
SLIO-CAN CAN-Linked I/O
Based on COP884BC

ABSTRACT

Main applications of the CAN Link I/O lies in automotive
sensor/actuator systems, but also other applications in in-
dustrial systems are of interest. The specification is based
on the Microcontroller COP884BC, which has an integrated
CAN interface as a peripheral block, but the conversion of
the software to COP888EB, National Semiconductor’s sec-
ond CAN Microcontroller, can be done quite easily. The fea-
tures of the SLIO are restricted the hardware limits like Pi-
nout, periphery blocks, core, and interrupt possibilities of the
COP884BC. The features of the SLIO specification were di-
vided in Processes, which gave an overview the communi-
cation between CAN, internal processing, and I/O pins of the
SLIO.

1.0 INTRODUCTION

1.1 SLIO-CAN—Module Concept

CAN integration variants reach from stand-alone solutions to
Microcontroller and SLIO solutions. To reduce the costs the
Microcontroller- and especially the SLIO variant are very im-
portant, because external components in these solutions are
avoided and this reduces the costs as well. Many nodes in

vehicle network systems are used to manage Input/Output
transfers to sensors and actuators only. These nodes have
consisted usually of a Microcontroller with integrated micro-
processor, CAN interface, RAM, ROM and several I/O-
function blocks. The customer develops his special solution
of the transfer with a software program, which is pro-
grammed into the controller. Microcontroller solutions are
very universal and the customer has many possibilities to
implement his application. On the other hand, the customer
needs a little time to develop and test the software, learning
the processor architecture and to handle the several devel-
opment tools. Contrary to the microcontroller solution the
idea of a Serial Link I/O/-chip solution is to reduce the cost of
developing and testing. This CAN integration variant has
preprogrammed logic inside, which predefines the I/O-pin
CAN data transfer. The function variety is limited so the SLIO
is used for more or less standard I/O-Functions. The data
transfer to/from SLIO devices is limited to two databyte mes-
sages and this messages are used to configure or change
the registers within the SLIO memory (see Figure 1). In spite
of the limited variety of function capabilities, Serial Link I/O’s
can replace microcontroller solutions in order to spare devel-
opment time and costs.

The following documentation describes the internal con-
struction and the important internal processes of the imple-
mentation of the SLIO.

MICROWIRE™ is a trademark of National Semiconductor Corporation.
MICROWIRE/PLUS™ is a trademark of National Semiconductor Corporation.
WATCHDOG™ is a trademark of National Semiconductor Corporation.

AN100025-1

FIGURE 1. CAN Integration Variants Microcontroller/SLIO

National Semiconductor
AN-1073
Tobias Wenzel
June 1997

S
LIO

-C
A
N
C
A
N
-linked

I/O
based

on
C
O
P
884B

C
A
N
-1073

© 1997 National Semiconductor Corporation AN100025 www.national.com

1.2 SLIO Specification

The SLIO is presented as an application (see Figure 2),
which is based on the SLIO-CAN Principle with advanced
input/output functions and other interesting features like
reading identifier from the external EEPROM and a CAN bus
rate up to 1 Mbaud. The highlight of this new specification is
the external EEPROM mode. In this mode all 11 identifier
bits from a standard frame can be influenced with 4 I/O-pins.

In the Module Concept the SLIO has a small memory, called
SLIO register block, which contains several registers (pa-
rameters). These parameters can be configured by CAN
messages. But in addition to that, these registers can also be
configured by the external EEPROM during the initialization
phase.

In Table 1 the collection of all SLIO registers is shown. By
changing these parameters the configuration of Multi I/O-
Function Block, power save condition and CAN bus mode
condition within the CAN interface will be changed. Further-

more, some parameters are defined for the CAN identifier
and the CAN prescaler. But this parameter can only be con-
figured by CAN identifier port.

TABLE 1. SLIO Register Block

Name Function config. over CAN config. over EEPROM

IN1 read status P0 to P7 read only no

PE config P0 to P7 positive edge yes yes

NE config P0 to P7 negative edge yes yes

OD1 write data to P0 to P7 yes yes

DD1 config P0 to P7 data direction yes yes

IN2 read status P8 to P13 read only no

OD2 write data to P8 to P13 yes yes

DD2 config P8 to P13 data direction yes yes

ADC read specified analog input read only no

DAC1 config analog output yes yes

DAC2 config analog output yes yes

ACT analog output control yes yes

CCT comparator control yes yes

CTR configuration register yes yes

The following important features of the SLIO-CAN are sum-
marized.

AN100025-2

FIGURE 2. SLIO Block Diagram

www.national.com 2

Advanced Functions

• three identifier programming modes

— pin mode

— EEPROM mode

— pin_e2 mode

• automatic setup of SLIO functions

• 7 pins support A/D-conversion

• bus speed up to 1 Mbit/s

• local oscillator

• local wakeup

Standard Functions

• configuration of different bus modes

• two power save modes: SLEEP/NAP

• PWM D/A-output 8/10 bit

• comparator logic

• external event recognition

• I/O pins individually configured

• WATCHDOG™ mode

1.3 COP884BC Microcontroller

The solution consists on the one hand of the COP884BC Mi-
crocontroller, which has an integrated CAN interface and on
the other hand on the software, which controls the data
transfer process (see Figure 3).

In Figure 4 Block Diagram the Microcontroller COP884BC
with its peripheral blocks is shown. The COP884BC belongs
to the family of 8-bit Microcontroller from National Semicon-
ductor. It contains all program and data memory internally
and additionally it contains peripheral blocks like config-
urable I/O-ports, one programmable 16-bit timer, idle timer,
serial interface MICROWIRE/PLUS™, CAN interface, two
comparators and Multi Input Wakeup function in order to
generate external interrupts. The COP8 core supports two
power save modes HALT/IDLE and can operate on inter-
rupts from internal and external sources.

The memory organization is based on “Harvard” architec-
ture, in which the program memory (ROM) is distinct from
the data memory. One exception from the conventional Har-
vard architecture is the instruction called Load Accumulator
Indirect (LAID). This instruction allows access to data table
stored in program memory, which is also very useful for op-
timizing code. The packages are 28-pin SO with general 18
I/O pins and 20-pins SO with 10 I/O-pins. The instruction
cycle time is CKI/10, because all internal COP8 operations
are serial. The highest allowed value of CKI is 10 MHz (1 µs
instruction cycle time tc).

AN100025-3

FIGURE 3. SLIO Application

3 www.national.com

CAN Interface

The task of the physical CAN interface is to manage the pro-
tocol layer of the CAN communication. That means at first to
transmit and to receive frames in correct CAN format (SOF,
identifier, Control Field, CRC, ACK, EOF), secondly an error
management logic insures the security of the data transfer
and execute an error frame if an error has occurred. The in-
terface works independent from the COP8-CORE and can
be configured over Control Registers in RAM (see Figure 5).
The local CAN bit rate will be executed in the bit time logic
(up to 1 MBit/s) depending on the frequency CKI.

Important for the SLIO implementation is that 2 data Byte
messages can be automatically retransmitted. Thereby the
software expense for the implementation can be reduced be-
cause the SLIO concept demands only communications of
two data bytes. Additionally the SLIO has the possibility to
change the bus mode from single wire mode to dual wire
mode. This will be managed with the CAN input module and
the CAN output module, which can be configured over a
CAN interface control register.

AN100025-4

FIGURE 4. COP884BC Block Diagram

www.national.com 4

Referring to the network nodes, it is possible to use ex-
tended nodes and COP888BC µC together in one CAN net-
work, because the CAN interface is compatible with CAN
Specification 2.0 part B. However, extended frames can only
be accepted for errors, but are not processed.

More details referring to the configuration of the CAN Inter-
face can be found in the COP884BC datasheet.

MICROWIRE™ Interface

This serial interface of COP884BC is important in order to
read data from an external EEPROM. Additionally, other pe-
ripherals which can be connected to MICROWIRE, should
have the capability to read from the EEPROM with the same
chip select. In order to manage that, all users of the
MICROWIRE bus have to switch between logical high and

high impedance state. When the chip select is high, one of
the users reads from the EEPROM at this time and the other
nodes can not do this at the same time. In this context the
pull down resistor of the chip select wire is necessary so that
in high impedance condition the state is defined.

The Master (in this case COP884BC) creates the shift clock
(SK), which can be programmed between 2*tc and 8*tc. For
the data communication with the EEPROM the highest shift
clock rate of CKI/20(2*tc) is possible. This clock time was se-
lected for the SLIO implementation.

In Figure 6 hardware connection of the EEPROM and
COP884BC is shown without any peripherals connected to
the MICROWIRE interface.

AN100025-5

FIGURE 5. CAN Interface Block Diagram

5 www.national.com

MuIti Input Wakeup

Two functions are important for SLIO implementation:

• create an interrupt from external positive/negative edges

• wake up the Microcontroller from power save (HALT/
IDLE mode)

Figure 7 shows the wakeup sources of COP884BC. One of
the external wakeup sources is the CAN input module (see
also Figure 5), which is internally connected with the MULTI
INPUT WAKEUP block and can not be influenced by soft-
ware.

The other external wakeup sources are the COP884BC
L-Port pins L0 to L6. These pins can be controlled by soft-

ware with the control register located in RAM. This means
that the enable or disable can wakeup separately or select
the edge to execute wakeup functions. When one wakeup is
executed, the Microcontroller will wake up from HALT/IDLE
condition if it is in power save condition and after that it will
jump into the wakeup interrupt routine. When the Microcon-
troller is active, the process goes directly into the interrupt
process.

More detailed information about MULTI INPUT WAKEUP
and Power Save modes are described in the COP884BC
datasheet.

2.0 SYSTEM DESIGN

2.1 SLIO Processes

The functionality of the SLIO can be separated in different
processes, which are described in the Section “System
Design”.

AN100025-6

FIGURE 6. Data Transfer EEPROM → COP884BC

AN100025-7

FIGURE 7. Structure of MULTI INPUT WAKEUP

www.national.com 6

Figure 8 shows processes that are described in rectanglular
objects and on the other hand states which are described in
round objects. In order to get the system into an active state,
a start up process has to be executed. In this state all impor-
tant configurations will be done, and after that, the CAN sys-
tem master is informed with a status message that this SLIO
node is ready to communicate via CAN. That means that the
device is waiting for messages or actions from the CAN or
the I/O pins.

CAN messages can be classified in two different kinds. On
the one hand there are “Read messages”, which should
send information about the status of I/O pins to the system
master. This will be done in the Read Process. Examples of
this classification of messages are “read analog input” or
“read digital status” of pins P0 to P7 (P8 to P13). On the
other hand there are “Update Messages”, which change the
configuration of the SLIO. This means that the SLIO Regis-
ters are updated and because of that the configuration of the
peripheral controller blocks is changed. This procedure is
described as the “Update Process”.

Two other processes are shown in Figure 8: WATCHDOG
process and change bus mode process. These are linked to
an internal SLIO time source. The basic unit of this time
source is called chip base time (Bt) and is defined to 40960/

CKI. WATCHDOG and Change Bus Mode can be executed
depending on multiples of Bt and these multiples can be con-
figured via the SLIO Register individually. Additionally, the
NAP condition also has a relationship to the internal time
source, because the wakeup time from NAP mode is config-
urable in multiples of Bt too.

2.2 Start Up Process

The start up process describes the process after RESET un-
til the SLIO is ready to communicate with CAN or with
sensors/actuators, which are connected on the I/O-pins. A
RESET can be executed firstly by toggling the RESET pin or
secondly by an internal software WATCHDOG logic, when it
is enabled. The Flow of the process is shown in Figure 9.

The ID Configuration and SLIO Registers Configuration sub-
processes read the identifier port and will be explained in
later section. Next, all peripheral Controller blocks are initi-
ated by the status of the SLIO Register. When this process is
finished the status message will be created, which informs
the system master of the CAN network about the status of
the pins P0 to P7. After transmitting this message all inter-
rupts are enabled. Then the device is in condition “Wait”,
which means that the SLIO is ready to communicate via
CAN and with connected devices on I/O pins.

AN100025-8

FIGURE 8. SLIO Processes

7 www.national.com

2.2.1 Read CAN Identifier Port

Every Serial Link I/O in the network needs a transmit ID and
a receive ID. It is defined globally that after every transmit ID
follows the receive ID of the according note. The ID will be
programmed through the CAN Identifier Port. This identifier
can only be changed by reading this port during initialization
and not via the CAN bus.

Basically, there are two different modes to read the CAN
identifier. In pin mode only four identifiers from the 11 identi-
fiers in the standard CAN format can be read with pull up/
down resistors on pins ID0 to ID3. This mode is the simplest
way to program the identifier, but it has the disadvantage that
only 16 different SLIO nodes can be connected on one CAN
network system. In order to avoid this disadvantage the user
has the alternative to use the EEPROM mode. In this mode,

all 11 identifiers of standard CAN format can be read from an
external EEPROM connected on the CAN identifier port.
This port consists of pins from the G-Port (see COP884BC
datasheet) and has the capability to connect the MICROW-
IRE interface under software control (see Figure 10). A fur-
ther advantage of an external EEPROM consists of the pos-
sibility to read standard data to the SLIO Registers, which
controls the SLIO condition. This process will be done during
the initialization phase of the chip and avoids a lot of CAN
communication after the initialization in every SLIO node.

In this pin_e2 mode, the identifiers are read in pin mode and
the configuration of the SLIO registers can be read from the
external EEPROM. In this case the information to go in
pin_e2 mode is given by the EEPROM.

AN100025-9

FIGURE 9. Start Up Process

www.national.com 8

2.3 CAN Communication Processes

2.3.1 General

Due to the specification, the identifiers are used to distin-
guish CAN messages from the different SLIO Nodes and in
order to find the direction of the CAN message (to/from the
SLIO). This ID can be understood as addresses of CAN
messages in a global address space, which is managed
from a system master. If the Master Controller in a network
wants to change the configuration of the SLIO, it has to send

a message to the SLIO with the correct receive iIdentifier
(seen from SLIO side). In order to know, which register
should be changed through this message, 5 Bits of the first
date byte are received to mark the specified SLIO Register.
These 5 bits get the name Register Marker. The relationship
of the Register Marker and the specified SLIO Registers are
shown in Table 2, which was defined in specification. The
new data to this Register is placed in the second date byte of
the CAN frame.

TABLE 2. SLIO CAN Registers

RM (hex)
Register Marker Bit

Name Function Dir
4 3 2 1 0

00 0 0 0 0 0 IN1 P0 . . . P7 input data r

01 0 0 0 0 1 PE P0 . . . P7 positive edge r/w

02 0 0 0 1 0 NE P0 . . . P7 negative edge r/w

03 0 0 0 1 1 OD1 P0 . . . P7 output data r/w

04 0 0 1 0 0 DD1 P0 . . . P7 data direction r/w

05 0 0 1 0 1 IN2 P8 . . . P13 input data r

06 0 0 1 1 0 OD2 P8 . . . P13 output data r/w

07 0 0 1 1 1 DD2 P8 . . . P13 data direction r/w

08 0 1 0 0 0

ADC A/D read r.

0E 0 1 1 1 0

0F 0 1 1 1 1 IN1
P0 . . . P7 input data reset

register marker
r

10 . . . 13 1 0 0 x x DAC D/A write r/w

14 1 0 1 0 0

n/a reserved n/a.

1B 1 1 0 1 1

AN100025-10

FIGURE 10. Read CAN Identifier Port

9 www.national.com

TABLE 2. SLIO CAN Registers (Continued)

RM (hex)
Register Marker Bit

Name Function Dir
4 3 2 1 0

1C 1 1 1 0 0 ACT analog control r/w

1D 1 1 1 0 1 CCT comparator control r/w

1E 1 1 1 1 0 REF revision r

1F 1 1 1 1 1 CTR configuration register r

Due to the global address space the SLIO device can com-
municate with the CAN bus. The next section shows how the
device manages this communication internally.

2.3.2 Read Process and Update Process

Basically the communication via CAN by these two pro-
cesses is follows by the same rules:

• disable global interrupt

• CAN receive process

• individual process

• CAN transmit process

• enable global interrupt

The reason to suspend all interrupts during CAN communi-
cation lies in the fact that this process should not be dis-
turbed by other actions caused by interrupts like CAN

receive/error messages or external events. CAN messages
are ignored during this time but the reception of external
events will only be delayed until CAN communication is fin-
ished.

And what is the difference between Read process and Up-
date process?

For one read process (Figure 11) the specified Register
Marker defines which read message should be executed. On
the one hand, in read process the digital status is read how
it was managed by creating a Status Message during the
start up process. On the other hand the analog status of one
analog input pin can be read. In SLIO Registers the result of
reading is saved. After finishing these two different reading
processes the status of the result will transmit to the System
Master.

In contrast to the Read Process, during the Update Process
(Figure 12) SLIO Control Registers have to be changed in
order to reconfigure the condition of the device. After the se-
lection, which is defined through the Register Marker, the

SLIO Register will be updated. This updating causes a new
initialization depending on the new data. After finishing this
process the condition of SLIO will be changed. In order to

AN100025-11

FIGURE 11. Read Process

www.national.com 10

show the Master of the CAN system the valid reception, the
SLIO will respond with the new data of the specified SLIO
Register.

2.3.2.1 Analog Input Module

Besides reading the digital status of the SLIO pins the ana-
log input function is also a part of the reading process. The
idea of this analog input lies not in a high performance A/D-
conversion, but in the possibility to read up to 16 different
voltage levels by one I/O-pin. Figure 14 shows an example
of reading different voltage levels of a resistor array. This will
be done by measuring the charge or discharge time of an ex-
ternal capacitor. The internal construction of an I/O pin (see
Figure 13) will be supported by the software implementation
of the analog input. At first the level of the Schmitt Trigger In-
put is measured. Depending on the result, low or high, the in-
ternal driver, which is controlled by the software charge/
discharge logic, charges or discharges the external
capacitor.

Schmitt Trigger level = low → charge capacity

Schmitt Trigger level = high → discharge capacity

Afterwards, the time to get the original digital (after Schmitt
Trigger) state is measured by a counter register. This
counter values consider different input voltages. The prob-
lem with this A/D software implementation is shown in Figure
14, because the charge or discharge time of the capacitor is
dependent on the current and this current is not linear. With
voltages near the Schmitt Trigger level, the 8-bit counter
value is overflowed and no measurement is possible. Addi-

tionaly, this measurement is dependent on CKI and so the
choice of R/C values has to be adjusted to the different ap-
plication conditions.

AN100025-12

FIGURE 12. Update Process

AN100025-13

FIGURE 13. Analog Input

11 www.national.com

2.4 Time Source Processes

With the IDLE timer of COP884BC, an internal time source
can be implemented. This time is dependent on CKI. The
toggle of the thirteenth bit of this 16-bit timer can generate an
interrupt, furthermore the toggle is latched in the pending
flag T0PND. By a CKI of 10 MHz this flag is always set after
4.096 ms. A unit is defined, which is called chip base time
(40960/CKI).

