Rₙ)

Notes:
1. The compensation capacitor is a function of the impedance seen at the + Vᵣ input and must be at least 5pF x R₁₄(eq) in kΩ. For R₁₄ < 800Ω no capacitor is necessary.
2. For negative values of Vᵢn, Vᵣ⁺/R₁₄ must be greater than -Vᵢn Max/Rₙ so the amplifier is not turned off.
3. For positive values of Vᵢn, Vᵣ⁺ must be greater than Vᵢn Max so the amplifier is not turned off.
4. For pulsed operation, Vᵣ⁺ provides a DC offset and may be set to zero in some cases. The impedance at pin 1₄ should be 800Ω or less.
5. For optimum settling time, decouple Vᵢ with 200 and bypass with 22pF tantalum capacitor.
6. Reference current and reference resistor — there is a 1 to 4 scale factor between the reference current (Iᵣₑᶠ) and the full scale output current (Iₛ). If Vᵣₑᶠ = +10V and Iₛ = 4mA, the value of the R₁₄ is:

\[R₁₄ = \frac{4 \times 10 \text{ Volt}}{4 \text{mA}} = 10kΩ \]

R₁₄ = R₁₅

Figure 2a

Minimum Size Compensation Capacitor
(Iₛ = 4mA, Iᵣₑᶠ = 1.0mA)

<table>
<thead>
<tr>
<th>R₁₄(eq)(kΩ)</th>
<th>Cᵢ(pF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>50</td>
</tr>
<tr>
<td>5</td>
<td>25</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>.5</td>
<td>0</td>
</tr>
</tbody>
</table>

Note: A 0.₀₁μF capacitor is recommended for fixed reference operation.

Figure 2b
LINEAR LSI PRODUCTS

12-BIT MULTIPLYING DIGITAL-TO-ANALOG CONVERTER Am6012

INTERFACING CIRCUITS FOR ECL, CMOS, HTL LOGIC INPUTS

CMOS, HTL

\[+15V \]

\[\text{2N3904} \]

\[3k\Omega \]

\[20k\Omega \]

\[\text{TO PIN 13} \]

\[810 \]

\[V_{LC} \]

ECL

\[-5.2V \]

\[\text{2N3904} \]

\[3k\Omega \]

\[39k\Omega \]

\[\text{TO PIN 13} \]

\[5.2k\Omega \]

NOTES:
1. Set the voltage "A" to the desired logic input switching threshold.
2. Allowable range of logic threshold is typically -5V to +13.5V when operating the DAC on ±15V supplies.

Figure 3

ACCOMMODATING BIPOLAR REFERENCE

\[V_{IN} \]

\[\text{Am6012} \]

\[R_{IN} \]

\[R_{REF} \]

\[I_{REF} \]

\[15 \]

\[10 \]

\[19 \]

\[I_{REF} > \text{PEAK NEGATIVE SWING OF } I_{IN} \]

\[V_{REF}^{(+)} \]

\[R_{REF} = R_{15} \]

\[R_{15} \]

\[(\text{OPTIONAL}) \]

\[V_{IN} \]

\[\text{HIGH INPUT IMPEDANCE} \]

\[V_{REF}^{(+)} \]

\[\text{MUST BE ABOVE PEAK POSITIVE SWING OF } V_{IN} \]

BASIC NEGATIVE REFERENCE OPERATION

\[V_{REF}^{(-) \rightarrow} \]

\[R_{REF} \]

\[14 \]

\[15 \]

\[R_{15} \]

\[14 \]

\[15 \]

\[I_{FS} = V_{REF}^{(-)} \times 4 \]

\[\text{REF SETS } I_{FS}; \text{ R}_{15} \text{ IS FOR A BIAS CURRENT CANCELLATION.} \]

RECOMMENDED FULL-SCALE ADJUSTMENT CIRCUIT

\[V_{REF}^{(+)} \]

\[4.5k\Omega \]

\[14 \]

\[\text{Am6012} \]

\[16 \]

\[I_{O} \]

\[19 \]

\[\text{LOW T.C.} \]

\[5.000V \]

\[39k\Omega \]

\[15 \]

\[10k\Omega \]

\[\text{APPROX.} \]

\[5k\Omega \]

4-36
12-BIT MULTIPLYING DIGITAL-TO-ANALOG CONVERTER

APPLICATION CIRCUITS

Am6012 LOGIC INPUTS

<table>
<thead>
<tr>
<th>Code Format</th>
<th>Connections</th>
<th>Output Scale</th>
<th>MSB</th>
<th>LSB</th>
<th>Iq (mA)</th>
<th>Io (mA)</th>
<th>VOUT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unipolar</td>
<td>a-c</td>
<td>Positive full scale</td>
<td>1</td>
<td>1</td>
<td>3.999</td>
<td>.000</td>
<td>.9976</td>
</tr>
<tr>
<td></td>
<td>b-g</td>
<td>Positive full scale</td>
<td>1</td>
<td>1</td>
<td>3.998</td>
<td>.001</td>
<td>.9951</td>
</tr>
<tr>
<td></td>
<td>R1 = R2 = 2.5K</td>
<td>Zero scale</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.000</td>
</tr>
<tr>
<td></td>
<td>e-g</td>
<td>Positive full scale</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.000</td>
</tr>
<tr>
<td></td>
<td>b-c</td>
<td>Positive full scale</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.000</td>
</tr>
<tr>
<td></td>
<td>R1 = R2 = 2.5K</td>
<td>Zero scale</td>
<td>1</td>
<td>1</td>
<td>3.999</td>
<td>.000</td>
<td>.9976</td>
</tr>
<tr>
<td>Symmetrical Offset</td>
<td>a-c</td>
<td>Positive full scale</td>
<td>1</td>
<td>1</td>
<td>3.999</td>
<td>.000</td>
<td>.9976</td>
</tr>
<tr>
<td></td>
<td>b-d</td>
<td>Positive full scale</td>
<td>1</td>
<td>1</td>
<td>3.998</td>
<td>.001</td>
<td>.9951</td>
</tr>
<tr>
<td></td>
<td>f-g</td>
<td>Positive full scale</td>
<td>1</td>
<td>1</td>
<td>3.999</td>
<td>.000</td>
<td>.9976</td>
</tr>
<tr>
<td></td>
<td>R1 = R2 = 2.5K</td>
<td>Zero scale</td>
<td>1</td>
<td>1</td>
<td>3.999</td>
<td>.000</td>
<td>.9976</td>
</tr>
<tr>
<td></td>
<td>e-c</td>
<td>Positive full scale</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.000</td>
</tr>
<tr>
<td></td>
<td>b-g</td>
<td>Positive full scale</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.000</td>
</tr>
<tr>
<td></td>
<td>R1 = R2 = 2.5K</td>
<td>Zero scale</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.000</td>
</tr>
<tr>
<td>Offset with True Zero</td>
<td>a-c</td>
<td>Positive full scale</td>
<td>1</td>
<td>1</td>
<td>3.999</td>
<td>.000</td>
<td>.9976</td>
</tr>
<tr>
<td></td>
<td>b-g</td>
<td>Positive full scale</td>
<td>1</td>
<td>1</td>
<td>3.998</td>
<td>.001</td>
<td>.9951</td>
</tr>
<tr>
<td></td>
<td>R1 = R2 = 5K</td>
<td>Zero scale</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.000</td>
</tr>
<tr>
<td></td>
<td>e-c</td>
<td>Positive full scale</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.000</td>
</tr>
<tr>
<td></td>
<td>b-g</td>
<td>Positive full scale</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.000</td>
</tr>
<tr>
<td></td>
<td>R1 = R2 = 5K</td>
<td>Zero scale</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.000</td>
</tr>
</tbody>
</table>

1. Any of the offset binary codes may be complemented by reversing the output terminal pair.
APPLICATION CIRCUITS

CRT DISPLAY DRIVER

```
+120VDC

60V COMMON MODE LEVEL

"X" INPUT

Am6012

"Y" INPUT

Am6012

NOTES: 1. FULL DIFFERENTIAL DRIVE LOWERS POWER SUPPLY VOLTAGE.
2. ELIMINATES INVERTING AMPLIFIERS AND TRANSFORMERS.
3. INDEPENDENT BEAM CENTERING CONTROLS.

Figure 5
```

12-BIT HIGH-SPEED A/D CONVERTER

```

CONVERSION TIME vs ACCURACY

<table>
<thead>
<tr>
<th>CONVERSION TIME (ns)</th>
<th>TYP</th>
<th>WORST CASE</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAR</td>
<td>33</td>
<td>55</td>
</tr>
<tr>
<td>NE529</td>
<td>100</td>
<td>150</td>
</tr>
<tr>
<td>TOTAL</td>
<td>383ns</td>
<td>705ns</td>
</tr>
<tr>
<td>x 13</td>
<td>5.0µs</td>
<td>9.1µs</td>
</tr>
</tbody>
</table>

Figure 6
APPLICATION CIRCUITS

INTERFACE WITH 8-BIT MICROPROCESSOR BUS

TIMING SEQUENCE

DATA REMAINS ON INPUTS OF DAC UNTIL UPDATED BY E2 PULSE. TIMING WILL DEPEND ON PROCESSOR USED.

Figure 7
DESCRIPTION

The DAC-08 series of 8-bit monolithic multiplying Digital-to-Analog Converters provide very high speed performance coupled with low cost and outstanding application flexibility.

Advanced circuit design achieves 70ns settling times with very low glitch and at low power consumption. Monotonic multiplying performance is attained over a wide 20 to 1 reference current range. Matching to within 1 LSB between reference and full scale currents eliminates the need for full scale trimming in most applications. Direct interface to all popular logic families with full noise immunity is provided by the high swing, adjustable threshold logic inputs.

Dual complementary outputs are provided, increasing versatility and enabling differential operation to effectively double the peak-to-peak output swing. True high voltage compliance outputs allow direct output voltage conversion and eliminate output op amps in many applications.

All DAC-08 series models guarantee full 8-bit monotonicity and linearity at 0.1% over the entire operating temperature range are available. Device performance is essentially unchanged over the 4.5V to ±18V power supply range, with 37mW power consumption attainable at ±5V supplies.

The compact size and low power consumption make the DAC-08 attractive for portable and military aerospace applications.

FEATURES

- Fast settling output current—70ns
- Full scale current prematched to ±1 LSB
- Direct interface to TTL, CMOS, ECL, HTL, PMOS
- Relative accuracy to 0.1% maximum over temperature range
- High output compliance —10V to +18V
- True and complemented outputs
- Wide range multiplying capability
- Low FS current drift—±10ppm/°C
- Wide power supply range—±4.5V to ±18V
- Low power consumption—37mW at ±5V

APPLIcATIONS

- 8-bit, 1µs A-to-D converters
- Servo-motor and pen drivers
- Waveform generators
- Audio encoders and attenuators
- Analog meter drivers
- Programmable power supplies
- CRT display drivers
- High speed modems
- Other applications where low cost, high speed and complete input/output versatility are required
- Programmable gain and attenuation
- Analog-Digital Multiplication
- Stepping motor drive

ORDERING INFORMATION

RELATIVE ACCURACY

<table>
<thead>
<tr>
<th>TEMPERATURE RANGE</th>
<th>ACCURACY</th>
<th>PART NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 to 70°C</td>
<td>0.39% FS</td>
<td>DAC-08CN</td>
</tr>
<tr>
<td>0 to 70°C</td>
<td>0.19% FS</td>
<td>DAC-08CF</td>
</tr>
<tr>
<td>0.1% FS</td>
<td>0.1% FS</td>
<td>DAC-08ED</td>
</tr>
<tr>
<td>0.1% FS</td>
<td>0.1% FS</td>
<td>DAC-08AF</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DAC-08HN</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DAC-08F</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DAC-08EN</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DAC-08EF</td>
</tr>
</tbody>
</table>

DAC-08 SERIES

FORMERLY: NE5007/5008-F, NSE5008-F

ORDERING INFORMATION

RELATIVE ACCURACY

<table>
<thead>
<tr>
<th>TEMPERATURE RANGE</th>
<th>ACCURACY</th>
<th>PART NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 to 70°C</td>
<td>0.39% FS</td>
<td>DAC-08CN</td>
</tr>
<tr>
<td>0 to 70°C</td>
<td>0.19% FS</td>
<td>DAC-08CF</td>
</tr>
<tr>
<td>0.1% FS</td>
<td>0.1% FS</td>
<td>DAC-08ED</td>
</tr>
<tr>
<td>0.1% FS</td>
<td>0.1% FS</td>
<td>DAC-08AF</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DAC-08HN</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DAC-08F</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DAC-08EN</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DAC-08EF</td>
</tr>
</tbody>
</table>

DAC-08 ABSOLUTE MAXIMUM RATINGS

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>RATING</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>( V_{CC} )</td>
<td>36</td>
<td>V</td>
</tr>
<tr>
<td>( V_{IL} )</td>
<td>( V_{IL} ) to ( V_{CC} )</td>
<td>V</td>
</tr>
<tr>
<td>( V_{OH} )</td>
<td>( V_{OH} ) to +36V</td>
<td>V</td>
</tr>
<tr>
<td>( I_{0} )</td>
<td>5.0</td>
<td>mA</td>
</tr>
<tr>
<td>( V_{EE} )</td>
<td>( V_{EE} ) to ( V_{CC} )</td>
<td>V</td>
</tr>
<tr>
<td>( P_T )</td>
<td>1000</td>
<td>mW</td>
</tr>
<tr>
<td>( T_{A} )</td>
<td>300</td>
<td>°C</td>
</tr>
<tr>
<td>( T_{STG} )</td>
<td>-55 to +125</td>
<td>°C</td>
</tr>
<tr>
<td>( T_{DAC} )</td>
<td>0 to +75</td>
<td>°C</td>
</tr>
<tr>
<td>( T_{STG} )</td>
<td>-65 to +150</td>
<td>°C</td>
</tr>
</tbody>
</table>

NOTES:

1. SOL - Released in Large SO package only.
2. SOL and non-standard pinout.
3. SO and non-standard pinouts.
Figure 1. Relative Accuracy Test Circuit
TEST CIRCUITS (Cont'd)

**Figure 2. Transient Response and Settling Time**

**Figure 3. Reference Current Slew Rate Measurement**

**Figure 4. Notation Definitions**

V<sub>1</sub> AND I<sub>1</sub> APPLY TO INPUTS A<sub>1</sub> THROUGH A<sub>8</sub>

THE RESISTOR TIED TO PIN 15 IS TO TEMPERATURE COMPENSATE THE BIAS CURRENT AND MAY NOT BE NECESSARY FOR ALL APPLICATIONS.

\[
I_D = K \left( \frac{A_1}{2} + \frac{A_2}{4} + \frac{A_3}{8} + \frac{A_4}{16} + \frac{A_5}{32} + \frac{A_6}{64} + \frac{A_7}{128} + \frac{A_8}{256} \right)
\]

where \( K = \frac{V_{REF}}{R_{14}} \)

and \( A_N = "1" \) IF \( A_N \) AT HIGH LEVEL
\( A_N = "0" \) IF \( A_N \) IS AT LOW LEVEL

V<sub>REF</sub> (+)

V<sub>REF</sub> = +2.0V

C<sub>Q</sub> = 25pF

R<sub>L</sub> = 500Ω

PIN 4 TO GND

USE R<sub>L</sub> TO GND FOR TURN OFF MEASUREMENT

SETTLING TIME

\( R_L = 5000Ω \)

TRANSIENT RESPONSE

- 100 mV

Figure 2.

Figure 3.

Figure 4.
8-BIT HIGH SPEED MULTIPLYING D/A CONVERTER DAC-08 SERIES

**ELECTRICAL CHARACTERISTICS**

Pin 3 must be at least 3V more negative than the potential to which R15 is returned.

\[ V_{OC} = \pm 15V, \ I_{REF} = 2.0mA, \] Output characteristics refer to both IOUT and IOOUT unless otherwise noted. DAC-08C, E, H: \[ T_A = 0°C \] to 70°C. DAC-08/0BA: \[ T_A = -55°C \] to 125°C.

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>DAC-08C</th>
<th>DAC-08E</th>
<th>DAC-08H</th>
<th>DAC-08/0BA</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resolution</td>
<td>Over temperature range</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>Monotonicity*</td>
<td>Differential nonlinearity</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>Relative accuracy</td>
<td></td>
<td>±0.39</td>
<td>±0.39</td>
<td>±0.19</td>
<td>±0.19</td>
<td>±0.1</td>
</tr>
<tr>
<td>( t_s )</td>
<td>Settling time</td>
<td>70</td>
<td>135</td>
<td>70</td>
<td>135</td>
<td>70</td>
</tr>
<tr>
<td>( t_{PLH} ) ( t_{PHL} )</td>
<td>Propagation delay</td>
<td>35</td>
<td>60</td>
<td>35</td>
<td>60</td>
<td>35</td>
</tr>
<tr>
<td>( T_{CI} ) ( T_{FS} )</td>
<td>Full scale tempco</td>
<td>±10</td>
<td>±10</td>
<td>±10</td>
<td>±50</td>
<td>ppm/°C</td>
</tr>
<tr>
<td>( V_{OC} )</td>
<td>Output voltage compliance ( V_{FS4} ): ( V_{REF} = 10.000V, \ R_{14}, R_{15} = 5.000kΩ )</td>
<td>-10</td>
<td>+18</td>
<td>-10</td>
<td>+18</td>
<td>-10</td>
</tr>
<tr>
<td>( V_{IL}, V_{IH} )</td>
<td>Logic input levels ( V_{LC} = 0V )</td>
<td>2.0</td>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
</tr>
<tr>
<td>( V_{IL}, V_{IH} )</td>
<td>Logic input current ( V_{IN} = -10V ) to (+0.8V ) ( V_{IN} = 2.0V ) to (10V )</td>
<td>-2.0</td>
<td>-10</td>
<td>-2.0</td>
<td>-10</td>
<td>-2.0</td>
</tr>
<tr>
<td>( V_{IL}, V_{IH} )</td>
<td>Logic input swing ( V_{IL} = +15V )</td>
<td>-10</td>
<td>+18</td>
<td>-10</td>
<td>+18</td>
<td>-10</td>
</tr>
<tr>
<td>( V_{THR} )</td>
<td>Logic threshold range ( V_{S} = ±15V )</td>
<td>-10</td>
<td>+13.5</td>
<td>-10</td>
<td>+13.5</td>
<td>-10</td>
</tr>
<tr>
<td>( i_s )</td>
<td>Reference bias current</td>
<td>-1.0</td>
<td>-3.0</td>
<td>-1.0</td>
<td>-3.0</td>
<td>-1.0</td>
</tr>
<tr>
<td>( di/dt )</td>
<td>Reference input slew rate</td>
<td>4.0</td>
<td>8.0</td>
<td>4.0</td>
<td>8.0</td>
<td>4.0</td>
</tr>
<tr>
<td>( P_{S} )</td>
<td>Power supply sensitivity ( V_{S} = ±5V, \ I_{REF} = 1.0mA )</td>
<td>3.1</td>
<td>3.8</td>
<td>3.1</td>
<td>3.8</td>
<td>3.1</td>
</tr>
<tr>
<td>( P_{S} )</td>
<td>Power supply current ( V_{S} = ±5V, \ I_{REF} = 2.0mA )</td>
<td>3.1</td>
<td>3.8</td>
<td>3.1</td>
<td>3.8</td>
<td>3.1</td>
</tr>
<tr>
<td>( P_{S} )</td>
<td>Power supply current ( V_{S} = ±15V, \ I_{REF} = 2.0mA )</td>
<td>3.2</td>
<td>3.8</td>
<td>3.2</td>
<td>3.8</td>
<td>3.2</td>
</tr>
<tr>
<td>( P_D )</td>
<td>Power dissipation ( ±5V, \ I_{REF} = 1.0mA )</td>
<td>37</td>
<td>48</td>
<td>37</td>
<td>48</td>
<td>37</td>
</tr>
<tr>
<td>( +5V, -15V, \ I_{REF} = 2.0mA )</td>
<td>122</td>
<td>136</td>
<td>122</td>
<td>136</td>
<td>122</td>
<td>136</td>
</tr>
<tr>
<td>( ±15V, \ I_{REF} = 2.0mA )</td>
<td>156</td>
<td>174</td>
<td>156</td>
<td>174</td>
<td>156</td>
<td>174</td>
</tr>
</tbody>
</table>
TYPICAL PERFORMANCE CHARACTERISTICS

OUTPUT CURRENT vs OUTPUT VOLTAGE (OUTPUT VOLTAGE COMPLIANCE)

<table>
<thead>
<tr>
<th>Output Voltage (V)</th>
<th>Output Current (mA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-15</td>
<td>3.2</td>
</tr>
<tr>
<td>-12</td>
<td>2.8</td>
</tr>
<tr>
<td>-9</td>
<td>2.4</td>
</tr>
<tr>
<td>-6</td>
<td>2.0</td>
</tr>
<tr>
<td>-3</td>
<td>1.6</td>
</tr>
<tr>
<td>0</td>
<td>1.2</td>
</tr>
<tr>
<td>3</td>
<td>0.8</td>
</tr>
<tr>
<td>6</td>
<td>0.4</td>
</tr>
<tr>
<td>9</td>
<td>0.0</td>
</tr>
</tbody>
</table>

ALL BITS ON

- V = -15V, V = -5V, IREF = 2mA
- V = -15V, V = -5V, IREF = 1mA
- V = -15V, V = -5V, IREF = 0.2mA

FULL SCALE SETTLING TIME

<table>
<thead>
<tr>
<th>Output Voltage (V)</th>
<th>Settling Time (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.4V</td>
<td>50ns/division</td>
</tr>
<tr>
<td>0.4V</td>
<td>50ns/division</td>
</tr>
</tbody>
</table>

ALL BITS SWITCHED ON

- IFS = 2mA, RL = 1kΩ, ½ LSB = 4mA

LSB SWITCHING

<table>
<thead>
<tr>
<th>Logic Input (V)</th>
<th>Output Current (mA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.4V</td>
<td>0.8A</td>
</tr>
</tbody>
</table>

50ns/division

FULL SCALE CURRENT vs REFERENCE CURRENT

<table>
<thead>
<tr>
<th>Reference Current (mA)</th>
<th>Output Current (mA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0mA</td>
</tr>
<tr>
<td>1.0</td>
<td>1.0mA</td>
</tr>
<tr>
<td>2.0</td>
<td>2.0mA</td>
</tr>
<tr>
<td>3.0</td>
<td>3.0mA</td>
</tr>
<tr>
<td>4.0</td>
<td>4.0mA</td>
</tr>
</tbody>
</table>

LSB PROPAGATION DELAY vs IFS

<table>
<thead>
<tr>
<th>Reference Current (mA)</th>
<th>Propagation Delay (ns)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.8A</td>
<td>400</td>
</tr>
<tr>
<td>1.0mA</td>
<td>500</td>
</tr>
</tbody>
</table>

REFERENCE INPUT FREQUENCY RESPONSE

<table>
<thead>
<tr>
<th>Frequency (MHz)</th>
<th>Relative Output (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>-6</td>
</tr>
<tr>
<td>0.2</td>
<td>-4</td>
</tr>
<tr>
<td>0.5</td>
<td>-2</td>
</tr>
<tr>
<td>1.0</td>
<td>0</td>
</tr>
<tr>
<td>2.0</td>
<td>2</td>
</tr>
<tr>
<td>5.0</td>
<td>6</td>
</tr>
<tr>
<td>10</td>
<td>8</td>
</tr>
</tbody>
</table>

Curves 1: CC = 15pF, V_IN = 2.0V p-p centered at +1.0V.
Curves 2: CC = 15pF, V_IN = 50mV p-p centered at +200mV.
Curves 3: CC = 0pF, V_IN = 100mV p-p centered at 0V and applied thru 50Ω connected to pin 14, +2.0V applied to R14.
TYPICAL PERFORMANCE CHARACTERISTICS (Cont'd)

**REFERENCE AMP COMMON MODE RANGE**

<table>
<thead>
<tr>
<th>V₁₅ - REFERENCE COMMON MODE VOLTAGE (V)</th>
<th>Iₚₓ = Tₘᵟᵅ TO Tₘᵞᵅ</th>
</tr>
</thead>
<tbody>
<tr>
<td>V - = -15V V = -5V V + = +15V</td>
<td></td>
</tr>
</tbody>
</table>

Positive common mode range is always (V+) - 1.5V

**LOGIC INPUT CURRENT vs INPUT VOLTAGE**

**Vₜₜₛ - Vₜₗᵋ vs TEMPERATURE**

**OUTPUT VOLTAGE COMPLIANCE vs TEMPERATURE**

**BIT TRANSFER CHARACTERISTICS**

**POWER SUPPLY CURRENT vs V+**

**POWER SUPPLY CURRENT vs V-**

**MAXIMUM REFERENCE INPUT FREQUENCY VS. COMPENSATION CAPACITOR VALUE**

NOTE

B₁ through B₅ have identical transfer characteristics. Bits are fully switched, with less than ½ LSB error, at less than ±100mV from actual threshold. These switching points are guaranteed to lie between 0.8 and 2.0 volts over the operating temperature range (VLC = 0.0V).
When using a DC reference voltage, capacitive bypass to ground is recommended. The 5.0V logic supply is not recommended as a reference voltage, but if a well regulated 5.0V supply which drives logic is to be used as the reference, R14 should be formed of two series resistors with the junction of the two resistors bypassed with 0.1µF to ground. For reference voltages greater than 5.0V, a clamp diode is recommended between pin 14 and ground.

If pin 14 is driven by a high impedance such as a transistor current source, none of the above compensation methods apply and the amplifier must be heavily compensated, decreasing the overall bandwidth.

Output Voltage Range
The voltage at pin 4 must always be at least 4.5 volts more positive than the voltage of the negative supply (pin 3) when the reference current is 2mA or less, and at least 8 volts more positive than the negative supply when the reference current is between 2mA and 4mA. This is necessary to avoid saturation of the output transistors, which would cause serious accuracy degradation.

Output Current Range
Any time the full scale current exceeds 2mA, the negative supply must be at least 8 volts more negative than the output voltage. This is due to the increased internal voltage drops between the negative supply and the outputs with higher reference currents.

Accuracy
Absolute accuracy is the measure of each output current level with respect to its intended value, and is dependent upon relative accuracy, full scale accuracy and full scale current drift. Relative accuracy is the measure of each output current level as a fraction of the full scale current after zero scale current has been nullled out. The relative accuracy of the DAC08 series is essentially constant over the operating temperature range due to the excellent temperature tracking of the monolithic resistor ladder. The reference current may drift with temperature, causing a change in the absolute accuracy of output current. However, the DAC08 series has a very low full scale current drift over the operating temperature range.

The DAC08 series is guaranteed accurate to within ±1/2 LSB at ±25°C at a full scale output current of 1.992mA. The relative accuracy test circuit is shown in Figure 1. The 12-bit converter is calibrated to a full scale output current of 1.99219mA, then the DAC08 full scale current is trimmed to the same value with R14 so that a zero value appears at the error amplifier output. The counter is activated and the error band may be displayed on the oscilloscope, detected by comparators, or stored in a peak detector.

Two 8-bit D-to-A converters may not be used to construct a 16-bit accurate D-to-A converter. Sixteen-bit accuracy implies a total of ±1/2 part in 65,536, or ±0.00076%, which is much more accurate than the ±0.19% specification of the DAC08 series.

Monotonicity
A monotonic converter is one which always provides analog output greater than or equal to the preceding value for a corresponding increment in the digital input code. The DAC08 series is monotonic for all values of reference current above 0.5mA. The recommended range for operation is a DC reference current between 0.5mA and 4.0mA.

Settling Time
The worst case switching condition occurs when all bits are switched on, which corresponds to a low-to-high transition for all input bits. This time is typically 70ns for settling to within 1/2 LSB for 8-bit accuracy. This time applies when R1 < 500 ohms and C0 < 25pF. The slowest single switch is the least significant bit, which typically turns on and settles in 65ns. In applications where the DAC functions in a positive-going ramp mode, the worst case condition does not occur and settling times less than 70ns may be realized.

Extra care must be taken in board layout since this usually is the dominant factor in satisfactory test results when measuring settling time. Short leads, 100µF supply bypassing for low frequencies, minimum scope lead length, and avoidance of ground loops are all mandatory.
8-BIT HIGH SPEED MULTIPLYING D/A CONVERTER

SETTLING TIME AND PROPAGATION DELAY

D1, D2 = IN6263 or equivalent
D3 = IN914 or equivalent
C1 = 0.01µf
C2, C3 = 0.1µf
Q1 = 2N3904 or equivalent
C4, C5 = 15pf and includes all probe and fixturing capacitance

BASIC DAC-08 CONFIGURATION

RECOMMENDED FULL SCALE AND ZERO SCALE ADJUST

R1 = low T.C.
R3 = R1 + R2
R2 = 0.1 R1 to minimize pot contribution to full scale drift
R5 = 20kΩ
UNIPOLAR VOLTAGE OUTPUT FOR LOW IMPEDANCE OUTPUT

\[ I_R = 2 \text{mA} \]

DAC-08

\[ V_{OUT} = 0 \text{ TO } +10 \text{V} \]

5kΩ (LOW T.C.)

UNIPOLAR VOLT OUTPUT FOR HIGH IMPEDANCE OUTPUT

a) Positive Output

\[ I_R = 2 \text{mA} \]

DAC-08

\[ V_{OUT} = 0 \text{ TO } +10 \text{V} \]

5kΩ

b) Negative Output

\[ I_R = 2 \text{mA} \]

DAC-08

\[ V_{OUT} \]

5kΩ

BASIC BIPOLAR OUTPUT OPERATION (OFFSET BINARY)

\[ I_R = 2 \text{mA} \]

DAC-08

\[ V = 10 \text{V} \]

10kΩ

CODE CHART

<table>
<thead>
<tr>
<th>B1 B2 B3 B4 B5 B6 B7 B8</th>
<th>VOUT</th>
<th>VOUT</th>
</tr>
</thead>
<tbody>
<tr>
<td>POS full scale</td>
<td>11111111</td>
<td>-9.920V</td>
</tr>
<tr>
<td>POS f.s. - 1LSB</td>
<td>11111110</td>
<td>-9.840V</td>
</tr>
<tr>
<td>+ Zero scale + 1LSB</td>
<td>10000000</td>
<td>-0.080V</td>
</tr>
<tr>
<td>Zero scale</td>
<td>10000000</td>
<td>0.000</td>
</tr>
<tr>
<td>Zero scale - 1LSB</td>
<td>01111111</td>
<td>0.080</td>
</tr>
<tr>
<td>Neg full scale - 1LSB</td>
<td>00000001</td>
<td>+9.920</td>
</tr>
<tr>
<td>Neg full scale</td>
<td>00000000</td>
<td>+10.000</td>
</tr>
</tbody>
</table>
3 DIGIT BCD CONVERTER

A 3 digit BCD converter, using inexpensive 8-bit binary DACs, can achieve ±0.1% accuracy. The circuit shown in Figure 20 utilizes three DACs, one for each decade, to provide 0 to 999 output steps. DAC 1 contains the first four significant digits controlling the hundreds digit; DAC 2 controls the tens digit and DAC 3 steps 0 to 9. The feedback resistor \( R_f \) sets the zero scale at 0.00V.

The input coding is the popular 8-4-2-1 coding; i.e. the weighting ratios are 8, 4, 2 and 1. The full scale (999) BCD code is input code 100110011001.

Full scale adjustment procedure.

In the sequence below, switch on the following code combinations and adjust the indicated potentiometer for the proper output.

### INPUT CODE | ADJUST POT | DESIRED OUTPUT
---|---|---
1. | 000000000000 | \( R_7 \) | 0.000V
2. | 000000001001 | \( R_3 \) | 0.09V
3. | 000010011001 | \( R_2 \) | 0.99V
4. | 100110011001 | \( R_1 \) | 9.99V
DESCRIPTION
The MC1508/MC1408 series of 8-bit monolithic digital-to-analog converters provide high speed performance with low cost. They are designed for use where the output current is a linear product of an 8-bit digital word and an analog reference voltage.

FEATURES
- Fast settling time—70ns (typ)
- Relative accuracy ±0.19% (max error)
- Non-inverting digital inputs are TTL and CMOS compatible
- High speed multiplying rate 4.0mA/µs (input slew)
- Output voltage swing +.5V to -5.0V
- Standard supply voltages + 5.0V and -5.0V to -15V
- Military qualifications pending

APPLICATIONS
- Tracking A-to-D converters
- 2½-digit panel meters and DVM's
- Waveform synthesis
- Sample and hold
- Peak detector
- Programmable gain and attenuation
- CRT character generation
- Audio digitizing and decoding
- Programmable power supplies
- Analog-digital multiplication
- Digital-digital multiplication
- Analog-digital division
- Digital addition and subtraction
- Speech compression and expansion
- Stepping motor drive
- Modems
- Servo motor and pen drivers

CIRCUIT DESCRIPTION
The MC1508/MC1408 consists of a reference current amplifier, an R-2R ladder, and 8 high speed current switches. For many applications, only a reference resistor and reference voltage need be added.

The switches are non-inverting in operation; therefore, a high state on the input turns on the specified output current component.

The switch uses current steering for high speed, and a termination amplifier consisting of an active load gain stage with unity gain feedback. The termination amplifier holds the parasitic capacitance of the ladder at a constant voltage during switching, and provides a low impedance termination of equal voltage for all legs of the ladder.

The R-2R ladder divides the reference amplifier current into binarily-related components, which are fed to the switches. Note that there is always a remainder current which is equal to the least significant bit. This current is shunted to ground, and the maximum output current is 255/256 of the reference amplifier current, or 1.992mA for a 2.0mA reference amplifier current if the NPN current source pair is perfectly matched.

ABSOLUTE MAXIMUM RATINGS \( T_A = +25°C \) unless otherwise specified

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>RATING</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>( V_{CC} ) Power Supply Voltage</td>
<td>+ 5.5</td>
<td>V</td>
</tr>
<tr>
<td>( V_{EE} ) Positive</td>
<td>-16.5</td>
<td>V</td>
</tr>
<tr>
<td>( V_{EE} ) Negative</td>
<td>0 to ( V_{CC} )</td>
<td>V</td>
</tr>
<tr>
<td>( V_{0} ) Applied Output Voltage</td>
<td>-5.2 to +18</td>
<td>V</td>
</tr>
<tr>
<td>( I_{R} ) Reference Current</td>
<td>5.0</td>
<td>mA</td>
</tr>
<tr>
<td>( V_{14}, V_{15} ) Reference Amplifier Inputs</td>
<td>( V_{EE} ) to ( V_{CC} )</td>
<td></td>
</tr>
<tr>
<td>( P_D ) Power Dissipation (Package Limitation)</td>
<td>1000</td>
<td>mW</td>
</tr>
<tr>
<td>Ceramic Package</td>
<td>800</td>
<td>mW</td>
</tr>
<tr>
<td>Plastic Package</td>
<td>300</td>
<td>°C</td>
</tr>
<tr>
<td>Lead Soldering Temperature (60 sec)</td>
<td>-65 to +150</td>
<td>°C</td>
</tr>
<tr>
<td>( T_A ) Operating Temperature Range</td>
<td>-55 to +125</td>
<td>°C</td>
</tr>
<tr>
<td>MC1508</td>
<td>0 to +75</td>
<td>°C</td>
</tr>
<tr>
<td>MC1408</td>
<td>-65 to +150</td>
<td>°C</td>
</tr>
</tbody>
</table>

NOTES:
1. SOL Released in Large SO package only.
2. SOL and non-standard pinout.
3. SO and non-standard pinouts.

BLOCK DIAGRAM

PIN CONFIGURATION

<table>
<thead>
<tr>
<th>F,N PACKAGE</th>
<th>F,N PACKAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>NC</td>
<td>10 COMPEN</td>
</tr>
<tr>
<td>GND</td>
<td>13 VREF(-)</td>
</tr>
<tr>
<td>VEE</td>
<td>13 VREF(+)</td>
</tr>
<tr>
<td>I0</td>
<td>12 VCC</td>
</tr>
<tr>
<td>(MSB) A1</td>
<td>11 A8 (LSB)</td>
</tr>
<tr>
<td>A2</td>
<td>10 A5</td>
</tr>
<tr>
<td>A3</td>
<td>9 A4</td>
</tr>
<tr>
<td>A4</td>
<td>8 A3</td>
</tr>
</tbody>
</table>

TOP VIEW

ORDER NUMBERS
MC1508-8F
MC1408-7F

D3 PACKAGE

| V+     | 10 A8 (LSB) |
| VREF(-) | 13 A7     |
| VREF(+) | 14 A5    |
| COMPEN | 12 A4    |
| GND    | 11 A3    |
| V-     | 10 A2    |
| I0     | 9 A1 (MSB) |

TOP VIEW

ORDER NUMBER
MC 1408-8D

NOTES:
1. SOL Released in Large SO package only.
2. SOL and non-standard pinout.
3. SO and non-standard pinouts.
**DC ELECTRICAL CHARACTERISTICS**

Pin 3 must be 3V more negative than the potential to which R₁₅ is returned.

**V<sub>CC</sub>** = +5.0Vdc, **V<sub>EE</sub>** = -15Vdc, **V<sub>ref</sub>** = 2.0mA

unless otherwise specified.

MC1508: **T<sub>A</sub>** = -55°C to 125°C, MC1408: **T<sub>A</sub>** = 0°C to 75°C

unless otherwise noted.

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MC1508-8</th>
<th>MC1408-8</th>
<th>MC1408-7</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Er</td>
<td>Relative accuracy</td>
<td>Error relative to full scale</td>
<td>±0.19</td>
<td>±0.19</td>
<td>±0.39</td>
</tr>
<tr>
<td>t&lt;sub&gt;s&lt;/sub&gt;</td>
<td>Setting time&lt;sup&gt;1&lt;/sup&gt;</td>
<td>To within 1/2 LSB, includes t&lt;sub&gt;PLH&lt;/sub&gt;, T&lt;sub&gt;A&lt;/sub&gt; = +25°C, Figure 4</td>
<td>70</td>
<td>70</td>
<td>70</td>
</tr>
<tr>
<td>t&lt;sub&gt;PLH&lt;/sub&gt;</td>
<td>Propagation delay</td>
<td>Low-to-high</td>
<td>TA = +25°C, Figure 4</td>
<td>35</td>
<td>100</td>
</tr>
<tr>
<td>t&lt;sub&gt;PHL&lt;/sub&gt;</td>
<td></td>
<td>High-to-low</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TCLO</td>
<td>Output full scale current drift</td>
<td></td>
<td></td>
<td>-20</td>
<td>-20</td>
</tr>
<tr>
<td>VIN</td>
<td>Digital input logic level (MSB)</td>
<td>High</td>
<td>Figure 5</td>
<td>2.0</td>
<td>0.8</td>
</tr>
<tr>
<td>VIL</td>
<td>Low</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IH</td>
<td>Digital input current (MSB)</td>
<td>High</td>
<td>V&lt;sub&gt;H&lt;/sub&gt; = 5.0V</td>
<td>0</td>
<td>0.04</td>
</tr>
<tr>
<td>IL</td>
<td>Low</td>
<td>V&lt;sub&gt;L&lt;/sub&gt; = 0.8V</td>
<td>-0.4</td>
<td>-0.8</td>
<td>-0.4</td>
</tr>
<tr>
<td>IS</td>
<td>Reference input bias current</td>
<td>Pin 15, Figure 5</td>
<td>-1.0</td>
<td>-5.0</td>
<td>-1.0</td>
</tr>
<tr>
<td>IOR</td>
<td>Output current range</td>
<td></td>
<td>V&lt;sub&gt;EE&lt;/sub&gt; = -5.0V</td>
<td>0</td>
<td>2.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>V&lt;sub&gt;EE&lt;/sub&gt; = -7.0V to -15V</td>
<td>0</td>
<td>2.0</td>
</tr>
<tr>
<td>IO</td>
<td>Output current</td>
<td>Figure 5</td>
<td>1.9</td>
<td>1.99</td>
<td>2.1</td>
</tr>
<tr>
<td>I&lt;sub&gt;omin&lt;/sub&gt;</td>
<td>Off-state</td>
<td>All bits low</td>
<td>0</td>
<td>4.0</td>
<td>0</td>
</tr>
<tr>
<td>VO</td>
<td>Output voltage compliance</td>
<td>E&lt;sub&gt;r&lt;/sub&gt;≤0.19% at T&lt;sub&gt;A&lt;/sub&gt; = +25°C, Figure 5</td>
<td>0</td>
<td>2.5</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V&lt;sub&gt;EE&lt;/sub&gt; = -5V</td>
<td>-0.6</td>
<td>+10</td>
<td>-0.55</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V&lt;sub&gt;EE&lt;/sub&gt; below -10V</td>
<td>-5.5</td>
<td>+10</td>
<td>-5.0</td>
</tr>
<tr>
<td>SRI&lt;sub&gt;ref&lt;/sub&gt;</td>
<td>Reference current slew rate</td>
<td>Figure 6</td>
<td>8.0</td>
<td>8.0</td>
<td>8.0</td>
</tr>
<tr>
<td>PSRR&lt;sub&gt;(-)&lt;/sub&gt;</td>
<td>Output current power supply sensitivity</td>
<td></td>
<td></td>
<td>0.5</td>
<td>2.7</td>
</tr>
<tr>
<td>ICC</td>
<td>Power supply current Positive</td>
<td>All bits low, Figure 5</td>
<td>+2.5</td>
<td>+22</td>
<td>+2.5</td>
</tr>
<tr>
<td></td>
<td>Negative</td>
<td></td>
<td>-6.5</td>
<td>-13</td>
<td>-6.5</td>
</tr>
<tr>
<td>VCCR</td>
<td>Power supply voltage range Positive</td>
<td>TA = +25°C, Figure 5</td>
<td>+4.5</td>
<td>+5.0</td>
<td>+5.5</td>
</tr>
<tr>
<td></td>
<td>Negative</td>
<td></td>
<td>-4.5</td>
<td>-15</td>
<td>-16.5</td>
</tr>
<tr>
<td>PD</td>
<td>Power dissipation</td>
<td>All bits low, Figure 5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>V&lt;sub&gt;EE&lt;/sub&gt; = -5.0Vdc</td>
<td>34</td>
<td>170</td>
<td>34</td>
<td>170</td>
</tr>
<tr>
<td></td>
<td>V&lt;sub&gt;EE&lt;/sub&gt; = -15Vdc</td>
<td>110</td>
<td>305</td>
<td>110</td>
<td>305</td>
</tr>
</tbody>
</table>

**NOTES:**
1. All bits switched.
8-BIT MULTIPLYING D/A CONVERTER

MC1508-8/1408-8/1408-7

TYPICAL PERFORMANCE CHARACTERISTICS

FUNCTIONAL DESCRIPTION

Reference Amplifier Drive and Compensation

The reference amplifier input current must always flow into pin 14 regardless of the setup method or reference supply voltage polarity.

Connections for a positive reference voltage are shown in Figure 1. The reference voltage source supplies the full reference current. For bipolar reference signals, as in the multiplying mode, R15 can be tied to a negative voltage corresponding to the minimum input level. R15 may be eliminated and pin 15 grounded, with only a small sacrifice in accuracy and temperature drift.

The compensation capacitor value must be increased with increasing values of R14 to maintain proper phase margin. For R14 values of 1.0, 2.5, and 5.0K ohms, minimum capacitor values are 15, 37, and 75pF. The capacitor may be tied to either VEE or ground, but using VEE increases negative supply rejection. (Fluctuations in the negative supply have more effect on accuracy than do any changes in the positive supply).

A negative reference voltage may be used if R14 is grounded and the reference voltage is applied to R15, as shown in Figure 2. A high input impedance is the main advantage of this method. The negative reference voltage must be at least 3.0V above the VEE supply. Bipolar input signals may be handled by connecting R14 to a positive reference voltage equal to the peak positive input level at pin 15.

Capacitive bypass to ground is recommended when a DC reference voltage is used. The 5.0V logic supply is not recommended as a reference voltage, but if a well regulated 5.0V supply which drives logic is to be used as the reference, R14 should be formed of two series resistors and the junction of the two resistors bypassed with 0.1µF to ground. For reference voltages greater than 5.0V, a clamp diode is recommended between pin 14 and ground.

If pin 14 is driven by a high impedance such as a transistor current source, none of the above compensation methods apply and the amplifier must be heavily compensated, decreasing the overall bandwidth.

Output Voltage Range

The voltage at pin 4 must always be at least 4.5 volts more positive than the voltage of the negative supply (pin 3) when the reference current is 2mA or less, and at least 8 volts more positive than the negative supply when the reference current is between 2mA and 4mA. This is necessary to avoid saturation of the output transistors, which would cause serious degradation of accuracy.

Signetics' MC1508/MC1408 does not need a range control because the design extends the compliance range down to 4.5 volts (or 8 volts—see above) above the negative supply voltage without significant degradation of accuracy. Signetics' MC1508/MC1408 can be used in sockets designed for other manufacturers' MC1508/MC1408 without circuit modification.

Output Current Range

Any time the full scale current exceeds 2mA, the negative supply must be at least 8 volts more negative than the output voltage. This is due to the increased internal voltage drops between the negative supply and the outputs with higher reference currents.

Accuracy

Absolute accuracy is the measure of each output current level with respect to its intended value, and is dependent upon relative accuracy, full scale accuracy and full scale current drift. Relative accuracy is the measure of each output current level as a fraction of the full scale current after zero scale current has been nullled out. The relative accuracy of the MC1508/MC1408 is essentially constant over the operating temperature range because of the excellent temperature tracking of the monolithic resistor ladder. The reference current may drift with temperature, causing a change in the absolute accuracy of output current; however, the MC1508/MC1408 has a very low full scale current drift over the operating temperature range.

The MC1508/MC1408 series is guaranteed accurate to within ±1/2 LSB at +25°C at a full scale output current of 1.99mA. The relative accuracy test circuit is shown in Figure 3. The 12-bit converter is calibrated to a full scale output current of 1.99219mA; then the MC1508/MC1408's full scale current is trimmed to the same value with R14 so that a zero value appears at the error amplifier output. The counter is activated and the error band may be displayed on the oscilloscope, detected by comparators, or stored in a peak detector.

Two 8-bit D-to-A converters may not be used to construct a 16-bit accurate D-to-A converter. Sixteen-bit accuracy implies a total of ±1/2 part in 65,536, or ±0.00076%, which is much more accurate than the ±0.19% specification of the MC1508/MC1408.

Monotonicity

A monotonic converter is one which always provides an analog output greater than or equal to the preceding value for a corresponding increment in the digital input code. The MC1508/MC1408 is monotonic for all values of reference current above 0.5mA. The recommended range for operation is a DC reference current between 0.5mA and 4.0mA.

Settling Time

The worst case switching condition occurs when all bits are switched on, which corresponds to a low-to-high transition for all input bits. This time is typically 70ns for settling to within 1/2 LSB for 8-bit accuracy. This time applies when RL <500 ohms and C0 <25pF. The slowest single switch is the least significant bit, which typically turns on and settles in 65ns. In applications where the D-to-A converter functions in a positive going ramp mode, the worst case condition does not occur and settling times less than 70ns may be realized.

Extra care must be taken in board layout since this usually is the dominant factor in satisfactory test results when measuring settling time. Short leads, 100µF supply bypassing for low frequencies, minimum scope lead length, good ground planes, and avoidance of ground loops are all mandatory.
TEST CIRCUITS

Figure 1. Positive V_REF

Figure 2. Negative V_REF

SEE TEXT FOR VALUES OF C.
TEST CIRCUITS (Cont'd)

Figure 3. Relative Accuracy

Figure 4. Transient Response and Settling Time
TEST CIRCUITS (Cont'd)

**Figure 5. Notation Definitions**

- **V**<sub>cc</sub> and **I**<sub>cc</sub> apply to inputs A<sub>1</sub> through A<sub>8</sub>

- The resistor tied to pin 15 is to temperature compensate the bias current and may not be necessary for all applications.

- **I**<sub>O</sub> = K \( \frac{V_{\text{REF}}}{R_{14}} \)

- \( K = \frac{V_{\text{REF}}}{R_{14}} \)

- and A<sub>N</sub> = "1" if A<sub>N</sub> is at high level

- A<sub>N</sub> = "0" if A<sub>N</sub> is at low level

**Figure 6. Reference Current Slew Rate Measurement**

- di/dt = \( \frac{1}{R_L} \)

- 10% slewing time = 2.0mA
LINEAR LSI PRODUCTS

10-BIT HIGH-SPEED MULTIPLYING D/A CONVERTER

MC3410, MC3510, MC3410C

DESCRIPTION

The MC3410 series are 10-Bit Multiplying Digital-to-Analog Converters. They are capable of high-speed performance, and are used as general-purpose building blocks in cost-effective D/A systems.

The Signetics' design provides complete 10-bit accuracy without laser trimming, and guaranteed monotonicity over temperature. Segmented current sources, in conjunction with an R/2R DAC provides the binary weighted currents. The output buffer amplifier and voltage reference have been omitted to allow greater speed, lower cost, and maximum user flexibility.

APPLICATIONS

- Successive approximation A/D converters
- High-speed, automatic test equipment
- High-speed modems
- Waveform generators
- CRT displays
- Strip CHART and X-Y plotters
- Programmable power supplies
- Programmable gain and attenuation

FEATURES

- 10-bit resolution and accuracy (+0.05%)
- Guaranteed monotonicity over temperature
- Fast settling time—250ns typical
- Digital inputs are TTL and CMOS compatible
- Wide output voltage compliance range
- High-speed multiplying input slew rate —20mA/μs
- Reference amplifier internally compensated
- Standard supply voltages +5V and -15V

ABSOLUTE MAXIMUM RATINGS

<table>
<thead>
<tr>
<th>SYMBOL AND PARAMETER</th>
<th>RATING</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>$V_{CC}$</td>
<td>Power Supply</td>
<td>+7.0</td>
</tr>
<tr>
<td>$V_{EE}$</td>
<td>-18</td>
<td>Vdc</td>
</tr>
<tr>
<td>$V_{I}$</td>
<td>Digital Input Voltage</td>
<td>+15</td>
</tr>
<tr>
<td>$V_{O}$</td>
<td>Applied Output Voltage</td>
<td>0.5, -5.0</td>
</tr>
<tr>
<td>$I_{REF(16)}$</td>
<td>Reference Current</td>
<td>2.5</td>
</tr>
<tr>
<td>$V_{REF}$</td>
<td>Reference Amplifier Inputs</td>
<td>$V_{CC}, V_{EE}$</td>
</tr>
<tr>
<td>$V_{REF(D)}$</td>
<td>Reference Amplifier Differential Inputs</td>
<td>0.7</td>
</tr>
<tr>
<td>$T_{A}$</td>
<td>Operating Temperature Range</td>
<td></td>
</tr>
<tr>
<td>MC3410</td>
<td>-55 to +125</td>
<td>°C</td>
</tr>
<tr>
<td>MC3410, 3410C</td>
<td>0 to +70</td>
<td>°C</td>
</tr>
<tr>
<td>$T_{J}$</td>
<td>Junction Temperature</td>
<td>+175</td>
</tr>
<tr>
<td>Ceramic Package</td>
<td>+150</td>
<td>°C</td>
</tr>
</tbody>
</table>

BLOCK DIAGRAM
### DC ELECTRICAL CHARACTERISTICS

\( V_{CC} = +5.0\, \text{Vdc}, V_{EE} = -15\, \text{Vdc}, \frac{V_{REF}}{R_{16}} = 2.0\, \text{mA}, \) all digital inputs at high logic level.

**MC3510:** \( T_A = -55^\circ\text{C} \) to \(+125^\circ\text{C}\), **MC3410 Series:** \( T_A = 0^\circ\text{C} \) to \(+70^\circ\text{C}\) unless otherwise noted.

<table>
<thead>
<tr>
<th>SYMBOL AND PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MC3510, MC3410</th>
<th>MC3410C</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Min</td>
<td>Typ</td>
<td>Max</td>
</tr>
<tr>
<td>( E_r )</td>
<td>Relative accuracy (Error relative to full scale ( I_0 ))</td>
<td>( T_A = 25^\circ\text{C} )</td>
<td>±0.05</td>
<td>±0.1</td>
</tr>
<tr>
<td>( TCE_r )</td>
<td>Relative accuracy drift (Relative to full scale ( I_0 ))</td>
<td>2.5</td>
<td>2.5</td>
<td>ppm/°C</td>
</tr>
<tr>
<td></td>
<td>Monotonicity</td>
<td>Over temperature</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>( t_s )</td>
<td>Settling time to within ( \pm \frac{1}{2} ) LSB (all bits low to high)</td>
<td>( T_A = 25^\circ\text{C} )</td>
<td>250</td>
<td>250</td>
</tr>
<tr>
<td>( t_{PLH} )</td>
<td>Propagation delay time</td>
<td>( T_A = 25^\circ\text{C} )</td>
<td>35</td>
<td>20</td>
</tr>
<tr>
<td>( t_{PHL} )</td>
<td></td>
<td></td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>( TC_{IO} )</td>
<td>Output full scale current drift</td>
<td></td>
<td>60</td>
<td>70</td>
</tr>
<tr>
<td>( V_{IH} )</td>
<td>Digital Input Logic Levels (All bits)</td>
<td>( V_{REF} = 2.000, \text{V}, R_{16} = 1000, \Omega )</td>
<td>2.0</td>
<td>0.8</td>
</tr>
<tr>
<td>( I_{IH} )</td>
<td>Digital Input Current (All bits) High Level, ( V_{IH} = 5.5, \text{V} ) Low Level, ( V_{IL} = 0.8, \text{V} )</td>
<td></td>
<td>-0.05</td>
<td>+0.4</td>
</tr>
<tr>
<td>( I_{IL} )</td>
<td>Reference Input Bias Current (Pin 15)</td>
<td></td>
<td>-1.0</td>
<td>-5.0</td>
</tr>
<tr>
<td>( I_{OR} )</td>
<td>Output Current Range</td>
<td></td>
<td>4.0</td>
<td>5.0</td>
</tr>
<tr>
<td>( I_{OH} )</td>
<td>Output Current (All bits high)</td>
<td></td>
<td>3.8</td>
<td>3.996</td>
</tr>
<tr>
<td>( I_{OL} )</td>
<td>Output Current (All bits low)</td>
<td>( T_A = 25^\circ\text{C} )</td>
<td>0</td>
<td>2.0</td>
</tr>
<tr>
<td>( V_{O} )</td>
<td>Output Voltage Compliance</td>
<td>( T_A = 25^\circ\text{C} )</td>
<td>-2.5</td>
<td>+0.2</td>
</tr>
<tr>
<td>( SR )</td>
<td>Reference Amplifier Slew Rate</td>
<td></td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>( ST )</td>
<td>Reference Amplifier Settling Time</td>
<td>0 to 4.0mA, ±0.1%</td>
<td></td>
<td>2.0</td>
</tr>
<tr>
<td>( PSRR(\text{(-)}) )</td>
<td>Output Current Power Supply Sensitivity</td>
<td></td>
<td>0.003</td>
<td>0.01</td>
</tr>
<tr>
<td>( C_{O} )</td>
<td>Output Capacitance</td>
<td>( V_O = 0 )</td>
<td></td>
<td>25</td>
</tr>
<tr>
<td>( C_{I} )</td>
<td>Digital Input Capacitance (All bits high)</td>
<td></td>
<td>4.0</td>
<td>4.0</td>
</tr>
<tr>
<td>( I_{CC} )</td>
<td>Power Supply Current (All bits high)</td>
<td>( T_A = 25^\circ\text{C} )</td>
<td>+4.75</td>
<td>+18</td>
</tr>
<tr>
<td>( I_{EE} )</td>
<td>(All bits low)</td>
<td></td>
<td>-11.4</td>
<td>-20</td>
</tr>
<tr>
<td>( V_{CC} )</td>
<td>Power Supply Voltage Range</td>
<td>( T_A = 25^\circ\text{C} )</td>
<td>+4.75</td>
<td>+5.0</td>
</tr>
<tr>
<td>( V_{EE} )</td>
<td>(All bits low)</td>
<td></td>
<td>-14.25</td>
<td>-15</td>
</tr>
<tr>
<td></td>
<td>(All bits high)</td>
<td></td>
<td>220</td>
<td>380</td>
</tr>
</tbody>
</table>
TYPICAL PERFORMANCE CHARACTERISTICS

**Figure 1. Output Current vs. Output Compliance Voltage**

- **VCC = +5.0V**
- **Vee = -15.0V**
- **TA = 25°C**
- **IREF = 2 mA**

**Figure 2. Maximum Output Compliance Voltage vs. Temperature**

**Figure 3. Power Supply Currents vs. Temperature**

- **VCC = +5V**
- **Vee = -15V**
- **IREF = 2 mA**

**Figure 4. Reference Amplifier Frequency Response**

- **R15 = R16 = 1.0k**
- **VREF(-) = 0V**
- **VREF(+) = 50 mVpp**
- **VA = 200Vpp**
- **t_o = 1000**
- **f_o = 200**
- **CENTERED AT 200mV**
- **CENTERED AT +1.0V**
CIRCUIT DESCRIPTION

The MC3410 consists of four segment current sources which generate the 2 Most Significant Bits (MSBs), and an R/2R DAC implemented with ion implanted resistors for scaling the remaining 8 Least Significant Bits (LSBs). (See Figure 5.) This approach provides complete 10-bit accuracy without trimming.

The individual bit currents are switched ON or OFF by fully differential current switches. The switches use current steering for speed.

An on-chip high-slew reference current amplifier drives the R/2R ladder and segment decoder. The currents are scaled in such a way that, with all bits on, the maximum output current is two times 1023/1024 of the reference amplifier current, or nominally 3.996mA for a 2.000mA reference input current. The reference amplifier allows the user to provide a voltage input. Out-board resistor R16 (see Figure 6) converts this voltage to a usable current. A current mirror doubles this reference current and feeds it to the segment decoder and resistor ladder. Thus, for a reference voltage of 2.0 Volts and a 1kΩ resistor tied to Pin 16, the full scale current is approximately 4.0mA. This relationship will remain regardless of the reference voltage polarity.

Connections for a positive reference voltage are shown in Figure 6a. For negative reference voltage inputs, or for bipolar reference voltage inputs in the multiplying mode, R15 can be tied to a negative voltage corresponding to the minimum input level. For a negative reference input, R16 should be grounded (Figure 6b). In addition, the negative voltage reference must be at least 3V above the VEE supply voltage for best operation. Bipolar input signals may be handled by connecting R16 to a positive voltage equal to the peak positive input level at Pin 15.

When a DC reference voltage is used, capacitive bypass to ground is recommended. The 5V logic supply is not recommended as a reference voltage. If a well regulated 5.0V supply, which drives logic, is to be used as the reference, R16 should be decoupled by connecting it to the +5.0V logic supply through another resistor and bypassing the junction of the two resistors with a 0.1μF capacitor to ground.

The reference amplifier is internally compensated with a 10pF feed-forward capacitor, which gives it its high slew rate and fast settling time. Proper phase margin is maintained with all possible values of R16 and reference voltages which supply...
2.0mA reference current into Pin 16. The reference current can also be supplied by a high impedance current source of 2.0mA. As R16 increases, the bandwidth of the amplifier decreases slightly and settling time increases. For a current source with a dynamic output impedance of 1.0MΩ, the bandwidth of the reference amplifier is approximately half what it is in the case of R16 = 1.0kΩ, and settling time is ~10µs. The reference amplifier phase margin decreases as the current source value decreases in the case of a current source reference, so that the minimum reference current supplied from a current source is 0.5mA for stability.

OUTPUT VOLTAGE COMPLIANCE

The output voltage compliance ranges from -2.5 to +0.2V. As shown in Figure 2, this compliance range is nearly constant over temperature. At the temperature extremes, however, the compliance voltage may be reduced if $V_{EE} > -15V$.

ACCURACY

Absolute accuracy is a measure of each output current level with respect to its intended value. It is dependent upon relative accuracy and full scale current drift. Relative accuracy, or linearity, is the measure of each output current with respect to its intended fraction of the full scale current. The relative accuracy of the MC3410 is fairly constant over temperature due to the excellent temperature tracking, of the implanted resistors. The full scale current from the reference amplifier may drift with temperature causing a change in the absolute accuracy. However, the MC3410 has a low full scale current drift with temperature.

The MC3510 and the MC3410 are accurate to within ±0.05% at 25°C with a reference current of 2.0mA on Pin 16.

MONOTONICITY

The MC3410, MC3510 and MC3410C are guaranteed monotonic over temperature. This means that for every increase in the input digital code, the output current either remains the same or increases but never decreases. In the multiplying mode, where reference input current will vary, monotonicity can be assured if the reference input current remains above 0.5mA.
SETTLING TIME

The worst case switching condition occurs when all bits are switched "on," which corresponds to a low-to-high transition for all bits. This time is typically 250ns for the output to settle to within ± 1/2 LSB for 10-bit accuracy, and 200ns for 8-bit accuracy. The turn-off time is typically 120ns. These times apply when the output swing is limited to a small (<0.7 Volt) swing and the external output capacitance is under 25pF.

The major carry (MSB off-to-on, all others on-to-off) settles in approximately the same time as when all bits are switched off-to-on.

If a load resistor of 625 Ohms is connected to ground, allowing the output to swing to -2.5 Volts, the settling time increases to 1.5μs.

Extra care must be taken in board layout as this is usually the dominant factor in satisfactory test results when measuring settling time. Short leads, 100pF supply bypassing, and minimum scope lead length are all necessary.

A typical test set-up for measuring settling time is shown in Figure 7. The same set-up for the most part can be used to measure the slew rate of the reference amplifier (Figure 9) by tying all data bits high, pulsing the voltage reference input between 0 and 2V, and using a 5000Ω load resistor RL.

Figure 7. Settling Time

Figure 8. Propagation Delay Time
TYPICAL APPLICATIONS

THE VALID DATA WILL BE LATCHED TO THE DAC UNTIL UPDATED WITH E2 PULSE. TIMING WILL DEPEND ON THE PROCESSOR USED.

Figure 10. Interfacing 10-Bit DAC with 8-Bit Microprocessor
DESCRIPTION
The NE5018 is a complete 8-bit digital to analog converter subsystem on one monolithic chip. The data inputs have input latches, controlled by a latch enable pin. The data and latch enable inputs are ultra-low loading for easy interfacing with all logic systems. The latches appear transparent when the LE input is in the low state. When LE goes high, the input data present at the moment of transition is latched and retained until LE again goes low. This feature allows easy compatibility with most micro-processors.

The chip also comprises a stable voltage reference (5V nominal) and a high slew rate buffer amplifier. The voltage reference may be externally trimmed with a potentiometer for easy adjustment of full scale, while maintaining a low temperature coefficient.

The output of the buffer amplifier may be offset so as to provide bipolar as well as unipolar operation.

FEATURES
- 8-bit resolution
- Input latches
- Low-loading data inputs
- On-chip voltage reference
- Output buffer amplifier
- Accurate to ±1/2 LSB (0.19%)
- Monotonic to 8 bits
- Amplifier and reference both short-circuit protected
- Compatible with 8085, 6800 and many other µP's

APPLICATIONS
- Precision 8-bit D/A converters
- A/D converters
- Programmable power supplies
- Test equipment
- Measuring instruments
- Analog-digital multiplication

PIN CONFIGURATION

**F, N PACKAGE**

<table>
<thead>
<tr>
<th>PIN</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ANALOG GND</td>
</tr>
<tr>
<td>2</td>
<td>AMP. COMP.</td>
</tr>
<tr>
<td>3</td>
<td>SUM NODE</td>
</tr>
<tr>
<td>4</td>
<td>+VCC</td>
</tr>
<tr>
<td>5</td>
<td>VOUT</td>
</tr>
<tr>
<td>6</td>
<td>NC</td>
</tr>
<tr>
<td>7</td>
<td>DAC COMP.</td>
</tr>
<tr>
<td>8</td>
<td>DAC COMP.</td>
</tr>
<tr>
<td>9</td>
<td>VREF IN</td>
</tr>
<tr>
<td>10</td>
<td>VREF OUT</td>
</tr>
<tr>
<td>11</td>
<td>VREF ADJ.</td>
</tr>
</tbody>
</table>

**D² PACKAGE**

<table>
<thead>
<tr>
<th>PIN</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ANALOG GND</td>
</tr>
<tr>
<td>2</td>
<td>AMP. COMP.</td>
</tr>
<tr>
<td>3</td>
<td>SUM NODE</td>
</tr>
<tr>
<td>4</td>
<td>+VCC</td>
</tr>
<tr>
<td>5</td>
<td>VOUT</td>
</tr>
<tr>
<td>6</td>
<td>NC</td>
</tr>
<tr>
<td>7</td>
<td>DAC COMP.</td>
</tr>
<tr>
<td>8</td>
<td>DAC COMP.</td>
</tr>
<tr>
<td>9</td>
<td>VREF IN</td>
</tr>
<tr>
<td>10</td>
<td>VREF ADJ.</td>
</tr>
</tbody>
</table>

**NOTES:**
1. SOL-Released in Large SO package only.
2. SOL prep non-standard pinout.
3. SO prep non-standard pinouts.
ABSOLUTE MAXIMUM RATINGS

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>RATING</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>VCC+ (Positive supply voltage)</td>
<td>18</td>
<td>V</td>
</tr>
<tr>
<td>VCC- (Negative supply voltage)</td>
<td>-18</td>
<td>V</td>
</tr>
<tr>
<td>VIN (Logic input voltage)</td>
<td>0 to 18</td>
<td>V</td>
</tr>
<tr>
<td>VREFIN (Voltage at VREF input)</td>
<td>12</td>
<td>V</td>
</tr>
<tr>
<td>VREFADJ (Voltage at VREF adjust)</td>
<td>0 to VREF</td>
<td>V</td>
</tr>
<tr>
<td>VSUM (Voltage at sum node)</td>
<td>12</td>
<td>V</td>
</tr>
<tr>
<td>IREFSC (Short-circuit current to ground at VREF OUT)</td>
<td>Continuous</td>
<td></td>
</tr>
<tr>
<td>IOUTSC (Short-circuit current to ground or either supply at VOUT)</td>
<td>Continuous</td>
<td></td>
</tr>
<tr>
<td>PD (-N package)</td>
<td>800 mW</td>
<td></td>
</tr>
<tr>
<td>PD (-F package)</td>
<td>1000 mW</td>
<td></td>
</tr>
<tr>
<td>TA (Operating temperature range)</td>
<td>SE5018: -55 to +125 °C, NE5018: 0 to +70 °C</td>
<td></td>
</tr>
<tr>
<td>TsTG (Storage temperature range)</td>
<td>SE5018: -65 to +150 °C</td>
<td></td>
</tr>
<tr>
<td>TSO (Lead soldering temperature)</td>
<td>300 °C</td>
<td></td>
</tr>
</tbody>
</table>

*NOTES
For N package, derate at 120°C/W above 35°C
For F package, derate at 75°C/W above 75°C

DC ELECTRICAL CHARACTERISTICS

VCC+ = +15V, VCC- = -15V, SE5018. -55°C ≤ TA ≤ 125°C,
NE5018. 0°C ≤ TA ≤ 70°C unless otherwise specified.
Typical values are specified at 25°C

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>SE5018</th>
<th>NE5018</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Min</td>
<td>Typ</td>
<td>Max</td>
<td>Min</td>
</tr>
<tr>
<td>Resolution</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>Monotonicity</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>Relative accuracy</td>
<td>±0.19</td>
<td>±0.19</td>
<td>±0.19</td>
<td>±0.19</td>
</tr>
<tr>
<td>VCC+ (Positive supply voltage)</td>
<td>11.4</td>
<td>15</td>
<td>11.4</td>
<td>15</td>
</tr>
<tr>
<td>VCC- (Negative supply voltage)</td>
<td>-11.4</td>
<td>-15</td>
<td>-11.4</td>
<td>-15</td>
</tr>
<tr>
<td>V(1) (Logic “1” input voltage)</td>
<td>Pin 1 = 0V</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
</tr>
<tr>
<td>V(0) (Logic “0” input voltage)</td>
<td>Pin 1 = 0V</td>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
</tr>
<tr>
<td>VIN(1) (Logic “1” input current)</td>
<td>Pin 1 = 0V, 2V&lt;VIN&lt;18V</td>
<td>0.1</td>
<td>10</td>
<td>0.1</td>
</tr>
<tr>
<td>VIN(0) (Logic “0” input current)</td>
<td>Pin 1 = 0V, -5V&lt;VIN&lt;0.8V</td>
<td>-2.0</td>
<td>-10</td>
<td>-2.0</td>
</tr>
<tr>
<td>VFS (Full scale output voltage)</td>
<td>Unipolar operation</td>
<td>9.50</td>
<td>9.961</td>
<td>10.50</td>
</tr>
<tr>
<td>VFS (Full scale output voltage)</td>
<td>Bipolar operation</td>
<td>4.5</td>
<td>4.961</td>
<td>5.5</td>
</tr>
<tr>
<td>VFS (Full scale output voltage)</td>
<td>Bipolar operation</td>
<td>-5.04</td>
<td>-5.000</td>
<td>-4.960</td>
</tr>
<tr>
<td>VZS (Zero scale voltage)</td>
<td>5</td>
<td>+30</td>
<td>5</td>
<td>+30</td>
</tr>
<tr>
<td>IOS (Output short circuit current)</td>
<td>TA = 25°C</td>
<td>15</td>
<td>40</td>
<td>15</td>
</tr>
<tr>
<td>PSR+(out) (Output power supply rejection (+))</td>
<td>V- = -15V, 13.5V≤V+≤16.5V, external VREF IN = 5.000V</td>
<td>.001</td>
<td>.01</td>
<td>.001</td>
</tr>
<tr>
<td>PSR-(out) (Output power supply rejection (-))</td>
<td>V+ = 15V, -13.5V≤V-≤-16.5V, external VREF IN = 5.000V</td>
<td>.001</td>
<td>.01</td>
<td>.001</td>
</tr>
<tr>
<td>TCFS (Full scale temperature coefficient)</td>
<td>VREF IN = 5.000V</td>
<td>20</td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>TCZS (Zero scale temperature coefficient)</td>
<td>VREF IN = 5.000V</td>
<td>5</td>
<td></td>
<td>5</td>
</tr>
</tbody>
</table>
DC ELECTRICAL CHARACTERISTICS (Cont’d) \( V_{CC}^+ = +15V, V_{CC}^- = -15V, SE5018, -55°C \leq T_A \leq 125°C, \)
NE5018. 0°C \leq T_A \leq 70°C unless otherwise specified.1
Typical values are specified at 25°C

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>SE/5018</th>
<th>NE5018</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>( I_{REF} )</td>
<td>Reference output current</td>
<td>Note 8 [ T_A = 25°C ]</td>
<td>15</td>
<td>3</td>
</tr>
<tr>
<td>( I_{REFSC} )</td>
<td>Reference short circuit current</td>
<td>( V_{REF} = 0V )</td>
<td>15</td>
<td>30</td>
</tr>
<tr>
<td>( PSR^+ (REF) )</td>
<td>Reference power supply rejection (+) ( V^- = -15V, 13.5V \leq V^+ \leq 16.5V, I_{REF} = 1.0mA )</td>
<td>.003</td>
<td>.01</td>
<td>.003</td>
</tr>
<tr>
<td>( PSR^- (REF) )</td>
<td>Reference power supply rejection (−) ( V^+ = 15V, -13.5V \leq V^- \leq 16.5V )</td>
<td>.003</td>
<td>.01</td>
<td>.003</td>
</tr>
<tr>
<td>( V_{TCREF} )</td>
<td>Reference voltage ( I_{REF} = 1.0mA ) [ T_A = 25°C ]</td>
<td>4.9</td>
<td>5.0</td>
<td>5.25</td>
</tr>
<tr>
<td>( Z_{IN} )</td>
<td>DAC ( V_{REF} ) in input impedance ( I_{REF} = 1.0mA ) [ T_A = 25°C ]</td>
<td>4.15</td>
<td>5.0</td>
<td>5.85</td>
</tr>
<tr>
<td>( I_{CC+} )</td>
<td>Positive supply current ( V_{CC}^+ = 15V )</td>
<td>7</td>
<td>14</td>
<td>7</td>
</tr>
<tr>
<td>( I_{CC-} )</td>
<td>Negative supply current ( V_{CC}^- = -15V )</td>
<td>-10</td>
<td>-15</td>
<td>-10</td>
</tr>
<tr>
<td>( P_D )</td>
<td>Power dissipation ( I_{REF} = 1.0mA, V_{CC} = \pm 15V )</td>
<td>255</td>
<td>435</td>
<td>255</td>
</tr>
</tbody>
</table>

NOTE
1. Refer to Figure 2.

AC ELECTRICAL CHARACTERISTICS \( V_{CC} = \pm 15V, T_A = 25°C \)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TO</th>
<th>FROM</th>
<th>TEST CONDITIONS</th>
<th>SE/NE5018</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>( T_{SLH} )</td>
<td>Settling time</td>
<td>( \pm \frac{1}{2} ) LSB</td>
<td>Input</td>
<td>All bits low to high3</td>
<td>1.8</td>
</tr>
<tr>
<td>( T_{SHL} )</td>
<td>Settling time</td>
<td>( \pm \frac{1}{2} ) LSB</td>
<td>Input</td>
<td>All bits high to low4</td>
<td>2.3</td>
</tr>
<tr>
<td>( t_{plh} )</td>
<td>Propagation delay</td>
<td>Output</td>
<td>Input</td>
<td>All bits switched low to high3</td>
<td>300</td>
</tr>
<tr>
<td>( t_{phl} )</td>
<td>Propagation delay</td>
<td>Output</td>
<td>Input</td>
<td>All bits switched high to low4</td>
<td>150</td>
</tr>
<tr>
<td>( t_{plsh} )</td>
<td>Propagation delay</td>
<td>Output</td>
<td>Input</td>
<td>1 LSB change3,4</td>
<td>150</td>
</tr>
<tr>
<td>( t_{plh} )</td>
<td>Propagation delay</td>
<td>Output</td>
<td>LE</td>
<td>low to high transition5</td>
<td>300</td>
</tr>
<tr>
<td>( t_{phl} )</td>
<td>Propagation delay</td>
<td>Output</td>
<td>LE</td>
<td>high to low transition6</td>
<td>150</td>
</tr>
<tr>
<td>( t_s )</td>
<td>Set-up time</td>
<td>LE</td>
<td>Input</td>
<td>2, 7</td>
<td>100</td>
</tr>
<tr>
<td>( t_h )</td>
<td>Hold time</td>
<td>LE</td>
<td>Input</td>
<td>2, 7</td>
<td>50</td>
</tr>
<tr>
<td>( t_{lw} )</td>
<td>Latch enable pulse width</td>
<td>LE</td>
<td>Input</td>
<td>2, 7</td>
<td>150</td>
</tr>
</tbody>
</table>

NOTES
2. Refer to Figure 3.
3. See Figure 6.
4. See Figure 7.
5. See Figure 8.
6. See Figure 9.
7. See Figure 10.
8. For reference currents > 3mA, use of an external buffer is required.

---

1. Refer to Figure 2.

---

4-65
8-BIT \( \mu \text{P} \)-COMPATIBLE D/A CONVERTER

Figure 8

Propagation delay, Latch Enable to Output

DATA

LE

10V

OUTPUT

OV

Figure 9

Propagation delay, Latch Enable to Output

DATA

LE

10V

OUTPUT

OV

Figure 10

Latch Enable Pulse Width, Set-Up and Hold Times

LE

DATA

Figure 10
DESCRIPTION
The NE5019 is a complete 8-bit digital to analog converter subsystem on one monolithic chip. The data inputs have input latches, controlled by a latch enable pin. The data and latch enable inputs are ultra-low loading for easy interfacing with all logic systems. The latches appear transparent when the LE input is in the low state. When LE goes high, the input data present at the moment of transition is latched and retained until LE again goes low. This feature allows easy compatibility with most microprocessors.

The chip also comprises a stable voltage reference (5V nominal) and a high slew rate buffer amplifier. The voltage reference may be externally trimmed with a potentiometer for easy adjustment of full scale, while maintaining a low temperature coefficient.

The output of the buffer amplifier may be offset so as to provide bipolar as well as unipolar operation.

FEATURES
- 8-bit resolution
- Input latches
- Low-loading data inputs
- On-chip voltage reference
- Output buffer amplifier
- Accurate to ±1/4 LSB (.1%)
- Monotonic to 8 bits
- Amplifier and reference both short-circuit protected
- Compatible with 8085, 6800 and many other µP's

APPLICATIONS
- Precision 8-bit D/A converters
- A/D converters
- Programmable power supplies
- Test equipment
- Measuring Instruments
- Analog-digital multiplication

BLOCK DIAGRAM

PIN CONFIGURATION

Figure 1
**LINEAR LSI PRODUCTS**

**8-BIT µP-COMPATIBLE D/A CONVERTER**  
SE/NE5019

### ABSOLUTE MAXIMUM RATINGS

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>RATING</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>$V_{CC+}$ Positive supply voltage</td>
<td>18</td>
<td>V</td>
</tr>
<tr>
<td>$V_{CC-}$ Negative supply voltage</td>
<td>18</td>
<td>V</td>
</tr>
<tr>
<td>$V_{IN}$ Logic input voltage</td>
<td>8 to 18</td>
<td>V</td>
</tr>
<tr>
<td>$V_{REFIN}$ Voltage at $V_{REF}$ input</td>
<td>12</td>
<td>V</td>
</tr>
<tr>
<td>$V_{REFADJ}$ Voltage at $V_{REF}$ adjust</td>
<td>0 to $V_{REF}$</td>
<td>V</td>
</tr>
<tr>
<td>$V_{SUM}$ Voltage at sum node to ground at $V_{OUT}$</td>
<td>Continuous</td>
<td></td>
</tr>
<tr>
<td>$I_{REFSC}$ Short-circuit current</td>
<td>Continuous</td>
<td></td>
</tr>
<tr>
<td>$I_{OUTSC}$ Short-circuit current to ground or either supply at $V_{OUT}$</td>
<td>Continuous</td>
<td></td>
</tr>
<tr>
<td>$P_{D}$ Power dissipation*</td>
<td>800</td>
<td>mW</td>
</tr>
<tr>
<td>$T_A$ Operating temperature range</td>
<td>0°C to +70°C</td>
<td>°C</td>
</tr>
<tr>
<td>$T_{STG}$ Storage temperature range</td>
<td>-65°C to +150°C</td>
<td>°C</td>
</tr>
<tr>
<td>$T_{SOLD}$ Lead soldering temperature (10 seconds)</td>
<td>300°C</td>
<td></td>
</tr>
</tbody>
</table>

*NOTES:

- For N package, derate at 120°C/W above 35°C.
- For F package, derate at 75°C/W above 75°C.

### DC ELECTRICAL CHARACTERISTICS $V_{CC+} = +15V, V_{CC-} = -15V, SE5019, -55°C ≤ T_{A} ≤ 125°C, NE5019. 0°C ≤ T_{A} ≤ 70°C unless otherwise specified.1

Typical values are specified at 25°C

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>SE5019</th>
<th>NE5019</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resolution Monotonicity Relative accuracy</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$V_{CC+}$ Positive supply voltage</td>
<td></td>
<td>8</td>
<td>8</td>
<td>Bits</td>
</tr>
<tr>
<td>$V_{CC-}$ Negative supply voltage</td>
<td></td>
<td>8</td>
<td>8</td>
<td>Bits</td>
</tr>
<tr>
<td>$V_{IN(1)}$ Logic &quot;1&quot; input voltage</td>
<td></td>
<td>8</td>
<td>8</td>
<td>%FS</td>
</tr>
<tr>
<td>$V_{IN(0)}$ Logic &quot;0&quot; input voltage</td>
<td></td>
<td>8</td>
<td>8</td>
<td>%FS</td>
</tr>
<tr>
<td>$I_{IN(1)}$ Logic &quot;1&quot; input current</td>
<td></td>
<td>8</td>
<td>8</td>
<td>%FS</td>
</tr>
<tr>
<td>$I_{IN(0)}$ Logic &quot;0&quot; input current</td>
<td></td>
<td>8</td>
<td>8</td>
<td>%FS</td>
</tr>
<tr>
<td>$V_{FS}$ Full scale output voltage Unipolar operation</td>
<td></td>
<td>9.50</td>
<td>9.50</td>
<td>V</td>
</tr>
<tr>
<td>$V_{FS}$ Full scale output voltage Bipolar operation</td>
<td></td>
<td>+4.961</td>
<td>+4.961</td>
<td>V</td>
</tr>
<tr>
<td>$V_{VS}$ Zero scale voltage</td>
<td></td>
<td>-5.040</td>
<td>-5.000</td>
<td>mV</td>
</tr>
<tr>
<td>$I_{OS}$ Output short circuit current</td>
<td></td>
<td>15</td>
<td>15</td>
<td>mA</td>
</tr>
<tr>
<td>$PSR^+(out)$ Output power supply rejection (+)</td>
<td></td>
<td>0.001</td>
<td>0.001</td>
<td>%FS/VS</td>
</tr>
<tr>
<td>$PSR^-(out)$ Output power supply rejection (−)</td>
<td></td>
<td>0.001</td>
<td>0.001</td>
<td>%FS/VS</td>
</tr>
<tr>
<td>$TCFS$ Full scale temperature coefficient</td>
<td></td>
<td>20</td>
<td>20</td>
<td>ppm/°C</td>
</tr>
<tr>
<td>$TCZS$ Zero scale temperature coefficient</td>
<td></td>
<td>5</td>
<td>5</td>
<td>ppm/°C</td>
</tr>
</tbody>
</table>

**NOTE**

1. Refer to Figure 2.
### DC ELECTRICAL CHARACTERISTICS

(Cont’d) \( V_{CC^+} = +15V, V_{CC^-} = -15V, SE5019. -55°C \leq T_A \leq 125°C, NE5019. 0°C \leq T_A \leq 70°C \) unless otherwise specified.

Typical values are specified at 25°C.

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Min</td>
</tr>
<tr>
<td>( I_{REF} ) Reference output current</td>
<td>Note 8</td>
</tr>
<tr>
<td>( I_{REFSC} ) Reference short circuit current</td>
<td>( T_A = 25°C )</td>
</tr>
<tr>
<td>( PSR+ ) Reference power supply rejection (+)</td>
<td>( V^- = -15V, 13.5V \leq V^+ \leq 16.5V, I_{REF} = 1.0mA )</td>
</tr>
<tr>
<td>( PSR- ) Reference power supply rejection (−)</td>
<td>( V^+ = 15V, -13.5V \leq V^- \leq 16.5V, I_{REF} = 1.0mA )</td>
</tr>
<tr>
<td>( V_{REF} ) Reference voltage</td>
<td>( I_{REF} = 1.0mA, T_A = 25°C )</td>
</tr>
<tr>
<td>( Z_{IN} ) DAC ( V_{REF\text{IN}} ) input impedance</td>
<td>( I_{REF} = 1.0mA, T_A = 25°C )</td>
</tr>
<tr>
<td>( I_{CC^+} ) Positive supply current</td>
<td>( V_{CC^+} = 15V )</td>
</tr>
<tr>
<td>( I_{CC^-} ) Negative supply current</td>
<td>( V_{CC^-} = -15V )</td>
</tr>
<tr>
<td>( P_D ) Power dissipation</td>
<td>( I_{REF} = 1.0mA, V_{CC} = \pm 15V )</td>
</tr>
</tbody>
</table>

**NOTE**
1. Refer to Figure 2.

### AC ELECTRICAL CHARACTERISTICS

\( V_{CC} = \pm 15V, T_A = 25°C \)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TO</th>
<th>FROM</th>
<th>TEST CONDITIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>( T_{SLH} ) Settling time</td>
<td>( \pm \frac{1}{2} \text{ LSB} )</td>
<td>Input</td>
<td>All bits low to high</td>
</tr>
<tr>
<td>( T_{SHL} ) Settling time</td>
<td>( \pm \frac{1}{2} \text{ LSB} )</td>
<td>Input</td>
<td>All bits high to low</td>
</tr>
<tr>
<td>( t_{ph} ) Propagation delay</td>
<td>Output</td>
<td>Input</td>
<td>All bits switched low to high</td>
</tr>
<tr>
<td>( t_{plh} ) Propagation delay</td>
<td>Output</td>
<td>Input</td>
<td>All bits switched high to low</td>
</tr>
<tr>
<td>( t_{plsb} ) Propagation delay</td>
<td>Output</td>
<td>Input</td>
<td>1 LSB change</td>
</tr>
<tr>
<td>( t_{ph} ) Propagation delay</td>
<td>Output</td>
<td>LE</td>
<td>low to high transition</td>
</tr>
<tr>
<td>( t_{phl} ) Propagation delay</td>
<td>Output</td>
<td>LE</td>
<td>high to low transition</td>
</tr>
<tr>
<td>( t_s ) Set-up time</td>
<td>LE</td>
<td>Input</td>
<td>2, 7</td>
</tr>
<tr>
<td>( t_h ) Hold time</td>
<td>LE</td>
<td>Input</td>
<td>2, 7</td>
</tr>
<tr>
<td>( t_{pw} ) Latch enable pulse width</td>
<td>LE</td>
<td>Input</td>
<td>2, 7</td>
</tr>
</tbody>
</table>

**NOTES**
2. Refer to Figure 3.
3. See Figure 6.
4. See Figure 7.
5. See Figure 8.
6. See Figure 9.
7. See Figure 10.
8. For reference currents > 3mA, use of an external buffer is required.
8-BIT \( \mu \text{P}-\text{COMPATIBLE D/A CONVERTER} \)  
SE/NE5019

**Figure 8**

**Figure 9**

**Figure 10**
DESCRIPTION
The NE5020 is a microprocessor-compatible monolithic 10-bit digital to analog converter subsystem. This device offers 10-bit resolution and ±0.1% accuracy and monotonicity guaranteed over full operating temperature range.

Low loading latches, adjustable logic thresholds and addressing capability allow the NE5020 to directly interface with most microprocessor and logic controlled systems.

The NE5020 contains internal voltage reference, DAC switches and resistor ladder. Also, the input buffer and output summing amplifier are included. In addition, the matched application resistors for scaling either unipolar or bipolar output values are included on a single monolithic chip.

The result is a near minimum component count 10-bit resolution DAC system.

FEATURES
- 10-bit resolution
- Guaranteed monotonicity over operating range
- ±0.1% relative accuracy
- Unipolar (0V to +10V) and Bipolar (±5V) output range
- Logic bus compatible
- 5μsec settling time

APPLICATIONS
- Precision 10-bit D/A converters
- 10-bit Analog to Digital converters
- Programmable power supplies
- Test equipment
- Measurement Instruments

PIN CONFIGURATION

BLOCK DIAGRAM

Figure 1
### ABSOLUTE MAXIMUM RATINGS

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>RATING</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>VCC+ Positive supply voltage</td>
<td>18</td>
<td>V</td>
</tr>
<tr>
<td>VCC- Negative supply voltage</td>
<td>-18</td>
<td>V</td>
</tr>
<tr>
<td>VIN Logic input voltage</td>
<td>0 to 18</td>
<td>V</td>
</tr>
<tr>
<td>VREF IN Voltage at +VREF input</td>
<td>12</td>
<td>V</td>
</tr>
<tr>
<td>VREF ADJ Voltage at VREF adjust</td>
<td>0 to VREF</td>
<td>V</td>
</tr>
<tr>
<td>VSUM Voltage at sum node</td>
<td>12</td>
<td>V</td>
</tr>
<tr>
<td>IREFSC Short-circuit current to ground at VREF OUT</td>
<td>Continuous</td>
<td></td>
</tr>
<tr>
<td>IOUTSC Short-circuit current to ground or either supply at VOUT</td>
<td>Continuous</td>
<td></td>
</tr>
<tr>
<td>PD Power dissipation*</td>
<td>800</td>
<td>mW</td>
</tr>
<tr>
<td>TA Operating temperature range</td>
<td>0 to +70</td>
<td>°C</td>
</tr>
<tr>
<td>TSOL Storage temperature range</td>
<td>-65 to +150</td>
<td>°C</td>
</tr>
<tr>
<td>TSOLD Lead soldering temperature (10 seconds)</td>
<td>300</td>
<td>°C</td>
</tr>
</tbody>
</table>

*NOTES
For N package, derate at 120°C/W above 35°C
For F package, derate at 75°C/W above 75°C

### DC ELECTRICAL CHARACTERISTICS

VCC+ = +15V, VCC- = -15V, 0°C ≤ TA ≤ 70°C unless otherwise specified.

Typical values are specified at 25°C

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>NE5020</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resolution</td>
<td>Min Typ Max</td>
<td>Bits</td>
<td></td>
</tr>
<tr>
<td>Monotonicity</td>
<td>10 10 ±0.1</td>
<td>Bits</td>
<td></td>
</tr>
<tr>
<td>Relative accuracy</td>
<td>VCC+ Positive supply voltage</td>
<td>11.4 15 16.5</td>
<td>V</td>
</tr>
<tr>
<td>VCC- Negative supply voltage</td>
<td>-11.4 -15 -16.5</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>VIN(1) Logic “1” input voltage</td>
<td>Pin 1 = 0V</td>
<td>2.0</td>
<td>V</td>
</tr>
<tr>
<td>VIN(0) Logic “0” input voltage</td>
<td>Pin 1 = 0V</td>
<td>0.8</td>
<td>V</td>
</tr>
<tr>
<td>IIN(1) Logic “1” input current</td>
<td>Pin 1 = 0V, 2V&lt;VIN&lt;18V</td>
<td>0.1</td>
<td>μA</td>
</tr>
<tr>
<td>IIN(0) Logic “0” input current</td>
<td>Pin 1 = 0V, -5V&lt;VIN&lt;0.8V</td>
<td>-2.0</td>
<td>μA</td>
</tr>
<tr>
<td>VFS Full scale output voltage</td>
<td>Unipolar operation</td>
<td>9.5 9.9902 10.5</td>
<td>V</td>
</tr>
<tr>
<td>VFS Full scale output voltage</td>
<td>Bipolar operation</td>
<td>4.5 4.9902 5.5</td>
<td>V</td>
</tr>
<tr>
<td>VFS Full scale output voltage</td>
<td>Unipolar operation</td>
<td>-5.040 -5.000 -4.960</td>
<td>mV</td>
</tr>
<tr>
<td>VFS Full scale output voltage</td>
<td>Unipolar operation</td>
<td>30 5 +30</td>
<td>mV</td>
</tr>
<tr>
<td>IOS Output short circuit current</td>
<td>TA = 25°C</td>
<td>±15  ±40</td>
<td>mA</td>
</tr>
<tr>
<td>PSR+(out) Output power supply rejection (+)</td>
<td>V- = -15V, 13.5V≤V+≤16.5V, external VREF IN = 5.000V</td>
<td>0.1 0.1 %FS/ %VS</td>
<td></td>
</tr>
<tr>
<td>PSR-(out) Output power supply rejection (-)</td>
<td>V+ = 15V, -13.5V≤V-≤-16.5V, external VREF IN = 5.000V</td>
<td>0.1 0.1 %FS/ %VS</td>
<td></td>
</tr>
<tr>
<td>TCFS Full scale temperature coefficient</td>
<td>VREF IN = 5.000V</td>
<td>20</td>
<td>ppmFS /°C</td>
</tr>
<tr>
<td>TCZS Zero scale temperature coefficient</td>
<td>5</td>
<td>ppmFS /°C</td>
<td></td>
</tr>
</tbody>
</table>
### DC ELECTRICAL CHARACTERISTICS (Cont’d)

V\textsubscript{CC+} = +15V, V\textsubscript{CC−} = −15V, 0°C ≤ T\textsubscript{A} ≤ 70°C unless otherwise specified.  
Typical values are specified at 25°C

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>NE5020</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>I\textsubscript{REF}</td>
<td>Reference output current</td>
<td>TA = 25°C</td>
<td>Min Typ Max</td>
</tr>
<tr>
<td>I\textsubscript{REF SC}</td>
<td>Reference short circuit current</td>
<td>V\textsubscript{REF OUT} = 0V</td>
<td>3 15 30</td>
</tr>
<tr>
<td>PSR+\textsubscript{REF}</td>
<td>Reference power supply rejection (+)</td>
<td>V– = −15V, 13.5V ≤ V+ ≤ 16.5V, I\textsubscript{REF} = 1.0mA</td>
<td>.003 .01 %VR/ %VS</td>
</tr>
<tr>
<td>PSR−\textsubscript{REF}</td>
<td>Reference power supply rejection (−)</td>
<td>V+ = 15V, −13.5V ≤ V– ≤ 16.5V, I\textsubscript{REF} = 1.0mA</td>
<td>.003 .01 %VR/ %VS</td>
</tr>
<tr>
<td>V\textsubscript{REF}</td>
<td>Reference voltage</td>
<td>I\textsubscript{REF} = 1.0mA, TA = 25°C</td>
<td>4.9 5.0 5.25 V</td>
</tr>
<tr>
<td>TC\textsubscript{REF}</td>
<td>Reference voltage temperature coefficient</td>
<td>I\textsubscript{REF} = 1.0mA</td>
<td>60 ppm/°C</td>
</tr>
<tr>
<td>Z\textsubscript{IN}</td>
<td>DAC V\textsubscript{REF IN} input impedance</td>
<td></td>
<td>5.0 kΩ</td>
</tr>
<tr>
<td>I\textsubscript{CC+}</td>
<td>Positive supply current</td>
<td>I\textsubscript{REF} = 1.0mA, V\textsubscript{CC+} = 15V</td>
<td>7 14 mA</td>
</tr>
<tr>
<td>I\textsubscript{CC−}</td>
<td>Negative supply current</td>
<td>V\textsubscript{CC−} = −15V</td>
<td>−10 −15 mA</td>
</tr>
<tr>
<td>P\textsubscript{D}</td>
<td>Power dissipation</td>
<td>I\textsubscript{REF} = 1.0mA, V\textsubscript{CC} = ±15V</td>
<td>255 435 mW</td>
</tr>
</tbody>
</table>

#### AC ELECTRICAL CHARACTERISTICS

V\textsubscript{CC} = ± 15V, T\textsubscript{A} = 25°C

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TO</th>
<th>FROM</th>
<th>TEST CONDITIONS</th>
<th>NE5020</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>T\textsubscript{SLH}</td>
<td>Settling time</td>
<td>± ½ LSB</td>
<td>Input</td>
<td>All bits low to high\textsuperscript{4}</td>
<td>5 5</td>
</tr>
<tr>
<td>T\textsubscript{SHL}</td>
<td>Settling time</td>
<td>± ½ LSB</td>
<td>Input</td>
<td>All bits high to low\textsuperscript{5}</td>
<td>5 5</td>
</tr>
<tr>
<td>t\textsubscript{plh}</td>
<td>Propagation delay</td>
<td>Output</td>
<td>Input</td>
<td>All bits switched low to high\textsuperscript{4}</td>
<td>300</td>
</tr>
<tr>
<td>t\textsubscript{phl}</td>
<td>Propagation delay</td>
<td>Output</td>
<td>Input</td>
<td>All bits switched high to low\textsuperscript{5}</td>
<td>150</td>
</tr>
<tr>
<td>t\textsubscript{plsb}</td>
<td>Propagation delay</td>
<td>Output</td>
<td>Input</td>
<td>1 LSB change\textsuperscript{4,5}</td>
<td>150</td>
</tr>
<tr>
<td>t\textsubscript{plh}</td>
<td>Propagation delay</td>
<td>Output</td>
<td>LE</td>
<td>low to high transition\textsuperscript{6}</td>
<td>300</td>
</tr>
<tr>
<td>t\textsubscript{phl}</td>
<td>Propagation delay</td>
<td>Output</td>
<td>LE</td>
<td>high to low transition\textsuperscript{7}</td>
<td>150</td>
</tr>
<tr>
<td>t\textsubscript{a}</td>
<td>Set-up time</td>
<td>LE</td>
<td>Input</td>
<td>3, 8</td>
<td>100</td>
</tr>
<tr>
<td>t\textsubscript{h}</td>
<td>Hold time</td>
<td>LE</td>
<td>Input</td>
<td>3, 8</td>
<td>50</td>
</tr>
<tr>
<td>t\textsubscript{lw}</td>
<td>Latch enable pulse width</td>
<td>LE</td>
<td>Input</td>
<td>3, 8</td>
<td>150</td>
</tr>
</tbody>
</table>

#### NOTES

1. Refer to Figure 2.
2. For I\textsubscript{REF OUT} greater than 3mA, an external buffer is required.
3. Refer to Figure 3.
4. See Figure 6.
5. See Figure 7.
6. See Figure 8.
7. See Figure 9.
8. See Figure 10.
LINEAR LSI PRODUCTS

10-BIT µP-COMPATIBLE D/A CONVERTER

DC PARAMETRIC TEST CONFIGURATION

**Figure 2**

AC PARAMETRIC TEST CONFIGURATION

**Figure 3**

FULL/ZERO SCALE ADJUST — UNIPOLAR OUTPUT (0–10V)

**Figure 4**

BIPOLAR OUTPUT OPERATION (−5 to +5V)

**Figure 5**

SETTLING TIME AND PROPAGATION DELAY, LOW TO HIGH DATA

**Figure 6**

SETTLING TIME AND PROPAGATION DELAY, HIGH TO LOW DATA

**Figure 7**

4-76
**LINEAR LSI PRODUCTS**

**10-BIT \( \mu P \)-COMPATIBLE D/A CONVERTER NE5020**

**Figure 8**

**Figure 9**

**Figure 10**

**Figure 11**

**NOTE**

Do not exceed negative logic input range of DAC.
CIRCUIT DESCRIPTION

The NE5020 provides ten data latches, an internal voltage reference, application resistors, and a scaled output voltage, in addition to the basic DAC components (see block diagram, figure 1).

Latch Circuit

Digital interface with the NE5020 is readily accomplished through the use of two latch enable ports (LE₁ and LE₂) and ten data input latches. LE₂ controls the two most significant bits of data (DBg and DBb) while LE₁ controls the eight lesser significant bits (DB7 through DB0). Both the latch enable ports (LE) and the data inputs are static and threshold sensitive. When the latch enable ports (LE) are high (Logic '1') the data inputs become very high impedances and essentially disappear from the data bus. Addressing the LE with a low (Logic '0') the latches become active and adapt the logic states present on the data bus. During this state, the output of the DAC will change to the value proportional to the data bus value. When the latch enable ports (LE) are high (Logic '1') the data inputs become very high impedances and essentially disappear from the data bus. Addressing the LE with a low (Logic '0') the latches become active and adapt the logic states present on the data bus. During this state, the output of the DAC will change to the value proportional to the data bus value.

The data inputs are inactive and high impedance (typically requiring ~2µA for low (.8V max) or 0.1µA for high (2.0V min)) when the LE is high. Any changes on the data bus with LE high will have no effect on the DAC output.

The digital logic inputs (LE and DB) for the NE5020 utilize a differential input logic system with a threshold level of +1.4 volts with respect to the voltage level on the digital ground pin (Pin 1). Figure 11 details several bias schemes used to provide the proper threshold voltage levels for various logic families.

To be compatible with a bus orientated system the DAC should respond in as short a period as possible to insure full utilization of the microprocessor, controller and I/O control lines. Figure 10 shows the typical timing requirements of the latch and data lines. This figure indicates that data on the data bus should be stable for at least 50ns after LE is changed to a high state.

The independent LE (LE₁ and LE₂) lines allow for direct interface from an 8 bit data bus (see figure 12). Data for the two MSB's is supplied and stored when LE₂ is activated low and returned high according to the NE5020 timing requirements. Then LE₁ is activated low and the remaining eight LSB's of data are transferred into the DAC. With LE₁ returning high the loading of ten bit data word from an eight bit data bus is complete.

Occasionally the analog output must change to its data value within one data address operation. This is no problem using the NE5020 on a 16 bit bus or any other data bus with 10 or greater data bits. This can be accomplished from an 8 bit data bus by utilizing an external latch circuit to preload the two MSB data values. Figure 13 shows the circuit configuration.

After preloading (via LE preload) the external latch with the two MSB values, LE₂ is activated low and the eight LSB's and the...
two MSB's are concurrently loaded into the DAC in one address operation. This permits the DAC output to make its appropriate change at one time.

Reference Interface
The NE5020 contains an internal bandgap voltage reference which is designed to have a very low temperature coefficient and excellent long term stability characteristics.

The internal bandgap reference (1.23V) is buffered and amplified to provide the 5 volt reference output. Providing a VREFADJ (pin 14) allows trimming of the reference output. Utilization of the adjust circuit shown in figure 16 performs not only VREF adjustment but also full scale output adjust. Notice that the VREFADJ pin is essentially the sum node of an op amp and is sensitive to excessive node capacitance. Any capacitance on the node can be minimized by placing the external resistors as close as possible to the VREFADJ pin and observing good layout practices.

The VREF out node can drive loads greater than the DAC VREF input requirements and can be used as an excellent system voltage reference. However, to minimize load effects on the DAC system accuracy, it is recommended that a buffer amplifier is used.

Input Amplifier
The DAC reference amplifier is a high gain internally compensated op amp used to convert the input reference voltage to a precision bias current for the DAC ladder network.

Figure 1 details the input reference amplifier and current ladder. The voltage to current converter of the DAC amp will generate a 1mA reference current through QR with a 5 volt VREF. This creates the input bias to the ladder network. Data bit 9 (DB9)(Q9), when turned on, will mirror this current and will contribute 1mA to the output. DBB (Qb) will contribute 1/2 of that value or 0.5mA and so on. These current values act as current sinks and will add at the sum node to produce a DAC ladder to sum node function of:

\[ I_{OUT} = \frac{2\text{VREF}}{R_{REF}} \left( \frac{DB9}{2} + \frac{DB5}{4} + \frac{DB4}{8} + \frac{DB3}{16} + \frac{DB2}{32} + \frac{DB1}{64} + \frac{DB0}{128} \right) \]

Because of the fixed internal compensation of the reference amp, the slew rate is limited to typically 0.7V/µs and source impedances at the VREF INPUT greater than 5kΩ should be avoided to maintain stability.

The -VREF INPUT pin is uncommitted to allow utilization of negative polarity reference voltages. In this mode +VREF INPUT is grounded and the negative reference is tied directly to the -VREF INPUT. The -VREF INPUT contains a 5kΩ resistor that matches a like resistor in the +VREF INPUT to reduce voltage offset caused by op amp input bias currents.

Output Amplifier and Interface
The NE5020 provides an on chip output op amp to eliminate the need for additional external active circuits. Its two stage design with feed forward compensation allows it to slew at 15V/µsec and settle to within ±1/2LSB in 5µsec. These times are typical when driving the rated loads of RL ≥ 5k and CL ≤ 50pF with recommended values of CFF = 1nF and CPF = 30pF. Typical input offset voltages of 5mV and 50k open loop gain insure an accurate current to voltage conversion is performed when using the on chip RFB resistor. RFB is matched to RREF and RBp to maintain accurate voltage gain over operating conditions. The diode shown from ground to sum node prevents the DAC current switches from saturating the op amp during large signal transitions which would otherwise increase the settling time.

The output op amp also incorporates output short circuit protection for both positive and negative excursions. During this fault condition IOUT will limit at ±15mA typical. Recovery from this condition to rated accuracy will be determined by duration of short circuit and die temperature stabilization.

Bipolar Output Voltage
The NE5020 includes a thermally matched resistor, Rbip, to offset the output voltage by 5 volts to obtain -5V to +5V output voltage range operation. This is accomplished by shorting pins 18 and 22 (see figure 14). This connection produces a current equal to (VREF IN - Vsum node) + Rbip, (1mA nominal), which is injected into the sum node. Since full scale current out is approximately 2mA (1.9980mA), (2mA - 1mA)5k = 5V will appear at the output. For zero DAC output current, 1mA is still injected into sum mode and \( V_{OUT} = -(5k)(1mA) = -5V \). Zero scale adjust and full scale adjust are performed as described below, noting that full scale voltage is now approximately +5 volts, zero scale adjust may be used to trim \( V_{OUT} = 0.00 \) with the MSB high or \( V_{OUT} = -5.0V \) with all bits off.

Zero Scale Adjustment
The method of trimming the small offset error that may exist when all data bits are low is shown in figure 15. The trim is the result of injecting a current from resistor R2 that counteracts the error current. Adjusting potentiometer R1 until \( V_{OUT} \) equals 0.000 volts in the unipolar mode or -5.000 volts in the bipolar mode (see bipolar section) accomplishes this trim.

Full Scale Adjustment
A recommended full scale adjustment circuit when using the internal voltage reference is shown in figure 16. Potentiometer R3 is adjusted until \( V_{OUT} \) equals 9.99023V. In many applications where the absolute accu-
Accuracy of full scale is of low importance when compared to the other system accuracy factors, then this adjustment circuit is optional. As resistors $R_{REF}$, $R_{fb}$ and $R_{bp}$ shown in figure 1 are integrated in close proximity, they match and track in value closely over wide ambient temperature variations. Typical matching is less than ±0.3% which implies that typical full scale (or gain) error is less than ±0.3% of ideal full scale value.

**ZERO SCALE ADJUSTMENT**

![Diagram of ZERO SCALE ADJUSTMENT](image)

**REFERENCE ADJUST CIRCUIT**

![Diagram of REFERENCE ADJUST CIRCUIT](image)
DESCRIPTION
The NE5118 is a high-speed 8-bit digital to analog converter subsystem on one monolithic chip. The data inputs have input latches, controlled by a latch enable pin. The data and latch enable inputs are ultra-low loading for easy interfacing with all logic systems. The latches appear transparent when the LE input is in the low state. When LE goes high, the input data present at the moment of transition is latched and retained until LE again goes low. This feature allows easy compatibility with most microprocessors.

The chip also comprises a stable voltage reference (5V nominal). The voltage reference may be externally trimmed with a potentiometer for easy adjustment of full scale, while maintaining a low temperature co-efficient.

The output has high voltage compliance increasing versatility.

FEATURES
- 8-bit resolution
- Input latches
- Low-loading data inputs
- On-chip voltage reference
- Fast settling output current — 200ns
- Accurate to ± 1/2 LSB (.19%)
- Monotonic to 8 bits
- Reference short-circuit protected
- Compatible with 8086, 6800 and many other µP’s

APPLICATIONS
- Precision 8-bit D/A converters
- A/D converters
- Programmable power supplies
- Test equipment
- Measuring instruments
- Analog-digital multiplication
- CRT display drivers
- High-speed modems

PIN CONFIGURATION

BLOCK DIAGRAM

All R values equal 5kΩ and are thermally matched.
### Absolute Maximum Ratings

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>RATING</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>$V_{CC}^+$</td>
<td>18 V</td>
<td></td>
</tr>
<tr>
<td>$V_{CC}^-$</td>
<td>-18 V</td>
<td></td>
</tr>
<tr>
<td>$V_{IN}$</td>
<td>0 to 18 V</td>
<td></td>
</tr>
<tr>
<td>$V_{REFN}$</td>
<td>12 V</td>
<td></td>
</tr>
<tr>
<td>$V_{REFADJ}$</td>
<td>0 to $V_{REF}$</td>
<td></td>
</tr>
<tr>
<td>$V_{SUM}$</td>
<td>12 V</td>
<td></td>
</tr>
<tr>
<td>$I_{REFSC}$</td>
<td>Short-circuit current to ground at $V_{REF}$ OUT</td>
<td>Continuous</td>
</tr>
<tr>
<td>$I_{REFIN}$</td>
<td>Reference input current (Pin 14)</td>
<td>3 mA</td>
</tr>
</tbody>
</table>
| $P_D$              | Power dissipation * | -
| -N package         | 800 mW |      |
| -F package         | 1000 mW |    |
| $T_A$              | Operating temperature range | -
| SE5118             | -55 to +125 °C |      |
| NE5118             | 0 to +70 °C |    |
| $T_{STG}$          | Storage temperature range | -
| SE5118             | -65 to +150 °C |      |
| NE5118             | 0 °C |    |
| $T_{SOLD}$         | Lead soldering temperature (10 seconds) | 300 °C |

*NOTES
For N package, derate at 120°C/W above 35°C
For F package, derate at 75°C/W above 75°C

### DC Electrical Characteristics

$V_{CC}^+ = +15$ V, $V_{CC}^- = -15$ V, SE5118: $-55^\circ C \leq T_A \leq 125^\circ C$,
NE5118: $0^\circ C \leq T_A \leq 70^\circ C$ unless otherwise specified.
Typical values are specified at 25°C

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>SE5118</th>
<th>NE5118</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Min</td>
<td>Typ</td>
<td>Max</td>
<td>Min</td>
</tr>
<tr>
<td>Resolution</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>Monotonicity</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>Relative accuracy</td>
<td>±0.19</td>
<td></td>
<td></td>
<td>±0.19</td>
</tr>
<tr>
<td>$V_{CC}^+$</td>
<td>11.4</td>
<td>15</td>
<td>-11.4</td>
<td>-15</td>
</tr>
<tr>
<td>$V_{CC}^-$</td>
<td>-11.4</td>
<td>-15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$V_{IN(1)}$</td>
<td>2.0</td>
<td></td>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td>$V_{IN(0)}$</td>
<td>0.8</td>
<td></td>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td>$I_{IN(1)}$</td>
<td>0.1</td>
<td>10</td>
<td>0.1</td>
<td>10</td>
</tr>
<tr>
<td>$I_{IN(0)}$</td>
<td>-2.0</td>
<td>-10</td>
<td>-2.0</td>
<td>-10</td>
</tr>
<tr>
<td>$I_{FS}$</td>
<td>1.90</td>
<td>1.992</td>
<td>2.10</td>
<td>1.90</td>
</tr>
<tr>
<td>$I_{ZS}$</td>
<td>-6</td>
<td>+6</td>
<td>-6</td>
<td>1</td>
</tr>
<tr>
<td>$V_{REF}$</td>
<td>$I_{REF} = 1mA$</td>
<td></td>
<td>4.9</td>
<td>5.0</td>
</tr>
<tr>
<td>$PSR_+(out)$</td>
<td>Output power supply rejection (+)</td>
<td>$V_- = -15V, 13.5V \leq V_+ \leq 16.5V$, external $V_{REF IN} = 5.000V$</td>
<td>.001</td>
<td>.01</td>
</tr>
<tr>
<td>$PSR_-(out)$</td>
<td>Output power supply rejection (-)</td>
<td>$V_+ = 15V, -13.5V \leq V_- \leq -16.5V$, external $V_{REF IN} = 5.000V$</td>
<td>.001</td>
<td>.01</td>
</tr>
<tr>
<td>$TC_{FS}$</td>
<td>Full scale temperature coefficient</td>
<td>$V_{REF IN} = 5.000V$</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>$TC_{ZS}$</td>
<td>Zero scale temperature coefficient</td>
<td>$I_{REF IN} = 1.00mA$</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

*NOTES
1. This is for voltage out only. See Unipolar Voltage Output schematic.
2. This is for current output mode.
8-BIT µP-COMPATIBLE D/A CONVERTER—CURRENT OUTPUT  
SE/NE5118

DC ELECTRICAL CHARACTERISTICS  
(Cont'd) \( V_{CC}^+ = +15V, \; V_{CC}^- = -15V, \; SE\) 5118. \(-55^\circ C \leq T_A \leq 125^\circ C, \) 
\( NE\) 5118. \( 0^\circ C \leq T_A \leq 70^\circ C \) unless otherwise specified. 
Type values are specified at \( 25^\circ C \)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>SE5118</th>
<th>NE5118</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>( I_{REF} )</td>
<td>Reference output current</td>
<td>Note 1</td>
<td>15</td>
<td>3</td>
</tr>
<tr>
<td>( I_{REFSC} )</td>
<td>Reference short circuit current</td>
<td>( T_A = 25^\circ C )</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>( PSR^+(REF) )</td>
<td>Reference power supply rejection (+)</td>
<td>( V^- = -15V, ; 13.5V \leq V^+ \leq 16.5V, )</td>
<td>.003</td>
<td>.01</td>
</tr>
<tr>
<td>( PSR^-(REF) )</td>
<td>Reference power supply rejection (−)</td>
<td>( V^+ = 15V, ; -13.5V \leq V^- \leq 16.5V, )</td>
<td>.003</td>
<td>.01</td>
</tr>
<tr>
<td>( TC_{REF} )</td>
<td>Reference voltage temperature coefficient</td>
<td>( I_{REF} = 1.0mA )</td>
<td>80</td>
<td>60</td>
</tr>
<tr>
<td>( Z_{IN} )</td>
<td>DAC ( R_{REFIN} ) input impedance</td>
<td>( Z_{REF} = 100 ) kΩ</td>
<td>5.0</td>
<td>5.0</td>
</tr>
<tr>
<td>( ICC^+ )</td>
<td>Positive supply current</td>
<td>( V_{CC}^+ = +15V )</td>
<td>7</td>
<td>14</td>
</tr>
<tr>
<td>( ICC^- )</td>
<td>Negative supply current</td>
<td>( V_{CC}^- = -15V )</td>
<td>-10</td>
<td>-15</td>
</tr>
<tr>
<td>( PD )</td>
<td>Power dissipation</td>
<td>( I_{REF} = 1.0mA, ; V_{CC} = \pm 15V )</td>
<td>255</td>
<td>435</td>
</tr>
</tbody>
</table>

AC ELECTRICAL CHARACTERISTICS  
\( V_{CC} = \pm 15V, \; T_A = 25^\circ C \)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TO</th>
<th>FROM</th>
<th>TEST CONDITIONS</th>
<th>SE/NE5118</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>( T_{SLH} )</td>
<td>Settling time</td>
<td>( \pm \frac{1}{2} ) LSB</td>
<td>Input</td>
<td>All bits Low-to-high</td>
<td>200</td>
</tr>
<tr>
<td>( T_{SHL} )</td>
<td>Settling time</td>
<td>( \pm \frac{1}{2} ) LSB</td>
<td>Input</td>
<td>All bits High-to-low</td>
<td>200</td>
</tr>
<tr>
<td>( t_{PLH} )</td>
<td>Propagation delay</td>
<td>Output</td>
<td>Input</td>
<td>All bits switched Low-to-high</td>
<td>60</td>
</tr>
<tr>
<td>( t_{PHL} )</td>
<td>Propagation delay</td>
<td>Output</td>
<td>Input</td>
<td>All bits switched High-to-low</td>
<td>60</td>
</tr>
<tr>
<td>( t_{PLS} )</td>
<td>Propagation delay</td>
<td>Output</td>
<td>Input</td>
<td>1 LSB change</td>
<td>60</td>
</tr>
<tr>
<td>( t_{PHL} )</td>
<td>Propagation delay</td>
<td>Output</td>
<td>LE</td>
<td>Low-to-high transition</td>
<td>60</td>
</tr>
<tr>
<td>( t_{P} )</td>
<td>Set-up time</td>
<td>LE</td>
<td>Input</td>
<td>Low-to-high transition</td>
<td>100</td>
</tr>
<tr>
<td>( t_{h} )</td>
<td>Hold time</td>
<td>LE</td>
<td>Input</td>
<td></td>
<td>50</td>
</tr>
<tr>
<td>( t_{pw} )</td>
<td>Latch enable pulse width</td>
<td>LE</td>
<td>Input</td>
<td></td>
<td>150</td>
</tr>
</tbody>
</table>

NOTES
1. For reference currents > 3mA, use of an external buffer is required.
** LINEAR LSI PRODUCTS **

** 8-BIT \( \mu P \)-COMPATIBLE D/A CONVERTER — CURRENT OUTPUT **

** BIPOLAR OUTPUT OPERATION (\(-1\text{mA} \text{ TO } +1\text{mA}\)) **

- **NOTE**
  - DATA INPUT CODE VOLTAGE OUTPUT (PIN 21)
  - 0 0 0 0 0 0 0 0 \(+10\text{V}\)
  - 0 \(-10\text{V}\)
  - 1 1 1 1 1 1 1 \(+10\text{V}\)
  - 0 \(-10\text{V}\)

Pin 20 tied to \(+10\text{V}\) Pin 20 tied to 0V

** FAST VOLTAGE OUTPUT **

- **NOTE**
  - DATA INPUT CODE VOLTAGE OUTPUT (PIN 21)
  - 0 0 0 0 0 0 0 0 \(+10\text{V}\)
  - 0 \(-10\text{V}\)
  - 1 1 1 1 1 1 1 \(+10\text{V}\)
  - 0 \(-10\text{V}\)

Pin 20 tied to \(+10\text{V}\) Pin 20 tied to 0V

** UNIPOLAR VOLTAGE OUTPUT (0 \text{ TO } +10\text{V}) **

** BASIC UNIPOLAR CURRENT OUTPUT (0 \text{ TO } +2\text{mA}) **
LINEAR LSI PRODUCTS

8-BIT µP-COMPATIBLE D/A CONVERTER—CURRENT OUTPUT
SE/NE5119

DESCRIPTION
The SE/NE5119 is a high-speed 8-bit digital to analog converter subsystem on one monolithic chip. The data inputs have input latches, controlled by a latch enable pin. The data and latch enable inputs are ultralow loading for easy interfacing with all logic systems. The latches appear transparent when the LE input is in the low state. When LE goes high, the input data present at the moment or transition is latched and retained until LE again goes low. This feature allows easy compatibility with most microprocessors.

The chip also comprises a stable voltage reference (5V nominal). The voltage reference may be externally trimmed with a potentiometer for easy adjustment of full scale, while maintaining a low temperature coefficient.

The output has high voltage compliance increasing versatility.

FEATURES
- 8-bit resolution
- Input latches
- Low-loading data inputs
- On-chip voltage reference
- Fast settling output current—200ns
- Accurate to ±1/4 LSB (.1%)
- Monotonic to 8 bits
- Reference short-circuit protected
- Compatible with 8086, 6800 and many other µP's

APPLICATIONS
- Precision 8-bit D/A converters
- A/D converters
- Programmable power supplies
- Test equipment
- Measuring instruments
- Analog-digital multiplication
- CRT display drivers
- High-speed modems

PIN CONFIGURATION

<table>
<thead>
<tr>
<th>F,N PACKAGE</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
<th>20</th>
<th>21</th>
<th>22</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIG GND/VLCD</td>
<td></td>
</tr>
<tr>
<td>DB7 (LSB)</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>DB6</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>DB5</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>DB4</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>DB3</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>DB2</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>DB1</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>DB0</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>LE</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>REF R</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>DB7 (MSB)</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>VREF</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>VREF ADJ</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>VCC-</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>VCC</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>LATCHES AND SWITCH DRIVERS</td>
<td></td>
</tr>
<tr>
<td>DAC CURRENT OUTPUT</td>
<td></td>
</tr>
</tbody>
</table>

Figure 1

All R values equal 5kΩ and are thermally matched.

BLOCK DIAGRAM
# Absolute Maximum Ratings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Rating</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>VCC+</td>
<td>18</td>
<td>V</td>
</tr>
<tr>
<td>VCC−</td>
<td>−18</td>
<td>V</td>
</tr>
<tr>
<td>VIN</td>
<td>0 to 18</td>
<td>V</td>
</tr>
<tr>
<td>VREF+</td>
<td>12</td>
<td>V</td>
</tr>
<tr>
<td>VREF−</td>
<td>0 to VREF</td>
<td>V</td>
</tr>
<tr>
<td>VSUM</td>
<td>12</td>
<td>V</td>
</tr>
<tr>
<td>IREFSC</td>
<td>Continuous</td>
<td>mA</td>
</tr>
<tr>
<td>IREFIN</td>
<td>3</td>
<td>mA</td>
</tr>
<tr>
<td>PD</td>
<td>800</td>
<td>mW</td>
</tr>
<tr>
<td>TA</td>
<td>−55 to +125</td>
<td>°C</td>
</tr>
<tr>
<td>TSTG</td>
<td>−65 to +150</td>
<td>°C</td>
</tr>
<tr>
<td>TSOlD</td>
<td>300</td>
<td>°C</td>
</tr>
</tbody>
</table>

---

**Notes:**
- For N package, derate at 120°C/W above 35°C
- For F package, derate at 75°C/W above 75°C

---

# DC Electrical Characteristics

VCC+ = +15V, VCC− = −15V, SE5119, −55°C ≤ TA ≤ 125°C,
NE5119, 0°C ≤ TA ≤ 70°C unless otherwise specified.
Typical values are specified at 25°C

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Test Conditions</th>
<th>SE5119</th>
<th>NE5119</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resolution</td>
<td>Min</td>
<td>Typ</td>
<td>Max</td>
<td>Min</td>
</tr>
<tr>
<td>Monotonicity</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>Relative accuracy</td>
<td>11.4</td>
<td>15</td>
<td>11.4</td>
<td>15</td>
</tr>
<tr>
<td>VCC+</td>
<td>11.4</td>
<td>−15</td>
<td>11.4</td>
<td>−15</td>
</tr>
<tr>
<td>VCC−</td>
<td>−11.4</td>
<td>−15</td>
<td>−11.4</td>
<td>−15</td>
</tr>
<tr>
<td>VIN (1) Logic “1” input voltage</td>
<td>Pin 1 = 0V</td>
<td>2.0</td>
<td>2.0</td>
<td>V</td>
</tr>
<tr>
<td>VIN (0) Logic “0” input voltage</td>
<td>Pin 1 = 0V</td>
<td>0.8</td>
<td>0.8</td>
<td>V</td>
</tr>
<tr>
<td>IIN (1) Logic “1” input current</td>
<td>Pin 1 = 0V, 2V &lt; VIN &lt; 18V</td>
<td>0.1</td>
<td>0.1</td>
<td>10</td>
</tr>
<tr>
<td>IIN (0) Logic “0” input current</td>
<td>Pin 1 = 0V, −5V &lt; VIN &lt; 0.8V</td>
<td>−2.0</td>
<td>−2.0</td>
<td>−10</td>
</tr>
<tr>
<td>IFS</td>
<td>1.90</td>
<td>1.992</td>
<td>2.10</td>
<td>1.90</td>
</tr>
<tr>
<td>IZS</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>VREF Reference voltage</td>
<td>IREF = 1mA</td>
<td>T_A = 25°C</td>
<td>4.9</td>
<td>5.0</td>
</tr>
<tr>
<td>PSR+(out) Output power supply rejection (+)</td>
<td>V− = −15V, 13.5V ≤ V+ ≤ 16.5V, external VREF IN = 5.000V</td>
<td>.001</td>
<td>.01</td>
<td>.001</td>
</tr>
<tr>
<td>PSR−(out) Output power supply rejection (−)</td>
<td>V+ = 15V, −13.5V ≤ V+ ≤ −16.5V, external VREF IN = 5.000V</td>
<td>.001</td>
<td>.01</td>
<td>.001</td>
</tr>
<tr>
<td>TCFS</td>
<td>20</td>
<td>ppm / °C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TCZS</td>
<td>5</td>
<td>ppm / °C</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Notes:**
1. This is for voltage out only. See Unipolar Voltage Output schematic
2. This is for current output mode
**DC ELECTRICAL CHARACTERISTICS**  
(Cont’d) \( V_{CC^+} = +15V, V_{CC^-} = -15V, SE5119. -55°C \leq T_A \leq 125°C, \)  
\( NE5119. 0°C \leq T_A \leq 70°C \) unless otherwise specified.  
Typical values are specified at 25°C

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>SE5119</th>
<th>NE5119</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>( I_{REF} )</td>
<td>Reference output current ( I_{REF} = 1.0mA )</td>
<td>Min</td>
<td>Typ</td>
<td>Max</td>
</tr>
<tr>
<td>( I_{REFSC} )</td>
<td>Reference short circuit current ( TA = 25°C )</td>
<td>15</td>
<td>30</td>
<td>15</td>
</tr>
<tr>
<td>PSR+(REF)</td>
<td>Reference power supply rejection (+) ( V_- = -15V, 13.5V \leq V_+ \leq 16.5V, I_{REF} = 1.0mA )</td>
<td>.003</td>
<td>.01</td>
<td>.003</td>
</tr>
<tr>
<td>PSR-(REF)</td>
<td>Reference power supply rejection (−) ( V_+ = 15V, -13.5V \leq V_- \leq 16.5V, I_{REF} = 1.0mA )</td>
<td>.003</td>
<td>.01</td>
<td>.003</td>
</tr>
<tr>
<td>TCREF</td>
<td>Reference voltage temperature coefficient</td>
<td>60</td>
<td>60</td>
<td>ppm/°C</td>
</tr>
<tr>
<td>ZIN</td>
<td>DAC RREFIN input impedance</td>
<td>5.0</td>
<td>5.0</td>
<td>kΩ</td>
</tr>
<tr>
<td>( I_{CC^+} )</td>
<td>Positive supply current ( I_{CC^+} = V_{CC^+} = 15V )</td>
<td>7</td>
<td>14</td>
<td>7</td>
</tr>
<tr>
<td>( I_{CC^-} )</td>
<td>Negative supply current ( I_{CC^-} = V_{CC^-} = -15V )</td>
<td>-10</td>
<td>-15</td>
<td>-10</td>
</tr>
<tr>
<td>( P_D )</td>
<td>Power dissipation ( I_{REF} = 1.0mA, V_{CC} = \pm 15V )</td>
<td>255</td>
<td>435</td>
<td>mW</td>
</tr>
</tbody>
</table>

**AC ELECTRICAL CHARACTERISTICS**  
\( V_{CC} = \pm 15V, TA = 25°C \)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TO</th>
<th>FROM</th>
<th>TEST CONDITIONS</th>
<th>SE/NE5119</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>TSLH</td>
<td>Settling time</td>
<td>( \pm \frac{1}{2} ) LSB</td>
<td>Input</td>
<td>All bits Low-to-high</td>
<td>200</td>
</tr>
<tr>
<td>TSHL</td>
<td>Settling time</td>
<td>( \pm \frac{1}{2} ) LSB</td>
<td>Input</td>
<td>All bits High-to-low</td>
<td>200</td>
</tr>
<tr>
<td>tpLH</td>
<td>Propagation delay</td>
<td>Output</td>
<td>Input</td>
<td>All bits switched Low-to-high</td>
<td>60</td>
</tr>
<tr>
<td>tpHL</td>
<td>Propagation delay</td>
<td>Output</td>
<td>Input</td>
<td>All bits switched High-to-low</td>
<td>60</td>
</tr>
<tr>
<td>tpLSB</td>
<td>Propagation delay</td>
<td>Output</td>
<td>Input</td>
<td>1 LSB change</td>
<td>60</td>
</tr>
<tr>
<td>tpLH</td>
<td>Propagation delay</td>
<td>Output</td>
<td>LE</td>
<td>Low-to-high transition</td>
<td>60</td>
</tr>
<tr>
<td>tpHL</td>
<td>Propagation delay</td>
<td>Output</td>
<td>LE</td>
<td>High-to-low transition</td>
<td>60</td>
</tr>
<tr>
<td>ts</td>
<td>Set-up time</td>
<td>LE</td>
<td>Input</td>
<td>LE</td>
<td>100</td>
</tr>
<tr>
<td>th</td>
<td>Hold time</td>
<td>LE</td>
<td>Input</td>
<td>LE</td>
<td>50</td>
</tr>
<tr>
<td>tpw</td>
<td>Latch enable pulse width</td>
<td></td>
<td></td>
<td></td>
<td>150</td>
</tr>
</tbody>
</table>

**NOTES**

1. For reference currents > 3mA, use of an external buffer is required.
LINEAR LSI PRODUCTS

8-BIT µP-COMPATIBLE D/A CONVERTER—CURRENT OUTPUT

SE/NE5119

**BIPOLAR OUTPUT OPERATION (−1mA TO +1mA)**

**UNIPOLAR VOLTAGE OUTPUT (0 — — 10V)**

**FAST VOLTAGE OUTPUT**

**BASIC UNIPOLAR CURRENT OUTPUT (0 — — 2mA)**

<table>
<thead>
<tr>
<th>DATA INPUT CODE</th>
<th>VOLTAGE OUTPUT (PIN 21)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0 0 0 0 0 0 0</td>
<td>+10V</td>
</tr>
<tr>
<td>1 1 1 1 1 1 1 1</td>
<td>0V</td>
</tr>
</tbody>
</table>

Pin 20 tied to +10V, Pin 20 tied to 0V
DESCRIPTION
The NE5410/SE5410 are 10-Bit Multiplying Digital-to-Analog Converters pin-and function compatible with the industry-standard MC3410, but with improved performance. These are capable of high-speed performance, and are used as general-purpose building blocks in cost-effective D/A systems.

The NE/SE5410 provides complete 10-bit accuracy and differential nonlinearity over temperature, and a wide compliance voltage range. Segmented current sources, in conjunction with an R/2R DAC provides the binary weighted currents. The output buffer amplifier and voltage reference have been omitted to allow greater speed, lower cost, and maximum user flexibility.

APPLICATIONS
- Successive approximation A/D converters
- High-speed, automatic test equipment
- High-speed modems
- Waveform generators
- CRT displays
- Strip CHART and X·Y plotters
- Programmable power supplies
- Programmable gain and attenuation

FEATURES
- Pin-and-function compatible with MC3410
- 10-bit resolution and accuracy (+0.05%)
- Guaranteed differential non-linearity over temperature
- Wide compliance voltage range — 2.5 to +2.5V
- Fast settling time—250ns typical
- Digital inputs are TTL and CMOS compatible
- High-speed multiplying input slew rate — 20mA/µs
- Reference amplifier internally compensated
- Standard supply voltages +5V and −15V

ABSOLUTE MAXIMUM RATINGS 

<table>
<thead>
<tr>
<th>SYMBOL AND PARAMETER</th>
<th>RATING</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>VCC</td>
<td>+7.0</td>
<td>Vdc</td>
</tr>
<tr>
<td>VEE</td>
<td>−15</td>
<td>Vdc</td>
</tr>
<tr>
<td>VIB</td>
<td>+15</td>
<td>Vdc</td>
</tr>
<tr>
<td>VO</td>
<td>+4.0, −5.0</td>
<td>Vdc</td>
</tr>
<tr>
<td>VREF</td>
<td>2.5 mA</td>
<td></td>
</tr>
<tr>
<td>VREF(16)</td>
<td>VCC, VEE</td>
<td>Vdc</td>
</tr>
<tr>
<td>VREF(16)</td>
<td>0.7</td>
<td>Vdc</td>
</tr>
<tr>
<td>T_A (SE5410)</td>
<td>−55 to +125</td>
<td>°C</td>
</tr>
<tr>
<td>T_A (NE5410)</td>
<td>0 to +70</td>
<td>°C</td>
</tr>
<tr>
<td>T_J (Ceramic Package)</td>
<td>+175</td>
<td>°C</td>
</tr>
<tr>
<td>T_J (Plastic Package)</td>
<td>+150</td>
<td>°C</td>
</tr>
</tbody>
</table>

BLOCK DIAGRAM

![Block Diagram of NE5410/SE5410 10-Bit Multiplying D/A Converter](image-url)
DC ELECTRICAL CHARACTERISTICS  $V_{CC} = + 5.0V_{dc}, V_{EE} = -15V_{dc}, I_{REF} = 2.0mA$, all digital inputs at high logic level.

SE5410: $T_A = -55^\circ C$ to $+125^\circ C$, NE5410 Series: $T_A = 0^\circ C$ to $+70^\circ C$

<table>
<thead>
<tr>
<th>SYMBOL AND PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>NE/SE5410</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>$E_r$</td>
<td>Relative accuracy (Error relative to full scale $I_{(D)}$)</td>
<td>Over temperature</td>
<td>± 0.025</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>± 1/4</td>
</tr>
<tr>
<td>$t_s$</td>
<td>Differential non-linearity</td>
<td>Over temperature</td>
<td>± 0.025</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>± 1/4</td>
</tr>
<tr>
<td>$t_{PLH}$</td>
<td>Settling time to within $\pm \frac{1}{2}$ LSB (all bits low to high)</td>
<td>$T_A = 25^\circ C$</td>
<td>250</td>
</tr>
<tr>
<td>$t_{PHL}$</td>
<td>Propagation delay time</td>
<td>$T_A = 25^\circ C$</td>
<td>35</td>
</tr>
<tr>
<td>$TC_{LO}$</td>
<td>Output full scale current drift</td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>$V_{IH}$</td>
<td>Digital Input Logic Levels (All bits)</td>
<td></td>
<td>2.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>High Level, Logic “1”</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Low Level, Logic “0”</td>
<td></td>
</tr>
<tr>
<td>$I_{IH}$</td>
<td>Digital Input Current (All bits)</td>
<td></td>
<td>20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>High Level, $V_{IH} = 5.5V$</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Low Level, $V_{IL} = 0.8V$</td>
<td></td>
</tr>
<tr>
<td>$I_{REF(15)}$</td>
<td>Reference Input Bias Current (Pin 15)</td>
<td></td>
<td>-1.0</td>
</tr>
<tr>
<td>$I_{OH}$</td>
<td>Output Current (All bits high)</td>
<td>$V_{REF} = 2.000V$, $R_{IH} = 10000\Omega$</td>
<td>3.937</td>
</tr>
<tr>
<td>$I_{OL}$</td>
<td>Output Current (All bits low)</td>
<td>$T_A = 25^\circ C$</td>
<td>0</td>
</tr>
<tr>
<td>$V_{O}$</td>
<td>Output Voltage Compliance</td>
<td>$T_A = 25^\circ C$</td>
<td>$E_r &lt; 0.05%$ relative to full scale</td>
</tr>
<tr>
<td>$SR_{I_{REF}}$</td>
<td>Reference Amplifier Slew Rate</td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>$ST_{I_{REF}}$</td>
<td>Reference Amplifier Settling Time</td>
<td>0 to 4.0mA, ± 0.1%</td>
<td>2.0</td>
</tr>
<tr>
<td>$PSRR(-)$</td>
<td>Output Current Power Supply Sensitivity</td>
<td></td>
<td>0.003</td>
</tr>
<tr>
<td>$C_0$</td>
<td>Output Capacitance</td>
<td>$V_O = 0$</td>
<td>25</td>
</tr>
<tr>
<td>$C_I$</td>
<td>Digital Input Capacitance (All bits high)</td>
<td></td>
<td>4.0</td>
</tr>
<tr>
<td>$I_{CC}$</td>
<td>Power Supply Current (All bits high)</td>
<td>$T_A = 25^\circ C$</td>
<td>+2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-12</td>
</tr>
<tr>
<td>$V_{CC}$</td>
<td>Power Supply Voltage Range</td>
<td>$V_O = 0$</td>
<td>$T_A = 25^\circ C$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$V_O = 0$</td>
</tr>
<tr>
<td>Power Consumption</td>
<td></td>
<td></td>
<td>190</td>
</tr>
</tbody>
</table>
TYPICAL PERFORMANCE CHARACTERISTICS

Figure 1. Output Current vs. Output Compliance Voltage

Figure 2. Maximum Output Compliance Voltage vs. Temperature

Figure 3. Power Supply Currents vs. Temperature

Figure 4. Reference Amplifier Frequency Response
CIRCUIT DESCRIPTION

The NE5410 consists of four segment current sources which generate the 2 Most Significant Bits (MSBs), and an R/2R DAC implemented with ion implanted resistors for scaling the remaining 8 Least Significant Bits (LSBs). (See Figure 5.) This approach provides complete 10-bit accuracy without trimming.

The individual bit currents are switched ON or OFF by fully differential current switches. The switches use current steering for speed.

An on-chip high-slew reference current amplifier drives the R/2R ladder and segment decoder. The currents are scaled in such a way that, with all bits on, the maximum output current is two times 1023/1024 of the reference amplifier current, or nominally 3.996mA for a 2.000mA reference input current. The reference amplifier allows the user to provide a voltage input: Out-board resistor R16 (see Figure 6) converts this voltage to a usable current. A current mirror doubles this reference current and feeds it to the segment decoder and resistor ladder. Thus, for a reference voltage of 2.0 Volts and a 1kΩ resistor tied to Pin 16, the full scale current is approximately 4.0mA. This relationship will remain regardless of the reference voltage polarity.

Connections for a positive reference voltage are shown in Figure 6a. For negative reference voltage inputs, or for bipolar reference voltage inputs in the multiplying mode, R15 can be tied to a negative voltage corresponding to the minimum input level. For a negative reference input, R16 should be grounded (Figure 6b). In addition, the negative voltage reference must be at least 3V above the VEE supply voltage for best operation. Bipolar input signals may be handled by connecting R16 to a positive voltage equal to the peak positive input level at Pin 15.

When a dc reference voltage is used, capacitive bypass to ground is recommended. The 5V logic supply is not recommended as a reference voltage. If a well regulated 5.0V supply, which drives logic, is to be used as the reference, R16 should be decoupled by connecting it to the +5.0V logic supply through another resistor and bypassing the junction of the two resistors with a 0.1μF capacitor to ground.

The reference amplifier is internally compensated with a 10pF feed-forward capacitor, which gives it its high slew rate and fast settling time. Proper phase margin is maintained with all possible values of R16 and reference voltages which supply

Figure 5. NE5410 Equivalent Circuit
2.0mA reference current into Pin 16. The reference current can also be supplied by a high impedance current source of 2.0mA. As R16 increases, the bandwidth of the amplifier decreases slightly and settling time increases. For a current source with a dynamic output impedance of 1.0MΩ, the bandwidth of the reference amplifier is approximately half what it is in the case of R16 = 1.0kΩ, and settling time is ≈10μs. The reference amplifier phase margin decreases as the current source value decreases in the case of a current source reference, so that the minimum reference current supplied from a current source is 0.5mA for stability.

**OUTPUT VOLTAGE COMPLIANCE**

The output voltage compliance ranges from −2.5 to +2.5V. As shown in Figure 2, this compliance range is nearly constant over temperature. At the temperature extremes, however, the compliance voltage may be reduced if VEE > −15V.

**ACCURACY**

Absolute accuracy is a measure of each output current level with respect to its intended value. It is dependent upon relative accuracy and full scale current drift. Relative accuracy, or linearity, is the measure of each output current with respect to its intended fraction of the full scale current. The relative accuracy of the NE5410 is fairly constant over temperature due to the excellent temperature tracking, of the implanted resistors. The full scale current from the reference amplifier may drift with temperature causing a change in the absolute accuracy. However, the NE5410 has a low full scale current drift with temperature. The SE5410 and the NE5410 are accurate to within ±1/2 LSB at 25°C with a reference current of 2.0mA on Pin 16.

**MONOTONICITY**

The NE5410 and SE5410 are guaranteed monotonic over temperature. This means that for every increase in the input digital code, the output current either remains the same or increases but never decreases. In the multiplying mode, where reference input current will vary, monotonicity can be assured if the reference input current remains above 0.5mA.
SETTLING TIME

The worst case switching condition occurs when all bits are switched "on," which corresponds to a low-to-high transition for all bits. This time is typically 250ns for the output to settle to within ±1/2 LSB for 10-bit accuracy, and 200ns for 8-bit accuracy. The turn-off time is typically 120ns. These times apply when the output swing is limited to a small (<0.7 Volt) swing and the external output capacitance is under 25pF.

The major carry (MSB off-to-on, all others on-to-off) settles in approximately the same time as when all bits are switched off-to-on.

If a load resistor of 625 Ohms is connected to ground, allowing the output to swing to -2.5 Volts, the settling time increases to 1.5μs.

Extra care must be taken in board layout as this is usually the dominant factor in satisfactory test results when measuring settling time. Short leads, 100μF supply bypassing, and minimum scope lead length are all necessary.

A typical test set-up for measuring settling time is shown in Figure 7. The same set-up for the most part can be used to measure the slew rate of the reference amplifier (Figure 9) by tying all data bits high, pulsing the voltage reference input between 0 and 2V, and using a 5000 load resistor R_L.

![Figure 7. Settling Time](image-url)

![Figure 8. Propagation Delay Time](image-url)
Figure 9. Reference Amplifier Settling Time and Slew Rate

Figure 10. Voltage Output Circuits
10-BIT HIGH-SPEED MULTIPLYING D/A CONVERTER

10-BIT CONVERSION TIME = 3.3μs WITH 3MHz CLOCK.

THIS CONVERTER USES A 2504 12-BIT SUCCESSIVE APPROXIMATION REGISTER IN THE SHORT CYCLE OPERATING MODE WHERE THE END OF CONVERSION SIGNAL IS TAKEN FROM THE FIRST UNUSED BIT OF THE SAR (Q10).

Figure 11. Successive Approximation A/D Converter

WITH THIS DOUBLE LATCH TECHNIQUE, VALID DATA WILL BE LATCHED TO THE DAC UNTIL UPDATED WITH THE E2 PULSE. TIMING WILL DEPEND ON THE PROCESSOR USED.

Figure 12. 8-Bit μP Bus Interface
Figure 13. Staircase A/D
### COMPARATORS

<table>
<thead>
<tr>
<th>DEVICE</th>
<th>COMPLEXITY</th>
<th>TEMP. RANGE</th>
<th>MAX. INP. VOLT (mV)</th>
<th>MAX. INP. CURRENT (µA)</th>
<th>SUPPLY VOLTAGE (V)</th>
<th>RESPONSE TIME (Typ.) (ns)</th>
<th>COMMON MODE VOLTAGE RANGE (V)</th>
<th>OUTPUT VOLTAGE</th>
<th>OUTPUT STRUCTURE</th>
<th>VOLTAGE GAIN (Typ.) V/mV</th>
<th>TTL FANOUT</th>
<th>MAX. DIFF. VOLTAGE (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LM111</td>
<td>Single</td>
<td>M</td>
<td>4.00</td>
<td>0.15</td>
<td>± 15</td>
<td>200</td>
<td>± 14</td>
<td>0.4</td>
<td>O.C</td>
<td>200</td>
<td>5</td>
<td>± 30</td>
</tr>
<tr>
<td>LM211</td>
<td>Single</td>
<td>I</td>
<td>4.00</td>
<td>0.15</td>
<td>± 15</td>
<td>200</td>
<td>± 14</td>
<td>0.4</td>
<td>O.C</td>
<td>200</td>
<td>5</td>
<td>± 30</td>
</tr>
<tr>
<td>LM311</td>
<td>Single</td>
<td>C</td>
<td>10.0</td>
<td>0.30</td>
<td>± 5 and GND</td>
<td>200</td>
<td>± 14</td>
<td>0.4</td>
<td>O.C</td>
<td>200</td>
<td>5</td>
<td>± 30</td>
</tr>
<tr>
<td>NE527</td>
<td>Single</td>
<td>C</td>
<td>10.0</td>
<td>4.00</td>
<td>± 5 to ± 10</td>
<td>16</td>
<td>± 5</td>
<td>0.5</td>
<td>2.7</td>
<td>TTL</td>
<td>5</td>
<td>± 5</td>
</tr>
<tr>
<td>SE527</td>
<td>Single</td>
<td>M</td>
<td>6.00</td>
<td>4.00</td>
<td>± 5 to ± 10</td>
<td>16</td>
<td>± 5</td>
<td>0.5</td>
<td>2.7</td>
<td>TTL</td>
<td>5</td>
<td>± 5</td>
</tr>
<tr>
<td>NE529</td>
<td>Single</td>
<td>C</td>
<td>10.0</td>
<td>50.0</td>
<td>± 5 to ± 10</td>
<td>12</td>
<td>± 5</td>
<td>0.5</td>
<td>2.7</td>
<td>TTL</td>
<td>5</td>
<td>± 5</td>
</tr>
<tr>
<td>SE529</td>
<td>Single</td>
<td>M</td>
<td>6.00</td>
<td>36.0</td>
<td>± 5 to ± 10</td>
<td>12</td>
<td>± 5</td>
<td>0.5</td>
<td>2.7</td>
<td>TTL</td>
<td>5</td>
<td>± 5</td>
</tr>
<tr>
<td>LM119A</td>
<td>Dual</td>
<td>I</td>
<td>7.00</td>
<td>1.00</td>
<td>± 15</td>
<td>80</td>
<td>± 13</td>
<td>0.4</td>
<td>O.C</td>
<td>40</td>
<td>2</td>
<td>± 5</td>
</tr>
<tr>
<td>LM219A</td>
<td>Dual</td>
<td>I</td>
<td>7.00</td>
<td>1.00</td>
<td>± 5 and GND</td>
<td>80</td>
<td>± 13</td>
<td>0.4</td>
<td>O.C</td>
<td>40</td>
<td>2</td>
<td>± 5</td>
</tr>
<tr>
<td>LM319A</td>
<td>Dual</td>
<td>C</td>
<td>10.0</td>
<td>1.20</td>
<td>± 5 and GND</td>
<td>80</td>
<td>± 13</td>
<td>0.4</td>
<td>O.C</td>
<td>40</td>
<td>2</td>
<td>± 5</td>
</tr>
<tr>
<td>LM193A</td>
<td>Dual</td>
<td>M</td>
<td>9.00</td>
<td>0.30</td>
<td>± 5 and GND</td>
<td>1300</td>
<td>0 to VREF - 2</td>
<td>0.7</td>
<td>O.C</td>
<td>200</td>
<td>2</td>
<td>36</td>
</tr>
<tr>
<td>LM393A</td>
<td>Dual</td>
<td>I</td>
<td>9.00</td>
<td>0.40</td>
<td>± 5 and GND</td>
<td>1300</td>
<td>0 to VREF - 2</td>
<td>0.7</td>
<td>O.C</td>
<td>200</td>
<td>2</td>
<td>36</td>
</tr>
<tr>
<td>LM293A</td>
<td>Dual</td>
<td>C</td>
<td>9.00</td>
<td>0.40</td>
<td>± 5 and GND</td>
<td>1300</td>
<td>0 to VREF - 2</td>
<td>0.7</td>
<td>O.C</td>
<td>200</td>
<td>2</td>
<td>36</td>
</tr>
<tr>
<td>SE/NE521</td>
<td>Dual</td>
<td>MIC</td>
<td>15/10.0</td>
<td>40.0</td>
<td>± 5 and GND</td>
<td>8</td>
<td>± 3</td>
<td>0.5</td>
<td>2.7</td>
<td>TTL</td>
<td>12</td>
<td>± 6</td>
</tr>
<tr>
<td>SE/NE522</td>
<td>Dual</td>
<td>MIC</td>
<td>15/10.0</td>
<td>40.0</td>
<td>± 5 and GND</td>
<td>10</td>
<td>± 3</td>
<td>0.5</td>
<td>O.C</td>
<td>12</td>
<td>± 6</td>
<td>± 6</td>
</tr>
<tr>
<td>LM1593</td>
<td>Quad</td>
<td>M</td>
<td>9.00</td>
<td>0.30</td>
<td>± 5 and GND</td>
<td>1300</td>
<td>0 to VREF - 2</td>
<td>0.7</td>
<td>O.C</td>
<td>200</td>
<td>2</td>
<td>36</td>
</tr>
<tr>
<td>LM2593</td>
<td>Quad</td>
<td>I</td>
<td>9.00</td>
<td>0.40</td>
<td>± 5 and GND</td>
<td>1300</td>
<td>0 to VREF - 2</td>
<td>0.7</td>
<td>O.C</td>
<td>200</td>
<td>2</td>
<td>36</td>
</tr>
<tr>
<td>LM3593</td>
<td>Quad</td>
<td>C</td>
<td>9.00</td>
<td>0.40</td>
<td>± 5 and GND</td>
<td>1300</td>
<td>0 to VREF - 2</td>
<td>0.7</td>
<td>O.C</td>
<td>200</td>
<td>2</td>
<td>36</td>
</tr>
<tr>
<td>LM2901</td>
<td>Quad</td>
<td>I</td>
<td>15.0</td>
<td>0.50</td>
<td>± 5 and GND</td>
<td>1300</td>
<td>0 to VREF - 2</td>
<td>0.7</td>
<td>O.C</td>
<td>100</td>
<td>2</td>
<td>28</td>
</tr>
<tr>
<td>MC3302</td>
<td>Quad</td>
<td>I</td>
<td>40.0</td>
<td>1.00</td>
<td>± 5 and GND</td>
<td>2000</td>
<td>0 to VREF - 2</td>
<td>0.7</td>
<td>O.C</td>
<td>100</td>
<td>2</td>
<td>28</td>
</tr>
</tbody>
</table>

**Notes:**
1. With strobe, will work from single supply.
2. Complementary output gates with individual strobes.
3. Will operate from single or dual supplies.
4. Ultra-high speed.

*Temperature Range
I = Industrial
C = Commercial
M = Military

**Common Voltage**: ± 14
**Response Time**: (Typ.) (ns)
**Output Voltage**: ± 5
**Voltage Gain**: (Typ.) V/mV
**MAX. DIFF.**: ± 30
LINEAR LSI PRODUCTS

VOLTAGE COMPARATOR

LM111/211/311

DESCRIPTION
The LM111 series are voltage comparators that have input currents approximately a hundred times lower than devices like the µA710. They are designed to operate over a wider range of supply voltages; from standard ±15V op amp supplies down to the single 5V supply used for IC logic. Their output is compatible with RTL, DTL, and TTL as well as MOS circuits. Further, they can drive lamps or relays, switching voltages up to 50V at currents as high as 50mA.

Both the inputs and the outputs of the LM111 series can be isolated from system ground, and the output can drive loads referred to ground, the positive supply or the negative supply. Offset balancing and strobe capability are provided and outputs can be wire OR'ed. Although slower than the µA710 (200ns response time vs 40ns) the devices are also much less prone to spurious oscillations. The LM111 series has the same pin configuration as the µA710 series.

FEATURES
• Operates from single 5V supply
• Maximum input bias current: 150nA (LM311 - 250nA)
• Maximum offset current: 20nA (LM311 - 50nA)
• Differential input voltage range: ±30V
• Power consumption: 135mW at ±15V
• High sensitivity—200V/mV

APPLICATIONS
• Zero crossing detector
• Precision squarer
• Positive/negative peak detector
• Low voltage adjustable reference supply
• Switching power amplifier

ABSOLUTE MAXIMUM RATINGS

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>RATING</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total supply voltage</td>
<td>36</td>
<td>V</td>
</tr>
<tr>
<td>Output to negative supply voltage:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LM111/LM211</td>
<td>50</td>
<td>V</td>
</tr>
<tr>
<td>LM311</td>
<td>40</td>
<td>V</td>
</tr>
<tr>
<td>Ground to negative supply voltage</td>
<td>±30</td>
<td>V</td>
</tr>
<tr>
<td>Differential input voltage</td>
<td>±15</td>
<td>V</td>
</tr>
<tr>
<td>Input voltage1</td>
<td>500</td>
<td>mW</td>
</tr>
<tr>
<td>Power dissipation2</td>
<td>10</td>
<td>sec</td>
</tr>
<tr>
<td>Output short circuit duration</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operating temperature range</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LM111</td>
<td>-55 to +125</td>
<td>°C</td>
</tr>
<tr>
<td>LM211</td>
<td>-25 to +85</td>
<td>°C</td>
</tr>
<tr>
<td>LM311</td>
<td>0 to +70</td>
<td>°C</td>
</tr>
<tr>
<td>Storage temperature range</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lead temperature (soldering, 10sec)</td>
<td>-65 to +150</td>
<td>°C</td>
</tr>
<tr>
<td>(soldering, 10sec)</td>
<td>300</td>
<td>°C</td>
</tr>
</tbody>
</table>
LINEAR LSI PRODUCTS

VOLTAGE COMPARATOR

DC ELECTRICAL CHARACTERISTICS

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>LM111/LM211</th>
<th>LM311</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input offset voltage[^1]</td>
<td>( T_A = 25^\circ C, R_S \leq 50, \text{k}\Omega )</td>
<td>0.7</td>
<td>3.0</td>
<td>2.0</td>
</tr>
<tr>
<td>Input offset current[^1]</td>
<td>( T_A = 25^\circ C )</td>
<td>4.0</td>
<td>10</td>
<td>6.0</td>
</tr>
<tr>
<td>Input bias current</td>
<td>( T_A = 25^\circ C )</td>
<td>60</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Voltage gain</td>
<td>( T_A = 25^\circ C )</td>
<td>200</td>
<td></td>
<td>200</td>
</tr>
<tr>
<td>Response time[^5]</td>
<td>( T_A = 25^\circ C )</td>
<td>200</td>
<td></td>
<td>200</td>
</tr>
<tr>
<td>Saturation voltage</td>
<td>( V_{IN} \leq -5, \text{mV}, I_{OUT} = 50, \text{mA} ) ( T_A = 25^\circ C )</td>
<td>0.75</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>Strobe on current</td>
<td>( T_A = 25^\circ C )</td>
<td>3.0</td>
<td></td>
<td>3.0</td>
</tr>
<tr>
<td>Output leakage current</td>
<td>( V_{IN} \geq 5, \text{mV}, V_{OUT} = 35, \text{V} ) ( T_A = 25^\circ C, I_{STROBE} = 3, \text{mA} )</td>
<td>0.2</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Input offset voltage[^4]</td>
<td>( R_S \leq 50, \text{k}\Omega )</td>
<td>4.0</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>Input offset current[^4]</td>
<td></td>
<td>20</td>
<td></td>
<td>70</td>
</tr>
<tr>
<td>Input bias current</td>
<td></td>
<td>150</td>
<td></td>
<td>300</td>
</tr>
<tr>
<td>Input voltage range</td>
<td>( V = \pm 15, \text{V} ) (Pin 7 may go to 5V)</td>
<td>-14.5</td>
<td>13.8, -14.7</td>
<td>13.0</td>
</tr>
<tr>
<td>Saturation voltage</td>
<td>( V^+ \geq 4.5, \text{V}, V^- = 0 )</td>
<td>0.23</td>
<td>0.4</td>
<td></td>
</tr>
<tr>
<td>Output leakage current</td>
<td>( V_{IN} \leq -6, \text{mV}, I_{SINK} \leq 8, \text{mA} ) ( T_A = 25^\circ C )</td>
<td>0.1</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>Positive supply current</td>
<td>( T_A = 25^\circ C )</td>
<td>5.1</td>
<td>6.0</td>
<td>5.1</td>
</tr>
<tr>
<td>Negative supply current</td>
<td>( T_A = 25^\circ C )</td>
<td>4.1</td>
<td>5.0</td>
<td>4.1</td>
</tr>
</tbody>
</table>

NOTES

1. This rating applies for \( \pm 15\, \text{V} \) supplies. The positive input voltage limit is 30V above the negative supply. The negative input voltage limit is equal to the negative supply voltage or 30V below the positive supply, whichever is less.

2. The maximum junction temperature of the LM311 is 110°C. For operating at elevated temperatures, devices in the TO-5 package must be derated based on a thermal resistance of 150°C/W, junction to ambient, in the N package, a thermal resistance of 162°C/W, and 1°C/W for the Ceramic package. The maximum junction temperature of the LM111 is 150°C, while that of the LM211 is 110°C. For operating at elevated temperatures, devices in the TO-5 package must be derated based on a thermal resistance of 150°C/W, junction to ambient. The thermal resistance of the Cerdip package is 110°C/W, junction to ambient.

3. These specifications apply for \( V_S = \pm 15\, \text{V} \) and 0°C < \( T_A < 70^\circ C \) unless otherwise specified. With the LM211, however, all temperature specifications are limited to -25°C < \( T_A < 85^\circ C \) and for the LM111 is limited to -55°C < \( T_A < 125^\circ C \). The offset voltage, offset current and bias current specifications apply for any supply voltage from a single 5V supply up to \( \pm 15\, \text{V} \) supplies.

4. The offset voltages and offset currents given are the maximum values required to drive the output within a volt of either supply with 1mA load. Thus, these parameters define an error band and take into account the worst case effects of voltage gain and input impedance.

5. The response time specified is for a 100mV input step with 5mV overdrive.

6. Do not short the strobe pin to ground; it should be current driven at 3mA to 5mA.

TYPICAL APPLICATIONS

**TTL INTERFACE WITH HIGH LEVEL LOGIC**

