Interfacing the DP8420A/21A/22A to the 29000 Utilizing the Burst Access Mode

INTRODUCTION

This application note describes how to interface the 29000 microprocessor to the DP8422A DRAM controller (also applicable to DP8420A/21A). The DP8422A supports the 29000 in the burst access mode. It is assumed that the reader is already familiar with 29000 access cycles and the DP8422A modes of operation.
IA. Description of Designs \#1 and \#2, the 29000 in burst access mode on the instruction bus, allowing operation up to 25 MHz with four wait states in normal accesses and one or two wait states in burst accesses
The two designs of this application note consist of the DP8422A DRAM controller, a single PAL® (PAL16L8D), several flip-flops, and several logic gates. These parts interface to the 29000 as shown in the block diagrams. This design accommodates two banks of DRAM, each bank being 32 bits in width, giving a maximum memory capacity of 32 Mbytes (using 4M-bit X 1 DRAMs).
This memory design supports burst accesses by the 29000 to the instruction bus but could also support burst accessing to the data bus given a few minor changes. Design \#1 inserts 4 wait states in normal accesses and 2 wait states in burst accesses. Design \#2 inserts 4 wait states in normal accesses and 1 wait state in burst accesses. When idle states occur during a burst access the next occurring access will only have one wait state.
This application allows page mode DRAMs to be used by holding RAS low after an access is completed (IRDY low) until either a refresh request or a new access request (IREQ) is generated. If $\overline{\mathrm{BREQ}}$ (Instruction Burst Request) has transitioned low the next sequential word is accessed from the DRAM via a page mode access. This access involves incrementing the column address (DP8422A COLINC input high) and toggling the $\overline{\mathrm{CAS}}$ outputs via the PAL ECAS output. The instruction burst acknowledge (IBACK) input is driven low except in the case of a refresh request ($\overline{\mathrm{RFRQ}}$) or a new access ($\overline{\mathrm{REQ}}$) being requested.

PLANTM is a trademark of National Semiconductor Corporation.
PAL® is a registered trademark of and is used under license from Monolithic Memories, Inc.

National Semiconductor
Application Note 602
Webster (Rusty) Meier Jr. May 1989

If the user wants to do dual accessing with the DP8422A DRAM controller, address buffers (74AS244s) must be added to the address, $\overline{E C A S} 0-3, \overline{\text { LOCK, and }} \overline{\text { WIN inputs. }}$
Note that the DP8422A DRAM controller could be used to allow instruction memory accessing thru Port A. The instruction memory could be loaded thru a data memory interface to Port B.
The logic shown in these applications form a complete 29000 memory sub-system, no other logic is needed. This sub-system automatically takes care of:
A. arbitration between Port A, and refreshing the DRAM:
B. the insertion of wait states to the processor (Port A) when needed;
C. remaining in burst access mode unless a refresh request ($\overline{R F R Q}$) or new instruction request is generated;
D. incrementing the column address during burst mode accesses; and
E. guaranteeing the $\overline{\mathrm{RAS}}$ and $\overline{\mathrm{CAS}}$ low and precharge times. The timing calculations for this design are included in this application note.
When using the DP8420A/21A/22A at or above 20 MHz the user should program three clock periods of precharge. This is because two clock periods of precharge at 20 MHz will only guarantee 77 ns of $\overline{\mathrm{RAS}}$ precharge ($2 \times 50 \mathrm{~ns}-\mathrm{tD} 1$, parameter \#50 "14 ns" - clock (20 MHz) to AREQ high " 9 ns ").
IB. High Performance NO WAIT State 29000 System
A higher performance 29000 system (similar to the ones discussed in this application note) could be designed using the DP8422A by accessing four $\overline{\text { RAS }}$ banks at once, this could allow zero wait state burst accesses. An example of this method using 2 DRAM banks is shown at the end of this application note. If 2 DRAM controllers were used (4 BANKs) burst accesses could execute in zero wait states. The COLINC inputs to the two DRAM controllers would be staggered in time as well as the four ECAS outputs (B0ECAS-B3ECAS) from the 29000 control logic block.