Next, two processes will be described, which can be config-
ured depending on the chip base time.

2.4.1 Change Bus Mode Process

The CAN input and CAN output modules support three dif-
ferent bus modes:

• dual wire

• single wire RX0/TX0

• single wire RX1/TX1

In dual wire mode the information is transmitted and re-
ceived in a differential mode. This means the difference of

Signal1 on RX0 pin and the Signal2 on RX1 pin is consid-
ered as the message signal. In single wire modes only one of
the pins is used for communication. In application it is some-
times useful to switch between the three bus modes. There-
fore, three different types to change the mode are defined.

• automatic mode —In automatic mode the bus will be
checked and the SLIO is configured automatically when it
receives a message. When a message is received, the
current bus mode will be fixed. This change bus mode,
for example, is used when the device is initialized in pin
mode (read ID over pin status). Then the bus mode is ex-
ecuted automatically when any message is received. The
switch time in this automatic mode is fixed to 8*Bt.

• WATCHDOG mode—If in any bus mode no message is
received, the WATCHDOG mode causes a RESET. After
RESET, the power save mode SLEEP is enabled and this
mode is nearly “switched off” from CAN bus. This is use-
ful in order to avoid disturbing the CAN bus with perma-
nent error frames transmitting from the SLIO.

• cycle mode —In cycle mode the switching is program-
mable by the SLIO CTR Register. This change bus mode
is specified, for example, in cases when one CAN wire is
broken. If cycle mode is enabled the data transfer can be
continued by the other valid CAN wire.

2.4.2 Power Save Control Process

The NAP mode in the power save process can also be con-
figured depending on multiples of the chip base time. Con-
trary to the SLEEP mode, in NAP mode the WAKEUP block
and the IDLE timer are still active. This IDLE timer will wake
up from NAP mode every Bt.

3.0 SOFTWARE IMPLEMENTATION

3.1 Software Control Structure

In Figure 15 the structure of the control software for the SLIO
is shown. The software is controlled by the control/status
register. The status of these control flags influence the flow
of the structure.

AN100025-14

FIGURE 14. Input Voltage Depending on Counter Value

www.national.com 12

The initialization module is responsible for the correct con-
figuration of the peripheral blocks of the Controller. This con-
tains trying to read from the external EEPROM (read_ee)
and within init_ID analyzing the identifier depending on read-
ing mode (E2/pin mode). After that, the init routines follow
the configuration of the peripheral blocks depending on the
status of the SLIO Registers, which are configured over an
external EEPROM. In pin mode all SLIO Registers are set to
zero with the exception of the CAN prescaler register
(CAN_PSC), this is set to 03h. This means that the default
bus rate of the SLIO is 250 kbit/s.

After that the interrupts (CAN error, CAN receive, Idle timer
interrupt, wakeup interrupt, external interrupt) are initiated.
These maskable interrupts are still disabled by the global in-
terrupt flag and this flag will be set in the end of the start up
process. Then the process is prepared for transmitting a sta-

tus message to the bus. This means on the one hand to set
the UPD_REG flag in order to execute the update process in
the control unit and on the other hand to set the IN1_UP flag
(UPDAT_ST1), which cause a reading of P0 to P7 in the up-
date module.

It was mentioned in the first draft description that this solu-
tion contains a collection of functions in the global function
module, which are used firstly from the initialization module
and secondly from the configuration update module.

In the left side of Figure 15, all interrupt routines are col-
lected and will be executed, when one of the interrupt source
creates an interrupt. Two different types of interrupt sources
are implemented. On the one hand CAN interface and Multi
Input Wakeup, which creates interrupts through actions from
outside and on the other hand the Idle timer, which creates

AN100025-15

FIGURE 15. Software Control Structure

13 www.national.com

an internal interrupt sequentially after every Bt in order to
make an internal time source. This time is needed for NAP
control, WATCHDOG and change bus modules.

3.1.1 Interrupt Handling

The interrupt handling is managed from an interrupt vector
table, which is placed after the ROM address 00FFh. This in-
terrupt unit leads the process to jump to the start label of the
specified interrupt routine. Basically, during the execution of
an interrupt routine, all interrupts are disabled. This means
that the interrupt process can not be broken, but after finish-
ing the first interrupt routine, all other received interrupts are
executed one after another. When all received interrupts are
executed, the process jumps back to the previous program
address and continues the program flow.

It was described in System Design during CAN communica-
tion processes, all interrupts are suspended. These inter-
rupts are wakeup/external interrupts and the time source in-
terrupt. The routines, which are synchronized by this time
source interrupt (see System Design) are not time critical.
But what is done by external events, which were recognized
during CAN communication processes. They are not lost. Al-
though wakeup interrupts and external interrupts are dis-

abled, they are latched in the pending flag registers. There-
fore after the CAN process, this register is decoded and for
every recognized event, a status message is created. In this
way, after the start up process, no external events are lost.

3.2 Software Modules of the SLIO

3.2.1 Initialization Module

Read from the external EEPROM

Within the initialization module (see Figure 15 Software Con-
trol Structure) the subroutine read_ee has the function to
read the external EEPROM register in the RAM of
COP884BC. This will be processed if the ID0 pin is low. This
means that no other peripheral reads the EEPROM at this
time. In order to check the ID0 pin, it has to be set as input.
The check, if the E2 lies on the ID-pins, will be checked in
the subroutine test_ee_mask with the higher byte of the first
16-bit register of E2. These mask identifiers have to be the
bit setting 0xAA. Then the process accepts the reading reg-
ister values and the E2_CON flag in CONTROL1 register is
set. Now the flow of read_ee is started, which is shown in
Figure 16.

www.national.com 14

After checking ID0, the process is prepared for reading val-
ues of the EEPROM. The number of external 16-bit register
is initiated to nine and for every external register there are
two RAM-addresses necessary. The first address is pointed
through X-pointer.

In the subroutine confbus, the MICROWIRE serial bus sys-
tem is configured. The next subroutine, r_e2_reg reads one
16-bit register with the address saved in accumulator and
writes the data to the RAM place pointed from the X-pointer.
The Accumulator and X-pointer are used as variables for this
subroutine. In the process, the EEPROM address signed
with the variable addr_ee is incremented. This will be cycled
until the EEPROM address 0x09 is read.

One 16-bit reading cycle consists of four 8-bit shiftings,
which is shown in Figure 17.

Example:

• 8-bit shifting one: transmit read instruction (SO)

• 8-bit shifting two: transmit e2address to the EEPROM
(SO:address 04)

• 8-bit shifting three: higher data byte transfer (SI: B3)

• 8-bit shifting four: lower data byte transfer (SI: 6E)

AN100025-16

FIGURE 16. Flow of read_ee

15 www.national.com

3.2.2 Control Unit

After initialization the program is alwayscycled in this main
polling cycle (see Figure 18). It can only be broken by chang-
ing the status of the polling flags or from an interrupt. In ad-
dition to that, the WATCHDOG control can create a RESET
if WATCHDOG is enabled (CTR register).

AN100025-17

Note 1: At this time the MSB of the first databyte is seen in shift register of the controller. After the falling edge the shift register is written out.

FIGURE 17. Reading Cycle of One 16-bit e2Register

www.national.com 16

3.2.3 CAN Transfer Module

CAN Transmit Routine

This routine, which is shown in Figure 19, is activated by the
Control Unit the TX_MES control flag is set. It loads the
transmit data register with specified data and gives informa-
tion to the CAN interface to transmit a message. This action
is only executed if the CAN interface is not in the transmis-

sion phase. When it is, the process waits until the transmis-
sion is ready. After the request to transmit a new messsage
from the CAN interface, the global interrupt flag will be set
again. Now the CAN communication from a receiving mes-
sage (can_rx) updates the SLIO register and changes the
configuration of the SLIO (update routine) and transmits a
message to the bus to inform the master that the communi-
cation was correct.

AN100025-18

FIGURE 18. Flow of Main Polling Cycle

17 www.national.com

CAN Receive Routine

After a valid CAN message is received, the CAN interface
generates a receive interrupt and can_rx (Figure 20) will be
executed. All interrupts during the receive process and trans-
mit process are suspended globally. This will be done with
the global interrupt mask bit GIE, which is supported from
the Controller. Afterwards, the data direction identifier (CID0)
is checked. If this CID0 is set, the CAN frame is a receive
frame for the SLIO device and the process is going. Then the

data length code from the received frame is checked and
only 2 byte messages will be allowed with the SLIO applica-
tion. In the flow within the identifier logic, the receive identi-
fiers are compared with the programmed identifiers during
initialization phase. When the identifiers during start up pro-
cess are read over the EEPROM, two different receive iden-
tifiers are allowed, the receive ID and the global receive ID.
Global ID’s can be used to communicate with more than one
SLIO node at the same time by one CAN message.

AN100025-19

FIGURE 19. Flow of cantx

www.national.com 18

Next, the remote bit of the CAN frame is checked. If the re-
ceived message is a remote frame, the device will answer
with a status message. In this case the read instruction of P0
to P7 will be prepared.

Then the main task of can_rx is started. This means on the
one hand the decoding of the register marker, which is lo-
cated in the first data byte of the CAN frame. The result is
saved in specified update flags in the registers UPDAT_ST1
and UPDAT_ST2, which can be considered as the interface
between CAN frame and configuration update process. On
the other hand, the second data byte is saved in the speci-
fied SLIO Register if the received message does not belong
to a “Read” instruction.

After this decoding logic, all Control flags of the CAN inter-
face are cleared and the interrupt routine is finished.