```
V = 5V
```

**ZERO CROSSING DETECTOR DRIVING MOS LOGIC**

**DETECTOR FOR MAGNETIC TRANSDUCER**

*Values shown are for a 0 to 30V logic swing and a 15V threshold.

†May be added to control speed and reduce susceptibility to noise spikes.
LINEAR LSI PRODUCTS

DUAL VOLTAGE COMPARATOR
LM119/219/319

DESCRIPTION
The LM119 series are precision high speed dual comparators fabricated on a single monolithic chip. They are designed to operate over a wide range of supply voltages down to a single 5V logic supply and ground. Further, they have higher gain and lower input currents than devices like the µA710. The uncommitted collector of the output stage makes the LM119 compatible with RTL, DTL and TTL as well as capable of driving lamps and relays at currents up to 25mA.

Although designed primarily for applications requiring operation from digital logic supplies, the LM119 series are fully specified for power supplies up to ±15V. It features faster response than the LM111 at the expense of higher power dissipation. However, the high speed, wide operating voltage range and low package count make the LM119 much more versatile than older devices like the µA711.

The LM119 is specified from -55°C to +125°C, the LM219 is specified from -25°C to +85°C, and the LM319 is specified from 0°C to +70°C.

FEATURES
- Two independent comparators
- Operates from a single 5V supply
- Typically 80ns response time at ±15V
- Minimum fan-out of 3 (each side)
- Maximum input current of 1µA over temperature
- Inputs and outputs can be isolated from system ground
- High common mode slew rate
- MIL-STD-883 A, B, C available

EQUIVALENT SCHEMATIC

PIN CONFIGURATIONS

D, F, N PACKAGE
NC NC NC NC
GND 1 OUTPUT 1
+ INPUT 1 V+
- INPUT 1 V-
+ INPUT 2 V+
- INPUT 2 V-
OUTPUT 2

TOP VIEW
ORDER NUMBERS
LM119F LM219F LM319D,F,N

H PACKAGE

ORDER NUMBERS
LM119H LM219H LM319H

*Metal cans (H) not recommended for new designs
## Absolute Maximum Ratings

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>RATING</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total supply voltage</td>
<td>36 V</td>
<td></td>
</tr>
<tr>
<td>Output to negative supply voltage</td>
<td>36 V</td>
<td></td>
</tr>
<tr>
<td>Ground to negative supply voltage</td>
<td>25 V</td>
<td></td>
</tr>
<tr>
<td>Ground to positive supply voltage</td>
<td>18 V</td>
<td></td>
</tr>
<tr>
<td>Differential input voltage</td>
<td>±5 V</td>
<td></td>
</tr>
<tr>
<td>Input voltage</td>
<td>±15 V</td>
<td></td>
</tr>
<tr>
<td>Power dissipation</td>
<td>500 mW</td>
<td></td>
</tr>
<tr>
<td>Output short circuit duration</td>
<td>10 s</td>
<td></td>
</tr>
<tr>
<td>Operating temperature range</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LM119</td>
<td>-55 to +125 °C</td>
<td></td>
</tr>
<tr>
<td>LM219</td>
<td>-25 to +85 °C</td>
<td></td>
</tr>
<tr>
<td>LM319</td>
<td>0 to +70 °C</td>
<td></td>
</tr>
<tr>
<td>Storage temperature range</td>
<td>-65 to +150 °C</td>
<td></td>
</tr>
<tr>
<td>Lead temperature (soldering, 10 sec)</td>
<td>300 °C</td>
<td></td>
</tr>
</tbody>
</table>

### Notes

1. For supply voltages less than ±15V, the absolute maximum rating is equal to the supply voltage.
2. The absolute maximum junction temperature is 150°C. Device dissipation must be derated as follows:
   - K package: -150°C/watt above 75°C
   - F package: -110°C/watt above 95°C

## DC Electrical Characteristics

\( V_S = \pm 15V \), for

- LM119, \(-55°C \leq T_A \leq 125°C\)
- LM219, \(-25°C \leq T_A \leq 85°C\)
- LM319, \(0°C \leq T_A \leq 70°C\)

### Parameters

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>LM119/219</th>
<th>LM319</th>
</tr>
</thead>
<tbody>
<tr>
<td>( V_{OS} ) input offset voltage (^1,^2)</td>
<td>( R_S = 5k\Omega, T_A = 25°C )</td>
<td>Min</td>
<td>Typ</td>
</tr>
<tr>
<td></td>
<td>Over temp.</td>
<td>0.7</td>
<td>4.0</td>
</tr>
<tr>
<td>( I_{OS} ) input offset current (^1,^2)</td>
<td>( T_A = 25°C )</td>
<td>Min</td>
<td>Typ</td>
</tr>
<tr>
<td></td>
<td>Over temp.</td>
<td>30</td>
<td>75</td>
</tr>
<tr>
<td>( I_B ) input bias current (^1)</td>
<td>( T_A = 25°C )</td>
<td>Min</td>
<td>Typ</td>
</tr>
<tr>
<td></td>
<td>Over temp.</td>
<td>150</td>
<td>500</td>
</tr>
<tr>
<td>( A_V ) voltage gain</td>
<td>( T_A = 25°C )</td>
<td>10</td>
<td>40</td>
</tr>
<tr>
<td>( V_{OL} ) saturation voltage</td>
<td>( V_{IN} = 5mV, I_{OUT} = 25mA, T_A = 25°C )</td>
<td>0.75</td>
<td>1.5</td>
</tr>
<tr>
<td></td>
<td>( V_{IN} = 10mV, I_{OUT} = 25mA, T_A = 25°C )</td>
<td>0.23</td>
<td>0.4</td>
</tr>
<tr>
<td></td>
<td>( V_{IN} = 6mV, I_{OUT} = 3.2mA )</td>
<td>0.23</td>
<td>0.4</td>
</tr>
<tr>
<td></td>
<td>( V_{IN} = 10mV, I_{OUT} = 3.2mA )</td>
<td>0.23</td>
<td>0.4</td>
</tr>
<tr>
<td>( I_{OH} ) output leakage current</td>
<td>( V^- = 0V, V_{IN} = 5mV )</td>
<td>0.2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>( V_{OUT} = 35V, T_A = 25°C )</td>
<td>0.2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Over temp.</td>
<td>0.2</td>
<td>2</td>
</tr>
<tr>
<td>( V_{IN} ) input voltage range</td>
<td>( V_S = \pm 15V )</td>
<td>1</td>
<td>±13</td>
</tr>
<tr>
<td></td>
<td>( V^- = 5V, V^+ = 0V )</td>
<td>4.3</td>
<td>4.3</td>
</tr>
<tr>
<td>( V^+ ) positive supply current</td>
<td>( V^+ = 5V, V^- = 0V, T_A = 25°C )</td>
<td>4.3</td>
<td>4.3</td>
</tr>
<tr>
<td>( V^- ) positive supply current</td>
<td>( V_S = \pm 15V, T_A = 25°C )</td>
<td>3.0</td>
<td>4.5</td>
</tr>
<tr>
<td>( I^- ) negative supply current</td>
<td>( V_S = \pm 15V, T_A = 25°C )</td>
<td>3.0</td>
<td>4.5</td>
</tr>
</tbody>
</table>

### Notes

1. \( V_{OS}, I_{OS} \) and \( I_B \) specifications apply for a supply voltage range of \( V_S = \pm 15V \) down to a single 5V supply.
2. The offset voltages and offset currents given are the maximum values required to drive the output to within 1 volt of either supply with a 1mA load. Thus these parameters define an error band and take into account the worst case effects of voltage gain and input impedance.
AC ELECTRICAL CHARACTERISTICS

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>LIMITS</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Response time*</td>
<td>$V_S = \pm 15V$, $T_A = 25^\circ C$</td>
<td>Min: 80 Typ: 80 Max: 80</td>
<td>ns</td>
</tr>
<tr>
<td></td>
<td>$R_L = 500\Omega$ (see test figure)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*NOTE
The response time specified is for a 100mV step with 5mV overdrive.

TYPICAL PERFORMANCE CHARACTERISTICS

TRANSFER FUNCTION

RESPONSE TIME FOR VARIOUS INPUT OVERDRIVES

INPUT CHARACTERISTICS

RESPONSE TIME FOR VARIOUS INPUT OVERDRIVES
TYPICAL PERFORMANCE CHARACTERISTICS (Cont'd)

OUTPUT SATURATION VOLTAGE

SUPPLY CURRENT

OUTPUT LIMITING CHARACTERISTICS

SUPPLY VOLTAGE

INPUT OVERDRIVE

INPUT CURRENT (LM119/219)

COMMOM MODE LIMITS (LM119/219)

COMMON MODE LIMITS (LM319)

INPUT CURRENT (LM319)

SUPPLY CURRENT (LM319)

SUPPLY CURRENTS (LM119/219)

COMMON MODE LIMITS (LM319)
**Typical Applications**

### Relay Driver

- Label: 1/2 LM319
- Circuit diagram:
- **Inputs:**
  - 3V
  - 10V
  - 7V
  - 30V

### Window Detector

- Label: 1/2 LM319
- Circuit diagram:
- **Inputs:**
  - VLT
  - VIN
  - VUT

### Wide Range Variable Oscillator

- Circuit diagram:
- **Outputs:**
  - Square Wave Output: 1kHz to 1MHz
  - Triangle Wave Output

---

\( V_{OUT} = 5V \) for \( V_{LT} < V_{IN} < V_{UT} \)

\( V_{OUT} = 0 \) for \( V_{IN} < V_{LT} \) or \( V_{IN} > V_{UT} \)
DESCRIPTION
The LM139 series consists of four independent precision voltage comparators with an offset voltage specification as low as 2.0mV max for each comparator which were designed specifically to operate from a single power supply over a wide range of voltages. Operation from split power supplies is also possible and the low power supply current drain is independent of the magnitude of the power supply voltage. These comparators also have a unique characteristic in that the input common-mode voltage range includes ground, even though operated from a single power supply voltage.

The LM139 series was designed to directly interface with TTL and CMOS. When operated from both plus and minus power supplies, the LM139 series will directly interface with MOS logic where their low power drain is a distinct advantage over standard comparators.

FEATURES
• Wide single supply voltage range 2.0Vdc to 36Vdc or dual supplies ±1.0Vdc to ±18Vdc
• Very low supply current drain (0.8mA) independent of supply voltage (1.0mW/ comparator at 5.0Vdc)
• Low input biasing current 25nA
• Low input offset current ±5nA and offset voltage
• Input common-mode voltage range includes ground
• Differential input voltage range equal to the power supply voltage.
• Low output 250mV at 4mA saturation voltage
• Output voltage compatible with TTL, DTL, ECL, MOS and CMOS logic systems.

APPLICATIONS
• A/D converters
• Wide range VCO
• MOS clock generator
• High voltage logic gate
• Multivibrators

ABSOLUTE MAXIMUM RATINGS
<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>RATING</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vcc supply voltage</td>
<td>36 or ±18</td>
<td>mV</td>
</tr>
<tr>
<td>Differential input voltage</td>
<td>36</td>
<td>mV</td>
</tr>
<tr>
<td>Input voltage</td>
<td>-0.3 to +36</td>
<td>mV</td>
</tr>
<tr>
<td>Power dissipation¹</td>
<td>570</td>
<td>mW</td>
</tr>
<tr>
<td>N package</td>
<td>900</td>
<td>mW</td>
</tr>
<tr>
<td>Output short circuit to ground²</td>
<td>Continuous</td>
<td>mA</td>
</tr>
<tr>
<td>Input current (VIN &lt; -0.3Vdc)³</td>
<td>50</td>
<td>mA</td>
</tr>
<tr>
<td>Operating temperature range</td>
<td></td>
<td>°C</td>
</tr>
<tr>
<td>LM139/A</td>
<td>-55 to +125</td>
<td></td>
</tr>
<tr>
<td>LM239/A</td>
<td>-25 to +85</td>
<td></td>
</tr>
<tr>
<td>LM339/A</td>
<td>0 to +70</td>
<td></td>
</tr>
<tr>
<td>LM2901/MC3302</td>
<td>-40 to +85</td>
<td></td>
</tr>
<tr>
<td>Storage temperature range</td>
<td>-65 to +150</td>
<td>°C</td>
</tr>
<tr>
<td>Lead temperature (soldering 10 sec.)</td>
<td>300</td>
<td>°C</td>
</tr>
</tbody>
</table>

EQUIVALENT CIRCUIT

PIN CONFIGURATION
### DC ELECTRICAL CHARACTERISTICS

$V_+ = 5V_{dc}$, LM139A/LM139: $-55°C \leq T_A \leq 125°C$ unless otherwise specified

LM239: $-25°C \leq T_A \leq 85°C$ unless otherwise specified

LM339: $0°C \leq T_A \leq 70°C$ unless otherwise specified

$V_+ = 5V_{dc}$, LM339A: $^°C \leq T_A \leq 70°C$ unless otherwise specified

LM290A/LM3302: $-40°C \leq T_A \leq 85°C$ unless otherwise specified

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$V_{os}$</td>
<td>$T_A = 25°C$</td>
<td>Min</td>
<td>Typ</td>
<td>Max</td>
<td>Min</td>
<td>Typ</td>
<td>Max</td>
</tr>
<tr>
<td>Input offset voltage</td>
<td>Over temp.</td>
<td>±1.0</td>
<td>±2.0</td>
<td>±1.0</td>
<td>±2.0</td>
<td>±5.0</td>
<td>±2.0</td>
</tr>
<tr>
<td>$V_{cm}$</td>
<td>$T_A = 25°C$</td>
<td>Over temp.</td>
<td>$V_+ - 1.5$</td>
<td>$V_+ - 1.5$</td>
<td>$V_+ - 2.0$</td>
<td>$V_+ - 1.5$</td>
<td>$V_+ - 1.5$</td>
</tr>
<tr>
<td>Input common mode voltage range</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$V_{idr}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Differential input voltage</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_B$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input bias current</td>
<td>$V_{in} = 0$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_O$</td>
<td>$V_{in} = 1V_{dc}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output sink current</td>
<td>$V_{in} = 0$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{oh}$</td>
<td>$V_{in} = 0$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output leakage current</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{cc}$</td>
<td>$V_+ = 2.8V$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supply current</td>
<td>$R_L = \infty$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$A_V$</td>
<td>$V_+ = 15V_{dc}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Voltage gain</td>
<td>$V_+ = 15V_{dc}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$V_{OL}$</td>
<td>$V_{IN} = 1V_{dc}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Saturation voltage</td>
<td>$V_{in} = 0$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{LSR}$</td>
<td>$V_{IN} = \pm 10V$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Large signal response time</td>
<td>$V_{REF} = 1.4V_{dc}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$T_R$</td>
<td>$V_{in} = 5V_{dc}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

See notes on following page.
1. For operating at high temperatures, the LM339A/339A, LM2901 and MC3302 must be derated based on a 125°C maximum junction temperature and a thermal resistance of 175°C/W which applies for the device soldered in a printed circuit board, operating in a still air emient. The LM139A/139A/239A/239A must be derated on a 150°C maximum junction temperature. The low power dissipation and the "On-Off" characteristics of the outputs keep the chip dissipation very small (Pd ≤ 100mW), provided the output transistors are allowed to saturate.

2. Short circuits from the output to V+ can cause excessive heating and eventual destruction. The maximum output current is approximately 20mA independent of the magnitude of V+.

3. This input current will only exist when the voltage at any of the input leads is driven negative. It is due to the collector-base junction of the Input PNP transistors becoming forward biased and thereby acting as input diode clamps. In addition to this diode action, there is also lateral NPN parasitic transistor action on the IC chip. This transistor action can cause the output voltages of the comparators to go to the V+ voltage level (or to ground for a large overdrive) for the time duration that an input is driven negative. This is not destructive and normal output states will re-establish when the input voltage, which was negative, again returns to a value greater than −0.3Vdc.

4. Positive excursions of input voltage may exceed the power supply level by 17 volts. As long as the other voltage remains within the common-mode range, the comparator will provide a proper output state. The low input voltage state must not be less than −0.3Vdc (or 0.3Vdc below the magnitude of the negative power supply, if used).

5. At output switch point, V0 = 1.4Vdc, Rg = 0Ω with V+ from 5Vdc to 30Vdc and over the full input common-mode range (OVdc to V+ − 1.5Vdc).

6. The input common-mode voltage or either input signal voltage should not be allowed to go negative by more than 0.3V. The upper end of the common-mode voltage range is V+ − 1.5V, but either or both inputs can go to 30Vdc without damage.

7. The direction of the input current is out of the IC due to the PNP input stage. This current is essentially constant, independent of the state of the output so no loading change exists on the reference or input lines.

8. The response time specified is for a 100mV input step with a 5mV overdrive. For larger overdrive signals, 300ns can be obtained, see typical performance characteristics section.
**TYPICAL APPLICATIONS**

**TWO-DECADE HIGH-FREQUENCY VCO**

\[ V^+ = +30 \text{Vdc} \]
\[ +250 \text{mVdc} \leq V_C \leq +50 \text{Vdc} \]
\[ 700 \text{Hz} \leq f_0 \leq 100 \text{kHz} \]

**LIMIT COMPARATOR**

**VISIBLE VOLTAGE INDICATOR**

**TTL TO MOS LOGIC CONVERTER**

**CRYSTAL CONTROLLED OSCILLATOR**

**NOTE:**
Inputs of unused comparators should be grounded.
TYPICAL PERFORMANCE CHARACTERISTICS

**SUPPLY CURRENT**

<table>
<thead>
<tr>
<th>TA</th>
<th>-55°C</th>
<th>0°C</th>
<th>+25°C</th>
<th>+125°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>0.2 A</td>
<td>0.4 A</td>
<td>0.6 A</td>
<td>0.8 A</td>
</tr>
</tbody>
</table>

**INPUT CURRENT**

<table>
<thead>
<tr>
<th>TA</th>
<th>-55°C</th>
<th>0°C</th>
<th>+25°C</th>
<th>+125°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>0.1 mA</td>
<td>0.2 mA</td>
<td>0.3 mA</td>
<td>0.4 mA</td>
</tr>
</tbody>
</table>

**OUTPUT SATURATION VOLTAGE**

<table>
<thead>
<tr>
<th>TA</th>
<th>-55°C</th>
<th>0°C</th>
<th>+25°C</th>
<th>+125°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>1.0 V</td>
<td>0.5 V</td>
<td>0.3 V</td>
<td>0.2 V</td>
</tr>
</tbody>
</table>

**RESPONSE TIME FOR VARIOUS INPUT OVERDRIVES—NEGATIVE TRANSITION**

<table>
<thead>
<tr>
<th>OVERDRIVE</th>
<th>100 mV</th>
<th>200 mV</th>
<th>300 mV</th>
<th>500 mV</th>
</tr>
</thead>
<tbody>
<tr>
<td>TIME (µsec)</td>
<td>2.0</td>
<td>1.5</td>
<td>1.0</td>
<td>0.5</td>
</tr>
</tbody>
</table>

**RESPONSE TIME FOR VARIOUS INPUT OVERDRIVES—POSITIVE TRANSITION**

<table>
<thead>
<tr>
<th>OVERDRIVE</th>
<th>100 mV</th>
<th>200 mV</th>
<th>300 mV</th>
<th>500 mV</th>
</tr>
</thead>
<tbody>
<tr>
<td>TIME (µsec)</td>
<td>2.0</td>
<td>1.5</td>
<td>1.0</td>
<td>0.5</td>
</tr>
</tbody>
</table>
LINEAR LSI PRODUCTS

LOW POWER DUAL VOLTAGE COMPARATOR LM193/A/293/A/393/A/2903

DESCRIPTION
The LM193 series consists of two independent precision voltage comparators with an offset voltage specification as low as 2.0mV max for two comparators which were designed specifically to operate from a single power supply over a wide range of voltages. Operation from split power supplies is also possible and the low power supply current drain is independent of the magnitude of the power supply voltage. These comparators also have a unique characteristic in that the input common mode voltage range includes ground, even though operated from a single power supply voltage.

The LM193 series was designed to directly interface with TTL and CMOS. When operated from both plus and minus power supplies, the LM193 series will directly interface with MOS logic where their low power drain is a distinct advantage over standard comparators.

FEATURES
- Wide single supply voltage range 2.0Vdc to 36Vdc or dual supplies ±1.0Vdc to ±18Vdc
- Very low supply current drain (0.8mA) independent of supply voltage (2.0mA/comparator at 5.0Vdc)
- Low input biasing current 25nA
- Low input offset current ±5nA and offset voltage ±2mV
- Input common-mode voltage range includes ground
- Differential input voltage range equal to the power supply voltage.
- Low output 250mV at 4mA saturation voltage
- Output voltage compatible with TTL, DTL, ECL, MOS and CMOS logic systems.

APPLICATIONS
- A/D converters
- Wide range VCO
- MOS clock generator
- High voltage logic gate
- Multivibrators

ABSOLUTE MAXIMUM RATINGS

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>RATING</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vcc supply voltage</td>
<td>±36 or ±18</td>
<td>Vdc</td>
</tr>
<tr>
<td>Differential input voltage</td>
<td>36</td>
<td>Vdc</td>
</tr>
<tr>
<td>Input voltage</td>
<td>±0.3 to +36</td>
<td>Vdc</td>
</tr>
<tr>
<td>Power dissipation1FE</td>
<td>570</td>
<td>mW</td>
</tr>
<tr>
<td>Output short circuit to ground2</td>
<td>Continuous</td>
<td>mA</td>
</tr>
<tr>
<td>Input current (Vin &lt; -0.3Vdc)</td>
<td>50</td>
<td>mA</td>
</tr>
<tr>
<td>Operating temperature range</td>
<td>-55 to +125</td>
<td>°C</td>
</tr>
<tr>
<td>LM193/193A</td>
<td>-25 to +85</td>
<td>°C</td>
</tr>
<tr>
<td>LM293/293A</td>
<td>0 to +70</td>
<td>°C</td>
</tr>
<tr>
<td>LM393/393A</td>
<td>-40 to +85</td>
<td>°C</td>
</tr>
<tr>
<td>LM2903</td>
<td>-65 to +150</td>
<td>°C</td>
</tr>
<tr>
<td>Storage temperature range</td>
<td>300</td>
<td>°C</td>
</tr>
<tr>
<td>Lead temperature (soldering 10 sec.)</td>
<td>300</td>
<td>°C</td>
</tr>
</tbody>
</table>

EQUIVALENT CIRCUIT

(One Comparator Only)
**DC ELECTRICAL CHARACTERISTICS (Cont'd)**

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>LM193</th>
<th>LM293/393</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>V_{OS}</strong> Input offset voltage&lt;sup&gt;5&lt;/sup&gt;</td>
<td></td>
<td>Ta = 25°C</td>
<td>Over temp.</td>
<td>Min Typ Max Min Typ Max</td>
</tr>
<tr>
<td></td>
<td></td>
<td>±2.0</td>
<td>±5.0</td>
<td>±2.0</td>
</tr>
<tr>
<td><strong>V_{CM}</strong> Input common mode voltage range&lt;sup&gt;6,10&lt;/sup&gt;</td>
<td></td>
<td>Ta = 25°C</td>
<td>Over temp.</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>V±-2.0</td>
<td>0</td>
</tr>
<tr>
<td><strong>V_{IDR}</strong> Differential input voltage&lt;sup&gt;4&lt;/sup&gt;</td>
<td>Keep all V_{IN} ≥ 0Vdc (or V If needed)</td>
<td>Ta = 25°C</td>
<td>Over temp.</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td></td>
<td>300</td>
<td></td>
<td>400</td>
</tr>
<tr>
<td><strong>I_{B}</strong> Input bias current&lt;sup&gt;5&lt;/sup&gt;</td>
<td>I_{IN(+)} or I_{IN(-)} with output in linear range</td>
<td>Ta = 25°C</td>
<td>Over temp.</td>
<td>±3.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>±100</td>
<td></td>
<td>±150</td>
</tr>
<tr>
<td><strong>I_{OS}</strong> Input offset current</td>
<td>I_{IN(+)} - I_{IN(-)}</td>
<td>Ta = 25°C</td>
<td>Over temp.</td>
<td>6.0</td>
</tr>
<tr>
<td><strong>I_{OL}</strong> Output sink current</td>
<td>V_{IN(+)} = 1Vdc, V_{IN(-)} = 0,</td>
<td>V_{0} = 1.5Vdc,</td>
<td>Ta = 25°C</td>
<td>0.1</td>
</tr>
<tr>
<td></td>
<td>V_{0} = 30Vdc, over temp.</td>
<td>Ta = 25°C</td>
<td>Over temp.</td>
<td>0.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>I_{OH}</strong> Output leakage current</td>
<td>V_{IN(+)} = 1Vdc, V_{VIN(-)} = 0</td>
<td>Ta = 25°C</td>
<td>V_{0} = 5Vdc,</td>
<td>0.1</td>
</tr>
<tr>
<td></td>
<td>Over temp.</td>
<td>Ta = 25°C</td>
<td>V_{0} = 30Vdc, over temp.</td>
<td>0.1</td>
</tr>
<tr>
<td><strong>I_{CC}</strong> Supply current</td>
<td>RL = Ω on both comparators</td>
<td>Ta = 25°C</td>
<td>V_{+} = 30V, over temp.</td>
<td>0.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ta = 25°C</td>
<td>V_{+} = 30V, over temp.</td>
<td>2.5</td>
</tr>
<tr>
<td><strong>A_{V}</strong> Voltage gain</td>
<td>RL ≥ 15kHzΩ, V_{+} = 15Vdc</td>
<td>Ta = 25°C</td>
<td>V_{+} = 30V, over temp.</td>
<td>50</td>
</tr>
<tr>
<td><strong>V_{OL}</strong> Saturation voltage</td>
<td>V_{IN(+)} = 1Vdc, V_{VIN(-)} = 0</td>
<td>Ta = 25°C</td>
<td>Over temp.</td>
<td>250</td>
</tr>
<tr>
<td></td>
<td>I_{SINK} ≤ 4mA</td>
<td>Ta = 25°C</td>
<td>Over temp.</td>
<td>300</td>
</tr>
<tr>
<td><strong>T_{LS}</strong> Large signal response time</td>
<td>V_{IN} = TTL logic swing,</td>
<td>V_{REF} = 1.4Vdc, V_{RL} = 5Vdc,</td>
<td>5V/V = 5.1kHzΩ,</td>
<td>1.3</td>
</tr>
<tr>
<td></td>
<td>V_{RL} = 5.1kHzΩ,</td>
<td>Ta = 25°C</td>
<td>Over temp.</td>
<td>1.3</td>
</tr>
<tr>
<td></td>
<td>V_{+} = 15Vdc</td>
<td>Ta = 25°C</td>
<td>Over temp.</td>
<td></td>
</tr>
<tr>
<td><strong>T_{R}</strong> Response time&lt;sup&gt;9&lt;/sup&gt;</td>
<td></td>
<td>Ta = 25°C</td>
<td>Over temp.</td>
<td></td>
</tr>
</tbody>
</table>

**NOTES**

1. For operating at high temperatures, the LM193/393A and LM2903 must be derated based on a 125°C maximum junction temperature and a thermal resistance of 175°C/W which applies for the device soldered in a printed circuit board, operating in a still air ambient. The LM193/393A/293/293A must be derated based on a 150°C maximum junction temperature. The low bias dissipation and the "On-Off" characteristics of the outputs keeps the chip dissipation very small (P_{O} ≤ 100mW), provided the output transistors are allowed to saturate.

2. Short circuits from the output to V_{+} can cause excessive heating and eventual destruction. The maximum output current is approximately 20mA independent of the magnitude of V_{+}. A. This input current will only exist when the voltage at any of the input leads is driven negative. It is due to the collector-base junction of the input PNP transistors becoming forward biased and thereby acting as input diode clamps. In addition to this diode action, there is also lateral NPN parasitic transistor action on the IC chip. This transistor action can cause the output voltages of the comparators to go to the V_{+} voltage level (or to ground for a large overdrive) for the time duration that an input is driven negative. This is not destructive and normal output states will re-establish when the input voltage, which was negative, again returns to a value greater than -0.3Vdc.

4. Positive excursions of input voltage may exceed the power supply level by 17 Volts. As long as the other voltage remains within the common-mode range, the comparator will provide a proper output state. The low input voltage state must not be less than -0.3Vdc (Vdc below the magnitude of the negative power supply, if used).

5. At output switch point, V_{OA} ≥ 1.4Vdc, Rs = 0Ω with V_{+} from 5Vdc to 30Vdc and over the full input common-mode range (-1.5Vdc to V_{+}).

6. The input common-mode voltage or either input signal voltage should not be allowed to go negative by more than 0.3V. The upper end of the common-mode voltage range is V_{+} -1.5V, but either or both inputs can go to 30Vdc without damage.

7. The direction of the input current is out of the IC due to the PNP input stage. This current is essentially constant, independent of the state of the output so no loading change exists on the reference or input lines.

9. The response time specified is for a 100mV input step with a 5mV overdrive.

10. For input signals that exceed V_{OO}, only the overdriven comparator is affected. With a 5V supply, V_{OA} should be limited to 25V max., and a limiting resistor should be used on all inputs that might exceed the positive supply.
### DC ELECTRICAL CHARACTERISTICS

**V+ = 5Vdc.**
- **LM193/193A:** $-55^\circ C \leq T_A \leq +125^\circ C$ unless otherwise specified.
- **LM293/293A:** $-25^\circ C \leq T_A \leq +85^\circ C$ unless otherwise specified.
- **LM393/393A:** $0^\circ C \leq T_A \leq +70^\circ C$ unless otherwise specified.
- **LM2903:** $-40^\circ C \leq T_A \leq +85^\circ C$ unless otherwise specified.

#### TEST CONDITIONS

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>LM193A</th>
<th>LM293A/393A</th>
<th>LM2903</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>$V_{OS}$</td>
<td>Input offset voltage</td>
<td>$T_A = 25^\circ C$</td>
<td>±1.0</td>
<td>±2.0</td>
<td>±1.0</td>
</tr>
<tr>
<td></td>
<td>Over temp.</td>
<td>±4.0</td>
<td>±4.0</td>
<td>±4.0</td>
<td>±9</td>
</tr>
<tr>
<td>$V_{CM}$</td>
<td>Input common mode</td>
<td>$T_A = 25^\circ C$</td>
<td>0</td>
<td>$V+ - 1.5$</td>
<td>0</td>
</tr>
<tr>
<td>voltage range</td>
<td>Over temp.</td>
<td>0</td>
<td>$V+ - 2.0$</td>
<td>0</td>
<td>$V+ - 2.0$</td>
</tr>
<tr>
<td>$V_{DR}$</td>
<td>Differential input</td>
<td>Keep all $V_{IN}$ ≥ 0Vdc</td>
<td>$V+$</td>
<td>$V+$</td>
<td>$V+$</td>
</tr>
<tr>
<td>voltage4</td>
<td></td>
<td>or $V-$ if needed</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_B$</td>
<td>Input bias current</td>
<td>$I_{IN(+)}$ or $I_{IN(-)}$ with output in linear range</td>
<td>25</td>
<td>100</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>$T_A = 25^\circ C$</td>
<td>300</td>
<td>300</td>
<td>400</td>
<td>400</td>
</tr>
<tr>
<td></td>
<td>Over temp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{OS}$</td>
<td>Input offset current</td>
<td>$I_{IN(+)} - I_{IN(-)}$</td>
<td>±3.0</td>
<td>±25</td>
<td>±6.0</td>
</tr>
<tr>
<td></td>
<td>$T_A = 25^\circ C$</td>
<td>±100</td>
<td>±100</td>
<td>±150</td>
<td>±150</td>
</tr>
<tr>
<td></td>
<td>Over temp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{OL}$</td>
<td>Output sink current</td>
<td>$V_{IN(-)} \geq 1Vdc$, $V_{IN(+)} = 0$, $V_0 \leq 1.5Vdc$, $T_A = 25^\circ C$</td>
<td>6.0</td>
<td>16</td>
<td>6.0</td>
</tr>
<tr>
<td></td>
<td>$T_A = 25^\circ C$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{OH}$</td>
<td>Output leakage current</td>
<td>$V_{IN(+)} \geq 1Vdc$, $V_{IN(-)} = 0$, $V_0 = 30Vdc$, $V_0 = 5Vdc$, $T_A = 25^\circ C$</td>
<td>0.1</td>
<td>1.0</td>
<td>0.1</td>
</tr>
<tr>
<td></td>
<td>$V_0 = 5Vdc$, $T_A = 25^\circ C$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Over temp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{CC}$</td>
<td>Supply current</td>
<td>$R_L = \infty$ on both comparators. $T_A = 25^\circ C$, $V_+ = 15Vdc$</td>
<td>0.8</td>
<td>1</td>
<td>0.8</td>
</tr>
<tr>
<td></td>
<td>$V_+ = 30V$, over temp.</td>
<td>1</td>
<td>2.5</td>
<td>1</td>
<td>2.5</td>
</tr>
<tr>
<td>$A_v$</td>
<td>Voltage gain</td>
<td>$R_L \geq 15k\Omega$, $V_+ = 15Vdc$, $T_A = 25^\circ C$</td>
<td>50</td>
<td>200</td>
<td>50</td>
</tr>
<tr>
<td>$V_{OL}$</td>
<td>Saturation voltage</td>
<td>$V_{IN(-)} \geq 1Vdc$, $V_{IN(+)} = 0$, $I_{ISINK} \leq 4mA$, $T_A = 25^\circ C$</td>
<td>250</td>
<td>400</td>
<td>250</td>
</tr>
<tr>
<td></td>
<td>Over temp.</td>
<td>700</td>
<td>700</td>
<td>700</td>
<td>700</td>
</tr>
<tr>
<td>$T_{LSR}$</td>
<td>Large signal response time</td>
<td>$V_{IN} = $ TTL logic swing, $V_{REF} = 1.4Vdc$, $V_{RL} = 5Vdc$, $R_L = 5.1k\Omega$, $T_A = 25^\circ C$</td>
<td>300</td>
<td>300</td>
<td>300</td>
</tr>
<tr>
<td>$T_R$</td>
<td>Response time</td>
<td>$V_{RL} = 5Vdc$, $R_L = 5.1k\Omega$, $T_A = 25^\circ C$</td>
<td>1.3</td>
<td>1.3</td>
<td>1.3</td>
</tr>
</tbody>
</table>
TYPICAL APPLICATIONS

TWO-DECADE HIGH-FREQUENCY VCO

LIMIT COMPARATOR

VISIBLE VOLTAGE INDICATOR

TTL TO MOS LOGIC CONVERTER

CRYSTAL CONTROLLED OSCILLATOR

All pins of any unused comparators should be grounded.
TYPICAL PERFORMANCE CHARACTERISTICS

**INPUT CURRENT**

<table>
<thead>
<tr>
<th>V&lt;sub&gt;IN(CM)&lt;/sub&gt;</th>
<th>0 V DC</th>
</tr>
</thead>
<tbody>
<tr>
<td>R&lt;sub&gt;IN(CM)&lt;/sub&gt;</td>
<td>10 kΩ</td>
</tr>
<tr>
<td>T&lt;sub&gt;A&lt;/sub&gt; = -55°C</td>
<td></td>
</tr>
<tr>
<td>T&lt;sub&gt;A&lt;/sub&gt; = 0°C</td>
<td></td>
</tr>
<tr>
<td>T&lt;sub&gt;A&lt;/sub&gt; = +25°C</td>
<td></td>
</tr>
<tr>
<td>T&lt;sub&gt;A&lt;/sub&gt; = +25°C</td>
<td></td>
</tr>
<tr>
<td>T&lt;sub&gt;A&lt;/sub&gt; = +125°C</td>
<td></td>
</tr>
</tbody>
</table>

**OUTPUT SATURATION VOLTAGE**

<table>
<thead>
<tr>
<th>V&lt;sub&gt;OUT&lt;/sub&gt; (V DC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
</tr>
<tr>
<td>1.0</td>
</tr>
<tr>
<td>0.1</td>
</tr>
<tr>
<td>0.05</td>
</tr>
<tr>
<td>0.02</td>
</tr>
<tr>
<td>0.01</td>
</tr>
</tbody>
</table>

**RESPONSE TIME FOR VARIOUS INPUT OVERDRIVES—NEGATIVE TRANSITION**

<table>
<thead>
<tr>
<th>INPUT OVERDRIVE (mV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 mV</td>
</tr>
<tr>
<td>50 mV</td>
</tr>
<tr>
<td>20 mV</td>
</tr>
<tr>
<td>5 mV</td>
</tr>
</tbody>
</table>

**RESPONSE TIME FOR VARIOUS INPUT OVERDRIVES—POSITIVE TRANSITION**

<table>
<thead>
<tr>
<th>INPUT OVERDRIVE (mV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 mV</td>
</tr>
<tr>
<td>50 mV</td>
</tr>
<tr>
<td>20 mV</td>
</tr>
<tr>
<td>5 mV</td>
</tr>
</tbody>
</table>
FEATURES
• 12ns maximum guaranteed propagation delay
• 20µA maximum input bias current
• TTL compatible strobes and outputs
• Large common mode input voltage range
• Operates from standard supply voltages
• Military qualifications pending

APPLICATIONS
• MOS memory sense amp
• A-to-D conversion
• High speed line receiver

ABSOLUTE MAXIMUM RATINGS

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>RATING</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>V+ Positive</td>
<td>+7 v</td>
<td></td>
</tr>
<tr>
<td>V- Negative</td>
<td>-7 v</td>
<td></td>
</tr>
<tr>
<td>Vdiff Differential input voltage</td>
<td>±6 v</td>
<td></td>
</tr>
<tr>
<td>VIN Common mode</td>
<td>±5 v</td>
<td></td>
</tr>
<tr>
<td>PO Power dissipation</td>
<td>600 mW</td>
<td></td>
</tr>
<tr>
<td>TA Operating temperature range</td>
<td>0 to 70 °C</td>
<td></td>
</tr>
<tr>
<td>NES521</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SE521</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tstg Storage temperature range</td>
<td>-65 to +150 °C</td>
<td></td>
</tr>
<tr>
<td>Lead temperature</td>
<td>-300 °C</td>
<td></td>
</tr>
</tbody>
</table>

PIN CONFIGURATION

D,F,N PACKAGE

ORDER NUMBERS
NES521D,F,N SE521F

BLOCK DIAGRAM

EQUIVALENT SCHEMATIC
# DC ELECTRICAL CHARACTERISTICS

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>SE LIMITS</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>( V_{OS} ) Input offset voltage</td>
<td>( V_+ = +4.5V, V_- = -4.5V ) at 25°C over temperature range</td>
<td>Max: 7.5</td>
<td>mV</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Min: 6</td>
<td></td>
</tr>
<tr>
<td>( I_{BIAS} ) Input bias current</td>
<td>( V_+ = +5.5V, V_- = -5.5V ) at 25°C over temperature range</td>
<td>Max: 20</td>
<td>( \mu A )</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Min: 7.5</td>
<td></td>
</tr>
<tr>
<td>( I_{OS} ) Input offset current</td>
<td>( V_+ = +5.5V, V_- = -5.5V ) at 25°C over temperature range</td>
<td>Max: 12</td>
<td>( \mu A )</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Min: 5</td>
<td></td>
</tr>
<tr>
<td>( V_{CM} ) Common mode voltage range</td>
<td>( V_+ = +4.5V, V_- = -4.5V )</td>
<td>Max: 3</td>
<td>V</td>
</tr>
<tr>
<td>( V_L ) Low level input voltage</td>
<td>( V_+ = +5.5V, V_- = -5.5V ) at 25°C over temperature range</td>
<td>Max: 0.7</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Min: 0.8</td>
<td></td>
</tr>
<tr>
<td>( V_{IH} ) High level input voltage</td>
<td>( V_+ = +5.5V, V_- = -5.5V )</td>
<td>Max: 2.0</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Min: 2</td>
<td></td>
</tr>
<tr>
<td>( I_{IH} ) Input current High</td>
<td>( V_+ = +5.5V, V_- = -5.5V )</td>
<td>Max: 50</td>
<td>( \mu A )</td>
</tr>
<tr>
<td></td>
<td>( V_{IH} = 2.7V )</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1G or 2G strobe</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Common strobe S</td>
<td></td>
<td></td>
</tr>
<tr>
<td>( I_{IL} ) Low level current Low</td>
<td>( V_+ = +5.5V, V_- = -5.5V )</td>
<td>Max: 100</td>
<td>( \mu A )</td>
</tr>
<tr>
<td></td>
<td>( V_{IL} = 0.5V )</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1G or 2G strobe</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Common strobe S</td>
<td></td>
<td></td>
</tr>
<tr>
<td>( V_{OH} ) Output voltage High</td>
<td>( V_+ = +4.5V, V_- = -4.5V, I_{LOAD} = 1) mA</td>
<td>Max: 2.5</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>( V_+ = +4.5V, V_- = -4.5V, I_{LOAD} = 10) mA</td>
<td>Min: 2.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>( T_A = 25^\circ ) C, I_{LOAD} = 20) mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>( V_{OL} ) Output voltage Low</td>
<td>( V_+ = +4.5V, V_- = -4.5V, I_{LOAD} = 1) mA</td>
<td>Max: 0.5</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>( V_+ = +4.5V, V_- = -4.5V, I_{LOAD} = 10) mA</td>
<td>Min: 0.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>( T_A = 25^\circ ) C, I_{LOAD} = 20) mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>( V_+ ) Supply voltage Positive</td>
<td>( V_+ = +5.5V, V_- = -5.5V, T_A = 25^\circ ) C</td>
<td>Max: 35</td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Min: 27</td>
<td></td>
</tr>
<tr>
<td>( V_- ) Supply voltage Negative</td>
<td>( V_+ = +5.5V, V_- = -5.5V, T_A = 25^\circ ) C</td>
<td>Max: -15</td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Min: -28</td>
<td></td>
</tr>
<tr>
<td>( I_{CC} ) Supply current Positive</td>
<td>( V_+ = +5.5V, V_- = -5.5V, T_A = 25^\circ ) C</td>
<td>Max: 27</td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Min: 20</td>
<td></td>
</tr>
<tr>
<td>( I_{CC} ) Supply current Negative</td>
<td>( V_+ = +5.5V, V_- = -5.5V, T_A = 25^\circ ) C</td>
<td>Max: -15</td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Min: -28</td>
<td></td>
</tr>
<tr>
<td>( I_{SC} ) Short circuit output current</td>
<td></td>
<td>Max: 35</td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Min: -115</td>
<td></td>
</tr>
</tbody>
</table>

\( V_+ = +5V, V_- = -5V, T_A = -55^\circ \) to +125°C unless otherwise specified.
## DC ELECTRICAL CHARACTERISTICS

(Cont’d) \( V^+ = +5V, V^- = -5V, T_A = 0 \) to 70°C unless otherwise specified

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>NE LIMITS</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>( V_{OS} ) Input offset voltage</td>
<td>( V^+ = +4.75V, V^- = -4.75V )</td>
<td>Min 1</td>
<td>Typ 7.5</td>
</tr>
<tr>
<td>At 25°C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Over temperature range</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>( I_{BIAS} ) Input bias current</td>
<td>( V^+ = +5.25V, V^- = -5.25V )</td>
<td>Min 7.5</td>
<td>Typ 20</td>
</tr>
<tr>
<td>At 25°C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Over temperature range</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>( I_{OS} ) Input offset current</td>
<td>( V^+ = +5.25V, V^- = -5.25V )</td>
<td>Min 1.0</td>
<td>Typ 5</td>
</tr>
<tr>
<td>At 25°C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Over temperature range</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>( V_{CM} ) Common mode voltage range</td>
<td>( V^+ = +4.75V, V^- = -4.75V )</td>
<td>Min ±3</td>
<td>Typ</td>
</tr>
<tr>
<td>( I_{IH} ) High current input</td>
<td>( V^+ = +5.25V, V^- = -5.25V )</td>
<td>Min 50</td>
<td>Typ 100</td>
</tr>
<tr>
<td>( V_{IL} ) Low current input</td>
<td>( V^+ = +5.25V, V^- = -5.25V )</td>
<td>Min 100</td>
<td>Typ 200</td>
</tr>
<tr>
<td>( V_{OH} ) Output voltage High</td>
<td>( V^+ = +4.75V, V^- = -4.75V )</td>
<td>Min 2.7</td>
<td>Typ 3.4</td>
</tr>
<tr>
<td>( V_{OL} ) Output voltage Low</td>
<td>( V^+ = +5.25V, V^- = -5.25V )</td>
<td>Min 4.75</td>
<td>Typ 5.0</td>
</tr>
<tr>
<td>( V^+ ) Positive supply voltage</td>
<td>( V^+ = +5.25V, V^- = -5.25V )</td>
<td>Min 27</td>
<td>Typ 35</td>
</tr>
<tr>
<td>( V^- ) Negative supply voltage</td>
<td>( V^+ = +5.25V, V^- = -5.25V )</td>
<td>Min -15</td>
<td>Typ -28</td>
</tr>
<tr>
<td>( I_{CC} ) Positive supply current</td>
<td>( V^+ = +5.25V, V^- = -5.25V )</td>
<td>Min 27</td>
<td>Typ 35</td>
</tr>
<tr>
<td>( I_{SC} ) Negative supply current</td>
<td>( V^+ = +5.25V, V^- = -5.25V )</td>
<td>Min -15</td>
<td>Typ -28</td>
</tr>
</tbody>
</table>

## AC ELECTRICAL CHARACTERISTICS

\( T_A = 25°C, R_L = 280\Omega, C_L = 15\mu F, V^+ = +5V, V^- = -5V \)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>FROM INPUT</th>
<th>TO OUTPUT</th>
<th>LIMITS</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Large Signal Switching Speed</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Propagation delay</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>( t_{PLH(D)} ) Low to high(^1)</td>
<td>Amp</td>
<td>Output</td>
<td>Min 8</td>
<td>Typ 12 ns</td>
</tr>
<tr>
<td>( t_{PHL(D)} ) High to low(^1)</td>
<td>Amp</td>
<td>Output</td>
<td>Min 6</td>
<td>Typ 9</td>
</tr>
<tr>
<td>( t_{PLH(S)} ) Low to high(^2)</td>
<td>Strobe</td>
<td>Output</td>
<td>Min 4.5</td>
<td>Typ 10</td>
</tr>
<tr>
<td>( t_{PHL(S)} ) High to low(^2)</td>
<td>Strobe</td>
<td>Output</td>
<td>Min 3.0</td>
<td>Typ 6</td>
</tr>
<tr>
<td>Maximum operating frequency</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Min 40</td>
<td>Typ 55 MHz</td>
</tr>
</tbody>
</table>

NOTES

1. Response time measured from 0V point of \( +100mV \) p-p 10MHz square wave to the \( 1.5V \) point of the output
2. Response time measured from \( 1.5V \) point of input to \( 1.5V \) point of the output
TYPICAL PERFORMANCE CHARACTERISTICS

RESPONSE TIME FOR VARIOUS INPUT OVERDRIVES

PROPAGATION DELAY FOR VARIOUS INPUT VOLTAGES

INPUT BIAS CURRENT vs AMBIENT TEMPERATURE

INPUT OFFSET CURRENT vs AMBIENT TEMPERATURE

OUTPUT VOLTAGE vs AMBIENT TEMPERATURE
**LINEAR LSI PRODUCTS**

**HIGH SPEED DUAL DIFFERENTIAL COMPARATOR/SENSE AMP**  
**SE/NE522**

**FEATURES**
- 15ns maximum guaranteed propagation delay
- 20µA maximum input bias current
- TTL compatible strobes and outputs
- Open collector output for wire-OR'd applications
- Large common mode input voltage range
- Operates from standard supply voltages

**APPLICATIONS**
- MOS memory sense amp
- A-to-D conversion
- High speed line receiver

**ABSOLUTE MAXIMUM RATINGS**

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>RATING</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>V+</td>
<td>+7</td>
<td>V</td>
</tr>
<tr>
<td>V-</td>
<td>-7</td>
<td>V</td>
</tr>
<tr>
<td>VIDR</td>
<td>±6</td>
<td>V</td>
</tr>
<tr>
<td>VIN</td>
<td>±5</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>±5.25</td>
<td>mW</td>
</tr>
<tr>
<td>PD</td>
<td>600</td>
<td>mW</td>
</tr>
<tr>
<td>TA</td>
<td>0 to 70°C</td>
<td></td>
</tr>
<tr>
<td>Tstg</td>
<td>-55 to +125°C</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-85 to +150°C</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+300</td>
<td>°C</td>
</tr>
</tbody>
</table>

**PIN CONFIGURATION**

**BLOCK DIAGRAM**

**EQUIVALENT SCHEMATIC**

---

4-120
### DC Electrical Characteristics

±5V ±10%, $T_A = -55$ to 125°C unless otherwise specified

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>SE LIMITS</th>
<th>UNIT</th>
</tr>
</thead>
</table>
| $V_{OS}$  | Input offset voltage  
At 25°C  
Over temperature range | $V_+ = +4.5V$, $V_- = -4.5V$ | 6  | SE Limits | mV  |
| $I_{IBIAS}$ | Input bias current  
At 25°C  
Over temperature range | $V_+ = +5.5V$, $V_- = -5.5V$ | 7.5  |
| $I_{OS}$  | Input offset current  
At 25°C  
Over temperature range | $V_+ = +5.5V$, $V_- = -5.5V$ | 1.0  |
| $V_{CM}$  | Common mode voltage range  
| $V_+ = +4.5V$, $V_- = -4.5V$ | ±3  |
| $V_{IL}$  | Low level input  
Voltage at 25°C  
Over temperature | | 0.8  |
| $V_{IH}$  | High level temperature | 2.0  |
| $I_{IH}$  | Input current  
High  
| $V_+ = +5.5V$, $V_- = -5.5V$  
$V_{IH} = 2.7V$  
1G or 2G strobe  
Common strobe S | 50  |
| $I_{IL}$  | Low  
Voltage at 25°C  
Over temperature | $V_{IL} = 0.5V$  
1G 2G strobe  
Common strobe S | -2  |
| $V_{OL}$  | Output voltage  
Low  
| $V_+ = +4.5V$, $V_- = -4.5V$  
$I_{OL} = 20mA$, $T_A = 25°C$  
$I_{OL} = 10mA$ | .5  |
| $I_{OH}$  | Output current  
High  
| $V_{CC+} = +4.5$, $V_{CC-} = -4.5V$, $V_{OH} = 5.5V$ | 250  |
| $V_{+}$  | Supply voltage  
Positive  
Negative | 4.5  |
| $V_{-}$  | 4.5  |
| $I_{CC+}$  | Supply current  
Positive  
Negative | $V_+ = 5.5V$, $V_- = -5.5V$ | 27  |
| $I_{CC-}$  | 27  |
### DC ELECTRICAL CHARACTERISTICS

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>NE LIMITS</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>( V_{OS} )</td>
<td>Input offset voltage</td>
<td>( V^+ = +4.75V, V^- = -4.75V )</td>
<td>Min</td>
</tr>
<tr>
<td></td>
<td>At 25°C Over temperature range</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>( I_{BIAS} )</td>
<td>Input bias current</td>
<td>( V^+ = +5.25V, V^- = -5.25V )</td>
<td></td>
</tr>
<tr>
<td></td>
<td>At 25°C Over temperature range</td>
<td></td>
<td></td>
</tr>
<tr>
<td>( I_{OS} )</td>
<td>Input offset current</td>
<td>( V^+ = +5.25V, V^- = -5.25V )</td>
<td></td>
</tr>
<tr>
<td></td>
<td>At 25°C Over temperature range</td>
<td></td>
<td></td>
</tr>
<tr>
<td>( V_{CM} )</td>
<td>Common mode voltage range</td>
<td>( V^+ = +4.75V, V^- = -4.75V )</td>
<td></td>
</tr>
<tr>
<td>( I_{IH} )</td>
<td>Input current High</td>
<td>( V^+ = +5.25V, V^- = -5.25V )</td>
<td></td>
</tr>
<tr>
<td></td>
<td>( V_{IH} = 2.7V )</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1G or 2G strobe</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Common strobe S</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>( I_{IL} )</td>
<td>Low</td>
<td>( V_{IL} = 0.5V )</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1G 2G strobe</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Common strobe S</td>
<td></td>
<td></td>
</tr>
<tr>
<td>( V_{OL} )</td>
<td>Output voltage Low</td>
<td>( V^+ = +5.25V, V^- = -5.25V, V_{I(S)} = 2.0V )</td>
<td></td>
</tr>
<tr>
<td></td>
<td>( I_{LOAD} = 20mA )</td>
<td></td>
<td></td>
</tr>
<tr>
<td>( I_{OH} )</td>
<td>Output current High</td>
<td>( V_{CC^+} = +4.75, V_{CC^-} = -4.75V, V_{OH} = 5.25V )</td>
<td></td>
</tr>
<tr>
<td>( V^+ )</td>
<td>Supply voltage Positive</td>
<td></td>
<td>4.75</td>
</tr>
<tr>
<td>( V^- )</td>
<td>Negative</td>
<td></td>
<td>-4.75</td>
</tr>
<tr>
<td>( I_{CC^+} )</td>
<td>Supply current Positive</td>
<td></td>
<td>27</td>
</tr>
<tr>
<td>( I_{CC^-} )</td>
<td>Negative</td>
<td></td>
<td>-15</td>
</tr>
</tbody>
</table>

### AC ELECTRICAL CHARACTERISTICS \( TA = 25^\circ C, R_L = 280\Omega, C_L = 15pF \)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>FROM INPUT</th>
<th>TO OUTPUT</th>
<th>LIMITS</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Min</td>
<td>Typ</td>
</tr>
<tr>
<td>Input resistance</td>
<td></td>
<td></td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>Input capacitance</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Large Signal Switching Speed</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Propagation delay</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>( t_{PLH(D)} )</td>
<td>Low to high</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>( t_{PHL(D)} )</td>
<td>High to low</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>( t_{PLH(S)} )</td>
<td>Low to high</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>( t_{PHL(S)} )</td>
<td>High to low</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum operating frequency</td>
<td></td>
<td></td>
<td>25</td>
<td>35</td>
</tr>
</tbody>
</table>

**NOTES**

1. Response time measured from 0V point of 100mV p-p 10MHz square wave to the 1.5V point of the output.
2. Response time measured from 1.5V point of input to 1.5V point of the output.
TYPICAL PERFORMANCE CHARACTERISTICS

**RESPONSE TIME FOR VARIOUS INPUT OVERDRIVES**

**RESPONSE TIME vs TEMPERATURE**

**PROPAGATION DELAY FOR VARIOUS INPUT VOLTAGES**

**INPUT BIAS CURRENT vs AMBIENT TEMPERATURE**

**INPUT OFFSET CURRENT vs AMBIENT TEMPERATURE**
LINEAR LSI PRODUCTS

VOLTAGE COMPARATOR

SE/NE527

DESCRIPTION

The SE/NE527 is a high speed analog voltage comparator which, in the first time mates state-of-the-art Schottky diode technology with the conventional linear process. This allows simultaneous fabrication of high speed TTL gates with a precision linear amplifier on a single monolithic chip. The SE/NE527 is similar in design to the Signetics SE/NE529 voltage comparator except that it incorporates a "Emitter Follower" input stage for extremely low input currents. This opens the door to a whole new range of applications for analog voltage comparators.

FEATURES

- 15ns propagation delay
- Complementary output gates
- TTL or ECL compatible outputs
- Wide common mode and differential voltage range
- Mil std 883A,B,C available
- Typical Gain of 5000

APPLICATIONS

- A/D conversion
- ECL to TTL interface
- TTL to ECL interface
- Memory sensing
- Optical data coupling

BLOCK DIAGRAM

EQUIVALENT SCHEMATIC

PIN CONFIGURATIONS

D,F,N PACKAGE

H PACKAGE *

ORDER NUMBERS

NE527D,N,F SE527F

SSE527H

*Metal cans (H) not recommended for new designs

4-124
## ABSOLUTE MAXIMUM RATINGS

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>RATING</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive supply voltage (V1+)</td>
<td>+15 V</td>
<td></td>
</tr>
<tr>
<td>Negative supply voltage (V1-)</td>
<td>-15 V</td>
<td></td>
</tr>
<tr>
<td>Gate supply voltage (V2+)</td>
<td>+7 V</td>
<td></td>
</tr>
<tr>
<td>Output voltage</td>
<td>+7 V</td>
<td></td>
</tr>
<tr>
<td>Differential input voltage</td>
<td>±5 V</td>
<td></td>
</tr>
<tr>
<td>Input common mode voltage</td>
<td>±6 V</td>
<td></td>
</tr>
<tr>
<td>Power dissipation</td>
<td>600 mW</td>
<td></td>
</tr>
<tr>
<td>Operating temperature range</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SE527</td>
<td>0 to +70 °C</td>
<td></td>
</tr>
<tr>
<td>NE527</td>
<td>-55 to +125 °C</td>
<td></td>
</tr>
<tr>
<td>Storage temperature range</td>
<td>-65 to +150 °C</td>
<td></td>
</tr>
<tr>
<td>Lead temperature (soldering, 60sec)</td>
<td>+300 °C</td>
<td></td>
</tr>
</tbody>
</table>

## DC ELECTRICAL CHARACTERISTICS

### INPUT CHARACTERISTICS

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>SE527</th>
<th>NE527</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input offset voltage @ 25°C</td>
<td>V_{IN} = 0 V</td>
<td>0.5</td>
<td>0.75</td>
<td>μA</td>
</tr>
<tr>
<td>Over temperature range</td>
<td></td>
<td>1</td>
<td>1</td>
<td>V</td>
</tr>
<tr>
<td>Input bias current @ 25°C</td>
<td></td>
<td>2</td>
<td>2</td>
<td>μA</td>
</tr>
<tr>
<td>Over temperature range</td>
<td></td>
<td>4</td>
<td>4</td>
<td>μA</td>
</tr>
<tr>
<td>Input offset current @ 25°C</td>
<td></td>
<td>V_{IN} = 0 V</td>
<td>2.76</td>
<td>μA</td>
</tr>
<tr>
<td>Over temperature range</td>
<td></td>
<td>0.8</td>
<td>0.8</td>
<td>V</td>
</tr>
<tr>
<td>Common mode voltage range</td>
<td></td>
<td>±5</td>
<td>±5</td>
<td>V</td>
</tr>
</tbody>
</table>

### GATE CHARACTERISTICS

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>SE527</th>
<th>NE527</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output voltage</td>
<td>V_{2} = 4.75V, I_{SOURCE} = -1mA</td>
<td>2.5</td>
<td>2.7</td>
<td>V</td>
</tr>
<tr>
<td>&quot;1&quot; State</td>
<td></td>
<td>3.3</td>
<td>3.3</td>
<td>V</td>
</tr>
<tr>
<td>&quot;0&quot; State</td>
<td>V_{2} = 4.75V, I_{SINK} = 10mA</td>
<td>0.5</td>
<td>0.8</td>
<td>V</td>
</tr>
<tr>
<td>Strobe inputs</td>
<td>V_{STROBE} = 0.5V</td>
<td>-2</td>
<td>-2</td>
<td>mA</td>
</tr>
<tr>
<td>Over temperature range</td>
<td></td>
<td>50</td>
<td>100</td>
<td>μA</td>
</tr>
<tr>
<td>&quot;0&quot; Input current¹</td>
<td>V_{2} = 5.25V, V_{STROBE} = 2.7V</td>
<td>200</td>
<td>200</td>
<td>μA</td>
</tr>
<tr>
<td>&quot;1&quot; Input current @ 25°C¹</td>
<td></td>
<td>8.2</td>
<td>8.2</td>
<td>V</td>
</tr>
<tr>
<td>Over temperature range</td>
<td></td>
<td>2.0</td>
<td>2.0</td>
<td>V</td>
</tr>
<tr>
<td>Short circuit</td>
<td></td>
<td>-18</td>
<td>-18</td>
<td>mA</td>
</tr>
<tr>
<td>Output current</td>
<td>V_{2} = 5.25V, V_{OUT} = 0V</td>
<td>-70</td>
<td>-70</td>
<td>mA</td>
</tr>
</tbody>
</table>

### POWER SUPPLY REQUIREMENTS

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>SE527</th>
<th>NE527</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltage</td>
<td>V_{1} = 10V, V_{1} = -10V</td>
<td>5</td>
<td>10</td>
<td>V</td>
</tr>
<tr>
<td>V_{1}+</td>
<td></td>
<td>10</td>
<td>10</td>
<td>V</td>
</tr>
<tr>
<td>V_{1}−</td>
<td></td>
<td>5</td>
<td>5</td>
<td>mA</td>
</tr>
<tr>
<td>Supply current</td>
<td>V_{2} = 5.25V</td>
<td>5</td>
<td>5</td>
<td>mA</td>
</tr>
<tr>
<td>Over temp.</td>
<td></td>
<td>10</td>
<td>10</td>
<td>mA</td>
</tr>
<tr>
<td>Over temp.</td>
<td></td>
<td>20</td>
<td>20</td>
<td>mA</td>
</tr>
</tbody>
</table>

### NOTES

1. See logic function table.
LINEAR LSI PRODUCTS

VOLTAGE COMPARATOR

AC ELECTRICAL CHARACTERISTICS  \( T_A = 25^\circ C \) unless otherwise specified.

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>LIMITS</th>
<th>UNIT</th>
</tr>
</thead>
</table>
| Transient response propagation delay time\( \tau_{PLH} \), \( \tau_{PHL} \) | \( V_{IN} = \pm 100 \text{mV} \) step | \begin{tabular}{c|c|c}
Min & Typ & Max \\
\hline
16 & 26 & ns \\
14 & 24 & ns \\
\end{tabular} |
| Delay between output A and B           |                   | 2      | ns   |
| Strobe delay time \( t_{ON} \)         |                   | 6      | ns   |
| Turn-on time \( t_{ON} \)              |                   | 6      | ns   |

TYPICAL PERFORMANCE CHARACTERISTICS

INPUT CURRENTS vs TEMPERATURE

SUPPLY CURRENT vs TEMPERATURE

POWER DISSIPATION vs SUPPLY VOLTAGE

SUPPLY CURRENT vs SUPPLY VOLTAGE

OUTPUT PROPAGATION DELAYS

RESPONSE TIME FOR VARIOUS INPUT OVERDRIVES
One of the main features of the device is that supply voltages (V1+, V1-) need not be balanced, as indicated in the following diagrams. For proper operation, however, negative supply (V1-) should always be at least six volts more negative than the ground terminal (pin 6). Input Common Mode range should be limited to values of two volts less than the supply voltages (V1+ and V1-) up to a maximum of ±6 volts as supply voltages are increased.

It is also important to note that Output A is in phase with Input A and Output B is in phase with Input B.

**NE527 LOGIC FUNCTION**

<table>
<thead>
<tr>
<th>( V_{IN} ) (A+, B-)</th>
<th>STR 'A'</th>
<th>STR 'B'</th>
<th>OUT 'A'</th>
<th>OUT 'B'</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>( &gt; V_{off} )</td>
<td>X</td>
<td>h/l</td>
<td>H</td>
<td>l/h</td>
<td>Read ( I_{L_{LB}}, I_{H_A} )</td>
</tr>
<tr>
<td>( &lt; - V_{off} )</td>
<td>h/l</td>
<td>X</td>
<td>I/h</td>
<td>H</td>
<td>Read ( I_{L_{LA}}, I_{H_B} )</td>
</tr>
</tbody>
</table>

**TYPICAL APPLICATIONS**

**PHOTODIODE DETECTOR**

**ECL TO TTL INTERFACE**

**MOS MEMORY SENSE AMP**

**TTL TO ECL INTERFACE**
DESCRIPTION
The SE/NE529 is a high speed analog voltage comparator which, for the first time mates state-of-the-art Schottky diode technology with the conventional linear process. This allows simultaneous fabrication of high speed T2L gates with a precision linear amplifier on a single monolithic chip.

FEATURES
- 10ns propagation delay
- Complementary output gates
- TTL or ECL compatible outputs
- Wide common mode and differential voltage range
- Typical Gain 5000

APPLICATIONS
- A/D conversion
- ECL to TTL interface
- TTL to ECL interface
- Memory sensing
- Optical data coupling
- Mil std 883A,B,C available

ABSOLUTE MAXIMUM RATINGS

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>RATING</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive supply voltage (V1+)</td>
<td>+15 V</td>
<td></td>
</tr>
<tr>
<td>Negative supply voltage (V1-)</td>
<td>-15 V</td>
<td></td>
</tr>
<tr>
<td>Gate supply voltage (V2+)</td>
<td>+7 V</td>
<td></td>
</tr>
<tr>
<td>Output voltage</td>
<td>+7 V</td>
<td></td>
</tr>
<tr>
<td>Differential input voltage</td>
<td>±5 V</td>
<td></td>
</tr>
<tr>
<td>Input common mode voltage</td>
<td>±6 V</td>
<td></td>
</tr>
<tr>
<td>Power dissipation</td>
<td>600 mW</td>
<td></td>
</tr>
<tr>
<td>Operating temperature range NE529</td>
<td>0 to +70 °C</td>
<td></td>
</tr>
<tr>
<td>Storage temperature range SE529</td>
<td>-55 to +125 °C</td>
<td></td>
</tr>
<tr>
<td>Storage temperature range SE529H</td>
<td>-65 to +150 °C</td>
<td></td>
</tr>
<tr>
<td>Lead temperature</td>
<td>+300 °C</td>
<td></td>
</tr>
</tbody>
</table>

*Metal cans (H) not recommended for new designs

EQUIVALENT SCHEMATIC
### DC ELECTRICAL CHARACTERISTICS

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>SE529</th>
<th>NE529</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>INPUT CHARACTERISTICS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input offset voltage @25°C</td>
<td></td>
<td>4</td>
<td>6</td>
<td>mV</td>
</tr>
<tr>
<td>Over temperature range</td>
<td></td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input bias current @25°C</td>
<td></td>
<td>5</td>
<td>12</td>
<td>µA</td>
</tr>
<tr>
<td>Over temperature range</td>
<td></td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input offset current @25°C</td>
<td></td>
<td>2</td>
<td>3</td>
<td>µA</td>
</tr>
<tr>
<td>Over temperature range</td>
<td></td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Common mode voltage range</td>
<td></td>
<td>9</td>
<td>18</td>
<td>V</td>
</tr>
<tr>
<td>Over temperature range</td>
<td></td>
<td>15</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>GATE CHARACTERISTICS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output voltage</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>&quot;1&quot; state</td>
<td>V&lt;sub&gt;2+&lt;/sub&gt; = 4.75V, I&lt;sub&gt;source&lt;/sub&gt; = -1mA</td>
<td>2.5</td>
<td>3.3</td>
<td>V</td>
</tr>
<tr>
<td>&quot;0&quot; state</td>
<td>V&lt;sub&gt;2+&lt;/sub&gt; = 4.75V, I&lt;sub&gt;sink&lt;/sub&gt; = 10mA</td>
<td>2.5</td>
<td>3.3</td>
<td>V</td>
</tr>
<tr>
<td>Strobe inputs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>&quot;0&quot; Input current&quot;</td>
<td>V&lt;sub&gt;2+&lt;/sub&gt; = 5.25V, V&lt;sub&gt;strobe&lt;/sub&gt; = 0.5V</td>
<td>0.5</td>
<td></td>
<td>µA</td>
</tr>
<tr>
<td>&quot;1&quot; Input current @ 25°C</td>
<td>V&lt;sub&gt;2+&lt;/sub&gt; = 5.25V, V&lt;sub&gt;strobe&lt;/sub&gt; = 2.7V</td>
<td>0.5</td>
<td></td>
<td>µA</td>
</tr>
<tr>
<td>Over temperature range</td>
<td>V&lt;sub&gt;2+&lt;/sub&gt; = 5.25V, V&lt;sub&gt;strobe&lt;/sub&gt; = 2.7V</td>
<td>0.5</td>
<td></td>
<td>µA</td>
</tr>
<tr>
<td>&quot;0&quot; Input voltage</td>
<td>V&lt;sub&gt;2+&lt;/sub&gt; = 4.75V</td>
<td>2.0</td>
<td>2.0</td>
<td>V</td>
</tr>
<tr>
<td>&quot;1&quot; Input voltage</td>
<td>V&lt;sub&gt;2+&lt;/sub&gt; = 4.75V</td>
<td>2.0</td>
<td>2.0</td>
<td>V</td>
</tr>
<tr>
<td>Short circuit</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output current</td>
<td>V&lt;sub&gt;2+&lt;/sub&gt; = 5.25V, V&lt;sub&gt;OUT&lt;/sub&gt; = 0V</td>
<td>-18</td>
<td>-70</td>
<td>mA</td>
</tr>
<tr>
<td>Over temperature range</td>
<td></td>
<td>-18</td>
<td>-70</td>
<td></td>
</tr>
<tr>
<td>POWER SUPPLY REQUIREMENTS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supply voltage</td>
<td></td>
<td>5</td>
<td>10</td>
<td>V</td>
</tr>
<tr>
<td>V&lt;sub&gt;1+&lt;/sub&gt;</td>
<td>V&lt;sub&gt;1-&lt;/sub&gt;</td>
<td>5</td>
<td>10</td>
<td>V</td>
</tr>
<tr>
<td>V&lt;sub&gt;1-&lt;/sub&gt;</td>
<td></td>
<td>-10</td>
<td>-10</td>
<td>V</td>
</tr>
<tr>
<td>V&lt;sub&gt;2+&lt;/sub&gt;</td>
<td></td>
<td>4.5</td>
<td>5.5</td>
<td>V</td>
</tr>
<tr>
<td>Supply current</td>
<td>V&lt;sub&gt;1+&lt;/sub&gt; = 10V, V&lt;sub&gt;1-&lt;/sub&gt; = -10V</td>
<td>5</td>
<td>5</td>
<td>mA</td>
</tr>
<tr>
<td>V&lt;sub&gt;2+&lt;/sub&gt;</td>
<td></td>
<td>5</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>I&lt;sub&gt;1+&lt;/sub&gt;</td>
<td>Over temp.</td>
<td>10</td>
<td>10</td>
<td>mA</td>
</tr>
<tr>
<td>I&lt;sub&gt;1-&lt;/sub&gt;</td>
<td>Over temp.</td>
<td>10</td>
<td>10</td>
<td>mA</td>
</tr>
<tr>
<td>I&lt;sub&gt;2+&lt;/sub&gt;</td>
<td>Over temp.</td>
<td>20</td>
<td>20</td>
<td>mA</td>
</tr>
<tr>
<td>NOTES</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. See logic function table.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### AC ELECTRICAL CHARACTERISTICS

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>LIMITS</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transient response</td>
<td>V&lt;sub&gt;IN&lt;/sub&gt; = ±100mV step</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Propagation delay time</td>
<td></td>
<td>12</td>
<td>22 ns</td>
</tr>
<tr>
<td>t&lt;sub&gt;PHL&lt;/sub&gt;</td>
<td></td>
<td>10</td>
<td>20 ns</td>
</tr>
<tr>
<td>t&lt;sub&gt;PLH&lt;/sub&gt;</td>
<td></td>
<td>2</td>
<td>5 ns</td>
</tr>
<tr>
<td>Delay between output A and B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Strobe delay time</td>
<td></td>
<td>6</td>
<td>ns</td>
</tr>
<tr>
<td>f&lt;sub&gt;ON&lt;/sub&gt; turn-on time</td>
<td></td>
<td>6</td>
<td>ns</td>
</tr>
<tr>
<td>f&lt;sub&gt;OFF&lt;/sub&gt; turn-off time</td>
<td></td>
<td>6</td>
<td>ns</td>
</tr>
</tbody>
</table>

**NOTES**

1. See logic function table.
TYPICAL PERFORMANCE CHARACTERISTICS

INPUT CURRENTS vs TEMPERATURE

SUPPLY CURRENT vs TEMPERATURE

POWER DISSIPATION vs SUPPLY VOLTAGE

SUPPLY CURRENT vs SUPPLY VOLTAGE

OUTPUT PROPAGATION DELAYS

RESPONSE TIME FOR VARIOUS INPUT OVERDRIVES

RESPONSE TIME TEST CIRCUIT

CR1 - CR4 = IN514
R1 SELECTED FOR 16:1 Divider
R2,3 selected for 100mV at Pin 4

INPUT

INPUT PROBE

R1 = 1MΩ
Pβ = 60ns
输出

TI = 2ns
AMPLITUDE = 3.00V

50Ω

50Ω

50Ω
APPLICATIONS

One of the main features of the device is that supply voltages \( (V_1^+, V_1^-) \) need not be balanced, as indicated in the following diagrams. For proper operation, however, negative supply \( (V_1^-) \) should always be at least six volts more negative than the ground terminal (pin 6). Input Common Mode range should be limited to values of two volts less than the supply voltages \( (V_1^+ \text{ and } V_1^-) \) up to a maximum of \( \pm 6 \text{ volts} \) as supply voltages are increased.

It is also important to note that Output A is in phase with Input A and Output B is in phase with Input B.

TYPICAL APPLICATIONS

PHOTODIODE DETECTOR

\[ \lambda \]

\[ +5V \]

\[ R_2 \]

\[ R_1 \]

\[ -6V \]

ECL TO TTL INTERFACE

\[ \text{ECL INPUT} \]

\[ +5V \]

\[ R_2 \]

\[ R_1 \]

\[ -10V \]

MOS MEMORY SENSE AMP

\[ V_{\text{REF}} \]

\[ +5V \]

\[ 1103 \text{ MOS RAM} \]

\[ 1000 \]

\[ -6V \]

TTL TO ECL INTERFACE

\[ \text{TTL INPUT} \]

\[ +5V \]

\[ 3R_1 \]

\[ 2K \]

\[ -10V \]

\[ -5.2V \]
DISPLAY DRIVER—SYMBOLS AND DEFINITIONS

**Absolute Maximum Rating**
Operating safe zones. Exceeding these limits could cause permanent damage to the device and are not meant to imply that devices can operate at these limits.

**BCD**
Binary Coded Decimal.

**BLKIO**
Blanking Input or Ripple Blanking Output.

**CE**
Chip Enable.

**CLR**
Clear. Clear command will preset all internal circuits to a predetermined state.

**Duty Cycle**
Ratio of time on to time off. Generally expressed in percentage.

**FMAX**
The maximum clock frequency: the maximum input frequency at a clock input for the predictable performance. Above this frequency the device may cease to function.

**I<sub>B</sub>**
Input Bias Current. Current into an analog circuit input, specified at a particular voltage level.

**I<sub>CC</sub>**
Supply Current. The current flowing into the +V<sub>CC</sub> (-V<sub>EE</sub>) supply terminal of the circuit with specified input conditions and open outputs. Input conditions are chosen to guarantee worst case operation unless specified.

**I<sub>CEX</sub>**
Output Leakage Current. The current flowing out of or into a disabled (off) output with a specified High output voltage applied.

**I<sub>H</sub>**
Input High Current. The current flowing into or out of an input when a specified High level voltage is applied to that input.

**I<sub>L</sub>**
Input Low Current. The current flowing out of an input when a specified Low level voltage is applied to that input.

**I<sub>OH</sub>**
Output Current Source the device can supply while maintaining a specified voltage output level.

**I<sub>OL</sub>**
Output Low Current. The current flowing into an output when it is in the Low State.

**I<sub>OS**
Output Short-Circuit Current. The current flowing out of an output which is in the High state when that output is shorted to ground.

**I<sub>S**
Source Current. Current flowing into the V<sub>CC</sub> supply terminal of the device with specified operating conditions.

**I<sub>SEG**
Segment Current. The amount of current supplied to each segment as a display. Current ratios are generally compared to segment ‘b’.

**LED**
Light Emitting Diode.

**Package Type Designation**
See full package designations in Appendix.

**Power Dissipation**
The power that the device can safely handle at 15°C. The dissipation must be derated as indicated for the individual package type.

**RBI**
Ripple Blanking Input.

**Segment Identification**

![Segment Identification Diagram]

**T<sub>A**
Ambient temperature range. Allowable range of the surrounding environment of the operating device.

**T<sub>H**
Hold Time. The interval immediately following the active transition of the timing pulse (usually the clock pulse) or following the transition of the control input to its latching level, during which interval the data to be recognized must be maintained at the input to ensure its continued recognition. A negative hold time indicates that the current logic level may be released prior to the active transition of the timing pulse and still be recognized.

**T<sub>J**
Junction Temperature. The maximum temperature of the device. 150°C is standard for silicon devices.

**t<sub>PHL**
Propagation Delay Times. The time between the specified reference points on the input and output waveforms with the output changing from the defined HIGH level to the defined LOW level.

**t<sub>PLH**
Propagation Delay Time. The time between the specified reference points on the input and output waveforms with the output changing from the defined LOW level to the defined HIGH level.

**t<sub>REC**
Recovery Time. The time between the reference point on the trailing edge of an asynchronous input control pulse and the reference point on the activating edge of a synchronous (clock) pulse input such that the device will respond to the synchronous input.

**t<sub>S**
Setup Time. The interval immediately preceding the active transition of the timing pulse (usually the clock pulse) or preceding the transition of the control input to its latching level, during which interval the data to be recognized must be maintained at the input to ensure its recognition. A negative setup time indicates that the correct logic level may be initiated sometime after the active transition of the timing pulse and still be recognized.
DISPLAY DRIVER DEFINITIONS (Cont'd)

Truth Tables
0 is logic level low
1 is logic level high
X — don't care condition — has no effect under circuit conditions listed.

Typical Value
The typical value of a particular parameter at 25°C determined by characterization of the device or sampling. Usually indicates that the particular device is not 100% tested for the parameter because it does not vary or can be determined by design and other tested variables. Occasionally typical values are given rather than min-max values because 100% testing would raise the cost of the product to a prohibitive level. If a typical value must be guaranteed to ensure specific operation, custom testing can often be provided at an additional cost to the user.

$V_{BR}$
Output Breakdown Voltage. Maximum voltage applied to a disabled (off) output to ensure a leakage current less than the specified value.

$V_{CC}(-V_{EE})$
Supply Voltage. The range of power supply voltage over which the device will operate safely.

$V_F$
Forward voltage drop of a device at a specified current level.

$V_{IH}$
Input High Voltage. The range of input voltages recognized by the device as a logic high.

$V_{IL}$
Input Low Voltage. The range of input voltages recognized by the device as a logic low.

$V_{IN}$
The range of voltage on any input which the device can safely handle or a specified input voltage to the device.

$V_{OH}$
Output High Voltage. The minimum guaranteed High voltage at an output terminal for the specified output current $I_{OH}$ and at the minimum $V_{CC}$ value.

$V_{OL}$
Output Low Voltage. The maximum guaranteed low voltage at an output terminal sinking the specified load current $I_{OL}$.

$V_{OUT}$
The range of voltage on any output which the device can safely handle or a specified output voltage to the device.

$V_S$
Source Voltage. A separate $V_{CC}$ line depending on part type.

Negate Bar — when it appears over a function indicates that the "true" or valid condition of that function is a logic low level. i.e. LE — would require a logic high level to cause a latch enable
CE — would require a logic low level to cause a latch enable.
DESCRIPTION
The MC1488 is a quad line driver which converts standard DTL/TTL input logic levels through one stage of inversion to output levels which meet EIA Standard No. RS-232C and CCITT Recommendation V.24.

FEATURES
- Current limited output: ±10mA Typ
- Power-off source impedance: 300Ω Min
- Simple slew rate control with external capacitor
- Flexible operating supply range
- Inputs are DTL/TTL compatible

APPLICATIONS
- Computer port driver
- Digital transmission over long lines
- Slew rate control
- TTL/DTL to MOS translation

ABSOLUTE MAXIMUM RATINGS

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>RATING</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltage V+</td>
<td>+15</td>
<td>V</td>
</tr>
<tr>
<td>V-</td>
<td>-15</td>
<td>V</td>
</tr>
<tr>
<td>Input voltage (V_IN)</td>
<td>-15 ≤ V_IN ≤ 7.0</td>
<td>V</td>
</tr>
<tr>
<td>Output voltage</td>
<td>±15</td>
<td>V</td>
</tr>
<tr>
<td>Power dissipation:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F package</td>
<td>1000</td>
<td>mW</td>
</tr>
<tr>
<td>N package</td>
<td>800</td>
<td>mW</td>
</tr>
<tr>
<td>Operating temperature range</td>
<td>0 to +75</td>
<td>°C</td>
</tr>
<tr>
<td>Storage temperature range</td>
<td>-65 to +150</td>
<td>°C</td>
</tr>
<tr>
<td>Lead temperature (soldering 10sec)</td>
<td>300</td>
<td>°C</td>
</tr>
</tbody>
</table>

CIRCUIT SCHEMATIC
DC ELECTRICAL CHARACTERISTICS

V+ = +9.0V ± 1%, V- = -9.0V ± 1%, TA = 0°C to +75°C

unless otherwise specified.

All typicals are for V+ = 9.0V, V- = -9.0V, and TA = 25°C.

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>LIMITS</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Logic &quot;0&quot; input current</td>
<td>VIN = 0V</td>
<td>Min</td>
<td>Typ</td>
</tr>
<tr>
<td>Logic &quot;1&quot; input current</td>
<td>VIN = +5.0V</td>
<td>-1.0</td>
<td>-1.6</td>
</tr>
<tr>
<td>High level output voltage</td>
<td>RL = 3.0kΩ, VIN = 0.8V</td>
<td>V+ = 9.0V</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>V- = -9.0V</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>V+ = 13.2V</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>V- = -13.2V</td>
<td></td>
</tr>
<tr>
<td>Low level output voltage</td>
<td>RL = 3.0kΩ, VIN = 1.9V</td>
<td>V+ = 9.0V</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>V- = -9.0V</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>V+ = 13.2V</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>V- = -13.2V</td>
<td></td>
</tr>
<tr>
<td>High level output</td>
<td>VOUT = 0V, VIN = 0.8V</td>
<td>Min</td>
<td>Typ</td>
</tr>
<tr>
<td>Short-circuit current</td>
<td></td>
<td>-6.0</td>
<td>-10.0</td>
</tr>
<tr>
<td>Low level output</td>
<td>VOUT = 0V, VIN = 1.9V</td>
<td>Min</td>
<td>Typ</td>
</tr>
<tr>
<td>Short-circuit current</td>
<td></td>
<td>5.0</td>
<td>10.0</td>
</tr>
<tr>
<td>Output resistance</td>
<td>V+ = V- = 0V, VOUT = ±2V</td>
<td>Min</td>
<td>Typ</td>
</tr>
<tr>
<td>Positive supply current</td>
<td>VIN = 1.9V</td>
<td>V+ = 9.0V, V- = -9.0V</td>
<td></td>
</tr>
<tr>
<td>(output open)</td>
<td></td>
<td>V+ = 12V, V- = -12V</td>
<td>15.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V+ = 15V, V- = -15V</td>
<td>19.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>25.0</td>
</tr>
<tr>
<td>Negative supply current</td>
<td>VIN = 0.8V</td>
<td>V+ = 9.0V, V- = -9.0V</td>
<td></td>
</tr>
<tr>
<td>(output open)</td>
<td></td>
<td>V+ = 12V, V- = -12V</td>
<td>4.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V+ = 15V, V- = -15V</td>
<td>5.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8.0</td>
</tr>
<tr>
<td>Power dissipation</td>
<td>VIN = 1.9V</td>
<td>V+ = 9.0V, V- = -9.0V</td>
<td></td>
</tr>
<tr>
<td>Propagation delay to &quot;1&quot; (tpd1)</td>
<td></td>
<td>V+ = 12V, V- = -12V</td>
<td>13.0</td>
</tr>
<tr>
<td>Propagation delay to &quot;0&quot; (tpd0)</td>
<td></td>
<td>V+ = 15V, V- = -15V</td>
<td>18.0</td>
</tr>
<tr>
<td>Rise time (tr)</td>
<td></td>
<td></td>
<td>25.0</td>
</tr>
<tr>
<td>Fall time (tf)</td>
<td></td>
<td></td>
<td>-1</td>
</tr>
</tbody>
</table>

NOTE

*Voltage values shown are with respect to network ground terminal. Positive current is defined as current into the referenced pin.
TYPICAL PERFORMANCE CHARACTERISTICS

OUTPUT VOLTAGE AND CURRENT-LIMITING CHARACTERISTICS

<table>
<thead>
<tr>
<th>Voltage (V)</th>
<th>Output Current (mA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>V+ = 12V</td>
<td>15</td>
</tr>
<tr>
<td>V- = -12V</td>
<td>12</td>
</tr>
<tr>
<td>V+ = 9V</td>
<td>9</td>
</tr>
<tr>
<td>V- = -9V</td>
<td>6</td>
</tr>
</tbody>
</table>

V_O OUTPUT VOLTAGE (V)

AC LOAD CIRCUIT

V_IN --- 3K --- V_OUT

3.5V

15pF*

NOTE

C includes probe and jig capacitance.

SWITCHING WAVEFORMS

V_IN --- 1.5V --- V_OUT

0V

tpd 0

50%

tpd 1

NOTE

t_0 and t_1 are measured between 10% and 90% of the output waveform.

APPLICATIONS

By connecting a capacitor to each driver output the slew rate can be controlled utilizing the output current limiting characteristics of the MC1488. For a set slew rate the appropriate capacitor value may be calculated using the following relationship

\[ C = \frac{I_{SC}}{\Delta V/\Delta T} \]

where C is the required capacitor, \( I_{SC} \) is the short circuit current value, and \( \Delta V/\Delta T \) is the slew rate.

RS232C specifies that the output slew rate must not exceed 30V per microsecond. Using the worst case output short circuit current of 12mA in the above equation, calculations result in a required capacitor of 400pF connected to each output.

TYPICAL APPLICATIONS

**DTL/TTL-TO-MOS TRANSLATOR**

**DTL/TTL-TO-HTL TRANSLATOR**

**DTL/TTL-TO-RTL TRANSLATOR**
LINEAR LSI PRODUCTS

QUAD LINE RECEIVERS

MC1489/MC1489A

DESCRIPTION

The MC1489/MC1489A are quad line receivers designed to interface data terminal equipment with data communications equipment. They are constructed on a single monolithic silicon chip. These devices satisfy the specifications of EIA standard No. RS232C.

FEATURES

- Four totally separate receivers per package
- Programmable threshold
- Built-in input threshold hysteresis
- “Fail safe” operating mode
- Inputs withstand ±30V

APPLICATIONS

- Computer port inputs
- Modems
- Eliminating noise in digital circuitry
- MOS to TTL/DTL translation

ABSOLUTE MAXIMUM RATINGS

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>RATING</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power supply voltage</td>
<td>10</td>
<td>V</td>
</tr>
<tr>
<td>Input voltage range</td>
<td>±30</td>
<td>V</td>
</tr>
<tr>
<td>Output load current</td>
<td>20</td>
<td>mA</td>
</tr>
<tr>
<td>Power dissipation</td>
<td>1</td>
<td>W</td>
</tr>
<tr>
<td>P package</td>
<td>800</td>
<td>mW</td>
</tr>
<tr>
<td>N package</td>
<td>0 to -75</td>
<td>°C</td>
</tr>
<tr>
<td>Operating temperature range</td>
<td>0 to +75</td>
<td>°C</td>
</tr>
<tr>
<td>Storage temperature range</td>
<td>-65 to +150</td>
<td>°C</td>
</tr>
</tbody>
</table>

VOLTAGE WAVEFORMS

EQUIVALENT SCHEMATIC

[Diagram showing equivalent schematic]

AC TEST CIRCUIT

[Diagram showing AC test circuit]
DC ELECTRICAL CHARACTERISTICS  \( V_{CC} = 5.0V \pm 1%, 0^\circ C \leq T_A \leq +75^\circ C \) unless otherwise specified.\(^1\)\(^2\)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MC1489</th>
<th>MC1489A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input high threshold voltage</td>
<td>( T_A = 25^\circ C, V_{OUT} \leq 0.45V, )</td>
<td>1.0</td>
<td>1.5</td>
</tr>
<tr>
<td></td>
<td>( I_{OUT} = 10mA )</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input low threshold voltage</td>
<td>( T_A = 25^\circ C, V_{OUT} \leq 2.5V, )</td>
<td>0.75</td>
<td>1.25</td>
</tr>
<tr>
<td></td>
<td>( I_{OUT} = -0.5mA )</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>( V_{IN} = +25V )</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>( V_{IN} = -25V )</td>
<td>+3.6</td>
<td>+5.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>+3.6</td>
<td>+5.6</td>
</tr>
<tr>
<td>Input current</td>
<td>( V_{IN} = +3V )</td>
<td>+0.43</td>
<td>+0.53</td>
</tr>
<tr>
<td></td>
<td></td>
<td>+0.43</td>
<td>+0.53</td>
</tr>
<tr>
<td>Output high voltage</td>
<td>( V_{IN} = 0.75V )</td>
<td>2.6</td>
<td>3.8</td>
</tr>
<tr>
<td></td>
<td>( I_{OUT} = -0.5mA )</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output low voltage</td>
<td>( V_{IN} = 3.0V )</td>
<td>0.33</td>
<td>0.45</td>
</tr>
<tr>
<td>Output short circuit current</td>
<td>( V_{IN} = 0.75V )</td>
<td>3.0</td>
<td></td>
</tr>
<tr>
<td>Supply current</td>
<td>( V_{IN} = 5.0V )</td>
<td>20</td>
<td>26</td>
</tr>
<tr>
<td>Power dissipation</td>
<td>( V_{IN} = 5.0V )</td>
<td>100</td>
<td>130</td>
</tr>
</tbody>
</table>

NOTES
1. Voltage values shown are with respect to network ground terminal. Positive current is defined as current into the referenced pin.
2. These specifications apply for response control pin = open.

AC ELECTRICAL CHARACTERISTICS  \( V_{CC} = 5.0V \pm 1%, T_A = 25^\circ C \) unless otherwise specified.\(^1\)\(^2\)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MC1489</th>
<th>MC1489A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input to output “high”</td>
<td>( R_L = 3.9k\Omega ) (AC test circuit)</td>
<td>25</td>
<td>85</td>
</tr>
<tr>
<td>Propagation delay (( \tau_{pd1} ))</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input to output “low”</td>
<td>( R_L = 390\Omega ) (AC test circuit)</td>
<td>20</td>
<td>50</td>
</tr>
<tr>
<td>Propagation delay (( \tau_{pd2} ))</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output rise time</td>
<td>( R_L = 3.9k\Omega ) (AC test circuit)</td>
<td>110</td>
<td>175</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9</td>
<td>20</td>
</tr>
<tr>
<td>Output fall time</td>
<td>( R_L = 390\Omega ) (AC test circuit)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTES
1. Voltage values shown are with respect to network ground terminal. Positive current is defined as current into the referenced pin.
2. These specifications apply for response control pin = open.

TYPICAL APPLICATIONS

RS232C DATA TRANSMISSION

MOS TO TTL/DTL TRANSLATOR

*Optional for noise filtering
**DESCRIPTION**

The NE5090 addressable relay driver is a high current latched driver, similar in function to the 9934 address decoder. The device has 8 open collector Darlington power outputs, each capable of 150 mA load current. The outputs are turned on or off by respectively loading a logic "1" or logic "0" into the device data input. The required output is defined by a 3 bit address. The device must be enabled by a CE input line which also serves the function of further address decoding. A common clear input, CLR, turns all outputs off when a logic "0" is applied. The device is packaged in a 16 pin plastic or CERDIP package.

**BLOCK DIAGRAM**

**FEATURES**

- 8 high current outputs
- Low-loading bus compatible inputs
- Power-on clear ensures safe operation
- Will operate in addressable or demultiplex mode
- Allows random (addressed) data entry
- Easily expandable
- Pin compatible with 9334

**APPLICATIONS**

- Relay driver
- Indicator lamp driver
- Triac trigger
- LED display digit driver
- Stepper motor driver

**ABSOLUTE MAXIMUM RATINGS**

$T_A = 25 \degree C$ unless otherwise specified.

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>RATING</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>$V_{CC}$ Supply voltage</td>
<td>-0.5 to +7 V</td>
<td></td>
</tr>
<tr>
<td>$V_{IN}$ Input voltage</td>
<td>-0.5 to +15 V</td>
<td></td>
</tr>
<tr>
<td>$V_{OUT}$ Output voltage</td>
<td>0 to +30 V</td>
<td></td>
</tr>
<tr>
<td>$I_{GD}$ Ground current</td>
<td>500 mA</td>
<td></td>
</tr>
<tr>
<td>$I_{OUT}$ Output current</td>
<td>200 mA</td>
<td></td>
</tr>
<tr>
<td>Each output</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$P_D$ Power dissipation</td>
<td>1 W</td>
<td></td>
</tr>
<tr>
<td>Ambient temperature range</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$T_A$ NE5090</td>
<td>0 to +70 °C</td>
<td></td>
</tr>
<tr>
<td>$T_J$ Junction</td>
<td>150 °C</td>
<td></td>
</tr>
<tr>
<td>$T_{STG}$ Storage</td>
<td>-65 to +150 °C</td>
<td></td>
</tr>
<tr>
<td>$T_{SOLD}$ Lead soldering temperature (10 sec max)</td>
<td>300 °C</td>
<td></td>
</tr>
</tbody>
</table>

**PIN CONFIGURATION**

**NOTES:***

1. SOL - Released in Large SO package only.
2. SOL and non-standard pinout.
3. SO and non-standard pinouts.
## PIN DESIGNATION

<table>
<thead>
<tr>
<th>PIN NO.</th>
<th>SYMBOL</th>
<th>NAME AND FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-3</td>
<td>A0-A2</td>
<td>A 3-bit binary address on these pins defines which of the 8 output latches is to receive the data.</td>
</tr>
<tr>
<td>4-7, 9-12</td>
<td>Q0-Q7</td>
<td>The 8 device outputs.</td>
</tr>
<tr>
<td>13</td>
<td>D</td>
<td>The data input. When the chip is enabled, this data bit is transferred to the defined output such that: “1” turns output switch “ON” “0” turns output switch “OFF”</td>
</tr>
<tr>
<td>14</td>
<td>CE</td>
<td>The chip enable. When this input is low, the output latches will accept data. When CE goes high, all outputs will retain their existing state, regardless of address of data input conditions.</td>
</tr>
<tr>
<td>15</td>
<td>CLR</td>
<td>The clear input. When CLR goes low all output switches are turned “OFF”. The high data input will override the clear function on the addressed latch.</td>
</tr>
</tbody>
</table>

## TRUTH TABLE

<table>
<thead>
<tr>
<th>INPUTS</th>
<th>OUTPUTS</th>
<th>MODE</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLR</td>
<td>CE</td>
<td>D A0 A1 A2</td>
</tr>
<tr>
<td>L</td>
<td>H</td>
<td>X X X X</td>
</tr>
<tr>
<td>L</td>
<td>L</td>
<td>L L L L</td>
</tr>
<tr>
<td>H</td>
<td>H</td>
<td>X X X X</td>
</tr>
<tr>
<td>H</td>
<td>L</td>
<td>L L L L</td>
</tr>
<tr>
<td>X</td>
<td>X</td>
<td>X X X X</td>
</tr>
</tbody>
</table>

X = Don’t care condition
QN-1 = Previous output state
L = Low voltage level/“ON” output state
H = High voltage level/“OFF” output state

## DC ELECTRICAL CHARACTERISTICS

$V_{CC} = 4.75V$ to $5.25V$, $0°C \leq T_A \leq 70°C$ unless otherwise specified (NE5090)$^2$.

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>LIMITS</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>$V_{IH}$</td>
<td>Input voltage</td>
<td>Min</td>
<td>2.0</td>
</tr>
<tr>
<td>$V_{IL}$</td>
<td>Input voltage</td>
<td>Typ</td>
<td>0.8</td>
</tr>
<tr>
<td>$I_{OL}$</td>
<td>Output voltage</td>
<td>Low</td>
<td>1.05</td>
</tr>
<tr>
<td>$I_{IH}$</td>
<td>Input current</td>
<td>High</td>
<td>1.30</td>
</tr>
<tr>
<td>$I_{IL}$</td>
<td>Input current</td>
<td>Low</td>
<td>1.50</td>
</tr>
<tr>
<td>$I_{OL}$</td>
<td>Leakage current</td>
<td>$V_{OUT} = 28V$,</td>
<td>5</td>
</tr>
<tr>
<td>$I_{OH}$</td>
<td>Leakage current</td>
<td>$V_{OUT} = 28V$,</td>
<td>250</td>
</tr>
<tr>
<td>$I_{CCL}$</td>
<td>Supply current</td>
<td>$V_{CC} = 5.25V$ NE5090</td>
<td>35</td>
</tr>
<tr>
<td>$I_{CCH}$</td>
<td>Supply current</td>
<td>$V_{CC} = 5.25V$ NE5090</td>
<td>60</td>
</tr>
</tbody>
</table>

### NOTES

1. Derate power dissipation as indicated above threshold ambient temperature
NE5090 N at 9.3mW/°C above 65°C
NE5090 F at 7.5mW/°C above 65°C
2. All typical values are at $V_{CC} = 5V$ and $T_A = 25°C$
ADDRESSABLE RELAY DRIVER

SWITCHING CHARACTERISTICS $V_{CC} = 5\, \text{V}$, $T_A = 25\, ^\circ\text{C}$, $V_{OUT} = 5\, \text{V}$, $I_{OUT} = 100\, \text{mA}$, $V_L = 0.8\, \text{V}$, $V_H = 2.0\, \text{V}$

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TO</th>
<th>FROM</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>$t_{PLH}$</td>
<td>Propagation delay time</td>
<td>Output</td>
<td>$t_{PHL}$</td>
<td>900</td>
<td>1800</td>
<td>ns</td>
</tr>
<tr>
<td>$t_{PLH}$</td>
<td>Low to high $^1$</td>
<td>CE</td>
<td>900</td>
<td>1800</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>$t_{PHL}$</td>
<td>High to low $^1$</td>
<td>130</td>
<td>260</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$t_{PLH}$</td>
<td>Low to high $^2$</td>
<td>Output</td>
<td>920</td>
<td>1850</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>$t_{PHL}$</td>
<td>High to low $^2$</td>
<td>Data</td>
<td>920</td>
<td>1850</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>$t_{PLH}$</td>
<td>Low to high $^3$</td>
<td>Output</td>
<td>900</td>
<td>1800</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>$t_{PHL}$</td>
<td>High to low $^3$</td>
<td>Address</td>
<td>900</td>
<td>1800</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>$t_{PLH}$</td>
<td>Low to high $^4$</td>
<td>Output</td>
<td>920</td>
<td>1850</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>$t_{PHL}$</td>
<td>High to low $^4$</td>
<td>CLR</td>
<td>920</td>
<td>1850</td>
<td>ns</td>
<td></td>
</tr>
</tbody>
</table>

SWITCHING SETUP REQUIREMENTS

| $t_{EH}$ | Chip enable | High data | 5 | 20 | ns |
| $t_{EL}$ | Chip enable | Low data | 10 | 30 | ns |
| $t_{EA}$ | Chip enable | Address | 0 | 20 | ns |
| $t_{NH}$ | Chip enable | High data | +10 | 0 | ns |
| $t_{NL}$ | Chip enable | Low data | +10 | 0 | ns |
| $t_{PW}$ | Chip enable pulse width | 0 | 20 | ns |

NOTES
1. See Turn-On and Turn-Off Delays, Enable to Output and Enable Pulse Width timing diagram.
2. See Turn-On and Turn-Off Delays, Data to Output timing diagram.
3. See Turn-On and Turn-Off Delays, Address to Output timing diagram.
4. See Turn-Off Delay, Clear to Output timing diagram.
5. See Setup and Hold Time, Data to Enable timing diagram.
6. See Setup Time, Address to Enable timing diagram.

TIMING DIAGRAMS

TURN-ON AND TURN-OFF DELAYS, ENABLE TO OUTPUT AND ENABLE PULSE WIDTH

TURN-ON AND TURN-OFF DELAYS, DATA TO OUTPUT

TURN-ON AND TURN-OFF DELAYS, ADDRESS TO OUTPUT

TURN-OFF DELAY, CLEAR TO OUTPUT

Other Inputs: $CE = H$, $CLR = H$, $A = Stable$.

Other Inputs: $CE = L$, $CLR = H$, $A = Stable$.

Other Inputs: $CE = L$, $CLR = L$, $D = H$.

Other Inputs: $CE = H$. 

4-141
TIMING DIAGRAMS (Cont’d)

SETUP AND HOLD TIME, DATA TO ENABLE

Other Inputs: CLR = H, A = Stable.

SETUP TIME, ADDRESS TO ENABLE

Other Inputs: CLR = H.

TYPICAL APPLICATIONS

INTERFACING WITH A MICROPROCESSOR SYSTEM

A0, A1, A2, may be connected to the address bus if permitted by system design.

DRIVING SIMPLE LOADS

OPERATING IN DEMULTIPLEX MODE
TYPICAL PERFORMANCE CHARACTERISTICS

OUTPUT VOLTAGE VS LOAD CURRENT

OUTPUT LOAD CURRENT (mA)

OUTPUT VOLTAGE (V)

0 50 100 150 200

0 0.4 0.8 1.2

0°C 25°C 70°C
**DESCRIPTION**
The NE587 is a latch/decoder/driver for 7-segment common anode LED displays. The NE587 has a programmable current output up to 50mA which is essentially independent of output voltage, power supply voltage, and temperature. The data (BCD) inputs and LE (latch enable) input are low-loading so that they are compatible with any data bus system. The 7-segment decoding is implemented with a ROM so that alternative fonts can be made available.

**FEATURES**
- Latched BCD inputs
- Low loading bus-compatible inputs
- Ripple-blanking on leading and/or trailing edge zeros

**APPLICATIONS**
- Digital panel meters
- Measuring instruments
- Test equipment
- Digital clocks
- Digital bus monitoring

**ABSOLUTE MAXIMUM RATINGS**  
\[ T_A = 25^\circ C \text{ unless otherwise specified} \]

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>RATING</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>VCC</td>
<td>Supply voltage</td>
<td>−0.6 to +7 V</td>
</tr>
<tr>
<td>VIN</td>
<td>Input voltage</td>
<td>−0.5 to +15 V</td>
</tr>
<tr>
<td>(D0 - D3, LE, RBE)</td>
<td>Output voltage</td>
<td>−0.5 to +7 V</td>
</tr>
<tr>
<td>VOUT</td>
<td>(a-g, RBG)</td>
<td></td>
</tr>
<tr>
<td>PD</td>
<td>Power dissipation (25°C)</td>
<td>1000 mW</td>
</tr>
<tr>
<td>TA</td>
<td>Ambient temperature range</td>
<td>0 to 70 °C</td>
</tr>
<tr>
<td>TJ</td>
<td>Junction temperature</td>
<td>150 °C</td>
</tr>
<tr>
<td>TSTG</td>
<td>Storage temperature range</td>
<td>−65 to +150 °C</td>
</tr>
<tr>
<td>TSOLD</td>
<td>Soldering temperature (10 sec. max)</td>
<td>300 °C</td>
</tr>
</tbody>
</table>

**NOTE**
Derate power dissipation as indicated
N package - 95°C/watt above 65°C
F package - 100°C/watt above 50°C

**BLOCK DIAGRAM**

**PIN CONFIGURATIONS**

**F, N PACKAGE**

**D² PACKAGE**

**NOTES:**
1. SOL - Released in Large SO package only.
2. SOL and non-standard pinout.
3. SO and non-standard pinouts.
## DC ELECTRICAL CHARACTERISTICS

V<sub>CC</sub> = 4.75 to 5.25V, 0°C < T<sub>A</sub> < 70°C.

Typical values are at V<sub>CC</sub> = 5V, T<sub>A</sub> = 25°C, R<sub>p</sub> = 1kΩ (±1%) unless otherwise stated.

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>NE587</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>V&lt;sub&gt;CC&lt;/sub&gt;</td>
<td>Operating supply voltage</td>
<td>4.75</td>
<td>5.00</td>
</tr>
<tr>
<td>V&lt;sub&gt;IH&lt;/sub&gt;</td>
<td>Input high voltage</td>
<td>All inputs except B&lt;sub&gt;i&lt;/sub&gt;</td>
<td>2.0</td>
</tr>
<tr>
<td>V&lt;sub&gt;IL&lt;/sub&gt;</td>
<td>Input low voltage</td>
<td></td>
<td>0.8</td>
</tr>
<tr>
<td>V&lt;sub&gt;IC&lt;/sub&gt;</td>
<td>Input clamp voltage</td>
<td>I&lt;sub&gt;IN&lt;/sub&gt; = -12mA, T&lt;sub&gt;A&lt;/sub&gt; = 25°C</td>
<td>-1.5</td>
</tr>
<tr>
<td>I&lt;sub&gt;IH&lt;/sub&gt;</td>
<td>Input high current</td>
<td>Inputs D&lt;sub&gt;0&lt;/sub&gt; - D&lt;sub&gt;3&lt;/sub&gt;, LE, R&lt;sub&gt;Bl&lt;/sub&gt;</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V&lt;sub&gt;IN&lt;/sub&gt; = 2.4V</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V&lt;sub&gt;IN&lt;/sub&gt; = 15V</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Input B&lt;sub&gt;i&lt;/sub&gt; (pin 4)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>R&lt;sub&gt;Bl&lt;/sub&gt; = H</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>V&lt;sub&gt;IN&lt;/sub&gt; = V&lt;sub&gt;CC&lt;/sub&gt; = 5.25V</td>
<td></td>
</tr>
<tr>
<td>I&lt;sub&gt;IL&lt;/sub&gt;</td>
<td>Input low current</td>
<td>V&lt;sub&gt;IN&lt;/sub&gt; = 0.4V, Inputs D&lt;sub&gt;0&lt;/sub&gt; - D&lt;sub&gt;3&lt;/sub&gt;</td>
<td>-5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LE, R&lt;sub&gt;Bl&lt;/sub&gt;</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Input B&lt;sub&gt;i&lt;/sub&gt;</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>V&lt;sub&gt;CC&lt;/sub&gt; = 5.25V</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>R&lt;sub&gt;Bl&lt;/sub&gt; = H, V&lt;sub&gt;IN&lt;/sub&gt; = 0.4V</td>
<td>-0.7</td>
</tr>
<tr>
<td>V&lt;sub&gt;OL&lt;/sub&gt;</td>
<td>Output low voltage</td>
<td>Output R&lt;sub&gt;B0&lt;/sub&gt;</td>
<td>.2</td>
</tr>
<tr>
<td>V&lt;sub&gt;OH&lt;/sub&gt;</td>
<td>Output high voltage</td>
<td>Output R&lt;sub&gt;B0&lt;/sub&gt;</td>
<td>3.5</td>
</tr>
<tr>
<td>I&lt;sub&gt;OUT&lt;/sub&gt;</td>
<td>Output segment &quot;ON&quot; current</td>
<td>Outputs &quot;a&quot; thru &quot;g&quot;</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>(all outputs ON)</td>
<td>V&lt;sub&gt;OUT&lt;/sub&gt; = 2.0V</td>
<td></td>
</tr>
<tr>
<td>δ&lt;sub&gt;OUT&lt;/sub&gt;</td>
<td>Output current ratio with reference to &quot;b&quot; segment</td>
<td></td>
<td>0.90</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V&lt;sub&gt;OUT&lt;/sub&gt; = 2.0V</td>
<td></td>
</tr>
<tr>
<td>I&lt;sub&gt;OFF&lt;/sub&gt;</td>
<td>Output segment &quot;OFF&quot; current</td>
<td>Outputs &quot;a&quot; thru &quot;g&quot;</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V&lt;sub&gt;CC&lt;/sub&gt; = 5.25V</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>All outputs &quot;ON&quot;</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>V&lt;sub&gt;OUT&lt;/sub&gt; &gt; 1V</td>
<td></td>
</tr>
<tr>
<td>I&lt;sub&gt;CCO&lt;/sub&gt;</td>
<td>Supply current</td>
<td></td>
<td>33</td>
</tr>
<tr>
<td>I&lt;sub&gt;CCI&lt;/sub&gt;</td>
<td>Supply current</td>
<td>V&lt;sub&gt;CC&lt;/sub&gt; = 5.25V</td>
<td>50</td>
</tr>
</tbody>
</table>

### NOTE

**NE587 PROGRAMMING**

The NE587 output current can be programmed, provided a program resistor, R<sub>p</sub>, be connected between Ip (pin 8) and Ground (pin 9). The voltage at Ip (pin 8) is constant (≈ 1.3V). Thus, if current through R<sub>p</sub> is Ip ≈ 1.3V/R<sub>p</sub>, as shown in Figure 5, Ip is 20 in the 15 to 50mA output current range.
LINEAR LSI PRODUCTS

LED DECODER/DRIVER NE587

AC ELECTRICAL CHARACTERISTICS  \( V_{CC} = 5V \), \( T_A = 25^\circ C, R_L = 1300, C_L = 30pF \) including probe capacity.

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>NE587</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1(D_{av}) Propagation delay</td>
<td>From data to output</td>
<td>135</td>
<td>ns</td>
</tr>
<tr>
<td>Figure 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1(D_{av}) Propagation delay</td>
<td>From LE to output</td>
<td>135</td>
<td>ns</td>
</tr>
<tr>
<td>Figure 3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(t_W) Latch enable pulse width</td>
<td></td>
<td>30</td>
<td>ns</td>
</tr>
<tr>
<td>Figure 4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(t_S) Latch enable setup time</td>
<td>From data to LE</td>
<td>20</td>
<td>ns</td>
</tr>
<tr>
<td>Figure 4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(t_H) Latch enable hold time</td>
<td>From LE to data</td>
<td>0</td>
<td>ns</td>
</tr>
<tr>
<td>Figure 4</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTE
\(1D_{av} = \frac{1}{2}(t_{DL} + t_{DH})\)

TRUTH TABLE

<table>
<thead>
<tr>
<th>BINARY INPUT</th>
<th>INPUTS</th>
<th>OUTPUTS</th>
<th>DISPLAY</th>
<th>RBO</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>H</td>
<td>x x x x</td>
<td>STABLE</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>L</td>
<td>L L L L</td>
<td>H H H H</td>
<td>L L</td>
</tr>
<tr>
<td>1</td>
<td>L</td>
<td>x L L L</td>
<td>H L L L</td>
<td>H L</td>
</tr>
<tr>
<td>2</td>
<td>L</td>
<td>x x L L</td>
<td>H H L L</td>
<td>H L</td>
</tr>
<tr>
<td>3</td>
<td>L</td>
<td>x x x x</td>
<td>H H H L</td>
<td>H L</td>
</tr>
<tr>
<td>4</td>
<td>L</td>
<td>x L x L</td>
<td>H H H L</td>
<td>L L</td>
</tr>
<tr>
<td>5</td>
<td>L</td>
<td>x x x L</td>
<td>H H H H</td>
<td>H L</td>
</tr>
<tr>
<td>6</td>
<td>L</td>
<td>x x x x</td>
<td>H H H H</td>
<td>H L</td>
</tr>
<tr>
<td>7</td>
<td>L</td>
<td>x x x L</td>
<td>H H L L</td>
<td>H L</td>
</tr>
<tr>
<td>8</td>
<td>L</td>
<td>x x x L</td>
<td>H H H L</td>
<td>H L</td>
</tr>
<tr>
<td>9</td>
<td>L</td>
<td>x x x L</td>
<td>H H H H</td>
<td>H L</td>
</tr>
<tr>
<td>10</td>
<td>L</td>
<td>x x x L</td>
<td>H H H H</td>
<td>L L</td>
</tr>
<tr>
<td>11</td>
<td>L</td>
<td>x x x L</td>
<td>H H H H</td>
<td>H L</td>
</tr>
<tr>
<td>12</td>
<td>L</td>
<td>x x x L</td>
<td>H H H H</td>
<td>H L</td>
</tr>
<tr>
<td>13</td>
<td>L</td>
<td>x x x L</td>
<td>H H H H</td>
<td>H L</td>
</tr>
<tr>
<td>14</td>
<td>L</td>
<td>x x x L</td>
<td>H H H H</td>
<td>H L</td>
</tr>
<tr>
<td>15</td>
<td>L</td>
<td>x x x L</td>
<td>H H H H</td>
<td>H L</td>
</tr>
</tbody>
</table>

**BL**

NOTES
\(H = \text{HIGH} \) voltage level, output is "OFF"
\(L = \text{LOW} \) voltage level, output is "ON"
\(X = \text{Don't care} \)

* The RBO will blank the display only if a binary zero is stored in the latches.

** RBO/BL used as an input overrides all other input conditions.

SEGMENT IDENTIFICATION
NE587 PROGRAMMING

NE587 output current can be programmed by using a programming resistor, Rp, connected between rp (pin 8) and Gnd (pin 9). The voltage at rp (pin 8) is constant (=1.40V). A partial schematic of the voltage reference used in the NE587 is shown in figure 1.

Output current to program current ratio, \( \frac{I_0}{I_p} \), is 20 in the 15mA to 50mA range. Note that \( I_p \) must be derived from a resistor (Rp), and not from a high impedance source such as an \( I_{OUT} \) DAC used to control display brightness.

![Partial schematic of the voltage reference used in the NE587](image)

Figure 1

TIMING DIAGRAMS

PROPAGATION DELAY, DATA TO OUTPUT

![Timing diagram of propagation delay, data to output](image)

Figure 2

PROPAGATION DELAY, LATCH ENABLE TO OUTPUT

![Timing diagram of propagation delay, latch enable to output](image)

Figure 3

POWER DISSIPATION CONSIDERATIONS

LED displays are power-hungry devices, and inevitably somewhat inefficient in their use of the power supply necessary to drive them. Duty cycle control does afford one way of improving display efficiency, provided that the LEDs are not driven too far into saturation, but the improvement is marginal. Operation at higher peak currents has the added advantage of giving much better matching of light output, both from segment-to-segment and digit-to-digit.

An output current of 10 to 50mA was chosen so that it would be suitable for multiplexed operation of large size LED digits. When designing a display system, particular care must be taken to minimize power dissipation within the IC display driver. Since the output is a constant current source, all the remaining supply voltage, which is not dropped across the LED (and the digit driver, if used), will appear across the output. Thus, the power dissipation will go up sharply if the display supply voltage rises. Clearly, then, it is good design practice to keep the display supply voltage as low as possible consistent with proper operation of the supply output current sources. Inserting a resistor or diode in series with the display supply is a good way of reducing the power dissipation within the integrated circuit segment driver, although, of course, total system power remains the same.

Power dissipation may be calculated as follows. Referring to figure 6, the two system power supplies are \( V_{CC} \) and \( V_S \). In many cases, these will be the same voltage. Necessary parameters are:

- \( V_{CC} \), supply voltage to driver
- \( V_S \), supply voltage to display
- \( I_{CC} \), quiescent supply current of driver
- \( I_{SEG} \), LED segment current
- \( V_F \), LED segment forward voltage at \( I_{seg} \)
- \( K_{DC} \), \% duty cycle

\( V_F \), the forward LED drop, depends upon the type of LED material (hence the color) and the forward current. The actual forward voltage drops should be obtained from the LED display manufacturer's literature for the peak segment current selected; however, approximate voltages at nominal rated currents are:

<table>
<thead>
<tr>
<th>Color</th>
<th>Approximate Voltage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red</td>
<td>1.6 to 2.0V</td>
</tr>
<tr>
<td>Orange</td>
<td>2.0 to 2.5V</td>
</tr>
<tr>
<td>Yellow</td>
<td>2.2 to 3.5V</td>
</tr>
<tr>
<td>Green</td>
<td>2.5 to 3.5V</td>
</tr>
</tbody>
</table>
These voltages are all for single diode displays. Some early red displays had 2 series LEDs per segment; hence the forward voltage drop was around 3.5V.

Thus a maximum power dissipation calculation when all segments are on, is:

$$P_d = V_{CC} \times I_{CC} + (V_S - V_F) \times I_{seg} \times K_{DC} \text{ mW}$$

Assuming $V_S = V_{CC} = 5.25V$

$V_F = 2.0V$

$K_{DC} = 100\%$

$P_{d\ max} = 5.25 \times 50 + 3.25 \times 7 \times 30 \text{ mW}$

$= 945 \text{ mW}$
However, the average power dissipation will be considerably less than this. Assuming 5 segments are on (the average for all output code combinations), then

\[
P_{d\,av} = 5.0 \times 30 + 3.00 \times 5 \times 25 \text{ mW}
\]

= 525 mW

Operating temperature range limitations can be deduced from the power dissipation graph. (See Typical Performance Characteristics).

However, a major portion of this power dissipation \((P_{d\,max})\) is because the current source output is operating with 3.25 V across it. In practice, the outputs operate satisfactorily down to 0.5V, and so the extra voltage may be dropped external to the integrated circuit.

Suppose the worst case \(V_{CC}\) supply is 4.75 to 5.25V, and that the maximum \(V_D\) for the LED display is 2.25V. Only 2.75V is required to keep the display active, and hence 2.0V may be dropped externally with a resistor from \(V_{CC}\) to \(V_S\). The value of this resistor is calculated by:

\[
R_S = \frac{2.0}{7 \times I_{seg}} \geq 100 \Omega \text{ (} \frac{1}{2} \text{ W rating)}
\]

assuming worst case \(I_{seg}\) of 30 mA

Hence now

\[
P_{d\,max} = V_{CC} \times I_{CC} + (V_S - V_F - R_X \times 7 \times I_{seg}) \times I_{seg} \times V_{CC}
\]

= 6.25 \times 50 + 1.25 \times 7 \times 30

mW

= 525 mW

and

\[
P_{d\,av} = 5.0 \times 30 + 1.25 \times 5 \times 25
\]

= 306 mW

If a diode (or 2) is used to reduce voltage to the display, then the voltage appearing across the display driver will be independent of the number of “ON” segments and will be equal to

\[
V_S - V_F - nV_D, \ V_D \geq 0.8V
\]

Where \(n\) is the number of diodes used, power dissipation can be calculated in a similar manner.

In a multiplexed display system, the voltage drop across the digit driver must also be considered in computing device power dissipation. It may even be an advantage to use a digit driver which drops an appreciable voltage, rather than the saturating PNP transistors shown in figure 8. For example a darlington PNP or NPN emitter follower may be preferable. Figure 8 shows the NE591 as the digit driver in a multiplexed display system. The NE591 output drops about 1.8V which means that the power dissipation is evenly distributed between the two integrated circuits.

Where \(V_S\) and \(V_{CC}\) are two different supplies, the \(V_S\) supply may be optimized for minimum system power dissipation and/or cost. Clearly, good regulation in the \(V_S\) supply is totally unnecessary, and so this supply can be made much cheaper than the regulated 5V supply used in the rest of the system. In fact a simple unsmoothed full-wave rectified sine wave works extremely well if a slight loss in brightness can be tolerated. A transformer voltage of about 3-4.5V rms works well in most LED display systems. Waveforms are shown below:

The duty cycle for this system depends upon \(V_S\), \(V_F\) and the output characteristics of the display driver.

With

\[
V_S = 4.9V \text{ pk}, \ V_F = 2.0V
\]

The duty cycle is approximately 60%. 

The duty cycle for this system depends upon \(V_S\), \(V_F\) and the output characteristics of the display driver.

With

\[
V_S = 4.9V \text{ pk}, \ V_F = 2.0V
\]

The duty cycle is approximately 60%.
TYPICAL APPLICATIONS (Cont'd)

4-DIGIT DISPLAY WITH BRIGHTNESS CONTROL
AND LEADING EDGE RIPPLE BLANKING

Figure 7

INTERFACING 8-DIGIT LED DISPLAY WITH µP BUS

Figure 8
For additional information, refer to the Applications Section.
DESCRIPTION
The NE589 is a latch/decoder/driver for 7-segment common cathode LED displays. The NE589 has a programmable current output up to 50mA which is essentially independent of output voltage, power supply voltage, and temperature. The data (BCD) inputs and LE (latch enable) input are low-loading so that they are compatible with any data bus system. The 7-segment decoding is implemented with a ROM so that alternative fonts can be made available.

ABSOLUTE MAXIMUM RATINGS  \( T_A = 25^\circ C \) unless otherwise specified

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>RATING (UNIT)</th>
</tr>
</thead>
<tbody>
<tr>
<td>( V_{CC}, V_s )</td>
<td>(-0.5 ) to (+7 ) V</td>
</tr>
<tr>
<td>( V_{IN} )</td>
<td>(-0.5 ) to (+15 ) V</td>
</tr>
<tr>
<td>( D_0, D_3, LE, RBI )</td>
<td>(-0.5 ) to (+7 ) V</td>
</tr>
<tr>
<td>( V_{OUT} )</td>
<td>(-0.5 ) to (+7 ) V</td>
</tr>
<tr>
<td>( P_D )</td>
<td>1000 mW</td>
</tr>
<tr>
<td>( T_A )</td>
<td>0 to 70 °C</td>
</tr>
<tr>
<td>( T_J )</td>
<td>150 °C</td>
</tr>
<tr>
<td>( T_{STG} )</td>
<td>(-65 ) to (+150 ) °C</td>
</tr>
<tr>
<td>( T_{SOLD} )</td>
<td>300 °C</td>
</tr>
</tbody>
</table>

NOTE
Derate power dissipation as indicated
N package - 95°C/watt above 55°C
F package - 100°C/watt above 50°C

APPLICATIONS
- Digital panel meters
- Measuring instruments
- Test equipment
- Digital clocks
- Digital bus monitoring

FEATURES
- Latched BCD inputs
- Low loading bus-compatible inputs
- Ripple-blanking on leading and/or trailing edge zeros

PIN CONFIGURATION

<table>
<thead>
<tr>
<th>PIN</th>
<th>DESIGNATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>( V_{CC} )</td>
</tr>
<tr>
<td>2</td>
<td>( D_0 )</td>
</tr>
<tr>
<td>3</td>
<td>( LE )</td>
</tr>
<tr>
<td>4</td>
<td>( BI/RBI )</td>
</tr>
<tr>
<td>5</td>
<td>( RBI )</td>
</tr>
<tr>
<td>6</td>
<td>( D_1 )</td>
</tr>
<tr>
<td>7</td>
<td>( D_2 )</td>
</tr>
<tr>
<td>8</td>
<td>( I_P )</td>
</tr>
<tr>
<td>9</td>
<td>( GND )</td>
</tr>
<tr>
<td>10</td>
<td>( V_s )</td>
</tr>
</tbody>
</table>

NOTES:
1. SOL - Released in Large SO package only.
2. SOL and non-standard pinouts.
3. SO and non-standard pinouts.
**DC ELECTRICAL CHARACTERISTICS**

$V_{CC} = 4.75$ to $5.25\,\text{V}, \quad 0^\circ\text{C} < T_A < 70^\circ\text{C}$. Typical values are at $V_{CC} = V_S = 5\,\text{V}, T_A = 25^\circ\text{C}, R_p = 7k\Omega \pm 1\%$ unless otherwise stated.

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>$V_{CC}, V_S$</th>
<th>$V_{IH}$</th>
<th>$V_{IL}$</th>
<th>$V_{IC}$</th>
<th>$I_{IH}$</th>
<th>$I_{IL}$</th>
<th>$V_{OL}$</th>
<th>$V_{OH}$</th>
<th>$I_{OUT}$</th>
<th>$I_{OUT}$</th>
<th>$I_{OFF}$</th>
<th>$I_{CCO}$</th>
<th>$I_{CCI}$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Operating supply voltage</td>
<td>$4.75$</td>
<td>$5.00$</td>
<td>$5.25$</td>
<td>$V$</td>
<td>$2.0$</td>
<td>$2.0$</td>
<td>$0.8$</td>
<td>$V$</td>
<td></td>
<td></td>
<td>$10$</td>
<td>$15$</td>
<td>$\mu\text{A}$</td>
</tr>
<tr>
<td>$V_{IH}$</td>
<td>Input high voltage</td>
<td>All inputs except $B_i$</td>
<td>$20,\text{mA}$</td>
<td>$V_{IN} = 2.4,\text{V}$</td>
<td>$V_{IN} = 15,\text{V}$</td>
<td>$10$</td>
<td>$15$</td>
<td>$\mu\text{A}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$V_{IL}$</td>
<td>Input low voltage</td>
<td>$R_B = H$, $V_{IN} = V_{CC} = 5.25,\text{V}$</td>
<td>$10$</td>
<td>$\mu\text{A}$</td>
<td></td>
</tr>
<tr>
<td>$V_{IC}$</td>
<td>Input clamp voltage</td>
<td>$I_{IN} = -12,\text{mA}$, $T_A = 25^\circ\text{C}$</td>
<td>$-1.5$</td>
<td>$V$</td>
<td></td>
</tr>
<tr>
<td>$I_{IH}$</td>
<td>Input high current</td>
<td>Inputs $D_0 - D_3$, $LE$, $R_B$</td>
<td>$0.1$</td>
<td>$10$</td>
<td>$\mu\text{A}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Input high current</td>
<td>Input $B_i$ (pin 4)</td>
<td>$V_{IN} = 2.4,\text{V}$</td>
<td>$V_{IN} = 5,\text{V}$</td>
<td>$10$</td>
<td>$15$</td>
<td>$\mu\text{A}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{IL}$</td>
<td>Input low current</td>
<td>$V_{IN} = 0.4,\text{V}$, Inputs $D_0 - D_3$</td>
<td>$-5$</td>
<td>$\mu\text{A}$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Input low current</td>
<td>Input $B_i$, $V_{CC} = 5.25,\text{V}$, $R_B = H$, $V_{IN} = 0.4,\text{V}$</td>
<td>$-0.7$</td>
<td>$\mu\text{A}$</td>
<td></td>
</tr>
<tr>
<td>$V_{OL}$</td>
<td>Output low voltage</td>
<td>Output $R_B$</td>
<td>$0.2$</td>
<td>$0.5$</td>
<td>$V$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$V_{OH}$</td>
<td>Output high voltage</td>
<td>Output $R_B$</td>
<td>$3.5$</td>
<td>$4.5$</td>
<td>$V$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{OUT}$</td>
<td>Output segment $&quot;ON&quot;$ current</td>
<td>Outputs &quot;a&quot; thru &quot;g&quot;</td>
<td>$20$</td>
<td>$25$</td>
<td>$30$</td>
<td>$\mu\text{A}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\Delta I_{OUT}$</td>
<td>Output current ratio (all outputs ON)</td>
<td>With reference to &quot;b&quot; segment</td>
<td>$0.90$</td>
<td>$1.00$</td>
<td>$1.10$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{OFF}$</td>
<td>Output segment $&quot;OFF&quot;$ current</td>
<td>Outputs &quot;a&quot; thru &quot;g&quot;</td>
<td>$20$</td>
<td>$250$</td>
<td>$\mu\text{A}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{CCO}$</td>
<td>Supply current</td>
<td>$V_{CC} = 5.25,\text{V}$, All outputs &quot;ON&quot;</td>
<td>$25$</td>
<td>$55$</td>
<td>$\mu\text{A}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{CCI}$</td>
<td>Supply current</td>
<td>$V_{CC} = 5.25,\text{V}$, All outputs blanked</td>
<td>$30$</td>
<td>$65$</td>
<td>$\mu\text{A}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
**AC ELECTRICAL CHARACTERISTICS**  
$V_{CC} = V_S = 5V$  
$T_A = 25^\circ C$, $R_L = 1300$, $C_L = 30pF$ including probe capacity.

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>NE589</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>$t_{D_{AV}}$ - Propagation delay</td>
<td>From data to output</td>
<td>135</td>
<td>ns</td>
</tr>
<tr>
<td>$t_{D_{AV}}$ - Propagation delay</td>
<td>From $LE$ to output</td>
<td>135</td>
<td>ns</td>
</tr>
<tr>
<td>$t_W$ - Latch enable pulse width</td>
<td>From data to $LE$</td>
<td>85</td>
<td>ns</td>
</tr>
<tr>
<td>$t_S$ - Latch enable setup time</td>
<td>From $LE$ to data</td>
<td>75</td>
<td>ns</td>
</tr>
<tr>
<td>$t_H$ - Latch enable hold time</td>
<td>From $LE$ to data</td>
<td>0</td>
<td>ns</td>
</tr>
</tbody>
</table>

**NOTE:**  
$t_{D_{AV}} = \max (t_{HL} + t_{LH})$

### TRUTH TABLE

<table>
<thead>
<tr>
<th>BINARY INPUT</th>
<th>INPUTS</th>
<th>OUTPUTS</th>
<th>DISPLAY</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>H</td>
<td>X X X X X</td>
<td>STABLE</td>
</tr>
<tr>
<td>0</td>
<td>L L L L L L</td>
<td>L L L L L L</td>
<td>BLANK</td>
</tr>
<tr>
<td>1</td>
<td>L H L L L L</td>
<td>H H H H H H</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>L X L L L H</td>
<td>L H H L H L</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>L X L L H L</td>
<td>L H H L L H</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>L X L H L L</td>
<td>L H H L L L</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>L X L H H L</td>
<td>H H H H L L</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>L X L H L H</td>
<td>L H H H L H</td>
<td>5</td>
</tr>
<tr>
<td>7</td>
<td>L X L H H L</td>
<td>H H H H L H</td>
<td>6</td>
</tr>
<tr>
<td>8</td>
<td>L X H L L L</td>
<td>L L L L L L</td>
<td>7</td>
</tr>
<tr>
<td>9</td>
<td>L X H L L H</td>
<td>L L L L H H</td>
<td>8</td>
</tr>
<tr>
<td>10</td>
<td>L X H L H L</td>
<td>L L L H H H</td>
<td>9</td>
</tr>
<tr>
<td>11</td>
<td>L X H L H H</td>
<td>L L L H H H</td>
<td>a</td>
</tr>
<tr>
<td>12</td>
<td>L X H H L H</td>
<td>L L L H H H</td>
<td>b</td>
</tr>
<tr>
<td>13</td>
<td>L X H H H L</td>
<td>L L L H H H</td>
<td>c</td>
</tr>
<tr>
<td>14</td>
<td>L X H H H H</td>
<td>L L L H H H</td>
<td>d</td>
</tr>
<tr>
<td>15</td>
<td>L X H H H H</td>
<td>L L L H H H</td>
<td>e</td>
</tr>
<tr>
<td>** BI**</td>
<td>X X X X X X</td>
<td>L L L L L L</td>
<td>f</td>
</tr>
</tbody>
</table>

**NOTES:**
- H = HIGH voltage level, output is "ON"  
- L = LOW voltage level, output is "OFF"  
- X = Don't care  
- The $RI$ will blank the display only if a binary zero is stored in the latches.  
- $RBO$/$BI$ used as an input overrides all other input conditions.

### SEGMENT IDENTIFICATION

![Segment Identification Diagram](image_url)
NE589 PROGRAMMING
NE589 output current can be programmed by using a programming resistor, \( R_p \), connected between \( rp \) (pin 8) and Gnd (pin 9). The voltage at \( rp \) (pin 8) is constant \( (\approx 1.3V) \). A partial schematic of the voltage reference used in the NE589 is shown in figure 1.

![Partial schematic of the voltage reference used in the NE589](image)

Output current, to program current ratio, \( l_0/l_p \), is 120 in the 10mA to 50mA range. Note that \( l_0 \) must be derived from a resistor \( (R_p) \), and not from a high impedance source such as an \( l_{OUT} \) DAC used to control display brightness.

POWER DISSIPATION CONSIDERATIONS
LED displays are power-hungry devices, and inevitably somewhat inefficient in their use of the power supply necessary to drive them. Duty cycle control does afford one way of improving display efficiency, provided that the LEDs are not driven too far into saturation, but the improvement is marginal. Operation at higher peak currents has the added advantage of giving much better matching of light output, both from segment-to-segment and digit-to-digit.

An output current of 10 to 50mA was chosen so that it would be suitable for multiplexed operation of large size LED digits. When designing a display system, particular care must be taken to minimize power dissipation within the IC display driver. Since the output is a constant current source, all the remaining supply voltage, which is not dropped across the LED (and the digit driver, if used), will appear across the output. Thus, the power dissipation will go up sharply if the display power supply voltage rises. Clearly, then, it is good design practice to keep the display supply voltage as low as possible consistent with proper operation of the supply output current sources. Inserting a resistor or diode in series with the display supply is a good way of reducing the power dissipation within the integrated circuit segment driver, although, of course, total system power remains the same.

Power dissipation may be calculated as follows. Referring to figure 5, the two system power supplies are \( V_{CC} \) and \( V_S \). In many cases, these will be the same voltage. Necessary parameters are:

\[
\begin{align*}
V_{CC} & \quad \text{Supply voltage to driver} \\
V_S & \quad \text{Supply voltage to display} \\
I_{CC} & \quad \text{Quiescent supply current of driver} \\
l_{SEG} & \quad \text{LED segment current} \\
V_F & \quad \text{LED segment forward voltage at} \\
l_{seg} & \quad \text{nominal rated current} \\
K_{DC} & \quad \% \text{Duty cycle} \\
\end{align*}
\]

\( V_F \), the forward LED drop, depends upon the type of LED material (hence the color) and the forward current. The actual forward voltage drops should be obtained from the LED display manufacturer's literature for the peak segment current selected; however, approximate voltages at nominal rated currents are:

- Red: 1.6 to 2.0V
- Orange: 2.0 to 2.5V
- Yellow: 2.2 to 3.5V
- Green: 2.5 to 3.5V
TIMING DIAGRAMS (Cont'd)

These voltages are all for single diode displays. Some early red displays had 2 series LEDs per segment; hence the forward voltage drop was around 3.5V.

Thus a maximum power dissipation calculation when all segments are on, is:

\[ P_d = V_{CC} \times I_{CC} + (V_S - V_F) \times I_{seg} \times K_{DC} \]

Assuming \( V_S = V_{CC} = 5.25V \)
\( V_F = 2.0V \)
\( K_{DC} = 100\% \)
\( P_{d\ max} = 5.25 \times 50 + 3.25 \times 7 \times 30 \text{ mW} \)
\( = 945 \text{ mW} \)

TYPICAL PERFORMANCE CURVES

OUTPUT CURRENT VS PROGRAM RESISTOR

OUTPUT CURRENT VS OUTPUT VOLTAGE

NORMALIZED OUTPUT CURRENT VS TEMPERATURE

NORMALIZED OUTPUT CURRENT VS SUPPLY VOLTAGE

SUPPLY CURRENT VS SUPPLY VOLTAGE
### TYPICAL PERFORMANCE CURVES (Cont'd)

#### SUPPLY CURRENT VS SUPPLY VOLTAGE

**NE589**

- **Supply Current (mA)**
  - 20.0
  - 25.0
  - 30.0
  - 35.0
  - 40.0

- **Supply Voltage (V)**
  - 4.0
  - 4.4
  - 4.8
  - 5.2
  - 5.6
  - 6.0
  - 6.4

If a diode (or 2) is used to reduce voltage to the display, then the voltage appearing across the display driver will be independent of the number of "ON" segments and will be equal to

\[ V_S = V_F - n V_D, \quad V_D > 0.8V \]

Where \( n \) is the number of diodes used, power dissipation can be calculated in a similar manner.

In a multiplexed display system, the voltage drop across the digit driver must also be considered in computing device power dissipation. It may even be an advantage to use a digit driver which drops an appreciable voltage, rather than the saturating PNP transistors shown in figure 8. For example a darlington PNP or NPN emitter follower may be preferable. Figure 7 shows the NE591 as the digit driver in a multiplexed display system. The NE591 output drops about 1.8V which means that the power dissipation is evenly distributed between the two integrated circuits.

Where \( V_S \) and \( V_{CC} \) are two different supplies, the \( V_S \) supply may be optimized for minimum system power dissipation and/or cost. Clearly, good regulation in the \( V_S \) supply is totally unnecessary, and so this supply can be made much cheaper than the regulated 5V supply used in the rest of the system. In fact a simple unsmoothed full-wave rectified sine wave works extremely well if a slight loss in brightness can be tolerated. A transformer voltage of about 3-4.5V rms works well in most LED display systems. Waveforms are shown below:

![Waveforms](image)

### TYPICAL APPLICATIONS

#### DRIVING A SINGLE DIGIT

- **Figure 5**

However, the average power dissipation will be considerably less than this. Assuming 5 segments are on (the average for all output code combinations), then

\[ P_{d\,av} = 5.0 \times 30 + 3.00 \times 5 \times 25 \text{ mW} = 525 \text{ mW} \]

Operating temperature range limitations can be deduced from the power dissipation graph in figure 9.

However, a major portion of this power dissipation (\( P_{d\,max} \)) is because the current source output is operating with 3.25 V across it. In practice, the outputs operate satisfactorily down to 0.5V, and so the extra voltage may be dropped external to the integrated circuit.

Suppose the worst case \( V_{CC}/V_S \) supply is 4.75 to 5.25V, and that the maximum \( V_F \) for the LED display is 2.25V. Only 2.75V is required to keep the display active, and hence 2.0V may be dropped externally with a resistor from \( V_{CC} \) to \( V_S \). The value of this resistor is calculated by:

\[ R_S = \frac{2.0}{7 \times I_{seg}} \approx 100 \Omega \text{ (1 W rating)} \]

assuming worst case \( I_{seg} \) of 30 mA

Hence now \( P_{d\,max} = V_{CC} \times I_{CC} + (V_F - V_S) \times R_S \times 7 \times I_{seg} \times 7 \times I_{seg} \times K_{PD} \)

\[ = 5.25 \times 50 + 1.25 \times 7 \times 30 \text{ mW} = 525 \text{ mW} \]

and \( P_{d\,av} = 5.0 \times 30 + 1.25 \times 5 \times 25 \]

\[ = 306 \text{ mW} \]

The duty cycle for this system depends upon \( V_S, V_F \) and the output characteristics of the display driver.

With

- \( V_S = 4.9 \text{ pk.} \)
- \( V_F = 2.0V \)

The duty cycle is approximately 60\%. 

**NOTE**

- Decoupling capacitor on \( V_{CC} \) should be 0.01 µF ceramic

4-157
TYPICAL APPLICATIONS (Cont'd)

4-DIGIT DISPLAY WITH BRIGHTNESS CONTROL AND LEADING EDGE RIPPLE BLANKING

Figure 6

INTERFACING 8-DIGIT LED DISPLAY WITH µP BUS

Figure 7
Figure 8

For additional information, refer to the Applications Section.
DESCRIPTION
The NE590/591 addressable peripheral drivers are high current latched drivers, similar in function to the 9334 address decoder. The device has 8 Darlington power outputs, each capable of 250mA load current. The outputs are turned on or off by respectively loading a logic high or logic low into the device data input. The required output is defined by a 3-bit address. The device must be enabled by a CE input line. A common clear input, CLR, turns all outputs off when a logic low is applied.

The NE590 has 8 open collector Darlington outputs which sink current to ground. The device is packaged in a 16-pin molded or cerdip package.

The NE591 has 8 open emitter Darlington outputs which source current to an external load from a common collector line, VS. This VS line need not necessarily be the same as the 5 volt VCC supply. The device is packaged in an 18-pin molded or cerdip package.

APPLICATIONS
- Relay driver
- Indicator lamp driver
- Triac trigger
- LED display digit driver
- Stepper motor driver

FEATURES
- 8 high current outputs
- Low-loading bus compatible inputs
- Power-on clear ensures safe operation
- NE590 will operate in addressable or demultiplex mode
- Allows random (addressed) data entry
- Easily expandable
- NE590 is pin compatible with 54/74LS259

TABLE 1

<table>
<thead>
<tr>
<th>590 PIN NO.</th>
<th>591 PIN NO.</th>
<th>SYMBOL</th>
<th>NAME &amp; FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-3</td>
<td>2-4</td>
<td>A0-A2</td>
<td>A 3-bit binary address on these pins defines which of the 8 output latches is to receive the data.</td>
</tr>
<tr>
<td>4-7, 9-12</td>
<td>5-8, 11-14</td>
<td>Q0-Q7</td>
<td>The 8 device outputs. The NE590 has open collector Darlington outputs. The NE591 has open emitter follower outputs.</td>
</tr>
</tbody>
</table>
| 13          | 15          | D      | The data input. When the chip is enabled, this data bit is transferred to the defined output such that:
|             |             |        | “1” turns output switch “ON”  “0” turns output switch “OFF” |
| 14          | 16          | CE     | Thus in logic terms, the NE590 inverts data to the relevant output. The NE591 retains true data at the output. |
| 15          | 17          | CLR    | The chip enable. When this input is low, the output latches will accept data. When CE goes high, all outputs will retain their existing state, regardless of address or data input conditions. |
|             | 1           | CS     | The clear input. When CLR goes low all output switches are turned “OFF”. On the NE590, a high data input will override the clear function on the addressed latch. On the NE591, CLR low will override any other condition. |
|             | 10          | VS     | The chip select input provides for an additional level of address decoding. The VS line provides the power to all 8 output devices. It is connected to the collectors of all 8 output transistors. This pin may be connected to the VCC or another supply. |
### TRUTH TABLE (NE590)

<table>
<thead>
<tr>
<th>INPUTS</th>
<th>OUTPUTS</th>
<th>MODE</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLR CE D A0 A1 A2</td>
<td>Q0 Q1 Q2 Q3 Q4 Q5 Q6 Q7</td>
<td></td>
</tr>
<tr>
<td>L H X X X X</td>
<td>H H H H H H H H</td>
<td>Clear</td>
</tr>
<tr>
<td>L L L L L L</td>
<td>H H H H H H H H</td>
<td></td>
</tr>
<tr>
<td>L L H L L L</td>
<td>L H H H H H H H</td>
<td>Demultiplex</td>
</tr>
<tr>
<td>L L H L L L</td>
<td>L H H H H H H H</td>
<td></td>
</tr>
<tr>
<td>L L L H H H</td>
<td>H H H H H H H H</td>
<td></td>
</tr>
<tr>
<td>L L H H H H</td>
<td>H H H H H H H H</td>
<td></td>
</tr>
<tr>
<td>H H X X X X</td>
<td>QN-1</td>
<td>Memory</td>
</tr>
<tr>
<td>H L L L L L</td>
<td>H QN-1</td>
<td></td>
</tr>
<tr>
<td>H L H L L L</td>
<td>L QN-1</td>
<td></td>
</tr>
<tr>
<td>H L L H L L</td>
<td>QN-1 H QN-1</td>
<td>Addressable</td>
</tr>
<tr>
<td>H L H H L L</td>
<td>QN-1 L QN-1</td>
<td>Latch</td>
</tr>
<tr>
<td>H L L H H H</td>
<td>QN-1</td>
<td></td>
</tr>
<tr>
<td>H L H H H H</td>
<td>QN-1</td>
<td></td>
</tr>
</tbody>
</table>

X = Don't care condition  
QN = Previous output state  
L = Low voltage level/"ON" output state  
H = High voltage level/"OFF" output state

### (NE591)

<table>
<thead>
<tr>
<th>INPUTS</th>
<th>OUTPUTS</th>
<th>MODE</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLR CE CS D A0 A1 A2</td>
<td>Q0 Q1 Q2 Q3 Q4 Q5 Q6 Q7</td>
<td></td>
</tr>
<tr>
<td>L X X X X X</td>
<td>L L L L L L L L</td>
<td>Clear</td>
</tr>
<tr>
<td>H H X X X X</td>
<td>QN-1</td>
<td>Memory</td>
</tr>
<tr>
<td>H H L X X X</td>
<td>QN-1</td>
<td></td>
</tr>
<tr>
<td>H L H X X X</td>
<td>QN-1</td>
<td></td>
</tr>
<tr>
<td>H L L L L L</td>
<td>L QN-1</td>
<td></td>
</tr>
<tr>
<td>H L H H L L</td>
<td>H QN-1</td>
<td>Addressable</td>
</tr>
<tr>
<td>H L L H L L</td>
<td>QN-1 L QN-1</td>
<td>Latch</td>
</tr>
<tr>
<td>H L H H L L</td>
<td>QN-1 H QN-1</td>
<td></td>
</tr>
<tr>
<td>H L L H H H</td>
<td>QN-1</td>
<td></td>
</tr>
<tr>
<td>H L H H H H</td>
<td>QN-1</td>
<td></td>
</tr>
</tbody>
</table>

X = Don't care  
QN = Previous output state  
L = Low voltage level/"OFF" output state  
H = High voltage level/"ON" output state
LINEAR LSI PRODUCTS

ADDRESSABLE PERIPHERAL DRIVERS

NE590/NE591

ABSOLUTE MAXIMUM RATINGS

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>RATING</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>VCC</td>
<td>Supply voltage</td>
<td>-0.5 to +7</td>
</tr>
<tr>
<td>VIN</td>
<td>Input voltage</td>
<td>-0.5 to +15</td>
</tr>
<tr>
<td>VOUT</td>
<td>Output voltage</td>
<td>0 to +7</td>
</tr>
<tr>
<td>NE590</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NE591</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VSS</td>
<td>Source bus voltage</td>
<td>0 to VCC</td>
</tr>
<tr>
<td>NE591 only</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VSS-VCC</td>
<td>Source/supply differential voltage</td>
<td>-0.5 to +7</td>
</tr>
<tr>
<td>NE591 only</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IOUT</td>
<td>Output current</td>
<td></td>
</tr>
<tr>
<td>Each output</td>
<td>300</td>
<td></td>
</tr>
<tr>
<td>All outputs</td>
<td>1000</td>
<td></td>
</tr>
<tr>
<td>Pd</td>
<td>Power dissipation</td>
<td>1</td>
</tr>
<tr>
<td>Temperature range</td>
<td></td>
<td>°C</td>
</tr>
<tr>
<td>TA</td>
<td>Ambient</td>
<td>0 to +70</td>
</tr>
<tr>
<td>TJ</td>
<td>Junction</td>
<td>165</td>
</tr>
<tr>
<td>Tstg</td>
<td>Storage</td>
<td>-65 to +150</td>
</tr>
<tr>
<td>Tsold</td>
<td>Lead soldering temperature</td>
<td>300</td>
</tr>
<tr>
<td>(10sec max)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DC ELECTRICAL CHARACTERISTICS

VCC = 4.75 to 5.25V, 0°C ≤ TA ≤ 70°C unless otherwise specified.

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>LIMITS</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vih</td>
<td>High</td>
<td>Min</td>
<td>Typ</td>
</tr>
<tr>
<td>Vil</td>
<td>Low</td>
<td>2.0</td>
<td>0.8</td>
</tr>
<tr>
<td>Vol</td>
<td>Low (NE590 only)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vol</td>
<td>Over temperature</td>
<td>IOL = 250mA, TA = 25°C</td>
<td>1.0</td>
</tr>
<tr>
<td>Vol</td>
<td>VCC</td>
<td>IOH = -250mA, VCC = VSS = 5V</td>
<td>2.9</td>
</tr>
<tr>
<td>Iih</td>
<td>High</td>
<td>Vih = VCC</td>
<td>0.1</td>
</tr>
<tr>
<td>Ilh</td>
<td>Low</td>
<td>Vin = 0V</td>
<td>-25</td>
</tr>
<tr>
<td>CE input</td>
<td></td>
<td>-15</td>
<td>-50</td>
</tr>
<tr>
<td>All other inputs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IoH</td>
<td>Leakage current</td>
<td>VOUT = 5.25V</td>
<td>10</td>
</tr>
<tr>
<td>IccL</td>
<td>Supply current</td>
<td>VS = VCC = 5V</td>
<td>33</td>
</tr>
<tr>
<td>All outputs low</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NE590</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NE591</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IccH</td>
<td>All outputs high</td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>NE590</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NE591</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NOTES</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Derate power dissipation as indicated above threshold ambient temperature:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NE590N at 9.3 mW/°C above 85°C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NE590F at 7.5 mW/°C above 65°C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NE591N at 11.5 mW/°C above 100°C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NE591F at 10.7 mW/°C above 72°C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. All typical values are at VCC = 5V and TA = 25°C.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. For the NE591, VS = VCC in all tests.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Supply current for the NE591 is measured with no output load.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
SWITCHING CHARACTERISTICS \( V_{CC} = 5V, \ T_A = 25^\circ C \)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TO</th>
<th>FROM</th>
<th>NE590</th>
<th>NE591</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Propagation delay time</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>( t_{PLH} ) Low to high(^5)</td>
<td>Output</td>
<td>CE</td>
<td>65</td>
<td>150</td>
<td>50</td>
</tr>
<tr>
<td>( t_{PHL} ) High to low(^5)</td>
<td></td>
<td></td>
<td>115</td>
<td>230</td>
<td>70</td>
</tr>
<tr>
<td>( t_{PLH} ) Low to high(^6)</td>
<td>Output</td>
<td>Data</td>
<td>65</td>
<td>130</td>
<td>45</td>
</tr>
<tr>
<td>( t_{PHL} ) High to low(^6)</td>
<td></td>
<td></td>
<td>120</td>
<td>240</td>
<td>70</td>
</tr>
<tr>
<td>( t_{PLH} ) Low to high(^7)</td>
<td>Output</td>
<td>Address</td>
<td>100</td>
<td>200</td>
<td>45</td>
</tr>
<tr>
<td>( t_{PHL} ) High to low(^7)</td>
<td></td>
<td></td>
<td>120</td>
<td>260</td>
<td>80</td>
</tr>
<tr>
<td>( t_{PLH} ) Low to high(^8)</td>
<td>Output</td>
<td>CLR</td>
<td>65</td>
<td>130</td>
<td>45</td>
</tr>
<tr>
<td>( t_{PHL} ) High to low(^8)</td>
<td></td>
<td></td>
<td>120</td>
<td>240</td>
<td>140</td>
</tr>
<tr>
<td>( t_{PLH} ) Low to high(^9)</td>
<td>Output</td>
<td>CS</td>
<td>40</td>
<td>80</td>
<td>70</td>
</tr>
<tr>
<td>( t_{PHL} ) High to low(^9)</td>
<td></td>
<td></td>
<td>70</td>
<td>120</td>
<td></td>
</tr>
</tbody>
</table>

SWITCHING SET-UP REQUIREMENTS

| \( t_{S(H)} \)\(^9\) | Chip enable | High data | 210 | 60 | 50 | 15 | ns |
| \( t_{S(L)} \)\(^9\) | Chip enable | Low data  | 210 | 105 | 80 | 60 | ns |
| \( t_{S(A)} \)\(^10\) | Chip enable | Address  | +20 | -5  | +20 | -20 | ns |
| \( t_{H(H)} \)\(^9\) | Chip enable | High data | -20 | 60  | 0  | -60 | ns |
| \( t_{H(L)} \)\(^9\) | Chip enable | Low data  | -20 | 60  | 10 | -15 | ns |
| \( t_{S(CS)} \)\(^9\) | Chip enable | Low chip select | 80  | 50  |     |     | ns |
| \( t_{pw(E)} \) | Chip enable pulse width\(^5\) | 300 | 140 | 100 | 50 |     | ns |

NOTES
5. See Turn-On and Turn-Off Delays, Enable to Output and Enable Pulse Width timing diagram.
6. See Turn-On and Turn-Off Delays, Data to Output timing diagram.
7. See Turn-On and Turn-Off Delays, Address to Output timing diagram.
8. See Turn-Off Delay, Clear to Output timing minimum.
9. See Setup and Hold Time, Data in Parallel timing diagram.
10. See Setup Time, Address to Enable timing diagram.
LINEAR LSI PRODUCTS

ADDRESSABLE PERIPHERAL DRIVERS

TURN-ON AND TURN-OFF DELAYS, ADDRESS TO OUTPUT

Other Inputs: CE = L, CLR = L, D = H

TURN-OFF DELAY, CLEAR TO OUTPUT

Other Inputs: CE = H, CS = H

SETUP TIME, ADDRESS TO ENABLE

Other Inputs: CLR = H, CS = L

SETUP AND HOLD TIME, DATA TO ENABLE

Other Inputs: CLR = H, A Stable, CS = L

OUTPUT VOLTAGE VS LOAD CURRENT (NE590)

OUTPUT VOLTAGE DROP VS LOAD CURRENT (NE591)

INTERFACING THE 590/591 WITH A MICROPROCESSOR SYSTEM

A1, A1, and CS may be connected to the address bus if permitted by system design.
TYPICAL APPLICATIONS (Cont'd)

NE590 DRIVING SIMPLE LOADS

NE590 OPERATING IN DEMULTIPLEX MODE
DESCRIPTION

The SA/NE594 is a display driver interface for vacuum fluorescent displays. The device is comprised of 8 drivers and a bias network and is capable of driving the digits and/or segments of most vacuum fluorescent displays.

The inputs are designed to be compatible with TTL, DTL, NMOS, PMOS or CMOS output circuitry.

There is an active pull-down circuit on each output so that display ghosting is minimized and no external components are required for most fluorescent display applications.

FEATURES

- Digit and/or segment drivers
- Active output pull-down circuitry
- High output breakdown voltage
- Low supply voltage
- Input compatible with all logic outputs

APPLICATIONS

- Digital clocks
- Dashboard displays
- Panel displays

ABSOLUTE MAXIMUM RATINGS (at 25°C unless otherwise noted)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>RATING</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>VCC</td>
<td>45</td>
<td>V</td>
</tr>
<tr>
<td>VOUT</td>
<td>VCC</td>
<td>V</td>
</tr>
<tr>
<td>VIN</td>
<td>-0.3, +20</td>
<td>mA</td>
</tr>
<tr>
<td>IOUT</td>
<td>50</td>
<td>mA</td>
</tr>
<tr>
<td>IOUT</td>
<td>200</td>
<td>mA</td>
</tr>
<tr>
<td>Pd</td>
<td>800</td>
<td>mW</td>
</tr>
<tr>
<td>Td</td>
<td>0 to 70</td>
<td>°C</td>
</tr>
<tr>
<td>TA</td>
<td>-65 to +150</td>
<td>°C</td>
</tr>
<tr>
<td>TJ</td>
<td>-165</td>
<td>°C</td>
</tr>
<tr>
<td>TSOLO</td>
<td>300</td>
<td>°C</td>
</tr>
</tbody>
</table>

NOTE

* Derate N (Plastic) Package above 38°C at 7.14 mW/°C.
  Derate F (Ceramic) Package above 75°C at 10.8 mW/°C.

EQUIVALENT SCHEMATIC
## DC ELECTRICAL CHARACTERISTICS

\( V_{CC} = +4.75 \text{ to } +40V, \ T_A (\text{NE}) = 0 \text{ to } 70^\circ C, \ T_A (\text{SA}) = -40 \text{ to } +85^\circ C \) unless otherwise stated.

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>LIMITS</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>( V_{CC} )</td>
<td>Supply voltage range</td>
<td>Min</td>
<td>Typ</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.75</td>
<td>35</td>
</tr>
<tr>
<td>( I_{CCCH} )</td>
<td>Supply current (all outputs high)</td>
<td>( V_{CC} = 40V )</td>
<td>( I_{IN} = 3.5V )</td>
</tr>
<tr>
<td>( I_{CCCL} )</td>
<td>Supply current (all outputs low)</td>
<td>( V_{CC} = 40V )</td>
<td>( I_{IN} = 0.4V )</td>
</tr>
<tr>
<td>( V_{IN} )</td>
<td>Input voltage range</td>
<td>Min</td>
<td>Typ</td>
</tr>
<tr>
<td>( V_{IH} )</td>
<td>Input voltage to ensure logic ‘1’</td>
<td>( V_{IN} = 2.6V )</td>
<td>0</td>
</tr>
<tr>
<td>( V_{IL} )</td>
<td>Input voltage to ensure logic ‘0’</td>
<td>( V_{IN} = 5.0V )</td>
<td>2.6</td>
</tr>
<tr>
<td>( I_{IH} )</td>
<td>Input current to ensure logic ‘1’</td>
<td>( V_{IN} = 15.0V )</td>
<td>0.8</td>
</tr>
<tr>
<td>( I_{IL} )</td>
<td>Input current to ensure logic ‘0’</td>
<td>( V_{IN} = 2.6V )</td>
<td>100</td>
</tr>
<tr>
<td>( I_{IN} )</td>
<td>Input current</td>
<td>( V_{IN} = 5.0V )</td>
<td>60</td>
</tr>
<tr>
<td>( V_{OH} )</td>
<td>Output high voltage</td>
<td>( V_{IN} = 3.5V )</td>
<td>180</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Min</td>
<td>Typ</td>
</tr>
<tr>
<td></td>
<td>( I_{OUT} = -25mA )</td>
<td>TA = 25(^\circ)C</td>
<td>V_{CC} -1.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Over Temp.</td>
<td>V_{CC} -2</td>
</tr>
<tr>
<td>( V_{OH} )</td>
<td>Output high, no load voltage</td>
<td>( V_{IN} = 3.5V )</td>
<td>V_{OH} with respect to ( V_{CC} )</td>
</tr>
<tr>
<td>( V_{OFF} )</td>
<td>Output ‘OFF’ voltage level</td>
<td>( V_{IN} = 0.8V )</td>
<td>10</td>
</tr>
<tr>
<td>( I_{OH} )</td>
<td>Available output current</td>
<td>( V_{CC} = 35V )</td>
<td>( V_{IN} = 3.5V )</td>
</tr>
<tr>
<td>( V_{OUT} )</td>
<td>Output pulldown current</td>
<td>( V_{CC} = V_{OUT} = 35V )</td>
<td>Inputs open</td>
</tr>
<tr>
<td>( I_{CEX} )</td>
<td>Output leakage current</td>
<td>( T_A = 25^\circ C )</td>
<td>( V_{IN} = 0.4V )</td>
</tr>
</tbody>
</table>

### AC ELECTRICAL CHARACTERISTICS

\( V_{CC} = 35V, \ T_A = 25^\circ C \)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>NE/SA594</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>( t_{PDLH} )</td>
<td>Propagation delay - low to high output transition.</td>
<td>Min</td>
<td>Typ</td>
</tr>
<tr>
<td>( t_{PDHL} )</td>
<td>Propagation delay - high to low output transition.</td>
<td>Min</td>
<td>Typ</td>
</tr>
<tr>
<td>( t_{R} )</td>
<td>Output rise time</td>
<td>( V_{OUT} ) = 90% ( V_{OUT} )</td>
<td>10% ( V_{OUT} ) to 90% ( V_{OUT} )</td>
</tr>
<tr>
<td>( t_{F} )</td>
<td>Output fall time</td>
<td>( V_{OUT} ) = 10% ( V_{OUT} )</td>
<td>90% ( V_{OUT} ) to 10% ( V_{OUT} )</td>
</tr>
</tbody>
</table>

**NOTE**

1. See figure 1
SWITCHING TIMES OF DRIVERS

VOLTAGE WAVEFORMS

TEST CIRCUIT

INCLUDES PROBE AND FIXTURE CAPACITANCE

TYPICAL PERFORMANCE CHARACTERISTICS

IN VS VIN

ICCH VS TEMPERATURE

OUTPUT VOLTAGE VS OUTPUT CURRENT

ICC VS VCC (ALL INPUTS HIGH)
TYPICAL APPLICATION
DIGITAL CLOCK WITH ALARM

Figure 2
DESCRIPTION
These high-voltage, high-current Darlington transistor arrays are comprised of seven silicon NPN Darlington pairs on a common monolithic substrate. All units feature open collector outputs and integral suppression diodes for inductive loads. Peak inrush currents to 600mA are allowable, making them ideal for driving tungsten filament lamps also.

The Type ULN2003 has a series base resistor to each Darlington pair, and thus allows operation directly with TTL or CMOS 5V supply voltage.

The Type ULN2004 has an appropriate series input resistor to allow its operation directly from CMOS or PMOS outputs utilizing supply voltages of 6 to 15V. The required input current is below that of the Type ULN2003.

In all cases, the individual Darlington pair collector current rating is 500mA. However, outputs may be paralleled for higher load current capability. All devices are supplied in a 16-pin dual in-line plastic package.

FEATURES
- Peak inrush current 600mA
- Protected internally against inductive loads
- Open collector topology
- Compatible with most logic technologies

ABSOLUTE MAXIMUM RATINGS at 25°C Free-Air temperature for any one Darlington pair unless otherwise specified.

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>RATING</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>VCE</td>
<td>50</td>
<td>V</td>
</tr>
<tr>
<td>VN</td>
<td>30</td>
<td>V</td>
</tr>
<tr>
<td>VCEO</td>
<td>6</td>
<td>V</td>
</tr>
<tr>
<td>Ic</td>
<td>500</td>
<td>mA</td>
</tr>
<tr>
<td>Ib</td>
<td>25</td>
<td>mA</td>
</tr>
<tr>
<td>PD</td>
<td>1.3</td>
<td>W</td>
</tr>
<tr>
<td>Derating factor above 25°C</td>
<td>95</td>
<td>°C/W</td>
</tr>
<tr>
<td>TA</td>
<td>0 to +65</td>
<td>°C</td>
</tr>
<tr>
<td>TS</td>
<td>-65 to +150</td>
<td>°C</td>
</tr>
</tbody>
</table>

*NOTE
Under normal operating conditions, these units will sustain 350mA per output with VCESAT = 1.6V at 70°C with a pulse width of 20 ms and a duty cycle of 30%.
### DC Electrical Characteristics

**Parameter**
- Output leakage current
- Collector-emitter Saturation voltage
- Input current
- Input voltage
- Input capacitance
- Clamp diode leakage current
- Clamp diode forward voltage

**Test Conditions**
- $V_{CE} = 50V, T_A = 70^\circ C$
- $V_{CE} = 50V, T_A = 70^\circ C, V_{IN} = 1V$
- $V_{IN} = 3.85V$
- $V_{IN} = 5V$
- $V_{IN} = 350mA, V_{R} = 50V$
- $V_{R} = 350mA$

**Limits**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Test Fig.</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>$I_{CEX}$</td>
<td>Output leakage current</td>
<td>1A</td>
<td>-</td>
<td>-</td>
<td>100</td>
<td>μA</td>
</tr>
<tr>
<td>Type ULN2004</td>
<td></td>
<td>1B</td>
<td>-</td>
<td>-</td>
<td>500</td>
<td>μA</td>
</tr>
<tr>
<td>$V_{CE(SAT)}$</td>
<td>Collector-emitter Saturation voltage</td>
<td>2</td>
<td>-</td>
<td>1.25</td>
<td>1.6</td>
<td>V</td>
</tr>
<tr>
<td>$I_C = 350mA, I_B = 500\mu A$</td>
<td></td>
<td>2</td>
<td>-</td>
<td>1.1</td>
<td>1.3</td>
<td>V</td>
</tr>
<tr>
<td>$I_C = 200mA, I_B = 350\mu A$</td>
<td></td>
<td>2</td>
<td>-</td>
<td>0.9</td>
<td>1.1</td>
<td>V</td>
</tr>
<tr>
<td>$I_C = 100mA, I_B = 250\mu A$</td>
<td></td>
<td>2</td>
<td>-</td>
<td>1.3</td>
<td>1.6</td>
<td>V</td>
</tr>
<tr>
<td>$I_{IN(ON)}$</td>
<td>Input current</td>
<td>3</td>
<td>-</td>
<td>0.93</td>
<td>1.35</td>
<td>mA</td>
</tr>
<tr>
<td>Type ULN2003</td>
<td></td>
<td>3</td>
<td>-</td>
<td>0.35</td>
<td>0.5</td>
<td>mA</td>
</tr>
<tr>
<td>Type ULN2004</td>
<td></td>
<td>3</td>
<td>-</td>
<td>1.0</td>
<td>1.45</td>
<td>mA</td>
</tr>
<tr>
<td>$I_{IN(OFF)}$</td>
<td>Input current</td>
<td>4</td>
<td>50</td>
<td>65</td>
<td>-</td>
<td>μA</td>
</tr>
<tr>
<td>$I_C = 500\mu A, T_A = 70^\circ C$</td>
<td></td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>μA</td>
</tr>
<tr>
<td>$V_{IN(ON)}$</td>
<td>Input voltage</td>
<td>5</td>
<td>-</td>
<td>2.4</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Type ULN2003</td>
<td></td>
<td>5</td>
<td>-</td>
<td>2.7</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Type ULN2004</td>
<td></td>
<td>5</td>
<td>-</td>
<td>3.0</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>$C_I$</td>
<td>Input capacitance</td>
<td>-</td>
<td>-</td>
<td>15</td>
<td>30</td>
<td>pF</td>
</tr>
<tr>
<td>$I_{R}$</td>
<td>Clamp diode leakage current</td>
<td>6</td>
<td>-</td>
<td>50</td>
<td>μA</td>
<td></td>
</tr>
<tr>
<td>$V_{F}$</td>
<td>Clamp diode forward voltage</td>
<td>7</td>
<td>1.7</td>
<td>2</td>
<td>V</td>
<td></td>
</tr>
</tbody>
</table>

**Notes**
1. All limits stated apply to the complete Darlington series except as specified for a single device type.
2. The $I_{IN(OFF)}$ current limit guarantees against partial turn-on of the output.
3. The $V_{IN(ON)}$ voltage limit guarantees a minimum output sink current per the specified test conditions.

### AC Electrical Characteristics

**Parameter**
- Turn-on delay
- Turn-off delay

**Test Conditions**
- $0.5 E_{IN}$ to $0.5 E_{OUT}$

**Limits**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Test Fig.</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>$t_{PLH}$</td>
<td>Turn-on delay</td>
<td>-</td>
<td>1.0</td>
<td>5</td>
<td>μS</td>
<td></td>
</tr>
<tr>
<td>$t_{PHL}$</td>
<td>Turn-off delay</td>
<td>-</td>
<td>1.0</td>
<td>5</td>
<td>μS</td>
<td></td>
</tr>
</tbody>
</table>

**Notes**
1. All limits stated apply to the complete Darlington series except as specified for a single device type.
2. The $I_{IN(OFF)}$ current limit guarantees against partial turn-on of the output.
3. The $V_{IN(ON)}$ voltage limit guarantees a minimum output sink current per the specified test conditions.
TYPICAL PERFORMANCE CHARACTERISTICS

COLLECTOR CURRENT AS A FUNCTION OF SATURATION VOLTAGE

COLLECTOR CURRENT AS A FUNCTION OF INPUT CURRENT

ALLOWABLE AVERAGE PACKAGE POWER DISSIPATION AS A FUNCTION OF AMBIENT TEMPERATURE

INPUT CURRENT AS A FUNCTION OF INPUT VOLTAGE FOR TYPE ULN2003

INPUT CURRENT AS A FUNCTION OF INPUT VOLTAGE FOR TYPE ULN2004

TEST FIGURES

Figure 1A

Figure 1B

Figure 2
TEST FIGURES (Cont’d)

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

TYPICAL APPLICATIONS

TTL TO LOAD
ULN2003

BUFFER FOR HIGHER CURRENT LOADS
ULN2004
DESCRIPTION

The NE5520 is a signal conditioning circuit for use with Linear Variable Differential Transformers (LVDT). The chip includes a low distortion amplitude stable sine wave oscillator with programmable frequency to drive the primary of the LVDT; a synchronous demodulator to convert the LVDT output amplitude and phase to position information; and an output amp to provide gain and filtering.

FEATURES

- Oscillator frequency: 1kHz to 20kHz
- Low distortion
- Capable of ratiometric operation
- Single supply operation 5V to 20V or dual supply ±2.5V to ±10V
- Low power consumption

APPLICATIONS

- LVDT signal conditioning
- RVDT signal conditioning

ABSOLUTE MAXIMUM RATINGS

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>RATING</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltage</td>
<td>+ 20</td>
<td>V</td>
</tr>
<tr>
<td>Split supply voltage</td>
<td>± 10</td>
<td>V</td>
</tr>
<tr>
<td>Operating temperature range</td>
<td>0 to +70</td>
<td>°C</td>
</tr>
<tr>
<td>Storage temperature range</td>
<td>- 65 to + 165</td>
<td>°C</td>
</tr>
<tr>
<td>Power Dissipation (Note 1)</td>
<td>840</td>
<td>mW</td>
</tr>
</tbody>
</table>

NOTES:
1. Supplied only in D1, F package. See package diagram.
2. Pin numbers are for N package.
3. SOL and non-standard pinouts.

BLOCK DIAGRAM
## DC ELECTRICAL CHARACTERISTICS

$T_A = 25^\circ C, V_R = V_+ = 10V$ unless otherwise specified.

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>NE5520</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply current</td>
<td>Over temp.</td>
<td>7.0</td>
<td>10 mA</td>
</tr>
<tr>
<td>Reference current</td>
<td>Over temp.</td>
<td>5.5</td>
<td>10 mA</td>
</tr>
<tr>
<td>Reference voltage range</td>
<td>Over temp.</td>
<td>V+</td>
<td>V</td>
</tr>
<tr>
<td>Power dissipation</td>
<td></td>
<td>120</td>
<td>220 mW</td>
</tr>
</tbody>
</table>

### Oscillator section

- Oscillator output: $V_R/8.7$ Vrms
- Sine wave distortion: 4%
- Initial amplitude error: ±3%
- Tempco of amplitude: 0.05 %/°C
- Voltage coef. of amplitude error: 2.5 %/V
- Initial accuracy of osc. frequency: 20%
- Tempco of frequency error: 0.05 %/°C
- Voltage coef. of frequency: 2.5 %/V
- Oscillator output load current: Over temp. 8 mA (rms)

### Demodulator section

- Linearity error: Over temp. 0.05 0.1 %
- Maximum demodulator input: $V_R/2 - 0.5$ V
- Demodulator offset voltage: Over temp. range 65 mV
- Demodulator input current: Over temp. range -1000 -300 nA
- $V_R/2$ accuracy: Over temp. ±0.5 %

### Auxiliary Output Amplifier

- Input offset voltage: Over temp. -10 10 mA
- Input bias current: Over temp. range -500 300 nA
- Input offset current: -100 100 nA
- Gain: $R_L = 10k\Omega$ over temp. 100 V/mV
- Slew rate: 1.5 V/µsec
- Gain bandwidth: $A_v = 1$ 1 MHz
- Output voltage swing: $R_L = 10K$ over temp. V+ -1.5
- Output short circuit current: 50 mA

**NOTE**

Rating applies to ambient temperatures up to 70°C. Above 70°C derate linearly at 7.6mW/°C for the plastic package and 7.3mW/°C for the cerdip package.
TYPICAL PERFORMANCE CHARACTERISTICS

- **I_n AND I^+ vs TEMPERATURE**
- **I_n AND I^+ vs VOLTAGE**
- **F₀ vs C_{TC}**
- **DEMODULATOR OFFSET vs TEMPERATURE (NORMALIZED TO 25°C)**
- **DISTORTION OF SINE WAVE vs REFERENCE VOLTAGE**
- **OSCILLATOR AMPLITUDE VARIATION WITH TEMPERATURE**

---

**Notes:**
- **F₀ = V_B = 10V**
- **TYP: F = 110**
- **C(-F)***
- **V_B = 5V**
- **V_B = 10V**
- **V_B = 20V**
TYPICAL SINGLE SUPPLY LVDT CIRCUIT

For additional information, refer to the Applications Section.
SAMPLE AND HOLD CIRCUITS—SYMBOLS AND DEFINITIONS

**Acquisition Time**
The time required to acquire a new analog input voltage with an output step of 10V. Note that acquisition time is not just the time required for the output to settle, but also includes the time required for all internal nodes to settle so that the output assumes the proper value when switched to the hold mode.

**Aperture Delay Time**
The time elapsed from the hold command to the opening of the switch.

**Aperture Jitter**
Also called “aperture uncertainty time”, it’s the time variation or uncertainty with which the switch opens, or the time variation in aperture delay.

**Aperture Time**
The delay required between “hold” command and an input analog transition, so that the transition does not affect the hold output.

**Dynamic Sampling Error**
The error introduced into the held output due to a changing analog input at the time the hold command is given. Error is expressed in mV with a given hold capacitor value and input slew rate. Note that this error term occurs even for long sample times.

**Effective Aperture Delay**
The time difference between the hold command and the time at which the input signal is at the held voltage.

**Figure Of Merit**
The ratio of the available charging current during sample mode to the leakage current during hold mode.

**Gain Error**
The ratio of output voltage swing to input voltage swing in the sample mode expressed as a percent difference.

**Hold-Mode Droop**
The output voltage change per unit of time while in hold. Commonly specified in V/s, μV/μs or other convenient units.

**Hold-Mode Feed Through**
This percentage of an input sinusoidal signal that is measured at the output of a sample-hold when it’s in hold mode.

**Hold Settling Time**
The time required for the output to settle within 1mV of final value after the “hold” logic command.

**Hold Step**
The voltage step at the output of the sample and hold when switching from sample mode to hold mode with a steady (dc) analog input voltage. Logic swing is 5V.

**Sample-To-Hold Offset Error**
The difference in output voltage between the time the switch starts to open, and the time when the output has settled completely. It is caused by charge being transferred to the hold capacitor switch as it opens.

**Slew Rate**
The fastest rate at which the sample & hold output can change (specified in V/μs).

**Threshold**
Level shall be defined as that level which causes the switch control to change state.
DESCRIPTION

The Signetics LF198/LF298/LF398 are monolithic sample and hold circuits which utilize high-voltage ion implant JFET technology to obtain ultra-high DC accuracy with fast acquisition of signal and low droop rate. Operating as a unity gain follower, DC gain accuracy is 0.002% typical and acquisition time is as low as 6µs to 0.01%. A bipolar input stage is used to achieve low offset voltage and wide bandwidth. Input offset adjust is accomplished with a single pin and does not degrade input offset drift. The wide bandwidth allows the LF198 to be included inside the feedback loop of 1MHz op amps without having stability problems. Input impedance of 10^10 allows high source impedances to be used without degrading accuracy.

P-channel junction FET's are combined with bipolar devices in the output amplifier to give droop rates as low as 5mV/min with a 1µF hold capacitor. The JFET's have much lower noise than MOS devices used in previous designs and do not exhibit high temperature instabilities. The overall design guarantees no feedback from input to output in the hold mode even for input signals equal to the supply voltages.

Logic inputs are fully differential with low input current, allowing direct connection to TTL, PMOS, and CMOS. Differential threshold is 1.4V. The LF198/LF298/LF398 will operate from ±5V to ±18V supplies. They are available in an 8-lead TO-5 package, or an 8-pin plastic DIP.

FEATURES

- Operates from ±5V to ±18V supplies
- Less than 10µs acquisition time
- TTL, PMOS, CMOS compatible logic input
- 0.5mV typical hold step at C_h = 0.01µF
- Low input offset
- 0.002% gain accuracy
- Low output noise in hold mode
- Input characteristics do not change during hold mode
- High supply rejection ratio in sample or hold
- Wide bandwidth

APPLICATIONS

- The LF198/LF298/LF398 are ideally suited for a wide variety of sample and hold applications including data acquisition, analog-to-digital conversion, synchronous demodulation, and automatic test setup.

FUNCTIONAL DIAGRAM

TYPICAL APPLICATIONS

NOTES:
1. SOL - Released in Large SO package only.
2. SOL and non-standard pinout.
3. SO and non-standard pinouts.
# Absolute Maximum Ratings

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>RATING</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltage</td>
<td>±18 V</td>
<td></td>
</tr>
<tr>
<td>Power dissipation (package limitation)(^1)</td>
<td>500 mW</td>
<td></td>
</tr>
<tr>
<td>Operating ambient temperature range</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LF198</td>
<td>-55 to +125 °C</td>
<td></td>
</tr>
<tr>
<td>LF298</td>
<td>-25 to +85 °C</td>
<td></td>
</tr>
<tr>
<td>LF398</td>
<td>0 to +70 °C</td>
<td></td>
</tr>
<tr>
<td>Storage temperature range</td>
<td>-65 to +150 °C</td>
<td></td>
</tr>
<tr>
<td>Input voltage</td>
<td>Equal to supply voltage</td>
<td></td>
</tr>
<tr>
<td>Logic to logic reference differential voltage(^2)</td>
<td>+7, -30 V</td>
<td></td>
</tr>
<tr>
<td>Output short circuit duration</td>
<td>Indefinite</td>
<td></td>
</tr>
<tr>
<td>Hold capacitor short circuit duration</td>
<td>10 sec</td>
<td></td>
</tr>
<tr>
<td>Lead temperature (soldering, 10sec)</td>
<td>300 °C</td>
<td></td>
</tr>
</tbody>
</table>

## DC Electrical Characteristics

Unless otherwise specified, the following conditions apply. Unit is in “sample” mode, \( V_0 = \pm 15\text{V}, T_j = 25°C, -11.15 \leq V_{IN} \leq +11.5\text{V}, C_h = 0.01\mu F, \) and \( R_L = 10k\Omega \). Logic reference voltage = 0V and logic voltage = 2.5V.

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>LF198/LF298</th>
<th>LF398</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input offset voltage(^6)</td>
<td>( T_j = 25°C )</td>
<td>Min</td>
<td>Typ</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Input bias current(^6)</td>
<td>( T_j = 25°C )</td>
<td>5</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>Full temperature range</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input impedance</td>
<td>( T_j = 25°C )</td>
<td>10(^{10})</td>
<td>10(^{10})</td>
</tr>
<tr>
<td>Gain error</td>
<td>( T_j = 25°C, R_L = 10K )</td>
<td>86</td>
<td>96</td>
</tr>
<tr>
<td>Feedthrough attenuation ratio at 1kHz</td>
<td>( T_j = 25°C, C_h = 0.01\mu F )</td>
<td>0.5</td>
<td>2</td>
</tr>
<tr>
<td>Output impedance</td>
<td>( T_j = 25°C )</td>
<td>5.5</td>
<td>4.5</td>
</tr>
<tr>
<td>&quot;HOLD&quot; step(^4)</td>
<td>( T_j = 25°C, C_h = 0.01\mu F, V_{OUT} = 0 )</td>
<td>0.5</td>
<td>2</td>
</tr>
<tr>
<td>Supply current(^6)</td>
<td>( T_j = 25°C )</td>
<td>10</td>
<td>5.5</td>
</tr>
<tr>
<td>Logic and logic reference input current</td>
<td>( T_j = 25°C )</td>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>Leakage current into hold capacitor(^8)</td>
<td>( T_j = 25°C )</td>
<td>30</td>
<td>100</td>
</tr>
<tr>
<td>Acquisition time to 0.1%</td>
<td>( \Delta V_{OUT} = 10V, C_n = 1000\mu F )</td>
<td>4</td>
<td>20</td>
</tr>
<tr>
<td>Hold capacitor charging current</td>
<td>( V_{IN} - V_{OUT} = 2V )</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Supply voltage rejection ratio</td>
<td>( V_{OUT} = 0 )</td>
<td>80</td>
<td>110</td>
</tr>
<tr>
<td>Differential logic threshold</td>
<td>( T_j = 25°C )</td>
<td>0.8</td>
<td>1.4</td>
</tr>
</tbody>
</table>

## Notes

1. The maximum junction temperature of the LF398 is 115°C. When operating at elevated ambient temperature, the TO-5 and plastic DIP packages must be derated based on a thermal resistance (R\(_{jA}\)) of 150°C/W.
2. Although the differential voltage may not exceed the limits given, the common-mode voltage on the logic pins may be equal to the supply voltages without causing damage to the circuit. For proper logic operation, however, one of the logic pins must always be at least 2V below the positive supply and 3V above the negative supply.
3. Unless otherwise specified, the following conditions apply. Unit is in “sample” mode, \( V_0 = \pm 15\text{V}, T_j = 25°C, -11.15 \leq V_{IN} \leq +11.5\text{V}, C_h = 0.01\mu F, \) and \( R_L = 10k\Omega \). Logic reference voltage = 0V and logic voltage = 2.5V.
4. Hold step is sensitive to stray capacitive coupling between input logic signals and the hold capacitor. A 1pF, for instance, will create an additional 0.5mV step with a 5V logic swing and a 0.01\mu F hold capacitor. Magnitude of the hold step is inversely proportional to hold capacitor value.
5. Leakage current is measured at a junction temperature of 25°C. The effects of junction temperature rise due to power dissipation or elevated ambient can be calculated by doubling the 25°C value for each 11°C increase in chip temperature. Leakage is guaranteed over full input signal range.
6. The parameters guaranteed over a supply voltage of \( \pm 5 \) to \( \pm 18\text{V} \).
TYPICAL DC PERFORMANCE CHARACTERISTICS

- **INPUT BIAS CURRENT**
  - Junction Temperature vs. Current graph

- **OUTPUT SHORT CIRCUIT CURRENT**
  - Junction Temperature vs. Current graph

- **GAIN ERROR**
  - Input Voltage vs. Gain graph

- **HOLD STEP**
  - Junction Temperature vs. Hold Step graph

- **LEAKAGE CURRENT INTO HOLD CAPACITOR**
  - Junction Temperature vs. Current graph

- **HOLD STEP INPUT VOLTAGE**
  - Junction Temperature vs. Input Voltage graph

TYPICAL AC PERFORMANCE CHARACTERISTICS

- **ACQUISITION TIME**
  - Hold Capacitor vs. Time graph

- **APERTURE TIME**
  - Junction Temperature vs. Time graph

- **CAPACITOR HYSTERESIS**
  - Sample Time vs. Final Sig graph
TYPICAL AC PERFORMANCE CHARACTERISTICS (cont'd)

**DYNAMIC SAMPLING ERROR**

**OUTPUT DROOP RATE**

**“HOLD” SETTLING TIME**

**PHASE AND GAIN**

**POWER SUPPLY REJECTION**

**OUTPUT NOISE**

**FEEDTHROUGH REJECTION RATIO**

**INPUT TO OUTPUT, SMALL SIGNAL**
DESCRIPTION
The NE5537 monolithic Sample and Hold amplifier combines the best features of ion implanted JFETs with bipolar devices to obtain high accuracy, fast acquisition time, and low droop rate. This device is pin compatible with the LF198, and features superior performance in droop rate and output drive capability. The circuit shown in Figure 1 contains two operational amplifiers which function as a unity gain amplifier in the Sample mode. The first amplifier has bipolar input transistors which gives the system a low offset voltage. The second amplifier has JFET input transistors to achieve low leakage current from the hold capacitor. A unique circuit design for leakage current cancellation using current mirrors gives the NE5537 a low droop rate at higher temperature. The output stage has the capability to drive a 2kΩ load. The logic input is compatible with TTL, PMOS or CMOS logic. The differential logic threshold is 1.4V with the Sample mode occurring when the logic input is high. It is available in 8-lead TO-5 and 8-pin plastic DIP packages.

FEATURES
- Operates from ±5V to ±18V supplies
- Hold leakage current 6pA @ TJ=25°C
- Less than 4µs acquisition time
- TTL, PMOS, CMOS compatible logic input
- 0.5mV typical hold step at CH = 0.01µF
- Low input offset: 1MV (typical)
- 0.002% gain accuracy with RL = 2kΩ
- Low output noise in hold mode
- Input characteristics do not change during hold mode
- High supply rejection ratio in sample or hold
- Wide bandwidth

ABSOLUTE MAXIMUM RATINGS

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>RATING</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltage</td>
<td>±18</td>
<td>V</td>
</tr>
<tr>
<td>Power dissipation (package limitation)¹</td>
<td>500</td>
<td>mW</td>
</tr>
<tr>
<td>Operating ambient temperature range</td>
<td>-55 to +125</td>
<td>°C</td>
</tr>
<tr>
<td></td>
<td>0 to +70</td>
<td>°C</td>
</tr>
<tr>
<td>Storage temperature range</td>
<td>-65 to +150</td>
<td>°C</td>
</tr>
<tr>
<td>Input voltage</td>
<td>Equal to supply voltage</td>
<td></td>
</tr>
<tr>
<td>Logic to logic reference differential voltage²</td>
<td>+7, -30</td>
<td>V</td>
</tr>
<tr>
<td>Output short circuit duration</td>
<td>Indefinite</td>
<td></td>
</tr>
<tr>
<td>Hold capacitor short circuit duration</td>
<td>10</td>
<td>sec</td>
</tr>
<tr>
<td>Lead temperature (soldering, 10sec)</td>
<td>300</td>
<td>°C</td>
</tr>
</tbody>
</table>

NOTES
1. The maximum junction temperature of the SE5537 is 150°C and for the NE5537 is 100°C. When operating at elevated ambient temperature, the TO-5 and plastic DIP packages must be derated based on a thermal resistance (θ) of 150°C/W.
2. Although the differential voltage may not exceed the limits given, the common mode voltage on the logic pins may be equal to the supply voltages without causing damage to the circuit. For proper logic operation, however, one of the logic pins must always be at least 2V below the positive supply and 3V above the negative supply.

BLOCK DIAGRAM

![Block Diagram](image-url)
**ELECTRICAL CHARACTERISTICS**

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>SE5537</th>
<th>NE5537</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Input offset voltage</strong></td>
<td>$T_J = 25°C$</td>
<td>1</td>
<td>2</td>
<td>mV</td>
</tr>
<tr>
<td></td>
<td>Full temperature range</td>
<td>3</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td><strong>Input bias current</strong></td>
<td>$T_J = 25°C$</td>
<td>5</td>
<td>10</td>
<td>nA</td>
</tr>
<tr>
<td></td>
<td>Full temperature range</td>
<td>25</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>75</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td><strong>Input impedance</strong></td>
<td>$T_J = 25°C$</td>
<td></td>
<td></td>
<td>Ω</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Gain error</strong></td>
<td>$T_J = 25°C$</td>
<td>0.002</td>
<td>0.004</td>
<td>%</td>
</tr>
<tr>
<td></td>
<td>$-10V \leq V_{IN} \leq 10V, R_L = 2K$</td>
<td>0.007</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$-11.5V \leq V_{IN} \leq 11.5V,$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$R_L = 10K$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Full temperature range</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.02</td>
<td>0.02</td>
<td>%</td>
</tr>
<tr>
<td><strong>Feedthrough attenuation ratio at 1kHz</strong></td>
<td>$T_J = 25°C, C_H = 0.01\mu F$</td>
<td>86</td>
<td>96</td>
<td>dB</td>
</tr>
<tr>
<td></td>
<td></td>
<td>80</td>
<td>90</td>
<td></td>
</tr>
<tr>
<td><strong>Output impedance</strong></td>
<td>$T_J = 25°C, &quot;HOLD&quot; mode$</td>
<td>0.5</td>
<td>0.5</td>
<td>Ω</td>
</tr>
<tr>
<td></td>
<td>Full temperature range</td>
<td>2</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td><strong>&quot;HOLD&quot; Step</strong></td>
<td>$T_J = 25°C, C_H = 0.01\mu F, V_{OUT} = 0$</td>
<td>0.5</td>
<td>1.0</td>
<td>mV</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>2.5</td>
<td></td>
</tr>
<tr>
<td><strong>Supply current</strong></td>
<td>$T_J = 25°C$</td>
<td>4.5</td>
<td>4.5</td>
<td>mA</td>
</tr>
<tr>
<td><strong>Logic and logic reference</strong></td>
<td></td>
<td>6.5</td>
<td>7.5</td>
<td></td>
</tr>
<tr>
<td><strong>input current</strong></td>
<td></td>
<td>4</td>
<td>5</td>
<td>μA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td><strong>Leakage current into hold capacitor</strong></td>
<td>$T_J = 25°C hold mode$</td>
<td>6</td>
<td>6</td>
<td>pA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>50</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td><strong>Acquisition time to 0.1%</strong></td>
<td>$V_{OUT} = 10V, C_H = 1000pF$</td>
<td>4</td>
<td>4</td>
<td>μs</td>
</tr>
<tr>
<td></td>
<td>$C_H = 0.01\mu F$</td>
<td>20</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td><strong>Hold capacitor charging current</strong></td>
<td>$V_{IN} - V_{OUT} = 2V$</td>
<td>5</td>
<td>5</td>
<td>mA</td>
</tr>
<tr>
<td><strong>Supply voltage rejection ratio</strong></td>
<td>$V_{OUT} = 0$</td>
<td>80</td>
<td>110</td>
<td>dB</td>
</tr>
<tr>
<td></td>
<td></td>
<td>80</td>
<td>110</td>
<td></td>
</tr>
<tr>
<td><strong>Differential logic threshold</strong></td>
<td>$T_J = 25°C$</td>
<td>0.8</td>
<td>0.8</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.4</td>
<td>1.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.4</td>
<td>2.4</td>
<td></td>
</tr>
</tbody>
</table>

**NOTES**

3. Unless otherwise specified, the following conditions apply. Unit is in "sample" mode, $V_S = \pm 15V, T_J = 25°C, -11.5V \leq V_{IN} \leq 11.5V, C_H = 0.01\mu F$, and $R_L = 2k\Omega$. Logic reference voltage = 0V and logic voltage = 2.5V.

4. Hold step is sensitive to stray capacitive coupling between input logic signals and the hold capacitor. For instance, will create an additional 0.5mV step with a 6V logic swing and a 0.01F hold capacitor. Magnitude of the hold step is inversely proportional to hold capacitor value.

5. Leakage current is measured at a junction temperature of 25°C. The effects of junction temperature rise due to power dissipation or elevated ambient can be calculated by doubling the 25°C value for each 1°C increase in chip temperature. Leakage is guaranteed over full input signal range.

6. These parameters guaranteed over a supply voltage range of ±6 to ±18V.

**TYPICAL PERFORMANCE CHARACTERISTICS**

**INPUT BIAS CURRENT**

![Input Bias Current Graph](image1)

**OUTPUT SHORT CIRCUIT CURRENT**

![Output Short Circuit Current Graph](image2)

4-184
TYPICAL PERFORMANCE CHARACTERISTICS (Cont’d.)

GAIN ERROR

HOLD STEP

LEAKAGE CURRENT INTO HOLD CAPACITOR

HOLD STEP vs INPUT VOLTAGE

ACQUISITION TIME

APERTURE TIME

CAPACITOR HYSTERESIS

DYNAMIC SAMPLING ERROR

OUTPUT DROOP RATE
SAMPLE AND HOLD AMPLIFIER

TYPICAL PERFORMANCE CHARACTERISTICS (Cont'd)

**"HOLD" SETTLING TIME**