II. 29000 Programming mode bits	
Programming Bits	Description
$\begin{aligned} & \mathrm{R} 0=1 \\ & \mathrm{R} 1=1 \end{aligned}$	$\overline{\mathrm{RAS}}$ low four clocks, $\overline{\mathrm{RAS}}$ precharge of three clocks
$\begin{aligned} & \mathrm{R} 2=1 \\ & \mathrm{R} 3=0 \end{aligned}$	$\overline{\text { DTACK }}$ will be asserted on the positive edge of CLK following the access $\overline{\mathrm{RAS}}$
$\begin{aligned} & \mathrm{R} 4=0 \\ & \mathrm{R} 5=0 \\ & \mathrm{R} 6=\mathrm{X} \\ & \mathrm{R} 7=1 \end{aligned}$	No WAIT states during burst accesses DTACK output
$\begin{aligned} & R 8=1 \\ & R 9=X \end{aligned}$	Non-address pipelining to support burst accessing
$\begin{aligned} & \mathrm{C} 0=\mathrm{X} \\ & \mathrm{C} 1=\mathrm{X} \\ & \mathrm{C} 2=\mathrm{X} \end{aligned}$	Select based upon the input clock frequency. Example: if the DELCLK frequency is 20 MHz then choose $\mathrm{C} 0,1,2=0,0,0$ (divide by ten, this will give a frequency of 2 MHz).
$\mathrm{C} 3=\mathrm{X}$	
$\begin{aligned} & C 4=0 \\ & C 5=0 \\ & C 6=1 \end{aligned}$	$\overline{\mathrm{RAS}}$ and $\overline{\mathrm{CAS}}$ groups selected by "B1". This mode allows two $\overline{\mathrm{RAS}}$ and four $\overline{\mathrm{CAS}}$ outputs to go low during an access.
$\begin{aligned} & \mathrm{C} 7=1 \\ & \mathrm{C} 8=1 \end{aligned}$	Column address setup time of 0 ns. Row address hold time of 15 ns
$\mathrm{C} 9=1$	Delay $\overline{\text { CAS }}$ during write accesses to one clock after $\overline{R A S}$ transitions low.
$\begin{aligned} & \mathrm{B} 0=0 \\ & \mathrm{~B} 1=1 \end{aligned}$	Latching of the address inputs, needed for the burst accessing capability of the 29000 (COLINC input in particular). Access mode 1
$0=$ Program with low voltage le $1=$ Program with high voltage $X=$ Program with either low vol III. 2900025 MHz timing Design \#2, with four wa one or two wait states p 1. Maximum time to addr clock): 14 ns (29000 data shee 2. Maximim time to $\overline{\mathrm{ADS}}$ Iow 9 ns (74AS374 clock to 3. Minimum $\overline{\text { ADS }}$ low setup needs $25 \mathrm{~ns}, \# 400 \mathrm{~b}$): 40 ns (one clock period 4. Minimum address setup needs 14 ns, \# 404): 40 ns (One clock peri 74AS374 clock to Q) 5. Minimum $\overline{\mathrm{CS}}$ setup time $5 \mathrm{~ns}, \# 401$): 24 ns (\#4) - 9 ns (74 6. Determining tRAC (RA DRAM): 200 ns (five clock perio period, T1) - 9 ns (\#2) \#9a) - 7 ns (74F245) 109 ns	by the ne clock up time, low) =

10a. Determining tCAC during a burst access for Design \#1:

120 ns (3 clock periods) - 20 ns (one half clock period during which $\overline{\mathrm{CAS}}$ is high) -10 ns (PAL16L8 maximum propagation delay) - 12 ns (74AS32 propagation delay driving $\approx 125 \mathrm{pF}$ with damping resistor and other associated delays) -6 ns (data setup time) -7 ns (74F245) $=65 \mathrm{~ns}$
Therefore the tCAC of the DRAM must be $\leq 65 \mathrm{~ns}$
10b. Determining tCAC during a burst access for Design \#2:

80 ns (2 clock periods) - 20 ns (one half clock period during which $\overline{\text { CAS }}$ is high) -10 ns (PAL16L8 maximum propagation delay) - 12 ns (74AS32 propagation delay driving $\approx 125 \mathrm{pF}$ with damping resistor and other associated delays) -6 ns (data setup time) -7 ns (74F245) $=25 \mathrm{~ns}$
Therefore the tCAC of the DRAM must be $\leq 25 \mathrm{~ns}$
11a. Determining tAA during a burst access for Design \#1: 160 ns (4 clock periods, because $\overline{\mathrm{RDP}}$ inverted is COLINC) - 39 ns (DP8422A COLINC to Q's valid, \#27) $=121 \mathrm{~ns} \geq \mathrm{tAA}$.

11b. Determining tAA during a burst access for Design \#2: 120 ns (3 clock periods, because IRDY inverted is COLINC) - 39 ns (DP8422A COLINC to Q's valid, \#27) $=81 \mathrm{~ns} \geq$ tAA.
IV. 29000 PAL equations, Design \# 1, 2 wait states during burst accesses. Written in National Semiconductor PLANTM format

PAL16L8D
CLK $\overline{C S} \overline{\mathrm{IREQ}} \overline{\mathrm{IBREQ}} \overline{\mathrm{DTACK}} 2 \overline{\mathrm{AREQ}} \overline{\mathrm{IRDY}} \overline{\mathrm{IRDY} 3} \overline{\mathrm{RFRQD}}$
GND RESET IBACK ECAS ECAS1 DOACC ENDACC $\overline{\text { IREQH }}$ RDY1 $\overline{A R E Q} 1$ VCC

If (VCC) $\overline{\mathrm{IBACK}}=\overline{\text { AREQ*RFRQD*IREQH*}} \overline{\text { DTACK }} 2$
$+\overline{\text { AREQ }} *$ RFRQD* $\overline{\mathrm{IREQH}} *$ IREQ $+\widehat{\text { BACK*IREQH*RFRQD }}$
If (VCC) $\overline{\mathrm{ECAS}}=\overline{\text { AREQ }} *$ ECAS ${ }^{*} \overline{\text { DOACC }}^{*}$ RESET $+\overline{\text { AREQ* }} \overline{\mathrm{DOACC}} * \overline{\mathrm{RDY}} 3 * \overline{\mathrm{CLK}}$ *RESET
$+\overline{\text { AREQ }} * \overline{\text { DOACC }} * \overline{R D Y} 1 *$ RESET + ECAS*ECAS1*CLK*RESET +ECAS*CLK*RESET
If (VCC) $\overline{\mathrm{ECAS}} 1=\overline{\mathrm{IRDY}} * \overline{\mathrm{CLK}}$ + $\overline{\text { ECAS1* }}$ *LK
If (VCC) $\overline{\text { DOACC }}=\overline{\mathrm{AREQ}} *$ RFRQD* $\overline{\mathrm{BREQ}} *$ RESET +CS*IREQ*IREQH*AREQ*RESET $+\overline{\text { DOACC }}$ *IRDY*RESET

If (VCC) ENDACC $=\overline{\text { IREQ }}$ *IREQH
$+\overline{\text { RFRQD }}$ * $\overline{R D Y}$
$+\overline{\mathrm{RFRQD}} * \overline{\mathrm{AREQ}} * \overline{\mathrm{REQH}}$
$+\overline{\text { ENDACC }} * \overline{\text { AREQ }}$
$+\overline{\text { RESET }}$
If (VCC) $\overline{\text { IREQH }}=\overline{\text { AREQ*IREQ }}$
$+\overline{\mathrm{REQH}} * \overline{\mathrm{AREQ}} * \mathrm{RESET}$
If (VCC) $\overline{\mathrm{RDDY}} 1=\overline{\mathrm{DTACK}}{ }^{*} \overline{\text { AREQ}}{ }^{*}$ IRDY*IRDY3*IREQH $+\overline{\text { AREQ }}$ IRDY*IRDY3* $\overline{\mathrm{REQH}}{ }^{*}$ CLK** $\overline{\mathrm{DOACC}}$ $+\overline{\mathrm{IRDY}}{ }^{*}$ IRDY*IRDY3*AREQ
If (VCC) $\overline{\mathrm{AREQ}} 1=\overline{\mathrm{CS}}{ }^{*} \overline{\mathrm{REQ}}{ }^{*}$ IRDY*ENDACC*RESET + AREQ1*ENDACC*RESET
$+\overline{\text { AREQ1* }}$ DOACC $*$ RESET

29000 PAL equations, Design \#2, 1 wait state during burst accesses. Written in National Semiconductor PLAN format
PAL16L8D
CLK $\overline{\mathrm{CS}} \overline{\mathrm{RE} E \mathrm{I}} \overline{\mathrm{BREQ}} \overline{\mathrm{DTACK}} 2 \overline{\mathrm{AREQ}} \overline{\mathrm{RDY}} \overline{\mathrm{RDY} 3} \overline{\mathrm{RFRQD}}$
GND RESET IBACK ECAS ECAS1 DOACC ENDACC $\overline{\text { IREQH }}$
IRDY1 $\overline{\text { AREQ }} 1 \mathrm{VCC}$
If (VCC) $\overline{\mathrm{IBACK}}=\overline{\text { AREQ }} *$ RFRQD*IREQH* $\overline{\text { DTACK2 }}$
$+\overline{\text { AREQ }}$ RFRQD*IREQH ${ }^{*}$ IREQ

+ $\overline{\text { BACK*IREQH*RFRQD }}$
If (VCC) $\overline{\mathrm{ECAS}}=\overline{\mathrm{AREQ}} * \mathrm{ECAS}^{*}{ }^{\mathrm{DOACC}} *$ RESET

$+\overline{\mathrm{AREQ}} * \overline{\mathrm{DOACC}} * \overline{\mathrm{CLK}} * \mathrm{RESET}$
+ $\overline{\text { ECAS*ECAS1*CLK*RESET }}$
+ $\overline{\text { ECAS* }}$ 드*RESET
If (VCC) $\overline{\mathrm{ECAS}} 1=\overline{\mathrm{RDY}}{ }^{*} \overline{\mathrm{CLK}}$
+ ECAS1*CLK
If (VCC) $\overline{\text { DOACC }}=\overline{\text { AREQ*RFRQD*IBREQ*RESET }}$ $+\overline{\mathrm{CS}} * \overline{\mathrm{REQ}} *$ IREQH*$\overline{\mathrm{AREQ}} *$ RESET $+\overline{\text { DOACC }}{ }^{*}$ IRDY*RESET

If (VCC) $\overline{\text { ENDACC }}=\overline{\mathrm{IREQ}} * \overline{\mathrm{REQH}}$
$+\overline{\text { RFRQD }} * \overline{\text { RDY }}$
$+\overline{\text { RFRQD }} * \overline{\mathrm{AREQ}} * \overline{\mathrm{REQH}}$
ENDACC* $\overline{\text { AREQ }}$
$+\overline{\text { RESET }}$
If (VCC) $\overline{\mathrm{IREQH}}=\overline{\mathrm{AREQ}} * \operatorname{IREQ}$
$+\overline{\mathrm{IREQH}} * \overline{\mathrm{AREQ}} * \mathrm{RESET}$
If $(\mathrm{VCC}) \overline{\mathrm{IRDY}} 1=\overline{\mathrm{DTACK}} 2 * \overline{\mathrm{AREQ}} *$ IREQH
$+\overline{\text { AREQ }}{ }^{*}$ IRDY* $\overline{\operatorname{REQH}}{ }^{*} \mathrm{CLK} * \overline{\mathrm{DOACC}}$ + $\overline{\mathrm{RDPY}}{ }^{*}$ IRDY* $\overline{\text { AREQ }}$
If (VCC) $\overline{\mathrm{AREQ}} 1=\overline{\mathrm{CS}}{ }^{*} \overline{\mathrm{REQ}}{ }^{*}$ IRDY*ENDACC*RESET + AREQ1*ENDACC*RESET $+\overline{\text { AREQ1 }}$ * $\overline{\text { DOACC }} *$ RESET

Key: Reading PAL equations written in PLAN
EXAMPLE EQUATIONS: $\overline{R E A D}:=$ CS_RD*ADS1D*CLKA
$+\overline{\text { READ*ADS1D }}$
$+\overline{\text { READ }}$ * CLKA
This example reads: the output "READ" will transition low on the next rising "CLK" clock edge (given that one of the following conditions are valid a setup time before "CLK" transitions high);

1. the input "CS__RD" is high AND the input "ADS1D" is high AND the input "CLKA" is low, OR
2. the output "READ" is low AND the input "ADS1D" is low, OR
3. the output "READ" is low AND the input "CLKA" is high

V. 29000 application note PAL and 74AS374 outputs

What follows is a brief explanation of the PAL and 74AS374 outputs:
AREQ1 This combinational output of the PAL is sampled at the next rising clock edge (74AS374) to provide the $\overline{\mathrm{ADS}}$ and $\overline{\mathrm{AREQ}}$ outputs that drive the DP8422A DRAM accesses. This output is held low to allow burst accessing until either a new access is requested by the 29000 (IREQ) or a refresh is requested ($\overline{\operatorname{RFRQ}})$.
$\overline{\text { IRDY1 }}$ This combinational output of the PAL is sampled at the next rising clock edge (74AS374) to provide the IRDY output that terminates each 29000 access.
$\overline{\text { IREQH }} \quad$ This combinational output of the PAL is used internal to the PAL as an indication of $\overline{\mathrm{REQ}}$ having transitioned high. It is useful in determining when the 29000 is terminating a burst access to request an access to another page ($\overline{\mathrm{REQH}}=\overline{\mathrm{RREQ}}=$ low).
ENDACC This combinational output of the PAL is used internal to the PAL as an indication of when to terminate a burst, or single, access. It indicates a new page access ($\overline{\mathrm{REQ}})$, a refresh request ($\overline{\mathrm{RFRQ}}$), or a hardware reset ($\overline{\mathrm{RESET}}$) operation. Accesses are only terminated after $\overline{\mathrm{RDDY}}$ is issued or during idle states when no accesses are pending.

This combinational output of the PAL is used internal to the PAL to keep track of requested accesses, single ($\overline{\mathrm{REQ}}$) or burst ($\overline{\mathrm{BREQ}}$ and IBACK).
ECAS1 This combinational output of the PAL is used internal to the PAL to allow the ECAS output to have minimum delay following the CLK high and low.
ECAS This combinational output of the PAL is used to toggle the $\overline{\text { CAS }}$ outputs of the DP8422A during burst accessing.
$\overline{\text { IBACK }}$ This combinational output of the PAL is used as an input to the 29000 to indicate when the DP8422A is available to support burst accessing. This output is pulled high during refresh requests ($\overline{\mathrm{RFRQ}}$) and out of page accesses ($\overline{\mathrm{IREQH}}=\overline{\mathrm{IREQ}}=$ low).
$\overline{\text { AREQ }}$ See $\overline{\text { AREQ1 }} 1$ explanation.
$\overline{\mathrm{IRDY}} \quad$ See $\overline{\mathrm{RDV}} 1$ explanation.
$\overline{\text { IRDY3 }} \quad$ This output (74AS374) is used as a state input to the PAL. This term is $\overline{\mathrm{RRDY}}$ delayed by one clock period.
$\overline{\text { RFRQD }} \quad$ This clocked output is used to synchronize the DP8422A RFRQ output.
$\overline{\text { DTACK2 }}$ This clocked output is generated from the DP8422A DTACK1 output and is synchronized to the next rising clock edge.

Block Diagram of 29000/DP8422A Design at 25 MHz (Instruction memory interface to Port A, Port B could be used as a data memory interface to load the instructions into the DRAM)

TL/F/10394-1

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