3.2.4 Configuration Update Module

The important interface between the can_rx interrupt routine
and the update module consists on the update flag registers
UPDAT_ST1/UPDAT_ST2. One exception is the Analog In-
puts, which are decoded through a pin_mask register and
are executed from the Control Unit directly. The Analog Input
module is described in the next section in detail.

Depending on the status of the update flags on the one hand
the specified configuration routine is executed or on the
other hand through “Read instructions” the specified read
routine is started. In this context only, one of these update
flags is set, because only one message is received at the
same time and during the communication process, all other
possible messages are ignored. Figure 21 shows the flow of
update.

AN100025-20

FIGURE 20. Flow of can_rx

19 www.national.com

3.2.5 Analog Input Module

When the can_rx routine recognizes one of the ADC Regis-
ter Markers (RM 08h to 0Eh point to P0 to P6), the process
does not take the usual way through the update module, be-
cause there is no hardware A/D periphery block on the mi-
crocontroller.

This conversion is done by software only. The configuration
of the specified I/O pin is changed during the conversion pro-
cess.

Therefore this A/D module will be executed directly over the
Control Unit by the pin mask register, which selects the
specified pin. The pin_mask register is configured in can_rx

AN100025-21

FIGURE 21. Flow of Update

www.national.com 20

depending on the ADC register marker. If this pin_mask reg-
ister in not zero the process of adconv is started (see Figure
22).

• check_input —At first in check_input, the specified pin is
configured as input and the digital status after the Schmitt
Trigger input is tested. The Schmitt Trigger range lies
close to a voltage level of 2.2V. The digital status is saved
with the STAT_AD control flag.

STAT_AD = low →voltage level under Schmitt Trigger
range

STAT_AD = high →voltage level above Schmitt Trigger
range

• capac_ch_dis —At first in this routine, the specified A/D
pin is configured as output. After that the pin status of this
pin is changed depending on the result of check_input. If
the condition was logical high, the pin will be set to zero
for a short time (nearly 15 tc). To the contrary, if the con-
dition of the pin was logical low, the pin will be set to high.
This is done with an internal driver of the port pin.

• mess—After the configuration of the A/D pin as input
again, the time will be measured by the software counter
register counter1 until the original status of the pin is ex-
ecuted again. This counter value can be considered as a
proportional value of the analog voltage level. One prob-
lem lies in the fact that the current that is charging or dis-
charging the external capacitor is not linear and so the
counter values also are not linear (see also Section
3.3.2.1. Analog Input Module).

• corr—In this subroutine, the counter1 result is prepared
to distinguish the voltage ranges above and under the
Schmitt Trigger level, because all 8 bits from counter1 are

used for measurement. Therefore, the counter1 is shifted
to the right for one bit and the MSB of the new counter
value is a sign for voltage levels under and above the
Schmitt Trigger level. This process deletes the LSB of the
counter value.

voltage level above Schmitt Trigger range → MSB =
one

voltage level above Schmitt Trigger range → MSB =
zero

• save—This subroutine prepares the correct counter
value for transmitting in the CAN transmit module.

• reconv_DD1 —The adconv routine is finished by recon-
figuration of the data direction the data direction register
DD1 by reconf_DD1. The reason for that reconfiguration
is the insurance that the data direction can only be
changed by CAN data direction messages.

3.2.6 Time Source Interrupt Routine

This routine is started every Bt, when the device is not in
power_save condition or in CAN communication process. In
these cases, the interrupt of the time_source is suspended.
After starting (see Flow of time_source—Figure 23) the
power_save_nap logic, it is decided if POW_S will be set.
This means that if NAP mode is enabled, the program flow
will enter in to power save control as soon as the control unit
can do so. The question, how long the program will stay in
NAP mode, will be decided in the power_save routine itself.

AN100025-22

FIGURE 22. Flow of adconv

21 www.national.com

Afterwards, if automatic or cycled bus mode is enabled, it is
decided depending on the programmable time (multiple of
Bt) whether to change the mode (set CH_BUS). Then the in-
terrupt routine is finished and the idle timer interrupt pending
flag will be cleared.

3.2.7 Power Save Routine

Power_save is executed from the control unit when POW_S
is set. Of interest in this routine is the NAP logic. Within this
logic, the pending flag of the time_source (IDLE timer) is
counted and depending on the NAP programming time in

SLIO CTR register, the process will wake up or not. After
awakening from SLEEP or NAP mode a status message is
prepared for transmitting. After transmittion of the status
message in can_tx, all interrupts are enabled again.

AN100025-23

FIGURE 23. Flow of time_source

www.national.com 22

3.2.8 Change Bus Mode Routine

If the control flag CH_BUS is set, this routine will be ex-
ecuted. At first the WATCHDOG logic proves how may bus
mode changes are being done. When in every bus mode no

messages are received, the WATDOG_RES control flag is
set. This is only important if WATCHDOG is enabled in the
CTR register.

AN100025-24

FIGURE 24. Flow of power_save

23 www.national.com

After WATCHDOG logic the bus_roll user register controls
the bus change process. In the further course of bus_r, one
of the configuration routines changes the current bus state.
After that the CH_BUS control flag will be cleared.

4.0 USAGE OF THE SLIO

4.1 SLIO Registers

In the SLIO module concept the SLIO memory contains sev-
eral parameter defined registers (see Table 3), which can be
configured by messages sent over the CAN bus or by an ex-

ternal EEPROM during the initialization phase. The configu-
ration of the Multi-I/O Function Block, the power save condi-
tions and the bus mode can be set and altered by the
parameters in the Register Block. The Identifiers and the
CAN prescaler are configured via the Identifier port.

TABLE 3. SLIO Register Block

Register Marker (hex) Name Function Message type config. over CAN config over EEPROM

0x00 IN1 read status P0 to P7 r read only no

0x01 PE config P0 to P7 positive edge r/w yes yes

0x02 NE config P0 to P7 negative edge r/w yes yes

0x03 OD1 write data to P0 to P7 r/w yes yes

0x04 DD1 config P0 to P7 data direction r/w yes yes

AN100025-25

FIGURE 25. Flow of bus_r

www.national.com 24

TABLE 3. SLIO Register Block (Continued)

Register Marker (hex) Name Function Message type config. over CAN config over EEPROM

0x05 IN2 read status P8 to P13 r read only no

0x06 OD2 write data to P8 to P13 r/w yes yes

0x07 DD2 config P8 to P13 data
direction

r/w yes yes

0x08 to 0x0E ADC read specified analog input r read only no

0x0F IN1 reset status register marker
point to IN1

r read only no

0x10 to 0x13 DAC1/DAC2 config analog output r/w yes yes

0x1C ACT analog output control r/w yes yes

0x1E CCT comparator control r/w yes yes

0x1F CTR configuration register r/w yes yes

4.2 CAN Message Format

CAN messages to and from SLIO are limited to two byte
messages. The first databyte is reserved for the register
marker and system information. The register marker can be
considered as a pointer of the specialized SLIO register,

which should be changed through the data of the second
databyte. The upper 3 bits of the first databyte include infor-
mation about the bus mode of the SLIO and give information
about the CAN Error status of the SLIO. The content of the
two data bytes and from the control field is shown in Table 4.

TABLE 4. SLIO Frame Format

CNTRL data byte 1 data byte 2

DLC = 2 ST BM RM data

1 0 4 3 2 1 0

ST CAN Error Status of the SLIO

0 = error active

1 = the device became error passive since the last frame transmitted by the SLIO.

BM Current Bus mode

0 = dual wire

1 = single wire RX0

2 = single wire RX1

3 = not allowed

RM Register marker bits

Example: Status message

Status messages are created from SLIO without any de-
mand messages from CAN. These messages are transmit-
ted after the following actions:

1. initialization is finished

2. external event on the pins P0 to P7 (if they are enabled
by PE or NE register)

3. awakening from NAP/SLEEP mode

This message contains the status of the pins P0 to P7. The
content of Figure 26 below describes a status message.

AN100025-26

FIGURE 26. status message

25 www.national.com

4.3 CAN System Master Communication

Communication between the SLIO and the CAN System
Master is achieved through query and response in addition
to those messages which are initiated from the SLIO as a re-
sult of interrupts and wake-up conditions. There are two dif-
ferent message types, read only and read/write.

4.3.1 Read Message Transfer

Read Only messages demand the status of digital and ana-
log pins (see also Table 3 SLIO Register Block). Figure 27
shows the data transfer of read only messages between
CAN System Master and the SLIO device.

Example: Read Pin P0 to P7

This example describes reading the digital status of pin P0 to
P7 over CAN by the following configuration. The SLIO is
configured in Single Wire Rx0/TX0 Bus mode and the error
state of the SLIO is Error Active. The Identifiers are config-
ured in Pin Mode as following:

ID0 = GND; ID1 = GND; ID2 = GND; ID3 = GND

ID configuration: Transmit ID = 0400 H (from the SLIO)

Receive ID = 0401 H (to the SLIO)

The data of the SLIO pins are 0xC0. In the following Table 5
the data transfer between CAN System Master and the SLIO
is monitored.

TABLE 5. Read Transfer Example

Name ID databyte1 databyte2

receive message 0401 H 00 H don’t care

transmit message 0400 H 20 H C0 H

4.3.2 Read/Write Message Transfer

Read/write transfer updates the configuration data within the
SLIO register block by writing data into the specified register
as indicated by the register marker in the first data byte. The
response is a read from the specified data register subse-
quent to the update process. The data transfer is shown
schematically in Figure 28.

AN100025-27

The following steps are executed:
1. SLIO receives a read message from System Master with correct Receive Identifier and with the correct Read register marker.
2. The SLIO reads the port pins or the analog input pin and writes the reading data in the specified SLIO Register.
3. After the reading process, the SLIO creates a message with its transmit ID and the reading data.