```
JUNCTION TEMPERATURE (°C)
```

**PHASE AND GAIN (INPUT TO OUTPUT, SMALL SIGNAL)**

```
FREQUENCY (Hz)
```

**POWER SUPPLY REJECTION**

```
FREQUENCY (Hz)
```

**OUTPUT NOISE**

```
FREQUENCY (Hz)
```

**FEEDTHROUGH REJECTION RATIO (HOLD MODE)**

```
FREQUENCY (Hz)
```

SAMPLE AND HOLD

**INTRODUCTION**

For many years designers have used the sample and hold (or track and hold) to operate on analog information in a time frame which is expedient.

By sampling a segment of the information and holding it until the proper timing for converting to some form of control signal or readout allows the designer certain freedom in performing predetermined manipulative functions. Therefore, the sample and hold can be defined as a "selective analog memory cell".

The memory is volatile and will also decay with time.

When using the sample and hold method for evaluating signal information, the designer is given the added feature of eliminating outside noise elements. With the analog to digital converter products available today the "dc memory" of the sample and hold can be easily converted to digital format and further incorporated into microprocessor based systems.

Parametric evaluation of the sample and hold will be discussed in the following paragraphs.

**DEFINITION OF TERMS**

**ACQUISITION TIME:** The time required to acquire a new analog input voltage with an output step of 10V. Note that acquisition time is not just the time required for the output to settle, but also includes the time required for all internal nodes to settle so that the output assumes the proper value when switched to the hold mode.

**APERTURE DELAY TIME:** The time between "hold" command and an input analog transition, so that the transition does not affect the hold output.

**BANDWIDTH:** The frequency at which the gain is down 3dB from its dc value. It’s measured in sample (track) mode with a small-signal sine wave that doesn’t exceed the slew rate limit.

**EFFECTIVE APERTURE DELAY:** The time difference between the hold command and the time at which the input signal is at the held voltage.

**FIGURE OF MERIT:** The ratio of the available charging current during sample mode to the leakage current during hold mode.

**HOLD-MODE DROOP:** The output voltage change per unit of time while in hold. Commonly specified in V/s, µV/µs or other convenient units.

**HOLD-MODE FEEDTHROUGH:** The percentage of an input sinusoidal signal that is measured at the output of a sample-hold when it’s in hold mode.

**HOLD SETTLING TIME:** The time required for the output to settle within 1mV of final value after the "hold" logic command.

**SAMPLE-TO-HOLD OFFSET ERROR:** The difference in output voltage between the sample & hold output can change (specified in V/µs).

**SLEW RATE:** The fastest rate at which the sample & hold output can change (specified in V/µs).

**HOLD STEP:** The voltage step at the output of the sample and hold when switching from sample mode to hold mode with a steady (dc) analog input voltage. Logic swing is 5V.
LINEAR LSI PRODUCTS

SAMPLE AND HOLD AMPLIFIER

SE/NE5537

DYNAMIC SAMPLING ERROR: The error introduced into the held output due to a changing analog input at the time the hold command is given. Error is expressed in mV with a given hold capacitor value and input slew rate. Note that this error term occurs even for long sample times.

GAIN ERROR: The ratio of output voltage swing to input voltage swing in the sample mode expressed as a percent difference.

THRESHOLD: Level shall be defined as that level which causes the switch control to change state.

BASIC BLOCK DIAGRAM

The basic circuit concept of the sample and hold circuit incorporates the use of two (2) operational amplifiers and a switch control mechanism (which determines sample, hold or track conditions). Reference figure 1.

The block diagram of the NE5537 is a closed loop non-inverting unity gain sample and hold system. The input buffer amplifier supplies the current necessary to charge the hold capacitor, while the output buffer amplifier closes the loop such that the output voltage is identical to the input voltage (with consideration for input offset voltage, offset current, and temperature variations which are common to all sample and hold circuits, be they monolithic, hybrid or modular).

When the sampling switch is open (in the hold mode) the clamping diodes close the loop around the input amplifier to keep it from being overdriven into saturation.

The switch control is driven by external logic levels via a timing sequence remote from the sample and hold device. Reference figure 2. The switch control has a floating reference (pin 7), referred to as the logic reference which makes the sample and hold device compatible to several types of external logic signals (TTL, PMOS, & CMOS). The switching device operates at a threshold level of 1.4V.

The switch mechanism is on (sampling an information stream) when the logic level is high (pin 8 is 1.4 volts higher than pin 7) and presents a load of 5 microamperes to the input logic signal. The analog sampled signal is amplified, stored (in the external holding capacitor), and buffered. At the end of the sampling period the internal switch mechanism turns off (switch opens) and the "stored analog memory" information on the external capacitor (pin 6) is loaded down by an operational amplifier connected in the unity gain non-inverting configuration. This amplifier, whose input impedance is effectively:

\[ R = \frac{R_{IN}}{(1 + 1/A)} \]

where \( R \) = Effective input impedance
\( R_{IN} \) = Open loop input impedance
\( A_{OL} \) = Open loop gain
\( A \) = AC loop gain

Therefore, the higher the open loop gain of the second operational amplifier, the larger the effective loading on the capacitor. The larger the load, the lower the "leakage" current and the better the droop characteristics.

In actuality the amplifiers are designed with special leakage current cancellation circuits along with FET input devices. The leakage current cancellation circuits give better high temperature operation (remember that the FET amplifiers double in required bias current for every 10 degree increase in junction temperature).

Sampling time for the NE5537 is less than 10μsec. (measured to 0.1% of input signal). Leakage current is 6pA at a rate output load of 2kΩ.

BASIC APPLICATIONS

MULTIPLYING DAC

As depicted in the block diagram of figure 3, the sample and hold circuit is used to supply a "variable" reference to the digital to analog converter. As the input reference varies, the output will change in accordance with equation 1, shown in figure 3.

Varying the input signal reference level can aid the system in performing both compression and expansion operations. The multiplying DAC's used are the Signetics SE/NE5008; however, if the rate of change of the reference variation is kept slow enough a microprocessor compatible DAC can be incorporated, such as the NE5018 or the NE5020.

DATA ACQUISITION SYSTEMS

As mentioned earlier, the designer may wish to operate on several different segments of an "analog" signal; however he is limited by the fact that only one analog to digital converter channel is available to him. Figure 4 shows the means by which a multiplexing system may be accomplished.

APPLICATION HINTS

HOLD CAPACITOR

A significant source of error in an accurate sample and hold circuit is dielectric absorption in the hold capacitor. A mylar cap, for instance, may "sag back" up to 0.2% after a quick change in voltage. A long "soak" time is required before the circuit can be put back into the hold mode with this type of capacitor. Dielectrics with very low hysteresis are polystyrene, polypropylene, and Teflon. Other types such as mica and polycarbonate are not nearly as good. Ceramic is unusable with >1% hysteresis. The advantage of polypropylene over polystyrene is that it extends the maximum ambient temperature from 85°C to 100°C. The hysteresis relaxation time constant in polystyrene, for instance, is 10-50ms. If A-to-D conversion can be made within 1ms, hysteresis error will be reduced by a factor of ten.

DC ZEROING

DC Zeroing is accomplished by connecting the offset adjust pin to the wiper of a 1kΩ potentiometer which has one end tied to V+ and the other end tied through a resistor to ground. The resistor should be selected to give ≈0.6mA through the 1kΩ potentiometer.

Sampling Dynamic Signals

Sampling errors due to changing input signals are of significant concern to designers employing sample and hold circuits. There exist finite phase delays through the sample and hold circuit causing an input-output phase differential for moving signals. In addition, the series protection resistor (3000Ω to pin 6 of the NE5537) will add an RC time constant, over and above the slew rate limitation of the input buffer/current drive amplifier. This means that at the moment the "hold" command arrives, the hold capacitor voltage may be somewhat different than the actual analog input. The effect of these delays is opposite to the effect created by delays in the logic which switches the circuit from sample to hold. For example, consider an analog input of 20 Vp-p at 10kHz. Maximum dV/dt is 0.6V/μs. With no analog phase delay and 100ns logic delay, one could expect up to (0.1μs)(0.6V/μs) = 60mV error if the "hold" signal arrived near maximum dV/dt of the input. A positive going input would give a ±60mV error. Now assume a 1MHz (3dB) bandwidth for the overall analog loop. This generates a phase delay of 160ns. If the hold capacitor sees this exact delay, then error due to analog delay will be (0.16μs)(0.6V/μs) = -96mV (analog) for a total of -360mV. To add to the confusion, analog delay is proportional to hold capacitor value while digital delay remains constant. A family of curves (dynamic sampling error) is included to help estimate errors.
A curve labeled *Aperture Time* has been included for sampling conditions where the input is steady during the sampling period, but may experience a sudden change nearly coincident with the “hold” command. This curve is based on a 1mV error fed into the output.

A second curve, *Hold Settling Time* indicates the time required for the output to settle to 1mV after the “hold” command.

**Digital Feedthrough**
Fast rise time logic signals can cause hold errors by feeding externally into the analog input at the same time the amplifier is put into the hold mode. To minimize this problem, board layout should keep logic lines as far as possible from the analog input. Grounded guarding traces may also be used around the input line, especially if it is driven from a high impedance source. Reducing high amplitude logic signals to 2.5V will also help.

Logic signals also couple to the hold capacitor. This hold capacitor should be guarded by a P.C. card trace connected to the sample-and-hold output. This will also minimize board leakage.

**SPECIAL NOTES**
1. Not all definitions herein defined are measured parametrically for the NE5537, but are legitimate terms used in sample and hold systems.
2. Reference should be made to Design Engineering, volumes 23 (Nov. 8, 1978), 25 (Dec. 6, 1978) and 26 (Dec. 20, 1978) for articles written by Eugene Zuch of Datel Systems, Inc. for a further discussion of sample and hold circuits.
3. Reference also made to National Semiconductor Corporation's Special Functions Data Book (1976).
Section 5
Communication

INDEX

SECTION 5 — COMMUNICATION

<table>
<thead>
<tr>
<th>Index</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analog and Audio Processing</td>
<td></td>
</tr>
<tr>
<td>NE570</td>
<td>Comandor</td>
</tr>
<tr>
<td>SA/NE571</td>
<td>Comandor</td>
</tr>
<tr>
<td>SA/NE572</td>
<td>Programmable Analog Comandor</td>
</tr>
<tr>
<td>Audio/Stereo</td>
<td></td>
</tr>
<tr>
<td>LM1870</td>
<td>Stereo Demodulator with Blend</td>
</tr>
<tr>
<td>NE542</td>
<td>Dual Low-Noise Preamp</td>
</tr>
<tr>
<td>SA/NE602</td>
<td>Double Balanced Mixer and Oscillator</td>
</tr>
<tr>
<td>SA/NE604</td>
<td>Low Power Narrow Band FM I.F.</td>
</tr>
<tr>
<td>NE645/646</td>
<td>Dolby-B Noise Reduction Circuit</td>
</tr>
<tr>
<td>NE648/649</td>
<td>Low Voltage Dolby-B Noise Reduction Circuit</td>
</tr>
<tr>
<td>NE650</td>
<td>Dolby B-Type Noise Reduction Circuit</td>
</tr>
<tr>
<td>NE660</td>
<td>Dolby B-Type Noise Reduction Circuit</td>
</tr>
<tr>
<td>µA758</td>
<td>FM Stereo Multiplex Decoder Phase Locked Loop</td>
</tr>
<tr>
<td>FM Radio</td>
<td></td>
</tr>
<tr>
<td>Consumer</td>
<td></td>
</tr>
<tr>
<td>CA3089</td>
<td>FM I.F. System</td>
</tr>
<tr>
<td>Professional</td>
<td></td>
</tr>
<tr>
<td>MC1496</td>
<td>Balanced Modulator/Demodulator</td>
</tr>
<tr>
<td>MC1596</td>
<td>Balanced Modulator/Demodulator</td>
</tr>
<tr>
<td>SA/NE602</td>
<td>Double Balanced Mixer and Oscillator</td>
</tr>
<tr>
<td>SA/NE604</td>
<td>Low Power Narrow Band FM I.F.</td>
</tr>
<tr>
<td>FSK Modems</td>
<td></td>
</tr>
<tr>
<td>NE5080</td>
<td>2 Megabaud FSK Transmitter, IEEE 802.4</td>
</tr>
<tr>
<td>NE5081</td>
<td>FSK Receiver, IEEE 802.4</td>
</tr>
</tbody>
</table>
INDEX

Phase Locked Loops
Symbols and Definitions
SE/NE564 High Frequency Phase Locked Loop 5-62
SE/NE565 Phase Locked Loop 5-63
SE/NE566 Function Generator 5-70
SE/NE567 Tone Decoder/Phase Locked Loop 5-75

Timers
SE/NE555/SE555C Timer 5-88
SA/SE/NE556/-1/SE556-1C Dual Timer 5-93
SA/SE/NE558 Quad Timer with C BUS Interface 5-98
DESCRIPTION

The NE570/571 is a versatile low cost dual gain control circuit in which either channel may be used as a dynamic range compressor or expander. Each channel has a full wave rectifier to detect the average value of the signal; a linearized, temperature compensated variable gain cell; and an operational amplifier.

The NE570/571 is well suited for use in cellular radio and radio communications systems, modems, telephone, and satellite broadcast/receive audio systems.

FEATURES

- Complete compressor and expander in 1 IC
- Temperature compensated
- Greater than 110dB dynamic range
- Operates down to 5Vdc
- System levels adjustable with external components
- Distortion may be trimmed out

CIRCUIT DESCRIPTION

The NE570/571 compandor building blocks, as shown in the block diagram, are a full wave rectifier, a variable gain cell, an operational amplifier and a bias system. The arrangement of these blocks in the IC results in a circuit which can perform well with few external components, yet can be adapted to many diverse applications.

The full wave rectifier rectifies the input current which flows from the rectifier input, to an internal summing node which is biased at VREF. The rectified current is averaged on an external filter capacitor tied to the CRECT terminal, and the average value of the input current controls the gain of the variable gain cell. The gain will thus be proportional to the average value of the input signal for capacitively coupled voltage inputs as shown in the following equation.

Note that for capacitively coupled inputs there is no offset voltage capable of producing a gain error. The only error will come from the bias current of the rectifier (supplied internally) which is less than .1µA.

\[
G = \frac{|V_{IN} - V_{REF}| \text{avg.}}{R_1}
\]

The speed with which gain changes to follow changes in input signal levels is determined by the rectifier filter capacitor. A small capacitor will yield rapid response but will not fully filter low frequency signals. Any ripple on the gain control signal will modulate the signal passing through the variable gain cell. In an expander or compressor application, this would lead to third harmonic distortion, so there is a tradeoff to be made between fast attack and decay times, and distortion. For step changes in amplitude, the change in gain with time is shown by this equation.

\[
G(t) = (G_{initial} - G_{final}) e^{-t/\tau} + G_{final}
\]

The variable gain cell is a current in, current out device with the ratio I_OUT/I_IN controlled by the rectifier. I_IN is the current which flows from the variable gain cell input to an internal summing node biased at VREF. The following equation applies for capacitively coupled inputs. The output current, I_OUT, is fed to the summing node of the op amp.

\[
I_{IN} = \frac{V_{IN} - V_{REF}}{R_2} = \frac{V_{IN}}{R_2}
\]

A compensation scheme built into the \( \Delta G \) cell compensates for temperature, and cancels out odd harmonic distortion. The only distortion which remains is even harmonics, and they exist only because of internal offset voltages. The THD trim terminal provides a means for nulling the internal offsets for low distortion operation.

The operational amplifier (which is internally compensated) has the non-inverting input tied to VREF, and the inverting input connected to the \( \Delta G \) cell output as well as brought out externally. A resistor, R_j, is brought out from the summing node and allows compressor or expander gain to be determined only by internal components.

APPLICATIONS

- Cellular radio
- Telephone trunk compandor—570
- Telephone subscriber compandor—571
- High level limiter
- Low level expander—noise gate
- Dynamic noise reduction systems
- Voltage controlled amplifier
- Dynamic filters

ABSOLUTE MAXIMUM RATINGS

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>RATING</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive supply</td>
<td>570</td>
<td>24</td>
</tr>
<tr>
<td>Positive supply</td>
<td>571</td>
<td>18</td>
</tr>
<tr>
<td>TA Operating temperature range</td>
<td>NE</td>
<td>0 to 70</td>
</tr>
<tr>
<td>TA Operating temperature range</td>
<td>SA</td>
<td>-40 to +85</td>
</tr>
<tr>
<td>PD Power dissipation</td>
<td>-</td>
<td>400</td>
</tr>
</tbody>
</table>

BLOCK DIAGRAM

The block diagram shows the internal components of the NE570/571 compandor IC. The rectifier is shown as a full wave rectifier, with the input current flowing from the rectifier input to an internal summing node biased at VREF. The rectified current is averaged on an external filter capacitor tied to the CRECT terminal, and the average value of the input current controls the gain of the variable gain cell. The gain will thus be proportional to the average value of the input signal for capacitively coupled voltage inputs as shown in the following equation.

Note:
1. Supplied only in large SO (Small Outline) package.
The output stage is capable of ±20mA output current. This allows a +13dBm (3.5V rms) output into a 300Ω load which, with a series resistor and proper transformer, can result in +13dBm with a 600Ω output impedance.

A band gap reference provides the reference voltage for all summing nodes, a regulated supply voltage for the rectifier and ΔG cell, and a bias current for the ΔG cell. The low tempco of this type of reference provides very stable biasing over a wide temperature range.

The typical performance characteristics illustration shows the basic input-output transfer curve for basic compressor or expander circuits.

**DC ELECTRICAL CHARACTERISTICS** $T_A = 25°C, V_{CC} = 15$ Except where indicated, the 571 specifications are identical to 570

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>NE570</th>
<th>NE/SA571$^5$</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>$V_{CC}$</td>
<td>Supply voltage</td>
<td>6</td>
<td>24</td>
<td>6</td>
</tr>
<tr>
<td>$I_{CC}$</td>
<td>Supply current</td>
<td>±20</td>
<td>3.2</td>
<td>±20</td>
</tr>
<tr>
<td>Output current capability</td>
<td>No signal</td>
<td>±5</td>
<td>±5</td>
<td>±5</td>
</tr>
<tr>
<td>Output slew rate</td>
<td>Untrimmed</td>
<td>±10</td>
<td>±10</td>
<td>±10</td>
</tr>
<tr>
<td>Gain cell distortion$^2$</td>
<td>Trimmmed</td>
<td>.1</td>
<td>.1</td>
<td>.1</td>
</tr>
<tr>
<td>Resistor tolerance</td>
<td>±5</td>
<td>±5</td>
<td>±5</td>
<td>±5</td>
</tr>
<tr>
<td>Internal reference voltage</td>
<td>1.7</td>
<td>1.9</td>
<td>1.65</td>
<td>1.8</td>
</tr>
<tr>
<td>Output dc shift$^3$</td>
<td>±20</td>
<td>±30</td>
<td>±100</td>
<td>±100</td>
</tr>
<tr>
<td>Expander output noise</td>
<td>No signal, 15Hz-20kHz$^1$</td>
<td>20</td>
<td>45</td>
<td>20</td>
</tr>
<tr>
<td>Unity gain level</td>
<td>-1</td>
<td>0</td>
<td>-1.5</td>
<td>0</td>
</tr>
<tr>
<td>Gain change$^4$</td>
<td>-40°C &lt; $T$ &lt; 70°C</td>
<td>±.1</td>
<td>±.1</td>
<td>±.1</td>
</tr>
<tr>
<td></td>
<td>0°C &lt; $T$ &lt; 70°C</td>
<td>±.1</td>
<td>±.1</td>
<td>±.1</td>
</tr>
<tr>
<td>Reference drift$^4$</td>
<td>-40°C &lt; $T$ &lt; 70°C</td>
<td>±2</td>
<td>±2</td>
<td>±2</td>
</tr>
<tr>
<td></td>
<td>0°C &lt; $T$ &lt; 70°C</td>
<td>±10</td>
<td>±10</td>
<td>±10</td>
</tr>
<tr>
<td>Resistor drift$^4$</td>
<td>-40°C &lt; $T$ &lt; 70°C</td>
<td>±5</td>
<td>±5</td>
<td>±5</td>
</tr>
<tr>
<td></td>
<td>0°C &lt; $T$ &lt; 70°C</td>
<td>±1</td>
<td>±1</td>
<td>±1</td>
</tr>
<tr>
<td>Tracking error (measured relative to value at unity gain) equals $</td>
<td>V_0 - V_0(unity gain)</td>
<td>$</td>
<td>Rectifier input, $V_2 = V_2 = +6$dBm, $V_1 = OdB$</td>
<td>±.2</td>
</tr>
<tr>
<td>$dB - V_2$dBm</td>
<td>$V_2 = -30$dBm, $V_1 = OdB$</td>
<td>+.2</td>
<td>-.5</td>
<td>+.2</td>
</tr>
<tr>
<td>Channel Separation</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>60</td>
</tr>
</tbody>
</table>

**NOTES:**
1. Input to $V_1$ and $V_2$ grounded.
2. Measured at OdBm, 1kHz.
3. Expander ac input change from no signal to OdBm.
4. Relative to value at $T_A = 25°C$.
5. Electrical characteristics for the SA571 only are specified over -40 to +85°C temperature range.
INTRODUCTION
Much interest has been expressed in high performance electronic gain control circuits. For non-critical applications, an integrated circuit operational transconductance amplifier can be used, but when high performance is required, one has to resort to complex discrete circuits with many expensive, well matched components. This paper describes an inexpensive integrated circuit, the NE570 Compandor, which offers a pair of high performance gain control circuits featuring low distortion (< .1%), high signal to noise ratio (80dB), and wide dynamic range (110dB).

CIRCUIT BACKGROUND
The NE570 Compandor was originally designed to satisfy the requirements of the telephone system. When several telephone channels are multiplexed onto a common line, the resulting signal to noise ratio is poor and companding is used to allow a wider dynamic range to be passed through the channel. Figure 1 graphically shows what a compandor can do for the signal to noise ratio of a restricted dynamic range channel. The input level range of +20 to -80dB is shown undergoing a 2 to 1 compression where a 2dB input level change is compressed into a 1dB output level change by the compressor. The original 100dB of dynamic range is thus compressed to a 50dB range for transmission through a restricted dynamic range channel. A complementary expansion on the receiving end restores the original signal levels and reduces the channel noise by as much as 45dB.

The significant circuits in a compressor or expander are the rectifier and the gain control element. The phone system requires a simple full wave averaging rectifier with good accuracy, since the rectifier accuracy determines the (input) output level tracking accuracy. The gain cell determines the distortion and noise characteristics, and the phone system specifications here are very loose. These specs could have been met with a simple operational transconductance multiplier, or OTA, but the gain of an OTA is proportional to temperature and this is very undesirable. Therefore, a linearized transconductance multiplier was designed which is insensitive to temperature and offers low noise and low distortion performance. These features make the circuit useful in audio and data systems as well as in telecommunications systems.

BASIC CIRCUIT HOOKUP AND OPERATION
Figure 2 shows the block diagram of one half of the chip, (there are two identical channels on the I.C.). The full wave averaging rectifier provides a gain control current, Iq, for the variable gain (ΔG) cell. The output of the ΔG cell is a current which is fed to the summing node of the operational amplifier. Resistors are provided to establish circuit gain and set the output dc bias.

The circuit is intended for use in single power supply systems, so the internal summing nodes must be biased at some voltage above ground. An internal band gap voltage reference provides a very stable, low noise 1.8 volt reference denoted Vref. The non-inverting input of the op amp is tied to Vref, and the summing nodes of the rectifier and ΔG cell (located, at the right, of R1 and R2) have the same potential. The THD trim pin is also at the Vref potential.

Figure 3 shows how the circuit is hooked up to realize an expander. The input signal, Vin, is applied to the inputs of both the rectifier and the ΔG cell. When the input signal drops by 6dB, the gain control current will drop by a factor of 2, and so the gain will drop 6dB. The output level Vout will thus drop 12dB, giving us the desired 2 to 1 expansion.

Figure 4 shows the hookup for a compressor. This is essentially an expander placed in the feedback loop of the op amp. The ΔG cell is set up to provide ac feedback only, so a separate dc feedback loop is provided by the two Rdc and Cdc. The values of Rdc will determine the dc bias at the output of the op amp. The output will bias to:

\[ V_{out\,dc} = 1 + \frac{R_{dc1}+R_{dc2}}{R_4} V_{ref} = \left(1 + \frac{R_{dcf}}{30K}\right) 1.8V \]

The output of the expander will bias up to:

\[ V_{out\,dc} = 1 + \frac{R_3}{R_4} V_{ref} = \left(1 + \frac{20K}{30K}\right) 1.8V = 3.0V \]

The output will bias to 3.0V when the internal resistors are used. External resistors may be placed in series with R3, which will affect the gain, or in parallel with R4 to raise the dc bias to any desired value.

BASIC EXPANDOR

\[ \text{GAIN} = \frac{2 R_3 V_{in\,av}}{R_1 R_2 I_b} \]

*external components
LINEAR LSI PRODUCTS

COMPANDOR

BASIC COMPRESSOR

\[ \text{Gain} = \left( \frac{R_1 R_2 I_b}{2 R_3 V_{IN} \text{avg.}} \right)^{1/2} \]

*external components

\[ I_b = 140 \mu A \]

Figure 4

CIRCUIT DETAILS-RECTIFIER

Figure 5 shows the concept behind the full wave averaging rectifier. The input current to the summing node of the op amp, \( V_{IN}/R_1 \), is supplied by the output of the op amp. If we can mirror the op amp output current into a unipolar current, we will have an ideal rectifier. The output current is averaged by \( R_5, C_r \), which set the averaging time constant, and then mirrored with a gain of 2 to become \( I_G \), the gain control current.

Figure 5

Figure 6 shows the rectifier circuit in more detail. The op amp is a one stage op amp, biased so that only one output device is on at a time. To detect the output current of the op amp, we simply use the collector currents of the output devices \( Q_5 \) and \( Q_6 \). \( Q_6 \) will conduct when the input swings positive and \( Q_5 \) conducts when the input swings negative. The collector currents will be in error by the \( \alpha \) of \( Q_5 \) or \( Q_6 \) on negative or positive signal swings, respectively. IC's such as this have typical npn \( \beta \)'s of 200 and pnp \( \beta \)'s of 40. The \( \alpha \)'s of .995 and .975 will produce errors of .5% on negative swings and 2.5% on positive swings. The 1.5% average of these errors yields a mere .13dB gain error.

RECTIFIER ACCURACY

At very low input signal levels the bias current of \( Q_2 \), typically 50nA, will become significant as it must be supplied by \( Q_5 \). Another low level error can be caused by dc coupling into the rectifier. If an offset voltage exists between the \( V_{IN} \) input pin and the base of \( Q_2 \), an error current of \( V_{OFF}/R_1 \) will be generated. A mere 1mv of offset will cause an input current of 100na which will produce twice the error of the input bias current. For highest accuracy, the rectifier should be coupled into capacitively. At high input levels the \( \beta \) of the pnp \( Q_6 \) will begin to suffer, and there will be an increasing error until the circuit saturates. Saturation can be avoided by limiting the current into the rectifier input to 250\( \mu \)A. If necessary, an external resistor may be placed in series with \( R_1 \) to limit the current to this value. Figure 7 shows the rectifier accuracy vs input level at a frequency of 1kHz.

RECTIFIER FREQUENCY RESPONSE

At very high frequencies, the response of the rectifier will fall off. The rolloff will be more pronounced at lower input levels due to the increasing amount of gain required to switch between \( Q_5 \) or \( Q_6 \) conducting. The rectifier frequency response for input levels of 0dBm, -20dBm, and -40dBm is shown in Figure 8. The response at all three levels is flat to well above the audio range.

Figure 6

Figure 7

Figure 8
VARIABLE GAIN CELL

Figure 9 is a diagram of the variable gain cell. This is a linearized two quadrant transconductance multiplier. The Q1, Q2 and the op amp provide a predistorted drive signal for the gain control pair, Q3, Q4. The gain is controlled by I0 and a current mirror provides the output current.

The op amp maintains the base and collector of Q1 at ground potential by controlling the base of Q2. The input current Iin is thus forced to flow through Q1 along with the current I1, so Ic1 = I1 + Iin. Since I2 has been set at twice the value of I1; the current through Q2 is I2-I1=I1-Iin = Ic2. The op amp has thus forced a linear current swing between Q1 and Q2, by providing the proper drive to the base of Q2. This drive signal will be linear for small signals, but very non-linear for large signals, since it is compensating for the non-linearity of the differential pair Q1, Q2 under large signal conditions.

The key to the circuit is that this same predistorted drive signal is applied to the gain control pair. When two differential pairs of transistors have the same signal applied, their collector current ratios will be identical, regardless of the magnitude of the currents. This gives us:

\[ \frac{I_{c1}}{I_{c2}} = \frac{I_{g4}}{I_{g3}} = \frac{I_{1} + I_{in}}{I_{1} - I_{in}} \]

plus the relationships I0 = Ic3+Ic4 and Iout = Ic4-Ic3 will yield the multiplier transfer function,

\[ I_{out} = I_{g} \frac{V_{in}}{I_{1}} \]

this equation is linear and temperature insensitive, but it assumes ideal transistors.

If the transistors are not perfectly matched, a parabolic, non-linearity is generated, which results in 2nd harmonic distortion. Figure 10 gives an indication of the magnitude of the distortion caused by a given input level and offset voltage. The distortion is linearly proportional to the magnitude of the offset and the input level. Saturation of the gain cell occurs at a +8dBm level. At a nominal operating level of 0dBm, a 1mv offset will yield 5dB of second harmonic distortion. Most circuits are somewhat better than this, which means our overall offsets are typically about 5mv. The distortion is not affected by the magnitude of the gain control current, and it does not increase as the gain is changed. This second harmonic distortion could be eliminated by making perfect transistors, but since that would be difficult, we have had to resort to other methods. A trim pin has been provided to allow trimming of the internal offsets to zero, which effectively eliminated second harmonic distortion. Figure 11 shows the simple trim network required.

Control signal feed-through is generated in the gain cell by imperfect device matching and mismatches in the current sources I1 and I2. When no input signal is present, changing I0 will cause a small output signal. The distortion trim is effective in nulling out any control signal feed-through, but in general, the null for minimum feed-through will be different than the null in distortion. The control signal feed-through can be trimmed independently of distortion by tying a current source to the input pin. This effectively trims I1. Figure 13 shows such a trim network.
OPERATIONAL AMPLIFIER
The main op amp shown in the chip block diagram is equivalent to a 741 with a 1MHz bandwidth. Figure 14 shows the basic circuit. Split collectors are used in the input pair to reduce $g_m$, so that a small compensation capacitor of just 10pF may be used. The output stage, although capable of output currents in excess of 20mA, is biased for a low quiescent current to conserve power. When driving heavy loads, this leads to a small amount of crossover distortion.

RESISTORS
Inspection of the gain equations in Figure 3 and 4 will show that the basic compressor and expander circuit gains may be set entirely by resistor ratios and the internal voltage reference. Thus, any form of resistors that match well would suffice for these simple hookups, and absolute accuracy and temperature coefficient would be of no importance. However, as one starts to modify the gain equation with external resistors, the internal resistor accuracy and tempco become very significant. Figure 15 shows the effects of temperature on the diffused resistors which are normally used in integrated circuits, and the ion implanted resistors which are used in this circuit. Over the critical 0°C to 70°C temperature range, there is a 10 to 1 improvement in drift from a 5% change for the diffused resistors, to a 5% change for the implanted resistors. The implanted resistors have another advantage in that they can be made $1/7$ the size of the diffused resistors due to the higher resistivity. This saves a significant amount of chip area.

*For additional information, consult the Applications Section.*
DESCRIPTION
The NE572 is a dual channel, high performance gain control circuit in which either channel may be used for dynamic range compression or expansion. Each channel has a full wave rectifier to detect the average value of input signal; a linearized, temperature compensated variable gain cell (ΔG) and a dynamic time constant buffer. The buffer permits independent control of dynamic attack and recovery time with minimum external components and improved low frequency gain control ripple distortion over previous compandors.

The NE572 is intended for noise reduction in high performance audio systems. It can also be used in a wide range of communication systems and video recording applications.

FEATURES
- Independent control of attack and recovery time.
- Improved low frequency gain control ripple.
- Complementary gain compression and expansion with external Op Amp.
- Wide dynamic range—greater than 110dB.
- Temperature compensated gain control.
- Low distortion gain cell.
- Low noise—6μV typical.
- Wide supply voltage range—6V-22V.
- System level adjustable with external components.

APPLICATIONS
- Dynamic noise reduction system
- Voltage control amplifier
- Stereo expander
- Automatic level control
- High level limiter
- Low level noise gate
- State variable filter

ABSOLUTE MAXIMUM RATINGS

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>RATING</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>VCC</td>
<td>22</td>
<td>VDC</td>
</tr>
<tr>
<td>TA</td>
<td>0 to 70</td>
<td>°C</td>
</tr>
<tr>
<td>PD</td>
<td>500</td>
<td>mW</td>
</tr>
</tbody>
</table>

BLOCK DIAGRAM

Note:
1. Supplied only in large SO (Small Outline) package.
ELECTRICAL CHARACTERISTICS

Standard Test Conditions (unless otherwise noted) \( V_{CC} = 15 \text{V} \) TA = 25°C Expander mode (see test circuit) Input signals at unity gain level (0dB) = 100mV RMS at 1KHz, \( V_1 = V_2, R_2 = 3.3\text{K}, R_3 = 17.3\text{K} \)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>LIMITS</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>( V_{CC} ) Supply voltage</td>
<td></td>
<td>Min</td>
<td>Typ</td>
</tr>
<tr>
<td>( I_{CC} ) Supply current</td>
<td>No Signal</td>
<td>6</td>
<td>22</td>
</tr>
<tr>
<td>Internal voltage reference</td>
<td>2.3</td>
<td>2.5</td>
<td>2.7</td>
</tr>
<tr>
<td>THD (untrimmed) 1kHz ( C_A = 1.0\mu\text{F} )</td>
<td>.2</td>
<td>1.0</td>
<td>%</td>
</tr>
<tr>
<td>THD (trimmed) 1kHz ( C_R = 10\mu\text{F} )</td>
<td>.05</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>THD (trimmed) 100Hz</td>
<td>.25</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>No signal output noise Input to ( V_1 ) and ( V_2 ) grounded (20-20kHz)</td>
<td>6</td>
<td>25</td>
<td>uV</td>
</tr>
<tr>
<td>DC level shift (untrimmed) ( V_1 = V_2 = 400\text{mV} )</td>
<td>±20</td>
<td>±50</td>
<td>MV</td>
</tr>
<tr>
<td>Unity gain level</td>
<td>±1</td>
<td>0</td>
<td>+1</td>
</tr>
<tr>
<td>Large signal distortion ( V_1 = V_2 = 400\text{mV} )</td>
<td>0.7</td>
<td>3.0</td>
<td>%</td>
</tr>
<tr>
<td>Tracking error (measured relative to value at unity gain output) Rectifier input ( V_2 = +6\text{dB}, V_1 = 0\text{dB} )</td>
<td>±.2</td>
<td>dB</td>
<td></td>
</tr>
<tr>
<td>Large signal distortion ( V_1 = V_2 = 400\text{mV} )</td>
<td>±.5</td>
<td>-1.5</td>
<td>+.8</td>
</tr>
<tr>
<td>Channel crosstalk 200mV RMS into channel A, measured output on channel B</td>
<td>60</td>
<td>dB</td>
<td></td>
</tr>
<tr>
<td>Power supply rejection ratio 120Hz</td>
<td>70</td>
<td>dB</td>
<td></td>
</tr>
</tbody>
</table>

**TEST CIRCUIT**

![Test Circuit Diagram]
Linear LSI Products

Programmable Analog Compressor SA/NE572

Audio Signal Processing IC Combines VCA and Fast Attack-Slow Recovery Level Sensor

In high performance audio gain control applications it is desirable to independently control the attack and recovery time of the gain control signal. This is true, for example, in compander applications for noise reduction. In high end systems the input signal is usually split into two or more frequency bands to optimize the dynamic behavior for each band. This reduces low frequency distortion due to control signal ripple, phase distortion, high frequency channel overload and noise modulation. Because of the expense in hardware, multiple band signal processing up to now was limited to professional audio applications.

With the introduction of the Signetics NE572 this high performance noise reduction concept becomes feasible for consumer hi-fi applications. The NE572 is a dual channel gain control IC. Each channel has a linearized, temperature compensated gain cell and an improved level sensor. In conjunction with an external low noise op amp for current to voltage conversion, the VCA features low distortion, low noise and wide dynamic range. The novel level sensor which provides gain control current for the VCA gives lower gain control ripple and independent control of fast attack, slow recovery dynamic response. An attack capacitor CA with an internal 10K resistor RA defines the attack time TA. The recovery time TR of a tone burst is defined by a recovery capacitor CR and an internal 10K resistor RA. Typical attack time of 4MS for the high frequency spectrum and 40MS for the low frequency band can be obtained with 0.1µF and 1.0µF attack capacitors respectively. Recovery time of 200MS can be obtained with a 4.7µF external capacitor. With the recovery capacitor added in the level sensor, the gain control ripple for low frequency signals is much lower than that of a simple RC ripple filter. As a result the residual third harmonic distortion of low frequency signals in the two quadrant transconductance amplifier is greatly improved. With the 1.0µF attack capacitor and 4.7µF recovery capacitor for a 100HZ signal the third harmonic distortion is improved by more than 10db over the simple RC ripple filter with a single 1.0µF attack and recovery capacitor, while the attack time remains the same.

The NE572 is assembled in a standard 16 pin dual in line plastic package and in oversized SO (Small Outline) package. It operates over wide supply range from 6V to 22V. Supply current is less than 6mA. The NE572 is designed for consumer application over a temperature range 0-70°C. The SA572 is intended for applications from -40°C to +85°C.

NE572 Basic Applications

Description

The NE572 consists of two linearized, temperature compensated gain cells (ΔG) each with a full-wave rectifier and a buffer amplifier as shown in the block diagram. The two channels share a 2.5V common bias reference derived from the power supply but otherwise operate independently. Because of inherent low distortion, low noise and the capability to linearize large signals, a wide dynamic range can be obtained. The buffer amplifiers are provided to permit control of attack time and recovery time independent of each other. Partitioned as shown in the block diagram, the IC allows flexibility in the design of system levels that optimize DC shift, ripple distortion, tracking accuracy and noise floor for a wide range of application requirements.

Gain Cell

Figure 1 shows the circuit configuration of the gain cell. Bases of the differential pairs Q1 - Q2 and Q3 - Q4 are both tied to the output and inputs of OPA A1. The negative feedback through Q1 holds the VBE of Q1 - Q2 and the VBE of Q3 - Q4 equal. The following relationship can be derived from the transistor model equation in the forward active region.

\[ \Delta V_{BEO3} \cdot Q = \Delta V_{BEO1} \cdot Q2 \]

\[ V_{BE} = V_T \ln |IC/IS| \]

\[ V_T \ln \left( \frac{1}{2} \frac{I_G + \frac{1}{2} I_G}{I_S} \right) = V_T \ln \left( \frac{1}{2} \frac{I_G - \frac{1}{2} I_G}{I_S} \right) \]

\[ = V_T \ln \left( \frac{I_1 + \ln I_S}{I_S} \right) - V_T \ln \left( \frac{I_2 - I_1 - \ln I_S}{I_S} \right) \]

where \( \ln = \frac{Vin}{R_1} \)

\[ R_1 = 6.8K \]

\[ I_1 = 140\mu A \]

\[ I_2 = 280\mu A \]

\( I_O \) is the differential output current of the gain cell and \( I_G \) is the gain control current of the gain cell.

If all transistors Q1 through Q4 are of the same size, equation (2) can be simplified to:

\[ I_O = \frac{2}{I_G} \cdot \ln I_G - \frac{1}{I_2} (I_2 - 2I_1) \cdot I_G \]

The first term of eqn. (3) shows the multiplier relationship of a linearized two quadrant transconductance amplifier. The second term is the gain control feed through due to the mismatch of devices. In the design this...
has been minimized by large matched devices and careful layout. Offset voltage is caused by the device mismatch and it leads to even harmonic distortion. The offset voltage can be trimmed out by feeding a current source within ±25μA into the THD trim pin.

The residual distortion is third harmonic distortion and is caused by gain control ripple. In a compandor system, available control of fast attack and slow recovery improves ripple distortion significantly. At the unity gain level of 100mV, the gain cell gives THD (total harmonic distortion) of 17% TYP. Output noise with no input signals is only 6μV in the audio spectrum (10Hz-20KHz). The output current \( I_Q \) must feed the virtual ground input of an operational amplifier with a resistor from output to inverting input. The non-inverting input of the operational amplifier has to be biased at VREF if the output current \( I_Q \) is dc coupled.

**Rectifier**

The rectifier is a full-wave design as shown in Figure 2. The input voltage is converted to current through the input resistor \( R_2 \) and turns on either Q5 or Q6 depending on the signal polarity. Deadband of the voltage to current converter is reduced by the loop gain of the gain block A2. If AC coupling is used, the rectifier error comes only from input bias current of gain block A2. The input bias current is typically about 70nA. Frequency response of the gain block A2 also causes second order error at high frequency. The collector current of Q6 is mirrored and summed at the collector of Q5 to form the full wave rectified output current \( I_A \). The rectifier transfer function is

\[
\frac{V_{IN} - V_{REF}}{R_2} = \frac{I_A}{R_2}
\]

If \( V_{IN} \) is A.C. coupled, then the equation will be reduced to:

\[
I_{RAD} = \frac{V_{IN, AVG}}{R_2}
\]

The internal bias scheme limits the maximum output current \( I_Q \) to be around 300µA. Within a ±1dB error band the input range of the rectifier is about 52dB.

**Buffer Amplifier**

In audio systems, it is desirable to have fast attack time and slow recovery time for a tone burst input. The fast attack time reduces transient channel overload but also causes low frequency ripple distortion. The low frequency ripple distortion can be improved with the slow recovery time. If different attack times are implemented in corresponding frequency spectrums in a split band audio system, high quality performance can be achieved. The buffer amplifier is designed to make this feature available with minimum external components.
ring to Figure 3, the rectifier output current is mirrored into the input and output of the unipolar buffer amplifier A3 through Q6. Q7 and Q10. Diodes D1 and D2 improve tracking accuracy and provide common mode bias for A3. For a positive going input signal, the buffer amplifier acts like a voltage follower. Therefore, the output impedance of A3 makes the contribution of capacitor CR to attack time insignificant. Neglecting diode impedance the gain Ga(t) for ΔG can be expressed as follows.

\[
Ga(t) = \left(\frac{G_{\text{INT}} - G_{\text{FNL}}}{G_{\text{INT}}} \right) e^{-t/\tau} + G_{\text{FNL}}
\]

\[
\tau = R_A \times C_A = 10K \times C_A \quad G_{\text{FNL}} = \text{Final Gain}
\]

where \(\tau\) is the attack time constant and \(R_A\) is a 10K internal resistor. The gain control current is mirrored to the gain cell through Q14. The low level gain errors due to input bias current of A2 and A3 can be trimmed through the tracking trim PIN into A2 with a current source of \(±3\mu\text{A}\).

**Basic Expandor**

Figure 4 shows an application of the circuit as a simple expander. The gain expression of the system is given by

\[
\frac{V_{\text{OUT}}}{V_{\text{IN}}} = \frac{2}{R_3} \frac{V_{\text{IN}}(\text{AVG})}{R_2 + R_1} \quad (1) \quad (10K \times 140\mu\text{A})
\]

Both the resistors \(R_1\) and \(R_2\) are tied to internal summing nodes. \(R_1\) is a 6.8K internal resistor. The maximum input current into the gain cell can be as large as 140\(\mu\text{A}\). This corresponds to a voltage level of 140\(\mu\text{A} \times 6.8K = 952\text{mV}\) peak. The input peak current into the rectifier is limited to 300\(\mu\text{A}\) by the internal bias system. Note that the value of \(R_1\) can be increased to accommodate higher input level. \(R_2\) and \(R_3\) are external resistors. It is easy to adjust the ratio of \(R_3/R_2\) for desirable system voltage and current levels. A small \(R_2\) results in higher gain control current and smaller static and dynamic tracking error. However, an impedance buffer A1 may be necessary if the input is voltage drive with large source impedance.

The gain cell output current feeds the summing node of the external OPA A2. \(R_1\) and A2 convert the gain cell output current to the output voltage. In high performance applications, A2 has to be low noise, high speed and wide band so that the high performance output of the gain cell will not be degraded. The non-inverting input of A2 can be biased at the low noise internal reference PIN 6 or 10. Resistor \(R_4\) is used to bias up the output DC level of A2 for maximum swing. The output DC level of A2 is given by

\[
V_{\text{ODC}} = \frac{V_{\text{F}}} {1 + \frac{R_3}{R_4}} - VB \quad (6)
\]

\(V_B\) can be tied to a regulated power supply for a dual supply system and be grounded for a single supply system. \(C_A\) sets the attack time constant and \(R_F\) sets the recovery time constant.

**BASIC EXPANDOR SCHEMATIC**

![BASIC EXPANDOR SCHEMATIC](image-url)
**Basic Compressor**

Figure 5 shows the hook-up of the circuit as a compressor. The IC is put in the feedback loop of the OPA A1. The system gain expression is as follows:

$$\frac{V_{OUT}}{V_{IN}} = \left(\frac{1}{\frac{R_2}{R_1} \cdot \frac{R_2 \cdot R_1}{R_3 \cdot V_{IN} (AVG)}}\right)^{1/2}$$ (7)

RDC1, RDC2, and CDC form a dc feedback for A1. The output DC level of A1 is given by

$$V_{ODC} = V_{REF} \left(1 + \frac{R_{DC1} + R_{DC2}}{R_4}\right)$$ (8)

$$-V_B \cdot \left(\frac{R_{DC1} + R_{DC2}}{R_4}\right)$$

The zener diodes D1 and D2 are used for channel overload protection.

**Basic Compandor System**

The above basic compressor and expander can be applied to systems such as tape/disc noise reduction, digital audio, bucket brigade delay lines. Additional system design techniques such as bandlimiting, band splitting, pre-emphasis, de-emphasis and equalization are easy to incorporate. The IC is a versatile functional block to achieve a high performance audio system. Figure 6 shows the system level diagram for reference.

For additional information, refer to the Applications Section.

---

**Figure 5**

**Figure 6**

---

*For additional information, consult the Applications Section.*
DESCRIPTION
The LM1870 combination FM Stereo Demodulator and Blend Circuit is a PLL circuit with a D.C. control pin whose purpose is to reduce switching noise by decreasing separation under low signal amplitude conditions. The part is designed specifically for automobile applications where fluctuating signal strength can cause demodulation noise.

FEATURES
- Stereo blend control
- Wide input dynamic range
- Low total harmonic distortion
- VCO disable function
- Monophonic override pin
- Supply range 7V-15V

APPLICATIONS
- Auto radios
- High fidelity tuners
- High performance portable radios
- Electronic tuned radios

ABSOLUTE MAXIMUM RATINGS

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>RATING</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltage, pin 3</td>
<td>15</td>
<td>V</td>
</tr>
<tr>
<td>Lamp driver voltage, pin 11</td>
<td>18</td>
<td>V</td>
</tr>
<tr>
<td>Output voltage, pin 12, 13 supply off</td>
<td>7</td>
<td>V</td>
</tr>
<tr>
<td>Quick mono input (pin 20)</td>
<td>V+ (pin 3)</td>
<td></td>
</tr>
<tr>
<td>Blend input (pin 20)</td>
<td>15</td>
<td>V</td>
</tr>
<tr>
<td>Operating temperature range</td>
<td>0°C to + 70°C</td>
<td></td>
</tr>
<tr>
<td>Power dissipation (note 1)</td>
<td>1</td>
<td>W</td>
</tr>
<tr>
<td>Storage temperature</td>
<td>-65°C to + 125°C</td>
<td>300°C</td>
</tr>
<tr>
<td>Lead temperature (soldering, 10 seconds)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TYPICAL APPLICATION AND TEST CIRCUIT
**DC ELECTRICAL CHARACTERISTICS** \( T_a = 25 \degree C, V^+ = 8V \) unless otherwise noted (Figure 1)

<table>
<thead>
<tr>
<th>SYMBOL AND PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating supply voltage</td>
<td></td>
<td>7</td>
<td>8</td>
<td>15</td>
<td>V</td>
</tr>
<tr>
<td>Supply current</td>
<td></td>
<td>26</td>
<td>45</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>Input DC voltage</td>
<td>Pin 19</td>
<td>4</td>
<td></td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Input DC voltage</td>
<td>Pin 2</td>
<td>1.8</td>
<td></td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Supply rejection</td>
<td></td>
<td>15</td>
<td>30</td>
<td>dB</td>
<td></td>
</tr>
<tr>
<td>Lamp leakage current</td>
<td>Lamp off, pin 11 = 16V</td>
<td>0.1</td>
<td>100</td>
<td>( \mu A )</td>
<td></td>
</tr>
<tr>
<td>Lamp saturation voltage</td>
<td>Lamp on, pin 11 @ 75mA</td>
<td>1.4</td>
<td>2.0</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>VCO stop voltage</td>
<td>Voltage @ pin 4 to stop VCO</td>
<td>0.2</td>
<td>0.4</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>VCO stop current</td>
<td>Pin 4 = 0.2V</td>
<td>-30</td>
<td>-100</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>Blend input bias current</td>
<td></td>
<td>-2</td>
<td>-20</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>Quick mono switch voltage</td>
<td></td>
<td>4</td>
<td></td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Quick mono bias current</td>
<td>Pin 1 = 8V</td>
<td>2</td>
<td></td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>Output leakage</td>
<td>Pin 12 or 13 = 6.5V, pin 3 = 0V</td>
<td>0.1</td>
<td>20</td>
<td>( \mu A )</td>
<td></td>
</tr>
</tbody>
</table>

**AUDIO ELECTRICAL CHARACTERISTICS**

<table>
<thead>
<tr>
<th>SYMBOL AND PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mono gain</td>
<td>1kHz</td>
<td>-4</td>
<td>-1</td>
<td>+2</td>
<td>dB</td>
</tr>
<tr>
<td>Mono THD</td>
<td>1kHz @ 200mVrms</td>
<td>0.05</td>
<td>0.25</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>Channel balance</td>
<td></td>
<td>± 0.4</td>
<td>± 1.5</td>
<td>dB</td>
<td></td>
</tr>
<tr>
<td>Gain shift</td>
<td>Mono to stereo</td>
<td>± 0.1</td>
<td>± 1.0</td>
<td>dB</td>
<td></td>
</tr>
<tr>
<td>Channel separation</td>
<td>Pin 20 ≥ 1.1V</td>
<td>30</td>
<td>45</td>
<td>dB</td>
<td></td>
</tr>
<tr>
<td>Output DC shift</td>
<td>Mono to stereo</td>
<td>± 15</td>
<td>± 100</td>
<td>mV</td>
<td></td>
</tr>
<tr>
<td>Input resistance</td>
<td>Pin 19</td>
<td>20</td>
<td>40</td>
<td>k( \Omega )</td>
<td></td>
</tr>
<tr>
<td>Output resistance</td>
<td>Pin 12, 13</td>
<td>65</td>
<td>200</td>
<td>( \Omega )</td>
<td></td>
</tr>
<tr>
<td>Ultrasonic rejection</td>
<td>19kHz + 38kHz</td>
<td>30</td>
<td></td>
<td>dB</td>
<td></td>
</tr>
<tr>
<td>SCA rejection</td>
<td>(Note 2)</td>
<td>70</td>
<td></td>
<td>dB</td>
<td></td>
</tr>
<tr>
<td>Signal to noise</td>
<td>1kHz @ 200mVrms MONO</td>
<td>68</td>
<td></td>
<td>dB</td>
<td></td>
</tr>
</tbody>
</table>

**PLL ELECTRICAL CHARACTERISTICS**

<table>
<thead>
<tr>
<th>SYMBOL AND PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lamp ON voltage</td>
<td>19kHz on pin 2</td>
<td>15</td>
<td>20</td>
<td>mV</td>
<td></td>
</tr>
<tr>
<td>Lamp OFF voltage</td>
<td>19kHz on pin 2</td>
<td>2.5</td>
<td>5</td>
<td>mV</td>
<td></td>
</tr>
<tr>
<td>Lamp hysteresis</td>
<td></td>
<td>10</td>
<td></td>
<td>dB</td>
<td></td>
</tr>
<tr>
<td>Capture range</td>
<td>25mVrms on pin 2</td>
<td>± 2</td>
<td>± 4</td>
<td>± 6</td>
<td>%</td>
</tr>
<tr>
<td>Hold in range</td>
<td>25mVrms on pin 2</td>
<td>± 12</td>
<td></td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>Input resistance</td>
<td>Pin 2</td>
<td>8</td>
<td>14</td>
<td>k( \Omega )</td>
<td></td>
</tr>
</tbody>
</table>
**STEREO DEMODULATOR WITH BLEND**

**LM1870**

**BLEND ELECTRICAL CHARACTERISTICS**

<table>
<thead>
<tr>
<th>SYMBOL AND PARAMETER</th>
<th>TEST CONDITIONS (Pin 20 from 1.1V to 0.2V)</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stereo gain change</td>
<td>1kHz L = − R input</td>
<td>− 25</td>
<td>− 35</td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>Mono gain change</td>
<td>1kHz L = R input</td>
<td>− 1.5</td>
<td>− 0.5</td>
<td>0.5</td>
<td>dB</td>
</tr>
<tr>
<td>Output DC shift</td>
<td>10kHz L = R input</td>
<td>− 8</td>
<td>− 14</td>
<td>− 20</td>
<td>dB</td>
</tr>
</tbody>
</table>

**NOTES**

1. For operation in ambient temperatures above 25°C, the device must be derated based on a 150°C maximum junction temperature and a thermal resistance of 125°C/W junction to ambient.
2. Input is 10% SCA (74.5kHz), 9% pilot and 1kHz left or right. Rejection is ratio of 1kHz output to 1.5kHz output.

**TYPICAL CHARACTERISTICS**

![Graphs showing typical characteristics](image-url)
**DESCRIPTION**

The NE542 is a dual preamplifier for the amplification of low level signals in applications requiring optimum noise performance. Each of the two amplifiers is completely independent, with individual internal power supply decoupler-regulator, providing 110dB supply rejection and 70dB channel separation. Other outstanding features include high gain (104dB), large output voltage swing (VCC -2V p-p), and internal compensation to 10dB. The NE542 operates from a single supply across the wide range of 9 to 24V.

The NE542 is ideal for use in stereo phono, tape, or microphone preamps and other applications requiring low noise amplification of small signals.

**FEATURES**

- Low noise—7µV total input noise
- High gain—104dB open loop
- Single supply operation
- Wide supply range 9 to 24V
- Power supply rejection 110dB
- Large output voltage swing (VCC -2V p-p)
- Wide bandwidth 15MHz unity gain
- Power bandwidth 100kHz (15V p-p)
- Internally compensated (stable at 10dB)
- Short circuit protected
- High slew rate 5V/µs

**PIN CONFIGURATION**

<table>
<thead>
<tr>
<th>N PACKAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>+ IN (1)</td>
</tr>
<tr>
<td>- IN (1)</td>
</tr>
<tr>
<td>GND</td>
</tr>
<tr>
<td>VCC</td>
</tr>
<tr>
<td>OUTPUT (1)</td>
</tr>
<tr>
<td>OUTPUT (2)</td>
</tr>
</tbody>
</table>

**ABSOLUTE MAXIMUM RATINGS**

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>RATING</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltage</td>
<td>+24</td>
<td>V</td>
</tr>
<tr>
<td>Power dissipation</td>
<td>500</td>
<td>mW</td>
</tr>
<tr>
<td>Operating temperature range</td>
<td>0 to +70</td>
<td>℃</td>
</tr>
<tr>
<td>Storage temperature range</td>
<td>-65 to +150</td>
<td>℃</td>
</tr>
<tr>
<td>Lead temperature (soldering, 60sec)</td>
<td>+300</td>
<td>℃</td>
</tr>
</tbody>
</table>

**EQUIVALENT CIRCUIT**

![Equivalent Circuit Diagram](image)

**DC ELECTRICAL CHARACTERISTICS**

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>NE542</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltage</td>
<td>VCC = 9 to 18V, RL =</td>
<td>Min</td>
<td>Typ</td>
</tr>
<tr>
<td>Supply current</td>
<td></td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Input resistance</td>
<td></td>
<td>100</td>
<td>200</td>
</tr>
<tr>
<td>Positive input</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Negative input</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output resistance</td>
<td>Open loop</td>
<td>150</td>
<td></td>
</tr>
</tbody>
</table>

**Notes:**

- TA = 25°C, VCC = 14V
- Unless otherwise specified.
**AC ELECTRICAL CHARACTERISTICS**  \( T_A = 25^\circ C, V_{CC} = 14V \) unless otherwise specified.

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>NE542</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage gain</td>
<td>Open loop</td>
<td>160,000</td>
<td>V/V</td>
</tr>
<tr>
<td>Input current</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Negative input</td>
<td></td>
<td>14</td>
<td>mA</td>
</tr>
<tr>
<td>Output current</td>
<td></td>
<td>8</td>
<td>mA</td>
</tr>
<tr>
<td>Output voltage swing</td>
<td></td>
<td>15</td>
<td>V</td>
</tr>
<tr>
<td>Small signal bandwidth</td>
<td></td>
<td>15</td>
<td>MHz</td>
</tr>
<tr>
<td>Slew rate</td>
<td></td>
<td>5</td>
<td>V/\mu S</td>
</tr>
<tr>
<td>Power bandwidth</td>
<td></td>
<td>100</td>
<td>kHz</td>
</tr>
<tr>
<td>Maximum input voltage</td>
<td>Linear operation, &lt; 2.5% distortion</td>
<td>300</td>
<td>mVrms</td>
</tr>
<tr>
<td>Supply rejection ratio</td>
<td></td>
<td>100</td>
<td>dB</td>
</tr>
<tr>
<td>Channel separation</td>
<td></td>
<td>110</td>
<td>dB</td>
</tr>
<tr>
<td>Total harmonic distortion</td>
<td></td>
<td>70</td>
<td>dB</td>
</tr>
<tr>
<td>Total equivalent input noise</td>
<td></td>
<td>.1</td>
<td>%</td>
</tr>
<tr>
<td>Noise</td>
<td></td>
<td>.7</td>
<td>dB</td>
</tr>
<tr>
<td>Noise figure</td>
<td></td>
<td>1.2</td>
<td>dB</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.2</td>
<td>dB</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.4</td>
<td>dB</td>
</tr>
</tbody>
</table>

**TYPICAL PERFORMANCE CHARACTERISTICS**

**LARGE SIGNAL FREQUENCY RESPONSE**

**VCC** = 12V, \( A_v = 1000 \), > 1% DISTORTION

**GAIN vs TEMPERATURE**

**VCC** vs \( I_{CC} \)

**P-P OUTPUT VOLTAGE SWING vs VCC**

**% DISTORTION**

**CHANNEL SEPARATION**
TYPICAL PERFORMANCE CHARACTERISTICS (Cont'd)

**PSRR vs FREQUENCY**

**GAIN AND PHASE RESPONSE**

**VOLTAGE GAIN vs SUPPLY VOLTAGE**

**NOISE VOLTAGE vs FREQUENCY**

**NOISE CURRENT vs FREQUENCY**

**PULSE RESPONSE**

TYPICAL APPLICATIONS

**TYPICAL TAPE PLAYBACK AMPLIFIER**

**AUDIO MIXER**

**TWO-POLE FAST TURN-ON NAB TAPE PREAMP**

**RIAA MAGNETIC PHONO PREAMP**

*For additional information, consult the Applications Section.*
LINEAR LSI PRODUCTS

DOUBLE BALANCED MIXER AND OSCILLATOR

DESCRIPTION
The SA/NE602 is a monolithic Double Balanced Mixer with on-board oscillator and voltage regulator. The oscillator can be used as a buffer for external injection. The design is optimized for frequency conversion applications up to 200MHz and has excellent noise and 3rd order intermodulation performance. The SA/NE602 is available in an 8 lead dual in line plastic package and 8 lead SO (Surface mounted miniature package).

APPLICATIONS
- HF and VHF frequency conversion
- Cellular radio mixer/oscillator
- Communication receivers
- Instrumentation frequency converters
- VHF walkie talkie

FEATURES
- Low current consumption: 2.4mA typical
- High input and oscillator frequency operation up to 200MHz
- High third order intercept point: -15 dBm referred to matched input
- Excellent noise figure: 5.0dB typical at 45 MHz
- Low external count; suitable for crystal/ceramic filters

ABSOLUTE MAXIMUM RATINGS

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>RATING</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum operating voltage</td>
<td>9</td>
<td>V</td>
</tr>
<tr>
<td>Storage temperature</td>
<td>-65 to +150</td>
<td>°C</td>
</tr>
<tr>
<td>Operating temperature</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NE602</td>
<td>0 to +70</td>
<td>°C</td>
</tr>
<tr>
<td>SA602</td>
<td>-40 to +85</td>
<td>°C</td>
</tr>
</tbody>
</table>

PIN CONFIGURATION

<table>
<thead>
<tr>
<th>D, N PACKAGES</th>
</tr>
</thead>
<tbody>
<tr>
<td>INPUT A</td>
</tr>
<tr>
<td>INPUT B</td>
</tr>
<tr>
<td>GROUND</td>
</tr>
<tr>
<td>OUTPUT A</td>
</tr>
</tbody>
</table>

TOP VIEW

ORDER PART NUMBERS
NE602N SA602N
NE602D SA602D

BLOCK DIAGRAM

8    7    6    5
Vcc  

7

VOLTAGE REGULATOR

Oscillator

1    2    3    4
GROUND
DOUBLE BALANCED MIXER AND OSCILLATOR

DC ELECTRICAL CHARACTERISTICS: $T_A = 25^\circ C$, $V_{CC} = 6V$.

<table>
<thead>
<tr>
<th>SYMBOL AND PARAMETER</th>
<th>SA/NE602</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power supply voltage range</td>
<td>4.5 - 8.0 V</td>
<td></td>
</tr>
<tr>
<td>D.C. current drain</td>
<td>2.4 - 2.7 mA</td>
<td></td>
</tr>
<tr>
<td>Input signal frequency</td>
<td>200 MHz</td>
<td></td>
</tr>
<tr>
<td>Oscillator frequency</td>
<td>200 MHz</td>
<td></td>
</tr>
<tr>
<td>Noise figure @ 45MHz</td>
<td>5.0 - 6 dB</td>
<td></td>
</tr>
<tr>
<td>Third order intercept point</td>
<td>-15 - 17 dBm</td>
<td></td>
</tr>
<tr>
<td>Mixer input resistance</td>
<td>1.5 kΩ</td>
<td></td>
</tr>
<tr>
<td>Mixer input capacitance</td>
<td>3 - 3.5 pF</td>
<td></td>
</tr>
<tr>
<td>Mixer output resistance</td>
<td>2 x 1.5 kΩ</td>
<td></td>
</tr>
</tbody>
</table>

NOTE:
1. Each output pin is internally connected to $V_{CC}$ through a 1.5 (nominal) kΩ resistor.

CIRCUIT DESCRIPTION
The NE602 utilizes an active double balanced mixer. The RF input port (pins 1 and 2) can be used in either a symmetrical or an asymmetrical configuration. The RF input port has a resistance of 1.5kΩ shunted by 3.0pF. In order to be used as an asymmetrical configuration, one of the two input pins (1 or 2) must be bypassed to ground with a capacitor. The RF input port does not need any external bias and should not be DC grounded. An external DC path between pins 1 and 2 is allowed.

The local oscillator is an emitter-follower circuit and is capable of many types of oscillator configurations. Pin 6 (oscillator base) and pin 7 (oscillator emitter) do not need any external bias circuitry, but only pin 6 may have a DC path to $V_{CC}$. Pin 6 can be used for external oscillator or for frequency synthesizer injection.

The NE602 output pins can be used in a single-ended or push-pull configuration. There are internal 1.5kΩ resistors connected to $V_{CC}$ for each output pin (4 and 5); therefore no external bias is needed. Pins 4 and/or 5 may have a DC path to $V_{CC}$.

TYPICAL APPLICATION

![Circuit Diagram](image)
LINEAR LSI PRODUCTS

LOW POWER FM IF SYSTEM

SA/NE604

PRELIMINARY

DESCRIPTION
The SA/NE604 is a monolithic low power FM IF system incorporating two limiting intermediate frequency amplifiers, quadrature detector, muting, logarithmic signal strength indicator, and voltage regulator. The SA/NE604 is available in a 16 lead dual-in-line plastic package and 16 lead SO (surface mounted miniature package).

FEATURES
- Low power consumption: 2.3mA typical
- Logarithmic Received Signal Strength Indicator (RSSI) with a dynamic range in excess of 90dB
- Separate data output
- Audio output with muting
- Low external count; suitable for crystal/ceramic filters
- Excellent sensitivity: 1.5V across input pins (0.27V into 50Ω matching network) for 12dB SINAD (Signal to Noise and Distortion ratio) at 455kHz

ABSOLUTE MAXIMUM RATINGS

<table>
<thead>
<tr>
<th>SYMBOL AND PARAMETER</th>
<th>RATING</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum operating voltage</td>
<td>9</td>
<td>V</td>
</tr>
<tr>
<td>Storage temperature</td>
<td>-65 to +150</td>
<td>°C</td>
</tr>
<tr>
<td>Operating temperature</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NE604</td>
<td>0 to +70</td>
<td>°C</td>
</tr>
<tr>
<td>SA604</td>
<td>-40 to +85</td>
<td>°C</td>
</tr>
</tbody>
</table>

BLOCK DIAGRAM
LOW POWER FM IF SYSTEM

ELECTRICAL CHARACTERISTICS $T_A = 25^\circ$C, $V_{CC} = +6$ volts, unless otherwise stated.

<table>
<thead>
<tr>
<th>SYMBOL AND PARAMETER</th>
<th>SA/NE604</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power supply voltage range</td>
<td>4.5 - 8.0 V</td>
<td></td>
</tr>
<tr>
<td>D.C. current drain</td>
<td>2.3 - 2.7 mA</td>
<td></td>
</tr>
<tr>
<td>I.F. frequency</td>
<td>10.7 MHz</td>
<td></td>
</tr>
<tr>
<td>RSSI range</td>
<td>TBD - 90 dB</td>
<td></td>
</tr>
<tr>
<td>RSSI accuracy</td>
<td>± 1.5 dB</td>
<td></td>
</tr>
<tr>
<td>I.F. input impedance</td>
<td>1.5 kΩ</td>
<td></td>
</tr>
<tr>
<td>I.F. output impedance</td>
<td>1.0 kΩ</td>
<td></td>
</tr>
<tr>
<td>Limiter input impedance</td>
<td>1.5 kΩ</td>
<td></td>
</tr>
<tr>
<td>Quadrature detector data output impedance</td>
<td>50 kΩ</td>
<td></td>
</tr>
<tr>
<td>Muted audio out impedance</td>
<td>50 - 50 kΩ</td>
<td></td>
</tr>
<tr>
<td>Mute - switch input threshold (on)</td>
<td>1.7 - 1.7 V</td>
<td></td>
</tr>
<tr>
<td>Mute - switch input threshold (off)</td>
<td>- 1.0 V</td>
<td></td>
</tr>
</tbody>
</table>

TYPICAL APPLICATION

CIRCUIT DESCRIPTION

The SA/NE604's IF amplifier has a gain of 30dB, bandwidth of 15MHz, with an input impedance of 1.5kΩ and an output impedance of 1.0kΩ. The limiter has a gain of 60dB, bandwidth of 15MHz, and an input impedance of 1.5kΩ. An interstage filter between the IF Amplifier and Limiter is recommended to reduce wideband noise. The quadrature detector input (pin 8) impedance is 40kΩ.

The data (unmuted output) and audio (muted output) both have 50kΩ output impedance and their detected signals are 180 degrees out of phase with each other. The mute input (pin 3) has a very high impedance and is compatible with three and five volt CMOS and TTL levels. Little or no DC level shift occurs after muting when the quadrature detector is adjusted to the IF center frequency. Muting will attenuate the audio signal by more than 60dB and no voltage spikes will be generated by muting.

The logarithmic signal strength indicator is a current source output with maximum source current of 50 microamps. The signal strength indicator's transfer function is approximately 10 microamp per 20dB and is independent of IF frequency. The interstage filter must have a 6dB insertion loss to optimize slope linearity.

Pins 1, 16, 15, 14, 12, 11, 10, 9, and 8 do not need external bias and should not have a DC path.
DESCRIPTION
The NE645/646 is a monolithic audio noise reduction circuit designed as a direct replacement device for the NE645B/NE646B in Dolby™ B-Type noise reduction systems. The NE645/646 is used to reduce the level of background noise introduced during recording and playback of audio signals on magnetic tape, and to improve the noise level in FM broadcast reception. This circuit is available only to licensees of Dolby Laboratories Licensing Corporation, San Francisco, California.

NOTE
*T.M. Dolby Laboratories Licensing Corporation.

FEATURES
• Accurate record mode frequency response
• Excellent frequency response tracking with temperature and $V_{CC} \pm 0.4 \text{ dB} \text{ typical}$
• Excellent back-to-back dynamic response — D.C. shift less than 20 mV typical
• Improved stability of all op amps
• High reliability packaging

ABSOLUTE MAXIMUM RATINGS

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>RATING</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltage</td>
<td>24</td>
<td>V</td>
</tr>
<tr>
<td>Temperature range</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operating</td>
<td>0 to +70</td>
<td>°C</td>
</tr>
<tr>
<td>Storage</td>
<td>-65 to +150</td>
<td>°C</td>
</tr>
<tr>
<td>Lead temperature (soldering, 60 sec)</td>
<td>300</td>
<td>°C</td>
</tr>
</tbody>
</table>

PIN CONFIGURATION

<table>
<thead>
<tr>
<th>N PACKAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 V+</td>
</tr>
<tr>
<td>15 F CONTROL</td>
</tr>
<tr>
<td>14 Q OUTPUT</td>
</tr>
<tr>
<td>13 N/C</td>
</tr>
<tr>
<td>12 D INPUT</td>
</tr>
<tr>
<td>11 C OUTPUT</td>
</tr>
<tr>
<td>10 D FILTER</td>
</tr>
<tr>
<td>9 G GROUND</td>
</tr>
</tbody>
</table>

TOP VIEW
ORDER NUMBERS
NE645N, NE646N

BLOCK DIAGRAM
# DOLBY NOISE REDUCTION CIRCUIT

## ELECTRICAL CHARACTERISTICS

\( V_{CC} = 12 \text{ volts}, f = 20 \text{ Hz to } 20 \text{ kHz.} \)

All levels referenced to 580 mVrms (0 dB) at Pin 3, \( T_A = +25^\circ \text{C} \)

Unless otherwise noted.

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>NE645</th>
<th>NE646</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Min</td>
<td>Typ</td>
<td>Max</td>
</tr>
<tr>
<td>Supply Voltage Range</td>
<td>8</td>
<td>20</td>
<td>8</td>
</tr>
<tr>
<td>Supply Current, ( I_{CC} )</td>
<td>( V_{CC} = 12V )</td>
<td>16</td>
<td>24</td>
</tr>
<tr>
<td>Voltage gain (Pins 5-3)</td>
<td>( f = 1 \text{ kHz (Pins 6 and 2 connected)} )</td>
<td>24.5</td>
<td>26</td>
</tr>
<tr>
<td>Voltage gain (Pins 3-7)</td>
<td>( f = 1 \text{ kHz, } 0 \text{ dB at pin 3, noise reduction out} )</td>
<td>-0.5</td>
<td>0</td>
</tr>
<tr>
<td>Distortion</td>
<td>THD, 2nd and 3rd harmonic</td>
<td>( f = 20 \text{ Hz } - 10 \text{ kHz, } 0 \text{ dB} )</td>
<td>0.05</td>
</tr>
<tr>
<td></td>
<td></td>
<td>( f = 20 \text{ Hz } - 10 \text{ kHz, } +10 \text{ dB} )</td>
<td>0.15</td>
</tr>
<tr>
<td>Signal handling (^1) ( (V_{CC} = 12V) )</td>
<td>1% dist at 1 kHz</td>
<td>+12</td>
<td>+15</td>
</tr>
<tr>
<td>Signal-to-noise ratio (^2)</td>
<td>Record mode</td>
<td>67</td>
<td>72</td>
</tr>
<tr>
<td></td>
<td>Playback mode</td>
<td>77</td>
<td>82</td>
</tr>
<tr>
<td>Record mode</td>
<td>Frequency response (at pin 7) referenced to encode monitor point (pin 3)</td>
<td>( f = 1.4kHz )</td>
<td>-1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>( f = 20kHz )</td>
<td>-16.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>( f = 5kHz )</td>
<td>-23.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>( f = 20kHz )</td>
<td>-0.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>( f = 5kHz )</td>
<td>-17.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>( f = 20kHz )</td>
<td>-22.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>( f = 5kHz )</td>
<td>-30.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>( f = 20kHz )</td>
<td>-0.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>( f = 5kHz )</td>
<td>-18.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>( f = 20kHz )</td>
<td>-24.5</td>
</tr>
<tr>
<td>Back-to-back frequency response</td>
<td>Using typical record mode frequency response test points</td>
<td>-1</td>
<td>0</td>
</tr>
<tr>
<td>Input resistance</td>
<td>Pin 5</td>
<td>35</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>Pin 2</td>
<td>3.1</td>
<td>4.2</td>
</tr>
<tr>
<td>Output resistance</td>
<td>Pin 6</td>
<td>1.9</td>
<td>2.4</td>
</tr>
<tr>
<td></td>
<td>Pin 3</td>
<td>80</td>
<td>120</td>
</tr>
<tr>
<td>Back-to-back frequency response shift</td>
<td>Versus temperature ( 0^\circ - 70^\circ \text{C} )</td>
<td>( \pm 0.4 )</td>
<td>( \pm 0.4 )</td>
</tr>
<tr>
<td></td>
<td>Versus supply voltage ( 8-20V )</td>
<td>( \pm 0.4 )</td>
<td>( \pm 0.4 )</td>
</tr>
</tbody>
</table>

**NOTES**

1. See maximum signal handling versus supply voltage characteristics.
2. All noise levels are measured CCIR/ARM weighted using a 10K source with respect to Dolby level. See Dolby Laboratories Bulletin 19.
PERFORMANCE CHARACTERISTICS

THD vs FREQUENCY RECORD MODE

THD vs FREQUENCY PLAY MODE

THD vs OUTPUT RECORD MODE

THD vs FREQUENCY NOISE REDUCTION (NR) OFF

MAXIMUM SIGNAL HANDLING vs SUPPLY VOLTAGE

SUPPLY CURRENT vs SUPPLY VOLTAGE
**APPLICATION INFORMATION**

The NE645/646 is a direct replacement for the NE645B/646B. The NE645/646 incorporates improved design techniques to insure excellent performance required in Dolby B and C Type Audio Noise Reduction Systems. Critical component values are unchanged except for C309 on Pin 1 which is now an optional component in specific applications defined by Dolby Laboratories. All circuit parameters are guaranteed at 12V $V_{CC}$.

**DOLBY ENCODER**

Output for constant level input (single tone frequency response)

<table>
<thead>
<tr>
<th>Frequency (kHz)</th>
<th>0 (Dolby Level)</th>
<th>-5</th>
<th>-10</th>
<th>-15</th>
<th>-20</th>
<th>-25</th>
<th>-30</th>
<th>-35</th>
<th>-40</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>0</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>0.14</td>
<td>0</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>0.2</td>
<td>0</td>
<td>0.3</td>
<td>0.4</td>
<td>0.5</td>
<td>0.6</td>
<td>0.7</td>
<td>0.8</td>
<td>0.9</td>
<td>1.0</td>
</tr>
<tr>
<td>0.3</td>
<td>0</td>
<td>0.3</td>
<td>0.6</td>
<td>1.1</td>
<td>1.3</td>
<td>1.3</td>
<td>1.3</td>
<td>1.3</td>
<td>1.3</td>
</tr>
<tr>
<td>0.4</td>
<td>0</td>
<td>0.3</td>
<td>0.8</td>
<td>1.8</td>
<td>2.6</td>
<td>2.9</td>
<td>2.9</td>
<td>3.0</td>
<td>2.9</td>
</tr>
<tr>
<td>0.5</td>
<td>0</td>
<td>0.3</td>
<td>0.8</td>
<td>1.8</td>
<td>2.6</td>
<td>2.9</td>
<td>2.9</td>
<td>3.0</td>
<td>2.9</td>
</tr>
<tr>
<td>0.6</td>
<td>0</td>
<td>0.4</td>
<td>0.9</td>
<td>2.1</td>
<td>3.5</td>
<td>4.3</td>
<td>4.4</td>
<td>4.5</td>
<td>4.4</td>
</tr>
<tr>
<td>0.7</td>
<td>0</td>
<td>0.4</td>
<td>0.9</td>
<td>2.1</td>
<td>3.5</td>
<td>4.3</td>
<td>4.4</td>
<td>4.5</td>
<td>4.4</td>
</tr>
<tr>
<td>0.8</td>
<td>0</td>
<td>0.4</td>
<td>1.0</td>
<td>2.3</td>
<td>4.2</td>
<td>5.7</td>
<td>6.1</td>
<td>6.3</td>
<td>6.2</td>
</tr>
<tr>
<td>0.9</td>
<td>0</td>
<td>0.4</td>
<td>1.0</td>
<td>2.3</td>
<td>4.2</td>
<td>5.7</td>
<td>6.1</td>
<td>6.3</td>
<td>6.2</td>
</tr>
<tr>
<td>1.0</td>
<td>0</td>
<td>0.4</td>
<td>1.0</td>
<td>2.3</td>
<td>4.2</td>
<td>5.7</td>
<td>6.1</td>
<td>6.3</td>
<td>6.2</td>
</tr>
<tr>
<td>1.2</td>
<td>0</td>
<td>0.4</td>
<td>1.0</td>
<td>2.3</td>
<td>4.2</td>
<td>5.7</td>
<td>6.1</td>
<td>6.3</td>
<td>6.2</td>
</tr>
<tr>
<td>1.4</td>
<td>0</td>
<td>0.3</td>
<td>0.9</td>
<td>1.9</td>
<td>3.9</td>
<td>6.6</td>
<td>8.8</td>
<td>9.7</td>
<td>9.7</td>
</tr>
<tr>
<td>2.0</td>
<td>0.1</td>
<td>0.4</td>
<td>0.9</td>
<td>1.9</td>
<td>3.9</td>
<td>6.6</td>
<td>8.8</td>
<td>9.7</td>
<td>9.7</td>
</tr>
<tr>
<td>3.0</td>
<td>0.2</td>
<td>0.6</td>
<td>0.9</td>
<td>1.9</td>
<td>3.9</td>
<td>6.6</td>
<td>8.8</td>
<td>9.7</td>
<td>9.7</td>
</tr>
<tr>
<td>5.0</td>
<td>0.3</td>
<td>0.6</td>
<td>1.0</td>
<td>1.7</td>
<td>3.2</td>
<td>5.4</td>
<td>8.2</td>
<td>10.0</td>
<td>10.3</td>
</tr>
<tr>
<td>7.0</td>
<td>0.3</td>
<td>0.6</td>
<td>1.0</td>
<td>1.7</td>
<td>3.2</td>
<td>5.4</td>
<td>8.2</td>
<td>10.0</td>
<td>10.3</td>
</tr>
<tr>
<td>10.0</td>
<td>0.4</td>
<td>0.7</td>
<td>1.1</td>
<td>1.7</td>
<td>3.2</td>
<td>5.4</td>
<td>8.2</td>
<td>10.0</td>
<td>10.3</td>
</tr>
<tr>
<td>14.0</td>
<td>0.5</td>
<td>0.8</td>
<td>1.1</td>
<td>1.7</td>
<td>3.2</td>
<td>5.4</td>
<td>8.2</td>
<td>10.0</td>
<td>10.3</td>
</tr>
<tr>
<td>20.0</td>
<td>0.7</td>
<td>0.7</td>
<td>1.2</td>
<td>1.9</td>
<td>2.7</td>
<td>4.4</td>
<td>8.5</td>
<td>10.3</td>
<td>10.3</td>
</tr>
</tbody>
</table>

**NOTE**

The figures given in this table are the average response of many of Dolby Laboratories' professional encoders, and are not intended to be taken as required consumer equipment performance characteristics. Thus, no inference should be drawn on the tolerances which licensees must retain in consumer equipment. The figures can, however, be used to plot typical characteristics.

**TEST CIRCUIT NE645/646**

[Diagram of the circuit with labeled components and values.]

**NOTE**

All resistors are standard and are measured in OHMS.

*Optional capacitor in specific applications defined by Dolby Laboratories.
DESCRIPTION

The NE648/649 is an audio noise reduction circuit designed for use in low voltage entertainment systems. The circuit is used to reduce the level of background noise introduced during the recording and playback of audio signals on magnetic tape and improve the noise level in FM broadcast reception. The circuit is intended for use in automotive and portable cassette Dolby® B-Type noise reduction systems. This circuit is available only to licensees of Dolby Laboratories Licensing Corp., San Francisco.

NOTE
*T.M. Dolby Laboratories Licensing Corporation

ABSOLUTE MAXIMUM RATINGS

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>RATING</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltage</td>
<td>16</td>
<td>V</td>
</tr>
<tr>
<td>Temperature range</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operating</td>
<td>- 40 to + 85</td>
<td>°C</td>
</tr>
<tr>
<td>Storage</td>
<td>- 65 to + 150</td>
<td>°C</td>
</tr>
<tr>
<td>Lead temperature (soldering 60sec)</td>
<td>+ 300</td>
<td>°C</td>
</tr>
</tbody>
</table>

BLOCK DIAGRAM
**DC ELECTRICAL CHARACTERISTICS** \( V_{cc} = 9V, f = 20Hz \) to 20kHz.

All levels referenced to 580mVrms (0dB) at pin 3, \( T_A = +25^\circ C \) unless otherwise noted.

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>NE848</th>
<th>NE849</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltage range (^3)</td>
<td></td>
<td>6</td>
<td>9</td>
<td>14</td>
<td>6</td>
<td>9</td>
</tr>
<tr>
<td>Minimum voltage supply for 8dB headroom ( f = 1.4kHz ) THD &lt; 1%</td>
<td></td>
<td>6.5</td>
<td>7.5</td>
<td>6.5</td>
<td>7.5</td>
<td></td>
</tr>
<tr>
<td>10dB headroom</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supply Current, ( I_{CC} )</td>
<td></td>
<td>11</td>
<td>18</td>
<td>11</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>Supply Current, (^1) ( I_{CC} )</td>
<td></td>
<td>20</td>
<td></td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Voltage gain (pins 5–3) ( f = 1kHz ) (pins 6 and 2 connected)</td>
<td></td>
<td>24.5</td>
<td>26</td>
<td>27.5</td>
<td>24.5</td>
<td>26</td>
</tr>
<tr>
<td>Voltage gain (pins 3–7) ( f = 1kHz, 0dB ) at pin 3, noise reduction out</td>
<td></td>
<td>-0.5</td>
<td>0</td>
<td>+0.5</td>
<td>-0.5</td>
<td>0</td>
</tr>
<tr>
<td>Distortion ( f = 20kHz ) to 10kHz, 0dB</td>
<td></td>
<td>0.05</td>
<td>0.1</td>
<td></td>
<td>0.05</td>
<td>0.2</td>
</tr>
<tr>
<td>( f = 1kHz )</td>
<td></td>
<td>0.2</td>
<td>0.3</td>
<td>0.2</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>Signal Handling</td>
<td></td>
<td>67</td>
<td>72</td>
<td>64</td>
<td>72</td>
<td>dB</td>
</tr>
<tr>
<td>Signal-to-noise ratio (^2)</td>
<td>Record (pins 6 and 2 connected)</td>
<td>77</td>
<td>82</td>
<td>74</td>
<td>82</td>
<td>dB</td>
</tr>
<tr>
<td></td>
<td>Playback (pins 6 and 2 connected)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>( f = 1kHz ) 0dB</td>
<td>-1</td>
<td>0</td>
<td>+1</td>
<td>-1.5</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>- 20dB</td>
<td>-16.6</td>
<td>-15.6</td>
<td>-14.6</td>
<td>-17.1</td>
<td>-15.6</td>
</tr>
<tr>
<td></td>
<td>- 30dB</td>
<td>-23.5</td>
<td>-22.5</td>
<td>-21.5</td>
<td>-24.0</td>
<td>-22.5</td>
</tr>
<tr>
<td>Record mode frequency response (at pin 7) referenced to encode monitor point (pin 3) ( f = 5kHz )</td>
<td></td>
<td>-0.7</td>
<td>+0.3</td>
<td>+1.3</td>
<td>-1.2</td>
<td>+0.3</td>
</tr>
<tr>
<td></td>
<td>- 20dB</td>
<td>-17.8</td>
<td>-16.8</td>
<td>-15.8</td>
<td>-18.3</td>
<td>-16.8</td>
</tr>
<tr>
<td></td>
<td>- 30dB</td>
<td>-22.8</td>
<td>-21.8</td>
<td>-20.8</td>
<td>-23.3</td>
<td>-21.8</td>
</tr>
<tr>
<td></td>
<td>- 40dB</td>
<td>-30.2</td>
<td>-29.7</td>
<td>-28.7</td>
<td>-30.2</td>
<td>-29.7</td>
</tr>
<tr>
<td>Back-to-back frequency response</td>
<td>Using typical record mode response</td>
<td>±1.0</td>
<td></td>
<td></td>
<td>±1.5</td>
<td>dB</td>
</tr>
<tr>
<td>Input resistance</td>
<td>Pin 5</td>
<td>35</td>
<td>50</td>
<td>65</td>
<td>35</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>Pin 2</td>
<td>3.1</td>
<td>4.2</td>
<td>5.3</td>
<td>3.1</td>
<td>4.2</td>
</tr>
<tr>
<td>Output resistance</td>
<td>Pin 6</td>
<td>1.9</td>
<td>2.4</td>
<td>3.1</td>
<td>1.9</td>
<td>2.4</td>
</tr>
<tr>
<td></td>
<td>Pin 3</td>
<td>80</td>
<td>120</td>
<td>80</td>
<td>120</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pin 7</td>
<td>80</td>
<td>120</td>
<td>80</td>
<td>120</td>
<td></td>
</tr>
<tr>
<td>Record mode frequency response shift</td>
<td>Versus temperature</td>
<td></td>
<td>0 to 70°C</td>
<td>±0.3</td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- 40 to 85°C</td>
<td>±0.5</td>
<td></td>
<td>dB</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>6 to 14V</td>
<td>0.2</td>
<td></td>
<td>dB/V</td>
<td></td>
</tr>
</tbody>
</table>

**NOTES**

1. With electronic switching.
2. All noise levels are measured CCIR/ARIM weighted using a 10kHz source with respect to Dolby level. See Dolby Laboratories Bulletin 19.
3. The circuit will function as low as \( V_{cc} = 4.5V \) (i.e. output signal present). See graphs of \( i_{cc} \) and signal handling vs \( V_{cc} \).
PERFORMANCE CHARACTERISTICS

(+ 10dB) THD vs FREQUENCY

(0dB) THD vs FREQUENCY

CURRENT vs SUPPLY VOLTAGE

MAXIMUM SIGNAL HANDLING vs SUPPLY VOLTAGE
FOR 1% THD (RECORD)
LOW VOLTAGE DOLBY NOISE REDUCTION CIRCUIT

DOLBY ENCODER Output for constant level input (single tone frequency response)

<table>
<thead>
<tr>
<th>Frequency (kHz)</th>
<th>0 (Dolby Level)</th>
<th>-5</th>
<th>-10</th>
<th>-15</th>
<th>-20</th>
<th>-25</th>
<th>-30</th>
<th>-35</th>
<th>-40</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>0</td>
<td>0.1</td>
<td>0.1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.14</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>0.2</td>
<td>0.3</td>
<td>0.6</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>0.3</td>
<td>0.3</td>
<td>0.6</td>
<td>1.1</td>
<td>1.3</td>
<td>1.3</td>
<td>1.3</td>
<td>1.3</td>
<td>1.3</td>
<td>1.3</td>
</tr>
<tr>
<td>0.4</td>
<td>2.0</td>
<td>2.1</td>
<td>2.2</td>
<td>2.3</td>
<td>2.1</td>
<td>2.1</td>
<td>2.1</td>
<td>2.1</td>
<td>2.1</td>
</tr>
<tr>
<td>0.5</td>
<td>0.3</td>
<td>0.8</td>
<td>1.8</td>
<td>2.6</td>
<td>2.9</td>
<td>2.9</td>
<td>3.0</td>
<td>2.9</td>
<td>2.9</td>
</tr>
<tr>
<td>0.6</td>
<td>3.6</td>
<td>3.7</td>
<td>3.8</td>
<td>3.8</td>
<td>3.7</td>
<td>3.7</td>
<td>3.7</td>
<td>3.7</td>
<td>3.7</td>
</tr>
<tr>
<td>0.7</td>
<td>0.4</td>
<td>0.9</td>
<td>2.1</td>
<td>3.5</td>
<td>4.3</td>
<td>4.4</td>
<td>4.5</td>
<td>4.4</td>
<td>4.4</td>
</tr>
<tr>
<td>0.8</td>
<td>4.8</td>
<td>5.0</td>
<td>5.3</td>
<td>5.1</td>
<td>5.4</td>
<td>5.3</td>
<td>5.4</td>
<td>5.1</td>
<td>5.1</td>
</tr>
<tr>
<td>0.9</td>
<td>5.6</td>
<td>5.8</td>
<td>5.6</td>
<td>5.6</td>
<td>5.6</td>
<td>5.6</td>
<td>5.6</td>
<td>5.6</td>
<td>5.6</td>
</tr>
<tr>
<td>1.0</td>
<td>0.4</td>
<td>1.0</td>
<td>2.3</td>
<td>4.2</td>
<td>5.7</td>
<td>6.3</td>
<td>6.3</td>
<td>6.3</td>
<td>6.3</td>
</tr>
<tr>
<td>1.2</td>
<td>0.3</td>
<td>0.9</td>
<td>2.3</td>
<td>4.4</td>
<td>6.1</td>
<td>7.1</td>
<td>7.1</td>
<td>7.1</td>
<td>7.1</td>
</tr>
<tr>
<td>1.4</td>
<td>0.1</td>
<td>0.4</td>
<td>2.2</td>
<td>4.3</td>
<td>7.0</td>
<td>8.9</td>
<td>8.9</td>
<td>8.9</td>
<td>8.9</td>
</tr>
<tr>
<td>2.0</td>
<td>0.2</td>
<td>0.9</td>
<td>2.2</td>
<td>4.3</td>
<td>7.0</td>
<td>8.9</td>
<td>8.9</td>
<td>8.9</td>
<td>8.9</td>
</tr>
<tr>
<td>2.0</td>
<td>0.3</td>
<td>0.9</td>
<td>1.9</td>
<td>3.9</td>
<td>6.6</td>
<td>8.8</td>
<td>9.7</td>
<td>9.7</td>
<td>9.7</td>
</tr>
<tr>
<td>2.0</td>
<td>0.3</td>
<td>1.0</td>
<td>1.7</td>
<td>3.2</td>
<td>5.4</td>
<td>8.2</td>
<td>10.0</td>
<td>10.0</td>
<td>10.0</td>
</tr>
<tr>
<td>7.0</td>
<td>0.3</td>
<td>1.0</td>
<td>1.7</td>
<td>2.8</td>
<td>4.7</td>
<td>7.3</td>
<td>9.7</td>
<td>9.7</td>
<td>9.7</td>
</tr>
<tr>
<td>10.0</td>
<td>0.4</td>
<td>0.7</td>
<td>1.1</td>
<td>1.7</td>
<td>2.6</td>
<td>4.2</td>
<td>6.5</td>
<td>9.1</td>
<td>10.4</td>
</tr>
<tr>
<td>14.0</td>
<td>0.5</td>
<td>0.8</td>
<td>1.1</td>
<td>1.8</td>
<td>2.7</td>
<td>4.4</td>
<td>6.5</td>
<td>8.7</td>
<td>10.3</td>
</tr>
<tr>
<td>20.0</td>
<td>0.7</td>
<td>0.7</td>
<td>1.2</td>
<td>1.9</td>
<td>2.7</td>
<td>4.4</td>
<td>6.5</td>
<td>8.7</td>
<td>10.3</td>
</tr>
</tbody>
</table>

NOTE
The figures given in this table are the average response of many of Dolby Laboratories' professional encoders, and are not intended to be taken as required consumer equipment performance characteristics. Thus, no inference should be drawn on the tolerances which licensees must retain in consumer equipment. The figures can, however, be used to plot typical characteristics.

TEST CIRCUIT NE648/49

*Optional capacitor in specific applications defined by Dolby Laboratories.
**Optional R309, R314 as determined by customer.
DESCRIPTION

The NE650 is a monolithic audio noise reduction circuit designed for use in Dolby® B Type noise reduction systems. The NE650 is used to reduce the level of background noise introduced during recording and playback of audio signals on magnetic tape. The NE650 features excellent dynamic characteristics over a wide range of operating conditions and is pin compatible with NE645/646. This circuit is available only to licensees of Dolby Laboratories Licensing Corp., San Francisco.

NOTE

*TM. Dolby Laboratories Licensing Corporation.

ABSOLUTE MAXIMUM RATINGS

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>RATING</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltage</td>
<td>24</td>
<td>V</td>
</tr>
<tr>
<td>Temperature range</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operating</td>
<td>0 to +70</td>
<td>°C</td>
</tr>
<tr>
<td>Storage</td>
<td>-65 to +150</td>
<td>°C</td>
</tr>
<tr>
<td>Lead temperature (soldering 60 sec)</td>
<td>+300</td>
<td>°C</td>
</tr>
</tbody>
</table>

BLOCK DIAGRAM
## DC ELECTRICAL CHARACTERISTICS

\[ V_{CC} = 12V, f = 20Hz \text{ to } 20kHz. \]

All levels referenced to 560mVRms (0dB) at pin 3, \( T_A = +25^\circ C \) unless otherwise noted.

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th><strong>NE650</strong></th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltage range</td>
<td>8</td>
<td>20 V</td>
<td></td>
</tr>
<tr>
<td>Supply current, ( I_{CC} )</td>
<td>16</td>
<td>24 mA</td>
<td></td>
</tr>
<tr>
<td>Voltage gain (pins 5-3)</td>
<td>25.5</td>
<td>26.5 dB</td>
<td></td>
</tr>
<tr>
<td>Voltage gain (pins 3-7)</td>
<td>-0.5</td>
<td>0.5 dB</td>
<td></td>
</tr>
<tr>
<td>Voltage gain (pins 2-3)</td>
<td>13</td>
<td>dB</td>
<td></td>
</tr>
<tr>
<td>Distortion</td>
<td>0.05</td>
<td>0.1 %</td>
<td></td>
</tr>
<tr>
<td>THD; 2nd and 3rd harmonic</td>
<td>0.15</td>
<td>0.3 %</td>
<td></td>
</tr>
<tr>
<td>Signal handling</td>
<td>1% distortion at 1kHz</td>
<td>+12</td>
<td>+15 dB</td>
</tr>
<tr>
<td>Signal-to-noise ratio*</td>
<td>Record mode</td>
<td>68</td>
<td>dB</td>
</tr>
<tr>
<td>Playback mode</td>
<td>78</td>
<td>82 dB</td>
<td></td>
</tr>
<tr>
<td>Back-to-back frequency response</td>
<td>Using typical record mode response</td>
<td>±0.5</td>
<td>dB</td>
</tr>
<tr>
<td>Record mode frequency response (at pin 7)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>referenced to encode monitor point (pin 3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f = 1.4kHz</td>
<td>-0.5</td>
<td>0</td>
<td>+0.5 dB</td>
</tr>
<tr>
<td>0dB</td>
<td>-15.1</td>
<td>-15.1 dB</td>
<td></td>
</tr>
<tr>
<td>-20dB</td>
<td>-23.5</td>
<td>-21.5 dB</td>
<td></td>
</tr>
<tr>
<td>f = 5kHz</td>
<td>-0.7</td>
<td>+0.3</td>
<td>+1.3 dB</td>
</tr>
<tr>
<td>0dB</td>
<td>-17.3</td>
<td>-16.3 dB</td>
<td></td>
</tr>
<tr>
<td>-20dB</td>
<td>-22.3</td>
<td>-21.3 dB</td>
<td></td>
</tr>
<tr>
<td>-30dB</td>
<td>-30.2</td>
<td>-29.2 dB</td>
<td></td>
</tr>
<tr>
<td>f = 20kHz</td>
<td>-0.3</td>
<td>+0.7</td>
<td>+1.7 dB</td>
</tr>
<tr>
<td>0dB</td>
<td>-18.3</td>
<td>-16.3 dB</td>
<td></td>
</tr>
<tr>
<td>-20dB</td>
<td>-24.5</td>
<td>-22.5 dB</td>
<td></td>
</tr>
<tr>
<td>Input resistance</td>
<td>Pin 5</td>
<td>35</td>
<td>65 kΩ</td>
</tr>
<tr>
<td>Pin 2</td>
<td>3.1</td>
<td>5.3 kΩ</td>
<td></td>
</tr>
<tr>
<td>Output resistance</td>
<td>Pin 6</td>
<td>1.9</td>
<td>3.1 kΩ</td>
</tr>
<tr>
<td>Pin 3</td>
<td>2.4</td>
<td>3.1 kΩ</td>
<td></td>
</tr>
<tr>
<td>Pin 7</td>
<td>80</td>
<td>120 Ω</td>
<td></td>
</tr>
<tr>
<td>Back-to-back frequency response shift</td>
<td>0°C to -70°C</td>
<td>±0.4</td>
<td>dB</td>
</tr>
<tr>
<td>Versus ( T_A )</td>
<td>8 to 20V</td>
<td>±0.4</td>
<td>dB</td>
</tr>
</tbody>
</table>

*All noise levels are measured CCIR/ARM weighted using a 10K source with respect to Dolby level. See Dolby Laboratories Bulletin 19.
PERFORMANCE CHARACTERISTICS

THD vs FREQUENCY RECORD MODE

THD vs FREQUENCY RECORD MODE

THD vs FREQUENCY PLAY MODE

THD vs OUTPUT RECORD MODE

THD vs FREQUENCY NOISE REDUCTION (NR) OFF

MAXIMUM SIGNAL HANDLING vs SUPPLY VOLTAGE

SUPPLY CURRENT vs SUPPLY VOLTAGE
DOLBY B TYPE NOISE REDUCTION CIRCUIT

DOLBY ENCODER Output for constant level input (single tone frequency response)

<table>
<thead>
<tr>
<th>Input Level (dB)</th>
<th>0 (Dolby Level)</th>
<th>-5</th>
<th>-10</th>
<th>-15</th>
<th>-20</th>
<th>-25</th>
<th>-30</th>
<th>-35</th>
<th>-40</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.14</td>
<td>0</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.1</td>
<td>0.2</td>
<td>0.1</td>
</tr>
<tr>
<td>0.2</td>
<td>0</td>
<td>0.3</td>
<td>0.4</td>
<td>0.5</td>
<td>0.6</td>
<td>0.6</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>0.3</td>
<td>0</td>
<td>0.3</td>
<td>0.6</td>
<td>1.1</td>
<td>1.3</td>
<td>1.3</td>
<td>1.3</td>
<td>1.3</td>
<td>1.3</td>
</tr>
<tr>
<td>0.4</td>
<td></td>
<td>2.0</td>
<td>2.1</td>
<td>2.2</td>
<td>2.3</td>
<td>2.3</td>
<td>2.3</td>
<td>2.3</td>
<td>2.3</td>
</tr>
<tr>
<td>0.5</td>
<td>0</td>
<td>0.3</td>
<td>0.8</td>
<td>1.8</td>
<td>2.6</td>
<td>2.9</td>
<td>2.9</td>
<td>3.0</td>
<td>2.9</td>
</tr>
<tr>
<td>0.6</td>
<td></td>
<td>3.6</td>
<td>3.7</td>
<td>3.8</td>
<td>3.7</td>
<td>3.7</td>
<td>3.7</td>
<td>3.7</td>
<td>3.7</td>
</tr>
<tr>
<td>0.7</td>
<td>0</td>
<td>0.4</td>
<td>0.9</td>
<td>2.1</td>
<td>3.5</td>
<td>4.3</td>
<td>4.4</td>
<td>4.5</td>
<td>4.4</td>
</tr>
<tr>
<td>0.8</td>
<td></td>
<td>4.8</td>
<td>5.0</td>
<td>5.3</td>
<td>5.1</td>
<td>5.1</td>
<td>5.1</td>
<td>5.1</td>
<td>5.1</td>
</tr>
<tr>
<td>0.9</td>
<td>0</td>
<td>0.4</td>
<td>1.0</td>
<td>2.3</td>
<td>4.2</td>
<td>5.7</td>
<td>6.1</td>
<td>6.3</td>
<td>6.2</td>
</tr>
<tr>
<td>1.0</td>
<td>0</td>
<td>0.4</td>
<td>1.0</td>
<td>2.3</td>
<td>4.2</td>
<td>5.7</td>
<td>6.1</td>
<td>6.3</td>
<td>6.2</td>
</tr>
<tr>
<td>1.2</td>
<td></td>
<td>6.9</td>
<td>7.1</td>
<td>7.1</td>
<td>7.1</td>
<td>7.1</td>
<td>7.1</td>
<td>7.1</td>
<td>7.1</td>
</tr>
<tr>
<td>1.4</td>
<td>0</td>
<td>0.3</td>
<td>0.9</td>
<td>2.3</td>
<td>4.4</td>
<td>6.5</td>
<td>7.5</td>
<td>7.7</td>
<td>7.7</td>
</tr>
<tr>
<td>2.0</td>
<td>0.1</td>
<td>0.4</td>
<td>0.9</td>
<td>2.2</td>
<td>4.3</td>
<td>7.0</td>
<td>8.5</td>
<td>8.9</td>
<td>8.9</td>
</tr>
<tr>
<td>3.0</td>
<td>0.2</td>
<td>0.6</td>
<td>0.9</td>
<td>1.9</td>
<td>3.9</td>
<td>6.6</td>
<td>8.8</td>
<td>9.7</td>
<td>9.7</td>
</tr>
<tr>
<td>5.0</td>
<td>0.3</td>
<td>0.6</td>
<td>1.0</td>
<td>1.7</td>
<td>3.2</td>
<td>5.4</td>
<td>8.2</td>
<td>10.0</td>
<td>10.3</td>
</tr>
<tr>
<td>7.0</td>
<td>0.3</td>
<td>0.6</td>
<td>1.0</td>
<td>1.7</td>
<td>2.8</td>
<td>4.7</td>
<td>7.3</td>
<td>9.7</td>
<td>10.4</td>
</tr>
<tr>
<td>10.0</td>
<td>0.4</td>
<td>0.7</td>
<td>1.1</td>
<td>1.7</td>
<td>2.6</td>
<td>4.2</td>
<td>6.5</td>
<td>9.1</td>
<td>10.4</td>
</tr>
<tr>
<td>14.0</td>
<td>0.5</td>
<td>0.8</td>
<td>1.1</td>
<td>1.8</td>
<td>2.7</td>
<td>4.4</td>
<td>6.5</td>
<td>8.7</td>
<td>10.3</td>
</tr>
<tr>
<td>20.0</td>
<td>0.7</td>
<td>0.7</td>
<td>1.2</td>
<td>1.9</td>
<td>2.7</td>
<td>4.4</td>
<td>6.5</td>
<td>8.7</td>
<td>10.3</td>
</tr>
</tbody>
</table>

NOTE

The figures given in this table are the average responses of many of Dolby Laboratories' professional encoders, and are not intended to be taken as required consumer equipment performance characteristics. Thus, no inference should be drawn on the tolerances which licensees must retain in consumer equipment. The figures can, however, be used to plot typical characteristics.

TEST CIRCUIT NE650

NOTE

All resistors standard and are measured in OHMS.
*Optional capacitor in specific applications defined by Dolby Laboratories.
**DESCRIPTION**

The NE660 is a monolithic audio noise reduction circuit designed for low power supply voltage applications. It is used to reduce the level of background noise introduced during recording and playback of audio signals on magnetic tape. This circuit is available only to licensees of Dolby Laboratories Licensing Corporation, San Francisco, California.

**FEATURES**
- Low voltage operation
- Large headroom (17dB typical at 1.8V)
- Single or dual supply operation
- Excellent channel to channel matching
- Low noise
- Very low distortion
- Electronic Record/Play, on/off switch
- Minimum external part count

**ABSOLUTE MAXIMUM RATINGS**

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>RATING</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltage</td>
<td>8</td>
<td>V</td>
</tr>
<tr>
<td>Temperature range</td>
<td>-20 to +70</td>
<td>°C</td>
</tr>
<tr>
<td>Operating</td>
<td>-65 to +150</td>
<td>°C</td>
</tr>
<tr>
<td>Storage</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**PIN CONFIGURATION**

<table>
<thead>
<tr>
<th>D1 PACKAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>SW B</td>
</tr>
<tr>
<td>OUT B</td>
</tr>
<tr>
<td>CONT B</td>
</tr>
<tr>
<td>INB</td>
</tr>
<tr>
<td>GROUND</td>
</tr>
<tr>
<td>MODE</td>
</tr>
<tr>
<td>INT A</td>
</tr>
<tr>
<td>CONTR A</td>
</tr>
<tr>
<td>OUT A</td>
</tr>
<tr>
<td>SW A</td>
</tr>
</tbody>
</table>

**BLOCK DIAGRAM**

*Available only to licensees of Dolby Laboratories Corporation, San Francisco, from whom licensing and application information must be obtained. Dolby is a registered trademark of Dolby Laboratories Corporation, San Francisco, California.
### ELECTRICAL CHARACTERISTICS

**STANDARD CONDITIONS:** $V_{cc} = 3\text{V}$, frequency range: 20Hz-20kHz, $T_A = 25\,^\circ\text{C}$. All levels referenced to 77.5mV = 0dB at test point (T.P.) in test circuit of Fig. 1.

<table>
<thead>
<tr>
<th>SYMBOL &amp; PARAMETER</th>
<th>MODE</th>
<th>FREQ. Hz</th>
<th>TEST CONDITIONS</th>
<th>LIMITS</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MIN</td>
<td>TYP</td>
</tr>
<tr>
<td>Supply Voltage Range</td>
<td>Off</td>
<td></td>
<td>No Input signal</td>
<td>1.8</td>
<td>3</td>
</tr>
<tr>
<td>Supply Current</td>
<td>Off</td>
<td></td>
<td></td>
<td>6</td>
<td>9</td>
</tr>
<tr>
<td>Voltage Gain</td>
<td>Off</td>
<td>1K</td>
<td>$20 \log \frac{V_{Pin , 2 , or , 9}}{V_{Pin , 17 , or , 14}}$</td>
<td>7.25</td>
<td>8.25</td>
</tr>
<tr>
<td>Signal Handling at Output, Note 1</td>
<td>Off</td>
<td>1K</td>
<td>THD = 1%</td>
<td>20</td>
<td>dB</td>
</tr>
<tr>
<td></td>
<td>R</td>
<td>1K</td>
<td>$V_{CC} = 1.8\text{V}, , \text{THD} = 1%$</td>
<td>12</td>
<td>17</td>
</tr>
<tr>
<td>Distortion, Note 4</td>
<td>Off</td>
<td>1K</td>
<td>$\text{THD} = 1%$</td>
<td>0dB</td>
<td>0.02</td>
</tr>
<tr>
<td>Distortion + Noise</td>
<td>Off</td>
<td>1K</td>
<td>$+12\text{dB}$</td>
<td>0.03</td>
<td>0.15</td>
</tr>
<tr>
<td>Distortion, Note 4</td>
<td>R</td>
<td>1K</td>
<td>$0\text{dB}$</td>
<td>0.03</td>
<td>0.25</td>
</tr>
<tr>
<td>Distortion + Noise</td>
<td>R</td>
<td>1K</td>
<td>$+12\text{dB}$</td>
<td>0.04</td>
<td>0.2</td>
</tr>
<tr>
<td>Signal to Noise Ratio, Note 2</td>
<td>R</td>
<td>CCIR/ARM</td>
<td></td>
<td>64</td>
<td>69</td>
</tr>
<tr>
<td>Frequency Response, Note 3</td>
<td>R</td>
<td>1K</td>
<td>T.P. Level = 0dB</td>
<td>-1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10K</td>
<td></td>
<td>-1</td>
<td>+3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2K</td>
<td>T.P. Level = -25dB</td>
<td>-19.5</td>
<td>-18</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10K</td>
<td>T.P. Level = -30dB</td>
<td>-25</td>
<td>-23.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5K</td>
<td>T.P. Level = -40dB</td>
<td>-30.2</td>
<td>-29.7</td>
</tr>
<tr>
<td>Channel to Channel Unbalance</td>
<td>R</td>
<td>2K</td>
<td>T.P. Level = -20dB</td>
<td>.2</td>
<td>1.3</td>
</tr>
<tr>
<td>Channel to Channel Crosstalk</td>
<td>R</td>
<td>2K</td>
<td>0dB in Channel &quot;A&quot;</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>Ripple Rejection</td>
<td>R</td>
<td>50</td>
<td></td>
<td>48</td>
<td></td>
</tr>
<tr>
<td>Input Resistance</td>
<td>No Input termination</td>
<td></td>
<td>35</td>
<td>50</td>
<td>65</td>
</tr>
<tr>
<td>Switching Thresholds (Relative to Voltage on Pin 15)</td>
<td>Off</td>
<td></td>
<td>Voltage at Pin 6</td>
<td>-.5</td>
<td>+.5</td>
</tr>
<tr>
<td></td>
<td>R</td>
<td></td>
<td></td>
<td>+.8</td>
<td></td>
</tr>
<tr>
<td>P</td>
<td></td>
<td></td>
<td></td>
<td>-.8</td>
<td></td>
</tr>
<tr>
<td>Maximum Frequency Response Shift vs. Temperature (Relative to $T_A = 25,^\circ\text{C}$)</td>
<td>R</td>
<td>20Hz to 20K</td>
<td>$-20 \leq T_A \leq 70,^\circ\text{C}$</td>
<td>±1</td>
<td></td>
</tr>
<tr>
<td>Maximum Frequency Response Shift vs. Supply Voltage (Relative to $V_{CC} = 3\text{V}$)</td>
<td>R</td>
<td>2K</td>
<td>T.P. Level = -20dB $1.8 \leq V_{CC} \leq 7\text{V}$</td>
<td>±.2</td>
<td>±.6</td>
</tr>
</tbody>
</table>

**NOTES:**
1. 12dB headroom guaranteed at 1.8V; however, system remains operational to $V_{CC} = 1.8\text{V}$.
2. See Dolby Laboratories bulletin No. 19.
3. In DC coupled configuration when Pins 12 and 19 are connected to Pin 15, the RECORD curves might read slightly different than in AC coupled mode (Fig. 1). The variation is typically .5dB at the worst case input level/frequency combination. A slight degradation of Channel to Channel Crosstalk will also occur. When device is intended for use in DC coupled configuration, factory test to be requested accordingly.
4. 0dB distortion is specified with each harmonic measured in a 20Hz B.W. 12dB distortion is specified as the wideband (20Hz-20kHz) measurement of the harmonics plus noise.
Figure 1. Test Circuit
Figure 2. Supply Current vs. $V_{CC}$

Figure 3. Signal Handling (THD — 1%)

Figure 4. Distortion + Noise

Figure 5. Harmonic Distortion + Noise

Figure 6. Encode Transfer Curve Shift With Temperature

Figure 7. Crosstalk, $V_{CC} = 3V$
DESCRIPTION
The μA758 is a monolithic phase-locked loop FM stereo multiplex decoder. The device decodes an FM stereo multiplex signal into right and left audio channels while inherently suppressing SCA information when it is contained in the composite input signal. The device includes automatic mono-stereo mode switching and drive for an external lamp to indicate stereo mode operation.

The μA758 operates over a large voltage range and requires a minimum number of external components. A simple setting of an external potentiometer adjusts the oscillator frequency. No coils are required.

FEATURES
- 45dB channel separation
- Automatic stereo/mono switching
- 70dB SCA rejection
- 10V to 16V supply range
- High impedance input—low impedance output

ABSOLUTE MAXIMUM RATINGS

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>RATING</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltage</td>
<td>+18</td>
<td>V</td>
</tr>
<tr>
<td>Supply voltage (&lt; 15 seconds)</td>
<td>+22</td>
<td>V</td>
</tr>
<tr>
<td>Voltage at lamp driver terminal</td>
<td>+22</td>
<td>V</td>
</tr>
<tr>
<td>(Lamp OFF)</td>
<td>730</td>
<td>mW</td>
</tr>
<tr>
<td>Internal power dissipation</td>
<td>-40 to +85</td>
<td>°C</td>
</tr>
<tr>
<td>Operating temperature range</td>
<td>-55 to +125</td>
<td>°C</td>
</tr>
<tr>
<td>Storage temperature range</td>
<td>300</td>
<td>°C</td>
</tr>
<tr>
<td>Lead temperature (60sec)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BLOCK DIAGRAM
LINEAR LSI PRODUCTS

FM STEREO MULTIPLEX DECODER, PHASE LOCKED LOOP  µA758

DC ELECTRICAL CHARACTERISTICS  

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>µA758</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>₯cc</td>
<td>Supply current</td>
<td>Min Typ Max</td>
<td>mA</td>
</tr>
<tr>
<td>₯l</td>
<td>Maximum available lamp current</td>
<td>75 31 150</td>
<td>mA</td>
</tr>
<tr>
<td>₯v</td>
<td>Voltage at lamp driver terminal</td>
<td>1.3 1.6</td>
<td>V</td>
</tr>
<tr>
<td>&amp;i</td>
<td>Input resistance</td>
<td>20 35 1.3</td>
<td>kΩ</td>
</tr>
<tr>
<td>ro</td>
<td>Output resistance</td>
<td>0.9 2.0</td>
<td>kΩ</td>
</tr>
</tbody>
</table>

AC ELECTRICAL CHARACTERISTICS

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>µA758</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Δ(V4&amp;V5)</td>
<td>DC voltage shift at either output terminal</td>
<td>30 150</td>
<td>mV</td>
</tr>
<tr>
<td>Ps r r</td>
<td>Power supply ripple rejection</td>
<td>200Hz, 200mVrms</td>
<td>35 40 45</td>
</tr>
<tr>
<td>SEP</td>
<td>Channel separation</td>
<td>100Hz</td>
<td>100Hz</td>
</tr>
<tr>
<td>BAL</td>
<td>Channel balance</td>
<td>0.3 1.5</td>
<td>dB</td>
</tr>
<tr>
<td>Kv</td>
<td>Voltage gain</td>
<td>0.5 0.9 1.4</td>
<td>V/V</td>
</tr>
<tr>
<td>Pilot input level</td>
<td>Lamp turn-on</td>
<td>0.5 7.0</td>
<td>mVrms</td>
</tr>
<tr>
<td>Pilot input level</td>
<td>Lamp turn-off</td>
<td>0.5 7.0</td>
<td>mVrms</td>
</tr>
<tr>
<td>Pilot input level</td>
<td>Lamp turn-off to turn-on</td>
<td>3.0 7.0</td>
<td>dB</td>
</tr>
<tr>
<td>Capture range</td>
<td>Total harmonic distortion</td>
<td>20 40 60</td>
<td>%</td>
</tr>
<tr>
<td>T.H.D.</td>
<td>Multiplex level = 600mVrms pilot OFF</td>
<td>20 40 60</td>
<td>%</td>
</tr>
<tr>
<td>19kHz rejection</td>
<td>25 45</td>
<td>dB</td>
<td></td>
</tr>
<tr>
<td>38kHz rejection</td>
<td>25 45</td>
<td>dB</td>
<td></td>
</tr>
<tr>
<td>SCA rejection¹</td>
<td>25 45</td>
<td>dB</td>
<td></td>
</tr>
<tr>
<td>VCO</td>
<td>Tuning resistance²</td>
<td>21.0 23.3 25.5</td>
<td>kΩ</td>
</tr>
<tr>
<td>VCO</td>
<td>Frequency drift</td>
<td>+0.1 ±2</td>
<td>%</td>
</tr>
</tbody>
</table>

NOTES

1. Measured with a stereo composite signal consistency of 80% stereo, 10% pilot and 10% SCA as defined in the FCC Rules on Broadcasting
2. Total resistance from pin 15 to ground, in test circuit, required to set reference frequency at pin 11 to 19kHz ± 10Hz.

TYPICAL PERFORMANCE CHARACTERISTICS

- CHANNEL SEPARATION vs AUDIO FREQUENCY
- HARMONIC DISTORTION vs INPUT LEVEL
- OSCILLATOR FREE RUNNING FREQUENCY ERROR vs AMBIENT TEMPERATURE
TYPICAL PERFORMANCE CHARACTERISTICS (Cont'd)

LAMP TURN ON & TURN OFF SENSITIVITY vs AMBIENT TEMPERATURE

CAPTURE RANGES vs PILOT LEVEL

CHANNEL SEPARATION vs OSCILLATOR FREE RUNNING FREQUENCY ERROR

TEST CIRCUIT AND TYPICAL APPLICATION

NOTE
Tolerance on resistors is ±5% and tolerance on capacitors is ±20% unless otherwise specified. C1 tolerance = ±100%, ±20%. C6 tolerance = ±1% in test circuit and ±5% in typical applications. R3 tolerance = ±1%, R4 tolerance = ±10%, R1 and R2 tolerances = ±1% in test circuit and ±5% in typical application.
DESCRIPTION
CA3089 is a monolithic integrated circuit that provides all the functions of a comprehensive FM-IF system. Figure 6 is a block diagram showing the CA3089 features, which include a three-state FM-IF amplifier/limiter configuration with level detectors for each stage, a doubly-balanced quadrature FM detector and an audio amplifier that features the optional use of a muting (squelch) circuit.

The advanced circuit design of the IF system includes desirable features such as delayed AGC for the RF tuner, an AFC drive circuit, and an output signal to drive a tuning meter and/or provide stereo switching logic. In addition, internal power supply regulators maintain a nearly constant current drain over the voltage supply range of +8 to +18 volts.

The CA3089 is ideal for high-fidelity operation. Distortion in a CA3089 FM-IF system is primarily a function of the phase linearity characteristic of the outboard detector coil.

The CA3089 utilizes a 16-lead dual-in-line plastic package and can operate over the ambient temperature range of -40°C to +85°C.

FEATURES
• Exceptional limiting sensitivity: 10µV typ. at -3dB point
• Low distortion: 0.1% typ. (with double-tuned coil)

APPLICATIONS
• High-fidelity FM receivers
• Automotive FM receivers
• Communications FM receivers

ABSOLUTE MAXIMUM RATINGS

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>RATING</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC supply voltage: Between terminals 11 and 14</td>
<td>18</td>
<td>V</td>
</tr>
<tr>
<td>DC Current (out of terminal 15)</td>
<td>2</td>
<td>mA</td>
</tr>
<tr>
<td>Device dissipation: Up to TA = 60°C</td>
<td>600</td>
<td>mW</td>
</tr>
<tr>
<td>Above TA = 60°C</td>
<td>6.7</td>
<td>mW/°C</td>
</tr>
<tr>
<td>Ambient temperature range: Operating</td>
<td>-40 to +85</td>
<td>°C</td>
</tr>
<tr>
<td>Storage</td>
<td>-85 to +150</td>
<td>°C</td>
</tr>
<tr>
<td>Lead temperature (during soldering):</td>
<td>+265</td>
<td>°C</td>
</tr>
</tbody>
</table>

NOTE
All resistor values are typical and in ohms. Qf > 75 (G1. EX27825 or equivalent)
*L tunes with 100pF (C) at 10.7MHz
DC ELECTRICAL CHARACTERISTICS  $T_A = 25^\circ C, V^+ = 12V$ unless otherwise specified.

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>CA3089D2</th>
</tr>
</thead>
<tbody>
<tr>
<td>STATIC (DC) CHARACTERISTICS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{11}$ Quiescent circuit current</td>
<td>No signal input, non-muted</td>
<td>16 23 30 mA</td>
</tr>
<tr>
<td>$V_1$ Terminal 1 (IF input)</td>
<td>No signal input, non-muted</td>
<td>1.2 1.9 2.4 V</td>
</tr>
<tr>
<td>$V_2$ Terminal 2 (ac return to input)</td>
<td>No signal input, non-muted</td>
<td>1.2 1.9 2.4 V</td>
</tr>
<tr>
<td>$V_3$ Terminal 3 (dc bias to input)</td>
<td>No signal input, non-muted</td>
<td>1.2 1.9 2.4 V</td>
</tr>
<tr>
<td>$V_6$ Terminal 6 (audio output)</td>
<td>No signal input, non-muted</td>
<td>5.0 5.6 6.0 V</td>
</tr>
<tr>
<td>$V_7$ Terminal 7 (A.F.C.)</td>
<td>No signal input, non-muted</td>
<td>5.0 5.6 6.0 V</td>
</tr>
<tr>
<td>$V_{10}$ Terminal 10 (dc reference)</td>
<td>No signal input, non-muted</td>
<td>5.0 5.6 6.0 V</td>
</tr>
</tbody>
</table>

| DYNAMIC CHARACTERISTICS | | |
| $V_{l\text{lim}}$ Input limiting voltage ($-3dB$ point) | $V_{IN} = 0.1V, f_0 = 10.7MHz, f_{mod} = 400Hz, AM Mod = 30\%$ | 45 55 dB |
| $V_O$ Recovered audio voltage (terminal 6) | $V_{IN} = 0.1V, f_{mod} = 400Hz, V_{IN} = 0.1$ | 0.5 1.0 % |
| Total harmonic distortion | deviation $\pm 75kHz$ $V_{IN} = 0.1V$ | 60 70 dB |
| THD Single tuned (terminal 6) | $V_S = 2.5V$ | 60 70 dB |
| THD Double tuned (terminal 6$^4$) | deviation $\pm 75kHz$ $V_{IN} = 0.1V$ | 2.5 3.5 V |
| $S+N/N$ Signal plus noise to noise ratio (terminal 6) | $V_{IN} = 50\mu V$ | 4.0 .5 V |
| $MU_{IN}$ Mute input (terminal 5) | $V_{IN} = 0V$ | 4.0 .5 V |
| $MU_{OUT}$ Mute output (terminal 12) | $V_{IN} = 0V$ | 4.0 .5 V |
| MTR Meter output (terminal 13) | $V_{IN} = 0.1V$ | 2.5 3.5 V |
| AGC Delayed AGC (terminal 15) | $V_{IN} = 10\mu V$ | 4.0 5.0 V |
| THD Double tuned (terminal 6)$^4$ | $f_{mod} = 400Hz, V_{IN} = 0.1$ | 0.1 % |

NOTES
1. THD characteristics and Audio Level are essentially a function of the phase and Q characteristics of the network connected between terminals 8, 9, and 10.
2. Test circuit Figure 1.
3. Test circuit Figure 2.
4. Test circuit Figures 1 and 2.
TEST CIRCUITS

TYPICAL FM TUNER (With a single-tuned detector coil.)

![Circuit Diagram]

- **V** = 12V
- **R1**
- **C**
- **L**
- **22pF**
- **3.3K**
- **10K**
- **100pF**
- **220pF**
- **250pF**
- **0.1pF**
- **100pF**
- **37p**
- **12V**
- **INPUT**
- **IF OUT**
- **FM TUNER**
- **IF FILTER**
- **NOTE 1**
- **NOTE 2**
- **NOTE 3**
- **NOTE 4**

**Figure 3**

SYSTEM DESIGN CONSIDERATIONS

The CA3089 is a very high gain device and therefore careful consideration must be given to the layout of external components to minimize feedback. The input bypass capacitors should be located close to the input terminals and the values should not be large nor should the capacitors be of the type which might introduce inductive reactance to the circuit. An example of good by-pass capacitors would be ceramic disc with values in the range of .01 to .05 microfarad.

The input impedance of the CA3089 is approximately 10,000 ohms. It is not recommended to match this impedance. The value of the input termination resistor should be as low as possible without degrading system operation. The lower the value of this resistor the greater the system stability. An input terminating resistor between 50 and 100 ohms is recommended.

TYPICAL PERFORMANCE CHARACTERISTICS

**MUTING ACTION, TUNER AGC**

(Tuning meter output as a function of input signal voltage)

**AFC CHARACTERISTICS**

(Current at Term. 7 as a function of change in frequency)

NOTES

- All resistors values are typical and in ohms.
- 1. Walker 4SN3FIC or equivalent
- 2. Murata SFG 10.7mA or equivalent
- 3. $R_2$ will affect stability depending on circuit layout. To increase stability $R_2$ is decreased. Range of $R_2$ is 330 to 500, $R_1 + R_2 \leq 3300$
- 4. $L$ tunes with 100pF (C) at 10.7MHz $Q_0$ unloaded as 78 (G.I. EX27825 or equivalent)

Performance data at $f_0 = 98$MHz, $f_{MOD} = 400$Hz, deviation $= \pm 7.4$kHz:
- -3dB limiting sensitivity $= 2$µV (antenna level)
- 20dB quieting sensitivity $= 1$µV (antenna level)
- 30dB quieting sensitivity $= 1.5$µV (antenna level)

**NOTES**

- All resistor values are typical and in ohms.
- 1. Walker 4SN3FIC or equivalent
- 2. Murata SFG 10.7mA or equivalent
- 3. $R_2$ will affect stability depending on circuit layout. To increase stability $R_2$ is decreased. Range of $R_2$ is 330 to 500, $R_1 + R_2 \leq 3300$
- 4. $L$ tunes with 100pF (C) at 10.7MHz $Q_0$ unloaded as 78 (G.I. EX27825 or equivalent)

Performance data at $f_0 = 98$MHz, $f_{MOD} = 400$Hz, deviation $= \pm 7.4$kHz:
- -3dB limiting sensitivity $= 2$µV (antenna level)
- 20dB quieting sensitivity $= 1$µV (antenna level)
- 30dB quieting sensitivity $= 1.5$µV (antenna level)
TEST CIRCUITS

**TEST CIRCUIT**
(Using a single-tuned detector coil.)

```
<table>
<thead>
<tr>
<th>Component</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>12V</td>
</tr>
<tr>
<td>C</td>
<td>100pF</td>
</tr>
<tr>
<td>L</td>
<td>27µH</td>
</tr>
<tr>
<td>5K</td>
<td></td>
</tr>
<tr>
<td>C1</td>
<td>10µF</td>
</tr>
<tr>
<td>C2</td>
<td>1µF</td>
</tr>
<tr>
<td>L1</td>
<td>1mH</td>
</tr>
<tr>
<td>C3</td>
<td>0.1µF</td>
</tr>
<tr>
<td>33K</td>
<td></td>
</tr>
<tr>
<td>TUNING METER</td>
<td>150µA FULL SCALE</td>
</tr>
<tr>
<td>0.5µF</td>
<td></td>
</tr>
</tbody>
</table>

NOTE
L tunes with 100pF (C) at 10.7MHz.
All resistors values are typical and in ohms.
Q0 (unloaded) = 75 (G.J. automatic ming div. EX27825 or equivalent).

Figure 1
```

**TEST CIRCUIT**
(Using a double-tuned detector coil.)

```
<table>
<thead>
<tr>
<th>Component</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>12V</td>
</tr>
<tr>
<td>C</td>
<td>100pF</td>
</tr>
<tr>
<td>L</td>
<td>27µH</td>
</tr>
<tr>
<td>5K</td>
<td></td>
</tr>
<tr>
<td>C1</td>
<td>10µF</td>
</tr>
<tr>
<td>C2</td>
<td>1µF</td>
</tr>
<tr>
<td>L1</td>
<td>1mH</td>
</tr>
<tr>
<td>C3</td>
<td>0.1µF</td>
</tr>
<tr>
<td>33K</td>
<td></td>
</tr>
<tr>
<td>TUNING METER</td>
<td>150µA FULL SCALE</td>
</tr>
<tr>
<td>0.5µF</td>
<td></td>
</tr>
</tbody>
</table>

NOTE
All resistors values are typical and in ohms.
Q0 (unloaded) = 75 (tunes with 100pF (C1) 20 † of 34e on 7/32" dia. form)
Q0 (unloaded) = 75 (tunes with 100pF (C2) 20 † of 34e on 7/32" dia. form)
10% (percent of critical coupling) > 70%
(Amplifier for coil voltage V0) = 150mV
Above values permit proper operation of mute (squelch) circuit "E" type slugs, spacing 4mm

Figure 2
DESCRIPTION
The MC1496 is a monolithic Double-Balanced Modulator/Demodulator designed for use where the output voltage is a product of an input voltage (signal) and a switched function (carrier). The MC1596 will operate over the full military temperature range of -55°C to +125°C. The MC 1496 is intended for applications within the range of 0°C to +70°C.

FEATURES
• Excellent carrier suppression
 65dB typ @ 0.5MHz
 50dB typ @ 10MHz
• Adjustable gain and signal handling
• Balanced inputs and outputs
• High common-mode rejection—85dB typ

APPLICATIONS
• Suppressed carrier and amplitude modulation
• Synchronous detection
• FM detection
• Phase detection
• Sampling
• Single sideband
• Frequency doubling

ABSOLUTE MAXIMUM RATINGS

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>RATING</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Applied voltage</td>
<td>30</td>
<td>V</td>
</tr>
<tr>
<td>Differential input signal (V2-V10)</td>
<td>±5.0</td>
<td>V</td>
</tr>
<tr>
<td>Differential input signal (V4+V1)</td>
<td>(5 ± 15 R0)</td>
<td>V</td>
</tr>
<tr>
<td>Input signal (V2-V1, V3-V4)</td>
<td>5.0</td>
<td>V</td>
</tr>
<tr>
<td>Bias current (Ib)</td>
<td>10</td>
<td>mA</td>
</tr>
<tr>
<td>Power dissipation (pkg. limitation) N package</td>
<td>900</td>
<td>mW</td>
</tr>
<tr>
<td>Operating temperature range MC1496</td>
<td>0 to +70</td>
<td>°C</td>
</tr>
<tr>
<td>Operating temperature range MC1596</td>
<td>-55 to +125</td>
<td>°C</td>
</tr>
<tr>
<td>Storage temperature range</td>
<td>-65 to +150</td>
<td>°C</td>
</tr>
</tbody>
</table>

PIN CONFIGURATIONS

<table>
<thead>
<tr>
<th>F, N PACKAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>13 - V</td>
</tr>
<tr>
<td>12 NC</td>
</tr>
<tr>
<td>11 GAIN ADJUST</td>
</tr>
<tr>
<td>10 OUTPUT</td>
</tr>
<tr>
<td>9 SIGNAL INPUT</td>
</tr>
<tr>
<td>8 BIAS</td>
</tr>
<tr>
<td>6 POSITIVE</td>
</tr>
<tr>
<td>5 SIGNAL INPUT</td>
</tr>
<tr>
<td>4 NC</td>
</tr>
<tr>
<td>3 POSITIVE</td>
</tr>
</tbody>
</table>

EQUIVALENT SCHEMATIC

[Diagram of the balanced modulator/demodulator circuit]
BALANCED MODULATOR/DEMODULATOR

MC1496/MC1596

DC ELECTRICAL CHARACTERISTICS

\[V^+ = +12\text{Vdc}, V^- = -8.0\text{Vdc}, I_5 = 1.0\text{mAdc}, R_L = 3.9k\Omega, R_e = 1.0k\Omega, \]
\[T_A = 25^\circ\text{C unless otherwise specified.} \]

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MC1596</th>
<th>MC1496</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Min</td>
<td>Typ</td>
<td>Max</td>
</tr>
<tr>
<td>(R_{ip})</td>
<td>Single-ended input impedance</td>
<td>Signal port, (f = 5.0\text{MHz})</td>
<td>200</td>
<td>200</td>
</tr>
<tr>
<td>(C_{ip})</td>
<td>Parallel input capacitance</td>
<td></td>
<td>2.0</td>
<td>2.0</td>
</tr>
<tr>
<td>(R_{op})</td>
<td>Single-ended output impedance</td>
<td>(f = 10\text{MHz})</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>(C_{op})</td>
<td>Parallel output capacitance</td>
<td></td>
<td>5.0</td>
<td>5.0</td>
</tr>
<tr>
<td>(I_{bs})</td>
<td>Input bias current</td>
<td></td>
<td>12</td>
<td>25</td>
</tr>
<tr>
<td>(I_{bc})</td>
<td></td>
<td></td>
<td>12</td>
<td>25</td>
</tr>
<tr>
<td>(I_{ios})</td>
<td>Input offset current</td>
<td></td>
<td>0.7</td>
<td>5.0</td>
</tr>
<tr>
<td>(I_{ioc})</td>
<td></td>
<td></td>
<td>0.7</td>
<td>5.0</td>
</tr>
<tr>
<td>(T_{clo})</td>
<td>Average temperature coefficient of input offset current</td>
<td></td>
<td>2.0</td>
<td>2.0</td>
</tr>
<tr>
<td>(I_{oo})</td>
<td>Output offset current</td>
<td>(I_8 - I_{12})</td>
<td>14</td>
<td>50</td>
</tr>
<tr>
<td>(T_{cloo})</td>
<td>Average temperature coefficient of output offset current</td>
<td></td>
<td>90</td>
<td>90</td>
</tr>
<tr>
<td>(V_o)</td>
<td>Common-mode quiescent output voltage (Pin 5 or Pin 12)</td>
<td></td>
<td>8.0</td>
<td>8.0</td>
</tr>
<tr>
<td>(I_{o+})</td>
<td>Power supply current</td>
<td>(I_8 + I_{12})</td>
<td>2.0</td>
<td>3.0</td>
</tr>
<tr>
<td>(I_{o-})</td>
<td></td>
<td>(I_8 - I_{14})</td>
<td>3.0</td>
<td>4.0</td>
</tr>
<tr>
<td>(P_D)</td>
<td>DC power dissipation</td>
<td></td>
<td>33</td>
<td>33</td>
</tr>
</tbody>
</table>

TEST CIRCUIT

CARRIER REJECTION AND SUPPRESSION

TEST CIRCUIT

SIGNAL GAIN AND OUTPUT SWING
AC ELECTRICAL CHARACTERISTICS

V* = +12Vdc, V* = -9.0Vdc, I5 = 1.0mA, RL = 3.9kΩ, Re = 1.0kΩ.

T_A = +25°C unless otherwise specified.

PARAMETER	**TEST CONDITIONS**	**TEST CIRCUIT**	**UNIT**

Vcft Carrier feedthrough
V_C = 60mVrms sinewave and offset adjusted to zero
fc = 1.0kHz
fc = 10MHz
V_C = 300mVp-p squarewave: Offset adjusted to zero
fc = 1.0kHz
Offset not adjusted
fc = 1.0kHz

MC1596	MC1496				
Min	Typ	Max	Min	Typ	Max
40	40	0.2	20	20	0.4
140	140	0.4	100	100	200

Vcs Carrier suppressions
fs = 10kHz, 300mVrms sinewave
fc = 500kHz, 60mVrms sinewave
fc = 10MHz, 60mVrms sinewave

MC1596	MC1496				
Min	Typ	Max	Min	Typ	Max
50	50	40	40	65	20

BW3dB Transadmittance bandwidth (Magnitude) (RL = 50Ω)
Carrier input port, V_C = 60mVrms sinewave fs = 1.0kHz, 300mVrms sinewave
Signal input port, V_S = 300mVrms sinewave | V_C | = 0.5Vdc

MC1596	MC1496				
Min	Typ	Max	Min	Typ	Max
300	300	80	80	50	50

AVs Signal gain
V_S = 100mVrms; f = 1.0kHz
| V_C | = 0.5Vdc

MC1596	MC1496		
2.5	2.5	3.5	3.5

CMV Common-mode input swing
Signal port, f_S = 1.0kHz
| V_C | = 0.5Vdc

MC1596	MC1496		
5.0	5.0	-85	-85

ACM Common-mode gain
Signal port, f_S = 1.0kHz
| V_C | = 0.5Vdc

MC1596	MC1496		
8.0	8.0	8.0	8.0

DVOUT Differential output voltage swing capability

MC1596	MC1496		
8.0	8.0	8.0	8.0

For additional information, consult the Applications Section.
DESCRIPTION
The NE5080 is the transmitter chip, of a
two chip set, designed to be the heart of an
FSK modem. The NE5081 is the receiver
chip. The chips are compatible with the
IEEE 802.4 standard for a “Single Channel
Phase-Continuous-FSK Bus.” The specifica-
tions shown in this data sheet are those
guaranteed when the transmitter is tuned
for the frequencies given in the 802 stan-
dard. However, both the NE5080 and the
NE5081 may be used at other frequencies.
The ratio of logic high to logic low frequen-
cies remains fixed at 1.67 to 1.00 at any center
frequency.

FEATURES
• Meets IEEE 802.4 standard
• Data rates to several Megabaud
• Half or full duplex operation
• Jabber function on chip

APPLICATIONS
• Local Area Networks
• Point-to-point communications
• Factory automation
• Process control
• Office automation

ABSOLUTE MAXIMUM RATINGS

<table>
<thead>
<tr>
<th>SYMBOL & PARAMETER</th>
<th>RATING</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Voltage V_{CC1}</td>
<td>+ 6</td>
<td>V</td>
</tr>
<tr>
<td>Input Voltage Range (Data, Gate)</td>
<td>- 0.3 to + V_{CC}</td>
<td>V</td>
</tr>
<tr>
<td>Power Dissipation</td>
<td>800</td>
<td>mW</td>
</tr>
<tr>
<td>Operating Temperature Range</td>
<td>0 to + 70</td>
<td>°C</td>
</tr>
<tr>
<td>Max Junction Temperature</td>
<td>+ 150</td>
<td>°C</td>
</tr>
<tr>
<td>Storage Temperature Range</td>
<td>- 65 to + 150</td>
<td>°C</td>
</tr>
<tr>
<td>Lead Temperature (soldering, 10 sec)</td>
<td>300</td>
<td>°C</td>
</tr>
</tbody>
</table>

PIN CONFIGURATION

PIN CONFIGURATION

BLOCK DIAGRAM

5-54
GENERAL DESCRIPTION
The NE5080 is designed to transmit high frequency asynchronous data on coaxial cable, at rates from DC to 2 Megabaud (see note 1). The chip accepts serial data and transmits it as a periodic signal whose frequency depends on whether the data is high or low.

The device is meant to operate at a frequency of 6.25MHz for a logic high and 3.75MHz for a logic low (see note 2). The frequency is set up by external trimming components; however, the ratio of the high and low frequencies is set internally and cannot be altered.

The FSK output can be turned off by use of the transmit gate pin. When turned off, the transmitter has a high output impedance and the oscillator is disabled.

The length of time a transmitter can transmit can be controlled by the use of the Jabber control pin (see description of Jabber Control Pin).

Jabber Control Pin
During the time the transmitter is transmitting, this pin sources a current. This current can be used to set the maximum time that the transmitter can be on. There are three options that can be used:
1. Use the current to charge a capacitor. When the voltage across the cap gets to approx. 1.4V the transmitter will turn off. A logic low applied to pin 3 will reset the Jabber function; an open collector output should be used for this purpose. A logic high applied to the pin will disable the transmitter.
2. Use to externally sense the current and have external circuitry to control the length of time the transmitter is on.
3. The pin can be tied to ground and is then not active. Transmission is then controlled solely by the signal at the transmit gate pin.

Jabber Flag Pin
This pin will go to a logic high when the Jabber Control pin is used to shut off the transmitter. It will latch and can be reset by applying a logic low to the Jabber Control pin.

Notes:
1. The NE5080 is capable of transmitting up to 1 Megabaud of differential Manchester code at a center frequency of 5MHz.
2. Although the chip is designed to meet the requirements of IEEE standard 802.4 (Token-Passing Single Channel Phase-Continuous-FSK Bus), it can be used at other frequencies. See “Determining Component Values.”

NE5080 PIN FUNCTION

<table>
<thead>
<tr>
<th>PIN</th>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>OSC 1—one end of an external capacitor used to set the carrier frequency</td>
</tr>
<tr>
<td>2</td>
<td>JABBER FLAG—this pin goes to a logic high if the transmitter attempts to transmit for a longer time than allowed by the Jabber control function</td>
</tr>
<tr>
<td>3</td>
<td>JABBER CONTROL—used to control transmit time. See note on Jabber function</td>
</tr>
<tr>
<td>4</td>
<td>Vcc1—voltage supply</td>
</tr>
<tr>
<td>5</td>
<td>TRANSMIT GATE—a logic low on this pin will enable the transmitter; a logic high will disable it</td>
</tr>
<tr>
<td>6</td>
<td>TRANSMITTER FSK OUTPUT</td>
</tr>
<tr>
<td>7</td>
<td>CABLE GROUND—the shield of the coax cable should be connected to this pin and to Pin 11</td>
</tr>
<tr>
<td>8</td>
<td>Vcc2—Connect to pin 4 close to device</td>
</tr>
<tr>
<td>9</td>
<td>No Connection</td>
</tr>
<tr>
<td>10</td>
<td>No Connection</td>
</tr>
<tr>
<td>11</td>
<td>GROUND 2—connect to Analog ground close to device</td>
</tr>
<tr>
<td>12</td>
<td>OSC 3—a variable resistor between this point and ground is used to set the carrier frequencies.</td>
</tr>
<tr>
<td>13</td>
<td>GROUND 1—connect to Analog ground close to device</td>
</tr>
<tr>
<td>14</td>
<td>DATA INPUT</td>
</tr>
<tr>
<td>15</td>
<td>REGULATOR BYPASS—a bypass capacitor between this pin and Vcc1 is required for the internal voltage regulator function</td>
</tr>
<tr>
<td>16</td>
<td>OSC 2—one end of a capacitor that is between pin 1 and pin 16 and is used to set the carrier frequency</td>
</tr>
</tbody>
</table>
ELECTRICAL CHARACTERISTICS

\(V_{CC1,2} = 4.75-5.25 \text{V} \quad T_A = 0^\circ \text{C} \text{ to } +70^\circ \text{C} \)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>SYMBOL</th>
<th>TEST CONDITIONS</th>
<th>NE5080</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output Frequency (Logic High)</td>
<td>(F_1)</td>
<td>Data Input (\geq 2.0 \text{V}) (See Note 1)</td>
<td>6.17</td>
<td>6.25</td>
</tr>
<tr>
<td>Output Frequency (Logic Low)</td>
<td>(F_0)</td>
<td>Data Input (\leq 0.8 \text{V}) (See Note 1)</td>
<td>3.67</td>
<td>3.75</td>
</tr>
<tr>
<td>Output Amplitude</td>
<td>(V_o)</td>
<td>Data Input (\geq 2.0 \text{V}) or (\leq 0.8 \text{V}) Output Load = 37.5 (\Omega)</td>
<td>0.5</td>
<td>1.0</td>
</tr>
<tr>
<td>Output Impedance (gated off)</td>
<td>(R_{off})</td>
<td>Transmit gate (\geq 2.0 \text{V})</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>Output Impedance (gated on)</td>
<td>(R_{on})</td>
<td>Transmit gate (\leq 0.8 \text{V})</td>
<td>37.5</td>
<td></td>
</tr>
<tr>
<td>Output Capacitance</td>
<td>(C_o)</td>
<td>Transmit gate (\geq 2.0 \text{V}) or (\leq 0.8 \text{V})</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Feed through</td>
<td>(V_F)</td>
<td>Transmit gate (\geq 2.0 \text{V}) 2.0MHz sq. wave (TTL Levels) Input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jabber Current</td>
<td>(I_u)</td>
<td>Transmit gate (\leq 0.8 \text{V}) Input (\geq 2.0 \text{V}) or (\leq 0.8 \text{V})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supply Current</td>
<td>(I_{CC})</td>
<td>(V_{CC1}) connected to (V_{CC2})</td>
<td>75</td>
<td>100</td>
</tr>
</tbody>
</table>

LOGIC LEVELS

Data Input	Logic High	\(V_{IH} \)	Input high voltage	2.0			Volts
Logic Low	\(V_{IL} \)	Input low voltage		0.8	40	-1.6	Volts
Input Current	\(I_{IH} \)	\(V_{in} = 2.4 \text{V} \)					\(\mu \text{A} \)
\(I_{IL} \)	\(V_{in} = 0.4 \text{V} \)						\(\mu \text{A} \)
Transmit Gate	Logic High	\(V_{IH} \)	Input high voltage	2.0			Volts
Logic Low	\(V_{IL} \)	Input low voltage		0.8	40	-1.6	Volts
Input Current	\(I_{IH} \)	\(V_{G} = 2.4 \text{V} \)					\(\mu \text{A} \)
\(I_{IL} \)	\(V_{G} = 0.4 \text{V} \)						\(\mu \text{A} \)
Jabber Flag	Logic High	\(V_{OH} \)	IOH = \(-400\mu \text{A}\)	2.4			Volts
Logic Low	\(V_{OL} \)	IOL = \(4.0 \text{mA}\)			0.4		Volts
Jabber Control	Logic High	\(V_{IH} \)	Input high voltage	2.0			Volts
Logic Low	\(V_{IL} \)	Input low voltage		0.8			Volts

NOTE

(1) Tuned per instructions in Applications section.

AC ELECTRICAL CHARACTERISTICS

<table>
<thead>
<tr>
<th>SYMBOL & PARAMETER</th>
<th>TO</th>
<th>FROM</th>
<th>TEST CONDITIONS</th>
<th>NE5080</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Set Up Time — (T_S)</td>
<td>Data In</td>
<td>Gate On</td>
<td>Figure 1</td>
<td>2</td>
<td>0.1</td>
</tr>
<tr>
<td>Delay Time — (T_A)</td>
<td>Output Freq. Change</td>
<td>Data Transition</td>
<td>Figure 2</td>
<td></td>
<td>150</td>
</tr>
<tr>
<td>Delay Time — (T_B)</td>
<td>Output Disabled</td>
<td>Gate Off</td>
<td>Figure 3</td>
<td>0.4</td>
<td>2</td>
</tr>
<tr>
<td>Delay Time — (T_C)</td>
<td>Output Disabled</td>
<td>Jabber Control</td>
<td>Figure 4</td>
<td></td>
<td>100</td>
</tr>
<tr>
<td>Delay Time — (T_D)</td>
<td>Jabber Control</td>
<td>Jabber Control</td>
<td>Figure 5</td>
<td></td>
<td>100</td>
</tr>
</tbody>
</table>

Pulse Width (Logic Low) | 100 | | \(\text{nS} \) |
TIMING DIAGRAMS

Figure 1. Set-up Time, T_s

Figure 2. Delay Time, T_A

Figure 3. Delay Time, T_B

Figure 4. Delay Time, T_C

Figure 5. Delay Time, T_D
DESCRIPTION
The NE5081 is the receiver chip of a two chip set designed to operate as an FSK modem (the NE5080 is the transmitter chip). The chips are compatible with the IEEE 802.4 standard for a "Single Channel Phase-Continuous-FSK Bus." The specifications given in this data sheet are those guaranteed when the receiver is tuned to the frequencies in the 802 standard. However, the receiver will work at other frequencies.

FEATURES
• Meets IEEE 802.4 standard
• Data rates to several Megabaud
• Half or full duplex operation
• Low bit rate error (10⁻¹² typical)

APPLICATIONS
• Local Area Networks
• Point-to-point communications
• Factory automation
• Process control
• Office automation

ABSOLUTE MAXIMUM RATINGS $T_A = 25^\circ C$

<table>
<thead>
<tr>
<th>SYMBOL & PARAMETER</th>
<th>RATING</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Voltage V_{CC1}, V_{CC2}</td>
<td>+6</td>
<td>Volts</td>
</tr>
<tr>
<td>Input Voltage Range</td>
<td>-0.3 to $+V_{CC}$</td>
<td>Volts</td>
</tr>
<tr>
<td>Output (Data, Level Detect)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max Sink Current</td>
<td>20</td>
<td>mA</td>
</tr>
<tr>
<td>Power Dissipation</td>
<td>800</td>
<td>mW</td>
</tr>
<tr>
<td>Operating Temperature Range</td>
<td>0 to 70</td>
<td>°C</td>
</tr>
<tr>
<td>Storage Temperature Range</td>
<td>-65 to 150</td>
<td>°C</td>
</tr>
<tr>
<td>Lead Temperature (soldering, 10 sec)</td>
<td>300</td>
<td>°C</td>
</tr>
<tr>
<td>Max Differential Voltage between Analog and Digital Grounds</td>
<td>100</td>
<td>mV</td>
</tr>
</tbody>
</table>

BLOCK DIAGRAM

Note: Either L1 or C7 is variable.
GENERAL DESCRIPTION
The NE5081 will accept an FSK encoded signal and provide the demodulated digital data at the output. It is optimized to work at frequencies specified in IEEE 802.4 (Token-Passing Single Channel Phase-Continuous FSK Bus) i.e., 3.75MHz and 6.25MHz. However, it will work at other frequencies (see note 1).

Its normal acceptable input signal level range is from 16mV RMS to 1V RMS. (This can be adjusted, see note 2 below.)

The receiver will yield an undetected “Bit Error Rate” of 10^{-9} or lower when receiving signals with a 20dB signal-to-noise ratio. It has a maximum output Jitter of ±40nSec (see definition of “Jitter” note 3).

Notes:
1. The receiver can be tuned to accept different frequencies by adjustment of the LC circuit shown in Fig. 7. However, the external components have been optimized for 3.75MHz and 6.25MHz. See “Determining Component Values” for use at other frequencies.
2. Input Level Detect
 This is a method of turning off the output of the receiver when the input signal falls below an acceptable level. This level is adjustable within the range given in the electrical specification section. The purpose of this function is to minimize the effect of noise on receiver performance and to indicate when there is an acceptable signal present at the input. All specifications given in this data sheet are with the input level detection set at 16mV RMS.
3. Jitter Definition
 This is a measure of the ability of the receiver to accurately reproduce the timing of its FSK coded digital input. The spec indicates the error band in the timing of a logic level change.

NE5081 PIN FUNCTION

<table>
<thead>
<tr>
<th>PIN</th>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>V_{CC1}—should be connected to the 5 volt supply and pin 9</td>
</tr>
<tr>
<td>2</td>
<td>CT—one end of an external capacitor that is used to tune the receiver</td>
</tr>
<tr>
<td>3</td>
<td>LT—one end of an inductor that is used to tune the receiver</td>
</tr>
<tr>
<td>4</td>
<td>MT—the junction of the capacitor and inductor used for tuning the receiver</td>
</tr>
<tr>
<td>5</td>
<td>$F2$</td>
</tr>
<tr>
<td>6</td>
<td>$F1$ Pins 5, 6, 7, 8 are used for a low pass filter to remove carrier harmonics from the data output</td>
</tr>
<tr>
<td>7</td>
<td>$F3$</td>
</tr>
<tr>
<td>8</td>
<td>$F4$</td>
</tr>
<tr>
<td>9</td>
<td>V_{CC2}—connect to Pin 1 (see Pin 1 function) close to the device</td>
</tr>
<tr>
<td>10</td>
<td>INPUT LEVEL FLAG—this pin is used to indicate when there is a signal at the input that is greater than the level set by the input level detection circuitry. A logic high indicates an input greater than the set level</td>
</tr>
<tr>
<td>11</td>
<td>DATA OUTPUT—supplies T^2L level data that corresponds to the FSK input received</td>
</tr>
<tr>
<td>12</td>
<td>DIGITAL GROUND—should be connected to digital ground</td>
</tr>
<tr>
<td>13 and 14</td>
<td>INPUT LEVEL DETECT—These pins are used to set the level of input signal that the device will accept as valid</td>
</tr>
<tr>
<td>15</td>
<td>INPUT DETECTION TIMING—an external capacitor between this pin and ground is used to determine the time from carrier turn-off to output disable</td>
</tr>
<tr>
<td>16</td>
<td>INPUT DETECTION TIMING—same as pin 15, except that a resistor goes between this pin and ground. The values of the C and R depend on the carrier frequency. The values given in this data sheet are for a 5MHz carrier center frequency</td>
</tr>
<tr>
<td>17</td>
<td>ANALOG GROUND—connect to analog ground close to the device</td>
</tr>
<tr>
<td>18</td>
<td>INPUT BYPASS—a capacitor between this pin and ground is used to bypass the input bias circuitry</td>
</tr>
<tr>
<td>19</td>
<td>INPUT—the FSK signal from the cable goes to this pin</td>
</tr>
<tr>
<td>20</td>
<td>NO CONNECTION</td>
</tr>
</tbody>
</table>
ELECTRICAL CHARACTERISTICS

\(V_{CC1,2} = 4.75 - 5.25V \). External LC circuit tuned to 5MHz. Input level detect set at 16mV Rms, \(T_A = 0°C \) to +70°C.

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>SYMBOL</th>
<th>TEST CONDITIONS</th>
<th>NE5081</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Logic Low Frequency</td>
<td>(F_0)</td>
<td>External LC tuned to 5MHz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Logic High Frequency</td>
<td>(F_1)</td>
<td>External LC tuned to 5MHz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minimum Input Detect Level</td>
<td>(IN_{DL})</td>
<td>Minimum input level that is detected as carrier. See Note 2 in General Description</td>
<td>5</td>
<td>50</td>
</tr>
<tr>
<td>LOGIC LEVELS:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data Output</td>
<td>(V_{OL})</td>
<td>(I_{OL} = 4.0mA) (V_{IN} > 16mV) RMS Freq = (F_0)</td>
<td>2.4</td>
<td>0.4</td>
</tr>
<tr>
<td>Data Output</td>
<td>(V_{OH})</td>
<td>(I_{OH} = -400\mu A) (V_{IN} > 16mV) RMS Freq = (F_1)</td>
<td>2.4</td>
<td>0.4</td>
</tr>
<tr>
<td>Data Output</td>
<td>(V_{OL})</td>
<td>(I_{OL} = 4.0mA) (V_{IN} = 0V) RMS</td>
<td>2.4</td>
<td>0.4</td>
</tr>
<tr>
<td>Data Output</td>
<td>(V_{OH})</td>
<td>(I_{OH} = -400\mu A) (V_{IN} > 16mV)</td>
<td>2.4</td>
<td>0.4</td>
</tr>
<tr>
<td>Input Detect Flag</td>
<td>(V_{OL})</td>
<td>(V_{CC} = 5.25V) ((V_{CC}), connected to (V_{CC2}))</td>
<td></td>
<td>50</td>
</tr>
<tr>
<td>Input Detect Flag</td>
<td>(V_{OH})</td>
<td>(V_{IN} = 1.0V) RMS Freq = (F_0) or (F_1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supply Current</td>
<td>(I_{CC})</td>
<td>Input Signal > 16mV RMS. maximum in-band noise = 1.6mV RMS</td>
<td>(10^{-12})</td>
<td>(10^{-9})</td>
</tr>
</tbody>
</table>

AC ELECTRICAL CHARACTERISTICS

<table>
<thead>
<tr>
<th>SYMBOL & PARAMETER</th>
<th>TO</th>
<th>FROM</th>
<th>TEST CONDITIONS</th>
<th>NE5081</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delay Time (T_B)</td>
<td>Input Level Detect Flag</td>
<td>Input On</td>
<td>Figure 1</td>
<td></td>
<td>0.05</td>
</tr>
<tr>
<td>Delay Time (T_C)</td>
<td>Input Level Detect Flag</td>
<td>Input Off</td>
<td>Figure 1</td>
<td>.5</td>
<td>2</td>
</tr>
<tr>
<td>Delay Time (T_D)</td>
<td>Output Enabled</td>
<td>Input On</td>
<td>Figure 2</td>
<td></td>
<td>0.5</td>
</tr>
<tr>
<td>Delay Time (T_E)</td>
<td>Output Disabled</td>
<td>Input Off</td>
<td>Figure 2</td>
<td>.5</td>
<td>2</td>
</tr>
<tr>
<td>Required Delay</td>
<td>Carrier Turn Off</td>
<td>Valid Data End</td>
<td></td>
<td></td>
<td>2</td>
</tr>
</tbody>
</table>
TIMING DIAGRAMS

Figure 1. Delay Time, T_B, T_C

Figure 2. Delay Time, T_D, T_E
Absolute Maximum Rating
Operating safe zones exceeding these limits could cause permanent damage to the device and are not meant to imply that devices can operate at these limits.

Capture Range \(2f_0, 2\omega_0\)**
Although the loop will remain in lock throughout its lock range, it may not be able to acquire lock at the tracking range extremes because of the selectivity afforded by the low-pass filter. The capture range also is centered at \(f_0'\) with the equal deviations called the Lock-in or Pull-in Ranges. The capture range can never exceed the lock range.

Closed Loop Gain (CLG)
The output signal frequency and phase can be determined from a product of the CLG and the input signal where the CLG is given by

\[
\text{CLG} = \frac{K_v}{1 + K_v}
\]

(Equation 1.4)

Damping Factor (\(\zeta\))
The standard damping constant of a second order feedback system. For the PLL, \(\zeta\) refers to the ability of the loop to respond quickly to an input frequency step without excessive overshoot.

Free-Running Frequency \(f_0', \omega_0'\)
Also called the center frequency, this is the frequency at which the loop VCO operates when not locked to an input signal. The "prime" superscripts are used to distinguish the free-running frequency from \(f_0'\) and \(\omega_0'\) which are used for the general oscillator frequency. (Many references use \(f_0'\) and \(\omega_0'\) for both the free-running and general oscillator frequency and leave the proper choice for the reader to infer from the context). The appropriate units for \(f_0'\) and \(\omega_0'\) are Hz and radians per second respectively.

Lock Range \(2f_1, 2\omega_1\)*
The range of frequencies over which the loop will remain in lock. Normally the lock range is centered at the free-running frequency unless there is some nonlinearity in the system which limits the frequency deviation on one side of \(f_0'\). The deviations from \(f_0'\) are referred to as the Tracking Range or Hold-in Range. (See figure 1.6.) The tracking range is therefore one-half of the lock range.

Lock-Up Time \(t_{LU}\)***
The transient time required for a free-running loop to lock. This time depends principally upon the bandwidth selectivity designed into the loop with the low-pass filter. The lock-up time is inversely proportional to the selectivity bandwidth. Also, lock-up time exhibits a statistical spreading due to random initial phase relationships between the input and oscillator phases.

Loop Gain \(K_g\)
The product of \(K_v, K_o\) and the low-pass filters gain at dc. \(K_g\) is evaluated at the appropriate input signal level and \(K_v\) at the appropriate \(\omega_0'\). \(K_v\) has units of (sec)^{-1}.

Loop Noise Bandwidth \(B_L\)
A loop property relating \(\omega_n\) and \(\tau\) which describes the effective bandwidth of the received signal. Noise and signal components outside this bandwidth are greatly attenuated.

Natural Frequency \(\omega_n\)
The characteristic frequency of the loop, determined mathematically by the final pole positions in the complex plane or determined experimentally as the modulation frequency for which an underdamped loop gives the maximum frequency deviation from \(f_0'\) and at which the phase error swing is the greatest.

Package Type Designation
See full package designations in Appendix.

Phase Comparator Conversion Gain \(K_d\)
The conversion constant relating the phase comparator output voltage to the phase difference between input and VCO signals when the loop is locked. At low input signal levels, \(K_d\) is also a function of signal amplitude. \(K_d\) has units of volts per radian (V/rad).

Power Dissipation
The power that the device can safely handle at 25°C. The dissipation must be derated as indicated for the individual package type.

\(T_A\)
Ambient temperature range. Range of the surrounding environment of the operating device.

\(T_J\)
Junction Temperature. The maximum temperature of the device. 150°C is standard for silicon devices.

\(T_{SOLDER}\)
Soldering Temperature. The temperature which can be applied to the lead frame of the device for short periods of time (normally specified for a duration of 10 sec).

\(T_{STG}\)
Storage temperature range. Temperature range that the device can be stored in a non-operating condition.

Truth Tables
0 is logic level low
1 is logic level high
X — don't care condition — has no effect under circuit conditions listed.

* Also called Synchronization Range.
** Also called Acquisition Range.
*** Also called Acquisition Time.
DESCRIPTION
The NE564 is a versatile, high guaranteed frequency Phase Locked Loop designed for operation up to 50MHz. As shown in the block diagram, the NE564 consists of a VCO, limiter, phase comparator, and post detection processor.

APPLICATIONS
• High speed modems
• FSK receivers and transmitters
• Frequency synthesizers
• Signal generators
• Various satcom/TV systems

FEATURES
• Operation with single 5V supply
• TTL compatible inputs and outputs
• Guaranteed operation to 50MHz
• External loop gain control
• Reduced carrier feedthrough
• No elaborate filtering needed in FSK applications
• Can be used as a modulator
• Variable loop gain (externally controlled)

ABSOLUTE MAXIMUM RATINGS

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>RATING</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>V+ Supply voltage</td>
<td>Pin 1</td>
<td>14 V</td>
</tr>
<tr>
<td>Pin 10</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>PD Power dissipation</td>
<td>NE</td>
<td>600 mW</td>
</tr>
<tr>
<td>TA Operating temperature</td>
<td>SE</td>
<td>0 to 70 °C</td>
</tr>
<tr>
<td>Storage temperature</td>
<td>-55 to +125 °C</td>
<td></td>
</tr>
</tbody>
</table>

NOTE: Operation above 5 volts will require heatsinking of the case.

BLOCK DIAGRAM
PHASE LOCKED LOOP

ELECTRICAL CHARACTERISTICS \(V_{CC} = 5V, T_A = 25^\circ C, f_0 = 5MHz, I_E = 400\mu A \) unless otherwise specified

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>SE564</th>
<th>NE564</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Min</td>
<td>Typ</td>
<td>Max</td>
</tr>
<tr>
<td>Maximum VCO frequency</td>
<td>(C_1 = 0) (stray)</td>
<td>50</td>
<td>65</td>
<td>45</td>
</tr>
<tr>
<td>Lock range</td>
<td>Input (\geq 200mVrms) (T_A = 25^\circ C)</td>
<td>40</td>
<td>70</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>(= 125^\circ C)</td>
<td>20</td>
<td>30</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td>(= -55^\circ C)</td>
<td>50</td>
<td>80</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td>(= 0^\circ C)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(= 70^\circ C)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Capture range</td>
<td>Input (\geq 200mVrms), (R_2 = 270)</td>
<td>20</td>
<td>30</td>
<td>20</td>
</tr>
<tr>
<td>VCO frequency drift with temperature</td>
<td>(f_0 = 5MHz, T_A = -55^\circ C) to 125(^\circ C)</td>
<td>400</td>
<td>1000</td>
<td>400</td>
</tr>
<tr>
<td></td>
<td>(f_0 = 500KHz, T_A = -55^\circ C) to 125(^\circ C)</td>
<td>250</td>
<td>500</td>
<td>400</td>
</tr>
<tr>
<td>VCO free running frequency</td>
<td>(C_1 = 0)pF (R_C = 1000) “Internal”</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>VCO frequency change with supply voltage</td>
<td>(V_{CC} = 4.5V) to 5.5V</td>
<td>3</td>
<td>8</td>
<td>3</td>
</tr>
<tr>
<td>Demodulated output voltage</td>
<td>Modulation frequency: 1KHz</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(f_0 = 5MHz), input deviation:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(2% T = 25^\circ C)</td>
<td>16</td>
<td>28</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>(1% T = 25^\circ C)</td>
<td>8</td>
<td>14</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>(= 0^\circ C)</td>
<td>13</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(= -55^\circ C)</td>
<td>6</td>
<td>10</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>(= 70^\circ C)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(= 125^\circ C)</td>
<td>12</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Distortion</td>
<td>Deviation: 1% to 8%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Signal to noise ratio</td>
<td>Std. condition, 1% to 10% dev.</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AM rejection</td>
<td>Std. condition, 30% AM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Demodulated Output at operating voltage</td>
<td>Modulation frequency: 1KHz</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(f_0 = 5MHz), input deviation:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(1%) (V_{CC} = 4.5V)</td>
<td>7</td>
<td>12</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>(V_{CC} = 5.5V)</td>
<td>8</td>
<td>14</td>
<td>8</td>
</tr>
<tr>
<td>Supply current</td>
<td>(V_{CC} = 5V) (I_1, I_{10})</td>
<td>45</td>
<td>60</td>
<td>45</td>
</tr>
<tr>
<td>Output</td>
<td>("1") output leakage current</td>
<td>1</td>
<td>20</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>("0") output voltage</td>
<td>0.3</td>
<td>0.6</td>
<td>0.3</td>
</tr>
<tr>
<td></td>
<td>(I_{OUT} = 2mA, Pin 16, 9)</td>
<td>0.4</td>
<td>0.8</td>
<td>0.4</td>
</tr>
<tr>
<td></td>
<td>(I_{OUT} = 6mA, Pin 16, 9)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TYPICAL PERFORMANCE CHARACTERISTICS

LOCK RANGE vs SIGNAL INPUT

VCO CAPACITOR vs FREQUENCY

SE/NE 564 TEST CIRCUIT
Typical normalized VCO frequency as a function of PIN 2 bias current

VCO frequency: 50 MHz

Normalized VCO frequency as a function of PIN 2 bias current

Normalized VCO frequency as a function of temperature

Variation of the phase comparator's output voltage versus phase error and bias current (K_0)

VCO output frequency as a function of input voltage and bias current (K_0)

V_0 - Phase comparator's output voltage in mV

V_{JN} - Input voltage in mV

$V_0 = 1.0$ MHz

$I_{BAS} = 800 \mu A$

$I_{BAS} = 400 \mu A$

$I_{BAS} = 200 \mu A$

0° - Phase error in degrees
FUNCTIONAL DESCRIPTION (figure 1)
The NE564 is a monolithic phase locked loop with a post detection processor. The use of Schottky clamped transistors and optimized device geometries extends the frequency of operation to greater than 50MHz. In addition to the classical PLL applications, the NE564 can be used as a modulator with a controllable frequency deviation.

The output voltage of the PLL can be written as shown in the following equation:

\[V_0 = \frac{(f_{in} - f_0)}{K_{VCO}} \]

Equation 1

\(K_{VCO} \) = conversion gain of the VCO
\(f_{in} \) = frequency of the input signal
\(f_0 \) = free running frequency of the VCO

The process of recovering FSK signals involves the conversion of the PLL output into logic compatible signals. For high data rates, a considerable amount of carrier will be present at the output of the PLL due to the wideband nature of the loop filter. To avoid the use of complicated filters, a comparator with hysteresis or Schmitt trigger is required. With the conversion gain of the VCO fixed, the output voltage as given by Equation 1 varies according to the frequency deviation of \(f_{in} \) from \(f_0 \). Since this differs from system to system, it is necessary that the hysteresis of the Schmitt trigger be capable of being changed, so that it can be optimized for a particular system. This is accomplished in the 564 by varying the voltage at pin 15 which results in a change of the hysteresis of the Schmitt trigger.

For FSK signals, an important factor to be considered is the drift in the free running frequency of the VCO itself. If this changes due to temperature, according to Equation 1 it will lead to a change in the dc levels of the PLL output, and consequently to errors in the digital output signal. This is especially true for narrow band signals where the deviation in \(f_{in} \) itself may be less than the change in \(f_0 \) due to temperature. This effect can be eliminated if the dc or average value of the signal is retrieved and used as the reference to the comparator. In this manner, variations in the dc levels of the PLL output do not affect the FSK output.

VCO Section
Due to its inherent high frequency performance, an emitter coupled oscillator is used in the VCO. In the circuit, shown in the equivalent schematic, transistors \(Q_{21} \) and \(Q_{23} \) with current sources \(I_{25} - I_{26} \) form the basic oscillator.

The approximate free running frequency of the oscillator is shown in the following equation:

\[f_0 = \frac{1}{22 R_C (C_1 + C_S)} \]

Equation 2

\(R_C = R_{19} = R_{20} = 100 \text{K} \) (INTERNAL)
\(C_1 = \) external frequency setting capacitor
\(C_S = \) stray capacitance

Variation of \(V_d \) (phase detector output voltage) changes the frequency of the oscillator. As indicated by Equation 2, the frequency of the oscillator has a negative
temperature coefficient due to the positive temperature coefficient of the monolithic resistor. To compensate for this, a current I_R with negative temperature coefficient is introduced to achieve a low frequency drift with temperature.

Phase Comparator Section

The phase comparator consists of a double balanced modulator with a limiter amplifier to improve AM rejection. Schottky clamped vertical PNP's are used to obtain TTL level inputs. The loop gain can be varied by changing the current in Q_4 and Q_{15} which effectively changes the gain of the differential amplifiers. This can be accomplished by introducing a current at pin 2.

Post Detection Processor Section

The post detection processor consists of a unity gain transconductance amplifier and comparator. The amplifier can be used as a dc retriever for demodulation of FSK signals, and as a post detection filter for linear FM demodulation. The comparator has adjustable hysteresis so that phase jitter in the output signal can be eliminated.

As shown in the equivalent schematic, the dc retriever is formed by the transconductance amplifier Q_{42}-Q_{43} together with an external capacitor which is connected at the amplifier output (pin 14). This forms an integrator whose output voltage is shown in the following equation:

$$V_0 = \frac{\int_0^t V_{in}dt}{C_2}$$ \hspace{1cm} Equation 3

$V_0 = \int_0^t V_{in}dt$ is the dc or average value of the input signal for use in FSK, or as a post detection filter in linear demodulation.

The comparator with hysteresis is made up of Q_{49}-Q_{50} with positive feedback being provided by Q_{47}-Q_{48}. The hysteresis is varied by changing the current in Q_{52} with a resulting variation in the loop gain of the comparator. This method of hysteresis control, which is a dc control, provides symmetric variation around the nominal value.

Design Formula

The free running frequency of the VCO is shown by the following equation:

$$f_0 = \frac{1}{25 R_C (C_1 + C_2)}$$ \hspace{1cm} Equation 4

$R_C = 100\Omega$

C_1 = external cap in farads

C_2 = stray capacitance
The loop filter diagram shown is explained by the following equation:

\[F(s) = \frac{1}{1 + sRC_3} \quad \text{(First Order)} \quad \text{Equation 5} \]

\[R = R_{12} = R_{13} = 1.3k\Omega \text{ (INTERNAL)*} \]

By adding capacitors to pins 4 and 5, a pole is added to the loop transfer function at

\[\omega = \frac{1}{RC_3} \]

*Refer to Figure 1.

APPLICATIONS

FM DEMODULATOR

The NE564 can be used as an FM demodulator. The connections for operation at 5V and 12V are shown in figures 2 and 3 respectively. The input signal is ac coupled with the output signal being extracted at pin 14. Loop filtering is provided by the capacitors at pins 4 and 5 with additional filtering being provided by the capacitor at pin 14. Since the conversion gain of the VCO is not very high, to obtain sufficient demodulated output signal the frequency deviation in the input signal should be 1% or higher.

MODULATION TECHNIQUES

The NE564 phase locked loop can be modulated at either the loop filter ports (pins 4 and 5) or the input port (pin 6) as shown in figure 4. The approximate modulation frequency can be determined from the frequency conversion gain curve shown in figure 5. This curve will be appropriate for signals injected into pins 4 and 5 as shown in figure 4.

FSK Demodulation

The 564 PLL is particularly attractive for FSK demodulation since it contains an internal voltage comparator and VCO which have TTL compatible inputs and outputs, and it can operate from a single 5 volt power supply. Demodulated dc voltages associated with the mark and space frequencies are recovered with a single external capacitor in a dc retriever without utilizing extensive filtering networks. An internal comparator, acting as a Schmitt trigger with an adjustable hysteresis, shapes the demodulated voltages into compatible TTL output levels. The high frequency design of the 564 enables it to demodulate FSK at high data rates in excess of 1.0M baud.

Figure 5 shows a high-frequency FSK decoder designed for input frequency deviations of ±1.0MHz centered around a free-running frequency of 10.8MHz. The value of the timing capacitance required was estimated from figure 8 to be approximately 40pF. A trimmer capacitor was added to fine tune \(f_0 \) to 10.8MHz.

The lock range graph indicates that the ±1.0MHz frequency deviations will be within the lock range for input signal levels greater than approximately 50mV with zero pin 2 bias current. While strictly this figure is appropriate only for 5MHz, it can be used as a guide for lock range estimates at other \(f_0 \) frequencies.

The hysteresis was adjusted experimentally via the 10kΩ potentiometer and 2kΩ bias arrangement to give the waveshape shown in figure 7 for 20K, 500K, 2M baud rates with square wave FSK modulation. Note the magnitude and phase relationships of the phase comparators output voltages with respect to each other and to the FSK output. The high frequency sum components of the input and VCO frequency also are visible as noise on the phase comparators outputs.
PHASE LOCKED LOOP

PHASE COMPARATOR (PINS 4 AND 5) AND FSK (PIN 16) OUTPUTS FOR DATA RATES OF

OUTLINE OF SETUP PROCEDURE

1. Determine operating frequency of the VCO.
 If + N in feedback loop, then
 \(f_0 = N \times f_{in} \).

2. Calculate value of the VCO frequency set capacitor:
 \(C_0 = \frac{1}{2500f_0} \)

3. Set \(I_2 \) (current sinking into Pin 2) for 100\(\mu \)A. After operation is obtained, this value may be adjusted for best dynamic behavior.

4. Check VCO output frequency with digital counter at Pin 9 of device (loop open, VCO to det.). Adjust \(C_0 \) trim or frequency adj. Pin 4-5 for exact center frequency if needed.

5. Close loop and inject input signal to Pin 6. Monitor Pin 3 and 6 with two channel scope. Lock should occur with \(\Delta \phi_{3-6} \) equal to 90° (phase error).

6. If pulsed burst or ramp frequency is used for input signal, special loop filter design may be required in place of simple single capacitor filter on Pin 4 and 5. (See PLL application section in Analog Manual.)

7. The input signal to Pin 6 and the VCO feedback signal to Pin 3 must have a duty cycle of 50% for proper operation of the phase detector. Due to the nature of a balanced mixer, if signals are not 50% in duty cycle, D.C. offsets will occur in the loop which tend to create an artificial or biased VCO offset.

8. For multiplier circuits where phase jitter is a problem, loop filter capacitors may be increased to a value of 10-50\(\mu \)F on Pin 4, 5. Also careful supply decoupling may be necessary. This includes the counter chain \(V_{CC} \) lines.

*For additional information, consult the Applications Section.
DESCRIPTION
The SE/NE565 Phase-Locked Loop (PLL) is a self-contained, adaptable filter and demodulator for the frequency range from 0.001 Hz to 500 kHz. The circuit comprises a voltage-controlled oscillator of exceptional stability and linearity, a phase comparator, an amplifier and a low-pass filter as shown in the block diagram. The center frequency of the PLL is determined by the free-running frequency of the VCO; this frequency can be adjusted externally with a resistor or a capacitor. The low-pass filter, which determines the capture characteristics of the loop, is formed by an internal resistor and an external capacitor.

FEATURES
- Highly stable center frequency (200 ppm/°C typ.)
- Wide operating voltage range (±6 to ±12 volts)
- Highly linear demodulated output (0.2% typ.)
- Center frequency programming by means of a resistor or capacitor, voltage or current
- TTL and DTL compatible square-wave output; loop can be opened to insert digital frequency divider
- Highly linear triangle wave output
- Reference output for connection of comparator in frequency discriminator
- Bandwidth adjustable from < ±1% to > ±60%
- Frequency adjustable over 10 to 1 range with same capacitor

APPLICATIONS
- Frequency shift keying
- Modems
- Telemetry receivers
- Tone decoders
- SCA receivers
- Wideband FM discriminators
- Data synchronizers
- Tracking filters
- Signal restoration
- Frequency multiplication & division

ABSOLUTE MAXIMUM RATINGS

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>RATING</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum operating voltage</td>
<td>26</td>
<td>V</td>
</tr>
<tr>
<td>Input voltage</td>
<td>3</td>
<td>Vp-p</td>
</tr>
<tr>
<td>Storage temperature</td>
<td>-65 to +150</td>
<td>°C</td>
</tr>
<tr>
<td>Operating temperature range</td>
<td>0 to +70</td>
<td>°C</td>
</tr>
<tr>
<td>NE565</td>
<td>-55 to +125</td>
<td>°C</td>
</tr>
<tr>
<td>Power dissipation</td>
<td>300</td>
<td>mW</td>
</tr>
</tbody>
</table>

NOTES:
1. SOL — Released in large SO package only.
2. SOL pkg non-standard pinout.
3. SO pkg non-standard pinout.

PIN CONFIGURATIONS

<table>
<thead>
<tr>
<th>F,N PACKAGE</th>
<th>D3 PACKAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>V- 1</td>
<td>V- 16</td>
</tr>
<tr>
<td>INPUT 2</td>
<td>NC 13</td>
</tr>
<tr>
<td>INPUT 3</td>
<td>NC 12</td>
</tr>
<tr>
<td>VCO OUTPUT 5</td>
<td>VCO OUTPUT 4</td>
</tr>
<tr>
<td>PHASE COMPARATOR 6</td>
<td>PHASE COMPARATOR 4</td>
</tr>
<tr>
<td>VCO INPUT 8</td>
<td>VCO INPUT 7</td>
</tr>
<tr>
<td>REFERENCE OUTPUT 9</td>
<td>REFERENCE OUTPUT 8</td>
</tr>
<tr>
<td>DEMODULATED OUTPUT 10</td>
<td>DEMODULATED OUTPUT 7</td>
</tr>
</tbody>
</table>

TOP VIEW
ORDER NUMBER
SE/NE565FNS

TOP VIEW
ORDER NUMBER
NE5650

BLOCK DIAGRAM

EQUIVALENT SCHEMATIC
ELECTRICAL CHARACTERISTICS

$T_A = 25^\circ C$, $V_{CC} = \pm 6V$ unless otherwise specified.

SUPPLY REQUIREMENTS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>SE565</th>
<th>NE565</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltage</td>
<td>Min</td>
<td>Typ</td>
<td>Max</td>
</tr>
<tr>
<td></td>
<td>$±6$</td>
<td>$±12$</td>
<td>12.5</td>
</tr>
<tr>
<td>Supply current</td>
<td>8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

INPUT CHARACTERISTICS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>SE565</th>
<th>NE565</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input impedance1</td>
<td>7</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>Input level required for</td>
<td>$f_0 = 50kHz, ±10%$</td>
<td></td>
<td>mV</td>
</tr>
<tr>
<td>tracking</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

VCO CHARACTERISTICS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>SE565</th>
<th>NE565</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Center frequency</td>
<td>300</td>
<td>500</td>
<td>kHz</td>
</tr>
<tr>
<td>Maximum value</td>
<td>100</td>
<td>100</td>
<td>$%$</td>
</tr>
<tr>
<td>Distribution2</td>
<td>$f_0 = 50kHz, R_1 = 5.0k\Omega, C_1 = 1200pF$</td>
<td>-10</td>
<td>0</td>
</tr>
</tbody>
</table>

DEMODULATED OUTPUT CHARACTERISTICS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>SE565</th>
<th>NE565</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output voltage level</td>
<td>4.25</td>
<td>4.5</td>
<td>5.0</td>
</tr>
<tr>
<td>Maximum voltage swing3</td>
<td>4.75</td>
<td>4.0</td>
<td>4.5</td>
</tr>
<tr>
<td>Output voltage swing</td>
<td>4.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total harmonic distortion</td>
<td>2.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output impedance4</td>
<td>0.2</td>
<td>0.75</td>
<td>3.6</td>
</tr>
<tr>
<td>Offset voltage (V6-V7)</td>
<td>3.0</td>
<td>100</td>
<td>200</td>
</tr>
<tr>
<td>Offset voltage vs temperature (drift)</td>
<td>50</td>
<td>100</td>
<td>200</td>
</tr>
<tr>
<td>AM rejection</td>
<td>30</td>
<td>40</td>
<td>40</td>
</tr>
</tbody>
</table>

NOTES

1. Both input terminals (pins 2 and 3) must receive identical dc bias. This bias may range from 0 volts to -4 volts.
2. The external resistance for frequency adjustment (R_1) must have a value between $2k\Omega$ and $20k\Omega$.
3. Output voltage swings negative as input frequency increases.
4. Output not buffered.
TYPICAL PERFORMANCE CHARACTERISTICS

POWER SUPPLY CURRENT AS A FUNCTION OF SUPPLY VOLTAGE

VCO CONVERSION GAIN

LOCK RANGE AS A FUNCTION OF GAIN SETTING RESISTANCE (PIN 6-7)

CHANGE IN FREE-RUNNING VCO FREQUENCY AS A FUNCTION OF TEMPERATURE

TYPICAL APPLICATIONS

FM Demodulation

The 565 Phase Locked Loop is a general purpose circuit designed for highly linear FM demodulation. During lock, the average dc level of the phase comparator output signal is directly proportional to the frequency of the input signal. As the input frequency shifts, it is this output signal which causes the VCO to shift its frequency to match that of the input. Consequently, the linearity of the phase comparator output with frequency is determined by the voltage-to-frequency transfer function of the VCO.

Because of its unique and highly linear VCO, the 565 PLL can lock to and track an input signal over a very wide bandwidth (typically ±60%) with very high linearity (typically, within 0.5%).

A typical connection diagram is shown in Figure 1. The VCO free-running frequency is given approximately by

$$f_0 = \frac{1.2}{4R_1C_1}$$

and should be adjusted to be at the center of the input signal frequency range. C1 can be any value, but R1 should be within the range of 2000 to 20000 ohms with an optimum value on the order of 4000 ohms. The source can be direct coupled if the dc resistances seen from pins 2 and 3 are equal and there is no DC voltage difference between the pins. A short between pins 4 and 5 connects the VCO to the phase comparator. Pin 6 provides a DC reference voltage that is close to the DC potential of the demodulated output (pin 7). Thus, if a resistance is connected between pins 6 and 7, the gain of the output stage can be reduced with little change in the DC voltage level at the output. This allows the lock range to be decreased with little change in the free-running frequency. In this manner the lock range can be decreased from ±60% of f0 to approximately ±20% of f0 (at ±6V).

A small capacitor (typically 0.001 μF) should be connected between pins 7 and 8 to eliminate possible oscillation in the control current source.

A single-pole loop filter is formed by the capacitor C2, connected between pins 7 and 8, and the positive supply, and an internal resistance of approximately 3600 ohms.

Figure 1
Frequency Shift Keying (FSK)

FSK refers to data transmission by means of a carrier which is shifted between two preset frequencies. This frequency shift is usually accomplished by driving a VCO with the binary data signal so that the two resulting frequencies correspond to the “0” and “1” states (commonly called space and mark) of the binary data signal.

A simple scheme using the 565 to receive FSK signals of 1070Hz and 1270Hz is shown in Figure 2. As the signal appears at the input, the loop locks to the input frequency and tracks it between the two frequencies with a corresponding dc shift at the output.

The loop filter capacitor C2 is chosen smaller than usual to eliminate overshoot on the output pulse, and a three-stage RC ladder filter is used to remove the carrier component from the output. The band edge of the ladder filter is chosen to be approximately halfway between the maximum keying rate (in this case 300 baud or 150Hz) and twice the input frequency (approximately 2200Hz). The output signal can now be made logic compatible by connecting a voltage comparator between the output and pin 6 of the loop. The free-running frequency is adjusted with R1 so as to result in a slightly-positive voltage at the output with f_{IN} = 1070Hz.

The input connection is typical for cases where a dc voltage is present at the source and therefore a direct connection is not desirable. Both input terminals are returned to ground with identical resistors (in this case, the values are chosen to effect a 600-ohm input impedance).

Frequency Multiplication

There are two methods by which frequency multiplication can be achieved using the 565:

1. Locking to a harmonic of the input signal.
2. Inclusion of a digital frequency divider or counter in the loop between the VCO and phase comparator.

The first method is the simplest, and can be achieved by setting the free-running frequency of the VCO to a multiple of the input frequency. A limitation of this scheme is that the lock range decreases as successively higher and weaker harmonics are used for locking. If the input frequency is to be constant with little tracking required, the loop can generally be locked to any one of the first 5 harmonics. For higher orders of multiplication, or for cases where a large lock range is desired, the second scheme is more desirable. An example of this might be a case where the input signal varies over a wide frequency range and a large multiple of the input frequency is required.

A block diagram of the second scheme is shown in Figure 3. Here the loop is broken between the VCO and the phase comparator, and a frequency divider is inserted. The fundamental of the divided VCO frequency is locked to the input frequency in this case, so that the VCO is actually running at a multiple of the input frequency. The amount of multiplication is determined by the frequency divider. A typical connection scheme is shown in Figure 4. To set up the circuit, the frequency limits of the input signal must be determined. The free-running frequency of the VCO is then adjusted by means of R1 and C1 (as discussed under FM demodulation) so that the output frequency of the divider is midway between the input frequency limits. The filter capacitor, C2, should be large enough to eliminate variations in the demodulated output voltage (at pin 7), in order to stabilize the VCO frequency. The output can now be taken as the VCO squarewave output, and its fundamental will be the desired multiple of the input frequency (f_{IN}) as long as the loop is in lock.

SCA (Background Music) Decoder

Some FM stations are authorized by the FCC to broadcast uninterrupted background music for commercial use. To do this a frequency modulated subcarrier of 67kHz is used. The frequency is chosen so as not to interfere with the normal stereo or monaural program; in addition, the level of the subcarrier is only 10% of the amplitude of the combined signal.

The SCA signal can be filtered out and demodulated with the NE565 Phase Locked Loop without the use of any resonant circuits. A connection diagram is shown in Figure 5. This circuit also serves as an example of operation from a single power supply.

A resistive voltage divider is used to establish a bias voltage for the input (pins 2 and 3). The demodulated multiplex FM signal is fed to the input through a two-stage high-pass filter, both to effect capacitive coupling and to attenuate the strong signal of the regular channel. A total signal amplitude, between 80mV and 300mV, is required at the input. Its source should have an impedance of less than 10,000 ohms.

The Phase Locked Loop is tuned to 67kHz with a 5000 ohm potentiometer; only approximate tuning is required, since the loop will seek the signal. The demodulated output (pin 7) passes through a three-stage low-pass filter to provide de-emphasis and attenuate the high-frequency noise which often accompanies SCA transmission. Note that no capacitor is provided directly at pin 7; thus, the circuit is operating as a first-order loop. The demodulated output signal is in the order of 50mV and the frequency response extends to 7kHz.
*For additional information, consult the Applications Section.
FUNCTION GENERATOR

DESCRIPTION
The SE/NE 566 Function Generator is a voltage controlled oscillator of exceptional linearity with buffered square wave and triangle wave outputs. The frequency of oscillation is determined by an external resistor and capacitor and the voltage applied to the control terminal. The oscillator can be programmed over a ten to one frequency range by proper selection of an external resistance and modulated over a ten to one range by the control voltage, with exceptional linearity.

FEATURES
- Wide range of operating voltage (up to 24 volts) (single or dual)
- High linearity of modulation
- Highly stable center frequency (200 ppm/°C typical)
- Highly linear triangle wave output
- Frequency programming by means of a resistor or capacitor, voltage or current
- Frequency adjustable over 10 to 1 range with same capacitor

APPLICATIONS
- Tone generators
- Frequency shift keying
- FM modulators
- Clock generators
- Signal generators
- Function generators

ABSOLUTE MAXIMUM RATINGS

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>RATING</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum operating voltage</td>
<td>26</td>
<td>V</td>
</tr>
<tr>
<td>Input voltage</td>
<td>3</td>
<td>Vp-p</td>
</tr>
<tr>
<td>Storage temperature</td>
<td>-65 to +150</td>
<td>°C</td>
</tr>
<tr>
<td>Operating temperature range</td>
<td>0 to +70</td>
<td>°C</td>
</tr>
<tr>
<td>NE566</td>
<td>-55 to +125</td>
<td>°C</td>
</tr>
<tr>
<td>SE566</td>
<td>-55 to +125</td>
<td>°C</td>
</tr>
<tr>
<td>Power dissipation</td>
<td>300</td>
<td>mW</td>
</tr>
</tbody>
</table>

BLOCK DIAGRAM

EQUIVALENT SCHEMATIC
ELECTRICAL CHARACTERISTICS \(T_A = 25^\circ C; V_{CC} = \pm 6V \) unless otherwise specified.

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>SE566</th>
<th>NE566</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Min</td>
<td>Typ</td>
<td>Max</td>
</tr>
<tr>
<td>OPERATING TEMPERATURE RANGE</td>
<td>-55</td>
<td>125</td>
<td>0</td>
</tr>
<tr>
<td>OPERATING SUPPLY VOLTAGE</td>
<td>± 6</td>
<td>± 12</td>
<td>± 6</td>
</tr>
<tr>
<td>OPERATING SUPPLY CURRENT</td>
<td>7</td>
<td>12.5</td>
<td>7</td>
</tr>
<tr>
<td>VCO (^1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAXIMUM OPERATING FREQUENCY</td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>FREQUENCY DRIFT WITH TEMPERATURE</td>
<td>200</td>
<td></td>
<td>300</td>
</tr>
<tr>
<td>FREQUENCY DRIFT WITH SUPPLY VOLTAGE</td>
<td>.1</td>
<td>1</td>
<td>.2</td>
</tr>
<tr>
<td>CONTROL TERMINAL INPUT IMPEDANCE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(±10% deviation)</td>
<td>1</td>
<td>0.2</td>
<td>0.75</td>
</tr>
<tr>
<td>FM DISTORTION (±10% deviation)</td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>MAXIMUM SWEET RATE</td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>SWEEP RANGE</td>
<td>10:1</td>
<td></td>
<td>10:1</td>
</tr>
<tr>
<td>OUTPUT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TRIANGLE WAVE OUTPUT IMPEDANCE</td>
<td>50</td>
<td></td>
<td>50</td>
</tr>
<tr>
<td>VOLTAGE</td>
<td>1.9</td>
<td>2.4</td>
<td>1.9</td>
</tr>
<tr>
<td>LINEARITY</td>
<td>0.2</td>
<td></td>
<td>2.4</td>
</tr>
<tr>
<td>SQUARE WAVE INPUT IMPEDANCE</td>
<td>50</td>
<td></td>
<td>50</td>
</tr>
<tr>
<td>VOLTAGE</td>
<td>5</td>
<td>5.4</td>
<td>5</td>
</tr>
<tr>
<td>DUTY CYCLE</td>
<td>45</td>
<td>50</td>
<td>55</td>
</tr>
<tr>
<td>RISE TIME</td>
<td>20</td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>FALL TIME</td>
<td>50</td>
<td></td>
<td>50</td>
</tr>
</tbody>
</table>

NOTES
1. The external resistance for frequency adjustment \(R_1 \) must have a value between \(2k\) and \(20k\).
2. The bias voltage \(V_c \) applied to the control terminal \((\text{pin 5}) \) should be in the range \(\frac{3}{4}V \leq V_c \leq V \).

TYPICAL PERFORMANCE CHARACTERISTICS
OPERATING INSTRUCTIONS

The SE/NE 566 Function Generator is a general purpose voltage controlled oscillator designed for highly linear frequency modulation. The circuit provides simultaneous square wave and triangle wave outputs at frequencies up to 1 MHz. A typical connection diagram is shown in Figure 1. The control terminal (pin 5) must be biased externally with a voltage \(V_{cc} \) in the range

\[\frac{3}{4} V^* \leq V_{cc} \leq V^* \]

where \(V^* \) is the total supply voltage. In Figure 1, the control voltage is set by the voltage divider formed with \(R_2 \) and \(R_3 \). The modulating signal is then ac coupled with the capacitor \(C_2 \). The modulating signal can be direct coupled as well, if the appropriate dc bias voltage is applied to the control terminal. The frequency is given approximately by

\[f_0 = \frac{2(V^* - V_{cc})}{R_1 C_2 V^*} \]

and \(R_1 \) should be in the range \(2k\Omega < R_1 < 20k\Omega \).

A small capacitor (typically 0.001 µF) should be connected between pins 5 and 6 to eliminate possible oscillation in the control current source.

If the VCO is to be used to drive standard logic circuitry, it may be desirable to use a dual supply as shown in Figure 2. In this case the square wave output has the proper dc levels for logic circuitry. RTL can be driven directly from pin 3. For DTL or T2L gates, which require a current sink of more than 1 mA, it is usually necessary to connect a 5kΩ resistor between pin 3 and negative supply. This increases the current sinking capability to 2 mA. The third type of interface shown uses a saturated transistor between the 566 and the logic circuitry. This scheme is used primarily for T2L circuitry which requires a fast fall time (<50 ns) and a large current sinking capability.

*For additional information, consult the Applications Section.
DESCRIPTION
The SE/NE567 tone and frequency decoder is a highly stable phase-locked loop with synchronous AM lock detection and power output circuitry. Its primary function is to drive a load whenever a sustained frequency within its detection band is present at the self-biased input. The bandwidth center frequency, and output delay are independently determined by means of four external components.

FEATURES
- Wide frequency range (.01 Hz to 500 kHz)
- High stability of center frequency
- Independently controllable bandwidth (up to 14 percent)
- High out-band signal and noise rejection
- Logic-compatible output with 100 mA current sinking capability
- Inherent immunity to false signals
- Frequency adjustment over a 20 to 1 range with an external resistor
- Military processing available

APPLICATIONS
- Touch Tone® decoding
- Carrier current remote controls
- Ultrasonic controls (remote TV, etc.)
- Communications paging
- Frequency monitoring and control
- Wireless intercom
- Precision oscillator

ABSOLUTE MAXIMUM RATINGS

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>RATING</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating temperature</td>
<td>0 to +70</td>
<td>°C</td>
</tr>
<tr>
<td>NE567</td>
<td>-55 to +125</td>
<td>°C</td>
</tr>
<tr>
<td>SE567</td>
<td>10</td>
<td>V</td>
</tr>
<tr>
<td>Operating voltage</td>
<td>0.5 + V$_S$</td>
<td>V</td>
</tr>
<tr>
<td>Positive voltage at input</td>
<td>-10</td>
<td>Vdc</td>
</tr>
<tr>
<td>Negative voltage at input</td>
<td>15</td>
<td>Vdc</td>
</tr>
<tr>
<td>Output voltage / collector of output transistor</td>
<td>-65 to +150</td>
<td>°C</td>
</tr>
<tr>
<td>Storage temperature</td>
<td>300</td>
<td>mW</td>
</tr>
</tbody>
</table>

PIN CONFIGURATIONS

BLOCK DIAGRAM
DC ELECTRICAL CHARACTERISTICS
(V+ = 5.0V; TA = 25°C unless otherwise specified.)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>USE</th>
<th>SE567</th>
<th>NE567</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>CENTRAL FREQUENCY1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Highest center frequency (ff0)</td>
<td></td>
<td></td>
<td>500</td>
<td>500</td>
<td>kHz</td>
</tr>
<tr>
<td>Center frequency stability2</td>
<td></td>
<td></td>
<td>35±140</td>
<td>35±140</td>
<td>ppm/°C</td>
</tr>
<tr>
<td>Center frequency distribution</td>
<td></td>
<td></td>
<td>35±60</td>
<td>35±60</td>
<td>ppm/°C</td>
</tr>
<tr>
<td>Center frequency shift with supply voltage</td>
<td></td>
<td></td>
<td>0.5</td>
<td>0.7</td>
<td>%/V</td>
</tr>
<tr>
<td>DETECTION BANDWIDTH</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Largest detection bandwidth</td>
<td></td>
<td></td>
<td>12</td>
<td>14</td>
<td>% of fo</td>
</tr>
<tr>
<td>Largest detection bandwidth skew</td>
<td></td>
<td></td>
<td>2</td>
<td>4</td>
<td>% of fo</td>
</tr>
<tr>
<td>Largest detection bandwidth—variation with temperature</td>
<td></td>
<td></td>
<td>±0.1</td>
<td>±0.1</td>
<td>%/°C</td>
</tr>
<tr>
<td>Largest detection bandwidth—variation with supply voltage</td>
<td></td>
<td></td>
<td>±2</td>
<td>±2</td>
<td>%/V</td>
</tr>
<tr>
<td>INPUT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input resistance</td>
<td></td>
<td></td>
<td>15</td>
<td>20</td>
<td>kΩ</td>
</tr>
<tr>
<td>Smallest detectable input voltage (VIL)</td>
<td></td>
<td></td>
<td>20</td>
<td>25</td>
<td>mV</td>
</tr>
<tr>
<td>Largest no-output input voltage</td>
<td></td>
<td></td>
<td>10</td>
<td>15</td>
<td>mV</td>
</tr>
<tr>
<td>Greatest simultaneous outband signal to inband signal ratio</td>
<td></td>
<td></td>
<td>+6</td>
<td>+6</td>
<td>dB</td>
</tr>
<tr>
<td>Minimum input signal to wideband noise ratio</td>
<td></td>
<td></td>
<td>-6</td>
<td>-6</td>
<td>dB</td>
</tr>
<tr>
<td>OUTPUT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fastest on-off cycling rate</td>
<td></td>
<td></td>
<td>15</td>
<td>20</td>
<td>kHz</td>
</tr>
<tr>
<td>"1" output leakage current</td>
<td></td>
<td></td>
<td>0.01</td>
<td>0.01</td>
<td>µA</td>
</tr>
<tr>
<td>"0" output voltage</td>
<td></td>
<td></td>
<td>0.2</td>
<td>0.4</td>
<td>V</td>
</tr>
<tr>
<td>Output fall time3</td>
<td></td>
<td></td>
<td>0.6</td>
<td>0.6</td>
<td>V</td>
</tr>
<tr>
<td>Output rise time3</td>
<td></td>
<td></td>
<td>1.0</td>
<td>1.0</td>
<td>V</td>
</tr>
<tr>
<td>Supply current quiescent</td>
<td></td>
<td></td>
<td>6</td>
<td>8</td>
<td>mA</td>
</tr>
<tr>
<td>Supply current—activated</td>
<td></td>
<td></td>
<td>11</td>
<td>13</td>
<td>mA</td>
</tr>
<tr>
<td>Quiescent power dissipation</td>
<td></td>
<td></td>
<td>30</td>
<td>35</td>
<td>mW</td>
</tr>
</tbody>
</table>

NOTES
1. Frequency determining resistor R1 should be between 2 and 20kΩ.
2. Applicable over 4.75 to 5.75 volts. See graphs for more detailed information.
3. Pin 8 to Pin 1 feedback Rf network selected to eliminate pulsing during turn-on and turn-off.

TYPICAL PERFORMANCE CHARACTERISTICS

![Bandwidth vs Input Signal Amplitude](image)

![Largest Detection Bandwidth vs Operating Frequency](image)

![Detection Bandwidth as a Function of C2 and C3](image)
TYPICAL PERFORMANCE CHARACTERISTICS

<table>
<thead>
<tr>
<th>TYPICAL SUPPLY CURRENT vs SUPPLY VOLTAGE</th>
<th>GREATEST NUMBER OF CYCLES BEFORE OUTPUT</th>
<th>TYPICAL OUTPUT VOLTAGE vs TEMPERATURE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **TYPICAL SUPPLY CURRENT**
 - Quiescent Current
 - No Load 'ON' Current

- **TYPICAL FREQUENCY DRIFT WITH TEMPERATURE (MEAN AND S.D.)**
 - \(+V = 4.75V \)
 - \(+V = 5.75 \text{ VOLTS} \)
 - \(+V = 7.0 \text{ VOLTS} \)
 - \(+V = 9.0 \text{ VOLTS} \)

- **TYPICAL BANDWIDTH VARIATION WITH TEMPERATURE**
 - Bandwidth at 25°C
 - Bandwidth at 75°C

- **CENTER FREQUENCY TEMPERATURE COEFFICIENT (MEAN AND S.D.)**
 - \(\Delta f = 0°C \) TO \(70°C \)

- **CENTER FREQUENCY WITH SUPPLY VOLTAGE CHANGE vs OPERATING FREQUENCY**
 - Bandwidth at 25°C

- **SUPPLY VOLTAGE**
 - Supply Voltage - V

- **CENTER FREQUENCY**
 - Center Frequency - kHz

- **TEMPERATURE**
 - Temperature - °C
DESIGN FORMULAS

\[f_0 = \frac{1.1}{R_1C_1} \]

\[BW = \frac{1070V_1}{f_0C_2} \text{ in } \% \text{ of } f_0, V_1 \leq 200 \text{mVrms} \]

Where

- \(V_1 \): Input Voltage (Vrms)
- \(C_2 \): Low-Pass Filter Capacitor (\(\mu \text{F} \))

PHASE LOCKED LOOP TERMINOLOGY CENTER FREQUENCY (\(f_0 \))

The free-running frequency of the current controlled oscillator (CCO) in the absence of an input signal.

Detection Bandwidth (BW)

The frequency range, centered about \(f_0 \), within which an input signal above the threshold voltage (typically 20mVrms) will cause a logical zero state on the output. The detection bandwidth corresponds to the loop capture range.

Lock Range

The largest frequency range within which an input signal above the threshold voltage will hold a logical zero state on the output.

Detection Band Skew

A measure of how well the detection band is centered about the center frequency, \(f_0 \). The skew is defined as \(f_{\text{max}} + f_{\text{min}} - 2f_0/2f_0 \) where \(f_{\text{max}} \) and \(f_{\text{min}} \) are the frequencies corresponding to the edges of the detection band. The skew can be reduced to zero if necessary by means of an optional centering adjustment.

OPERATING INSTRUCTIONS

Figure 1 shows a typical connection diagram for the 567. For most applications, the following three-step procedure will be sufficient for choosing the external components \(R_1, C_1, C_2 \) and \(C_3 \).

1. Select \(R_1 \) and \(C_1 \) for the desired center frequency. For best temperature stability, \(R_1 \) should be between 2K and 20K ohm, and the combined temperature coefficient of the \(R_1C_1 \) product should have sufficient stability over the projected temperature range to meet the necessary requirements.

2. Select the low pass capacitor, \(C_2 \), by referring to the Bandwidth versus Input Signal Amplitude graph. If the input amplitude variation is known, the appropriate value of \(f_0C_2 \) necessary to give the desired bandwidth may be found. Conversely, an area of operation may be selected on this graph and the input level and \(C_2 \) may be adjusted accordingly. For example, constant bandwidth operation requires that input amplitude be above 200mVrms. The bandwidth, as noted on the graph, is then controlled solely by the \(f_0C_2 \) product (\(f_0 \) (Hz), \(C_2 \) (\(\mu \text{F} \))).

3. The value of \(C_3 \) is generally non-critical. \(C_3 \) sets the band edge of a low pass filter which attenuates frequencies outside the detection band to eliminate spurious outputs. If \(C_3 \) is too small, frequencies just outside the detection band will switch the output stage on and off at the beat frequency, or the output may pulse on and off during the turn-on transient. If \(C_3 \) is too large, turn-on and turn-off of the output stage will be delayed until the voltage on \(C_3 \) passes the threshold voltage. (Such delay may be desirable to avoid spurious outputs due to transient frequencies.) A typical minimum value for \(C_3 \) is \(2C_2 \).

OPERATING PRECAUTIONS

A brief review of the following precautions will help the user achieve the high level of performance of which the 567 is capable.

1. Operation in the high input level mode (above 200mV) will free the user from bandwidth variations due to changes in the in-band signal amplitude. The input stage is now limiting, however, so that out-band signals or high noise levels can cause an apparent bandwidth reduction as the in-band signal is suppressed. Also, the limiting action will create in-band components from sub-harmonic signals, so the 567 becomes sensitive to signals at \(f_0/3, f_0/5 \) etc.

2. The 567 will lock onto signals near \(2n + 1 \) \(f_0 \), and will give an output for signals near \(4n + 1 \) \(f_0 \) where \(n = 0, 1, 2, \text{etc.} \). Thus, signals at \(5f_0 \) and \(9f_0 \) can cause an unwanted output. If such signals are anticipated, they should be attenuated before reaching the 567 input.

3. Maximum immunity from noise and out-band signals is afforded in the low input level (below 200mVrms) and reduced bandwidth operating mode. However, decreased loop damping causes the worse-case lockup time to increase, as shown by the Greatest Number of Cycles Before Output vs Bandwidth graph.

4. Due to the high switching speeds (20ns) associated with 567 operation, care should be taken in lead routing. Lead lengths should be kept to a minimum. The power supply should be adequately bypassed close to the 567 with a 0.01\(\mu \text{F} \) or greater capacitor; grounding paths should be carefully chosen to avoid ground loops and output of magnitude \(+V - 2V_{\text{ab}} - 6V - 1.4V\) having a dc average of \(+V/2 \). A 1k\(\Omega \) load may be driven from pin 5. Pin 6 is an exponential triangle of 1 volt peak-to-peak with an average dc level of \(+V/2 \). Only high impedance loads may be connected to pin 6 without affecting the CCO duty cycle or temperature stability.
unwanted voltage variations. Another factor which must be considered is the effect of load energization on the power supply. For example, an incandescent lamp typically draws 10 times rated current at turn-on. This can cause supply voltage fluctuations which could, for example, shift the detection band of narrow-band systems sufficiently to cause momentary loss of lock. The result is a low-frequency oscillation into and out of lock. Such effects can be prevented by supplying heavy load currents from a separate supply or increasing the supply filter capacitor.

SPEED OF OPERATION

Minimum lock-up time is related to the natural frequency of the loop. The lower it is, the longer becomes the turn-on transient. Thus, maximum operating speed is obtained when \(C_2 \) is at a minimum. When the signal is first applied, the phase may be such as to initially drive the controlled oscillator away from the incoming frequency rather than toward it. Under this condition, which is of course unpredictable, the lock-up transient is at its worst and the theoretical minimum lock-up time is not achievable. We must simply wait for the transient to die out.

The following expressions give the values of \(C_2 \) and \(C_3 \) which allow highest operating speeds for various band center frequencies. The minimum rate at which digital information may be detected without information loss due to the turn-on transient or output chatter is about 10 cycles per bit, corresponding to an information transfer rate of \(f_0/10 \) baud.

\[
\begin{align*}
C_2 &= \frac{130}{f_0} \mu F \\
C_3 &= \frac{260}{f_0} \mu F
\end{align*}
\]

In cases where turn-off time can be sacrificed to achieve fast turn-on, the optional sensitivity adjustment circuit can be used to move the quiescent \(C_3 \) voltage lower (closer to the threshold voltage). However, sensitivity to beat frequencies, noise and extraneous signals will be increased.

OPTIONAL CONTROLS (Figure 3)

The 567 has been designed so that, for most applications, no external adjustments are required. Certain applications, however, will be greatly facilitated if full advantage is taken of the added control possibilities available through the use of additional external components. In the diagrams given, typical values are suggested where applicable. For best results the resistors used, except where noted, should have the same temperature coefficient. Ideally, silicon diodes would be low-resistance types, such as forward-biased transistor base-emitter junctions. However, ordinary low-voltage diodes should be adequate for most applications.
SENSITIVITY ADJUSTMENT
(Figure 3)
When operated as a very narrow band detector (less than 8 percent), both C2 and C3 are made quite large in order to improve noise and outband signal rejection. This will inevitably slow the response time. If, however, the output stage is biased closer to the threshold level, the turn-on time can be improved. This is accomplished by drawing additional current to terminal 1. Under this condition, the 567 will also give an output for lower-level signals (10mV or lower).

By adding current to terminal 1, the output stage is biased further away from the threshold voltage. This is most useful when, to obtain maximum operating speed, C2 and C3 are made very small. Normally, frequencies just outside the detection band could cause false outputs under this condition. By desensitizing the output stage, the outband beat notes do not feed through to the output stage. Since the input level must be somewhat greater when the output stage is made less sensitive, rejection of third harmonics or in-band harmonics (of lower frequency signals) is also improved.

CHATTER PREVENTION (Figure 4)
Chatter occurs in the output stage when C3 is relatively small, so that the lock transient and the AC components at the quadrature phase detector/lock detector output cause the output stage to move through its threshold more than once. Many loads, for example lamps and relays, will not respond to the chatter. However, logic may recognize the chatter as a series of outputs. By feeding the output stage output back to its input (pin 1) the chatter can be eliminated. Three schemes for doing this are given in Figure 4. All operate by feeding the first output step (either on or off) back to the input, pushing the input past the threshold until the transient conditions are over. It is only necessary to assure that the feedback time constant is not so large as to prevent operation at the highest anticipated speed. Although chatter can always be eliminated by making C3 large, the feedback circuit will enable faster operation of the 567 by allowing C3 to be kept small. Note that if the feedback time constant is made quite large, a short burst at the input frequency can be stretched into a long output pulse. This may be useful to drive, for example, stepping relays.

DETECTION BAND CENTERING (OR SKEW) ADJUSTMENT
(Figure 5)
When it is desired to alter the location of the detection band (corresponding to the loop capture range) within the lock range, the circuits shown above can be used. By moving the detection band to one edge of the range, for example, input signal variations will expand the detection band in only one direction. This may prove useful when a strong but undesirable signal is expected on one side or the other of the center frequency. Since R3 also alters the duty cycle slightly, this method may be used to obtain a precise duty cycle when the 567 is used as an oscillator.

ALTERNATE METHOD OF BANDWIDTH REDUCTION
(Figure 6)
Although a large value of C2 will reduce the bandwidth, it also reduces the loop damping so as to slow the circuit response time. This may be undesirable. Bandwidth can be reduced by reducing the loop gain. This scheme will improve damping and permit faster operation under narrow-band conditions. Note that the reduced impedance level at terminal 2 will require that a larger value of C2 be used for a given filter cutoff frequency. If more than three 567s are to be used, the network of Rb and Rc can be eliminated and the Ra resistors connected together. A capacitor between this junction and ground may be required to shunt high frequency components.

OUTPUT LATCHING (Figure 7)
To latch the output on after a signal is received, it is necessary to provide a feedback resistor around the output stage (between pins 8 and 1). Pin 1 is pulled up to unlatch the outputstage.

REDUCTION OF C1 VALUE
(Figure 8)
For precision very low-frequency applications, where the value of C1 becomes large, an overall cost savings may be achieved by inserting a voltage follower between the R1 C1 junction and pin 6, so as to allow a higher value of R1 and a lower value of C1 for a given frequency.
PROGRAMMING

To change the center frequency, the value of R1 can be changed with a mechanical or solid state switch, or additional C1 capacitors may be added by grounding them through saturating npn transistors.

TYPICAL APPLICATIONS

TOUCH-TONE® DECODER

Component values (Typical):
- R1: 6.8 to 15K ohm
- R2: 4.7K ohm
- R3: 20K ohm
- C1: 0.10µfd
- C2: 1.0µfd 5V
- C3: 2.2µfd 6V
- C4: 250 µF 6V

Figure 6

OUTPUT LATCHING

C4 prevents latch-up when power supply is turned on.

Figure 7

PRECISION VLF

Figure 8
TYPICAL APPLICATIONS (Cont'd)

CARRIER-CURRENT REMOTE CONTROL OR INTERCOM

1. Resistor and capacitor values chosen for desired frequencies and bandwidth.
2. If C3 is made large so as to delay turn-on of the top 567, decoding of sequential (ft f2) tones is possible.

DUAL-TONE DECODER

24% BANDWIDTH TONE DECODER

0° to 180° PHASE SHIFTER

R2 = R1/5
Adjust R1 so that $\phi = 90°$ with control midway
TYPICAL APPLICATIONS (Cont'd)

OSCILLATOR WITH QUADRATURE OUTPUT

CONNECT PIN 3 TO 2.8V TO INVERT OUTPUT

PULSE GENERATOR WITH 25% DUTY CYCLE

PRECISION OSCILLATOR TO SWITCH 100mA LOADS

OSCILLATOR WITH DOUBLE FREQUENCY OUTPUT

VCO TERMINAL (15k)

PRECISION OSCILLATOR WITH 20mA SWITCHING

VCO TERMINAL (15k)

PULSE GENERATOR

*For additional information, consult the Applications Section.
The 555 monolithic timing circuit is a highly stable controller capable of producing accurate time delays, or oscillations. In the time delay mode of operation, the time is precisely controlled by one external resistor and capacitor. For a stable operation as an oscillator, the free running frequency and the duty cycle are both accurately controlled with two external resistors and one capacitor. The circuit may be triggered and reset on falling waveforms, and the output structure can source or sink up to 200mA.

Absolute Maximum Ratings

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>RATING</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltage SE555</td>
<td>+18</td>
<td>V</td>
</tr>
<tr>
<td>NE555, SE555C</td>
<td>+16</td>
<td>V</td>
</tr>
<tr>
<td>Power dissipation SE555</td>
<td>600</td>
<td>mW</td>
</tr>
<tr>
<td>NE555</td>
<td>0 to +70</td>
<td>°C</td>
</tr>
<tr>
<td>SE555, SE555C</td>
<td>-55 to +125</td>
<td>°C</td>
</tr>
<tr>
<td>Storage temperature range</td>
<td>-65 to +150</td>
<td>°C</td>
</tr>
<tr>
<td>Lead temperature (soldering, 60sec)</td>
<td>300</td>
<td>°C</td>
</tr>
</tbody>
</table>

Features

- Turn off time less than 2µs
- Maximum operating frequency greater than 500kHz
- Timing from microseconds to hours
- Operates in both stable and monostable modes
- High output current
- Adjustable duty cycle
- TTL compatible
- Temperature stability of 0.005% per °C

Applications

- Precision timing
- Pulse generation
- Sequential timing
- Time delay generation
- Pulse width modulation
- Pulse position modulation
- Missing pulse detector

Equivalent Schematic

Pin Configurations

Block Diagram
DC ELECTRICAL CHARACTERISTICS

$T_A = 25^\circ C$, $V_{CC} = +5V$ to $+15V$ unless otherwise specified.

TEST CONDITIONS

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>SE555</th>
<th>NE555/SE555C</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltage</td>
<td>$V_{CC} = 5V$</td>
<td>4.5</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>$V_{CC} = 15V$</td>
<td>18</td>
<td>10</td>
<td>16</td>
</tr>
<tr>
<td>Supply current (low statel)</td>
<td></td>
<td>4.5</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>$V_{CC} = 5V$</td>
<td>16</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Timing error (monostable)</td>
<td>$R_A = 2K\Omega$ to $100K\Omega$</td>
<td>0.5</td>
<td>1.0</td>
<td>3.0</td>
</tr>
<tr>
<td>Initial accuracy</td>
<td>$C = 0.1\mu F$</td>
<td>30</td>
<td>50</td>
<td>150</td>
</tr>
<tr>
<td>Drift with temperature</td>
<td></td>
<td>0.05</td>
<td>0.1</td>
<td>0.5</td>
</tr>
<tr>
<td>Timing error (astable)</td>
<td>$R_A, R_B = 1K\Omega$ to $100K\Omega$</td>
<td>4</td>
<td>5</td>
<td>13</td>
</tr>
<tr>
<td>Initial accuracy</td>
<td>$C = 0.1\mu F$</td>
<td>500</td>
<td>500</td>
<td>1</td>
</tr>
<tr>
<td>Drift with temperature</td>
<td></td>
<td>0.15</td>
<td>0.3</td>
<td>1</td>
</tr>
<tr>
<td>Control voltage level</td>
<td>$V_{CC} = 15V$</td>
<td>9.6</td>
<td>10.0</td>
<td>11.0</td>
</tr>
<tr>
<td></td>
<td>$V_{CC} = 5V$</td>
<td>2.9</td>
<td>3.33</td>
<td>4.0</td>
</tr>
<tr>
<td>Threshold voltage</td>
<td>$V_{CC} = 15V$</td>
<td>9.4</td>
<td>10.6</td>
<td>11.2</td>
</tr>
<tr>
<td></td>
<td>$V_{CC} = 5V$</td>
<td>2.7</td>
<td>3.33</td>
<td>4.2</td>
</tr>
<tr>
<td>Threshold current</td>
<td></td>
<td>0.1</td>
<td>0.25</td>
<td>0.25</td>
</tr>
<tr>
<td>Trigger voltage</td>
<td>$V_{CC} = 15V$</td>
<td>4.8</td>
<td>5.0</td>
<td>5.6</td>
</tr>
<tr>
<td></td>
<td>$V_{CC} = 5V$</td>
<td>1.45</td>
<td>1.67</td>
<td>2.2</td>
</tr>
<tr>
<td>Trigger current</td>
<td>$V_{TRIG} = 0V$</td>
<td>0.5</td>
<td>0.9</td>
<td>2.0</td>
</tr>
<tr>
<td>Reset voltage</td>
<td></td>
<td>0.3</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>Reset current</td>
<td>$V_{RESET} = 0V$</td>
<td>0.1</td>
<td>0.4</td>
<td>0.4</td>
</tr>
<tr>
<td>Reset current</td>
<td></td>
<td>0.4</td>
<td>1.0</td>
<td>1.5</td>
</tr>
<tr>
<td>Output voltage (low)</td>
<td>$V_{CC} = 15V$</td>
<td>0.1</td>
<td>0.15</td>
<td>0.25</td>
</tr>
<tr>
<td></td>
<td>$ISINK = 10mA$</td>
<td>0.4</td>
<td>0.5</td>
<td>0.75</td>
</tr>
<tr>
<td></td>
<td>$ISINK = 50mA$</td>
<td>2.0</td>
<td>2.2</td>
<td>2.5</td>
</tr>
<tr>
<td></td>
<td>$ISINK = 100mA$</td>
<td>2.5</td>
<td>2.5</td>
<td>2.5</td>
</tr>
<tr>
<td>Output voltage (high)</td>
<td>$V_{CC} = 5V$</td>
<td>0.1</td>
<td>0.25</td>
<td>0.4</td>
</tr>
<tr>
<td></td>
<td>$ISINK = 6mA$</td>
<td>0.05</td>
<td>0.25</td>
<td>0.35</td>
</tr>
<tr>
<td>Output voltage (high)</td>
<td>$V_{CC} = 15V$</td>
<td>12.5</td>
<td>12.5</td>
<td>12.5</td>
</tr>
<tr>
<td></td>
<td>$ISOURCE = 200mA$</td>
<td>13.0</td>
<td>13.3</td>
<td>13.3</td>
</tr>
<tr>
<td></td>
<td>$ISOURCE = 100mA$</td>
<td>3.0</td>
<td>3.3</td>
<td>3.3</td>
</tr>
<tr>
<td>Turn off time</td>
<td></td>
<td>0.5</td>
<td>2.0</td>
<td>2.0</td>
</tr>
<tr>
<td>Rise time of output</td>
<td></td>
<td>100</td>
<td>200</td>
<td>300</td>
</tr>
<tr>
<td>Fall time of output</td>
<td></td>
<td>100</td>
<td>200</td>
<td>300</td>
</tr>
<tr>
<td>Discharge leakage current</td>
<td></td>
<td>20</td>
<td>100</td>
<td>20</td>
</tr>
</tbody>
</table>

NOTES

1. Supply current when output high typically 1mA less.
2. Tested at $V_{CC} = 5V$ and $V_{CC} = 15V$.
3. This will determine the maximum value of $R_A + R_B$ for 15V operation, the max total
 $R = 10$ megohm, and for 5V operation, the max total $R = 3.4$ megohm.
4. Specified with trigger input high.
5. Time measured from a positive going input pulse from 0 to 0.8 x V_{CC} into the threshold
 to the drop from high to low of the output. Trigger is tied to threshold.
TYPICAL PERFORMANCE CHARACTERISTICS

MINIMUM PULSE WIDTH REQUIRED FOR TRIGGERING

- Lowest voltage level of trigger pulse

SUPPLY CURRENT vs SUPPLY VOLTAGE

- Supply current vs supply voltage

DELAY TIME vs TEMPERATURE

- Normalized delay time vs temperature

LOW OUTPUT VOLTAGE vs OUTPUT SINK CURRENT

- Low output voltage vs output sink current

LOW OUTPUT VOLTAGE vs OUTPUT SINK CURRENT

- Low output voltage vs output sink current

HIGH OUTPUT VOLTAGE DROP vs OUTPUT SOURCE CURRENT

- High output voltage drop vs output source current

DELAY TIME vs SUPPLY VOLTAGE

- Delay time vs supply voltage

PROPAGATION DELAY vs VOLTAGE LEVEL OF TRIGGER PULSE

- Propagation delay vs voltage level of trigger pulse
TYPICAL APPLICATIONS

ASTABLE OPERATION

MONOSTABLE OPERATION
Trigger Pulse Width Requirements and Time Delays

Due to the nature of the trigger circuitry, the timer will trigger on the negative going edge of the input pulse. For the device to time out properly, it is necessary that the trigger voltage level be returned to some voltage greater than one third of the supply before the time out period. This can be achieved by making either the trigger pulse sufficiently short or by AC coupling into the trigger. By AC coupling the trigger, see Figure 1, a short negative going pulse is achieved when the trigger signal goes to ground. AC coupling is most frequently used in conjunction with a switch or a signal that goes to ground which initiates the timing cycle. Should the trigger be held low, without AC coupling, for a longer duration than the timing cycle the output will remain in a high state for the duration of the low trigger signal, without regard to the threshold comparator state. This is due to the predominance of Q15, controlling the state of the bistable flip-flop. When the trigger signal then returns to a high level, the output will fall immediately. Thus, the output signal will follow the trigger signal in this case.

Typical Applications

AC COUPLING OF THE TRIGGER PULSE

![AC Coupling Diagram]

All resistor values are in ohms.

Another consideration is the “turn off time”. This is the measurement of the amount of time required after the threshold reaches 2/3 VCC to turn the output low. To explain further, Q5 at the threshold input turns on after reaching 2/3 VCC, which then turns on Q6, which turns on Q8. Current from Q6 turns on Q1B which turns Q17 off. This allows current from Q1B to turn on Q20 and Q24 to give an output low. These steps cause the 2µs maximum delay as stated in the data sheet.

Also, a delay comparable to the turn off time is the trigger release time. When the trigger is low, Q10 is on and turns on Q11, which turns on Q15, Q15 turns off Q10 and allows Q7 to turn on. This turns off current to Q20 and Q24, which results in output high. When the trigger is released, Q15 and Q11 shut off, Q15 turns off, Q16 turns on and the circuit then follows the same path and time delay explained as “turn off time”. This trigger release time is very important in designing the trigger pulse width so as not to interfere with the output signal as explained previously.
DESCRIPTION

Both the 556 and 556-1 Dual Monolithic timing circuits are highly stable controllers capable of producing accurate time delays or oscillation. The 556 and 556-1 are a dual 555. Timing is provided by an external resistor and capacitor for each timing function. The two timers operate independently of each other, sharing only \(V_{CC} \) and ground. The circuits may be triggered and reset on falling waveforms. The output structures may sink or source 200 mA.

APPLICATIONS

- Precision timing
- Sequential timing
- Pulse shaping
- Pulse generator
- Missing pulse detector
- Tone burst generator
- Pulse width modulation
- Time delay generator
- Frequency division
- Industrial controls
- Pulse position modulation
- Appliance timing
- Traffic light control
- Touch tone encoder

FEATURES

- Turn off time less than 2 \(\mu \)s (556-1, 1C)
- Maximum operating frequency greater than 500 kHz (556-1, 1C)
- Timing from microseconds to hours
- Replaces two 555 timers
- Operates in both astable and monostable modes
- High output current
- Adjustable duty cycle
- TTL compatible
- Temperature stability of 0.005% per °C
- SE556 MIL-STD-883A, B, C available, N38510 (JAN planned, 38510 processing available)

PIN CONFIGURATION

<table>
<thead>
<tr>
<th>D, F, N PACKAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DISCHARGE 1</td>
</tr>
<tr>
<td>THRESHOLD 2</td>
</tr>
<tr>
<td>CONTROL VOLTAGE 3</td>
</tr>
<tr>
<td>RESET 4</td>
</tr>
<tr>
<td>OUTPUT 6</td>
</tr>
<tr>
<td>TRIGGER 7</td>
</tr>
<tr>
<td>GROUND 8</td>
</tr>
</tbody>
</table>

ORDER NUMBERS

- SA556N
- SE556CN
- SE/NE556F, N
- SE/NE556-1F, N
- SE/NE556-1C, CN
- SE/NE556-1CF, CN

BLOCK DIAGRAM
LINEAR LSI PRODUCTS

DUAL TIMER

SA/SE/NE556/SA/SE/NE556-1/SE556-1C

EQUIVALENT SCHEMATIC

(Shown for one circuit only)

ABSOLUTE MAXIMUM RATINGS

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>RATING</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltage</td>
<td>+16</td>
<td>V</td>
</tr>
<tr>
<td>SA/NE556, 556-1, SE556C, 556-1C</td>
<td>+18</td>
<td>V</td>
</tr>
<tr>
<td>SE556-1, 556</td>
<td>600</td>
<td>mW</td>
</tr>
<tr>
<td>Power dissipation</td>
<td>0 to +70</td>
<td>°C</td>
</tr>
<tr>
<td>Operating temperature range</td>
<td>-40 to +85</td>
<td>°C</td>
</tr>
<tr>
<td>NE/SA556-1, NE556</td>
<td>-55 to +125</td>
<td>°C</td>
</tr>
<tr>
<td>SA556-1, SA556</td>
<td>-65 to +150</td>
<td>°C</td>
</tr>
<tr>
<td>SE556-1, SE556-1C, SE556, 556C</td>
<td>+300</td>
<td>°C</td>
</tr>
<tr>
<td>Storage temperature range</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lead temperature (soldering, 60 sec)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
LINEAR LSI PRODUCTS

DUAL TIMER

SA/SE/NE556/SA/SE/NE556-1/SE556-1C

ELECTRICAL CHARACTERISTICS \(T_a = 25^\circ C, V_{CC} = +5V \) to \(+15V\) unless otherwise specified

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>SE556/556-1</th>
<th>SA/NE556/SE556C</th>
<th>NE556-1/SE556-1C</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltage</td>
<td>(V_{CC} = 5V, R_L = \infty)</td>
<td>4.5</td>
<td>4.5</td>
<td>4.5</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>(V_{CC} = 15V, R_L = \infty)</td>
<td>6.0</td>
<td>20.0</td>
<td>20.0</td>
<td>mA</td>
</tr>
<tr>
<td>Supply current (low state)(^1)</td>
<td></td>
<td>6.0</td>
<td>24.0</td>
<td>6.0</td>
<td>mA</td>
</tr>
<tr>
<td>Timing error (monostable)</td>
<td>(R_A = 2k\Omega) to 100k\Omega</td>
<td>0.5</td>
<td>0.75</td>
<td>0.15</td>
<td>%</td>
</tr>
<tr>
<td>Initial accuracy(^2)</td>
<td>(C = 0.1\mu F)</td>
<td>3.0</td>
<td>5.0</td>
<td>400.0</td>
<td>ppm/\degree C</td>
</tr>
<tr>
<td>Drift with temperature</td>
<td>(T = 1.1RC)</td>
<td>100.0</td>
<td>150.0</td>
<td>1.0</td>
<td>%</td>
</tr>
<tr>
<td>Drift with supply voltage</td>
<td></td>
<td>0.05</td>
<td>0.2</td>
<td>0.5</td>
<td>%</td>
</tr>
<tr>
<td>Timing error (astable)</td>
<td>(R_A, R_B = 1k\Omega) to 100k\Omega</td>
<td>4.0</td>
<td>5.0</td>
<td>3.0</td>
<td>%</td>
</tr>
<tr>
<td>Initial accuracy(^2)</td>
<td>(C = 0.1\mu F)</td>
<td>400.0</td>
<td>500.0</td>
<td>1.0</td>
<td>%</td>
</tr>
<tr>
<td>Drift with temperature</td>
<td></td>
<td>1.0</td>
<td>2.2</td>
<td>0.3</td>
<td>%</td>
</tr>
<tr>
<td>Drift with supply voltage</td>
<td></td>
<td>0.5</td>
<td>0.9</td>
<td>0.5</td>
<td>%</td>
</tr>
<tr>
<td>Control voltage level</td>
<td>(V_{CC} = 5V)</td>
<td>9.6</td>
<td>10.0</td>
<td>9.0</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>(V_{CC} = 15V)</td>
<td>2.9</td>
<td>3.33</td>
<td>2.6</td>
<td>V</td>
</tr>
<tr>
<td>Threshold voltage</td>
<td>(V_{CC} = 15V)</td>
<td>9.4</td>
<td>10.0</td>
<td>8.8</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>(V_{CC} = 5V)</td>
<td>2.7</td>
<td>3.33</td>
<td>2.4</td>
<td>V</td>
</tr>
<tr>
<td>Threshold current(^3)</td>
<td></td>
<td>3.0</td>
<td>250.0</td>
<td>3.0</td>
<td>nA</td>
</tr>
<tr>
<td>Trigger voltage</td>
<td>(V_{CC} = 15V)</td>
<td>4.8</td>
<td>5.0</td>
<td>4.5</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>(V_{CC} = 5V)</td>
<td>1.45</td>
<td>1.9</td>
<td>1.1</td>
<td>V</td>
</tr>
<tr>
<td>Trigger current</td>
<td>(V_{TRIG} = 0V)</td>
<td>0.5</td>
<td>0.9</td>
<td>0.5</td>
<td>V</td>
</tr>
<tr>
<td>Reset voltage(^5)</td>
<td></td>
<td>0.3</td>
<td>1.0</td>
<td>0.3</td>
<td>V</td>
</tr>
<tr>
<td>Reset current</td>
<td></td>
<td>0.1</td>
<td>0.4</td>
<td>0.1</td>
<td>V</td>
</tr>
<tr>
<td>Reset current</td>
<td>(V_{RESET} = 0V)</td>
<td>0.4</td>
<td>1.0</td>
<td>0.4</td>
<td>V</td>
</tr>
<tr>
<td>Output voltage (low)</td>
<td>(V_{CC} = 15V)</td>
<td>2.0</td>
<td>2.25</td>
<td>2.0</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>(I_{SINK} = 10mA)</td>
<td>0.1</td>
<td>0.15</td>
<td>0.1</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>(I_{SINK} = 50mA)</td>
<td>0.4</td>
<td>0.5</td>
<td>0.4</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>(I_{SINK} = 100mA)</td>
<td>0.8</td>
<td>1.2</td>
<td>2.0</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>(I_{SINK} = 200mA)</td>
<td>2.0</td>
<td>2.25</td>
<td>2.0</td>
<td>V</td>
</tr>
<tr>
<td>Output voltage (high)</td>
<td>(V_{CC} = 15V)</td>
<td>13.0</td>
<td>13.3</td>
<td>12.5</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>(I_{SOURCE} = 200mA)</td>
<td>12.5</td>
<td>13.3</td>
<td>12.5</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>(I_{SOURCE} = 100mA)</td>
<td>13.0</td>
<td>13.3</td>
<td>13.3</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>(V_{CC} = 5V)</td>
<td>3.0</td>
<td>3.3</td>
<td>3.0</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>(I_{SOURCE} = 100mA)</td>
<td>2.75</td>
<td>3.3</td>
<td>2.75</td>
<td>V</td>
</tr>
<tr>
<td>Turn off time(^3)</td>
<td>(V_{RESET} = V_{CC})</td>
<td>0.5</td>
<td>2.0</td>
<td>0.5</td>
<td>\mu s</td>
</tr>
<tr>
<td></td>
<td>(NE556-1/SE556-1/SE556-1C)</td>
<td></td>
<td></td>
<td></td>
<td>\mu s</td>
</tr>
<tr>
<td>Rise time of output</td>
<td></td>
<td>100</td>
<td>200</td>
<td>100</td>
<td>ns</td>
</tr>
<tr>
<td>Fall time of output</td>
<td></td>
<td>100</td>
<td>200</td>
<td>100</td>
<td>ns</td>
</tr>
<tr>
<td>Discharge leakage current</td>
<td></td>
<td>20</td>
<td>100</td>
<td>20</td>
<td>nA</td>
</tr>
<tr>
<td>Matching characteristics(^4)</td>
<td></td>
<td>0.5</td>
<td>1.0</td>
<td>1.0</td>
<td>%</td>
</tr>
<tr>
<td>Initial accuracy(^2)</td>
<td></td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>%/V</td>
</tr>
<tr>
<td>Drift with temperature</td>
<td></td>
<td>0.1</td>
<td>0.2</td>
<td>0.2</td>
<td>%</td>
</tr>
<tr>
<td>Drift with supply voltage</td>
<td></td>
<td>0.1</td>
<td>0.2</td>
<td>0.2</td>
<td>%</td>
</tr>
</tbody>
</table>

NOTES

1. Supply current when output is high is typically 1.0mA less.
2. Tested at \(V_{CC} = 5V \) and \(V_{CC} = 15V \).
3. This will determine maximum value of \(R_A + R_B \). For 15V operation, the maximum total \(R = 10 \) megohms, and for 5V operation, the max. total \(R = 3.4 \) megohms.
4. Matching characteristics refer to the difference between performance characteristics for each timer section in the monostable mode.
5. Specified with trigger input high.
6. Time measured from a positive going input pulse from 0 to 0.4 \(V_{CC} \) into the threshold to the drop from high to low of the output. Trigger is tied to threshold.
TYPICAL PERFORMANCE CHARACTERISTICS

<table>
<thead>
<tr>
<th>MINIMUM PULSE WIDTH REQUIRED FOR TRIGGERING</th>
<th>SUPPLY CURRENT vs SUPPLY VOLTAGE</th>
<th>HIGH OUTPUT VOLTAGE DROP vs OUTPUT SOURCE CURRENT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LOW OUTPUT VOLTAGE vs OUTPUT SINK CURRENT</th>
<th>LOW OUTPUT VOLTAGE vs OUTPUT SINK CURRENT</th>
<th>LOW OUTPUT VOLTAGE vs OUTPUT SINK CURRENT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DELAY TIME vs TEMPERATURE</th>
<th>DELAY TIME vs SUPPLY VOLTAGE</th>
<th>PROPAGATION DELAY vs VOLTAGE LEVEL OF TRIGGER PULSE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SUPPLY VOLTAGE = 5V

VCC = 10V

VCC = 15V
TYPICAL APPLICATIONS

One feature of the dual timer is that by utilizing both halves it is possible to obtain sequential timing. By connecting the output of the first half to the input of the second half via a 0.001µfd coupling capacitor sequential timing may be obtained. Delay t_1 is determined by the first half and t_2 by the second half delay.

The first half of the timer is started by momentarily connecting pin 6 to ground. When it is timed out (determined by $1.1R_1C_1$) the second half begins. Its duration is determined by $1.1R_2C_2$.

For additional information, consult the Applications Section.
DESCRIPTION
The 558 Quad Timers are monolithic timing devices which can be used to produce four entirely independent timing functions. The 558 output sinks current. These highly stable, general purpose controllers can be used in a monostable mode to produce accurate time delays, from microseconds to hours. In the time delay mode of operation, the time is precisely controlled by one external resistor and one capacitor. A stable operation can be achieved by using two of the four timer sections.

The four timing sections in the 558 are edge triggered; therefore, when connected in tandem for sequential timing applications, no coupling capacitors are required. Output current capability of 100mA is provided in both devices.

FEATURES
- 100mA output current per section
- Edge triggered (no coupling capacitor)
- Output independent of trigger conditions
- Wide supply voltage range 4.5V to 18V
- Timer intervals from microseconds to hours
- Time period equals RC
- Military qualifications pending

APPLICATIONS
- Sequential timing
- Time delay generation
- Precision timing
- Industrial controls
- Quad one-shot

558 EQUIVALENT CIRCUIT

PIN CONFIGURATION

ABSOLUTE MAXIMUM RATINGS

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>RATING</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltage</td>
<td>+16</td>
<td>V</td>
</tr>
<tr>
<td>NE/SA558</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SE558</td>
<td>+18</td>
<td>V</td>
</tr>
<tr>
<td>Power dissipation</td>
<td>1.25</td>
<td>W</td>
</tr>
<tr>
<td>Operating temperature range</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NE558</td>
<td>0 to +70</td>
<td>°C</td>
</tr>
<tr>
<td>SA558</td>
<td>-40 to +85</td>
<td>°C</td>
</tr>
<tr>
<td>SE558</td>
<td>-55 to +125</td>
<td>°C</td>
</tr>
<tr>
<td>Storage temperature range</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NE558</td>
<td>-65 to +150</td>
<td>°C</td>
</tr>
<tr>
<td>Lead temperature (soldering, 60 sec)</td>
<td>-300</td>
<td>°C</td>
</tr>
</tbody>
</table>
Electrical Characteristics

- **$T_A = 25^\circ C$, $V_{CC} = +5V$ to $+15V$ unless otherwise specified.**

Table

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Test Conditions</th>
<th>SE558</th>
<th>SA/SE558</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Min Typ Max</td>
<td>Min Typ Max</td>
<td></td>
</tr>
<tr>
<td>Supply voltage</td>
<td>V_{CC} = Reset = 15V</td>
<td>4.5 18</td>
<td>4.5 16</td>
<td>V</td>
</tr>
<tr>
<td>Supply current</td>
<td></td>
<td>16 32</td>
<td>16 36</td>
<td>mA</td>
</tr>
<tr>
<td>Timing accuracy ($T = RC$)</td>
<td>$R = 2k\Omega$ to 100k\Omega $C = 1\mu F$</td>
<td>±1.0 3</td>
<td>±2 5</td>
<td>% ppm/$^\circ C$</td>
</tr>
<tr>
<td>Initial accuracy</td>
<td></td>
<td>30 100</td>
<td>30 150</td>
<td></td>
</tr>
<tr>
<td>Drift with temperature</td>
<td></td>
<td>0.1 0.9</td>
<td>0.1 0.9</td>
<td></td>
</tr>
<tr>
<td>Drift with supply voltage</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trigger voltage1</td>
<td>$V_{CC} = 15V$</td>
<td>0.8 5.4</td>
<td>5 2.4</td>
<td>V</td>
</tr>
<tr>
<td>Trigger current</td>
<td>Trigger = 0V</td>
<td>30 2.4</td>
<td>30 2.4</td>
<td>µA</td>
</tr>
<tr>
<td>Reset voltage2</td>
<td>Reset</td>
<td>50 30</td>
<td>50 300</td>
<td>µA</td>
</tr>
<tr>
<td>Reset current</td>
<td></td>
<td>0.8 2.4</td>
<td>0.8 2.4</td>
<td>µA</td>
</tr>
<tr>
<td>Threshold voltage</td>
<td></td>
<td>0.63 0.63</td>
<td>0.63 15</td>
<td>V/Vee x</td>
</tr>
<tr>
<td>Threshold leakage</td>
<td></td>
<td>0.63 15</td>
<td>0.63 15</td>
<td>nA</td>
</tr>
<tr>
<td>Output voltage3</td>
<td>$I_L = 10mA$</td>
<td>0.1 0.2</td>
<td>0.1 0.4</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>$I_L = 100mA$</td>
<td>0.7 1.5</td>
<td>1.0 2.0</td>
<td>V</td>
</tr>
<tr>
<td>Output leakage</td>
<td></td>
<td>10 500</td>
<td>10 500</td>
<td>nA</td>
</tr>
<tr>
<td>Propagation delay</td>
<td></td>
<td>1.0 1.0</td>
<td>1.0 1.0</td>
<td>µs</td>
</tr>
<tr>
<td>Risetime of output</td>
<td>$I_L = 100mA$</td>
<td>100 100</td>
<td>100 100</td>
<td>ns</td>
</tr>
<tr>
<td>Faiftime of output</td>
<td>$I_L = 100mA$</td>
<td>100 100</td>
<td>100 100</td>
<td>ns</td>
</tr>
</tbody>
</table>

Notes

1. The trigger functions only on the falling edge of the trigger pulse only after previously being high. After reset the trigger must be brought high and then low to implement triggering.
2. For reset below 0.8 volts, outputs set low and trigger inhibited. For reset above 2.4 volts, trigger enabled.
3. The 558 output structure is open collector which requires a pull up resistor to V_{CC} to sink current. The output is normally low sinking current.
558 LONG-TIME DELAY

558 RING COUNTER

EXPECTED WAVEFORMS

*For additional information, consult the Applications Section.
Section 6
Amplifiers

INDEX

SECTION 6 — AMPLIFIERS

Index .. 6-1

Companding
NE570 ... 5-3
SA/NE571 ... 5-3
SA/NE572 ... 5-9

Operational
Symbols and Definitions .. 6-3
Selector Guide ... 6-4
LM124/224/324/SA534 ... 6-5
LM158/258/358 ... 6-9
MC/SA1458/MC1558 .. 6-13
MC3303/3403/3503 .. 6-18
SA/SE/NE4558 .. 6-22
SE/NE530 .. 6-26
SE/NE531 .. 6-31
SA/SE/NE532 .. 6-38
SE/NE538 .. 6-44
SE/NE5512 ... 6-46
SE/NE5514 .. 6-48
SE/NE5532/A .. 6-59
NE5533/A/SA/SE/NE5534/A ... 6-65
SE/NE5535 .. 6-73
μA741/741C/SA741C .. 6-78
μA747/747C/SA747C .. 6-84

Transconductance
NE5517/A .. 6-84

Video
SE/NE5539 .. 6-96
NE5592 ... 6-103
SE/NE592 .. 6-108
μA733/C .. 6-115

Ultra High Frequency Operational Amplifier 6-96
Video Amplifier .. 6-103
Video Amplifier .. 6-108
Differential Video Amplifier .. 6-115
Absolute Maximum Rating
Operating safe zones exceeding these limits could cause perma-
nent damage to the device and are not meant to imply that
devices can operate at these limits.

Average Input Offset Current Temperature Coefficient (\(T_{IC} \phi\))
The change in input offset current divided by the change in am-
tibent temperature producing it.

Average Input Offset Voltage Temperature Coefficient (\(T_{CV} \phi\))
The change in input offset voltage divided by the change in am-
tibent temperature producing it.

Bandwidth
The frequency at which the gain is down 3dB from its dc value.
It's measured in sample (track) mode with a small-signal sine
wave that doesn't exceed the slew rate limit.

Common Mode Input Resistance
The resistance looking into both inputs, with inputs tied
together.

Common Mode Rejection Ratio (CMRR)
The ratio of the change of input offset voltage to the input com-
mon mode voltage change producing it.

Full Power Bandwidth
The maximum frequency at which the full sine wave output might
be obtained.

Input Bias Current (\(I_b\))
The average of the two input currents at zero output voltage. In
some cases, the input current is measured for either input in-
dependently.

Input Capacitance
The capacitance looking into either input terminal with the other
grounded.

Input Current
The current into an input terminal.

Input Noise Voltage
The square root of the mean square narrow-band noise voltage
referred to the input.

Input Offset Current
The difference in the currents into the two input terminals with
the output at zero volts.

Input Offset Voltage
That voltage which must be applied between the input terminals to
obtain zero output voltage. The input offset voltage may also be
defined for the case where two equal resistances are inserted in
series with the input leads.

Input Resistance
The resistance looking into either input terminal with the other
grounded.

Input Voltage Range
The range of voltages on the input terminals for which the
amplifier operates within specifications. In some cases, the in-
put offset specifications apply over the input voltage range.

Large-Signal Voltage Gain
The ratio of the maximum output voltage swing to the change in
input voltage required to drive the output to this voltage.

Output Resistance
The resistance seen looking into the output terminal with the
output at null. This parameter is defined only under small signal
conditions at frequencies above a few hundred cycles to
eliminate the influence of drift and thermal feedback.

Output Short-Circuit Current
The maximum output current available from the amplifier with
the output shorted to ground or to either supply.

Output Voltage Swing
The peak output swing, referred to zero, that can be obtained.

Package Type Designation
See full package designations in Appendix.

Phase Margin
180° minus the absolute value of the phase shift measured at
the frequency at which the gain is unity.

Power Consumption
The dc power required to operate the amplifier with the output at
zero and with the output at zero and with no load current.

Power Dissipation
The power that the device can safely handle at 25°C. The
dissipation must be derated as indicated for the individual
package type.

Power Supply Rejection Ratio
The ratio of the change in input offset voltage to the change in
supply voltages producing it.

Rise Time
The time required for an output voltage step to change from 10%
to 90% of its final value.

Slew Rate
The maximum rate of change of output voltage under large
signal conditions.

Supply Current
The current required from the power supply to operate the ampli-
fier with no load and the output at zero.

\(T_A\)
Ambient temperature range. Range of the surrounding environment
of the operating device.

\(T_J\)
Junction Temperature. The maximum temperature of the device.
150°C is standard for silicon devices.

\(T_{STG}\)
Storage temperature range. Temperature range that the device
can be stored in a non-operating condition.

\(T_{SOLD}\)
Soldering Temperature. The temperature which can be applied
to the lead frame of the device for short periods of time (nor-
mally specified for a duration of 10 sec).

Temperature Stability of Voltage Gain
The maximum variation of the voltage gain over the specified
temperature range.

\(V_{CC} (-V_{CC})\)
Supply Voltage. The range of power supply voltage over which
the device will operate safely.
<table>
<thead>
<tr>
<th>DEVICE</th>
<th>PLEXITY</th>
<th>TEMPERATURE RANGE</th>
<th>MAX. INPUT VOLTAGE</th>
<th>MAX. INPUT CURRENT</th>
<th>RL = $2K$</th>
<th>TYP. BW</th>
<th>TYP. SLEW RATE</th>
<th>MIN. CMRR</th>
<th>MIN. PSRR</th>
<th>SUPPLY VOLTAGE</th>
<th>MAX. SUPPLY VOLTAGE</th>
<th>MAX. OUTPUT SWING</th>
<th>INTERNAL COMPENSATION</th>
<th>INPUT NOISE VOLTAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A339</td>
<td>Single</td>
<td>Comm.</td>
<td>-55°C to +125°C</td>
<td>0°C to +70°C</td>
<td>6200</td>
<td>600</td>
<td>40</td>
<td>200</td>
<td>70</td>
<td>65</td>
<td>6.5</td>
<td>6.5</td>
<td>Yes, 4.5</td>
<td>4.5</td>
</tr>
<tr>
<td>A258</td>
<td>Dual</td>
<td>Mil.</td>
<td>-55°C to +125°C</td>
<td>0°C to +70°C</td>
<td>1300</td>
<td>1200</td>
<td>40</td>
<td>200</td>
<td>70</td>
<td>65</td>
<td>6.5</td>
<td>6.5</td>
<td>Yes, 4.5</td>
<td>4.5</td>
</tr>
<tr>
<td>A256</td>
<td>Dual</td>
<td>Comm.</td>
<td>-55°C to +125°C</td>
<td>0°C to +70°C</td>
<td>600</td>
<td>600</td>
<td>40</td>
<td>200</td>
<td>70</td>
<td>65</td>
<td>6.5</td>
<td>6.5</td>
<td>Yes, 4.5</td>
<td>4.5</td>
</tr>
<tr>
<td>A532</td>
<td>Dual</td>
<td>Comm.</td>
<td>-55°C to +125°C</td>
<td>0°C to +70°C</td>
<td>1500</td>
<td>1500</td>
<td>40</td>
<td>200</td>
<td>70</td>
<td>65</td>
<td>6.5</td>
<td>6.5</td>
<td>Yes, 4.5</td>
<td>4.5</td>
</tr>
<tr>
<td>A532-A</td>
<td>Dual</td>
<td>Comm.</td>
<td>-55°C to +125°C</td>
<td>0°C to +70°C</td>
<td>1500</td>
<td>1500</td>
<td>40</td>
<td>200</td>
<td>70</td>
<td>65</td>
<td>6.5</td>
<td>6.5</td>
<td>Yes, 4.5</td>
<td>4.5</td>
</tr>
<tr>
<td>A533</td>
<td>Quad</td>
<td>Comm.</td>
<td>-55°C to +125°C</td>
<td>0°C to +70°C</td>
<td>3000</td>
<td>3000</td>
<td>40</td>
<td>200</td>
<td>70</td>
<td>65</td>
<td>6.5</td>
<td>6.5</td>
<td>Yes, 4.5</td>
<td>4.5</td>
</tr>
<tr>
<td>A533-A</td>
<td>Quad</td>
<td>Comm.</td>
<td>-55°C to +125°C</td>
<td>0°C to +70°C</td>
<td>3000</td>
<td>3000</td>
<td>40</td>
<td>200</td>
<td>70</td>
<td>65</td>
<td>6.5</td>
<td>6.5</td>
<td>Yes, 4.5</td>
<td>4.5</td>
</tr>
<tr>
<td>A254</td>
<td>Quad</td>
<td>Ind.</td>
<td>-55°C to +125°C</td>
<td>0°C to +70°C</td>
<td>1500</td>
<td>1500</td>
<td>40</td>
<td>200</td>
<td>70</td>
<td>65</td>
<td>6.5</td>
<td>6.5</td>
<td>Yes, 4.5</td>
<td>4.5</td>
</tr>
<tr>
<td>A254-A</td>
<td>Quad</td>
<td>Ind.</td>
<td>-55°C to +125°C</td>
<td>0°C to +70°C</td>
<td>1500</td>
<td>1500</td>
<td>40</td>
<td>200</td>
<td>70</td>
<td>65</td>
<td>6.5</td>
<td>6.5</td>
<td>Yes, 4.5</td>
<td>4.5</td>
</tr>
<tr>
<td>A250</td>
<td>Quad</td>
<td>Auto</td>
<td>-55°C to +125°C</td>
<td>0°C to +70°C</td>
<td>1500</td>
<td>1500</td>
<td>40</td>
<td>200</td>
<td>70</td>
<td>65</td>
<td>6.5</td>
<td>6.5</td>
<td>Yes, 4.5</td>
<td>4.5</td>
</tr>
<tr>
<td>A250-A</td>
<td>Quad</td>
<td>Auto</td>
<td>-55°C to +125°C</td>
<td>0°C to +70°C</td>
<td>1500</td>
<td>1500</td>
<td>40</td>
<td>200</td>
<td>70</td>
<td>65</td>
<td>6.5</td>
<td>6.5</td>
<td>Yes, 4.5</td>
<td>4.5</td>
</tr>
<tr>
<td>A338</td>
<td>Quad</td>
<td>Auto</td>
<td>-55°C to +125°C</td>
<td>0°C to +70°C</td>
<td>1500</td>
<td>1500</td>
<td>40</td>
<td>200</td>
<td>70</td>
<td>65</td>
<td>6.5</td>
<td>6.5</td>
<td>Yes, 4.5</td>
<td>4.5</td>
</tr>
<tr>
<td>A338-A</td>
<td>Quad</td>
<td>Auto</td>
<td>-55°C to +125°C</td>
<td>0°C to +70°C</td>
<td>1500</td>
<td>1500</td>
<td>40</td>
<td>200</td>
<td>70</td>
<td>65</td>
<td>6.5</td>
<td>6.5</td>
<td>Yes, 4.5</td>
<td>4.5</td>
</tr>
</tbody>
</table>

Notes:
1. Military: -55°C to +125°C
2. Specifications guaranteed at 25°C unless otherwise indicated by the following marks:
 - Typical over full temperature range
 - Guaranteed over full temperature range
3. Unless otherwise stated, max. negative input voltage cannot exceed negative power supply voltage.
4. $A_\mu = 7$
5. $R = 10\Omega$
6. $RL = 800\Omega$
DESCRIPTION
The LM124/SA534 series consists of four independent, high gain, internally frequency compensated operational amplifiers designed specifically to operate from a single power supply over a wide range of voltages. Similar to LM2902.

UNIQUE FEATURES
In the linear mode the input common-mode voltage range includes ground and the output voltage can also swing to ground, even though operated from only a single power supply voltage.

The unity gain cross frequency is temperature compensated.

The input bias current is also temperature compensated.

FEATURES
- Internally frequency compensated for unity gain
- Large dc voltage gain—(100dB)
- Wide bandwidth (unity gain)—1MHz (temperature compensated)
- Wide power supply range
- Single supply—(3Vdc to 30Vdc) or dual supplies—(±1.5Vdc to ±15Vdc)
- Very low supply current drain—essentially independent of supply voltage (1mW/op amp at ±5Vdc)
- Low input biasing current—(45nA/dc temperature compensated)
- Low input offset voltage—(2mVdc) and offset current—(5nA/dc)
- Differential input voltage range equal to the power supply voltage
- Large output voltage—(0Vdc to V+-1.5Vdc swing)
- LM124 Mil std 883A,B,C available

ABSOLUTE MAXIMUM RATINGS

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>RATING</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>V+ Supply voltage</td>
<td>32 or ±16</td>
<td>Vdc</td>
</tr>
<tr>
<td>Differential input voltage</td>
<td>32</td>
<td>Vdc</td>
</tr>
<tr>
<td>Input voltage</td>
<td>-0.3 to -32</td>
<td>Vdc</td>
</tr>
<tr>
<td>Power dissipation1</td>
<td>570</td>
<td>mW</td>
</tr>
<tr>
<td>N package</td>
<td>900</td>
<td>mW</td>
</tr>
<tr>
<td>F package</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output short-circuit to GND 1 amplifier2</td>
<td>Continuous</td>
<td></td>
</tr>
<tr>
<td>V+ < 15Vdc and TA = 25°C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input current (Vin < -0.3V/I3)</td>
<td>50</td>
<td>mA</td>
</tr>
<tr>
<td>Operating temperature range</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LM324</td>
<td>0 to +70</td>
<td>°C</td>
</tr>
<tr>
<td>LM224</td>
<td>-25 to +85</td>
<td>°C</td>
</tr>
<tr>
<td>SA534</td>
<td>-40 to +85</td>
<td>°C</td>
</tr>
<tr>
<td>LM124</td>
<td>-55 to +125</td>
<td>°C</td>
</tr>
<tr>
<td>Storage temperature range</td>
<td>-85 to +150</td>
<td>°C</td>
</tr>
<tr>
<td>Lead temperature (soldering, 10sec)</td>
<td>300</td>
<td>°C</td>
</tr>
</tbody>
</table>

NOTES
1. For operating at high temperatures, all devices must be derated based on a +125°C maximum junction temperature and a thermal resistance of 175°C/W which applies for the device soldered in a printed circuit board, operating in a still air ambient. LM124/224 can be derated based on a +150°C maximum junction temperature.
2. Short circuits from the output to V+ can cause excessive heating and eventual destruction. The maximum output current is approximately 40mA independent of the magnitude of V+. At values of supply voltage in excess of ±15Vdc continuous short-circuits can exceed the power dissipation ratings and cause eventual destruction.
3. The direction of the input current is out of the IC due to the PNP input stage. This current is essentially constant, independent of the state of the output, so no loading change exists on the input lines.
DC Electrical Characteristics

V+ = 5V, TA = 25°C unless otherwise specified.

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>LM124/LM224</th>
<th>LM324/SA534</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>VOS</td>
<td>Offset voltage(^1)</td>
<td>R(_S) = 0Ω</td>
<td>±2</td>
<td>±5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R(_S) = 0Ω, over temp.</td>
<td>±7</td>
<td></td>
</tr>
<tr>
<td>VOS</td>
<td>Drift</td>
<td>R(_S) = 0Ω</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>I(_{\text{IBIAS}})</td>
<td>Input current(^2)</td>
<td>I({\text{IN}}(+)) or I({\text{IN}}(-)), over temp.</td>
<td>45</td>
<td>150</td>
</tr>
<tr>
<td></td>
<td></td>
<td>I({\text{IN}}(+)) or I({\text{IN}}(-)), over temp.</td>
<td>40</td>
<td>300</td>
</tr>
<tr>
<td>IS</td>
<td>Drift</td>
<td>Over temp.</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>I(_{\text{OS}})</td>
<td>Offset current</td>
<td>I({\text{IN}}(+)) - I({\text{IN}}(-)), over temp.</td>
<td>±3</td>
<td>±30</td>
</tr>
<tr>
<td></td>
<td></td>
<td>I({\text{IN}}(+)) - I({\text{IN}}(-)), over temp.</td>
<td>±100</td>
<td></td>
</tr>
<tr>
<td>I(_{\text{OS}})</td>
<td>Drift</td>
<td>Over temp.</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>V(_{\text{CM}})</td>
<td>Common mode voltage range(^3)</td>
<td>V+ = 30V</td>
<td>0</td>
<td>V+ - 1.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V+ = 30V, over temp.</td>
<td>70</td>
<td>85</td>
</tr>
<tr>
<td>C(_{\text{MRR}})</td>
<td>Common mode rejection ratio</td>
<td>V+ = 30V</td>
<td>70</td>
<td>85</td>
</tr>
<tr>
<td>V(_{\text{OUT}})</td>
<td>Output voltage swing</td>
<td>R(_L) = 2kΩ, V+ = +30V, over temp.</td>
<td>26</td>
<td>26</td>
</tr>
<tr>
<td>V(_{\text{OH}})</td>
<td>R(_L) ≤ 10kΩ, over temp.</td>
<td>27</td>
<td>28</td>
<td>27</td>
</tr>
<tr>
<td>V(_{\text{OL}})</td>
<td>R(_L) = 10kΩ, V+ = 5V, over temp.</td>
<td>5</td>
<td>20</td>
<td>5</td>
</tr>
<tr>
<td>I(_{\text{CC}})</td>
<td>Supply current</td>
<td>R(L) = 0Ω, V({\text{CC}}) = 30V, over temp.</td>
<td>1.5</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R(_L) = 0Ω, on all op amps, over temp.</td>
<td>0.7</td>
<td>1.2</td>
</tr>
<tr>
<td>A(_{\text{VOL}})</td>
<td>Large signal voltage gain</td>
<td>V+ = +15V (for large V(_{\text{O}}) swing), R(_L) ≥ 2kΩ</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V+ = +15V (for large V(_{\text{O}}) swing), R(_L) ≥ 2kΩ, over temp.</td>
<td>25</td>
<td>15</td>
</tr>
<tr>
<td>Amplifier-to-amplifier coupling(^5)</td>
<td>f = 1kHz to 20kHz, input referred</td>
<td>-120</td>
<td>-120</td>
<td>-120</td>
</tr>
<tr>
<td>PSRR</td>
<td>R(_S) = 0Ω</td>
<td>65</td>
<td>100</td>
<td>65</td>
</tr>
<tr>
<td>Output current Source</td>
<td>V({\text{IN}}^+) = +1Vdc, V({\text{IN}}^-) = 0Vdc, V+ = 15Vdc</td>
<td>20</td>
<td>40</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V({\text{IN}}^+) = +1Vdc, V({\text{IN}}^+) = 0Vdc, V+ = 15Vdc</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V({\text{IN}}^-) = +1Vdc, V({\text{IN}}^-) = 0Vdc, V- = 15Vdc, over temp.</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V({\text{IN}}^-) = +1Vdc, V({\text{IN}}^-) = 0Vdc, V+ = 15Vdc</td>
<td>5</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V({\text{IN}}^-) = 0Vdc, V({\text{IN}}^-) = 0Vdc, V(_{\text{O}}) = 200mV</td>
<td>12</td>
<td>50</td>
</tr>
<tr>
<td>I(_{\text{SC}})</td>
<td>Short circuit current(^4)</td>
<td>10</td>
<td>40</td>
<td>60</td>
</tr>
<tr>
<td>Differential input voltage(^6)</td>
<td>V+</td>
<td>40</td>
<td>40</td>
<td>V+</td>
</tr>
<tr>
<td>GBW</td>
<td>Unity gain bandwidth</td>
<td>TA = 25°C</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>S.R.</td>
<td>Slew rate</td>
<td>TA = 25°C</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>Noise Input noise voltage</td>
<td>TA = 25°C, f = 1kHz</td>
<td>40</td>
<td>40</td>
<td>nW/√Hz</td>
</tr>
</tbody>
</table>

NOTES:

1. V\(_{\text{O}}\) = 1.4Vdc, R\(_{\text{S}}\) = 0Ω with V+ from 5V to 30V and over full input common-mode range (0Vdc to V+ - 1.5V).
2. The direction of the input current is out of the IC due to the pin input stage. This current is essentially constant, independent of the state of the output so no loading change exists on the input lines.
3. The input common-mode voltage or either input signal voltage should not be allowed to go negative by more than 0.3V. The upper end of the common-mode voltage range is V+ - 1.5V, but either or both inputs can go to +32Vdc without damage.
4. Short circuits from the output to V+ can cause excessive heating and eventual destruction. The maximum output current is approximately 40mA independent of the magnitude of V+ . At values of supply voltage in excess of +15Vdc continuous short-circuits can exceed the power dissipation ratings and cause eventual destruction. Destructive dissipation can result from simultaneous shorts on all amplifiers.
5. Due to proximity of external components, insure that coupling is not originating via stray capacitance between these external parts. This typically can be detected as this type of capacitive increases at higher frequencies.
6. The input common-mode voltage or either input signal voltage should not be allowed to go negative by more than 0.3V. The upper end of the common-mode voltage range is V+ - 1.5V, but either or both inputs can go to +32Vdc without damage.
LOW POWER QUAD OP AMP

EQUIVALENT SCHEMATIC

TYPICAL PERFORMANCE CHARACTERISTICS

SUPPLY CURRENT

OUTPUT CHARACTERISTICS
CURRENT SOURCING

CURRENT LIMITING

VOLTAGE GAIN

OUTPUT CHARACTERISTICS
CURRENT SINKING

OPEN LOOP FREQUENCY RESPONSE
TYPICAL PERFORMANCE CHARACTERISTICS (Cont'd)

LARGE SIGNAL FREQUENCY RESPONSE

![Large Signal Frequency Response Graph]

VOLTAGE Follower PULSE RESPONSE

![Voltage Follower Pulse Response Graph]

INPUT VOLTAGE RANGE

![Input Voltage Range Graph]

INPUT CURRENT

![Input Current Graph]

COMMON MODE REJECTION RATIO

![Common Mode Rejection Ratio Graph]

VOLTAGE FOLLOWER PULSE RESPONSE (SMALL SIGNAL)

![Voltage Follower Pulse Response (Small Signal) Graph]

TYPICAL APPLICATIONS

SINGLE SUPPLY INVERTING AMPLIFIER

![Single Supply Inverting Amplifier Circuit]

NON-INVERTING AMPLIFIER

![Non-Inverting Amplifier Circuit]

INPUT BIASING VOLTAGE FOLLOWER

![Input Biasing Voltage Follower Circuit]
DESCRIPTION
The 532/358 consists of two independent, high gain, internally frequency compensated operational amplifiers designed specifically to operate from a single power supply over a wide range of voltages. Operation from dual power supplies is also possible and the low power supply current drain is independent of the magnitude of the power supply voltage.

FEATURES
- Internally frequency compensated for unity gain
- Large dc voltage gain—(100dB)
- Wide bandwidth (unity gain)—1MHz (temperature compensated)
- Wide power supply range
 single supply—(3Vdc to 30Vdc)
 or dual supplies—(±1.5Vdc to ±15Vdc)
- Very low supply current drain (400µA)—essentially independent of supply voltage (1mW/op amp at +5Vdc)
- Low input biasing current—(45nA dc temperature compensated)
- Low input offset voltage—(2mVdc) and offset current—(5nA dc)
- Differential input voltage range equal to the power supply voltage
- Large output voltage—(0Vdc to V+—1.5Vdc swing)
- SE532 MIL-STD-883A,B,C available

ABSOLUTE MAXIMUM RATINGS

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>RATING UNIT</th>
<th>RATING</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltage, V+</td>
<td>32 or ±16</td>
<td>Vdc</td>
<td></td>
</tr>
<tr>
<td>Differential input voltage</td>
<td>32</td>
<td>Vdc</td>
<td></td>
</tr>
<tr>
<td>Input voltage</td>
<td>-0.3 to +32</td>
<td>Vdc</td>
<td></td>
</tr>
<tr>
<td>Power dissipation</td>
<td>900</td>
<td>mW</td>
<td></td>
</tr>
<tr>
<td>Power dissipation</td>
<td>680</td>
<td>mW</td>
<td></td>
</tr>
<tr>
<td>Power dissipation</td>
<td>500</td>
<td>mW</td>
<td></td>
</tr>
<tr>
<td>Output short-circuit to GND</td>
<td>Continuous</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operating temperature range</td>
<td>0 to +70</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>LM258</td>
<td>-25 to +85</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>SA532N</td>
<td>-40 to +85</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>SE532/LM158</td>
<td>-55 to +125</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>Storage temperature range</td>
<td>-65 to +150</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>Lead temperature</td>
<td>300</td>
<td>°C</td>
<td></td>
</tr>
</tbody>
</table>

EQUIVALENT CIRCUIT

UNIQUE FEATURES
In the linear mode the input common-mode voltage range includes ground and the output voltage can also swing to ground, even though operated from only a single power supply voltage. The unity gain cross frequency is temperature compensated. The input bias current is also temperature compensated.

PIN CONFIGURATIONS

D, FE, N PACKAGE

H PACKAGE*
DC ELECTRICAL CHARACTERISTICS \(T_A = 25^\circ C, V_+ = +5V \) unless otherwise specified.

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>SE532, LM158/258</th>
<th>NE/SA532/LM358</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{OS}</td>
<td>Offset voltage(^1)</td>
<td>(R_S \leq 0 \Omega)</td>
<td>(\pm 2)</td>
<td>(\pm 7)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(R_S \leq 0 \Omega, \text{over temp.})</td>
<td>(\pm 5)</td>
<td>(\pm 9)</td>
</tr>
<tr>
<td>V_{OS}</td>
<td>Drift</td>
<td>(R_S = 0 \Omega, \text{over temp.})</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>I_{OS}</td>
<td>Offset current</td>
<td>(I_{IN}(+) - I_{IN}(-))</td>
<td>(\pm 3)</td>
<td>(\pm 30)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Over temp.</td>
<td>(\pm 30)</td>
<td>(\pm 100)</td>
</tr>
<tr>
<td>I_{IBIAS}</td>
<td>Input current(^2)</td>
<td>(I_{IN}(+)) or (I_{IN}(-))</td>
<td>(45)</td>
<td>(150)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Over temp., (I_{IN}(+)) or (I_{IN}(-))</td>
<td>(40)</td>
<td>(300)</td>
</tr>
<tr>
<td>I_{s}</td>
<td>Drift</td>
<td>(\text{Over temp.})</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>V_{CM}</td>
<td>Common mode voltage</td>
<td>(V_+ = 30V)</td>
<td>0</td>
<td>(V_+ - 1.5)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Over temp., (V_+ = 30V)</td>
<td>0</td>
<td>(V_+ - 2.0)</td>
</tr>
<tr>
<td>CMRR</td>
<td>Common mode rejection ratio</td>
<td>(V_+ = 30V)</td>
<td>50</td>
<td>70</td>
</tr>
<tr>
<td>V_{OUT}</td>
<td>Output voltage swing ((V_{OH}))</td>
<td>(R_L \geq 2k\Omega, V_+ = 30V, \text{over temp.})</td>
<td>26</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(R_L \geq 10k\Omega, V_+ = 30V, \text{over temp.})</td>
<td>28</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(R_L \leq 10k\Omega, \text{over temp.})</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>I_{CC}</td>
<td>Supply current</td>
<td>(R_L = \infty, V_+ = 30V)</td>
<td>1.0</td>
<td>2.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(R_L = \infty) on all amplifiers, over temp.</td>
<td>0.5</td>
<td>1.2</td>
</tr>
<tr>
<td>A_{VOL}</td>
<td>Large signal voltage gain</td>
<td>(R_L \geq 2k\Omega, V_{OUT} \pm 10V, V_+ = 15V)</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(for large (V_{OH}) swing) over temp.</td>
<td>25</td>
<td>15</td>
</tr>
<tr>
<td>PSRR</td>
<td>Supply voltage rejection ratio</td>
<td>(R_S \leq 0 \Omega)</td>
<td>65</td>
<td>100</td>
</tr>
<tr>
<td>(\text{Amplifier-to-amplifier})</td>
<td>Coupling(^4)</td>
<td>(f = 1 \text{kHz to } 20 \text{kHz})</td>
<td>-120</td>
<td>-120</td>
</tr>
<tr>
<td>Output Current Source</td>
<td></td>
<td>((\text{input referred}))</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_{IN}^+ = +1Vdc, V_{IN}^- = 0Vdc, V_+ = 15Vdc)</td>
<td>20</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_{IN}^+ = +1Vdc, V_{IN}^- = 0Vdc, V_+ = 15Vdc)</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_{IN}^- = +1Vdc, V_{IN}^+ = 0Vdc, V_+ = 15Vdc)</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_{IN}^- = +1Vdc, V_{IN}^+ = 0Vdc, V_+ = 15Vdc)</td>
<td>5</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_{IN}^- = 0V, V_{IN}^+ = +1Vdc, V_O = 200mV)</td>
<td>12</td>
<td>50</td>
</tr>
<tr>
<td>I_{SC}</td>
<td>Short circuit current(^5)</td>
<td></td>
<td>40</td>
<td>60</td>
</tr>
<tr>
<td>Differential input voltage</td>
<td></td>
<td>(V_+)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GBW</td>
<td>Unity gain bandwidth</td>
<td>(T_A = 25^\circ C)</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>S.R.</td>
<td>Slew rate</td>
<td>(T_A = 25^\circ C)</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>Noise Input Noise Voltage</td>
<td></td>
<td>(T_A = 25^\circ C, f = 1 \text{kHz})</td>
<td>40</td>
<td>40</td>
</tr>
</tbody>
</table>

NOTES

1. \(V_O = 1.4V, R_S = 0 \Omega \) with \(V_+ \) from 5V to 30V; and over the full Input common-mode range (0V to \(V_+ - 1.5V \)).
2. The direction of the input current is out of the IC due to the pnp input stage. This current is essentially constant, independent of the state of the output so no loading change exists on the input lines.
3. The Input common-mode voltage or either Input signal voltage should not be allowed to go negative by more than 0.3V. The upper end of the common-mode voltage range is \(V_+ - 1.5V \), but either or both inputs can go to +30V without damage.
4. Due to proximity of external components, insure that coupling is not originating via stray capacitance between these external parts. This typically can be detected as this type of capacitance coupling increases at higher frequencies.
5. Short circuits from the output to \(V_+ \) can cause excessive heating and eventual destruction. The maximum output current is approximately 40mA independent of the magnitude of \(V_+ \). At values of supply voltage in excess of +15Vdc, continuous short-circuits can exceed the power dissipation ratings and cause eventual destruction.
6. The Input common-mode voltage or either Input signal voltage should not be allowed to go negative by more than 0.3V. The upper end of the common-mode voltage range is \(V_+ - 1.5V \), but either or both inputs can go to +32Vdc without damage.
7. For operating at high temperatures, all devices must be derated based on a +125°C maximum junction temperature and a thermal resistance of 175°C/W which applies for the device soldered in a printed circuit board, operating in a still air ambient.
TYPICAL PERFORMANCE CHARACTERISTICS

SUPPLY CURRENT

- **Supply current** vs **supply voltage** for different temperatures: TA = 0°C to 125°C, TA = -55°C.

CURRENT LIMITING

- **Output current** vs **temperature**.

VOLTAGE GAIN

- **Output voltage gain** vs **supply voltage**.
- **Output voltage** vs **time** (µs).

OPEN LOOP FREQUENCY RESPONSE

- **Voltage gain** vs **frequency** for various voltages: V\^ = 30 VDC and -55°C ≤ TA ≤ +125°C, V\^ = 10 mV to V\^ and -55°C ≤ TA ≤ +125°C.

LARGE SIGNAL FREQUENCY RESPONSE

- **Output voltage** vs **frequency**.

VOLTAGE FOLLOWER PULSE RESPONSE

- **Output voltage** vs **time** (µs).

VOLTAGE FOLLOWER PULSE RESPONSE (SMALL SIGNAL)

- **Output voltage** vs **input voltage**.

OUTPUT CHARACTERISTICS

- **Current sourcing** or **current sinking** independent of V\^.

OUTPUT CHARACTERISTICS

- **Output voltage** vs **output source current**.
- **Output voltage** vs **output sink current**.
TYPICAL PERFORMANCE CHARACTERISTICS (Cont'd)

INPUT VOLTAGE RANGE

<table>
<thead>
<tr>
<th>V⁺ or V⁻ - POWER SUPPLY VOLTAGE (≤ VDC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
<tr>
<td>5</td>
</tr>
</tbody>
</table>

NEGATIVE

POSITIVE

INPUT CURRENT

<table>
<thead>
<tr>
<th>VCM = 0 VDC</th>
</tr>
</thead>
<tbody>
<tr>
<td>V⁺ = +30 VDC</td>
</tr>
<tr>
<td>V⁺ = +15 VDC</td>
</tr>
<tr>
<td>V⁺ = +5 VDC</td>
</tr>
</tbody>
</table>

TA - TEMPERATURE (°C)

125

TYPICAL APPLICATIONS

SINGLE SUPPLY INVERTING AMPLIFIER

INPUT BIASING *VOLTAGE FOLLOWER

NON-INVERTING AMPLIFIER

BLOCKS DC. GAIN

6-12
DESCRIPTION
The MC1458 is a high performance operational amplifier with high open loop gain, internal compensation, high common mode range and exceptional temperature stability. The MC1458 is short-circuit protected and allows for nulling of offset voltage.

The MC1458/SA1458/MC1558 consists of a pair of 741 operational amplifiers on a single chip.

FEATURES
- Internal frequency compensation
- Short circuit protection
- Excellent temperature stability
- High input voltage range
- No latch-up
- 1558/1458 are 2 "op amps" in space of one 741 package
- MC1558 MIL-STD-883A,B,C available

ABSOLUTE MAXIMUM RATINGS

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>RATING</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltage</td>
<td>±18 V</td>
<td></td>
</tr>
<tr>
<td>MC1458</td>
<td>±18 V</td>
<td></td>
</tr>
<tr>
<td>SA1458</td>
<td>±18 V</td>
<td></td>
</tr>
<tr>
<td>MC1558</td>
<td>±22 V</td>
<td></td>
</tr>
<tr>
<td>Internal power dissipation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N package</td>
<td>500 mW</td>
<td></td>
</tr>
<tr>
<td>H package</td>
<td>800 mW</td>
<td></td>
</tr>
<tr>
<td>F,FE package</td>
<td>1000 mW</td>
<td></td>
</tr>
<tr>
<td>Differential input voltage</td>
<td>±30 V</td>
<td></td>
</tr>
<tr>
<td>Input voltage</td>
<td>±15 V</td>
<td></td>
</tr>
<tr>
<td>Output short-circuit duration</td>
<td>Continuous</td>
<td></td>
</tr>
<tr>
<td>Operating temperature range</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MC1458</td>
<td>0 to +70 °C</td>
<td></td>
</tr>
<tr>
<td>SA1458</td>
<td>-40 to +65 °C</td>
<td></td>
</tr>
<tr>
<td>MC1558</td>
<td>-55 to +125 °C</td>
<td></td>
</tr>
<tr>
<td>Storage temperature range</td>
<td>-65 to +150 °C</td>
<td></td>
</tr>
<tr>
<td>Lead temperature (soldering 60sec)</td>
<td>300 °C</td>
<td></td>
</tr>
</tbody>
</table>

NOTES
1. Ratings based on thermal resistances, junction to ambient, of 240°C/W, 150°C/W, 110°C/W for N, H, F and FE packages respectively, and a maximum junction temperature of 150°C.
2. For supply voltages less than ±15V, the absolute maximum input voltage is equal to the supply voltage.

EQUIVALENT SCHEMATIC

AMPLIFIER "A" OF MC1458, SA1458, MC1558
DC ELECTRICAL CHARACTERISTICS

MC1458/SA1458

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MC1558</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>MIN</td>
<td>Typ</td>
</tr>
<tr>
<td>V_{OS} Offset voltage</td>
<td></td>
<td>1.0</td>
<td>5.0</td>
</tr>
<tr>
<td>ΔV_{OS} Offset voltage</td>
<td></td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>I_{OS} Offset current</td>
<td></td>
<td>20</td>
<td>100</td>
</tr>
<tr>
<td>ΔI_{OS} Offset current</td>
<td></td>
<td>0.10</td>
<td></td>
</tr>
<tr>
<td>I_{BIAS} Input bias current</td>
<td></td>
<td>80</td>
<td>500</td>
</tr>
<tr>
<td>ΔI_{B} Bias current</td>
<td></td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>V_{OUT} Output voltage swing</td>
<td></td>
<td>±10</td>
<td>±14</td>
</tr>
<tr>
<td>A_{VOL} Large signal voltage gain</td>
<td></td>
<td>20</td>
<td>100</td>
</tr>
<tr>
<td>Offset voltage adjustment range</td>
<td></td>
<td>±30</td>
<td></td>
</tr>
<tr>
<td>PSRR Supply voltage rejection ratio</td>
<td></td>
<td>30</td>
<td>150</td>
</tr>
<tr>
<td>CMRR Common mode rejection ratio</td>
<td></td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>I_{CC} Supply current</td>
<td></td>
<td>2.3</td>
<td>5.6</td>
</tr>
<tr>
<td>V_{IN} Input voltage range</td>
<td></td>
<td>12</td>
<td>13</td>
</tr>
<tr>
<td>P_{d} Power consumption</td>
<td></td>
<td>70</td>
<td>150</td>
</tr>
<tr>
<td>R_{IN} Input resistance</td>
<td></td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>I_{SC} Output short-circuit current</td>
<td></td>
<td>25</td>
<td></td>
</tr>
</tbody>
</table>

SA1458

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>Typ</th>
<th>MAX</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>2.0</td>
<td>6.0</td>
<td>12</td>
<td>mV</td>
</tr>
<tr>
<td>V_{OS} Offset voltage</td>
<td></td>
<td>2.0</td>
<td>7.5</td>
<td>12</td>
<td>mV</td>
</tr>
<tr>
<td>ΔV_{OS} Offset voltage</td>
<td></td>
<td>12</td>
<td></td>
<td></td>
<td>µV/°C</td>
</tr>
<tr>
<td>I_{OS} Offset current</td>
<td></td>
<td>20</td>
<td>200</td>
<td>400</td>
<td>nA</td>
</tr>
<tr>
<td>ΔI_{OS} Offset current</td>
<td></td>
<td>0.10</td>
<td></td>
<td></td>
<td>nA/°C</td>
</tr>
<tr>
<td>I_{BIAS} Input bias current</td>
<td></td>
<td>80</td>
<td>500</td>
<td>1000</td>
<td>nA</td>
</tr>
<tr>
<td>ΔI_{B} Bias current</td>
<td></td>
<td>1.0</td>
<td></td>
<td></td>
<td>nA/°C</td>
</tr>
<tr>
<td>V_{OUT} Output voltage swing</td>
<td></td>
<td>±10</td>
<td>±14</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>A_{VOL} Large signal voltage gain</td>
<td></td>
<td>20</td>
<td>100</td>
<td></td>
<td>V/mV</td>
</tr>
<tr>
<td>Offset voltage adjustment range</td>
<td></td>
<td>±30</td>
<td></td>
<td></td>
<td>mV</td>
</tr>
<tr>
<td>PSRR Supply voltage rejection ratio</td>
<td></td>
<td>30</td>
<td>150</td>
<td></td>
<td>µV/V</td>
</tr>
<tr>
<td>CMRR Common mode rejection ratio</td>
<td></td>
<td>70</td>
<td></td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>I_{CC} Supply current</td>
<td></td>
<td>2.3</td>
<td>5.6</td>
<td>15</td>
<td>mA</td>
</tr>
<tr>
<td>V_{IN} Input voltage range</td>
<td></td>
<td>12</td>
<td>13</td>
<td>12</td>
<td>V</td>
</tr>
<tr>
<td>P_{d} Power consumption</td>
<td></td>
<td>70</td>
<td>150</td>
<td></td>
<td>mW</td>
</tr>
<tr>
<td>R_{IN} Input resistance</td>
<td></td>
<td>10</td>
<td>20</td>
<td>60</td>
<td>µΩ</td>
</tr>
<tr>
<td>I_{SC} Output short-circuit current</td>
<td></td>
<td>25</td>
<td></td>
<td></td>
<td>mA</td>
</tr>
</tbody>
</table>
AC ELECTRICAL CHARACTERISTICS \(T_A = 25^\circ C, V_B = \pm 15V, \) unless otherwise specified.

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MC1458, SA1458, MC1558</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parallel input resistance</td>
<td>Open loop, (f = 20Hz)</td>
<td>0.3</td>
<td>MΩ</td>
</tr>
<tr>
<td>Common mode input impedance</td>
<td></td>
<td>200</td>
<td>MΩ</td>
</tr>
<tr>
<td>Equivalent input noise voltage</td>
<td>(A_V = 100, R_S = 10k\Omega, B_W = 1kHz, f = 1kHz)</td>
<td>30</td>
<td>nV / Hz</td>
</tr>
<tr>
<td>Power bandwidth</td>
<td>(A_V = 1, R_L = 2.0k\Omega, THD \leq 5%, V_{OUT} = 20Vp-p)</td>
<td>14</td>
<td>kHz</td>
</tr>
<tr>
<td>Phase margin</td>
<td></td>
<td>65</td>
<td>degrees</td>
</tr>
<tr>
<td>Gain margin</td>
<td></td>
<td>11</td>
<td>dB</td>
</tr>
<tr>
<td>Unity gain crossover frequency</td>
<td>Open loop</td>
<td>1.0</td>
<td>MHz</td>
</tr>
<tr>
<td>Transient response unity gain</td>
<td>(V_{IN} = 20mV, R_L = 2k\Omega, C_L \leq 100pF)</td>
<td>0.3</td>
<td>(\mu)S</td>
</tr>
<tr>
<td>Rise time</td>
<td></td>
<td>5.0</td>
<td>%</td>
</tr>
<tr>
<td>Overshoot</td>
<td></td>
<td>0.8</td>
<td>V/\mu s</td>
</tr>
<tr>
<td>Slew rate</td>
<td>(C \leq 100pF, R_L \geq 2k, V_{IN} = \pm 10V)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TYPICAL PERFORMANCE CHARACTERISTICS

OUTPUT VOLTAGE SWING

AS A FUNCTION OF SUPPLY VOLTAGE

INPUT COMMON MODE VOLTAGE RANGE AS A FUNCTION OF SUPPLY VOLTAGE

POWER CONSUMPTION AS A FUNCTION OF SUPPLY VOLTAGE

INPUT BIAS CURRENT AS A FUNCTION OF AMBIENT TEMPERATURE

INPUT RESISTANCE AS A FUNCTION OF AMBIENT TEMPERATURE

INPUT OFFSET CURRENT AS A FUNCTION OF SUPPLY VOLTAGE
TYPICAL PERFORMANCE CHARACTERISTICS (Cont'd)

INPUT OFFSET CURRENT AS A FUNCTION OF AMBIENT TEMPERATURE

OUTPUT SHORT-CIRCUIT CURRENT AS A FUNCTION OF AMBIENT TEMPERATURE

INPUT NOISE VOLTAGE AS A FUNCTION OF FREQUENCY

INPUT NOISE CURRENT AS A FUNCTION OF FREQUENCY

BROADBAND NOISE FOR VARIOUS BANDWIDTHS

OPEN LOOP VOLTAGE GAIN AS A FUNCTION OF FREQUENCY

OPEN LOOP PHASE RESPONSE AS A FUNCTION OF FREQUENCY

POWER CONSUMPTION AS A FUNCTION OF AMBIENT TEMPERATURE

OUTPUT VOLTAGE SWING AS A FUNCTION OF LOAD RESISTANCE

INPUT NOISE CURRENT AS A FUNCTION OF FREQUENCY

POWER CONSUMPTION - mW

OUTPUT VOLTAGE SWING - V

MEAN SQUARE VOLTAGE - V^2/Hz

MEAN SQUARE CURRENT - A^2/Hz

TOTAL NOISE REFERRED TO INPUT - nV/√Hz

VOLTAGE GAIN

PHASE DEGREES

LOAD RESISTANCE - kΩ

FREQUENCY - Hz

SOURCE RESISTANCE - Ω

FREQUENCY - Hz

FREQUENCY - Hz

TEMPERATURE - °C

TEMPERATURE - °C

TEMPERATURE - °C

Vs = ±15V

TA = 25°C

Vs = ±15V

TA = 25°C

Vs = ±15V

TA = 25°C

Vs = ±15V

TA = 25°C
TYPICAL PERFORMANCE CHARACTERISTICS (Cont'd)

- Output Voltage Swing as a function of Frequency
 - $V_{gs} = \pm 15V$
 - $T_A = 25^\circ C$
 - $R_L = 10k\Omega$

- Common Mode Rejection Ratio as a function of Frequency
 - $V_{gs} = \pm 15V$
 - $T_A = 25^\circ C$

- Transient Response
 - $V_{gs} = \pm 15V$
 - $T_A = 25^\circ C$
 - $R_L = 2k\Omega$
 - $C_L = 100pF$

- Power Bandwidth
 - Large Signal Swing vs Frequency

- Common Mode Rejection Ratio as a function of Frequency

- Transient Response
 - 10% Rise Time
 - Output $= mV$
 - Time $= s$
DESCRIPTION

The MC3403 is a quad operational amplifier with true differential inputs. The device has electrical characteristics similar to the popular µA741. However, the MC3403 has several distinct advantages over standard operational amplifier types in single supply applications. The MC3403 can operate at supply voltages as low as 3.0V or as high as 32V. The common mode input range includes the negative supply, thereby eliminating the necessity for external biasing components in many applications. The output voltage range also includes the negative power supply voltage.

FEATURES

- Short circuit protected outputs
- Class AB output stage for minimal crossover distortion
- True differential input stage
- Single supply operation: 3.0 to 32V
- Split supply operation: ±1.5 to ±16V
- Low input bias currents: 500nA max
- Four amplifiers per package
- Internally compensated

ABSOLUTE MAXIMUM RATINGS

<table>
<thead>
<tr>
<th>SYMBOL AND PARAMETER</th>
<th>RATING</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power supply voltages (3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vcc</td>
<td>36 Vdc</td>
<td></td>
</tr>
<tr>
<td>Vce</td>
<td>±18 Vdc</td>
<td></td>
</tr>
<tr>
<td>Vere</td>
<td>−18 Vdc</td>
<td></td>
</tr>
<tr>
<td>Vido</td>
<td>±36 Vdc</td>
<td></td>
</tr>
<tr>
<td>Vicr</td>
<td>±18 Vdc</td>
<td></td>
</tr>
<tr>
<td>Tstg</td>
<td>−65 to +150°C</td>
<td></td>
</tr>
<tr>
<td>Ta</td>
<td>−55 to +125°C</td>
<td></td>
</tr>
<tr>
<td>Tja</td>
<td>−55 to +125°C</td>
<td></td>
</tr>
<tr>
<td>Tja</td>
<td>0 to +70°C</td>
<td></td>
</tr>
<tr>
<td>Tja</td>
<td>−40 to +85°C</td>
<td></td>
</tr>
</tbody>
</table>

NOTES

1. Split power supplies.
2. For supply voltages less than ±15V, the absolute maximum input voltage is equal to the supply voltage.
3. Device not functional for single supply >32V or split supply > ±16V

CIRCUIT SCHEMATIC (1/4 Shown)
Quadrant Low Power Operational Amplifiers

MC3303/3403/3503

Electrical Characteristics

(V_{CC} = +15V, V_{EE} = -15V for MC3503, MC3403; V_{CC} = +14V, V_{EE} = GND for MC3303. T_A = 25°C unless otherwise noted)

<table>
<thead>
<tr>
<th>SYMBOL AND PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MC3503</th>
<th>MC3403</th>
<th>MC3303</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Min</td>
<td>Typ</td>
<td>Max</td>
<td>Min</td>
</tr>
<tr>
<td>V<sub>I0</sub></td>
<td>V<sub>I0</sub> offset voltage</td>
<td>T<sub>A</sub> = T<sub>HIGH</sub> to T<sub>LOW</sub></td>
<td>2.0</td>
<td>5.0</td>
<td>2.0</td>
</tr>
<tr>
<td>I<sub>O</sub></td>
<td>I<sub>O</sub> offset current</td>
<td>T<sub>A</sub> = T<sub>HIGH</sub> to T<sub>LOW</sub></td>
<td>10</td>
<td>50</td>
<td>200</td>
</tr>
<tr>
<td>A<sub>VOL</sub></td>
<td>Large signal open-loop voltage gain</td>
<td>V<sub>0</sub> = ±10V,</td>
<td>25</td>
<td>300</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>T<sub>A</sub> = T<sub>HIGH</sub> to T<sub>LOW</sub></td>
<td>R<sub>L</sub> = 2.0kΩ</td>
<td>50</td>
<td>200</td>
<td>20</td>
</tr>
<tr>
<td>I<sub>B</sub></td>
<td>Input bias current</td>
<td>T<sub>A</sub> = T<sub>HIGH</sub> to T<sub>LOW</sub></td>
<td>—</td>
<td>30</td>
<td>500</td>
</tr>
<tr>
<td>Z<sub>e</sub></td>
<td>Output impedance</td>
<td>f = 20Hz</td>
<td>75</td>
<td>75</td>
<td>75</td>
</tr>
<tr>
<td>Z<sub>i</sub></td>
<td>Input impedance</td>
<td>f = 20Hz</td>
<td>0.3</td>
<td>1.0</td>
<td>—</td>
</tr>
<tr>
<td>V<sub>OR</sub></td>
<td>Output voltage range</td>
<td>R<sub>L</sub> = 10kΩ</td>
<td>±12</td>
<td>±13.5</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>T<sub>A</sub> = T<sub>HIGH</sub> to T<sub>LOW</sub></td>
<td>R<sub>L</sub> = 2.0kΩ</td>
<td>±10</td>
<td>±13</td>
<td>—</td>
</tr>
<tr>
<td>V<sub>OR</sub></td>
<td>Common mode voltage range</td>
<td>R<sub>L</sub> = 10kΩ</td>
<td>+13V</td>
<td>+13.5V</td>
<td>—</td>
</tr>
<tr>
<td>CMRR</td>
<td>Common mode rejection ratio</td>
<td>R<sub>S</sub> = 10kΩ</td>
<td>70</td>
<td>90</td>
<td>—</td>
</tr>
<tr>
<td>I<sub>CC</sub> - I<sub>EE</sub></td>
<td>Power supply current (V<sub>0</sub> = 0)</td>
<td>R<sub>L</sub> = 10kΩ</td>
<td>2.5</td>
<td>4.0</td>
<td>—</td>
</tr>
<tr>
<td>Δ<sub>Iop</sub>/ΔT</td>
<td>Individual output short circuit current</td>
<td>T<sub>A</sub> = T<sub>HIGH</sub> to T<sub>LOW</sub></td>
<td>3.5</td>
<td>5</td>
<td>—</td>
</tr>
<tr>
<td>PSRR+</td>
<td>Positive power supply rejection ratio</td>
<td>—</td>
<td>30</td>
<td>150</td>
<td>—</td>
</tr>
<tr>
<td>PSRR-</td>
<td>Negative power supply rejection ratio</td>
<td>—</td>
<td>30</td>
<td>150</td>
<td>—</td>
</tr>
<tr>
<td>Δ<sub>Iop</sub>/ΔT</td>
<td>Average temperature coefficient of input offset current</td>
<td>T<sub>A</sub> = T<sub>HIGH</sub> to T<sub>LOW</sub></td>
<td>50</td>
<td>50</td>
<td>—</td>
</tr>
<tr>
<td>Δ<sub>Vio</sub>/ΔT</td>
<td>Average temperature coefficient of input offset voltage</td>
<td>T<sub>A</sub> = T<sub>HIGH</sub> to T<sub>LOW</sub></td>
<td>10</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>BW<sub>p</sub></td>
<td>Power bandwidth</td>
<td>A<sub>0</sub> = 1, R<sub>L</sub> = 2.0kΩ, V<sub>0</sub> = 20V(p-p), THD = 5%</td>
<td>9.0</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>BW</td>
<td>Small signal bandwidth</td>
<td>A<sub>0</sub> = 1, R<sub>L</sub> = 10kΩ, V<sub>0</sub> = 50mV</td>
<td>1.0</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>SR</td>
<td>Slew rate</td>
<td>A<sub>0</sub> = 1, V<sub>0</sub> = 10V to +10V</td>
<td>0.6</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>t<sub>THL</sub></td>
<td>Rise time</td>
<td>A<sub>0</sub> = 1, R<sub>L</sub> = 10kΩ, V<sub>0</sub> = 50mV</td>
<td>0.35</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>t<sub>THL</sub></td>
<td>Fall time</td>
<td>A<sub>0</sub> = 1, R<sub>L</sub> = 10kΩ, V<sub>0</sub> = 50mV</td>
<td>0.35</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>OS</td>
<td>Overshoot</td>
<td>A<sub>0</sub> = 1, R<sub>L</sub> = 10kΩ, V<sub>0</sub> = 50mV</td>
<td>20</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>φm</td>
<td>Phase margin</td>
<td>A<sub>0</sub> = 1, R<sub>L</sub> = 2.0kΩ, C<sub>L</sub> = 200pF</td>
<td>50</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>— Crossover distortion</td>
<td>V<sub>IN</sub> = 30mV(p-p), V<sub>OUT</sub> = 2.0V(p-p), f = 10kHz</td>
<td>1.0</td>
<td>—</td>
<td>—</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Notes:*

1. T_{HIGH} = 125°C for MC3503, 70°C for MC3303, T_{LOW} = -55°C for MC3503, 0°C for MC3403, -40°C for MC3303.
2. Not to exceed maximum package power dissipation.
ELECTRICAL CHARACTERISTICS

$(V_{CC} = 5.0\text{V}, V_E = \text{GND}, T_A = 25^\circ\text{C}$ unless otherwise noted.)

<table>
<thead>
<tr>
<th>SYMBOL AND PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MC3503</th>
<th>MC3403</th>
<th>MC3303</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{IO} Input offset voltage</td>
<td>-2.0</td>
<td>5.0</td>
<td>-2.0</td>
<td>10</td>
</tr>
<tr>
<td>I_{IO} Input offset current</td>
<td>30</td>
<td>50</td>
<td>30</td>
<td>50</td>
</tr>
<tr>
<td>I_{IB} Input bias current</td>
<td>-200</td>
<td>-500</td>
<td>-200</td>
<td>-500</td>
</tr>
<tr>
<td>A_{VOL} Large signal open-loop voltage gain</td>
<td>$R_L = 2.0\text{k}\Omega$</td>
<td>10</td>
<td>200</td>
<td>10</td>
</tr>
<tr>
<td>PSRR Power supply rejection ratio</td>
<td>-150</td>
<td>-150</td>
<td>-150</td>
<td>150</td>
</tr>
<tr>
<td>V_{OR} Output voltage range$^3)$</td>
<td>$R_L = 10\text{k}\Omega, V_{CC} = 5.0\text{V}$</td>
<td>3.3</td>
<td>3.5</td>
<td>3.3</td>
</tr>
<tr>
<td></td>
<td>$R_L = 10\text{k}\Omega, 5.0\text{V} \leq V_{CC} \leq 30\text{V}$</td>
<td>V_{CC}</td>
<td>V_{CC}</td>
<td>V_{CC}</td>
</tr>
<tr>
<td>I_{CC} Power supply current</td>
<td>-120</td>
<td>-120</td>
<td>-120</td>
<td>-120</td>
</tr>
</tbody>
</table>

NOTE

3. Output will swing to ground.

TYPICAL PERFORMANCE CURVES

INVERTER PULSE RESPONSE

SINE WAVE RESPONSE

OPEN LOOP FREQUENCY RESPONSE

POWER BANDWIDTH

OUTPUT SWING vs SUPPLY VOLTAGE
TYPICAL PERFORMANCE CURVES (Continued)

INPUT BIAS CURRENT vs TEMPERATURE

INPUT BIAS CURRENT vs SUPPLY VOLTAGE

For additional information, consult the Applications Section.
DESCRIPTION
The 4558 is a dual operational amplifier internally compensated. The use of planar epitaxial process for silicon chip construction gives the IC unique performance characteristics.

Excellent channel separation allows the use of a dual device in a single amp application, providing the highest packaging density. The SA/SE/NE4558 is a pin for pin replacement for the RC/RM/RV4558.

FEATURES
- 2MHz unity gain bandwidth guaranteed
- Supply voltage ± 22V for SE4558 and ± 18V for NE4558
- Short circuit protection
- No frequency compensation required
- No latch-up
- Large common mode and differential voltage ranges
- Low power consumption

ABSOLUTE MAXIMUM RATINGS

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>RATING</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltage</td>
<td>± 22</td>
<td>V</td>
</tr>
<tr>
<td>SE4558</td>
<td>± 18</td>
<td>V</td>
</tr>
<tr>
<td>Internal power dissipation (Note 1)</td>
<td>500</td>
<td>mW</td>
</tr>
<tr>
<td>Differential input voltage</td>
<td>± 30</td>
<td>V</td>
</tr>
<tr>
<td>Input voltage (Note 2)</td>
<td>± 15</td>
<td>V</td>
</tr>
<tr>
<td>Storage temperature range</td>
<td>− 65 to + 150</td>
<td>°C</td>
</tr>
<tr>
<td>Operating temperature range</td>
<td>− 55 to + 125</td>
<td>°C</td>
</tr>
<tr>
<td>SA4558</td>
<td>− 40 to + 85</td>
<td>°C</td>
</tr>
<tr>
<td>NE4558</td>
<td>0 to + 70</td>
<td>°C</td>
</tr>
<tr>
<td>Lead temperature (soldering, 60s)</td>
<td>300</td>
<td></td>
</tr>
<tr>
<td>Output short circuit duration (Note 3)</td>
<td>Indefinite</td>
<td></td>
</tr>
</tbody>
</table>

NOTES
1. Rating applies for case temperatures to + 125°C; derate linearly at 5.6 mw/°C for ambient temperatures above + 75°C for SE4558.
2. For supply voltages less than ± 15V, the absolute maximum input voltage is equal to the supply voltage.
3. Short circuit may be to ground on one amp only. Rating applies to + 125°C case temperature or + 75°C ambient temperature for SE4558 and to + 85°C ambient temperature for SA4558.

ORDER NUMBERS
- NE4558D
- NE4558E
- NE4558N
- SA4558E
- SA4558N
- SA4558N

EQUIVALENT SCHEMATIC
ELECTRICAL CHARACTERISTICS $V_{CC} = \pm 15V$, $T_A = 25^\circ C$ unless otherwise specified.

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>SE4558</th>
<th></th>
<th>SA/NE4558</th>
<th></th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Min</td>
<td>Typ</td>
<td>Max</td>
<td>Min</td>
<td>Typ</td>
</tr>
<tr>
<td>Input offset voltage</td>
<td>$R_S \leq 10k\Omega$</td>
<td>1.0</td>
<td>5.0</td>
<td>2.0</td>
<td>6.0</td>
<td>mV</td>
</tr>
<tr>
<td>$\Delta V_{os}/\Delta T$</td>
<td>Over temp.</td>
<td>4</td>
<td>4</td>
<td></td>
<td></td>
<td>$\mu V/\circ C$</td>
</tr>
<tr>
<td>Input offset current</td>
<td></td>
<td>50</td>
<td>200</td>
<td>30</td>
<td>200</td>
<td>nA</td>
</tr>
<tr>
<td>$\Delta I_{os}/\Delta T$</td>
<td>Over temp.</td>
<td>20</td>
<td>20</td>
<td></td>
<td></td>
<td>pA/°C</td>
</tr>
<tr>
<td>Input bias current</td>
<td></td>
<td>40</td>
<td>500</td>
<td>200</td>
<td>500</td>
<td>nA</td>
</tr>
<tr>
<td>$\Delta I_{b}/\Delta T$</td>
<td>Over temp.</td>
<td>40</td>
<td>40</td>
<td></td>
<td></td>
<td>pA/°C</td>
</tr>
<tr>
<td>Input resistance</td>
<td></td>
<td>0.3</td>
<td>1.0</td>
<td>0.3</td>
<td>1.0</td>
<td>MΩ</td>
</tr>
<tr>
<td>Large signal voltage gain</td>
<td>$R_L \geq 2k\Omega$</td>
<td>50,000</td>
<td>300,000</td>
<td>20,000</td>
<td>300,000</td>
<td>V/V</td>
</tr>
<tr>
<td>Output voltage swing</td>
<td>$R_L \geq 10k\Omega$</td>
<td>±12</td>
<td>±14</td>
<td>±12</td>
<td>±14</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>$R_L \geq 2k\Omega$</td>
<td>±10</td>
<td>±13</td>
<td>±10</td>
<td>±13</td>
<td></td>
</tr>
<tr>
<td>Input voltage range</td>
<td></td>
<td>±12</td>
<td>±13</td>
<td>±12</td>
<td>±13</td>
<td>V</td>
</tr>
<tr>
<td>Common mode rejection ratio</td>
<td>$R_S \leq 10k\Omega$</td>
<td>70</td>
<td>100</td>
<td>70</td>
<td>100</td>
<td>dB</td>
</tr>
<tr>
<td>Supply voltage rejection ratio</td>
<td>$R_S \leq 10k\Omega$</td>
<td>10</td>
<td>150</td>
<td>10</td>
<td>150</td>
<td>$\mu V/V$</td>
</tr>
<tr>
<td>Power consumption (all amplifiers)</td>
<td>$R_L = \ast$</td>
<td>100</td>
<td>170</td>
<td>100</td>
<td>170</td>
<td>mW</td>
</tr>
<tr>
<td>Transient response (unity gain)</td>
<td>$V_{IN} = 20mV$</td>
<td>100</td>
<td>15.0</td>
<td>100</td>
<td>15.0</td>
<td>ns</td>
</tr>
<tr>
<td>Risetime</td>
<td>$R_L = 2k\Omega$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overshoot</td>
<td>$C_L \leq 100pF$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slew rate (unity gain)</td>
<td>$R_L \geq 2k\Omega$</td>
<td>1.0</td>
<td></td>
<td>1.0</td>
<td></td>
<td>V/µs</td>
</tr>
<tr>
<td>Channel separation (gain = 100)</td>
<td>$f = 10kHz$</td>
<td>90</td>
<td></td>
<td>90</td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td></td>
<td>$R_S = 1k\Omega$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unity gain bandwidth (gain = 1)</td>
<td>$T_A = 25^\circ C$</td>
<td>2.5</td>
<td>3.0</td>
<td>2.0</td>
<td>3.0</td>
<td>MHz</td>
</tr>
<tr>
<td>θ_M phase margin</td>
<td></td>
<td>45</td>
<td></td>
<td>45</td>
<td></td>
<td>Degree</td>
</tr>
<tr>
<td>Input noise voltage</td>
<td>$f = 1kc$</td>
<td>25</td>
<td></td>
<td>25</td>
<td></td>
<td>nV/\sqrt{HZ}</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{SC} short circuit</td>
<td>$T_A = 25^\circ C$</td>
<td>5</td>
<td>25</td>
<td>5</td>
<td>25</td>
<td>50 mA</td>
</tr>
</tbody>
</table>

The following specifications apply for $-55^\circ C \leq T_A \leq +125^\circ C$ for SE4558; $0^\circ C \leq T_A \leq +70^\circ C$ for NE4558; $-40^\circ C \leq T_A \leq +85^\circ C$ for SA4558

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input offset voltage</td>
<td>$R_S \leq 10k\Omega$</td>
<td>6.0</td>
<td></td>
<td>7.5</td>
<td>mV</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input offset current</td>
<td></td>
<td>500</td>
<td></td>
<td>300/500*</td>
<td>nA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input bias current</td>
<td></td>
<td>1500</td>
<td></td>
<td>800/1500*</td>
<td>nA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Large signal voltage gain</td>
<td>$R_L \geq 2k\Omega$</td>
<td>0.0</td>
<td>25,000</td>
<td>15,000</td>
<td></td>
<td></td>
<td></td>
<td>V/V</td>
</tr>
<tr>
<td>Output voltage swing</td>
<td>$R_S = \pm 15V$</td>
<td>±10</td>
<td></td>
<td>±10</td>
<td></td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power consumption</td>
<td></td>
<td>90</td>
<td>150</td>
<td>90</td>
<td>150</td>
<td>mW</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SAA4558
TYPICAL PERFORMANCE CURVES

INPUT BIAS CURRENT AS A FUNCTION OF AMBIENT TEMPERATURE

INPUT OFFSET CURRENT AS A FUNCTION OF AMBIENT TEMPERATURE

COMMON MODE RANGE AS A FUNCTION OF SUPPLY VOLTAGE

OPEN LOOP VOLTAGE GAIN AS A FUNCTION OF FREQUENCY

OPEN LOOP GAIN AS A FUNCTION OF TEMPERATURE

POWER CONSUMPTION AS A FUNCTION OF AMBIENT TEMPERATURE

TYPICAL OUTPUT VOLTAGE AS A FUNCTION OF SUPPLY VOLTAGE

OUTPUT VOLTAGE SWING AS A FUNCTION OF LOAD RESISTANCE

OUTPUT VOLTAGE SWING AS A FUNCTION OF FREQUENCY
TYPICAL PERFORMANCE CURVES (Continued)

QUIESCENT CURRENT AS A FUNCTION OF SUPPLY VOLTAGE

<table>
<thead>
<tr>
<th>Supply Voltage (V)</th>
<th>Quiescent Current (mA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>18</td>
<td>18</td>
</tr>
</tbody>
</table>

TA = 25°C

TRANSIENT RESPONSE

<table>
<thead>
<tr>
<th>Time (µs)</th>
<th>Output (mV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.25</td>
<td>10% Rise Time</td>
</tr>
<tr>
<td>0.5</td>
<td>20% Rise Time</td>
</tr>
<tr>
<td>0.75</td>
<td>30% Rise Time</td>
</tr>
<tr>
<td>1</td>
<td>40% Rise Time</td>
</tr>
<tr>
<td>1.25</td>
<td>50% Rise Time</td>
</tr>
</tbody>
</table>

Vt = ±15V
TA = 25°C
RL = 2KΩ
C0 = 100pF

VOLTAGE FOLLOWER LARGE-SIGNAL PULSE RESPONSE

<table>
<thead>
<tr>
<th>Time (µs)</th>
<th>Output Voltage</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>2</td>
</tr>
<tr>
<td>20</td>
<td>4</td>
</tr>
<tr>
<td>30</td>
<td>8</td>
</tr>
<tr>
<td>40</td>
<td>10</td>
</tr>
</tbody>
</table>

Vt = ±15V
TA = 25°C

INPUT NOISE VOLTAGE AS A FUNCTION OF FREQUENCY

<table>
<thead>
<tr>
<th>Frequency (Hz)</th>
<th>Noise Voltage (mV/√Hz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1000</td>
</tr>
<tr>
<td>10</td>
<td>100</td>
</tr>
<tr>
<td>100</td>
<td>10</td>
</tr>
<tr>
<td>1K</td>
<td>1</td>
</tr>
<tr>
<td>10K</td>
<td>0.1</td>
</tr>
</tbody>
</table>

Vt = ±15V
TA = 25°C
RG = 500Ω
AV = 80dB

INPUT NOISE CURRENT AS A FUNCTION OF FREQUENCY

<table>
<thead>
<tr>
<th>Frequency (Hz)</th>
<th>Noise Current (pA/√Hz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1000</td>
</tr>
<tr>
<td>10</td>
<td>100</td>
</tr>
<tr>
<td>100</td>
<td>10</td>
</tr>
<tr>
<td>1K</td>
<td>1</td>
</tr>
<tr>
<td>10K</td>
<td>0.1</td>
</tr>
</tbody>
</table>

Vt = ±15V
TA = 25°C
RG = 100KΩ
AV = 60dB

CHANNEL SEPARATION

<table>
<thead>
<tr>
<th>Frequency (Hz)</th>
<th>Channel Separation (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>140</td>
</tr>
<tr>
<td>100</td>
<td>120</td>
</tr>
<tr>
<td>1K</td>
<td>100</td>
</tr>
<tr>
<td>10K</td>
<td>80</td>
</tr>
<tr>
<td>100K</td>
<td>60</td>
</tr>
</tbody>
</table>

Vt = ±15V
TA = 25°C

TOTAL HARMONIC DISTORTION vs OUTPUT VOLTAGE

<table>
<thead>
<tr>
<th>Output Voltage (VRMS)</th>
<th>Total Harmonic Distortion (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 vrms</td>
<td>5</td>
</tr>
<tr>
<td>2 vrms</td>
<td>4</td>
</tr>
<tr>
<td>3 vrms</td>
<td>3</td>
</tr>
<tr>
<td>4 vrms</td>
<td>2</td>
</tr>
<tr>
<td>5 vrms</td>
<td>1</td>
</tr>
<tr>
<td>6 vrms</td>
<td>0</td>
</tr>
</tbody>
</table>

Vo = 1vrms
Vt = ±15V
TA = 25°C
RL = 2KΩ
Av = 40dB
Rs = 1KΩ

DISTORTION vs FREQUENCY

<table>
<thead>
<tr>
<th>Vo = 1v rms</th>
<th>Total Harmonic Distortion (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 v rms</td>
<td>5</td>
</tr>
<tr>
<td>2 v rms</td>
<td>4</td>
</tr>
<tr>
<td>3 v rms</td>
<td>3</td>
</tr>
<tr>
<td>4 v rms</td>
<td>2</td>
</tr>
<tr>
<td>5 v rms</td>
<td>1</td>
</tr>
<tr>
<td>6 v rms</td>
<td>0</td>
</tr>
</tbody>
</table>

Vo = 1v rms
Vt = ±15V
RIAA COMPENSATION
DESCRIPTION
The SE530 is a new generation operational amplifier featuring a high slew rate combined with improved input characteristics. Internally compensated, the SE530 guarantees slew rates of 25V/µs with 2mV maximum offset voltage. Industry standard pinout and internal compensation allow the user to upgrade system performance by directly replacing general purpose amplifiers such as the 741 and LF356 types.

FEATURES
- Gain bandwidth product—3MHz
- 35V/µs slew rate (Gain = -1)
- Internal frequency compensation
- Low input offset voltage 2mV max
- Low input bias current-60nA max
- Short circuit protection
- Offset null capability
- Large common mode and differential voltage ranges

ABSOLUTE MAXIMUM RATINGS

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>RATING</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltage</td>
<td>±22 V</td>
<td></td>
</tr>
<tr>
<td>SE530</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NE530</td>
<td>±18 V</td>
<td></td>
</tr>
<tr>
<td>Internal power dissipation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N Package</td>
<td>500 mW</td>
<td></td>
</tr>
<tr>
<td>H Package</td>
<td>800 mW</td>
<td></td>
</tr>
<tr>
<td>FE Package</td>
<td>1000 mW</td>
<td></td>
</tr>
<tr>
<td>Differential input voltage</td>
<td>±30 V</td>
<td></td>
</tr>
<tr>
<td>Input voltage</td>
<td>±15 V</td>
<td></td>
</tr>
<tr>
<td>Operating temperature range</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SE530</td>
<td>-55 to +125 °C</td>
<td></td>
</tr>
<tr>
<td>NE530</td>
<td>0 to +70 °C</td>
<td></td>
</tr>
<tr>
<td>Storage temperature range</td>
<td></td>
<td></td>
</tr>
<tr>
<td>±65 to +150 °C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lead temperature range</td>
<td>300 °C</td>
<td></td>
</tr>
<tr>
<td>(Solder, 60sec)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output short circuit</td>
<td>Indefinite</td>
<td></td>
</tr>
</tbody>
</table>

EQUIVALENT SCHEMATIC EACH AMPLIFIER

PIN CONFIGURATIONS

FE, N PACKAGE

H PACKAGE

ORDER NUMBERS
NE530FE, NE530N
SE530FE, SE530N

ORDER NUMBERS
NE530H SE530H

*Metal cans (H) not recommended for new designs.
DC ELECTRICAL CHARACTERISTICS \(T_A = 25°C, V_{CC} = \pm 15V \) unless otherwise specified.

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>SE530</th>
<th>NE530</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{OS})</td>
<td>(R_S = 10k\Omega) Over temperature</td>
<td>0.7</td>
<td>4.0</td>
<td>5.0</td>
</tr>
<tr>
<td>(\Delta V_{OS})</td>
<td>Over temperature</td>
<td>3</td>
<td>15</td>
<td>6</td>
</tr>
<tr>
<td>(I_{OS})</td>
<td>Over temperature</td>
<td>5</td>
<td>20</td>
<td>40</td>
</tr>
<tr>
<td>(\Delta I_{OS})</td>
<td>Over temperature</td>
<td>25</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>(I_B)</td>
<td>Over temperature</td>
<td>45</td>
<td>80</td>
<td>200</td>
</tr>
<tr>
<td>(\Delta I_B)</td>
<td>Over temperature</td>
<td>50</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>(R_{IN})</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(V_{CM})</td>
<td></td>
<td>(\pm 12)</td>
<td>(\pm 13)</td>
<td>(\pm 12)</td>
</tr>
</tbody>
</table>
| \(A_{VOL} \) | \(R_L \geq 2k\Omega, V_O = \pm 10V
\) Over temperature | 50 | 200 | 50 | 200 | V/mV |
| \(V_{OUT} \) | \(R_L \geq 10k\Omega \) \n\(R_L \leq 2k\Omega \) | \(\pm 12 \) \n\(\pm 14 \) | \(\pm 10 \) \n\(\pm 13 \) | \(\pm 12 \) \n\(\pm 14 \) | \(\pm 10 \) \n\(\pm 13 \) | V | | |
| \(I_{SC} \) | \(R_S = 10k\Omega \) Over temperature | 10 | 25 | 50 | 10 | 25 | 50 | mA |
| \(R_{OUT} \) | | 100 | | 100 | | | |
| \(I_{CC} \) | Each amplifier \nOver temperature | 2.0 | 3.0 | 2.0 | 3.0 | mA |
| CMRR | \(R_S = 10k\Omega \) Over temperature | 70 | 90 | 70 | 90 | dB |
| PSRR | \(R_S = 10k\Omega \) Over temperature | 30 | 150 | 30 | 150 | \(\mu V/V \) |

AC ELECTRICAL CHARACTERISTICS \(T_A = 25°C, V_{CC} = \pm 15V \) unless otherwise specified.

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>SE530/5530</th>
<th>NE530/5530</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transient Response</td>
<td></td>
<td></td>
<td></td>
<td>(\mu s)</td>
</tr>
<tr>
<td>Small signal rise time</td>
<td></td>
<td>.06</td>
<td>.06</td>
<td>(\mu s)</td>
</tr>
<tr>
<td>Small signal overshoot</td>
<td></td>
<td>13</td>
<td>13</td>
<td>%</td>
</tr>
<tr>
<td>Settling time</td>
<td></td>
<td>0.9</td>
<td>0.9</td>
<td>(\mu s)</td>
</tr>
<tr>
<td>Slew rate</td>
<td>(\pm 15V) supply, (V_O = \pm 10V, R_L \geq 2k\Omega)</td>
<td>25</td>
<td>35</td>
<td>20</td>
</tr>
<tr>
<td>Unity gain inverting</td>
<td></td>
<td>18</td>
<td>25</td>
<td>12</td>
</tr>
<tr>
<td>Unity gain non-inverting</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power bandwidth</td>
<td>(5%) THD, (V_O = \pm 10V, R_L \geq 2k\Omega)</td>
<td>360</td>
<td>500</td>
<td>280</td>
</tr>
<tr>
<td>Small signal bandwidth</td>
<td></td>
<td>3</td>
<td>3</td>
<td>MHz</td>
</tr>
<tr>
<td>Input noise voltage</td>
<td></td>
<td>30</td>
<td>30</td>
<td>nV/(\sqrt{Hz})</td>
</tr>
</tbody>
</table>

NOTE
1. Operating temperature range for the SE530 is \(-55°C \) to \(+125°C\).
2. Operating temperature range for the NE530 is \(0°C \) to \(+70°C\).
HIGH SLEW RATE OPERATIONAL AMPLIFIER

TYPICAL PERFORMANCE CHARACTERISTICS

OUTPUT VOLTAGE SWING AS A FUNCTION OF SUPPLY VOLTAGE

INPUT COMMON MODE VOLTAGE RANGE AS A FUNCTION OF SUPPLY VOLTAGE

OUTPUT SHORT-CIRCUIT CURRENT AS A FUNCTION OF AMBIENT TEMPERATURE

INPUT NOISE VOLTAGE AS A FUNCTION OF FREQUENCY

INPUT NOISE CURRENT AS A FUNCTION OF FREQUENCY

POWER CONSUMPTION AS A FUNCTION OF SUPPLY VOLTAGE (EACH AMPLIFIER)

INPUT BIAS CURRENT AS A FUNCTION OF AMBIENT TEMPERATURE

POWER CONSUMPTION AS A FUNCTION OF AMBIENT TEMPERATURE (EACH AMPLIFIER)

OUTPUT VOLTAGE SWING AS A FUNCTION OF LOAD RESISTANCE

SUPPLY VOLTAGE (V)

-55°C ≤ TA ≤ +125°C

SUPPLY VOLTAGE (V)

-55°C ≤ TA ≤ +125°C

TEMPERATURE (°C)

TEMPERATURE (°C)

LOAD RESISTANCE (kΩ)

SUPPLY VOLTAGE (V)

-55°C ≤ TA ≤ +125°C

SUPPLY VOLTAGE (V)

-55°C ≤ TA ≤ +125°C

LOAD RESISTANCE (kΩ)
TYPICAL PERFORMANCE CHARACTERISTICS (Cont'd)

NE530 OPEN-LOOP GAIN AND PHASE vs FREQUENCY

- **GAIN**
- **PHASE**

FREQUENCY (Hz)

NE530 OPEN-LOOP GAIN AND PHASE vs FREQUENCY

GAIN-BANDWIDTH PRODUCT AND PHASE MARGIN vs LOAD CAPACITANCE

- **GAIN-BANDWIDTH PRODUCT**
- **PHASE MARGIN**

FREQUENCY (Hz)

POWER BANDWIDTH

- **VSE**
- **TA = 25°C**
- **RL**

SLEW RATE—VOLTAGE FOLLOWER

SLEW RATE (-1 AMPLIFIER)

OFFSET ADJUST CIRCUIT

1. **V+**
2. **3**
3. **5**
4. **6**
5. **-V**
6. **10K**

FREQUENCY (Hz)

INPUT VOLTAGE STEP vs SETTLING TIME TO 10mV

SLEW RATE—VOLTAGE FOLLOWER

SLEW RATE (-1 AMPLIFIER)

FREQUENCY (Hz)

FREQUENCY (Hz)

1.5 DIV

1.5 DIV

1.5 DIV

1.5 DIV

TYPICAL CIRCUIT CONNECTION

OFFSET ADJUST CIRCUIT
IEEE SLEW RATE OPERATIONAL AMPLIFIER

HIGH SLEW RATE OPERATIONAL AMPLIFIER

TEST LOAD CIRCUITS

SLEW RATE AND SETTLING TIME

HIGH SLEW RATE—VOLTAGE FOLLOWER

SLEW RATE—INVERTING AMPLIFIER

TESTING SLEW RATE AND SETTLING TIME

VOLTAGE WAVEFORMS

SMALL SIGNAL TRANSIENT RESPONSE DEFINITIONS

SLEW RATE—VOLTAGE FOLLOWER

SLEW RATE—INVERTING AMPLIFIER

Input not shown are not connected.
All resistor values are typical and in ohms.
DESCRIPTION
The 531 is a fast slewing high performance operational amplifier which retains dc performance equal to the best general purpose types while providing far superior large signal ac performance. A unique input stage design allows the amplifier to have a large signal response nearly identical to its small signal response. The amplifier is compensated for truly negligible overshoot with a single capacitor. In applications where fast settling and superior large signal bandwidths are required, the amplifier outperforms conventional designs which have much better small signal response. Also, because the small signal response is not extended, no special precautions need be taken with circuit board layout to achieve stability. The high gain, simple compensation and excellent stability of this amplifier allow its use in a wide variety of instrumentation applications.

FEATURES
- 35V/µsec slew rate at unity gain
- Pin for pin replacement for µA709, µA748 or LM101
- Compensated with a single capacitor
- Same low drift offset null circuitry as µA741
- Small signal bandwidth 1MHz
- Large signal bandwidth 500KHz
- True op amp dc characteristics make the 531 the ideal answer to all slew rate limited operational amplifier applications.

EQUIVALENT SCHEMATIC

PIN CONFIGURATIONS

N,FE PACKAGE
OFFSET NULL V
INVERTING INPUT +
NON-INVERTING INPUT -
OUTPUT V
OFFSET NULL V

TOP VIEW
ORDER NUMBERS
NE531N SE531N
NE531FE SE531FE

H PACKAGE*
OFFSET NULL V
INVERTING INPUT +
OUTPUT V
OFFSET NULL V

ORDER NUMBERS
NE531H SE531H

*Metal cans (H) not recommended for new designs
ABSOLUTE MAXIMUM RATINGS

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>RATING</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltage</td>
<td>±22</td>
<td>V</td>
</tr>
<tr>
<td>Internal power dissipation<sup>1</sup></td>
<td>300</td>
<td>mW</td>
</tr>
<tr>
<td>Differential input voltage</td>
<td>±15</td>
<td>V</td>
</tr>
<tr>
<td>Common mode input voltage<sup>2</sup></td>
<td>±15</td>
<td>V</td>
</tr>
<tr>
<td>Voltage between offset null and V<sup>-</sup></td>
<td>±0.5</td>
<td>V</td>
</tr>
<tr>
<td>Operating temperature range</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NE531</td>
<td>0 to +70</td>
<td>°C</td>
</tr>
<tr>
<td>SE531</td>
<td>-55 to +125</td>
<td>°C</td>
</tr>
<tr>
<td>Storage temperature range</td>
<td>-65 to +150</td>
<td>°C</td>
</tr>
<tr>
<td>Lead temperature (soldering, 60 sec)</td>
<td>300</td>
<td>°C</td>
</tr>
<tr>
<td>Output short circuit duration<sup>3</sup></td>
<td>indefinite</td>
<td></td>
</tr>
</tbody>
</table>

NOTES

1. Rating applies for case temperature to 125°C, derate linearly at 6.5mW/°C for ambient temperatures above +75°C.
2. For supply voltages less than ±15V, the absolute maximum input voltage is equal to the supply voltage.
3. Short circuit may be to ground or either supply. Rating applies to +125°C case temperature or to +75°C ambient temperature.

DC ELECTRICAL CHARACTERISTICS \(V_S = ±15V \) unless otherwise specified.

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>SE531<sup>1</sup></th>
<th>NE531</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{OS}) Offset voltage</td>
<td>(R_S ≤ 10k\Omega, T_A = 25°C) Over temp</td>
<td>2.0</td>
<td>2.0</td>
<td>mV</td>
</tr>
<tr>
<td>(\Delta V_{OS})</td>
<td>(R_S ≤ 10k\Omega, \over\text{over temp})</td>
<td>5.0</td>
<td>6.0</td>
<td>mV</td>
</tr>
<tr>
<td>(I_{OS}) Offset current</td>
<td>(T_A = 25°C) Over temp</td>
<td>30</td>
<td>50</td>
<td>nA</td>
</tr>
<tr>
<td>(\Delta I_{OS})</td>
<td>(T_A = 25°C) Over temp</td>
<td>200</td>
<td>200</td>
<td>nA</td>
</tr>
<tr>
<td>(I_{BIAS}) Input current</td>
<td>(T_A = 25°C) Over temp</td>
<td>300</td>
<td>400</td>
<td>nA</td>
</tr>
<tr>
<td>(\Delta I_B)</td>
<td>(T_A = 25°C) Over temp</td>
<td>500</td>
<td>400</td>
<td>nA</td>
</tr>
<tr>
<td>(V_{CM}) Common mode voltage range</td>
<td>(T_A = 25°C) Over temp</td>
<td>±10</td>
<td>±10</td>
<td>V</td>
</tr>
<tr>
<td>CMRR Common mode rejection ratio</td>
<td>(T_A = 25°C, R_S = 10k\Omega) Over temp</td>
<td>70</td>
<td>70</td>
<td>dB</td>
</tr>
<tr>
<td>(R_{IN}) Input resistance</td>
<td>(T_A = 25°C)</td>
<td>20</td>
<td>20</td>
<td>MΩ</td>
</tr>
<tr>
<td>(V_{OUT}) Output voltage swing</td>
<td>(R_L ≥ 10k\Omega, \over\text{over temp})</td>
<td>±10</td>
<td>±10</td>
<td>V</td>
</tr>
<tr>
<td>(I_{CC}) Supply current</td>
<td>(T_A = 25°C)</td>
<td>7.0</td>
<td>7.0</td>
<td>mA</td>
</tr>
<tr>
<td>(P_D) Power consumption</td>
<td>(T_A = 25°C)</td>
<td>210</td>
<td>210</td>
<td>mA</td>
</tr>
<tr>
<td>PSRR Power supply rejection ratio</td>
<td>(R_S = 10k\Omega, T_A = 25°C) Over temp</td>
<td>10</td>
<td>10</td>
<td>µV/V</td>
</tr>
<tr>
<td>(R_{OUT}) Output resistance</td>
<td>(T_A = 25°C)</td>
<td>75</td>
<td>75</td>
<td>Ω</td>
</tr>
<tr>
<td>(A_{VOL}) Large signal voltage gain</td>
<td>(T_A = 25°C, R_L = 10k\Omega, V_{OUT} = ±10V)</td>
<td>50</td>
<td>20</td>
<td>V/mV</td>
</tr>
<tr>
<td></td>
<td>(R_L = 10k\Omega, V_{OUT} = ±10V, \over\text{over temp})</td>
<td>100</td>
<td>15</td>
<td>V/mV</td>
</tr>
<tr>
<td>(V_{INN}) Input noise voltage</td>
<td>(25°C, f = 1kHz)</td>
<td>20</td>
<td>20</td>
<td>nV/√Hz</td>
</tr>
<tr>
<td>(I_{SC})</td>
<td>(25°C)</td>
<td>5</td>
<td>45</td>
<td>mA</td>
</tr>
</tbody>
</table>

NOTE

1. Temperature range:
 - SE531: -55°C ≤ \(T_A \) ≤ 125°C
 - NE531: 0°C ≤ \(T_A \) ≤ 70°C
LINEAR LSI PRODUCTS

HIGH SLEW RATE OPERATIONAL AMPLIFIER

AC ELECTRICAL CHARACTERISTICS \(T_A = 25^\circ C, \, V_S = \pm 15V \) unless otherwise specified.

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>NE531 Min</th>
<th>NE531 Typ</th>
<th>NE531 Max</th>
<th>SE531 Min</th>
<th>SE531 Typ</th>
<th>SE531 Max</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full power bandwidth</td>
<td></td>
<td>500</td>
<td>500</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>kHz</td>
</tr>
<tr>
<td>Settling time (1%)</td>
<td>(Av = +1, , V_{IN} = \pm 10V)</td>
<td>1.5</td>
<td>1.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(\mu s)</td>
</tr>
<tr>
<td>Settling time (0.1%)</td>
<td></td>
<td>2.5</td>
<td>2.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(\mu s)</td>
</tr>
<tr>
<td>Large signal overshoot</td>
<td>(Av = +1, , V_{IN} = \pm 10V)</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>%</td>
</tr>
<tr>
<td>Small signal overshoot</td>
<td>(Av = +1, , V_{IN} = 400mV)</td>
<td>5</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>%</td>
</tr>
<tr>
<td>Small signal risetime</td>
<td>(Av = +1, , V_{IN} = 400mV)</td>
<td>300</td>
<td>300</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>Slew rate</td>
<td>(Av = 100)</td>
<td>35</td>
<td>35</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>V/(\mu s)</td>
</tr>
<tr>
<td></td>
<td>(Av = 10)</td>
<td>35</td>
<td>35</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>V/(\mu s)</td>
</tr>
<tr>
<td></td>
<td>(Av = 1) (noninverting)</td>
<td>30</td>
<td>20</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td>V/(\mu s)</td>
</tr>
<tr>
<td></td>
<td>(Av = 1) (inverting)</td>
<td>35</td>
<td>25</td>
<td>35</td>
<td></td>
<td></td>
<td></td>
<td>V/(\mu s)</td>
</tr>
</tbody>
</table>

NOTE
1. All AC testing is performed in the transient response test circuit.

TEST LOAD CIRCUITS

OFFSET NULL CIRCUIT

TRANSIENT RESPONSE CIRCUIT

TYPICAL PERFORMANCE CHARACTERISTICS \((V_S = \pm 15V, \, T_A = +25^\circ C, \) unless otherwise specified.\)
TYPICAL PERFORMANCE CHARACTERISTICS (Cont'd)

- **Closed Loop Non-Inverting Voltage Gain as a Function of Frequency**
 - Av = 1000, R1 = 500kΩ, Cc = 20pF
 - Av = 100, R1 = 500kΩ, Cc = 20pF
 - Av = 10, R1 = 5.5kΩ, Cc = 10pF
 - Av = 1, R1 = 00, Cc = 100pF

- **Open Loop Phase Response and Voltage Gain as a Function of Frequency**
 - Cc = 100pF

- **Power Consumption as a Function of Supply Voltage**
 - Voltage - ±V

- **Power Consumption as a Function of Ambient Temperature**
 - Temperature - °C

- **Open Loop Voltage Gain as a Function of Supply Voltage**
 - Supply Volts - ±V

- **Output Voltage Swing as a Function of Supply Voltage**
 - Supply Voltage - ±V

- **Input Voltage Range as a Function of Supply Voltage**
 - Common Mode Range - V
 - Supply Voltage - ±V

- **Output Voltage Swing as a Function of Frequency**
 - Peak-to-Peak Output Swing - V
 - Frequency, Hz

- **Voltage Follower Large Signal Response**
 - Loop OUT
 - Supply - ±V
 - Time - nsec
TYPICAL PERFORMANCE CHARACTERISTICS (Cont'd)

VOLTAGE FOLLOWER
TRANSIENT RESPONSE

![Graph showing voltage follower transient response]

UNITY GAIN INVERTING AMPLIFIER LARGE SIGNAL RESPONSE

![Graph showing unity gain inverting amplifier large signal response]

TYPICAL APPLICATIONS

HIGH SPEED INVERTER (10MHz BANDWIDTH)

![Circuit diagram for high speed inverter]

PULSE RESPONSE HIGH SPEED INVERTER

![Graph showing pulse response]

FAST SETTLING VOLTAGE FOLLOWER

![Circuit diagram for fast settling voltage follower]

LARGE SIGNAL RESPONSE VOLTAGE FOLLOWER

![Graph showing large signal response]

0.5µs/DIV f = 500kHz
TYPICAL APPLICATIONS (Cont'd)

THREE POLE ACTIVE LOW PASS FILTER BUTTERWORTH MAXIMALLY FLAT RESPONSE*

RESPONSE OF 3-POLE ACTIVE BUTTERWORTH MAXIMALLY FLAT FILTER

![Diagram of a three pole active low pass filter]

*Reference—EDN Dec. 15, 1970
Simplify 3-Pole Active Filter Design
A. Paul Brokow

PRECISION RECTIFIERS

(a) HALF WAVE

![Diagram of a half wave precision rectifier]

(b) FULL WAVE

![Diagram of a full wave precision rectifier]

AC MILLIVOLTMETER

![Diagram of an AC millivoltmeter]

SAMPLE AND HOLD

![Diagram of a sample and hold circuit]

6-36
CYCLIC A TO D CONVERTER
One interesting, but, much ignored A/D converter is the cyclic converter. This consists of a chain of identical stages, each of which senses the polarity of the input. The stage then subtracts V_{ref} from the input and doubles the remainder if the polarity was correct. In Figure 1 the signal is full wave rectified and the remainder of $V_{\text{in}} - V_{\text{ref}}$ is doubled. A chain of these stages gives the gray code equivalent of the input voltage in digitized form related to the magnitude of V_{ref}. Possessing high potential accuracy, the circuit using NE531 devices settles in 5µs.

TRIANGLE AND SQUARE WAVE GENERATOR
The circuit in Figure 2 will generate precision triangle and square waves. The output amplitude of the square wave is set by V_{out} output swing of the op amp A-1 and $R1/R2$ sets the triangle amplitude. The frequency of oscillation in either case is

$$f = \frac{1}{4RC} \cdot \frac{R2}{R1}$$

The square wave will maintain 50% duty cycle even if the amplitude of the oscillation is not symmetrical. The use of the NE531 in this circuit will allow good square waves to be generated to quite high frequencies. Since the amplifier A1 runs open loop, there is no need for compensation. The triangle-generating amplifier must be compensated. The NE5535 device can be used as well, except for the lower frequency response.
DESCRIPTION
The SE/NE538 is a new generation operational amplifier featuring high slew rates combined with improved input characteristics. Internally compensated for gains of 5 or larger, the SE538 offers guaranteed minimum slew rates of 40V/µs or larger. Featuring 2mV max input offset voltage, the SE538 is a single amplifier. Industry standard pin out and internal compensation allow the user to upgrade system performance by directly replacing general purpose amplifiers, such as 741, 101A and 744.

FEATURES
- 2mV input offset voltage
- 80nA max input offset current
- Short circuit protected
- Offset null capability
- Large common mode and differential voltage ranges
- 60V/µs slew rate (gain of +5, -4 min)
- 6MHz gain bandwidth product (gain of +5, -4 minimum)
- Internal frequency compensation (gain of +5, -4 minimum)
- Pin out: 538 same as 741 (single)

ABSOLUTE MAXIMUM RATINGS1,2,3

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>RATING</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vcc (Supply voltage)</td>
<td>±22</td>
<td>V</td>
</tr>
<tr>
<td>SE military grade</td>
<td>±18</td>
<td>V</td>
</tr>
<tr>
<td>NE commercial grade</td>
<td>1000</td>
<td>mW</td>
</tr>
<tr>
<td>PD (Internal power dissipation)</td>
<td>500</td>
<td>mW</td>
</tr>
<tr>
<td>FE package</td>
<td>800</td>
<td>mW</td>
</tr>
<tr>
<td>PD (H package Internal power dissipation1)</td>
<td>-55 to +125</td>
<td>°C</td>
</tr>
<tr>
<td>Input voltage</td>
<td>±30</td>
<td>V</td>
</tr>
<tr>
<td>Differential input voltage</td>
<td>±15</td>
<td>V</td>
</tr>
<tr>
<td>Operating temperature range</td>
<td>-55 to +150</td>
<td>°C</td>
</tr>
<tr>
<td>SE military grade</td>
<td>0 to 70</td>
<td>°C</td>
</tr>
<tr>
<td>NE commercial grade</td>
<td>indefinite</td>
<td></td>
</tr>
<tr>
<td>Output short circuit3</td>
<td>-65 to +150</td>
<td>°C</td>
</tr>
<tr>
<td>Storage temperature range</td>
<td>300</td>
<td>°C</td>
</tr>
</tbody>
</table>

NOTES
1. Rating applies for thermal resistances of 240°C/W and 150°C/W junction to ambient for N and H packages. Maximum chip temperature is 150°C.
2. For supply voltages less than ±15V, the absolute maximum input voltage is equal to the supply voltage.
3. Short circuit may be to ground or either supply. Rating applies to 125°C case temperature or 75°C ambient temperature.
HIGH SLEW RATE OP AMP

EQUIVALENT SCHEMATIC (EACH AMPLIFIER)

DC ELECTRICAL CHARACTERISTICS \(T_A = 25^\circ C, V_S = \pm 15V \) unless otherwise specified.

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>SE538</th>
<th>NE538</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min</td>
<td>Typ</td>
<td>Max</td>
<td>Min</td>
<td>Typ</td>
</tr>
<tr>
<td>(V_{OS})</td>
<td>Input offset voltage</td>
<td>(R_S \leq 10k\Omega)</td>
<td>(R_S \leq 10k\Omega), over temp.</td>
<td>0.7</td>
</tr>
<tr>
<td>(\Delta V_{OS})</td>
<td>Input offset voltage drift</td>
<td>(R_S = 0\Omega), over temp.</td>
<td>4.0</td>
<td>5.0</td>
</tr>
<tr>
<td>(I_{OS})</td>
<td>Input offset current</td>
<td>Over temp.</td>
<td>5</td>
<td>20</td>
</tr>
<tr>
<td>(\Delta I_{OS})</td>
<td>Input offset current</td>
<td></td>
<td>25</td>
<td>40</td>
</tr>
<tr>
<td>(I_B)</td>
<td>Input current</td>
<td>Over temp.</td>
<td>45</td>
<td>80</td>
</tr>
<tr>
<td>(\Delta I_B)</td>
<td>Input current</td>
<td></td>
<td>50</td>
<td>200</td>
</tr>
<tr>
<td>(V_{CM})</td>
<td>Input common mode voltage range</td>
<td>(\pm 12)</td>
<td>(\pm 13)</td>
<td>(\pm 12)</td>
</tr>
<tr>
<td>CMRR</td>
<td>Common mode rejection ratio</td>
<td>(R_S \leq 10k\Omega), over temp.</td>
<td>70</td>
<td>90</td>
</tr>
<tr>
<td>PSRR</td>
<td>Power supply rejection</td>
<td>(R_S \leq 10k\Omega), over temp.</td>
<td>30</td>
<td>150</td>
</tr>
<tr>
<td>(R_{IN})</td>
<td>Input resistance</td>
<td>3</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>(A_{VOL})</td>
<td>Large signal voltage gain</td>
<td>(R_L \geq 2k\Omega), (V_{OUT} = \pm 10V) Over temp.</td>
<td>50</td>
<td>200</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(R_L \geq 2k\Omega), (V_{OUT} = \pm 10V) Over temp.</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>(V_{OUT})</td>
<td>Output voltage</td>
<td>Over temp., (R_L \geq 2k\Omega)</td>
<td>(\pm 10)</td>
<td>(\pm 13)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Over temp., (R_L \geq 10k\Omega)</td>
<td>(\pm 12)</td>
<td>(\pm 14)</td>
</tr>
<tr>
<td>(I_{CC})</td>
<td>Supply current</td>
<td>Per amplifier</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Over temp., per amplifier</td>
<td>2.2</td>
<td>3.6</td>
</tr>
<tr>
<td>(P_D)</td>
<td>Power dissipation</td>
<td>Per amplifier</td>
<td>60</td>
<td>90</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Over temp., per amplifier</td>
<td>66</td>
<td>108</td>
</tr>
<tr>
<td>(I_{SC})</td>
<td>Output short circuit current</td>
<td>10</td>
<td>25</td>
<td>10</td>
</tr>
<tr>
<td>(R_{OUT})</td>
<td>Output resistance</td>
<td>100</td>
<td>100</td>
<td>(\Omega)</td>
</tr>
</tbody>
</table>

NOTE
Temperature Range
SE Types \(-55^\circ C \leq T_A \leq 125^\circ C\)
NE Types \(0^\circ C \leq T_A \leq 70^\circ C\)
HIGH SLEW RATE OP AMP

AC ELECTRICAL CHARACTERISTICS \(T_A = 25°C \) unless otherwise specified.

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>SE538/SE5538</th>
<th>SE538/NE5538</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gain bandwidth product (Gain +5, -4 minimum)</td>
<td></td>
<td>Min</td>
<td>Typ</td>
<td>Max</td>
</tr>
<tr>
<td>Transient response</td>
<td></td>
<td>6</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Small signal rise time</td>
<td></td>
<td>6</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Small signal overshoot</td>
<td></td>
<td>0.25</td>
<td>0.25</td>
<td>6</td>
</tr>
<tr>
<td>Settling time</td>
<td>To 0.1%</td>
<td></td>
<td></td>
<td>1.2</td>
</tr>
<tr>
<td>Slew rate</td>
<td>Minimum gain = 5</td>
<td></td>
<td></td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>Noninverting (R_L \geq 2k\Omega)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input noise voltage</td>
<td>(f = 1\text{kHz}, T_A = 25°C)</td>
<td></td>
<td>30</td>
<td></td>
</tr>
</tbody>
</table>

TYPICAL PERFORMANCE CHARACTERISTICS

OUTPUT VOLTAGE SWING AS A FUNCTION OF FREQUENCY

OPEN LOOP VOLTAGE GAIN AS A FUNCTION OF FREQUENCY

OUTPUT VOLTAGE SWING AS A FUNCTION OF SUPPLY VOLTAGE

OUTPUT VOLTAGE SWING AS A FUNCTION OF LOAD RESISTANCE

OUTPUT SHORT-CIRCUIT CURRENT AS A FUNCTION OF AMBIENT TEMPERATURE

INPUT NOISE VOLTAGE AS A FUNCTION OF FREQUENCY
TYPICAL PERFORMANCE CHARACTERISTICS (Cont'd)

Input Noise Current as a Function of Frequency

Broadband Noise for Various Bandwidths

Input Common Mode Voltage Range as a Function of Supply Voltage

Power Consumption as a Function of Supply Voltage

Power Consumption as a Function of Ambient Temperature

Input Bias Current as a Function of Ambient Temperature

Common Mode Rejection Ratio as a Function of Frequency

Settling Time Measurement Waveforms

Slew Rate Measurement

\[V_{OC} = \pm 15V \]

\[T_A = 25^\circ C \]
TYPICAL PERFORMANCE CHARACTERISTICS (Cont’d)

SMALL-SIGNAL TRANSIENT RESPONSE DEFINITIONS

<table>
<thead>
<tr>
<th>Key</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>10mV</td>
<td>INPUT</td>
</tr>
<tr>
<td>50%</td>
<td>GND</td>
</tr>
<tr>
<td>OUTPUT 50%</td>
<td>OVERRUN</td>
</tr>
<tr>
<td>10%</td>
<td>RISE TIME</td>
</tr>
<tr>
<td>90%</td>
<td>OVERRUN</td>
</tr>
<tr>
<td>50%</td>
<td>FALL TIME</td>
</tr>
<tr>
<td>10%</td>
<td></td>
</tr>
</tbody>
</table>

TEST LOAD CIRCUITS

SLEW RATE AND SMALL SIGNAL TRANSIENT RESPONSE TEST CIRCUIT

![Circuit Diagram]

NOTE
- Pins not shown are not connected.
- All resistors values are typical and in ohms.

TEST LOAD CIRCUITS (Cont’d)

SETTLING TIME TEST CIRCUIT

![Circuit Diagram]

*Match to within 0.01%.

NOTE
- Pins not shown are not connected.
- All resistors values are typical and in ohms.
INTRODUCTION
The Signetics NE538 is an undercompensated op amp. The NE538 has a typical slew rate of 50V/μs and a gain bandwidth product of 6MHz.

The internal frequency compensation is designed for a minimum inverting gain of 4 and a minimum non-inverting gain of 5. Below these gains the NE538 will be unstable and will need external compensation (see Figure 1 and 2).

The higher slew rate of the NE538 has made this device quite appealing for high speed designs and the fact that it has a standard pinout will allow it to be used to upgrade existing systems that now use the µA741 or µ748.

Equations:
\[f_{\text{LAG}} = \frac{1}{10} \frac{6\text{MHz}}{2\pi R_L C_L} \]
\[f_{\text{LEAD}} = 6\text{MHz} = \frac{1}{2\pi R_F C_F} \]
DESCRIPTION
The 5512 series of high performance operational amplifier provides very good input characteristics. These amplifiers feature low input bias and voltage characteristics such as a 108 op amp with improved CMRR and a high differential input voltage limit achieved through the use of bias cancellation and PNP input circuits with collector to emitter clamping. The output characteristics are like those of a 741 op amp with improved slew rate and drive capability yet have low supply quiescent current.

APPLICATIONS
- AC amplifiers
- RC active filters
- Transducer amplifiers
- DC gain block
- Battery operation
- Instrumentation amplifiers

FEATURES
- Low input bias < ± 20nA
- Low input offset current < ± 20nA
- Low input offset voltage < 1mV
- Low Vos temperature drift 5µV/°C
- Low input voltage noise 30nV/√Hz
- Low supply current 1.5mA/amp
- High slew rate 1.0V/µs
- High CMRR 100dB
- High input Impedance 100MΩ
- High PSRR 110dB
- High differential input voltage limit
- No cross-over distortion
- Indefinite output short circuit protection
- Internally compensated for unity gain
- 600Ω drive capability

ABSOLUTE MAXIMUM RATINGS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Rating</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>VCC</td>
<td>Supply Voltage</td>
<td>± 16 V</td>
</tr>
<tr>
<td>PD</td>
<td>Power dissipation</td>
<td>500 mW</td>
</tr>
<tr>
<td>TA</td>
<td>Operating temperature range</td>
<td>0 to 70 °C</td>
</tr>
<tr>
<td>TSTG</td>
<td>Storage temperature range</td>
<td>-55 to +125 °C</td>
</tr>
<tr>
<td>TSOLD</td>
<td>Lead temperature soldering</td>
<td>-85 to +150 °C</td>
</tr>
</tbody>
</table>

PIN CONFIGURATIONS

EQUIVALENT SCHEMATIC
ELECTRICAL PERFORMANCE CHARACTERISTICS

V\text{CC} = \pm 15V, F.R. = -55°C to +125°C (SE), 0°C to +70°C (NE)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>SE5512</th>
<th>NE5512</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{\text{OS}}) Input offset voltage</td>
<td>(R_s = 1000\Omega) (T_A = +25°C)</td>
<td>0.7</td>
<td>1</td>
<td>mV</td>
</tr>
<tr>
<td>(\Delta V_{\text{OS}})</td>
<td></td>
<td>2</td>
<td>3</td>
<td>(\mu \text{V}/\text{°C})</td>
</tr>
<tr>
<td>(I_{\text{OS}}) Input offset current</td>
<td>(R_s = 100\Omega) (T_A = +25°C)</td>
<td>3</td>
<td>4</td>
<td>(\text{nA})</td>
</tr>
<tr>
<td>(\Delta I_{\text{OS}})</td>
<td></td>
<td>10</td>
<td>20</td>
<td>(\text{pA}/\text{°C})</td>
</tr>
<tr>
<td>(I_{\text{B}}) Input bias current</td>
<td>(R_s = 100\Omega) (T_A = +25°C)</td>
<td>3</td>
<td>4</td>
<td>(\text{pA}/\text{°C})</td>
</tr>
<tr>
<td>(\Delta I_{\text{B}})</td>
<td></td>
<td>10</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>(R_{\text{IN}}) Input resistance</td>
<td>(T_A = 25°C)</td>
<td>±13</td>
<td>±13</td>
<td>(\Omega)</td>
</tr>
<tr>
<td>(V_{\text{CM}}) Input common mode range</td>
<td>(T_A = 25°C)</td>
<td>±13.5</td>
<td>±13.7</td>
<td>V</td>
</tr>
<tr>
<td>(\text{CMRR}) Input common-mode rejection ratio</td>
<td>(V_{\text{CC}} = \pm 15V) (V_{\text{IN}} = \pm 13.5V (\text{RM})) (T_A = +25°C) (T_A = 25°C)</td>
<td>70</td>
<td>100</td>
<td>dB</td>
</tr>
<tr>
<td>(A_{\text{VOL}}) Large-signal voltage gain</td>
<td>(R_{L} = 2k\Omega) (T_A = +25°C)</td>
<td>50</td>
<td>25</td>
<td>V/mV</td>
</tr>
<tr>
<td>(S.R) Slew rate</td>
<td>(T_A = 25°C)</td>
<td>0.6</td>
<td>1</td>
<td>V/\text{µs}</td>
</tr>
<tr>
<td>(\text{GBW}) Small-signal unity gain bandwidth</td>
<td>(T_A = 25°C)</td>
<td>3</td>
<td>3</td>
<td>MHz</td>
</tr>
<tr>
<td>(\delta_M) Phase margin</td>
<td>(T_A = 25°C)</td>
<td>45</td>
<td>45</td>
<td>Degree</td>
</tr>
<tr>
<td>(V_{\text{OUT}}) Output voltage swing</td>
<td>(R_{L} = 2k\Omega) (T_A = 25°C)</td>
<td>±13</td>
<td>±13.5</td>
<td>V</td>
</tr>
<tr>
<td>(I_{\text{CC}}) Power supply current</td>
<td>(R_{L} = \text{Open}) (T_A = 25°C)</td>
<td>3.4</td>
<td>5</td>
<td>mA</td>
</tr>
<tr>
<td>(P_{\text{SRR}}) Power supply rejection ratio</td>
<td>(T_A = 25°C)</td>
<td>80</td>
<td>110</td>
<td>dB</td>
</tr>
<tr>
<td>(H) Amplifier to amplifier coupling</td>
<td></td>
<td>−120</td>
<td>−120</td>
<td>dB</td>
</tr>
<tr>
<td>(V_{\text{IN}}) Input noise voltage</td>
<td>(f = 1kHz)</td>
<td>30</td>
<td>30</td>
<td>nV/√Hz</td>
</tr>
<tr>
<td>(I_{\text{IN}}) Input noise current</td>
<td>(f = 1kHz)</td>
<td>.2</td>
<td>.2</td>
<td>pA/√Hz</td>
</tr>
<tr>
<td>(I_{\text{SC}}) Short circuit</td>
<td>(T_A = +25°C)</td>
<td>40</td>
<td>40</td>
<td>mA</td>
</tr>
</tbody>
</table>

NOTE

For operation at elevated temperature, N package must be derated based on a thermal resistance of 120°C/W junction to ambient. Thermal resistance of the FE package is 125°C/W.

For additional information, consult the Applications Section.
DESCRIPTION
The SE/NE5514 family of Quad Operational Amplifiers sets new standards in Bipolar Quad Amplifier Performance. The amplifiers feature low input bias current and low offset voltages. Pin-out is identical to LM324/LM348 which facilitates direct product substitution for improved system performance. Output characteristics are similar to a µA741 with improved slew and drive capability.

FEATURES
- Low input bias current: < ±3nA
- Low input offset current: < ±3nA
- Low input offset voltage: < 1mV
- 1 V/µsec slew rate
- High input impedance: 100MΩ
- High common mode impedance: 10GΩ
- Internal compensation for unity gain
- 600Ω drive capability (7 Vrms)

APPLICATIONS
- AC amplifiers
- RC active filters
- Transducer amplifiers
- DC gain block
- Instrumentation amplifier

ABSOLUTE MAXIMUM RATINGS

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>RATING</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>VCC Supply voltage</td>
<td>±16</td>
<td>V</td>
</tr>
<tr>
<td>VDIFF Differential input voltage</td>
<td>32</td>
<td>V</td>
</tr>
<tr>
<td>VIN Input voltage</td>
<td>0 to 32</td>
<td>V</td>
</tr>
<tr>
<td>TS Storage short to ground</td>
<td>Continuous</td>
<td></td>
</tr>
<tr>
<td>TSOLD Lead soldering temperature range</td>
<td>-65 to +150°C</td>
<td></td>
</tr>
<tr>
<td>TA Operating temperature range</td>
<td>NE5514: 0 to 70°C SE5514: -55 to +125°C</td>
<td></td>
</tr>
</tbody>
</table>

PIN CONFIGURATION

EQUIVALENT SCHEMATIC

NOTES:
1. SOL - Released in large SO package only.
2. SOL and non-standard pinout.
3. SO and non-standard pinouts.
Electrical Characteristics

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Test Conditions</th>
<th>SE5514</th>
<th>NE5514</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{os} Input offset voltage</td>
<td>R_{s} = 1000Ω, T_{A} = +25°C, T_{A} = F.R.</td>
<td>0.7</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Over temp.</td>
<td>1</td>
<td>3</td>
<td>1.5</td>
</tr>
<tr>
<td>ΔV_{os}</td>
<td></td>
<td>4</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>I_{os} Input offset current</td>
<td>R_{s} = 100kΩ, T_{A} = +25°C, T_{A} = F.R.</td>
<td>3</td>
<td>10</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Over temp.</td>
<td>4</td>
<td>20</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Over temp.</td>
<td>30</td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>ΔI_{os}</td>
<td></td>
<td></td>
<td></td>
<td>30</td>
</tr>
<tr>
<td>I_{b} Input bias current</td>
<td>R_{s} = 100kΩ, T_{A} = +25°C, T_{A} = F.R.</td>
<td>3</td>
<td>10</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Over temp.</td>
<td>4</td>
<td>20</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Over temp.</td>
<td>30</td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>ΔI_{b}</td>
<td></td>
<td></td>
<td></td>
<td>30</td>
</tr>
<tr>
<td>R_{in} Input resistance differential</td>
<td>T_{A} = 25°C</td>
<td>100</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>V_{cm} Input common mode range</td>
<td>T_{A} = 25°C, T_{A} = F.R.</td>
<td>±13.5</td>
<td>±13.7</td>
<td>±13.5</td>
</tr>
<tr>
<td></td>
<td>Over temp.</td>
<td>±13.2</td>
<td>±13</td>
<td>±13.2</td>
</tr>
<tr>
<td>CMRR Input common-mode rejection ratio</td>
<td>V_{cc} = ±15V, V_{in} = ±13.5V (RM), T_{A} = 25°C, V_{in} = ±13V (F.R.), T_{A} = F.R.</td>
<td>70</td>
<td>100</td>
<td>70</td>
</tr>
<tr>
<td>AVOL Large-signal voltage gain</td>
<td>R_{L} = 2kΩ, T_{A} = 25°C, V_{cc} = ±10V, T_{A} = F.R.</td>
<td>50</td>
<td>200</td>
<td>50</td>
</tr>
<tr>
<td>S.R. Slew rate</td>
<td>T_{A} = 25°C</td>
<td>0.6</td>
<td>1</td>
<td>0.6</td>
</tr>
<tr>
<td>GBW Small-signal unity gain bandwidth</td>
<td>T_{A} = 25°C</td>
<td>3</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>δ_{M} Phase margin</td>
<td>T_{A} = 25°C</td>
<td>45</td>
<td></td>
<td>45</td>
</tr>
<tr>
<td>V_{OUT} Output voltage swing</td>
<td>R_{L} = 2kΩ, T_{A} = 25°C, T_{A} = F.R.</td>
<td>±13</td>
<td>±13.5</td>
<td>±13</td>
</tr>
<tr>
<td></td>
<td>Over temp.</td>
<td>±12.5</td>
<td>±13</td>
<td>±13,</td>
</tr>
<tr>
<td>V_{OL} Output voltage swing</td>
<td>R_{L} = 600Ω, T_{A} = 25°C, T_{A} = F.R.</td>
<td>±10</td>
<td>±11.5</td>
<td>±10</td>
</tr>
<tr>
<td></td>
<td>Over temp.</td>
<td>±7.5</td>
<td>±9</td>
<td>±8</td>
</tr>
<tr>
<td>I_{cc} Power supply current</td>
<td>R_{L} = Open, T_{A} = 25°C, T_{A} = F.R.</td>
<td>6</td>
<td>10</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Over temp.</td>
<td>7</td>
<td>12</td>
<td>7</td>
</tr>
<tr>
<td>PSRR Power supply rejection ratio</td>
<td>T_{A} = 25°C, T_{A} = F.R.</td>
<td>80</td>
<td>110</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>Over temp.</td>
<td>80</td>
<td>100</td>
<td>80</td>
</tr>
<tr>
<td>AA Amplifier to amplifier coupling</td>
<td>f = 1kHz to 20kHz, T_{A} = 25°C</td>
<td>–120</td>
<td>–120</td>
<td>–120</td>
</tr>
<tr>
<td>HD Total harmonic distortion</td>
<td>f = 10kHz, T_{A} = 25°C, V_{o} = 7VRMS</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>V_{inn} Input-noise voltage</td>
<td>f = 1kHz, T_{A} = 25°C</td>
<td>30</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>I_{sc} Short Circuit</td>
<td>T_{A} = 25°C</td>
<td>10</td>
<td>40</td>
<td>60</td>
</tr>
</tbody>
</table>

NOTE

*For operation at elevated temperature, N package must be derated based on a thermal resistance of 95°C/W junction to ambient.

*For additional information, consult the Applications Section.
LINEAR LSI PRODUCTS

INTERNALLY COMPENSATED DUAL LOW NOISE OP AMP SE/NE5532/5532A

DESCRIPTION

The 5532 is a dual high-performance low noise operational amplifier. Compared to most of the standard operational amplifiers, such as the 1458, it shows better noise performance, improved output drive capability and considerably higher small-signal and power bandwidths.

This makes the device especially suitable for application in high quality and professional audio equipment, instrumentation and control circuits, and telephone channel amplifiers. The op amp is internally compensated for gains equal to one. If very low noise is of prime importance, it is recommended that the 5532A version be used which has guaranteed noise voltage specifications.

FEATURES

- Small-signal bandwidth: 10MHz
- Output drive capability: 600Ω, 10V (rms)
- Input noise voltage: 5nV/√Hz (typical)
- DC voltage gain: 50000
- AC voltage gain: 2200 at 10kHz
- Power bandwidth: 140kHz
- Slew-rate: 9V/μs
- Large supply voltage range: ±3 to ±20V
- Compensated for unity gain

ABSOLUTE MAXIMUM RATINGS

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>RATING</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>VSS</td>
<td>Supply voltage</td>
<td>±22 V</td>
</tr>
<tr>
<td>VIN</td>
<td>Input voltage</td>
<td>±V supply</td>
</tr>
<tr>
<td>VDIFF</td>
<td>Differential input voltage</td>
<td>±.5 V</td>
</tr>
<tr>
<td>TA</td>
<td>Operating temperature range</td>
<td>NE5532/A: 0 to 70°C, SE5532/A: -55 to +125°C</td>
</tr>
<tr>
<td>TSTG</td>
<td>Storage temperature</td>
<td>NE5532/A: -65 to +150°C, SE5532/A: -65 to +150°C</td>
</tr>
<tr>
<td>PD</td>
<td>Power dissipation</td>
<td>5532FE: 1000mW, SE5532FE: 1500mW</td>
</tr>
<tr>
<td>TLEAD</td>
<td>Lead temperature (soldering, 10 sec)</td>
<td>5532FE: 300°C</td>
</tr>
</tbody>
</table>

NOTES:

1. Diodes protect the inputs against over-voltage. Therefore, unless current-limiting resistors are used, large currents will flow if the differential input voltage exceeds 0.6V. Maximum current should be limited to ±10mA.

2. Thermal resistance of the FE package is 125°C/W.

EQUIVALENT SCHEMATIC (EACH AMPLIFIER)
DC ELECTRICAL CHARACTERISTICS

$T_A = 25{}^\circ C, V_S = \pm 15V$ unless otherwise specified.

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>SE/NE5532/5532A</th>
<th>NE5532/5532A</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{OS} Offset voltage</td>
<td>Over temperature</td>
<td>0.5 2</td>
<td>0.5 4</td>
<td>mV/mV/$\mu V/{}^\circ C$</td>
</tr>
<tr>
<td>$\Delta V_{OS}/\Delta T$</td>
<td>Over temperature</td>
<td>5 3</td>
<td>5 5</td>
<td>mV/mV/$\mu V/{}^\circ C$</td>
</tr>
<tr>
<td>I_{OS} Offset current</td>
<td>Over temperature</td>
<td>100 200</td>
<td>10 100</td>
<td>nA/pA/$\mu A/{}^\circ C$</td>
</tr>
<tr>
<td>$\Delta I_{OS}/\Delta T$</td>
<td>Over temperature</td>
<td>200 5</td>
<td>200 5</td>
<td>nA/pA/$\mu A/{}^\circ C$</td>
</tr>
<tr>
<td>I_{IN} Input current</td>
<td>Over temperature</td>
<td>200 400</td>
<td>200 800</td>
<td>nA/pA/$\mu A/{}^\circ C$</td>
</tr>
<tr>
<td>I_{CC} Supply current</td>
<td>Over temperature</td>
<td>5</td>
<td>5</td>
<td>mA/mA/$\mu A/{}^\circ C$</td>
</tr>
<tr>
<td>V_{CM} Common mode input range</td>
<td>80 100</td>
<td>± 12 ± 13</td>
<td>± 12 ± 13</td>
<td>V/V</td>
</tr>
<tr>
<td>CMRR Common mode rejection ratio</td>
<td>10 50</td>
<td>70 100</td>
<td>70 100</td>
<td>dB</td>
</tr>
<tr>
<td>PSRR Power supply rejection ratio</td>
<td>50 100</td>
<td>50 100</td>
<td>50 100</td>
<td>dB</td>
</tr>
<tr>
<td>A_{VOL} Large signal voltage gain</td>
<td>Over temperature</td>
<td>50 25</td>
<td>50 100</td>
<td>VmV/V</td>
</tr>
<tr>
<td>$R_L \geq 2k\Omega, V_O = \pm 10V$</td>
<td>Over temperature</td>
<td>25</td>
<td>15</td>
<td>VmV/V</td>
</tr>
<tr>
<td>$R_L \geq 6000, V_O = \pm 10V$</td>
<td>Over temperature</td>
<td>40</td>
<td>15</td>
<td>VmV/V</td>
</tr>
<tr>
<td>V_{OUT} Output swing</td>
<td>Over temperature</td>
<td>20</td>
<td>10</td>
<td>VmV/V</td>
</tr>
<tr>
<td>$R_L \geq 6000 \Omega$</td>
<td>Over temperature</td>
<td>15</td>
<td>10</td>
<td>VmV/V</td>
</tr>
<tr>
<td>$R_L \geq 6000, V_S = \pm 18V$</td>
<td>Over temperature</td>
<td>12</td>
<td>10</td>
<td>VmV/V</td>
</tr>
<tr>
<td>$R_L \geq 2k\Omega$ over temp.</td>
<td>12</td>
<td>10</td>
<td>12</td>
<td>VmV/V</td>
</tr>
<tr>
<td>R_{IN} Input resistance</td>
<td>30</td>
<td>300</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>I_{SC} Output short circuit current</td>
<td>10</td>
<td>38</td>
<td>10</td>
<td>38</td>
</tr>
</tbody>
</table>

AC ELECTRICAL CHARACTERISTICS

$T_A = 25{}^\circ C, V_S = \pm 15V$ unless otherwise specified.

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>SE/NE5532/5532A</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_{OUT} Output resistance</td>
<td>$A_V = 30dB Closed loop$</td>
<td>0.3</td>
<td>Ω</td>
</tr>
<tr>
<td>Overshoot</td>
<td>$V_{IN} = 100mV p-p$</td>
<td>10</td>
<td>%</td>
</tr>
<tr>
<td>Gain</td>
<td>$f = 10kHz$</td>
<td>2.2</td>
<td>V/mV</td>
</tr>
<tr>
<td>Gain bandwidth product</td>
<td>$C_L = 100pF \land R_L = 600\Omega$</td>
<td>10</td>
<td>MHz</td>
</tr>
<tr>
<td>Slew rate</td>
<td></td>
<td>9</td>
<td>V/µs</td>
</tr>
<tr>
<td>Power bandwidth</td>
<td>$V_{OUT} = \pm 10V$</td>
<td>140</td>
<td>kHz</td>
</tr>
<tr>
<td>$V_{OUT} = \pm 14V, R_L = 600\Omega, V_{CC} = \pm 18V$</td>
<td>100</td>
<td>kHz</td>
<td></td>
</tr>
</tbody>
</table>

ELECTRICAL CHARACTERISTICS

$T_A = 25{}^\circ C, V_S = \pm 15V$ unless otherwise specified.

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>SE/NE5532</th>
<th>SE/NE5532A</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input noise voltage</td>
<td>$f_0 = 30Hz$</td>
<td>8</td>
<td>8</td>
<td>nV/Hz</td>
</tr>
<tr>
<td>$f_0 = 1kHz$</td>
<td>5</td>
<td>5</td>
<td>12</td>
<td>6</td>
</tr>
<tr>
<td>Input noise current</td>
<td>$f_0 = 30Hz$</td>
<td>2.7</td>
<td>2.7</td>
<td>pA/Hz</td>
</tr>
<tr>
<td>$f_0 = 1kHz$</td>
<td>0.7</td>
<td>0.7</td>
<td>pA/Hz</td>
<td></td>
</tr>
<tr>
<td>Channel separation</td>
<td>$f = 1kHz, R_S = 5k\Omega$</td>
<td>110</td>
<td>110</td>
<td>dB</td>
</tr>
</tbody>
</table>
TYPICAL PERFORMANCE CHARACTERISTICS

OPEN LOOP FREQUENCY RESPONSE

CLOSED LOOP FREQUENCY RESPONSE

LARGE-SIGNAL FREQUENCY RESPONSE

OUTPUT SHORT-CIRCUIT CURRENT

INPUT BIAS CURRENT

INPUT COMMON MODE VOLTAGE RANGE

SUPPLY CURRENT

INPUT NOISE VOLTAGE DENSITY
TEST CIRCUITS

CLOSED LOOP FREQUENCY RESPONSE

VOLTAGE FOLLOWER

AUDIO CIRCUITS USING THE NE5532/33/34

More detailed information is available in the communications section of this manual, regarding other audio circuits. The following will explain the Signetics line of low noise op amps and show their use in some audio applications.

DESCRIPTION

The 5532 is a dual high-performance low noise operational amplifier. Compared to most of the standard operational amplifiers, such as the 1458, it shows better noise performance, improved output drive capability and considerably higher small-signal and power bandwidths.

This makes the device especially suitable for application in high quality and professional audio equipment, instrumentation and control circuits, and telephone channel amplifiers. The op amp is internally compensated for gains equal to one. If very low noise is of prime importance, it is recommended that the 5532A version be used which has guaranteed noise voltage specifications.

APPLICATIONS

The Signetics 5532 High Performance Op Amp is an ideal amplifier for use in high quality and professional audio equipment which requires low noise and low distortion.

The circuit included in this application note has been assembled on a P.C. board, and tested with actual audio input devices (Tuner and Turntable). It consists of an RIAA pre-amp, input buffer, 5-band equalizer, and mixer. Although the circuit design is not new, its performance using the 5532 has been improved.

The RIAA pre-amp section is a standard compensation configuration with low frequency boost provided by the Magnetic cartridge and the RC network in the op amp feedback loop. Cartridge loading is accomplished via R1. 47k was chosen as a typical value, and may differ from cartridge to cartridge.

The Equalizer section consists of an input buffer, 5 active variable band pass/notch (depending on R9's setting) filters, and an output summing amplifier. The input buffer is a standard unity gain design providing impedance matching between the pre amplifiers and the equalizer section. Because the 5532 is internally compensated, no external compensation is required. The 5-band active filter section is actually 5 individual active filters with the same feedback design for all 5. The main difference in all five stages is the values of C5 and C6 which are responsible for setting the center frequency of each stage. Linear pots are recommended for R9. To simplify use of this circuit, a component value table is provided, which lists center frequencies and their associated capacitor values. Notice that C5 equals (10) C6, and that the Value of R8 and R10 are related to R9 by a factor of 10 as well. The values listed in the table are common and easily found standard values.

RIAA EQUALIZATION AUDIO PREAMPLIFIER USING NE5532A

With the onset of new recording techniques along with sophisticated playback equipment, a new breed of low noise operational amplifiers was developed to complement the state-of-the-art in audio reproduction. The first ultra low noise op amp introduced by Signetics was called the NE5534A. This is a single operational amplifier with less than 4nV/√Hz input noise voltage. The NE5534A is internally compensated at a gain of three. This device has been used in many audio preamp and equalizer (active filter) applications since its introduction early last year.

Many of the amplifiers that are being designed today are dc coupled. This means that very low frequencies (2-15Hz) are being amplified. These low frequencies are common to turntables because of rumble and tone arm resonances. Since the amplifiers can reproduce these sub-audible tones, they become quite objectionable because the speakers try to reproduce these tones. This causes non-linearities when the actual recorded material is amplified and converted to sound waves.

The RIAA has proposed a change in its standard playback response curve in order to alleviate some of the problems that were previously discussed. The changes occur primarily at the low frequency range with a slight modification to the high frequency range. (See Figure 2). Note that the response peak for the bass section of the playback curve now occurs at 31.5Hz and begins to roll off below that frequency. The rolloff occurs by introducing a fourth R/C network occurs by introducing a fourth R/C network with a 7950μs time constant to the three existing networks that make up the equalization circuit. The high end of the equalization curve is extended to 20kHz, because recordings at these frequencies are achievable on many current discs.

NE5533/34 DESCRIPTION

The 5533/5534 are dual and single high-performance low noise operational amplifiers. Compared to other operational amplifiers
such as TL083, they show better noise performance, improved output drive capability and considerably higher small-signal and power bandwidths.

This makes the devices especially suitable for application in high quality and professional audio equipment, in instrumentation and control circuits and telephone channel amplifiers. The op amps are internally compensated for gain equal to, or higher than, three. The frequency response can be optimized with an external compensation capacitor for various applications (unity gain amplifier, capacitive load, slew-rate, low overshoot, etc.) If very low noise is of prime importance, it is recommended that the 5533A/5534A version be used which has guaranteed noise specifications.

<table>
<thead>
<tr>
<th>COMPONENT VALUE TABLES</th>
<th>R8 = 25k R7 = 2.4k</th>
<th>R8 = 50k R7 = 5.1k</th>
<th>R8 = 100k R7 = 10k</th>
</tr>
</thead>
<tbody>
<tr>
<td>fo C5 C6</td>
<td>fo C5 C6</td>
<td>fo C5 C6</td>
<td>fo C5 C6</td>
</tr>
<tr>
<td>23 Hz .1µF .1µF</td>
<td>25 Hz .47µF .047µF</td>
<td>12 Hz .47µF .047µF</td>
<td></td>
</tr>
<tr>
<td>50 Hz .47µF .047µF</td>
<td>36 Hz .33µF .033µF</td>
<td>18 Hz .33µF .033µF</td>
<td></td>
</tr>
<tr>
<td>72 Hz .33µF .033µF</td>
<td>54 Hz .22µF .022µF</td>
<td>27 Hz .22µF .022µF</td>
<td></td>
</tr>
<tr>
<td>108 Hz .22µF .022µF</td>
<td>79 Hz .15µF .015µF</td>
<td>39 Hz .15µF .015µF</td>
<td></td>
</tr>
<tr>
<td>158 Hz .15µF .015µF</td>
<td>119 Hz .1µF .01µF</td>
<td>59 Hz .1µF .01µF</td>
<td></td>
</tr>
<tr>
<td>238 Hz .1µF .01µF</td>
<td>145 Hz .082µF .0082µF</td>
<td>72 Hz .082µF .0082µF</td>
<td></td>
</tr>
<tr>
<td>290 Hz .082µF .0082µF</td>
<td>175 Hz .068µF .0068µF</td>
<td>87 Hz .068µF .0068µF</td>
<td></td>
</tr>
<tr>
<td>350 Hz .068µF .0068µF</td>
<td>212 Hz .056µF .0056µF</td>
<td>108 Hz .056µF .0056µF</td>
<td></td>
</tr>
<tr>
<td>425 Hz .056µF .0056µF</td>
<td>253 Hz .047µF .0047µF</td>
<td>126 Hz .047µF .0047µF</td>
<td></td>
</tr>
<tr>
<td>508 Hz .047µF .0047µF</td>
<td>360 Hz .033µF .0033µF</td>
<td>180 Hz .033µF .0033µF</td>
<td></td>
</tr>
<tr>
<td>721 Hz .033µF .0033µF</td>
<td>541 Hz .022µF .0022µF</td>
<td>270 Hz .022µF .0022µF</td>
<td></td>
</tr>
<tr>
<td>1082 Hz .022µF .0022µF</td>
<td>794 Hz .015µF .0015µF</td>
<td>397 Hz .015µF .0015µF</td>
<td></td>
</tr>
<tr>
<td>1588 Hz .015µF .0015µF</td>
<td>1191 Hz .01µF .001µF</td>
<td>595 Hz .01µF .001µF</td>
<td></td>
</tr>
<tr>
<td>2382 Hz .01µF .001µF</td>
<td>1452 Hz .0082µF .0082µF</td>
<td>726 Hz .0082µF .0082µF</td>
<td></td>
</tr>
<tr>
<td>2904 Hz .0082µF .0082µF</td>
<td>1751 Hz .0068µF .0068µF</td>
<td>875 Hz .0068µF .0068µF</td>
<td></td>
</tr>
<tr>
<td>3502 Hz .0068µF .0068µF</td>
<td>2126 Hz .0056µF .0056µF</td>
<td>1063 Hz .0056µF .0056µF</td>
<td></td>
</tr>
<tr>
<td>4253 Hz .0056µF .0056µF</td>
<td>2534 Hz .0047µF .0047µF</td>
<td>1267 Hz .0047µF .0047µF</td>
<td></td>
</tr>
<tr>
<td>5068 Hz .0047µF .0047µF</td>
<td>3009 Hz .0033µF .0033µF</td>
<td>1804 Hz .0033µF .0033µF</td>
<td></td>
</tr>
<tr>
<td>7218 Hz .0033µF .0033µF</td>
<td>5413 Hz .0022µF .0022µF</td>
<td>2708 Hz .0022µF .0022µF</td>
<td></td>
</tr>
<tr>
<td>10827 Hz .0022µF .0022µF</td>
<td>7940 Hz .0015µF .0015µF</td>
<td>3970 Hz .0015µF .0015µF</td>
<td></td>
</tr>
<tr>
<td>15880 Hz .0015µF .0015µF</td>
<td>11910 Hz .001µF .001µF</td>
<td>5955 Hz .001µF .001µF</td>
<td></td>
</tr>
<tr>
<td>23820 Hz .001µF .001µF</td>
<td>14524 Hz .82µF .82µF</td>
<td>7262 Hz .82µF .82µF</td>
<td></td>
</tr>
<tr>
<td></td>
<td>17514 Hz .68µF .68µF</td>
<td>8757 Hz .68µF .68µF</td>
<td></td>
</tr>
<tr>
<td></td>
<td>21267 Hz .56µF .56µF</td>
<td>12670 Hz .47µF .47µF</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>18045 Hz .33µF .33µF</td>
<td></td>
</tr>
</tbody>
</table>

Figure 1

APPLICATIONS

Diode Protection of Input

The input leads of the device are protected from differential transients above ±0.6V by internal back-to-back diodes. Their presence imposes certain limitations on the amplifier dynamic characteristics related to closed-loop gain and slew rate.
Consider the unity gain follower as an example:

Assume a signal input square wave with dV/dt of 250V per µs and 2V peak amplitude as shown. If a 22 pF compensation capacitor is inserted and the R1 C1 circuit deleted, the device slew rate falls to approximately 7V/µs. The input waveform will reach 2V/250V/µs or 8 ns, while the output will have changed (6 × 10^-3) (7) only 56 mV. The differential input signal is then (V1N - V2O) R1/R1 + R2 or approximately 1V.

The diode limiter will definitely be active and output distortion will occur; therefore, V1N < 1V as indicated.

Next, a sine wave input is used with a similar circuit.
The slew rate of the input waveform now depends on frequency and the exact expression is

\[
\frac{dv}{dt} = 2w \cos \omega t
\]

The upper limit before slew rate distortion occurs for small signal \((V_{IN} < 100 \text{ mV})\) conditions is found by setting the slew rate to \(7\text{V}/\mu\text{s}\). That is:

\[
7 \times 10^6 \text{V}/\mu\text{s} = 2\omega \cos \omega t
\]

at \(\omega t = 0\)

\[
\omega_{\text{LIMIT}} = \frac{7 \times 10^6}{2} = 3.5 \times 10^6 \text{ rad/s}
\]

\[
f_{\text{LIMIT}} = \frac{3.5 \times 10^6}{2\pi} \approx 560 \text{ kHz}
\]

External Compensation Network Improves Bandwidth

By using an external lead-lag network, the follower circuit slew rate and small signal bandwidth can be increased. This may be useful in situations where a closed-loop gain less than 3 to 5 is indicated. A number of examples are shown in subsequent figures. The principle benefit of using the network approach is that the full slew rate and bandwidth of the device is retained, while impulse-related parameters such as damping and phase margin are controlled by choosing the appropriate circuit constants. For example, consider the following configuration:

The major problem to be overcome is poor phase margin leading to instability.

By choosing the lag network break frequency one decade below the unity gain crossover frequency (30–50 MHz), the phase and gain margin are improved. An appropriate value for \(R\) is 270Ω. Setting the lag network break frequency at 5 MHz, \(C\) may be calculated

\[
C = \frac{1}{2\pi \times 270 \times 5 \times 10^6}
\]

\[
118 = \text{pF}
\]

A single pole and zero inserted in the transfer function will give an added 45° of phase margin depending on the network values.

RULES AND EXAMPLES

Compensation Using Pins 5 and 8

(Limited Bandwidth and Slew Rate)

Figure 4. Unity Gain Non-Inverting Configuration

Figure 5. Unity Gain Inverting Configuration
External Compensation for Wideband Voltage Follower

Figure 6. External Compensation for Wideband Voltage Follower

Calculating the Lead-Lag Network

\[C_1 = \frac{1}{2\pi F_1 R_1} \]

Let \(R_1 = \frac{R_{IN}}{10} \)

where \(F_1 = \frac{1}{10} (UGBW) \)

\(UGBW = 30 \text{ MHz} \)

Shunt Capacitance Compensation

\[C_F = \frac{1}{2\pi F_F R_F} \]

or

\[C_F = \frac{C_{DIST}}{A_{CL}} \]

\(C_{DIST} \equiv \text{Distributed Capacitance} \equiv 2.3 \text{pF} \)

Many audio circuits involve carefully tailored frequency responses. Pre-emphasis is used in all recording mediums to reduce noise and produce flat frequency response. The most often used de-emphasis curves for broadcast and home entertainment systems are shown in Figure 7. Operational amplifiers are well suited to these applications because of their high gain and easily tailored frequency response.
RIAA PREAMP USING THE NE5534

The preamplifier for phono equalization is shown in Figure 8 along with the theoretical and actual circuit response.

Low frequency boost is provided by the inductance of the magnetic cartridge with the RC network providing the necessary break points to approximate the theoretical RIAA curve.

RUMBLE FILTER

Following the amplifier stage, rumble and scratch filters are often used to improve overall quality. Such a filter designed with op amps uses the 2 pole Butterworth approach and features switchable break points. With the circuit of Figure 9 any degree of filtering from fairly sharp to none at all is switch selectable.
TONE CONTROL

Tone control of audio systems involves altering the flat response in order to attain more low frequencies or more high ones dependent upon listener preference. The circuit of Figure 10 provides 20dB of bass or treble boost or cut as set by the variable resistance. The actual response of the circuit is shown also.

BALANCE AND LOUDNESS AMPLIFIER

Figure 11 shows a combination of balance and loudness controls. Due to the non-linearity of the human hearing system the low frequencies must be boosted at low listening levels. Balance, level, and loudness controls provide all the listening controls to produce the desired music response.

VOLTAGE AND CURRENT OFFSET ADJUSTMENTS

Many IC amplifiers include the necessary pin connections to provide external offset adjustments. Many times, however, it becomes necessary to select a device not possessing external adjustments. Figure 12, 13, and 14 suggest some possible arrangements for offset voltage adjust and bias current nulling circuitry. The circuitry of Figure 14 provides sufficient current into the input to cancel the bias current requirement. Although more simplified arrangements are possible the addition of Q2 and Q3 provide a fixed current level to Q1, thus, bias cancellation can be provided without regard to input voltage level.

NOTES
1. Amplifier A may be a NE531 or 301. Frequency compensation, as for unity gain non-inverting amplifiers, must be used.
2. Turn-over frequency = 1kHz.
3. Bass boost +20dB at 20Hz, bass cut -20dB at 20Hz, treble boost +19dB at 20kHz, treble cut -19dB at 20kHz.

All resistor values are in ohms.

Figure 10

Figure 11

Figure 12

Figure 13

Figure 14

All resistor values are in ohms.
UNIVERSAL OFFSET NULL FOR NONINVERTING AMPLIFIERS

All resistor values are in ohms.

Figure 13

BIAS CURRENT COMPENSATION

SELECT R2 & R3 FOR DESIRED CURRENT

Figure 14

*For additional information, consult the Applications Section.
DESCRIPTION
The 5533/5534 are dual and single high-performance low noise operational amplifiers. Compared to other operational amplifiers, such as TL083, they show better noise performance, improved output drive capability and considerably higher small-signal and power bandwidths.

This makes the devices especially suitable for application in high quality and professional audio equipment, in instrumentation and control circuits and telephone channel amplifiers. The op amps are internally compensated for gain equal to, or higher than, three. The frequency response can be optimized with an external compensation capacitor for various applications (unity gain amplifier, capacitive load, slew-rate, low overshoot, etc.). If very low noise is of prime importance, it is recommended that the 5533A/5534A version be used which has guaranteed noise specifications.

FEATURES
- Small-signal bandwidth: 10MHz
- Output drive capability: 600Ω, 10V (rms) at \(V_b = \pm 18V \)
- Input noise voltage: 4nV/√Hz
- DC voltage gain: 100000
- AC voltage gain: 6000 at 10kHz
- Power bandwidth: 200kHz
- Slew-rate: 13V/µs
- Large supply voltage range: ±3 to ±20V

PIN CONFIGURATIONS

EQUIVALENT SCHEMATIC

NOTE:
This device may not be symbrilled in standard format.
ABSOLUTE MAXIMUM RATINGS

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>RATING</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_S Supply voltage</td>
<td>± 22 V</td>
<td></td>
</tr>
<tr>
<td>V_{IN} Input voltage</td>
<td>± V supply</td>
<td>V</td>
</tr>
<tr>
<td>V_{DIFF} Differential input voltage</td>
<td>± 0.5 V</td>
<td></td>
</tr>
<tr>
<td>T_A Operating temperature range</td>
<td>SE5534/5534A -55 to + 125 °C</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NE5533/5533A/5534/5534A 0 to + 70 °C</td>
<td></td>
</tr>
<tr>
<td>T_{STG} Storage temperature</td>
<td>± 65 to + 150 °C</td>
<td></td>
</tr>
<tr>
<td>T_J Junction temperature</td>
<td>150 °C</td>
<td></td>
</tr>
<tr>
<td>P_D Power dissipation at 25 °C2</td>
<td>800 mW</td>
<td></td>
</tr>
<tr>
<td>Output short circuit duration3</td>
<td>indefinite</td>
<td></td>
</tr>
<tr>
<td>Lead temperature (soldering, 10 sec)</td>
<td>300 °C</td>
<td></td>
</tr>
</tbody>
</table>

NOTES

1. Diodes protect the inputs against over-voltage. Therefore, unless current-limiting resistors are used, large currents will flow if the differential input voltage exceeds 0.6V. Maximum current should be limited to ±10mA.
2. For operation at elevated temperature, derate packages based on the following junction-to-ambient thermal resistances:
 - 8-pin ceramic (FE): 140°C/W
 - 14-pin ceramic (F): 110°C/W
 - 8-pin plastic (N): 165°C/W
 - 14-pin plastic (N): 150°C/W
3. Output may be shorted to ground at $V_S = ±15V$, $T_A = 25°C$. Temperature and/or supply voltages must be limited to ensure dissipation rating is not exceeded.

DC ELECTRICAL CHARACTERISTICS $T_A = 25°C$, $V_S = ±15V$ unless otherwise specified.1,2

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>SE5534/5534A</th>
<th>NE5533/5533A/5534/5534A</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{OS} Offset voltage</td>
<td>Over temperature</td>
<td>0.5 mV 0.5 µV/°C</td>
<td>4 mV 5 µV/°C</td>
<td>mV/µV/°C</td>
</tr>
<tr>
<td>$\Delta V_{OS}/\Delta T$</td>
<td></td>
<td>5</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>I_{OS} Offset current</td>
<td>Over temperature</td>
<td>10 µA 200 nA</td>
<td>200 nA 300 nA</td>
<td>nA</td>
</tr>
<tr>
<td>$\Delta I_{OS}/\Delta T$</td>
<td></td>
<td>200</td>
<td>500</td>
<td></td>
</tr>
<tr>
<td>I_E Input current</td>
<td>Over temperature</td>
<td>400 nA 800 pA/°C</td>
<td>1500 nA 2000 nA</td>
<td>nA/μA/°C</td>
</tr>
<tr>
<td>$\Delta I_E/\Delta T$</td>
<td></td>
<td>5</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>I_{CC} Supply current</td>
<td>Per op amp</td>
<td>4 mA 6.5 mA</td>
<td>8 mA 10 mA</td>
<td>mA</td>
</tr>
<tr>
<td>V_{CM} Common mode input range</td>
<td>Over temperature</td>
<td>±12 V ±13 V</td>
<td>±12 V ±13 V</td>
<td>V/µV</td>
</tr>
<tr>
<td>$CMRR$ Common mode rejection ratio</td>
<td></td>
<td>80</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>$PSRR$ Power supply rejection ratio</td>
<td></td>
<td>10</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>A_{VOL} Large signal voltage gain</td>
<td>$R_L ≥ 6000, V_O = ±10V$</td>
<td>50 V/mV 50 V</td>
<td>100 V/mV 15 V</td>
<td>V/V</td>
</tr>
<tr>
<td>V_{OUT} Output swing 5534 only</td>
<td>$R_L ≥ 6000$</td>
<td>12 V 12 V</td>
<td>12 V 12 V</td>
<td>V</td>
</tr>
<tr>
<td>$R_L ≥ 6000, V_O = ±10V$</td>
<td>10 µA 10 V</td>
<td>10 µA 10 V</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>$R_L ≥ 6000, V_O = ±18V$</td>
<td>15 µA 15 V</td>
<td>15 µA 15 V</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>$R_L ≥ 2kΩ$</td>
<td>10 µA 10 V</td>
<td>10 µA 10 V</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>R_{IN} Input resistance</td>
<td>Over temperature</td>
<td>12 µA 12.5 µA</td>
<td>12 µA 12.5 µA</td>
<td>µA</td>
</tr>
<tr>
<td>I_{SC} Output short circuit current</td>
<td></td>
<td>50 mA 100 mA</td>
<td>30 mA 100 mA</td>
<td>mA</td>
</tr>
</tbody>
</table>

NOTES

1. For NE5533/5533A/5534/5534A, $T_{MIN} = 0°C$, $T_{MAX} = 70°C$
2. For SE5534/5534A, $T_{MIN} = -55°C$, $T_{MAX} = 125°C$
AC Electrical Characteristics

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Test Conditions</th>
<th>SE5534/5534A</th>
<th>NE5533/5533A 5534A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rout Output resistance</td>
<td>R_{out} = 30dB closed loop</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>Transient response</td>
<td>$V_{IN} = 50mV, R_L = 600Ω, C_C = 22pF$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T_R Rise time</td>
<td>$f = 10kHz, C_C = 22pF, C_L = 100pF$</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>$Overshoot$</td>
<td>$f = 10kHz, C_C = 22pF, C_L = 100pF$</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Ac Gain</td>
<td>$f = 10kHz, C_C = 0$</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>$C_C = 47pF, C_L = 500pF$</td>
<td>$f = 10kHz, C_C = 22pF, C_L = 100pF$</td>
<td>2.2</td>
<td>2.2</td>
</tr>
<tr>
<td>Gain bandwidth product</td>
<td>$C_C = 22pF, C_L = 100pF$</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>Slew rate</td>
<td>$C_C = 0$</td>
<td>13</td>
<td>13</td>
</tr>
<tr>
<td>$C_C = 22pF$</td>
<td></td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Power bandwidth</td>
<td>$V_{OUT} = ±10V, C_C = 0$</td>
<td>200</td>
<td>200</td>
</tr>
<tr>
<td>$V_{OUT} = ±10V, C_C = 22pF$</td>
<td>$V_{OUT} = ±14V, R_L = 600Ω$</td>
<td>95</td>
<td>95</td>
</tr>
<tr>
<td>$C_C = 22pF, V_{CC} = ±18V$</td>
<td>$V_{OUT} = ±14V, R_L = 600Ω$</td>
<td>70</td>
<td>70</td>
</tr>
</tbody>
</table>

Electrical Characteristics

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Test Conditions</th>
<th>5533/5534</th>
<th>5533A/5534A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input noise voltage</td>
<td>$f_o = 30Hz$</td>
<td>7</td>
<td>5.5</td>
</tr>
<tr>
<td>$f_o = 1kHz$</td>
<td></td>
<td>4</td>
<td>3.5</td>
</tr>
<tr>
<td>Input noise current</td>
<td>$f_o = 30Hz$</td>
<td>2.5</td>
<td>1.5</td>
</tr>
<tr>
<td>$f_o = 1kHz$</td>
<td></td>
<td>0.6</td>
<td>0.4</td>
</tr>
<tr>
<td>Broadband noise figure</td>
<td>$f = 10Hz - 20kHz, R_S = 5kΩ$</td>
<td>0.9</td>
<td></td>
</tr>
<tr>
<td>Channel separation</td>
<td>$f = 1kHz, R_S = 5kΩ$</td>
<td>110</td>
<td>110</td>
</tr>
</tbody>
</table>
TYPICAL PERFORMANCE CHARACTERISTICS

OPEN LOOP FREQUENCY RESPONSE

SLEW-RATE AS A FUNCTION OF COMPENSATION CAPACITANCE

CLOSED LOOP FREQUENCY RESPONSE

LARGE-SIGNAL FREQUENCY RESPONSE

OUTPUT SHORT-CIRCUIT CURRENT

INPUT BIAS CURRENT

INPUT COMMON MODE VOLTAGE RANGE

SUPPLY CURRENT PER OP AMP

INPUT NOISE VOLTAGE DENSITY
TYPICAL PERFORMANCE CHARACTERISTICS (Cont'd)

<table>
<thead>
<tr>
<th>INPUT NOISE CURRENT DENSITY</th>
<th>TOTAL INPUT NOISE DENSITY</th>
<th>BROADBAND INPUT NOISE VOLTAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TEST LOAD CIRCUITS

FREQUENCY COMPENSATION AND OFFSET VOLTAGE ADJUSTMENT CIRCUIT

CLOSED LOOP FREQUENCY RESPONSE

![Diagram](image4.png)
NOISE TEST BLOCK DIAGRAM

For additional information, consult the Applications Section.
DESCRIPTION
The 5535 is a new generation operational amplifier featuring high slew rates combined with improved input characteristics. The 5535 is a dual configuration, internally compensated for unity gain, the SE5535 features a guaranteed unity gain slew rate of 10V/µs with 2mV maximum offset voltage. Industry standard pin out and internal compensation allow the user to upgrade system performance by directly replacing general purpose amplifiers, such as 747 and 1558.

FEATURES
• 15V/µs unity gain slew rate
• Internal frequency compensation
• Low input offset voltage—2mV
• Low input bias current 80nA max
• Short circuit protected
• Large common mode and differential voltage ranges
• Pin compatibility 5535
• Configuration Dual
• Low noise current 0.15 pA/√Hz typ.

ABSOLUTE MAXIMUM RATINGS

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>SE5535</th>
<th>NE5535</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltage</td>
<td>±22</td>
<td>±18</td>
<td>V</td>
</tr>
<tr>
<td>Internal power dissipation¹</td>
<td>500</td>
<td>500</td>
<td>mW</td>
</tr>
<tr>
<td>H Package</td>
<td>800</td>
<td>800</td>
<td>mW</td>
</tr>
<tr>
<td>F Package</td>
<td>1000</td>
<td>1000</td>
<td>mW</td>
</tr>
<tr>
<td>Differential input voltage</td>
<td>±30</td>
<td>±30</td>
<td>V</td>
</tr>
<tr>
<td>Input voltage²</td>
<td>±15</td>
<td>±15</td>
<td>V</td>
</tr>
<tr>
<td>Operating temperature range</td>
<td>-55 to +125</td>
<td>0 to +70</td>
<td>°C</td>
</tr>
<tr>
<td>Storage temperature range</td>
<td>-65 to +150</td>
<td>-65 to +150</td>
<td>°C</td>
</tr>
<tr>
<td>Lead temperature (solder, 60sec)</td>
<td>300</td>
<td>300</td>
<td>°C</td>
</tr>
<tr>
<td>Output short circuit³</td>
<td>Indefinite</td>
<td>Indefinite</td>
<td></td>
</tr>
</tbody>
</table>

NOTES
1. Rating applies for thermal resistances junction to ambient of 240°C/W and 150°C/W for N and H packages, respectively. Maximum chip temperature is 150°C.
2. For supply voltages less than ±15V, the absolute maximum input voltage is equal to the supply voltage.
3. Short circuit may be to ground or either supply. Rating applies to 125°C case temperature or 75°C ambient temperature.

EQUIVALENT SCHEMATIC (One Amplifier)
DC ELECTRICAL CHARACTERISTICS
\(T_\text{A} = 25^\circ\text{C} \), \(V_\text{s} = \pm 15\text{V} \) unless otherwise specified.

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>SE5535</th>
<th>NE5535</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{\text{os}})</td>
<td>(R_S \leq 10\text{k}\Omega)</td>
<td>0.7</td>
<td>4.0</td>
<td>2.0</td>
</tr>
<tr>
<td></td>
<td>(R_S = 0\text{k}\Omega), over temp.</td>
<td>5.0</td>
<td>6.0</td>
<td>7.0</td>
</tr>
<tr>
<td>(\Delta V_{\text{os}})</td>
<td>(R_S = 0\text{k}\Omega), over temp.</td>
<td>4.0</td>
<td>6.0</td>
<td>(\mu\text{V/°C})</td>
</tr>
<tr>
<td>(I_{\text{os}})</td>
<td>Over temp.</td>
<td>5</td>
<td>20</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>(\Delta I_{\text{os}})</td>
<td>Over temp.</td>
<td>25</td>
<td>40</td>
<td>80</td>
</tr>
<tr>
<td>(I_B)</td>
<td>Over temp.</td>
<td>45</td>
<td>80</td>
<td>65</td>
</tr>
<tr>
<td></td>
<td></td>
<td>80</td>
<td>200</td>
<td>200</td>
</tr>
<tr>
<td>(\Delta I_B)</td>
<td>Over temp.</td>
<td>50</td>
<td>80</td>
<td>80</td>
</tr>
<tr>
<td>(V_{\text{CM}})</td>
<td>(R_S \leq 10\text{k}\Omega), over temp.</td>
<td>±12 70</td>
<td>±13 90</td>
<td>±12 70</td>
</tr>
<tr>
<td>(\text{CMRR})</td>
<td>(R_S \leq 10\text{k}\Omega), over temp.</td>
<td>70</td>
<td>90</td>
<td>70</td>
</tr>
<tr>
<td>(\text{PSRR})</td>
<td>(R_S \leq 10\text{k}\Omega), over temp.</td>
<td>30</td>
<td>150</td>
<td>30</td>
</tr>
<tr>
<td>(R_{\text{IN}})</td>
<td>Over temp.</td>
<td>3</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>(\text{AVOL})</td>
<td>(R_L \geq 2\text{k}\Omega), (V_{\text{OUT}} = \pm 10\text{V})</td>
<td>50</td>
<td>500</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>(R_L \geq 10\text{k}\Omega), over temp.</td>
<td>25</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>(V_{\text{OUT}})</td>
<td>(R_L \geq 2\text{k}\Omega), over temp.</td>
<td>±10</td>
<td>±13</td>
<td>±10</td>
</tr>
<tr>
<td></td>
<td>(R_L \geq 10\text{k}\Omega), over temp.</td>
<td>±12</td>
<td>±14</td>
<td>±12</td>
</tr>
<tr>
<td>(I_{\text{CC}})</td>
<td>Per amplifier</td>
<td>1.8</td>
<td>2.8</td>
<td>1.8</td>
</tr>
<tr>
<td></td>
<td>Per amplifier, over temp.</td>
<td>2</td>
<td>3.3</td>
<td>2</td>
</tr>
<tr>
<td>(P_D)</td>
<td>Per amplifier</td>
<td>54</td>
<td>84</td>
<td>54</td>
</tr>
<tr>
<td></td>
<td>Per amplifier, over temp.</td>
<td>60</td>
<td>99</td>
<td>60</td>
</tr>
<tr>
<td>(I_{\text{SC}})</td>
<td>Output short circuit current</td>
<td>10</td>
<td>25</td>
<td>10</td>
</tr>
<tr>
<td>(R_{\text{OUT}})</td>
<td>Output resistance</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

*NOTE
Temperature range
SE types -55°C \(\leq T_\text{A} \leq 125°C
NE types 0°C \(\leq T_\text{A} \leq 70°C

AC ELECTRICAL CHARACTERISTICS $T_A = 25°C$ unless otherwise specified.

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>SE5535</th>
<th>NE5535</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gain/bandwidth product</td>
<td></td>
<td>Min</td>
<td>Typ</td>
<td>Max</td>
</tr>
<tr>
<td>Transient response</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Small signal rise time</td>
<td></td>
<td>0.25</td>
<td>0.25</td>
<td></td>
</tr>
<tr>
<td>Small signal overshoot</td>
<td></td>
<td>6</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Settling time</td>
<td></td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Slew rate</td>
<td>$R_L = 10kΩ$, unity gain, non-inverting</td>
<td>10</td>
<td>15</td>
<td>10</td>
</tr>
<tr>
<td>Input noise voltage</td>
<td>$f = 1kHz$, $T_A = 25°C$</td>
<td>30</td>
<td>30</td>
<td></td>
</tr>
</tbody>
</table>

TYPICAL PERFORMANCE CHARACTERISTICS

![OUTPUT VOLTAGE SWING AS A FUNCTION OF FREQUENCY](chart1)

![OPEN LOOP VOLTAGE GAIN AS A FUNCTION OF FREQUENCY](chart2)

![OUTPUT VOLTAGE SWING AS A FUNCTION OF SUPPLY VOLTAGE](chart3)

![OUTPUT VOLTAGE SWING AS A FUNCTION OF LOAD RESISTANCE](chart4)
TYPICAL PERFORMANCE CHARACTERISTICS (Cont'd)

OUTPUT SHORT-CIRCUIT CURRENT AS A FUNCTION OF AMBIENT TEMPERATURE

INPUT NOISE VOLTAGE AS A FUNCTION OF FREQUENCY

INPUT NOISE CURRENT AS A FUNCTION OF FREQUENCY

BROADBAND NOISE FOR VARIOUS BANDWIDTHS

INPUT COMMON MODE VOLTAGE RANGE AS A FUNCTION OF SUPPLY VOLTAGE

POWER CONSUMPTION AS A FUNCTION OF SUPPLY VOLTAGE

POWER CONSUMPTION AS A FUNCTION OF AMBIENT TEMPERATURE

INPUT BIAS CURRENT AS A FUNCTION OF AMBIENT TEMPERATURE

COMMON MODE REJECTION RATIO AS A FUNCTION OF FREQUENCY
LINEAR LSI PRODUCTS

DUAL HIGH SLEW RATE OP AMP

VOLTAGE WAVEFORMS

SETTLING TIME MEASUREMENT

INPUT
-10V
50%
-10V
90%
OUTPUT
10%
10%
ALLOWABLE ERROR BAND
10%
10%
FALSE SUMMING NODE
-10mV
-10mV

SLEW RATE MEASUREMENT

INPUT
-10V
60%
-10V
90%
OUTPUT
80%
10%
SLEW RATE V1 TO V2 (MEASUREMENT PERIOD)
80%
10%
SLEW RATE V1 TO V2 (MEASUREMENT PERIOD)
80%
10%

SMALL-SIGNAL TRANSIENT RESPONSE DEFINITIONS

INPUT
50mV
50%
INPUT
80%
0mV
GROUND
OVERSHTOOT
50%
10%
OUTPUT
50%
10%
RISSE TIME
50%
10%
OVERSHTOOT VOH

TEST CIRCUITS

SLEW RATE AND SMALL SIGNAL TRANSIENT RESPONSE

NOTE
Pins not shown are not connected.
All resistors values are typical and in ohms.

SETTLING TIME

VCC -15V
10k
0.1µF
-15V
10k
100pF
10k
0.1µF
-18V
VEE

NOTE
Pins not shown are not connected.
All resistors values are typical and in ohms.

*Match to within 0.01%.

NOTE
Pins not shown are not connected.
All resistors values are typical and in ohms.
APPLICATIONS

Introduction

The NE5535 is a new generation monolithic op amp which features improved input characteristics. The device is compensated to unity gain and has a minimum guaranteed unity gain slew rate of 10V/µs. This is achieved by employing a clamped super beta input stage which has lower input bias current.

All resistor values are in ohms.

Figure 1. Capacitance Multiplier

Applications

These improved parameters can be put to good use in applications such as sample and hold circuits which require low input current and in voltage follower circuits which require high slew rates. The circuit that follows will yield slew rates. The circuit that follows will yield maximum small signal transient response and slew rate for the NE5535 at unity gain.

It is always good practice in designing a system to use dual tracking regulators to power the dual supply op amps. This will guarantee the positive and negative supply voltage will be equal during power up. With the NE5535, it is possible to degrade the input circuit characteristics by not applying the power supplies simultaneously. The NE5535 is capable of directly replacing the µA741 with higher input resistance which will improve such designed as active filters, sample and hold, as well as voltage followers.

The NE5535 can be used either with single or split power supplies.

APPLICATIONS CAPACITANCE MULTIPLIER

The circuit in Figure 1 can be used to simulate large capacitances using small value components. With the values shown and \(C = 10\mu F \), an effective capacitance of \(10,000\mu F \) was obtained. The \(Q \) available is limited by the effective series resistance. So \(R_1 \) should be as large as practical.

POWER AMPLIFIER

For most applications, the available power from op amps is sufficient. There are times when more power handling capability is necessary. A simple power booster capable of driving moderate loads is offered in Figure 3.

The circuit as shown uses a NE5535 device. Other amplifiers may be substituted only if \(R_1 \) values are changed because of the ICC current required by the amplifier. \(R_1 \) should be calculated from the expression

\[
R_1 = \frac{600mV}{ICC}
\]

SIMULATED INDUCTOR

With a constant current excitation, the voltage dropped across an inductance increases with frequency. Thus, an active device whose output increases with frequency can be characterized as an inductance. The circuit of Figure 2 yields such a response with the effective inductance being equal to:

\[
L = R_1R_2C
\]

The \(Q \) of this inductance depends upon \(R_1 \) being equal to \(R_2 \). At the same time, however, the positive and negative feedback paths of the amplifier are equal leading to the distinct possibility of instability at high frequencies. \(R_1 \) should therefore always be slightly smaller than \(R_2 \) to assure stable operation.

Figure 4. Voltage to Current Converters

All resistor values are in ohms.

Figure 3. Power Booster

All resistor values are in ohms.
VOLTAGE-TO-CURRENT CONVERTERS

A simple voltage-to-current converter is shown in Figure 4. The current out is \(I_{\text{out}} = \frac{V_{\text{in}}}{R} \). For negative currents, a pnp can be used and, for better accuracy, a Darlington pair can be substituted for the transistor. With careful design, this circuit can be used to control currents of many amps. Unity gain compensation is necessary.

The circuit in Figure 5 has a different input and will produce either polarity of output current. The main disadvantages are the error current flowing in \(R_2 \) and the limited current available.

ACTIVE Clamp LIMITING AMPLIFIER

The modified inverting amplifier in Figure 6 uses an active clamp to limit the output swing with precision. Allowance must be made for the \(V_{\text{be}} \) of the transistors. The swing is limited by the base-emitter breakdown of the transistors. A simple circuit uses two back-to-back zener diodes across the feedback resistor, but tends to give less precise limiting and cannot be easily controlled.

ABSOLUTE VALUE AMPLIFIER

The circuit in Figure 7 generates a positive output voltage for either polarity of input. For positive signals, it acts as a non-inverting amplifier and for negative signals, as an inverting amplifier. The accuracy is poor for input voltages under 1V, but for less stringent applications, it can be effective.

HALF WAVE RECTIFIER

Figure 8 provides a circuit for accurate half wave rectification of the incoming signal. For positive signals, the gain is 0; for negative signals, the gain is -1. By reversing both diodes, the polarity can be inverted. This circuit provides an accurate output, but the output impedance differs for the two input polarities and buffering may be needed. The output must slew through two diode drops when the input polarity reverses. The NE5535 device will work up to 10kHz with less than 5% distortion.

PRECISION FULL WAVE RECTIFIER

The circuit in Figure 9 provides accurate full wave rectification. The output impedance is low for both input polarities, and the errors are small at all signal levels. Note that the output will not sink heavy currents, except a small amount through
the 10kΩ resistors. Therefore, the load applied should be referenced to ground or a negative voltage. Reversal of all diode polarities will reverse the polarity of the output. Since the outputs of the amplifiers must slew through two diode drops when the input polarity changes, 741 type devices give 5% distortion at about 300Hz.

TWO-PHASE SINE WAVE OSCILLATOR

The circuit (referring to Figure 10, uses a 2-pole pass Butterworth, followed by a phase shifting single pole stage, fed back through a voltage limiter to achieve sine and cosine outputs. The values shown using 741 amplifiers give about 1.5% distortion at the sine output and about 3% distortion at the cosine output. By careful trimming of C0 and/or the limiting network, better distortion figures are possible. The component values shown give a frequency of oscillation of about 2kHz. The values can be readily selected for other frequencies. The NE5535 should be used at higher frequencies to reduce distortion due to slew limiting.
DESCRIPTION
The µA741 is a high performance operational amplifier with high open loop gain, internal compensation, high common mode range and exceptional temperature stability. The µA741 is short-circuit protected and allows for nulling of offset voltage.

ABSOLUTE MAXIMUM RATINGS

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>RATING</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltage</td>
<td>±18</td>
<td>V</td>
</tr>
<tr>
<td>µA741C</td>
<td>±22</td>
<td>V</td>
</tr>
<tr>
<td>µA741</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Internal power dissipation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N package</td>
<td>500</td>
<td>mW</td>
</tr>
<tr>
<td>FE package</td>
<td>1000</td>
<td>mW</td>
</tr>
<tr>
<td>Differential input voltage</td>
<td>±30</td>
<td>V</td>
</tr>
<tr>
<td>Input voltage</td>
<td>±15</td>
<td>V</td>
</tr>
<tr>
<td>Output short-circuit duration</td>
<td>Continuous</td>
<td></td>
</tr>
<tr>
<td>Operating temperature range</td>
<td></td>
<td></td>
</tr>
<tr>
<td>µA741C</td>
<td>0 to +70</td>
<td>°C</td>
</tr>
<tr>
<td>µA741</td>
<td>-40 to +85</td>
<td>°C</td>
</tr>
<tr>
<td>SA741C</td>
<td>-55 to +125</td>
<td>°C</td>
</tr>
<tr>
<td>µA741</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Storage temperature range</td>
<td>-65 to +150</td>
<td>°C</td>
</tr>
<tr>
<td>Lead temperature (soldering 60sec)</td>
<td>300</td>
<td>°C</td>
</tr>
</tbody>
</table>

NOTE
1. For supply voltages less than ±15V, the absolute maximum input voltage is equal to the supply voltage.

EQUIVALENT SCHEMATIC
DC Electrical Characteristics

TA = 25°C, **Vs** = ±15V, unless otherwise specified.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Test Conditions</th>
<th>(\mu A741)</th>
<th>(\mu A741C)</th>
<th>(\mu A741C/SA741C)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Min</td>
<td>Typ</td>
<td>Max</td>
<td>Min</td>
</tr>
<tr>
<td>Vos Offset voltage</td>
<td></td>
<td></td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td>(\Delta Vos/\Delta T)</td>
<td></td>
<td></td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>Ios Offset current</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>200</td>
</tr>
<tr>
<td>Ibias Input bias current</td>
<td></td>
<td></td>
<td></td>
<td>80</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vin Input voltage range</td>
<td>((\mu A741), over temp.)</td>
<td>±12</td>
<td>12</td>
<td>±14</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>±10</td>
</tr>
<tr>
<td>Rin Input resistance</td>
<td></td>
<td>0.3</td>
<td>2.0</td>
<td>0.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pd Power consumption</td>
<td></td>
<td>50</td>
<td>85</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>45</td>
<td>75</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td></td>
<td>45</td>
<td>100</td>
<td>45</td>
</tr>
<tr>
<td>Rout Output resistance</td>
<td></td>
<td>75</td>
<td>0.7</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td></td>
<td>25</td>
<td>60</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
<td>25</td>
<td>10</td>
</tr>
</tbody>
</table>

\(\mu A741C/SA741C \)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Min</td>
<td>Typ</td>
<td>Max</td>
<td>Min</td>
<td>Typ</td>
<td>Max</td>
<td>Min</td>
<td>Typ</td>
<td>Max</td>
<td>Min</td>
</tr>
<tr>
<td>Vos Offset voltage</td>
<td></td>
<td></td>
<td></td>
<td>2.0</td>
<td>5.0</td>
<td></td>
<td>2.0</td>
<td>6.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\Delta Vos/\Delta T)</td>
<td></td>
<td></td>
<td></td>
<td>10</td>
<td></td>
<td></td>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ios Offset current</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>20</td>
<td>200</td>
<td></td>
<td>20</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7.0</td>
<td>200</td>
<td></td>
<td>20</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>200</td>
<td></td>
<td></td>
<td>200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ibias Input bias current</td>
<td></td>
<td></td>
<td></td>
<td>80</td>
<td>500</td>
<td></td>
<td>80</td>
<td>500</td>
<td></td>
<td>80</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>30</td>
<td>500</td>
<td></td>
<td>30</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vin Input voltage range</td>
<td>((\mu A741), over temp.)</td>
<td>±12</td>
<td>12</td>
<td>±14</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>±10</td>
<td></td>
<td></td>
<td>±10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rin Input resistance</td>
<td></td>
<td>0.3</td>
<td>2.0</td>
<td>0.3</td>
<td></td>
<td>2.0</td>
<td>0.3</td>
<td></td>
<td>2.0</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Pd Power consumption</td>
<td></td>
<td>50</td>
<td>85</td>
<td>50</td>
<td></td>
<td>85</td>
<td>50</td>
<td></td>
<td>85</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>45</td>
<td>75</td>
<td>45</td>
<td></td>
<td>75</td>
<td>45</td>
<td></td>
<td>75</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>45</td>
<td>100</td>
<td>45</td>
<td></td>
<td>100</td>
<td>45</td>
<td></td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>Rout Output resistance</td>
<td></td>
<td>75</td>
<td>0.7</td>
<td>75</td>
<td></td>
<td>0.7</td>
<td>75</td>
<td></td>
<td>0.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>25</td>
<td>60</td>
<td>25</td>
<td></td>
<td>60</td>
<td>25</td>
<td></td>
<td>60</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
<td>25</td>
<td>10</td>
<td></td>
<td>25</td>
<td>10</td>
<td></td>
<td>25</td>
<td></td>
</tr>
</tbody>
</table>

Parameters

- **Vin** Input voltage range
- **Rin** Input resistance
- **Pd** Power consumption
- **Rout** Output resistance
- **Isc** Output short-circuit current
DC Electrical Characteristics

(Cont’d) $T_A = 25^\circ C$, $V_S = \pm 15V$, unless otherwise specified.

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>SA741C</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSRR</td>
<td>$R_S \leq 10k\Omega$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CMRR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_{IN}</td>
<td>(μA741, over temp.)</td>
<td>± 12</td>
<td>± 13</td>
</tr>
<tr>
<td>Input resistance</td>
<td></td>
<td>0.3</td>
<td>2.0</td>
</tr>
<tr>
<td>P_d</td>
<td></td>
<td>50</td>
<td>85</td>
</tr>
<tr>
<td>R_{OUT}</td>
<td></td>
<td>75</td>
<td>25</td>
</tr>
<tr>
<td>I_{SC}</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

AC Electrical Characteristics

$T_A = 25^\circ C$, $V_S = \pm 15V$, unless otherwise specified.

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>μA741, μA741C</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parallel input resistance</td>
<td>Open loop, f = 20Hz</td>
<td>1.4</td>
<td>Ω</td>
</tr>
<tr>
<td>Parallel input capacitance</td>
<td>Open loop, f = 20Hz</td>
<td>1.0</td>
<td>pF</td>
</tr>
<tr>
<td>Unity gain crossover frequency</td>
<td>Open loop</td>
<td>0.3</td>
<td>μs</td>
</tr>
<tr>
<td>Transient response unity gain</td>
<td>$V_{IN} = 20mV$, $R_L = 2k\Omega$, $C_L \leq 100pf$</td>
<td>5.0</td>
<td>%</td>
</tr>
<tr>
<td>Rise time</td>
<td>$C \leq 100pf$, $R_L \geq 2k$, $V_{IN} = \pm 10V$</td>
<td>0.5</td>
<td>V/μs</td>
</tr>
<tr>
<td>Overshoot</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slew rate</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Typical Performance Characteristics

- **Output Voltage Swing**
 - As a function of supply voltage
 - $-55^\circ C \leq T_A \leq +125^\circ C$
 - $R_L = 2k\Omega$
 - $V_{PEAK TO PEAK OUTPUT SWING} = V$

- **Input Common Mode Voltage Range**
 - As a function of supply voltage
 - $-55^\circ C \leq T_A \leq +125^\circ C$
 - $V_{COMMON MODE VOLTAGE RANGE} = V$

- **Power Consumption**
 - As a function of supply voltage
 - $T_A = 25^\circ C$
 - $P_{CONSUMPTION} = \text{mW}$

6-75
TYPICAL PERFORMANCE CHARACTERISTICS (Cont'd)

INPUT BIAS CURRENT AS A FUNCTION OF AMBIENT TEMPERATURE

INPUT RESISTANCE AS A FUNCTION OF AMBIENT TEMPERATURE

INPUT OFFSET CURRENT AS A FUNCTION OF SUPPLY VOLTAGE

INPUT OFFSET CURRENT AS A FUNCTION OF AMBIENT TEMPERATURE

POWER CONSUMPTION AS A FUNCTION OF AMBIENT TEMPERATURE

OUTPUT VOLTAGE SWING AS A FUNCTION OF LOAD RESISTANCE

OUTPUT SHORT-CIRCUIT CURRENT AS A FUNCTION OF AMBIENT TEMPERATURE

INPUT NOISE VOLTAGE AS A FUNCTION OF FREQUENCY

INPUT NOISE CURRENT AS A FUNCTION OF FREQUENCY
TYPICAL PERFORMANCE CHARACTERISTICS (Cont’d)

BROADBAND NOISE FOR VARIOUS BANDWIDTHS

![Graph showing broadband noise for various bandwidths](image)

OPEN LOOP VOLTAGE GAIN AS A FUNCTION OF FREQUENCY

![Graph showing open loop voltage gain](image)

OPEN LOOP PHASE RESPONSE AS A FUNCTION OF FREQUENCY

![Graph showing open loop phase response](image)

OUTPUT VOLTAGE SWING AS A FUNCTION OF FREQUENCY

![Graph showing output voltage swing](image)

COMMON MODE REJECTION RATIO AS A FUNCTION OF FREQUENCY

![Graph showing common mode rejection ratio](image)

TRANSIENT RESPONSE

![Graph showing transient response](image)

POWER BANDWIDTH (Large Signal Swing vs Frequency)

![Graph showing power bandwidth](image)

VOLTAGE OFFSET NULL

![Diagram showing voltage offset null](image)
DESCRIPTION
The 747 is a pair of high performance monolithic operational amplifiers constructed on a single silicon chip. High common mode voltage range and absence of "latch-up" make the 747 ideal for use as a voltage follower. The high gain and wide range of operating voltage provides superior performance in integrator, summing amplifier, and general feedback applications. The 747 is short-circuit protected and requires no external components for frequency compensation. The internal 6dB/octave roll-off insures stability in closed loop applications. For single amplifier performance, see µA741 data sheet.

FEATURES
• No frequency compensation required
• Short-circuit protection
• Offset voltage null capability
• Large common-mode and differential voltage ranges
• Low power consumption
• No latch-up

ABSOLUTE MAXIMUM RATINGS

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>RATING</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltage</td>
<td>±22</td>
<td>V</td>
</tr>
<tr>
<td>µA747</td>
<td>±18</td>
<td>V</td>
</tr>
<tr>
<td>µA747C</td>
<td>±18</td>
<td>V</td>
</tr>
<tr>
<td>SA747C</td>
<td>±18</td>
<td>V</td>
</tr>
<tr>
<td>Internal power dissipation</td>
<td>500</td>
<td>mW</td>
</tr>
<tr>
<td>H Package</td>
<td>670</td>
<td>mW</td>
</tr>
<tr>
<td>N,F Packages</td>
<td>±30</td>
<td>V</td>
</tr>
<tr>
<td>Differential input voltage</td>
<td>±15</td>
<td>V</td>
</tr>
<tr>
<td>Input voltage</td>
<td>±15</td>
<td>V</td>
</tr>
<tr>
<td>Voltage between offset null and V-</td>
<td>±0.5</td>
<td>V</td>
</tr>
<tr>
<td>Storage temperature range</td>
<td>-65 to +155</td>
<td>°C</td>
</tr>
<tr>
<td>Operating temperature range</td>
<td>-55 to +125</td>
<td>°C</td>
</tr>
<tr>
<td>µA747</td>
<td>0 to +70</td>
<td>°C</td>
</tr>
<tr>
<td>µA747C</td>
<td>-40 to +85</td>
<td>°C</td>
</tr>
<tr>
<td>SA747C</td>
<td>300</td>
<td>°C</td>
</tr>
<tr>
<td>Lead temperature (soldering, 60 sec)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output short-circuit duration</td>
<td>indefinite</td>
<td></td>
</tr>
</tbody>
</table>

EQUIVALENT SCHEMATIC

EQUIVALENT CIRCUIT (EACH SIDE)
DC ELECTRICAL CHARACTERISTICS \(T_A = 25^\circ C, V_S = \pm 15V \) unless otherwise specified.

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>(\mu A747/747C/SA747C)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Voltages, (R_S = 10k\Omega)</td>
<td>Min</td>
</tr>
<tr>
<td>Offset voltage (V_{OS})</td>
<td>(R_S = 10k\Omega), over temperature</td>
<td>2.0</td>
</tr>
<tr>
<td>(\Delta V_{OS}/\Delta T)</td>
<td>(R_S = 10k\Omega), over temperature</td>
<td>3.0</td>
</tr>
<tr>
<td></td>
<td>(R_S = 10k\Omega), over temperature</td>
<td>10</td>
</tr>
<tr>
<td>Offset current (I_{OS})</td>
<td>Over temperature</td>
<td>20</td>
</tr>
<tr>
<td>(\Delta I_{OS}/\Delta T)</td>
<td>Over temperature</td>
<td>300</td>
</tr>
<tr>
<td>Input bias current (I_{BIAS})</td>
<td>Over temperature</td>
<td>500</td>
</tr>
<tr>
<td>(\Delta I_{BIAS}/\Delta T)</td>
<td>Over temperature</td>
<td>1</td>
</tr>
<tr>
<td>Output voltage swing (V_{OUT})</td>
<td>(R_L \geq 2k\Omega), over temperature</td>
<td>\pm 10</td>
</tr>
<tr>
<td></td>
<td>(R_L \geq 10k\Omega), over temperature</td>
<td>\pm 12</td>
</tr>
<tr>
<td>Offset current (I_{OC})</td>
<td>Over temperature</td>
<td>1.7</td>
</tr>
<tr>
<td></td>
<td>Over temperature</td>
<td>2.0</td>
</tr>
<tr>
<td>Power consumption</td>
<td>Over temperature</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>Over temperature</td>
<td>60</td>
</tr>
<tr>
<td>Input capacitance</td>
<td>Over temperature</td>
<td>1.4</td>
</tr>
<tr>
<td></td>
<td>Over temperature</td>
<td></td>
</tr>
<tr>
<td>Offset voltage adjustment range</td>
<td>(R_S = 10k\Omega), over temperature</td>
<td>\pm 15</td>
</tr>
<tr>
<td>Output resistance</td>
<td>Over temperature</td>
<td>75</td>
</tr>
<tr>
<td>Channel separation</td>
<td>Over temperature</td>
<td>120</td>
</tr>
<tr>
<td>PSRR</td>
<td>(R_S = 10k\Omega), over temperature</td>
<td>30</td>
</tr>
<tr>
<td>(A_{VOL})</td>
<td>(R_L \geq 2k\Omega), (V_{OUT} = \pm 10V)</td>
<td>25,000</td>
</tr>
<tr>
<td>CMRR</td>
<td>(R_S \leq 10k\Omega), (V_{CM} = \pm 12V)</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td>(R_S \leq 10k\Omega), (V_{CM} = \pm 12V)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Over temperature</td>
<td></td>
</tr>
<tr>
<td>(I_{SC})</td>
<td>Over temperature</td>
<td>10</td>
</tr>
</tbody>
</table>

AC ELECTRICAL CHARACTERISTICS \(T_A = 25^\circ C, V_S = \pm 15V \) unless otherwise specified.

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>(\mu A747/747C/SA747C)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(V_{IN} = 20mV, R_1 = 2k\Omega, C_1 < 100pf)</td>
<td>Min</td>
</tr>
<tr>
<td>Transient response</td>
<td>Unity gain (C_L \leq 100pf)</td>
<td>0.3</td>
</tr>
<tr>
<td>Risetime</td>
<td>Unity gain (C_L \leq 100pf)</td>
<td>5.0</td>
</tr>
<tr>
<td>Overshoot</td>
<td>Unity gain (C_L \leq 100pf)</td>
<td></td>
</tr>
<tr>
<td>Slew rate</td>
<td>(RL > 2k\Omega)</td>
<td>0.5</td>
</tr>
</tbody>
</table>
DC ELECTRICAL CHARACTERISTICS

\(T_A = 25^\circ C, \ V_{CC} = \pm 15V \) unless otherwise specified.¹

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>(\mu A747)</th>
<th>(\mu A747C)</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Min</td>
<td>Typ</td>
<td>Max</td>
</tr>
<tr>
<td>(V_{OS}) Offset voltage</td>
<td></td>
<td>2.0</td>
<td>5.0</td>
<td>6.0</td>
</tr>
<tr>
<td>(\Delta V_{OS}/\Delta T)</td>
<td></td>
<td>3.0</td>
<td>6.0</td>
<td>7.5</td>
</tr>
<tr>
<td>(I_{OB}) Offset current</td>
<td></td>
<td>20</td>
<td>200</td>
<td>200</td>
</tr>
<tr>
<td>(\Delta I_{OB}/\Delta T)</td>
<td></td>
<td>7.0</td>
<td>200</td>
<td>200</td>
</tr>
<tr>
<td>(I_{BIAS}) Input current</td>
<td></td>
<td>80</td>
<td>500</td>
<td>500</td>
</tr>
<tr>
<td>(\Delta I_{BIAS}/\Delta T)</td>
<td></td>
<td>80</td>
<td>500</td>
<td>500</td>
</tr>
<tr>
<td>(V_{OUT}) Output voltage swing</td>
<td>(R_L \geq 2k\Omega, \ over \ temp.)</td>
<td>±10</td>
<td>±13</td>
<td>±13</td>
</tr>
<tr>
<td></td>
<td>(R_L \geq 10k\Omega, \ over \ temp.)</td>
<td>±12</td>
<td>±14</td>
<td>±14</td>
</tr>
<tr>
<td>(I_{CC}) Supply current</td>
<td>(T_A = +125^\circ C)</td>
<td>1.7</td>
<td>2.8</td>
<td>2.8</td>
</tr>
<tr>
<td></td>
<td>(T_A = -55^\circ C)</td>
<td>1.5</td>
<td>2.5</td>
<td>2.5</td>
</tr>
<tr>
<td></td>
<td>Over temperature</td>
<td>2.0</td>
<td>3.3</td>
<td>3.3</td>
</tr>
<tr>
<td>Power consumption</td>
<td>(T_A = +125^\circ C)</td>
<td>50</td>
<td>85</td>
<td>85</td>
</tr>
<tr>
<td></td>
<td>(T_A = -55^\circ C)</td>
<td>45</td>
<td>75</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td>Over temperature</td>
<td>60</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Input capacitance</td>
<td></td>
<td>1.4</td>
<td>1.4</td>
<td>1.4</td>
</tr>
<tr>
<td>Offset voltage adjustment range</td>
<td></td>
<td>±15</td>
<td>±15</td>
<td>±15</td>
</tr>
<tr>
<td>Output resistance</td>
<td></td>
<td>75</td>
<td>75</td>
<td>75</td>
</tr>
<tr>
<td>Channel separation</td>
<td></td>
<td>120</td>
<td>120</td>
<td>120</td>
</tr>
<tr>
<td>PSRR Supply voltage rejection ratio</td>
<td>(R_S \geq 10k\Omega, \ over \ temp.)</td>
<td>30</td>
<td>150</td>
<td>150</td>
</tr>
<tr>
<td>(A_{VOL}) Large signal voltage gain (DC)</td>
<td>(R_L \geq 2k\Omega, \ V_{OUT} = \pm 10V)</td>
<td>50,000</td>
<td>25,000</td>
<td>25,000</td>
</tr>
<tr>
<td></td>
<td>Over temperature</td>
<td>50,000</td>
<td>25,000</td>
<td>25,000</td>
</tr>
<tr>
<td>CMRR</td>
<td>(R_S \geq 10k\Omega, \ V_{CM} = \pm 12V)</td>
<td>70</td>
<td>70</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td>Over temperature</td>
<td>70</td>
<td>70</td>
<td>70</td>
</tr>
</tbody>
</table>
TYPICAL PERFORMANCE CHARACTERISTICS

- **Open Loop Voltage Gain as a Function of Frequency**
 - Triode Amplifiers
 - Triode Amplifiers

- **Open Loop Phase Response as a Function of Frequency**
 - Triode Amplifiers
 - Triode Amplifiers

- **Output Voltage Swing as a Function of Frequency**
 - Triode Amplifiers

- **Open Loop Voltage Gain as a Function of Supply Voltage**
 - Triode Amplifiers

- **Output Voltage Swing as a Function of Supply Voltage**
 - Triode Amplifiers

- **Input Common Mode Voltage Range as a Function of Supply Voltage**
 - Triode Amplifiers

- **Transistor Response**
 - Triode Amplifiers

- **Voltage Follower Large Signal Pulse Response**
 - Triode Amplifiers

- **Frequency Characteristics as a Function of Supply Voltage**
 - Triode Amplifiers

Notes:
- Triode Amplifiers
- Triode Amplifiers
TYPICAL PERFORMANCE CHARACTERISTICS (Cont'd)

FREQUENCY CHARACTERISTICS AS A FUNCTION OF AMBIENT TEMPERATURE

V_s = ± 15V

POWER CONSUMPTION AS A FUNCTION OF SUPPLY VOLTAGE

T_a = 25°C

INPUT RESISTANCE AS A FUNCTION OF AMBIENT TEMPERATURE

V_s = ± 15V

INPUT OFFSET CURRENT AS A FUNCTION OF SUPPLY VOLTAGE

T_a = 25°C

INPUT OFFSET CURRENT AS A FUNCTION OF AMBIENT TEMPERATURE

V_s = ± 15V

POWER CONSUMPTION AS A FUNCTION OF AMBIENT TEMPERATURE

V_s = ± 15V

OUTPUT VOLTAGE SWING AS A FUNCTION OF LOAD RESISTANCE

V_s = ± 15V

OUTPUT SHORT-CIRCUIT CURRENT AS A FUNCTION OF AMBIENT TEMPERATURE

V_s = ± 15V
TYPICAL PERFORMANCE CHARACTERISTICS (Cont'd)

ABSOLUTE MAXIMUM POWER DISSIPATION AS A FUNCTION OF AMBIENT TEMPERATURE

INPUT NOISE VOLTAGE AS A FUNCTION OF FREQUENCY

INPUT NOISE CURRENT AS A FUNCTION OF FREQUENCY

BROADBAND NOISE FOR VARIOUS BANDWIDTHS

TEST CIRCUITS

TRANSIENT RESPONSE TEST CIRCUIT

VOLTAGE OFFSET NULL CIRCUIT
DESCRIPTION
The NE5517 contains two current controlled transconductance amplifiers, each with a differential input and push-pull output. The NE5517 offers significant design and performance advantages over similar devices for all types of programmable gain applications. Circuit performance is enhanced through the use of linearizing diodes at the inputs which enable a 10dB signal to noise improvement referenced to .5 percent THD. The NE5517 is suited for a wide variety of industrial and consumer applications and is recommended as the preferred circuit in the Dolby® HX (Headroom Extension) system.

Constant-Impedance Buffers on the chip allow general use of the NE5517. These buffers are made of Darlington-Transistor and a biasing-network which changes bias current in dependence of I_{ABC}.

Therefore changes of output offset voltages are almost eliminated. This is an advantage of the NE5517 compared to LM13600. With the LM13600 a burst in the bias current I_{ABC} guides to an audible offset voltage change at the output. With the Constant-Impedance Buffers of the NE5517 this effect can be avoided and makes this circuit preferable for high quality audio applications.

FEATURES
- Constant impedance buffers
- ΔVBE of buffer is constant with amplifier I_{ABC} Change
- Pin compatible with LM13600
- Excellent matching between amplifiers
- Linearizing diodes
- High output signal-to-noise ratio

APPLICATIONS
- Multiplexers
- Timers
- Electronic music synthesizers
- Dolby® HX Systems
- Current-controlled amplifiers, filters
- Current-controlled oscillators, impedances

ABSOLUTE MAXIMUM RATINGS

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>RATING</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Voltage1</td>
<td>36 VDC or ± 18 V</td>
<td></td>
</tr>
<tr>
<td>NE5517</td>
<td>44 VDC or ± 22 V</td>
<td></td>
</tr>
<tr>
<td>Power Dissipation² T_{A} = 25°C</td>
<td>570 mW</td>
<td></td>
</tr>
<tr>
<td>NE5517N, NE5517AN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Differential Input Voltage</td>
<td>±5 V</td>
<td></td>
</tr>
<tr>
<td>Diode Bias Current (I_D)</td>
<td>2 mA</td>
<td></td>
</tr>
<tr>
<td>Amplifier Bias Current (I_{ABC})</td>
<td>2 mA</td>
<td></td>
</tr>
<tr>
<td>Output Short Circuit Duration</td>
<td>Indefinite</td>
<td></td>
</tr>
<tr>
<td>Buffer Output Current³</td>
<td>20 mA</td>
<td></td>
</tr>
<tr>
<td>Operating Temperature Range</td>
<td>0°C to +70 °C</td>
<td></td>
</tr>
<tr>
<td>NE5517N, NE5517AN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DC Input Voltage</td>
<td>+V_S to −V_S</td>
<td></td>
</tr>
<tr>
<td>Storage Temperature Range</td>
<td>−65°C to +150 °C</td>
<td></td>
</tr>
<tr>
<td>Lead Temperature (Soldering, 10 Seconds)</td>
<td>300 °C</td>
<td></td>
</tr>
</tbody>
</table>

NOTE
*Dolby is a registered trademark of Dolby Laboratories Inc., San Francisco, Calif.

ABSOLUTE MAXIMUM RATINGS
PIN DESIGNATION

<table>
<thead>
<tr>
<th>PIN NO.</th>
<th>SYMBOL</th>
<th>NAME AND FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>IABCa</td>
<td>Amplifier bias input A</td>
</tr>
<tr>
<td>2</td>
<td>Da</td>
<td>Diode bias A</td>
</tr>
<tr>
<td>3</td>
<td>+INa</td>
<td>Non-inverting input A</td>
</tr>
<tr>
<td>4</td>
<td>-INa</td>
<td>Inverting input A</td>
</tr>
<tr>
<td>5</td>
<td>VoA</td>
<td>Output A</td>
</tr>
<tr>
<td>6</td>
<td>V-</td>
<td>negative supply</td>
</tr>
<tr>
<td>7</td>
<td>INBuffer (a)</td>
<td>Buffer input A</td>
</tr>
<tr>
<td>8</td>
<td>VoBuffer (a)</td>
<td>Buffer output A</td>
</tr>
<tr>
<td>9</td>
<td>VoBuffer (b)</td>
<td>Buffer output B</td>
</tr>
<tr>
<td>10</td>
<td>INBuffer (b)</td>
<td>Buffer input B</td>
</tr>
<tr>
<td>11</td>
<td>V+</td>
<td>Positive supply</td>
</tr>
<tr>
<td>12</td>
<td>VoB</td>
<td>Output B</td>
</tr>
<tr>
<td>13</td>
<td>-INb</td>
<td>Inverting input B</td>
</tr>
<tr>
<td>14</td>
<td>+INb</td>
<td>Non-inverting input B</td>
</tr>
<tr>
<td>15</td>
<td>Db</td>
<td>Diode bias B</td>
</tr>
<tr>
<td>16</td>
<td>IABCb</td>
<td>Amplifier bias input B</td>
</tr>
</tbody>
</table>

CONNECTION DIAGRAM

NOTE:
1. V+ of output buffers and amplifiers are internally connected.
ELECTRICAL CHARACTERISTICS

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>NE5517 Min</th>
<th>NE5517 Typ</th>
<th>NE5517 Max</th>
<th>NE5517A Min</th>
<th>NE5517A Typ</th>
<th>NE5517A Max</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input offset voltage (V_{OS})</td>
<td>Over temperature range</td>
<td>0.4</td>
<td>5</td>
<td>0.4</td>
<td>5</td>
<td>0.4</td>
<td>2</td>
<td>mV</td>
</tr>
<tr>
<td></td>
<td>I_{ABC} = 6 mA</td>
<td>0.3</td>
<td>5</td>
<td>0.3</td>
<td>2</td>
<td>0.3</td>
<td>2</td>
<td>mV</td>
</tr>
<tr>
<td>ΔV_{OS}/ΔT</td>
<td>Avg. TC of input offset voltage</td>
<td>7</td>
<td></td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td>μV/°C</td>
</tr>
<tr>
<td>V_{OS} including diodes</td>
<td>Diode bias current (I_{D}) = 500μA</td>
<td>0.5</td>
<td>5</td>
<td>0.5</td>
<td>2</td>
<td>0.5</td>
<td>2</td>
<td>mV</td>
</tr>
<tr>
<td>Input offset change</td>
<td>5μA ≤ I_{ABC} ≤ 500μA</td>
<td>0.1</td>
<td></td>
<td>0.1</td>
<td>3</td>
<td>0.1</td>
<td>3</td>
<td>mV</td>
</tr>
<tr>
<td>Input offset current</td>
<td>0.1</td>
<td>0.8</td>
<td></td>
<td>0.1</td>
<td>0.6</td>
<td>0.1</td>
<td>0.6</td>
<td>μA</td>
</tr>
<tr>
<td>ΔV_{OS}/ΔT</td>
<td>Avg. TC of input offset current</td>
<td>0.001</td>
<td></td>
<td>0.001</td>
<td></td>
<td></td>
<td></td>
<td>μA/°C</td>
</tr>
<tr>
<td>Input bias current</td>
<td>Over temperature range</td>
<td>0.4</td>
<td>5</td>
<td>0.4</td>
<td>5</td>
<td>0.4</td>
<td>5</td>
<td>μA</td>
</tr>
<tr>
<td>ΔV_{B}/ΔT</td>
<td>Avg. TC of input current</td>
<td>0.01</td>
<td></td>
<td>0.01</td>
<td></td>
<td></td>
<td></td>
<td>μA/°C</td>
</tr>
<tr>
<td>Forward Transconductance (gm)</td>
<td>Over temperature range</td>
<td>6700</td>
<td>5400</td>
<td>9800</td>
<td>13000</td>
<td>7700</td>
<td>4000</td>
<td>μmho</td>
</tr>
<tr>
<td>gm tracking</td>
<td></td>
<td>0.3</td>
<td></td>
<td>0.3</td>
<td></td>
<td></td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>Peak output current</td>
<td>RL = 0, I_{ABC} = 6 mA</td>
<td>350</td>
<td>500</td>
<td>650</td>
<td>350</td>
<td>500</td>
<td>650</td>
<td>μA</td>
</tr>
<tr>
<td></td>
<td>RL = 0, I_{ABC} = 500μA</td>
<td>300</td>
<td></td>
<td>300</td>
<td></td>
<td></td>
<td></td>
<td>μA</td>
</tr>
<tr>
<td></td>
<td>RL = 0</td>
<td>5</td>
<td></td>
<td>5</td>
<td></td>
<td>3</td>
<td>7</td>
<td>μA</td>
</tr>
<tr>
<td>Peak output voltage</td>
<td>Positive</td>
<td>+12</td>
<td>+14.2</td>
<td>+12</td>
<td>+14.2</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>Negative</td>
<td>-12</td>
<td>-14.4</td>
<td>-12</td>
<td>-14.4</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Supply current</td>
<td>I_{ABC} = 500μA, both channels</td>
<td>2.6</td>
<td>4</td>
<td>2.6</td>
<td>4</td>
<td></td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>VOS sensitivity</td>
<td>Positive</td>
<td>20</td>
<td>150</td>
<td>20</td>
<td>150</td>
<td>20</td>
<td>150</td>
<td>μV/V</td>
</tr>
<tr>
<td></td>
<td>Negative</td>
<td>20</td>
<td>150</td>
<td>20</td>
<td>150</td>
<td>20</td>
<td>150</td>
<td>μV/V</td>
</tr>
<tr>
<td>CMRR</td>
<td></td>
<td>80</td>
<td>110</td>
<td>80</td>
<td>110</td>
<td></td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>Common mode range</td>
<td>±12</td>
<td>±13.5</td>
<td>±12</td>
<td>±13.5</td>
<td>±12</td>
<td>±13.5</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Crosstalk</td>
<td>Referred to input^6</td>
<td>100</td>
<td></td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>Diff. input current</td>
<td>20 Hz < f < 20kHz</td>
<td>100</td>
<td></td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leakage current</td>
<td>I_{ABC} = 0, input = ±4V</td>
<td>0.02</td>
<td>100</td>
<td>0.02</td>
<td>10</td>
<td>0.2</td>
<td>5</td>
<td>nA</td>
</tr>
<tr>
<td>Input resistance</td>
<td>I_{ABC} = 0 (Refer to test circuit)</td>
<td>0.2</td>
<td>100</td>
<td>0.2</td>
<td>5</td>
<td></td>
<td></td>
<td>nA</td>
</tr>
<tr>
<td>Open loop bandwidth</td>
<td></td>
<td>10</td>
<td>26</td>
<td>10</td>
<td>26</td>
<td></td>
<td></td>
<td>Ω</td>
</tr>
<tr>
<td>Slew rate</td>
<td>Unity gain compensated</td>
<td>50</td>
<td></td>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td>V/μSec</td>
</tr>
<tr>
<td>Buff. input current</td>
<td></td>
<td>5</td>
<td>0.4</td>
<td>5</td>
<td>0.4</td>
<td>5</td>
<td>0.4</td>
<td>μA</td>
</tr>
<tr>
<td>Peak buffer output voltage</td>
<td></td>
<td>5</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>ΔV_{BE} of buffer</td>
<td>6 Refer to Buffer V_{BE} test circuit</td>
<td>0.5</td>
<td>5</td>
<td>0.5</td>
<td>5</td>
<td></td>
<td></td>
<td>mV</td>
</tr>
</tbody>
</table>

NOTES

1. For selections to a supply voltage above ±22V, contact factory.
2. For operating at high temperatures, the device must be derated based on a 150°C maximum junction temperature and a thermal resistance of 175°C/W which applies for the device soldered in a printed circuit board, operating in still air.
3. Buffer output current should be limited so as to not exceed package dissipation.
4. These specifications apply for V_{GS} = ±15V, T_{A} = 25°C, amplifier bias current (I_{ABC}) = 600μA, pins 2 and 16 open unless otherwise specified. The inputs to the buffers are grounded and outputs are open.
5. These specifications apply for V_{GS} = ±15V, I_{ABC} = 500μA, R_{OUT} = 5kΩ connected from the buffer output to −V_{G} and the input of the buffer is connected to the transconductance amplifier output.
6. V_{G} = ±15, R_{OUT} = 5kΩ connected from Buffer output to −V_{G} and 5μA ≤ I_{ABC} ≤ 500μA.
TYPICAL PERFORMANCE CHARACTERISTICS

INPUT OFFSET VOLTAGE

INPUT OFFSET CURRENT

INPUT BIAS CURRENT

PEAK OUTPUT CURRENT

PEAK OUTPUT VOLTAGE AND
COMMON MODE RANGE

LEAKAGE CURRENT

INPUT LEAKAGE

TRANSCONDUCTANCE

INPUT RESISTANCE
TYPICAL PERFORMANCE CHARACTERISTICS (Cont'd)

AMPLIFIER BIAS VOLTAGE vs AMPLIFIER BIAS CURRENT

INPUT AND OUTPUT CAPACITANCE

DISTORTION vs DIFFERENTIAL INPUT VOLTAGE

VOLTAGE vs AMPLIFIER BIAS CURRENT

OUTPUT NOISE vs FREQUENCY
TYPICAL PERFORMANCE CHARACTERISTICS (Cont'd)

LEAKAGE CURRENT TEST CIRCUIT

DIFFERENTIAL INPUT CURRENT TEST CIRCUIT

BUFFER VBE TEST CIRCUIT

APPLICATIONS

UNITY GAIN FOLLOWER
CIRCUIT DESCRIPTION

The circuit schematic diagram of one half of the NE5517, a dual operational transconductance amplifier with linearizing diodes and impedance buffers, is shown in Figure 1.

1. Transconductance Amplifier

The transistor pair Q4 and Q2 form a transconductance stage. The ratio of their collector currents (I4 and I5 respectively) is defined by the differential input voltage, V_{IN}, which is shown in equation 1.

\[V_{IN} = \frac{KT}{q} \ln \frac{I_5}{I_4} \]

(1)

Where V_{IN} is the difference of the two input voltages

\(KT = 26mV \) at room temperature (300°K)

Transistors Q4, Q2, and diode D1 form a current mirror which focuses the sum of current I4 and I5 to be equal to amplifier bias current I_B.

\[I_4 + I_5 = I_B \]

(2)

If \(V_{IN} \) is small the ratio of I5 and I4 will approach to unity and the Taylor series of \(\ln \) function can be approximated as:

\[\ln \frac{I_5}{I_4} \approx \frac{KT}{q} I_{IN} \]

(3)

and \(I_4 = I_5 = \frac{I_B}{2} \)

\[\frac{KT}{q} \ln \frac{I_5}{I_4} = \frac{KT}{q} \frac{I_5 - I_4}{I_4} = \frac{2KT}{q} \frac{I_5 - I_4}{I_4} = \frac{2KT}{q} I_{IN} \]

\[I_5 - I_4 = \frac{I_{IN}}{2KT} \]

(4)

The remaining transistors (Q6 to Q11) and diodes (D4 to D6) form three current mirrors that produce an output current equal to I5 minus I4. Thus:

\[V_{IN} \left(\frac{I_B}{2KT} \right) = I_5 \]

(5)

The term \(\frac{I_B}{2KT} \) is then the transconductance of the amplifier and is proportional to I_B.

2. Linearizing Diodes

For \(V_{IN} \) greater than a few millivolts, equation 3 becomes invalid and the transconductance increases nonlinearly. Figure 2 shows how the internal diodes can linearize the transfer function of the operational amplifier. Assume D2 and D3 are biased with current sources and the input signal current is I_4. Since

\[I_4 + I_5 = I_B \]

and \(I_5 - I_4 = I_B - I_4 \), that is:

\[I_4 = \frac{1}{2}(I_B - I_5) \]

\[I_5 = \frac{3}{2}(I_B + I_4) \]
For the diodes and the input transistors that have identical geometries and are subject to similar voltages and temperatures, the following equations is true:

\[
\frac{I_d}{I_s} + \frac{1}{2} = \frac{I_d}{I_s} + \frac{1}{2}
\]

\[
\frac{I_d}{I_s} = \frac{1}{2} \quad \text{for } |I_s| < \frac{1}{2}
\]

The only limitation is that the signal current should not exceed 1/2 I_d.

3. Impedance Buffer

The upper limit of transconductance is defined by the maximum value of I_d (2mA). The lowest value of I_d for which the amplifier will function therefore determines the overall dynamic range. At low values of I_d, a buffer with very low input bias current is desired. A Darlington amplifier with constant current source (Q14, Q15, Q16, D7, D8, and R1) suits the need.

APPLICATIONS

Voltage Controlled Amplifier

The voltage-divider \(R_2, R_3 \) divides the input-voltage into small values (mV-range) so the amplifier operates in a linear manner.

It is:

\[
I_{OUt} = -V_{IN} \times \frac{R_3}{R_2 + R_3} \times gm;
\]

\[
V_{OUT} = I_{OUt} \times R_L;
\]

\[
A = \frac{V_{OUT}}{V_{IN}} = \frac{R_3}{R_2 + R_3} \times gm \times R_L;
\]

\[
A = \frac{R_3}{R_2 + R_3} \times gm \times R_L \quad \text{(3) } gm = 19.2 \times I_{ABC}
\]

\(gm \) in mS for \(I_{ABC} \) in mA

Since \(gm \) is directly proportional to \(I_{ABC} \), the amplification is controlled by the voltage \(V_C \) in a simple way.

When \(V_C \) is taken relative to \(-V_{CC} \) the following formula is valid:

\[
I_{ABC} = \frac{(V_C - 1.2V)}{R_1};
\]

The 1.2V is the voltage across two base-emitter paths in the current mirrors. This circuit is the base for many applications of the NE5517.
Stereo Amplifier With Gain Control

Figure 4 shows a stereo amplifier with variable gain via a control input. Excellent tracking of typical 0.3dB is easy to achieve. With the potentiometer R_p, the offset can be adjusted. For AC-coupled amplifiers you can replace the potentiometer with two 510Ω resistors.

Modulators

Because the transconductance of an OTA is directly proportional to I_{ABC}, the amplification of a signal can be controlled easily. The output current is the product from transconductance \times input voltage. The circuit works up to approximately 200kHz. Modulation of 99 percent is easy to achieve.

Voltage Controlled Resistors (VCR)

The principle is based on the capability of an OTA to vary a current proportional to a controlled voltage which is according to a resistor. The circuit takes advantage of the possibility to control a resistor via gm.

Voltage Controlled Filters

Voltage controlled filters can be realized extremely easily with the help of an OTA.

Figure 8 shows the circuit for a low-pass filter. Below the corner frequency the circuit has an amplification of 0dB. Above the corner frequency the attenuation drops by 6dB/octave. The high-pass filter is built in a similar manner, except the input is coupled via capacitor.

Voltage Controlled Oscillators

Figure 12 shows a voltage controlled triangle-square-wave-generator. With the indicated values a range from 2Hz to 200kHz is possible by varying I_{ABC} from 1mA to 10µA.
The output amplitude is determined by

\[I_{\text{OUT}} \times R_{\text{OUT}} \]

Please notice the differential-input-voltage is not allowed to be above 5V.

With a slight modification of this circuit you can get the sawtooth-pulse-generator as shown in Figure 13.

Programmable Amplifier

The intention of the following application is to show how the NE5517 works in connection with a DAC. Almost all applications described above can be made digitally programmable (µP-compatible) in this way.

In the application Figure 14 the NE5118 is used, an eight-bit DAC with current output (see Section), its input-register makes this device fully µP-compatible.

The circuitry of Figure 14 consists of three functional blocks: the NE5118, which generates a control current equivalent to the applied data byte, a current mirror, and the NE5517.

The amplification is given by the following equation:

\[
A = \frac{DW(10) \times I_{\text{DAC max}}}{256} \times \frac{1}{2 \times V_T} \times R_L
\]

\[DW(10) \]

= Data word decimal

\[I_{\text{DAC max}} \]

= Maximum DAC output current (here -1mA)

\[R_L \]

= Load resistance

The equation is only valid for the amplification of the signal directly applied to the OTA. To get the gain overall A must be multiplied with the input-attenuation factor.

APPLICATION HINTS:

To hold the transconductance gm within the linear range, \(I_{\text{ABC}} \) should be chosen not greater than 1mA. The current mirror ratio should be as accurate as possible over the entire current range. A current mirror with only two transistors is not recommended. A suitable current mirror can be built with a pnp-transistor array which causes excellent matching and thermal coupling among the transistors. The output current range of the DAC normally reaches from 0 . . . -2mA. In this application, however, the current range is set through \(R_{\text{REF}} (10K) \) to 0 . . . -1mA.

\[I_{\text{DAC max}} = 2 \times \frac{V_{\text{REF}}}{R_{\text{REF}}} = 2 \times \frac{5V}{10K} = 1mA \]
Figure 10. Butterworth Filter — 2nd Order

Figure 11. State Variable Filter

Figure 12. Triangle-Squarewave-Generator (VCO)
Figure 13. Sawtooth-Pulse-VCO

\[V_{PK} = \left(\frac{V_{CC} - 0.8}{2} \right) \frac{R_1}{R_1 + R_2} \frac{2V_{CC} \times C}{I_B} \frac{T_H}{T_L} \frac{2V_{CC} \times C}{I_C} \frac{I_C}{2V_{CC} \times C} \frac{I_C}{I_B} \]

For additional information, consult the Applications Section.
LINEAR LSI PRODUCTS

ULTRA HIGH FREQUENCY OPERATIONAL AMPLIFIER SE/NE5539

DESCRIPTION
The Signetics SE/NE5539 is a very wide bandwidth, high slew rate, monolithic operational amplifier for use in video amplifiers, RF amplifiers, and extremely high slew rate amplifiers.

Emitter follower inputs provide a true differential high input impedance device. Proper external compensation will allow design operation over a wide range of closed loop gains, both inverting and non-inverting, to meet specific design requirements.

FEATURES
- Gain bandwidth product: 1.2GHz at 17dB
- Slew rate: 600/V/sec
- Full power response: 48MHz
- \(A_{\text{Vol}} \): 52dB typical
- 350MHz unity gain

APPLICATIONS
- Fast pulse amplifiers
- RF oscillators
- Fast sample and hold
- High gain video amplifiers (BW > 20MHz)

ABSOLUTE MAXIMUM RATINGS

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>RATING</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{\text{CC}})</td>
<td>Supply voltage</td>
<td>±12 V</td>
</tr>
<tr>
<td>(P_{\text{D}})</td>
<td>Internal power dissipation</td>
<td>550 mW</td>
</tr>
<tr>
<td>(T_{\text{STG}})</td>
<td>Storage temperature range</td>
<td>-65 to +150 °C</td>
</tr>
<tr>
<td>(T_{J})</td>
<td>Max junction temperature</td>
<td>150 °C</td>
</tr>
<tr>
<td>(T_{A})</td>
<td>Operating temperature range</td>
<td>0 to 70 °C</td>
</tr>
<tr>
<td>NE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lead temperature</td>
<td></td>
<td>-55 to +125 °C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>300 °C</td>
</tr>
</tbody>
</table>

EQUIVALENT CIRCUIT

PIN CONFIGURATION

D,F,N PACKAGE

TOP VIEW

ORDER NUMBERS
SE/NE5539F SE/NE5539N
NE5539D

6-96
DC ELECTRICAL CHARACTERISTICS \(V_{CC} = \pm 8V, \: T_A = 25^\circ C \) unless otherwise specified

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>SE5539</th>
<th>NE5539</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{os}) Input offset voltage</td>
<td>(V_0 = 0V, : R_S = 100\Omega)</td>
<td>Over temp</td>
<td>Min 2</td>
<td>Typ 5</td>
</tr>
<tr>
<td></td>
<td>(T_A = 25^\circ C)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\Delta V_{os}/\Delta T)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(I_{os}) Input offset current</td>
<td></td>
<td>Over temp</td>
<td></td>
<td>.1</td>
</tr>
<tr>
<td></td>
<td>(T_A = 25^\circ C)</td>
<td></td>
<td>.1</td>
<td>1</td>
</tr>
<tr>
<td>(\Delta I_{os}/\Delta T)</td>
<td></td>
<td></td>
<td>.5</td>
<td></td>
</tr>
<tr>
<td>(I_B) Input bias current</td>
<td></td>
<td>Over temp</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>(T_A = 25^\circ C)</td>
<td></td>
<td>5</td>
<td>13</td>
</tr>
<tr>
<td>(\Delta I_B/\Delta T)</td>
<td></td>
<td></td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>(CMRR) Common mode rejection ratio</td>
<td>(F = 1kHz, : R_S = 100\Omega, : V_{cm} \pm 1.7V)</td>
<td>Over temp</td>
<td>70</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(R_{IN}) Input impedance</td>
<td>(R_L = 150\Omega) to GND</td>
<td>Over temp</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>and (470\Omega) to (-V_{CC})</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(V_{OUT}) Output voltage swing</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(R_{OUT}) Output impedance</td>
<td>(R_L = 2k\Omega) to GND</td>
<td>Over temp</td>
<td></td>
<td>+2.3</td>
</tr>
<tr>
<td></td>
<td>(T_A = 25^\circ C)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(I_{cc+}) Positive supply current</td>
<td>(V_0 = 0, : R_1 = \infty)</td>
<td>Over temp</td>
<td>14</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>(T_A = 25^\circ C)</td>
<td></td>
<td>14</td>
<td>17</td>
</tr>
<tr>
<td>(I_{cc-}) Negative supply current</td>
<td>(V_0 = 0, : R_1 = \infty)</td>
<td>Over temp</td>
<td>11</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>(T_A = 25^\circ C)</td>
<td></td>
<td>11</td>
<td>14</td>
</tr>
<tr>
<td>(PSRR) Power supply rejection ratio</td>
<td>(\Delta V_{CC} = \pm 1V)</td>
<td>Over temp</td>
<td>300</td>
<td>1000</td>
</tr>
<tr>
<td></td>
<td>(T_A = 25^\circ C)</td>
<td></td>
<td>200</td>
<td>1000</td>
</tr>
<tr>
<td>(AVOL) Large signal voltage gain</td>
<td>(V_0 = +2.3V, : -1.7V)</td>
<td>(R_L = 150\Omega) to GND, (470\Omega) to (-V_{CC})</td>
<td>47</td>
<td>52</td>
</tr>
<tr>
<td>(AVOL) Large signal voltage gain</td>
<td>(V_0 = +2.3V, : -1.7V)</td>
<td>(R_L = 2k\Omega) to GND</td>
<td>47</td>
<td>52</td>
</tr>
<tr>
<td>(AVOL) Large signal voltage gain</td>
<td>(V_0 = +2.5V, : -2.0V)</td>
<td>(R_L = 2k\Omega) to GND</td>
<td>46</td>
<td>60</td>
</tr>
</tbody>
</table>

NOTE
1. Differential input voltage should not exceed 0.25 volts to prevent excessive input bias current and common mode voltage 2.5 volts. These voltage limits may be exceeded if current limit is 10mA.
AC Electrical Characteristics

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Test Conditions</th>
<th>SE5539</th>
<th>NE5539</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gain bandwidth product</td>
<td>$A_{CL} = 7$ $V_{O} = 0.1\ V_{p-p}$</td>
<td>1200</td>
<td>1200</td>
<td>MHz</td>
</tr>
<tr>
<td>Small signal bandwidth</td>
<td>$A_{CL} = 2$ $R_L = 150\Omega$</td>
<td>110</td>
<td>110</td>
<td>MHz</td>
</tr>
<tr>
<td>Settling time</td>
<td>$A_{CL} = 2$ $R_L = 1500\Omega$</td>
<td>15</td>
<td>15</td>
<td>nSec</td>
</tr>
<tr>
<td>Slew rate</td>
<td>$A_{CL} = 2$ $R_L = 150\Omega$</td>
<td>600</td>
<td>600</td>
<td>V/μSec</td>
</tr>
<tr>
<td>Propagation delay</td>
<td>$A_{CL} = 2$ $R_L = 150\Omega$</td>
<td>7</td>
<td>7</td>
<td>nSec</td>
</tr>
<tr>
<td>Full power response</td>
<td>$A_{CL} = 2$ $R_L = 150\Omega$</td>
<td>48</td>
<td>48</td>
<td>MHz</td>
</tr>
<tr>
<td>Full power response $A_{V} = 7$ $R_L = 150\Omega$</td>
<td>20</td>
<td>20</td>
<td>MHz</td>
<td></td>
</tr>
<tr>
<td>Input noise voltage</td>
<td>$R_S = 500\Omega$</td>
<td>4</td>
<td>4</td>
<td>nV/√Hz</td>
</tr>
</tbody>
</table>

NOTE 1: External compensation.

DC Electrical Characteristics

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Test Conditions</th>
<th>SE5539</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{OS} Input offset voltage</td>
<td>$V_{CM} = ±1.3\ V$, $R_S = 1000\Omega$</td>
<td>70</td>
<td>85</td>
</tr>
<tr>
<td>I_{OS} Input offset current</td>
<td>Over temp $T_A = 25\ ^\circ C$</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>I_B Input bias current</td>
<td>Over temp $T_A = 25\ ^\circ C$</td>
<td>5</td>
<td>20</td>
</tr>
<tr>
<td>CMRR Common mode rejection ratio</td>
<td>$V_{CM} = ±1\ V$, $R_S = 1000\Omega$</td>
<td>70</td>
<td>85</td>
</tr>
<tr>
<td>I_{CC}^+ Positive supply current</td>
<td>Over temp $T_A = 25\ ^\circ C$</td>
<td>11</td>
<td>14</td>
</tr>
<tr>
<td>I_{CC}^- Negative supply current</td>
<td>Over temp $T_A = 25\ ^\circ C$</td>
<td>8</td>
<td>11</td>
</tr>
<tr>
<td>PSRR Power supply rejection ratio</td>
<td>Over temp $T_A = 25\ ^\circ C$</td>
<td>300</td>
<td>1000</td>
</tr>
</tbody>
</table>

AC Electrical Characteristics

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Test Conditions</th>
<th>SE5539</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gain bandwidth product</td>
<td>$A_{CL} = 7$</td>
<td>700</td>
<td>MHz</td>
</tr>
<tr>
<td>Small signal bandwidth</td>
<td>$A_{CL} = 2^1$</td>
<td>120</td>
<td>MHz</td>
</tr>
<tr>
<td>Settling time</td>
<td>$A_{CL} = 2^1$</td>
<td>23</td>
<td>ns</td>
</tr>
<tr>
<td>Slew rate</td>
<td>$A_{CL} = 2^1$</td>
<td>330</td>
<td>V/μs</td>
</tr>
<tr>
<td>Propagation delay</td>
<td>$A_{CL} = 2^1$</td>
<td>4.5</td>
<td>ns</td>
</tr>
<tr>
<td>Full power response</td>
<td>$A_{CL} = 2^1$</td>
<td>20</td>
<td>MHz</td>
</tr>
</tbody>
</table>

NOTE 1: External compensation.
LINEAR LSI PRODUCTS

ULTRA HIGH FREQUENCY OPERATIONAL AMPLIFIER SE/NE5539

NE5539 OPEN LOOP PHASE

NE5539 OPEN LOOP GAIN

POWER BANDWIDTH (SE)

POWER BANDWIDTH (NE)

SE5539 OPEN LOOP GAIN vs FREQUENCY

POWER BANDWIDTH

SE5539 OPEN LOOP PHASE vs FREQUENCY

GAIN BANDWIDTH PRODUCT vs FREQUENCY

NOTE

Indicates typical distribution

$-65^\circ C \leq T_A \leq 125^\circ C$
CIRCUIT LAYOUT CONSIDERATIONS
As may be expected for an ultra-high frequency, wide gain bandwidth amplifier, the physical circuit layout is extremely critical. Breadboarding is not recommended. A double-sided copper clad printed circuit board will result in more favorable system operation. An example utilizing a 28dB non-inverting amp is shown in Figure 1.

![Figure 1. 28dB Non-Inverting Amp Sample P.C. Layout](image-url)
NE5539 COLOR VIDEO AMPLIFIER

The NE5539 wideband operational amplifier is easily adapted for use as a color video amplifier. A typical circuit is shown in Figure 2 along with vector-scope photographs showing the amplifier differential gain and phase response to a standard five step modulated staircase linearity signal (Figures 3, 4 and 5). As can be seen in Figure 4, the gain varies less than 0.5% from the bottom to the top of the staircase. The maximum differential phase shown in Figure 5 is approximately +0.1°.

The amplifier circuit was optimized for a 75Ω input and output termination impedance with a gain of approximately 10 (20dB).

NOTE
The input signal was 200mV and the output 2V. VCC was ±8V.

Figure 2. NE5539 Video Amplifier

Figure 3. Input Signal

Figure 4. Differential Gain <0.5%

NOTE:
1. Instruments used for these measurements were Tektronix, 146 NTSC test signal generator, 520A NTSC vectorscope, and 1480 waveform monitor.
Figure 5. Differential Phase $+0.1^\circ$

APPLICATIONS

Figure 6

Figure 7

For additional information, consult the Applications Section.
DESCRIPTION
The NE5592 is a dual monolithic, two stage, differential output, wideband video amplifier. It offers fixed gain of 400 without external components or adjustable gains from 400 to 0 with one external resistor. The input stage has been designed so that with the addition of a few external reactive elements between the gain select terminals, the circuit can function as a high pass, low pass, or band pass filter. This feature makes the circuit ideal for use as a video or pulse amplifier in communications, magnetic memories, display, video recorder systems, and floppy disk head amplifiers.

FEATURES
- 120MHz bandwidth
- Adjustable gains from 0 to 400
- Adjustable pass band
- No frequency compensation required
- Wave shaping with minimal external components

APPLICATIONS
- Floppy disk head amplifier
- Video amplifier
- Pulse amplifier in communications
- Magnetic memory
- Video recorder systems

ABSOLUTE MAXIMUM RATINGS $T_A = 25°C$ unless otherwise specified.

<table>
<thead>
<tr>
<th>SYMBOL AND PARAMETER</th>
<th>RATING</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltage</td>
<td>±8</td>
<td>V</td>
</tr>
<tr>
<td>Differential input voltage</td>
<td>±5</td>
<td>V</td>
</tr>
<tr>
<td>Common mode input voltage</td>
<td>±6</td>
<td>V</td>
</tr>
<tr>
<td>Output current</td>
<td>10</td>
<td>mA</td>
</tr>
<tr>
<td>Operating temperature range</td>
<td>NE5592</td>
<td>0 to +70</td>
</tr>
<tr>
<td>Storage temperature range</td>
<td>-65 to +150</td>
<td>°C</td>
</tr>
<tr>
<td>Power dissipation</td>
<td>500</td>
<td>mW</td>
</tr>
</tbody>
</table>

EQUIVALENT CIRCUIT
DC ELECTRICAL CHARACTERISTICS \(T_A = \pm 25^\circ C, V_{SS} = \pm 6V, V_{CM} = 0 \) unless otherwise specified. Recommended operating supply voltage \(V_S = \pm 6.0V \). Gain select pins connected together.

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>NE5592</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Min</td>
<td>Typ</td>
</tr>
<tr>
<td>Differential voltage gain</td>
<td>(R_L = 2k\Omega, V_{OUT} = 3V \ p-p)</td>
<td>400</td>
<td>480</td>
</tr>
<tr>
<td>Bandwidth</td>
<td>(V_{OUT} = 1V \ p-p)</td>
<td>25</td>
<td>15</td>
</tr>
<tr>
<td>Rise time</td>
<td>(V_{OUT} = 1V \ p-p)</td>
<td>7.5</td>
<td>12</td>
</tr>
<tr>
<td>Propagation delay</td>
<td>(V_{OUT} = 1V \ p-p)</td>
<td>3</td>
<td>14</td>
</tr>
<tr>
<td>Input resistance</td>
<td>(V_{OUT} = 1V \ p-p)</td>
<td>0.3</td>
<td>3</td>
</tr>
<tr>
<td>Input capacitance</td>
<td>(V_{OUT} = 1V \ p-p)</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>Input bias current</td>
<td>(V_{OUT} = 1V \ p-p)</td>
<td>0.3</td>
<td>3</td>
</tr>
<tr>
<td>Input noise voltage</td>
<td>(V_{OUT} = 1V \ p-p)</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>Input voltage range</td>
<td>(V_{OUT} = 1V \ p-p)</td>
<td>7.5</td>
<td>12</td>
</tr>
<tr>
<td>Common mode rejection ratio</td>
<td>(V_{CM} = \pm 1V, f < 100kHz)</td>
<td>60</td>
<td>93</td>
</tr>
<tr>
<td>Supply voltage rejection ratio</td>
<td>(V_{CM} = \pm 1V, f = 5MHz)</td>
<td>50</td>
<td>87</td>
</tr>
<tr>
<td>Channel separation</td>
<td>(V_{OUT} = 1V \ p-p; f = 100kHz)</td>
<td>65</td>
<td>75</td>
</tr>
<tr>
<td>Output offset voltage</td>
<td>(R_L = \infty)</td>
<td>0.5</td>
<td>1.5</td>
</tr>
<tr>
<td>Gain select pins open</td>
<td>(R_L = \infty)</td>
<td>0.25</td>
<td>0.75</td>
</tr>
<tr>
<td>Output common mode voltage</td>
<td>(R_L = \infty)</td>
<td>2.4</td>
<td>3.1</td>
</tr>
<tr>
<td>Output differential voltage swing</td>
<td>(R_L = 2k\Omega)</td>
<td>3.0</td>
<td>4.0</td>
</tr>
<tr>
<td>Output resistance</td>
<td>(R_L = \infty)</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Power supply current</td>
<td>(R_L = \infty)</td>
<td>35</td>
<td>44</td>
</tr>
<tr>
<td>(Total for both sides)</td>
<td>(R_L = \infty)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

THE FOLLOWING SPECS APPLY OVER TEMPERATURE \(0^\circ C \leq T_A \leq 70^\circ C \)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>350</td>
<td>430</td>
<td>600</td>
</tr>
<tr>
<td>Input resistance</td>
<td>(V_{CM} = \pm 1V, f < 100kHz)</td>
<td>1</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>Input offset current</td>
<td>(R_L = \infty)</td>
<td>5</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>Input bias current</td>
<td>(V_{CM} = \pm 1V, f < 100kHz)</td>
<td>5</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>Input voltage range</td>
<td>(V_{CM} = \pm 1V, f < 100kHz)</td>
<td>5</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>Common mode rejection ratio</td>
<td>(R_L = \infty)</td>
<td>350</td>
<td>430</td>
<td>600</td>
</tr>
<tr>
<td>Supply voltage rejection ratio</td>
<td>(R_L = \infty)</td>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Channel separation</td>
<td>(V_{OUT} = 1V \ p-p; f = 100kHz)</td>
<td>75</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output offset voltage</td>
<td>(R_L = \infty)</td>
<td>1.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gain select pins connected together</td>
<td>(R_L = \infty)</td>
<td>1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output differential voltage swing</td>
<td>(R_L = 2k\Omega)</td>
<td>2.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power supply current</td>
<td>(R_L = \infty)</td>
<td>47</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TYPICAL PERFORMANCE CHARACTERISTICS

COMMON MODE REJECTION RATIO AS A FUNCTION OF FREQUENCY

OUTPUT VOLTAGE SWING AS A FUNCTION OF FREQUENCY

CHANNEL SEPARATION AS A FUNCTION OF FREQUENCY

DIFFERENTIAL OVERDRIVE RECOVERY TIME

PULSE RESPONSE AS A FUNCTION OF SUPPLY VOLTAGE

GAIN vs FREQUENCY AS A FUNCTION OF SUPPLY VOLTAGE

VOLTAGE GAIN AS A FUNCTION OF TEMPERATURE

VOLTAGE GAIN AS A FUNCTION OF FREQUENCY

VOLTAGE GAIN AS A FUNCTION OF SUPPLY VOLTAGE

NE5592
TYPICAL PERFORMANCE CHARACTERISTICS (Cont'd)

<table>
<thead>
<tr>
<th>GAIN vs FREQUENCY AS A FUNCTION OF SUPPLY VOLTAGE</th>
<th>PHASE vs FREQUENCY AS A FUNCTION OF SUPPLY VOLTAGE</th>
<th>VOLTAGE GAIN AS A FUNCTION OF R_{ADJ.}</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SUPPLY CURRENT AS A FUNCTION OF TEMPERATURE</th>
<th>SUPPLY CURRENT AS A FUNCTION OF SUPPLY VOLTAGE</th>
<th>OUTPUT VOLTAGE SWING AND SINK CURRENT AS A FUNCTION OF SUPPLY VOLTAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>OUTPUT VOLTAGE SWING AS A FUNCTION OF LOAD RESISTANCE</th>
<th>INPUT RESISTANCE AS A FUNCTION OF TEMPERATURE</th>
<th>INPUT NOISE VOLTAGE AS A FUNCTION OF FREQUENCY</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

6-106
TEST CIRCUITS \(T_A = 25^\circ C \) unless otherwise specified

\[V_{in} \] is connected to an amplifier, with resistors and capacitors in the feedback loop. The output \(V_{out} \) is measured.

[Diagram of the test circuit with labels and values]

\(V_S = \pm 6V \) \(T_A = 25^\circ C \)
DESCRIPTION
The SE/NE592 is a monolithic, two-stage, differential output, wideband video amplifier. It offers fixed gains of 100 and 400 without external components and adjustable gains from 400 to 0 with one external resistor. The input stage has been designed so that with the addition of a few external reactive elements between the gain select terminals, the circuit can function as a high pass, low pass, or band pass filter. This feature makes the circuit ideal for use as a video or pulse amplifier in communications, magnetic memories, display, video recorder systems, and floppy disk head amplifiers. Now available in an 8-pin version with fixed gain of 400 without external components and adjustable gain from 400 to 0 with one external resistor.

FEATURES
- 120MHz bandwidth
- Adjustable gains from 0 to 400
- Adjustable pass band
- No frequency compensation required
- Wave shaping with minimal external components

APPLICATIONS
- Floppy disk head amplifier
- Video amplifier
- Pulse amplifier in communications
- Magnetic memory
- Video recorder systems

ABSOLUTE MAXIMUM RATINGS
- Supply voltage: ±8 V
- Differential input voltage: ±5 V
- Common mode input voltage: ±6 V
- Output current: 10 mA
- Operating temperature range: SE592 -55 to +125°C, NE592 0 to +70°C
- Storage temperature range: -65 to +150°C
- Power dissipation: 500 mW

EQUIVALENT CIRCUIT

Also N8, N14, D8 and D14 package parts available in “High” gain version by adding “H” before package designation, as: NE592HD8.
DC ELECTRICAL CHARACTERISTICS: \(T_A = +25°C, V_{SS} = ±6V, V_{CM} = 0 \) unless otherwise specified. Recommended operating supply voltages \(V_S = ±6.0V \). All specifications apply to both standard and high gain parts unless noted differently.

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>NE592</th>
<th>SE592</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Differential voltage gain, standard part</td>
<td>(R_L = 2k\Omega, V_{OUT} = 3V) p-p</td>
<td>250</td>
<td>400</td>
<td>600</td>
</tr>
<tr>
<td>Gain 1(^1)</td>
<td></td>
<td>80</td>
<td>100</td>
<td>120</td>
</tr>
<tr>
<td>Gain 2(^{2,4})</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High gain part</td>
<td></td>
<td>400</td>
<td>500</td>
<td>600</td>
</tr>
<tr>
<td>Bandwidth</td>
<td></td>
<td>40</td>
<td>40</td>
<td>MHz</td>
</tr>
<tr>
<td>Gain 1(^1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gain 2(^{2,4})</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rise time</td>
<td></td>
<td>(V_{OUT} = 1V) p-p</td>
<td>10.5</td>
<td>10.5</td>
</tr>
<tr>
<td>Gain 1(^1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gain 2(^{2,4})</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Propagation delay</td>
<td></td>
<td>(V_{OUT} = 1V) p-p</td>
<td>7.5</td>
<td>7.5</td>
</tr>
<tr>
<td>Input resistance</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gain 1(^1)</td>
<td></td>
<td>10</td>
<td>4.0</td>
<td>4.0</td>
</tr>
<tr>
<td>Gain 2(^{2,4})</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input capacitance</td>
<td>Gain 2(^4)</td>
<td></td>
<td>2.0</td>
<td></td>
</tr>
<tr>
<td>Input offset current</td>
<td></td>
<td>0.4</td>
<td>0.4</td>
<td>3.0</td>
</tr>
<tr>
<td>Input bias current</td>
<td></td>
<td>9.0</td>
<td>9.0</td>
<td>20</td>
</tr>
<tr>
<td>Input noise voltage</td>
<td>BW 1kHz to 10MHz</td>
<td>12</td>
<td>12</td>
<td>μVrms</td>
</tr>
<tr>
<td>Input voltage range</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Common mode rejection ratio</td>
<td></td>
<td>(V_{CM} ± 1V, f<100kHz)</td>
<td>60</td>
<td>86</td>
</tr>
<tr>
<td>Gain 2(^4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gain 2(^2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supply voltage rejection ratio</td>
<td></td>
<td>(V_{CM} ± 1V, f = 5MHz)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gain 2(^3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output offset voltage</td>
<td></td>
<td>(\Delta V_S = ±0.5V)</td>
<td>50</td>
<td>70</td>
</tr>
<tr>
<td>Output common mode voltage</td>
<td></td>
<td>(R_L = \infty)</td>
<td>1.5</td>
<td>1.5</td>
</tr>
<tr>
<td>Gain 1(^1)</td>
<td></td>
<td>2.4</td>
<td>2.9</td>
<td>2.4</td>
</tr>
<tr>
<td>Gain 2(^{2,4})</td>
<td></td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
</tr>
<tr>
<td>Output resistance</td>
<td></td>
<td>(R_L = \infty)</td>
<td>18</td>
<td>24</td>
</tr>
<tr>
<td>Power supply current</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>THE FOLLOWING SPECS APPLY OVER TEMPERATURE</td>
<td>(0°C \leq T_A \leq 70°C)</td>
<td>(-55°C \leq T_A \leq 125°C)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Differential voltage gain, standard part</td>
<td></td>
<td>(R_L = 2k\Omega, V_{OUT} = 3V) p-p</td>
<td>250</td>
<td>600</td>
</tr>
<tr>
<td>High gain part</td>
<td></td>
<td>400</td>
<td>500</td>
<td>600</td>
</tr>
<tr>
<td>Input resistance</td>
<td>Gain 2(^{2,4})</td>
<td></td>
<td>8.0</td>
<td>8.0</td>
</tr>
<tr>
<td>Input offset current</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input bias current</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input voltage range</td>
<td></td>
<td>(\pm1.0)</td>
<td>(\pm1.0)</td>
<td>μV</td>
</tr>
</tbody>
</table>

NOTES:
1. Gain select pins \(G_{A\#} \) and \(G_{B\#} \) connected together.
2. Gain select pins \(G_{A\#} \) and \(G_{B\#} \) connected together.
3. All gain select pins open.
4. Applies to 14-pin version only.
DC ELECTRICAL CHARACTERISTICS: (cont.) $T_A = +25^\circ C$, $V_{SS} = \pm 6V$, $V_{CM} = 0$ unless otherwise specified. Recommended operating supply voltages $V_S = \pm 6.0V$. All specifications apply to both standard and high gain parts unless noted differently.

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>NE592</th>
<th>SE592</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Min</td>
<td>Typ</td>
<td>Max</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Min</td>
<td>Typ</td>
<td>Max</td>
</tr>
<tr>
<td>THE FOLLOWING SPECS APPLY OVER TEMPERATURE</td>
<td>$0^\circ C < T_A < 70^\circ C$</td>
<td>$-55^\circ C < T_A < 125^\circ C$</td>
<td>dB</td>
<td>dB</td>
</tr>
<tr>
<td>Common mode rejection ratio</td>
<td>$V_{CM} \pm 1V, f < 100kHz$</td>
<td>50</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>Gain 2A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supply voltage rejection ratio</td>
<td>$\Delta V_S = \pm 0.5V$</td>
<td>50</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>Gain 2A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output offset voltage</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gain 1</td>
<td>$R_L = \infty$</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
</tr>
<tr>
<td>Gain 2A</td>
<td>$R_L = \infty$</td>
<td>1.5</td>
<td>1.2</td>
<td>1.2</td>
</tr>
<tr>
<td>Gain 3A</td>
<td>$R_L = \infty$</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>Output voltage swing differential</td>
<td>$R_L = 2k\Omega$</td>
<td>2.8</td>
<td>2.5</td>
<td>2.5</td>
</tr>
<tr>
<td>Power supply current</td>
<td>$R_L = \infty$</td>
<td>27</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTES:
1. Gain select pins G_{1A} and G_{3A} connected together.
2. Gain select pins G_{2A} and G_{2B} connected together.
3. All gain select pins open.
4. Applies to 14-pin version only.
TYPICAL PERFORMANCE CHARACTERISTICS

COMMON MODE REJECTION
Ratio as a function of frequency

OUTPUT VOLTAGE SWING
As a function of frequency

PULSE RESPONSE

DIFFERENTIAL OVERDRIVE RECOVERY TIME

PULSE RESPONSE AS A FUNCTION OF SUPPLY VOLTAGE

VOLTAGE GAIN AS A FUNCTION OF TEMPERATURE

GAIN vs FREQUENCY AS A FUNCTION OF TEMPERATURE

VOLTAGE GAIN AS A FUNCTION OF SUPPLY VOLTAGE

[Graphs and diagrams showing various performance characteristics of a video amplifier.]
TYPICAL PERFORMANCE CHARACTERISTICS (Cont'd)

GAIN vs FREQUENCY AS A FUNCTION OF SUPPLY VOLTAGE

SUPPLY CURRENT AS A FUNCTION OF TEMPERATURE

OUTPUT VOLTAGE SWING AS A FUNCTION OF LOAD RESISTANCE

VOLTAGE GAIN ADJUST CIRCUIT

SUPPLY CURRENT AS A FUNCTION OF SUPPLY VOLTAGE

INPUT RESISTANCE AS A FUNCTION OF TEMPERATURE

INPUT NOISE VOLTAGE AS A FUNCTION OF SOURCE RESISTANCE

OUTPUT VOLTAGE AND CURRENT SWING AS A FUNCTION OF SUPPLY VOLTAGE
TYPICAL PERFORMANCE CHARACTERISTICS (Cont'd)

PHASE SHIFT AS A FUNCTION OF FREQUENCY

- Gain 2
 - $V_G = 16V$
 - $T_A = 25°C$

VOLTAGE GAIN AS A FUNCTION OF FREQUENCY

- Gain 1
 - $V_G = 16V$
 - $T_A = 25°C$
 - $R_L = 1k$

- Gain 2

TEST CIRCUITS

$T_A = 25°C$ unless otherwise specified

0.2 μF

Vout

Vout

SE/NE592
LINEAR LSI PRODUCTS

VIDEO AMPLIFIER

SE/NE592

TYPICAL APPLICATIONS

FILTER NETWORKS

<table>
<thead>
<tr>
<th>Z NETWORK</th>
<th>FILTER TYPE</th>
<th>$V_o (s)$ TRANSFER</th>
<th>$V_1 (s)$ FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>LOW PASS</td>
<td>$\frac{1.4 \times 10^4}{s + R/L}$</td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>HIGH PASS</td>
<td>$\frac{1.4 \times 10^4}{s + 1/RC}$</td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>BAND PASS</td>
<td>$\frac{1.4 \times 10^4}{s \left(s^2 + R/L \cdot s + 1/LC \right)}$</td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>BAND REJECT</td>
<td>$\frac{1.4 \times 10^4}{s^2 + 1/LC + s/RC}$</td>
<td></td>
</tr>
</tbody>
</table>

NOTE

In the networks above, the R value used is assumed to include $2r_e$, or approximately 32Ω.

DISC/TAPE PHASE MODULATED READBACK SYSTEMS

DIFFERENTIATION WITH HIGH COMMON MODE NOISE REJECTION

FOR FREQUENCY $f_1 << \frac{1}{2 \pi} (32) \ C$

$V_0 = 1.4 \times 10^4 \frac{\partial V_i}{\partial t}$

6-114
LINEAR LSI PRODUCTS

DIFFERENTIAL VIDEO AMPLIFIER

μA733/733C

DESCRIPTION

The 733 is a monolithic differential input, differential output, wideband video amplifier. It offers fixed gains of 10, 100 or 400 without external components, and adjustable gains from 10 to 400 by the use of an external resistor. No external frequency compensation components are required for any gain option. Gain stability, wide bandwidth and low phase distortion are obtained through use of the classic series-shunt feedback from the emitter follower outputs to the inputs of the second stage. The emitter follower outputs provide low output impedance, and enable the device to drive capacitive loads. The 733 is intended for use as a high performance video and pulse amplifier in communications, magnetic memories, display and video recorder systems.

FEATURES

- 120MHz bandwidth
- 250kΩ input resistance
- Selectable gains of 10, 100 and 400
- No frequency compensation required
- MIL std 883A,B,C available

APPLICATIONS

- Video amplifier
- Pulse amplifier in communications
- Magnetic memories
- Video recorder systems

ABSOLUTE MAXIMUM RATINGS

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>RATING</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Differential input Voltage</td>
<td>±5 V</td>
<td></td>
</tr>
<tr>
<td>Common mode input Voltage</td>
<td>±6 V</td>
<td></td>
</tr>
<tr>
<td>Vcc</td>
<td>±8 V</td>
<td></td>
</tr>
<tr>
<td>Output current</td>
<td>10 mA</td>
<td></td>
</tr>
<tr>
<td>Junction temperature</td>
<td>+150 °C</td>
<td></td>
</tr>
<tr>
<td>Storage temperature range</td>
<td>-65 to +150 °C</td>
<td></td>
</tr>
<tr>
<td>Operation temperature range</td>
<td>μA733C 0 to +75 °C</td>
<td></td>
</tr>
<tr>
<td></td>
<td>μA733 0 to +125 °C</td>
<td></td>
</tr>
<tr>
<td>Pd Power dissipation</td>
<td>500 mW</td>
<td></td>
</tr>
<tr>
<td>N, F package</td>
<td>670 mW</td>
<td></td>
</tr>
</tbody>
</table>

ORDER NUMBERS

μA733F, μA733CN
μA733N, μA733CF

CIRCUIT SCHEMATIC
DIFFERENTIAL VIDEO AMPLIFIER

DC ELECTRICAL CHARACTERISTICS

- \(T_A = +25 \degree C, V_S = \pm 6 \text{V}, VCM = 0 \) unless otherwise specified.
- Recommended operating supply voltages \(V_S = \pm 6 \text{V} \)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>(\mu A733C)</th>
<th>(\mu A733)</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Differential voltage gain</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gain 1(^2)</td>
<td></td>
<td>Min 250</td>
<td>Typ 400</td>
<td>Max 600</td>
</tr>
<tr>
<td>Gain 2(^2), Gain 3(^3)</td>
<td></td>
<td>80</td>
<td>100</td>
<td>120</td>
</tr>
<tr>
<td></td>
<td>(R_I = 2k\Omega, V_{OUT} = 3V_{pp})</td>
<td>8</td>
<td>10</td>
<td>12</td>
</tr>
<tr>
<td>Bandwidth</td>
<td></td>
<td>40</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>Gain 1(^1)</td>
<td></td>
<td>90</td>
<td>90</td>
<td>90</td>
</tr>
<tr>
<td>Gain 2(^2), Gain 3(^3)</td>
<td></td>
<td>120</td>
<td>120</td>
<td>120</td>
</tr>
<tr>
<td>Rise time</td>
<td></td>
<td>10.5</td>
<td>12</td>
<td>10.5</td>
</tr>
<tr>
<td>Gain 1(^1)</td>
<td></td>
<td>4.5</td>
<td>4.5</td>
<td>4.5</td>
</tr>
<tr>
<td>Gain 2(^2), Gain 3(^3)</td>
<td></td>
<td>2.5</td>
<td>2.5</td>
<td>2.5</td>
</tr>
<tr>
<td>Propagation delay</td>
<td></td>
<td>7.5</td>
<td>10</td>
<td>7.5</td>
</tr>
<tr>
<td>Gain 1(^1)</td>
<td></td>
<td>6.0</td>
<td>10</td>
<td>6.0</td>
</tr>
<tr>
<td>Gain 2(^2), Gain 3(^3)</td>
<td></td>
<td>3.6</td>
<td>3.6</td>
<td>3.6</td>
</tr>
<tr>
<td>Input resistance</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gain 1(^2)</td>
<td></td>
<td>4.0</td>
<td>4.0</td>
<td>4.0</td>
</tr>
<tr>
<td>Gain 2(^2), Gain 3(^3)</td>
<td></td>
<td>10</td>
<td>30</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>250</td>
<td>250</td>
<td>250</td>
</tr>
<tr>
<td>Input capacitance(^2)</td>
<td>(\text{Gain 2})</td>
<td>2.0</td>
<td>5.0</td>
<td>0.4</td>
</tr>
<tr>
<td>Input offset current</td>
<td></td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
</tr>
<tr>
<td>Input bias current</td>
<td></td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
</tr>
<tr>
<td>Input noise voltage</td>
<td></td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
</tr>
<tr>
<td>Input voltage range</td>
<td></td>
<td></td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>Common mode</td>
<td></td>
<td></td>
<td></td>
<td>± 1.0</td>
</tr>
<tr>
<td>Rejection ratio</td>
<td></td>
<td></td>
<td></td>
<td>60</td>
</tr>
<tr>
<td>Gain 1(^1)</td>
<td>(VCM = \pm 1 \text{V}, f \leq 100 \text{kHz})</td>
<td>60</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>Gain 2(^2)</td>
<td>(VCM = \pm 1 \text{V}, f = 5 \text{MHz})</td>
<td>60</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>Supply voltage</td>
<td></td>
<td></td>
<td></td>
<td>60</td>
</tr>
<tr>
<td>Rejection ratio</td>
<td></td>
<td></td>
<td></td>
<td>60</td>
</tr>
<tr>
<td>Gain 2(^2)</td>
<td>(\Delta V_S = \pm 0.5 \text{V})</td>
<td>50</td>
<td>70</td>
<td>50</td>
</tr>
<tr>
<td>Output offset voltage</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gain 1(^1)</td>
<td>(R_L = \infty)</td>
<td>0.6</td>
<td>1.5</td>
<td>0.6</td>
</tr>
<tr>
<td>Gain 2(^2) and 3(^3)</td>
<td></td>
<td>0.35</td>
<td>1.5</td>
<td>0.35</td>
</tr>
<tr>
<td>Output common mode voltage</td>
<td>(R_L = \infty)</td>
<td>2.4</td>
<td>2.9</td>
<td>3.4</td>
</tr>
<tr>
<td>Output voltage swing, differential</td>
<td>(R_L = 2k)</td>
<td>3.0</td>
<td>4.0</td>
<td>3.0</td>
</tr>
<tr>
<td>Output sink current</td>
<td></td>
<td>2.5</td>
<td>3.6</td>
<td>2.5</td>
</tr>
<tr>
<td>Output resistance</td>
<td></td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Power supply current</td>
<td></td>
<td>18</td>
<td>24</td>
<td>18</td>
</tr>
</tbody>
</table>

THE FOLLOWING SPECS APPLY OVER TEMPERATURE

- \(0 \degree C \leq T_A \leq 70 \degree C \)
- \(-55 \degree C \leq T_A \leq 125 \degree C \)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>(\mu A733C)</th>
<th>(\mu A733)</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Differential voltage gain</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gain 1(^1)</td>
<td>(R_I = 2k\Omega, V_{OUT} = 3V_{pp})</td>
<td>250</td>
<td>600</td>
<td>200</td>
</tr>
<tr>
<td>Gain 2(^2)</td>
<td></td>
<td>80</td>
<td>120</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>12</td>
<td>8</td>
</tr>
</tbody>
</table>
DC ELECTRICAL CHARACTERISTICS (Continued)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>µA733C</th>
<th>µA733</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Min</td>
<td>Typ</td>
</tr>
<tr>
<td>Input resistance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gain 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input offset current</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input bias current</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input voltage range</td>
<td></td>
<td>± 1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>Common mode</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rejection ratio</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gain 2</td>
<td>VCM = ± V, F ≤ 100kHz</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>Supply voltage</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rejection ratio</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gain 2</td>
<td>∆VRef = ± 0.5V</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>Output offset voltage</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gain 1</td>
<td>RL = ∞</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>Gain 2 and 3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output voltage swing, differential</td>
<td>RL = 2k</td>
<td>2.5</td>
<td></td>
</tr>
<tr>
<td>Output sink current</td>
<td></td>
<td>2.5</td>
<td></td>
</tr>
<tr>
<td>Power supply current</td>
<td></td>
<td>27</td>
<td></td>
</tr>
</tbody>
</table>

NOTES
1. Gain select pins G1A and G1B connected together.
3. All gain select pins open.

TYPICAL PERFORMANCE CHARACTERISTICS

- **Phase Shift as a Function of Frequency**
- **Voltage Gain as a Function of Frequency**
- **Pulse Response**
- **Output Voltage Swing as a Function of Frequency**
- **Common Mode Rejection Ratio as a Function of Frequency**
- **Pulse Response**
TYPICAL PERFORMANCE CHARACTERISTICS (Cont'd)

DIFFERENTIAL OVERDRIVE-RECOVERY TIME

VOLTAGE GAIN AS A FUNCTION OF TEMPERATURE

PULSE RESPONSE AS A FUNCTION OF SUPPLY VOLTAGE

PULSE RESPONSE AS A FUNCTION OF TEMPERATURE

VOLTAGE GAIN AS A FUNCTION OF SUPPLY VOLTAGE

GAIN vs FREQUENCY AS A FUNCTION OF TEMPERATURE

GAIN vs FREQUENCY AS A FUNCTION OF SUPPLY VOLTAGE

VOLTAGE GAIN ADJUST CIRCUIT

VOLTAGE GAIN AS A FUNCTION OF RADJ (FIGURE 3)

(Pin numbers apply to K Package)
TYPICAL PERFORMANCE CHARACTERISTICS (Cont'd)

SUPPLY CURRENT AS A FUNCTION OF TEMPERATURE

![Supply Current vs Temperature Graph]

SUPPLY CURRENT AS A FUNCTION OF SUPPLY VOLTAGE

![Supply Current vs Supply Voltage Graph]

OUTPUT VOLTAGE SWING AS A FUNCTION OF LOAD RESISTANCE

![Output Swing vs Load Resistance Graph]

INPUT RESISTANCE AS A FUNCTION OF TEMPERATURE

![Input Resistance vs Temperature Graph]

INPUT NOISE VOLTAGE AS A FUNCTION OF SOURCE RESISTANCE

![Input Noise Voltage vs Source Resistance Graph]

TEST CIRCUITS
\(T_A = 25^\circ C \) unless otherwise specified.
Section 7
Power Conversion and Control

INDEX

SECTION 7 — POWER CONVERSION AND CONTROL

<table>
<thead>
<tr>
<th>Index</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motor Control and Sensor Circuits</td>
<td></td>
</tr>
<tr>
<td>NE5044</td>
<td>Programmable 7-Channel RC Encoder</td>
</tr>
<tr>
<td>NE5045</td>
<td>Seven Channel RC Decoder</td>
</tr>
<tr>
<td>NE544</td>
<td>Servo Amplifier</td>
</tr>
</tbody>
</table>

Switched-Mode Power Supply Circuits		
Symbols and Definitions		
SE/NE5560	SMPS Single-Ended Monolithic Controller	7-20
SE/NE5561	SMPS Low Cost Controller	7-33
SE/NE5562	SMPS Control Circuit, Single Output	7-37
NE5568	SMPS Controller	7-41
SG1526A/2526A/3526A	SMPS Control Circuits	7-43
SG3524	SMPS Push-Pull Controller	7-47
µA723/C/SA723C	Precision Voltage Regulator	7-52
PROGRAMMABLE SEVEN CHANNEL RC ENCODER

DESCRIPTION
The NE5044 is a programmable parallel input, serial output pulsewidth encoder. A multiplexed dual linear ramp technique is used to allow up to 7 inputs to be converted to a serial pulsewidth modulated signal with excellent linearity and minimal crosstalk. Fixed or variable frame rates can be used, externally controlled, for ease of demodulation. An onboard 5V regulator eliminates power supply sensitivities and provides up to 20mA current capability for driving external loads.

FEATURES
• 3 to 7 channels, externally selectable
• Constant current dual linear ramp for linearity better than .3%
• Internal voltage regulator for low drift
• Wide supply range 4.5 – 16V
• Fixed or variable frame rate set by external R-C
• External control for channel gain or range
• Versatile applications; exponential rates, mixing, dual rate, reversing etc.
• Compatible with all transmission mediums

APPLICATIONS
• Radio controlled aircraft, cars, boats, trains
• Industrial controllers
• Remote controlled entertainment systems
• Security systems
• Instrumentation recorders/controls
• Remote Analog/digital data transmission
• Automotive sensor systems
• Robotics
• Telemetry

ABSOLUTE MAXIMUM RATINGS

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>RATING</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>VCC, Supply voltage</td>
<td>17</td>
<td>V</td>
</tr>
<tr>
<td>Regulator output current</td>
<td>-25</td>
<td>mA</td>
</tr>
<tr>
<td>Serial output peak current</td>
<td>30</td>
<td>mA</td>
</tr>
<tr>
<td>Constant current generator</td>
<td>-1</td>
<td>mA</td>
</tr>
<tr>
<td>Parallel inputs, range input</td>
<td>0-VREG</td>
<td>V</td>
</tr>
<tr>
<td>One shot input, frame generator input</td>
<td>0-VREG</td>
<td>°C</td>
</tr>
<tr>
<td>Operating temperature</td>
<td>-20 to +75</td>
<td>°C</td>
</tr>
<tr>
<td>Storage temperature</td>
<td>-65 to +150</td>
<td>°C</td>
</tr>
</tbody>
</table>

NOTE
1. T_A = 25° unless otherwise stated.

BLOCK DIAGRAM
DC ELECTRICAL CHARACTERISTICS

Test conditions $T_A = 25^\circ C$, $V_{CC} = 10V$ using Test Circuit A unless otherwise stated.

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>NE 5044</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>POWER SUPPLY REQUIREMENTS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power supply voltage range</td>
<td>Excluding control pots and serial output currents</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power supply current</td>
<td></td>
<td>4.5</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11</td>
<td>15</td>
</tr>
<tr>
<td>VOLTAGE REGULATOR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output voltage</td>
<td></td>
<td>4.5</td>
<td>5.0</td>
</tr>
<tr>
<td>Output current $V_R \geq 4.5V$</td>
<td>Excluding control pots and serial output currents</td>
<td>5.5</td>
<td>5.5</td>
</tr>
<tr>
<td>Line regulation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Line regulation $7 \leq V_{CC} \leq 16$</td>
<td></td>
<td>.005</td>
<td>0.2</td>
</tr>
<tr>
<td>MULTIPLEXER</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input current $V_R = 2.5V$</td>
<td>Excluding control pots and serial output currents</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input voltage range $V_n \geq 0.75V$</td>
<td>Excluding control pots and serial output currents</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crosstalk</td>
<td></td>
<td>± 30</td>
<td>± 200</td>
</tr>
<tr>
<td>OUTPUT PULSE</td>
<td></td>
<td>1.5</td>
<td>5</td>
</tr>
<tr>
<td>Position</td>
<td>$R_I \cdot C_{mux} = 1.25ms$</td>
<td>1350</td>
<td>1500</td>
</tr>
<tr>
<td>Position linearity error</td>
<td>$R_I \cdot C_{mux} = 1.25ms$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Position tempco $0^\circ C \leq T_A \leq 70^\circ C$</td>
<td>$R_I \cdot C_{mux} = 1.25ms$</td>
<td>.15</td>
<td>.15</td>
</tr>
<tr>
<td>Position PSR $6V \leq V_{CC} \leq 16V$</td>
<td>$R_I \cdot C_{mux} = 1.25ms$</td>
<td>.5</td>
<td>1</td>
</tr>
<tr>
<td>T_0</td>
<td></td>
<td>240</td>
<td>285</td>
</tr>
<tr>
<td>Width</td>
<td>$R_{0}C_{0} = 300\mu s$</td>
<td>.6</td>
<td>1</td>
</tr>
<tr>
<td>Saturation voltage $i_o = 25mA$</td>
<td></td>
<td>.05</td>
<td>50</td>
</tr>
<tr>
<td>Leakage current $R_I = 50k\Omega$</td>
<td></td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>Range input voltage $R_I = 25k\Omega$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frame time (Fixed) $R_{FCF} = 30ms$</td>
<td></td>
<td>17</td>
<td>20</td>
</tr>
<tr>
<td>Inhibit threshold $R_{FCF} = 30ms$</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTE

1. At supply voltages exceeding 12V, a current limiting resistor of 20 to 500 in series with V_{CC} is recommended.

OUTPUT PULSE WIDTH (T_n) vs INPUT VOLTAGE (V_n)

FRAME TIME (T_F) vs R_F

OUTPUT ONESHOT TIME (T_0) vs R_0
OUTPUT SATURATION VOLTAGE vs OUTPUT CURRENT

<table>
<thead>
<tr>
<th>VCC (VOLT)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
</tr>
<tr>
<td>0.5</td>
</tr>
<tr>
<td>0.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>IC (mA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
</tr>
<tr>
<td>20</td>
</tr>
<tr>
<td>25</td>
</tr>
</tbody>
</table>

CONSTANT CURRENT vs R1

<table>
<thead>
<tr>
<th>Iout (μA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>300</td>
</tr>
<tr>
<td>200</td>
</tr>
<tr>
<td>100</td>
</tr>
<tr>
<td>50</td>
</tr>
<tr>
<td>30</td>
</tr>
</tbody>
</table>

20 30 40 50 100 200

R1 (kΩ)

NOTE
1. At supply voltages exceeding 12V, a current limiting resistor of 20 to 500 in series with VCC is recommended.
Figure 1. Encoder Timing Diagram — Fixed Frame

Figure 2
A. CIRCUIT OPERATION

The NE5044 is a programmable parallel input, serial output encoder containing all the active circuitry necessary to generate a precise pulsewidth modulated signal with 3 to 7 channels. The number of channels is externally programmable by grounding unused control inputs. A multiplexed dual linear ramp technique is used to provide excellent linearity, minimal crosstalk and low temperature drift. An onboard 5-volt regulator eliminates power supply sensitivities and has up to 20mA current capability for driving external loads. The encoder can be used in the fixed frame mode or, with the addition of one external NPN transistor, as a variable frame encoder.

The multiplexer functions as a strobed voltage follower so that each input, when active, appears as a high impedance input (> 1MΩ) and transfers the input voltage to the output. Only one of the seven inputs is active at any time and when a given input is inactive, it appears as an open circuit. The high impedance multiplexer inputs eliminate loading on control inputs and simplify mixing circuits where several controls may be mixed onto one input.

Channel 4, 5, 6 and 7 inputs may also be used to select the desired number of output pulses by grounding one or more of these pins. That is, by grounding pin 4 (channel 4 input) only the first three inputs of the encoder will be used and a 3-channel encoder results. Grounding pin 5 results in a 4-channel encoder and so on. Thus, any number of channels between 3 and 7 may be selected. Internal voltage clamping prevents encoder malfunction if any input is shorted to supply, ground or open circuited. The remaining channels will continue to be encoded except as noted above. This feature eliminates catastrophic failures due to control pot opens or shorts.

The constant current generator is a bidirectional current source whose current is set by an external resistor R₁, where:

\[I_c = \pm \frac{V_n}{2R_1} \]

The current generator alternately charges and discharges the capacitor Cₘₓₓ. An internal feedback loop maintains a constant current and very high output impedance. This yields a typical linearity error of voltage input to pulsewidth output for the encoder of less than 0.1%. An external capacitor, C₀, is required to insure stability of the feedback loop.

Two high gain comparators, C₁ and C₂, compare the voltage across Cₘₓₓ with the multiplexer output voltage and the range input voltage. The input bias currents and offset voltages of these comparators are sufficiently low so as to not influence the overall accuracy of the encoder. The comparators feed the counter control logic which in turn controls the counter and current generator. The operation of this loop as follows: When Iₓ is positive (sourced from the current generator into Cₘₓₓ) the capacitor linearly charges up until it reaches a voltage equal to the multiplexer output voltage, assume this to be the voltage at pin 1, V₁. At this time the output of C₁ goes high which reverses the direction of Iₓ (sinking into current generator from Cₘₓₓ). Cₘₓₓ now linearly discharges until it reaches the voltage set on pin 12, Vᵣᵃⁿᵍᵉ. At this time the output of C₂ goes high which again reverses the polarity of Iₓ, clocks the counter and triggers the output one shot. Cₘₓₓ again charges up but now C₁ goes high when Cₘₓₓ reaches V₂, the voltage on pin 2. The resulting voltage waveform on Cₘₓₓ is a triangular wave whose positive peaks correspond to the voltages on pins 1 through 7 for the first through seventh peak and whose negative peaks are constant and equal to Vᵣᵃⁿᵍᵉ. This waveform is shown in the first portion of Figure 1.

The frame generator controls the encoder frame time. It can operate as an astable or monostable multivibrator whose period is .66X R₆C₇. The encoder will generate a synchronizing pulse at the end of each frame. When Cₘₓₓ reaches the seventh positive peak it reverses and discharges to Vᵣᵃⁿᵍᵉ. The counter is clocked to the state where Q₁ is high and the entire process starts over. The frame period in this mode is .66X R₆C₇ and is referred to as the fixed frame mode. The variable frame mode will be discussed in the application section.

The output one-shot generates a positive pulse whose width is equal to R₆C₇. The output is an open collector, NPN transistor capable of sinking 25mA. This configuration allows the encoder to drive a wide variety of RF stages as well as providing current pulses in 2 wire communications applications.

B. ENCODER DESIGN EQUATIONS

The triangular waveform on Cₘₓₓ has a fixed slope (constant current) and variable positive peak voltages. The time between the negative peaks of Cₘₓₓ, which is equal to the output period for that channel, is given by:

\[T_n = \frac{2 (V_n - V_{range}) C_{mux}}{I_c} \]

\[I_c \text{ is given by:} \]
\[I_c = \frac{V_R}{2R_1} \]

where \(V_R \) is Reference Voltage.

Additionally, \(V_n \), the voltage on pin n, which is the control voltage for channel n, is typically the wiper voltage on a pot connected between \(V_R \) and ground. Thus \(V_n = X_n V_R \).

Vᵣᵃⁿᵍᵉ is also derived from \(V_R \) so that \(V_{range} = Y V_R \). The resulting channel time period is:

\[T_n = \frac{2 (X_n - Y) V_R \cdot C_{mux}}{(V_R/2R_1)} \]

\[T_n = 4R_1 C_{mux}(X_n - Y) \]

Thus, each channel pulse width, \(T_n \), is independent of supply voltage and depends only on external passive components.

The conversion rate, CR, for each channel is the change in output period, \(\Delta T_n \), divided by the change in input voltage for that channel, \(\Delta V_n \):

\[CR = \frac{\Delta T_n}{\Delta V_n} = \frac{\Delta T_n}{\Delta X_n} = \frac{4R_1 C_{mux}}{} \]
In most applications, the input variable \(X_n \) will have some neutral or center value about which it will vary, thus
\[
X_n = X_0 + x_n
\]
and
\[
\Delta T_n = \frac{\Delta T_n}{\Delta x_n} = 4R_1C_{mux}
\]
where \(X_0 \) is the neutral value for \(X \) and is assumed to be the same for all \(n \). Now
\[
T_n = 4R_1C_{mux} (X_0 - Y + x_n)
\]
If we let \(T_{neutral} = 4R_1C_{mux}(X_0 - Y) \) be the neutral value for \(T_n \), then
\[
T_n = T_{neutral} + 4R_1C_{mux}(x_n)
\]
Consider the following example to see how these design equations are used.

Assume:
\[
T_{neutral} = 1.5\text{ms}
\]
\(X_0 = 0.5 \) — Control pot in center at \(T_n = T_{neutral} \)
\[
\Delta x_n = \pm 0.1 \] — Control pot resistance varies \(\pm 10\% \) of total resistance around neutral. This should include mechanical trim if used.
\[
\Delta T_n = \pm 0.5\text{ms}
\]
For this example, the conversion rate is
\[
CR = \frac{\Delta T_n}{\Delta x_n} = \frac{0.5\text{ms}}{.1} = 5\text{ms}
\]
so
\[
4R_1C_{mux} = 5\text{ms}.
\]
If we let \(C_{mux} = .047\mu\text{F} \)
\[
R_1 = \frac{5\text{ms}}{4 \times .047\mu\text{F}} = 26.5\text{k}\Omega = 27\text{k}\Omega
\]
and
\[
T_{neutral} = 1.5\text{ms} = 4R_1C_{mux} (X_0 - Y)
\]
\[
Y = 0.5 - \frac{1.5\text{ms}}{5\text{ms}} = 0.2
\]
The output pulse width is given by
\[
T_0 = R_0C_0
\]
so if \(T_0 = 330\mu\text{s} \) and \(C_0 = .01\mu\text{F} \)
\[
R_0 = \frac{330\mu\text{s}}{.01\mu\text{F}} = 33\text{k}\Omega.
\]
The frame time constant, \(T_F \), is given by
\[
T_F = .66 R_F C_F
\]
If \(T_F = 20\text{ms} \) and \(C_F = .47\mu\text{F} \)
\[
R_F = \frac{20\text{ms}}{.66 \times .47\mu\text{F}} = 62\text{k}\Omega
\]
Figure 2 shows the external connections for this example.

It should be noted that the temperature stability of all the encoded times depend on the temperature coefficients of the respective external \(R_0 \) time constants. No internal temperature compensation is used on the chip. The typical temperature sensitivity of \(T_n \) using wirewound resistors and polycarbonate capacitors is less than 100ppm/°C in the -20°C to +70°C temperature range. For the above example, this corresponds to a change in \(T_n \) of \(\pm 7.5\mu\text{s} \) for a change in temperature of \(\pm 50°C \).*

*For additional information, consult the Applications Section.
DESCRIPTION
The NE5045 is a serial input, parallel output, decoder intended for applications in pulse width or pulse position modulation systems. The serial input pulse, either positive or negative, is shaped and amplified before being fed to the counter/decoder. An integrating type sync separator detects pulses greater than \(T_w = R_s C_m \). The amplified input pulse triggers an internal one-shot (minimum pulse) which in turn clocks the counter-decoder, thereby enhancing system noise rejection. A missing pulse detector resets the decoder during the sync pause. An internal voltage regulator supplies power for the radio receiver providing excellent isolation from the power supply as well as the decoder logic.

FEATURES
- Decodes up to 7 channels
- High gain input amplifier
- Externally set sync. pause and minimum pulse
- Wide supply voltage range, 3.6V–6V.
- Positive or negative pulse inputs
- Noise and flutter rejection
- Outputs reset to zero without inputs
- Compatible with all transmission mediums

APPLICATIONS
- Radio controlled aircraft, cars, boats, trains
- Industrial controllers
- Remote controlled entertainment systems
- Security systems
- Instrumentation recorders/controls
- Remote Analog/digital data transmission
- Automotive sensor systems
- Robotics
- Telemetry

ABSOLUTE MAXIMUM RATINGS

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>RATING</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>VCC, Supply voltage</td>
<td>10</td>
<td>V</td>
</tr>
<tr>
<td>Regulator output current</td>
<td>-25</td>
<td>mA</td>
</tr>
<tr>
<td>Decoded output current</td>
<td>±5</td>
<td>mA</td>
</tr>
<tr>
<td>Pause input voltage</td>
<td>0 to (V_R)</td>
<td>V</td>
</tr>
<tr>
<td>Input amplifier voltage</td>
<td>0 to (V_R)</td>
<td>V</td>
</tr>
<tr>
<td>Operating temperature</td>
<td>-20 to +75°C</td>
<td></td>
</tr>
<tr>
<td>Storage temperature</td>
<td>-65 to +150°C</td>
<td></td>
</tr>
</tbody>
</table>

NOTE
1. \(T_A = 25°C \) unless otherwise stated.

PIN CONFIGURATION

<table>
<thead>
<tr>
<th>D, N PACKAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>OUTPUT 1</td>
</tr>
<tr>
<td>OUTPUT 2</td>
</tr>
<tr>
<td>OUTPUT 3</td>
</tr>
<tr>
<td>OUTPUT 4</td>
</tr>
<tr>
<td>OUTPUT 5</td>
</tr>
<tr>
<td>OUTPUT 6</td>
</tr>
<tr>
<td>OUTPUT 7</td>
</tr>
<tr>
<td>GRND.</td>
</tr>
</tbody>
</table>

TOP VIEW

ORDER NUMBERS
NE5045N NE5045D

BLOCK DIAGRAM

[Diagram of the NE5045 decoder circuit with labels for pins and components]
DC ELECTRICAL CHARACTERISTICS

Standard conditions: \(T_A = 25^\circ C, V_{CC} = 5.0V \) unless otherwise stated, using Test Circuit #1.

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>NE5045</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>POWER SUPPLY REQUIREMENTS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power supply voltage range</td>
<td>Test circuit #1</td>
<td>3.6</td>
<td>8.0</td>
</tr>
<tr>
<td>Power supply current</td>
<td>Excluding input bias current</td>
<td>9.0</td>
<td>14.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>VR</th>
<th>VOLTAGE REGULATOR</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Output voltage</td>
<td>(V_R \geq 3.7V)</td>
<td>3.7</td>
<td>4.1</td>
</tr>
<tr>
<td>Output current</td>
<td>(V_{CC} = 6V) to (8V)</td>
<td>16</td>
<td>-15</td>
</tr>
<tr>
<td>Line regulation</td>
<td>(V_{CC} = 4V, I_R = -10mA)</td>
<td>.01</td>
<td>.05</td>
</tr>
<tr>
<td>Voltage drop</td>
<td></td>
<td>1.3</td>
<td>V</td>
</tr>
</tbody>
</table>

INPUT AMPLIFIER					
Input bias current		2.0	4.0	nA	
Input voltage range		80	40	dB	
Open loop gain		100	200	400	\(\mu A \)
Feedback current		8	20	mV	
Detection threshold		6.0	6.9	ms	
Sync. pause time		5.1	6.0	6.9	ms
Minimum pulse time		405	475	545	\(\mu s \)

OUTPUTS-ALL CHANNELS				
VOL	\(I_{SINK} = 1mA \)	.25	.5	V
VOH	\(I_{SOURCE} = 2mA \)			

Voltage vs Sink Current

- **VOL vs SINK CURRENT**
- **VOH vs SOURCE CURRENT**

Minimum Pulse Time, \(T_M \) vs \(R_M, C_M \)

Sync. Pause Time, \(T_s \) vs \(R_s C_s \)

Regulator Voltage vs Load Current
Figure 1. NE5045 Decoder Timing Diagram
A. CIRCUIT OPERATION

The NE5045 is a serial input, parallel output decoder containing all the active circuitry necessary to separate up to 7 channels of information in a pulsewidth modulated system. An internal voltage regulator provides excellent power supply rejection for the decoder as well as a regulated output for a radio receiver if used.

The high gain input amplifier, A1 (A_v > 60dB), allows either positive or negative pulses to be used and has input bias currents less than 10nA. Signals as low as 10mV p-p can easily be demodulated. The feedback current generator can be used to provide positive feedback thereby creating hysteresis in the input switching levels. Hysteresis prevents false triggering due to noise or IF amplifier distortion. If positive input pulses are used, the signal would be connected to the noninverting input, pin 13. In this case, the input threshold would be set by the voltage difference between pin 12 and pin 13, established externally with a resistive divider network. Design of the divider will be covered in section B and C. Negative input signals would be coupled to pin 12, the inverting input.

The amplified signal from A1 is gated by G1 and in turn sets the FF. Assume, for the time, that G2 is low. The combination of the FF and One Shot 1 produces a minimum pulse to clock the counter-decoder for each positive edge at pin 13 which exceeds the voltage on pin 12. The width of this pulse is:

\[T_m = R_mC_m \]

With this arrangement, the system will not respond to any pulse after the first edge and the FF is reset. In effect the input is turned off for a period equal to \(T_m \) following the leading edge of each input pulse. The noise immunity of the decoder is thus enhanced by the ratio of \(T_m \) to the period between input pulses. Obviously \(T_m \) must be less than the shortest period between input pulses.

The counter is clocked and One Shot 2 is reset (capacitor \(C_2 \) is discharged) each time the FF is set. When the FF is reset, \(C_2 \) begins to charge up through \(R_3 \). The time constant \(T_s = .85 R_3 C_2 \) is normally much larger than the time between input pulses so that the output of One Shot 2 remains low until the last pulse of a given frame is received. Figure 1 shows the timing diagram for the decoder. After the last pulse in a frame (system synchronized) \(C_2 \) will go low and G2 will go high. The input is now disabled by G1 until One Shot 2 times out at which time G2 will go low.

This connection serves two purposes:

1. Establishes synchronization in no more than one frame and
2. Prevents the counter-decoder from overflowing due to extra noise pulses in a given frame. Thus any noise pulses in a frame will only affect those channels after that pulse and only in that frame.

If fewer than 7 channels of input are used then \(Q_2 \) is high after the last pulse and the counter-decoder is reset when One Shot 2 goes high.

Each channel has a totem pole output stage capable of sourcing 2mA and sinking 1mA.

The voltage regulator operates in two modes depending on the power supply voltage. If \(V_{CC} \) is greater than 5V, the voltage regulator acts as a series pass regulator with a nominal output voltage of 4.1V. When \(V_{CC} \) is less than 5V, the regulator acts as a dynamic decoupler where the bypass capacitor on pin 14 filters out line transients. The internal pass transistor acts like an emitter follower whose base is decoupled by the bypass capacitor. The value of capacitance will depend upon the degree of smoothing required and the amplitude of the line transients. If the regulator provides power for the radio receiver, this capacitor may have to be as large as 33µF. However if this is not done, 1µF should be sufficient.

B. DECODER DESIGN EQUATIONS

The design of the decoder's external circuitry is quite simple. The minimum pulse One Shot (#1) and the synchronization One Shot (#2) each have time periods given by:

\[T_m = R_mC_m \]
\[T_s = .85 R_3 C_2 \]

respectively. The constraints on these time periods are: \(T_m < \) the minimum input pulse width or time between leading edges of the input and \(T_s > \) maximum input pulse width but \(T_s < \) the sync pause (time between last pulse in frame and first pulse of the following frame).

The design of the input amplifier biasing network depends upon a number of factors, including:

1. Pulse Polarity
2. Pulse Amplitude
3. Variations in Amplitude and Noise
4. Detection Threshold and Hysteresis Levels

For a very simple case, assume the input is a positive pulse train and the threshold of detection is desired to be 400mV without hysteresis. Figure 2 shows the input amplifier along with the associated biasing circuits. The resistors \(R_1 \) and \(R_2 \) set the voltage on pin 12; which should be between 2V to 5V.

\[V_{12} = V_R \frac{1}{1 + R_1/R_2} \]

The threshold is set by the voltage drop across \(R_2 \); that is, the decoder will not be triggered until the voltage on pin 12 exceeds the voltage on pin 12.

\[V_{threshold} = V_{12} - V_13 \]

If we assume \(V_R = 4.1V \) and let \(V_{12} = 3V \) then

\[R_1 = 1.1k \]
\[R_2 = 3.0k \]

![Figure 2. Input Amplifier Biasing NE5045](image-url)
The threshold is then set to 400mV by setting $R_4/R_3 = 6.5$.

R_4 should be sufficiently large so as to not load the input signal. If we let $R_3 = 51k$ then $R_4 = 330k$. Figure 3 shows the external connections for a complete decoder. Note that this circuit does not have provisions for noise filtering or rejection of amplitude variations.

Figure 3. NE5045 Decoder External Connections

$T_m = .88ms; T_s = 4ms, V_{\text{threshold}} = 400mV$

For additional information, consult the Applications Section.
DESCRIPTION
The NE544 is a servo amplifier and pulse-width demodulator with internal motor drive transistors. It is designed for remote control applications in digital proportional systems but can be used in many other closed loop position control applications. It incorporates a linear one shot for improved positional accuracy and outputs for external pnp motor drive transistors.

FEATURES
- 500mA load current capability
- Bidirectional bridge output with single power supply
- Low standby power drain
- Adjustable deadband and trigger thresholds
- High linearity, 0.5% maximum error
- Output drive for external PNP transistors (optional)
- Wide supply voltage range

APPLICATIONS
- Miniature position Servo
- Robotics
- Control devices
- Remote positioning

ABSOLUTE MAXIMUM RATINGS \(T_A = 25\, ^\circ C \) unless otherwise specified.

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>RATING</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V^+)</td>
<td>6.0</td>
<td>V</td>
</tr>
<tr>
<td>(I_O)</td>
<td>500 mA</td>
<td></td>
</tr>
<tr>
<td>(T_A)</td>
<td>-20 to +75</td>
<td>(^\circ C)</td>
</tr>
<tr>
<td>(T_{stg})</td>
<td>-65 to +150</td>
<td>(^\circ C)</td>
</tr>
</tbody>
</table>

BLOCK DIAGRAM
SERVO AMPLIFIER

NE544

EQUIVALENT CIRCUIT SCHEMATIC

DC ELECTRICAL CHARACTERISTICS \(T_a = 25^\circ C, V_S = 4.8V\) unless otherwise specified.

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>LIMITS</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{CC})</td>
<td>Supply voltage</td>
<td>Pin 11</td>
<td>Quiescent</td>
</tr>
<tr>
<td>(I_{CC})</td>
<td>Supply current</td>
<td>Pin 11</td>
<td>Quiescent</td>
</tr>
<tr>
<td>(V_{TH})</td>
<td>Input threshold</td>
<td>Pin 4</td>
<td>On 1.5 Off 1.4</td>
</tr>
<tr>
<td>(Z_{IN})</td>
<td>Input resistance</td>
<td>Pin 4</td>
<td>18 kΩ</td>
</tr>
<tr>
<td>(V_{OL})</td>
<td>Output voltage</td>
<td>Pin 9 or 13</td>
<td>(I_L = 400mA)</td>
</tr>
<tr>
<td>(V_{OH})</td>
<td>Pin 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(V_{REG})</td>
<td>Regulated voltage</td>
<td>Pin 3</td>
<td>2.1 2.5 2.9</td>
</tr>
<tr>
<td>(\Delta V_{REG})</td>
<td>Regulation</td>
<td>Pin 3</td>
<td>3.9V ≤ (V_{CC}) ≤ 6V</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TYPICAL CONNECTION OF NE544N FOR LINEAR ONE SHOT TIMING

[Diagram of NE544N circuit with labels for components such as OUTPUT DRIVE CIRCUIT, GATE, DIRECTIONAL LOGIC, SCHMITT TRIGGER, VOLTAGE REGULATOR, INPUT FLIP-FLOP, PULSE STRETCHER, and input and output connections labeled with VS, Vcc, etc.]

TA, TB: OPTIONAL
USE MPS 6552 OR EQUIV
TYPICAL PERFORMANCE CHARACTERISTICS

MAXIMUM DISSIPATION vs AMBIENT TEMPERATURE

SUPPLY CURRENT vs SUPPLY VOLTAGE

OUTPUT CURRENT vs LOAD RESISTANCE

OUTPUT VOLTAGE vs LOAD CURRENT

INPUT PULSE WIDTH vs FEEDBACK POT OUTPUT

INPUT PULSE vs SERVO TRAVEL

*For additional information, consult the Applications Section.
Absolute Maximum Rating
Operating safe zones exceeding these limits could cause permanent damage to the device and are not meant to imply that devices can operate at these limits.

Current Limiting
The ability of the amplified segment to limit the output current of the device when safe operating limits are exceeded. Measured in amperes (pre-determined).

Efficiency
Regarding a regulator, the ratio of the total power input to the usable power output. Expressed as a percentage. (For example, if a regulator has a 50 watt input and a 40 watt output, its efficiency is 80 percent).

EMI/RFI
("Electromagnetic Interference/Radio Frequency Interference") regarding regulators, magnetic field disturbance and radio frequency interference signals generated especially by SMPS devices. Measurement is generally unspecified.

Line Regulation
Sometimes referred to as "static regulation". This term refers to the changes in the output as the input is varied slowly from its rated minimum value to its rated maximum value (from 105 VAC to 125 VAC). Measured in mV/V.

Load Regulation
Sometimes referred to as "dynamic regulation". This term refers to the changes in the output when load conditions are suddenly changed (from no load to full load). Measured in mV/V.

Package Type Designation
See full package designations in Appendix.

Power Dissipation
The power that the device can safely handle at 25°C. The dissipation must be derated as indicated for the individual package type.

Power Dissipation
The ability of the regulator to tolerate excessively high levels of input power while maintaining its operation within the safe operating area of its active devices. Measured in watts.

Safe Operating Area Restriction (SOAR)
Limits the output current of the amplifier to maintain safe (no thermal runaway) operating conditions. (Accomplished through internal sensor amplifiers.)

T_A
Ambient temperature range. Range of the surrounding environment of the operating device.

T_J
Junction Temperature. The maximum temperature of the device. 150°C is standard for silicon devices.

T_SOLDER
Soldering Temperature. The temperature which can be applied to the lead frame of the device for short periods of time (normally specified for a duration of 10 sec).

T_STA
Storage temperature range. Temperature range that the device can be stored in a non-operating condition.

Thermal Regulation
Referred to as changes due to ambient variations of thermal drift. Also referred to as temperature coefficient, measured in ppm/°C or mV/°C.

Thermal Shutdown
The ability of the regulator to shut itself down when the maximum die temperature is exceeded. Measured in degrees Celsius (°C).

Transient Response
The ability of a regulator to respond to rapid changes in line variations, load variations, or intermittent transient input conditions. (Transient Response is often referred to as "recovery time"). Measured in milliseconds (ms).

Truth Tables
0 is logic level low
1 is logic level high
X — don't care condition — has no effect under circuit conditions listed.

V_CC (−V_CC)
Supply Voltage. The range of power supply voltage over which the device will operate safely.

Voltage Limiting
The ability of the regulator to "shut down" in the event that the internal reference sources fail to function properly. Measured in Volts.
LINEAR LSI PRODUCTS

SWITCHED-MODE POWER SUPPLY CONTROL CIRCUIT SE/NE5560

DESCRIPTION
The SE/NE5560 is a control circuit for use in switched mode power supplies. This single monolithic chip incorporates all the control and housekeeping (protection) functions required in switched mode power supplies, including an internal temperature compensated reference source, internal Zener references, sawtooth generator, pulse width modulator, output stage and various protection circuits.

FEATURES
- Stabilized power supply
- Temperature compensated reference source
- Sawtooth generator
- Pulse width modulator
- Remote on/off switching
- Current limiting
- Low supply voltage protection
- Loop fault protection
- Demagnetization/overvoltage protection
- Maximum duty cycle clamp
- Feed forward control
- External synchronization

ABSOLUTE MAXIMUM RATINGS

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>RATING</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply 1</td>
<td>+18 V</td>
<td></td>
</tr>
<tr>
<td>Voltage forced mode</td>
<td>30 mA</td>
<td></td>
</tr>
<tr>
<td>Current fed mode</td>
<td>40 mA</td>
<td></td>
</tr>
<tr>
<td>Collector voltage (Pin 15)</td>
<td>VCC + 1.4V</td>
<td></td>
</tr>
<tr>
<td>Output transistor (at 20-30V max)</td>
<td>+5 V</td>
<td></td>
</tr>
<tr>
<td>Operating temperature (ambient)</td>
<td>-55 to +125 °C</td>
<td></td>
</tr>
<tr>
<td>SE5560</td>
<td>0 to 70 °C</td>
<td></td>
</tr>
<tr>
<td>Storage temperature range</td>
<td>-65 to +150 °C</td>
<td></td>
</tr>
</tbody>
</table>

BLOCK DIAGRAM

Note:
1. See Voltage/Current fed supply characteristic curve.

7-20
DC ELECTRICAL CHARACTERISTICS (T_A = 25°C, V_CC = 12V unless otherwise specified)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>SE5560</th>
<th></th>
<th>NE5560</th>
<th></th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference Sections</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Internal reference voltage (V_ref)</td>
<td>25°C</td>
<td>3.69</td>
<td>3.72</td>
<td>3.81</td>
<td>3.57</td>
<td>3.72</td>
</tr>
<tr>
<td>Temperature coefficient of V_ref</td>
<td>Over temperature</td>
<td>3.65</td>
<td>3.85</td>
<td>3.53</td>
<td>4.00</td>
<td>4.00</td>
</tr>
<tr>
<td>Internal Zener reference (V_Z)</td>
<td>I_L = -7 mA</td>
<td>7.8</td>
<td>8.4</td>
<td>8.8</td>
<td>7.8</td>
<td>8.4</td>
</tr>
<tr>
<td>Temperature coefficient of V_Z</td>
<td></td>
<td>200</td>
<td>200</td>
<td>200</td>
<td>200</td>
<td>200</td>
</tr>
<tr>
<td>Oscillator Section</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frequency range</td>
<td>Over temperature</td>
<td>50</td>
<td>100k</td>
<td>50</td>
<td>100k</td>
<td>50</td>
</tr>
<tr>
<td>Initial accuracy oscillator</td>
<td></td>
<td>5</td>
<td>98</td>
<td>0</td>
<td>98</td>
<td>0</td>
</tr>
<tr>
<td>Duty cycle range</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Modulator</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Modulation input current</td>
<td>Voltage at Pin 5 = 2V</td>
<td>0.2</td>
<td>20</td>
<td>0.2</td>
<td>20</td>
<td>0.2</td>
</tr>
<tr>
<td>Housekeeping Function</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pin 6, input current</td>
<td>Over temperature</td>
<td>40</td>
<td>50</td>
<td>60</td>
<td>40</td>
<td>50</td>
</tr>
<tr>
<td>Pin 6, duty cycle limit control</td>
<td>(for 50% maximum duty cycle)</td>
<td>15 kHz to 50 kHz</td>
<td>41% of V_Z</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Voltage at Pin 5 = 2V</td>
<td></td>
<td>400</td>
<td>600</td>
<td>720</td>
<td>400</td>
<td>600</td>
</tr>
<tr>
<td>Pin 3, pull up current</td>
<td>Over temperature</td>
<td>-7</td>
<td>-15</td>
<td>-35</td>
<td>-7</td>
<td>-15</td>
</tr>
<tr>
<td>Pin 13, demagnetization/over voltage protection trip threshold</td>
<td>470</td>
<td>600</td>
<td>720</td>
<td>470</td>
<td>600</td>
<td>720</td>
</tr>
<tr>
<td>Pin 13, input current</td>
<td>Over temperature</td>
<td>-0.6</td>
<td>-10</td>
<td>-0.6</td>
<td>-10</td>
<td>-0.6</td>
</tr>
<tr>
<td>Voltage at Pin 16 = 2V_Z</td>
<td>Over temperature</td>
<td>30</td>
<td>40</td>
<td>50</td>
<td>40</td>
<td>50</td>
</tr>
<tr>
<td>Pin 16, feed forward duty cycle control</td>
<td>Over temperature</td>
<td>0.2</td>
<td>5</td>
<td>0.2</td>
<td>5</td>
<td>0.2</td>
</tr>
<tr>
<td>Pin 16, pull up current</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pin 16, feed forward input current</td>
<td>Voltage at Pin 9 = 0V, 25°C</td>
<td>0.8</td>
<td>0</td>
<td>0.8</td>
<td>0</td>
<td>0.8</td>
</tr>
<tr>
<td>Pin 9 off</td>
<td>Over temperature</td>
<td>-65</td>
<td>-100</td>
<td>-65</td>
<td>-125</td>
<td>-125</td>
</tr>
<tr>
<td>Remote</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pin 11, I_N</td>
<td>Voltage at Pin 11 = 250 mV, 25°C</td>
<td>-2</td>
<td>-20</td>
<td>-2</td>
<td>-20</td>
<td>-2</td>
</tr>
<tr>
<td>Voltage at Pin 11 = 250 mV, 25°C</td>
<td>Over temperature</td>
<td>0.7</td>
<td>0.8</td>
<td>0.7</td>
<td>0.8</td>
<td>0.7</td>
</tr>
<tr>
<td>Single pulse inhibit delay</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Voltage at Pin 11 = 250 mV, 25°C</td>
<td></td>
<td>0.560</td>
<td>0.600</td>
<td>0.700</td>
<td>0.560</td>
<td>0.600</td>
</tr>
<tr>
<td>Current limit</td>
<td></td>
<td>0.400</td>
<td>0.480</td>
<td>0.500</td>
<td>0.400</td>
<td>0.480</td>
</tr>
<tr>
<td>Error Amplifier</td>
<td>Output voltage swing (V_{OH})</td>
<td>6.2</td>
<td>9.5</td>
<td>6.2</td>
<td>9.5</td>
<td>6.2</td>
</tr>
<tr>
<td>Output voltage swing (V_{OL})</td>
<td>Open loop gain</td>
<td>54</td>
<td>60</td>
<td>54</td>
<td>60</td>
<td>54</td>
</tr>
<tr>
<td>Feedback resistor</td>
<td>10k</td>
<td>10k</td>
<td>3</td>
<td>10k</td>
<td>3</td>
<td>10k</td>
</tr>
<tr>
<td>Small signal bandwidth</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
DC ELECTRICAL CHARACTERISTICS (Continued)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>SE5560</th>
<th>NE5560</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output Stage</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(V_{CE(SAT)}) (I_C = 40\text{mA})</td>
<td></td>
<td>40</td>
<td>40</td>
<td>0.5</td>
</tr>
<tr>
<td>Output current (pin 15)</td>
<td></td>
<td>5</td>
<td>6</td>
<td>0.5</td>
</tr>
<tr>
<td>Max emitter voltage (pin 14)</td>
<td></td>
<td>0.5</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>Supply Voltage/Current</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(I_C) (= 0), voltage forced, (V_{CC} = 12\text{V}), 25°C Over temp.</td>
<td></td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>(V_{CC}) (I_C = 10\text{mA}) current fed</td>
<td></td>
<td>20</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>(V_{CC}) (I_C = 30\text{mA}) current fed</td>
<td></td>
<td>20</td>
<td>23</td>
<td>24</td>
</tr>
</tbody>
</table>

Note:
Does not include current for timing resistors or capacitors. (See p. 7-22.)

TYPICAL PERFORMANCE CHARACTERISTICS

ERROR AMPLIFIER
OPEN LOOP GAIN

MAXIMUM PIN VOLTAGES

<table>
<thead>
<tr>
<th>FUNCTION</th>
<th>NE5560</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. (V_{CC})</td>
<td>See Note 1</td>
</tr>
<tr>
<td>2. (V_Z)</td>
<td>Do not force (8.4V)</td>
</tr>
<tr>
<td>3. Feedback</td>
<td>(V_Z)</td>
</tr>
<tr>
<td>4. Gain</td>
<td>(V_Z)</td>
</tr>
<tr>
<td>5. Modulator</td>
<td>Current force mode</td>
</tr>
<tr>
<td>6. Duty Cycle Control</td>
<td>(V_{CC})</td>
</tr>
<tr>
<td>7. (R_T)</td>
<td>GND</td>
</tr>
<tr>
<td>8. (C_T)</td>
<td>GND</td>
</tr>
<tr>
<td>9. External Sync</td>
<td>(V_Z)</td>
</tr>
<tr>
<td>10. Remote On/Off</td>
<td>(V_Z)</td>
</tr>
<tr>
<td>11. Current Limiting</td>
<td>(V_{CC})</td>
</tr>
<tr>
<td>12. GND</td>
<td>(V_{CC})</td>
</tr>
<tr>
<td>13. Demagnetization/Overvoltage</td>
<td>(V_{CC})</td>
</tr>
<tr>
<td>14. Output (Emit)</td>
<td>(V_Z)</td>
</tr>
<tr>
<td>15. Output (Collector)</td>
<td>(V_{CC} + 2V_{be})</td>
</tr>
<tr>
<td>16. Feed forward</td>
<td>(V_{CC})</td>
</tr>
</tbody>
</table>

Note:
1. When voltage forced, maximum is 18V; when current fed, maximum is 30mA. See voltage/current fed supply characteristic curve.
TYPICAL PERFORMANCE CHARACTERISTICS (continued)

GRAPH FOR DETERMINING \(\delta \) MAX

- **SOFT-START MIN DUTY CYCLE vs \(R_1 + R_2 \)**

POWER DERATING CURVE

NE5560 VOLTAGE/CURRENT FED SUPPLY CHARACTERISTICS

CURRENT FED DROPPING RESISTOR

REGULATION vs ERROR AMP CLOSED LOOP GAIN

TRANSFER CURVE OF PULSE WIDTH MODULATOR DUTY CYCLE vs INPUT VOLTAGE
LINEAR LSI PRODUCTS

SWITCHED-MODE POWER SUPPLY CONTROL CIRCUIT

SE/NE5560

TYPICAL PERFORMANCE CHARACTERISTICS (continued)

TYPICAL FREQUENCY PLOT vs \(R_T \) AND \(C_T \)

DUTY CYCLE SENSITIVITY TO FEED FORWARD VOLTAGE (PIN 16)

THEORY OF OPERATION

The following functions are incorporated:

- A temperature compensated reference source.
- An error amplifier with pin 3 as input. The output is connected to pin 4 so that the gain is adjustable with external resistors.
- A sawtooth generator with a TTL-compatible synchronization input (pins 7,8,9).
- A pulse-width modulator with a duty cycle range from 0 to 95%.
- A gate at the output of the PWM provides a simple dynamic current limit.
- A latch that is set by the flyback of the sawtooth and reset by the output pulse of the above-mentioned gate prohibits double pulsing.
- Another latch functions as a start-stop circuit; it provides a fast switch-off and a slow start.
- A current protection circuit that operates via the start-stop circuit. This is a combined function with the current limit circuit, therefore pin 11 has two trip-on levels; the lower one for cycle-by-cycle current limiting, the upper one for current protection by means of switch-off and slow-start.
- A TTL-compatible remote on/off input at pin 10, also operating via the start-stop circuit.
- An inhibit input at pin 13. The output pulse can be inhibited immediately.
- An output gate that is commanded by the latches and the inhibit circuit.
- An output transistor of which both the collector (pin 15) and the emitter (pin 14) are externally available. This allows for normal or inverse output pulses.
- A power supply that can be either voltage or current driven (pins 1 and 12). The internally generated stabilized output voltage \(V_z \) is connected to pin 2.
- A special function is the so-called feed-forward at pin 16. The amplitude of the sawtooth generator is modulated in such a way that the duty cycle becomes inversely proportional to the voltage on this pin: \(\delta = 1/V_{16} \).
- Loop fault protection circuits assure that the duty-cycle is reduced to zero or a low value for open or short-circuited feedback loops.

Stabilized Power Supply (Pins 1, 2, 12)

The power supply of the NE5560 is of the well known series regulation type and provides a stabilized output voltage of typically 8.5 volts.

This voltage \(V_z \) is also present at pin 2 and can be used for precise setting of \(\delta \) max. and to supply external circuitry. Its maximum current capability is 5mA.

The circuit can be fed directly from a DC voltage source between 10.5V and 18V or can be current driven via a limiting resistor. In the latter case, internal pinch-off resistors will limit the maximum supply voltage; typical 23V for 10mA and maximum 30V for 30mA.

The low supply voltage protection is active when \(V(1-12) \) is below 10.5V and inhibits the output pulse (no hysteresis).

When the supply voltage surpasses the 10.5V level, the IC starts delivering output pulses via the slow-start function. The current consumption at 12V is less than 10mA, provided that no current is drawn from \(V_z \) and \(R(7-12) \geq 20\, \text{k}\Omega \).
The Sawtooth Generator

Figure 2 shows the principal circuitry of the oscillator. A resistor between pin 7 and pin 12 (ground) determines the constant current that charges the timing capacitor C(8-12).

This causes a linear increasing voltage on pin 8 until the upper level of 5.6V is reached. Comparator H sets the RS flip flop and Q1 discharges C(8-12) down to 1.1V, where comparator L resets the flip-flop. During this flyback time, Q2 inhibits the output.

Synchronization at a frequency lower than the free-running frequency is accomplished via the TTL gate on pin 9. By activating this gate (V9<2V), the setting of the sawtooth is prevented. This is indicated in Figure 3.

Figure 4 shows a typical plot of the oscillator frequency against the timing capacitor. The frequency range of the NE5560 goes from <50Hz up to >100kHz.

Reference Voltage Source

The internal reference voltage source is based on the bandgap voltage of silicon. Good design practice assures a temperature dependency typically ±100ppm/°C. The reference voltage is connected to the positive input of the error amplifier and has a typical value of 3.72V.

Error Amp Compensation

For closed loop gains less than 40 dB, it is necessary to add a simple compensation capacitor as shown in Figures 4, 5.
Error Amplifier with Loop-Fault Protection Circuits

This operational amplifier is of a generally used concept and has an open loop gain of typically 60dB. As can be seen in Figure 5, the inverting input is connected to pin 3 for a feedback information proportional to \(V_0 \).

The output goes to the PWM circuit, but is also connected to pin 4, so that the required gain can be set with \(R_S \) and \(R_{3-4} \). This is indicated in Figure 5, showing the relative change of the feedback voltage as a function of the duty cycle. Additionally, pin 4 can be used for phase shift networks that improve the loop stability.

When the SMPS feedback loop is interrupted, the error amplifier would settle in the middle of its active region because of the feedback via \(R_{3-4} \). This would result in a large duty cycle. A current source on pin 3 prevents this by pushing the input voltage high via the voltage drop over \(R_{3-4} \). As a result, the duty cycle will become zero, provided that \(R_{3-4} > 100k \). When the feedback loop is shortcircuited, the duty cycle would jump to the adjusted maximum duty cycle. Therefore, an additional comparator is active for feedback voltages at pin 3 below 0.6V. Now an internal resistor of typically 1k is shunted to the impedance on the \(\delta_{\text{max}} \) setting pin 6. Depending on this impedance, \(\delta \) will be reduced to a value \(\delta_0 \). This will be discussed further.
The Pulse-Width Modulator

The function of the PWM circuit is to translate a feedback voltage into a periodical pulse of which the duty cycle depends on that feedback voltage. As can be seen in Figure 6, the PWM circuit in the NE5560 is a long-tailed pair in which the sawtooth on pin 8 is compared with the LOWEST voltage on either pin 4 (error amplifier), pin 5, or pin 6 \(\delta_{\text{max}} \) and slow-start. The transfer graph is given in Figure 7. The output of the PWM causes the resetting of the output bistable.

Limitation of the Maximum Duty Cycle

With pins 5 and 6 not connected and with a rather low feedback voltage on pin 3, the NE5560 will deliver output pulses with a duty cycle of \(\approx 95\% \). In many SMPS applications, however, this high \(\delta \) will cause problems. Especially in forward converters, where the transformer will saturate when \(\delta \) exceeds 50\%, a limitation of the maximum duty-cycle is a must.

A DC voltage applied to pin 6 (PWM input) will set \(\delta_{\text{max}} \) at a value in accordance with Figure 7. For low tolerances of \(\delta_{\text{max}} \), this voltage on pin 6 should be set with a resistor divider from \(V_2 \) (pin 2). The upper and lower sawtooth levels are also set by means of an internal resistor divider from \(V_2 \), so forming a bridge configuration with the \(\delta_{\text{max}} \) setting is low because tolerances in \(V_2 \) are compensated and the sawtooth levels are determined by internal resistor matching rather than by absolute resistor tolerance. Figure 8 can be used for determining the tap on the bleeder for a certain \(\delta_{\text{max}} \) setting.

As already mentioned, Figure 9 gives a graphical representation of this. The value \(\delta_0 \) is limited to the lower and the higher side:

- It must be large enough to ensure that at maximum load and minimum input voltage the resulting feedback voltage on pin 3 exceeds 0.6V.
- It must be small enough to limit the amount of energy in the SMPS when a loop-fault occurs. In practice a value of 10-15\% will be a good compromise.

Extra PWM Input (Pin 5)

The PWM has an additional inverting input: pin 5. It allows for attacking the duty cycle via the PWM circuit, independently from the feedback and the \(\delta_{\text{max}} \) information. This is necessary when the SMPS must have a real constant current behavior, possibly with a fold-back characteristic. However, the realization of this feature must be done with additional external components. When not used, pin 5 should be tied to pin 6.

Dynamic Current Limit and Current Protection (Pin 11)

In many applications, it is not necessary to have a real constant current output of the SMPS.

Protection of the power transistor will be the prime goal. This can be realized with the NE5560 in an economical way. A resistor (or a current transformer) in the emitter of the power transistor gives a replica of the collector current. This signal must be connected to pin 11. As can be seen in Figure 10, this input has two comparators with different reference levels. The output of the comparator with the lower 0.48V reference is connected to the same gate as the output of the PWM.
When activated, it will immediately reset the output flip flop, so reducing the duty cycle. The effectiveness of this cycle-by-cycle current limit diminishes at low duty cycle values. When δ becomes very small, the storage time of the power transistor becomes dominant. The current will now increase again, until it surpasses the reference of the second comparator. The output of this comparator activates the start/stop circuit and causes an immediate inhibit of the output pulses. After a certain dead-time, the circuit starts again with very narrow output pulses. The effect of this two-level current protection circuit is visualized in Figure 11.

The Start/Stop Circuit

The function of this protection circuit is to stop the output pulses as soon as a fault occurs and to keep the output stopped for several periods. After this dead time, the output starts with a very small, gradually increasing duty cycle. When the fault is persistent, this will cause a cyclic switch-off/switch-on condition. This "hiccup" mode limits effectively the energy during fault conditions. The realization and the working of the circuit is indicated in the Figures 12 and 13. The dead-time and the soft-start are determined by an external capacitor that is connected to pin 6 (d_{max} setting).

A RS flip flop can be set by three different functions:
1. Remote on/off on pin 10.
2. Overcurrent protection on pin 11.
3. Low supply voltage protection (internal).

As soon as one of these functions cause a setting of the flip flop, the output pulses are blocked via the output gate. In the same time transistor Q1 is forward-biased, resulting in a discharge of the capacitor on pin 6.

The discharging current is limited by an internal 1500 resistor in the emitter of Q1. The voltage at pin 6 decreases to below the lower level of the sawtooth. When V6 has dropped to 0.6V, this will activate a comparator and the flip flop is reset. The output stage is no longer blocked and Q1 is cut-off. Now V_2 will charge the capacitor via R1 to the normal d_{max} voltage. The output starts delivering very narrow pulses as soon as V6 exceeds the lower sawtooth level. The duty-cycle of the output pulse now gradually increases to a value determined by the feedback on pin 3, or by the static d_{max} setting on pin 6.

![Diagram of Start/Stop Circuit](image-url)
Remote On/Off Circuit (Pin 10)

In systems where two or more power supplies are used, it is often necessary to switch these supplies on and off in a sequential way. Furthermore, there are many applications in which a supply must be switched by a logical signal. This can be done via the TTL-compatible remote on/off input on pin 10. The output pulse is inhibited for levels below 0.8V. The output of the IC is no longer blocked when the remote on/off input is left floating or when a voltage > 2V is applied. Start up occurs via the slow-start circuit.

The Output Stage

The output stage of the NE5560 contains a flip flop, a push-pull driven output transistor, and a gate, as indicated in Figure 14. The flip flop is set by the flyback of the sawtooth. Resetting occurs by a signal either from the PWM or the current limit circuit. With this configuration, it is assured that the output is switched only once per period, thus prohibiting double pulsing. The collector and emitter of the output transistor are connected to respectively pin 15 and pin 14, allowing for normal or inverted output pulses. An internally grounded emitter would cause intolerable voltage spikes over the bonding wire, especially at high output currents.

This current capability of the output transistor is 40mA peak for $V_{CE} \approx 0.4V$. An internal clamping diode to the supply voltage protects the collector against overvoltages. The maximum voltage at the emitter (pin 14) must not exceed +5V. A gate, activated by one of the set or reset pulses, or by a command from the start-stop circuit will immediately switch off the output transistor by short-circuiting its base. The external inhibitor (pin 13) operates also via this base.

Demagnetization Sense

As indicated in Figure 14, the output of this NPN comparator will block the output pulse, when a voltage above 0.6V is applied to pin 13. A specific application for this function is to prevent saturation of forward converter transformers. This is indicated in Figure 15.

Feed-Forward (Pin 16)

The basic formula for a forward converter is $V_{Out} = \frac{dV_{in}}{n}(n = \text{transformer ratio})$.

![Figure 14](image1.png)

![Figure 15](image2.png)
This means that in order to keep V_{out} at a constant value, the duty cycle δ must be made inversely proportional to the input voltage. A preregulation (feed-forward) with the function $\delta \sim \frac{1}{V_{\text{in}}}$ can ease the feedback-loop design.

This loop now only has to regulate for load variations, which require only a low feedback gain in the normal operation area. The transformer of a forward converter must be designed in such a way that it does not saturate, even under transient conditions, where the maximum inductance is determined by $\delta_{\text{max}} \times V_{\text{in}}$. A regulation of $\delta_{\text{max}} \sim \frac{1}{V_{\text{in}}}$ will allow for a considerable reduction or simplification of the transformer. The function of $\delta \sim \frac{1}{V_{\text{in}}}$ can be realized by using pin 16 of the NE5560.

Figure 16 shows the electrical realization. When the voltage at pin 16 exceeds the stabilized voltage V_2 (pin 2), it will increase the charging current for the timing capacitor on pin 8.

The operating frequency is not affected, because the upper trip level for sawtooth increases also. Note that the δ_{max} voltage on pin 6 remains constant because it is set via V_2. Figure 17 visualizes the effect on δ_{max} and the normal operating duty cycle δ. For $V_{16} = 2 \times V_2$ these duty cycles have halved. The graph for $\delta = f(V_{16})$ is given in Figure 18. (Note: V_{16} must be less than Pin 1 voltage.)

Applications

NE/SE5560 Push-Pull Regulator

This application describes the use of the Signetics NE/SE5560 adapted to function as a push-pull switched mode regulator, as shown in Figures 19 and 20.

Input voltage range is $+12$ to $+18\text{V}$ for a nominal output of $+30$ and -30V at a maximum load current of 1A with an average efficiency of 81%.

Features include feed forward input compensation, cycle-to-cycle drive current protection and other voltage sensing, line (to positive output) regulation $<1\%$ for an input range of $+13$ to $+18\text{V}$ and load regulation to positive output of $<3\%$ for $\Delta I_\text{L}(+) \sim 0.1$ to 1Amp.

The main pulse width modulator operates to 48kHz with power switching at 24kHz.

Figure 16: External δ Maximum Control

Figure 17: Feed Forward Circuitry

Figure 18: Feed-Forward Regulation
Figure 19
NOTE
Power ground and signal ground must be kept separated.

Figure 20

T1, Primary = 120T (C.T.) #26
Secondary = 18T (C.T.) #22
Core = Ferroxcube 3622
3CB material
C.T. = 50T #28 on
Ferroxcube 2616 core (3CB)
F2D bobbin
T2, Primary = 18T (C.T.) #18 Secondaries (each) 52T (C.T.) #22,
Core = Ferroxcube 4209 3CB material
L1, L2 = 120T #20 on single gapped EC35 Ferroxcube core. 3CB material.
DESCRIPTION

The NE5561/SE5561 is a control circuit for use in switched mode power supplies. It contains an internal temperature compensated supply, PWM, sawtooth oscillator, over-current sense latch, and output stage. The device is intended for low cost SMPS applications where extensive housekeeping functions are not required.

FEATURES

- Micro-miniature (D) package
- Pulse-width modulator
- Current limiting (cycle by cycle)
- Sawtooth generator
- Stabilized power supply
- Double pulse protection
- Internal temperature compensated reference

APPLICATIONS

- Switched mode power supplies
- D/C motor controller inverter
- DC/DC converter

ABSOLUTE MAXIMUM RATINGS

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>RATING</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply</td>
<td>+ 18 V</td>
<td></td>
</tr>
<tr>
<td>Voltage forced mode</td>
<td>30 mA</td>
<td></td>
</tr>
<tr>
<td>Current fed mode</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output transistor (at 20-30V max)</td>
<td>40 mA</td>
<td></td>
</tr>
<tr>
<td>Output current</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output voltage</td>
<td>V_{CC} + 1.4V</td>
<td>V</td>
</tr>
<tr>
<td>Output duty cycle</td>
<td>98 %</td>
<td></td>
</tr>
<tr>
<td>Max. total power dissipation</td>
<td>0.75 W</td>
<td></td>
</tr>
<tr>
<td>Operating temperature range</td>
<td>- 55 to + 125 °C</td>
<td></td>
</tr>
<tr>
<td>SE5561</td>
<td>0 to 70 °C</td>
<td></td>
</tr>
<tr>
<td>NE5561</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTE 1: See Voltage/Current fed supply characteristic curve.

PIN CONFIGURATION

D, FE, N PACKAGES

ORDER NUMBERS
NE5561D, NE5561FE, NE5561N, SE5561FE, SE5561N

BLOCK DIAGRAM
DC ELECTRICAL CHARACTERISTICS

$V_{CC} = 12\, V$, $T_A = 25^\circ C$ unless otherwise specified.

SYMBOL AND PARAMETER

<table>
<thead>
<tr>
<th>TEST CONDITIONS</th>
<th>SE5561</th>
<th>NE5561</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>REFERENCE SECTION</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_{REF} Internal ref voltage</td>
<td>$T_A = 25^\circ C$</td>
<td>3.69</td>
<td>3.75</td>
</tr>
<tr>
<td></td>
<td>Over temp.</td>
<td>3.65</td>
<td>3.88</td>
</tr>
<tr>
<td>V_Z, Internal zener ref</td>
<td>$I_L = 7, mA$</td>
<td>7.8</td>
<td>8.2</td>
</tr>
<tr>
<td>Temp coefficient of V_{REF}</td>
<td>± 100</td>
<td>± 100</td>
<td>ppm/°C</td>
</tr>
<tr>
<td>Temp. coefficient of V_Z</td>
<td>± 200</td>
<td>± 200</td>
<td>ppm/°C</td>
</tr>
<tr>
<td>OSCILLATOR SECTION</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frequency range</td>
<td>Over temp.</td>
<td>50</td>
<td>100k</td>
</tr>
<tr>
<td>Initial accuracy</td>
<td></td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Duty cycle range</td>
<td>$f_c = 20, kHz$</td>
<td>0</td>
<td>98</td>
</tr>
<tr>
<td>CURRENT LIMITING (I_L)</td>
<td>Pin 6 = 250mV</td>
<td>-2</td>
<td>-10</td>
</tr>
<tr>
<td></td>
<td>Over temp.</td>
<td>-20</td>
<td></td>
</tr>
<tr>
<td>Single pulse inhibit delay</td>
<td>Inhibit delay time for 20% overdrive at $I_{OUT} = 20, mA$</td>
<td>0.88</td>
<td>1.10</td>
</tr>
<tr>
<td>Current limit trip level</td>
<td>$I_{OUT} = 40, mA$</td>
<td>0.7</td>
<td>0.8</td>
</tr>
<tr>
<td>ERROR AMPLIFIER</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Open loop gain</td>
<td></td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>Feedback resistor</td>
<td>10k</td>
<td>10k</td>
<td></td>
</tr>
<tr>
<td>Small signal bandwidth</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Output voltage swing (V_{OH})</td>
<td>6.2</td>
<td>6.2</td>
<td></td>
</tr>
<tr>
<td>Output voltage swing (V_{OL})</td>
<td>0.7</td>
<td>0.7</td>
<td></td>
</tr>
<tr>
<td>OUTPUT STAGE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output current</td>
<td>Over temp.</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>V_{CS} Sat</td>
<td>$I_C = 20, mA$, Over temp.</td>
<td>0.4</td>
<td></td>
</tr>
<tr>
<td>SUPPLY VOLTAGE/CURRENT</td>
<td>$I_Z = 0$, voltage forced</td>
<td>$T_A = 25^\circ C$</td>
<td>10.0</td>
</tr>
<tr>
<td></td>
<td>Over temp.</td>
<td>13.0</td>
<td></td>
</tr>
<tr>
<td>V_{CC}</td>
<td>$I_{CC} = 10, mA$, current fed</td>
<td>20.0</td>
<td>21.0</td>
</tr>
<tr>
<td></td>
<td>$I_{CC} = 30, mA$ current</td>
<td>20.0</td>
<td>30.0</td>
</tr>
<tr>
<td>LOW SUPPLY PROTECTION</td>
<td>Pin 1 threshold</td>
<td>8</td>
<td>9</td>
</tr>
</tbody>
</table>
TYPICAL PERFORMANCE CHARACTERISTICS

ERROR AMPLIFIER

OPEN LOOP GAIN

OPEN LOOP PHASE

TRANSFER CURVE OF PULSE-WIDTH MODULATOR DUTY CYCLE VS INPUT VOLTAGE

POWER DERATING CURVE

MAXIMUM DUTY CYCLE VS BASE VOLTAGE ON Q1

START-UP CIRCUIT

SLOW START VOLTAGE

\[\delta_{\text{MAX}}(\%) = \frac{R_2}{R_1 + R_2} \left(V_2 + V_{\text{BE} Q1} \right) \]
NE5561 VOLTAGE/CURRENT FED SUPPLY CHARACTERISTICS

CURRENT FED DROPPING RESISTOR

NE5561 Start-Up

The start-up, or initial turn on, of this device requires some degree of external protective duty cycle limiting to prevent the duty cycle from initially going to the extreme maximum (0>90%). Either over-current limit or slow start circuitry must be employed to limit duty cycle to a safe value during start-up. Both may be used if desired.

To implement slow-start, the start-up circuit can be used. The divider R1 and R2 sets a voltage, buffered by Q1, such that the output of the error amplifier is clamped to a maximum output voltage, thereby limiting the maximum duty cycle. The addition of capacitor C will cause this voltage to ramp up slowly when power is applied, causing the duty cycle to ramp up simultaneously.

Over-current limit may be used also. To limit duty cycle in this mode, the switch current is monitored at pin 6 and the output of the 5561 is disabled on a cycle by cycle basis when current reaches the programmed limit. With current limit control of slow-start, the duty cycle is limited to that value just allowing maximum switch current to flow. (Approximately 0.50V measured at pin 6.)

APPLICATIONS

5V, 0.5A Buck Regulator Operates from 15V

The converter design shows how simple it is to derive a TTL supply from a system supply of 15V (see Figure 1). The NE5561 drives a 2N4920 PNP transistor directly to provide switching current to the inductor. Overall line regulation is excellent and covers a range of 12V to 18V with minimal change (< 10 mV) in the output operating at full load.

As with all NE5561 circuits, the auxiliary slow start and \(\delta_{\text{max}} \) circuit is required, as evidenced by Q1. The \(\delta_{\text{max}} \) limit may be calculated by using the relationship (Figure 5a, b).

\[
\frac{R_2}{R_1 + R_2} = \frac{8.2V}{V_{C51,\text{max}}}.
\]

The maximum duty cycle is then determined from the pulse-width modulator transfer graph, and R1, R2 are defined from the desired conditions.
DESCRIPTION
The SE/NE5562 is a single output control circuit for Switched Mode Power Supplies. This single monolithic IC contains all control and protection features needed for full featured Switched Mode Power Supplies.

FEATURES
- Stabilized power supply
- Temperature compensated reference source
- Sawtooth generator
- Pulse width modulator
- Remote on/off switching
- Current limiting (2 levels)
- Low supply voltage, with adjustable hysteresis
- Loop fault protection
- Demagnetization/over voltage protection
- Duty cycle adjust and clamp
- Feed forward control
- External synchronization
- Total shutdown after adjustable number of overcurrent faults

ABSOLUTE MAXIMUM RATINGS

<table>
<thead>
<tr>
<th>SYMBOL AND PARAMETER</th>
<th>RATING</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply (pin 15) Voltage sourced</td>
<td>+15</td>
<td>V</td>
</tr>
<tr>
<td>Current sourced</td>
<td>30</td>
<td>mA</td>
</tr>
<tr>
<td>Output transistor</td>
<td>100</td>
<td>mA</td>
</tr>
<tr>
<td>Sync (pin 11) positive</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Remote on/off (pin 6) positive</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feedback pin (pin 8) positive</td>
<td></td>
<td></td>
</tr>
<tr>
<td>External mod in (pin 4) positive</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feedforward (pin 1) positive</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Error amp out (pin 10) positive</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Demag/O.V. in (pin 18) positive</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Current sense (pin 14) positive</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low supply sense and hysteresis</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ORDER NUMBERS
NE5562D, NE5562F, NE5562N
SE5562F, SE5562N
Linear LSI Products

Switched-Mode Power Supply Control Circuit

SE/NE5562

Preliminary

DC Electrical Characteristics: $V_{CC} = 12\,\text{V}$ unless otherwise specified

<table>
<thead>
<tr>
<th>SYMBOL AND PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>SE5562</th>
<th>NE5562</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>REFERENCE SECTION</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reference Voltage V_R</td>
<td>$25,^\circ\text{C} \pm 50,\text{ppm}/^\circ\text{C} \pm 1%$ Over Temp</td>
<td>Min</td>
<td>Typ</td>
<td>Max</td>
</tr>
<tr>
<td>Zener Voltage V_Z</td>
<td>$I_L = 7,\text{mA}$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OSCILLATOR SECTION</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frequency Range</td>
<td></td>
<td>300</td>
<td></td>
<td>300</td>
</tr>
<tr>
<td>MODULATOR SECTION</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Modulator Input Current</td>
<td>Over Temp $V_{IN} = 1,\text{V}$</td>
<td>Min</td>
<td>Typ</td>
<td>Max</td>
</tr>
<tr>
<td>HOUSEKEEPING FUNCTIONS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deltamax Input Current</td>
<td>Over Temp $V_{IN} = 1,\text{V}$</td>
<td>Min</td>
<td>Typ</td>
<td>Max</td>
</tr>
<tr>
<td>Accuracy of Duty Cycle Control</td>
<td>$f = 15,\text{kHz}$ to $150,\text{kHz}$</td>
<td>$V_{IN} = 55%$ of V_Z</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>Low Supply Voltage Shutdown</td>
<td>V_Z for Restart Condition</td>
<td>$V_Z + 2$</td>
<td>$V_Z + 7$</td>
<td>$V_Z + 1.5$</td>
</tr>
<tr>
<td>Loop Fault Protection Threshold</td>
<td></td>
<td>$.72$</td>
<td>$.9$</td>
<td>$.98$</td>
</tr>
<tr>
<td>Demag/Over Voltage Threshold Voltage</td>
<td></td>
<td>3.60</td>
<td>3.72</td>
<td>3.84</td>
</tr>
<tr>
<td>Over Voltage Input Bias Current</td>
<td></td>
<td>1</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>FEED FORWARD FUNCTION</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Duty Cycle Reduction at 50% Duty Cycle</td>
<td>Feedforward Voltage V_{FF}</td>
<td>$V_{FF} = 2V_Z$</td>
<td>12.785</td>
<td></td>
</tr>
<tr>
<td>Feedforward Bias Current</td>
<td>Feedforward Voltage V_{FF}</td>
<td>$V_{FF} = 2V_Z$</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>EXTERNAL SYNC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>"ON" Input Voltage</td>
<td></td>
<td>$.2$</td>
<td>$.8$</td>
<td>$.2$</td>
</tr>
<tr>
<td>"OFF" Input Voltage</td>
<td></td>
<td>2</td>
<td>V_Z</td>
<td>2</td>
</tr>
<tr>
<td>Input Low Current</td>
<td>$V_{IN} = 0,\text{V}$</td>
<td></td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>ERROR AMPLIFIER SECTION</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amplifier Open Loop Gain</td>
<td>$R_L \geq 100,\text{K}$</td>
<td></td>
<td>60</td>
<td>80</td>
</tr>
<tr>
<td>Amplifier Bias Current</td>
<td></td>
<td></td>
<td>$.5$</td>
<td>5</td>
</tr>
<tr>
<td>Amplifier Output Current</td>
<td></td>
<td>-1</td>
<td>+1</td>
<td>-1</td>
</tr>
<tr>
<td>Amplifier Output Swing</td>
<td></td>
<td>1</td>
<td>$V_Z - 1$</td>
<td></td>
</tr>
<tr>
<td>REMOTE ON/OFF</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>"OFF" Input Voltage</td>
<td></td>
<td></td>
<td>0</td>
<td>$.8$</td>
</tr>
<tr>
<td>"ON" Input Voltage</td>
<td></td>
<td></td>
<td>2</td>
<td>V_Z</td>
</tr>
<tr>
<td>Input Low Current</td>
<td>$V_{IN} = 0,\text{V}$</td>
<td></td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>LOW SUPPLY SHUTDOWN</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comparator Input Bias Current</td>
<td>$V_{IN} = 0,\text{V}$</td>
<td></td>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>Comparator Threshold Voltage</td>
<td></td>
<td>3.50</td>
<td>3.72</td>
<td>3.90</td>
</tr>
<tr>
<td>V_{CE} Sat. of Hysteresis Transistor</td>
<td>$I_{OUT} = 1.0,\text{mA}$</td>
<td>$V_{IN} = 3.0,\text{V}$</td>
<td></td>
<td>$.3$</td>
</tr>
<tr>
<td>C_{DELAY} Discharge Current</td>
<td>$V_C = 1.0,\text{V}$</td>
<td>$V_{IN} = 3.0,\text{V}$</td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>
DC ELECTRICAL CHARACTERISTICS: \(V_{CC} = 12V \) unless otherwise specified (cont)

<table>
<thead>
<tr>
<th>SYMBOL AND PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>SE5562</th>
<th>NE5562</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Min</td>
<td>Typ</td>
<td>Max</td>
<td>Min</td>
</tr>
<tr>
<td>CURRENT SENSE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OC1 Threshold Voltage</td>
<td>.456</td>
<td>.480</td>
<td>.504</td>
<td>480</td>
</tr>
<tr>
<td>OC1 (C_{DELAY}) Charge Current</td>
<td>10</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OC2 Threshold Voltage</td>
<td>.570</td>
<td>600</td>
<td>.630</td>
<td>560</td>
</tr>
<tr>
<td>OC2 (C_{DELAY}) Charge Current</td>
<td>490</td>
<td>490</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OC2 (C_{DELAY}) Discharge Current</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SUPPLY VOLTAGE/CURRENT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(I_{CC})</td>
<td>7.5</td>
<td>7.5</td>
<td></td>
<td>7.5</td>
</tr>
<tr>
<td>CURRENT FEED SHUNT REGULATOR</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(V_S)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(I_{in})</td>
<td>14.25</td>
<td>14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(V_S)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(I_{in})</td>
<td>16</td>
<td>16</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

OUTPUT STAGE

\(V_S - V_{OH} \)	\(11 \leq V_S \leq 15V \)	\(I_O = 100mA \)	2	V	
\(V_{OL} \)	\(11 \leq V_S \leq 15V \)	\(I_O = 100mA \)	1.5	1.5	V
\(V_{OL} \)	\(11 \leq V_S \leq 15V \)	\(I_O = 2mA \)	4	.4	V
DESCRIPTION
The NE5568 is a control circuit for use in switched mode power supplies. It contains an internal temperature-compensated supply, PWM, sawtooth oscillator, over-current sense latch, and output stage. The device is intended for low-cost SMPS applications where extensive housekeeping functions are not required. The NE5568 is a selected version of the NE5561.

FEATURES
- Micro-miniature (D) package
- Pulse width modulator
- Current limiting (cycle by cycle)
- Sawtooth generator
- Stabilized power supply
- Double pulse protection
- Internal temperature-compensated reference

APPLICATIONS
- Switch mode power supplies
- DC motor controller inverter
- DC/DC converter

ABSOLUTE MAXIMUM RATINGS

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>RATING</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltage, (V_{CC})</td>
<td>18</td>
<td>V</td>
</tr>
<tr>
<td>Output current</td>
<td>40</td>
<td>mA</td>
</tr>
<tr>
<td>Output duty cycle</td>
<td>98</td>
<td>%</td>
</tr>
<tr>
<td>Max total power dissipation</td>
<td>0.75</td>
<td>W</td>
</tr>
<tr>
<td>Operating temperature range</td>
<td>0 to 70</td>
<td>ºC</td>
</tr>
</tbody>
</table>

BLOCK DIAGRAM

PIN CONFIGURATION

ORDER NUMBERS
NE5568D, NE5568FE, NE5568N
DC ELECTRICAL CHARACTERISTICS

For $V_{CC} = 12V$, $T_A = 25^\circ C$ unless otherwise specified.

<table>
<thead>
<tr>
<th>SYMBOL AND PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>NE5568</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference Section</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_{REF}, Internal ref voltage</td>
<td>$T_A = 25^\circ C$</td>
<td>3.69 3.75 3.84</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>Over temperature</td>
<td>3.66 3.87</td>
<td>V</td>
</tr>
<tr>
<td>V_z, Internal zener ref</td>
<td>$I_L = 7mA$</td>
<td>7.8 8.2 8.8</td>
<td>V</td>
</tr>
<tr>
<td>Temperature coefficient of V_{REF}</td>
<td>± 100 ppm/°C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperature coefficient of V_z</td>
<td>± 200 ppm/°C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oscillator Section</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frequency range</td>
<td>Over temperature</td>
<td>50 100k</td>
<td>Hz</td>
</tr>
<tr>
<td>Initial accuracy</td>
<td></td>
<td>12</td>
<td>%</td>
</tr>
<tr>
<td>Duty cycle range</td>
<td>$f_o = 20kHz$</td>
<td>0 98</td>
<td>%</td>
</tr>
<tr>
<td>Current Limiting (I_{IN})</td>
<td>Pin 6 = 250mV</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$T_A = 25^\circ C$</td>
<td>$-2 -10$</td>
<td>μA</td>
</tr>
<tr>
<td></td>
<td>Over temp.</td>
<td>-20</td>
<td>μA</td>
</tr>
<tr>
<td></td>
<td>$I_{OUT} = 20mA$</td>
<td>0.88 1.10</td>
<td>μs</td>
</tr>
<tr>
<td></td>
<td>$I_{OUT} = 40mA$</td>
<td>0.7 0.8</td>
<td>μs</td>
</tr>
<tr>
<td>Current limit trip level</td>
<td></td>
<td>0.400 0.600</td>
<td>V</td>
</tr>
<tr>
<td>Error Amplifier</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Open loop gain</td>
<td></td>
<td>60</td>
<td>dB</td>
</tr>
<tr>
<td>Feedback resistor</td>
<td></td>
<td>10k</td>
<td>Ω</td>
</tr>
<tr>
<td>Small signal bandwidth</td>
<td></td>
<td>3</td>
<td>MHz</td>
</tr>
<tr>
<td>V_{OH}, Output voltage swing</td>
<td></td>
<td>6.2</td>
<td>V</td>
</tr>
<tr>
<td>V_{OL}, Output voltage swing</td>
<td></td>
<td>0.7</td>
<td>V</td>
</tr>
<tr>
<td>Output Stage</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output current</td>
<td>Over temperature</td>
<td>20</td>
<td>mA</td>
</tr>
<tr>
<td>V_{CE}, Saturation</td>
<td>$I_C = 20mA$, over temperature</td>
<td>0.4</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>$I_C = 40mA$, over temperature</td>
<td>0.5</td>
<td>V</td>
</tr>
<tr>
<td>Supply Voltage/Current</td>
<td>I_{CC}</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$I_z = 0$, voltage fed</td>
<td>$T_A = 25^\circ C$</td>
<td>10.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Over temp.</td>
<td>13.0</td>
</tr>
<tr>
<td></td>
<td>$I_S = 10mA$, current fed</td>
<td>19.0 21.0 24.0</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>$I_{CC} = 30mA$, current fed</td>
<td>20.0 30.0</td>
<td>V</td>
</tr>
<tr>
<td>Low Supply Protection</td>
<td>Pin 1 threshold</td>
<td>8.0 9.0 10.5</td>
<td>V</td>
</tr>
</tbody>
</table>

NOTE

All curves and applications of NE5561 apply exactly.
DESCRIPTION

SPECIFICALLY DESIGNED for use in fixed-frequency switching regulators and other power control applications, these Switched-Mode Power Supply Control Circuits can be used to implement single-ended or push-pull switching regulators of either polarity, both transformerless and transformer coupled.

Included in these monolithic integrated circuits are a temperature-compensated voltage reference, sawtooth oscillator, error amplifier, pulse-width modulator, pulse metering and steering logic, and two 200 mA source/sink power drivers. Also included are housekeeping functions such as soft-start and low supply voltage lockout, digital current limiting, double-pulse inhibit, a data latch for single-pulse metering, adjustable deadtime, and provision for symmetry correction inputs.

For ease of interface, all digital inputs are TTL and CMOS compatible. Active LOW logic allows wired-OR connections for maximum flexibility.

The SG1526A is supplied in an 18-pin glass/ceramic (cer-DIP) hermetic package and is characterized for operation over the full temperature range of -55°C to +125°C, allowing its use in military and aerospace applications. The SG2526A is rated for operation over the extended range of -40°C to +85°C recommending it for many industrial applications. The low-cost SG3526A is rated for continuous operation over the commercial temperature range of 0°C to +70°C. The extended and commercial versions are furnished in either the cer-DIP package or a dual in-line plastic package with copper alloy lead frame for improved heat dissipation.

FEATURES

- 8 to 35 V Operation
- Dual 100 mA Source/Sink Outputs
- Stabilized Power Supply
- Current Limiting
- Temperature Compensated Reference Source
- Sawtooth Generator
- Low Supply Voltage Protection
- External Synchronization
- Double-Pulse Suppression
- Programmable Deadtime
- Programmable Soft Start
- 18-Pin Dual In-Line Plastic Package Or 18-Pin Cer-DIP Hermetic Package

ABSOLUTE MAXIMUM RATINGS

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>RATING</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Voltage, V_S</td>
<td>40</td>
<td>V</td>
</tr>
<tr>
<td>Collector Supply Voltage, V_C</td>
<td>40</td>
<td>V</td>
</tr>
<tr>
<td>Logic Input Voltage Range, V_IN</td>
<td>-0.3 to 5.5</td>
<td>V</td>
</tr>
<tr>
<td>Analog Input Voltage Range, V_IN</td>
<td>-0.3 V to V_S</td>
<td>V</td>
</tr>
<tr>
<td>Output Current, I_O</td>
<td>±200</td>
<td>mA</td>
</tr>
<tr>
<td>Reference Load Current, I_REF</td>
<td>50</td>
<td>mA</td>
</tr>
<tr>
<td>Logic Sink Current, I_IN</td>
<td>15</td>
<td>mA</td>
</tr>
<tr>
<td>Package Power Dissipation, P_D (Plastic DIP)</td>
<td>2.3</td>
<td>W^1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Storage Temperature Range, T_S</td>
<td>-65 to -150</td>
<td>°C</td>
</tr>
</tbody>
</table>

NOTE: Derate linearly to 0 watts at T_A = +150°C.
LINEAR LSI PRODUCTS

SWITCHED-MODE POWER SUPPLY CONTROL CIRCUITS

SG1526A/2526A/3526A

BLOCK DIAGRAM
ELECTRICAL CHARACTERISTICS

<table>
<thead>
<tr>
<th>CHARACTERISTIC</th>
<th>TEST PINS</th>
<th>TEST CONDITIONS</th>
<th>LIMITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>REFERENCE SECTION (LL = 0 mA)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reference Voltage</td>
<td>18</td>
<td>Ta = +25°C</td>
<td>SG1526A & SG2526A SG3526A</td>
</tr>
<tr>
<td>Ref. Volt. Regulation</td>
<td>18</td>
<td>VRef = 0 V</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Minimum</td>
<td>25</td>
</tr>
<tr>
<td>Short Circuit Current</td>
<td>18</td>
<td>VRef = 35 V</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Minimum</td>
<td>25</td>
</tr>
<tr>
<td>Standby Current</td>
<td>17</td>
<td>VRef = 0 V</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Minimum</td>
<td>18</td>
</tr>
<tr>
<td>OSCILLATOR SECTION (f = 40 kHz, RT = 4.22 kΩ, CT = 0.01 µF, RO = 0 Ω)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oscillator Frequency</td>
<td>9, 10</td>
<td>RT = 0.01 µF</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Minimum</td>
<td>400</td>
</tr>
<tr>
<td>Initial Osc. Accuracy</td>
<td>9, 10</td>
<td>Ta = +25°C</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Minimum</td>
<td>3.0</td>
</tr>
<tr>
<td>Osc. Stability</td>
<td>9, 10</td>
<td>VRef = 35 V</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Minimum</td>
<td>3.0</td>
</tr>
<tr>
<td>Sawtooth Peak Voltage</td>
<td>12</td>
<td>VRef = 35 V</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Minimum</td>
<td>0.5</td>
</tr>
<tr>
<td>Sawtooth Valley Volt.</td>
<td>12</td>
<td>VRef = 8.0 V</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Minimum</td>
<td>500</td>
</tr>
<tr>
<td>Sync. Pulse Width</td>
<td>12</td>
<td>CRef = 15 pF</td>
<td></td>
</tr>
<tr>
<td>Input Offset Voltage</td>
<td>1, 2</td>
<td>RRef = 2 kΩ</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Minimum</td>
<td>2.0</td>
</tr>
<tr>
<td>Input Bias Current</td>
<td>1, 2</td>
<td>RRef = 10 kΩ</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Minimum</td>
<td>—350</td>
</tr>
<tr>
<td>Input Offset Current</td>
<td>1, 2</td>
<td>RRef = 10 kΩ</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Minimum</td>
<td>35</td>
</tr>
<tr>
<td>Error Amp Gain</td>
<td>1–3</td>
<td>Open Loop, RRef = 10 MΩ</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Minimum</td>
<td>64</td>
</tr>
<tr>
<td>Small Signal BW</td>
<td>1–3</td>
<td>CRef = 30 pF</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Minimum</td>
<td>0.7</td>
</tr>
<tr>
<td>Output Voltage Swing</td>
<td>3</td>
<td>Positive Limit, RRef = 50 kΩ</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Minimum</td>
<td>3.6</td>
</tr>
<tr>
<td>Common Mode Range</td>
<td>1, 2</td>
<td>VRef = 8.0 V</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Minimum</td>
<td>0</td>
</tr>
<tr>
<td>Common Mode Rejection</td>
<td>1, 2</td>
<td>RRef = 10 kΩ</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Minimum</td>
<td>70</td>
</tr>
<tr>
<td>Error Amp. VRef Rej.</td>
<td>3</td>
<td>f = 120 Hz, ΔVRef = 1 Vrms</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Minimum</td>
<td>66</td>
</tr>
<tr>
<td>HOUSEKEEPING FUNCTIONS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Logic Voltage Levels</td>
<td>5, 8, 12</td>
<td>Logic HIGH, ISOURCE = -40 µA</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Minimum</td>
<td>2.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Logic LOW, ISINK = 3.6 mA</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Minimum</td>
<td>0.2</td>
</tr>
<tr>
<td>Input Current</td>
<td>5, 8, 12</td>
<td>VRef = 2.4 V</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Minimum</td>
<td>—125</td>
</tr>
<tr>
<td>Shutdown Delay</td>
<td>8–13, 16</td>
<td>100 mV step, 5mV overdrive, RRef = 50kΩ</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Minimum</td>
<td>300</td>
</tr>
<tr>
<td>CURRENT LIMITING</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Common Mode Range</td>
<td>6, 7</td>
<td>VRef = 18 V</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Minimum</td>
<td>0</td>
</tr>
<tr>
<td>Sense Voltage</td>
<td>6, 7</td>
<td>VCM = 0 to 15 V</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Minimum</td>
<td>100</td>
</tr>
<tr>
<td>Input Current</td>
<td>6, 7</td>
<td>VCM = 0 to 15 V</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Minimum</td>
<td>—3.0</td>
</tr>
<tr>
<td>Voltage Gain</td>
<td>7–8</td>
<td>IRef = 360 µA</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Minimum</td>
<td>68</td>
</tr>
</tbody>
</table>
ELECTRICAL CHARACTERISTICS

ELECTRICAL CHARACTERISTICS over operating temperature range, $V_S = 15$ V (unless otherwise noted). (Cont'd)

<table>
<thead>
<tr>
<th>CHARACTERISTIC</th>
<th>TEST PINS</th>
<th>TEST CONDITIONS</th>
<th>LIMITS</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>SG1526A & SG2526A</td>
<td>SG3526A</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Min.</td>
<td>Type.</td>
</tr>
<tr>
<td>SOFT START SECTION</td>
<td></td>
<td></td>
<td>Max.</td>
<td>Min.</td>
</tr>
<tr>
<td>Error Clamp Voltage</td>
<td>—</td>
<td>$V_S = 0.4$ V</td>
<td>100</td>
<td>400</td>
</tr>
<tr>
<td>C_S Charging Current</td>
<td>4</td>
<td>$V_S = 2.4$ V</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>OUTPUT DRIVERS ($V_C = 15$ V)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output Voltage</td>
<td>12, 16</td>
<td>$I_{OUT} = -20$ mA</td>
<td>12.5</td>
<td>13.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$I_{OUT} = -100$ mA</td>
<td></td>
<td>13</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$I_{OUT} = 20$ mA</td>
<td></td>
<td>0.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$I_{OUT} = 100$ mA</td>
<td></td>
<td>1.2</td>
</tr>
<tr>
<td>Leakage Current</td>
<td>12, 16</td>
<td>$V_C = 40$ V</td>
<td></td>
<td>0.1</td>
</tr>
<tr>
<td>Rise Time</td>
<td>12, 16</td>
<td>$C_L = 1000$ pF</td>
<td></td>
<td>300</td>
</tr>
<tr>
<td>Fall Time</td>
<td>12, 16</td>
<td>$C_L = 1000$ pF</td>
<td></td>
<td>200</td>
</tr>
</tbody>
</table>

NOTES:

Negative current is defined as coming out of (sourcing) the specified device pin.

*Commercial, extended, and full temperature range devices are defined on page 2.

RECOMMENDED OPERATING CONDITIONS

- **Logic Supply Voltage, V_S** ... 8 V to 35 V
- **Collector Voltage, V_C** ... 4.5 V to 35 V
- **Output Load Current, I_O** 0 to ±100 mA
- **Reference Load Current, I_L** 0 to 20 mA
- **Oscillator Frequency, f** .. 1 Hz to 400 kHz
- **Oscillator Timing Resistance, R_T** 2 kΩ to 150 kΩ
- **Oscillator Timing Capacitance, C_T** 0.001 µF to 20 µF
- **Programmed Deadtime** .. 3% to 50%
DESCRIPTION
This monolithic integrated circuit contains all the control circuitry for a regulating power supply inverter or switching regulator. Included in a 16-pin dual-in-line package is the voltage reference, error-amplifier, oscillator, pulse width modulator, pulse steering flip-flop, dual alternating output switches and current limiting and shut-down circuitry. This device can be used for switching regulators of either polarity, transformer coupled DC to DC converters, transformerless voltage doublers and polarity converters, as well as other power control applications. The SG3524 is designed for commercial applications of 0°C to +70°C.

FEATURES
- Complete PWM power control circuitry
- Single ended or push-pull outputs
- Line and load regulation of 0.2%
- 1% maximum temperature variation
- Total supply current is less than 10mA
- Operation beyond 100kHz

ABSOLUTE MAXIMUM RATINGS

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>RATING</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input voltage</td>
<td>40 V</td>
<td></td>
</tr>
<tr>
<td>Output current (each output)</td>
<td>100 mA</td>
<td></td>
</tr>
<tr>
<td>Reference output current</td>
<td>50 mA</td>
<td></td>
</tr>
<tr>
<td>Oscillator charging current</td>
<td>5 mA</td>
<td></td>
</tr>
<tr>
<td>Power dissipation</td>
<td>1000 mW</td>
<td></td>
</tr>
<tr>
<td>Package limitation</td>
<td>8 mW/°C</td>
<td></td>
</tr>
<tr>
<td>Operating temperature range</td>
<td>0 to +70°C</td>
<td></td>
</tr>
<tr>
<td>Storage temperature range</td>
<td>−65 to +150°C</td>
<td></td>
</tr>
</tbody>
</table>

BLOCK DIAGRAM
DC Electrical Characteristics (TA = 0°C to +70°C, VON = 20V, and f = 20kHz unless otherwise specified.)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>SG3524</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference Section</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output voltage</td>
<td></td>
<td>Min</td>
<td>Typ</td>
</tr>
<tr>
<td>Line regulation V<sub>IN</sub> = 8 to 40V</td>
<td></td>
<td>4.6</td>
<td>5.0</td>
</tr>
<tr>
<td>Load regulation I<sub>L</sub> = 0 to 20mA</td>
<td></td>
<td>20</td>
<td>50</td>
</tr>
<tr>
<td>Ripple rejection f = 120Hz, TA = 25°C</td>
<td></td>
<td>66</td>
<td>dB</td>
</tr>
<tr>
<td>Short circuit current limit V<sub>REF</sub> = 0, TA = 25°C</td>
<td></td>
<td>100</td>
<td>mA</td>
</tr>
<tr>
<td>Temperature stability Over operating temperature range</td>
<td></td>
<td>0.3</td>
<td>1</td>
</tr>
<tr>
<td>Long term stability TA = 25°C</td>
<td></td>
<td>20</td>
<td>V/mV/kHr</td>
</tr>
<tr>
<td>Oscillator Section</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum frequency C<sub>T</sub> = .001 mfd, R<sub>T</sub> = 2kΩ</td>
<td></td>
<td>300</td>
<td>kHz</td>
</tr>
<tr>
<td>Initial accuracy R<sub>T</sub> and C<sub>T</sub> constant</td>
<td></td>
<td>5</td>
<td>%</td>
</tr>
<tr>
<td>Voltage stability V<sub>IN</sub> = 8 to 40V, TA = 25°C</td>
<td></td>
<td>1</td>
<td>%</td>
</tr>
<tr>
<td>Temperature stability Over operating temperature range</td>
<td></td>
<td>2</td>
<td>%</td>
</tr>
<tr>
<td>Output amplitude Pin 3, TA = 25°C</td>
<td></td>
<td>3.5</td>
<td>V<sub>P</sub></td>
</tr>
<tr>
<td>Output pulse width C<sub>T</sub> = .01 mfd, TA = 25°C</td>
<td></td>
<td>0.5</td>
<td>µs</td>
</tr>
<tr>
<td>Error Amplifier Section</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input offset voltage V<sub>CM</sub> = 2.5V</td>
<td></td>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>Input bias current V<sub>CM</sub> = 2.5V</td>
<td></td>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>Open loop voltage gain</td>
<td></td>
<td>68</td>
<td>80</td>
</tr>
<tr>
<td>Common mode voltage TA = 25°C</td>
<td></td>
<td>1.8</td>
<td>3.4</td>
</tr>
<tr>
<td>Common mode rejection ratio TA = 25°C</td>
<td></td>
<td>70</td>
<td>VdB</td>
</tr>
<tr>
<td>Small signal bandwidth A<sub>V</sub> = 0dB, TA = 25°C</td>
<td></td>
<td>3</td>
<td>MHz</td>
</tr>
<tr>
<td>Output voltage TA = 25°C</td>
<td></td>
<td>0.5</td>
<td>3.8</td>
</tr>
<tr>
<td>Comparator Section</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Duty cycle % each output "ON"</td>
<td></td>
<td>0</td>
<td>45</td>
</tr>
<tr>
<td>Input threshold Zero duty cycle</td>
<td></td>
<td>1</td>
<td>V</td>
</tr>
<tr>
<td>Input threshold Maximum duty cycle</td>
<td></td>
<td>3.5</td>
<td>V</td>
</tr>
<tr>
<td>Input bias current</td>
<td></td>
<td>1</td>
<td>µA</td>
</tr>
<tr>
<td>Current Limiting Section</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sense voltage Pin 9 = 2V with error amplifier set for maximum out, TA = 25°C</td>
<td></td>
<td>180</td>
<td>200</td>
</tr>
<tr>
<td>Sense voltage T.C.</td>
<td></td>
<td>0.2</td>
<td>mV/°C</td>
</tr>
<tr>
<td>Common mode voltage</td>
<td></td>
<td>−1</td>
<td>+1</td>
</tr>
<tr>
<td>Output Section (each output)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Collector-emitter voltage (breakdown)</td>
<td></td>
<td>40</td>
<td>V</td>
</tr>
<tr>
<td>Collector-leakage current V<sub>CE</sub> = 40V</td>
<td></td>
<td>0.1</td>
<td>50</td>
</tr>
<tr>
<td>Saturation voltage I<sub>C</sub> = 50mA</td>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Emitter output voltage V<sub>IN</sub> = 20V</td>
<td></td>
<td>17</td>
<td>18</td>
</tr>
<tr>
<td>Rise time R<sub>C</sub> = 2kΩ, TA = 25°C</td>
<td></td>
<td>0.2</td>
<td>µs</td>
</tr>
<tr>
<td>Fall time R<sub>C</sub> = 2kΩ, TA = 25°C</td>
<td></td>
<td>0.1</td>
<td>µs</td>
</tr>
<tr>
<td>Total standby current (excluding oscillator charging current, error and current limit dividers, and with outputs open)</td>
<td></td>
<td>V<sub>IN</sub> = 40V</td>
<td>8</td>
</tr>
</tbody>
</table>
THEORY OF OPERATION

Voltage Reference
An internal series regulator provides a nominal 5 volt output which is used both to generate a reference voltage and as the regulated source for all the internal timing and controlling circuitry. This regulator may be bypassed for operation from a fixed 5 volt supply by connecting pins 15 and 16 together to the input voltage. In this configuration, the maximum input voltage is 6.0 volts.

This reference regulator may be used as a 5 volt source for other circuitry. It will provide up to 50mA of current itself and can easily be expanded to higher currents with an external PNP as shown in Figure 1.

TEST CIRCUIT
Oscillator

The oscillator in the SG3524 uses an external resistor (Rr) to establish a constant charging current into an external capacitor (Ct). While this uses more current than a series connected RC, it provides a linear ramp voltage on the capacitor which is also used as a reference for the comparator. The charging current is equal to \(3.6V + Rr\) and should be kept within the range of approximately 30\(\mu\)A to 2mA, i.e., 1.8K<\(Rr\)<100K.

The range of values for \(Ct\) also has limits as the discharge time of \(Ct\) determines the pulse width of the oscillator output pulse. This pulse is used (among other things) as a blanking pulse to both outputs to insure that there is no possibility of having both outputs on simultaneously during transitions. This output dead time relationship is shown in Figure 2. A pulse width below approximately 0.5 microseconds may allow false triggering of one output by removing the blanking pulse prior to the flip-flops reaching a stable state. If small values of \(Ct\) must be used, the pulse width may still be expanded by adding a shunt capacitance \((\approx 100pF)\) to ground at the oscillator output. (Note: Although the oscillator output is a convenient oscilloscope sync input, the cable and input capacitance may increase the blanking pulse width slightly.) Obviously, the upper limit to the pulse width is determined by the maximum duty cycle acceptable. Practical values of \(Ct\) fall between .001 and 0.1 microfarad.

The oscillator period is approximately \(t = RrCt\) where \(t\) is in microseconds when \(Rr = ohms\) and \(Ct = microfarads\). The use of Figure 3 will allow selection of \(Rr\) and \(Ct\) for a wide range of operating frequencies. Note that for series regulator applications, the two outputs can be connected in parallel for an effective 0-90% duty cycle and the frequency of the oscillator is the frequency of the output. For push-pull applications, the outputs are separated and the flip-flop divides the frequency such that each output duty cycle is 0-45% and the overall frequency is one-half that of the oscillator.

External Synchronization

If it is desired to synchronize the SG3524 to an external clock, a pulse of \(\equiv +3\) volts may be applied to the oscillator output terminal with \(RrCt\) set slightly greater than the clock period. The same considerations of pulse width apply. The impedance to ground at this point is approximately 2K ohms.

If two or more SG3524s must be synchronized together, one must be designated as master with its \(RrCt\) set for the correct period. The slaves should each have an \(RrCt\) set slightly longer than the master with the added requirement that \(Ct\) (slave) = one-half \(Ct\) (master). Then connecting Pin 3 on all units together will insure that the master output pulse—which occurs first and has a wider pulse width—will reset the slave units.

Error Amplifier

This circuit is a simple differential-input, transconductance amplifier. The output is the compensation terminal, pin 9, which is a high impedance node (\(R_L \approx 5M\Omega\)). The gain is

\[A_V = \frac{g_mR_L}{8} = \frac{8g_mR_L}{2K} = 0.02\ R_L \]

and can easily be reduced from a nominal of 10,000 by an external shunt resistance from pin 9 to ground, as shown in Figure 4.

In addition to DC gain control, the compensation terminal is also the place for AC phase compensation. The frequency response curves of Figure 4 show the uncompensated amplifier with a single pole at approximately 200Hz and a unity gain cross-over at 5MHz.

Typically, most output filter designs will introduce one or more additional poles at a significantly lower frequency. Therefore, the best stabilizing network is a series R-C combination between pin 9 and ground which introduces a zero to cancel one of the output filter poles. A good starting point is 50\(\Omega\) plus .001 microfarad.

One final point on the compensation terminal is that this is also a convenient place to insert any programming signal which is to override the error amplifier. Internal shutdown and current limit circuits are connected here, but any other circuit which can sink 200\(\mu\)A can pull this point to ground thus shutting off both outputs.

While feedback is normally applied around the entire regulator, the error amplifier can be used with conventional operational amplifier feedback and is stable in either the inverting or non-inverting mode. Regardless of the connections, however, input common-mode limits must be observed or output signal inversions may result. For conventional regulator applications, the 5 volt reference voltage must be divided down as shown in Figure 5. The error amplifier may also be used in fixed duty cycle applications by using the unity gain configuration shown in the open loop test circuit.
Current Limiting
The current limiting circuitry of the SG3524 is shown in Figure 6.

By matching the base-emitter voltages of Q1 and Q2, and assuming negligible voltage drop across R1:

\[\text{Threshold} = V_{BE}(Q1) + I_1 R_2 - V_{BE}(Q2) = I_1 R_2 \approx 200 \text{mV} \]

Although this circuit provides a relatively small threshold with a negligible temperature coefficient, there are some limitations to its use, the most important of which is the ±1 volt common mode range which requires sensing in the ground line. Another factor to consider is that the frequency compensation provided by R1C1 and Q1 provides a roll-off pole at approximately 300Hz.

Since the gain of this circuit is relatively low, there is a transition region as the current limit amplifier takes over pulse width control from the error amplifier. For testing purposes, threshold is defined as the input voltage to get 25% duty cycle with the error amplifier signaling maximum duty cycle.

In addition to constant current limiting, pins 4 and 5 may also be used in transformer-coupled circuits to sense primary current and shorten an output pulse, should transformer saturation occur. (Refer to Figure 11.) Another application is to ground pin 5 and use pin 4 as an additional shutdown terminal: i.e., the output will be off with pin 4 open and on when it is grounded. Finally, foldback current limiting can be provided with the network of Figure 7. This circuit can reduce the short-circuit current \(I_{SC} \) to approximately one-third the maximum available output current \(I_{MAX} \).

For additional information, consult the Applications Section.
PRECISION VOLTAGE REGULATOR
μA723/723C/SA723C

DESCRIPTION
The μA723/SA723C is a Monolithic Precision Voltage Regulator capable of operation in positive or negative supplies as a series, shunt, switching or floating regulator. The 723 contains a temperature compensated reference amplifier, error amplifier, series pass transistor, and current limiter, with access to remote shutdown.

FEATURES
• Positive or negative supply operation
• Series, shunt, switching or floating operation
• .01% line and load regulation
• Output voltage adjustable from 2 to 37 volts
• Output current to 150mA without external pass transistor
• μA723 MIL STD 883 3A, B, C available

ABSOLUTE MAXIMUM RATINGS

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>RATING</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pulse voltage from V+ to V−</td>
<td>50</td>
<td>V</td>
</tr>
<tr>
<td>Continuous voltage from V+ to V−</td>
<td>40</td>
<td>V</td>
</tr>
<tr>
<td>Input-output voltage differential</td>
<td>40</td>
<td>V</td>
</tr>
<tr>
<td>Maximum output current</td>
<td>150</td>
<td>mA</td>
</tr>
<tr>
<td>Current from VREF</td>
<td>15</td>
<td>mA</td>
</tr>
<tr>
<td>Current from Vz</td>
<td>25</td>
<td>mA</td>
</tr>
<tr>
<td>Internal power dissipation†</td>
<td>800</td>
<td>mW</td>
</tr>
<tr>
<td>Operating temperature range</td>
<td></td>
<td></td>
</tr>
<tr>
<td>μA723</td>
<td>-55 to +125</td>
<td>°C</td>
</tr>
<tr>
<td>μA723C</td>
<td>0 to 70</td>
<td>°C</td>
</tr>
<tr>
<td>SA723C</td>
<td>-40 to +85</td>
<td>°C</td>
</tr>
<tr>
<td>Storage temperature range</td>
<td>-65 to +150</td>
<td>°C</td>
</tr>
<tr>
<td>Lead temperature</td>
<td>300</td>
<td>°C</td>
</tr>
</tbody>
</table>

ABSOLUTE MAXIMUM RATINGS

PIN CONFIGURATIONS

D,F,N PACKAGE

H PACKAGE

EQUIVALENT CIRCUIT

TEMPERATURE COMPENSATED ZENER

VOLTAGE REFERENCE AMPLIFIER

INVERTING INPUT

NON-INVERTING INPUT

CURRENT LIMIT ERROR AMPLIFIER

CURRENT SENSE CURRENT LIMITER

V+ SERIES PASS TRANSISTOR

VOUT

FREQUENCY COMPENSATION

VREF

VC

ORDER NUMBERS
μA723F,N μA723CF,CN
SA723CN μA723CD

*Metal cans not recommended for new designs

7-52
DC ELECTRICAL CHARACTERISTICS \(T_A = 25^\circ C \) unless otherwise specified.1

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>(\mu A723)</th>
<th>(\mu A723C/SA723C)</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Line regulation2</td>
<td>(V_{IN} = 12V) to (V_{IN} = 15V)</td>
<td>0.01 0.1</td>
<td>0.01 0.1</td>
<td>% (V_{OUT})</td>
</tr>
<tr>
<td></td>
<td>(V_{IN} = 12V) to (V_{IN} = 40V)</td>
<td>0.02 0.2</td>
<td>0.1 0.5</td>
<td>% (V_{OUT})</td>
</tr>
<tr>
<td>Load regulation2</td>
<td>(I_L = 1mA) to (I_L = 50mA)</td>
<td>0.03 0.15</td>
<td>0.03 0.2</td>
<td>% (V_{OUT}) dB</td>
</tr>
<tr>
<td></td>
<td>(f = 50Hz) to (10kHz), (C_{REF} = 0)</td>
<td>74 74</td>
<td>86 86</td>
<td>dB</td>
</tr>
<tr>
<td></td>
<td>(f = 50Hz) to (10kHz), (C_{REF} = 5\mu F)</td>
<td>65 65</td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>Short circuit current limit</td>
<td>(R_{SC} = 10\Omega), (V_{OUT} = 0)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reference voltage</td>
<td></td>
<td>6.95 7.15 7.35</td>
<td>6.60 7.15 7.50</td>
<td>V</td>
</tr>
<tr>
<td>Output noise voltage</td>
<td>(BW = 100Hz) to (10kHz), (C_{REF} = 0)</td>
<td>20 20</td>
<td>2.5 2.5</td>
<td>(\mu V_{rms})</td>
</tr>
<tr>
<td></td>
<td>(BW = 100Hz) to (10kHz), (C_{REF} = 5\mu F)</td>
<td>0.2 0.5</td>
<td>0.02 0.05</td>
<td>(\mu V_{rms})</td>
</tr>
<tr>
<td>Long term stability</td>
<td>(I_L = 0), (V_{IN} = 30V)</td>
<td>0.1 0.3</td>
<td>0.1 0.3</td>
<td>% /1000hrs.</td>
</tr>
<tr>
<td>Standby current drain</td>
<td></td>
<td>2.3 3.5</td>
<td>2.3 4.0</td>
<td>mA</td>
</tr>
<tr>
<td>Input voltage range</td>
<td></td>
<td>9.5 40 9.5</td>
<td>40</td>
<td>V</td>
</tr>
<tr>
<td>Output voltage range</td>
<td></td>
<td>2.0 37 2.0</td>
<td>37</td>
<td>V</td>
</tr>
<tr>
<td>Input-output voltage differential</td>
<td></td>
<td>3.0 38</td>
<td>38</td>
<td>V</td>
</tr>
<tr>
<td>The following specifications apply over the operating temperature ranges</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Line regulation</td>
<td>(V_{IN} = 12V) to (V_{IN} = 15V)</td>
<td>0.002 0.015</td>
<td>0.003 0.015</td>
<td>% /(^\circ)C</td>
</tr>
<tr>
<td>Load regulation</td>
<td>(I_L = 1mA) to (I_L = 50mA)</td>
<td>0.3 0.6</td>
<td>0.3 0.6</td>
<td>% (V_{OUT})</td>
</tr>
</tbody>
</table>

NOTES
1. \(V_{IN} = V_+ = V_- = 12V \), \(V_+ = 0V \), \(V_{OUT} = 5V \), \(I_L = 1mA \), \(R_{SC} = 0 \), \(C_1 = 100pF \), \(C_{REF} = 0 \) and divider impedance as seen by error amplifier \(\leq 10k\Omega \) when connected as shown in Figure 3.
2. The load and line regulation specifications are for constant junction temperature. Temperature drift effects must be taken into account separately when the unit is operating under conditions of high dissipation.

TYPICAL PERFORMANCE CHARACTERISTICS

![STANDBY CURRENT DRAIN AS A FUNCTION OF INPUT VOLTAGE](image1)

![MAXIMUM LOAD CURRENT AS A FUNCTION OF INPUT-OUTPUT VOLTAGE DIFFERENTIAL](image2)

![LOAD REGULATION CHARACTERISTICS WITH CURRENT LIMITING](image3)
TYPICAL PERFORMANCE CHARACTERISTICS (Cont'd)

- **Current Limiting Characteristics as a Function of Junction Temperature**
 - Graph showing the relationship between junction temperature and current limit voltage and limit current.
 - Parameters include: $T_{max} = 150^\circ C$, $R_{th} = 111^\circ C/W$, $P_{max} = 60mW$.
 - Conditions: $T_a = +25^\circ C$, $T_a = +70^\circ C$, $T_a = +125^\circ C$.

- **Maximum Load Current as a Function of Input-Output Voltage Differential**
 - Graph showing the maximum load current as a function of input-output voltage differential.
 - Conditions: $I_{max} = 100mA$.

- **Load Regulation Characteristics Without Current Limiting**
 - Graph showing load regulation as a function of input-output voltage differential.
 - Conditions: $V_{out} = +5V$, $V_{in} = +12V$, $R_{sc} = 0$.

- **Load Transient Response**
 - Graph showing load transient response.
 - Parameters: $V_{in} = +12V$, $V_{out} = +5V$, $I_L = 40mA$, $R_{sc} = 0$.

- **Line Regulation as a Function of Input-Output Voltage Differential**
 - Graph showing line regulation.
 - Conditions: $V_{out} = +5V$, $V_{in} = +12V$, $R_{sc} = 0$.

- **Output Impedance as a Function of Frequency**
 - Graph showing output impedance.
 - Conditions: $V_{in} = +12V$, $R_{sc} = 0$, $I_L = 50mA$.

- **Line Transient Response**
 - Graph showing line transient response.
 - Parameters: $V_{in} = +12V$, $V_{out} = +5V$, $I_L = 1mA$.

- **Load Regulation Characterstics**
 - Graph showing load regulation.
 - Conditions: $V_{out} = +5V$, $V_{in} = +12V$, $R_{sc} = 100$.

- **Current Limiting Characteristics**
 - Graph showing current limiting characteristics.
 - Conditions: $I_L = 50mA$.

- **Output Current - mA**
 - Graph showing output current.
 - Conditions: $V_{in} = +12V$, $V_{out} = +5V$, $R_{sc} = 0$.

