Low-Cost Multiple Output Flyback Converter for I/O Cards

introduction

Isolated power supplies for I/O cards are required to provide multiple outputs (typically 9 V at $0 \mathrm{~mA}-120 \mathrm{~mA}$ and 5 V at $0 \mathrm{~mA}-200 \mathrm{~mA}$) from a 3.3 V input. The transformer peak primary currents are generally very high, there by eliminating the choice of many popular low-cost integrated circuits. The circuits shown in Figure 1 performs the required conversion using LM3578A and D44C3A npn transistor. The LM3578A is a switching regulator featuring an internal comparator, oscillator, protection circuitry and a transistor. The transistor can handle currents only up to 750 mA . However, this internal transistor can be used to drive an external transistor of higher current rating such as D44C3A, in order to handle the required currents.

CONVERTER DESIGN EQUATIONS

System Specifications

$$
\begin{gathered}
\mathrm{V}_{\mathrm{IN}}=3.3 \mathrm{~V}(\pm 10 \%) \\
\mathrm{V}_{\mathrm{O} 1}=9 \mathrm{~V}(\pm 10 \%) \text { (Isolated) } \\
\mathrm{V}_{\mathrm{O} 2}=5 \mathrm{~V}(\pm 5 \%) \text { (Isolation not a must) } \\
\mathrm{I}_{\mathrm{O} 1}=0 \mathrm{~mA}-120 \mathrm{~mA} \\
\mathrm{I}_{\mathrm{O} 2}=0 \mathrm{~mA}-200 \mathrm{~mA}
\end{gathered}
$$

In the following equations, the switching frequency is assumed to be 80 kHz and the maximum duty cycle is assumed to be 50%.

Transformer Specification:
Transformer turns ratio is:

$$
\begin{align*}
\frac{N_{s 1}}{N_{p}} & =\frac{\left(V_{o 1}+V_{d}\right)}{V_{I N(\min)}-V_{c e(s a t)}} \frac{D_{\max }}{1-D_{\max }} \\
& =\frac{(9+0.7)}{(3-0.3)} \frac{0.5}{1-0.5}=3.6 \tag{1}
\end{align*}
$$

National Semiconductor
Application Note 1055
Ravindra Ambatipudi November 1996

$$
\begin{align*}
\frac{N_{s 2}}{N_{p}} & =\frac{\left(V_{o 2}+V_{d}\right)}{V_{I N(\min)}-V_{c e(s a t)}} \frac{D_{\max }}{1-D_{\max }} \\
& =\frac{(5+0.7)}{(3-0.3)} \frac{0.5}{1-0.5}=2.1 \tag{2}
\end{align*}
$$

Assuming an efficiency of 80%, the average input current at max. load is:

$$
\begin{align*}
I_{I N(d c)}= & \frac{V_{O 1} I_{O 1}(\max)}{}+V_{O 2} I_{O 2(\max)} \\
& =\frac{2.08}{0.8(3)}=0.87 \mathrm{~A} \tag{3}
\end{align*}
$$

Hence, the average switch current is:

$$
\begin{equation*}
I_{S W}(a v g)=\frac{I_{N(d c)}}{D}=\frac{0.87}{0.5}=1.74 \mathrm{~A} \tag{4}
\end{equation*}
$$

Assuming the primary inductance current ripple to be 25% of the average switch current, the primary inductance is given by:

$$
\begin{align*}
L_{p} & =\frac{\left(V_{l N(\min)}-V_{c e}(\text { sat })\right) D_{\max }}{\Delta i_{p} f_{S}} \\
& =\frac{(3-0.3) 0.5}{80000 \times 1.74 / 2}=19.5 \mu \mathrm{H} \tag{5}
\end{align*}
$$

Peak primary current is given by:

$$
\begin{gather*}
I_{p}=I_{s w}(\operatorname{avg})+\Delta i_{p} / 2 \\
=1.74+1.74 / 4=2.2 \mathrm{~A} \tag{6}
\end{gather*}
$$

Transistor Selection:

The transistor should be able to handle the peak current calculated above. The internal transistor in LM3578 can handle up to 750 mA . So the current gain of the external transistor should be greater than 30 at the peak primary current. The off state voltage rating of the switch should be at least 10V. One npn transistor meeting these requirements is D44C3A.