FIGURE 27. CAN Communication with Read Messages

www.national.com 26

Example: Configuration of Data Direction Pin P0 to P7

The data direction of the SLIO pins P0 to P7 should be
changed via CAN. It will be assumed that the configuration of
the Identifier and Bus mode is the same as in the Read Only
example.

The data direction of the pins should be changed as follows:

P0 to P3 as input

P4 to P7 as output

In Table 6 the read/write data transfer between CAN System
Master and SLIO is monitored.

TABLE 6. Read/Write Date Transfer Example

Name ID databyte1 databyte2

receive message 0401 H 00 H F0 H

transmit message 0400 H 20 H F0 H

4.4 CAN System Master in CAN—SLIO Network

In the CAN network at least one node is assigned as the
CAN System Master. The system master handles the com-
munication with the connected SLIO nodes. Each of these
nodes must have two sequential IDs, an even one for trans-
mit and an odd one for receive. In addition, when using
the EEPROM mode, a global receive ID may be defined.

An example of one CAN-message address space is shown
in the following Example (Figure 29).

AN100025-28

The following steps are executed:
1. The SLIO receives a read/write message from System Master with the correct Receive Identifier and with the correct Read register marker and the
new data placed in the second databyte
2. The SLIO changes the configuration of the internal condition or, optionally, of the I/O pin configuration.
3. After this process the SLIO creates a response message with its transmit ID and the new status of the specified SLIO register. This informs the
System Master that the message data transfer was executed correctly.

FIGURE 28. CAN Communication with Read/Write Messages

27 www.national.com

4.5 SLIO System

Figure 30 shows the schematics of a CAN SLIO node. The
pins P0 to P13 can be connected with Sensors or Actuators
over the I/O Feature Connector. The Power Supply circuit
with LM2925 generates firstly VCC= 5V and secondly the ex-
ternal RESET. VIN can be obtained from an external source
of 6V < VIN < 26V, or from the CAN wiring system. Because
of the external crystal oscillator on the pins CKI and CKO
and SLIO does not need synchronization messages from the
System Master. This device has Master capabilities, which
means that it can synchronize itself to the CAN bus.

The two signal wires of CAN, BUS_H and BUS_L, are con-
nected with the integrated CAN interface of the SLIO over
the Physical Bus interface. The bus timing programmability
of the SLIO CAN interface is limited, with the exception of the
CAN prescaler and CKI. Refer to Section 1 for circuit de-
scription of the interfaces.

During the initialization phase, the SLIO application reads
the identifiers from the identifier circuit over the pins ID0 to
ID3. There are two different capabilities to read the identifier.
Two means of determining the identifier exist; direct pull up/
down of the ID pins or via the EEPROM.

AN100025-29

FIGURE 29. Example—CAN System Master Address Space

www.national.com 28

4.6 Initialization

4.6.1 General Description

There are two different modes of reading the CAN identifier.
In Pin mode four of the 11 available identifier bits may be
read from ID0-3, the remainder of the bits are predeter-
mined, thus 16 different SLIO nodes may be connected to
one CAN network system. Two avoid this restriction an EE-

PROM (NMC93C06) mode may be used on the ID port al-
lowing programming of 11 of the identifier bits. This means
that the ID port is internally connected to the MICROWIRE
interface. Furthermore the use of an EEPROM allows the
programming of the Register Block and avoids the necessity
of having the system master transmit the setup configuration
when the node is brought on line.

AN100025-30

FIGURE 30. SLIO CAN Node

29 www.national.com

A mixture between the EEPROM mode and the pin mode
was implemented as Pin_e2 mode. In this Pin_e2 mode the
identifier are read in pin mode and the configuration of the
SLIO registers can be read from the external EEPROM. In
this case the information to go in Pin_e2 mode is given from
the EEPROM (Figure 31). At the end of the initialization
phase the SLIO will transmit a status message. After this
message the SLIO is ready to communicate with the CAN
bus.

4.6.2 Initialization Example in Pin Mode

In this section, an example to initialize the SLIO in Pin Mode
is shown. Initialization means on the one hand to program
the CAN Identifier and on the other hand the configuration of
the SLIO Registers.

Example: CAN Identifier Programming—Pin Mode

In Pin Mode the CAN Identifier is programmed through pull
up/down resistors on the Identifier Port pins ID0 to ID3. This
means that 4 CAN Identifiers can be programmed and so 16
different SLIO Nodes can be connected on the CAN bus. In
Figure 32 a connection example is shown.

The result of this programming is shown in Table 7, columns
ID3, ID2, ID1 and ID0.

AN100025-31

FIGURE 31. Read CAN Identifier Port

AN100025-32

FIGURE 32. Identifier Configuration in Pin Mode

www.national.com 30

TABLE 7. SLIO CAN Identifiers in Pin Mode

ID-Name ID9 ID8 ID7 ID6 ID5 ID4 ID3 ID2 ID1 ID0 DIR

transmit ID (0x414 h) 1 0 0 0 0 0 1 0 1 0 0

receive ID (0x415 h) 1 0 0 0 0 0 1 0 1 0 1

In Pin Mode the SLIO Registers are fixed to default values.
They can not be configured during initialization phase. The
bus rate is fixed to CKI/40 and the bus mode is automatic.
That means that the device cycles through all bus modes if
no message is received for 8*Bt.

In Table 8, the default SLIO Register values are shown.

TABLE 8. Configuration of the SLIO Registers in Pin Mode

Name Function
configured after
Initialization (hex)

IN1 read status P0 to P7 can not be configured

PE config P0 to P7 positive edge 0x00

NE config P0 to P7 negative edge 0x00

OD1 write data to P0 to P7 0xFF

DD1 config P0 to P7 data direction 0x00

IN2 read status P8 to P13 can not be configured

OD2 write data to P8 to P13 0xFF

DD2 config P8 to P13 data direction 0x00

ADC read specified analog input can not be configured

DAC1 config analog output 0x00

DAC2 config analog output 0x00

ACT analog output control 0x00

CCT comparator control 0x00

CTR configuration register 0x00

4.6.3 Initialization Example in EEPROM Mode

In EEPROM mode, all bits of the CAN standard identifier are
programmable and each of the SLIO registers, as well as the
CAN prescaler register, may be configured separately. Prior
to reading the EEPROM, the CS (ID0) pin must be held low
to prevent interference with any other MICROWIRE users
available to the node. If an EEPROM is connected to the
SLIO for purposes of programming the identifier and regis-
ters, the first location must read an AA hex value. If the value
is other than AA hex, the device assumes the EEPROM is for

purposes other than of programming the SLIO. When AA is
detected in the EEPROM location E2-MASK, the data con-
tained in the EEPROM is transferred to the internal registers
of the SLIO.

Example: CAN Identifier Programming—EEPROM
Mode

In Figure 33 the connection between EEPROM NMC93C06
and Identifier port are shown.

31 www.national.com

The programming of the identifier ID0 to ID6 will be done by
the EEPROM register RXIDL. DIR (Bit0) of this register can
not be configured, it is don’t care. The data direction will be

configured automatically. ID7 to ID9 are configured with the
EEPROM register RXIDH. A configuration example of the
identifier through RXIDH/RXIDL is shown in Table 9.

TABLE 9. Receive/Transmit Identifier Programming with EEPROM

CID10 CID9 CID8 CID7 CID6 CID5 CID4 CID3 CID2 CID1 CID0

ID9 ID8 ID7 ID6 ID5 ID4 ID3 ID2 ID1 ID0 DIR

1 1 1 0 0 0 0 1 0 1 —

RXIDH RXIDL

The result of programming receive and transmit Identifiers
which are programmed by RXIDH and RXIDL, are shown
below:

Transmit ID → 0x70AReceive ID → 0x70B

The programming of the global identifier ID0 to ID6 will be
done by the EEPROM register RXIDGL. DIR (Bit0) of this

register is set to 1 (receive data direction) automatically. ID7
to ID9 are configured with the EEPROM register RXIDGH. A
configuration example is shown in Table 10.

TABLE 10. Global Identifier Programming

CID10 CID9 CID8 CID7 CID6 CID5 CID4 CID3 CID2 CID1 CID0

ID9 ID8 ID7 ID6 ID5 ID4 ID3 ID2 ID1 ID0 DIR

1 1 1 0 0 0 0 0 0 0 —

RXIDGH RXIDGL

The result of programming global receive Identifiers, which
are programmed by RXIDGH and RXIDGL, are shown be-
low:

Global Receive ID → 0x701Transmit ID → 0x70A

In Table 11 a configuration example of the external EEPROM
register settings are shown.

AN100025-33

FIGURE 33. EEPROM Connection

www.national.com 32

TABLE 11. Example of Configuration of SLIO Registers
in EEPROM Mode

E2-address EEPROM Registers SLIO Registers

0x00

E2-MASK —

0xAA

PIN-E2-MASK
—

0x00

0x01 RXIDH/RXIDL

0x02 RXIDGH/RXIDGL

0x03

PEDGE PE

0xF0 0xF0

NEDGE NE

0x0B 0x0B

0x04

ODATA1 OD1

0x01 0x01

ODATA2 OD2

0x00 0x00

0x05

DATADIR1 DD1

0x00 0x00

DATADIR2 DD2

0x00 0x00

0x06

DACH DAC2

0x01 0x01

DACL DAC1

0xB0 0xB0

E2-address EEPROM Registers SLIO Registers

0x07

ACR ACT

0x03 0x03

CCR CCT

0xE0 0xE0

0x08

DCR CTR

0x08 0x08

CAN_PSC CAN Prescaler

0x03 0x03

4.6.4 Initialization Example in Pin_e2 Mode

If the e2 register PIN_e2 MASK is programmed with 0x55,
the Pin_e2 mode is enabled. This allows the reading of the
SLIO default values from the EEPROM and the Identifiers
ID1 to ID3 in Pin mode. The pin ID0/CS can not be used for
Identifier programming because this pin needs a pull down
resistor for the reading process of the EEPROM. Therefore
in Pin_e2 mode, only eight different Identifiers can be config-
ured.