- **Relative Output Voltage - V**
 - Graph showing relative output voltage.
 - Conditions: $V_{in} = +12V$, $V_{out} = +5V$, $R_{sc} = 100$.
TYPICAL APPLICATIONS

LOW VOLTAGE REGULATOR (VOUT = 2 TO 7 VOLTS)

\[V_{\text{OUT}} = \frac{V_{\text{REF}} \times R_2}{R_1 + R_2} \]

For minimum temperature drift:

\[R_3 = \frac{R_1 \times R_2}{R_1 + R_2} \]

REMOTE SHUTDOWN REGULATOR WITH CURRENT LIMITING (VOUT = 2 TO 7 VOLTS)

\[V_{\text{OUT}} = \frac{V_{\text{REF}} \times R_2}{R_1 + R_2} \]

NEGATIVE VOLTAGE REGULATOR

\[V_{\text{OUT}} = \frac{V_{\text{REF}} \times R_1 + R_2}{2 \times R_1} \]

\[R_3 = R_4 \]

HIGH VOLTAGE REGULATOR (VOUT = 7 TO 37 VOLTS)

\[V_{\text{OUT}} = \frac{V_{\text{REF}} \times R_1 + R_2}{R_1 + R_2} \]

For minimum temperature drift:

\[R_3 = \frac{R_1 \times R_2}{R_1 + R_2} \]

R3 may be eliminated for minimum component count.
TYPICAL APPLICATIONS (Cont'd)

FOLDBACK CURRENT LIMITING REGULATOR

(V_{OUT} = 2 TO 7 VOLTS)

\[
\text{\textbf{VOUT}} = \frac{\text{VREF} \times R_1 + R_2}{R_3 + R_2}
\]

\[
\text{\textbf{I_{KNEE}}} = \frac{\text{VOUT} \times R_3 + \text{VSENSE} \times (R_3 + R_4)}{R_{SC} \times R_4}
\]

\[
\text{\textbf{I_{SHORT Ckt}}} = \frac{\text{VSENSE} \times (R_3 + R_4)}{R_{SC}}
\]
Section 8
Applications

INDEX

SECTION 8 — APPLICATIONS

Index

<table>
<thead>
<tr>
<th>Interface</th>
<th>Data Conversion</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>An Overview of Data Converters</td>
<td>8-3</td>
</tr>
<tr>
<td></td>
<td>Basic DACs</td>
<td>8-8</td>
</tr>
<tr>
<td></td>
<td>Using the DAC08 Without a Negative Supply</td>
<td>8-15</td>
</tr>
<tr>
<td></td>
<td>Microprocessor Compatible DACs</td>
<td>8-17</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drivers</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LED Decoder Drivers: Using the NE587 and NE589</td>
<td>8-24</td>
</tr>
<tr>
<td></td>
<td>Using the MC1488/1489 Line Drivers and Receivers</td>
<td>8-30</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comparators</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Applications for the NE521/522/527/529</td>
<td>8-33</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Signal Conditioner</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LVDT Signal Conditioner: Applications Using the NE5520</td>
<td>8-41</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Communications</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>NE555 and NE556 Applications</td>
<td>8-57</td>
</tr>
<tr>
<td></td>
<td>NE558 Applications</td>
<td>8-74</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Timers</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phase Locked Loops</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>An Overview of Phase Locked Loops (PLL)</td>
<td>8-79</td>
</tr>
<tr>
<td></td>
<td>Modeling the PLL</td>
<td>8-84</td>
</tr>
<tr>
<td></td>
<td>Circuit Description of the NE564</td>
<td>8-100</td>
</tr>
<tr>
<td></td>
<td>The NE564: Frequency Synthesis</td>
<td>8-105</td>
</tr>
<tr>
<td></td>
<td>A 6MHz FSK Converter Design Example for the NE564</td>
<td>8-110</td>
</tr>
<tr>
<td></td>
<td>Clock Regenerator with Crystal Controlled Phase Locked VCO</td>
<td>8-112</td>
</tr>
<tr>
<td></td>
<td>Circuit Description of the NE565</td>
<td>8-121</td>
</tr>
<tr>
<td></td>
<td>Typical Applications with NE565</td>
<td>8-125</td>
</tr>
<tr>
<td></td>
<td>Circuit Description of the NE566</td>
<td>8-128</td>
</tr>
<tr>
<td></td>
<td>Waveform Generators with the NE566</td>
<td>8-129</td>
</tr>
<tr>
<td></td>
<td>Circuit Description of the NE567 Tone Decoder</td>
<td>8-132</td>
</tr>
<tr>
<td></td>
<td>Selected Circuits Using the NE567</td>
<td>8-137</td>
</tr>
<tr>
<td></td>
<td>Balanced Modulator/Demodulator Applications Using the MC1496/MC1596</td>
<td>8-140</td>
</tr>
<tr>
<td></td>
<td>Applications of Low Noise Stereo Amplifiers: NE542</td>
<td>8-145</td>
</tr>
<tr>
<td></td>
<td>Stereo Decoder Applications Using the µA758</td>
<td>8-148</td>
</tr>
</tbody>
</table>
INDEX

Compandors
- AN174
- AN175
- AN176

FSK Modems
- AN195

Amplifiers
Operational Amplifiers
- AN165
- AN166
- AN142
- AN143
- AN150
- AN151
- AN160
- AN144
- AN145
- AN164

Video Amplifiers
- AN141
- AN140

Power Conversion and Control
Switched Mode Power Supplies (SMPS)
- AN120
- AN121
- AN122
- AN123
- AN124
- AN126

Control Circuits
- AN131
- AN132
- AN133
- AN134

Applications for Compandors: NE570/571/SA571 ... 8-156
Automatic Level Control: NE572 .. 8-165
Comapndor Cookbook ... 8-166

Applications Using the NE5080, NE5081 .. 8-173

Integrated Operational Amplifier Theory ... 8-181
Basic Feedback Theory ... 8-188
Audio Circuits Using the NE5532/33/34 .. 8-192
Applications Using the SE/NE5535 ... 8-200
Applications for the NE536 .. 8-203
Applications for the NE531 .. 8-204
Applications for the MC3403 ... 8-205
Applications for the NE5512 and NE5514 .. 8-208
NE5517: General Description and Applications for Use with the NE5517/A Transconductance Amplifier ... 8-214
Explanation of Noise ... 8-217

Using the NE592/5592 Video Amplifier .. 8-226
Compensation Techniques for Use with the SE/NE5539 8-231

An Overview of SMPS .. 8-237
Forward Converter Application Using the NE5560 ... 8-242
NE5560 Push-Pull Regulation Application ... 8-243
Applications for the NE5561 ... 8-245
External Synchronization for the NE5561 .. 8-249
Applications Using the SG3524 ... 8-250

Applications Using the NE5044 Encoder .. 8-252
Applications Using the NE5045 Decoder ... 8-254
Applications Using the NE544 Servo Amplifier ... 8-256
Computer Controlled Robotics Applications ... 8-261
INTRODUCTION

Large systems are comprised of many different subsystems, all of which must interface to complete the system. All types of circuits, including linear, digital and discrete are often used in the subsystems.

Interface circuits provide the necessary function of tying the parts of a system together. These circuits are usually not purely linear or digital but contain both types of circuit functions. For instance, sense amplifiers are designed for interface between low level memory outputs and bipolar levels, while differential comparators are designed for interface between analog systems and TTL/DTL systems. In general, this section will cover such devices as comparators, sense amplifiers, line drivers/receivers, and display drivers.

CONVERTERS

Digital communications, digital instruments and displays have created a demand for low cost reliable converters. Key factors in this demand are:

- The need to communicate with digital computers for processing and storage of analog signals.
- Severe limitations encountered in reliable analog data transmission over any considerable distance.
- The need for more easily readable displays.

General application areas for converters include: Data processing, data transmission, graphics and displays, audio systems, control systems and arithmetic operations.

Specific Applications

Test Systems
- Transistor tester (Force Ibg and Ic)
- Resistor matching
- Programmable power supplies
- Programmable pulse generators
- Programmable current source
- Function generators (ROM drive)

Arithmetic Operations
- Analog division by a digital word
- Analog quotient of 2 digital words—squaring
- Addition and subtraction with analog output
- Magnitude comparison of 2 digital words
- Digital quotient of 2 analog variables
- Arithmetic operations with words from different logic families

Graphics and Displays
- Polar to rectangular conversion
- CRT character generation
- Chart recorder driver
- CRT display driver

Data Transmission
- Modem transmitter
- Differential line driver
- Party line multiplexing of analog signals
- Multi-level 2-wire data transmission
- Secure communications (constant power dissipation)

Control Systems
- Reference level generator for setpoint controllers
- Positive peak detector
- Negative peak detector
- Disc drive head positioner
- Microfilm head positioner

Audio Systems
- Digital AVC and reverberation
- Music distribution
- Organ tone generator
- Audio tracking A/D
- Speech compression and expansion
- Audio digitizing and decoding

DAC Building Blocks
The actual implementation of a D/A system contains four separate parts: A reference quantity; a set of binary switches to simulate binary coefficients $B_1 \ldots B_N$; a weighting network; and an output summing means.

Binary-Weighted Ladder Employing Voltage Switching
The disadvantages of a binary-weighted ladder employing voltage switching include: A wide range of resistor values which are used in weighting the network; and nodal capacitances which are charged/discharged during conversion. See Figure 2.

R-2R Ladder Network Employing Current Switching
The advantages of this type of network include: No need for a wide range of resistor values; and current switching eliminates transients in nodal parasite capacitances. See Figure 3.

KEY SPECIFICATIONS

Speed
The conversion process should represent the input signal with the highest fidelity and minimal lag in time (Real time applications).
DAC PRODUCTS SUMMARY

<table>
<thead>
<tr>
<th></th>
<th>MC1408 7-8</th>
<th>DAC08 Series</th>
<th>SE/NE5018/19</th>
<th>SE/NE5118/19</th>
<th>NE5020</th>
<th>MC3410 /NE5410</th>
<th>AM6012</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resolution</td>
<td>8 bit</td>
<td>8 bit</td>
<td>8 bit</td>
<td>8 bit</td>
<td>10 bit</td>
<td>10 bit</td>
<td>12 bit</td>
</tr>
<tr>
<td>Relative Accuracy</td>
<td>.39/.19</td>
<td>.39/.19/.19</td>
<td>.19/.1</td>
<td>.19/.1</td>
<td>.05</td>
<td>.05</td>
<td>.05</td>
</tr>
<tr>
<td>Settling Time</td>
<td>300ns</td>
<td>60ns</td>
<td>2µs</td>
<td>200ns</td>
<td>4µs</td>
<td>250ns</td>
<td>500ns</td>
</tr>
<tr>
<td>Output</td>
<td>I</td>
<td>I & T</td>
<td>V</td>
<td>I</td>
<td>V</td>
<td>I</td>
<td>±V</td>
</tr>
<tr>
<td>Features</td>
<td>Standard</td>
<td>Complementary Current Outputs</td>
<td>Bus Compatible input latches ref voltage</td>
<td>High speed current out version of NE5018</td>
<td>8 bit bus compatible</td>
<td>10 bit accuracy</td>
<td>Complementar y Current Outputs</td>
</tr>
</tbody>
</table>

Settling Time
Settling time is a measure of a converter's speed and is defined as the elapsed time after a code transition for DAC output to reach final value within specified limits, usually ±1/2 L.S.B. See Figure 4.

Errors

- **Offset Error** — The output voltage of DAC with zero code input. Offset can and usually is trimmed to zero with an offset zero adjust potentiometer. See Figure 5.
- **Gain Error** — Deviation in output voltage from correct level when the input calls for a full scale output. This error may be trimmed to zero. See Figure 6.
- **Relative Accuracy** — The maximum deviation of the DAC output relative to an ideal straight line drawn from zero to full scale -1 L.S.B. See Figure 7.
- **Differential Non-Linearity** — Incremental error from any ideal L.S.B. analog output change when the digital input is changed 1 L.S.B. See Figure 8.
- **Monotonicity** — As the input code is incremented from one code to the next in sequence, the analog output will either increase or remain constant. See Figure 9.

Stability
Stability is a measure of the independence of converter parameters with respect to variations in external conditions such as temperature and supply voltage.

Temperature Coefficient — The effects of temperature changes of the output. Specified as %F.S. change.

Supply Rejection — Ability to resist changes in the output with supply changes, specified as % full scale change.
A/D CONVERTER CIRCUITS

Analog-to-Digital conversion schemes generally fall into one of three categories:

1. Feedback
 - Counting
 - Tracking (up-down)
 - Successive approximation

2. Integrating
 - Single slope
 - Dual slope
 - Triple slope

3. Multiple comparator (Flash)

The type of converter chosen for a given application depends upon many things: the accuracy required, the conversion speed necessary, the necessary immunity to noise, and cost are some of these considerations. The successive approximation technique is the one most widely used, mainly because of its excellent tradeoffs in resolution, speed, accuracy, and cost. All of the A/D converters (ADCs) presently manufactured by Signetics are successive approximation types.

Figure 10 shows a simplified block diagram of a successive approximation A/D converter. Upon receiving the start signal, the successive approximation register (SAR) is cleared and the most significant bit (MSB) of that register is set. The SAR output is connected to the input of the DAC, the output of which is compared with the unknown input. If the input is less than the DAC output, the MSB is cleared and the next bit is set; if the input is greater than the DAC output, the MSB is left high and the next bit is set. The input is again compared with the DAC output and the second bit cleared or left high, based on the same criteria as for the MSB. This process continues until all bits have been determined.
The analog input should not change appreciably during the conversion time. If it did change during this time, the converted output would not be a true indication of the analog input. For this reason, it is common practice to use a sample-and-hold circuit at the converter analog input to hold the input value constant during the conversion process. A sample-and-hold circuit is not necessary if the signal at the input of the converter varies slowly enough and has a noise level low enough so that the input will not change a significant amount during the conversion. The allowable input change during this conversion is generally accepted as the value of 1/2 LSB (for n-bit accuracy).

Accuracy and speed are determined primarily by the properties of the DAC and the comparator. Linearity is determined primarily by the linearity of the DAC. If the DAC is non-monotonic, one or more codes will be missing from the A/D converter's output range.

Figure 11 is the transfer function of a 3-bit binary coded A/D converter with a 0 to +10V input range. A 3-bit ADC is shown for simplicity but the principle applies to ADCs of any resolution. Note that there is a 1/2 LSB offset at the input such that the first count occurs with the input equal to 1/2 LSB. The center of the range for the first step occurs, therefore, when the input is equal to the value of one LSB, and the error at the switch point is limited to 1/2 LSB. This error is known as the quantization error as it is derived from the smallest input quantity that can be resolved. If an ADC has a specified error of 1/2 LSB maximum, this means that any transition point can be as far as 1/2 LSB from where it should be.
CONSIDERATIONS FOR A/D CONVERTERS

- Analog input signal range and resolution required
- Linearity requirement and stability
- Conversion speed required
- Monotonicity requirement: Can missing codes be tolerated?
- Character of input signal: Is it noisy, sampled, filtered, slowly varying?
- Transfer characteristics (Type of coding)

A/D CONVERTER TERMS

Resolution
Resolution is the input change required to increment the output between the two adjacent codes. This term also refers to the number of bits in the output word and, hence, the number of discrete output codes the input analog signal can be broken into. Expressed in “bits” resolution.

Transfer Characteristic
The Transfer Characteristic is the relationship of the output digital word (code) to the input analog signal, i.e., Binary, BCD.

Conversion Speed
The Conversion Speed is the speed at which an ADC can make repetitive data conversions.

Quantizing Error
Quantizing Error is an inherent error in the conversion process due to finite resolution (discrete output). See Figure 12.

Offset Error
An Offset Error is shown in Figure 13.

Gain Error
A Gain Error is shown in Figure 14.

Relative Accuracy
Relative Accuracy is the deviation of an actual bit transition from the ideal transition value at any level over the range of the ADC (% F.S.). See Figure 15.

Hysteresis Error
A Hysteresis Error is the code transition voltage dependence relative to the direction from which the transition is approached.

Monotonicity
Monotonicity is when the output code either increases or remains the same for increasing analog input signals. The opposite is true in the reverse direction.

Missing Codes
A Missing Code is a code combination that is skipped. See Figure 16.
DAC08 SERIES
Reference Amplifier Setup

The DAC08 Series is a multiplying D-to-A converter in which the output current is the product of a digital number and the input reference current. The reference current may be fixed or may vary from nearly zero to +4.0mA. The full scale output current is a linear function of the reference current and is given by this equation where \(I_{RF} = I_{14} \times \frac{255}{256} + 0.2mA\) to +4.0mA.

The reference amplifier must be compensated by using a capacitor from pin 16 to V\(-\). For fixed reference operation, a 0.01\(\mu\)F capacitor is recommended. For variable reference applications, see section entitled Reference Amplifier Compensation for Multiplying Applications.

Multiplying Operation

The DAC08 Series provides excellent multiplying performance with an extremely linear relationship between \(I_{FS} + V_{AEF} \times 255\) to 0 = \(I_{FS}\) for all logic states. Such as a transistor current source, none of the preceding values will suffice and the amplifier must be heavily compensated, which will decreased overall bandwidth and slew rate. For \(R_{14} = 1k\Omega\) and \(C_{C} = 15pF\), the reference amplifier slows at 4mA/µs enabling a transition from \(I_{REF} = 0\) to \(I_{REF} = 2mA\) in 500ns.

Operation with pulse inputs to the reference amplifier may be accommodated by an alternate compensation scheme shown in Figure 5. This technique provides lowest full scale transition times. Full scale transition (0 to 2mA) occurs in 120ns when the equivalent impedance at pin 14 is 2000 and \(C_{C} = 0\). This yields a reference slew rate of 16mA/µs, which is relatively independent of \(R_{IN}\) and \(V_{IN}\) values.

Logic Inputs

The DAC08 design incorporates a logic input circuit which enables direct interface to all popular logic families and provides maximum noise immunity. This feature is made possible by the large input swing capability, 2\(\mu\)A logic input current and completely adjustable logic threshold voltage. For \(V_{-} = -15V\), the logic inputs may swing between -11V and +18V. This enables direct interface with +15V CMOS logic, even when the DAC08 is powered from a +5V supply. Minimum input logic swing is given by following the equation.

\[V = (I_{REF} + 1k\Omega) + 2.5V\]

When a dc reference is used, a reference bypass capacitor is recommended. A 5.0V TTL logic supply is not recommended as a reference. If a regulated power supply is used as a reference R14 should be split into 2 resistors with the junction bypassed to ground with a 0.1\(\mu\)F capacitor.

For most applications, a +10.0V reference is recommended for optimum full scale temperature coefficient performance. This will minimize the contributions of reference amplifier V_{REF} and TCV_{OS}. For most applications the tight relationship between \(I_{REF}\) and \(I_{FS}\) will eliminate the need for trimming \(I_{REF}\). If required, full scale trimming may be accomplished by adjusting the value of R14, or by using a potentiometer for R14. An improved method of full scale trimming which eliminates potentiometer T.C. effects is shown Figure 4.

Using lower values of reference current reduces negative power supply current and increases reference amplifier negative common mode range. The recommended range for operation with a dc reference current is +0.2mA to +4.0mA.

\[V_{CM} = V_{REF} + (I_{REF} \times 1k\Omega) + 2.5V\]

The recommended range for operation with a dc reference current is +0.2mA to +4.0mA. For fixed reference operation, a 0.01\(\mu\)F capacitor is recommended. For variable reference applications, see section entitled Reference Amplifier Compensation for Multiplying Applications.

\[I_{REF} = I_{14} \times \frac{255}{256} + 0.2mA\] to +4.0mA.

\[R_{REF} = 256\]

For fixed reference, TTL operation typical values are:

\[V_{REF} = +10,000V, R_{REF} = 5,000\Omega, R_{15} = R_{REF}, C_{C} = 0.01\mu F, V_{LC} = 0V\]
The logic threshold may be adjusted over a wide range by placing an appropriate voltage at the logic threshold control in (pin 1, V\textsubscript{LH}). Figure 6 shows the relationship between V\textsubscript{LH} and V\textsubscript{TH} over the temperature range, with V\textsubscript{TH} nominally 1.4 above V\textsubscript{LH}. For TTL and DTL interface, simply ground pin 1. When interfacing ECL, an I\textsubscript{REF} = 1mA is recommended. For interfacing other logic families, see Figure 7. For general setup of the logic control circuit, it should be noted that pin 1 may source up to 200\(\mu\)A. External circuitry should be designed to accommodate this current.

Fastest settling times are obtained when pin 1 sees a low impedance. If pin 1 is connected to a 1k\(\Omega\) divider, for example, it should be bypassed to ground by a 0.01 \(\mu\)F capacitor.

Analog Output Currents

Both true and complemented output sink currents are provided, where I\textsubscript{O} + I\textsubscript{O'} = I\textsubscript{FS}. Current appears at the true output when a 1 is applied to each logic input. As the binary count increases, the sink current at pin 4 increases proportionally, in the fashion of a positive logic D-to-A converter. When a 0 is applied to any input bit, that current is turned off at pin 4 and turned on at pin 2. A decreasing logic count increases I\textsubscript{O} as in a negative or inverted logic D-to-A converter. Both outputs may be used simultaneously. If one of the outputs is not required it must still be connected to ground or to a point capable of sourcing I\textsubscript{FS}. Do not leave an unused output pin open.

Both outputs have an extremely wide voltage compliance enabling fast direct current-to-voltage conversion through a resistor tied to ground or other voltage source. Positive compliance is 36V above V\textsubscript{H} and is independent of the positive supply. Negative compliance is given by the equation:

\[V = (I_{\text{REF}} \cdot 1k\Omega) + 3.0V \]

Note that lower values of I\textsubscript{REF} will allow a greater output compliance.

The dual outputs enable double the usual peak-to-peak load swing when driving loads in quasi-differential fashion. This feature is especially useful in cable driving, CRT deflection and in other balanced applications such as balanced bridge A/D circuits as well as driving center-tapped coils and transformers.

Power Supplies

The DAC08 operates over a wide range of power supply voltages from a total supply of 9V to 36V. When operating at supplies of \(\pm 5V\) or less, I\textsubscript{REF} \leq 1mA is recommended.
Judicious circuit design and careful board layout must be employed to obtain full performance potential during testing and application. The logic switch design enables propagation delays of only 35ns for each of the 8 bits. Setting time to within 1/2 LSB of the LSB is therefore 35ns, with each progressively larger bit taking successively longer. The MSB settles in 85ns, thus determining the overall settling time of 85ns. Setting to 6-bit accuracy requires about 65 to 70 ns. The output capacitance, including the package, is approximately 15pF. Therefore the output RC time constant dominates setting time if RL > 500Ω.

Settling time and propagation delay are relatively insensitive to logic input amplitude and rise and fall times due to the high gain of the logic switches. Setting time also remains essentially constant for IREF values down to 1.0mA, with gradual increases for lower IREF values. The principal advantage of higher IREF values lies in the ability to attain a given output level with lower load resistors, thus reducing the output RC time constant.

Measurement of settling time requires the ability to accurately resolve ± 4µA. Therefore a 1kΩ load is needed to provide adequate drive for most oscilloscopes. The settling time fixture of Figure 8 uses a cascode design to permit driving a 1kΩ load with less than 5pF of parasitic capacitance at the measurement node. At IREF values of less than 1.0mA, excessive RC damping of the output is difficult to prevent while maintaining adequate sensitivity. However, the major carry from 01111111 to 10000000 provides an accurate indicator of settling time. This code change does not require the normal 6.2 time constants to settle to within ± 0.2% of the final value; thus, settling time may be observed at lower values of IREF.

The DAC08 switching transients or glitches are very low and may be further reduced by small capacitive loads at the output at a minor sacrifice in settling time. Fastest operation can be obtained by using short leads, minimizing output capacitance and load resistor values, and by adequate bypassing at the supply, reference and VRef terminals. Supplies do not require large electrolytic bypass capacitors as the supply current drain is dependent of input logic states. 0.1µF capacitors at the supply pins provide full transient performance.

INTERFACING WITH VARIOUS LOGIC FAMILIES

NOTE

Do not exceed negative logic input range of DAC

Figure 7
SETTLING TIME MEASUREMENT

FOR TURN-ON, $V_L = 2.7V$
FOR TURN-OFF, $V_L = 0.7V$

MINIMUM CAPACITANCE

$-V_L$ TO D.U.T.
1µF

V_{IN}

Figure 8

TYPICAL APPLICATIONS

BASIC UNIPOLAR NEGATIVE OPERATION

<table>
<thead>
<tr>
<th>B_1</th>
<th>B_2</th>
<th>B_3</th>
<th>B_4</th>
<th>B_5</th>
<th>B_6</th>
<th>B_7</th>
<th>I_O mA</th>
<th>I_{Q} mA</th>
<th>E_O</th>
<th>E_O</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full scale</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1.992</td>
<td>0.000</td>
<td>-9.960</td>
<td>.000</td>
</tr>
<tr>
<td>Full scale - LSB</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1.984</td>
<td>.008</td>
<td>-9.920</td>
<td>-0.040</td>
</tr>
<tr>
<td>Half scale + LSB</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1.008</td>
<td>.984</td>
<td>-5.040</td>
<td>-4.920</td>
</tr>
<tr>
<td>Half scale</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1.000</td>
<td>.982</td>
<td>-5.000</td>
<td>-4.990</td>
</tr>
<tr>
<td>Half scale - LSB</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>.992</td>
<td>1.000</td>
<td>-4.960</td>
<td>-5.000</td>
</tr>
<tr>
<td>Zero scale + LSB</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>.008</td>
<td>1.964</td>
<td>-0.040</td>
</tr>
<tr>
<td>Zero scale</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.000</td>
<td>1.992</td>
<td>.000</td>
</tr>
</tbody>
</table>

Figure 9
TYPICAL APPLICATIONS (Cont'd)

BASIC BIPOLAR OUTPUT OPERATION

<table>
<thead>
<tr>
<th>B1</th>
<th>B2</th>
<th>B3</th>
<th>B4</th>
<th>B5</th>
<th>B6</th>
<th>B7</th>
<th>B8</th>
<th>E_D</th>
<th>E_D</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>-9.920</td>
<td>+10.000</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>+10.000</td>
<td>+9.920</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-0.060</td>
<td>-0.080</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>+0.080</td>
<td>+0.060</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>-10.000</td>
<td>-9.920</td>
</tr>
</tbody>
</table>

Figure 10

SYMMETRICAL OFFSET BINARY OPERATION

<table>
<thead>
<tr>
<th>B1</th>
<th>B2</th>
<th>B3</th>
<th>B4</th>
<th>B5</th>
<th>B6</th>
<th>B7</th>
<th>B8</th>
<th>E_O</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>+9.920</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>+9.840</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>+0.040</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>-9.840</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-9.920</td>
</tr>
</tbody>
</table>

Figure 11
POSITIVE LOW IMPEDANCE OUTPUT OPERATION

For complementary output operation as negative logic DAC, connect inverting input of OP-amp to IC (pin 2), connect IC (pin 4) to ground.

Figure 12

NEGATIVE LOW IMPEDANCE OUTPUT OPERATION

For complementary output operation as a negative logic DAC, connect non-inverting input of OP-amp to IC (pin 2), connect IC (pin 4) to ground.

Figure 13

LOW COST 8-BIT 1 MICROSECOND A-TO-D CONVERTER

Figure 14
LINEAR LSI PRODUCTS

BASIC DACs

3 IC LOW COST A-TO-D CONVERTER

NOTE
Connect "start" to "conversion complete" for continuous conversions.

Figure 15

LOW COST 2-DIGIT BCD DAC

NOTE
Output is directly proportional to positive power supply.

Figure 16

DC-COUPLED DIGITAL ATTENUATOR/PROGRAMMABLE GAIN AMPLIFIER

NOTES
1. Bipolar input offset
2. Bipolar input offset
3. Bipolar input offset
4. Bipolar input offset

Figure 17

HIGH SPEED WAVEFORM GENERATOR

NOTES
1. Bipolar output is symmetrical around zero, adjustable peak to peak amplitude.
2. For triangle wave, count up to full, reverse and count down.
3. For positive-going sawtooth, count up to full, clear, repeat.
4. For negative-going sawtooth, count down, clear, repeat.
5. For other waveforms, use a ROM programmed with the desired function.

Figure 18
DIGITAL ATTENUATOR

Figure 1 shows a D-C coupled Digital Attenuator or Programmable Gain Amplifier.

Pin 14 of the DAC is a Virtual Ground. Current must always flow into Pin 14, so the current through R4 must be greater than that through R1 when the input signal is at its most negative usable value. If the input signal value goes low enough to cause the current through R1 to be greater than that through R4, output clipping will occur.

To extend the operating frequency range, the compensation capacitor, \(C_c \), needs to be formed of two series resistors with the parallel combination of R1 and R4 in the junction of them bypassed with 0.1 \(\mu \)F to ground. Furthermore, to be sure that R4 current exceeds R1 current, we set

\[
R1 = 6.8k \\
R4 = 2.3k
\]

Maximum reference current is now

\[
I_{REF} = 12V + \frac{5V}{R1} = 3.57mA
\]

(Use 3.3K)

Because the reference source will be the 5V logic supply, which will be noisy, we will split R4 into two resistors and bypass their junction with 0.1 \(\mu \)F to ground. Furthermore, to be sure that R4 current exceeds R1 current, we will increase R1 to 4.3K. The absolute maximum reference current is now

\[
I_{REF} = 12V + \frac{5V}{R1} = 4.46mA
\]

(4.3K)

The parallel combination of R1 and R4 is found to be 3.24K, so minimum compensation capacitor value is

\[
C_c (min) = \frac{(2.4)(15)pF}{48.6pF} = 48.6pF.
\]

If we use 6pF, from the graph we find \(F_{(max)} \) to be 370kHz. For unity gain,

\[
R2 = R1 = 6.8K \\
R3 = R2 = 6.8K \\
R5 = R1 = 6.8K \\
R6 = R7 = \frac{(R1)(R4)}{R1 + R4} = 3.24K
\]

The parallel combination of R1 and R4 is found to be 3.24K, so minimum compensation capacitor value is

\[
C_c (min) = \frac{(3.24)(15)pF}{48.6pF} = 48.6pF.
\]

If we use 6pF, from the graph we find \(F_{(max)} \) to be 370kHz. For unity gain,

\[
R2 = R1 = 6.8K \\
R3 = R2 = 6.8K \\
R5 = R1 = 6.8K \\
R6 = R7 = \frac{(R1)(R4)}{R1 + R4} = 3.24K
\]

(Use 3.3K)

Example 2: Usable input signal is 12V p-p, centered at 0V, with occasional excursion to twice this amplitude, which we do not care about. Maximum input frequency is to be 500kHz. Available power supplies are +5V logic supply, +15V, -15V, all regulated. Determine values of all resistors and \(C_c \) for maximum gain of 2.

Solution 2: To extend the frequency response, we want minimum compensation capacitor value, therefore need minimum R1 and R4 values, for which reason we want to return R4 to as low a regulated supply as is possible; we will use the 5V logic supply.

At minimum usable input,

\[
I_{REF} = \frac{5V}{R4} - \frac{6V}{R1}
\]

or, for

\[
I_{REF} = 0, \quad \frac{5V}{R4} = \frac{6V}{R1}
\]

therefore, 55 percent of \(I_{REF} \) comes through R4, and

\[
R4 = \frac{5V}{R1} \frac{6V}{R1}
\]

Because peak input goes to +12V, this condition should not cause \(I_{REF} \) to exceed 5mA, and

\[
I_{REF} = \frac{12V}{R1} + \frac{5V}{R4} = 5mA
\]

Recall that \(R4 = \frac{(5/6)R1}{R1} = \frac{12V}{R1} + \frac{5V}{R4} = \frac{5V}{R1} \)

\[
I_{REF} (max) = \frac{12V}{R1} + \frac{5V}{R4} = 4.96mA
\]

(4.3K)

The parallel combination of R1 and R4 is 1.77K, so minimum compensation capacitor is

\[
C_c (min) = \frac{(15)(1.77)}{26.5pF} = 26.5pF
\]

If we use 27pF, the graph tells us the maximum frequency is about 490kHz, which is 2 percent lower than desired. If we wanted to further extend this frequency range, we find that we can reduce R4 to two resistors of 1.1K and 1.2K, bringing the absolute maximum reference current to

\[
I_{REF} (max) = \frac{12V}{R4} + \frac{5V}{R3} = 4.96mA
\]

(4.3K)

and the maximum usable reference current becomes

\[
I_{REF} = \frac{6V}{R3} + \frac{5V}{R1} = 3.57mA
\]

(4.3K)

below the 5mA and 4mA respective desired maximum values. Now the resistance at pin 14 is the parallel combination of R1 and R4, or 1.4K, and the minimum compensation capacitor becomes

\[
C_c (min) = \frac{(15)(1.4)pF}{21pF}
\]

If we use 22pF, the graph tells us we can just go to 500kHz.
USING THE DAC08 WITHOUT A NEGATIVE SUPPLY

The DAC08 can be used without a negative supply if a few precautions are observed:

1. V_{CC} must be in the range of 10V to 30V.
2. $V_{REF(+) - V_{REF(-)}}$ must be at least 3V more positive than pin 3 at all times.
3. Pins 2 and 4 must always be at least 5 volts above pin 3 for reference currents up to 2mA, and at least 8 volts above pin 3 for reference currents above 2mA.
4. Pin 1 must be at least 5 volts above pin 3.

Figure 1 shows the DAC08 in a circuit without a negative supply with two MC1489's used as level shifters. The need for level shifters is implied from requirement 4 above, since the logic threshold is about 1.35 volts above pin 1. V_0 must be the same potential as the positive logic supply because of the internal circuitry of the MC1489.

If $V_{REF(+)}$ is a very stable source with no ripple or noise, R_1 and R_2 can be a single resistor. The same is true of R_3 and R_4 if $V_{REF(-)}$ is a very stable source. Resistor values are determined as follows:

$$R_1 + R_2 = \frac{V_{REF(+)} - V_{REF(-)}}{I_{REF}}$$

$$R_3 + R_4 = R_1 + R_2$$

where I_{REF} is reference current through R_1 and R_2 (pin 14 is at $V_{REF(-)}$ potential).

The value of the compensation capacitor, C_C, is determined by the relationship:

$$C_C = 15(R_1 + R_2)$$

where C_C is in pF and R_1 and R_2 are in Kilohms.

V_0 (DAC08 pin 1 and MC1489 pin 7) must be at least 5 volts for DAC08 reference currents at or below 2mA, and at least 8 volts for reference currents above 2mA. V_0 must also be equal to the positive potential of the logic supply, as mentioned above. It should be noted that the MC1489 inverts the logic inputs.

EXAMPLE

Power supply voltages of +5V and +15V are available and the input logic is TTL. The need is for a DAC with a full scale output of 2mA.

- V_0 is set to +5V
- V_{CC} for the DAC08 and the MC1489 are set to +15V
- I_{REF} is set to +15V and +5V respectively,

$$R_1 + R_2 = \frac{15 - 5}{2mA} = 5K$$

- $R_3 + R_4$ should also add up to 5 Kilohms.
- C_C is 15(5)pF = 75pF.

Figure 1. Using the DAC08 without a negative supply.
DAC products are designed to convert a digital code to an analog signal. Since a common source of digital signals is the data bus of a microprocessor, DAC circuits that are bus compatible ease the design engineer's interface problems.

WHAT FEATURES MAKE A DEVICE BUS COMPATIBLE?
The five conditions which determine processor bus compatibility are:

- Inputs must be low loading
- Addressing must be provided
- Inputs must be latched
- Logic thresholds must be compatible
- Timing requirements should be adequate (< 1 μsec)

Signetics microprocessor compatible DACs, the NE5018 series, meet these requirements. In addition, they provide an internal reference source. The NE5018 provides a scaled voltage output, eliminating the need for an external op amp. The NE5118 is identical to the NE5018, except it provides the user with a current output. Figure 1 shows a typical microprocessor system with analog I/O using the NE5018 to provide a programmable voltage and an NE5118 to provide a programmable current.

The following discussions detail the operation of the NE5018 and NE5118 series DAC's.

LATCH CIRCUIT

The latch circuits of the NE5018 and NE5118 are identical. Both the data inputs and latch enable (LE) input feature ultra-low loading for ease of interfacing. The eight bit-data latch, controlled by the latch enable input, is static and level sensitive. When (LE) is low, all the latches become transparent and the output changes as the bit pattern changes on the data bus. When the latch enable returns to its high state, the last set of inputs are held by the latch and a unique output corresponding to the binary word in the latch is produced. While the latch enable is high, the latch inputs represent a high impedance load on the data bus and changes on the data bus have no effect on the DAC output.

The digital logic input for the NE5018 and NE5118 series DAC's utilize a differential input logic system with a threshold level of +1.4 volts with respect to the voltage level on the digital ground pin (Pin 1). To be compatible with microprocessors, the DAC should respond in as short a period as possible to insure full utilization of the μP and I/O data bus lines. Figure 2 gives the typical timing requirements of the latch circuits in the NE5018 and NE5118.

The voltage levels on the data bus should be stable for approximately 150ns before latch enable returns to high level. The timing diagram shows 100ns is required for set-up time and the information on the data lines should remain valid for another 50ns.

REFERENCE INTERFACE

The NE5018 and NE5118 contain an internal bandgap voltage reference which is designed to have a very low temperature coefficient and excellent long term stability characteristics.

The internal bandgap reference (1.23V) is buffered and amplified to provide the 5 volt reference output. Providing a V_REF (ADJ) (pin 12) allows easy trimming of the reference output (pin 13). Use of a 10K pot and series resistor, as shown in Figure 3, adjusts the gain of the buffer amplifier therefore varying the output reference voltage level.

This network can then be used as a full scale output adjust. A variation in the V_REF OUT of ±.8V, results in a corresponding 1.6V variation in the full scale output. This is more than adequate since the untrimmed V_REF OUT is typically within 200mv of the nominal 5 volts. The V_REF OUT will provide a maximum of 5mA drive and can be used as a reference voltage for other system components, if required.

Since a potential need exists to use the NE5018 and NE5118 as multiplying DAC's, the V_REF is not connected internally, allowing the use of external reference sources. To utilize the internal reference, the V_REF OUT (pin 13) must be jumper connected to the V_REF IN (pin 14). This also makes it possible to use a common reference for other D/A or A/D circuits in a system.

INPUT AMPLIFIER OF THE NE5018

The DAC reference amplifier has been designed to eliminate the need for compensation when operating from the internal reference or from an external reference which is buffered by an op amp or low impedance...
source. Compensation is required, however, when operating from a high impedance source. The addition of an external resistance reduces the phase margin of the amplifier making it less stable. Compensation, when required, is a single capacitor from pin 16 to ground.

Figure 4 details the input reference amplifier and current ladder. The voltage to current converter of the DAC amp will generate a 1mA reference current through Q_R with a 5 volt V_{REF}. This current sets the input bias to the ladder network. Data bit 7 (DB_7) Q_7, when turned on, will mirror this current and will contribute 1mA to the output. DB_8 (Q_8) will contribute 1/2 of that value or .5mA, and so on. If all bits are on, the output current will be 2mA - 1 LSB. The full scale V_{OUT} will be $(I_{OUT}R_S)$ or $(2mA \cdot 1LSB \times 5K) = (10V \cdot 1 LSB) = 9.961V$. The overall input/output expression for the NE5018 is:

$$V_{OUT} = 2V_{REF} \times \frac{DB_7}{2} + \frac{DB_8}{4} + \frac{DB_9}{8} + \frac{DB_4}{16} + \frac{DB_3}{32} + \frac{DB_2}{64} + \frac{DB_1}{128} + \frac{DB_0}{256}.$$

The minimum current for the ladder network to be operative in the linear region is 100µA. Therefore the minimum V_{REF} input is 500mV. The slew rate of the reference amplifier is typically .7V/µs without compensation. The input structure of the NE5118 is slightly different and will be discussed in greater detail later. Q_T provides a termination for the R-2R ladder network and does not contribute to I_{OUT}.

OUTPUT INTERFACE OF THE NE5018

The NE5018 has an internal op amp which provides a voltage output, while the NE5118 is a current output device. The NE5018 output op amp is a two stage design with feed-forward compensation. Having a slew rate 10V/µs, it provides a voltage output from 0 to 10V ($\pm 2\%$) typically within 2μs (the time allowed for the output voltage to settle to within 1/2 LSB). Compensation must be provided externally as shown in Figure 5.

The addition of the optional diode between the summing node (Pin 20) and ground prevents the DAC current switches from driving the op amp into saturation during large signal transitions which would increase the settling time. Zero adjust circuits such as the one shown in Figure 5 may also be connected to the summing node to provide a means to zero the output when all zeros are present on the input. Not all applications require a zero adjust circuit since the untrimmed zero scale is typically less than 5mV. Excess stray capacitance at the sum node of the output op amp may necessitate the use of a feedback capacitor from V_{OUT} to the sum node (C_{FF}) to ensure stability of the op amp. Typical values of C_{FF} range from 15 to 22pF. The rated load of the op amp is ~2Kohm. For stability, the load capacitance should be minimized (50pF max).

![REFERENCE ADJUST CIRCUIT](image)

R - 2R LADDER NETWORK DEVELOPS A SCALED REFERENCE CURRENT VALUE INTO THE DAC SWITCHING NETWORK

![R - 2R LADDER NETWORK DEVELOPS A SCALED REFERENCE CURRENT VALUE INTO THE DAC SWITCHING NETWORK](image)

NOTE

DAC compensation may be required if V_{REF} resistance exceeds 10K ohm.
MODES OF OPERATION OF THE NE5018

The NE5018 has two basic modes of operation: unipolar and bipolar. When operating in the unipolar mode the output range is 0 to +10 volts. To change from unipolar to bipolar operation the bipolar offset pin is connected to the summing node. This provides the 5 volt offset required for this mode of operation. The output now will have a range from -5 to +5 volts. Figure 6 details the connection of the NE5018 in the bipolar mode of operation.

With the bipolar offset pin (15) connected to the sum node pin (20), it forms a unity gain inverter with an input of $+V_{REF}$. The bipolar offset develops an I_{REF} current through the internal 5K resistor. This current is then fed to the sum node of the output amplifier where it is summed with the current output of the DAC ladder network. Assume for the moment that the current output of the ladder network is 0mA. With a V_{REF} equal to +5 volts, I_{REF} is 1mA and the output of the op amp is converted to -5V. If the DAC switches are now set to full scale, the current from the DAC ladder is 2mA. This is summed against the 1mA I_{REF} and causes the output of the op amp to swing from -5V to +5 volts.

$$ (I_{DAC} + I_{REF}) \times 5K = (2mA - 1mA) \times 5K = +5 \text{ volts} $$

Since the bipolar offset resistor is monolithic, tracking with the 5K feedback resistor of the output amplifier is excellent.

Note that the bipolar offset pin could not be used when using the DAC in a multiplier application since the V_{OUT} would reflect an inverted input signal.

NOTES ON THE NE5118 CURRENT OUTPUT DAC

The basic operation of the NE5118 current output DAC is the same as the NE5018. The current output structure allows the user to provide a programmable current sink (I_{OUT} max of 2mA). Several jumper options provide a variety of operational modes. Figure 7 is a block diagram of the NE5118. The input logic and V_{REF} portions are identical to the NE5018.

REFERENCE INPUT AMPLIFIER

The characteristics of the reference input amplifier are different from the NE5018; however, extended versatility of the input structure allows for both current (via pin 14) or voltage (via pin 15) reference inputs.

The maximum DAC output current is 2mA. The DAC has an internal gain of 2, limiting the maximum usable input current to 1mA (Note: The absolute maximum input current should be limited to 5mA to prevent damage to the input reference amplifier). Figure 8 shows the basic operating mode of the NE5118 using an external current reference resistor (R_1) and a positive reference voltage. This voltage can be provided by either an internal or external reference voltage. Figure 9 shows a typical connection using a voltage input directly via pin 15.

Besides a reduced parts count, use of the internal R_{REF} provides excellent tracking characteristics with the R_{OUT} resistor (pin 20) when developing a high slew rate voltage output. The negative V_{REF} input must be returned to ground directly or through R_2. R_2 is optional and is used to cancel minor errors developed by the input bias currents of the reference amplifier ($R_2 = R_1$). A negative voltage can be the reference by using the $-V_{REF}$ input pin as shown in Figure 10.

The positive V_{REF} is returned to ground via R_{IN} (pin 15). As with the NE5018, a compensation capacitor on Pin 16 is not required if the V_{REF} is supplied by a low impedance source.
OUTPUT STRUCTURE

The output of the NE5118 is a current sink with a capacity of 2mA (full scale) capable of settling to .2% in 200ns. Internal bias and feedback resistors are also made available to ease the designer's task of interfacing. Figure 11 shows the NE5118 using a current to voltage converter at the output to provide a high slew rate voltage output. The diode at the inverting node of the op amp improves the response time by preventing saturation of the op amp during large signal transitions. The feedback resistor R_{OUT1} (pin 20) is provided internally; this provides excellent thermal tracking characteristics with the V_{REF} on the input. Bipolar operation can be accomplished by connecting the $V_{REF,OUT}$ (Pin 12) to the R_{OUT} resistor (Pin 20)(Figure 12). The principal is the same as the NE5018 bipolar operation. The internal resistors exhibit excellent thermal tracking characteristics.

An alternate method of bipolar output operation is shown in Figure 12. The R_{REF} and R_{OUT} set up a current to voltage converter while two (2) external resistors provide a bipolar offset. R_{EXT}, and R_{EXT2} should have similar thermal tracking characteristics. The NE5118 can provide a voltage output directly when driving a high impedance load as shown in Figure13. With a full scale current of 2mA, pin 20 tied to $+10V$ and a digital input of zero, the high impedance load will see $+10V$. For a full scale digital input, the load will see 0 volts. Since the load and the internal resistor form a voltage divider, their ratio determines full scale accuracy. By connecting the R_{OUT} resistor (pin 20) to ground(Figure13), the output voltage seen by the load ranges from 0 volts as zero scale to $-10V$ as full scale. Only a few of the many possible output configurations have been shown to demonstrate the NE5118 flexibility.

CIRCUIT EXAMPLES

Now that the basics of the NE5018 and the NE5118 have been discussed, let's examine some specific circuits. Figure 14 is a microprocessor controlled programmable gain amplifier, using the NE5018. The V_{REF} output is fed to the non-inverting input to a differential amplifier. $R_1 + R_2$ set the differential gain.
to 0.5. This places 2.5V DC bias on the VREF input. R2 can be made adjustable to precisely control the DC reference input. The analog input is fed to the inverting input of the differential amplifier with a gain of unity. An input of ±2V will provide a ±4 volt output full scale. With a maximum input of ±2 volts, VREF IN will vary from .5 volts to 4.5 volts. The current ladder is always kept in the linear operating range and the output will not become distorted.

No compensation is required for the DAC reference amplifier since the VREF IN is fed from a low impedance source. With a compensation cap of 30pF on the output amplifier, the frequency response of the output is linear to at least 20kHz with less than .1% distortion with an input amplitude of 1V p.p. The NE5018 is seen by the µ processor as an I/O device.

In Figure 15, the N5018 and NE5118 provide a method of summing two digital words of equal weight and generating a voltage output. The latch enable feature of both devices direct connection to a data bus, using address decoding. These devices greatly reduced the total component count required to perform this operation.

The reference voltage is common to both DAC's, being provided by the NE5018. The bipolar offset resistor of the NE5018 provides the 1mA current reference for the NE5118. Using the internal resistor of the NE5018 to develop the reference current enhances the thermal tracking since the current to voltage resistor of the output op amp is also in the NE5018. Both DAC's can be addressed by a µ processor using an address decoder to select DAC A or DAC B.

Figure 16 is a schematic of the NE5118 and NE527 as a high speed programmable limit sensor (or A/D converter). A 4.8 volt zener diode is used on the comparator input to insure the input voltage range of the comparator is not exceeded. The outputs of the NE527 comparator are complementary, easing the logic interface requirement. If the strobe function is not used, the strobe inputs should be tied high, through a 10KΩ resistor.
BIPOLAR OPTIONS OF THE NE 5118

Figure 12

+10 TO 0 VOLTS

Figure 13

PROGRAMMABLE GAIN AMPLIFIER

Figure 14
ANALOG SUMMATION WITH DIGITAL INPUTS

\[V_{\text{OUT}} = V_A + V_B \]

Figure 15

PROGRAMMABLE LIMIT COMPARATOR

Figure 16
LED DECODER DRIVER
NE587 and 589

The NE587 and 589 are latchable decoder drivers for L.E.D. displays. Figure 1 provides a summary of their features.

The programmable constant current supplies (fixed or adjustable) are essentially independent of output voltage, power supply voltage, and temperature.

The data (BCD) and LE (latch enable) inputs are low loading and thus are compatible with a data bus system.

Figure 2 shows a block diagram of the NE587. Seven segment decoding is implemented using a ROM so that alternate decoding fonts can be made available.

L.E.D. Drivers and Power Dissipation Consideration

The following discussion refers to the NE587, but is also applicable for the 589.

LED displays are power hungry devices, and, inevitably, somewhat inefficient in their use of the power supply necessary to drive them. Duty cycle control does afford one way of improving display efficiency, provided that the LEDs are not driven too far into saturation, but the improvement is marginal. Operation at higher peak currents has the added advantage of giving much better matching of light output, both from segment-to-segment and digit-to-digit.

When designing a display system, particular care must be taken to minimize power dissipation within the IC display driver. Since the NE587 output is a constant programmed current source, all the remaining supply voltage, which is not dropped across the LED (and the digit driver, if used) will appear across the output of the NE587. Thus the power dissipation in the NE587 will go up sharply if the display power supply voltage rises. Clearly, then, it is good design practice to keep the display supply voltage as low as possible consistent with proper operation of the output current sources. Inserting a resistor or diode in series with the display supply is a good way of reducing the power dissipation within the integrated circuit segment driver, although, of course, total system power remains the same.

Power dissipation within the NE587 may be calculated as follows. Referring to Figure 3, the two system power supplies are V_{CC} and V_S. In many cases, these will be the same voltage.

Necessary parameters are:
- V_{CC} Supply voltage to driver
- V_S Supply voltage to display
- I_{CC} Quiescent supply current of driver
- I_{SEG} LED segment current
- V_F LED segment forward voltage at I_{seg}
- K_{DC} % Duty cycle

V_F, the forward LED drop, depends upon the type of LED material (hence the color) and the forward current. The actual forward
voltage drops should be obtained from the LED display manufacturers literature for the peak segment current selected. However, approximate voltages at nominal rated currents are:

- Red: 1.6 to 2.0V
- Orange: 2.0 to 2.5V
- Yellow: 2.2 to 3.5V
- Green: 2.5 to 3.5V

These voltages are all for single diode displays. Some early red displays had 2 series LEDs per segment, hence the forward voltage drop was around 3.5V.

Thus a maximum power dissipation calculation when all segments are on, is:

\[
P_d = V_{CC} \times I_{CC} + I_{V} \times V_{F} \times I_{SEG} \times K_{DC} \text{ mW}
\]

Assuming \(V_{S} = V_{CC} = 5.25V \)
- \(V_{F} = 2.0V \)
- \(K_{DC} = 100\% \)
- \(I_{SEG} = 30mA \)

\[
P_{d\ max} = 5.25 \times 50 + 3.25 \times 7 \times 30 \text{ mW} = 945 \text{ mW}
\]

However, the average power dissipation will be considerably less than this. Assuming 5 segments are on (the average for all output code combinations), then

\[
P_{d\ av} = 5.0 \times 30 + 3.00 \times 5 \times 25 \text{ mW} = 525 \text{ mW}
\]

Operating temperature range limitations can be deduced from the power dissipation graph in Figure 4.

However, a major portion of this power dissipation (\(P_{d\ max}\)) is because the current source output is operating with 3.25V across it. In practice, the outputs operate satisfactorily down to 0.5V, and so the extra voltage may be dropped external to the integrated circuit.

Suppose the worst case \(V_{CC}/V_{S}\) supply is 4.75 to 5.25V, and that the maximum \(V_{F}\) for the LED display is 2.25V. Only 2.75V is required to keep the display active, and hence 2.0V may be dropped externally with a resistor from \(V_{CC}\) to \(V_{S}\). The value of this resistor is calculated by using equation 2.

\[
R_S = \frac{V_{S\ max}}{I_{SEG} \times \#\ of\ seg}\text{ or } R_S = \frac{V_{F}}{7 \times I_{SEG}} = 10\Omega \ (1/2 \text{ W rating)}
\]

assuming worst case \(I_{SEG}\) of 30mA

Hence now:

\[
P_{d\ max} = V_{CC} \times I_{CC} + I_{V} \times V_{F} \times R_S \times 7 \times I_{SEG} \times K_{DC} = 5.25 \times 50 + 1.25 \times 7 \times 30 \text{ mW} = 525 \text{ mW}
\]

\[
P_{d\ av} = 5.0 \times 30 + 1.25 \times 5 \times 25 = 306 \text{ mW}
\]

If a diode (or 2) is used to reduce voltage to the display, then the voltage appearing across the display driver will be independent of the number of “ON” segments and will be equal to

\[
V_{S} - V_{F} - nV_{D} = 0.8V
\]

Where \(n\) is the number of diodes used, and so power dissipation can be calculated in a similar manner.

In a multiplexed display system, the voltage drop across the digit driver must also be considered in computing device power dissipation. It may even be an advantage to use a digit driver which drops an appreciable voltage, rather than the saturating PNP transistors shown in Figure 5. For example a Darlington NPN or PNP emitter follower may be preferable. Figure 6 shows the NE591 as the digit driver in a multiplexed display system. The NE591 output drops about 1.8V which means that the power dissipation is evenly distributed between the two integrated circuits.

Where \(V_{S}\) and \(V_{CC}\) are two different supplies, the \(V_{S}\) supply may be optimized for minimum system power dissipation and/or cost. Clearly, good regulation in the \(V_{S}\) supply is totally unnecessary, and so this supply can be made much cheaper than the regulated 5V supply used in the rest of the
4-DIGIT MULTIPLEXED LED DISPLAY

Figure 5
In fact a simple unsmoothed full-wave rectified sine wave works extremely well if a slight loss in brightness can be tolerated. A transformer voltage of about 3-4.5Vrms works well in most LED display systems. Waveforms are shown in Figure 7.

The duty cycle for this system depends upon V_S, V_F, and the output characteristics of the display driver.

With

\[
V_S = 4.9\text{ V pk.} \\
V_F = 2.0\text{ V}
\]

The duty cycle is approximately 60%.

V_S in this example was derived by the circuit shown in Figure 7. Remember that the forward voltage drop of the rectifying diode must be subtracted to arrive at the exact peak of the V_S voltage.

Figure 8 shows other typical application schemes for multiplexing LED displays.
Driver selection is accomplished with a low active chip enable which may be derived from the I/O decoder common to all I/O devices. A low active master clear is also provided to reset all outputs simultaneously. This signal may be generated from the I/O decoder or set high when not required.

The high-current outputs of the drivers (250mA sinking with the NE590 and 250mA sourcing with the NE591) allows direct interfacing to relays, motors, lamps, LED's, and other devices or systems requiring high current drive capabilities.

Figure 10 demonstrates the use of APD's in a uP-based system. When driving LED displays, a single 8-bit word contains all the data required for defining both digit location and segment selection. The APD uses four bits—three to address one of 8 outputs and one to set the output to an ON or OFF state.

When using the NE590, ON refers to the output low state in which the output is
capable of sinking a maximum of 250 mA. The clear (CE) pin may be tied high and would normally not be required in this application.

The four remaining data bits are required by the NE589 which supplies segment data. These four BCD data bits are converted into seven-segment data used for driving the anodes of the LED's. Data is strobed into the latches by the LATCH ENABLE INPUT at the same time that information is being supplied to the NE590. Since the NE589 provides a constant current source, uniform brightness is obtained from each segment in the display. The NE589 is capable of supplying up to 50 mA/segment. Segment currents are set by a single programming resistor.

Figure 10 shows several devices connected to the NE591: a relay, a motor, and a D-C sub-system. Each device is selected in the same manner as the LED digits: that is, three bits are used to select the output and one bit is used to turn the output ON or OFF.

An output may be cleared in one of two ways:
1) By direct selection and clearing of the individual latch, or
2) By clearing all outputs through the use of the clear input.

The latter method does not require addressing.

The examples shown in Figure 10 clearly demonstrate the advantages that can be derived from using the NE590 and NE591 APDs in microprocessor-based systems. These devices provide easy interfacing and minimize the number of interfacing components; they also provide the logic interface to the microprocessor and the switch function and high-current drive required by the peripheral units.
LINE DRIVERS AND RECEIVERS

Many types of line drivers and receivers are available today. Each device has been designed to meet specific criteria. For instance, the device may be extremely wide band or be intended for use in party line systems. Some include built in hysteresis in the receiver while others do not.

The EIA Standard

The Electronic Industries Association has produced a set of specifications dealing with the transmission of data between data terminal and communications equipment. This is EIA Standard RS-232-C and delineates much information about signal levels and hardware configurations in data systems.

MC1488/1489

As line driver and receiver the MC1488 and MC1489 meet or exceed the RS-232 specification.

Standard RS-232 defines the voltage level as being from 5 to 15 volts with positive voltage representing a logic 0. The MC1488 meets these requirements when loaded with resistors from 3k to 7k ohms.

Output slew rates are limited by RS-232 to 30 volts per microsecond. To accomplish this specification the MC1488 is loaded at its output by capacitance as shown by the typical hookup diagram of Figure 1. A graph of slew rate vs output capacitance is given in Figure 2. For the standard 30V/µs a capacitance of 400pF is selected.

The short circuit current charges the capacitance with the relationship:

\[C = \frac{I_{SC} A}{\Delta V} \]

Where C is the required capacitor, \(I_{SC} \) is the short circuit current value, and \(\Delta V/\Delta T \) is the slew rate.

Using the worst case output short circuit current of 12mA in the above equation, calculations result in a required capacitor of 400pF connected to each output to limit the output slew rate to 30V/µs in accordance with the EIA standard.

The EIA standard also states that output shorts to any other conductor of the cable must not damage the driver. Thus the MC1488 is designed such that the output will withstand shorts to other conductors indefinitely even if these conductors are at worst case voltage levels. In addition to output protection, the MC1488 includes a 300 ohm resistor to ensure that the output impedance of the driver will be at least 300 ohms even if the power supply is turned off. In cases where power supply malfunction produces a low impedance to ground, the 300 ohm resistors are shorted to ground also. Output shorts then can cause excessive power dissipation. To prevent this, series diodes should be included in both supply lines as pictured in Figure 3.

The companion receiver, MC1489, is also designed to meet RS-232 specifications for receivers. It must detect a voltage from ±3 to ±25 volts as logic signals but cannot generate an input differential voltage of greater than 2 volts should its inputs become open circuited. Noise and spurious signals are rejected by incorporating positive feedback internally to produce hysteresis. Featured also in the receiver is an external response node so that the threshold may be externally varied to fit the application. Figure 4 shows the shift in high and low trip points as a function of the programming resistance.

APPLICATIONS

The design of the MC1488 and MC1489 makes them very versatile with many possible applications. The MC1488 output current limiting enables the user to define the output voltage levels independent of supply voltages. Figure 5 shows the MC1488 as a TTL to MOS Translator, while Figures 6 and 7 illustrate TTL to HTL and TTL to MOS Translator.

The MC1489 response control node allows the user to modify the input threshold voltage levels. This is accomplished by adding a resistor between the response control pin and an external power supply. Figure 4 shows the shift thus provided. This feature and the fact that the inputs are designed to withstand ±30 volts permit the use of the MC1489 for level translation as shown in the MOS to TTL translator of Figure 8. This feature is also useful for level shifting, as illustrated in Figure 9.

The response control node can also be used to filter out high frequency, high energy noise pulses. Figures 10 and 11 give typical noise pulse rejection curves for various sized external capacitors.
TYPICAL LINE DRIVER-RECEIVER APPLICATION

OUTPUT SLEW RATE vs. LOAD CAPACITANCE

PROTECTION FROM POWER SUPPLY MALFUNCTION

HYSTERESIS AS A FUNCTION OF PROGRAMMING RESISTANCE
USING THE MC1488/1489 LINE DRIVERS AND RECEIVERS

TTL-TO-MOS TRANSLATOR

- TTL INPUT
- MOS OUTPUT
- +12V
- 1/4 MC1488
- 10K
- -10V TO -0.4V

Figure 5

LEVEL SHIFTER

- TTL INPUT
- V_H TO V_L
- OUTPUT
- R

Figure 9

NOTE:
1. V ≤ 5V; 3V ≤ V_H - V_L ≤ 10V.

TTL-TO-HTL TRANSLATOR

- TTL INPUT
- HTL OUTPUT
- +12V
- 1/4 MC1488
- -0.7V TO +10V

Figure 6

TTL-TO-MOS TRANSLATOR

- TTL OUTPUT
- MOS OUTPUT
- +12V
- 1/4 MC1488
- -10V TO -10V

Figure 7

MOS-TO-TTL TRANSLATOR

- MOS INPUT
- TTL OUTPUT
- 5V
- 5K

Figure 8

LEVEL SHIFTER

- V_H TO V_L
- OUTPUT

Figure 9

NOTE:
1. V ≤ 5V; 3V ≤ V_H - V_L ≤ 10V.

LEVEL SHIFTER

- TTL INPUT
- V_H TO V_L
- OUTPUT

Figure 9

LEVEL SHIFTER

- TTL INPUT
- V_H TO V_L
- OUTPUT

Figure 9

NOTE:
1. V ≤ 5V; 3V ≤ V_H - V_L ≤ 10V.

LEVEL SHIFTER

- TTL INPUT
- V_H TO V_L
- OUTPUT

Figure 9

NOTE:
1. V ≤ 5V; 3V ≤ V_H - V_L ≤ 10V.

LEVEL SHIFTER

- TTL INPUT
- V_H TO V_L
- OUTPUT

Figure 9

NOTE:
1. V ≤ 5V; 3V ≤ V_H - V_L ≤ 10V.

LEVEL SHIFTER

- TTL INPUT
- V_H TO V_L
- OUTPUT

Figure 9

NOTE:
1. V ≤ 5V; 3V ≤ V_H - V_L ≤ 10V.

LEVEL SHIFTER

- TTL INPUT
- V_H TO V_L
- OUTPUT

Figure 9

NOTE:
1. V ≤ 5V; 3V ≤ V_H - V_L ≤ 10V.

LEVEL SHIFTER

- TTL INPUT
- V_H TO V_L
- OUTPUT

Figure 9

NOTE:
1. V ≤ 5V; 3V ≤ V_H - V_L ≤ 10V.

LEVEL SHIFTER

- TTL INPUT
- V_H TO V_L
- OUTPUT

Figure 9

NOTE:
1. V ≤ 5V; 3V ≤ V_H - V_L ≤ 10V.

LEVEL SHIFTER

- TTL INPUT
- V_H TO V_L
- OUTPUT

Figure 9

NOTE:
1. V ≤ 5V; 3V ≤ V_H - V_L ≤ 10V.

LEVEL SHIFTER

- TTL INPUT
- V_H TO V_L
- OUTPUT

Figure 9

NOTE:
1. V ≤ 5V; 3V ≤ V_H - V_L ≤ 10V.

LEVEL SHIFTER

- TTL INPUT
- V_H TO V_L
- OUTPUT

Figure 9

NOTE:
1. V ≤ 5V; 3V ≤ V_H - V_L ≤ 10V.

LEVEL SHIFTER

- TTL INPUT
- V_H TO V_L
- OUTPUT

Figure 9

NOTE:
1. V ≤ 5V; 3V ≤ V_H - V_L ≤ 10V.

LEVEL SHIFTER

- TTL INPUT
- V_H TO V_L
- OUTPUT

Figure 9

NOTE:
1. V ≤ 5V; 3V ≤ V_H - V_L ≤ 10V.

LEVEL SHIFTER

- TTL INPUT
- V_H TO V_L
- OUTPUT

Figure 9

NOTE:
1. V ≤ 5V; 3V ≤ V_H - V_L ≤ 10V.

LEVEL SHIFTER

- TTL INPUT
- V_H TO V_L
- OUTPUT

Figure 9

NOTE:
1. V ≤ 5V; 3V ≤ V_H - V_L ≤ 10V.

LEVEL SHIFTER

- TTL INPUT
- V_H TO V_L
- OUTPUT

Figure 9

NOTE:
1. V ≤ 5V; 3V ≤ V_H - V_L ≤ 10V.

LEVEL SHIFTER

- TTL INPUT
- V_H TO V_L
- OUTPUT

Figure 9

NOTE:
1. V ≤ 5V; 3V ≤ V_H - V_L ≤ 10V.

LEVEL SHIFTER

- TTL INPUT
- V_H TO V_L
- OUTPUT

Figure 9

NOTE:
1. V ≤ 5V; 3V ≤ V_H - V_L ≤ 10V.

LEVEL SHIFTER

- TTL INPUT
- V_H TO V_L
- OUTPUT

Figure 9

NOTE:
1. V ≤ 5V; 3V ≤ V_H - V_L ≤ 10V.

LEVEL SHIFTER

- TTL INPUT
- V_H TO V_L
- OUTPUT

Figure 9

NOTE:
1. V ≤ 5V; 3V ≤ V_H - V_L ≤ 10V.

LEVEL SHIFTER

- TTL INPUT
- V_H TO V_L
- OUTPUT

Figure 9

NOTE:
1. V ≤ 5V; 3V ≤ V_H - V_L ≤ 10V.
COMPARATORS
Voltage comparators are high gain differential input—logic output devices. They are specifically designed for open loop operation with a minimum of delay time. Although variations of the comparator are used in a host of applications, all uses depend upon the basic transfer function of Figure 1. As shown, device operation is simply a change of output voltage dependent upon whether the signal input is above or below the threshold input. The threshold in this example is 0 volts.

Comparator inputs are customarily marked with plus or minus signs to indicate their polarity. For example the circuit of Figure 2 produces a logic 1 level when the non-inverting input is more positive than the reference voltage.

DEFINITIONS
Many similarities exist between operational amplifiers and the amplifier section of voltage comparators. In fact op amps can be used to implement the comparator function at low frequencies.

Thus, the characteristic definitions presented here are similar to those reviewed for op amps.

Input Offset Voltage
As with operational amplifiers, the non-ideal comparator possesses some offset voltage. The definition differs slightly in that the output structure of comparators is digital rather than linear. Hence, input offset voltage is defined for comparators as the dc voltage required at the input to force the output to the logic threshold of ensuing devices (1.2 volts for the input to force the output to the logic comparator possesses some offset voltage. The definition differs slightly in that the output for comparators as the dc voltage required at the input is above or below the threshold input. The threshold in this example is 0 volts.

Comparator inputs are customarily marked with plus or minus signs to indicate their polarity. For example the circuit of Figure 2 produces a logic 1 level when the non-inverting input is more positive than the reference voltage.

Input Offset Current
Imbalances of input bias current arise from small variances of the junction geometry of the differential input amplifier. As for op amps, the imbalance is referred to as input offset current.

Bias Current
As with op amps the input structure of comparators is usually a differential bipolar stage. Input bias current is the average of the two input currents.

Common Mode Range
When specifying voltage comparators one of the key parameters is common mode range, which is defined as the range of voltages over which both inputs can be varied simultaneously without abnormal output voltage transitions or device degradation. This parameter must be kept uppermost in the designer's mind because the reference and signal voltages become common mode signals at threshold. All ranges of input signals thus must be within the common mode range of the input amplifier.

Voltage Gain
Specifications of voltage gain refer to the overall gain of the device, the bulk of which occurs in the amplifier section.

In general, higher gains would be advantageous for resolving smaller input signals. Of course, the propagation delay suffers due to the more severe saturation of the transistors. Typical gains for TTL output devices are set for 5000 volts per volt. This gain provides 5 volts of output swing with 1mV input signal change for reasonable accuracy but does not contribute severely to the overload recovery delay.

Propagation Delay
Voltage comparisons of analog signals with a reference voltage usually require that the operation take as little time as possible. Long delays in the comparator cause a pulse position error at the output since the analog signal in the meantime has changed value. At low frequencies the delay is of small consequence but, at higher frequencies, transit time becomes intolerable. Design of voltage comparator devices includes, as a prime goal, the minimizing of transit times.

Propagation delay testing is done under worst case conditions. The recovery from saturation varies depending upon the initial state of the amplifier and the overdrive. Worst case conditions begin by applying a 100mV signal on the reference terminal. With no signal applied the amplifier is in saturation in one direction. A step input pulse on the signal line of 100mV ± Vos will bring the amplifier to a threshold level. Propagation delay at this point is undefined since the output has not switched.

To attain output switching a small overdrive is necessary. Propagation delay is tested in a configuration such as Figure 3. The input is a step function of 100mV plus a specified excess or overdrive signal. This causes the amplifier to be exercised from saturation in one direction to saturation in the other for worst case propagation delay. Note that larger overdrive reduces delay time as can be seen in Figure 4. An overdrive of 5mV causes 12ns delay, whereas a 100mV overdrive improves transit time to only 6ns.
If the measurement were made without initial saturation (less than 100mV V threshold) the delay time would be less, due to the decreased storage times of unsaturated transistors.

STATE-OF-THE-ART

Comparator design has always been optimized for four basic parameters. They are:

1. High Speed
2. Wide Input Voltage Range
3. Low Input Current
4. Good Resolution

Unfortunately these four parameters are not compatible. For instance gain and input current can be improved by using thinner diffusions for higher beta, but only at the expense of input voltage range. Higher gain also means higher saturation for an increase in delay time. So it becomes obvious that older comparators such as the 710 were designed with the best compromises in mind using standard processing.

One method of improving overall response adds gold doping to the processing flow. The gold dopant causes a decrease in minority carrier lifetime which aids the recombination process and shortens the saturation recovery time. Unfortunately, the transistor beta is adversely affected by gold causing slightly higher bias and offset currents.

It was not until advent of the Schottky clamp that a vast improvement in speed without input degradation was possible. A very familiar term in the semiconductor industry, the Schottky barrier diode’s (SBD) location is illustrated in Figure 5.

The Schottky clamped transistor is formed by parallelling the Schottky diode with the base-collector junction of the npn transistor. Without the clamp, as base drive is increased the collector voltage falls until hard saturation occurs. At this point the collector voltage is very near the emitter voltage and stored charges in the junctions causes slow recovery from saturation after base drive has been removed. The forward voltage drop of the Schottky diode is 0.4 volts — less than the forward drop of silicon diodes. This difference in forward drop is used by placing the diode across the transistor base-collector junction. The Schottky diode becomes forward biased when the collector voltage falls 0.4 volts below the base voltage. Excess base drive is then shunted into the collector circuit prohibiting the transistor from reaching classic saturation. With almost no stored charge in either the SBD or the transistor, there is a large reduction in storage time. Thus, transistor switching time is significantly reduced.

A cross sectional area of the Schottky diode is shown in Figure 6.

Comparator Selection Guide

<table>
<thead>
<tr>
<th>Device</th>
<th>Propagation Delay (ns)</th>
<th>V_{OS} (mV)</th>
<th>I_{os} (µA)</th>
<th>I_{bias} (µA)</th>
<th>Gain</th>
<th>CMR (V)</th>
<th>Benefits</th>
</tr>
</thead>
<tbody>
<tr>
<td>NE521</td>
<td>12</td>
<td>7.5</td>
<td>5</td>
<td>20</td>
<td>5000</td>
<td>±3</td>
<td>Dual, very fast, standard supplies, TTL compatible, individual & common strobe.</td>
</tr>
<tr>
<td>NE522</td>
<td>15</td>
<td>7.5</td>
<td>5</td>
<td>20</td>
<td>5000</td>
<td>±3</td>
<td>Same as NE521 plus open collector outputs for additional decoding.</td>
</tr>
<tr>
<td>NE527</td>
<td>26</td>
<td>6</td>
<td>0.75</td>
<td>2</td>
<td>5000</td>
<td>±6</td>
<td>Fast, very low input current, differential outputs, flexible surplus wide common mode range.</td>
</tr>
<tr>
<td>NE529</td>
<td>22</td>
<td>6</td>
<td>5</td>
<td>20</td>
<td>5000</td>
<td>±6</td>
<td>Same as NE527 but with faster response.</td>
</tr>
<tr>
<td>LM311</td>
<td>200</td>
<td>7.5</td>
<td>0.05</td>
<td>0.25</td>
<td>200K</td>
<td>±30</td>
<td>High common mode input range, ±5V to ±15V supply, strobe input, open collector output.</td>
</tr>
<tr>
<td>LM319</td>
<td>80</td>
<td>8</td>
<td>0.2</td>
<td>1.2</td>
<td>40K</td>
<td>±5</td>
<td>Low input bias, dual, +5V to ±15V supply, open collector output.</td>
</tr>
<tr>
<td>LM339</td>
<td>1300</td>
<td>2</td>
<td>0.05</td>
<td>0.25</td>
<td>200K</td>
<td>V+ -1.5V</td>
<td>High common mode input range, low input bias, quad, +5V to ±15V supply, open collector output.</td>
</tr>
<tr>
<td>LM393</td>
<td>1300</td>
<td>2</td>
<td>0.05</td>
<td>0.25</td>
<td>200K</td>
<td>V+ -1.5V</td>
<td>Same as LM339 but dual.</td>
</tr>
</tbody>
</table>

NOTE Parameters are based on min/max limits at 25°C as defined in the individual data sheet.
COMPARING THE COMPARATORS
Presently available comparator ICs range from the ultra fast SE/NE521 to the general purpose comparator fashioned from an inexpensive op amp. Selection of the device depends upon the application in which it will be used. Speed of conversion is often of primary importance to minimize pulse position errors of high frequency signals. At other times the requirements are much less stringent allowing the use of a general purpose comparator.

A handy reference guide to the major parameters is summarized in Figure 7. The necessary parameters can be chosen to select the proper device.

A general description of the comparator devices is included here to familiarize the user with available devices and their advantages.

SE/NE521/522 Comparators
Processed with state-of-the-art Schottky barrier diodes, the NE521/522 series devices provide good input characteristics while providing the fastest analog to TTL conversion to date. Total delay from input to output is typically 6ns with a guaranteed speed of 12ns. Additional features of this device include the dual configuration and individual output strobes to simplify system logic. The NE522, although sacrificing some speed, features open collector outputs for party line or wired-OR configurations for additional system flexibility.

NE/SE527 Comparator
Featuring darlington inputs for very low bias current, the NE527 is generally related to the NE529 comparator. Emitter follower inputs to the differential amplifier are used to trade better input parameters for slightly less speed. As Figure 7 shows, a factor of 10 improvement in I_{bi} is gained with a propagation delay increase of only 4ns maximum.

NE529 Comparator
The NE529 is manufactured using Schottky technology. Although a few nano seconds slower than the NE521, the NE529 features variable supplies from ±5 to ±10 volts with a high common mode range of ±6 volts. Both the NE527 and NE529 Schottky comparators boast complimentary logic outputs with output A being in phase with input A. In addition, the supplies of both the NE527 and NE529 may be non-symmetrical to produce a desired shift in the common mode range.

This technique is illustrated by the ECL to TTL and TTL to ECL transistor of Figures 17 and 18 respectively. The only major requirement of the supplies is that the negative supply be at least 5 volts more negative than the ground terminal of the gate. This is necessary to insure that the internal bias arrangement has sufficient voltage to operate normally.

APPLICATIONS
Today's state-of-the-art ultra-high speed comparators are capable of making logic decisions in less than 10 nano seconds. They are easily applied and possess good input and power supply noise rejection. As with all linear ICs however, some preliminary steps should be taken in their use.

General Precautions

Layout
The comparator is capable of resolving sub-millisecond signals. To prevent unwanted signals from appearing at signal ports, good physical layout is required. For any high speed design, ground planes should be used to guard against ground loops and other sources of spurious signals. At high frequencies hidden signal paths become dominant. Distributed capacitance is a particular nuisance. If care is not taken to isolate output from input, distributed capacitance can couple a few millivolts into the input, causing oscillation.

Another source of spurious signals is ground current. Input structures are relatively high impedance while the gate structures of comparators run with large signal and ground currents. If this gate ground current is allowed to pass near the input signal path, the small impedances of the ground circuit will cause millivolt changes in reference or signal voltages producing errors, sustained oscillation, ringing, or excessive V_{OS}. A ground plane arranged such that output currents do not flow near input areas is highly recommended.

Power Supplies
Another general precaution that should always be exercised is power supply bypassing. As mentioned the name of the game is speed. Very high speed gates are used to produce the desired output logic levels. Maximizing response speed also requires higher current levels, giving rise to power supply noise. For this reason, good power supply bypassing very close to the device itself is always mandatory. A tantalum capacitor of 1 to 10µF in parallel with 500 to 1000pF will prove effective in most cases. Lead lengths should be as short as physically possible to preserve low impedances at high frequency.

Unused Inputs
Some currently available comparators such as the NE521 and NE522 are dual devices. Most often both sections of these devices will be utilized. Should a system utilize one device, the unused inputs should be biased in a known condition. The high gain bandwidth may otherwise cause oscillations in the unused comparator section. A low impedance should be provided from both unused inputs to ground. A resistor of relatively high impedance may then be used to supply a differential input on the order of 100mV to insure the comparator assumes a known state.

If the inverting input is tied to the positive differential voltage the gate output will be low. The strobe inputs then provide a means of utilizing the Schottky gate for other system logic functions.

If the strobe inputs are not used, they should be connected to the output of a logic gate that is always high, or to the +5 volt supply through a 5 to 10 K-ohm resistor. They should never be tied directly to the +5 volt supply as the relatively minor spiking on the supply may damage these inputs.

Common Mode Signals
Manufacturers specify the maximum voltage range over which the inputs may be taken. In addition the maximum differential voltage that may be safely applied to the inputs is specified. In the case of the NE529 comparator the differential voltage is restricted to less than ±5 volts, with a common mode of ±6 volts. That these two quantities interact cannot be overlooked. For instance, with both inputs at ±4 volts the common mode restriction is satisfied. If V_{ref} is now left at +4 volts the signal input may not be taken more than 1 volt below ground because the differential signal becomes 5 volts.

It is important to observe this maximum rating since exceeding the differential input voltage limit and drawing excessive current in breaking down the emitter-base junctions of the input transistors could cause gross degradation in the input offset current and bias current parameters.

Exceeding the absolute maximum positive input voltage limit of the device will saturate the input transistor and possibly cause damage through excessive current. However, even if the current is limited to a reasonable value so that the device is not damaged, erratic operation can result.

Input Impedance
The differential bias and offset currents of comparators are minimized by design. As was pointed out for op amps, the input resistance seen by both inputs should be equal. This reduces to a minimum the contribution of offset current to threshold error. Unbalanced input impedance also adds to
the offset error due to the difference in voltage drop across the input resistances.

BASIC APPLICATIONS
The basic comparator circuit and its transfer function were presented by Figures 1 and 2. When the input exceeds the reference voltage, the output switches either positive or negative, depending on how the inputs are connected.

The vast majority of specific applications involve only the basic configuration with a change of reference voltage. A to D converters are realized by applying the signal to one terminal and the voltage derived from a ladder network to the other. Limit detectors are likewise made from only the very basic circuit. Both are only a small deviation from the basic level detector.

Hysteresis
Normally saturated high or low, the amplifiers used in voltage comparators are seldom held in their threshold region.

They possess high gain-bandwidth products and are not compensated to preserve switching speed. Therefore, if the compared voltages remain at or near the threshold for long periods of time, the comparator may oscillate or respond to noise pulses. For instance, this is a common problem with successive approximation D/A converters where the differential voltage seen by the comparator becomes successively smaller until noise signals cause indecision. To avoid this oscillation in the linear range, hysteresis can be employed from output to input. Figure 8 defines the arrangement. Both positive and negative feedback is provided by \(R_{IN} \) and \(R_{F} \).

Hysteresis occurs because a small portion of the "one" level output voltage is fed back in phase and added to the input signal. This feedback aids the signal in crossing the threshold. When the signal returns to the threshold, the positive feedback must be overcome by the signal before switching can occur. The switching process is then assured and oscillations cannot occur. The threshold "dead zone" created by this method, illustrated in Figure 9, prevents output chatter with signals having slow and erratic zero crossings.

As shown in Figure 8, the voltage feedback is calculated from the expression:

\[
V_{HYST} = \frac{E_{OUT}}{R_{IN} + R_{F}}
\]

where \(E_{OUT} \) is the gate high output voltage. The hysteresis voltage is bounded by the common mode range and the ability of the gate to source the current required by the feedback network. If symmetrical hysteresis is desired an additional inverting gate is required if the comparator does not have differential outputs. The NE527 and NE529 devices provide inverted signals from differential outputs while the NE521 and NE522 devices will require the inverter. Care should be taken in the selection of the inverter that propagation delay is minimum, especially for very high speed comparators such as the NE521.

Line Receiver
Retrieving signals which have been transmitted over long cables in the presence of high electrical noise is a perfect application for differential comparators. Such systems as automated production lines and large computer systems must transmit high frequency digital signals over long distances.

If the twisted pair of the system is driven differentially from ground, the signals can be reclaims easily via a differential line receiver.

Since the electrical noise imposed upon a pair of wires takes the form of a common mode signal, the very high common mode rejection of the NE521/522 makes the unit ideal for differential line receivers. Figure 10 depicts the simple schematic arrangement. The NE521 is used as a differential amplifier having a logic level output. Because common mode signals are rejected, noise on the cable disappears and only the desired differential signal remains. Figure 11 illustrates the NE521 response to the 200mV peak to peak 10MHz differential signal. In Figure 12 the same signal has been buried in 5 volts peak to peak of 1MHz common mode "noise."

The circuit suffers no degradation of signal. If desired several NE522 comparators may be "wire OR'd" or latched output can be built as shown in Figure 10.

The NE521 and NE529 comparators have the advantage of wider bandwidth to permit higher data rates.

Double Ended Limit (Window) Detector
Many system designs require that it be known when a signal level lies between two limits. This function is easily accomplished with a single NE522 package. The schematic and transfer curve of the circuit is shown in Figure 13.

Each half of the NE522 is referenced to the desired upper or lower voltage limit producing the desired transfer curve shown. Taking advantage of the dual configuration and the open collectors of the NE522 minimize external components and connections.

Crystal Oscillator
Any device with a reasonable gain can be made to oscillate by applying positive feedback in controlled amounts. The NE521 will lend itself to crystal control easily, provided the crystal is used in its fundamental mode. Figure 14 shows a typical oscillator circuit.

The crystal is operated in its series resonant mode, providing the necessary feedback through the capacitor to the input of the NE521. The resistor \(R_{min} \) is used to control the amount of feedback for symmetry. Oscillations will start whenever a circuit disturbance such as turning on the power supplies occurs. The NE521 will oscillate up to 70MHz. However, crystals with frequencies higher than about 20MHz are usually operated in one of their overtones. To build an oscillator for a specific overtone requires tuned circuits in addition to the crystal to provide the necessary mode suppression. If the spurious modes are not tuned out the crystal will oscillate at the fundamental frequency. Higher frequency oscillators could be realized using
LINEAR LSI PRODUCTS

APPLICATIONS FOR THE NE521/522/527/529

Figure 10

LINE RECEIVER

- **Strobe**
- **Unlatch**

R = % CHARACTERISTIC LINE IMPEDANCE

Figure 11

LINE RECEIVER RESPONSE

- **Input** 100 mV/div, 20 MHz
- **Output** 2 V/div

Figure 12

RESPONSE DURING COMMON MODE NOISE

- **Input** 2 V/div, 20 MHz
- **Output** 2 V/div

Figure 13

TRANSFER CURVE

- **Input** 0 to +VTH
- **Output** 0 to 4 V

Figure 14

CRYSTAL OSCILLATOR

- **Input** 10 MHz
- **Crystal** (fundamental mode)

Figure 8

AN116

8-37
input and output mode suppression or tuning. The NE522 is especially desirable since the open collector topology allows the output to be collector tuned readily.

Analog to Digital Converter

There are many types of A to D converter designs, each having its own merits. However, where speed of conversion is of prime interest the multi-threshold conversion type is used exclusively. It is apparent from Figure 15, that the conversion speed of this design is the sum of the delay through the comparator and the decoding gates.

The sacrifices which must be made to obtain speed are the number of components, bit accuracy and cost. The number of comparators needed for an N-bit converter is 2^{N-1}. Although the NE521 provides two comparators per package, the length of parallel converters is usually limited to less than 4 bits. Accuracy of multi-threshold A-D converters also suffers since the integrity of each bit is dependent upon comparator threshold accuracy.

The implementation of a 3-bit parallel A-D converter is shown in Figure 16 with a 3-bit digital equivalent of an analog input shown in Figure 15.

Reference voltages for each bit are developed from a precision resistor ladder network. Values of R and $2R$ are chosen so that the threshold is one half of the least significant bit. This assures maximum accuracy of $\pm 1/2$ bit.

It is apparent from the schematic that the individual strobe line and duality features of the NE521 have greatly reduced the cost and complexity of the design. The speed of the converter is graphically illustrated by the photo of Figure 15. All 3-bit outputs have settled and are true a mere 15ns after the input step of 3 volts has arrived. The output is usually strobed into a register only after a certain time has elapsed to insure that all data has arrived.

Logic Interface

During the design of the NE527 and NE529 devices, particular attention was paid to the biasing network so that balanced supplies need not be provided. For example, if the "ground" terminal is set at -5.2 volts and the other supplies are adjusted accordingly, the output logic 1 state will be at -1.5 volts and logic 0 will be at -5.0 volts. With this freedom of power supply voltage, the user may adjust the output swings to match the desired logic levels even if that logic is other than TTL levels.

ECL to TTL Interface

Emitter coupled logic is very popular due to its speed. Systems are often built around standard TTL logic with those portions requiring higher speed being implemented with emitter coupled logic. As soon as such a decision is made the problem of interfacing TTL to ECL logic levels is encountered.

The standard logic output swings of ECL are -0.8V to $+1.8$V at room temperature. Converting these signals to TTL levels is accomplished simply by using the basic voltage comparator circuit with slight modifications. Figure 17 reveals that the power supplies have been shifted in order to shift the common mode range more negative. This insures...
that the common mode range is not exceeded by the logic inputs. Since ECL is extremely fast the NE529 is usually selected because of its superior speed so that a minimum of time is lost in translation.

TTL to ECL

Operating in the reverse, TTL levels can also be converted to ECL levels by the NE529. Again the NE529 is selected as the fastest converter with the necessary power supply flexibility to accomplish the level shifting with a minimum of effort and cost.

A check of output voltage for the NE529 reveals that the voltage is slightly less than required by the ECL logic for fast switching. R2 and the diode of Figure 18 raises the gate supply voltage and therefore the NE529 output voltage by 0.7 sufficient to guarantee fast switching of the translator. Resistive pull up from the NE529 output to \(V_{CC} \) can also be used with the gate supply grounded. This method is dependent upon RC time constants of distributed capacitance and is therefore much slower.

Photo Diode Detector

Responding to the presence or absence of light, the photo diode increases or decreases the current through it. Detecting the changes becomes a matter of converting light and dark currents to voltage across a resistor as shown in Figure 19. R1 is selected to be large enough to generate detectable differences between light and dark conditions. Once the signal levels are defined by R1 and the diode characteristics, the average between light and dark signals is used for V reference and is produced by the resistive divider consisting of R1 and R2. The comparator then produces an output dependent upon the presence or absence of light upon the diode.

SENSE AMPLIFIERS

Closely related to the comparator is the sense amplifier. Signals derived from the many sources, such as transducers, are not of sufficient amplitude to be compatible with subsequent logic. It then becomes necessary to amplify and convert the signal to TTL levels, which is the responsibility of the sense amplifier.

Some transducers produce an output current. It remains, then, for the user to convert these currents to TTL levels. A terminating resistor from the drain to ground provides a voltage output proportional to the current and the resistor size. Larger signals can be produced by larger resistors; but in practice resistors larger than 1k ohm are avoided because of increasing access time. Distributed capacitance forms a time constant with this output resistance causing slow rise and fall times when the resistor is large, adding to the access time.

Virtually any voltage comparator or sense amplifier can be used. Since total time is the sum of all delays, the sense amplifier is most often the fastest available. Signetics comparators NE521 and NE522 are ideal in this application because of low input offset voltages and very fast response. Using these Schottky clamped comparators significantly reduces the total cycle time of the memory.

The significant specifications are given in Table 1.

Table 1

<table>
<thead>
<tr>
<th>DEVICE</th>
<th>(V_{OS}) (mV)</th>
<th>(I_{BLAS}) (µA)</th>
<th>(V_{IN(MIN)}) (mV)</th>
<th>SPEED (NS)</th>
<th>GAIN</th>
</tr>
</thead>
<tbody>
<tr>
<td>521</td>
<td>10</td>
<td>40</td>
<td>15</td>
<td>12</td>
<td>5000</td>
</tr>
<tr>
<td>522</td>
<td>10</td>
<td>40</td>
<td>15</td>
<td>15</td>
<td>5000</td>
</tr>
</tbody>
</table>

Consideration must first be given to the differential input voltage requirements of the sense amplifier. The required reference voltage is calculated from the relationship:

\[
V_{ref} = \frac{V_{IN} - V_{dd}}{I_{R1}}
\]
Where I_i is the transducer output current, I_g is sense amplifier bias current and V_{diff} is minimum differential voltage to switch the sense amplifier.

In large systems, noise coupled into the sense lines by stray capacitance can be very troublesome. Judicious layout patterns with sense lines as short as possible will help, but will not always be sufficient. One method of eliminating noise is to use a balance sense line as shown in Figure 20.

A dummy line should be run parallel to the actual sense line in as close proximity as possible. One end is connected to the sense amplifier at the V_{ref} point while the other end is left open. The normal sense line is connected as usual. Electrical noise imposed upon the pair of sense lines takes the form of a common mode signal and will be rejected by the sense amplifier. Signal currents in the sense line, on the other hand, form differential signals at the sense amp causing the output to switch.
INTRODUCTION

An LVDT is an electromechanical transducer which makes possible the measurement of very small motion in a structure or mechanical device. Mechanical motion is translated to an electrical signal which contains position information much as a radio frequency carrier contains sound information. The position information from the LVDT is contained in the phase and amplitude of the output AC waveform. In order to remove the position information (demodulation), a system such as is shown in block form in Figure 1 must be used. Once signal demodulation is achieved the position data may be read out on a meter or digital display in addition to being processed by microprocessor or computer. The Signetics NE5520 is a new Monolithic LVDT Driver-Demodulator designed to interface with most LVDT’s presently being used in the industry.

Uses will range over a large number of potential applications including the accurate measurement of position, pressure, load weight, angular position and even acceleration. Historically, LVDT’s have been used in the following applications:

- Load cell
- Linear motion
- Torque cell
- Vibration
- Fluid pressure
- Accelerometer
- Inclinometer
- Seismic load cell

MOTION MAY-BE

- Linear
- Rotary

The NE5520 provides sinusoidal drive to the Linear Variable Differential Transformer (LVDT), the output of which is buffered, rectified and phase demodulated to obtain both direction and displacement information in the form of a DC output signal (Figure 2).

LVDT LOADING

Due to the loosely coupled characteristics of the typical LVDT, loading effects versus frequency may be critical to a successful design. The graph (Figure 3A) shows this relationship in the form of a family of curves relative to LVDT core displacement for 400Hz and 2500Hz. From the curves it is obvious that the linearity and output level versus displacement is superior for an LVDT operated at 2500Hz with a very high impedance load (0.5 meg ohm). The NE5520 demodulator presents a very high input impedance to the LVDT secondary for maximum linearity. (Fig. 3B)

LVDT INTERFACING: SIGNAL CONDITIONING IS REQUIRED

In order to obtain usable information from the LVDT a series of signal conditioning circuit operations are required. First, a stable source of constant frequency excitation voltage must be applied to the primary of the LVDT.

Next some form of demodulator is needed to extract position information from the LVDT secondary output signal. A full wave rectifier will provide usable amplitude information when adequately filtered, however, relative phase information is lacking. In order to obtain both phase and amplitude information synchronous demodulation is needed. This type of demodulator
exists in the Signetics NE5520. Once phase and amplitude information is obtained in the form of a polar full wave rectified signal (see Figure 3C) from the synchronous demodulator, the carrier component (actually 2nd harmonic of the carrier plus higher order spectral components) must be filtered out leaving only the true position information. This is accomplished by passing the demodulated signal through a low-pass active filter. An auxiliary operational amplifier is provided for this purpose within the NE5520, in addition to adjustable signal gain for proper full scale output (span adjustment). In addition, DC offsets are nulled by a simple offset adjustment at the auxiliary amplifier. The resulting system is a complete LVDT signal conditioner. Figure 4 shows a block diagram of the NE5520. The device will operate in a single supply range from 5 to 20 volts DC or with split supplies of ±5 to ±10 volts DC. A device current, I_C, of 10 milliamperes at an operating voltage of 10 volts is typical.

DESCRIPTION OF THE NE5520

The NE5520 oscillator consists of a triangle wave generator, a current source-sink circuit which switches when the capacitor voltage reaches discrete levels at 1/4 and 3/4 V_ref. The total swing being V_{REF/2} volts p-p. The triangle wave is fed into a non-linear load which generates a sinusoidal waveform with low distortion. The sine wave output is then buffered by two op amps, the output of which appear on pins 9 and 10 in phase opposition. This then is the excitation signal for the LVDT primary.

The second major functional portion of the NE5520 is the synchronous demodulator and this section performs full wave rectification in phase synchronism (pin 6) with the above oscillator output. In order to extract true position information, the phase relationship of the LVDT secondary must be obtained. This means that as the LVDT core passes through null an abrupt 180° phase change occurs. Once full wave rectification is accomplished, the resulting signal carrier frequency must be removed by filtering. Demodulator output appears on pin 5. This is accomplished by an active filter incorporating the auxiliary op amp (pins 1, 2, 3). The original position information then appears ripple free on pin 1 of the auxiliary amplifier.
Other functions include buffer amplifier feedback in the oscillator circuit. The loop is closed with negative feedback around both amplifiers (pin 10 to 11) operating at unity gain.

The oscillator timing capacitor controls the frequency as shown in the graph, Figure 5. The frequency is related by the equation \(f_{osc} = \frac{1}{2\pi \sqrt{C_1 C_2}} \). Absolute output frequency will vary slightly with supply voltage.

BIASING THE REFERENCE \(V_{REF} \) (PIN 12)

The manner in which the \(V_{REF} \) pin is biased will affect the output voltage function of the NE5520 and consideration must be given to this in order to arrive at an optimum system design. There are two basic modes of operation involved as listed below:

1. **Ratiometric**
2. **Fixed Reference**

With the ratiometric mode, pin 12 (\(V_{REF} \)) is connected to pin 14 (+ V). Since \(V_R \) controls the DC common mode voltage of the demodulator and the oscillator rms output, these magnitudes will now change with supply voltage. The DC output from pin 1, using a single ground referenced supply, will be ratiometric with the supply voltage and centered within the common mode range of the output amplifier when the LVDT transducer is at null. Single or dual supply operation will be ratiometric when + V is connected to \(V_{REF} \).

The alternate method of biasing is the fixed reference mode with pin 12 (\(V_{REF} \)) connected to a fixed reference voltage such as +10 volts and pin 14 (+ V) allowed to vary with an incoming poorly regulated supply. This might occur in automotive applications where battery voltage may vary from 10 to 14 volts. However, with a fixed reference driving \(V_R \), DC voltage at the output will not vary with supply but will vary within the common mode limits.
of the amplifier as the LVDT core traverses its path. Output voltage of pin 1 at LVDT null will be \(V_R/2 \). Thus, for the case mentioned with \(V_R = 10 \) volts, the null voltage will be +5 volts. The maximum linear swing would be 1.5-8.5 volts around this value. The fixed reference mode may be used with single or dual supply operation.

DUAL SUPPLY OPERATION

When connected to a typical LVDT transducer as shown in Figure 6, the NE5520 will exhibit an extremely linear transfer function. Very important to precision position measurement is the inherent repeatability of the system. The graphs in Figure 7A, B illustrate the highly linear transfer function and its repeatable accuracy with different supply voltages, in this case ±6 and ±10 volts. The transducer motion was over a range of ±150 milli-inches each side of the LVDT null. Typical DC output signal is shown with an output amplifier gain of X10 in both cases. Note that linearity remains constant, however, full scale output varies with supply voltage. This is due to the increased excitor drive to the LVDT with increased reference voltage. LVDT output is a linear function of excitor amplitude on the primary winding. The addition of a single gain control may easily be added between pins 1 and 3 to reduce gain in order to retain constant output for different supply voltages (see Figure 8) or \(V_R \) may be connected to a fixed voltage. (See 'Biasing'.)

![Transfer Function ±6V](image)

Figure 7a

![Transfer Function ±10V](image)

Figure 7b

It is strongly recommended that dual output tracking regulated supplies be used in this type of application in order to minimize system DC offset and impaired measurement accuracy due to power supply unbalance. An optional circuit capable of automatically tracking and nulling power supply offset is shown in Figure 9. The bipolar output signal is referenced to ground.
Using the LVDT Signal Conditioner

Nulling Procedure

(Ref Fig. 9)

1. Null transducer position by observing pin 4 waveform. Set supply voltage for ± 6.00 volts.
2. Set offset adjust pot (feeds pin 3 of NE5520) for 0.00 volts DC at pin 1 of NE5520.
3. Adjust offset null pot (NE5512) for zero output on Terminal A.
4. Check for equal voltage ± deflection when transducer is displaced equal distances from physical null position.
5. Adjust tracking control for minimum DC output change when either supply is varied over operating range at ‘A’.

Single Supply Operation

Single ended supply operation requires a different circuit approach to obtain measurement system interface. Figure 10 shows a typical circuit using a single 10-volt supply. Note that the output (pin 1) of the NE5520 is now floating above ground at approximately VR/2. Simple measuring circuits may be realized (Figures 11A, B, C) by placing a DC microammeter between pin 1 and a resistive divider.
creating a bridge readout which is ratio­metric with supply voltage variations. In case more precision is necessary, a buffer amplifier may be added between the voltage divider or \(V_R/2 \) and the readout circuit in order to minimize offset due to measuring circuit loading. DC offset due to internal tracking error in the NE5520 may be reduced by using the nulling circuit shown in Figure 12. Offset sensitivity and its effect on system accuracy will be inversely proportional to full scale signal output of the NE5520 which is a function of the DC gain of the auxiliary amplifier and LVDT output. A typical full scale output with 10-volt supply operation is \(V_R/2 \pm 3.5 \) volts with gain equal to 10.

OUTPUT INTERFACING EXAMPLES

![Figure 11a](image1)

Figure 11a

Figure 11b

Figure 11c

MATCHING THE NE5520 TO LOW IMPEDANCE LVDTs

The NE5520 exciter output is capable of driving LVDT primary windings with a minimum impedance of 1K ohm. When a significantly lower impedance primary is driven by the device some form of step-down impedance matching or a power buffer is recommended. Figure 13 shows a step-down matching transformer approach. A transformer with primary impedance of approximately 1K ohm (audio type) with the proper secondary impedance to match the LVDT primary is used to couple oscillator excitation. Depending on the output efficiency of the LVDT, output signal losses may occur with a corresponding loss in measuring sensitivity. The auxiliary amplifier gain may be increased to offset this loss.

A second approach makes use of a power buffer amplifier constructed from discrete transistors (2N2222, 2N3644). This circuit (Figure 14) results in less signal loss and is inexpensive. A DC decoupling capacitor must be used to prevent DC offset currents from flowing in the LVDT primary winding. A 3dB signal reduction is noted when driving a 15-ohm load to 6 volts peak to peak (10-volt operation); and 12 volts peak to peak for 20-volt supply.

NE5520 TEMPERATURE COMPENSATION

Internal offset voltages originating in the NE5520 synchronous demodulator require external compensation to obtain best measurement accuracy when operating over the full temperature range. The circuits shown (Figures 15A, B) give a simple approach using a thermistor inserted in series with the offset null resistors to reduce voltage drift to a reasonable level. These tolerances are based on \(\pm 3.5 \) volts full scale output for LVDT displacements each side of physical null. A thermistor having a positive coefficient of \(+0.7\%/^\circ C \) is used. Obviously, if the total divider resistance is changed a different thermistor resistance will be required.
LOW Z LVDT

• POWER BUFFER FOR OSCILLATOR OUTPUTS.

Figure 14

DEMODULATOR DISTORTION (OVERDRIVE)

When the demodulator input exceeds 2 volts peak to peak clipping distortion will increase and must be avoided by controlling oscillator drive to the primary of the LVDT. Figure 16 shows an example of a circuit for attenuating primary excitation using a 1K ohm potentiometer.

The procedure for adjusting the level is simply to:

1. Set LVDT core position for maximum output from the secondary.

2. Monitor the waveform on (pin 5 demodulator output) and adjust oscillator level for the amplitude just below clipping. Normally this should result in a maximum of 2 volts peak to peak at pin 4 of the NE5520 (25°C).

THERMISTOR TEMPERATURE COMPENSATION

Figure 15b.
LVDT SECONDARY PHASE ANGLE COMPENSATION BY EXCITATION FREQUENCY

The LVDT has a frequency dependent phase shift associated with the particular characteristics of the device and its excitation frequency. This phase shift is in addition to the 180° shift which occurs when passing through null position.

By adjusting the frequency of the sine wave excitation a condition results which causes secondary voltage to be in phase with primary excitation. The adjustment of relative primary and secondary phase angles has several effects. First, if the primary excitation is referenced to the synchronous demodulator, as in the NE5520, optimum rectification occurs at zero phase differential between secondary AC phase and demodulator switching relative to the waveform zero crossings. Second, "Exciting an LVDT at its zero phase angle frequency results in minimum sensitivity to frequency and temperature variations" (Schaevitz Handbook of Measurement and Control, 1976).

DEMODULATOR SYNC PHASE

A second method of phase compensation of the NE5520 versus the LVDT is to use a variable phase shift network between the oscillator output and the sync input to the NE5520. This is shown in Figure 17. The oscillator frequency remains fixed and the pot is tuned for optimum demodulator phasing.

It is emphasized that an external phasing adjustment as outlined above is not always necessary. Some LVDT’s operating in the 1-5kHz range will be near zero phase and will need no phase compensation. Experimental evaluation of the prototype design combined with system specifications will be the best means of making this decision.

Waveform photo in Figure 18A-B, shows the demodulator output signal when phasing of the synchronous demodulator is correct (A) and improperly adjusted (B).

Proper phasing of the sync signal to the demodulator results in optimum sensitivity and linearity.

LIMITING LVDT EXCITATION TO PREVENT DEMODULATOR DISTORTION

EXTERNAL PHASE ADJUSTMENT

EXAMPLE: \[R_0 = 10k\Omega \]

\[C_0 = 2nF \]

\[J_0 = -\tan^{-1}\frac{1}{RC} \]

\[= -20^\circ \]

* Alternate connection may be required for some LVDT’s.
NE5520 LVDT DRIVER DEMODULATOR APPLICATIONS

OPERATED WITH A SINGLE POWER SUPPLY

The NE5520 may be operated with a single ended power supply ranging from +5 to 20 volts.

A very simple motion transducer may be constructed using the circuit shown in Figure 19A, B. The output is biased to one-half the supply voltage. This requires special interface circuitry for the signal readout. One simple method is to use a zero center meter in a bridge configuration as shown. Displacement now may be measured as a positive or negative meter reading. Readout sensitivity is a function of the particular LVDT and of the gain of the error amplifier. DC offsets may be nulled by using a simple offset adjustment circuit as indicated.

The transducer is centered in its displacement and the offset adjust pot set for a zero meter reading. Once this procedure is completed, the circuit is capable of making measurements based on transducer displacement. Displacement sensitivity is a function of the LVDT transducer rated in volts-per-inch in addition to the transfer gain of the NE5520 demodulator. The input excitation is generally a fixed level as is the LVDT transducer transformer ratio. However, the auxiliary gain stage may be used to adjust the overall system sensitivity. This section of the device is also used to obtain a low-pass active filter for the smoothing of demodulator ripple. The design examples use a simple VCVS low-pass filter which allows gain and cut-off frequency to be adjusted independently. Gain equals ten in the example.

Note that using a single supply results in a DC common mode voltage at the output of one-half the reference voltage on pin 12. This voltage V_R may be equal to but not greater than the supply voltage on pin 14.

LVDT MEASURING CIRCUIT USING A DUAL SUPPLY

A second mode of operation makes use of dual power supply. A common choice may be ±5, ±6, or ±10 volts. Special consideration must be made in properly biasing the internal circuitry to operate under these conditions. Figure 20 shows a simple design for working with ±6-volt supplies. Special provisions for minimizing DC power supply offsets may be made by using the NE5512 dual op amp as a tracking voltage source and difference amplifier-output buffer (see Figure 9). A second method is to use a dual tracking regulator to supply the NE5520.

LVDT IN CLOSED LOOP SERVO

The LVDT provides an excellent method of obtaining position information for closed loop servo drive systems. Pressure rollers, hydraulic drivers, and motor driven linear motion transducers are a few of the general applications which may benefit from the accuracy and speed of response inherent in the LVDT sensor.

A simple block diagram (Figure 21A) shows one possible application in which the NE5520 with LVDT sensor provides accurate position control in a closed loop servo. Linear motion from millimeters to inches of translational motion are possible using the LVDT technique.

In practice the position voltage may be the output of a D/A converter which in turn is activated digitally from a controlling microprocessor. Keyboard information or software commands are translated directly into mechanical motion (Figure 21B).
LVDT MEASURING GAUGE

NOTE:
THERMISTOR 240Ω + 0.7%/°C

Figure 19a
NE5520 LVDT MEASURING CIRCUIT WITH LIMIT DETECTOR

Figure 19b
Figure 20

NE5520 LVDT DRIVER-DEMODULATOR \(f_o = 2900\text{Hz} \)

Diagram showing the NE5520 LVDT driver-demodulator circuit with components labeled.
LINEAR LSI PRODUCTS

USING THE LVDT SIGNAL CONDITIONER

AN118

LVDT SIGNAL TRANSMISSION BY CURRENT LOOP

In certain situations the demodulated output signal must be transmitted over long wires or cables before reaching the signal monitoring equipment. The receiver end may consist of chart recorders, digital panel meters and computers or microprocessors. In some systems many LVDT signals must be monitored from different locations thus requiring variable wire length between transmitter and receiver, thus a different line resistance in each case. If voltage feed were used, signal accuracy would be affected by line resistance. This need for accurate signal transmission necessitates the use of a current loop. A current loop develops a current exactly in proportion to the demodulated LVDT output voltage. It is not affected by line resistance within certain limits governed by the current generator.

One method of current loop transmission uses the V_{R2} common mode reference to create a null balance signal circuit which is converted to a bipolar current signal corresponding to the LVDT transducer null (i.e. physical displacement center null position at which zero current occurs). This method is shown in Figure 22 and requires the use of an external dual op amp, half of which is used to provide a buffered reference (V_{R2}) voltage return for the current loop. With $R_2 = 200$ ohms the current loop sensitivity is 5 milliamperes per volt of input signal. In all cases, the current output to the loop receiver will remain constant with fixed input voltage (LVDT demodulator) even for varying line resistance up to 600 ohms. This resistance must include all wire and load drops in the loop. Various full scale current limits require different supply voltages and without external supplies will be limited by op amp swing characteristics, for to force a given current across $R_L + R_2$ results in an ultimate voltage limit from the op amp output in the current converter as total resistance increases.

Another method uses an external supply and discrete transistor controlled by the closed loop op amp referenced to shunt resistor R_{SH} in the emitter return circuit. This of course is a unipolar current loop. See Figure 23.
NE5520 WITH BIPOLAR CURRENT LOOP OUTPUT ± 10mA F.S. — SINGLE SUPPLY OPERATION

Figure 22

NE5520 WITH UNIPOLAR CURRENT SOURCE

Figure 23

- SENSITIVITY 2mA/VOLT
- LVDT NULL OCCURS AT 10mA OUTPUT, i.e. HALF SCALE
Some systems in common use require two wire source to include both the device operating current and the signal loop current. Thus the quiescent device current must be nulled out at the receiver end leaving the residual signal loop current. The NE5520 is not well suited to this particular application since the device standby current is approximately 10 milli-amperes.

A current loop operated from supply voltage sources at the transducer location is a better choice for the operation of an output signal loop where long lines must carry locally generated LVDT signals after demodulation back to the monitor site.

POSITIONING THE NE5520 LVDT 3-WIRE REMOTE DRIVER DEMODULATOR SENSING HEAD

The NE5520 may be placed in close proximity to the LVDT transducer provided the environment stays within device specifications. This physical arrangement allows only DC supply and low frequency signal lines (3 wires) being run between the transducer-conditioner unit and the signal processing station as shown in Figure 24.

![Figure 24](image-url)
MULTIPLE TRANSDUCER OPERATION — SYNCHRONOUS OSCILLATOR MODE

Figure 25

REFERENCES

INTRODUCTION

In mid 1972, Signetics introduced the 555 timer, a unique functional building block that has enjoyed unprecedented popularity. The timer’s success can be attributed to several inherent characteristics foremost of which are versatility, stability and low cost. There can be no doubt that the 555 timer has altered the course of the electronics industry with an impact not unlike that of the I.C. operational amplifier.

The simplicity of the timer in conjunction with its ability to produce long time delays in a variety of applications has lured many designers from mechanical timers, op amps, and various discrete circuits into the ever increasing ranks of timer users.

DESCRIPTION

The 555 timer consists of two voltage comparators, a bistable flip-flop, a discharge transistor, and a resistor divider network. To understand the basic concept of the timer let’s first examine the timer in block form as in Figure 1.

The resistive divider network is used to set the comparator levels. Since all three resistors are of equal value, the threshold comparator is referenced internally at 2/3 of supply voltage level and the trigger comparator is referenced at 1/3 of supply voltage. The outputs of the comparators are tied to the bistable flip-flop. When the trigger voltage is moved below 1/3 of the supply, the comparator changes state and sets the flip-flop driving the output to a high state. The threshold pin normally monitors the capacitor voltage of the RC timing network. When the capacitor voltage exceeds 2/3 of the supply, the threshold comparator resets the flip-flop which in turn drives the output to a low state. When the output is in a low state, the discharge transistor is “on,” hereby discharging the external timing capacitor. Once the capacitor is discharged, the timer will await another trigger pulse, the timing cycle having been completed.

The 555 and its complement, the 556 Dual Timer, exhibit a typical initial timing accuracy of 1% with a 50ppm/°C timing drift with temperature. To operate the timer as a one shot, only two external components are necessary, resistance & capacitance. For an oscillator, only one additional resistor is necessary. By proper selection of external components, oscillating frequencies from one cycle per half hour to 500KH2 can be realized. Duty cycles can be adjusted from less than one percent to 99 percent over the frequency spectrum. Voltage Q10 - Q13 comprise a Darlington differential pair which serves as a trigger comparator. Starting with a positive voltage on the trigger, Q10 and Q11 turn on when the voltage at pin 2 is moved below one third of the supply voltage. The voltage level is derived from a resistive divider chain consisting of R7, R8 and R9. All three resistors are of equal value (5K ohms). At fifteen volts supply, the triggering level would be five volts. When Q10 and Q11 turn on, they provide a base drive for Q15, turning it on. Q16 and Q17 form a bistable flip-flop. When Q15 is saturated, Q16 is ‘off’ and Q17 is saturated. Q16 and Q17 will remain in these states even if the trigger is removed and Q15 is turned ‘off’. While Q17 is saturated, Q20 and Q14 are turned off.

For the duration that the output is in a high state, the discharge transistor is ‘off’. Since the collector of Q14 is typically connected to the external timing capacitor, C, while Q14 is off the timing capacitor now can charge thru the timing resistor, RA.

The capacitor voltage is monitored by the threshold comparator (Q1 - Q4) which is a Darlington differential pair. When the capacitor voltage reaches two thirds of the supply voltage, the current is directed from Q3 and Q4 thru Q1 and Q2. Amplification of the current change is provided by Q5 and Q6. Q5 - Q6 and Q7 - Q8 comprise a diode-biased amplifier. The amplified current change from Q6 now provides a base drive for Q16 which is part of the bistable flip-flop to change states. In doing so, the output is driven “low”, and Q14 the discharge transistor is turned “on” shorting the timing capacitor to ground.

The discussion to this point has only encompassed the most fundamental of the timer’s operating modes and circuitry. Several points of the circuit are brought out to the real world which allow the timer to function in a variety of modes. It is important: more than that, it is essential that one understands all the variations possible in order to utilize this device to its fullest extent.

Timer Circuitry

The timer is comprised of five distinct circuits: two voltage comparators, a resistive voltage divider reference, a bistable flip-flop, a discharge transistor, and an output stage that is the “totem pole” design for sink or source capability.
Reset Function

Regressing to the trigger mode, it should be noted that once the device has triggered and the bistable flip-flop set, continued triggering will not interfere with the timing cycle. However, there may come a time when it is necessary to interrupt or halt a timing cycle. This is the function that the reset accomplishes.

In the normal operating mode the reset transistor, Q25, is off with its base held high. When the base of Q25 is grounded, it turns on, providing base drive to Q14, turning it on. This discharges the timing capacitor, resets the flip-flop at Q17, and drives the output low. The reset overrides all other functions within the timer.

Trigger Requirements

Due to the nature of the trigger circuitry, the timer will trigger on the negative going edge of the input pulse. For the device to time out properly, it is necessary that the trigger voltage level be returned to some voltage greater than one third of the supply before the timing period. This can be achieved by making either the trigger pulse sufficiently short or by AC coupling into the trigger. By AC coupling the trigger, see Figure 3, a short negative going pulse is achieved when the trigger signal goes to ground. AC coupling is most frequently used in conjunction with a switch or a signal that goes to ground which initiates the timing cycle. Should the trigger be held low, without AC coupling, for a longer duration than the timing cycle the output will remain in a high state for the duration of the low trigger signal, without regard to the threshold comparator state. This is due to the predominance of Q15 on the base of Q16, controlling the state of the bistable flip-flop. When the trigger signal then returns to a high level, the output will fall immediately. Thus, the output signal will follow the trigger signal in this case.

Control Voltage

One additional point of significance, the control voltage, is brought out on the timer. As mentioned earlier, both the trigger comparator, Q10 - Q13, and the threshold comparator, Q1 - Q4, are referenced to an internal resistor divider network, R7, R8, R9. This network establishes the nominal two thirds of supply voltage (Vcc) trip point for the threshold comparator and one third of
Vcc for the trigger comparator. The two thirds point at the junction of R_7, R_8 and the base of Q4 is brought out. By imposing a voltage at this point, the comparator reference levels may be shifted either higher or lower than the nominal levels of one third and two thirds of the supply voltage. Varying the voltage at this point will vary the timing. This feature of the timer opens a multitude of application possibilities such as using the timer as a voltage controlled oscillator, pulse width modulator, etc. For applications where the control voltage function is not used, it is strongly recommended that a bypass capacitor (0.01 µF) be placed across the control voltage pin and ground. This will increase the noise immunity of the timer to high frequency trash which may monitor the threshold levels causing timing error.

Monostable Operation

The timer lends itself to three basic operating modes:

1. Monostable (one shot)
2. Astable (oscillatory)
3. Time delay

By utilizing any one or combination of basic operating modes and suitable variations it is possible to utilize the timer in a myriad of applications. The applications are limited only to the imagination of the designer.

One of the simplest and most widely used operating modes of the timer is the monostable (one shot). This configuration requires only two external components for operation (see Figure 4). The sequence of events starts when a voltage below one third Vcc is sensed by the trigger comparator. The trigger is normally applied in the form of a short negative going pulse. On the negative going edge of the pulse, the device triggers, the output goes high and the discharge transistor turns off. Note that prior to the input pulse, the discharge transistor is on, shorting the timing capacitor to ground. At this point the timing capacitor, C, starts charging through the resistor, R. The voltage on the capacitor increases exponentially with a time constant $T = RC$. Ignoring the capacitor leakage, the capacitor will reach the two thirds Vcc level in 1.1 time constants or

$$T = 1.1 RC \quad (1)$$

where T is in seconds; R is in ohms and; C is in Farads. This voltage level trips the threshold comparator, which in turn drives the output low and turns on the discharge transistor. The transistor discharges the capacitor, C, rapidly. The timer has completed its cycle and will now await another trigger pulse.

Astable Operation

In the astable (free run) mode, only one additional component, R_b is necessary. The trigger is now tied to the threshold pin. At power up, the capacitor is discharged, holding the trigger low. This triggers the timer, which establishes the capacitor charge path thru R_A and R_B. When the capacitor reaches the threshold level of 2/3 Vcc, the output drops low and the discharge transistor turns on.
The timing capacitor now discharges thru R₂. When the capacitor voltage drops to 1/3 Vₑₑₑ, the trigger comparator trips, automatically retriggering the timer, creating an oscillator whose frequency is given by:

\[f = \frac{1.49}{(R_A + 2R_B)C} \]

Selecting the ratios or \(R_A \) and \(R_B \) varies the duty cycle accordingly. Lo and behold, we have a problem. If a duty cycle of less than fifty percent is required, then what? Even if \(R_A = 0 \), the charge time cannot be made smaller than the discharge time because the charge path is \(R_A + R_B \) while the discharge path is \(R_B \) alone. In this case it becomes necessary to insert a diode in parallel with \(R_B \), cathode toward the timing capacitor. Another diode is desirable, but not mandatory, this one in series with \(R_B \), cathode away from the timing capacitor. Now the charge path becomes \(R_A \), thru the parallel diode into \(C \), discharge is thru the series diode and \(R_B \) to the discharge transistor. This scheme will afford a duty cycle range from less than 5% to greater than 95%. It should be noted that for reliable operation a minimum value of \(3K\Omega \) for \(R_B \) is recommended to assure that oscillation begins.

The threshold and trigger are tied together monitoring the capacitor voltage. The discharge function is not used. The operation sequence begins as transistor \((T_1) \) is turned on, keeping the capacitor grounded. The trigger sees a low state and forces the timer output high. When the transistor is turned off the capacitor commences its charge cycle. When the capacitor reaches the threshold level, then and only then does the output change from its normally high state to the low state. The output will remain low until \(T_1 \) is again turned on.

GENERAL DESIGN CONSIDERATIONS

The timer will operate over a guaranteed voltage range of 4.5 volts to 15 volts DC, with 16 VDC being the absolute max. rating. Most of the devices, however, will operate at voltage levels as low as 3 VDC. The timing interval is independent of supply voltage since the charge rate and threshold level of the comparator are both directly proportional to supply. The supply voltage may be provided by any number of sources: however, several precautions should be taken. The most important, the one which provides the most headaches if not practiced, is good power supply filtering and adequate bypassing. Ripple on the supply line can cause loss of timing accuracy. The threshold level shifts causing a change of charging current. This will cause a timing error for that cycle.

Due to the nature of the output structure, a high power totem pole design, the output of the timer can exhibit large current spikes on the supply line. By-passing is necessary to eliminate this phenomenon. A capacitor across the Vcc and ground, ideally, directly across the device is necessary. The size of capacitor will depend on the specific application. Values of capacitance from .01\(\mu \)F to 10\(\mu \)F are not uncommon. Note that the bypass capacitor would be as close to the device as physically possible.

Selecting External Components

In selecting the timing resistor and capacitor, there are several considerations to be taken into account.

Stable external components are necessary for the RC network if good timing accuracy is to be maintained. The timing resistor(s) should be of the metal film variety if timing accuracy and repeatability are important design criteria. The timer exhibits a typical initial accuracy of one percent. That is, with any one RC network, from timer to timer only one percent change is to be expected. Most of the initial timing error (i.e. deviation from the formula) is due to inaccuracies of external components. Resistors range from their rated values by .01% to 10 and 20 percent. Capacitors may have a 5 to 10 percent deviation from rated capacity. Therefore, in a
system where timing is critical, an adjustable timing resistor or precision components are necessary. For best results, a good quality trim pot, placed in series with the largest feasible resistance will allow for best adjustability and performance.

The timing capacitor should be a high quality, stable component with very low leakage characteristics. Under no circumstances should ceramic disc capacitors be used in the timing network! Ceramic disc capacitors are not sufficiently stable in capacitance to operate properly in an RC mode. Several acceptable capacitor types are: silver mica, mylar, polycarbonate, polystyrene, tantalum or similar types.

The timer typically exhibits a small negative temperature coefficient (50ppm/°C). If timer accuracy over temperature is a consideration, timing components with a small positive temperature coefficient should be chosen. This combination will tend to cancel timing drift due to temperature.

In selecting the values for the timing resistors and capacitor, several points should be considered. A minimum value of threshold current is necessary to trip the threshold comparator. This value is .25µA. To calculate the maximum value of resistance, keep in mind that at the voltage potential on the threshold comparator. This value is two thirds of supply. Therefore:

\[V_{\text{potential}} = V_{\text{cc}} - \frac{2}{3} V_{\text{cc}} \]

Maximum resistance is then defined as

\[R_{\text{max}} = V_{\text{cc}} - V_{\text{cap}} \frac{1}{I_{\text{thresh}}} \]

Example:

\[V_{\text{cc}} = 15V \]
\[R_{\text{max}} = \frac{15 - 10}{.25 (10 - 6)} = 20M\Omega \]
\[V_{\text{cc}} = 5V \]
\[R_{\text{max}} = \frac{5 - 3.33}{.25 (10 - 6)} = 6.6M\Omega \]

NOTE: If using a large value of timing resistor, be certain that the capacitor leakage is significantly lower than the charging current available to minimize timing error.

On the other end of the spectrum, there are certain minimum values of resistance that should be observed. The discharge transistor, Q14, is current limited at 35mA to 55mA internally. Thus, at the current limiting values, Q14, establishes high saturation voltages. When examining the currents at Q14, remember that the transistor, when turned on will be carrying two current loads. The first being the constant current thru timing resistor, RA. The second will be the varying discharge current from the timing capacitor. To provide best operation the current contributed by the RA path should be minimized so that the majority of discharge current can be used to reset the capacitor voltage. Hence it is recommended that a 5K ohm value be the minimum feasible value for RA. This does not mean lower values cannot be used successfully in certain applications. Yet there are extreme cases that should be avoided if at all possible.

Capacitor size has not proven to be a legitimate design criteria. Values ranging from picofarads to greater than one thousand microfarads have been used successfully. One precaution need be utilized though. (It should be a cardinal rule that applies to the usage of all I C's.) Make certain that the package power dissipation is not exceeded. With extremely large capacitor values, a maximum duty cycle which allows some cooling time for the discharge transistor, may be necessary.

The most important characteristic of the capacitor should be as low a leakage as possible. Obviously any leakage will subtract from the charge count causing the calculated time to be longer than anticipated.

Control Voltage

Regressing momentarily, we recall that the control voltage pin is connected directly to the threshold comparator at the junction of RV, or Rs. The combination of R7, R8 and R9 comprise the resistive voltage divider network that establishes the nominal 1/3 Vcc trigger comparator level (junction R8, R9) and the 2/3 Vcc level for the threshold comparator (junction R7, R9).

For most applications, the control voltage function is not used and therefore is bypassed to ground with a small capacitor for noise filtering. The control voltage function, in other applications becomes an integral part of the design. By imposing a voltage at this pin, it becomes possible to vary the threshold comparator "set" level above or below the 2/3 Vcc nominal, thereby varying the timing. In the monostable mode, the control voltage may be varied from 15 percent to 90 percent of Vcc. The 45 to 90 percent figure is not firm, but only an indication to a safe usage. Control voltage levels below and above those stated have been used successfully in some applications.

In the oscillatory (free run) mode, the control voltage limitations are from 1.7 volts to Vcc. These values should be heeded for reliable operation. Keep in mind that in this mode the trigger level is also important. When the control voltage raises the threshold comparator level it also raise the trigger comparator level by one half that amount due to R8 and R9 of Figure 2. As a voltage controlled oscillator, one can expect ±25% around center frequency (f0) to be virtually linear with a normal RC timing circuit. For wider linear variations around f0, it may be desirable to replace the charging resistor with a constant current source. In this manner the exponential charging characteristics of the classical configuration will be altered to linear charge time.

Reset Control

The only remaining function now is the reset. As mentioned earlier, the reset, when taken to ground, inhibits all device functioning. The output is driven low, the bistable flip-flop is reset, and the timing capacitor is discharged. In the astable (oscillatory) mode, the reset can be used to gate the oscillator. In the monostable it can be used as a timing abort to either interrupt a timing sequence or establish a standby mode (i.e. device off during power up). It can also be used in conjunction with the trigger pin to establish a positive edge triggered circuit as opposed to the normal negative edge trigger mode. One thing to keep in mind when using the reset function is that the reset voltage (switching) point is between 0.4V and 1.0V (min/max). Therefore, if used in conjunction with the trigger, the device will be out of the reset mode prior to reaching 1V. At that point the trigger is in the "on" region, below 1/3 Vcc. This will cause the device to trigger immediately, effectively triggering on the positive going edge if a pulse is applied to pins 4 and 2 simultaneously.

FREQUENTLY ASKED APPLICATIONS QUESTIONS

The following is a harvest of various maladies, exceptions, and idiosyncrasies that may exhibit themselves from time
to time in various applications. Rather than cast aspersions, a quick review of this list may uncover a solution to the problem at hand.

1. In the oscillator mode when reset is released the first time constant is approximately twice as long as the rest. Why?

 Answer: In the oscillator mode the capacitor voltage fluctuates between 1/3 and 2/3 of the supply voltage. When reset is pulled down the capacitor discharges completely. Thus for the first cycle it must charge from ground to 2/3 \(V_{cc} \) which takes twice as long.

2. What is maximum frequency of oscillations?

 Answer: Most devices will oscillate about 1 MHz. However, in the interest of temperature stability one should operate only up to about 500 kHz.

3. What is temperature drift for oscillator mode?

 Answer: Temperature drift of oscillator mode is 3 times that of one shot mode due to addition of second voltage comparator. Frequency always increases with an increasing temperature. Therefore it is possible to partially offset this drift with an offsetting temperature coefficient in the external resistor/capacitor combination.

4. Oscillator exhibits spurious oscillations on cross over points. Why?

 Answer: The 555 can oscillate due to feedback from power supply. Always bypass with sufficient capacitance close to the device for all applications.

5. Trying to drive a relay but 555 hangs up. How come?

 Answer: Inductive feedback. A clamp diode across the coil prevents the coil from driving pin 3 below a negative .6 volts. This negative voltage is sufficient in some cases to cause the timer to malfunction. The solution is to drive the relay through a diode thus preventing pin 3 from ever seeing a negative voltage.

6. Double triggering of the TTL loads sometimes occurs. Why?

 Answer: Due to the high current capability and fast rise and fall times of the output a totem pole structure different from the TTL classical structure was used. Near TTL threshold this output exhibits a cross over distortion which may double trigger logic. A 1000 pF capacitor from the output to ground will eliminate any false triggering.

7. What is the longest time I can get out of the timer?

 Answer: Times exceeding an hour are possible, but not always practical. Large capacitors with low leakage specs are quite expensive. It becomes cheaper to use a countdown scheme (see Figure 15) at some point dependent on required accuracy. Normally 20 to 30 min. is the longest feasible time.

DESIGN FORMULAS

Before entering the section on specific applications it is advantageous to review the timing formulas. The formulas given here apply to the 555 and 556 devices.

MONOSTABLE TIMING

\[
T_{\text{output high}} = 0.67 \left(\frac{R_A}{R_{x}} + \frac{1}{C} \right)
\]

ASTABLE TIMING

\[
T = \frac{1.49}{f} = \frac{1}{f} \left(\frac{R_A}{R_{x}} + 2R_A \right)
\]

APPLICATIONS

The timer since introduction has spurred the imagination of thousands. Thus the ways in which this device has been used are far too numerous to present each one. A review of the basic operation and basic modes has previously been given. Presented here are some ingenious applications devised by our applications engineers and by some of our customers.
Missing Pulse Detector

Using the circuit of Figure 10a, the timing cycle is continuously reset by the input pulse train. A change in frequency, or a missing pulse, allows completion of the timing cycle which causes a change in the output level. For this application, the time delay should be set to be slightly longer than the normal time between pulses. Figure 10b shows the actual waveforms seen in this mode of operation.

Pulse Position Modulation (PPM)

This application uses the timer connected for astable (free-running) operation. Figure 13a, with a modulating signal again applied to the control voltage terminal. Now the pulse position varies with the modulating signal, since the threshold voltage and hence the time delay is varied. Figure 13b shows the waveform generated for triangle wave modulation signal.

Frequency Divider

If the input frequency is known, the timer can easily be used as a frequency divider by adjusting the length of the timing cycle.

Pulse Width Modulation (PWM)

In this application, the timer is connected in the monostable mode as shown in Figure 12a. The circuit is triggered with a continuous pulse train and the threshold voltage is modulated by the signal applied to the control voltage terminal (pin 5). This has the effect of modulating the pulse width as the control voltage varies. Figure 12b shows the actual waveform generated with this circuit.
Tone Burst Generator

The 556 Dual Timer makes an excellent tone burst generator. The first half is connected as a one shot and the second half as an oscillator. (Figure 14)

The pulse established by the one shot turns on the oscillator allowing a burst to be generated.

Sequential Timing

One feature of the dual timer is that by utilizing both halves it is possible to obtain sequential timing. By connecting the output of the first half to the input of the second half via a 0.001µF coupling capacitor sequential timing may be obtained. Delay \(t_1 \) is determined by the first half and \(t_2 \) by the second half delay. (Figure 15)

The first half of the timer is started by momentarily connected pin 6 to ground. When it is timed out (determined by \(1.1 R_1 C_1 \)) the second half begins. Its duration is determined by \(1.1 R_2 C_2 \).

Long Time Delays

In the 556 timer the timing is a function of the charging rate of the external capacitor. For long time delays expensive capacitors with extremely low leakage are required. The practicality of the components involved limits the time between pulses to something in the neighborhood of twenty minutes.

To achieve longer time periods both halves may be connected in tandem with a "divide-by" network in between.

The first timer section operates in an oscillatory mode with a period of \(1/f_0 \). This signal is then applied to a "Divide-by-N" network to give an output with the period of \(N/f_0 \). This can then be used to trigger the second half of the 556. The total time is now a function of \(N \) and \(f_0 \) (Figure 16).

Speed Warning Device (1)

Utilizing the "missing pulse detector" concept, a speed warning device, such as depicted, becomes a simple and inexpensive circuit (Figure 17a).

Car Tachometer (1)

The timer receives pulses from the distributor points. Meter M receives a calibrated current thru R6 when the timer output is high. After time out the meter receives no current for that part of the duty cycle. Integration of the variable duty cycle by the meter movement provides a visible indication of engine speed (Figure 18).
SCHEMATIC OF SPEED WARNING DEVICE

OPERATING WAVE FORMS OF
SPEED WARNING DEVICE

Figure 17a

Figure 17b

TACHOMETER

Figure 18
Oscilloscope Triggered Sweep

The 555 timer holds down the cost of adding a triggered sweep to an economy oscilloscope. The circuit's input op amp triggers the timer, setting its flip-flop and cutting off its discharge transistor so that capacitor C can charge. When capacitor voltage reaches the timer's control voltage (0.33Vcc), the flip-flop resets and the transistor conducts, discharging the capacitor (Figure 19).

Greater linearity can be achieved by substituting a constant current source for the frequency adjust resistor (R).

Square Wave Tone Burst Generator (4)

Depressing the pushbutton provides square-wave tone bursts whose duration depends on the duration for which the voltage at pin 4 exceeds a threshold. Components R1, R2 and C1 cause the astable action of the timer IC (Figure 6-20).

Regulated DC-to-DC Converter (2)

Regulated DC to DC converter produces 15V DC outputs from a +5 V DC input. Line and load regulation is 0.1% (Figure 21).

Voltage to Pulse Duration Converter (1)

Voltage levels can be converted to pulse durations by combining an op amp and a timer IC. Accuracies to better than 1% can be obtained with this circuit (a) and the output signals (b) still retain the original frequency, independent of the input voltage (Figure 22).

SCHEMATIC OF TRIGGERED SWEEP

![SCHEMATIC OF TRIGGERED SWEEP Diagram](image)

Figure 19

SQUARE WAVE TONE BURST GENERATOR

![SQUARE WAVE TONE BURST GENERATOR Diagram](image)

Figure 20
Servo System Controller (1)

To control a servo motor remotely, the 555 needs only six extra components (Figure 6-23).

Stimulus Isolator (5)

Stimulus isolator uses a photo-SCR and a toroid for shaping pulses of up to 200V at 200μA (Figure 24).

Voltage to Frequency Converter (0.2% Accuracy) (6)

Linear voltage-to-frequency converter (a) achieves good linearity over the 0 to −10V. Its mirror image (b) provides the same linearity over the 0-to +10V range but is not DTL/TTL compatible (Figure 25a & b).
LINEAR LSI PRODUCTS

NE555 AND NE556 APPLICATIONS

SERVO SYSTEM CONTROLLER

TO PIN 8 OF 543
11.50 MOTOR
RA 100
R7 220

Figure 23

STIMULUS ISOLATOR

POWER RATING DEPENDS ON DUTY CYCLE
FROM 1/2W FOR 25-25% DUTY CYCLE TO 15-20W
FOR 75-90% DUTY CYCLE

Figure 24
Positive to Negative Converter (7)

Transformerless dc-dc converter derives a negative supply voltage from a positive. As a bonus the circuit also generates a clock signal.

The negative output voltage tracks the dc input voltage linearity (a), but its magnitude is about 3V lower. Application of a 500Ω load, (b), causes 10% change from the no-load value (Figure 26a, b, & c).

Auto Burglar Alarm (8)

Timer A produces a safeguard delay, allowing driver to disarm alarm and eliminating vulnerable outside control switch. The SCR prevents timer A from triggering timer B, unless timer B is triggered by strategically located sensor switches (Figure 27).
Cable Tester (9)

Compact tester checks cables for open-circuit or short-circuit conditions. A differential transistor pair at one end of each cable line remains balanced as long as the same clock pulse-generated by the timer IC - appears at both ends of the line. A clock pulse just at the clock end of the line lights green light-emitting diode, and a clock pulse only at the other end lights a red LED (Figure 28).

Low Cost Line Receiver (10)

The timer makes an excellent line receiver for control applications involving relatively slow electro-mechanical devices. It can work without special drivers over single unshielded lines (Figure 29).
Temperature Control (11)

A couple of transistors and thermistor in the charging network of the 555-type timer enable this device to sense temperature and produce a corresponding frequency output. The circuit is accurate to within ±1 Hertz over a 78°F temperature range (Figure 30a & b).

Automobile Voltage Regulator (12)

Monolithic 555-type timer is the heart of this simple automobile voltage regulator. When the timer is off so that its output (pin 3) is low, the power Darlington transistor pair is off. If battery voltage becomes too low (less than 14.4 volts in this case), the timer turns on and the Darlington pair conducts (Figure 31).
Switching Regulator (13)

The basic regulator of Figure 32 is shown here with its associated timing and pulse generating circuitry. The block diagram illustrates how the overall regulator works. The multivibrator determines switching frequency, and the error amplifier adjusts the pulse width of the modulator to maintain output voltage at the desired level. The output resistor divider provides the sensing voltage. (Figure 35).

DC-to-DC Converter (14)

Ramp Generator (14)

Audio Oscillator (14)
Low Power Monostable Operation

In battery operated equipment where load current is a significant factor figure 36 can deliver 555 monostable operation at low standby power. This circuit interfaces directly with CMOS 4000 series and 74L00 series. During the monostable time, the current drawn is 4.5mA for $T = 1.1 \cdot RC$. The rest of the time the current drawn is less than 50µA. Circuit submitted by Karl Imhof, Executone Inc., Long Island City, NY.

In other low power operations of the timer where Vcc is removed until timing is needed, it is necessary to consider the output load. If the output is driving the base of a PNP transistor, for example, and its power is not removed, it will sink current into pin 3 to ground and use excessive power. Therefore, when driving these types of loads, one should recall this internal sinking path of the timer.

![LOW POWER MONOSTABLE](image)

Figure 36

BIBLIOGRAPHY

INTRODUCTION

The 558 is a monolithic Quad Timer designed to be used in the timing range from a few microseconds to a few hours. Four entirely independent timing functions can be achieved, using a timing resistor and capacitor for each section. Two sections of the quad may be interconnected for astable operation. All four sections may be used together, in tandem, for sequential timing applications up to several hours. No coupling capacitors are required when connecting the output of one timer section to the input of the next.

FEATURES

- 100mA OUTPUT CURRENT PER SECTION
- EDGE TRIGGERED (NO COUPLING CAPACITOR)
- OUTPUT INDEPENDENT OF TRIGGER CONDITIONS
- WIDE SUPPLY VOLTAGE RANGE 4.5V TO 16V
- TIMER INTERVALS FROM MICROSECONDS TO HOURS
- TIME PERIOD EQUALS RC

CIRCUIT OPERATIONS

In the one shot mode of operation, it is necessary to supply a minimum of two external components, the resistor and capacitor for timing. The time period is equal to the product of R and C. An output load must be present to complete the circuit due to the output structure of the 558.

For astable operation, it is desirable to cross couple two devices from the 558 Quad. The outputs are direct coupled to the opposite trigger input. The duty cycle can be set by ratio of R1C1 to R2C2 from close to zero to almost 100%. An astable circuit using one timer is shown in Figure 5b.

OUTPUT STRUCTURE 558

The 558 structure is open collector which requires a pull-up resistor to Vcc and is capable of sinking 100mA per unit but not to exceed the power dissipation and junction temperature rating of the die and package. The output is normally low and is switched high when triggered.

RESET

A reset function has been made available to reset all sections simultaneously to an output low state. During reset the trigger is disabled. After reset is finished, the trigger voltage must be taken high and then low to implement triggering.

The reset voltage must be brought below 0.8V to insure reset.

THE CONTROL VOLTAGE

The control voltage is also made available on the 558 timer. This allows the threshold voltage to be modulated, therefore controlling the output pulse width and duty cycle with an external control voltage. The range of this control voltage is from about 0.5V to Vcc minus 1 volt. This will give a cycle time variation of about 50:1. In a sequential timer with voltage controlled cycle time, the timing periods remain proportional over the adjustment range.

TEST BOARD FOR 558

The circuit layout can be used to test and characterize the 558 timer. S2 is used to connect the loads to either Vcc or ground. The main precaution, in layout of the 558 circuit, is the path of the discharge current from the timing capacitor to ground (pin 12). The path must be direct to pin 12 and not on the ground bus. This is to prevent voltage spikes on the ground bus return due to current switching transient. It is also wise to use good power supply by passing when large currents are being switched.
TEST BOARD LAYOUT

Figure 2a

FOIL SIDE

Figure 2b
Figure 3

558 TWO HOUR TIMER

Figure 4

558 SEQUENTIAL TIMER WITH VOLTAGE CONTROLLED CYCLE TIME (50:1 RANGE)

Figure 5

MONOSTABLE OPERATION (ONE SHOT)

558 ASTABLE OPERATION (OSCILLATOR)

558 VARIABLE FREQUENCY OSCILLATOR WITH FIXED DUTY CYCLE

NOTE: \(t_1, t_2, t_3, t_4 \) remain proportional over entire adj. range.
558 LONG-TIME DELAY

TRIGGER- T
R1 R2
C1 C2

OUTPUT 1 OUTPUT 2 OUTPUT 3 OUTPUT 4

NOT USED

Figure 6

558 RING COUNTER

VCC

R1 R1 R1 R1 R1
L L L L L
C1 C1 C1 C1

3 1 4 8 12
TIME

START

RESET

10K

3 1 4 8 12
TRIG 3 TRIG 3 TRIG 3 TRIG 3

10

(5

EXPECTED WAVEFORMS

VCC

START

RESET

T = RC

01

02

03

04

(b)
A single section of the Quad time may be used as a non precision oscillator. The values given are for oscillation at about 400Hz. $T_1 \approx R_1 C_1$ and $T_2 \approx 2.25 \, R_2 \, C_2$ for V_{cc} of 15 volts. The frequency of oscillation is subject to the changes in V_{cc}.
2.1 An Overview of the Phase Locked Loop (PLL)

AN OVERVIEW OF PHASE LOCKED LOOP (PLL)

INTRODUCTION

The basic phase locked loop (PLL) concept has been known and widely utilized since first being proposed in 1922 (1). Since that time PLLs have been used in instrumentation, space telemetry, and many other applications requiring a high degree of noise immunity and narrow bandwidth. Techniques and systems involved in these applications frequently are quite complex, requiring a high degree of sophistication. Many of the PLL applications have been at microwave frequencies and employ complex phase shifters, signal splitters, modulation, and demodulation schemes such as biphasic and quadraphase. Because of the high frequencies involved in microwave applications, most all components of these PLL systems are made from discrete as opposed to integrated circuits. However in other communication systems such as FSK and FM and AM demodulation frequencies are below approximately 100 MHz, monolithic PLLs have found wide application because of their low cost versus high performance.

A block diagram representation of a PLL is shown in Figure 1. Phase locked loops operate by producing an oscillator frequency to match the frequency of an input signal, \(f_1 \). In this locked condition, any slight change in \(f_1 \) first appears as a change in phase between \(f_1 \) and the oscillator frequency. This phase shift then acts as an error signal to change the frequency of the local PLL oscillator to match \(f_1 \). The locking onto a phase relationship between \(f_1 \) and the local oscillator accounts for the name phase locked loop.

A MECHANICAL ANALOG TO THE PLL

To better visualize the frequency and phase relationships in a PLL, consider the mechanical system shown in Figure 2 which is a dual to the electronic PLL. This mechanical system has two identical, heavy disks with two separate center shafts attached to each disk. Each shaft is presumed to be mounted on a bearing that allows each massive disk to be rotated in either direction when some external force is applied. The shafts are coupled together by a spring whose end points are fixed to each shaft. This spring can be twisted in either direction depending upon the relative positions of the shafts. The spring cannot "kink up" due to the shafts passing through the center of the spring.

Now suppose the sequence of events shown on Figure 3 occurs to the mechanical system. The disks are simply represented like clock faces with positional reference markers. Initially both disks are stationary in a neutral position. Then the left disk, or input, is advanced slowly clockwise through an angle \(\theta_1 \) from the neutral position. The right disk, or output, initially doesn't move as the spring begins to tighten. As the input continues to move and when it reaches \(\theta_2 \), the output disk just begins to turn and tracks the input with a positional phase shift error of

\[\theta_\phi = \theta_2 - \theta_1. \]

At any point in time with both disks slowly turning at the same speed, there will be some inherent phase error between the disks, or

\[\theta_\phi = \theta_3 - \theta_4. \]

This positional phase error in the mechanical system is analogous to the phase error in the electronic PLL. When the input disk coasts to a stop, the output also gradually comes to a stop with a fixed phase error equal to that in Equation 2 or

\[\theta_\phi = \theta_3 - \theta_2 = \theta_4 - \theta_1. \]

The spring has a residual stored twist in one direction due to \(\theta_\phi \).

Now consider that the disks are first returned to their neutral positions. Then the input disk is instantaneously rotated through an angle of \(\theta_1 \) as shown in Figure 4. The output disk can't respond instantaneously because of its large mass. It doesn't move instantaneously and the spring develops considerable torque. Then as shown in the sequence of events in Figure 4, the output disk begins accelerating after some delay due to the large phase error. It swings past the stopped position of the input disk due to its momentum, reaches a peak overshoot, and gradually oscillates about \(\theta_1 \) with a damped response, finally coming to rest with some small residual phase error. The input twist of \(\theta_1 \) represents the application of a step of position or phase to the system, and the response of the output disk is typical for a second-order, under-damped system. This same type of second-order behavior occurs in the PLL system for an instantaneous change of input phase.

As a final example, consider the events in Figure 5 where both disks are rotating at a constant rate. Applying a strobing light (strobotac) simultaneously to both disks
and adjusting its flashing rate to one flash per disk rotation will cause the positional markers to appear stationary. There will be a constant phase error in this case just as there was in Figure 3. Now suppose the revolution rate of the input disk gradually increases by a small amount to a new rate. The positional marker will appear to walk around the disk. The output first senses the increased rate of the input through an increase in the phase error. Then, after some delay, the rate of the output gradually increases to track the input. Both positional markers appear to be walking around each disk at the same rate until the strobotac is adjusted for the higher input and output rate. Then the strobe light again freezes the markers, producing a phase error at this higher rate that is larger than before the input rate was increased. This gradual increase in the input rate to the mechanical system simulates a ramp change in the input frequency to the PLL system. The response to the output disk simulates the behavior of the oscillator in the PLL.

If the rate of the input disk is alternately increased and decreased by some small amount compared to the nominal revolution rate, the positional markers will appear to walk both clockwise and counter clockwise, momentarily appearing stationary when the strobing light rate equals the disk revolution rate. This "walking" represents a changing phase error which is occurring at the modulation rate. Thus the phase error can be thought of as a usable demodulated output signal.

The disk-spring mechanical system is a helpful analog for visualizing frequency, phase, transient, and steady-state responses in the electronic phase locked loop system. In this example, the positions of the disk marker and rotation rates are analogous to phase and frequency in the electronic PLL system. The spring acts as a phase comparator to constantly sense the relative positions or phases of the disks. The torque developed in this spring acts as the driving force or input signal to turn the second disk.

Thus the spring torque simulates a voltage which controls the rate or frequency of the output disk or oscillator. Hence the second disk is analogous to a voltage-controlled oscillator (VCO). The large mass of the disks together with their angular momentum slows down the system's response time and simulates a low-pass filter in the electronic PLL system. This describes the lagging of the VCO free-running frequency to the input signal in an analog phase locked loop.
AN OVERVIEW OF PHASE LOCKED LOOP (PLL) AN177

EXAMPLES OF PLL APPLICATIONS
Now consider the action of the voltage controlled oscillator, phase comparator and low pass filter in the PLL. The VCO generates a signal that is periodic. Normally, the rate or frequency of the VCO is primarily determined by the value of a capacitance connected to this oscillator. This action of starting the VCO running by itself is analogous to disconnecting the spring from one of the shafts in the mechanical system and starting the output disk rotating at a constant rate through some external means such as a motor. In the PLL system this frequency is called the oscillator's free running frequency, \(f_0 \), because it occurs when the system is unlocked and there is no coupling between input and output frequencies. With the PLL, the VCO frequency can be shifted above and below \(f_0 \) by applying a voltage to the optional fine tune input. This signal generator property is just one of the many uses of the PLL. Specifically with integrated circuit PLLs, frequency ranges from less than 1.0Hz to more than 50MHz can be produced just by selecting the right value of capacitance from a chart on the data sheet. Selecting \(f_0 \) and then changing it by a control voltage makes the VCO well suited for converting digital data that is represented by two different voltage levels into two different frequencies. A "1" voltage level can be related to a frequency called a mark, and an "0" level to a frequency called a space. This technique called frequency shift keying, or (FSK), is typical of data being transmitted over telephone and radio links where it is impractical to use dc voltage level shifts. Essentially this is what a modem (modulator-demodulator) does as it converts data to tones to go out of the system into a transmission link. Then it reverses the process and converts received tones to "1"'s and "0"'s at the receiver for the system to use. Sometimes confusion arises because different names are used for the same thing. For example, A shift up in frequency = "1" = Mark A shift down in frequency = "0" = Space If voice or music is applied to the VCO instead of digital data, the oscillator's frequency will move or modulate with the voice or music. This is frequency modulation (FM) and is simply moving the frequency in relation to some input voltage which represents intelligence. Of course as in the modem case the process has to be reversed and the PLL can do this also. The PLL is a complete working system that can be used to

* Some oscillators have frequencies controlled by an input current rather than a voltage and are referred to as current controlled oscillators (CCO).

Figure 4

DISK SEQUENCE SHOWING OUTPUT
RESPONSE TO A SUDDEN POSITION INPUT

<table>
<thead>
<tr>
<th>INPUT ACTION</th>
<th>INPUT</th>
<th>OUTPUT</th>
<th>OUTPUT ACTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>NEUTRAL</td>
<td></td>
<td></td>
<td>NEUTRAL</td>
</tr>
<tr>
<td>INSTANTANEOUSLY MOVED TO (H_1) AND STOPPED</td>
<td>(H_1)</td>
<td>BEGINS MOVING WITH ACCELERATION</td>
<td></td>
</tr>
<tr>
<td>STATIONARY</td>
<td>(H_1)</td>
<td>MOMENTUM OF DISK PUSHES POSITION (H_1) OF STOPPED INPUT</td>
<td></td>
</tr>
<tr>
<td>STATIONARY</td>
<td>(H_1)</td>
<td>REACHES POINT OF PEAK OVERSHOT AND BEGINS ACCELERATION IN CCW DIRECTION</td>
<td></td>
</tr>
<tr>
<td>STATIONARY</td>
<td>(H_1)</td>
<td>PASSES POSITION OF STOPPED INPUT BUT WITH LESS OVERSHOOT</td>
<td></td>
</tr>
<tr>
<td>STATIONARY</td>
<td>(H_1)</td>
<td>OSCILLATES ABOUT (H_1), FINALLY COMING TO REST WITH SOME PHASE ERROR</td>
<td></td>
</tr>
</tbody>
</table>

DISK SEQUENCE SHOWING OUTPUT BEHAVIOR DUE TO CHANGES IN INPUT SPEED

INSPECTION

<table>
<thead>
<tr>
<th>INPUT ACTION</th>
<th>INPUT</th>
<th>OUTPUT</th>
<th>OUTPUT ACTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>ROTATING AT A CONSTANT RATE</td>
<td>(H_1)</td>
<td>(H_1)</td>
<td>ROTATING AT THE SAME RATE (FREQUENCY) AS INPUT</td>
</tr>
<tr>
<td>SYNCHRONIZED STROBE LIGHT FREEZES' POSITION MARKERS SO THEY APPEAR STATIONARY</td>
<td>(H_1)</td>
<td>(H_1)</td>
<td>THERE IS A CONSTANT PHASE ERROR BETWEEN INPUT AND OUTPUT</td>
</tr>
<tr>
<td>SPEED GRADUALLY INCREASES BY A SMALL AMOUNT TO A NEW RATE. MARKER GRADUALLY ADVANCES CW</td>
<td>(H_1)</td>
<td>(H_1)</td>
<td>BEGINS TO ADVANCE CW AFTER SOME DELAY</td>
</tr>
<tr>
<td>SPEED NOW CONSTANT AT A HIGHER RATE THAN BEFORE; STROKE RATE ALSO INCREASED TO FREEZE MARKERS</td>
<td>(H_1)</td>
<td>(H_1)</td>
<td>PHASE ERROR NOW GREATER THAN FOR LOWER SPEED CONDITION</td>
</tr>
</tbody>
</table>

Figure 5
send and receive signals. In fact the PLL can create the signal, or select a signal, decode it and reproduce it. Now let's look at how this works.

The VCO is connected to a section where its frequency is put together with an incoming signal or signals. In a radio this is known as a "mixer" where signals are mixed together. In a PLL it is usually called a Phase Comparator. Other names for this function are phase detector or multiplier - either analog or digital. (Differences between analog and digital phase comparators will be explained later in this chapter). The purpose of this phase comparator is to produce an output which represents how far the VCO frequency is from that of the incoming signal. Comparing these frequencies and producing an error signal proportional to their difference allows the VCO frequency to shift from f_0 and become the same frequency as the input signal. This is exactly what happens with the VCO frequency - first "capturing" the input frequency, and then locking onto it. A similar type action can be visualized in the mechanical system by having the coupling spring disconnected at one end with the two disks rotating at different rates. When their rotation rates are approximately equal, the spring is suddenly connected, and the output disk's speed will gradually become equal to and track the inputs rate as in Figure 1.5.

When the VCO shifts frequency and locks to the input, the signal frequency is duplicated. If the input signal contains static or noise, the VCO output will be an exact reproduction of the signal frequency without the static or noise. Thus the PLL has accomplished signal reconditioning or reconstruction.

The error signal used to keep the VCO exactly synchronized with an incoming signal can be amplified, filtered, and used to "clock" the signal or give synchronizing information necessary to look at the signal. For example, in some digital memories and transmission systems, data are stored in a code and looked at or strobed at a rate which must be synchronized to the data. This strobing may be at twice or one-half the data rate. By setting f_0 equal to twice or one-half the data rate, the PLL will lock to the data and give an exact synchronized clock. This shows another application of the PLL for multiplying or dividing frequencies.

PLLs can separate a signal of one frequency from among many others as for example is done in television and radio reception. This selectivity or capture range is controlled in the PLL by the low-pass filter (LPF) which allows the PLL to only see signals close to the frequency of interest. The time constant of the LPF is set easily by the selection of a resistor and capacitor network. This network determines how fast away in frequency an input signal can be from f_0 and still permit the PLL to respond and capture. Once locking is activated, the PLL system will continue to track the input frequency unless the instantaneous phase error exceeds the system's capability.

The error signal which drives the VCO and keeps the system locked is a usable output. In the FSK example the oscillator's frequency is shifted with each "1" or "0" digital input. Converting these frequency shifts back to the "1" and "0" signals automatically occurs in a PLL because a mark input generates an error signal to move the VCO up to that frequency. When the mark changes to a space, the error signal jumps suddenly down, forcing the VCO to follow. The error signal then is exactly the data that generated the FSK signals. A PLL for FSK can convert data to tones for transmission to a remote point. Then another PLL can convert the data tones back to voltage levels, all without tuned circuits.

The PLL system decodes FM signals in a similar way. The frequency variations caused by voltages from a microphone into one VCO serve as the input signal to another PLL which reverses the action since the error signal driving the second PLLs VCO is exactly the same as the original microphone voltage. Decoding of an amplitude modulated (AM) input signal is another application of the PLL. This application is more involved than FM demodulation because a phase shift network, a second phase comparator, and another low-pass filter are required. This application is discussed in detail later in Chapters 4 and 5. However, it should be pointed out that AM demodulation with PLLs offers improved system linearity than the more commonly employed technique of non-linear diode detection. Tone decoding is a special case of AM demodulation. When performed with PLLs, the second phase comparator is called a quadrature phase detector (QPD). The QPD produces a maximum output error voltage whenever the input and oscillator frequencies are locked to the free-running frequency, f_0, unlike the regular phase comparator which has a nominal zero error voltage under this same condition.

These application examples show that with the PLL is a system that can:

1. Generate a signal
2. Modulate a signal (encode)
3. Select a signal from among many
4. Demodulate (decode)
5. Recreate (reconstitute) a signal frequency with reduced noise
6. Multiply and divide frequency

TYPES OF PLLS

Generally speaking the monolithic PLLs can be classified into two groups – digital and analog. While both perform as PLLs, the digital circuits are more suitable for synchronization of digital signals, clock recovery from encoded digital data streams, and other digital applications. Analog monolithic PLLs are used quite extensively in communication systems since they maintain linear relationships between input and output quantities.

The phase comparator is perhaps the most important part of the PLL system since it is here that the input and VCO frequencies are simultaneously compared. Some digital PLLs employ a two-input Exclusive-Or gate as the phase comparator. When the digital loop is locked to f_0, there is an inherent phase error of 90° that is represented by asymmetry in the output waveform. Also the phase comparators output has a frequency component of twice the reference frequency. Because of the large logic voltage swings in digital systems, extensive filtering must be performed to remove the harmonic frequencies. For this reason, other types of digital phase comparators achieve locking by synchronizing the "edges" of the input and VCO frequency waveforms. The phase comparator produces an error voltage that is proportional to the time difference between the edges, i.e., the phase error. This edge-triggering technique for the phase comparator produces lower output noise than with the Exclusive-Or approach. However time jitter on the input and VCO frequencies is translated into phase error jitter that may require additional filtering within the loop.

Triggering on the edges of digital signals means that only frequency (or period) is important and not duty cycle. This is a key consideration in PLL applications utilizing counters where waveforms usually aren't symmetrical, i.e., 50% duty cycle. For the TTL family, it is easier to provide the edge matching function on the falling edges ("1" to "0") transition of the waveform. CMOS, Pb, and ECL are better suited for leading edge triggering ("0" to "1").

Analog PLLs utilize a phase comparator which functions as a four-quadrant analog multiplier to mix the input and VCO signals. Since this mixing is true analog multiplica-
tion, the phase comparators output is a function of input and VCO signal amplitudes, frequencies, phase relationships, and duty cycles. The inherent linearity afforded by this analog multiplication makes the monolithic analog PLL well suited for many general purpose and communication system applications.

Another way of distinguishing between digital and analog phase comparators is by thinking of the similarities and differences between voltage comparators and operational amplifiers. Voltage comparators are specially designed for digital applications where response time between output levels has been minimized at the expense of system linearity. Feedback is seldom used to maintain linear system relationships, with the comparator normally running open loop. Op amps, on the other hand, are designed for a linear input-output relationship, with negative feedback being employed to further improve the system linearity.

PLL TERMINOLOGY
The following is a brief glossary of frequently encountered terms in PLL literature.

Free-running Frequency (f_0, ω_0).
Also called the center frequency, this is the frequency at which the loop VCO operates when not locked to an input signal. The “prime” superscripts are used to distinguish the free-running frequency from f_0 and ω_0 which are used for the general oscillator frequency. (Many references use f_0 and ω_0 for both the free-running and general oscillator frequency and leave the proper choice for the reader to infer from the context). The appropriate units for f_0 and ω_0 are Hz and radians per second respectively.

Lock Range ($2f_0$, $2\omega_0$).

The range of frequencies over which the loop will remain in lock. Normally the lock range is centered at the free-running frequency unless there is some nonlinearity in the system which limits the frequency deviation on one side of f_0. The deviations from f_0 are referred to as the Tracking Range or Hold-in Range. (See Figure 1.6). The tracking range is therefore one-half of the lock range.

Capture Range ($2f_0$, $2\omega_0$).

Although the loop will remain in lock throughout its lock range, it may not be able to acquire lock at the tracking range extremes because of the selectivity afforded by the low-pass filter. The capture range also is centered at f_0 with the equal deviations called the Lock-in or Pull-in Ranges. The capture range can never exceed the lock range.

Lock-up Time (t_L).

The transient time required for a free running loop to lock. This time depends principally upon the bandwidth selectivity designed into the loop with the low-pass filter. The lock-up time is inversely proportional to the selectivity bandwidth. Also, lock-up time exhibits a statistical spreading due to random initial phase relationships between the input and oscillator phases.

Phase Comparator Conversion Gain (K_d).

The conversion constant relating the phase comparators output voltage to the phase difference between input and VCO signals when the loop is locked. At low input signal levels, K_d is also a function of phase amplitude. K_d has units of volts per radian (V/rad).

VCO Conversion Gain (K_0).

The conversion constant relating the oscillator frequency shift from f_0 to the applied input voltage. K_0 has units of radians per second per volt (rad/sec/volt). K_0 is a linear function of ω_0 and must be obtained using a formula or graph provided or experimentally measured at the desired ω_0.

Loop Gain (K_L).

The product of K_d, K_0, and the low-pass filter gain at dc. K_d is evaluated at the appropriate input signal level and K_0 at the appropriate ω_0. K_V has units of (sec)$^{-1}$.

Closed Loop Gain (CLG)

The output signal frequency and phase can be determined from a product of the CLG and the input signal where the CLG is given by

$$CLG = \frac{K_V}{1 + K_V}$$

(4)

Natural Frequency (ω_n).

The characteristic frequency of the loop, determined mathematically by the final pole positions in the complex plane or determined experimentally as the modulation frequency for which an undamped loop gives the maximum frequency deviation from f_0 and at which the phase error swing is the greatest.

Damping Factor (ξ).

The standard damping constant of a second order feedback system. For the PLL, ξ refers to the ability of the loop to respond quickly to an input frequency step without excessive overshoot.

Loop Noise Bandwidth (B_L).

A loop property relating ω_n and ξ which describes the effective bandwidth of the received signal. Noise and signal components outside this bandwidth are greatly attenuated.

Lock-in Range

Also called Synchronization Range.

Capture Range

Also called Acquisision Range.

Lock-up Time

Also called Acquisition Time.
INTRODUCTION
The phase locked loop is a feedback system comprised of a phase comparator, a low pass filter and an error amplifier in the forward signal path and a voltage-controlled oscillator (VCO) in the feedback path. The block diagram of a basic PLL system is shown in Figure 1. Perhaps the single most important point to realize when designing with the PLL is that it is a feedback system and, hence, is characterized mathematically by the same equations that apply to other, more conventional feedback systems. However, the parameters in the equations are somewhat different since the feedback error signal in the phase locked system is a phase rather than a current or voltage signal, as is usually the case in conventional feedback systems.

PHASE LOCKED LOOP OPERATION
The basic principle of the PLL operation can be briefly explained as follows:
With no signal input applied to the system, the VCO control voltage \(V_d(t) \) is equal to zero. The VCO operates at a set frequency, \(f_0 \) (or the equivalent radian frequency \(\omega_0 \)) which is known as the free-running frequency. When an input signal is applied to the system, the phase comparator compares the phase and the frequency of the input with the VCO frequency and generates an error voltage \(V_e(t) \) that is related to the phase and the frequency difference between the two signals. This error voltage is then filtered, amplified, and applied to the control terminal of the VCO. In this manner, the control voltage \(V_d(t) \) forces the VCO frequency to vary in a direction that reduces the frequency difference between \(\omega_i \) and \(\omega_0 \). If the input frequency \(\omega_i \) is sufficiently close to \(\omega_0 \), the feedback nature of the PLL causes the VCO to synchronize or lock with the incoming signal. Once in lock, the VCO frequency is identical to the input signal except for a finite phase difference.

This net phase difference of \(\theta_e \) where
\[
\theta_e = \theta_0 - \theta_i \tag{1}
\]
is necessary to generate the corrective error voltage \(V_d(t) \) to shift the VCO frequency from its free-running value to the input signal frequency \(\omega_i \) and, thus, keep the PLL in lock. This self-correcting ability of the system also allows the PLL to track the frequency changes of the input signal once it is locked. The range of frequencies over which the PLL can maintain lock with an input signal is known as the “lock range” of the system and is never greater than the lock range.

Another means of describing the operation of the PLL is to observe that the phase comparator is in actuality a multiplier circuit that mixes the input signal with the VCO signal. This mix produces the sum and difference frequencies \(\omega_i \pm \omega_0 \) shown in Figure 1. When the loop is in lock, the VCO duplicates the input frequency so that the difference frequency component \(\omega_i - \omega_0 \) is zero; hence, the output of the phase comparator contains only a dc component. The low pass filter removes the sum frequency component \(\omega_i + \omega_0 \) but passes the dc component which is then amplified and fed back to the VCO. Notice that when the loop is in lock, the difference frequency component is always dc, so the lock range is independent of the band edge of the low pass filter.

LOCK AND CAPTURE
Consider now the case where the loop is not yet in lock. The phase comparator again mixes the input and VCO signals to produce sum and difference frequency components. However, the difference component may fall outside the band edge of the low pass filter and be removed along with the sum frequency component. If this is the case, no information is transmitted around the loop and the VCO remains at its initial free-running frequency. As the input frequency approaches that of the VCO, the frequency of the difference component decreases and approaches the band edge of the low pass filter. Now some of the difference component is passed, which tends to drive the VCO towards the frequency of the input signal. This, in turn, decreases the frequency of the difference component and allows more information to be transmitted through the low pass filter to the VCO. This is essentially a positive feedback mechanism which causes the VCO to snap into lock with the input signal. With this mechanism in mind, the term “capture range” can again be defined as the frequency range centered about the VCO initial free-running frequency over which the loop can acquire lock with the input signal. The capture range is a measure of how close the input signal must be in frequency to that of the VCO to acquire lock. The “capture range” can assume any value within the lock range and depends primarily upon the band edge of the low pass filter together with the closed loop gain of the system. It is this signal capturing phenomenon which gives the loop its frequency selective properties.

It is important to distinguish the “capture range” from the “lock range” which can, again, be defined as the frequency range usually centered about the VCO initial free-running frequency over which the loop can track the input signal once lock has been achieved.

When the loop is in lock, the difference frequency component at the output of the phase comparator (error voltage) is dc and will always be passed by the low pass filter. Thus, the lock range is limited by the range of error voltage that can be generated and the corresponding VCO frequency deviation produced. The lock range is essentially a dc parameter and is not affected by the band edge of the low pass filter.

THE CAPTURE TRANSIENT
The capture process is highly complex and does not lend itself to simple mathematical analysis. However, a qualitative description of the capture mechanism may be given as follows. Since frequency is the time derivative of phase, the frequency and the phase errors in the loop can be related as
\[
\frac{d\phi}{dt} = \omega_e \tag{2}
\]
ASYNCHRONOUS ERROR BEAT FREQUENCY DURING THE CAPTURE PROCESS:

where \(\Delta \omega \) is the instantaneous frequency separation between the signal and VCO frequencies and \(\phi_e \) is the phase difference between the input signal and VCO signals.

If the feedback loop of the PLL were opened between the low pass filter and the VCO control input, then for a given condition of \(\omega_0 \) and \(\omega_i \) the phase comparator output would be a sinusoidal beat note at a fixed frequency \(\Delta \omega \). If \(\omega_i \) and \(\omega_0 \) were sufficiently close in frequency, this beat note would appear at the filter output with negligible attenuation.

Now suppose that the feedback loop is closed by connecting the low pass filter output to the VCO control terminal. The VCO frequency will be modulated by the beat note. When this happens, \(\Delta \omega \) itself will become a function of time. If during this modulation process, the VCO frequency moves closer to \(\omega_i \) (i.e., decreasing \(\Delta \omega \)), then \(\frac{d\phi_e}{dt} \) decreases and the output of the phase comparator becomes a slowly varying function of time. Similarly, if the VCO is modulated away from \(\omega_i \), \(\frac{d\phi_e}{dt} \) increases and the error voltage becomes a rapidly varying function of time. Under this condition the beat note waveform no longer looks sinusoidal; it looks like a series of aperiodic cusps, depicted schematically in Figure 2(a). Because of its asymmetry, the beat note waveform contains a finite dc component that pushes the average value of the VCO toward \(\omega_i \) and lock is established. When the system is in lock, \(\Delta \omega \) is equal to zero and only a steady-state dc error voltage remains.

Figure 2(b) displays an oscillogram of the loop error voltage \(V_{d}(t) \) in an actual PLL system during the capture process. Note that as lock is approached, \(\Delta \omega \) is reduced, the low pass filter attenuation becomes less, and the amplitude of the beat note increases.

The total time taken by the PLL to establish lock is called the pull-in time. Pull-in time depends on the initial frequency and phase differences between the two signals as well as on the overall loop gain and the low pass filter bandwidth. Under certain conditions, the pull-in time may be shorter than the period of the beat note and the loop can lock without an oscillatory error transient.

A specific case to illustrate this is shown in Figure 3. The 565 PLL is shown acquiring lock within the first cycle of the input signal. The PLL was able to capture in this short time because it was operated as a first order loop (no low pass filter) and the input tone-burst frequency was within its lock and capture range.

EFFECT OF THE LOW PASS FILTER

In the operation of the loop, the low pass filter serves a dual function:

First, by attenuating the high frequency error components at the output of the phase comparator, it enhances the interference-rejection characteristics; second, it provides a short-term memory for the PLL and ensures a rapid recapture of the signal if the system is thrown out of lock due to a noise transient. Decreasing the low pass filter bandwidth has the following effects on system performance: (Long Time Constant).

- The capture process becomes slower, and the pull-in time increases.
- The capture range decreases.
- Interference-rejection properties of the PLL improve since the error voltage caused by an interfering frequency is attenuated further by the low pass filter.
- The transient response of the loop (the response of the PLL to sudden changes of the input frequency within the capture range) becomes underdamped.
The last effect also produces a practical limitation on the low pass loop filter bandwidth and roll-off characteristics from a stability standpoint. These points will be explained further in the following analysis.

MATHEMATICALLY DEFINING PLL OPERATION

As mentioned previously, the phase comparator is basically an analog multiplier that forms the product of an RF input signal, \(v_i(t) \), and the output signal, \(v_o(t) \), from the VCO. Refer to Figure 1 and assume that the two signals to be multiplied can be described by

\[
v_i(t) = V_i \sin \omega_i t
\]

\[
v_o(t) = V_o \sin (\omega_0 t + \theta_e)
\]

where \(\omega_i, \omega_0, \) and \(\theta_e \) are the frequency and phase difference (or phase error) characteristics of interest. The product of these two signals is an output voltage given by

\[
v_e(t) = K_1 V_i V_o \sin(\omega_i t)(\sin(\omega_0 t + \theta_e))
\]

where \(K_1 \) is an appropriate dimensional constant. Note that the amplitude of \(v_e(t) \) is directly proportional to the amplitude of the input signal \(V_i \). The two cases of an unlocked loop (\(\omega_i \neq \omega_0 \)) and of a locked loop (\(\omega_i = \omega_0 \)) are now considered separately.

Unlocked State (\(\omega_i \neq \omega_0 \))

When the two frequencies to the phase comparator are not synchronized, the loop is not locked. Furthermore the phase angle difference \(\theta_e \) in Equations 4 and 5 is meaningless for this case since it can be eliminated by appropriately choosing the time origin.

Using trigonometric identities, Equation 5 can be rewritten as

\[
v_e(t) = \frac{K_1 V_i V_o}{2} \left[\cos(\omega_i t) - \cos(\omega_0 t) \right]
\]

When \(v_e(t) \) is passed through the low pass filter, \(F(s) \), the sum frequency component is removed, leaving

\[
v_f(t) = K_2 V_i V_o \cos(\omega_i - \omega_0) t
\]

where \(K_2 \) is a constant. After amplification, the control voltage for the VCO appears as

\[
v_c(t) = A K_2 V_i V_o \cos(\omega_i - \omega_0) t
\]

This equation shows that a beat frequency effect is established between \(\omega_i \) and \(\omega_0 \), causing the VCOs frequency to deviate by \(\pm \Delta \omega \) from \(\omega_0 \) in proportion to the signal amplitude \(A K_2 V_i V_o \) passing through the filter. If the amplitude of \(V_i \) is sufficiently large and if signal limiting or saturation does not occur, the VCO output frequency will be shifted from \(\omega_0 \) by some \(\Delta \omega \) until lock is established where

\[
\omega_i = \omega_0 = \omega_0 \pm \Delta \omega
\]

If lock cannot be established, then either \(V_i \) is too small to drive the VCO to produce the necessary \(\pm \Delta \omega \) deviation or \(\omega_i \) is beyond the dynamic range of the VCO, i.e., \(\omega_i < \omega_0 \pm \Delta \omega \). Remedies for these no lock conditions are:

1. Increase \(V_i \) either internally or externally to the loop by providing additional amplification.
2. Increase the internal loop gain by adjusting upward (larger −3dB frequency) the response of the low-pass filter.
3. Shift \(\omega_0 \) closer to the expected \(\omega_i \). Establishing frequency lock leads to the second case where \(\omega_i = \omega_0 \). A locked state \(\omega_i = \omega_0 \)

When \(\omega_i \) and \(\omega_0 \) are frequency synchronized, and the output signal from the phase comparator for \(\omega_i = \omega_0 = \omega \) and a phase shift of \(\theta_e \) is

\[
v_e(t) = K_1 V_i V_o \cos(\omega)t(\sin(\theta_e) + \theta_e)
\]

\[
= K_1 V_i V_o \frac{(\cos \theta_e - \cos(2\omega t + \theta_0))}{2}
\]

(10)

The low pass filter removes the high frequency, ac component of \(v_e(t) \), leaving only the dc component. Thus,

\[
v_f(t) = K_2 V_i V_o \cos \theta_e
\]

After amplification the dc voltage driving the VCO and maintaining lock within the loop is

\[
v_d(t) = V_D = A K_2 V_i V_o \cos \theta_e
\]

Suppose \(\omega_i \) and \(\omega_0 \) are perfectly synchronized to the free-running frequency \(\omega_0' \). For this case, \(V_D \) will be zero, indicating that \(\theta_e \) must be \(\pm 90^\circ \). Thus \(V_D \) is proportional to the phase difference or phase error between \(\theta_i \) and \(\theta_0 \) centered around a reference phase angle of \(\pm 90^\circ \). If \(\omega_i \) changes slightly from \(\omega_0' \), the first effect will be a change in \(\theta_e \) from \(\pm 90^\circ \). \(V_D \) will adjust and settle out to some nonzero value to correct \(\omega_0 \). The phase error will be shifted by some amount \(\Delta \theta \) from the reference phase angle of \(\pm 90^\circ \). This concept can be simplified by redefining \(\theta_e \) as

\[
\theta_e = \theta_i - \Delta \theta
\]

(13)

where \(\theta_i \) is the inherent, reference phase shift of \(\pm 90^\circ \) and \(\Delta \theta \) is the departure from this reference value. Now the VCO control voltage becomes

\[
V_D = A K_2 V_i V_o \cos(\theta_i - \Delta \theta)
\]

(14)

Since the sine function is odd, a momentary change in \(\Delta \theta \) contains information about
which way to adjust the VCO frequency
to correct and maintain the locked condition.
The maximum range over which \(\Delta \phi \) changes can be tracked is \(-90^\circ \) to \(+90^\circ \). This corresponds to a \(\theta_v \) range from 0 to 180°.

In addition to being an error signal, \(V_D \) represents the demodulated output of an FM input applied as \(V_m(t) \) assuming a linear VCO characteristic. Thus FM demodulation can be accomplished with the PLL without the inductively tuned circuits that are employed with conventional detectors.

DETERMINING PLL MODEL PARAMETERS

Since the PLL is basically an electronic servo loop, many of the analytical techniques developed for control systems are applicable to phase locked systems. Whenever phase lock is established between \(v_i(t) \) and \(v_o(t) \) the linear model of Figure 4 can be used to predict the performance of the PLL system. Here \(\theta_o \) and \(\theta_v \) represent the phase angles associated with the input output waveshapes respectively; \(F(s) \) represents a generalized voltage transfer function for the low pass filter in the complex frequency domain; and \(K_d \) and \(K_v \) are conversion gains of the phase comparator and VCO respectively, each having units as shown. The 1/s term associated with the VCO accounts for the inherent 90° phase shift in the loop since the VCO converts a voltage to a frequency and since phase is the integral of frequency. Thus the VCO functions as an integrator in the feedback loop.

Specific values of \(K_d \) and \(K_v \) for all of Sigmetics' PLLs can be found in the sections describing the particular loop of interest. However, sometimes it may be desired to determine these conversion gains exactly for a specific device. The measurement scheme shown in Figure 5 can be used to determine \(K_v \) and \(K_o \) for a loop under lock. The function of the Khron-Hite filters is to extract the fundamental sinusoidal frequency component of their square wave inputs for the PLL under test.

1. Established the desired external bias and gain conditions for the PLL under test.
2. With the Function Generator turned off, set the free-running frequency of the loop via the tuning capacitor and timing resistor if appropriate. Monitor \(f_o \) with the Frequency Counter.
3. Turn on the Function Generator and check to make sure the amplitude of the input signal is appropriate for the particular loop under test.
4. Adjust the input frequency for lock. Lock is discernable on a dual-trace scope when the input and VCO waveforms are synchronized and stationary with respect to each other. One should be especially careful to check that locking has not occurred between the VCO and some harmonic frequency. Carefully inspect both waveshapes, making sure each has the same period. (If a second Frequency Counter is available, an alternate scheme can be used to confirm frequency locking. One frequency counter is used to monitor the input signal frequency, and the second counter is used for the VCO frequency. When the two counters display the same frequency, the PLL is locked).
5. Set the input frequency to the free-running frequency and note the Gain-Phase Meter display. It should be approximately 90°, \(\pm 10^\circ \) nominally. Record the phase error, \(\theta_e \), the VCO control voltage, \(V_D \), and the input frequency, \(f_i \).
6. Adjust \(f_i \) for frequencies above and below \(f_o \) and record \(\theta_e \) and \(V_D \) for each \(f_i \) as appropriate.
7. Making a plot of \(V_D \) versus \(\theta_e \) is useful for checking the measurement data and the systems linearity. The slope of this plot \((\Delta V_D/\Delta \theta_e)\) is \(K_d \) in units of volts/degree. Multiplying this slope by \(180^\circ / \pi \) gives the desired \(K_d \) in volts/radian.
8. A plot of \(f_i = f_o \) versus \(V_D \) while the loop remains locked will check the VCO linearity. The slope of this plot is \(K_v \) at the particular free-running frequency. The units of slope taken directly from the graph are Hz/volt. Multiplying this slope figure by \(2\pi \) gives the desired \(K_o \) in units of radians/volt-sec.

\(K_d \) is generally constant over wide frequency ranges, but is linearly related to the input signal amplitude. \(K_v \) is constant with input signal level but does vary linearly with \(f_o \). Often it is convenient to specify a normalized \(K_o \) as

\[
K_o(\text{norm}) = \frac{K_o}{\text{volts}} \quad \text{radians/degree} \quad (15)
\]

The \(K_o \) value at any desired free-running frequency then can be estimated as

\[
K_o (@ \text{any } f_o) = K_o(\text{norm}) f_o \quad (16)
\]

The loop gain for the PLL system is

\[
K_v = K_d K_o A \quad (17)
\]

(Often when the gain \(A \) is due to an amplifier internal to the IC, \(A \) will be included in either \(K_d \) or \(K_v \). This is further illustrated in the article on the 565 PLL.

MODELING THE PLL SYSTEM WITH VARIOUS LOW PASS FILTERS

The open loop transfer function for the PLL is

\[
T(s) = \frac{K_v F(s)}{s} \quad (18)
\]

Using linear feedback analysis techniques, the closed loop transfer characteristics \(H(s) \) can be related to the open loop performance as

\[
H(s) = \frac{T(s)}{1 + T(s)} \quad (19)
\]

and the roots of the characteristic system polynomial can be readily determined by root-locus techniques.

From these equations, it is apparent that the transient performance and frequency response of the loop is heavily dependent upon the choice of filter and its corresponding transfer characteristic, \(F(s) \).

Zero Order Filter - \(F(s) = 1 \)

The simplest case is that of the first order loop where \(F(s) = 1 \) (no filter). The closed loop transfer function then becomes

\[
T(s) = \frac{K_v}{s + K_v} \quad (20)
\]

This transfer function gives the root locus as a function of the total loop gain \(K_v \) and the corresponding frequency response shown in Figure 6(a). The open loop pole at the origin is due to the integrating action of the VCO. Note that the frequency response is actually the amplitude of the difference frequency component versus modulating frequency when the PLL is used to track a frequency modulated input signal. Since there is no low pass filter in this case, sum frequency components are also present at the phase comparator output and must be filtered outside of the loop if the difference frequency component (demodulated FM) is to be measured.

First Order Filter

With the addition of a single pole low pass filter \(F(s) \) of the form

\[
F(s) = \frac{1}{1 + r_1 s} \quad (21)
\]

where \(r_1 = R_C, \) the PLL becomes a second order system with the root locus shown in Figure 6(b). Again an open loop pole is located at the origin because of the integrating action of the VCO. Another open loop pole is positioned on the real axis at \(-1/r_1\), where \(r_1 \) is the time constant of the low pass filter.
One can make the following observations from the root locus characteristics of Figure 6(b):

a As the loop gain \(K_v \) increases for a given choice of \(r_1 \), the imaginary part of the closed loop poles increase; thus, the natural frequency of the loop increases and the loop becomes more and more underdamped.

b If the filter time constant is increased, the real part of the closed loop poles becomes smaller and the loop damping is reduced.

As in any practical feedback system, excess shifts or non-dominant poles associated with the blocks within the PLL can cause the root loci to bend toward the right half plane as shown by the dashed line in Figure 6(b). This is likely to happen if either the loop gain or the filter time constant is too large and may cause the loop to break into sustained oscillations.

First Order Lag-Lead Filter

The stability problem can be eliminated by using a lag-lead type of filter, as indicated in Figure 6(c). This type of filter has the transfer function

\[
F(s) = \frac{1 + \tau_2 s}{1 + (r_1 + \tau_2) s}
\]

where \(\tau_2 = R_2 C \) and \(r_1 = R_1 C \). By proper choice of \(R_2 \), this type of filter confines the root locus to the left half plane and ensures stability. The lag-lead filter gives a frequency response dependent on the damping, which can now be controlled by the proper adjustment of \(r_1 \) and \(\tau_2 \). In practice, this type of filter is important because it allows the loop to be used with a response between that of the first and second order loops and it provides an additional control over the loop transient response. If \(R_2 = 0 \), the loop behaves as a second order loop and as \(R_2 \rightarrow \infty \), the loop behaves as a first order loop due to a pole-zero cancellation. However, as first-order operation is approached, the noise bandwidth increases and interference rejection decreases since the high frequency error components in the loop are now attenuated to a lesser degree.

Second and Higher Order Filters

Second and higher order filters as well as active filters occasionally are designed and incorporated within the PLL to achieve a particular response not possible or easily obtained with zero or first order filters. Adding more poles and more gain to the closed loop transfer function reduces the inherent stability of the loop. Thus the designer must exercise extreme care and utilize complex stability analysis if second order (and higher) filters or active filters are to be considered.

CALCULATING LOCK AND CAPTURE RANGES

In terms of the basic gain expression in the system, the lock range of the PLL \(\omega_L \) can be shown to be numerically equal to the dc loop gain (2 sided lock range).

\[
2\omega_L = 4\pi f_L = 2K_v F(0)
\]

where \(F(0) \) is the value of the low pass filters transfer function at dc.

Since the capture range \(\omega_C \) denotes a transient condition, it is not as readily derived as the lock range. However, an approximate expression for the capture range can be written as (2 sided capture range).

\[
2\omega_C = 4\pi f_C = 2K_v |F(i\omega_C) |
\]

where \(F(i\omega_C) \) is the magnitude of the low pass filter transfer function evaluated at \(\omega_C \). Solution of Equation 24 frequently involves a "trial and error" process since the capture range is a function of itself. Note that at all times the capture range is smaller than the lock range.

For the simple first-order lag filter of Figure 6(b) the capture range can be approximated as

\[
2\omega_C \approx 2\sqrt{\frac{\omega_L}{\tau_1}} = 2\sqrt{\frac{K_v}{\tau_1}}
\]

This approximation is valid for \(\tau_1 >> \frac{1}{2\omega_L} \).

Equations 23 and 24 show that the capture range increases as the low pass filter time constant is decreased, whereas the lock range is unaffected by the filter and is determined solely by the loop gain.

Figure 7 shows the typical frequency-to-voltage transfer characteristics of the PLL. The input is assumed to be a sine wave whose frequency is swept slowly over a broad frequency range. The vertical scale is the corresponding loop error voltage. In Figure 7(a), the input frequency is being gradually increased. The loop does not respond to the signal until it reaches a frequency \(\omega_L \), corresponding to the lower edge of the capture range. Then, the loop suddenly locks on the input and causes a negative jump of the loop error voltage. Next, \(V_d \) varies with frequency with a slope equal to the reciprocal of VCO conversion gain (1/\(K_v \)) and goes through zero as \(\omega = \omega_C \). The loop tracks the input until the input frequency reaches \(\omega_C \), corresponding to the upper edge of the lock range. The PLL then loses lock and the error voltage drops to zero. If the input frequency is swept slowly back, the cycle repeats itself, but is inverted, as shown in Figure 7(b). The loop recaptures the signal at \(\omega_L \) and tracks it down to \(\omega_C \). The total capture and lock ranges of the system are:

\[
2\omega_C = \omega_3 - \omega_1
\]

and

\[
2\omega_L = \omega_4 - \omega_2
\]

Note that, as indicated by the transfer characteristics of Figure 7, the PLL system has an inherent selectivity about the free-running frequency, \(\omega_C \). It will respond only to the input signal frequencies that are separated from \(\omega_C \) by less than \(\omega_C \) or \(\omega_4 \), depending on whether the loop starts with or without an initial lock condition. The linearity of the frequency-to-voltage conversion characteristics for the PLL is determined solely by the VCO conversion gain. Therefore, in most PLL applications, the VCO is required to have a highly linear voltage-to-frequency transfer characteristic.

DETERMINING LOOP RESPONSE

The transient response of a PLL can be calculated using the model of Figure 4 and Equations 18 and 19 as starting points. Combining these equations gives

\[
\frac{\theta(s)}{\theta_i(s)} = \left(\frac{K_v F(s)}{s + K_v F(s)} \right)
\]

The phase error which keeps the system in lock is

\[
\theta(s) = \theta_i(s) - \theta_C(s)
\]

Define a phase error transfer function

\[
E(s) = \frac{\theta(s)}{\theta_i(s)} = 1 - \frac{\theta_C(s)}{\theta_i(s)} = 1 - H(s)
\]

As an example of the utilization of these equations, consider the most common case of a loop employing a simple first-order lag filter where

\[
F(s) = \frac{1}{1 + s \tau_1}
\]

For this filter, Equations 29 and 31 become

\[
H(s) = \frac{K_v}{s^2 + s/\tau_1 + K_v/\tau_1}
\]

\[
E(s) = \frac{s + 1/\tau_1}{s^2 + s/\tau_1 + K_v/\tau_1}
\]

Both equations are second order and have the same denominator which can be expressed as

\[
D(s) = s^2 + s/\tau_1 + K_v/\tau_1 = s^2 + 2\omega_n s + \omega_n^2
\]

where \(\omega_n \) and \(\tau \) are respectively the system undamped natural frequency and damping factor defined as

\[
\omega_n = \sqrt{\frac{K_v}{\tau_1}}
\]
The system is considered overdamped for $\zeta > 1.0$, and critically damped $\zeta = 1.0$.

Now examine this PLL's response to various types of inputs.

Step of Phase Input
Consider a unit step of phase as the input signal. This input is shown in Figure 8 and can be thought of as simply shifting the time axis by a unit step (one radian or one degree depending upon the working units) while maintaining the same input frequency. Mathematically this input has the form

$$0(t) = 1 + \frac{e^{-\zeta \omega_n t}}{\sqrt{1 - \zeta^2}} \sin(\omega_n \sqrt{1 - \zeta^2} + \psi)$$

depending upon the working units) while maintaining the same input frequency. Mathematically this input has the form

$$\theta(t) = \frac{1}{s}$$

The phase of VCO output and the system's phase error are represented by

$$\theta_0(s) = \frac{\omega_n^2}{s}$$

$$\theta_e(s) = \frac{E(s)}{s} = \frac{s + 2\zeta \omega_n}{s^2 + 2\zeta \omega_n s + \omega_n^2}$$

depending upon the working units) while maintaining the same input frequency. Mathematically this input has the form

$$\theta(t) = \frac{1}{s}$$

The phase of VCO output and the system's phase error are represented by

$$\theta_0(s) = \frac{\omega_n^2}{s}$$

$$\theta_e(s) = \frac{E(s)}{s} = \frac{s + 2\zeta \omega_n}{s^2 + 2\zeta \omega_n s + \omega_n^2}$$

depending upon the working units) while maintaining the same input frequency. Mathematically this input has the form

$$\theta(t) = \frac{1}{s}$$

The phase of VCO output and the system's phase error are represented by

$$\theta_0(s) = \frac{\omega_n^2}{s}$$

$$\theta_e(s) = \frac{E(s)}{s} = \frac{s + 2\zeta \omega_n}{s^2 + 2\zeta \omega_n s + \omega_n^2}$$
TYPICAL PLL FREQUENCY-TO-VOLTAGE TRANSFER CHARACTERISTICS

(A) INPUT FREQUENCY INCREASING

(B) DECREASING INPUT FREQUENCY

INPUT SIGNAL REPRESENTING A UNIT STEP OF PHASE AT CONSTANT FREQUENCY

When \(\xi = 1 \), these phase responses are

\[
\theta(t) = 1 - (1 - \omega_0 t)e^{-\omega_0 t} \quad (44)
\]

and

\[
\theta(t) = (1 + \omega_0 t)e^{-\omega_0 t} \quad (45)
\]

Figure 9 is a plot of the VCO phase response and the phase error transient for various damping factors. Note from this figure that an under-damped system has overshoot which can cause the loop to break lock if this overshoot is too large. The critical condition for maintaining lock is to keep the phase error within the dynamic range for the phase comparator of \(-\pi/2\) to \(\pi/2\) radians. For the under-damped case, the peak phase-error overshoot is

\[
\theta_{\text{max}} = e^{-\xi \pi \sqrt{1 - \xi^2}} \quad (46)
\]

which must be less than \(\pi/2\) to maintain lock. Lock can also be broken for the overdamped and critically-damped loops if the input phase shift is too large where the phase error exceeds \(\pi/2\) radians.

The analysis and equations given are based upon the small-signal model of Figure 4. If the signal amplitudes become too large, one or more functional blocks in the system can saturate, causing a slew-rate type limiting action that may break lock.

The transient time expression for the VCO phase change is

\[
\theta(t) = 1 - \frac{2 \xi}{\omega_0} + \frac{e^{-\omega_0 t}}{\omega_0 \sqrt{1 - \xi^2}} \sin (\omega_0 t \sqrt{1 - \xi^2}) \quad (51)
\]

for \(\xi \neq 1 \).

The time expression for the VCO frequency change for a unit step of frequency input is the same as the time response VCO phase change due to a step of phase input (Equation 41), or

\[
\omega(t) \text{ for frequency step input} = \theta(t) \text{ for phase step input}
\]

Thus

\[
\omega(t) = 1 + \frac{e^{-\omega_0 t}}{\sqrt{1 - \xi^2}} \sin (\omega_0 t \sqrt{1 - \xi^2} + \Psi) \quad (52)
\]

for \(\xi \neq 1 \).

Unit Ramp of Frequency Input

This form of input signal represents sweeping the input frequency at a constant rate and direction as shown in Figure 11. The amplitude and phase of the input remain constant; the input frequency changes linearly with time. Since the input signal to the PLL model is a phase, a unit ramp of frequency appears as a phase acceleration type input that can be mathematically described as

\[
\theta(t) = \frac{t^3}{s^3} \quad (53)
\]

The VCO output phase change is

\[
\theta(t) = -\frac{\omega_0}{s^3 (s^2 + 2\omega_0 s + \omega_0^2)} \quad (54)
\]

The time expression for the VCO phase change is

\[
\theta(t) = \frac{t^2}{s} - \frac{2 \xi t}{\omega_0} + \frac{2}{\omega_0^2} \left(2 t (1 - \omega_0^2) + \left(1 - 4 \xi^2 \omega_0^2 + 4 \xi^2 \omega_0^4 \right) \right)^{1/2} e^{-\omega_0 t} \sin (\omega_0 t \sqrt{1 - \xi^2}) + \Psi \quad (55)
\]

where \(\Psi = \arctan \frac{\sqrt{1 - \xi^2}}{\xi (1 - 2 \omega_0^2)} \) and \(\Psi \) is given in Equation 42.

PLL BUILDING BLOCKS

VCO

Since three different forms of VCO have been used in the Signetics PLL series, the VCO details will not be discussed until the individual loops are described. However, a few general comments about VCOs are in order.

When the PLL is locked to a signal, the VCO voltage is a function of the frequency of the input signal. Since the VCO control voltage is the demodulated output during FM demodulation, it is important that the VCO voltage-to-frequency characteristic be lin-
ear so that the output is not distorted. Over the linear range of the VCO, the conversion gain is given by K_c (in radian/volt-sec)

$$k_c = \frac{\Delta \omega_v}{\Delta V_d}$$ \hspace{1cm} (56)

Since the loop output voltage is the VCO voltage, we can get the loop output voltage as

$$\Delta V_d = \frac{\Delta \omega_v}{K_c}$$ \hspace{1cm} (57)

The gain K_c can be found from the data sheet. When the VCO voltage is changed, the frequency change is virtually instantaneous.

