Integrated circuits

Part 2

May 1980

Bipolar ICs for video equipment
Our Data Handbook System is a comprehensive source of information on electronic components, subassemblies and materials; it is made up of four series of handbooks each comprising several parts.

ELECTRON TUBES

SEMICONDUCTORS

INTEGRATED CIRCUITS

COMPONENTS AND MATERIALS

The several parts contain all pertinent data available at the time of publication, and each is revised and reissued periodically.

Where ratings or specifications differ from those published in the preceding edition they are pointed out by arrows. Where application information is given it is advisory and does not form part of the product specification.

If you need confirmation that the published data about any of our products are the latest available, please contact our representative. He is at your service and will be glad to answer your inquiries.

This information is furnished for guidance, and with no guarantee as to its accuracy or completeness; its publication conveys no licence under any patent or other right, nor does the publisher assume liability for any consequence of its use; specifications and availability of goods mentioned in it are subject to change without notice; it is not to be reproduced in any way, in whole or in part without the written consent of the publisher.

May 1980
ELECTRON TUBES (BLUE SERIES)

Starting in 1980, new part numbers and corresponding codes are being introduced. The former code of the preceding issue is given in brackets under the new code.

<table>
<thead>
<tr>
<th>Part</th>
<th>Date</th>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>February 1980</td>
<td>T1 02-80 (ET1a 12-75)</td>
<td>Tubes for r.f. heating</td>
</tr>
<tr>
<td>2</td>
<td>April 1980</td>
<td>T2 04-80 (ET1b 08-77)</td>
<td>Transmitting tubes for communications</td>
</tr>
<tr>
<td>2a</td>
<td>November 1977</td>
<td>ET2a 11-77</td>
<td>Microwave tubes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Communication magnetrons, magnetrons for microwave heating, klystrons, travelling-wave tubes, diodes, triodes T-R switches</td>
</tr>
<tr>
<td>2b</td>
<td>May 1978</td>
<td>ET2b 05-78</td>
<td>Microwave semiconductors and components</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Gunn, Impatt and noise diodes, mixer and detector diodes, backward diodes, varactor diodes, Gunn oscillators, sub-assemblies, circulators and isolators</td>
</tr>
<tr>
<td>3</td>
<td>January 1975</td>
<td>ET3 01-75</td>
<td>Special Quality tubes, miscellaneous devices</td>
</tr>
<tr>
<td>5a</td>
<td>October 1979</td>
<td>ET5a 10-79</td>
<td>Cathode-ray tubes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Instrument tubes, monitor and display tubes, C.R. tubes for special applications</td>
</tr>
<tr>
<td>5b</td>
<td>December 1978</td>
<td>ET5b 12-78</td>
<td>Camera tubes and accessories, image intensifiers</td>
</tr>
<tr>
<td>6</td>
<td>January 1977</td>
<td>ET6 01-77</td>
<td>Products for nuclear technology</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Channel electron multipliers, neutron tubes, Geiger-Müller tubes</td>
</tr>
<tr>
<td>7a</td>
<td>March 1977</td>
<td>ET7a 03-77</td>
<td>Gas-filled tubes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Thyratrons, industrial rectifying tubes, ignitrons, high-voltage rectifying tubes</td>
</tr>
<tr>
<td>7b</td>
<td>May 1979</td>
<td>ET7b 05-79</td>
<td>Gas-filled tubes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Segment indicator tubes, indicator tubes, switching diodes, dry reed contact units</td>
</tr>
<tr>
<td>8</td>
<td>July 1979</td>
<td>ET8 07-79</td>
<td>Picture tubes and components</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Colour TV picture tubes, black and white TV picture tubes, monitor tubes, components for colour television, components for black and white television.</td>
</tr>
<tr>
<td>9</td>
<td>March 1978</td>
<td>ET9 03-78</td>
<td>Photomultiplier tubes; phototubes</td>
</tr>
</tbody>
</table>

May 1980
Starting in 1980, new part numbers and corresponding codes are being introduced. The former code of the preceding issue is given in brackets under the new code.

Part 1
- **March 1980**
 - **S1 03-80** Diodes
 - **(SC1b 05-77)** Small-signal germanium diodes, small-signal silicon diodes, special diodes, voltage regulator diodes (<1.5 W), voltage reference diodes, tuner diodes, rectifier diodes

Part 2
- **May 1980**
 - **S2 05-80** Power diodes, thyristors, triacs
 - **(SC1a 08-78)** Rectifier diodes, voltage regulator diodes (>1.5 W), rectifier stacks, thyristors, triacs

Part 2
- **June 1979**
 - **SC2 06-79** Low-frequency power transistors

Part 3
- **January 1978**
 - **SC3 01-78** High-frequency, switching and field-effect transistors*

Part 3
- **April 1980**
 - **S3 04-80** Small-signal transistors
 - **(SC2 11-77, partly)**
 - **(SC3 01-78, partly)**

Part 4a
- **December 1978**
 - **SC4a 12-78** Transmitting transistors and modules

Part 4b
- **September 1978**
 - **SC4b 09-78** Devices for optoelectronics
 - Photosensitive diodes and transistors, light-emitting diodes, photocouplers, infrared sensitive devices, photoconductive devices

Part 4c
- **July 1978**
 - **SC4c 07-78** Discrete semiconductors for hybrid thick and thin-film circuits

* Field-effect transistors and wideband transistors will be transferred to S5 and SC3c respectively. The old book SC3 01-78 should be kept until then.
INTEGRATED CIRCUITS (PURPLE SERIES)

Starting in 1980, new part numbers and corresponding codes are being introduced. The former code of the preceding issue is given in brackets under the new code. Books with the purple cover will replace existing red covered editions as each is revised.

<table>
<thead>
<tr>
<th>Part</th>
<th>Date</th>
<th>Code</th>
<th>Description</th>
<th>Code (previous issue)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Part 1</td>
<td>May 1980</td>
<td>IC1 04-80</td>
<td>Bipolar ICs for radio and audio equipment</td>
<td>SC5b 03-77</td>
</tr>
<tr>
<td>Part 2</td>
<td>May 1980</td>
<td>IC2 04-80</td>
<td>Bipolar ICs for video equipment</td>
<td>SC5b 03-77</td>
</tr>
<tr>
<td>Part 5a</td>
<td>November 1976</td>
<td>SC5a 11-76</td>
<td>Professional analogue integrated circuits</td>
<td></td>
</tr>
<tr>
<td>Part 6</td>
<td>October 1977</td>
<td>SC6 10-77</td>
<td>Digital integrated circuits</td>
<td>LOCMOS HE4000B family</td>
</tr>
<tr>
<td>Part 6b</td>
<td>August 1979</td>
<td>SC6b 08-79</td>
<td>ICs for digital systems in radio and television receivers</td>
<td></td>
</tr>
</tbody>
</table>

Signetics integrated circuits

- Bipolar and MOS memories 1979
- Bipolar and MOS microprocessors 1978
- Analogue circuits 1979
- Logic - TTL 1978
COMPONENTS AND MATERIALS (GREEN SERIES)

Starting in 1980, new part numbers and corresponding codes are being introduced. The former code of the preceding issue is given in brackets under the new code.

Part 1 July 1979 CM1 07-79 Assemblies for industrial use
 PLC modules, high noise immunity logic FZ/30 series,
 NORbits 60-series, 61-series, 90-series, input devices,
 hybrid integrated circuits, peripheral devices

Part 3a September 1978 CM3a 09-78 FM tuners, television tuners, surface acoustic wave filters

Part 3b October 1978 CM3b 10-78 Loudspeakers

Part 4a November 1978 CM4a 11-78 Soft Ferrites
 Ferrites for radio, audio and television, beads and chokes,
 Ferroxcube potcores and square cores, Ferroxcube trans-
 former cores

Part 4b February 1979 CM4b 02-79 Piezoelectric ceramics, permanent magnet materials

Part 6 April 1977 CM6 04-77 Electric motors and accessories
 Small synchronous motors, stepper motors, miniature
direct current motors

Part 7 September 1971 CM7 09-71 Circuit blocks
 Circuit blocks 100 kHz-series, circuit blocks 1-series, circuit
 blocks 10-series, circuit blocks for ferrite core memory drive

Part 7a January 1979 CM7a 01-79 Assemblies
 Circuit blocks 40-series and CSA70 (L), counter modules
 50-series, input/output devices

Part 8 June 1979 CM8 06-79 Variable mains transformers

Part 9 August 1979 CM9 08-79 Piezoelectric quartz devices
 Quartz crystal units, temperature compensated crystal
 oscillators

Part 10 April 1978 CM10 04-78 Connectors

Part 11 December 1979 CM11 12-79 Non-linear resistors
 Voltage dependent resistors (VDR), light dependent resistors
 (LDR), negative temperature coefficient thermistors
 (NTC), positive temperature coefficient thermistors (PTC)

Part 12 November 1979 CM12 11-79 Variable resistors and test switches

Part 13 December 1979 CM13 12-79 Fixed resistors

Part 14 April 1980 C14 04-80 Electrolytic and solid capacitors
 (CM2b 02-78)

Part 15 May 1980 C15 05-80 Film capacitors, ceramic capacitors, variable capacitors
 (CM2b 02-78)
INDEX

SELECTION GUIDE BY FUNCTION

VISION I.F. CIRCUITS
Economical circuits
TCA270S; SQ i.f. amplifier and demodulator; n-p-n tuners
TDA2540; Q i.f. amplifier and demodulator; n-p-n tuners
TDA2541; Q i.f. amplifier and demodulator; n-p-n tuners
TDA2542; Q i.f. amplifier and demodulator; for E and L standards; p-n-p tuners
TDA2544 i.f. amplifier and demodulator; MOS tuners

High-performance circuits
TDA3540; Q i.f. amplifier and demodulator; n-p-n tuners
TDA3541; Q i.f. amplifier and demodulator; n-p-n tuners

COLOUR DECODING CIRCUITS
TBA530; Q RGB matrix preamplifier
TBA540; Q reference combination
TBA560C; CQ luminance and chrominance control combination
TCA640 chrominance amplifier for SECAM or PAL/SECAM decoders
TCA650 chrominance demodulator for SECAM or PAL/SECAM decoders
TCA660B contrast, saturation and brightness control circuit for colour
difference and luminance signals
TDA2510; Q chrominance combination
TDA2520; Q colour demodulator combination
TDA2522; Q colour demodulator combination
TDA2523; Q colour demodulator combination
TDA2530; Q RGB matrix preamplifier
TDA2532; Q RGB matrix preamplifier
TDA2560; Q luminance and chrominance control combination
TDA3600 video control of combination
TDA3501 video control combination
TDA3510 PAL decoder
TDA3520 SECAM decoder
TDA3560 PAL decoder
TDA3570 NTSC decoder

SYNC PROCESSORS; HORIZONTAL; VERTICAL
TBA720A; AQ horizontal oscillator circuit
TBA890; Q signal processing circuit
TBA920; Q; S horizontal combination
TDA2571A; AQ horizontal synchronization and vertical 625 divider system
TDA2573A horizontal oscillator combination with vertical 525 divider system
TDA2575A; AQ horizontal synchronization and vertical 525 divider system
TDA2576 horizontal oscillator combination with vertical divider
TDA2576A horizontal oscillator combination with vertical 625 divider system
TDA2593 horizontal combination

March 1980
INDEX

SELECTION GUIDE BY FUNCTION (continued)

VERTICAL DEFLECTION CIRCUITS
TDA2652 vertical deflection circuit (20 AX; 30 AX systems)
TDA2653 vertical deflection circuit (large screen; 30 AX systems)
TDA2654 vertical deflection circuit (monochrome, 110°; tiny-vision colour, 90°)
TDA3650 vertical deflection circuit (large screen; 30 AX systems)

SOUND CIRCUITS
TBA750C; CQ limiter/amplifier
TCA420A hi-fi FM/IF amplifier
TDA1512 12 to 20 W hi-fi audio power amplifier
TDA2610; A 4 to 7 W audio power amplifier
TDA2611A 5 W audio power amplifier
TDA2612 10 W hi-fi audio power amplifier
TDA2790 television sound combination (volume, treble, bass)
TDA2791 television sound combination (volume, treble, bass)

VIDEO RECORDER CIRCUITS
TDA2700 562.5 kHz oscillator
TDA2710 chrominance signal/mixer
TDA2720 colour sub-carrier oscillator
TDA2730 FM limiter/demodulator

MISCELLANEOUS
TAA550 voltage stabilizer for electronic tuning
TCA530 voltage stabilizer for electronic tuning
TCA750 multi-stabilizer for electronic tuning
TDA0820 double balanced modulator/demodulator
TDA2581 control circuit for SMPS
TDA2582 control circuit for PPS
TDA2640; Q SMPS drive circuit
NUMERICAL INDEX

TAA550 voltage stabilizer for electronic tuning
TBA530; Q RGB matrix preamplifier
TBA540; Q reference combination
TBA560C; CQ luminance and chrominance control combination
TBA720A; AQ horizontal oscillator circuit
TBA750C; CQ limiter/amplifier
TBA890; Q signal processing circuit
TBA920; Q horizontal combination
TBA920S horizontal combination
TCA270S; SQ i.f. amplifier and demodulator; n-p-n tuners
TCA420A hi-fi FM/IF amplifier
TCA530 voltage stabilizer for electronic tuning
TCA640 chrominance amplifier for SECAM or PAL/SECAM decoders
TCA650 chrominance demodulator for SECAM or PAL/SECAM decoders
TCA660B contrast, saturation and brightness control circuit for colour difference and luminance signals
TCA750 multi-stabilizer for electronic tuning
TDA0820 double balanced modulator/demodulator
TDA1512 12 to 20 W hi-fi audio power amplifier
TDA2510; Q chrominance combination
TDA2520; Q colour demodulator combination
TDA2522; Q colour demodulator combination
TDA2523; Q colour demodulator combination
TDA2530; Q RGB matrix preamplifier
TDA2532; Q RGB matrix preamplifier
TDA2540; Q i.f. amplifier and demodulator; n-p-n tuners
TDA2541; Q i.f. amplifier and demodulator; p-n-p tuners
TDA2542; Q i.f. amplifier and demodulator; for E and L standards; p-n-p tuners
TDA2544 i.f. amplifier and demodulator; MOS tuners
TDA2560; Q luminance and chrominance control combination
TDA2571A; AQ horizontal synchronization and vertical 625 divider system
TDA2573A horizontal oscillator combination with vertical 525 divider system
TDA2575A; AQ horizontal synchronization and vertical 525 divider system
TDA2576 horizontal oscillator combination with vertical divider
TDA2576A horizontal oscillator combination with vertical 625 divider system
TDA2581; Q control circuit for SMPS
NUMERICAL INDEX (continued)

- TDA2582; Q: control circuit for PPS
- TDA2593: horizontal combination
- TDA2610; A: 4 to 7 W audio power amplifier
- TDA2611A: 5 W audio power amplifier
- TDA2612: 10 W hi-fi audio power amplifier
- TDA2640; Q: SMPS drive circuit
- TDA2652: vertical deflection circuit (20 AX; 30 AX system)
- TDA2653: vertical deflection circuit (large screen; 30 AX systems)
- TDA2654: vertical deflection circuit (monochrome, 110°; tiny-vision colour, 90°)
- TDA2700: 562.5 kHz oscillator (video recorders)
- TDA2710: chrominance signal/mixer (video recorders)
- TDA2720: colour sub-carrier oscillator (video recorders)
- TDA2730: FM limiter/demodulator (video recorders)
- TDA2790: television sound combination (volume, treble, bass)
- TDA2791: television sound combination (volume, treble, bass)
- TDA3500: video control combination
- TDA3501: video control combination
- TDA3510: PAL decoder
- TDA3520: SECAM decoder
- TDA3540; Q: i.f. amplifier and demodulator; n-p-n tuners
- TDA3541; Q: i.f. amplifier and demodulator; p-n-p tuners
- TDA3560: PAL decoder
- TDA3570: NTSC decoder
- TDA3650: vertical deflection system (large screen; 30 AX system)

MAINTENANCE TYPE LIST

The types listed below are not included in this handbook. Detailed information will be supplied on request.

- TAA630S
- TAA630T
- TBA510; Q
- TBA520; Q
- TBA550; Q
- TBA750A; AQ (successor type: TBA750C; CQ)
- TBA900; Q
- TBA990; Q
- TCA290A
- TCA540; Q
- TCA800
- TCA820 (successor type: TDA0820)
- TDA2500; Q
- TDA2571; Q (successor type: TDA2571A; AQ)
- TDA2590; Q
- TDA2591 (successor type: TDA2593)
- TDA2600; Q
- TDA2620; Q
- TDA2630; Q
- TDA2631; Q
- TDA2670
- TDA2680
- TDA2690
- TDA2670
- TDA2680
- TDA2690
GENERAL

Preface to data of ICs
Type designation
Rating systems
Letter symbols
1. General

The published data comprise particulars needed by designers of equipment in which integrated circuits are to be incorporated, and criteria on which to base acceptance testing of such circuits. For ease of reference, the data on each circuit are grouped according to the several headings discussed below. The limiting values quoted under the headings Characteristics and Package Outline may be taken as references for acceptance testing. Values cited as typical are given for information only.

For an explanation of the type designation code, see the section Type Designation. For an explanation of the letter symbols used in designating terminals and performance of integrated circuits, and the electrical and logic quantities pertaining to them, see the section Letter Symbols.

2. Quick Reference Data

The main properties of the integrated circuit summarized for quick reference

3. Ratings

Ratings are limits beyond which the serviceability of the integrated circuit may be impaired. The ratings given here are in accordance with the Absolute Maximum System as defined in publication no. 134 of the International Electrical Commission; for further details see item 2 of the section Rating Systems.

If a circuit is used under the conditions set forth in the sections Characteristics and Additional System Design Data, its operation within the ratings is ensured.

4. Circuit diagram

Circuit diagrams and logic symbols are given to illustrate the circuit function. The diagrams show only essential elements, parasitic elements due to the method of manufacture normally being omitted. The manufacturer reserves the right to make minor changes to improve manufacturability.

5. System Design Data and Additional System Design Data

System Design Data normally derived from the Characteristics and based on worst-case assumptions as to temperature, loading and supply voltage, are quoted for the guidance of equipment designers. Supplementary information derived from measurements on large production samples may be given under Additional System Design Data.
6. **Application information**

Under this heading, practical circuit connections and the resulting performance are described. Care has been taken to ensure the accuracy and completeness of the information given, but no liability therefor is assumed, nor is licence under any patent implied.

7. **Characteristics**

Characteristics are measurable properties of the integrated circuit described. Under a specific set of test conditions compliance with limit values given under this heading establishes the specified performance of the circuit; this can be used as a criterion for acceptance testing. Values cited as typical are given for information only and are not subject to any form of guarantee.

8. **Logic symbols (digital circuits)**

Graphical logic symbols accord with MIL standard 806B. Supplementary drawings correlate logic functions with pin locations as a help to laying out printed circuit boards.

9. **Outline drawing and pin 1 identification**

Dimensional drawings indicate the pin numbering of circuit packages. **Dual in-line** packages have a notch at one end to identify pin 1. Take care not to mistake adventitious moulding marks for the pin 1 identification. **Flat packs** identify pin 1 by a small projection on the pin itself and/or by a dot on the body of the package. **Metal can** encapsulations identify pin 1 by a tab on the rim of the can.
PRO ELECTRON TYPE DESIGNATION CODE FOR INTEGRATED CIRCUITS

This type nomenclature applies to semiconductor monolithic, semiconductor multi-chip, thin-film, thick-film and hybrid integrated circuits.

A basic number consists of:

THREE LETTERS FOLLOWED BY A SERIAL NUMBER

FIRST AND SECOND LETTER
1. DIGITAL FAMILY CIRCUITS
 The FIRST TWO LETTERS identify the FAMILY (see note 1).

2. SOLITARY CIRCUITS
 The FIRST LETTER divides the solitary circuits into:
 S: Solitary digital circuits
 T: Analogue circuits
 U: Mixed analogue/digital circuits

 The SECOND LETTER is a serial letter without any further significance except 'H' which stands for hybrid circuits.

3. MICROPROCESSORS
 The FIRST TWO LETTERS identify microprocessors and correlated circuits as follows:
 MA: Microcomputer
 MB: Slice processor (see note 2)
 MD: Correlated memories
 ME: Other correlated circuits (interface, clock, peripheral controller, etc.)

THIRD LETTER
It indicates the operating ambient temperature range.
The letters A to G give information about the temperature:
 A: temperature range not specified
 B: 0 to + 70 °C
 C: −55 to + 125 °C
 D: −25 to + 70 °C
 E: −25 to + 85 °C
 F: −40 to + 85 °C
 G: −55 to + 85 °C

If a circuit is published for another temperature range, the letter indicating a narrower temperature range may be used or the letter 'A'.

Example: the range 0 to + 75 °C can be indicated by 'B' or 'A'.

January 1980 1
TYPE DESIGNATION

SERIAL NUMBER
This may be either a 4-digit number assigned by Pro Electron, or the serial number (which may be a combination of figures and letters) of an existing company type designation of the manufacturer.

To the basic type number may be added:

A VERSION LETTER
Indicates a minor variant of the basic type or the package. Except for ‘Z’, which means customized wiring, the letter has no fixed meaning. The following letters are recommended for package variants:

C : for cylindrical
D : for ceramic DIL
F : for flat pack
P : for plastic DIL
Q : for QIL
U : for uncased chip

Alternatively a TWO LETTER SUFFIX may be used instead of a single package version letter, if the manufacturer (sponsor) wishes to give more information.

FIRST LETTER: General shape
C : Cylindrical
D : Dual-in-line (DIL)
E : Power DIL (with external heatsink)
F : Flat (leads on 2 sides)
G : Flat (leads on 4 sides)
K : Diamond (TO-3 family)
M : Multiple-in-line (except Dual-, Triple-, Quadruple-in-line)
Q : Quadruple-in-line (QIL)
R : Power QIL (with external heatsink)
S : Single-in-line
T : Triple-in-line

SECOND LETTER: Material
C : Metal-ceramic
G : Glass-ceramic (cerdip)
M : Metal
P : Plastic

A hyphen precedes the suffix to avoid confusion with a version letter.

Notes
1. A logic family is an assembly of digital circuits designed to be interconnected and defined by its basic electrical characteristics (such as: supply voltage, power consumption, propagation delay, noise immunity).
2. By ‘slice processor’ is meant: a functional slice of microprocessor.
RATING SYSTEMS

The rating systems described are those recommended by the International Electrotechnical Commission (IEC) in its Publication 134.

DEFINITIONS OF TERMS USED

Electronic device. An electronic tube or valve, transistor or other semiconductor device.

Note
This definition excludes inductors, capacitors, resistors and similar components.

Characteristic. A characteristic is an inherent and measurable property of a device. Such a property may be electrical, mechanical, thermal, hydraulic, electro-magnetic, or nuclear, and can be expressed as a value for stated or recognized conditions. A characteristic may also be a set of related values, usually shown in graphical form.

Bogey electronic device. An electronic device whose characteristics have the published nominal values for the type. A bogey electronic device for any particular application can be obtained by considering only those characteristics which are directly related to the application.

Rating. A value which establishes either a limiting capability or a limiting condition for an electronic device. It is determined for specified values of environment and operation, and may be stated in any suitable terms.

Note
Limiting conditions may be either maxima or minima.

Rating system. The set of principles upon which ratings are established and which determine their interpretation.

Note
The rating system indicates the division of responsibility between the device manufacturer and the circuit designer, with the object of ensuring that the working conditions do not exceed the ratings.

ABSOLUTE MAXIMUM RATING SYSTEM

Absolute maximum ratings are limiting values of operating and environmental conditions applicable to any electronic device of a specified type as defined by its published data, which should not be exceeded under the worst probable conditions.

These values are chosen by the device manufacturer to provide acceptable serviceability of the device, taking no responsibility for equipment variations, environmental variations, and the effects of changes in operating conditions due to variations in the characteristics of the device under consideration and of all other electronic devices in the equipment.

The equipment manufacturer should design so that, initially and throughout life, no absolute maximum value for the intended service is exceeded with any device under the worst probable operating conditions with respect to supply voltage variation, equipment component variation, equipment control adjustment, load variations, signal variation, environmental conditions, and variations in characteristics of the device under consideration and of all other electronic devices in the equipment.
DESIGN MAXIMUM RATING SYSTEM

Design maximum ratings are limiting values of operating and environmental conditions applicable to a bogey electronic device of a specified type as defined by its published data, and should not be exceeded under the worst probable conditions.

These values are chosen by the device manufacturer to provide acceptable serviceability of the device, taking responsibility for the effects of changes in operating conditions due to variations in the characteristics of the electronic device under consideration.

The equipment manufacturer should design so that, initially and throughout life, no design maximum value for the intended service is exceeded with a bogey device under the worst probable operating conditions with respect to supply voltage variation, equipment component variation, variation in characteristics of all other devices in the equipment, equipment control adjustment, load variation, signal variation and environmental conditions.

DESIGN CENTRE RATING SYSTEM

Design centre ratings are limiting values of operating and environmental conditions applicable to a bogey electronic device of a specified type as defined by its published data, and should not be exceeded under normal conditions.

These values are chosen by the device manufacturer to provide acceptable serviceability of the device in average applications, taking responsibility for normal changes in operating conditions due to rated supply voltage variation, equipment component variation, equipment control adjustment, load variation, signal variation, environmental conditions, and variations in the characteristics of all electronic devices.

The equipment manufacturer should design so that, initially, no design centre value for the intended service is exceeded with a bogey electronic device in equipment operating at the stated normal supply voltage.

October 1977.
LETTER SYMBOLS
FOR LINEAR INTEGRATED CIRCUITS

General
The voltages and currents are normally related to the terminals to which they are applied or at which they appear. Each terminal is indicated by a number. In appropriate cases voltages, currents etc. pertinent to one or more of the circuit elements (transistors, diodes) are given in which case symbols are based on the recommendations as published in I.E.C. Publication 148.

Quantity symbols
1. Instantaneous values of current, voltage and power, which vary with time are represented by the appropriate lower case letter.
 Examples: \(i, v, p\)
2. Maximum (peak), average, d.c. and root-mean-square values are represented by the appropriate upper case letter.
 Examples: \(I, V, P\)

Polarity of current and voltage
A current is defined to be positive when its conventional direction of flow is into the device.
A voltage is measured with respect to the reference terminal, which is indicated by the subscripts. Its polarity is defined to be positive when the potential is higher than that of the reference terminal.

Subscripts
For currents the number behind the quantity symbol indicates the terminal carrying the current.
Examples: \(i_2, i_{14}\)
For voltages normally two number subscripts are used, connected by a hyphen. The first number indicates the terminal at which the voltage is measured and the second subscript the reference terminal.
Where there is no possibility of confusion the second subscript may be omitted.
Examples: \(v_{2-12}, v_{14-2}, v_{5}, v_{8}\)
LETTER SYMBOLS

To distinguish between maximum (peak), average, d.c. and root-mean-square values the following subscripts are added:

For maximum (peak) values: \(M \) or \(m \)
For average values: \(\text{AV} \) or \(\text{av} \)
For root-mean-square values: \(\text{(RMS)} \) or \(\text{(rms)} \)
For d.c. values: no additional subscripts

The upper case subscripts indicate total values.
The lower case subscripts indicate values of varying components:

Examples: \(I_2, I_{2AV}, I_2(\text{rms}), I_2(\text{RMS}) \)

If in appropriate cases quantity symbols are pertinent to single elements of a circuit (transistors or diodes), the normal subscripts for semiconductor devices can be used.

Examples: \(V_{CBO}, V_{be}, V_{CES}, I_{C} \)
\(V_{DSS}, V_{GS}, I_{D} \)

List of subscripts:

\(E, e \) = Emitter terminal
\(B, b \) = Base terminal for bipolar transistors,
\(\text{Substrate for MOS devices} \)
\(C, c \) = Collector terminal
\(D, d \) = Drain terminal
\(G, g \) = Gate terminal
\(S, s \) = Source terminal for MOS devices
\(\text{Substrate for bipolar transistor circuits} \)
\(\text{(BR)} \) = Break-down
\(M, m \) = Maximum (peak) value
\(\text{AV, av} \) = Average value
\(\text{(RMS), (rms)} \) = R.M.S. value

Electrical Parameter Symbols

1. The values of four pole matrix parameters or other resistances, impedances, admittances, etc., inherent in the device, are represented by the lower case symbol with appropriate subscript.

Examples: \(h_i, z_f, y_o, k_r \)

Subscripts for Parameter Symbols

1. The static values of parameters are indicated by upper case subscripts.

Examples: \(h_{FE}, h_i \)

2. The small signal values of parameters are indicated by lower case subscripts.

Examples: \(h_i, z_o \)
3. The first subscript, in matrix notation identifies the element of the four pole matrix.

- **i** (for 11) = input
- **o** (for 22) = output
- **f** (for 21) = forward transfer
- **r** (for 12) = reverse transfer

Examples:

\[V_1 = h_i I_1 + h_r V_2 \]
\[I_2 = h_f I_1 + h_o V_2 \]

The voltage and current symbols in matrix notation are indicated by a single digit subscript.
The subscript 1 = input; the subscript 2 = output.
The voltages and currents in these equations may be complex quantities.

4. A second subscript is used only for separate circuit elements (e.g. transistors) to identify the circuit configuration:

- **e** = common emitter
- **b** = common base
- **c** = common collector

5. If it is necessary to distinguish between real and imaginary parts of the four pole parameters, the following notation may be used:

- \(R_e (h_i) \) etc. ... for the real part
- \(I_m (h_i) \) etc. ... for the imaginary part
16-LEAD DUAL IN-LINE; PLASTIC (SOT-38)

Dimensions in mm

SOLDERING

1. By hand
Apply the soldering iron below the seating plane (or not more than 2 mm above it). If its temperature is below 300 °C it must not be in contact for more than 10 seconds; if between 300 °C and 400 °C, for not more than 5 seconds.

2. By dip or wave
The maximum permissible temperature of the solder is 260 °C; this temperature must not be in contact with the joint for more than 5 seconds. The total contact time of successive solder waves must not exceed 5 seconds.

The device may be mounted up to the seating plane, but the temperature of the plastic body must not exceed the specified storage maximum. If the printed-circuit board has been pre-heated, forced cooling may be necessary immediately after soldering to keep the temperature within the permissible limit.

3. Repairing soldered joints
The same precautions and limits apply as in (1) above.
PACKAGE OUTLINES

16-LEAD QUADRUPLE IN-LINE; PLASTIC (SOT-58)

- Dimensions in mm

SOLDERING

1. By hand
 Apply the soldering iron below the seating plane (or not more than 2 mm above it).
 If its temperature is below 300 °C it must not be in contact for more than 10 seconds; if between 300 °C and 400 °C, for not more than 5 seconds.

2. By dip or wave
 The maximum permissible temperature of the solder is 260 °C; this temperature must not be in contact with the joint for more than 5 seconds. The total contact time of successive solder waves must not exceed 5 seconds.
 The device may be mounted up to the seating plane, but the temperature of the plastic body must not exceed the specified storage maximum. If the printed-circuit board has been pre-heated, forced cooling may be necessary immediately after soldering to keep the temperature within the permissible limit.

3. Repairing soldered joints
 The same precautions and limits apply as in (1) above.
16-LEAD DUAL IN-LINE; PLASTIC POWER (SOT-69B, D)

Dimensions in mm

SOLDERING

1. By hand
 Apply the soldering iron below the seating plane (or not more than 2 mm above it).
 If its temperature is below 300 °C it must not be in contact for more than 10 seconds; if between 300 °C and 400 °C, for not more than 5 seconds.

2. By dip or wave
 The maximum permissible temperature of the solder is 260 °C; this temperature must not be in contact with the joint for more than 5 seconds. The total contact time of successive solder waves must not exceed 5 seconds.
 The device may be mounted up to the seating plane, but the temperature of the plastic body must not exceed the specified storage maximum. If the printed-circuit board has been pre-heated, forced cooling may be necessary immediately after soldering to keep the temperature within the permissible limit.

3. Repairing soldered joints
 The same precautions and limits apply as in (1) above.
PACKAGE OUTLINES

16-LEAD DUAL IN-LINE; PLASTIC POWER (SOT-69C)

Dimensions in mm

SOLDERING

1. By hand
 Apply the soldering iron below the seating plane (or not more than 2 mm above it).
 If its temperature is below 300 °C it must not be in contact for more than 10 seconds; if between
 300 °C and 400 °C, for not more than 5 seconds.

2. By dip or wave
 The maximum permissible temperature of the solder is 260 °C; this temperature must not be in
 contact with the joint for more than 5 seconds. The total contact time of successive solder waves
 must not exceed 5 seconds.
 The device may be mounted up to the seating plane, but the temperature of the plastic body must
 not exceed the specified storage maximum. If the printed-circuit board has been pre-heated, forced
 cooling may be necessary immediately after soldering to keep the temperature within the permis-
 sible limit.

3. Repairing soldered joints
 The same precautions and limits apply as in (1) above.
PACKAGE OUTLINES

24-LEAD DUAL IN-LINE; PLASTIC (SOT-101A)

Dimensions in mm

SOLDERING
See SOT-69C, for example.

January 1980
Dimensions in mm

- Positional accuracy.
- Maximum Material Condition.

1. Centre-lines of all leads are within ±0.127 mm of the nominal position shown; in the worst case, the spacing between any two leads may deviate from nominal by ±0.254 mm.

2. Lead spacing tolerances apply from seating plane to the line indicated.
28-LEAD DUAL IN-LINE; PLASTIC (SOT-117)

Dimensions in mm

Positional accuracy.

Maximum Material Condition.

(1) Centre-lines of all leads are within ±0,127 mm of the nominal position shown; in the worst case, the spacing between any two leads may deviate from nominal by ±0,254 mm.

(2) Lead spacing tolerances apply from seating plane to the line indicated.

(3) Index may be horizontal as shown, or vertical.

SOLDERING

See SOT-69C, for example.
Dimensions in mm

- Positional accuracy.
- Maximum Material Condition.

(1) Centre-lines of all leads are within ±0.127 mm of the nominal position shown; in the worst case, the spacing between any two leads may deviate from nominal by ±0.254 mm.
13-LEAD DUAL IN-LINE; PLASTIC POWER (SOT-141)

Dimensions in mm

+ Positional accuracy.

Maximum Material Condition.

(1) Centre-lines of all leads are within ±0.127 mm of the nominal position shown; in the worst case, the spacing between any two leads may deviate from nominal by ±0.254 mm.

(2) Lead spacing tolerances apply from seating plane to the line indicated.
INTRODUCTION TO BIPOLAR ICs FOR VIDEO EQUIPMENT

Bipolar ICs find extensive application in video equipment: black-and-white and colour television, video tape recorders, video long play systems, etc.

The diagram opposite shows our range of bipolar ICs for colour television. The complete range of video ICs is given in this data handbook.
The TAA550 is an integrated monolithic voltage stabilizer, especially designed to provide the supply voltage for variable capacitance diodes in television tuners independent of supply voltage and temperature variations.

<table>
<thead>
<tr>
<th>QUICK REFERENCE DATA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply current</td>
</tr>
<tr>
<td>Stabilized voltage</td>
</tr>
<tr>
<td>Differential internal resistance</td>
</tr>
</tbody>
</table>

PACKAGE OUTLINE

TO-18; 2 pins

Dimensions in mm

pin 1 connected to the case
RECOMMENDED CIRCUIT

\[V_B >> V_{12} \]
\[I_1 \text{ typ. } 5 \text{ mA} \]
\[R \geq 22 \Omega \]
\[C_1 = 300 \text{ to } 4700 \text{ pF} \]

C2: to be connected if decoupling for low frequent noise is necessary
In practice values up to 10 \(\mu \text{F} \) are used.

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)
Maximum allowable supply current versus temperature

Temperatures
Storage temperature \(T_{\text{stg}} \) -55 to +150 \(^\circ C \)
Operating ambient temperature \(T_{\text{amb}} \) -20 to +150 \(^\circ C \)

CHARACTERISTICS
Recommended supply current
\[I_1 \text{ typ. } 5 \text{ mA} \]
Stabilized voltage
\[V_{12} \text{ typ. } 30 \text{ to } 35 \text{ V} \]
Differential internal resistance at \(f = 1 \text{ kHz} \)
\[r_{12} \text{ typ. } 10 \text{ } \Omega \]
\[\Delta V_{12} \text{ typ. } -0.13 \text{ mV/}^\circ C \]
\[\Delta T_{\text{amb}} -3.1 \text{ to } +1.55 \text{ mV/}^\circ C \]

April 1973
RGB MATRIX PREAMPLIFIER

The TBA530 is an integrated circuit for colour television receivers incorporating a matrix preamplifier for RGB cathode or grid drive of the picture tube without clamping circuits. The chip lay-out has been designed to ensure tight thermal coupling between all the transistors in each channel to minimise and equalise thermal drifts between channels. Also, each channel follows an identical lay-out to ensure equal frequency behaviour of the three channels.

<table>
<thead>
<tr>
<th>QUICK REFERENCE DATA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltage V<sub>8-6</sub> nom. 12 V</td>
</tr>
<tr>
<td>Ambient temperature Tamb 25 °C</td>
</tr>
<tr>
<td>Gain of luminance and colour-difference channels G typ. 100</td>
</tr>
<tr>
<td>Total current consumption I<sub>tot</sub> typ. 30 mA</td>
</tr>
</tbody>
</table>

PACKAGE OUTLINES

TBA530 : 16-lead DIL; plastic (SOT-38).
TBA530Q: 16-lead QIL; plastic (SOT-58).
RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Voltage

| Supply voltage | V_{8-6} | max. 13.2 V |

Currents

| Supply currents | $I_1 ; I_{11} ; I_{14}$ | max. 10 mA |
| $I_{10} ; I_{13} ; I_{16}$ | max. 50 mA |

Power dissipation

| Total power dissipation | P_{tot} | max. 400 mW |

Temperatures

| Storage temperature | T_{stg} | -55 to +125 °C |
| Operating ambient temperature | T_{amb} | -20 to +60 °C |

CHARACTERISTICS

measured in circuit on page 5

Measuring conditions: $V_{8-6} = 12$ V; $T_{amb} = 25$ °C

black level: $V_{R-Y} = V_{G-Y} = V_{B-Y} = 7.5$ V

$V_Y = 1.5$ V

Colour difference input

peak-to-peak values

V_{2-6} (p-p)	typ. 1.4 V
V_{3-6} (p-p)	typ. 0.82 V
V_{4-6} (p-p)	typ. 1.78 V

Luminance input signal (peak-to-peak value)

| V_{5-16} (p-p) | typ. 1 V |

Gain of colour channels

(B-Y;G-Y;R-Y) at $f = 0.5$ MHz

G_{2-6}	typ. 100
G_{3-6}	
G_{4-6}	

Ratio of gain of luminance amplifier to colour amplifiers

| typ. 1 |

D.C. output voltage

V_R	
V_G	
V_B	typ. 165 V

1) At increased voltages due to external failures (e.g. collector-basis breakdown in the output transistors) a maximum current of 50 mA is permitted between pins 16 and 8, 13 and 8, 10 and 8. The maximum allowable dissipation in this case is 500 mW.

2) G is defined as the voltage ratio between the input signals at the pins 2, 3, 4 and the output signals at the collectors of the output transistors.
CHARACTERISTICS (continued)

Input resistance of colour difference amplifiers at \(f = 1 \text{ kHz} \)
\[
R_{2-6} \quad \text{typ.} \quad 60 \ \text{k}\Omega \\
R_{3-6} \\
R_{4-6}
\]

Input capacitance of colour difference amplifiers at \(f = 1 \text{ MHz} \)
\[
C_{2-6} \quad \text{typ.} \quad 3 \ \text{pF} \\
C_{3-6} \\
C_{4-6}
\]

Input resistance of luminance amplifier at \(f = 1 \text{ kHz} \)
\(R_{5-6} \quad \text{typ.} \quad 20 \ \text{k}\Omega \)

Input capacitance of luminance amplifier at \(f = 1 \text{ MHz} \)
\(C_{5-6} \quad \text{typ.} \quad 10 \ \text{pF} \)

Bandwidth of all channels (3 dB)
\(B \quad \text{typ.} \quad 6 \ \text{MHz} \)

Total current drain
\(I_{\text{tot}} \quad \text{typ.} \quad 30 \ \text{mA} \)

PINNING see also APPLICATION INFORMATION circuit diagram on page 5.

1. Output load resistor (red signal)
2. R-Y input signal
3. G-Y input signal
4. B-Y input signal
5. Luminance signal input
6. Earth (negative supply)
7. Current feed point
8. 12 V positive supply
9. Blue channel feedback
10. Blue signal output
11. Output load resistor (blue signal)
12. Green channel feedback
13. Green signal output
14. Output load resistor (green signal)
15. Red channel feedback
16. Red signal output
APPLICATION INFORMATION (continued)

The function is quoted against the corresponding pin numbering (see also page 5)

1. **Output load resistor, red signal** (pin 11: blue signal, pin 14: green signal)
 Resistors (47 kΩ, 1 W) connected to +200 V provide the high value loads for the internal amplifying stages. The nominal operating potential on these pins is defined by an internal zener type junction and the d.c. feedback and is approximately +8 V. The maximum current which can be allowed at each of these pins is 10 mA.

2. **R-Y input signal**
 This signal is fed via a low-pass filter from the TBA520 demodulator i.c. (pin 7) having a d.c. level of +7.5 V and an amplitude of 1.40 V peak to peak. The input resistance for this pin is typically 60 kΩ with an input capacitance of less than 3 pF (similarly for pins 3 and 4).

3. **G-Y input signal**
 The d.c. black level of this signal is +7.5 V and its amplitude is 0.82 V peak to peak (see pin 2).

4. **B-Y input signal**
 The d.c. black level of this signal is +7.5 V and its amplitude is 1.78 V peak to peak (see pin 2).

5. **Luminance signal input**
 The d.c. level on this pin for picture black is +1.5 V. The required signal amplitude is 1 V black-to-white with negative-going sync (or blanking) for cathode drive as shown. The input resistance at this pin is 20 kΩ approximately with a capacitance of typ. 10 pF.

6. **Negative supply (earth)**

7. **Current feed point**
 A current of approximately 2.5 mA is required at this pin, fed via a 3.9 kΩ resistor from +12 V, to bias the internal differential amplifiers. A decoupling capacitor of 4.7 nF is necessary.

8. **Positive 12 V supply**
 Maximum supply voltage permitted, 13.2 V. Current consumption approximately 30 mA.

9. **Blue channel feedback** (green channel, pin 12: red channel, pin 15)
 The d.c. working points and gains of both the output stages and the i.c.amplifier stages are stabilised by the feedback circuits. The black level potentials at the collectors of the output stages (tube cut-off) are adjusted by setting correctly the d.c. level of the colour difference signals produced by the TBA520 demodulator i.c. The gains of the R-G-B output stages are adjusted to give the correct white points setting on the picture tube by adjusting the potentiometers in the feedback paths (VR1, VR2). (See notes on setting up decoder).
APPLICATION INFORMATION (continued)

10. **Blue signal output** (green and red signal outputs on 13 and 16)
 These pins are internally connected with pins 11, 14 and 1 respectively via zener type junctions to give a d.c. level shift appropriate for driving the output transistor bases directly. To by-pass the zener junctions at h.f. three 10 nF capacitors are required.

11. **Output load resistor**, blue channel (pin 1).

12. **Green channel feedback** (see pin 9).

13. **Green signal output** (see pin 10).

14. **Output load resistor**, green channel (see pin 1).

15. **Red channel feedback** (see pin 9).

16. **Red signal output** (see pin 10).

BRIEF PERFORMANCE DETAILS AND COMMENTS

1. Spread of the ratio of voltage gains for colour difference and luminance signal inputs 0.9 to 1.1.

2. Very careful attention to earth paths should be given, avoiding common impedances between the input (decoder) side and the output stages. Also, to enable matched performance to be achieved, a symmetrical board and component layout should be adopted for the three output stages. To compensate for the effect upon h.f. response of inevitable differences, e.g., the absence of a potentiometer in one of the stages, the compensating capacitors C_1, C_2 and C_3 may be appropriately selected for any given board layout.

3. The signal black level at the collectors of the R-G-B output stages depends upon the +12 V supply, the d.c. level of the colour difference signals from the TBA520 demodulator i.c. and the black level potential of the luminance signal applied to the TBA530 matrix i.c. The d.c. levels of the signals produced and handled by the i.c.'s are designed to have approximately proportional tracking with the 12 V supply potential,

$$i.e., \frac{\Delta V_{(d.c. \ level, \ signal)}}{\Delta V_{12V}} \approx \frac{V_{nom(d.c. \ level, \ signal)}}{12}$$

To ensure that changes in picture black level due to variations on the 12 V supply to the i.c.'s occur in a predictable way, all the i.c.'s should be operated from a common supply line. This is specially important for the TBA520 and TBA530. Furthermore, to limit the changes in picture black level during receiver operation, the 12 V supply should have a stability of not worse than ±3% due to operational variations, and preferably be tracked with the screen-grid supply of the picture tube.
REFERENCE COMBINATION

The TBA540 is an integrated reference oscillator circuit for colour television receivers incorporating an automatic phase and amplitude controlled oscillator employing a quartz crystal, together with a half-line frequency synchronous demodulator circuit. The latter compares the phases and amplitude of the swinging burst ripple and the PAL flip-flop waveform, and generates appropriate a.c.c., colour killer and identification signals. The use of synchronous demodulation for these functions permits a high standard of noise immunity.

<table>
<thead>
<tr>
<th>QUICK REFERENCE DATA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltage</td>
</tr>
<tr>
<td>Total current drain</td>
</tr>
<tr>
<td>R-Y reference signal output peak-to-peak value</td>
</tr>
<tr>
<td>Colour killer output: colour on colour off</td>
</tr>
<tr>
<td>A.C.C. output voltage range at correct phase of PAL switch</td>
</tr>
<tr>
<td>at incorrect phase of PAL switch</td>
</tr>
</tbody>
</table>

PACKAGE OUTLINES

TBA540: 16-lead DIL; plastic (SOT-38).
TBA540Q: 16-lead QIL; plastic (SOT-58).
RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)

Voltage
Supply voltage

Power dissipation
Total power dissipation at Tamb = 50 °C

Temperatures
Storage temperature
Operating ambient temperature

CHARACTERISTICS at V3-16 = 12 V; Tamb = 25 °C; V5-16 M = 0.7 V
(burst signal input); V8-16(p-p) = 2.5 V (P.A.L. square wave input) Measured in circuit shown on page 4.

Output signals
R-Y reference signal output
peak-to-peak value

Colour killer output: colour on
 colour off

A.C.C. output signal range
at correct phase of P.A.L. switch
at incorrect phase of P.A.L. switch

Oscillator section (amplifier)
Input resistance
Input capacitance
Voltage gain

Reactance control section
Voltage gain with pins 13 and 14 interconnected
Rate of change of gain G_{15-2} with phase difference
between burst and reference signal

Supply current consumption

April 1973
PINNING

1. Oscillator feedback output
2. Reactance control stage feedback
3. Supply voltage (12 V)
4. Reference waveform output
5. Burst waveform input
6. Reference waveform input
7. Colour killer output
8. P.A.L. flip-flop square wave input

APPLICATION INFORMATION

- Reference outputs (R-Y) (B-Y) (-R-Y)
- Colour killer output (TBA520)
- A.C.C. output
- A.C.C. level setting (see also pin 12)
- A.C.C. gain setting
- A.C.C. level setting (see also pin 10)
- D.C. control points for
- Oscillator phase control loop
- Oscillator feedback input
- Earth (negative supply)
APPLICATION INFORMATION (continued)

The function is quoted against the corresponding pin number

1. Oscillator feedback output
 The crystal receives its energy from this pin. The input impedance is approximately 2 kΩ in parallel with 5 pF.

2. Reactance control stage feedback
 This pin is fed internally with a sinewave derived from the reference input (pin 6) and controlled in amplitude by the internal reactance control circuit. The phase of the feedback from pin 2 to the crystal via C1 is such that the value of C1 is effectively increased. Pin 2 is held internally at a very low impedance therefore the tuning of the crystal is controlled automatically by the amplitude of the feedback waveform and its influence on the effective value of C1.

3. Positive 12 V supply
 The maximum voltage must not exceed 13.2 V.

4. Reference waveform output
 This pin is driven internally by the regenerated subcarrier waveform in R-Y phase. An output amplitude of nominally 1.5 V peak-to-peak is produced at low impedance. No d.c. load to earth is required. A d.c. connection between pins 4 and 6 is, however, necessary via the bifilar coupling inductor. The function of this inductor is to produce, on pin 6, a signal of equal amplitude and opposite phase (-(R-Y)) to that on pin 4. A centre tap on the inductor, connected to earth via a d.c. blocking capacitor, is therefore necessary.

5. Burst waveform input
 A burst waveform amplitude of 1 V peak-to-peak is required to be a.c.-coupled to this pin. The amplitude of the burst will normally be controlled by the adjustment and operation of the a.c.c. circuit. The input impedance at this pin is approximately 1 kΩ and a threshold level of 0.7 V must be exceeded before the burst signal becomes effective. A d.c. bias of 400 mV is internally derived for pin 5. The absolute level of the tip of the burst at pin 5 will normally reach 1.25 V (1.5 V peak-to-peak burst amplitude). Under abnormal conditions the burst amplitude should not be allowed to exceed 3 V peak-to-peak and a limiting condition will be reached in the i.c. which inhibits the performance of the phase lock loop.
6. Reference waveform input
This pin requires a reference waveform in the -(R-Y) phase, derived from pin 4 via a bifilar transformer (see pin 4), to drive the internal balanced reactance control stage. A d.c. connection between pins 4 and 6 must be made via the transformer.

7. Colour killer output
This pin is driven from the collector of an internal switching transistor and requires an external load resistor (typical 10 kΩ) connected to +12 V. The unkilled and killed voltages on this pin are then +12 V and < 250 mV respectively. (The voltage on pin 9 at which switching of the colour killer output on pin 7 occurs is nominally +2.5 V)

8. P.A.L. flip-flop square wave input
A 2.5 V peak-to-peak square wave derived from the P.A.L. flip-flop (in the TBA520 demodulator i.c.) is required at this pin, a.c.-coupled via a capacitor. The input impedance is about 3.3 kΩ.

9. A.C.C. output
An emitter follower provides a low impedance output potential which is negative-going with a rising burst input amplitude. With zero input signal the d.c. potential produced at pin 9 is set to be +4 V (RV1) The appearance of a burst signal on pin 5 will cause the potential on pin 9 to go in a negative direction in the event that the P.A.L. flip-flop is identified to be in the correct phase. The range of potential over which full a.c.c. control is exercised at pin 9 is determined by the control characteristics of the a.c.c. amplifier i.e. for the TBA560 from 1 V to 0.2 V. The potential at pin 9 will fall to a value within this range as the burst input signal is stabilised at 1.5 V peak-to-peak. The latter condition is achieved by correct adjustment of RV2. If, however, the P.A.L. flip-flop phase is wrong the potential on pin 9 will move positively. The potential divider R5, R6 will then operate a P.A.L. switch cut-off function in the TBA520 demodulator i.c. The switching of the colour killer output at pin 7 is designed to occur as the potential on pin 9 moves past +2.5 V.

10. A.C.C. level setting
The network connected between pins 10 and 12 balances the a.c.c. circuit and RV1 is adjusted to give +4 V on pin 9 with no burst input signal to pin 5. C5 provides filtering.

11. A.C.C. gain control
RV2 is adjusted to give the correct amplitude of burst signal on pin 5 (1.5 V peak-to-peak) under a.c.c. control;

12. See pin 10.
APPLICATION INFORMATION (continued)

14. **D.C. control points in reference control loop**

 Pins 13 and 14 are connected to opposite sides of a differential amplifier circuit and are brought out for the purposes d.c. balancing of the reactance stage and the connection of the bandwidth-determining filter network. The conventional double time constant filter networks are R2, C2, R3, C3 and R4, C4. The d.c. potentials on these pins are nominally +7,2 V.

15. **Oscillator feedback input**

 The input impedance at this pin is nominally 3.5 kΩ in parallel with 5 pF. No d.c. connection is required on this pin. The voltage in the i.c. between pin 15 and pin 1 is nominally 4.7 times.

16. **Negative supply (earth)**

PERFORMANCE AND COMMENTS

Initial adjustment

(a) Remove burst signal.

(b) Short-circuit pins 13-14. Adjust oscillator to correct frequency by C1. Remove short circuit.

(c) Set the a.c.c. level adjustment RV1, to give +4 V on pin 9.

(d) Apply burst signal.

(e) Adjust a.c.c. gain, RV2, to give a burst amplitude of 1.5 V peak-to-peak on pin 5.

Phase lock loop performance (with crystal type 4322 152 0110)

(a) Phase difference between reference and burst signals for ±400 Hz deviation of crystal frequency, ± 10°.

(b) Typical holding range, ±600 Hz.

(c) Typical pull-in range, ±300 Hz.

(d) Temperature coefficient of oscillator frequency, i.c. only, 2 Hz/°C.
LUMINANCE AND CHROMINANCE CONTROL COMBINATION

The TBA560C is a monolithic integrated circuit used in the decoding system of colour television receivers. The circuit consists of a luminance and a chrominance amplifier. The luminance amplifier input is matched to the luminance delay line and performs the following functions:
- d.c. contrast control
- brightness control
- black level clamping
- blanking.

The chrominance amplifier comprises:
- gain-controlled amplifier
- chrominance gain control tracked with contrast control
- separate d.c. saturation control
- PAL delay line driver
- burst gate
- colour killer.

QUICK REFERENCE DATA

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Nominal Value</th>
<th>Typical Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltage</td>
<td>V11-16</td>
<td>12V</td>
<td></td>
</tr>
<tr>
<td>Supply current</td>
<td>I11</td>
<td>30 mA</td>
<td></td>
</tr>
<tr>
<td>Luminance signal input current</td>
<td>I3(p-p)</td>
<td>1.5 mA</td>
<td></td>
</tr>
<tr>
<td>Chrominance input signal</td>
<td>V1-15(p-p)</td>
<td>> 4 mV</td>
<td>< 80 mV</td>
</tr>
<tr>
<td>Luminance output signal at nominal contrast setting</td>
<td>V5-16(p-p)</td>
<td>3 V 1)</td>
<td></td>
</tr>
<tr>
<td>Chrominance output signal at nominal contrast and saturation setting</td>
<td>V9-16(p-p)</td>
<td>1 V 1)</td>
<td></td>
</tr>
<tr>
<td>Contrast control range</td>
<td></td>
<td>≥ 20 dB</td>
<td></td>
</tr>
<tr>
<td>Saturation control range</td>
<td></td>
<td>≥ 20 dB</td>
<td></td>
</tr>
<tr>
<td>Burst output (closed a.c.c. loop)</td>
<td>V7-16(p-p)</td>
<td>1 V</td>
<td></td>
</tr>
</tbody>
</table>

1) Nominal setting: maximum contrast and/or saturation minus 6 dB

PACKAGE OUTLINES

TBA560C: 16-lead DIL; plastic (SOT-38).
TBA560CQ: 16-lead QIL; plastic (SOT-58).
Note: the circuits are interconnected in the numerical sequence I, II, III, IV
RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)

Voltage
Supply voltage

\[V_{11-16} \text{ max. } 13 \text{ V} \]

Power dissipation
Total power dissipation

\[P_{\text{tot}} \text{ max. } 510 \text{ mW} \]

Temperatures
Storage temperature

\[T_{\text{stg}} \text{ } -25 \text{ to } +125 \text{ °C} \]

Operating ambient temperature

\[T_{\text{amb}} \text{ } 0 \text{ to } +60 \text{ °C} \]

Voltages with respect to pin 16

\[
\begin{align*}
V_{1-16} &\text{ 0 to } +5 \text{ V} \\
V_{2-16} &\text{ 0 to } +12 \text{ V} \\
V_{4-16} &\text{ 0 to } +6 \text{ V} \\
V_{6-16} &\text{ 0 to } +3 \text{ V} \\
V_{8-16} &\text{ -5 to } +5 \text{ V}
\end{align*}
\]

\[
\begin{align*}
V_{10-16} &\text{ min. } -5 \text{ V} \\
V_{12-16} &\text{ -5 to } +6 \text{ V} \\
V_{13-16} &\text{ -3 to } +6.5 \text{ V} \\
V_{14-16} &\text{ min. } -5 \text{ V} \\
V_{15-16} &\text{ 0 to } +5 \text{ V}
\end{align*}
\]

Currents (positive when flowing into the integrated circuit)

\[
\begin{align*}
I_1 &\text{ 0 to } +1 \text{ mA} \\
I_3 &\text{ -1 to } +3 \text{ mA} \\
I_5 &\text{ -5 to } 0 \text{ mA} \\
I_6 &\text{ -1 to } +1 \text{ mA}
\end{align*}
\]

\[
\begin{align*}
I_7 &\text{ -3 to } +2 \text{ mA} \\
I_9 &\text{ -10 to } 0 \text{ mA} \\
I_{10} &\text{ max. } +3 \text{ mA} \\
I_{14} &\text{ max. } +1 \text{ mA} \\
I_{15} &\text{ 0 to } +1 \text{ mA}
\end{align*}
\]

1) Permissible while tubes are heating up: \(V_{11-16} \text{ max. } 16 \text{ V} \) and \(P_{\text{tot}} \text{ max. } 700 \text{ mW} \).

2) \(V_{2-16} \) and \(V_{13-16} \) must always be lower than \(V_{11-16} \).
CHARACTERISTICS measured in the circuit on page 6

Supply voltage
\[V_{11-16} \text{ typ. } 12 \text{ V} \]
\[10 \text{ to } 13 \text{ V} \]

Required input signals at \(V_{11-16} = 12 \text{ V} \) and \(T_{amb} = 25 \text{ °C} \)

Chrominance input signal
peak-to-peak value
\[V_{1-15(p-p)} \text{ typ. } 4 \text{ to } 80 \text{ mV} \]

Luminance input current
black-to-white value
\[I_{3} \text{ typ. } 1,5 \text{ mA} \]

Contrast control voltage range
for 20 dB of control
\[V_{2-16} \text{ see graph on page 11} \]

Brightness control voltage
\[V_{6-16} \text{ see graph on page 11} \]

Saturation control voltage range
for 20 dB of control
\[V_{13-16} \text{ see graph on page 11} \]

Burst keying pulse (positive)
peak-to-peak value
\[I_{10(p-p)} \text{ typ. } 0,05 \text{ to } 1 \text{ mA} \]

Fly-back blanking pulses (negative)
peak-to-peak value
\[V_{8-16(p-p)} \text{ typ. } -0,5 \text{ V} \]
\[V_{8-16(p-p)} \text{ typ. } -2,5 \text{ V} \]

Colour killer
\[V_{13-16} \text{ typ. } < 1 \text{ V} \]

Automatic chrominance control starting
\[V_{14-16} \text{ typ. } 1,2 \text{ V} \]

1) When \(V_{6-16} \) is increased above 1,7 V the black level of the output signal remains at 2,7 V

2) A negative going potential provides a 26 dB a.c.c. range with negligible signal distortion. Maximum gain reduction is obtained at an input voltage of min. 500 mV.
CHARACTERISTICS (continued)

Obtainable output signals

Luminance output voltage at nominal contrast (peak-to-peak value) \(V_{5-16(p-p)} \) typ. 3 V \(^1\)

Burst signal (peak-to-peak value) \(V_{7-16(p-p)} \) typ. 1 V \(^2\)

Chrominance signal at nominal contrast and saturation (peak-to-peak value) \(V_{9-16(p-p)} \) typ. 1 V \(^1\)

3 dB bandwidth of chrominance and luminance amplifier B typ. 5 MHz.

Change of ratio luminance to chrominance signals at 10 dB contrast control < 2 dB

Test circuit

\(^1\) Nominal setting: maximum contrast and/or saturation minus 6 dB.

\(^2\) Burst signal is kept constant at 1 V peak-to-peak by automatic gain control.
Application diagram for operation in combination with the TBA540.
APPLICATION INFORMATION (continued)

Pinning

1. Balanced chroma signal input
2. Contrast control
3. Luminance signal input
4. Black level clamp capacitor
5. Luminance signal output
6. Brightness control
7. Burst output
8. Fly-back blanking input
9. Chroma signal output
10. Burst gate and clamping pulse input
11. Supply voltage (12 V)
12. D.C. feedback for chroma channel
13. Chroma saturation control
14. A.C.C. input
15. Chroma signal input
16. Earth (negative supply)

The function is quoted against the corresponding pin number

1. Balanced chroma signal input (in conjunction with pin 15)
 This is derived from the chroma signal bandpass filter, designed to provide the push-pull input. An input signal amplitude of at least 4 mV peak-to-peak is required on pins 1 and 15. Both pins require a d.c. potential of approximately +3.0 V. This is derived as a common-mode signal from a network connected to pin 7 (burst output). In this way d.c. feedback is provided over the burst channel to stabilise its operation.
 All figures for the chrominance signals are based on a colour bar signal with 75% saturation: i.e. burst-to-chroma ratio of input signal is 1:2.

2. D.C. contrast control
 With +3, 7 V on this pin, the gain in the luminance channel is such that a 1.5 mA peak-to-peak input signal to pin 3 gives a luminance output signal amplitude of 3 Volt black-to-white. A variation of voltage on pin 2 between +6 Volt and +2 Volt gives a corresponding gain variation of +6 to > -14 dB. A similar variation in gain in the chroma channel occurs in order to provide the correct tracking between the two signals.

3. Luminance signal input
 This terminal has a very low input impedance and acts as a current sink. The luminance signal from the delay line is fed via a series terminating resistor and must have about 1,5 mA black-to-white amplitude.

4. Charge storage capacitor for black level clamp (5.0 μF)

5. Luminance signal output
 An emitter follower provides a low impedance output signal of 3 Volt black-to-white amplitude at nominal contrast setting having a black level in the range 0 to +3 Volt. An external emitter load resistor is required, not less than 1 kΩ.
 Black level shift at contrast control is max. ± 20 mV if the luminance input current during black level is about 0.75 mA. When this current has a different value a larger black level shift has to be taken into account. If the input current during black level differs 1 mA from the nominal value of 0.75 mA, the black level shift will be about 100 mV over the complete contrast control range. For smaller differences of the input current the black level shift will be correspondingly smaller.
 Black level shift with video signal content occurs only when the input signal is a.c. coupled. The value depends on the drive current amplitude and can be calculated from
APPLICATION INFORMATION (continued)

the figures given above (for maximum contrast; for a lower contrast setting the variation is correspondingly smaller).
Black level shift over an ambient temperature variation of 30 °C is typ. -140 mV.

6. The d.c. level of the luminance output signal may be controlled by the d.c. potential applied to this pin

Over the range of potential +0.9 to +1.7 V the black level of the luminance output signal (pin 5) is increased from 0 to +2.7 V. The output signal black level remains at +2.7 V when the potential on pin 6 is increased above +1.7 V.

7. Burst output

A 1 V peak-to-peak burst (kept constant by the a.c.c. system) is produced here. Also, to achieve good d.c. stability by negative feedback in the burst channel the d.c. potential at this pin is fed back to pins 1 and 15 via the chroma input transformer. When limiting occurs the burst amplitude is min. 2.5 V.

8. Fly-back blanking input waveform

Negative-going horizontal and vertical blanking pulses may be applied here. If rectangular blanking pulses of not greater than -1 V negative excursion are applied the signal level at the luminance output (pin 5) during blanking will be 0 V. However, if the blanking pulses applied to pin 8 have an amplitude of -2 to -3 V the signal level at the luminance output during blanking will be +1.5 V.

9. Chroma signal output

With an 1 V peak-to-peak burst output signal (pin 7) and at nominal contrast and saturation setting (pins 2 and 13) the chroma signal output amplitude is 1 V peak-to-peak. An external d.c. network is required which provides negative feedback in the chroma channel via pin 12.

10. Burst gating and clamping pulse input

A positive pulse of minimum 50 μA is required on this pin to provide gating in the burst channel and luminance channel black-level clamp circuit. The timing and width of this current pulse should be such that no appreciable encroachment occurs into the sync pulse or picture line periods during normal operation of the receiver.

11. +12 V L.T power supply

Correct operation occurs within the range 10 to 13 V. All signal and control levels have a linear dependency on supply voltage but, in any given receiver design this range may be restricted due to considerations of tracking between the power supply variations and picture contrast and chroma levels. The power dissipation must not exceed 550 mW at 60 °C ambient temperature.

12. D.C. feedback for chroma channel (see pin 9)

13. Chroma saturation control

A control range of +6 to > +14 dB is provided over a range of d.c. potential on pin 13 from +2.7 to +6.2 V. Colour killing is also done at this terminal by reducing the d.c. potential to less than +1 V, e.g., from the TBA540 colour killer output terminal. The kill factor is min. 40 dB.
APPLICATION INFORMATION (continued)

14. A.C.C. input

A negative-going potential gives a 26 dB range of a.c.c. starting at +1.2 V and giving maximum gain reduction at an input voltage of min. 500 mV.

15. Chroma signal input (see pin 1)

16. Negative supply (earth)
Contrast control of luminance amplifier
Saturation of chrominance amplifier

Control of black level at output luminance amplifier

April 1973
LINE OSCILLATOR CIRCUIT

This circuit has been designed for use as line-oscillator and reactance stage in colour and monochrome t.v. receivers.

The circuit consists of a Miller-integrator-oscillator followed by a pulse shaping circuit, which delivers a positive pulse of 8 V and adjustable width. The available output current is in excess of 60 mA. Finally a supply voltage take-over switch for starting purposes is built in. The TBA720A can co-operate with the TBA890.

<table>
<thead>
<tr>
<th>QUICK REFERENCE DATA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltage</td>
</tr>
<tr>
<td>Starting voltage</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Required input signals</th>
</tr>
</thead>
<tbody>
<tr>
<td>D.C. control voltage at pin 1</td>
</tr>
<tr>
<td>at pin 3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Delivered output signals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output voltage at pin 5</td>
</tr>
<tr>
<td>no load; peak-to-peak value</td>
</tr>
<tr>
<td>Output current at pin 5</td>
</tr>
</tbody>
</table>

PACKAGE OUTLINES

TBA720A : 16-lead DIL; plastic (SOT-38).
TBA720AQ: 16-lead QIL; plastic (SOT-58).
RATINGS Limiting values in accordance with the Absolute Maximum System (IEC134).

Voltages
Supply voltage \(V_{11-16} \) max. 16 V
Starting voltage \(V_{9-16} \) max. 15 V

Currents
Output current \(I_5 \) max. 60 mA

Power dissipation
Total power dissipation when mounted on a printed-wiring board \(P_{tot} \) max. 280 mW

Temperatures
Storage temperature \(T_{stg} \) -55 to +125 °C
Operating ambient temperature \(T_{amb} \) 0 to +60 °C

CHARACTERISTICS Measured in the test set-up on page 4
Supply voltage \(V_{11-16} \) typ. 12 V
Starting voltage \(V_{9-16} \) > 8 V 1)

CHARACTERISTICS at \(T_{amb} = 25 \) °C; \(V_{11-16} = 12 \) V
Supply current 2) \(I_{11} \) typ. 10,5 mA
7,5 to 13,5 mA

Required input signals
D.C. control voltage for nominal frequency at pin No. 1 and pin No. 3
\(V_{1-16} = V_{3-16} \) 2,4 to 5,3 V
Sensitivity of reactance stage
\(V_{1-3} \) typ. 2 kHz/V
Duty cycle regulation at pin No. 14
\(I_{14} \) typ. 0 μA
+400 to -400 μA

Delivered output signals
Output voltage at pin No. 5 no load; peak-to-peak value
\(V_{5-16(p-p)} \) typ. 8 V
Output current
\(I_5 \) typ. \(< \) 60 mA
40 %
Duty cycle; without regulation
\(\delta \) typ. 35 to 45 %
\(\delta \) 20 to 60 %
with regulation
Rise time at pin No. 5 leading edge of output pulse
\(t_r \) typ. 200 ns

1) Maximum starting voltage should not exceed the value of the supply voltage minus 1 volt.
2) No load connected to the output. When the output is loaded, the extra current is: \(\delta x I \), in which \(\delta = \) duty cycle of output pulse and \(I = \) current flowing during output pulse.
CHARACTERISTICS (continued)

Relative frequency deviation for $\Delta V_{11} = 1\, V$
2 \%

Relative frequency deviation for change of ambient temperature 25 to 55 °C
3 \%

Allowable hum-ripple on supply line (peak-to-peak value)
$\Delta V_{11-16}(p-p)$ typ. 100 mV

Test set-up
APPLICATION INFORMATION

The TBA720A with the TBA890 or TBA900 in a receiver with transistorized line deflection.
Notes

1. The TBA720A is intended to drive a line deflection circuit equipped with transistors.

2. The duty cycle δ can be adjusted by connecting a resistor between pin 14 and ground or the supply.

3. The oscillation frequency can be set between 10 kHz and 25 kHz by connecting a resistor between pins 4 and 13, and a capacitor between pins 12 and 13.

4. At a nominal oscillation frequency of 15,625 kHz, the frequency deviation is limited to ± 1.3 kHz to safeguard the line timebase output circuits.

5. Besides the oscillator, the TBA720A incorporates a reactance stage and a supply voltage take-over switch for starting purposes (pin 9). The latter can be used to advantage if the 12 V supply is derived from the line flyback pulse.

6. Pins 2, 7, 10 and 15 should not be connected.
LIMITER/AMPLIFIER

The TBA750C is a limiter/amplifier with f.m. detector, d.c. volume control and a.f. preamplifier. It is intended for 4.5 MHz, 5.5 MHz or 10.7 MHz. The limiter/amplifier is a four-stage differential amplifier that gives very good noise and interference suppression. The detector is of the balanced type. The d.c. volume control stage has excellent control characteristics with a control range of more than 80 dB. The a.f. preamplifier can drive a triode-pentode output stage or a class-A push-pull transistor output stage.

QUICK REFERENCE DATA

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltage</td>
<td>V<sub>2-5</sub> typ 12 V</td>
</tr>
<tr>
<td>Total current drain</td>
<td>I<sub>tot</sub> typ 34 mA</td>
</tr>
<tr>
<td>Frequency</td>
<td>f<sub>0</sub> 5.5 MHz</td>
</tr>
<tr>
<td>Input voltage at start of limiting</td>
<td>V<sub>i lim</sub> typ 130 µV</td>
</tr>
<tr>
<td>A.M. rejection at V<sub>i</sub> = 1 mV</td>
<td>α typ 45 dB</td>
</tr>
<tr>
<td>A.F. output voltage at Δf = ± 15 kHz at pin 16</td>
<td>V<sub>o(rms)</sub> typ 2.7 V</td>
</tr>
<tr>
<td>D.C. volume control range</td>
<td>> 80 dB</td>
</tr>
</tbody>
</table>

PACKAGES OUTLINES

TBA750C: 16-lead DIL; plastic (SOT-38).
TBA750CQ: 16-lead QIL; plastic (SOT-58).
RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Supply voltage \(V_{2-5} \) max 16 V *

Storage temperature \(T_{\text{stg}} \) -55 to + 125 °C

Operating ambient temperature \(T_{\text{amb}} \) -25 to + 55 °C

Power dissipation

![Graph showing maximum allowable total power dissipation versus ambient temperature.]

Fig. 2.

CHARACTERISTICS

Measured in test circuit Fig. 3.

Supply voltage range

\[V_{2-5} = 10 \text{ to } 25 \text{ V} \]

Total current drain; pin 15 not connected

\[I_2 = 25 \text{ to } 45 \text{ mA} \]

Input limiting voltage at \(V_O = -3 \text{ dB (r.m.s. value)} \)

\[V_i_{\lim(rms)} \text{ typ } 130 \mu \text{V} \]

I.F. output voltage at pins 6 and 7

\[V_{6-5(p-p)} \text{ typ } 380 \text{ mV} \]

A.M. rejection

\[V_i = 1 \text{ mV} \]

\[V_i = 10 \text{ mV} \]

\[V_i = 100 \text{ mV} \]

\[\alpha \text{ typ } 45 \text{ dB} \]

\[\alpha \text{ typ } 50 \text{ dB} \]

\[\alpha \text{ typ } 55 \text{ dB} \]

D.C. volume control range; see also Fig. 5

\[> 80 \text{ dB} \]

A.F. preamplifier voltage gain

\[G_v \text{ typ } 10 \]

Input resistance at pin 1

\[R_i \text{ typ } 35 \text{ k}\Omega \]

* Allowable only if the dissipation in the IC is limited by means of a series resistor in the supply (see also Fig. 4).
CHARACTERISTICS (continued)

A.F. output voltages (r.m.s. values)
\[\Delta f = \pm 15 \text{ kHz}; f_m = 1 \text{ kHz} \]

\[
\begin{align*}
V_{10-5}\text{(rms)} & \quad \text{typ} \quad 65 \text{ mV} \\
V_{11-5}\text{(rms)} & \quad \text{typ} \quad 250 \text{ mV} \\
V_{12-5}\text{(rms)} & \quad \text{typ} \quad 2.7 \text{ V} \\
V_{16-5}\text{(rms)} & \quad \text{typ} \\
\end{align*}
\]

Total harmonic distortion
at pin 12; \(\Delta f = 15 \text{ kHz} \)
at pin 1 with respect to pin 16; \(V_o\text{(rms)} = 3 \text{ V} \)

\[d_{\text{tot}} \quad \text{typ} \quad 3 \% \\
\]

\[d_{\text{tot}} \quad \text{typ} \quad 2.6 \% \\
\]

TBA750C

Fig. 3 Test circuit; for f.m.: \(f_o = 5.5 \text{ MHz}; \Delta f = \pm 15 \text{ kHz}; f_m = 70 \text{ Hz} \).

For a.m.: \(m = 0.3; f_m = 1 \text{ kHz} \).
Fig. 4 Maximum and minimum values for the power supply series resistance (R_S).

Fig. 5 Remote control characteristic.
APPLICATION INFORMATION at $f = 5.5\, \text{MHz}$

The transfer ratio of the input bandpass filter: $\frac{V_2}{V_1} = 0.54$.

The peak-to-peak bandwidth of the detector S-curve is 300 kHz.

Note

$L_1 = 18\, \mu\text{H}; \quad Q_{L1} = 36$

$L_2 = 2.2\, \mu\text{H}; \quad Q_{L2} = 21$

$L_3 = 0.84\, \mu\text{H}; \quad Q_{L3} = 22$

L_1, Q_{L2} and Q_{L3} are the loaded Q-factors.

Fig. 6.
TELEVISION SIGNAL PROCESSING CIRCUIT

The TBA890 is a silicon monolithic integrated signal processing circuit for mono­chrome and colour television receivers.
It combines the following functions:
- video pre-amplifier with emitter-follower output and short circuit protection.
- blanking facility for the video amplifier.
- gated a.g.c. detector supplying the a.g.c. voltages for the vision i.f. amplifier and tuner.
- noise cancelling circuit in the a.g.c. and sync separator circuits.
- sync separator.
- automatic horizontal phase detector
- vertical sync pulse separator.
The circuit is designed for receivers equipped with tubes or transistors in the de­flection and video output stages.
The control stages in the i.f. amplifier and the tuner have to be equipped with n-p-n transistors. The circuit is developed for signals with negative modulation.

<table>
<thead>
<tr>
<th>QUICK REFERENCE DATA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltage</td>
</tr>
<tr>
<td>Ambient temperature</td>
</tr>
<tr>
<td>Video input voltage</td>
</tr>
<tr>
<td>Voltage gain of the video amplifier</td>
</tr>
<tr>
<td>A.G.C. voltage for i.f. part</td>
</tr>
<tr>
<td>A.G.C. voltage for tuner</td>
</tr>
<tr>
<td>Output voltage range horizontal phase detector</td>
</tr>
<tr>
<td>Vertical sync output voltage (positive going pulse; peak-to-peak value)</td>
</tr>
</tbody>
</table>

PACKAGE OUTLINES
TBA890: 16-lead DIL; plastic (SOT-38).
TBA890Q: 16-lead QIL; plastic (SOT-58).
RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)

Supply voltage
\[V_p \text{ max.} \quad 20 \quad \text{V}^1 \]

Power dissipation
\[P_{tot} \text{ max.} \quad 700 \quad \text{mW} \]

Temperatures

Storage temperature
\[T_{stg} \quad -55 \text{ to } +125 \quad ^\circ\text{C} \]

Operating ambient temperature
\[T_{amb} \quad -25 \text{ to } +80 \quad ^\circ\text{C} \]

Maximum allowable nominal supply voltage as a function of the maximum ambient temperature.

\(^1\)Allowed only while receiver is warming up.
TBA890
TBA890Q

CHARACTERISTICS

Supply voltage range \(V_p \) See curves on page 3

The following characteristics are measured in the circuit on p. 7 at \(T_{amb} = 25^\circ C; V_p = 12 \, V \).

Video amplifier

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input resistance (R_{9-16})</td>
<td>> 30 kΩ</td>
</tr>
<tr>
<td>Input capacitance (C_{9-16})</td>
<td>< 3 pF</td>
</tr>
<tr>
<td>Bandwidth (3 dB) (B)</td>
<td>> 5 MHz</td>
</tr>
<tr>
<td>Linearity (m)</td>
<td>> 0.9</td>
</tr>
<tr>
<td>Rise time and fall time at the output (t_r; t_f)</td>
<td>< 50 ns</td>
</tr>
<tr>
<td>Voltage gain (G_v) typ.</td>
<td>7 dB</td>
</tr>
<tr>
<td>Video input voltage (peak-to-peak value) (V_{9-16(p-p)}) typ.</td>
<td>2.7 (V) (^1)</td>
</tr>
<tr>
<td>D.C. bias video detector voltage (V_{bias}) typ.</td>
<td>6 (V) (^2)</td>
</tr>
<tr>
<td>Video output voltage (peak-to-peak value) (V_{11-16(p-p)}) typ.</td>
<td>6 (V) (^1)</td>
</tr>
<tr>
<td>Black level at the output (V_{11-16}) typ.</td>
<td>5 (V) (^3)</td>
</tr>
<tr>
<td>Available video output current (peak value) (I_{11M})</td>
<td>≤ 30 mA (^4)</td>
</tr>
</tbody>
</table>

Tolerances on the video output voltages

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>I.C. processing spreads (\pm \Delta V_{11-16})</td>
<td>< 420 mV (^5)</td>
</tr>
<tr>
<td>Temperature drift (-\Delta V_{11-16}) typ.</td>
<td>1.8 mV/°C</td>
</tr>
<tr>
<td>Spreads over a.g.c. expansion (entire range) (\pm \Delta V_{11-16})</td>
<td>< 100 mV (^6)</td>
</tr>
<tr>
<td>Supply voltage (\Delta V_{11-16}) typ.</td>
<td>0.5 (\Delta V_p)</td>
</tr>
</tbody>
</table>

\(^1\) Signal with negative going sync.; this value is obtained only when the input signal meets the C.C.I.R. standard.

\(^2\) A voltage divider with 5% tolerance resistors is required between pin 9 and supply terminal.

\(^3\) Only valid if the video signal is in accordance with the C.C.I.R. standard.

\(^4\) The total load on pin 11 must be such that the d.c. output current \(I_{11} \leq 15 \, mA \).

\(^5\) The spreads of the voltage divider for the bias of the video detector of ± 5% is included in this figure.

\(^6\) Variation about a nominal condition, the i.f. being fully controlled and the tuner uncontrolled.
CHARACTERISTICS (continued)

Tolerances on the black level at the output

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Value 1</th>
<th>Value 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>I.C. processing spreads</td>
<td>±ΔV_{11-16}</td>
<td>< 420 mV</td>
</tr>
<tr>
<td>Temperature drift</td>
<td>ΔV_{11-16}</td>
<td>typ. 1.7 mV/°C</td>
</tr>
<tr>
<td>Spreads over a.g.c. expansion (entire range)</td>
<td>±ΔV_{11-16}</td>
<td>< 130 mV</td>
</tr>
<tr>
<td>Supply voltage</td>
<td>ΔV_{11-16}/ΔV_P</td>
<td>typ. 0.4</td>
</tr>
</tbody>
</table>

Video blanking

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Value 1</th>
<th>Value 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input voltage (peak-to-peak value)</td>
<td>V_{10-16}(p-p)</td>
<td>1 to 5 V</td>
</tr>
<tr>
<td>Input resistance</td>
<td>R_{10-16}</td>
<td>typ. 1 kΩ</td>
</tr>
<tr>
<td>Output voltage during blanking</td>
<td>V_{11-16}</td>
<td>< 500 mV</td>
</tr>
</tbody>
</table>

A.G.C. circuit

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Value 1</th>
<th>Value 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range of control voltage i.f. amplifier</td>
<td>V_{7-16}</td>
<td>1 to 12 V</td>
</tr>
<tr>
<td>Range of control voltage tuner</td>
<td>V_{6-16}</td>
<td>0.3 to 12 V</td>
</tr>
<tr>
<td>Signal expansion for full control of i.f. amplifier and tuner</td>
<td>typ. 0.5 dB</td>
<td></td>
</tr>
<tr>
<td>Current i.f. control point</td>
<td>I_7</td>
<td>< 20 mA</td>
</tr>
<tr>
<td>Current tuner control point</td>
<td>I_6</td>
<td>< 20 mA</td>
</tr>
<tr>
<td>Current i.f. control point for tuner take-over</td>
<td>I_7</td>
<td>see note 4</td>
</tr>
<tr>
<td>Keying input pulse (peak-to-peak value)</td>
<td>V_{5-16}(p-p)</td>
<td>see note 5</td>
</tr>
<tr>
<td>Input resistance</td>
<td>R_{5-16}</td>
<td>typ. 2 kΩ</td>
</tr>
</tbody>
</table>

1) The spreads of the voltage divider for the bias of the video detector of ±5% is included in this figure (pin 9).

2) Variation about a nominal condition, the i.f. being fully controlled and the tuner uncontrolled.

3) Positive going at increasing input signal.

4) This value depends on the ratio between the external impedances on pins 6 and 7. With equal impedances the current of the i.f. control point at tuner take-over will be about 16% from its maximum value (minimum control voltage).

5) Negative going pulse is required. The voltage during scan should be between 1 V and 2 V.
CHARACTERISTICS (continued)

Horizontal synchronization circuit

Sync. separator
Output voltage range of phase detector
Control steepness
Phase deviation between front edge sync. pulse and front edge flyback pulse
Variation φ_0 caused by internal spreads
Output voltage range as a frequency detector
Vertical synchronization circuit
Output voltage vertical sync. pulse generator
Output impedance

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Formula</th>
<th>Typical Value</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{2-16}</td>
<td></td>
<td>2 to 10 V</td>
<td></td>
</tr>
<tr>
<td>S_φ</td>
<td></td>
<td>2.5 V/µs</td>
<td></td>
</tr>
<tr>
<td>φ_0</td>
<td></td>
<td>1.5 µs</td>
<td></td>
</tr>
<tr>
<td>$\pm \Delta \varphi_0$</td>
<td></td>
<td>0.3 µs</td>
<td></td>
</tr>
<tr>
<td>V_{2-16}</td>
<td></td>
<td>4 to 8 V</td>
<td></td>
</tr>
<tr>
<td>V_{14-16}</td>
<td></td>
<td>11 V</td>
<td></td>
</tr>
<tr>
<td>R_{14-16}</td>
<td></td>
<td>2 kΩ</td>
<td></td>
</tr>
</tbody>
</table>

1) The sync. pulse is sliced about 25% below top sync. level. A sliding bias circuit makes the slicing level independent of the signal strength.

2) Nominal voltage 6 V.

3) Higher values of this control steepness can be obtained by changing R_S (see circuit on page 7). For example $R_S = 56 \, \Omega$, $S_\varphi = 5 \, V/\mu s$ and $R_S = 0$, $S_\varphi = \geq 25 \, V/\mu s$.

4) In addition to this figure ±7% of the retrace time of the sawtooth generated on pin 3 has to be added to find the total spreads of φ_0.
This value of ±7% is obtained only when the tolerance of the capacitor connected to pin 3 does not exceed ±10%.

5) Nominal voltage 6 V.
The load impedance on pin 2 of the circuit on page 7 is about 50 kΩ. When a higher impedance is used (tube equipped reactance stage) values from 2 V to 10 V can be reached.
HORIZONTAL COMBINATION

The TBA920 is a monolithic integrated circuit intended for television receivers with transistor-thyristor-or tube equipped output stages. It combines the following functions:
- noise gated sync separator
- line oscillator
- phase comparison between sync pulse and oscillator
- loopgain and time constant switching (also for video recorder applications)
- phase comparison between line-flyback pulse and oscillator
- output stage for drive a variety of line output stages

QUICK REFERENCE DATA

<table>
<thead>
<tr>
<th>Supply voltage</th>
<th>V1-16</th>
<th>nom.</th>
<th>12 V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ambient temperature</td>
<td>Tamb</td>
<td></td>
<td>25 °C</td>
</tr>
</tbody>
</table>

Input signals

Video input voltage (positive-going sync)	V8-16(p-p)	typ.	3 V
top sync to white value			1 to 7 V
Noise gate input current (peak value)	I9M	>	30 μA
Input resistance of noise gate	R9-16	typ.	200 Ω
Flyback signal input voltage (peak value)	V5-16M	typ.	±1 V
Flyback signal input current (peak value)	I5M	typ.	1 mA

Output signals

Line driver output voltage (peak-to-peak value)	V2-16(p-p)	typ.	10 V
Line driver output current (average value)	I2(AV)	max.	20 mA
Line driver output current (peak value)	I2M	max.	200 mA
Composite sync output voltage (peak value)	V7-16M	typ.	10 V

PACKAGE OUTLINES

TBA920: 16-lead DIL; plastic (SOT-38).
TBA920Q: 16-lead QIL; plastic (SOT-58).
RATINGS Limiting values in accordance with the Absolute Maximum System (IEC134)

Voltages
- Supply voltage: V_{1-16} max. 13.2 V
- Pin No. 3 voltage: V_{3-16} 0 to 13.2 V
- Pin No. 8 voltage: $-V_{8-16}$ max. 12 V
- Pin No. 10 voltage: V_{10-16} -0.5 to +5 V

Currents
- Pin No. 2 current (average value): $I_2(AV)$ max. 20 mA
 peak value: I_{2M} max. 200 mA
- Pin No. 5 current (peak value): I_{5M} max. 10 mA
- Pin No. 7 current (peak value): I_{7M} max. 10 mA
- Pin No. 8 current (peak value): I_{8M} max. 10 mA
- Pin No. 9 current (peak value): I_{9M} max. 10 mA

Power dissipation
- Total power dissipation: P_{tot} max. 600 mW \(^1\)

Temperatures
- Storage temperature: T_{stg} -55 to +125 °C
- Operating ambient temperature: T_{amb} -20 to +60 °C

CHARACTERISTICS at $V_{1-16} = 12$ V; $T_{amb} = 25$ °C

Measured in circuit on page 6 (CCIR standard).

Current consumption at $I_2 = 0$
- I_1 typ. 36 mA

Required input signals

Video signal
- Input voltage (positive going sync) peak-to-peak value: $V_{i(p-p)}$ typ. 3 V
 1 to 7 V
- Input current during sync pulse (peak value): I_{8M} typ. 100 μA

Noise gating (pin 9)
- Input voltage (peak value): V_{9-16M} > 0.7 V
- Input current (peak value): I_{9M} < 30 μA
- Input resistance: R_{9-16} typ. 200 Ω

\(^1\) 800 mW permissible while tubes are heating up.
CHARACTERISTICS (continued)

Flyback pulse (pin 5)

Input voltage (peak value) \(V_{5-16M} \) typ. \(\pm 1 \) V

Input current (peak value) \(I_{5M} \) typ. \(> 50 \) \(\mu A \)

Input resistance \(R_{5-16} \) typ. \(400 \) \(\Omega \)

Pulse duration at 15625 Hz \(t_5 \) \(> 10 \) \(\mu s \)

Delivered output signals

Composite sync pulses (positive; pin 7)

Output voltage (peak-to-peak value) \(V_{7-16(p-p)} \) typ. \(10 \) V

Output resistance
 - at leading edge of pulse (emitter follower) \(R_{7-16} \) \(\approx 50 \) \(\Omega \)
 - at trailing edge \(R_{7-16} \) typ. \(2,2 \) \(k\Omega \)

Additional external load resistance \(R_{7-16(\text{ext})} \) \(> 2 \) \(k\Omega \)

Driver pulse (pin 2)

Output voltage (peak-to-peak value) \(V_{2-16(p-p)} \) typ. \(10 \) V

Average output current \(I_{2(AV)} \) \(< 20 \) mA

Peak output current \(I_{2M} \) \(< 200 \) mA

Output resistance (low ohmic) \(R_{2-16} \) typ. 2.5 or 15 \(\Omega \) \(^1 \)

Output pulse duration when synchronised \(t_2 \) 12 to 32 \(\mu s \) \(^2 \)

Permissible delay between leading edge of output pulse and flyback pulse at \(t_5 = 12 \mu s \) \(t_0 \) tot 0 to 15 \(\mu s \)

Supply voltage at which output pulses are obtained \(V_{1-16} \) \(> 4 \) V

1) Depends on switch position and polarity output current. \(R_{2-16} = 2,5 \) \(\Omega \) is valid for \(V_{2-16} = +10,5 \) V and a load between pins 2 and 16 (e.g. an external resistor).

2) The output pulse duration is adjusted by shifting the leading edge (\(V_{3-16} \) from 6 V to 8 V). The pulse duration is a result of delay in the line output device and the action of the second control loop in the TBA920.

For a line output stage with a BU108 high voltage transistor the resulting duration is about 22 \(\mu s \), and in such a way that the line output transistor is switched on again about 8 \(\mu s \) after the middle of the line flyback pulse. This pulse duration must be taken into account when designing the driver stage and driver transformer as this way of driving the line output device differs from the usual, i.e. a driver duty cycle of about 50%.
CHARACTERISTICS (continued)

Oscillator

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency; free running ((R_{15-16} = 3,3 , k\Omega))</td>
<td>(f_0 = 15,625 , Hz)</td>
</tr>
<tr>
<td>Spread of frequency at nominal values of peripheral components</td>
<td>(\frac{\Delta f_0}{f_0} < \pm 5 %)</td>
</tr>
<tr>
<td>Frequency change when decreasing the supply down to minimum 4 V</td>
<td>(\frac{\Delta f_0}{f_0} < 10 %)</td>
</tr>
<tr>
<td>Frequency control sensitivity</td>
<td>(\frac{\Delta f_0}{\Delta I_{15}}) typ. 16,5 Hz/(\mu A)</td>
</tr>
<tr>
<td>Adjustment range of network in circuit on page 6'</td>
<td>(\frac{\Delta f_0}{f_0}) typ. \pm 10 %</td>
</tr>
<tr>
<td>Influence of supply voltage on frequency at (V_P = 12) V</td>
<td>(\frac{\delta f_0}{f_0} / \frac{\delta V_P}{V_{Pnom}} < 5 %)</td>
</tr>
</tbody>
</table>

Control loop 1 (between sync pulse and oscillator)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control voltage range</td>
<td>(V_{12-16} = 0,8) to (5,5) V</td>
</tr>
<tr>
<td>Control current (peak values)</td>
<td>(I_{12M} = \pm 2) mA</td>
</tr>
<tr>
<td>Control current (V_{10-16} > 4,5) V; (V_{6-16} > 1,5) V</td>
<td>(I_{12M} = \pm 6) mA</td>
</tr>
<tr>
<td>Control current (V_{10-16} < 2) V; (V_{6-16} > 1,5) V</td>
<td>(I_{12M} = \pm 6) mA</td>
</tr>
<tr>
<td>Loopgain of APC system</td>
<td>(\Delta f / \Delta t) typ. 1 kHz/(\mu s)</td>
</tr>
<tr>
<td>a. Time coincidence between sync pulse and flyback pulse or (V_{10-16} > 4,5) V</td>
<td>(\Delta f / \Delta t) typ. 3 kHz/(\mu s)</td>
</tr>
<tr>
<td>b. No time coincidence or (V_{10-16} < 2) V</td>
<td>(\Delta f / \Delta t) typ. 3 kHz/(\mu s)</td>
</tr>
<tr>
<td>Catching and holding range</td>
<td>(\Delta f) typ. \pm 1 kHz</td>
</tr>
</tbody>
</table>

1) The oscillator frequency can be changed for other t.v. standards by an appropriate value of \(C_{14-16}\).
2) Exclusive external components tolerances.
3) Adjustable with \(R_{12-15}\).
CHARACTERISTICS (continued)

Pull-in time for $\Delta f/f_0 = \pm 3\% \ (\Delta f = 470 \text{ Hz})$
$t = 20 \text{ ms} \quad 1)\\

Switch-over from large control sensitivity to small control sensitivity after catching
$t = 20 \text{ ms} \quad 1)\\

Control loop II (between flyback pulse and oscillator)

Permissible delay between leading edge of output pulse (pin 2) and leading edge of flyback pulse
$t_{d \text{ tot}} = 0 \text{ to } 15 \mu s\\

Static control error
$\frac{\Delta t}{\Delta t_d} < 0.5 \% \quad 2)\\

Output current during flyback pulse (peak value)
$I_{4M} = \text{typ. } \pm 0.7 \text{ mA}\\

Overall phase relation

Phase relation between leading edge of sync pulse and middle of flyback pulse
$t = \text{typ. } 4.9 \mu s \quad 3)\\

Tolerance of phase relation
$|\Delta t| < 1 \mu s \quad 4)\\

Voltage for $T_2 = 12 \text{ to } 32 \mu s$
$V_{3-16} = 6 \text{ to } 8 \text{ V}\\

Adjustment sensitivity
$\frac{\Delta T_2}{\Delta V_{3-16}} = \text{typ. } 10 \mu s/V\\

Input current
$I_3 < 2 \mu A\\

External switch-over of parameters (loop filter and loop gain) of control loop I
(e.g. for video recorder application) see note 5.

Required switch-over voltage
at $R_{11-16} = 150 \Omega \quad V_{10-16} > 4.5 \text{ V}\\
at R_{11-16} = 2 \text{ k}\Omega \quad V_{10-16} < 2 \text{ V}\\

Required switch-over current
at $R_{11-16} = 150 \Omega; \ V_{10-16} = 4.5 \text{ V} \quad I_{10} = \text{typ. } 80 \mu A \quad 5)\\
at R_{11-16} = 2 \text{ k}\Omega; \ V_{10-16} = 2 \text{ V} \quad I_{10} = \text{typ. } 120 \mu A \quad 5)\\

1) See application information circuit on page 6.
2) The control error is the remaining error in reference to the nominal phase position between leading edge of the sync pulse and the middle of the flyback pulse caused by a variation in delay of the line output stage.
3) This phase relation assumes a luminance delay line with a delay of 500 ns between the input of the sync separator and the drive to the picture tube. If the sync separator is inserted after the luminance delay line or if there is no delay line at all (black-and-white sets), then the phase relation is achieved at $C_{5-16} = 560 \mu F$.
4) The adjustment of the overall phase relation and consequently the leading edge of the output pulse at pin 2 occurs automatically by the control loop II or by applying a d.c. voltage to pin 3.
5) With sync pulses at pin 7 and 8; without RC network at pin 10.
null
The TBA920S is identical to the TBA920, except for the following data:

Oscillator

Spread of frequency at
\[R_{15-16} = 3.3 \, \text{k}\Omega; \quad C_{14-16} = 10 \, \text{nF} \]

\[\frac{\Delta f_0}{f_0} < 1.5 \, \% \]

Adjustment range of frequency
(in network below)

\[\frac{\Delta f_0}{f_0} \quad \text{typ.} \quad \pm 5 \, \% \]

Note: The above network is the only part that differs from the circuit given on page 6 of TBA920 data.

Overall phase relation

Tolerance of phase relation between
leading edge of sync pulse and
middle of flyback pulse

\[|\Delta t| < 0.4 \, \mu s \]

Other circuit possibilities for oscillator frequency adjustment

November 1974
TELEVISION SIGNAL PROCESSING CIRCUIT

The TCA270S is a monolithic integrated circuit combining the following functions:
- synchronous demodulator
- video amplifier with buffer output stages
- noise inverters
- A.G.C. detector with output stages for n-p-n tuner and i.f. amplifier
- A.F.C. demodulator with buffer output stage

Opposite polarity video signals are available from emitter followers, the negative-going signal being matched to integrated circuit type TBA920.

<table>
<thead>
<tr>
<th>QUICK REFERENCE DATA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltage</td>
</tr>
<tr>
<td>Ambient temperature</td>
</tr>
<tr>
<td>Frequency</td>
</tr>
<tr>
<td>Supply current</td>
</tr>
<tr>
<td>Video output voltage (peak value)</td>
</tr>
<tr>
<td>Bandwidth (3 dB)</td>
</tr>
<tr>
<td>Intermodulation products (blue colour bar)</td>
</tr>
<tr>
<td>1,1 MHz with respect to B-W level</td>
</tr>
<tr>
<td>3,3 MHz with respect to B-W level</td>
</tr>
<tr>
<td>A.F.C. output control voltage swing (peak-to-peak value)</td>
</tr>
<tr>
<td>A.G.C. control current for n-p-n i.f. (pin 4)</td>
</tr>
<tr>
<td>A.G.C. control current for tuner (pin 5)</td>
</tr>
</tbody>
</table>

PACKAGE OUTLINES

TCA270S: 16-lead DIL; plastic (SOT-38).
TCA270SQ: 16-lead QIL; plastic (SOT-58).
TCA270S
TCA270SQ

RATINGS
Limiting values in accordance with the Absolute Maximum System (IEC134)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltage during switch on (t ≤ 10 s)</td>
<td>(V_{3-16})</td>
<td>max. 18 V</td>
</tr>
<tr>
<td>Power dissipation</td>
<td>(P_{\text{tot}})</td>
<td>max. 1 W</td>
</tr>
</tbody>
</table>

Temperatures

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Symbol</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Storage temperature</td>
<td>(T_{\text{stg}})</td>
<td>-55 to +125 °C</td>
</tr>
<tr>
<td>Operating ambient temperature</td>
<td>(T_{\text{amb}})</td>
<td>-25 to +55 °C</td>
</tr>
</tbody>
</table>

CHARACTERISTICS

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Symbol</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltage range</td>
<td>(V_{3-16})</td>
<td>typ. 12.0 V, 10.2 to 13.8 V</td>
</tr>
<tr>
<td>Supply current range</td>
<td>(I_{3})</td>
<td>typ. 47 mA, 33 to 62 mA</td>
</tr>
<tr>
<td>D.C. output voltage (zero signal; pin 9)</td>
<td>(V_{9-16})</td>
<td>typ. 6 V</td>
</tr>
<tr>
<td>D.C. output voltage (zero signal; pin 10)</td>
<td>(V_{10-16})</td>
<td>typ. 6 V</td>
</tr>
<tr>
<td>D.C. output voltage at start of a.g.c. (pin 9)</td>
<td>(V_{9-16})</td>
<td>typ. 3 V</td>
</tr>
<tr>
<td>Unbalanced r.m.s. input voltage for a.g.c.</td>
<td>(V_{i(rms)})</td>
<td>typ. 70 mV, 50 to 100 mV</td>
</tr>
<tr>
<td>Input resistance at pin 1</td>
<td>(R_{1-16})</td>
<td>typ. 3 kΩ</td>
</tr>
<tr>
<td>Input resistance at pin 2</td>
<td>(R_{2-16})</td>
<td>typ. 3 kΩ</td>
</tr>
<tr>
<td>Bandwidth (3 dB) of video output</td>
<td>(B)</td>
<td>typ. 5 MHz</td>
</tr>
<tr>
<td>Differential gain</td>
<td></td>
<td>< 10 % 1)</td>
</tr>
<tr>
<td>Differential phase</td>
<td></td>
<td>< 10 ° 1)</td>
</tr>
<tr>
<td>Intermodulation products (blue colour bar)</td>
<td></td>
<td>typ. -60 dB, -67 dB</td>
</tr>
<tr>
<td>Carrier frequency rejection at pins 9, 10 and 11</td>
<td></td>
<td>> 40 dB</td>
</tr>
<tr>
<td>Twice carrier frequency rejection at pins 9, 10 and 11</td>
<td></td>
<td>> 40 dB</td>
</tr>
</tbody>
</table>

1) CCIR system of modulation, peak of white signal = 10% of carrier.
CHARACTERISTICS (continued)

A.G.C. circuit

Saturation voltage of tuner control at 10 mA (pin 4) \(V_{4\text{-}13\text{sat}} < 0.3 \) V

Saturation voltage of i.f. control at 10 mA (pin 5) \(V_{5\text{-}13\text{sat}} \) 0.7 to 1.2 V

Breakdown voltage at 1 mA (pins 4 and 5) \(V_{(\text{BR})4\text{-}13} > 14 \) V

\(V_{(\text{BR})5\text{-}13} > 14 \) V

Control current at pins 4 and 5 \(I_4; I_5 > 10 \) mA

Signal expansion for complete a.g.c. \(I_4; I_5 < 0.5 \) dB

A.G.C. gating (optional) by negative line flyback pulse; input voltage (peak-to-peak value) \(V_{i(p-p)} > 2 \) V

Input resistance \(R_1 \) typ. 1.8 kΩ

Current ratio of unsaturated outputs (pins 4 and 5) at \(I_5 = 1 \) mA \(\frac{I_4}{I_5} > 6 \)

A.F.C. circuit

Output control voltage swing (peak-to-peak value) \(V_{11\text{-}16(p-p)} > 10 \) V

Change of frequency for complete output voltage swing < 400 kHz

Change of frequency to maintain peak output voltage > ±1 MHz

Noise inverters 1)

Negative-going noise pulses in pin 9 inversion threshold typ. 2.55 V

Positive-going noise pulses in pin 9 inversion threshold typ. 6.6 V

1) Noise pulses are inverted to a point near black level.
Unloaded Q of L1 and L2 must be > 50.
A.F.C. output voltage versus frequency
TCA270S
TCA270SQ

V_{out} (V)

\begin{figure}
\centering
\includegraphics[width=\textwidth]{figure}
\caption{Characteristics of TCA270S and TCA270SQ}
\end{figure}

V_{i(rms)} (mV) at f = 38.9 MHz

November 1976
HI-FI F.M./I.F. AMPLIFIER

The TCA420A is a monolithic integrated f.m./i.f. amplifier for car and hi-fi equipment provided with the following functions:
- limiter amplifier
- symmetrical quadrature detector
- symmetrical a.f.c. output
- field-strength indication output
- stereo decoder switching voltage
- adjustable side response suppression
- muting

QUICK REFERENCE DATA

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Unit</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltage (pin 11)</td>
<td>V_P</td>
<td>V</td>
<td>15</td>
</tr>
<tr>
<td>Supply current (pin 11)</td>
<td>I_P</td>
<td>mA</td>
<td>26</td>
</tr>
<tr>
<td>Input limiting voltage (-3 dB)</td>
<td>V_i_lim</td>
<td>V</td>
<td>20</td>
</tr>
<tr>
<td>A.F. output voltage (pin 5); Δf = ±15 kHz</td>
<td>V_o(rms)</td>
<td>V</td>
<td>115</td>
</tr>
<tr>
<td>Signal plus noise-to-noise ratio; V_i > 1 mV; Δf = ±15 kHz</td>
<td>S+N/N</td>
<td>V</td>
<td>72</td>
</tr>
<tr>
<td>I.F. input voltage; Δf = ±15 kHz</td>
<td>V_i</td>
<td>V</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>V_i</td>
<td>V</td>
<td>45</td>
</tr>
<tr>
<td>A.M. rejection; V_i = 10 mV; f_m = 1 kHz (f.m.); Δf = ±15 kHz</td>
<td>α</td>
<td>dB</td>
<td>50</td>
</tr>
<tr>
<td>Total distortion (single tuned circuit); Δf = ±15 kHz</td>
<td>d_tot</td>
<td>%</td>
<td>0,1</td>
</tr>
<tr>
<td>Centre shift of f.m. detector curve</td>
<td>Δf =</td>
<td>kHz</td>
<td>7</td>
</tr>
<tr>
<td>Field-strength indication range</td>
<td>ΔV_i</td>
<td>dB</td>
<td>70</td>
</tr>
<tr>
<td>Supply voltage range (pin 11)</td>
<td>V_p</td>
<td>V</td>
<td>6</td>
</tr>
<tr>
<td>Ambient temperature range</td>
<td>T_amb</td>
<td>°C</td>
<td>-30</td>
</tr>
</tbody>
</table>

PACKAGE OUTLINE
16-lead DIL; plastic (SOT-38).
Fig. 1a Part of circuit diagram; other part continued in Fig. 1b.
Fig. 1b Part of circuit diagram; continued from Fig. 1a.
RATINGS
Limiting values in accordance with the Absolute Maximum System (IEC 134)
Supply voltage (pin 11) \(V_P = V_{11-16} \) max. 18 V
Total power dissipation \(P_{\text{tot}} \) max. 720 mW
Storage temperature \(T_{\text{stg}} \) -55 to +150 °C
Operating ambient temperature \(T_{\text{amb}} \) -30 to +80 °C

CHARACTERISTICS
\(V_P = 8 \) or 15 V; \(T_{\text{amb}} = 25 \) °C; \(f_0 = 10.7 \) MHz; \(\Delta f = \pm 15 \) kHz; \(f_m = 1 \) kHz; \(R_G = 30 \) Ω; with de-emphasis (\(C_{5-6} = 10 \) nF); adjustment conforms to adjustment procedure unless otherwise specified; the characteristics are valid for a TCA420A mounted on a printed-circuit board (see Figs 2, 3 and 4).

Supply voltage range (pin 11) \(V_P \)

<table>
<thead>
<tr>
<th>(V_P)</th>
<th>typ.</th>
<th>21</th>
<th>26 mA</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 V</td>
<td></td>
<td></td>
<td>35 mA</td>
</tr>
<tr>
<td>6 to 18 V</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Supply current; \(R_{7-16} = 5 \) kΩ; pin 11 \(I_P \)

<table>
<thead>
<tr>
<th>(I_P)</th>
<th>typ.</th>
<th>< 21</th>
<th>26 mA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>35 mA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

I.F. amplifier/detector
Input voltages (d.c. value) \(V_{13-16}; V_{14-16}; V_{15-16} \)

<table>
<thead>
<tr>
<th>(V_{13-16})</th>
<th>typ.</th>
<th>2,6</th>
<th>2,8 V</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{14-16})</td>
<td>typ.</td>
<td>20</td>
<td>20 μV</td>
</tr>
<tr>
<td>(V_{15-16})</td>
<td>typ.</td>
<td><</td>
<td>50 μV</td>
</tr>
</tbody>
</table>

Input limiting voltage (−3 dB) \(V_{i \lim} \)

<table>
<thead>
<tr>
<th>(V_{i \lim})</th>
<th>typ.</th>
<th>< 20</th>
<th>20 μV</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>50 μV</td>
</tr>
</tbody>
</table>

I.F. output voltage (peak-to-peak value) \(V_{1-16}\) and \(V_{2-16} \)

<table>
<thead>
<tr>
<th>(V_{1-16}) (p-p)</th>
<th>> 200</th>
<th>320 mV</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{2-16}) (p-p)</td>
<td>typ. 350</td>
<td>375 mV</td>
</tr>
</tbody>
</table>

Output voltages (d.c. value) \(V_{5-16}; V_{6-16} \)

<table>
<thead>
<tr>
<th>(V_{5-16})</th>
<th>typ.</th>
<th>5,0</th>
<th>9,5 V</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{6-16})</td>
<td>typ.</td>
<td>5,3</td>
<td>11,0 V</td>
</tr>
</tbody>
</table>

Output voltage difference (d.c. value) \(\pm V_{5-6} \)

| \(\pm V_{5-6} \) | < 100 | 350 mV |

A.F. output voltage; \(V_i = 1 \) mV (pins 5 and 6) \(\Delta f = \pm 15 \) kHz

<table>
<thead>
<tr>
<th>(V_o)</th>
<th>> -</th>
<th>95 mV</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Delta f = \pm 40) kHz (V_o)</td>
<td>typ. 60</td>
<td>115 mV</td>
</tr>
<tr>
<td>(\Delta f = \pm 75) kHz (V_o)</td>
<td>typ. 160</td>
<td>307 mV</td>
</tr>
<tr>
<td>(\Delta f = \pm 15) kHz (V_o)</td>
<td>typ. 300</td>
<td>575 mV</td>
</tr>
</tbody>
</table>

Total distortion; \(V_i = 1 \) mV; single tuned circuit; \(Q_L = 20 \)

<table>
<thead>
<tr>
<th>(d_{\text{tot}})</th>
<th>typ.</th>
<th>< 0,1</th>
<th>0,1 %</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Delta f = \pm 15) kHz (d_{\text{tot}})</td>
<td>typ.</td>
<td>0,18</td>
<td>0,18 %</td>
</tr>
<tr>
<td>(\Delta f = \pm 40) kHz (d_{\text{tot}})</td>
<td>typ.</td>
<td>0,45</td>
<td>0,45 %</td>
</tr>
</tbody>
</table>

without de-emphasis; \(C_{5-6} = 10 \) nF

<table>
<thead>
<tr>
<th>(d_{\text{tot}})</th>
<th>typ.</th>
<th>< 0,1</th>
<th>0,1 %</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Delta f = \pm 15) kHz (d_{\text{tot}})</td>
<td>typ.</td>
<td>0,22</td>
<td>0,22 %</td>
</tr>
<tr>
<td>(\Delta f = \pm 40) kHz (d_{\text{tot}})</td>
<td>typ.</td>
<td>0,65</td>
<td>0,65 %</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(d_{\text{tot}})</th>
<th>typ.</th>
<th>< 1</th>
<th>1 %</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Delta f = \pm 15) kHz (d_{\text{tot}})</td>
<td>typ.</td>
<td>1</td>
<td>1 %</td>
</tr>
<tr>
<td>(\Delta f = \pm 40) kHz (d_{\text{tot}})</td>
<td>typ.</td>
<td>0,22</td>
<td>0,22 %</td>
</tr>
<tr>
<td>(\Delta f = \pm 75) kHz (d_{\text{tot}})</td>
<td>typ.</td>
<td>0,65</td>
<td>0,65 %</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(d_{\text{tot}})</th>
<th>typ.</th>
<th>< 1</th>
<th>1 %</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Delta f = \pm 15) kHz (d_{\text{tot}})</td>
<td>typ.</td>
<td>1</td>
<td>1 %</td>
</tr>
<tr>
<td>(\Delta f = \pm 40) kHz (d_{\text{tot}})</td>
<td>typ.</td>
<td>0,22</td>
<td>0,22 %</td>
</tr>
<tr>
<td>(\Delta f = \pm 75) kHz (d_{\text{tot}})</td>
<td>typ.</td>
<td>0,65</td>
<td>0,65 %</td>
</tr>
</tbody>
</table>
Hi-fi f.m./i.f. amplifier

TCA420A

<table>
<thead>
<tr>
<th></th>
<th>(V_p = 8) V</th>
<th>(V_p = 15) V</th>
</tr>
</thead>
<tbody>
<tr>
<td>I.F. input voltage; with filter: (B = 250) Hz to 16 kHz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(S+N/N = 26) dB; with de-emphasis; (C_{5-6} = 10) nF</td>
<td>(V_i) typ. 15</td>
<td>15 (\mu)V</td>
</tr>
<tr>
<td>(\Delta f = \pm 15) kHz</td>
<td>(V_i) typ. 15</td>
<td>15 (\mu)V</td>
</tr>
<tr>
<td>(\Delta f = \pm 75) kHz</td>
<td>(V_i) typ. 15</td>
<td>5 (\mu)V</td>
</tr>
<tr>
<td>(S+N/N = 26) dB; without de-emphasis; (C_{5-6} = 220) pF</td>
<td>(V_i) typ. 20</td>
<td>20 (\mu)V</td>
</tr>
<tr>
<td>(\Delta f = \pm 15) kHz</td>
<td>(V_i) typ. 20</td>
<td>20 (\mu)V</td>
</tr>
<tr>
<td>(\Delta f = \pm 75) kHz</td>
<td>(V_i) typ. 8</td>
<td>8 (\mu)V</td>
</tr>
<tr>
<td>(S+N/N = 46) dB; with de-emphasis; (C_{5-6} = 10) nF</td>
<td>(V_i) typ. 45</td>
<td>45 (\mu)V</td>
</tr>
<tr>
<td>(\Delta f = \pm 15) kHz</td>
<td>(V_i) typ. 45</td>
<td>45 (\mu)V</td>
</tr>
<tr>
<td>(\Delta f = \pm 75) kHz</td>
<td>(V_i) typ. 20</td>
<td>20 (\mu)V</td>
</tr>
<tr>
<td>(S+N/N = 46) dB; without de-emphasis; (C_{5-6} = 220) pF</td>
<td>(V_i) typ. 65</td>
<td>65 (\mu)V</td>
</tr>
<tr>
<td>(\Delta f = \pm 15) kHz</td>
<td>(V_i) typ. 65</td>
<td>65 (\mu)V</td>
</tr>
<tr>
<td>(\Delta f = \pm 75) kHz</td>
<td>(V_i) typ. 30</td>
<td>30 (\mu)V</td>
</tr>
</tbody>
</table>

Signal plus noise-to-noise ratio; with filter:

| \(B = 250 \) Hz to 16 kHz; \(V_i = 1 \) mV |
|---|---|
| with de-emphasis | |
| \(\Delta f = \pm 15 \) kHz | \(S+N/N \) typ. 74 | 76 dB |
| \(\Delta f = \pm 75 \) kHz | \(S+N/N \) typ. 88 | 90 dB |
| without de-emphasis | |
| \(\Delta f = \pm 15 \) kHz | \(S+N/N \) typ. 68 | 70 dB |
| \(\Delta f = \pm 75 \) kHz | \(S+N/N \) typ. 82 | 84 dB |

Noise output voltage; weighted conform DIN45405

<table>
<thead>
<tr>
<th>(V_i = 0) V</th>
<th>(V_i = 1) mV</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_n) typ. 7</td>
<td>12 (\mu)V</td>
</tr>
<tr>
<td>(V_n) typ. 30</td>
<td>50 (\mu)V</td>
</tr>
</tbody>
</table>

A.M. rejection; with filter: \(B = 700 \) Hz to 5 kHz

| \(f_m = 1 \) kHz; \(m = 0,3 \) (for a.m.); simultaneously modulated |
|---|---|
| \(V_i = 0,3 \) mV | \(\alpha \) typ. 52 | 52 dB |
| \(V_i = 1 \) mV | \(\alpha \) typ. 40 | 40 dB |
| \(V_i = 10 \) mV | \(\alpha \) typ. 52 | 52 dB |
| \(V_i = 100 \) mV | \(\alpha \) typ. 43 | 43 dB |

Zero crossing shift of f.m. detector curve (see note)

| \(f_m = 70 \) Hz; \(\Delta f = \pm 75 \) kHz (for f.m.) | \(\Delta f = |f_{o1} - f_{o2}| < 9 \) kHz |
|---|---|
| \(f_m = 1 \) kHz; \(m = 85\% \) (for a.m.) | \(\Delta f = |f_{o1} - f_{o2}| < 9 \) kHz |

Detector input impedance

| \(Z_{3.4} \) | 4,4 k\(\Omega \)/2,25 pF |

Output resistance

| \(R_{5-11};R_{6-11} \) typ. 3,3 | 3,3 k\(\Omega \) |

Note

Zero crossing shift is defined as the difference between frequencies \(f_{o1} \) at \(V_i = 1 \) mV and \(f_{o2} \) at \(V_i = 30 \) \(\mu \)V.
CHARACTERISTICS (continued)

Side response suppression

<table>
<thead>
<tr>
<th>Voltage (Vp)</th>
<th>Input voltage for 10 dB side response suppression at S1 = 'on', adjust R1 so (V_{10-16} = 1.3) V at (V_i = 0; S1 = 'off'; R4 = 3.9) kΩ</th>
<th>(V_{i\text{rms}}) typ.</th>
<th>(V_{i\text{rms}}) typ.</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 V</td>
<td>(V_{i\text{rms}} = 35) μV</td>
<td>30 μV</td>
<td></td>
</tr>
<tr>
<td>15 V</td>
<td>(V_{i\text{rms}} = 30) μV</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Side response suppression level

- \(\Delta f = \pm 15 \) kHz; \(V_{i\text{rms}} = 1 \) mV
- Control voltage for \(\Delta V_o = -1 \) dB
- Control voltage for \(\Delta V_o = -10 \) dB

Muting

- Output signal muting at S2 = 'on'; reference signal at S2 = 'off';
- \(V_{i\text{rms}} = 1 \) mV; \(\Delta f = \pm 75 \) kHz; \(R4 = 3.9 \) kΩ

Field-strength indication

- Output voltages (d.c. value)
 - \(V_i = 0; I_{8-9} = 0; R_{8-16} = 4.3 \) kΩ
 - \(V_{9-16} \) typ. 1.75 V
 - \(V_{8-16} \) typ. 1.90 V

- Field-strength indicator current
 - \(R_{\text{indicator}} = 2 \) kΩ;
 - \(I_{8-9} \) typ. > 130 μA

- Output resistance
 - \(R_o \) typ. 810 Ω
 - \(R_{9-16} \) typ. 3.7 kΩ

Stereo decoder switching voltage

- Reference voltage; without load: \(I_7 = 0 \)
- Output voltage: \(I_{10} = I_{10\text{max}} \)
- Available output current
 - \(-I_{10\text{max}} \) typ. 0.45 mA

- Output voltage as a function of the i.f. input voltage
 - \(R_{10-16} = 3.9 \) kΩ; \(R1 = 5 \) kΩ
 - \(\Delta V_{10-16} \) typ. -0.9 V/20 dB

- Input voltage for \(V_{10-16} = 0.8 \) V
 - \(V_i\text{rms} < 150 \) μV
 - \(V_i\text{rms} > 0.5 \) mV

- Input voltage for \(V_{10-16} = 1.3 \) V
 - \(V_i\text{rms} < 1.3 \) mV
 - \(V_i\text{rms} > 1.75 \) mV

- Input resistance (pin 7)
 - \(R_{7-16} \) typ. 4 kΩ
Fig. 2 Test circuit; for pc-board see Figs 3 and 4.

(1) Detector coil: see Fig. 18.
(2) De-emphasis:
 mono: C5-6 = 10 nF
 stereo: C5-6 = 220 pF
(3) Capacitor should be connected as short as possible to pin 11 and pc-board ground.

R1 = preset potentiometer for adjusting output voltage V10-16 for mono/stereo switching of stereo decoder.
R2 = preset potentiometer for adjusting the zero level of the field-strength indicator current.
R3 = preset potentiometer for adjusting the maximum level of the field-strength indicator current.
R4 = preset potentiometer for adjusting the side response suppression.

S1 = side response suppression switch.
S2 = output signal muting switch.
For mono: \(C_8 = 10 \text{ nF} \).
For stereo: \(C_8 = 220 \text{ pF} \).

Fig. 3. Circuit diagram showing components arrangement for printed-circuit board (Fig. 4). The circuit is similar to the test circuit of Fig. 2.
Fig. 4 Printed-circuit board component side, showing component layout. For circuit diagram see Fig. 3.
Fig. 5 $V_p = 15\ V; f_m = 1\ kHz; B = 250\ Hz\ to\ 16\ kHz;$ typical values.

Fig. 6 A.M. rejection; f.m.: $\Delta f = \pm 15\ kHz; f_m = 70\ Hz$.

a.m.: $m = 30\%; f_m = 1\ kHz$; simultaneously modulated.

February 1980
Fig. 7 Total distortion as a function of frequency deviation; single tuned circuit with $Q_L = 20$; $f_m = 1$ kHz; $C_{5.6} = 220$ pF.

Fig. 8 Total distortion as a function of detuning; single tuned circuit with $Q_L = 20$; $f_m = 1$ kHz; $C_{5.6} = 220$ pF.
Fig. 9 Field-strength indication output voltages as a function of i.f. input voltage; R2 adjusted so $V_{8-9} = 0$ at $V_i = 0$; $R_{\text{indicator}} + R2 = 2 \, \text{k}\Omega$; for V_{8-16}^* definition see Fig. 11.
Hi-fi f.m./i.f. amplifier

Fig. 9 Scale division of indicator as a function of i.f. input voltage; R2 adjusted so \(V_{b.g} = 0 \) at \(V_i = 0 \); \(R_{\text{indicator}} = 2 \, \text{k}\Omega \); R3 adjusted at indication 100%; indicator current = 140 \(\mu \text{A} \); see Fig. 11.

Fig. 11 Circuit diagram showing field-strength indicator adjustment components.
Fig. 12 Stereo decoder switching voltage as a function of i.f. input voltage; $R_4 = 3.9\, \text{k}\Omega$; $\ldots\ldots$ R_1 adjusted so $V_{10-16} = 0$ at $V_i = 0$; see Fig. 13.

Fig. 13 Circuit diagram showing stereo decoder switching voltage adjustment.
Hi-fi f.m./i.f. amplifier

Fig. 14 Supply current consumption.

Fig. 15 Output voltage range.

Fig. 16 A.F. output voltage; $\Delta f = \pm 15$ kHz; $f_m = 1$ kHz; $V_i = 1$ mV.

Fig. 17 Total distortion; $f_m = 1$ kHz; $V_i = 1$ mV; $C_{5-6} = 220$ pF.
Fig. 18 Example of the TCA420A when using a detector with two tuned circuits; \(f_0 = 10.7 \) MHz; \(L_1 \approx L_2 = 0.4 \, \mu \text{H}; \, Q_0 = 70. \)

Adjustment of the detector:
When having an i.f. input signal on top of the limiter capability, \(L_2 \) should be detuned, \(L_1 \) should be adjusted to minimum distortion, and then \(L_2 \) to minimum distortion.

Fig. 19 Total distortion as a function of detuning; circuit as Fig. 18; \(f_m = 1 \) kHz; \(C_{5-6} = 220 \) pF. \(V_0 = 500 \) mV for a frequency deviation \(\Delta f = \pm 75 \) kHz and \(\Delta_{\text{tot}} < 0.1\% \).
APPLICATION INFORMATION

Fig. 20 I.F. coupling circuit, using LC filter; $L_1 = L_2 = 7 + 7$ turns h.f. litz wire (5 x 0,04); $L_3 = 3$ turns h.f. litz wire wound on L_2 (5 x 0,04).

Fig. 21 I.F. coupling circuit, using ceramic filter; $L_1 = 14$ turns h.f. litz wire (5 x 0,04), tab at 3 turns.
APPLICATION INFORMATION (continued)

(1) For mono: $C_{5-6} = 10 \text{nF}$.
For stereo: $C_{5-6} = 220 \text{ pF}$.

Fig. 22 Application example of using TCA420A.
INTEGRATED VOLTAGE STABILIZER

The TCA530 is an adjustable 30 V integrated circuit voltage stabilizer for use with variable capacitance diodes. The circuit features: continuous short-circuit protected output, a.f.c. control voltage input, internal switch-on delay (can be adjusted externally), pre-stabilization and crystal temperature control (temperature sensor and heater).

QUICK REFERENCE DATA

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input (supply) voltage range (for $R_1 = 3.3 \text{ k}\Omega$)</td>
<td>$V_I = V_P$ 50 to 68 V</td>
</tr>
<tr>
<td>Output voltage</td>
<td>$V_O = V_{6-16}$ typ. 30 V</td>
</tr>
<tr>
<td>Amplitude range of output voltage for a.f.c.</td>
<td>ΔV_{6-16} typ. ±0.75 V</td>
</tr>
<tr>
<td>Variation of output voltage as a function of:</td>
<td></td>
</tr>
<tr>
<td>- input (supply) voltage variations</td>
<td>$\Delta V_{6-12}/\Delta V_I$ typ. 0.2 mV/V</td>
</tr>
<tr>
<td>- output current variations</td>
<td>$\Delta V_{6-12}/\Delta I_6$ typ. 0.5 mV/mA</td>
</tr>
<tr>
<td>- temperature variations</td>
<td>$\Delta V_{6-12}/\Delta T_{\text{amb}}$ typ. 0.1 mV/K</td>
</tr>
<tr>
<td>- heater voltage variations</td>
<td>$\Delta V_{6-12}/\Delta V_{1-16}$ typ. 0.2 mV/V</td>
</tr>
<tr>
<td>Output current</td>
<td>$I_6 - I_Q$ typ. 3.0 mA</td>
</tr>
<tr>
<td>Allowable output voltage range</td>
<td>$V_O = V_{6-16}$ 25 to 30 ±0.75 V</td>
</tr>
<tr>
<td>Allowable output current range</td>
<td>I_6 0 to 4.6 mA</td>
</tr>
</tbody>
</table>

Fig. 1 Block diagram.

PACKAGE OUTLINE

16-lead DIL; plastic (SOT-38).
RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Voltages: pin 1 (heater voltage) \(V_{1-16} \) 0 to 20 V

pin 3 (muting switch supply) \(V_{3-16} \) max. 15 V

pins 10 and 11 (a.f.c. input control voltage) \(\pm V_{10-11} \) max. 6 V

\(\pm I_3 \) max. 5 mA

Currents: pin 3 \(I_4 \) max. 500 /\(\mu \)A

pin 4 \(I_5 \) max. 25 mA

pin 5 \(I_6 \) max. 30 mA

pin 6 \(I_8 \) max. 500 /\(\mu \)A

pin 8 \(I_{10} \) max. 500 /\(\mu \)A

pin 10 \(I_{11} \) max. 500 /\(\mu \)A

pin 11 \(I_{14} \) max. 15 mA

pin 14

Total power dissipation (excluding heater power)
at \(T_{amb} = 60 \, ^\circ C \)

\(P_{tot} \) max. 500 mW

Storage temperature \(T_{stg} \) -55 to +150 \(^\circ C \)

Operating ambient temperature \(T_{amb} \) -20 to +80 \(^\circ C \)

CHARACTERISTICS

\(V_{6-12} = 30 \, V; \ V_{10-12} = V_{11-12} = 10 \, V; \ V_{1-16} = 15 \, V; \ T_{amb} = 25 \, ^\circ C; \) measured in Fig. 3.

Voltage control

Input (supply) voltage range*

\(R_1 = 3,3 \, k\Omega; \ I_\Omega = 3,5 \, mA \)

Current consumption

\(I_P \) typ. 8,1 mA

\(I_5 \) typ. \(I_6 + (1,1 \pm 0,3) \) mA

Regulator voltage drop

within operating range of the pre-stabilizer

\(V_{5-6} \) typ. 2,7 V

outside operating range of the pre-stabilizer**

\(V_{5-6} \) < 6 V

\(I_6 \) > 8 mA

Output current (start of current limiting)

\(V_{8-12} \) 18,2 to 21,8 V

Internal reference voltage

\(V_I = V_P \) 50 to 68 V

\(I_P \) typ. 5,2 to 11,0 mA

\(I_5 \) typ. \(I_6 + (1,1 \pm 0,3) \) mA

* For other input (supply) voltage ranges and output currents, the series resistor \(R_1 \) has to be altered (see also Fig. 2).

** The specified output voltage dependency of the input (supply) voltage is not guaranteed outside the operating range of the pre-stabilizer.
Integrated voltage stabilizer

Input current of control amplifier
\[I_8 \]
\[\leq 0.5 \mu A \]
\[< 1 \mu A \]

Variation of output voltage as a function of *
\[\Delta V_{6-12}/\Delta V_1 \] typ. \[0.2 \text{ mV/V} \]
\[\Delta V_{6-12}/\Delta I_6 \] typ. \[0.5 \text{ mV/mA} \]
\[\Delta V_{6-12}/\Delta T_{\text{amb}} \] typ. \[0.1 \text{ mV/K} \]
\[\Delta V_{6-12}/\Delta V_{1-16} \] typ. \[0.2 \text{ mV/V} \]

Hum suppression at \(f = 50 \text{ Hz} \)
\[\text{between input (supply) voltage and pin 6} \]
\[\text{typ.} \quad 80 \text{ dB} \]
\[\text{between pins 5 and 6} \]
\[\text{typ.} \quad 60 \text{ dB} \]
\[\text{between pins 1 and 6} \]
\[\text{typ.} \quad 80 \text{ dB} \]

Output noise voltage at \(f = 10 \text{ Hz to 15 kHz (r.m.s. value)} \) \(V_{n(rms)} \)
\[\leq 50 \mu V \]

A.F.C. control amplifier

Common mode input voltage range
\[V_{10-12} = V_{11-12} \quad 6.0 \text{ to } 18.0 \text{ V} \]

Common mode rejection ratio
\[\text{CMRR} \] typ. \[60 \text{ dB} \]
\[\text{typ.} \quad 0.1 \mu A \]
\[< 0.5 \mu A \]

Input resistance
\[R_{10-11} \] \[> 1 \text{ M}\Omega \]

Ratio between output voltage variation
\[\Delta V_{6-12}/\Delta V_{10-11} \]
\[1.2:1 \]

Amplitude range of output voltage
\[\Delta V_{6-12} \]
\[\pm 0.75 \text{ V} \]
\[\pm 0.5 \text{ to } \pm 1.0 \text{ V} \]

Muting switch

When the crystal temperature has reached approximately its stationary final value, the output of the muting switch (pin 3) becomes high-ohmic. The switching of pin 3 can be delayed by an external RC-circuit at pin 4 or by a switching voltage.

Muting switch ON (pin 3 low-ohmic)

Input voltage
\[V_{4-16} \]
\[< 8 \text{ V} \]

Input current
\[I_{4} \]
\[\text{typ.} \quad 1 \mu A \]
\[\text{typ.} \quad 0.45 \text{ V} \]

Output saturation voltage at \(I_3 = 1 \text{ mA} \)
\[V_{3-16} \text{ sat} \]
\[< 0.6 \text{ V} \]

Muting switch OFF (pin 3 high-ohmic)

Input voltage
\[V_{4-16} \]
\[8 \text{ to } 11 \text{ V} \]

Input current
\[I_{4} \]
\[> 0.1 \mu A \]

Output voltage
\[V_{3-16} \]
\[< 15 \text{ V} \]

Output current
\[I_{3} \]
\[< 1 \mu A \]

Internal switch-on delay
\[t_d \]
\[< 3 \text{ s} \]

* External component value changes are not taken into account.
CHARACTERISTICS (continued)

Crystal temperature control

Heater voltage range

Heater peak current at switching on

Continuous heater current at $V_{1-16} = 15$ V

Continuous heater power

<table>
<thead>
<tr>
<th>V_{1-16}</th>
<th>8 to 20 V</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_{1M}</td>
<td>typ. 230 mA, < 300 mA</td>
</tr>
<tr>
<td>I_1</td>
<td>typ. 40 mA, < 55 mA</td>
</tr>
<tr>
<td>P_h</td>
<td>typ. 600 mW</td>
</tr>
</tbody>
</table>

Fig. 2 Curves to obtain R_i-values for various input (supply) voltages and/or output currents.
Conditions: $V_{6-12} = 30$ V; tolerance of $I_6 = \pm 20\%$; $R_{5-14} = 3,6 \, \Omega$; tolerance of $R_i = \pm 2\%$.
Above the dotted curve a tolerance of $V_1 (Vp)$ of $\pm 15\%$ is allowed.
It is recommended that fixed resistors of the same kind be used for the voltage divider.

The voltage divider of Fig. 4 can be used when a narrow temperature dependency is required.

(2) This capacitor can be applied to increase the internal delay.

(3) This resistor is recommended when the IC is not soldered on a printed-circuit board.

(4) Can be connected to pin 6, for example.

Fig. 3 Test circuit.
Fig. 4 Voltage divider for the narrowest possible temperature dependency.

Fig. 5 Circuit extension by means of a series transistor at the output, for output currents > 4,6 mA.

The following table gives some resistor value examples for various output voltages with $\Delta R/R \leq 2\%$ and $\Delta R_p/R_p \leq 20\%$.

<table>
<thead>
<tr>
<th>V_{Ostab} (V)</th>
<th>R_{p2} (kΩ)</th>
<th>R_{21} (kΩ)</th>
<th>R_{22} (kΩ)</th>
<th>R_{23} (kΩ)</th>
<th>R_{p1} (kΩ)</th>
<th>R_1 (kΩ)</th>
<th>R_2 (kΩ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>100</td>
<td>200</td>
<td>82</td>
<td>300</td>
<td>10</td>
<td>20</td>
<td>10</td>
</tr>
<tr>
<td>30</td>
<td>47</td>
<td>180</td>
<td>82</td>
<td>300</td>
<td>47</td>
<td>100</td>
<td>47</td>
</tr>
<tr>
<td>29</td>
<td>100</td>
<td>220</td>
<td>75</td>
<td>300</td>
<td>22</td>
<td>39</td>
<td>18</td>
</tr>
<tr>
<td>28</td>
<td>47</td>
<td>300</td>
<td>100</td>
<td>430</td>
<td>22</td>
<td>39</td>
<td>15</td>
</tr>
<tr>
<td>27</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>47</td>
<td>68</td>
<td>24</td>
</tr>
<tr>
<td>26</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>22</td>
<td>27</td>
<td>8.2</td>
</tr>
<tr>
<td>25</td>
<td>100</td>
<td>560</td>
<td>91</td>
<td>390</td>
<td>47</td>
<td>47</td>
<td>12</td>
</tr>
<tr>
<td>25</td>
<td>47</td>
<td>620</td>
<td>100</td>
<td>430</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The series resistors R_i and R_i' (see Fig. 3), as well as the input (supply) voltage $V_i (V_p)$, have to be adapted to the chosen output voltages V_{Ostab}.

March 1980
Fig. 6 Application example; f.m. receiver with TCA530 and TCA420A.
CHROMINANCE AMPLIFIER
FOR SECAM OR PAL/SECAM DECODERS

The TCA640 is an integrated chrominance amplifier for either a SECAM decoder or a double standard PAL/SECAM decoder. Switching of the standard is performed internally, controlled by an external applied d.c. signal. In addition to the chrominance amplifier the circuit also incorporates a 7.8 kHz flip-flop and an identification circuit for SECAM. For PAL identification the circuit included in the TBA540 should be used. Furthermore, the TCA640 incorporates a blanking circuit, a burst gating circuit and a colour killer detector.

<table>
<thead>
<tr>
<th>QUICK REFERENCE DATA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltage</td>
</tr>
<tr>
<td>Supply current</td>
</tr>
<tr>
<td>Chrominance input signals (peak-to-peak value)</td>
</tr>
<tr>
<td>Chrominance output signals (peak-to-peak value)</td>
</tr>
<tr>
<td>Burst output (closed a.c.c. loop) (peak-to-peak value)</td>
</tr>
<tr>
<td>System switching signal</td>
</tr>
<tr>
<td>Burst blanking of chrominance signal</td>
</tr>
<tr>
<td>Chrominance blanking at field identification</td>
</tr>
<tr>
<td>Square-wave output (7.8 kHz) (peak-to-peak value)</td>
</tr>
</tbody>
</table>

PACKAGE OUTLINE
16-lead DIL; plastic (SOT-38).

January 1980
RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)

Voltage
Supply voltage V_{14-2} max. 13.2 V

Power dissipation
Total power dissipation P_{tot} max. 625 mW

Temperatures
Storage temperature T_{stg} -25 to +125 °C
Operating ambient temperature T_{amb} -25 to +65 °C

CHARACTERISTICS measured in the circuit on page 6

Supply voltage V_{14-2} typ. 12 V

Required input signals at $V_{14-2} = 12$ V and $T_{amb} = 25$ °C
Chrominance input signal
peak-to-peak value $V_{3-5(p-p)}$

PAL 4 to 80 mV
SECAM 72) to 400 mV

Automatic chrominance control starting V_{16-2} PAL typ. 1.2 V 3)

Flyback pulses for blanking and burst/identification lines-keying

Line flyback pulses (positive)
peak-to-peak value $V_{6-2(p-p)}$ 4.5 to 12 V

Field identification pulses (positive)
peak-to-peak value $V_{7-2(p-p)}$ 4 to 12 V

System switch signal
V_{4-2}

PAL 7 to V_{14-2} V
SECAM 0 to 1 V

Colour killer threshold V_{16-2} PAL typ. 2.5 V

1) When a stabilized power supply of ≤12 V is applied, T_{amb} is max. 75 °C.
2) Start of limiting.
3) A negative-going potential provides a 26 dB a.c.c. range.
4) The line flyback pulses also provide the clock pulses for the flip-flop.
5) The colour killer is operative above the quoted input voltage.
CHARACTERISTICS

(continued)

Obtainable output signals

Chrominance output signals
- peak-to-peak value
 - $V_{15\text{-}2}(p\text{-}p)$: PAL, 425 to 575 mV
 - $V_{1\text{-}2}(p\text{-}p)$: SECAM, 1.8 to 2.3 V

Phase difference between output pins
- $\Delta \phi_{15\text{-}1}$: PAL, 170° to 190°

Burst signal (peak-to-peak value)
- $V_{13\text{-}2}(p\text{-}p)$: PAL, typ.

Identification signal
- peak-to-peak value
 - $I_{11}(p\text{-}p)$: SECAM, 1.4 to 2.4 mA

Output resistance
- $R_{11\text{-}2}$: 2 to 2.9 kΩ

Flip-flop signal
- peak-to-peak value
 - $V_{12\text{-}2}(p\text{-}p)$: 2.5 to 3.5 V

Colour killer
- killed
 - $V_{8\text{-}2}$: < 0.5 V
 - I_8: < 10 mA

- unkill
 - $V_{8\text{-}2}$: < $V_{14\text{-}2}$ V
 - I_8: < 10 μA

Bandwidth of chrominance amplifier (-1 dB)
- at a carrier frequency of 4.2 MHz: > ± 1 MHz

Blanking
- burst rejection: PAL, > 40 dB
- rejection identification lines with field identification: SECAM, > 40 dB

1) Over the a.c.c. control range the phase difference varies less than 2.5°.

2) The burst is kept constant at 1 V peak-to-peak by automatic gain control.
TCA640

APPLICATION INFORMATION

Pinning

1. Chrominance output
2. Earth (negative supply)
3. Chrominance input
4. System switch input
5. Chrominance input
6. Line fly-back pulse input
7. Field identification pulse input
8. Colour killer output
9. Identification integrating
10. Capacitor (SECAM)
11. Identification tank circuit (SECAM)
12. Flip-flop output
13. Burst output (PAL)
14. Supply voltage (12 V)
15. Chrominance output
16. A.C.C. input

September 197
APPLICATION INFORMATION (continued)

The function is quoted against the corresponding pin number

1. **Chrominance output** (in conjunction with pin 15)

 A balanced output is available at pins 1 and 15.
 At SEACAM reception a limited signal of 2 V peak-to-peak is available, starting from an input voltage of 15 mV peak-to-peak.
 At PAL reception the output signal is 500 mV peak-to-peak for a burst signal of 1 V peak-to-peak.
 An external d.c. network is required which provides negative feedback to pin 3. The same holds for the feedback from pin 15 to pin 5.
 The figures for input and output signals are based on a 100% saturated colour bar signal.

2. **Negative supply** (earth)

3. **Chrominance input** (in conjunction with pin 5)

 The input signal is derived from a bandpass filter which provides the required "bell" shape bandpass for the SEACAM signal and a flat bandpass for the PAL signal.
 The input signal can be supplied either in a balanced mode or single ended. Both inputs (pins 3 and 5) require a d.c. potential of about 2.5 V obtained from a resistive divider connected to output pins 1 and 15. The figures for the input signals are based on a 100% saturated colour bar signal and a burst-to-chrominance ratio of 1:3 of the input signal (PAL).

4. **System switch input**

 Between 7 V and the supply voltage, the gain of the chrominance amplifier is controlled by the a.c.c. voltage at pin 16.
 The chrominance amplifier then provides linear amplification required for the PAL signal.
 Between 0 V and 1 V the chrominance amplifier operates as a limiter for the SEACAM signal.