Example: Initialization in Pin—e2 Mode

In Figure 34 the connection between EEPROM NMC93C06,
pull up/down resistors and Identifier port is are shown.

AN100025-34

FIGURE 34. Pin_e2 Configuration

33 www.national.com

The result of this programming is shown in Table 12. Hereby
the identifier ID0 always has low level. Therefore, in Pin_e2

mode, only ID1 to ID3 can be configured over pull up/down
resistors. ID4 to ID9 can be configured over the EEPROM.

TABLE 12. SLIO CAN Identifiers in Pin_e2 Mode

ID-Name ID9 ID8 ID7 ID6 ID5 ID4 ID3 ID2 ID1 ID0 DIR

transmit ID (0x408 h) 0 1 1 0 0 0 0 1 0 0 0

receive ID (0x409 h) 0 1 1 0 0 0 0 1 0 0 1

configurable over EEPROM configurable over
resistors

fix to
0

4.6.5 CAN Bus Rate Configuration

In EEPROM Mode and in Pin_e2 Mode, the bus rate of the
SLIO can be configured by the EEPROM register CAN_PSC
and CKI. In pin mode the bus rate is fixed to CKI/40. Further-
more, the segments of one bit time are predefined as de-
scribed in Figure 35. This means that the sample point is
fixed to 60

up to 500 kbit/s bus rate and to 80
using 1 Mbit/s. Hereby the synchronization jump width is
configured to 4 time quanta up to 500 kbit/s and 2 time
quanta using 1 Mbit/s.

Example: bus time configuration—EEPROM Mode/
Pin_e2 Mode

If EEPROM Mode/Pin_e2 Mode is used, the bus rate can be
configured with the CAN_PSC register during initialization
phase (see NM93C06 memory map datasheet).

Configuration formula: bus rate = CKI/(10 * (CAN_PSC + 1))

In the following Table 13 some examples of initialization are
shown.

TABLE 13. Examples Bus Rate (CKI = 10 MHz)

CAN_PSC (hex) Bus Rate (kbits/s)

01 500

03 250

04 200

07 125

CAN_PSC (hex) Bus Rate (kbits/s)

09 100

19 50

4.7 Usage of Analog Input

The analog input is not intended to be a high performance
A/D-conversion, but provides the capability of reading up to
16 different voltage levels with any of seven I/O pins. Figure
36 shows an example by reading different voltage levels of a
resistor array. This will be done by measuring the charge or
discharge time of an external capacitor. The internal con-
struction of an I/O pin (see Figure 36) will support the analog
input. At first the level of the Schmitt Trigger Input is mea-
sured. Depending on the result, low or high, the internal
driver, which is controlled by the charge/discharge logic,
charges or discharges the external capacitor.

Schmitt Trigger level = low → charge capacity

AN100025-35

A) synchronization segment
B) propagation segment

FIGURE 35. Bit Timing Up to 500 kbit/s

www.national.com 34

Schmitt Trigger level = high → discharge capacity

The charge/discharge control is then disabled and the time
to get the original digital (after Schmitt Trigger) state is mea-
sured by a counter register. These counter values consider
different input voltages.

Example: Read 16 different voltages on pin P0 using
R/C

The restriction of this A/D conversion is shown in Figure 37,
because the charge or discharge time of the capacitor is de-

pendent on the current and this current is not linear. Espe-
cially with voltages near the Schmitt Trigger level, the 8-bit
counter value is overflowed and no measurement is pos-
sible. This measurement is dependent upon the CPU speed,
hence the R/C values may have to be adjusted to accommo-
date a change in CKI value from 10 MHz. The external com-
ponents, which are connected to the pin P0, are shown in
Figure 38.

Before the analog input Register marker can be executed,
the pin has to be configured as High-Z input. This means that
DD1 and OD1 have to be configured to low for the pin P0.
The following CAN frame examples assume that the SLIO is
configured to SINGLE WIRE RX0 bus mode, the error condi-

tion is error active and the receive ID = 0021. The data
frames for the P0 configuration are shown below in Table 14.
The pin configuration frames have to be transferred one time
only.

AN100025-36

FIGURE 36. Analog Input

AN100025-37

FIGURE 37. Input Voltage Depending on Counter Value

AN100025-38

FIGURE 38. Example of Analog Input Components

35 www.national.com

TABLE 14. Read/Write Data Transfer Example

Direction Name ID first databyte second databyte
→ conf SINGLE WIRE RX0 0021 H 1F H 08 H

← answer from SLIO 0020 H 3F H 08 H

→ OD1 to 11110000 0021 H 03 H F0 H

← answer from SLIO 0020 H 23 H F0 H

→ DD1 to 11110000 0021 H 04 H F0 H

← answer from SLIO 0020 H 24 H F0 H

→ analog input from P0 0021 H 08 H XX H

← answer from SLIO 0020 H 28 H 13 H (0.0V)

The values of the 16 different values are shown in Table 15.

TABLE 15. Reading of 16 Different Analog Voltages

Voltage Input
(V)

Counter Value
(hex)

Counter Range
(±4 Counter Steps)

Range Number

0.0 13 0F to 17 0

1.3 23 1F to 27 1

1.5 2D 29 to 31 2

1.8 3D 39 to 41 3

1.9 46 42 to 4A 4

2.0 53 (±8) 4B to 5B 5

2.1 6C (±8) 64 to 74 6

2.5 7F (±8) 77 to 87 7

2.9 90 (±8) 88 to 98 8

3.0 9D 99 to A1 9

3.1 AB A7 to AF A

3.3 B7 B3 to BB B

3.5 C1 BD to C5 C

3.8 CB C7 to CF D

4.2 D4 C1 to D8 E

5.0 DF DB to E3 F

The different ranges of the example in Table 15 are shown in
Figure 39.

www.national.com 36

4.8 Usage of D/A Output

A user programmable PWM signal is provided on pin P9.
This signal may be configured to either a 10-bit or 8-bit reso-
lution. This PWM signal is CKI dependent. For example, by
using CKI = 10 MHz one PWM cycle is 255 µs (8-bit) or 1023
µs (10-bit). In order to calculate the cycle time of the PWM
use the following formula.

By using an external low pass filter analog voltages can be
generated. An example of the RC is shown in Figure 40. The
analog output will be configured with the SLIO registers
DAC1, DAC2 and ACT.

To generate PWM signals on P9 the following steps have to
be executed:

• configure P9 as output (over e2 or over CAN)

• configure High/Low Time of the PWM signal with the reg-
isters DAC2 and DAC1 (over e2 or over CAN)

• configure 8-Bit or 10-Bit PWM signal with the DAR Bit of
the register ACT (over e2 or over CAN)

• enable PWM output with DACEN of ACT (over e2 or over
CAN)

10-Bit PWM Configuration

The configuration of the SLIO registers DAC2/DAC1 via
CAN is shown in Table 16.

TABLE 16. 10-Bit D/A Output Examples

Register Marker second
databyte
(hex)

10-Bit Format D/A

Bit4 Bit3 Bit2 Bit1 Bit0 DAC2 DAC1

1 0 0 0 0 B0 00 B0

1 0 0 0 1 B0 01 B0

1 0 0 1 0 B0 02 B0

1 0 0 1 1 B0 03 B0

Example: 10-Bit PWM over CAN

Table 17 summarizes all messages which are necessary to
configure pin P9 (as a ten-bit PWM output). It is assumed
that the SLIO is configured in Single wire RX0 bus mode and
the error mode is error active. The CKI is configured with
10 MHz. In Figure 41 the PWM output resulting from the con-
figuration of Table 17 is shown.

AN100025-39

FIGURE 39. Graph of the Different Ranges

AN100025-47

AN100025-40

FIGURE 40. Example of Analog Output Components

37 www.national.com

TABLE 17. Data Transfer Example for 10-Bit D/A

Direction Name ID first databyte second databyte
→ conf SINGLE WIRE RX0 0401 H 1F H 08 H

← answer from SLIO 0400 H 3F H 08 H

→ OD2 to 00000000 0401 H 06 H 00 H

← answer from SLIO 0400 H 26 H 00 H

→ DD2 to 00000010 0401 H 07 H 02 H

← answer from SLIO 0400 H 27 H 02 H

→ DAC2/DAC1 to 02 B0 H 0401 H 12 H B0 H

← answer from SLIO 0400 H 32 H B0 H

→ ACT to 00000011 0401 H 1C H 03 H

← answer from SLIO 0400 H 3C H 03 H

8-Bit PWM Configuration

The 8-Bit configuration of the SLIO registers DAC1 via CAN
is shown in Table 18. In this case, Bit 0/Bit 1 of the register
marker are don’t care. This means that all register marker
bits, which are reserved for DAC, can be used for 8-Bit PWM
configuration.

TABLE 18. 8-Bit D/A Output Examples

Register Marker
second
databyte
(hex)

8-Bit
Format D/A

Bit4 Bit3 Bit2 Bit1 Bit0 DAC1

1 0 0 x x B0 B0

Example: 8-Bit PWM Configuration

In Table 19 all CAN messages are summarized that are nec-
essary to configure pin P9 as 8-Bit PWM output. Hereby, it is
assumed that the SLIO is configured in Single wire RX0 bus
mode and the error mode is error active. Moreover, the CKI
is configured with 10 MHz.