Current Limiting with LM3578A.

Current limiting is activated whenever pin 7 is pulled 110 mV (typically) above the ground. In this application, voltage across the resistor R_{sn} is sensed in order to determine excess current through the external switch. Typical value for $R_{\text {sn }}$ is 0.05Ω. $R_{\text {sn }}$ can also be fabricated on a copper trace. If ΔT is the estimated temperature rise, the resistance of $1 \mathrm{oz} / \mathrm{ft}^{2}$ copper sheet is given by

$$
R_{C}(T)=0.5 \times 10^{-3}\left[1+3.9 \times 10^{-3}\left(T_{A}-20+\Delta T\right)\right](7)
$$

Where T_{A} is the ambient temperature. The required length (I) and width (w) of copper trace can be calculated using the following equations:

$$
\begin{gather*}
\mathrm{w}=\frac{1000 \times \mathrm{l}_{\mathrm{lim}}}{\sqrt{\Delta \mathrm{~T} /\left(55 \mathrm{R}_{\mathrm{c}}(\mathrm{~T})\right)}} \tag{8}\\
\mathrm{I}=\mathrm{w} \frac{\mathrm{R}_{\mathrm{Sn}}}{\mathrm{R}_{\mathrm{c}}(\mathrm{~T})} \tag{9}
\end{gather*}
$$

where $\mathrm{I}_{\mathrm{lim}}$ is the desired current limit set point.
PARTS LIST

Designator	Quantity	Value/Rating	Description
U1	1	-	LM3578A Switching Regulator
Q1	1	$5 \mathrm{~A}, 30 \mathrm{~V}$	D44C3A, NPN Transistor
$\mathrm{D} 1, \mathrm{D} 2$	2	$1 \mathrm{~A}, 40 \mathrm{~V}$	Output Diodes, SR104
D 3	1	$1 \mathrm{~A}, 40 \mathrm{~V}$	Clamping Diode, SR104
ZD1	1	10 V	Zener diode for clamping
T_{1}	1	$\mathrm{Lp}-24.2 \mu \mathrm{H}, \mathrm{lp}-2.1 \mathrm{~A}$	Transformer
C_{IN}	1	$220 \mu \mathrm{~F}, 6.3 \mathrm{~V}$	Input bulk capacitor
C_{01}	1	$470 \mu \mathrm{~F}, 16 \mathrm{~V}$	Output 1 capacitor
C_{02}	1	$470 \mu \mathrm{~F}, 10 \mathrm{~V}$	Output 2 capacitor
R_{sn}	1	$0.05 \Omega, 1 / 2 \mathrm{~W}$	Current limiting resistor
R_{1}	1	$40.2 \mathrm{k} \Omega, 1 / 4 \mathrm{~W}$	Feedback resistor
R_{2}	1	$10 \mathrm{k} \Omega, 1 / 4 \mathrm{~W}$	Feedback resistor
$\mathrm{R}_{\mathrm{d} 1}$	1	$1.5 \Omega, 1 / 4 \mathrm{~W}$	Base drive resistor
$\mathrm{R}_{\mathrm{d} 2}$	1	$200 \Omega, 1 / 4 \mathrm{~W}$	Base drive resistor
R_{f}	1	$1 \mathrm{k} \Omega, 1 / 4 \mathrm{~W}$	Resistor for spike suppression
C_{f}	2.2 nF	Capacitor for spike suppression	
C_{T}	1	1 nF	Timing capacitor
C_{c}	1	nF	Compensation capacitor

LIFE SUPPORT POLICY
NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation	National Semiconductor Europe	National Semiconductor Southeast Asia	National Semiconductor Japan Ltd.
Americas	Fax: +49 (0) 180-530 8586	Fax: (852) 23763901	Tel: $81-3-5620-7561$ Fax: $81-3-5620-6179$
Tel: 1(800) 272-9959	Email: europe.support @ nsc.com	Email: sea.support@nsc.com	Fax: 81-3-5620-6179
Fax: 1(800) 737-7018	Deutsch Tel: +49 (0) 180-530 8585		
Email: support@nsc.com	English Tel: +49 (0) 180-532 7832		
	Français Tel: +49 (0) 180-532 9358		
http://www.national.com	Italiano Tel: +49 (0) 180-534 1680		