Phase Comparator

All of Signetics analog phase locked loops use the same form of phase comparator - often called the doubly-balanced multiplier or mixer. Such a circuit is shown in Figure 12. The input stage formed by transistors Q1 and Q2 may be viewed as a differential amplifier which has an equivalent collector resistance R_c and whose differential gain at balance is the ratio of R_c to the dynamic emitter resistance, r_e of Q1 and Q2.

$$A_d = \frac{R_c}{r_e} = \frac{0.026}{0.052}$$ \hspace{1cm} (58)

where I_c is the total dc bias current for the differential amplifier pair.

The switching stage formed by Q3–Q6 is switched on and off by the VCO square wave. Since the collector current swing of Q2 is the negative of the collector current swing of Q1, the switching action has the effect of multiplying the differential stage output first by +1 and then by −1. That is, when the base of Q4 is positive, R_{C2} receives I_1, and when the base of Q6 is positive, R_{C2} receives I_2. Since the circuit is called a multiplier, performing the multiplication will gain further insight into the action of the phase comparator.

Consider an input signal which consists of two added components: a component at frequency ω_2 which is close to the free-running frequency and a component at frequency ω_k which may be at any frequency. The input signal is

$$V_i(t) = V_k \sin(\omega_k t + \theta_k) + V_1 \sin(\omega_2 t + \theta_1)$$ \hspace{1cm} (59)

where θ_1 and θ_k are the phase in relation to the VCO signal. The unity square wave developed in the multiplier by the VCO signal is

$$V_o(t) = \sum_{n=0}^{\infty} \frac{4}{\pi(2n+1)} \sin[(2n+1)\omega_0 t]$$ \hspace{1cm} (60)

where ω_0 is the VCO frequency. Multiplying the two terms, using the appropriate trigonometric relationships, and inserting the differential stage gain A_d gives:

$$V_o(t) = \frac{2A_d V_i}{\pi} \sum_{n=0}^{\infty} \left[\frac{V_i}{(2n+1)} \cos[(2n+1)\omega_0 t - \omega_2 t + \theta_1] - \frac{V_k \omega_0}{(2n+1)} \cos[(2n+1)\omega_0 t + \omega_2 t + \theta_1] + \frac{V_k}{(2n+1)} \cos[(2n+1)\omega_0 t - \omega_2 t - \theta_k] - \frac{V_k \omega_0}{(2n+1)} \cos[(2n+1)\omega_0 t + \omega_2 t + \theta_k] \right]$$ \hspace{1cm} (61)

Assuming that temporarily V_k is zero, if ω_1 is close to ω_0, the first term $(n=0)$ has a low frequency difference frequency component. This is the beat frequency component that feeds around the loop and causes lock up by modulating the VCO. As ω_k is driven closer to ω_1, this difference component becomes lower and lower in frequency until $\omega_k = \omega_1$ and lock is achieved. The first term then becomes

$$V_o(t) = \frac{2A_d V_i}{\pi} \cos \theta_1$$ \hspace{1cm} (62)

which is the usual phase comparator formula showing the dc component of the phase comparator during lock. This component must equal the voltage necessary to keep the VCO at ω_0. It is possible for ω_k to equal ω_1 momentarily during the lock up process and, yet, for the phase to be incorrect so that ω_k passes through ω_1 without lock being achieved. This explains why lock is usually not achieved instantaneously, even when $\omega_k = \omega_0$ at $t = 0$. If $n \neq 0$ in the first term, the lock can come when $\omega_2 = (2n+1)\omega_0$, giving the dc phase comparator component

$$V_o(t) = \frac{2A_d V_i}{\pi(2n+1)} \cos \theta_1$$ \hspace{1cm} (63)
INTEGRATED PHASE COMPARATOR CIRCUIT

Figure 12

INTEGRATED PHASE COMPARATOR CIRCUIT

showing that the loop can lock to odd harmonics of the free-running frequency. The
(2n + 1) term in the denominator shows that the phase comparators output is lower for
harmonic lock, which explains why the lock range decreases as higher and higher odd
harmonics of the free-running frequency. The
(2n + 1) term in the denominator shows that
the loop can lock to odd harmonics. The
phase comparators output is lower for
the more the lock range is reduced.

Note also that the phase comparators output
during lock is (assuming A_d is constant)
also a function of the input amplitude V_i.
Thus, for a given dc phase comparator output V_k, an input amplitude decrease must
be accompanied by a phase change. Since
the loop can remain locked only for \(\theta_i \) between
0 and 180°, the lower V_k becomes,
the more the lock range is reduced.

Note from the second term that during lock
the lowest possible frequency is \(\omega_0 + \omega_1 = 2\omega_0 \). A sum frequency component is always present
at the phase comparator output. This component is usually greatly attenuated
by the low pass filter capacitor connecting to the phase comparator output.
However, when rapid tracking is required
(as with high-speed FM detection or FSK-
frequency shift keying), the loop
for a relatively high frequency cutoff in the low
pass filter may leave this component unattenuated to the extent that it interferes with
detection. At the very least, additional filtering
may be required to remove this component.
Components caused by \(n \neq 0 \) in the
second term are both attenuated and of
much higher frequency, so they may be neglected.

Suppose that other frequencies represented
by V_k are present. What is their effect
for V_k \(\neq 0 \)?

The third term shows that V_k introduces another
difference frequency component. Obviously, if V_k is close to \(\omega_i \), it can interfere
with the locking process since it may form a
beat frequency of the same magnitude as the
desired locking beat frequency. However,
suppose lock has been achieved so that
\(\omega_0 = \omega_i \). In order for lock to be maintained,
the average phase comparator output must be constant. If \(\omega_0 = \omega_k \) is relatively low in
frequency, the phase \(\theta_k \) must change to compensate for this beat frequency.
Broadly speaking, any signal in addition to the
signal to which the loop is locked causes a
phase variation. Usually this is negligible
since \(\omega_k \) is often far removed from \(\omega_i \). However, it has been stated that the phase \(\theta_k \) can
move only between 0 and 180°. Suppose
the phase limit has been reached and
V_k appears. Since it cannot be compensated for, it will drive the loop out of lock.
This explains why extraneous signals can result in a decrease in the lock range. If V_k is assumed
to be an instantaneous noise component, the same effect occurs. When the full
swing of the loop is being utilized, noise will decrease the lock or tracking range.
This effect can be reduced by decreasing the
cutoff frequency of the low pass filter so
that the \(\omega_0 - \omega_k \) is attenuated to a greater extent, which illustrates that noise immunity
and out-band frequency rejection is improved (at the expense of capture range since \(\omega_0 - \omega_k \) is likewise attenuated) when the low pass filter capacitor is large.

The third term can have a dc component
when \(\omega_k \) is an odd harmonic of the locked frequency so that \((2n + 1)(\omega_0 - \omega_i) \) is zero
and \(\theta_k \) makes its appearance. This will
have an effect on \(\theta_i \), which will change the
\(\theta_i \) versus frequency \(\omega_i \). This is most noticeable when the waveform of the incoming
signal is, for example, a square wave. The
\(\theta_k \) term will combine with the \(\theta_i \) term so that the phase is a linear function of input frequency. Other waveforms will give different
phase versus frequency functions. When
the input amplitude V_i is large and the loop gain is large, the phase will be close to 90°
throughout the range of VCO swing, so this effect is often unnoticed.

The fourth term is of little consequence except
that if \(\omega_k \) approaches zero, the phase
comparator output will have a component at
the locked frequency \(\omega_0 \) at the output. For
every, a dc offset at the input differential
stage will appear as a square wave of
fundamental \(\omega_0 \) at the phase comparator output. This is usually small and well
attenuated by the low pass filter. Since
many out-band signals or noise components
may be present, many V_k terms may be
combining to influence locking and phase
during lock. Fortunately, only those close to
the locked frequency need be considered.

Quadrature Phase Detector (QPD)
The quadrature phase detector action is exactly
the same except that its output is proportional to the sine of the phase angle.
When the phase \(\theta_i \) is 90°, the quadrature
phase detector output is then at its maximum, which explains why it makes a useful
lock or amplitude detector. The output of
the quadrature phase detector is given by

\[
V_Q = \frac{2A_d V_i}{\pi} \sin \theta_i
\]
(64)

where V_i is the constant or modulated AM
signal and \(\theta_i \approx 90° \) in most cases so that
sine \(\theta_i = 1 \) and

\[
V_Q = \frac{2A_d V_i}{\pi}
\]
(65)

This is the demodulation principle of the
audiotype receiver and the basis for the 567
tone decoder operation.

INITIAL PLL SETUP CHOICES
In a given application, maximum PLL efficiency
can be achieved if the designer understands the tradeoffs which can be
made. Generally speaking, the designer is free to select the frequency, lock range,
capture range, and input amplitude.
FREE-RUNNING FREQUENCY SELECTION

Setting the center or free-running frequency is accomplished by selecting one or two external components. The center frequency is usually set in the center of the expected input frequency range. Since the loops ability to capture is a function of the difference between the incoming and free-running frequencies, the band edges of the capture range are always an equal distance (in Hz) from the center frequency. Typically, the lock range is also centered about the free-running frequency. Occasionally, the center frequency is chosen to be offset from the incoming frequency so that the tracking range is limited on one side. This permits rejection of an adjacent higher or lower frequency signal without paying the penalty for narrow band operation (reduced tracking speed).

All of Signetics loops use a phase comparator in which the input signal is multiplied by a unity square wave at the VCO frequency. The odd harmonics present in the square wave permit the loop to lock to input signals at these odd harmonics. Thus, the center frequency may be set to, say, 1/3 or 1/5 of the input signal. The tracking range however, will be considerably reduced as the higher harmonics are utilized.

The foregoing phase comparator discussion would suggest that the PLL cannot lock to subharmonics because the phase comparator cannot produce a dc component if \(f_0 \) is less than \(f_0 \).

The loop can lock to both odd harmonic and subharmonic signals in practice because such signals often contain harmonic components at \(f_0 \). For example, a square wave of fundamental \(f_0/3 \) will have a substantial component at \(f_0/3 \) to which the loop can lock. Even a pure sine wave input signal can be used for harmonic locking if the PLL input stage is overdriven (the resultant internal limiting generates harmonic frequencies). Locking to even harmonics or subharmonics is the least satisfactory since the input or VCO signal must contain second harmonic distortion. If locking to even harmonics is desired, the duty cycle of the input and VCO signals must be shifted away from the symmetrical to generate substantial even harmonic content.

In evaluating the loop for a potential application, it is best to actually compute the magnitude of the expected signal component nearest \(f_0 \). This magnitude can be used to estimate the capture and lock ranges.

All of Signetics loops are stabilized against center frequency drift due to power supply variations. Both the 565 and the 567 are temperature compensated over the entire military temperature range (-55 to +125°C). To benefit from this inherent stability, however, the designer must provide equally stable (or better) external components. For maximum cost effectiveness in some noncritical applications, the designer may wish to trade some stability for lower cost external components.

GUIDELINES FOR LOCK RANGE CONTROL

Two things limit the lock range. First, any VCO can swing only so far; if the input signal frequency goes beyond this limit, lock will be lost. Second, the voltage developed by the phase comparator is proportional to the product of both the phase and the amplitude of the in-band component to which the loop is locked. If the signal amplitude decreases, the phase difference between the signal and the VCO must increase in order to maintain the same output voltage and, hence, the same frequency deviation. The 564 contains an internal limiter circuit between the signal input and one input to the phase comparator. This circuit limits the amplitude of large input signals such as those from TTL outputs to approximately 100mV before they are applied to the phase comparator. The limiter significantly improves the AM rejection of the PLL for input signal amplitudes greater than 100mV.

It often happens with low input amplitudes that even the full ±90° phase range of the phase comparator cannot generate enough voltage to allow tracking wide deviations. When this occurs, the effective lock range is reduced. Weak input signals cause a reduction of tracking capability and greater phase errors. Conversely, a strong input signal will allow the use of the entire VCO swing capability and keeps the VCO phase (referred to the input signal) very close to 90° throughout the range. Note that the lock range does not depend on the low pass filter. However, if a low pass filter is in the loop, it will have the effect of limiting the maximum rate at which tracking can occur. Obviously, the LPF capacitor voltage cannot change instantly, so lock may be lost when large enough step changes occur. Between the constant frequency input and the step-change frequency input is some limiting frequency slew rate at which lock is just barely maintained. When tracking at this rate, the phase difference is at its limit of 0° or 180°. It can be seen that if the LPF cutoff frequency is low, the loop will be unable to track as fast as if the LPF cutoff frequency is higher. Thus, when maximum tracking rate is needed, the LPF should have a high cutoff frequency. However, a high cutoff frequency LPF will attenuate the sum frequencies to a lesser extent so that the output contains a significant and often bothersome signal at twice the input frequency. The phase comparators output contains both sum and difference frequencies. During lock, the difference frequency is zero, but the sum frequency of twice the locked frequency is still present. This sum frequency component can then be filtered out with an external low pass filter.

INPUT LEVEL AMPLITUDE SELECTION

Whenever amplitude limiting of the in-band signal occurs, whether in the loop input stages or prior to the input, the lock and capture ranges become independent of signal amplitude.

Better noise and out-band signal immunity is achieved when the input levels are below the limiting threshold since the input stage is in its linear region and the creation of cross-modulation components is reduced. Higher input levels will allow somewhat faster operation due to greater phase comparator gain and will result in a lock range which becomes constant with amplitude as the phase comparator gain becomes constant. Also, high input levels will result in a linear phase versus frequency characteristic.

CAPTURE RANGE CONTROL

There are two main reasons for making the low pass filter time constant large. First, a large time constant provides an increased memory effect in the loop so that it remains at or near the operating frequency during momentary fading or loss of signal. Second, the large time constant integrates the phase comparators output so that increased immunity to noise and out-band signals is obtained.

Besides the lower tracking rates attendant to large loop filters, other penalties must be paid for the benefits gained. The capture range is reduced and the capture transient becomes longer. Reduction of capture range occurs because the loop must utilize the magnitude of the difference frequency component at the phase comparator to drive the VCO towards the input frequency. If the LPF cutoff frequency is low, the difference component amplitude is reduced and the loop cannot swing as far. Thus, the capture range is reduced.
LOCK-UP TIME AND TRACKING SPEED CONTROL

In tracking applications, lock-up time is normally of little consequence, but occasions do arise when it is desirable to keep lock-up time short to minimize data loss when noise or extraneous signals drive the loop out of lock. Lock-up time is of great importance in tone decoder type applications. Tracking speed is important if the loop is used to demodulate an FM signal. Although the following discussion dwells largely on lock-up time, the same comments apply to tracking speeds.

No simple expression is available which adequately describes the acquisition or lock-up time. This may be appreciated when we review the following factors which influence lock-up time.

- **Input phase**
- **Low pass filter characteristic**
- **Loop damping**
- **Deviation of input frequency from center frequency**
- **In-band input amplitude**
- **Out-band signals and noise**
- **Center frequency**

Fortunately, it is usually sufficient to know how to improve the lock-up time and what must be sacrificed to get faster lock-up. Consider an operational loop or tone decoder where occasionally the lock-up transient is too long. What can be done to improve the situation—keeping in mind the factors that influence lock?

- **a. Initial phase relationship between incoming signal and VCO** - This is the greatest single factor influencing the lock time. If the initial phase is wrong, it first drives the VCO frequency away from the input frequency so that the VCO frequency must walk back on the beat notes. Figure 13 gives a typical distribution of lock-up times with the input pulse initiated at random phase. The only way to overcome this variation is to send phase information all the time so that a favorable phase relationship is guaranteed at t = 0. For example, a number of PLLs or tone decoders may be weakly locked to low amplitude harmonics of a pulse train and the transmitted tone phase related to the same pulse train. Usually, however, the incoming phase cannot be controlled.

- **b. Low pass filter** - The larger the low pass filter time constant, the longer will be the lock-up time. The lock-up time can be reduced by decreasing the filter time constant, but in doing so, some of the noise immunity and out-band signal rejection will be sacrificed. This is unfortunate since this is what necessitated the use of a large filter in the first place. Also present will be a sum frequency (twice the VCO frequency) component at the low pass filter and greater phase jitter resulting from out-band signals and noise. In the case of the tone decoder (where control of the capture range is required since it specifies the device bandwidth) a lower value of low pass capacitor automatically increases the bandwidth. Speed is gained only at the expense of added bandwidth.

- **c. Loop damping** - A simple first-order low pass filter of the form

\[F(s) = \frac{1}{1 + \frac{s}{\tau}} \]

produces a loop damping of

\[\zeta = \frac{1}{2} \sqrt{\frac{1}{\tau K_v}} \]

Damping can be increased not only by reducing \(\tau \), as discussed above, but also by reducing the loop gain \(K_v \). Using the loop gain reduction to control bandwidth or capture and lock ranges achieves better damping for narrow bandwidth operation. The penalty for this damping is that more phase comparator output is required for a given deviation so that phase errors are greater and noise immunity is reduced. Also, more input drive may be required for a given deviation.

- **d. Input frequency deviation from free-running frequency** - Naturally, the further an applied input signal is from the free-running frequency of the loop, the longer it will take the loop to reach that frequency due to the charging time of the low pass filter capacitor. Usually, however, the effect of this frequency deviation is small compared to the variation resulting from the initial phase uncertainty. Where loop damping is very low, however, it may be predominant.

- **e. In-band input amplitude** - Since input amplitude is one factor in the phase comparators gain \(K_d \) and since \(K_d \) is a factor in the loop gain \(K_v \), damping is also a function of input amplitude. When the input is low, the lock-up time may be limited by the rate at which the low pass capacitor can charge with the reduced phase comparator output (see above).

- **f. Out-band signals and noise** - Low levels of extraneous signals and noise have little effect on the lock-up time, neither improving or degrading it. However, large levels may override the loop input stage so that limiting occurs, at which point the in-band signal starts to be suppressed. The lower effective input level may cause the lock-up time to increase, as discussed in e above.

- **g. Center frequency** - Since lock-up time can be described in terms of the number of cycles to lock, fastest lock-up is achieved at higher frequencies. Thus, whenever a system can be operated at a higher frequency, lock will typically take place faster. Also, in systems where different frequencies are being detected, the higher frequencies on the average will be detected before the lower frequencies.
However, because of the wide variation due to initial phase, the reverse may be true for any single trial.

PLL MEASUREMENT TECHNIQUES
This section deals with measurements of PLL operation. The techniques suggested are meant to help the designer in evaluating the performance of the PLL during the initial setup period as well as to point out some pitfalls that may obscure loop evaluation. Recognizing that the test equipment may be limited, techniques are described which require a minimum of standard test items.

The majority of the PLL tests described can be done with a signal generator, a scope and a frequency counter. Most laboratories have these. A low-cost digital voltmeter will facilitate accurate measurement of the VCO conversion gain. Where the need for a FM generator arises, it may be met in most cases by the VCO of a Signetics PLL. Any of the loops may be set up to operate as a VCO by simply applying the modulating voltage to the lowpass filter terminal(s). The resulting generator may be checked for linearity by using the counter to check frequency as a function of modulating voltage. Since the VCOs may be modulated right down to dc, the calibration may be done in steps. Moreover, loop measurements may be made by applying a constant frequency to the loop input and the modulating signal to the lowpass filter terminal to simulate the effect of a FM input so that a FM generator may be omitted for many measurements.

FREE-RUNNING FREQUENCY
Free-running frequency measurements are easily made by connecting a frequency counter or oscilloscope to the VCO output of the loop. The loop should be connected in its final configuration with the chosen values of input, bypass, and lowpass filter capacitors. No input signal should be present. As the free-running frequency is read out, it can be adjusted to the desired value by the adjustment means selected for the particular loop. It is important not to make the frequency measurement directly at the timing capacitor unless the capacity added by the measurement probe is much less than the timing capacitor value since the probe capacity will then cause a frequency error.

When the frequency measurement is to be converted to a dc voltage for production readout or automated testing, a calibrated phase-locked loop can be used as a frequency meter.

CAPTURE AND LOCK RANGES
Figure 14(a) shows a typical measurement setup for capture and lock range measurements. The signal input from a variable frequency oscillator is swept linearly through the frequency range of interest and the loop FM output is displayed on a scope or (at low frequencies) X-Y recorder. The sweep voltage is applied to the X axis. Figure 14(b) shows the type of trace which results. The lock range is given by the outer lines on the trace, which are formed as the incoming frequency sweeps away from the center frequency. The inner trace, formed as the frequency sweeps toward the center frequency, designates the capture range. Linearity of the VCO is revealed by the straightness of the trace portion within the lock range. The slope ($\Delta f/\Delta V$) is the conversion gain K_{f} for the VCO at the particular freerunning frequency.

By using the sweep technique, the effect on free-running frequency, capture range, and lock range of the input amplitude, supply voltage, lowpass filter and temperature can be examined.

Because of the lock-up time duration and variation, the sweep frequency must be very much lower than the free-running frequency, especially when the capture range is below 10% of the free-running frequency. Otherwise, the apparent capture and lock range will be function of sweep frequency. It is best to start sweeping as slow as possible and, if desired, increase the rate until the capture range begins to show an apparent reduction—indicating that the sweep is too fast. Typical sweep frequencies are in the range of 1/1000 to 1/100,000 of the free-running frequency. In the case of the 567, the quadrature detector output may be similarly displayed on the Y axis, as shown in Figure 15 showing the output level versus frequency for one value of input amplitude.

Capture and lock range measurements may also be made by sweeping the generator manually through the band of interest. Sweeping must be done very slowly as the edges of the capture range are approached (sweeping toward center frequency) or the
lock-up transient delay will cause an error in reading the band edge. Frequency should be read from the generator rather than the loop VCO because the VCO frequency varies wildly around the center frequency just before and after lock. Lock and unlock can be readly detected by simultaneously monitoring the input and VCO signals, the dc voltage at the low pass filter or the ac beat frequency components at the low pass filter. The latter are greatly reduced during lock as opposed to frequencies just outside of lock.

FM and AM Demodulation Distortion

These measurements are quite straightforward. The loop is simply setup for FM detection and the test signal is applied to the input. A spectrum analyzer or distortion analyzer (HP333A) can be used to measure distortion at the FM output.

For FM demodulation, the input signal amplitude must be large enough so that lock is not lost at the frequency extremes. The data sheets give the lock (or tracking) range as a function of input signal and the optional range control adjustments. Due to the inherent linearity of the VCOs, it makes little difference whether the FM carrier is at the free-running frequency or offset slightly as long as the tracking range limits are not exceeded.

The faster the FM modulation in relation to the center frequency, the lower the value of the capacitor in the low pass filter must be for satisfactory tracking. As this value decreases, however, it attenuates the sum frequency component of the phase comparator output less. The demodulated signal will appear to have greater distortion unless this component is filtered out before the distortion is measured.

Natural Frequency and Damping

Circuits and mathematical expressions for the natural frequencies and damping are given in Figure 16 for two, first-order low pass filters. Because of the integrator action of the PLL in converting frequency to phase, the order of the loop always will be one greater than the order of the LPF. Hence both these first order LPFs produce a second order PLL system.

The natural frequency (\(\omega_n\)) of a loop in its final circuit configuration can be measured by applying a frequency modulated signal of the desired amplitude to the loop. Figure 16 shows that the natural frequency is a function of \(K_o\), which is, in turn, a function of input amplitude. As the modulation frequency (\(B_m\)) is increased, the phase relationship between the modulation and recovered sine wave will go through 90° at \(B_m = \omega_n\) and the output amplitude will peak.

Damping is a function of \(K_o\), \(K_d\), and the low pass filter. Since \(K_o\) and \(K_d\) are functions of the free-running frequency and input amplitude respectively, damping is highly dependent on the particular operating condition of the loop. Damping estimates for the desired operating condition can be made by applying an input signal which is frequency modulated within the lock range by a square wave. The low pass filter voltage is then monitored on an oscilloscope which is synchronized to the modulating waveform, as shown in Figure 17. Figure 18 shows typical waveforms displayed. The loop damping can be estimated by comparing the number and magnitude of the overshoots with the graph of Figure 19 which gives the transient phase error due to a step in input frequency.

An expression for calculating the damping for any underdamped second-order system \((\zeta < 1.0)\) when the normalized peak overshoot is known is

\[
M_p = 1 + e^{-\zeta \pi / \sqrt{1 - \zeta^2}}
\]

Examination of Figure 18 shows that the normalized peak overshoot of the error voltage is approximately 1.4. Using this value for \(M_p\) in Equation 68 gives a damping of \(\zeta \approx 0.28\).

Another way of estimating damping is to make use of the frequency response plot measured for the natural frequency (\(\omega_n\)) measurement. For low damping constants, the frequency response measurement peak will be a strong function of damping. For high damping constants, the 3dB-down point will give the damping. Figure 19 tabulates some approximate relationships.

Noise

The effect of input noise on loop operation is very difficult to predict. Briefly, the input noise components near the center frequency are converted to phase noise. When the phase noise becomes so great that the \(\pm 90^\circ\) permissible phase variation is exceeded, the loop drops out of lock or fails to acquire lock. The best technique is to actually apply the anticipated noise amplitude and bandwidth to the input and then perform the capture and lock range measurements as well as perform operating tests with the anticipated input level and modulation deviations. By including a small safety factor in the loop design to compensate for small processing variations, satisfactory operation can be assured.
FIRST ORDER LOW PASS FILTERS

(A) SIMPLE

CIRCUIT

\[1 + 1 \frac{1}{C} \]

TRANSFER FUNCTION

\[F(s) = \frac{1}{1 + s \tau} \]

NATURAL FREQUENCY

\[\omega_n = \frac{K_0 K_d}{\tau} \]

DAMPING

\[\zeta = \frac{\omega_n}{\pi K_0 K_d} \]

(B) LAG-LEAD

CIRCUIT

\[1 + \frac{1}{\tau_2} \]

TRANSFER FUNCTION

\[F(s) = \frac{1 + s \tau_2}{1 + \frac{1}{\tau_1} + \frac{1}{\tau_2}} \]

NATURAL FREQUENCY

\[\omega_n = \frac{K_0 K_d}{\tau_1 + \tau_2} \]

DAMPING

\[\zeta = \frac{\omega_n}{2} \left(1 - 1 + \frac{1}{K_0 K_d} \right) \]

Figure 16

MEASUREMENT SETUP FOR DISPLAY OF PLL TRANSIENT RESPONSE

Figure 17
TRANSIENT RESPONSE OF PLL ERROR VOLTAGE TO SQUARE WAVE FREQUENCY MODULATION FOR VARIOUS DAMPING CONDITIONS:

(a) UNDERDAMPED WITH $\zeta \approx 0.28$

(b) CRITICALLY DAMPED WITH $\zeta \approx 1.0$

(c) OVERDAMPED WITH $\zeta \approx 10$

(d) HIGHLY OVERDAMPED WITH $\zeta > 10$

Figure 18
ESTIMATING THE DAMPING IN A SECOND ORDER PLL

(A) TRANSIENT PHASE ERROR AS AN INDICATION OF DAMPING

(B) RATIO OF PEAK AMPLITUDE TO LOW FREQUENCY AMPLITUDE OF ERROR VOLTAGE FROM MODULATING FREQUENCY RESPONSE

<table>
<thead>
<tr>
<th>PEAK AMPLITUDE</th>
<th>$\omega_0 - 3\text{dB}$</th>
<th>LOW FREQUENCY AMPLITUDE</th>
</tr>
</thead>
<tbody>
<tr>
<td>.3</td>
<td>6.0dB</td>
<td>1.8</td>
</tr>
<tr>
<td>.5</td>
<td>3.2dB</td>
<td>2.1</td>
</tr>
<tr>
<td>.7</td>
<td>2.2dB</td>
<td>2.5</td>
</tr>
<tr>
<td>1.0</td>
<td>1.3dB</td>
<td>4.3</td>
</tr>
<tr>
<td>5.0</td>
<td>0.5dB</td>
<td>10</td>
</tr>
</tbody>
</table>

Figure 19
CIRCUIT DESCRIPTION OF THE 564

The 564 contains the functional blocks shown in Figure 1. In addition to the normal PLL functions of phase comparator, VCO, amplifier and low-pass filter, the 564 has internal circuitry for an input signal limiter, a dc retriever, and a Schmitt trigger. The complete circuit for the 564 is shown in Figure 1.

Limiter

The input limiter functions to produce a near constant amplitude output that serves as the input for the phase comparator. Eliminating amplitude variations in the FM input signal improves the AM rejection of the PLL. Additional features of the 564's limiter are that it is capable of accepting TTL signals, operates at high-frequencies up to 50MHz, and remains functional with variable supply voltages between 5 and 12 volts.

Signal limiting is accomplished in the 564 with a differential amplifier whose output voltage is clipped by diodes D1 and D2 (see Figure 2). Schottky diodes are used because their limiting occurs between 0.3 to 0.4 volts instead of the 0.6 to 0.7 volt for regular IC diodes. This lower limiting level is helpful in biasing, especially for 5 volt operation. When limiting, the dc voltage across R2-R3 remains at the Schottky diode voltage. Good high-frequency performance for Q2 and Q3 is achieved with current levels in the low mA range. Current-source biasing is established via the current mirror of D5 and Q4 (see Figure 1).

Base biasing for Q3 is of concern because of the nature of the input signal which can be either a TTL digital signal of 0 to 5 volts amplitude or a low-level, ac coupled analog signal. Compatibility for either type is achieved by modifying the limiter of Figure 2 with the addition of the vertical Schottky PNP transistors Q1 and Q5 shown in Figure 3. The input signal voltage appears as a collector-base voltage for Q1 which presents no problems for either high TTL level inputs or low-level analog inputs. Q5 is in turn diode biased by Q3 and Q4 (see Figure 1) which places the base voltages of Q1 and Q5 at approximately 1.0 volt. This same biasing network establishes a 1.3 volt bias at the base of Q13 for biasing the phase comparator section. A differential output signal from the input limiter is applied to one input of the phase comparator (Q9 through Q12 after buffering the level shifting though the Q7-Q8 emitter followers.

Phase Comparator

The phase comparator section of the 564 is shown in Figure 4. It is basically the conventional, double-balanced mixer commonly used in PLL circuits with a few exceptions. The transconductance, g_m, for the Q13-Q14 differential amplifier is directly proportional to the mirror current in Q15. Thus by externally sinking or sourcing current at pin 2, g_m, can be changed to alter the phase comparators conversion gain, K_p. The nominal current injected into this node by the internal current source is 0.75mA for 5 volt operation. If the current is
LINEAR LSI PRODUCTS

CIRCUIT DESCRIPTION OF THE NE564

AN179

BASIC LIMITER STAGE

LIMITER STAGE WITH INPUT BUFFERING

PHASE COMPARATOR SECTION

VARIATION OF THE PHASE COMPARATOR’S OUTPUT VOLTAGE VERSUS PHASE ERROR AND BIAS CURRENT

Figure 2

Figure 3

Figure 4

Figure 5
externally removed by gating, the phase comparator can be disabled and the VCO will operate at its free-running frequency.

The variation of K_d with bias current at pin 2 is shown in the experimental results of Figure 5. Note the inherent 90° phase error in the loop produces an approximate zero phase comparator output voltage. For any particular bias current, the slope of the line is the K_d conversion gain for the phase comparator. Numerically the data of Figure 5 can be expressed as

$$K_d \approx 0.46 \text{ volts rad} + 7.3 \times 10^{-4} \text{ volts rad x } \mu A \times \text{BIAS}$$

(1)

where I_{BIAS} is in μA. Equation 1 is valid for bias current less than $800\mu A$ where saturation occurs within the phase comparator.

The current level established in Q15 of Figure 3 determines all other quiescent currents in the phase comparator (Q9 through Q14). Currents through R_{12} and R_{13} set the common-mode output voltage from the phase comparator (pins 4 and 5). Since this common-mode voltage is applied to the VCO to establish its quiescent currents, the VCO conversion gain (K_d) also depends upon the bias current at pin 2.

VCO

The VCO is of the basic emitter-coupled astable type with several modifications included to achieve the high frequency, TTL compatible operation while maintaining low frequency drift with temperature changes. The basic oscillator in Figure 6 consists of Q19, Q20, Q21, and Q23 with current sinks of Q25 and Q26. The master current sink of Q28 keeps the total current constant by altering the ratio of currents in Q25-Q26 and the dummy current sink of Q27.

The input drive voltage for the VCO is made up of common-mode and difference-mode components from the phase comparator. After buffering the level shifting through Q17-Q18 and R_{16}, the VCO control voltage is applied differentially to the base of Q27 and to the common bases of Q25 and Q26.

The VCO control voltages from the phase comparator are the pin 4 and pin 5 voltages or

$$V_4 = V_{VC9} = V_{B18} = V_{CM} + \frac{1}{2} V_{DM}$$

(2)

$$V_5 = V_{VC12} = V_{B17} = V_{CM} - \frac{1}{2} V_{DM}$$

(3)

where V_{CM} and V_{DM} are the respective common-mode and the difference-mode voltages.

Emitter followers Q17 and Q18 convert these control voltages into control currents through D_8 and D_7 of the form

$$I_6 = \frac{1}{R_{15}} [V_{CM} - \frac{1}{2} V_{DM} - 3 V_{BE}]$$

(4)

$$I_7 = \frac{1}{R_{16}} [V_{CM} + \frac{1}{2} V_{DM} - 3 V_{BE}]$$

(5)

These individual currents are summed in D_8 and become with $R_{15} = R_{16} = R$.

$$I_8 = I_6 + I_7 = \frac{2}{R} (V_{CM} - 3 V_{BE})$$

(6)

Writing I_6 and I_7 as functions of the total I current gives

$$I_6 = \frac{1}{2} (1 - \frac{V_{DM}}{R_{15}})$$

(7)

$$I_7 = \frac{1}{2} (1 + \frac{V_{DM}}{R_{16}})$$

(8)

Now consider variations in I_6 and I_7 while I remains constant.

Let x indicate the current imbalance such that

$$I_6 = (1 - x) I = \frac{1}{2} (1 - \frac{V_{DM}}{R_{15}})$$

(9)

$$I_7 = xI = \frac{1}{2} (1 + \frac{V_{DM}}{R_{16}})$$

(10)

where $0 \leq x \leq 1$. Thus x is defined to be

$$x = \frac{1}{2} (1 + \frac{V_{DM}}{R_{16}})$$

(11)

Currents I_6 and I_7 establish proportional currents in Q25, Q26, and Q27 in a manner...
similar to the analysis above since the current in Q28 is a constant, or
\[I_0 = I_{E28} = I_{E25} + I_{E26} + I_{E27A} + I_{E27B} \]

Gilbert (10) has shown that the D7-D8 diode pair will cause identical differential currents to be reflected in both the Q25-Q26 and the Q27A-Q27B differential amplifier pairs. Consequently the constant current of \(I_0 \) jointly shared by the differential amplifier pairs will divide in each pair with the same \(x \) factor imbalance as in Equation 11.

\[I_{E25} + I_{E26} = x I_0 \] (12)
\[I_{E25} = I_{E26} = \frac{1}{2} I_0 \] (13)
\[I_{E27A} + I_{E27B} = (1 - x) I_0 \] (14)
\[I_{E27A} = I_{E27B} = \left(\frac{1}{2} x \right) I_0 \] (15)

Now consider placing a capacitor between the collectors of Q25 and Q26 (pins 12 and 13). Oscillation will occur with the capacitor alternately being charged by Q21 and Q23 and constantly discharged by Q25 and Q26. When the Q21 and Q22 pair conducts, Q23 and Q24 will be off causing a negative ramp voltage to appear at pin 13 and a constant voltage at pin 12 as shown in Figure 7. During the next half-cycle, the transistor roles and voltages are reversed. Capacitor discharge is via Q25 and Q26 which act as constant-current sinks with current amplitudes as in Equation 13.

During each half-cycle, the capacitor voltage changes linearly by \(2\Delta V \) volts in \(\Delta T \) seconds where
\[\Delta V = 2R_{20} I_0 \frac{1 - x}{x} = R_{20} I_0 \] (16)
and
\[\Delta T = \frac{C_{2A} \Delta V}{I_{E25}} \] (17)

Combining these two equations with Equation 13 gives a half period of
\[\Delta T = \frac{4C R_{20}}{x} \] (18)

Utilizing Equation 11 with the \(\Delta T \) expression gives the desired VCO frequency expression of
\[f_0 = f_0' \left(1 + \frac{V_{DM}}{R_{BIAS}} \right) = f_0' \left(\frac{V_{DM}}{2(V_{CM} - V_{BE})} \right) \] (19)

where \(f_0' \) is the VCOs free-running frequency given by
\[f_0' = \frac{1}{16 R_{20} C} \] (20)

Equation 19 shows that the oscillator frequency is a linear function of the differential voltage from the phase comparator. Resistors \(R_{35} \) and \(R_{36} \) function to insure that an initial current imbalance exists between the Q25 - Q26 transistor pair and the dummy Q27. This imbalance is such that the oscillator is self-starting when power is first applied to the circuit.

The VCO conversion gain is determined as
\[K_0 = \frac{\partial f_0}{\partial V_{DM}} = \frac{I_0}{R_{BIAS}} \text{ Hz/volt} \] (21)

which is valid as long as the transistors \(V_{BE} \) changes are small with respect to the common-mode voltage. Both \(f_0 \) and \(K_0 \) are inversely proportional to \(R \) which has a strong positive temperature coefficient. An internal current \(I_0 \) having an equal and opposite negative temperature coefficient is inserted into the VCO as shown in Figure 6.

Experimental determination of \(K_0 \) can be found from the data of Figure 8 where \(K_0 \) is the slope of either line. Numerically these results are for \(I_{BIAS} = 0 \).

\[K_0 = 0.95 \text{ MHz/volt} = 5.9 \times 10^6 \text{ rad/volt-sec} \] (22)
and for \(I_{BIAS} = 800\mu A \)
\[K_0 = 1.7 \text{ MHz/volt} = 10.45 \times 10^6 \text{ rad/volt-sec} \] (23)

It must be noted that the specific values obtained for \(K_0 \) in the manner above are valid only for the 1.0MHz free-running frequency where the data was taken. However, good estimates for \(K_0 \) at other free-running frequencies can be obtained by linearly scaling \(K_0 \) to the desired \(f_0' \). Thus it is sometimes convenient to define a normalized \(K_0 \) as
\[K_0(\text{norm}) = \frac{K_0}{f_0'} = 5.9 \text{ rad/volt} \text{ (} I_{BIAS} = 0 \) \]
\[= 10.45 \text{ rad/volt} \text{ (} I_{BIAS} = 800\mu A \) \] (24)

The \(K_0 \) estimate for any bias then can be obtained by multiplying the normalized conversion gain by the desired free-running frequency, or
\[K_0(\text{any } f_0') = K_0(\text{norm}) f_0' \] (25)

The additional VCO circuitry of Q29 through Q36 functions to produce the TTL and ECL compatible outputs at pins 9 and 11.

Amplifier

The difference-mode voltage from the phase comparator is extracted and amplified by the amplifier in Figure 1. The single-ended output from this amplifier serves as input signals for both the Schmitt Trigger and a second differential amplifier. Low-pass filtering with a large capacitance at pin 14 produces a stable dc reference level as the second input to the Schmitt Trigger. When the PLL is locked, the voltage at pin 14 is directly proportional to the difference between the input frequency and
Thus pin 14 provides the demodulated output for a FM input signal.

Schmitt Trigger

In FSK applications the pin 14 voltage will assume two different voltage levels corresponding to the mark and space input frequencies. A voltage comparator could be used to sense and convert these two voltage levels to logic compatible levels. However at high data rates,

\[V_{DM} \]

will contain a considerable amount of carrier signal which can be removed by extensive filtering. Normally this complex filtering requires quite a few components, most all of which are external to the monolithic PLL. Also since the control voltage for the comparator depends upon \(f_0 \) and the deviations of the mark and space frequencies from \(f_0 \), the filtering has to be optimized for each different system utilized. However the necessary dc reference level for the comparator is present in the PLL but buried in carrier frequency feedthrough which appears as noise in the system. A Schmitt trigger with variable hysteresis can be used successfully to decode the FSK data without the need for extensive filtering.

Consider the system shown in Figure 9 where the input signal is the single-ended output derived from the amplifier section of the 564. The dc retriever functions to establish a dc reference voltage for the Schmitt trigger. The upper and lower trigger points and adjustable externally around the reference voltage giving the variable hysteresis. For very low data rates, carrier feedthrough will be negligible and the ideal situation depicted in Figure 10 results. Increased data rate produces the carrier feedthrough shown in the (b) figure where false FSK outputs result because the feedthrough amplitude exceeds the hysteresis voltage. Having the capability to increase the hysteresis as in (c) produces the desired FSK output in the presence of carrier feedthrough.

Another important factor to be considered is the temperature drift of the \(f_0 \) in the VCO. Small changes in \(f_0 \) will change the dc level of the input voltage to the Schmitt trigger. This dc voltage shift would produce errors in the FSK output in narrow-band systems where the mark and space deviations in \(f_n \) are less than the \(f_0 \) change with temperature. However this effect can be eliminated if the dc or average value of the amplifier signal is retrieved and used as the reference voltage for the Schmitt trigger. In this manner, variations in the \(f_0 \) with temperature do not affect the FSK output.
FREQUENCY SYNTHESIS WITH THE NE564

Frequency multiplication can be achieved with the PLL in two ways:

a. Locking to a harmonic of the input signal.
b. Insertion of a counter (digital frequency divider) in the loop.

Harmonic locking is simpler and usually can be achieved by setting the VCO free-running frequency to a multiple of the input frequency and allowing the PLL to lock. However, a limitation of this scheme is that the lock range decreases as successively higher and weaker harmonics are used for locking. This limits the practical harmonic locking range to multiples of approximately less than ten. For larger multiples, the second scheme is more desirable.

A block diagram of the second scheme is shown in Figure 1a. Here, the loop is broken between the VCO and the phase comparator and a counter is inserted. In this case, the fundamental of the divided VCO frequency is locked to the input reference frequency so that the VCO is actually running at a multiple of the reference frequency. The amount of multiplication is determined by the counter. An obvious practical application of this multiplication property is the use of the PLL in wide range frequency synthesizers.

In frequency multiplication applications it is important to take into account that the phase comparator is actually a mixer and that its output contains sum and difference frequency components. The difference frequency is dc and is the error voltage which drives the VCO to keep the PLL in lock. The sum frequency components (of which the fundamental is twice the frequency of the input signal) if not well filtered, will induce incidence FM on the VCO output. This occurs because the VCO is running at many times the frequency of the input signal and the sum frequency component which appears on the control voltage to the VCO causes a periodic variation of its frequency about the desired multiple. For frequency multiplication it is generally necessary to filter quite heavily to remove this sum frequency component. The tradeoff, of course, is a reduced capture range and a more underdamped loop transient response.

Producing a large number of frequencies with close spacing requires a counter with a large N for the system of Figure 1(a). Large N values, in turn, require reference frequencies that are too low to be practical for commercially available crystals. To overcome this difficulty, a second counter (+ M) is inserted as a prescaler as in Figure 1(b) to divide down the reference frequency input. This also gives more programming flexibility since the synthesized output frequencies are functions of both M and N integers, each of which can be changed separately. As an example of fractional frequency synthesis, the two counters can be set to generate an output frequency exactly 16/3 of the input reference frequency. In this case N = 16, M = 3, and the initial f_{in} is set to approximately 16/3 times the reference frequency input. The output always will be exactly 16/3 of the input frequency as long as the PLL remains in lock.

PLL frequency synthesizers based upon Figure 1(b) find wide applications in many types of communications systems that require precisely spaced channels having narrow bandwidths which are centered around relatively high frequencies. For example, Citizens Band (CB) transceiver applications require forty channels corresponding to forty different reference frequencies, each separated by 10kHz bandwidths and centered in the 26 - 27MHz range. Channel 4 uses 27.025MHz; Channel 5 uses 27.015MHz; Channel 6 uses 27.025MHz; and so on. These frequencies could be produced by using forty different crystals - one for each channel. However, this becomes expensive and adds unnecessary complexity to the system. Frequency mixing techniques have been employed to reduce the number of crystals needed to less than one crystal per channel. For example one common mixer design uses 14 crystals for 23 channels. As a general rule, most practical approaches that use numerous crystals and mixers to produce discrete frequencies require more than one crystal for every two channel frequencies produced. As the number of channels grows large, frequency synthesis using PLLs becomes more attractive, especially since usually only one or two crystals are needed. Frequency stability of all channels will be essentially the same as that of the crystal reference frequency. Reduced system complexity, size, weight, and power consumption are key advantages of PLL synthesizers.
FRACTIONAL FREQUENCY SYNTHESIS WITH THE 564

(b) CIRCUIT IMPLEMENTATION

(a) BLOCK DIAGRAM ORGANIZATION

(c) WAVESHAPES

Figure 2
Since the function of frequency synthesizers is to generate frequencies and not to linearly decode or demodulate input signals, digital PLLs are more commonly used than analog loops.

Analog PLLs also can be used for frequency synthesis applications. The 564 is particularly well suited for these applications because the loop is open between the VCO output and the phase comparator input. Also the phase comparator input and VCO output are compatible with TTL counters.

NE564 FREQUENCY SYNTHESIS WITH CRYSTAL CONTROL

The system shown in Figure 2 has been used to generate frequencies of 5.4MHz and 21.6MHz from a 3.6MHz crystal-controlled source. This reference signal input is produced by using the crystal as the frequency determining element in the VCO of a second PLL. The thermal stability of all three frequencies will be the same as the stability afforded by the crystal. It may be necessary to place a small detuning capacitor in parallel with the crystal to precisely tune the PLL to the crystal's resonant frequency and to prevent oscillations at harmonics of the resonant frequency. The value of this tuning capacitance must always be kept considerably less than the value required to produce an f_0 without the crystal present. Otherwise the crystal will lose control and the input reference frequency will be set by the capacitor alone.

A recommendation for improved 564 operation is to utilize a divide-by-N counter in the loop which produces "square" waves for the phase comparator that have as close to a 50% duty cycle as possible. Normally counters with even N values produce square wave outputs perfectly compatible for the phase comparator. Counters for odd N values more commonly produce unsymmetrical outputs that can be less desirable inputs to the phase comparator. An easy modification to "square up" odd divide-by-N counter outputs is to insert a single toggling flip-flop stage between the counter output and the phase comparators input. This produces an effective 2N multiplication of the input frequency within the PLL. The extra factor of two is removed by a second toggle flip-flop whose input is the output from the first flip-flop. This is the same system as was previously shown in Figure 2(a) where the +N counter becomes a +2N and M = 2 for the second counter.

FSK Demodulation with the 564

The 564 PLL is particularly attractive for FSK demodulation since it contains an internal voltage comparator and VCO which have TTL compatible inputs and outputs, and it can operate from a single 5 volt power supply. Demodulated dc voltages associated with the mark and space frequencies are recovered with a single external capacitor in a dc retifier without utilizing extensive filtering networks. An internal comparator, acting as a Schmitt trigger with an adjustable hysteresis, shapes the demodulated voltages into compatible TTL output levels. The high frequency design of the 564 enables it to demodulate FSK at high data rates in excess of 1.0M baud.

Figure 3 shows a high-frequency FSK decoder designed for input frequency deviations of ± 1.0MHz centered around a freerunning frequency of 10.8MHz. The value of the tuning capacitance required was estimated from Figure 4(a) to be approximately 40pF. A trimmer capacitor was added to fine tune f_0 to 10.8MHz.

Figure 4(b) indicates that the ± 1.0MHz frequency deviations will be within the lock range for input signal levels greater than approximately 50mV with zero pin 2 bias current. While strictly this figure is appropriate only for 5MHz, it can be used as a guide for lock range estimates at other f_0 frequencies.

A more thorough analysis confirms these lock range conclusions and serves as a guide for designing other systems. The closed loop gain of the PLL is equal to the systems lock range and is found as the product of K_d and K_o, or

\[
2\omega_L = K_d K_o \nonumber
\]

\[
2\omega_L = \left(\frac{0.46 \text{ volt}}{\text{radian}} \right) \left(\frac{0.75 \text{ MHz}}{\text{volt}} \right) \nonumber \]

\[
(2\pi \times 10.8 \times 10^6 \text{ radian/ sec}) \nonumber \]

\[
2\omega_L = 3 \times 10^7 \text{ radian} \nonumber \]

\[
(\text{Lock range total}) \text{ sec} \nonumber \]

Thus pin 2 could be left as an open circuit and the internally set closed-loop gain would be adequate for tracking the mark and space input frequencies. However, to be safe, a bias adjustment as shown in Figure 3 is recommended to allow for K_d and K_o variations from device to device.

Designing for a capture range of approximately 700kHz gives a low-pass filter time constant of

\[
\omega_C = \sqrt{\frac{1}{2\pi \tau}} \nonumber \]

\[
(2\pi \times 700 \times 10^3)^2 \nonumber \]

\[
= \frac{7.38 \times 10^6}{\tau} \nonumber \]

\[
\tau = 0.775 \nonumber \]

Therefore, choose the low-pass filter capacitor as

\[
C = \frac{\tau}{0.775 \mu s} = 596 \mu F \nonumber \]

Two 300pF capacitors were selected for the design.

Capacitive coupling was used for the FSK input and is recommended to avoid dc feedback. This dc voltage would act as a dc offset to shift f_0 from 10.8MHz. Balanced biasing with the 1.0kΩ resistors from pin 7 to pins 3 and 6 also is recommended to establish symmetrical, quiescent current conditions in the limiter and phase comparator sections of the 564. The 300Ω pull-up resistor for the VCO output was found to give a rise time less than 10ns. This rise time was further reduced by adding the 1000Ω resistor between pins 9 and 11. Figure 5 shows an unmodulated 10.8MHz input signal and the VCO output. Note the approximate 90° phase lag of the VCO output.

A 0.1μF dc retifier capacitor (pin 14) has less than 1 ohm impedance at f_0 and represents a good compromise between high baud rates (~100K baud) at f_0 and higher order filtering. If very high baud rates are used, this capacitor could be made smaller with an accompanying increase in the Schmitt trigger hysteresis voltage. The hysteresis was adjusted experimentally via the 10kΩ potentiometer and 2kΩ bias arrangement to give the waveshape shown in Figure 6 for 20K, 50K, 2MHz baud rates with square wave FSK modulation. Note the magnitude and phase relationships of the phase comparators output voltages with respect to each other and to the FSK output. The high frequency sum components of the input and VCO frequency also are visible as noise on the phase comparators outputs.

The phase comparators outputs exhibit the waveshapes shown in Figure 7 when the FM input is changed from a square wave FSK modulation to a triangular sweep at a 100Hz modulation rate. The amplitude of the triangular sweep was increased from that used with square wave modulation, causing the loop to be driven in and out of lock. The loop is locked during the smooth, linear portions of the phase comparators waveshapes and locked during the remaining portions. Lock and capture frequencies were measured for a pin 2 bias current of 375μA and f_0' = 1.08MHz as:

Lock: f_1 = 6.2MHz f_2 = 16.4MHz

Capture: f_1 = 9.3MHz f_2 = 12.2MHz

When the loop is locked, the phase detectors outputs represent the demodulated FM output. When unlocked, high frequency harmonics are present, increasing in amplitude until lock is achieved.
10.8 MHz FSK DECODER USING THE 564

Figure 3

564 CHARACTERISTICS

(a) VCO TIMING CAPACITOR VERSUS FREQUENCY

(b) LOCK RANGE VERSUS INPUT SIGNAL LEVEL AND BIAS CURRENT

Figure 4
PLL INPUT AND VCO OUTPUT FOR PHASE AND FREQUENCY LOCK AT 10.8 MHz

Figure 5

PHASE COMPARATOR OUTPUTS SHOWING LOCK AND CAPTURE RANGES

Figure 7

PHASE COMPARATOR (PINS 4 AND 5) AND FSK (PIN 16) OUTPUTS FOR DATA RATES OF

(a) 20K BAUD

(b) 500K BAUD

(c) 2.0M BAUD

Figure 6

NOTE
Top trace-pin 4
Center trace-pin 5
Bottom trace-pin 16
Design Example
It is desired to design an FSK converter operating at 6MHz with deviation of ± 1%. Supply voltage is 5 volts. Input to the 564 is from a radio receiver with an amplitude of 0.5 voltsrms. Worst case S/N is 10dB. An overall loop damping factor of 0.5 is specified (1).

Using the circuit in Figure 1
First the frequency determining capacitor must be established. Using the equation

\[f_0 = \frac{1}{2\pi \times 100 \times 6 \times 10^6} \]

Therefore

\[C_0 = 66pF \]

A parallel 2-20pF trimmer and a 47pF ± 5% fixed mica capacitor is chosen.

Next, signal level versus bias current and lock range is examined.

It's now possible to determine the damping factor of the closed loop. First the natural frequency of the loop is calculated from the relationship,

\[\omega_n = \frac{\sqrt{K_0K_0}}{T} \]

where

- \(K_0 \) = VCO conversion gain in \(\frac{\text{rad/s}}{\text{volts/radian}} \)
- \(K_0 \) = Phase detector conversion gain in \(\frac{\text{volts}}{\text{rad}} \)
- \(T \) = Loop filter time constant in seconds

For \(f_0 = 6MHz \) and \(I_B = 200\mu A \), \(K_0 \) may be derived from Figure 3a by first constructing an extrapolated transfer line with slope one-quarter of the angle between the existing \(I_B = 0 \) and \(I_B = 800 \) plots. Interpolation gives \(K_0 = 14.6 \times 10^5 \text{ rad/sec at 1MHz} \) and \(K_0 = 7.2 \times 10^6 \text{ rad/sec at 6MHz} \). Multiplying \(\Delta F \) by \(2\pi \) results in \(\omega_n = 1.45 \times 10^6 \text{ rad/sec at 1MHz} \) and \(\omega_n = 2.6 \times 10^7 \text{ rad/sec at 6MHz} \). Note that the filters on pins 4 and 5 operate differentially with the net effect that break frequency is \(\omega_p = \frac{1}{RC} \) (single pole filter ~3dB freq.)

Now solving for \(\omega_n \) using (1):

\[\omega_n = \frac{\sqrt{K_0K_0}}{T} = 38ns \]

Therefore, \(K_0 = 6 \times 7.2 \times 10^6 \text{ rad/sec \cdot volt} \)

\(K_0 = 4.34 \times 10^7 \text{ rad/sec \cdot volt} \)

The damping factor specified (0.5) is now used to determine the necessary filter time constant (pins 4, 5).

\[\therefore T = \frac{1}{2\pi \sqrt{K_0K_0}} \]

\[= \frac{1}{2\pi \sqrt{6 \times 7.2 \times 10^6}} \]

\[= 38ns \]

\[= \frac{1}{(4.34 \times 10^7)^2} \]

The signal input to the 564 is specified to be 0.5 voltsrms in the lock range graph, the input level is well within the limiting region of the 564. Thus no external AM limiter circuit is required and a 10dB S/N (3:1:1 min.) should provide reliable communication with a narrow deviation of ± 1% (± 60KHz) and there is no problem with adequate lock range as it pertains to bias current. We are free to use any loop gain necessary. The bias current sinking into pin 2 is set to an initial value of 200µA.
The value of the loop filter capacitor may be determined by dividing the time constant by the value of the internal resistance 1.3K ohm.

\[C_L = \frac{\tau}{1.3K \text{ ohm}} = \frac{3.8 \times 10^{-6}}{1.3 \times 10^3} = 29\text{pF} \]

This value filter time constant will give a less-than-critically-damped response allowing the fast excursion in VCO frequency necessary to good FSK reception. The tradeoff between response speed and carrier frequency harmonic rejection will have to be considered. A longer time constant gives more carrier rejection but slower response and less damping. (Refer to equation 2.)

The next step is to test the circuit under actual operating conditions with the specified FSK signal. The level on pin 15 (hysteresis adjust) must be set in the vicinity of +1.4 volts in order to attain proper FSK demodulation. Final signal tests may be carried out with noise injected through a resistive summing network at the input (pin 6) to simulate the 10dB S/N.

Note that the loop filter response actually operates on the frequency spectrum above (+) and below (−) the carrier center frequency or center of deviation for a symmetric FM or FSK signal. This may be seen in Figure 4.

VARIATION OF THE PHASE COMPARATOR'S OUTPUT VOLTAGE VERSUS PHASE ERROR AND BIAS CURRENT (K₀)

VCO OUTPUT FREQUENCY AS A FUNCTION OF INPUT VOLTAGE AND BIAS CURRENT (K₀)

Bandpass Effect of Loop Filter

Figure 3a

Figure 3b

Figure 4
INTRODUCTION
In order to obtain a local clock signal in Multiplexed Data Transmission systems, a phase and frequency coherent method of signal extraction is required. A Master-Slave system using the quartz crystal as the primary frequency determining element in a phase lock loop VCO is used to reproduce a phase coherent clock from an asynchronous Data Stream.

The NE564, a versatile phase locked loop (PLL) operating at frequencies of 50MHz, has inputs and outputs designed to be TTL compatible. The Signetics NE564 is used to generate the phase locked, crystal-stabilized clock reference signal.

Its particular adaptation, for use with a crystal-controlled VCO instead of the usual R-C control elements, requires a brief review of the principles of the Phase Lock Loop design.

The NE564 Phase Locked Loop is a fully contained system, including limiter, phase detector, VCO, dc amplifiers, dc retiever and output comparator (reference to figure 1). For the clock regeneration system to be discussed the portions of the NE564 implemented are the input limiter, phase detector and VCO.

The signal limiter amplifies low level inputs (until saturation is reached, which is typically 60mv p-p for the NE564). The signal limiter output is fed to the phase detector, where the "unknown" input is compared to the "known" VCO frequency of the NE564. The differential error signal that is generated is fed through a dc amplifier and a voltage to current converter. The change in the current generated forces the VCO frequency to vary in its frequency and/or phase relationship, such that a θ of 90 degrees lagging is obtained (the actual phase relationship may be somewhat less than 90 degrees depending upon the KdKo (gain) product of the NE564 at the operating frequency and bias current). The external filtering incorporated at pins 4 and 5 control the dynamic frequency response and loop stability criteria.

The NE564 is a first order system; therefore, the use of single capacitors (at pins 4 and 5) will automatically create a "second order" system. An R-C series filter combination will cause a lead-lag condition that will permit dynamic selectivity, along with closed loop stability.

LOOP GAIN FUNCTIONS
The phase detector conversion gain (Kd) and the VCO conversion gain (Ko) determine, in large part, the lock range, capture range and linearity characteristics of the NE564. These device parameters are both dependent upon bias current and operating frequency. Some typical curves for each of the parameters are shown for the NE564 in figures 2 and 3. The reader should refer to the Signetics Phase Locked Loop Design and Applications Manual for a more in-depth study of these parameters and specific internal circuit configurations.

THE CLOCK REGENERATOR CIRCUIT
The basic building blocks of the clock regenerator circuit are shown in figure 4. The PLL is shown as a frequency multiplier incorporating a divide by "N" in the VCO-phase detector feedback loop (reference to the Signetics PLL Manual will provide greater in-depth explanation of a frequency multiplier). The functions of the ringing circuit and the NE527 high speed comparator will be discussed later.

The wave forms of figure 5 indicate the wave forms transmitted over a T1 line. The bipolar signal transmitted has "no" dc components induced in the transmission line (reference should be made to the effect of normal mode and common affects on signal information). When transmitted over telephone wire pairs, the resultant signal (at the receive end) will have been degraded in both waveshape and signal-to-noise ratio. Typical attenuation factors for a T1 line are -30dB per 6000 feet.

In addition, pair-to-pair cross talk can degrade signal-to-noise ratios. The energy transmitted in the bipolar system of signal transfer is centered at 772kHz (generated by the bit format).

At the receiving end the bipolar signal information is converted to a unipolar pulse train after being amplified, filtered and fed through an automatic level control circuit. Some types of PCM systems use the rectified and filtered dc (average) to control the

Figure 1
VARIATION OF THE PHASE COMPARATOR'S OUTPUT VOLTAGE VERSUS PHASE ERROR AND BIAS CURRENT

Figure 2
phase of the regenerator clock; however, in newer systems, bipolar signals are preprocessed (or preconditioned) by terminal common equipment resulting in unipolar information.

T1 Data Transmission

The bipolar signal as transmitted on a T1 line appears below with the original binary, converted unipolar and clock waveform (reference figure 5).

The bipolar signal when transmitted over standard wire pairs will be degraded both in wave shape and signal to noise by the time it reaches the signal repeater. This is due to the attenuation factor of the cable which is nearly −30dB for 6000 ft. In addition, pair to pair cross talk degrades signal to noise. The energy in the transmitted bipolar signal is centered at 772kHz due to the particular bit format. Bipolar signals have no dc offset.

At each receiving station the bipolar signal is amplified, filtered and fed through an automatic level control circuit. A full wave rectified signal is then sent to the clock regeneration circuit. This is essentially the format followed by some of the original T1 repeater equipment. The clock regeneration circuit described here could be adapted to this system.

THE T1 SPECTRUM

The bipolar signal is similar to NRZ data in that it does not contain carrier information. In order to give the PLL coherent frequency information sufficient to obtain "capture" and lock, carrier components must be obtained from the data stream. The time duration of the frequency information fed to the PLL is also important in order to obtain ac-

NOTE

The PLL clock regeneration circuit is fully compatible with NRZ data and needs no signal processing for this format.
curate and stable information to update the PLL. In order to begin the extraction of frequency information, the positive going portions of the bipolar data signals are used to drive a class “C” transistor tank circuit (reference figure 4) which is sharply tuned to the basic clock frequency (1.544MHz). Each positive half cycle of data then starts a wave train of coherent information which is phase synchronous with each succeeding positive data bit. When the L-C tank is optimally tuned, relatively extended periods without data bits can be tolerated with minimal loss of frequency and phase information. The combination of good short term frequency stability of the high “Q” L-C tank, coupled with the long term stability of the crystal controlled VCO, is the foundation of the NE564 clock regeneration system accuracy.

It must be emphasized that data pulse synchronization of the pre-processing circuit must be frequency coherent with the fundamental period of the time base to be extracted. That is, if the time period of the clock is \(T \), where \(f_0 \) is the clock frequency, then the spacing between any positive code bit sequence must be \(n \times t \) (reference figure 6).

Looking at the spectral analysis of the relative energy available to the clock extraction circuitry (with a worst case duty cycle of 1 of 16) will demonstrate the need for enhancing the particular desired frequency component before applying the signal to the Phase Lock Loop. For \(f_0 = 1.544\text{MHz} \), the period is \(T = 647.67\text{ns} \). The pulse or bit width is 323.8ns.

Here the bit duration 323.8ns = b. The Fourier expansion of the discrete spectrum is related by the following equation.

\[
F(n) = \left(\frac{a b}{T} \right) \sin \left(\frac{n \pi b}{T} \right) \quad n = 0, 1, 2, \ldots
\]

The basic frequency component resulting from various bit spacing factors is defined by the equation

\[
f = \frac{1}{T} \quad \text{where } f \leq f_0 = 1.544\text{MHz}
\]

If we consider the special case of a single pulse present out of 16 bipolar or 32NRZ periods, then

\[
T = 16 \times 647.67\text{ns} = 10.36\mu\text{sec}
\]

Looking at the spectral analysis of the relative energy available to the clock extraction circuitry (with a worst case duty cycle of 1 of 16) will demonstrate the need for enhancing the particular desired frequency component before applying the signal to the Phase Lock Loop. For \(f_0 = 1.544\text{MHz} \), the
increased in the preprocessing circuitry, the VCO phase accuracy is greatly improved. Capture time is obviously enhanced also.

The signal from the tuned tank is buffered by a FET follower N-channel enhancement mode device (reference figure 12). This provides power gain with virtually no loading on the tank circuit and avoids degrading the "Q". The buffered signal is then fed to a high speed comparator (Signetics NE527) which allows for waveform symmetry adjustment in addition to providing a standard TTL output to drive the NE564 PLL.

In the particular circuit shown in figure 12, the 1.54MHz information is applied to the phase detector input of the NE564 Phase Lock Loop. The VCO, however, is operated at four (4) times this frequency in order to take advantage of economical and readily available crystals. The VCO signal is fed through a divide-by-four counter (74LS73) to provide the Phase Detector reference and final regenerated clock signal. To avoid loading, the clock signal (1.54MHz) is buffered by the 74551 peripheral driver which provides a high speed open collector TTL output. The input signal is AC coupled in order to reduce dc bias errors in the Phase Detector caused by "O" level variations.

The Crystal
The crystal used was chosen to match the NE564 VCO drive characteristics. It is an "AT" cut oscillator crystal which operates near the anti-resonate or "parallel" mode in the lab. The pulling effect of the crystal is adequate to drive the NE564 PLL.

In the particular circuit shown in figure 12, the 1.54MHz information is applied to the phase detector input of the NE564 Phase Lock Loop. The VCO, however, is operated at four (4) times this frequency in order to take advantage of economical and readily available crystals. The VCO signal is fed through a divide-by-four counter (74LS73) to provide the Phase Detector reference and final regenerated clock signal. To avoid loading, the clock signal (1.54MHz) is buffered by the 74551 peripheral driver which provides a high speed open collector TTL output. The input signal is AC coupled in order to reduce dc bias errors in the Phase Detector caused by "O" level variations.

NE 564 CRYSTAL CONTROLLED VCO
As shown in figure 8, the crystal is operated with a series capacitor. When properly trimmed, this allows the crystal to operate near the series resonant mode. A crystal manufactured to operate in the series resonant mode will do so only if it sees a pure resistance looking into the oscillator terminals. The circuit below shows an oscillator which looks inductive with the equivalent crystal circuit and trimmer capacitor C1 (reference figure 9).

If L0 is small and the internal gain of the device high over a wide frequency range, L0 may resonate with the C0 of the crystal at a very high frequency. Under certain conditions the circuit may even tend to operate in the 3rd overtone mode unless measures are taken to roll off the circuit gain. This is the purpose of C6 in figure 8. Since the gain of the VCO is a factor in spurious oscillation, the current injected into pin 2 will also have an effect in this respect. (K0 increases with I0). At higher operating frequencies this parameter may become more critical in attaining stable start ups in the desired frequency mode. Obviously the size of C6 must be smaller than the value needed to cause free running near the desired frequency without the crystal connected.

CRYSTAL SPECIFICATION
Crystals may be manufactured to operate in either the series mode with no external capacitance (purely resistive load) or in the parallel mode with a specified value of load capacitance. The 564 tends to operate at a frequency above the specified value when a series mode crystal is used. For a design frequency of 6.178000MHz and zero load capacitance. Referring to figure 8, for C6 = 10pF and C7 = 10pF the average center frequency for an NE564 sample measured in the lab was 6181.192kHz. For the same C6 but with C7 equal to 60pF, f0 measured 6176.685kHz. A second crystal showed a spread of 6178.600kHz to 6180.655kHz. The effect of the VCO was to pull the xtal to a frequency above its design value. This effect is then nearly tuned out by the external capacitances C6 and C7. If C7 is sufficiently increased, the crystal will see a purely resistive load and operate at its rated frequency.

A second approach is to specify a crystal which is to operate near the anti-resonate or parallel mode. Normally this is done with a certain value of external load capacitance specified by the customer which matches the existing circuit parameters. The maximum difference between series and parallel resonance for any crystal is 0.5% of f0 (series resonant mode). For f0 = 6.126MHz, 0.5% of f0 = 30kHz. The usual value would be lower than this. (f0 = f0/f0 + f0 = electromechanical coupling factor, f0 = parallel resonant frequency). The particular cut of the crystal material determines the drift response over temperature. For oscillator applications the AT cut offers the best overall stability over a wide frequency and temperature range. Final design uses second approach.

For a stability or total tolerance of ±15ppm over the rated operating range of −20°C to +70°C, a certain manufacturer's crystal actually performed as shown above. (Refer to figure 11.)

Calibration accuracy is the allowable frequency tolerance at the reference temperature, i.e. ±10ppm @ 25°C

Third is a long term drift spec which determines the customer's maximum allowable drift due to aging effects. An acceptable value in quality crystals is ±2ppm/year.

Using our reference crystal of 6.176MHz and the above specifications, the crystal limits over a 1 year period would be:

Temperature stability: ±15ppm x 6.176 = ±93Hz
Calibration tolerance: ±10ppm x 6.176 = ±62Hz
@ 25°C Long term drift: ±2ppm x 1 x 6.176 = ±12Hz
Total: (±167Hz)

The above figure of ±167Hz then determines the capture and lock range over which
with proper voltage applied (1), first check
regulated supply voltage of +5 and -6
volts are required. Current drain on the +5V
line is ~ 100mA, and 6mA for the -6V.
With proper voltage applied (1), first check
the supply currents to be sure they are in the
ringing circuit with a scope connected to the
source of the SD213 (figure 15).

The waveform should appear as in figure 17.
(6), adjust tank trimmer cap C7 for a maxi-
mum amplitude and note that the cycle peri-
od should be 647 nanoseconds. (7), Now
monitor the comparator output signal at pin
7 and adjust R4 for a 50% duty cycle. The
same signal will appear at pin 5 of the
NE527 except it will be inverted. The signal
on pin 7 of the NE527 and pin 6 of the NE564
should appear as shown in figure 19. Now
attach one lead of a dual trace scope to pin
7 of the NE527 and the other to pin 3 of the
NE564 as shown (figure 18).

The two signals should be in phase lock with
an approximate 90° differential as shown in
figure 20 (data signal applied to input @ 1.544MHz). If lock does not occur, a slight
trimming of the crystal trimmer C7 should
correct for slight differences in master to
slave crystal tolerance. It is recommended
that master and slave crystals be of the ex-
sact same design and specification to insure
optimal tracking over time and temperature.
A recommended manufacturer and part num-
ber appears at the end of this application
note for your convenience.

Once lock is attained, move one lead of the
dual trace scope to the buffered output of the
75451 pin 3, leaving the other scope
probe on pin 6 of the NE564. The phase
locked waveform should appear as in figure
25. If a data word generator is being used,
you may check overall operation for various
bit patterns by synchronizing the scope trig-
ger on the "end of word" pulse, then observe
the phase error effect as different combina-
tions are fed in.

PHASE JITTER
When operating with real time A-D data transmis-
sion, the PLL loop filters must be
optimized to minimize regenerated clock jitter.
A good grade of mylar capacitor is rec-
ommended as connected to pins 4 and 5 of
the NE564. A simple pair of shunt connected
loop filter caps of 0.33 µF to 0.76µF was
found to be adequate.

CRYSTAL SPECIFICATIONS

AT CUT OSCILLATOR TYPE

Fundamental mode operation HC-33 Case
(Standard)

Calibration tolerance:
± 10ppm @ 25°C

Temperature stability:
± 15ppm; -15°C to +65°C

Circuit operating condition:
Parallel resonance

Frequency specified: 6.176000MHz

Part designation:
Croven #A330 DEF-32 or equivalent

two crystal stabilized VCO's must track un-
der worst case conditions when the exact
same crystal specifications are used for
master and slave units within an operational
system.

Set-up Procedure

Referring to figure 12, the following set-up
procedure will aid the user in establishing
proper circuit operation.

Regulated supply voltage of +5 and -6
volts are required. Current drain on the +5V
line is ~ 100mA, and 6mA for the -6V.

With proper voltage applied (1), first check
the supply currents to be sure they are in the
range indicated above. (2), check the oper-
ation of the NE564 VCO by looking at pin 9
with an oscilloscope (see figure 13). A rea-
sonably symmetric square wave should be
present, having a frequency near 6.1MHz.

(3), attach a DVM across the 2K resistor
which feeds pin 2 of the NE564 and adjust
for a reading of 2.00 volts, indicating a 1
milliampere dc current flowing into pin #2.

(The (+) lead of the DVM should be con-
ected to the end of the 2K resistor which
ties to the wiper of the 10K pot and the (-)
lead to pin 2 of the 564. Reference figure
14).

(4), the exact center frequency is set by
adjusting C7, the crystal trimmer cap, for ex-
actly 6.176000MHz with no signal input
(This sets the center frequency of the VCOXO
to free run in the center of the capture
range.).

(5), enable strobe 'A' and 'B' with a +2.7V
min. to +5V max. level. Apply a standard
1.544MHz NRZ data signal to the input ter-

minal, terminated in 50 ohms. The amplitude
should be +3 to +6V (0 to peak). Set the
duty cycle for 1 bit in a 16 bit period. Note
the data generator must be driven from a
crystal controlled master oscillator also
adjusted for a center data rate of 1.544
000MBS. Monitor the buffered output of the

Note for your convenience.

Figure 10

Figure 11
DATA TRANSMISSION SYSTEM CLOCK REGENERATOR

Figure 12

C_i = 22pF SILVER MICA
C_C = 18pF SILVER MICA
C_T = 1.8pF TRIMMER
XTAL = CRVEN A330 DEF-32
AT' CUT OSCILLATOR
CRYSTAL f_c = 6.17000MHz

1.544MHz

VCO

0.5V

3V

2N2366

G

S0213

1K

+5V

4700

4700

75451

+4

+5V

10

10K

2K

100K

1K

1K

1K

1K

510K

1.544MHz

BUFFER AMP

STROBE 'A'

STROBE 'B'

DRIVE SIGNAL MONITOR TEST POINT

XTAL

74LS73

+4

1.544MHz

BUFFERED OUTPUT

C_R = 18pF SILVER MICA
C_C = 18pF SILVER MICA
C_T = 1.8pF TRIMMER
XTAL = CRVEN A330 DEF-32
AT' CUT OSCILLATOR
CRYSTAL f_c = 6.17000MHz
CHECK VCO FREERUNNING FREQUENCY AND OUTPUT WAVESHAPE

Figure 13

RINGING CIRCUIT RESPONSE
(1 DATA PULSE IN 16)

Figure 17

RINGING CIRCUIT TO SQUARE WAVE CONVERSION

Figure 19

RINGING CIRCUIT RESPONSE
(4 DATA PULSES IN 16)

Figure 18

PHASE COMPARATOR SIGNALS
(IN LOCK)

Figure 20
REGENERATED CLOCK SIGNALS

Figure 21

REGENERATED CLOCK SIGNALS

Figure 22

REGENERATED CLOCK SIGNALS RELATIVE TO NE564 VCO SIGNAL

Figure 23

REGENERATED CLOCK SIGNAL RELATIVE TO NE564 VCO SIGNAL

Figure 24

REGENERATED CLOCK SIGNAL RELATIVE TO RANDOM NRZ DATA SIGNAL

Figure 25

References
1. "Fourier Analysis" by Hwei P. Hsu. Simon & Schuster Tech Outlines
2. "Pulse and Digital Circuits" by Millman and Taub McGraw Hill

AN182
CIRCUIT DESCRIPTION OF THE NE565 PLL

The 565 is a general purpose PLL designed to operate at frequencies below 1MHz. The loop is broken between the VCO and phase comparator to allow the insertion of a counter for frequency multiplication applications. With the 565, it is also possible to break the loop between the output of the phase comparator and the control terminal of the VCO to allow additional stages of gain or filtering. This is described later in this section.

The VCO is made up of a precision current source and a non-saturating Schmitt trigger. In operation, the current source alternately charges and discharges an external timing capacitor between two switching levels of the Schmitt trigger, which in turn controls the direction of current generated by the current source.

A simplified diagram of the VCO is shown in Figure 1. i_1 is the charging current created by the application of the control voltage V_C. In the initial state, Q_3 is off and the current I_1 charges capacitor C_1 through the diode D_2. When the voltage on C_1 reaches the upper triggering threshold, the Schmitt trigger changes state and activates the transistor Q_3. This provides a constant sink and essentially grounds the emitters of Q_1 and Q_2. The charging current I_1 now flows through D_1, Q_1 and Q_3 to ground. Since the base-emitter voltage of Q_2 is the same as that of Q_1, an equal current flows through Q_2. This discharges the capacitor C_1, until the lower triggering threshold is reached at which point the cycle repeats itself. Because the capacitor C_1 is charged and discharged with the constant current I_1, the VCO produces a triangle wave form as well as the square wave output of the Schmitt trigger.

The complete circuit for the 565 is shown in Figure 2. Transistors Q_1-Q_7 and diodes D_1-D_3 form the precision current source. The base of Q_1 is the control voltage input to the VCO. This voltage is transferred to pin 8 where it is applied across the external resistor R_1. This develops a current through R_1 which enters pin 8 and becomes the charging current for the VCO. With the exception of the negligible Q_1 base current, all the current that enters pin 8 appears at the anodes of diodes D_2 and D_3. When Q_8 (controlled by the Schmitt trigger) is on, D_3 is reverse biased and all the current flows through D_2 to the duplicating current source Q_5-Q_7, R_5-R_7 and appears as the capacitor discharge current at the collector of Q_5. When Q_8 is off, the duplicating current source Q_5-Q_7, R_5-R_7 floats and the charging current passes through D_2 to charge C_1.

The Schmitt trigger (Q_1, Q_2) is driven from the capacitor triangle wave form by the emitter follower Q_9. Diodes D_6-D_8 prevent saturation of Q_11 and Q_12, enhancing the switching speed. The Schmitt trigger output is buffered by emitter follower Q_{13} and is brought out to pin 4, and is also connected back to the current source by the differential amplifier (Q_{14}-Q_{16}).

When operated from dual symmetrical supplies, the square wave on pin 4 will swing between a low level of slightly 0.2V below ground to a high level of one diode voltage drop (0.7V) below the positive supply. The triangle wave form on pin 9 is approximately centered between the positive and negative supplies and has an amplitude of 2V with supply voltages of ±5V. The amplitude of the triangle waveform is directly proportional to the supply voltages.

The phase comparator is again of the doubly-balanced modulator type. Transistors Q_{20} and Q_{24} form the signal input stage, and must be biased externally. If dual symmetrical supplies are used, it is simplest to bias Q_{20} and Q_{24} through external resistors to ground. The switching stage Q_{18}, Q_{19}, Q_{22} and Q_{23} is driven from the Schmitt trigger via pin 8 and D_{11}. Diodes D_{12} and D_{13} limit the phase comparator output, and differential amplifier Q_{26} and Q_{27} provides increased loop gain.

The loop low pass filter is formed with an external capacitor (connected to pin 7) and the collector resistance R_{24} (typically 3.6kΩ). The voltage on pin 7 becomes the error voltage which is then connected back to the control voltage terminal of the VCO (base of Q_1). Pin 8 is connected to a tap on the bias resistor string and provides a reference voltage which is nominally equal to the output voltage on pin 7. This allows differential stages to be both biased and driven by connecting them to pins 6 and 7.

The free-running center frequency of the 565 is adjusted by means of R_1 and C_1 and is given approximately by

$$f_0 \approx \frac{1.2}{4R_1C_1}$$ (1)

When the phase comparator is in the limiting mode ($V_{in} \geq 200$ mV p-p), the lock range can be calculated from the expression:

$$2\omega_L = 2K_vK_dA\theta_d$$ (2)

where K_v is the VCO conversion gain, K_d is the phase comparators conversion gain, A is the amplifier gain, and θ_d is the maximum phase error over which the loop can remain in lock. Specific values for the terms of Equation 2 for the 565 are

$$K_v = \frac{1.4}{\pi} \text{ volts/radian}$$ (3)

$$A = 1.4$$ (4)

$$\theta_d = \frac{\pi}{2} \text{ radians}$$ (5)

$$K_d = \frac{50 f_0}{V_{CC}} \text{ radian/Volt-sec}$$ (6)

where V_{CC} is the total supply voltage applied to the circuit.
The tracking range for the 565 then becomes:

\[f_L = \pm \frac{v_L}{2\pi} = \pm \frac{8f_c}{V_{CC}} \text{ Hz.} \]

(7)

to each side of the free-running frequency, or a total lock range of:

\[2f_L = \frac{16f_c}{V_{CC}} \text{ Hz} \]

(8)

The capture range, over which the loop can acquire lock with the input signal is given approximately by:

\[2\omega_C = 2\sqrt{\frac{2\pi f_L}{\tau}} \]

(9)

where \(\omega_L \) is the one-sided tracking range

\[\omega_L = 2\pi f_L \]

(10)

and \(\tau \) is the time constant of the loop filter

\[\tau = RC_2 \]

(11)

The lock-in range can be written as:

\[f_C = \pm \frac{1}{2\pi} \sqrt{\frac{2\pi f_L}{\tau}} = \pm \frac{1}{2\pi} \sqrt{\frac{32\pi f_c^2}{V_{CC}}} \]

(12)

to each side of the free-running frequency or a total capture range of:

\[f_C = \frac{1}{2\pi} \sqrt{\frac{32\pi f_c^2}{\tau V_{CC}}} \]

(13)

This approximation works well for narrow capture ranges \(f_C = 1/3f_c \) but becomes too large as the limiting case is approached \(f_C = f_L \).

When it is desired to operate the 565 out of its limiting mode \(V_{in} < 200 \text{mV p-p} \) or \(32 \text{mV rms} \), \(K_d \) can be estimated from the graph in Figure 3 for the specific input voltage anticipated.

The previous calculations for the lock and capture ranges remain valid with the new value of \(K_d \) from the graph being used to replace the \(K_dA \) product in Equation 2. In Figure 3, the dc amplifier gain \(A \) has been included in the \(K_d \) value.

For applications where both a narrow lock range and a large output voltage swing are required, it is necessary to inject a constant current into pin 8 and increase the value of \(R_1 \). One scheme for this is shown in Figure 4.

The basis for this scheme is the fact that the output voltage controls only the current through \(R_1 \) while the current through \(Q_1 \) remains constant. Thus, if most of the charging current is due to \(Q_1 \), the total current can be varied only a small amount due to the small change in current through \(R_1 \). Consequently, the VCO can track the input signal over a small frequency range yet the output voltage of the loop (control voltage of the VCO) will swing its maximum value.

Diode \(D_1 \) is a Zener diode, used to allow a larger voltage drop across \(R_4 \) than would otherwise be available. \(D_4 \) is a diode which should be matched to the emitter-base junction of \(Q_1 \) for temperature stability. In addition, \(D_1 \) and \(D_2 \) should have the same breakdown voltages and \(D_3 \) and \(D_4 \) should be similar so that the voltage seen across \(R_B \) and \(R_C \) is the same as that seen across pins 10 and 1 of the phase locked loop. This causes the frequency of the loop to be insensitive to power supply variations. The free-running frequency can be found by:

\[f_0' = \frac{2RV_B}{(R_B + R_C) R_A C_1 + 4R_1 C_1} \text{ Hz} \]

(14)

and the total range is given by:

\[2f_L = \frac{22.4V_D (R_B + R_C) R_A C_1}{\left(|V_1| + |V_2| + V_D - V_D (R_B R_1 + R_A R_B + R_C) \right)} \text{ Hz} \]

(15)

where \(V_D \) is the forward biased diode voltage \((\approx 0.7 \text{V}) \), \(V_2 \) is the zener diode breakdown voltage, \(V_1 \) is the positive supply voltage, and \(V_2 \) is the negative supply voltage.

The circuit diagram of the NE565 PLL is shown in Figure 2.
When the output excursion at pin 7 need be only a volt or so, diodes D₁, D₂, and D₃ may be replaced by short circuits. The value of R₁ can be selected to give a prescribed output voltage for a given frequency deviation.

\[R₁ = R_A(\frac{R_B + R_D}{2}) \frac{I₀}{(V₁ + |V₂| - 0.7)} \Delta f \]

where \(\Delta f \) is the desired frequency deviation per volt of output.

In most instances, \(R_B \) and \(R_A \) are chosen to be equal so that the voltage drop across them is about 200mV. For best temperature stability, diode D₁ should be a base-collector shorted transistor of the same type as Q₁.

When the 565 is connected normally, feedback to the VCO from the phase comparator is internal. That is, an amplifier makes the pin 8 voltage track the pin 7 (phase comparator output) voltage. Since the capacitor C₁, charge current is determined by the current through resistance R₁, the frequency is a function of the voltage at pin 8. It is possible, however, to bypass and swamp the internal loop amplifier so that the current into pin 8 is no longer a function of the pin 8 voltage but only of the pin 7 voltage. This makes a greater charge-discharge current variation possible, allowing a greater lock range. Figure 5 shows such a circuit in which the µA741 operational amplifier is set for a differential gain of 5, feeding current to pin 8 through the 33KΩ resistor (simulating a current source). Not only is the tracking range greatly expanded, but the output voltage as a function of frequency is five times greater than normal. In setting up such a circuit, the designer should keep in mind that for best frequency stability, the charge-discharge current should be in the range of 50 to 1500µA which also specifies the pin 8 input current range, showing that a ratio of upper to lower lock extremes of about 30 can be achieved.

Many times it would be advantageous to be able to break the feedback connection between the output (pin 7) and the control voltage terminal (Q₁) of the VCO. This can be easily done once it is seen that it is the current into pin 8 which controls the VCO frequency. Replacing the external resistor R₁ with a current source, such as the Figure 6, effectively breaks the internal voltage feedback connection. The current flowing into pin 8 is now independent of the voltage on pin 8. The output voltage (on pin 7) can now be amplified or filtered and used to drive the current source by a scheme such as that shown in Figure 6. This scheme allows the addition of enough gain for the loop to stay in lock over a 100:1 frequency range, or conversely, to stay in lock with a precise phase difference (between input and VCO signals) which is almost independent of frequency variation. Adjustment of the voltage to the non-inverting input of the op amp, together with a large enough loop gain allows the phase difference to be set at a constant value between 0° and 180°. In addition, it is now possible to do special filtering to improve the performance in certain applications. For instance, in frequency multiplication applications it may be desirable to include a notch filter tuned to the sum frequency component to minimize incidental FM without excessive reduction of capture range.
CIRCUIT DESCRIPTION OF THE NE565 PLL

Figure 5

EXPANDED LOCK RANGE CONFIGURATION FOR THE 565

Figure 6

INCREASED LOOP GAIN AND LOCK RANGE FOR THE 565

AN183
FSK DEMODULATION
FSK refers to data transmission by means of a carrier which is shifted between two preset frequencies. This frequency shift is usually accomplished by driving a VCO with the binary data signal so that the two resulting frequencies correspond to the "0" and "1" states (commonly called space and mark) of the binary data signal.

FSK Demodulation with the 565
A simple scheme using the 565 to receive FSK signals of 1070Hz and 1270Hz is shown in Figure 1. As the signal appears at the input, the loop locks to the input frequency and tracks it between the two frequencies with a corresponding dc shift at the output (pin 7).

The loop filter capacitor C2 is chosen to set the proper overshoot on the output and a three-stage RC ladder filter is used to remove the sum frequency components. The band edge of the ladder filter is chosen to be approximately half-way between the maximum keying rate (300 baud or bits per second, or 150Hz). The free-running frequency should be adjusted (with R1) so that the dc voltage level at the output is the same as that at pin 6 of the loop. The output signal can now be made logic compatible by connecting a voltage comparator between the output and pin 6.

The input connection is typical for cases where a dc voltage is present at the source and, therefore, a direct connection is not desirable. Both input terminals are returned to ground with identical resistors (in this case, the values are chosen to achieve a 600Ω input impedance).

A more sophisticated approach primarily useful for narrow frequency deviations is shown in Figure 2. Here, a constant current is injected into pin 8 by means of transistor Q1. This has the effect of decreasing the lock range and increasing the output voltage sensitivity to the input frequency shift. The basis for this scheme is the fact that the output voltage (control voltage for the VCO) controls only the current through R1, while the current through Q1 remains constant. Thus, if most of the capacitor charging current is due to Q1, the current variation due to R1 will be a small percentage of the total charging current and, consequently, the total frequency deviation of the VCO will be limited to a small percentage of the center frequency. A 0.25µF loop filter capacitor gives approximately 30% overshoot on the output pulse, as seen in the accompanying photographs. Figure 3 shows the output of the µA710 comparator and the output of the 565 phase locked loop.
Figure 3

(a) 100 BAUD

LOGIC OUTPUT (5V/CM)

PLL OUTPUT AFTER FILTER (200 mV/CM)

(b) 200 BAUD

LOGIC OUTPUT (5V/CM)

PLL OUTPUT AFTER FILTER (200 mV/CM)

(c) 300 BAUD

LOGIC OUTPUT (5V/CM)

PLL OUTPUT AFTER FILTER (200 mV/CM)
SCA Demodulator Using the 565

This application involves demodulation of a frequency modulated subcarrier of the main channel. A popular example here is the use of the PLL to recover the SCA (Subsidiary Carrier Authorization or storedcast music) signal from the combined signal of many commercial FM broadcast stations. The SCA signal is a 67kHz frequency modulated subcarrier which puts it above the frequency spectrum of the normal stereo or monaural FM program material. By connecting the circuit of Figure 5.14 to a point between the FM discriminator and the de-emphasis filter of a commercial band (home) FM receiver and tuning the receiver to a station which broadcasts an SCA signal, one can obtain hours of commercial free background music.

![SCA Decoder Diagram](image)
CIRCUIT DESCRIPTION OF THE 566 PLL

The 566 is the voltage controlled oscillator portion of the 565. The basic die is the same as that of the 565; modified metalization is used to bring out only the VCO. The 566 circuit diagram is shown in Figure 1. Transistor Q18 provides a buffered triangle waveform output. (The triangle waveform is available at capacitor C1 also, but any current drawn from pin 7 will alter the duty cycle and frequency.) The square wave output is available from Q19 by pin 4. The circuit will operate at frequencies up to 1 MHz and may be programmed by the voltage applied on the control terminal (pin 5), by injecting current into pin 6, or by changing the value of the external resistor and capacitor (R1 and C1).

Figure 1
WAVEFORM GENERATORS

The oscillator portion of many of the PLLs can be used as a precision, voltage-controllable waveform generator. Specifically, the 566 Function Generator contains the oscillator of the 565 PLL. Most of the applications which follow are designs using the 566. Many of these designs can be modified slightly to utilize the oscillator section of the 564 if higher frequency performance is desired.

Ramp Generators

Figure 1 shows how the 566 can be wired as a positive or negative ramp generator. In the positive ramp generator, the external transistor driven by the pin 3 output rapidly discharges \(C_1 \) at the end of the charging period so that charging can resume instantaneously. The pnp transistor of the negative ramp generator likewise rapidly charges the timing capacitor \(C_1 \) at the end of the discharge period. Because the circuits are reset so quickly, the temperature stability of the ramp generator is excellent. The period is \(\frac{1}{2} f_0 \), where \(f_0 \) is the 566 free-running frequency in normal operation. Therefore,

\[
T = \frac{1}{2f_0} = \frac{R_T C_1 V_{CC}}{5(V_{CC} - V_C)}
\]

where \(V_C \) is the bias voltage at pin 5 and \(R_T \) is the total resistance between pin 6 and \(V_{CC} \). Note that a short pulse is available at pin 3. (Placing collector resistance in series with the external transistor collector will lengthen the pulse.)

Sawtooth and Pulse Generator

Figure 2 shows how the pin 3 output of the 566 can be used to provide different charge and discharge currents for \(C_1 \) so that a sawtooth output is available at pin 4 and a pulse at pin 3. The pnp transistor should be well saturated to preserve good temperature stability.

The charge and discharge times may be estimated by using the formula

\[
T = \frac{R_T C_1 V_{CC}}{5(V_{CC} - V_C)}
\]

where \(R_T \) is the combined resistance between pin 6 and \(V_{CC} \) for the interval considered.

Triangle to Sine Converters

Conversion of triangle wave shapes to sinusoids is usually accomplished by diode-resistor shaping networks, which accurately reconstruct the sine wave segment by segment. Two simpler and less costly methods may be used to shape the triangle waveform of the 566 into a sinusoid with less than 2% distortion.

In Figure 3, the non-linear \(I_D = V_D \) transfer characteristic of a p-channel junction FET is used to shape the triangle waveform.
The amplitude of the triangle waveform is critical and must be carefully adjusted to achieve a low distortion sinusoidal output. Naturally, where additional waveform accuracy is needed, the diode-resistor shaping scheme can be applied to the 566 with excellent results since it has very good output amplitude stability when operated from a regulated supply.

Single Tone Burst Generator

Figure 4 is a tone burst generator which supplies a tone for one-half second after the power supply is activated; its intended use is a communications network alert signal. Cessation of the tone is accomplished at the SCR, which shunts the timing capacitor \(C_1 \) charge current when activated. The SCR is gated on when \(C_2 \) charges up to the gate voltage which occurs in 0.5 seconds. Since only 70\(\mu \)A are available for triggering, the SC must be sensitive enough to trigger at this level. The triggering current can be increased, of course, by reducing \(R_2 \) and increasing \(C_2 \) to keep the same time constant. If the tone duration must be constant under widely varying supply voltage conditions, the optional Zener diode regulator circuit can be added, along with the new value for \(R_2 \), \(R_2' = 82k\Omega \).

If the SCR is replaced by an npn transistor, the tone can be switched on and off at will at the transistor base terminal.

TRIANGLE-TO-SINE CONVERTERS

Low Frequency FM Generators

Figure 5 shows FM generators for low frequency (less than 0.5MHz center frequency) applications. Each uses a 566 function generator as a modulation generator and a second 566 as the carrier generator. Capacitor \(C_1 \) selects the modulation frequency adjustment range and \(C_1' \) selects the center frequency. Capacitor \(C_2 \) is a coupling capacitor which only needs to be large enough to avoid distorting the modulating waveform.

If a frequency sweep in only one direction is required, the 566 ramp generators given in this section may be used to drive the carrier generator.
FREQUENCY MODULATED GENERATORS

(a) SMALL FREQUENCY DEVIATIONS TO $\pm 20\%$

(b) LARGE FREQUENCY DEVIATIONS TO $\pm 100\%$

CIRCUIT DESCRIPTION OF THE 567 TONE DECODER

The 567 is a PLL designed specifically for frequency sensing or tone decoding. The 567 has a controlled oscillator, a phase comparator and a second auxiliary or quadrature phase detector. In addition, however, it contains a power output stage which is driven directly by the quadrature phase detector output. During lock, the quadrature phase detector drives the output stage on, so the device functions as a tone decoder or frequency relay. The tone decoder free-running frequency and bandwidth are specified by the free-running frequency and capture range of the loop portion. Since a tone decoder, by definition, responds to a stable frequency, the lock or tracking range is relatively unimportant except as it limits the maximum attainable capture range. The complete circuit diagram of the 567 is shown in Figure 1.

The current controlled oscillator is shown in simplified form in Figure 2. It provides both a square wave output and a quadrature output. The control current \(I_c \) sweeps the oscillator \(\pm 7\% \) of the free-running frequency, which is set by external components \(R_1 \) and \(C_1 \). Transistors Q1 through Q6 form a flip-flop which can switch pin 5 between \(V_{BE} \) and \(V_{BE} \). Thus, the \(R_1C_1 \) network is driven from a square wave of \(+V - 2V_{BE} \) peak-to-peak volts. On the positive portion of the square wave, \(C_1 \) is charged through \(R_1 \) until \(V_1 \) is reached. A comparator circuit driven from \(C_1 \) at pin 6 then supplies a pulse which resets the flip-flop so that pin 5 switches to \(V_{BE} \) and \(C_1 \) is discharged until \(V_2 \) is reached. A second comparator then supplies a pulse which sets the flip-flop and \(C_1 \) resumes charging.

The total swing of the capacitor voltage, as determined by the comparator sensing voltages, is

\[
V_1 - V_2 = (V - 2V_{BE})\left[\frac{R_{22} + R_{23}}{R_{21} + R_{22} + R_{23} + R_{24}}\right] = K (V - 2V_{BE})
\]

Due to the excellent matching of integrated resistors, the resistor ratio \(K \) may be considered constant. Figure 3 shows the pin 5 and pin 6 voltages during operation. It is obvious from the proportion that \(t_1 + t_2 \) is independent of the magnitude of \(+V \) and dependent only on the time constant \(R_1C_1 \) of the external components. Moreover, if \((V_1 + V_2)/2 = +V/2 \), then \(t_1 = t_2 \) and the duty cycle is 50%. Note that the triangular waveform is phase shifted from the square wave.
A differential stage (Q22 and Q23) amplifies the triangular wave with respect to \((V_1 + V_2)/2\) to provide the quadrature output. Due to the exponential distortion of the triangle wave, the quadrature output is actually phase shifted about 80°, but no operating compromises result from this slight deviation from true quadrature.

One source of error in this oscillator scheme is current drawn by the comparators from the \(R_1C_1\) mode. An emitter follower, therefore, is inserted at \(X\) to minimize this drain, and Q21 placed in series with Q20 to drop the comparator sensing voltage one \(V_{BE}\) to compensate for the \(V_{BE}\) drop in the emitter follower.

In order to insure that the square wave drops quickly and accurately to \(V_{EE}\), an active clamp scheme is applied to the collector of Q2. The base of Q3 is held at 2 \(V_{BE}\) so that as Q2 is turned on its base current, its collector is held at \(V_{BE}\). Because Q2 and Q3 have the same geometry and their base-emitter voltages are the same, the maximum Q2 current when clamped is essentially the same as the collector current of Q3 (as limited by \(R_5\)). The flip-flop was optimized for maximum switching speed to reduce frequency drift due to switching speed variations.

Current control of the frequency is achieved by making \(R_{21}\) somewhat less than \(R_{24}\) and restoring the proper voltage for 50%
duty cycle by drawing \(I_c \) of 100\(\mu \)A for the \(R_{21}, Q_{20} \) joint. When \(I_c \) is then varied between 0 and 200\(\mu \)A, the frequency changes by ±7%. Because of the slight shift in the voltage levels \(V_1 \) and \(V_2 \) with \(I_c \), the square wave duty cycle changes from about 47% to about 53% over the control range. To avoid drift of free-running frequency with temperature and supply voltage changes when \(I_c \) ≠ 0, \(I_c \) is also made a function of \(+V - 2 V_{BE} \).

A doubly balanced multiplier formed by \(Q_{32} \) through \(Q_{37} \) (Figure 1) functions as the phase comparator. The input signal is applied to the base of \(Q_{32} \). Transistors \(Q_{34}-Q_{37} \) are driven by a square wave taken from the CCO at the collector of \(Q_{2} \). Phase comparator input bias is provided by three diodes, \(Q_{38} \) through \(Q_{40} \), connected in series, assuring good bias voltage matching from run to run. Emitter resistors \(R_{38} \) and \(R_{39} \), in addition to providing the necessary dynamic range at the input, help stabilize the gain over the wide temperature range.

The loop dc amplifier is formed by \(Q_{51} \) and \(Q_{52} \). Having a current gain of 8, it permits even a small phase detector output to drive the CCO the full ±7%. Therefore, full detection bandwidth can be obtained for any in-band input signal greater than about 70mV rms. However, the main purpose of high loop gain in the tone decoder is to keep the locked phase as close to \(\pi/2 \) as possible for all but the smallest input levels since this greatly facilitates operation of the quadrature lock detector. Emitter resistors \(R_{36} \) and \(R_{37} \) help stabilize the gain over the required temperature range. Another function of the dc amplifier is to allow a higher impedance level at the low pass filter terminal (pin 2) so that a smaller capacitor can be used for a given loop cutoff frequency. Once again, emitter resistors help stabilize the loop gain over the temperature range.

The quadrature phase detector (OPD), formed by a second doubly-balanced multiplier \(Q_{42}-Q_{47} \), is driven from the quadrature output \((\text{E, F}) \) in Figure 1 of the CCO. The signal input comes from the emitters of the input transistors \(Q_{32} \) and \(Q_{33} \).

The output stage, \(Q_{53} \) through \(Q_{62} \), compares the average OPD current in the low pass output filter \(R_{3} C_{3} \) with a temperature compensated current in \(R_{39} \) (forming the threshold voltage \(V_{T} \)).

Since \(R_{3} \) is slightly lower in value than \(R_{39} \), the output stage is normally off. When the lock and the OPD current \(I_q \) occurs, pin 1 voltage drops below the threshold voltage \(V_{T} \) and the output stage is energized.

The uncommitted collector (pin 8) of the power npn output transistor can drive both 100 - 200mA loads and logic elements, including TTL.

The \(K_{o} \) conversion gain for the 567 tone decoder is given by

\[
K_{o} = 0.44 \omega_{o} \frac{\text{volts}}{\text{sec}} \quad (2)
\]

while the \(K_{o} \) conversion gain depends upon the input signal level as shown in Figure 4. These parameters can be used to calculate the lock and capture range as has been illustrated previously.

The 567 tone decoder is a specialized loop which can be set up to respond to a given tone (constant frequency) within its bandwidth. The free-running frequency is set by a resistor \(R_{1} \) and capacitor \(C_{1} \). The bandwidth is controlled by the low pass filter capacitor \(C_{2} \). A third capacitor \(C_{3} \) integrates the output of the quadrature phase detector (QPD) so that the dc lock-indicating component can switch the power output stage on when lock is present. The 567 is optimized for stability and predictability of free-running frequency and bandwidth.

Two events must occur before an output is given. First, the loop portion of the 567 must achieve lock. Second, the output capacitor \(C_{2} \) must charge sufficiently to activate the output stage. For minimum response time, these events must be as brief as possible. As previously discussed, the lock time of a loop can be minimized by reducing the response time of the low pass filter. Thus, \(C_{2} \) must be as small as possible. However, \(C_{2} \) also controls the bandwidth. Therefore, the response time is an inverse function of bandwidth as shown by Figure 5, reprinted from the 567 data sheet. The upper curve denotes the expected worst-case response time when the bandwidth is controlled solely by \(C_{2} \) and the input amplitude is 200mV rms or greater. The response time is given in cycles of free-running frequency. For example, a 2% bandwidth at a free-running frequency of 1000 cycles can require as long as 280 cycles (280ms) to lock when the initial phase relationship is at its worst. Figure 6 gives a typical distribution of response time versus input phase. Note that, assuming random initial input phase, only 30/180 = 1/6 of the time will the lock-up time be longer than half the worst case lock-up time. Figure 7 shows some actual measurements of lock-up time for a set-up having a worst case lock-up time of 27 cycles and a best-case lock-up time of four input cycles.

The lower curve on the graph of Figure 5 shows the worst-case lock-up time when the loop gain is reduced as a means of reducing the bandwidth (see data sheet, Alternate Method of Bandwidth Reduction). The value of \(C_{2} \) required for this minimum response time is

\[
C_{2}(\text{min}) = \frac{130}{f_{0} \left[\frac{10K + R_{A}}{R_{A}} \right]} \mu \text{F} \quad (3)
\]

It is important to note that noise immunity and rejection of out-band tones suffer somewhat when this minimum value of \(C_{2} \) is used so that response time is gained at their expense. Except at very low input levels, input amplitude has only a minor effect.

![Phase Comparator Conversion Gain, \(K_{D} \), for the 567 Tone Decoder](image)
on the lock-up time - usually negligible in comparison to the variation caused by input phase.

Lock-up transients can be displayed on a two-channel scope with case. Figure 8 shows the display which results. The top trace shows the square wave which either gates the input generator signal off and on (or shifts the frequency in and out of the band if you have a generator which has a frequency control input only). The lower trace shows the voltage at pin 2, the low pass filter voltage. The input frequency is offset slightly from the free-running frequency so that the locked and unlocked voltage are different. It is apparent that, while the c₂ decay during unlock is always the same, the lock transient is different each time.

This is because the turn-on repetition rate is such that a different initial phase relationship occurs with each appearance of the in-band signal. It is tempting to adjust the repetition rate so that a fast, constant lock-up transient is displayed. However, in doing so a favorable initial phase is created that is not present in actual operation. On the contrary, it is most realistic to adjust the repetition rate so that the longest lock-up time is displayed, such as the fifth lock transient shows. Once this display is achieved, the effect of various adjustments in c₂ or input amplitude is seen. However, as shown in Figure 9(a), the turn-off delay time can be quite long when C₃ is large. Figure 9(b) shows how desensitizing the output stage by connecting a high-value resistor between pin 1 and pin 4 (positive supply voltage) can equalize the turn-on and turn-off time. If turn-off delay is
EFFECT OF THRESHOLD VOLTAGE ADJUSTMENT ON TONE DECODER TURN-ON AND TURN-OFF DELAY

(A) \(V_Q \) SLIGHTLY GREATER THAN \(V_T \)

(B) \(V_Q \) MUCH GREATER THAN \(V_T \)

Figure 9

important in the overall response time, then desensitizing can reduce the total delay. But why not make \(C_3 \) very small so that these delays can be totally neglected? The problem here is that the QPD output has a large second harmonic component of the free-running frequency that must be filtered out. Also, noise, outband signals, and difference frequencies formed by close out-band frequencies beating with the VCO frequency appear at the QPD output. All these must be attenuated by \(C_3 \) or the output stage will chatter on and off as the threshold is approached. The more noisy the input signal and the larger the near-band signals, the greater \(C_3 \) must be to reject them. Thus, there is a complicated relationship between the input spectrum and the size of \(C_3 \). What must be done, then, is to make \(C_3 \) more than sufficient for proper operation (no false outputs or missed signals) under actual operating conditions and then reduce its value in small steps until either the required response time is obtained or operation becomes unsatisfactory.

In setting up the tone decoder for maximum speed, it is best to proceed as follows:

a After the center frequency has been set, adjust \(C_2 \) to give the desired bandwidth or, if the graph of response time in cycles (Figure 7) suggests that worst case lock-up time will be too long, incorporate the loop gain reduction scheme as an alternate means of bandwidth reduction. (See data sheet).

b Check lock-up time by observing the waveform at pin 2 while pulsing the input signal on and off (or in and out of the band when a FM generator is used). Adjust repetition rate to reveal worst lock-up time.

c Starting with a large value of \(C_3 \) (say 10 \(C_2 \)), reduce it as much as possible in steps while monitoring the output to be certain that no false outputs or missed signals occur. The full input spectrum should be used for this test. Ignore brief transients or chatter during turn-on and turn-off as they can be eliminated with the chatter prevention feedback technique described in the data sheet.

d Use the desensitizing technique, also described in the data sheet, to balance turn-on and turn-off delay.

e Apply the chatter prevention technique to clean up the output.

If this procedure results in a worst-case response time that is too slow, the following suggestions may be considered:

a Relax the bandwidth requirement.
b Operate the entire system at higher frequency when this option is available.
c Use two tone decoders operating at slightly different frequencies and OR the outputs. This will reduce the statistical occurrence of the worst-case lock-up time so that excessive lock-up time occurs. For example, if the lock-up time is marginal 10% of the time with one unit, it will drop to 1% with two units.
d Control the in-band input amplitude to stabilize the bandwidth, set up two tone decoders for maximum bandwidth, and overlap the detection bands to make the desired frequency range equal to the overlap. Since both tone decoders are on only when a tone appears within the overlap range, the outputs can be ANDed to provide the desired selectivity.
e If the system design permits, send the tone to be detected continuously at a low level (say 25mV rms) to keep the loop in lock at all times. The output stage, slightly desensitized, can then be gated on as required by increasing the signal amplitude during the on time. Naturally, the signal phase should be maintained as the amplitude is changed. This scheme is extremely fast, allowing repetition rates as fast as 1/3 to 1/2 the free-running frequency when \(C_3 \) is small. This is equivalent to ASK (amplitude shift keying).
Touch-Tone® Decoder

Touch-Tone® decoding is of great interest since all sorts of remote control applications are possible if you make use of the encoder (the pushbutton dial) that will ultimately be part of every phone. A low cost decoder can be made as shown in Figure 1. Seven 567 tone decoders, their inputs connected in common to a phone line or acoustical coupler, drive three integrated NOR gate packages. Each tone decoder is tuned, by means of R_1 and C_1, to one of the seven tones. The R_2 resistor reduces the bandwidth to about 8% at 100mV and 5% at 50mV rms. Capacitor C_4 decouples the seven units. The seven R_2 resistors and capacitor C_2 can be eliminated at the expense of a somewhat slower response at low input voltages (50 to 100mV rms). The bandwidth can be controlled in the normal manner by selecting C_3 to be 4.7µF for the three lower frequencies and 2.2µF for the four higher frequencies.

The only unusual feature of this circuit is the means of bandwidth reduction using the R_2 resistors. An external resistor R_A can be used to reduce the loop gain and, therefore, the bandwidth. Resistor R_2 serves the same function as R_A except that instead of going to a voltage divider for dc bias, it goes to a common point with the six other R_2 resistors. In effect, the five 567s which are not being activated during the decoding process serve as bias voltage sources for the R_2 resistors of the two 567s which are being activated. Capacitor C_4 decouples the ac currents at the common point.

TONE DECODER APPLICATIONS (567)

The 567 is a special purpose PLL intended solely for use as a tone decoder. It contains a complete PLL including VCO, phase comparator, and amplifier as well as a quadrature phase detector or multiplier. If the signal amplitude at the lock frequency is above a minimal value, the driver amplifier turns on, driving a load with as much as 200mA. Thus the 567 gives an output whenever an inband tone is present. The 567 is optimized for both free-running frequency and bandwidth stability.

Dual Tone Decoder

Two 567 tone decoders connected as shown in Figure 2(a) permit decoding of simultaneous or sequential tones. Both units must be on before an output is given. R_1C_1 and R_2C_1' are chosen respectively for tones 1 and 2. If sequential tones (tone 1 followed by tone 2) are to be decoded, then C_3 is made very large to delay turn off of unit 1 until unit 2 has turned on and the NOR gate is activated.
DETECTION OF TWO SIMULTANEOUS OR SEQUENTIAL TONES

(a) NORING OUTPUTS TOGETHER

(b) DISABLING THE SECOND DECODER UNTIL ENABLED BY THE FIRST

(c) BLOCKING POWER TO THE SECOND DECODER (PIN 7) UNTIL THE FIRST IS ENABLED.

Figure 2

Note that the wrong sequence (tone 2 followed by tone 1) will not provide an output since unit 2 will turn off before unit 1 comes on. Figure 2(b) shows a circuit variation which eliminates the NOR gate. The output is taken from unit 2, but the unit 2 output stage is biased off by R_1 and D_2 until activated by tone 1. A further variation is given in Figure 2(c). Here, unit 2 is turned on by the unit 1 output when tone 1 appears, reducing the standby power to half. Thus, when unit 2 is on, tone 1 is or was present. If tone 2 is now present, unit 2 comes on also and an output is given. Since a transient output pulse may appear during unit 1 turn on, even if tone 2 is not present, the load must be slow in response to avoid a false output due to tone 1 alone.

High-Speed, Narrow-Band Tone Decoder

The circuit of Figure 2(a) may be used to obtain a fast, narrow-band tone decoder. The detection bandwidth is achieved by overlapping the detection bands of the two tone decoders. Thus, only a tone within the overlap portion will result in an output. The input amplitude should be greater than 70mV rms at all times to prevent detection band shrinkage and C_2 should be between $130/f_0$ and $1300/f_0$ where f_0 is the nominal detection frequency. The small value of C_2 allows operation at the maximum speed so that worst-case output delay is only about 14 cycles.

Low-Cost Frequency Indicator

Figure 3 shows how two tone decoders set up with overlapping detection bands can be used for a go/no-go frequency meter. Unit 1 is set 6% above the desired sensing frequency and
unit 2 is set 6% below the desired frequency. Now, if the incoming frequency is within 13% of the desired frequency, either unit 1 or unit 2 will give an output. If both units are on, it means that the incoming frequency is within 1% of the desired frequency. Three light bulbs and a transistor allow low cost read-out.

Phase Modulator

If a phase locked loop is locked onto a signal at the free-running frequency, the phase of the VCO will be 90° with respect to the input signal. If a current is injected into the VCO terminal (the low pass filter output), the phase will shift sufficiently to develop an opposing average current out of the phase comparator so that the VCO voltage is constant and lock is maintained. When the input signal amplitude is low enough so that the loop frequency swing is limited by the phase comparator output rather than the VCO swing, the phase can be modulated over the full range of 0 to 180°. If the input signal is a square wave, the phase will be a linear function of the injected current.

A block diagram of the phase modulator is given in Figure 4(a). The conversion factor K is a function of which loop is used, as well as the input square wave amplitude. Figure 4(b) shows an implementation of this circuit using the 567.
BALANCED MODULATOR/DEMODULATOR APPLICATIONS USING MC1496/MC1596

The MC1496 is a monolithic transistor array arranged as a balanced modulator-demodulator. The device takes advantage of the excellent matching qualities of monolithic devices to provide superior carrier and signal rejection. Carrier suppressions of 50dB at 10MHz are typical with no external balancing networks required.

Applications include AM and suppressed carrier modulators, AM and FM demodulators, and phase detectors.

THEORY OF OPERATION

As Figure 1 suggests, the topography includes three differential amplifiers. Internal connections are made such that the output becomes a product of the two input signals V_C and V_S.

To accomplish this the differential pairs $Q1-Q2$ and $Q3-Q4$, with their cross coupled collectors, are driven into saturation by the zero crossings of the carrier signal V_C. With a low level signal, V_S driving the third differential amplifier $Q5-Q6$, the output voltage will be a full wave multiplication of V_C and V_S. Thus for sine wave signals, V_{out} becomes:

$$V_{out} = E_x E_y [\cos(\omega_x + \omega_y)t + \cos(\omega_x - \omega_y)t]$$

(1)

As seen by font = K (fc - fs) + K (fc + fs) (see Figure 2), the output voltage will contain the sum and difference frequencies of the two original signals. In addition, with the carrier input ports being driven into saturation, the output will contain the odd harmonics of the carrier signals.

BIASING

Since the MC1496 was intended for a multitude of different functions as well as a myriad of supply voltages, the bias techniques are specified by the individual application. This allows the user complete freedom to choose gain, current levels, and power supplies. The device can be operated with single ended or dual supplies.

Internally provided with the device are two current sources driven by a temperature compensated bias network. Since the transistor geometries are the same and since V_{BE} matching in monolithic devices is excellent, the currents through $Q7$ and $Q8$ will be identical to the current set at pin 5. Figures 2 and 3 illustrate typical biasing arrangements from split and single ended supplies respectively.

Of primary interest in beginning the bias circuitry design is relating available power supplies and desired output voltages to device requirements with a minimum of external components.

The transistors are connected in a cascode fashion. Therefore sufficient collector voltage must be supplied to avoid saturation if linear operation is to be achieved. Voltages greater than 2 volts are sufficient in most applications.

Biasing is achieved with simple resistor divider networks as shown in Figure 3. This configuration assumes the presence of symmetrical supplies. Explaining the dc biasing technique is probably best accomplished by an example. Thus, the initial assumptions and criteria are set forth:

1. Output swing greater than 4 volts p-p.
2. Positive and negative supplies of 6 volts are available.
3. Collector current is 2mA. It should be noted here that the collector output current is equal to the current set in the current sources.

As a matter of convenience the carrier signal ports are referenced to ground. If desired the modulation signal ports could be ground referenced with slight changes in the bias arrangement. With the carrier inputs at dc ground, the quiescent operating point of the outputs should be at one half the total positive voltage or 3 volts for this case. Thus a collector load resistor is selected which drops 3 volts at 2mA or 1.5k ohm. A quick check at this point reveals that with
These loads and current levels, the peak to peak output swing will be greater than 4 volts. It remains to set the current source level and proper biasing of the signal ports.

The voltage at pin 5 is expressed by

\[V_{\text{bias}} = V_{\text{BE}} = 500 \times I_S \]

where \(I_S \) is the current set in the current sources.

For the example \(V_{\text{BE}} \) is 700mV at room temperature and the bias voltage at pin 5 becomes 1.7 volts. Because of the cascode configuration both the collectors of the current sources and the collectors of the signal transistors must have some voltage to operate properly. Hence the remaining voltage of the negative supply (-6v + 1.7v = -4.3v) is split between these transistors by biasing the signal transistor bases at -2.15 volts.

Countless other bias arrangements can be used with other power supply voltages. The important thing to remember is that sufficient dc voltage is applied to each bias point to avoid collector saturation over the expected signal wings.

BALANCED MODULATOR

In the primary application of balanced modulation, generation of double sideband suppressed carrier modulation is accomplished. Due to the balance of both modulation and carrier inputs, the output, as mentioned, contains the sum and difference frequencies while attenuating the fundamentals. Upper and lower sideband signals are the strongest signals present with harmonic sidebands being of diminishing amplitudes as characterized by Figure 4.

Gain of the 1496 is set by including emitter degeneration resistance located as \(R_E \) in Figure 5. Degeneration also allows the maximum signal level of the modulation to be increased. In general, linear response defines the maximum input signal as

\[V_D \leq 15 \times R_E \text{ (Peak)} \]

and the gain is given by

\[A_{\text{vs}} = \frac{R_L}{R_E + 2r_e} \]

(2)

DUAL SUPPLY BIASING

All resistor values are in ohms

![DUAL SUPPLY BIASING](image)

MODULATOR FREQUENCY SPECTRUM

- \(f_C \) Carrier Fundamental
- \(f_S \) Modulating Signal
- \(f_C \pm f_S \) Fundamental Carrier Sidebands
- \(f_C \pm n_f_S \) Fundamental Carrier Sideband Harmonics
- \(f_C \pm n_f_C \) Carrier Harmonics
- \(n_f_C \pm n_f_S \) Carrier Harmonic Sidebands

![MODULATOR FREQUENCY SPECTRUM](image)
This approximation is good for high levels of carrier signals. Table 1 summarizes the gain for different carrier signals.

As seen from Table 1, the output spectrum suffers an amplitude increase of undesired sideband signals when either the modulation or carrier signals are high. Indeed, the modulation level can be increased if \(R_E \) is increased without significant consequence. However, large carrier signals cause odd harmonic sidebands (Figure 4) to increase. At the same time, due to imperfections of the carrier waveforms and small imbalances of the device, the second harmonic rejection will be seriously degraded. Output filtering is often used with high carrier levels to remove all but the desired sideband. The filter removes unwanted signals while the high carrier level guards against amplitude variations and maximizes gain. Broadband modulators, without benefit of filters, are implemented using low carrier and modulation signals to maximize linearity and minimize spurious sidebands.

AM MODULATOR

The basic circuit of Figure 5 allows no carrier to be present in the output. By adding offset to the carrier differential pairs, controlled amounts of carrier appear at the output whose amplitude becomes a function of the modulation signal or AM modulation. As shown, the carrier null circuit is changed from Figure 5 to have a wider range so that wider control is achieved. All connections are shown in Figure 6.

AM DEMODULATION

As pointed out in equation 1 the output of the balanced mixer is a cosine function of the angle between signal and carrier inputs. Further, if the carrier input is driven hard enough to provide a switching action, the output becomes a function of the input amplitude. The output amplitude is maximum when there is 0° phase difference as shown in Figure 7.

Amplifying and limiting of the AM carrier is accomplished by IF gain block providing 55 dB of gain or higher with limiting of 400 µV. The limited carrier is then applied to the detector at the carrier ports to provide the desired switching function. The signal is then demodulated by the synchronous AM demodulator (1496) where the carrier frequency is attenuated due to the balanced nature of the device. Care must be taken not to overdrive the signal input so that distortion does not appear in the recovered audio. Maximum conversion gain is reached when the carrier signals are in phase as indicated by the phase-gain relationship drawn in Figure 7. Output filtering will also be necessary to remove high frequency sum components of the carrier from the audio signal.

Table 1 VOLTAGE GAIN & OUTPUT SPECTRUM VS INPUT SIGNAL

<table>
<thead>
<tr>
<th>CARRIER INPUT SIGNAL ((V_C))</th>
<th>APPROXIMATE VOLTAGE GAIN</th>
<th>OUTPUT SIGNAL FREQUENCY(S)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low-level dc (2\pi R_L V_C)</td>
<td>(\frac{V_C}{2R_E + 2r_e + \frac{KT}{q}})</td>
<td>(f_M)</td>
</tr>
<tr>
<td>High-level dc (R_L)</td>
<td>(\frac{V_C}{R + 2r_e})</td>
<td>(f_M)</td>
</tr>
<tr>
<td>Low-level ac (2\pi V_C(rms))</td>
<td>(\frac{V_C}{2\sqrt{2} \frac{KT}{q}(R_E + 2r_e)})</td>
<td>(f_C \pm f_M)</td>
</tr>
<tr>
<td>High-level ac (0.637\pi R_L)</td>
<td>(\frac{V_C}{R_E + 2r_e})</td>
<td>(f_C \pm f_M, 3f_C \pm f_M, \ldots)</td>
</tr>
</tbody>
</table>

PHASE DETECTOR

The versatility of the balanced modulator or multiplier also allows the device to be used as a phase detector. As mentioned, the output of the detector contains a term related to the cosine of the phase angle. Two signals of equal frequency are applied to the inputs as per Figure 8. The frequencies are multiplied together producing the sum and difference frequencies. Equal frequencies cause the difference component to become dc while the undesired sum component is filtered out. The dc component is related to the phase angle by the graph of Figure 9. At 90 degrees the cosine becomes zero, while being at maximum positive or maximum negative at 0° and 180° respectively.

The advantage of using the balanced modulator over other types of phase comparators is the excellent linearity of conversion. This configuration also provides a conversion...
gain rather than a loss for greater resolution. Used in conjunction with a phase locked loop for instance, the balanced modulator provides a very low distortion FM demodulator.

FREQUENCY DOUBLER

Very similar to the phase detector of Figure 8, a frequency doubler schematic is shown in Figure 10. Departure from Figure 8 is primarily the removal of the low pass filter. The output then contains the sum component which is twice the frequency of the input since both input signals are the same frequency.
APPLICATIONS OF LOW NOISE STEREO PREAMPLIFIERS: NE542

Introduction
Stereo preamplifiers have come into greater and greater demand with the increased usage of tape recorders. With stereophonic recording systems, the need increased to have multiple devices in the same package to insure greater thermal tracking and packing density, without sacrificing performance.

The NE542 qualifies as a low noise dual preamplifier. The NE542 is a pin dual-in-line device.

This device has greater than 100dB open loop gain and (15-20) MHz gain bandwidth product. In selecting the proper "low noise" preamplifier several factors must be considered.

I. Frequency shaping characteristic required.
II. Closed loop response with respect to a system reference level.
III. Response of the record/playback head.
IV. System distortion requirements.
V. Response of the tape used.

The following will deal with items I, II, IV.

When approaching the design criteria of Item 2, the designer should be concerned with the open loop device characteristics. These characteristics will aid in determining the maximum boost available, knowing that a specific loop gain (open loop gain minus closed loop gain) will be necessary to keep the system distortion low and maintain the output impedance of the "low noise" preamplifier constant over the required operating frequency range.

RIAA standards call for a maximum recording velocity of 21cm/sec for stereo discs. This worst case velocity describes a bound for the preamplifier gain because the input signal at this velocity is maximum.

NAB TAPE EQUALIZATION
Recording and playback characteristics of magnetic tape and record/playback heads are not flat but exhibit a loss at high frequencies and a boost at lower frequencies. To obtain an overall flat frequency response and improved signal to noise ratio, the audio signals are equalized by boosting the higher frequencies in amplitude before recording. Playback amplifiers must exhibit bass boost to remove the effects of pre-emphasis for an overall flat response.

Known as the NAB equalization curve, the standard deemphasis employs attenuation from the turnover frequency of 50Hz to the turnover frequency of 3180Hz for 7 1/2 lps recording. The slower recording speed of 3.75 lps employs turnover frequencies of 50Hz and 1326Hz. These curves are shown in Figure 1. A reference level of 800µV head sensitivity at 1kHz is also used by the NAB.

STEREO PREAMPLIFICATION
The voltage level appearing at the output of tape playback heads and some phono cartridges are too small to be useful without a large amount of low noise preamplification. In addition to providing low noise amplification, the preamplifier should possess enough open loop gain so that the RIAA and NAB equalization curves can be produced in the feedback networks of the amplifier. The following paragraphs describe the characteristics and applications of the 542. This device provides a matched pair of amplifiers which have been specifically designed to minimize amplifier noise and maximize signal to noise ratio.

542 DEVICE DESCRIPTION
The NE542 is a dual low noise amplifier with 104dB open loop gain produced by two stages of voltage gain followed by one stage of current gain.

In the design of low noise devices special attention must be focused on the input stage. If differential topography is used, the stage should be designed so that one of the differential transistors is turned off. This reduces the noise contribution by a factor of 1.4 since only one transistor is producing noise. Current sources and mirrors cannot be used for biasing loads because active elements will contribute more noise.

Implementing these observations, the first gain stage of the 542 is pictured with the complete schematic by Figure 2.
Although the differential input configuration degrades the noise performance slightly, using differential inputs has the advantages of higher input impedance, allowing smaller capacitors and larger resistors to be used to achieve the RIAA and NAB curves.

The second stage is a common-emitter amplifier (Q5) with a current source load (Q6). The Darlington emitter-follower Q3-Q4 provides level shifting and current gain to the common-emitter stage (Q5) and the output current sink (Q7). The voltage gain of the second stage is approximately 2000 making the total gain of the amplifier typically 160,000 in the differential input configuration.

The preamplifier is internally compensated with the pole-splitting capacitor, C1. This compensates to unity gain at 15MHz. The compensation is adequate to preserve stability to a closed loop gain of 10.

BIASING

The non-inverting input has been internally biased from a 1.4 Volt internal voltage source. Following the zero differential rule of amplifiers, the output voltage will be set by the resistor feedback network (R4 and R5) of Figure 3.

The base of Q2 requires 0.5µA bias current. Hence R5 should pass 5µA minimum for stability, for an output dc voltage of \(\frac{V_{CC}}{2} \) the values of R4 and R5 are:

\[
R5 = \frac{2V_{BB}}{10 I_B} = 240K \text{ Max.} \quad (1)
\]

\[
R4 = \frac{V_{CC}}{2.8 - 1} \frac{1}{R5} \quad (2)
\]

DC amplifier gain is defined by the ratio of R4 and R5. Open loop ac gain can be regained by adding a shunt capacitor across R5. The low frequency 3dB corner is then defined by the capacitor-resistor break point.

NAB Tape Preamplifier

Design of a preamplifier begins by determining the gain and output signal amplitudes in reference to the standard 800µV input signal level. For the following design example, we will use the S42 to achieve a 100mV output level at 1kHz following the 7-1/2 lps NAB equalization curve. The graph of Figure 1 has been calibrated both in absolute gain for this example and relative gain for general use.

From the given parameters, the closed loop gain becomes 32dB at the highest frequency of interest. The NAB response is achieved by adding frequency selective ac feedback as depicted by Figure 4. Resistors R4 and R5 select the dc gain as defined by Equations 1 and 2. Placing a value of 200K upon R5, Equation 2 yields a value of 680K ohms.

The lower corner frequency is determined next by the reactance of C4 and R4 such that:

\[
f_1 = \frac{159}{C4 R4} \quad (3)
\]

Solving for C4 yields a value of .0047µfd.

The upper corner frequency, \(f_2 \), is similarly fixed by the reactance of C4 and R7.

\[
f_2 = \frac{159}{C4 R7} \quad (4)
\]

Then solving Equation 4 for R7 defines a value of 11k ohms.

Midband gain is now fixed by the relationship.

\[
A = \frac{R6 + R7}{R6} \quad (5)
\]

Solving for the 1kHz gain of 42dB using 11k for R7 yields a value of 88 ohms for R6. The final calculation of the low frequency cut off of the preamp determines the size of C2.

\[
C2 = \frac{159}{f_{\text{CUTOFF}} R6} \quad (6)
\]

Typical Applications

In addition to the previous detailed design examples, the following general amplifier configurations (see Figures 5 through 8) are presented. The choice of design and the device used is a function of the desired complexity and overall performance.
APPLICATIONS OF LOW NOISE STEREO AMPLIFIERS: NE542

FLAT RESPONSE TAPE AMPLIFIER

- **Figure 5**

TWO-POLE FAST TURN-ON NAB TYPE PREAMP

- **Figure 6**

TYPICAL NAB RECORD PREAMPLIFIER

- **Figure 7**

All resistor values are in ohms.

TYPICAL TAPE PLAYBACK AMPLIFIER

- **Figure 8**
STEREO DECODER APPLICATIONS: \(\mu A758\)

Introduction
The phase locked loop (PLL) has been used for many years in consumer equipment. Due to the nature of FM STEREO MULTIPLEX SYSTEMS, where prime importance is the channel separation, discrete systems lacked the tracking ability over wide temperature and voltage ranges to be done economically.

The development of the monolithic PLL and improvements in IC processing has made the Phase Locked Loop FM Stereo Multiplexer Decoder a reality.

Major Advantages
The economic advantages in using the PLL multiplex decoding system are not only cost reduction, by eliminating peripheral components, but the man hour cost reduction by eliminating turning coils, thereby eliminating tedious alignment procedures.

The cost advantages are extremely significant and are in addition to the following:

- 45 dB Channel Separation
- Automatic Stereo/Mono Switching
- Stereo Indicator Lamp Driver With Current Limiting
- High Impedance Input—Low Impedance Outputs
- 70dB SCA Rejection (Subsidiary Carrier Authorization)
- One Adjustment for Complete Alignment
- 10V to 16V Supply Voltage Range

FM Stereo Multiplex Subcarrier and Pilot
The two (2) basic signals differentiating an FM stereo multiplex signal from an FM monaural signal are the 19kHz pilot and the 38kHz subcarrier. The frequency and phase relationship of these signals is well defined.

Earlier systems had to reconstruct the 38kHz subcarrier by using the 19kHz pilot. This system required frequency multipliers and selective filters (coils). Since maximum channel separation is directly related to proper phasing, alignment procedures were extremely critical and therefore expensive. In addition, long term stability and performance were degraded due to component aging and temperature.

Use of the PLL as the multiplex decoder eliminated these shortcomings since the phase accuracy of the 38kHz signal is limited only by the loop gain of the system and the free running oscillator stability. Both of these parameters are easily controlled, providing easy, rapid adjustment and excellent long term stability.

General Description
The \(\mu A758\) is a monolithic Phase Locked Loop FM Stereo Multiplex decoder using the 16-Lead DIP N Package. This integrated circuit decodes an FM Stereo Multiplex Signal into Right and Left audio channels while inherently suppressing SCA information when it is contained in the composite input signal. Internal functions include automatic mono-stereo mode switching and drive for an external lamp to indicate stereo mode operation.

When a stereo signal is present, the stereo switch enables the stereo demodulator and when a stereo signal is not present the demodulator is disabled allowing the system to reach optimum noise performance.

Functional Operation
To aid in understanding the system operation, the \(\mu A758\) equivalent circuit has been broken down into subsections as follows. Reference Figure 2.

- Buffer Amplifier and Bias Supplies
- Demodulator
- Stereo Switch and Lamp Driver
- Voltage Controlled Oscillator
- Frequency Dividers
- Pilot Phase and Amplitude Defectors
Figure 1
I Buffer Amplifier and Bias Supplies (Figure 3)

The zener diode Z, and its associated transistors generate a 6V internal voltage reference source. From this 6V reference, additional bias levels are established via resistors R3, R4, and R5. In addition, transistor Q7 acts as the control source for several current mirrors; Q11 in the Buffer Amplifier, Q43 and Q44 in the Stereo Switch and Lamp Driver (III) and Q67 and Q73 in the Voltage Controlled Oscillator (IV).

The input Buffer Amplifier (Q8, Q9) level shifts the composite multiplex input signal to 2 levels each in phase with each other.

Transistors Q10 - Q13 amplify this same signal by the ratio of:

\[A = \frac{R_{14}}{R_{13}} \]

This amplified signal, the gain of which is independent of supply voltage variation, is fed to the Pilot Phase and Amplitude Detectors (VI).

II Demodulator (Figure 4)

The basic demodulator, Q25 - Q30, is a fully balanced detector similar to standard phase locked loop types. The addition of resistors R29, R30, and R31 introduces a small offset to allow a small multiplex signal in the collector of Q30. This signal compensates the cross talk components inherent to the synchronous switching demodulation process.

Switching to the left and right channels is accomplished through Q25 and Q26 when the 38kHz drive is present at their bases. This occurs when Q33 is "ON." When Q33 is off, a dc bias is placed at the bases of Q25 and Q26 through resistors R32 and R33, this automatically converts the system to monophonic operation.

Supply voltage rejection is accomplished at the demodulator outputs by converting the audio to current supplies in Q23 and Q24. The voltage developed across npn transistors is

\[V_e = (V^+ + V_{mod}) - (V_{be} + V_{D1} + R_{22_lac}) + V_{mod} \]

where \(V_{be} \) = base-emitter voltage across Q22 and Q23
\(V_{mod} \) = modulation on the power line
\(V_{D1} \) = diode drop in D21
\(IR_{22_lac} \) = voltage drop due to current in the demodulator

Simplifying the above reduces to

\[V_e = V^+ - (V_{be} + V_{D1} + R_{22_lac}) \] (1)

The output voltage developed is
$V_{\text{out}} = \left(\frac{V_L}{R_{21}} \right) R_{\text{ext}}$ \hspace{1cm} (2)

where $R_{\text{ext}} =$ external resistor.

The output voltage at pins 4 and 5 are provided through 1.3k resistors-driven by Emitter Followers Q21 and Q24.

III Stereo Switch and Lamp Driver (Figure 5)

The pilot amplitude detector differential voltage is sensed by the differential amplifier Q41 and Q42. This pair in conjunction with their load resistors (R41, R42) control amplifiers Q45, Q46. Positive feedback action is achieved through Q47, R50, Q50 and R46 (which turns off Q44).

The turn on threshold is the differential input voltage required to overcome the offset voltage in R43 times the current summation of I_{Q44} and I_{Q45}. When the lamp is ON, Q44 is off and the differential voltage across R43 is reduced by the amount ($I_{\text{Q45}} \times R_{43}$), which means a lower turn off voltage is required. This voltage difference is referred to as the switch hysteresis.

Transistors Q48 senses the current across R51 which therefore controls the maximum current in the Stereo Indicator Lamp.

$$I_{\text{max}} = \frac{V_{\text{be} Q48}}{R_{151}}$$ \hspace{1cm} (3)

IV Voltage Controlled Oscillator (Figure 6)

The basic oscillator Q71-Q79 is an RC relaxation type which generates a positive low duty cycle, 76kHz output. The frequency is established by equations 4 and 5.

The control voltage from the phase detector into the transconductance amplifier Q61 - Q69 converts the differential error to a bidirectional single ended current drive to the oscillator.

Voltage on the capacitor is compared with the set voltages by the differential input stage Q71, Q72. This feeds Q74, Q75. The output of Q75 drives a PNP inverter, Q78, (whose action eliminates power supply modulation as described in the demodulator section of this note), when these set limits are reached the direction of charge reverses.
Lower set voltage is set by R79, R80, and the regulated 6V supply. The upper set voltage (V_H) involves two (2) additional resistors R77 and R78 and is established when Q76 turns on Q77. Both set levels are referenced to the regulated 6V supply and are therefore dependent only on resistor ratios. (Proper design layout should also eliminate temperature variations.)

Capacitor charging is through Q78 and R8 and discharging through the external fixed resistor.

Equations 4 and 5 of Figure 7 are first order expressions for the change and discharge periods.

Q79 supplies a positive output pulse necessary to operate the 38kHz dividers.

V Frequency Dividers

(Figure 8)

Transistors Q91 through Q94 form a simple divide-by-two circuit which converts the pulse output from the 76kHz oscillator to a 38kHz square wave.

The divider changes state during the positive excursion of the input pulse supplied from the emitter of Q79 in the oscillator. Initially, when the input is low, Q91 and Q92 are OFF and we may arbitrarily assume Q93 is ON and Q94 is OFF.

As the potential on the input rises, Q91 starts conduction before Q92 because the emitter of Q91 is at a lower potential than the emitter of Q92. The emitter of Q91 is connected through R95 to the collector of Q93 which is in saturation, whereas the emitter of Q92 is at the V_BE(ON) potential of Q93. Since Q91 is ON, the current from both R92 and R93 flows through the emitter of Q91 into R95. As this current increases, the rising voltage at the emitter of Q91 turns Q94 ON which removes base drive to Q93 and turns it OFF, thus producing a change of state in the divider. Even though the relative potentials at the emitters of Q91 and Q92 are now reversed, current continues to flow in Q91 for the duration of the positive input because Q92 is held OFF by Q91. When the input returns to a low potential, Q91 turns OFF. The divider remains in its present state until driven by the next positive going input.

Oppositely phased 38kHz outputs to the demodulator are taken from the collectors of Q93 and Q94. Transistors Q95 and Q96 are used to drive the two 38kHz dividers.

The 38kHz Quadrature Divider has an identical configuration to the 76kHz divider. A change of state occurs with each positive excursion of the 38kHz input signal from the emitter of Q96.

OSCILLATOR WAVEFORMS

Basic timing equations:

\[t_1 = R_81 C \ln \frac{V_s - V_L}{V_S - V_H} \] \hspace{1cm} (Equation 4)

\[t_2 = R C \ln \frac{V_H}{V_L} \] \hspace{1cm} (Equation 5)

where R and C are external components on Lead 15, R81 is on the chip, and V_S and V_H are set voltages which are a fixed percentage of V_L, the internally regulated 6Volt supply.

FREQUENCY DIVIDERS

19kHz outputs to pilot amplitude and phase detectors.
The 38kHz In-Phase divider contains a bistable pair, Q113 and Q114, steered by inputs into Q111 and Q112, or 38kHz input from the collector of Q95, and 19kHz inputs from the bases of Q103 and Q104. If the 19kHz input to the base of Q111 is high when the 76kHz divider turns Q95 ON, Q111 conducts and removes drive to Q114, changing the state of the bistable pair, Q113 and Q114. The bistable remains in this state until the next 38kHz turn on of Q95 which, this time, turns Q112 ON, removes drive to Q113 and resets the bistable pair. The resulting 19kHz output from Q113 and Q114 is at 90 degrees to the Quadrature Divider output with no ambiguity in phasing.

Pilot Phase and Amplitude Detectors

The pilot phase detector and pilot amplitude detector as shown in Figure 9 are synchronous, balanced chopper types which develop differential output signals across external filters. Back-to-back NPN transistor pairs are used for each switch to ensure minimum drop regardless of signal polarity without reliance on inverse NPN beta characteristics.

The chopper transistors (Q121 through Q124), in the phase detector are driven from the 38kHz Quadrature Divider through transistors Q125 and Q126. The input signal is supplied from lead 12 through resistors R125 and R126. A differential output is developed across the loop filter, comprised of resistors R123 and R124 and the external R-C network between leads 13 and 14.

The pilot amplitude detector (Q131 through Q136), has an identical configuration to the phase detector. Since it operates with drive which is in phase with the pilot signal (90 degrees from the drive to the phase detector), its output is proportional to the amplitude of the pilot component of the multiplex signal. The differential output at leads 9 and 10 is filtered by the external capacitor on these two leads.

A reference 19kHz square wave signal is taken from the collector of drive transistor Q136 through resistor R137 to lead 11. It has the same phasing as the pilot contained in the multiplex input signal.
TYPICAL PERFORMANCE CURVES FOR 758
(Test Circuit 1 unless Otherwise Specified)

- **CHANNEL SEPARATION AS A FUNCTION OF AUDIO FREQUENCY**
- **CHANNEL SEPARATION AS A FUNCTION OF OSCILLATOR FREE RUNNING FREQUENCY ERROR**
- **CAPTURE RANGE AS A FUNCTION OF PILOT LEVEL**
- **TOTAL HARMONIC DISTORTION AS A FUNCTION OF INPUT LEVEL**
- **LAMP TURN ON AND TURN OFF SENSITIVITY AS A FUNCTION OF AMBIENT TEMPERATURE**
- **OSCILLATOR FREE RUNNING FREQUENCY ERROR AS A FUNCTION OF AMBIENT TEMPERATURE**

Figure 11
APPLICATIONS

The following circuits will illustrate some of the wide variety of applications for the NE570.

BASIC EXPANDOR

Figure 1 shows how the circuit would be hooked up for use as an expander. Both the rectifier and ΔG cell inputs are tied to V\text{in}, so that the gain is proportional to the average value of (V\text{in}). Thus, when V\text{in} falls 6dB, the gain drops 6dB and the output drops 12dB. The exact expression for the gain is

$$\text{Gain exp.} = \frac{2A^3 \text{Vin (ave)}}{R_1 R_2 I_0} \approx 140\mu\text{A}$$

The maximum input that can be handled by the circuit in Figure 1 is a peak of 3V. The rectifier input current can be as large as $I_0 = 3V/10K = 300\mu\text{A}$. The AG cell input current should be limited to $I_0 = 2.8V/20K = 140\mu\text{A}$. If it is necessary to handle larger input voltages than ±2.8V pk, external resistors should be placed in series with R_1 and R_2 to limit the input current to the above values.

Figure 1 shows a pair of input capacitors C_{IN1} and C_{IN2}. It is not necessary to use both capacitors if low level tracking accuracy is not important. If R_1 and R_2 are tied together and share a common capacitor, a small current will flow between the AG cell summing node and the rectifier summing node due to offset voltages. This current will produce an error in the gain control signal at low levels, degrading tracking accuracy.

The output of the expander is biased up to 3V by the dc gain provided by R_3, R_4. The output will bias up to

$$V_{out\ dc} = \left(1 + \frac{R_3}{R_2}\right) V_{ref}$$

For supply voltages higher than 6V, R_4 can be shunted with an external resistor to bias the output up to 1/2Vcc.

Note that it is possible to externally increase R_1, R_3, and R_4, and to decrease R_3 and R_4. This allows a great deal of flexibility in setting up system levels. If larger input signals are to be handled, R_1 and R_2 may be increased; if a larger output is required, R_3 may be increased. To obtain the largest dynamic range out of this circuit, the rectifier input should always be as large as possible (subject to the ±300μA peak current restriction).

BASIC COMPRESSOR

Figure 2 shows how to use the NE570/571 as a compressor. It functions as an expander in the feedback loop of an op amp. If the input rises 6dB, the output can rise only 3dB. The 3dB increase in output level produces a 3dB increase in gain in the AG cell, yielding a 6dB increase in feedback current to the summing node. Exact expression for gain is

$$\text{Gain comp} = \left[\frac{R_1 R_2 I_0}{2 R_3 \text{Vin (ave)}}\right]^{1/2}$$

The same restrictions for the rectifier and ΔG cell maximum input current still hold, which place a limit on the maximum compressor output. As in the expander, the rectifier and ΔG cell inputs could be made common to save a capacitor, but low level tracking accuracy would suffer. Since there is no dc feedback path around the op amp through the ΔG cell, one must be provided externally. The pair of resistors R_{DC} and the capacitor C_{DC} must be provided. The op amp output will bias up to

$$V_{out\ dc} = \left(1 + \frac{2 R_{DC}}{R_4}\right) V_{ref}$$

For the largest dynamic range, the compressor output should be as large as possible so that the rectifier input is as large as possible (subject to the ±300μA peak current restriction). If the input signal is small, a large output can be produced by reducing R_4 with the attendant decrease in input impedance, or by increasing R_1 or R_2. It would be best to increase R_2 rather than R_1 so that the rectifier input current is not reduced.

DISTORTION TRIM

Distortion can be produced by voltage offsets in the ΔG cell. The distortion is mainly even harmonics, and drops with decreasing input signal. (Input signal meaning the current into the ΔG cell.) The THD trim terminal provides a means for trimming out the offset voltages and thus trimming out the distortion. The circuit shown in Figure 3 is suitable, as would be any other capable of delivering ±30μA into 1000 resistor tied to 1.8V.
LOW LEVEL MISTRACKING
The compandor will follow a 2 to 1 tracking ratio down to very low levels. The rectifier is responsible for errors in gain, and it is the rectifier input bias current of <100na that produces errors at low levels. The magnitude of the error can be estimated. For a full scale rectifier input signal of ±200µA, the average input current will be 127µA. When the input signal level drops to a 1µA average, the bias current will produce a 10% or 1dB error in gain. This will occur at 42dB below the maximum input level.

It is possible to deviate from the 2 to 1 transfer characteristic at low levels as shown in the circuit of Figure 4. Either R_a or R_b, (but not both), is required. The voltage on C_rect is 2 x Vbe plus V_in ave. For low level inputs V_in ave is negligible, so we can assume 1.3V as the bias on C_rect. If R_a is placed from C_rect to gnd we will bleed off a current I = 1.3V/R_a. If the rectifier average input current is less than this value, there will be no gain control input to the ΔG cell so that its gain will be zero and the expander output will be zero. As the input level is raised, the input current will exceed 1.3V/R_a and the expander output will become active. For large input signals, R_b will have little effect. The result of this is that we will deviate from the 2 to 1 expansion, present at high levels, to an infinite expansion, at low levels where the output shuts off completely. Figure 5 shows some examples of tracking curves which can be obtained. Complementary curves would be obtained for a compressor, where at low level signals the result would be infinite compression. The bleed current through R_b will be a function of temperature because of the two Vbe drops, so the low level tracking will drift with temperature. If a negative supply is available, it would be desirable to tie R_b to that, rather than ground, and to increase its value accordingly. The bleed current will then be less sensitive to the Vbe temperature drift.

R_b will supply an extra current to the rectifier equal to (Vcc - 1.3V)R_b. In this case, the expander transfer characteristic will deviate towards 1 to 1 at low levels. At low levels the expander gain will stop dropping and the expansion will cease. In a compressor this would lead to a lack of compression at low levels. Figure 6 shows some typical transfer curves. An R_b value of approximately 2.5Meg would trim the low level tracking so as to match the Bell system N2 trunk compandor characteristic.

RECTIFIER BIAS CURRENT CANCELLATION
The rectifier has an input bias current of between 50 and 100na. This limits the dynamic range of the rectifier to about 60dB. It also limits the amount of attenuation of the ΔG cell. The rectifier dynamic range may be increased by about 20dB by the bias current trim network shown in Figure 7. Figure 8 shows the rectifier performance with and without bias current cancellation.

ATTACK AND DECAY TIME
The attack and decay times of the compandor are determined by the rectifier filter time constant 10K x C_rect. Figure 9 shows how the gain will change when the input signal undergoes a 10, 20, or 30dB change in level. The attack time is much faster than the decay, which is desirable in most applications. Figure 10 shows the compressor attack envelope for a +12dB step in input level. The initial output level of 1 unit instantaneously rises to 4 units, and then starts to fall towards its final value of 2 units. The CCITT recommendation on attack and decay times for telephone system compandors defines the attack time as when the envelope has fallen to a level of 3 units, corresponding to t = .15 in the figure. The CCITT recommends an attack time of 3 ± 2ms, which suggests an RC product of 20ms. The CCITT defines release time as when the output envelope has fallen to 1.5 units, and suggests a value of 13.5
Applications for Compandors: NE570/571/SA571

LINEAR LSI PRODUCTS

APPLICATIONS FOR COMPANDORS: NE570/571 /SA571

Figure 7

Figure 8

Figure 9

Figure 10

Figure 11

-9ms. This corresponds to t = .675 in the figure, which again suggests a 20ms RC product. Since R1 = 10K, the CCITT recommendations will be met if Crect = 2µF.

There is a trade-off between fast response and low distortion. If a small Crect is used to get very fast attack and decay, some ripple will appear on the gain control line and produce distortion. As a rule, a 1µF Crect will produce .2% distortion at 1kHz. The distortion is inversely proportional to both frequency and capacitance. Thus, for telephone applications where Crect = 2µF, the ripple would cause .1% distortion at 1kHz and .33% at 300Hz. The low frequency distortion generated by a compressor would be cancelled (or undistorted) by an expander, providing that they have the same value of Crect.

Fast Attack, Slow Release Hard Limiter

The NE570/571 can be easily used to make an excellent limiter. Figure 12 shows a typical circuit which requires 1/2 of an NE570/571, ½ of an LM339 quad comparator, and a pnp transistor. For small signals, the ΔG cell is nearly off, and the circuit runs at unity gain as set by R8, R7. When the output signal tries to exceed a + or - 1V peak, a comparator threshold is exceeded. The pnp is turned on and rapidly charges C2 which activates the ΔG cell. Negative feedback through the ΔG cell reduces the gain and the output signal level. The attack time is set by the RC product of R15 and C4, and the release time is determined by C4 and the internal rectifier resistor, which is 10K. The circuit shown attacks in less than 1ms and has a release time constant of 100ms. R9 trickle charges about .7µA through the rectifier to prevent C2 from becoming completely discharged. The gain cell is activated when the voltage on pin 1 or 16 exceeds two diode drops. If C4 were allowed to become completely discharged, there would be a slight delay before it recharged to >1.2V and activated limiting action.

A stereo limiter can be built out of 1 NE570/571, 1 LM339 and two pnp transistors. The resistor networks R15, R13 and R14, R15, which set the limiting thresholds, could be common between channels. To gang the stereo channels together (limiting in one channel will produce a corresponding gain change in the second channel to maintain the balance of the stereo image), then pins 1 and 16 should be jumpered together. The outputs of all 4 comparators may then be tied together, and only one pnp transistor and one capacitor C4 need be used. The release time will then be the product 5KxC4 since two channels are being supplied current from C4.

Use of External Op Amp

The operational amplifiers in the NE570/571 are not adequate for some applications. The slew rate, bandwidth, noise, and output drive capability can limit performance in many systems. For best performance, an external op amp can be used. The external op amp may be powered by bipolar supplies for a larger output swing.

Figure 13 shows how an external op amp may be connected. The non-inverting input must be biased at about 1.8V. This is easily accomplished by tying it to either pin 8 or 9, the THD trim pins, since these pins sit at 1.8V. An optional RC decoupling network is shown which will filter out the noise from the NE570/571 reference (typically about 10µV in 20kHz BW). The inverting input of the external op amp is tied to the inverting input of the internal op amp. The output of the external op amp is then used, with the internal op amp output left to float. If the external op amp is used single supply (+VCC and ground), it must have an input common mode range down to less than 1.8V.

N2 Compandor

There are four primary considerations involved in the application of the NE570/571 in an N2 compandor. These are matching of input and output levels, accurate 600Ω input and output impedances, conformance to the Bell system low level tracking curve, and proper attack and release times.

Figure 14 shows the implementation of an N2 compressor. The input level of .245V rms is stepped up to 1.41V rms by the 600Ω: 20KΩ matching transformer. The 20KΩ input resistor properly terminates the transformer. An internal 20KΩ resistor (R3) is provided, but for accurate impedance termination an external resistor should be used. The output impedance is provided by the 4KΩ output resistor and the 4KΩ: 600Ω output transformer. The .275V rms output level requires a 1.4V op amp out-
FAST ATTACK, SLOW RELEASE HARD LIMITER

\[
R_2 = \frac{\text{Gain}^2 \times 2 \times R_2 \times V_{\text{in \, ave}}}{12 \times 2 \times 20K \times 1.27} = \frac{10K \times 140\mu A}{36.3K}
\]

The external resistance required will thus be 36.3K - 20K = 16.3K

The Bell compatible low level tracking characteristic is provided by the low level trim resistor from \(C_{\text{trim}} \) to \(V_{\text{CC}} \). As shown in Figure 6, this will skew the system to a 1:1 transfer characteristic at low levels. The 2µF rectifier capacitor provides attack and release times of 3ms and 13.5ms respectively, as shown in Figures 10 and 11. The R-C-R network around the op amp provides dc feedback to bias the output at dc.

An N2 expander is shown in Figure 15. The input level of 3.27V RMS is stepped down to 1.33V by the 600Ω: 1000Ω transformer, which is terminated with a 1000Ω resistor for accurate impedance matching. The output impedance is accurately set by the 150Ω output resistor and the 150Ω: 600Ω output transformer. With this configuration the 3.46V transformer output requires a 3.46V op amp output. To obtain

Figure 12

Figure 13

Figure 14
APPLICATIONS FOR COMPANDORS: NE570/571/SA571

N2 EXPANDOR

Figure 15

this output level, it is necessary to increase the value of R₃ with an external trim resistor. The new value of R₃ can be found with the expander gain equation

\[
R₃ = \frac{R₁ \times R₂ \times Iₙ}{2 \times Vₙ \text{avg}} = \frac{10 \times 20 \times 140\mu\text{A} \times 2.6}{2 \times 1.20} = 30.3\text{K}
\]

An external addition to R₃ of 10K is required, and this value can be selected to accurately set the high level gain.

A low level trim resistor from C₀₀₁ to Vcc of about 3Meg provides matching of the Bell low level tracking curve, and the 2µF value of Crect provides the proper attack and release times. A 16K resistor from the summing node to ground biases the output to 7V dc.

VOLTAGE CONTROLLED ATTENUATOR

The variable gain cell in the NE570/571 may be used as the heart of a high quality voltage controlled amplifier (VCA). Figure 16 shows a typical circuit which uses an external op amp for better performance, and an exponential converter to get a control characteristic of 6dB/V. Trim networks are shown to null out distortion and dc shift, and to fine trim gain to 0dB with zero volts of control voltage.

Op amp A₂ and transistors Q₁ and Q₂ form the exponential converter generating an exponential gain control current, which is fed into the rectifier. A reference current of 150µA, (15V and R₂₀ = 100K), is attenuated a factor of two (6dB) for every volt increase in the control voltage. Capacitor C₆ slows down gain changes to a 20ms time constant (C₆ x R₁₁) so that an abrupt change in the control voltage will produce a smooth sounding gain change. R₁₈ assures that for large control voltages the circuit will go to full attenuation. The rectifier bias current would normally limit the gain reduction to about 70dB. R₁₉ draws excess current out of the rectifier. After approximately 50dB of attenuation at a -6dB/V slope, the slope steepens and attenuation becomes much more rapid until the circuit totally shuts off at about 9 volts of control voltage. A₁ should be a low noise high slew rate op amp. R₁₉ and R₂₀ establish approximately a zero volt bias at A₁’s output.

With a zero volt control voltage, R₁₉ should be adjusted for 0dB gain. At 1V (-6dB gain) R₂₀ should be adjusted for minimum distortion with a large (+10dBm) input signal. The output dc bias of A₁ (output) should be measured at full attenuation (+10V control voltage) and then R₂₀ is adjusted to give the same value at 0dB gain. Properly adjusted, the circuit will give typically less than 1% distortion at any gain with a dc output voltage variation of only a few millivolts. The clipping level (140µA into pin 3, 14) is ±10V peak. A signal to noise ratio of 90dB can be obtained.

If several VCA’s must track each other, a common exponential converter can be used. Transistors can simply be added in parallel with Q₂ to control the other channels. The transistors should be maintained at the same temperature for best tracking.

AUTOMATIC LEVEL CONTROL

The NE570 can be used to make a very high performance ALC as shown in Figure 17. This circuit hookup is very similar to the basic compressor shown in Figure 2 except that the rectifier input is tied to the input rather than the output. This makes gain inversely proportional to input level so that a 20dB drop in input level will produce a 20dB increase in gain. The output will remain fixed at a constant level. As shown, the circuit will maintain an output level of ±1dbm for an input range of +14 to -43dbm at 1kHz. Additional external components will allow the output level to be adjusted. Some relevant design equations are:

\[
\text{Output level} = \frac{R₁ \times R₂ \times Iₙ}{2 \times Vₙ \text{avg}} \quad Iₙ = 140\mu\text{A}
\]

\[
\text{Gain} = \frac{R₁ \times R₂ \times Iₙ}{2 \times R₃ \times Vₙ \text{avg}}
\]

\[
\frac{Vₙ \text{avg}}{Vₙ \text{avg}} = 2 \times \frac{r}{\sqrt{2}} = 1.11 \text{ (for sine wave)}
\]

If ALC action at very low input levels is not desired, the addition of resistor Rₓ will limit the maximum gain of the circuit.

\[
\text{Gain max.} = \frac{R₁ + Rₓ}{1.8 \times R₂ \times Iₙ} \quad \frac{R₁ + Rₓ}{2 \times R₃}
\]

The time constant of the circuit is determined by the rectifier capacitor, Crect, and an internal 10K resistor.

\[
r = 10K \times Crect
\]

Response time can be made faster at the expense of distortion. Distortion can be approximated by the equation.

\[
\text{THD} = \left(\frac{1\mu\text{F}}{Crect}\right) \times 1\text{kHz \times }0.2\%
\]
VARIABLE SLOPE COMPRESSOR-EXPANDER
Compression and expansion ratios other than 2:1 can be achieved by the circuit shown in Figure 18. Rotation of the dual potentiometer causes the circuit hookup to change from a basic compressor to a basic expander. In the center of rotation, the circuit is 1:1, has neither compression nor expansion. The (input) output transfer characteristic is thus continuously variable from 2:1 compression, through 1:1 up to 1:2 expansion. If a fixed compression or expansion ratio is desired, proper selection of fixed resistors can be used instead of the potentiometer. The optional threshold resistor will make the compression or expansion ratio deviate towards 1:1 at low levels. A wide variety of (input) output characteristics can be created with this circuit, some of which are shown in Figure 18.

HI FI COMPANDOR
The NE570 can be used to construct a high performance compandor suitable for use with music. This type of system can be used for noise reduction in tape recorders, transmission systems, bucket brigade delay lines, and digital audio systems. The circuits to be described contain features which improve performance, but are not required for all applications.

A major problem with the simple NE570 compressor (Figure 2) is the limited op amp gain at high frequencies. For weak input signals, the compressor circuit operates at high gain and the 570 op amp simply runs out of loop gain. Another problem with the 570 op amp is its limited slew rate of about .6V/µs. This is a limitation of the expander, since the expander is more likely to produce large output signals than a compressor.

Figure 20 is a circuit for a high fidelity compandor which uses an external op amp and has a high gain and wide bandwidth. An input compensation network is required for stability. Another feature of the circuit in Figure 20 is that the rectifier capacitor (C9) is not grounded, but is tied to the output of an op amp circuit. This circuit, built around an LM324, speeds up the compressor attack time at low signal levels. The response times of the simple expander and compressor (Figures 1 and 2) become longer at low signal levels. The time constant is not simply 10K x Crect, but is really

\[
(10K + 2 \left(\frac{0.26V}{I_{rect}} \right)) \times C_{rect}
\]

When the rectifier input level drops from 0dBm to -30dBm, the time constant increases from 10.7KxCrect to 32.6KxCrect. In
systems where there is unity gain between the compressor and expander, this will cause no overall error. Gain or loss between the compressor and expander will be a mistracking of low signal dynamics. The circuit with the LM324 will greatly reduce this problem for systems which cannot guarantee the unity gain.

When a compressor is operating at high gain, (small input signal), and is suddenly hit with a signal, it will overload until it can reduce its gain. Overloaded the output will attempt to swing rail to rail. This compressor is limited to approximately a 7V peak to peak output swing by the brute force clamp diodes D3 and D4. The diodes cannot be placed in the feedback loop because their capacitance would limit high frequency gain. The purpose of limiting the output swing is to avoid overloading any succeeding circuit such as a tape recorder input.

The time it takes for the compressor to recover from overload is determined by the rectifier capacitor Cg. A smaller capacitor will allow faster response to transients, but will produce more low frequency third harmonic distortion due to gain modulation. A value of 1μF seems to be a good compromise value and yields good subjective results. Of course, the expander should have exactly the same value rectifier capacitor for proper transient response. Systems which have good low frequency amplitude and phase response can use compandors with smaller rectifier capacitors, since the third harmonic distortion which is generated by the compressor will be undistorted by the expander.

Simple compandor systems are subject to a problem known as breathing. As the system is changing gain, the change in the background noise level can sometimes be heard.
The compressor in Figure 20 contains a high frequency pre-emphasis circuit (C2, R5 and C8, R14), which helps solve this problem. Matching de-emphasis on the expander is required. More complex designs could make the pre-emphasis variable and further reduce breathing.

The expander to complement the compressor is shown in Figure 21. Here an external op amp is used for high slew rate. Both the compressor and expander have unity gain levels of 0dBm. Trim networks are shown for distortion (THD) and dc shift. The distortion trim should be done first, with an input of 0dBm at 10kHz. The dc shift should be adjusted for minimum envelope bounce with tone bursts. When applied to consumer tape recorders, the subjective performance of this system is excellent.
APPLICATIONS FOR COMPANDORS: NE570/571/SA571

HI-FI EXPANDOR WITH DE-EMPHASIS

Figure 21
NE572 AUTOMATIC LEVEL CONTROL

NOTE:
PIN NUMBERS ARE FOR SIDE A OF THE NE572

\[V_{DC} = V_{REF} \left(1 + \frac{R_{DC1} + R_{DC2}}{R_4}\right) \]
OUTPUT LEVEL = \[\frac{R_1 R_2 (V_{IN})}{2 R_2 / V_{IN(avg)}}\]

GAIN = \[\frac{R_1 R_2}{2 R_2} \cdot V_{IN} \text{ (avg)}\]
ATTACK TIME = (10K) \(C_A \)
RECOVERY TIME = (10K) \(C_R \)
TO LIMIT THE GAIN AT VERY LOW INPUT LEVELS, ADD \(R_x \):
\[R_1 + R_x \]
GAIN MAX. = \[\frac{1.8V \cdot R_2 \cdot I_g}{2 R_3}\]

WHERE: \(R_4 = 100K \)
\(R_{DC1} = R_{DC2} = 9.1K \)
\(V_{REF} = 2.5V \)

WHERE: \(R_1 = 6.8K \) (internal)
\(R_2 = 3.3K \)
\(R_3 = 17.3K \)
\(I_g = 140 \mu A \)
\(V_{IN} \cdot V_{IN(avg)} = 2.11 = 1.11 \)
FOR SINE WAVES

V IN
Compandors are versatile, low cost, dual channel gain control devices for audio frequencies. They are used in tape decks, cordless telephones, and wireless microphones performing noise reduction. Electronic organs, modems and mobile telephone equipment use compandors for signal level control.

So what is companding? Why do it at all? What happens when we do it? Compandor is the contraction of the two words compressor and expander. There is one basic reason to compress a signal before sending it through a telephone line or recording it on a cassette tape. It is to process that signal (music, speech, data) so that all parts of it are above the inherent noise floor of the transmission medium and yet not running into the max dynamic range limits, causing clipping and distortion. The diagrams below demonstrate the idea; they are not totally correct because in the real world of electronics the 3kHz tone is riding on the 1kHz tone. They are shown separated for better explanation.

Figure 1 is the signal from the source. Figure 2 shows the noise always in the transmission medium. Figure 3 shows the max limits of the transmission medium and what happens when a signal larger than those limits is sent through it. Figure 4 is the result of compressing the signal. (Note that the larger signal would not be clipped when transmitted.)

The received/playback signal is processed (expanded) in exactly the same-only inverted-ratio as the input signal was compressed. The end result is clean, undistorted signal with a high signal-to-noise ratio.

This document has been designed to give the reader a basic working knowledge of the Signetics Compandor family. The analyses of three primary applications will be accompanied by "recipes" describing how to select external components (for both proper operation and function modification). Schematic and artwork for an application board are also provided. For comprehensive technical information consult the Compandor Product Guide or the Linear LSI Data Manual.

The basic blocks in a compandor are the current controlled variable gain cell (delta-G), voltage to current converter (rectifier), and operational amplifier. Each Signetics compandor package has two identical, independent channels with the following block diagrams (notice that the 570/71 is different from the 572):

Figure 3

Original Signal Input

\[
\begin{align*}
1kHz, 5V \text{ pk-pk} \\
3kHz, 1V \text{ pk-pk}
\end{align*}
\]

SIGNAL AFTER AMPLIFYING X3 TO BE ABOVE NOISE

MAX DYNAMIC RANGE 6V pk-pk

Figure 1

Figure 2

WIDE BAND NOISE FLOOR OF TRANSMISSION LINE

Figure 4

SIGNAL AFTER COMPRESSION

BLOCK DIAGRAMS

NES70/571/SA571

- CURRENT CONTROLLED GAIN CELL
- VOLT-TO-CURRENT CONVERTER
- ATTACK/RELEASE TIME CONSTANT CAPACITOR

NES72

- CURRENT CONTROLLED GAIN CELL
- BUFFER
- ATTACK TIME CAPACITOR
- RELEASE TIME CAPACITOR
- VOLTAGE TO CURRENT

SEE NOTES AT END
The operational amplifier is the main signal path and output drive.

The full wave averaging rectifier measures the AC amplitude of a signal and develops a control current for the variable gain cell.

The variable gain cell uses the rectifier control current to provide variable gain control for the operational amplifier gain block.

The compandor can function as a COMPRESSOR, EXPANDOR, and AUTOMATIC LEVEL CONTROLLER or as a complete compressor/expandor system as described in the following:

1) The COMPRESSOR function processes uncontrolled input signals into controlled output signals. The purpose of this is to avoid distortion caused by a narrow dynamic range medium such as: telephone lines, RF and satellite transmissions, and magnetic tape. The COMPRESSOR can also limit the level of a signal.

2) The EXPANDOR function allows a user to increase the dynamic range of an incoming compressed signal such as radio broadcasts.

3) The compressor/expandor system allows a user to retain dynamic range and reduce the effects of noise introduced by the transmission medium.

4) The AUTOMATIC LEVEL CONTROL (ALC) function (like the familiar automatic gain control) adjusts its gain proportionally with the input amplitude. This ALC circuit therefore transforms a widely varying input signal into a fixed amplitude output signal without clipping and distortion.

HOW TO DESIGN COMPANDOR CIRCUITS

The rest of the cookbook will provide you with basic compressor, expander, and automatic level control application information. In all of the circuits a NE570/571 has been used. If high fidelity audio or separate programmable attack and decay time are needed, the NE572 with a low noise op-amp should be used.

The COMPRESSOR (see Figure 5) utilizes all basic building blocks of the compandor. In this configuration, the variable gain cell is placed in the feedback loop of the standard inverting amplifier circuit. The gain equation is

\[Av = -\frac{R_f}{R_i} \cdot \text{as shown above, the variable gain cell acts as a variable feedback resistor (R_f).} \]

(See Figure 5.)

As the input signal increases (above the crossover level of 0dBm), this variable resistor decreases in value, causing the gain to decrease, thus limiting the output amplitude. Below the crossover level of 0dBm, an increase in input signal causes the variable resistor to increase in value thereby causing the output signal's amplitude to increase.

In the compressor configuration the rectifier is connected to the output.

The complete equation for the compressor gain is:

\[\text{Gain comp.} = \left(\frac{R_1 \cdot R_2 \cdot I_0}{2 \cdot R_3 \cdot V_{in(avg)}} \right)^{1/2} \]

where:
- \(R_1 = 10K \)
- \(R_2 = 20K \)
- \(R_3 = 20K \)
- \(I_0 = 140uA \)
- \(V_{in(avg)} = 0.9 (V_{in(rms)}) \)

COMPRESSOR RECIPE

1) DC bias the output half way between the supply and ground to get maximum headroom. The circuit in Figure 6 is designed around a system supply of 6 volts so we want the output DC level to be 3 volts.

\[V_{out DC} = (1 + \frac{2R_1}{R_2}) \cdot V_{REF} \]

where:
- \(R_1 = 30K \)
- \(V_{REF} = 1.8V \)
- \(R_{OC} \) is external

manipulating the equation we arrive at...

\[R_{DC} = \left(\frac{V_{REF}}{V_{OUT}} - 1 \right) \cdot \frac{R_1}{2} \]

Note that the \(C_{DC} \) should be large enough to totally short out any AC in this feedback loop.

2) Analyze the OUTPUT signal's anticipated amplitude.

a) if larger than 2.8V peak, \(R_2 \) needs to be increased. (see INGREDIENTS section, below)

b) if larger than 3.0V peak, \(R_1 \) will also need to be increased.

By limiting the peak input currents we avoid signal distortion.

3) The input and output coupling caps need to be large enough not to attenuate any desired frequencies. (\(X_c = 1/(6.28f) \)

\[8-167 \]
4) The C(rect) should be 1 µF to 2 µF for initial setup. This directly affects Attack and Release times.

5) An input buffer may be necessary if the source's output impedance needs matching.

6) Pre-emphasis may be used to reduce noise-pumping, breathing, etc., if present. See the NE570/571 data sheet for specific details.

7) Distortion (THD) trim pins are available if the already low distortion needs to be further reduced. Refer to data sheet for trimming network. Note that if not used, the THD trim pins should have 200pF caps to ground.

8) At very low input signal levels, the rectifier's errors become significant and can be reduced with the Low Level Mistracking network. (This technique prevents infinite compression at low input levels.)

The EXPANDOR utilizes all the basic building blocks of the compandor (see Figure 7). In this configuration the variable gain cell is placed in the inverting input lead of the operational amplifier and acts as a variable input resistance, R_{IN}. The basic gain equation for operational amplifiers in the standard inverting feedback loop is $A_v = -R_2/R_1$.

As the input amplitude increases above the crossover level of 0dBm, this variable resistor decreases in value, causing the gain to increase, thus forcing the output amplitude to increase. (Refer to Figure 10.)

Below the crossover level an increase in input amplitude causes the variable resistor to increase in value, thus forcing the output amplitude to decrease.

In the expander configuration the rectifier is connected to the input.

The complete equation for the expander gain is:

$$\text{Gain expander} = \frac{2R_3V_{IN}(\text{avg})}{R_1R_2}$$

where:
- $R_1 = 10K$
- $R_2 = 20K$
- $R_3 = 20K$
- $I_B = 140\mu A$

$V_{IN}(\text{avg}) = 0.9 \times (V_{IN}(\text{rms}))$

Note that when using a supply voltage higher than 6 volts the DC output level should be adjusted. To increase the DC output level, it is recommended that R_4 be decreased by adding parallel resistance to it. (Changing R_3 would affect the expander's AC gain also and thus cause a mismatch in a companding system.)

EXPANDOR RECIPE

1) DC bias the output half way between the supply and ground to get maximum headroom. The circuit in Figure 8 is designed around a system supply of 6 volts so we want the output DC level to be 3 volts.

$$V_{OUT \ DC} = \left(1 + \frac{R_3}{R_4}\right) V_{REF}$$

where:
- $R_3 = 20K$
- $R_4 = 30K$
- $V_{REF} = 1.8V$

$V_{OUT \ DC} = \left(1 + \frac{R_3}{R_4}\right) V_{REF}$

EXPANDOR RECIPE

1) DC bias the output half way between the supply and ground to get maximum headroom. The circuit in Figure 8 is designed around a system supply of 6 volts so we want the output DC level to be 3 volts.

$$V_{OUT \ DC} = \left(1 + \frac{R_3}{R_4}\right) V_{REF}$$

where:
- $R_3 = 20K$
- $R_4 = 30K$
- $V_{REF} = 1.8V$

Note that when using a supply voltage higher than 6 volts the DC output level should be adjusted. To increase the DC output level, it is recommended that R_4 be decreased by adding parallel resistance to it. (Changing R_3 would affect the expander's AC gain also and thus cause a mismatch in a companding system.)

EXPANDOR RECIPE

1) DC bias the output half way between the supply and ground to get maximum headroom. The circuit in Figure 8 is designed around a system supply of 6 volts so we want the output DC level to be 3 volts.

$$V_{OUT \ DC} = \left(1 + \frac{R_3}{R_4}\right) V_{REF}$$

where:
- $R_3 = 20K$
- $R_4 = 30K$
- $V_{REF} = 1.8V$

Note that when using a supply voltage higher than 6 volts the DC output level should be adjusted. To increase the DC output level, it is recommended that R_4 be decreased by adding parallel resistance to it. (Changing R_3 would affect the expander's AC gain also and thus cause a mismatch in a companding system.)

EXPANDOR RECIPE

1) DC bias the output half way between the supply and ground to get maximum headroom. The circuit in Figure 8 is designed around a system supply of 6 volts so we want the output DC level to be 3 volts.

$$V_{OUT \ DC} = \left(1 + \frac{R_3}{R_4}\right) V_{REF}$$

where:
- $R_3 = 20K$
- $R_4 = 30K$
- $V_{REF} = 1.8V$

Note that when using a supply voltage higher than 6 volts the DC output level should be adjusted. To increase the DC output level, it is recommended that R_4 be decreased by adding parallel resistance to it. (Changing R_3 would affect the expander's AC gain also and thus cause a mismatch in a companding system.)

EXPANDOR RECIPE

1) DC bias the output half way between the supply and ground to get maximum headroom. The circuit in Figure 8 is designed around a system supply of 6 volts so we want the output DC level to be 3 volts.

$$V_{OUT \ DC} = \left(1 + \frac{R_3}{R_4}\right) V_{REF}$$

where:
- $R_3 = 20K$
- $R_4 = 30K$
- $V_{REF} = 1.8V$

Note that when using a supply voltage higher than 6 volts the DC output level should be adjusted. To increase the DC output level, it is recommended that R_4 be decreased by adding parallel resistance to it. (Changing R_3 would affect the expander's AC gain also and thus cause a mismatch in a companding system.)

EXPANDOR RECIPE

1) DC bias the output half way between the supply and ground to get maximum headroom. The circuit in Figure 8 is designed around a system supply of 6 volts so we want the output DC level to be 3 volts.

$$V_{OUT \ DC} = \left(1 + \frac{R_3}{R_4}\right) V_{REF}$$

where:
- $R_3 = 20K$
- $R_4 = 30K$
- $V_{REF} = 1.8V$

Note that when using a supply voltage higher than 6 volts the DC output level should be adjusted. To increase the DC output level, it is recommended that R_4 be decreased by adding parallel resistance to it. (Changing R_3 would affect the expander's AC gain also and thus cause a mismatch in a companding system.)
2) Analyze the input signal's anticipated amplitude:
 a) if larger than 2.8 peak, R₂ needs to be increased. (see INGREDIENTS section, below)
 b) if larger than 3.0V peak, R₁ will also need to be increased. (see INGREDIENTS, below)

By limiting the peak input currents we avoid signal distortion.

3) The input and output decoupling caps need to be large enough not to attenuate any desired frequencies.

4) The C(rect) should be 1µF to 2µF for initial setup.

5) An input buffer may be necessary if the sources' output impedance needs matching.

6) De-emphasis would be necessary if the complementary compressor circuit had been pre-emphasized (as in a tape deck application). See the Hi-Fi Expander application in the Linear LSI Data Manual.

7) Distortion (THD) trim pins are available if the already low distortion needs to be further reduced. See Linear LSI Data Manual for trimming network. Note that if not used, the THD trim pins should have 200pF caps to ground.

8) At very low input signal levels, the rectifier's errors become significant and can be reduced with the Low Level Mistracking network (see Linear LSI Data Manual). (This technique prevents infinite expansion at low input levels.)

In the ALC configuration, (Figure 9), the variable gain cell is placed in the feedback loop of the operational amplifier (as in the COMPRESSOR) and the rectifier is connected to the input.

As the input amplitude increases above the crossover point, the overall system gain decreases proportionally, holding the output amplitude constant.

As the input amplitude decreases below the crossover point, the overall system gain increases proportionally, holding the output amplitude at the same constant level.

The complete gain equation for the ALC is:

\[
\text{Gain} = \frac{R₁R₂}{{2}R₃} \frac{Iₙ}{V_{IN(avg)}}
\]

Output level \(= \frac{R₁R₂}{2R₃} \left(\frac{V_{IN}}{V_{IN(avg)}} \right) \)

where \(\frac{V_{IN}}{V_{IN(avg)}} = \frac{\pi}{2\sqrt{2}} = 1.11 \) (for sine wave)

Note that for very low input levels, ALC may not be desired and to limit the maximum gain, resistor Rx has been added. The modified gain equation is:

\[
\text{Gain max} = \frac{1.8V \times R₂ \times Iₙ}{2R₃}
\]

\[
Rₓ = ((\text{desired max gain}) \times 26K) - 10K
\]

INGREDIENTS

[Application guidelines for internal and external components (and input/output constraints) needed to tailor (cook) each of the three entrees (applications) to your taste.]

\(R₁ \) (10Kohms) limits input current to the rectifier. This current should not exceed an AC peak value of ± 300 microamps. An external resistor may be placed in series with \(R₁ \) if the input voltage to the rectifier will exceed ± 3.0V peak (i.e., 10K \(\times \) 300µA = 3.0V).

Figure 8

BASIC EXPANDOR

![Basic Expander Diagram]

Figure 9

AUTOMATIC LEVEL CONTROL

![Automatic Level Control Diagram]

NOTE:

ALL COMPONENTS ARE INTERNAL EXCEPT CAPS.
R_2 (20Kohms) limits input current to the variable gain cell. This current should not exceed an AC peak value of ±140 microamps. Again, an external resistor has to be placed in series with R_2 if the input voltage to the variable gain cell exceeds ±2.8V (i.e., 20K x 140µA).

R_3 (20Kohms) acts in conjunction with R_4 as the feedback resistor (R_f) (expander configuration) in the equation. (R_3’s value can be either reduced or increased externally.) However, it is recommended that R_4 be the one to change when adjusting the output DC level.

R_4 (30Kohms) acts as the input resistor (R_{IN}) in the standard non-inverting op amp circuit. (It's value can only be reduced.)

\[
V_{OUT,DC} = (1 + \left(\frac{R_3}{R_4}\right)V_{ref}\text{ (for the EXPANDOR)}
\]

\[
V_{OUT,DC} = (1 + \left(2\frac{R_{DC}}{R_4}\right)V_{ref}\text{ (for the COMPANDOR, ALC)}
\]

The purpose of these DC biasing equations is to allow the designer to set the output half way between the supply rails for largest headroom (usually some positive voltage and ground).]

C_{DC} acts as an AC shunt to ground to totally remove the DC biasing resistors from the AC gain equation.

C_P caps are AC signal coupling caps.

C_{RECT} acts as the rectifier's filter cap and directly affects the response time of the circuit. There is a trade-off, though, between fast attack and decay times and distortion.

The time constant is: $10K \times C_{RECT}$

The total harmonic distortion (THD) is approximated by:

\[
THD \approx \left(1\mu F/C_{RECT}\right)(1kHz/freq.) \times 0.2\%
\]

NOTES:
The NE572 differs from the 570/571 in that:
1. There is no internal op amp.
2. The attack and release times are programmed separately.

SYSTEM LEVELS OF A COMPLETE COMPANDING SYSTEM

Figure 10 demonstrates the compressing and expanding functions:
Point A represents a wide dynamic range signal with a maximum amplitude of +16dB and minimum amplitude of −80dB.
Point B represents the compressor output showing a 2:1 reduction in dynamic range (−40dB is increased to −20dB, for example). Point B can also be seen as the dynamic range of a transmission medium. Transmission noise is present at the −60dB level from Point B to Point C.
Point C represents the input signal to the expander.
Point D represents the output of the expander. The signal transformation from Point C to D represents a 1:2 expansion.
WHAT IS COMPANDING??

Shown here are some scope pictures of what three functions of the compandor look like in the kitchen, responding to tone bursts of varying amplitudes.

Figure 11

- **Compression 1kHz**
- **Expansion 1kHz**
- **Compandor System 15kHz**
- **Compandor System 1kHz**
- **Automatic Level Control (Small Signal Input)**
- **Automatic Level Control (Large Signal Input)**
APPLICATION BOARD

Shown below is the schematic (Figure 12) for Signetics' NE570/571 evaluation/demo board. This board provides one channel of EXPANSION and one channel of COMPRESSION (which can be switched to AUTOMATIC LEVEL CONTROL).
APPLICATIONS

Figure 1 shows a block diagram of the NE5080 and NE5081 in a simple point-to-point communications scheme. Pin 5 of the NE5080 is grounded to permanently enable transmission; grounding pin 3 disables the jabber function.

An example of a communications system block diagram using the NE5080 and the NE5081 (as in a modem) is shown in Figure 2.

The jabber function is active in this system. The NE5080 Jabber Flag (pin 2) goes high when the capacitor at pin 3 of the NE5080 charges to about 1.4 volts. This fault condition will interrupt the Transmission Controller, which will cease transmitting and write to the proper address for the decoder to put out a signal to discharge the capacitor. The Controller will then pass the token to the next node.

The transmission medium can be anything from a twisted pair to a fiber optic link. The NE5081 receives the FSK signal and converts it to a digital data stream corresponding to the data sent by the NE5080. Pin 10 of the NE5081 goes high when the signal at its input is above the threshold set by the potentiometer between pins 13 and 14 of the NE5081.
DC to 2 Megabaud Modem Using the NE5080 and NE5081

The NE5080 and NE5081 are designed to be used together as an asynchronous modem. They employ FSK modulation at high carrier frequencies, plus filtering to reject EMI and RFI noise that is frequently encountered in industrial and commercial environments. Figures 4 and 5 show Full and Half Duplex modems.

The carrier frequency is externally adjustable and can range from 50kHz to over 20MHz. The modem can be used in a number of ways:

1. Multidrop party line of data transmitting and receiving devices (local area networks).
2. Point-to-point operation connecting just two transmitting/receiving devices.
3. Either of the above operated on one cable in the half duplex mode.
4. Either 1 or 2 above operated on two cables in the full duplex mode.

Typical operation can be 100 modems randomly spaced on up to 2000 meters of RG-11 (foam) cable with a center frequency of 5MHz.

In point-to-point operation, one can drive further. Table 1 gives obtainable distances when different carrier frequencies and cables are used.

Table 1. TRANSMISSION DISTANCE FOR A SINGLE RECEIVER AS A FUNCTION OF CENTER FREQUENCY AND CABLE TYPE

<table>
<thead>
<tr>
<th>Carrier Frequency</th>
<th>Maximum Data Rate</th>
<th>Cable</th>
<th>Cable</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>RG-59</td>
<td>RG-11 (Foam)</td>
</tr>
<tr>
<td>1MHz</td>
<td>0.5 Megabaud</td>
<td>6000 Ft</td>
<td>21000 Ft</td>
</tr>
<tr>
<td>3MHz</td>
<td>1.0 Megabaud</td>
<td>5000 Ft</td>
<td>12000 Ft</td>
</tr>
<tr>
<td>5MHz</td>
<td>2.0 Megabaud</td>
<td>4200 Ft</td>
<td>9500 Ft</td>
</tr>
</tbody>
</table>
Figure 4. NE5080 and NE5081 Connected as a Full Duplex Modem.

Figure 5. NE5080 and NE5081 Connected as a Half Duplex Modem.
FSK MODEM SET-UP PROCEDURES

To set up the modem per IEEE 802.4 specifications, the following sequence should be followed at 25 ± 2°C ambient.

TRANSMITTER SET-UP:
1. Ground Jabber Control (pin 3) and the transmit gate (pin 5) of the NE5080.
2. Turn on the power and allow the circuit to warm up for 3 minutes.
3. Hold the Data Input (pin 14) of the NE5080 at a logic high.
4. Measure the frequency at the FSK output of the transmitter (cable should be properly terminated) and adjust R2 for a frequency reading of 6.250MHz ± 5kHz.
5. Apply a logic low to the Data Input and check the output frequency. If the reading is not 3.750MHz ± 40kHz, readjust R1 until the high frequency is 6.250MHz ± 25kHz and the low frequency is 3.750MHz ± 40kHz.

Transmitter set-up is now complete.

RECEIVER SET-UP:
6. Set Detection Timing pot R5 and Input Level Detect pot R4 at the NE5081 to mid range.
7. Apply a 5.000 MHz 1Vp-p sine wave to the receiver FSK Input.
8. Attach an oscilloscope probe to the Data Output pin of the NE5081 and adjust L1 or C7 (whichever is adjustable) until the output state alternates between high and low levels. Figures 7 and 8 indicate examples of improper tuning.
9. Set the generator to 3.750MHz, 35mVp-p.
10. Adjust Input Level Detect pot R4 until the Data Output pin is alternating between high and low levels.
11. Increase the generator output to 45mVp-p and verify that the data output is low.
12. Decrease the generator output to 25mVp-p and verify that the data output is high.
13. Apply a 100kHz 1Vp-p signal to the FSK Input and connect a scope probe to the Input Level Flag and another probe to the FSK Input. Adjust Detection Timing pot R5 so that the delay from the time the FSK Input signal goes through 0 volts on the Positive to negative transition, to the time when the Input Level Flag goes from high to low, is between 0.5 and 2.5µSec. See Figure 9.
14. Final adjustment to the tuning of L1/C7 should be done by using an adjusted transmitter to transmit pseudo random data and tuning the receiver L1/C7 tank circuit for minimum jitter and symmetrical eye pattern observed on the receiver pin 8 (see Figure 10).

This concludes the receiver set-up procedure.
DETERMINING COMPONENT VALUES

Power supply pins of both devices should be bypassed with high quality 0.1 \(\mu \)F capacitors close to the devices. Additionally, the NE5081 Vcc (pin 9) should be well-decoupled from the power supply by a small inductor (about 10 \(\mu \)H) and another 0.1 \(\mu \)F capacitor as the NE5081 exhibits large changes in power supply current during switching.

The coupling capacitors C4 and C13 are needed to maintain input bias when a low DC impedance line is connected to the FSK input. Too small a value for these capacitors could result in excessive signal attenuation. If these capacitors are too large, the receiver Input Level Flag may remain high for an excessive amount of time after the input signal is removed. Each transmitter and each receiver should have its own coupling capacitor. This is necessary to prevent any DC terminations from altering biases.

The external resistance at the NE5080 pin 12 should always be about 2.4 kilohms, with some adjustment allowable to compensate for the tolerance of C1 and slight differences between individual ICs.

C11 and R5 are the Carrier Detect timing components and determine how long after the FSK input signal is discontinued before the Input Level Flag goes low. R5 should not exceed 5 kilohms. With C11 set at 56 pF, a 5 kilohm R5 will allow Carrier Detect Timing adjustment to 2 \(\mu \)Sec. R5 can be a fixed resistor if this timing is not critical (perhaps because of the use of an "end of data" signal). This delay is required to allow the signal to propagate through the receiver. Carrier Detect Timing should be adjusted for different center frequencies by choosing C11 according to the relationship:

\[
C_{11} = \frac{1}{3572 \times f_c}
\]

The Input Level Detect function can be disabled and the receiver be made to hold the Carrier Detect Flag high by removing R5 and C11 and tying pins 15 and 16 together and pulling them up to Vcc with a 10 kilohm resistor.

If the Jabber function is not to be used, Jabber control pin 3 of NE5080 should be grounded. If the Jabber function is to be used, a capacitor, C2, should be connected between pin 3 and ground. The value of this capacitor is determined as indicated below:

\[
C_2 = (0.95 \times 10^{-6}) \times t
\]

where \(t \) is the maximum allowable transmit time in seconds.

The resistance R1, together with capacitor C1, set the transmit frequencies. The logic high frequency is fixed at about 1.67 times the logic low frequency, meaning that the logic low frequency is 0.75 times the center frequency \(f_c \), and the logic high frequency is 1.25 times the center frequency. Note that this center frequency is never transmitted in normal operation and is sometimes referred to as the "carrier frequency."

C1 is chosen by the relationship for \(f_c \) at or below 7MHz:

\[
C_1 = \frac{6.5 \times 10^4}{f_c}
\]

Above 7MHz center frequency, this capacitor is found by modifying this equation to:

\[
C_1 = \frac{5.5 \times 10^4}{f_c}
\]

To get the characteristics that are needed for proper operation of the NE5081, it is important to keep the proper relationship between L1 and C7:

\[
C_7 = \frac{1}{7885 \times f_c}
\]

\[
L_1 = \frac{200}{f_c}
\]

Capacitor values of the filter are dependent upon operating frequencies to maintain proper characteristics:

\[
C_8 = \frac{9.0 \times 10^4}{f_c}
\]

\[
C_9 = \frac{4.1 \times 10^4}{f_c}
\]

\[
C_{10} = \frac{1.2 \times 10^3}{f_c}
\]

\[
C_{12} = \frac{5 \times 10^4}{f_c}
\]

Coupling capacitor values also depend upon center frequency:

\[
C_4 = C_{13} = \frac{2.5 \times 10^{-2}}{f_c}
\]

In all of the above equations, capacitances are in Farads, inductances in Henrys, and frequencies in Hertz.
SOME COMMON BAUD RATES
Although intended to be used with a center frequency of 5MHz, the NE5080 and NE5081 can be used at other center frequencies. Table 2 gives minimum center frequency (\(f_c\)) for some common baud rates, together with external component values for those center frequencies. Note that it is not recommended that these devices be operated at center frequencies below 50kHz.

USING THE NE5080/NE5081 WITH A FIBER OPTIC LINK
The NE5080/NE5081 chip set is highly suitable for use in low cost fiber-optic links. There are many advantages to fiber links over open wire or coaxial cable links. These advantages include:
1. Cost savings in conductor weight and size.
2. Immunity to EMI/RFI.
3. Low crosstalk.
4. High communications security; cannot be tapped by electromagnetic induction or surface conduction.
5. Fiber-optic cable does not radiate electromagnetic energy nor disturb other communications media.
6. Extremely wide bandwidth (high channel per conductor density).
7. Low attenuation.
8. No ground loops or shifts caused by common grounds.
9. Complete electrical isolation between transmitter and receiver.
10. Cable breaks cause no shorts, making this technology useful in hazardous environments, e.g., explosive chemical facilities.
11. No damage to equipment is expected due to current surges on adjacent lines.
12. Fiber cable does not act as an antenna to pick up high electromagnetic pulses such as those caused by electrical storms.
13. Low BER (Bit Error Rate).

The circuit of Figure 11 shows a simplex fiber link between the NE5080 transmitter and the NE5081 receiver. The components shown are for a center frequency of 5MHz, although this frequency can be increased to 20MHz with proper selection of external component values. The NE5539 has a 350MHz unity gain bandwidth which may limit maximum operating frequencies in some systems.

Since the NE5081 can adequately accept signals below 10 mV at 5MHz carrier, the gain stage (within the dashed lines of Figure 11) may be eliminated if the attenuation in the link is low. If the gain stage is used, be mindful of the bandwidth trade-off at higher gains. Refer to the NE5539 data sheet for details.

The transmitter and receiver are set up as described under FSK MODEM SET-UP PROCEDURE above.

