Improved UART Clocking **Techniques on New Generation HPCs**

National Semiconductor Application Note 798 Ravi Kumar April 1993

The new generation HPCs have on-chip UARTs with much better baud rate generation techniques and better status reporting capabilities. This article explains in detail, accurate baud rate generation on HPC46400E and HPC+ UARTs with appropriate examples.

UART implemented on the HPC46400E and HPC+ is an upward compatible enhancement of the UART present on the HPC46083. Unlike the UART on HPC46083, the operating mode may be selected as either Asynchronous or Synchronous. Here we can also select the baud rate through software in conjunction with both prescalar and baud select registers.

COMMON FEATURES SUPPORTED BY HPC46083 UART AND THE NEWER VERSION OF UART ON HPC46400E AND HPC+

- Fully programmable serial interface characteristics, including:
 - 8- or 9-bit characters
 - 1 or 2 stop bits
- Two interrupt sources (Receiver buffer full, Transmit buffer empty)
- Independent clock inputs (either on-chip or off-chip) for the transmitter and receiver
- Error reporting capabilities (Data overrun error, framing error)
- Attention or wake up mode for receiver to enhance networking capability

ADDITIONAL UART FEATURES AVAILABLE ON HPC46400E AND HPC+

Upwardly compatible from earlier HPC UARTs such as HPC16083

- Fully programmable serial interface characteristics, including:
- Accurate baud rate generation without the penalty of using an expensive crystal up to 625k baud
- 7-bit characters possible
- $-\frac{7}{8}$, $1\frac{7}{8}$ stop bit lengths
- Odd, Even, Mark, Space or no parity bit generation and detection
- Selectable Asynchronous or Synchronous mode of operation
- Loopback Diagnostic test capability

Now lets see various methods of BAUD Rate generation. First we shall discuss how DIVBY can be used to generate required baud-rate.

1.0 UART CLOCK SOURCE FROM DIVBY REGISTER

Clock for DIVBY register can be generated using precise value crystals or T3 underflow. Referring to *Figure 2*, we see that baud rate is from internal source for DIVBY register.


```
The following is a sample assembly language routine illus-
trating BAUD Rate generation using DIVBY register through
precise value crystal.
;This program will test the HPC16400E UART for 9600 baud.
;using 10.0 MHz crystal and DIVBY (baud clock from internal source).
*****
;The power-up default setup is:
;a) Baud clock from internal source DIVBY
;b) Frame format is 1 start, 8 dta, and 1 stop bit.
;The clock should be a 10.0 MHz crystal
.sect uart, rom16
                                            ;DIRB reg pin l outward direction
;BFUNL reg, turns on TDX bit
;xtclk
begin:
                 sbit 0,0f2,b
sibit 0,0f4.b
                 rbit 2,0x122.b
                                             xrclk;Load DIVBY from table to generate
                 rbit 3,0x122.b
                 ld 018e.b,#040
                                               ;9600 baud (CKI/64)
;The baud clock = baud rate * 16
;So, for 9600 baud, bclk = 9600 * 16 = 153600 Hz
;With 10.0 MHz clock \rightarrow 10.0 MHz/64 = 156250 Hz (within 5%)
                                             ;load char "A"
;Load TBUF reg to transmit
                ld a,#041
xmit:
                       a,0126.b
                 st
                ifbit 0,0120.b
chk:
                 jp xmit
                                             ;continue to xmit
                       chk
                 jp
.endsect
.end begin
Hence we see the percentage error of Baud Rate produced is:
 % error = (156250 - 153600)/15360
        = 1.72
which is within the error limits.
```

A) Baud Rate Calculation Using DIVBY Register through Precise Value Crystal

Table I gives the bit values to be loaded into UART section of the DIVBY register. This table defines the baud rates for two different crystals at 9.304 MHz and 19.6608 MHz.

We see that more care in selecting the crystal frequency is necessary to generate exact baud rates. Obviously the baud rate generation is restricted by the crystal frequency.

TABLE I							
Bit 7	Bit 6	Bit 5	Bit 4	Baud Clock (x16 Clock)	Baud Rate 9.8304 MHz Crystal	Baud Rate 17.6603 MHz Crystal	
0	0	0	0	← Not Allowed →			
0	0	0	0	← Defined by Timer T3 Underflow →			
0	0	1	0	CKI/16	38400	65536	
0	0	1	1	CKI/32	19200	32768	
0	1	0	0	CKI/64	9600	16384	
0	1	0	1	CKI/128	4800	8192	
0	1	1	0	CKI/256	2400	4096	
0	1	1	1	CKI/512	1200	2048	
1	0	0	0	CKI/1024	600	1024	
1	0	0	1	CKI/2048	300	512	
1	0	1	0	CKI/4096	150	256	
1	0	1	1	CKI/8192	75	128	
1	1	0	0	CKI/16384	38	64	
1	1	0	1	CKI/32768	19	32	
1	1	1	0	CKI/65536	9.4	16	
1	1	1	1	CKI/131072	4.7	8	