5. **Chrominance input** (see pin 3)

6. **Line fly-back pulse input** (in conjunction with pin 11)

 Positive going pulses provide
 - blanking of the chrominance signal at the outputs (pins 1 and 15).
 - burst gating for both PAL and SEACAM.
 The carrier signal present during the second half of the back porch of the SEACAM signal is gated. It provides line identification when the circuit L1C1 (see circuit on page 6) is tuned to 4.25 MHz (at C1 = 470 pF).
 - trigger signal for the flip-flop.

7. **Field identification pulse input** (in conjunction with pin 11)

 Like the line fly-back pulses, positive going identification pulses provide blanking and burst gating.
 To operate the TCA640 on the identification lines (SEACAM) in the field blanking period
 the circuit L1C1 (see circuit on page 6) should be tuned to 3.9 MHz and the capacitor C1 should be increased to 1 nF. The field fly-back pulse should be shaped so that its amplitude exceeds 4 V during the identification lines.

April 1974
APPLICATION INFORMATION (continued)

8. **Colour killer output**

This pin is driven from the collector of an internal switching transistor and requires an external load resistor connected to the supply voltage. The killer is operative when the a.c.c. voltage exceeds the threshold, when the SECAM chrominance signal at the input is below the limiting level or when the flip-flop operates in the wrong phase.

9. **Identification integrating capacitor (SECAM)**

10. **Identification integrating capacitor (SECAM)**

11. **Identification detector tank circuit (see pins 6 and 7)**

12. **Flip-flop output**

A square wave of 7.8 kHz with an amplitude of 3 V is available at this pin. An external load resistor is not required.

13. **Burst output (PAL)**

A 1 V peak-to-peak burst (kept constant by the a.c.c. system) is produced here.

14. **Supply voltage (12 V)**

Correct operation occurs within the range 10.2 to 13.2 V. The power dissipation must not exceed 625 mW at 65 °C ambient temperature.

15. **Chrominance output (see pin 1)**

16. **A.C.C. input**

With the system switch input (pin 4) connected for PAL operation, a negative going potential gives a 26 dB range of a.c.c. starting at +1.2 V. During SECAM operation, the voltage at the input should not exceed +0.5 V, otherwise the SECAM identification circuit and the colour killer become inoperative.
The TCA650 is an integrated synchronous demodulator for both the SECAM and PAL chrominance signals. Switching of the standard is performed internally, controlled by an external applied d.c. signal. In addition to the synchronous demodulator, which delivers colour difference signals, the circuit also incorporates:

- a PAL matrix, used for adding the delayed and non-delayed signals to obtain separately the (R-Y) and (B-Y) components of the chrominance signal.
- a PAL switch, which reverses the phase of the (R-Y) component of the chrominance signal on alternating lines.
- a SECAM switch, which performs the separation of the DR and DB components of the chrominance signal by switching the delayed and non-delayed signals.
- a SECAM limiter.

<table>
<thead>
<tr>
<th>QUICK REFERENCE DATA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltage</td>
</tr>
<tr>
<td>Supply current</td>
</tr>
<tr>
<td>Chrominance input signals (peak-to-peak value)</td>
</tr>
<tr>
<td>PAL</td>
</tr>
<tr>
<td>$V_{1-2(p-p)}$</td>
</tr>
<tr>
<td>$V_{3-2(p-p)}$</td>
</tr>
<tr>
<td>System switch input</td>
</tr>
<tr>
<td>PAL</td>
</tr>
<tr>
<td>V_{4-2}</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Colour difference output signals (peak-to-peak value)</td>
</tr>
<tr>
<td>PAL</td>
</tr>
<tr>
<td>$(R-Y)$: $V_{12-2(p-p)}$</td>
</tr>
<tr>
<td>$(B-Y)$: $V_{10-2(p-p)}$</td>
</tr>
<tr>
<td>Reference input signals (PAL) (peak-to-peak value)</td>
</tr>
<tr>
<td>PAL</td>
</tr>
<tr>
<td>$V_{6-2(p-p)}$</td>
</tr>
<tr>
<td>$V_{7-2(p-p)}$</td>
</tr>
<tr>
<td>Square-wave input (peak-to-peak value)</td>
</tr>
<tr>
<td>PAL</td>
</tr>
<tr>
<td>$V_{16-2(p-p)}$</td>
</tr>
</tbody>
</table>

PACKAGE OUTLINE
16-lead DIL; plastic (SOT-38).

January 1980
RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)

Voltage
Supply voltage \(V_{14-2} \) max. 13.2 V

Power dissipation
Total power dissipation \(P_{\text{tot}} \) max. 510 mW

Temperatures
Storage temperature \(T_{\text{stg}} \) -25 to +125 °C
Operating ambient temperature \(T_{\text{amb}} \) -25 to +65 °C

CHARACTERISTICS measured in the circuit on page 6

Supply voltage \(V_{14-2} \) typ. 12 V 10.2 to 13.2 V

Required input signals at \(V_{14-2} = 12 V \) and \(T_{\text{amb}} = 25 \) °C

Chrominance input signal
peak-to-peak value
\(V_{1-2}(p-p) \) \(V_{3-2}(p-p) \) PAL SECAM 35 to 75 mV 150 to 400 mV

Input impedance
\(|Z_{1-2}| \) \(|Z_{3-2}| \) 1.2 to 2.6 kΩ

PAL matrix
Gain from both inputs to pin 13 2.3 to 3.3
Gain from both inputs to pin 15 2.6 to 3.6
Gain difference from line-to-line < 5 %
Phase errors from line-to-line in the (R-Y) output for zero error in the (B-Y) output < 2.5°

Output impedance
\(|Z_{13-2}| \) \(|Z_{15-2}| \) < 100 Ω

SECAM permutator
Diaphotie < -46 dB

Output signal (peak-to-peak value)
\(V_{13-2}(p-p) \) \(V_{15-2}(p-p) \) 1.62 to 2.2 V

Output impedance
\(|Z_{13-2}| \) \(|Z_{15-2}| \) < 100 Ω

1) When a stabilized power supply of ≤ 12 V is applied, \(T_{\text{amb}} \) is max. 75 °C.
2) At an input voltage of 0, 15 V; at an input voltage > 0, 2 V the figure is 1, 7 V.
CHARACTERISTICS (continued)

Demodulator

Chrominance input signal amplitude

PAL: (B-Y); peak-to-peak value \(V_{9-2}(p-p) \)
(R-Y); peak-to-peak value \(V_{11-2}(p-p) \)

SECAM: peak-to-peak value
\[
\begin{align*}
V_{9-2}(p-p) \\
V_{11-2}(p-p) \\
\end{align*}
\]

Input impedance
\[
|Z_{9-2}| \\
|Z_{11-2}| \\
\]

Reference input signal amplitude

PAL: peak-to-peak value \(V_{6-2}(p-p) \)
V_{7-2}(p-p)

SECAM: peak-to-peak value
\[
\begin{align*}
V_{5-2}(p-p) \\
V_{8-2}(p-p) \\
\end{align*}
\]

Input impedance
\[
|Z_{5-2}|; |Z_{7-2}| \\
|Z_{6-2}|; |Z_{8-2}| \\
\]

Colour difference output signal

(R-Y); peak-to-peak value \(V_{12-2}(p-p) \)

(B-Y); peak-to-peak value \(V_{10-2}(p-p) \)

Output impedance
\[
|Z_{10-2}| \\
|Z_{12-2}| \\
\]

Diaphotie at SECAM operation

Diaphotie of the total circuit at frequencies corresponding to saturated green
\(D_R = 4,72 \text{ MHz} \) and \(D_B = 4,04 \text{ MHz} \)

Square wave input

peak-to-peak value \(V_{16-2}(p-p) \)

Input impedance
\(|Z_{16-2}| \)

System switch input 3)

PAL:

SECAM:

1) Limiting starts at the quoted value.

2) The peak-to-peak clipping level for PAL is about 4,7 V for (B-Y) and 3 V for (R-Y).
The discriminator characteristic allows a maximum peak-to-peak output signal of
3,6 V for (B-Y) and 2,4 V for (R-Y) (SECAM).

3) The switching signal is applied to pin 4 via a resistor of 2,7 kΩ (±10%).
APPLICATION INFORMATION

Pinning

1. Chrominance input
2. Earth (negative supply)
3. Chrominance input
4. System switch input
5. Reference (R-Y) input SECAM
6. Reference (R-Y) input PAL
7. Reference (B-Y) input PAL
8. Reference (B-Y) input SECAM
9. Chrominance (B-Y), D_B input
10. Colour difference (B-Y) output
11. Chrominance (R-Y), D_R input
12. Colour difference (R-Y) output
13. Chrominance (R-Y), D_R output
14. Supply voltage (12 V)
15. Chrominance (B-Y), D_B output
16. Square wave input

September 1976
The function is quoted against the corresponding pin number

1. Chrominance input
 The blanked composite chrominance signal from pin 1 of the TCA640 is applied to this input via a resistive divider.

2. Negative supply (earth)

3. Chrominance input
 The blanked composite chrominance signal from pin 15 of the TCA640 is applied to this input via a delay-line, which has a delay time of 64 μs.

4. System switch input
 The control voltage for switching the standard is applied to this input via a resistor of 2.7 kΩ (±10%). A decoupling capacitor of at least 10 nF is recommended. Between 7 V and the supply voltage the circuit operates in the PAL mode, whereas between 0 V and 1 V the mode SECAM is selected.

5. Reference input for the (R-Y) demodulator
 The SECAM reference signal is applied to this pin. The reference signal is obtained from pin 11 via a tank circuit. The tank circuit is tuned such that the level at the (R-Y) output (pin 12) during black (f₀ = 4.4 MHz) equals the level during blanking (no signal). The output voltage amplitude at pin 12 can be adjusted by damping the tank circuit.

6. Reference input for the (R-Y) demodulator
 A PAL reference signal having (R-Y) phase is applied to this pin.

7. Reference input for the (B-Y) demodulator
 A PAL reference signal having (B-Y) phase is applied to this pin.

8. Reference input for the (B-Y) demodulator
 The SECAM reference signal is applied to this pin. The reference signal is obtained from pin 15 via a tank circuit. The tank circuit is tuned such that the level at the (B-Y) output (pin 10) during black (f₀ = 4.25 MHz) equals the level during blanking (no signal). The output voltage amplitude at pin 10 can be adjusted by damping the tank circuit.

9. Chrominance input to the (B-Y), Dₜ demodulator
 The output signal of pin 15 is applied via a coupling capacitor of 4.7 nF.

10. Output of the (B-Y) demodulator
 The output signal of the balance demodulator contains an r.f. ripple of twice the chrominance frequency to be filtered by a π filter. At SECAM the required de-emphasis circuit should be applied.

11. Chrominance input to the (R-Y), Dₜ demodulator
 The output signal of pin 13 is applied via a coupling capacitor of 4.7 nF.
APPLICATION INFORMATION (continued)

12. **Output of the (R-Y) demodulator**

 See pin 10.

13. **Chrominance (R-Y), DR output**

 The (R-Y) component of the chrominance signal (DR component at SECAM) is present at this pin.
 The signal is applied to the input of the (R-Y) demodulator (pin 11) and to the tank circuit for the SECAM reference signal.
 The emitter follower output should be loaded with a 2.7 kΩ resistor to obtain an output impedance of <100 Ω.

14. **Supply voltage (12 V)**

 Correct operation occurs within the range 10.2 to 13.2 V.
 The power dissipation must not exceed 510 mW at 65 °C ambient temperature.

15. **Chrominance (B-Y), DB output**

 The (B-Y) component of the chrominance signal (DB component at SECAM) is present at this pin.
 The signal is applied to the input of the (B-Y) demodulator (pin 9) and to the tank circuit for the SECAM reference signal.
 The emitter follower output should be loaded with a 2.7 kΩ resistor to obtain an output impedance of <100 Ω.

16. **Square wave input**

 A square wave with an amplitude of 3 V drives the PAL switch or the SECAM permutator.
 The square wave is available at pin 12 of the TCA640.
CONTRAST, SATURATION AND BRIGHTNESS
CONTROL CIRCUIT FOR COLOUR DIFFERENCE AND
LUMINANCE SIGNALS

The TCA660B is an integrated circuit performing the control functions of contrast, saturation and brightness in colour television receivers.

Contrast is controlled by three tracking electronic potentiometers; one for the luminance signal and the other two for the (R-Y) and (B-Y) colour difference signals.

In addition two tracking electronic potentiometers provide the saturation control of the colour difference signals.

Brightness is controlled by varying the black level of the luminance signal at the output.

An inverting amplifier is also included for matrixing the (G-Y) signal from the (R-Y) and (B-Y) colour difference signals.

QUICK REFERENCE DATA

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Unit</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltage</td>
<td>V_{13-4}</td>
<td>V</td>
<td>nom. 12</td>
</tr>
<tr>
<td>Supply current</td>
<td>I_{13}</td>
<td>mA</td>
<td>nom. 35</td>
</tr>
<tr>
<td>Luminance input current</td>
<td>I_{16}</td>
<td>mA</td>
<td>typ. 0.7</td>
</tr>
<tr>
<td>Luminance output voltage</td>
<td>V_{1-4}(p-p)</td>
<td>V</td>
<td>typ. 3</td>
</tr>
<tr>
<td>Black level (nominal value)</td>
<td>V_{1-4}</td>
<td>V</td>
<td>typ. 4.2</td>
</tr>
<tr>
<td>Brightness control (around nominal black level)</td>
<td>V_{1-4}</td>
<td>V</td>
<td>+1 to -2</td>
</tr>
<tr>
<td>Gain of the (R-Y) and (B-Y) amplifier</td>
<td></td>
<td>dB</td>
<td>typ. 5</td>
</tr>
<tr>
<td>Gain of the (G-Y) amplifier</td>
<td></td>
<td>dB</td>
<td>typ. 1</td>
</tr>
<tr>
<td>Contrast control range</td>
<td></td>
<td>dB</td>
<td>+3 to -20</td>
</tr>
<tr>
<td>Saturation control range</td>
<td></td>
<td>dB</td>
<td>+6 to -20</td>
</tr>
</tbody>
</table>

1) At nominal contrast setting (max. contrast -3 dB)
2) At nominal saturation control setting (max. saturation -6 dB)
3) Nominal contrast and nominal saturation are specified as 0 dB.

PACKAGE OUTLINE

16-lead DIL; plastic (SOT-38).

January 1980
RATINGS Limiting values in accordance with the Absolute Maximum System (IEC134)

Voltage
Supply voltage \(V_{13-4} \text{ max.} 13,2 \, \text{V} \)

Power dissipation
Total power dissipation \(P_{\text{tot}} \text{ max.} 600 \, \text{mW} \)

Temperatures
Storage temperature \(T_{\text{stg}} \text{ -25 to +125 } \, \text{°C} \)
Operating ambient temperature \(T_{\text{amb}} \text{ -25 to +65 } \, \text{°C} \text{ 1) } \)

CHARACTERISTICS measured in the circuit on page 7

Supply voltage \(V_{13-4} \text{ typ.} 12 \, \text{V} \)

Required input signals at \(V_{13-4} = 12 \, \text{V} \) and \(T_{\text{amb}} = 25 \, \text{°C} \)

Luminance input current
black-to-white positive video signal \(I_{16} \text{ typ.} 0,7 \, \text{mA} \)

Input impedance at \(I_{16} = 1 \, \text{mA} \) \(|Z_{16-4}| \text{ 60 to 90 } \, \Omega \)

Input impedance variation for an input current variation \(\Delta I_{16} = \pm 0,5 \, \text{mA} \) \(|\Delta Z_{16-4}| \text{ } \pm 25 \, \Omega \)

Colour difference input voltage
(R-Y); peak-to-peak value \(V_{9-4(p-p)} \text{ < } 0,7 \, \text{V} \)
(B-Y); peak-to-peak value \(V_{8-4(p-p)} \text{ < } 0,9 \, \text{V} \)

Input voltage variation before clipping of the output voltage occurs
\(\Delta V_{8-4} \text{ typ. } 0,8 \, \text{V} \)

Input impedance
\(|Z_{8-4}| \text{ 3,5 to 6,5 } \, \text{k} \Omega \)
\(|Z_{9-4}| \text{ 3,5 to 6,5 } \, \text{k} \Omega \)

Blanking pulse (peak value) \(V_{3-4M} \text{ -1,5 to } -10 \, \text{V} \)
Black level reinsertion pulse (peak value) \(V_{3-4M} \text{ +2 to } +12 \, \text{V} \text{ 2) } \)
Black level clamp pulse (peak value) \(V_{2-4M} \text{ +1 to } +12 \, \text{V} \)

Luminance output voltage at nominal contrast
black-to-white positive video signal; peak-to-peak value \(V_{1-4(p-p)} \text{ 2 to } 4 \, \text{V} \text{ 3) } \)

1) When a stabilized power supply of \(\leq 12 \, \text{V} \) is applied, \(T_{\text{amb}} \) is max. \(75 \, \text{°C} \).
2) During scan \(V_{3-4} \) must be kept lower than \(0,7 \, \text{V} \) (positive and negative) to avoid blanking of the luminance signal.
3) Nominal contrast is specified as maximum contrast \(-3 \, \text{dB}\).
CHARACTERISTICS (continued)

Black level at nominal brightness setting

V_{1-4} typ. 4.2 V $^1)$

Black level variation with brightness setting

ΔV_{1-4} +1 to -2 V

Contrast control voltage range

V_{5-4} See graph on page 6

Black level variation with contrast control

$\Delta V_{1-4} < 40$ mV $^2)$

Black level variation with video contents

$\Delta V_{1-4} < 20$ mV $^3)$

Variation between video black level and reinserted black level

$V_{1-4} < \pm 20$ mV

Blanking level with respect to nominal brightness

$V_{1-4} -0.8$ to -1.2 V

Bandwidth (-3 dB) of luminance signal B

$B > 6$ MHz

Colour difference output signal for nominal contrast and saturation $^4)$ $^5)$

(R - Y); peak-to-peak value

$V_{10-4} \text{ (p-p)}$ typ. 1.25 V $^6)$

(B - Y); peak-to-peak value

$V_{7-4} \text{ (p-p)}$ typ. 1.6 V $^6)$

D.C. output level

V_{7-4} V_{10-4} typ. 6.1 V

Output level variation with contrast and saturation control

ΔV_{7-4} $\Delta V_{10-4} < 500$ mV

Permissible d.c. load impedance

$|Z_{7-4}|$ $|Z_{10-4}| > 4$ kΩ

Saturation control voltage range

V_{6-4} See graph on page 6

Saturation control at $V_{6-4} < 0.5$ V

< -50 dB

Bandwidth (-3 dB) of colour difference signal B

> 2.5 MHz

$^1)$ Nominal brightness setting $V_{14-4} = 5.7$ V.

$^2)$ Only valid if the input current does not exceed 0.5 mA during black.

$^3)$ For a.c. coupling only.

$^4)$ Nominal contrast is specified as maximum contrast -3 dB.

$^5)$ Nominal saturation is specified as maximum saturation -6 dB.

$^6)$ This value is obtained at the specified maximum input voltage.
CHARACTERISTICS (continued)

(G-Y) amplifier

- input voltage (peak-to-peak value)
 - output voltage (peak-to-peak value)
 - voltage gain

Tracking during contrast and saturation control

- at a contrast decrease of 20 dB
 - change of the ratio \(\frac{(R-Y)}{(B-Y)} \) < ±1 dB
 - change of the ratio \(\frac{Y}{(B-Y)} \) 0 to 4 dB

- at a saturation decrease of 20 dB
 - change of the ratio \(\frac{(R-Y)}{(B-Y)} \) < ±1 dB

Cross coupling

- luminance signal to colour difference signal < -40 dB
- (B-Y) signal to (R-Y) signal < -30 dB
- colour difference signal to luminance signal < -40 dB

Contrast control of luminance amplifier Saturation control of chrominance amplifier

November 1976
APPLICATION INFORMATION

Pinning
1. Luminance signal output
2. Black level clamp pulse input
3. Blanking pulse input
4. Earth (negative supply)
5. Contrast control input
6. Saturation control input
7. (B-Y) signal output
8. (B-Y) signal input
9. (R-Y) signal input
10. (R-Y) signal output
11. (G-Y) signal input
12. (G-Y) signal output
13. Supply voltage (12 V)
14. Brightness control input
15. Black level clamp capacitor
16. Luminance signal input

November 1976
APPLICATION INFORMATION

The function is quoted against the corresponding pin number

1. Luminance signal output
 A positive video signal of 3 V peak-to-peak is available at nominal contrast setting. The black level is clamped internally on the back porch. By means of the brightness control the black level can be varied between 2.2 V and 5.2 V. The blanking level of the output signal will assume a value of 3.0 to 3.4 V.

2. Black level clamp pulse input
 A positive pulse with a peak value between +1 V and +12 V will clamp the black level of the video signal to a nominal level of 4.2 V. The pulse may only be present during the back porch and should have a duration of about 3 µs.

3. Blanking pulse input
 Two modes operation can be selected by the choice of the amplitude of the pulse applied:
 - blanking
 - black level reinsertion

 Blanking of the luminance output signal is obtained when the peak value of the pulse ranges from −1,5 to −10 V. An artificial black level of nominally +4.2 V is inserted in the luminance output signal during the blanking period when the peak value of the pulse ranges from +2 to +12 V. During scan the amplitude at pin 3 should remain between +0.7 V and −0.7 V to avoid blanking.

4. Negative supply (earth)

5. Contrast control input
 The contrast curve is given on page 4. To avoid damaging of the circuit by flash-over pulses, picked-up by the leads, it is recommended that a capacitor of 100 nF be connected between this pin and earth.

6. Saturation control input
 The control curve is given on page 4. To avoid damaging of the circuit by flash-over pulses, picked-up by the leads, it is recommended that a capacitor of 100 nF be connected between this pin and earth.

7. (B-Y) signal output
 The amplitude of this signal is controlled by the contrast setting and the saturation setting simultaneously. At nominal contrast and nominal saturation setting an amplitude of 1.6 V peak-to-peak is obtained at an input amplitude of 0.9 V peak-to-peak. The average level is typically 6.1 V.

8. (B-Y) signal input
 The signal has to be a.c. coupled to the input.
 To cope with the variation of picture contents an input voltage margin of ±0.8 V is provided, whereas the input signal has a typical value of ±0.45 V for a saturated colour bar signal.
APPLICATION INFORMATION (continued)

9. (R-Y) signal input

The signal has to be a.c. coupled to the input. To cope with the variation of picture contents an input voltage margin of ±0.8 V is provided, whereas the input signal has a typical value of ±0.35 V for a saturated colour bar input.

10. (R-Y) signal output

The amplitude of this signal is controlled by the contrast setting and saturation setting simultaneously. At nominal contrast and nominal saturation setting an amplitude of 1.25 V peak-to-peak is obtained at an input amplitude of 0.7 V peak to peak. The average level is typically 6.1 V.

11. (G-Y) signal input

The (G-Y) signal is obtained by matrixing a part of the (R-Y) and (B-Y) signals in a resistor network. The input may range from 1 to 6.5 V. An average level of typical 5.9 V is required to produce an average output level of 6.1 V. The gain of the inverter stage is typically 1.

12. (G-Y) signal output

An inverted signal with an amplitude of maximum 1 V peak-to-peak is available at this pin.

13. Supply voltage (12 V)

Correct operation occurs within the range 10.2 to 13.2 V. The power dissipation must not exceed 600 mW at 65 °C ambient temperature.

14. Brightness control input

The black level of the luminance output signal tracks the potential applied to this pin. A typical value for setting the brightness control is 5.7 V, for which a black level of 4.2 V is obtained. It is recommended that a capacitor of at least 10 µF be connected between this pin and earth.

15. Black level clamp capacitor

The level of the back porch of the luminance output signal is stored in an external capacitor of about 0.68 µF; the latter to be connected between pins 14 and 15.

16. Luminance signal input

A positive luminance signal of 0.7 mA peak-to-peak between black and white level drives the luminance amplifier. A black level of about 0.3 mA is recommended. For a.c. coupling a bias resistor to the supply line is required to bias the amplifier properly. The resistance depends on the signal amplitude e.g.: 15 kΩ is recommended for a input signal of 0.7 mA peak-to-peak.
MULTI-STABILIZER FOR ELECTRONIC TUNING

The TCA750 is basically a stabilizer for use in electronic tuning systems. The circuit is combined with an external reference diode which entirely determines the thermal stability of the system and can be adapted to the stability requirements of AM, FM or TV receivers.

The reference diode BZV38 used in conjunction with the TCA750 form an ideal pair for FM tuners in radio or TV receivers.

Additional to a stabilized voltage \(V_{O1} \) for the electronic tuning system, the TCA750 incorporates two other output voltages \(V_{O2} \) and \(V_{O3} \) for stabilized supply of the entire receiver combination as well as the following attractive features:

- The output current of any of the three stabilizers can be increased by a discrete power transistor without affecting circuit stability.
- For mute control at switching on, \(V_{O2} \) can be delayed by external components.
- An a.f.c. coupling circuit provides a constant correction factor by superimposing an a.f.c. voltage on \(V_{O1} \).
- Adjustable a.f.c. amplification factor \(< 5\).
- Pulse or touch contact operation switches off the a.f.c. whilst changing stations.
- Delayed switching on of the a.f.c., externally adjustable \((t_d < 2 \, s) \).
- Search tuning becomes very simple when using the a.f.c. current source (pin 10).
- All three stabilized outputs are protected against short-circuit and are individually adjustable.

QUICK REFERENCE DATA see page 2
QUICK REFERENCE DATA

<table>
<thead>
<tr>
<th>Input voltage range</th>
<th>V_{13-16}</th>
<th>26.5 to 54 V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ambient temperature</td>
<td>T_{amb}</td>
<td>typ. 25 $^\circ$C</td>
</tr>
<tr>
<td>Input voltage</td>
<td>V_{13-16}</td>
<td>typ. 45 V</td>
</tr>
</tbody>
</table>

- **Tuning voltage (V_{o1})** *
 - V_{12-16}: 21 to 34 V
 - I_{12}: < 14.5 mA
 - t_{stab}: typ. 0.8 s

- **Temperature coefficient (V_{o1})**
 - TCA750
 - $\Delta V_{o1}/\Delta T$: typ. 1 ppm/$^\circ$C, typ. 30 ppm/$^\circ$C
 - BZV38

- **Line regulation**
 - $\Delta V_{o1}/\Delta V_{in}$: typ. 10 ppm/V

- **Output voltage (V_{o2})** *
 - V_{14-16}: 8 to 21 V
 - I_{14}: < 6 mA

- **Output voltage (V_{o3})** *
 - V_{2-16}: 8 to 29 V
 - I_{2}: < 6 mA

* Symbols used in test circuit Fig. 3.
Fig. 1 Circuit diagram.
RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input voltage (supply)</td>
<td>V_{13-16} max. 54 V</td>
</tr>
<tr>
<td>A.F.C. input voltages (pins 8 and 9)</td>
<td>V_{8-16}, V_{9-16} max. 17 V</td>
</tr>
<tr>
<td></td>
<td>$\pm V_{8-9}$ max. 6 V</td>
</tr>
<tr>
<td>Output current</td>
<td></td>
</tr>
<tr>
<td>pin 12</td>
<td>I_{12} max. 55 mA</td>
</tr>
<tr>
<td>pin 14</td>
<td>I_{14} max. 20 mA</td>
</tr>
<tr>
<td>pin 2</td>
<td>I_2 max. 25 mA</td>
</tr>
<tr>
<td>Input current (pin 11)</td>
<td>$\pm I_{11}$ max. 6 mA</td>
</tr>
<tr>
<td>Storage temperature</td>
<td></td>
</tr>
<tr>
<td>Operating ambient temperature</td>
<td>T_{stg} -55 to + 150 °C</td>
</tr>
<tr>
<td>Total power dissipation</td>
<td>T_{amb} -25 to + 150 °C</td>
</tr>
</tbody>
</table>

* See derating curve Fig. 2.

![Power derating curve](image)

Fig. 2 Power derating curve.
Multi-stabilizer for electronic tuning

Fig. 3 Test circuit and multi-stabilizer peripheral components.

* $V_{afc\text{\,in}}$ is superimposed on a common-mode voltage (V_{com}) of 5 V to 17 V.

Note to power reduction resistor RD

For worst case conditions (maximum output currents of the three stabilizers and a high supply voltage V_{in}) the power dissipation (P_{tot}) must be reduced by the use of the external resistor RD.

Power reduction = \[
\frac{(V_{\text{in}} - V_{o1})^2}{RD}
\]

The minimum permissible value of RD is derived by the formula

\[RD_{\text{min}} = \frac{V_{\text{in\,max}} - V_{o1} - V_{afc\text{\,out}}}{I_{12} - I_{13\,\text{min}}}
\]

where,

\[I_{13\,\text{min}} = 4.5 \text{ mA (stand-by current I_{9})}
\]

\[I_{12} = I_Z + I_{RA1} + I_{11\,\text{min}}\]
CHARACTERISTICS and APPLICATION INFORMATION

T_{\text{amb}} = 25 \, ^{\circ}\text{C}; \text{ see test circuit Fig. 3.}

<table>
<thead>
<tr>
<th>Supplies</th>
<th>note</th>
<th>min.</th>
<th>typ.</th>
<th>max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input voltage</td>
<td>V_{\text{in}}</td>
<td>1</td>
<td>26,5</td>
<td>54</td>
</tr>
<tr>
<td>Input current</td>
<td>I_{\text{tot}}</td>
<td>2</td>
<td></td>
<td>31</td>
</tr>
</tbody>
</table>

Output characteristics

D.C. output resistance (all stabilizers) | R_{\text{out}} | – | – | 1 | \Omega |
Permissible output short-circuit duration
 stabilizer 1 | t_{\text{short}} | – | – | continuous |
 stabilizers 2 or 3 |

Stabilizer 1

Output voltage range (adjustable) | V_{\text{o1}} | 3 | 21 | – | 34 | V |
Output current | I_{\text{l1}} | 4, 5 | 0 | – | 5 | mA |
Stabilizing time | t_{\text{stab}} | 6 | – | – | 1 | s |
Output voltage temp. coefficient | \Delta V_{\text{o1}}/\Delta T | 7, 8 | – | 40 | – | ppm/\circ\text{C} |
Line regulation | \Delta V_{\text{o1}}/\Delta V_{\text{in}} | 8 | – | 10 | – | ppm/V |

A.F.C. coupling circuit

A.F.C. input voltage (½ V_{\text{afc swing}}) | V_{\text{afc in}} | – | – | – | 5 | V |
A.F.C. output voltage (½ V_{\text{afc lim swing}}) | V_{\text{afc lim}} | 15, 16 | – | – | 0,9 | V |
A.F.C. output current threshold | I_{\text{10}} | 15, 16 | – | – | 1,5 | mA |
A.F.C. output current swing | I_{\text{afc lim}} | 15, 16 | – | – | 3,0 | mA |
A.F.C. off delay | t_{d} | – | – | 2 | – | s |
Amplification factor | \mu | – | – | – | 5 |
A.F.C. slope (\Delta I_{\text{afc}}/\Delta V_{\text{afc in}}) | S | 14 | – | 2,5 | – | mA/V |
Common-mode voltage | V_{\text{com}} | 9 | 5 | – | 17 | V |
\Delta V_{\text{o1}} change due to a.f.c. switching | – | – | – | 25 | mV |
Asymmetry of a.f.c. input (a.f.c. off) | \pm (I_{\text{8-19}}) | – | – | – | 0,5 | \mu A |

A.F.C. switch operated by manual switch

Input voltage (a.f.c. on) | V_{\text{sw}} | – | – | – | 0,5 | V |
Positive input voltage (a.f.c. off) | + V_{\text{sw}} | – | 0,8 | – | 6 | V |
Negative input voltage (a.f.c. off) | – V_{\text{sw}} | – | 0,8 | – | – | V |
Positive input current (a.f.c. off) | + I_{\text{l11}} | – | 0,004 | – | 3 | mA |
Negative input current (a.f.c. off) | – I_{\text{l11}} | – | 0,8 | – | 2 | mA |

A.F.C. switch operated by pulse

Positive trigger pulse peak current + I_{\text{l11}} pulse |
 pulse width = 10 \mu s | – | 800 | – | 3000 | \mu A |
 100 \mu s | – | 80 | – | 3000 | \mu A |
 1 ms | – | 8 | – | 3000 | \mu A |
 10 ms | – | 4 | – | 3000 | \mu A |
Negative trigger pulse peak current – I_{\text{l11}} pulse |
 0,8 | – | 2 | mA |
Negative trigger pulse width | – | 10 | – | – | \mu s |
Multi-stabilizer for electronic tuning

Stabilizer 2

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Note</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output voltage range (adjustable)</td>
<td>V₀²</td>
<td>10</td>
<td>8</td>
<td>21</td>
</tr>
<tr>
<td>Output current</td>
<td>I₂</td>
<td>5</td>
<td>0</td>
<td>5,5 mA</td>
</tr>
<tr>
<td>Output voltage temp. coefficient</td>
<td>ΔV₀²/ΔT</td>
<td>7,8</td>
<td>45</td>
<td>ppm/°C</td>
</tr>
<tr>
<td>Switch-on delay time</td>
<td>t₉₀₂</td>
<td>11</td>
<td>0</td>
<td>6 s</td>
</tr>
<tr>
<td>Switching voltage</td>
<td>V₁-16</td>
<td>—</td>
<td>0,8</td>
<td>1 V</td>
</tr>
</tbody>
</table>

Stabilizer 3

<table>
<thead>
<tr>
<th>Parameter</th>
<th>V₀³</th>
<th>12</th>
<th>8</th>
<th>29</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output voltage range (adjustable)</td>
<td>I₃</td>
<td>5</td>
<td>0</td>
<td>5,5 mA</td>
</tr>
<tr>
<td>Output voltage temp. coefficient</td>
<td>ΔV₀³/ΔT</td>
<td>7,8</td>
<td>45</td>
<td>ppm/°C</td>
</tr>
</tbody>
</table>

Notes

1. The Vᵢᵣ range depends on the value of V₀₁ (see Fig. 4).
2. At I₁ = 5 mA, I₂ = I₃ = 5,5 mA, I₁₀ = 0.
3. Adjustable by means of RA₁, RB₁ and RP.
4. If a higher level is required from the output of stabilizer 1, the reference diode supply may be obtained from the emitter of a power transistor connected to the output from stabilizer 3 (see Fig. 8). In this case, the current available from stabilizer 1 is increased to 12,5 mA (bleeder current I_RA₁ = 2 mA).
5. At T_amb = 60 °C maximum with all stabilizers at rated currents.
6. With V₀₁ within 0,05% of its steady value.
7. Temperature coefficient at T_amb from 10 °C to 60 °C with Vᵢᵣ constant, and using metal film bleed resistors having a temperature coefficient of ≤ 50 ppm/°C.
8. With all stabilizer output currents constant and within the specified limits.
9. Common-mode voltage = voltage between pins 8 and 16, and 9 and 16 of the I.C.
10. V₀₂ depends on the value of V₀₁ (see Fig. 6); adjustable with RA₂.
11. Adjustable by means of RT and CT₁. The delay time is limited by the leakage current of CT₁.
12. V₀₃ depends on the value of V₀₁ (see Fig. 7); adjustable with RA₃.
13. The delay time after triggering depends on the value of CT₂.
14. With RE = 10 kΩ and T_amb = 25 °C.
15. V AFC out at V AFC in after limiting.
16. With RE = 10 kΩ; RA₁ = 12 kΩ.
Fig. 4 Range of values for \(V_{O1} \).

Fig. 5 Determination of \(I_{10} \) and S-factor (\(S = \Delta I_{afc} / \Delta V_{afc} \)) from \(RE \).

Fig. 6 Range of values for \(V_{O2} \).

Fig. 7 Range of values for \(V_{O3} \).
Fig. 8 Hi-fi radio receiver with electronic tuning using TCA750.
DOUBLE BALANCED MODULATOR/DEMODULATOR

The TDA0820 is a monolithic integrated circuit for use at frequencies up to 650 MHz. Typical applications are:
- modulator
- mixer
- switch/chopper
- a.m. synchronous demodulator
- f.m. quadrature demodulator
- phase comparator
- differential amplifier

The circuit is arranged to offer very flexible circuit design possibilities. The excellent matching and temperature tracking of the transistors in the circuit allow the use of circuit techniques which are not available when using discrete devices.

Fig. 1 Circuit diagram.

PACKAGE OUTLINE
14-lead 4-side; plastic (SOT-43).
RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Supply voltage range

\[V_{10-8} \leq V_{10-14} \leq V_{12-8} \leq V_{12-14} \leq 0 \text{ to } 13.2 \text{ V} \]

Voltages (each transistor)

<table>
<thead>
<tr>
<th>Voltage Description</th>
<th>Max. Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collector-substrate voltage (open base) and emitter</td>
<td>(V_{CSO}) \leq 15 V</td>
</tr>
<tr>
<td>Collector-base voltage (open emitter)</td>
<td>(V_{CBO}) \leq 12 V</td>
</tr>
<tr>
<td>Collector-emitter voltage (open base)</td>
<td>(V_{CEO}) \leq 10 V</td>
</tr>
<tr>
<td>Emitter-base voltage (open collector)</td>
<td>(V_{EBO}) \leq 5 V</td>
</tr>
</tbody>
</table>

Currents (each transistor)

<table>
<thead>
<tr>
<th>Current Description</th>
<th>Max. Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emitter current</td>
<td>(I_E) \leq 10 mA</td>
</tr>
<tr>
<td>Base current</td>
<td>(I_B) \leq 10 mA</td>
</tr>
</tbody>
</table>

Total power dissipation when mounted on a printed-circuit board

\[P_{\text{tot}} \leq 250 \text{ mW} \]

Storage temperature

\[T_{\text{stg}} \leq -55 \text{ to } +125 \degree \text{C} \]

Operating ambient temperature

\[T_{\text{amb}} \leq 0 \text{ to } +70 \degree \text{C} \]

THERMAL RESISTANCE

From junction to ambient

\[R_{\text{th j-a}} = 220 \text{ K/W} \]

CHARACTERISTICS

\[V_{10-8} = V_{10-14} = V_{12-8} = V_{12-14} = 12 \text{ V}; T_{\text{amb}} = 25 \degree \text{C}; \text{measured in Fig. 2} \]

Supply current

\[I_{10+12} \leq 2.5 \text{ mA} \]

Input signals

<table>
<thead>
<tr>
<th>Signal Type</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carrier signal (r.m.s. value)</td>
<td>< 100 mV</td>
</tr>
<tr>
<td>Video signal; negative modulated (peak-to-peak value)</td>
<td>< 1.4 V</td>
</tr>
</tbody>
</table>

Output signal at top sync over 75 \(\Omega \)

<table>
<thead>
<tr>
<th>Signal Type</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carrier suppression in balanced condition (peak-to-peak value)</td>
<td>> 22 mV</td>
</tr>
<tr>
<td>Differential phase</td>
<td>< 60</td>
</tr>
<tr>
<td>Differential gain</td>
<td>< 15%</td>
</tr>
<tr>
<td>Distortion of video signal</td>
<td>< -38 dB</td>
</tr>
</tbody>
</table>
(1) L = air coil; 3 turns; \(\Phi \) 3 mm.
(2) U.H.F. decoupling capacitor 2212 669 98003.

Fig. 2 Test circuit.
14-LEAD 4-SIDE; PLASTIC (SOT-43)

Dimensions in mm

Top view

1.25
1.25

0.9

1.4

0.4

0.4

0.25

0.25

0.40

5.6 max

5 max

1.2 max

0.10

0.15

1.8 max

4.6 max

4 max

January 1980
DEVELOPMENT SAMPLE DATA
This information is derived from development samples made available for evaluation. It does not necessarily imply that the device will go into regular production.

12 TO 20 W HI-FI AUDIO POWER AMPLIFIER

The TDA1512 is a monolithic integrated hi-fi audio power amplifier designed for asymmetrical or symmetrical power supplies for mains-fed apparatus.

Special features are:
- Thermal protection
- Low intermodulation distortion
- Low transient intermodulation distortion
- Built-in output current limiter
- Low input offset voltage
- Output stage with low cross-over distortion
- Single in-line (SIL) power package

QUICK REFERENCE DATA

<table>
<thead>
<tr>
<th>Supply voltage range</th>
<th>Vp</th>
<th>15 to 35 V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total quiescent current at Vp = 25 V</td>
<td>Itot</td>
<td>typ.</td>
</tr>
</tbody>
</table>

Output power at dtot = 0.7%
- sine-wave power
 - Vp = 25 V; RL = 4 Ω
 - P0 typ. = 13 W
 - Vp = 25 V; RL = 8 Ω
 - P0 typ. = 7 W
- music power
 - Vp = 32 V; RL = 4 Ω
 - P0 typ. = 21 W
 - Vp = 32 V; RL = 8 Ω
 - P0 typ. = 12 W

Closed-loop voltage gain (externally determined) Gc typ. = 30 dB

Input resistance (externally determined) Ri typ. = 20 kΩ

Signal-to-noise ratio at P0 = 50 mW S/N typ. = 72 dB

Supply voltage ripple rejection at f = 100 Hz RR typ. = 50 dB

PACKAGE OUTLINE

9-lead SIL; plastic power (SOT-131B).

February 1980
Fig. 1 Simplified internal circuit diagram.

PINNING
1. Non-inverting input
2. Input ground (substrate)
3. Compensation
4. Negative supply (ground)
5. Output
6. Positive supply (Vp)
7. Externally connected to pin 6
8. Ripple rejection
9. Inverting input (feedback)
12 to 20 W hi-fi audio power amplifier

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Supply voltage
Repetitive peak output current
Non-repetitive peak output current
Total power dissipation
Storage temperature
Operating ambient temperature
A.C. short-circuit duration of load during full-load sine-wave drive

\[R_L = 0; \ V_P = 30 \text{ V with } R_i = 4 \Omega \]

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_P) max.</td>
<td>35 V</td>
</tr>
<tr>
<td>(I_{ORM}) max.</td>
<td>3.2 A</td>
</tr>
<tr>
<td>(I_{OSM}) max.</td>
<td>5 A</td>
</tr>
<tr>
<td>(T_{stg})</td>
<td>-55 to +150 °C</td>
</tr>
<tr>
<td>(T_{amb})</td>
<td>-25 to +150 °C</td>
</tr>
<tr>
<td>(t_{sc}) max.</td>
<td>100 hours</td>
</tr>
</tbody>
</table>

See derating curve Fig. 2

THERMAL RESISTANCE

From junction to mounting base

\[R_{th j-mb} \leq 4 \text{ K/W} \]

Fig. 2 Power derating curves.
D.C. CHARACTERISTICS

Supply voltage range

\[V_P = 15 \text{ to } 35 \text{ V} \]

Total quiescent current at \(V_P = 25 \text{ V} \)

\[I_{\text{tot}} \text{ typ. } 65 \text{ mA} \]

A.C. CHARACTERISTICS

\(V_P = 25 \text{ V}; R_L = 4 \Omega; f = 1 \text{ kHz}; T_{\text{amb}} = 25 \text{ °C}; \) measured in test circuit of Fig. 3; unless otherwise specified

Output power

- Sine-wave power at \(d_{\text{tot}} = 0.7\% \)
 - \(R_L = 4 \Omega \)
 - \(P_O \text{ typ. } 13 \text{ W} \)
 - \(R_L = 8 \Omega \)
 - \(P_O \text{ typ. } 7 \text{ W} \)

- Music power at \(V_P = 32 \text{ V} \)
 - \(R_L = 4 \Omega; d_{\text{tot}} = 0.7\% \)
 - \(P_O \text{ typ. } 21 \text{ W} \)
 - \(R_L = 8 \Omega; d_{\text{tot}} = 10\% \)
 - \(P_O \text{ typ. } 25 \text{ W} \)
 - \(R_L = 8 \Omega; d_{\text{tot}} = 0.7\% \)
 - \(P_O \text{ typ. } 12 \text{ W} \)
 - \(R_L = 8 \Omega; d_{\text{tot}} = 10\% \)
 - \(P_O \text{ typ. } 15 \text{ W} \)

Power bandwidth; \(-3\text{ dB}; d_{\text{tot}} = 0.7\% \)

\(B = 20 \text{ Hz to } 20 \text{ kHz} \)

Voltage gain

- Open-loop
 - \(G_O \text{ typ. } 74 \text{ dB} \)
- Closed-loop
 - \(G_c \text{ typ. } 30 \text{ dB} \)

Input resistance (pin 1)

\(R_i > 100 \text{ k\Omega} \)

Input resistance of test circuit (Fig. 3)

\(R_i \text{ typ. } 20 \text{ k\Omega} \)

Input sensitivity

- For \(P_O = 50 \text{ mW} \)
 - \(V_i \text{ typ. } 16 \text{ mV} \)
- For \(P_O = 10 \text{ W} \)
 - \(V_i \text{ typ. } 210 \text{ mV} \)

Signal-to-noise ratio

- At \(P_O = 50 \text{ mW}; R_S = 2 \text{ k\Omega}; \)
 - \(f = 20 \text{ Hz to } 20 \text{ kHz}; \) unweighted
 - \(S/N \text{ typ. } 72 \text{ dB} \)
 - \(f = 20 \text{ Hz to } 20 \text{ kHz}; \) weighted; measured according to IEC 173 (A-curve)
 - \(S/N \text{ typ. } 76 \text{ dB} \)

Ripple rejection at \(f = 100 \text{ Hz} \)

\(RR \text{ typ. } 50 \text{ dB} \)

Total harmonic distortion at \(P_O = 10 \text{ W} \)

\(d_{\text{tot}} \text{ typ. } 0.1\% < 0.3\% \)

Output resistance (pin 5)

\(R_o \text{ typ. } 0.1 \Omega \)
Fig. 3 Test circuit.
Fig. 4 Output power as a function of the supply voltage; \(f = 1 \text{ kHz}; \)

\[\text{--} \quad d_{\text{tot}} = 0,7\%; \quad \text{--} \quad d_{\text{tot}} = 10\%. \]

Fig. 5 Total harmonic distortion as a function of the output power.
CHROMINANCE COMBINATION

The TDA2510 is an integrated chrominance amplifier circuit for colour television receivers incorporating the following functions:

- chrominance amplifier with a.c.c.
- control voltage amplifier
- burst separator
- colour killer and colour killer voltage detector
- linear electronic potentiometer for saturation control
- Schmitt trigger for colour killer
- chrominance delay line driver stage
- colour burst output stage

QUICK REFERENCE DATA

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltage</td>
<td>V_{1-16}</td>
<td>typ. 12 V</td>
</tr>
<tr>
<td>Input signal (colour bars)</td>
<td>V_{2-16(p-p)}</td>
<td>typ. 100 mV</td>
</tr>
<tr>
<td>Output signal (colour bars)</td>
<td>V_{7-16(p-p)}</td>
<td>typ. 0.5 V</td>
</tr>
<tr>
<td>Burst signal output</td>
<td>V_{8-16(p-p)}</td>
<td>typ. 0.5 V</td>
</tr>
</tbody>
</table>

PACKAGE OUTLINES

- TDA2510 : 16-lead DIL; plastic (SOT-38).
- TDA2510Q : 16-lead QIL; plastic (SOT-58).

January 1980
RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Voltage

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltage (pin 1)</td>
<td>V_{1-16}</td>
<td>max. 15 V</td>
</tr>
</tbody>
</table>

Power dissipation

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total power dissipation</td>
<td>P_{tot}</td>
<td>max. 500 mW</td>
</tr>
</tbody>
</table>

Temperatures

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Storage temperature</td>
<td>T_{stg}</td>
<td>-20 to +125 °C</td>
</tr>
<tr>
<td>Operating ambient temperature</td>
<td>T_{amb}</td>
<td>-20 to +60 °C</td>
</tr>
</tbody>
</table>

CHARACTERISTICS at $V_{1-16} = 12$ V; $T_{amb} = 25$ °C

Chrominance input signal

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input voltage (symmetrical or asymmetrical)</td>
<td>$V_{2-16}(p-p)$</td>
<td>typ. 100 mV</td>
</tr>
<tr>
<td>Colour bars (peak-to-peak value)</td>
<td>V_{2-16}</td>
<td>10 to 200 mV</td>
</tr>
<tr>
<td>Input impedance</td>
<td>$I_{Z_{2-16}}$</td>
<td>> 2 kΩ</td>
</tr>
</tbody>
</table>

Burst signal output (emitter follower)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>D.C. voltage</td>
<td>V_{8-16}</td>
<td>typ. 9 V</td>
</tr>
<tr>
<td>Output signal (peak-to-peak value)</td>
<td>$V_{8-16}(p-p)$</td>
<td>typ. 0.5 V</td>
</tr>
<tr>
<td>Limiting level of output signal (peak-to-peak value)</td>
<td>$V_{8-16}(p-p)$</td>
<td>typ. 1.5 V</td>
</tr>
</tbody>
</table>

Chrominance output signal (without burst)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>D.C. voltage</td>
<td>V_{6-16}</td>
<td>typ. 7 V</td>
</tr>
<tr>
<td>Output signal (colour bars)</td>
<td>$V_{6-16}(p-p)$</td>
<td>typ. 0.5 V</td>
</tr>
<tr>
<td>at nominal saturation (see note 2) and maximum contrast (peak-to-peak value)</td>
<td>$V_{6-16}(p-p)$</td>
<td>typ. 0.5 V</td>
</tr>
<tr>
<td>Signal-to-noise ratio</td>
<td>S/N</td>
<td>> 50 dB</td>
</tr>
<tr>
<td>Saturation control range</td>
<td></td>
<td>+6 to -50 dB</td>
</tr>
<tr>
<td>Phase angle compared to burst output at nom. saturation</td>
<td>$\Delta\varphi_B$</td>
<td>< ±5°</td>
</tr>
<tr>
<td>Phase angle shift during saturation control range +6 to -50 dB</td>
<td>$\Delta\varphi_C$</td>
<td>< ±5°</td>
</tr>
<tr>
<td>Collector current of output transistor</td>
<td>I_7</td>
<td>< 20 mA</td>
</tr>
</tbody>
</table>

1) Kept constant by a.c.c. circuit.

2) Nominal saturation is defined as maximum saturation -6 dB.
CHARACTERISTICS (continued)

Collector voltage of output transistor
at $P_{\text{tot max}} = 100 \text{ mW}$

Control voltage amplifier input

Reference voltage

Control voltage

Input impedance

Linearization for saturation input

Linear part of control curve

Threshold voltage for 50 dB suppression

Adjustment voltage behaviour for higher chrominance output voltage

Input impedance

Colour killer input at pin 15

Input voltage for: colour on

for: colour off

Signal suppression at colour off

Colour killer output

Switching voltage for: colour on

for: colour off

Internal resistance

Collector current of output transistor

Burst gating and blanking pulse

Burst gating and blanking pulse
(positive or negative)

Input impedance

Colour killer

Colour unkill delay; depends on C_d
(see circuit on page 5)
APPLICATION INFORMATION

TDA2510

- Control voltage: 5.5 V
- Chrominance-signal filter
- Colour killer output: 0.5 V to \(V_p \)
- Reference voltage: 7 V
- Black level clamp pulse: ±1 V
- Saturation: 2.2 kΩ
- Colour burst output

Key Points

- Chrominance signal: 10 to 200 mV
- Colour killer output: 0.5 V to \(V_p \)
- Black level clamp pulse: ±1 V
- Saturation: 2.2 kΩ
- Colour burst output: (R-Y), (B-Y)
COLOUR DEMODULATOR COMBINATION

The TDA2520 is an integrated synchronous demodulator combination for colour television receivers incorporating the following functions:

- 8.8 MHz oscillator followed by a divider giving two 4.4 MHz signals used as reference signals
- keyed burst phase detector for optimum noise behaviour
- a stage to obtain chrominance signal control (a.c.c.) and an a.c.c. reference level
- a colour killer and identification signal detector
- two synchronous demodulators for the (B-Y) and (R-Y) signals
- temperature compensated emitter follower outputs
- PAL switch
- PAL flip-flop
- integrated capacitors in the symmetrical demodulators reduce unwanted carrier-signals at the outputs.

QUICK REFERENCE DATA

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltage</td>
<td>V_{12-16} typ. 12 V</td>
</tr>
<tr>
<td>Supply current</td>
<td>I_{12} typ. 40 mA</td>
</tr>
<tr>
<td>Colour difference output signals</td>
<td></td>
</tr>
<tr>
<td>peak-to-peak values</td>
<td></td>
</tr>
<tr>
<td>-(R-Y)</td>
<td>$V_{3-16}(p-p)$ > 2.4 V</td>
</tr>
<tr>
<td>-(G-Y)</td>
<td>$V_{2-16}(p-p)$ > 1.35 V</td>
</tr>
<tr>
<td>-(B-Y)</td>
<td>$V_{1-16}(p-p)$ > 3 V</td>
</tr>
<tr>
<td>Impedance of colour difference</td>
<td>typ. 250 Ω</td>
</tr>
<tr>
<td>signal outputs</td>
<td></td>
</tr>
</tbody>
</table>

PACKAGE OUTLINES

TDA2520 : 16-lead DIL ; plastic (SOT-38).
TDA2520Q : 16-lead QIL ; plastic (SOT-58).

January 1980
RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)

Voltage
Supply voltage

$$V_{12-16} \text{ max. } 14 \text{ V}$$

Power dissipation
Total power dissipation

$$P_{\text{tot}} \text{ max. } 600 \text{ mW}$$

Temperatures
Storage temperature

$$T_{\text{stg}} \text{ -20 to } +125 \text{ °C}$$

Operating ambient temperature

$$T_{\text{amb}} \text{ -20 to } +60 \text{ °C}$$

CHARACTERISTICS at $$V_{12-16} = 12 \text{ V}; T_{\text{amb}} = 25 \text{ °C}$$

Demodulator part
Ratio of demodulated signals

$$\frac{V_{1-16}}{V_{3-16}} \text{ typ. } 1,78$$

$$\frac{V_{2-16}}{V_{3-16}} \text{ typ. } 0,85$$

$$\frac{V_{2-16}}{V_{3-16}} \text{ typ. } 0,17$$

Colour difference output signals 3)

peak-to-peak values

$$-(R-Y) \quad V_{3-16(p-p)} > 2,4 \text{ V}$$

$$-(G-Y) \quad V_{2-16(p-p)} > 1,35 \text{ V}$$

$$-(B-Y) \quad V_{1-16(p-p)} > 3 \text{ V}$$

Impedance of colour difference signal outputs

$$|Z_{3-16}| \text{ typ. } 250 \Omega$$

$$|Z_{2-16}| \text{ typ. } 250 \Omega$$

$$|Z_{1-16}| \text{ typ. } 250 \Omega$$

$$\frac{H/2 \text{ ripple at } R-Y \text{ output (peak-to-peak value)}}{< 10 \text{ mV}}$$

Blanking and keying pulse

burst keying: active for

$$V_{15-16} > 7,5 \text{ V}$$

inactive for

$$V_{15-16} < 6,5 \text{ V}$$

blanking: active for

$$V_{15-16} > 2 \text{ V}$$

inactive for

$$V_{15-16} < 1 \text{ V}$$

1) The demodulators are driven by a chrominance signal of equal amplitude for the (R-Y) and the (B-Y) components. The phase of the (R-Y) chrominance signal equals the phase of the (R-Y) reference signal. The same holds for the (B-Y) signals.

2) As under note 1, but the phase of the (R-Y) reference signal reversed.

3) The d.c. level of the colour difference outputs can be adjusted from 6 to 10 V at pin 4.
CHARACTERISTICS (continued)

Reference part

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Symbol</th>
<th>Type</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colour burst (peak-to-peak value)</td>
<td>V7-16(p-p)</td>
<td>typ.</td>
<td>0.5 V</td>
</tr>
<tr>
<td>Phase difference between reference and burst signals</td>
<td></td>
<td></td>
<td>< ±5°</td>
</tr>
<tr>
<td>for ±400 Hz deviation of crystal frequency</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overall holding range with typical crystal</td>
<td>Δf</td>
<td>typ.</td>
<td>±500 Hz</td>
</tr>
<tr>
<td>A.C.C. reference output voltage</td>
<td>V13-16</td>
<td>typ.</td>
<td>7 V</td>
</tr>
<tr>
<td>A.C.C. voltage at 0.5 V peak-to-peak burst at correct phase with zero burst</td>
<td>V14-16</td>
<td>typ.</td>
<td>5.5 V</td>
</tr>
<tr>
<td></td>
<td>V14-16</td>
<td>typ.</td>
<td>7.0 V</td>
</tr>
<tr>
<td>Oscillator input resistance</td>
<td>R11-16</td>
<td>typ.</td>
<td>270 Ω</td>
</tr>
<tr>
<td>Oscillator input capacitance</td>
<td>C11-16</td>
<td>see note</td>
<td></td>
</tr>
<tr>
<td>Oscillator output resistance</td>
<td>R10-16</td>
<td>typ.</td>
<td>200 Ω</td>
</tr>
</tbody>
</table>

Note: to be established.
COLOUR DEMODULATOR COMBINATION

The TDA2522 is an integrated synchronous demodulator combination for colour television receivers incorporating the following functions:

- 8, 8 MHz oscillator followed by a divider giving two 4, 4 MHz signals used as reference signals
- keyed burst phase detector for optimum noise behaviour
- a.c.c. detector and amplifier
- a colour killer
- two synchronous demodulators for the (B-Y) and (R-Y) signals
- temperature compensated emitter follower outputs
- PAL switch and PAL flip-flop with internal identification
- integrated capacitors in the symmetrical demodulators reduce unwanted carrier signals at the outputs

<table>
<thead>
<tr>
<th>QUICK REFERENCE DATA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltage</td>
</tr>
<tr>
<td>Supply current</td>
</tr>
<tr>
<td>Colour difference output signals</td>
</tr>
<tr>
<td>peak-to-peak values; for the following input signals</td>
</tr>
<tr>
<td>$(R-Y)$</td>
</tr>
<tr>
<td>$(G-Y)$</td>
</tr>
<tr>
<td>$(B-Y)$</td>
</tr>
<tr>
<td>Chrominance input signal (including burst) peak-to-peak value</td>
</tr>
<tr>
<td>$(R-Y)$</td>
</tr>
<tr>
<td>$(B-Y)$</td>
</tr>
<tr>
<td>Impedance of colour difference signal outputs</td>
</tr>
</tbody>
</table>

PACKAGE OUTLINES

TDA2522 : 16-lead DIL ; plastic (SOT-38).
TDA2522Q: 16-lead QIL ; plastic (SOT-58).
BLOCK DIAGRAM

- Chrominance input (B-Y) and (R-Y)
- Burst gating and blanking pulse
- FLIP-FLOP ident
- H/2 DETECTOR/ A.C.C. AMPLIFIER
- KILLER DETECTOR
- PHASE DETECTOR/ BURST GATE
- OSCILLATOR (8.8MHz)
- 8.8MHz ÷ 2 / 90° PHASE SHIFT
- PAL SWITCH
- E = Emitter Follower
- TDA2522

- Pins: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16
- Symbols: +, -, 0, R, G, B, Y, C, D, CD, A.C.C.
RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)

Supply voltage \(V_{1-4} \) max. 14 V
Total power dissipation \(P_{\text{tot}} \) max. 600 mW
Storage temperature \(T_{\text{stg}} \) -20 to +125 °C
Operating ambient temperature \(T_{\text{amb}} \) -20 to +60 °C

CHARACTERISTICS at \(V_{11-4} = 12 \) V; \(T_{\text{amb}} = 25 \) °C

Demodulator part

Ratio of demodulated signals

\[
\begin{align*}
\text{B-Y/R-Y:} & \quad \frac{V_{1-4}}{V_{3-4}} \quad \text{typ.} \quad 1.78 \\
\text{G-Y/R-Y:} & \quad \frac{V_{2-4}}{V_{3-4}} \quad \text{typ.} \quad 0.85 \quad 1)
\end{align*}
\]

Colour difference output signals peak-to-peak values; for the following input signals

\[
\begin{align*}
-\text{(R-Y):} & \quad V_{3-4(p-p)} > 2.4 \text{ V} \\
-\text{(G-Y):} & \quad V_{2-4(p-p)} > 1.35 \text{ V} \\
-\text{(B-Y):} & \quad V_{1-4(p-p)} > 3 \text{ V}
\end{align*}
\]

Chrominance input signal (including burst) peak-to-peak value; note 3

\[
\begin{align*}
\text{R-Y:} & \quad V_{6-4(p-p)} \quad 500 \text{ mV} \\
\text{B-Y:} & \quad V_{5-4(p-p)} \quad 350 \text{ mV}
\end{align*}
\]

Impedance of colour difference signal outputs

\[
|Z_{3-4}| \quad \text{typ.} \quad 250 \text{ } \Omega \\
|Z_{2-4}| \quad \text{typ.} \quad 250 \text{ } \Omega \\
|Z_{1-4}| \quad \text{typ.} \quad 250 \text{ } \Omega
\]

H/2 ripple at R-Y output (peak-to-peak value)

< 10 mV

Blanking and keying pulse

\[
\begin{align*}
\text{burst keying: active for} & \quad V_{15-4} > 7.5 \text{ V} \\
\text{inactive for} & \quad V_{15-4} < 6.5 \text{ V} \\
\text{blanking: active for} & \quad V_{15-4} > 2 \text{ V} \\
\text{inactive for} & \quad V_{15-4} < 1 \text{ V}
\end{align*}
\]

1) The demodulators are driven by a chrominance signal of equal amplitude for the (R-Y) and the (B-Y) components. The phase of the (R-Y) chrominance signal equals the phase of the (R-Y) reference signal.

The same holds for the (B-Y) signals.

2) As under note 1, but the phase of the (R-Y) reference signal reversed.

3) Colour bar with 75% saturation.
CHARACTERISTICS (continued)

Reference part

Phase difference between reference and burst signals for ±400 Hz deviation of crystal frequency < ±50°

Overall holding range with typical crystal \(\Delta f \) typ. ±500 Hz

Burst signal input at keying pulse width of 4 μs (peak-to-peak value) \(V_{5-6(p-p)} \) typ. 0.25 V 1)

Oscillator input resistance \(R_{10-4} \) typ. 270 Ω

Oscillator input capacitance \(C_{10-4} \) typ. note 2 pF

Oscillator output resistance \(R_{9-4} \) typ. 200 Ω

A.C.C. reference voltage \(V_{12-4} \) typ. 7 V

A.C.C. voltage at 0.25 V peak-to-peak burst at correct phase: \(V_{14-4} \) typ. 5.5 V

with zero burst: \(V_{14-4} \) typ. 7.0 V

A.C.C. amplifier output voltage range at ±113 < 200 μA \(V_{13-4} \) 0.5 to 5 V

Colour killer

Via pin 14

Colour off \(V_{14-4} > 6 \) V

Colour on \(V_{14-4} < 5.6 \) V

Alternatively via pin 16

Colour off \(V_{16-4} > 7 \) V

Colour on \(V_{16-4} < 5 \) V

Colour unkill delay \(t_d \) typ. 20 ms/μF 3)

1) The amplitude of the burst is kept constant by a.c.c. action, but depends linearly on the keying pulse width.

2) To be established.

3) The delay depends on the value of \(C_d \).
COLOUR DEMODULATOR COMBINATION

The TDA2523 is an integrated synchronous demodulator combination for colour television receivers incorporating the following functions:

- 8.8 MHz oscillator followed by a divider giving two 4.4 MHz signals used as reference signals
- keyed burst phase detector for optimum noise behaviour
- a.c.c. detector and amplifier
- a colour killer
- two synchronous demodulators for the (B-Y) and (R-Y) signals
- temperature compensated emitter follower outputs
- PAL switch and PAL flip-flop with internal identification
- integrated capacitors in the symmetrical demodulators reduce unwanted carrier signals at the outputs

<table>
<thead>
<tr>
<th>QUICK REFERENCE DATA</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltage</td>
<td>V_{11-4}</td>
<td>typ.</td>
<td>12 V</td>
</tr>
<tr>
<td>Supply current</td>
<td>I_{11}</td>
<td>typ.</td>
<td>40 mA</td>
</tr>
<tr>
<td>Colour difference output signals peak-to-peak values; for the following input signals</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(R-Y)</td>
<td>V_{3-4(p-p)}</td>
<td>></td>
<td>2.4 V</td>
</tr>
<tr>
<td>(G-Y)</td>
<td>V_{2-4(p-p)}</td>
<td>></td>
<td>1.35 V</td>
</tr>
<tr>
<td>(B-Y)</td>
<td>V_{1-4(p-p)}</td>
<td>></td>
<td>3 V</td>
</tr>
<tr>
<td>Chrominance input signal (including burst) peak-to-peak value</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-Y</td>
<td>V_{6-4(p-p)}</td>
<td></td>
<td>500 mV</td>
</tr>
<tr>
<td>B-Y</td>
<td>V_{5-4(p-p)}</td>
<td></td>
<td>350 mV</td>
</tr>
<tr>
<td>Impedance of colour difference signal outputs</td>
<td></td>
<td>typ.</td>
<td>250 Ω</td>
</tr>
</tbody>
</table>

PACKAGE OUTLINES

TDA2523 : 16-lead DIL ; plastic (SOT-38).
TDA2523Q: 16-lead QIL ; plastic (SOT-58).
RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)

Supply voltage \[V_{11-4} \] max. 14 V
Total power dissipation \[P_{tot} \] max. 600 mW
Storage temperature \[T_{stg} \] -20 to +125 °C
Operating ambient temperature \[T_{amb} \] -20 to +60 °C

CHARACTERISTICS at \[V_{11-4} = 12 \text{ V}; T_{amb} = 25 \text{ °C} \]

Demodulator part

Ratio of demodulated signals

\[
\frac{V_{1-4}}{V_{3-4}} \text{ typ. } 1.78
\]
\[
\frac{V_{2-4}}{V_{3-4}} \text{ typ. } 0.85 \quad 1)
\]
\[
\frac{V_{2-4}}{V_{3-4}} \text{ typ. } 0.17 \quad 2)
\]

Colour difference output signals

peak-to-peak values; for the following input signals

\[
\frac{V_{3-4(p-p)}}{V_{2-4(p-p)}} > 2.4 \text{ V}
\]
\[
\frac{V_{2-4(p-p)}}{V_{1-4(p-p)}} > 1.35 \text{ V}
\]

Chrominance input signal (including burst) peak-to-peak value; note 3

\[
R-Y \quad V_{6-4(p-p)} \quad 500 \text{ mV}
\]
\[
B-Y \quad V_{5-4(p-p)} \quad 350 \text{ mV}
\]

Impedance of colour difference signal outputs

\[
|Z_{3-4}| \quad \text{typ. } 250 \Omega
\]
\[
|Z_{2-4}| \quad \text{typ. } 250 \Omega
\]
\[
|Z_{1-4}| \quad \text{typ. } 250 \Omega
\]

H/2 ripple at R-Y output (peak-to-peak value)

< 10 mV

Blanking and keying pulse

burst keying: active for

\[
V_{15-4} > 7.5 \text{ V}
\]
\[
V_{15-4} < 6.5 \text{ V}
\]

blanking: active for

\[
V_{15-4} > 2 \text{ V}
\]
\[
V_{15-4} < 1 \text{ V}
\]

1) The demodulators are driven by a chrominance signal of equal amplitude for the (R-Y) and the (B-Y) components. The phase of the (R-Y) chrominance signal equals the phase of the (R-Y) reference signal.

The same holds for the (B-Y) signals.

2) As under note 1, but the phase of the (R-Y) reference signal reversed.

3) Colour bar with 75% saturation.
CHARACTERISTICS (continued)

Reference part

Phase difference between reference and burst signals for ±400 Hz deviation of crystal frequency

Overall holding range with typical crystal

Burst signal input at keying pulse width of 4 \(\mu \)s (peak-to-peak value)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase difference between reference and burst signals for ±400 Hz deviation of crystal frequency</td>
<td>(\Delta f < \pm 5^\circ)</td>
</tr>
<tr>
<td>Overall holding range with typical crystal</td>
<td>(\Delta f) typ. (\pm 500) Hz</td>
</tr>
<tr>
<td>Burst signal input at keying pulse width of 4 (\mu)s (peak-to-peak value)</td>
<td>(V_{5-6(p-p)}) typ. 0.25 V</td>
</tr>
<tr>
<td>Oscillator input resistance</td>
<td>(R_{10-4}) typ. 270 (\Omega)</td>
</tr>
<tr>
<td>Oscillator input capacitance</td>
<td>(C_{10-4}) typ. note 2 pF</td>
</tr>
<tr>
<td>Oscillator output resistance</td>
<td>(R_{9-4}) typ. 200 (\Omega)</td>
</tr>
<tr>
<td>A.C.C. reference voltage</td>
<td>(V_{12-4}) typ. 7 V</td>
</tr>
<tr>
<td>A.C.C. voltage at 0.25 V peak-to-peak burst at correct phase:</td>
<td>(V_{14-4}) typ. 5.5 V</td>
</tr>
<tr>
<td>with zero burst:</td>
<td>(V_{14-4}) typ. 7.0 V</td>
</tr>
<tr>
<td>A.C.C. amplifier output voltage range at (\pm 113 < 200 \mu A)</td>
<td>(V_{13-4}) 0.5 to 5 V</td>
</tr>
</tbody>
</table>

Colour killer

Via pin 14

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colour off</td>
<td>(V_{14-4}) (>) 6 V</td>
</tr>
<tr>
<td>Colour on</td>
<td>(V_{14-4}) (<) 5.6 V</td>
</tr>
</tbody>
</table>

Alternatively via pin 16

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colour off</td>
<td>(V_{16-4}) (>) 7 V</td>
</tr>
<tr>
<td>Colour on</td>
<td>(V_{16-4}) (<) 5 V</td>
</tr>
</tbody>
</table>

Colour unkill delay | \(t_d \) typ. 20 ms/\(\mu F \) |

1) The amplitude of the burst is kept constant by a.c.c. action, but depends linearly on the keying pulse width.

2) To be established.

3) The delay depends on the value of \(C_d \).
RGB MATRIX PREAMPLIFIER

The TDA2530 is an integrated RGB matrix preamplifier for colour television receivers, incorporating a matrix preamplifier for RGB cathode drive of the picture tube with clamping circuits. The three channels have the same layout to ensure identical frequency behaviour.

This integrated circuit has been designed to be driven from the TDA2522 synchronous demodulator and oscillator IC.

<table>
<thead>
<tr>
<th>QUICK REFERENCE DATA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltage</td>
</tr>
<tr>
<td>Operating ambient temperature range</td>
</tr>
<tr>
<td>Luminance input resistance</td>
</tr>
<tr>
<td>Input current of colour difference inputs</td>
</tr>
<tr>
<td>Clamping pulse input current</td>
</tr>
<tr>
<td>Gain of RGB preamplifiers</td>
</tr>
<tr>
<td>Gain d.c. adjustment range</td>
</tr>
<tr>
<td>Gain of error amplifier (conductance)</td>
</tr>
<tr>
<td>Input current of feedback inputs</td>
</tr>
<tr>
<td>Output current swing</td>
</tr>
</tbody>
</table>

PACKAGE OUTLINES

TDA2530 : 16-lead DIL; plastic (SOT-38).
TDA2530Q : 16-lead QIL; plastic (SOT-58).

January 1980
RATINGS Limiting values in accordance with the Absolute Maximum System (IEC134)

Voltages

Supply voltage (pin 9)
V_p (V9-16) max. 15 V

Pin 1
V_1-16 0 to V_p

Pins 3, 5 and 7
V_3;5;7;16 0 to V_p

Pins 2, 4 and 6
V_2;4;6-16 0 to V_p

Pin 8
V_8-16 max. V_p

Pin 10
V_10-16 V_11-16 to V_p + 3 V

Pin 12
V_12-16 V_13-16 to V_p + 3 V

Pin 14
V_14-16 V_15-16 to V_p + 3 V

Pins 11, 13 and 15
V_11;13;15-16 0,3 V_p to V_p

Current

Pin 8
-I_8 max. 1 mA

Power dissipation

Total power dissipation
P_tot max. 1 W

Temperatures

Storage temperature
T_stg -20 to +125 °C

Operating ambient temperature
T_amb -20 to +60 °C

CHARACTERISTICS at V_p = 12 V; V_1-16 = 1,5 V; T_amb = 25 °C; measured in circuit on page 5.

Current consumption
I_9 typ. 50 mA

Luminance input

Black level
V_1-16 typ. 1,5 V

Black-to-white input voltage (peak-to-peak value)
V_1-16(p-p) typ. 1,0 V

Input resistance
R_1-16 > 100 kΩ

Colour difference input

Input signals (peak-to-peak values) R-Y
V_2-16(p-p) typ. 1,4 V

G-Y
V_4-16(p-p) typ. 0,82 V

B-Y
V_6-16(p-p) typ. 1,78 V

Input currents (source resistance 300 Ω max.)
I_2, I_4, I_6 typ. < 2 μA

Input currents during clamping
I_2, I_4, I_6 -0,2 to +0,2 mA

1) This prescribed order is not mandatory, as all three channels are identical.

October 1979
CHARACTERISTICS (continued)

Clamp pulse input for d.c. feedback

<table>
<thead>
<tr>
<th>Input voltage for clamping: on level</th>
<th>V_{8-16}</th>
<th>6.5 to 12 \text{ V}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input current for clamping: on level</td>
<td>I_{8}</td>
<td>< 1 \text{ } \mu\text{A}</td>
</tr>
<tr>
<td>off level</td>
<td>V_{8-16}</td>
<td>0 to 5.5 \text{ V}</td>
</tr>
<tr>
<td>off level</td>
<td>-I_{8}</td>
<td>< 20 \text{ } \mu\text{A}</td>
</tr>
</tbody>
</table>

Feedback input

D.C. level during clamping \(V_{11;13;15-16} \) typ. 0.5 \(V_p \)

Gain adjustment for colour drive

<table>
<thead>
<tr>
<th>Adjustment voltage range</th>
<th>(V_{3;5;7-16})</th>
<th>0 to 10 \text{ V}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adjustment voltage for nominal gain</td>
<td>(V_{3;5;7-16}) typ.</td>
<td>5 \text{ V}</td>
</tr>
</tbody>
</table>

Nominal gain between colour difference inputs, luminance input and colour feedback inputs (pins 11, 13 and 15)

\(G \) typ. 0 dB 2)

Adjustment range of nominal gain at \(\Delta V_{3;5;7-16} = \pm5 \text{ V} \)

\(\Delta G \) > ±3 dB 2)

Differential amplifier

<table>
<thead>
<tr>
<th>Input current of feedback inputs</th>
<th>(I_{11,13,15}) typ.</th>
<th>2 \text{ } \mu\text{A}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gain of error amplifier (conductance)</td>
<td>typ.</td>
<td>20 mA/V</td>
</tr>
<tr>
<td>Output current swing</td>
<td>(I_{10,12,14}) typ.</td>
<td>-4,4 to +4,4 \text{ mA}</td>
</tr>
<tr>
<td>Integrated load resistance</td>
<td>(R_{10;12;14-9}) typ.</td>
<td>680 \text{ } \Omega 3)</td>
</tr>
<tr>
<td>Output bias voltage (see application information)</td>
<td>(V_{10;12;14-16}) typ.</td>
<td>8 \text{ } \text{V} 3)</td>
</tr>
</tbody>
</table>

APPLICATION INFORMATION (see circuit on page 5)

Clamping level \(V_{\text{cl}} \) of video output stages, with set clamping level potentiometers in their mid-positions:

\[
V_{\text{cl}} = V_p (1 + \frac{R_1}{R_2} - \frac{R_1}{R_3})
\]

Gain of video output stages: \(G = 1 + \frac{R_1}{R_2} + \frac{R_1}{R_3} + \frac{R_1}{R_4} \)

1) Switching from clamping on to off occurs at about 6 \text{ V}.

2) Error signal is assumed to be negligible.

3) The fact that the load resistors have series diodes (D; see block diagram on page 2), means that the resistors can be ignored when \(V_{10;12;14} \geq V_p \).
 In that case, external load resistors must be chosen such that the nominal current will be 4.4 \text{ mA}.
The TDA2532 is an integrated matrix preamplifier for use in conjunction with discrete video amplifiers to provide RGB drive to the cathodes of a colour television picture tube. The integrated circuit incorporates:

- matrix circuits;
- gain control stages, operated by d.c. setting;
- preamplifiers with feedback and integral black-level clamps;
- facilities for video blanking during data display.

The three channels have the same layout to ensure identical frequency behaviour. The integrated circuit has been designed to be driven by the integrated colour demodulator combination type TDA2522.

QUICK REFERENCE DATA

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltage</td>
<td>V9-16</td>
</tr>
<tr>
<td>Operating ambient temperature range</td>
<td>Tamb -25 to +60 °C</td>
</tr>
<tr>
<td>Luminance input resistance</td>
<td>R1-16 > 100 kΩ</td>
</tr>
<tr>
<td>Input current of colour difference inputs</td>
<td>I2, I4, I6</td>
</tr>
<tr>
<td>Clamping pulse input current</td>
<td>-I8 < 60 µA</td>
</tr>
<tr>
<td>Gain of RGB preamplifiers</td>
<td>G typ. 0 dB</td>
</tr>
<tr>
<td>Gain d.c. adjustment range</td>
<td>ΔG > ±40 %</td>
</tr>
<tr>
<td>Gain of error amplifier (transconductance)</td>
<td></td>
</tr>
<tr>
<td>Output current swing</td>
<td>I10, I12, I14 typ. ±3.5 mA</td>
</tr>
</tbody>
</table>

PACKAGE OUTLINES

TDA2532: 16-lead DIL; plastic (SOT-38).
TDA2532Q: 16-lead QIL; plastic (SOT-58).
RGB matrix preamplifier

TDA2532
TDA2532Q

RATINGS
Limiting values in accordance with the Absolute Maximum System (IEC 134)

<table>
<thead>
<tr>
<th>Supply voltage (pin 9)</th>
<th>Vp (V9-16) max.</th>
<th>13.2 V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pin 1</td>
<td>V1-16</td>
<td>0 to Vp</td>
</tr>
<tr>
<td>Pins 3, 5</td>
<td>V3; 5-16</td>
<td>0 to Vp</td>
</tr>
<tr>
<td>Pins 2, 4 and 6</td>
<td>V2; 4; 6-16</td>
<td>0 to Vp</td>
</tr>
<tr>
<td>Pin 7</td>
<td>V7-16</td>
<td>-0.5 V to Vp</td>
</tr>
<tr>
<td>Pin 8</td>
<td>V8-16</td>
<td>max. Vp</td>
</tr>
<tr>
<td>Pin 10</td>
<td>V10-16</td>
<td>V11-16 to Vp + 3 V</td>
</tr>
<tr>
<td>Pin 12</td>
<td>V12-16</td>
<td>V13-16 to Vp + 3 V</td>
</tr>
<tr>
<td>Pin 14</td>
<td>V14-16</td>
<td>V15-16 to Vp + 3 V</td>
</tr>
<tr>
<td>Pins 11, 13 and 15</td>
<td>V11; 13; 15-16</td>
<td>0.3 V to Vp</td>
</tr>
<tr>
<td>Pin 8</td>
<td>-I8</td>
<td>max. 1 mA</td>
</tr>
<tr>
<td>Total power dissipation</td>
<td>Ptot max.</td>
<td>1.1 W</td>
</tr>
<tr>
<td>Storage temperature</td>
<td>Tstg</td>
<td>-25 to + 125 °C</td>
</tr>
<tr>
<td>Operating ambient temperature</td>
<td>Tamb</td>
<td>-25 to + 60 °C</td>
</tr>
</tbody>
</table>

CHARACTERISTICS
At Vp = 12 V; V1-16 = 1.5 V; Tamb = 25 °C; measured in circuit on page 6.

Current consumption
| I9 typ. | 60 mA |

Luminance input
Black level
| V1-16 typ. | 1.5 V |
Black-to-white input voltage (peak-to-peak value)
| V1-16 (p-p) typ. | 1.0 V |
Input resistance
| R1-16 > | 100 kΩ |

Colour difference input
Input signals (peak-to-peak values) R-Y
for 100% saturated colour bars
| V6-16 (p-p) typ. | 1.4 V |
| V4-16 (p-p) typ. | 0.82 V |
Input currents (source resistance 300 Ω max.)
| I2, I4, I6 < | 1 μA |
| | 3 μA |
Clamp pulse input
- Input voltage for clamping on level: V_{8-16}
- Input voltage for clamping off level: V_{8-16}
- Input voltage to enable video blanking input: V_{8-16}
- Input voltage to disable video blanking input: V_{8-16}
- Input current for clamping on level: I_8
- Input current for clamping off level: $-I_8$
- Clamp pulse duration: t_{clamp}

Video blanking input
- Input voltage for blanking on level: V_{7-16}
- Input voltage for blanking off level: V_{7-16}

Feedback input
- D.C. level during clamping: $V_{11; 13; 15-16}$

Gain adjustment for colour drive
- Adjustment voltage range: $V_{3; 5-16}$
- Nominal gain between colour difference inputs, luminance input and colour feedback inputs (pins 11, 13 and 15): G
- Adjustment range of nominal gain at $\Delta V_{3; 5-16} = \pm 5 \, V$:

Differential amplifier
- Gain of error amplifier (transconductance): typ. $20 \, mA/V$
- Output current swing: $I_{10; 12; 14} \geq \pm 3,5 \, mA$
- Integrated load resistance: typ. $640 \, \Omega$
- Output bias voltage (see application information): $V_{10; 12; 14-16}$ typ. $8 \, V$

* Switching from clamping on to off occurs at about 7 V.
** Error signal is assumed to be negligible.
▲ The fact that the load resistors have series diodes (D; see block diagram on page 2), means that the resistors can be ignored when $V_{10; 12; 14} \geq V_p$. In that case, external load resistors must be chosen such that the nominal current will be 3,5 mA.
APPLICATION INFORMATION (see circuit on page 6)

Clamping level \(V_{cl} \) of video output stages, with set clamping level potentiometers in their mid-positions:

\[
V_{cl} = 0,5 \, V_p \left(1 + \frac{R_1}{R_2} - \frac{R_1}{R_3} \right).
\]

Gain of video output stages: \(G = 1 + \frac{R_1}{R_2} + \frac{R_1}{R_3} + \frac{R_1}{R_4 + 0,25 \, R_5} \).
R5 = clamping level adjustment (70 V to 170 V); R6 = gain adjustment (65 to 140).
TELEVISION I.F. AMPLIFIER AND DEMODULATOR

The TDA2540 is an i.f. amplifier and demodulator circuit for colour and black and white television receivers using n-p-n tuners. It incorporates the following functions:
- gain-controlled wide-band amplifier, providing complete i.f. gain
- synchronous demodulator
- white spot inverter
- video preamplifier with noise protection
- a.f.c. circuit which can be switched on/off by a d.c. level, e.g. during tuning
- a.g.c. circuit with noise gating
- tuner a.g.c. output (n-p-n tuners)
- VCR switch, which switches off the video output; e.g. for insertion of a VCR playback signal

QUICK REFERENCE DATA

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltage</td>
<td>V_{11-13}</td>
</tr>
<tr>
<td>Supply current</td>
<td>I_{11}</td>
</tr>
<tr>
<td>I.F. input voltage at f = 38.9 MHz (r.m.s. value)</td>
<td>V_{1-16 (rms)}</td>
</tr>
<tr>
<td>Video output voltage (white at 10% of top sync)</td>
<td>V_{12 (p-p)}</td>
</tr>
<tr>
<td>I.F. voltage gain control range</td>
<td>G_{V}</td>
</tr>
<tr>
<td>Signal-to-noise ratio at V_{l} = 10 mV</td>
<td>S/N</td>
</tr>
<tr>
<td>A.F.C. output voltage swing for Δf = 100 kHz</td>
<td>ΔV_{5-13}</td>
</tr>
</tbody>
</table>

PACKAGE OUTLINES

TDA2540: 16-lead DIL; plastic (SOT-38).
TDA2540Q: 16-lead QIL; plastic (SOT-58).
Fig. 1 Block diagram.
RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Supply voltage \(V_{11-13} \) max. 13.2 V
Tuner a.g.c. voltage \(V_{4-13} \) max. 12 V
Total power dissipation \(P_{\text{tot}} \) max. 900 mW
Storage temperature \(T_{\text{stg}} \) -55 to +125 °C
Operating ambient temperature \(T_{\text{amb}} \) -25 to +60 °C

CHARACTERISTICS (measured in Fig. 5)

Supply voltage range \(V_{11-13} \) typ. 10.2 to 13.2 V
The following characteristics are measured at \(T_{\text{amb}} = 25 \) °C; \(V_{11-13} = 12 \) V; \(f = 38.9 \) MHz
I.F. input voltage for onset of a.g.c. (r.m.s. value) \(V_{1-16} \text{rms} \) typ. 100 \(\mu \)V
Differential input impedance \(|Z_{1-16}| \) typ. 2 kΩ in parallel with 2 pF
Zero-signal output level \(V_{12-13} \) typ. 6 ± 0.3 V*
Top sync output level \(V_{12-13} \) typ. 3.07 V
I.F. voltage gain control range \(G_v \) typ. 64 dB
Bandwidth of video amplifier (3 dB) \(B \) typ. 6 MHz
Signal-to-noise ratio at \(V_i = 10 \) mV \(S/N \) typ. 58 dB**
Differential gain \(dG \) typ. 4 %
Differential phase \(d\phi \) typ. 2°

* So-called ‘projected zero point’, e.g. with switched demodulator.

** \(S/N = \frac{V_o \text{ black-to-white}}{V_{n \text{rms at } B = 5 \text{ MHz}}} \)
CHARACTERISTICS (continued)

Intermodulation at 1,1 MHz: blue*

yellow*

at 3,3 MHz**

-13,2 dB

-10 dB

-30 dB

spectrum for yellow

-30 dB

spectrum for blue

S.C.: sound carrier level
C.C.: chrominance carrier level
P.C.: picture carrier level

with respect to top sync level

Fig. 2 Input conditions for intermodulation measurements; standard colour bar with 75% contrast.

Fig. 3 Test set-up for intermodulation.

\[
* \quad 20 \log \frac{V_o \text{ at } 4,4 \text{ MHz}}{V_o \text{ at } 1,1 \text{ MHz}} = +3,6 \text{ dB.}
\]

\[
** \quad 20 \log \frac{V_o \text{ at } 4,4 \text{ MHz}}{V_o \text{ at } 3,3 \text{ MHz}}.
\]
Television i.f. amplifier and demodulator

Carrier signal at video output

2nd harmonic of carrier at video output

White spot inverter threshold level (Fig. 4)

White spot insertion level (Fig. 4)

Noise inverter threshold level (Fig. 4)

Noise insertion level (Fig. 4)

External video switch (VCR) switches off the output at:

\[V_{14-13} < 1.1 \text{ V} \]

![Diagram showing video output waveform with white spot and noise inverter threshold levels.](image)

Fig. 4 Video output waveform showing white spot and noise inverter threshold levels.

Tuner a.g.c. output current range

Tuner a.g.c. output voltage at \(I_4 = 10 \text{ mA} \)

Tuner a.g.c. output leakage current

\(V_{14-13} = 5 \text{ V}; V_{4-13} = 12 \text{ V} \)

Maximum a.f.c. output voltage swing

Detuning for a.f.c. output voltage swing of 10 V

A.F.C. zero-signal output voltage (minimum gain)

A.F.C. switches on at:

A.F.C. switches off at:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Typical output voltage swing</td>
<td>6 V</td>
</tr>
<tr>
<td>Typical output current</td>
<td>10 to 0 mA</td>
</tr>
<tr>
<td>Typical output voltage at (I_4 = 10 \text{ mA})</td>
<td>0.3 V</td>
</tr>
<tr>
<td>Typical output leakage current</td>
<td>15 (\mu \text{A})</td>
</tr>
<tr>
<td>Maximum detuning for a.f.c. output voltage swing</td>
<td>100 kHz</td>
</tr>
<tr>
<td>Typical detuning for a.f.c. output voltage swing</td>
<td>110 kHz</td>
</tr>
<tr>
<td>A.F.C. zero-signal output voltage (minimum gain)</td>
<td>6 V</td>
</tr>
<tr>
<td>A.F.C. switches on at</td>
<td>4 to 8 V</td>
</tr>
<tr>
<td>A.F.C. switches off at</td>
<td>3.2 V</td>
</tr>
<tr>
<td>A.F.C. switches off at</td>
<td>1.5 V</td>
</tr>
</tbody>
</table>
APPLICATION INFORMATION

Fig. 5 Typical application circuit diagram; Q of L1 and L2 \(\approx 80 \); \(f = 38.9 \text{ MHz} \).
Television i.f. amplifier and demodulator

Fig. 6 A.F.C. output voltage (V_{5-13}) as a function of the frequency.
Fig. 7 Signal-to-noise ratio as a function of the input voltage (V_{1-16}).
The TDA2541 is an i.f. amplifier and demodulator circuit for colour and black and white television receivers using p-n-p tuners.

It incorporates the following functions:
- gain-controlled wide-band amplifier, providing complete i.f. gain
- synchronous demodulator
- white spot inverter
- video preamplifier with noise protection
- a.f.c. circuit which can be switched on/off by a d.c. level, e.g. during tuning
- a.g.c. circuit with noise gating
- tuner a.g.c. output (p-n-p tuners)
- VCR switch, which switches off the video output; e.g. for insertion of a VCR playback signal.

<table>
<thead>
<tr>
<th>QUICK REFERENCE DATA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltage:</td>
</tr>
<tr>
<td>V 11-13 (typ.):</td>
</tr>
<tr>
<td>typ. 12 V</td>
</tr>
<tr>
<td>Supply current:</td>
</tr>
<tr>
<td>I 11 (typ.):</td>
</tr>
<tr>
<td>typ. 50 mA</td>
</tr>
<tr>
<td>I.F. input voltage at f = 38,9 MHz:</td>
</tr>
<tr>
<td>(r.m.s. value)</td>
</tr>
<tr>
<td>V 1-16 (rms) typ.:</td>
</tr>
<tr>
<td>100 μV</td>
</tr>
<tr>
<td>Video output voltage (white at 10% of top sync):</td>
</tr>
<tr>
<td>V 12 (p-p) typ.:</td>
</tr>
<tr>
<td>2,7 V</td>
</tr>
<tr>
<td>I.F. voltage gain control range:</td>
</tr>
<tr>
<td>G V (typ.)</td>
</tr>
<tr>
<td>64 dB</td>
</tr>
<tr>
<td>Signal-to-noise ratio at V 1 = 10 mV:</td>
</tr>
<tr>
<td>S/N (typ.)</td>
</tr>
<tr>
<td>58 dB</td>
</tr>
<tr>
<td>A.F.C. output voltage swing for Δf = 100 kHz:</td>
</tr>
<tr>
<td>ΔV 5-13 (typ.)</td>
</tr>
<tr>
<td>10 V</td>
</tr>
</tbody>
</table>

PACKAGE OUTLINES
TDA2541 : 16-lead DIL; plastic (SOT-38).
TDA2541Q : 16-lead OIL; plastic (SOT-58).
Fig. 1 Block diagram.
Television i.f. amplifier and demodulator

RATINGS
Limiting values in accordance with the Absolute Maximum System (IEC 134)

Supply voltage \(V_{11-13} \) max. 13,2 V
Tuner a.g.c. voltage \(V_{4-13} \) max. 12 V
Total power dissipation \(P_{\text{tot}} \) max. 900 mW
Storage temperature \(T_{\text{stg}} \) -55 to +125 °C
Operating ambient temperature \(T_{\text{amb}} \) -25 to +60 °C

CHARACTERISTICS (measured in Fig. 5)

Supply voltage range \(V_{11-13} \)

The following characteristics are measured at \(T_{\text{amb}} = 25 \) °C; \(V_{11-13} = 12 \) V; \(f = 38,9 \) MHz

I.F. input voltage for onset of a.g.c. (r.m.s. value) \(V_{1-16(\text{rms})} \)

Differential input impedance \(|Z_{1-16}| \)

Zero-signal output level \(V_{12-13} \)

Top sync output level \(V_{12-13} \)

I.F. voltage gain control range \(G_{V} \)

Bandwidth of video amplifier (3 dB) \(B \)

Signal-to-noise ratio at \(V_{i} = 10 \) mV \(S/N \)

Differential gain \(dG \)

Differential phase \(d\phi \)

* So-called 'projected zero point', e.g. with switched demodulator.

** \(S/N = \frac{V_{o \text{ black-to-white}}}{V_{n(\text{rms})} \text{ at } B = 5 \text{ MHz}} \)
CHARACTERISTICS (continued)

Intermodulation at 1,1 MHz: blue*
 yellow*
 at 3,3 MHz**

\[-13,2\text{dB}\]
\[-13,2\text{dB}\]
\[-30\text{dB}\]

S.C. : sound carrier level
C.C. : chrominance carrier level
P.C. : picture carrier level

with respect to top sync level

Fig. 2 Input conditions for intermodulation measurements; standard colour bar with 75% contrast.

Fig. 3 Test set-up for intermodulation.

\[* 20 \log \frac{V_o \text{ at } 4,4 \text{ MHz}}{V_o \text{ at } 1,1 \text{ MHz}} + 3,6 \text{ dB.} \]
\[** 20 \log \frac{V_o \text{ at } 4,4 \text{ MHz}}{V_o \text{ at } 3,3 \text{ MHz}}. \]
Television i.f. amplifier and demodulator

Carrier signal at video output
typ. 4 mV
< 30 mV

2nd harmonic of carrier at video output
typ. 20 mV
< 30 mV

White spot inverter threshold level (Fig. 4)
typ. 6,6 V

White spot insertion level (Fig. 4)
typ. 4,7 V

Noise inverter threshold level (Fig. 4)
typ. 1,8 V

Noise insertion level (Fig. 4)
typ. 3,8 V

External video switch (VCR) switches off the output at:
V14-13 < 1,1 V

Fig. 4 Video output waveform showing white spot and noise inverter threshold levels.

Tuner a.g.c. output current range
I4 0 to 10 mA
V4-13 < 0,3 V

Tuner a.g.c. output voltage at I4 = 10 mA
V4-13 = 11 V; V4-13 = 12 V

Tuner a.g.c. output leakage current
I4 < 15 µA

Maximum a.f.c. output voltage swing
ΔV5-13 > 10 V
typ. 11 V

Detuning for a.f.c. output voltage swing of 10 V
Δf < 100 kHz
typ. 200 kHz

A.F.C. zero-signal output voltage
(minimum gain)
V5-13 typ. 6 V

A.F.C. switches on at:
V6-13 > 3,2 V

A.F.C. switches off at:
V6-13 < 1,5 V
Fig. 5 Typical application circuit diagram; Q of L1 and L2 ≈ 80; $f_0 = 38.9$ MHz.
Fig. 6 A.F.C. output voltage (V_{5-13}) as a function of the frequency.
Fig. 7 Signal-to-noise ratio as a function of the input voltage (V_{1-16}).
DEVELOPMENT SAMPLE DATA
This information is derived from development samples made available for evaluation. It does not necessarily imply that the device will go into regular production.

TELEVISION I.F. AMPLIFIER AND DEMODULATOR

The TDA2542 is an i.f. amplifier and demodulator circuit for E and L standards in colour and black and white television receivers using p-n-p tuners.
It incorporates the following functions:
— gain-controlled wide-band amplifier, providing complete i.f. gain
— synchronous demodulator
— video preamplifier
— a.f.c. circuit which can be switched on/off by a d.c. level, e.g. during tuning
— a.g.c. circuit
— tuner a.g.c. output (p-n-p tuners)

QUICK REFERENCE DATA

<table>
<thead>
<tr>
<th>Supply voltage</th>
<th>V_{11-13}</th>
<th>typ. 12 V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply current</td>
<td>I_{11}</td>
<td>typ. 50 mA</td>
</tr>
<tr>
<td>I.F. input voltage at $f = 32.7$ MHz (r.m.s. value)</td>
<td>$V_{1-16\text{(rms)}}$</td>
<td>typ. 100 μV</td>
</tr>
<tr>
<td>Video output voltage (peak-to-peak value)</td>
<td>$V_{12\text{(p-p)}}$</td>
<td>typ. 3 V</td>
</tr>
<tr>
<td>I.F. voltage gain control range</td>
<td>G_v</td>
<td>typ. 64 dB</td>
</tr>
<tr>
<td>Signal-to-noise ratio at $V_1 = 10$ mV</td>
<td>S/N</td>
<td>typ. 58 dB</td>
</tr>
<tr>
<td>A.F.C. output voltage swing for $\Delta f = 100$ kHz</td>
<td>ΔV_{5-13}</td>
<td>typ. 10 V</td>
</tr>
</tbody>
</table>

PACKAGE OUTLINES

TDA2542 : 16-lead DIL; plastic (SOT-38).
TDA2542Q: 16-lead QIL; plastic (SOT-58).
Fig. 1 Block diagram.
Television i.f. amplifier and demodulator

RATINGS
Limiting values in accordance with the Absolute Maximum System (IEC 134)

- Supply voltage: V_{11-13} max. 13.8 V
- Tuner a.g.c. voltage: V_{4-13} max. 12 V
- Total power dissipation: P_{tot} max. 900 mW
- Storage temperature: T_{stg} -55 to +125 °C
- Operating ambient temperature: T_{amb} -25 to +60 °C

CHARACTERISTICS (measured in Fig. 2)

- Supply voltage range: V_{11-13} typ. 12 V 10.2 to 13.8 V
- The following characteristics are measured at $T_{\text{amb}} = 25$ °C; $V_{11-13} = 12$ V; $f = 32.7$ MHz
- I.F. input voltage for onset of a.g.c. (r.m.s. value): $V_{1-16(\text{rms})}$ typ. 100 µV 150 µV
- Differential input impedance: $|Z_{1-16}|$ typ. 2 kΩ in parallel with 2 pF
- Zero-signal output level: V_{12-13} typ. 2.9 V
- Maximum video output voltage (peak-to-peak value): $V_{12(p-p)}$ > 4 V
- Video output voltage variation at 50 dB input voltage variation: ΔV_{12-13} < 0.5 dB
- I.F. voltage gain control range: G_v typ. 64 dB
- Bandwidth of video amplifier (3 dB): B typ. 6 MHz
- Signal-to-noise ratio at $V_i = 10$ mV: S/N typ. 58 dB*
- Differential gain: dG typ. 4 %< 10 %
- Differential phase: $d\varphi$ typ. 2° < 10°

* $S/N = \frac{V_o \text{ black-to-white}}{V_{n(\text{rms})} \text{ at } B = 5 \text{ MHz}}$
CHARACTERISTICS (continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carrier signal at video output</td>
<td>typ. 4 mV</td>
</tr>
<tr>
<td></td>
<td>< 30 mV</td>
</tr>
<tr>
<td>2nd harmonic of carrier at video output</td>
<td>typ. 20 mV</td>
</tr>
<tr>
<td></td>
<td>< 30 mV</td>
</tr>
<tr>
<td>Tuner a.g.c. output current range</td>
<td></td>
</tr>
<tr>
<td>Tuner a.g.c. output voltage at $I_4 = 10$ mA</td>
<td>I_4 0 to 10 mA</td>
</tr>
<tr>
<td>Tuner a.g.c. output leakage current</td>
<td>V_{4-13} < 0,3 V</td>
</tr>
<tr>
<td>$V_{14-13} = 3$ V; $V_{4-13} = 12$ V</td>
<td></td>
</tr>
<tr>
<td>Maximum a.f.c. output voltage swing</td>
<td></td>
</tr>
<tr>
<td>Detuning for a.f.c. output voltage swing of 10 V</td>
<td>Δf typ. 100 kHz</td>
</tr>
<tr>
<td></td>
<td>< 200 kHz</td>
</tr>
<tr>
<td>A.F.C. switches on at:</td>
<td>V_{6-13} > 3,2 V</td>
</tr>
<tr>
<td>A.F.C. switches off at:</td>
<td>V_{6-13} < 1,5 V</td>
</tr>
<tr>
<td>A.G.C. detector reference voltage</td>
<td>V_{14-13} typ. 3,9 V</td>
</tr>
</tbody>
</table>
Fig. 2 Typical application circuit diagram; Q of L1 and L2 ≈ 80; f = 32.7 MHz.
Fig. 3 A.F.C. output voltage (V5-13) as a function of the frequency.
Fig. 4 Signal-to-noise ratio as a function of the input voltage (V_{1-16}).
TELEVISION I.F. AMPLIFIER AND DEMODULATOR

The TDA2544 is an i.f. amplifier and demodulator circuit for colour and black and white television receivers.

It incorporates the following functions:

- gain-controlled wide-band amplifier, providing complete i.f. gain
- low-level synchronous demodulator
- white spot inverter
- video preamplifier with noise protection
- a.f.c. circuit with balanced output
- a.g.c. circuit with noise gating
- tuner a.g.c. output for control of MOS tuners
- external video switch

QUICK REFERENCE DATA

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Typical Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltage</td>
<td>V_{11-13}</td>
<td>12 V</td>
</tr>
<tr>
<td>Supply current</td>
<td>I_{11}</td>
<td>50 mA</td>
</tr>
<tr>
<td>I.F. input sensitivity at (f = 45.75) MHz</td>
<td>V_{1-16(rms)}</td>
<td>150 \mu V</td>
</tr>
<tr>
<td>Video output voltage (white at 12.5% of top sync)</td>
<td>V_{12(p-p)}</td>
<td>2.6 V</td>
</tr>
<tr>
<td>I.F. voltage gain control range</td>
<td>G_{V}</td>
<td>63 dB</td>
</tr>
<tr>
<td>Signal-to-noise ratio (V_i = 10) mV</td>
<td>S/N</td>
<td>58 dB</td>
</tr>
<tr>
<td>A.F.C. sensitivity</td>
<td></td>
<td>80 mV/kHz</td>
</tr>
</tbody>
</table>

PACKAGE OUTLINES

TDA2544 16-lead DIL; plastic (SOT-38).
Fig. 1 Block diagram.
Television i.f. amplifier and demodulator

RATINGS
Limiting values in accordance with the Absolute Maximum System (IEC 134)

Supply voltage
- Tuner a.g.c. voltage
Total power dissipation
Storage temperature
Operating ambient temperature

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltage</td>
<td>V_{11-13} max. 13.8 V</td>
</tr>
<tr>
<td>Tuner a.g.c. voltage</td>
<td>V_{4-13} max. 12 V</td>
</tr>
<tr>
<td>Total power dissipation</td>
<td>P_{tot} max. 1.2 W</td>
</tr>
<tr>
<td>Storage temperature</td>
<td>T_{stg} -55 to $+125$ °C</td>
</tr>
<tr>
<td>Operating ambient temperature</td>
<td>T_{amb} -25 to $+65$ °C</td>
</tr>
</tbody>
</table>

CHARACTERISTICS (measured in Fig. 5)

Supply voltage range

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>The following characteristics are measured at $T_{amb} = 25$ °C; $V_{11-13} = 12$ V</td>
<td></td>
</tr>
<tr>
<td>I.F. input voltage for onset of a.g.c. (r.m.s. value) at $f = 45.75$ MHz</td>
<td></td>
</tr>
<tr>
<td>V_{11-13}</td>
<td>typ. 12 V</td>
</tr>
<tr>
<td>V_{1-16}(rms)</td>
<td>typ. 150 µV</td>
</tr>
<tr>
<td>$</td>
<td>Z_{1-16}</td>
</tr>
<tr>
<td>V_{12-13}</td>
<td>typ. 5.5 V*</td>
</tr>
<tr>
<td>V_{12-13}</td>
<td>typ. 2.5 V</td>
</tr>
<tr>
<td>G_{v}</td>
<td>typ. 63 dB</td>
</tr>
<tr>
<td>B</td>
<td>typ. 6 MHz</td>
</tr>
<tr>
<td>S/N</td>
<td>typ. 58 dB**</td>
</tr>
<tr>
<td>dG</td>
<td>typ. 4 %</td>
</tr>
<tr>
<td>$d\phi$</td>
<td>typ. 20°</td>
</tr>
<tr>
<td>$d\phi$</td>
<td>typ. 10°</td>
</tr>
</tbody>
</table>

* So-called ‘projected zero point’, e.g. with switched demodulator.

** $S/N = \frac{V_0 \text{ black-to-white}}{V_n\text{(rms)} \text{ at } B = 5 \text{ MHz}}$
CHARACTERISTICS (continued)

Intermodulation at 0,9 MHz: blue*
 yellow*
 at 2,6 MHz**

<table>
<thead>
<tr>
<th>Carriers</th>
<th>S.C.</th>
<th>C.C.</th>
<th>P.C.</th>
</tr>
</thead>
<tbody>
<tr>
<td>blue</td>
<td>-30dB</td>
<td>-13,2dB</td>
<td>10dB</td>
</tr>
<tr>
<td>spectrum for blue</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>yellow</td>
<td>-30dB</td>
<td>-13,2dB</td>
<td>10dB</td>
</tr>
<tr>
<td>spectrum for yellow</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

S.C. : sound carrier level
C.C. : chrominance carrier level with respect to top sync level
P.C. : picture carrier level

Fig. 2 Input conditions for intermodulation measurements; standard colour bar with 75% contrast.

Fig. 3 Test set-up for intermodulation.

\[
\text{typ. } 50 \text{ dB} \\
\text{typ. } 46 \text{ dB} \\
\text{typ. } 49 \text{ dB}
\]

\[\text{typo} \]

\[\text{typo} \]

\[\text{typo} \]

\[
20 \log \frac{V_o \text{ at } 3,6 \text{ MHz}}{V_o \text{ at } 0,9 \text{ MHz}} + 3,6 \text{ dB.}
\]

\[
20 \log \frac{V_o \text{ at } 3,6 \text{ MHz}}{V_o \text{ at } 2,6 \text{ MHz}}.
\]
Television i.f. amplifier and demodulator

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carrier signal at video output</td>
<td>< 30 mV</td>
</tr>
<tr>
<td>2nd harmonic of carrier at video output</td>
<td>< 30 mV</td>
</tr>
<tr>
<td>White spot inverter threshold level (Fig. 4)</td>
<td>typ. 6,4 V</td>
</tr>
<tr>
<td>White spot insertion level (Fig. 4)</td>
<td>typ. 4,1 V</td>
</tr>
<tr>
<td>Noise inverter threshold level (Fig. 4)</td>
<td>typ. 1,6 V</td>
</tr>
<tr>
<td>Noise insertion level (Fig. 4)</td>
<td>typ. 3,3 V</td>
</tr>
<tr>
<td>External video switch (VCR) switches off the output at</td>
<td>V14-13 < 1,0 V</td>
</tr>
</tbody>
</table>

![Fig. 4 Video output waveform showing white spot and noise inverter threshold levels.](image)

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tuner a.g.c. output current range</td>
<td>I4 0 to 0,3 mA</td>
</tr>
<tr>
<td>Tuner a.g.c. output voltage at I4 = 0,3 mA</td>
<td>V4-13 < 0,3 V</td>
</tr>
<tr>
<td>Tuner a.g.c. output leakage current</td>
<td>I4 < 10 μA</td>
</tr>
<tr>
<td>V14-13 = 3 V; V4-13 = 12 V</td>
<td></td>
</tr>
<tr>
<td>A.F.C. output voltage (d.c. value)</td>
<td>V5,6-13 typ. 6,8 V</td>
</tr>
<tr>
<td>A.F.C. output offset voltage</td>
<td></td>
</tr>
<tr>
<td>Maximum a.f.c. output voltage</td>
<td>V5,6-13 > 11,6 V</td>
</tr>
<tr>
<td>Minimum a.f.c. output voltage</td>
<td>V5,6-13 < 2,8 V</td>
</tr>
<tr>
<td>A.F.C. sensitivity</td>
<td>typ. 80 mV/kHz</td>
</tr>
</tbody>
</table>
APPLICATION INFORMATION

Fig. 5 Typical application diagram.
Fig. 6 Signal-to-noise ratio as a function of the input voltage ($V_{1\cdot16}$).
LUMINANCE AND CHROMINANCE CONTROL COMBINATION

The TDA2560 is a monolithic integrated circuit for use in decoding systems of colour television receivers. The circuit consists of a luminance and chrominance amplifier. The luminance amplifier has a low input impedance so that matching of the luminance delay line is very easy.

It also incorporates the following functions:

- d.c. contrast control;
- d.c. brightness control;
- black level clamp;
- blanking;
- additional video output with positive-going sync.

The chrominance amplifier comprises:

- gain controlled amplifier;
- chrominance gain control tracked with contrast control;
- separate d.c. saturation control;
- combined chroma and burst output, burst signal amplitude not affected by contrast and saturation control;
- the delay line can be driven directly by the IC.

<table>
<thead>
<tr>
<th>QUICK REFERENCE DATA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltage</td>
</tr>
<tr>
<td>Supply current</td>
</tr>
<tr>
<td>Luminance signal input current (black-to-white value)</td>
</tr>
<tr>
<td>Chrominance input signal (peak-to-peak value)</td>
</tr>
<tr>
<td>Luminance output signal at nominal contrast (black-to-white value)</td>
</tr>
<tr>
<td>Chrominance output signal at nominal contrast and saturation and 1.25 V peak-to-peak burst output (peak-to-peak value)</td>
</tr>
<tr>
<td>Contrast control range</td>
</tr>
<tr>
<td>Saturation control range</td>
</tr>
</tbody>
</table>

PACKAGE OUTLINES

TDA2560: 16-lead DIL; plastic (SOT-38).
TDA2560Q: 16-lead QIL; plastic (SOT-58).

January 1980
RATINGS Limiting values in accordance with the Absolute Maximum System (IEC134)

Voltage
Supply voltage \(V_{8-5} \) max. 14 V

Power dissipation
Total power dissipation \(P_{\text{tot}} \) max. 930 mW

Temperatures
Storage temperature \(T_{\text{stg}} \) -55 to +125 °C
Operating ambient temperature \(T_{\text{amb}} \) 0 to +65 °C

CHARACTERISTICS measured in the circuit on page 7
Supply voltage range \(V_{8-5} \) typ. 12 V
Supply current \(I_8 \) typ. 45 mA
Allowable hum on supply line (peak-to-peak value) \(V_{8-5}(\text{p-p}) \) < 100 mV

The following data are measured at \(V_{8-5} = 12 \) V; \(T_{\text{amb}} = 25 \) °C; \(R_G = 2.7 \) kΩ

Luminance amplifier
Input signal current; black-to-white value \(I_{14} \) typ. 0.2 mA
Input bias current \(I_{14} \) typ. 0.25 mA
Input impedance \(|Z_{14-5}| \) typ. 150 Ω
Gain (pin 13) see note 1 on page 5
Contrast control range > 20 dB
Contrast control voltage range \(V_{16-5} \) (see control curve on page 6)
Contrast control current \(I_{16} \) < 8 μA
Black level range \(V_{10-5} \) 1 to 3 V
Brightness control voltage range \(V_{11-5} \) typ. 1 to 3 V
Brightness control current \(I_{11} \) < 20 μA
Black level stability when changing temperature typ. 0.1 mV/°C
Black level stability when changing contrast see page 9 (pin 10)
Bandwidth (-3 dB) \(B \) > 5 MHz

1) At a load on pin 6 of 1.5 kΩ, and no load on pins 10 and 15.
2) At an input bias current of 0.25 mA.
3) At \(V_{11-5} > 4 \) V.
4) At nominal contrast (max. contrast setting -3 dB).
CHARACTERISTICS (continued)

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Symbol</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output voltage (black-to-white value)</td>
<td></td>
<td>V<sub>10-5</sub> typ. 3 V</td>
</tr>
<tr>
<td>Output voltage (additional; positive-going sync)</td>
<td></td>
<td>V<sub>15-5</sub>(p-p) typ. 3,4 V<sup>1)</sup></td>
</tr>
<tr>
<td>Black level clamp pulse (see note 2 on page 5)</td>
<td></td>
<td>V<sub>7-5</sub> 7 to V<sub>8-5</sub> V</td>
</tr>
<tr>
<td>on level</td>
<td></td>
<td>V<sub>7-5</sub> < 5 V</td>
</tr>
<tr>
<td>off level</td>
<td></td>
<td>V<sub>9-5</sub> 2,5 to 4,5 V</td>
</tr>
<tr>
<td>Blanking pulse (see note 3 on page 5) for 0 V on pin 10: on level</td>
<td></td>
<td>V<sub>9-5</sub> < 1,5 V</td>
</tr>
<tr>
<td>off level</td>
<td></td>
<td>V<sub>9-5</sub> 6 to V<sub>8-5</sub> V</td>
</tr>
<tr>
<td>for 1,5 V on pin 10: on level</td>
<td></td>
<td>V<sub>9-5</sub> < 4,5 V</td>
</tr>
<tr>
<td>Chrominance amplifier 2)</td>
<td></td>
<td>V<sub>2-1</sub>(p-p) 4 to 80 mV</td>
</tr>
<tr>
<td>Input signal (peak-to-peak value)</td>
<td></td>
<td>V<sub>6-5</sub>(p-p) typ. 2 V<sup>3</sup>)</td>
</tr>
<tr>
<td>Chrominance output signal at nominal contrast and saturation setting</td>
<td></td>
<td>V<sub>6-5</sub> 4,6 V</td>
</tr>
<tr>
<td>(peak-to-peak value)</td>
<td></td>
<td>B typ. 6 MHz</td>
</tr>
<tr>
<td>Maximum chrominance output signal</td>
<td></td>
<td>see notes 4 and 5 on page 5</td>
</tr>
<tr>
<td>Bandwidth (-3 dB)</td>
<td></td>
<td>V<sub>3-5</sub> typ. 1,2 V</td>
</tr>
<tr>
<td>Ratio of burst and chrominance at nominal contrast and saturation</td>
<td></td>
<td>> 30 dB</td>
</tr>
<tr>
<td>A.C.C. starting voltage (see note 6 on page 5)</td>
<td></td>
<td>V<sub>3-5</sub> typ. ±1 dB</td>
</tr>
<tr>
<td>A.C.C. range</td>
<td></td>
<td>> 20 dB</td>
</tr>
<tr>
<td>Tracking between luminance and chrominance with contrast control (10 dB control)</td>
<td></td>
<td>V<sub>4-5</sub> (see control curve on page 6)</td>
</tr>
<tr>
<td>Saturation control range</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Saturation control voltage range</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gating pulse for chrominance amplifier on level</td>
<td></td>
<td>V<sub>7-5</sub> 2,3 to 5 V</td>
</tr>
<tr>
<td>off level</td>
<td></td>
<td>V<sub>7-5</sub> < 1 V</td>
</tr>
<tr>
<td>width</td>
<td></td>
<td>t<sub>7</sub> > 8 μs</td>
</tr>
<tr>
<td>Signal-to-noise ratio at nominal input voltage</td>
<td></td>
<td>S/N > 46 dB</td>
</tr>
<tr>
<td>Phase shift between burst and chrominance</td>
<td></td>
<td>< 5°</td>
</tr>
</tbody>
</table>

¹ For I₁₄ = 0,2 mA (black-to-white value).

² All figures for the chrominance signals are based on a colour bar signal with 75% saturation: i.e. burst-to-chrominance ratio is 1:2.

³ At a burst signal of 1 V peak-to-peak; see also notes 4 and 5 on page 5.
NOTES

1. The gain of the luminance amplifier can be adjusted, by setting the gain of the contrast control circuit by selection of discrete resistor R_G (see also circuit on page 7). This circuit configuration has been chosen to reduce the spread of the gain to a minimum (main cause of spread is now the spread of the ratio of the delay line matching resistors and the resistor R_G). At $R_G = 2.7 \, \text{k}\Omega$ the output voltage at nominal contrast (maximum -3 dB) is $3 \, \text{V}$ black-to-white for an input current of $0.2 \, \text{mA}$ black-to-white.

2. This pulse (pin 7) is used for gating of the chrominance amplifier and black level clamping. The latter function is actuated at a $+7 \, \text{V}$ level. The input pulse must have such an amplitude that the clamping circuit is active only during the back porch of the blanking interval. The gating pulse switches the gain of the chroma amplifier to maximum during the flyback time, when the pulse rises above $2.3 \, \text{V}$ and switches it back to normal setting when the pulse falls below $1 \, \text{V}$.

3. This pulse (pin 9) is used for blanking the luminance amplifier. When the pulse exceeds the $+2.5 \, \text{V}$ level the output signal is blanked to a level of about $0 \, \text{V}$. When the input exceeds a $+6 \, \text{V}$ level a fixed level of typ. $+1.5 \, \text{V}$ is inserted in the output signal. This level can be used for clamping purposes.

4. The chrominance and burst signal are both available on this pin (6). The burst signal is not affected by the contrast and saturation control and is kept constant by the a.c.c. circuit of the TDA2522. The output of the delay line matrix circuit, which is the input of the TDA2522, is thus automatically compensated for the insertion losses. This means that the output signal of the TDA2560 is determined by the insertion losses of the delay line. At nominal contrast and saturation setting the ratio of burst to chrominance signal at the output is typically identical to that at the input.

5. Nominal contrast is specified as maximum contrast -3 dB. Nominal saturation is specified as maximum saturation -6 dB.

6. A negative-going control voltage gives a decrease in gain.
Contrast control of luminance and chrominance amplifier

Saturation control of chrominance amplifier

TDA2560
TDA2560Q

December 1976
APPLICATION INFORMATION (continued)

The function is quoted against the corresponding pin number

1. Balanced chrominance input signal (in conjunction with pin 2)
 This is derived from the chrominance signal bandpass filter, designed to provide a push-pull input. A signal amplitude of at least 4 mV peak-to-peak is required between pins 1 and 2. The chrominance amplifier is stabilized by an external feedback loop from the output (pin 6) to the input (pins 1 and 2). The required level at pins 1 and 2 will be 3 V.
 All figures for the chrominance signals are based on a colour bar signal with 75% saturation: i.e. burst-to-chrominance ratio of input signal is 1 : 2.

2. Chrominance signal input (see pin 1)

3. A.C.C. input
 A negative-going potential, starting at +1.2 V, gives a 40 dB range of a.c.c. Maximum gain reduction is achieved at an input voltage of 500 mV.

4. Chrominance saturation control
 A control range of +6 dB to > -14 dB is provided over a range of d.c. potential on pin 4 from +2 to +4 V. The saturation control is a linear function of the control voltage.

5. Negative supply (earth)

6. Chrominance signal output
 For nominal settings of saturation and contrast controls (max. -6 dB for saturation, and max. -3 dB for contrast) both the chroma and burst are available at this pin, and in the same ratio as at the input pins 1 and 2. The burst signal is not affected by the saturation and contrast controls. The a.c.c. circuit of the TDA2522 will hold constant the colour burst amplitude at the input of the TDA2522. As the PAL delay line is situated here between the TDA2560 and TDA2522 there may be some variation of the nominal 1 V peak-to-peak burst output of the TDA2560, according to the tolerances of the delay line. An external network is required from pin 6 of the TDA2560 to provide d.c. negative feedback in the chroma channel via pins 1 and 2.

7. Burst gating and clamping pulse input
 A two-level pulse is required at this pin to be used for burst gate and black level clamping. The black level clamp is activated when the pulse level is greater than 7 V. The timing of this interval should be such that no appreciable encroachment occurs into the sync pulse on picture line periods during normal operation of the receiver. The burst gate, which switches the gain of the chroma amplifier to maximum, requires that the input pulse at pin 7 should be sufficiently wide, at least 8 μs, at the actuating level of 2.3 V.
APPLICATION INFORMATION (continued)

8. +12 V power supply
Correct operation occurs within the range 10 to 14 V. All signal and control levels have a linear dependency on supply voltage but, in any given receiver design, this range may be restricted due to considerations of tracking between the power supply variations and picture contrast and chroma levels.

9. Flyback blanking input waveform
This pin is used for blanking the luminance amplifier. When the input pulse exceeds the +2.5 V level, the output signal is blanked to a level of about 0 V. When the input exceeds a +6 V level, a fixed level of about 1.5 V is inserted in the output. This level can be used for clamping purposes.

10. Luminance signal output
An emitter follower provides a low impedance output signal of 3 V black-to-white amplitude at nominal contrast setting having a black level in the range 1 to 3 V. An external emitter load resistor is not required.

The luminance amplitude available for nominal contrast may be modified according to the resistor value from pin 13 to the +12 V supply. At an input bias current I_{14} of 0.25 mA during black level the amplifier is compensated so that no black level shift more than 10 mV occurs at contrast control. When the input current deviates from the quoted value the black level shift amounts to 100 mV/mA.

11. Brightness control
The black level at the luminance output (pin 10) is identical to the control voltage required at this pin. A range of black level from 1 to 3 V may be obtained.

12. Black level clamp capacitor

13. Luminance gain setting resistor
The gain of the luminance amplifier may be adjusted by selection of the resistor value from pin 13 to +12 V. Nominal luminance output amplitude is then 3 V black-to-white at pin 10 when this resistor is 2.7 kΩ and the input current is 0.2 mA black-to-white. Maximum and minimum values of this resistor are 3.9 kΩ and 1.8 kΩ.

14. Luminance signal input
A low input impedance in the form of a current sink is obtained at this pin. Nominal input current is 0.2 mA black-to-white. The luminance signal may be coupled to pin 14 via a d.c. blocking capacitor and, in addition, a resistor employed to give a d.c. current into pin 14 at black level of about 0.25 mA. Alternatively d.c. coupling from a signal source such as the TDA2540 and TDA2541 may be employed.
APPLICATION INFORMATION (continued)

15. Luminance signal output for sync separator purposes

A luminance signal output with positive-going sync is available which is not affected by the contrast control or the value of resistor at pin 13. This voltage is intended for drive of sync separator circuits. The output amplitude is 3.4 V peak-to-peak when the luminance signal input is 0.2 mA black-to-white.

16. Contrast control

With 3 V on this pin the gain of the luminance channel is such that 0.2 mA black-to-white at pin 14 gives a luminance output on pin 10 of 3 V black-to-white. The nominal value of 2.7 kΩ is then assumed for the resistor from pin 13 to the +12 V supply. The variation of control potential at pin 16 from 2 to 4 V gives -17 to +3 dB gain variation of the luminance channel. A similar variation in the chrominance channel occurs in order to provide correct tracking between the two signals.
HORIZONTAL SYNCHRONIZATION AND VERTICAL 625 DIVIDER SYSTEM

The TDA2571A is designed in combination with the TDA2581 as a matched pair for switched-mode driven horizontal deflection stages. When supplied with a composite video signal the TDA2571A delivers drive pulses for the TDA2581 and sync pulses for the vertical deflection. The circuit is optimized for a horizontal and vertical frequency ratio of 625.

The circuit incorporates the following functions:
- Horizontal sync separator with sliding bias in such a way that the sync pulse is always sliced between top-sync level and blanking level.
- Noise gate.
- Horizontal phase detector switching to a small time constant during catching. The phase detector is gated when the oscillator is synchronized.
- Horizontal oscillator (31.25 kHz).
- Burst-key pulse generator. This pulse can also be applied as black level clamp pulse.
- Vertical sync pulse separator.
- Automatic vertical synchronization (625 divider system), without delay after channel change.

QUICK REFERENCE DATA

Supply voltage	V12-11	typ. 12 V
Supply voltage	V16-11	typ. 12 V
Sync input voltage (peak-to-peak value)	V2-11(p-p)	0.07 to 1 V
Slicing level	typ. 50 %	
Control sensitivity of horizontal PLL	typ. 2000 Hz/μs	
Holding range	Δf	typ. ± 1000 Hz
Catching range	Δf	typ. ± 900 Hz
Horizontal output pulse (peak-to-peak value)	V8-11(p-p)	typ. 11 V
Vertical sync output pulse (peak-to-peak value)	V1-11(p-p)	typ. 11 V
Burst-key output pulse (peak-to-peak value)	V13-11(p-p)	typ. 11 V

PACKAGE OUTLINES
TDA2571A: 16 lead DIL; plastic (SOT-38).
TDA2571AQ: 16-lead QIL; plastic (SOT-58).
Fig. 1 Block diagram.
Horizontal synchronization and vertical 625 divider system

TDA2571A
TDA2571AQ

RATINGS
Limiting values in accordance with the Absolute Maximum System (IEC 134)

Supply voltage
- horizontal: V_{12-11} max. 13,2 V
- vertical: V_{16-11} max. 13,2 V

Total power dissipation: P_{tot} max. 1 W

Storage temperature: T_{stg} -25 to + 130 °C

Operating ambient temperature: T_{amb} -25 to + 65 °C

CHARACTERISTICS
At $V_{12-11} = 12$ V; $V_{16-11} = 12$ V; $T_{amb} = 25$ °C; measured in Fig. 1

Supply voltage range (pins 12 and 16): $V_{12-11}; V_{16-11}$ typ. 12 V

Current consumption: $I_{12} + I_{16}$ typ. 50 mA

Sync separator and noise gate
- Sync pulse amplitude (negative going) peak-to-peak value: $V_{2-11(p-p)}$ 0,07 to 1 V*
- Top-sync level: V_{2-11} 1,0 to 3,5 V
- Slicing level: typ. 50 %**
- Slicing level noise gating: V_{2-11} typ. 0,7 V

Phase locked loop
- Holding range: Δf typ. ± 1000 Hz
- Catching range: Δf typ. ± 900 Hz
- Control sensitivity of horizontal PLL: typ. 2000 Hz/µs
- Control sensitivity of phase detector: typ. 1,2 V/µs
- Delay between sync input and detector output (pin 6): t_d typ. 0,4 µs
- Phase modulation due to hum on the supply line: typ. 2,0 µs/V▲

* Up to 1 V peak-to-peak the slicing level is constant; at amplitudes exceeding 1 V peak-to-peak the slicing level will increase.

** The slicing level is defined as the ratio of the amplitude of the slicing level to black level to the amplitude of the sync pulse.

▲ The voltage is a peak-to-peak value; the figure given can be reduced to 0,6 µs/V(p-p) by means of an extra capacitor of 330 nF between pins 12 and 7.
CHARACTERISTICS (continued)

Horizontal oscillator

- Frequency; free running: \(f_o \) typ. 31,250 kHz
- Frequency at output pin \(f_8 \) typ. 15,625 kHz
- Spread of frequency without spread of external components: \(\Delta f_o \) typ. < 4 %
- Temperature coefficient: \(T \) typ. 2.5 \(\times \) \(10^{-4} \) K\(^{-1}\)
- Change of frequency when \(V_{12-11} \) drops to 6 V: \(\Delta f_o \) typ. < 10 %
- Change of frequency when \(V_{12-11} \) increases from 10 to 13.2 V: \(\Delta f_o \) typ. < 0.5 %
- Output voltage; no load (peak-to-peak value): \(V_{8-11(p-p)} \) > 10 V
- Output resistance: \(R_{8-11} \) typ. 300 Ω
- Output current range (peak-to-peak value): \(I_{8(p-p)} \) typ. 0 to 40 mA
- Duty factor of output pulse: \(\delta \) typ. 46 %*
- Delay between falling edge of output pulse and end of sync pulse at pin 2: \(t_d \) typ. 0.9 \(\mu s \)**

Burst-key pulse

- Output voltage (peak-to-peak value): \(V_{13-11(p-p)} \) > 10 V
- Duration of upper part of output pulse: \(t_p \) typ. 3.6 \(\mu s \)**
- Duration of lower part of output pulse: \(t_p \) typ. 9.1 \(\mu s \)**
- Amplitude of lower part of output pulse: \(V_{13-11(p-p)} \) typ. 3 V**
- Output resistance: \(R_{13-11} \) typ. 200 Ω
- Delay between the end of the sync pulse at pin 2 and the rising edge of the burst key pulse: \(t_d \) typ. 0.9 \(\mu s \)**

Coincidence detector

- Voltage level of time constant switch: \(V_{10-11} \) typ. 2.0 V
- Voltage when the oscillator is in sync: \(V_{10-11} \) typ. 0.4 V
- Voltage when the oscillator is out-of-sync: \(V_{10-11} \) typ. 2.5 V
- Voltage during noise: \(V_{10-11} \) typ. 1.0 V

* The duty factor is specified as follows:

\[
\delta = \frac{t}{T} \times 100\%.
\]

** See waveforms Fig. 2.
Vertical sync pulse

Output voltage (peak-to-peak value)

\[V_{1-11}(p-p) > 10 \text{ V} \]

Duration of output pulse during indirect synchronization

\[t_p \text{ typ.} 170 \mu\text{s} \]

Duration of output pulse during direct synchronization (coincidence detector high)

\[t_p \text{ typ.} 160 \mu\text{s} \]

Load resistor to pin 2

\[R_L > 2 \text{ k}\Omega \]

Output voltage low with \(R_L = 2 \text{ k}\Omega \)

\[V_{1-11} < 500 \text{ mV} \]

Ratio between basic horizontal oscillator frequency and vertical pulse

\[625 * \]

Fig. 2 Relationship between the video input signal to the TDA2571A and the horizontal sync and burst-key pulse output.

* When a non-standard sync signal is applied the separated vertical sync pulse of the incoming signal is connected to pin 1; the pulse of the divider circuit is switched off.
PINNING

1. Vertical sync pulse output
2. Video input
3. Sync separator slicing level output
4. Black level detector output
5. Vertical integrator bias network
6. Horizontal phase detector output
7. Reference voltage horizontal frequency control stage
8. Horizontal sync pulse output
9. Time constant switch
10. Coincidence detector output
11. Negative supply (ground)
12. Positive supply (horizontal)
13. Burst-key pulse output
14. RC-network horizontal oscillator
15. Control horizontal oscillator
16. Positive supply (vertical)

APPLICATION INFORMATION

The function is quoted against the corresponding pin number

1. Vertical sync pulse output
 A resistor of about 10 kΩ must be connected between pin 1 and the positive supply line (pin 16; vertical supply).
 The output pulse will come from the 625 divider stage (standard signal) or from the vertical sync pulse separator (non-standard signal), depending on the input signal on pin 2. The standard and non-standard signals are detected automatically.

2. Video input
 The input signal must have negative-going sync pulses. The top-sync level can vary between 1 V and 3,5 V without affecting the sync separator operation.
 The slicing level of the sync separator is fixed at 50%, for the sync pulse amplitude range 0,07 to 1 V.
 As a consequence the circuit gives a good sync separation down to pulses with an amplitude of 70 mV peak-to-peak (sync pulse compression). For sync pulses in excess of 1 V peak-to-peak the slicing level will increase.
 The noise gate is activated at an input level < 0,7 V, thus, when noise gating is required the top-sync level should be chosen close to the minimum level of 1 V. When i.f. circuits with a noise gate are used (e.g. TDA2540; TDA2541) the noise gate of the TDA2571 A is not required.

3. Sync separator slicing level output
 The sync separator slicing level is determined on this pin. A slicing level of 50% is obtained by comparing this level with the black level of the video signal, which is detected at pin 4. The capacitor connected to pin 3 must be about 0,47 μF.

4. Black level detector output
 The black level of the input signal is detected on this pin, which is required to obtain good sync separator operation. A capacitor of 47 μF in series with a resistor of 82 Ω has to be connected to this pin. A 5,6 kΩ resistor must be connected between pins 3 and 4.

5. Vertical sync pulse integrator bias network
 The vertical sync pulse is obtained by integrating the composite sync signal in an internal RC-network. An external RC-network is required for the correct biasing of this circuit for various input conditions. Typical values are: \(R = 56 \, \text{kΩ}; \, C = 22 \, \mu\text{F}. \)

6. Horizontal phase detector output
 The control voltage for the horizontal oscillator is obtained on this pin. The output current is about 2 mA.
7. Reference voltage horizontal frequency control stage
This pin has two functions. It is used to decouple the reference voltage for the frequency control of the horizontal oscillator (so a good suppression of interference is obtained which may be present on the supply line). This pin is also used to control the reference waveform for the phase detector to the middle of the gating, giving a good noise immunity of the synchronization.

8. Horizontal sync pulse output
This pulse is obtained from the horizontal oscillator via a divider circuit. The duty factor is 46%. The falling edge of this pulse has a delay of 0.9 µs with respect to the end of the sync pulse. Because of this phase relationship this pulse can directly drive the TDA2581.

9. Time constant switch
This pin is used to switch the time constant of the flywheel filter. The pin condition is determined by the coincidence detector (pin 10). During in-sync or when only noise is received pin 9 assumes ground level, which results in a long time constant and good noise immunity. During out-of-sync or VCR playback, pin 9 has a high impedance and consequently only the short time constant is available. In this condition a large catching range is obtained.

10. Coincidence detector output
A 1 µF capacitor must be connected to this pin. The output voltage depends on the oscillator condition (synchronized or not) and on the video input signal. The following output voltages can occur:
- when in-sync: 0.4 V
- when out-of-sync: 2.0 V
- during noise at input: 1.0 V
When the output voltage < 1.85 V, the flywheel filter is switched to a long time constant, and the gating of the phase detector is switched-on. For a voltage > 1.85 V, the flywheel filter has a short time constant, and the gating of the phase detector is switched-off. The result is that during noise the flywheel time constant remains long thus preventing large shifts in the frequency of the horizontal oscillator (and screening of the horizontal output transformer).

The information of the line coincidence detector is fed to the divider circuit so that there is no delay in vertical synchronization after a channel change, or an unsynchronized camera change in the studio. Thus, the divider circuit is reset to direct sync, when line synchronization is lost. The time constant value can be switched manually by a resistor (10 kΩ) to +12 V.

11. Negative supply (ground)

12. Positive supply horizontal oscillator
Interference and hum on this supply line can affect the oscillator frequency. It is therefore necessary to have a separate decoupling of this pin with respect to pin 16. The current-draw of this pin is typically 33 mA.

13. Burst-key pulse output
This pulse is composed of two parts. The lower part has an amplitude of 3 V peak-to-peak and a width of 9.1 µs (for phase relation see Fig. 2). The upper part has a total amplitude in excess of 10 V peak-to-peak and a width of 3.6 µs. The leading edge of this pulse has a delay of 0.9 µs with respect to the falling edge of the sync pulse at the input (pin 2).
This pulse can directly drive the burst gate/black level clamp input of the TDA2560.
APPLICATION INFORMATION (continued)

14. RC-network horizontal oscillator

Stable components should be chosen for good frequency stability. For adjusting the frequency a part of the total resistance must be variable. This part should be as small as possible, because of poor stability of variable carbon resistors.

The oscillator can be adjusted when pins 7 and 15 are short-circuited.

15. Horizontal oscillator control pin

16. Positive supply sync separator and divider circuit (vertical)

For this supply only a simple decoupling is required. The current-draw of this pin is typically 17 mA.
Fig. 3 Typical application circuit diagram; for combination of the TDA2571A with the TDA2581 see Fig. 4.
optional circuit for duty factor end stop

Fig. 4 Typical application circuit diagram of the TDA2581, when used in combination with the TDA2571A.
DEVELOPMENT SAMPLE DATA
This information is derived from development samples made available for evaluation. It does not necessarily imply that the device will go into regular production.

HORIZONTAL OSCILLATOR COMBINATION
WITH VERTICAL 525 DIVIDER SYSTEM

The TDA2573A is a horizontal oscillator combination intended to be used in various types of transistorized horizontal deflection circuits, e.g. switched-mode driven and power-pack system circuits.

The circuit is optimized for a horizontal and vertical frequency ratio of 525.

The circuit incorporates the following functions:

- Horizontal sync separator with sliding bias in such way that the sync pulse is always sliced between top sync level and blanking level.
- Noise gate.
- Phase detector which compares the sync pulse with the oscillator voltage; this phase detector is gated.
- Phase detector which compares the line flyback pulse with the oscillator voltage.
- Horizontal oscillator (31.5 kHz).
- Time constant switching of the first control loop (short time constant during catching and reception of VCR signals).
- Burst key pulse generator (sandcastle pulse with three levels).
- Vertical sync pulse separator.
- Very stable vertical synchronization due to the 525 divider system, without delay after channel change.

QUICK REFERENCE DATA

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Unit</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltage</td>
<td>V_{16-9}</td>
<td>typ.</td>
<td>12 V</td>
</tr>
<tr>
<td>Supply current consumption</td>
<td>I_{16}</td>
<td>typ.</td>
<td>53 mA</td>
</tr>
<tr>
<td>Sync input voltage (peak-to-peak value)</td>
<td>$V_{4.9(\text{p-p})}$</td>
<td></td>
<td>0.1 to 1 V</td>
</tr>
<tr>
<td>Slicing level</td>
<td></td>
<td>typ.</td>
<td>50 %</td>
</tr>
<tr>
<td>Control sensitivity sync to flyback</td>
<td></td>
<td>typ.</td>
<td>10 kHz/\mu s</td>
</tr>
<tr>
<td>Holding range</td>
<td>Δf</td>
<td>typ.</td>
<td>$\pm 1000 \text{ Hz}$</td>
</tr>
<tr>
<td>Catching range</td>
<td>Δf</td>
<td>typ.</td>
<td>$\pm 900 \text{ Hz}$</td>
</tr>
<tr>
<td>Horizontal output pulse (peak-to-peak value)</td>
<td>$V_{10-9(\text{p-p})}$</td>
<td>typ.</td>
<td>11 V</td>
</tr>
<tr>
<td>Vertical output pulse; pin 2 (peak-to-peak value)</td>
<td>$V_{2-9(\text{p-p})}$</td>
<td>typ.</td>
<td>11 V</td>
</tr>
<tr>
<td>Sandcastle output pulse (peak-to-peak value)</td>
<td>$V_{14-9(\text{p-p})}$</td>
<td>typ.</td>
<td>11 V</td>
</tr>
</tbody>
</table>

PACKAGE OUTLINE
16-lead DIL; plastic (SOT-38).
Fig. 1 Block diagram.
RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Supply voltage

\[V_{16-9} \text{ max.} = 13.2 \, \text{V} \]

Total power dissipation

\[P_{\text{tot}} \text{ max.} = 1 \, \text{W} \]

Storage temperature

\[T_{\text{stg}} = -55 \text{ to } +125 \, \text{°C} \]

Operating ambient temperature

\[T_{\text{amb}} = -25 \text{ to } +65 \, \text{°C} \]

CHARACTERISTICS

\[V_{16-9} = 12 \, \text{V} \]; \[T_{\text{amb}} = 25 \, \text{°C} \]; measured in Fig. 2.

Supply voltage

\[V_{16-9} \text{ typ.} = 12 \, \text{V} \]

\[10 \text{ to } 13.2 \, \text{V} \]

Supply current consumption

\[I_{16} \text{ typ.} = 53 \, \text{mA} \]

\[< 70 \, \text{mA} \]

Sync separator and noise gate

Sync pulse amplitude (negative going)

\[V_{4.9(p-p)} \text{ typ.} = 0.1 \text{ to } 1 \, \text{V}^* \]

Top-sync level

\[V_{4.9} \text{ typ.} = 1.0 \text{ to } 3.5 \, \text{V} \]

Slicing level noise gate

\[V_{4.9} \text{ typ.} = < 1 \, \text{V} \]

Delay between sync input and detector output (pin 7)

\[\text{typ.} = 0.35 \, \mu\text{s} \]

First control loop (sync-to-oscillator)

Holding range

\[\Delta f \text{ typ.} = \pm 1000 \, \text{Hz} \]

Catching range

\[\Delta f \text{ typ.} = \pm 900 \, \text{Hz} \]

Control sensitivity video

\[\text{typ.} = 2.0 \, \text{kHz/µs} \]

\[\text{typ.} = 10.0 \, \text{kHz/µs} \]

\[\text{typ.} = 10.0 \, \text{kHz/µs} \]

Phase modulation due to hum

\[\text{on the supply line (pin 16)} \]

\[\text{typ.} = < 1.0 \, \mu\text{s/V}^{**} \]

Second control loop (oscillator-to-flyback)

Control sensitivity

\[\Delta t_d/\Delta t_0 \text{ typ.} = 250 \, \Delta \]

Control range

\[t_d \text{ typ.} = < 26 \, \mu\text{s} \]

* Up to 1 V peak-to-peak the slicing level is constant; at amplitudes exceeding 1 V peak-to-peak the slicing level will increase.

** This voltage is a peak-to-peak value.

\[t_d = \text{delay between positive transient of horizontal output pulse and the rising edge of the flyback pulse.} \]

\[t_0 = \text{delay between the rising edge of the flyback and the start of the current in } \Phi_1(17). \]
CHARACTERISTICS (continued)

Horizontal oscillator

- Frequency: free running f_0 typ. 31,500 kHz
- Frequency at output pin 10 f_{10} typ. 15,750 kHz
- Spread of frequency without spread of external components $\Delta f_0 < 4\%$
- Temperature coefficient T typ. 2,5 to 10^{-4}
- Change of frequency when $V_{16.9}$ increases from 10 to 13,2 V $\Delta f_0 < 0,5\%$
- Minimum supply voltage (+ hor. see Fig. 1) typ. 7 V
- Frequency deviation at min. supply voltage < 10 %

Horizontal output (pin 10)

- Maximum supply voltage $< 13,2$ V
- Minimum output voltage at a current of 60 mA $V_{10.9} < 700$ mV
- Maximum output current $I_{10} < 60$ mA
- Duration of the output pulse t_p 12 to 38 μs

Sandcastle pulse (pin 1)

- Output voltage during burst key pulse $V_{1.9} > 10$ V
- Pulse duration t_p typ. 4,0 μs
- Amplitude of second level of output pulse $V_{1.9}$ typ. 4,5 V
- Pulse duration flyback pulse
- Amplitude of third level of output pulse $V_{1.9}$ typ. 2,5 V
- Pulse duration t_p typ. 1,34 μs
- Delay between the start of the sync pulse at the video input (pin 4) and the rising edge of the burst key pulse t_d typ. 4,9 μs

Phase adjustment (pin 12)

- Voltage at pin 12 $V_{12.9}$ typ. 2,8 V
- Control sensitivity typ. 0,6 V/μs
- Control range typ. ± 1 μs

Coincidence detector (pin 8)

- Voltage level of time constant switch $V_{8.9}$ typ. 2,1 V
- Voltage when the oscillator is in sync $V_{8.9}$ typ. 1,2 V
- Voltage when the oscillator is out-of-sync $V_{8.9}$ typ. 2,6 V
- Voltage during noise $V_{8.9}$ typ. 1,7 V

* During standard video signals.
Horizontal oscillator combination with vertical 525 divider system

Flyback input pulse (pin 14)

<table>
<thead>
<tr>
<th></th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Switching level</td>
<td>$V_{14.9}$ typ. 0.7 V</td>
</tr>
<tr>
<td>Input pulse</td>
<td>$V_{14.9}$ < 12 V</td>
</tr>
<tr>
<td>Input resistance</td>
<td>typ. 2.5 kΩ</td>
</tr>
<tr>
<td>Delay between the start of the sync pulse at the video input (pin 4) and the rising edge of the flyback pulse</td>
<td>t_p typ. 1.5 µs</td>
</tr>
</tbody>
</table>

Vertical outputs

<table>
<thead>
<tr>
<th>Output voltage (peak-to-peak value)</th>
<th>$V_{2.9(p-p)}$ > 10 V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output current</td>
<td>I_2 < 5 mA</td>
</tr>
<tr>
<td>Output voltage low at $I_2 = 5$ mA</td>
<td>$V_{2.9}$ < 500 mV</td>
</tr>
<tr>
<td>Duration of output pulse during indirect synchronization</td>
<td>t_p typ. 190 µs</td>
</tr>
<tr>
<td>Duration of output pulse during direct synchronization</td>
<td>t_p typ. 190 µs</td>
</tr>
<tr>
<td>Ratio between basic horizontal oscillator frequency and vertical pulse</td>
<td>525 *</td>
</tr>
</tbody>
</table>

* When a non-standard sync signal is applied the separated vertical sync pulse of the incoming signal is connected to pin 2; the pulse of the divider circuit is switched off.

January 1980
APPLICATION INFORMATION (see also Fig. 2)
The function is described against the corresponding pin number

1. Sandcastle output pulse
 This output pulse has three levels. The first and highest level (10 V) is the burst key pulse with a typical duration of 4.0 µs. The second level for the line blanking is typ. 4.5 V with a pulse duration equal to the line flyback pulse. The third level (typ. 2.5 V) is used for frame blanking and has a pulse duration of typ. 1.34 ms (21 lines). This last pulse is only available with a standard video input signal. Under all other conditions, an external vertical flyback pulse must be applied to this pin. This pulse will be clamped to 2.5 V by means of an internal clamping circuit. The input current is typ. 2 mA.

2. Vertical output pulse
 This pulse is obtained from the divider circuit, the amplitude is in excess of 10 V peak-to-peak. This pulse has a duration of 190 µs when standard signals are received. The pulse is obtained from the vertical sync pulse integrator during non-standard signals and has a duration of about 190 µs. It has good stability and accuracy, so it is intended to be used for triggering the vertical oscillator.

3. Vertical sync pulse integrator bias network
 The vertical sync pulse is obtained by integrating the composite sync signal in an internal RC-network. An external capacitor with an internal resistor are required for the correct biasing of this circuit for various input conditions. A typical value for the capacitor is 10 µF.

4. Video input
 The input signal must have negative-going sync pulses. The top-sync level can vary between 1 V and 3.5 V without affecting the sync separator operation.
 The slicing level of the sync separator is fixed at 50%, for the sync pulse amplitude range 0.1 to 1 V peak-to-peak. As a consequence the circuit gives a good sync separation down to pulses with an amplitude of 100 mV peak-to-peak (sync pulse compression). For sync pulses in excess of 1 V peak-to-peak the slicing level will increase.
 The noise gate is activated at an input level < 1 V (typ. 0.7 V), thus, when noise gating is required the top-sync level should be chosen close to the minimum level of 1 V.

5. Sync separator slicing level output
 The sync separator slicing level is determined on this pin. A slicing level of 50% is obtained by comparing this level with the black level of the video signal, which is detected at pin 6. The capacitor connected to pin 5 must be about 1 µF.

6. Black level detector output
 The black level of the input signal is detected on this pin. A capacitor of 22 µF in series with a resistor of 33 kΩ has to be connected to this pin. A 4.7 kΩ resistor must be connected between pins 5 and 6.

7. Horizontal phase detector output and control oscillator input
 The flywheel filter must be connected to this pin. Typical values for the components are a capacitor of 100 nF in parallel with an RC-network of 1 kΩ and 10 µF. Furthermore, a resistor of 270 kΩ should be connected between pins 7 and 12.
 The output current of the phase detector depends on the condition of the coincidence detector. The output current is high when the oscillator is out of sync. The result is a large catching range, and the phase detector is not gated in that condition. The output current is low when the oscillator is synchronized and the phase detector is gated. A good noise immunity is obtained in this case.

January 1980
8. Coincidence detector output

A 1 \(\mu \text{F} \) capacitor must be connected to his pin. The output voltage depends on the oscillator condition (synchronized or not) and on the video input signal.

The following output voltages can occur:
- when in-sync: 1.2 V
- when out-of-sync: 2.6 V
- during noise at the input: 1.7 V

When the output voltage < 2.1 V, the phase detector output current is low and the phase detector is gated. A good noise immunity is obtained in this case. For a voltage > 2.1 V, the output current of the phase detector is high and the phase detector is not gated. This results in a large catching range and a high dynamical steepness of the PLL. This latter condition is required during VCR-playback. It can be obtained by connecting pin 8 to the positive supply line via a resistor of 10 k\(\Omega \).

The information of the line coincidence detector is fed to the divider circuit so that there is no delay in vertical synchronization after a channel change, or an unsynchronized camera change in the studio. Thus, the divider circuit is reset to direct sync, when line synchronization is lost.

9. Negative supply (ground)

10. Horizontal output

This is an open collector output. The collector resistor must be chosen such that sufficient current is supplied to the driver stage. The maximum current is 60 mA. The output stage is designed such that the line output transistor cannot be switched-on during flyback. Switching-on occurs directly after the flyback pulse to avoid linearity errors. The duty factor of the output pulse depends on the delay in the output stage (correction via the second control loop).

11. Control voltage second loop

This voltage controls the start of the output pulse at pin 10 (positive-going edge). The capacitor connected to this pin must have a value of about 22 nF.

12. Reference voltage control loops

The reference voltage must be decoupled by means of a capacitor of about 10 \(\mu \text{F} \).

It is possible to obtain a phase shift between video and flyback pulse by changing this reference voltage externally. The possible phase shift is \(\pm 1 \mu \text{s} \).

The required voltage change is \(\pm 0.6 \text{ V} \).

13. Decoupling internal power supply

The IC has two power supply terminals. The main terminal (pin 16) supplies the output stages, the sync separator and the divider circuit. The specially decoupled supply terminal (pin 13) supplies the horizontal oscillator. This is to avoid coupling of the video signal into the oscillator part. The capacitor connected to pin 13 should have a value of about 22 \(\mu \text{F} \). The resistor connected between pins 13 and 16 should have a value of about 1 k\(\Omega \).

14. Flyback input pulse

The flyback input pulse is required for the second phase control loop and for generating the line blanking pulse in the sandcastle output. The input current should be at least 10 \(\mu \text{A} \) and not exceed 3 mA.

15. RC-network horizontal oscillator

Stable components should be chosen for a good frequency stability. A part of the total resistance must be variable for adjusting the frequency. This part should be as small as possible, because of poor stability of variable carbon resistors.

The oscillator can be adjusted when pins 7 and 12 are short-circuited (see Fig. 2).

16. Positive supply: The supply voltage may vary between 10 V and 13.2 V. The current draw is 53 mA (typical) and a range of 35 to 70 mA at 12 V.
Fig. 2 Application circuit diagram.

(1) Optional circuit for phase adjustment.
The TDA2575A is designed in combination with the TDA2581 as a matched pair for switched-mode driven horizontal deflection stages. When supplied with a composite video signal the TDA2575A delivers drive pulses for the TDA2581 and sync pulses for the vertical deflection. The circuit is optimized for a horizontal and vertical frequency ratio of 525.

The circuit incorporates the following functions:

- Horizontal sync separator with sliding bias in such a way that the sync pulse is always sliced between top-sync level and blanking level.
- Noise gate.
- Horizontal phase detector switching to a small time constant during catching. The phase detector is gated when the oscillator is synchronized.
- Horizontal oscillator (31.5 kHz).
- Burst-key pulse generator. This pulse can also be applied as black level clamp pulse.
- Vertical sync pulse separator.
- Automatic vertical synchronization (525 divider system), without delay after channel change.

QUICK REFERENCE DATA

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltage</td>
<td></td>
</tr>
<tr>
<td>horizontal</td>
<td>V12-11 typ. 12 V</td>
</tr>
<tr>
<td>vertical</td>
<td>V16-11 typ. 12 V</td>
</tr>
<tr>
<td>Sync input voltage (peak-to-peak value)</td>
<td>V2-11(p-p) 0.07 to 1 V</td>
</tr>
<tr>
<td>Slicing level</td>
<td>typ. 50 %</td>
</tr>
<tr>
<td>Control sensitivity of horizontal PLL</td>
<td>typ. ±1000 Hz</td>
</tr>
<tr>
<td>Holding range</td>
<td>Δf typ. ±900 Hz</td>
</tr>
<tr>
<td>Catching range</td>
<td></td>
</tr>
<tr>
<td>Horizontal output pulse (peak-to-peak value)</td>
<td>V8-11(p-p) typ. 11 V</td>
</tr>
<tr>
<td>Vertical sync output pulse (peak-to-peak value)</td>
<td>V1-11(p-p) typ. 11 V</td>
</tr>
<tr>
<td>Burst-key output pulse (peak-to-peak value)</td>
<td>V13-11(p-p) typ. 11 V</td>
</tr>
</tbody>
</table>

PACKAGE OUTLINES

TDA2575A: 16-lead DIL; plastic (SOT-38).
TDA2575AQ: 16-lead QIL; plastic (SOT-58).

January 1980
Fig. 1 Block diagram.
Horizontal synchronization and vertical 525 divider system

TDA2575A
TDA2575AQ

RATINGS
Limiting values in accordance with the Absolute Maximum System (IEC 134)

Supply voltage
 horizontal \(V_{12-11} \) max. 13,2 V
 vertical \(V_{16-11} \) max. 13,2 V

Total power dissipation
 \(P_{\text{tot}} \) max. 1 W

Storage temperature
 \(T_{\text{stg}} \) -25 to +130 °C

Operating ambient temperature
 \(T_{\text{amb}} \) -25 to +65 °C

CHARACTERISTICS

At \(V_{12-11} = 12 \text{ V} \); \(V_{16-11} = 12 \text{ V} \); \(T_{\text{amb}} = 25 \degree \text{C} \); measured in Fig. 1

Supply voltage range (pins 12 and 16) \(V_{12-11}; V_{16-11} \) typ. 12 V
 10 to 13,2 V

Current consumption \(I_{12} + I_{16} \) typ. 50 mA
 < 75 mA

Sync separator and noise gate

Sync pulse amplitude (negative going)
 peak-to-peak value \(V_{2-11}(p-p) \) typ. 0,07 to 1 V *
 Top-sync level \(V_{2-11} \) typ. 1,0 to 3,5 V

Slicing level
 typ. 50 % **

Slicing level noise gating \(V_{2-11} \) typ. 0,7 V

Phase locked loop

Holding range \(\Delta f \) typ. ± 1000 Hz

Catching range \(\Delta f \) typ. ± 900 Hz

Control sensitivity of horizontal PLL
 typ. 2000 Hz/\mu s

Control sensitivity of phase detector
 typ. 1,2 V/\mu s

Delay between sync input and detector output (pin 6)
 \(t_d \) typ. 0,4 \mu s

Phase modulation due to hum on the supply line
 typ. 2,0 \mu s/V ▲

* Up to 1 V peak-to-peak the slicing level is constant; at amplitudes exceeding 1 V peak-to-peak the slicing level will increase.

** The slicing level is defined as the ratio of the amplitude of the slicing level to black level to the amplitude of the sync pulse.

▲ The voltage is a peak-to-peak value; the figure given can be reduced to 0,6 \mu s/V (p-p) by means of an extra capacitor of 330 nF between pins 12 and 7.
CHARACTERISTICS (continued)

Horizontal oscillator

- Frequency; free running
 \[f_o \] typ. \[31,500 \text{ kHz} \]
- Frequency at output pin 8
 \[f_8 \] typ. \[15,750 \text{ kHz} \]
- Spread of frequency without spread of external components
 \[\Delta f_o \] < \[4 \% \]
- Temperature coefficient
 \[T \] typ. \[2.5 \times 10^{-4} \text{ K}^{-1} \]
- Change of frequency when \(V_{12-11} \) drops to 6 V
 \[\Delta f_o \] < \[0.5 \% \]
- Change of frequency when \(V_{12-11} \) increases from 10 to 13.2 V
 \[\Delta f_o \] < \[10 \% \]
- Output voltage; no load (peak-to-peak value)
 \[V_{8-11(p-p)} \] > \[10 \text{ V} \]
- Output resistance
 \[R_{8-11} \] typ. \[300 \text{ \Omega} \]
- Output current range (peak-to-peak value)
 \[I_{8(p-p)} \] 0 to 40 mA
- Duty factor of output pulse
 \[\delta \] typ. \[46 \% * \]
- Delay between falling edge of output pulse and end of sync pulse at pin 2
 \[t_d \] typ. \[0.9 \mu s ** \]

Burst-key pulse

- Output voltage (peak-to-peak value)
 \[V_{13-11(p-p)} \] > \[10 \text{ V} \]
- Duration of upper part of output pulse
 \[t_p \] typ. \[3.6 \mu s ** \]
- Duration of lower part of output pulse
 \[t'_p \] typ. \[9.1 \mu s ** \]
- Amplitude of lower part of output pulse
 \[V_{13-11(p-p)} \] typ. \[3 \text{ V **} \]
- Output resistance
 \[R_{13-11} \] typ. \[200 \text{ \Omega} \]
- Delay between the end of the sync pulse at pin 2 and the rising edge of the burst key pulse
 \[t_d \] typ. \[0.9 \mu s ** \]

Coincidence detector

- Voltage level of time constant switch
 \[V_{10-11} \] typ. \[2.0 \text{ V} \]
- Voltage when the oscillator is in sync
 \[V_{10-11} \] typ. \[0.4 \text{ V} \]
- Voltage when the oscillator is out-of-sync
 \[V_{10-11} \] typ. \[2.5 \text{ V} \]
- Voltage during noise
 \[V_{10-11} \] typ. \[1.0 \text{ V} \]

* The duty factor is specified as follows:

\[
\delta = \frac{t}{T} \times 100\%.
\]

** See waveforms Fig. 2.
Horizontal synchronization and vertical 525 divider system

TDA2575A
TDA2575AQ

Vertical sync pulse

Output voltage (peak-to-peak value)

\[V_{1.11}(p-p) > 10 \text{ V} \]

Duration of output pulse during indirect synchronization

\[t_p \text{ typ.} 170 \mu s \]

Duration of output pulse during direct synchronization (coincidence detector high)

\[t_p \text{ typ.} 190 \mu s \]

Load resistor to pin 2

\[R_L > 2 \text{ k}\Omega \]

Output voltage low with \(R_L = 2 \text{ k}\Omega \)

\[V_{1.11} < 500 \text{ mV} \]

Ratio between basic horizontal oscillator frequency and vertical pulse

\[525 \times \]

Fig. 2 Relationship between the video input signal to the TDA2575A and the horizontal sync and burst-key pulse output.

* When a non-standard sync signal is applied the separated vertical sync pulse of the incoming signal is connected to pin 1; the pulse of the divider circuit is switched off.
PINNING

1. Vertical sync pulse output
2. Video input
3. Sync separator slicing level output
4. Black level detector output
5. Vertical integrator bias network
6. Horizontal phase detector output
7. Reference voltage horizontal frequency control stage
8. Horizontal sync pulse output
9. Time constant switch
10. Coincidence detector output
11. Negative supply (ground)
12. Positive supply (horizontal)
13. Burst-key pulse output
14. RC-network horizontal oscillator
15. Control horizontal oscillator
16. Positive supply (vertical)

APPLICATION INFORMATION

The function is quoted against the corresponding pin number

1. Vertical sync pulse output
 A resistor of about 10 kΩ must be connected between pin 1 and the positive supply line (pin 16; vertical supply).
 The output pulse will come from the 525 divider stage (standard signal) or from the vertical sync pulse separator (non-standard signal), depending on the input signal on pin 2. The standard and non-standard signals are detected automatically.

2. Video input
 The input signal must have negative-going sync pulses. The top-sync level can vary between 1 V and 3,5 V without affecting the sync separator operation.
 The slicing level of the sync separator is fixed at 50%, for the sync pulse amplitude range 0,07 to 1 V. As a consequence the circuit gives a good sync separation down to pulses with an amplitude of 70 mV peak-to-peak (sync pulse compression). For sync pulses in excess of 1 V peak-to-peak the slicing level will increase.
 The noise gate is activated at an input level < 0,7 V, thus, when noise gating is required the top-sync level should be chosen close to the minimum level of 1 V. When i.f. circuits with a noise gate are used (e.g. TDA2540; TDA2541) the noise gate of the TDA2575A is not required.

3. Sync separator slicing level output
 The sync separator slicing level is determined on this pin. A slicing level of 50% is obtained by comparing this level with the black level of the video signal, which is detected at pin 4. The capacitor connected to pin 3 must be about 0,47 µF.

4. Black level detector output
 The black level of the input signal is detected on this pin, which is required to obtain good sync separator operation. A capacitor of 47 µF in series with a resistor of 82 Ω has to be connected to this pin. A 5,6 kΩ resistor must be connected between pins 3 and 4.

5. Vertical sync pulse integrator bias network
 The vertical sync pulse is obtained by integrating the composite sync signal in an internal RC-network. An external RC-network is required for the correct biasing of this circuit for various input conditions. Typical values are: R = 56 kΩ; c = 22 µF.

6. Horizontal phase detector output
 The control voltage for the horizontal oscillator is obtained on this pin. The output current is about 2 mA.
7. Reference voltage horizontal frequency control stage

This pin has two functions. It is used to decouple the reference voltage for the frequency control of the horizontal oscillator (so a good suppression of interference is obtained which may be present on the supply line). This pin is also used to control the reference waveform for the phase detector to the middle of the gating, giving a good noise immunity of the synchronization.

8. Horizontal sync pulse output

This pulse is obtained from the horizontal oscillator via a divider circuit. The duty factor is 46%. The falling edge of this pulse has a delay of 0,9 µs with respect to the end of the sync pulse. Because of this phase relationship this pulse can directly drive the TDA2581.

9. Time constant switch

This pin is used to switch the time constant of the flywheel filter. The pin condition is determined by the coincidence detector (pin 10). During in-sync or when only noise is received pin 9 assumes ground level, which results in a long time constant and good noise immunity.

During out-of-sync or VCR playback, pin 9 has a high impedance and consequently only the short time constant is available. In this condition a large catching range is obtained.

10. Coincidence detector output

A 1 µF capacitor must be connected to this pin. The output voltage depends on the oscillator condition (synchronized or not) and on the video input signal.

The following output voltages can occur:
- when in-sync: 0,4 V
- when out-of-sync: 2,0 V
- during noise at input: 1,0 V

When the output voltage < 1,85 V, the flywheel filter is switched to a long time constant, and the gating of the phase detector is switched-on.

For a voltage > 1,85 V, the flywheel filter has a short time constant, and the gating of the phase detector is switched-off. The result is that during noise the flywheel time constant remains long thus preventing large shifts in the frequency of the horizontal oscillator (and screening of the horizontal output transformer).

The information of the line coincidence detector is fed to the divider circuit so that there is no delay in vertical synchronization after a channel change, or an unsynchronized camera change in the studio. Thus, the divider circuit is reset to direct sync, when line synchronization is lost.

The time constant value can be switched manually by a resistor (10 kΩ) to + 12 V.

11. Negative supply (ground)

12. Positive supply horizontal oscillator

Interference and hum on this supply line can affect the oscillator frequency. It is therefore necessary to have a separate decoupling of this pin with respect to pin 16. The current-draw of this pin is typically 33 mA.

13. Burst-key pulse output

This pulse is composed of two parts. The lower part has an amplitude of 3 V peak-to-peak and a width of 9,1 µs (for phase relation see Fig. 2). The upper part has a total amplitude in excess of 10 V peak-to-peak and a width of 3,6 µs. The leading edge of this pulse has a delay of 0,9 µs with respect to the falling edge of the sync pulse at the input (pin 2).

This pulse can directly drive the burst gate/black level clamp input of the TDA2560.
APPLICATION INFORMATION (continued)

14. RC-network horizontal oscillator

Stable components should be chosen for good frequency stability. For adjusting the frequency a part of the total resistance must be variable. This part should be as small as possible, because of poor stability of variable carbon resistors.

The oscillator can be adjusted when pins 7 and 15 are short-circuited.

15. Horizontal oscillator control pin

16. Positive supply sync separator and divider circuit (vertical)

For this supply only a simple decoupling is required. The current-draw of this pin is typically 17 mA.
Fig. 3 Typical application circuit diagram; for combination of the TDA2575A with the TDA2581 see Fig. 4.
Fig. 4 Typical application circuit diagram of the TDA2581, when used in combination with the TDA2575A.
HORIZONTAL OSCILLATOR COMBINATION WITH VERTICAL DIVIDER

The TDA2576 is a horizontal oscillator combination intended to be used in various types of transistorized line deflection circuits, e.g. switched-mode driven and power-pack system circuits.

The circuit incorporates the following functions:
- Horizontal sync separator with sliding bias in such way that the sync pulse is always sliced between top-sync level and blanking level.
- Noise gate.
- Phase detector which compares the sync pulse with the oscillator voltage.
- Phase detector which compares the line flyback pulse with the oscillator voltage.
- Horizontal oscillator.
- Time constant switching of the first control loop (short time constant during catching and reception of VCR signals).
- Burst key pulse generator (sandcastle pulse).
- Vertical sync pulse separator.
- Very stable vertical synchronization due to the divider system.

QUICK REFERENCE DATA

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltage</td>
<td>V_{16.9}</td>
<td>typ. 12 V</td>
</tr>
<tr>
<td>Supply current consumption</td>
<td>I_{16}</td>
<td>typ. 53 mA</td>
</tr>
<tr>
<td>Sync input voltage (peak-to-peak value)</td>
<td>V_{4.9(p-p)}</td>
<td>0.1 to 1 V</td>
</tr>
<tr>
<td>Slicing level</td>
<td></td>
<td>typ. 50 %</td>
</tr>
<tr>
<td>Control sensitivity sync to flyback</td>
<td></td>
<td>typ. 6 kHz/μs</td>
</tr>
<tr>
<td>Holding range</td>
<td>Δf</td>
<td>typ. ±1000 Hz</td>
</tr>
<tr>
<td>Catching range</td>
<td>Δf</td>
<td>typ. ±900 Hz</td>
</tr>
<tr>
<td>Horizontal output pulse (peak-to-peak value)</td>
<td>V_{10.9(p-p)}</td>
<td>typ. 11 V</td>
</tr>
<tr>
<td>Vertical output pulse; pin 1 (peak-to-peak value)</td>
<td>V_{1.9(p-p)}</td>
<td>typ. 11 V</td>
</tr>
<tr>
<td>Vertical output pulse; pin 2 (peak-to-peak value)</td>
<td>V_{2.9(p-p)}</td>
<td>typ. 10 V</td>
</tr>
<tr>
<td>Sandcastle output pulse (peak-to-peak value)</td>
<td>V_{14.9(p-p)}</td>
<td>typ. 11 V</td>
</tr>
</tbody>
</table>

PACKAGE OUTLINE

16-lead DIL; plastic (SOT-38).

June 1979
Fig. 1 Block diagram.
Horizontal oscillator combination with vertical divider

RATINGS
Limiting values in accordance with the Absolute Maximum System (IEC 134)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Limitation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltage</td>
<td>V_{16-9}</td>
<td>max. 13.2 V</td>
</tr>
<tr>
<td>Total power dissipation</td>
<td>P_{tot}</td>
<td>max. 1 W</td>
</tr>
<tr>
<td>Storage temperature</td>
<td>T_{stg}</td>
<td>-55 to +125 °C</td>
</tr>
<tr>
<td>Operating ambient temperature</td>
<td>T_{amb}</td>
<td>-25 to +65 °C</td>
</tr>
</tbody>
</table>

CHARACTERISTICS
$V_{16-9} = 12$ V; $T_{amb} = 25$ °C; measured in Fig. 2.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltage</td>
<td>V_{16-9}</td>
<td>typ. 8 to 13.2 V</td>
</tr>
<tr>
<td>Supply current consumption</td>
<td>I_{16}</td>
<td>typ. < 70 mA</td>
</tr>
<tr>
<td>Sync pulse amplitude (negative going) peak-to-peak value</td>
<td>$V_{4-9}(p-p)$</td>
<td>0.1 to 1 V*</td>
</tr>
<tr>
<td>Top-sync level</td>
<td>V_{4-9}</td>
<td>1.0 to 3.5 V</td>
</tr>
<tr>
<td>Slicing level noise gate</td>
<td>V_{4-9}</td>
<td>< 1 V</td>
</tr>
<tr>
<td>Delay between sync input and detector output (pin 7)</td>
<td>typ. 0.35 μs</td>
<td></td>
</tr>
</tbody>
</table>

First control loop (sync-to-oscillator)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Holding range</td>
<td>Δf</td>
<td>typ. ±1000 Hz</td>
</tr>
<tr>
<td>Catching range</td>
<td>Δf</td>
<td>typ. ±900 Hz</td>
</tr>
<tr>
<td>Control sensitivity video</td>
<td></td>
<td></td>
</tr>
<tr>
<td>with respect to oscillator</td>
<td></td>
<td>typ. 1.2 kHz/μs</td>
</tr>
<tr>
<td>with respect to sandcastle</td>
<td></td>
<td>typ. 5.0 kHz/μs</td>
</tr>
<tr>
<td>with respect to flyback pulse</td>
<td></td>
<td>typ. 6.0 kHz/μs</td>
</tr>
</tbody>
</table>

Second control loop (oscillator-to-flyback)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Δt_d/Δt_o</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control sensitivity</td>
<td></td>
<td>typ. 20 **</td>
</tr>
<tr>
<td>Control range</td>
<td>t_d</td>
<td>< 18 μs</td>
</tr>
</tbody>
</table>

* Up to 1 V peak-to-peak the slicing level is constant; at amplitudes exceeding 1 V peak-to-peak the slicing level will increase.

** t_d = delay between positive transient of horizontal output pulse and the rising edge of the flyback pulse.

t_o = delay between the rising edge of the flyback pulse and the start of the current in $φ_1$ (I_7).
CHARACTERISTICS (continued)

Horizontal oscillator
- Frequency: free running \(f_0 \) typ. 31,250 kHz
- Frequency at output pin 10 \(f_{10} \) typ. 15,625 kHz
- Spread of frequency without spread of external components \(\Delta f_0 \) < 4 %
- Temperature coefficient \(T \) typ. 2,5 \(\times \) 10\(^{-4} \)
- Change of frequency when \(V_{16-9} \) increases from 10 to 13,2 V \(\Delta f_0 \) < 0,5 %
- Minimum supply voltage (+ hor. see Fig. 1) typ. 6 V
- Frequency deviation at min. supply voltage < 10 %

Horizontal output (pin 10)
- Maximum supply voltage < 13,2 V
- Minimum output voltage at a current of 20 mA \(V_{10-9} \) < 500 mV
- Maximum output current \(I_{10} \) typ. 60 mA

Sandcastle pulse (pin 14)
- Output voltage during burst key pulse \(V_{14-9} \) < 10 V
- Pulse duration \(t_p \) typ. 3,6 \(\mu s \)
- Amplitude of lower part of output pulse \(V_{14-9} \) typ. 4,5 V
- Pulse duration flyback pulse
- Delay between the start of the sync pulse at the video input (pin 4) and the rising edge of the flyback pulse typ. 1,5 \(\mu s \)
- Input current \(I_{14} \) < 20 mA

Phase adjustment (pin 12)
- Voltage at pin 12 \(V_{12-9} \) typ. 2,8 V
- Control sensitivity typ. 0,6 V/\(\mu s \)
- Control range typ. \(\pm 1 \) \(\mu s \)

Coincidence detector (pin 8)
- Voltage level of time constant switch \(V_{8-9} \) typ. 2,1 V
- Voltage when the oscillator is in sync \(V_{8-9} \) typ. 1,2 V
- Voltage when the oscillator is out-of-sync \(V_{8-9} \) typ. 2,5 V
- Voltage during noise \(V_{8-9} \) typ. 1,7 V
Horizontal oscillator combination with vertical divider

TDA2576

Vertical outputs

<table>
<thead>
<tr>
<th>Output voltage (peak-to-peak value)</th>
<th>V1.9(p-p)</th>
<th>></th>
<th>10 V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output current</td>
<td>l1</td>
<td><</td>
<td>5 mA</td>
</tr>
<tr>
<td>Duration of output pulse during</td>
<td>t_p</td>
<td>typ.</td>
<td>1,34 ms</td>
</tr>
<tr>
<td>indirect synchronization; 21 lines</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output voltage (peak-to-peak value)</td>
<td>V2.9(p-p)</td>
<td>></td>
<td>9 V</td>
</tr>
<tr>
<td>Output current</td>
<td>l2</td>
<td><</td>
<td>2 mA</td>
</tr>
</tbody>
</table>

APPLICATION INFORMATION (see also Fig. 2)

The function is described against the corresponding pin number

1. **Vertical output pulse**

 This pulse is obtained from the divider circuit, the amplitude is in excess of 10 V peak-to-peak. This pulse has a duration of 1,34 ms (21 lines) when standard signals are received. The pulse is obtained from the vertical sync pulse integrator during non-standard signals and has a duration of about 150 µs. It has good stability and accuracy, so it is intended to be used for triggering the vertical oscillator and blanking the video signal (e.g. teletext signals).

2. **Vertical output pulse**

 This pulse is directly obtained from the vertical sync pulse separator. The amplitude is in excess of 9 V peak-to-peak. It can be used for search tuning purposes.

3. **Vertical sync pulse integrator bias network**

 The vertical sync pulse is obtained by integrating the composite sync signal in an internal RC-network. An external RC-network is required for the correct biasing of this circuit for various input conditions. Typical values are: \(R = 100 \, \text{k}\Omega; C = 22 \, \mu\text{F} \).

4. **Video input**

 The input signal must have negative-going sync pulses. The top-sync level can vary between 1 V and 3,5 V without affecting the sync separator operation.

 The slicing level of the sync separator is fixed at 50%, for the sync pulse amplitude range 0,1 to 1 V peak-to-peak. As a consequence the circuit gives a good sync separation down to pulses with an amplitude of 100 mV peak-to-peak (sync pulse compression). For sync pulses in excess of 1 V peak-to-peak the slicing level will increase.

 The noise gate is activated at an input level < 1 V (typ. 0,7 V), thus, when noise gating is required the top-sync level should be chosen close to the minimum level of 1 V.

5. **Sync separator slicing level output**

 The sync separator slicing level is determined on this pin. A slicing level of 50% is obtained by comparing this level with the black level of the video signal, which is detected at pin 6. The capacitor connected to pin 5 must be about 1 µF.

6. **Black level detector output**

 The black level of the input signal is detected on this pin. A capacitor of 22 µF in series with a resistor of 33 Ω has to be connected to this pin. A 4,7 kΩ resistor must be connected between pins 5 and 6.
APPLICATION INFORMATION (continued)

7. Horizontal phase detector output and control oscillator input
 The flywheel filter must be connected to this pin. Typical values for the components are a capacitor of 100 nF in parallel with an RC-network of 1 kΩ and 10 µF. Furthermore, a resistor of 270 kΩ should be connected between pins 7 and 12.
 The output current of the phase detector depends on the condition of the coincidence detector. The output current is high when the oscillator is out of sync. The result is a large catching range, and the phase detector is not gated in that condition. The output current is low when the oscillator is synchronized and the phase detector is gated. A good noise immunity is obtained in this case.

8. Coincidence detector output
 A 10 pF capacitor must be connected to this pin. The output voltage depends on the oscillator condition (synchronized or not) and on the video input signal.
 The following output voltages can occur:
 - when in-sync 1.2 V
 - when out-of-sync 2.5 V
 - during noise at the input 1.7 V
 When the output voltage < 2.1 V, the phase detector output current is low and the phase detector is gated. A good noise immunity is obtained in this case. For a voltage > 2.1 V, the output current of the phase detector is high and the phase detector is not gated. This results in a large catching range and a high dynamical steepness of the PLL. This latter condition is required during VCR playback. It can be obtained by connecting pin 8 to the positive supply line via a resistor of 10 kΩ.

9. Negative supply (ground)

10. Horizontal output
 This is an open collector output. The collector resistor must be chosen such that sufficient current is supplied to the driver stage. The maximum current is 60 mA. The output stage is designed such that the line output transistor cannot be switched-on during flyback. Switching-on occurs directly after the flyback pulse to avoid linearity errors. The duty factor of the output pulse depends on the delay in the output stage (correction via the second control loop).

11. Control voltage second loop
 This voltage controls the start of the output pulse at pin 10 (positive-going edge). The capacitor connected to this pin must have a value of about 100 nF.
 A resistor of 270 kΩ should be connected between pins 11 and 12 for safe operation.

12. Reference voltage control loops
 The reference voltage must be decoupled by means of a capacitor of about 10 µF.
 It is possible to obtain a phase shift between video and flyback pulse by changing this reference voltage externally. The possible phase shift is ± 1 µs.
 The required voltage change is ± 0.6 V.

13. Decoupling internal power supply
 The IC has two power supply terminals. The main terminal (pin 16) supplies the output stages, the sync separator and the divider circuit. The specially decoupled supply terminal (pin 13) supplies the horizontal oscillator. This is to avoid coupling of the video signal into the oscillator part. The capacitor connected to pin 13 should have a value of about 22 µF. The resistor connected between pins 13 and 16 should have a value of about 1 kΩ.
14. Flyback input/sandcastle output
 This pin combines two functions e.g.:
 - Input for the line flyback pulse, which is required for the second phase control loop.
 - Generation of a sandcastle pulse. The flyback pulse has to be applied to pin 14 via a suitable series resistance. The amplitude of the flyback pulse must be about 100 V peak to peak. The pulse is clamped to a level of 4.5 V at the input of the IC. This level is increased to the supply voltage during the burst gate pulse.

15. RC-network horizontal oscillator
 Stable components should be chosen for a good frequency stability. A part of the total resistance must be variable for adjusting the frequency. This part should be as small as possible, because of poor stability of variable carbon resistors.
 The oscillator can be adjusted when pins 7 and 12 are short-circuited, or when pins 5 and 8 are connected to ground (see Fig. 2).

16. Positive supply
 The supply voltage may vary between 8 V and 13.2 V. The current-draw is 53 mA (typical) and a range of 35 to 70 mA at 12 V.
Fig. 2 Application circuit diagram.
DEVELOPMENT SAMPLE DATA
This information is derived from development samples made available for evaluation. It does not necessarily imply that the device will go into regular production.

HORIZONTAL OSCILLATOR COMBINATION WITH VERTICAL 625 DIVIDER SYSTEM

The TDA2576A is a horizontal oscillator combination intended to be used in various types of transistorized horizontal deflection circuits, e.g. switched-mode driven and power-pack system circuits. The circuit is optimized for a horizontal and vertical frequency ratio of 625.

The circuit incorporates the following functions:
- Horizontal sync separator with sliding bias in such way that the sync pulse is always sliced between top-sync level and blanking level.
- Noise gate.
- Phase detector which compares the sync pulse with the oscillator voltage; this phase detector is gated.
- Phase detector which compares the line flyback pulse with the oscillator voltage.
- Horizontal oscillator (31.25 kHz).
- Time constant switching of the first control loop (short time constant during catching and reception of VCR signals).
- Burst key pulse generator (sandcastle pulse with three levels).
- Vertical sync pulse separator.
- Very stable vertical synchronization due to the 625 divider system, without delay after channel change.

QUICK REFERENCE DATA

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Unit</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltage</td>
<td>V16-9</td>
<td>typ.</td>
<td>12 V</td>
</tr>
<tr>
<td>Supply current consumption</td>
<td>I16</td>
<td>typ.</td>
<td>53 mA</td>
</tr>
<tr>
<td>Sync input voltage (peak-to-peak value)</td>
<td>V4-9(p-p)</td>
<td></td>
<td>0.1 to 1 V</td>
</tr>
<tr>
<td>Slicing level</td>
<td></td>
<td>typ.</td>
<td>50 %</td>
</tr>
<tr>
<td>Control sensitivity sync to flyback</td>
<td>Δf</td>
<td>typ.</td>
<td>± 1000 Hz</td>
</tr>
<tr>
<td>Holding range</td>
<td>Δf</td>
<td>typ.</td>
<td>± 900 Hz</td>
</tr>
<tr>
<td>Horizontal output pulse (peak-to-peak value)</td>
<td>V10-9(p-p)</td>
<td>typ.</td>
<td>11 V</td>
</tr>
<tr>
<td>Vertical output pulse; pin 2 (peak-to-peak value)</td>
<td>V2-9(p-p)</td>
<td>typ.</td>
<td>11 V</td>
</tr>
<tr>
<td>Sandcastle output pulse (peak-to-peak value)</td>
<td>V14-9(p-p)</td>
<td>typ.</td>
<td>11 V</td>
</tr>
</tbody>
</table>

PACKAGE OUTLINE
16-lead DIL; plastic (SOT-38).
Fig. 1 Block diagram.
RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Max. Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltage</td>
<td>V_{16-9}</td>
<td>13.2 V</td>
</tr>
<tr>
<td>Total power dissipation</td>
<td>P_{tot}</td>
<td>1 W</td>
</tr>
<tr>
<td>Storage temperature</td>
<td>T_{stg}</td>
<td>-55 to +125 °C</td>
</tr>
<tr>
<td>Operating ambient temperature</td>
<td>T_{amb}</td>
<td>-25 to +65 °C</td>
</tr>
</tbody>
</table>

CHARACTERISTICS

$V_{16-9} = 12$ V; $T_{amb} = 25$ °C; measured in Fig. 2.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltage</td>
<td>V_{16-9}</td>
<td>typ. 12 V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10 to 13.2 V</td>
</tr>
<tr>
<td>Supply current consumption</td>
<td>I_{16}</td>
<td>typ. 53 mA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>< 70 mA</td>
</tr>
<tr>
<td>Sync separator and noise gate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sync pulse amplitude (negative going)</td>
<td>$V_{4-9(p-p)}$</td>
<td>0.1 to 1 V*</td>
</tr>
<tr>
<td>Top-sync level</td>
<td>V_{4-9}</td>
<td>1.0 to 3.5 V</td>
</tr>
<tr>
<td>Slicing level noise gate</td>
<td>V_{4-9}</td>
<td>< 1 V</td>
</tr>
<tr>
<td>Delay between sync input and detector output (pin 7)</td>
<td>V_{4-9}</td>
<td>typ. 0.35 μs</td>
</tr>
<tr>
<td>First control loop (sync-to-oscillator)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Holding range</td>
<td>Δf</td>
<td>typ. ± 1000 Hz</td>
</tr>
<tr>
<td>Catching range</td>
<td>Δf</td>
<td>typ. ± 900 Hz</td>
</tr>
<tr>
<td>Control sensitivity video</td>
<td></td>
<td></td>
</tr>
<tr>
<td>with respect to oscillator</td>
<td></td>
<td>typ. 2.0 kHz/μs</td>
</tr>
<tr>
<td>with respect to sandcastle</td>
<td></td>
<td>typ. 10.0 kHz/μs</td>
</tr>
<tr>
<td>with respect to flyback pulse</td>
<td></td>
<td>typ. 10.0 kHz/μs</td>
</tr>
<tr>
<td>Phase modulation due to hum</td>
<td></td>
<td></td>
</tr>
<tr>
<td>on the supply line (pin 16)</td>
<td></td>
<td>< 1.0 μs/V**</td>
</tr>
<tr>
<td>Second control loop (oscillator-to-flyback)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control sensitivity</td>
<td>$\Delta t_d/\Delta t_o$</td>
<td>typ. 250 ▲</td>
</tr>
<tr>
<td>Control range</td>
<td>t_d</td>
<td>< 26 μs</td>
</tr>
</tbody>
</table>

* Up to 1 V peak-to-peak the slicing level is constant; at amplitudes exceeding 1 V peak-to-peak the slicing level will increase.

** This voltage is a peak-to-peak value.

▲ t_d = delay between positive transient of horizontal output pulse and the rising edge of the flyback pulse.

Δt_o = delay between the rising edge of the flyback pulse and the start of the current in φ_1 (17).
CHARACTERISTICS (continued)

Horizontal oscillator

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency; free running</td>
<td>(f_0)</td>
<td>typ. 31,250 kHz</td>
</tr>
<tr>
<td>Frequency at output pin 10</td>
<td>(f_{10})</td>
<td>typ. 15,625 kHz</td>
</tr>
<tr>
<td>Spread of frequency without spread of external components</td>
<td>(\Delta f_0)</td>
<td>< 4 %</td>
</tr>
<tr>
<td>Temperature coefficient</td>
<td>(T)</td>
<td>typ. (2.5 \times 10^{-4})</td>
</tr>
<tr>
<td>Change of frequency when (V_{16.9}) increases from 10 to 13.2 V</td>
<td>(\Delta f_0)</td>
<td>< 0.5 %</td>
</tr>
</tbody>
</table>

Minimum supply voltage (+ hor. see Fig. 1)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>typ. 7 V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>typ. 7 V</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Frequency deviation at min. supply voltage

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 10 %</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Horizontal output (pin 10)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum supply voltage</td>
<td>V_{10.9}</td>
<td>< 13.2 V</td>
</tr>
<tr>
<td>Minimum output voltage at a current of 60 mA</td>
<td>(I_{10})</td>
<td>< 700 mV</td>
</tr>
<tr>
<td>Maximum output current</td>
<td>(I_{10})</td>
<td>< 60 mA</td>
</tr>
<tr>
<td>Duration of the output pulse</td>
<td>(t_p)</td>
<td>12 to 38 (\mu) S</td>
</tr>
</tbody>
</table>

Sandcastle pulse (pin 1)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output voltage during burst key pulse</td>
<td>V(_{1.9})</td>
<td>> 10 V</td>
</tr>
<tr>
<td>Pulse duration</td>
<td>(t_p)</td>
<td>typ. 4.0 (\mu) S</td>
</tr>
<tr>
<td>Amplitude of second level of output pulse</td>
<td>V(_{1.9})</td>
<td>typ. 4.5 V</td>
</tr>
<tr>
<td>Pulse duration</td>
<td>flyback pulse</td>
<td></td>
</tr>
<tr>
<td>Amplitude of third level of output pulse</td>
<td>V(_{1.9})</td>
<td>typ. 2.5 V</td>
</tr>
<tr>
<td>Pulse duration</td>
<td>(t_p)</td>
<td>typ. 1.34 (\mu) S*</td>
</tr>
<tr>
<td>Delay between the start of the sync pulse at the video input (pin 4) and the rising edge of the burst key pulse</td>
<td>(t_d)</td>
<td>typ. 4.9 (\mu) S</td>
</tr>
</tbody>
</table>

Phase adjustment (pin 12)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage at pin 12</td>
<td>V(_{12.9})</td>
<td>typ. 2.8 V</td>
</tr>
<tr>
<td>Control sensitivity</td>
<td></td>
<td>typ. 0.6 V/(\mu) S</td>
</tr>
<tr>
<td>Control range</td>
<td></td>
<td>typ. (\pm 1 \mu) S</td>
</tr>
</tbody>
</table>

Coincidence detector (pin 8)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage level of time constant switch</td>
<td>V(_{8.9})</td>
<td>typ. 2.1 V</td>
</tr>
<tr>
<td>Voltage when the oscillator is in sync</td>
<td>V(_{8.9})</td>
<td>typ. 1.2 V</td>
</tr>
<tr>
<td>Voltage when the oscillator is out-of-sync</td>
<td>V(_{8.9})</td>
<td>typ. 2.6 V</td>
</tr>
<tr>
<td>Voltage during noise</td>
<td>V(_{8.9})</td>
<td>typ. 1.7 V</td>
</tr>
</tbody>
</table>

* During standard video signals.
Horizontal oscillator combination with vertical 625 divider system

Flyback input pulse (pin 14)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Switching level</td>
<td>$V_{14.9}$</td>
<td>typ. 0.7 V</td>
</tr>
<tr>
<td>Input pulse</td>
<td>$V_{14.9}$</td>
<td>< 12 V</td>
</tr>
<tr>
<td>Input resistance</td>
<td></td>
<td>typ. 2.5 kΩ</td>
</tr>
<tr>
<td>Delay between the start of the sync pulse</td>
<td>t_p</td>
<td>typ. 1.5 μs</td>
</tr>
<tr>
<td>at the video input (pin 4) and the rising edge of the flyback pulse</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Vertical outputs

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output voltage (peak-to-peak value)</td>
<td>$V_{2.9(p-p)}$</td>
<td>> 10 V</td>
</tr>
<tr>
<td>Output current</td>
<td>I_2</td>
<td>< 5 mA</td>
</tr>
<tr>
<td>Output voltage low at $I_2 = 5$ mA</td>
<td>$V_{2.9}$</td>
<td>< 500 mV</td>
</tr>
<tr>
<td>Duration of output pulse during indirect synchronization</td>
<td>t_p</td>
<td>typ. 190 μs</td>
</tr>
<tr>
<td>Duration of output pulse during direct synchronization</td>
<td>t_p</td>
<td>typ. 160 μs</td>
</tr>
<tr>
<td>Ratio between basic horizontal oscillator frequency and vertical pulse</td>
<td></td>
<td>625 *</td>
</tr>
</tbody>
</table>

* When a non-standard sync signal is applied the separated vertical sync pulse of the incoming signal is connected to pin 2; the pulse of the divider circuit is switched off.
APPLICATION INFORMATION (see also Fig. 2)

The function is described against the corresponding pin number

1. Sandcastle output pulse

This output pulse has three levels. The first and highest level (10 V) is the burst key pulse with a typical duration of 4,0 μs. The second level for the line blanking is typ. 4,5 V with a pulse duration equal to the line flyback pulse. The third level (typ. 2,5 V) is used for frame blanking and has a duration of typ. 1,34 ms (21 lines). This last pulse is only available with a standard video input signal. Under all other conditions, an external vertical flyback pulse must be applied to this pin. This pulse will be clamped to 2,5 V by means of an internal clamping circuit. The input current is typ. 2 mA.

2. Vertical output pulse

This pulse is obtained from the divider circuit, the amplitude is in excess of 10 V peak-to-peak. This pulse has a duration of 190 μs when standard signals are received. The pulse is obtained from the vertical sync pulse integrator during non-standard signals and has a duration of about 160 μs. It has good stability and accuracy, so it is intended to be used for triggering the vertical oscillator.

3. Vertical sync pulse integrator bias network

The vertical sync pulse is obtained by integrating the composite sync signal in an internal RC-network. An external capacitor with an internal resistor are required for the correct biasing of this circuit for various input conditions. A typical value for the capacitor is 10 μF.

4. Video input

The input signal must have negative-going sync pulses. The top-sync level can vary between 1 V and 3,5 V without affecting the sync separator operation.

The slicing level of the sync separator is fixed at 50%, for the sync pulse amplitude range 0,1 to 1 V peak-to-peak. As a consequence the circuit gives a good sync separation down to pulses with an amplitude of 100 mV peak-to-peak (sync pulse compression). For sync pulses in excess of 1 V peak-to-peak the slicing level will increase.

The noise gate is activated at an input level < 1 V (typ. 0,7 V), thus, when noise gating is required the top-sync level should be chosen close to the minimum level of 1 V.

5. Sync separator slicing level output

The sync separator slicing level is determined on this pin. A slicing level of 50% is obtained by comparing this level with the black level of the video signal, which is detected at pin 6. The capacitor connected to pin 5 must be about 1 μF.

6. Black level detector output

The black level of the input signal is detected on this pin. A capacitor of 22 μF in series with a resistor of 33 Ω has to be connected to this pin. A 4,7 kΩ resistor must be connected between pins 5 and 6.

7. Horizontal phase detector output and control oscillator input

The flywheel filter must be connected to this pin. Typical values for the components are a capacitor of 100 nF in parallel with an RC-network of 1 kΩ and 10 μF. Furthermore, a resistor of 270 kΩ should be connected between pins 7 and 12.

The output current of the phase detector depends on the condition of the coincidence detector. The output current is high when the oscillator is out of sync. The result is a large catching range, and the phase detector is not gated in that condition. The output current is low when the oscillator is synchronized and the phase detector is gated. A good noise immunity is obtained in this case.
8 Coincidence detector output

A 1 μF capacitor must be connected to this pin. The output voltage depends on the oscillator condition (synchronized or not) and on the video input signal.

The following output voltages can occur:

- when in-sync 1,2 V
- when out-of-sync 2,6 V
- during noise at the input 1,7 V

When the output voltage < 2,1 V, the phase detector output current is low and the phase detector is gated. A good noise immunity is obtained in this case. For a voltage > 2,1 V, the output current of the phase detector is high and the phase detector is not gated. This results in a large catching range and a high dynamical steepness of the PLL. This latter condition is required during VCR-playback. It can be obtained by connecting pin 8 to the positive supply line via a resistor of 10 kΩ.

The information of the line coincidence detector is fed to the divider circuit so that there is no delay in vertical synchronization after a channel change, or an unsynchronized camera change in the studio. Thus, the divider circuit is reset to direct sync, when line synchronization is lost.

9. Negative supply (ground)

10. Horizontal output

This is an open collector output. The collector resistor must be chosen such that sufficient current is supplied to the driver stage. The maximum current is 60 mA. The output stage is designed such that the line output transistor cannot be switched-on during flyback. Switching-on occurs directly after the flyback pulse to avoid linearity errors. The duty factor of the output pulse depends on the delay in the output stage (correction via the second control loop).

11. Control voltage second loop

This voltage controls the start of the output pulse at pin 10 (positive-going edge). The capacitor connected to this pin must have a value of about 22 nF.

12. Reference voltage control loops

The reference voltage must be decoupled by means of a capacitor of about 10 μF.

It is possible to obtain a phase shift between video and flyback pulse by changing this reference voltage externally. The possible phase shift is ± 1 μs.

The required voltage change is ± 0,6 V.

13. Decoupling internal power supply

The IC has two power supply terminals. The main terminal (pin 16) supplies the output stages, the sync separator and the divider circuit. The specially decoupled supply terminal (pin 13) supplies the horizontal oscillator. This is to avoid coupling of the video signal into the oscillator part. The capacitor connected to pin 13 should have a value of about 22 μF. The resistor connected between pins 13 and 16 should have a value of about 1 kΩ.

14. Flyback input pulse

The flyback input pulse is required for the second phase control loop and for generating the line blanking pulse in the sandcastle output. The input current should be at least 10 μA and not exceed 3 mA.

15. RC-network horizontal oscillator

Stable components should be chosen for a good frequency stability. A part of the total resistance must be variable for adjusting the frequency. This part should be as small as possible, because of poor stability of variable carbon resistors.

The oscillator can be adjusted when pins 7 and 12 are short-circuited (see Fig. 2).

16. Positive supply: The supply voltage may vary between 10 V and 13,2 V. The current-draw is 53 mA (typical) and a range of 35 to 70 mA at 12 V.
Fig. 2 Application circuit diagram.

(1) Optional circuit for phase adjustment.
CONTROL CIRCUIT FOR SMPS

The TDA2581 is a monolithic integrated circuit for controlling switched-mode power supplies (SMPS) which are provided with the drive for the horizontal deflection stage.

The circuit features the following:
- Voltage controlled horizontal oscillator.
- Phase detector.
- Duty factor control for the positive-going transient of the output signal.
- Duty factor increases from zero to its normal operation value.
- Adjustable maximum duty factor.
- Over-voltage and over-current protection with automatic re-start after switch-off.
- Counting circuit for permanent switch-off when n-times over-current or over-voltage is sensed.
- Protection for open-reference voltage.
- Protection for too low supply voltage.
- Protection against loop faults.
- Positive tracking of duty factor and feedback voltage when the feedback voltage is smaller than the reference voltage minus 1,5 V.

QUICK REFERENCE DATA

| Supply voltage | Vg-16 | typ. | 12 V |
| Supply current | Ig | typ. | 15 mA |

Input signals

Horizontal drive pulse (peak-to-peak value)	V3-16(p-p)	typ.	11 V
Flyback pulse (differentiated deflection current); peak-to-peak value	V2-16(p-p)	typ.	5 V
External reference voltage	V10-16	typ.	6,7 V

Output signals

Duty factor of output pulse	δ	> 0 %	
Output voltage at I0 < 20 mA (peak value)	V11-16M	typ.	11,8 V
Output current (peak value)	I11M	< 40 mA	

PACKAGE OUTLINES

TDA2581: 16-lead DIL; plastic (SOT-38).
TDA2581Q: 16-lead QIL; plastic (SOT-58).
TDA2581
TDA2581Q

BLOCK DIAGRAM

Note: trip levels are nominal values.
Control circuit for SMPS

RATINGS
Limiting values in accordance with the Absolute Maximum System (IEC 134)

Supply voltage V_{9-16} max. 14 V
Voltage at pin 11 V_{11-16} max. 0 to 14 V
Output current I_{11} max. 40 mA
Total power dissipation P_{tot} max. 340 mW
Storage temperature T_{stg} -25 to +125 °C
Operating ambient temperature T_{amb} -25 to +80 °C

CHARACTERISTICS

$V_{9-16} = 12$ V; $V_{10-16} = 6.7$ V; $T_{amb} = 25$ °C; measured in the circuit on page 2

Supply voltage range V_{9-16} typ. 12 V
Protection voltage too low supply voltage V_{9-16} typ. 9.4 V
Supply current at $\delta = 50\%$ I_9 typ. 15 mA
Supply current during protection I_9 typ. 15 mA
Minimum required supply current I_9 < 18.5 mA*
Power consumption P typ. 180 mW

Required input signals

Reference voltage V_{10-16} typ. 6.7 V
High reference voltage protection: threshold voltage V_{10-16} typ. 8.4 V
Feedback input impedance at pin 8 $|Z_{8-16}|$ typ. 200 kΩ
Horizontal drive pulse (square-wave or differentiated; negative transient is reference) peak-to-peak value $V_{3-16}(p-p)$ typ. 11 V
Flyback pulse or differential deflection current V_{2-16} typ. 1 to 5 V
Over-current protection: threshold voltage $-V_{6-16}$ typ. 640 mV 690 to 695 mV▲
$+V_{6-16}$ typ. 680 mV 640 to 735 mV▲
Over-voltage protection: threshold voltage V_{7-16} typ. V_{10-16} -60 mV V_{10-16} -130 to V_{10-16} -0 mV

* This value refers to the minimum required supply current that will start all devices under the following conditions: $V_{9-16} = 10$ V; $V_{10-16} = 6.8$ V; $\delta = 50\%$.
** Voltage obtained via an external reference diode. Specified voltages do not refer to the nominal voltages of reference diodes.
▲ This spread is inclusive temperature rise of the IC due to warming up. For other ambient temperatures the values must be corrected by using a temperature coefficient of typical -1.85 mV/°C.
CHARACTERISTICS (continued)

Remote control voltage; switch off switch on

Delivered output signals

Horizontal drive pulse (loaded with a resistor of 560 Ω to +12 V)
peak-to-peak value
Output current; peak value
Saturation voltage of output transistor at $I_{11} = 20 \, mA$
at $I_{11} = 40 \, mA$
Duty factor of output pulse**
Charge current for capacitor on pin 4
Charge current for capacitor on pin 5
Supply current for reference

Oscillator

Temperature coefficient
Relative frequency deviation for V_{10-16} changing from 6 to 7 V
Oscillator frequency spread (with fixed external components)
Frequency control sensitivity at pin 15

Phase control loop

Loop gain of APC-system (automatic phase control)
Catching range
Phase relation between negative transient of sync pulse and middle of flyback
Tolerance of phase relation

* See pin 4 on pages 7 and 8.
** The duty factor is specified as follows:

$$\delta = \frac{t}{T} \times 100\%.$$

The maximum duty factor value can be set to a desired value (see application information pin 12 on page 9).

For component values see circuit diagram on page 2.
PINNING

1. Phase detector output
2. Flyback pulse position input
3. Reference frequency input
4. Re-start count capacitor/remote control input
5. Slow start and transfer characteristic for low feedback voltages
6. Over-current protection input
7. Over-voltage protection input
8. Feedback voltage input
9. Positive supply
10. Reference input
11. Output
12. Maximum duty factor adjustment/smoothing
13. Oscillator timing network
14. Reactance stage reference voltage
15. Reactance stage input
16. Negative supply (ground)
The TDA2571 and TDA2581 controlling an SMPS driver stage.
The function is quoted against the corresponding pin number

1. Phase detector output
 The output circuit consists of a bidirectional current source which is active for the time that the signal on pin 2 exceeds 1 V.
 The current values are chosen such that the correct phase relation is obtained when the reference signal on pin 3 is delivered by the TDA2571.
 With a resistor of 18 kΩ and a capacitor of 2.7 nF the control steepness is 0.55 V/μs.

2. Flyback pulse input
 The signal applied to pin 2 is normally a flyback pulse with a duration of about 12 μs. However, the phase detector system also accepts a signal derived by differentiating the deflection current by means of a small toroidal core (pulse duration > 3 μs).

 ![Diagram of flyback pulse input](a)

 ![Diagram of Toroidal transformer](b)

 The toroidal transformer in (a) is for obtaining a pulse representing the mid-flyback from the deflection current. The connection of the picture phase information is shown in (b).

3. Reference frequency input
 The input circuit can be driven directly by the square-wave output voltage from pin 8 of the TDA2571.
 The negative-going transient switches the current source connected to pin 1 from positive to negative.
 The input circuit is made such that a differentiated signal of the square-wave from the TDA2571 is also accepted (this enables mains isolation). The input circuit switching level is about 3 V and the input impedance is about 10 kΩ.

4. Re-start count capacitor/remote control input
 Counting
 An external capacitor (C4 = 47 μF) is connected between pins 4 and 16. This capacitor controls the characteristics of the protection circuits as follows.
 If the protection circuits are required to operate, e.g. over-current at pin 6, the duty factor will be set to zero thus turning off the power supply.
 After a short interval (determined by the time constant on pin 5) the power supply will be restarted via the slow start circuit.
 If the fault condition has cleared, then normal operation will be resumed. If the fault condition is persistent, the duty factor of the pulses is again reduced to zero and the protection cycle is repeated.
 The number of times this action is repeated (n) for a persisting fault condition is now determined by: n = C4/C5.
APPLICATION INFORMATION (continued)

Remote control input

For this application the capacitor on pin 4 has to be replaced by a resistor with a value between 4.7 and 18 kΩ. When the externally applied voltage $V_{4.16} > 5.8$ V, the circuit switches off; switching on occurs when $V_{4.16} < 4.5$ V and the normal starting-up procedure is followed. Pin 4 is internally connected to an emitter-follower, with an emitter voltage of 1.5 V.

5. Slow start and transfer characteristics for low feedback voltages

Slow start

An external shunt capacitor (C5 = 4.7 μF) and resistor (R5 = 270 kΩ) are connected between pins 5 and 16. The network controls the rate at which the duty factor increases from zero to its steady-state value after switch-on. It provides protection against surges in the power transistor.

Transfer characteristic for low feedback voltages

The duty factor transfer characteristic for low feedback voltages can be influenced by R5. The transfer for three different resistor values is given in the graph on page 10.

6. Over-current protection input

A voltage proportional to the current in the power switching device is applied to the integrated circuit between pins 6 and 16. The circuit trips on both positive and negative polarity.

7. Over-voltage protection input

When the voltage applied to this pin exceeds the threshold level, the protection circuit will operate. When this function is not used, pin 7 should be connected to pin 16.

8. Feedback voltage input

The control loop input is applied to pin 8. This pin is internally connected to one input of a differential amplifier, functioning as an amplitude comparator, the other input of which is connected to the reference source on pin 10. Under normal operating conditions, the voltage on pin 8 will be about equal to the reference voltage on pin 10. For further information refer to the graphs on pages 10 and 11.

9. 12 V positive supply

The maximum voltage that may be applied is 14 V. Where this is derived from an unstabilized supply rail, a regulator diode (12 V) should be connected between pins 9 and 16 to ensure that the maximum voltage does not exceed 14 V. When the voltage on this pin falls below a minimum of 8.6 V (typically 9.4 V), the protection circuit will switch-off the power supply.

10. Reference input

An external reference diode must be connected between this pin and pin 16. The reference voltage must be between 5.6 and 7.5 V. The IC delivers about 1 mA into the external regulator diode. When the external load on the regulator diode approaches this current, replenishment of the current can be obtained by connecting a suitable resistor between pins 9 and 10.
11. Output
An external resistor determines the output current fed into the base of the driver transistor. The output circuit uses an n-p-n transistor with 3 series-connected clamping diodes to the internal 12 V supply rail. This provides a low impedance in the “ON” state, that is with the drive transistor turned-off.

12. Maximum duty factor adjustment/smoothing

Maximum duty factor adjustment
Pin 12 is connected to the output voltage of the amplitude comparator (V10-8). This voltage is internally connected to one input of a differential amplifier, the other input of which is connected to the sawtooth voltage of the horizontal oscillator. A low voltage on pin 12 results in a low duty factor. This enables the maximum duty factor to be adjusted by limiting the voltage by connecting pin 12 to the emitter of a p-n-p transistor used as a voltage source.

The graph on page 10 plots the maximum duty factor as a function of the voltage applied to pin 12. If some spread is acceptable the maximum duty factor can also be limited by connecting a resistor from pin 12 to pin 16. A resistor of 12 kΩ limits the maximum duty factor to about 50%.

This application also reduces the total IC gain.

Smoothing
Any double pulsing of the IC due to circuit layout can be suppressed by connecting a capacitor of about 470 pF between pins 12 and 16.

13. Oscillator timing network
The timing network comprises a capacitor between pins 13 and 16, and a resistor between pin 13 and the reference voltage on pin 10.

The charging current for the capacitor (C13) is derived from the voltage reference diode connected to pin 10 and discharged via an internal resistor of about 330 Ω.

14. Reactance stage reference voltage
This pin is connected to an emitter follower which determines the nominal reference voltage for the reactance stage (1,5 V for reference voltage V10-16 = 6,7 V). Free-running frequency is obtained when pins 14 and 15 are short-circuited.

15. Reactance stage input
The output voltage of the phase detector (pin 1) is connected to pin 15 via a resistor. The voltage applied to pin 15 shifts the upper level of the voltage sensor of the oscillator thus changing the oscillator frequency and phase. The time constant network is connected between 14 and 15. Control sensitivity is typically 4,5 kHz/V.

16. Negative supply (ground)
Duty factor of output pulses as a function of V_{8-16} with R_5 as a parameter, and with V_{12} as a limiting value; $V_{10-16} = 6.8$ V.

Maximum duty factor limitation as a function of V_{12-16}.
Duty factor of output pulses as a function of error amplifier input (V_{8-10}).

Change in duty factor of output pulses for a 1 mV error amplifier input change (V_{8-10}) as a function of initial duty factor.
CONTROL CIRCUIT FOR POWER SUPPLIES

The TDA2582 is a monolithic integrated circuit for controlling power supplies which are provided with the drive for the horizontal deflection stage.

The circuit features the following:
- Voltage controlled horizontal oscillator.
- Phase detector.
- Duty factor control for the negative-going transient of the output signal.
- Duty factor increases from zero to its normal operation value.
- Adjustable maximum duty factor.
- Over-voltage and over-current protection with automatic re-start after switch-off.
- Counting circuit for permanent switch-off when n-times over-current or over-voltage is sensed.
- Protection for open-reference voltage.
- Protection for too low supply voltage.
- Protection against loop faults.
- Positive tracking of duty factor and feedback voltage when the feedback voltage is smaller than the reference voltage minus 1,5 V.
- Normal and 'smooth' remote ON/OFF possibility.

QUICK REFERENCE DATA

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltage</td>
<td>V9-16 typ.</td>
</tr>
<tr>
<td>Supply current</td>
<td>I9</td>
</tr>
<tr>
<td>Input signals</td>
<td></td>
</tr>
<tr>
<td>Horizontal drive pulse</td>
<td>V3-16(p-p)</td>
</tr>
<tr>
<td>Flyback pulse (differentiated</td>
<td>V2-16(p-p)</td>
</tr>
<tr>
<td>deflection current)</td>
<td></td>
</tr>
<tr>
<td>External reference voltage</td>
<td>V10-16 typ.</td>
</tr>
<tr>
<td>Output signals</td>
<td></td>
</tr>
<tr>
<td>Duty factor of output pulse</td>
<td>δ</td>
</tr>
<tr>
<td>Output voltage at Io < 20 mA</td>
<td>V11-16M typ.</td>
</tr>
<tr>
<td>Output current (peak value)</td>
<td>I11M</td>
</tr>
</tbody>
</table>

PACKAGE OUTLINES

TDA2582 : 16-lead DIL; plastic (SOT-38).
TDA2582Q: 16-lead QIL; plastic (SOT-58).
Fig. 1 Block diagram.

Note: trip levels are nominal values.
Control circuit for power supplies

RATINGS
Limiting values in accordance with the Absolute Maximum System (IEC 134)

Supply voltage at pin 9
Voltage at pin 11
Output current (peak value)
Total power dissipation
Storage temperature
Operating ambient temperature

\[V_{9-16} \text{ max. } 14 \text{ V} \]
\[V_{11-16} \text{ max. } 0 \text{ to } 14 \text{ V} \]
\[I_{11M} \text{ max. } 40 \text{ mA} \]
\[P_{\text{tot}} \text{ max. } 280 \text{ mW} \]
\[T_{\text{stg}} \text{ } -25 \text{ to } +125 \text{ °C} \]
\[T_{\text{amb}} \text{ } -25 \text{ to } +80 \text{ °C} \]

CHARACTERISTICS
\[V_{9-16} = 12 \text{ V}; V_{10-16} = 6,1 \text{ V}; T_{\text{amb}} = 25 \text{ °C}; \text{ measured in Fig. 4} \]

Supply voltage range
Protection voltage too low supply voltage
Supply current at \(\delta = 50\% \)
Supply current during protection
Minimum required supply current (note 1)
Power consumption

\[V_{9-16} \text{ typ. } 10 \text{ to } 14 \text{ V} \]
\[V_{9-16} \text{ typ. } 8,6 \text{ to } 9,9 \text{ V} \]
\[I_{9} \text{ typ. } 14 \text{ mA} \]
\[I_{9} \text{ typ. } 14 \text{ mA} \]
\[I_{9} < 17 \text{ mA} \]
\[P \text{ typ. } 170 \text{ mW} \]

Required input signals
Reference voltage (note 2)
Feedback input impedance
High reference voltage protection: threshold voltage
Horizontal reference signal (square-wave or differentiated; negative transient is reference)
Voltage driven (peak-to-peak value)
Current driven (peak value)
Switching level current
Flyback pulse or differential deflection current
Flyback pulse current (peak value)
Over-current protection: (note 3) threshold voltage

\[V_{10-16} \text{ typ. } 5,6 \text{ to } 6,6 \text{ V} \]
\[|Z_{8-16}| \text{ typ. } 200 \text{ kΩ} \]
\[V_{10-16} \text{ typ. } 7,9 \text{ to } 8,9 \text{ V} \]
\[V_{3-16}(p-p) \text{ typ. } 5 \text{ to } 12 \text{ V} \]
\[I_{3M} \text{ typ. } -1 \text{ to } +1,5 \text{ mA} \]
\[\pm I_{3} \text{ typ. } 100 \text{ μA} \]
\[V_{2-16} \text{ typ. } 1 \text{ to } 5 \text{ V} \]
\[I_{2M} \text{ typ. } < 1,5 \text{ mA} \]
\[-V_{6-16} \text{ typ. } 640 \text{ mV} \]
\[+V_{6-16} \text{ typ. } 680 \text{ mV} \]

Notes
1. This value refers to the minimum required supply current that will start all devices under the following conditions: \(V_{9-16} = 10 \text{ V}; V_{10-16} = 6,2 \text{ V}; \delta = 50\% \).
2. Voltage obtained via an external reference diode. Specified voltages do not refer to the nominal voltages of reference diodes.
3. This spread is inclusive temperature rise of the IC due to warming up. For other ambient temperatures the values must be corrected by using a temperature coefficient of typical \(-1,85 \text{ mV/°C}\).
CHARACTERISTICS (continued)

Over-voltage protection:

(V\textsubscript{ref} = V\textsubscript{10-16}) threshold voltage

\begin{align*}
V\textsubscript{7-16} &\text{ typ.} \\
V\textsubscript{ref} &= 60 \text{ mV} \\
V\textsubscript{ref} &= 130 \text{ mV} \\
V\textsubscript{ref} &= 0 \text{ mV}
\end{align*}

Remote control voltage; switch-off (note 1)

\begin{align*}
V\textsubscript{4-16} &< 5.6 \text{ V}
\end{align*}

Remote control voltage; switch-on

\begin{align*}
V\textsubscript{4-16} &> 4.5 \text{ V}
\end{align*}

'Smooth' remote control; switch-off (note 2)

\begin{align*}
V\textsubscript{5-16} &> 4.5 \text{ V}
\end{align*}

'Smooth' remote control; switch-on

\begin{align*}
V\textsubscript{5-16} &< 3 \text{ V}
\end{align*}

Remote control switch-off current

\begin{align*}
l_4 &< 1 \text{ mA}
\end{align*}

Delivered output signals

Horizontal drive pulse (loaded with a resistor of 560 \ \Omega to +12 \text{ V})

\begin{align*}
V\textsubscript{11-16(p-p)} &< 11.6 \text{ V}
\end{align*}

Output current; peak value

\begin{align*}
l_{11M} &< 40 \text{ mA}
\end{align*}

Saturation voltage of output transistor

\begin{align*}
V\text{CE\textsubscript{sat}} &< 200 \text{ mV}
\end{align*}

\begin{align*}
V\text{CE\textsubscript{sat}} &< 525 \text{ mV}
\end{align*}

Duty factor of output pulse (note 3)

\begin{align*}
\delta &< 98 \pm 0.8 \%
\end{align*}

Charge current for capacitor on pin 4

\begin{align*}
l_4 &< 110 \mu\text{A}
\end{align*}

Charge current for capacitor on pin 5

\begin{align*}
l_5 &< 120 \mu\text{A}
\end{align*}

Supply current for reference

\begin{align*}
l_{10} &< 1 \text{ mA}
\end{align*}

\begin{align*}
0.6 \text{ to } 1.45 \text{ mA}
\end{align*}

Oscillator

Temperature coefficient

\begin{align*}
\text{typ.} &< 0.00004 \ \text{OC}^{-1}
\end{align*}

Relative frequency deviation for V\textsubscript{10-16}

\begin{align*}
\text{typ.} &< -1.4 \%
\end{align*}

\begin{align*}
\text{typ.} &< -2 \%
\end{align*}

Oscillator frequency spread (with fixed external components)

\begin{align*}
< 3 \%
\end{align*}

Frequency control sensitivity at pin 15

\begin{align*}
f_{\text{nom}} &= 15,625 \text{ kHz}
\end{align*}

\begin{align*}
\text{typ.} &= 5 \text{ kHz/V}
\end{align*}

Notes

1. See function description pin 4 (pages 9 and 10).
2. See function description pin 5 (page 10).
3. The duty factor is specified as follows: \(\delta = \frac{t_p}{T} \times 100\% \)

(see Fig. 2). After switch-on the duty factor rises gradually from 0\% to the steady value. The relationship between V\textsubscript{B16} and the duty factor is given in Fig. 7 and the relationship between V\textsubscript{12-16} and the duty factor is shown in Fig. 9.
Control circuit for power supplies

TDA2582
TDA2582Q

Phase control loop
Loop gain of APC-system (automatic phase control) *

Catching range \(f_{\text{nom}} = 15,625 \) kHz

Phase relation between negative transient of sync pulse and middle of flyback

Tolerance of phase relation

PINNING

1. Phase detector output
2. Flyback pulse position input
3. Reference frequency input
4. Re-start count capacitor/remote control input
5. Slow start and transfer characteristic for low feedback voltages
6. Over-current protection input
7. Over-voltage protection input
8. Feedback voltage input
9. Positive supply
10. Reference input
11. Output
12. Maximum duty factor adjustment/smoothing
13. Oscillator timing network
14. Reactance stage reference voltage
15. Reactance stage input
16. Negative supply (ground)

* For component values see Fig. 1.
Fig. 3a.
Control circuit for power supplies

Fig. 3b.

Lead 6 (pin 10) of circuit TDA2576 connected to lead 2 (pin 14) of circuit TDA2582.

May 1979
Fig. 4 Circuit diagram.

(1) values depend on V_p
The function is described against the corresponding pin number

1. Phase detector output

The output circuit consists of a bidirectional current source which is active for the time that the signal on pin 2 exceeds 1 V.

The current values are chosen such that the correct phase relation is obtained when the output signal of the TDA2571 is applied to pin 3.

With a resistor of 2 x 33 kΩ and a capacitor of 2.7 nF the control steepness is 0.55 V/µs (Fig. 4).

2. Flyback pulse input

The signal applied to pin 2 is normally a flyback pulse with a duration of about 12 µs. However, the phase detector system also accepts a signal derived by differentiating the deflection current by means of a small toroidal core (pulse duration > 3 µs).

![Fig. 5a.](image)

![Fig. 5b.](image)

The toroidal transformer in Fig. 5a is for obtaining a pulse representing the mid-flyback from the deflection current. The connection of the picture phase information is shown in Fig. 5b.

3. Reference frequency input

The input circuit can be driven directly by the square-wave output voltage from pin 8 of the TDA2571.

The negative-going transient switches the current source connected to pin 1 from positive to negative. The input circuit is made such that a differentiated signal of the square-wave from the TDA2571 is also accepted (this enables mains isolation). The input circuit switching level is about 3 V and the input impedance is about 8 kΩ.

4. Re-start count capacitor/remote control input

Counting

An external capacitor (C4 = 47 µF) is connected between pins 4 and 16. This capacitor controls the characteristics of the protection circuits as follows.

If the protection circuits are required to operate, e.g. over-current at pin 6, the duty factor will be set to zero thus turning off the power supply.

After a short interval (determined by the time constant on pin 5) the power supply will be restarted via the slow start circuit.

If the fault condition has cleared, then normal operation will be resumed. If the fault condition is persistent, the duty factor of the pulses is again reduced to zero and the protection cycle is repeated.

The number of times this action is repeated (n) for a persisting fault condition is now determined by: \(n = \frac{C4}{C5} \).
APPLICATION INFORMATION (continued)

Remote control input
For this application the capacitor on pin 4 has to be replaced by a resistor with a value between 4.7 and 18 kΩ. When the externally applied voltage \(V_{4.16} > 5.6 \) V, the circuit switches off; switching on occurs when \(V_{4.16} < 4.5 \) V and the normal starting-up procedure is followed. Pin 4 is internally connected to an emitter-follower, with an emitter voltage of 1.5 V.

5. Slow start and transfer characteristics for low feedback voltages

Slow start
An external shunt capacitor (\(C_5 = 4.7 \mu \text{F} \)) and resistor (\(R_5 = 270 \) kΩ) are connected between pins 5 and 16. The network controls the rate at which the duty factor increases from zero to its steady-state value after switch-on. It provides protection against surges in the power transistor.

Transfer characteristic for low feedback voltages
The duty factor transfer characteristic for low feedback voltages can be influenced by \(R_5 \). The transfer for three different resistor values is given in Fig. 7.

'Smooth' remote ON/OFF
The ON/OFF information should be applied to pin 5 via a high ohmic resistor, a high OFF-level gives a slow rising voltage at pin 5, which results in a slowly decreasing duty factor.

6. Over-current protection input
A voltage proportional to the current in the power switching device is applied to the integrated circuit between pins 6 and 16. The circuit trips on both positive and negative polarity. When the tripping level is reached, the output pulse is immediately blocked and the starting circuit is activated again.

7. Over-voltage protection input
When the voltage applied to this pin exceeds the threshold level the protection circuit will operate. The tripping level is about the same as the reference voltage on pin 10.

8. Feedback voltage input
The control loop input is applied to pin 8. This pin is internally connected to one input of a differential amplifier, functioning as an amplitude comparator, the other input of which is connected to the reference source on pin 10. Under normal operating conditions, the voltage on pin 8 will be about equal to the reference voltage on pin 10. For further information refer to the Figs 7 and 8.

9. 12 V positive supply
The maximum voltage that may be applied is 14 V. Where this is derived from an unstabilized supply rail, a regulator diode (12 V) should be connected between pins 9 and 16 to ensure that the maximum voltage does not exceed 14 V. When the voltage on this pin falls below a minimum of 8.6 V (typically 9.4 V), the protection circuit will switch-off the power supply.
Control circuit for power supplies

TDA2582
TDA2582Q

10. Reference input
An external reference diode must be connected between this pin and pin 16. The reference voltage must be between 5.6 and 6.6 V. The IC delivers about 1 mA into the external regulator diode. When the external load on the regulator diode approaches this current, replenishment of the current can be obtained by connecting a suitable resistor between pins 9 and 10. A higher reference voltage value up to 7.5 V is allowed when use is made of a duty factor limiting resistor < 27 kΩ between pins 12 and 16.

11. Output
An external resistor determines the output current fed into the base of the driver transistor. The output circuit uses an n-p-n transistor with 3 series-connected clamping diodes to the internal 12 V supply rail. This provides a low impedance in the “ON” state, that is with the drive transistor turned-off.

12. Maximum duty factor adjustment/smoothing

Maximum duty factor adjustment
Pin 12 is connected to the output voltage of the amplitude comparator (V₁₀₋₈). This voltage is internally connected to one input of a differential amplifier, the other input of which is connected to the sawtooth voltage of the horizontal oscillator. A high voltage on pin 12 results in a low duty factor. This enables the maximum duty factor to be adjusted by limiting the voltage by connecting pin 12 to the emitter of an n-p-n transistor used as a voltage source. Fig. 9 plots the maximum duty factor as a function of the voltage applied to pin 12. If some spread is acceptable the maximum duty factor can also be limited by connecting a resistor from pin 12 to pin 16. A resistor of 12 kΩ limits the maximum duty factor to about 50%. This application also reduces the total IC gain.

Smoothing
Any double pulsing of the IC due to circuit layout can be suppressed by connecting a capacitor of about 470 pF between pins 12 and 16.

13. Oscillator timing network
The timing network comprises a capacitor between pins 13 and 16, and a resistor between pin 13 and the reference voltage on pin 10. The charging current for the capacitor (C₁₃) is derived from the voltage reference diode connected to pin 10 and discharged via an internal resistor of about 330 Ω.

14. Reactance stage reference voltage
This pin is connected to an emitter follower which determines the nominal reference voltage for the reactance stage (1.4 V for reference voltage V₁₀₋₁₆ = 6.1 V). Free-running frequency is obtained when pins 14 and 15 are short-circuited.

15. Reactance stage input
The output voltage of the phase detector (pin 1) is connected to pin 15 via a resistor. The voltage applied to pin 15 shifts the upper level of the voltage sensor of the oscillator thus changing the oscillator frequency and phase. The time constant network is connected between 14 and 15. Control sensitivity is typically 5 kHz/V.

16. Negative supply (ground)
Fig. 6 Duty factor change as a function of initial duty factor; at 1 mV error amplifier input change; $\Delta V_{B-10(p-p)} = 1 \text{ mV}$.

Fig. 7 Duty factor of output pulses as a function of feedback input voltage (V_{B-16}) with R_5 as a parameter and V_{12-16} as a limiting value; $V_{10-16} = 6.1 \text{ V}$.

May 1979
Control circuit for power supplies

TDA2582
TDA2582Q

Fig. 8 Duty factor of output pulses as a function of error amplifier input (V8-10); V10-16 = 6.1 V.

Fig. 9 Maximum duty factor limitation as a function of the voltage applied to pin 12; V10-16 = 6.1 V.
HORIZONTAL COMBINATION

The TDA2593 is a monolithic integrated circuit intended for use in colour television receivers in combination with TDA2510, TDA2520, TDA2560 as well as with TDA3500, TDA3510 and TDA3520. The circuit incorporates the following functions:

- horizontal oscillator based on the threshold switching principle
- phase comparison between sync pulse and oscillator voltage \(\varphi_1 \)
- internal key pulse for phase detector \(\varphi_1 \) (additional noise limiting)
- phase comparison between line flyback pulse and oscillator voltage \(\varphi_2 \)
- larger catching range obtained by coincidence detector \(\varphi_3 \) between sync and key pulse
- switch for changing the filter characteristic and the gate circuit (VCR-operation)
- sync separator
- noise separator
- vertical sync separator and output stage
- colour burst keying and line flyback blanking pulse generator
- phase shifter for the output pulse
- output pulse duration switching
- output stage with separate supply voltage for direct drive of thyristor deflection circuits
- low supply voltage protection

QUICK REFERENCE DATA

<table>
<thead>
<tr>
<th>Supply voltage</th>
<th>Supply current</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{1-16})</td>
<td>typ. 12 V</td>
</tr>
<tr>
<td>(I_1)</td>
<td>typ. 30 mA</td>
</tr>
</tbody>
</table>

Input signals

- Sync separator input voltage (peak-to-peak value) \(V_{9-16}(p-p) \) 3 to 4 V
- Noise separator input voltage (peak-to-peak value) \(V_{10-16}(p-p) \) 3 to 4 V

Pulse duration switch input voltage

- at \(t = 7 \) \(\mu \)s (thyristor driving) \(V_{4-16} \) 9,4 to \(V_{1-16} \) V
- at \(t = 14 \) \(\mu \)s + \(t_d \) (transistor driving) \(V_{4-16} \) 0 to 3,5 V
- at \(t = 0 \) (input 4 open or \(V_{3-16} = 0 \)) \(V_{4-16} \) 5,4 to 6,6 V

Output signals

- Vertical sync output pulse (peak-to-peak value) \(V_{8-16}(p-p) \) typ. 11 V
- Burst gating output pulse (peak-to-peak value) \(V_{7-16}(p-p) \) typ. 11 V
- Line drive pulse (peak-to-peak value) \(V_{3-16}(p-p) \) typ. 10,5 V

PACKAGE OUTLINE

16-lead DIL; plastic (SOT-38).
Fig. 1 Block diagram.
RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Supply voltage
- at pin 1 (voltage source) V1-16 max. 13.2 V
- at pin 2 V2-16 max. 18 V

Voltages
- Pin 4 V4-16 max. 13.2 V
- Pin 9 ± V9-16 max. 6 V
- Pin 10 ± V10-16 max. 6 V
- Pin 11 V11-16 max. 13.2 V

Currents
- Pins 2 and 3 (thyristor driving) (peak value) I2M−I3M max. 650 mA
- Pins 2 and 3 (transistor driving) (peak value) I2M−I3M max. 400 mA
- Pin 4 I4 max. 1 mA
- Pin 6 ±I6 max. 10 mA
- Pin 7 −I7 max. 10 mA
- Pin 11 I11 max. 2 mA

Total power dissipation Ptot max. 800 mW

Storage temperature Tstg -25 to +125 °C

Operating ambient temperature Tamb -20 to +70 °C

CHARACTERISTICS at V1-16 = 12 V; Tamb = 25 °C; measured in Fig. 1

Sync separator

Input switching voltage V9-16 typ. 0.8 V
Input keying current I9 5 to 100 μA
Input leakage current at V9-16 = -5 V I9 < 1 μA
Input switching current I9 < 5 μA
Switch off current I9 > 100 μA
Input signal (peak-to-peak value) V9-16(p-p) 3 to 4 V*

* Permissible range 1 to 7 V.
TDA2593

Noise separator

- Input switching voltage: \(V_{10-16} \) typ. 1.4 V
- Input keying current: \(I_{10} \) typ. 5 to 100 \(\mu \)A
- Input switching current: \(I_{10} \) > 100 \(\mu \)A
- Input leakage current at \(V_{10-16} = -5 \) V: \(I_{10} \) typ. 150 \(\mu \)A
- Input signal (peak-to-peak value): \(V_{10-16(p-p)} \) < 1 \(\mu \)A
- Permissible superimposed noise signal (peak-to-peak value): \(V_{10-16(p-p)} \) typ. 3 to 4 V

Line flyback pulse

- Input current: \(I_{6} \) typ. 1 mA
- Input switching voltage: \(V_{6-16} \) typ. 1.4 V
- Input limiting voltage: \(V_{6-16} \) typ. 0.7 to +1.4 V

Switching on VCR

- Input voltage: \(V_{11-16} \) typ. 0 to 2.5 V
- Input current: \(I_{11} \) typ. 0 to 2.5 V

Pulse duration switch

For \(t = 7 \) \(\mu \)s (thyristor driving)
- Input voltage: \(V_{4-16} \) typ. 9.4 to \(V_{1-16} \) V
- Input current: \(I_{4} \) typ. 200 \(\mu \)A

For \(t = 14 \) \(\mu \)s + \(t_d \) (transistor driving)
- Input voltage: \(V_{4-16} \) typ. 0 to 3.5 V
- Input current: \(I_{4} \) typ. 200 \(\mu \)A

For \(t = 0; V_{3-16} = 0 \) or input pin 4 open
- Input voltage: \(V_{4-16} \) typ. 5.4 to 6.6 V
- Input current: \(I_{4} \) typ. 0 \(\mu \)A

* Permissible range 1 to 7 V.
Vertical sync pulse (positive-going)
- **Output voltage (peak-to-peak value):** $V_{8-16(p-p)} > 10$ V typ. 11 V
- **Output resistance:** R_8 typ. 2 kΩ
- **Delay between leading edge of input and output signal:** t_{on} typ. 15 μs
- **Delay between trailing edge of input and output signal:** t_{off} typ. t_{on} μs

Burst gating pulse (positive-going)
- **Output voltage (peak-to-peak value):** $V_{7-16(p-p)} > 10$ V typ. 11 V
- **Output resistance:** R_7 typ. 70 Ω typ. 4 μs
- **Pulse duration; $V_{7-16} = 7$ V:** t_p typ. 3,7 to 4,3 μs
- **Phase relation between middle of sync pulse at the input and the leading edge of the burst gating pulse; $V_{7-16} = 7$ V:** t typ. 2,65 μs to 3,15 μs
- **Output trailing edge current:** I_7 typ. 2 mA

Line flyback-blanking pulse (positive-going)
- **Output voltage (peak-to-peak value):** $V_{7-16(p-p)}$ typ. 4 to 5 V
- **Output resistance:** R_7 typ. 70 Ω
- **Output trailing edge current:** I_7 typ. 2 mA

Line drive pulse (positive-going)
- **Output voltage (peak-to-peak value):** $V_{3-16(p-p)}$ typ. 10,5 V
- **Output resistance:** R_3 typ. 2,5 Ω typ. 20 Ω
- **Pulse duration (thyristor driving); $V_{4-16} = 9,4$ to V_{1-16} V:** t_p typ. 7 μs 5,5 to 8,5 μs
- **Pulse duration (transistor driving); $V_{4-16} = 0$ to 4 V; $t_{fp} = 12$ μs:** t_p typ. 14 + t_d μs*
- **Supply voltage for switching off the output pulse:** V_{1-16} typ. 4 V

Overall phase relation
- **Phase relation between middle of sync pulse and the middle of the flyback pulse:** t typ. 2,6 μs**
- **Tolerance of phase relation:** $|Δt| < 0,7$ μs

* t_d = switch-off delay of line output stage.
** Line flyback pulse duration $t_{fp} = 12$ μs.
The adjustment of the overall phase relation and consequently the leading edge of the line drive pulse occurs automatically by phase control ϕ_2.

If additional adjustment is applied it can be arranged by current supply at pin 5 such that

$$\frac{\Delta I_5}{\Delta t} \quad \text{typ.} \quad 30 \ \mu A/\mu s$$

Oscillator

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{14-16} (typ.)</td>
<td>4.4 V</td>
</tr>
<tr>
<td>V_{14-16} (typ.)</td>
<td>7.6 V</td>
</tr>
<tr>
<td>$\pm I_{14}$ (typ.)</td>
<td>0.47 mA</td>
</tr>
<tr>
<td>f_0 (typ.)</td>
<td>15,625 kHz</td>
</tr>
<tr>
<td>$\Delta f_0/f_0$ (typ.)</td>
<td>$\pm 5%^*$</td>
</tr>
<tr>
<td>$\Delta f_0/\Delta I_{15}$ (typ.)</td>
<td>31 Hz/\mu A</td>
</tr>
<tr>
<td>$\Delta f_0/f_0$ (typ.)</td>
<td>$\pm 10%$</td>
</tr>
<tr>
<td>$\Delta f_0/f_0$ ($\Delta V/V_{nom}$) (typ.)</td>
<td>$\pm 0.05%^*$</td>
</tr>
<tr>
<td>f_0 (typ.)</td>
<td>$\pm 10%$</td>
</tr>
<tr>
<td>Δf_0</td>
<td>$\pm 10^{-4}$ Hz/K*</td>
</tr>
</tbody>
</table>

Frequency

- **Threshold voltage low level**: V_{14-16}
- **Threshold voltage high level**: V_{14-16}
- **Discharge current**: $\pm I_{14}$
- **Frequency**: f_0
- **Spread of frequency**: $\Delta f_0/f_0$
- **Frequency control sensitivity**: $\Delta f_0/\Delta I_{15}$
- **Adjustment range of network in circuit (Fig. 1)**: $\Delta f_0/f_0$ ($\Delta V/V_{nom}$)
- **Influence of supply voltage on frequency**: Δf_0
- **Change of frequency when V_{1-16} drops to 5 V**: Δf_0
- **Temperature coefficient of oscillator frequency**: Δf_0 ($\Delta V/V_{nom}$)

Phase comparison ϕ_1

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{13-16}</td>
<td>3.8 to 8.2 V</td>
</tr>
<tr>
<td>$\pm I_{13M}$</td>
<td>1.9 to 2.3 mA</td>
</tr>
<tr>
<td>I_{13}</td>
<td>$< 1 \ \mu A$</td>
</tr>
<tr>
<td>R_{13}</td>
<td>high ohmic **</td>
</tr>
<tr>
<td>Δf (typ.)</td>
<td>± 780 Hz</td>
</tr>
<tr>
<td>$\Delta (\Delta f)$ (typ.)</td>
<td>$\pm 10%^*$</td>
</tr>
</tbody>
</table>

* Excluding external component tolerances.
** Current source.
▲ Emitter follower.
Phase comparison φ_2 and phase shifter

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control voltage range</td>
<td>V_{5-16} 5.4 to 7.6 V</td>
</tr>
<tr>
<td>Control current (peak value)</td>
<td>$\pm I_{5M}$ typ. 1 mA</td>
</tr>
<tr>
<td>Output resistance</td>
<td>R_5 typ. 8 kΩ</td>
</tr>
<tr>
<td>at $V_{5-16} = 5.4$ to 7.6 V</td>
<td>high ohmic *</td>
</tr>
<tr>
<td>at $V_{5-16} < 5.4$ V or > 7.6 V</td>
<td></td>
</tr>
<tr>
<td>Input leakage current</td>
<td>I_5 $<$ 5 μA</td>
</tr>
<tr>
<td>$V_{5-16} = 5.4$ to 7.6 V</td>
<td></td>
</tr>
<tr>
<td>Permissible delay between leading edge of output</td>
<td>t_d $<$ 15 μs</td>
</tr>
<tr>
<td>pulse and leading edge of flyback pulse ($t_f = 12$ μs)</td>
<td>$\Delta t/\Delta t_d$ $<$ 0.2 %</td>
</tr>
<tr>
<td>Static control error</td>
<td></td>
</tr>
</tbody>
</table>

Coincidence detector φ_3

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output voltage</td>
<td>V_{11-16} 0.5 to 6 V</td>
</tr>
<tr>
<td>Output current (peak value)</td>
<td>I_{11M} typ. 0.1 mA</td>
</tr>
<tr>
<td>without coincidence</td>
<td>$-I_{11M}$ typ. 0.5 mA</td>
</tr>
<tr>
<td>with coincidence</td>
<td></td>
</tr>
</tbody>
</table>

Time constant switch

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output voltage</td>
<td>V_{12-16} typ. 6 V</td>
</tr>
<tr>
<td>Output current (limited)</td>
<td>$\pm I_{12}$ $<$ 1 mA</td>
</tr>
<tr>
<td>Output resistance</td>
<td>R_{12} typ. 0.1 kΩ</td>
</tr>
<tr>
<td>at $V_{11-16} = 2.5$ to 7 V</td>
<td></td>
</tr>
<tr>
<td>at $V_{11-16} < 1.5$ V or > 9 V</td>
<td>R_{12} typ. 60 kΩ</td>
</tr>
</tbody>
</table>

Internal gating pulse

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pulse duration</td>
<td>t_p typ. 7.5 μs</td>
</tr>
</tbody>
</table>

* Current source.
SOUND OUTPUT CIRCUIT

The TDA2610 and TDA2610A are sound output circuits for use in colour and black and white television receivers.

The output circuit in the TDA2610 is a class-B arrangement and can deliver an output power of 7 W. A current stabilizing circuit is incorporated in the TDA2610A to obtain a constant current drain and an output power of 4 W is available.

This constant current mode allows the TDA2610A to be supplied by the horizontal output transformer.

Furthermore the TDA2610 and TDA2610A feature:
- short circuit protected output
- thermal shut-down circuit
- low number of external components

<table>
<thead>
<tr>
<th>QUICK REFERENCE DATA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltage</td>
</tr>
<tr>
<td>Supply current</td>
</tr>
<tr>
<td>Load resistance</td>
</tr>
<tr>
<td>Output power at f = 1 kHz; d_{tot} = 10%</td>
</tr>
<tr>
<td>Input voltage for P_{0} = P_{0 max}</td>
</tr>
<tr>
<td>Input impedance</td>
</tr>
</tbody>
</table>

PACKAGE OUTLINE

16-lead DIL; plastic power (SOT-69B).

January 1977
RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)

Voltage
Supply voltage at pin 5
at pin 1

- V_{5-11} max. 35 V
- V_{1-11} max. 35 V

Current
Output current (peak value)

- I_{16M} max. 2 A

Power dissipation
Total power dissipation

see derating curve on page 3

Temperatures
Storage temperature
Operating ambient temperature

- T_{stg} -55 to +150 °C
- T_{amb} -25 to +150 °C
RATINGS (continued)

Power derating curve

![Power derating curve graph]

CHARACTERISTICS at $T_{\text{amb}} = 25 \, ^\circ\text{C}$; measured in the top circuit on page 4

Supply voltage

<table>
<thead>
<tr>
<th>V_{5-11} typ.</th>
<th>25 V</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>15 to 35 V</td>
</tr>
</tbody>
</table>

Performance at $V_{5-11} = 25 \, V$; $R_L = 15 \, \Omega$; $f = 1 \, \text{kHz}$

- Stabilizing current I_3: typ. 0.3 A
- Output power at $d_{\text{tot}} = 10\%$ P_o: typ. 4 W
- Output current (repetitive peak value) $I_{16\text{RM}}$: typ. 0.8 A
- Input voltage for $P_o = P_{o\max}$ V_{10-11}: typ. 100 mV
- Input impedance $|Z_{10-11}|$: typ. 45 kΩ
- Frequency response f: > 15 kHz
- Noise output voltage at $R_S = 5 \, \text{k}\Omega$; $B = 60 \, \text{Hz to 15 kHz}$ V_{16-11}: < 0.5 mV

CHARACTERISTICS at $T_{\text{amb}} = 25 \, ^\circ\text{C}$; measured in the bottom circuit on page 4

Performance at $V_{1-11} = 25 \, V$; $R_L = 10 \, \Omega$; $f = 1 \, \text{kHz}$

- Output power at $d_{\text{tot}} = 10\%$ P_o: typ. 7 W
- Output current (repetitive peak value) $I_{16\text{RM}}$: typ. 1.2 A
- Input voltage for $P_o = 4 \, W$ V_{10-11}: typ. 90 mV
- Total quiescent current I_{tot}: typ. 22 mA

October 1979
APPLICATION INFORMATION

Sound output circuit with shunt stabilizer ($P_0 = 4 \text{ W}$)

Sound output circuit without shunt stabilizer ($P_0 = 7 \text{ W}$)

* Obtained via a transformer.
The TDA2611A is a monolithic integrated circuit in a 9-lead single in-line (SIL) plastic package with a high supply voltage audio amplifier. Special features are:

- possibility for increasing the input impedance
- single in-line (SIL) construction for easy mounting
- very suitable for application in mains-fed apparatus
- extremely low number of external components
- thermal protection
- well defined open loop gain circuitry with simple quiescent current setting and fixed integrated closed loop gain

QUICK REFERENCE DATA

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltage range Vp</td>
<td>6 to 35 V</td>
</tr>
<tr>
<td>Repetitive peak output current IORM</td>
<td>< 1.5 A</td>
</tr>
<tr>
<td>Output power at d_tot = 10%</td>
<td></td>
</tr>
<tr>
<td>VP = 18 V; RL = 8 Ω</td>
<td>P_o typ. 4.5 W</td>
</tr>
<tr>
<td>VP = 25 V; RL = 15 Ω</td>
<td>P_o typ. 5 W</td>
</tr>
<tr>
<td>Total harmonic distortion at P_o < 2 W; RL = 8 Ω</td>
<td>d_tot typ. 0.3 %</td>
</tr>
<tr>
<td>Input impedance Z_i</td>
<td>typ. 45 kΩ</td>
</tr>
<tr>
<td>Total quiescent current at VP = 18 V</td>
<td>I_tot typ. 25 mA</td>
</tr>
<tr>
<td>Sensitivity for P_o = 2.5 W; RL = 8 Ω</td>
<td>V_i typ. 55 mV</td>
</tr>
<tr>
<td>Operating ambient temperature Tamb</td>
<td>-25 to + 150 °C</td>
</tr>
<tr>
<td>Storage temperature T_stg</td>
<td>-55 to + 150 °C</td>
</tr>
</tbody>
</table>

PACKAGE OUTLINE

9-lead SIL; plastic (SOT-110A).
Fig. 1 Circuit diagram; pin 3 not connected.
RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Limitation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltage</td>
<td>Vp max. 35 V</td>
</tr>
<tr>
<td>Non-repetitive peak output current</td>
<td>I_{OSM} max. 3 A</td>
</tr>
<tr>
<td>Repetitive peak output current</td>
<td>I_{ORM} max. 1.5 A</td>
</tr>
<tr>
<td>Total power dissipation</td>
<td>see derating curves Fig. 2</td>
</tr>
<tr>
<td>Storage temperature</td>
<td>T_{stg} -55 to +150 °C</td>
</tr>
<tr>
<td>Operating ambient temperature</td>
<td>T_{amb} -25 to +150 °C</td>
</tr>
</tbody>
</table>

![Figure 2: Power derating curves.](image)

Fig. 2 Power derating curves.
D.C. CHARACTERISTICS
Supply voltage range
Repetitive peak output current
Total quiescent current at $V_p = 18\, V$

A.C. CHARACTERISTICS
$T_{amb} = 25\, {^\circ}C;\, V_p = 18\, V;\, R_L = 8\, \Omega;\, f = 1\, kHz$ unless otherwise specified; see also Fig. 3

A.F. output power at $d_{tot} = 10\%$

$V_p = 18\, V;\, R_L = 8\, \Omega$
$V_p = 12\, V;\, R_L = 8\, \Omega$
$V_p = 8,3\, V;\, R_L = 8\, \Omega$
$V_p = 20\, V;\, R_L = 8\, \Omega$
$V_p = 25\, V;\, R_L = 15\, \Omega$

A.C. CHARACTERISTICS
$T_{amb} = 25\, {^\circ}C;\, V_p = 18\, V;\, R_L = 8\, \Omega;\, f = 1\, kHz$ unless otherwise specified; see also Fig. 3

A.F. output power at $d_{tot} = 10\%$

$V_p = 18\, V;\, R_L = 8\, \Omega$
$V_p = 12\, V;\, R_L = 8\, \Omega$
$V_p = 8,3\, V;\, R_L = 8\, \Omega$
$V_p = 20\, V;\, R_L = 8\, \Omega$
$V_p = 25\, V;\, R_L = 15\, \Omega$

Total harmonic distortion at $P_o = 2\, W$

Frequency response
Input impedance
Noise output voltage at $R_S = 5\, k\Omega;\, B = 60\, Hz$ to $15\, kHz$
Sensitivity for $P_o = 2,5\, W$

Fig. 3 Test circuit; pin 3 not connected.

* Input impedance can be increased by applying C and R between pins 5 and 9 (see also Figures 6 and 7).
Fig. 4 Total harmonic distortion as a function of output power.

Fig. 5 Output power as a function of supply voltage.

Fig. 6 Input impedance as a function of frequency; curve a for \(C = 1 \mu F, R = 0 \Omega \); curve b for \(C = 1 \mu F, R = 1 \kappa \Omega \); circuit of Fig. 3; \(C_2 = 10 \mu F \); typical values.
Fig. 7 Input impedance as a function of R in circuit of Fig. 3; $C = 1 \mu F$; $f = 1$ kHz.

Fig. 8 Total harmonic distortion as a function of R_S in the circuit of Fig. 3; $P_o = 3.5$ W; $f = 1$ kHz.
Fig. 9 Total power dissipation and efficiency as a function of output power.

- $V_p = 25\,\text{V}; \, R_L = 15\,\Omega; \, f = 1\,\text{kHz}$
- $V_p = 18\,\text{V}; \, R_L = 8\,\Omega; \, f = 1\,\text{kHz}$
APPLICATION INFORMATION

Fig. 10 Ceramic pickup amplifier circuit.

Fig. 11 Total harmonic distortion as a function of output power; — with tone control; —— without tone control; in circuit of Fig. 10; typical values.
Fig. 12 Frequency characteristics of the circuit of Fig. 10; — tone control max. high; —— tone control min. high; P_O relative to 0 dB = 3 W; typical values.

Fig. 13 Frequency characteristic of the circuit of Fig. 10; volume control at the top; tone control max. high.
HI-FI POWER AMPLIFIER

The TDA2612 is a monolithic hi-fi power amplifier, intended for hi-fi television sets, radios, record players, tape recorders. This IC can be used very well in conjunction with sound channel ICs, e.g. TBA570A, TBA120S and TDA2790. The performance of the circuit fulfils DIN45500.

Features:
- Low harmonic distortion
- Low intermodulation distortion
- Low transient intermodulation
- Good hum suppression

QUICK REFERENCE DATA

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltage range (pin 6)</td>
<td>VS</td>
</tr>
<tr>
<td>Output power at $d_{tot} = 0.7%$; $R_L = 4$ Ω; $V_{6,9} = 26$ V</td>
<td>$P_o > 10$ W</td>
</tr>
<tr>
<td>Total harmonic distortion at $P_o = 6$ W</td>
<td>d_{tot}</td>
</tr>
<tr>
<td>Power bandwidth (-3 dB); $d_{tot} = 0.7%$</td>
<td>B</td>
</tr>
<tr>
<td>Input voltage for $P_o = 10$ W</td>
<td>V_i</td>
</tr>
<tr>
<td>Signal-to-noise ratio (unweighted) related to $P_o = 100$ mW</td>
<td>S/N</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10 to 35 V</td>
</tr>
<tr>
<td></td>
<td>$0.1%$</td>
</tr>
<tr>
<td></td>
<td>180 mV</td>
</tr>
<tr>
<td></td>
<td>72 dB</td>
</tr>
</tbody>
</table>

PACKAGE OUTLINE

16-lead DIL; plastic power (SOT-69B).
Fig. 1 Simplified circuit diagram.
Hi-fi power amplifier

RATINGS
Limiting values in accordance with the Absolute Maximum System (IEC 134)

Supply voltage
Non-repetitive peak output current
Total power dissipation
Shot-circuit time of load impedance during signal drive; \(V_s = 25 \text{ V} \)

Storage temperature
Ambient temperature

THERMAL RESISTANCE
The power derating curves (Fig. 2) are based on the following data

From junction to case
From junction to ambient

\[
\begin{align*}
V_{6.9} & \quad \text{max.} & 35 \text{ V} \\
l_{12} & \quad \text{max.} & 5 \text{ A} \\
\text{See derating curves Fig. 2} \\
t_{sc} & \quad \text{max.} & 100 \text{ hours} \\
T_{stg} & \quad \text{max.} & 150 \text{ °C} \\
T_{amb} & \quad \text{max.} & 150 \text{ °C} \\
R_{th j-c} & = & 3,3 \text{ °C/W} \\
R_{th j-a} & = & 45 \text{ °C/W}
\end{align*}
\]

Fig. 2 Power derating curves.

September 1978

3
CHARACTERISTICS

Supply voltage (pin 6)

\[V_S \]
\[\text{typ. } 26 \text{ V} \]
\[10 \text{ to } 35 \text{ V} \]

Characteristics at \(V_S = 26 \text{ V}; T_{\text{amb}} = 25 \text{ oC}; f = 1 \text{ kHz}; \) see Fig. 3.

Output current (peak value)

\[I_0 \]
\[\text{typ. } 3,2 \text{ A} \]
\[I_{\text{tot}} \]
\[\text{typ. } 70 \text{ mA} \]
\[I_{\text{tot}} \]
\[\text{typ. } 105 \text{ mA} \]

Output power at \(d_{\text{tot}} = 0,7\% \) (note 1)

\[P_o \]
\[\text{typ. } 10 \text{ W} \]

Total harmonic distortion at \(P_o = 6 \text{ W} \)

\[d_{\text{tot}} \]
\[\text{typ. } 0,1 \% \]

Power bandwidth (–3 dB); \(d_{\text{tot}} = 0,7\% \)

\[B \]
\[40 \text{ Hz to } 16 \text{ kHz} \]

Input voltage for \(P_o = 10 \text{ W} \)

\[V_i \]
\[\text{typ. } 180 \text{ mV} \]

Input impedance

\[S/N \]
\[> 60 \text{ dB} \]

Signal-to-noise ratio

related to \(P_o = 100 \text{ mW} \) (note 3)

\[S/N \]
\[\text{typ. } 72 \text{ dB} \]

\[R_L/Z_o \]
\[\text{typ. } 32 \]

Damping factor (note 4)

\[f \]
\[> 3 \text{ kHz} \]

Frequency response

\[R_L/Z_o \]
\[\text{typ. } 50 \text{ dB} \]

Ripple rejection at \(f = 100 \text{ Hz}; R_S = 5 \text{ k\Omega} \) (note 5)

Notes

1. Output power measured with an ideal coupling capacitor to the load impedance.
2. The input impedance determined by the external resistor \(R_1 \).
3. The unweighted noise is measured in a bandwidth of 40 Hz to 16 kHz at \(R_S = 5 \text{ k\Omega} \).
4. \(Z_o \) is the output impedance measured between 40 Hz and 12,5 kHz.
5. The ripple rejection is defined as: \(20 \log \left(\frac{V_{SR}}{V_{OR}} \right) \) in which \(V_{SR} \) = ripple voltage at supply line and \(V_{OR} \) = ripple voltage across loudspeaker load.
Hi-fi power amplifier

Fig. 3 Test circuit.
MOUNTING INSTRUCTIONS

When using an external heatsink, connected to the heat spreader of the IC, the thermal power in the circuit can be reduced to a negligible value.

The optimum heatsink dimensions (blackened aluminium) for a given operating ambient temperature, can be found from the derating curves in Fig. 2.

The fact that the thermal resistance of the encapsulation is very good, results in a relatively small heatsink for thermal power reduction.

Two mounting methods are shown in Figs 4 and 5.

By using these methods, no extra copper area is required on the printed-circuit board, so a saving in printed-wiring area is obtained.

Mounting the external heatsink can be done by screwing or clipping.

Mechanical stresses do not damage the IC.

It is recommended that a heatsink-compound be used between IC heat spreader and heatsink.

Fig. 4 Mounting method 1.

Fig. 5 Mounting method 2.
SWITCHED-MODE POWER SUPPLY DRIVE CIRCUIT

The TDA2640 is a monolithic integrated circuit for driving the switched-mode power supply of a colour or black and white television receiver. Except for the drive and output voltage stabilizing circuitry the TDA2640 incorporates the following functions:

- fixed frequency determined by external components
- remote switch off and restart
- over-current protection
- over-voltage protection
- slow starting
- low supply voltage protection
- open-circuit feedback protection
- optional synchronization

QUICK REFERENCE DATA

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltage</td>
<td>V1-16</td>
<td>typ. 12 V</td>
</tr>
<tr>
<td>Supply current</td>
<td>I1</td>
<td>typ. 8.1 mA</td>
</tr>
<tr>
<td>Output voltage (peak-to-peak value)</td>
<td>V6-16(p-p)</td>
<td>> 11.5 V</td>
</tr>
<tr>
<td>Output current (peak value)</td>
<td>I6M</td>
<td>< 20 mA</td>
</tr>
<tr>
<td>Duty factor of output pulse</td>
<td>δ</td>
<td>typ. 20 to 85 %</td>
</tr>
<tr>
<td>Reference input voltage</td>
<td>V9-16</td>
<td>typ. 6.2 V</td>
</tr>
<tr>
<td>Sync pulse (peak-to-peak value)</td>
<td>V2-16(p-p)</td>
<td>1 to 10 V</td>
</tr>
</tbody>
</table>

PACKAGE OUTLINES

TDA2640 : 16-lead DIL; plastic (SOT-38).
TDA2640Q : 16-lead QIL; plastic (SOT-58).
TDA2640
TDA2640Q

BLOCK DIAGRAM

--- Diagram Content ---

- Oscillator
- Comparator
- Pulse Width Modulator
- Output Stage
- Internal Supply
- Slow Start & Cut-Out Circuit
- Counting Circuit
- Trip Level
- Counts
- Voltage Protection
- Current Protection
- Supply Protection
- Inhibiting Circuit
- Loop Fault Protection
- Set Slow Start & Dead Time

--- Specifications ---
- 6.2 V set V_{DD}
- Reduce loop gain
- 20 mA max
- 12 V
- 8 mA typ
- Trip level = 5V
- Counts

--- Additional Notes ---
- December 1976
RATINGS
Limiting values in accordance with the Absolute Maximum System (IEC134)

Voltages
- **Supply voltage**
 - V_{1-16} max. 13.8 V
 - V_{2-16} -5 to +10 V
 - V_{8-16} 0 to +10 V
 - V_{9-16} 0 to +10 V
 - V_{10-16} 0 to V_{9-16} +1 V
 - V_{9-10} -1 to +7 V
 - V_{11-16} -1 to 0 V

- **Pin 2**
- **Pin 8**
- **Pin 9**
- **Pin 10**
- **Pin 9 with respect to pin 10**
- **Pin 11 (pin 12 not connected)**

Current
- **Output current (peak value)**
 - I_{6M} max. 20 mA

Power dissipation
- **Total power dissipation**
 - P_{tot} max. 145 mW

Temperatures
- **Storage temperature**
 - T_{stg} -55 to +125 °C
- **Operating ambient temperature**
 - T_{amb} -25 to +65 °C

CHARACTERISTICS
at V_{1-16} = 12 V; T_{amb} = 25 °C

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply current at $\delta = 50%$</td>
<td>I_1 typ. 8.1 mA</td>
</tr>
<tr>
<td></td>
<td>5.1 to 10.4 mA</td>
</tr>
<tr>
<td></td>
<td>typ. 6.2 V</td>
</tr>
<tr>
<td></td>
<td>5.6 to 6.5 V</td>
</tr>
<tr>
<td>Reference voltage</td>
<td></td>
</tr>
<tr>
<td>Sync pulse (peak-to-peak value)</td>
<td>$V_{2-16}(p-p)$ 1 to 10 V</td>
</tr>
<tr>
<td>Remote switch: inhibit (switched off)</td>
<td>V_{14-16} 0 to 3 V</td>
</tr>
<tr>
<td>normal (switched on)</td>
<td>V_{14-16} 5 to 12 V</td>
</tr>
<tr>
<td>Over-voltage protection: threshold voltage</td>
<td>V_{8-16} typ. 6.2 V</td>
</tr>
<tr>
<td>input current</td>
<td>I_8 typ. 2 µA</td>
</tr>
<tr>
<td>temperature coefficient</td>
<td>typ. 0.1 mV/°C</td>
</tr>
<tr>
<td>Over-current protection: threshold voltage</td>
<td></td>
</tr>
<tr>
<td>Low supply voltage protection: threshold voltage</td>
<td>V_{12-11} 660 to 760 mV</td>
</tr>
<tr>
<td>Horizontal drive pulse (peak-to-peak value)</td>
<td>$V_{6-16}(p-p)$ 11.5 V</td>
</tr>
<tr>
<td>Duty factor of output pulse: maximum</td>
<td>δ_{max} 85 %</td>
</tr>
<tr>
<td></td>
<td>typ. 90 %</td>
</tr>
<tr>
<td></td>
<td>typ. 15 %</td>
</tr>
<tr>
<td></td>
<td>δ_{min} < 20 %</td>
</tr>
</tbody>
</table>

For notes see page 5.

December 1976
CHARACTERISTICS (continued)

Saturation voltage of output transistor at \(I_6 = 20 \) mA

\[V_{\text{CEsat}} \leq 400 \text{ mV} \]

Feedback input impedance at pin 10

\[|Z_{10-16}| \text{ typ. } 100 \text{ k}\Omega \]

Temperature coefficient for constant duty factor at pin 10

\[\text{typ. } 0,3 \text{ mV/}^\circ\text{C} \]

Oscillator frequency spread (with fixed external components)

\[< \pm 3\% \]

Rise time of leading edge of output pulse

\[\text{typ. } 0,1 \mu\text{s} \]

PINNING

1. Positive supply
2. Sync pulse input
3. Oscillator timing capacitor
4. Junction of oscillator timing capacitor and \(R \)
5. Oscillator timing resistor
6. Output
7. Low feedback protection external resistor
8. Over-voltage protection input
9. Reference input
10. Feedback voltage input
11. Over-current protection input (emitter)
12. Over-current protection input (base)
13. Slow start capacitor and \(R \) controlling network
14. Inhibitor
15. Re-start count capacitor
16. Negative supply (ground)

Notes (from page 4)

1. Voltage obtained via an external reference diode (6.2 V).
2. Or pin 14 not connected.
3. The over-voltage protection threshold is equal to the reference voltage \(V_{9-16} \pm 50 \text{ mV} \).
4. The temperature coefficient is typ. \(-1,7 \text{ mV/}^\circ\text{C}\) (pin 11 or pin 12 can be connected to pin 16).
5. The maximum voltage on pin 6 is limited to approximately the supply voltage (pin 1) by an internal diode.
6. Valid for normal operating conditions. The circuit starts with 0% duty factor, controlled by the switch-on circuit; the duty factor then rises to the normal operating value.

The duty factor is specified as follows:

\[\delta = \frac{t}{T} \times 100\% \]
APPLICATION INFORMATION (see circuits on pages 3 and 8)

The function is quoted against the corresponding pin number

1. 12 V positive supply

The maximum voltage that may be applied is 13.8 V. Where this is derived from an unstabilized supply rail, a regulator diode (12 V) should be connected between pins 1 and 16 to ensure that the maximum voltage does not exceed 13.8 V. When the voltage on this pin falls below a minimum of 8 V the protection circuit will switch off the power supply.

2. Sync pulse input

The switching repetition rate may be synchronized to a source of positive-going sync pulses between 1 and 10 V. The free-running frequency of the TDA2640 oscillator must be above the synchronized frequency.

The minimum duration of the sync pulses is the difference between the period of the oscillator pulses and the period of the sync pulses. Synchronization reduces the maximum obtainable duty factor. If synchronization is not required, connect pin 2 to pin 16.

3, 4 and 5. Oscillator timing network

The timing network consists of a capacitor connected between pins 3 and 4, and a resistor connected between pins 4 and 5. The value of these components determines the switching period of the SMPS drive pulses.

6. Output

An external resistor connected between this pin and the supply rail determines the base drive current for the drive transistor. The integrated output circuit consists of an n-p-n transistor with a catching diode connected between its collector and an internal 12 V supply. This provides a low impedance in the "ON" state, that is with the drive transistor turned off.

7. Low feedback protection

An external resistor connected between this pin and pin 13 determines the maximum obtainable duty factor for the output pulses if the feedback voltage (pin 10) remains below the specified limit during starting.

8. Over-voltage protection

A voltage that is proportional to the power supply output voltage can be connected to this pin to operate a protection circuit if a threshold level is exceeded. The threshold level is determined by the external voltage reference diode connected to pin 9 (6.2 V nominal). If over-voltage protection is not required, pin 8 should be connected to pin 16.

9. Reference input

An external voltage reference diode (6.2 V nominal) must be connected between this pin and pin 16. The stability of the reference source determines the overall stability of the power supply output voltage. The voltage reference diode current is derived from within the integrated circuit; it has a typical value of 0.8 mA.
APPLICATION INFORMATION (continued)

10. Feedback voltage input
The control loop input is applied to pin 10. This pin is internally connected to one input of a differential error amplifier, functioning as an amplitude comparator, the other input of which is connected to the reference source on pin 9. Under normal operating conditions with the comparator at balance, the voltage on pin 10 will be about equal to the reference voltage on pin 9 (6.2 V), and the d.c. feedback factor of the external network should be designed for this value.

11 and 12. Over-current protection
A voltage proportional to the output current of the SMPS is applied to these pins. Pin 11 is connected to the emitter of an internal n-p-n detection transistor; pin 12 is connected to its base. Either of these pins may be grounded (pin 16) depending on the polarity of the input during increasing current. For example, if pin 11 is grounded the trip level on pin 12 is 660 mV to 760 mV; if pin 12 is grounded, the trip level on pin 11 is -660 mV to -760 mV.

13. Slow start
A resistor and capacitor in parallel must be connected between this pin and pin 16 (1 μF and 390 kΩ). This network controls the rate at which the duty factor of the SMPS drive pulses increases to its normal operating value after switch-on. This minimizes inrush current. The network also influences the repetition period of the slow start during a fault.

14. Inhibitor
The power supply is switched off if the voltage on this pin is between 0 V and 3 V (-I_{14} > 0.1 mA). The power supply is switched on if this pin is not connected, or is connected to a voltage of between 5 V and the 12 V supply. The slow start and protection circuits remain operative under both conditions.

15. Re-start count capacitor
An external capacitor (C_{15} = 10 μF) should be connected between pins 15 and 16. This capacitor controls the characteristics of the protection circuits as follows. When the protection circuit operates due to a fault, the duty factor of the drive pulses is reduced to zero. After an interval determined by the time-constant of the circuit connected to pin 13, the duty factor of the pulses slowly increases toward its normal operating value. If the fault persists, the duty factor of the pulses is again reduced to zero and the protection cycle is repeated. The number of times that the cycle is repeated before the power supply drive pulses are permanently discontinued is determined by the value of the capacitor connected to pin 15. The number of counts is roughly C_{15}/C_{13}.

16. Negative supply (ground)
APPLICATION INFORMATION (continued)

Note: To operate with other supply and output voltages, alternative values of resistors marked thus * must be chosen.
1. Change of transfer characteristic against duty factor for $\Delta V_{10-16} = 1 \text{ mV}$.

2. Percentage change of transfer characteristics against duty factor for $\Delta V_{10-16} = 1 \text{ mV}$.
Transfer Characteristic of TDA2640
expanded scale showing effect of R7-13

Transfer Characteristic of TDA2640
-duty factor against feedback input (V10-9)
VERTICAL DEFLECTION CIRCUIT

The TDA2652 is a monolithic integrated circuit for colour television receivers with 110° deflection. With an external circuit it can be used in 20AX and 30AX systems. The circuit incorporates the following functions:

- Synchronization circuit
- Vertical oscillator
- Blanking pulse generator
- Sawtooth generator with buffer stage
- Preamplifier
- Driver and output stage
- Short-circuit and thermal protection
- Guard circuit
- Voltage stabilizer

QUICK REFERENCE DATA

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltage range</td>
<td>15 to 35 V</td>
</tr>
<tr>
<td>Output current (peak-to-peak value)</td>
<td>Iθ(p-p) max. 4 A</td>
</tr>
<tr>
<td>Total power dissipation</td>
<td>Ptot max. 10 W</td>
</tr>
<tr>
<td>Operating junction temperature</td>
<td>Tj max. 150 °C</td>
</tr>
<tr>
<td>Thermal resistance from junction to</td>
<td>Rthj-tab = 3 K/W</td>
</tr>
<tr>
<td>copper heat spreader (tab)</td>
<td></td>
</tr>
</tbody>
</table>

PACKAGE OUTLINE

16-lead DIL; plastic power (SOT-69C).
Fig. 1 Block diagram.
RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Voltages

<table>
<thead>
<tr>
<th>Pin</th>
<th>Voltage</th>
<th>Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>V2-16</td>
<td>8 V</td>
</tr>
<tr>
<td>4</td>
<td>V4-16</td>
<td>50 V</td>
</tr>
<tr>
<td>7 (supply voltage)</td>
<td>V7-16 (VP)</td>
<td>50 V</td>
</tr>
<tr>
<td>9</td>
<td>V9-16</td>
<td>50 V</td>
</tr>
<tr>
<td>11</td>
<td>V11-16</td>
<td>50 V</td>
</tr>
<tr>
<td>12</td>
<td>V12-16</td>
<td>12 V</td>
</tr>
<tr>
<td>13</td>
<td>V13-16</td>
<td>50 V</td>
</tr>
<tr>
<td>15</td>
<td>V15-16</td>
<td>12 V</td>
</tr>
</tbody>
</table>

Currents

<table>
<thead>
<tr>
<th>Pin</th>
<th>Current</th>
<th>Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>I1</td>
<td>1 mA</td>
</tr>
<tr>
<td>3</td>
<td>I3</td>
<td>1 mA</td>
</tr>
<tr>
<td>5</td>
<td>I5</td>
<td>5 mA</td>
</tr>
<tr>
<td>6</td>
<td>I6</td>
<td>1 mA</td>
</tr>
<tr>
<td>7, 9, 10</td>
<td>Internally limited by short-circuit protection</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>±I14</td>
<td>15 mA</td>
</tr>
</tbody>
</table>

Total power dissipation internally limited by the thermal protection circuit.

Storage temperature

\[T_{stg} \]
-25 to +150 °C

Operating junction temperature

\[T_j \]
max. 150 °C

Fig. 2 Total power dissipation. \(R_{th \ h-a} \) includes the \(R_{th \ tab-h} \) which is expected when heatsink compound is used. \(R_{th \ j-tab} = 3 \ °C/W \).
CHARACTERISTICS

$T_{\text{amb}} = 25 \, ^\circ\text{C}$ unless otherwise specified

Supply voltage

$V_p = 30.5 \, \text{V}$

Input voltage

V_{12-16} typ.

$2.07 \, \text{V}$

V_{12-16} typ.

$2.01 \text{ to } 2.13 \, \text{V}$

Input current

$V_p = 30.5 \, \text{V}$

I_{12} typ.

$1 \, \mu\text{A}$

V_{1-16} typ.

$1 \, \text{V}$

Blanking pulse duration

synchronized at 50 Hz

$\pm I_{14}$ typ.

$12 \, \text{mA}$

Blanking pulse current

$\pm I_{14} = 10 \, \text{mA}$

Blanking pulse generator output voltage

V_{7-14} typ.

$1 \, \text{V}$

V_{14-16} typ.

$9 \, \text{V}$

V_{5-16}

$1 \text{ to } V_p - 0.5 \, \text{V}$

V_{5-16}

$1 \text{ to } 12 \, \text{V}$

Oscillator voltage (d.c.)

Sawtooth generator output voltage

Sync pulse amplitude

Oscillator temperature dependency

$T_{\text{case}} = 20 \text{ to } 100 \, ^\circ\text{C}$

$\Delta f / f \Delta T$ typ.

$0.0001 \, \text{OC}^{-1}$

$\Delta f / f \Delta V_p$ typ.

$0.0004 \, \text{V}^{-1}$

$\Delta f / f \Delta T$ typ.

$\Delta f / f \Delta V_p$ typ.

Switching point thermal protection

T_j typ.

$142 \text{ to } 158 \, ^\circ\text{C}$

$15 \, \%$

Synchronization range

Output voltage

V_{9-16}

$V_p - 2.3 \text{ to } V_p - 2.6 \, \text{V}$

V_{9-16}

$2.3 \text{ to } 2.6 \, \text{V}$

Output current

I_g typ.

$2 \, \text{A}$
PINNING
1. Oscillator adjustment
2. Oscillator capacitor
3. Amplitude adjustment
4. Sawtooth capacitors
5. Output ramp oscillator
6. Guard circuit
7. Positive supply
8. n.c.
9. Output
10. Ground
11. Preamplifier
12. Preamplifier input
13. Reference voltage stage
14. Blanking output
15. Synchronization input

APPLICATION INFORMATION
The function is described against the corresponding pin number

1. Oscillator
 The frequency of the oscillator is determined by a potentiometer at pin 1 and a capacitor at pin 2.

3.4. Sawtooth generator
 The timing of the ramp generator is determined by a potentiometer at pin 3 and a capacitor at pin 4. This capacitor has been split to realize linearity control.

5. Output ramp oscillator
 This pin delivers a ramp signal which is used for linearity control, and drive of the preamplifier. The ramp signal is applied via a shaping network to pin 4 (linearity) and via a resistor to pin 12 (preamplifier).

6. Guard circuit input
 When a capacitor is connected between this pin and ground a continuous blanking signal is available at pin 14 in case of missing vertical deflection current. When no continuous blanking is required this capacitor is replaced by a resistor between pin 6 and pin 7.

7. Positive supply
 No voltage stabilizer is necessary resulting in optimum tracking with line deflection. The internal stabilizer delivers the voltage for the oscillator, ramp generator and preamplifier.

8. Not connected.

9. Output of class B power stage
 The deflection coil is connected to this pin, via a four-pole network, a coupling capacitor and a feedback resistor, to ground.

10. Ground for output stage.

11. Preamplifier
 The cut-off frequency of the internal differential amplifier (preamplifier) is adjusted with the capacitor between pin 11 and ground.

12. Preamplifier input
 The d.c. voltage is proportional to the output voltage (d.c. feedback). The a.c. voltage is proportional to the sum of the ramp voltage at pin 5 and the voltage, with opposite polarity, at the feedback resistor (a.c. feedback).

13. Reference voltage stage
 The bias stage of the preamplifier is decoupled at this pin.

14. Blanking output
 The maximum pulse amplitude with no load is V_p. When I_{14} is 10 mA the amplitude of the pulse is 1 V.

15. Synchronization input
 The oscillator has to be synchronized by a positive-going pulse of between 1 and 12 V.

APPLICATION INFORMATION (continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>20AX (Fig. 3)</th>
<th>30AX (Fig. 4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltage</td>
<td>V_S typ.</td>
<td>33 V</td>
</tr>
<tr>
<td>Output voltage (d.c.)</td>
<td>V_{9-16} typ.</td>
<td>17 V</td>
</tr>
<tr>
<td>Output voltage (peak value)</td>
<td>V_{9-16} typ.</td>
<td>36 V</td>
</tr>
<tr>
<td>Supply current</td>
<td>I_T typ.</td>
<td>500 mA</td>
</tr>
<tr>
<td>Deflection current (peak-to-peak value)</td>
<td>$I_{(p-p)}$ typ.</td>
<td>3.6 A</td>
</tr>
<tr>
<td>Output current (peak-to-peak value)</td>
<td>$\pm I_{9(\text{p-p})}$ typ.</td>
<td>1.9 A</td>
</tr>
<tr>
<td>Flyback time</td>
<td>t_{fl} typ.</td>
<td>0.85 ms</td>
</tr>
<tr>
<td>Total power dissipation in I.C.</td>
<td>P_{tot} typ.</td>
<td>8.5 W *</td>
</tr>
<tr>
<td>Blanking time</td>
<td>t_b typ.</td>
<td>1.4 ms</td>
</tr>
<tr>
<td>Non-linearity</td>
<td>$<$</td>
<td>$3%$</td>
</tr>
</tbody>
</table>

* For 20AX systems the heatsink has to be constructed for $P_{\text{tot}} < 10 \text{ W}$, $R_{\text{th h-a}} = 4 \text{ °C/W}$ at $T_{\text{amb}} = 60 \text{ °C}$.

** For 30AX systems the heatsink has to be constructed for $P_{\text{tot}} < 5 \text{ W}$, $R_{\text{th h-a}} = 8.5 \text{ °C/W}$ at $T_{\text{amb}} = 60 \text{ °C}$.
Fig. 3 Complete vertical deflection circuit for 20AX.
Fig. 4 Complete vertical deflection circuit for 30AX.
VERTICAL DEFLECTION CIRCUIT

The TDA2653 is a monolithic integrated circuit for vertical deflection in large screen colour television receivers.

The circuit incorporates the following functions:
- Oscillator
- Synchronization circuit
- Blanking pulse generator
- Frequency detector and storage
- Sawtooth generator
- Amplitude switch for 50 Hz/60 Hz
- Buffer stage
- Reference voltage unit
- Preamplifier
- Output stage
- Flyback generator
- Voltage stabilizer
- Guard circuit
- Output stage protections

QUICK REFERENCE DATA

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltage range (pin 6)</td>
<td>$V_{6-16} = V_P$</td>
</tr>
<tr>
<td>Output current (peak-to-peak value)</td>
<td>$I_{g(p-p)}$</td>
</tr>
<tr>
<td>Operating junction temperature</td>
<td>T_j</td>
</tr>
<tr>
<td>Thermal resistance from junction to copper heat spreader (mounting base)</td>
<td>$R_{th j-mb}$</td>
</tr>
<tr>
<td></td>
<td>typ. 2.4 A</td>
</tr>
<tr>
<td></td>
<td>max. 150 °C</td>
</tr>
<tr>
<td></td>
<td>typ. 5 K/W</td>
</tr>
</tbody>
</table>

PACKAGE OUTLINE

16-lead DIL; plastic power (SOT-69C).
Fig. 1 Block diagram.
RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Voltages

<table>
<thead>
<tr>
<th>Pin</th>
<th>Description</th>
<th>Voltage</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>oscillator voltage</td>
<td>V_{2-16} max. 7 V</td>
</tr>
<tr>
<td>4</td>
<td>sawtooth voltage</td>
<td>V_{4-16} max. 40 V</td>
</tr>
<tr>
<td>5</td>
<td>decoupling reference voltage</td>
<td>V_{5-16} max. 40 V</td>
</tr>
<tr>
<td>6</td>
<td>supply voltage</td>
<td>$V_{6-16} = V_P$ max. 40 V</td>
</tr>
<tr>
<td>7</td>
<td>output voltage flyback generator</td>
<td>V_{7-16} max. 40 V</td>
</tr>
<tr>
<td>9</td>
<td>output voltage</td>
<td>V_{9-16} max. 50 V</td>
</tr>
<tr>
<td>11</td>
<td>supply voltage output stage</td>
<td>V_{11-16} max. 50 V</td>
</tr>
<tr>
<td>12</td>
<td>input voltage preamplifier</td>
<td>V_{12-16} max. 12 V</td>
</tr>
<tr>
<td>15</td>
<td>sync voltage</td>
<td>V_{15-16} max. 30 V</td>
</tr>
</tbody>
</table>

Currents

<table>
<thead>
<tr>
<th>Pin</th>
<th>Description</th>
<th>Current</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>oscillator</td>
<td>I_1 max. 1 mA</td>
</tr>
<tr>
<td>3</td>
<td>sawtooth generator</td>
<td>I_3 max. 1 mA</td>
</tr>
<tr>
<td>7</td>
<td>flyback generator</td>
<td>I_7 -1.5 to +1.2 A</td>
</tr>
<tr>
<td>8, 9, 10</td>
<td>internally limited by the short-circuit protection circuit</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>blanking pulse</td>
<td>$\pm I_{14}$ max. 15 mA</td>
</tr>
</tbody>
</table>

Total power dissipation; internally limited by the thermal protection circuit (see also Fig. 2)

Storage temperature T_{stg}: -25 to +150 °C

Operating junction temperature T_j: max. 150 °C

Fig. 2 Total power dissipation. $R_{th h-a}$ includes $R_{th mb-h}$ which is expected when heatsink compound is used. $R_{th j-mb} = 5$ K/W.
CHARACTERISTICS

$T_{amb} = 25 \, ^\circ C$ unless otherwise specified

Supply voltage

Supply voltage output stage

Maximum flyback generator output voltage

Preamplifier input voltage

Preamplifier input current

Sync input voltage

Sawtooth generator output current at $I_3 = 50 \, \mu A$

synchronized at 50 Hz

synchronized at 60 Hz

Sawtooth generator output voltage

Oscillator voltage (d.c.)

Output voltage at $I_{g(p-p)} = 2,2 \, A$

minimum

maximum

Output current (peak-to-peak value)

Current at pin 7

Voltage at pin 7 during flyback

Blanking pulse generator output voltage

$\pm I_{14} = 10 \, mA$

Blanking pulse output current

Blanking pulse duration at 50 Hz

Tracking range oscillator

Oscillator temperature dependency

$T_{case} = 20$ to $100 \, ^\circ C$

Oscillator voltage dependency

$V_p = 10$ to $30 \, V$

Junction temperature

switching point thermal protection

Thermal resistance from junction to copper heat spreader (mounting base)

$V_{6-16} = V_p$

$V_{11-16} = 9$ to $50 \, V^*$

$V_{7-16} = V_p - 2,2 \, V$

$V_{12-16} = 2 \, V$

$-I_{12} = 1 \, \mu A$

$I_4 = 50 \, \mu A$

$I_4 = 60 \, \mu A$

$V_{13-16} = 1,2 \, V_p - 0,5 \, V$

$V_{1-16} = 6$ to $9 \, V$

$V_{9-16} = 1,3 \, V$

$V_{9-16} = V_{11-16} - 1,9 \, V$

$I_{g(p-p)} < 2,4 \, A$

$\pm I_7 < 1,2 \, A$

$V_{7-16} = V_p - 2,2 \, V$

$V_{14-16} = 6 \, V$

$V_{6-14} = 6 \, V$

$\pm I_{14} < 12 \, mA$

$\Delta f/f/\Delta T = 0,0001 \, K^{-1}$

$\Delta f/f/\Delta V_p = 0,0004 \, V^{-1}$

$V_{11-16} = V_{11-16} - 1,9 \, V$

$V_{13-16} = 1,2 \, V_p - 0,5 \, V$

$V_{1-16} = 6$ to $9 \, V$

$V_{9-16} = 1,3 \, V$

$V_{9-16} = V_{11-16} - 1,9 \, V$

$I_{14} = 10 \, mA$

$I_{14} = 12 \, mA$

$I_{14} = 28 \, %$

$1,4 \pm 0,07 \, ms$

$T_j = 150 \pm 8 \, ^\circ C$

$R_{th j-mb} = 5 \, K/W$

* When the flyback generator is used, the maximum supply voltage must be chosen such that during flyback the voltage at pin 11 (supply voltage output stage) does not exceed 50 V.
Vertical deflection circuit

TDA2653

PINNING

<table>
<thead>
<tr>
<th>Pin</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Oscillator adjustment</td>
</tr>
<tr>
<td>2.</td>
<td>Oscillator capacitor</td>
</tr>
<tr>
<td>3.</td>
<td>Amplitude adjustment</td>
</tr>
<tr>
<td>4.</td>
<td>Sawtooth capacitor</td>
</tr>
<tr>
<td>5.</td>
<td>Reference voltage decoupling</td>
</tr>
<tr>
<td>6.</td>
<td>Positive supply</td>
</tr>
<tr>
<td>7.</td>
<td>Flyback generator output</td>
</tr>
<tr>
<td>8.</td>
<td>Negative supply (ground) of output stage</td>
</tr>
<tr>
<td>9.</td>
<td>Output</td>
</tr>
<tr>
<td>10.</td>
<td>n.c. (not connected)</td>
</tr>
<tr>
<td>11.</td>
<td>Positive supply of output stage</td>
</tr>
<tr>
<td>12.</td>
<td>Preamplifier input</td>
</tr>
<tr>
<td>13.</td>
<td>Output of sawtooth buffer stage</td>
</tr>
<tr>
<td>14.</td>
<td>Blanking output</td>
</tr>
<tr>
<td>15.</td>
<td>Synchronization input</td>
</tr>
<tr>
<td>16.</td>
<td>Negative supply (ground) of small signal part</td>
</tr>
</tbody>
</table>

APPLICATION INFORMATION

The function is described against the corresponding pin number

1. Oscillator
The oscillator frequency is determined by a potentiometer at pin 1 and a capacitor at pin 2.

2. Oscillator capacitor

3. Sawtooth generator
The timing of the sawtooth generator is determined by a potentiometer at pin 3 and a capacitor at pin 4. This capacitor has been split to realize linearity control.

4. Reference voltage decoupling
An electrolytic capacitor connected from this pin to ground, suppresses the ripple voltage on the supply voltage, from which, via an internal resistor divider the reference voltage is derived.

5. Positive supply
The supply voltage at this pin is used to supply the flyback generator, the voltage stabilizer, reference voltage unit, buffer stage and blanking pulse generator.

6. Flyback generator output
An electrolytic capacitor has to be connected between pins 7 and 11 to complete the flyback generator.

7. Negative supply (ground) of output stage

8. Output of class-B power stage
The vertical deflection coil is connected to this pin, via a series connection of a coupling capacitor and a feedback resistor, to ground.

9. Not connected

10. Positive supply of output stage
This supply is obtained from the flyback generator. An electrolytic capacitor between pins 11 and 7, and a diode between pins 6 and 11 have to be connected for proper operation of the flyback generator.

11. Preamplifier input
The d.c. voltage is proportional to the output voltage (d.c. feedback). The a.c. voltage is proportional to the sum of the buffered sawtooth voltage at pin 13 and the voltage, with opposite polarity, at the feedback resistor (a.c. feedback).

12. Output of sawtooth buffer stage
The sawtooth signal is fed via a buffer stage to pin 13. It delivers the signal which is used for linearity control, and drive of the preamplifier. The sawtooth is applied via a shaping network to pin 4 (linearity) and via a resistor to pin 12 (preamplifier).
APPLICATION INFORMATION (continued)

14. Blanking output
The maximum pulse amplitude with no load is \(V_p \). When \(I_{14} \) is 10 mA the amplitude of the pulse is 6 V.

15. Synchronization input
The oscillator has to be synchronized by a positive-going pulse between 1 and 12 V. The integrated frequency detector, with storage and amplitude switch, takes care of automatic recognition and processing of 50 Hz or 60 Hz signals.

16. Negative supply (ground) of small signal part.
The following application data are measured in a typical 30AX system (Fig. 3).

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Typ. Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltage</td>
<td>(V_p = V_{6-16})</td>
<td>26 V</td>
</tr>
<tr>
<td>Output voltage (d.c. value)</td>
<td>(V_{9-16})</td>
<td>14 V</td>
</tr>
<tr>
<td>Output voltage (peak value)</td>
<td>(V_{9-16})</td>
<td>42 V</td>
</tr>
<tr>
<td>Supply current</td>
<td>(I_{3 + 15})</td>
<td>310 mA</td>
</tr>
<tr>
<td>Output current (peak-to-peak value)</td>
<td>(I_{9(p-p)})</td>
<td>2.1 A*</td>
</tr>
<tr>
<td>Flyback time</td>
<td>(t_{fl})</td>
<td>0.85 ms</td>
</tr>
<tr>
<td>Blanking time</td>
<td>(t_{b})</td>
<td>1.46 ms</td>
</tr>
<tr>
<td>Total power dissipation in IC</td>
<td>(P_{tot})</td>
<td>4 W</td>
</tr>
<tr>
<td>Total power consumption</td>
<td>(P)</td>
<td>8.1 W</td>
</tr>
<tr>
<td>Non-linearity</td>
<td></td>
<td>< 2 %</td>
</tr>
<tr>
<td>Thermal resistance of heatsink</td>
<td>(R_{th h-a})</td>
<td>10 K/W</td>
</tr>
</tbody>
</table>

* Including 6% overscan.
Vertical deflection circuit

Fig. 3 Complete vertical deflection circuit for 30AX.
VERTICAL DEFLECTION CIRCUIT

The TDA2654 is a monolithic integrated circuit for vertical deflection in monochrome and tiny-vision colour television receivers.

The circuit incorporates the following functions:

- Oscillator
- Synchronization circuit
- Blanking pulse generator
- Sawtooth generator
- S-correction and linearity circuit
- Comparator and drive circuit
- Output stage
- Flyback dissipation limiting circuit
- Supply for pre-stages via internal voltage divider
- Thermal protection circuit
- Controlled switch-on

QUICK REFERENCE DATA

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltage range (ref. to tab = ground)</td>
<td>V_p</td>
</tr>
<tr>
<td>Output current (peak-to-peak value)</td>
<td>$I_{g(p-p)}$ max. 2 A</td>
</tr>
<tr>
<td>Total power dissipation</td>
<td>P_{tot} max. 5 W</td>
</tr>
<tr>
<td>Operating junction temperature</td>
<td>T_j max. 150 °C</td>
</tr>
<tr>
<td>Thermal resistance from junction to tab</td>
<td>$R_{th \ j-tab} = 12 \ °C/W$</td>
</tr>
</tbody>
</table>

PACKAGE OUTLINE

9-lead SIL; plastic (SOT-110A).
Fig. 1 Block diagram.
RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

All voltages and currents refer to the tab (ground) connection.

Voltages

<table>
<thead>
<tr>
<th>Pin</th>
<th>Vx</th>
<th>max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>V2</td>
<td>5 V</td>
</tr>
<tr>
<td>3</td>
<td>V3</td>
<td>17 V</td>
</tr>
<tr>
<td>4</td>
<td>V4</td>
<td>17 V</td>
</tr>
<tr>
<td>5</td>
<td>V5</td>
<td>6 V</td>
</tr>
<tr>
<td>6</td>
<td>V6</td>
<td>13 V</td>
</tr>
<tr>
<td>7</td>
<td>V7</td>
<td>18 V</td>
</tr>
<tr>
<td>8</td>
<td>V8 (Vp)</td>
<td>35 V</td>
</tr>
</tbody>
</table>

Currents

<table>
<thead>
<tr>
<th>Pin</th>
<th>Ix</th>
<th>max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>+I1</td>
<td>1 mA</td>
</tr>
<tr>
<td></td>
<td>−I1</td>
<td>5 mA</td>
</tr>
<tr>
<td>2</td>
<td>I2</td>
<td>2.5 mA</td>
</tr>
<tr>
<td>3</td>
<td>I3</td>
<td>30 mA</td>
</tr>
<tr>
<td>4</td>
<td>I4</td>
<td>30 mA</td>
</tr>
<tr>
<td>5</td>
<td>±I5</td>
<td>1 mA</td>
</tr>
<tr>
<td>6</td>
<td>±I6</td>
<td>3 mA</td>
</tr>
<tr>
<td>9 (repetitive)</td>
<td>±I9</td>
<td>1 A</td>
</tr>
<tr>
<td>9 (non-repetitive)</td>
<td>±I9</td>
<td>1.5 A</td>
</tr>
</tbody>
</table>

Total power dissipation (see also Fig. 2)

\[P_{\text{tot}} \]

Storage temperature

\[T_{\text{stg}} \]

Operating junction temperature

\[T_j \]

Fig. 2 Total power dissipation. The graph takes into account an \(R_{\text{th\-tab\-h}} = 1 \, ^\circ \text{C}/\text{W} \) which is to be expected when the tab is connected to a heatsink with one 3 mm bolt, without using heatsink compound. \(R_{\text{th\-j-tab}} = 12 \, ^\circ \text{C}/\text{W} \).

June 1979
CHARACTERISTICS

T_{amb} = 25 \degree C unless otherwise specified; voltages and currents ref. to tab (ground)

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Monochrome (Fig. 3)</th>
<th>Tiny-vision colour (Fig. 4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltage (pin 8)</td>
<td>(V_p) typ. 25</td>
<td>(31) V</td>
</tr>
<tr>
<td>Supply current (pin 8)</td>
<td>(I_p) typ. 165</td>
<td>(150) mA</td>
</tr>
<tr>
<td>Total power dissipation</td>
<td>(P_{tot}) typ. 3.1</td>
<td>3.5 W</td>
</tr>
<tr>
<td>Output voltage (peak-to-peak value)</td>
<td>(V_9(p-p)) typ. 22</td>
<td>28 V</td>
</tr>
<tr>
<td>Blanking pulse; (I_1 = 1) mA</td>
<td>(V_1) typ. 11.5</td>
<td>(14.5) V</td>
</tr>
<tr>
<td>Blanking pulse duration</td>
<td>(t_p) typ. 1.3</td>
<td>(1.4) ms</td>
</tr>
<tr>
<td>D.C. input voltage (pin 6)</td>
<td>(V_6) typ. 3.4</td>
<td>(4.4) V</td>
</tr>
<tr>
<td>Deflection current (peak-to-peak value)</td>
<td>(I_g(p-p)) typ. 1.1</td>
<td>0.92 A</td>
</tr>
<tr>
<td>Flyback time</td>
<td>(t) typ. 1.3</td>
<td>(1.32) ms</td>
</tr>
<tr>
<td>Free running oscillator frequency</td>
<td>(f_{osc}) typ. 46</td>
<td>46 Hz</td>
</tr>
<tr>
<td>Oscillator thermal drift</td>
<td>typ. (-0.01)</td>
<td>(-0.01) Hz/\degree C</td>
</tr>
<tr>
<td>Oscillator voltage shift</td>
<td>typ. (-0.13)</td>
<td>(-0.12) Hz/V</td>
</tr>
<tr>
<td>Tracking range oscillator</td>
<td>typ. 18</td>
<td>18 %</td>
</tr>
<tr>
<td>Synchronization input voltage</td>
<td>(V_2) > 1</td>
<td>1 V</td>
</tr>
<tr>
<td>Voltage divider ratio</td>
<td>(V_7/V_8) typ. 0.52</td>
<td>0.52</td>
</tr>
<tr>
<td>Input resistance pin 7</td>
<td>(R_7) typ. 2.8</td>
<td>2.8 k\Omega</td>
</tr>
<tr>
<td>Recommended thermal resistance of heatsink for (T_{amb}) up to 70 \degree C</td>
<td>(R_{th \ h-a}) < 13</td>
<td>10 \degree C/W</td>
</tr>
</tbody>
</table>

PINNING

1. Blanking pulse output
2. Synchronization input
3. Oscillator timing network
4. Sawtooth generator
5. S-correction and linearity control
6. Feedback input
7. Voltage divider
8. Positive supply
9. Output
Tab. Negative supply (ground)

APPLICATION INFORMATION (see also Fig. 1)

The function is described against the corresponding pin number

1. Blanking pulse output
 When the IC is adjusted on a free running frequency of 46 Hz the internal blanking pulse generator delivers a blanking pulse with a duration between 1.2 ms and 1.5 ms. The circuit is, however, made such that when the flyback time of the deflection current is longer, the blanking pulse corresponds to the flyback time. The output voltage is also high when the voltage at pin 9 is lower than nominal 5 V. An external blanking circuit is recommended when tiny-vision receivers are operated from a car-battery.

2. Synchronization input
 The oscillator has to be synchronized by a positive-going pulse. The circuit is made such that synchronization is inhibited during the flyback time.
APPLICATION INFORMATION (continued)

3. Oscillator
The oscillator frequency is set by the potentiometer P1 and resistor R2 between pins 3 and 7 and capacitor C1 between pin 3 and ground. For 50 Hz systems the free running frequency is preferably adjusted to 46 Hz.

4. Sawtooth generator
This pin supplies the charging and discharging currents of the capacitor between pin 4 and ground (C2).

5. S-correction and linearity control
The amount of S-correction can be set by the value of C3. For 110° deflection coils, e.g. AT1040/15, a capacitor of 15 μF will give the right value for S-correction. For 90° deflection systems (e.g. AT1235/00) a nearly linear deflection current is required, this can be achieved by increasing C3 to 100 μF. The linearity can be adjusted by potentiometer P2.

6. Output current feedback
To this pin is applied a part of the output current measured across R6 and superimposed on a d.c. voltage derived from the voltage across the output coupling capacitor. This signal is compared with the internal reference sawtooth. The internal reference sawtooth has an amplitude of about 0.6 V peak to peak and a d.c. level of about 3.4 V, for a supply voltage of 25 V at pin 8.

7. Internal voltage divider decoupling
The voltage on this pin is about half the supply voltage at pin 8 and is applied to the bases of emitter followers supplying the pre-stages of the IC. This voltage controls the amplitude of the internal reference sawtooth. In this way tracking with the line deflection system is achieved when the supply voltage at pin 8 is derived from the line output transformer.

8. Positive supply
The value depends on the deflection coil.

9. Output
The deflection coil is connected to ground via coupling capacitor C9 and current sensing resistor R6. The line frequency superimposed on the output voltage may be too high due to the current feedback system. The line frequency ripple can be decreased by connecting a resistor across the deflection coil. The flyback time can be influenced by the resistor divider (R4, R5) for the d.c. feedback to pin 6. It should be noted that the output voltage shows a negative swing of about 1 V during the first (positive current) part of the flyback.

Tab
The tab is used as negative supply (ground) connection. Therefore, the tab should be well connected to the negative side of the power supply.

Controlled switch-on
This feature is achieved by charging the a.c. coupling capacitor (C4; connected to pin 6) from an internal current source of about 2 mA (voltage limited to maximum 15 V) for a short period after switch-on. The charging time can be influenced by the value of C5 (connected to pin 7). Discharging of C4 results in a slowly increasing deflection current after a delay of about 1 second. The blanking voltage at pin 1 is high during this delay.
Fig. 3 Monochrome 110° vertical deflection system.
APPLICATION INFORMATION (continued)

Fig. 4 Colour 90° vertical deflection system.

(1) Only required when rapid variations in the supply voltage are expected.
OSCILLATOR FOR VIDEO RECORDERS

The TDA2700 is a monolithic integrated circuit for video recorders incorporating the following functions:

- 562.5 kHz oscillator
- pulse separator
- noise separator
- phase detector
- pulse generator
- low-ohmic output stage

PACKAGE OUTLINE 16-lead DIL; plastic (SOT-38).
RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)

Voltages

Supply voltage

<table>
<thead>
<tr>
<th>Pin</th>
<th>Voltage</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>V3-16</td>
<td>0 to V1-16</td>
</tr>
<tr>
<td>8</td>
<td>-V8-16</td>
<td>max. 12 V</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pin</th>
<th>Voltage</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-16</td>
<td>V1-16</td>
<td>max. 13,2 V</td>
</tr>
</tbody>
</table>

Currents

<table>
<thead>
<tr>
<th>Pin</th>
<th>Current</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>(average value)</td>
<td>-I2(AV)</td>
</tr>
<tr>
<td></td>
<td>(peak value)</td>
<td>-I2M</td>
</tr>
<tr>
<td>6</td>
<td>±I6M</td>
<td>max. 10 mA</td>
</tr>
<tr>
<td>7</td>
<td>-I7M</td>
<td>max. 10 mA</td>
</tr>
<tr>
<td>8</td>
<td>I8M</td>
<td>max. 10 mA</td>
</tr>
<tr>
<td>9</td>
<td>±I9M</td>
<td>max. 10 mA</td>
</tr>
</tbody>
</table>

Power dissipation

Total power dissipation

<table>
<thead>
<tr>
<th>Power dissipation</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ptot</td>
<td>max. 600 mW</td>
</tr>
</tbody>
</table>

Temperatures

Storage temperature

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tstg</td>
<td>-25 to +125 °C</td>
</tr>
</tbody>
</table>

Operating ambient temperature

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tamb</td>
<td>-20 to +60 °C</td>
</tr>
</tbody>
</table>

CHARACTERISTICS at V1-16 = 12 V; Tamb = 25 °C; measured in circuit on page 4

Inputs

Supply

Supply current at I2 = 0

<table>
<thead>
<tr>
<th>Current</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>I1</td>
<td>typ. 36 mA</td>
</tr>
</tbody>
</table>

Sync pulse separator

Negative video input signal (peak-to-peak value)

<table>
<thead>
<tr>
<th>Voltage</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>V8-16(p-p)</td>
<td>typ. 3 V</td>
</tr>
</tbody>
</table>

Input current (peak value)

<table>
<thead>
<tr>
<th>Current</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>I8M</td>
<td>10 μA</td>
</tr>
</tbody>
</table>

Input leakage current at V8-16 = -3 V

<table>
<thead>
<tr>
<th>Current</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>-I8</td>
<td>1 μA</td>
</tr>
</tbody>
</table>

Noise separator

Input voltage

<table>
<thead>
<tr>
<th>Voltage</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>V9-16</td>
<td>typ. 0,7 V</td>
</tr>
</tbody>
</table>

Input current range

<table>
<thead>
<tr>
<th>Current</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>I9</td>
<td>0,03 to 10 μA</td>
</tr>
</tbody>
</table>

Input resistance

<table>
<thead>
<tr>
<th>Resistance</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>R9-16</td>
<td>typ. 200 Ω</td>
</tr>
</tbody>
</table>
CHARACTERISTICS (continued)

Outputs

<table>
<thead>
<tr>
<th>Sync pulse separator</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Output voltage (peak-to-peak value)</td>
<td>V7-16(p-p) typ. 10 V</td>
</tr>
<tr>
<td>Output resistance: at leading edge of sync pulse</td>
<td>R7-16 typ. 50 Ω 1)</td>
</tr>
<tr>
<td>at trailing edge of sync pulse</td>
<td>R7-16 typ. 2,2 kΩ</td>
</tr>
<tr>
<td>Additional external load resistance</td>
<td>R7-16(ext) ≥ 2 kΩ</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Output stage</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Output voltage (peak-to-peak value)</td>
<td>V2-16(p-p) typ. 10 V</td>
</tr>
<tr>
<td>Output resistance</td>
<td>R2-16 low-ohmic</td>
</tr>
<tr>
<td>Duty factor of output pulse</td>
<td>δ typ. 50 %</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Phase detector</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Input voltage</td>
<td>V6-16 typ. 1,5 V</td>
</tr>
<tr>
<td>Input current range</td>
<td>I6 0,03 to 3 mA</td>
</tr>
<tr>
<td>Control voltage range</td>
<td>V12-16 1,3 to 5,5 V</td>
</tr>
<tr>
<td>Output resistance in the control voltage range</td>
<td>R12-16 high-ohmic 2)</td>
</tr>
<tr>
<td>Control current</td>
<td>±I12 typ. 7,5 mA</td>
</tr>
<tr>
<td>Input voltage range for I12 positive</td>
<td>V13-16 7,2 to 9 V</td>
</tr>
<tr>
<td>for I12 negative</td>
<td>V13-16 0 to 5,5 V</td>
</tr>
<tr>
<td>Input current at V13-16 ≥ 7,2 V</td>
<td>I13 < 6 μA</td>
</tr>
<tr>
<td>at V13-16 ≤ 5,5 V</td>
<td>I13 < 1 μA</td>
</tr>
<tr>
<td>Catching and holding range (based on 15,625 kHz)</td>
<td>Δf typ. ±1 kHz 3)</td>
</tr>
<tr>
<td>D.C. level at pin 11</td>
<td>V11-16 typ. 3,1 V</td>
</tr>
<tr>
<td>Internal resistance at pin 11</td>
<td>R11-16 typ. 2 kΩ</td>
</tr>
</tbody>
</table>

Oscillator

Output voltage (peak-to-peak value)	V14-16(p-p) typ. 3 V
Charge and discharge current	I14 = ±I15 typ. 0,94 mA
Voltage at pin 15	V15-16 typ. 3,1 V
Frequency; free running	f₀ typ. 562,5 kHz
Frequency adjustment range	Δf₀/f₀ typ. 10 %

1) Emitter follower.
2) Current source.
3) Adjustable with R12-15(ext)
APPLICATION INFORMATION

Vertical sync pulse

short circuit for \(f_0 \) adjust

PULSE SEPARATOR

NOISE SEPARATOR

PHASE DETECTOR

562.5 kHz OSCILLATOR

PULSE GENERATOR

OUTPUT STAGE

LOW-PASS FILTER

TDA2700

562.5 kHz

15,625 kHz

220 pF ± 2%

2,7 kΩ ± 2%

1,8 MΩ

33 nF

820 Ω

0,1 µF

6,8 kΩ

150 pF

10 kΩ

3,3 kΩ

+12 V

390 Ω

16

15

14

13

12

11

10

9

8

i.c.

56 kΩ

47 kΩ

0,1 µF

330 Ω

22 kΩ

22 kΩ

10 kΩ

47 nF

1,8 kΩ

4,7 µF

33 kΩ

7274450
CHROMINANCE SIGNAL/MIXER FOR VIDEO RECORDERS

The TDA2710 is a monolithic integrated circuit for video recorders incorporating the following functions:

- controlled chrominance amplifier
- control voltage amplifier
- mixer for the chrominance signal
- electronic recording/playback switch
- Schmitt trigger for killing the chrominance signal
- colour killer output stage

BLOCK DIAGRAM

PACKAGE OUTLINE

16-lead DIL; plastic (SOT-38).

January 1980
RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)

Volatages
Supply voltage (pin 1): \(V_P (V_{1-16}) \), 0 to 13.2 V
At pin 4: \(V_{4-16} \), 0 to \(V_P \) V
At pin 5: \(V_{5-16} \), 0 to \(V_P \) V
At pin 12: \(V_{12-16} \), 0 to \(V_P \) V
At pin 13: \(V_{13-16} \), 0 to \(V_P \) V
At pin 15: \(V_{15-16} \), 0 to \(V_P \) V
At pin 9: \(\pm V_{9-16} \), max. 4 V

Currents
At pin 6: \(-I_{6}\), max. 5 mA
At pin 7: \(-I_{7}\), max. 5 mA
At pin 8: \(-I_{8}\), max. 5 mA
At pin 11: \(I_{11} \), max. 5 mA

Power dissipation
Total power dissipation: \(P_{tot} \), max. 700 mW

Temperatures
Storage temperature: \(T_{stg} \), -25 to +125 °C
Operating ambient temperature: \(T_{amb} \), -20 to +60 °C

CHARACTERISTICS at \(V_P = 12 \) V; \(T_{amb} = 25 \) °C; measured in circuit on page 4

Inputs
Chrominance input (pins 2 and 3)
Input resistance: \(R_{2;3-16} \), typ. 3.3 kΩ
D.C. input voltage (without signal): \(V_{2;3-16} \), typ. 5.9 V
Input voltage range at a peak-to-peak burst of 0.5 V: \(V_{2;3-16} \), 2.5 to 75 mV

Sub-carrier (pin 10)
Input resistance: \(R_{10-16} \), typ. 2 kΩ
D.C. input voltage (without signal): \(V_{10-16} \), typ. 4.4 V
Input voltage range (peak-to-peak value): \(V_{10-16(p-p)} \), 60 to 500 mV
CHARACTERISTICS (continued)

Reference voltage (pin 12)

External reference voltage

\[V_{12-16} \text{ typ.} \quad 7 \text{ V} \]

Control voltage (pin 15)

Voltage at control voltage input

for colour on \[V_{15-16} \leq 5,7 \text{ V} \]

for colour off \[V_{15-16} \geq 6,1 \text{ V} \]

Colour killer input (pin 13)

Input voltage for colour off

\[V_{13-16} \geq 6 \text{ V} \]

Recording/playback switch (pin 9)

Input resistance

\[R_{9-16} \text{ typ.} \quad 1 \text{ kΩ} \]

Input voltage: for recording

\[V_{9-16} \leq 0,3 \text{ V} \]

for playback

\[V_{9-16} \geq 0,85 \text{ V} \]

Outputs

Colour killer output (pin 11)

Output resistance for colour on

\[R_{11-1} \text{ typ.} \quad 10 \text{ kΩ} \]

Output voltage for colour off

\[V_{11-16} \leq 0,5 \text{ V} \]

Recording

Output voltages (peak-to-peak values)

at a peak-to-peak burst of 0,5 V

\[V_{6;7-16(p-p)} \text{ typ.} \quad 0,5 \text{ V} \]

Output voltage at pin 8 (peak-to-peak value)

at \[V_{6-16(p-p)} = 0,5 \text{ V} \]

\[V_{8-16(p-p)} \quad 0,35 \text{ to } 0,5 \text{ V} \]

Playback

Sub-carrier suppression at pins 6 and 7

at \[V_{10-16(p-p)} = 300 \text{ mV}; V_{6-16(p-p)} = V_{7-16(p-p)} = 1 \text{ V}; \] sub-carrier suppression at pins 4 and 5

\[\geq 60 \text{ dB} \]
The TDA2720 is a monolithic integrated circuit for video recorders incorporating the following functions:
- 8,8 MHz colour sub-carrier oscillator with divider stage
- keyed phase comparison for optimum noise behaviour
- a stage to obtain automatic chrominance control
- a stage to obtain a colour killer signal and an identification signal
- 2 mixer stages to obtain the 4,99 MHz sub-carrier frequency

PACKAGE OUTLINE
16-lead DIL; plastic (SOT-38).
RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)

Voltages

<table>
<thead>
<tr>
<th>Supply voltage (pin 12)</th>
<th>(V_P (V_{12-16}))</th>
<th>max. 13, 2 V</th>
</tr>
</thead>
<tbody>
<tr>
<td>At pin 1</td>
<td>(V_{1-16})</td>
<td>0 to (V_P) V</td>
</tr>
<tr>
<td>At pin 2</td>
<td>(V_{2-16})</td>
<td>min. 0 V</td>
</tr>
<tr>
<td>At pin 3</td>
<td>(V_{3-16})</td>
<td>0 to (V_P) V</td>
</tr>
<tr>
<td>At pins 5, 6, 7 and 11</td>
<td>(V_{5;6;7;11-16})</td>
<td>min. 0 V</td>
</tr>
<tr>
<td>At pin 13</td>
<td>(V_{13-16})</td>
<td>0 to (V_P) V</td>
</tr>
<tr>
<td>At pin 14</td>
<td>(V_{14-16})</td>
<td>0 to (V_P) V</td>
</tr>
<tr>
<td>At pin 15</td>
<td>(V_{15-16})</td>
<td>0 to (V_P) V</td>
</tr>
</tbody>
</table>

Currents

At pins 2, 5 and 6	\(I_{2;5;6} \)	max. 5 mA
At pins 7, 11 and 13	\(I_{7;11;13} \)	max. 5 mA
At pin 10	\(-I_{10}\)	max. 2 mA

Power dissipation

Total power dissipation

\[P_{\text{tot}} \text{ max. } 750 \text{ mW} \]

Temperatures

| Storage temperature | \(T_{\text{stg}} \) | -25 to +125 °C |
| Operating ambient temperature | \(T_{\text{amb}} \) | -20 to +60 °C |

CHARACTERISTICS at \(V_P = 12 \) V; \(T_{\text{amb}} = 25 \) °C

| Supply current (pin 12) | \(I_{12} \) | typ. 40 mA |

8, 8 MHz oscillator

Input resistance	\(R_{11-16} \)	typ. 270 Ω
Output resistance	\(R_{10-16} \)	typ. 200 Ω
Overall holding range	\(\Delta_f \)	typ. ±500 Hz
Oscillator output voltage	\(V_{10-16} \)	typ. 10 V

January 1977
CHARACTERISTICS (continued)

Reference voltage part

Burst signal (peak-to-peak value) $V_{7-16(p-p)}$ typ. 0,5 V

Linear output voltage range (peak-to-peak value) $V_{7-16(p-p)} \leq 1,5 V$

D.C. voltage at pin 14 with a peak-to-peak burst of 0,5 V
V_{14-16} typ. 5,5 V
V_{14-16} typ. 7,0 V

Reference voltage V_{13-16} typ. 7,0 V

Burst keying pulse V_{15-16} $\geq 2,0 V$

Voltage at pin 2; 4,4 MHz (peak-to-peak value) $V_{2-16(p-p)}$ typ. 0,5 V

Mixer

Carrier suppression at 1 V peak-to-peak; 4,99 MHz 1)
Recording mixer ≥ 20 dB
Playback mixer ≥ 20 dB

Gain for both mixers G typ. 7

Gain variation $\Delta G \leq 3$ dB

Gain difference of mixers $\Delta G \leq 3$ dB

Linear output voltage range (peak-to-peak value) pin 5 $V_{5-16(p-p)} \leq 0,6 V$
$V_{5-16(p-p)} \leq 0,6 V$

Voltage at pin 4; 4,4 MHz (peak-to-peak value) $V_{4-16(p-p)}$ typ. 0,4 V

D.C. voltage at pin 4
at pin 5 V_{4-16} typ. 5,0 V
at pin 6 V_{5-16} typ. 3,5 V
V_{6-16} typ. 3,5 V

1) Pin 4 connected to pin 2 via a 1 nF capacitor.
TDA2720

APPLICATION INFORMATION

control voltage reference voltage

15 kΩ
0,47 µF
0,47 µF
22 kΩ
4,7 nF
V_p (+12 V)
8,8 MHz
22 pF
0,1 µF
+ 50 µF
220 Ω

16 15 14 13 12 11 10 9

TDA2720

1 2 3 4 5 6 7 8

i.c.
10 pF
10 nF
10 nF
1,5 nF
0,1 µF

BAND-PASS FILTER

4,4 MHz OSCILLATOR

LOW-PASS FILTER

562,5 kHz 4,4 MHz chrominance signal

6,8 kΩ

playback recording

+12 V

7276427
FM LIMITER/DEMODULATOR

The TDA2730 is a monolithic integrated circuit for use in audio-visual equipment, e.g.; video recorders and video disc players.
The circuit comprises an f.m. limiter/demodulator for the playback signal, a video amplifier and an electronic switch, which can be used for drop-out elimination.

<table>
<thead>
<tr>
<th>QUICK REFERENCE DATA</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltage</td>
<td>V_{6-11} typ. 12 V</td>
</tr>
<tr>
<td>Supply current</td>
<td>I_{6} typ. 42 mA</td>
</tr>
<tr>
<td>Input signal range (peak-to-peak value)</td>
<td>V_{4-5(p-p)} 30 to 2000 mV</td>
</tr>
<tr>
<td>Video output signal (peak-to-peak value)</td>
<td>V_{2-11(p-p)} typ. 4 V</td>
</tr>
</tbody>
</table>

BLOCK DIAGRAM

PACKAGE OUTLINE
16-lead DIL; plastic (SOT-38).

January 1980
CIRCUIT DIAGRAM
RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)

Voltage
Supply voltage

V_{6-11} \text{ max. } 13 \text{ V}

Power dissipation
Total power dissipation
(see also derating curve below)

P_{\text{tot}} \text{ max. } 1.25 \text{ W}

Temperatures
Storage temperature

T_{\text{stg}} \text{ -65 to +125 } \text{ °C}

Operating ambient temperature

see derating curve below
CHARACTERISTICS measured in the circuit on page 7 (Fig. 1)

Supply voltage range

\[V_{6-11} \] typ. 12 V
11 to 13 V

The following characteristics are measured at \(V_{6-11} = 12 \) V; \(T_{\text{amb}} = 25 \) °C

Supply current

\[I_6 \] typ. 42 mA
25 to 54 mA

Limiter

Start of limiting (-3 dB)
\[f_0 = 4 \text{ MHz}; \text{peak-to-peak value} \]
\[V_{4-5(p-p)} \] typ. \(\frac{0.8}{1} \) V

Input signal range for constant luminance output
(peak-to-peak value)
\[V_{4-5(p-p)} \] 30 to 2000 mV

Output voltage (peak-to-peak value)
\[V_{12-13(p-p)} \] typ. 750 mV

Available output voltage at an external load of 1 kΩ; peak-to-peak value
\[V_{12-13(p-p)} > 5 \text{ V} \]

Demodulator

Measured at \(I_1 = 4 \) mA; \(|Z_{16-11}| = 1.5 \) kΩ; delay time \(\tau = 64 \) ns; \(\Delta f = 1.4 \) MHz
(\(f_L = 3.0 \) MHz, \(f_H = 4.4 \) MHz)

Current ratio
\[I_1/I_{16} \] typ. 1

Output voltage (peak-to-peak value)
\[V_{16-11} \] typ. 540 mV

Drop-out switch

Input drive voltage range
\[V_{7;9-11} \] typ. 6.5 to 12 V

Voltage drop between input and output
for signal flow from pin 7 to pin 8
\[V_{7-8} \] typ. 1.5 V
\[V_{9-8} \] typ. 1.5 V

Input offset voltage
\[|V_{7-8} - V_{9-8}| < 20 \text{ mV} \]

Switch actuating input voltage
for signal flow from pin 7 to pin 8
\[V_{10-11} \] 0 to 2.7 V
for signal flow from pin 9 to pin 8
\[V_{10-11} \] 3.7 to 6.0 V

Output impedance at 1.5 mA by internal load
\[Z_{8-11} \] emitter follower
CHARACTERISTICS (continued)

Video amplifier

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Type</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input voltage level</td>
<td>V_{3-11}</td>
<td>typ.</td>
<td>730 mV</td>
</tr>
<tr>
<td>Output voltage level</td>
<td>V_{2-11}</td>
<td>typ.</td>
<td>5.5 V</td>
</tr>
<tr>
<td>Open loop gain</td>
<td>G</td>
<td>typ.</td>
<td>43 dB</td>
</tr>
<tr>
<td>Bandwidth (3 dB)</td>
<td>B</td>
<td>typ.</td>
<td>8.8 MHz</td>
</tr>
<tr>
<td>Output voltage (peak-to-peak value; see note)</td>
<td>$V_{2-11}(p-p)$</td>
<td>typ.</td>
<td>4 V</td>
</tr>
</tbody>
</table>

Note

The gain of the amplifier is determined by the feedback network comprising the impedances between pins 2 and 3, and pins 8 and 3. The values quoted apply to the circuit on page 7 (Fig. 1).

PINNING

1. Current setting demodulator
2. Video amplifier output
3. Video amplifier input
4. F.M. signal input
5. F.M. signal input
6. Positive supply
7. Switch input
8. Switch output
9. Switch input
10. Switch actuating input
11. Negative supply (ground)
12. Limiter output
13. Limiter output
14. Demodulator input
15. Demodulator input
16. Demodulator output

APPLICATION INFORMATION

The function is quoted against the corresponding pin number

1. Current setting of demodulator
 - The current into this pin directly determines the amplitude and the d.c. level of the demodulator output. At $I_1 = 4$ mA, optimum temperature compensation is obtained.

2. Video amplifier output
 - A signal up to 4 V peak-to-peak is available from this output (Fig. 1). This can be the video signal (Fig. 1) or the f.m. signal to the delay line (drop-out elimination; Fig. 2).

3. Video amplifier input
 - The demodulator output signal is the input signal to this pin (Fig. 1) or the f.m. modulated signal (Fig. 2).

4. F.M. signal input (in conjunction with pin 5)
 - A frequency modulated signal of 1 V peak-to-peak is applied between pins 4 and 5. D.C. feedback from the limiter output is applied to stabilize the operation.

5. F.M. signal input
 - See pin 4.

January 1977
APPLICATION INFORMATION (continued)

6. **Positive supply**
 Correct operation can be obtained in the range 11 to 13 V.

7. **Switch input**
 The signal applied to pin 7 or to pin 9 is transferred to pin 8, depending on the switch position. For an input level between 0 and 2,7 V at pin 10, the signal at pin 7 is transferred to pin 8, and when between 3,7 and 6 V the input signal at pin 9 is transferred to pin 8.
 The signal at pin 7 or pin 9 may vary from 6,5 to 12 V.
 The signal at pin 8 is 1,5 V below the value at pin 7 or 9.
 The difference in input level at pins 7 and 9, to obtain equal output at pin 8, will be less than 20 mV.

8. **Switch output**
 See pin 7.

9. **Switch input**
 See pin 7.

10. **Switch actuating input**
 See pin 7.

11. **Negative supply (ground)**

12. **Limiter output**
 A balanced signal is available between pins 12 and 13. The signal amplitude is limited to 750 mV at both outputs.

13. **Limiter output**
 See pin 12.

14. **Demodulator input**
 A phase shifted signal (with respect to the internally applied signal) is applied between pins 14 and 15.

15. **Demodulator input**
 See pin 14.

16. **Demodulator output**
 The output signal is proportional to:
 - current into pin 1
 - slope of the phase characteristic of the network between pins 12 and 13, and pins 14 and 15
 - impedance level at the output
 - the sweep (Δf) of the f. m. signal.
 A signal of typically 540 mV is available at this pin when using the component values in Fig. 1 and Δf = 1,4 MHz.
APPLICATION INFORMATION (continued)

Test circuit

Fig. 1
APPLICATION INFORMATION (continued)

Fig. 2. Drop-out eliminator.
TELEVISION SOUND COMBINATION

The TDA2790 contains the following functions:
- Limiter/amplifier.
- F.M. detector.
- Physiological d.c. volume control.
- D.C. tone control.

The limiter/amplifier is designed as a four-stage differential amplifier, to obtain good noise and interference suppression.

The detector is a balanced quadrature demodulator.

The demodulator output impedance is low during normal operation.

The limiter/amplifier and demodulator can be switched-off via pin 4; in that condition the output impedance becomes high (10 kΩ).

This switching action occurs without a d.c. shift, so that no transients will be noticed in the speaker.

Due to this switching action audio signals (e.g. from a VCR) can be inserted before the tone and volume control circuits.

The circuit is very flexible in its application because the characteristics of the various controls can be adapted by changing external component values.

QUICK REFERENCE DATA

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltage</td>
<td>V13-3 typ. 12 V</td>
</tr>
<tr>
<td>Total current drain, normal operation</td>
<td>I13 typ. 50 mA</td>
</tr>
<tr>
<td>Total current drain, VCR operation</td>
<td>I13 typ. 53 mA</td>
</tr>
<tr>
<td>Frequency</td>
<td>f₀ 5.5 MHz</td>
</tr>
<tr>
<td>Input voltage at start of limiting</td>
<td>Vᵢ(rms) typ. 100 µV</td>
</tr>
<tr>
<td>A.M. rejection at Vᵢ = 1 mV</td>
<td>α typ. 45 dB</td>
</tr>
<tr>
<td>A.F. output voltage at Δf = ±15 kHz</td>
<td>Vo(rms) typ. 100 mV</td>
</tr>
<tr>
<td>(at pin 7 after de-emphasis)</td>
<td></td>
</tr>
<tr>
<td>D.C. bass control range</td>
<td>< +16 dB</td>
</tr>
<tr>
<td>D.C. treble control range</td>
<td>< +12 dB</td>
</tr>
<tr>
<td>D.C. volume control range</td>
<td>> -75 dB</td>
</tr>
</tbody>
</table>

PACKAGE OUTLINE

16-lead DIL; plastic (SOT-38).
RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)

Supply voltage

\[V_{13-3} \text{ max.} \quad 14 \text{ V} \]

Power dissipation

\[P_{\text{tot}} (\text{mW}) \]

Storage temperature

\[T_{\text{stg}} \quad -25 \text{ to } +125 \text{ °C} \]

Operating ambient temperature

\[T_{\text{amb}} \quad -25 \text{ to } +65 \text{ °C} \]

CHARACTERISTICS

Measured in circuit on page 10, at \(T_{\text{amb}} = 25 \text{ °C} \); \(V_{13-3} = 12 \text{ V} \); \(f = 5.5 \text{ MHz} \) (unless otherwise specified)

Supply voltage range

\[V_{13-3} \quad 10.8 \text{ to } 14 \text{ V} \]

Total current drain, normal operation

\[I_{13} \quad 37 \text{ to } 64 \text{ mA} \]

Total current drain, VCR operation

\[I_{13} \quad 39 \text{ to } 68 \text{ mA} \]

Limiter/amplifier/demodulator (note 1)

Input limiting voltage at \(V_{7-3} = -3 \text{ dB} \) (r.m.s. value)

\[V_{i(rms)} \quad \text{typ.} \quad 100 \mu \text{V} \]

Input impedance

\[|Z_{1-3}| \quad \text{typ.} \quad 200 \text{ kΩ} \]

A.M. rejection

\[
\begin{align*}
V_i & = 0.5 \text{ mV} \\
V_i & = 1 \text{ mV} \\
V_i & = 10 \text{ mV} \\
V_i & = 100 \text{ mV}
\end{align*}
\]

\[\alpha \quad \text{typ.} \quad 45 \text{ dB} \]

\[\alpha \quad \text{typ.} \quad 45 \text{ dB} \]

\[\alpha \quad \text{typ.} \quad 50 \text{ dB} \]

\[\alpha \quad \text{typ.} \quad 55 \text{ dB} \]

A.F. output voltage at \(f_m = 1 \text{ kHz} \); \(\Delta f = \pm 15 \text{ kHz} \);

\[V_i = 10 \text{ mV}; Q_L3 = 25; \text{pin 7} \]

\[V_{o(rms)} \quad \text{typ.} \quad 100 \text{ mV} \]

Total harmonic distortion at pin 7

\[f_m = 1 \text{ kHz}; \Delta f = \pm 40 \text{ kHz}; V_i = 10 \text{ mV} \]

\[d_{\text{tot}} \quad \text{typ.} \quad 1.6 \% \]

Zero-point stability at 30 \(\mu \text{V} \) to 10 mV; pin 7

\[\text{typ.} \quad 2 \text{ kHz} \]

Notes

1. At all measurements, the demodulator is controlled at minimum distortion.
2. See test set-up on page 7.
CHARACTERISTICS (continued)

Signal-to-noise ratio at pin 7
\(f_m = 1 \text{ kHz}; \Delta f = \pm 15 \text{ kHz}; V_i = 10 \text{ mV} \) (note 1)

Demodulator output impedance, normal operation

Demodulator output impedance, VCR operation

D.C. shift at demodulator output, when demodulator is switched to VCR condition

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>S/N</td>
<td>typ. 70 dB</td>
</tr>
<tr>
<td>([Z7-3])</td>
<td>typ. 100 (\Omega)</td>
</tr>
<tr>
<td>([Z7-3])</td>
<td>typ. 10 k(\Omega)</td>
</tr>
<tr>
<td>(\Delta V7-3)</td>
<td>typ. 50 mV</td>
</tr>
</tbody>
</table>

A.F. amplifier

Bass control

Input impedance

Treble control

Input impedance

Control voltages for linear frequency characteristic

<table>
<thead>
<tr>
<th>Control</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume control</td>
<td></td>
</tr>
<tr>
<td>Input impedance</td>
<td></td>
</tr>
<tr>
<td>Bass and treble compensation</td>
<td></td>
</tr>
<tr>
<td>Voltage gain (pin 16 to output)</td>
<td></td>
</tr>
<tr>
<td>(f = 1 \text{ kHz}; V_{11-3} = 2,9 \text{ V}; V_{14-3} = 3,1 \text{ V}; V_{8-3} = 4 \text{ V})</td>
<td></td>
</tr>
<tr>
<td>D.C. volume control range</td>
<td></td>
</tr>
<tr>
<td>Unweighted signal-to-noise ratio at an output voltage of 10,7 mV; (V_i = 100 \text{ mV}) (note 2)</td>
<td></td>
</tr>
<tr>
<td>Total harmonic distortion at output</td>
<td></td>
</tr>
<tr>
<td>(f = 1 \text{ kHz}; V_{16-3} = 100 \text{ mV}) (related to max output; note 3)</td>
<td></td>
</tr>
<tr>
<td>in the range:</td>
<td></td>
</tr>
<tr>
<td>0 to –20 dB</td>
<td></td>
</tr>
<tr>
<td>–20 to –40 dB</td>
<td></td>
</tr>
<tr>
<td>–40 to –60 dB</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(G_v)</td>
<td>typ. 8 dB</td>
</tr>
<tr>
<td>(S/N)</td>
<td>typ. 52 dB</td>
</tr>
<tr>
<td>(d_{\text{tot}})</td>
<td>typ. 0,2 %</td>
</tr>
<tr>
<td>(d_{\text{tot}})</td>
<td>typ. 0,5 %</td>
</tr>
<tr>
<td>(d_{\text{tot}})</td>
<td>typ. 0,7 %</td>
</tr>
</tbody>
</table>

Notes
1. Unweighted signal-to-noise ratio, measured for a frequency range between 31,5 Hz and 20 kHz.
2. See test condition on page 7.
3. Measured at flat tone control characteristics.
Test condition for S/N ratio

In combination with the TDA2612 (input impedance 36 kΩ), this output voltage corresponds to an audio output power of 100 mW (at 1 kHz) in accordance with DIN45500. This figures are measured for a frequency range between 31,5 Hz and 20 kHz (unweighted).

\[V_i (\text{rms}) = 100 \text{ mV} \quad (f = 1 \text{ kHz}) \]

<table>
<thead>
<tr>
<th></th>
<th>B</th>
<th>C</th>
<th>S/N ratio A</th>
</tr>
</thead>
<tbody>
<tr>
<td>107 mV</td>
<td>max</td>
<td>-7,5 dB</td>
<td></td>
</tr>
<tr>
<td>10,7 mV</td>
<td>max</td>
<td>-27,5 dB</td>
<td>90 mV 10 W</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>9 mV 0,1 W</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>52 dB</td>
</tr>
</tbody>
</table>

TEST SET-UP

Input signal: \(f_0 = 5,5 \text{ MHz} \)
for f.m.: \(\Delta f = \pm 15 \text{ kHz} \); \(f_m = 70 \text{ Hz} \)
for a.m.: \(m = 0,3 \); \(f_m = 1 \text{ kHz} \)
Bass control curve at $f = 40$ Hz; $V_{i_{\text{rms}}} = 100$ mV. Treble control curve at $f = 15$ kHz; $V_{i_{\text{rms}}} = 100$ mV.

Volume control curve at $f = 1$ kHz.
APPLICATION INFORMATION

The function is quoted against the corresponding pin number
1. Limiter input.
2. The decoupling capacitor for the internal limiter feedback is connected to this pin.
3. Negative supply (ground).
4. a. Limiter output for external feedback to pin 1.
 b. The demodulator will switch to VCR condition when pin 4 is grounded.
7. Demodulator output.
8. D.C. volume control.
9 and 10. External circuit for physiological volume control.
11. D.C. treble control.
12. External capacitor for treble control.
13. Positive supply.
TELEVISION SOUND COMBINATION

The TDA2791 contains the following functions:

- Limiter/amplifier
- F.M. detector.
- Physiological d.c. volume control.
- D.C. tone control.

The limiter/amplifier is designed as a four-stage differential amplifier, to obtain good noise and interference suppression. The detector is a balanced quadrature demodulator.

During VTR operation audio signals can be inserted before the tone and volume control circuits. The limiter amplifier and demodulator must be switched off by grounding pin 2. This switching action occurs without a d.c. shift, so that no transients will be noticed in the speaker. The circuit is very flexible in its application because the characteristics of the various controls can be adapted by changing external component values.

QUICK REFERENCE DATA

<table>
<thead>
<tr>
<th></th>
<th>V_{13-3}</th>
<th>typ.</th>
<th>12 V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total current drain</td>
<td>I_{13}</td>
<td>typ.</td>
<td>61 mA</td>
</tr>
<tr>
<td>Frequency</td>
<td>f_0</td>
<td></td>
<td>5.5 MHz</td>
</tr>
<tr>
<td>Input voltage at start of limiting (r.m.s. value)</td>
<td>V_{i(rms)}</td>
<td>typ.</td>
<td>100 μV</td>
</tr>
<tr>
<td>A.M. rejection at V_{i} = 5 mV</td>
<td>α</td>
<td>typ.</td>
<td>60 dB</td>
</tr>
<tr>
<td>A.F. output voltage at Δf = ± 27 kHz (r.m.s. value) (at pin 7 after de-emphasis)</td>
<td>V_{o(rms)}</td>
<td>typ.</td>
<td>700 mV</td>
</tr>
<tr>
<td>D.C. bass control range</td>
<td><</td>
<td>+16 dB</td>
<td>-19 dB</td>
</tr>
<tr>
<td>D.C. treble control range</td>
<td><</td>
<td>+12 dB</td>
<td>-15 dB</td>
</tr>
<tr>
<td>D.C. volume control range</td>
<td>></td>
<td>-75 dB</td>
<td></td>
</tr>
</tbody>
</table>

PACKAGE OUTLINE

16-lead DIL; plastic (SOT-38).
Fig. 1a Circuit diagram; continued in Fig. 1b.
Fig. 1b Circuit diagram; continued from Fig. 1a; continued in Fig. 1c, for line 'n' see Fig. 1d.
Fig. 1c Circuit diagram; continued from Fig. 1b; continued in Fig. 1d.
Fig. 1d Circuit diagram; continued from Fig. 1c and Fig. 1b.
Fig. 2 Block diagram.

The diagram shows a block diagram of a physiological volume control system with the following components:

- **VCR** input
- **+12 V** power supply
- **TDA2791**
 - Limiter/Amplifier
 - F.M. Detector
- **Physiological Volume Control**
 - High Frequency Control
 - Low Frequency Control

The diagram includes components for d.c. volume control, d.c. treble control, and d.c. bass control.
RATINGS
Limiting values in accordance with the Absolute Maximum System (IEC 134)
Supply voltage

\[V_{13.3} \text{ max.} = 13.2 \text{ V} \]

Supply voltage range

\[V_{13.3} = 10.8 \text{ to } 13.2 \text{ V} \]

Total current drain

\[I_{13} = 43 \text{ to } 79 \text{ mA} \]

Limiter/amplifier/demodulator (note 1)

Input limiting voltage at \(V_{7.3} = -3 \text{ dB (r.m.s. value)} \)

\[V_{i(\text{rms})} \text{ typ.} = 100 \text{ } \mu \text{V} \]

Input impedance

\[|Z_{1.3}| \text{ typ.} = 200 \text{ k} \Omega \]

A.M. rejection

\[V_i = 0.5 \text{ mV} \quad \alpha \text{ typ.} = 50 \text{ dB} \]

\[V_i = 1 \text{ mV} \quad \alpha \text{ typ.} = 50 \text{ dB} \]

\[V_i = 5 \text{ mV} \quad \alpha \text{ typ.} = 60 \text{ dB} \]

\[V_i = 50 \text{ mV} \quad \alpha \text{ typ.} = 55 \text{ dB} \]

A.F. output voltage at pin 7 (r.m.s. value)

\[f_m = 1 \text{ kHz} ; \Delta f = \pm 27 \text{ kHz} ; V_i = 5 \text{ mV} ; Q_{L3} = 12.5 \]

\[V_{o(\text{rms})} \text{ typ.} = 700 \text{ mV} \]

Notes
1. The quadrature reference circuit must be tuned in such a way that there is no difference in the demodulator d.c. output voltage when the limiter input is switched from signal to no signal.
2. See test set-up Fig. 4.
CHARACTERISTICS (continued)

Total harmonic distortion at pin 7
\[f_m = 1 \text{ kHz}; \Delta f = \pm 27 \text{ kHz}; V_i = 5 \text{ mV} \]
\[d_{\text{tot}} \text{ typ. } 0.35\% \]

Zero-point stability at 30 \(\mu \text{V} \) to 10 \(\text{mV} \); pin 7
\[\text{typ. } 2 \text{ kHz} \]

Hum suppression; pin 7
\[\text{typ. } 20 \text{ dB} \]

Signal-to-noise ratio at pin 7
\[f_m = 1 \text{ kHz}; \Delta f = \pm 27 \text{ kHz}; V_i = 5 \text{ mV} \text{ (note 1)} \]
\[S/N \text{ typ. } 63 \text{ dB} \]

Demodulator output impedance
\[|Z_{7-3}| \text{ typ. } 25 \Omega \]

A.F. amplifier

Input voltage bass control circuit at pin 16 (r.m.s. value)
\[\text{at } \Delta f = \pm 27 \text{ kHz} \]
\[V_i(\text{rms}) \text{ typ. } 215 \text{ mV} \]

Bass control
\[\text{see graph, Fig. 5} \]

Input impedance
\[|Z_{14-3}| \text{ typ. } 500 \text{ k}\Omega \]

Treble control
\[\text{see graph, Fig. 6} \]

Input impedance
\[|Z_{11-3}| \text{ typ. } 500 \text{ k}\Omega \]

Control voltages for flat frequency characteristic
\[V_{11-3} \text{ typ. } 3.2 \text{ V} \]
\[V_{14-3} \text{ typ. } 3.2 \text{ V} \]

Volume control
\[I_B \text{ typ. } 40 \text{ \mu A} \]

Physiological volume control (bass and treble compensation)
\[\text{see graph, Fig. 8} \]

Voltage gain of audio part
\[f = 1 \text{ kHz}; V_{11-3} = 3.2 \text{ V}; V_{14-3} = 3.2 \text{ V}; V_{8-3} = 4 \text{ V} \]
\[G_v \text{ typ. } 4 \text{ dB} \]

D.C. volume control range
\[> -75 \text{ dB} \]

Weighted signal-to-noise ratio
\[V_i(\text{rms}) = 215 \text{ mV}; -24 \text{ dB volume control (notes 1 and 2)} \]
\[\text{typ. } 56 \text{ dB} \]

Total harmonic distortion at output
\[f = 1 \text{ kHz}; V_i(\text{rms}) = 215 \text{ mV} \]
(related to max. output; note 2) at:
\[0 \text{ dB} \]
\[d_{\text{tot}} \text{ typ. } 0.2\% \]
\[-20 \text{ dB} \]
\[d_{\text{tot}} \text{ typ. } 0.4\% \]

Notes
1. Specified according to DIN 45405; weighted noise (peak value).
2. Measured at flat-tone control characteristics.
Television sound combination

A.F. GENERATOR
\(f = 70 \text{ Hz} \)

A.F. GENERATOR
\(f = 1000 \text{ Hz} \)

F.M. GENERATOR
\(f_0 = 5.5 \text{ MHz} \)
\(\Delta f = 27 \text{ kHz} \)

A.M. MODULATOR
\(m = 0.3 \)

ATTENUATOR

TDA2791

HIGH-PASS FILTER

H.F. VOLTMETER

R.M.S. VOLTMETER

Input signal:
\(f_0 = 5.5 \text{ MHz} \)
for f.m.:
\(\Delta f = \pm 27 \text{ kHz} \);
\(f_m = 70 \text{ Hz} \)
for a.m.:
\(m = 0.3 \);
\(f_m = 1 \text{ kHz} \)

Fig. 4 Test set-up.

Fig. 5 Bass control curve;
\(f = 40 \text{ Hz} \)
\(V_{11-3} = 3.2 \text{ V} \);
\(V_{8-3} = 4 \text{ V} \).

Fig. 6 Treble control curve;
\(f = 15 \text{ kHz} \)
\(V_{14-3} = 3.2 \text{ V} \);
\(V_{8-3} = 4 \text{ V} \).
Fig. 7 Volume control curve; \(f = 1 \text{ kHz} \). \(V_{14.3} = 3.2 \text{ V}; V_{11.3} = 3.2 \text{ V} \).

Fig. 8 Physiological volume control curves (typical values); \(V_{14.3} = 3.2 \text{ V}; V_{11.3} = 3.2 \text{ V} \).

APPLICATION INFORMATION
The function is quoted against the corresponding pin number

1. Limiter input.
2. The decoupling capacitor for the internal limiter feedback is connected to this pin.
3. Negative supply (ground).
4. Limiter output for external feedback to pin 1.
7. Demodulator output.
8. D.C. volume control.
9 and 10. External circuit for physiological volume control.
11. D.C. treble control.
12. External capacitor for treble control.
13. Positive supply.
Fig. 9 Application circuit diagram.
VIDEO CONTROL COMBINATION

The TDA3500 is a monolithic integrated circuit performing the control functions in a PAL/SECAM decoder which additionally comprises the integrated circuits TDA3510 (PAL decoder) and/or TDA3520 (SECAM decoder).

The required input signals are: luminance and colour difference \(-(R-Y)\) and \(-(B-Y)\), while linear RGB signals can be inserted from an external source.

RGB signals are provided at the output to drive the video output stages.

The TDA3500 has the following features:

- capacitive coupling of the input signals
- linear saturation control
- \((G-Y)\) and RGB matrix
- insertion possibility of linear RGB signals, e.g. video text, video games, picture-in-picture, camera or slide-scanner
- equal black level for inserted and matrixed signals by clamping
- 3 identical channels for the RGB signals
- linear contrast and brightness control, operating on both the inserted and matrixed RGB signals
- horizontal and vertical blanking (black and ultra-black respectively) and black-level clamping obtained via a 3-level sandcastle pulse
- differential amplifiers with feedback-inputs for stabilization of the RGB output stages
- 3 d.c. gain controls for the RGB output signals (white point adjustment)

QUICK REFERENCE DATA

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltage</td>
<td>(V_{6.24})</td>
<td>typ. 12 V</td>
</tr>
<tr>
<td>Supply current</td>
<td>(I_g)</td>
<td>typ. 100 mA</td>
</tr>
<tr>
<td>Luminance input signal (peak-to-peak value)</td>
<td>(V_{15.24}(p-p))</td>
<td>typ. 0,45 V</td>
</tr>
<tr>
<td>Luminance input resistance</td>
<td>(R_{15.24})</td>
<td>typ. 12 kΩ</td>
</tr>
<tr>
<td>Colour difference input signals (peak-to-peak values)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(-(B-Y))</td>
<td>(V_{18.24}(p-p))</td>
<td>typ. 1,33 V</td>
</tr>
<tr>
<td>(-(R-Y))</td>
<td>(V_{17.24}(p-p))</td>
<td>typ. 1,05 V</td>
</tr>
<tr>
<td>Inserted RGB signals (peak-to-peak values)</td>
<td>(V_{12,13,14,24}(p-p))</td>
<td>typ. 1 V</td>
</tr>
<tr>
<td>Three-level sandcastle pulse detector</td>
<td>(V_{10.24})</td>
<td>typ. 2,5/4,5/8,0 V</td>
</tr>
</tbody>
</table>

Control voltage ranges

- brightness | \(V_{20.24}\) | 1 to 3 V |
- contrast | \(V_{19.24}\) | 2 to 4 V |
- saturation | \(V_{16.24}\) | 2,1 to 4 V |

PACKAGE OUTLINE

28-lead DIL; plastic (SOT-117).
Fig. 1 Block diagram.
RATINGS
Limiting values in accordance with the Absolute Maximum System (IEC 134)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>min.</th>
<th>max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltage</td>
<td>$V_P = V_{6-24}$</td>
<td>13.2 V</td>
</tr>
<tr>
<td>Voltages with respect to pin 24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pins 1,4,26</td>
<td>$V_{1,4,26-24}$</td>
<td>$V_P + 1$ V</td>
</tr>
<tr>
<td>pins 2,5,27</td>
<td>$V_{2,5,27-24}$</td>
<td>V_P V</td>
</tr>
<tr>
<td>pin 10</td>
<td>V_{10-24}</td>
<td>V_P V</td>
</tr>
<tr>
<td>pin 11</td>
<td>V_{11-24}</td>
<td>3 V</td>
</tr>
<tr>
<td>pins 16,19,20</td>
<td>$V_{16,19,20-24}$</td>
<td>V_P V</td>
</tr>
<tr>
<td>pins 21,22,23</td>
<td>$V_{21,22,23-24}$</td>
<td>V_P V</td>
</tr>
<tr>
<td>pins 3,25,28; 7,8,9; 12,13,14; 15,17,18</td>
<td>no external d.c. voltage</td>
<td></td>
</tr>
<tr>
<td>Current at pin 20</td>
<td>I_{20}</td>
<td>5 mA</td>
</tr>
<tr>
<td>Total power dissipation</td>
<td>P_{tot}</td>
<td>1.7 W</td>
</tr>
<tr>
<td>Storage temperature</td>
<td>T_{stg}</td>
<td>-25 to $+125$ °C</td>
</tr>
<tr>
<td>Operating ambient temperature</td>
<td>T_{amb}</td>
<td>-20 to $+70$ °C</td>
</tr>
</tbody>
</table>

CHARACTERISTICS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltage range</td>
<td>10.8 to 13.2 V</td>
</tr>
<tr>
<td>The following characteristics are measured</td>
<td></td>
</tr>
<tr>
<td>in Fig. 2; $V_P = 12$ V; $T_{amb} = 25$ °C;</td>
<td></td>
</tr>
<tr>
<td>$V_{18-24(p-p)} = 1.33$ V; $V_{17-24(p-p)} = 1.05$ V; $V_{15-24(p-p)} = 0.45$ V; $V_{12,13,14-24(p-p)} = 1$ V; unless otherwise specified</td>
<td></td>
</tr>
<tr>
<td>Current consumption</td>
<td>I_6</td>
</tr>
<tr>
<td>Colour difference inputs</td>
<td></td>
</tr>
<tr>
<td>$-(B-Y)$ input signal (peak-to-peak value)</td>
<td>$V_{18-24(p-p)}$</td>
</tr>
<tr>
<td>$-(R-Y)$ input signal (peak-to-peak value)</td>
<td>$V_{17-24(p-p)}$</td>
</tr>
<tr>
<td>Internal resistance of colour difference sources</td>
<td>< 200 Ω</td>
</tr>
<tr>
<td>Input resistance</td>
<td>$R_{17,18-24}$</td>
</tr>
<tr>
<td>Internal d.c. voltage due to clamping</td>
<td>$V_{17,18-24}$</td>
</tr>
<tr>
<td>Saturation control</td>
<td></td>
</tr>
<tr>
<td>control voltage range for a change of saturation from -20 dB to $+6$ dB</td>
<td>V_{16-24}</td>
</tr>
<tr>
<td>control voltage for attenuation >40 dB</td>
<td>V_{16-24}</td>
</tr>
<tr>
<td>nominal saturation (6 dB below max.)</td>
<td>V_{16-24}</td>
</tr>
<tr>
<td>input current</td>
<td>I_{16}</td>
</tr>
</tbody>
</table>

* For saturated colour bar with 75% of maximum amplitude.
CHARACTERISTICS (continued)

(G-Y) matrix
Matrixed according the equation
\[V_{(G-Y)} = -0.51 V_{(R-Y)} - 0.19 V_{(B-Y)} \]

Luminance amplifier
Input signal (peak-to-peak)
\[V_{15-24(p-p)} \]

Input resistance
\[R_{15-24} \text{ typ. } 12 \text{ k}\Omega \]

Internal d.c. voltage
\[V_{15-24} \text{ typ. } 2.7 \text{ V} \]

RGB channels
Signal switching input voltage for insertion
on level
\[V_{11-24} \text{ typ. } 0.9 \text{ to } 1.5 \text{ V} \]
off level
\[V_{11-24} \text{ typ. } -0.5 \text{ to } 0.3 \text{ V} \]

Input current
\[I_{11} \text{ typ. } -100 \text{ to } +200 \mu\text{A} \]

Signal insertion
external RGB input signal (peak-to-peak value)*
\[V_{12,13,14-24(p-p)} \text{ typ. } 1 \text{ V} \]
internal d.c. voltage due to clamping
\[V_{12,13,14-24} \text{ typ. } 3.5 \text{ V} \]
input current
\[I_{12,13,14} \text{ typ. } < 5 \mu\text{A} \]

Contrast control
control voltage range for a change of contrast from \(-17\) dB to \(+3\) dB
\[V_{19-24} \text{ typ. } 2 \text{ to } 4 \text{ V} \]
nominal contrast (3 dB below max.)
\[V_{19-24} \text{ typ. } 3.4 \text{ V} \]
control voltage for \(-6\) dB
\[V_{19-24} \text{ typ. } 2.7 \text{ V} \]
input current
\[I_{19} \text{ typ. } < 10 \mu\text{A} \]

Brightness control
control voltage range
\[V_{20-24} \text{ typ. } 1 \text{ to } 3 \text{ V} \]
nominal brightness voltage
\[V_{20-24} \text{ typ. } 2 \text{ V} \]
input current
\[I_{20} \text{ typ. } < 10 \mu\text{A} \]
control voltage for nominal black level which equals the inserted artificial black level
\[V_{20-24} \text{ typ. } 2 \text{ V} \]
change of black level in the control range related to the nominal luminance signal (black-white)
\[V_{20-24} \text{ typ. } \pm 50 \% \]

Internal signal limiting **
signal limiting for nominal luminance (black to white = 100%)
black
\[V_{20-24} \text{ typ. } -25 \% \]
white
\[V_{20-24} \text{ typ. } 125 \% \]

* During the clamping time (see sandcastle detector Fig. 1), the inserted RGB signals are clamped to the same black level as the internal RGB signals. For proper clamping, the internal resistance of the external signal sources should be < 200 \Omega.

** Brightness, contrast and saturation control in nominal position.
White point adjustment

A.C. voltage gain*

- at $V_{21, 22, 23-24} = 6 \text{ V}$
- at $V_{21, 22, 23-24} = 0 \text{ V}$
- at $V_{21, 22, 23-24} = 12 \text{ V}$

Input resistance $R_{21, 22, 23-24}$ typ. $20 \text{ k}\Omega$

Differential output amplifier

Feedback inputs (pins 2, 5, 27)

- d.c. voltage during clamping $V_{2, 5, 27-24}$ typ. 6 V
- voltage difference between the feedback inputs
- input resistance $R_{2, 5, 27-24}$ typ. $100 \text{ k}\Omega$

Output amplifiers (pins 1, 4, 26)

- transconductance
 - $\Delta l_1 / \Delta V_{2-24} = \Delta l_4 / \Delta V_{5-24} = \Delta l_{26} / \Delta V_{27-24}$ typ. 20 mA/V
- integrated load resistance $R_{1, 4, 26-24}$ typ. $610 \text{ }\Omega$
- output current (peak value)
 - at $V_{1, 4, 26-24} = 8.2 \text{ V}$
 - typ. 5 mA

Gain data

At nominal contrast, saturation and white point adjustment

Voltage gain between Y-input (pin 15) and feedback inputs (pins 2, 5, 27) $G_{2, 5, 27-15}$ typ. 10 dB

Frequency response (0 to 5 MHz) $d_{2, 5, 27-15}$ typ. 3 dB

Voltage gain between colour difference inputs (pins 17 and 18) and feedback inputs (pins 5 and 27) $G_{5-18} = G_{27-17}$ typ. 0 dB

Frequency response (0 to 2 MHz) $d_{5-18} = d_{27-17}$ typ. 3 dB

Voltage gain between signal display inputs (pins 12, 13, 14) and feedback inputs (pins 2, 5, 27) $G_{2-13} = G_{5-12} = G_{27-14}$ typ. 0 dB

Frequency response (0 to 5 MHz) $d_{2-13} = d_{5-12} = d_{27-14}$ typ. 3 dB

* With input pins 21, 22 and 23 not connected an internal bias voltage of 6 V is supplied.
CHARACTERISTICS (continued)

Sandcastle detector

There are 3 internal thresholds (proportional to Vp)
the following amplitudes are required for
separating the various pulses:
horizontal and vertical blanking pulses (note 1) \[V_{10-24} > 2 \, \text{V} \]
\[V_{10-24} < 3 \, \text{V} \]
horizontal pulse (note 2) \[V_{10-24} > 4 \, \text{V} \]
\[V_{10-24} < 5 \, \text{V} \]
clampping pulse (note 3) \[V_{10-24} > 7,5 \, \text{V} \]
d.c. voltage for artificial black level (note 4) \[V_{10-24} > 7,5 \, \text{V} \]
(scan and flyback) \[V_{10-24} < 1 \, \text{V} \]
no keying

Notes
1. Blanking to ultra-black (−20%).
2. Insertion of artificial black level.
3. Pulse duration > 3,5 \(\mu \text{s} \).
4. This function will also be obtained by leaving pin 10 open.
Video control combination

Fig. 2 Application circuit diagram.
VIDEO CONTROL COMBINATION

The TDA3501 is a monolithic integrated circuit performing the control functions in a PAL/SECAM decoder which additionally comprises the integrated circuits TDA3510 (PAL decoder) and/or TDA3520 (SECAM decoder).

The required input signals are: luminance and colour difference —(R-Y) and —(B-Y), while linear RGB signals can be inserted from an external source.

RGB signals are provided at the output to drive the video output stages.

The TDA3501 has the following features:

- capacitive coupling of the input signals
- linear saturation control
- (G-Y) and RGB matrix
- insertion possibility of linear RGB signals, e.g. video text, video games, picture-in-picture, camera or slide-scanner
- equal black level for inserted and matrixed signals by clamping
- 3 identical channels for the RGB signals
- linear contrast and brightness control, operating on both the inserted and matrixed RGB signals
- horizontal and vertical blanking (black and ultra-black respectively) and black-level clamping obtained via a 3-level sandcastle pulse
- differential amplifiers with feedback-inputs for stabilization of the RGB output stages
- 2 d.c. gain controls for the green and blue output signals (white point adjustment)
- beam current limiting possibility

QUICK REFERENCE DATA

<table>
<thead>
<tr>
<th>Supply voltage</th>
<th>supply current</th>
<th>Luminance input signal (peak-to-peak value)</th>
<th>Luminance input resistance</th>
<th>Colour difference input signals (peak-to-peak values)</th>
<th>Inserted RGB signals (peak-to-peak values)</th>
<th>Three-level sandcastle pulse detector</th>
<th>Control voltage ranges</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>V16-24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>V20-24, V19-24, V16-24</td>
</tr>
</tbody>
</table>

Supply voltage: V6-24 typ. 12 V
Supply current: I6 typ. 100 mA
Luminance input signal (peak-to-peak value): V15-24(p-p) typ. 0.45 V
Luminance input resistance: R15-24 typ. 12 kΩ
Colour difference input signals (peak-to-peak values): V18-24(p-p), V17-24(p-p) typ. 1.33 V, 1.05 V
Inserted RGB signals (peak-to-peak values): V12,13,14-24(p-p) typ. 1 V
Three-level sandcastle pulse detector: V10-24 typ. 2.5/4.5/8.0 V
Control voltage ranges:
- brightness: V20-24 1 to 3 V
- contrast: V19-24 2 to 4 V
- saturation: V16-24 2.1 to 4 V

PACKAGE OUTLINE

28-lead DIL; plastic (SOT-117).
Fig. 1 Block diagram.
RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Supply voltage

\[V_p = V_{6-24} \]

<table>
<thead>
<tr>
<th>min.</th>
<th>max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>13,2 V</td>
</tr>
</tbody>
</table>

Voltages with respect to pin 24

- pins 1,4,26
- pins 2,5,27
- pin 10
- pin 11
- pins 16,19,20
- pins 21,22
- pin 23

\[V_{1,4,26-24} \]
\[V_{2,5,27-24} \]
\[V_{10-24} \]
\[V_{11-24} \]
\[V_{16,19,20-24} \]
\[V_{21,22-24} \]
\[V_{23-24} \]

<table>
<thead>
<tr>
<th>Vp/2</th>
<th>Vp + 1 V</th>
</tr>
</thead>
<tbody>
<tr>
<td>-0,5</td>
<td>3 V</td>
</tr>
</tbody>
</table>

\[V_{18-24(p-p)} = 1,33 \text{ V} \]
\[V_{17-24(p-p)} = 1,05 \text{ V} \]
\[V_{15-24(p-p)} = 0,45 \text{ V} \]
\[V_{12,13,14,24(p-p)} = 1 \text{ V} \]

Current at pin 20

\[I_{20} \text{ max.} 5 \text{ mA} \]

Total power dissipation

\[P_{\text{tot}} \text{ max.} 1,7 \text{ W} \]

Storage temperature

\[T_{\text{stg}} \text{ -25 to + 125} \text{ °C} \]

Operating ambient temperature

\[T_{\text{amb}} \text{ -20 to + 70} \text{ °C} \]

CHARACTERISTICS

Supply voltage range

\[V_p = 10,8 \text{ to } 13,2 \text{ V} \]

The following characteristics are measured in Fig. 2; \(V_p = 12 \text{ V} \); \(T_{\text{amb}} = 25 \text{ °C} \);

\[V_{18-24(p-p)} = 1,33 \text{ V} \]
\[V_{17-24(p-p)} = 1,05 \text{ V} \]
\[V_{15-24(p-p)} = 0,45 \text{ V} \]
\[V_{12,13,14,24(p-p)} = 1 \text{ V} \]; unless otherwise specified

Current consumption

\[I_6 \text{ typ.} 100 \text{ mA} \]

Colour difference inputs

- (B-Y) input signal (peak-to-peak value)*
 \[V_{18-24(p-p)} = 1,33 \text{ V} \]
- (R-Y) input signal (peak-to-peak value)*
 \[V_{17-24(p-p)} = 1,05 \text{ V} \]

Internal resistance of colour difference sources

\[R_{17,18-24} > 100 \text{ k}\Omega \]

Internal d.c. voltage due to clamping

\[V_{17,18-24} \text{ typ.} 4,2 \text{ V} \]

Saturation control

control voltage range for a change of saturation from \(-20 \text{ dB to } + 6 \text{ dB}\)

\[V_{16-24} \text{ 2,1 to 4} \text{ V} \]

control voltage for attenuation \(> 40 \text{ dB}\)

\[V_{16-24} \text{ < 1,8} \text{ V} \]

nominal saturation (6 dB below max.)

\[V_{16-24} \text{ typ. 3} \text{ V} \]

input current

\[I_{16} \text{ < 20} \mu\text{A} \]

* For saturated colour bar with 75% of maximum amplitude.
CHARACTERISTICS (continued)

(G-Y) matrix
Matrixed according the equation
\[V_{(G-Y)} = -0.51 \ V_{(R-Y)} - 0.19 \ V_{(B-Y)} \]

Luminance amplifier
- Input signal (peak-to-peak) \(V_{15-24(p-p)} = 0.45 \ V \)
- Input resistance \(R_{15-24} \) typ. 12 k\(\Omega \)
- Internal d.c. voltage \(V_{15-24} \) typ. 2.7 V

RGB channels
- Signal switching input voltage for insertion
 - on level \(V_{11-24} = 0.9 \) to 1.5 V
 - off level \(V_{11-24} = -0.5 \) to + 0.3 V
- Input current \(I_{11} = -100 \) to + 200 \(\mu A \)
- Signal insertion
 - external RGB input signal (peak-to-peak value)* \(V_{12,13,14-24(p-p)} = 1 \ V \)
 - internal d.c. voltage due to clamping \(V_{12,13,14-24} \) typ. 3.5 V
 - input current \(I_{12,13,14} \) typ. < 5 \(\mu A \)
- Contrast control
 - control voltage range for a change of contrast from \(-17 \) dB to \(+3 \) dB \(V_{19-24} = 2 \) to 4 V
 - nominal contrast (3 dB below max.) \(V_{19-24} = 3.4 \ V \)
 - control voltage for \(-6 \) dB \(V_{19-24} = 2.7 \ V \)
 - input current at \(V_{23-24} \geq 6 \) V \(I_{19} \) typ. < 2.5 \(\mu A \)
- Beam current limiting
 - internal d.c. voltage \(V_{23-24} \) typ. 6 V
 - input resistance \(R_{23-24} \) typ. 10 k\(\Omega \)
 - input current contrast control
 - \(V_{23-24} = 5.8 \) V \(I_{19} \) typ. 0.7 mA
 - \(V_{23-24} = 5.7 \) V \(I_{19} \) typ. 10 mA
 - \(V_{23-24} = 5.6 \) V \(I_{19} \) typ. 16 mA
- Brightness control
 - control voltage range \(V_{20-24} = 1 \) to 3 V
 - nominal brightness voltage \(V_{20-24} = 2 \ V \)
 - input current \(I_{20} \) typ. < 10 \(\mu A \)
 - control voltage for nominal black level which equals the inserted artificial black level \(V_{20-24} \) typ. 2 V
 - change of black level in the control range related to the nominal luminance signal (black-white) typ. \(\pm 50 \% \)

* During the clamping time (see sandcastle detector Fig. 1), the inserted RGB signals are clamped to the same black level as the internal RGB signals. For proper clamping, the internal resistance of the external signal sources should be < 200 \(\Omega \).
Video control combination

Internal signal limiting*

- Signal limiting for nominal luminance (black to white = 100%)
 - Black: typ. −25 %
 - White: typ. 125 %

White point adjustment

A.C. voltage gain **

- At $V_{21,22-24} = 6$ V: 100 %
- At $V_{21,22-24} = 0$ V: < 60 %
- At $V_{21,22-24} = 12$ V: > 140 %

Input resistance $R_{21,22-24}$ typ. 20 kΩ

Differential output amplifier

Feedback inputs (pins 2,5,27)
- d.c. voltage during clamping $V_{2,5,27-24}$ 5.79 to 5.95 V
- Voltage difference between the feedback inputs ΔV typ. 80 mV
- Input resistance $R_{2,5,27-24}$ typ. 100 kΩ

Output amplifiers (pins 1,4,26)
- Transconductance
 - $\frac{\Delta I_1}{\Delta V_{24}} = \frac{\Delta I_4}{\Delta V_{5-24}} = \frac{\Delta I_{26}}{\Delta V_{27-24}}$ typ. 20 mA/V
- Integrated load resistance $R_{1,4,26-24}$ typ. 610 Ω
- Output current (peak value) at $V_{1,4,26-24} = 8.2$ V typ. 5 mA

Gain data

At nominal contrast, saturation and white point adjustment

- Voltage gain between Y-input (pin 15) and feedback inputs (pins 2,5,27) $G_{2,5,27-15}$ typ. 10 dB
- Frequency response (0 to 5 MHz) $d_{2,5,27-15}$ typ. < 3 dB

- Voltage gain between colour difference inputs (pins 17 and 18) and feedback inputs (pin 5 and 27) $G_{5-18} = G_{27-17}$ typ. 0 dB
- Frequency response (0 to 2 MHz) $d_{5-18} = d_{27-17}$ typ. < 3 dB

- Voltage gain between signal display inputs (pins 12,13,14) and feedback inputs (pins 2,5,27) $G_{2-13} = G_{5-12} = G_{27-14}$ typ. 0 dB
- Frequency response (0 to 5 MHz) $d_{2-13} = d_{5-12} = d_{27-14}$ typ. < 3 dB

* Brightness, contrast and saturation control in nominal position.
** With input pins 21 and 22 not connected an internal bias voltage of 6 V is supplied.
CHARACTERISTICS (continued)

Sandcastle detector

There are 3 internal thresholds (proportional to Vp)
the following amplitudes are required for
separating the various pulses:

- horizontal and vertical blanking pulses (note 1)
 \[V_{10-24} > 2 \text{ V} \]
 \[V_{10-24} < 3 \text{ V} \]

- horizontal pulse (note 2)
 \[V_{10-24} > 4 \text{ V} \]
 \[V_{10-24} < 5 \text{ V} \]

- clamping pulse (note 3)
 \[V_{10-24} > 7,5 \text{ V} \]

- d.c. voltage for artificial black level (note 4)
 (scan and flyback)
 \[V_{10-24} > 7,5 \text{ V} \]
 \[V_{10-24} < 1 \text{ V} \]

- no keying
 \[-I_{10} < 100 \mu\text{A} \]

Notes
1. Blanking to ultra-black (−20%).
2. Insertion of artificial black level.
3. Pulse duration > 3,5 μs.
4. This function will also be obtained by leaving pin 10 open.
Fig. 2 Application circuit diagram.
The TDA3510 is a monolithic integrated colour decoder for the PAL standard. The circuit incorporates the following functions:

Chrominance part
- Controlled chrominance amplifier
- Chrominance output stage with automatic standard switch for driving the 64 μs delay line
- Blanking circuit for the colour burst signal

Reference voltage and control voltage part
- 8.8 MHz reference oscillator with divider stage to obtain both the 4.4 MHz reference signals
- Gated phase comparison for an optimum noise ratio
- Circuit for obtaining the chrominance control voltage and a reference voltage
- Circuit for generating the colour killer signal and the identification signal

Demodulator part
- Two synchronous demodulators for the (B-Y) and (R-Y) signals
- PAL flip-flop and PAL switch
- Flyback blanking incorporated in the synchronous demodulators
- (R-Y) and (B-Y) signal output stages, which are controlled by the colour killer with switchable d.c. voltage levels

QUICK REFERENCE DATA

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltage</td>
<td>Vp</td>
<td>V9-24 typ.</td>
</tr>
<tr>
<td>Supply current</td>
<td>I9</td>
<td>58 mA</td>
</tr>
<tr>
<td>Chrominance input signal (peak-to-peak value)</td>
<td>V1-24(p-p)</td>
<td>10 to 200 mV</td>
</tr>
<tr>
<td>Sandcastle pulse</td>
<td>V20-24</td>
<td>> 7,5 V</td>
</tr>
<tr>
<td>sandcastle pulse blanking level</td>
<td>V20-24</td>
<td>> 1,8 V</td>
</tr>
<tr>
<td>Colour difference output signals</td>
<td></td>
<td></td>
</tr>
<tr>
<td>peak-to-peak values</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-(R-Y) signal</td>
<td>V11-24(p-p)</td>
<td>typ. 1,05 V ± 3 dB</td>
</tr>
<tr>
<td>-(B-Y) signal</td>
<td>V10-24(p-p)</td>
<td>typ. 1,33 V ± 3 dB</td>
</tr>
</tbody>
</table>

PACKAGE OUTLINE

24-lead DIL; plastic (SOT-101A).
Fig. 1 Block diagram; for external capacitors see next page.
External capacitors in Fig. 1

<table>
<thead>
<tr>
<th>capacitor</th>
<th>pins</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>22 – 24</td>
<td>filter capacitor for control voltage</td>
</tr>
<tr>
<td>C2</td>
<td>17 – 24</td>
<td>time constant for control voltage</td>
</tr>
<tr>
<td>C3</td>
<td>19 – 24</td>
<td>time constant for colour ON</td>
</tr>
<tr>
<td>C4</td>
<td>16 – 24</td>
<td>identification signal and colour OFF time constant</td>
</tr>
<tr>
<td>C5</td>
<td>18 – 24</td>
<td>load capacitor for the reference voltage</td>
</tr>
<tr>
<td>C6</td>
<td>8 – 24</td>
<td>time constant for the rise or fall time of the</td>
</tr>
<tr>
<td></td>
<td></td>
<td>d.c. voltage level of the colour difference signal</td>
</tr>
</tbody>
</table>

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

<table>
<thead>
<tr>
<th>Supply voltage range</th>
<th>(V_p = Vg \cdot 24)</th>
<th>10.8 to 13.2 V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Currents</td>
<td></td>
<td></td>
</tr>
<tr>
<td>at pin 5</td>
<td>(-I_5) max. 10 mA</td>
<td></td>
</tr>
<tr>
<td>at pins 10 and 11</td>
<td>(-I_{10}, -I_{11}) max. 1 mA</td>
<td></td>
</tr>
<tr>
<td>at pin 21</td>
<td>(I_{21}) max. 10 mA</td>
<td></td>
</tr>
<tr>
<td>Total power dissipation</td>
<td>(P_{tot}) max. 1.1 W</td>
<td></td>
</tr>
<tr>
<td>Storage temperature</td>
<td>(T_{stg}) -20 to +125 °C</td>
<td></td>
</tr>
<tr>
<td>Operating ambient temperature</td>
<td>(T_{amb}) -20 to +65 °C</td>
<td></td>
</tr>
</tbody>
</table>

CHARACTERISTICS

\(V_p = 12 \) V; \(T_{amb} = 25 °C \)

<table>
<thead>
<tr>
<th>Supply current</th>
<th>(I_g) typ. 58 mA</th>
</tr>
</thead>
</table>

Chrominance part

Chrominance signal is asymmetric (pins 1, 2)

Input voltage range (peak-to-peak value)	\(V_{1-24(p-p)} \)	10 to 200 mV	
Nominal input voltage (peak-to-peak value)	with 75% colour bar signal	\(V_{1-24(p-p)} \) typ. 100 mV	
Input impedance	\(Z_i	\) typ. 3.3 kΩ
Colour ON	chrominance output voltage (peak-to-peak value)	\(V_{5-24(p-p)} \) typ. 2 V	
d.c. voltage at chrominance output	\(V_{5-24} \) typ. 8 V		
Colour OFF	chrominance suppression	> 56 dB	
d.c. voltage at chrominance output	\(V_{5-24} \) typ. 4 V		
CHARACTERISTICS (continued)

Reference voltage and control voltage part

Oscillator (8.8 MHz)

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gain G_{14-15}</td>
<td>> 8 dB</td>
</tr>
<tr>
<td>Oscillator (8.8 MHz)</td>
<td></td>
</tr>
<tr>
<td>Input resistance R_{15-24}</td>
<td>typ. 270 Ω</td>
</tr>
<tr>
<td>Output resistance R_{14-24}</td>
<td>< 200 Ω</td>
</tr>
<tr>
<td>Catching range Δf</td>
<td>typ. 500 Hz</td>
</tr>
</tbody>
</table>

Sandcastle pulse (pin 20)

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Burst gating level V_{20-24}</td>
<td>> 7.5 V</td>
</tr>
<tr>
<td>Blanking level V_{20-24}</td>
<td>> 1.8 V</td>
</tr>
</tbody>
</table>

Colour switching voltage (open collector)

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum output current $I_{21\text{max}}$</td>
<td>typ. 10 mA</td>
</tr>
<tr>
<td>Colour ON V_{21-24}</td>
<td>typ. V_p</td>
</tr>
<tr>
<td>Colour OFF V_{21-24}</td>
<td>< 0.5 V</td>
</tr>
<tr>
<td>Reference output voltage V_{18-24}</td>
<td>typ. 5.5 V</td>
</tr>
</tbody>
</table>

Colour killer voltages

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>colour OFF at V_{18-16}</td>
<td>typ. 0 V</td>
</tr>
<tr>
<td>or at</td>
<td>> 6 V</td>
</tr>
<tr>
<td>colour ON at V_{19-24}</td>
<td>typ. 1.5 V</td>
</tr>
<tr>
<td>or at</td>
<td>< 4 V</td>
</tr>
</tbody>
</table>

Colour unkill delay; depends on C3

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_d</td>
<td>typ. 20 ms/μF</td>
</tr>
</tbody>
</table>

Identification ON

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{16-18}</td>
<td>< 200 mV</td>
</tr>
</tbody>
</table>

Demodulator part

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delayed chrominance input signal (peak-to-peak value)</td>
<td>V_{11-24} (peak-to-peak) typ. 1.05 V ± 3 dB</td>
</tr>
<tr>
<td>Colour difference output signals (peak-to-peak values)</td>
<td>V_{10-24} (peak-to-peak) typ. 1.33 V ± 3 dB</td>
</tr>
<tr>
<td>Ratio of colour difference output signals</td>
<td>$(R-Y)/(B-Y)$ typ. 0.79 ± 10 %</td>
</tr>
<tr>
<td>D.C. voltage at colour difference outputs</td>
<td>V_{10}, $11-24$ (typ. 8 V)</td>
</tr>
<tr>
<td>at colour ON</td>
<td></td>
</tr>
<tr>
<td>at colour OFF</td>
<td></td>
</tr>
<tr>
<td>Signal attenuation at colour OFF</td>
<td>> 60 dB</td>
</tr>
<tr>
<td>Residual 4,4 MHz signal</td>
<td></td>
</tr>
<tr>
<td>$H/2$ ripple at (R-Y) output (peak-to-peak value)</td>
<td>without input signal V_{11-24} (peak-to-peak) < 10 mV</td>
</tr>
</tbody>
</table>

January 1980
SECAM DECODER

The TDA3520 is a monolithic integrated circuit which contains all the functions necessary for decoding the SECAM signal from the composite video and which offers the colour difference signals — (R−Y) and — (B−Y) to the video circuits TDA3500 or TDA 3501 in order to complete the SECAM decoding system.

By simply adding the PAL decoder circuit TDA3510, the SECAM system can be extended to receive SECAM/PAL signals as well. The 64 μs delay line is used in common and all system switching functions are performed automatically.

One of the main features of the TDA3520 is that only the clock filter has to be adjusted; all the other adjustments can be left out due to usage of PLL-type FM demodulators, the system of horizontal identification and the gain controlled chrominance amplifier.

The TDA3520 incorporates the following main functions:

- gain controlled chrominance amplifier
- delay line amplifier (fixed gain of nom. 8), controlled by the colour killer (black—white/colour and SECAM/PAL commutation)
- limiter stages for direct signals and delayed signals
- permutator
- horizontal identification system; in PAL/SECAM receivers automatic standard switching is obtained if only a fixed phase shift circuit is added
- internal clamping generator and identification (1 μs) triggered either by the sandcastle pulse or by the video signal via the internal sync separator together with the flyback pulse
- (B−Y) and (R−Y) demodulators (without control) with burst level memory by means of an external capacitor
- circuits for horizontal and vertical blanking, during which de-emphasizing and restoring of black levels in the (R−Y) and (B−Y) signals occurs
- low-impedance output stages controlled by the colour killer (black/white/colour and SECAM/PAL switches)
- possibility for vertical identification by adding a simple external circuit
- colour killer output with H/2 information is available to control the luminance suppression filter from line to line.

QUICK REFERENCE DATA

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Unit</th>
<th>Typ.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltage (pins 5, 14, 15)</td>
<td>Vp</td>
<td>V</td>
<td>12</td>
</tr>
<tr>
<td>Supply current (I15 + I14 + I15)</td>
<td>I1p</td>
<td>mA</td>
<td>90</td>
</tr>
<tr>
<td>Input voltage range (peak-to-peak value)</td>
<td>V27-28 (p-p)</td>
<td>V</td>
<td>200</td>
</tr>
<tr>
<td>A.G.C. control range</td>
<td>></td>
<td>dB</td>
<td>26</td>
</tr>
<tr>
<td>Colour killer output current (SECAM not identified)</td>
<td>I8</td>
<td>mA</td>
<td>< 5</td>
</tr>
<tr>
<td>PLL demodulator catching range</td>
<td>Δf</td>
<td>MHz</td>
<td>1</td>
</tr>
<tr>
<td>(R−Y) output voltage (peak-to-peak value)</td>
<td>V16-24 (p-p)</td>
<td>V</td>
<td>1,05</td>
</tr>
<tr>
<td>(B−Y) output voltage (peak-to-peak value)</td>
<td>V13-24 (p-p)</td>
<td>V</td>
<td>1,33</td>
</tr>
</tbody>
</table>

PACKAGE OUTLINE

28-lead DIL; plastic (SOT-117).
Fig. 1 Block diagram.
<table>
<thead>
<tr>
<th>CHARACTERISTICS</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltage range (pins 5, 14 and 15)</td>
<td>(V_p = V_{5,14,15-3,24})</td>
</tr>
<tr>
<td>Supply current</td>
<td>(I_p = I_5 + I_{14} + I_{15})</td>
</tr>
<tr>
<td>Chrominance amplifier (pins 27 and 28)</td>
<td></td>
</tr>
<tr>
<td>Input voltage range (peak-to-peak value)</td>
<td>(V_{27-28,(p-p)})</td>
</tr>
<tr>
<td>Input resistance</td>
<td>(R_{27-28})</td>
</tr>
<tr>
<td>A.G.C. control range</td>
<td>> 50 kΩ</td>
</tr>
<tr>
<td>Delay line amplifier (pin 25)</td>
<td></td>
</tr>
<tr>
<td>Output voltage (peak-to-peak value)</td>
<td>(V_{25-24,(p-p)})</td>
</tr>
<tr>
<td>Output impedance</td>
<td>< 100 Ω</td>
</tr>
<tr>
<td>Output voltage (SECAM not identified)</td>
<td></td>
</tr>
<tr>
<td>D.C. output voltage</td>
<td></td>
</tr>
<tr>
<td>SECAM identified</td>
<td>typ. 2.6 V</td>
</tr>
<tr>
<td>SECAM not identified</td>
<td>typ. 4.5 V</td>
</tr>
<tr>
<td>Attenuation (SECAM not identified)</td>
<td>typ. 60 dB</td>
</tr>
<tr>
<td>Delay line input (pin 23)</td>
<td></td>
</tr>
<tr>
<td>Input voltage (peak-to-peak value)</td>
<td>(V_{23-24,(p-p)})</td>
</tr>
<tr>
<td>Input resistance</td>
<td>(R_{23-24})</td>
</tr>
<tr>
<td>Identification circuit (pins 2 and 4)</td>
<td></td>
</tr>
<tr>
<td>Output voltage (phase-shift circuit input)</td>
<td>(V_{2-24,(p-p)})</td>
</tr>
<tr>
<td>Output resistance</td>
<td>< 200 Ω</td>
</tr>
<tr>
<td>Input voltage (phase-shift circuit output)</td>
<td>(V_{4-24,(p-p)})</td>
</tr>
<tr>
<td>Input resistance</td>
<td>> 1 kΩ</td>
</tr>
</tbody>
</table>

* Corresponds with an attenuation of nom. 18 dB at pins 23 and 25 (delay line).
TDA3520

CHARACTERISTICS (continued)

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Symbol</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colour killer output (pin 8; open collector)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Saturation voltage (SECAM not identified)</td>
<td>V8-24</td>
<td>typ. 300 mV</td>
</tr>
<tr>
<td>Output current (SECAM not identified)</td>
<td>I8</td>
<td>< 5 mA</td>
</tr>
<tr>
<td>Output current (SECAM identified; blue line)</td>
<td>I8</td>
<td>typ. 0 mA</td>
</tr>
<tr>
<td>Output current (SECAM identified; red line)</td>
<td>I8</td>
<td>typ. 0,5 mA</td>
</tr>
</tbody>
</table>

Sync separator (pin 21)		
Slicing level *	V21-24	typ. 2,5 V
Video input voltage (peak-to-peak value) **	V21-24 (p-p)	typ. 1 V

Sandcastle input (or flyback pulse) (pin 22)		
Blanking level for driving the sync separator	V22-24	1,0 to 2,0 V *
Flip-flop slicing level	V22-24	3,0 to 4,0 V *
Maximum input current	I22 max	< 100 μA

Demodulators (pins 9 and 19)		
PLL demodulator catching range	Δf	> 1 MHz
Equivalent error at the reinserted reference levels	Δf₀	< 4 kHz

Colour difference output stages (pins 13 and 16)		
Output voltages (peak-to-peak values)		
-(R−Y) signal	V16-24 (p-p)	typ. 1,05 V
-(B−Y) signal	V13-24 (p-p)	typ. 1,33 V
D.C. output voltage	V13,16-24	typ. 6 V *
Output resistance	R13,16-24	< 100 Ω
Attenuation (SECAM not identified)		
H/Z ripple at the outputs (peak-to-peak value)	V13,16-24 (p-p)	< 62 dB

*Proportional to the supply voltage.

** Capacitive coupling; see Fig. 2.
Fig. 2 Application diagram.

(1) To TDA3500 or TDA3501
TELEVISION I.F. AMPLIFIER AND DEMODULATOR

The TDA3540 is an i.f. amplifier and demodulator circuit for colour and black and white television receivers using n-p-n tuners.

It incorporates the following functions:

- gain-controlled wide-band amplifier, providing complete i.f. gain
- synchronous demodulator with excellent intermodulation
- white spot inverter
- video preamplifier with noise protection
- a.f.c. circuit with a.f.c. on/off switch
- a.g.c. circuit with noise gating
- tuner a.g.c. output (n-p-n tuners)
- external video switch which switches off the video output; e.g. for insertion of a VCR playback signal, by either a high or a low level.

QUICK REFERENCE DATA

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Unit</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltage</td>
<td>V_{11-13}</td>
<td>V</td>
<td>12</td>
</tr>
<tr>
<td>Supply current</td>
<td>I_{11}</td>
<td>mA</td>
<td>53</td>
</tr>
<tr>
<td>I.F. input sensitivity (r.m.s. value)</td>
<td>V_{1-16(rms)}</td>
<td>\mu V</td>
<td>70</td>
</tr>
<tr>
<td>Video output voltage (white at 10% of top sync)</td>
<td>V_{12(p-p)}</td>
<td>V</td>
<td>2.7</td>
</tr>
<tr>
<td>I.F. voltage gain control range</td>
<td>G_{V}</td>
<td>dB</td>
<td>65</td>
</tr>
<tr>
<td>Signal-to-noise ratio at V_{i} = 10 mV</td>
<td>S/N</td>
<td>dB</td>
<td>57</td>
</tr>
<tr>
<td>A.F.C. output voltage swing for \Delta f = 70 kHz</td>
<td>\Delta V_{5-13}</td>
<td>V</td>
<td>10</td>
</tr>
</tbody>
</table>

PACKAGE OUTLINES

TDA3540: 16-lead DIL; plastic (SOT-38).
TDA3540Q: 16-lead QIL; plastic (SOT-58).
(1) VCR switch can be connected either to ground (as shown) or to +12 V.

Fig. 1 Block diagram.
Television i.f. amplifier and demodulator

RATINGS
Limiting values in accordance with the Absolute Maximum System (IEC 134)

Supply voltage V_{11-13} max. 13.2 V
Tuner a.g.c. voltage V_{4-13} max. 13.2 V
Total power dissipation P_{tot} max. 1.1 W
Storage temperature T_{stg} -55 to +150 °C
Operating ambient temperature T_{amb} -25 to +70 °C

CHARACTERISTICS (measured in Fig. 5)

Supply voltage range V_{11-13} typ. 12 V
The following characteristics are measured at $T_{\text{amb}}=25$ °C; $V_{11-13}=12$ V
I.F. input voltage for onset of a.g.c. (r.m.s. value)
- at $f=38.9$ or 45.75 MHz $V_{1-16(\text{rms})}$ typ. 70μV
- at $f=58.75$ MHz $V_{1-16(\text{rms})}$ typ. 90μV
Differential input impedance $|Z_{1-16}|$ typ. 10 kΩ in parallel with 2 pF
Zero-signal output level V_{12-13} typ. 6 ± 0.3 V*
Top sync output level V_{12-13} typ. 2.9 to 3.2 V
I.F. voltage gain control range G_v typ. 65 dB
Bandwidth of video amplifier (3 dB) B typ. 9 MHz
Signal-to-noise ratio at $V_i=10$ mV S/N typ. 57 dB**
Differential gain dG typ. 5 %
Differential phase $\Delta \phi$ typ. 2°

* So-called 'projected zero point', e.g. with switched demodulator.

** $S/N = \frac{V_o \text{ black-to-white}}{V_{n(\text{rms})} \text{ at } B=5 \text{ MHz}}$
CHARACTERISTICS (continued)

Intermodulation at 1.1 MHz: blue*

yellow*

at 3.3 MHz**

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Level</th>
<th>Typo</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1 MHz</td>
<td>> 60 dB</td>
<td>65 dB</td>
</tr>
<tr>
<td>3.3 MHz</td>
<td>> 60 dB</td>
<td>70 dB</td>
</tr>
</tbody>
</table>

S.C.: sound carrier level
C.C.: chrominance carrier level
P.C.: picture carrier level

with respect to top sync level

Fig. 2 Input conditions for intermodulation measurements; standard colour bar with 75% contrast.

Fig. 3 Test set-up for intermodulation.

\[
* \quad \text{20 log} \frac{V_o \text{ at } 4.4 \text{ MHz}}{V_o \text{ at } 1.1 \text{ MHz}} + 3.6 \text{ dB}
\]

\[
** \quad \text{20 log} \frac{V_o \text{ at } 4.4 \text{ MHz}}{V_o \text{ at } 3.3 \text{ MHz}}
\]
Television i.f. amplifier and demodulator

- Carrier signal at video output: < 30 mV
- 2nd harmonic of carrier at video output: < 30 mV
- White spot inverter threshold level (Fig. 4): typ. 6.6 V
- White spot insertion level (Fig. 4): typ. 4.7 V
- Noise inverter threshold level (Fig. 4): typ. 1.8 V
- Noise insertion level (Fig. 4): typ. 3.8 V
- External video switch (VCR) switches off the output at

\[V_{14-13} < 1.5 \text{ V} \]
\[V_{14-13} > 10.5 \text{ V} \]

Fig. 4 Video output waveform showing white spot and noise inverter threshold levels.

Tuner a.g.c. output current range
- \(I_4 \): 10 to 0 mA
- \(V_{4-13} \): < 0.3 V

Tuner a.g.c. output voltage at \(I_4 = 10 \) mA
- \(V_{4-13} \): < 10 \(\mu \)A
- \(V_i \): < 10 mV
- \(V_i \): > 100 mV

Tuner a.g.c. output leakage current
- \(V_{14-13} = 3 \) V; \(V_{4-13} = 12 \) V

- Lowest tuner a.g.c. take-over point
- Highest tuner a.g.c. take-over point
- Maximum a.f.c. output voltage swing
- Detuning for a.f.c. output voltage swing of 10 V
 - \(f = 38.9 \) MHz
- A.F.C. zero-signal output voltage (minimum gain)
- A.F.C. switches on at:
- A.F.C. switches off at:

\[\Delta V_{5-13} \]: typ. 11 V
\[\Delta f \]: typ. 70 kHz
\[\Delta f \]: < 150 kHz

\[V_{5-13} \]: typ. 6 V
\[V_{5-13} \]: 4 to 8 V

\[V_{6-13} \]: > 3.2 V
\[V_{6-13} \]: < 2.0 V

January 1980
APPLICATION INFORMATION

Fig. 5 Typical application circuit diagram; Q of L1 and L2 ≈ 80; f₀ = 38,9 MHz.
Fig. 6 A.F.C. output voltage (V_{5-13}) as a function of the frequency.
Fig. 7 Signal-to-noise ratio as a function of the input voltage (V_{1-16}).
TELEVISION I.F. AMPLIFIER AND DEMODULATOR

The TDA3541 is an i.f. amplifier and demodulator circuit for colour and black and white television receivers using p-n-p tuners. It incorporates the following functions:

- gain-controlled wide-band amplifier, providing complete i.f. gain
- synchronous demodulator with excellent intermodulation
- white spot inverter
- video preamplifier with noise protection
- a.f.c. circuit with a.f.c. on/off switch
- a.g.c. circuit with noise gating
- tuner a.g.c. output (p-n-p tuners)
- external video switch which switches off the video output; e.g. for insertion of a VCR playback signal, by either a high or a low level

QUICK REFERENCE DATA

Supply voltage	V_{11-13}	typ. 12 V
Supply current	I_{11}	typ. 53 mA
I.F. input sensitivity (r.m.s. value)	$V_{1-16(rms)}$	typ. 70 μV
Video output voltage (white at 10% of top sync)	$V_{12(p-p)}$	typ. 2.7 V
I.F. voltage gain control range	G_v	typ. 65 dB
Signal-to-noise ratio at $V_i = 10$ mV	S/N	typ. 57 dB
A.F.C. output voltage swing for $\Delta f = 70$ kHz	ΔV_{5-13}	typ. 10 V

PACKAGE OUTLINES

TDA3541 : 16-lead DIL; plastic (SOT-38).
TDA3541Q: 16-lead QIL; plastic (SOT-58).
(1) VCR switch can be connected either to ground (as shown) or to +12 V.
Television i.f. amplifier and demodulator

RATINGS
Limiting values in accordance with the Absolute Maximum System (IEC 134)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Min.</th>
<th>Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltage</td>
<td>VI-11-13</td>
<td>max. 13,2 V</td>
<td></td>
</tr>
<tr>
<td>Tuner a.g.c. voltage</td>
<td>V4-13</td>
<td>max. 13,2 V</td>
<td></td>
</tr>
<tr>
<td>Total power dissipation</td>
<td>Ptot</td>
<td>max. 1,1 W</td>
<td></td>
</tr>
<tr>
<td>Storage temperature</td>
<td>Tstg</td>
<td>-55 to +150 °C</td>
<td></td>
</tr>
<tr>
<td>Operating ambient temperature</td>
<td>Tamb</td>
<td>-25 to +70 °C</td>
<td></td>
</tr>
</tbody>
</table>

CHARACTERISTICS (measured in Fig. 5)

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Symbol</th>
<th>Min.</th>
<th>Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltage range</td>
<td>VI-11-13</td>
<td>typ. 12 V</td>
<td>10,2 to 13,2 V</td>
</tr>
<tr>
<td>I.F. input voltage for onset of a.g.c. (r.m.s. value)</td>
<td>V1-16(rms)</td>
<td>typ. 70 μV</td>
<td></td>
</tr>
<tr>
<td></td>
<td>V1-16(rms)</td>
<td>typ. 90 μV</td>
<td></td>
</tr>
<tr>
<td>Differential input impedance</td>
<td></td>
<td>typ. 10 kΩ in parallel with 2 pF</td>
<td></td>
</tr>
<tr>
<td>Zero-signal output level</td>
<td>V12-13</td>
<td>typ. 6 ± 0,3 V*</td>
<td></td>
</tr>
<tr>
<td>Top sync output level</td>
<td>V12-13</td>
<td>typ. 3,07 V</td>
<td>2,9 to 3,2 V</td>
</tr>
<tr>
<td>I.F. voltage gain control range</td>
<td>Gv</td>
<td>typ. 65 dB</td>
<td></td>
</tr>
<tr>
<td>Bandwidth of video amplifier (3 dB)</td>
<td>B</td>
<td>typ. 9 MHz</td>
<td></td>
</tr>
<tr>
<td>Signal-to-noise ratio at Vf = 10 mV</td>
<td>S/N</td>
<td>typ. 57 dB**</td>
<td></td>
</tr>
<tr>
<td>Differential gain</td>
<td>dG</td>
<td>typ. 5 %</td>
<td>< 10 %</td>
</tr>
<tr>
<td>Differential phase</td>
<td>dφ</td>
<td>typ. 2°</td>
<td>< 10°</td>
</tr>
</tbody>
</table>

* So-called 'projected zero point', e.g. with switched demodulator.

** S/N = \(\frac{V_o \text{ black-to-white}}{V_n \text{ (rms)} \text{ at } B = 5 \text{ MHz}} \)
CHARACTERISTICS (continued)

Intermodulation at 1.1 MHz: blue

\[\text{spectrum for blue} \]

\[\begin{array}{c}
\text{S.C.} & \text{C.C.} & \text{P.C.} \\
-30\text{dB} & -13.2\text{dB} & -3.2\text{dB} \\
\end{array} \]

Intermodulation at 3.3 MHz:

\[\text{spectrum for yellow} \]

\[\begin{array}{c}
\text{S.C.} & \text{C.C.} & \text{P.C.} \\
-13.2\text{dB} & -10\text{dB} & -30\text{dB} \\
\end{array} \]

S.C. : sound carrier level
C.C. : chrominance carrier level
P.C. : picture carrier level

with respect to top sync level

Fig. 2 Input conditions for intermodulation measurements; standard colour bar with 75% contrast.

\[\begin{align*}
\text{P.C.} & \quad \text{GENERATOR} \\
& \quad 38.9 \text{ MHz} \\
\text{S.C.} & \quad \text{GENERATOR} \\
& \quad 33.4 \text{ MHz} \\
\Sigma & \\
\text{ATTENUATOR} & \\
\text{TEST} & \\
\text{CIRCUIT} & \\
\text{SPECTRUM} & \\
\text{ANALYZER} & \\
\hline
\text{C.C.} & \quad \text{GENERATOR} \\
& \quad 34.5 \text{ MHz} \\
\end{align*} \]

+12 V

manual gain control; adjusted for blue: \(V_{12-13} = 4 \text{ V} \)

Fig. 3 Test set-up for intermodulation.

\[* \quad 20 \log \frac{V_o \text{ at } 4.4 \text{ MHz}}{V_o \text{ at } 1.1 \text{ MHz}} + 3.6 \text{ dB} \]

\[** \quad 20 \log \frac{V_o \text{ at } 4.4 \text{ MHz}}{V_o \text{ at } 3.3 \text{ MHz}} \]
Television i.f. amplifier and demodulator

Carrier signal at video output
2nd harmonic of carrier at video output
White spot inverter threshold level (Fig. 4)
White spot insertion level (Fig. 4)
Noise inverter threshold level (Fig. 4)
Noise insertion level (Fig. 4)
External video switch (VCR) switches off the output at

$V_{14-13} > 10,5 \text{ V}$

TDA3541
TDA3541Q

$< 30 \text{ mV}$
$< 30 \text{ mV}$
typ. $6,6 \text{ V}$
typ. $4,7 \text{ V}$
typ. $1,8 \text{ V}$
typ. $3,8 \text{ V}$

Fig. 4 Video output waveform showing white spot and noise inverter threshold levels.

Tuner a.g.c. output current range
$I_4 \quad 0$ to 10 mA

Tuner a.g.c. output voltage at $I_4 = 10 \text{ mA}$

$V_{14-13} < 0,3 \text{ V}$

Tuner a.g.c. output leakage current
$V_{14-13} = 11 \text{ V}; V_{4-13} = 12 \text{ V}$

$I_4 \quad < 10 \mu \text{A}$
$V_i \quad < 10 \text{ mV}$
$V_i \quad > 100 \text{ mV}$

Lowest tuner a.g.c. take-over point

Highest tuner a.g.c. take-over point

Maximum a.f.c. output voltage swing

Detuning for a.f.c. output voltage swing of 10 V
$f = 38,9 \text{ MHz}$

A.F.C. zero-signal output voltage (minimum gain)

A.F.C. switches on at:

A.F.C. switches off at:

$\Delta V_{5-13} \quad > 10 \text{ V}$
typ. 11 V

$\Delta f \quad \text{typ.} \quad 70 \text{ kHz}$
$\text{typ.} \quad 150 \text{ kHz}$
6 V

$V_{5-13} \quad 4 \text{ to } 8 \text{ V}$

$V_{6-13} \quad > 3,2 \text{ V}$
$V_{6-13} \quad < 2,0 \text{ V}$
Fig. 5 Typical application circuit diagram; Q of L1 and L2 ≈ 80; $f_0 = 38,9$ MHz.
Fig. 6 A.F.C. output voltage (V5-13) as a function of the frequency.
Fig. 7 Signal-to-noise ratio as a function of the input voltage (V_{1-16}).
PAL DECODER

The TDA3560 is a monolithic integrated colour decoder for the PAL standard. It combines all functions required for the identification and demodulation of PAL signals. Furthermore it contains a luminance amplifier, an RGB-matrix and amplifier. These amplifiers supply output signals up to 5 V peak-to-peak (picture information) enabling direct drive of the output stages. The circuit also contains separate inputs for data insertion, analogue as well as digital, which can be used for Teletext information, channel number display, etc.

QUICK REFERENCE DATA

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltage</td>
<td>V1-27</td>
<td>typ. 12 V</td>
</tr>
<tr>
<td>Supply current</td>
<td>I1</td>
<td>typ. 85 mA</td>
</tr>
<tr>
<td>Luminance input signal (peak-to-peak value)</td>
<td>V10-27(p-p)</td>
<td>typ. 0.45 V</td>
</tr>
<tr>
<td>Chrominance input signal (peak-to-peak value)</td>
<td>V3-27(p-p)</td>
<td>55 to 1100 mV</td>
</tr>
<tr>
<td>Data input signals (peak-to-peak value)</td>
<td>V13,15,17-27(p-p)</td>
<td>typ. 1 V</td>
</tr>
<tr>
<td>RGB output signals at nominal contrast and saturation (peak-to-peak value)</td>
<td>V12,14,16-27(p-p)</td>
<td>typ. 5 V</td>
</tr>
<tr>
<td>Contrast control range</td>
<td></td>
<td>typ. 20 dB</td>
</tr>
<tr>
<td>Saturation control range</td>
<td></td>
<td>typ. 50 dB</td>
</tr>
<tr>
<td>Input for fast video-data signal switching</td>
<td>V9-27</td>
<td>typ. 1 V</td>
</tr>
<tr>
<td>Blanking input voltage</td>
<td>V8-27</td>
<td>typ. 1.5 V</td>
</tr>
<tr>
<td>Burst gating and black-level gating input voltage</td>
<td>V8-27</td>
<td>typ. 7 V</td>
</tr>
</tbody>
</table>

PACKAGE OUTLINE
28-lead DIL; plastic (SOT-117).
Fig. 1 Block diagram.
PAL decoder

RATINGS
Limiting values in accordance with the Absolute Maximum System (IEC 134)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>min.</th>
<th>max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltage V<sub>P</sub> = V<sub>1-27</sub></td>
<td>13,2 V</td>
<td></td>
</tr>
<tr>
<td>Input saturation voltage V<sub>6-27</sub></td>
<td>0</td>
<td>V<sub>P</sub> V</td>
</tr>
<tr>
<td>Input contrast voltage V<sub>7-27</sub></td>
<td>0</td>
<td>V<sub>P</sub> V</td>
</tr>
<tr>
<td>Input blanking pulse and sandcastle V<sub>8-27</sub></td>
<td>0</td>
<td>V<sub>P</sub> V</td>
</tr>
<tr>
<td>Input video-data switch voltage V<sub>9-27</sub></td>
<td>0</td>
<td>V<sub>P</sub> V</td>
</tr>
<tr>
<td>Input brightness voltage V<sub>11-27</sub></td>
<td>0</td>
<td>V<sub>P</sub> V</td>
</tr>
<tr>
<td>Power dissipation</td>
<td>see Fig. 2</td>
<td></td>
</tr>
<tr>
<td>Storage temperature T<sub>stg</sub></td>
<td>-25 to + 150 °C</td>
<td></td>
</tr>
<tr>
<td>Operating ambient temperature T<sub>amb</sub></td>
<td>-25 to + 65 °C</td>
<td></td>
</tr>
</tbody>
</table>

CHARACTERISTICS

V₁₋₂₇ = 12 V; V₁₀₋₂₇(p-p) = 0,45 V; V₃₋₂₇(p-p) = 500 mV; T_{amb} = 25 °C; measured in Fig. 6; unless otherwise specified

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltage range</td>
<td>V<sub>P</sub> typ. 12 V</td>
</tr>
<tr>
<td>Supply current I<sub>1</sub></td>
<td>typ. 85 mA</td>
</tr>
<tr>
<td>Luminance amplifier</td>
<td>V<sub>10-27</sub>(p-p) typ. 0,45 V</td>
</tr>
<tr>
<td>Input current I<sub>10</sub></td>
<td>< 1 μA</td>
</tr>
<tr>
<td>Contrast control range</td>
<td>-17 to + 3 dB</td>
</tr>
<tr>
<td>Contrast control voltage range</td>
<td>see Fig. 3</td>
</tr>
<tr>
<td>Chrominance amplifier</td>
<td>V<sub>3-27</sub>(p-p) 55 to 1100 mV</td>
</tr>
<tr>
<td>A.C.C. control range</td>
<td>> 30 dB</td>
</tr>
<tr>
<td>Output signal (peak-to-peak value) *</td>
<td>V<sub>28-27</sub>(p-p) typ. 1,7 V</td>
</tr>
<tr>
<td>burst signal (peak-to-peak value) = 0,5 V</td>
<td></td>
</tr>
<tr>
<td>Saturation control range</td>
<td>> 50 dB</td>
</tr>
<tr>
<td>Saturation control voltage range</td>
<td>see Fig. 4</td>
</tr>
<tr>
<td>Phase shift between burst and chrominance *</td>
<td>< 50</td>
</tr>
<tr>
<td>Tracking between luminance and chrominance with contrast control over a range of 10 dB, starting at maximum contrast</td>
<td>typ. 1 dB</td>
</tr>
</tbody>
</table>

* At nominal contrast and saturation setting. Nominal setting = maximum contrast −3 dB; maximum saturation −6 dB.
CHARACTERISTICS (continued)

Reference oscillator

Phase locked loop:
- catching range (note 1) > 500 Hz
- phase shift (note 2) < 5°

Oscillator:
- input resistance R26-27 typ. 300 Ω
- input capacitance C26-27 < 10 pF
- output resistance R25-27 typ. 200 Ω

A.C.C. generation:
- reference voltage V4-27 typ. 4,6 V
- control voltage
 at nominal input signal V2-27 typ. 4,7 V
 control voltage without burst V2-27 typ. 2,4 V

Demodulator circuit

Input burst signal amplitude (peak-to-peak value) V21,22-27(p-p) typ. 60 mV

Ratio of demodulated signals
without luminance input signal
(B-Y)/(R-Y)
V16-27 typ. 1,78
V12-27

(G-Y)/(R-Y)
V14-27 typ. -0,51
V12-27

(G-Y)/(B-Y)
V14-27 typ. -0,19
V16-27

RGB matrix and amplifiers

Output voltage (peak-to-peak value) (note 3) V12,14,16-27(p-p) typ. 5 V

Maximum white level see Fig. 5

Brightness control voltage range typ. 9,3 V

Relative spread between
R, G and B output signals < 10 %

Variation of black level with contrast control ΔV < 200 mV

Relative black-level variation
between the three stages during variation of contrast saturation, brightness and supply voltage < 20 mV

Differential black-level drift over a temperature range of 40 °C < 20 mV

Blanking level at RGB outputs typ. 2,1 V

Signal-to-noise ratio of output signals (note 4) S/N > 62 dB

Notes
1. Frequency referred to 4,4 MHz carrier frequency.
2. For ± 400 Hz deviation of the oscillator frequency.
3. For nominal setting of the controls.
4. The signal-to-noise ratio is specified as the nominal peak-to-peak output signal with respect to r.m.s. noise.
PAL decoder

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residual 8.8 MHz and higher harmonics on RGB-outputs (peak-to-peak value)</td>
<td>< 150 mV</td>
</tr>
<tr>
<td>Output impedance RGB outputs</td>
<td>$</td>
</tr>
<tr>
<td>Frequency response of total luminance and RGB amplifier circuits for $f = 0\ to\ 5\ MHz$</td>
<td>< -3 dB</td>
</tr>
</tbody>
</table>

Signal insertion

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input signals for an RGB output voltage of 5 V (peak-to-peak value)</td>
<td>$V_{13,15,17-27(p-p)}\ $</td>
</tr>
<tr>
<td>Difference between the black levels of the RGB signals and the inserted signals at the output</td>
<td>$\Delta V\ $ < 60 mV</td>
</tr>
<tr>
<td>Output rise time</td>
<td>$t_r\ $</td>
</tr>
<tr>
<td>Differential delay time for the three channels</td>
<td>$t_d\ $</td>
</tr>
</tbody>
</table>

Video-data switching

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input voltage for switching from video to inserted signals</td>
<td>$V_{9-27}\ $</td>
</tr>
<tr>
<td>Input voltage for no data insertion</td>
<td>$V_{9-27}\ $</td>
</tr>
<tr>
<td>Delay between signal switching at the output and the signal switching input pulse at pin 9</td>
<td>$t_d\ $</td>
</tr>
</tbody>
</table>

Sandcastle and field blanking input (pin 8)

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Burst gate and clamping pulse</td>
<td>$V_{8-27}\ $</td>
</tr>
<tr>
<td>RGB blanking level on</td>
<td>$V_{8-27}\ $</td>
</tr>
<tr>
<td>RGB blanking level off</td>
<td>$V_{8-27}\ $</td>
</tr>
</tbody>
</table>

January 1980
Fig. 2 Power derating curve.

Fig. 3 Contrast control voltage range.

Fig. 4 Saturation control voltage range.

Fig. 5 Brightness control voltage range.
APPLICATION INFORMATION

Fig. 6 Application circuit.
For adjustments see page 10.
APPLICATION INFORMATION
The function is described against the corresponding pin number.

1. + 12 V power supply
The circuit gives good operation in a supply voltage range between 8 and 13.2 V provided that the supply voltage for the controls is equal to the supply voltage for the TDA3560. All signal and control levels have a linear dependency on the supply voltage. The current taken by the device at 12 V is typically 85 mA. It is linearly dependent on the supply voltage.

2. Control voltage for identification
This pin requires a detection capacitor of about 330 nF for correct operation. The voltages available under various signal conditions are given in the specification.

3. Chrominance input
The chroma signal must be a.c.-coupled to the input. Its amplitude must be between 55 mV and 1100 mV peak-to-peak (25 mV to 500 mV peak-to-peak burst signal). All figures for the chroma signals are based on a colour bar signal with 75% saturation, that is the burst-to-chroma ratio of the input signal is 1 : 2.25.

4. Reference voltage A.C.C. detector
This pin must be decoupled by a capacitor of about 330 nF. The voltage at this pin is 4.6 V.

5. Control voltage A.C.C.
The A.C.C. is obtained by synchronous detection of the burst signal followed by a peak detector. A good noise immunity is obtained in this way and an increase of the colour for weak input signals is prevented. The recommended capacitor value at this pin is 2.2 µF.

6. Saturation control
The saturation control range is in excess of 50 dB. The control voltage range is 2 to 4 V. Saturation control is a linear function of the control voltage.
When the colour killer is active, the saturation control voltage is reduced to a low level if the resistance of the external saturation control network is sufficiently high. Then the chroma amplifier supplies no signal to the demodulator. Colour switch-on can be delayed by proper choice of the time constant for the saturation control setting circuit.
When the saturation control pin is connected to the power supply the colour killer circuit is overruled so that the colour signal is visible on the screen. In this way it is possible to adjust the oscillator frequency without using a frequency counter (see also pins 25 and 26).

7. Contrast control
The contrast control range is 20 dB for a control voltage change from + 2 to + 4 V. Contrast control is a linear function of the control voltage. The output signal is suppressed when the control voltage is 1 V or less. If one or more output signals surpasses the level of 9 V the peak white limiter circuit becomes active and reduces the output signals via the contrast control by discharging C2 via an internal current sink.
8. Sandcastle and field blanking input
The output signals are blanked if the amplitude of the input pulse is between 2 and 6.5 V. The burst gate and clamping circuits are activated if the input pulse exceeds a level of 7.5 V. The higher part of the sandcastle pulse should start just after the sync pulse to prevent clamping of video signal on the sync pulse. The width should be about 4 μs for proper A.C.C. operation.

9. Video-data switching
The insertion circuit is activated by means of this input by an input pulse between 1 V and 2 V. In that condition, the internal RGB signals are switched off and the inserted signals are supplied to the output amplifiers. If only normal operation is wanted this pin should be connected to the negative supply. The switching times are very short (<20 ns) to avoid coloured edges of the inserted signals on the screen.

10. Luminance signal input
The input signal should have a peak-to-peak amplitude of 0.45 V (peak white to sync) to obtain a black-white output signal of 5 V at nominal contrast. It must be a.c.-coupled to the input by a capacitor of about 22 nF. The signal is clamped at the input to an internal reference voltage. A 1 kΩ luminance delay line can be applied because the luminance input impedance is made very high. Consequently the charging and discharging currents of the coupling capacitor are very small and do not influence the signal level at the input noticeably. Additionally the coupling capacitor value may be small.

11. Brightness control
The black level of the RGB outputs can be set by the voltage on this pin (see Fig. 5). The minimum black level is identical to the blanking level. The black level can be set higher than 4 V however the available output signal amplitude is reduced (see pin 7). Brightness control also operates on the black level of the inserted signals.

12, 14, 16. RGB outputs
The output circuits for red, green and blue are identical. Output signals are 5 V (black-white) for nominal input signals and control settings. The black levels of the three outputs have the same value. The blanking level at the outputs is 2 V. The peak white level is limited to 9 V. When this level is exceeded the output signal amplitude is reduced via the contrast control (see pin 7).

13, 15, 17. Inputs for external RGB signals
The external signals must be a.c.-coupled to the inputs via a coupling capacitor of about 100 nF. Source impedance should not exceed 150 Ω. The input signal required for a 5 V peak-to-peak output signal is 1 V peak-to-peak. At the RGB outputs the black level of the inserted signal is identical to that of normal RGB signals. When these inputs are not used the coupling capacitors have to be connected to the negative supply.

18, 19, 20. Black level clamp capacitors
The black level clamp capacitors for the three channels are connected to these pins. The value of each capacitor should be about 100 nF.

21, 22. Inputs (B-Y) and (R-Y) demodulators
The input signal is automatically fixed to the required level by means of the burst phase detector and A.C.C. generator which are connected to this pin and pin 22. As the burst (applied differentially to those pins) is kept constant by the A.C.C., the colour difference signals automatically have the correct value.
APPLICATION INFORMATION (continued)

23, 24. Burst phase detector outputs
At these pins the output of the burst phase detector is filtered and controls the reference oscillator. An adequate catching range is obtained with the time constants given in the application circuit (see Fig. 6).

25, 26. Reference oscillator
The frequency of the oscillator is adjusted by the variable capacitor C1. For frequency adjustment interconnect pin 23 and pin 24. The frequency can be measured by connecting a suitable frequency counter to pin 25.

28. Output of the chroma amplifier
Both burst and chroma signals are available at the output. The burst-to-chroma ratio at the output is identical to that at the input for nominal control settings. The burst signal is not affected by the controls. The amplitude of the input signal to the demodulator is kept constant by the A.C.C. Therefore the output signal at pin 28 will depend on the signal loss in the delay line.

Adjustments (see Fig. 6)

<table>
<thead>
<tr>
<th>Component</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>8,8 MHz oscillator</td>
<td>10,7 μH</td>
</tr>
<tr>
<td>L1</td>
<td>phase delay line</td>
<td>10,7 μH</td>
</tr>
<tr>
<td>L2</td>
<td>nominal value</td>
<td>10,7 μH = L1</td>
</tr>
<tr>
<td>L3</td>
<td>4,4 MHz chrominance input filter</td>
<td>5,6 μH</td>
</tr>
<tr>
<td>L4</td>
<td>4,4 MHz trap in luminance signal line</td>
<td>66,1 μH</td>
</tr>
<tr>
<td>L5</td>
<td>delay equalization</td>
<td></td>
</tr>
<tr>
<td>P1</td>
<td>amplitude of direct chroma signal</td>
<td></td>
</tr>
<tr>
<td>R1</td>
<td>field blanking</td>
<td></td>
</tr>
<tr>
<td>R2</td>
<td>field blanking</td>
<td></td>
</tr>
</tbody>
</table>

For a video input voltage of 1 V peak-to-peak: R4 = 1 kΩ; R3, R5 and R6 can be omitted.
NTSC DECODER

The TDA3570 is a monolithic integrated colour decoder for the NTSC standard. It combines all functions required for the identification and demodulation of NTSC signals. Furthermore, it contains a luminance amplifier, an RGB-matrix, and an amplifier. The amplifier supplies output signals up to 3.5 V peak-to-peak (picture information) enabling direct drive of the output stages. The circuit also contains an automatic picture setting switch to preset positions of both saturation and tint controls.

QUICK REFERENCE DATA

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltage</td>
<td>V1-14</td>
<td>typ. 12 V</td>
</tr>
<tr>
<td>Supply current</td>
<td>I1</td>
<td>typ. 43 mA</td>
</tr>
<tr>
<td>Luminance input signal (peak-to-peak value)</td>
<td>V5-14(p-p)</td>
<td>typ. 1 V</td>
</tr>
<tr>
<td>RGB output signals (peak-to-peak value)</td>
<td>V26,27,28-14(p-p)</td>
<td>typ. 3.5 V</td>
</tr>
<tr>
<td>Contrast control range</td>
<td></td>
<td>typ. 13 dB</td>
</tr>
<tr>
<td>Blanking pulse and black level gating input voltage</td>
<td>V24,20-14</td>
<td>≥ 2 V</td>
</tr>
<tr>
<td>Chrominance input voltage (peak-to-peak value)</td>
<td>V13-14(p-p)</td>
<td>10 to 300 mV</td>
</tr>
<tr>
<td>Saturation control range</td>
<td></td>
<td>≥ 40 dB</td>
</tr>
<tr>
<td>Tint control range</td>
<td></td>
<td>typ. ± 45°</td>
</tr>
</tbody>
</table>

PACKAGE OUTLINE

28-lead DIL; plastic

October 1979
Fig. 1 Block diagram.
RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>min.</th>
<th>max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltage</td>
<td>0</td>
<td>14,4 V</td>
</tr>
<tr>
<td>Input saturation voltage</td>
<td>0</td>
<td>Vp V</td>
</tr>
<tr>
<td>Input contrast voltage</td>
<td>0</td>
<td>Vp V</td>
</tr>
<tr>
<td>Input tint voltage</td>
<td>0</td>
<td>Vp V</td>
</tr>
<tr>
<td>Input picture voltage</td>
<td>0</td>
<td>Vp V</td>
</tr>
<tr>
<td>Input brightness voltage</td>
<td>0</td>
<td>Vp V</td>
</tr>
<tr>
<td>Input sandcastle current</td>
<td>120-30</td>
<td>mA</td>
</tr>
<tr>
<td>Input blanking pulse voltage</td>
<td>-6</td>
<td>Vp V</td>
</tr>
<tr>
<td>Power dissipation at $T_{\text{amb}} = 70, ^\circ C$</td>
<td></td>
<td>750 mW</td>
</tr>
<tr>
<td>Storage temperature</td>
<td>T_{stg}</td>
<td>-40 to +125 °C</td>
</tr>
<tr>
<td>Operating ambient temperature</td>
<td>T_{amb}</td>
<td>-20 to +70 °C</td>
</tr>
</tbody>
</table>

CHARACTERISTICS

$V_{1-14} = 12\, \text{V}; V_{5-14(\text{p-p})} = 1\, \text{V}; V_{13-14(\text{p-p})} = 150\, \text{mV};$

$T_{\text{amb}} = 25\, ^\circ C$, measured in Fig. 2

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltage</td>
<td>V1-14</td>
</tr>
<tr>
<td>Supply current</td>
<td>I1</td>
</tr>
</tbody>
</table>

Luminance

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input voltage (positive-going sync pulse; peak-to-peak value)</td>
<td>V5-14(p-p)</td>
</tr>
<tr>
<td>Video gain</td>
<td>G_v</td>
</tr>
<tr>
<td>Contrast control voltage range</td>
<td>V10-14</td>
</tr>
<tr>
<td>Contrast control range</td>
<td>typ. 13 dB</td>
</tr>
<tr>
<td>Brightness control voltage range</td>
<td>V3-14</td>
</tr>
<tr>
<td>Black level range</td>
<td>V26,27,28-14</td>
</tr>
<tr>
<td>Max. output voltage</td>
<td>V26,27,28-14</td>
</tr>
<tr>
<td>Blanking and gating pulse</td>
<td>V24-14</td>
</tr>
<tr>
<td>Input impedance (pin 24)</td>
<td>$</td>
</tr>
<tr>
<td>Black level clamp and burst gating pulse</td>
<td>V20-14</td>
</tr>
<tr>
<td>Input impedance (pin 20)</td>
<td>$</td>
</tr>
</tbody>
</table>

Input circuit: 3 pF in parallel with 9 kΩ

Output circuit: emitter followers with internal $R_E = 2,2\, \text{kΩ}$

Picture control voltage

V_{4-14} | 0 to 12 V |

* Usable range depends on the output signal amplitude.
Chrominance
Input voltage (peak-to-peak value) $V_{13-14}(p-p)$ typ. 150 mV
A.C.C. control range typ. 30 dB
Colour kill level (peak-to-peak value) $V_{13-14}(p-p)$ typ. 5 mV
Saturation control voltage range V_{9-14} 1 to 6 V
Saturation control range typ. 40 dB
typ. 6 dB
Saturation control range in position AUTO* typ. ±45°
Tint control voltage range V_{7-14} 1 to 6 V
typ. ±17°
typ. ±600 Hz
typ. ±1,5°
Pull in range of oscillator
Phase difference for 100 Hz change of burst
Input circuit: 6 pF in parallel with 3 kΩ

* Depends on the ratio of R1/R2 in Fig. 2; position AUTO: switch closed.
Fig. 2 Application circuit.
DEVELOPMENT SAMPLE DATA

This information is derived from development samples made available for evaluation. It does not necessarily imply that the device will go into regular production.

VERTICAL DEFLECTION CIRCUIT

The TDA3650 is a monolithic integrated circuit for vertical deflection in large screen colour television receivers.

The circuit incorporates the following functions:
- Oscillator
- Synchronization circuit
- Blanking pulse generator
- Sawtooth generator
- S-correction and linearity control
- Comparator and drive circuit
- Output stage
- Flyback generator
- Voltage stabilizer
- Thermal protection circuit
- Guard circuit
- Output stage protection

QUICK REFERENCE DATA

Supply voltage range (pin 13)	V_p	10 to 50 V	
Output current (peak-to-peak value)	$I_{3(p-p)}$	typ.	3 A
Operating junction temperature	T_j	max.	150 °C
Thermal resistance from junction to copper heat spreader (mounting base)	$R_{th j-mb}$	=	4 K/W

PACKAGE OUTLINE

13-lead DIL; plastic power (SOT-141).
Fig. 1 Block diagram.
RATINGS
Limiting values in accordance with the Absolute Maximum System (IEC 134)

Volatges
- Pin 1: feedback voltage \(V_{1-12} \) max. 8 V
- Pin 3: output voltage \(V_{3-12} \) max. 50 V
- Pin 4: supply voltage output stage \(V_{4-12} \) max. 50 V
- Pin 5: sync voltage \(V_{5-12} \) max. 8 V
- Pin 13: supply voltage \(V_{13-12} (V_p) \) max. 50 V

Currents
- Pin 3: repetitive peak output current \(\pm I_{3RM} \) max. 4 A
- Pin 3: non-repetitive peak output current \(\pm I_{3SM} \) max. 6 A
- Pin 6: flyback generator \(I_6 \) max. 2 A
- Pin 11: blanking pulse \(I_{11} \) max. 10 mA

Total power dissipation internally limited by the thermal protection circuit (see also Fig. 2)

Storage temperature \(T_{stg} \) -25 to +150 °C

Operating junction temperature \(T_j \) max. 150 °C

Fig. 2 Total power dissipation. \(R_{th \ h-a} \) includes \(R_{th \ mb-h} \) which is expected when heatsink compound is used. \(R_{th \ j-mb} = 4 \text{ K/W} \).
CHARACTERISTICS

$T_{amb} = 25 \, ^\circ C$ unless otherwise specified

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltage</td>
<td>$V_P = V_{13-2}$ to 10 to 50 V</td>
</tr>
<tr>
<td>Supply voltage output stage</td>
<td>V_{4-2} to 10 to 50 V</td>
</tr>
<tr>
<td>Maximum flyback generator output voltage</td>
<td>V_{6-2} typ. $V_P - 2$ V</td>
</tr>
<tr>
<td>Comparator input voltage</td>
<td>V_{1-12} typ. 3.8 V</td>
</tr>
<tr>
<td>Comparator input current</td>
<td>$I_1 <$ 1 μA</td>
</tr>
<tr>
<td>Synchronization input voltage</td>
<td>V_{5-12} typ. 1 to 8 V</td>
</tr>
<tr>
<td>Synchronization input impedance</td>
<td>$</td>
</tr>
<tr>
<td>Oscillator input current during scan period</td>
<td>I_7 typ. 1 to 5 μA</td>
</tr>
<tr>
<td>Sawtooth generator input current during scan period</td>
<td>I_9 typ. 4.7 mA</td>
</tr>
<tr>
<td>Sawtooth generator discharge current during flyback</td>
<td>I_g typ. 1.1 V</td>
</tr>
<tr>
<td>Minimum sawtooth voltage level</td>
<td>I_{13} typ. 55 mA</td>
</tr>
<tr>
<td>Supply current (without load)</td>
<td></td>
</tr>
<tr>
<td>Output voltage</td>
<td>V_{3-2} typ. 2 to 3 V*</td>
</tr>
<tr>
<td>minimum</td>
<td></td>
</tr>
<tr>
<td>maximum</td>
<td></td>
</tr>
<tr>
<td>Output current (peak-to-peak value)</td>
<td>$I_{3(p-p)}$ typ. 4 A</td>
</tr>
<tr>
<td>Blanking pulse generator output voltage; $I_{11} = 0$</td>
<td>V_{11-12} typ. 6.5 V</td>
</tr>
<tr>
<td>Blanking pulse duration</td>
<td>t_b typ. $1,4 \pm 0.1$ ms</td>
</tr>
<tr>
<td>Blanking pulse output current</td>
<td>I_{11} typ. 10 mA</td>
</tr>
<tr>
<td>Blanking pulse output impedance</td>
<td>$</td>
</tr>
<tr>
<td>Tracking range oscillator</td>
<td></td>
</tr>
<tr>
<td>Oscillator temperature dependency</td>
<td>typ. 0.02 Hz/K</td>
</tr>
<tr>
<td>Oscillator voltage dependency</td>
<td>typ. 0.03 Hz/V</td>
</tr>
<tr>
<td>Junction temperature</td>
<td>T_j typ. 170 \degreeC</td>
</tr>
<tr>
<td>switching point thermal protection</td>
<td></td>
</tr>
<tr>
<td>Thermal resistance from junction to copper heat spreader (mounting base)</td>
<td>$R_{th j-mb}$ typ. 4 K/W</td>
</tr>
</tbody>
</table>

* When the flyback generator is used, the maximum supply voltage must be chosen such that during flyback the voltage at pin 4 (supply voltage output stage) does not exceed 50 V.

**These values are obtained at an output current of 2.1A p-p (knee voltages of the output transistors). For an output current of 4A p-p the maximum knee voltage is 3 V.
<table>
<thead>
<tr>
<th>Pinning</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Comparator input</td>
<td>The d.c. and a.c. feedback, which are measured at the output of the class-B amplifier, are fed into pin 1 via an external circuitry. Pin 1 is one of the two comparator inputs, the other is fed internally with the sawtooth signal.</td>
</tr>
<tr>
<td>2. Negative supply (ground) for output stage</td>
<td></td>
</tr>
<tr>
<td>3. Output</td>
<td></td>
</tr>
<tr>
<td>4. Positive supply of output stage</td>
<td>The vertical deflection coil is connected to this pin, via a series connection of a coupling capacitor and a feedback resistor, to ground.</td>
</tr>
<tr>
<td>5. Synchronization input</td>
<td>This supply is obtained from the flyback generator. An electrolytic capacitor between pins 4 and 6, a diode between pins 4 and 13, and a resistor between pins 6 and ground have to be connected for proper operation of the flyback generator.</td>
</tr>
<tr>
<td>6. Flyback generator output</td>
<td></td>
</tr>
<tr>
<td>7. Tuning of oscillator (frequency control)</td>
<td>The oscillator frequency is determined by the values of the resistor and capacitor connected in parallel to pin 7.</td>
</tr>
<tr>
<td>8. Buffered sawtooth signal</td>
<td>The sawtooth signal is applied via a buffer stage to pin 8. This signal is applied via an external circuit to the mid-point of the sawtooth generator tuning capacitors to obtain linearity and part of S-correction.</td>
</tr>
<tr>
<td>9. Tuning of sawtooth generator</td>
<td>The timing of the sawtooth generator is defined by the potentiometer setting and the capacitors connected to pin 9. This capacitance is divided to realize linearity control and part of the S-shape.</td>
</tr>
</tbody>
</table>

APPLICATION INFORMATION

The function is described against the corresponding pin number

1. Comparator input
 - The d.c. and a.c. feedback, which are measured at the output of the class-B amplifier, are fed into pin 1 via an external circuitry. Pin 1 is one of the two comparator inputs, the other is fed internally with the sawtooth signal.

2. Negative supply (ground) for output stage.

3. Output of class-B power stage.
 - The vertical deflection coil is connected to this pin, via a series connection of a coupling capacitor and a feedback resistor, to ground.

4. Positive supply of output stage
 - This supply is obtained from the flyback generator. An electrolytic capacitor between pins 4 and 6, a diode between pins 4 and 13, and a resistor between pins 6 and ground have to be connected for proper operation of the flyback generator.

5. Synchronization input
 - The oscillator has to be synchronized by a positive-going synchronization pulse of between 1 and 8 V.

6. Flyback generator output.
 - An electrolytic capacitor between pins 6 and 4 and a resistor between pins 6 and 12 (ground) have to be connected to complete the flyback generator.

7. Tuning of oscillator
 - The oscillator frequency is determined by the values of the resistor and capacitor connected in parallel to pin 7.

8. Buffered sawtooth signal
 - The sawtooth signal is applied via a buffer stage to pin 8. This signal is applied via an external circuit to the mid-point of the sawtooth generator tuning capacitors to obtain linearity and part of S-correction.

9. Tuning of sawtooth generator
 - The timing of the sawtooth generator is defined by the potentiometer setting and the capacitors connected to pin 9. This capacitance is divided to realize linearity control and part of the S-shape.
APPLICATION INFORMATION (continued)

10. Decoupling of output driver stage
 A capacitor with a low value has to be connected to pin 10 for decoupling of the output driver stage.

11. Blanking output
 The maximum pulse amplitude without load is 6.5 V. The maximum available current is 10 mA.

12. Negative supply (ground) of small-signal part.

13. Positive supply
 The supply voltage at this pin is used to supply the flyback generator, the voltage stabilizer and the protection circuits.

The following application data are measured in a typical 30 AX system (Fig. 3).

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltage V_p = V_{13-12}</td>
<td>26 V</td>
</tr>
<tr>
<td>Output voltage (d.c. value) V_3-2</td>
<td>14 V</td>
</tr>
<tr>
<td>Output voltage (peak value) V_3-2</td>
<td>42 V</td>
</tr>
<tr>
<td>Supply current I_4 + I_{13}</td>
<td>300 mA</td>
</tr>
<tr>
<td>Output current (peak-to-peak value)</td>
<td>2.1 A</td>
</tr>
<tr>
<td>Flyback time t_fi</td>
<td>1.2 ms</td>
</tr>
<tr>
<td>Blanking time t_b</td>
<td>1.4 ms</td>
</tr>
<tr>
<td>Total power dissipation in IC P_{tot}</td>
<td>4 W</td>
</tr>
<tr>
<td>Total power consumption P</td>
<td>8 W</td>
</tr>
<tr>
<td>Non-linearity</td>
<td>< 3 %</td>
</tr>
<tr>
<td>Thermal resistance of heatsink R_{th h-a}</td>
<td>10 K/W</td>
</tr>
</tbody>
</table>
Fig. 3 Complete vertical deflection circuit for 30 AX.
BIPOLAR ICs FOR VIDEO EQUIPMENT

FUNCTIONAL AND NUMERICAL INDEX
MAINTENANCE TYPE LIST

GENERAL

PACKAGE OUTLINES

INTRODUCTION

DEVICE DATA