CLC5506 Evaluation Board

The CLC5506PCASM is a fully assembled and tested evaluation module for CLC5506 Gain Trim Amplifier. The evaluation module simplifies the task of making frequency response and noise figure performance evaluation of the CLC5506 Gain Trim Amplifier (GTA).

The evaluation circuit is carefully designed and laid out on an FR4 printed circuit board (part number: CLC730102). Refer to *Figure 1* for the schematic diagram of the CLC5506PCASM.

National Semiconductor Application Note 1138 Lynn Barbosa August 1999

FIGURE 2. Test Setup Block Diagram for Frequency Response Measurement

Figure 3, shows the typical test setup block diagram for the measurement of noise figure parameter. A RF noise source was used. During the noise figure measurement, the CentronicsTM printer cable connected to P1 should be disconnected from the evaluation module and removed from the measurement area to reduce PC EMI noise pick-up.

FIGURE 1. CLC5506PCASM Schematic Diagram

The differential input impedance of CLC5506 between pins IN₊ and IN₋ is 200Ω. The differential output impedance between pins OUT₊ and OUT₋ is set to 200Ω by resistor R2. Two 4:1 impedance ratio transformers (T1 and T2) are used for wide band matching to a single ended 50Ω system to simplify evaluation. The 3.3µH inductor at L1 and L2 are used as RF chokes for the open collector outputs. Resistor R1 and V_{CCD} is used to reduce noise cross-talk between the V_{CCA} and V_{CCD}. The low pass RC networks (R3, R4, R5 and C14, C15, C16) at LE, Clock and Data In pins are used to reduce outputs.

Windows-95/98/NT GTA control software, developed by National Semiconductor can be used to send control data to the CLC5506 Gain Trim Amplifier. This software along with the CLC5506 Datasheet can be downloaded from National Semiconductor Corporation Web site at //http://www.national.com.

Figure 2, shows the typical test setup block diagram for the measurement of frequency response parameters.

FIGURE 3. Test Setup Block Diagram for Noise figure Measurement

RF transformers T1 and T2 have intrinsic losses, the actual RF performance of the CLC5506 per se, could be calculated by accounting for T1 and T2 losses in the evaluation module. Refer to *Table 1* for correction factor for gain measurement and noise figure measurement based on typical losses measured on the transformers specified in *Table 2*.

LC5506 Evaluation Board

Centronics is a trademark of Centronics

© 1999 National Semiconductor Corporation AN101212

www.national.com

requency (MHz)	Gain Measurement Correction Factor (dB)	Noise Figure Measurement Correction Factor (dB)	
50	1.6	0.8	
60	1.6	0.8	
70	1.6	0.8	
80	1.7	0.85	
90	1.7	0.85	
100	1.7	0.85	
110	1.7	0.85	
120	1.8	0.9	
130	1.8	0.9	
140	1.8	0.9	
150	1.8	0.9	
160	1.8	0.9	
170	1.8	0.9	
180	1.9	0.95	
190	1.9	1.9	
200	1.9	1.9	
210	1.9	0.95	
220	2.0	1.0	
230	2.0	1.0	
240	2.0	1.0	
250	2.0	1.0	
260	2.1	1.05	
270	2.1	1.05	
280	2.2	1.1	
290	2.2	1.1	
300	2.2	1.1	
310	2.2	1.1	
320	2.3	1.15	
330	2.3	1.15	
340	2.3	1.15	
350	2.4	1.2	
360	2.4	1.2	
370	2.5	1.25	
380	2.5	1.25	
390	2.5	1.25	
400	2.5	1.25	
500	3.8	1.9	
600	4.4	2.2	

www.national.com

· ·

Reference	Description	Part No. or	Distributor	Qty.
		Note		
T1,2	Transformer	Mini-Circuits TC4-1W	Mini-Circuits	2
P1	Connector	Norcomp, TT57-LE40360	DigiKey/ 1036RF-ND	1
J1,2	SMA connector	Femal Right Angle PCB Mount	DigiKey/ ARFX1232-ND	2
C4,8	Cap, 100pF, 5%	0805 SMD package	Generic	3
C6,7,10,11	Cap, 1000pF, 10%	1206 SMD package	Generic	4
C5,9,14,15,16	Cap, 0.1µF, 20%	0805 SMD Package	Generic	6
C1	Cap, 6.8µF, Tant., 16V	3528 SMD package	Generic	1
R1.3,4,5	Res 1K, 5%, 1/8W	1206 SMD Package	Generic	4
R2	REs, 200, 5%, 1/8W	1206 SMD Package	Generic	1
L1,2	Inductor, 3.3µH	1008 SMD Package	CoilCraft	2
VCC, GND	Single Header	0.1" header	Generic	2
U1	CLC5506IM PCB	14-PIN SOIC CLC730102	National Semi National Semi	1

For insertion gain measurement of the frequency response, the correction factor is the total insertion loss of T1 and T2. This correction factor shall be added back to the insertion gain reading of network analyzer to get the actual gain performance of CLC5506.

For the noise figure measurement, the correction factor is the insertion loss of T1 (or half the total loss of T1 and T2). This correction factor shall be deducted from the noise figure reading of noise figure meter.

Figure 4 and *Figure 5* on the following page, illustrate the top and bottom side layout of the CLC730102. *Figure 6*, also on the following page, is the assembly drawing of CLC5506PCASM.

FIGURE 4. CLC730102 (Top Side)

AN-1138

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.