TABLE 19. Data Transfer Example for 8-Bit D/A

Direction Name ID first databyte second databyte
→ conf SINGLE WIRE RX0 0401 H 1F H 08 H

← answer from SLIO 0400 H 3F H 08 H

→ OD2 to 00000000 0401 H 06 H 00 H

← answer from SLIO 0400 H 26 H 00 H

→ DD2 to 00000010 0401 H 07 H 02 H

← answer from SLIO 0400 H 27 H 02 H

→ DAC1 to 10110000 0401 H 12 H B0 H

← answer from SLIO 0400 H 32 H B0 H

→ ACT to 00000010 0401 H 1C H 02 H

← answer from SLIO 0400 H 3C H 02 H

4.9 Handling of External Events

Pins P0 to P7 provide monitoring of external events through
detection of rising and/or falling edge transition. The configu-
ration is done through the SLIO registers PE and NE. A one
in a given bit of these registers enables the external event
mode for the corresponding pin.

Example: configuration P0—pos. edge and P1—pos./
neg. edge

Table 20 depicts the configuration of the status of P0—P7
via the CAN bus. Subsequent to this configuration a match-
ing edge on the port will result in a transmission of P0—P7
status on the bus from the SLIO. In order to eliminate the
possibility of noise or switch bounce, the port is resampled
after a time period of Bt. Note that this period is dependent

AN100025-41

FIGURE 41. 10-Bit PWM Output

www.national.com 38

on the CPU clock frequency. If an event occurs during a bus
transaction the reporting of the event will be delayed until the
bus is clear.

TABLE 20. Configuration of PE and NE via CAN

Direction Name ID first databyte second databyte
→ conf SINGLE WIRE RX0 0401 H 1F H 08 H

← answer from SLIO 0400 H 3F H 08 H

→ PE to 00000011 0401 H 01 H 03 H

← answer from SLIO 0400 H 21 H 03 H

→ NE to 00000010 0401 H 02 H 02 H

← answer from SLIO 0400 H 22 H 02 H

During the receive/transmit phase of the SLIO, the process
caused through an event is delayed until CAN communica-
tion is finished.

4.10 Power Save Mode Examples

The SLIO device supports two different power save modes,
SLEEP mode and NAP mode. SLEEP mode stops all activi-
ties and the clock. NAPmode stops all activities but the clock
and an internal counter. This counter will wake-up the device
every Bt time (Figure 43). The device will wake-up from both
modes by an external signal being applied on one or more of
the port pins P0 to P6, by a recessive to dominate transition
on the CAN bus and by pulling the /RESET pin low.
Waking-up triggers and automatic wakeup in NAP mode
through the internal counter, cause the transmission of a sta-
tus message. If the device wakes up from SLEEP mode, it
will stay in active mode (Figure 43) and all previous settings
of the registers are valid again.

The power mode bits PO0 to PO2 in the control register
CTR, set up the power saving modes SLEEP and NAP. The
different configurations are summarized in the Table 21.

TABLE 21. Power Mode Configurations (CTR Register)

PO2 PO1 PO0 Power Mode

0 0 0 active

0 0 1 NAP: 1 * Bt

0 1 0 NAP: 2 * Bt

0 1 1 NAP: 4 * Bt

1 0 0 NAP: 8 * Bt

1 0 1 NAP: 16 * Bt

1 1 0 NAP: 32 * Bt

1 1 1 SLEEP

Example: SLEEP Mode

The CAN messages, described in Table 22, enables the
SLEEP mode.

TABLE 22. Configuration of SLEEP Mode

Direction Name ID first databyte second databyte

→ conf SINGLE WIRE RX0 and
enable SLEEP mode

0401 H 1F H E8 H

← answer from SLIO 0400 H 3F H E8 H

After this data transfer, the device enters SLEEP mode, all
activities including the CKI clock are stopped. The SLIO will
wake up on a rising/falling edge on any enabled pin PO - P6
or upon a recessive/dominant transition on the CAN bus.
Table 23 gives an example of a wake-up transaction from
SLEEP mode over CAN.

AN100025-42

NOTE: 1 Bt = 40960/CKI

FIGURE 42. Delay Time External Rising Event

39 www.national.com

TABLE 23. Example of Wake-Up SLEEP Mode

Direction Name ID first databyte second databyte

→ wakeup message
(SOF = rec./dom. transition)

0401 H xx H xx H

← status message answer 0400 H 20 H 00 H

After wake-up the clock is running and the SLIO will stay in
active mode.

Example: configuration NAP mode—16*Bt

The CAN message in the following Table 24 enables the
16*Bt NAP mode.

TABLE 24. Configuration of 16*Bt NAP Mode

Direction Name ID first databyte second databyte

→ conf SINGLE WIRE RX0 and
enable NAP mode

0401 H 1F H A8 H

← answer from SLIO 0400 H 3F H A8 H

After this data transfer, the device goes in to NAP mode, all
activities excluding the internal timer are stopped. This inter-
nal timer was configured through the second data byte of the
previous message (Table 24) that after every 16*Bt, the de-

vice wakeup for 1*Bt (see also Figure 43). If during the NAP
condition a wakeup is coming, the device will be active dur-
ing the next 16*Bt period. If during this period the power
mode is not changed, the NAP mode is entered again.

5.0 SLIO SYSTEM EXAMPLE

5.1 Start Up Consideration

In this section an example is shown to start a first CAN appli-
cation. Before starting, the following steps have to be
checked:

• At least two CAN nodes have to be connected on the
CAN Bus because every message on the bus needs an
acknowledge

• Usage of the same physical bus interface as described in
Section 1

• Usage of the same bus mode (differential/single wire)

• Configuration of the termination on the two CAN bus end-
ings depending on the physical bus interface
→ISO High Speed (ext. Transceiver): 120Ω between
CAN_H and CAN_L
→ISO Low Speed: voltage divider 1.75V/3.25V recessive
levels

• Usage of the same bus timing (described in Section 1) for
all CAN nodes

• Consideration of length/frequency and the number of
CAN nodes

• Consideration of the number of SLIO nodes depending
on the SLIO Identifier mode
→Pin mode: connected SLIO < 16 (only 4+1 Identifier
can be configured)

→EEPROM mode: quasi no limit (all ID in standard CAN
format are used)

5.2 Network Description

These CAN communication examples between COP884BC
and the SLIO describe the basis of an application with Na-
tional CAN interface. The COP884BC software controls the
CAN data transfer, which means that the counter value of a
decrement 8-Bit counter is transmitted to the SLIO pins P0 to
P7. In order to control the CAN data, the status of the
counter is also given out to L_port of the COP884BC. The
communication is restricted to SLIO CAN format. The sche-
matics of COP884BC node and SLIO node are shown in Fig-
ure 44 and Figure 45.

To start the application the following steps have to be ex-
ecuted:

• Reset COP884BC

• Create a rising edge to the port pin G0 for COP884BC

• Reset the SLIO

After the Controller receives the Status Message of the
SLIO, the counter will be enabled and the data transfer be-
gins. Next all CAN frames from COP884BC will be re-
quested from the SLIO by an answering message. The soft-
ware of COPCAN waits for this message and will generate
the next data frame after a delay caused through the IDLE
Timer pending flag T0PND.

AN100025-43

FIGURE 43. Timing NAP-Mode (16*Bt)

www.national.com 40

The physical features are summarized in the next points:

• CKI = 10 MHz

• Bus Rate = 250 kbit/s

• External transceiver chip connection (ISO High Speed)

• Usage of the external EEPROM NMC93C06

The EEPROM configures the receive/transmit ID′s to/from
the SLIO (0023/0022), the bus mode and the data direction
of P0 to P7. The configuration of the EEPROM registers are
shown in Table 25.

TABLE 25. Example of Configuration of SLIO Registers
in EEPROM Mode

E2-address EEPROM Registers SLIO Registers

0x00

E2-MASK —

0xAA

PIN-E2-MASK
—

0x00

0x01

RXIDH —

0x00

RXIDL
—

0x22

0x02

RXIDGH —

0x00

RXIDL
—

0x00

0x03

PEDGE PE

0x00 0x00

NEDGE NE

0x00 0x00

E2-address EEPROM Registers SLIO Registers

0x04

ODATA1 OD1

0x00 0x00

ODATA2 OD2

0x00 0x00

0x05

DATADIR1 DD1

0xFF 0xFF

DATADIR2 DD2

0x00 0x00

0x06

DACH DAC2

0x00 0x00

DACL DAC1

0x00 0x00

0x07

ACR ACT

0x00 0x00

CCR CCT

0x00 0x00

0x08

DCR CTR

0x08 0x08

CAN_PSC CAN Prescaler

0x03 0x03

41 www.national.com

AN100025-44

FIGURE 44. COP884BC Node

www.national.com 42

5.3 Software Structure

The Block Diagram in Figure 46 describes the software pro-
cess. The software can be separated into the following
modules.

AN100025-45

FIGURE 45. SLIO Node Schematic

43 www.national.com

• initialization (init)

After Reset the software will execute the initialization routine.
Within this routine the various interrupts and the initialization
of the CAN interface will be configured.

• rising edge wait (wait_edg)

Next the software waits for the rising edge on pin G0. If this
rising edge is received, the interrupt routine enables the ac-
cess of the application.