2.0 BAUD RATE CALCULATION USING PUT \therefore BAUDR \approx 52 - 1 51 in decimal (PRECISION UART TIMER) and here value to be loaded into BAUDR register will be The Precision UART Timer (PUT) is now obsolete and kept 33 hex. only for compatibility with software developed for those ear-Now to select PUT timer as external clock source MSB of lier components. PUT has two registers i.e., BAUDR with BAUDR register must be 1. 15-bit divisor field and BAUDC, a 15-bit free-running down counter. These can be programmed to divide the $\ensuremath{\mathsf{CK2}}$ 1000 0000 0011 0011 — Binary (CKI/2) clock by a factor of from 3 to 32767, in units of CK2, 8 0 3 3 — Hex thus yielding a time base to the UART of higher resolution Note: BAUDC must also be loaded with same value (Reload Value). than that available through the DIVBY register. Percentage error of Baud Rate produced is: Referring to Figure 2 we see that BAUD clock source for BAUDR = 51 PUT is external. Therefore Baud Rate = $\frac{8 \text{ MHz}/16}{\sqrt{10}}$ Suppose the Clock input is 16 MHz and the required baud (51 + 1)rate is 9600, then the value to be loaded into BAUDR regis-= 9615.38 ter will be Required Baud Rate = $\frac{(CK2/16)}{(BAUDR+1)}$ Required Baud Rate = 9600 Hence % Error = (9615.38 - 9600)/9600 Where CK2 = CKI/2Given CKI = 16 MHz = 0.16 Which is well within the error limits. Hence CK2 = 8 MHz $(BAUDR + 1) = \frac{C...}{Required Baud Rate}$ CK2/16 $(BAUDR + 1) = \frac{8 MHz/16}{3}$ The following is a sample assembly language routine illustrating BAUD Rate generation through PUT. ;This program will test the HPC16400E UART for 9600 baud. ;Using PUT for generating 9600 baud at 20 MHz .sect code, rom 16 This is for 20 MHz CKI : ;Using PUT for generating 9600 baud at 20 MHz .sect code, rom 16 main: ld 0x017e.w,#0x0000 ;for 9600 baud @ 20 MHz ;UDIV w/xtclk or xrclk (baud count) ld 0x017c.w,#0x8033 ;baud div value to generate 9600 baud ;UDIVR (baud div) register sbit 2, 0x122.b ;xtclk sbit 3, 0x122.b ;xrclk ld 0f2.b,#0x05 ;DIRB reg pin 1 outward direction. ;BFUNL reg, turns on TDX bit ld 0f4.b,#0x05 ;char xmission ld a,#041 ;Load char "A" xmit: st a,0126.b ;Load TBUF reg to transmit jp xmit ;Continue to xmit .endsect .end main

3.0 BAUD RATE CALCULATIONS USING BRG (BAUD RATE GENERATOR).

The most flexible and accurate on-chip clocking is provided by the BAUD Rate generator and (BRG). The BAUD Rate generator is controlled by the register pair PSR and BAUD, shown below. The Prescale factor is selected by the upper 5 bits of the PSR register (the PRESCALE field), in units of the CK2 clock from 1 to 16 in $\frac{1}{2}$ step increments. The lower 3 bits of the PSR register, in conjunction with the 8 bits of the baud register, form the 11-bit BAUDRATE field, which defines a baud rate divisor ranging from 1 to 2048, in units of the prescaled clock selected by the PRESCALE field. In Asynchrnous Mode, the resulting baud rate is 1_{16} of the clocking rate selected through the BRG circuit. The maximum baud rate generated using BRG is 625 kbaud.

	TABLE II			
Р	N			
Prescaler	N = (65.104/P)			
1	65.104			
1.5	43.402			
2	32.552			
2.5	26.041			
3	21.701			
3.5	18.601			
4	16.276			
4.5	14.467			
5	13.020			
5.5	11.837			
6	10.850			
6.5	10.016			
7	9.300			
7.5	8.680			
8	8.138			
8.5	7.659			
9	7.233			
9.5	6.853			
10	6.510			
10.5	6.200			
11	6.918			
11.5	5.661			
12	5.425			
12.5	5.203			
13	5.008	→		
13.5	4.822			
14	4.650			
14.5	4.489			
15	4.340			
15.5	4.200			
16	4.069			

Prescale Field (Binary)	Prescaler Factor
00000	(Compatibility Mode)
00001	1
00010	1.5
00011	2
00100	2.5
00101	3
00110	3.5
00111	4
01000	4.5
01001	5
01010	5.5
01011	6
01100	6.5
01101	7
01110	7.5
01111	8
10000	8.5
10001	9
10010	9.5
10011	10
10100	10.5
10101	11
10110	11.5
10111	12
11000	12.5
11010	13.5
11010	13.5
11011	14
11100	14.5
11101	15
11110	15.5
11111	16

Value Closest to an Integer

Now choose N in such a way that it's closest to an integer. Obviously N $\,=\,$ 5.008 is the closest to being an integer therefore, the value of P when N $\,=\,$ 5.008 is 13

Now from the table "UART Prescaler Factors" select the binary "Prescale field" using the value of N derived above. Percentage error of the Baud Rate produced is: from the above table P = 13 and N = 5.008

∴ Baud Rate =
$$\frac{20 \text{ MHz}}{32 \times \text{N} \times \text{P}}$$

 $\frac{20 \times 10^6}{32 \times 5.008 \times 12} = 9600.02$
% error = (9600.02 - 9600)/9600
= 0.0002%
Which is obviously negligible.