LAYOUT PRECAUTIONS
As is the case with any components using high frequencies, good layout practice is essential; poor layout can adversely affect performance. All lead lengths should be as short as is practical for all lines which carry R-F, including the tuning capacitor and resistors (C1, R1, R2) of the NE5080. Lead length is especially critical with C1, which should be mounted as close to the NE5080 as is possible. A printed circuit board with a good ground plane, both top and bottom, is also recommended (wire-wrap is NOT recommended). The ground plane should extend below tuning capacitor C1 on both top and bottom of the board, with no other trace coming between the leads of this capacitor.

Because of the high speed switching, pin 9 (\(V_{cc}\)) of the NE5081 can exhibit a large current swing, causing vertical output jitter which may be eliminated by decoupling pin 9 with a small (10µH) R-F choke and a 0.05µF capacitor.

See Figure 12 for an example of a working layout.

Table 2. RECOMMENDED MINIMUM CENTER FREQUENCY AND COMPONENT VALUES FOR VARIOUS BAUD RATES.

<table>
<thead>
<tr>
<th>BAUD RATE (Kbaud)</th>
<th>(f_c) (kHz)</th>
<th>C1</th>
<th>L1</th>
<th>C4</th>
<th>C13</th>
<th>C7</th>
<th>C8</th>
<th>C9</th>
<th>C10</th>
<th>C11</th>
<th>C12</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.6</td>
<td>50</td>
<td>13nF</td>
<td>4mH</td>
<td>0.50µF</td>
<td>2.4nF</td>
<td>1.8nF</td>
<td>8.2nF</td>
<td>24nF</td>
<td>5.6nF</td>
<td>10nF</td>
<td></td>
</tr>
<tr>
<td>19.2</td>
<td>50</td>
<td>13nF</td>
<td>4mH</td>
<td>0.50µF</td>
<td>2.4nF</td>
<td>1.8nF</td>
<td>8.2nF</td>
<td>24nF</td>
<td>5.6nF</td>
<td>10nF</td>
<td></td>
</tr>
<tr>
<td>38.4</td>
<td>100</td>
<td>6.8nF</td>
<td>2mH</td>
<td>0.27µF</td>
<td>1.3nF</td>
<td>0.9nF</td>
<td>3.9nF</td>
<td>12nF</td>
<td>2.7nF</td>
<td>5nF</td>
<td></td>
</tr>
<tr>
<td>50.1</td>
<td>125</td>
<td>5.1nF</td>
<td>1.6mH</td>
<td>0.20µF</td>
<td>1.0nF</td>
<td>7.5nF</td>
<td>3.3nF</td>
<td>10nF</td>
<td>2.2nF</td>
<td>3.9nF</td>
<td></td>
</tr>
<tr>
<td>64.0</td>
<td>160</td>
<td>3.9nF</td>
<td>1.3mH</td>
<td>0.15µF</td>
<td>800pF</td>
<td>560pF</td>
<td>2.5nF</td>
<td>7.5nF</td>
<td>1.8nF</td>
<td>3nF</td>
<td></td>
</tr>
<tr>
<td>128</td>
<td>320</td>
<td>2nF</td>
<td>625µH</td>
<td>0.075µF</td>
<td>390pF</td>
<td>270pF</td>
<td>1.3nF</td>
<td>3.9nF</td>
<td>860pF</td>
<td>1.6nF</td>
<td></td>
</tr>
<tr>
<td>256</td>
<td>640</td>
<td>1nF</td>
<td>312µH</td>
<td>0.039µF</td>
<td>200pF</td>
<td>150pF</td>
<td>640pF</td>
<td>1.8nF</td>
<td>430pF</td>
<td>750pF</td>
<td></td>
</tr>
<tr>
<td>512</td>
<td>1250</td>
<td>510pF</td>
<td>160µH</td>
<td>0.02µF</td>
<td>100pF</td>
<td>75pF</td>
<td>330pF</td>
<td>1.0nF</td>
<td>220pF</td>
<td>390pF</td>
<td></td>
</tr>
<tr>
<td>1500</td>
<td>3750</td>
<td>180pF</td>
<td>53µH</td>
<td>6.8nF</td>
<td>33pF</td>
<td>25pF</td>
<td>110pF</td>
<td>330pF</td>
<td>75pF</td>
<td>130pF</td>
<td></td>
</tr>
<tr>
<td>1544</td>
<td>4000</td>
<td>160pF</td>
<td>50µH</td>
<td>6.8nF</td>
<td>33pF</td>
<td>22pF</td>
<td>100pF</td>
<td>300pF</td>
<td>68pF</td>
<td>125pF</td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>5K</td>
<td>130pF</td>
<td>40µH</td>
<td>5.0nF</td>
<td>25pF</td>
<td>18pF</td>
<td>82pF</td>
<td>240pF</td>
<td>56pF</td>
<td>100pF</td>
<td></td>
</tr>
<tr>
<td>8000</td>
<td>20K</td>
<td>33pF</td>
<td>10µH</td>
<td>1.2nF</td>
<td>6pF</td>
<td>5pF</td>
<td>20pF</td>
<td>62pF</td>
<td>15pF</td>
<td>25pF</td>
<td></td>
</tr>
</tbody>
</table>
Figure 11. Simplex Fiber Optic System
APPLICATIONS USING THE NE5080, NE5081 AN195

Figure 12. Components and Layout Used for Evaluation Board
INTRODUCTION
The operational amplifier was first introduced in the early 1940's. Primary usage of these vacuum tube forerunners of the ideal gain block was in computational circuits. They were fed back in such a way as to accomplish addition, subtraction, and other mathematical functions.

Expensive and extremely bulky, the operational amplifier found limited use until new technology brought about the integrated version, solving both size and cost drawbacks.

Volumes upon volumes have been and could be written on the subject of op amps. In the interest of brevity this chapter will cover the basic op amp as it is defined along with test methods and suggestive applications. Also, included is a basic coverage of the feedback theory from which all configurations can be analyzed.

THE PERFECT AMPLIFIER
The ideal operational amplifier possesses several unique characteristics. Since the device will be used as a gain block, the ideal amplifier should have infinite gain. By definition also, the gain block should have an infinite input impedance in order not to draw any power from the driving source. Additionally, the output impedance would be zero in order to supply infinite current to the load being driven. These ideal definitions are illustrated by the ideal amplifier model of Figure 1.

IDEAL OPERATIONAL AMPLIFIER

Further desirable attributes would include infinite bandwidth, zero offset voltage, and complete insensitivity to temperature, power supply variations, and common mode input signals.

Keeping these parameters in mind, further contemplation produces two very powerful analysis tools. Since the input impedance is infinite, there will be no current flowing at the amplifier input nodes. In addition, when feedback is employed the differential input voltage reduces to zero. These two statements are used universally as beginning points for any network analysis and will be explored in detail later on.

THE PRACTICAL AMPLIFIER
Tremendous strides have been made by modern technology with respect to the ideal amplifier. Integrated circuits are coming closer and closer to the ideal gain block. Input bias currents for instance are in the pA range for FET input amplifiers while offset voltages have been reduced to less than 1mV in many cases, in Bipolar devices.

Any device has limitations however, and the integrated circuit is no exception. Modern op amps have both voltage and current limitations. Peak to peak output voltage, for instance, is generally limited to one or two base-emitter voltage drops below the supply voltage while output current is internally limited to approximately 25mA. Other limitations such as bandwidth and slew rates are also present, although each generation of devices improves over the previous one.

DEFINITION OF TERMS
Earlier the ideal operational amplifier was defined. No circuit is ideal of course so practical realizations contain some sources of error. Most sources of error are very small and therefore can usually be ignored. It should be noted that some applications require special attention to specific sources of error.

Before the internal circuity of the op amp is further explored it would be beneficial to define those parameters commonly referenced.

INPUT OFFSET VOLTAGE
Ideal amplifiers produce 0 volts out for 0 volts input. But, since the practical case is not perfect, there will appear a small dc voltage at the output even though no differential voltage is applied. This dc voltage is called the input offset voltage, with the majority of its magnitude being generated by the differential input stage pictured in Figure 2.

An operational amplifier's performance is in large part dependent upon the first stage. It is the very high gain of the first stage that amplifies small signal levels to drive remaining circuitry. Coincidently, the input current, a function of beta, must be as small as possible. Collector current levels are thus made very low in the input stage in order to gain low bias currents. It is this input stage also which determines dc parameters such as offset voltage since the amplified output of this stage is of sufficient voltage levels to eclipse most subsequent error terms added by the remaining circuitry. Under balanced conditions the collector currents of Q1 and Q2 are perfectly matched, hence we may say:

\[Eos = Ic2RL - Ic1RL = 0 \]

(1)

In practice small differences in geometries of the base emitter regions of Q1 and Q2 will cause Eos not to equal 0. Thus, for balance to be restored a small dc voltage must be added to one Vbb or

\[Vos = Vbb1 - Vbb2 \]

(2)

where the Vbb of the transistor is found by

\[Vbb = \frac{KT}{q} I_n (\frac{Vl}{T}) \]

(3)

Reference is made to the input when talking of offset voltage. Thus, the classic definition of input offset voltage is 'that differential dc voltage required between inputs of an amplifier to force its output to zero volts.'

Offset voltage becomes a very useful quantity for the designer because many other sources of error can be expressed in terms of Vos. For instance, the error contribution of input bias current can be expressed as offset voltages appearing across the input resistors.

INPUT OFFSET VOLTAGE DRIFT
Another related parameter to offset voltage is Vos drift with temperature. Present day amplifiers usually possess Vos drift levels in the range of 5µV to 40µV per degree C. The magnitude of Vos drift is directly related to the initial offset voltage at room temperature. Amplifiers exhibiting larger initial offset voltages will also possess higher drift rates with temperature. A rule of thumb often applied is that the drift per degree C will be 3.3µV for each millivolt of initial offset. Thus, for tighter control of thermal drift, a low offset amplifier would be selected.
INPUT BIAS CURRENT

Again referring to Figure 3–2, it is apparent that the input pins of this op amp are base inputs. They must, therefore, possess a dc current path to ground in order for the input to function. Input bias current, then is 'the dc current required by the inputs of the amplifier to properly drive the first stage.'

The magnitude of \(I_{\text{bias}} \) is calculated as the average of both currents flowing into the inputs and is calculated from

\[
I_{\text{bias}} = \frac{I_{1} + I_{2}}{2}
\]

Bias current requirements are made as small as possible by using high beta input transistors and very low collector currents in the first stage. The trade-off for bias current is lower stage gain due to low collector current levels and lower slew rates. The effect upon slew rate is covered in detail under the compensation section.

INPUT OFFSET CURRENT

The ideal case of the differential amplifier and its associated bias current does not possess an input offset current. Circuit realizations always have a small difference in bias currents from one input to the other, however. This difference is called the input offset current. Actual magnitudes of offset current are usually at least an order of magnitude below the bias current. For many applications this offset may be ignored but very high gain, high input impedance amplifiers should possess as little \(I_{\text{os}} \) as possible because the difference in currents flowing across large impedances develops substantial offset voltages. Output voltage offset due to \(I_{\text{os}} \) can be calculated by

\[
V_{\text{out}} = A_{\text{o}}I_{\text{os}}R_{\text{f}}
\]

Hence, high gain and high input impedances magnify directly to the output, the error created by offset current. Circuits capable of nulling the input voltage and current errors are available and will be covered later in this chapter.

INPUT OFFSET CURRENT DRIFT

Of considerable importance is the temperature coefficient of input offset current. Even though the effects of offset are nulled at room temperature, the output will drift due to changes in offset current over temperature. Many popular models now include a typical specification for \(I_{\text{os}} \) drift with values ranging in the .5nA per degree C area. Obviously those applications requiring low input offset currents also require low drift with temperature.

INPUT IMPEDANCE

Differential and common mode impedances looking into the input are often specified for integrated op amps. The differential impedance is the total resistance looking from one input to the other while common mode is the common impedance as measured to ground. Differential impedances are calculated by measuring the change of bias current caused by a change in the input voltage.

COMMON MODE RANGE

All input structures have limitations as to the range of voltages over which they will operate properly. This range of voltages impressed upon both inputs which will not cause the output to misbehave is called the common mode range. Most amplifiers possess common mode ranges of ±12 volts with supplies of ±15 volts.

COMMON MODE REJECTION RATIO

The ideal operational amplifier should have no gain for an input signal common to both inputs. Practical amplifiers do have some gain to common mode signals. The classic definition for common mode rejection ratio of an amplifier is the ratio the differential signal gain to the common mode signal gain expressed in dB as shown in equation 6a.

\[
\text{CMRR(dB)} = 20 \log \frac{e_{o}}{e_{c}}
\]

The measurement CMRR as in 3-6a requires 2 sets of measurements. However, note that if \(e_{c} \) in equation 3-6a is held constant, CMRR becomes:

\[
\text{CMRR(dB)} = 20 \log \frac{e_{o}}{e_{c}}
\]

A new alternate definition of CMRR based on 3-6b is the ratio of the change of input offset voltage to the input common mode voltage change producing it.

Figure 4 illustrates the application of the equivalent common mode error generator to the voltage follower circuit. The gain of the voltage follower with error contributions caused by both finite gain and finite common mode rejection ratio is shown in equation 7.

\[
\frac{e_{o}}{e_{in}} = \frac{1 \pm 1/\text{CMRR}}{1+1/A}
\]

where A equals open loop gain and is frequency dependent.

AC PARAMETERS

Parameter definition has up to this point, been dealing primarily with dc quantities of voltages, currents, etc. Several important ac or frequency dependent parameters will now be discussed.

An ideal gain block was defined earlier as one which would provide infinite gain and bandwidth. Real circuits approximate infinite open loop gain with low frequency gains in excess of 100dB. The very high gains achieved with present designs are possible only by cascading stages. Although providing very high open loop gain the cascading of stages results in the need for frequency compensation in closed loop configurations and reduces the open loop.

LARGE SIGNAL BANDWIDTH

The large signal or power bandwidth of an amplifier refers to its ability to provide its maximum output voltage swing with increasing frequency. At some frequency the output will become slew rate limited and the output will begin to degrade. This point is defined by

\[
F_{\text{PL}} = \frac{\text{Slew Rate}}{2\pi + \text{f}_{\text{out}}}
\]

where \(F_{\text{PL}} \) is the upper power bandwidth frequency and \(f_{\text{out}} \) is the peak output swing of the amplifier.

SLEW RATE

The maximum rate of change of the output in response to a step input signal is termed slew rate. Deviation from the ideal is caused by the limitation in frequency response of the amplifier stages and the phase compensation technique used. Summing node and amplifier output capacitances must be kept to a minimum to guarantee getting the maximum slew rate of the operational amplifier. Circuit board layout must also be of high frequency quality. Power supplies should be adequately bypassed at the pins, with both low and high frequency components to avoid possible ringing. A selection of a proper capacitor in parallel with the feedback resistor may be necessary. Too small a value could result in excessive ringing and too large a value will decrease...
frequency response. In general, the worst case slew rate is in the unity gain non-inverting mode (see Figure 5a). Specifications of slew rate should always reflect this worst case condition with the maximum required compensation network.

FREQUENCY RESPONSE

Distributed capacitances and transit times in semiconductors cause an upper frequency limit or pole for each and every gain stage. Monolithic pnp transistors used for level shifting possess poor upper frequency characteristics and cascaded gain stages, used to approach the highest gain, subtract from the maximum frequency response. As shown in Figure 6 the open loop frequency response of the op amps shown crosses unity gain at approximately 10MHz. Closed loop response is unstable without compensation, however, so typical unity gain frequencies are readjusted by the effects of phase compensation, in this case 1MHz.

From Figure 6 it is also apparent that an amplifier has a trade off between gain and bandwidth. Higher gains are achieved at the expense of bandwidth. This trade off is a constant figure called the gain bandwidth product.

TEST METHODS

Product testing of integrated circuits uses automatic test equipment. Large computer controlled test decks test all data sheet limits in a matter of milliseconds. Each parameter is tested in a specific circuit configuration defined by the test hardware.

A typical simplified op amp test configuration is depicted by Figure 9. Units may be classed in several categories according to selected parameters. Even failures may be classified categorically depending upon their mode of failure.

Figures 7, 8, 10 and 11 illustrate the general test set-ups commonly used to measure CMRR, average bias current, offset voltage and current, and open loop gain, respectively. In general, the following parameters are tested under the following conditions.

COMMON MODE REJECTION

The test set-up for CMRR is given in Figure 7. Resistor values are chosen to provide sufficient sensitivity and accuracy for the device type being tested and the voltage measuring equipment being used.

The positive common mode input voltage within the range V_{CM1} is algebraically subtracted from all supply voltages and from V_O. Then V_1 is measured (V_{11}). The most negative common mode voltage within the range, V_{CM2} is then subtracted from all the supply voltages and V_O, and V_1 is again measured (V_{12}).

Then

$$CMRR = \frac{\left| R_1 + R_2 \right|}{\left| R_1 \right|} \frac{V_{CM1} - V_{CM2}}{V_{11} - V_{12}}$$

(9)
A TYPICAL OP AMP TEST CIRCUIT (SIMPLIFIED)

Figure 9

CIRCUIT DIAGRAM USED FOR OFFSET VOLTAGE AND OFFSET CURRENT

Figure 10

CIRCUIT DIAGRAM USED FOR LARGE-SIGNAL OPEN LOOP GAIN MEASUREMENT

Figure 11

All resistor values are in ohms.
This operation is equivalent to swinging both inputs over the full common mode range, and holding the output voltage constant, but it makes the \(V_1 \) measurement much simpler.

BIAS CURRENT

Bias current is measured in the configuration of Figure 8.

With switches at position 1 and \(V_o = 0 \) volts, measure \(V_{11} \). Move switches to position 2 and again measure \(V_{12} \). Calculate \(I_{bias} \) (average), by

\[
I_{bias} = \frac{R_1}{R_1 + R_2} \frac{V_1}{R_3} \quad (10a)
\]

\[
I_{bias} = \frac{R_1}{R_1 + R_2} \frac{V_1}{R_3} \quad (10b)
\]

\[
I_{bias (avg)} = \frac{I_{bias 1} + I_{bias 2}}{2} = \frac{R_1}{R_1 + R_2} \frac{V_{11} - V_{12}}{2R_3} \quad (10c)
\]

OFFSET VOLTAGE

Figure 10 is used for both offset voltage and current. With \(V_o \) at 0 volts and the switches selecting the source impedance of 100 ohms, the offset voltage is measured at \(V_1 \) and is equal to

\[
V_{os} = \frac{R_1 V_1}{R_1 + R_2} \quad (11)
\]

OFFSET CURRENT

Offset current is measured by calculation of offset voltage change with a change in source impedance. With switches in position 1, measure \(V_o \). Calculate the contribution of \(I_{os} \) by

\[
I_{os} = \frac{V_o - V_1}{R_3} \quad (12)
\]

SIGNAL GAIN

The signal gain of operational amplifiers is most commonly specified for the full output swing.

This is referred to as large signal voltage gain and can be measured by the circuit of Figure 11. Usually specified under a specific load determined by \(R_o \), a signal equal to the maximum swing of the output voltage is applied to \(V_o \) in both positive and negative directions. \(V_{11} \) and \(V_{12} \) are measured values of \(V_1 \) and \(V_o = \) maximum positive and maximum negative signals respectively. The gain of the device under test then becomes

\[
A_{vo} = \left(\frac{R_1 + R_2}{R_1} \right) \left(\frac{V_{11} - V_{12}}{V_{11} - V_{12}} \right) \quad (13)
\]

SLEW RATE

Many other parameters are checked automatically by similar means. Only the most important ones have been covered here. Of great interest to the designer are other parameters which do not necessarily carry minimum or maximum limits. One such parameter is slew rate. The configuration used to measure slew rate depends upon the intended application. Worst case conditions arise in the unity gain non-inverting mode.

The output of the D.U.T. drives the vertical input of the scope. For providing \(V_+ \) and \(V_- \) to the D.U.T., the tester uses two simple adjustable regulators, both current limited at 25mA. Input drive to the D.U.T. may be selected by means of S-2 as shown.

To use the curve tracer, first preset the \(V_+ \) and \(V_- \) supplies with an accurate meter. The supply voltages are somewhat dependent on ac line regulation and should be checked periodically. The horizontal gain of the scope may be set to give a convenient readout of the peak-to-peak D.U.T. input signal corresponding to the setting of S-2. As some devices have two outputs, a second output line (vertical 2) has been provided for these devices. The transfer function of such devices will be inverted to that of Figure 13 of course.

\[
SR = \frac{\Delta V_{out}}{\Delta T} \quad (14)
\]
Simplicity and low cost are the two major attributes of this tester. It is not intended to perform highly rigorous tests for all devices. It is, however, a reasonably accurate means of determining the gains and offset voltages of most amplifiers. It will in addition, indicate the transfer curves of comparators and sense amplifiers with equivalent accuracies.

AMPLIFIER DESIGN

Linear operational amplifier IC's were introduced soon after the appearance of the first digital integrated circuits. The performance of these early devices, however, left much to be desired until the introduction of the 709 device. Even with its lack of short circuit protection and its complicated compensation requirements, the 709 gained real acceptance for the IC op amp. The 709 was designed using a three stage approach requiring both input and output stage compensation. In addition the output stage was not short circuit proof and the input stage latched up under certain conditions, requiring external protection.

Much better designs soon were introduced. Among the contenders were the 741, 748, 101, and 107 devices. All were general purpose devices with single capacitor compensation, (some were internally compensated), and all heralded input and output overstress protection. The basic design has two gain stages. By rolling off the frequency response of one of these (the second stage), so that the overall gain is unity at a frequency below the point where excess phase becomes significant, the device can be stabilized for all feedback configurations. Further, by making the first stage a voltage to current converter, with a small g_m and the second stage a current to voltage converter with a high r_m, the second stage can be rolled off at 6dB octave with a small value capacitor in the order of 30pF, which can then be built into the device itself. This concept is shown in Figure 15.

The frequency and phase response of the pnp devices in the first stage dictate a roll off in the second stage to give a loop gain of unity at about 1.0MHz. For the unity gain feedback configuration, this implies an open loop gain of unity at this frequency. The capacitor C_c controls this parameter by looking much smaller than r_m at frequencies above a few cycles, giving a clean 6dB/octave roll off over 5 decades.

The overall gain at frequencies where the impedance of C_c dominates r_m is given by

$$A_v(w) = \frac{g_{m1}}{4KT} \cdot \frac{1}{wC_c}$$

(15)
Substituting the value given, we find that a capacitance of $C_c = 30\text{pF}$ gives a unity gain frequency of about 1.0MHz.

First stage large signal current also defines the slew rate for a specific compensation technique. It is this current which must charge and discharge the C_c by the expression

$$SR = \frac{9V}{dT} = \frac{I_{LS}}{C_c} \quad (16)$$

where I_{LS} is the largest signal current of the input stage. Obviously, the slew rate can be improved by increasing the first stage collector current. This would, however, reflect directly upon the bias current by increasing it.

Two serious limitations, then, of these devices for diverse applications are input bias current and slew rate. Both may be overcome with small changes of the input structure to yield higher performance devices.

Reducing the input bias current becomes a matter of raising the transistor beta of the first stage. Several current designs boasting very low input currents use what is termed super beta input devices. These transistors have betas of 1,500 to 7,000. Bias currents under 2nA can be achieved in this way. Even though the B_vCEO of such transistors can be as low as 1 volt, the lower breakdowns are accounted for in the input stage by rearranging the bias technique. Bandwidths and slew rates suffer only slightly as a result of the lower current levels.

The second limitation of 741 devices is slew rate. As previously mentioned, the rate of change is dictated by the compensation capacitance as charged by the large signal current of the first stage. By altering the large signal gm of the first stage as depicted by Figure 18, the slew rate can be dramatically increased.

The additional current supplied during large signal swings by current source I_s causes the first stage transfer function to change as shown in Figure 19. The compensation capacitor is returned to the output of the NE531 structure because the output driving source must be capable of supplying the increased current to charge the capacitor.

Large signal bandwidths with this input structure will be essentially the same as the small signal response. Full bandwidth possibilities of this configuration are still limited by the beta and f_t of the lateral pnp devices used for collector loads in the first stage. Even so, the slew rate of the NE531 and NE538 is a factor of 40 better than general purpose devices.
Earlier, the ideal op amp was defined. The ideal parameters are never fully realized but they present a very convenient method for the preliminary analysis of circuitry. So important are these ideal definitions that they are repeated here. The ideal amplifier possesses:

1. Infinite gain
2. Infinite input impedance
3. Infinite bandwidth
4. Zero output impedance

From these definitions two important theorems are developed:

1. No current flows into or out of the input terminals.
2. When negative feedback is applied the differential input voltage is reduced to zero.

Keeping these rules in mind, the basic concept of feedback can be explored.

Voltage Follower

Perhaps the most often used and simplest circuit is that of a voltage follower. The circuit of Figure 1 illustrates the simplicity.

Applying the zero differential input theorem the voltages of pins 2 and 3 are equal and since pins 2 and 6 are tied together, their voltage is equal; hence, \(E_{out} = E_{in} \). Trivial to analyze, the circuit nevertheless does illustrate the power of the zero differential voltage theorem. Because the input impedance is multiplied and the output impedance divided by the loop gain the voltage follower is extremely useful for buffering voltage sources and for impedance transformation.

The basic configuration in Figure 1 has a gain of 1 with extremely high input impedance. Setting the feedback resistor equal to the source impedance will cancel the effects of bias current if desired.

However, for most applications a direct connection from output to input will suffice. Errors arise from offset voltage, common mode rejection ratio and gain. The circuit can be used with any op amp with the required unity gain compensation, if it is required.

Non-Inverting Amplifier

Only slightly more complicated is the non-inverting amplifier of Figure 2.

The voltage appearing at the inverting input is defined by

\[
E_2 = \frac{E_{out} \cdot R_n}{R_F + R_n}
\]

(1a)

Since the differential voltage is zero, \(E_2 = E_s \), and the output voltage becomes

\[
E_{out} = E_s \left(1 + \frac{R_F}{R_n} \right)
\]

(1b)

It should be noted that as long as the gain of the closed loop is small compared to open loop gain, the output will be accurate, but as the closed loop gain approaches the open loop value more error will be introduced.

The signal source is shown in Figure 2 in series with a resistor equal in size to the parallel combination of \(R_n \) and \(A \). This is desirable because the voltage drops due to bias currents to the inputs are equal and cancel out even over temperature. Thus overall performance is much improved.

The amplifier does not phase invert and possesses high input impedance. Again the impedances of the two inputs should be equal to reduce offsets due to bias currents.

Inverting Amplifier

As opposed to the non-inverting circuits the input impedance of the inverting amplifier is not infinite but becomes essentially equal to \(R_n \). This circuit has found widespread acceptance because of the ease with which input impedance and gain can be controlled to advantage, as in the case of the summing amplifier.

With the inverting amplifier of Figure 3 the gain can be set to any desired value defined by \(R \) divided by \(R_n \). Input impedance is defined by the value of \(R_n \) and \(R \) should equal the parallel combination of \(R_n \) and \(R \) to cancel the effect of bias current. Offset voltage, offset current, and gain contribute most of the errors. The ground may be set anywhere within the common mode range and any op amp will provide satisfactory response.

Current to Voltage Converter

The transfer function of the current to voltage converter is

\[
V_{out} = I_v \cdot R_1
\]

Evaluation of the circuit depends upon the virtual ground theorem developed earlier. The current flowing into the input must be the same as that flowing across \(R_1 \), hence, the output voltage is the IR drop of \(R_1 \).

Limitations, of course, are output saturation voltage and output current capability. The inputs may be biased anywhere within the common mode range.
DIFFERENTIAL AMPLIFIER
This circuit of Figure 5 has a gain with respect to differential signals of R2/R1.
The common mode rejection is dominated by the accuracy of the resistors. Other errors arise from the offset voltage, input offset current, gain and common mode rejection. The circuit can be used with any op amp discussed in this chapter with the proper compensation.

SUMMING AMPLIFIER
The summing amplifier is a variation of the inverting amplifier. The output is the sum of the input voltages, each being weighted by Rf/R1n.
The value of R4 may be chosen to cancel the effects of bias current and is selected equal to the parallel combination of Rf and all the input resistors.

CURRENT TO VOLTAGE CONVERTER
The current to voltage converter is shown in Figure 4.

INTEGRATOR
Integration can be performed with a variation of the inverting amplifier by replacing the feedback resistor with a capacitance. The transfer function is defined by

\[V_{out} = -\frac{1}{RC} \int V_{in} \cdot dt \]

The gain of the circuit falls at 6dB per octave over the range in which strays and leakages are small.
Since the gain at dc is very high a method for resetting initial conditions is necessary. Switch S1 removes the charge on the capacitor. A relay or FET may be used in the practical circuit. Bias and offset currents and offset voltage of the switch should be low in such an application.

DIFFERENTIATOR
The differentiator of Figure 8 is another variation of the inverting amplifier. The gain increase at 6dB per octave until it intersects the amplifier open loop gain, then decreases because of the amplifier bandwidth. This characteristic can lead to instability and high frequency noise sensitivity.

DIFFERENTIAL AMPLIFIER

INTEGRATOR

Figure 5

Figure 7

Figure 8

Figure 9

Figure 4

Figure 6

PRACTICAL DIFFERENTIATOR

COMPENSATION
Present day operational amplifiers are comprised of multiple stages, each of which has a 3dB point or pole associated with it. Referring to Figure 10, the 3dB break points of a two stage amplifier are approximated by the Bode plot.
As with any feedback loop, the op amp must be protected from phase shifts in excess of 360°. A steady 180° phase shift is developed by the amplifier from output to inverting input. In addition the sum of all additional shifts due to amplifier poles or feedback component poles will cause the necessary additional 180° to sustain oscillation if the
gain of the amplifier is greater than one for the frequency at which the 180° phase shift is reached. By adding poles and zeros to the amplifier response externally, the phase shift can be controlled to insure stability.

Many op amps now include internal compensation. These are single capacitors of 30pF typically and the amplifier will remain stable for all gains. However, since they are unconditionally stable, the compensation is larger than required for most applications. The resultant loss of bandwidth and slew rate may be acceptable in the general case but selection of an externally compensated device can add a great deal to the amplifier response if the compensation is handled properly.

In order to fully develop the point at which instability occurs a fuller understanding of phase response is necessary.

The diagram of Figure 11 depicts the phase shift of a single pole. Note that at the pole position the phase shift is 45° and that phase shift becomes 0° for a decade below the pole and -90° for a decade above the pole location. This is a Bode approximation which possesses a 5.7° error at 0° and 90° but this error is usually considered small enough to be ignored. The single pole produces a maximum of 90° phase shift and also produces a frequency roll off of 20dB per decade. The addition of the second pole of Figure 12 produces an additional 90° phase shift and increases the roll off slope to -40dB per decade.

At this point phase shift could exceed 180° because unity gain is reached causing stability. For gain levels equal to A1 or 1/3, the phase shift is only 90° and the amplifier is stable. However, the gain of A2 the phase shift is 180° and the loop is unstable. Gains in between A1 and A2 are marginally stable. However, as shown in Figure 13 the phase shift as it approaches 180° causes increasing frequency peaking and overshoot until sustained oscillations occur.

It is generally accepted in the interest of minimized frequency peaking to limit the phase shift of the amplifier to 135° or a phase margin of 45°. At this margin the second order response of the system is critically damped and oscillation is prevented.

Referring to Figure 14, the required compensation can be determined. Given the open loop response of the amplifier, the desired gain is plotted until it intersects the open loop curve as shown.

The phase shift for minimum peaking is 135°. Remembering that phase shift is 45° at the frequency pole the example of Figure 14 will be unstable at gains less than 20dB where phase shift exceeds 180°, and will possess excessive overshoot and ringing at gains less than 60dB where phase shift exceeds 135°. Thus, the desired compensation will move the second pole of the amplifier out in frequency until the closed loop gain intersects the open loop response before the second break of the amplifier occurs. Selecting only enough compensation to do the job assures the maximum bandwidths and slew rates of the amplifier. Additional in-depth information on compensation can be found in the reference material.
FEED FORWARD COMPENSATION

External compensation has been shown to improve amplifier bandwidth over internal compensation in the preceding section. Additional bandwidth can be realized if feed forward compensation is used. Bandwidth is limited in monolithic design by the poor frequency response of the pnp level shifters of the first stage.

The concept of feed forward compensation bypasses the input stage at high frequencies driving the higher frequency second stage directly as pictured by Figure 15. The Bode plot of Figure 16 shows the additional response added by the feed forward technique. The response of the original amplifier requires less compensation at lower frequencies allowing an order of magnitude improvement in bandwidth. Standard compensation and feed forward are both plotted to illustrate the bandwidth improvement. Unfortunately, the use of feed forward compensation is restricted to the inverting amplifier mode.

REFERENCES

LINEAR LSI PRODUCTS

AUDIO CIRCUITS USING THE NE5532/33/34

More detailed information is available in the communications section of this manual regarding other audio circuits. The following will explain the Signetics line of low noise op amps and show their use in some audio applications.

DESCRIPTION

The 5532 is a dual high-performance low noise operational amplifier. Compared to most of the standard operational amplifiers, such as the 1458, it shows better noise performance, improved output drive capability and considerably higher small-signal and power bandwidths.

This makes the device especially suitable for application in high quality and professional audio equipment, instrumentation and control circuits, and telephone channel amplifiers. The op amp is internally compensated for gains equal to one. If very low noise is of prime importance, it is

<table>
<thead>
<tr>
<th>COMPONENT VALUE TABLES</th>
</tr>
</thead>
<tbody>
<tr>
<td>R8 = 25k</td>
</tr>
<tr>
<td>R7 = 2.4k</td>
</tr>
<tr>
<td>R9 = 240k</td>
</tr>
<tr>
<td>fo (Hz)</td>
</tr>
<tr>
<td>----------------</td>
</tr>
<tr>
<td>23 Hz</td>
</tr>
<tr>
<td>50 Hz</td>
</tr>
<tr>
<td>72 Hz</td>
</tr>
<tr>
<td>108 Hz</td>
</tr>
<tr>
<td>165 Hz</td>
</tr>
<tr>
<td>238 Hz</td>
</tr>
<tr>
<td>290 Hz</td>
</tr>
<tr>
<td>350 Hz</td>
</tr>
<tr>
<td>425 Hz</td>
</tr>
<tr>
<td>506 Hz</td>
</tr>
<tr>
<td>721 Hz</td>
</tr>
<tr>
<td>1092 Hz</td>
</tr>
<tr>
<td>1688 Hz</td>
</tr>
<tr>
<td>2382 Hz</td>
</tr>
<tr>
<td>2904 Hz</td>
</tr>
<tr>
<td>3502 Hz</td>
</tr>
<tr>
<td>4253 Hz</td>
</tr>
<tr>
<td>5068 Hz</td>
</tr>
<tr>
<td>7218 Hz</td>
</tr>
<tr>
<td>10827 Hz</td>
</tr>
<tr>
<td>16880 Hz</td>
</tr>
<tr>
<td>23820 Hz</td>
</tr>
</tbody>
</table>

Figure 1
recommended that the NE532A version be used which has guaranteed noise voltage specifications.

APPLICATIONS
The Signetics 5532 High Performance Op Amp is an ideal amplifier for use in high quality and professional audio equipment which requires low noise and low distortion.

The circuit included in this application note has been assembled on a P.C. board, and tested with actual audio input devices (Tuner and Turntable). It consists of an RIAA pre-amp, input buffer, 5-band equalizer, and mixer. Although the circuit design is not new, its performance using the 5532 has been improved.

The RIAA pre-amp section is a standard compensation configuration with low frequency boost provided by the Magnetic cartridge and the RC network in the op amp feedback loop. Cartridge loading is accomplished via R1. 47k was chosen as a typical value, and may differ from cartridge to cartridge.

The Equalizer section consists of an input buffer, 5 active variable band pass/notch (depending on R9's setting) filters, and an output summing amplifier. The input buffer is a standard unity gain design providing impedance matching between the pre amplifiers and the equalizer section. Because the 5532 is internally compensated, no external compensations required. The 5-band active filter section is actually 5 individual active filters with the same feedback design for all 5. The main difference in all five stages is the values of C5 and C6 which are responsible for setting the center frequency of each stage. Linear pots are recommended for R9. To simplify use of this circuit, a component value table is provided, which lists center frequencies and their associated capacitor values. Notice that C5 equals (10) C6, and that the Value of R8 and R10 are related to R9 by a factor of 10 as well. The values listed in the table are common and easily found standard values.

RIAA EQUALIZATION AUDIO PREAMPLIFIER USING NE5532A
With the onset of new recording techniques along with sophisticated playback equipment, a new breed of low noise operational amplifiers was developed to complement the state-of-the-art in audio reproduction. The first ultra low noise op amp introduced by Signetics was called the NE5534A. This is a single operational amplifier with less than 4nV/√Hz input noise voltage. The NE5534A is internally compensated at a gain of three. This device has been used in many audio preamp and equalizer (active filter) applications since its introduction early last year.

Many of the amplifiers that are being designed today are dc coupled. This means that very low frequencies (0-15Hz) are being amplified. These low frequencies are common to turntables because of rumble and tone arm resonances. Since the amplifiers can reproduce these sub-audible tones, they become quite objectionable because the speakers try to reproduce these tones. This causes non-linearities when the actual recorded material is amplified and converted to sound waves.

The RIAA has proposed a change in its standard playback response curve in order to alleviate some of the problems that were previously discussed. The changes occur primarily at the low frequency range with a slight modification to the high frequency range. (See Figure 2). Note that the response peak for the bass section of the playback curve now occurs at 31.5Hz and begins to roll off below that frequency. The rolloff occurs by introducing a fourth R/C network with a 7950μs time constant to the three existing networks that make up the equalization circuit. The high end of the equalization curve is extended to 20kHz, because recordings at these frequencies are achievable on many current discs.

NE5533/34 DESCRIPTION
The 5533/5534 are dual and single high-performance low noise operational amplifiers. Compared to other operational amplifiers such as TL083, they show better noise performance, improved output drive capability and considerably higher small-signal and power bandwidths.

This makes the devices especially suitable for application in high quality and professional audio equipment, in instrumentation and control circuits and telephone channel amplifiers. The op amps are internally compensated for gain equal to, or higher than, three. The frequency response can be optimized with an external compensation capacitor for various applications (unity gain amplifier, capacitive load, slew-rate, low overshoot, etc.) If very low noise is of prime importance, it is recommended that the 5533A/5534A version be used which has guaranteed noise specifications.

PROPOSED RIAA PLAYBACK EQUALIZATION

![Figure 2](image-url)
APPLICATIONS

Diode Protection of Input

Assume a signal input square wave with \(\frac{dV}{dt} \) of 250V per \(\mu \)s and 2V peak amplitude as shown. If a 22 pF compensation capacitor is inserted and the \(R_1 C_1 \) circuit deleted, the device slew rate falls to approximately 7V/\(\mu \)s. The input waveform will reach 2V/250V/\(\mu \)s or 8 ns, while the output will have changed \((8 \times 10^{-3}) \) only 56 mV. The differential input signal is then \(V_{IN} - V_O \) \(R_1 / R_t \) or approximately 1V.

The diode limiter will definitely be active and output distortion will occur; therefore, \(V_{IN} < 1V \) as indicated.

The Input leads of the device are protected from differential transients above \(\pm 0.6V \) by internal back-to-back diodes. Their presence imposes certain limitations on the amplifier dynamic characteristics related to closed-loop gain and slew rate.

Consider the unity gain follower as an example:
External Compensation Network Improves Bandwidth

By using an external lead-lag network, the follower circuit slew rate and small signal bandwidth can be increased. This may be useful in situations where a closed-loop gain less than 3 to 5 is indicated. A number of examples are shown in subsequent figures. The principle benefit of using the network approach is that the full slew rate and bandwidth of the device is retained, while impulse-related parameters such as damping and phase margin are controlled by choosing the appropriate circuit constants. For example, consider the following configuration:

By choosing the lag network break frequency one decade below the unity gain crossover frequency (30-50 MHz), the phase and gain margin are improved. An appropriate value for R is 2700. Setting the lag network break frequency at 5 MHz, C may be calculated:

$$C = \frac{1}{2\pi \times 270 \times 5 \times 10^6}$$

$$118 = \text{pF}$$

RULES AND EXAMPLES

Compensation Using Pins 5 and 8

(Limited Bandwidth and Slew Rate)

A single pole and zero inserted in the transfer function will give an added 45° of phase margin depending on the network values.

Calculating the Lead-Lag Network

$$C_1 = \frac{1}{2\pi F_1 R_1}$$

Let $R_1 = \frac{R_{IN}}{10}$

where $F_1 = \frac{1}{10} (\text{UGBW})$

$\text{UGBW} = 30 \text{ MHz}$

The major problem to be overcome is poor phase margin leading to instability.

Figure 4. Unity Gain Non-Inverting Configuration

Figure 5. Unity Gain Inverting Configuration
External Compensation for Wideband Voltage Follower

![Circuit Diagram]

NOTE: Input diodes limit differential to < 0.5V

Figure 6. External Compensation for Wideband Voltage Follower

Shunt Capacitance Compensation

\[
C_F = \frac{1}{2\pi F_F R_F}, \quad F_F = 30 \text{ MHz}
\]

or

\[
C_F = \frac{C_{DIST}}{A_{CL}}
\]

\(C_{DIST} = \text{Distributed Capacitance} = 2-3 \text{pF}\)

Many audio circuits involve carefully tailored frequency responses. Pre-emphasis is used in all recording mediums to reduce noise and produce flat frequency response. The most often used de-emphasis curves for broadcast and home entertainment systems are shown in Figure 7. Operational amplifiers are well suited to these applications because of their high gain and easily tailored frequency response.

RIAA PREAMP USING THE NE5534

The preamplifier for phono equalization is shown in Figure 8 along with the theoretical and actual circuit response.

Low frequency boost is provided by the inductance of the magnetic cartridge with the RC network providing the necessary break points to approximate the theoretical RIAA curve.

RUMBLE FILTER

Following the amplifier stage, rumble and scratch filters are often used to improve overall quality. Such a filter designed with op amps uses the 2 pole Butterworth approach and features switchable break points. With the circuit of Figure 9 any degree of filtering from fairly sharp to none at all is switch selectable.
PREAMPLIFIER—RIAA/NAB COMPENSATION

Input 0.12
1.1K
7.1K
20.1
10K
0.12
1.1
-18V
100K
10K
780 pF
0.0033
1.1
0.003

*Select to provide specified transistor loading.
Output Note a 0.8mV rms (with input shorted).
All resistor values are in ohms.

Figure 8a

Figure 8b

Figure 8c

RUMBLE/SCRATCH FILTER

All resistor values are in ohms.

Figure 9
TONE CONTROL CIRCUIT FOR OPERATIONAL AMPLIFIERS

All resistor values are in ohms.

NOTES
1. Amplifier A may be a NE531 or 301. Frequency compensation, as for unity gain non-inverting amplifiers, must be used.
2. Turn-over frequency ~ 1kHz
3. Bass boost +20dB at 20Hz, bass cut -20dB at 20Hz, treble boost +19dB at 20kHz, treble cut -19dB at 20kHz.

Figure 10

TONE CONTROL
Tone control of audio systems involves altering the flat response in order to attain more low frequencies or more high ones dependent upon listener preference. The circuit of Figure 10 provides 20dB of bass or treble boost or cut as set by the variable resistance. The actual response of the circuit is shown also.

BALANCE AND LOUDNESS AMPLIFIER
Figure 11 shows a combination of balance and loudness controls. Due to the non-linearity of the human hearing system the low frequencies must be boosted at low listening levels. Balance, level, and loudness controls provide all the listening controls to produce the desired music response.

VOLTAGE AND CURRENT OFFSET ADJUSTMENTS
Many IC amplifiers include the necessary pin connections to provide external offset adjustments. Many times, however, it becomes necessary to select a device not possessing external adjustments. Figure 12, 13, and 14 suggest some possible arrangements for offset voltage adjust and bias current nulling circuitry. The circuitry of Figure 14 provides sufficient current into the input to cancel the bias current requirement. Although more simplified arrangements are possible the addition of Q2 and Q3 provide a fixed current level to Q1, thus, bias cancellation can be provided without regard to input voltage level.

Figure 11

UNIVERSAL OFFSET NULL FOR INVERTING AMPLIFIERS

All resistor values are in ohms.
UNIVERSAL OFFSET NULL FOR NONINVERTING AMPLIFIERS

BIAS CURRENT COMPENSATION

All resistor values are in ohms.

Figure 13

Figure 14
APPLICATIONS

Introduction

The NE5535 is a new generation monolithic op amp which features improved input characteristics. The device is compensated to unity gain and has a minimum guaranteed unity gain slew rate of 10V/µs. This is achieved by employing a clamped super beta input stage which has lower input bias current.

Applications

These improved parameters can be put to good use in applications such as sample and hold circuits which require low input current and in voltage follower circuits which require high slew rates. The circuit that follows will yield high slew rates. The circuit that follows will yield maximum small signal transient response and slew rate for the NE5535 at unity gain.

It is always good practice in designing a system to use dual tracking regulators to power the dual supply op amps. This will guarantee the positive and negative supply voltage will be equal during power up. With the NE5535, it is possible to degrade the input circuit characteristics by not applying the power supplies simultaneously. The NE5535 is capable of directly replacing the µA741 with higher input resistance which will improve such designed as active filters, sample and hold, as well as voltage followers.

The NE5535 can be used either with single or split power supplies.

APPLICATIONS

CAPACITANCE MULTIPLIER

The circuit in Figure 1 can be used to simulate large capacitances using small value components. With the values shown and C = 10µF, an effective capacitance of 10,000µF was obtained. The Q available is limited by the effective series resistance. So R1 should be as large as practical.

SIMULATED INDUCTOR

With a constant current excitation, the voltage dropped across an inductance increases with frequency. Thus, an active device whose output increases with frequency can be characterized as an inductance. The circuit of Figure 2 yields such a response with the effective inductance being equal to:

\[L = R_1 R_2 C \]

The Q of this inductance depends upon R1 being equal to R2. At the same time, however, the positive and negative feedback paths of the amplifier are equal leading to the distinct possibility of instability at high frequencies. R1 should therefore always be slightly smaller than R2 to assure stable operation.

POWER AMPLIFIER

For most applications, the available power from op amps is sufficient. There are times when more power handling capability is necessary. A simple power booster capable of driving moderate loads is offered in Figure 3.

The circuit as shown uses a NE5535 device. Other amplifiers may be substituted only if R1 values are changed because of the ICC current required by the amplifier. R1 should be calculated from the expression

\[R_1 = \frac{600mV}{\text{ICC}} \]

All resistor values are in ohms.

Figure 1. Capacitance Multiplier

Figure 2. Virtual Inductor

Figure 3. Power Booster
VOLTAGE-TO-CURRENT CONVERTERS
A simple voltage-to-current converter is shown in Figure 4. The current out is
\[I_{OUT} = \frac{V_{IN}}{R} \]
For negative currents, a pnp can be used and, for better accuracy, a
Darlington pair can be substituted for the transistor. With careful design, this circuit
Can be used to control currents of many amps. Unity gain compensation is
necessary.

The circuit in Figure 5 has a different input and will produce either polarity of output
current. The main disadvantages are the
error current flowing in R2 and the limited
current available.

ACTIVE CLAMP LIMITING AMPLIFIER
The modified Inverting amplifier in Figure 6 uses an active clamp to limit the output
swing with precision. Allowance must be
made for the Vbe of the transistors. The
swing is limited by the base-emitter break·
down of the transistors. A simple circuit
uses two back-to-back zener diodes
across the feedback resistor, but tends to
give less precise limiting and cannot be
easily controlled.

ABSOLUTE VALUE AMPLIFIER
The circuit in Figure 7 generates a positive
output voltage for either polarity of input.
For positive signals, it acts as a non­
inverting amplifier and for negative
signals, as an inverting amplifier. The ac­
curacy is poor for input voltages under 1V,
but for less stringent applications, it can ·
be effective.

HALF WAVE RECTIFIER
Figure 8 provides a circuit for accurate
half wave rectification of the Incoming
signal. For positive signals, the gain is O;
for negative signals, the gain is −1. By
reversing both diodes, the polarity can be
inverted. This circuit provides an accurate
output, but the output impedance differs
for the two input polarities and buffering
may be needed. The output must slew
through two diode drops when the Input
polarity reverses. The NE5535 device will
work up to 10kHz with less than 5%
distortion.

PRECISION FULL WAVE
RECTIFIER
The circuit in Figure 9 provides accurate
full wave rectification. The output imped·
ance is low for both input polarities, and
the errors are small at all signal levels.
Note that the output will not sink heavy
currents, except a small amount through
the 10kΩ resistors. Therefore, the load applied should be referenced to ground or a negative voltage. Reversal of all diode polarities will reverse the polarity of the output. Since the outputs of the amplifiers must slew through two diode drops when the input polarity changes, 741 type devices give 5% distortion at about 300Hz.

TWO-PHASE SINE WAVE OSCILLATOR

The circuit (referring to Figure 10, uses a 2-pole pass Butterworth, followed by a phase shifting single pole stage, fed back through a voltage limiter to achieve sine and cosine outputs. The values shown using 741 amplifiers give about 1.5% distortion at the sine output and about 3% distortion at the cosine output. By careful trimming of C and/or the limiting network, better distortion figures are possible. The component values shown give a frequency of oscillation of about 2kHz. The values can be readily selected for other frequencies. The NE5535 should be used at higher frequencies to reduce distortion due to slew limiting.

Figure 8. Half Wave Rectifier

Figure 9. Precision Full Wave Rectifier

Figure 10. Two-Phase Sine Wave Oscillator
Introduction

The Signetics NE538 is the uncompensated version of the NE535. The NE538 has a typical slew rate of 50V/µs and a gain bandwidth product of 6MHz. The internal frequency compensation is designed for a minimum inverting gain of 4 and a minimum non-inverting gain of 5. Below these gains the NE538 will be unstable and the NE535 should be used. The higher slew rate of the NE538 has made this device quite appealing for high speed designs and the fact that it has a standard pinout will allow it to be used to upgrade existing systems that now use the μA741 or μA748.

VOLTAGE COMPARATOR

Inexpensive voltage comparators with only modest parameters are often needed. The op amp is often used in the configuration because the high gain provides good selectivity. Figure 2 shows a circuit usable with most any op amp. The zener is selected for the output voltage required (5.1 volt for TTL), and the resistor provides some current protection to the op amp output structure. V_{ref} can be any voltage within the wide common mode range of the amplifier—another advantage of using op amps for comparators.

OFFSET ADJUST CIRCUIT

VOLTAGE COMPARATOR

![Figure 1](image1.png)

![Figure 2](image2.png)

All resistor values are in ohms.
CYCLIC A TO D CONVERTER

One interesting, but, much ignored A/D converter is the cyclic converter. This consists of a chain of identical stages, each of which senses the polarity of the input. The stage then subtracts \(V_{\text{ref}} \) from the input and doubles the remainder if the polarity was correct. In Figure 1 the signal is full wave rectified and the remainder of \(V_{\text{in}} - V_{\text{ref}} \) is doubled. A chain of these stages gives the gray code equivalent of the input voltage in digitized form related to the magnitude of \(V_{\text{ref}} \). Possessing high potential accuracy, the circuit using NE531 devices settles in 5\,\mu s.

TRIANGLE AND SQUARE WAVE GENERATOR

The circuit in Figure 2 will generate precision triangle and square waves. The output amplitude of the square wave is set by the output swing of the op amp A1 and R1/R2 sets the triangle amplitude. The frequency of oscillation in either case is

\[
f = \frac{1}{4RC} \cdot \frac{R2}{R1}
\]

(1)

The square wave will maintain 50% duty cycle even if the amplitude of the oscillation is not symmetrical.

The use of the NE531 in this circuit will allow good square waves to be generated to quite high frequencies. Since the amplifier A1 runs open loop, there is no need for compensation. The triangle-generating amplifier must be compensated. The NE5535 device can be used as well, except for the lower frequency response.
MC3403 DESCRIPTION
The MC3403 is a quad operational amplifier with true differential inputs. The device has electrical characteristics similar to the popular µA741. However, the MC3403 has several distinct advantages over standard operational amplifier types in single supply applications. The MC3403 can operate at supply voltages as low as 3.0V or as high as 36V. The common mode input range includes the negative supply, thereby eliminating the necessity for external biasing components in many applications. The output voltage range also includes the negative power supply voltage.

APPLICATI0NS

VOLTAGE REFERENCE

WEIN BRIDGE OSCILLATOR

HIGH IMPEDANCE DIFFERENTIAL AMPLIFIER

COMPARATOR WITH HYSTERESIS
APPLICATIONS FOR THE MC3403

APPLICATIONS (Continued)

BI-QUAD FILTER

\[\begin{align*}
V_{in} & \rightarrow C_1 \quad R_2 \quad \text{MC3403} \quad \frac{1}{4} \text{MC3403} \\
& \quad R \quad C \quad 100K \\
& \quad R_1 \quad R_2 \quad \text{MC3403} \quad \frac{1}{4} \text{MC3403} \\
& \quad V_{ref} \quad \text{V_{ref}} = \frac{1}{2} V_{CC} \\
& \quad \text{OUTPUT} \quad \text{OUTPUT} \\
& \quad \text{R3} \quad \text{Vref} \quad \text{C1} \quad \text{NOTCH OUTPUT} \\
& \quad \text{R2} \quad \text{R1} \\
& \quad \text{R1} = 100K \\
& \quad \text{R2} = 100K \\
& \quad \text{R3} = 400K \\
& \quad \text{C1} = 10C \\
& \quad \text{R1} = \frac{Q}{f_0} R_1 \quad \text{R2} = \frac{Q}{f_0} R_1 \\
& \quad \text{R3} = \frac{Q}{f_0} R_2 \\
& \quad \text{f_0} = 1kHz \\
& \quad Q = 10 \\
& \quad \text{f_0} = 1kHz \\
& \quad \text{T_f} = 1 \\
& \quad \text{T_n} = 1 \\
\end{align*} \]

FUNCTION GENERATOR

\[\begin{align*}
\text{V_{ref}} & = \frac{1}{2} V_{CC} \\
\text{V_{ref}} & = 0 \\
\text{R2} & = 300K \\
\text{R1} & = 75K \\
\text{R3} & = 100K \\
\text{C} & = 10C \\
\text{f} & = \frac{R_1 + R_C}{4R_1} f \quad \text{IF R3} = \frac{R_2 R_1}{R_2 + R_1} \\
\end{align*} \]

MULTIPLE FEEDBACK BANDPASS FILTER

\[\begin{align*}
\text{V_{ref}} & = \frac{1}{2} V_{CC} \\
\text{V_{ref}} & = 0 \\
\text{R1} & = 100K \\
\text{R2} & = 100K \\
\text{R3} & = 400K \\
\text{C} & = 10C \\
\text{f_0} & = \text{CENTER FREQUENCY} \\
\text{A(f_0)} & = \text{GAIN AT CENTER FREQUENCY} \\
\text{CHOOSE VALUE f_0, C} \\
\text{THEN:} \\
\text{R3} & = \frac{Q}{f_0} R_3 \\
\text{R1} & = \frac{Q}{f_0} R_1 \\
\text{R2} & = \frac{Q^2}{f_0} R_1 - R_5 \\
\text{FOR LESS THAN 10% ERROR FROM OPERATIONAL AMPLIFIER} \\
\text{Q, f_0} & < 0.1 \\
\text{WHERE f_0 AND BW ARE EXPRESSED IN Hz.} \\
\text{IF SOURCE IMPEDANCE VARIES, FILTER MAY BE PRECEDED WITH} \\
\text{VOLTAGE FOLLOWER BUFFER TO STABILIZE FILTER PARAMETERS.} \\
\end{align*} \]
TYPICAL APPLICATIONS

SINGLE SUPPLY INVERTING AMPLIFIER

INPUT BIASING VOLTAGE FOLLOWER

NON-INVERTING AMPLIFIER

BLOCKS DC GAIN

R1 RF
APPLICATIONS FOR THE NE5512/5514

DESCRIPTION

The 5512 series of high performance operational amplifiers provides very good input characteristics. These amplifiers feature low input bias and voltage characteristics such as a 108 op amp with improved CMRR and a high differential input voltage limit achieved through the use of a bias cancellation and PNP input circuits with collector to emitter clamping. The output characteristics are like those of a 741 op amp with improved slew rate and drive capability yet have low supply quiescent current.

BRIDGE TRANSDUCTOR AMPLIFIER

In applications involving strain gauges, accelerometers and thermal sensors a bridge transducer is often used. Frequently the sensor elements are high resistance units requiring equally high bridge resistance for good sensitivity. This type of circuit then demands an amplifier with high input impedance, low bias current and low drift. The circuit shown represents a possible solution to these general requirements (Figure 1).

For $V_S = 10$ volts, the common mode voltage is approximately $+5$ volts, well within the common mode limits of the NE5512.

The sensitivity of the input stage is approximately

$$R_F \times \frac{V_S}{2R}$$

to a change in transducer resistance ΔR.

This gives a gain factor of ≈ 50 for $V_S = 10$V and $R = 25k\Omega$. The second stage gain is $\times 100$ giving a total gain of ≈ 5000.

Noise is minimized by shielding the transducer leads and taking special care to determine a good signal ground. Common mode noise rejection is particularly important making matched differential impedance critical. The NE5512 typically provides 100dB of common mode rejection and will considerably reduce this undesirable effect.

The following are sensitivity figures for the transducer circuits.

<table>
<thead>
<tr>
<th>ΔR</th>
<th>ΔE_{out}</th>
</tr>
</thead>
<tbody>
<tr>
<td>leg 1</td>
<td>10Ω</td>
</tr>
<tr>
<td></td>
<td>50Ω</td>
</tr>
<tr>
<td>leg 2</td>
<td>10Ω</td>
</tr>
<tr>
<td></td>
<td>50Ω</td>
</tr>
</tbody>
</table>

Temperature compensation of the bridge element is accomplished by using low drift metal film resistors and also by providing a complimentary non-active sensor element to thermally track the offset in the active element.

High frequency roll-off provides attenuation of unwanted noise above the pass band of the transducer. The shunt capacitors across both stage feedback resistors are for this purpose.

Current to Voltage Converter

Taking advantage of the very low bias current and offset of the NE5512 is demonstrated in its adaptation to a current to voltage converter as shown below (Figure 2).

The lower limit of measuring accuracy is determined by I_B (inverting) which is typically $6nA$. In order to attain a measurement accuracy of 1% the following inequality must hold,

$$I_B \leq 0.1I_s$$

Where $I_B =$ input bias current, I_s = minimum measured current. For $I_B = 6nA$ and $I_s = 1\mu A$, $6nA \leq 0.1 \times 1\mu A = 10nA$ and the inequality hold.
DC offset and current noise gain is determined by

$$\frac{R_F + R_S}{R_S}$$

which \(\gg 1 \) for \(R_S \gg R_F \).

The measured results for this circuit appear below \((V_{CC} = \pm 15 \text{ volts}) \).

<table>
<thead>
<tr>
<th>INPUT CURRENT</th>
<th>OUTPUT VOLTAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1µA</td>
<td>1.008 Volts</td>
</tr>
<tr>
<td>5µA</td>
<td>5.00 Volts</td>
</tr>
<tr>
<td>10.00µA</td>
<td>10.00 Volts</td>
</tr>
</tbody>
</table>

NE5512 OPERATIONAL DIFFERENTIATOR

By utilizing the very high input impedance characteristic of the NE5512, an excellent active differentiator can be realized. Using the circuit shown (Figure 3), good results were obtained as shown by the waveforms in Figures 4, 5 and 6. One of the primary problems with such circuits is the tendency towards instability and distortion either due to loading caused by input bias currents or amplifier non-linearity. In addition, gain increases with frequency requiring low input noise in the amplifier.

The relative stability is shown by the output signal waveforms mentioned above. Adding \(R_1 \) provides added compensation in the form of a zero near the amplifier unity gain frequency. Frequency range is 100Hz to 10kHz.

In order to obtain good differentiation, the network time constant, \(RC \), must be small relative to the period of the highest frequency present at the input. Since the differentiator will attenuate the signal by a factor of \(\omega RC \) which may be 100:1 in the operating region, the second amplifier stage is used to compensate for this loss. Various circuits are easily interfaced with the differentiator block due to the inherently low output impedance of the NE5512.
THE OPERATIONAL INTEGRATOR
The operational complement of the active differentiator is the active integrator. The NE5512 is easily adapted to this function as shown in the circuit below (Figure 7). To obtain satisfactory integration the time constant must fulfill the following requirement:

\[RC \geq 16T \]

Where \(T \) is the period of the input waveform.

For the ideal integrator

\[e_{\text{out}} = \frac{1}{RC} \int e_{\text{in}} \, dt \]

The factor \(1/RC \) represents an attenuation of the input signal. The low signal level is increased by using the second half of the NE5512 as a gain stage following the operational integration. The waveform in Figures 8 and 9 show the input-output relationship for both a sine wave and a square wave function. A good integrator must exhibit a phase shift of \(\approx 89^\circ \) for sine wave input over the active frequency range. For a square wave the resultant output must be a linear ramp. The circuit shown fulfills this requirement (see Figure 7). No external compensation is required since the amplifier is unity gain stable.

DIFFERENTIATOR WAVEFORMS

\[V_{\text{in}} = \sin \omega t \]
\[V_{\text{out}} = \cos \omega t \]

INTEGRATOR WAVEFORMS

SQUARE WAVE INPUT

TRIANGLE WAVE INPUT

IN 10V/cm

SINE WAVE INPUT

OUT 1V/cm

COSINE WAVE INPUT

IN 5V/cm

OUT 0.5V/cm

Figure 7

Figure 8

Figure 9
NE5514 DESCRIPTION
The SE/NE5514 family of Quad Operational Amplifiers sets new standards in Bipolar Quad Amplifier Performance. The amplifiers feature low input bias current and low offset voltages. Pin-out is identical to LM324/LM348 which facilitates direct product substitution for improved system performance. Output characteristics are similar to a µA741 with improved slew and drive capability.

FOUR QUADRANT PHOTO-CONDUCTIVE DETECTOR AMPLIFIER
When operating a photo diode in the photo-conductive mode (reverse biased) very small currents in the micro ampere range must be sensed in the photo active operating region. Dark currents in the nano amperes are common. Generally, for this reason, J-FET input preamps are used to prevent interaction and accuracy degradation due to input bias currents.

The 5514 has sufficiently low input bias current (6nA) to allow its use under these circuit constraints as shown in a possible design used to sense four quadrant motion of a light source. By proper summing of the signals formed by the X and Y axes, four quadrant output may be fed to an X-Y plotter, oscilloscope or computer for simulation. (See Figure 10.)

The wide input common mode voltage range of the device allows a ±10 volt supply to be used to drive the signal bridge giving high sensitivity and improved signal to noise. Obviously, input balancing is critical to achieving common mode signal rejection in addition to adequate shielding of the sensor leads. The sensor head itself must be shielded and the shield grounded to signal common to avoid unwanted noise pick up from power line and other local noise sources. Amplifier response may be shaped to aid in noise reduction by more complex filter configurations. If possible the 5514 should be located in close proximity to the sensor head.

System balance may be done under dark field conditions if adequate photo detector tracking results. However, for high accuracy systems a bipolar balance adjust added to the non-inverting output stage is more desirable. With this latter method the signal bridge is balanced for a null output under uniform light field conditions using the bridge balance pot as shown. D.C. offset is then adjusted using the balance pot on the output amplifier under dark field conditions.

MULTI-TONE BANDPASS FILTER FOR PLL TONE DECODER
In the design of a multiple tone signaling system, particularly where signals are transmitted over long lines, noise and adjacent channel interference may be a significant barrier to reliable communications.

By the use of narrow band active pre-filters to attain selectivity and gain, the effective signal to noise ratio is greatly improved. The SE/NE5514 is easily adapted to such filter configurations due to its inherent stability. In addition its very high input, impedance drastically reduces loading of the passive networks and allows for increased "Q" and large value resistors.

The circuit in Figure 4 demonstrates multiple feedback filters operating at four of the standard signaling frequencies. More channels may be added to increase the capacity of the system.

Test results obtained from this filter configuration were as follows:

- Wide band signal to noise: 63dB
- Gain (Mid band): 30dB
- Q (effective): 30
- Output: 0dBm (0.775Vrms)

Note that the amplifiers are operated from a single ±12 volt supply and are biased to half...
VCC by a simple resistive divider at point B which connects to all non-inverting inputs.

4-STATION 0–50° TEMPERATURE SENSOR

By using an NPN transistor as a temperature sensing element, the NE5514 forms the basis for a multi-station temperature sensor as shown in Figure 12. The principle used is fundamental to the current voltage relationship of a forward biased junction. The current flow across the base-emitter junction is determined by absolute temperature in the following way:

\[I_E = -\left(I_C + I_S \right) \]

and \[I_E \propto I_S \exp \left(\frac{V_{BE}}{V_T} \right) \]

therefore, \[V_{BE} \propto V_T \ln \left(\frac{I_E}{I_S} \right) \]

Where \(I_E \) is the forward current and \(I_S \) is the saturation current inherent in the junction, \(I_E \) must be high enough such that the \(I_S \) variation with temperature is small relative to \(I_E \) \((I_E >> I_S) \). \(I_S \) is typically 0.5 pA, therefore, setting \(I_E \) to 1 or 2 µA gives the desired condition.

Diode D1 serves to substantially reduce error due to power supply variation by giving a fixed voltage reference. To calibrate the sensor adjust \(R_4 \) for "0" volts output from the NE5514 at 0°C. Adjust \(R_6 \) tracking resistor for a scale factor of 100 millivolts per °C output.

Only the transistor need be placed in the temperature controlled environment. Figure 13 shows the addition of an A/D converter and display to give a digital thermometer.
APPLICATIONS FOR THE NE5512/5514

4-CHANNEL TEMPERATURE SENSOR
(0-50°C)

µP-CONTROLLED DIGITAL THERMOMETER

Figure 12

Figure 13
DESCRIPTION
The Signetics NE5517 is a truly versatile dual operational transconductance amplifier. In plain language, it is a voltage-to-current converter governed by the transconductance gm, which is equivalent to \(\frac{I_{\text{out}}}{V_{\text{in}}} \). The gm is increased or decreased linearly by varying the amplifier bias current (I_{ABC}) through an external pin (see Figure 1). From the proper use of the I_{ABC} pin, many control circuits can be realized.

For more insight into the way the part operates, the transconductance can be thought of as gain and is governed by the following equation:

\[
\text{gm} = \frac{I_{\text{out}}}{V_{\text{in}}} = \frac{I_{\text{ABC}}}{2kT} \quad (1)
\]

where the transconductance is dependent on the constant \(kT/q \) (which is 26 mV at 25°C), and \(I_{\text{ABC}} \) (which is controlled by the user).

To make the device more universal and adaptable for many functions, two impedance buffers for voltage output applications are also included with the amps so that the part can be used as a programmable operational amplifier.

Linearizing diodes provide another useful option. These should be applied when large input voltages or wide temperature variations are encountered. To show the significance of the diodes, compare the difference between Equation 1 without diodes and Equation 2 with diodes:

\[
\frac{I_{\text{out}}}{V_{\text{in}}} = \frac{2I_{\text{ABC}}}{R_{\text{in}}I_0} \quad \text{for} \quad I_0 > \frac{I_{\text{in}}}{2} \quad (2)
\]

Here, it can be seen that the transconductance is not temperature dependent. \(R_{\text{in}} \) is the signal input resistance and \(I_{\text{in}} \) is the signal current. \(I_0 \) must not exceed half the diode current (\(I_0 \), nominally 1 mA). The diode current is set by a resistor tied to \(+V_{\text{CC}} \). A graph showing the output distortion improvement versus differential input voltage when using the diodes is shown in Figure 2.

An advantage that the NE5517 has over similar devices is a special biasing network between the amplifier and output impedance buffers. This network eliminates output offset current changes with a sudden change in the bias current (I_{ABC}). This is particularly important in audio applications where an audible offset would be produced.

Figure 1 Pin Designation and Functional Diagram
APPLICATIONS

An application employing both amplifiers and buffers internal to the NE5517 is the adjustable triangle-square wave generator shown in Figure 3.

The center oscillating frequency is set by the capacitor C at the output of amplifier A. The output amplitude is set by the resistor R connected between the non-inverting inputs, amplifier B output, buffer B input and ground.

The oscillating frequency is varied by changing V₀, which in turn controls the amplifier bias current (1A_{ac}¹). If a positive voltage is applied to V₀, the center frequency will increase linearly with increasing voltage. If a negative voltage is applied, the center frequency will decrease linearly with increasing negative voltage. This makes a very good programmable oscillator with variable amplitude.

By using a large value capacitor and negative control voltage, oscillations in the fractions of Hertz can be realized; a small capacitor and positive control voltage will give frequencies up to 500kHz. Graphs showing the linearity of control voltage versus frequency for different capacitor values are shown in Figure 4.

Pertinent calculations are:

\[f_c = \frac{I_{ABC1}}{4(C)(I_{ABC2})(R)} \]

Where:
- \(f_c \) = center frequency
- \(I_{ABC1} \) = oscillator control current
- \(I_{ABC2} \) = amplitude control current
- \(R \) = amplitude control resistor
- \(C \) = oscillator control capacitor

Also: Amplitude = \(I_{ABC2}(R) \)

Another very useful application is to use the NE5517 as a digitally programmable amplifier. The entire circuit is shown in Figure 5.

The circuit consists of a Signetics microprocessor compatible DAC, a transistor array, and the NE5517 configured as a voltage controlled amplifier. This arrangement can also be used with the VCO explained earlier to program its oscillating frequency.

The pertinent equations governing this application are as follows:

\[A_v = \frac{V_{out}}{V_{in}} = \frac{BW(10)}{256} \]

\[X = \frac{I_{DAC MAX} \times q \times R_L}{2 \times KT} \]

Where:
- \(BW(10) \) = binary word decimal
- \(I_{DAC MAX} \) = maximum DAC output current (1mA)
- \(R_L \) = load resistance (30k)
- \(q/KT \) = 38.5 at 25°C

Also:

\[I_{DAC MAX} = 2 \times \frac{V_{ref}}{R_{ref}} \]

\[= 2 \times \frac{5K}{10K} = 1mA \]

Where: \(V_{ref} \) = supplied by DAC (5V)
- \(R_{ref} \) = referenced resistor (10K ohms)

The \(I_{DAC MAX} \) of 1mA is used to keep the transconductance within the linear range.
The current mirror matches the current flow into the DAC and supplies the same amount to the 5517 control pin. Using a current output DAC is much faster than using a voltage output device to control the part. (If speed is not important, this can be done and the current mirror can be replaced with a resistor.) Also, the input attenuation has not been calculated into the gain equation. Therefore, equation (5) pertains to the signal after the input divider.

Many other applications for the NE5517 exist; refer to the data sheet applications section in the Signetics Linear LSI data book for numerous ideas.

![Graph A](image1)

Note:
- V_c below -13.6V or above +30V will cause distortion.
- Changing the C value will vary the frequency range.

Figure 4 Control Voltage (V_c) Versus Frequency Data
INTRODUCTION TO NOISE
Since fabrication techniques in the integrated circuit industry have improved so tremendously in the past few years, input offset voltages and bias currents are being minimized and noise parameters (whether measured at the output or referred to the input) have become a major source of concern. Reducing noise by improved process techniques and by use of peripheral component control will be the thrust of this application as a secondary effort, in understanding the noise components themselves.

An inspection of industry specifications show several methods of rating amplifier noise performance.
1. Output signal to noise ratio.
2. Output noise level (with specified loads and bandwidth).
3. Output noise level referenced to normal operating level.
4. Equivalent input noise (at a specified gain, source impedance and bandwidth).
5. Noise figure.

BASIC NOISE PROPERTIES
Noise, for purposes of this discussion, is defined as any signal appearing in an op amp's output that could not have been predicted by DC and AC input error analysis. Noise can be random or repetitive, internally or externally generated, current or voltage type, narrowband or wideband, high frequency or low frequency; whatever its nature, it can be minimized.

The first step in minimizing noise is source identification in terms of bandwidth and location in the frequency spectrum; some of the more common sources are shown in Figure 1. Some observations to be made from Figure 1 are that noise is present from DC to VHF from sources which may be identified in terms of bandwidth and frequency, noise source bandwidths overlap, making noise a composite quantity at any given frequency. Most externally caused noise is repetitive rather than random and can be found at a definite frequency. Noise effects from external sources must be reduced to insignificant levels to realize the full performance available from a low noise op amp.

EXTERNAL NOISE SOURCES
Since noise is a composite signal, the individual sources must be identified to minimize their effects. For example, 60Hz power line pickup is a common interference noise appearing at an op amp's output as a 16ms sine wave. In this and most other situations, the basic tool for external noise source frequency characterization is the oscilloscope sweep rate setting. Recognizing the oscilloscope's potential in this area, there are available several preamplifiers with variable bandwidth and frequency which allow quick noise source frequency identification. Another basic identification tool is the simple low pass filter as shown in Figure 2 where the bandpass is calculated by:

\[f_0 = \frac{1}{2\pi RC} \] \hspace{1cm} (1)

With such a filter, measurement bandpass can be changed form 10Hz to 100Hz (C = 4.7µF to 470pF), attenuating higher frequency components while passing frequencies of interest. Once identified, noise from an external source may be minimized by the methods outlined in Table 1, the external noise chart.

POWER SUPPLY RIPPLE
Power supply ripple at 120Hz is not usually thought of as noise, but it should be. In an actual op amp application, it is quite possible to have a 120Hz noise component that is equal in magnitude to all other noise sources combined, and, for this reason, it deserves a special discussion.

To be negligible, 120Hz ripple noise should be between 10nV and 100nV referred to the input of an op amp. Achieving these low levels requires consideration of three factors: the op amp's 120Hz power supply...
rejection ratio (PSRR), the regulator’s ripple rejection ratio, and, finally, the regulator’s input capacitor size.

PSRR at 120Hz for a given op amp may be found in the manufacturer’s data sheet curves of PSRR versus frequency as shown in Figure 3. For the amplifier shown, 120Hz PSRR is about 74dB, and to attain a goal of 100nV referred to the input, ripple at the power terminals must be less than 5mV. Today’s IC regulators provide about 60dB of ripple rejection; in this case the regulator input capacitor must be made large enough to limit input ripple to .5V.

Externally compensated low noise op amps can provide improved 120Hz PSRR in high close-loop gain configurations. The PSRR versus frequency curves of such an op amp are shown in Figure 5. When compensated for a closed loop gain of 1000, 120Hz PSRR is 115dB. PSRR is still excellent at much higher frequencies, allowing low ripple noise operation in exceptionally severe environment.

POWER SUPPLY DECOUPLING

Usually, 120Hz ripple is not the only power supply associated noise. Series regulator outputs typically contain at least 150μV of noise in the 100Hz to 10kHz range, switching types contain even more. Unpredictable amounts of induced noise can also be present on power leads from many sources. Since high frequency PSRR decreases at 20dB/decade, these higher frequency supply noise components must not be allowed to reach the op amp’s power terminals. RC decoupling, as shown in Figure 6, will adequately filter most wideband noise. Some caution must be exercised with this type of decoupling, as load current changes will modulate the voltage as the op amp’s supply pins.

POWER SUPPLY REGULATION

Any change in power supply voltage will have a resultant effect referred to an op amp’s inputs. For the op amp of Figure 3, PSRR at DC is 110dB (3μV/V) which may be considered as a potential low frequency noise source. Power supplies for low noise op amp applications should, therefore, be both low in ripple and well-regulated. Inadequate supply regulation is often mistaken to be low frequency op amp noise. When noise from external sources has been effectively minimized, further improvements in low noise performance are obtained by specifying the right op amp, and through careful selection and application of the peripheral components.

NOISE VOLTAGE, e_n, or more properly, EQUIVALENT SHORT-CIRCUIT INPUT RMS NOISE VOLTAGE is simply that noise voltage which would appear to originate at the input of a noiseless amplifier (referring to Figure 4) if the input terminals were shorted. It is expressed in nanovolts per root Hertz (nV/\sqrt{Hz}) at specified frequency, or in microvolts for a given frequency band. It is determined, or measured, by shorting the input terminals, measuring the output rms noise, dividing by amplifier gain, and referencing to the input. Hence the term, equivalent noise voltage. An output bandpass filter of known characteristic is used in measurements, and the measured value is divided by the square root of the bandwidth \sqrt{B}, if data is to be expressed per unit bandwidth or per root Hertz. The level of \overline{e}_n is not constant over the frequency band; typically it increases at lower frequencies as shown in Figure 7. This increase is 1/f NOISE (flicker).

NOISE CURRENT, i_n, or more properly, EQUIVALENT OPEN-CIRCUIT RMS NOISE CURRENT is that noise which occurs apparently at the input of a noiseless amplifier due only to noise currents. It is expressed in picoamps per root Hertz (pA/\sqrt{Hz}) at a specified frequency or in nanoamps in a given frequency band. It is measured by shunting a capacitor or resistor across the input terminals such that the noise current will give rise to an additional noise voltage which is $i_n \times R_{in}$ (or X_{cin}). The output is measured, divided by amplifier gain, referenced to input, and that contribution known to be due to e_n and resistor noise is appropriately subtracted from the total measured noise. If a capacitor is used at the...
EXPLANATION OF NOISE

EXTERNAL NOISE CHART

<table>
<thead>
<tr>
<th>Source</th>
<th>Nature</th>
<th>Causes</th>
<th>Minimization Methods</th>
</tr>
</thead>
<tbody>
<tr>
<td>60Hz Power</td>
<td>Repetitive Interference</td>
<td>Powerlines physically close to op amp inputs. Poor CMRR at 60Hz.</td>
<td>Reorientation of power wiring. Shielded transformers.</td>
</tr>
<tr>
<td>120Hz Ripple</td>
<td>Repetitive</td>
<td>Inadequate ripple consideration. Poor RSRR at 120Hz</td>
<td>Thorough design to minimize ripple. RC decoupling at the op amp.</td>
</tr>
<tr>
<td>180Hz</td>
<td>Repetitive EMI</td>
<td>180Hz radiated from saturated 60Hz transformers.</td>
<td>Physical realignment of components.</td>
</tr>
<tr>
<td>Relay & switch arcing</td>
<td>High frequency burst at switching rate.</td>
<td>Proximity to amplifier inputs, power lines, compensation terminals, or nulling terminals.</td>
<td>Filtering of HF components. Shielding. Avoidance of ground loops. Arc suppressors at switching source.</td>
</tr>
<tr>
<td>Printed circuit board contamination</td>
<td>Random low frequency</td>
<td>Dirty boards or sockets.</td>
<td>Thorough cleaning and humidity sealant.</td>
</tr>
<tr>
<td>Radar transmitters</td>
<td>High frequency gated at radar pulse repetition rate.</td>
<td>Radar transmitters from long range surface search to short range navigational especially near airports.</td>
<td>Shielding, output filtering of frequencies >> PRR.</td>
</tr>
<tr>
<td>Mechanical vibration</td>
<td>Random < 100Hz</td>
<td>Loose connections, intermittent metallic contact in mobile equipment.</td>
<td>Attention to connectors and cable conditions. Shock mounting in severe environments.</td>
</tr>
<tr>
<td>Chopper frequency noise</td>
<td>Common mode input current at chopping frequency</td>
<td>Abnormally high noise chopper amplifier in system.</td>
<td>Balanced source resistors. Use bipolar input op amps instead.</td>
</tr>
</tbody>
</table>

Table 1

<table>
<thead>
<tr>
<th>Source</th>
<th>Nature</th>
<th>Causes</th>
<th>Minimization Methods</th>
</tr>
</thead>
<tbody>
<tr>
<td>60Hz Power</td>
<td>Repetitive Interference</td>
<td>Powerlines physically close to op amp inputs. Poor CMRR at 60Hz.</td>
<td>Reorientation of power wiring. Shielded transformers.</td>
</tr>
<tr>
<td>120Hz Ripple</td>
<td>Repetitive</td>
<td>Inadequate ripple consideration. Poor RSRR at 120Hz</td>
<td>Thorough design to minimize ripple. RC decoupling at the op amp.</td>
</tr>
<tr>
<td>180Hz</td>
<td>Repetitive EMI</td>
<td>180Hz radiated from saturated 60Hz transformers.</td>
<td>Physical realignment of components.</td>
</tr>
<tr>
<td>Relay & switch arcing</td>
<td>High frequency burst at switching rate.</td>
<td>Proximity to amplifier inputs, power lines, compensation terminals, or nulling terminals.</td>
<td>Filtering of HF components. Shielding. Avoidance of ground loops. Arc suppressors at switching source.</td>
</tr>
<tr>
<td>Printed circuit board contamination</td>
<td>Random low frequency</td>
<td>Dirty boards or sockets.</td>
<td>Thorough cleaning and humidity sealant.</td>
</tr>
<tr>
<td>Radar transmitters</td>
<td>High frequency gated at radar pulse repetition rate.</td>
<td>Radar transmitters from long range surface search to short range navigational especially near airports.</td>
<td>Shielding, output filtering of frequencies >> PRR.</td>
</tr>
<tr>
<td>Mechanical vibration</td>
<td>Random < 100Hz</td>
<td>Loose connections, intermittent metallic contact in mobile equipment.</td>
<td>Attention to connectors and cable conditions. Shock mounting in severe environments.</td>
</tr>
<tr>
<td>Chopper frequency noise</td>
<td>Common mode input current at chopping frequency</td>
<td>Abnormally high noise chopper amplifier in system.</td>
<td>Balanced source resistors. Use bipolar input op amps instead.</td>
</tr>
</tbody>
</table>

NOISE FIGURE, NF, is the logarithm of the ratio of input signal-to-noise and output signal-to-noise.

\[
NF = 10 \log \left(\frac{S/N}{S/N_{\text{out}}} \right) \quad (2)
\]

where: \(S \) and \(N \) are power or voltage levels

This is measured by determining the \(S/N \) at the input with no amplifier present, and then dividing by the measured \(S/N \) at the output with signal source present.

The values of \(R_{\text{gen}} \) and any \(X_{\text{gen}} \) as well as frequency must be known to properly express NF in meaningful terms. This is because the amplifier \(\ln X_{\text{gen}} \) as well as \(R_{\text{gen}} \) itself produces input noise. The signal source contains some noise. However, \(\epsilon_{\text{eq}} \) is generally considered to be noise free and input noise is present as the THERMAL NOISE of the resistive component of the signal generator impedance \(R_{\text{gen}} \). This thermal noise is WHITE in nature as it contains constant NOISE POWER DENSITY per unit bandwidth. It is easily seen that the \(\bar{\epsilon}_n^2 \) has the units \(\sqrt{V/Hz} \) and that \((\bar{\epsilon}_n) \) has the units \(V/\sqrt{Hz} \).

\[
\bar{\epsilon}_n^2 = 4kT R B
\]

where:
- \(T \) is temperature in °K
- \(R \) is resistor value in ohms
- \(B \) is bandwidth in Hz
- \(k \) is Boltzman's constant

OPERATIONAL AMPLIFIER INTERNAL NOISE

OP AMP NOISE SPECIFICATIONS

Most completely specified low noise op amp data sheets specify current and voltage noises in a 1Hz bandwidth and low frequency noise over a range of .1Hz to 10Hz. To minimize total noise, a knowledge of the derivation of these specifications is useful.

In this section, the reader is provided with an explanation of basic op amp associated random noise mechanisms and introduced to a simplified method for calculating total input-referred noise in typical applications.

RANDOM NOISE CHARACTERISTICS

Op amp associated noise currents and voltages are random. They are aperiodic and uncorrelated to each other and have Gaussian amplitude distributions, the highest noise amplitudes having the lowest probability. Gaussian amplitude distribution allows random noises to be expressed as rms quantities; multiplying a Gaussian rms quantity by six results in a peak to peak value that will not be exceeded 99.73% of the time.

The two basic types of op amp associated noises are white noise and flicker noise (1/f). White noise contains equal amounts of power in each Hertz of bandwidth. Flicker noise is different in that it contains equal amounts of power in each decade of bandwidth. This is best illustrated by spectral noise density plots.
EXPLANATION OF NOISE

NOISE VOLTAGE

Figure 8

\[I_n = \sqrt{\frac{f_{hi}}{f_{lo}} dF} \]
(5B)

where:
- \(e_n, I_n \) = Spectral noise density
- \(E_n, I_n \) = Total rms noise
- \(f_{hi}, f_{lo} \) = Upper frequency limit
- \(f_{lo} \) = Lower frequency limit

Conversely, the rms noise value within a given frequency band is the square root of the definite integral of the spectral noise density over the frequency band (Equation 5B). This means that three things must be known to evaluate total voltage noise (\(E_n \)) or current noise (\(I_n \)), \(f_{hi}, f_{lo} \), and a knowledge of noise behavior over frequency.

WHITE NOISE

White noise sources are defined to have a noise content that is equal in each Hertz of bandwidth, and Equation 5B may be rewritten for white noise sources as:

\[E_n(w) = e_n \sqrt{f_{hi} - f_{lo}} \]
\[I_n(w) = I_n \sqrt{f_{hi} - f_{lo}} \]

It is therefore convenient to express spectral noise density in \(\text{V}^2/\text{Hz} \) or \(\mu \text{V}^2/\text{Hz} \) where \(f_{hi} - f_{lo} = 1 \text{ Hz} \). When \(f_{hi} \geq 10 f_{lo} \), the white noise expressions may be further reduced to:

\[E_n(w) = e_n \sqrt{f_{hi}} \]
\[I_n(w) = I_n \sqrt{f_{hi}} \]

FLICKER NOISE & WHITE NOISE

Since flicker noise content is equal in each decade of bandwidth, total flicker noise may be calculated if noise in one decade is known. The \(1 \text{ Hz} \) to \(10 \text{ Hz} \) decade noise content (K) is widely used for this purpose because the white noise contribution below \(10 \text{ Hz} \) is usually negligible.

\[E_n(f) = K \frac{f}{f_{hi}} \cdot I_n(f) = K \frac{f}{f_{hi}} \]

(8a and b)

When substituted in Equation (3), the expressions may be rewritten to:

\[E_n(f) = K \sqrt{\frac{f_{hi}}{f_{lo}}} \cdot I_n(f) = K \sqrt{\frac{f_{hi}}{f_{lo}}} \]

(9a and b)

When corner frequencies are known, simplified expressions for total voltage and current noise, \(E_{n1} \) and \(I_{n1} \), may be written:

\[E_n(f_{hi} - f_{lo}) = e_n \sqrt{f_{ce}} \cdot I_n(f_{hi} - f_{lo}) \]

(10)

\[I_n(f_{hi} - f_{lo}) = I_n \sqrt{f_{ce} I_n \left(\frac{f_{hi}}{f_{lo}} \right) + (f_{hi} - f_{lo})} \]

(11)

where:
- \(e_n \) = White noise voltage in a 1Hz bandwidth
- \(I_n \) = White noise current in a 1Hz bandwidth
- \(f_{ce} \) = Voltage noise corner frequency
- \(f_{lo} \) = Current noise corner frequency
- \(f_{hi} \) = Upper frequency limit
- \(f_{lo} \) = Lower frequency limit

The two most important internally generated noise minimization rules are: limit the circuit bandwidth and use operational amplifiers with low corner frequencies.

NOISE SUMMATION

In the spectral density discussions, the concepts of white noise and flicker noise were introduced. In Figure 10, the complete input-referred op amp noise model, internal white and flicker noise sources are combined into three equivalent input noise generators, \(E_{n1}, I_{n1} \), and \(I_{n2} \). The noise current generators produce noise voltage drops across their respective source resistors, \(R_{S1} \) and \(R_{S2} \). The source resistors themselves generate thermal noise voltages, \(E_t1 \) and \(E_t2 \). Total rms input referred voltage noise, over a given bandwidth, is the square root of the sum of the squares of the five noise voltage sources over that bandwidth.

\[E_{n1}(f_{hi} - f_{lo}) = \sqrt{V^2 + (I_{n1} \cdot R_{S1})^2 + (I_{n2} \cdot R_{S2})^2 + E_{t1}^2 + E_{t2}^2} \]

(12)

THERMAL NOISE

Thermal (Johnson) noise is a white noise voltage generated by random movement of thermally-charged carriers in a resistance; in op amp circuits this is the type of noise produced by the source resistances in series with each input. Its rms value over a given bandwidth is calculated by:

\[E_t = \sqrt{4kTR(f_{hi} - f_{lo})} \]

Where:
- \(k \) = Boltzman's constant = \(1.38 \times 10^{-23} \text{ joules/}^\circ\text{K} \)
- \(T \) = Absolute temperature, \(^\circ\text{Kelvin} \)
- \(R \) = Resistance in ohms
- \(f_{hi} \) = Upper frequency limit in Hertz
- \(f_{lo} \) = Lower frequency limit in Hertz

At room temperature Equation 13 simplifies to:

\[E_t = 1.28 \times 10^{-10} \sqrt{R(f_{hi} - f_{lo})} \]

(14)

To minimize thermal noise \(E_{t1} \) and \(E_{t2} \) from \(R_{S1} \) and \(R_{S2} \), large source resistors and excessive system bandwidth should be avoided.

Thermal noise is also generated inside the op amp, principally from \(r_{bb} \), the base-spreading resistances in the input stage.
transistors. These noises are included in E_N, the total equivalent input voltage noise generator.

SHOT NOISE

Shot noise (Shottky noise) is a white noise current associated with the fact that current flow is actually a movement of discrete charged particles (electrons). In Figure 10, I_{NH} and I_{N2}, above the 1/f frequency, are shot noise currents which are related to the amplifier's DC input bias currents:

$$I_{sh} = \frac{q}{2} \sqrt{I_{BIAS}} (f_H - f_L)$$

Where:
- I_{sh} = RMS shot noise value in amps
- q = Charge of an electron = 1.59 x 10^-19
- I_{BIAS} = Bias current in amps
- f_H = Upper frequency limit in Hertz
- f_L = Lower frequency limit in Hertz

At room temperature Equation 15 simplifies to:

$$I_{sh} = 5.64 \times 10^{-10} \sqrt{I_{BIAS}} (f_H - f_L)$$

Shot noise currents also flow in the input stage emitter dynamic resistances, r_e, producing input noise voltages. These voltages, along with the r_{bb} thermal noise, make up the white noise portion of E_N, the total equivalent input noise voltage generator.

FLICKER NOISE

In limited bandwidth applications, flicker (1/f) noise is the most critical noise source. An op amp designer minimizes flicker noise by keeping current noise components in the input and second stages from contributing to input voltages noise. Equation 17 illustrates this relationship:

$$I_n = \frac{I_{NH}}{g_m} = e_n,$$ \hspace{1cm} \text{input} \hspace{1cm} \text{gm first stage} \hspace{1cm} (17)$$

Another critical factor is corner frequency. For minimum noise the current and voltage noise corner frequencies must be low; this is crucial. As shown in Figure 11 low noise corner frequencies distinguish low noise op amps from ordinary industry standard 741 types.

POPCORN NOISE

Popcorn noise (burst noise) is a momentary change in input bias current usually occurring below 100Hz, and is caused by imperfect semiconductor surface conditions incurred during wafer processing. Minimization of this problem can be accomplished through careful surface treatment, general cleanliness, and a special three-step process known as "Triple Passivation".

Op amp manufacturers face a difficult decision in dealing with popcorn noise. Through careful low noise processing, it can be significantly reduced in almost all devices; alternatively, the processing may be relaxed, and finished devices must be individually tested for this parameter. Special noise testing takes valuable labor time, adds significant amounts to manufacturing cost, and ultimately increases the price a customer has to pay.

TOTAL NOISE CALCULATION

With data sheet curves and specifications, and a knowledge of source resistance values, total input-referred noise may be calculated for a given application. To illustrate the method, noise information from a data sheet is reproduced in Figure 12. The first step is to determine the current and voltage noise corner frequencies so that the E_N and I_n terms of Equation 12 may be calculated using Equations 10 and 11.

CORNER FREQUENCY DETERMINATION

In the input shot noise versus frequency curves of Figure 12, it may be seen that voltage noise ($R_s = 0$) begins to rise at about 10Hz. Lines projected from the horizontal (white noise) portion and sloped (flicker noise) portion intersect at 6Hz, the voltage noise corner frequency (f_c). In the center curve, excluding thermal noise multiplied by 2000 is plotted as a voltage noise. Lines projected from the horizontal portion and sloped portions intersect at 60Hz, the current noise corner frequency (f_c). Equations 10 and 11 also require e_n and I_n for calculation of E_N and I_n. To find e_n and I_n, use the data sheet specification a decade or more above the respective corner frequencies; in this case e_n is 9.6 nV/$\sqrt{\text{Hz}}$ (1000Hz), and I_n is 0.12 pA/$\sqrt{\text{Hz}}$ (1000Hz).

BANDWIDTH OF INTEREST

To be summed correctly, each of the five noise quantities must be expressed over the same bandwidth, ($f_H - f_L$). At this time, assume f_H to be the highest frequency compo-
nent that must be amplified without distortion. Note that \(e_n, I_n \), corner frequencies and bandwidth are independent of actual circuit component values. When doing noise calculations for a large number of circuits using the same op amp, these numbers only have to be calculated once.

TYPICAL APPLICATION EXAMPLE

Figure 13a shows a typical X10 gain stage with a 10kΩ source resistance. In Figure 13b, the circuit is redrawn to show five noise voltage sources. To evaluate total input-referred noise, the values of each of the five sources must be determined.

\[
e_n = 9.6 \text{nV}/\sqrt{\text{Hz}}
\]

\[
I_n = .12 \text{pA}/\sqrt{\text{Hz}}
\]

\[
f_{e0} = 6 \text{Hz}
\]

\[
f_c = 600 \text{Hz}
\]

Using Equation 14:

\[
E_1 = \sqrt{4KTR} (I_n - f_c)
\]

\[
E_{11} = 1.28 \times 10^{-10} \text{V} = 0.4 \text{µV rms}
\]

Next, calculate \(I_N \) using Equation 11:

\[
I_N = I_n \sqrt{f_c} \text{ln} \left(\frac{f_n}{f_e} \right) + (f_n - f_c)
\]

\[
= .12 \text{pA} \sqrt{60} \text{ln} \left(\frac{1000 \text{Hz}}{0.01 \text{Hz}} \right) + (100 - 0.01)
\]

\[
= 3.066 \text{µA rms}
\]

and:

\[
I_{N1} \cdot R_{S1} \geq 3.066 \text{µA} (900) = .0027 \text{µV rms}
\]

\[
I_{N2} \cdot R_{S2} = 3.066 \text{µA} (10k) = .0306 \text{µV rms}
\]

Finally, \(E_N \) from Equation 10:

\[
E_N = e_n \sqrt{f_e} \text{ln} \left(\frac{f_n}{f_e} \right) + (f_n - f_c)
\]

\[
= 9.6 \text{nV} \sqrt{6} \text{ln} \left(\frac{1000 \text{Hz}}{0.01 \text{Hz}} \right) + (100 - 0.01)
\]

\[
= 0.12 \text{µV rms}
\]

Substituting in Equation 12:

\[
E_{11} = \sqrt{E_N^2 + (I_{N1}^2 R_{S1})^2 + (I_{N2}^2 R_{S2})^2} + E_{11}^2
\]

\[
= \sqrt{1.12 \text{µV}^2 + 0.0027 \text{µV}^2 + 0.0306 \text{µV}^2} + 1.128 \text{µV}^2
\]

\[
= 1.12 \text{µV rms}
\]

Total input-referred noise = 6.7µV peak to peak (0.01Hz to 100Hz).

This is 5.9 times that of the low noise op amp example.

The calculation examples illustrate three rules for minimizing noise in operational amplifier applications:

RULE 1. Use an op amp with low corner frequencies.

RULE 2. Keep source resistances as low as possible.

RULE 3. Limit circuit bandwidth to signal bandwidth.

NOISE PERFORMANCE

This segment shall be concerned with determining the signal to noise characteristics and the noise figure of amplifiers.

The amplifier noise is composed of thermal noise generated in the base resistance shot noise caused by the arrival of discrete charges at diode junction and 1/f noise.

For simplification these noise sources can be combined and the amplifier modeled by a noise source and a noiseless amplifier as in Figure 14.

\[
e_n = \text{Amplifier's equivalent mean square noise voltage} / \sqrt{\text{Hz}}
\]

\[
l_n = \text{Amplifier's equivalent mean square noise current} / \sqrt{\text{Hz}}
\]

The total output noise can now be computed by equation 8:

\[
E_t = (e_n^2 + I_n^2 R_n) + 4KTR_0 \sqrt{B}
\]

Substituting in Equation 12:

\[
E_{11} = \sqrt{E_N^2 + (I_{N1}^2 R_{S1})^2 + (I_{N2}^2 R_{S2})^2 + E_{11}^2 + E_{11}^2}
\]

\[
= \sqrt{1.12 \text{µV}^2 + 0.0027 \text{µV}^2 + 0.0306 \text{µV}^2} + 1.128 \text{µV}^2
\]

\[
= 1.12 \text{µV rms}
\]

The total output noise can now be computed by equation 8:

\[
E_t = (e_n^2 + I_n^2 R_n) + 4KTR_0 \sqrt{B}
\]

\[
S/N = \frac{E_s}{e_n^2 + I_n^2 R_n + 4KTR_0 \sqrt{B}}
\]

The denominator of the S/N ratio is the total output noise divided by the midband gain or the equivalent input noise as shown on NE542 specification sheet.

\[
E_{IN} = (e_n^2 + I_n^2 R_n + 4KTR_0 \sqrt{B})
\]

The S/N ratio may now be computed independent of the amplifier gain. However, the gain should be chosen to maintain linear operation of the amplifier. For example: If the input signal to the NE542 is 400µV rms from a source resistance of 680 ohm with a bandwidth of 100Hz to 10kHz, the S/N ratio becomes, in dB:

\[
S/N = 20 \log \left(\frac{400 \mu V}{0.77 \mu V} \right)
\]

\[
= 54.3 \text{dB}
\]
An amplifier gain of 68dB yields an output signal voltage of 1V rms.

For an input signal of 10mV rms, 40dB of gain, and 1V rms output, the NE542 gives a S/N ratio:

\[
S/N = 20 \log \frac{10,000}{0.77} = 82.3 \text{dB}
\]

Another popular figure of merit for measuring the noise performance of an amplifier is noise figure. We first define noise factor (F) as

\[
F = \frac{\text{Noise power input}}{\text{Total noise power}}
\]

in terms of voltage this can be expressed as:

\[
F = \frac{4KTR_s + i_n^2 + i_n^2R_s^2}{4KTR_s} = 5.34, \quad R_s = 680\Omega
\]

The noise figure is now defined as:

\[
\text{N.F.} = 10 \log F \text{ (dB)}
\]

or

\[
\text{N.F.} = 10 \log \frac{4KTR_s + e_n^2 + i_n^2R_s^2}{4KTR_s} \text{ (dB)}
\]

A noiseless amplifier will, therefore, have a noise figure of "0" dB. Although the bandwidth has been eliminated from this calculation, it is still an influencing factor on the noise figure since the value of \(e_n\) and \(i_n\) will be dependent on the bandwidth of interest. This is especially true if \(f/\) for high frequency noise is in this bandwidth.

From Figures 15 and 16 we can calculate the noise figure. For the NE542 the noise figure for 100 Hz to 10Hz, 3dB bandwidth (15.7 kHz equivalent noise bandwidth) and a source resistance of 5K ohms is:

\[
\text{N.F.} = 10 \log \left(\frac{1 + e_n^2 + i_n^2R_s^2}{4KTR_s} \right)
\]

The following table lists the spectral voltage and current noise densities and the respective corner frequencies for several different operational amplifiers and low noise preamplifiers.

where \(I_n = \) total current noise over a specified bandwidth.

\(E_N = \) total voltage noise over a specified bandwidth.

\(E_t = \) thermal (Johnson) noise of the source resistance.

\(*R_s = \) equivalent input source (or generator) resistance.

NOTE

If \(R_s\) is a complex function, \(Z_s\), then this function must be calculated for the \(R_{ss}\) mean of each bandwidth considered. For example the input is a capacitor in parallel with a resistor, the input impedance is therefore:

\[
Z_i = \frac{R}{1 + jwCR}
\]

Therefore as the frequency varies the absolute value of \(Z_i\) will vary and will affect the \(\text{In}R_s^*\), input noise value.

GENERAL EQUATIONS

Total Spectral Voltage Noise

\[
E_N (f_h - f_l) = e_n\sqrt{f_c} \int e_n^2 \left(\frac{f_h}{f_c} \right) + f_l - f_h)
\]

Total Spectral Noise Current

\[
I_n (f_h - f_l) = i_n\sqrt{f_c} \int e_n^2 + f_l - f_h)
\]

Thermal

\[
E_t = 4KTR_s (f_h - f_l)
\]

\[K = 1.38 \times 10^{-23} \text{ joules/}^\circ\text{K}
\]

\[T = \text{abs. temp in } ^\circ\text{K}
\]

\[k = \text{ohms}
\]

\[f_l = 1.28 \times 10^{-10} \sqrt{R_{ss} f_l - f_h}\] at Room Temp.

Shot at Room

\[
I_{SH} = 5.64 \times 10^{-10} \sqrt{R_{ss} f_h - f_l}
\]

Total Noise

\[
I_{ENT} = \sqrt{E_t + (I_n R_s)^2 + I_n R_{s2}^2 + E_{t1}^2 + E_{t2}^2}
\]

SPECTRAL VOLTAGE AND CURRENT NOISE DENSITIES

<table>
<thead>
<tr>
<th>(\mu A741)</th>
<th>5534</th>
<th>LF357</th>
<th>NE542</th>
<th>LM387</th>
</tr>
</thead>
<tbody>
<tr>
<td>(e_n) (mV/√Hz)</td>
<td>40</td>
<td>4</td>
<td>12</td>
<td>7</td>
</tr>
<tr>
<td>(i_n) (pA/√Hz)</td>
<td>.25</td>
<td>.6</td>
<td>.01</td>
<td>.25</td>
</tr>
<tr>
<td>(e_n) fce (Hz)</td>
<td>200</td>
<td>90</td>
<td>50</td>
<td>800</td>
</tr>
<tr>
<td>(i_n) fce (Hz)</td>
<td>1.5k</td>
<td>200</td>
<td>1</td>
<td>700</td>
</tr>
</tbody>
</table>

TABLE 2

NOTES

1. The current spectral noise is omitted for the LF series since current noise levels in J-FET devices are insignificant.

2. The spectral current noise for the LM387 is relatively linear over the frequency spectrum of 100Hz to 10 kHz and is not specified below 100Hz.
EXPLANATION OF NOISE

INPUT NOISE CURRENT VS. FREQUENCY

INPUT NOISE VOLTAGE VS. FREQUENCY

TOTAL NOISE CONFIGURATION

Figure 15

Figure 16

Example:

In order to determine the total noise of any device the following basic procedures can be used.

1. Determine the spectral voltage noise value en and the 3dB corner frequency. (If the value is not listed, but a curve given, the spectral noise value will be that value above the 3dB corner frequency on the flat portion of the curve.)

2. Determine the spectral current noise value in and the 3dB corner frequency. (The same note holds true as for the spectral voltage noise, except that the corner frequencies are generally not the same.

3. Determine the thermal noise of the input port source resistances by using the basic equal at room temperature of

$$E_T = 1.28 \times 10^{-10} \sqrt{R} / \sqrt{\text{Hz}}$$

4. Using Equation 1, 2, and 4 and using Figure 1 as a basic block, we then can determine the total current and voltage noise at the input ports.

5. Employing Equation 5 we can then determine the total RSS voltage noise referred to the input of the amplifier.

6. If the closed loop gain of the system is known, then the total output noise is then

$$E_{out} = E_{in} \times A_{CL}$$

Given: From Table 2, the NE5534 operating over the range of 10Hz to 1kHz and 1kHz to 10kHz, with $R_S = 10k\Omega$: determine total input noise over each bandwidth.

$$E_N = 4 \times 10^{-9} \sqrt{900} = .38 \mu V \text{ rms}$$

$$E_N = 6 \times 10^{-12} \sqrt{9000} \times (10^4) = .58 \mu V \text{ rms}$$

$$E_T = 1.28 \times 10^{-10} \sqrt{10^4 \times 9000} = 1.21 \mu V \text{ rms}$$

NOTE

* For frequencies above 1kHz only white noise is a consideration.

For the first band (10Hz to 1kHz)

$$E_{th} = \sqrt{E_N^2 + E_{R_S}^2 + E_T^2} = \sqrt{.38^2 + 1.57^2 + 1.21^2} \mu V \text{ rms}$$

For the second band (1kHz to 10kHz)

$$E_{th} = \sqrt{.15^2 + .26^2 + .38^2} \mu V \text{ rms}$$

$$E_{th} = \sqrt{.13^2 + .28^2 + .26^2} \mu V \text{ rms}$$

$$E_{th} = \sqrt{.139^2} \mu V \text{ rms}$$

$$E_{th max} = 8.34 \mu V \text{ p-p}$$

CONCLUSION

The designer should look at the previous application note as a reasonable approach to determine system noise levels. The variations of parameters, such as resistance values, temperature, bandwidth are controllable by design procedure; however, the parametric variations of the monolithic op amps are controlled by the IC manufacturer. Signetics manufactures a wide variety of operational amplifiers designed to meet all contingencies.
NE5534 NOISE CHARACTERISTICS

- **Typical Input Noise Voltage Density**
- **Typical Input Noise Current Density**
- **Total Input Noise Density**
- **Broadband Input Noise Voltage**

Figure 18

NE5534 NOISE CHARACTERISTICS

- **10^2 Vn (rms) (nV/\sqrt{Hz})**
- **10^1**
- **10^0**
- **10^-1**
- **10^-2**

INPUT NOISE VOLTAGE DENSITY

- **10^2**
- **10^1**
- **10^0**
- **10^-1**
- **10^-2**

INPUT NOISE CURRENT DENSITY

- **10^2**
- **10^1**
- **10^0**
- **10^-1**
- **10^-2**
VIDEO AMPLIFIER PRODUCTS

NE/SE592 Video Amplifier

The 592 is a two stage differential output, wideband video amplifier with voltage gains as high as 400 and bandwidths up to 120MHz.

Three basic gain options are provided. Fixed gains of 400 and 100 result from shorting together gain select pins G1A — G1B and G2A—G2B respectively. As shown by Figure 1 the emitter circuits of the differential pair return thru independent current sources. This topology allows no gain in the input stage if all gain select pins are left open. Thus the third gain option of tying an external resistance across the gain select pins allows the user to select any desired gain from 0 to 400 volts per volt. The advantages of this configuration will be covered in greater detail under the filter application section.

Three factors should be pointed out at this time:

1. The gains specified are differential. Single ended gains are one half the stated value.

2. The circuit 3dB bandwidths are a function of and are inversely proportional to the gain settings.

3. The differential input impedance is an inverse function of the gain setting.

In applications where the signal source is a transformer or magnetic transducer the input bias current required by the 592 may be passed directly thru the source to ground. Where capacitive coupling is to be used, the base inputs must be returned to ground through a resistor to provide a dc path for the bias current.

Due to offset currents, the selection of the input bias resistors is a compromise. To reduce the loading on the source, the resistors should be large, but to minimize the output dc offset, they should be small — ideally 0 ohms. Their maximum value is set by the maximum allowable output offset and may be determined as follows:

1. Define the allowable output offset (assume 1.5V).

2. Subtract the maximum 592 output offset (from the data sheet). This gives the output offset allowed as a function of input offset currents (1.5V — 1.0V = 0.5V).

3. Divide by the circuit gain (assume 100). This refers the output offset to the input.

4. The maximum input resistor size is:

 \[R_{\text{MAX}} = \frac{\text{Input Offset Voltage}}{\text{Max Input Offset Current}} \]

 \[= \frac{0.05V}{5\mu A} = 10,000\Omega \]

Of paramount importance during the design of the NE592 device was bandwidth. In a monolithic device, this precludes the use of npn transistors and standard level shifting techniques used in lower frequency devices. Thus without the aid of level shifting the output common mode voltage present on the NE592 is typically 2.9 volts. Most applications, therefore, require capacitive coupling to the load. An exception to the rule is a differential amplifier with an input common mode range greater than +2.9V as shown in Figure 2. In this circuit, the NE592 drives a NE511B transistor array connected as a differential cascode amplifier. This amplifier is capable of differential output voltages of 48V peak-to-peak with a 3dB bandwidth of approximately 10MHz (depending on the capacitive load). For optimum operation, R1 is set for a no signal level of +18V. The emitter resistors, RE, were selected to give the cascode amplifier a differential gain of 10. The gain of the composite amplifier is adjusted at the gain selected point of the NE592.

Filters

As mentioned earlier, the emitter circuit of the NE592 includes two current sources. Since the stage gain is calculated by dividing the collector load impedance by the emitter impedance, the high impedance contributed by the current sources causes the stage gain to be zero with all gain select pins open. As shown by the gain vs. frequency graph of Figure 3 the overall gain at low frequencies is a negative 48dB.

Higher frequencies cause higher gain due to distributed parasitic capacitive reactance. This reactance in the first stage emitter circuit causes increasing stage gain until at 10MHz the gain is 0dB or unity.

Referring to Figure 4, the impedance seen looking across the emitter structure includes small r_e of each transistor. Any calculations of impedance networks across the emitters then must include this quantity. The collector current level is approximately 2mA causing the quantity of 2 r_e to be approximately 32 ohms. Overall device gain is thus given by

\[\frac{V_C}{V_{AVG}} = \frac{1.4 X 10^4}{Z_8 + 32} \]

where \(Z_8 \) can be resistance or a reactive impedance. Table 2 summarizes the possible configurations to produce low, high, and bandpass filters. The emitter impedance is made to vary as a function of frequency by using capacitors or inductors to alter the frequency response. Included also in Table 2 is the gain calculation to determine the voltage gain as a function of frequency.

Table 1 VIDEO AMPLIFIER COMPARISON FILE

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>NE/SE592</th>
<th>733</th>
</tr>
</thead>
<tbody>
<tr>
<td>BANDWIDTH (MHz)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>120</td>
<td></td>
<td>120</td>
</tr>
<tr>
<td>GAIN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0,100,400</td>
<td></td>
<td>10,100,400</td>
</tr>
<tr>
<td>R1N (K)</td>
<td>4-30</td>
<td>4-250</td>
</tr>
<tr>
<td>Vpp (VOLTS)</td>
<td>4.0</td>
<td>4.0</td>
</tr>
</tbody>
</table>
Differentiation

With the addition of a capacitor across the gain select terminals the NE592 becomes a differentiator. The primary advantage of using the emitter circuit to accomplish differentiation is the retention of the high common mode noise rejection. Disc file playback systems rely heavily upon this common mode rejection for proper operation. Figure 5 shows a differential amplifier configuration with transfer function.

Disc file Decoding

In recovering data from disc or drum files, several steps must be taken to pre-condition the linear data. The NE592 video amplifier, coupled with the 8T20 bi-directional one-shot, provides all the signal conditioning necessary for phase encoded data.

When data is recorded on a disc, drum or tape system, the readback will be a Gaussian shaped pulse with the peak of the pulse corresponding to the actual recorded transition point. This readback signal is usually 500µV p-p to 3mV p-p for oxide coated disc files and 1 to 20mV p-p for nickel-cobalt disc files. In order to accurately reproduce the data stream originally written on the disc memory, the time of peak point of the Gaussian readback signal must be determined.

The classical approach to peak-time determination is to differentiate the input signal. Differentiation results in a voltage proportional to the slope of the input signal. The zero-crossing point of the differentiator, therefore, will occur when the input signal is
at a peak. Using a zero-crossing detector and one-shot, therefore, results in pulses occurring at the input peak points.

A circuit which provides the preconditioning described above is shown in Figure 6. Readback data is applied directly to the input of the first NE592. This amplifier functions as a wideband ac coupled amplifier with a gain of 100. The NE592 is excellent for this use because of its high phase linearity, high gain and ability to directly couple the unit with the readback head. By direct coupling of readback head to amplifier, no matched terminating resistors are required and the excellent common mode rejection ratio of the amplifier is preserved. DC components are also rejected because the NE592 has no gain at dc due to the capacitance across the gain select terminals.

Automatic Gain Control
The NE592 can also be connected in conjunction with a MC1496 balanced modulator to form an excellent automatic gain control system.
The signal is fed to the signal input of the MC1496 and RC coupled to the NE592. Unbalancing the carrier input of the MC1496 causes the signal to pass thru unattenuated. Rectifying and filtering one of the NE592 outputs produces a dc signal which is proportional to the ac signal amplitude. After filtering this control signal is applied to the MC1496 causing its gain to change.
TEST RESULTS OF DISC FILE DECODER CIRCUIT (FIGURE 5-108)

Figure 8
NE5539 DESCRIPTION
The Signetics SE/NE5539 ultra-high frequency operational amplifier is one of the fastest monolithic amplifiers made today. With a unity gain bandwidth of 350MHz and a slew rate of 600V/µs, it is second to none. Therefore, it is understandable that to attain this speed, standard internal compensation would have to be left out of its design. As a consequence, the op amp is not unconditionally stable for all closed-loop gains and must be externally compensated for gains below 17dB. Properly done, compensation need not limit slew rate. The following will explain how to use the methods available with the SE/NE5539.

LEAD AND LAG–LEAD COMPENSATION
A useful method for compensating the device for closed-loop gains below seven is to use lag–lead and lead networks as shown in Figure 1. The lead network is primarily concerned with compensating for loss of phase margin caused by distributed board capacitance and input capacitance, while lag–lead is mainly for optimizing transient response. Lead compensation modifies the feedback network and adds a zero to the overall transfer function. This increases the phase, but does not greatly change the gain magnitude. This zero improves the phase margin. To determine components, it can be shown that the optimal conditions for amplifier stability occur when:

\[R_1 \times C_{\text{dist}} = \frac{R_F}{R_1} \times C_{\text{lead}} \]

(1)

However, when the stability criteria is obtained, it should be noted that the actual bandwidth of the closed-loop amplifier will be reduced. Based on using a double-sided copper-clad printed circuit board with a distributed capacitance of 3.5pF and a unity gain configuration, \(C_{\text{lead}} \) would be 3.5pF. Another way of stating the relationship between the distributed capacitance closed-loop gain and the lead compensation capacitor is:

\[C_{\text{lead}} = C_{\text{dist}} \times \frac{R_1}{R_F} \]

(2)

When bandwidth is of primary concern, the lead compensation will usually be adequate. For closed-loop gains less than seven, lag–lead compensation is necessary for stability. If transient response is also a factor in design, a lag–lead compensation network may be necessary. (Reference Figure 1.) For practical applications, the following equations can be used to determine proper lead–lag components:

\[\frac{R_F}{R_1/\text{lead}} \geq 7 \]

(3)

Therefore,

\[R_{\text{lead}} \leq \frac{R_F}{7 - R_F/R_1} \]

(4)

Using the above equation will insure a closed-loop gain of seven above the network break frequency. \(C_{\text{lag}} \) may now be approximated using:

\[W_{\text{lag}} = \frac{2\pi \times (\text{GBW})}{10} \text{ Rad/Sec} \]

(5)

\[W_{\text{lag}} = \frac{\pi \times (\text{GBW})}{5} \text{ Rad/Sec} \]

(6)

Figure 2A. Closed-Loop Inverting Gain of Seven Gain-Phase Response (Uncompensated)

This method adds a pole and zero to the transfer function of the device, causing the actual open-loop gain and phase curve to be reshaped, thus creating a progressive improvement above the critical frequency where phase changes rapidly. (Near 70MHz; see Figures 2A and 2B.) But also, the lag–lead network can be adjusted to optimize gain peaking for transient responses. Therefore, rise time, overshoot, and settling time can be changed for various closed-loop gains. The result of using this technique is shown for a pulse amplifier in Figure 3.

\[W_{\text{lag}} = \frac{1}{\text{(R}_{\text{lead}} \times \text{C}_{\text{lead}})} \]

(8)

Therefore,

\[\frac{\pi \times (\text{GBW})}{5} = \frac{1}{\text{R}_{\text{lead}} \times \text{C}_{\text{lead}}} \]

(9)

And

\[C_{\text{lag}} = \frac{5}{\pi \times \text{R}_{\text{lead}} \times \text{GBW}} \]

(10)

Figure 2B. Open-Loop Phase
USING PIN 12 COMPENSATION

An alternate method of external compensation is obtained by use of the SE/NE5539 frequency compensation pin. The circuits in Figure 4 show the correct way to use this pin. As can be seen, this method saves the use of one capacitor as compared to standard lag-lead and lead compensation as shown in Figure 1.

But, most important, both methods are equally effective; i.e., a good wideband amplifier below 17dB, with control over ringing and overshoot. For example, inverting and non-inverting amplifier circuits using pin 12 are shown in Figure 5. The corresponding pulse response for each circuit is shown in Figures 6 and 7 for the
COMPENSATION TECHNIQUES FOR USE WITH THE SE/NE5539

INTERNAL CHARACTERISTICS OF THE SE/NE5539

In order to better understand the compensation procedure, a detailed discussion of the amplifier follows.

The complete amplifier schematic is shown in Figure 9. To clarify the effect of the compensation pin, the schematic is split into five main parts as shown in Figure 10.

Each segment in Figure 10 is defined as follows: starting from the non-inverting input, Section A1 is the amplification from the input to the base of transistor Q4. A2 is from the base of Q4 to the summation point at the collector of Q3. Furthermore, A3 represents the gain from the non-inverting input to the summation point via the common emitter side of Q2 and Q3. Finally, B_F is the feedback factor of the positive feedback loop from the collector of Q3 to the base of Q4.

From Figure 10, it can be seen that the total gain \(A_T \) is:

\[
A_T = \frac{A_1 A_2}{1 - (B_F A_2)} + A_3(1 + B_F A_2)
\]

Each term in this equation plays a role at different frequencies to determine the total transfer function of the device. Of particular importance is the pole in \(A_3 \) (near 340MHz) which causes a roll-off of 12dB/octave and loss of phase margin just before unity gain. This can be seen in the Bode plot in Figure 11A. To overcome this pole, a capacitor and resistor are connected as shown in Figures 12A and 12B. The compensation pin is connected to the emitter of Q5, which is in an emitter-follower configuration. Therefore, a reactance connected to pin 12 acts essentially as if it were connected at the base of Q5. Since the capacitor is connected here, it is now a component of \(B_F \) and a zero is added to the transfer function. The resistor across the input pins controls overall gain and causes \(A_T \) to cross 0dB at a lower frequency; the capacitor in the feedback loop controls phase shift and gain peaking.

To further explain, Bode plots of open-loop response using varying capacitor values and corresponding pulse responses are shown in Figures 13A through 13F. The changes in gain and phase can readily be seen, as is the effect on bandwidth.

COMPUTER ANALYSIS

The open-loop and pulse response plots were generated using an IBM 370 computer and SPICE, a general-purpose circuit simulation program.
Figure 9. Complete Schematic of SE/NE5539

Figure 10. Internal Sections
simulation program. Each transistor in the part is mathematically modeled after actual device parameters, which were measured in the laboratory. Then these models are combined with the resistors and voltage sources through node numbers so that the computer knows where each is connected.

To indicate the accuracy of this system, the actual open-loop gain is compared to the computer plots in Figures 14 and 15. The real payoff for this system is that once a credible simulation is achieved, any outside circuit can be modeled around the op amp. This would be used to check for feasibility before breadboarding in the lab. The internal circuit can be treated like a black box and the outside circuit program altered to whatever application the user would like to examine.
COMPENSATION TECHNIQUES FOR USE WITH THE SE/NE5539

Figure 13A. Open-Loop Pin 12 Compensation —
R_C = 200Ω, C_C = 1pF.
(Computer Simulation)

Figure 13B. Closed-Loop Non-Inverting Pulse Response —
R_C = 200Ω, C_C = 1pF, Av = 3
(Computer Simulation — Underdamped)

Figure 13C. Open-Loop Pin 12 Compensation —
R_C = 200Ω, C_C = 2pF.
(Computer Simulation)

Figure 13D. Closed-Loop Non-Inverting Pulse Response —
R_C = 200Ω, C_C = 2pF, Av = 3
(Computer Simulation — Critically Damped)

Figure 13E. Open-Loop Pin 12 Compensation —
R_C = 200Ω, C_C = 3pF.
(Computer Simulation)

Figure 13F. Closed-Loop Non-Inverting Pulse Response —
R_C = 200Ω, C_C = 3pF, Av = 3
(Computer Simulation — Overdamped)

REFERENCES
Conceptually, three basic approaches exist for obtaining regulated DC voltage from an AC power source. These are:

- Shunt regulation
- Series linear regulation
- Series switched mode regulation

All required AC power line rectification

The series switched mode regulators will be referred to as switched mode power supplies or SMPS during the course of this article.

Briefly stated, if all three types of regulation can perform the same function, following are some of the key parameters to be addressed:

- From an economical point of view, cost of the system is paramount.
- From an operations point of view, weight of the system is critical.
- From a design criteria, system efficiency is the first order of business.

The series and shunt regulators operate on the same principle of sensing the DC output voltage, comparing to an internal reference level and varying a resistor (active device) to maintain the output levels within pre-specified limits.

Switched mode power supplies (SMPS) are basically DC to DC converters, operating at frequencies in the 20kHz and higher region. Basically the SMPS is a power source which utilizes the energy stored during one portion of its operating cycle to supply power during the remaining segment of its operating cycle.

Linear regulators, both shunt and series, suffer when required to supply large currents with resultant high dissipation across the regulating device. Efficiency suffers tremendously. (Efficiencies less than 40% are typical.)

Switched mode power supplies operate at much higher levels of efficiency (generally in the order of 75% to 80%) thereby reducing significantly the energy wasted in the regulated supply. The SMPS does, however, suffer significantly in the ripple regulation it is able to maintain as opposed to a much higher degree of regulation available in series (or shunt) linear regulators.

The linear regulators obtain improved regulation by virtue of the series pass elements always conducting, as opposed to SMPS devices having their active devices operative only during a portion of the overall operating period.

Some definitions and comparisons between linear regulators and switched mode power supplies are below for reference.

REGULATION

Line Regulation: (Sometimes referred to as static regulation) refers to the changes in the output (as a percent of nominal or actual value) as the input is varied slowly from its rated minimum value to its rated maximum value (eg. from 105VAC_{RMS} to 125VAC_{RMS}).

Load Regulation: (Sometimes referred to as dynamic regulation) refers to changes in output (as a percent of nominal or actual value) when the load conditions are suddenly changed (eg. minimum load to full load.)

NOTE

The combination of static and dynamic regulation are cumulative. Care should be taken when referring to the regulation characteristics of a power supply.

AC PARAMETERS

Voltage Limiting: The regulator's ability to "shut down" in the event that the internal control elements fail to function properly.

Current Limiting: Often referred to as "fold-back" where the amplifier segment at the regulator folds back the output current of the device when safe operating limits are exceeded.

Thermal Shutdown:

The regulator's ability to shut itself down when the maximum die temperature is exceeded.

GENERAL PARAMETERS

Power Dissipation: The maximum power the regulator can tolerate and still maintain operation within the safe operating area of its active devices.

Efficiency:

The ratio (in percent) of the usable versus total power being dissipated in a regulated supply. (The losses can be ac as well as dc losses.)

TRANSIENT RESPONSE

The ability of the regulator to respond to rapid changes in either line variations, load variations, or intermittent transient input conditions. (This parameter is often referred to as "recovery time.")

LOSSES IN REGULATED POWER SUPPLIES

![Figure 1](8-237)

(a) CONVENTIONAL SUPPLY - 45% EFFICIENCY

(b) SWITCHED-MODE SUPPLY - 80% EFFICIENCY
EMI/RFI: Generation of radio frequency interference signals and magnetic field disturbance especially in SMPS devices. (Transformer and choke design are available which reduce both RFI & EMI to safe acceptance regions.)

The balance of this section will be dedicated to the discussion of the general operation of Switched Mode Power Supplies (SMPS) with emphasis on the Signetics NE5560 Control and Protection Module.

Switched-mode power supplies (SMPS) have gained much popularity in recent years because of the benefits they offer. They are used now on a large scale in desk calculators, computers, as instrumentation supplies, etc., and it is confidently expected that the market for this type of supply will grow.

The advantages of SMPSs are low weight and small size, high efficiency, wide AC input voltage range, and low cost.

- Low weight and small size are possible because operation occurs at a frequency beyond the audible range; the inductive elements are small.
- High efficiency because, for output regulation, the power transistor is switched rapidly between saturation and cut-off and therefore has little dissipation; this eases heatsink requirements, which also contributes to weight and volume reduction.
- Conventional linear-regulator supplies may have efficiencies as low as 50%, or less, but efficiencies of 80% are readily achievable with SMPS; see figure 1.
- Wide AC input voltage range because of the flexibility of varying the switching frequency in addition to the change in transistor duty cycle makes voltage adaptation unnecessary.
- Low overall cost, due to the reduced volume and dissipation, means that less material is required and smaller semiconductor devices suffice.

Switched-mode power supplies also have slight disadvantages in comparison with linear regulators, namely, somewhat greater circuit complexity, tendency to r.f.i. radiation, slower response to rapid load changes, and less ability to remove output ripple.

HOW SWITCHED-MODE POWER SUPPLIES OPERATE

The switched-mode power supply is a modern version of its forerunner, the electromechanical vibrator used in the past to supply car radios. But the new concept is much more reliable because of the far greater life-time of the transistor switch. Figure 2 shows the principle of the ac fed SMPS. In this system the AC voltage is rectified, smoothed, and supplied to the electronic chopper, which operates at a frequency above the audible range to prevent noise. The chopped DC voltage is applied to the primary of a transformer, and the secondary voltage is rectified and smoothed to give the required DC output. The transformer is necessary to isolate the output from the input. Output voltage is sensed by a control circuit, which adjusts the duty cycle of the switching transistor, via the drive circuit, to keep the output voltage constant irrespective of load and line voltage changes. Without the input rectifier, this system can be operated from a battery or other DC source.

Depending on the requirements of the application, the DC-to-DC converter can be one of the three basic types: flyback converter, forward converter, or push-pull (balanced) converter.

The Flyback Converter

Figure 3 shows the flyback converter circuit, and the waveforms of transistor voltage, V_C_E, and choke current, i_L, reflected to the primary (choke double-wound for line isolation). Cycle time and transistor duty cycle are denoted T and δ, respectively. While Q1 conducts, energy is accumulated in the choke magnetic field (i_L rising and D1 reverse biased), and it is discharged into the output capacitor and the load during the flyback period, that is, while Q1 is off (i_L falling and D1 forward biased). During Q1 conduction, C0 continues delivering energy to the load so providing smoothing action. It will be noted that only one inductive element is needed, in distinction to the converter types discussed below, which require two. As the V_C_E waveform shows, the peak collector voltage is twice the input voltage, V_in, for δ equal to 0.5.

The Forward Converter

A major advantage of the forward converter, particularly for low output voltage applications, is that the high-frequency output ripple is limited by the choke in series with the output. Figure 4 illustrates the circuit. During the transistor-on (or forward) period, energy is simultaneously stored in the choke L0 and passed via D1 to the load. While Q1 is off, part of the energy accumulated in L0 is transferred to the load through free-wheeling diode D2. Output capacitor C0 smoothes the ripple due to transistor switching. After transistor turn-off, the magnetic energy built up in the transformer core is returned to the DC input via the demagnetizing winding (closely coupled with the primary) and D3, so limiting the peak collector voltage to twice the input voltage V_in.

The Push-Pull Converter

This converter type, given in Figure 5, consists of two forward converters operating in push-pull. Diodes D1 and D2 rectify the rectangular secondary voltage generated by Q1 and Q2 being turned on during alternate half cycles. Push-pull operation doubles the frequency of the ripple current in output filter L0C0 and so reduces the output ripple voltage. The peak transistor voltage is 2V_in.

MAKING THE BEST CONVERTER CHOICE

There exist several versions of the three fundamental circuits described earlier.
NOTES
1. \(\alpha \) is the duty cycle of Q1; \(T \) is the cycle time
2. \(L \) is a double-wound choke

These are shown in Figure 6. Circuits IA, IIA and IIIA are the basic types. In the two-transistor circuits IB and IIB, transistors Q1 and Q2 conduct simultaneously and diodes \(D_1, D_2 \) limit the peak collector voltage to the level of DC input voltage \(V_i \). Similarly in the push-pull circuits IIIB and IIIC, the collector voltage does not exceed \(V_i \) in circuit IIIB, Q1 and Q2 are turned on during alternate half cycles; in circuit IIIC, Q1 and Q4 are turned on in one half cycle and Q2 Q3 in the next.

Converter choice depends on application and performance requirements. The flyback converter is the simplest and least expensive; it is recommended for multi-output supplies because each output requires only one diode and one capacitor. However, smoothing may be a problem where ripple requirements are severe. The push-pull type has the most complex base drive circuit but it produces the lowest output ripple with given values of \(L_0 \) and \(C_o \).

Figure 7 is a general guide for the choice of converter type, based on output voltage and power. In the case of the flyback converter, it becomes more and more difficult to keep the percentage output ripple below an acceptable level as the output power increases and the output voltage decreases; for reasons of circuit economy, however, the flyback converter is the best proposition if the output power does not exceed about 10W. For output powers higher than about 1kW, the push-pull converter is preferable.

THE CONTROL AND PROTECTION MODULE

In addition to providing adequate output voltage stabilization against line voltage...
NOTES
1 = Flyback converter family with 1A single-transistor type and 1B two-transistor type
2 = Forward converter family with 2A single-transistor type and 2B two-transistor type
3 = Push-pull converter family with 3A conventional type, 3B single-ended type and 3C bridge type

Capacitor C_p is a high-frequency by-pass (20kHz to 50kHz switching frequency).

Figure 6
and load changes, the control module must give fast protection against overload, equipment malfunction, and the effects of switch-on immediately following switch-off. In addition the following features are desirable:

- Soft Start: that is, a gradual increase of the transistor duty cycle after switch-on causing a slow rise of the output voltage, which prevents an excessive inrush current due to a capacitive load or charging of the output capacitor.
- Synchronization: to prevent interference due to the difference in free-running frequencies (for example, in a system in which a low-power SMPS supplies the base drive circuit of the output switching transistor in a high-power SMPS).
- Remote switch-on and switch-off: essential for sequential switching of supply units in, for instance, a computer supply system.

The control and protection circuitry of a switched-mode power supply (SMPS) is a crucial and complicated part of the whole supply. Integration of this circuitry on a chip will therefore ease the design of an SMPS considerably.

SMPS CONTROL-LOOP

Figure 8 shows the principal control-loop of a regulated SMPS. The output voltage \(V_o \) is sensed and via a feedback network fed to the input of an error amplifier where it is compared with a reference voltage.

The output of this amplifier is connected to an input of the pulse-width modulator PWM.

The other input of this modulator is used for an oscillator signal, which can be a sawtooth or a triangle.

As a result, a rectangular waveform with the frequency of the oscillator is emerging at the output of the PWM.

The width of this pulse is dictated by the output voltage of the error amplifier.

After passing through an output stage, the pulse can be used to drive the power transistor of the SMPS.

When the width of the pulse is varied, also the on-time of this transistor will vary and consequently the amount of energy taken from the input voltage \(V_i \).

INITIAL TURN ON

It may be helpful to operate an SMPS open loop with reduced error amplifier gain. This provides an easy way to verify correct operation of control loop elements.
Dual Output ±50V, 1 Amp, Forward Converter for Off-line Operation

A straightforward 100 watt off-line converter, with transformer isolation to load, is shown in Figure 1.

The NE5560 is operated at a switching frequency of 75kHz allowing minimum magnetics and component size. Line regulation is greatly improved also by making use of pin 16, the feed forward input. Typical transformer design recommended is: T1: Primary 60T #26, Secondary 20T #26 on a Ferroxcube #2616 (3C8) pot core wound tightly coupled for minimum leakage inductance and having adequate primary inductance for low droop in the base drive waveform. Base drive to Q2 should approach 0.5A peak for fast turn-on response and minimum losses.

T2 provides 2.4 = 1 stepdown from primary to each secondary. A primary winding of 60 turns of #26 wire wound between the two secondaries with 25 turns each of #20 wire. The recommended core is a Ferroxcube-type 3622 pot core with a 25 mil gap to prevent saturation.

Figure 1

±50V Feed Forward Switch Mode Converter
APPLICATIONS
SE/NE5560 Push-Pull Regulator
This application describes the use of the Signetics SE/NE5560 adapted to function as a push-pull switched mode regulator, as shown in Figures 1 and 2.

Input voltage range is +12 to +18V for a nominal output of +30 and -30V at a maximum load current of 1A with an average efficiency of 81%.

Features include feed forward input compensation, cycle-to-cycle drive current protection and other voltage sensing, line (to positive output) regulation <1% for an input range of +13 to +18V and load regulation to positive output of <3% for ΔI(+) of 0.1 to 1 Amp.

The main pulse width modulator operates to 48 kHz with power switching at 24 kHz.

Figure 1
Figure 2

NOTE
Power ground and signal ground must be kept separated.
APPLIcATIONS

5V, 0.5A Buck Regulator Operates from 15V

The converter design shows how simple it is to derive a TTL supply from a system supply of 15V (see Figure 1). The NE5561 drives a 2N4920 PNP transistor directly to provide switching current to the inductor. Overall line regulation is excellent and covers a range of 12V to 18V with minimal change (<10mV) in the output operating at full load.

As with all NE5561 circuits, the auxiliary slow start and max duty cycle limits are required, as evidenced by Q1. The max limit may be calculated by using the relationship:

\[
\frac{R_2}{R_1 + R_2} (8.2V) = V_{i(max)}
\]

The maximum duty cycle is then determined from the pulse-width modulator transfer graph, and R1, R2 are defined from the desired conditions.

NE5561 Boost Converter with Output Variable (18V to 30V, 0.2A)

The circuit shown uses the NE5561 SMPS controller in a non-isolated boost converter operating from a 15V line. The addition of three transistors and one diode is necessary to complete the design (see Figure 3).

Operation is as follows. Q1 is a combination slow start and max duty cycle limit transistor. When power is first applied to the circuit, C7 in a discharged state begins to charge toward the divider voltage, V0. This V0 + VBE controls the voltage on pin 4, the error amp output, causing the duty cycle to be limited initially to \(\hat{d}_0\), then to gradually approach its normal operating range, \(\hat{d}\). The base divider is fed from Vz, which is nominally 8.2V.

Output regulation starts at the error amplifier, with gain set by R2 (adj) and R5 combination. The error amp is stable for closed loop gain in excess of 40 dB (X100), for which the regulation will be approximately 1%. C4 is added to the output to insure stability at gain below 40 dB. C4 creates a dominant pole at approximately 1 kHz, descending at 6 dB per octave to unity near 1 MHz. Input to the error amplifier is referenced to 3.75V and must reach this reference level for the output of the NE5561 to be active. Output voltage is then the quantity 3.75V times the divider ratio from VOUT to Pin 3 as set by R2.

If the ratio is, for instance, 10:1, the output will be \(= 37V\). If the ratio is 5:1, the output will be \(= 18.5V\), etc.

Output to Q2 base is a square wave of variable duty cycle as determined by load demand. The internal transistor is open collector and must have a pull-up resistance, in this application the base circuit of Q2. The duty cycle \(\hat{d}\) is a fraction between 0 and 1. The actual on-time is proportional then to \(\hat{d} \cdot T\), where T is the period of the free-running frequency of the sawtooth generator internal the NE5561. Frequency

\[
\hat{d} = \frac{R_2}{R_1 + R_2} (8.2V)
\]

The circuit uses the NE5561 5V/0.5A Buck Converter with Output Variable (18V to 30V, 0.2A) and is shown in Figure 1.
is set by the RC combination, R7 • C5 with charging current supplied from Vz (8.2V). The stabilizing effect of the internal zener supply gives a constant frequency. The sawtooth waveform is related to duty cycle as shown below.

Q3 is switched on during the saturated portion of the output waveform from pin 7 of the NE5561, termed 0, and is switched off during the remainder of the cycle (1-0). The sawtooth frequency is set at approximately 22 kHz in this example. The NE5561 is capable of operation to 100 kHz, however.

Pin 6 of the NE5561 operates an over-current protective feature which resets the output on pin 7 if the instantaneous pin 6 voltage exceeds 0.50V. In this case, RB determines the peak current of Q3 emitter circuit prior to shutdown. The operation of the over-current circuit is on a pulse to pulse basis, returning to normal as soon as

Figure 2

DC TO DC SMPS USING NE5561 VARIABLE 18V TO 30V OUT AT 0.2A

C5 is the timing capacitor

L1 is Ferroxcube 2618 3C8 with 14 turns of #18 enameled wire (0.14 mH)

\[
\delta_{\text{max}} = \text{a function of } \frac{R_{11}}{R_{10} + R_{11}} (V_z + V_{BE})
\]
the pin 6 voltage falls below 0.50V. As is noted, a small degree of filtering is needed to eliminate short switching transient, allowing only the primary current waveform to be sensed.

Switching circuit operation proceeds as follows. Q3 turns on, causing magnetization current to begin increasing in L1, the switching inductor. After initial start up, C3 is charged to the output, thus with Q3 on, Diode D1 is reverse biased and does not conduct during the duty cycle, δ. C3, the output capacitor, sustains the full load current during this part of the cycle. When Q3 turns off, the magnetic field energy previously stored in L1 is discharged through D1 now forward biased. The output capacitor is incrementally charged, restoring its depleted voltage. The ripple voltage is a function of the size of C3 and its internal resistance. For minimum ripple, a low ESR (Equivalent Series Resistance) capacitor must be used, since previously mentioned peak load current flows in C3.

Single Transistor 100V, 250 mA Buck Converter

With a single 15V zener diode to limit package dissipation, the NE5561 controller may be operated directly from the rectified AC line. The following example shows the simplicity of such a converter which is capable of a nominal 100V output (see Figure 5). A base drive transformer is used to gain high voltage isolation between the NE5561 and the switching transistor, and to provide adequate base drive. A low power PNP transistor is used in an auxiliary slow start and duty cycle limiting circuit to prevent over-excitation (Q1).

Operation is as follows. Drive from the NE5561 output is fed to the primary of T1, base drive transformer, with a pulse-width modulated signal causing Q2 (BU407) to switch current to inductor, L1. As the current builds up, energy is stored in L1, coincident with the saturation period (O) of the NE5561 output stage. During this period, current also flows through L1 to C0 and the load. When Q2 cuts off, the choke field collapses and D1 conducts as the load is sustained by the inductor-stored energy.

V_{OUT} is sampled by the divider R7 and R8, rising until the junction of the divider is forced to 3.75V. Load variations are thus translated to duty cycle variations to maintain constant voltage at the output. The measured efficiency at 0.5A load is in excess.
The base current waveform driving Q2 is shown in Figure 4. This indicates that the BU407 base current rises initially to 60 mA to obtain fast turn-on, then settles to about 40 mA for the remainder of the duty cycle, \(\delta \). Reverse biasing of the emitter-base junction occurs to enhance turn-off.

Snubber networks are necessary, as shown across Q2 and commutation diode, D1, to prevent component failure during fast switching. It is critical that these networks be placed physically adjacent to the respective components they protect, and that low inductance capacitors and resistors be used as snubbers (ceramic or dura mica caps and carbon resistors).

The base drive transformer is constructed using a Ferroxcube 2616-3C8 core, with primary of 120 turns of #26 wire, and 20 turns of #26 on secondary. The primary is wound in a simple solenoidal manner, first on the bobbin, followed by a layer of mylar tape to provide voltage isolation. Next, the secondary winding is added. Primary inductance measures 45 mH with a leakage inductance of 20 \(\mu \)H. It is important to have sufficient primary inductance to prevent excessive droop in base drive current. Also, leakage reactance must be kept reasonably low to minimize ringing.

DC Motor Drive with Fixed Speed Control

The circuit shown in Figure 7 incorporates a simple switch mode approach to DC motor control, which is efficient and free of the dissipation problems inherent in linear drives. The NE5561 provides pulse proportional drive and speed control based on DC tachometer feedback. A simple switching circuit consisting of one transistor (2N4920 PNP) and a commutation diode is used to deliver programmed pulse energy to the motor.

A frequency of approximately 20 kHz is used to eliminate audio noise present in some switching drives. The DC tach in this example delivers 2.7V/1000 RPM. Its output is such that negative feedback occurs when this voltage is applied to the error amplifier of the NE5561, pin 3, through a suitable divider. Note that the voltage to pin 3 must be 3.75V in order to obtain servo lock. Thus, the divider from the tach output must be appropriate to maintain the proper ratio for speed control to occur.

As shown in the waveform photo (Figure 6), duty cycle varies directly with load torque demand. No load current is \(0.3 \)A and full load is 0.6A. Current and voltage waveforms at 0.6A are shown in Figure 6. If desired, torque limiting may be set by feeding a derivative of motor return current back to pin 6 of the NE5561.

Operating range is 12V to 18V input for a tach output nominal variation of less than 20 mV, and approximately 4.35V for the divider values shown. The motor is a Globe 100A 565 rated at 12V DC.
Synchronization of the 5561 can be accomplished by forcing the timing pin (Pin 5) above the 5.6 volt sawtooth limit comparator for a short time.

A drawback to this approach is that when the 5.6 volt threshold is reached, a discharge transistor is turned on to quickly pull the timing capacitor to ground and will also attempt to pull the pulse generator to ground. This condition can be avoided by keeping the pulse width very narrow (0.1µs) or by placing a differentiator network between the pulse generator and the diode.

The differentiator will now produce a positive going spike with the positive edge of the sync pulse, resetting the sawtooth without passing too much current through the discharge transistor. The negative spike produced by the falling edge of the clock will be blocked by the diode and will have no effect on the sawtooth ramp. A narrow sync pulse is no longer necessary while a sharp edged pulse is. The value of C_D should be sufficient to ensure that a 10V pulse will drive the capacitor, C_T, high enough to trip the 5.6V comparator according to:

$$C_T \Delta V_{CT} = C_D (\Delta V_{CT} - V_D)$$

This relates the magnitude of the spike to the size of the pulse. Also assume $R_0C_D < 1 \mu s$.

The free run frequency of the slaved 5561 should be slightly lower than the sync frequency for proper operation.
APPLICATIONS

The capacitor-diode output circuit is used in Figure 1 as a polarity converter to generate a
-5 volt supply from +15 volts. This circuit is useful for an output current of up to 20mA
without additional boost transistors required. Since the output transistors are current
limited, no additional protection is necessary. Also, the lack of an inductor allows the circuit
to be stabilized with only the output capacitor.

Another low-current supply is the flyback converter used in Figure 2 to generate ±15 volts
at 20mA from a +5 volt regulated line. The reference generator in the SG3524 is unused
with the input voltage providing the reference. Current limiting in a flyback converter is diffi-
cult and is accomplished here by sensing current in the primary line and resetting a soft-
start circuit.

In the conventional single-ended regulator circuit shown in Figure 3, the two outputs of the
SG3524 are connected in parallel for effective 0-90% duty-cycle modulation. The use of an
output inductor requires an R-C phase compensation network for loop stability.

Push-pull outputs are used in this transformer-coupled DC-DC regulating converter shown in Figure 4. Note that the oscillator must be set at twice the desired output frequency as the SG3524's internal flip-flop divides the frequency by 2 as it switches the P.W.M. signal from one output to the other. Current limiting is done here in the primary so that the pulse width will be reduced should transformer saturation occur.

SG3524 PUSH-PULL ±50V,
100 Watt Converter

A simple solution to off-line converter design for power audio amplifier circuits is shown in Figure 5. The SG3524 emitter outputs are used to drive directly a pair of VN3500A Power FETs in the primary side of the step down transformer at a 50kHz rate. (The main oscillator operates at 100kHz.) The transformer consists of 120T of #24 wire center-tapped at 60T. This is sandwiched between two 50 turn center-tapped secondary windings of #20 wire. Diodes are fast recovery BYW30s; the output chokes, 500µH wound on EC35 (SC8) pair Ferroxcube cores, provide adequate filtering in conjunction with the 1000µF and .01µF ceramic capacitors across the output.

[Figure 1: Capacitor-diode output circuit diagram]

[Figure 2: Flyback converter diagram]

[Figure 3: Conventional single-ended regulator circuit diagram]

[Figure 4: Transformer-coupled DC-DC regulating converter diagram]

[Figure 5: SG3524 push-pull ±50V, 100 Watt Converter diagram]
Figure 4: 50 VOLT PUSH·PULL SWITCHED MODE CONVERTER

Figure 5: ± 50 VOLT PUSH·PULL SWITCHED MODE CONVERTER
APPLICATIONS

The encoder inputs have been designed to accept a wide variety of signal sources. This can range from simple systems using as an input the wiper of a control pot which is connected between V_R and ground to complex systems incorporating mixing, exponential processing and/or control polarity reversing. In all cases, it must be remembered that the control inputs to the encoder look like voltage followers, that is they draw only very small currents ($>200\,\text{nA}$). The voltage range for these inputs is $+1.5\,\text{V}$ to $+5\,\text{V}$; however, internal clamps limit the linear control to approximately $+1.5\,\text{V}$ to $+3.5\,\text{V}$. These clamps prevent interaction between channels if one input is open circuited or shorted to supply or ground.

An example was worked out previously which utilized mechanical fine trim of the inputs (where the control pot body is rotated a small amount). In some applications, it is desirable to implement this fine trim electrically with the use of an additional pot. Many methods exist to achieve this and two are shown below.

In Figure 1 the series resistors R_T and R_C are much larger than the control pots so as to minimize nonlinearity errors and the ratio of R_T to R_C control the relative sensitivity of the control and trim pots. This scheme allows the control pot to be centered at neutral so polarity reversing can be achieved by reversing V_R and ground on the pots.

The second approach, shown in Figure 2, is a simpler method for achieving electrical trim.

$$T_n = 4R_T C_{\text{mux}} \left(\frac{R_T + X_C R_C}{R_T + R_C} - \gamma \right)$$

$$CR = 4R_T C_{\text{mux}} \left(\frac{1}{1 + R_T/R_C} \right)$$

Interfacing the 5044 encoder to the modulator of an RF transistor can be done in several ways depending on the desired output power, frequency stability and oscillator leakage. The simplest method is to use the 5044 output to directly modulate the bias current of a crystal controlled oscillator. Figure 3 shows an example of such a connection.

In a high performance system, separate oscillator, modulator and RF output stages may be required. An example of such a circuit is shown in Figure 4. In some systems, it may be required to provide additional filtering between the encoder output (Pin 11) and the RF modulator to comply with FCC regulations.

In the previous section, a design example was given for a fixed frame encoder (T_F constant). In some applications, it may be desirable to make the frame time variable, allowing the synchronization pulse, which follows the last channel, to remain constant. The variable frame mode simplifies the synchronization pulse detector in the receiver since the pulse does not vary with the control inputs. However, the variable frame time may complicate things.
the design of the pulse stretchers in the servos. The 5044 can be operated as a variable frame encoder by discharging the capacitor \(C_F \) each time the output goes high. After the last output pulse \(C_F \) is allowed to charge fully and the frame generator resets the encoder to channel 1. In this mode, the frame generator operates as a monostable multivibrator.

Figure 5 shows the external connection. The sync pulse width (time between the falling edge of the last output pulse and the rising edge of the first pulse) is given by

\[
T_s = 0.85 \times 6\text{ms} - \frac{0.047\mu F \times 27k\Omega}{0.1\mu F} = 39k
\]

So if a sync pulse of 6ms is desired and \(C_F = 0.1\mu F \), then

\[
R_F = \frac{0.85 \times 6\text{ms} - 0.047\mu F \times 27k\Omega}{0.1\mu F} = 39k
\]

Some applications may require an RF bypass on each of the multiplexer inputs, depending on PC board layout and the wiring between the control pots and the board. If such is the case, a 0.001\(\mu F \) capacitor is sufficient. Pin 12 may also require a bypass capacitor of 0.1\(\mu F \).
DECODER APPLICATIONS

In most applications, the decoder input will be derived from the decoder of a radio receiver and will have the following characteristics:
1. Contain thermal noise at low levels
2. Will vary in level depending on R/F signal strength and may contain flutter

The thermal noise can be filtered with a simple RC circuit. This filter should have a cut-off frequency of about 3kHz which is approximately the bandwidth of the receiver IF amplifier. A lower cut-off frequency would limit the information rate and resolution of the system.

Figure 1 shows the external connections for the decoder input amplifier in which the above-mentioned conditions are handled. Diodes D1 and D2 charge the 1µF coupling capacitor to the peak input voltage minus the fixed voltage at pin 12 and the diode drops. D2 also clamps the input signal reaching A1. The .2µF capacitor forms a filter which allows the amplitude of the input to vary over a wide range and at high rates (as a result of RF flutter in the receiver) without false triggering the decoder. When flutter occurs the baseline of the positive input pulses varies as shown in Figure 2. The .2µF charges up to the average baseline voltage but the 10k resistor does not allow it to be charged by the information pulses. Thus, so long as the pulse peaks exceed the baseline voltage by greater than the drop across diode D2, the system will be unaffected by baseline flutter no matter what its rate is.

Positive feedback has also been incorporated in the connection of Figure 1 to provide 100mV of hysteresis on the threshold. When the input (pin 13) is low, the current generator is off and pin 11 is near ground. However, when pin 13 goes positive, the current generator turns on and approximately 150µA is sourced. This raises pin 11 by 150µA × 4.7kΩ = 0.7V. The threshold is now given by:

\[V_{\text{threshold (on)}} = V_{12} - V_{13} \]

\[= (V_{12} - V_{11}) \left(\frac{1}{1 + R_4/R_3} \right) \]

\[= (3 - 0.7) \left(\frac{1}{1 + 330k/51k} \right) \]

\[= 0.3V \]

So the threshold has been reduced by 100mV or the amplifier will not turn off until the input drops below 0.3V. A low pass filter is also used in the circuit of Figure 1. The 5.6kΩ and .01µF form a 2.8kHz low pass filter to improve the noise rejection characteristics of the detector.

A particular application of the NE5045 may not require all the components shown in Figure 1, however this circuit demonstrates all the features of the decoder which may be utilized.

Figure 3 shows a decoder connected for negative input pulses without hysteresis or flutter rejection. In this case, \(V_{13} \) is set to 3V and \(V_{12} \) is set to 3V + \(V_{\text{threshold}} \). If \(V_{\text{threshold}} = 0.4V \)

\[R_4 = \frac{V_R - V_{12}}{V_{\text{threshold}}/51k} = \frac{4.1 - 3.4}{0.4/51k} \]

\[= 89k\Omega = 91k\Omega. \]

![Figure 1. NE5045 Decoder Input Circuit With Flutter and Noise Filtering](image1)

![Figure 2. Input Signal With Fast Flutter](image2)
Figure 3. NE5045 Decoder With Neg. Pulse Input
APPLICATIONS USING THE NE544 SERVO AMPLIFIER

APPLICATIONS

DESCRIPTION

The NE544 is a new servo amplifier design for digital proportional RC systems which incorporates the latest state-of-the-art in integrated circuit technology. The basic systems concept was developed in close cooperation with a number of leading manufacturers of radio control equipment.

The design philosophy behind the NE544 was to provide the RC servo system designer with maximum flexibility in adapting the amplifier performance characteristic to his particular servo system and at the same time to keep the external components count low. To achieve this goal, all the basic servo amplifier functions, such as motor drive, deadband and minimum output pulse, are integrated into the IC, but can be modified over a wide range by using external transistors or padding resistors respectively. This makes it possible to use the IC for extremely low cost applications as well as for the most sophisticated RC servo systems. Additional features of the circuit are very low standby power drain (typically less than 6mA), an internal voltage regulator for improved power supply rejection and a highly accurate monostable multivibrator. This circuit may be used in 2 different charging modes: linear and exponential. In the linear charging mode, the internally generated charging current is programmable over a wide range with a resistor to ground. Usable current range from below 10µA to above 1mA. In the exponential charging mode, the internal current source is simply bypassed with an external resistor from pin 1 to the regulator output.

The bidirectional power output stage can supply load currents up to 500mA (NE544N package only). Output drive pins for external PNP transistor provide the user with the option of increasing the motor drive by bypassing the internal compound PNP transistors.

The NE544 also provides external pins to adjust deadband and to vary the hysteresis of the Schmitt trigger. This gives the user maximum flexibility in adapting the servo amplifier to a large variety of servo motor and gear train combinations. A dynamic brake integrated into the output stage serves to suppress inductive noise spikes and helps to improve the dynamic performance.

IC PACKAGE

The NE544N has sufficient power dissipation to handle motors with a minimum of 8Ω impedance with the integrated power transistors.

OPERATION

The basic building blocks of the NE544 servo driver are shown in Figure 1.

A positive input signal applied to the input pin (4) sets the input flip-flop and starts the one shot time period. The direction logical compares the length of the input pulse to that of the internal one shot and stores the result of this comparison in a directional flip-flop. The exact difference in pulse width between input and internal one shot pulse, called the error pulse, is also fed to a pulse stretcher, deadband and trigger circuit. These circuits determine 3 important parameters:

1. Deadband—The minimum difference between input pulse and internally generated pulse to turn on the output
2. Minimum output pulse—The smallest output pulse that can be generated from the trigger circuit
3. Pulse stretcher gain—The relationship between error pulse and output pulse

Proper adjustment of these parameters can be achieved with external resistors and capacitors at pins 6, 7 and 8. The trigger circuit activates the gate for a precise length of time to provide drive to the bridge output circuitry in proportion to the length of the error pulse.

TYPICAL APPLICATION AS A LINEAR SERVO AMPLIFIER

Figure 2 shows a typical connection of the NE544 as a high performance servo amplifier for remote control servo applications using the 14-pin dual in-line package. The input pulse may be dc coupled if a reset is used in the receiver decoder. Output drive to the servo motor is applied through pins 9 and 13 with PNP transistors TA and TB optional for high performance applications. The wiper of potentiometer R_P is mechanically coupled to the servo control surface providing positional feedback. The internal one shot in this application is operating in the linear charging code.

LINEAR ONE SHOT TIMING

In contrast to most conventional servo drivers which use exponential one shots, the NE544 uses a linear one shot. This makes it possible to design servo systems with very high positional accuracy and linear pulse width to position transfer functions. The timing of the linear one shot can best be explained with the help of Figure 3.

The timing cycle starts after the input pulse sets the input flip-flop and releases the reset transistor TR. This allows current I_C to charge up capacitor CT in a linear fashion. Current I_R is programmed by resistor RT. The op amp serves as a linear voltage to current converter, with the current through RT and CT matched identically. The inverting input of the op amp is internally referenced to 1.8 volts so that the current I_R is given by this equation.

Equation 1

\[I_R = \frac{V_I}{1.8V \over RT} \]

Figure 1

BLOCK DIAGRAM OF NE544 SERVO AMPLIFIER

Figure 2

Figure 3

8-256
The timing period of the internal one shot is complete when the voltage ramp at pin 1 reaches the threshold set at pin 14. This time is given by this equation.

Equation 2

\[T = \frac{C_t V_{14}}{I_R} \]

If we substitute the typical values given in Figure 2 we obtain this equation.

Equation 3

\[T = \frac{(0.1 \times 10^{-6}F)(1.5V)}{0.1 \times 10^{-3}A} = 1.5 \times 10^{-3} \text{sec} \]

When the internal one shot has timed out, the input flip-flop is reset. The reset transistor \(T_R \) is clamped to ground as soon as the input pulse goes to zero. Figure 4 shows the relationship of the input pulse, the internal one shot pulse, the ramp at pin 1 and the error pulse for a condition where the input pulse is longer than the internal pulse.

In contrast to most conventional designs, the total value of the feedback pot \(R_F \) is no longer important, since it serves only as a voltage divider. A reasonable lower limit is 1.5k \(\Omega \) to keep power consumption low and to prevent loading of the voltage regulator. In the typical application a 5K pot is used.

![Figure 2: Typical Connection of NE544AA for Linear One Shot Timing](image)

![Figure 3: Simplified Circuit Diagram of Linear One Shot](image)
ADJUSTMENT OF SERVO TRAVEL
The amount of angular rotation of the feedback pot R_p (or of the servo control surface) can be changed by simply changing the charging current. Figure 5 shows a plot of the servo travel as a function of input pulse width for 3 different values of current setting resistors R_T.

It should be noted that the center position of the wiper (1.5ms) will also shift when the amount of travel is changed. This shift may be compensated by mechanical wiper adjustment or by the addition of padding resistors as described in the next paragraph.

SERVO TRAVEL AS A FUNCTION OF INPUT PULSE FOR 3 DIFFERENT CHARGING CURRENTS

INCREASING SERVO TRAVEL TO MORE THAN 180°
Servo travel may be increased up to the maximum active area of the feedback pot by using padding resistors R_A and R_B as shown in Figure 6.

Figure 7 shows the values of resistors which are required to obtain a desired amount of servo travel.

EXponential TIMING OPTION
If an exponential timing characteristic is desired, the circuit shown in Figure 8 may be used.

The time constant of the one shot in this case is given by this equation.

$$T_E = R_T C_T \ln \frac{V_3}{V_3 - V_{14}}$$

Substituting the values shown in Figure 8 where $V_3 = 2.5V$ and $V_{14} = 1.5V$ at the center position we obtain this equation.

$$T = \frac{(16k\Omega)(0.1\mu F)}{2.5V - 1.5V} = 1.47ms$$

The center position and servo travel can be changed as described in the previous section for linear operation.

PULSE STRETCHER
The pulse stretcher and associated circuitry shown in Figure 9 determine important servo-parameters such as minimum output pulse, deadband and error pulse to output pulse conversion gain.

Initially transistor Q_S is off and capacitor C_S is charged to the regulator voltage. An error pulse from gate G turns on transistor Q_S and discharges capacitor C_S to ground through the parallel combination of R_DB and R_I. The deadband is determined by the time it takes for the voltage at pin 6 to reach the trigger threshold (V_{14}) as shown in Figure 10.

As soon as the Schmitt trigger threshold is reached, transistor Q_S is turned off and the capacitor is discharged through a constant current source I_S until the error pulse disappears.

After the error pulse disappears, capacitor C_S is charged up through resistor R_S. The output remains turned on until the upper threshold (V_3) of the Schmitt trigger is reached. The minimum output pulse is determined by the hysteresis in the Schmitt trigger. This hysteresis may be varied over a wide range by connecting an external resistor R_{MP} from pin 8 to ground or positive supply.
TYPICAL CONNECTION FOR EXPONENTIAL TIMING CHARACTERISTIC

TYPICAL CONNECTION OF PULSE STRETCHER CIRCUIT

PULSE STRETcher WAVE FORMS
DEADBAND
Referring to Figure 10, the deadband can be calculated using these equations where T_{DB} is deadband in microseconds, C_S is the pulse stretching capacitor, I_T is the total discharge current, and ΔV is approximately .65 volts. The deadband is determined by the time it takes to discharge capacitor C_S from its initial voltage to the Schmitt trigger threshold.

Equations 6
$$T_{DB} = \frac{C_S \Delta V}{I_T} \quad \text{and} \quad I_T = I_S + \frac{2.2V (R_1 + R_{DB})}{R_1 + R_{DB}}$$

The value of the internal deadband resistor R_1 is approximately 150 Ω. I_T can be calculated with this equation.

Equation 7
$$I_T = \frac{3mA + 2.2V (150 R_{DB})}{150 + R_{DB}}$$

For the typical values shown in Figure 2 we obtain this equation.

Equation 8
$$I_T = 3mA + \frac{2.2V (150 R_{DB})}{150 + R_{DB}} = 33mA$$

The deadband can then be calculated using Equations 6 to obtain this equation.

Equation 9
$$T_{DB} = \frac{(0.22 \times \mu F) \times 0.65V}{30mA} \times 4.8\mu s$$

The total deadband then is twice this value, i.e., $T_{DB \text{ Total}} = \pm T_{DB}$.

Figure 11 shows plots of total deadband versus R_{DB} for 3 different values of pulse stretching capacitor C_S. The value of the minimum pulse resistor R_{MP} is held constant at 240.

MINIMUM PULSE
The length of the minimum output pulse can be adjusted by changing the hysteresis of the Schmitt trigger. As can be seen from Figure 10, this will also affect the deadband. To aid in the selection of the right value of minimum pulse and deadband resistor, Table 1 may be consulted. This table gives typical values of deadband and minimum pulse for 5 combinations of R_{DB} and R_{MP} with C_S and R_S held constant at $0.22\mu F$ and $75k \Omega$ respectively.

If a particular application requires different values, C_S and R_S can be changed accordingly. A capacitor with low series resistance should be used for C_S. If C_S is too resistive, the minimum pulse becomes equal to the error pulse causing the servo to buzz at the rest position.

Table 1 VALUES OF DEADBAND AND MINIMUM PULSE FOR $C_S = 0.22\mu F$ AND $R_S = 75k \Omega$

<table>
<thead>
<tr>
<th>R_{MP}</th>
<th>R_{DB}</th>
<th>Deadband (µs)</th>
<th>Minimum Pulse (ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>360</td>
<td>130</td>
<td>±7</td>
<td>5.0</td>
</tr>
<tr>
<td>240</td>
<td>130</td>
<td>±5</td>
<td>2.5</td>
</tr>
<tr>
<td>160</td>
<td>82</td>
<td>±3.5</td>
<td>1.6</td>
</tr>
<tr>
<td>100</td>
<td>51</td>
<td>±2.3</td>
<td>2.0</td>
</tr>
</tbody>
</table>

PULSE STRETCHER GAIN
For given values of R_{DB} and R_{MP}, the gain of the pulse stretcher can be adjusted with capacitor C_S and resistor R_S. The values chosen in the typical application turn the outputs fully on with an error pulse of approximately 200µs.

The charging resistor R_S can also be connected to the positive supply voltage instead of the voltage regulator output. This usually requires somewhat tighter tolerances on R_S and C_S, but allows operation over a wide range of supply voltage since pulse stretcher gain now varies inversely with supply voltage.

FEEDBACK RESISTORS FOR CLOSED LOOP DAMPING
The amount of feedback required for good closed loop damping depends on the motor and gear train used, the desired pulse stretcher gain and the deadband. In many applications, a single feedback resistor, R_F, from pin 9 to pin 1 is sufficient, since the dynamic brake provides some damping. If the mechanical gain is very high, an additional feedback resistor from pin 13 to pin 14 may be required.
A LOW-COST ANALOG/DIGITAL PROPORTIONAL CONTROL SYSTEM FOR PERSONAL COMPUTER AND ROBOTICS APPLICATIONS

Hans Stellrecht, Dan Hariton, Dietmar Beer
Signetics Corporation, Sunnyvale, California
Bob Blasschuld
Linear Design, Inc., Los Altos, California

1. ABSTRACT

This paper describes an integrated circuit chip set* designed for low-cost transmission of analog and digital data. The system provides remote motion control capability and is designed for personal computer or microprocessor control applications. The control system is based on a multichannel serial bus concept and uses pulse position modulation (PPM) for information transfer. The input and output of the system interfaces directly with a personal computer.

2. OVERVIEW OF CONTROL SYSTEM DATA BUSES

With the rapid expansion of microprocessors and personal computers into virtually all areas of modern life, there is an increasing need for methods of communication between computers and remote devices. Communication is usually accomplished by parallel digital data transfer and digital/analog conversion. This method is used in the case of most stationary computer peripheral devices. For movable peripheral equipment, or when communication has to cover larger distances, various forms of serial data concepts are used. The choice of a particular serial data bus system depends on cost/performance tradeoffs and possible requirements for coding and protocol standardization. In a digital system a serial message unit typically consists of a byte of serial digital data plus additional bits for addressing, synchronization, and other management functions.

In consumer applications, where low cost is an important factor, mixed digital and analog encoding methods can offer significant advantages over other serial encoding methods. The digital proportional system described here uses pulse position modulation for serial data transfer. In contrast to the pure digital systems, where one message block (or frame) contains one byte of data, the digital proportional system packs several bytes into one frame. This is possible because the information is encoded in the form of pulse position.

A comparison of various data transfer methods is shown in Table 1. The first three methods are purely digital and are mostly used for commercial serial bus systems and for computer networks. The fourth, a digital proportional method, is a special-purpose serial bus. It offers advantages in consumer applications due to combined analog and digital techniques. The concept also lends itself to either amplitude or frequency modulation for remote control.

Table 1. Comparison of Data Transfer Methods

<table>
<thead>
<tr>
<th>Type</th>
<th>Encoding</th>
<th>Typical Performance</th>
<th>Speed</th>
<th>Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>Digital Bus</td>
<td>Parallel Data</td>
<td>8/16 bit</td>
<td>1 Megae</td>
<td>Computer Peripherals</td>
</tr>
</tbody>
</table>
| Synchronous or Asynchronous Bus | Serial Data | 8 bit | 300-1200 baud | Data Communication Computer Peripherals Robotics
Serial Port (RS-232) Telephone Modems |
| Computer Network | Serial Data | 8/16 bit | 1 Megae | Computers Communication |
| Digital Proportional Bus | Serial PPM | 8 bit | 3500 baud | Controls Home Control Robotics |

* Signetics NE5044 and NE5045 Encoder/Decoder, NE544 Servoamplifier, and NE5018 8-bit D/A Converter.

3. DESCRIPTION OF THE ANALOG/DIGITAL PROPORTIONAL CONTROL SYSTEM

In a typical application, the system is interfaced to a personal computer through one of its peripheral 3-state I/O ports as shown in Figure 1. The 8-bit digital-to-pulse position encoder and the personal computer form the control center. In addition to the 8 data lines, 3 control lines are used to connect the computer to the pulse position encoder. The encoded information is transmitted via a standard radio control (RF) link. The signal is detected by a receiver in the remote control device or robot. The pulse position information is then decoded and processed with standard proportional circuit techniques.

The bus control program occupies 600 bytes of memory. The rest of the computer memory is available to the user for recording and playing back the stored programs. A floppy disk drive is used for permanent storage of information.

PULSE POSITION CODING AND SERVOMOTOR CONTROL

The circuit blocks required to perform the pulse position encoding function are shown in Figure 2. The encoder contains all the active circuits necessary to convert successive 8-bit words of digital information into accurate pulse position modulated signals, for up to 7 channels. Parallel data from the computer I/O bus is latched directly to an 8-bit DAC input. A bidirectional constant current generator alternately charges and discharges the CMUX capacitor.

The resulting voltage waveform is shown in the second trace of Figure 3. Two high-gain comparators compare the multiplex capacitor (CMUX) voltage to the DAC output voltage (VA) and to the range input voltage (Vrange). The counter control logic uses the two comparator output signals to increment the channel count and to reverse the current source polarity. Under computer control, the comparator analog input signal is taken from the DAC output, under manual control, this signal is taken from the multiplex switch analog output. The multiplex switch is controlled by the channel counter, and samples the analog voltages generated by the manual joystick inputs. The encoder output waveforms are shown in Figure 3. The top trace shows the frame pulse, which controls the encoder frame time and can be operated in either variable or fixed frame mode. The lower two traces show the channel pulses and the latch enable pulses, respectively. The latch enable pulse (DE) updates the DAC input data.

Two ICs are used to perform pulse decoding and servocontrol as shown in Figure 4. The serial PPM signal, after RF detection, is decoded into parallel pulses by the decoding IC. Each channel is now a pulse-width modulated signal. This IC contains two monostable multivibrators used for frame synchronization and for increased noise immunity. Each channel pulse is then sent to a servocomputer IC, which demodulates the pulse width information into position, speed, or other control parameters. In this circuit a servoloop is used to compare the input pulse to an internally generated pulse that is proportional to the control parameter. Negative feedback is then used to drive the servomotor output to the desired position.

4. COMPUTER CONTROLLED ROBOTICS APPLICATION

The serial data transmission and proportional control system described in this paper can be used for various applications such as remote motion control, home control, alarm systems, and remote video games. A wide choice of transmission media can be used: hardwire, RF, current, carrier, infrared, fiber-optics, and ultrasonic.

To take full advantage of the availability of multichannel analog data transmission, a robotics application was implemented. The system uses 7 channels. Each channel represents a robot control surface as listed below:

A1—Forward/Backward Motion
A2—Steering (Direction Control)
A3—Heade Movement
A4—Shoulder (Arm) Movement
A5—Elbow Movement
A6—Wrist Rotation
A7—Hand (Claw) Open/Closed
The robot can be exercised either manually or by computer. Individual channels may be recorded and played simultaneously. Reprogramming several channels while maintaining the rest unchanged becomes possible. The robot can be "taught" or its actions can be corrected. The final result may be stored on floppy disk for future playback. In the "Play" mode, the computer sends 8 bits per channel to a PPM encoder. In the "Learn" mode, manual inputs are converted into digital data and processed by the computer. Remote sensing capability can be added to the control system by adding a feedback transmission loop. Sensor feedback data is sent back to the computer and results in a full duplex system. Sensor information can then be processed and used to make decisions for execution by the forward path.

SUMMARY

A 7-channel robotics application was used to demonstrate the versatility of a serial bus concept that uses pulse position modulation. The consumer-oriented system interfaces directly with a personal computer and can be used in many control applications that require good performance at low cost.

ACKNOWLEDGEMENTS

The authors would like to express their appreciation to their colleagues at Signetics. In particular, we thank Jock Ochiltree and Ed Ross for their support and encouragement throughout this project, and our former colleague Gary Kelson for his innovative design of the encoding and decoding concepts.

REFERENCES

SECTION 9 — PACKAGE INFORMATION

Index .. 9-1

Package Outlines for product with prefixes: ADC, AM, CA, DAC, LF, LM, MC, NE, SA, SE, SG, µA, ULN

D SO Plastic Dual-In-Line .. 9-3
E Metal Headers .. 9-5
F Hermetic Cerdip ... 9-7
H Metal Headers .. 9-8
I Hermetic Side Braze .. 9-11
N Plastic Dual-In-Line .. 9-11
INTRODUCTION

The following information applies to all packages unless otherwise specified on individual package outline drawings.

General

1. Dimensions shown are metric units (millimeters), except those in parentheses which are English units (inches).
2. Lead spacing shall be measured within this zone.
 a. Shoulder and lead tip dimensions are to centerline of leads.
3. Tolerances non-cumulative.
4. Thermal resistance values are determined by utilizing the linear temperature dependence of the forward voltage drop across the substrate diode in a digital device to monitor the junction temperature rise during known power application across VCC and ground. The values are based upon 120 mils square die for plastic packages and a 90 mils square die in the smallest available cavity for hermetic packages. All units were solder mounted to P.C. boards, with standard stand-off, for measurement.

PLASTIC ONLY

5. Lead material: Alloy 42 (Nickel/Iron Alloy) Olin 194 (Copper Alloy) or equivalents, solder dipped.
6. Body material: Plastic (Epoxy)
7. Round hole in top corner denotes lead No. 1.
8. Body dimensions do not include molding flash.
9. SO Packages-microminiature packages.
 a. Lead material: Alloy-42.

HERMETIC ONLY

10. Lead material
 a. ASTM alloy F-15 (KOVAR) or equivalent—gold plated, tin plated, or solder dipped.
 b. ASTM alloy F-30 (Alloy 42) or equivalent—tin plated, gold plated or solder dipped.
 c. ASTM alloy F-15 (KOVAR) or equivalent—gold plated.
11. Body Material
 a. Eyelet, ASTM alloy F-15 or equivalent—gold or tin plated, glass body.
 b. Ceramic with glass seal at leads.
 c. BEO ceramic with glass seal at leads.
 d. Ceramic with ASTM alloy F-30 or equivalent.
12. Lid Material
 a. Nickel or tin plated nickel, weld seal.
 b. Ceramic, glass seal.
 c. ASTM alloy F-15 or equivalent, gold plated, alloy seal.
 d. BEO Ceramic with glass seal.
13. Signetics symbol, angle cut, or lead tab denotes Lead No. 1.
14. Recommended minimum offset before lead bend.
15. Maximum glass climb .010 inches.
16. Maximum glass climb or lid skew is .010 inches.
17. Typical four places.
18. Dimension also applies to seating plane.
PACKAGE OUTLINES

FOR PREFIXES: ADC, AM, CA, DAC, LF, LM, MC, NE, SA, SE, SG, µA, ULN

PLASTIC PACKAGES

<table>
<thead>
<tr>
<th>PACKAGE CODE</th>
<th>(\theta_J/\theta_E(\degree\text{C/W}))</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard Dual-in-Line Packages</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8-Pin N</td>
<td>99/50</td>
<td></td>
</tr>
<tr>
<td>14-Pin N</td>
<td>86/48</td>
<td>TO-116/MO-001</td>
</tr>
<tr>
<td>16-Pin N</td>
<td>83/42</td>
<td>MO-001</td>
</tr>
<tr>
<td>18-Pin N</td>
<td>83/29</td>
<td></td>
</tr>
<tr>
<td>20-Pin N</td>
<td>61/24</td>
<td></td>
</tr>
<tr>
<td>22-Pin N</td>
<td>51/23</td>
<td></td>
</tr>
<tr>
<td>24-Pin N</td>
<td>52/23</td>
<td>MO-015</td>
</tr>
<tr>
<td>28-Pin N</td>
<td>52/23</td>
<td>MO-015</td>
</tr>
<tr>
<td>Metal Headers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-Pin E</td>
<td>100/20</td>
<td>TO-46 Header</td>
</tr>
<tr>
<td>4-Pin E</td>
<td>150/25</td>
<td>TO-72 Header</td>
</tr>
<tr>
<td>8-Pin H</td>
<td>150/25</td>
<td>TO-5 Header</td>
</tr>
<tr>
<td>10-Pin H</td>
<td>150/25</td>
<td>TO 5/TO-100 Header, Short Can</td>
</tr>
<tr>
<td>10-Pin H</td>
<td>150/25</td>
<td>TO-5/TO-100 Header, Tall Can</td>
</tr>
<tr>
<td>Ceramilp Family</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8-Pin FE</td>
<td>110/30</td>
<td>Dual-in-Line Ceramic</td>
</tr>
<tr>
<td>14-Pin F</td>
<td>110/30</td>
<td>Dual-in-Line Ceramic</td>
</tr>
<tr>
<td>16-Pin F</td>
<td>100/30</td>
<td>Dual-in-Line Ceramic</td>
</tr>
<tr>
<td>18-Pin F</td>
<td>93/27</td>
<td>Dual-in-Line Ceramic</td>
</tr>
<tr>
<td>20-Pin F</td>
<td>90/26</td>
<td>Dual-in-Line Ceramic</td>
</tr>
<tr>
<td>22-Pin F</td>
<td>75/27</td>
<td>Dual-in-Line Ceramic</td>
</tr>
<tr>
<td>24-Pin F</td>
<td>60/26</td>
<td>Dual-in-Line Ceramic</td>
</tr>
<tr>
<td>28-Pin F</td>
<td>57/27</td>
<td>Dual-in-Line Ceramic</td>
</tr>
<tr>
<td>Laminated Ceramic, Side Brazed Lead</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16-Pin I</td>
<td>90/25</td>
<td>Dip Laminate</td>
</tr>
</tbody>
</table>

SO Package Thermal Data

<table>
<thead>
<tr>
<th>Package Type</th>
<th>Package Mounting Technique*</th>
<th>Max. Allowable Power Diss. (mW) at 25°C</th>
<th>Max. Allowable Power Diss. (mW) at 70°C</th>
<th>Thermal Resistance (\theta_J/\theta_E(\degree\text{C/Watt})) Average</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>SO-14 PCB</td>
<td>658</td>
<td>421</td>
<td></td>
<td>190 225</td>
<td></td>
</tr>
<tr>
<td>Ceramic</td>
<td>962</td>
<td>615</td>
<td></td>
<td>130 165</td>
<td></td>
</tr>
<tr>
<td>Ceramic w/H.S.</td>
<td>1471</td>
<td>941</td>
<td></td>
<td>85 110</td>
<td></td>
</tr>
<tr>
<td>SO-16 PCB</td>
<td>862</td>
<td>551</td>
<td></td>
<td>145 170</td>
<td></td>
</tr>
<tr>
<td>Ceramic</td>
<td>1250</td>
<td>800</td>
<td></td>
<td>100 125</td>
<td></td>
</tr>
<tr>
<td>Ceramic w/H.S.</td>
<td>1923</td>
<td>1231</td>
<td></td>
<td>65 85</td>
<td></td>
</tr>
<tr>
<td>SO-16L PCB</td>
<td>1250</td>
<td>800</td>
<td></td>
<td>100 140</td>
<td></td>
</tr>
<tr>
<td>Ceramic</td>
<td>1743</td>
<td>1143</td>
<td></td>
<td>70 100</td>
<td></td>
</tr>
<tr>
<td>Ceramic w/H.S.</td>
<td>2500</td>
<td>1600</td>
<td></td>
<td>50 65</td>
<td></td>
</tr>
<tr>
<td>SO-20 PCB</td>
<td>1471</td>
<td>941</td>
<td></td>
<td>85 115</td>
<td></td>
</tr>
<tr>
<td>Ceramic</td>
<td>2273</td>
<td>1454</td>
<td></td>
<td>55 85</td>
<td></td>
</tr>
<tr>
<td>Ceramic w/H.S.</td>
<td>3572</td>
<td>2286</td>
<td></td>
<td>35 55</td>
<td></td>
</tr>
<tr>
<td>SO-24 PCB</td>
<td>1563</td>
<td>1000</td>
<td></td>
<td>80 110</td>
<td></td>
</tr>
<tr>
<td>Ceramic</td>
<td>2000</td>
<td>1600</td>
<td></td>
<td>50 80</td>
<td></td>
</tr>
<tr>
<td>Ceramic w/H.S.</td>
<td>4167</td>
<td>2667</td>
<td></td>
<td>30 50</td>
<td></td>
</tr>
</tbody>
</table>

Air gap is 0.006 inches unless thermal compound is used.
PACKAGE OUTLINES

FOR PREFIXES: ADC, AM, CA, DAC, LF, LM, MC, NE, SA, SE, SG, µA, ULN

Note:
Dimensions shown are metric units (millimeters), except those in parentheses which are English units (inches).
Note:
Dimensions shown are metric units (millimeters), except those in parentheses which are English units (inches).
Note:
Dimensions shown are metric units (millimeters), except those in parentheses which are English units (inches).
Note:
Dimensions shown are metric units (millimeters), except those in parentheses which are English units (inches).
PACKAGE OUTLINES

FOR PREFIXES: ADC, AM, CA, DAC, LF, LM, MC, NE, SA, SE, SG, µA, ULN

Note:
Dimensions shown are metric units (millimeters), except those in parentheses which are English units (inches).

9-9
F PACKAGE — HERMETIC
(24-PIN)

F PACKAGE — HERMETIC
(28-PIN)

Note:
Dimensions shown are metric units (millimeters), except those in parentheses which are English units (inches).
Note:
Dimensions shown are metric units (millimeters), except those in parentheses which are English units (inches).
Note:
Dimensions shown are metric units (millimeters), except those in parentheses which are English units (inches).
PACKAGE OUTLINES

FOR PREFIXES: ADC, AM, CA, DAC, LF, LM, MC, NE, SA, SE, SG, µA, ULN

N PACKAGE — PLASTIC
(16-PIN)

Note:
Dimensions shown are metric units (millimeters), except those in parentheses which are English units (inches).
Note:
Dimensions shown are metric units (millimeters), except those in parentheses which are English units (inches).
Note:
Dimensions shown are metric units (millimeters), except those in parentheses which are English units (inches).
FORTHCOMING NEW PRODUCTS
BY PRODUCT GROUP

Amplifiers
LT1012
LT1037
NE5230

Low noise op amp with internal compensation: 0.5µV p-p noise (0.1Hz-10Hz)
Precision op amp: high speed 11V/µs; low noise: 0.13µV p-p
Low voltage (1.8V) op amp: 8 pin 741 pin out with internal compensation
40 watt amplifier with 0.01% THD

Communications
NE568

150MHz phase locked loop

Interface/Data Conversion
DAC800
NE5030
NE5170
NE5180
NE5181
NE5521

12-Bit, 2.5µs multiplying D/A with internal reference; V or I output
10-Bit, 1.5µs µP compatible A/D with three-state outputs, internal reference, 5V operation
Octal line drivers RS232C/RS423A
Octal line receivers RS232C/RS423A/RS422
Octal line receivers RS232C/RS423A/RS422 without filter
Improved NE5520 LVDT for – 55°C to + 125°C operation

Power Conversion and Control
NE5562
SG1526B

20 pin, 5560-type SMPS for driving power FET's
SMPS controller with full features and dual FET drive (Sprague ULN8126 second source)
<table>
<thead>
<tr>
<th>Device</th>
<th>Section/Page</th>
<th>Device</th>
<th>Section/Page</th>
<th>Device</th>
<th>Section/Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAC 08</td>
<td>4-40</td>
<td>NE 5080</td>
<td>5-54</td>
<td>µA 741</td>
<td>6-73</td>
</tr>
<tr>
<td>DAC 08A</td>
<td>4-40</td>
<td>NE 5081</td>
<td>5-58</td>
<td>SA/µA 741C</td>
<td>6-73</td>
</tr>
<tr>
<td>DAC 08C</td>
<td>4-40</td>
<td>NE 5090</td>
<td>4-139</td>
<td>µA 747</td>
<td>6-78</td>
</tr>
<tr>
<td>DAC 08E</td>
<td>4-40</td>
<td>SE/NE 5118</td>
<td>4-81</td>
<td>SA/µA 747C</td>
<td>6-78</td>
</tr>
<tr>
<td>DAC 08H</td>
<td>4-40</td>
<td>SE/NE 5119</td>
<td>4-85</td>
<td>µA 758</td>
<td>5-42</td>
</tr>
<tr>
<td>ADC 0801/2/3/4/5/1</td>
<td>4-5</td>
<td>SE/NE 521</td>
<td>4-116</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LM 111</td>
<td>4-99</td>
<td>SE/NE 522</td>
<td>4-120</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LM 119</td>
<td>4-101</td>
<td>SE/NE 527</td>
<td>4-124</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LM 124</td>
<td>6-5</td>
<td>SE/NE 529</td>
<td>4-128</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LM 139/A</td>
<td>4-106</td>
<td>SE/NE 530</td>
<td>6-26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MC 1408-7</td>
<td>4-50</td>
<td>SE/NE 531</td>
<td>6-31</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MC 1408-8</td>
<td>4-50</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MC 1458</td>
<td>6-13</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MC 1488</td>
<td>4-134</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MC 1489/A</td>
<td>4-137</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MC 1496</td>
<td>5-51</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MC 1508-8</td>
<td>4-50</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SG 1528A</td>
<td>7-43</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MC 1558</td>
<td>6-13</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LM 158</td>
<td>6-9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CM 1588</td>
<td>5-51</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LM 1870</td>
<td>5-15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LM 193/A</td>
<td>4-111</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LF 198</td>
<td>4-179</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ULN 2003</td>
<td>4-170</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ULN 2004</td>
<td>4-170</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LM 211</td>
<td>4-99</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LM 219</td>
<td>4-101</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LM 224</td>
<td>6-5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LM 239/A</td>
<td>4-106</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SG 2526A</td>
<td>7-43</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LM 258</td>
<td>6-9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LM 2901</td>
<td>4-106</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LM 2903</td>
<td>4-111</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LM 293/A</td>
<td>4-111</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LF 298</td>
<td>2-179</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CA 3089</td>
<td>5-46</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LM 311</td>
<td>4-99</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LM 319</td>
<td>4-101</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LM 324</td>
<td>6-5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MC 3302</td>
<td>4-106</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MC 3303</td>
<td>6-18</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LM 339/A</td>
<td>4-106</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MC 3403</td>
<td>6-18</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MC 3410</td>
<td>4-56</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MC 3410-C</td>
<td>4-56</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MC 3503</td>
<td>6-18</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MC 3510</td>
<td>4-56</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SG 3524</td>
<td>7-47</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SG 3526A</td>
<td>7-43</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LM 358</td>
<td>6-9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LM 393/A</td>
<td>4-111</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LF 398</td>
<td>4-179</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SA/SE/NE 4558</td>
<td>6-22</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SE/NE 5018</td>
<td>4-63</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SE/NE 5019</td>
<td>4-63</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NE 5020</td>
<td>4-73</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NE 5034</td>
<td>4-11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NE 5036</td>
<td>4-17</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NE 5037</td>
<td>4-23</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NE 5044</td>
<td>7-3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NE 5048</td>
<td>7-9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Electronic components and materials for professional, industrial and consumer uses from the world-wide Philips Group of Companies

Australia: PHILIPS INDUSTRIES HOLDINGS LTD., Elcoma Division, 67 Mars Road, LANE COVE, 2066, N.S.W., Tel. 427 0888.

Austria: ÖSTERREICHISCHE PHILIPS BAUELEMENTE INDUSTRIE G.m.b.H., Triester Str. 64, A-1101 WIEN, Tel. 629111.

Belgium: N.V. PHILIPS & MBB ASSOCIATED, 9 rue du Pavillon, B-1030 BRUXELLES, Tel. (02) 2427400.

Brazil: IBRAFE, Caixa Postal 7383, Av. Brigadeiro Faria Lima, 1735 SAO PAULO, SP, Tel. (011) 211-2600.

Canada: PHILIPS ELECTRONICS LTD., Electron Devices Div., 601 Miss Ave., SCARBOROUGH, Ontario, M1B 1M8, Tel. 292-5161.

Chile: PHILIPS CHILE S.A., Av. Santa Maria 0760, SANTIAGO, Tel. 39-4001.

Colombia: IND. PHILIPS DE COLOMBIA S.A., c/o IPRELENSO LTD., Calle 17, No. 9-21, Of. 202, BOGOTA, D.E., Tel. 57-2347493.

Denmark: MINIWATT A/S, Strandoddevej 2, P.O. Box 1919, DK 2300 COPENHAGEN S, Tel. (01) 5411133.

Finland: OY PHILIPS AB, Elcoma Division, Kaivokatu 8, SF-00100 HELSINKI 10, Tel. 17271.

France: R.T.C. LA RADIOTECHNIQUE-COMPELEC, 130 Avenue Ledru Rollin, F-75540 PARIS 11, Tel. 338 80-00.

Germany (Fed. Republic): VALVO, UB Bauelemente der Philips G.m.b.H., Valvo Haus, Burchardstrasse 19, D-2 HAMBURG 1, Tel. (040) 3296-0.

Greece: PHILIPS S.A. HELLENIQUE, Elcoma Division, 52, Av. Syngrou, ATHENS, Tel. 9215111.

Hong Kong: PHILIPS HONG KONG LTD., Elcoma Div., 15/F Philips Ind. Bldg., 24-28 Kung Yip St., KWAI CHUNG, Tel. (245121).

Ireland: PHILIPS ELECTRICAL (IRELAND) LTD., Newstead, Clonskeagh, DUBLIN 14, Tel. 693355.

India: PEICO ELECTRONICS & ELECTRICALS LTD., Elcoma Dept., Band Box Building,

Indonesia: P.T. PHILIPS-RALIN ELECTRONICS, Elcoma Div., Panim Bank Building, 2nd Fl., JI. Jend. Sudirman, P.O. Box 223, JAKARTA, Tel. 7915111.

Italy: PHILIPS S.p.A., Sezione Elcoma, Piazza IV Novembre 3, 1-20124 MILANO, Tel. 2-6752-1.

Japan: PHILIPS HONG KONG LTD., Elcoma Div., 15/F Philips Ind. Bldg., 24-28 Kung Yip St., KOWloon, Tel. (0)-245121.

Mexico: ELECTRONICA, S.A de C.V., Carr. Mexico-Toluca km. 62.5, TOLUCA, Eda. de Mexico 50140, Tel. Toluca 91 (721) 613-00.

Norway: NORSK PHILIPS, Electronica Dept., Sandstuveien 70, OSLO 6, Tel. 6820200.

Philippines: PHILIPS INDUSTRIAL DEV. INC., 2246 Pasong Tamo, P.O. Box 911, Makati Comm. Centre, MAKATI-RIZAL 3116, Tel. 86-89-51 to 59.

Singapore: PHILIPS ELECTRONICS (SINGAPORE) PTE LTD., Elcoma Div., Lorong 1, Toa Payoh, SINGAPORE 1231, Tel. 2538811.

Spain: MINIWATT S.A., Balmes 22, BARCELONA 7, Tel. 301632.

Sweden: PHILIPS ELECTRICAL IND. LTD., Elcoma Division, 110 Mt. Eden Road, C.P. 06 Box 1041, AUCKLAND, Tel. 605-914.

Turkey: IND. VENEZOLANAS PHILIPS S.A., Elcoma Dept., A Ppal de las Ruices, Edi! . Centro Colgate, CARACAS, Tel. 36011

For all other countries apply to: Philips Electronic Components and Materials Division, International Business Relations, Building BAE, P.O. Box 218, 5600 MD EINDHOVEN, The Netherlands, Tel. +31 40723304, Telex 35000 phtcnl

©1985 Philips Export B.V

This information is furnished for guidance, and with no guarantee as to its accuracy or completeness; its publication conveys no licence under any patent or other right, nor does the publisher assume liability for any consequence of its use; specifications and availability of goods mentioned in it are subject to change without notice; it is not to be reproduced in any way, in whole or in part, without the written consent of the publisher.

Printed in The Netherlands

9398 127 90011