• main cycle (main)

• CAN receive interrupt routine (can_rx)

This is the same receive interrupt routine as that which was
described for 2 bytes or less in Section 2. It processes the
answering message from the SLIO and saves the data in the
receive object rx_obj. Then the control bit is set and the
COP884BC can transmit the next data message with the
next counter value after a self defined delay.

• CAN Transmit routine (can_tx)

This is the same transmit interrupt routine as that which was
described for 2 bytes or less in Section 2.

5.4 Source Code

.incld cop888bc.inc
tx_cnt = 0 ; flag equations for the control register
tx_dly = 1 ; flag equations for the control register
action = 2 ; flag equations for the control register
lo = 00a ; delay (lo * 40960/CKI)
.sect msg_buf, base

tx_obj: .dsb 4
; transmit object format:
; tx_obj = trtr, tid
; tx_obj = tid, tdlc
; tx_obj = txd1 !
; tx_obj = txd2 !
rx_obj0:.dsb 4
; rx_obj = lock, rid
; tx_obj = rid, rdlc
; tx_obj = rxd1 !
; tx_obj = rxd2 !

.endsect
;==
.sect base,base

control: .dsb 1 ; allocation of flag control register
.endsect
;==
.sect register,reg

counter: .dsb 1
light: .dsb 1

.endsect

AN100025-46

FIGURE 46. Software Block Diagram

www.national.com 44

;==
.sect code,rom,abs=0
main:
reset:

ld sp,#02f : load stack pointer
;--
; clear ram from 0x00 to 0x2f
; stack area will overwrite as well - don’t use as a subroutine
;--
clr_ram:

ld b,#02f ; pointer to the last ram location
clr_loop:

ld ,#0 ; clear ram byte
drsz b ; decrement and ″skip if zero ″
jp clr_loop ; ..counter0
ld ,#0 ; clear first ram byte

;--
init:

ld counter,#000 ; reset counter
ld light,#000 ; reset light counter

init_prt_l:
ld portlc,#0ff

init_G0:
rbit iedg,cntrl ; -rising edge
sbit exen,psw ; enable extrn int
rbit expnd,psw ; clear extern int pending

init_can:
jsr can_init

conf_rx_obj0:
ld b,#rx_obj0 ; configure receive message box
ld , #082 ; with ID 002 2 , 2 byte messages
ld , #022

enable_can:
ld cbus,#058 ; conf single wire rx0

; RIAF enabled-compare with higher id’s
; enable CAN

enable_int:
ld b,#tcntl
sbit rie, ; enable can receive int
sbit gie,psw ; enable global interrupt

;---
;main cycle
;---
start:
wait_begin:

ifbit action,control ; wait until rising edge is coming
jp start_loop ; yes.. process
jp wait_begin

start_loop:
ifbit tx_cnt,control ; transmission
jsr cantx
jp start_loop

;---
cantx:

jsr delay ; delay routine
jsr action_count ; count lights
jsr can_tx ; transmit
sbit 7,rx_obj0 ; enable receive buffer 0
ret

;---
delay:

ld counter,#lo ; conf t0pnd_counter
ld b,#icntrl ; point icntrl

dlay:
rbit t0pnd, ; reset t0 pending flag

45 www.national.com

loop_w:
ifbit t0pnd, ; wait unti t0pnd is set
jp count ;
jp loop_w ;

count:
drsz counter ; count x*(40960/CKI)
jp dlay
rbit t0pnd, ;
ret

;---
action_count:

rbit tx_cnt,control ; reset

drsz light
nop

ld a,light
x a,portld

conf_tx_obj:
ld b, #tx_obj
ld , #002 ; tid,#002
ld , #032 ; tdlc,#032
ld , #003 ; rxd1, #003
ld a,light
x a, ; rxd2, #count value light
ret

;==
.sect code_can_init, rom

; this code initializes the CAN with minimum
; possible instructions/rom space
can_init:

ldb, #cscal
ld , #3 ; CAN prescaler
ld , #00f ; ctim (BTL)
ld , #0 ; TCNTL ; don’t point to RTSTAT

; clear RERR, TERR, etc..
ret

.endsect
;==
.sect code_can_tx, rom
; this code transmit s a 0 to 2 byte or remote CAN message
; from a transmit buffer tx_obj ⊆]
; this code intentionally does not check for remote or
; DLC (data length code) as the COPCAN interface will
; automatically transmit no data bytes in a remote frame
; and not more than DLC data bytes

can_tx:

rc ; (*) reset error flag
ifbit TXPND, RTSTAT ; check if transmit busy
jp tx_busy ; .. yes then exit
ld b, #tx_obj ; point to tx_obj½qa ld x, #TID ; point to

TID
ld a, ; get tx_obj ` point to tx_obj
x a, ; .. and save
ld a, ; get tx_obj; point to tx_obj
x a, ; .. and save
ld a, ; point to tx_obj
ld a, ; get tx_obj; point to tx_obj
x a, ; save to TXD1
ld a, ; get tx_obj
x a, ; save to TXD2

www.national.com 46

tx_done:
sbit txss, tcntl ;set pending transmission

;automatic reset of txss after transmission
ret ; exit without error

tx_busy:
sc ; (*) indicate tx_busy
ret ; (*) exit with error
; retsk ; optional use retsk instead

; 1st and last 2 lines to skip next
.endsect
;==
.sect int,rom,abs=0ff
interrupt:

push a
ld a,b
push a

restore:
vis

int_end:
pop a
x a,b
pop a
reti

.endsect
;==
.sect inttab, rom , abs=01E0

.addrw restore ; default VIS

.addrw restore ; PortL interrupt/wake-up

.addrw restore ; reserved

.addrw restore ; reserved

.addrw restore ; reserved

.addrw restore ; PWM Timer

.addrw restore ; MicroWire/Plus

.addrw restore ; T1B

.addrw restore ; T1A

.addrw restore ; Idle Timer

.addrw int_g0 ; Pin G0

.addrw restore ; CAN Transmit

.addrw restore ; CAN Error

.addrw can_rx ; CAN Receive

.addrw restore ; reserved

.addrw reset ; Opcode 00 Software-Trap
.endsect
;==
.sect code_can_rx, rom ; from interrupt
can_rx:

; this interrupt is triggered by RBF, RRTR or RFV
; RRTR and RBF are cleared by reading or b’s pointing to RXD1
; RFV is cleared by reading RTSTAT to A
; or executing the equiv. of LD B, #RSTAT; LD A, #xx

;------
sbit tx_cnt,control

;------
ld b, #rx_obj0 ; (*) receive id hi ; * only with RIAF = 0
ifbit 7, ; buffer free
jp receive_msg ; .. yes then receive
ld b, #rx_obj1 ; next buffer
ifbit 7, ; buffer free
jp receive_msg ; .. then receive msg
jp can_rx_exit ; else exit

receive_msg:
rbit 7,
ld a, rid ; (*) get received id
ifne a, ; (*) check if accept
jp can_rx_exit ; (*) .. no then exit
x a,
ld a, ridl ; get received IDLC

47 www.national.com

x a, ; save message
ifbit RRTR, RTSTAT ; received frame remote frame?
jp can_rx_rtr ; yes
jp save_data ; no

can_rx_rtr:
ld a, ; remote frame is signed
or a,#0F ; through rdlc = F
x a, ;
jp wait_rx ;

save_data:
ld a, ;dummy read - point rx_data register
ld a, RXD1 ;
x a,
ld a, RXD2
x a,
ld b, #RTSTAT

wait_rx:
ifbit RFV,
jp rx_done
ifbit RERR, TCNTL
jp rx_error
jp wait_rx

; this is the error routine error interrupt must not be enabled
rx_error:

ld b, #rx_obj1
ifbit 7,
jp check_obj0
jp end_error

check_obj0:
ld b, #rx_obj0

end_error:
sbit 7, ; free buffer
rbit RERR, TCNTL

rx_done:
can_rx_exit:

ld a, RXD1 ; dummy read to clear RBF, RTR
ld a, RTSTAT ; dummy read to clear RFV
jp int_end

.endsect
;==
.sect rom,rom
int_g0:

sbit action,control
rbit expnd,psw ;clear extern int pending
jp int_end

.endsect

.end main

LIFE SUPPORT POLICY

NATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT
DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL
SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or
systems which, (a) are intended for surgical implant
into the body, or (b) support or sustain life, and
whose failure to perform when properly used in
accordance with instructions for use provided in the
labeling, can be reasonably expected to result in a
significant injury to the user.

2. A critical component in any component of a life support
device or system whose failure to perform can be
reasonably expected to cause the failure of the life
support device or system, or to affect its safety or
effectiveness.

National Semiconductor
Corporation
Americas
Tel: 1-800-272-9959
Fax: 1-800-737-7018
Email: support@nsc.com

www.national.com

National Semiconductor
Europe

Fax: +49 (0) 1 80-530 85 86
Email: europe.support@nsc.com

Deutsch Tel: +49 (0) 1 80-530 85 85
English Tel: +49 (0) 1 80-532 78 32
Français Tel: +49 (0) 1 80-532 93 58
Italiano Tel: +49 (0) 1 80-534 16 80

National Semiconductor
Hong Kong Ltd.
13th Floor, Straight Block,
Ocean Centre, 5 Canton Rd.
Tsimshatsui, Kowloon
Hong Kong
Tel: (852) 2737-1600
Fax: (852) 2736-9960

National Semiconductor
Japan Ltd.
Tel: 81-3-5620-6175
Fax: 81-3-5620-6179

A
N
-1
07
3

S
LI
O
-C
A
N
C
A
N
-li
nk
ed

I/O
ba
se
d
on

C
O
P
88
4B

C

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.