 \rightarrow

```
in Binary format
 P = 11001 (N - 1) = 100
Therefore Prescaler field is P = 11001 and baud rate divi-
sor or baud rate field N = 100
Referring to BRG register format in page 7 we can combine
5 bits of P and 11 bits of baud rate field to load Prescaler
bits (PSR) and Baud Rate generate bits (BRG) respectively.
     PSR = 11001
     Baud Rate field (N - 1) = 0000000100
Combined value in binary format is
         1100 1000 0000 0100
which in hex is
           С
                   8
                          0
                                 4
therefore load BRG register with C804.
The following is a sample assemble language routine illustrating BAUD Rate generation through BRG.
;Baud rate generation using BRG register ;BAUD RATE = CKI/(32 * N * P) where P = 5 bit prescalar value and N = 11 bit
; baud rate filed. For 9600 baud at 20 MHz \rightarrow NP = 52.083 and so P = 13 and N = 4
;At 16 MHz crystal (CKI) for PSR use #0c8 and for BAUD use #07
;At 20 MHz crystal (CKI) for PSR use #0c8 and for BAUD use #04
***********
.sect code, rom16
main:
                                            ;First exit compatibility mode
                                            ;by writing to PSR register
                ld 012a.b,#0c8
                                           ;load prescalar i.e., PSR reg
                ld 012c.b,#04
                                            ;load baudrate field i.e., BAUD at 20 MHz
                ld 0120.b,#000
                                            ;8 bit data, space (0) parity in ENU register.
                ld 0122.b,#080
                                            ;ENUI register, 2 stop bits
                ld 0f2.b,#01
                                            ;DIRB register pin 1 outward direction
                ld 0f4.b,#01
                                            ;BFUNL register, turns on TDX bit
;Loop to continuously xmit chars at specified baud rate.
xmit:
                ld a,#041
                                           ;load char "A"
                st a,0126.b
                                            ;Load TBUF reg to transmit
                jp xmit
                                            ;Continue to xmit.
.endsect
.end main
```

9

Performance Comparison of PUT and BRG Regarding Higher Baud Rate Generation.

Let's take a case where the required Baud rate is 625k baud at 20 MHz.

PUT:

 $BAUDR + 1 = \frac{O(12)}{Required Baud Rate}$ CK2/16 Therefore BAUDR +1 = $\frac{10 \times 10^6/16}{10^6}$

BAUDR + 1 = 0.1

BAUDR = -(0.9)

Therefore we see that, PUT can not be used to generate 625k baud. The limit on PUT is 208.3k baud.

BRG:			
Doud Data Dequired -	CKI		
Baud Hate Required =	32 * N * P		
00 × 106			

$$625k = \frac{20 \times 106}{32 * N * P}$$

 $N \times P = 1$

N = 1 P = 1

i.e. Prescale field = 00001 N - 1 = 0000000000 i.e., 0000 1000 0000 0000 = 0 \times 0800

Therefore load BRG register with 0x 0800 to generate 625k baud @ 20 MHz

Conclusion:

Thus we see that the clocking techniques on new generation HPCs are more accurate and very flexible. Generation of higher rates can be done with relative ease. We can also observe that, using newer UART clocking techniques the percentage error i.e., difference between the required baud rate and the actual baud rate produced goes down significantly.

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

N-130	0	National Semiconductor Corporation 2900 Semiconductor Drive P.O. Box 58090 Santa Clara, CA 95052-8090 Tel: 1(800) 272-9959 TWX: (910) 339-9240	National Semiconductor GmbH Livry-Gargan-Str. 10 D-82256 Fürstenfeldbruck Germany Tel: (81-41) 35-0 Telex: 527649 E-av (94 ct 1) 25 ct	National Semiconductor Japan Ltd. Sumitomo Chemical Engineering Center Bldg. 7F 1-7-1, Nakase, Mihama-Ku Chiba-City, Cite Dardstren 201	National Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Tel: (852) 2737-1600	National Semiconductores Do Brazil Ltda. Rue Deputado Lacorda Franco 120-34 Sao Paulo-SP Brazil 06416-000 Tel: (55-11) 212-26066 Tel: (55-11) 212-26066	National Semiconductor (Australia) Pty, Ltd. Building 16 Business Park Drive Monash Business Park Nottinghil, Melbourne Victoria 3168 Australia
AN		1117. (310) 553-5245	Fax: (81-41) 35-1	Ciba Prefecture 261 Tel: (043) 299-2300 Fax: (043) 299-2500	Fax: (852) 2736-9960	Telex: (391-1131931 NSBR BR Fax: (55-11) 212-1181	Tel: (3) 558-9999 Fax: (3) 558-9998

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications